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Abstract

The Indianapolis Flux Experiment (INFLUX) aims to use a top-down inversion methodol-
ogy to quantify sources of Greenhouse Gas (GHG) emissions over an urban domain with
high spatial and temporal resolution. Analyzing the contribution of different source types
or sectors is a fundamental step in order to achieve an accuracy level desired for such ap-
plications. To this end, the Weather Research and Forecasting model (WRF-ARW) was
used along with a modified version of the GHG chemistry module for simulating the car-
bon dioxide (CO2) mole fraction transport during September and October 2013. Sectoral
anthropogenic CO2 emissions were obtained from Hestia 2013 and from Vulcan 2002.
Biogenic CO2 emissions were simulated by using an augmented version of the “Vegeta-
tion Photosynthesis and Respiration Model” (VPRM) included in WRF-CHEM. The atmo-
spheric model performed well in capturing day to day variability of the concentration. The
errors were largely reduced during the well-mixed conditions indicating that a large share
of the errors was due to the misrepresentation of nighttime stable conditions in the model,
causing an overestimation of the nighttime peaks. In general, the averaged daily cycle was
well represented by the model. In addition, 4 towers presented a slightly delayed collapse
of the nocturnal stable boundary layer. Last, the biogenic contribution was important, be-
ing larger than the anthropogenic contribution for 7 out of 12 towers during this period. In
general, the anthropogenic contribution was dominated by the Electricity Production, 6.5
% to 39 %, Mobility, 11 % to 56 %, and Industrial sectors, 4.8 % to 10 %.

Key words

Atmospheric Transport, Biogenic vs Anthropogenic, Carbon Dioxide, Emissions, INFLUX.
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1. Introduction

Carbon dioxide (CO2) is the major long-lived, anthropogenic greenhouse gas (GHG) that
has substantially increased in the atmosphere since the industrial revolution due to human
activities, raising serious climate and sustainability issues [1]. Development of methods
for determination of GHG flows to and from the atmosphere independent of those used
to develop GHG inventory data and reports will enhance that data scientific basis thereby
increasing confidence in them.

Cities play an important role in emissions mitigation and sustainability efforts because
they intensify energy utilization and greenhouse gas emissions in geographically small re-
gions. Urban areas are estimated to be responsible for over 70% of global energy-related
carbon emissions [2]. This percentage is anticipated to grow as urbanization trends con-
tinue; cities will likely contain 85% – 90% of the U.S. population by century’s end. Urban
carbon studies have increased in recent years with diverse motivations ranging from urban
ecology research to testing methods for independently verifying GHG emission inventory
reports and estimates. Examples of these are Salt Lake City [3], Houston [4], Paris [5], Los
Angeles [6] and Indianapolis (INFLUX; [7, 8]).

The Indianapolis Flux Experiment (INFLUX) aims to use a top-down inversion method-
ology to quantify sources of Greenhouse gas (GHG) emissions over an urban domain with
high spatial and temporal resolution. This project is an experimental test bed which is
intended to establish reliable methods for quantifying and validating GHG emissions inde-
pendently of the inventory methods. Analyzing the contribution of different source types
or sectors is a fundamental step in order to achieve an accuracy level desired for such
applications. This is especially challenging when attempting to determine anthropogenic
emissions during the growing season since biological GHG fluxes reach a maximum at this
time.

Main goals of this work were to test the ability of a high resolution model (WRF) to
reproduce the atmospheric CO2 variability within and around an urban domain (Indianapo-
lis) and to identify the contribution to the atmospheric CO2 coming from vegetation during
the end of the growing season as well as the contribution of the different anthropogenic
sectors.

