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Reports on Computer Systems Technology 

The Information Technology Laboratory (ITL) at NIST promotes the U.S. economy and public welfare by 
providing technical leadership for the Nation’s measurement and standards infrastructure. ITL develops 
tests, test methods, reference data, proof of concept implementations, and technical analyses to advance 
the development and productive use of information technology (IT). ITL’s responsibilities include the 
development of management, administrative, technical, and physical standards and guidelines for the 
cost-effective security and privacy of other than national security-related information in federal 
information systems. This document reports on ITL’s research, guidance, and outreach efforts in IT and 
its collaborative activities with industry, government, and academic organizations. 

 

Abstract 

Big Data is a term used to describe the large amount of data in the networked, digitized, sensor-laden, 
information-driven world. While opportunities exist with Big Data, the data can overwhelm traditional 
technical approaches, and the growth of data is outpacing scientific and technological advances in data 
analytics. To advance progress in Big Data, the NIST Big Data Public Working Group (NBD-PWG) is 
working to develop consensus on important fundamental concepts related to Big Data. The results are 
reported in the NIST Big Data Interoperability Framework (NBDIF) series of volumes. This volume, 
Volume 6, summarizes the work performed by the NBD-PWG to characterize Big Data from an 
architecture perspective, presents the NIST Big Data Reference Architecture (NBDRA) conceptual 
model, discusses the roles and fabrics of the NBDRA, presents an activities view of the NBDRA to 
describe the activities performed by the roles, and presents a functional component view of the NBDRA 
containing the classes of functional components that carry out the activities.  
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Executive Summary 1 

The NIST Big Data Public Working Group (NBD-PWG) Reference Architecture Subgroup prepared this 2 
NIST Big Data Interoperability Framework (NBDIF): Volume 6, Reference Architecture document to 3 
provide a vendor-neutral, technology- and infrastructure-agnostic conceptual model and examine related 4 
issues. The NIST Big Data Reference Architecture (NBDRA) which consists of a conceptual model and 5 
two architectural views, was a collaborative effort within the Reference Architecture Subgroup and with 6 
the other NBD-PWG subgroups. The goal of the NBD-PWG Reference Architecture Subgroup is to 7 
develop an open reference architecture for Big Data that achieves the following objectives: 8 

• Provides a common language for the various stakeholders; 9 
• Encourages adherence to common standards, specifications, and patterns; 10 
• Provides consistent methods for implementation of technology to solve similar problem sets; 11 
• Illustrates and improves understanding of the various Big Data components, processes, and 12 

systems, in the context of a vendor- and technology- agnostic Big Data conceptual model 13 
• Provides a technical reference for U.S. government departments, agencies, and other consumers 14 

to understand, discuss, categorize, and compare Big Data solutions; and  15 
• Facilitates analysis of candidate standards for interoperability, portability, reusability, and 16 

extendibility 17 

The NIST Big Data Interoperability Framework (NBDIF) was released in three versions, which 18 
correspond to the three stages of the NBD-PWG work. Version 3 (current version) of the NBDIF volumes 19 
resulted from Stage 3 work with major emphasis on the validation of the NBDRA Interfaces and content 20 
enhancement. Stage 3 work built upon the foundation created during Stage 2 and Stage 1. The current 21 
effort documented in this volume reflects concepts developed within the rapidly evolving field of Big 22 
Data. The three stages (in reverse order) aim to achieve the following with respect to the NIST Big Data 23 
Reference Architecture (NBDRA). 24 

Stage 3: Validate the NBDRA by building Big Data general applications through the general 25 
interfaces; 26 

Stage 2: Define general interfaces between the NBDRA components; and 27 
Stage 1: Identify the high-level Big Data reference architecture key components, which are 28 

technology-, infrastructure-, and vendor-agnostic. 29 

The NBDIF consists of nine volumes, each of which addresses a specific key topic, resulting from the 30 
work of the NBD-PWG. The nine volumes are as follows: 31 

• Volume 1, Definitions [1] 32 
• Volume 2, Taxonomies [2] 33 
• Volume 3, Use Cases and General Requirements [3] 34 
• Volume 4, Security and Privacy [4] 35 
• Volume 5, Architectures White Paper Survey [5] 36 
• Volume 6, Reference Architecture (this volume) 37 
• Volume 7, Standards Roadmap [6] 38 
• Volume 8, Reference Architecture Interfaces [7] 39 
• Volume 9, Adoption and Modernization [8] 40 

During Stage 1, Volumes 1 through 7 were conceptualized, organized, and written. The finalized Version 41 
1 documents can be downloaded from the V1.0 Final Version page of the NBD-PWG website 42 
(https://bigdatawg.nist.gov/V1_output_docs.php).  43 
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During Stage 2, the NBD-PWG developed Version 2 of the NBDIF Version 1 volumes, with the 44 
exception of Volume 5, which contained the completed architecture survey work that was used to inform 45 
Stage 1 work of the NBD-PWG. The goals of Stage 2 were to enhance the Version 1 content, define 46 
general interfaces between the NBDRA components by aggregating low-level interactions into high-level 47 
general interfaces, and demonstrate how the NBDRA can be used. As a result of the Stage 2 work, the 48 
need for NBDIF Volume 8 and NBDIF Volume 9 was identified and the two new volumes were created. 49 
Version 2 of the NBDIF volumes, resulting from Stage 2 work, can be downloaded from the V2.0 Final 50 
Version page of the NBD-PWG website (https://bigdatawg.nist.gov/V2_output_docs.php). 51 

 52 
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1 INTRODUCTION 53 

1.1 BACKGROUND 54 

There is broad agreement among commercial, academic, and government leaders about the potential of 55 
Big Data to spark innovation, fuel commerce, and drive progress. Big Data is the common term used to 56 
describe the deluge of data in today’s networked, digitized, sensor-laden, and information-driven world. 57 
The availability of vast data resources carries the potential to answer questions previously out of reach, 58 
including the following: 59 

• How can a potential pandemic reliably be detected early enough to intervene?  60 
• Can new materials with advanced properties be predicted before these materials have ever been 61 

synthesized?  62 
• How can the current advantage of the attacker over the defender in guarding against cyber-63 

security threats be reversed?  64 

There is also broad agreement on the ability of Big Data to overwhelm traditional approaches. The growth 65 
rates for data volumes, speeds, and complexity are outpacing scientific and technological advances in data 66 
analytics, management, transport, and data user spheres.  67 

Despite widespread agreement on the inherent opportunities and current limitations of Big Data, a lack of 68 
consensus on some important fundamental questions continues to confuse potential users and stymie 69 
progress. These questions include the following:  70 

• How is Big Data defined? 71 
• What attributes define Big Data solutions?  72 
• What is new in Big Data? 73 
• What is the difference between Big Data and bigger data that has been collected for years? 74 
• How is Big Data different from traditional data environments and related applications?  75 
• What are the essential characteristics of Big Data environments?  76 
• How do these environments integrate with currently deployed architectures?  77 
• What are the central scientific, technological, and standardization challenges that need to be 78 

addressed to accelerate the deployment of robust, secure Big Data solutions? 79 

Within this context, on March 29, 2012, the White House announced the Big Data Research and 80 
Development Initiative [9]. The initiative’s goals include helping to accelerate the pace of discovery in 81 
science and engineering, strengthening national security, and transforming teaching and learning by 82 
improving analysts’ ability to extract knowledge and insights from large and complex collections of 83 
digital data. 84 

Six federal departments and their agencies announced more than $200 million in commitments spread 85 
across more than 80 projects, which aim to significantly improve the tools and techniques needed to 86 
access, organize, and draw conclusions from huge volumes of digital data. The initiative also challenged 87 
industry, research universities, and nonprofits to join with the federal government to make the most of the 88 
opportunities created by Big Data.  89 

Motivated by the White House initiative and public suggestions, the National Institute of Standards and 90 
Technology (NIST) has accepted the challenge to stimulate collaboration among industry professionals to 91 
further the secure and effective adoption of Big Data. As one result of NIST’s Cloud and Big Data Forum 92 
held on January 15–17, 2013, there was strong encouragement for NIST to create a public working group 93 
for the development of a Big Data Standards Roadmap. Forum participants noted that this roadmap 94 
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should define and prioritize Big Data requirements, including interoperability, portability, reusability, 95 
extensibility, data usage, analytics, and technology infrastructure. In doing so, the roadmap would 96 
accelerate the adoption of the most secure and effective Big Data techniques and technology. 97 

On June 19, 2013, the NIST Big Data Public Working Group (NBD-PWG) was launched with extensive 98 
participation by industry, academia, and government from across the nation. The scope of the NBD-PWG 99 
involves forming a community of interests from all sectors—including industry, academia, and 100 
government—with the goal of developing consensus on definitions, taxonomies, secure reference 101 
architectures, security and privacy, and, from these, a standards roadmap. Such a consensus would create 102 
a vendor-neutral, technology- and infrastructure-independent framework that would enable Big Data 103 
stakeholders to identify and use the best analytics tools for their processing and visualization requirements 104 
on the most suitable computing platform and cluster, while also allowing added value from Big Data 105 
service providers. 106 

The NIST Big Data Interoperability Framework (NBDIF) was released in three versions, which 107 
correspond to the three stages of the NBD-PWG work. Version 3 (current version) of the NBDIF volumes 108 
resulted from Stage 3 work with major emphasis on the validation of the NBDRA Interfaces and content 109 
enhancement. Stage 3 work built upon the foundation created during Stage 2 and Stage 1. The current 110 
effort documented in this volume reflects concepts developed within the rapidly evolving field of Big 111 
Data. The three stages (in reverse order) aim to achieve the following with respect to the NIST Big Data 112 
Reference Architecture (NBDRA). 113 

Stage 3: Validate the NBDRA by building Big Data general applications through the general 114 
interfaces; 115 

Stage 2: Define general interfaces between the NBDRA components; and 116 
Stage 1: Identify the high-level Big Data reference architecture key components, which are 117 

technology-, infrastructure-, and vendor-agnostic. 118 

The NBDIF consists of nine volumes, each of which addresses a specific key topic, resulting from the 119 
work of the NBD-PWG. The nine volumes are as follows: 120 

• Volume 1, Definitions [1] 121 
• Volume 2, Taxonomies [2] 122 
• Volume 3, Use Cases and General Requirements [3] 123 
• Volume 4, Security and Privacy [4] 124 
• Volume 5, Architectures White Paper Survey [5] 125 
• Volume 6, Reference Architecture (this volume) 126 
• Volume 7, Standards Roadmap [6] 127 
• Volume 8, Reference Architecture Interfaces [7] 128 
• Volume 9, Adoption and Modernization [8] 129 

During Stage 1, Volumes 1 through 7 were conceptualized, organized, and written. The finalized Version 130 
1 documents can be downloaded from the V1.0 Final Version page of the NBD-PWG website 131 
(https://bigdatawg.nist.gov/V1_output_docs.php).  132 

During Stage 2, the NBD-PWG developed Version 2 of the NBDIF Version 1 volumes, with the 133 
exception of Volume 5, which contained the completed architecture survey work that was used to inform 134 
Stage 1 work of the NBD-PWG. The goals of Stage 2 were to enhance the Version 1 content, define 135 
general interfaces between the NBDRA components by aggregating low-level interactions into high-level 136 
general interfaces, and demonstrate how the NBDRA can be used. As a result of the Stage 2 work, the 137 
need for NBDIF Volume 8 and NBDIF Volume 9 was identified and the two new volumes were created. 138 
Version 2 of the NBDIF volumes, resulting from Stage 2 work, can be downloaded from the V2.0 Final 139 
Version page of the NBD-PWG website (https://bigdatawg.nist.gov/V2_output_docs.php). 140 
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1.2 SCOPE AND OBJECTIVES OF THE REFERENCE 141 

ARCHITECTURES SUBGROUP 142 

Reference architectures provide “an authoritative source of information about a specific subject area that 143 
guides and constrains the instantiations of multiple architectures and solutions [10].” Reference 144 
architectures generally serve as a foundation for solution architectures and may also be used for 145 
comparison and alignment of instantiations of architectures and solutions.  146 

The goal of the NBD-PWG Reference Architecture Subgroup is to develop an open reference architecture 147 
for Big Data that achieves the following objectives: 148 

• Provides a common language for the various stakeholders; 149 
• Encourages adherence to common standards, specifications, and patterns; 150 
• Provides consistent methods for implementation of technology to solve similar problem sets; 151 
• Illustrates and improves understanding of the various Big Data components, processes, and 152 

systems, in the context of a vendor- and technology-agnostic Big Data conceptual model;  153 
• Provides a technical reference for U.S. government departments, agencies, and other consumers 154 

to understand, discuss, categorize, and compare Big Data solutions; and  155 
• Facilitates analysis of candidate standards for interoperability, portability, reusability, and 156 

extendibility. 157 

The NBDRA is a high-level conceptual model crafted to serve as a tool to facilitate open discussion of the 158 
requirements, design structures, and operations inherent in Big Data. The NBDRA is intended to facilitate 159 
the understanding of the operational intricacies in Big Data. It does not represent the system architecture 160 
of a specific Big Data system, but rather is a tool for describing, discussing, and developing system-161 
specific architectures using a common framework of reference. The model is not tied to any specific 162 
vendor products, services, or reference implementation, nor does it define prescriptive solutions that 163 
inhibit innovation.  164 

The NBDRA does not address the following: 165 

• Detailed specifications for any organization’s operational systems; 166 
• Detailed specifications of information exchanges or services; and 167 
• Recommendations or standards for integration of infrastructure products. 168 

1.3 REPORT PRODUCTION  169 

A wide spectrum of Big Data architectures has been explored and developed as part of various industry, 170 
academic, and government initiatives. The development of the NBDRA and material contained in this 171 
volume involved the following steps: 172 

1. Announce that the NBD-PWG Reference Architecture Subgroup is open to the public to 173 
attract and solicit a wide array of subject matter experts and stakeholders in government, 174 
industry, and academia; 175 

2. Gather publicly available Big Data architectures and materials representing various 176 
stakeholders, different data types, and diverse use cases;2  177 

3. Examine and analyze the Big Data material to better understand existing concepts, usage, 178 
goals, objectives, characteristics, and key elements of Big Data, and then document the 179 

                                                      
2 Many of the architecture use cases were originally collected by the NBD-PWG Use Case and Requirements 
Subgroup and can be accessed at http://bigdatawg.nist.gov/usecases.php. 
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findings using NIST’s Big Data taxonomies model (presented in NBDIF: Volume 2, 180 
Taxonomies);  181 

4. Develop a technology-independent, open reference architecture based on the analysis of Big 182 
Data material and inputs received from other NBD-PWG subgroups; 183 

5. Identify workflow and interactions from the System Operator to the rest of the NBDRA 184 
components; and 185 

6. Develop an Activities View and a Functional Component View of the NBDRA to describe 186 
the activities performed by the roles and fabrics along with the functional components that 187 
carry out the activities.  188 

To achieve technical and high-quality document content, this document will go through a public comment 189 
period along with NIST internal review. 190 

1.4 REPORT STRUCTURE  191 

The organization of this document roughly corresponds to the process used by the NBD-PWG to develop 192 
the NBDRA. Following the introductory material presented in Section 1, the remainder of this document 193 
is organized as follows:  194 

• Section 2 summarizes the work of other NBD-PWG Subgroups that informed the formation of the 195 
NBDRA. 196 

• Section 3 presents the NBDRA conceptual model, which is a vendor- and technology-agnostic 197 
Big Data conceptual model. 198 

• Section 4 explores two different views of the NBDRA, the activities view, which examines the 199 
activities carried out by the NBDRA roles, and the functional component view, which examines 200 
the functional components that carry out the activities 201 

• Section 5 summarizes conclusions of this volume. 202 

While each NBDIF volume was created with a specific focus within Big Data, all volumes are 203 
interconnected. During the creation of the volumes, information from some volumes was used as input for 204 
other volumes. Broad topics (e.g., definition, architecture) may be discussed in several volumes with each 205 
discussion circumscribed by the volume’s particular focus. Arrows shown in Figure 1 indicate the main 206 
flow of information input and/or output from the volumes. Volumes 2, 3, and 5 (blue circles) are 207 
essentially standalone documents that provide output to other volumes (e.g., to Volume 6). These 208 
volumes contain the initial situational awareness research. During the creation of Volumes 4, 7, 8, and 9 209 
(green circles), input from other volumes was used. The development of these volumes took into account 210 
work on the other volumes. Volumes 1 and 6 (red circles) were developed using the initial situational 211 
awareness research and continued to be modified based on work in other volumes. The information from 212 
these volumes was also used as input to the volumes in the green circles. 213 

 214 
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 215 
Figure 1: NBDIF Documents Navigation Diagram Provides Content Flow Between Volumes 216 

 217 
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2 HIGH-LEVEL REFERENCE 218 

ARCHITECTURE REQUIREMENTS 219 

The development of a Big Data reference architecture requires a thorough understanding of current 220 
techniques, issues, and concerns. To this end, the NBD-PWG collected use cases to gain an understanding 221 
of current applications of Big Data, conducted a survey of reference architectures to understand 222 
commonalities within Big Data architectures in use, developed a taxonomy to understand and organize 223 
the information collected, and reviewed existing technologies and trends relevant to Big Data. The results 224 
of these NBD-PWG activities were used in the development of the NBDRA and are briefly summarized 225 
in this section extracted from the corresponding other parts of the NBDIF. 226 

2.1 USE CASES AND REQUIREMENTS 227 

To develop the use cases, publicly available information was collected for various Big Data architectures 228 
in nine broad areas, or application domains. Participants in the NBD-PWG Use Case and Requirements 229 
Subgroup and other interested parties provided the use case details via a template, which helped to 230 
standardize the responses and facilitate subsequent analysis and comparison of the use cases. However, 231 
submissions still varied in levels of detail, quantitative data, or qualitative information. The NBDIF: 232 
Volume 3, Use Cases and General Requirements document presents the original use cases, an analysis of 233 
the compiled information, and the requirements extracted from the use cases.  234 

The extracted requirements represent challenges faced in seven characterization categories (Table 1) 235 
developed by the Subgroup. Requirements specific to the use cases were aggregated into high-level 236 
generalized requirements, which are vendor and technology neutral. 237 

The use case characterization categories were used as input in the development of the NBDRA and map 238 
directly to NBDRA components and fabrics as shown in Table 1. 239 

Table 1: Mapping Use Case Characterization Categories to  240 
Reference Architecture Components and Fabrics 241 

USE CASE CHARACTERIZATION 
CATEGORIES 

 REFERENCE ARCHITECTURE COMPONENTS 
AND FABRICS 

Data sources  → Data Provider 
Data transformation  → Big Data Application Provider 
Capabilities → Big Data Framework Provider 
Data consumer → Data Consumer 
Security and privacy → Security and Privacy Fabric 
Life cycle management  → System Orchestrator; Management Fabric 
Other requirements → To all components and fabrics 
 242 

The high-level generalized requirements are presented below. The development of these generalized 243 
requirements is presented in the NBDIF: Volume 3, Use Cases and Requirements document. 244 
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DATA SOURCE REQUIREMENTS (DSR) 245 
• DSR-1: Reliable, real-time, asynchronous, streaming, and batch processing to collect data from 246 

centralized, distributed, and cloud data sources, sensors, or instruments 247 
• DSR-2: Slow, bursty, and high throughput data transmission between data sources and computing 248 

clusters 249 
• DSR-3: Diversified data content ranging from structured and unstructured text, documents, 250 

graphs, websites, geospatial, compressed, timed, spatial, multimedia, simulation, and instrumental 251 
(i.e., system managements and monitoring) data 252 

