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Reports on Computer Systems Technology 

The Information Technology Laboratory (ITL) at NIST promotes the U.S. economy and public welfare by 
providing technical leadership for the Nation’s measurement and standards infrastructure. ITL develops 
tests, test methods, reference data, proof of concept implementations, and technical analyses to advance 
the development and productive use of information technology (IT). ITL’s responsibilities include the 
development of management, administrative, technical, and physical standards and guidelines for the 
cost-effective security and privacy of other than national security-related information in federal 
information systems. This document reports on ITL’s research, guidance, and outreach efforts in 
Information Technology and its collaborative activities with industry, government, and academic 
organizations. 

 

 

Abstract 

Big Data is a term used to describe the large amount of data in the networked, digitized, sensor-laden, 
information-driven world. The growth of data is outpacing scientific and technological advances in data 
analytics. Opportunities exist with Big Data to address the volume, velocity and variety of data through 
new scalable architectures. To advance progress in Big Data, the NIST Big Data Public Working Group 
(NBD-PWG) is working to develop consensus on important, fundamental concepts related to Big Data. 
The results are reported in the NIST Big Data Interoperability Framework (NBDIF) series of volumes. 
This volume, Volume 1, contains a definition of Big Data and related terms necessary to lay the 
groundwork for discussions surrounding Big Data. 
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EXECUTIVE SUMMARY 1 

The NIST Big Data Public Working Group (NBD-PWG) Definitions and Taxonomy Subgroup prepared 2 
this NIST Big Data Interoperability Framework (NBDIF): Volume 1, Definitions to address fundamental 3 
concepts needed to understand the new paradigm for data applications, collectively known as Big Data, 4 
and the analytic processes collectively known as data science. While Big Data has been defined in a 5 
myriad of ways, the shift to a Big Data paradigm occurs when the characteristics of the data lead to the 6 
need for parallelization through a cluster of computing and storage resources to enable cost-effective data 7 
management. Data science combines various technologies, techniques, and theories from various fields, 8 
mostly related to computer science, linguistics, and statistics, to obtain useful knowledge from data. This 9 
report seeks to clarify the underlying concepts of Big Data and data science to enhance communication 10 
among Big Data producers and consumers. By defining concepts related to Big Data and data science, a 11 
common terminology can be used among Big Data practitioners.  12 

The NIST Big Data Interoperability Framework (NBDIF) was released in three versions, which 13 
correspond to the three stages of the NBD-PWG work. Version 3 (current version) of the NBDIF volumes 14 
resulted from Stage 3 work with major emphasis on the validation of the NBDRA Interfaces and content 15 
enhancement. Stage 3 work built upon the foundation created during Stage 2 and Stage 1. The current 16 
effort documented in this volume reflects concepts developed within the rapidly evolving field of Big 17 
Data. The three stages (in reverse order) aim to achieve the following with respect to the NIST Big Data 18 
Reference Architecture (NBDRA). 19 

Stage 3: Validate the NBDRA by building Big Data general applications through the general 20 
interfaces; 21 

Stage 2: Define general interfaces between the NBDRA components; and 22 
Stage 1: Identify the high-level Big Data reference architecture key components, which are 23 

technology-, infrastructure-, and vendor-agnostic. 24 

The NBDIF consists of nine volumes, each of which addresses a specific key topic, resulting from the 25 
work of the NBD-PWG. The nine volumes are as follows: 26 

• Volume 1, Definitions (this volume) 27 
• Volume 2, Taxonomies [1] 28 
• Volume 3, Use Cases and General Requirements [2] 29 
• Volume 4, Security and Privacy [3] 30 
• Volume 5, Architectures White Paper Survey [4] 31 
• Volume 6, Reference Architecture [5] 32 
• Volume 7, Standards Roadmap [6] 33 
• Volume 8, Reference Architecture Interfaces [7] 34 
• Volume 9, Adoption and Modernization [8] 35 

During Stage 1, Volumes 1 through 7 were conceptualized, organized, and written. The finalized Version 36 
1 documents can be downloaded from the V1.0 Final Version page of the NBD-PWG website 37 
(https://bigdatawg.nist.gov/V1_output_docs.php).  38 

During Stage 2, the NBD-PWG developed Version 2 of the NBDIF Version 1 volumes, with the 39 
exception of Volume 5, which contained the completed architecture survey work that was used to inform 40 
Stage 1 work of the NBD-PWG. The goals of Stage 2 were to enhance the Version 1 content, define 41 
general interfaces between the NBDRA components by aggregating low-level interactions into high-level 42 
general interfaces, and demonstrate how the NBDRA can be used. As a result of the Stage 2 work, the 43 
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need for NBDIF Volume 8 and NBDIF Volume 9 was identified and the two new volumes were created. 44 
Version 2 of the NBDIF volumes, resulting from Stage 2 work, can be downloaded from the V2.0 Final 45 
Version page of the NBD-PWG website (https://bigdatawg.nist.gov/V2_output_docs.php). 46 

 47 
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1 INTRODUCTION 48 

1.1 BACKGROUND 49 

There is broad agreement among commercial, academic, and government leaders about the potential of 50 
Big Data to spark innovation, fuel commerce, and drive progress. Big Data is the common term used to 51 
describe the deluge of data in today’s networked, digitized, sensor-laden, and information-driven world. 52 
The availability of vast data resources carries the potential to answer questions previously out of reach, 53 
including the following: 54 

• How can a potential pandemic reliably be detected early enough to intervene?  55 
• Can new materials with advanced properties be predicted before these materials have ever been 56 

synthesized?  57 
• How can the current advantage of the attacker over the defender in guarding against cyber-58 

security threats be reversed?  59 

There is also broad agreement on the ability of Big Data to overwhelm traditional approaches. The growth 60 
rates for data volumes, speeds, and complexity are outpacing scientific and technological advances in data 61 
analytics, management, transport, and data user spheres.  62 

Despite widespread agreement on the inherent opportunities and current limitations of Big Data, a lack of 63 
consensus on some important fundamental questions continues to confuse potential users and stymie 64 
progress. These questions include the following:  65 

• How is Big Data defined? 66 
• What attributes define Big Data solutions?  67 
• What is new in Big Data? 68 
• What is the difference between Big Data and bigger data that has been collected for years? 69 
• How is Big Data different from traditional data environments and related applications?  70 
• What are the essential characteristics of Big Data environments?  71 
• How do these environments integrate with currently deployed architectures?  72 
• What are the central scientific, technological, and standardization challenges that need to be 73 

addressed to accelerate the deployment of robust, secure Big Data solutions? 74 

Within this context, on March 29, 2012, the White House announced the Big Data Research and 75 
Development Initiative [9]. The initiative’s goals include helping to accelerate the pace of discovery in 76 
science and engineering, strengthening national security, and transforming teaching and learning by 77 
improving analysts’ ability to extract knowledge and insights from large and complex collections of 78 
digital data. 79 

Six federal departments and their agencies announced more than $200 million in commitments spread 80 
across more than 80 projects, which aim to significantly improve the tools and techniques needed to 81 
access, organize, and draw conclusions from huge volumes of digital data. The initiative also challenged 82 
industry, research universities, and nonprofits to join with the federal government to make the most of the 83 
opportunities created by Big Data.  84 

Motivated by the White House initiative and public suggestions, the National Institute of Standards and 85 
Technology (NIST) has accepted the challenge to stimulate collaboration among industry professionals to 86 
further the secure and effective adoption of Big Data. As one result of NIST’s Cloud and Big Data Forum 87 
held on January 15–17, 2013, there was strong encouragement for NIST to create a public working group 88 
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for the development of a Big Data Standards Roadmap. Forum participants noted that this roadmap 89 
should define and prioritize Big Data requirements, including interoperability, portability, reusability, 90 
extensibility, data usage, analytics, and technology infrastructure. In doing so, the roadmap would 91 
accelerate the adoption of the most secure and effective Big Data techniques and technology. 92 

On June 19, 2013, the NIST Big Data Public Working Group (NBD-PWG) was launched with extensive 93 
participation by industry, academia, and government from across the nation. The scope of the NBD-PWG 94 
involves forming a community of interests from all sectors—including industry, academia, and 95 
government—with the goal of developing consensus on definitions, taxonomies, secure reference 96 
architectures, security and privacy, and, from these, a standards roadmap. Such a consensus would create 97 
a vendor-neutral, technology- and infrastructure-independent framework that would enable Big Data 98 
stakeholders to identify and use the best analytics tools for their processing and visualization requirements 99 
on the most suitable computing platform and cluster, while also allowing added value from Big Data 100 
service providers. 101 

The NIST Big Data Interoperability Framework (NBDIF) was released in three versions, which 102 
correspond to the three stages of the NBD-PWG work. Version 3 (current version) of the NBDIF volumes 103 
resulted from Stage 3 work with major emphasis on the validation of the NBDRA Interfaces and content 104 
enhancement. Stage 3 work built upon the foundation created during Stage 2 and Stage 1. The current 105 
effort documented in this volume reflects concepts developed within the rapidly evolving field of Big 106 
Data. The three stages (in reverse order) aim to achieve the following with respect to the NIST Big Data 107 
Reference Architecture (NBDRA). 108 

Stage 3: Validate the NBDRA by building Big Data general applications through the general 109 
interfaces; 110 

Stage 2: Define general interfaces between the NBDRA components; and 111 
Stage 1: Identify the high-level Big Data reference architecture key components, which are 112 

technology-, infrastructure-, and vendor-agnostic. 113 

The NBDIF consists of nine volumes, each of which addresses a specific key topic, resulting from the 114 
work of the NBD-PWG. The nine volumes are as follows: 115 

• Volume 1, Definitions (this volume) 116 
• Volume 2, Taxonomies [1] 117 
• Volume 3, Use Cases and General Requirements [2] 118 
• Volume 4, Security and Privacy [3] 119 
• Volume 5, Architectures White Paper Survey [4] 120 
• Volume 6, Reference Architecture [5] 121 
• Volume 7, Standards Roadmap [6] 122 
• Volume 8, Reference Architecture Interfaces [7] 123 
• Volume 9, Adoption and Modernization [8] 124 

During Stage 1, Volumes 1 through 7 were conceptualized, organized, and written. The finalized Version 125 
1 documents can be downloaded from the V1.0 Final Version page of the NBD-PWG website 126 
(https://bigdatawg.nist.gov/V1_output_docs.php).  127 

During Stage 2, the NBD-PWG developed Version 2 of the NBDIF Version 1 volumes, with the 128 
exception of Volume 5, which contained the completed architecture survey work that was used to inform 129 
Stage 1 work of the NBD-PWG. The goals of Stage 2 were to enhance the Version 1 content, define 130 
general interfaces between the NBDRA components by aggregating low-level interactions into high-level 131 
general interfaces, and demonstrate how the NBDRA can be used. As a result of the Stage 2 work, the 132 
need for NBDIF Volume 8 and NBDIF Volume 9 was identified and the two new volumes were created. 133 
Version 2 of the NBDIF volumes, resulting from Stage 2 work, can be downloaded from the V2.0 Final 134 
Version page of the NBD-PWG website (https://bigdatawg.nist.gov/V2_output_docs.php). 135 
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 136 

This volume was prepared by the NBD-PWG Definitions and Taxonomy Subgroup, missioned with 137 
identifying Big Data concepts and defining related terms in areas such as data science, reference 138 
architecture, and patterns. 139 

1.2 SCOPE AND OBJECTIVES OF THE DEFINITIONS AND 140 

TAXONOMIES SUBGROUP 141 

The purpose of this volume is to clarify concepts and provide a common vocabulary for those engaging 142 
Big Data use, businesses, and technologies. For managers, the terms in this volume will distinguish the 143 
concepts needed to understand this changing field. For procurement officers, this document will provide 144 
the framework for discussing organizational needs and distinguishing among offered approaches. For 145 
marketers, this document will provide the means to promote solutions and innovations. For the technical 146 
community, this volume will provide a common language to better differentiate the specific offerings. 147 

1.3 REPORT PRODUCTION 148 

Big Data and data science are being used as buzzwords and are composites of many concepts. To better 149 
identify those terms, the NBD-PWG Definitions and Taxonomy Subgroup first addressed the individual 150 
concepts needed in this disruptive field. Then, the two over-arching buzzwordsBig Data and data 151 
scienceand the concepts they encompass were clarified. 152 

To keep the topic of data and data systems manageable, the Subgroup attempted to limit discussions to 153 
differences affected by the existence of Big Data. Expansive topics such as data type or analytics 154 
taxonomies and metadata were only explored to the extent that there were issues or effects specific to Big 155 
Data. However, the Subgroup did include the concepts involved in other topics that are needed to 156 
understand the new Big Data methodologies. 157 

Terms were developed independent of a specific tool or implementation, to avoid highlighting specific 158 
implementations, and to stay general enough for the inevitable changes in the field. 159 

The Subgroup is aware that some fields, such as legal, use specific language that may differ from the 160 
definitions provided herein. The current version reflects the breadth of knowledge of the Subgroup 161 
members. To achieve technical and high-quality document content, this document went through a public 162 
comment period along with NIST internal review. During the public comment period, the broader 163 
community was requested to address any domain conflicts caused by the terminology used in this volume. 164 

