NIST Special Publication 1241

Large Outdoor Fires and the Built Environment (LOF&BE): Summary of Workshop at Interflam 2019

Sponsored by the International Association for Fire Safety Science (IAFSS)

Samuel L. Manzello Sara McAllister Sayaka Suzuki Raphaele Blanchi Elsa Pastor Enrico Ronchi

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.1241

THE INTERNATIONAL ASSOCIATION FOR FIRE SAFETY SCIENCE

NIST Special Publication 1241

Large Outdoor Fires and the Built Environment (LOF&BE): Summary of Workshop at Interflam 2019

Samuel L. Manzello Fire Research Division, Engineering Laboratory

Sara McAllister U.S. Forest Service, U.S. Department of Agriculture, Missoula, MT USA

Sayaka Suzuki National Research Institute of Fire and Disaster, Chofu, Tokyo, Japan

Raphaele Blanchi Commonwealth Scientific and Industrial Research Organization, Melbourne, Australia

> Elsa Pastor Universitat Politècnica de Catalunya, Barcelona, Spain

> > Enrico Ronchi Lund University, Lund, Sweden

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.1241

August 2019

U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

The content of the oral presentations reproduced in this workshop report are those of the authors and do not necessarily represent NIST's perspective.

National Institute of Standards and Technology Special Publication 1241 Natl. Inst. Stand. Technol. Spec. Publ. 1241, 21 pages (August 2019) CODEN: NSPUE2

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.1241

Abstract

A workshop of the permanent working group, sponsored by the International Association for Fire Safety Science (IAFSS), entitled Large Outdoor Fires and the Built Environment (LOF&BE) was held from 2:00 pm to 4:00 pm on Sunday June 30, 2019. The workshop was held as a part of the 2019 Interflam Conference in Egham, United Kingdom. The working group is co-led by Sara McAllister of the U.S. Forest Service, Sayaka Suzuki of the National Research Institute of Fire and Disaster, and Samuel L. Manzello of NIST's Engineering The IAFSS permanent working group consists of three subgroups, with Laboratory. subleaders appointed by Manzello, McAllister, and Suzuki, and these are prioritized into the following topics: Ignition Resistant Communities (IRC - led by Elsa Pastor, UPC), Emergency Management and Evacuation (EME, led by Enrico Ronchi, Lund University), and Large Outdoor Firefighting (LOFF, led by Raphaele Blanchi, CSIRO, unable to travel to UK). The IRC subgroup is focused on developing the scientific basis for new standard testing methodologies indicative of large outdoor fire exposures, including the development of necessary testing methodologies to characterize wildland fuel treatments adjacent to communities. The EME subgroup is focused on developing the scientific basis for effective emergency management strategies for communities exposed to large outdoor fires. The LOFF subgroup is providing a review of various tactics that are used, as well as the various personal protective equipment (PPE), and suggests pathways for research community engagement, including environmental issues in suppressing these fires. At the workshop, detailed progress was presented regarding activities of all the subgroups. An extended session was held for open discussion so that participants could provide feedback on current progress and offer suggestions for the upcoming LOF&BE workshop being organized as part of IAFSS 2020.

Key words

Large Outdoor Fires; Urban Fires; Wildland-Urban Interface (WUI) Fires; Informal Settlement Fires; Wildland Fires

Table of Contents

1.	Int	troduction	1
	1.1.	Workshop Objectives	1
	1.2.	Program of the Workshop	1
	1.3.	List of Registered Participants (Alphabetical Order)	1
2.	Su	mmary and Next Steps	2
3.	Ac	knowledgments	3
Re	efere	nces	4
Aj	open	dix A: Presentations Delivered at the Workshop	5

1. Introduction

1.1. Workshop Objectives

The International Association for Fire Safety Science (IAFSS) has approved the formation of the permanent working group entitled *Large Outdoor Fires and the Built Environment* or (LOF&BE) [1]. This report details the second official workshop of this permanent working group. The workshop at Interflam 2019 was organized as a unique partnership between IAFSS and Interflam, the two largest conferences focused on fire safety science.