TRANSFORMATION PROVIDER REQUIREMENTS (TPR) 253 
• TPR-1: Diversified, compute-intensive, statistical and graph analytic processing and machine-254 

learning techniques  255 
• TPR-2: Batch and real-time analytic processing  256 
• TPR-3: Processing large diversified data content and modeling  257 
• TPR-4: Processing data in motion (e.g., streaming, fetching new content, data tracking, 258 

traceability, data change management, and data boundaries) 259 

CAPABILITY PROVIDER REQUIREMENTS (CPR) 260 
• CPR-1: Legacy software and advanced software packages  261 
• CPR-2: Legacy and advanced computing platforms  262 
• CPR-3: Legacy and advanced distributed computing clusters, co-processors, input/output (I/O) 263 

processing  264 
• CPR-4: Advanced networks (e.g., software-defined network [SDN]) and elastic data transmission, 265 

including fiber, cable, and wireless networks (e.g., local area network, wide area network, 266 
metropolitan area network, Wi-Fi)  267 

• CPR-5: Legacy, large, virtual, and advanced distributed data storage  268 
• CPR-6: Legacy and advanced programming executables, applications, tools, utilities, and libraries  269 

DATA CONSUMER REQUIREMENTS (DCR) 270 
• DCR-1: Fast searches from processed data with high relevancy, accuracy, and recall 271 
• DCR-2: Diversified output file formats for visualization, rendering, and reporting 272 
• DCR-3: Visual layout for results presentation 273 
• DCR-4: Rich user interface for access using browser, visualization tools  274 
• DCR-5: High-resolution, multidimensional layer of data visualization 275 
• DCR-6: Streaming results to clients  276 

SECURITY AND PRIVACY REQUIREMENTS (SPR) 277 
• SPR-1: Protect and preserve security and privacy of sensitive data. 278 
• SPR-2: Support sandbox, access control, and multi-tenant, multilevel, policy-driven 279 

authentication on protected data and ensure that these are in line with accepted governance, risk, 280 
and compliance (GRC) and confidentiality, integrity, and availability (CIA) best practices. 281 
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LIFE CYCLE MANAGEMENT REQUIREMENTS (LMR) 282 
• LMR-1: Data quality curation, including preprocessing, data clustering, classification, reduction, 283 

and format transformation 284 
• LMR-2: Dynamic updates on data, user profiles, and links 285 
• LMR-3: Data life cycle and long-term preservation policy, including data provenance  286 
• LMR-4: Data validation 287 
• LMR-5: Human annotation for data validation  288 
• LMR-6: Prevention of data loss or corruption 289 
• LMR-7: Multisite (including cross-border, geographically dispersed) archives 290 
• LMR-8: Persistent identifier and data traceability  291 
• LMR-9: Standardization, aggregation, and normalization of data from disparate sources  292 

OTHER REQUIREMENTS (OR) 293 
• OR-1: Rich user interface from mobile platforms to access processed results  294 
• OR-2: Performance monitoring on analytic processing from mobile platforms 295 
• OR-3: Rich visual content search and rendering from mobile platforms 296 
• OR-4: Mobile device data acquisition and management 297 
• OR-5: Security across mobile devices and other smart devices such as sensors 298 

2.2 REFERENCE ARCHITECTURE SURVEY  299 

The NBD-PWG Reference Architecture Subgroup conducted a survey of current reference architectures 300 
to advance the understanding of the operational intricacies in Big Data and to serve as a tool for 301 
developing system-specific architectures using a common reference framework. The Subgroup surveyed 302 
currently published Big Data platforms by leading companies or individuals supporting the Big Data 303 
framework and analyzed the collected material.  304 

This effort revealed a consistency between Big Data architectures that served in the development of the 305 
NBDRA. Survey details, methodology, and conclusions are reported in NBDIF: Volume 5, Architectures 306 
White Paper Survey.  307 

2.3 TAXONOMY 308 

The NBD-PWG Definitions and Taxonomy Subgroup focused on identifying Big Data concepts, defining 309 
terms needed to describe the new Big Data paradigm, and defining reference architecture terms. The 310 
reference architecture taxonomy presented below provides a hierarchy of the components of the reference 311 
architecture. Additional taxonomy details are presented in the NBDIF: Volume 2, Taxonomy document. 312 

Figure 2 outlines potential actors for the seven roles developed by the NBD-PWG Definition and 313 
Taxonomy Subgroup. The blue boxes contain the name of the role at the top with potential actors listed 314 
directly below.  315 
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 316 
Figure 2: NBDRA Taxonomy  317 

SYSTEM ORCHESTRATOR 318 
The System Orchestrator provides the overarching requirements that the system must fulfill, including 319 
policy, governance, architecture, resources, and business requirements, as well as monitoring or auditing 320 
activities to ensure that the system complies with those requirements. The System Orchestrator role 321 
provides system requirements, high-level design, and monitoring for the data system. While the role 322 
predates Big Data systems, some related design activities have changed within the Big Data paradigm. 323 

DATA PROVIDER 324 
A Data Provider makes data available to itself or to others. In fulfilling its role, the Data Provider creates 325 
an abstraction of various types of data sources (such as raw data or data previously transformed by 326 
another system) and makes them available through different functional interfaces. The actor fulfilling this 327 
role can be part of the Big Data system, internal to the organization in another system, or external to the 328 
organization orchestrating the system. While the concept of a Data Provider is not new, the greater data 329 
collection and analytics capabilities have opened up new possibilities for providing valuable data. 330 

BIG DATA APPLICATION PROVIDER 331 
The Big Data Application Provider executes the manipulations of the data life cycle to meet requirements 332 
established by the System Orchestrator. This is where the general capabilities within the Big Data 333 
framework are combined to produce the specific data system. While the activities of an application 334 
provider are the same whether the solution being built concerns Big Data or not, the methods and 335 
techniques have changed because the data and data processing is parallelized across resources.  336 
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BIG DATA FRAMEWORK PROVIDER 337 
The Big Data Framework Provider has general resources or services to be used by the Big Data 338 
Application Provider in the creation of the specific application. There are many new components from 339 
which the Big Data Application Provider can choose in using these resources and the network to build the 340 
specific system. This is the role that has seen the most significant changes because of Big Data.  341 

The Big Data Framework Provider consists of one or more instances of the three subcomponents: 342 
infrastructure frameworks, data platforms, and processing frameworks. There is no requirement that all 343 
instances at a given level in the hierarchy be of the same technology and, in fact, most Big Data 344 
implementations are hybrids combining multiple technology approaches. These provide flexibility and 345 
can meet the complete range of requirements that are driven from the Big Data Application Provider. Due 346 
to the rapid emergence of new techniques, this is an area that will continue to need discussion. 347 

DATA CONSUMER 348 
The Data Consumer receives the value output of the Big Data system. In many respects, it is the recipient 349 
of the same type of functional interfaces that the Data Provider exposes to the Big Data Application 350 
Provider. After the system adds value to the original data sources, the Big Data Application Provider then 351 
exposes that same type of functional interfaces to the Data Consumer.  352 

SECURITY AND PRIVACY FABRIC 353 
Security and privacy issues affect all other components of the NBDRA. The Security and Privacy Fabric 354 
interacts with the System Orchestrator for policy, requirements, and auditing and also with both the Big 355 
Data Application Provider and the Big Data Framework Provider for development, deployment, and 356 
operation. The NBDIF: Volume 4, Security and Privacy document discusses security and privacy topics. 357 

MANAGEMENT FABRIC 358 
The Big Data characteristics of volume, velocity, variety, and variability demand a versatile system and 359 
software management platform for provisioning, software and package configuration and management, 360 
along with resource and performance monitoring and management. Big Data management involves 361 
system, data, security, and privacy considerations at scale, while maintaining a high level of data quality 362 
and secure accessibility. 363 

 364 
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3 NBDRA CONCEPTUAL MODEL 365 

As discussed in Section 2, the NBD-PWG Reference Architecture Subgroup used a variety of inputs from 366 
other NBD-PWG subgroups in developing a vendor-neutral, technology- and infrastructure-agnostic 367 
conceptual model of Big Data architecture. This conceptual model, the NBDRA, is shown in Figure 3 and 368 
represents a Big Data system comprised of five logical functional components connected by 369 
interoperability interfaces (i.e., services). Two fabrics envelop the components, representing the 370 
interwoven nature of management and security and privacy with all five of the components.  371 

The NBDRA is intended to enable system engineers, data scientists, software developers, data architects, 372 
and senior decision makers to develop solutions to issues that require diverse approaches due to 373 
convergence of Big Data characteristics within an interoperable Big Data ecosystem. It provides a 374 
framework to support a variety of business environments, including tightly integrated enterprise systems 375 
and loosely coupled vertical industries, by enhancing understanding of how Big Data complements and 376 
differs from existing analytics, business intelligence, databases, and systems.  377 

 378 

Figure 3: NIST Big Data Reference Architecture (NBDRA) 379 
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Note: None of the terminology or diagrams in these documents is intended to imply any business or 380 
deployment model. The terms provider and consumer as used are descriptive of general roles and are 381 
meant to be informative in nature. 382 

The NBDRA is organized around five major roles and multiple sub-roles aligned along two axes 383 
representing the two Big Data value chains: Information Value (horizontal axis) and Information 384 
Technology (IT; vertical axis). Along the Information Value axis, the value is created by data collection, 385 
integration, analysis, and applying the results following the value chain. Along the IT axis, the value is 386 
created by providing networking, infrastructure, platforms, application tools, and other IT services for 387 
hosting of and operating the Big Data in support of required data applications. At the intersection of both 388 
axes is the Big Data Application Provider role, indicating that data analytics and its implementation 389 
provide the value to Big Data stakeholders in both value chains. The term provider as part of the Big Data 390 
Application Provider and Big Data Framework Provider is there to indicate that those roles provide or 391 
implement specific activities and functions within the system. It does not designate a service model or 392 
business entity. 393 

The five main NBDRA roles, shown in Figure 3 and discussed in detail in Section 3, represent different 394 
technical roles that exist in every Big Data system. These roles are the following: 395 

• System Orchestrator, 396 
• Data Provider, 397 
• Big Data Application Provider, 398 
• Big Data Framework Provider, and 399 
• Data Consumer. 400 

The two fabric roles shown in Figure 3 encompassing the five main roles are:  401 

• Management, and 402 
• Security and Privacy. 403 

These two fabrics provide services and functionality to the five main roles in the areas specific to Big 404 
Data and are crucial to any Big Data solution. 405 

The DATA arrows in Figure 3 show the flow of data between the system’s main roles. Data flows 406 
between the roles either physically (i.e., by value) or by providing its location and the means to access it 407 
(i.e., by reference). The SW arrows show transfer of software tools for processing of Big Data in situ. The 408 
Service Use arrows represent software programmable interfaces. While the main focus of the NBDRA is 409 
to represent the run-time environment, all three types of communications or transactions can happen in 410 
the configuration phase as well. Manual agreements (e.g., service-level agreements) and human 411 
interactions that may exist throughout the system are not shown in the NBDRA. 412 

Within a given Big Data Architecture implementation, there may be multiple instances of elements 413 
performing the Data Provider, Data Consumer, Big Data Framework Provider, and Big Data Application 414 
Provider roles. Thus, in a given Big Data implementation, there may be multiple Big Data applications 415 
which use different frameworks to meet requirements. For example, one application may focus on 416 
ingestion and analytics of streaming data and would use a framework based on components suitable for 417 
that purpose, while another application may perform data warehouse style batch analytics which would 418 
leverage a different framework. Figure 4 below shows how such multiple instances may interact as part of 419 
a larger integrated system. As illustrated in the conceptual model, there should be a common Security and 420 
Privacy, and Management roles across the architecture. The crosscutting roles are sometimes referred to 421 
as fabrics because they must touch all the other roles and sub-roles within the Architecture. 422 
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 423 
Figure 4: Multiple Instances of NBDRA Components Interact as Part of a Larger System 424 

The roles in the Big Data ecosystem perform activities and are implemented via functional components. 425 
In system development, actors and roles have the same relationship as in the movies, but system 426 
development actors can represent individuals, organizations, software, or hardware. According to the Big 427 
Data taxonomy, a single actor can play multiple roles, and multiple actors can play the same role. The 428 
NBDRA does not specify the business boundaries between the participating actors or stakeholders, so the 429 
roles can either reside within the same business entity or can be implemented by different business 430 
entities. Therefore, the NBDRA is applicable to a variety of business environments, from tightly 431 
integrated enterprise systems to loosely coupled vertical industries that rely on the cooperation of 432 
independent stakeholders. As a result, the notion of internal versus external functional components or 433 
roles does not apply to the NBDRA. However, for a specific use case, once the roles are associated with 434 
specific business stakeholders, the functional components and the activities they perform would be 435 
considered as internal or external—subject to the use case’s point of view. 436 

The NBDRA does support the representation of stacking or chaining of Big Data systems. For example, a 437 
Data Consumer of one system could serve as a Data Provider to the next system down the stack or chain. 438 
Figure 5 below shows how a given Big Data Architecture implementation would operate in context with 439 
other systems, users, or Big Data implementations. 440 
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 441 

Figure 5: Big Data System within a System of Systems View 442 

The following paragraphs provide high-level descriptions of the primary roles within the NBDRA. 443 
Section 4 contains more detailed descriptions of the sub-roles, activities, and functional components. 444 

3.1 SYSTEM ORCHESTRATOR 445 

The System Orchestrator role includes defining and integrating the required data application activities 446 
into an operational vertical system. Typically, the System Orchestrator involves a collection of more 447 
specific roles, performed by one or more actors, which manage and orchestrate the operation of the Big 448 
Data system. These actors may be human components, software components, or some combination of the 449 
two.  450 

The function of the System Orchestrator is to configure and manage the other components of the Big Data 451 
architecture to implement one or more workloads that the architecture is designed to execute. The 452 
workloads managed by the System Orchestrator may be assigning/provisioning framework components to 453 
individual physical or virtual nodes at the lower level or providing a graphical user interface that supports 454 
the specification of workflows linking together multiple applications and components at the higher level.  455 

The System Orchestrator may also, through the Management Fabric, monitor the workloads and system to 456 
confirm that specific quality of service requirements are met for each workload, and may actually 457 
elastically assign and provision additional physical or virtual resources to meet workload requirements 458 
resulting from changes/surges in the data or number of users/transactions. 459 

The NBDRA represents a broad range of Big Data systems, from tightly coupled enterprise solutions 460 
(integrated by standard or proprietary interfaces) to loosely coupled vertical systems maintained by a 461 
variety of stakeholders bounded by agreements and standard or standard-de-facto interfaces. 462 

In an enterprise environment, the System Orchestrator role is typically centralized and can be mapped to 463 
the traditional role of system governor that provides the overarching requirements and constraints, which 464 
the system must fulfill, including policy, architecture, resources, or business requirements. A system 465 
governor works with a collection of other roles (e.g., data manager, data security, and system manager) to 466 
implement the requirements and the system’s functionality.  467 
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In a loosely coupled vertical system, the System Orchestrator role is typically decentralized. Each 468 
independent stakeholder is responsible for its own system management, security, and integration, as well 469 
as integration within the Big Data distributed system using the interfaces provided by other stakeholders. 470 

3.2 DATA PROVIDER 471 

The Data Provider role introduces new data or information feeds into the Big Data system for discovery, 472 
access, and transformation by the Big Data system. New data feeds are distinct from the data already in 473 
use by the system and residing in the various system repositories. Similar technologies can be used to 474 
access both new data feeds and existing data. The Data Provider actors can be anything from a sensor, to 475 
a human inputting data manually, to another Big Data system. 476 

One of the important characteristics of a Big Data system is the ability to import and use data from a 477 
variety of data sources. Data sources can be internal or public records, tapes, images, audio, videos, 478 
sensor data, web logs, system and audit logs, HyperText Transfer Protocol (HTTP) cookies, and other 479 
sources. Humans, machines, sensors, online and offline applications, Internet technologies, and other 480 
actors can also produce data sources.  481 

The roles of Data Provider and Big Data Application Provider often belong to different organizations, 482 
unless the organization implementing the Big Data Application Provider owns the data sources. 483 
Consequently, data from different sources may have different security and privacy considerations. In 484 
fulfilling its role, the Data Provider creates an abstraction of the data sources. In the case of raw data 485 
sources, the Data Provider can potentially clean, correct, and store the data in an internal format that is 486 
accessible to the Big Data system that will ingest it.  487 

The Data Provider can also provide an abstraction of data previously transformed by another system (i.e., 488 
legacy system, another Big Data system). In this case, the Data Provider would represent a Data 489 
Consumer of the other system. For example, Data Provider 1 could generate a streaming data source from 490 
the operations performed by Data Provider 2 on a dataset at rest.  491 

Data Provider activities include the following, which are common to most systems that handle data: 492 

• Collecting the data; 493 
• Persisting the data; 494 
• Providing transformation functions for data scrubbing of sensitive information such as personally 495 

identifiable information (PII); 496 
• Creating the metadata describing the data source(s), usage policies/access rights, and other 497 

relevant attributes; 498 
• Enforcing access rights on data access;  499 
• Establishing formal or informal contracts for data access authorizations; 500 
• Making the data accessible through suitable programmable push or pull interfaces; 501 
• Providing push or pull access mechanisms; and 502 
• Publishing the availability of the information and the means to access it. 503 

The Data Provider exposes a collection of interfaces (or services) for discovering and accessing the data. 504 
These interfaces would typically include a registry so that applications can locate a Data Provider, 505 
identify the data of interest it contains, understand the types of access allowed, understand the types of 506 
analysis supported, locate the data source, determine data access methods, identify the data security 507 
requirements, identify the data privacy requirements, and other pertinent information. Therefore, the 508 
interface would provide the means to register the data source, query the registry, and identify a standard 509 
set of data contained by the registry. 510 

Subject to Big Data characteristics (i.e., volume, variety, velocity, and variability) and system design 511 
considerations, interfaces for exposing and accessing data would vary in their complexity and can include 512 
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both push and pull software mechanisms. These mechanisms can include subscription to events, listening 513 
to data feeds, querying for specific data properties or content, and the ability to submit a code for 514 
execution to process the data in situ. Because the data can be too large to economically move across the 515 
network, the interface could also allow the submission of analysis requests (e.g., software code 516 
implementing a certain algorithm for execution), with the results returned to the requestor. Data access 517 
may not always be automated, but might involve a human role logging into the system and providing 518 
directions where new data should be transferred (e.g., establishing a subscription to an email-based data 519 
feed). 520 

The interface between the Data Provider and Big Data Application Provider typically will go through 521 
three phases: initiation, data transfer, and termination. The initiation phase is started by either party and 522 
often includes some level of authentication/authorization. The phase may also include queries for 523 
metadata about the source or consumer, such as the list of available topics in a publish/subscribe 524 
(pub/sub) model and the transfer of any parameters (e.g., object count/size limits or target storage 525 
locations). Alternatively, the phase may be as simple as one side opening a socket connection to a known 526 
port on the other side.  527 

The data transfer phase may be a push from the Data Provider or a pull by the Big Data Application 528 
Provider. It may also be a singular transfer or involve multiple repeating transfers. In a repeating transfer 529 
situation, the data may be a continuous stream of transactions/records/bytes. In a push scenario, the Big 530 
Data Application Provider must be prepared to accept the data asynchronously but may also be required 531 
to acknowledge (or negatively acknowledge) the receipt of each unit of data. In a pull scenario, the Big 532 
Data Application Provider would specifically generate a request that defines through parameters of the 533 
data to be returned. The returned data could itself be a stream or multiple records/units of data, and the 534 
data transfer phase may consist of multiple request/send transactions.  535 

The termination phase could be as simple as one side simply dropping the connection or could include 536 
checksums, counts, hashes, or other information about the completed transfer. 537 

3.3 BIG DATA APPLICATION PROVIDER 538 

The Big Data Application Provider role executes a specific set of operations along the data life cycle to 539 
meet the requirements established by the System Orchestrator, as well as meeting security and privacy 540 
requirements. The Big Data Application Provider is the architecture component that encapsulates the 541 
business logic and functionality to be executed by the architecture. The Big Data Application Provider 542 
activities include the following: 543 

• Collection, 544 
• Preparation, 545 
• Analytics, 546 
• Visualization, and 547 
• Access. 548 

