NIST Special Publication 1500-11

Advanced Electrical Power System Sensors

Workshop Report

Prepared for Allen Goldstein National Institute of Standards and Technology Gaithersburg MD 20899

> Prepared by Chris Kelley Joan Pellegrino Emmanuel Taylor Energetics Incorporated Columbia, MD 20146

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.1500-11

DISCLAIMER

This report was prepared as an account of work co-sponsored by the National Institute of Standards and Technology (NIST). The views and opinions expressed herein do not necessarily state or reflect those of NIST. Certain commercial entities, equipment, or materials may be identified in this document in order to illustrate a point or concept. Such identification is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

Photo Credit: Wikipedia

NIST Special Publication 1500-11

Advanced Electrical Power System Sensors

Workshop Report

Prepared for Allen Goldstein National Institute of Standards and Technology Gaithersburg MD 20899

> Prepared by Chris Kelley Joan Pellegrino Emmanuel Taylor Energetics Incorporated Columbia, MD 20146

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.1500-11

November 2017

U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

Publications in the SP1500 subseries are intended to capture external perspectives related to NIST standards, measurement, and testing-related efforts. These external perspectives can come from industry, academia, government, and others. These reports are intended to document external perspectives and do not represent official NIST positions.

> National Institute of Standards and Technology Special Publication 1500-11 Natl. Inst. Stand. Technol. Spec. Publ. 1500-11, 32 pages (November 2017) CODEN: NSPUE2

> > This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.1500-11

Acknowledgements

This report is based on the results of the Advanced Electrical Power System Sensors Workshop, held on March 24, 2017 in Gaithersburg, Maryland. The workshop was co-sponsored by the National Institute of Standards and Technology (NIST), and the U.S. Department of Energy (DOE).

Thanks are extended to the NIST organizer, Allen Goldstein, the DOE, Oak Ridge National Laboratory, and private sector and other national laboratory personnel who all provided their perspectives on new technologies as well as the challenges impacting the measurement, communication, and use of information for planning and operating the US electric grid. We also appreciate the extensive contributions of the participants (listed in Appendix A); this report would not be possible without their valuable insights. Finally, thanks are extended to the Energetics Incorporated team for their assistance in facilitating the workshop and preparing this report.

Table of Contents

Executive Summary Background High-Level Findings	ii
1. Introduction	
1.1. Workshop Scope	4
1.2. Workshop Process	
2. Applications for Next-Generation Sensors	6
2.1. Grid Planning	6
2.1.1. Challenges in Planning	
2.1.2. Information Needs	7
2.2. Grid Operations	9
2.2.1. Challenges in Operations	9
2.2.2. Information Needs	
2.3. Grid Event Analysis	
2.3.1. Challenges in Event Analysis	11
2.3.2. Information Needs	
3. Future Needs for Power System Sensors	
4. Challenges for Advanced Sensors	
5. R&D Areas for Advanced Sensors	
5.1. Broad Research and Development Needs	
5.2. Priority Research Pathways	
6. Path Forward	
6.1. Overarching Themes	
6.2. Path Forward	
7. Appendices	
Appendix A. Contributors	
Appendix B. Acronyms	

Executive Summary

Background

The objective of the Advanced Electrical Power Sensors Workshop was to provide input into planning processes being undertaken by the National Institute of Standards and Technology (NIST), Department of Energy (DOE), and the Grid Modernization Laboratory Consortium (GMLC). The workshop provided these entities with the opportunity to hear industry concerns and ideas regarding emerging and future electrical power system sensors, transducers, and transformer technologies.

As the grid continues to evolve, and as grid operation and planning support advanced functions, it may be necessary to measure aspects of the grid which have not been measured in the past, or to refine the way measurements, at present, are performed. This workshop explored various means by which grid related activities can be better informed.

High-Level Findings

Findings from the workshop cover key application areas for next generation sensing devices, future targets for sensor performance, challenges and barriers to achieving performance, and research activities to address the challenges. Exhibit E-1 provides a high-level summary of the results in these categories.

Application Areas. Grid planning, operations and event analysis were considered in terms of major challenges and information needs. Major challenges are related to managing dynamic and distributed generation/loads, modeling of resources, and evolving requirements for cybersecurity or specific applications. Information is needed to track loads, provide better situation awareness, and improve external inputs to planning/operations. Event analysis will require more robust sensors that yield useful, actionable data that is time-correlated.

Future Targets. Advanced sensors should have a greater range of functionality and yet be low cost, resilient, secure, self-calibrating and able to transmit useful data about both traditional and non-traditional key parameters, regardless of external conditions.

Challenges and Research Needs. Obtaining quality data, retrieving actionable, useful data, improving sensor performance, and increasing communication system capabilities are major challenges for development and use of advanced electrical power system sensors. Data fusion techniques, where large quantities of data are analyzed/fused so they are meaningful, is important for both operations and planning. A range of issues impact sensor performance, but most center around better testing and measuring and predicting performance (at lower cost). Standards are needed for performance including key factors such as interference and accuracy. The limits of present communication systems (bandwidth, speed, response to external conditions) could constrain the capability of advanced sensors.

Priority Research Areas. As shown in Exhibit E-1, the identified research priorities address the major challenges of performance testing, the need for new standards, increasing sensor functionality, sensor lifetime and maintenance, accuracy and other performance measures.

