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Executive Summary

As individuals and communities interact in and with an environment that is increasingly
virtual, they are often vulnerable to the commodification of their digital footprint. Concepts
and behavior that are ambiguous in nature are captured in this environment, quantified,
and used to categorize, sort, recommend, or make decisions about people’s lives. While
many organizations seek to utilize this information in a responsible manner, biases remain
endemic across technology processes and can lead to harmful impacts regardless of intent.
These harmful outcomes, even if inadvertent, create significant challenges for cultivating
public trust in artificial intelligence (AI).

While there are many approaches for ensuring the technology we use every day is
safe and secure, there are factors specific to AI that require new perspectives. AI sys-
tems are often placed in contexts where they can have the most impact. Whether that
impact is helpful or harmful is a fundamental question in the area of Trustworthy and
Responsible AI. Harmful impacts stemming from AI are not just at the individual or en-
terprise level, but are able to ripple into the broader society. The scale of damage, and
the speed at which it can be perpetrated by AI applications or through the extension of
large machine learning MODELs across domains and industries requires concerted effort.

Fig. 1. The challenge of managing AI bias

Current attempts for addressing the
harmful effects of AI bias remain focused
on computational factors such as rep-
resentativeness of datasets and fairness
of machine learning algorithms. These
remedies are vital for mitigating bias,
and more work remains. Yet, as illus-
trated in Fig. 1, human and systemic in-
stitutional and societal factors are sig-
nificant sources of AI bias as well, and
are currently overlooked. Successfully
meeting this challenge will require tak-
ing all forms of bias into account. This
means expanding our perspective beyond
the machine learning pipeline to recog-
nize and investigate how this technology
is both created within and impacts our so-
ciety.

Trustworthy and Responsible AI is not just about whether a given AI system is biased,
fair or ethical, but whether it does what is claimed. Many practices exist for responsibly
producing AI. The importance of transparency, datasets, and test, evaluation, validation,
and verification (TEVV) cannot be overstated. Human factors such as participatory design
techniques and multi-stakeholder approaches, and a human-in-the-loop are also important
for mitigating risks related to AI bias. However none of these practices individually or in
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concert are a panacea against bias and each brings its own set of pitfalls. What is miss-
ing from current remedies is guidance from a broader SOCIO-TECHNICAL perspective that
connects these practices to societal values. Experts in the area of Trustworthy and Respon-
sible AI counsel that to successfully manage the risks of AI bias we must operationalize
these values and create new norms around how AI is built and deployed. This document,
and work by the National Institute of Standards and Technology (NIST) in the area of AI
bias, is based on a socio-technical perspective.

The intent of this document is to surface the salient issues in the challenging area of
AI bias, and to provide a first step on the roadmap for developing detailed socio-technical
guidance for identifying and managing AI bias. Specifically, this special publication:

• describes the stakes and challenge of bias in artificial intelligence and provides ex-
amples of how and why it can chip away at public trust;

• identifies three categories of bias in AI — systemic, statistical, and human — and
describes how and where they contribute to harms;

• describes three broad challenges for mitigating bias — datasets, testing and eval-
uation, and human factors — and introduces preliminary guidance for addressing
them.

Bias is neither new nor unique to AI and it is not possible to achieve zero risk of bias in an
AI system. NIST intends to develop methods for increasing assurance, GOVERNANCE and
practice improvements for identifying, understanding, measuring, managing, and reducing
bias. To reach this goal, techniques are needed that are flexible, can be applied across con-
texts regardless of industry, and are easily communicated to different stakeholder groups.
To contribute to the growth of this burgeoning topic area, NIST will continue its work in
measuring and evaluating computational biases, and seeks to create a hub for evaluating
socio-technical factors. This will include development of formal guidance and standards,
supporting standards development activities such as workshops and public comment pe-
riods for draft documents, and ongoing discussion of these topics with the stakeholder
community.

Key words

bias, trustworthiness, AI safety, AI lifecycle, AI development
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industrial competitiveness by advancing measurement science, standards, and technology
in ways that enhance economic security and improve our quality of life. Among its broad
range of activities, NIST contributes to the research, standards, evaluations, and data re-
quired to advance the development, use, and assurance of trustworthy arti�cial intelligence
(AI).

1For more information about this workshop see https://www.nist.gov/news-events/events/2020/08/bias-ai-
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The Information Technology Laboratory (ITL) at NIST develops tests, test methods,
reference data, proof of concept implementations, and technical analyses to advance the de-
velopment and productive use of information technology. ITL's responsibilities include the
development of management, administrative, technical, and physical standards and guide-
lines.

This special publication focuses on addressing and managing risks associated with bias
in the design, development, and use of AI. It is one of a series of documents and workshops
related to the NIST AI Risk Management Framework (AI RMF) and is intended to advance
the trustworthiness of AI technologies. As with other documents in the AI RMF series,
this publication provides reference information and technical guidance on terminology,
processes and procedures, and test and evaluation, validation, and veri�cation (TEVV).
While practical guidance4 published by NIST may serve as an informative reference, this
guidance remains voluntary.

The content of this document re�ects recommended practices. This document is not
intended to serve as or supersede existing regulations, laws, or other mandatory guidance.

4The term 'practice guide,' 'guide,' 'guidance' or the like, in the context of this paper, is a consensus-created,
informative reference intended for voluntary use; it should not be interpreted as equal to the use of the term
'guidance' in a legal or regulatory context.” This document does not establish any legal standard or any other
legal requirement or defense under any law, nor have the force or effect of law.
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How to read this document
Section 1 lays out the purpose and scope of NIST's work in AI bias. Section 2 describes
three categories of bias and how they may occur in the commission, design, development,
and deployment of AI technologies that can be used to generate predictions, recommenda-
tions, or decisions (such as the use of algorithmic decision systems), and how AI systems
may impact individuals and communities or create broader societal harms. Section 3 de-
scribes the challenge of bias related to three core areas: datasets; test, evaluation, validation
and veri�cation; and human factors, and provides general guidance for managing AI bias
in each of those areas.

This document uses terms such as AI technology, AI system, and AI applications inter-
changeably. Terms related to the machine learning pipeline, such as AI model or algorithm
are also used in this document interchangeably. Depending on context, when the term
“system” is used it may refer to the broader organizational and/or social ecosystem within
which the technology was designed, developed, deployed, and used, instead of the more
traditional use related to computational hardware or software.

Important reading notes:

• The document includes a series of vignettes, shown in red callout boxes, to help
exemplify how and why AI bias can reduce public trust. Interesting nuances/aspects
are highlighted in blue callout boxes, important takeaways are shown as framed text.

• Terms that are displayed as small caps in the text are de�ned in the GLOSSARY.
Clicking on a word shown in small caps, e.g.MODEL, takes the reader directly to the
de�nition of that term in the Glossary. From there, one may click on a page number
shown at the end of the de�nition to return.

• March 24, 2022 update: the following changes are introduced with respect to the
original version of this document published on March 15, 2022:

– Fixed typos in the text of Fig. 5 and Fig. 7.