These activities are represented by the subcomponents of the Big Data Application Provider as shown in 549 
Figure 3. The execution of these activities would typically be specific to the application and, therefore, 550 
are not candidates for standardization. However, the metadata and the policies defined and exchanged 551 
between the application’s subcomponents could be standardized when the application is specific to a 552 
vertical industry. 553 

While many of these activities exist in traditional data processing systems, the data volume, velocity, 554 
variety, and variability present in Big Data systems radically change their implementation. Traditional 555 
algorithms and mechanisms of traditional data processing implementations need to be adjusted and 556 
optimized to create applications that are responsive and can grow to handle ever-growing data collections. 557 
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As data propagates through the ecosystem, it is being processed and transformed in different ways in 558 
order to extract the value from the information. Each activity of the Big Data Application Provider can be 559 
implemented by independent stakeholders and deployed as stand-alone services.  560 

The Big Data Application Provider can be a single instance or a collection of more granular Big Data 561 
Application Providers, each implementing different steps in the data life cycle. Each of the activities of 562 
the Big Data Application Provider may be a general service invoked by the System Orchestrator, Data 563 
Provider, or Data Consumer, such as a web server, a file server, a collection of one or more application 564 
programs, or a combination. There may be multiple and differing instances of each activity or a single 565 
program may perform multiple activities. Each of the activities is able to interact with the underlying Big 566 
Data Framework Providers as well as with the Data Providers and Data Consumers. In addition, these 567 
activities may execute in parallel or in any number of sequences and will frequently communicate with 568 
each other through the messaging/communications element of the Big Data Framework Provider. Also, 569 
the functions of the Big Data Application Provider, specifically the collection and access activities, will 570 
interact with the Security and Privacy Fabric to perform authentication/authorization and record/maintain 571 
data provenance.  572 

Each of the functions can run on a separate Big Data Framework Provider or all can use a common Big 573 
Data Framework Provider. The considerations behind these different system approaches would depend on 574 
potentially different technological needs, business and/or deployment constraints (including privacy), and 575 
other policy considerations. The baseline NBDRA does not show the underlying technologies, business 576 
considerations, and topological constraints, thus making it applicable to any kind of system approach and 577 
deployment. 578 

For example, the infrastructure of the Big Data Application Provider would be represented as one of the 579 
Big Data Framework Providers. If the Big Data Application Provider uses external/outsourced 580 
infrastructures as well, it or they will be represented as another or multiple Big Data Framework 581 
Providers in the NBDRA. The multiple blocks behind the Big Data Framework Providers in Figure 3 582 
indicate that multiple Big Data Framework Providers can support a single Big Data Application Provider.  583 

3.4 BIG DATA FRAMEWORK PROVIDER 584 

The Big Data Framework Provider typically consists of one or more hierarchically organized instances of 585 
the components in the NBDRA IT value chain (Figure 3). There is no requirement that all instances at a 586 
given level in the hierarchy be of the same technology. In fact, most Big Data implementations are 587 
hybrids that combine multiple technology approaches in order to provide flexibility or meet the complete 588 
range of requirements, which are driven from the Big Data Application Provider.  589 

Many of the recent advances related to Big Data have been in the area of frameworks designed to scale to 590 
Big Data needs (e.g., addressing volume, variety, velocity, and variability) while maintaining linear or 591 
near-linear performance. These advances have generated much of the technology excitement in the Big 592 
Data space. Accordingly, there is a great deal more information available in the frameworks area 593 
compared to the other components, and the additional detail provided for the Big Data Framework 594 
Provider in this document reflects this imbalance.  595 

The Big Data Framework Provider comprises the following three sub-roles (from the bottom to the top):  596 

• Infrastructure Frameworks, 597 
• Data Platform Frameworks, and 598 
• Processing Frameworks. 599 
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3.5 DATA CONSUMER 600 

Similar to the Data Provider, the role of Data Consumer within the NBDRA can be an actual end user or 601 
another system. In many ways, this role is the mirror image of the Data Provider, with the entire Big Data 602 
framework appearing like a Data Provider to the Data Consumer. The activities associated with the Data 603 
Consumer role include the following: 604 

• Search and Retrieve, 605 
• Download, 606 
• Analyze Locally, 607 
• Reporting, 608 
• Visualization, and 609 
• Data to Use for Their Own Processes. 610 

The Data Consumer uses the interfaces or services provided by the Big Data Application Provider to get 611 
access to the information of interest. These interfaces can include data reporting, data retrieval, and data 612 
rendering.  613 

This role will generally interact with the Big Data Application Provider through its access function to 614 
execute the analytics and visualizations implemented by the Big Data Application Provider. This 615 
interaction may be demand-based, where the Data Consumer initiates the command/transaction and the 616 
Big Data Application Provider replies with the answer. The interaction could include interactive 617 
visualizations, creating reports, or drilling down through data using business intelligence functions 618 
provided by the Big Data Application Provider. Alternately, the interaction may be stream- or push-based, 619 
where the Data Consumer simply subscribes or listens for one or more automated outputs from the 620 
application. In almost all cases, the Security and Privacy fabric around the Big Data architecture would 621 
support the authentication and authorization between the Data Consumer and the architecture, with either 622 
side able to perform the role of authenticator/authorizer and the other side providing the credentials. Like 623 
the interface between the Big Data architecture and the Data Provider, the interface between the Data 624 
Consumer and Big Data Application Provider would also pass through the three distinct phases of 625 
initiation, data transfer, and termination. 626 

3.6 MANAGEMENT FABRIC OF THE NBDRA 627 

The Big Data characteristics of volume, velocity, variety, and variability demand a versatile management 628 
platform for storing, processing, and managing complex data. Management of Big Data systems should 629 
handle both system- and data-related aspects of the Big Data environment. The Management Fabric of the 630 
NBDRA encompasses two general groups of activities: system management and Big Data life cycle 631 
management (BDLM). System management includes activities such as provisioning, configuration, 632 
package management, software management, backup management, capability management, resources 633 
management, and performance management. BDLM involves activities surrounding the data life cycle of 634 
collection, preparation/curation, analytics, visualization, and access.  635 

As discussed above, the NBDRA represents a broad range of Big Data systems—from tightly coupled 636 
enterprise solutions integrated by standard or proprietary interfaces to loosely coupled vertical systems 637 
maintained by a variety of stakeholders or authorities bound by agreements, standard interfaces, or de 638 
facto standard interfaces. Therefore, different considerations and technical solutions would be applicable 639 
for different cases. 640 
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3.7 SECURITY AND PRIVACY FABRIC OF THE NBDRA 641 

Security and privacy considerations form a fundamental aspect of the NBDRA. This is geometrically 642 
depicted in Figure 3 by the Security and Privacy Fabric surrounding the five main components, indicating 643 
that all components are affected by security and privacy considerations. Thus, the role of security and 644 
privacy is correctly depicted in relation to the components but does not expand into finer details, which 645 
may be more accurate but are best relegated to a more detailed security and privacy reference 646 
architecture. The Data Provider and Data Consumer are included in the Security and Privacy Fabric since, 647 
at the least, they may often nominally agree on security protocols and mechanisms. The Security and 648 
Privacy Fabric is an approximate representation that alludes to the intricate interconnected nature and 649 
ubiquity of security and privacy throughout the NBDRA. Additional details about the Security and 650 
Privacy Fabric are included in the NIST Interoperability Framework: Volume 4, Security and Privacy 651 
document. 652 
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4 NBDRA ARCHITECTURE VIEWS 653 

As outlined in Section 3, the five main roles and two fabrics of the NBDRA represent the different 654 
categories of technical activities and functional components within a Big Data system. In order to apply 655 
the NBDRA to a particular system, it is necessary to construct architecture views of these activities and 656 
the functional components that implement them. In constructing these views, the following definitions 657 
apply: 658 

Role:  A related set of functions performed by one or more actors. 659 

Sub-Role:  A closely related sub-set of functions within a larger role. 660 

Activity:  A class of functions performed to fulfill the needs of one or more roles. 661 
Example: Data Collection is a class of activities through which a Big Data Application 662 
Provider obtains data. Instances of such would be web crawling, File Transfer Protocol 663 
(FTP) site, web services, database queries, etc. 664 

Functional Component:  A class of physical items which support one or more activities 665 
within a role. Example: Stream Processing Frameworks are a class of computing 666 
frameworks which implement processing of streaming data. Instances of such 667 
frameworks would include SPARK and STORM. 668 

In order to promote consistency and the ability to easily compare and contrast the views of different 669 
architecture implementations, the NBDRA is proposing the conventions shown in Figure 6 for the 670 
activities and functional component views. 671 

 672 
Figure 6: NBDRA View Conventions 673 

The process of applying the NBDRA to a specific architecture implementation involves creating two 674 
views of the architecture. The first view is the Activities View where one would enumerate the activities 675 
to be accomplished by each role and sub-role within the system. Since there could be multiple instances 676 
of different roles within a given system architecture, it would be appropriate to construct separate 677 
architecture views for each instance since the role would likely be performing different activities though 678 
different functional components. 679 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2



NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE 

21 

Figure 7 below provides a broad skeleton for construction of the activity views in terms of the roles and 680 
fabrics which anchor each view into a common framework. Depending on the specifics of a particular 681 
architecture, it may helpful to visually rearrange these components, show multiple instances where 682 
appropriate, and even construct separate sub-view diagrams for each role. These choices are entirely 683 
dependent on the specific architecture requirements. 684 

 685 

Figure 7: Top Level Roles and Fabrics 686 

Sections 4.1 and 4.2 provide high-level examples of the types and classes of activities and functional 687 
components, respectively, that may be required to support a given architecture implementation. General 688 
classes and descriptions are provided in both cases because across the range of potential Big Data 689 
applications and architectures, the potential specific activities would be too numerous to enumerate and 690 
the rapid evolution of software/hardware functional components makes a complete list impractical. 691 

It should also be noted that as one goes lower down the IT value chain of the architecture, the diversity 692 
and details of the activities and functional components would be less varied. 693 

Finally, the sections below do not attempt to provide activity or functional component details for the Data 694 
Provider or Data Consumer roles. There are two reasons for this. First, a Data Provider could be anything 695 
from a simple sensor to a full-blown Big Data system itself. Providing a comprehensive list would be 696 
impractical as shown in the System of Systems View in Figure 5 above. Second, often the Data Provider 697 
and Data Consumer roles are supported by elements external to the architecture being developed and, thus 698 
are outside the control of the architect. The user of this report should enumerate and document those 699 
activities and functions to the extent it makes sense for their specific architecture. In cases where the Data 700 
Provider and Data Consumer roles are within the architecture boundary, the user is advised to create 701 
views based on similar roles, activities, and functional components found in the sections below. In cases 702 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2



NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE 

22 

where those roles are external to the architecture, the user should document any activities or components 703 
on which the architecture is dependent. For example, activities and components related to authentication 704 
or service-level agreements should be captured.  705 

4.1 ACTIVITIES VIEW 706 

As described above, the activities view is meant to describe what is performed or accomplished by 707 
various roles in the Big Data system. As per the definitions, an activity can be something performed by a 708 
person, organization, software, or hardware. Figure 8 below provides some top-level classes of activities 709 
by roles and sub-roles which may be applicable to a Big Data architecture implementation. The following 710 
paragraphs describe the roles and the classes of activities associated with those roles. The user is advised 711 
to use these examples primarily as guides and to create more specific classes of activities and associated 712 
descriptions as required to document their architecture. 713 

 714 

Figure 8: Top-Level Classes of Activities Within the Activities View 715 

Because the Data Provider and Data Consumer roles can represent anything such as another computer 716 
system, a Big Data system, a person sitting at a keyboard, or remote sensors, the sub-roles and classes of 717 
activities associated with these roles can encompass any of the activity classes defined below or others. 718 
Users of the NBDRA should define the classes of activities and particular activities that address specific 719 
concerns related to their architecture implementation. 720 

The following paragraphs describe the general classes of activities implemented within the roles, sub-721 
roles, and fabrics of the NBDRA. 722 

4.1.1 SYSTEM ORCHESTRATOR  723 

The activities within the System Orchestrator role set the overall ownership, governance, and policy 724 
functions for the Big Data system by defining the appropriate requirements. These activities take place 725 
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primarily during the system definition phase but must be revisited periodically throughout the life cycle of 726 
the system. The other primary aspect of activities under this role is the monitoring of compliance with the 727 
associated requirements. 728 

Some classes of activities that could be defined for this role in the architecture include requirements 729 
definition and compliance monitoring for: 730 

• Business Ownership: This activity class defines which stakeholders own and have responsibility 731 
for the various parts of the Big Data System. This activity would define the ownership and 732 
responsibility for the activities and functional components of the rest of the system and how that 733 
ownership will be monitored. 734 

• Governance: This activity class would define the policies and process for governance of the 735 
overall system. These governance requirements would in turn be executed and monitored by the 736 
stakeholders defined as owners for the respective parts of the system. 737 

• System Architecture: This class of activities involves defining the overall requirements that must 738 
be met by the system architecture. In general, activities in this class establish the technical 739 
guidelines that the overall system must meet and then provide the policies for monitoring the 740 
overall architecture to verify that it remains in compliance with the requirements. 741 

• Data Science: Activities in this class would define many of the requirements that must be met by 742 
individual algorithms or applications within the system. These could include accuracy of 743 
calculations or the precision/recall of data mining algorithms.  744 

• Security/Privacy: While no classes of activities are considered mandatory, this class is certainly 745 
the most critical and any architecture without well-defined security and privacy requirements and 746 
associated monitoring is bound to be at extreme risk. Security deals with the control of access to 747 
the system and its data and is required to ensure the privacy of personal or corporate information. 748 
Privacy relates to both securing personal information but also defining the policies and controls 749 
by which that information or derived information may or may not be shared. 750 

Other classes of activities that may be addressed include the following: 751 

• Quality Management, 752 
• Service Management, and 753 
• Audit Requirements. 754 

4.1.2 BIG DATA APPLICATION PROVIDER 755 

4.1.2.1 Collection 756 

In general, the collection activity of the Big Data Application Provider handles the interface with the Data 757 
Provider. This may be a general service, such as a file server or web server configured by the System 758 
Orchestrator to accept or perform specific collections of data, or it may be an application-specific service 759 
designed to pull data or receive pushes of data from the Data Provider. Since this activity is receiving data 760 
at a minimum, it must store/buffer the received data until it is persisted through the Big Data Framework 761 
Provider. This persistence need not be to physical media but may simply be to an in-memory queue or 762 
other service provided by the processing frameworks of the Big Data Framework Provider. The collection 763 
activity is likely where the extraction portion of the Extract, Transform, Load (ETL)/Extract, Load, 764 
Transform (ELT) cycle is performed. At the initial collection stage, sets of data (e.g., data records) of 765 
similar structure are collected (and combined), resulting in uniform security, policy, and other 766 
considerations. Initial metadata is created (e.g., subjects with keys are identified) to facilitate subsequent 767 
aggregation or look-up methods. 768 
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4.1.2.2 Preparation 769 

The preparation activity is where the transformation portion of the ETL/ELT cycle is likely performed, 770 
although analytics activity will also likely perform advanced parts of the transformation. Tasks performed 771 
by this activity could include data validation (e.g., checksums/hashes, format checks), cleaning (e.g., 772 
eliminating bad records/fields), outlier removal, standardization, reformatting, or encapsulating. This 773 
activity is also where source data will frequently be persisted to archive storage in the Big Data 774 
Framework Provider and provenance data will be verified or attached/associated. Verification or 775 
attachment may include optimization of data through manipulations (e.g., deduplication) and indexing to 776 
optimize the analytics process. This activity may also aggregate data from different Data Providers, 777 
leveraging metadata keys to create an expanded and enhanced dataset. 778 

4.1.2.3 Analytics 779 

The analytics activity of the Big Data Application Provider includes the encoding of the low-level 780 
business logic of the Big Data system (with higher-level business process logic being encoded by the 781 
System Orchestrator). The activity implements the techniques to extract knowledge from the data based 782 
on the requirements of the vertical application. The requirements specify the data processing algorithms 783 
for processing the data to produce new insights that will address the technical goal. The analytics activity 784 
will leverage the processing frameworks to implement the associated logic. This typically involves the 785 
activity providing software that implements the analytic logic to the batch and/or streaming elements of 786 
the processing framework for execution. The messaging/communication framework of the Big Data 787 
Framework Provider may be used to pass data or control functions to the application logic running in the 788 
processing frameworks. The analytic logic may be broken up into multiple modules to be executed by the 789 
processing frameworks which communicate, through the messaging/communication framework, with 790 
each other and other functions instantiated by the Big Data Application Provider. 791 

4.1.2.4 Visualization 792 

The visualization activity of the Big Data Application Provider prepares elements of the processed data 793 
and the output of the analytic activity for presentation to the Data Consumer. The objective of this activity 794 
is to format and present data in such a way as to optimally communicate meaning and knowledge. The 795 
visualization preparation may involve producing a text-based report or rendering the analytic results as 796 
some form of graphic. The resulting output may be a static visualization and may simply be stored 797 
through the Big Data Framework Provider for later access. However, the visualization activity frequently 798 
interacts with the access activity, the analytics activity, and the Big Data Framework Provider (processing 799 
and platform) to provide interactive visualization of the data to the Data Consumer based on parameters 800 
provided to the access activity by the Data Consumer. The visualization activity may be completely 801 
application implemented, leverage one or more application libraries, or may use specialized visualization 802 
processing frameworks within the Big Data Framework Provider.  803 

4.1.2.5 Access 804 

The access activity within the Big Data Application Provider is focused on the communication/interaction 805 
with the Data Consumer. Similar to the collection activity, the access activity may be a generic service 806 
such as a web server or application server that is configured by the System Orchestrator to handle specific 807 
requests from the Data Consumer. This activity would interface with the visualization and analytic 808 
activities to respond to requests from the Data Consumer (who may be a person) and uses the processing 809 
and platform frameworks to retrieve data to respond to Data Consumer requests. In addition, the access 810 
activity confirms that descriptive and administrative metadata and metadata schemes are captured and 811 
maintained for access by the Data Consumer and as data is transferred to the Data Consumer. The 812 
interface with the Data Consumer may be synchronous or asynchronous in nature and may use a pull or 813 
push paradigm for data transfer.  814 
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4.1.3 BIG DATA FRAMEWORK PROVIDER 815 

The Big Data Framework Provider role supports classes of activities associated with providing 816 
management and communications between the subordinate sub-roles (i.e., Processing, Platforms, and 817 
Infrastructures) and their classes of activities. Two common classes of activities associated with this role 818 
are the following: 819 

• Messaging: This activity class provides the necessary message queues and other communication 820 
mechanisms that support communications between the activities within the Big Data Framework 821 
Provider sub-roles and the Big Data Application Provider activities. 822 

• Resource Management: Resources available to a given Big Data system are finite, so activities 823 
that manage the allocation of resources to other sub-roles and activities are necessary. Such 824 
activities would ensure that resources are allocated an appropriate priority status relative to other 825 
activities and that resources, such as memory and central processing unit (CPU), are not 826 
oversubscribed. 827 

4.1.3.1 Infrastructure Activities 828 

Classes of activities within the Infrastructure sub-role support the underlying computing, storage, and 829 
networking functions required to implement the overall system. These activity classes reflect the 830 
underlying operations performed on data within the system to include: Transmission, Reception, Storage, 831 
Manipulation, and Retrieval. These activities may be associated with physical or virtual infrastructure 832 
resources. In defining the specific activities for a given system, the focus should be on specific types of 833 
activities. For example, a system which requires highly parallel processing of large matrices or data may 834 
specify an activity which supports Single Instruction Multiple Data computing, such as that provided by 835 
Graphic Processing Units (GPUs). Transmission activities may include descriptions of data transmission 836 
requirements which define the required throughput and latency. Storage and retrieval activities might 837 
describe performance of volatile or non-volatile storage. 838 