1.4 REPORT STRUCTURE 165 

This volume seeks to clarify the meanings of the broad terms Big Data and data science. Terms and 166 
definitions of concepts integral to Big Data are presented as a list in Section 2 and in the sections with 167 
relevant discussions. Big Data characteristics and Big Data engineering are discussed in Sections 3 and 4, 168 
respectively. Section 5 explores concepts of data science. Section 6 provides a summary of security and 169 
privacy concepts. Section 7 discusses management concepts. This third version of NBDIF: Volume 1, 170 
Definitions describes some of the fundamental concepts that will be important to determine categories or 171 
functional capabilities that represent architecture choices.  172 

Tightly coupled information can be found in the other volumes of the NBDIF. Volume 2, Taxonomies 173 
provides a description of the more detailed components of the NBDRA presented in Volume 6, Reference 174 
Architecture. Security- and privacy-related concepts are described in detail in Volume 4, Security and 175 
Privacy. To understand how these systems are designed to meet users’ needs, the reader is referred to 176 
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Volume 3, Use Cases and General Requirements. Volume 7, Standards Roadmap recaps the framework 177 
established in Volumes 1 through 6 and discusses NBDRA-related standards. Volume 8, Reference 178 
Architecture Interface explores a set of interfaces, defined through example, which are used to create 179 
schema-based definitions of objects that can be manipulated through Big Data design patterns. Volume 9, 180 
Adoption and Modernization examines the adoption and barriers to adoption of Big Data systems, 181 
maturity of Big Data technology, and considerations for implementation of Big Data systems. Comparing 182 
related sections in these volumes will provide a more comprehensive understanding of the work of the 183 
NBD-PWG. 184 

While each NBDIF volume was created with a specific focus within Big Data, all volumes are 185 
interconnected. During the creation of the volumes, information from some volumes was used as input for 186 
other volumes. Broad topics (e.g., definition, architecture) may be discussed in several volumes with each 187 
discussion circumscribed by the volume’s particular focus. Arrows shown in Figure 1 indicate the main 188 
flow of information input and/or output from the volumes. Volumes 2, 3, and 5 (blue circles) are 189 
essentially standalone documents that provide output to other volumes (e.g., to Volume 6). These 190 
volumes contain the initial situational awareness research. During the creation of Volumes 4, 7, 8, and 9 191 
(green circles), input from other volumes was used. The development of these volumes took into account 192 
work on the other volumes. Volumes 1 and 6 (red circles) were developed using the initial situational 193 
awareness research and continued to be modified based on work in other volumes. The information from 194 
these volumes was also used as input to the volumes in the green circles. 195 
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 196 
Figure 1: NBDIF Documents Navigation Diagram Provides Content Flow Between Volumes 197 

 198 
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2 TERMS AND DEFINITIONS 199 

The following definitions were created by the working group during the development of this document 200 
and are collected here for convenience. 201 

Analytics is the systematic processing and manipulation of data to uncover patterns, relationships between 202 
data, historical trends and attempts at predictions of future behaviors and events. 203 

Big Data consists of extensive datasetsprimarily in the characteristics of volume, variety, velocity, 204 
and/or variabilitythat require a scalable architecture for efficient storage, manipulation, and analysis. 205 

Big Data engineering is the discipline for engineering scalable systems for data-intensive processing. 206 

The Big Data Paradigm consists of the distribution of data systems across horizontally coupled, 207 
independent resources to achieve the scalability needed for the efficient processing of extensive 208 
datasets. 209 

Data governance refers to a system, including policies, people, practices, and technologies, 210 
necessary to ensure data management within an organization. 211 

The data analytics life cycle is the set of processes that is guided by the organizational need to transform 212 
raw data into actionable knowledge, which includes data collection, preparation, analytics, 213 
visualization, and access. 214 

Data locality refers to the data processing occurring at the location of the data storage. 215 

Data science is the methodology for the synthesis of useful knowledge directly from data through a 216 
process of discovery or of hypothesis formulation and hypothesis testing. 217 

A data scientist is a practitioner who has sufficient knowledge in the overlapping regimes of business 218 
needs, domain knowledge, analytical skills, and software and systems engineering to manage the end-219 
to-end data processes in the analytics life cycle. 220 

Distributed computing is a computing system in which components located on networked computers 221 
communicate and coordinate their actions by passing messages. 222 

Distributed database is a database that is physically decentralized and handled by a database management 223 
system in a way that provides a logically centralized view of the database to the user [10].  224 

Distributed file systems contain multi-structured (object) datasets that are distributed across the 225 
computing nodes of the server cluster(s). 226 

Extensibility is the ability to add or modify existing tools for new domains. 227 

Fabric represents the presence of activities and components throughout a computing system. 228 

Fault-tolerance is the ability of a system to continue to run when a component of the system fails. 229 

A federated database system is a type of meta-database management system, which transparently maps 230 
multiple autonomous database systems into a single cohesive database. 231 

A Horizontal Data Scientist is a generalist who understands enough of the multiple disciplines of mission 232 
need, the domain processes that produced the data, math and statistics, and computer science (or software 233 
and systems engineering). 234 

Horizontal scaling is increasing the capacity of production output through the addition of contributing 235 
resources. 236 
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Integration is the act or process combining more than one element producing a uniquely identifiable 237 
entity, object, quality or concept. 238 

Interoperability is the ability for tools to work together in execution, communication, and data exchange 239 
under specific conditions. 240 

Latency refers to the delay in processing or in availability. 241 

MapReduce is the technique to allow queries to run across distributed data nodes. 242 

Massively parallel processing (MPP) refers to a multitude of individual processors working in parallel to 243 
execute a particular program.  244 

Metadata is data employed to annotate other data with descriptive information, possibly including their 245 
data descriptions, data about data ownership, access paths, access rights, and data volatility. 246 

Non-relational models, frequently referred to as NoSQL, refer to logical data models that do not follow 247 
relational algebra for the storage and manipulation of data. 248 

Resource negotiation consists of built-in data management capabilities that provide the necessary support 249 
functions, such as operations management, workflow integration, security, governance, support for 250 
additional processing models, and controls for multi-tenant environments, providing higher availability 251 
and lower latency applications. 252 

Reusability is the ability to reapply an entity or actions for a different purpose or achieve a different goal 253 
than original intent. 254 

Schema on read is the application of a data schema through preparation steps such as transformations, 255 
cleaning, and integration at the time the data is read from the database.  256 

Shared-disk file systems, such as storage area networks (SANs) and network-attached storage (NAS), use 257 
a single storage pool, which is accessed from multiple computing resources. 258 

Small Data refers to the limits in the size of datasets that analysts can fully evaluate and understand. 259 

SQL is the SQL query language standard used to query relational databases. 260 

Structured data is data that has a predefined data model or is organized in a predefined way. 261 

Unstructured data is data that does not have a predefined data model or is not organized in a predefined 262 
way. 263 

Validity refers to appropriateness of the data for its intended use. 264 

Value refers to the inherent wealth, economic and social, embedded in any dataset. 265 

Variability refers to changes in dataset, whether data flow rate, format/structure, semantics, and/or quality 266 
that impact the analytics application. 267 

Variety refers to data from multiple repositories, domains, or types. 268 

Velocity refers to the rate of data flow. 269 

Veracity refers to the accuracy of the data. 270 

A Vertical Data Scientist is a subject matter expert in specific disciplines involved in the overall data 271 
science process. 272 

Vertical scaling (aka optimization) is the activity to increase data processing performance through 273 
improvements to algorithms, processors, memory, storage, or connectivity. 274 

Volatility refers to the tendency for data structures to change over time.  275 
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Volume refers to the size of the dataset. 276 

 277 
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3 BIG DATA CHARACTERISTICS  278 

The rate of growth of data generated and stored has been increasing exponentially. In a 1965 paper, 279 
Gordon Moore [11] estimated that the density of transistors on an integrated circuit board was doubling 280 
every two years. Known as Moore’s Law, this rate of growth has been applied to all aspects of computing, 281 
from clock speeds to memory. The growth rates of data volumes are estimated to be faster than Moore’s 282 
Law, with data volumes more than doubling every eighteen months. This data explosion is creating 283 
opportunities for new ways of combining and using data to find value, as well as providing significant 284 
challenges due to the size of the data being managed and analyzed. One significant shift is in the amount 285 
of unstructured data. Historically, structured data has typically been the focus of most enterprise analytics, 286 
and has been handled through the use of the relational data model. Recently, the quantity of unstructured 287 
data—such as micro-texts, web pages, relationship data, images and videos—has exploded, prompting the 288 
desire to incorporate this unstructured data to generate additional value. The central benefit of Big Data 289 
analytics is the ability to process large amounts and various types of information. The need for greater 290 
performance or efficiency happens on a continual basis. However, Big Data represents a fundamental 291 
shift to parallel scalability in the architecture needed to efficiently handle current datasets.  292 

In the evolution of data systems, there have been a number of times when the need for efficient, cost-293 
effective data analysis has forced a revolution in existing technologies. For example, the move to a 294 
relational model occurred when methods to reliably handle changes to structured data led to the shift 295 
toward a data storage paradigm that modeled relational algebra. That was a fundamental shift in data 296 
handling. The current revolution in technologies referred to as Big Data has arisen because the relational 297 
data model can no longer efficiently handle all the current needs for analysis of large and often 298 
unstructured datasets. It is not just that data is “bigger” than before, as it has been steadily getting larger 299 
for decades. The Big Data revolution is instead a one-time fundamental shift to parallel architectures, just 300 
as the shift to the relational model was a one-time shift. As relational databases evolved to greater 301 
efficiencies over decades, so too will Big Data technologies continue to evolve. Many of the conceptual 302 
underpinnings of Big Data have been around for years, but the last decade has seen an explosion in their 303 
maturation and mainstream application to scaled data systems. 304 

The terms Big Data and data science have been used to describe a number of concepts, in part because 305 
several distinct aspects are consistently interacting with each other. To understand this revolution, the 306 
interplay of the following four aspects must be considered: the characteristics of the datasets, the 307 
architectures of the systems that handle the data, the analysis of the datasets, and the considerations of 308 
cost-effectiveness.  309 

In the following sections, the three broad concepts, Big Data (remainder of Section 3), Big Data 310 
engineering (Section 4), and data science (Section 5), are broken down into specific individual terms and 311 
concepts. 312 

3.1 BIG DATA DEFINITIONS 313 

Big Data refers to the need to parallelize the data handling in data-intensive applications. The 314 
characteristics of Big Data that force new architectures are as follows: 315 

• Volume (i.e., the size of the dataset); 316 
•  Velocity (i.e., rate of flow);  317 
• Variety (i.e., data from multiple repositories, domains, or types); and 318 
• Variability (i.e., the change in velocity or structure).  319 
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These characteristics—volume, velocity, variety, and variability—are known colloquially as the Vs of 320 
Big Data and are further discussed in Section 3.2. While many other Vs have been attributed to Big Data, 321 
only the above four characteristics drive the shift to new scalable architectures for data-intensive 322 
applications in order to achieve cost-effective performance. The other V’s are concerns for analytic 323 
processes, which will be discussed in Section 5. The four “V” Big Data characteristics dictate the overall 324 
design of a Big Data system, resulting in different data system architectures or different analytics life 325 
cycle process orderings to achieve needed efficiencies.  326 

Big Data consists of extensive datasetsprimarily in the characteristics of volume, 327 
velocity, variety, and/or variabilitythat require a scalable architecture for efficient 328 
storage, manipulation, and analysis. 329 

Note that this definition contains the interplay between the characteristics of the data and the need for a 330 
system architecture that can scale to achieve the needed performance and cost efficiency. Scalable refers 331 
to the use of additional resources to handle additional load. Ideally, if you have twice the amount of data 332 
you would want to process the data in the same amount of time using twice the resources. There are two 333 
fundamentally different methods for system scaling, often described metaphorically as “vertical” or 334 
“horizontal” scaling.  335 

Vertical scaling (aka optimization) is the activity to increase data processing 336 
performance through improvements to algorithms, processors, memory, storage, or 337 
connectivity. 338 

Vertical scaling has been the core method for increasing performance. Again, following Moore’s Law, the 339 
historical trend is to achieve greater system performance through improved components. Then as 340 
theoretical limits to physical capability were approached in a technology, completely new technologies 341 
were developed to continue the scaling of Moore’s Law. 342 

Horizontal scaling is increasing the capacity of production output through the addition 343 
of contributing resources. 344 

The core of the new data-intensive processing technologies of extensive datasets has been the maturation 345 
of techniques for distributed processing across independent resources, or nodes in a cluster. This 346 
distributed processing can in fact be parallel processing for one of the first techniques known as scatter-347 
gather, which will be discussed in Section 4.1. It is this horizontal scaling, which we will refer to as data-348 
intensive parallel processing, that is at the heart of the Big Data revolution. Ideally, this parallelization 349 
achieves linear scalability in that twice the data can be processed in the same amount of time using twice 350 
the number of data nodes. 351 

While Big Data strictly speaking should apply only to the characteristics of the data, the term also refers 352 
to this paradigm shift that suggests that a system is a Big Data system when the scale of the data causes 353 
the management of the data to be a significant driver in the design of the system architecture—forcing 354 
parallel processing. The selection of the 4 Vs of volume, velocity, variety, and variability as fundamental 355 
for their importance in selecting processing architectures will be discussed in Section 3.2. 356 

