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Abstract 101 

NIST contributes to the research, standards, evaluation, and data required to advance the 102 
development and use of trustworthy artificial intelligence (AI) to address economic, social, and 103 
national security challenges and opportunities. Working with the AI community, NIST has 104 
identified the following technical characteristics needed to cultivate trust in AI systems: 105 
accuracy, explainability and interpretability, privacy, reliability, robustness, safety, and security 106 
(resilience) – and that harmful biases are mitigated. Mitigation of risk derived from bias in AI-107 
based products and systems is a critical but still insufficiently defined building block of 108 
trustworthiness. This report proposes a strategy for managing AI bias, and describes types of bias 109 
that may be found in AI technologies and systems. The proposal is intended as a step towards 110 
consensus standards and a risk-based framework for trustworthy and responsible AI. The 111 
document, which also contains an alphabetical glossary that defines commonly occurring biases 112 
in AI, contributes to a fuller description and understanding of the challenge of harmful bias and 113 
ways to manage its presence in AI systems.  114 

 115 
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1. Introduction 185 
The National Institute of Standards and Technology (NIST) promotes U.S. innovation and 186 
industrial competitiveness by advancing measurement science, standards, and technology in 187 
ways that enhance economic security and improve our quality of life. Among its broad range of 188 
activities, NIST contributes to the research, standards, evaluations, and data required to advance 189 
the development, use, and assurance of trustworthy artificial intelligence (AI). 190 
 191 
In August 2019, fulfilling an assignment in an Executive Order1 on AI, NIST released “A Plan 192 
for Federal Engagement in Developing Technical Standards and Related Tools.” [100] Based on 193 
broad public and private sector input, this plan recommended a deeper, more consistent, and 194 
long-term engagement in AI standards “to help the United States to speed the pace of reliable, 195 
robust, and trustworthy AI technology development.” NIST research in AI continues along this 196 
path to focus on how to measure and enhance the trustworthiness of AI systems. Working with 197 
the AI community, NIST has identified the following technical characteristics needed to cultivate 198 
trust in AI systems: accuracy, explainability and interpretability, privacy, reliability, robustness, 199 
safety, and security (resilience) – and that harmful biases are mitigated. 200 
 201 
This paper, A Proposal for Identifying and Managing Bias in Artificial Intelligence, has been 202 
developed to advance methods to understand and reduce harmful forms of AI bias. It is one of a 203 
series of documents and workshops in the pursuit of a framework for trustworthy and 204 
responsible AI. 205 
 206 
While AI has significant potential as a transformative technology, it also poses inherent risks. 207 
One of those risks is bias. Specifically, how the presence of bias in automated systems can 208 
contribute to harmful outcomes and a public lack of trust. Managing bias is a critical but still 209 
insufficiently developed building block of trustworthiness.  210 
 211 
The International Organization for Standardization (ISO) defines bias in statistical terms: “the 212 
degree to which a reference value deviates from the truth” [67]. This deviation from the truth can 213 
be either positive or negative, it can contribute to harmful or discriminatory outcomes or it can 214 
even be beneficial. From a societal perspective, bias is often connected to values and viewed 215 
through the dual lens of differential treatment or disparate impact, key legal terms related to 216 
direct and indirect discrimination, respectively.  217 
 218 
Not all types of bias are negative, and there many ways to categorize or manage bias; this report 219 
focuses on biases present in AI systems that can lead to harmful societal outcomes. These 220 
harmful biases affect people’s lives in a variety of settings by causing disparate impact, and 221 
discriminatory or unjust outcomes. The presumption is that bias is present throughout AI 222 
systems, the challenge is identifying, measuring, and managing it. Current approaches tend to 223 
classify bias by type (i.e.: statistical, cognitive), or use case and industrial sector (i.e.: hiring, 224 
health care, etc.), and may not be able to provide the broad perspective required for effectively 225 
managing bias as the context-specific phenomenon it is. This document attempts to bridge that 226 

 
1https://www.federalregister.gov/documents/2019/02/14/2019-02544/maintaining-american-leadership-in-artificial-
intelligence 
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gap and proposes an approach for managing and reducing the impacts of harmful biases2 across 227 
contexts. The intention is to leverage key locations within stages of the AI lifecycle for optimally 228 
identifying and managing bias. As NIST develops a framework and standards in this area, the 229 
proposed approach is a starting point for community-based feedback and follow-on activities 230 
related to bias and its role in trustworthy AI.  231 
 232 