4.1.3.2 Platform Activities 839 

The Big Data Platform Provider sub-role is associated with activities which manage the organization and 840 
distribution of data within the Big Data system. Since many Big Data systems are horizontally distributed 841 
across multiple infrastructure resources, specific activities related to creating data elements can specify 842 
that data will be replicated across a number of nodes and will be eventually consistent when accessed 843 
from any node in the cluster. Other activities should describe how data will be accessed and what type of 844 
indexing is required to support that access. For example, geospatial data requires specialized indexing for 845 
efficient retrieval. So a related activity might describe maintaining a z-curve type of index.  846 

4.1.3.3 Processing Activities 847 

Processing activities describe how data will be processed in support of Big Data applications. This 848 
processing generally falls into a continuum, from long-running batch jobs to responsive processing, and 849 
supports interactive applications of continuous stream processing. The types of processing activities 850 
described for a given architecture would be dependent on the characteristics (volume and velocity 851 
primarily) of the data processed by the Big Data Application Providers and their requirements. Depending 852 
on the type of processing required, an activity might describe MapReduce or Bulk Synchronous Parallel 853 
(BSP) processing for batch-oriented requirements. Streaming activities might specify the performance 854 
requirements necessary to handle the volume or velocity of data. 855 
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4.1.4 MANAGEMENT FABRIC ACTIVITIES 856 

4.1.4.1 System Management 857 

To address the challenge of daily demands of operating multiple Big Data applications, a Big Data 858 
Management Fabric may be needed by planners, operators, and data center owners. Stated broadly, Big 859 
Data creates a need for larger or novel forms of operational intelligence. These include the following: 860 

• Configuration activities associated with management of potential accountability and traceability 861 
for data access associated with individual subjects / consumers, as well as their associated 862 
organizations.  863 

• Resource management activities to support burst and peak demand tied to both planned and 864 
unplanned usage changes. Specific activities would be defined to support the automated 865 
allocation of resources to meet demand. By predicting the fluctuations in load, the impact of those 866 
fluctuations can be smoothed through simulation, predictive load analytics, more intelligent 867 
monitoring, and practical experience. Modeling and simulation for operational intelligence may 868 
become essential in some settings [11], [12]. 869 

• Monitoring activities to support operational mitigation and resilience for both centralized and 870 
decentralized services. These activities may also support load balancing in conjunction with 871 
resource management activities to avoid outages during unexpected peak loads and reduce costs 872 
during off-peak times. Real-time monitoring, gating, filtering, and throttling of streaming data 873 
requires new approaches due to the “variety of tasks, such as performance analysis, workload 874 
management, capacity planning, and fault detection. Applications producing Big Data make the 875 
monitoring task very difficult at high-sampling frequencies because of high computational and 876 
communication overheads [13].”  877 

• Provisioning and package management activities to support automated deployment and 878 
configuration of software and services. This class of activities is frequently associated with the 879 
emerging Dev/Ops movement designed to automate the frequent deployment of capabilities into 880 
production. Movement toward automated methods for ensuring information assurance (versus 881 
training and governance: they may not scale). See references [14] and [15].  882 

• BDLM activities support the overall life cycle of data throughout its existence within the Big 883 
Data system. Of all the classes of management fabric activities, the BDLM activities are the most 884 
affected by the Big Data characteristics and merit the additional discussion below. 885 

4.1.4.2 Big Data Life Cycle Management 886 

BDLM faces more challenges compared to traditional data life cycle management (DLM), which may 887 
require less data transfer, processing, and storage. However, BDLM still inherits the DLM phases in 888 
terms of data acquisition, distribution, use, migration, maintenance, and disposition—but at a much 889 
bigger processing scale. The Big Data Application Providers may require much more computational 890 
processing for collection, preparation/curation, analytics, visualization, and access to be able to use the 891 
analytic results. In other words, the BDLM activity includes verification that the data are handled 892 
correctly by other NBDRA components in each process within the data life cycle—from the moment they 893 
are ingested into the system by the Data Provider, until the data are processed or removed from the 894 
system.  895 

The importance of BDLM to Big Data is demonstrated through the following considerations: 896 

• Data volume can be extremely large, which may overwhelm the storage capacity, or make storing 897 
incoming data prohibitively expensive. 898 
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• Data velocity, the rate at which data can be captured and ingested into the system, can overwhelm 899 
available storage space at a given time. Even with the elastic storage service provided by cloud 900 
computing for handling dynamic storage needs, unconstrained data storage may also be 901 
unnecessarily costly for certain application requirements.  902 

• Different Big Data applications will likely have different requirements for the lifetime of a piece 903 
of data. The differing requirements have implications on how often data must be refreshed so that 904 
processing results are valid and useful. In data refreshment, old data are dispositioned and not fed 905 
into analytics or discovery programs. At the same time, new data is ingested and taken into 906 
account by the computations. For example, real-time applications will need very short data 907 
lifetime but a market study of consumers' interest in a product line may need to mine data 908 
collected over a longer period of time. 909 

Because the task of BDLM can be distributed among different organizations and/or individuals within the 910 
Big Data computing environment, coordination of data processing between NBDRA components has 911 
greater difficulty in complying with policies, regulations, and security requirements. Within this context, 912 
BDLM may need to include the following sub-activities: 913 

• Policy Management: Captures the requirements for the data life cycle that allows old data to be 914 
dispositioned and new data to be considered by Big Data applications. Maintains the migration 915 
and disposition strategies that specify the mechanism for data transformation and dispositioning, 916 
including transcoding data, transferring old data to lower-tier storage for archival purpose, 917 
removing data, or marking data as in situ. 918 

• Metadata Management: Enables BDLM, since metadata are used to store information that 919 
governs the management of the data within the system. Essential metadata information includes 920 
persistent identification of the data, fixity/quality, and access rights. The challenge is to find the 921 
minimum set of elements to execute the required BDLM strategy in an efficient manner. 922 

• Accessibility Management: This involves the change of data accessibility over time. For 923 
example, census data can be made available to the public after 72 years. BDLM is responsible for 924 
triggering the accessibility update of the data or sets of data according to policy and legal 925 
requirements. Normally, data accessibility information is stored in the metadata. 926 

• Data Recovery: BDLM can include the recovery of data that were lost due to disaster or 927 
system/storage fault. Traditionally, data recovery can be achieved using regular backup and 928 
restore mechanisms. However, given the large volume of Big Data, traditional backup may not be 929 
feasible. Instead, replication may have to be designed within the Big Data ecosystem. Depending 930 
on the tolerance of data loss—each application has its own tolerance level—replication strategies 931 
have to be designed. The replication strategy includes the replication window time, the selected 932 
data to be replicated, and the requirements for geographic disparity. Additionally, in order to cope 933 
with the large volume of Big Data, data backup and recovery should consider the use of modern 934 
technologies within the Big Data Framework Provider. 935 

• Preservation Management: The system maintains data integrity so that the veracity and velocity 936 
of the analytics process are fulfilled. Due to the extremely large volume of Big Data, preservation 937 
management is responsible for disposition-aged data contained in the system. Depending on the 938 
retention policy, these aged data can be deleted or migrated to archival storage. In the case where 939 
data must be retained for years, decades, and even centuries, a preservation strategy will be 940 
needed so the data can be accessed by the provider components if required. This will invoke long-941 
term digital preservation that can be performed by Big Data Application Providers using the 942 
resources of the Big Data Framework Provider. 943 

In the context of Big Data, BDLM contends with the Big Data characteristics of volume, velocity, variety, 944 
and variability. As such, BDLM and its sub-activities interact with other components of the NBDRA as 945 
shown in the following examples: 946 
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• System Orchestrator: BDLM enables data scientists to initiate any combination of processing 947 
including accessibility management, data backup/recovery, and preservation management. The 948 
process may involve other components of the NBDRA, such as Big Data Application Provider 949 
and Big Data Framework Provider. For example, data scientists may want to interact with the Big 950 
Data Application Provider for data collection and curation, invoke the Big Data Framework 951 
Provider to perform certain analysis, and grant access to certain users to access the analytic 952 
results from the Data Consumer. 953 

• Data Provider: BDLM manages ingestion of data and metadata from the data source(s) into the 954 
Big Data system, which may include logging the entry event in the metadata by the Data 955 
Provider. 956 

• Big Data Application Provider: BDLM executes data masking and format transformations for 957 
data preparation or curation purpose. 958 

• Big Data Framework Provider: BDLM executes basic bit-level preservation and data backup 959 
and recovery according to the recovery strategy. 960 

• Data Consumer: BDLM ensures that relevant data and analytic results are available with proper 961 
access control for consumers and software agents to consume within the BDLM policy strategy.  962 

• Security and Privacy Fabric: Keeps the BDLM up to date according to new security policy and 963 
regulations.  964 

The Security and Privacy Fabric also uses information coming from BDLM with respect to data 965 
accessibility. The Security and Privacy Fabric controls access to the functions and data usage produced by 966 
the Big Data system. This data access control can be informed by the metadata, which is managed and 967 
updated by BDLM. 968 

4.1.5 SECURITY AND PRIVACY FABRIC ACTIVITIES 969 

The Security and Privacy Fabric provides the activities necessary to manage the access to system data and 970 
services. The primary classes of activities associated with this fabric are: 971 

• Authentication: This class of activities includes validation that the user or process is who they 972 
claim to be. The specific authentication activities may specify the type of authentication, such as 973 
two-factor or private key. 974 

• Authorization: This class of activities ensures that the user or process has the rights to access 975 
resources or services. Access controls may define the specific access privileges (e.g., create, 976 
update, delete) for the data or services. The authorization activities may specify broad role-based 977 
access controls or more granular attribute-based access controls. 978 

• Auditing: These activities record events that happen within the system to support both forensic 979 
analysis in the event of a breach or corruption of data, as well as providing for maintenance of 980 
providence and pedigree for data. 981 

Depending on the allocation of responsibilities, the Security and Privacy Fabric may also support certain 982 
provisioning and configuration activities. For example, activities for regular monitoring of system or 983 
application configuration files to ensure that there have been no unauthorized changes may be allocated to 984 
this fabric. In reality, the activities in the Security and Privacy Fabric and Management Fabric must, at a 985 
minimum, interact and will frequently involve shared responsibilities. 986 

4.2 FUNCTIONAL COMPONENT VIEW 987 

The functional component view of the reference architecture should define and describe the functional 988 
components (e.g., software, hardware, people, organizations) that perform the various activities outlined 989 
in the activities view. Activities and functional components need not map one-to-one and in fact, many 990 
functional components may be required to execute a single activity and multiple activities may be 991 
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performed by a single functional component. The user of this model is recommended to maintain a 992 
mapping of activities to functional components to support verification that all activities can be performed 993 
by some component and that only components that are necessary are included within the architecture. 994 
Figure 9 below shows classes of functional components common to the various roles, sub-roles, and 995 
fabrics of the NBDRA. These classes are described in the following paragraphs. 996 

 997 

Figure 9: Common Classes of Functional Components 998 

4.2.1 SYSTEM ORCHESTRATOR 999 

The classes of functional components for the system orchestrator revolve around the policies and 1000 
processes that govern the operation of the Big Data system. These policies and processes define the 1001 
requirements for how other functional components must behave and interact. Often the policies and 1002 
processes are derived from community best practices or standards such as International Organization of 1003 
Standardization (ISO) 20000 for IT Services Management or ISO 27000 for Information Technology 1004 
Security. Other classes of processes and policies may include ones for data sharing, external system 1005 
access, and how privacy-sensitive data is to be handled. 1006 

4.2.2 BIG DATA APPLICATION PROVIDER 1007 

The functional components within the Big Data Application Provider implement the specific functionality 1008 
of the Big Data system. The classes for components within a Big Data application include: 1009 

• Work Flows: These components would control how data and/or users go through the functions of 1010 
the system. These are often implemented within frameworks or enterprise service bus 1011 
components that would also be included here. 1012 

• Transformations: These components are responsible for reformatting data to meet the needs of 1013 
the algorithms or visualizations. The transformations may also invoke algorithms to support the 1014 
transformation. These may be embedded in other components, such as ETL tools. 1015 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2



NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE 

30 

• Visualizations: The visualization components are responsible for formatting data to present to an 1016 
end user. These visualizations may be textual or graphic and are frequently implemented with 1017 
other framework or tool functional components. For example, textual visualizations may be 1018 
implemented using report writer components while a graphic visualization of the output of a 1019 
clustering algorithm may be implemented by a charting framework component. 1020 

• Access Services: These components provide access to the Big Data system to the Data 1021 
Consumers and may be designed for use by humans or other systems. Frequently, these specific 1022 
components are implemented within other frameworks or components such as web services 1023 
containers. 1024 

• Algorithms: This class of components is the heart of the application functionality. They can 1025 
range from simple summarization and aggregation algorithms to more complex statistical analysis 1026 
such as clustering, or graph traversal/analysis algorithms.   1027 

Algorithms themselves can be classified into general classes which may be defined as functional 1028 
components. In 2004, a list of algorithms for simulation in the physical sciences was developed that 1029 
became known as the Seven Dwarfs [16]. The original list of seven dwarfs was modified in 2006 and 1030 
extended to 13 algorithms (Table 2) based on the following definition: “A dwarf is an algorithmic method 1031 
that captures a pattern of computation and communication.”3 1032 

Table 2: 13 Dwarfs—Algorithms for Simulation in the Physical Sciences 1033 

Dense Linear Algebra* Combinational Logic 
Sparse Linear Algebra* Graph Traversal 
Spectral methods Dynamic Programming 
N-Body Methods Backtrack and Branch-and-Bound 
Structured Grids* Graphical Models 
Unstructured Grids* Finite State Machines 
MapReduce  
Notes:  1034 
* Indicates one of the original seven dwarfs. The following modifications to the original list of seven algorithms were made in 1035 
2006: Fast Fourier Transform, Particles, and Monte Carlo were removed. MapReduce was added. 1036 

Many other algorithms or processing models have been defined over the years. MapReduce, and Bulk 1037 
Synch Processing (BSP) are perhaps the two best known models in the Big Data space today. These are 1038 
described in the following subsections. 1039 

4.2.2.1 MapReduce 1040 

Several major Internet search providers popularized the MapReduce model as they worked to implement 1041 
their search capabilities. In general, MapReduce programs follow five basic stages: 1042 

1. Input preparation and assignment to mappers; 1043 
2. Map a set of keys and values to new keys and values: Map(k1,v1) → list(k2,v2); 1044 
3. Shuffle data to each reducer and each reducer sorts its input—each reducer is assigned a set 1045 

of keys (k2); 1046 
4. Run the reduce on a list(v2) associated with each key and produce an output: Reduce(k2, 1047 

list(v2) → list(v3); and 1048 
5. Final output: the lists(v3) from each reducer are combined and sorted by k2. 1049 

                                                      
3 Patterson, David; Yelick, Katherine. Dwarf Mind. A View from Berkeley. 
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf  
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While there is a single output, nothing in the model prohibits multiple input datasets. It is extremely 1050 
common for complex analytics to be built as workflows of multiple MapReduce jobs. While the 1051 
MapReduce programming model is best suited to aggregation-type analytics (e.g., sum, average, group-1052 
by), a wide variety of analytic algorithms have been implemented within processing frameworks. 1053 
MapReduce does not generally perform well with applications or algorithms that need to directly update 1054 
the underlying data. For example, updating the values for a single key would require that the entire 1055 
dataset be read, output, and then moved or copied over the original dataset. Because the mappers and 1056 
reducers are stateless in nature, applications that require iterative computation on parts of the data or 1057 
repeated access to parts of the dataset do not tend to scale or perform well under MapReduce. 1058 

Due to its shared-nothing approach, the usability of MapReduce for Big Data applications has made it 1059 
popular enough that a number of large data storage solutions (mostly those of the NoSQL variety) provide 1060 
implementations within their architecture. One major criticism of MapReduce early on was that the 1061 
interfaces to most implementations were at too low of a level (written in Java or JavaScript). However, 1062 
many of the more prevalent implementations now support high-level procedural and declarative language 1063 
interfaces, and even visual programming environments are beginning to appear. 1064 

4.2.2.2 Bulk Synchronous Parallel  1065 

The BSP programming model, originally developed by Leslie Valiant [17], combines parallel processing 1066 
with the ability of processing modules to send messages to other processing modules and explicit 1067 
synchronization of the steps. A BSP algorithm is composed of what are termed supersteps, which 1068 
comprise the following three distinct elements. 1069 

• Bulk Parallel Computation: Each processor performs the calculation/analysis on its local chunk 1070 
of data. 1071 

• Message Passing: As each processor performs its calculations, it may generate messages to other 1072 
processors. These messages are frequently updates to values associated with the local data of 1073 
other processors but may also result in the creation of additional data. 1074 

• Synchronization: Once a processor has completed processing its local data, it pauses until all 1075 
other processors have also completed their processing. 1076 

This cycle can be terminated by all the processors voting to stop, which will generally happen when a 1077 
processor has generated no messages to other processors (e.g., no updates). All processors voting to stop, 1078 
in turn, indicates that there are no new updates to any of the processors’ data and the computation is 1079 
complete. Alternatively, the cycle may be terminated after a fixed number of supersteps have been 1080 
completed (e.g., after a certain number of iterations of a Monte Carlo simulation). 1081 

The advantage of BSP over MapReduce is that processing can actually create updates to the data being 1082 
processed. It is this distinction that has made BSP popular for graph processing and simulations where 1083 
computations on one node/element of data directly affect values or connections with other 1084 
nodes/elements. The disadvantage of BSP is the high cost of the synchronization barrier between 1085 
supersteps. Should the distribution of data or processing between processors become highly unbalanced, 1086 
then some processors may become overloaded while others remain idle.  1087 

While high-performance interconnected technologies help to reduce the cost of this synchronization 1088 
through faster data exchange between nodes and can allow for re-distribution of data during a super-step 1089 
skewing of the processing requirements, the fastest possible performance of any given superstep is lower 1090 
bounded by the slowest performance of any processing unit. Essentially, if the data is skewed such that 1091 
the processing of a given data element (say traversal of the graph from that element) is especially long-1092 
running, the next superstep cannot begin until that nodes processing completes. 1093 
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Numerous extensions and enhancements to the basic BSP model have been developed and implemented 1094 
over the years, many of which are designed to address the balancing and cost of synchronization 1095 
problems. 1096 

4.2.3 BIG DATA FRAMEWORK PROVIDER 1097 

The Big Data Framework Provider provides the infrastructure required to support the Big Data 1098 
Application Provider. Components within the Big Data Framework Provider fall within three overall sub-1099 
roles (i.e., processing, platforms, infrastructures) along with some specific crosscutting roles, which 1100 
support the communication and integration of components within the overall provider. 1101 

4.2.3.1 Infrastructure Frameworks 1102 

This Infrastructure Frameworks sub-role of the Big Data Framework Provider provides all of the 1103 
resources necessary to host/run the activities of the other roles of the Big Data system. Typically, these 1104 
resources consist of some combination of physical resources, which may host/support similar virtual 1105 
resources. These resources are generally classified as follows: 1106 

• Networking:  These are the resources that transfer data from one infrastructure framework 1107 
component to another. 1108 

• Computing:  These are the physical processors and memory that execute and hold the software of 1109 
the other Big Data system components. 1110 

• Storage:  These are resources which provide persistence of the data in a Big Data system. 1111 
• Physical Plant:  These are the environmental resources (e.g., power, cooling, security) that must 1112 

be accounted for when establishing an instance of a Big Data system.  1113 

While the Big Data Framework Provider component may be deployed directly on physical resources or 1114 
on virtual resources, at some level all resources have a physical representation. Physical resources are 1115 
frequently used to deploy multiple components that will be duplicated across a large number of physical 1116 
nodes to provide what is known as horizontal scalability.  1117 

The following subsections describe the types of physical and virtual resources that compose Big Data 1118 
infrastructure. 1119 

4.2.3.1.1 Hypervisors 1120 
Virtualization is frequently used to achieve elasticity and flexibility in the allocation of physical resources 1121 
and is often referred to as infrastructure as a service (IaaS) within the cloud computing community. 1122 
Virtualization is implemented via hypervisors that are typically found in one of three basic forms within a 1123 
Big Data Architecture. 1124 