1.2. IIOSium of the 110		
Time	Title	Speaker
2:00-2:15	Introduction	S. Manzello*, S.
		McAllister, S. Suzuki*
2:15-2:30	LOFF	R. Blanchi/S. McAllister*
2:30-2:45	IRC	E. Pastor
2:45-3:00	EME	E. Ronchi
3:00-4:00	Open Discussion	All participants

1.2. Program of the Workshop

*denotes speaker

1.3. List of Registered Participants (Alphabetical Order by Surname)

Danielle Antonellis (Arup, UK)

Gaurav Agarwal (FM Global, USA)

Mohamed Beshir (University of Edinburgh, UK)

Nelson Bryner (National Institute of Standards and Technology, USA)

Mike Burroughs (Fire Investigation, UK)

Alexandra Bystrom (Lulea University of Technology, Sweden)

Piergiacomo Cancelliere (Italian National Fire and Rescue Service, Italy)

René Champagne (Parks Canada/York University, Canada)

Giovanni Cocchi (Arson S.R.I., Italy)

Bernard Cosh (Cosh Fire Safety, UK)

Ryan Falkenstein-Smith ((National Institute of Standards and Technology, USA)

Ragni Fjellgaard Mikalsen (RISE Fire Research, Sweden)

Merlyn Ferrer (Design Fire Consultants, UK)

Justin Francis (Queensland Fire and Emergency Services, Australia)

John Gales (York University, Canada)

Richard Gann (AGANNstFire, USA)

Islaam Gomaa (National Research Council Canada, Canada)

Mark Gratkowski (Bureau of Alcohol, Tobacco, Firearms & Explosives, USA)

Steve Gwynne (Movement Strategies, UK)

Tuula Hakkarainen (VTT Technical Research Centre of Finland, Finland)

Testuya Hayakawa (TSV, Japan)

Faraz Hedayati (Insurance Institute for Business & Home Safety, USA)

Marcelo Hirschler (GBH International, USA)

Robert Jannson McNamee (Brandskyddslaget, Sweden)

Geir Jensen (Securo AS, Norway)

Amanda Kimball (Fire Protection Research Foundation/NFPA, USA)

Egor Kuznetov (Peter the Great Saint Petersburg Polytechnic University, Russia) Susan Lamont (Arup, UAE) Brian Lattimer (Virginia Tech, USA) Isaac Leventon (National Institute of Standards and Technology, USA) Johanna Liblik (Tallinn University of Technology, Estonia) Andrew Lock (U.S. Consumer Products Safety Commission, USA) Samuel L. Manzello (National Institute of Standards and Technology, USA/Japan) Frank Markert (Denmark Technical University, Denmark) Ekaterina Markus (Peter the Great Saint Petersburg Polytechnic University, Russia) Bertrand Mathy (AGC Glass Europe, Belgium) Sara McAllister (USDA Forest Service, USA) Margaret McNamee (Lund University, Sweden) Harry Mitchell (Imperial College London, UK) Elsa Pastor (Universitat Politècnica de Catalunya, Spain) Jake Pauls (Jake Pauls Consulting, USA) Hugues Pretel (Institut de Radio Protection et de Sûreté Nucléaire, France) Chandler Probert (North Carolina State University, USA) Vincenzo Puccia (Corpo Nazionale dei Vigili del Fuoco, Italy) Guillaume Rambaud (Commissariat à l'Énergie Atomique et aux Énergies Alternatives, France) Lindsay Ranger (FP Innovations, Canada) Enrico Ronchi (Lund University, Sweden) David Rush (University of Edinburgh, UK) Adhiraj Shinde (North Carolina State University, USA) Pitor Smardz (INBEPO, Poland) Anne Steen-Hanson (RISE Fire Research, Norway) Sayaka Suzuki (National Research Institute of Fire and Disaster, Japan) Jean-Baptiste Tramoni (Centre Technique Industriel De La Construction Metallique, France) Juergen Troiroseh (Troiroseh Company, Switzerland) Patrick van Hees (Lund University, Sweden) Yi Wang (FM Global, USA) Alex Webb (Commonwealth Scientific and Industrial Research Organization, Australia) Jennifer Wen (Warwick University UK) Yuki Yamauchi (Railway Technical Research Institute, Japan) Hideki Yoshioka (National Institute for Land and Infrastructure Management, Japan)

2. Summary and Next Steps

A total of 60 global experts participated, representing institutions from Australia, Belgium, Canada, Denmark, Estonia, France, Finland, Italy, Japan, Norway, Poland, Russia, Spain, Sweden, Switzerland, United Kingdom, United Arab Emirates, and USA. The workshop began with an introductory presentation that explained what is LOF&BE, the objectives, and the overall direction and focus of the group.