– Removed duplicates and �xed poorly formatted entries in theReferences.

– Corrected a statement in the text of VIGNETTE on p.7 regarding the work cited
in [36].
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1. Purpose and Scope

In August 2019, ful�lling an assignment in an Executive Order on AI,5 NIST released “A
Plan for Federal Engagement in Developing Technical Standards and Related Tools” [1].
Based on broad public and private sector input, this plan recommended a deeper, more
consistent, and long-term engagement in AI standards “to help the United States to speed
the pace of reliable, robust, and trustworthy AI technology development.” NIST research
in AI continues along this path to focus on how to measure, evaluate, and enhance the
trustworthiness of AI systems and the responsible practices for designing, developing, and
deploying such systems. Working with the AI community, NIST has identi�ed the follow-
ing technical and socio-technical characteristics needed to cultivate trust in AI systems:
accuracy, explainability and interpretability, privacy, reliability, robustness, safety, and se-
curity resilience—and that harmful biases are mitigated or controlled.

While AI has signi�cant potential as a transformative technology, it also poses inher-
ent risks. Since trust and risk are closely related, NIST's work in the area of trustworthy
and responsible AI centers around development of a voluntary Risk Management Frame-
work (RMF). The unique challenges of AI require a deeper understanding of how AI risks
differ from other domains. The NIST AI RMF is intended to address risks in the de-
sign, development, use, and evaluation of AI products, services, and systems for such tasks
as recommendation, diagnosis, pattern recognition, and automated planning and decision-
making. The framework is intended to enable the development and use of AI in ways that
will increase trustworthiness, advance usefulness, and address potential harms. NIST is
leveraging a multi-stakeholder approach to creating and maintaining actionable practice
guides via the RMF that is broadly adoptable.

AI risk management
AI risk management seeks to minimize anticipated and emergent negative impacts of AI
systems, including threats to civil liberties and rights. One of those risks is bias. Bias exists
in many forms, is omnipresent in society, and can become ingrained in the automated
systems that help make decisions about our lives. While bias is not always a negative
phenomenon, certain biases exhibited in AI models and systems can perpetuate and amplify
negative impacts on individuals, organizations, and society. These biases can also indirectly
reduce public trust in AI. There is no shortage of examples where bias in some aspect of
AI technology and its use has caused harm and negatively impacted lives, such as in hiring,
[2–7] health care, [8–17] and criminal justice [18–30]. Indeed, there are many instances
in which the deployment of AI technologies have been accompanied by concerns about
whether and how societal biases are being perpetuated or ampli�ed [31–46].

Public perspectives
Depending on the application, most Americans are likely to be unaware of when they are

5Exec. Order No. 13,859, 84 Fed. Reg. 3,967 (Feb. 11, 2019), https://www.federalregister.gov/documents/
2019/02/14/2019-02544/maitaining-american-leadership-in-arti�cial-intelligence.
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interacting with AI enabled technology [47]. However, there is a general view that there
needs to be a “higher ethical standard” for AI than for other forms of technology [48]. This
mainly stems from the perceptions and fears about loss of control and privacy [46, 49–51].

Bias is tightly associated with the concepts of transparency and fairness in society. For
much of the public, the assumptions underlying algorithms are rarely transparent. The com-
plex web of code and decisions that went into the design, development, and deployment of
AI rarely is easily accessible or understandable to non-technical audiences. Nevertheless,
many people are affected by—or their data is used as inputs for—AI technologies and sys-
tems without their consent, such as when they apply to college, [52] for a new apartment,
[53] or search the internet. When individuals feel that they are not being fairly judged
when applying for jobs [2–5, 7, 54–56] or loans [57–59] it can reduce public trust in AI
technology [60, 61].

When an end user is presented with information online that stigmatizes them based
on their race, age, or gender, or doesn't accurately perceive their identity, it causes harm
[34, 36, 37, 41]. Consumers can be impacted by price gouging practices resulting from an
AI application, even when it is not used to make decisions directly affecting that individual
[43].
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2. AI Bias: Context and Terminology

For purposes of this publication, the term Arti�cial Intelligence (AI) refers to a large class
of software-based systems that receive signals from the environment and take actions that
affect that environment by generating outputs such as content, predictions, recommenda-
tions, classi�cations, or decisions in�uencing the environments they interact with, among
other outputs [62]. Machine learning (ML) refers more speci�cally to the “�eld of study
that gives computers the ability to learn without being explicitly programmed,” [63] or to
computer programs that utilize data to learn and apply patterns or discern statistical rela-
tionships. Common ML approaches include, but are not limited to, regression, random
forests, support vector machines, and arti�cial neural networks. ML programs may or may
not be used to make predictions of future events. ML programs also may be used to create
input for additional ML programs. AI includes ML within its scope.

While AI holds great promise, the convenience of automated classi�cation and discov-
ery within large datasets can come with signi�cant downsides to individuals and society
through the ampli�cation of existing biases. Bias can be introduced purposefully or inad-
vertently into an AI system, or it can emerge as the AI is used in an application. Some
types of AI bias are purposeful and bene�cial. For example, the ML systems that underlie
AI applications often model our implicit biases with the intent of creating positive expe-
riences for online shopping or identifying content of interest [64, 65]. The proliferation
of recommender systems and other modeling and predictive approaches has also helped to
expose the many negative social biases baked into these processes, which can reduce public
trust [66–69].

AI is neither built nor deployed in a vacuum, sealed off from societal realities of dis-
crimination or unfair practices. Understanding AI as a socio-technical system acknowl-
edges that the processes used to develop technology are more than their mathematical and
computational constructs. A socio-technical approach to AI takes into account the val-
ues and behavior modeled from the datasets, the humans who interact with them, and the
complex organizational factors that go into their commission, design, development, and
ultimate deployment.

2.1 Characterizing AI bias

2.1.1 Contexts for addressing AI bias

Statistical context
In technical systems, bias is most commonly understood and treated as a statistical phe-
nomenon. Bias is an effect that deprives a statistical result of representativeness by system-
atically distorting it, as distinct from a random error, which may distort on any one occasion
but balances out on the average [70]. The International Organization for Standardization
(ISO) de�nes bias more generally as: “the degree to which a reference value deviates from
the truth”[71]. In this context, an AI system is said to be biased when it exhibits system-
atically inaccurate behavior. This statistical perspective does not suf�ciently encompass or
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communicate the full spectrum of risks posed by bias in AI systems.

Legal context
This section was developed in response to public comments. Stakeholder feedback noted
that the discussion of bias in AI could not be divorced from the treatment of bias in the
U.S. legal system and how it relates to laws and regulations addressing discrimination and
fairness, especially in the areas of consumer �nance, housing, and employment.6,7 There
currently is no uniformly applied approach among the regulators and courts to measuring
impermissible bias in all such areas. Impermissible discriminatory bias generally is de�ned
by the courts as either consisting of disparate treatment, broadly de�ned as a decision that
treats an individual less favorably than similarly situated individuals because of a protected
characteristic such as race, sex, or other trait, or as disparate impact, which is broadly
de�ned as a facially neutral policy or practice that disproportionately harms a group based
on a protected trait.8

This section is presented not as legal guidance, rather as a
reminder for developers, deployers, and users of AI that they
must be cognizant of legal considerations in their work, par-
ticularly with regard to bias testing. This section provides
basic background understanding of some of the many ways
bias is treated in some federal laws.

