
NIST Special Publication 1500-6r2

NIST Big Data Interoperability
Framework:

Volume 6, Reference Architecture

Version 3

NIST Big Data Public Working Group
Definitions and Taxonomies Subgroup

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.1500-6r2

https://doi.org/10.6028/NIST.SP.1500-6r2

NIST Special Publication 1500-6r2

NIST Big Data Interoperability
Framework:

Volume 6, Reference Architecture

Version 3

NIST Big Data Public Working Group
Definitions and Taxonomies Subgroup

Information Technology Laboratory
National Institute of Standards and Technology

Gaithersburg, MD 20899

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.1500-6r2

October 2019

U.S. Department of Commerce
Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology

Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology

https://doi.org/10.6028/NIST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

ii

National Institute of Standards and Technology (NIST) Special Publication 1500-6r2
75 pages (October 2019)

NIST Special Publication series 1500 is intended to capture external perspectives related to NIST
standards, measurement, and testing-related efforts. These external perspectives can come from industry,
academia, government, and others. These reports are intended to document external perspectives and do
not represent official NIST positions.

Certain commercial entities, equipment, or materials may be identified in this document to describe an
experimental procedure or concept adequately. Such identification is not intended to imply
recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or
equipment are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in
accordance with its assigned statutory responsibilities. The information in this publication, including
concepts and methodologies, may be used by federal agencies even before the completion of such
companion publications. Thus, until each publication is completed, current requirements, guidelines, and
procedures, where they exist, remain operative. For planning and transition purposes, federal agencies
may wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all publications during public comment periods and provide
feedback to NIST. All NIST publications are available at http://www.nist.gov/publication-portal.cfm.

Copyrights and Permissions
Official publications of the National Institute of Standards and Technology are not subject to copyright in
the United States. Foreign rights are reserved. Questions concerning the possibility of copyrights in
foreign countries should be referred to the Office of Chief Counsel at NIST via email to
nistcounsel@nist.gov.

Comments on this publication may be submitted to Wo Chang

National Institute of Standards and Technology
Attn: Wo Chang, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8900) Gaithersburg, MD 20899-8930
Email: SP1500comments@nist.gov

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

http://www.nist.gov/publication-portal.cfm
mailto:nistcounsel@nist.gov
mailto:SP1500comments@nist.gov

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

iii

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at NIST promotes the U.S. economy and public welfare by
providing technical leadership for the Nation’s measurement and standards infrastructure. ITL develops
tests, test methods, reference data, proof of concept implementations, and technical analyses to advance
the development and productive use of information technology (IT). ITL’s responsibilities include the
development of management, administrative, technical, and physical standards and guidelines for the
cost-effective security and privacy of other than national security-related information in federal
information systems. This document reports on ITL’s research, guidance, and outreach efforts in IT and
its collaborative activities with industry, government, and academic organizations.

Abstract

Big Data is a term used to describe the large amount of data in the networked, digitized, sensor-laden,
information-driven world. While opportunities exist with Big Data, the data can overwhelm traditional
technical approaches, and the growth of data is outpacing scientific and technological advances in data
analytics. To advance progress in Big Data, the NIST Big Data Public Working Group (NBD-PWG) is
working to develop consensus on important fundamental concepts related to Big Data. The results are
reported in the NIST Big Data Interoperability Framework (NBDIF) series of volumes. This volume,
Volume 6, summarizes the work performed by the NBD-PWG to characterize Big Data from an
architecture perspective, presents the NIST Big Data Reference Architecture (NBDRA) conceptual
model, discusses the roles and fabrics of the NBDRA, presents an activities view of the NBDRA to
describe the activities performed by the roles, and presents a functional component view of the NBDRA
containing the classes of functional components that carry out the activities.

Keywords

Activities view; Big Data Application Provider; Big Data; Big Data characteristics; Data Consumer; Data
Provider; Framework Provider; functional component view; Management Fabric; reference architecture;
Security and Privacy Fabric; System Orchestrator; use cases.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

iv

Acknowledgements

This document reflects the contributions and discussions by the membership of the NBD-PWG, co-
chaired by Wo Chang (NIST ITL), Bob Marcus (ET-Strategies), and Chaitan Baru (San Diego
Supercomputer Center; National Science Foundation). For all versions, the Subgroups were led by the
following people: Nancy Grady (SAIC), Natasha Balac (SDSC), and Eugene Luster (R2AD) for the
Definitions and Taxonomies Subgroup; Geoffrey Fox (Indiana University) and Tsegereda Beyene (Cisco
Systems) for the Use Cases and Requirements Subgroup; Arnab Roy (Fujitsu), Mark Underwood
(Krypton Brothers; Synchrony Financial), and Akhil Manchanda (GE) for the Security and Privacy
Subgroup; David Boyd (InCadence Strategic Solutions), Orit Levin (Microsoft), Don Krapohl
(Augmented Intelligence), and James Ketner (AT&T) for the Reference Architecture Subgroup; and
Russell Reinsch (Center for Government Interoperability), David Boyd (InCadence Strategic Solutions),
Carl Buffington (Vistronix), and Dan McClary (Oracle), for the Standards Roadmap Subgroup.

The editors for this document were the following:

• Version 1: Orit Levin (Microsoft), David Boyd (InCadence Strategic Solutions), and
Wo Chang (NIST)

• Version 2: David Boyd (InCadence Strategic Solutions) and Wo Chang (NIST)
• Version 3: David Boyd (InCadence Strategic Solutions) and Wo Chang (NIST)

Laurie Aldape (Energetics Incorporated) and Elizabeth Lennon (NIST) provided editorial assistance
across all NBDIF volumes.

NIST SP1500-6, Version 3 has been collaboratively authored by the NBD-PWG. As of the date of this
publication, there are over six hundred NBD-PWG participants from industry, academia, and government.
Federal agency participants include the National Archives and Records Administration (NARA), National
Aeronautics and Space Administration (NASA), National Science Foundation (NSF), and the U.S.
Departments of Agriculture, Commerce, Defense, Energy, Health and Human Services, Homeland
Security, Transportation, Treasury, and Veterans Affairs.

NIST would like to acknowledge the specific contributions1 to this volume, during Version 1, Version 2,
and/or Version 3 activities, by the following NBD-PWG members:

Chaitan Baru
University of California, San
Diego, Supercomputer Center
Janis Beach
Information Management Services,
Inc.
David Boyd
InCadence Strategic Solutions
Scott Brim
Internet2
Gregg Brown
Microsoft
Carl Buffington
Vistronix

Pavithra Kenjige
PK Technologies
James Kobielus
IBM
Donald Krapohl
Augmented Intelligence
Orit Levin
Microsoft
Eugene Luster
DISA/R2AD
Serge Manning
Huawei USA
Robert Marcus
ET-Strategies

Felix Njeh
U.S. Department of the Army
Gururaj Pandurangi
Avyan Consulting Corp.
Linda Pelekoudas
Strategy and Design Solutions
Dave Raddatz
SiliconGraphics International
Corp.
Russell Reinsch
Center for Government
Interoperability
John Rogers
HP

1 “Contributors” are members of the NIST Big Data Public Working Group who dedicated great effort to prepare
and gave substantial time on a regular basis to research and development in support of this document.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

v

Yuri Demchenko
University of Amsterdam
Jill Gemmill
Clemson University
Nancy Grady
SAIC
Ronald Hale
ISACA
Keith Hare
JCC Consulting, Inc.
Richard Jones
The Joseki Group LLC

Gary Mazzaferro
AlloyCloud, Inc.
Shawn Miller
U.S. Department of Veterans
Affairs
Sanjay Mishra
Verizon
Vivek Navale
NARA
Quyen Nguyen
U.S. Census Bureau

Arnab Roy
Fujitsu
Michael Seablom
NASA
Rupinder Singh
McAfee, Inc.
Anil Srivastava
Open Health Systems Laboratory
Glenn Wasson
SAIC
Timothy Zimmerlin
Consultant
Alicia Zuniga-Alvarado
Consultant

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

vi

TABLE OF CONTENTS
EXECUTIVE SUMMARY .. VIII

1 INTRODUCTION ... 1

1.1 BACKGROUND .. 1
1.2 SCOPE AND OBJECTIVES OF THE REFERENCE ARCHITECTURES SUBGROUP ... 3
1.3 REPORT PRODUCTION .. 3
1.4 REPORT STRUCTURE .. 4

2 HIGH-LEVEL REFERENCE ARCHITECTURE REQUIREMENTS ... 6

2.1 USE CASES AND REQUIREMENTS .. 6
2.2 REFERENCE ARCHITECTURE SURVEY .. 8
2.3 TAXONOMY .. 8

3 NBDRA CONCEPTUAL MODEL .. 11

3.1 SYSTEM ORCHESTRATOR ... 14
3.2 DATA PROVIDER ... 15
3.3 BIG DATA APPLICATION PROVIDER ... 16
3.4 BIG DATA FRAMEWORK PROVIDER ... 17
3.5 DATA CONSUMER ... 18
3.6 MANAGEMENT FABRIC OF THE NBDRA .. 18
3.7 SECURITY AND PRIVACY FABRIC OF THE NBDRA ... 19

4 NBDRA ARCHITECTURE VIEWS .. 20

4.1 ACTIVITIES VIEW ... 22
4.1.1 System Orchestrator .. 22
4.1.2 Big Data Application Provider .. 23

4.1.2.1 Collection .. 23
4.1.2.2 Preparation ... 24
4.1.2.3 Analytics .. 24
4.1.2.4 Visualization .. 24
4.1.2.5 Access ... 24

4.1.3 Big Data Framework Provider .. 25
4.1.3.1 Infrastructure Activities .. 25
4.1.3.2 Platform Activities ... 25
4.1.3.3 Processing Activities .. 25

4.1.4 Management Fabric Activities ... 26
4.1.4.1 System Management .. 26
4.1.4.2 Big Data Life Cycle Management .. 26

4.1.5 Security and Privacy Fabric Activities ... 28
4.2 FUNCTIONAL COMPONENT VIEW ... 28

4.2.1 System Orchestrator .. 29
4.2.2 Big Data Application Provider .. 29

4.2.2.1 MapReduce ... 30
4.2.2.2 Bulk Synchronous Parallel ... 31

4.2.3 Big Data Framework Provider .. 32
4.2.3.1 Infrastructure Frameworks ... 32
4.2.3.2 Data Platform Frameworks ... 35
4.2.3.3 Processing Frameworks .. 46
4.2.3.4 Crosscutting Components ... 49

4.2.4 Management Fabric ... 50

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

vii

4.2.4.1 Monitoring Frameworks ... 51
4.2.4.2 Provisioning/Configuration Frameworks .. 51
4.2.4.3 Package Managers .. 51
4.2.4.4 Resource Managers .. 52
4.2.4.5 Data Life Cycle Managers .. 52

4.2.5 Security and Privacy Fabric .. 53
4.2.5.1 Authentication and Authorization Frameworks .. 53
4.2.5.2 Audit Frameworks ... 53

5 SUMMARY .. 54

APPENDIX A: DEPLOYMENT CONSIDERATIONS .. 55

APPENDIX B: TERMS AND DEFINITIONS ... 58

APPENDIX C: ACRONYMS .. 60

APPENDIX D: RESOURCES AND BIBLIOGRAPHY .. 62

FIGURES
FIGURE 1: NBDIF DOCUMENTS NAVIGATION DIAGRAM PROVIDES CONTENT FLOW BETWEEN VOLUMES ... 5
FIGURE 2: NBDRA TAXONOMY .. 9
FIGURE 3: NIST BIG DATA REFERENCE ARCHITECTURE (NBDRA) .. 11
FIGURE 4: MULTIPLE INSTANCES OF NBDRA COMPONENTS INTERACT AS PART OF A LARGER SYSTEM .. 13
FIGURE 5: BIG DATA SYSTEM WITHIN A SYSTEM OF SYSTEMS VIEW .. 14
FIGURE 6: NBDRA VIEW CONVENTIONS .. 20
FIGURE 7: TOP LEVEL ROLES AND FABRICS ... 21
FIGURE 8: TOP-LEVEL CLASSES OF ACTIVITIES WITHIN THE ACTIVITIES VIEW .. 22
FIGURE 9: COMMON CLASSES OF FUNCTIONAL COMPONENTS .. 29
FIGURE 10: DATA ORGANIZATION APPROACHES ... 35
FIGURE 11: DATA STORAGE TECHNOLOGIES .. 39
FIGURE 12: DIFFERENCES BETWEEN ROW-ORIENTED AND COLUMN-ORIENTED STORES .. 41
FIGURE 13: COLUMN FAMILY SEGMENTATION OF THE COLUMNAR STORES MODEL .. 42
FIGURE 14: OBJECT NODES AND RELATIONSHIPS OF GRAPH DATABASES ... 45
FIGURE 15: INFORMATION FLOW .. 47
FIGURE A-1: BIG DATA FRAMEWORK DEPLOYMENT OPTIONS ... 55

TABLES
TABLE 1: MAPPING USE CASE CHARACTERIZATION CATEGORIES TO REFERENCE ARCHITECTURE COMPONENTS AND FABRICS 6
TABLE 2: 13 DWARFS—ALGORITHMS FOR SIMULATION IN THE PHYSICAL SCIENCES .. 30

This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

viii

Executive Summary 1

The NIST Big Data Public Working Group (NBD-PWG) Reference Architecture Subgroup prepared this 2
NIST Big Data Interoperability Framework (NBDIF): Volume 6, Reference Architecture document to 3
provide a vendor-neutral, technology- and infrastructure-agnostic conceptual model and examine related 4
issues. The NIST Big Data Reference Architecture (NBDRA) which consists of a conceptual model and 5
two architectural views, was a collaborative effort within the Reference Architecture Subgroup and with 6
the other NBD-PWG subgroups. The goal of the NBD-PWG Reference Architecture Subgroup is to 7
develop an open reference architecture for Big Data that achieves the following objectives: 8

• Provides a common language for the various stakeholders; 9
• Encourages adherence to common standards, specifications, and patterns; 10
• Provides consistent methods for implementation of technology to solve similar problem sets; 11
• Illustrates and improves understanding of the various Big Data components, processes, and 12

systems, in the context of a vendor- and technology- agnostic Big Data conceptual model 13
• Provides a technical reference for U.S. government departments, agencies, and other consumers 14

to understand, discuss, categorize, and compare Big Data solutions; and 15
• Facilitates analysis of candidate standards for interoperability, portability, reusability, and 16

extendibility 17

The NIST Big Data Interoperability Framework (NBDIF) was released in three versions, which 18
correspond to the three stages of the NBD-PWG work. Version 3 (current version) of the NBDIF volumes 19
resulted from Stage 3 work with major emphasis on the validation of the NBDRA Interfaces and content 20
enhancement. Stage 3 work built upon the foundation created during Stage 2 and Stage 1. The current 21
effort documented in this volume reflects concepts developed within the rapidly evolving field of Big 22
Data. The three stages (in reverse order) aim to achieve the following with respect to the NIST Big Data 23
Reference Architecture (NBDRA). 24

Stage 3: Validate the NBDRA by building Big Data general applications through the general 25
interfaces; 26

Stage 2: Define general interfaces between the NBDRA components; and 27
Stage 1: Identify the high-level Big Data reference architecture key components, which are 28

technology-, infrastructure-, and vendor-agnostic. 29

The NBDIF consists of nine volumes, each of which addresses a specific key topic, resulting from the 30
work of the NBD-PWG. The nine volumes are as follows: 31

• Volume 1, Definitions [1] 32
• Volume 2, Taxonomies [2] 33
• Volume 3, Use Cases and General Requirements [3] 34
• Volume 4, Security and Privacy [4] 35
• Volume 5, Architectures White Paper Survey [5] 36
• Volume 6, Reference Architecture (this volume) 37
• Volume 7, Standards Roadmap [6] 38
• Volume 8, Reference Architecture Interfaces [7] 39
• Volume 9, Adoption and Modernization [8] 40

During Stage 1, Volumes 1 through 7 were conceptualized, organized, and written. The finalized Version 41
1 documents can be downloaded from the V1.0 Final Version page of the NBD-PWG website 42
(https://bigdatawg.nist.gov/V1_output_docs.php). 43

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

https://bigdatawg.nist.gov/V1_output_docs.php

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

ix

During Stage 2, the NBD-PWG developed Version 2 of the NBDIF Version 1 volumes, with the 44
exception of Volume 5, which contained the completed architecture survey work that was used to inform 45
Stage 1 work of the NBD-PWG. The goals of Stage 2 were to enhance the Version 1 content, define 46
general interfaces between the NBDRA components by aggregating low-level interactions into high-level 47
general interfaces, and demonstrate how the NBDRA can be used. As a result of the Stage 2 work, the 48
need for NBDIF Volume 8 and NBDIF Volume 9 was identified and the two new volumes were created. 49
Version 2 of the NBDIF volumes, resulting from Stage 2 work, can be downloaded from the V2.0 Final 50
Version page of the NBD-PWG website (https://bigdatawg.nist.gov/V2_output_docs.php). 51

 52

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

https://bigdatawg.nist.gov/V2_output_docs.php

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

1

1 INTRODUCTION 53

1.1 BACKGROUND 54

There is broad agreement among commercial, academic, and government leaders about the potential of 55
Big Data to spark innovation, fuel commerce, and drive progress. Big Data is the common term used to 56
describe the deluge of data in today’s networked, digitized, sensor-laden, and information-driven world. 57
The availability of vast data resources carries the potential to answer questions previously out of reach, 58
including the following: 59

• How can a potential pandemic reliably be detected early enough to intervene? 60
• Can new materials with advanced properties be predicted before these materials have ever been 61

synthesized? 62
• How can the current advantage of the attacker over the defender in guarding against cyber-63

security threats be reversed? 64

There is also broad agreement on the ability of Big Data to overwhelm traditional approaches. The growth 65
rates for data volumes, speeds, and complexity are outpacing scientific and technological advances in data 66
analytics, management, transport, and data user spheres. 67

Despite widespread agreement on the inherent opportunities and current limitations of Big Data, a lack of 68
consensus on some important fundamental questions continues to confuse potential users and stymie 69
progress. These questions include the following: 70

• How is Big Data defined? 71
• What attributes define Big Data solutions? 72
• What is new in Big Data? 73
• What is the difference between Big Data and bigger data that has been collected for years? 74
• How is Big Data different from traditional data environments and related applications? 75
• What are the essential characteristics of Big Data environments? 76
• How do these environments integrate with currently deployed architectures? 77
• What are the central scientific, technological, and standardization challenges that need to be 78

addressed to accelerate the deployment of robust, secure Big Data solutions? 79

Within this context, on March 29, 2012, the White House announced the Big Data Research and 80
Development Initiative [9]. The initiative’s goals include helping to accelerate the pace of discovery in 81
science and engineering, strengthening national security, and transforming teaching and learning by 82
improving analysts’ ability to extract knowledge and insights from large and complex collections of 83
digital data. 84

Six federal departments and their agencies announced more than $200 million in commitments spread 85
across more than 80 projects, which aim to significantly improve the tools and techniques needed to 86
access, organize, and draw conclusions from huge volumes of digital data. The initiative also challenged 87
industry, research universities, and nonprofits to join with the federal government to make the most of the 88
opportunities created by Big Data. 89

Motivated by the White House initiative and public suggestions, the National Institute of Standards and 90
Technology (NIST) has accepted the challenge to stimulate collaboration among industry professionals to 91
further the secure and effective adoption of Big Data. As one result of NIST’s Cloud and Big Data Forum 92
held on January 15–17, 2013, there was strong encouragement for NIST to create a public working group 93
for the development of a Big Data Standards Roadmap. Forum participants noted that this roadmap 94

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

2

should define and prioritize Big Data requirements, including interoperability, portability, reusability, 95
extensibility, data usage, analytics, and technology infrastructure. In doing so, the roadmap would 96
accelerate the adoption of the most secure and effective Big Data techniques and technology. 97

On June 19, 2013, the NIST Big Data Public Working Group (NBD-PWG) was launched with extensive 98
participation by industry, academia, and government from across the nation. The scope of the NBD-PWG 99
involves forming a community of interests from all sectors—including industry, academia, and 100
government—with the goal of developing consensus on definitions, taxonomies, secure reference 101
architectures, security and privacy, and, from these, a standards roadmap. Such a consensus would create 102
a vendor-neutral, technology- and infrastructure-independent framework that would enable Big Data 103
stakeholders to identify and use the best analytics tools for their processing and visualization requirements 104
on the most suitable computing platform and cluster, while also allowing added value from Big Data 105
service providers. 106

The NIST Big Data Interoperability Framework (NBDIF) was released in three versions, which 107
correspond to the three stages of the NBD-PWG work. Version 3 (current version) of the NBDIF volumes 108
resulted from Stage 3 work with major emphasis on the validation of the NBDRA Interfaces and content 109
enhancement. Stage 3 work built upon the foundation created during Stage 2 and Stage 1. The current 110
effort documented in this volume reflects concepts developed within the rapidly evolving field of Big 111
Data. The three stages (in reverse order) aim to achieve the following with respect to the NIST Big Data 112
Reference Architecture (NBDRA). 113

Stage 3: Validate the NBDRA by building Big Data general applications through the general 114
interfaces; 115

Stage 2: Define general interfaces between the NBDRA components; and 116
Stage 1: Identify the high-level Big Data reference architecture key components, which are 117

technology-, infrastructure-, and vendor-agnostic. 118

The NBDIF consists of nine volumes, each of which addresses a specific key topic, resulting from the 119
work of the NBD-PWG. The nine volumes are as follows: 120

• Volume 1, Definitions [1] 121
• Volume 2, Taxonomies [2] 122
• Volume 3, Use Cases and General Requirements [3] 123
• Volume 4, Security and Privacy [4] 124
• Volume 5, Architectures White Paper Survey [5] 125
• Volume 6, Reference Architecture (this volume) 126
• Volume 7, Standards Roadmap [6] 127
• Volume 8, Reference Architecture Interfaces [7] 128
• Volume 9, Adoption and Modernization [8] 129

During Stage 1, Volumes 1 through 7 were conceptualized, organized, and written. The finalized Version 130
1 documents can be downloaded from the V1.0 Final Version page of the NBD-PWG website 131
(https://bigdatawg.nist.gov/V1_output_docs.php). 132