LOF&BE is divided into three main approaches. Specifically, Phase 1 is the data collection aspect where each of the three subgroups are collecting all available information on codes and standards, best practices, and current research for their respective topic areas. In Phase 2, each subgroup will attempt to identify the gaps amongst codes and standards, between codes and standards and current research, and within current research. In the final Phase, called Phase 3, each subgroup will work on products to address the identified gaps.

At present, all three subgroups are still working in Phase 1, so the audience was queried as to the progress that each subgroup is achieving to this end. It was also decided by the LOF&BE team to open up the floor for a free flowing discussion.

The following is a list of key discussion points:

- Suggestions on getting the research community more involved with Codes and Standards. How to actually do this?
- How to incorporate informal settlement fires into IRC and LOFF subgroups? An important safety issue for informal settlement fires is that firefighters need to be able to cope with the collapse of sections of the entire settlements.
- Firefighters' involvement on personal protective equipment (PPE) is necessary.
- Emissions from burning vegetation and structures are different at different stages. Understanding the details as well as overview are important.
- More interaction and attendance from the fire service is needed at important international conferences focused exclusively on fire safety science, such as Interflam and IAFSS. How to actually have better interaction?
- A sociological prospective is needed for EME group.
- Questions on involvements with standard bodies. ISO TC92 has developed a specific working group (WG): ISO TC92/WG14 (Large Outdoor Fires and the Built Environment). Important research findings as part of the IAFSS LOF&BE effort will be constantly shared with the ISO TC9/WG14 activity. This is easier, as Dr. Manzello is the convener of the ISO TC92/WG14. More cross-cutting activities into other standards bodies, work is needed outside ISO TC92.
- It is important to get industry involved, construction companies and insurance companies. As in most cases, cost is really the driving factor for change.
- Simple description on what are some key work items needed in each group. In this way, the community would be in a better positon to help the overall LOF&BE effort. A specific suggestion included a list of potential projects that final year students could work on.

The LOF&BE team plan to use these valuable suggestions going forward. In particular, these will be most helpful as the next workshop is prepared as part of the IAFSS 2020 meeting to be held in Waterloo, Canada.

3. Acknowledgments

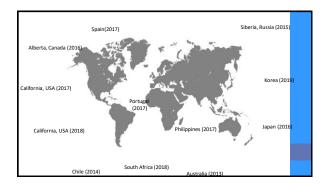
The support of the organizing committee of the 2019 Interflam Conference is greatly appreciated. In particular, the authors wish to acknowledge the help of Dr. Stephen Grayson

(Interscience Communications; Interflam Conference Chair), Ms. Sue Wolf (Interscience Communications, UK), and Ms. Teri-Leigh Peach (Fire Testing Technology, UK). The LOF&BE team would also like to personally thank Professor Patrick Van Hees of Lund University, IAFSS President for his constant support. SLM would like to thank both Drs. Grayson and Van Hees for making the integration of the IAFSS LOF&BE effort into Interflam 2019 as seamless as possible.

References

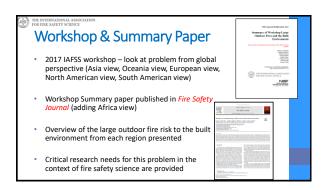
[1] Manzello, S.L., McAllister, S., Suzuki, S., Blanchi, R., Pastor, E., and Ronchi, E., (2019) Large Outdoor Fires and the Built Environment: Summary of Kick-off Workshop, NIST Special Publication 1236 <u>https://doi.org/10.6028/NIST.SP.1236</u>.

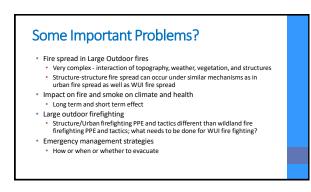
Appendix A: Presentations Delivered at the Workshop

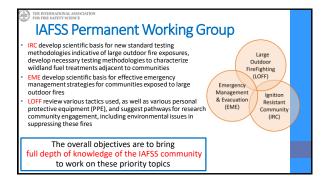

What LOF&BE means?