Exhibit E-1: High Level Findings for Advanced Electrical Power System Sensors

APPLICATION AREAS Grid Operations

Technical and resiliency issues with

Increased data flows from real-time

Resiliency and security challenges with

sensors and good data analytics

Intermittency of resources; lack of

distributed/centralized control

standardized sensors to provide both

State information - data on active state of

Better use of data, authentication of data,

power electronics, availability, and

capacity over multiple time scales

trusted data from distributed sources

distributed systems

Challenges

islanding

Information Needs

_

_

Grid Planning

Challenges

- Managing generation challenges, such as the balance between time of supply and demand, energy storage, renewables
- Dynamic resource models and modeling changing loads
- Evolving requirements for cybersecurity, new threats, blurring lines between planning and operations

Information Needs

- Data to track changing loads, better load visibility and trends
- Improved metadata for all types of conditions and component life
- Societal and economic data that could aid in planning

Grid Event Analysis

Challenges

- Lack of robust, high precision sensors for event analysis
- Inappropriate information from sensors, i.e., non-actionable data, extracting out meaningful data, properly time correlated data
- Observing state of equipment life

Information Needs

- Consistent and quality measurements between devices; observable controlled event data
- Data from active sensors that perturb and observe
- New types of data from wide-range dynamic sensors

FUTURE TARGETS FOR POWER SYSTEM SENSORS

- Low cost, high bandwidth, and dynamic range (frequency) with high accuracy and precision
- Self-calibrating, adaptive, and resilient
- Reporting of relevant metadata

 Capability for measuring traditional (voltage, current, harmonics, etc.) and non-traditional (partial discharge, interference, weather, human dynamics) parameters
 Self diagnostics for equipment health and life

MAJOR TECHNICAL CHALLENGES

Data Quality and Analytics

Retrieving usable information from data, lack of good data fusion techniques and metadata; complexity and increased processing time for advanced sensors with greater functionality, limited data processing algorithms

High costs for high performance, application-dependent accuracy and performance requirements, environmental factors, electromagnetic interference; lack of standards for performance, accuracy and external interference, limited sensor performance testing

Sensor Performance

Sensor Communication

Lack of low cost, ubiquitous, small scale, secure, high speed communications that can resist external conditions; Speed, bandwidth and other limited factors for existing communication systems

PRIORITY RESEARCH TOPICS FOR ADVANCED SENSORS

Interface Standards for Smart Sensors for Smart Grid	Testing Methods for New Sensors and Systems in a Federated Test Bed Environment	Wider Range Sensors for Enhanced Capture of Grid Harmonics	Rechargeable Batteries with Longer Life	Self-Calibrating Sensors and Testing for Accuracy in Field
Standards to support plug & play devices and interoperability, cyber security, self- identification, self- describing, self- configuration, self- calibration, and self- diagnostic/testing of sensors.	Broadly accessible capabilities to test and evaluate new sensor technologies, including connectivity and communication-related issues.	New sensors for enhanced capture of harmonics on the grid, including GMD-induced (electromagnetic pulse (EMP); electromagnetic environmental effects (E3)), inverter-induced, and equipment/switching transients.	Improved batteries with life times more comparable to the equipment they are powering (10-20 years).	Tests, standards and tools to verify and ensure the accuracy of the output of the sensor (needed for applications using sensor data) in the field.

1. Introduction

1.1. Workshop Scope

The National Institute of Standards and Technology hosted the *Advance Electrical Power System Sensors Workshop* at its Gaithersburg campus, MD on March 24, 2017. The event brought together over 60 electric power sector experts from industry, government, national laboratories, and academia to identify measurement science challenges and associated research and development (R&D) needs for the future of the electric grid.

The objective for the workshop was to better understand industry concerns, challenges, and R&D needs regarding Advanced Electrical Power System Sensors. This proceedings document represents the output of the workshop. This document identifies high priority research pathways for consideration by NIST, DOE, National Laboratories, academia, and the private sector.

The ideas presented here are a reflection of the attendees and not necessarily the entire industry. As such, they should be viewed as a good snapshot of the important perspectives, but not all-inclusive. The participants were carefully selected based on their high level of technical knowledge related to planning, operations, and event analysis for the electric power sector.

1.2. Workshop Process

To guide the discussions that took place during the workshop, several focus areas and key questions were identified beforehand. These were introduced to the participants in a series of breakout sessions, where participants provided responses. Those responses were recorded and synthesized, and are summarized in this report. The focus areas and questions utilized during the workshop are shown in Table 1-1.

Figure 1-1. Workshop Focus Areas

Application Areas

What aspects of electric grid planning, operations, and event analysis, can be enhanced by measuring new or different variables, quantities, or phenomena?

Future Targets for Power System Sensor Performance

• Envision an ideal grid of the future. What power system sensors will be presented?

Challenges and Barriers for Achieving Sensor Advances

• What challenges or barriers must be addressed to enable the desired future state discussed earlier?

Priority R&D Topics for Power System Sensors

 What research and development efforts are needed to address the top priority barriers identified?

Pathways to Realizing Solutions

• What are the R&D activities, standards, and approaches for addressing priority challenges?

During the challenges and barriers discussion, participants were asked to rank the items identified. As a criterion for ranking, participants considered the extent to which each item impacted realization of the envisioned future grid. Each group used a real-time voting scheme (5 votes per person, same value for each vote) to indicate which challenges were of most priority to address.

The results of this process are outlined in the following sections, organized by focus topic.

2. Applications for Next-Generation Sensors

The first focus area explored applications on the grid that may require new or enhanced sensing. These potential application areas include:

- Grid planning
- Grid operations
- Event analysis

In each of these cases, information is needed to ensure the stability of the grid and its continued operation, to ensure that the grid will continue to operate given the demands of the future, and to diagnose why faults and outages occur, so that changes can be made to either operation or planning processes.