2. The Challenge Posed by Bias in AI Systems  233 
The proliferation of modeling and predictive approaches based on data-driven and machine 234 
learning techniques has helped to expose various social biases baked into real-world systems, 235 
and there is increasing evidence that the general public has concerns about the risks of AI to 236 
society. Distrust in AI can manifest itself through a belief that biases may be automated within 237 
these technologies, and can perpetuate harms more quickly, extensively, and systematically than 238 
human and societal biases on their own. Human decisions based on automated and predictive 239 
technology are often made in settings such as hiring or criminal justice, and can create harmful 240 
impacts and amplify and accelerate existing social inequities or, at minimum, perceptions of 241 
inequities. While it’s unlikely that technology exhibiting “zero risk” can be developed, managing 242 
and reducing the impacts of harmful biases in AI is possible and necessary.  243 
 244 
Public attitudes about AI technology suggest that, while often depending on the application, most 245 
Americans are unaware when they are interacting with AI enabled tech [53] but feel there needs 246 
to be a “higher ethical standard” than with other forms of technologies [76]. This mainly stems 247 
from the perceptions of fear of loss of control and privacy [47,125,133,137]. Certainly, there is 248 
no shortage of examples where bias in some aspect of AI technology and its use has caused harm 249 
and negatively impacted people's lives, such as in hiring [5,12,16,17,36,62,118], health care 250 
[46,52,55,59,83,88,103,122,123], and criminal justice [7,20,29,41,44,56,66,74,75,78,87, 251 
140,142]. Indeed, there are many instances in which the deployment of AI technologies have 252 
been accompanied by concerns of whether and how societal biases are being perpetuated or 253 
amplified [3,10,14,15,22,24,34,42,45,61,102,105,108,116,126,139]. 254 
 255 
Since AI systems are deployed across various contexts, the associated biases that come with their 256 
use create harm in context-specific ways. This proliferation of AI bias into an ever-increasing list 257 
of settings makes it especially difficult to develop overarching guidance or mitigation 258 
techniques. A confounding factor is that it is especially difficult to predict where and how AI 259 
systems will be used. A current approach to the challenge of AI bias is to tackle a given use case 260 
where a particularly prevalent type of bias resides. This ad-hoc strategy is difficult to scale, and 261 
is unlikely to achieve what is required for building systems that the public can trust. Instead of 262 
viewing the challenge of AI bias within a given context or use case, a broader perspective can 263 
strike the problem of AI bias where it might be easiest to manage – within the design, 264 
development, and use of AI systems.  265 
 266 
There are specific conditional traits associated with automation that exacerbate distrust in AI 267 
tools. One major purpose, and a significant benefit, of automated technology is that it can make 268 
sense of information more quickly and consistently than humans. There have long been two 269 
common assumptions about the rise and use of automation: it could make life easier [137] and 270 

 
2 For the purpose of this document the term “managing bias” will be used to refer to approaches for managing, 
reducing or mitigating bias.  
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also create conditions that reduce (or eliminate) biased human decision making and bring about a 271 
more equitable society [78]. These two tenets have led to the deployment of automated and 272 
predictive tools within trusted institutions and high-stake settings. While AI can help society 273 
achieve significant benefits, the convenience of automated classification and discovery within 274 
large datasets may come with a potentially significant downside. As these tools proliferate across 275 
our social systems, there has been increased interest in identifying and mitigating their harmful 276 
impacts.  277 
 278 
The difficulty in characterizing and managing AI bias is exemplified by systems built to model 279 
concepts that are only partially observable or capturable by data. Without direct measures for 280 
these often highly complex considerations, AI development teams often use proxies. For 281 
example, for “criminality,” a measurable index, or construct, might be created from other 282 
information, such as past arrests, age, and region. For “employment suitability,” an AI algorithm 283 
might rely on time in prior employment, previous pay levels, education level, participation in 284 
certain sports [115], or distance from the employment site [51] (which might disadvantage 285 
candidates from certain neighborhoods).  286 
 287 
There are many challenges that come with this common practice (see [89] for a thorough 288 
review). One challenge rests on the reality that decisions about which data to use for these 289 
indices are often made based on what is available or accessible, rather than what might be most 290 
suitable - but difficult or impossible to utilize [49]. Relatedly, instead of identifying specific 291 
questions of interest first, researchers, developers, and practitioners may “go where the data is” 292 
and adapt their questions accordingly [130]. Data can also differ significantly between what is 293 
collected and what occurs in the real world [71,72,109]. For example, responses to online 294 
questionnaires are from a specific sampling of the kinds of people who are online, and therefore 295 
leaves out many other groups. Data representing certain societal groups may be excluded in the 296 
training datasets used by machine learning applications [40]. And, datasets used in natural 297 
language processing often differ significantly from their real-world applications [113] which can 298 
lead to discrimination [128] and systematic gaps in performance.  299 
 300 
Even if datasets are reflective of the real world, they may still exhibit entrenched historical and 301 
societal biases, or improperly utilize protected attributes. (Federal laws and regulations have 302 
been established to prohibit discrimination based on grounds such as gender, age, and religion.) 303 
Simply excluding these explicit types of attributes will not remedy the problem, however, since 304 
they can be inadvertently inferred in other ways (for example, browsing history), and still 305 
produce negative outcomes for individuals or classes of individuals [12]. So, the proxies used in 306 
development may be both a poor fit for the concept or characteristic seeking to be measured, and 307 
reveal unintended information about persons and groups.  308 
 309 
Additionally, for much of the public, AI is not necessarily something with which they directly 310 
interact, and systems' algorithmic assumptions may not be transparent to them. Nevertheless, 311 
many people are affected or used as inputs by AI technologies and systems. This can happen 312 
when an individual applies for a loan [136], college [48], or a new apartment [77]. Historical, 313 
training data, and measurement biases are “baked-in” to the data used in the algorithmic models 314 
underlying those types of decisions. Such biases may produce unjust outcomes for racial and 315 
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ethnic minorities in areas such as criminal justice [7,41,56,74,75,78,87,140,142], hiring 316 
[4,5,12,16,17,36,118,119], and financial decisions [13,65]. 317 
 318 
Another cause for distrust may be due to an entire class of untested and/or unreliable algorithms 319 
deployed in decision-based settings. Often a technology is not tested – or not tested extensively – 320 
before deployment, and instead deployment may be used as testing for the technology. An 321 
example is the rush to deploy systems during the COVID pandemic that have turned out to be 322 
methodologically flawed and biased [117,124,141]. There are also examples from the literature 323 
which describe technology that is based on questionable concepts, deceptive or unproven 324 
practices, or lacking theoretical underpinnings [2,9,13,30,33,62,129,141]. The broad consensus 325 
of the literature is that systems meant for decision making or predictive scenarios should 326 
demonstrate validity and reliability under the very specific setting in which it is intended to be 327 
deployed (hiring purposes, risk assessments in the criminal justice system, etc.). The decisions 328 
based on these algorithms affect people’s lives in significant ways, and it is appropriate to expect 329 
protections in place to safeguard from certain systems and practices. The public’s cautious 330 
opinions toward AI [138] might turn increasingly negative if new technologies appear which are 331 
based on the same approaches that have already contributed to systematic and well-documented 332 
societal harms.  333 
 334 
To summarize the problem, there are many reasons for potential public distrust of AI related to 335 
bias in systems. These include: 336 