Large Outdoor Fires and the Built Environment (LOF&BE)

Wildland fires (or forest fires)*, wildland-urban interface (WUI) fires, urban fires**, and informal settlement fires, which <u>pose a threat to people</u>


Discussed in Lund workshop


*Wildland fires also include (but not limited to) Wildfires, Bushfires, Mountain fires, Grassland fires, Veld fires; depending on location ** Urban fires include post-earthquake fires



Introduction

- Over the past several decades, fire safety science research has spent a great deal of effort to understand fire dynamics within buildings
- Research into large outdoor fires, and how to potentially mitigate the loss of structures in such fires, lags behind other areas of fire safety science research
- Large outdoor fires affect many people in the world directly and indirectly, both short term and long term (e.g. evacuation, losing property, losing loved ones, breathing products of combustion)

General Approach

- Phase 1 Collect information
 - Codes and standards
 - Best practices
 Current research
- Phase 2 Identify the 'Gaps'
 - Among codes and standardsAmong codes and standards and current research
 - Among current research
- Phase 3 Work on 'Products' solving the Gaps

IAFSS 2020 Plans

- LOF&BE workshop
- · WG (sub-groups)' efforts on Phase 1 will be presented
- We hope to get feedback from you! (which we call a part of Phase 2)

If you would like to join WG, please sign up from the link below or QR codes;

https://goo.gl/forms/0TMW2SbWi7mmHYIv1

Pro		June 20 th 2019 (S tion: 1 st Floor at V	,	
1	Time	Title	Speaker	
2	2:00-2:15	Introduction	S. Manzello, S. McAllister, S. Suzuki	
2	2:15-2:30	LOFF	R. Blanchi / S. McAllister	
2	2:30-2:45	IRC	E. Pastor	
2	2:45-3:00	EME	E. Ronchi	
з	3:00-4:00	Open Discussion	All participants	

Large Outdoor Fires and the Built Environment working group

- Large Outdoor Firefighting – LOFF

Sara McAllister (USDA) / Raphaele Blanchi (CSIRO)

LAND & WATER

INTERFLAM– Workshop 30/06/2019

Large Outdoor Firefighting – LOFF

General aim

To develop the scientific basis for wildland/WUI fires/urban fires firefighter safety. First, including personal protective equipment (PPE), health and environmental issues in suppressing these fires. Later, various Firefighting tactics that are used, pathways for research community engagement.

Type of firefighters survey Summ

Survey : 37 persons from 16 countries

 Type of firefighters
 Number of countries

 1 type of firefighters: Firefighters work for both urban and wildland (or forest) fires
 11

 2 types of firefighters: Structure firefighters (who work for urban fires) and wildland firefighters (who works for wildland or forest fires)
 5

 3 types of firefighters: Structure firefighters, wildland firefighters: and WUI firefighters
 0

 • We would like to thanks Anthony Collin, Ashruf Syed, Amjid hussein Gulamhussein, Sébastien Lahaye, Guillermo Rein, Alex Filkov, Faraz Hedayati, Luís Mario Ribeiro, Daniel Gorham, Hubert Biteau, Len Garis, Adi Putra, Dariene Rini, Dionysios Kolaitis, Ya-Ting T.

Sébastien Lahaye, Guillermo Rein, Alex Filkov, Faraz Hedayati, Luís Mario Ribeiro, Daniel Gorham, Hubert Biteau, Len Garis, Adi Putra, Darlene Rini, Dionysios Kolaitis, Ya-Ting T. Liao, Kuibin, Gordon Anderson, Ryan Falkenstein-Smith, Eric Link, Juan Antonio Muñoz, Elsa Pastor, Nuria Prat-Guitart, Xinyan Huang, Yu Wang, Enrico Ronchi and all the other members that have replied to the survey

Summary firefighters survey by countries

Countries	Only one kind - our firefighters work for both urban and wildland (or forest) fires	Structure firefighter (who work for urban fires) and wildland firefighters (who works for wildland or forest fires)	Structure firefighter, wildland firefighter, and WUI firefighter
Australia		x	
Canada		x	
China		x	
France	х		
Greece	х		
Indonesia	х		
India	х		
Israel	х		
Japan	х		
Kenya	х		
Malaysia	х		
Portugal	х		
Spain		x	
Sweden	х		
United Kingdom	х		
USA		х	

Protection of firefighters - PPE

Background

ntation title | Presenter na

• Protection of firefighter is an important aspect of firefighter safety in wildland fire, urban fire and WUI fire where both the wildlands and the structures are involved

Objectives

- Develop a framework for this new combined wildland/structure fire exposure, to assess PPE requirements
- Establish a network between fire researchers and fire managers for discussion and exchange

How?