2.1. Grid Planning

Planning for the electric grid is a complex process that considers changes in the type and amount of generating resources available, changes in the topology and equipment in the transmission and distribution system, and changes in the amount and characteristics of customer load on the system. These considerations are accounted for over multi-year, and often decadal, time scales. Accurate planning requires trustworthy information to reduce uncertainty. As wide-area protection and control, distributed generation, and distributed automation becomes more prominent, equipment on the grid acquires enhanced features, and customer devices become more dynamic, planning for the future of the grid may require new and different sensing and information sources.

2.1.1. Challenges in Planning

A number of challenges were identified in grid planning, and these fell within three broad categories: generation-related challenges, modeling challenges, and evolving requirements (Table 2.1).

On the generation side of planning, there are many dynamics to consider. Participants noted that the nontraditional characteristics associated with variable renewable generation sources adds a layer of complexity to the planning problem. It is difficult to plan for randomness. Moving from a centralized resource environment to one where consumers and other non-utilities source energy into the grid adds to planning challenges due to the lack of available energy storage. Often, these renewable sources are not available when there is demand on the system and the lack of energy storage to compensate for their unavailability makes exacerbates the challenge of maintaining generation/demand balance. Adding energy storage to the generation side of the grid could drastically change the operating characteristic of generators, making them more flexible. It is difficult to foresee future technologies or capacities of energy storage on distribution and transmission systems, and how quickly these solutions will be deployed.

Transmission and distribution system planners utilize models to better understand the dynamics of the grid at various points in the future. Participants noted a number of modeling related challenges, mostly related

to the information uncertainty that comes with dynamic sources and loads. Participants also noted a lack of visibility in relation to identifying equipment on particular phases in the distribution network.

It was noted that a number of challenges impact the environment in which planning take place. Planners must now account for new types of threats. Planning cycles are shortening, leaving less time for decision making. Traditional system boundaries are being transcended, causing more uncertainty.

Generation- Related Challenges	Imbalance between time of supply and when there is demand	Randomness of supply in renewable generation; move from centralized to distributed non-utility sources	Availability of viable energy storage
Modeling Challenges	Generation resource models that change frequently (e.g., wind models)	Ability to measure which phase a customer is connected to (in modeling)	Changing loads
Evolving Requirements	Ability/need to plan for grid resilience (e.g., cyber-attack, electromagnetic pulse, terrorism)	Requirement for better understanding of interactions between transmission and distribution	Half-life of plans that is shrinking with lines blurring between planning/ operations

Table 2.1. Challenges in Grid Planning

2.1.2. Information Needs

New information sources were identified that would benefit electric grid planning, as shown in Table 2.2. A number of new data sources were also suggested which would better inform grid planning. It was generally observed that the electrical and mechanical measurements taken on the grid itself do not provide sufficient information for planning purposes. It is of value to provide additional information pertaining to the context in which the physical measurements are taken. For instance, renewable generation data should be coupled with meteorological data. Fault information should be coupled with time and location information. This coupling of data would help system planners better understand root causes of incidents and better plan for incident avoidance.

It was noted that some of the desired metadata pertained to the operating environment of the equipment, while an entirely different set of metadata pertained to the societal context in which the equipment operated. Large social events, for example, can impact electrical demand (e.g., sporting events or others with major changes to loads) and create demand spikes at unusual times that utilities typically do not plan for. Regulatory environments also impact planning decisions, as do plans for large consumers of energy such as data centers or industrial expansion. The information derived from grid planning could be used to better inform the regulatory decision-making process.

Apart from the metadata described, load information was generally considered as a category where existing information sources were deemed insufficient. A need for improved model information, both on the

generation and load side was noted as important. Additional information about the true load and possible generation behind the meter will also aid planning. Lastly, it was determined that additional cost-benefit information would improve grid planning.

Load	Modelling to rack dynamically changing load	Technologies Better visibility into true developed that help to even out load consumption)		Better predictive models about load trends (e.g. electric vehicle charging, energy storage availability)
Metadata	Temporal, location, distance between data pairs tags	Better predictions about component remaining life Environmental conditions, especially for renewables. Good characterization of predictions.		Localized hazard information down to system, component level
Societal Information	External factors beyond the grid (e.g., major sporting events, major load changes)	Use of information to inform regulatory decision-making	Improved information about bad actors (cyberphysical attacks)	Better predictions about regulatory environment, economic factors, new technologies
Economic	Data on benefits that go beyond cost; better cost/benefit tools and inputs Societal cost/benefit analysis			
Generation	eration Improved generation predictive models for existing generation (component level)			

Table 2.2. New Information to Improve Grid Planning

2.2. Grid Operations

Grid operations involve the realtime monitoring and control of electrical equipment to ensure stable and reliable execution of system objectives. Grid operations require accurate information pertaining to the state of the system and the condition of its equipment. This information must be reliable, and must be available when decisions need to be made. While grid planning takes place over a long time horizon, grid operations occur on a scale from minutes down to fractions of a second.

2.2.1. Challenges in Operations

A broad array of challenges in grid operations were identified. Many of the challenges fell into distinct categories, while others were more general, as shown in Table 2.3. Major challenges for operation center around tactical issues that arise with islanding, control strategies, and load balancing, particularly with microgrids or where distributed energy resources (DER) are in play. Resilience and security are issues that are becoming increasingly important and require greater situational awareness and shorter response times.