• Native:  In this form, a hypervisor runs natively on the bare metal and manages multiple virtual 1125 
machines consisting of operating systems (OS) and applications. 1126 

• Hosted:  In this form, an OS runs natively on the bare metal and a hypervisor runs on top of that 1127 
to host a client OS and applications. This model is not often seen in Big Data architectures due to 1128 
the increased overhead of the extra OS layer. 1129 

• Containerized:  In this form, hypervisor functions are embedded in the OS, which runs on bare 1130 
metal. Applications are run inside containers, which control or limit access to the OS and physical 1131 
machine resources. This approach has gained popularity for Big Data architectures because it 1132 
further reduces overhead since most OS functions are a single shared resource. It may not be 1133 
considered as secure or stable because in the event that the container controls/limits fail, one 1134 
application may take down every application sharing those physical resources. 1135 
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4.2.3.1.2 Physical and Virtual Networks 1136 
The connectivity of the architecture infrastructure should be addressed, as it affects the velocity 1137 
characteristic of Big Data. While some Big Data implementations may solely deal with data that is 1138 
already resident in the data center and does not need to leave the confines of the local network, others 1139 
may need to plan and account for the movement of Big Data either into or out of the data center. The 1140 
location of Big Data systems with transfer requirements may depend on the availability of external 1141 
network connectivity (i.e., bandwidth) and the limitations of Transmission Control Protocol (TCP) where 1142 
there is low latency (as measured by packet Round Trip Time) with the primary senders or receivers of 1143 
Big Data. To address the limitations of TCP, architects for Big Data systems may need to consider some 1144 
of the advanced non-TCP based communications protocols available that are specifically designed to 1145 
transfer large files such as video and imagery. 1146 

Overall availability of the external links is another infrastructure aspect relating to the velocity 1147 
characteristic of Big Data that should be considered in architecting external connectivity. A given 1148 
connectivity link may be able to easily handle the velocity of data while operating correctly. However, 1149 
should the quality of service on the link degrade or the link fail completely, data may be lost or simply 1150 
back up to the point that it can never recover. Use cases exist where the contingency planning for network 1151 
outages involves transferring data to physical media and physically transporting it to the desired 1152 
destination. However, even this approach is limited by the time it may require to transfer the data to 1153 
external media for transport. 1154 

The volume and velocity characteristics of Big Data often are driving factors in the implementation of the 1155 
internal network infrastructure as well. For example, if the implementation requires frequent transfers of 1156 
large multi-gigabyte files between cluster nodes, then high speed and low latency links are required to 1157 
maintain connectivity to all nodes in the network. Provisions for dynamic quality of services (QoS) and 1158 
service priority may be necessary in order to allow failed or disconnected nodes to re-synchronize once 1159 
connectivity is restored. Depending on the availability requirements, redundant and fault tolerant links 1160 
may be required. Other aspects of the network infrastructure include name resolution (e.g., Domain Name 1161 
Server [DNS]) and encryption along with firewalls and other perimeter access control capabilities. 1162 
Finally, the network infrastructure may also include automated deployment, provisioning capabilities, or 1163 
agents and infrastructure wide monitoring agents that are leveraged by the management/communication 1164 
elements to implement a specific model.  1165 

Security of the networks is another aspect that must be addressed depending on the sensitivity of the data 1166 
being processed. Encryption may be needed between the network and external systems to avoid man in 1167 
the middle interception and compromise of the data. In cases, where the network infrastructure within the 1168 
data center is shared encryption of the local network should also be considered. Finally, in conjunction 1169 
with the security and privacy fabric auditing and intrusion detection capabilities need to be addressed. 1170 

Two concepts, SDN and Network Function Virtualization (NFV), have recently been developed in 1171 
support of scalable networks and scalable systems using them. 1172 

4.2.3.1.2.1 Software Defined Networks 1173 

Frequently ignored, but critical to the performance of distributed systems and frameworks, and especially 1174 
critical to Big Data implementations, is the efficient and effective management of networking resources. 1175 
Significant advances in network resource management have been realized through what is known as 1176 
SDN. Much like virtualization frameworks manage shared pools of CPU/memory/disk, SDNs (or virtual 1177 
networks) manage pools of physical network resources. In contrast to the traditional approaches of 1178 
dedicated physical network links for data, management, I/O, and control, SDNs contain multiple physical 1179 
resources (including links and actual switching fabric) that are pooled and allocated as required to specific 1180 
functions and sometimes to specific applications. This allocation can consist of raw bandwidth, quality of 1181 
service priority, and even actual data routes.  1182 
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4.2.3.1.2.2 Network Function Virtualization  1183 

With the advent of virtualization, virtual appliances can now reasonably support a large number of 1184 
network functions that were traditionally performed by dedicated devices. Network functions that can be 1185 
implemented in this manner include routing/routers, perimeter defense (e.g., firewalls), remote access 1186 
authorization, and network traffic/load monitoring. Some key advantages of NFV include elasticity, fault 1187 
tolerance, and resource management. For example, the ability to automatically deploy/provision 1188 
additional firewalls in response to a surge in user or data connections and then un-deploy them when the 1189 
surge is over can be critical in handling the volumes associated with Big Data.  1190 

4.2.3.1.3 Physical and Virtual Computing  1191 
The logical distribution of cluster/computing infrastructure may vary from a tightly coupled high 1192 
performance computing (HPC) cluster to a dense grid of physical commodity machines in a rack, to a set 1193 
of virtual machines running on a cloud service provider (CSP), or to a loosely coupled set of machines 1194 
distributed around the globe providing access to unused computing resources. Computing infrastructure 1195 
also frequently includes the underlying OSs and associated services used to interconnect the cluster 1196 
resources via the networking elements. Computing resources may also include computation accelerators, 1197 
such as Graphic Processing Units (GPU) and Field Programmable Gate Arrays (FPGA), which can 1198 
provide dynamically programmed massively parallel computing capabilities to individual nodes in the 1199 
infrastructure. 1200 

4.2.3.1.4 Storage 1201 
The storage infrastructure may include any resource from isolated local disks to storage area networks 1202 
(SANs) or network-attached storage (NAS).  1203 

Two aspects of storage infrastructure technology that directly influence their suitability for Big Data 1204 
solutions are capacity and transfer bandwidth. Capacity refers to the ability to handle the data volume. 1205 
Local disks/file systems are specifically limited by the size of the available media. Hardware or software 1206 
redundant array of independent disks (RAID) solutions—in this case local to a processing node—help 1207 
with scaling by allowing multiple pieces of media to be treated as a single device. However, this approach 1208 
is limited by the physical dimension of the media and the number of devices the node can accept. SAN 1209 
and NAS implementations—often known as shared disk solutions—remove that limit by consolidating 1210 
storage into a storage specific device. By consolidating storage, the second aspect—transfer bandwidth—1211 
may become an issue. While both network and I/O interfaces are getting faster and many implementations 1212 
support multiple transfer channels, I/O bandwidth can still be a limiting factor. In addition, despite the 1213 
redundancies provided by RAID, hot spares, multiple power supplies, and multiple controllers, these 1214 
boxes can often become I/O bottlenecks or single points of failure in an enterprise. Many Big Data 1215 
implementations address these issues by using distributed file systems within the platform framework. 1216 

4.2.3.1.5 Physical Plant 1217 
Environmental resources, such as power and heating, ventilation, and air conditioning provided by 1218 
physical plant components, are critical to the Big Data Framework Provider. While environmental 1219 
resources are critical to the operation of the Big Data system, they are not within the technical boundaries 1220 
and are, therefore, not depicted in Figure 3, the NBDRA conceptual model. 1221 

Adequately sized infrastructure to support application requirements is critical to the success of Big Data 1222 
implementations. The infrastructure architecture operational requirements range from basic power and 1223 
cooling to external bandwidth connectivity (as discussed above). A key evolution that has been driven by 1224 
Big Data is the increase in server density (i.e., more CPU/memory/disk per rack unit). However, with this 1225 
increased density, infrastructure—specifically power and cooling—may not be distributed within the data 1226 
center to allow for sufficient power to each rack or adequate air flow to remove excess heat. In addition, 1227 
with the high cost of managing energy consumption within data centers, technologies have been 1228 
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developed that actually power down or idle resources not in use to save energy or to reduce consumption 1229 
during peak periods.  1230 

Also important within this element are the physical security of the facilities and auxiliary (e.g., power 1231 
sub-stations). Specifically, perimeter security to include credential verification (e.g., badge/biometrics), 1232 
surveillance, and perimeter alarms all are necessary to maintain control of the data being processed. 1233 

4.2.3.2 Data Platform Frameworks 1234 

Data Platform Frameworks provide for the logical data organization and distribution combined with the 1235 
associated access application programming interfaces (APIs) or methods. The frameworks may also 1236 
include data registry and metadata services along with semantic data descriptions such as formal 1237 
ontologies or taxonomies. The logical data organization may range from simple delimited flat files to 1238 
fully distributed relational or columnar data stores. The storage mediums range from high latency robotic 1239 
tape drives, to spinning magnetic media, to flash/solid state disks, or to random access memory. 1240 
Accordingly, the access methods may range from file access APIs to query languages such as Structured 1241 
Query Language (SQL). Typical Big Data framework implementations would support either basic file 1242 
system style storage or in-memory storage and one or more indexed storage approaches. Based on the 1243 
specific Big Data system considerations, this logical organization may or may not be distributed across a 1244 
cluster of computing resources.  1245 

In most aspects, the logical data organization and distribution in Big Data storage frameworks mirrors the 1246 
common approach for most legacy systems. Figure 10 presents a brief overview of data organization 1247 
approaches for Big Data.  1248 

 1249 
Figure 10: Data Organization Approaches 1250 

Many Big Data logical storage organizations leverage the common file system concept where chunks of 1251 
data are organized into a hierarchical namespace of directories as their base and then implement various 1252 
indexing methods within the individual files. This allows many of these approaches to be run both on 1253 
simple local storage file systems for testing purposes or on fully distributed file systems for scale. 1254 

4.2.3.2.1 In-memory 1255 
The infrastructure illustrated in the NBDRA (Figure 3) indicates that physical resources are required to 1256 
support analytics. However, such infrastructure will vary (i.e., will be optimized) for the Big Data 1257 
characteristics of the problem under study. Large, but static, historical datasets with no urgent analysis 1258 
time constraints would optimize the infrastructure for the volume characteristic of Big Data, while time-1259 
critical analyses such as intrusion detection or social media trend analysis would optimize the 1260 
infrastructure for the velocity characteristic of Big Data. Velocity implies the necessity for extremely fast 1261 
analysis and the infrastructure to support it—namely, very low latency, in-memory analytics. 1262 
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In-memory storage technologies, many of which were developed to support the scientific HPC domain, 1263 
are increasingly used due to the significant reduction in memory prices and the increased scalability of 1264 
modern servers and OSs. Yet, an in-memory element of a velocity-oriented infrastructure will require 1265 
more than simply massive random-access memory (RAM). It will also require optimized data structures 1266 
and memory access algorithms to fully exploit RAM performance. Current in-memory database offerings 1267 
are beginning to address this issue. Shared memory solutions common to HPC environments are often 1268 
being applied to address inter-nodal communications and synchronization requirements. 1269 

Traditional database management architectures are designed to use spinning disks as the primary storage 1270 
mechanism, with the main memory of the computing environment relegated to providing caching of data 1271 
and indexes. Many of these in-memory storage mechanisms have their roots in the massively parallel 1272 
processing and supercomputer environments popular in the scientific community.  1273 

These approaches should not be confused with solid state (e.g., flash) disks or tiered storage systems that 1274 
implement memory-based storage which simply replicate the disk style interfaces and data structures but 1275 
with faster storage medium. Actual in-memory storage systems typically eschew the overhead of file 1276 
system semantics and optimize the data storage structure to minimize memory footprint and maximize the 1277 
data access rates. These in-memory systems may implement general purpose relational and other not only 1278 
or no Structured Query Language (NoSQL) style organization and interfaces or be completely optimized 1279 
to a specific problem and data structure. 1280 

Like traditional disk-based systems for Big Data, these implementations frequently support horizontal 1281 
distribution of data and processing across multiple independent nodes—although shared memory 1282 
technologies are still prevalent in specialized implementations. Unlike traditional disk-based approaches, 1283 
in-memory solutions and the supported applications must account for the lack of persistence of the data 1284 
across system failures. Some implementations leverage a hybrid approach involving write-through to 1285 
more persistent storage to help alleviate the issue. 1286 

The advantages of in-memory approaches include faster processing of intensive analysis and reporting 1287 
workloads. In-memory systems are especially good for analysis of real time data such as that needed for 1288 
some complex event processing (CEP) of streams. For reporting workloads, performance improvements 1289 
can often be on the order of several hundred times faster—especially for sparse matrix and simulation 1290 
type analytics. 1291 

4.2.3.2.2 File Systems 1292 
Many Big Data processing frameworks and applications access their data directly from underlying file 1293 
systems. In almost all cases, the file systems implement some level of the Portable Operating System 1294 
Interface (POSIX) standards for permissions and the associated file operations. This allows other higher-1295 
level frameworks for indexing or processing to operate with relative transparency as to whether the 1296 
underlying file system is local or fully distributed. File-based approaches consist of two layers, the file 1297 
system organization and the data organization within the files. 1298 

4.2.3.2.2.1 File System Organization 1299 

File systems tend to be either centralized or distributed. Centralized file systems are basically 1300 
implementations of local file systems that are placed on a single large storage platform (e.g., SAN or 1301 
NAS) and accessed via some network capability. In a virtual environment, multiple physical centralized 1302 
file systems may be combined, split, or allocated to create multiple logical file systems. 1303 

Distributed file systems (also known as cluster file systems) seek to overcome the throughput issues 1304 
presented by the volume and velocity characteristics of big data combine I/O throughput across multiple 1305 
devices (spindles) on each node, with redundancy and failover mirroring or replicating data at the block 1306 
level across multiple nodes. Many of these implementations were developed in support of HPC 1307 
computing solutions requiring high throughput and scalability. Performance, in many HPC 1308 
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implementations is often achieved through dedicated storage nodes using proprietary storage formats and 1309 
layouts. The data replication is specifically designed to allow the use of heterogeneous commodity 1310 
hardware across the Big Data cluster. Thus, if a single drive or an entire node should fail, no data is lost 1311 
because it is replicated on other nodes and throughput is only minimally affected because that processing 1312 
can be moved to the other nodes. In addition, replication allows for high levels of concurrency for reading 1313 
data and for initial writes. Updates and transaction style changes tend to be an issue for many distributed 1314 
file systems because latency in creating replicated blocks will create consistency issues (e.g., a block is 1315 
changed but another node reads the old data before it is replicated). Several file system implementations 1316 
also support data compression and encryption at various levels. One major caveat is that, for distributed 1317 
block-based file systems, the compression/encryption must be able to be split and allow any given block 1318 
to be decompressed/ decrypted out of sequence and without access to the other blocks. 1319 

Distributed object stores (also known as global object stores) are a unique example of distributed file 1320 
system organization. Unlike the approaches described above, which implement a traditional file system 1321 
hierarchy namespace approach, distributed object stores present a flat name space with a globally unique 1322 
identifier (GUID) for any given chunk of data. Generally, data in the store is located through a query 1323 
against a metadata catalog that returns the associated GUIDs. The GUID generally provides the 1324 
underlying software implementation with the storage location of the data of interest. These object stores 1325 
are developed and marketed for storage of very large data objects, from complete datasets to large 1326 
individual objects (e.g., high resolution images in the tens of gigabytes [GBs] size range). The biggest 1327 
limitation of these stores for Big Data tends to be network throughput (i.e., speed) because many require 1328 
the object to be accessed in total. However, future trends point to the concept of being able to send the 1329 
computation/application to the data versus needing to bring the data to the application. 1330 

From a maturity perspective, two key areas where distributed file systems are likely to improve are (1) 1331 
random write I/O performance and consistency, and (2) the generation of de facto standards at a similar or 1332 
greater level as the Internet Engineering Task Force Requests for Comments document series, such as 1333 
those currently available for the network file system (NFS) protocol. Distributed object stores, while 1334 
currently available and operational from several commercial providers and part of the roadmap for large 1335 
organizations such as the National Geospatial Intelligence Agency (NGA), currently are essentially 1336 
proprietary implementations. For Distributed object stores to become prevalent within Big Data 1337 
ecosystems, there should be: some level of interoperability available (i.e., through standardized APIs); 1338 
standards-based approaches for data discovery; and, most importantly, standards-based approaches that 1339 
allow the application to be transferred over the grid and run locally to the data versus transferring the data 1340 
to the application. 1341 

4.2.3.2.2.2 In File Data Organization 1342 

Very little is different for in file data organization in Big Data. File based data can be text, binary data, 1343 
fixed length records, or some sort of delimited structure (e.g., comma separated values [CSV], Extensible 1344 
Markup Language [XML]). For record-oriented storage (either delimited or fixed length), this generally is 1345 
not an issue for Big Data unless individual records can exceed a block size. Some distributed file system 1346 
implementations provide compression at the volume or directory level and implement it below the logical 1347 
block level (e.g., when a block is read from the file system, it is decompressed/decrypted before being 1348 
returned). Because of their simplicity, familiarity, and portability, delimited files are frequently the 1349 
default storage format in many Big Data implementations. The trade-off is I/O efficiency (i.e., speed). 1350 
While individual blocks in a distributed file system might be accessed in parallel, each block still needs to 1351 
be read in sequence. In the case of a delimited file, if only the last field of certain records is of interest 1352 
with perhaps hundreds of fields, a lot of I/O and processing bandwidth is wasted. 1353 

Binary formats tend to be application or implementation specific. While they can offer much more 1354 
efficient access due to smaller data sizes (i.e., integers are two to four bytes in binary while they are one 1355 
byte per digit in ASCII [American Standard Code for Information Interchange]), they offer limited 1356 
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portability between different implementations. At least one popular distributed file system provides its 1357 
own standard binary format, which allows data to be portable between multiple applications without 1358 
additional software. However, the bulk of the indexed data organization approaches discussed below 1359 
leverage binary formats for efficiency. 1360 

4.2.3.2.3 Indexed Storage Organization 1361 
The very nature of Big Data (primarily the volume and velocity characteristics) practically drives 1362 
requirements to some form of indexing structure. Big Data volume requires that specific data elements be 1363 
located quickly without scanning across the entire dataset. Big Data velocity also requires that data can be 1364 
located quickly either for matching (e.g., incoming data matches something in an existing dataset) or to 1365 
know where to write/update new data.  1366 

The choice of a particular indexing method or methods depends mostly on the data and the nature of the 1367 
application to be implemented. For example, graph data (i.e., vertices, edges, and properties) can easily be 1368 
represented in flat text files as vertex-edge pairs, edge-vertex-vertex triples, or vertex-edge list records. 1369 
However, processing this data efficiently would require potentially loading the entire dataset into memory 1370 
or being able to distribute the application and dataset across multiple nodes so a portion of the graph is in 1371 
memory on each node. Splitting the graph across nodes requires the nodes to communicate when graph 1372 
sections have vertices that connect with vertices on other processing nodes. This is perfectly acceptable 1373 
for some graph applications—such as shortest path—especially when the graph is static. Some graph 1374 
processing frameworks operate using this exact model. However, this approach is infeasible for large 1375 
scale graphs requiring a specialized graph storage framework, where the graph is dynamic or searching or 1376 
matching to a portion of the graph is needed quickly. 1377 

Indexing approaches tend to be classified by the features provided in the implementation, specifically: the 1378 
complexity of the data structures that can be stored; how well they can process links between data; and, 1379 
how easily they support multiple access patterns as shown in Figure 11. Since any of these features can be 1380 
implemented in custom application code, the values portrayed represent approximate norms. For example, 1381 
key-value stores work well for data that is only accessed through a single key, whose values can be 1382 
expressed in a single flat structure, and where multiple records do not need to be related. While document 1383 
stores can support very complex structures of arbitrary width and tend to be indexed for access via 1384 
multiple document properties, they do not tend to support inter-record relationships well.  1385 