The Big Data Paradigm consists of the distribution of data systems across horizontally coupled, 357 
independent resources to achieve the scalability needed for the efficient processing of extensive 358 
datasets. 359 

While the methods to achieve efficient scalability across resources will continually evolve, this paradigm 360 
shift is a one-time occurrence. The same shift to parallelism for compute-intensive systems occurred in 361 
the late 1990s for large-scale science and engineering simulations known as high performance computing 362 
(HPC), which will be discussed further in Section 4.4.1. The simulation community went through the 363 
same shift then in techniques for massively parallel, compute-intensive processing—analogous to the 364 
more recent shift in data-intensive processing techniques for handing Big Data.  365 
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3.2 BIG DATA CHARACTERISTICS 366 

Defining universal criteria for determining that Big Data characteristics require a scalable solution is 367 
difficult, since the choice to use parallel Big Data architectures is based on the interplay of performance, 368 
cost, and time constraints on the end-to-end system processing. Designation of a problem as a Big Data 369 
problem depends on an analysis of the application’s requirements. The four fundamental drivers that 370 
determine if a Big Data problem exists are volume, velocity, variety, and variability—the Big Data 371 
characteristics listed in Section 3.1. 372 

3.2.1 VOLUME 373 

The most commonly recognized characteristic of Big Data is the presence of extensive datasets—374 
representing the large amount of data available for analysis to extract valuable information. There is an 375 
implicit assumption here that greater value results from processing more of the data. There are many 376 
examples of this, known as the network effect, where data models improve with greater amounts of data. 377 
Much of the advances from machine learning arise from those techniques that process more data. As an 378 
example, object recognition in images significantly improved when the numbers of images that could be 379 
analyzed went from thousands into millions through the use of scalable techniques. The time and expense 380 
required to process massive datasets was one of the original drivers for distributed processing. Volume 381 
drives the need for processing and storage parallelism, and its management during processing of large 382 
datasets. 383 

3.2.2 VELOCITY 384 

Velocity is a measure of the rate of data flow. Traditionally, high-velocity systems have been described as 385 
streaming data. While these aspects are new for some industries, other industries (e.g., 386 
telecommunications and credit card transactions) have processed high volumes of data in short time 387 
intervals for years. Data in motion is processed and analyzed in real time, or near real time, and must be 388 
handled in a very different way than data at rest (i.e., persisted data). Data in motion tends to resemble 389 
event-processing architectures, and focuses on real-time or operational intelligence applications. The need 390 
for real-time data processing, even in the presence of large data volumes, drives a different type of 391 
architecture where the data is not stored, but is processed typically in memory. Note that time constraints 392 
for real-time processing can create the need for distributed processing even when the datasets are 393 
relatively small—a scenario often present in the Internet of Things (IoT). 394 

3.2.3 VARIETY 395 

The variety characteristic represents the need to analyze data from multiple repositories, domains, or 396 
types. The variety of data from multiple domains was previously handled through the identification of 397 
features that would allow alignment of datasets, and their fusion into a data warehouse. Automated data 398 
fusion relies on semantic metadata, where the understanding of the data through the metadata allows it to 399 
be integrated. A range of data types, domains, logical models, timescales, and semantics complicates the 400 
development of analytics that can span this variety of data. Distributed processing allows individual pre-401 
analytics on different types of data, followed by different analytics to span these interim results. Note that 402 
while volume and velocity allow faster and more cost-effective analytics, it is the variety of data that 403 
allows analytic results that were never possible before. “Business benefits are frequently higher when 404 
addressing the variety of data than when addressing volume [12].” 405 

3.2.4 VARIABILITY 406 

Variability is a slightly different characteristic than volume, velocity, and variety, in that it refers to a 407 
change in a dataset rather than the dataset or its flow directly. Variability refers to changes in a dataset, 408 
whether in the data flow rate, format/structure, and/or volume, that impacts its processing. Impacts can 409 
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include the need to refactor architectures, interfaces, processing/algorithms, integration/fusion, or storage. 410 
Variability in data volumes implies the need to scale-up or scale-down virtualized resources to efficiently 411 
handle the additional processing load, one of the advantageous capabilities of cloud computing. Detailed 412 
discussions of the techniques used to process data can be found in other industry publications that focus 413 
on operational cloud or virtualized architectures [13], [14]. Dynamic scaling keeps systems efficient, 414 
rather than having to design and resource to the expected peak capacity (where the system at most times 415 
sits idle). It should be noted that this variability refers to changes in dataset characteristics, whereas the 416 
term volatility (Section 5.4.3) refers to the changing values of individual data elements. Since the latter 417 
does not affect the architecture—only the analytics—it is only variability that affects the architectural 418 
design. 419 

3.2.5 STRUCTURED AND UNSTRUCTURED DATA TYPES 420 

The data types for individual data elements have not changed with Big Data and are not discussed in 421 
detail in this document. For additional information on data types, readers are directed to the International 422 
Organization for Standardization (ISO) and International Electrotechnical Commission (IEC) standard 423 
ISO/IEC 11404:2007 General Purpose Datatypes [15], and, as an example, its extension into healthcare 424 
information data types in ISO 21090:2011 Health Informatics [16].  425 

The type of data does, however, relate to the choice of storage platform (see NBDIF: Volume 6, Reference 426 
Architecture of this series [5]). Previously, most of the data in business systems was structured data, 427 
where each record was consistently structured and could be described efficiently in a relational model. 428 
Records are conceptualized as the rows in a table where data elements are in the cells. Unstructured 429 
datasets, such as text, image, or video, do not have a predefined data model or are not organized in a 430 
predefined way. Unstructured datasets have been increasing in both volume and prominence (e.g., with 431 
the generation of web pages and videos.) While modern relational databases tend to have support for 432 
these types of data elements through text or binary objects, their ability to directly analyze, index, and 433 
process them has tended to be both limited and accessed via nonstandard extensions to the SQL query 434 
language. Semi-structured data refers to datasets in formats such as XML (eXtensible Markup Language) 435 
or JavaScript Object Notation (JSON) that has an overarching structure, but with individual elements that 436 
are unstructured. The need to analyze unstructured or semi-structured data has been present for many 437 
years. However, the Big Data paradigm shift has increased the emphasis on extracting the value from 438 
unstructured or relationship data, and on different engineering methods that can handle these types of 439 
datasets more efficiently. 440 

3.3 BIG DATA SCIENCE AND ENGINEERING — A FIELD OF 441 

STUDY 442 

Big Data has been described conceptually using the “V” terms in common usage. These common terms 443 
are conceptual, referring to the different qualitative characteristics of datasets. They help to understand, in 444 
general, when the handling of the data benefits from the use of the new scalable technologies. 445 

Big Data Science and Engineering concerns a new field of study, just as chemistry, biology, statistics, and 446 
terminology are fields of study. This interdisciplinary field of study deals with the convergence of 447 
problems in the subfields of new data structures, parallelism, metadata, flow rate, and visual 448 
communication. Note that the “V” word for each subfield is provided to help align the field of study with 449 
the concepts discussed previously in Section 3.2. 450 

3.3.1 DATA STRUCTURES 451 

The field of Big Data is concerned with irregular or heterogeneous data structures, their navigation, query, 452 
and data typing—relating to the variety concept. Note that Big Data is not necessarily about a large 453 
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amount of data because many of the above concerns can be demonstrated with small (less than one 454 
gigabyte [GB]) datasets. Big Data concerns typically arise in processing large amounts of data because 455 
some or all of the four main characteristics (i.e., irregularity, parallelism, real-time metadata, presentation/ 456 
visualization) are unavoidable in such large datasets. Irregularity means that the structure and shape are 457 
not known or agreed-upon in advance. The data structure can be described as structured (both datatyping 458 
and navigation are known in advance), semi-structured (either datatyping or navigation are known, but 459 
not both), or unstructured (neither datatyping nor navigation are known). To know the datatyping means 460 
to know the datatype as defined in ISO/IEC 11404 General Purpose Datatypes [15]. To know the 461 
navigation means to know the path to complete the reference to the data. For example, a uniform resource 462 
identifier (URI) is a kind of navigation, as is the following: 463 

employee[17].home_address.address_line[2] 464 

The shape refers to the dimensions on a multidimensional array (e.g., 4-by-5-by-6 array is a three-465 
dimensional array, its rank is 3). A scalar is zero-dimensional array (i.e., its rank is 0, its dimensions are 466 
the empty vector {}). Not only (or no) Structured Query Language (NoSQL) techniques are used for data 467 
storage of such irregular data. JSON and XML are examples of serializing such irregular data. 468 

3.3.2 PARALLELISM 469 

A Big Data subfield is new engineering for computational and storage parallelism and its management 470 
during processing of large datasets (i.e., volume). Computational parallelism issues concern the unit of 471 
processing (e.g., thread, statement, block, process, and node), contention methods for shared access, and 472 
begin-suspend-resume-completion-termination processing. Parallelism involves the distribution of a task 473 
into multiple subtasks with associated partition of resources, the coordination and scheduling of the 474 
subtasks including access/contention of the related resources, and the consolidation of the subtask results. 475 
A task is conceived in its broadest sense—a computer, a process, a subroutine, a block of code, and a 476 
single programming language statement are all examples of a task in this sense. The MapReduce 477 
technique is an example of parallelism, but certainly not the only method in common use. 478 

3.3.3 METADATA 479 

Big Data Science requires descriptive data and self-inquiry about objects for real-time decision making. 480 
Metadata is descriptive data (e.g., describing an interface in JSON, ISO/IEC 11179-1 [17] metadata 481 
describing data structures, Dublin Core describing resources). Self-inquiry is known as reflection or 482 
introspection in some programming paradigms. Metadata is critical for the system to properly integrate 483 
the variety of datasets, rather than having a data modeler explicitly describe the relationship between data 484 
elements in the same or different datasets. Data Interoperability refers to the ability for analytic processes 485 
to leverage metadata to automatically fuse disparate datasets. See Section 5.4.6 for additional discussion.  486 

An additional complication beyond the ability to integrate a variety of datasets for real-time decision 487 
making is the irregularity of data. For example, rather than processing each element of data in the same 488 
way, the irregularity means that some real-time decisions are made concerning how the data is processed. 489 
One illustration could be as a medical record is searched for particular X-ray images in a series, 490 
subfolders must be reviewed to determine which ones are relevant to the query/question/study in progress. 491 
Real-time changes in processing may be necessary based upon the datatype (e.g., numeric versus string 492 
processing), the way in which the data element was observed, the quality of data (e.g., accumulating 493 
quantities of differing precision/accuracy), or other data irregularities. 494 

3.3.4 FLOW RATE 495 

The Big Data field is also concerned with the rate of arrival of the data (i.e., velocity). Streaming data is 496 
the traditional description for high-velocity data. This has long been a specialization in such domains as 497 
telecommunications or in the credit industry. In both domains, incidents of fraud needed to be detected in 498 
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near real time to take a mitigating action as quickly as possible. High velocity data requires architectures 499 
that can process and analyze data in real-time—for example, to handle the data and analytics in memory 500 
across a set of nodes. In this case the data is typically not placed into persistent storage until after the real-501 
time analytics have finished. 502 

3.3.5 VISUAL COMMUNICATION 503 

Additional challenges in Big Data projects include the presentation and aggregation of such datasets—504 
visualization. The visual limitations consist of the amount of information a human can usefully process on 505 
a single display screen or sheet of paper. For example, the presentation of a connection graph of 500 506 
nodes might require more than 20 rows and columns, along with the connections (i.e., relationships) 507 
among each of the pairs. Typically, this is too much for a human to comprehend in a useful way. Big Data 508 
presentation/visualization issues concern reformulating the information in a way that can be presented for 509 
convenient human consumption. 510 

3.4 OTHER USAGE OF THE TERM BIG DATA 511 

A number of Big Data definitions have been suggested as efforts have been made to understand the extent 512 
of this new field. The term has been used to describe a number of topic areas including the following: 513 

• Dataset characteristics 514 
• More data than before 515 
• Unstructured data 516 
• The new scalable data processing techniques 517 
• The analysis of extensive datasets 518 
• The generation of value 519 
• The loss of privacy 520 
• The impact on society 521 

Several Big Data concepts were observed in a sample of definitions taken from blog posts and magazine 522 
articles as shown in Table 1. The sample of formal and informal definitions offer a sense of the spectrum 523 
of concepts applied to the term Big Data. The NBD-PWG’s definition is closest to the Gartner definition, 524 
with additional emphasis that the innovation is the horizontal scaling that provides the cost efficiency. 525 
The Big Data definitions in Table 1 are not comprehensive, but rather illustrate the interrelated concepts 526 
attributed to the catch-all term Big Data. 527 

Table 1: Sampling of Definitions Attributed to Big Data 528 

Concept Author Definition 
3Vs  Gartner [18], 

[19]  
“Big data is high-volume, high-velocity and high-variety information assets 
that demand cost-effective, innovative forms of information processing for 
enhanced insight and decision making.” 

Volume Techtarget 
[20] 

“Although Big data doesn't refer to any specific quantity, the term is often 
used when speaking about petabytes and exabytes of data.” 

Oxford 
English 
Dictionary 
[21] 

“big data n. Computing (also with capital initials) data of a very large size, 
typically to the extent that its manipulation and management present 
significant logistical challenges; (also) the branch of computing involving 
such data.” 