• The use of datasets and/or practices that are inherently biased and historically contribute 337 
to negative impacts 338 

• Automation based on these biases placed in settings that can affect people’s lives, with 339 
little to no testing or gatekeeping 340 

• Deployment of technology that is either not fully tested, potentially oversold, or based on 341 
questionable or non-existent science causing harmful and biased outcomes 342 

Identifying and working to manage these kinds of bias can mitigate concerns about 343 
trustworthiness for in-place and in-development AI technologies and systems. An effective 344 
approach will likely need to be one that is not segmented by use case, but works across contexts. 345 
 346 
Improving trust in AI systems can be advanced by putting mechanisms in place to reduce 347 
harmful bias in both deployed systems and in-production technology. Such mechanisms will 348 
require features such as a common vocabulary, clear and specific principles and governance 349 
approaches, and strategies for assurance. For the most part, the standards for these mechanisms 350 
and associated performance measurements still need to be created or adapted. The goal is not 351 
“zero risk,” but to manage and reduce bias in a way that contributes to more equitable outcomes 352 
that engender public trust. These challenges are intertwined in complex ways and are unlikely to 353 
be addressed with a singular focus on one factor or within a specific use or industry.  354 
 355 

3. Approach 356 
In the lead-up to this report, the authors sought to capture common themes about the many ways 357 
bias is defined and categorized in AI technology. This was accomplished through a literature 358 
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review, discussions with leaders in the field, a NIST-hosted workshop on bias in AI3, and the 359 
evaluation of prominent topics across the broader AI research community. This work is not 360 
without precedent; there are previous attempts to define and classify AI bias 361 
[26,35,64,68,69,91,94,95,98,106,127].  362 
 363 
The literature review consisted of a total of 313 articles, books, reports, and news publications 364 
about AI bias4 from a variety of perspectives. In the survey of the literature, we identified a list 365 
of prominent biases present in AI that are contributors to societal harms. This list and 366 
accompanying definitions are presented in an alphabetical glossary in Appendix A. 367 
 368 
The reviewed literature suggests that the expansion of AI into many aspects of public life 369 
requires extending our view from a mainly technical perspective to one that considers AI within 370 
the social system it operates [3,18,19,31,34,40,41,43,71,97,118,120,134]. Taking social factors 371 
into consideration is necessary for achieving trustworthy AI, and can enable a broader 372 
understanding of AI impacts and the key decisions that happen throughout, and beyond, the AI 373 
lifecycle – such as whether technology is even a solution to a given task or problem [11,49]. 374 
Such a change in perspective will require working with new stakeholders and developing 375 
guidance for effectively engaging social factors within a technical perspective. A key factor in 376 
this area is the many ways in which institutions indirectly drive the design and use of AI. Also, 377 
while AI practices may not intend to contribute to inequality or other negative forms of bias, 378 
there are always complex social factors that may be overlooked, especially since biases play out 379 
in context-specific ways and may not be captured or understood within one setting. 380 
 381 
Whether statistical or societal, bias continues to be a challenge for researchers and technology 382 
developers seeking to develop and deploy trustworthy AI applications. How bias and trust 383 
interrelate is a key societal question, and understanding it will be paramount to improving 384 
acceptance of AI systems. A consistent finding in the literature is the notion that trust can 385 
improve if the public is able to interrogate systems and engage with them in a more transparent 386 
manner. Yet, in their article on public trust in AI, Knowles and Richards state “…members of the 387 
public do not need to trust individual AIs at all; what they need instead is the sanction of 388 
authority provided by suitably expert auditors that AI can be trusted” [80]. Creating such an 389 
authority requires standard practices, metrics, and norms. NIST has experience in creating 390 
standards and databases, and has been evaluating the algorithms used in biometric technologies 391 
since the 1960s. With the development of privacy and cybersecurity frameworks [99,101], NIST 392 
has helped organizations manage risks of the digital environment, and, through a series of reports 393 
and workshops, intends to contribute to a similar collaborative approach for managing AI 394 
trustworthiness as part of broader stakeholder efforts.  395 
 396 

4. Identifying and Managing Bias in Artificial Intelligence  397 
Improving trust in AI by mitigating and managing bias starts with identifying a structure for how 398 
it presents within AI systems and uses. We propose a three-stage approach derived from the AI 399 

 
3 For more information about this workshop see https://www.nist.gov/news-events/events/2020/08/bias-ai-
workshop, and Appendix B of this document. 
4 The full bibliographic survey can be found at 
https://www.nist.gov/system/files/documents/2021/03/26/20210317_NIST%20AI_Bibliography.pdf 



 

6 

lifecycle, to enable AI designers and deployers to better relate specific lifecycle processes with 400 
the types of AI bias, and facilitate more effective management of it. Organizations that design 401 
and develop AI technology use the AI lifecycle to keep track of their processes and ensure 402 
delivery of high-performing functional tools - but not necessarily to identify harms or manage 403 
them. Currently, there is no single global or industrial AI lifecycle standard, but many versions 404 
used across multiple sectors and regions with a range of stages. The approach for identifying and 405 
managing AI bias proposed in this report is adapted from current versions of the AI lifecycle5, 406 
and consists of three distinct stages, and presumed accompanying stakeholder groups. This 407 
approach is a starting point and NIST seeks feedback about its viability and implementation. 408 
 409 