Islanding	Real-time Control/ Sensors	Short Circuit Currents	Resilience/ Security	Resource Availability	Other
Challenges for islanding - connection, adaptive protection, safety, frequency management Need to dynamically connect/ disconnect islands	Increasing complexity introduces increased volume of information that needs to be addressed in a short time frame Limitation of response time of human operator DER dynamically challenge safety methods; need real- time methods (e.g., for relay settings) Predictive control - where is system going in the future? Lack of standardized sensors to provide centralized and distributed control Load control management using cost-effective sensors Four quadrant control (i.e., ability to regulate both real and reactive power)	Challenges with low/high current Microgrids could cause short circuit current to be very hard to measure	Black start capability of large grids Cybersecurity- requirement to keep resilience throughout distributed systems, but also be careful when centralizing control	Intermittency, lack of predictions about renewables Lack of "guarantee" that resources will be available; need real-time availability insight Present interconnection standards limit full potential of using power electronic devices on the grid	Education challenge – planning is more "open" to new ideas, operations less open due to overriding emphasis on reliability and minimizing risk. Benefit to managing loads, but difficult to coordinate

Table 2.3. Categorical Challenges in Operations

2.2.2. Information Needs

Consideration was given to new information sources that would benefit electric grid operations. Table 2.4 below displays the results of discussions. Information needs generally fell into three categories: state information about all devices, data quality and use, and sensing.

With regard to state estimation, many items were discussed. Of primary concern was the ability to know the capacity and availability of resources on the grid. This is especially of concern as more distributed energy resources are added at different points in the grid. This also applies to the dynamic rating of transmission and distribution assets such as overhead lines and cables, as well as transformers.

In reference to data quality, participants identified a number of critical factors. Verifying the accuracy and authenticity of the data was of top concern. Control, data, and metadata going to the sensor, if any, should also be secure and authenticated. Participants also stressed the importance of having vetted methods for best utilizing the available data. With regard to sensors themselves, participants agreed that each sensor should be low-cost, precise, and authenticated.

State Information on All Devices	More information about active state of power electronics on the grid	Knowledge about availability and capacity	State information over wide time-scale (from microseconds to weeks to tens of years), and at low cost
Data Quality and Use	Fusion and better use of available information (e.g., information on harmonics produced by devices that could be better used by operators)	Identification and authentication of source of information	Consider using power system information for communications (if analysis is available)
Sensing	Outputs from low-cost, high- precision, frequency sensors	Trusted data from all of these distributed sensors - origin, has data been modified, authorization	Four quadrant controls (information to support regulation of supply of both real and reactive power)

Table 2.4. Information Needs to Inform Grid Operations

2.3. Grid Event Analysis

Events on the grid can occur in fractions of a second. It is often necessary to record events that cause disruptions, disturbances, or outages. By analyzing the events, operators can find ways to prevent their reoccurrence.

2.3.1. Challenges in Event Analysis

A number of challenges were identified in grid event analysis, as illustrated in Table 2.5. At a high level, these event analysis challenges dealt with the idea of appropriateness. It was stressed that appropriate sensors must be developed to measure the appropriate information on the grid. Then, an appropriate conclusion must be derived, to inform actions by operators or planners. For this to happen, only the appropriate data must reach the person needing it. It is not necessary that all data be transmitted.

Appropriateness of Sensors	General purpose sensors don't offer robust sensing required for analysis	Lack of high-precision sensors for system	Taking information from sensors never designed to provide that information
Appropriateness of Information	Lack of data - sensors exist but information doesn't always get communicated back	Operators require actionable information, not reams of data (applies across planning, operations, analysis)	Ensuring meaningful data is returned for analysis rather than sending ALL the raw data
General Concerns	Properly time-correlated data; time stamped to occurrence on the circuit, not at a distant sensor	State of equipment life	

Table 2.5. Challenges for Event Analysis

2.3.2. Information Needs

New information sources were identified that would benefit electric grid event analysis, as shown in Table 2.6. These required information sources stress the importance of improving sensing devices, and delivering high quality event data.

Table 2.6. New Information to Inform Event Analysis

Event Data	Ensuring measurement quality and structuring it properly	Measurements are consistent between devices; based on standards or user agreement	Observable, controlled event information
Improved Sensing	Self-calibrating, self- identification sensors	Active sensors – perturb and observe	Optimize and utilize wide dynamic range sensors in ways that may not have been previously conceived

3. Future Needs for Power System Sensors

When asked to imagine an ideal grid of the future and describe the characteristics of sensing devices in the future grid, a number of common themes emerged. Table 3.1 provides highlights of the future desired characteristics that were identified. Sensors are needed to measure a wide range of traditional physical parameters, external phenomena (both environmental and societal), and non-traditional phenomena such as electromagnetic pulses (EMPs) and geomagnetic disturbances (GMDs).

Table 3.1. Desired Future Characteristics for Grid Sensors

Common Themes

•

- Sensors that measure important physical parameters
 Voltage current power power factor frequency harm
 - Voltage, current, power, power factor, frequency, harmonics
 Sensors that exhibit high bandwidth, and/or a wide dynamic range
 - Frequency measurements from DC 10 MHz
- Sensors that are low cost, but provide high accuracy and precision
- Sensors that are self-calibrating, adaptive, and resilient
- Sensors that measure non-traditional electrical phenomena, like partial discharge, EMPs, and GMDS
- Sensors that measure external phenomena, like weather and important human social dynamics (traffic, events)
- Self-diagnostic sensors that measure equipment health and lifetime
- Sensors that report relevant metadata
 - Synchronized timestamp when measurement was taken
 - Physical location where measurement was taken

4. Challenges for Advanced Sensors

A number of challenges and barriers were identified that prevent grid sensing from providing the desired data and information needed to inform planning and operations. The challenges revolve around using and interpreting sensing data, transmitting data, and ensuring the quality of data. Table 4.1 provides highlights the technical and non-technical challenges categorized by major topic area.