The rest of the paper is structured as follow. Section 2 describes the model configura-
tions, the datasets used in analysis nudging, the biogenic CO2 emissions model (VPRM)
and the optimization method for its parameters, the sectoral anthropogenic emissions and
the towers measurements. Section 3 presents the results obtained. First, the meteorolog-
ical verification is discussed and one model configuration is selected. Then, the VPRM
optimization results are discussed. Afterwards, the simulated CO2 is compared to observa-
tions at 10 towers for two months and last, the averaged sectoral contribution is described.
Section 4 highlight the main conclusions obtained in this work.
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2. Methodology

2.1 Weather Research and Forecasting Model (WRF)

We simulated the CO2 atmospheric transport by using version 3.5.1 of the Weather Re-
search and Forecasting model with coupled chemistry (WRF-Chem) [9], which uses the
Advanced Research WRF dynamical core [10]. Specifically, the module GHG was used
to simulate the transport of CO2 tracers. WRF-GHG allows the “online” passive tracer
transport of CO2, CO and CH4. The tracers undergo the advection, boundary layer and
convective mixing as the chemical species but with no chemical reactions [11, 12]. The
module includes a model (VPRM) to simulate the CO2 biogenic emissions (described in
the next section). WRF-GHG includes tracers to track the biogenic emissions as well as
the anthropogenic emissions. However, the anthropogenic emissions are tracked in a single
tracer while our focus is to track the emissions by sectors. Thus, several additional tracers
(8) were implemented in the module to allow us to track independently the emissions com-
ing from Aircraft (AIR), Cement (CEM), Commercial (COM), Industrial (IND), Nonroad
(NON), Onroad (MOB), Residential (RES) and Electricity Production (UTL) sectors.

A ‘two-way nesting’ strategy (with feedback) was selected for downscaling the three
telescoping domains that have 9, 3 and 1 km horizontal resolutions. These domains are
centered on Indianapolis, Indiana, (N39.79999, W86.19999) and they have 101 x 101, 100
x 100 and 88 x 88 horizontal grid cells, respectively. This domain configuration was chosen
in order to limit the influence of the North American Regional Reanalysis (NARR, 32 km
resolution) provided boundary conditions on the area of interest. A configuration of 60
vertical levels with higher resolution between the surface and 3 km was selected to better
reproduce the boundary layer dynamics. To ensure model stability, the time-step size was
defined dynamically using a Courant-Friedrichs-Lewy (CFL) criterion of 1. Initial (0000
UTC) and boundary conditions (each 3 hours) were taken from NARR data provided by
NCEP. Simulations were run continuously for 2 months, September and October 2013,
with the first 24 hours being used for spinning up the model.

Accurately reproducing the planetary boundary layer (PBL) structure is a key point
in atmospheric transport models since the species mixing within the boundary layer are
primarily driven by the turbulent structures found there. Therefore, the Mellor-Yamada-
Nakanishi-Niino 2.5-level (MYNN2, [13, 14]) was selected as PBL parametrization, be-
cause this scheme is a local PBL scheme that diagnoses potential temperature variance,
water vapor mixing ratio variance, and their covariances to solve a prognostic equation
for the turbulent kinetic energy (TKE). It is an improved version of the former Mellor-
Yamada-Janjic scheme, (MYJ, [15, 16]) where the stability functions and mixing length
formulations are based on large eddy simulation (LES) results instead of observational
datasets. MYNN2 has been shown to be nearly unbiased in PBL depth, moisture, and
potential temperature in convection-allowing configurations of WRF-ARW. This alleviates
the typical cool, moist bias of the MYJ scheme in convective boundary layers upstream
from convection [17]. The RRTMG scheme [18] for short and long wave radiation was
selected as the radiative heat transfer scheme since good performances has been reported
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[19]. To model the microphysics, we selected the Thompson scheme [20, 21] because of its
improved treatment of the water/ice/snow effective radius coupled to the radiative scheme
(RRTMG). For the cumulus cloud scheme, the widely used Kain-Fritsch scheme [22] was
selected only for the outermost domain (9 km). The Noah model was selected as Land Sur-
face Model (LSM) since it has been showed the Noah-LSM simulated skin temperature and
energy fluxes are reasonably comparable with observations [23] and, thus, an acceptable
feedback to the PBL scheme is expected.