“Bigger” Data Annette 
Greiner [20] 

“Big data is data that contains enough observations to demand unusual 
handling because of its sheer size, though what is unusual changes over time 
and varies from one discipline to another.” 
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Concept Author Definition 
Not Only 
Volume 

Quentin 
Hardy [20] 

“What’s ‘big’ in big data isn’t necessarily the size of the databases, it’s the big 
number of data sources we have, as digital sensors and behavior trackers 
migrate across the world.” 

Chris 
Neumann 
[20]Error! B

ookmark not 

defined. 

“…our original definition was a system that (1) was capable of storing 10 TB 
[terabyte] of data or more … As time went on, diversity of data started to 
become more prevalent in these systems (particularly the need to mix 
structured and unstructured data), which led to more widespread adoption of 
the “3 Vs” (volume, velocity, and variety) as a definition for big data.” 

Big Data 
Engineering 

IDC [22]Error! B

ookmark not 

defined. 

“Big data technologies describe a new generation of technologies and 
architectures, designed to economically extract value from very large volumes 
of a wide variety of data, by enabling high-velocity capture, discovery, and/or 
analysis.” 

Hal Varian 
[20]Error! B

ookmark not 

defined. 

“Big data means data that cannot fit easily into a standard relational database.” 

McKinsey 
[23]Error! B

ookmark not 

defined.  

“Big Data refers to a dataset whose size is beyond the ability of typical 
database software tools to capture, store, manage, and analyze.” 

Less Sampling John Foreman 
[20]  

“Big data is when your business wants to use data to solve a problem, answer 
a question, produce a product, etc., crafting a solution to the problem that 
leverages the data without simply sampling or tossing out records.” 

Peter 
Skomoroch 
[20]  

“Big data originally described the practice in the consumer Internet industry of 
applying algorithms to increasingly large amounts of disparate data to solve 
problems that had suboptimal solutions with smaller datasets.” 

New Data 
Types 

Tom 
Davenport 
[24]  

“The broad range of new and massive data types that have appeared over the 
last decade or so.” 

Mark van 
Rijmenam 
[20]  

“Big data is not all about volume, it is more about combining different 
datasets and to analyze it in real time to get insights for your organization. 
Therefore, the right definition of big data should in fact be: mixed data.” 

Analytics Ryan 
Swanstrom 
[20]  

“Big data used to mean data that a single machine was unable to handle. Now 
big data has become a buzzword to mean anything related to data analytics or 
visualization.” 

Data Science Joel Gurin 
[20]  

“Big data describes datasets that are so large, complex, or rapidly changing 
that they push the very limits of our analytical capability.” 

Josh Ferguson 
[20]  

“Big data is the broad name given to challenges and opportunities we have as 
data about every aspect of our lives becomes available. It’s not just about data 
though; it also includes the people, processes, and analysis that turn data into 
meaning.” 

Value Harlan Harris 
[20]  

“To me, ‘big data’ is the situation where an organization can (arguably) say 
that they have access to what they need to reconstruct, understand, and model 
the part of the world that they care about.” 

Jessica 
Kirkpatrick 
[20]  

“Big data refers to using complex datasets to drive focus, direction, and 
decision making within a company or organization.” 

Hilary Mason 
[20]  

“Big data is just the ability to gather information and query it in such a way 
that we are able to learn things about the world that were previously 
inaccessible to us.” 
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Concept Author Definition 
Gregory 
Piatetsky-
Shapiro [20]  

“The best definition I saw is, “Data is big when data size becomes part of the 
problem.” However, this refers to the size only. Now the buzzword “big data” 
refers to the new data-driven paradigm of business, science and technology, 
where the huge data size and scope enables better and new services, products, 
and platforms.” 

Cultural 
Change 

Drew Conway 
[20]  

“Big data, which started as a technological innovation in distributed 
computing, is now a cultural movement by which we continue to discover how 
humanity interacts with the world—and each other—at large-scale.” 

Daniel Gillick 
[20]  

“‘Big data’ represents a cultural shift in which more and more decisions are 
made by algorithms with transparent logic, operating on documented 
immutable evidence. I think ‘big’ refers more to the pervasive nature of this 
change than to any particular amount of data.” 

Cathy O’Neil 
[20]  

“‘Big data’ is more than one thing, but an important aspect is its use as a 
rhetorical device, something that can be used to deceive or mislead or 
overhype.” 

 529 
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4 BIG DATA ENGINEERING 530 

(FRAMEWORKS) 531 

Some definitions for Big Data, as described in Section 3.3, focus on the systems engineering innovations 532 
required because of the characteristics of Big Data. The NBD-PWG has adopted the following definition 533 
of Big Data engineering. 534 

Big Data engineering is the discipline for engineering scalable systems for data-535 
intensive processing. 536 

Big Data engineering is used when the volume, velocity, variety, or variability characteristics of the data 537 
require scalability for processing efficiency or cost-effectiveness. New engineering techniques in the 538 
storage layer have been driven by the growing prominence of datasets that cannot be handled efficiently 539 
in a traditional relational model (e.g., unstructured text and video.) The need for scalable access in 540 
structured data has led, for example, to software built on the key-value pair paradigm. The rise in 541 
importance of document analysis has spawned a document-oriented database paradigm, and the 542 
increasing importance of relationship data has led to efficiencies through the use of graph-oriented data 543 
storage. 544 

4.1 HORIZONTAL INFRASTRUCTURE SCALING 545 

Section 3.1 defines horizontal scaling as increasing the performance of distributed data processing 546 
through the addition of nodes in the cluster. Horizontal scaling can occur at a number of points in the 547 
infrastructure.  548 

4.1.1 SHARED-DISK FILE SYSTEMS 549 

Approaches, such as SANs and NAS, use a single storage pool, which is accessed from multiple 550 
computing resources. While these technologies solved many aspects of accessing very large datasets from 551 
multiple nodes simultaneously, they suffered from issues related to data locking and updates and, more 552 
importantly, created a performance bottleneck (from every input/output [I/O] operation accessing the 553 
common storage pool) that limited their ability to scale up to meet the needs of many Big Data 554 
applications. These limitations were overcome through the implementation of fully distributed file 555 
systems.  556 

4.1.2 DISTRIBUTED FILE SYSTEMS 557 

In distributed file storage systems, multi-structured datasets are distributed across the computing nodes of 558 
the server cluster(s). The data may be distributed at the file/dataset level, or more commonly, at the block 559 
level, allowing multiple nodes in the cluster to interact with different parts of a large file/dataset 560 
simultaneously. Big Data frameworks are frequently designed to take advantage of data locality on each 561 
node when distributing the processing, which avoids the need to move the data between nodes. In 562 
addition, many distributed file systems also implement file/block level replication where each file/block is 563 
stored multiple times on different machines for both reliability/recovery (data is not lost if a node in the 564 
cluster fails), as well as enhanced data locality. Any type of data and many sizes of files can be handled 565 
without formal extract, transformation, and load conversions, with some technologies performing 566 
markedly better for large file sizes.  567 
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4.1.3 DISTRIBUTED DATA PROCESSING 568 

The popular framework for distributed computing consists of a storage layer and processing layer 569 
combination that implements a multiple-class, algorithm-programming model. Low-cost servers 570 
supporting the distributed file system that stores the data can dramatically lower the storage costs of 571 
computing on a large scale of data (e.g., web indexing). MapReduce was an early processing technique in 572 
data-intensive distributed computing where the query was “scattered” across the processors and the 573 
results were “gathered” into a central compute node.  574 

MapReduce is the technique to allow queries to run across distributed data nodes. 575 

In relation to the compute-intensive simulations in HPC (discussed further in Section 4.4.1), scatter-576 
gather is an embarrassingly parallel technique—meaning the same query and analysis code is sent to each 577 
data node to process the portion of the dataset on that node. For embarrassingly parallel techniques, there 578 
is no processing that relies on the data in more than one node. 579 

The use of inexpensive servers is appropriate for slower, batch-speed Big Data applications, but does not 580 
provide good performance for applications requiring low-latency processing. The use of basic 581 
MapReduce for processing places limitations on updating or iterative access to the data during 582 
computation—other methods should be used when repeated updating is a requirement. Improvements and 583 
“generalizations” of MapReduce have been developed that provide additional functions lacking in the 584 
older technology, including fault tolerance, iteration flexibility, elimination of middle layer, and ease of 585 
query.  586 

A more general description of the scatter-gather processes is often referred to as moving the processing to 587 
the data, not the data to the processing.  588 

Data locality refers to the data processing occurring at the location of the data storage. 589 

The implication is that data is too extensive to be queried and moved into another resource for analysis, so 590 
the analysis program is instead distributed (scattered) to the data-holding resources, with only the results 591 
being aggregated (gathered) on a remote resource. This concept of data locality is a new aspect of parallel 592 
data architectures that was not a critical issue before storage leveraged multiple independent nodes.  593 

4.1.4 RESOURCE NEGOTIATION  594 

Several technologies have been developed for the management of a distributed computing system to 595 
provide the necessary support functions, including operations management, workflow integration, 596 
security, and governance. Of special importance to resource management development are new features 597 
for supporting additional processing models (other than MapReduce) and controls for multi-tenant 598 
environments, higher availability, and lower latency applications.  599 

In a typical implementation, the resource manager is the hub for several node managers. The client or user 600 
accesses the resource manager which in turn launches a request to an application master within one or 601 
many node managers. A second client may also launch its own requests, which will be given to other 602 
application masters within the same or other node managers. Tasks are assigned a priority value, which is 603 
allocated based on available central processing unit (CPU) and memory, and then are provided the 604 
appropriate processing resource in the node.  605 

4.1.5 DATA MOVEMENT 606 

Data movement is normally handled by transfer and application programming interface (API) 607 
technologies rather than the resource manager. In rare cases, peer-to-peer (P2P) communications 608 
protocols can also propagate or migrate files across networks at scale, meaning that technically these P2P 609 
networks are also distributed file systems. The largest social networks, arguably some of the most 610 
dominant users of Big Data, move binary large objects (BLOBs) of over 1 GB in size internally over large 611 
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numbers of computers via such technologies. The internal use case has been extended to private file 612 
synchronization, where the technology permits automatic updates to local folders whenever two end users 613 
are linked through the system.  614 

In external use cases, each end of the P2P system contributes bandwidth to the data movement, making 615 
this currently the fastest way to leverage documents to the largest number of concurrent users. For 616 
example, this technology is used to make 3GB images available to the public, or to allow general purpose 617 
home computers to devote compute power for scientific challenges such as protein folding. However, any 618 
large bundle of data (e.g., video, scientific data) can be quickly distributed with lower bandwidth cost.  619 

4.1.6 CONCURRENCY 620 

Concurrency in data storage has traditionally referred to the ability to have multiple users making changes 621 
in a database, while restricting the ability for multiple users to change the same record. In other words, 622 
this means dealing with many things at the same time. This can be confused with parallelism, which is 623 
doing something on separate resources at the same time. An example may help to clarify the concept of 624 
concurrency. Non-relational systems are built for fault-tolerance, meaning it is assumed that some system 625 
components will fail. For this reason, data is not only distributed across a set of nodes, known as master 626 
nodes, but is also replicated to additional nodes known as slave nodes. If a master data node fails, the 627 
system can automatically switch over and begin to use one of the slave nodes. If the data on a master node 628 
is being updated, it will take time before it is updated on a slave node. Thus, a program running against 629 
the data nodes has the possibility of obtaining inconsistent results if one portion of the application runs 630 
against a master node, and another portion runs against a slave node that had not yet been updated. This 631 
possibility of obtaining different results based on the timing of events is an additional complication for 632 
Big Data systems. 633 

4.1.7 TIERS OF STORAGE 634 

Data storage can make use of multiple tiers of storage (e.g., in-memory, cache, solid state drive, hard 635 
drive, network drive) to optimize between performance requirements and cost. Software-defined storage 636 
is the use of software to determine the dynamic allocation of tiers of storage to reduce storage costs while 637 
maintaining the required data retrieval performance. Software-defined storage is among several emerging 638 
techniques for dynamic control of hardware (such as software-defined networks), and a detailed 639 
discussion is beyond the scope of this document. 640 

4.1.8 CLUSTER MANAGEMENT 641 

There are additional aspects of Big Data that are changing rapidly and are beyond the scope of this 642 
document, including the techniques for managing a cluster and mechanisms for providing communication 643 
among the cluster resources holding the data. 644 

4.2 SCALABLE LOGICAL DATA PLATFORMS 645 

Big Data refers to the extensibility of data repositories and data processing across resources working in 646 
parallel, in the same way that the compute-intensive simulation community embraced MPP two decades 647 
ago. By working out methods for communication among resources, the same scaling is now available to 648 
data-intensive applications. From the user’s perspective, however, the data is stored in a single logical 649 
structure. 650 

4.2.1 RELATIONAL PLATFORMS 651 

The data management innovation in the 1960s and 1970s was the development of relational databases that 652 
followed a relational algebra (an algebra operating on sets) for data storage and query. The additional 653 
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control that these platforms provided, helped drive innovations in the management of data in business 654 
systems. Relational database management systems (RDBMS) have been at the heart of analytic systems 655 
ever since.  656 

The properties of RDBMS are beyond the scope of this volume. The reader is referred to the extensive 657 
literature to learn about concepts such as atomicity, consistency, isolation, durability (ACID); Basic 658 
availability, soft-state, and eventual consistency (BASE); and the Consistency, Availability, and Partition 659 
(CAP) Tolerance theorem. 660 