It is noted that the specific implementations for each storage approach vary significantly enough that all 1386 
of the values for the features represented here are really ranges. For example, relational data storage 1387 
implementations are supporting increasingly complex data structures and ongoing work aims to add more 1388 
flexible access patterns natively in BigTable columnar implementations. Within Big Data, the 1389 
performance of each of these features tends to drive the scalability of that approach depending on the 1390 
problem being solved. For example, if the problem is to locate a single piece of data for a unique key, 1391 
then key-value stores will scale really well. However, if a problem requires general navigation of the 1392 
relationships between multiple data records, a graph storage model will likely provide the best 1393 
performance. 1394 
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 1395 
Figure 11: Data Storage Technologies 1396 

This section provides an overview of several common Big Data Organization Approaches as follows:  1397 

• Relational storage platforms, 1398 
• Key-value storage platforms, 1399 
• Wide columnar storage platforms, 1400 
• Document storage platforms, and 1401 
• Graph storage platforms. 1402 

The reader should keep in mind that new and innovative approaches are emerging regularly, and that 1403 
some of these approaches are hybrid models that combine features of several indexing techniques (e.g., 1404 
relational and columnar, or relational and graph).  1405 

4.2.3.2.3.1 Relational Storage Platforms 1406 

This model is perhaps the most familiar to folks as the basic concept has existed since the 1950s and the 1407 
SQL is a mature standard for manipulating (search, insert, update, delete) relational data. In the relational 1408 
model, data is stored as rows with each field representing a column organized into Table based on the 1409 
logical data organization. The problem with relational storage models and Big Data is the join between 1410 
one or more tables. While the size of two or more tables of data individually might be small, the join (or 1411 
relational matches) between those tables will generate exponentially more records. The appeal of this 1412 
model for organizations just adopting Big Data is its familiarity. The pitfalls are some of the limitations 1413 
and, more importantly, the tendency to adopt standard relational database management system (RDBMS) 1414 
practices (high normalization, detailed and specific indexes) and performance expectations. 1415 

Big data implementations of relational storage models are relatively mature and have been adopted by a 1416 
number of organizations. They are also maturing very rapidly with new implementations focusing on 1417 
improved response time. Many Big Data implementations take a brute-force approach to scaling relational 1418 
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queries. Essentially, queries are broken into stages but, more importantly, processing of the input tables is 1419 
distributed across multiple nodes (often as a MapReduce job). The actual storage of the data can be flat 1420 
files (delimited or fixed length) where each record/line in the file represents a row in a table. Increasingly, 1421 
however, these implementations are adopting binary storage formats optimized for distributed file 1422 
systems. These formats will often use block level indexes and column-oriented organization of the data to 1423 
allow individual fields to be accessed in records without needing to read the entire record. Despite this, 1424 
most Big Data Relational storage models are still batch-oriented systems designed for very complex 1425 
queries which generate very large intermediate cross-product matrices from joins so even the simplest 1426 
query can require 10s of seconds to complete. There is significant work going on and emerging 1427 
implementations that are seeking to provide a more interactive response and interface. 1428 

Early implementations provided only limited data types and little or no support for indexes. However, 1429 
most current implementations have support for complex data structures and basic indexes. However, 1430 
while the query planners/optimizers for most modern RDBMS systems are very mature and implement 1431 
cost-based optimization through statistics on the data, the query planners/optimizers in many Big Data 1432 
implementations remain fairly simple and rule-based in nature. While for batch-oriented systems, this is 1433 
generally acceptable (since the scale of processing the Big Data in general can be orders of magnitude 1434 
more an impact), any attempt to provide interactive response will need very advanced optimizations so 1435 
that (at least for queries) only the most likely data to be returned is actually searched. This of course leads 1436 
to the single most serious drawback with many of these implementations. Since distributed processing 1437 
and storage are essential for achieving scalability, these implementations are directly limited by the CAP 1438 
(Consistency, Availability, and Partition Tolerance) theorem. Many in fact provide what is generally 1439 
referred to as a t-eventual consistency which means that barring any updates to a piece of data, all nodes 1440 
in the distributed system will eventually return the most recent value. This level of consistency is 1441 
typically fine for Data Warehousing applications where data is infrequently updated and updates are 1442 
generally done in bulk. However, transaction-oriented databases typically require some level of ACID 1443 
compliance to ensure that all transactions are handled reliably and conflicts are resolved in a consistent 1444 
manner. There are a number of both industry and open source initiatives looking to bring this type of 1445 
capability to Big Data relational storage frameworks. One approach is to essentially layer a traditional 1446 
RDBMS on top of an existing distributed file system implementation. While vendors claim that this 1447 
approach means that the overall technology is mature, a great deal of research and implementation 1448 
experience is needed before the complete performance characteristics of these implementations are 1449 
known. 1450 

4.2.3.2.3.2 Key-Value Storage Platforms 1451 

Key-value stores are one of the oldest and mature data indexing models. In fact, the principles of key-1452 
value stores underpin all the other storage and indexing models. From a Big Data perspective, these stores 1453 
effectively represent random access memory models. While the data stored in the values can be arbitrarily 1454 
complex in structure, all the handling of that complexity must be provided by the application with the 1455 
storage implementation often providing back just a pointer to a block of data. Key-value stores also tend 1456 
to work best for 1-1 relationships (e.g., each key relates to a single value) but can also be effective for 1457 
keys mapping to lists of homogeneous values. When keys map multiple values of heterogeneous 1458 
types/structures or when values from one key need to be joined against values for a different or the same 1459 
key, then custom application logic is required. It is the requirement for this custom logic that often 1460 
prevents key-value stores from scaling effectively for certain problems. However, depending on the 1461 
problem, certain processing architectures can make effective use of distributed key-value stores. Key-1462 
value stores generally deal well with updates when the mapping is one-to-one and the size/length of the 1463 
value data does not change. The ability of key-value stores to handle inserts is generally dependent on the 1464 
underlying implementation. Key-value stores also generally require significant effort (either manual or 1465 
computational) to deal with changes to the underlying data structure of the values.  1466 
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Distributed key-value stores are the most frequent implementation utilized in Big Data applications. One 1467 
problem that must always be addressed (but is not unique to key-value implementations) is the 1468 
distribution of keys over the space of possible key values. Specifically, keys must be chosen carefully to 1469 
avoid skew in the distribution of the data across the cluster. When data is heavily skewed to a small range, 1470 
it can result in computation hot spots across the cluster if the implementation is attempting to optimize 1471 
data locality. If the data is dynamic (new keys being added) for such an implementation, then it is likely 1472 
that at some point the data will require rebalancing across the cluster. Non-locality optimizing 1473 
implementations employ various sorts of hashing, random, or round-robin approaches to data distribution 1474 
and don’t tend to suffer from skew and hot spots. However, they perform especially poorly on problems 1475 
requiring aggregation across the dataset. 1476 

4.2.3.2.3.3 Wide Columnar Storage Platforms 1477 

Much of the hype associated with Big Data came with the publication of the BigTable paper in 2006 [18] 1478 
but column-oriented storage models like BigTable are not new to even Big Data and have been stalwarts 1479 
of the data warehousing domain for many years. Unlike traditional relational data that store data by rows 1480 
of related values, columnar stores organize data in groups of like values. The difference here is subtle but 1481 
in relational databases, an entire group of columns are tied to some primary key (frequently one or more 1482 
of the columns) to create a record. In columnar, the value of every column is a key and like column values 1483 
point to the associated rows. The simplest instance of a columnar store is little more than a key-value 1484 
store with the key and value roles reversed. In many ways, columnar data stores look very similar to 1485 
indexes in relational databases. Figure 12 below shows the basic differences between row-oriented and 1486 
column-oriented stores. 1487 

Figure 12: Differences Between Row-Oriented and Column-Oriented Stores 1488 

In addition, implementations of columnar stores that follow the BigTable model introduce an additional 1489 
level of segmentation beyond the table, row, and column model of the relational model. That is called the 1490 
column family. In those implementations, rows have a fixed set of column families but within a column 1491 
family, each row can have a variable set of columns. This is illustrated in Figure 13 below. 1492 
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Figure 13: Column Family Segmentation of the Columnar Stores Model 1493 

The key distinction in the implementation of columnar store over relational stores is that data is high de-1494 
normalized for column stores and that while for relational stores every record contains some value 1495 
(perhaps NULL) for each column, in columnar store the column is only present if there is data for one or 1496 
more rows. This is why many column-oriented stores are referred to as sparse storage models. Data for 1497 
each column family is physically stored together on disk sorted by rowed, column name, and timestamp. 1498 
The last (timestamp) is there because the BigTable model also includes the concept of versioning. Every 1499 
RowKey, Column Family, Column triple is stored with either a system-generated or user-provided 1500 
Timestamp. This allows users to quickly retrieve the most recent value for a column (the default), the 1501 
specific value for a column by timestamp, or all values for a column. The last is most useful because it 1502 
permits very rapid temporal analysis on data in a column.  1503 

Because data for a given column is stored together, two key benefits are achieved. First, aggregation of 1504 
the data in that column requires only the values for that column to be read. Conversely, in a relational 1505 
system, the entire row (at least up to the column) needs to be read (which if the row is long and the 1506 
column at the end, it could be lots of data). Secondly, updates to a single column do not require the data 1507 
for the rest of the row to be read/written. Also, because all the data in a column is uniform, data can be 1508 
compressed much more efficiently. Often only a single copy of the value for a column is stored followed 1509 
by the row keys where that value exists. And while deletes of an entire column is very efficient, deletes of 1510 
an entire record are extremely expensive. This is why historically column-oriented stores have been 1511 
applied to online analytical processing (OLAP)-style applications while relational stores were applied to 1512 
online transaction processing (OLTP) requirements. 1513 

Recently, security has been a major focus of existing column implementations, primarily due to the 1514 
release by the National Security Agency (NSA) of its BigTable implementation to the open source 1515 
community. A key advantage of the NSA implementation and other recently announced implementations 1516 
is the availability of security controls at the individual cell level. With these implementations, a given user 1517 
might have access to only certain cells in a group based potentially on the value of those or other cells.  1518 

There are several very mature distributed column-oriented implementations available today from both 1519 
open source groups and commercial foundations. These have been implemented and operational across a 1520 
wide range of businesses and government organizations. Emerging are hybrid capabilities that implement 1521 
relational access methods (e.g., SQL) on top of BigTable/Columnar storage models. In addition, relational 1522 
implementations are adopting columnar-oriented physical storage models to provide more efficient access 1523 
for Big Data OLAP like aggregations and analytics. 1524 

4.2.3.2.3.4 Document Storage Platforms 1525 

Document storage approaches have been around for some time and popularized by the need to quickly 1526 
search large amounts of unstructured data. Modern document stores have evolved to include extensive 1527 
search and indexing capabilities for structured data and metadata and why they are often referred to as 1528 
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semi-structured data stores. Within a document-oriented data store, each document encapsulates and 1529 
encodes the metadata, fields, and any other representations of that record. While somewhat analogous to a 1530 
row in a relational table, one-reason document stores evolved and have gained in popularity is that most 1531 
implementations do not enforce a fixed or constant schema. While best practices hold that groups of 1532 
documents should be logically related and contain similar data, there is no requirement that they be alike 1533 
or that any two documents even contain the same fields. This is one reason that document stores are 1534 
frequently popular for datasets which have sparsely populated fields since there is far less overhead 1535 
normally than traditional RDBMS systems where null value columns in records are actually stored. 1536 
Groups of documents within these types of stores are generally referred to as collections, and like key-1537 
value stores, some sort of unique key references each document.  1538 

In modern implementations, documents can be built of arbitrarily nested structures and can include 1539 
variable length arrays and, in some cases, executable scripts/code (which has significant security and 1540 
privacy implications). Most document-store implementations also support additional indexes on other 1541 
fields or properties within each document with many implementing specialized index types for sparse 1542 
data, geospatial data, and text. 1543 

When modeling data into document-stores, the preferred approach is to de-normalize the data as much as 1544 
possible and embed all one-to-one and most one-to-many relationships within a single document. This 1545 
allows for updates to documents to be atomic operations which keep referential integrity between the 1546 
documents. The most common case where references between documents should be used is when there 1547 
are data elements that occur frequently across sets of documents and whose relationship to those 1548 
documents is static. For example, the publisher of a given book edition does not change, and there are far 1549 
fewer publishers than there are books. It would not make sense to embed all the publisher information 1550 
into each book document. Rather the book document would contain a reference to the unique key for the 1551 
publisher. Since for that edition of the book, the reference will never change and so there is no danger of 1552 
loss of referential integrity. Thus, information about the publisher (address, for example) can be updated 1553 
in a single atomic operation the same as the book. Were this information embedded, it would need to be 1554 
updated in every book document with that publisher. 1555 

In the Big Data realm, document stores scale horizontally through the use of partitioning or sharding to 1556 
distribute portions of the collection across multiple nodes. This partitioning can be round robin-based, 1557 
ensuring an even distribution of data or content/key-based so that data locality is maintained for similar 1558 
data. Depending on the application required, the choice of partitioning key like with any database can 1559 
have significant impacts on performance especially where aggregation functions are concerned. 1560 

There are no standard query languages for document store implementations with most using a language 1561 
derived from their internal document representation (e.g., JavaScript Object Notation [JSON], XML).  1562 

4.2.3.2.3.5 Graph Storage Platforms 1563 

While social networking sites like Facebook and LinkedIn have certainly driven the visibility of and 1564 
evolution of graph stores (and processing as discussed below), graph stores have been a critical part of 1565 
many problem domains from military intelligence and counterterrorism to route planning/navigation and 1566 
the semantic web for years. Graph stores represent data as a series of nodes, edges, and properties on 1567 
those. Analytics against graph stores include very basic shortest path and page ranking to entity 1568 
disambiguation and graph matching.  1569 

Graph databases typically store two types of objects nodes and relationships as show in Figure 14 below. 1570 
Nodes represents objects in the problem domain that are being analyzed be they people, places, 1571 
organizations, accounts, or other objects. Relationships describe those objects in the domain that relate to 1572 
each other. Relationships can be non-directional/bidirectional but are typically expressed as unidirectional 1573 
in order to provide more richness and expressiveness to the relationships. Hence, between two people 1574 
nodes where they are father and son, there would be two relationships. One is father of going from the 1575 
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father node to the son node, and the other from the son to the father of is son of. In addition, nodes and 1576 
relationships can have properties or attributes. This is typically descriptive data about the element. For 1577 
people, it might be name, birthdate, or other descriptive quality. For locations, it might be an address or 1578 
geospatial coordinate. For a relationship like a phone call, it could be the date, time of the call, and the 1579 
duration of the call. Within graphs, relationships are not always equal or have the same strength. Thus 1580 
relationship often has one or more weight, cost, or confidence attributes. A strong relationship between 1581 
people might have a high weight because they have known each other for years and communicate every 1582 
day. A relationship where two people just met would have a low weight. The distance between nodes (be 1583 
it a physical distance or a difficulty) is often expressed as a cost attribute on a relation in order to allow 1584 
computation of true shortest paths across a graph. In military intelligence applications, relationships 1585 
between nodes in a terrorist or command and control network might only be suspected or have not been 1586 
completely verified, so those relationships would have confidence attributes. Also, properties on nodes 1587 
may also have confidence factors associated with them, although in those cases the property can be 1588 
decomposed into its own node and tied with a relationship. Graph storage approaches can actually be 1589 
viewed as a specialized implementation of a document storage scheme with two types of documents 1590 
(nodes and relationships). In addition, one of the most critical elements in analyzing graph data is locating 1591 
the node or edge in the graph where the analysis is to begin. To accomplish this, most graph databases 1592 
implement indexes on the node or edge properties. Unlike relational and other data storage approaches, 1593 
most graph databases tend to use artificial/pseudo keys or guides to uniquely identify nodes and edges. 1594 
This allows attributes/properties to be easily changed due to both actual changes in the data (someone 1595 
changed their name) or as more information is found out (e.g., a better location for some item or event) 1596 
without needing to change the pointers two/from relationships. 1597 
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Figure 14: Object Nodes and Relationships of Graph Databases 1598 

The problem with graphs in the Big Data realm is that they grow to be too big to fit into memory on a 1599 
single node and their typically chaotic nature (few real-world graphs follow well-defined patterns) makes 1600 
their partitioning for a distributed implementation problematic. While distance between or closeness of 1601 
nodes would seem like a straightforward partitioning approach, there are multiple issues which must be 1602 
addressed. First would be balancing of data. Graphs often tend to have large clusters of data very dense in 1603 
a given area, thus leading to essentially imbalances and hot spots in processing. Second, no matter how 1604 
the graph is distributed, there are connections (edges) that will cross the boundaries. That typically 1605 
requires that nodes know about or how to access the data on other nodes and requires inter-node data 1606 
transfer or communication. This makes the choice of processing architectures for graph data especially 1607 
critical. Architectures that do not have inter-node communication/messaging tend not to work well for 1608 
most graph problems. Typically, distributed architectures for processing graphs assign chunks of the 1609 
graph to nodes, then the nodes use messaging approaches to communicate changes in the graph or the 1610 
value of certain calculations along a path. 1611 

Even small graphs quickly elevate into the realm of Big Data when one is looking for patterns or 1612 
distances across more than one or two degrees of separation between nodes. Depending on the density of 1613 
the graph, this can quickly cause a combinatorial explosion in the number of conditions/patterns that need 1614 
to be tested.  1615 
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A specialized implementation of a graph store known as the Resource Description Framework (RDF) is 1616 
part of a family of specifications from the World Wide Web Consortium (W3C) that is often directly 1617 
associated with Semantic Web and associated concepts. RDF triples, as they are known, consist of a 1618 
subject (Mr. X), a predicate (lives at), and an object (Mockingbird Lane). Thus, a collection of RDF 1619 
triples represents a directed labeled graph. The contents of RDF stores are frequently described using 1620 
formal ontology languages like the W3C Web Ontology Language (OWL) or the RDF Schema (RDFS) 1621 
language, which establish the semantic meanings and models of the underlying data. To support better 1622 
horizontal integration of heterogeneous datasets, extensions to the RDF concept such as the Data 1623 
Description Framework (DDF) have been proposed, which add additional types to better support semantic 1624 
interoperability and analysis [19], [20]. 1625 

Graph data stores currently lack any form of standardized APIs or query languages. However, the W3C 1626 
has developed the SPARQL query language for RDF, which is currently in a recommendation status, and 1627 
there are several frameworks such as Sesame which are gaining popularity for working with RDF and 1628 
other graph-oriented data stores. 1629 

4.2.3.3 Processing Frameworks 1630 

The processing frameworks for Big Data provide the necessary infrastructure software to support 1631 
implementation of applications that can deal with the volume, velocity, variety, and variability of data. 1632 
Processing frameworks define how the computation and processing of the data is organized. Big Data 1633 
applications rely on various platforms and technologies to meet the challenges of scalable data analytics 1634 
and operation.  1635 

Processing frameworks generally focus on data manipulation, which falls along a continuum between 1636 
batch and streaming oriented processing. However, depending on the specific data organization platform, 1637 
and actual processing requested, any given framework may support a range of data manipulation from 1638 
high latency to near real time (NRT) processing. Overall, many Big Data architectures will include 1639 
multiple frameworks to support a wide range of requirements. 1640 