1. PRE-DESIGN: where the technology is devised, defined and elaborated 410 
2. DESIGN AND DEVELOPMENT: where the technology is constructed 411 
3. DEPLOYMENT: where technology is used by, or applied to, various individuals or 412 

groups.   413 
 414 
Figure 1: A three-stage approach for managing AI bias  415 

 416 
 417 
The following sub-sections provide key considerations and examples that highlight how 418 
statistical biases present across various stages of AI applications; and reflect and interact with the 419 
many human cognitive and societal biases that are inherent in the data, modeling, decision 420 
making, and practical processes associated with the use of AI systems across sectors and 421 
contexts.  422 
 423 

 
5 The following AI lifecycles were utilized as key guidance for this report: Centers of Excellence (CoE) at the US 
General Services Administration [70] [IT Modernization CoE. (n.d.)], the Organisation for Economic Co-operation 
and Development [106] [Organisation for Economic Co-operation and Development. (2019).]. Another model of the 
AI lifecycle is currently under development with the Joint Technical Committee of the International Organization 
for Standardization (ISO) and the International Electrotechnical Commission (IEC) (see 
https://www.iso.org/standard/81118.html)  
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PRE-DESIGN STAGE 424 
 425 
Problem formulation and decision making 426 
AI products start in the pre-design stage, where planning, problem specification, background 427 
research, and identification and quantification of data take place. Decisions here include how to 428 
frame the problem, the purpose of the AI component, and the general notion that there is a 429 
problem requiring or benefitting from a technology solution. Since many of the downstream 430 
processes hinge on decisions from this stage, there is a lot of pressure here to “get things right.” 431 
Central to these decisions is who (individuals or groups) makes them and which individuals or 432 
teams have the most power or control over them. These early decisions and who makes them can 433 
reflect individual and group heuristics and limited points of view, affect later stages and 434 
decisions in complex ways, and lead to biased outcomes [12,31,43,72,109,120]. This is a key 435 
juncture where well-developed guidance, assurance, and governance processes can assist 436 
business units and data scientists to collaboratively integrate processes that reduce bias without 437 
being cumbersome or blocking progress. 438 
 439 
Operational settings and unknown impacts 440 
Current assumptions in AI development often revolve around the idea of technological 441 
solutionism – the perception that technology will lead to only positive solutions. This perception, 442 
often combined with a singular focus on tool optimization, can be at odds with operational 443 
scenarios, increasing the difficulty for the practitioners who have to make sense of tool output – 444 
often in high stakes settings [96]. What seems like a good idea for how a given dataset can be 445 
utilized in a specific use case might be perceived differently by the systems’ end users or those 446 
affected by the systems’ decisions. It is an obvious risk to build algorithmic-based decision tools 447 
for settings already known to be discriminatory. Yet, awareness of which conditions will lead to 448 
disparate impact or other negative outcomes is not always apparent in pre-design, and can be 449 
easily overlooked once in production.  450 
 451 
Overselling tool capabilities and performance 452 
Whether unconscious or unintentional, pre-design is often where decisions are made that can 453 
inadvertently lead to harmful impact, or be employed to extremely negative societal ends. By not 454 
addressing the possibility of optimistic and potentially inflated expectations related to AI 455 
systems, risk management processes could fail to communicate and set reasonable limits related 456 
to mitigating such potential harms. In extreme cases, with tools or apps that are fraudulent, 457 
pseudoscientific, prey on the user, or generally exaggerate claims, the goal should not be to 458 
ensure tools are bias-free, but to reject the development outright in order to prevent 459 
disappointment or harm to the user as well as to the reputation of the provider.  460 
 461 
Other problems that can occur in pre-design include poor problem framing, basing technology on 462 
spurious correlations from data-driven approaches, failing to establish appropriate underlying 463 
causal mechanisms, or generally technically flawed [22,34,40,52,54,89,102,110]. In such cases 464 
(often termed “fire, ready, aim”), the solution may not be mitigation, but rather, rejection of the 465 
system or the way in which the perceived underlying problem is framed. These types of 466 
scenarios may reinforce public distrust of AI technology as systems that are untested or 467 
technically flawed can also contribute to bias. Technology designed for use in high-stakes 468 
settings requires extensive testing to demonstrate valid and reliable performance [58,112].  469 
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 470 
Practices 471 
There is currently momentum for AI researchers to include statements about the potential 472 
societal impacts [114] when submitting their work to journals or conferences. Identifying and 473 
addressing potential biases early in the problem formulation process is an important step in this 474 
process. It is also complicated by the role of power and decision making [96].  A consistent 475 
theme from the literature is the benefit of engaging a variety of stakeholders and maintaining 476 
diversity along social lines where bias is a concern (racial diversity, gender diversity, age 477 
diversity, diversity of physical ability) [32]. These kinds of practices can lead to a more thorough 478 
evaluation of the broad societal impacts of technology-based tools across the three stages. 479 
Identifying downstream impacts may take time and require the involvement of end-users, 480 
practitioners, subject matter experts, and interdisciplinary professionals from the law and social 481 
science. Expertise matters, and these stakeholders can bring their varied experiences to bear on 482 
the core challenge of identifying harmful outcomes and context shifts. Technology or datasets 483 
that seem non-problematic to one group may be deemed disastrous by others. The manner in 484 
which different user groups can game certain applications or tools may also not be so obvious to 485 
the teams charged with bringing an AI-based technology to market. These kinds of impacts can 486 
sometimes be identified in early testing stages, but are usually very specific to the contextual 487 
end-use and will change over time. Acquiring these types of resources for risk and associated 488 
impacts does not necessarily require a huge allocation, but it does require deliberate planning and 489 
guidance. This is also a place where innovation in approaching bias can significantly contribute 490 
to positive outcomes.  491 
 492 
Real-world example 493 
There are many examples of bias from the real world where practices in the problem formulation 494 
stage may have combined with lack of understanding of downstream impacts. For example, the 495 
Gender Shades facial recognition evaluation project [24] describes the poor performance of 496 
facial recognition systems when trying to detect face types (by gender and skin type) that are not 497 
present in the training data. This is an example of representation bias – a type of sampling bias 498 
that pre-dates AI - where trends estimated for one population are inappropriately generalized to 499 
data collected from another population. This biased performance was not identified by the teams 500 
that designed and built the facial recognition systems, but instead by researchers evaluating the 501 
systems’ performance in different conditions. It is during the pre-design stage where these kinds 502 
of implicit decisions are made about what constitutes a “valid face,” and non-representative 503 