During Stage 2, the NBD-PWG developed Version 2 of the NBDIF Version 1 volumes, with the 133
exception of Volume 5, which contained the completed architecture survey work that was used to inform 134
Stage 1 work of the NBD-PWG. The goals of Stage 2 were to enhance the Version 1 content, define 135
general interfaces between the NBDRA components by aggregating low-level interactions into high-level 136
general interfaces, and demonstrate how the NBDRA can be used. As a result of the Stage 2 work, the 137
need for NBDIF Volume 8 and NBDIF Volume 9 was identified and the two new volumes were created. 138
Version 2 of the NBDIF volumes, resulting from Stage 2 work, can be downloaded from the V2.0 Final 139
Version page of the NBD-PWG website (https://bigdatawg.nist.gov/V2_output_docs.php). 140

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

https://bigdatawg.nist.gov/V1_output_docs.php
https://bigdatawg.nist.gov/V2_output_docs.php

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

3

1.2 SCOPE AND OBJECTIVES OF THE REFERENCE 141

ARCHITECTURES SUBGROUP 142

Reference architectures provide “an authoritative source of information about a specific subject area that 143
guides and constrains the instantiations of multiple architectures and solutions [10].” Reference 144
architectures generally serve as a foundation for solution architectures and may also be used for 145
comparison and alignment of instantiations of architectures and solutions. 146

The goal of the NBD-PWG Reference Architecture Subgroup is to develop an open reference architecture 147
for Big Data that achieves the following objectives: 148

• Provides a common language for the various stakeholders; 149
• Encourages adherence to common standards, specifications, and patterns; 150
• Provides consistent methods for implementation of technology to solve similar problem sets; 151
• Illustrates and improves understanding of the various Big Data components, processes, and 152

systems, in the context of a vendor- and technology-agnostic Big Data conceptual model; 153
• Provides a technical reference for U.S. government departments, agencies, and other consumers 154

to understand, discuss, categorize, and compare Big Data solutions; and 155
• Facilitates analysis of candidate standards for interoperability, portability, reusability, and 156

extendibility. 157

The NBDRA is a high-level conceptual model crafted to serve as a tool to facilitate open discussion of the 158
requirements, design structures, and operations inherent in Big Data. The NBDRA is intended to facilitate 159
the understanding of the operational intricacies in Big Data. It does not represent the system architecture 160
of a specific Big Data system, but rather is a tool for describing, discussing, and developing system-161
specific architectures using a common framework of reference. The model is not tied to any specific 162
vendor products, services, or reference implementation, nor does it define prescriptive solutions that 163
inhibit innovation. 164

The NBDRA does not address the following: 165

• Detailed specifications for any organization’s operational systems; 166
• Detailed specifications of information exchanges or services; and 167
• Recommendations or standards for integration of infrastructure products. 168

1.3 REPORT PRODUCTION 169

A wide spectrum of Big Data architectures has been explored and developed as part of various industry, 170
academic, and government initiatives. The development of the NBDRA and material contained in this 171
volume involved the following steps: 172

1. Announce that the NBD-PWG Reference Architecture Subgroup is open to the public to 173
attract and solicit a wide array of subject matter experts and stakeholders in government, 174
industry, and academia; 175

2. Gather publicly available Big Data architectures and materials representing various 176
stakeholders, different data types, and diverse use cases;2 177

3. Examine and analyze the Big Data material to better understand existing concepts, usage, 178
goals, objectives, characteristics, and key elements of Big Data, and then document the 179

2 Many of the architecture use cases were originally collected by the NBD-PWG Use Case and Requirements
Subgroup and can be accessed at http://bigdatawg.nist.gov/usecases.php.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

http://bigdatawg.nist.gov/usecases.php

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

4

findings using NIST’s Big Data taxonomies model (presented in NBDIF: Volume 2, 180
Taxonomies); 181

4. Develop a technology-independent, open reference architecture based on the analysis of Big 182
Data material and inputs received from other NBD-PWG subgroups; 183

5. Identify workflow and interactions from the System Operator to the rest of the NBDRA 184
components; and 185

6. Develop an Activities View and a Functional Component View of the NBDRA to describe 186
the activities performed by the roles and fabrics along with the functional components that 187
carry out the activities. 188

To achieve technical and high-quality document content, this document will go through a public comment 189
period along with NIST internal review. 190

1.4 REPORT STRUCTURE 191

The organization of this document roughly corresponds to the process used by the NBD-PWG to develop 192
the NBDRA. Following the introductory material presented in Section 1, the remainder of this document 193
is organized as follows: 194

• Section 2 summarizes the work of other NBD-PWG Subgroups that informed the formation of the 195
NBDRA. 196

• Section 3 presents the NBDRA conceptual model, which is a vendor- and technology-agnostic 197
Big Data conceptual model. 198

• Section 4 explores two different views of the NBDRA, the activities view, which examines the 199
activities carried out by the NBDRA roles, and the functional component view, which examines 200
the functional components that carry out the activities 201

• Section 5 summarizes conclusions of this volume. 202

While each NBDIF volume was created with a specific focus within Big Data, all volumes are 203
interconnected. During the creation of the volumes, information from some volumes was used as input for 204
other volumes. Broad topics (e.g., definition, architecture) may be discussed in several volumes with each 205
discussion circumscribed by the volume’s particular focus. Arrows shown in Figure 1 indicate the main 206
flow of information input and/or output from the volumes. Volumes 2, 3, and 5 (blue circles) are 207
essentially standalone documents that provide output to other volumes (e.g., to Volume 6). These 208
volumes contain the initial situational awareness research. During the creation of Volumes 4, 7, 8, and 9 209
(green circles), input from other volumes was used. The development of these volumes took into account 210
work on the other volumes. Volumes 1 and 6 (red circles) were developed using the initial situational 211
awareness research and continued to be modified based on work in other volumes. The information from 212
these volumes was also used as input to the volumes in the green circles. 213

 214

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

5

 215
Figure 1: NBDIF Documents Navigation Diagram Provides Content Flow Between Volumes 216

 217

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

6

2 HIGH-LEVEL REFERENCE 218

ARCHITECTURE REQUIREMENTS 219

The development of a Big Data reference architecture requires a thorough understanding of current 220
techniques, issues, and concerns. To this end, the NBD-PWG collected use cases to gain an understanding 221
of current applications of Big Data, conducted a survey of reference architectures to understand 222
commonalities within Big Data architectures in use, developed a taxonomy to understand and organize 223
the information collected, and reviewed existing technologies and trends relevant to Big Data. The results 224
of these NBD-PWG activities were used in the development of the NBDRA and are briefly summarized 225
in this section extracted from the corresponding other parts of the NBDIF. 226

2.1 USE CASES AND REQUIREMENTS 227

To develop the use cases, publicly available information was collected for various Big Data architectures 228
in nine broad areas, or application domains. Participants in the NBD-PWG Use Case and Requirements 229
Subgroup and other interested parties provided the use case details via a template, which helped to 230
standardize the responses and facilitate subsequent analysis and comparison of the use cases. However, 231
submissions still varied in levels of detail, quantitative data, or qualitative information. The NBDIF: 232
Volume 3, Use Cases and General Requirements document presents the original use cases, an analysis of 233
the compiled information, and the requirements extracted from the use cases. 234

The extracted requirements represent challenges faced in seven characterization categories (Table 1) 235
developed by the Subgroup. Requirements specific to the use cases were aggregated into high-level 236
generalized requirements, which are vendor and technology neutral. 237

The use case characterization categories were used as input in the development of the NBDRA and map 238
directly to NBDRA components and fabrics as shown in Table 1. 239

Table 1: Mapping Use Case Characterization Categories to 240
Reference Architecture Components and Fabrics 241

USE CASE CHARACTERIZATION
CATEGORIES

 REFERENCE ARCHITECTURE COMPONENTS
AND FABRICS

Data sources → Data Provider
Data transformation → Big Data Application Provider
Capabilities → Big Data Framework Provider
Data consumer → Data Consumer
Security and privacy → Security and Privacy Fabric
Life cycle management → System Orchestrator; Management Fabric
Other requirements → To all components and fabrics
 242

The high-level generalized requirements are presented below. The development of these generalized 243
requirements is presented in the NBDIF: Volume 3, Use Cases and Requirements document. 244

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

7

DATA SOURCE REQUIREMENTS (DSR) 245
• DSR-1: Reliable, real-time, asynchronous, streaming, and batch processing to collect data from 246

centralized, distributed, and cloud data sources, sensors, or instruments 247
• DSR-2: Slow, bursty, and high throughput data transmission between data sources and computing 248

clusters 249
• DSR-3: Diversified data content ranging from structured and unstructured text, documents, 250

graphs, websites, geospatial, compressed, timed, spatial, multimedia, simulation, and instrumental 251
(i.e., system managements and monitoring) data 252

TRANSFORMATION PROVIDER REQUIREMENTS (TPR) 253
• TPR-1: Diversified, compute-intensive, statistical and graph analytic processing and machine-254

learning techniques 255
• TPR-2: Batch and real-time analytic processing 256
• TPR-3: Processing large diversified data content and modeling 257
• TPR-4: Processing data in motion (e.g., streaming, fetching new content, data tracking, 258

traceability, data change management, and data boundaries) 259

CAPABILITY PROVIDER REQUIREMENTS (CPR) 260
• CPR-1: Legacy software and advanced software packages 261
• CPR-2: Legacy and advanced computing platforms 262
• CPR-3: Legacy and advanced distributed computing clusters, co-processors, input/output (I/O) 263

processing 264
• CPR-4: Advanced networks (e.g., software-defined network [SDN]) and elastic data transmission, 265

including fiber, cable, and wireless networks (e.g., local area network, wide area network, 266
metropolitan area network, Wi-Fi) 267

• CPR-5: Legacy, large, virtual, and advanced distributed data storage 268
• CPR-6: Legacy and advanced programming executables, applications, tools, utilities, and libraries 269

DATA CONSUMER REQUIREMENTS (DCR) 270
• DCR-1: Fast searches from processed data with high relevancy, accuracy, and recall 271
• DCR-2: Diversified output file formats for visualization, rendering, and reporting 272
• DCR-3: Visual layout for results presentation 273
• DCR-4: Rich user interface for access using browser, visualization tools 274
• DCR-5: High-resolution, multidimensional layer of data visualization 275
• DCR-6: Streaming results to clients 276

SECURITY AND PRIVACY REQUIREMENTS (SPR) 277
• SPR-1: Protect and preserve security and privacy of sensitive data. 278
• SPR-2: Support sandbox, access control, and multi-tenant, multilevel, policy-driven 279

authentication on protected data and ensure that these are in line with accepted governance, risk, 280
and compliance (GRC) and confidentiality, integrity, and availability (CIA) best practices. 281

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

8

LIFE CYCLE MANAGEMENT REQUIREMENTS (LMR) 282
• LMR-1: Data quality curation, including preprocessing, data clustering, classification, reduction, 283

and format transformation 284
• LMR-2: Dynamic updates on data, user profiles, and links 285
• LMR-3: Data life cycle and long-term preservation policy, including data provenance 286
• LMR-4: Data validation 287
• LMR-5: Human annotation for data validation 288
• LMR-6: Prevention of data loss or corruption 289
• LMR-7: Multisite (including cross-border, geographically dispersed) archives 290
• LMR-8: Persistent identifier and data traceability 291
• LMR-9: Standardization, aggregation, and normalization of data from disparate sources 292

OTHER REQUIREMENTS (OR) 293
• OR-1: Rich user interface from mobile platforms to access processed results 294
• OR-2: Performance monitoring on analytic processing from mobile platforms 295
• OR-3: Rich visual content search and rendering from mobile platforms 296
• OR-4: Mobile device data acquisition and management 297
• OR-5: Security across mobile devices and other smart devices such as sensors 298

2.2 REFERENCE ARCHITECTURE SURVEY 299

The NBD-PWG Reference Architecture Subgroup conducted a survey of current reference architectures 300
to advance the understanding of the operational intricacies in Big Data and to serve as a tool for 301
developing system-specific architectures using a common reference framework. The Subgroup surveyed 302
currently published Big Data platforms by leading companies or individuals supporting the Big Data 303
framework and analyzed the collected material. 304

This effort revealed a consistency between Big Data architectures that served in the development of the 305
NBDRA. Survey details, methodology, and conclusions are reported in NBDIF: Volume 5, Architectures 306
White Paper Survey. 307

2.3 TAXONOMY 308

The NBD-PWG Definitions and Taxonomy Subgroup focused on identifying Big Data concepts, defining 309
terms needed to describe the new Big Data paradigm, and defining reference architecture terms. The 310
reference architecture taxonomy presented below provides a hierarchy of the components of the reference 311
architecture. Additional taxonomy details are presented in the NBDIF: Volume 2, Taxonomy document. 312

Figure 2 outlines potential actors for the seven roles developed by the NBD-PWG Definition and 313
Taxonomy Subgroup. The blue boxes contain the name of the role at the top with potential actors listed 314
directly below. 315

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

9

 316
Figure 2: NBDRA Taxonomy 317

SYSTEM ORCHESTRATOR 318
The System Orchestrator provides the overarching requirements that the system must fulfill, including 319
policy, governance, architecture, resources, and business requirements, as well as monitoring or auditing 320
activities to ensure that the system complies with those requirements. The System Orchestrator role 321
provides system requirements, high-level design, and monitoring for the data system. While the role 322
predates Big Data systems, some related design activities have changed within the Big Data paradigm. 323

DATA PROVIDER 324
A Data Provider makes data available to itself or to others. In fulfilling its role, the Data Provider creates 325
an abstraction of various types of data sources (such as raw data or data previously transformed by 326
another system) and makes them available through different functional interfaces. The actor fulfilling this 327
role can be part of the Big Data system, internal to the organization in another system, or external to the 328
organization orchestrating the system. While the concept of a Data Provider is not new, the greater data 329
collection and analytics capabilities have opened up new possibilities for providing valuable data. 330

BIG DATA APPLICATION PROVIDER 331
The Big Data Application Provider executes the manipulations of the data life cycle to meet requirements 332
established by the System Orchestrator. This is where the general capabilities within the Big Data 333
framework are combined to produce the specific data system. While the activities of an application 334
provider are the same whether the solution being built concerns Big Data or not, the methods and 335
techniques have changed because the data and data processing is parallelized across resources. 336

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

10

BIG DATA FRAMEWORK PROVIDER 337
The Big Data Framework Provider has general resources or services to be used by the Big Data 338
Application Provider in the creation of the specific application. There are many new components from 339
which the Big Data Application Provider can choose in using these resources and the network to build the 340
specific system. This is the role that has seen the most significant changes because of Big Data. 341

The Big Data Framework Provider consists of one or more instances of the three subcomponents: 342
infrastructure frameworks, data platforms, and processing frameworks. There is no requirement that all 343
instances at a given level in the hierarchy be of the same technology and, in fact, most Big Data 344
implementations are hybrids combining multiple technology approaches. These provide flexibility and 345
can meet the complete range of requirements that are driven from the Big Data Application Provider. Due 346
to the rapid emergence of new techniques, this is an area that will continue to need discussion. 347

DATA CONSUMER 348
The Data Consumer receives the value output of the Big Data system. In many respects, it is the recipient 349
of the same type of functional interfaces that the Data Provider exposes to the Big Data Application 350
Provider. After the system adds value to the original data sources, the Big Data Application Provider then 351
exposes that same type of functional interfaces to the Data Consumer. 352

SECURITY AND PRIVACY FABRIC 353
Security and privacy issues affect all other components of the NBDRA. The Security and Privacy Fabric 354
interacts with the System Orchestrator for policy, requirements, and auditing and also with both the Big 355
Data Application Provider and the Big Data Framework Provider for development, deployment, and 356
operation. The NBDIF: Volume 4, Security and Privacy document discusses security and privacy topics. 357

MANAGEMENT FABRIC 358
The Big Data characteristics of volume, velocity, variety, and variability demand a versatile system and 359
software management platform for provisioning, software and package configuration and management, 360
along with resource and performance monitoring and management. Big Data management involves 361
system, data, security, and privacy considerations at scale, while maintaining a high level of data quality 362
and secure accessibility. 363

 364

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

11

3 NBDRA CONCEPTUAL MODEL 365

As discussed in Section 2, the NBD-PWG Reference Architecture Subgroup used a variety of inputs from 366
other NBD-PWG subgroups in developing a vendor-neutral, technology- and infrastructure-agnostic 367
conceptual model of Big Data architecture. This conceptual model, the NBDRA, is shown in Figure 3 and 368
represents a Big Data system comprised of five logical functional components connected by 369
interoperability interfaces (i.e., services). Two fabrics envelop the components, representing the 370
interwoven nature of management and security and privacy with all five of the components. 371

The NBDRA is intended to enable system engineers, data scientists, software developers, data architects, 372
and senior decision makers to develop solutions to issues that require diverse approaches due to 373
convergence of Big Data characteristics within an interoperable Big Data ecosystem. It provides a 374
framework to support a variety of business environments, including tightly integrated enterprise systems 375
and loosely coupled vertical industries, by enhancing understanding of how Big Data complements and 376
differs from existing analytics, business intelligence, databases, and systems. 377

 378

Figure 3: NIST Big Data Reference Architecture (NBDRA) 379

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

12

Note: None of the terminology or diagrams in these documents is intended to imply any business or 380
deployment model. The terms provider and consumer as used are descriptive of general roles and are 381
meant to be informative in nature. 382

The NBDRA is organized around five major roles and multiple sub-roles aligned along two axes 383
representing the two Big Data value chains: Information Value (horizontal axis) and Information 384
Technology (IT; vertical axis). Along the Information Value axis, the value is created by data collection, 385
integration, analysis, and applying the results following the value chain. Along the IT axis, the value is 386
created by providing networking, infrastructure, platforms, application tools, and other IT services for 387
hosting of and operating the Big Data in support of required data applications. At the intersection of both 388
axes is the Big Data Application Provider role, indicating that data analytics and its implementation 389
provide the value to Big Data stakeholders in both value chains. The term provider as part of the Big Data 390
Application Provider and Big Data Framework Provider is there to indicate that those roles provide or 391
implement specific activities and functions within the system. It does not designate a service model or 392
business entity. 393

The five main NBDRA roles, shown in Figure 3 and discussed in detail in Section 3, represent different 394
technical roles that exist in every Big Data system. These roles are the following: 395

• System Orchestrator, 396
• Data Provider, 397
• Big Data Application Provider, 398
• Big Data Framework Provider, and 399
• Data Consumer. 400

The two fabric roles shown in Figure 3 encompassing the five main roles are: 401

• Management, and 402
• Security and Privacy. 403

These two fabrics provide services and functionality to the five main roles in the areas specific to Big 404
Data and are crucial to any Big Data solution. 405

The DATA arrows in Figure 3 show the flow of data between the system’s main roles. Data flows 406
between the roles either physically (i.e., by value) or by providing its location and the means to access it 407
(i.e., by reference). The SW arrows show transfer of software tools for processing of Big Data in situ. The 408
Service Use arrows represent software programmable interfaces. While the main focus of the NBDRA is 409
to represent the run-time environment, all three types of communications or transactions can happen in 410
the configuration phase as well. Manual agreements (e.g., service-level agreements) and human 411
interactions that may exist throughout the system are not shown in the NBDRA. 412

Within a given Big Data Architecture implementation, there may be multiple instances of elements 413
performing the Data Provider, Data Consumer, Big Data Framework Provider, and Big Data Application 414
Provider roles. Thus, in a given Big Data implementation, there may be multiple Big Data applications 415
which use different frameworks to meet requirements. For example, one application may focus on 416
ingestion and analytics of streaming data and would use a framework based on components suitable for 417
that purpose, while another application may perform data warehouse style batch analytics which would 418
leverage a different framework. Figure 4 below shows how such multiple instances may interact as part of 419
a larger integrated system. As illustrated in the conceptual model, there should be a common Security and 420
Privacy, and Management roles across the architecture. The crosscutting roles are sometimes referred to 421
as fabrics because they must touch all the other roles and sub-roles within the Architecture. 422

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

13

 423
Figure 4: Multiple Instances of NBDRA Components Interact as Part of a Larger System 424

The roles in the Big Data ecosystem perform activities and are implemented via functional components. 425
In system development, actors and roles have the same relationship as in the movies, but system 426
development actors can represent individuals, organizations, software, or hardware. According to the Big 427
Data taxonomy, a single actor can play multiple roles, and multiple actors can play the same role. The 428
NBDRA does not specify the business boundaries between the participating actors or stakeholders, so the 429
roles can either reside within the same business entity or can be implemented by different business 430
entities. Therefore, the NBDRA is applicable to a variety of business environments, from tightly 431
integrated enterprise systems to loosely coupled vertical industries that rely on the cooperation of 432
independent stakeholders. As a result, the notion of internal versus external functional components or 433
roles does not apply to the NBDRA. However, for a specific use case, once the roles are associated with 434
specific business stakeholders, the functional components and the activities they perform would be 435
considered as internal or external—subject to the use case’s point of view. 436

The NBDRA does support the representation of stacking or chaining of Big Data systems. For example, a 437
Data Consumer of one system could serve as a Data Provider to the next system down the stack or chain. 438
Figure 5 below shows how a given Big Data Architecture implementation would operate in context with 439
other systems, users, or Big Data implementations. 440

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

14

 441

Figure 5: Big Data System within a System of Systems View 442

The following paragraphs provide high-level descriptions of the primary roles within the NBDRA. 443
Section 4 contains more detailed descriptions of the sub-roles, activities, and functional components. 444

3.1 SYSTEM ORCHESTRATOR 445

The System Orchestrator role includes defining and integrating the required data application activities 446
into an operational vertical system. Typically, the System Orchestrator involves a collection of more 447
specific roles, performed by one or more actors, which manage and orchestrate the operation of the Big 448
Data system. These actors may be human components, software components, or some combination of the 449
two. 450

The function of the System Orchestrator is to configure and manage the other components of the Big Data 451
architecture to implement one or more workloads that the architecture is designed to execute. The 452
workloads managed by the System Orchestrator may be assigning/provisioning framework components to 453
individual physical or virtual nodes at the lower level or providing a graphical user interface that supports 454
the specification of workflows linking together multiple applications and components at the higher level. 455

The System Orchestrator may also, through the Management Fabric, monitor the workloads and system to 456
confirm that specific quality of service requirements are met for each workload, and may actually 457
elastically assign and provision additional physical or virtual resources to meet workload requirements 458
resulting from changes/surges in the data or number of users/transactions. 459