Typically, processing frameworks are categorized based on whether they support batch or streaming 1641 
processing. This categorization is generally stated from the user perspective (e.g., how fast does a user get 1642 
a response to a request). However, Big Data processing frameworks actually have three processing 1643 
phases: data ingestion, data analysis, and data dissemination, which closely follow the flow of data 1644 
through the architecture. The Big Data Application Provider activities control the application of specific 1645 
framework capabilities to these processing phases. The batch-streaming continuum, illustrated in the 1646 
processing subcomponent in the NBDRA (Figure 3), can be applied to the three distinct processing 1647 
phases. For example, data may enter a Big Data system at high velocity and the end user must quickly 1648 
retrieve a summary of the prior day’s data. In this case, the ingestion of the data into the system needs to 1649 
be NRT and keep up with the data stream. The analysis portion could be incremental (e.g., performed as 1650 
the data is ingested) or could be a batch process performed at a specified time, while retrieval (i.e., read 1651 
visualization) of the data could be interactive. Specific to the use case, data transformation may take place 1652 
at any point during its transit through the system. For example, the ingestion phase may only write the 1653 
data as quickly as possible, or it may run some foundational analysis to track incrementally computed 1654 
information such as minimum, maximum, average. The core processing job may only perform the 1655 
analytic elements required by the Big Data Application Provider and compute a matrix of data or may 1656 
actually generate some rendering like a heat map to support the visualization component. To permit rapid 1657 
display, the data dissemination phase almost certainly does some rendering, but the extent depends on the 1658 
nature of the data and the visualization.  1659 

For the purposes of this discussion, most processing frameworks can be described with respect to their 1660 
primary location within the information flow illustrated in Figure 15. 1661 
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 1662 
Figure 15: Information Flow 1663 

The green coloring in Figure 15 illustrates the general sensitivity of that processing style to latency, which 1664 
is defined as the time from when a request or piece of data arrives at a system until its processing/delivery 1665 
is complete. The darker the shade, the more sensitive to latency. For Big Data, the ingestion may or may 1666 
not require NRT performance to keep up with the data flow. Some types of analytics (specifically those 1667 
categorized as Complex Event Processing) may or may not require NRT processing. The Data Consumer 1668 
generally is located at the far right of Figure 15. Depending upon the use case and application batch 1669 
responses (e.g., a nightly report is emailed) may be sufficient. In other cases, the user may be willing to 1670 
wait minutes for the results of a query to be returned, or they may need immediate alerting when critical 1671 
information arrives at the system. In general, batch analytics tend to better support long term strategic 1672 
decision making, where the overall view or direction is not affected by the latest small changes in the 1673 
underlying data. Streaming analytics are better suited for tactical decision making, where new data needs 1674 
to be acted upon immediately. A primary use case for streaming analytics would be electronic trading on 1675 
stock exchanges where the window to act on a given piece of data can be measured in microseconds. 1676 
Messaging and communication provide the transfer of data between processing elements and the 1677 
buffering necessary to deal with the deltas in data rate, processing times, and data requests. 1678 

Typically, Big Data discussions focus around the categories of batch and streaming frameworks for 1679 
analytics. However, frameworks for retrieval of data that provide interactive access to Big Data are 1680 
becoming a more prevalent. It is noted that the lines between these categories are not solid or distinct, 1681 
with some frameworks providing aspects of each category. 1682 

4.2.3.3.1 Batch Frameworks 1683 
Batch frameworks, whose roots stem from the mainframe processing era, are some of the most prevalent 1684 
and mature components of a Big Data architecture because the historically long processing times for large 1685 
data volumes. Batch frameworks ideally are not tied to a particular algorithm or even algorithm type, but 1686 
rather provide a programming model where multiple classes of algorithms can be implemented. Also, 1687 
when discussed in terms of Big Data, these processing models are frequently distributed across multiple 1688 
nodes of a cluster. They are routinely differentiated by the amount of data sharing between 1689 
processes/activities within the model. 1690 

4.2.3.3.2 Streaming Frameworks 1691 
Streaming frameworks are built to deal with data that requires processing as fast or faster than the 1692 
velocity at which it arrives into the Big Data system. The primary goal of streaming frameworks is to 1693 
reduce the latency between the arrival of data into the system and the creation, storage, or presentation of 1694 
the results. CEP is one of the problem domains frequently addressed by streaming frameworks. CEP uses 1695 
data from one or more streams/sources to infer or identify events or patterns in NRT.  1696 

Almost all streaming frameworks for Big Data available today implement some form of basic workflow 1697 
processing for the streams. These workflows use messaging/communications frameworks to pass data 1698 
objects (often referred to as events) between steps in the workflow. This frequently takes the form of a 1699 
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directed execution graph. The distinguishing characteristics of streaming frameworks are typically 1700 
organized around the following three characteristics: event ordering and processing guarantees, state 1701 
management, and partitioning/parallelism. These three characteristics are described below. 1702 

4.2.3.3.2.1 Event Ordering and Processing Guarantees 1703 

This characteristic refers to whether stream processing elements are guaranteed to see messages or events 1704 
in the order they are received by the Big Data System, as well as how often a message or event may or 1705 
may not be processed. In a non-distributed and single stream mode, this type of guarantee is relatively 1706 
trivial. Once distributed and/or multiple streams are added to the system, the guarantee becomes more 1707 
complicated. With distributed processing, the guarantees must be enforced for each partition of the data 1708 
(partitioning and parallelism as further described below). Complications arise when the process/task/job 1709 
dealing with a partition dies. Processing guarantees are typically divided into the following three classes: 1710 

• At-most-once delivery: This is the simplest form of guarantee and allows for messages or events 1711 
to be dropped if there is a failure in processing or communications or if they arrive out of order. 1712 
This class of guarantee is applicable for data where there is no dependence of new events on the 1713 
state of the data created by prior events.  1714 

• At-least-once delivery: Within this class, the frameworks will track each message or event (and 1715 
any downstream messages or events generated) to verify that it is processed within a configured 1716 
time frame. Messages or events that are not processed in the time allowed are re-introduced into 1717 
the stream. This mode requires extensive state management by the framework (and sometimes the 1718 
associated application) to track which events have been processed by which stages of the 1719 
workflow. However, under this class, messages or events may be processed more than once and 1720 
also may arrive out of order. This class of guarantee is appropriate for systems where every 1721 
message or event must be processed regardless of the order (e.g., no dependence on prior events), 1722 
and the application either is not affected by duplicate processing of events or has the ability to de-1723 
duplicate events itself. 1724 

• Exactly once delivery: This class of framework processing requires the same top level state 1725 
tracking as At-least-once delivery but embeds mechanisms within the framework to detect and 1726 
ignore duplicates. This class often guarantees ordering of event arrivals and is required for 1727 
applications where the processing of any given event is dependent on the processing of prior 1728 
events. It is noted that these guarantees only apply to data handling within the framework. If data 1729 
is passed outside the framework processing topology, then by an application then the application 1730 
must ensure the processing state is maintained by the topology or duplicate data may be 1731 
forwarded to non-framework elements of the application. 1732 

In the latter two classes, some form of unique key must be associated with each message or event to 1733 
support de-duplication and event ordering. Often, this key will contain some form of timestamp plus the 1734 
stream identification (ID) to uniquely identify each message in the stream. 1735 

4.2.3.3.2.2 State Management 1736 

A critical characteristic of stream processing frameworks is their ability to recover and not lose critical 1737 
data in the event of a process or node failure within the framework. Frameworks typically provide this 1738 
state management through persistence of the data to some form of storage. This persistence can be: local, 1739 
allowing the failed process to be restarted on the same node; a remote or distributed data store, allowing 1740 
the process to be restarted on any node; or, local storage that is replicated to other nodes. The trade-off 1741 
between these storage methods is the latency introduced by the persistence. Both the amount of state data 1742 
persisted and the time required to assure that the data is persisted contribute to the latency. In the case of a 1743 
remote or distributed data store, the latency required is generally dependent on the extent to which the 1744 
data store implements ACID (Atomicity, Consistency, Isolation, Durability) or BASE (Basically 1745 
/Available, Soft state, Eventual consistency) style consistency. With replication of local storage, the 1746 
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reliability of the state management is entirely tied to the ability of the replication to recover in the event of 1747 
a process or node failure. Sometimes this state replication is actually implemented using the same 1748 
messaging/communication framework that is used to communicate with and between stream processors. 1749 
Some frameworks actually support full transaction semantics, including multi-stage commits and 1750 
transaction rollbacks. The trade-off is the same one that exists for any transaction system is that any type 1751 
of ACID-like guarantee will introduce latency. Too much latency at any point in the stream flow can 1752 
create bottlenecks and, depending on the ordering or processing guarantees, can result in deadlock or loop 1753 
states—especially when some level of failure is present. 1754 

4.2.3.3.2.3 Partitioning and Parallelism 1755 

This streaming framework characteristic relates to the distribution of data across nodes and worker tasks 1756 
to provide the horizontal scalability needed to address the volume and velocity of Big Data streams. This 1757 
partitioning scheme must interact with the resource management framework to allocate resources. The 1758 
even distribution of data across partitions is essential so that the associated work is evenly distributed. 1759 
The even data distribution directly relates to selection of a key (e.g., user ID, host name) that can be 1760 
evenly distributed. The simplest form might be using a number that increments by one and then is 1761 
processed with a modulus function of the number of tasks/workers available. If data dependencies require 1762 
all records with a common key be processed by the same worker, then assuring an even data distribution 1763 
over the life of the stream can be difficult. Some streaming frameworks address this issue by supporting 1764 
dynamic partitioning where the partition of overloaded workers is split and allocated to existing workers 1765 
or newly created workers. To achieve success—especially with a data/state dependency related to the 1766 
key—it is critical that the framework have state management, which allows the associated state data to be 1767 
moved/transitioned to the new/different worker. 1768 

4.2.3.4 Crosscutting Components 1769 

Because the components within the three sub-roles within the Big Data Framework Provider must share 1770 
resources and communicate, two major classes of crosscutting components are needed: 1771 
Messaging/Communications Frameworks and Resource Management Frameworks. 1772 

4.2.3.4.1 Messaging/Communications Frameworks 1773 
Messaging and communications frameworks have their roots in the HPC environments long popular in 1774 
the scientific and research communities. Messaging/Communications Frameworks were developed to 1775 
provide APIs for the reliable queuing, transmission, and receipt of data between nodes in a horizontally 1776 
scaled cluster. These frameworks typically implement either a point-to-point transfer model or a store-1777 
and-forward model in their architecture. Under a point-to-point model, data is transferred directly from 1778 
the sender to the receivers. The majority of point-to-point implementations do not provide for any form of 1779 
message recovery should there be a program crash or interruption in the communications link between 1780 
sender and receiver. These frameworks typically implement all logic within the sender and receiver 1781 
program space, including any delivery guarantees or message retransmission capabilities. One common 1782 
variation of this model is the implementation of multicast (i.e., one-to-many or many-to-many 1783 
distribution), which allows the sender to broadcast the messages over a channel, and receivers in turn 1784 
listen to those channels of interest. Typically, multicast messaging does not implement any form of 1785 
guaranteed receipt. With the store-and-forward model, the sender would address the message to one or 1786 
more receivers and send it to an intermediate broker, which would store the message and then forward it 1787 
on to the receivers. Many of these implementations support some form of persistence for messages not yet 1788 
delivered, providing for recovery in the event of process or system failure. Multicast messaging can also 1789 
be implemented in this model and is frequently referred to as a pub/sub model.  1790 
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4.2.3.4.2 Resource Management Frameworks 1791 
As Big Data systems have evolved and become more complex, and as businesses work to leverage limited 1792 
computation and storage resources to address a broader range of applications and business challenges, the 1793 
requirement to effectively manage those resources has grown significantly. While tools for resource 1794 
management and elastic computing have expanded and matured in response to the needs of cloud 1795 
providers and virtualization technologies, Big Data introduces unique requirements for these tools. 1796 
However, Big Data frameworks tend to fall more into a distributed computing paradigm, which presents 1797 
additional challenges.  1798 

The Big Data characteristics of volume and velocity drive the requirements with respect to Big Data 1799 
resource management. Elastic computing (i.e., spawning another instance of some service) is the most 1800 
common approach to address expansion in volume or velocity of data entering the system. CPU and 1801 
memory are the two resources that tend to be most essential to managing Big Data situations. While 1802 
shortages or over-allocation of either will have significant impacts on system performance, improper or 1803 
inefficient memory management is frequently catastrophic. Big Data differs and becomes more complex 1804 
in the allocation of computing resources to different storage or processing frameworks that are optimized 1805 
for specific applications and data structures. As such, resource management frameworks will often use 1806 
data locality as one of the input variables in determining where new processing framework elements (e.g., 1807 
master nodes, processing nodes, job slots) are instantiated. Importantly, because the data is big (i.e., large 1808 
volume), it generally is not feasible to move data to the processing frameworks. In addition, while nearly 1809 
all Big Data processing frameworks can be run in virtualized environments, most are designed to run on 1810 
bare metal commodity hardware to provide efficient I/O for the volume of the data.  1811 

Two distinct approaches to resource management in Big Data frameworks are evolving. The first is intra-1812 
framework resource management, where the framework itself manages allocation of resources between its 1813 
various components. This allocation is typically driven by the framework’s workload and often seeks to 1814 
turn off unneeded resources to either minimize overall demands of the framework on the system or to 1815 
minimize the operating cost of the system by reducing energy use. With this approach, applications can 1816 
seek to schedule and request resources that—much like main frame OSs of the past—are managed 1817 
through scheduling queues and job classes. 1818 

The second approach is inter-framework resource management, which is designed to address the needs of 1819 
many Big Data systems to support multiple storage and processing frameworks that can address and be 1820 
optimized for a wide range of applications. With this approach, the resource management framework 1821 
actually runs as a service that supports and manages resource requests from frameworks, monitoring 1822 
framework resource usage, and in some cases manages application queues. In many ways, this approach 1823 
is like the resource management layers common in cloud/virtualization environments, and there are 1824 
efforts underway to create hybrid resource management frameworks that handle both physical and virtual 1825 
resources. 1826 

Taking these concepts further and combining them is resulting in the emerging technologies built around 1827 
what is being termed software-defined data centers (SDDCs). This expansion on elastic and cloud 1828 
computing goes beyond the management of fixed pools of physical resources as virtual resources to 1829 
include the automated deployment and provisioning of features and capabilities onto physical resources. 1830 
For example, automated deployment tools that interface with virtualization or other framework APIs can 1831 
be used to automatically stand up entire clusters or to add additional physical resources to physical or 1832 
virtual clusters. 1833 

4.2.4 MANAGEMENT FABRIC 1834 

The management fabric encompasses components responsible for the establishing and continuing 1835 
operation of the system. 1836 
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The characteristics of Big Data pose system management challenges on traditional management 1837 
platforms. To efficiently capture, store, process, analyze, and distribute complex and large datasets 1838 
arriving or leaving with high velocity, a resilient system management is needed.  1839 

As in traditional systems, system management for Big Data architecture involves provisioning, 1840 
configuration, package management, software management, backup management, capability 1841 
management, resources management, and performance management of the Big Data infrastructure, 1842 
including compute nodes, storage nodes, and network devices. Due to the distributed and complex nature 1843 
of the Big Data infrastructure, system management for Big Data is challenging, especially with respect to 1844 
the capability for controlling, scheduling, and managing the processing frameworks to perform the 1845 
scalable, robust, and secure analytics processing required by the Big Data Application Provider. The Big 1846 
Data infrastructure may contain SAN or NAS storage devices, cloud storage spaces, NoSQL databases, 1847 
MapReduce clusters, data analytics functions, search and indexing engines, and messaging platforms. The 1848 
supporting enterprise computing infrastructure can range from traditional data centers, cloud services, and 1849 
dispersed computing nodes of a grid.  1850 

In an enterprise environment, the management platform would typically provide enterprise-wide 1851 
monitoring and administration of the Big Data distributed components. This includes network 1852 
management, fault management, configuration management, system accounting, performance 1853 
management, and security management. 1854 

4.2.4.1 Monitoring Frameworks 1855 

To monitor the distributed and complex nature of the Big Data infrastructure, system management relies 1856 
on the following: 1857 

• Standard protocols such as Simple Network Management Protocol (SNMP), which are used to 1858 
transmit status about resources and fault information to the management fabric components; and 1859 

• Deployable agents or management connectors which allow the management fabric to both 1860 
monitor and also control elements of the framework. 1861 

These two items aid in monitoring the health of various types of computing resources and coping with 1862 
performance and failures incidents while maintaining the quality of service levels required by the Big 1863 
Data Application Provider. Management connectors are necessary for scenarios where the cloud service 1864 
providers expose management capabilities via APIs. It is conceivable that the infrastructure elements 1865 
contain autonomic, self-tuning, and self-healing capabilities, thereby reducing the centralized model of 1866 
system monitoring.  1867 

4.2.4.2 Provisioning/Configuration Frameworks 1868 

In large infrastructures with many thousands of computing and storage nodes, the provisioning of tools 1869 
and applications should be as automated as possible. Software installation, application configuration, and 1870 
regular patch maintenance should be pushed out and replicated across the nodes in an automated fashion, 1871 
which could be done based on the topology knowledge of the infrastructure. With the advent of 1872 
virtualization, the utilization of virtual images may speed up the recovery process and provide efficient 1873 
patching that can minimize downtime for scheduled maintenance. Such frameworks also interact with the 1874 
Security and Privacy Fabric to ensure that the system configuration continually meets the security 1875 
requirements outlined in the policies specified by the System Orchestrator. 1876 

4.2.4.3 Package Managers 1877 
Package management components support the installation and updates of other components within the 1878 
Big Data system. This class of components is often provided by the underlying operating system 1879 
component and is invoked by the provisioning /configuration frameworks to install and update 1880 
components within the system. Components within this class generally leverage a central network 1881 
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repository to ensure that the correct component version is deployed consistently across the cluster. In 1882 
many Big Data systems, this same repository is leveraged to support the deployment of application 1883 
components and, in some cases, even data components. 1884 

4.2.4.4 Resource Managers 1885 
Resource management components within the Management Framework provide the system with the 1886 
overall resources necessary to support the system. These components will work with external resource 1887 
providers such as Cloud Service Providers to acquire the resources necessary to provision the other 1888 
components of the system. They will handle requests for additional resources from resource managers 1889 
within the Big Data Framework Provider when required and coordinate with the 1890 
Provisioning/Configuration Frameworks to properly configure other components across those resources. 1891 

4.2.4.5 Data Life Cycle Managers 1892 

Life Cycle Data Management components are necessary to manage the life cycle of the data ingested into 1893 
the system, stored and preserved in the system, and accessed for processing or dissemination purposes: 1894 

Metadata Catalog is the inventory of all datasets in the system. It should contain the model for the 1895 
foundational concept of “unit” of data, whether it is a database record (e.g., key-value pair or relational 1896 
table row), or a dataset (e.g., database export file). Each data unit has characteristics maintained in the 1897 
associated metadata, which should include at least a unique identifier and timestamp indicating when the 1898 
data was created and/or ingested. These timestamps will help the Data Life Cycle Manager to monitor the 1899 
“age” of the data within the system. Moreover, the Metadata Catalog will have to support data discovery 1900 
that is necessary for data access and data governance. There are numerous international and national 1901 
standards which govern the content, model, and interfaces for metadata catalogs. 1902 

The Data Tracker tracks the movement of data throughout the system, from the ingestion point to the 1903 
dissemination or destruction point. The Data Tracker component handles the Volume and Variety 1904 
characteristics inherent to Big Data. The two kinds of movements are as follows: 1905 

• Ingress and egress movement: tracks data entering and exiting the system. Data exiting means 1906 
that the data are dispositioned to satisfy the retention policy, which can originate from either the 1907 
need of the Big Data application or preservation policy. Indeed, some applications may require 1908 
“fresh” data for analytical purposes. The degree of freshness depends on the specific requirements 1909 
of the business applications, and can be influenced by policy and regulations. For instance, while 1910 
the visual analytics application monitoring the approval or disapproval feedback during a 1911 
presidential election debate requires real-time data and most recent tweet and blog data, the study 1912 
of the trend of household income over the past 50 years needs both recent and archived Census 1913 
data. On the other hand, records management laws and policies may dictate the retention time for 1914 
the data, and hence impact the Data Preservation.  1915 