✓ Develop a repository for inventories of PPE (both international and local Standards)

Progress PPE · Depend on country : Structure FF only or Wildland and Structure FF • Plethora of regulations and Standards PPE objectiv rds/guidelines (example) Protect from low to medium fire ds Organization (ISO) - PPE (ISO/DIS 1607 Wildland fire nal Sta TC94 SC14 (21 Long shift and hard work pe: EN 15614:2007, Protective clothing for fire Need: ->Adequate protection to reduce the exposure to heat and adequate ventilation to reduce heat stress ->Protection from injury USA: NFPA 1977, Standard on Protective Clothing and for Wildland Fire Fighting, 2016 current Edition Protect from high thermal exposure (flame and excessive heat) International Protective clothing (ISO 11613:2017) ISO TC94 SC14 (21 Standards on Firefighters' personal Urban fires USA: American Society for Testing and Materials (ASTM) - F23 Usa: American Society for resting and Materials (ALSM) – 123 protective for PMPC and Association (MPRA) – Fire and emergency services protective dothing. NFPA 1971- Standard on Protective Enembles for Structural Fire Fighting and Proximity Fire Fighting (current edition 2018) European Committee for Standardization (CRN) = 01.488:2007, Protective Cothing for firefighters Austalia: 4:3/NF2 4972:2009 >>Adequate protection and >>Protect from injury ->Protect from smoke (toxic gas) ->Protect from liquid/chemicals CAL FIRE Wildland Urban Interface Book and Operating Principles Book -Protect from mixed exposure WUI fires

Research on firefighter PPE (wildland and urban fire)

- Research on textile resistant to flame, ventilation physiology and heat management
- Right balance between thermal protection and reducing heat stress and optimum comfort (eg McQuerry et al. 2015)
- Textile characteristics (e.g. wildland fire fighters)
- Radiative Protective Performance (resistance to flame, radiation): reasonable maximum exposure around 7kW/m2 (NFPA 1977 revised)
- Total Heat Loss (ventilation): 450 watts per square meter (W/m2) (NFPA 1977)
- Other considerations:
- Strength, resist penetration by liquid, visibility
- Performance, weight, ergonomy, design, durability, flexibility

· Helmet, gloves, boot, face mask

- Care/Maintenance
- Hod Goves SCA

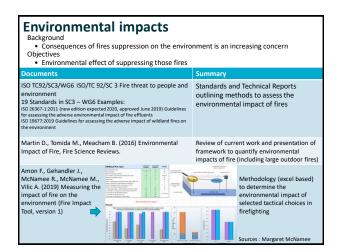
Protection of fire fighters - Health

Background

 The impact of large outdoor fires smoke on health is an increasing concern

Objectives

- Better understanding of smoke contents and smoke dispersion to inform potential human exposure (for people at risk). Consider smoke impact for fire suppression strategies and for fires in different environments (e.g. forest, grass, peat, urban interface).
- Other health effects (fatigue,...)


How?

Step 1 Develop a repository presenting a summary of knowledge on smoke exposure and health impact on fire fighters in different scenarios (urban fires, wildfires, WUI fires, prescribed burning).

Progress health – smoke exposure						
Type of fires	Smoke exposure and health effect	Studies examples				
Wildland fire	Smoke exposure depend on: -Fire and fuels characteristics (wildland fuels) -Duration and intensity of fire -Smoke distribution (wind and topography) -Pollutants, example: - Carbon monoxide - Respraibe particles - Respraibe particles - Respraibe particles - Notes - Notes - Notes - Schort term Jong term effect - Schort term Jong term effect	Australia: Measurement of firefigter exposure to bushfire and prescribed burning smoke: E.g. Reisen, F., & Brown, S. K. (2009) Reisen et al. (2011) Mediterranean Europe: Characterising the health effects (long-term and short-term) of the exposure to fire smoke in firefighters that perform prescribed burns. Aldea et al. France: Smoke exposure of firefighters during prescribed burning: E.g. Lahaye (2011); Barboni et al. (2010) USA: Review of the health effects of wildland fire smoke on wildland firefighters: Adoton at al. (2016) Measurements of smoke exposure among wildland firefighters: E.g. Anarot at al. (1992), Reinhardt, T. E. and Ottmar, R. D., (2004).				