The NBDRA represents a broad range of Big Data systems, from tightly coupled enterprise solutions 460
(integrated by standard or proprietary interfaces) to loosely coupled vertical systems maintained by a 461
variety of stakeholders bounded by agreements and standard or standard-de-facto interfaces. 462

In an enterprise environment, the System Orchestrator role is typically centralized and can be mapped to 463
the traditional role of system governor that provides the overarching requirements and constraints, which 464
the system must fulfill, including policy, architecture, resources, or business requirements. A system 465
governor works with a collection of other roles (e.g., data manager, data security, and system manager) to 466
implement the requirements and the system’s functionality. 467

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

15

In a loosely coupled vertical system, the System Orchestrator role is typically decentralized. Each 468
independent stakeholder is responsible for its own system management, security, and integration, as well 469
as integration within the Big Data distributed system using the interfaces provided by other stakeholders. 470

3.2 DATA PROVIDER 471

The Data Provider role introduces new data or information feeds into the Big Data system for discovery, 472
access, and transformation by the Big Data system. New data feeds are distinct from the data already in 473
use by the system and residing in the various system repositories. Similar technologies can be used to 474
access both new data feeds and existing data. The Data Provider actors can be anything from a sensor, to 475
a human inputting data manually, to another Big Data system. 476

One of the important characteristics of a Big Data system is the ability to import and use data from a 477
variety of data sources. Data sources can be internal or public records, tapes, images, audio, videos, 478
sensor data, web logs, system and audit logs, HyperText Transfer Protocol (HTTP) cookies, and other 479
sources. Humans, machines, sensors, online and offline applications, Internet technologies, and other 480
actors can also produce data sources. 481

The roles of Data Provider and Big Data Application Provider often belong to different organizations, 482
unless the organization implementing the Big Data Application Provider owns the data sources. 483
Consequently, data from different sources may have different security and privacy considerations. In 484
fulfilling its role, the Data Provider creates an abstraction of the data sources. In the case of raw data 485
sources, the Data Provider can potentially clean, correct, and store the data in an internal format that is 486
accessible to the Big Data system that will ingest it. 487

The Data Provider can also provide an abstraction of data previously transformed by another system (i.e., 488
legacy system, another Big Data system). In this case, the Data Provider would represent a Data 489
Consumer of the other system. For example, Data Provider 1 could generate a streaming data source from 490
the operations performed by Data Provider 2 on a dataset at rest. 491

Data Provider activities include the following, which are common to most systems that handle data: 492

• Collecting the data; 493
• Persisting the data; 494
• Providing transformation functions for data scrubbing of sensitive information such as personally 495

identifiable information (PII); 496
• Creating the metadata describing the data source(s), usage policies/access rights, and other 497

relevant attributes; 498
• Enforcing access rights on data access; 499
• Establishing formal or informal contracts for data access authorizations; 500
• Making the data accessible through suitable programmable push or pull interfaces; 501
• Providing push or pull access mechanisms; and 502
• Publishing the availability of the information and the means to access it. 503

The Data Provider exposes a collection of interfaces (or services) for discovering and accessing the data. 504
These interfaces would typically include a registry so that applications can locate a Data Provider, 505
identify the data of interest it contains, understand the types of access allowed, understand the types of 506
analysis supported, locate the data source, determine data access methods, identify the data security 507
requirements, identify the data privacy requirements, and other pertinent information. Therefore, the 508
interface would provide the means to register the data source, query the registry, and identify a standard 509
set of data contained by the registry. 510

Subject to Big Data characteristics (i.e., volume, variety, velocity, and variability) and system design 511
considerations, interfaces for exposing and accessing data would vary in their complexity and can include 512

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

16

both push and pull software mechanisms. These mechanisms can include subscription to events, listening 513
to data feeds, querying for specific data properties or content, and the ability to submit a code for 514
execution to process the data in situ. Because the data can be too large to economically move across the 515
network, the interface could also allow the submission of analysis requests (e.g., software code 516
implementing a certain algorithm for execution), with the results returned to the requestor. Data access 517
may not always be automated, but might involve a human role logging into the system and providing 518
directions where new data should be transferred (e.g., establishing a subscription to an email-based data 519
feed). 520

The interface between the Data Provider and Big Data Application Provider typically will go through 521
three phases: initiation, data transfer, and termination. The initiation phase is started by either party and 522
often includes some level of authentication/authorization. The phase may also include queries for 523
metadata about the source or consumer, such as the list of available topics in a publish/subscribe 524
(pub/sub) model and the transfer of any parameters (e.g., object count/size limits or target storage 525
locations). Alternatively, the phase may be as simple as one side opening a socket connection to a known 526
port on the other side. 527

The data transfer phase may be a push from the Data Provider or a pull by the Big Data Application 528
Provider. It may also be a singular transfer or involve multiple repeating transfers. In a repeating transfer 529
situation, the data may be a continuous stream of transactions/records/bytes. In a push scenario, the Big 530
Data Application Provider must be prepared to accept the data asynchronously but may also be required 531
to acknowledge (or negatively acknowledge) the receipt of each unit of data. In a pull scenario, the Big 532
Data Application Provider would specifically generate a request that defines through parameters of the 533
data to be returned. The returned data could itself be a stream or multiple records/units of data, and the 534
data transfer phase may consist of multiple request/send transactions. 535

The termination phase could be as simple as one side simply dropping the connection or could include 536
checksums, counts, hashes, or other information about the completed transfer. 537

3.3 BIG DATA APPLICATION PROVIDER 538

The Big Data Application Provider role executes a specific set of operations along the data life cycle to 539
meet the requirements established by the System Orchestrator, as well as meeting security and privacy 540
requirements. The Big Data Application Provider is the architecture component that encapsulates the 541
business logic and functionality to be executed by the architecture. The Big Data Application Provider 542
activities include the following: 543

• Collection, 544
• Preparation, 545
• Analytics, 546
• Visualization, and 547
• Access. 548

These activities are represented by the subcomponents of the Big Data Application Provider as shown in 549
Figure 3. The execution of these activities would typically be specific to the application and, therefore, 550
are not candidates for standardization. However, the metadata and the policies defined and exchanged 551
between the application’s subcomponents could be standardized when the application is specific to a 552
vertical industry. 553

While many of these activities exist in traditional data processing systems, the data volume, velocity, 554
variety, and variability present in Big Data systems radically change their implementation. Traditional 555
algorithms and mechanisms of traditional data processing implementations need to be adjusted and 556
optimized to create applications that are responsive and can grow to handle ever-growing data collections. 557

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

17

As data propagates through the ecosystem, it is being processed and transformed in different ways in 558
order to extract the value from the information. Each activity of the Big Data Application Provider can be 559
implemented by independent stakeholders and deployed as stand-alone services. 560

The Big Data Application Provider can be a single instance or a collection of more granular Big Data 561
Application Providers, each implementing different steps in the data life cycle. Each of the activities of 562
the Big Data Application Provider may be a general service invoked by the System Orchestrator, Data 563
Provider, or Data Consumer, such as a web server, a file server, a collection of one or more application 564
programs, or a combination. There may be multiple and differing instances of each activity or a single 565
program may perform multiple activities. Each of the activities is able to interact with the underlying Big 566
Data Framework Providers as well as with the Data Providers and Data Consumers. In addition, these 567
activities may execute in parallel or in any number of sequences and will frequently communicate with 568
each other through the messaging/communications element of the Big Data Framework Provider. Also, 569
the functions of the Big Data Application Provider, specifically the collection and access activities, will 570
interact with the Security and Privacy Fabric to perform authentication/authorization and record/maintain 571
data provenance. 572

Each of the functions can run on a separate Big Data Framework Provider or all can use a common Big 573
Data Framework Provider. The considerations behind these different system approaches would depend on 574
potentially different technological needs, business and/or deployment constraints (including privacy), and 575
other policy considerations. The baseline NBDRA does not show the underlying technologies, business 576
considerations, and topological constraints, thus making it applicable to any kind of system approach and 577
deployment. 578

For example, the infrastructure of the Big Data Application Provider would be represented as one of the 579
Big Data Framework Providers. If the Big Data Application Provider uses external/outsourced 580
infrastructures as well, it or they will be represented as another or multiple Big Data Framework 581
Providers in the NBDRA. The multiple blocks behind the Big Data Framework Providers in Figure 3 582
indicate that multiple Big Data Framework Providers can support a single Big Data Application Provider. 583

3.4 BIG DATA FRAMEWORK PROVIDER 584

The Big Data Framework Provider typically consists of one or more hierarchically organized instances of 585
the components in the NBDRA IT value chain (Figure 3). There is no requirement that all instances at a 586
given level in the hierarchy be of the same technology. In fact, most Big Data implementations are 587
hybrids that combine multiple technology approaches in order to provide flexibility or meet the complete 588
range of requirements, which are driven from the Big Data Application Provider. 589

Many of the recent advances related to Big Data have been in the area of frameworks designed to scale to 590
Big Data needs (e.g., addressing volume, variety, velocity, and variability) while maintaining linear or 591
near-linear performance. These advances have generated much of the technology excitement in the Big 592
Data space. Accordingly, there is a great deal more information available in the frameworks area 593
compared to the other components, and the additional detail provided for the Big Data Framework 594
Provider in this document reflects this imbalance. 595

The Big Data Framework Provider comprises the following three sub-roles (from the bottom to the top): 596

• Infrastructure Frameworks, 597
• Data Platform Frameworks, and 598
• Processing Frameworks. 599

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

18

3.5 DATA CONSUMER 600

Similar to the Data Provider, the role of Data Consumer within the NBDRA can be an actual end user or 601
another system. In many ways, this role is the mirror image of the Data Provider, with the entire Big Data 602
framework appearing like a Data Provider to the Data Consumer. The activities associated with the Data 603
Consumer role include the following: 604

• Search and Retrieve, 605
• Download, 606
• Analyze Locally, 607
• Reporting, 608
• Visualization, and 609
• Data to Use for Their Own Processes. 610

The Data Consumer uses the interfaces or services provided by the Big Data Application Provider to get 611
access to the information of interest. These interfaces can include data reporting, data retrieval, and data 612
rendering. 613

This role will generally interact with the Big Data Application Provider through its access function to 614
execute the analytics and visualizations implemented by the Big Data Application Provider. This 615
interaction may be demand-based, where the Data Consumer initiates the command/transaction and the 616
Big Data Application Provider replies with the answer. The interaction could include interactive 617
visualizations, creating reports, or drilling down through data using business intelligence functions 618
provided by the Big Data Application Provider. Alternately, the interaction may be stream- or push-based, 619
where the Data Consumer simply subscribes or listens for one or more automated outputs from the 620
application. In almost all cases, the Security and Privacy fabric around the Big Data architecture would 621
support the authentication and authorization between the Data Consumer and the architecture, with either 622
side able to perform the role of authenticator/authorizer and the other side providing the credentials. Like 623
the interface between the Big Data architecture and the Data Provider, the interface between the Data 624
Consumer and Big Data Application Provider would also pass through the three distinct phases of 625
initiation, data transfer, and termination. 626

3.6 MANAGEMENT FABRIC OF THE NBDRA 627

The Big Data characteristics of volume, velocity, variety, and variability demand a versatile management 628
platform for storing, processing, and managing complex data. Management of Big Data systems should 629
handle both system- and data-related aspects of the Big Data environment. The Management Fabric of the 630
NBDRA encompasses two general groups of activities: system management and Big Data life cycle 631
management (BDLM). System management includes activities such as provisioning, configuration, 632
package management, software management, backup management, capability management, resources 633
management, and performance management. BDLM involves activities surrounding the data life cycle of 634
collection, preparation/curation, analytics, visualization, and access. 635

As discussed above, the NBDRA represents a broad range of Big Data systems—from tightly coupled 636
enterprise solutions integrated by standard or proprietary interfaces to loosely coupled vertical systems 637
maintained by a variety of stakeholders or authorities bound by agreements, standard interfaces, or de 638
facto standard interfaces. Therefore, different considerations and technical solutions would be applicable 639
for different cases. 640

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

19

3.7 SECURITY AND PRIVACY FABRIC OF THE NBDRA 641

Security and privacy considerations form a fundamental aspect of the NBDRA. This is geometrically 642
depicted in Figure 3 by the Security and Privacy Fabric surrounding the five main components, indicating 643
that all components are affected by security and privacy considerations. Thus, the role of security and 644
privacy is correctly depicted in relation to the components but does not expand into finer details, which 645
may be more accurate but are best relegated to a more detailed security and privacy reference 646
architecture. The Data Provider and Data Consumer are included in the Security and Privacy Fabric since, 647
at the least, they may often nominally agree on security protocols and mechanisms. The Security and 648
Privacy Fabric is an approximate representation that alludes to the intricate interconnected nature and 649
ubiquity of security and privacy throughout the NBDRA. Additional details about the Security and 650
Privacy Fabric are included in the NIST Interoperability Framework: Volume 4, Security and Privacy 651
document. 652

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

20

4 NBDRA ARCHITECTURE VIEWS 653

As outlined in Section 3, the five main roles and two fabrics of the NBDRA represent the different 654
categories of technical activities and functional components within a Big Data system. In order to apply 655
the NBDRA to a particular system, it is necessary to construct architecture views of these activities and 656
the functional components that implement them. In constructing these views, the following definitions 657
apply: 658

Role: A related set of functions performed by one or more actors. 659

Sub-Role: A closely related sub-set of functions within a larger role. 660

Activity: A class of functions performed to fulfill the needs of one or more roles. 661
Example: Data Collection is a class of activities through which a Big Data Application 662
Provider obtains data. Instances of such would be web crawling, File Transfer Protocol 663
(FTP) site, web services, database queries, etc. 664

Functional Component: A class of physical items which support one or more activities 665
within a role. Example: Stream Processing Frameworks are a class of computing 666
frameworks which implement processing of streaming data. Instances of such 667
frameworks would include SPARK and STORM. 668

In order to promote consistency and the ability to easily compare and contrast the views of different 669
architecture implementations, the NBDRA is proposing the conventions shown in Figure 6 for the 670
activities and functional component views. 671

 672
Figure 6: NBDRA View Conventions 673

The process of applying the NBDRA to a specific architecture implementation involves creating two 674
views of the architecture. The first view is the Activities View where one would enumerate the activities 675
to be accomplished by each role and sub-role within the system. Since there could be multiple instances 676
of different roles within a given system architecture, it would be appropriate to construct separate 677
architecture views for each instance since the role would likely be performing different activities though 678
different functional components. 679

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

21

Figure 7 below provides a broad skeleton for construction of the activity views in terms of the roles and 680
fabrics which anchor each view into a common framework. Depending on the specifics of a particular 681
architecture, it may helpful to visually rearrange these components, show multiple instances where 682
appropriate, and even construct separate sub-view diagrams for each role. These choices are entirely 683
dependent on the specific architecture requirements. 684

 685

Figure 7: Top Level Roles and Fabrics 686

Sections 4.1 and 4.2 provide high-level examples of the types and classes of activities and functional 687
components, respectively, that may be required to support a given architecture implementation. General 688
classes and descriptions are provided in both cases because across the range of potential Big Data 689
applications and architectures, the potential specific activities would be too numerous to enumerate and 690
the rapid evolution of software/hardware functional components makes a complete list impractical. 691

It should also be noted that as one goes lower down the IT value chain of the architecture, the diversity 692
and details of the activities and functional components would be less varied. 693

Finally, the sections below do not attempt to provide activity or functional component details for the Data 694
Provider or Data Consumer roles. There are two reasons for this. First, a Data Provider could be anything 695
from a simple sensor to a full-blown Big Data system itself. Providing a comprehensive list would be 696
impractical as shown in the System of Systems View in Figure 5 above. Second, often the Data Provider 697
and Data Consumer roles are supported by elements external to the architecture being developed and, thus 698
are outside the control of the architect. The user of this report should enumerate and document those 699
activities and functions to the extent it makes sense for their specific architecture. In cases where the Data 700
Provider and Data Consumer roles are within the architecture boundary, the user is advised to create 701
views based on similar roles, activities, and functional components found in the sections below. In cases 702

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

22

where those roles are external to the architecture, the user should document any activities or components 703
on which the architecture is dependent. For example, activities and components related to authentication 704
or service-level agreements should be captured. 705

4.1 ACTIVITIES VIEW 706

As described above, the activities view is meant to describe what is performed or accomplished by 707
various roles in the Big Data system. As per the definitions, an activity can be something performed by a 708
person, organization, software, or hardware. Figure 8 below provides some top-level classes of activities 709
by roles and sub-roles which may be applicable to a Big Data architecture implementation. The following 710
paragraphs describe the roles and the classes of activities associated with those roles. The user is advised 711
to use these examples primarily as guides and to create more specific classes of activities and associated 712
descriptions as required to document their architecture. 713

 714

Figure 8: Top-Level Classes of Activities Within the Activities View 715

Because the Data Provider and Data Consumer roles can represent anything such as another computer 716
system, a Big Data system, a person sitting at a keyboard, or remote sensors, the sub-roles and classes of 717
activities associated with these roles can encompass any of the activity classes defined below or others. 718
Users of the NBDRA should define the classes of activities and particular activities that address specific 719
concerns related to their architecture implementation. 720

The following paragraphs describe the general classes of activities implemented within the roles, sub-721
roles, and fabrics of the NBDRA. 722

4.1.1 SYSTEM ORCHESTRATOR 723

The activities within the System Orchestrator role set the overall ownership, governance, and policy 724
functions for the Big Data system by defining the appropriate requirements. These activities take place 725

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

23

primarily during the system definition phase but must be revisited periodically throughout the life cycle of 726
the system. The other primary aspect of activities under this role is the monitoring of compliance with the 727
associated requirements. 728

Some classes of activities that could be defined for this role in the architecture include requirements 729
definition and compliance monitoring for: 730

• Business Ownership: This activity class defines which stakeholders own and have responsibility 731
for the various parts of the Big Data System. This activity would define the ownership and 732
responsibility for the activities and functional components of the rest of the system and how that 733
ownership will be monitored. 734

• Governance: This activity class would define the policies and process for governance of the 735
overall system. These governance requirements would in turn be executed and monitored by the 736
stakeholders defined as owners for the respective parts of the system. 737

• System Architecture: This class of activities involves defining the overall requirements that must 738
be met by the system architecture. In general, activities in this class establish the technical 739
guidelines that the overall system must meet and then provide the policies for monitoring the 740
overall architecture to verify that it remains in compliance with the requirements. 741

• Data Science: Activities in this class would define many of the requirements that must be met by 742
individual algorithms or applications within the system. These could include accuracy of 743
calculations or the precision/recall of data mining algorithms. 744

• Security/Privacy: While no classes of activities are considered mandatory, this class is certainly 745
the most critical and any architecture without well-defined security and privacy requirements and 746
associated monitoring is bound to be at extreme risk. Security deals with the control of access to 747
the system and its data and is required to ensure the privacy of personal or corporate information. 748
Privacy relates to both securing personal information but also defining the policies and controls 749
by which that information or derived information may or may not be shared. 750

Other classes of activities that may be addressed include the following: 751

• Quality Management, 752
• Service Management, and 753
• Audit Requirements. 754

4.1.2 BIG DATA APPLICATION PROVIDER 755

4.1.2.1 Collection 756

In general, the collection activity of the Big Data Application Provider handles the interface with the Data 757
Provider. This may be a general service, such as a file server or web server configured by the System 758
Orchestrator to accept or perform specific collections of data, or it may be an application-specific service 759
designed to pull data or receive pushes of data from the Data Provider. Since this activity is receiving data 760
at a minimum, it must store/buffer the received data until it is persisted through the Big Data Framework 761
Provider. This persistence need not be to physical media but may simply be to an in-memory queue or 762
other service provided by the processing frameworks of the Big Data Framework Provider. The collection 763
activity is likely where the extraction portion of the Extract, Transform, Load (ETL)/Extract, Load, 764
Transform (ELT) cycle is performed. At the initial collection stage, sets of data (e.g., data records) of 765
similar structure are collected (and combined), resulting in uniform security, policy, and other 766
considerations. Initial metadata is created (e.g., subjects with keys are identified) to facilitate subsequent 767
aggregation or look-up methods. 768

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

24

4.1.2.2 Preparation 769

The preparation activity is where the transformation portion of the ETL/ELT cycle is likely performed, 770
although analytics activity will also likely perform advanced parts of the transformation. Tasks performed 771
by this activity could include data validation (e.g., checksums/hashes, format checks), cleaning (e.g., 772
eliminating bad records/fields), outlier removal, standardization, reformatting, or encapsulating. This 773
activity is also where source data will frequently be persisted to archive storage in the Big Data 774
Framework Provider and provenance data will be verified or attached/associated. Verification or 775
attachment may include optimization of data through manipulations (e.g., deduplication) and indexing to 776
optimize the analytics process. This activity may also aggregate data from different Data Providers, 777
leveraging metadata keys to create an expanded and enhanced dataset. 778

4.1.2.3 Analytics 779

The analytics activity of the Big Data Application Provider includes the encoding of the low-level 780
business logic of the Big Data system (with higher-level business process logic being encoded by the 781
System Orchestrator). The activity implements the techniques to extract knowledge from the data based 782
on the requirements of the vertical application. The requirements specify the data processing algorithms 783
for processing the data to produce new insights that will address the technical goal. The analytics activity 784
will leverage the processing frameworks to implement the associated logic. This typically involves the 785
activity providing software that implements the analytic logic to the batch and/or streaming elements of 786
the processing framework for execution. The messaging/communication framework of the Big Data 787
Framework Provider may be used to pass data or control functions to the application logic running in the 788
processing frameworks. The analytic logic may be broken up into multiple modules to be executed by the 789
processing frameworks which communicate, through the messaging/communication framework, with 790
each other and other functions instantiated by the Big Data Application Provider. 791

4.1.2.4 Visualization 792

The visualization activity of the Big Data Application Provider prepares elements of the processed data 793
and the output of the analytic activity for presentation to the Data Consumer. The objective of this activity 794
is to format and present data in such a way as to optimally communicate meaning and knowledge. The 795
visualization preparation may involve producing a text-based report or rendering the analytic results as 796
some form of graphic. The resulting output may be a static visualization and may simply be stored 797
through the Big Data Framework Provider for later access. However, the visualization activity frequently 798
interacts with the access activity, the analytics activity, and the Big Data Framework Provider (processing 799
and platform) to provide interactive visualization of the data to the Data Consumer based on parameters 800
provided to the access activity by the Data Consumer. The visualization activity may be completely 801
application implemented, leverage one or more application libraries, or may use specialized visualization 802
processing frameworks within the Big Data Framework Provider. 803