Data Use and Quality – Sensors can provide vast amounts of data – the challenge is retrieving information that is usable and interpretable. A number of challenges impact use of sensor data for operations and planning, particularly algorithms that retrieve useful information, and the ability for good data fusion. Data quality needs to be assured to enable operators to act based on information received. Standards and better methods for determining accuracy are needed.

Communication of Data – One challenge is the lack of low-cost and secure high-speed communications for transmitting data from sensors. The distance over which data must be transmitted can also be a limiting factor, as well as ensuring sufficient bandwidth at the sensors.

Sensor Performance – Accuracy is critical for sensor data to be actionable. Currently, high-performance sensing comes at higher cost. In addition, sensor performance, accuracy, and precision requirements may be different depending upon the application – how much accuracy and precision is really needed? While precision is a design choice, the accuracy of sensors can also be impacted by many environmental factors, such as temperature, humidity, electromagnetic interference, and equipment age.

Cost and Market Factors – Lack of market drivers and the high risk of developing new products in general limits the introduction of new sensors for grid planning and operations. Sufficient volume and scale will be needed to drive new sensor development for grid planning and operations. Information is currently not readily shared among competing market players, making it more difficult to find common ground for sensor development.

Table 4.1. Technical and Non-Technical Challenges/Barriers for Advanced Sensors

TECHNICAL CHALLENGES

Retrieving Usable Information from Data

- Data processing algorithms
- Data fusion, i.e., integrating multiple data sources to produce more consistent, accurate, and useful information than that provided by an individual source
- Complexity and processing time increases as sensors provide increased functionality

Communication

- Lack of low cost, ubiquitous, small scale, secure, high speed communications that are resilient to adverse weather conditions and cyber attacks
- Limitations of existing communication systems, including speed, bandwidth, and other factors
- Limited communications and bandwidth availability at the sensor
- Remote sensors able to communicate to operations centers

Table 4.1. Technical and Non-Technical Challenges/Barriers for Advanced Sensors

Data Quality

- Lack of metadata
- Environmental conditions that affect measurement quality
- Measurement methods to ensure accuracy of generated data

Sensor Performance

- High cost for high performance
- Accuracy needs that change for different applications
- Lack of standards for quantifying external interference
- Lack of standards to define minimum performance and accuracy requirements in the context of the grid
- Lack of performance testing for sensors
- Unknown performance requirements for different applications
- Tradeoff between accuracy and dynamic range
- Electronics need power to operate, even during a fault
- Environmental impacts due to extreme temperatures, humidity, wind and solar radiation
- Electromagnetic interference (EMI)
- Size, safety, and insulation requirements that limit the performance of sensors (physically challenging)

NON-TECHNICAL CHALLENGES

Market and Policy Factors

- Small market size
- High risk of developing new products
- Lack of urgency to develop new features
- Market players that are unwilling to share data
- Current net metering policies that mask information about local generation and load

Sensor Cost Drivers

- Number of devices manufactured
- Personnel and labor needed for installation
- Communication capability
- Effort to install must be minimal
- Maintenance cost (e.g. rechargeable battery lifetime in remote sensors)

5. R&D Areas for Advanced Sensors

5.1. Broad Research and Development Needs

R&D areas were identified with the potential to address a number of the technical challenges. Table 5.1 provides a summary of R&D needs, categorized by topic area and prioritized based on the importance and urgency of the outcomes.

Broad R&D topics focus on the need for greater testing facilities and methods; development of new algorithms and platforms for effective processing and interpretation of sensor information; and standards that will allow for better sensors tailored to smart grid requirements. R&D is also needed to improve sensor capabilities and functionality; and enhance security and resilience.

	Table 5.1. R&D Topics for Advanced Sensors (numbers in parentheses indicate priority votes)
Testing	
Highest Priority	Test bed for testing and demonstrating new sensors (4)
Medium Priority	 Methods to test sensors for accuracy in the field under actual operating conditions without an outage (3) Testing for plug-and-play interoperability (2) Testing pilot projects for prototype sensors (2) Identification of performance test conditions, i.e., all the practical situations where a sensor needs to meet its performance specifications (1)
Low Priority	 Enhancements in labs to provide sensor testing capability Accurate models to inform sensor R&D
Algorithms	
High Priority	Configuration tool for sensor networks (2)
Medium Priority	 Identification/invention of new data processing algorithms for sensors (1) Intelligent development of algorithms for distributed sources (1) Integration of sensors into real-time control systems (1)
Low Priority	 Algorithms for self-validation and location awareness Algorithms for identification and location
Standards	
High Priority	• Develop a smart sensor standard, for smart grid specifically (3)
Medium Priority	 Balancing of sensor device innovation with new sensor standards development (2) Sensor communications standards (2) Low-cost reliable timing source with high accuracy, resolution and stability for sensor (2) Interface standards to connect sensors to other intelligent electrical devices (1)