Progress	Progress health – smoke exposure (continued)						
Type of fires	Smoke exposure and health effect	Document/ Studies examples					
Urban fires	Smoke exposure : urban fuels Pollutants of concerns: CD, formaldehyde, acrolein, hydrogen chiorder, hydrogen subjinkie, hydrogen fuoride, benzene, nitrogen dixolde, subjinkur (dixolde and polycyclic aromatic hydrocarbons (PAHs) Health effects: ->Short term ->Long term effect	ISO T022/SC3/WG6 ISO/TC 92/SC 3 Fire threat to people and environment 19 Standards - Examples: ISO 13571.2012 Ufferthreatening components of fire – Guidelines for the estimation of time to compromised tenability in fires ISO/TR 13571.2016 Ufferthreatening components of fire – Part 2: Methodology and examples of threability assessment Studies example : Health hazards of firefighters: exposure assessment Brandt-Rauf et al. (1988) ; Austin et al (2001)					
WUI fires	Smoke exposure: - Mix natural and synthetics fuel such as wildland, combustible material from structure, house contents, vehicles Health effects: ->Short term ->Long term effect	Australia: Emissions from the combustion of major material presents in and around houses: E.g. Reisen, F. (2011); Reisen, F., Bhujel, M., & Leonard, J. (2014) Assessment fire exposures to the complex mixture of toxic air pollutants at the rural-urban interface and the likely health risks: Borgas, M. S., & Reisen, F. (2013)					

Future direction

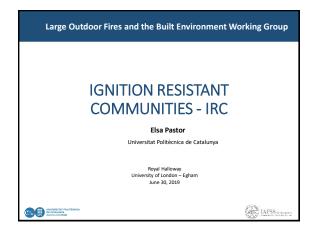
- Collecting information
- Summary of knowledge on:
- PPE
- Crew Protection System
- Smoke exposure and health impact on firefighters
- Environmental impacts

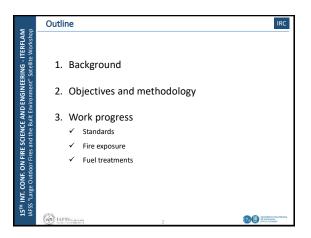
12 | Presentation title | Presenter name

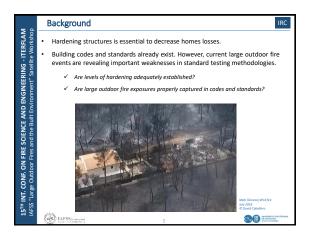
 Other topics to include (Fire fighting tactics, Various firefighting tactics are used globally to respond to large outdoor fires (wildfires, structure fires or fires that have reached the WUI, Incident commandment system, communication....)?

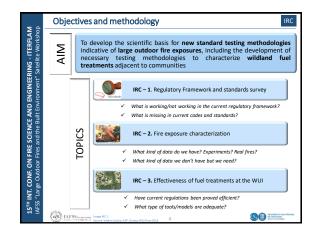
Thank you

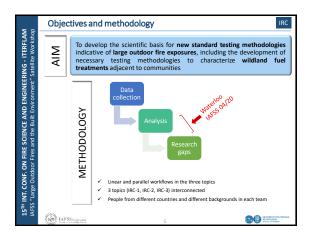
Acknowledgement: we would like to thank all the LOFF members for their participation. A special thank you to Margaret McNamee and Fabienne Reisen for their help with the presentation