4.1.2.5 Access 804

The access activity within the Big Data Application Provider is focused on the communication/interaction 805
with the Data Consumer. Similar to the collection activity, the access activity may be a generic service 806
such as a web server or application server that is configured by the System Orchestrator to handle specific 807
requests from the Data Consumer. This activity would interface with the visualization and analytic 808
activities to respond to requests from the Data Consumer (who may be a person) and uses the processing 809
and platform frameworks to retrieve data to respond to Data Consumer requests. In addition, the access 810
activity confirms that descriptive and administrative metadata and metadata schemes are captured and 811
maintained for access by the Data Consumer and as data is transferred to the Data Consumer. The 812
interface with the Data Consumer may be synchronous or asynchronous in nature and may use a pull or 813
push paradigm for data transfer. 814

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

25

4.1.3 BIG DATA FRAMEWORK PROVIDER 815

The Big Data Framework Provider role supports classes of activities associated with providing 816
management and communications between the subordinate sub-roles (i.e., Processing, Platforms, and 817
Infrastructures) and their classes of activities. Two common classes of activities associated with this role 818
are the following: 819

• Messaging: This activity class provides the necessary message queues and other communication 820
mechanisms that support communications between the activities within the Big Data Framework 821
Provider sub-roles and the Big Data Application Provider activities. 822

• Resource Management: Resources available to a given Big Data system are finite, so activities 823
that manage the allocation of resources to other sub-roles and activities are necessary. Such 824
activities would ensure that resources are allocated an appropriate priority status relative to other 825
activities and that resources, such as memory and central processing unit (CPU), are not 826
oversubscribed. 827

4.1.3.1 Infrastructure Activities 828

Classes of activities within the Infrastructure sub-role support the underlying computing, storage, and 829
networking functions required to implement the overall system. These activity classes reflect the 830
underlying operations performed on data within the system to include: Transmission, Reception, Storage, 831
Manipulation, and Retrieval. These activities may be associated with physical or virtual infrastructure 832
resources. In defining the specific activities for a given system, the focus should be on specific types of 833
activities. For example, a system which requires highly parallel processing of large matrices or data may 834
specify an activity which supports Single Instruction Multiple Data computing, such as that provided by 835
Graphic Processing Units (GPUs). Transmission activities may include descriptions of data transmission 836
requirements which define the required throughput and latency. Storage and retrieval activities might 837
describe performance of volatile or non-volatile storage. 838

4.1.3.2 Platform Activities 839

The Big Data Platform Provider sub-role is associated with activities which manage the organization and 840
distribution of data within the Big Data system. Since many Big Data systems are horizontally distributed 841
across multiple infrastructure resources, specific activities related to creating data elements can specify 842
that data will be replicated across a number of nodes and will be eventually consistent when accessed 843
from any node in the cluster. Other activities should describe how data will be accessed and what type of 844
indexing is required to support that access. For example, geospatial data requires specialized indexing for 845
efficient retrieval. So a related activity might describe maintaining a z-curve type of index. 846

4.1.3.3 Processing Activities 847

Processing activities describe how data will be processed in support of Big Data applications. This 848
processing generally falls into a continuum, from long-running batch jobs to responsive processing, and 849
supports interactive applications of continuous stream processing. The types of processing activities 850
described for a given architecture would be dependent on the characteristics (volume and velocity 851
primarily) of the data processed by the Big Data Application Providers and their requirements. Depending 852
on the type of processing required, an activity might describe MapReduce or Bulk Synchronous Parallel 853
(BSP) processing for batch-oriented requirements. Streaming activities might specify the performance 854
requirements necessary to handle the volume or velocity of data. 855

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

26

4.1.4 MANAGEMENT FABRIC ACTIVITIES 856

4.1.4.1 System Management 857

To address the challenge of daily demands of operating multiple Big Data applications, a Big Data 858
Management Fabric may be needed by planners, operators, and data center owners. Stated broadly, Big 859
Data creates a need for larger or novel forms of operational intelligence. These include the following: 860

• Configuration activities associated with management of potential accountability and traceability 861
for data access associated with individual subjects / consumers, as well as their associated 862
organizations. 863

• Resource management activities to support burst and peak demand tied to both planned and 864
unplanned usage changes. Specific activities would be defined to support the automated 865
allocation of resources to meet demand. By predicting the fluctuations in load, the impact of those 866
fluctuations can be smoothed through simulation, predictive load analytics, more intelligent 867
monitoring, and practical experience. Modeling and simulation for operational intelligence may 868
become essential in some settings [11], [12]. 869

• Monitoring activities to support operational mitigation and resilience for both centralized and 870
decentralized services. These activities may also support load balancing in conjunction with 871
resource management activities to avoid outages during unexpected peak loads and reduce costs 872
during off-peak times. Real-time monitoring, gating, filtering, and throttling of streaming data 873
requires new approaches due to the “variety of tasks, such as performance analysis, workload 874
management, capacity planning, and fault detection. Applications producing Big Data make the 875
monitoring task very difficult at high-sampling frequencies because of high computational and 876
communication overheads [13].” 877

• Provisioning and package management activities to support automated deployment and 878
configuration of software and services. This class of activities is frequently associated with the 879
emerging Dev/Ops movement designed to automate the frequent deployment of capabilities into 880
production. Movement toward automated methods for ensuring information assurance (versus 881
training and governance: they may not scale). See references [14] and [15]. 882

• BDLM activities support the overall life cycle of data throughout its existence within the Big 883
Data system. Of all the classes of management fabric activities, the BDLM activities are the most 884
affected by the Big Data characteristics and merit the additional discussion below. 885

4.1.4.2 Big Data Life Cycle Management 886

BDLM faces more challenges compared to traditional data life cycle management (DLM), which may 887
require less data transfer, processing, and storage. However, BDLM still inherits the DLM phases in 888
terms of data acquisition, distribution, use, migration, maintenance, and disposition—but at a much 889
bigger processing scale. The Big Data Application Providers may require much more computational 890
processing for collection, preparation/curation, analytics, visualization, and access to be able to use the 891
analytic results. In other words, the BDLM activity includes verification that the data are handled 892
correctly by other NBDRA components in each process within the data life cycle—from the moment they 893
are ingested into the system by the Data Provider, until the data are processed or removed from the 894
system. 895

The importance of BDLM to Big Data is demonstrated through the following considerations: 896

• Data volume can be extremely large, which may overwhelm the storage capacity, or make storing 897
incoming data prohibitively expensive. 898

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

27

• Data velocity, the rate at which data can be captured and ingested into the system, can overwhelm 899
available storage space at a given time. Even with the elastic storage service provided by cloud 900
computing for handling dynamic storage needs, unconstrained data storage may also be 901
unnecessarily costly for certain application requirements. 902

• Different Big Data applications will likely have different requirements for the lifetime of a piece 903
of data. The differing requirements have implications on how often data must be refreshed so that 904
processing results are valid and useful. In data refreshment, old data are dispositioned and not fed 905
into analytics or discovery programs. At the same time, new data is ingested and taken into 906
account by the computations. For example, real-time applications will need very short data 907
lifetime but a market study of consumers' interest in a product line may need to mine data 908
collected over a longer period of time. 909

Because the task of BDLM can be distributed among different organizations and/or individuals within the 910
Big Data computing environment, coordination of data processing between NBDRA components has 911
greater difficulty in complying with policies, regulations, and security requirements. Within this context, 912
BDLM may need to include the following sub-activities: 913

• Policy Management: Captures the requirements for the data life cycle that allows old data to be 914
dispositioned and new data to be considered by Big Data applications. Maintains the migration 915
and disposition strategies that specify the mechanism for data transformation and dispositioning, 916
including transcoding data, transferring old data to lower-tier storage for archival purpose, 917
removing data, or marking data as in situ. 918

• Metadata Management: Enables BDLM, since metadata are used to store information that 919
governs the management of the data within the system. Essential metadata information includes 920
persistent identification of the data, fixity/quality, and access rights. The challenge is to find the 921
minimum set of elements to execute the required BDLM strategy in an efficient manner. 922

• Accessibility Management: This involves the change of data accessibility over time. For 923
example, census data can be made available to the public after 72 years. BDLM is responsible for 924
triggering the accessibility update of the data or sets of data according to policy and legal 925
requirements. Normally, data accessibility information is stored in the metadata. 926

• Data Recovery: BDLM can include the recovery of data that were lost due to disaster or 927
system/storage fault. Traditionally, data recovery can be achieved using regular backup and 928
restore mechanisms. However, given the large volume of Big Data, traditional backup may not be 929
feasible. Instead, replication may have to be designed within the Big Data ecosystem. Depending 930
on the tolerance of data loss—each application has its own tolerance level—replication strategies 931
have to be designed. The replication strategy includes the replication window time, the selected 932
data to be replicated, and the requirements for geographic disparity. Additionally, in order to cope 933
with the large volume of Big Data, data backup and recovery should consider the use of modern 934
technologies within the Big Data Framework Provider. 935

• Preservation Management: The system maintains data integrity so that the veracity and velocity 936
of the analytics process are fulfilled. Due to the extremely large volume of Big Data, preservation 937
management is responsible for disposition-aged data contained in the system. Depending on the 938
retention policy, these aged data can be deleted or migrated to archival storage. In the case where 939
data must be retained for years, decades, and even centuries, a preservation strategy will be 940
needed so the data can be accessed by the provider components if required. This will invoke long-941
term digital preservation that can be performed by Big Data Application Providers using the 942
resources of the Big Data Framework Provider. 943

In the context of Big Data, BDLM contends with the Big Data characteristics of volume, velocity, variety, 944
and variability. As such, BDLM and its sub-activities interact with other components of the NBDRA as 945
shown in the following examples: 946

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

28

• System Orchestrator: BDLM enables data scientists to initiate any combination of processing 947
including accessibility management, data backup/recovery, and preservation management. The 948
process may involve other components of the NBDRA, such as Big Data Application Provider 949
and Big Data Framework Provider. For example, data scientists may want to interact with the Big 950
Data Application Provider for data collection and curation, invoke the Big Data Framework 951
Provider to perform certain analysis, and grant access to certain users to access the analytic 952
results from the Data Consumer. 953

• Data Provider: BDLM manages ingestion of data and metadata from the data source(s) into the 954
Big Data system, which may include logging the entry event in the metadata by the Data 955
Provider. 956

• Big Data Application Provider: BDLM executes data masking and format transformations for 957
data preparation or curation purpose. 958

• Big Data Framework Provider: BDLM executes basic bit-level preservation and data backup 959
and recovery according to the recovery strategy. 960

• Data Consumer: BDLM ensures that relevant data and analytic results are available with proper 961
access control for consumers and software agents to consume within the BDLM policy strategy. 962

• Security and Privacy Fabric: Keeps the BDLM up to date according to new security policy and 963
regulations. 964

The Security and Privacy Fabric also uses information coming from BDLM with respect to data 965
accessibility. The Security and Privacy Fabric controls access to the functions and data usage produced by 966
the Big Data system. This data access control can be informed by the metadata, which is managed and 967
updated by BDLM. 968

4.1.5 SECURITY AND PRIVACY FABRIC ACTIVITIES 969

The Security and Privacy Fabric provides the activities necessary to manage the access to system data and 970
services. The primary classes of activities associated with this fabric are: 971

• Authentication: This class of activities includes validation that the user or process is who they 972
claim to be. The specific authentication activities may specify the type of authentication, such as 973
two-factor or private key. 974

• Authorization: This class of activities ensures that the user or process has the rights to access 975
resources or services. Access controls may define the specific access privileges (e.g., create, 976
update, delete) for the data or services. The authorization activities may specify broad role-based 977
access controls or more granular attribute-based access controls. 978

• Auditing: These activities record events that happen within the system to support both forensic 979
analysis in the event of a breach or corruption of data, as well as providing for maintenance of 980
providence and pedigree for data. 981

Depending on the allocation of responsibilities, the Security and Privacy Fabric may also support certain 982
provisioning and configuration activities. For example, activities for regular monitoring of system or 983
application configuration files to ensure that there have been no unauthorized changes may be allocated to 984
this fabric. In reality, the activities in the Security and Privacy Fabric and Management Fabric must, at a 985
minimum, interact and will frequently involve shared responsibilities. 986

4.2 FUNCTIONAL COMPONENT VIEW 987

The functional component view of the reference architecture should define and describe the functional 988
components (e.g., software, hardware, people, organizations) that perform the various activities outlined 989
in the activities view. Activities and functional components need not map one-to-one and in fact, many 990
functional components may be required to execute a single activity and multiple activities may be 991

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

29

performed by a single functional component. The user of this model is recommended to maintain a 992
mapping of activities to functional components to support verification that all activities can be performed 993
by some component and that only components that are necessary are included within the architecture. 994
Figure 9 below shows classes of functional components common to the various roles, sub-roles, and 995
fabrics of the NBDRA. These classes are described in the following paragraphs. 996

 997

Figure 9: Common Classes of Functional Components 998

4.2.1 SYSTEM ORCHESTRATOR 999

The classes of functional components for the system orchestrator revolve around the policies and 1000
processes that govern the operation of the Big Data system. These policies and processes define the 1001
requirements for how other functional components must behave and interact. Often the policies and 1002
processes are derived from community best practices or standards such as International Organization of 1003
Standardization (ISO) 20000 for IT Services Management or ISO 27000 for Information Technology 1004
Security. Other classes of processes and policies may include ones for data sharing, external system 1005
access, and how privacy-sensitive data is to be handled. 1006

4.2.2 BIG DATA APPLICATION PROVIDER 1007

The functional components within the Big Data Application Provider implement the specific functionality 1008
of the Big Data system. The classes for components within a Big Data application include: 1009

• Work Flows: These components would control how data and/or users go through the functions of 1010
the system. These are often implemented within frameworks or enterprise service bus 1011
components that would also be included here. 1012

• Transformations: These components are responsible for reformatting data to meet the needs of 1013
the algorithms or visualizations. The transformations may also invoke algorithms to support the 1014
transformation. These may be embedded in other components, such as ETL tools. 1015

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

30

• Visualizations: The visualization components are responsible for formatting data to present to an 1016
end user. These visualizations may be textual or graphic and are frequently implemented with 1017
other framework or tool functional components. For example, textual visualizations may be 1018
implemented using report writer components while a graphic visualization of the output of a 1019
clustering algorithm may be implemented by a charting framework component. 1020

• Access Services: These components provide access to the Big Data system to the Data 1021
Consumers and may be designed for use by humans or other systems. Frequently, these specific 1022
components are implemented within other frameworks or components such as web services 1023
containers. 1024

• Algorithms: This class of components is the heart of the application functionality. They can 1025
range from simple summarization and aggregation algorithms to more complex statistical analysis 1026
such as clustering, or graph traversal/analysis algorithms. 1027

Algorithms themselves can be classified into general classes which may be defined as functional 1028
components. In 2004, a list of algorithms for simulation in the physical sciences was developed that 1029
became known as the Seven Dwarfs [16]. The original list of seven dwarfs was modified in 2006 and 1030
extended to 13 algorithms (Table 2) based on the following definition: “A dwarf is an algorithmic method 1031
that captures a pattern of computation and communication.”3 1032

Table 2: 13 Dwarfs—Algorithms for Simulation in the Physical Sciences 1033

Dense Linear Algebra* Combinational Logic
Sparse Linear Algebra* Graph Traversal
Spectral methods Dynamic Programming
N-Body Methods Backtrack and Branch-and-Bound
Structured Grids* Graphical Models
Unstructured Grids* Finite State Machines
MapReduce
Notes: 1034
* Indicates one of the original seven dwarfs. The following modifications to the original list of seven algorithms were made in 1035
2006: Fast Fourier Transform, Particles, and Monte Carlo were removed. MapReduce was added. 1036

Many other algorithms or processing models have been defined over the years. MapReduce, and Bulk 1037
Synch Processing (BSP) are perhaps the two best known models in the Big Data space today. These are 1038
described in the following subsections. 1039

4.2.2.1 MapReduce 1040

Several major Internet search providers popularized the MapReduce model as they worked to implement 1041
their search capabilities. In general, MapReduce programs follow five basic stages: 1042

1. Input preparation and assignment to mappers; 1043
2. Map a set of keys and values to new keys and values: Map(k1,v1) → list(k2,v2); 1044
3. Shuffle data to each reducer and each reducer sorts its input—each reducer is assigned a set 1045

of keys (k2); 1046
4. Run the reduce on a list(v2) associated with each key and produce an output: Reduce(k2, 1047

list(v2) → list(v3); and 1048
5. Final output: the lists(v3) from each reducer are combined and sorted by k2. 1049

3 Patterson, David; Yelick, Katherine. Dwarf Mind. A View from Berkeley.
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

31

While there is a single output, nothing in the model prohibits multiple input datasets. It is extremely 1050
common for complex analytics to be built as workflows of multiple MapReduce jobs. While the 1051
MapReduce programming model is best suited to aggregation-type analytics (e.g., sum, average, group-1052
by), a wide variety of analytic algorithms have been implemented within processing frameworks. 1053
MapReduce does not generally perform well with applications or algorithms that need to directly update 1054
the underlying data. For example, updating the values for a single key would require that the entire 1055
dataset be read, output, and then moved or copied over the original dataset. Because the mappers and 1056
reducers are stateless in nature, applications that require iterative computation on parts of the data or 1057
repeated access to parts of the dataset do not tend to scale or perform well under MapReduce. 1058

Due to its shared-nothing approach, the usability of MapReduce for Big Data applications has made it 1059
popular enough that a number of large data storage solutions (mostly those of the NoSQL variety) provide 1060
implementations within their architecture. One major criticism of MapReduce early on was that the 1061
interfaces to most implementations were at too low of a level (written in Java or JavaScript). However, 1062
many of the more prevalent implementations now support high-level procedural and declarative language 1063
interfaces, and even visual programming environments are beginning to appear. 1064

4.2.2.2 Bulk Synchronous Parallel 1065

The BSP programming model, originally developed by Leslie Valiant [17], combines parallel processing 1066
with the ability of processing modules to send messages to other processing modules and explicit 1067
synchronization of the steps. A BSP algorithm is composed of what are termed supersteps, which 1068
comprise the following three distinct elements. 1069

• Bulk Parallel Computation: Each processor performs the calculation/analysis on its local chunk 1070
of data. 1071

• Message Passing: As each processor performs its calculations, it may generate messages to other 1072
processors. These messages are frequently updates to values associated with the local data of 1073
other processors but may also result in the creation of additional data. 1074

• Synchronization: Once a processor has completed processing its local data, it pauses until all 1075
other processors have also completed their processing. 1076

This cycle can be terminated by all the processors voting to stop, which will generally happen when a 1077
processor has generated no messages to other processors (e.g., no updates). All processors voting to stop, 1078
in turn, indicates that there are no new updates to any of the processors’ data and the computation is 1079
complete. Alternatively, the cycle may be terminated after a fixed number of supersteps have been 1080
completed (e.g., after a certain number of iterations of a Monte Carlo simulation). 1081

The advantage of BSP over MapReduce is that processing can actually create updates to the data being 1082
processed. It is this distinction that has made BSP popular for graph processing and simulations where 1083
computations on one node/element of data directly affect values or connections with other 1084
nodes/elements. The disadvantage of BSP is the high cost of the synchronization barrier between 1085
supersteps. Should the distribution of data or processing between processors become highly unbalanced, 1086
then some processors may become overloaded while others remain idle. 1087

While high-performance interconnected technologies help to reduce the cost of this synchronization 1088
through faster data exchange between nodes and can allow for re-distribution of data during a super-step 1089
skewing of the processing requirements, the fastest possible performance of any given superstep is lower 1090
bounded by the slowest performance of any processing unit. Essentially, if the data is skewed such that 1091
the processing of a given data element (say traversal of the graph from that element) is especially long-1092
running, the next superstep cannot begin until that nodes processing completes. 1093

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

32

Numerous extensions and enhancements to the basic BSP model have been developed and implemented 1094
over the years, many of which are designed to address the balancing and cost of synchronization 1095
problems. 1096

4.2.3 BIG DATA FRAMEWORK PROVIDER 1097

The Big Data Framework Provider provides the infrastructure required to support the Big Data 1098
Application Provider. Components within the Big Data Framework Provider fall within three overall sub-1099
roles (i.e., processing, platforms, infrastructures) along with some specific crosscutting roles, which 1100
support the communication and integration of components within the overall provider. 1101

4.2.3.1 Infrastructure Frameworks 1102

This Infrastructure Frameworks sub-role of the Big Data Framework Provider provides all of the 1103
resources necessary to host/run the activities of the other roles of the Big Data system. Typically, these 1104
resources consist of some combination of physical resources, which may host/support similar virtual 1105
resources. These resources are generally classified as follows: 1106

• Networking: These are the resources that transfer data from one infrastructure framework 1107
component to another. 1108

• Computing: These are the physical processors and memory that execute and hold the software of 1109
the other Big Data system components. 1110

• Storage: These are resources which provide persistence of the data in a Big Data system. 1111
• Physical Plant: These are the environmental resources (e.g., power, cooling, security) that must 1112

be accounted for when establishing an instance of a Big Data system. 1113

While the Big Data Framework Provider component may be deployed directly on physical resources or 1114
on virtual resources, at some level all resources have a physical representation. Physical resources are 1115
frequently used to deploy multiple components that will be duplicated across a large number of physical 1116
nodes to provide what is known as horizontal scalability. 1117

The following subsections describe the types of physical and virtual resources that compose Big Data 1118
infrastructure. 1119

4.2.3.1.1 Hypervisors 1120
Virtualization is frequently used to achieve elasticity and flexibility in the allocation of physical resources 1121
and is often referred to as infrastructure as a service (IaaS) within the cloud computing community. 1122
Virtualization is implemented via hypervisors that are typically found in one of three basic forms within a 1123
Big Data Architecture. 1124

• Native: In this form, a hypervisor runs natively on the bare metal and manages multiple virtual 1125
machines consisting of operating systems (OS) and applications. 1126

• Hosted: In this form, an OS runs natively on the bare metal and a hypervisor runs on top of that 1127
to host a client OS and applications. This model is not often seen in Big Data architectures due to 1128
the increased overhead of the extra OS layer. 1129