• Intra-system movement: Due to the large volume of Big Data, the Big Data Framework Provider 1916 
will likely have multitiered storage for cost-efficiency and scalability. Within that storage 1917 
environment, data is made available to the analytics processes managed by the Big Data 1918 
Application Provider. Commercial infrastructure vendors offer different storage categories with 1919 
different pricing models. The action of making data available to processes and applications may 1920 
be realized by physically moving the data to storage where the processing software can operate. 1921 
However, a recent paradigm is to move computation and processing capabilities to where data are 1922 
located to circumvent the large data transfer between storage tiers.  1923 

The Data Tracker may interface with the Data Preservation component to implement preservation and 1924 
long-term storage policies. 1925 

The Data Preservation component is applied to both permanent and temporary data. Its responsibility is to 1926 
continuously inspect the “age” of data in the system, and operate on the data based on the retention 1927 
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policy. For permanent data, Data Preservation will perform the Preservation Plan, which can consist of 1928 
migrating data to a long-term preservation format, periodically refreshing the storage hardware, or 1929 
maintaining emulation environments used to read the archived data. Data Preservation will leverage the 1930 
multitiered storage which satisfies data durability requirement, and achieves cost-efficiency. If data are 1931 
deemed to have limited lifetime, then Data Preservation will apply appropriate disposition methods to 1932 
purge them from the system. The purge methods will depend on the security policy to ensure data 1933 
confidentiality. 1934 

4.2.5 SECURITY AND PRIVACY FABRIC 1935 
The components within the Security and Privacy Fabric implement the core activities supporting the 1936 
overall security and privacy requirements outlined by the policies and processes of the System 1937 
Orchestrator. 1938 

4.2.5.1 Authentication and Authorization Frameworks 1939 
Components within this class must interface and interact with all other components within the Big Data 1940 
system to support access control to the data and services of the system. This support includes 1941 
authenticating the user or service attempting to access the system resource to validate their identity. This 1942 
class of components provides APIs to other services and components for collecting the identity 1943 
information, and validating that information against a trusted store of identities. Frequently these 1944 
components will provide an identification token back to the invoking component that defines allowed 1945 
access for the life of a session. This token can also be used to retrieve authorizations for the 1946 
users/components detailing what data and service resources they may access. These authorizations can be 1947 
used by the components to limit access to data or even filter data provided in response to requests by 1948 
components. Typically, a component will pass the identification token as part of the request which the 1949 
receiving component will use to look up authorizations from a trusted store to manage the access to the 1950 
underlying resources (data or services). 1951 

4.2.5.2 Audit Frameworks 1952 
Audit Framework components are responsible for collecting, managing, consolidating, and in some cases 1953 
monitoring events from across the system that reflect access to and changes to data and services across 1954 
the system. The scope and nature of the events collected is based on the requirements specified by the 1955 
policies within the System Orchestrator. Typically, these components will collect and store this data 1956 
within a secure centralized repository within the system and manage the retention of this data based on 1957 
the policies. The data maintained by these components can be leveraged during system operation to 1958 
provide providence and pedigree for data to users or application components as well as for forensic 1959 
analysis in the response to security or data breaches. Because of the number and frequency of operations 1960 
and events which may be generated by a large Big Data system, the framework itself must deal with the 1961 
Big Data characteristics of volume and velocity. To handle this, many Big Data system architectures 1962 
implement a Big Data system instance specifically for management and storage of this data. Monitoring 1963 
frameworks within the Management Fabric may execute algorithms within this Big Data system instance 1964 
to provide alerts to potential security or data issues. 1965 
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5 SUMMARY 1966 

This document (Version 3) presents the overall NBDRA conceptual model along with architecture views 1967 
for the activities performed by the architecture and the functional components that would implement the 1968 
architecture.  1969 

The purpose of these views is to provide the system architect a framework to efficiently categorize the 1970 
activities that the Big Data system will perform and the functional components which must be integrated 1971 
to perform those activities. During the architecture process, the architect is encouraged to collaborate 1972 
closely with the system stakeholders to ensure that all required activities for the system are captured in the 1973 
activities view. Those activities should then be mapped to functional components within that view using a 1974 
traceability matrix. This matrix will serve to validate that components will be integrated into the 1975 
architecture to accomplish all required activities and that all integrated functional components have a 1976 
purpose within the architecture.  1977 

 1978 
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Appendix A: Deployment 1979 

Considerations 1980 

The NIST Big Data Reference Architecture is applicable to a variety of business environments and 1981 
technologies. As a result, possible deployment models are not part of the core concepts discussed in the 1982 
main body of this document. However, the loosely coupled and distributed natures of Big Data 1983 
Framework Provider functional components allow it to be deployed using multiple infrastructure elements 1984 
as described in Section 4.2.3. The two most common deployment configurations are directly on physical 1985 
resources or on top of an IaaS cloud computing framework. The choices between these two configurations 1986 
are driven by needs of efficiency/performance and elasticity. Physical infrastructures are typically used to 1987 
obtain predictable performance and efficient utilization of CPU and I/O bandwidth since it eliminates the 1988 
overhead and additional abstraction layers typical in the virtualized environments for most IaaS 1989 
implementations. IaaS cloud-based deployments on are typically used when elasticity is needed to support 1990 
changes in workload requirements. The ability to rapidly instantiate additional processing nodes or 1991 
framework components allows the deployment to adapt to either increased or decreased workloads. By 1992 
allowing the deployment footprint to grow or shrink based on workload demands this deployment model 1993 
can provide cost savings when public or shared cloud services are used and more efficient use and energy 1994 
consumption when a private cloud deployment is used. Recently, a hybrid deployment model known as 1995 
Cloud Bursting has become popular. In this model a physical deployment is augmented by either public 1996 
or private IaaS cloud services. When additional processing is needed to support the workload additional 1997 
the additional framework component instances are established on the IaaS infrastructure and then deleted 1998 
when no longer required. 1999 

Figure A-1: Big Data Framework Deployment Options 2000 

In addition to providing IaaS support, cloud providers are now offering Big Data Frameworks under a 2001 
platform as a service (PaaS) model. Under this model, the system implementer is freed from the need to 2002 
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establish and manage the complex configuration and deployment typical of many Big Data Framework 2003 
components. The implementer simply needs to specify the size of the cluster required, and the cloud 2004 
provider manages the provisioning, configuration, and deployment of all the framework components. 2005 
There are even some nascent offerings for specialized software as a service (SaaS) Big Data applications 2006 
appearing in the market that implement the Big Data Application Provider functionality within the cloud 2007 
environment. Figure A-1 illustrates how the components of the NBDRA might align with the NIST Cloud 2008 
Reference architecture [21]. The following sections describe some of the high-level interactions required 2009 
between the Big Data Architecture elements and the CSP elements.  2010 

CLOUD SERVICE PROVIDERS 2011 

Recent data analytics solutions use algorithms that can utilize and benefit from the frameworks of the 2012 
cloud computing systems. Cloud computing has essential characteristics such as rapid elasticity and 2013 
scalability, multi-tenancy, on-demand self-service, and resource pooling, which together can significantly 2014 
lower the barriers to the realization of Big Data implementations.  2015 

The CSP implements and delivers cloud services. Processing of a service invocation is done by means of 2016 
an instance of the service implementation, which may involve the composition and invocation of other 2017 
services as determined by the design and configuration of the service implementation. 2018 

Cloud Service Component 2019 

The cloud service component contains the implementation of the cloud services provided by a CSP. It 2020 
contains and controls the software components that implement the services (but not the underlying 2021 
hypervisors, host OSs, device drivers, etc.). 2022 

Cloud services can be described in terms of service categories.  2023 

Cloud services are also grouped into categories, where each service category is characterized by qualities 2024 
that are common between the services within the category. The NIST Cloud Computing Reference Model 2025 
defines the following cloud service categories: 2026 

• Infrastructure as a services (IaaS) 2027 
• Platform as a service (PaaS) 2028 
• Software as a service (SaaS)  2029 

Resource Abstraction and Control Component 2030 

The Resource Abstraction and Control component is used by CSPs to provide access to the physical 2031 
computing resources through software abstraction. Resource abstraction needs to assure efficient, secure, 2032 
and reliable usage of the underlying physical resources. The control feature of the component enables the 2033 
management of the resource abstraction features. 2034 

The Resource Abstraction and Control component enables a CSP to offer qualities such as rapid elasticity, 2035 
resource pooling, on-demand self-service, and scale-out. The Resource Abstraction and Control 2036 
component can include software elements such as hypervisors, virtual machines, virtual data storage, and 2037 
time-sharing.  2038 

The Resource Abstraction and Control component enables control functionality. For example, there may 2039 
be a centralized algorithm to control, correlate, and connect various processing, storage, and networking 2040 
units in the physical resources so that together they deliver an environment where IaaS, PaaS or SaaS 2041 
cloud service categories can be offered. The controller might decide which CPUs/racks contain which 2042 
virtual machines executing which parts of a given cloud workload, and how such processing units are 2043 
connected to each other, and when to dynamically and transparently reassign parts of the workload to new 2044 
units as conditions change. 2045 
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Security and Privacy and Management Functions 2046 

In almost all cases, the Cloud Provider will provide elements of the Security, Privacy, and Management 2047 
functions. Typically, the provider will support high-level security/privacy functions that control access to 2048 
the Big Data applications and frameworks while the frameworks themselves must control access to their 2049 
underlying data and application services. Many times, the Big Data specific functions for security and 2050 
privacy will depend on and must interface with functions provided by the CSP. Similarly, management 2051 
functions are often split between the Big Data implementation and the Cloud Provider implementations. 2052 
Here the cloud provider would handle the deployment and provisioning of Big Data architecture elements 2053 
within its IaaS infrastructure. The cloud provider may provide high-level monitoring functions to allow 2054 
the Big Data implementation to track performance and resource usage of its components. In, many cases 2055 
the Resource Management element of the Big Data Framework will need to interface to the CSP’s 2056 
management framework to request additional resources. 2057 

PHYSICAL RESOURCE DEPLOYMENTS 2058 

As stated above, deployment on physical resources is frequently used when performance characteristics 2059 
are paramount. The nature of the underlying physical resource implementations to support Big Data 2060 
requirements has evolved significantly over the years. Specialized, high-performance super computers 2061 
with custom approaches for sharing resources (e.g., memory, CPU, storage) between nodes has given way 2062 
to shared nothing computing clusters built from commodity servers. The custom super computing 2063 
architectures almost always required custom development and components to take advantage of the 2064 
shared resources. The commodity server approach both reduced the hardware investment and allowed the 2065 
Big Data frameworks to provide higher-level abstractions for the sharing and management of resources in 2066 
the cluster. The Recent trends now involve density, power, cooling optimized server form factors that 2067 
seek to maximize the available computing resources while minimizing size, power and/or cooling 2068 
requirements. This approach retains the abstraction and portability advantages of the shared nothing 2069 
approaches while providing improved efficiency. 2070 

 2071 
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Appendix B:  Terms and 2072 

Definitions  2073 

NBDRA COMPONENTS 2074 

• Big Data Engineering: Advanced techniques that harness independent resources for building 2075 
scalable data systems when the characteristics of the datasets require new architectures for 2076 
efficient storage, manipulation, and analysis. 2077 

• Data Provider: Organization or entity that introduces information feeds into the Big Data system 2078 
for discovery, access, and transformation by the Big Data system. 2079 

• Big Data Application Provider: Organization or entity that executes a generic vertical system 2080 
data life cycle, including: (a) data collection from various sources, (b) multiple data 2081 
transformations being implemented using both traditional and new technologies, (c) diverse data 2082 
usage, and (d) data archiving. 2083 

• Big Data Framework Provider: Organization or entity that provides a computing fabric (such as 2084 
system hardware, network, storage, virtualization, and computing platform) to execute certain Big 2085 
Data applications, while maintaining security and privacy requirements. 2086 

• Data Consumer: End users or other systems that use the results of data applications.  2087 
• System Orchestrator: Organization or entity that defines and integrates the required data 2088 

transformations components into an operational vertical system.  2089 

OPERATIONAL CHARACTERISTICS 2090 

• Interoperability: The capability to communicate, to execute programs, or to transfer data among 2091 
various functional units under specified conditions.  2092 

• Portability: The ability to transfer data from one system to another without being required to 2093 
recreate or reenter data descriptions or to modify significantly the application being transported. 2094 

• Privacy: The assured, proper, and consistent collection, processing, communication, use and 2095 
disposition of data associated with personal information and PII throughout its life cycle.  2096 

• Security: Protecting data, information, and systems from unauthorized access, use, disclosure, 2097 
disruption, modification, or destruction in order to provide:  2098 

o Integrity: guarding against improper data modification or destruction, and includes ensuring 2099 
data nonrepudiation and authenticity; 2100 

o Confidentiality: preserving authorized restrictions on access and disclosure, including means 2101 
for protecting personal privacy and proprietary data; and 2102 

o Availability: ensuring timely and reliable access to and use of data.  2103 

• Elasticity: The ability to dynamically scale up and down as a real-time response to the workload 2104 
demand. Elasticity will depend on the Big Data system, but adding or removing software threads 2105 
and virtual or physical servers are two widely used scaling techniques. Many types of workload 2106 
demands drive elastic responses, including web-based users, software agents, and periodic batch 2107 
jobs. 2108 

• Persistence: The placement/storage of data in a medium design to allow its future access. 2109 
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PROVISIONING MODELS 2110 

• IaaS: “The capability provided to the consumer to provision processing, storage, networks, and 2111 
other fundamental computing resources where the consumer is able to deploy and run arbitrary 2112 
software, which can include OS and applications. The consumer does not manage or control the 2113 
underlying cloud infrastructure but has control over OSs, storage, deployed applications, and 2114 
possibly limited control of select networking components (e.g., host firewalls) [22].” 2115 

• PaaS: “The capability provided to the consumer to deploy onto the cloud infrastructure consumer-2116 
created or acquired applications created using programming languages and tools supported by the 2117 
provider. The consumer does not manage or control the underlying cloud infrastructure including 2118 
network, servers, operating systems, or storage, but has control over the deployed applications 2119 
and possibly” application-hosting environment configurations [22].  2120 

• SaaS: “The capability provided to the consumer is to use the provider’s applications running on a 2121 
cloud infrastructure. … The consumer does not manage or control the underlying cloud 2122 
infrastructure including network, servers, operating systems, storage, or even individual 2123 
application capabilities, with the possible exception of limited user-specific application 2124 
configuration settings [22].” 2125 

 2126 
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Appendix C:  Acronyms  2127 

ACID atomicity, consistency, isolation, durability 2128 
API application programming interface 2129 
ASCII American Standard Code for Information Interchange 2130 
BASE basically available, soft state, eventual consistency 2131 
BDLM Big Data life cycle management 2132 
BSP bulk synchronous parallel 2133 
CAP consistency, availability, and partition tolerance 2134 
CEP complex event processing 2135 
CIA confidentiality, integrity, and availability 2136 
CPR Capability Provider Requirements 2137 
CPU central processing unit 2138 
CRUD create/read/update/delete 2139 
CSP Cloud Service Provider 2140 
CSV comma separated values 2141 
DCR Data Consumer Requirements 2142 
DDF Data Description Framework 2143 
DLM data life cycle management 2144 
DNS Domain Name Server 2145 
DSR Data Source Requirements 2146 
ELT extract, load, transform 2147 
ETL extract, transform, load 2148 
FPGA Field Programmable Gate Arrays 2149 
FTP file transfer protocol 2150 
GB gigabyte 2151 
GPU graphic processing units 2152 
GRC governance, risk management, and compliance 2153 
GUID globally unique identifier 2154 
HPC high performance computing 2155 
HTTP HyperText Transfer Protocol 2156 
I/O input/output 2157 
IaaS Infrastructure as a Service 2158 
ID identification 2159 
ISO International Organization of Standardization 2160 
IT information technology 2161 
ITL Information Technology Laboratory 2162 
JSON JavaScript Object Notation 2163 
LMR Life Cycle Management Requirements 2164 
NARA National Archives and Records Administration 2165 
NAS network-attached storage 2166 
NASA National Aeronautics and Space Administration 2167 
NBDIF NIST Big Data Interoperability Framework 2168 
NBD-PWG NIST Big Data Public Working Group 2169 
NBDRA NIST Big Data Reference Architecture 2170 
NFS network file system 2171 
NFV network function virtualization 2172 
NGA National Geospatial Intelligence Agency 2173 
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NIST National Institute of Standards and Technology 2174 
NoSQL not only (or no) Structured Query Language 2175 
NRT near real time 2176 
NSA National Security Agency 2177 
NSF National Science Foundation 2178 
OLAP online analytical processing 2179 
OLTP online transaction processing 2180 
OR Other Requirements 2181 
OS operating system 2182 
OWL W3C Web Ontology Language 2183 
PaaS Platform as a Service 2184 
PII personally identifiable information 2185 
POSIX portable operating system interface 2186 
RAID redundant array of independent disks 2187 
RAM random-access memory 2188 
RDBMS relational database management system 2189 
RDF Resource Description Framework 2190 
RDFS RDF Schema 2191 
SaaS Software as a Service 2192 
SAN storage area network 2193 
SDDC software-defined data center 2194 
SDN software-defined network 2195 
SNMP Simple Network Management Protocol 2196 
SPR Security and Privacy Requirements 2197 
SQL Structured Query Language 2198 
TCP Transmission Control Protocol 2199 
TPR Transformation Provider Requirements 2200 
W3C World Wide Web Consortium 2201 
XML Extensible Markup Language 2202 
 2203 
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Appendix D:  Resources and 2204 

Bibliography 2205 

GENERAL RESOURCES 2206 

The following resources provide additional information related to Big Data architecture.  2207 

Big Data Public Working Group, “NIST Big Data Program,” National Institute for Standards and 2208 
Technology, June 26, 2013, http://bigdatawg.nist.gov . 2209 

Doug Laney, “3D Data Management: Controlling Data Volume, Velocity, and Variety,” Gartner, 2210 
February 6, 2001, http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-2211 
Management-Controlling-Data-Volume-Velocity-and-Variety.pdf. 2212 

Eberhardt Rechtin, “The Art of Systems Architecting,” CRC Press, January 6, 2009. 2213 

International Organization of Standardization (ISO), “ISO/IEC/IEEE 42010 Systems and software 2214 
engineering — Architecture description,” ISO, November 24, 2011, 2215 
http://www.iso.org/iso/catalogue_detail.htm?csnumber=50508. 2216 

Mark Beyer and Doug Laney, “The Importance of 'Big Data': A Definition,” Gartner, June 21, 2012, 2217 
http://www.gartner.com/DisplayDocument?id=2057415&ref=clientFriendlyUrl. 2218 

Martin Hilbert and Priscilla Lopez, “The World’s Technological Capacity to Store, Communicate, and 2219 
Compute Information,” Science, April 1, 2011. 2220 

National Institute of Standards and Technology [NIST], “Big Data Workshop,” NIST, June 13, 2012, 2221 
http://www.nist.gov/itl/ssd/is/big-data.cfm. 2222 

National Science Foundation, “Big Data R&D Initiative,” National Institute for Standards and 2223 
Technology, June 2012, http://www.nist.gov/itl/ssd/is/upload/NIST-BD-Platforms-05-Big-Data-2224 
Wactlar-slides.pdf. 2225 

Office of the Assistant Secretary of Defense, “Reference Architecture Description,” U.S. Department of 2226 
Defense, June 2010, 2227 
http://dodcio.defense.gov/Portals/0/Documents/DIEA/Ref_Archi_Description_Final_v1_18Jun102228 
.pdf. 2229 

Office of the White House Press Secretary, “Obama Administration Unveils “Big Data” Initiative,” White 2230 
House Press Release, March 29, 2012, 2231 
http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_press_release_final_2.pdf. 2232 

White House, “Big Data Across the Federal Government,” Executive Office of the President, March 29, 2233 
2012, 2234 
http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_fact_sheet_final_1.pdf. 2235 
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