We updated the land use by using a more recent version of the IGBP land surface cover
types provided by the Moderate-resolution Imaging Spectroradiometer (MODIS) dataset
MCD12Q1 [24, 25] for the year 2012.

We tested two dataset to be used in analysis nudging in WRF. First, the NCEP ADP
Global Upper Air Observational Weather Data (http://rda.ucar.edu/datasets/ds351.0/) and
NCEP ADP Global Surface Observational Weather Data (http://rda.ucar.edu/datasets/ds461.0/)
provided by the Research Data Archive at the National Center for Atmospheric Research,
Computational and Information Systems Laboratory (RDA-CISL) and second, the Me-
teorological Assimilation Data Ingest System (MADIS, https://madis.ncep.noaa.gov/) a
National Oceanic and Atmospheric Administration (NOAA) program that collects, inte-
grates, quality-controls, and distributes observations from NOAA and other organizations.
MADIS observations were converted to “little r” format by using the MADIS2LITTLER
converter provided by National Center for Atmospheric Research (NCAR).

First, an objective analysis was applied in order to blend the boundary conditions to-
wards the observations. We used here the OBSGRID tool provided by WRF. Buddy check
and maximum difference check quality control methods were applied and the observations
with not satisfactory quality control flag were discarded. Cressman scheme [26] was se-
lected as objective analysis method with radius of influence being automatically selected
by the code on the base of the available observations at the specific time. Then, grid nudg-
ing was performed in the 3 domains. For profile observations (3d nudging), just the wind
was nudged within the PBL. A nudging coefficient of 0.0003 s-1, a 1 h of time ramp and
an updating frequency of 3 h were used (as the boundary conditions). Wind, temperature
and water vapor mixing ratio for surface observations (surface nudging) were nudged with
the same nudging coefficient and time ramp than before but with an updating cycle of 1h.
Radius of influence was set to 25 km.

In total, we ran 6 WRF configurations: A control run with no nudging and the original
land use dataset; RDA, using RDA dataset for analysis nudging and the original land use
dataset; MADIS, using MADIS for analysis nudging and the original land use; MODIS,
using the updated land use but no nudging; MODIS + RDA, using the updated land use and
nudging with RDA dataset and MODIS + MADIS, using updated land use and nudging
with MADIS dataset.

Fifteen surface stations (METAR) were used to compare temperature, wind speed and
direction with simulations, (Figure 1).
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2.2 Biogenic CO2 emissions

The vegetation photosynthesis and respiration model (VPRM) of Xiao et al., [27] and Ma-
hadevan et al., [28] is a simple diagnostic terrestrial flux model that is included in WRF-
Chem GHG module [11, 12]. In spite of its simplicity, VPRM captures daily and annual
cycles in CO2 fluxes reasonably well. VPRM structure and skills are described in great
detail by Mahadevan et al., [28] and Hilton et al., [29]. VPRM calculates Net Ecosystem
Exchange (NEE) as a sum of Gross Ecosystem Exchange (GEE) and ecosystem Respira-
tion (R). In WRF-GHG implementation [30, 31], VPRM calculates GEE for 8 vegetation
categories using (1) shortwave radiative flux (SWDOWN) and temperature at 2 meters (T2)
provided by the WRF simulation; (2) enhanced vegetation index (EVI), which represents
the fraction of shortwave radiation absorbed by leaves; and (3) the land surface water index
(LSWI), which reflects changes in both leaf water content and soil moisture and accounts
for the effects of leaf age on photosynthesis at the canopy level [27]. Respiration fluxes are
calculated as a linear function of T2 from WRF [28].