4.2.2 NON-RELATIONAL PLATFORMS (NOSQL) 661 

The new non-relational model databases are typically referred to as NoSQL systems. The problem with 662 
identifying Big Data storage paradigms as NoSQL is, first, that it describes the storage of data with 663 
respect to a set theory-based language for query and retrieval of data, and second, that there is a growing 664 
capability in the application of extensions of the SQL query language against the new non-relational data 665 
repositories. While NoSQL is in such common usage that it will continue to refer to the new data models 666 
beyond the relational model, it is hoped that the term itself will be replaced with a more suitable term, 667 
since it is unwise to name a set of new storage paradigms with respect to a query language currently in 668 
use against that storage.  669 

Non-relational models, frequently referred to as NoSQL, refer to logical data models 670 
that do not follow relational algebra for the storage and manipulation of data. 671 

Big Data engineering refers to the new ways that data is stored in records. There are different types of 672 
NoSQL databases in terms of how records are stored. In some cases, the records are still in the concept of 673 
a table structure. One storage paradigm is a key-value structure, with a record consisting of a key and a 674 
string of data together in the value. The data is retrieved through the key, and the non-relational database 675 
software handles accessing the data in the value. A variant on this is the document store, where the 676 
document in the value field can be indexed and searched, not just the key. Another type of new Big Data 677 
record storage is in a graph database. A graphical model represents the relationship between data 678 
elements. The data elements are nodes, and the relationship is represented as a link between nodes. Graph 679 
storage models essentially represent each data element as a series of subject, predicate, and object triples. 680 
Often, the available types of objects and relationships are described via controlled vocabularies or 681 
ontologies. Array databases support massive multi-dimensional arrays (i.e., gridded data) together with 682 
declarative operations allowing to express statistics as well as image and signal processing. 683 

The fundamental characteristic of NoSQL systems is the distribution of the data in a dataset across a 684 
number of nodes for distributed processing (see discussion in Section 4.1.3). This provides the cost-685 
effective scalability needed for Big Data storage and query. Note that this distributed data approach is 686 
distinct from the concept of a federated database, which allows the processing of datasets residing in 687 
autonomous database systems. 688 

A federated database system is a type of meta-database management system, which 689 
transparently maps multiple autonomous database systems into a single federated 690 
database. 691 

4.2.3 NON-RELATIONAL PLATFORMS (NEWSQL) 692 

There is another variant of scalable databases, this one being described as NewSQL. This term refers to 693 
databases that follow a number of principles of relational database transactions including maintaining the 694 
ACID guarantees of a traditional RDBMS. Three categories of NewSQL databases that have been 695 
described are those having shared-nothing data nodes, those that are optimized as SQL storage engines, 696 
and those that leverage a sharding middleware. Sharding is the splitting of a dataset or database across 697 
nodes.  698 
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4.3 DEPLOYMENT  699 

In addition to the new processing and platform (storage) frameworks, the full Big Data reference 700 
architecture also consists of an infrastructure framework as well as the fabrics of management, security, 701 
and privacy. For example, Big Data systems can be developed and deployed in a cloud infrastructure, as 702 
discussed in Section 4.4.2. Big Data systems are typically the integration of a variety of tools in these 703 
frameworks appropriate to the characteristics of the data and the constraints of cost and end-to-end 704 
processing time. A full discussion of system design, development, and deployment is beyond the scope of 705 
this volume. The reader is referred to, for example, ISO/IEC/IEEE 12207: 2017 [25] for software 706 
lifecycle processes and ISO/IEC/IEEE 15288: 2015 [26] system lifecycle processes. Furthermore, there is 707 
now significant effort on both DevOps (a clipped compound of software DEVelopment and information 708 
technology OPerationS, which includes development while taking into consideration the requirements for 709 
operational deployment), and DevSecOps (SECurity and safety engineering in DevOps, which also takes 710 
security into consideration during all stages of development). Additional system concepts can be used to 711 
better understand the characteristics of Big Data systems, such as the interoperability (ability for tools to 712 
work together in execution, communication, and data exchange under specific conditions), reusability 713 
(ability to apply tools from one system to another), and extensibility (ability to add or modify existing 714 
tools to a given system). These system concepts are not specific to Big Data, but their presence in Big 715 
Data can be understood in the examination of a Big Data reference architecture, which is discussed in 716 
NBDIF: Volume 6, Reference Architecture of this series. 717 

4.4 RELATIONSHIP TO OTHER TECHNOLOGICAL 718 

INNOVATIONS 719 

Big Data is related to a number of other domains where computational innovations are being developed. 720 

4.4.1 HIGH PERFORMANCE COMPUTING  721 

As stated above, fundamentally, the Big Data paradigm is a shift in data system architectures from 722 
monolithic systems with vertical scaling (i.e., adding more power, such as faster processors or disks, to 723 
existing machines) into a parallelized (horizontally scaled) system (i.e., adding more machines to the 724 
available collection) that uses a loosely coupled set of resources in parallel. This type of parallelization 725 
shift began over 20 years ago for compute-intensive applications in HPC communities, when scientific 726 
simulations began using MPP systems.  727 

Massively parallel processing refers to a multitude of individual processors working in 728 
parallel to execute a particular program. 729 

In different combinations of splitting the code and data 730 
across independent processors, computational scientists 731 
could greatly extend their simulation capabilities. This, of 732 
course, introduced a number of complexities in such areas as 733 
message passing, data movement, latency in the consistency 734 
across resources, load balancing, and system inefficiencies, 735 
while waiting on other resources to complete their 736 
computational tasks. Some simulations may be 737 
embarrassingly parallel in that the computations do not 738 
require information from other compute nodes. When inter-739 
node communication is required, libraries such as openMPI 740 
[27] have enabled the communications between compute 741 
processors. Simplistically, there are two basic types of HPC architectures. The first is classified as shared 742 

Figure 2: Compute and Data-Intensive Architectures 
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nothing (i.e., the data needed resides on each compute node), which is composed of all compute nodes. 743 
The second type of HPC architecture is shared everything where the data that each compute processor 744 
needs resides on one data node. These two scenarios are illustrated in Figure 1b where HPC systems either 745 
have one data node or none.  746 

The Big Data paradigm, likewise, is the shift to parallelism for data-intensive applications, with 747 
implementations discussed in Section 4.1 with respect to infrastructure and in Section 4.2 with respect to 748 
platform considerations. To get the needed level of scaling, different mechanisms distribute data across 749 
nodes, and then process the data across those nodes. Recall that MapReduce is an embarrassingly parallel 750 
processing of data distributed across nodes, since the same query/analytics request is sent in parallel to 751 
each data node. The results are gathered back on the compute node, so MapReduce represents the use of 752 
one compute node and any number of data nodes, as shown in Figure 1.  753 

The obvious next focus area will be in systems that are a blend of compute-intensive and data-intensive 754 
processing, represented by the hatched area in Figure 1. New work to add more data-intensive capabilities 755 
to HPC systems is known as high performance data analytics (HPDA). Some data-intensive applications 756 
are not as embarrassingly parallel as MapReduce. Machine learning techniques, such as deep learning, not 757 
only deal in large input datasets, but also require graphic processing units (GPUs) to get the compute 758 
scalability needed for the models to learn. The addition of parallel computation methods to Big Data 759 
applications is known as Big Data analytics. It is currently a research area, exploring optimal ways to 760 
blend nodes for both compute- and data-intensive applications. 761 

4.4.2 MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE 762 

One type of analytic that has received a resurgence due to the new distributed data processing—and the 763 
parallel programming capability of graphical processors—is machine learning. Techniques such as Deep 764 
Learning have allowed significant advances in speech recognition and speech translation, as well as in 765 
textual, image, and predictive analysis. The sensitivity of machine learning methods to noisy data has led 766 
to the creation of Generative Adversarial Networks, which have two models: one to detect the authenticity 767 
of the data and the second to build the desired analytic model. Note that this field is often referred to as 768 
specific artificial intelligence (AI), which is the ability of machines to perform pattern recognition and 769 
prediction. This is distinguished from general AI which is the human trait of the ability to reason, predict, 770 
and make decisions on larger unbounded situations. There are efforts underway to better define and 771 
describe these techniques. The reader is referred to the ISO/IEC work of SC 42 Artificial Intelligence 772 
[28]. 773 

4.4.3 CLOUD COMPUTING 774 

The NIST Cloud Computing Standards Roadmap Working Group developed the following definition [29] 775 
for Cloud Computing: 776 

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network 777 
access to a shared pool of configurable computing resources (e.g., networks, servers, 778 
storage, applications, and services) that can be rapidly provisioned and released with 779 
minimal management effort or service provider interaction. This cloud model promotes 780 
availability and is composed of five essential characteristics, three service models, and 781 
four deployment models [30].  782 

Cloud computing (usually referred to simply as cloud) typically refers to external providers of virtualized 783 
systems known as public cloud. Similarly, virtualized environments can also be deployed on premise—784 
known as private clouds. Management services now exist to blend the two environments seamlessly into 785 
one environment—understandably referred to as hybrid clouds. Cloud deals primarily with the 786 
                                                      
b Figure 1 provided courtesy of Nancy Grady. 
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infrastructure, or infrastructure-as-a-service (IaaS). Other offerings include platform-as-a-service (PaaS) 787 
and software-as-a-service (SaaS). These three offerings align with the NBDRA’s framework providers. 788 
NIST has published cloud-related documents in the Special Publications series for Cloud Reference 789 
Architecture [31], Security Reference Architecture [32], Technology Roadmap Volumes 1-3 [14], [33], 790 
[34], and Standards Roadmap [30], and is currently working on metrics descriptions. 791 

While Big Data systems are commonly built on virtualized environments, many implementations by 792 
Internet search providers, and others, are frequently deployed on bare metal (deploying directly on the 793 
physical hardware) to achieve the best efficiency at distributing I/O across the clusters and multiple 794 
storage devices. Often cloud infrastructures are used to test and prototype Big Data applications. A 795 
system with high variability will typically be deployed on a cloud infrastructure, because of the cost and 796 
performance efficiency of being able to add or remove nodes to handle the peak performance. The ability 797 
to release those resources when they are no longer needed provides significant operational cost savings 798 
for this type of Big Data system.  799 

The term cloud is often used to reference an entire implementation. Strictly speaking, cloud refers to the 800 
infrastructure framework (e.g., compute resources and network as described in the NBDRA). Big Data is 801 
primarily concerned with the platform and processing layers. Given that either virtualized or bare metal 802 
resources can be used, Big Data is a separate domain from cloud computing. 803 

4.4.4 INTERNET OF THINGS / CYBER-PHYSICAL SYSTEMS 804 

Cyber-physical systems (CPS) are smart systems that include engineered interacting networks of physical 805 
and computational components. CPS and related systems (including the IoT and the Industrial Internet) 806 
are widely recognized as having great potential to enable innovative applications and impact multiple 807 
economic sectors in the worldwide economy [29]. CPS focus areas include smart cities, energy smart 808 
grid, transportation, and manufacturing. The IoT refers to the connection of physical devices to the 809 
Internet—producing data and communicating with other devices. Big Data systems are often 810 
characterized by high volume—representing one or a few very large datasets. IoT is the other extreme 811 
representing a very large number of potentially very small streams of data. A subset of IoT may also 812 
represent high-velocity data. The overarching view of IoT consists of tiered systems where edge devices 813 
produce data—with a trade-off in what analytics are done on-board the edge devices versus what data is 814 
transmitted to local systems. End-to-end IoT represents a tiered system, different from the tiered storage 815 
discussed in Section 4.1.7. In this context, the IoT tiers represent coupled independent and distributed 816 
systems, generally described as a sensor tier, edge computing tier, regional tier, and global tier. For 817 
example, a smart watch may produce data and communicate with a smart phone, which then can connect 818 
to a local laptop and/or a cloud data collector. IoT thus represents a system-of-systems architecture, with 819 
the correspondingly greater optimization and security complexity. 820 

4.4.5 BLOCKCHAIN 821 

Blockchain technology was first proposed as a solution to the well-known problem of achieving 822 
consistency in distributed databases when the reliability of participating nodes could not be guaranteed. 823 
This solution provided a foundation for the bitcoin digital currency and payment system. The phrase 824 
distributed ledger technology (DLT) is often used as a synonym for blockchain, as the blockchain may be 825 
viewed as a shared, distributed, write-once ledger of verified transactions. 826 

The term blockchain has come to refer to a type of distributed database that has certain characteristics, as 827 
follows: 828 

• Data is fully replicated across participating network nodes; 829 
• Data can be added by any participating node, by submitting a transaction to the network; 830 
• Transactions are time-stamped and cryptographically signed using asymmetric or public-key 831 

cryptography to provide proof-of-origin; 832 
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• Transactions are verified by each participating node, and assembled into blocks; 833 
• Blocks are assembled by participating nodes using cryptographic hash functions to build a hash 834 

tree of the transactions within the block, and then to generate a secure hash of the entire block; 835 
• Blocks are validated by a distributed consensus mechanism, and valid blocks are added to the 836 

chain; and 837 
• Each new block includes a link to the previous block—the data blocks so form a linked list or 838 

chain, hence the term blockchain. 839 

Blockchain transactions are write-once; they are appended to blocks, and never subsequently updated or 840 
deleted. If the underlying data recorded as part of a transaction does change, a new transaction is written. 841 
Therefore, the full history of any information written to the blockchain can be traced by examining each 842 
related transaction and its associated timestamp.  843 