As it relates to disparate impact, courts and regulators have utilized or considered as
acceptable various statistical tests to evaluate evidence of disparate impact. Traditional
methods of statistical bias testing look at differences in predictions across protected classes,
such as race or sex. In particular, courts have looked to statistical signi�cance testing to
assess whether the challenged practice likely caused the disparity and was not the result of
chance or a nondiscriminatory factor.9

6Many laws, at the federal, state and even municipal levels focus on preventing discrimination in a host of
areas. See e.g.Title VII of the Civil Rights Act, regarding discrimination on the basis of sex, religion,
race, color, or national origin in employment, the Equal Credit Opportunity Act, focused, broadly, on dis-
crimination in �nance, the Fair Housing Act, focused on discrimination in housing, and the Americans with
Disabilities Act, focused on discrimination related to disabilities, among others. Other federal agencies,
including the U.S. Equal Employment Opportunity Commission, the Federal Trade Commission, the U.S.
Department of Justice, and the Of�ce Federal Contract Compliance Programs are responsible for enforce-
ment and interpretation of these laws.

7Note that the analysis in this section is not intended to serve as a fully comprehensive discussion of the law,
how it has been interpreted by the courts, or how it is enforced by regulatory agencies, but rather to provide
an initial high-level overview.

8See42 U.S.C. 2000e-2(a) (2018) and 42 U.S.C. 2000e-2(k) (2018), respectively.
9The Uniform Guidelines on Employment Selection Procedures (UGESP) state “[a] selection rate for any
race, sex, or ethnic group which is less than four-�fths ( 4/5ths) (or eighty percent) of the rate for the group
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It is important to note, however, that the tests used to measure bias are not applied
uniformly within the legal context. In particular, federal circuit courts are split on whether
to require a plaintiff to demonstrate both statistical and practical signi�cance to make out
a case of disparate impact. Some decisions have expressly rejected practical signi�cance
tests in recent years while others have continued to endorse their utility. This split illustrates
that while the legal context provides several examples of how bias and fairness has been
quanti�ed and adjudicated over the last several decades, the relevant standards are still
evolving.

It is also important to note that critical differences exist between traditional disparate
impact analyses described above and illegal discrimination as it relates to people with dis-
abilities, particularly under the Americans with Disabilities Act (ADA). Claims under the
ADA are frequently construed as “screen out” rather than as “disparate impact” claims.
”Screen out” may occur when an individual with a disability performs poorly on an evalua-
tion or assessment, or is otherwise unable to meet an employer's job requirements, because
of a disability and the individual loses a job opportunity as a result. In addition, the ADA's
prohibition against denial of reasonable accommodation, for example, may require an em-
ployer to change processes or procedures to enable a particular individual with a disability
to apply for a job, perform a job, or enjoy the bene�ts and privileges of employment. Such
disability-related protections are particularly important to AI systems because testing an
algorithm for bias by determining whether such groups perform equally well may fail to
detect certain kinds of bias. Likewise, eliminating group discrepancies will not necessarily
prevent screen out or the need for reasonable accommodation in such systems.

Cognitive and societal context
The teams involved in AI system design and development bring their cognitive biases, both
individual and group, into the process [72]. Bias is prevalent in the assumptions about
which data should be used, what AI models should be developed, where the AI system
should be placed — or if AI is required at all. There are systemic biases at the institu-
tional level that affect how organizations and teams are structured and who controls the
decision making processes, and individual and group heuristics and cognitive/perceptual
biases throughout the AI lifecycle (as described in Section 2.4). Decisions made by end
users, downstream decision makers, and policy makers are also impacted by these biases,
can re�ect limited points of view and lead to biased outcomes [73–78]. Biases impacting
human decision making are usually implicit and unconscious, and therefore unable to be
easily controlled or mitigated [79]. Any assumption that biases can be remedied by human
control or awareness is not a recipe for success.

with the highest rate will generally be regarded by the Federal enforcement agencies as evidence of adverse
impact.” 29 C.F.R. § 1607.4(D)
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2.1.2 Categories of AI bias

Based on previous academic work to classify AI bias [80–90] and discussions with thought
leaders in the �eld, it is possible to identify three dominant categories of AI bias. This three-
way categorization helps to expand our understanding of AI bias beyond the computational
realm. By de�ning and describing how systemic and human biases present within AI,
we can build new approaches for analyzing, managing, and mitigating bias and begin to
understand how these biases interact with each other. Correspondingly, Fig. 2 presents three
categories of AI bias. De�nitions for these terms are found in the GLOSSARY.10 This list
of biases, while not exhaustive, constitutes prominent risks and vulnerabilities to consider
when designing, developing, deploying, evaluating, using, or auditing AI applications.

Systemic
Systemic biases result from procedures and practices of particular institutions that operate
in ways which result in certain social groups being advantaged or favored and others be-
ing disadvantaged or devalued. This need not be the result of any conscious prejudice or
discrimination but rather of the majority following existing rules or norms. Institutional
racism and sexism are the most common examples [91]. Other systemic bias occurs when
infrastructures for daily living are not developed using universal design principles, thus
limiting or hindering accessibility for persons with disabilities. Systemic bias is also re-
ferred to as institutional or historical bias. These biases are present in the datasets used
in AI, and the institutional norms, practices, and processes across the AI lifecycle and in
broader culture and society. See VIGNETTE for more examples.

10De�nitions for each category of bias were often selected based on either recently published papers on the
topic, or seminal work within the domain the term is most associated with. When multiple de�nitions were
identi�ed, the most relevant de�nition was selected or adapted. The references provided are not intended
to indicate speci�c endorsement or to assign originator credit.
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Systemic bias in gender identi�cation
Beyond personal identity, human faces encode a number of conspicuous traits
such as nonverbal expression, indicators of sexual attraction and selection, and
emotion. Facial recognition technology (FRT) is used in many types of appli-
cations including gender identi�cation, which compares morphological distances
between faces to classify human faces by gender. The degree of sexual dimor-
phism between men and women appears to vary with age and ethnic group. As a
consequence, accuracy of FRT gender identi�cation can vary with respect to the
age and ethnic group [92]. Prepubescent male faces are frequently misclassi�ed as
female, and older female faces are progressively misclassi�ed as male [92]. Stud-
ies have highlighted that human preferences for sexually dimorphic faces may be
evolutionarily novel [93, 94]. One study found differing levels of facial sexual di-
morphism in samples taken from countries located in Europe, South America, and
Africa [95]. Buolamwini and Gebru examined the suitability of using skin types
as a proxy for demographic classi�cations of ethnicity or race and found that skin
type is not an adequate proxy for such classi�cations. Multiple ethnicities can be
represented by a given skin type, and skin type can vary widely within a racial or
ethnic category. For example, the skin types of individuals identifying as Black
in the U.S. can represent many hues, which also can be represented in ethnic His-
panic, Asian, Paci�c Islander and American indigenous groups. Moreover, racial
and ethnic categories tend to vary across geographies and over time [36]. While
training data based on a limited or non-representative sample of a group results
in lower accuracy in categorizing members of that group, the degree of sexual
monomorphism or dimorphism within that group also affects accuracy. Additional
biases can occur due to a lack of awareness about the multiplicity of gender [96].
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SYSTEMIC BIAS