LSWI is derived from the Moderate-resolution Imaging Spectroradiometer (MODIS)
reflectances from the dataset MCD43A4 [32]. EVI is obtained from the dataset M*D13A2
[33] and IGBP land surface cover types are from dataset MCD12Q1 [24, 25]. The “*” in
M*D is either “O”, representing the data from the Terra satellite, or “Y” representing the
data from the Aqua satellite. The “C” represents the composite product including data from
both satellites.

IGBP land use groups all the croplands into the same category and thus does VPRM
as implemented in WRF. However, the abundance of soybean and corn fields surrounding
Indianapolis and the very different photosynthesis and respiration of these two crops im-
poses the need of adding an explicit distinction into the model. Thus, we added an extra
vegetation category into the WRF-VPRM implementation to account for the presence of
corn fields. We mapped the corn vegetation fraction from the USDA National Agricultural
Statistics Service Cropland Data Layer for the year 2013.

VPRM has four user-estimated parameters for each vegetation category (λ , PAR0, α ,
β ). The first two are related to the GEE and the last two are related to the respiration. We
optimized the parameters of VPRM for the 3 dominant vegetation categories in our compu-
tational domain (Deciduous broadleaf forest, Soybean and Corn) which account for more
than 95 % of the total area. We optimized the four parameters at the same time by mini-
mizing the cost function in Eq. 1, using an unconstrained nonlinear optimization method
[34] from the Stats package for the R language and platform for statistical computing [35].

score =| BIAS |+RMSD+10 ·LEPS (1)

BIAS =
1
N

N

∑
i=1

(
xi− xobserved

i

)
(2)
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RMSD =

√
1
N

N

∑
i=1

(
xi− xobserved

i
)2 (3)

LEPS =
1
N

N

∑
i=1

(
ECDF(x)−ECDF(xobserved)

)
i

(4)

Where x is the simulated NEE, xobserved is the measured NEE and ECDF is the empirical
cumulative distribution function.

The parameters were estimated by using the observed NEE data obtained from eddy
covariance flux towers from AmeriFlux network, Table 1. The two locations selected are
the closest location to the area of interest. The optimization period was September and
October for the 3 vegetation categories. However, only Monroe State Forest had data for
2013. The site Fermi Agricultural had a Corn/Soybean rotation and therefore we used the
corresponding year to optimize for each category.

Table 1. Ameriflux towers used for optimizing the VPRM parameters

Name Latitude Longitude Vegetation category year
Monroe State Forest(US-MMS) 39.3231 -86.4131 Deciduous broadleaf forest 2013
Fermi Agricultural (US-IB1) 41.8593 -88.2227 Corn 2008
Fermi Agricultural (US-IB1) 41.8593 -88.2227 Soybean 2009

2.3 Anthropogenic CO2 Emissions

For anthropogenic sectoral CO2 emissions, we used the inventories developed by Arizona
State University, Vulcan and Hestia, which provide CO2 emissions separated by sectors:
Aircraft (AIR), Cement (CEM), Commercial (COM), Industrial (IND), Nonroad (NON),
Onroad (MOB), Residential (RES) and Electricity Production (UTL). The Vulcan inventory
[36] provides the United States sectoral fossil fuel CO2 emissions for the year 2002 at a
spatial scale that is less than 10 km and hourly. This inventory was then re-sampled to the
two WRF outermost domains (9 and 3 km) in order to represent the emissions outside of
the city. For the inner most domain, the Hestia inventory was used. The Hestia inventory
[37] provides the sectoral fossil fuel CO2 emissions for the year 2013 at street and building
level and hourly for the city of Indianapolis. The inventory was then re-sampled to 1 km
spatial resolution to match the WRF domain.