datasets are selected. Additionally, representation bias can lead to bigger problems and other 504 
biases in later stages of the AI lifecycle, an issue referred to as “error propagation,” that can 505 
eventually lead to biased outcomes [90]. Improving pre-design practices to ensure more inclusive 506 
representation can help to broaden the larger teams’ perspectives about what is considered 507 
relevant or valid. 508 
 509 
DESIGN AND DEVELOPMENT STAGE 510 
 511 
This stage of the AI lifecycle is where modeling, engineering and validation take place. The 512 
stakeholders in this stage tend to include software designers, engineers, and data scientists who 513 
carry out risk management techniques in the form of algorithmic auditing and enhanced metrics 514 
for validation and evaluation. 515 
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 516 
Optimization over context  517 
The software designers and data scientists working in design and development are often highly 518 
focused on system performance and optimization. This focus can inadvertently be a source of 519 
bias in AI systems. For example, during model development and selection, modelers will almost 520 
always select the most accurate models. Yet, as Forde et al describe in their paper [50], selecting 521 
models based solely on accuracy is not necessarily the best approach for bias reduction.  Not 522 
taking context into consideration during model selection can lead to biased results for sub-523 
populations (for example, disparities in health care delivery). Relatedly, tools that are designed to 524 
use aggregated data about groups to make predictions about individual behavior – a practice 525 
initially meant to be a remedy for non-representative datasets [7]- can lead to biased outcomes. 526 
This type of bias, known as ecological fallacy, occurs when an inference is made about an 527 
individual based on their membership within a group (for example, basing college admissions 528 
decisions on an individual’s race) [48]. These unintentional weightings of certain factors can 529 
cause algorithmic results that exacerbate and reinforce societal inequities. The surfacing of these 530 
inequities is a kind of positive “side effect” of algorithmic modeling, enabling the research 531 
community to discover them and develop methods for managing them. 532 
 533 
Practices 534 
During modeling tasks in this stage, it may become apparent that algorithms are biased or will 535 
contribute to disparate impacts if deployed. In such cases the technology can be taken out of 536 
production. But this kind of awareness and remedy is likely to take place only in certain settings 537 
or industries, with well-defined procedures and clear lines of accountability. Unfortunately, not 538 
all tools are deployed in such settings – and capturing the wide array of use cases and scenarios 539 
is particularly difficult. It is also notable that, depending on the industry or use case, AI is 540 
typically marketed as an easy solution that does not necessarily require extensive support. But 541 
the notion that AI requires extensive monitoring belies the reality that AI can be both easy to use 542 
and should be used with extreme caution [96].  543 
 544 
Several technology companies are developing or utilizing guidance to improve organizational 545 
decision making and make the practice of AI development more responsible by implementing 546 
processes such as striving to identify potential bias impacts of algorithmic models. For example, 547 
“cultural effective challenge” is a practice that seeks to create an environment where technology 548 
developers can actively challenge and question steps in modeling and engineering to help root 549 
out statistical biases and the biases inherent in human decision making [60]. Requiring AI 550 
practitioners to defend their techniques can incentivize new ways of thinking, stimulate 551 
improved practices, and help create change in approaches by individuals and organizations [96]. 552 
To better identify and mitigate organizational factors which can contribute to bias, experts also 553 
suggest the use of algorithmic decision-making tools for specific, well-defined use cases, and not 554 
beyond those use cases (a factor that will be discussed more in-depth in the section about 555 
deployment). Additionally, researchers also recommend that AI development teams work in 556 
tighter conjunction with subject matter experts and practitioner end users, who in turn, must 557 
“consider a deliberate and modest approach” when utilizing tool output [111].  558 
 559 
 560 
 561 
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Real-world example 562 
One real-world case of a biased outcome that may have been manageable at the design and 563 
development stage is the university admissions algorithm GRADE [135], which was shown to 564 
produce biased enrollment decisions for incoming PhD students [25]. Without ground truth for 565 
what constitutes a “good fit,” a construct was developed using prior admission data. Once put 566 
into production, the model ended up being trained to do a different job than intended (also 567 
known as “target leakage”). Instead of assessing student quality, the model learned previous 568 
admissions officer decisions. Another issue is that candidate quality cannot be truly known until 569 
after the student matriculates. This case is a good example of data hubris, or “overstated claims 570 
that arise from big data analysis” [84]. This is particularly problematic when using data to “make 571 
causal claims from an inherently inductive method of pattern recognition” [19,84,89]. 572 
 573 
DEPLOYMENT STAGE 574 
 575 
This stage is where users start to interact with the developed technology, and sometimes create 576 
unintended uses for it. The stakeholders in deployment are often the different types of end users 577 
who directly interact with technology tools for their profession. This includes operators, subject 578 
matter experts, humans-in-the-loop, and decision-makers who interpret output to make or 579 
support decisions.  580 
 581 
Discriminatory impact 582 
Since many AI-based tools can skip deployment to a specified expert end user, and are marketed 583 
to, and directly used by, the general public, the intended uses for a given tool are often quickly 584 
overcome by reality. Additionally, members of the public do not necessarily have to directly 585 
interact with technology to be affected by tool deployment. Individuals’ data can be used for 586 
modeling (sometimes without their knowledge), and in decisions that can affect their lives based 587 
on factors such as where they live and work. For example, the algorithms used in ride hailing 588 
apps learned the landscape of low-income non-white neighborhoods and charged citizens who 589 
live there more for pick-up and drop-off, causing disparate impact [108]. This kind of systemic 590 
discriminatory pricing is perpetuated on the citizens of the neighborhood without their 591 
knowledge, whether they have and use the app or not, and due only to the fact that they live 592 
there.  593 
 594 
Intended context vs. actual context 595 
Once people start to interact with an AI system, early design and development decisions that 596 
were poorly or incompletely specified or based on narrow perspectives can be exposed. This 597 
leaves the process vulnerable to additive biases that are either statistical in nature or related to 598 
human decision making and behavior [109]. For example, by not designing to compensate for 599 
activity biases, algorithmic models may be built on data only from the most active users, likely 600 
creating downstream system activity that does not reflect the intended or real user population 601 
[1,8]. Basing system actions on an unrepresentative sample can have significant impact. For 602 
example, by not considering that STEM ads might be seen most often by men, due to how 603 
marketing algorithms optimize for cost in ad placement, the women who were the intended 604 
audience of the ads never saw them [82].  605 
 606 