HUMAN BIAS

STATISTICAL /
COMPUTATIONAL

BIAS

historical

societal

institutional

SELECTION AND SAMPLING

USE AND INTERPRETATION

PROCESSING/VALIDATATION

INDIVIDUAL

INDIVIDUAL

GROUP

data generation;
detection;
ecological fallacy;
evaluation;
exclusion;
measurement;
popularity;
population;
representation;
Simpson's Paradox;
temporal;
uncertainty.

activity;
concept drift;
emergent;
content production;
data dredging;
feedback loop;
linking.

ampli�cation;
inherited;
error propagation;
model selection;
survivorship.

groupthink;
funding;
deployment;
sunk cost fallacy.

behavioral;
interpretation;
Rashomon effect or principle;
selective adherence;
streetlight effect;
annotator reporting;
human reporting;
presentation;
ranking.

automation complacency;
consumer;
mode confusion;
cognitive;
anchoring;
availability heuristic;
con�rmation;
Dunning–Kruger effect;
implicit;
loss of situational awareness;
user interaction.

Fig. 2. Categories of AI Bias. The leaf node terms in each subcategory in the picture are
hyperlinked to the GLOSSARY. Clicking them will bring up the de�nition in the Glossary. To
return, click on the current page number (8) printed right after the glossary de�nition.
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Statistical and Computational
Statistical and computational biases stem from errors that result when the sample is not
representative of the population. These biases arise from systematic as opposed to random
error and can occur in the absence of prejudice, partiality, or discriminatory intent [97]. In
AI systems, these biases are present in the datasets and algorithmic processes used in the
development of AI applications, and often arise when algorithms are trained on one type
of data and cannot extrapolate beyond those data. The error may be due to heterogeneous
data, representation of complex data in simpler mathematical representations, wrong data,
and algorithmic biases such as over- and under-�tting, the treatment of outliers, and data
cleaning and imputation factors.

Human
Human biases re�ect systematic errors in human thought based on a limited number of
heuristic principles and predicting values to simpler judgmental operations [98]. These
biases are often implicit and tend to relate to how an individual or group perceives infor-
mation (such as automated AI output) to make a decision or �ll in missing or unknown
information. These biases are omnipresent in the institutional, group, and individual de-
cision making processes across the AI lifecycle, and in the use of AI applications once
deployed. There is a wide variety of human biases. Cognitive and perceptual biases show
themselves in all domains and are not unique to human interactions with AI. Rather, they
are a fundamental part of the human mind. There is an entire �eld of study centered around
biases and heuristics in thinking, decision-making, and behavioral economics for example
[98]. Such research investigates phenomena such asANCHORING BIAS, availability heuris-
tic or bias,CONFIRMATION BIAS, and framing effects, among many others. It should be
noted that heuristics are adaptive mental shortcuts that can be helpful, allowing complexity
reduction in tasks of judgement and choice, yet can also lead to cognitive biases [98]. Hu-
man heuristics and biases are implicit; as such, simply increasing awareness of bias does
not ensure control over it. Here we focus on broader examples of human bias in the AI
space.

2.2 How AI bias contributes to harms

Technology based on AI has tighter connections to and broader impacts on society than
traditional software. Applications that utilize AI are often deployed across sectors and
contexts for decision-support and decision-making. In this role, they can replace humans
and human processes for high-impact decisions. For example, AI-based hiring technolo-
gies and the models that underlie them replace people-oriented hiring processes and are
implemented in any sector that seeks to automate their recruiting and employment pipeline
[99–101]. Yet, ML models tend to exhibit “unexpectedly poor behavior when deployed
in real world domains” without domain-speci�c constraints supplied by human operators
[102]. These contradictions are a cause for considerable concern with large language mod-
els (or so-called foundation models) due to their considerableEPISTEMICandALEATORIC
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uncertainty[103] (as described in Section 3.2.1)—among other factors. Methods for cap-
turing the poor performance, harmful impacts and other results of these models currently
are imprecise and non-comprehensive.

Values
While ML systems are able to model complex phenomena, whether they are capable of
learning and operating in line with our societal values remains an area of considerable re-
search and concern [55, 60, 104–109]. Systemic and implicit biases such as racism and
other forms of discrimination can inadvertently manifest in AI through the data used in
training, as well as through the institutional policies and practices underlying how AI is
commissioned, developed, deployed, and used. Statistical/algorithmic and human cogni-
tive and perceptual biases enter the engineering and modeling processes themselves, and
an inability to properly validate model performance leaves these biases exposed during de-
ployment [61, 102, 110, 111]. These biases collide with the cognitive biases of the individ-
uals interacting with the AI systems as users, experts in the loop, or other decision makers.
Teams that develop and deploy AI often have inaccurate expectations of how the technol-
ogy will be used and what human oversight can accomplish, especially when deployed
outside of its original intent [112, 113]. Left unaddressed, these biases and accompanying
contextual factors can combine into a complex and pernicious mixture. These biases can
negatively impact individuals and society by amplifying and reinforcing discrimination at
a speed and scale far beyond the traditional discriminatory practices that can result from
implicit human or institutional biases such as racism, sexism, ageism or ableism.

2.3 A Socio-technical Systems Approach

Likely due to expectations based on techno-solutionism and a lack of mature AI process
governance, organizations often default to overly technical solutions for AI bias issues. Yet,
these mathematical and computational approaches do not adequately capture the societal
impact of AI systems [61, 73, 75, 111]. The limitations of a computational-only perspective
for addressing bias have become evident as AI systems increasingly expand into our lives.

The reviewed literature suggests that the expansion of AI into many aspects of public
life requires extending our view from a mainly technical perspective to one that is socio-
technical in nature, and considers AI within the larger social system in which it operates
[7, 19, 31, 37, 74, 75, 78, 114–119]. Using a socio-technical approach to AI bias makes it
possible to evaluate dynamic systems of bias and understand how they impact each other
and under what conditions these biases are attenuated or ampli�ed. Adopting a socio-
technical perspective can enable a broader understanding of AI impacts and the key de-
cisions that happen throughout, and beyond, the AI lifecycle–such as whether technology
is even a solution to a given task or problem [3, 108]. Reframing AI-related factors such
as datasets, TEVV, participatory design, and human-in-the-loop practices through a socio-
technical lens means understanding how they are both functions of society and, through
the power of AI, can impact society. A socio-technical approach also enables analytic
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approaches that take into account the needs of individuals, groups and society.