	Table 5.1. R&D Topics for Advanced Sensors (numbers in parentheses indicate priority votes)
Low Priority	 Standards to require power converter to provide time synchronized measurements of its status Development of a "health index" and reporting standards (self-reporting sensors)
Sensor Character	istics and Capabilities
High Priority	Sensor security – self-validation and anti-intrusion (4)
Medium Priority	 Calibration-free sensors (3) Wider dynamic range sensors (3) Clip-on, or other types of non-contact voltage sensors (2) Flexible, self-configuring, self-calibrating sensors, configuration tool (1) Sensor network performance measurement and analysis tools (1) "Nano" mass sensors – very small, light sensor (1) Flexible sensors that take many types of measurements and output what is needed for a specific application(1)
Low Priority	Miniaturization of sensors
Business Case	
High Priority	Use case focusing on future applications of sensors addressing barriers (3)
Medium Priority	Investigation of potential for adding fiber for bandwidth and improved communications (1)
Low Priority	Quantify risk and cost of failure of sensor
Safety, Security, ar	nd Protection
High Priority	 Harmonic sensors to pick up impacts of geomagnetically induced currents (GICs) or power electronics (3)
Medium Priority	 Data "Switzerland' – secure method for sharing data, with classification levels; a data-sharing environment with stakeholders under NDA (2) Quantum key distribution techniques for security in communications (2) Future shielding for advanced EMI immunity (room/high temperature superconductors) (2) Data source authentication and message tampering detection, with the following characteristics: cyber-secure, low overhead, low latency, standardized (2) GMI/GMD wide-area sensor array (1) National repository of power grid sensor data (1) Identification of safety impact of new sensors on grid and mitigation methods (1)
Low Priority	 Sensor data authentication Integrated measurement assurance built in to sensor
Sensor Power Re	quirements
High Priority	• Rechargeable batteries (small or large) that never wear out (charge using energy harvesting) (4)
Medium Priority	Other means to power sensors with little or no user-service requirements (3)
Low Priority	 Energy harvesting and scavenging for sensors Sensors with low-power usage

5.2. Priority Research Pathways

Five of the high priority R&D topics identified were explored further to gain understanding on the path forward for addressing the associated challenges. Table 5.1 to 5.5 show the proposed methodologies for implementing the R&D recommendations selected. Each table describes the goal of the R&D effort, an approach to reaching the goal, anticipated barriers to be overcome, and the stakeholders who can inform, or participate in the process. Selected R&D topics include:

- Interface Standards for Smart Sensors for Smart Grid Development of standards to support plug & play devices and interoperability, cyber security, self-identification, self-describing, self-configuration, self-calibration, and self-diagnostic/test of sensors.
- Testing Methods for New Sensors and Systems in a Federated Test Bed Environment Broadly accessible capabilities to test and evaluate new sensor technologies, including connectivity and communication-related issues.

Wider Range Sensors for Enhanced Capture of Grid Harmonics – New sensors for enhanced capture of harmonics on the grid, including GMD-induced (EMP; Electromagnetic Environmental Effects E3), inverter-induced, and equipment/switching transients.

- **Rechargeable Batteries with Longer Life** Improved batteries with lifetimes more comparable to the equipment they are powering (10-20 years).
- Self-calibrating Sensors and Testing for Accuracy in Field Tests, standards and tools to verify and ensure the accuracy of the output of the sensor (needed for applications using sensor data) in the field.

Table 5.1. Interface Standards for Smart Sensors for Smart Grid			
Desired Capabilities/Enhancements		Technical Bar	riers
 Plug & play/interoperability Cyber security Self-identification, self-describing, self-configuration, self-calibration, self-diagnostic/test Future-proof, extensible Technology agnostic Focus only on interface, improved standards 	 Today's proprietary interfaces that make interoperability impossible No uniform set of requirements No uniform interface terminology, data format, etc. Today's standards are "vertical", specifying devices and all their requirements; standards are needed that are "horizontal" and layered, specifying functions with device requirements specific to the environment in which the function resides A general model of smart sensors for smart grid is lacking and would be helpful in standardization efforts. 		
Outcomes		Approach	I
Desired Results New standards	Activity	Required Resources	Expected Time to Complete
Performance Metrics	Industry study group	Participants	1 to 6 months
 Certification, conformable, interoperability Metrics: 1) standard issued, 2) number of sensors in industry that comply with this standard 	Form standard working group	IEEE, IEC, others	6 months
	Develop standard	Working group	1 to 3 years – parallel
Applications All uses of sensors 	Approve standard	IEEE, IEC, others	6 months
Required Innovations/Science	Testing method in parallel	Working group (different)	1 year - parallel
Will require a certification consortium/lab	Testing consortium	Industry	6 months
	Certification	Testing consortium	1 to 3 years
	Stakeholders		Roles
	Industry, Utilities, Er	d users	Identify the need for new standards, participate in standard setting
	Senior Developer		Early implementation of new/draft standards, Feedback into standards process.
	Standards Organizat	ion	Standards drafting/publishing
	National Laboratorie	s	Initial testing
	NIST		R&D and tests for standards development

Table 5.2. Testing Methods for New Sensors and Systems in aFederated Test Bed Environment

Desired Capabilities/Enhancem	ents
-------------------------------	------

Technical Barriers

- Capabilities to test/evaluate new sensor technologies
- Connectivity and communication-related issues
- Third party (academics/NIST/national labs)
- Identifying appropriate sensor technologies for further improvement or test as a pilot project
- Interoperability
- Plug-and-play capability
- Merging measurements
- Limited availability of intelligent algorithms

Outcomes	Approach			
 Desired Results Testing procedures Standards Performance matrix New sensor models Performance Metrics Verify test results with field performances Verify against real-time simulation Applications Optimization of system operation Advanced protection and metering Cyber security issues Allows real-time system operation and control Improves system analysis and system development Required Innovations/Science Real-time simulators Accurate sensor models Higher resolution testing Higher resolution measurement devices Distributed measurement across large geographic area 	Activity	Required Resources	Expected Time to Complete	
	Education/outreach	Researchers, academics, professional organizations	1 Year	
	Gov't/other funding	Grant writers, govt funding specialists	1 Year	
	Research engineering and acquire systems for measurement	Engineers, academics	1.5 to 2 Years	
	Build and validate roadmap	Standards setting organizations, smart grid laboratories	2 years	
	Test high priority sensors	Testing laboratories (Govt, Academic, National Labs)	3 Years	
	Iterate over test methodology	Testing laboratories (Govt, Academic, National Labs)	4 Years	
	Publish results	Standards setting Organizations, test labs, academics, govt, national labs	3 to 5 Years	
	Education/outreach	Professional organizations, academic institutions		
	Stakeholders	Roles		
	Utilities	Beneficiaries		
	Sensor Developers	Test their equipment		
	National Labs, ORNL, Pl	Hosts		
	Academia	Independent Research		
	National Metrology Insti Resources Council (NRC organizations, academic	Test contributor		