 

11 

The deployment stage also offers an interesting window into how perceptions and uses can differ 607 
based on the distance from the technology itself. In pre-design the focus and perceptions are 608 
about how technology can be designed to solve a question, market a product, or innovate in a 609 
new area. In design and development, the focus is on building, testing, and operationalizing the 610 
technology, typically with time to market and accuracy as the key criteria. And once the 611 
technology is deployed and used in different settings and for different purposes, we see 612 
perceptions turn to unintended use cases and even distrust. In one case of predictive analytics in 613 
university admissions, the operators of the receiving end of the tool output were the ones to 614 
sound the warning about race-based biases [79]. Although the study was based on a small 615 
number of participants, interviews with admissions officials suggest that “they didn’t believe in 616 
the validity of the risk scores, they thought the scores depersonalized their interactions with 617 
students, and they didn’t understand how the scores were calculated” [48]. 618 
 619 
The kinds of scenarios where experts utilize and rely upon automated results (like in the college 620 
admissions example), are highly complex and relatively understudied. One key issue is finding a 621 
configuration that enables a system to be used in a way that optimally leverages, instead of 622 
replaces, user expertise. This is often a significant challenge since domain experts and AI 623 
developers often lack a common vernacular, which can contribute to miscommunication and 624 
misunderstood capabilities. With the promise of more quantitative approaches, domain experts 625 
may tend to offload method validation to the AI system itself. End users may also 626 
subconsciously find ways to leverage those perceived “objective” results as cover for their biases 627 
[6,38,39]. On the system side, developer communities may presume method validation at a level 628 
that is not actually present. These kinds of loopholes can create conditions that operationalize 629 
technology that is not quite ready for use, especially in high-stakes settings [11,120].  630 
 631 
Contextual gaps lead to performance gaps 632 
The “distance from technology” can also contribute to different types of performance gaps. 633 
There are gaps in intention; these are gaps between what was originally intended in pre-design 634 
versus what is developed and between the AI product and how it is deployed. There also are gaps 635 
in performance based on those intention gaps. When an AI tool is designed and developed to be 636 
used in a specific setting and tested for use in near-laboratory conditions, there are clearer 637 
expectations about intended performance. Once the AI tool is deployed and goes “off-road,” the 638 
original intent, idea, or impact assessment that was identified in pre-design can drift as the tool is 639 
repurposed and/or used in unforeseen ways.  640 
 641 
Another important gap that contributes to bias relates to differences in interpretability 642 
requirements between users and developers. As previously discussed, the groups who invent and 643 
produce technology have specific intentions for its use and are unlikely to be aware of all the 644 
ways a given tool will be repurposed. There are individual differences in how humans interpret 645 
AI model output. When system designers do not take these differences into consideration it can 646 
contribute to misinterpretation of that output [21]. When these differences are combined with the 647 
societal biases found in datasets and human cognitive biases such as automation complacency 648 
(which is particularly relevant in the deployment stage), where end users may unintentionally 649 
“offload” their decisions to the automated tool - this can cause significant negative impacts.  650 
 651 
 652 
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Practical improvements 653 
One approach for managing bias risks associated with the gaps described above is deployment 654 
monitoring and auditing. Counterfactual fairness is a technique used by researchers to bridge the 655 
gaps between the laboratory and the post-deployment real world. The issue, as described in [81] 656 
is that “If individuals in the training data have not already had equal opportunity, algorithms 657 
enforcing EO6 will not remedy such unfairness.” Using the GRADE algorithm as an example, 658 
instead of using previous admission decisions as the predictor, the model would consider and 659 
seek to compensate for the various social biases that could impact a student’s application. This 660 
happens by capturing “these social biases and make clear the implicit trade-off between 661 
prediction accuracy and fairness in an unfair world.” Identifying standards of practice for 662 
implementing these types of risk management tools and techniques will be a focus of future 663 
activities. 664 
 665 
Summary 666 
In this section we have described the challenge of AI bias and proposed an approach for 667 
considering how to manage it through three stages modeled on AI development lifecycle. The 668 
section also shows that, while the type of bias and manner of presentation may differ, bias can 669 
occur across all of these stages. To summarize and help illustrate this point, the below figure 670 
shows an exemplar of how bias could present within each of the three stages. 671 
 672 
Figure 2: Example of bias presentation in three stages modeled on the AI lifecycle. 673 