Techno-solutionism
As computational technologies have evolved, there has been an increasing
tendency to believe that technical solutions alone are suf�cient for addressing
complex problems that may have social, political, ecological, economic, and/or
ethical dimensions. This approach to problem-solving, often termed techno-
solutionism,[120] assumes that the “right” code or algorithm can be applied to any
problem and ignores or minimizes the relevance of human, organizational, and so-
cietal values and behaviors that inform design, deployment, and use of technology.

In the context of socio-technical AI systems, techno-solutionism promotes a view-
point that is too narrow to effectively address bias risks. One control, for exam-
ple, used in model risk management to mitigate against techno-solutionism and
other anti-patterns, is to establish, document, and review the anticipated real-world
value of an AI system.

Socio-technical approaches in AI are an emerging area, and identifying measurement tech-
niques to take these factors into consideration will require a broad set of disciplines and
stakeholders. Identifying contextual requirements for evaluating socio-technical systems
is necessary. Developing scienti�cally supportable guidelines to meet socio-technical re-
quirements will be a core focus.
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AI bias extends beyond computational algorithms and models, and the datasets
upon which they are built. The assumptions and decisions made within the pro-
cesses used to develop technology are key factors, as well as how AI technology
is used and interpreted once deployed. The idea that quantitative measures are
better and more objective than other observations is known as the MCNAMARA

FALLACY . This fallacy, and the related conceptTECHNOCHAUVINISM [35], are
at the center of many of the issues related to algorithmic bias. Traditional ML
approaches attempt to turn ambiguity, context, human subjectivity, and cate-
gorical observations into objectively measurable quantities based on numerical
mathematical models of their representations. This well-intentioned process
enables data-driven modeling but it also inadvertently creates new challenges for
socio-technical systems. Representing these complex human phenomena with
mathematical models comes at the cost of disentangling the context necessary
for understanding individual and societal impact and contributes to a fallacy of
objectivity [121]. Science has made great strides in understanding the limitations
of human cognition, including how humans perceive, learn, and store visual,
aural, and textual information, and make decisions under risk. Yet, signi�cant
gaps remain. Thus, any mathematical attempt to model such human traits is
limited and incomplete. This is a key challenge in model causality and predicting
human interpretation of model output. And without proper governance, excising
context and �attening the categories into numerical constructs makes traceability
more dif�cult [122].

Finding approaches in TEVV to compensate for these limitations in the un-
derlying modeling technology and bringing back the necessary context is an
important area of study.

2.4 An Updated AI Lifecycle

Improving trust in AI by mitigating and managing bias starts with identifying a structure
for how it presents within AI systems and uses. Organizations that design and develop
AI technology use the AI lifecycle to keep track of their processes and ensure delivery of
high-performing functional technology—but not necessarily to identify harms or manage
them. This document has adapted a four-stage AI lifecycle from other stakeholder ver-
sions.11 The intent is to enable AI designers, developers, evaluators and deployers to relate

11AI lifecycles utilized as key guidance in the development of the four-stage approach are: Centers of Ex-
cellence (CoE) at the U.S. General Services Administration [70] [IT Modernization CoE. (n.d.)], the Or-
ganisation for Economic Co-operation and Development [106] [Organisation for Economic Co-operation
and Development. (2019).]. Another model of the AI lifecycle is currently under development with the
Joint Technical Committee of the International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC).SeeInformation technology — Arti�cial intelligence — AI system life
cycle processes, ISO/IEC CD 5338 (under development, 1st ed.), https://www.iso.org/standard/81118.html.

12/77



lifecycle processes with AI bias categories and effectively facilitate its identi�cation and
management. The academic literature and best practice guidelines strongly encourage a
multi-stakeholder approach to developing AI applications using a lifecycle. Guidance for
how organizations can enable this approach is described in Section 3.3.2 and focuses on
participatory design methods such as human-centered design.

Fig. 3. The AI Development Lifecycle

AI Lifecycles are iterative, and begin
in the Pre-Design stage, where plan-
ning, problem speci�cation, background
research, and identi�cation of data take
place. Decisions here include how to
frame the problem, the purpose of the AI
component, and the general notion that
there is a problem requiring or bene�t-
ing from AI. Central to these decisions is
who (individuals or groups) makes them
and which individuals or teams have the
most power or control over them. These
early decisions and who makes them
can re�ect systemic biases within orga-
nizational settings, individual and group
heuristics, and limited points of view.
Systemic biases are also re�ected in the

datasets selected within pre-design. All of these biases can affect later stages and decisions
in complex ways, and lead to biased outcomes [3, 74–78].

TheDesign and Developmentstage typically starts with analysis of the requirements
and the available data. Based on this, a model is designed or selected. A compatibility anal-
ysis should be performed to ensure that potential sources of bias are identi�ed and plans
for mitigation are put into place. As model implementation progresses and is trained on
selected data, the effectiveness of bias mitigation should be evaluated and adjusted.During
development the organization should periodically assess the completeness of bias iden-
ti�cation processes as well as the effectiveness of mitigation. Finally, at the end of the
development stage, and before deployment, a thorough assessment of bias mitigation is
necessary to ensure the system stays within pre-speci�ed limits. The overall model speci-
�cation must include the identi�ed sources of bias, the implemented mitigation techniques
and related performance assessments before the model can be released for deployment.

The Deployment stageis when the AI system is released and used. Once humans
begin to interact with the AI system the performance of the system must be monitored
and reassessed to ensure proper function. Teams should engage in continuous monitoring
and have detailed policies and procedures for how to handle system output and behavior.
System retraining may be necessary to correct adverse events, or decommission may be
necessary. Since the lifecycle is iterative there are numerous opportunities for technology
development teams to carry out multi-stakeholder consultation and ensure their applications
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are not causing unintended effects or harms. Speci�c guidance for governing systems under
these conditions is the subject of Section 3.4.1.

The Test and Evaluation stage is continuous throughout the entire AI Development
Lifecycle. Organizations are encouraged to perform continuous testing and evaluation of
all AI system components and features where bias can contribute to harmful impacts. For
example, if during deployment the model is retrained with new data for a speci�c context,
the model deployer should work with the model producer to assess actual performance for
bias evaluation. Multi-stakeholder engagement is encouraged to ensure that the assessment
is balanced and comprehensive. If deviations from desired goals are observed, the �ndings
should feed into the modelPre-Designstage to ensure appropriate adjustments are made
in data curation and problem formulation. Any proposed changes to the design of the
model should then be evaluated together with the new data and requirements to ensure
compatibility and identi�cation of any potential new sources of bias. Then another round
of design and implementation commences to formulate corresponding requirements for
the new model capabilities and features and for additional datasets. During this stage,
the model developer should perform continuous testing and evaluation to ensure that bias
mitigation maintains effectiveness in the new setting, as the model is optimized and tested
for performance. Once released, the deploying organization should use documented model
speci�cations to test and evaluate bias characteristics during deployment in the speci�c
context. Ideally, this evaluation should be performed together with other stakeholders to
ensure all previously identi�ed problems are resolved to everyone's satisfaction.