• Containerized: In this form, hypervisor functions are embedded in the OS, which runs on bare 1130
metal. Applications are run inside containers, which control or limit access to the OS and physical 1131
machine resources. This approach has gained popularity for Big Data architectures because it 1132
further reduces overhead since most OS functions are a single shared resource. It may not be 1133
considered as secure or stable because in the event that the container controls/limits fail, one 1134
application may take down every application sharing those physical resources. 1135

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

33

4.2.3.1.2 Physical and Virtual Networks 1136
The connectivity of the architecture infrastructure should be addressed, as it affects the velocity 1137
characteristic of Big Data. While some Big Data implementations may solely deal with data that is 1138
already resident in the data center and does not need to leave the confines of the local network, others 1139
may need to plan and account for the movement of Big Data either into or out of the data center. The 1140
location of Big Data systems with transfer requirements may depend on the availability of external 1141
network connectivity (i.e., bandwidth) and the limitations of Transmission Control Protocol (TCP) where 1142
there is low latency (as measured by packet Round Trip Time) with the primary senders or receivers of 1143
Big Data. To address the limitations of TCP, architects for Big Data systems may need to consider some 1144
of the advanced non-TCP based communications protocols available that are specifically designed to 1145
transfer large files such as video and imagery. 1146

Overall availability of the external links is another infrastructure aspect relating to the velocity 1147
characteristic of Big Data that should be considered in architecting external connectivity. A given 1148
connectivity link may be able to easily handle the velocity of data while operating correctly. However, 1149
should the quality of service on the link degrade or the link fail completely, data may be lost or simply 1150
back up to the point that it can never recover. Use cases exist where the contingency planning for network 1151
outages involves transferring data to physical media and physically transporting it to the desired 1152
destination. However, even this approach is limited by the time it may require to transfer the data to 1153
external media for transport. 1154

The volume and velocity characteristics of Big Data often are driving factors in the implementation of the 1155
internal network infrastructure as well. For example, if the implementation requires frequent transfers of 1156
large multi-gigabyte files between cluster nodes, then high speed and low latency links are required to 1157
maintain connectivity to all nodes in the network. Provisions for dynamic quality of services (QoS) and 1158
service priority may be necessary in order to allow failed or disconnected nodes to re-synchronize once 1159
connectivity is restored. Depending on the availability requirements, redundant and fault tolerant links 1160
may be required. Other aspects of the network infrastructure include name resolution (e.g., Domain Name 1161
Server [DNS]) and encryption along with firewalls and other perimeter access control capabilities. 1162
Finally, the network infrastructure may also include automated deployment, provisioning capabilities, or 1163
agents and infrastructure wide monitoring agents that are leveraged by the management/communication 1164
elements to implement a specific model. 1165

Security of the networks is another aspect that must be addressed depending on the sensitivity of the data 1166
being processed. Encryption may be needed between the network and external systems to avoid man in 1167
the middle interception and compromise of the data. In cases, where the network infrastructure within the 1168
data center is shared encryption of the local network should also be considered. Finally, in conjunction 1169
with the security and privacy fabric auditing and intrusion detection capabilities need to be addressed. 1170

Two concepts, SDN and Network Function Virtualization (NFV), have recently been developed in 1171
support of scalable networks and scalable systems using them. 1172

4.2.3.1.2.1 Software Defined Networks 1173

Frequently ignored, but critical to the performance of distributed systems and frameworks, and especially 1174
critical to Big Data implementations, is the efficient and effective management of networking resources. 1175
Significant advances in network resource management have been realized through what is known as 1176
SDN. Much like virtualization frameworks manage shared pools of CPU/memory/disk, SDNs (or virtual 1177
networks) manage pools of physical network resources. In contrast to the traditional approaches of 1178
dedicated physical network links for data, management, I/O, and control, SDNs contain multiple physical 1179
resources (including links and actual switching fabric) that are pooled and allocated as required to specific 1180
functions and sometimes to specific applications. This allocation can consist of raw bandwidth, quality of 1181
service priority, and even actual data routes. 1182

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

34

4.2.3.1.2.2 Network Function Virtualization 1183

With the advent of virtualization, virtual appliances can now reasonably support a large number of 1184
network functions that were traditionally performed by dedicated devices. Network functions that can be 1185
implemented in this manner include routing/routers, perimeter defense (e.g., firewalls), remote access 1186
authorization, and network traffic/load monitoring. Some key advantages of NFV include elasticity, fault 1187
tolerance, and resource management. For example, the ability to automatically deploy/provision 1188
additional firewalls in response to a surge in user or data connections and then un-deploy them when the 1189
surge is over can be critical in handling the volumes associated with Big Data. 1190

4.2.3.1.3 Physical and Virtual Computing 1191
The logical distribution of cluster/computing infrastructure may vary from a tightly coupled high 1192
performance computing (HPC) cluster to a dense grid of physical commodity machines in a rack, to a set 1193
of virtual machines running on a cloud service provider (CSP), or to a loosely coupled set of machines 1194
distributed around the globe providing access to unused computing resources. Computing infrastructure 1195
also frequently includes the underlying OSs and associated services used to interconnect the cluster 1196
resources via the networking elements. Computing resources may also include computation accelerators, 1197
such as Graphic Processing Units (GPU) and Field Programmable Gate Arrays (FPGA), which can 1198
provide dynamically programmed massively parallel computing capabilities to individual nodes in the 1199
infrastructure. 1200

4.2.3.1.4 Storage 1201
The storage infrastructure may include any resource from isolated local disks to storage area networks 1202
(SANs) or network-attached storage (NAS). 1203

Two aspects of storage infrastructure technology that directly influence their suitability for Big Data 1204
solutions are capacity and transfer bandwidth. Capacity refers to the ability to handle the data volume. 1205
Local disks/file systems are specifically limited by the size of the available media. Hardware or software 1206
redundant array of independent disks (RAID) solutions—in this case local to a processing node—help 1207
with scaling by allowing multiple pieces of media to be treated as a single device. However, this approach 1208
is limited by the physical dimension of the media and the number of devices the node can accept. SAN 1209
and NAS implementations—often known as shared disk solutions—remove that limit by consolidating 1210
storage into a storage specific device. By consolidating storage, the second aspect—transfer bandwidth—1211
may become an issue. While both network and I/O interfaces are getting faster and many implementations 1212
support multiple transfer channels, I/O bandwidth can still be a limiting factor. In addition, despite the 1213
redundancies provided by RAID, hot spares, multiple power supplies, and multiple controllers, these 1214
boxes can often become I/O bottlenecks or single points of failure in an enterprise. Many Big Data 1215
implementations address these issues by using distributed file systems within the platform framework. 1216

4.2.3.1.5 Physical Plant 1217
Environmental resources, such as power and heating, ventilation, and air conditioning provided by 1218
physical plant components, are critical to the Big Data Framework Provider. While environmental 1219
resources are critical to the operation of the Big Data system, they are not within the technical boundaries 1220
and are, therefore, not depicted in Figure 3, the NBDRA conceptual model. 1221

Adequately sized infrastructure to support application requirements is critical to the success of Big Data 1222
implementations. The infrastructure architecture operational requirements range from basic power and 1223
cooling to external bandwidth connectivity (as discussed above). A key evolution that has been driven by 1224
Big Data is the increase in server density (i.e., more CPU/memory/disk per rack unit). However, with this 1225
increased density, infrastructure—specifically power and cooling—may not be distributed within the data 1226
center to allow for sufficient power to each rack or adequate air flow to remove excess heat. In addition, 1227
with the high cost of managing energy consumption within data centers, technologies have been 1228

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

35

developed that actually power down or idle resources not in use to save energy or to reduce consumption 1229
during peak periods. 1230

Also important within this element are the physical security of the facilities and auxiliary (e.g., power 1231
sub-stations). Specifically, perimeter security to include credential verification (e.g., badge/biometrics), 1232
surveillance, and perimeter alarms all are necessary to maintain control of the data being processed. 1233

4.2.3.2 Data Platform Frameworks 1234

Data Platform Frameworks provide for the logical data organization and distribution combined with the 1235
associated access application programming interfaces (APIs) or methods. The frameworks may also 1236
include data registry and metadata services along with semantic data descriptions such as formal 1237
ontologies or taxonomies. The logical data organization may range from simple delimited flat files to 1238
fully distributed relational or columnar data stores. The storage mediums range from high latency robotic 1239
tape drives, to spinning magnetic media, to flash/solid state disks, or to random access memory. 1240
Accordingly, the access methods may range from file access APIs to query languages such as Structured 1241
Query Language (SQL). Typical Big Data framework implementations would support either basic file 1242
system style storage or in-memory storage and one or more indexed storage approaches. Based on the 1243
specific Big Data system considerations, this logical organization may or may not be distributed across a 1244
cluster of computing resources. 1245

In most aspects, the logical data organization and distribution in Big Data storage frameworks mirrors the 1246
common approach for most legacy systems. Figure 10 presents a brief overview of data organization 1247
approaches for Big Data. 1248

 1249
Figure 10: Data Organization Approaches 1250

Many Big Data logical storage organizations leverage the common file system concept where chunks of 1251
data are organized into a hierarchical namespace of directories as their base and then implement various 1252
indexing methods within the individual files. This allows many of these approaches to be run both on 1253
simple local storage file systems for testing purposes or on fully distributed file systems for scale. 1254

4.2.3.2.1 In-memory 1255
The infrastructure illustrated in the NBDRA (Figure 3) indicates that physical resources are required to 1256
support analytics. However, such infrastructure will vary (i.e., will be optimized) for the Big Data 1257
characteristics of the problem under study. Large, but static, historical datasets with no urgent analysis 1258
time constraints would optimize the infrastructure for the volume characteristic of Big Data, while time-1259
critical analyses such as intrusion detection or social media trend analysis would optimize the 1260
infrastructure for the velocity characteristic of Big Data. Velocity implies the necessity for extremely fast 1261
analysis and the infrastructure to support it—namely, very low latency, in-memory analytics. 1262

Logical Data
Organization

 In-memory File Systems

File System

Organization

 Centralized Distributed

Data

Organization

 Delimited
Fixed

Length Binary

 Indexed

 Relational Key-Value Columnar Document Graph

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

36

In-memory storage technologies, many of which were developed to support the scientific HPC domain, 1263
are increasingly used due to the significant reduction in memory prices and the increased scalability of 1264
modern servers and OSs. Yet, an in-memory element of a velocity-oriented infrastructure will require 1265
more than simply massive random-access memory (RAM). It will also require optimized data structures 1266
and memory access algorithms to fully exploit RAM performance. Current in-memory database offerings 1267
are beginning to address this issue. Shared memory solutions common to HPC environments are often 1268
being applied to address inter-nodal communications and synchronization requirements. 1269

Traditional database management architectures are designed to use spinning disks as the primary storage 1270
mechanism, with the main memory of the computing environment relegated to providing caching of data 1271
and indexes. Many of these in-memory storage mechanisms have their roots in the massively parallel 1272
processing and supercomputer environments popular in the scientific community. 1273

These approaches should not be confused with solid state (e.g., flash) disks or tiered storage systems that 1274
implement memory-based storage which simply replicate the disk style interfaces and data structures but 1275
with faster storage medium. Actual in-memory storage systems typically eschew the overhead of file 1276
system semantics and optimize the data storage structure to minimize memory footprint and maximize the 1277
data access rates. These in-memory systems may implement general purpose relational and other not only 1278
or no Structured Query Language (NoSQL) style organization and interfaces or be completely optimized 1279
to a specific problem and data structure. 1280

Like traditional disk-based systems for Big Data, these implementations frequently support horizontal 1281
distribution of data and processing across multiple independent nodes—although shared memory 1282
technologies are still prevalent in specialized implementations. Unlike traditional disk-based approaches, 1283
in-memory solutions and the supported applications must account for the lack of persistence of the data 1284
across system failures. Some implementations leverage a hybrid approach involving write-through to 1285
more persistent storage to help alleviate the issue. 1286

The advantages of in-memory approaches include faster processing of intensive analysis and reporting 1287
workloads. In-memory systems are especially good for analysis of real time data such as that needed for 1288
some complex event processing (CEP) of streams. For reporting workloads, performance improvements 1289
can often be on the order of several hundred times faster—especially for sparse matrix and simulation 1290
type analytics. 1291

4.2.3.2.2 File Systems 1292
Many Big Data processing frameworks and applications access their data directly from underlying file 1293
systems. In almost all cases, the file systems implement some level of the Portable Operating System 1294
Interface (POSIX) standards for permissions and the associated file operations. This allows other higher-1295
level frameworks for indexing or processing to operate with relative transparency as to whether the 1296
underlying file system is local or fully distributed. File-based approaches consist of two layers, the file 1297
system organization and the data organization within the files. 1298

4.2.3.2.2.1 File System Organization 1299

File systems tend to be either centralized or distributed. Centralized file systems are basically 1300
implementations of local file systems that are placed on a single large storage platform (e.g., SAN or 1301
NAS) and accessed via some network capability. In a virtual environment, multiple physical centralized 1302
file systems may be combined, split, or allocated to create multiple logical file systems. 1303

Distributed file systems (also known as cluster file systems) seek to overcome the throughput issues 1304
presented by the volume and velocity characteristics of big data combine I/O throughput across multiple 1305
devices (spindles) on each node, with redundancy and failover mirroring or replicating data at the block 1306
level across multiple nodes. Many of these implementations were developed in support of HPC 1307
computing solutions requiring high throughput and scalability. Performance, in many HPC 1308

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

37

implementations is often achieved through dedicated storage nodes using proprietary storage formats and 1309
layouts. The data replication is specifically designed to allow the use of heterogeneous commodity 1310
hardware across the Big Data cluster. Thus, if a single drive or an entire node should fail, no data is lost 1311
because it is replicated on other nodes and throughput is only minimally affected because that processing 1312
can be moved to the other nodes. In addition, replication allows for high levels of concurrency for reading 1313
data and for initial writes. Updates and transaction style changes tend to be an issue for many distributed 1314
file systems because latency in creating replicated blocks will create consistency issues (e.g., a block is 1315
changed but another node reads the old data before it is replicated). Several file system implementations 1316
also support data compression and encryption at various levels. One major caveat is that, for distributed 1317
block-based file systems, the compression/encryption must be able to be split and allow any given block 1318
to be decompressed/ decrypted out of sequence and without access to the other blocks. 1319

Distributed object stores (also known as global object stores) are a unique example of distributed file 1320
system organization. Unlike the approaches described above, which implement a traditional file system 1321
hierarchy namespace approach, distributed object stores present a flat name space with a globally unique 1322
identifier (GUID) for any given chunk of data. Generally, data in the store is located through a query 1323
against a metadata catalog that returns the associated GUIDs. The GUID generally provides the 1324
underlying software implementation with the storage location of the data of interest. These object stores 1325
are developed and marketed for storage of very large data objects, from complete datasets to large 1326
individual objects (e.g., high resolution images in the tens of gigabytes [GBs] size range). The biggest 1327
limitation of these stores for Big Data tends to be network throughput (i.e., speed) because many require 1328
the object to be accessed in total. However, future trends point to the concept of being able to send the 1329
computation/application to the data versus needing to bring the data to the application. 1330

From a maturity perspective, two key areas where distributed file systems are likely to improve are (1) 1331
random write I/O performance and consistency, and (2) the generation of de facto standards at a similar or 1332
greater level as the Internet Engineering Task Force Requests for Comments document series, such as 1333
those currently available for the network file system (NFS) protocol. Distributed object stores, while 1334
currently available and operational from several commercial providers and part of the roadmap for large 1335
organizations such as the National Geospatial Intelligence Agency (NGA), currently are essentially 1336
proprietary implementations. For Distributed object stores to become prevalent within Big Data 1337
ecosystems, there should be: some level of interoperability available (i.e., through standardized APIs); 1338
standards-based approaches for data discovery; and, most importantly, standards-based approaches that 1339
allow the application to be transferred over the grid and run locally to the data versus transferring the data 1340
to the application. 1341

4.2.3.2.2.2 In File Data Organization 1342

Very little is different for in file data organization in Big Data. File based data can be text, binary data, 1343
fixed length records, or some sort of delimited structure (e.g., comma separated values [CSV], Extensible 1344
Markup Language [XML]). For record-oriented storage (either delimited or fixed length), this generally is 1345
not an issue for Big Data unless individual records can exceed a block size. Some distributed file system 1346
implementations provide compression at the volume or directory level and implement it below the logical 1347
block level (e.g., when a block is read from the file system, it is decompressed/decrypted before being 1348
returned). Because of their simplicity, familiarity, and portability, delimited files are frequently the 1349
default storage format in many Big Data implementations. The trade-off is I/O efficiency (i.e., speed). 1350
While individual blocks in a distributed file system might be accessed in parallel, each block still needs to 1351
be read in sequence. In the case of a delimited file, if only the last field of certain records is of interest 1352
with perhaps hundreds of fields, a lot of I/O and processing bandwidth is wasted. 1353

Binary formats tend to be application or implementation specific. While they can offer much more 1354
efficient access due to smaller data sizes (i.e., integers are two to four bytes in binary while they are one 1355
byte per digit in ASCII [American Standard Code for Information Interchange]), they offer limited 1356

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

38

portability between different implementations. At least one popular distributed file system provides its 1357
own standard binary format, which allows data to be portable between multiple applications without 1358
additional software. However, the bulk of the indexed data organization approaches discussed below 1359
leverage binary formats for efficiency. 1360

4.2.3.2.3 Indexed Storage Organization 1361
The very nature of Big Data (primarily the volume and velocity characteristics) practically drives 1362
requirements to some form of indexing structure. Big Data volume requires that specific data elements be 1363
located quickly without scanning across the entire dataset. Big Data velocity also requires that data can be 1364
located quickly either for matching (e.g., incoming data matches something in an existing dataset) or to 1365
know where to write/update new data. 1366

The choice of a particular indexing method or methods depends mostly on the data and the nature of the 1367
application to be implemented. For example, graph data (i.e., vertices, edges, and properties) can easily be 1368
represented in flat text files as vertex-edge pairs, edge-vertex-vertex triples, or vertex-edge list records. 1369
However, processing this data efficiently would require potentially loading the entire dataset into memory 1370
or being able to distribute the application and dataset across multiple nodes so a portion of the graph is in 1371
memory on each node. Splitting the graph across nodes requires the nodes to communicate when graph 1372
sections have vertices that connect with vertices on other processing nodes. This is perfectly acceptable 1373
for some graph applications—such as shortest path—especially when the graph is static. Some graph 1374
processing frameworks operate using this exact model. However, this approach is infeasible for large 1375
scale graphs requiring a specialized graph storage framework, where the graph is dynamic or searching or 1376
matching to a portion of the graph is needed quickly. 1377

Indexing approaches tend to be classified by the features provided in the implementation, specifically: the 1378
complexity of the data structures that can be stored; how well they can process links between data; and, 1379
how easily they support multiple access patterns as shown in Figure 11. Since any of these features can be 1380
implemented in custom application code, the values portrayed represent approximate norms. For example, 1381
key-value stores work well for data that is only accessed through a single key, whose values can be 1382
expressed in a single flat structure, and where multiple records do not need to be related. While document 1383
stores can support very complex structures of arbitrary width and tend to be indexed for access via 1384
multiple document properties, they do not tend to support inter-record relationships well. 1385

It is noted that the specific implementations for each storage approach vary significantly enough that all 1386
of the values for the features represented here are really ranges. For example, relational data storage 1387
implementations are supporting increasingly complex data structures and ongoing work aims to add more 1388
flexible access patterns natively in BigTable columnar implementations. Within Big Data, the 1389
performance of each of these features tends to drive the scalability of that approach depending on the 1390
problem being solved. For example, if the problem is to locate a single piece of data for a unique key, 1391
then key-value stores will scale really well. However, if a problem requires general navigation of the 1392
relationships between multiple data records, a graph storage model will likely provide the best 1393
performance. 1394

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

39

 1395
Figure 11: Data Storage Technologies 1396

This section provides an overview of several common Big Data Organization Approaches as follows: 1397

• Relational storage platforms, 1398
• Key-value storage platforms, 1399
• Wide columnar storage platforms, 1400
• Document storage platforms, and 1401
• Graph storage platforms. 1402

The reader should keep in mind that new and innovative approaches are emerging regularly, and that 1403
some of these approaches are hybrid models that combine features of several indexing techniques (e.g., 1404
relational and columnar, or relational and graph). 1405

4.2.3.2.3.1 Relational Storage Platforms 1406

This model is perhaps the most familiar to folks as the basic concept has existed since the 1950s and the 1407
SQL is a mature standard for manipulating (search, insert, update, delete) relational data. In the relational 1408
model, data is stored as rows with each field representing a column organized into Table based on the 1409
logical data organization. The problem with relational storage models and Big Data is the join between 1410
one or more tables. While the size of two or more tables of data individually might be small, the join (or 1411
relational matches) between those tables will generate exponentially more records. The appeal of this 1412
model for organizations just adopting Big Data is its familiarity. The pitfalls are some of the limitations 1413
and, more importantly, the tendency to adopt standard relational database management system (RDBMS) 1414
practices (high normalization, detailed and specific indexes) and performance expectations. 1415

Big data implementations of relational storage models are relatively mature and have been adopted by a 1416
number of organizations. They are also maturing very rapidly with new implementations focusing on 1417
improved response time. Many Big Data implementations take a brute-force approach to scaling relational 1418

0

1

2

3

4

5

6

0 1 2 3 4 5 6

D
at

a
Li

nk
ag

e
Co

m
pl

ex
ity

Data Structure Complexity

Data Storage Technologies by Data
Complexity, Linkage, and Access

Key-Value
Stores
Relational

Columnar

Document

Graph

Limited
Access
Flexibility

Greater
Access
Flexibility

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

40

queries. Essentially, queries are broken into stages but, more importantly, processing of the input tables is 1419
distributed across multiple nodes (often as a MapReduce job). The actual storage of the data can be flat 1420
files (delimited or fixed length) where each record/line in the file represents a row in a table. Increasingly, 1421
however, these implementations are adopting binary storage formats optimized for distributed file 1422
systems. These formats will often use block level indexes and column-oriented organization of the data to 1423
allow individual fields to be accessed in records without needing to read the entire record. Despite this, 1424
most Big Data Relational storage models are still batch-oriented systems designed for very complex 1425
queries which generate very large intermediate cross-product matrices from joins so even the simplest 1426
query can require 10s of seconds to complete. There is significant work going on and emerging 1427
implementations that are seeking to provide a more interactive response and interface. 1428