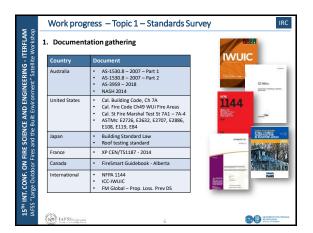

Sara McAllister/Raphaele Blanchi

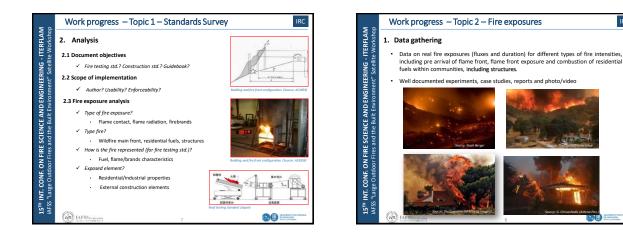

e raphaele.blanchi@csiro.au


w www.csiro.au

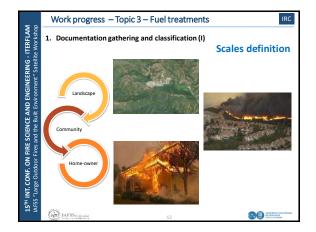

LAND &WATER

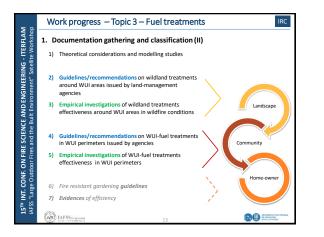


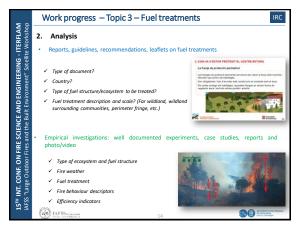




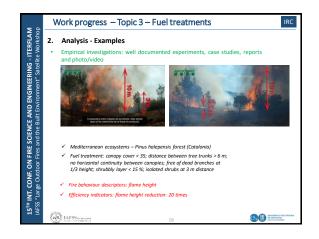






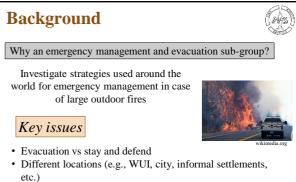

-	. Data classifica			
	Fire phase		Type of exposure	1 mar
	Pre-arrival of flame f	ront	Firebrands	inter an
	Wildfire front expose	ire	Direct flame contact and radiation	
			Firebrands	Carlos and
	Combustion of	Vegetation	Firebrands	the second
	residential fuels		Direct flame contact and radiation	
		Non-natural fuels	Firebrands	1
			Direct flame contact and radiation	
		Structures ⁽¹⁾	Firebrands	
			Direct flame contact and radiation	12

5 8	Work	progress	– Торі	ic 2 — Fir	re e:	xposur	es		IRC	
RING - ITERFLAM Satellite Workshop	2. Data Flames									
te −	Fire Source	Description of			DAT	TA AVAILABLE			Reference	
ord -		the main fuel characteristics	HRR /MLR	Radiative flux	Convect	tive Flame he	ight Residence ti	ne Other		
	Wildland fuel:									
	Ornamental vegetation	_								
NT. CONF. ON FIRE SCIENCE AND ENGINEERING "Large Outdoor Fires and the Built Environment" Satel	Non-natural fuels									
VCE A e Built	Structures									
SCIEI nd th	Firebran									
FIRE :	Fire Source	Description of the main fuel characteristics	Mass flux	Shower dura		MATA AVAILABLE	n Ember dimensions	Other	Reference	
on I	Wildland fuel	·			_					
15 TH INT. CONF. IAFSS "Large Outd	Ornamental vegetation									
INT.	Non-natural fuels			-	-					
15 TH	Structures									
	the second second									



🕼 Large outdoor fires and the Built Environment (IAFSS group Workshop at Interflam 2019

Emergency Management and Evacuation sub-group updates

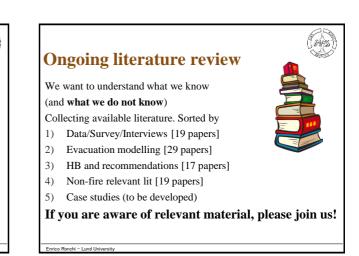

ENRICO RONCHI, PhD

Associate Professor Department of Fire Safety Engineering Lund University, Sweden

enrico.ronchi@brand.lth.se

(AFS)

- Different populations (e.g., number, cultural issues, history of fires, etc.)
- Local/global conditions/variables


Overall EMEvac activities

Understanding of the problem

- Literature review (ongoing)
- Development of standard templates for analysis (ongoing)
- Review of case studies (ongoing)

Analysis of the problem

- Inventory of strategies/regulatory frameworks (planned)
- Inventory of tools (planned)
- · Gaps, research roadmap, assessment of strategies/tools (planned)

Case studies

shi – Lund Hr

Ronobi – Lund Hr

Issues that have been identified

- Inconsistencies in reported information
- •Reliability of sources (e.g. news, etc.)
- •Variability in evacuation scenarios (WUI fires, city fires, informal settlement fires, etc.)
- •Difficult to retrieve information
- •Need for an overview on evacuation cases worldwide