Table 5.3. Wider Range Sensors for	Enhanced Ca	otu	re of Grid H	armonics	
Desired Capabilities/Enhancements	Tech		nnical Barriers		
 Enhanced capture of harmonics on grid GMD-induced (EMP; electromagnetic environmental effects (E3)) Inverter-induced Equipment/switching transients More than 50 harmonics 	 Dynamic range vs. accuracy Low cost More precise timing Range (DC to applicable harmonic - 3000 Hz) for equipment Range up to 10 MHz for some specialized sensors 				
Outcomes	Approach				
Desired Results Prototype	Activity		Required Resources	Expected Time to Complete	
 Product functional requirements Standard/standard revision Demonstration 	Develop sensor algorithm		ath, computing sources, staff	1 year (0-1) Parallel	
 Testing procedures Installation design Proposed maintenance requirements Performance Metrics Accurate physical measurements from grid or grid simulator Meet expectations of test plan Applications 	Sensing equipment to detect DC → 10MHz		aterials, sensors ecialist, metrologist	1 year (0-1) Parallel	
	Integration to prototype	pro tim pro en	wer supply, ototype based, ning service, otection engineer, vironmental gineer	18 months (2.5 years elapsed)	
 Extended situational awareness GIC/E3 High penetration of renewables 	Lab test	Te	chnicians	6 Months (3 years elapsed	
 High penetration of renewables Improved industrial power quality standards and monitoring Identify source/cause of harmonics Improved protection 	Field test (inverter- based)	int	chnicians, egrators, weather aluation	1 Year (4 years elapsed)	
Required Innovations/Science Improved timing 	Final report (updated standard reports)		chnicians, cilities, writers, staff	6 Months after (4 to 5 years elapsed)	
 New measurement techniques for high bandwidth/dynamic range 	Stakeholders		Roles		
 Amps or kiloamps Wide, disparate frequencies (DC → 10MHz) Low signal-to-noise ratio (SNR) Improved standards 	Academic Institutions Develop algorithm, writing		, lab test, field test, report		
	NIST	IST Develop sensor, I writing		ab test, field test, report	
	National Labs Integration to prot report		type, lab test, field test,		
	Utility Partner	Field test, report writing		iting	
	Vendor Develop algorithm, develo field test, writing report				

24				
Table 5.4. Rechargeable	Batteries with	Long	er Life	
Desired Capabilities/Enhancements	Technical Barriers			
 Sensors can be low-power, but need energy to report after outage and during restoration Storage is needed to ride through outages, but battery replacement is expensive, limiting deployment 	Batteries must be replaced and are not comparable to the expected life of the equipment (10-20 years)			
Outcomes	Approach			
 Desired Results Small, low capacity (1 mA-hr to 1 A-hr) battery with 20 (to infinite) year life (very large number of recharge cycles), low self-discharge. (-40 °C to +50 °C temperature range) 	Activity	Required Resources		Expected Time to Complete
	Use Cases:	Market	Specialists:	
Performance Metrics Accelerated life testing for performance Performance testing of above requirements	Possible chemistries		ts, physicist, nano- scientist	0 to3 Years 3 to 5 Years
Applications	Electrode design	Nano-m	aterials scientist	0 to3 Years 3 to 5 Years
 Wide area distribution monitoring Distributed resource penetration and power-flow 	Package design	Materials specialist, mechanical engineering		1 Year
 management Islanding and microgrids (enabling) (sensing needed on both sides of an interconnection during separation/reconnection) 	Applications/market research/use cases		experts from application areas	1 Year
Charging period may not need to be higher than discharge and may be much lower (research needed)	Prototype build/test	Enginee	ering manufacturing	2 to 3 Years
Required Innovations/Science	Pilot test/higher volumes	Manufao	cturing engineering	2 to 3 Years
New chemistries, nano-material research, packaging	Technology transfer	Engineering, IP, all the above		1 to 3 Years
	Stakeholders		Roles	
	NIST		Nano-materials research physics, chemistry	
	Academia		Physics, chemistry	
	National Labs		Design, testing	
	Industry Partners		Manufacturing, prototype, pilot testing	
	Standard Setting Organization		Specification/standardization	
	Safety Testing Labs telecommunication n voltage (TNV) circuit	etwork	Safety conformance testing	