Early implementations provided only limited data types and little or no support for indexes. However, 1429
most current implementations have support for complex data structures and basic indexes. However, 1430
while the query planners/optimizers for most modern RDBMS systems are very mature and implement 1431
cost-based optimization through statistics on the data, the query planners/optimizers in many Big Data 1432
implementations remain fairly simple and rule-based in nature. While for batch-oriented systems, this is 1433
generally acceptable (since the scale of processing the Big Data in general can be orders of magnitude 1434
more an impact), any attempt to provide interactive response will need very advanced optimizations so 1435
that (at least for queries) only the most likely data to be returned is actually searched. This of course leads 1436
to the single most serious drawback with many of these implementations. Since distributed processing 1437
and storage are essential for achieving scalability, these implementations are directly limited by the CAP 1438
(Consistency, Availability, and Partition Tolerance) theorem. Many in fact provide what is generally 1439
referred to as a t-eventual consistency which means that barring any updates to a piece of data, all nodes 1440
in the distributed system will eventually return the most recent value. This level of consistency is 1441
typically fine for Data Warehousing applications where data is infrequently updated and updates are 1442
generally done in bulk. However, transaction-oriented databases typically require some level of ACID 1443
compliance to ensure that all transactions are handled reliably and conflicts are resolved in a consistent 1444
manner. There are a number of both industry and open source initiatives looking to bring this type of 1445
capability to Big Data relational storage frameworks. One approach is to essentially layer a traditional 1446
RDBMS on top of an existing distributed file system implementation. While vendors claim that this 1447
approach means that the overall technology is mature, a great deal of research and implementation 1448
experience is needed before the complete performance characteristics of these implementations are 1449
known. 1450

4.2.3.2.3.2 Key-Value Storage Platforms 1451

Key-value stores are one of the oldest and mature data indexing models. In fact, the principles of key-1452
value stores underpin all the other storage and indexing models. From a Big Data perspective, these stores 1453
effectively represent random access memory models. While the data stored in the values can be arbitrarily 1454
complex in structure, all the handling of that complexity must be provided by the application with the 1455
storage implementation often providing back just a pointer to a block of data. Key-value stores also tend 1456
to work best for 1-1 relationships (e.g., each key relates to a single value) but can also be effective for 1457
keys mapping to lists of homogeneous values. When keys map multiple values of heterogeneous 1458
types/structures or when values from one key need to be joined against values for a different or the same 1459
key, then custom application logic is required. It is the requirement for this custom logic that often 1460
prevents key-value stores from scaling effectively for certain problems. However, depending on the 1461
problem, certain processing architectures can make effective use of distributed key-value stores. Key-1462
value stores generally deal well with updates when the mapping is one-to-one and the size/length of the 1463
value data does not change. The ability of key-value stores to handle inserts is generally dependent on the 1464
underlying implementation. Key-value stores also generally require significant effort (either manual or 1465
computational) to deal with changes to the underlying data structure of the values. 1466

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

41

Distributed key-value stores are the most frequent implementation utilized in Big Data applications. One 1467
problem that must always be addressed (but is not unique to key-value implementations) is the 1468
distribution of keys over the space of possible key values. Specifically, keys must be chosen carefully to 1469
avoid skew in the distribution of the data across the cluster. When data is heavily skewed to a small range, 1470
it can result in computation hot spots across the cluster if the implementation is attempting to optimize 1471
data locality. If the data is dynamic (new keys being added) for such an implementation, then it is likely 1472
that at some point the data will require rebalancing across the cluster. Non-locality optimizing 1473
implementations employ various sorts of hashing, random, or round-robin approaches to data distribution 1474
and don’t tend to suffer from skew and hot spots. However, they perform especially poorly on problems 1475
requiring aggregation across the dataset. 1476

4.2.3.2.3.3 Wide Columnar Storage Platforms 1477

Much of the hype associated with Big Data came with the publication of the BigTable paper in 2006 [18] 1478
but column-oriented storage models like BigTable are not new to even Big Data and have been stalwarts 1479
of the data warehousing domain for many years. Unlike traditional relational data that store data by rows 1480
of related values, columnar stores organize data in groups of like values. The difference here is subtle but 1481
in relational databases, an entire group of columns are tied to some primary key (frequently one or more 1482
of the columns) to create a record. In columnar, the value of every column is a key and like column values 1483
point to the associated rows. The simplest instance of a columnar store is little more than a key-value 1484
store with the key and value roles reversed. In many ways, columnar data stores look very similar to 1485
indexes in relational databases. Figure 12 below shows the basic differences between row-oriented and 1486
column-oriented stores. 1487

Figure 12: Differences Between Row-Oriented and Column-Oriented Stores 1488

In addition, implementations of columnar stores that follow the BigTable model introduce an additional 1489
level of segmentation beyond the table, row, and column model of the relational model. That is called the 1490
column family. In those implementations, rows have a fixed set of column families but within a column 1491
family, each row can have a variable set of columns. This is illustrated in Figure 13 below. 1492

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

42

Figure 13: Column Family Segmentation of the Columnar Stores Model 1493

The key distinction in the implementation of columnar store over relational stores is that data is high de-1494
normalized for column stores and that while for relational stores every record contains some value 1495
(perhaps NULL) for each column, in columnar store the column is only present if there is data for one or 1496
more rows. This is why many column-oriented stores are referred to as sparse storage models. Data for 1497
each column family is physically stored together on disk sorted by rowed, column name, and timestamp. 1498
The last (timestamp) is there because the BigTable model also includes the concept of versioning. Every 1499
RowKey, Column Family, Column triple is stored with either a system-generated or user-provided 1500
Timestamp. This allows users to quickly retrieve the most recent value for a column (the default), the 1501
specific value for a column by timestamp, or all values for a column. The last is most useful because it 1502
permits very rapid temporal analysis on data in a column. 1503

Because data for a given column is stored together, two key benefits are achieved. First, aggregation of 1504
the data in that column requires only the values for that column to be read. Conversely, in a relational 1505
system, the entire row (at least up to the column) needs to be read (which if the row is long and the 1506
column at the end, it could be lots of data). Secondly, updates to a single column do not require the data 1507
for the rest of the row to be read/written. Also, because all the data in a column is uniform, data can be 1508
compressed much more efficiently. Often only a single copy of the value for a column is stored followed 1509
by the row keys where that value exists. And while deletes of an entire column is very efficient, deletes of 1510
an entire record are extremely expensive. This is why historically column-oriented stores have been 1511
applied to online analytical processing (OLAP)-style applications while relational stores were applied to 1512
online transaction processing (OLTP) requirements. 1513

Recently, security has been a major focus of existing column implementations, primarily due to the 1514
release by the National Security Agency (NSA) of its BigTable implementation to the open source 1515
community. A key advantage of the NSA implementation and other recently announced implementations 1516
is the availability of security controls at the individual cell level. With these implementations, a given user 1517
might have access to only certain cells in a group based potentially on the value of those or other cells. 1518

There are several very mature distributed column-oriented implementations available today from both 1519
open source groups and commercial foundations. These have been implemented and operational across a 1520
wide range of businesses and government organizations. Emerging are hybrid capabilities that implement 1521
relational access methods (e.g., SQL) on top of BigTable/Columnar storage models. In addition, relational 1522
implementations are adopting columnar-oriented physical storage models to provide more efficient access 1523
for Big Data OLAP like aggregations and analytics. 1524

4.2.3.2.3.4 Document Storage Platforms 1525

Document storage approaches have been around for some time and popularized by the need to quickly 1526
search large amounts of unstructured data. Modern document stores have evolved to include extensive 1527
search and indexing capabilities for structured data and metadata and why they are often referred to as 1528

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

43

semi-structured data stores. Within a document-oriented data store, each document encapsulates and 1529
encodes the metadata, fields, and any other representations of that record. While somewhat analogous to a 1530
row in a relational table, one-reason document stores evolved and have gained in popularity is that most 1531
implementations do not enforce a fixed or constant schema. While best practices hold that groups of 1532
documents should be logically related and contain similar data, there is no requirement that they be alike 1533
or that any two documents even contain the same fields. This is one reason that document stores are 1534
frequently popular for datasets which have sparsely populated fields since there is far less overhead 1535
normally than traditional RDBMS systems where null value columns in records are actually stored. 1536
Groups of documents within these types of stores are generally referred to as collections, and like key-1537
value stores, some sort of unique key references each document. 1538

In modern implementations, documents can be built of arbitrarily nested structures and can include 1539
variable length arrays and, in some cases, executable scripts/code (which has significant security and 1540
privacy implications). Most document-store implementations also support additional indexes on other 1541
fields or properties within each document with many implementing specialized index types for sparse 1542
data, geospatial data, and text. 1543

When modeling data into document-stores, the preferred approach is to de-normalize the data as much as 1544
possible and embed all one-to-one and most one-to-many relationships within a single document. This 1545
allows for updates to documents to be atomic operations which keep referential integrity between the 1546
documents. The most common case where references between documents should be used is when there 1547
are data elements that occur frequently across sets of documents and whose relationship to those 1548
documents is static. For example, the publisher of a given book edition does not change, and there are far 1549
fewer publishers than there are books. It would not make sense to embed all the publisher information 1550
into each book document. Rather the book document would contain a reference to the unique key for the 1551
publisher. Since for that edition of the book, the reference will never change and so there is no danger of 1552
loss of referential integrity. Thus, information about the publisher (address, for example) can be updated 1553
in a single atomic operation the same as the book. Were this information embedded, it would need to be 1554
updated in every book document with that publisher. 1555

In the Big Data realm, document stores scale horizontally through the use of partitioning or sharding to 1556
distribute portions of the collection across multiple nodes. This partitioning can be round robin-based, 1557
ensuring an even distribution of data or content/key-based so that data locality is maintained for similar 1558
data. Depending on the application required, the choice of partitioning key like with any database can 1559
have significant impacts on performance especially where aggregation functions are concerned. 1560

There are no standard query languages for document store implementations with most using a language 1561
derived from their internal document representation (e.g., JavaScript Object Notation [JSON], XML). 1562

4.2.3.2.3.5 Graph Storage Platforms 1563

While social networking sites like Facebook and LinkedIn have certainly driven the visibility of and 1564
evolution of graph stores (and processing as discussed below), graph stores have been a critical part of 1565
many problem domains from military intelligence and counterterrorism to route planning/navigation and 1566
the semantic web for years. Graph stores represent data as a series of nodes, edges, and properties on 1567
those. Analytics against graph stores include very basic shortest path and page ranking to entity 1568
disambiguation and graph matching. 1569

Graph databases typically store two types of objects nodes and relationships as show in Figure 14 below. 1570
Nodes represents objects in the problem domain that are being analyzed be they people, places, 1571
organizations, accounts, or other objects. Relationships describe those objects in the domain that relate to 1572
each other. Relationships can be non-directional/bidirectional but are typically expressed as unidirectional 1573
in order to provide more richness and expressiveness to the relationships. Hence, between two people 1574
nodes where they are father and son, there would be two relationships. One is father of going from the 1575

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

44

father node to the son node, and the other from the son to the father of is son of. In addition, nodes and 1576
relationships can have properties or attributes. This is typically descriptive data about the element. For 1577
people, it might be name, birthdate, or other descriptive quality. For locations, it might be an address or 1578
geospatial coordinate. For a relationship like a phone call, it could be the date, time of the call, and the 1579
duration of the call. Within graphs, relationships are not always equal or have the same strength. Thus 1580
relationship often has one or more weight, cost, or confidence attributes. A strong relationship between 1581
people might have a high weight because they have known each other for years and communicate every 1582
day. A relationship where two people just met would have a low weight. The distance between nodes (be 1583
it a physical distance or a difficulty) is often expressed as a cost attribute on a relation in order to allow 1584
computation of true shortest paths across a graph. In military intelligence applications, relationships 1585
between nodes in a terrorist or command and control network might only be suspected or have not been 1586
completely verified, so those relationships would have confidence attributes. Also, properties on nodes 1587
may also have confidence factors associated with them, although in those cases the property can be 1588
decomposed into its own node and tied with a relationship. Graph storage approaches can actually be 1589
viewed as a specialized implementation of a document storage scheme with two types of documents 1590
(nodes and relationships). In addition, one of the most critical elements in analyzing graph data is locating 1591
the node or edge in the graph where the analysis is to begin. To accomplish this, most graph databases 1592
implement indexes on the node or edge properties. Unlike relational and other data storage approaches, 1593
most graph databases tend to use artificial/pseudo keys or guides to uniquely identify nodes and edges. 1594
This allows attributes/properties to be easily changed due to both actual changes in the data (someone 1595
changed their name) or as more information is found out (e.g., a better location for some item or event) 1596
without needing to change the pointers two/from relationships. 1597

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

45

Figure 14: Object Nodes and Relationships of Graph Databases 1598

The problem with graphs in the Big Data realm is that they grow to be too big to fit into memory on a 1599
single node and their typically chaotic nature (few real-world graphs follow well-defined patterns) makes 1600
their partitioning for a distributed implementation problematic. While distance between or closeness of 1601
nodes would seem like a straightforward partitioning approach, there are multiple issues which must be 1602
addressed. First would be balancing of data. Graphs often tend to have large clusters of data very dense in 1603
a given area, thus leading to essentially imbalances and hot spots in processing. Second, no matter how 1604
the graph is distributed, there are connections (edges) that will cross the boundaries. That typically 1605
requires that nodes know about or how to access the data on other nodes and requires inter-node data 1606
transfer or communication. This makes the choice of processing architectures for graph data especially 1607
critical. Architectures that do not have inter-node communication/messaging tend not to work well for 1608
most graph problems. Typically, distributed architectures for processing graphs assign chunks of the 1609
graph to nodes, then the nodes use messaging approaches to communicate changes in the graph or the 1610
value of certain calculations along a path. 1611

Even small graphs quickly elevate into the realm of Big Data when one is looking for patterns or 1612
distances across more than one or two degrees of separation between nodes. Depending on the density of 1613
the graph, this can quickly cause a combinatorial explosion in the number of conditions/patterns that need 1614
to be tested. 1615

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

46

A specialized implementation of a graph store known as the Resource Description Framework (RDF) is 1616
part of a family of specifications from the World Wide Web Consortium (W3C) that is often directly 1617
associated with Semantic Web and associated concepts. RDF triples, as they are known, consist of a 1618
subject (Mr. X), a predicate (lives at), and an object (Mockingbird Lane). Thus, a collection of RDF 1619
triples represents a directed labeled graph. The contents of RDF stores are frequently described using 1620
formal ontology languages like the W3C Web Ontology Language (OWL) or the RDF Schema (RDFS) 1621
language, which establish the semantic meanings and models of the underlying data. To support better 1622
horizontal integration of heterogeneous datasets, extensions to the RDF concept such as the Data 1623
Description Framework (DDF) have been proposed, which add additional types to better support semantic 1624
interoperability and analysis [19], [20]. 1625

Graph data stores currently lack any form of standardized APIs or query languages. However, the W3C 1626
has developed the SPARQL query language for RDF, which is currently in a recommendation status, and 1627
there are several frameworks such as Sesame which are gaining popularity for working with RDF and 1628
other graph-oriented data stores. 1629

4.2.3.3 Processing Frameworks 1630

The processing frameworks for Big Data provide the necessary infrastructure software to support 1631
implementation of applications that can deal with the volume, velocity, variety, and variability of data. 1632
Processing frameworks define how the computation and processing of the data is organized. Big Data 1633
applications rely on various platforms and technologies to meet the challenges of scalable data analytics 1634
and operation. 1635

Processing frameworks generally focus on data manipulation, which falls along a continuum between 1636
batch and streaming oriented processing. However, depending on the specific data organization platform, 1637
and actual processing requested, any given framework may support a range of data manipulation from 1638
high latency to near real time (NRT) processing. Overall, many Big Data architectures will include 1639
multiple frameworks to support a wide range of requirements. 1640

Typically, processing frameworks are categorized based on whether they support batch or streaming 1641
processing. This categorization is generally stated from the user perspective (e.g., how fast does a user get 1642
a response to a request). However, Big Data processing frameworks actually have three processing 1643
phases: data ingestion, data analysis, and data dissemination, which closely follow the flow of data 1644
through the architecture. The Big Data Application Provider activities control the application of specific 1645
framework capabilities to these processing phases. The batch-streaming continuum, illustrated in the 1646
processing subcomponent in the NBDRA (Figure 3), can be applied to the three distinct processing 1647
phases. For example, data may enter a Big Data system at high velocity and the end user must quickly 1648
retrieve a summary of the prior day’s data. In this case, the ingestion of the data into the system needs to 1649
be NRT and keep up with the data stream. The analysis portion could be incremental (e.g., performed as 1650
the data is ingested) or could be a batch process performed at a specified time, while retrieval (i.e., read 1651
visualization) of the data could be interactive. Specific to the use case, data transformation may take place 1652
at any point during its transit through the system. For example, the ingestion phase may only write the 1653
data as quickly as possible, or it may run some foundational analysis to track incrementally computed 1654
information such as minimum, maximum, average. The core processing job may only perform the 1655
analytic elements required by the Big Data Application Provider and compute a matrix of data or may 1656
actually generate some rendering like a heat map to support the visualization component. To permit rapid 1657
display, the data dissemination phase almost certainly does some rendering, but the extent depends on the 1658
nature of the data and the visualization. 1659

For the purposes of this discussion, most processing frameworks can be described with respect to their 1660
primary location within the information flow illustrated in Figure 15. 1661

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

47

 1662
Figure 15: Information Flow 1663

The green coloring in Figure 15 illustrates the general sensitivity of that processing style to latency, which 1664
is defined as the time from when a request or piece of data arrives at a system until its processing/delivery 1665
is complete. The darker the shade, the more sensitive to latency. For Big Data, the ingestion may or may 1666
not require NRT performance to keep up with the data flow. Some types of analytics (specifically those 1667
categorized as Complex Event Processing) may or may not require NRT processing. The Data Consumer 1668
generally is located at the far right of Figure 15. Depending upon the use case and application batch 1669
responses (e.g., a nightly report is emailed) may be sufficient. In other cases, the user may be willing to 1670
wait minutes for the results of a query to be returned, or they may need immediate alerting when critical 1671
information arrives at the system. In general, batch analytics tend to better support long term strategic 1672
decision making, where the overall view or direction is not affected by the latest small changes in the 1673
underlying data. Streaming analytics are better suited for tactical decision making, where new data needs 1674
to be acted upon immediately. A primary use case for streaming analytics would be electronic trading on 1675
stock exchanges where the window to act on a given piece of data can be measured in microseconds. 1676
Messaging and communication provide the transfer of data between processing elements and the 1677
buffering necessary to deal with the deltas in data rate, processing times, and data requests. 1678

Typically, Big Data discussions focus around the categories of batch and streaming frameworks for 1679
analytics. However, frameworks for retrieval of data that provide interactive access to Big Data are 1680
becoming a more prevalent. It is noted that the lines between these categories are not solid or distinct, 1681
with some frameworks providing aspects of each category. 1682

4.2.3.3.1 Batch Frameworks 1683
Batch frameworks, whose roots stem from the mainframe processing era, are some of the most prevalent 1684
and mature components of a Big Data architecture because the historically long processing times for large 1685
data volumes. Batch frameworks ideally are not tied to a particular algorithm or even algorithm type, but 1686
rather provide a programming model where multiple classes of algorithms can be implemented. Also, 1687
when discussed in terms of Big Data, these processing models are frequently distributed across multiple 1688
nodes of a cluster. They are routinely differentiated by the amount of data sharing between 1689
processes/activities within the model. 1690

4.2.3.3.2 Streaming Frameworks 1691
Streaming frameworks are built to deal with data that requires processing as fast or faster than the 1692
velocity at which it arrives into the Big Data system. The primary goal of streaming frameworks is to 1693
reduce the latency between the arrival of data into the system and the creation, storage, or presentation of 1694
the results. CEP is one of the problem domains frequently addressed by streaming frameworks. CEP uses 1695
data from one or more streams/sources to infer or identify events or patterns in NRT. 1696

Almost all streaming frameworks for Big Data available today implement some form of basic workflow 1697
processing for the streams. These workflows use messaging/communications frameworks to pass data 1698
objects (often referred to as events) between steps in the workflow. This frequently takes the form of a 1699

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

48

directed execution graph. The distinguishing characteristics of streaming frameworks are typically 1700
organized around the following three characteristics: event ordering and processing guarantees, state 1701
management, and partitioning/parallelism. These three characteristics are described below. 1702

4.2.3.3.2.1 Event Ordering and Processing Guarantees 1703

This characteristic refers to whether stream processing elements are guaranteed to see messages or events 1704
in the order they are received by the Big Data System, as well as how often a message or event may or 1705
may not be processed. In a non-distributed and single stream mode, this type of guarantee is relatively 1706
trivial. Once distributed and/or multiple streams are added to the system, the guarantee becomes more 1707
complicated. With distributed processing, the guarantees must be enforced for each partition of the data 1708
(partitioning and parallelism as further described below). Complications arise when the process/task/job 1709
dealing with a partition dies. Processing guarantees are typically divided into the following three classes: 1710

• At-most-once delivery: This is the simplest form of guarantee and allows for messages or events 1711
to be dropped if there is a failure in processing or communications or if they arrive out of order. 1712
This class of guarantee is applicable for data where there is no dependence of new events on the 1713
state of the data created by prior events. 1714

• At-least-once delivery: Within this class, the frameworks will track each message or event (and 1715
any downstream messages or events generated) to verify that it is processed within a configured 1716
time frame. Messages or events that are not processed in the time allowed are re-introduced into 1717
the stream. This mode requires extensive state management by the framework (and sometimes the 1718
associated application) to track which events have been processed by which stages of the 1719
workflow. However, under this class, messages or events may be processed more than once and 1720
also may arrive out of order. This class of guarantee is appropriate for systems where every 1721
message or event must be processed regardless of the order (e.g., no dependence on prior events), 1722
and the application either is not affected by duplicate processing of events or has the ability to de-1723
duplicate events itself. 1724

• Exactly once delivery: This class of framework processing requires the same top level state 1725
tracking as At-least-once delivery but embeds mechanisms within the framework to detect and 1726
ignore duplicates. This class often guarantees ordering of event arrivals and is required for 1727
applications where the processing of any given event is dependent on the processing of prior 1728
events. It is noted that these guarantees only apply to data handling within the framework. If data 1729
is passed outside the framework processing topology, then by an application then the application 1730
must ensure the processing state is maintained by the topology or duplicate data may be 1731
forwarded to non-framework elements of the application. 1732