The use of secure hashes in assembling blocks is intended, in part, to make it computationally infeasible 844 
for a participating node to alter the content of any transaction once it has been recorded to the blockchain. 845 
As a result, blockchains are typically characterized as immutable. The use of hash trees for transactions 846 
within blocks also reduces the time required to verify that a given transaction is in fact recorded within a 847 
block. 848 

Blockchain, or DLT, has been proposed as a disruptive solution in a wide range of use cases beyond 849 
supporting digital currencies—including finance, identity management, supply chain management, 850 
healthcare, public records management, and more. Blockchain has also been widely proposed as an 851 
efficient means to securely record and manage the provenance of research data; to simplify data 852 
acquisition and sharing; to improve data quality and data governance; and even to facilitate the 853 
monetization of data at any scale that may be of interest to researchers.  854 

More information can be found in the draft version of NIST Interagency Report (IR) 8202, Blockchain 855 
Technology Overview [35]. 856 

4.4.6 NEW PROGRAMMING LANGUAGES 857 

The need for distributed data and component management has led to the development of a number of new 858 
open source languages. New software assists in the provisioning of resources, addition of resources to the 859 
cluster, simpler functions for data movement and transformation, and new analytic frameworks to isolate 860 
the analytics from the underlying storage platform. Many Big Data databases have developed SQL-like 861 
query languages for data retrieval, or extensions to the standard SQL itself. In addition, existing analytics 862 
programming languages have all created modules to leverage the new distributed file systems, or data 863 
stored in the new distributed databases. 864 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-1r2



NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 1, DEFINITIONS 

25 

5 DATA SCIENCE  865 

In its purest form, data science is the fourth paradigm of science, following experiment, theory, and 866 
computational sciences. The fourth paradigm is a term coined by Dr. Jim Gray in 2007 [36]. Data-867 
intensive science, shortened to data science, refers to the conduct of data analysis as an empirical science, 868 
learning directly from data itself. This can take the form of collecting data followed by open-ended 869 
analysis without preconceived hypothesis (sometimes referred to as discovery or data exploration). The 870 
second empirical method refers to the formulation of a hypothesis, the collection of the data—new or 871 
preexisting—to address the hypothesis, and the analytical confirmation or denial of the hypothesis (or the 872 
determination that additional information or study is needed.) In both methods, the conclusions are based 873 
on the data. In many data science projects, the original data is browsed first, which informs a hypothesis, 874 
which is then investigated. As in any experimental science, the result could be that the original hypothesis 875 
itself needs to be reformulated. The key concept is that data science is an empirical science, performing 876 
the scientific process directly on the data. Note that the hypothesis may be driven by a need, or can be the 877 
restatement of a need in terms of a technical hypothesis.  878 

Data science is the methodology for the synthesis of useful knowledge directly from data 879 
through a process of discovery or of hypothesis formulation and hypothesis testing. 880 

Data science is tightly linked to the analysis of Big Data, and refers to the management and execution of 881 
the end-to-end data processes, including the behaviors of the components of the data system. As such, 882 
data science includes all of analytics as a step in the process. As discussed, data science contains different 883 
approaches to leveraging data to solve mission needs. While the term data science can be understood as 884 
the activities in any analytics pipeline that produces knowledge from data, the term is typically used in the 885 
context of Big Data.  886 

Note that data science is in contrast to physics-based modeling and simulation (M&S) which dominates in 887 
weather and climate modeling, with architectures described above in Section 4.4.1 High Performance 888 
Computing. M&S starts from physics-based models, uses data as initial conditions, then creates data 889 
through time following the computational models. The final results can then be checked for accuracy 890 
against data measurements in the future. A data science approach, in contrast, would analyze the global 891 
measurements to generate new weather predictions based on the patterns detected in the data. In the 892 
future, data science approaches could be used as complementary analysis, for example, in the context of 893 
critical events to help evaluate and refine models.  894 

5.1 DATA SCIENCE AND ANALYTICS 895 

The term data science has become a catch-all term, similar to the catch-all usage for the term Big Data.  896 

The original data analytics field was dominated by statistics. In this discipline, the design of experiments 897 
determined the precise input data that was necessary and sufficient to definitively address a hypothesis. 898 
This field of analytics remains critical for providing verifiable results (e.g., for the analysis of clinical 899 
trials for the drug approval process in the pharmaceutical industry). Data sampling, a central concept of 900 
statistical analysis, involves the selection of a subset of data from the larger data population. Provided that 901 
the subset is adequately representative of the larger population, the subset of data can be used to explore 902 
the appropriateness of the data population for specific hypothesis tests or questions. For example, it is 903 
possible to calculate the data needed to determine an outcome for an experimental procedure (e.g., for a 904 
medical analysis to determine whether the treatment should prove effective). Care is taken to clean the 905 
data, and ensure the input data sample contains no external bias that would skew the results. The 906 
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discovery process, or browsing data for something interesting, has been described pejoratively as data 907 
dredging, which does not result in definitive answers to a hypothesis. 908 

5.1.1 DATA MINING 909 

In the late 1990s, a new analytics specialization emerged, known as data mining or knowledge discovery 910 
in databases. It became apparent that large datasets that had been collected could potentially add insights 911 
in areas different to the purpose for which the data was collected. This analysis of repurposed data still 912 
required careful sampling to remove bias and data cleaning to remove errors, but the machine learning or 913 
data mining techniques could generate approximate models to a wider range of data problems. The critical 914 
step in data mining is to ensure that the models have not been over-fitted (i.e., the analytical pattern 915 
matched the training data sample but did not provide accurate results on a separate testing data sample).  916 

The field of study came to be known as knowledge discovery in databases, which was later known as just 917 
knowledge discovery in data. 918 

Knowledge discovery in data (Databases) is the overall process of discovering useful 919 
knowledge from data  920 

This process involved the entire data analytics life cycle (see Section 5.3), whereas the specific analytical 921 
step was known as data mining. 922 

Data mining is the application of specific algorithms for extracting patterns from data. 923 

In addition to the math and statistics skills, data mining required knowledge of the domain to ensure the 924 
repurposed data was being properly used. This is represented in the two upper circles of the Venn diagram 925 
in Figure 2c. The statistically meaningful results from modeling the data provided approximate (but not 926 
definitive) answers to a hypothesis. data mining is considered by some as a generalization of statistics, in 927 
that the class of problems that can be addressed is 928 
broader than those accessible by traditional 929 
statistics. data mining required not only math and 930 
statistics skills, but also required domain 931 
understanding—understanding how the data was 932 
produced, and how it should be appropriately used. 933 
While involved in automated systems, the initial 934 
focus for data mining encompassed a single analyst 935 
addressing a specific mission problem, selecting 936 
data internal to an organization, processing the data 937 
on their own local system, and delivering the results 938 
through presentations to mission leaders.  939 

5.1.2 BEYOND DATA MINING 940 

Data science became a commonly used term in the 941 
mid-2000s as new techniques for handling Big Data 942 
began to emerge. Some of the initial work in data 943 
science began with the need to process massive 944 
amounts of data being collected in internet web 945 
sites. In the case of ecommerce sites, the focus was 946 
on recommender systems, to improve what additional items would be shown to a site visitor based on 947 
what items they had in their cart and what other site visitors had purchased when also purchasing those 948 
same items. Recommender systems are a type of machine learning, where the models are not programmed 949 

                                                      
c Figure 2 provided courtesy of Nancy Grady. 

Figure 3: Data Science Sub-disciplines 
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specifically, but after a model is chosen, the parameters are learned by the system in order to fit the data. 950 
See Section 5.5.1 for a discussion of the ability for models to improve in accuracy the more data they 951 
analyze. 952 

The term data science was originally applied in the context of Big Data systems that were processing very 953 
large datasets—where the size of the data become a problem of its own. This additional complexity 954 
required the addition of computer science skills, as shown in Figure 2, to understand how to deploy large 955 
volume datasets across multiple data nodes, and how to alter query and analytics techniques to address the 956 
distributed data.  957 

Data science is thus a super-set of the fields of statistics and of data mining to include the analysis of Big 958 
Data. Data science often relaxes some of the concerns in data mining.  959 

• Both statistical and data mining analysis required a careful sampling of data to ensure that the 960 
complete data population was being properly represented. In data science, typically all the data is 961 
processed and analyzed through scaling.  962 

• In some problems, it is assumed that in the sheer volume of data, small errors will tend to cancel 963 
out, thereby reducing or eliminating the need to clean the data.  964 

• Given the large datasets, sometimes the simplest algorithms can yield acceptable results. This has 965 
led to the debate in some circumstances whether more data is superior to better algorithms. 966 

• Many hypotheses can be difficult to analyze, so data science also focuses on determining a 967 
surrogate question that does not address the original hypothesis, but whose analytical result can 968 
be applied to the original mission concern. 969 

• The richness of data sources has increased the need to explore data to determine what might be of 970 
interest. As opposed to the data dredging of statistics or data mining, broader understanding of the 971 
data leads to either discovery of insights, or the formulation of hypotheses for testing. 972 

Several issues are currently being debated within the data science community. Two prominent issues are 973 
data sampling, and the idea that more data is superior to better algorithms. In the new Big Data paradigm, 974 
it is implied that data sampling from the overall data population is no longer necessary since the Big Data 975 
system can theoretically process all the data without loss of performance. However, even if all the 976 
available data is used, it still may only represent a population subset whose behaviors led them to produce 977 
the data—which might not be representative of the true population of interest. For example, studying 978 
social media data to analyze people’s behaviors does not represent all people, as not everyone uses social 979 
media. While less sampling may be used in data science processes, it is important to be aware of the 980 
implicit data sampling when trying to address business questions. 981 

The assertion that more data is superior to better algorithms implies that better results can be achieved by 982 
analyzing larger samples of data rather that refining the algorithms used in the analytics. The heart of this 983 
debate states that a few bad data elements are less likely to influence the analytical results in a large 984 
dataset than if errors are present in a small sample of that dataset. If the analytics needs are correlation 985 
and not causation, then this assertion is easier to justify. Outside the context of large datasets in which 986 
aggregate trending behavior is all that matters, the data quality rule remains—where you cannot expect 987 
accurate results based on inaccurate data. 988 

5.2 DATA SCIENTISTS 989 

Data scientists and data science teams solve complex data problems by employing deep expertise in one 990 
or more of the disciplines of math, statistics, and computer engineering, in the context of mission strategy, 991 
and under the guidance of domain knowledge. Personal skills in communication, presentation, and 992 
inquisitiveness are also very important given the need to express the complexity of interactions within Big 993 
Data systems. 994 
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A data scientist is a practitioner who has sufficient knowledge in the overlapping regimes 995 
of business needs, domain knowledge, analytical skills, and software and systems 996 
engineering to manage the end-to-end data processes in the analytics life cycle. 997 

While this full collection of skills can be present in a single individual, it is also possible that these skills, 998 
as shown in Figure 2, are covered by different members of a team. For data-intensive applications, all of 999 
these skill groups are needed to distribute both the data and the computation across systems of resources 1000 
working in parallel. While data scientists seldom have strong skills in all these areas, they need to have 1001 
enough understanding of all areas to deliver value from data-intensive applications and work in a team 1002 
whose skills spans these areas. 1003 

Similar to the term Big Data, data science and data scientist have also come to be used in multiple ways. 1004 
Data scientist is applied essentially to anyone who performs any activity that touches data. To provide 1005 
some specificity, the term data scientist should refer to the generalist that understands not only the 1006 
mission needs, but the end-to-end solution to meet those needs. This can be described conceptually as a 1007 
horizontal data scientist. 1008 

A horizontal data scientist is a generalist who understands enough of the multiple 1009 
disciplines of mission need, the domain processes that produced the data, math and 1010 
statistics, and computer science (or software and systems engineering). 1011 

Data science is not solely concerned with analytics, but also with the end-to-end life cycle, where the data 1012 
system is essentially the scientific equipment being used to develop an understanding and analysis of a 1013 
real-world process. The implication is that the horizontal data scientist must be aware of the sources and 1014 
provenance of the data, the appropriateness and accuracy of the transformations on the data, the interplay 1015 
between the transformation algorithms and processes, the analytic methods and the data storage 1016 
mechanisms. This end-to-end overview role ensures that everything is performed correctly to explore the 1017 
data and create and validate hypotheses.  1018 

Conversely, those who specialize in a particular technique in the overall data analytics system should be 1019 
more narrowly referred to as a subject matter expert. 1020 

A vertical data scientist is a subject matter expert in specific disciplines involved in the 1021 
overall data science process. 1022 

Examples of vertical data scientists could include the following: machine learning experts; Big Data 1023 
engineers who understand distributed data storage platforms; data modelers who understand methods of 1024 
organizing data to be appropriate for analytics; data engineers who transform data to prepare for analytics; 1025 
or semantic specialists or ontologists who deal in metadata models. There is no consensus in the use of 1026 
the term data scientist, but the specific use of the term to represent the generalist overseeing the end-to-1027 
end process and the use of a particular subject matter expert category for specialists would greatly 1028 
improve the understanding of the skills needed to solve Big Data problems.  1029 