25				
Table 5.5. Self-Calibrating Sense	ors and Testing	for Accuracy in	Field	
Desired Capabilities/Enhancements	Technical Barriers			
• Ability to verify and ensure the accuracy of the output of the sensor (needed for applications using sensor data) on the field	 Understanding and quantifying error-causing mechanisms Moving away from labor-intensive and disruptive methods Dealing with live-line work Lack of non-intrusive testing technology 			
Outcomes		Approach		
 New tools Performance Metrics How long a sensor keep its accuracy with self-calibration (performance over time) Technique to be deployed live in field for device accuracy verification Inclusion of disturbances/troubles and assessment of self-calibration effectiveness Applications All application areas Cyberphysical reliability Higher confidence protection 	Activity	Required Resources	Expected Time to Complete	
	Example: provide field calibration technique in a lab (e.g., NIST lab for medium-voltage (MV) voltage transformers (VTs) to 0.5% and 0.2% accuracy)	 Lab facility MV sources and references 	0 to 2 Years	
	Optical technique (non- intrusive); Calibration development	 Optical physicist High voltage (HV) expertise Electronic/optical components 	0 to 5 Years	
	Detailed barriers and gaps analysists	 HV testing expertise Industry application experts 	0 to1 Year	
 Higher accuracy energy metering and theft detection Better understanding and, if possible, control of the dynamic 	Stakeholders Roles			
 Better understanding and, it possible, control of the dynamic system/grid interactions 	Utilities	End user, pilot locatio	End user, pilot location	
Required Innovations/Science	Industry Develop technology/ commerciali		commercialize	
 Temperature sensitivity isolation from sensors Possibly, optical test techniques Non-intrusive test standard New digital test techniques 	Energy Users End user (possibly)			
	Government/National Labs R&D, create a lab to prove the tec first		prove the techniques	
 Integration of sensor-injected calibration signal into what is being measured 	Academic Institutions	R&D		
being measured	Standard Organization Standardize test techniques			

25

6. Path Forward

6.1. Overarching Themes

The results of this workshop illustrate the need for advanced sensors for electric power and many of the challenges that need to be addressed. Some of the overarching themes that emerged include the following:

- Advanced sensors will need to be able to better accommodate and interpret the nuances of new dynamic loads integrated into the grid and measure/sense their impacts on grid behavior to aid in planning and operations.
- A much higher degree of resilience and security will be necessary, given the evolving cyber and threat scenarios and the increasing use of distributed, random, and intermittent resources on the grid, and future scenarios where larger number of consumers generate power from variable sources.
- Future sensors need to be lower cost, more resilient and secure, able to self-regulate, and also exhibit higher performance and greater functionality, as well as longer life under multiple external conditions and dynamic loads.
- The increasing volume of data from today's sensors and advanced sensors will need new data platforms, algorithms and data fusion techniques to ensure data is interpreted, useful, and actionable for operators and those involved in planning and event analysis.
- Standards will play a key role in advanced sensing capabilities; new standards and measurement methods will be needed to ensure higher sensor performance under future distributed and non-centralized grid conditions. Interoperability reduces overall costs and improves data integration. Standards aim to ensure data is consistent and usable by multivendor equipment and applications.

6.2. Path Forward

This report was co-sponsored by NIST, the Department of Energy (DOE), and the Grid Modernization Laboratory Consortium (GMLC). NIST and some of the national laboratories have ongoing programs in advanced timing and related topics, and this report will be used to inform both strategic and tactical planning for these programs. The report shall be used to provide guidance for R&D in the NIST Smart Grid Testbed and also as input to the next revision, R4, of the NIST Smart Grid Framework and Roadmap¹.

The report will be sent directly to all workshop participants and made publicly available online. Notification of the report publication will be sent to members of the North American Synchrophasor Initiative (NASPI), Smart Electric Power Alliance Smart Grid Interoperability Panel (SEPA SGIP), IEEE Standards Association members, members of IEC Technical Committees 37 and 94,

¹ <u>NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 3.0</u>, NIST Special Publication SP 1108r3, October 1, 2014, available online at: <u>https://www.nist.gov/publications/nist-framework-and-roadmap-smart-grid-interoperability-standards-release-30</u>

and members of the IEEE Power Systems Instrumentation and Measurment (PSIM) Committee Sensors Working Group. Many of these members are equipment vendors or policy makers the report may help inform their research and development plans.

7. Appendices

Appendix A. Contributors

Name	Affiliation
Jerry FitzPatrick	NIST
Jenn Gannon	CPI
Allen Goldstein	NIST
Dinesh Gurusinghe	RTDS Technologies, Inc.
Yi Hu	Quanta Technology
Anthony Johnson	Southern California Edison
Terry Jones	Oak Ridge National Laboratory
Ljubomir Kojovic	Eaton
Kang Lee	NIST
Ya-Shian Li-Baboud	NIST
Yilu Liu	University of Tennessee/ORNL
Ken Martin	EPG
Alex McEachern	Power Standards Lab
Farnoosh Rahmatian	NuGrid Power Corp.
Veselin Skendzic	Schweitzer Engineering Laboratories
Eugene Song	NIST
Frank Tuffner	Pacific Northwest National Laboratory

Appendix B. Acronyms

-		
_		
2		
olication		
<u>.</u> כי		
<u>2</u> .		
vailable		
.D ≓≏		
free		
<u>,</u>		
<u></u>		
ADJEC		
nom		
tto		
<u></u>		
https://doi		
oro/		
~		
10 602		
~		
י ס ס		
~		

- CPI Communications & Power Industries
- DC Direct current
- DER Distributed energy resources
- DOE U.S. Department of Energy
- E3 Electromagnetic environmental effects
- EMI Electromagnetic interference
- EMP Electromagnetic pulse
- GIC Geomagnetically induced currents
- GMI Geomagnetic interference
- GMLC Grid Modernization Laboratory Consortium
- GMD Geomagnetic disturbance
- HV High voltage
- Hz Hertz
- IEC International Electrotechnical Commission
- IEEE Institute of Electrical and Electronics Engineers
- IP Intellectual property
- MV Medium voltage
- NDA Non-disclosure agreement
- NIST National Institute of Standards and Technology
- NRC National Resources Council
- NREL National Renewable Energy Laboratory
- ORNL Oak Ridge National Laboratory
- PNNL Pacific Northwest National Laboratory
- R&D Research and development
- SNR Signal-to-noise ratio
- TNV Telecommunications network voltage circuit with specific voltage and current limits
- UL Underwriters Laboratories