In the latter two classes, some form of unique key must be associated with each message or event to 1733
support de-duplication and event ordering. Often, this key will contain some form of timestamp plus the 1734
stream identification (ID) to uniquely identify each message in the stream. 1735

4.2.3.3.2.2 State Management 1736

A critical characteristic of stream processing frameworks is their ability to recover and not lose critical 1737
data in the event of a process or node failure within the framework. Frameworks typically provide this 1738
state management through persistence of the data to some form of storage. This persistence can be: local, 1739
allowing the failed process to be restarted on the same node; a remote or distributed data store, allowing 1740
the process to be restarted on any node; or, local storage that is replicated to other nodes. The trade-off 1741
between these storage methods is the latency introduced by the persistence. Both the amount of state data 1742
persisted and the time required to assure that the data is persisted contribute to the latency. In the case of a 1743
remote or distributed data store, the latency required is generally dependent on the extent to which the 1744
data store implements ACID (Atomicity, Consistency, Isolation, Durability) or BASE (Basically 1745
/Available, Soft state, Eventual consistency) style consistency. With replication of local storage, the 1746

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

49

reliability of the state management is entirely tied to the ability of the replication to recover in the event of 1747
a process or node failure. Sometimes this state replication is actually implemented using the same 1748
messaging/communication framework that is used to communicate with and between stream processors. 1749
Some frameworks actually support full transaction semantics, including multi-stage commits and 1750
transaction rollbacks. The trade-off is the same one that exists for any transaction system is that any type 1751
of ACID-like guarantee will introduce latency. Too much latency at any point in the stream flow can 1752
create bottlenecks and, depending on the ordering or processing guarantees, can result in deadlock or loop 1753
states—especially when some level of failure is present. 1754

4.2.3.3.2.3 Partitioning and Parallelism 1755

This streaming framework characteristic relates to the distribution of data across nodes and worker tasks 1756
to provide the horizontal scalability needed to address the volume and velocity of Big Data streams. This 1757
partitioning scheme must interact with the resource management framework to allocate resources. The 1758
even distribution of data across partitions is essential so that the associated work is evenly distributed. 1759
The even data distribution directly relates to selection of a key (e.g., user ID, host name) that can be 1760
evenly distributed. The simplest form might be using a number that increments by one and then is 1761
processed with a modulus function of the number of tasks/workers available. If data dependencies require 1762
all records with a common key be processed by the same worker, then assuring an even data distribution 1763
over the life of the stream can be difficult. Some streaming frameworks address this issue by supporting 1764
dynamic partitioning where the partition of overloaded workers is split and allocated to existing workers 1765
or newly created workers. To achieve success—especially with a data/state dependency related to the 1766
key—it is critical that the framework have state management, which allows the associated state data to be 1767
moved/transitioned to the new/different worker. 1768

4.2.3.4 Crosscutting Components 1769

Because the components within the three sub-roles within the Big Data Framework Provider must share 1770
resources and communicate, two major classes of crosscutting components are needed: 1771
Messaging/Communications Frameworks and Resource Management Frameworks. 1772

4.2.3.4.1 Messaging/Communications Frameworks 1773
Messaging and communications frameworks have their roots in the HPC environments long popular in 1774
the scientific and research communities. Messaging/Communications Frameworks were developed to 1775
provide APIs for the reliable queuing, transmission, and receipt of data between nodes in a horizontally 1776
scaled cluster. These frameworks typically implement either a point-to-point transfer model or a store-1777
and-forward model in their architecture. Under a point-to-point model, data is transferred directly from 1778
the sender to the receivers. The majority of point-to-point implementations do not provide for any form of 1779
message recovery should there be a program crash or interruption in the communications link between 1780
sender and receiver. These frameworks typically implement all logic within the sender and receiver 1781
program space, including any delivery guarantees or message retransmission capabilities. One common 1782
variation of this model is the implementation of multicast (i.e., one-to-many or many-to-many 1783
distribution), which allows the sender to broadcast the messages over a channel, and receivers in turn 1784
listen to those channels of interest. Typically, multicast messaging does not implement any form of 1785
guaranteed receipt. With the store-and-forward model, the sender would address the message to one or 1786
more receivers and send it to an intermediate broker, which would store the message and then forward it 1787
on to the receivers. Many of these implementations support some form of persistence for messages not yet 1788
delivered, providing for recovery in the event of process or system failure. Multicast messaging can also 1789
be implemented in this model and is frequently referred to as a pub/sub model. 1790

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

50

4.2.3.4.2 Resource Management Frameworks 1791
As Big Data systems have evolved and become more complex, and as businesses work to leverage limited 1792
computation and storage resources to address a broader range of applications and business challenges, the 1793
requirement to effectively manage those resources has grown significantly. While tools for resource 1794
management and elastic computing have expanded and matured in response to the needs of cloud 1795
providers and virtualization technologies, Big Data introduces unique requirements for these tools. 1796
However, Big Data frameworks tend to fall more into a distributed computing paradigm, which presents 1797
additional challenges. 1798

The Big Data characteristics of volume and velocity drive the requirements with respect to Big Data 1799
resource management. Elastic computing (i.e., spawning another instance of some service) is the most 1800
common approach to address expansion in volume or velocity of data entering the system. CPU and 1801
memory are the two resources that tend to be most essential to managing Big Data situations. While 1802
shortages or over-allocation of either will have significant impacts on system performance, improper or 1803
inefficient memory management is frequently catastrophic. Big Data differs and becomes more complex 1804
in the allocation of computing resources to different storage or processing frameworks that are optimized 1805
for specific applications and data structures. As such, resource management frameworks will often use 1806
data locality as one of the input variables in determining where new processing framework elements (e.g., 1807
master nodes, processing nodes, job slots) are instantiated. Importantly, because the data is big (i.e., large 1808
volume), it generally is not feasible to move data to the processing frameworks. In addition, while nearly 1809
all Big Data processing frameworks can be run in virtualized environments, most are designed to run on 1810
bare metal commodity hardware to provide efficient I/O for the volume of the data. 1811

Two distinct approaches to resource management in Big Data frameworks are evolving. The first is intra-1812
framework resource management, where the framework itself manages allocation of resources between its 1813
various components. This allocation is typically driven by the framework’s workload and often seeks to 1814
turn off unneeded resources to either minimize overall demands of the framework on the system or to 1815
minimize the operating cost of the system by reducing energy use. With this approach, applications can 1816
seek to schedule and request resources that—much like main frame OSs of the past—are managed 1817
through scheduling queues and job classes. 1818

The second approach is inter-framework resource management, which is designed to address the needs of 1819
many Big Data systems to support multiple storage and processing frameworks that can address and be 1820
optimized for a wide range of applications. With this approach, the resource management framework 1821
actually runs as a service that supports and manages resource requests from frameworks, monitoring 1822
framework resource usage, and in some cases manages application queues. In many ways, this approach 1823
is like the resource management layers common in cloud/virtualization environments, and there are 1824
efforts underway to create hybrid resource management frameworks that handle both physical and virtual 1825
resources. 1826

Taking these concepts further and combining them is resulting in the emerging technologies built around 1827
what is being termed software-defined data centers (SDDCs). This expansion on elastic and cloud 1828
computing goes beyond the management of fixed pools of physical resources as virtual resources to 1829
include the automated deployment and provisioning of features and capabilities onto physical resources. 1830
For example, automated deployment tools that interface with virtualization or other framework APIs can 1831
be used to automatically stand up entire clusters or to add additional physical resources to physical or 1832
virtual clusters. 1833

4.2.4 MANAGEMENT FABRIC 1834

The management fabric encompasses components responsible for the establishing and continuing 1835
operation of the system. 1836

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

51

The characteristics of Big Data pose system management challenges on traditional management 1837
platforms. To efficiently capture, store, process, analyze, and distribute complex and large datasets 1838
arriving or leaving with high velocity, a resilient system management is needed. 1839

As in traditional systems, system management for Big Data architecture involves provisioning, 1840
configuration, package management, software management, backup management, capability 1841
management, resources management, and performance management of the Big Data infrastructure, 1842
including compute nodes, storage nodes, and network devices. Due to the distributed and complex nature 1843
of the Big Data infrastructure, system management for Big Data is challenging, especially with respect to 1844
the capability for controlling, scheduling, and managing the processing frameworks to perform the 1845
scalable, robust, and secure analytics processing required by the Big Data Application Provider. The Big 1846
Data infrastructure may contain SAN or NAS storage devices, cloud storage spaces, NoSQL databases, 1847
MapReduce clusters, data analytics functions, search and indexing engines, and messaging platforms. The 1848
supporting enterprise computing infrastructure can range from traditional data centers, cloud services, and 1849
dispersed computing nodes of a grid. 1850

In an enterprise environment, the management platform would typically provide enterprise-wide 1851
monitoring and administration of the Big Data distributed components. This includes network 1852
management, fault management, configuration management, system accounting, performance 1853
management, and security management. 1854

4.2.4.1 Monitoring Frameworks 1855

To monitor the distributed and complex nature of the Big Data infrastructure, system management relies 1856
on the following: 1857

• Standard protocols such as Simple Network Management Protocol (SNMP), which are used to 1858
transmit status about resources and fault information to the management fabric components; and 1859

• Deployable agents or management connectors which allow the management fabric to both 1860
monitor and also control elements of the framework. 1861

These two items aid in monitoring the health of various types of computing resources and coping with 1862
performance and failures incidents while maintaining the quality of service levels required by the Big 1863
Data Application Provider. Management connectors are necessary for scenarios where the cloud service 1864
providers expose management capabilities via APIs. It is conceivable that the infrastructure elements 1865
contain autonomic, self-tuning, and self-healing capabilities, thereby reducing the centralized model of 1866
system monitoring. 1867

4.2.4.2 Provisioning/Configuration Frameworks 1868

In large infrastructures with many thousands of computing and storage nodes, the provisioning of tools 1869
and applications should be as automated as possible. Software installation, application configuration, and 1870
regular patch maintenance should be pushed out and replicated across the nodes in an automated fashion, 1871
which could be done based on the topology knowledge of the infrastructure. With the advent of 1872
virtualization, the utilization of virtual images may speed up the recovery process and provide efficient 1873
patching that can minimize downtime for scheduled maintenance. Such frameworks also interact with the 1874
Security and Privacy Fabric to ensure that the system configuration continually meets the security 1875
requirements outlined in the policies specified by the System Orchestrator. 1876

4.2.4.3 Package Managers 1877
Package management components support the installation and updates of other components within the 1878
Big Data system. This class of components is often provided by the underlying operating system 1879
component and is invoked by the provisioning /configuration frameworks to install and update 1880
components within the system. Components within this class generally leverage a central network 1881

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

52

repository to ensure that the correct component version is deployed consistently across the cluster. In 1882
many Big Data systems, this same repository is leveraged to support the deployment of application 1883
components and, in some cases, even data components. 1884

4.2.4.4 Resource Managers 1885
Resource management components within the Management Framework provide the system with the 1886
overall resources necessary to support the system. These components will work with external resource 1887
providers such as Cloud Service Providers to acquire the resources necessary to provision the other 1888
components of the system. They will handle requests for additional resources from resource managers 1889
within the Big Data Framework Provider when required and coordinate with the 1890
Provisioning/Configuration Frameworks to properly configure other components across those resources. 1891

4.2.4.5 Data Life Cycle Managers 1892

Life Cycle Data Management components are necessary to manage the life cycle of the data ingested into 1893
the system, stored and preserved in the system, and accessed for processing or dissemination purposes: 1894

Metadata Catalog is the inventory of all datasets in the system. It should contain the model for the 1895
foundational concept of “unit” of data, whether it is a database record (e.g., key-value pair or relational 1896
table row), or a dataset (e.g., database export file). Each data unit has characteristics maintained in the 1897
associated metadata, which should include at least a unique identifier and timestamp indicating when the 1898
data was created and/or ingested. These timestamps will help the Data Life Cycle Manager to monitor the 1899
“age” of the data within the system. Moreover, the Metadata Catalog will have to support data discovery 1900
that is necessary for data access and data governance. There are numerous international and national 1901
standards which govern the content, model, and interfaces for metadata catalogs. 1902

The Data Tracker tracks the movement of data throughout the system, from the ingestion point to the 1903
dissemination or destruction point. The Data Tracker component handles the Volume and Variety 1904
characteristics inherent to Big Data. The two kinds of movements are as follows: 1905

• Ingress and egress movement: tracks data entering and exiting the system. Data exiting means 1906
that the data are dispositioned to satisfy the retention policy, which can originate from either the 1907
need of the Big Data application or preservation policy. Indeed, some applications may require 1908
“fresh” data for analytical purposes. The degree of freshness depends on the specific requirements 1909
of the business applications, and can be influenced by policy and regulations. For instance, while 1910
the visual analytics application monitoring the approval or disapproval feedback during a 1911
presidential election debate requires real-time data and most recent tweet and blog data, the study 1912
of the trend of household income over the past 50 years needs both recent and archived Census 1913
data. On the other hand, records management laws and policies may dictate the retention time for 1914
the data, and hence impact the Data Preservation. 1915

• Intra-system movement: Due to the large volume of Big Data, the Big Data Framework Provider 1916
will likely have multitiered storage for cost-efficiency and scalability. Within that storage 1917
environment, data is made available to the analytics processes managed by the Big Data 1918
Application Provider. Commercial infrastructure vendors offer different storage categories with 1919
different pricing models. The action of making data available to processes and applications may 1920
be realized by physically moving the data to storage where the processing software can operate. 1921
However, a recent paradigm is to move computation and processing capabilities to where data are 1922
located to circumvent the large data transfer between storage tiers. 1923

The Data Tracker may interface with the Data Preservation component to implement preservation and 1924
long-term storage policies. 1925

The Data Preservation component is applied to both permanent and temporary data. Its responsibility is to 1926
continuously inspect the “age” of data in the system, and operate on the data based on the retention 1927

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

53

policy. For permanent data, Data Preservation will perform the Preservation Plan, which can consist of 1928
migrating data to a long-term preservation format, periodically refreshing the storage hardware, or 1929
maintaining emulation environments used to read the archived data. Data Preservation will leverage the 1930
multitiered storage which satisfies data durability requirement, and achieves cost-efficiency. If data are 1931
deemed to have limited lifetime, then Data Preservation will apply appropriate disposition methods to 1932
purge them from the system. The purge methods will depend on the security policy to ensure data 1933
confidentiality. 1934

4.2.5 SECURITY AND PRIVACY FABRIC 1935
The components within the Security and Privacy Fabric implement the core activities supporting the 1936
overall security and privacy requirements outlined by the policies and processes of the System 1937
Orchestrator. 1938

4.2.5.1 Authentication and Authorization Frameworks 1939
Components within this class must interface and interact with all other components within the Big Data 1940
system to support access control to the data and services of the system. This support includes 1941
authenticating the user or service attempting to access the system resource to validate their identity. This 1942
class of components provides APIs to other services and components for collecting the identity 1943
information, and validating that information against a trusted store of identities. Frequently these 1944
components will provide an identification token back to the invoking component that defines allowed 1945
access for the life of a session. This token can also be used to retrieve authorizations for the 1946
users/components detailing what data and service resources they may access. These authorizations can be 1947
used by the components to limit access to data or even filter data provided in response to requests by 1948
components. Typically, a component will pass the identification token as part of the request which the 1949
receiving component will use to look up authorizations from a trusted store to manage the access to the 1950
underlying resources (data or services). 1951

4.2.5.2 Audit Frameworks 1952
Audit Framework components are responsible for collecting, managing, consolidating, and in some cases 1953
monitoring events from across the system that reflect access to and changes to data and services across 1954
the system. The scope and nature of the events collected is based on the requirements specified by the 1955
policies within the System Orchestrator. Typically, these components will collect and store this data 1956
within a secure centralized repository within the system and manage the retention of this data based on 1957
the policies. The data maintained by these components can be leveraged during system operation to 1958
provide providence and pedigree for data to users or application components as well as for forensic 1959
analysis in the response to security or data breaches. Because of the number and frequency of operations 1960
and events which may be generated by a large Big Data system, the framework itself must deal with the 1961
Big Data characteristics of volume and velocity. To handle this, many Big Data system architectures 1962
implement a Big Data system instance specifically for management and storage of this data. Monitoring 1963
frameworks within the Management Fabric may execute algorithms within this Big Data system instance 1964
to provide alerts to potential security or data issues. 1965

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

54

5 SUMMARY 1966

This document (Version 3) presents the overall NBDRA conceptual model along with architecture views 1967
for the activities performed by the architecture and the functional components that would implement the 1968
architecture. 1969

The purpose of these views is to provide the system architect a framework to efficiently categorize the 1970
activities that the Big Data system will perform and the functional components which must be integrated 1971
to perform those activities. During the architecture process, the architect is encouraged to collaborate 1972
closely with the system stakeholders to ensure that all required activities for the system are captured in the 1973
activities view. Those activities should then be mapped to functional components within that view using a 1974
traceability matrix. This matrix will serve to validate that components will be integrated into the 1975
architecture to accomplish all required activities and that all integrated functional components have a 1976
purpose within the architecture. 1977

 1978

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

55

Appendix A: Deployment 1979

Considerations 1980

The NIST Big Data Reference Architecture is applicable to a variety of business environments and 1981
technologies. As a result, possible deployment models are not part of the core concepts discussed in the 1982
main body of this document. However, the loosely coupled and distributed natures of Big Data 1983
Framework Provider functional components allow it to be deployed using multiple infrastructure elements 1984
as described in Section 4.2.3. The two most common deployment configurations are directly on physical 1985
resources or on top of an IaaS cloud computing framework. The choices between these two configurations 1986
are driven by needs of efficiency/performance and elasticity. Physical infrastructures are typically used to 1987
obtain predictable performance and efficient utilization of CPU and I/O bandwidth since it eliminates the 1988
overhead and additional abstraction layers typical in the virtualized environments for most IaaS 1989
implementations. IaaS cloud-based deployments on are typically used when elasticity is needed to support 1990
changes in workload requirements. The ability to rapidly instantiate additional processing nodes or 1991
framework components allows the deployment to adapt to either increased or decreased workloads. By 1992
allowing the deployment footprint to grow or shrink based on workload demands this deployment model 1993
can provide cost savings when public or shared cloud services are used and more efficient use and energy 1994
consumption when a private cloud deployment is used. Recently, a hybrid deployment model known as 1995
Cloud Bursting has become popular. In this model a physical deployment is augmented by either public 1996
or private IaaS cloud services. When additional processing is needed to support the workload additional 1997
the additional framework component instances are established on the IaaS infrastructure and then deleted 1998
when no longer required. 1999

Figure A-1: Big Data Framework Deployment Options 2000

In addition to providing IaaS support, cloud providers are now offering Big Data Frameworks under a 2001
platform as a service (PaaS) model. Under this model, the system implementer is freed from the need to 2002

Physical Resources

Big Data Application Provider

Visualization AccessAnalyticsCollection
Preparation/

Curation

Indexed Storage

File Systems

Big Data Framework Provider

Processing: Computing and Analytic

Platforms: Data Organization and Distribution

M
es

sa
gi

ng
/

Co
m

m
un

ica
tio

ns Streaming

Re
so

ur
ce

 M
an

ag
em

en
t

InteractiveBatch

Resource Abstraction & Control

Cloud Provider

Ia
aS

Pa
aS

Sa
aS

Se
cu

rit
y

an
d

Pr
iv

ac
y

Fa
br

ic

M
an

ag
em

en
t F

ab
ric

Cloud Services

Virtual Resources
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

56

establish and manage the complex configuration and deployment typical of many Big Data Framework 2003
components. The implementer simply needs to specify the size of the cluster required, and the cloud 2004
provider manages the provisioning, configuration, and deployment of all the framework components. 2005
There are even some nascent offerings for specialized software as a service (SaaS) Big Data applications 2006
appearing in the market that implement the Big Data Application Provider functionality within the cloud 2007
environment. Figure A-1 illustrates how the components of the NBDRA might align with the NIST Cloud 2008
Reference architecture [21]. The following sections describe some of the high-level interactions required 2009
between the Big Data Architecture elements and the CSP elements. 2010

CLOUD SERVICE PROVIDERS 2011

Recent data analytics solutions use algorithms that can utilize and benefit from the frameworks of the 2012
cloud computing systems. Cloud computing has essential characteristics such as rapid elasticity and 2013
scalability, multi-tenancy, on-demand self-service, and resource pooling, which together can significantly 2014
lower the barriers to the realization of Big Data implementations. 2015

The CSP implements and delivers cloud services. Processing of a service invocation is done by means of 2016
an instance of the service implementation, which may involve the composition and invocation of other 2017
services as determined by the design and configuration of the service implementation. 2018

Cloud Service Component 2019

The cloud service component contains the implementation of the cloud services provided by a CSP. It 2020
contains and controls the software components that implement the services (but not the underlying 2021
hypervisors, host OSs, device drivers, etc.). 2022

Cloud services can be described in terms of service categories. 2023

Cloud services are also grouped into categories, where each service category is characterized by qualities 2024
that are common between the services within the category. The NIST Cloud Computing Reference Model 2025
defines the following cloud service categories: 2026

• Infrastructure as a services (IaaS) 2027
• Platform as a service (PaaS) 2028
• Software as a service (SaaS) 2029

Resource Abstraction and Control Component 2030

The Resource Abstraction and Control component is used by CSPs to provide access to the physical 2031
computing resources through software abstraction. Resource abstraction needs to assure efficient, secure, 2032
and reliable usage of the underlying physical resources. The control feature of the component enables the 2033
management of the resource abstraction features. 2034

The Resource Abstraction and Control component enables a CSP to offer qualities such as rapid elasticity, 2035
resource pooling, on-demand self-service, and scale-out. The Resource Abstraction and Control 2036
component can include software elements such as hypervisors, virtual machines, virtual data storage, and 2037
time-sharing. 2038

The Resource Abstraction and Control component enables control functionality. For example, there may 2039
be a centralized algorithm to control, correlate, and connect various processing, storage, and networking 2040
units in the physical resources so that together they deliver an environment where IaaS, PaaS or SaaS 2041
cloud service categories can be offered. The controller might decide which CPUs/racks contain which 2042
virtual machines executing which parts of a given cloud workload, and how such processing units are 2043
connected to each other, and when to dynamically and transparently reassign parts of the workload to new 2044
units as conditions change. 2045