 674 
 675 
  676 

 
6 EO = equal opportunity 
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 677 
5. Conclusion and Next Steps 678 

We have identified a few of the many ways that algorithms can create conditions for 679 
discriminatory decision making. In an effort to identify the technical requirements for cultivating 680 
trustworthy and responsible AI, this report suggests a three-stage approach for managing AI bias. 681 
This approach is intended to foster discussion about the path forward and collaborative 682 
development of standards and a risk-based framework. Rather than identifying and tackling 683 
specific biases within cases, this report suggests a need to address the context-specific nature of 684 
AI bias by associating applicable biases within specific stages modeled on the AI lifecycle for 685 
more effective management and mitigation. NIST is interested in obtaining feedback from the 686 
broader community about this proposed approach via public comment and a series of public 687 
events.  688 
 689 
The broader AI research community, practitioners, and users all have many valuable insights and 690 
recommendations to offer in managing and mitigating bias. Identifying which techniques to 691 
include in a framework that seeks to promote trustworthiness and responsibility in AI requires an 692 
approach that is actively representative and includes a broad set of disciplines and stakeholders. 693 
This will allow interested parties to move forward with guidance that is effective and 694 
implementable, accurate, realistic, and fit for purpose. It has the potential to increase public trust 695 
and advance the development and use of beneficial AI technologies and systems. To that end, 696 
this report concludes: 697 

• Bias is neither new nor unique to AI. 698 
• The goal is not zero risk but rather, identifying, understanding, measuring, managing and 699 

reducing bias.  700 
• Standards and guides are needed for terminology, measurement, and evaluation of bias. 701 
• Bias reduction techniques are needed that are flexible and can be applied across contexts, 702 

regardless of industry. 703 
• NIST plans to develop a framework for trustworthy and responsible AI with the 704 

participation of a broad set of stakeholders to ensure that standards and practices reflect 705 
viewpoints not traditionally included in AI development. 706 

• NIST will collaboratively develop additional guidance for assurance, governance, and 707 
practice improvements as well as techniques for enhancing communication among 708 
different stakeholder groups. 709 

   710 
To make the necessary progress towards the goal of trustworthy and responsible AI, NIST 711 
intends to act as a hub for the broader community of interest and to collaboratively engage with 712 
experts and other stakeholders as they address the challenges of AI. To that end, NIST will host a 713 
variety of activities in 2021 and 2022 in each area of the core building blocks of trustworthy AI 714 
(accuracy, explainability and interpretability, privacy, reliability, robustness, safety, and security 715 
(resilience), and bias).  716 
 717 
  718 
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6. Appendices 719 
Appendix A:  Glossary 720 
The table below presents a glossary with a stand-alone definition for each term and 721 
accompanying reference(s). The goal and contribution of this glossary is to aggregate terms that 722 
are in common usage or relevance to AI bias. Definitions were selected based on either recently 723 
published papers from the AI bias community or seminal work in the area the term is most 724 
associated with. When multiple definitions of a bias were identified, the most relevant definition 725 
was selected or adapted. The references provided are not intended to indicate specific 726 
endorsement or to assign originator credit.  727 
 728 
Table 1: Bias Terminology. This table lists definitions with accompanying references for select 729 
biases in AI. 730 

Bias type Definition 
Activity bias A type of selection bias that occurs when systems/platforms get their training 

data from their most active users, rather than those less active (or inactive) [8]. 

Amplification 
bias 

Arises when the distribution over prediction outputs is skewed in comparison to 
the prior distribution of the prediction target [85]. 

Annotator bias, 
Human 
reporting bias 

When users rely on automation as a heuristic replacement for their own 
information seeking and processing [93]. 

Automation 
complacency 

When humans over-rely on automated systems or have their skills attenuated by 
such over-reliance (e.g., spelling and autocorrect or spellcheckers). 

Behavioral 
bias 

Systematic distortions in user behavior across platforms or contexts, or across 
users represented in different datasets [92,104]. 

Cognitive bias Systematic errors in human thought based on a limited number of heuristic 
principles and predicting values to simpler judgmental operations [132]. 

Concept drift, 
Emergent bias 

Use of a system outside the planned domain of application, and a common cause 
of performance gaps between laboratory settings and the real world.   

Consumer bias Arises when an algorithm or platform provides users with a new venue within 
which to express their biases, and may occur from either side, or party, in a 
digital interaction [121]. 

Content 
production 
bias 

Arises from structural, lexical, semantic, and syntactic differences in the 
contents generated by users [104]. 

Data 
generation bias 

Arises from the addition of synthetic or redundant data samples to a dataset [73]. 
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Deployment 
bias 

Arises when systems are used as decision aids for humans, since the human 
intermediary may act on predictions in ways that are typically not modeled in 
the system [127]. 

Detection bias Systematic differences between groups in how outcomes are determined and 
may cause an over- or underestimation of the size of the effect [27]. 

Evaluation 
bias 

Arises when the testing or external benchmark populations do not equally 
represent the various parts of the user population or from the use of performance 
metrics that are not appropriate for the way in which the model will be used 
[127]. 

Exclusion bias When specific groups of user populations are excluded from testing and 
subsequent analyses [37]. 