The EDISON Data Science Framework (EDISON) is a project coordinated by the University of 1030 
Amsterdam focusing on education and skills needed for data science. They have produced four core 1031 
documents: 1032 

• Data Science Competence Framework (CF-DS) 1033 
• Data Science Body of Knowledge (DS-BoK) 1034 
• Data Science Model Curriculum (MC-DS) 1035 
• Data Science Professional Profiles (DSPP) 1036 

These documents can be found at https://github.com/EDISONcommunity/EDSF. 1037 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1500-1r2

https://github.com/EDISONcommunity/EDSF


NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 1, DEFINITIONS 

29 

5.3 DATA SCIENCE PROCESS 1038 

Data science is focused on the end-to-end data processing life cycle of Big Data and related activities. The 1039 
data science life cycle encompasses the data analytics life cycle (as described below) plus many more 1040 
activities including policy and regulation, governance, operations, data security, master data management, 1041 
meta-data management, and retention/destruction. The data analytics life cycle is focused on the 1042 
processing of Big Data, from data capture to use of the analysis. 1043 

The data analytics life cycle is the set of processes that is guided by the organizational 1044 
need to transform raw data into actionable knowledge, which includes data collection, 1045 
preparation, analytics, visualization, and access. 1046 

The end-to-end data science life cycle consists of five fundamental steps: 1047 

1. Capture: gathering and storing data, typically in its original form (i.e., raw data); 1048 
2. Preparation: processes that convert raw data into cleaned, organized information; 1049 
3. Analysis: techniques that produce synthesized knowledge from organized information; 1050 
4. Visualization: presentation of data or analytic results in a way that communicates to others; 1051 

and 1052 
5. Action: processes that use the synthesized knowledge to generate value for the enterprise. 1053 

Analytics refers to a specific step in the complete data analytics life cycle, whereas data science involves 1054 
all steps in the data analytics life cycle including when Big Data is being processed. Analytic processes 1055 
are often characterized as discovery for the initial hypothesis formulation, development for establishing 1056 
the analytics process for a specific hypothesis, and application for the encapsulation of the analysis into 1057 
an operational system. While Big Data has touched all three types of analytic processes, the majority of 1058 
the changes are observed in development and applied analytics. New Big Data engineering technologies 1059 
change the types of analytics that are possible, but do not result in completely new types of analytics. 1060 
However, given the retrieval speeds, analysts can interact with their data in ways that were not previously 1061 
possible. Traditional statistical analytic techniques downsize, sample, or summarize the data before 1062 
analysis. This was done to make analysis of large datasets reasonable on hardware that could not scale to 1063 
the size of the dataset. Analytics in statistics and data mining focus on causation—being able to describe 1064 
why something is happening. Discovering the cause aids actors in changing a trend or outcome. Big Data 1065 
science emphasizes the value from computation across the entire dataset. Determining correlation (and 1066 
not necessarily causation) can be useful when knowing the direction or trend of something is enough to 1067 
take action. Big Data solutions make it more feasible to implement causation type of complex analytics 1068 
for large, complex, and heterogeneous data.  1069 

Another data science life cycle consideration is the speed of interaction between the analytics processes 1070 
and the person or process responsible for delivering the actionable insight. Different Big Data use cases 1071 
can be characterized further in terms of the time limits for the end-to-end analytics processing, at real 1072 
time, near real time, or batch. Although the processing continuum existed prior to the era of Big Data, the 1073 
desired location on this continuum is a large factor in the choice of architectures and component tools to 1074 
be used. Given the greater query and analytic speeds within Big Data due to the scaling across a cluster, 1075 
there is an increasing emphasis on interactive (i.e., real-time) processing. Rapid analytics cycles allow an 1076 
analyst to do exploratory discovery on the data, browsing more of the data space than might otherwise 1077 
have been possible in any practical time frame. The processing continuum is further discussed in NBDIF: 1078 
Volume 6, Reference Architecture. 1079 

When the knowledge discovery in databases (KDD) community emerged in the late 1990s, there was a 1080 
great diversity of process models, with varying numbers and descriptions of the steps. A consortium was 1081 
formed to standardize this process, the resulting standard was the Cross-Industry Standard Process Model 1082 
for Data Mining (CRISP-DM), published in 2000. This process model for the core data mining process 1083 
(within the overall KDD lifecycle) is the dominant process model use by practitioners—with varying 1084 
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modifications. There are more than a hundred research publications adding or adjusting the processes to 1085 
include the considerations for resourcing, management, teaming, agile development, etc. There is 1086 
renewed interest in the overall lifecycle of machine learning and AI. Ongoing lifecycle reports are being 1087 
developed in ISO TC69 Applications of Statistical Methods [37] and ISO/IEC JTC 1/SC 42 Artificial 1088 
Intelligence [28], and the reader is directed to the publications of those organizations for the latest 1089 
developments. 1090 

5.3.1 DATA PERSISTENCE DURING THE LIFE CYCLE 1091 

Analytic methods were classically developed for simple data tables. When storage became expensive, 1092 
relational databases and methods were developed. With the advent of less expensive storage and Big 1093 
Data, new strategies to manage large volumes do not necessarily require the use of relational methods. 1094 
These new strategies for Big Data engineering involve rearrangement of the data, parallel storage, parallel 1095 
processing, and revisions to algorithms. With the new Big Data paradigm, analytics implementations can 1096 
no longer be designed independent of the data storage design, as could be previously assumed if the data 1097 
was already cleaned and stored in a relational database.  1098 

In the traditional data warehouse, the data handling process followed the life cycle order given in Section 1099 
5.3 above (i.e., capture to staging, preparation and storage into a data warehouse, possibly query into data 1100 
marts, and then analysis). The data warehouse was designed in a way that optimized the intended 1101 
analytics.  1102 

The different Big Data characteristics have influenced changes in the ordering of the data handling 1103 
processes—in particular when the data is persisted. Dataset characteristics change the analytics life cycle 1104 
processes in different ways. The following scenarios provide examples of changes to the points in the life 1105 
cycle when data is stored as a function of dataset characteristics: 1106 

• Data warehouse: Persistent storage occurs after data preparation. 1107 
• Big Data volume system: Data is stored immediately in original form before preparation; 1108 

preparation occurs on read, and is referred to as schema on read. 1109 
• Big Data velocity application: The collection, preparation, and analytics (alerting) occur on the 1110 

fly, and optionally include some summarization or aggregation of the streaming data prior to 1111 
storage. 1112 

5.4 DATA CHARACTERISTICS IMPORTANT TO DATA 1113 

SCIENCE 1114 

In addition to volume, velocity, variety, and variability, several terms, many beginning with V, have been 1115 
used in connection with Big Data. Some refer to the characteristics important to achieving accurate results 1116 
from the data science process.  1117 

5.4.1 VERACITY 1118 

Veracity refers to the accuracy of the data, and relates to the vernacular garbage-in, garbage-out 1119 
description for data quality issues in existence for a long time. If the analytics are causal, then the quality 1120 
of every data element is very important. If the analytics are correlations or trending over massive volume 1121 
datasets, then individual bad elements could be lost in the overall counts and the trend would still be 1122 
accurate. Data quality concerns, for the most part, are still vitally important for Big Data analytics. This 1123 
concept is not new to Big Data, but remains important. 1124 
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5.4.2 VALIDITY 1125 

Validity refers to appropriateness of the data for its intended use. While the data may have high veracity 1126 
(accurate representation of the real-world processes that created it), there are times when the data is no 1127 
longer valid for the hypothesis being asked. For example, in a fast-changing environment such as the 1128 
stock market, while historical price data has high veracity, it is not valid for certain types of analysis that 1129 
rely upon real-time pricing information. In many cases, there is a time window before which the data is no 1130 
longer valid for analysis. This concept is not new to Big Data, but remains important. 1131 

5.4.3 VOLATILITY 1132 

Volatility refers to the tendency for data structures to change over time. For example, equipment can 1133 
degrade, and biases or shifts can be introduced, such as measurements from satellites. To analyze data 1134 
accumulated over time, it becomes critical to understand changes in the production of the data to correct 1135 
for drift or volatility and to enable historical analysis across all the data. This concept is not new to Big 1136 
Data, but remains important. 1137 

5.4.4 VISUALIZATION 1138 

Visualization is an important step in any data science application to allow human understanding of the 1139 
data, the analytics, or the results. There are three very different types of visualization that vary in 1140 
techniques and in purpose. 1141 

Exploratory visualization refers to the techniques needed to browse original datasets to gain an 1142 
understanding of distributions in data element values (e.g., across cases or across geography). This type of 1143 
visualization has become more important with Big Data, and can require additional techniques for data 1144 
summarization or aggregation to make the data accessible to a particular presentation format or device.  1145 

Evaluative visualization refers to the visualization that enables an evaluation and understanding of the 1146 
performance and accuracy of a particular analytic or machine learning method. This visualization need is 1147 
not new to Big Data since it refers to the results of the analysis—which typically is not a large amount of 1148 
data. Small data is a new term has been coined to refer to the inability of analysts to properly evaluate 1149 
results if the data is too large and complex. 1150 

Small data refers to the limits in the size of datasets that analysts can fully evaluate and 1151 
understand. 1152 

The evaluation of the results of analytic methods is vital to ensure that the results will indeed meet the 1153 
mission need for the analysis.  1154 

Explanatory visualization, previously described as information visualization, concerns the presentation 1155 
of complex data in a way easily understood by decision makers. Communication of the probabilistic 1156 
accuracy of analytic results becomes a vital part of explanatory visualization as the production of Big 1157 
Data analytic results becomes more complicated. Explanatory visualization could, for example, present 1158 
the probabilities that a particular result will occur (e.g., in weather forecasts). Expressive techniques that 1159 
enable cognition in humans are critical so that those who were not involved in the data collection or 1160 
analytics will still understand the accuracy and applicability of the results. 1161 

5.4.5 VALUE 1162 

Value is the measure of gain, achieved by an organization or individual, as a result of the data science 1163 
process implemented. Value is also used as a measure of the inherent potential in datasets—should they 1164 
be fully analyzed. In the new information economy, value quantification and usage of calculated values 1165 
for a particular application have not been standardized. For example, how should a company add the 1166 
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value (or potential value) of data to their asset balance sheet? This concept is not new to Big Data, but 1167 
remains important. 1168 

5.4.6 METADATA 1169 

Metadata is descriptive data about objects. Metadata describes additional information about the data such 1170 
as how and when data was collected and how it was processed. Metadata should itself be viewed as data 1171 
with all the requirements for tracking, change management, and security. Many standards are being 1172 
developed for metadata, for general metadata coverage (e.g., ISO/IEC 11179-1 [17]) and discipline-1173 
specific metadata (e.g., ISO 19115 [38] for geospatial data). Metadata is not new to Big Data, but there is 1174 
an increasing emphasis on proper creation and curation of metadata to improve automated data fusion. 1175 
The following are examples of types of metadata. 1176 

Provenance type of metadata provides the history of the data so users can correctly interpret the data, 1177 
especially when the data is repurposed from its original collection process to extract additional value. As 1178 
data sharing becomes common practice, it is increasingly important to have information about how data 1179 
was collected, transmitted, and processed. Open data is data that has been made publicly available to 1180 
others outside the original data producer team. A more detailed discussion of the types of metadata is 1181 
beyond the scope of this document, but can be found in the ISO standards documents. For continuing the 1182 
“V” word theme, we could describe part of metadata as Vocabulary, and part of keeping track of dataset 1183 
changes with Versioning.  1184 

Semantic metadata, another type of metadata, refers to the description of a data element that assists with 1185 
proper interpretation of the data element. Semantic relationships are typically described using the 1186 
Resource Description Framework (see, for example, [39]) where you have a triple of noun-verb-subject 1187 
(or entity-relationship-second Entity). Semantic relationships can be very general or extremely domain-1188 
specific in nature. A number of mechanisms exist for implementing these unique descriptions, and the 1189 
reader is referred to the World Wide Web Consortium (W3C) efforts on the semantic web [40], [41] for 1190 
additional information. Semantic metadata is important in the new Big Data paradigm since the Semantic 1191 
Web represents a Big Data attempt to provide cross-cutting meanings for terms but is not new with Big 1192 
Data. 1193 

Linked data is data that is described according to a standard metadata relationship (see, for example, [42] 1194 
and [43]). With common data elements, datasets can be aligned along those elements, then the two 1195 
datasets can be fused into a new dataset. This is the same process done in the integration of data in a data 1196 
warehouse, where each dataset has primary keys that align with foreign keys in another dataset. Linked 1197 
data arose from the semantic web, and the desire to do data mashups. The reuse of metadata element 1198 
definitions has continued to expand, and is required for automated integration of disparate datasets. 1199 

Taxonomies represent in some sense metadata about data element relationships. Taxonomy is a 1200 
hierarchical relationship between entities, where a data element is broken down into smaller component 1201 
parts. Taxonomies help us to develop a conceptual model of an area, and allow comparison between 1202 
conceptual models. Taxonomies will be discussed further in the NBDIF: Volume 2, Taxonomies on Big 1203 
Data2. 1204 

While these metadata concepts are important, they predate the Big Data paradigm shift. 1205 