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

57

Security and Privacy and Management Functions 2046

In almost all cases, the Cloud Provider will provide elements of the Security, Privacy, and Management 2047
functions. Typically, the provider will support high-level security/privacy functions that control access to 2048
the Big Data applications and frameworks while the frameworks themselves must control access to their 2049
underlying data and application services. Many times, the Big Data specific functions for security and 2050
privacy will depend on and must interface with functions provided by the CSP. Similarly, management 2051
functions are often split between the Big Data implementation and the Cloud Provider implementations. 2052
Here the cloud provider would handle the deployment and provisioning of Big Data architecture elements 2053
within its IaaS infrastructure. The cloud provider may provide high-level monitoring functions to allow 2054
the Big Data implementation to track performance and resource usage of its components. In, many cases 2055
the Resource Management element of the Big Data Framework will need to interface to the CSP’s 2056
management framework to request additional resources. 2057

PHYSICAL RESOURCE DEPLOYMENTS 2058

As stated above, deployment on physical resources is frequently used when performance characteristics 2059
are paramount. The nature of the underlying physical resource implementations to support Big Data 2060
requirements has evolved significantly over the years. Specialized, high-performance super computers 2061
with custom approaches for sharing resources (e.g., memory, CPU, storage) between nodes has given way 2062
to shared nothing computing clusters built from commodity servers. The custom super computing 2063
architectures almost always required custom development and components to take advantage of the 2064
shared resources. The commodity server approach both reduced the hardware investment and allowed the 2065
Big Data frameworks to provide higher-level abstractions for the sharing and management of resources in 2066
the cluster. The Recent trends now involve density, power, cooling optimized server form factors that 2067
seek to maximize the available computing resources while minimizing size, power and/or cooling 2068
requirements. This approach retains the abstraction and portability advantages of the shared nothing 2069
approaches while providing improved efficiency. 2070

 2071

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

58

Appendix B: Terms and 2072

Definitions 2073

NBDRA COMPONENTS 2074

• Big Data Engineering: Advanced techniques that harness independent resources for building 2075
scalable data systems when the characteristics of the datasets require new architectures for 2076
efficient storage, manipulation, and analysis. 2077

• Data Provider: Organization or entity that introduces information feeds into the Big Data system 2078
for discovery, access, and transformation by the Big Data system. 2079

• Big Data Application Provider: Organization or entity that executes a generic vertical system 2080
data life cycle, including: (a) data collection from various sources, (b) multiple data 2081
transformations being implemented using both traditional and new technologies, (c) diverse data 2082
usage, and (d) data archiving. 2083

• Big Data Framework Provider: Organization or entity that provides a computing fabric (such as 2084
system hardware, network, storage, virtualization, and computing platform) to execute certain Big 2085
Data applications, while maintaining security and privacy requirements. 2086

• Data Consumer: End users or other systems that use the results of data applications. 2087
• System Orchestrator: Organization or entity that defines and integrates the required data 2088

transformations components into an operational vertical system. 2089

OPERATIONAL CHARACTERISTICS 2090

• Interoperability: The capability to communicate, to execute programs, or to transfer data among 2091
various functional units under specified conditions. 2092

• Portability: The ability to transfer data from one system to another without being required to 2093
recreate or reenter data descriptions or to modify significantly the application being transported. 2094

• Privacy: The assured, proper, and consistent collection, processing, communication, use and 2095
disposition of data associated with personal information and PII throughout its life cycle. 2096

• Security: Protecting data, information, and systems from unauthorized access, use, disclosure, 2097
disruption, modification, or destruction in order to provide: 2098

o Integrity: guarding against improper data modification or destruction, and includes ensuring 2099
data nonrepudiation and authenticity; 2100

o Confidentiality: preserving authorized restrictions on access and disclosure, including means 2101
for protecting personal privacy and proprietary data; and 2102

o Availability: ensuring timely and reliable access to and use of data. 2103

• Elasticity: The ability to dynamically scale up and down as a real-time response to the workload 2104
demand. Elasticity will depend on the Big Data system, but adding or removing software threads 2105
and virtual or physical servers are two widely used scaling techniques. Many types of workload 2106
demands drive elastic responses, including web-based users, software agents, and periodic batch 2107
jobs. 2108

• Persistence: The placement/storage of data in a medium design to allow its future access. 2109

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

59

PROVISIONING MODELS 2110

• IaaS: “The capability provided to the consumer to provision processing, storage, networks, and 2111
other fundamental computing resources where the consumer is able to deploy and run arbitrary 2112
software, which can include OS and applications. The consumer does not manage or control the 2113
underlying cloud infrastructure but has control over OSs, storage, deployed applications, and 2114
possibly limited control of select networking components (e.g., host firewalls) [22].” 2115

• PaaS: “The capability provided to the consumer to deploy onto the cloud infrastructure consumer-2116
created or acquired applications created using programming languages and tools supported by the 2117
provider. The consumer does not manage or control the underlying cloud infrastructure including 2118
network, servers, operating systems, or storage, but has control over the deployed applications 2119
and possibly” application-hosting environment configurations [22]. 2120

• SaaS: “The capability provided to the consumer is to use the provider’s applications running on a 2121
cloud infrastructure. … The consumer does not manage or control the underlying cloud 2122
infrastructure including network, servers, operating systems, storage, or even individual 2123
application capabilities, with the possible exception of limited user-specific application 2124
configuration settings [22].” 2125

 2126

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

60

Appendix C: Acronyms 2127

ACID atomicity, consistency, isolation, durability 2128
API application programming interface 2129
ASCII American Standard Code for Information Interchange 2130
BASE basically available, soft state, eventual consistency 2131
BDLM Big Data life cycle management 2132
BSP bulk synchronous parallel 2133
CAP consistency, availability, and partition tolerance 2134
CEP complex event processing 2135
CIA confidentiality, integrity, and availability 2136
CPR Capability Provider Requirements 2137
CPU central processing unit 2138
CRUD create/read/update/delete 2139
CSP Cloud Service Provider 2140
CSV comma separated values 2141
DCR Data Consumer Requirements 2142
DDF Data Description Framework 2143
DLM data life cycle management 2144
DNS Domain Name Server 2145
DSR Data Source Requirements 2146
ELT extract, load, transform 2147
ETL extract, transform, load 2148
FPGA Field Programmable Gate Arrays 2149
FTP file transfer protocol 2150
GB gigabyte 2151
GPU graphic processing units 2152
GRC governance, risk management, and compliance 2153
GUID globally unique identifier 2154
HPC high performance computing 2155
HTTP HyperText Transfer Protocol 2156
I/O input/output 2157
IaaS Infrastructure as a Service 2158
ID identification 2159
ISO International Organization of Standardization 2160
IT information technology 2161
ITL Information Technology Laboratory 2162
JSON JavaScript Object Notation 2163
LMR Life Cycle Management Requirements 2164
NARA National Archives and Records Administration 2165
NAS network-attached storage 2166
NASA National Aeronautics and Space Administration 2167
NBDIF NIST Big Data Interoperability Framework 2168
NBD-PWG NIST Big Data Public Working Group 2169
NBDRA NIST Big Data Reference Architecture 2170
NFS network file system 2171
NFV network function virtualization 2172
NGA National Geospatial Intelligence Agency 2173

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

61

NIST National Institute of Standards and Technology 2174
NoSQL not only (or no) Structured Query Language 2175
NRT near real time 2176
NSA National Security Agency 2177
NSF National Science Foundation 2178
OLAP online analytical processing 2179
OLTP online transaction processing 2180
OR Other Requirements 2181
OS operating system 2182
OWL W3C Web Ontology Language 2183
PaaS Platform as a Service 2184
PII personally identifiable information 2185
POSIX portable operating system interface 2186
RAID redundant array of independent disks 2187
RAM random-access memory 2188
RDBMS relational database management system 2189
RDF Resource Description Framework 2190
RDFS RDF Schema 2191
SaaS Software as a Service 2192
SAN storage area network 2193
SDDC software-defined data center 2194
SDN software-defined network 2195
SNMP Simple Network Management Protocol 2196
SPR Security and Privacy Requirements 2197
SQL Structured Query Language 2198
TCP Transmission Control Protocol 2199
TPR Transformation Provider Requirements 2200
W3C World Wide Web Consortium 2201
XML Extensible Markup Language 2202
 2203

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

62

Appendix D: Resources and 2204

Bibliography 2205

GENERAL RESOURCES 2206

The following resources provide additional information related to Big Data architecture. 2207

Big Data Public Working Group, “NIST Big Data Program,” National Institute for Standards and 2208
Technology, June 26, 2013, http://bigdatawg.nist.gov . 2209

Doug Laney, “3D Data Management: Controlling Data Volume, Velocity, and Variety,” Gartner, 2210
February 6, 2001, http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-2211
Management-Controlling-Data-Volume-Velocity-and-Variety.pdf. 2212

Eberhardt Rechtin, “The Art of Systems Architecting,” CRC Press, January 6, 2009. 2213

International Organization of Standardization (ISO), “ISO/IEC/IEEE 42010 Systems and software 2214
engineering — Architecture description,” ISO, November 24, 2011, 2215
http://www.iso.org/iso/catalogue_detail.htm?csnumber=50508. 2216

Mark Beyer and Doug Laney, “The Importance of 'Big Data': A Definition,” Gartner, June 21, 2012, 2217
http://www.gartner.com/DisplayDocument?id=2057415&ref=clientFriendlyUrl. 2218

Martin Hilbert and Priscilla Lopez, “The World’s Technological Capacity to Store, Communicate, and 2219
Compute Information,” Science, April 1, 2011. 2220

National Institute of Standards and Technology [NIST], “Big Data Workshop,” NIST, June 13, 2012, 2221
http://www.nist.gov/itl/ssd/is/big-data.cfm. 2222

National Science Foundation, “Big Data R&D Initiative,” National Institute for Standards and 2223
Technology, June 2012, http://www.nist.gov/itl/ssd/is/upload/NIST-BD-Platforms-05-Big-Data-2224
Wactlar-slides.pdf. 2225

Office of the Assistant Secretary of Defense, “Reference Architecture Description,” U.S. Department of 2226
Defense, June 2010, 2227
http://dodcio.defense.gov/Portals/0/Documents/DIEA/Ref_Archi_Description_Final_v1_18Jun102228
.pdf. 2229

Office of the White House Press Secretary, “Obama Administration Unveils “Big Data” Initiative,” White 2230
House Press Release, March 29, 2012, 2231
http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_press_release_final_2.pdf. 2232

White House, “Big Data Across the Federal Government,” Executive Office of the President, March 29, 2233
2012, 2234
http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_fact_sheet_final_1.pdf. 2235

 2236

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

http://bigdatawg.nist.gov/
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://www.iso.org/iso/catalogue_detail.htm?csnumber=50508
http://www.gartner.com/DisplayDocument?id=2057415&ref=clientFriendlyUrl
http://www.nist.gov/itl/ssd/is/big-data.cfm
http://www.nist.gov/itl/ssd/is/upload/NIST-BD-Platforms-05-Big-Data-Wactlar-slides.pdf
http://www.nist.gov/itl/ssd/is/upload/NIST-BD-Platforms-05-Big-Data-Wactlar-slides.pdf
http://dodcio.defense.gov/Portals/0/Documents/DIEA/Ref_Archi_Description_Final_v1_18Jun10.pdf
http://dodcio.defense.gov/Portals/0/Documents/DIEA/Ref_Archi_Description_Final_v1_18Jun10.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_press_release_final_2.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_fact_sheet_final_1.pdf

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

63

BIBLIOGRAPHY 2237

[1] W. L. Chang (Co-Chair), N. Grady (Subgroup Co-chair), and NIST Big Data Public Working 2238
Group, “NIST Big Data Interoperability Framework: Volume 1, Big Data Definitions (NIST SP 2239
1500-1 VERSION 3),” Gaithersburg MD, Sep. 2019 [Online]. Available: 2240
https://doi.org/10.6028/NIST.SP.1500-1r2 2241

[2] W. L. Chang (Co-Chair), N. Grady (Subgroup Co-chair), and NIST Big Data Public Working 2242
Group, “NIST Big Data Interoperability Framework: Volume 2, Big Data Taxonomies (NIST SP 2243
1500-2 VERSION 3),” Gaithersburg, MD, Sep. 2019 [Online]. Available: 2244
https://doi.org/10.6028/NIST.SP.1500-2r2 2245

[3] W. L. Chang (Co-Chair), G. Fox (Subgroup Co-chair), and NIST Big Data Public Working Group, 2246
“NIST Big Data Interoperability Framework: Volume 3, Big Data Use Cases and General 2247
Requirements (NIST SP 1500-3 VERSION 3),” Gaithersburg, MD, Sep. 2019 [Online]. Available: 2248
https://doi.org/10.6028/NIST.SP.1500-3r2 2249

[4] W. L. Chang (Co-Chair), A. Roy (Subgroup Co-chair), M. Underwood (Subgroup Co-chair), and 2250
NIST Big Data Public Working Group, “NIST Big Data Interoperability Framework: Volume 4, 2251
Big Data Security and Privacy (NIST SP 1500-4 VERSION 3),” Gaithersburg, MD, Sep. 2019 2252
[Online]. Available: https://doi.org/10.6028/NIST.SP.1500-4r2 2253

[5] W. L. Chang (Co-Chair), S. Mishra (Editor), and NIST Big Data Public Working Group, “NIST 2254
Big Data Interoperability Framework: Volume 5, Big Data Architectures White Paper Survey 2255
(NIST SP 1500-5 VERSION 1),” Sep. 2015. 2256

[6] W. L. Chang (Co-Chair), R. Reinsch (Subgroup Co-chair), D. Boyd (Version 1 Subgroup Co-2257
chair), C. Buffington (Version 1 Subgroup Co-chair), and NIST Big Data Public Working Group, 2258
“NIST Big Data Interoperability Framework: Volume 7, Big Data Standards Roadmap (NIST SP 2259
1500-7 VERSION 3),” Gaithersburg, MD, Sep. 2019 [Online]. Available: 2260
https://doi.org/10.6028/NIST.SP.1500-7r2 2261

[7] W. L. Chang (Co-Chair), G. von Laszewski (Editor), and NIST Big Data Public Working Group, 2262
“NIST Big Data Interoperability Framework: Volume 8, Big Data Reference Architecture 2263
Interfaces (NIST SP 1500-9 VERSION 2),” Gaithersburg, MD, Sep. 2019 [Online]. Available: 2264
https://doi.org/10.6028/NIST.SP.1500-9r1 2265

[8] W. L. Chang (Co-Chair), R. Reinsch (Subgroup Co-chair), C. Austin (Editor), and NIST Big Data 2266
Public Working Group, “NIST Big Data Interoperability Framework: Volume 9, Adoption and 2267
Modernization (NIST SP 1500-10 VERSION 2),” Gaithersburg, MD, Sep. 2019 [Online]. 2268
Available: https://doi.org/10.6028/NIST.SP.1500-10r1 2269

[9] T. White House Office of Science and Technology Policy, “Big Data is a Big Deal,” OSTP Blog, 2270
2012. [Online]. Available: http://www.whitehouse.gov/blog/2012/03/29/big-data-big-deal. 2271
[Accessed: 21-Feb-2014] 2272

[10] N. and I. I. (OASD/NII) Office of the Assistant Secretary of Defense, “Reference Architecture 2273
Description,” 2010 [Online]. Available: 2274

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

64

http://dodcio.defense.gov/Portals/0/Documents/DIEA/Ref_Archi_Description_Final_v1_18Jun10.2275
pdf 2276

[11] A. D. N. Sarma, “Architectural Framework for Operational Business Intelligence System,” Int. J. 2277
Innov. Manag. Technol., vol. 5, no. 4, p. 7, 2014 [Online]. Available: 2278
http://www.ijimt.org/papers/529-E318.pdf 2279

[12] S. C. L. Koh and K. H. Tan, “Operational intelligence discovery and knowledge‐mapping 2280
approach in a supply network with uncertainty,” J. Manuf. Technol. Manag., vol. 17, no. 6, pp. 2281
687–699, 2006. 2282

[13] M. Andreolini, M. Colajanni, M. Pietri, and S. Tosi, “Adaptive, scalable and reliable monitoring of 2283
big data on clouds,” J. Parallel Distrib. Comput., vol. 79–80, pp. 67–79, 2015. 2284

[14] V. Lemieux, B. Endicott-Popovsky, K. Eckler, T. Dang, and A. Jansen, “Visualizing an 2285
information assurance risk taxonomy,” in VAST 2011 - IEEE Conference on Visual Analytics 2286
Science and Technology 2011, Proceedings, 2011, pp. 287–288. 2287

[15] L. Duboc, E. Letier, D. S. Rosenblum, and T. Wicks, “A case study in eliciting scalability 2288
requirements,” in Proceedings of the 16th IEEE International Requirements Engineering 2289
Conference, RE’08, 2008, pp. 247–252. 2290

[16] P. Colella, “Defining software requirements for scientific computing (Slide in ‘Can Computer 2291
Architecture Affect Scientific Productivity?’),” in Salishan Conference on High-speed Computing, 2292
2005, 2004 [Online]. Available: 2293
http://www.lanl.gov/orgs/hpc/salishan/salishan2005/davidpatterson.pdf 2294

[17] L. G. Valiant, “A bridging model for parallel computation,” Commun. ACM, vol. 33, no. 8, pp. 2295
103–111, 1990 [Online]. Available: http://portal.acm.org/citation.cfm?doid=79173.79181 2296

[18] F. Chang et al., “Bigtable: A distributed storage system for structured data,” 7th Symp. Oper. Syst. 2297
Des. Implement. (OSDI ’06), Novemb. 6-8, Seattle, WA, USA, pp. 205–218, 2006 [Online]. 2298
Available: http://research.google.com/archive/bigtable-osdi06.pdf 2299

[19] B. Smith, T. Malyuta, W. S. Mandirck, C. Fu, K. Parent, and M. Patel, “Horizontal Integration of 2300
Warfighter Intelligence Data,” in Semantic Technology in Intelligence, Defense and Security 2301
(STIDS), 2012, p. 8 [Online]. Available: http://ontology.buffalo.edu/smith/articles/Horizontal-2302
integration.pdf 2303

[20] S. Yoakum-Stover and T. Malyuta, “Unified data integration for situation management,” in 2304
Proceedings - IEEE Military Communications Conference MILCOM, 2008. 2305

[21] F. Liu et al., “NIST Cloud Computing Reference Architecture, SP 500-292,” Spec. Publ. 500-292, 2306
p. 35, 2011 [Online]. Available: http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=909505 2307

[22] P. Mell and T. Grance, “NIST SP 800-145: The NIST Definition of Cloud Computing,” 2011 2308
[Online]. Available: http://www.mendeley.com/research/the-nist-definition-about-cloud-2309
computing/ 2310

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE

65

 2311

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-6r2

	Table of Contents
	Table of Contents
	Executive Summary
	1 Introduction
	1.1 Background
	1.2 Scope and Objectives of the Reference Architectures Subgroup
	1.3 Report Production
	1.4 Report Structure

	2 High-Level Reference Architecture Requirements
	2.1 Use Cases and Requirements
	2.2 Reference Architecture Survey
	2.3 Taxonomy

	3 NBDRA Conceptual Model
	3.1 System Orchestrator
	3.2 Data Provider
	3.3 Big Data Application Provider
	3.4 Big Data Framework Provider
	3.5 Data Consumer
	3.6 Management Fabric of the NBDRA
	3.7 Security and Privacy Fabric of the NBDRA

	4 NBDRA Architecture Views
	4.1 Activities View
	4.1.1 System Orchestrator
	4.1.2 Big Data Application Provider
	4.1.2.1 Collection
	4.1.2.2 Preparation
	4.1.2.3 Analytics
	4.1.2.4 Visualization
	4.1.2.5 Access

	4.1.3 Big Data Framework Provider
	4.1.3.1 Infrastructure Activities
	4.1.3.2 Platform Activities
	4.1.3.3 Processing Activities

	4.1.4 Management Fabric Activities
	4.1.4.1 System Management
	4.1.4.2 Big Data Life Cycle Management

	4.1.5 Security and Privacy Fabric Activities

	4.2 Functional Component View
	4.2.1 System Orchestrator
	4.2.2 Big Data Application Provider
	4.2.2.1 MapReduce
	4.2.2.2 Bulk Synchronous Parallel

	4.2.3 Big Data Framework Provider
	4.2.3.1 Infrastructure Frameworks
	4.2.3.1.1 Hypervisors
	4.2.3.1.2 Physical and Virtual Networks
	4.2.3.1.2.1 Software Defined Networks
	4.2.3.1.2.2 Network Function Virtualization

	4.2.3.1.3 Physical and Virtual Computing
	4.2.3.1.4 Storage
	4.2.3.1.5 Physical Plant

	4.2.3.2 Data Platform Frameworks
	4.2.3.2.1 In-memory
	4.2.3.2.2 File Systems
	4.2.3.2.2.1 File System Organization
	4.2.3.2.2.2 In File Data Organization

	4.2.3.2.3 Indexed Storage Organization
	4.2.3.2.3.1 Relational Storage Platforms
	4.2.3.2.3.2 Key-Value Storage Platforms
	4.2.3.2.3.3 Wide Columnar Storage Platforms
	4.2.3.2.3.4 Document Storage Platforms
	4.2.3.2.3.5 Graph Storage Platforms

	4.2.3.3 Processing Frameworks
	4.2.3.3.1 Batch Frameworks
	4.2.3.3.2 Streaming Frameworks
	4.2.3.3.2.1 Event Ordering and Processing Guarantees
	4.2.3.3.2.2 State Management
	4.2.3.3.2.3 Partitioning and Parallelism

	4.2.3.4 Crosscutting Components
	4.2.3.4.1 Messaging/Communications Frameworks
	4.2.3.4.2 Resource Management Frameworks

	4.2.4 Management Fabric
	4.2.4.1 Monitoring Frameworks
	4.2.4.2 Provisioning/Configuration Frameworks
	4.2.4.3 Package Managers
	4.2.4.4 Resource Managers
	4.2.4.5 Data Life Cycle Managers

	4.2.5 Security and Privacy Fabric
	4.2.5.1 Authentication and Authorization Frameworks
	4.2.5.2 Audit Frameworks

	5 Summary