The most accurate model is not necessarily the one with the
least harmful impact [123].

3. AI Bias: Challenges and Guidance

Through a review of the literature, and various multi-stakeholder processes, including pub-
lic comments, workshops, and listening sessions, NIST has identi�ed three broad areas that
present challenges for addressing AI bias. The �rst challenge relates todatasetfactors such
as availability, representativeness, and baked-in societal biases. The second relates to issues
of measurement and metrics to support testing and evaluation, validation, and veri�cation
(TEVV ). The third area broadly comprises issues related tohuman factors, including so-
cietal and historic biases within individuals and organizations, as well as challenges related
to implementing human-in-the-loop. This section outlines some key challenges associated
with each of these three areas, along with recommended guidance.

It must be noted that TEVV does not amount to a full application of the scienti�c
method. TEVV is an engineering construct that seeks to detect and remediate problems in
a post-hoc fashion. The scienti�c method compels more holistic design thinking through

14/77



rigorous experimental design, hypothesis generation, and hypothesis testing. In particular,
anecdotal evidence and the frequency of publicly-recorded AI bias incidents indicate that
solid experimental design techniques that focus on structured data collection and selection
and minimization ofCONFIRMATION BIAS are being downplayed in many AI projects.
CONSTRUCT VALIDITY is particularly important in AI system development. AI develop-
ment teams should be able to demonstrate that the application is measuring the concept it
intends to measure. It is important for all stakeholders, including AI development teams,
to know how to evaluate scienti�c claims. That said, all the bias mitigants and gover-
nance processes outlined in this document do show promise. Interestingly, they are often
borrowed from practices outside of core AI and ML — even technical guidance related
to improved experimental design and more rigorous application of the scienti�c method.
None are a panacea. All have pitfalls. NIST plans to work with the trustworthy and re-
sponsible AI communities to explore the proposed mitigants and governance processes,
and build associated formal technical guidance over the coming years in concert with these
communities.

The challenge of bias in AI is complex and multi-faceted.
While there are many approaches for mitigating this chal-
lenge there is no quick �x.The recommendations in this
document include a sampling of potentially promising tech-
niques. These approaches, individually or in concert, are not
a panacea against bias and each brings its own strengths and
weaknesses.

3.1 Who is Counted? Datasets in AI Bias

3.1.1 Dataset Challenges

AI design and development practices rely on large scale datasets to drive ML processes.
This ever-present need can lead researchers, developers, and practitioners to �rst “go where
the data is,” and adapt their questions accordingly [124]. This creates a culture focused
more on which datasets are available or accessible, rather than what dataset might be most
suitable [108]. As a result, the data used in these processes may not be fully representa-
tive of populations or the phenomena that are being modeled. The data that is collected
can differ signi�cantly from what occurs in the real world [76, 77, 117]. For example,
sampling bias occurs when data is collected from responses to online questionnaires or is
scraped from social media. The datasets which result are based on samples that are neither
randomized nor representative of a population other than the users of a particular online
platform. Such datasets are not generalizable, yet frequently are used to train ML appli-
cations which are deployed for use in broader socio-technical contexts, even though data
representing certain societal groups may be excluded [116]. Systemic biases may also be
manifested in the form of availability bias when datasets that are readily available but not
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fully representative of the target population (including proxy data) are used and reused as
training data. Disadvantaged groups including indigenous populations, women, and dis-
abled people are consistently underrepresented [37, 116, 125, 126]. Similarly, datasets
used in natural language processing (NLP) often differ signi�cantly from their real-world
applications, [127] which can lead to discrimination [128] and systematic gaps in perfor-
mance. Other issues arise due to the common ML practice of reusing datasets. Under such
practices, datasets may become disconnected from the social contexts and time periods of
their creation. Scholars are beginning to examine the ethical and adverse impact impli-
cations of using data collected at a speci�c time for a speci�c purpose for uses that were
not originally intended. Decontextualizing data raises questions related to privacy, consent,
and internal validity of ML model results [129].

Even when datasets are representative, they may still exhibit entrenched historical and
systemic biases, improperly utilize protected attributes, or utilize culturally or contextually
unsuitable attributes. Developers sometimes exclude protected attributes, associated with
social groups which have historically been discriminated against. However, this does not
remedy the problem, since the information can be inadvertently inferred in other ways
through proxy or latent variables. Latent variables such as gender can be inferred through
browsing history, and race can be inferred through zip code. So models based on such
variables can still negatively impact individuals or classes of individuals [73]. Thus, the
proxies used in development may be both a poor �t for the concept or characteristic seeking
to be measured, and reveal unintended information about persons and groups. There is
also sensitivity related to attributes and inferences that do not receive protection under
civil rights laws, but which may enable discrimination when inferred and used by an ML
model, such as low income status. Alternately, when there is not suf�cient knowledge or
awareness of the socio-technical context of a process or phenomenon, the attributes that are
collected for use in an ML application may not be universally applicable for modeling the
different social groups or cultures who are analyzed using the application. For example,
using (past) medical costs to predict the need for future health interventions leads to severe
under-prediction of healthcare needs in groups that do not have suf�cient access to health
care, such as African Americans [14].

Protected attributes: A host of laws and regulations have
been established to prohibit discrimination based on grounds
such as race, sex, age, religious af�liation, national origin,
and disability status, among others. Local laws can apply
protections across a wide variety of groups and activities.

Once end users start to interact with an AI system, any early design and development
decisions that were poorly or incompletely speci�ed or based on narrow perspectives can be
exposed, leaving the process vulnerable to additive statistical or human biases [77]. By not
designing to compensate for activity biases, algorithmic models may be built on data from
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only the most active users, likely creating downstream system activity that does not re�ect
the intended or real user population [130, 131] resulting in potentially harmful impacts.
In one example, by considering that ads for jobs in Science, Technology, Engineering and
Mathematics (STEM) might be seen most often by men due to how marketing algorithms
optimize for cost in ad placement, the women who were the intended audience of the ads
never saw them [132] cf., VIGNETTE for details. Furthermore, feedback loops can result
in disparity ampli�cation in which marginalized individuals or groups are less likely to
use an AI system and the subsequent training data are based on the most frequent users.
For example, non-native English speakers are less likely to use a voice-enabled personal
assistant and people living in transit deserts are often dependent on ride-hailing services.
So, the experiences of these groups do not match the intended purpose or operation of the
AI system.

3.1.2 Dataset Guidance

A key question that must be asked for the development and deployment of an AI system
is: do datasets exist that are �t or suitable for the purpose of the various applications, do-
mains and tasks for which the AI system is being developed and deployed?Not only is the
predictive behavior of the ML system determined by the data, but the data also largely de-
�nes the machine learning task itself [61]. The question of dataset �t or suitability requires
attention to three factors: statistical methods for mitigating representation issues; processes
to account for the socio-technical context in which the application is being deployed; and
awareness of the interaction of human factors with the AI technical system at all stages of
the AI lifecycle. When datasets are available, the set of metrics for demonstrating fairness
are many, context-speci�c, and unable to be reduced to a concise mathematical de�nition
[133].