Feedback loop 
bias 

Effects that may occur when an algorithm learns from user behavior and feeds 
that behavior back into the model [121]. 

Funding bias Arises when biased results are reported in order to support or satisfy the funding 
agency or financial supporter of the research study [91]. 

Historical bias Arises when models are trained on past (potentially biased) decisions [72]. 

Inherited bias, 
Error 
propagation 

Arises when tools that are built with machine learning are used to generate 
inputs for other machine learning algorithms. If the output of the tool is biased 
in any way, this bias may be inherited by systems using the output as input to 
learn other models [64]. 

Institutional 
bias, Systemic 
bias 

A tendency for the procedures and practices of particular institutions to operate 
in ways which result in certain social groups being advantaged or favored and 
others being disadvantaged or devalued. This need not be the result of any 
conscious prejudice or discrimination but rather of the majority simply 
following existing rules or norms. Institutional racism and institutional sexism 
are the most common examples [28]. 

Interpretation 
bias 

A form of information processing bias that can occur when users interpret 
algorithmic outputs according to their internalized biases and views [121]. 

Linking bias Arises when network attributes obtained from user connections, activities, or 
interactions differ and misrepresent the true behavior of the users [104]. 

Loss of 
situational 
awareness bias 

When automation leads to humans being unaware of their situation such that, 
when control of a system is given back to them in a situation where humans and 
machines cooperate, they are unprepared to assume their duties. This can be a 
loss of awareness over what automation is and isn’t taking care of.  

Measurement 
bias 

Arises when features and labels are proxies for desired quantities, potentially 
leaving out important factors or introducing group or input-dependent noise that 
leads to differential performance [127]. 



 

16 

Mode 
confusion bias 

When modal interfaces confuse human operators, who misunderstand which 
mode the system is using, taking actions which are correct for a different mode 
but incorrect for their current situation. This is the cause of many deadly 
accidents, but also a source of confusion in everyday life. 

Popularity bias A form of selection bias that occurs when items that are more popular are more 
exposed and less popular items are under-represented [1]. 

Population 
bias 

Arises when statistics, demographics, and user characteristics differ between the 
original target population and the user population represented in the actual 
dataset or platform [91]. 

Presentation 
bias 

Biases arising from how information is presented on the Web, via a user 
interface, due to rating or ranking of output, or through users' own self-selected, 
biased interaction [8]. 

Ranking bias The idea that top-ranked results are the most relevant and important and will 
result in more clicks than other results [8,86]. 

Sampling bias, 
Representation 
bias 

Arises due to non-random sampling of subgroups, causing trends estimated for 
one population to not be generalizable to data collected from a new population 
[91]. 

Selection bias Bias that results from using nonrandomly selected samples to estimate 
behavioral relationships as an ordinary specification bias that arises because of a 
missing data problem [63]. 

Selective 
adherence 

Decision-makers’ inclination to selectively adopt algorithmic advice when it 
matches their pre-existing beliefs and stereotypes [6]. 

Societal bias Ascribed attributes about social groups that are largely determined by the social 
context in which they arise and are an adaptable byproduct of human cognition 
[23]. 

Statistical bias A systematic tendency for estimates or measurements to be above or below their 
true values. Note 1: Statistical biases arise from systematic as opposed to 
random error. Note 2: Statistical bias can occur in the absence of prejudice, 
partiality, or discriminatory intent [107]. 

Temporal bias Bias that arises from differences in populations and behaviors over time 
[104,131]. 

Training data 
bias 

Biases that arise from algorithms that are trained on one type of data and do not 
extrapolate beyond those data. 

Uncertainty 
bias, Epistemic 
uncertainty 

Arises when predictive algorithms favor groups that are better represented in the 
training data, since there will be less uncertainty associated with those 
predictions [57]. 

User 
interaction bias 

Arises when a user imposes their own self-selected biases and behavior during 
interaction with data, output, results, etc. [8]. 

 731 
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Appendix B: Collaborative Work 732 
This report is based on a series of collaborative events, including a literature review, input from 733 
leaders in the field through ongoing discussions and a workshop, and a broad evaluation of the 734 
significant themes across the community of interest. Detailed information of these events is 735 
described below. 736 
 737 
Literature review  738 
During 2020, NIST implemented a broad review of materials from frequently-cited, shared, and 739 
cross-referenced pieces focused on bias within technologies that use artificial intelligence. This 740 
review incorporated content that described AI bias from a societal perspective, in existing 741 
technologies and development processes, and other factors that influence AI development, 742 
implementation, and/or adaptation. To ensure a cross-section of perspectives, literature was 743 
identified across a variety of publication types, including peer-reviewed journals, popular news 744 
media, books, organizational reports, conference proceedings, and presentations. Across 745 
publications, the literature review topics represent a wide range of stakeholder perspectives and 746 
challenges and current and future AI implementations.  747 
 748 
Workshop on Bias in AI  749 
Recognizing a lack of consensus regarding several fundamental concepts in identifying and 750 
understanding bias in AI, NIST convened a virtual workshop August 18, 2020 with experts, 751 
researchers, and stakeholders from a variety of organizations and sectors whose work focuses on 752 
the topic. The workshop consisted of panel discussions on data and algorithmic bias, followed by 753 
five contemporaneous breakout sessions. Notes from workshop organizers, facilitators, and 754 
scribes were reviewed for key takeaways and themes. Workshop participants suggested that 755 
forums and workshops like the one held on August 18 were important to maintaining awareness 756 
and alignment of current challenges and future solutions. Participants also referred to the long-757 
term nature of this challenge. These key takeaways have been included and described throughout 758 
this report. 759 

  760 
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