Case studies

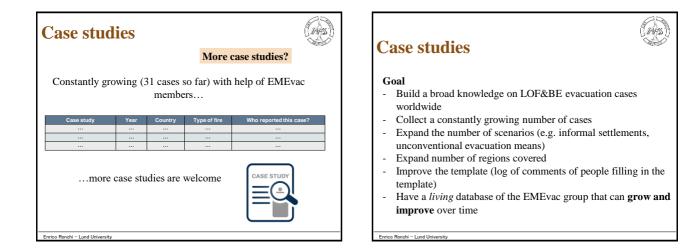
Solution

- •Standard template for the review of cases worldwide to ensure consistency (modified version based on earlier work by Ronchi et al, 2017)
- •Ongoing work to build a database on LOF&BE evacuation scenarios
- •Peer review each other cases
- •Members' participation to help building this up

wynne, S., Wadhwani, R., Intini, P., & Bergstedt, A. (2017). e-Sanctuary: Open Multi-Phys elling Wildfire Urban Evacuation. Quincy, MA (USA): Fire Protection Research Foundation

Case studies

Case studies collected so far


THE ST

Case study	Year	Country	Type of fire	Who reported this case?
Laerdalsoyri	2014	Norway	Urban	Martin Kristoffersen
Atlas	2017	USA	Wildfire/WUI	Stephen Wong
Camp	2018	USA	Wildfire/WUI	Stephen Wong
Carr	2018	USA	Wildfire/WUI	Stephen Wong
Hill	2018	USA	Wildfire/WUI	Stephen Wong
Nuns	2017	USA	Wildfire/WUI	Stephen Wong
Ranch	2018	USA	Wildfire/WUI	Stephen Wong
River	2018	USA	Wildfire/WUI	Stephen Wong
Tubbs	2017	USA	Wildfire/WUI	Stephen Wong
Woolsey	2018	USA	Wildfire/WUI	Stephen Wong
Itoigawa	2016	Japan	Urban	Tomoaki Nishino & Sayaka Suzuki
Swinley	2011	UK	Wildfire/WUI	Harry Mitchell
Dalarna/Jämtland/Gävlaborg	2018	Sweden	Wildfire/WUI	Johanna Fransson
Västmanland	2014	Sweden	Wildfire/WUI	Ronchi et al
Calci/Vicopisano	2018	Italy	Wildfire/WUI	Sandra Vaiciulyte
Fort McMurray	2016	Canada	Wildfire/WUI	Ronchi et al
Okanagan	2003	Canada	Wildfire/WUI	Ronchi et al

Case studies Case stu

ase	studies	collected	so far	

Case study	Year	Country	Type of fire	Who reported this case?
San Diego	2007	USA	Wildfire/WUI	Ronchi et al
La Gomera	2012	Spain	Wildfire/WUI	Ronchi et al
Victoria	2009	Australia	Wildfire/WUI	Ronchi et al
Madeira	2016	Portugal	Wildfire/WUI	Ronchi et al
Cadiz	2016	Spain	Wildfire/WUI	Sandra Vaiciulyte
Colorado Springs	2012	USA	Wildfire/WUI	Maria Theodori
Gatlinburg	2016	USA	Wildfire/WUI	Maria Theodori
Nelson	2019	New Zealand	Wildfire/WUI	Ruggiero Lovreglio
Creek	2017	USA	Wildfire/WUI	Stephen Wong
Rye	2017	USA	Wildfire/WUI	Stephen Wong
Skirball	2017	USA	Wildfire/WUI	Stephen Wong
Thomas	2017	USA	Wildfire/WUI	Stephen Wong
British Columbia	2017	Canada	Wildfire/WUI	Chunyun Ma
Haifa	2016	USA	Wildfire/WUI	Ronchi et al

THESS Next steps for IAFSS2020 **Further long term goals** • Build a research roadmap on EMEvac based on consolidated •Proceed with case study database building knowledge •Provide an overview on the case studies • Development of test case scenario(s) to evaluate the reviewed capabilities and limitations of existing tools to aid emergency management •Template development for other issues • Enhancement of accessibility of existing and future evacuation (e.g. model reviews, evacuation data-sets · Summary of inventory of existing tools for aiding emergency strategies/regulatory issues) management

THANK YOU!

Email: enrico.ronchi@brand.lth.se

co Ronchi – Lund Universit

En