5.4.7 COMPLEXITY 1206 

Another data element relationship concept that is not new in the Big Data paradigm shift is the presence 1207 
of complexity between the data elements. Complexity is, however, important for data science in a number 1208 
of disciplines. There are domains where data elements cannot be analyzed without understanding their 1209 
relationship to other data elements. The data element relationship concept is evident, for example, in the 1210 
analytics for the Human Genome Project, where it is the relationship between the elements (e.g., base 1211 
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pairs, genes, proteins) and their position and proximity to other elements that matters. The term 1212 
complexity is often attributed to Big Data, but it refers to the interrelationship between data elements or 1213 
across data records, independent of whether the dataset has the characteristics of Big Data. 1214 

5.4.8 OTHER C WORDS 1215 

There are a number of other characteristics of analytics that predated Big Data science. They can be 1216 
described with a set of “C” words—concepts such as Completeness, Cleanliness, Comprehensiveness, 1217 
Consistency, Concurrency. These are characteristics on datasets in relationship to the full population they 1218 
are intended to represent. They are all critical in the performance of analytics. All these concepts are not 1219 
new to Big Data, and are discussed extensively in the data management and data analytics literature. 1220 

5.5 EMERGENT BEHAVIOR  1221 

There are four topics worth noting that have emerged due to Big Data science. 1222 

5.5.1 NETWORK EFFECT—DEEP LEARNING EXAMPLE 1223 

The scaling of data management and processing has changed the nature of analytics in a number of ways. 1224 
Obtaining significantly new or more accurate results from analytics based on larger amounts of data is 1225 
known as the network effect. One significant example is in a type of machine learning known as deep 1226 
learning. Deep Learning is a computational approach to building models for pattern recognition, 1227 
following loosely the concepts of how the brain is able to learn patterns and predict outcomes. Analytic 1228 
techniques such as neural networks have been used for decades, but were typically restricted to small or 1229 
“toy” datasets. The advances in computing and Big Data have changed the analytic capacity of such 1230 
learning techniques significantly. Instead of processing a couple thousand images or documents, deep 1231 
learning can train on millions of examples –fundamentally changing analytics in a number of disciplines. 1232 
Deep learning implementations have revolutionized many areas such as speech recognition, machine 1233 
translation, object detection and identification in images and video, facial recognition, computer vision, 1234 
and self-driving cars. Deep learning is an example analytic technique that has demonstrated the network 1235 
effect of increasing accuracy due to the computational and data processing resources to analyze very large 1236 
datasets. 1237 

5.5.2 MOSAIC EFFECT 1238 

Previously, it was difficult to obtain datasets from different domains. This led to what has been called 1239 
security by obscurity. The costs involved in obtaining datasets ensured some level of privacy. With the 1240 
greater availability of different types of datasets, it is now possible to easily create mashups (i.e., the 1241 
integration of multiple datasets). One consequence of this is known as the Mosaic Effect, where the 1242 
integration of multiple datasets now allows the identification of individuals, whereas this was not possible 1243 
when examining the individual datasets alone. This has significantly changed the concerns over privacy. 1244 
Information aggregators have integrated a number of datasets that provide a complete profile of an 1245 
individual, typically monetizing this data by selling it to marketing firms. Similarly, the greater quantity 1246 
of data available about an individual can also lead to privacy concerns. For example, the availability of 1247 
cell-tower or geo-location tracking on mobile devices has made it possible to determine personal 1248 
information such as where a person lives, where they work, or if they are on travel. Both data mashups 1249 
and the availability of granular data have led to emergent concerns over protecting privacy.  1250 

5.5.3 IMPLICATIONS FOR DATA OWNERSHIP 1251 

Digitization has increased concerns over data ownership (the control over the usage of data), due to the 1252 
ease of collection and replication of data. There are a number of roles in handling Big Data, including the 1253 
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data creator, the data subject (entity the data is describing), the data provider, and the repository owner 1254 
where the data is stored. In some cases, these roles are filled by separate individuals or organizations. 1255 
While clearly a legal question, we recognize that Big Data has made the question of data ownership more 1256 
acute. Two examples can illustrate the emerging issues. 1257 

As an example of the changes with Big Data, the ubiquitous usage of smart phones and of social 1258 
platforms has led to greater complexity in the concerns over data ownership. When data is generated 1259 
through the use of social apps, the user is the data subject, but now the application provider has unlimited 1260 
rights to use, reuse, analyze, and potentially sell that data to others. The individual user no longer has 1261 
control over the use of this data, nor can they request that the data be deleted. In some ways, this is not a 1262 
new phenomenon, since mailing lists have always been shared with other companies. The Big Data 1263 
challenge arises from the substantial increase in information known about an individual from just their 1264 
address. The aggregation of data by credit bureaus and marketing firms, as well as the sale of data 1265 
collected through social apps increases the concerns over data ownership and control of data where you 1266 
are the data subject. 1267 

Data subject, data ownership, and reuse control issues are also emerging in healthcare, in particular with 1268 
the enhanced usage of electronic health records (EHRs). The data creator is the hospital or lab and the 1269 
data subject is the patient. There are others who have an interest in this data, including insurance 1270 
companies that are data consumers and health data exchanges which are data repository owners. 1271 
Ownership and control in EHRs is a Big Data arena with many roles interacting with the data. 1272 

5.6 BIG DATA METRICS AND BENCHMARKS  1273 

Initial considerations in the use of Big Data engineering include the determination, for a particular 1274 
situation, of the size threshold after which data should be considered Big Data. Multiple factors must be 1275 
considered in this determination, and the outcome is particular to each application. As described in 1276 
Section 3.1, Big Data characteristics lead to the use of Big Data engineering techniques that allow the 1277 
data system to operate affordably and efficiently. Whether a performance or cost efficiency can be 1278 
attained for a particular application requires a design analysis, which is beyond the scope of this report.  1279 

There is a significant need for metrics and benchmarking to provide standards for the performance of Big 1280 
Data systems. While there are a number of standard metrics used in benchmarking, only the ones relevant 1281 
to the new Big Data paradigm would be within the scope of this work. This topic is being addressed by 1282 
the Transaction Processing Performance Council (TCP)-xHD Big Data Committee [44].  1283 
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6 BIG DATA SECURITY AND PRIVACY  1284 

Security and privacy have also been affected by the emergence of the Big Data paradigm. A detailed 1285 
discussion of the influence of Big Data on security and privacy is included in NBDIF: Volume 4, Security 1286 
and Privacy. Some of the effects of Big Data characteristics on security and privacy summarized below: 1287 

• Variety: Retargeting traditional relational database security to non-relational databases has been 1288 
a challenge. An emergent phenomenon introduced by Big Data variety that has gained 1289 
considerable importance is the ability to infer identity from anonymized datasets by correlating 1290 
with apparently innocuous public databases, as discussed in Section 5.5.2. 1291 

• Volume: The volume of Big Data has necessitated storage in multitiered storage media. The 1292 
movement of data between tiers has led to a requirement of systematically analyzing the threat 1293 
models and research and development of novel techniques.  1294 

• Velocity: As with non-relational databases, distributed programming frameworks were not 1295 
developed with security as a primary objective.  1296 

• Variability: Security and privacy requirements can shift according to the time-dependent nature 1297 
of roles that collected, processed, aggregated, and stored it. Governance can shift as responsible 1298 
organizations merge or even disappear 1299 

Privacy concerns, and frameworks to address these concerns, predate Big Data. While bounded in 1300 
comparison to Big Data, past solutions considered legal, social, and technical requirements for privacy in 1301 
distributed systems, very large databases, and in high performance computing and communications 1302 
(HPCC). The addition of new techniques to handle the variety, volume, velocity, and variability has 1303 
amplified these concerns to the level of a national conversation, with unanticipated impacts on privacy 1304 
frameworks. 1305 

Security and Privacy concerns are present throughout any Big Data system. In the past, security focused 1306 
on a perimeter defense, but now it is well understood that defense-in-depth is critical. The term security 1307 
and privacy fabric in the context of the NBDRA (see NBDIF Volume 6: Reference Architecture, Section 1308 
3) conceptually describes the presence of security and privacy concerns in every part of a Big Data 1309 
system. 1310 

Fabric represents the presence of activities and components throughout a computing 1311 
system. 1312 

Security standards define a number of controls at each interface and for each component. Likewise, 1313 
privacy is a concern for Big Data systems, where additional privacy concerns can be created through the 1314 
fusion of multiple datasets, or the granularity of the data being collected. 1315 

 1316 
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7 BIG DATA MANAGEMENT 1317 

Given the presence of management concerns and activities throughout all components and activities of 1318 
Big Data systems, management is represented in the NIST reference architecture as a fabric, similar to its 1319 
usage for security and privacy. The primary change to managing Big Data systems naturally centers 1320 
around the distribution of the data. Sizing a set of data nodes is a new skill in Big Data engineering, since 1321 
data on a node is typically replicated across two slave nodes (for failover). This increases the capacity 1322 
needed to handle a specific amount of data. The choice must be made up front what data values in a field 1323 
to use to split up the data across nodes (known as sharding). This choice may not be the best one in terms 1324 
of the eventual analytics, so the distribution is monitored and potentially reallocated to optimize systems. 1325 
At the infrastructure level, since many applications run in virtualized environments across multiple 1326 
servers, the cluster management portion is not new, but the complexity of the data management has 1327 
increased. 1328 

7.1 ORCHESTRATION 1329 

The Orchestration role for Big Data systems is discussed in the NBDIF: Volume 6, Reference 1330 
Architecture. This role focuses on all the requirements generation, and compliance monitoring on behalf 1331 
of the organization and the system owner. One major change is in the negotiation of data access and usage 1332 
rights with external data providers as well as the system’s data consumers. This includes the need to 1333 
coordinate the data exchange software and data standards.  1334 

7.2 DATA GOVERNANCE  1335 

Data governance is a fundamental element in the management of data and data systems.  1336 

Data governance refers to a system, including policies, people, practices, and 1337 
technologies, necessary to ensure data management within an organization. 1338 

The definition of data governance includes management across the complete data life cycle, whether the 1339 
data is at rest, in motion, in incomplete stages, or in transactions. To maximize its benefit, data 1340 
governance must also consider the issues of privacy and security of individuals of all ages, individuals as 1341 
organizations, and organizations as organizations. Additional discussion of governance with respect to 1342 
security and privacy can be found in the NBDIF: Volume 4, Security and Privacy. 1343 

Data governance is needed to address important issues in the new global Internet Big Data economy. One 1344 
major change is that an organization’s data is being accessed and sometimes updated from other 1345 
organizations. This has happened before in the exchange of business information, but has now expanded 1346 
beyond the exchange between direct business partners. Just as cloud-based systems now involve multiple 1347 
organizations, Big Data systems can now involve external data over which the organization has no 1348 
control.  1349 

Another example of change is that many businesses provide a data hosting platform for data that is 1350 
generated by the users of the system. While governance policies and processes from the point of view of 1351 
the data hosting company are commonplace, the issue of governance and control rights of the data 1352 
providers is new. Many questions remain including the following: Do they still own their data, or is the 1353 
data owned by the hosting company? Do the data producers have the ability to delete their data? Can they 1354 
control who is allowed to see their data?  1355 
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The question of governance resides between the value that one party (e.g., the data hosting company) 1356 
wants to generate versus the rights that the data provider wants to retain to obtain their own value. New 1357 
governance concerns arising from the Big Data paradigm need greater discussion.  1358 
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Appendix A: Acronyms 1359 

ACID atomicity, consistency, isolation, durability  1360 
AI artificial intelligence 1361 
API application programming interface  1362 
BASE availability, soft-state, and eventual consistency 1363 
BLOBs binary large objects  1364 
CAP Consistency, Availability, and Partition  1365 
CPS cyber-physical systems  1366 
CPU central processing unit 1367 
CRISP Cross-Industry Standard Process Model for Data Mining 1368 
DLT distributed ledger technology  1369 
EHR electronic health records  1370 
GB gigabyte  1371 
GPU graphic processing units  1372 
HPC high performance computing  1373 
HPCC high performance computing and communications 1374 
HPDA High Performance Data Analytics  1375 
I/O input/output 1376 
IaaS Infrastructure-as-a-Service  1377 
IEC International Electrotechnical Commission 1378 
IoT internet of things 1379 
ISO International Organization for Standardization 1380 
ITL Information Technology Laboratory (within NIST) 1381 
JSON JavaScript Object Notation 1382 
KDD knowledge discovery in databases 1383 
M&S modeling and simulation 1384 
MPP massively parallel processing  1385 
NARA National Archives and Records Administration  1386 
NAS network-attached storage  1387 
NASA National Aeronautics and Space Administration  1388 
NBDIF NIST Big Data Interoperability Framework 1389 
NBD-PWG NIST Big Data Public Working Group  1390 
NBDRA NIST Big Data Reference Architecture  1391 
NIST National Institute of Standards and Technology  1392 
NoSQL not only (or no) Structured Query Language  1393 
NSF National Science Foundation  1394 
P2P peer-to-peer  1395 
PaaS Platform-as-a-Service  1396 
RDBMS Relational Database Management Systems  1397 
SaaS Software-as-a-Service  1398 
SANs storage area networks  1399 
SP Special Publication 1400 
SQL Structured Query Language 1401 
TB terabyte 1402 
TCP Transaction Processing Performance Council 1403 
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URI uniform resource identifier 1404 
W3C World Wide Web Consortium  1405 
XML eXtensible Markup Language 1406 
 1407 
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