Statistical Factors AI bias problems are exacerbated by the variety of statistical biases
that are prevalent in the large scale datasets used in ML modeling. When these models
are deployed for decision-based applications, often in high-risk settings and off-label uses,
harms can be perpetuated and ampli�ed.

A major trend for addressing AI bias is to focus on balanced statistical representation
in the datasets used in modeling processes. Simple but effective techniques, such as class
imbalance measures or label imbalance measures, or analysis using statistical phenomena
such as SIMPSON' S PARADOX,[134] can be used to detect bias in datasets, and sometimes
help mitigate it [85, 135–138]. Numerous studies and software libraries invoke data rebal-
ancing processes (e.g., [139]). Causal models and graphs may also be used to detect direct
discrimination in the data [61, 85].

Generalized linear models require that variables are independent with little multicollinear-
ity and that residuals are normally distributed and homoscedastic. Furthermore, common
algorithmic techniques such asL1 andL2 regularization in ML cost functions assume that
the variables are unimodal. However, data is often heterogeneous and multimodal espe-
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cially when populations are not disaggregated by gender, age, race, or income.
Thus, it is important to document and communicate the limitations of the applicability

of AI outputs, whether a model is used for benchmarking, prediction, or classi�cation. In
many cases, practitioners train models on benchmark datasets and use them on real data
in speci�c applications. However, it may not be possible to fully address mathematically
the imbalances in representation and the heterogeneous nature of real-world heterogeneous
datasets. A recent study highlighted serious errors in commonly used benchmark dataset
[140]. Consequently, a model trained on biased and erroneous data may lead to biased and
inaccurate predictions. Moreover, training a model on one dataset and using it to operate
on another requires special care to account for potential differences in the distributions of
the datasets that may further exacerbate the unfairness and errors of the model.

Accounting for Socio-technical Factors
While statistical methods are indeed necessary, they are not suf�cient for addressing the
AI bias challenges associated with datasets. Modeling processes have the intent of making
contextual concepts measurable. Once the context has been removed, however, it is dif�cult
to get it back, leading AI models to learn from inexact representations. Just as building
codes are designed based on general principles, but designed to incorporate the speci�c
geographic characteristics of a region, so too must the use of datasets in ML applications
be adapted to take into the full spectrum of socio-technical factors of the context in which
they are deployed.

Word embeddings represent text data as positions in a high-dimensional mathe-
matical space. Such a representation allows arithmetic (measurable comparisons)
to be performed on words [141]. However, when text data are simpli�ed as math-
ematical objects, contextual information including homographs or idioms that do
not �t neatly into the model may be lost. When asked to compute “doctor” - “fa-
ther” + “mother” using this arithmetic, an AI system might respond with “nurse.”
Is the AI system's answer due to historical gender stereotypes in professions or due
to the natural, close association of the gender-speci�c verb “nurse” with mother?
In other scenarios, even when attempts are made to explicitly remove bias from
training data, biases may still exist because of deep, complex connections within
the text data [80, 142].

Attention to the socio-technical factors for an AI system is essential at all phases of the
lifecycle, most importantly in design, development, and deployment. In the design phase,
socio-technical analysis provides insights into social variations in the dynamics or charac-
teristics of a phenomenon. This can help better frame questions for analysis and enable
assessment of dataset �t. A socio-technical perspective in the development phase facili-
tates selection of data sources and attributes, and explicitly integrates impact assessment as
a complement to algorithmic accuracy. Studies have shown how it is possible to mathemat-
ically address statistical bias in a dataset, then develop an algorithm which performs with
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high accuracy, yet produce outcomes that are harmful to a social class and diametrically
opposed to the intended purpose of the AI system [14]. The need for new ways to mea-
sure the impact of AI systems is a current theme in the literature and the trustworthy and
responsible AI research community. The practice of deploying AI in off-label uses, that is
AI systems being applied to a task or within a social or organizational context for which it
was not designed, must be approached with caution, especially in high-risk settings. Socio-
technical analysis can help determine if such use, with modi�cation, is both ethically and
technically feasible. In all cases, a socio-technical perspective implicates adopting pro-
cesses that include involving stakeholders, examining cultural dynamics and norms, and
assessing societal impacts.

AI technologies can be perfectly accurate and still contribute
to harmful outcomes.

Interaction of human factors and datasets Systemic institutional biases are captured
in the datasets used to build the models underlying AI applications. These biases are com-
pounded by the decisions and assumptions made by AI design and development teams
about which datasets to use [129]. These decisions affect who and what gets counted, and
who and what does not get counted. The issue of “�attening” the societal and behavioral
factors within the datasets themselves is problematic, but often overlooked [66, 129, 143,
144]. The problem is further exacerbated by the variety of statistical biases that are preva-
lent in the large scale datasets used in ML modeling.

Human biases, whether conditioned socially or unconscious cognitive bias, are factors
in data selection, curation, preparation and analysis processes. A person who annotates
training data (for example, for gesture recognition and sentiment analysis) may impart their
own perception biases. A person who chooses which data sources and variables to leave in
or take out may do so in a way that aligns with a held belief. Data typically needs to be
cleaned in some way, removing outliers and spurious data. Missing data may be imputed
(replacing the missing values with nearest neighbors or extrapolated values) or removed
entirely. Missing data may be more frequent in marginalized populations. Furthermore,
because of compounding collection biases, missing and spurious data is often not random.
Data analysis decisions such as the cardinal treatment of ordinal data in a Likert-scale or
rating-scale data may lead to a biased estimator [145]. Processes for documenting poten-
tial sources of human bias are essential but often overlooked elements for characterizing
AI model transparency and explainability, in addition to addressing AI bias and fairness.
As with statistical factors and socio-technical analysis, incorporating awareness and docu-
mentation in the AI lifecycle helps to de�ne limitations and ensure ethically and socially
appropriate uses that do not perpetuate or amplify harms. See Section 3.3 for a more thor-
ough discussion of challenges and guidance related to human factors and AI bias.
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3.2 How do we know what is right? TEVV Considerations for AI Bias

3.2.1 TEVV Challenges

Delegating decision-making to algorithms is appealing because ML systems produce more
consistent decisions compared to humans [146]. However, AI systems do not work in a
vacuum. Operational context, such as the jurisdiction and industry vertical in which a
system operates, serves to frame fairness goals. Even the algorithm itself relies on data
for training and performance tuning, which in turn can be assessed by a fairness metric.
Therefore, when we consider the computational approaches to mitigating bias, we must
take into consideration these three components together: algorithms, data, and fairness
metrics.

AI systems regularly model concepts that are—at best—only partially observable or
capturable by data. Without direct measures for these highly complex considerations, AI
development teams use proxies, which can create many risks [147]. For example, for
“criminality,” a measurable index or construct, might be created from other information,
such as arrests and convictions, which are used asPROXY variables for predicting a certain
outcome—in this case, whether a certain individual is likely to be a repeat offender. In
algorithmic hiring, an AI system might be developed using input variables such as “length
of time in prior employment,” “productivity,” and “number of lost hours” as measurable
proxies in lieu of the not directly measurable concept of “employment suitability.” The al-
gorithm might also include a predictor variable such as distance from the employment site
[148] because it might correlate with employees quitting their job due to long commutes
or bad traf�c. However, since “distance from the employment site” might disadvantage
candidates from certain neighborhoods, and “length of time in prior employment” might
disadvantage candidates who are unable to �nd stable transportation (or relate to other
socio-economic factors) the AI system will contribute to biased outcomes.

Epistemic and aleatoric uncertainty
ML distinguishes two types of predictive uncertainty:EPISTEMICand ALEATORIC [149].
For example, models produced by deep learning ML systems exhibit epistemic uncertainty
in the parameters of the computed model. The model parameters are typically computed as
the result of a nonconvex minimization of an appropriately chosen cost function. It is well
known from mathematics that such a formulation of the problem does not have a unique
solution [150, 151]. While epistemic uncertainty can be reduced by increasing the amount
of representative training data, it cannot be fully eliminated. This can impact the behav-
ior of a deep learning system in deployment when used with real-world data, especially
when there is a mismatch in the distributions of the real and training data [102]. This can
lead to undesirable effects on many of the AI system's critical attributes (e.g., robustness,
resilience), including inducing harmful bias. Even convex problems (e.g., multiple linear
regression) may suffer from epistemic uncertainty when a decision variable is not included
in the model.

Another inherent type of uncertainty associated with machine learning isALEATORIC.
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It represents the uncertainty inherent in the data, e.g., the uncertainty in the label assigning
process of the training dataset. Aleatoric uncertainty is the irreducible part of the predictive
uncertainty. Since these two types of uncertainties (EPISTEMICandALEATORIC) are highly
context-dependent, changing the context may blur the difference between them or even
cause one to turn into the other. Thus, their characterization as reducible and irreducible is
not absolute. For example, datasets containing overlapping samples with different attributes
could be embedded into higher dimensions so that the samples are clearly separated, thus
reducing aleatoric uncertainty at the expense of epistemic uncertainty - because the model
would likely over�t the existing data in the larger space. Some of the dif�culty in distin-
guishing epistemic and aleatoric uncertainty is that ML models are (implicit) mathematical
representations of the data on which they are trained [152].

The growth of Large Language Models
LargeLANGUAGE MODELs (LLMs) have become the dominant trend in deep learning to-
day and are expected to continue to grow in importance [103, 153]. Although LLMs have
been able to achieve impressive advances in performance on a number of important tasks,
they come with signi�cant risks that could potentially undermine public trust in the technol-
ogy. LLMs create signi�cant challenges for bothEPISTEMICandALEATORIC uncertainty.
Relying on large amounts of uncurated web data increases aleatoric uncertainty [154]. In-
depth knowledge of the data and its statistical properties is critically important for detecting
bias in the predictive output of ML models.

Identifying sources of bias is the �rst step in any bias mitiga-
tion strategy.
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Epistemic uncertainty and large-scale AI models
With the availability of large and fast computing resources, massive arti�cial neu-
ral networks are becoming increasingly common. In particular, some language
models now consist of trillion-dimensional parameter spaces trained on hundreds
of gigabytes of data. The training data, often scraped from internet sources, com-
monly has known gender, racial, cultural, and socio-economic biases [154, 155].
Alternative approaches to large-sized language datasets have been proposed to
mitigate harmful bias, but such an approach may introduce other human biases in
the selection of values-targeted datasets. Beyond the systemic and selection bi-
ases, large language models also highlightEPISTEMIC UNCERTAINTY. Stochastic
gradient descent (or other accelerated methods) methods [151] are used to �nd a
set of parameters that minimize a cost function associated with the model, but deep
neural networks exhibit complicated nonlinearities which result in many potential
local minima. A trillion-dimensional manifold may have a huge, unknown num-
ber of minima [156]. Furthermore, to �t these parameters into computer memory,
it is often necessary to use half-precision �oating-point numbers [157], introduc-
ing rounding error which may undermine stability in the numerical methods [158].
As a result, the model may demonstrate unknown and erratic behavior and chal-
lenges for reproducibility and explainability [159].

In the quest for �tting larger and larger models into existing �nite computational re-
sources, LLMs rely on techniques, e.g., reduced-precision numerical representations of
models, that further increase the epistemic uncertainty of deep learning models, [160]
cf., VIGNETTE. Early practice has shown that concerns about the use of LLMs are in-
deed valid, with preliminary experimental results showing LLMs exhibit signi�cant bias
[154, 161, 162]. To reduce risks from the use of LLMs, future work in this area should
move towards efforts to fully understand and characterize their behavior, and to devise
effective mitigation measures against the biases they bring.

Processes
While datasets exhibit numerous biases that lead to harmful impacts, they feed directly into
other system level processes that determine what is important to model. For AI systems
to determine this importance, and effectively categorize and sort the �rehose of data for
downstream recommendations and decisions, contextual information is �attened and unob-
servable phenomena are quanti�ed through the development of indices and use of proxies.
The use of data attributes with names like “criminality,” “hireability,” “creditworthiness,”
or similar can be indicative of experimental design problems that give rise to harmful bias.

The software designers and data scientists working in design and development are of-
ten highly focused on system performance and optimization. This focus can inadvertently
be a source of bias in AI systems. For example, during model development and selection,
modelers will almost always select the most accurate models. Yet, as Forde et al describe
in their paper, [163] selecting models based solely on accuracy is not necessarily the best
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approach for bias reduction. Furthermore, the choice of the model's objective function,
upon which a model's de�nition of accuracy is based, can re�ect bias. Not taking context
into consideration during model selection can lead to biased results for sub-populations
(for example, disparities in health care delivery). Relatedly, systems that are designed to
use aggregated data about groups to make predictions about individual behavior—a prac-
tice initially meant to be a remedy for non-representative datasets[18]—can lead to biased
outcomes. This bias, known asECOLOGICAL FALLACY, occurs when an inference is made
about an individual based on their membership within a group (for example, predicting
college performance risk based on an individual's race [52]). These unintentional weight-
ings of certain factors can cause algorithmic results that exacerbate and reinforce societal
inequities.

Natural language processing (NLP) is a powerful computational approach to al-
low machines to meaningfully understand human spoken and written languages.
Powering activities such as algorithmic search, speech translation, and even con-
versational text generation, NLP is able to help us communicate with computer
systems to carry out a variety of tasks. The set of harms that can arise from the
use of NLP however has become a recent concern in the area of trustworthy AI
[80, 90, 154, 164, 165]. Hovy and Prabhumoye describe �ve sources of bias in
NLP and potential ways to counteract it [166].
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