2.4 Tower CO2 Measurement Network

As part of the INFLUX experiment, continuous measurements are collected at 12 tower
locations within and around the urban area of Indianapolis, IN, USA (Table 2 and Figure
1). INFLUX utilizes existing cell phone and communications towers, and the sampling
altitudes are 39 – 136 m above ground level (agl). Seven tower locations ring the outskirts
of the urban area, four more towers are closer to the city center, and one tower is further
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downwind in the prevailing wind direction. Continuous measurements of CO2 are made at
all 12 towers, and continuous methane (CH4) and CO measurements are made at a subset
of the towers, all utilizing cavity ring-down spectrometers (CRDS, Picarro Inc.) [38, 39].
During the period of interest for this study, September and October 2013, towers 8 and 9
were not collecting data.

Richardson et al. [39] document the quality assessment of the instruments during the
Mid-Continent Intensive (MCI) campaign; 8 months of testing against a NOAA-ESRL
nondispersive infrared (NDIR) system in West Branch, Iowa, yielded median daytime-only
differences of -0.13 ± 0.63 ppm

Table 2. INFLUX tower locations.

TID Name Latitude Longitude magl Instrumentation
1 Mooresville 39.5805 -86.4207 121 CO2/CH4/CO
2 E 21 St 39.7978 -86.0183 136 CO2/CH4/CO
3 Downtown 39.7833 -86.1652 54 CO2/CH4/CO
4 Greenwood 39.5926 -86.1099 60 CO2
5 W 79 St 39.8949 -86.2028 125 CO2/CO
6 Lambert 39.9201 -86.028 39 CO2
7 Wayne Twp Comm 39.7739 -86.2724 58 CO2
8 Noblesville 40.0411 -85.9734 41 CO2
9 Greenfield 39.8627 -85.7448 130 CO2/CO
10 Garfield Park 39.7181 -86.1436 40 CO2/CH4
11 Butler 39.8403 -86.1763 130 CO2/CH4
13 Pleasant View 39.7173 -85.9417 87 CO2/CH4

2.5 CO2 Boundary Conditions & Low Frequency Trend Correction

The initial and boundary conditions for CO2 were set to a constant value (380 ppm) for
all the tracers in order to compute the enhancements properly for every sector without the
influence of changing boundary conditions. This fact indeed makes it difficult to compare
the simulations to the observations. Therefore, we corrected the simulations low frequency
trend as follow: First, we calculated the observations low frequency trend as a linear func-
tion. Then, we computed the simulations low frequency trend and removed it from the
time series. At the end, we added the observations low frequency trend to the detrended
simulations. We anticipate that this correction will remove most of the bias but still will
allow us to compare simulations to observations variability at the towers.

6
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Fig. 1. Innermost computational domain showing the urban land use of Indianapolis, the main
roads, the CO2 towers, the METAR stations and the power plant.
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3. Results

3.1 Temperature, Wind Speed and Direction

Simulated temperature by the control run presents a cold bias of -0.74 K and RMSD of
2.67 K. The correlation coefficient is 0.95 indicating the temperature is well capture by the
model. Including meteorological forcing with the RDA dataset changes the sign of the bias
and slightly increases the RMSD. The correlation coefficient is slightly reduced. However,
by including the dataset MADIS as forcing benefits the simulations, substantially reducing
the bias, RMSD and increasing the correlation coefficient up to 0.99 On the other hand, the
updated land use configuration (MODIS) shows a degradation of the performances, with a
larger cold bias and larger RMSD than the control run. The inclusion of the forcing, both
RDA and MADIS, benefits this configuration, alleviating the cold bias, reducing the RMSD
and improving the correlation coefficient, especially the MODIS+MADIS configuration,
showing the best performances, (Table 3).

Table 3. Bias, RMSD (K) and correlation coefficient (R) for the predicted temperature.

Temperature Bias RMSD R
CONTROL -0.74 2.67 0.95
RDA 0.42 2.82 0.93
MADIS 0.16 1.13 0.99
MODIS -1.50 3.36 0.94
MODIS+RDA -0.29 1.50 0.96
MODIS+MADIS 0.15 0.98 0.99

The control run overestimates the wind speed with a bias of 1 m s-1, RMSD of 1.81
m s-1 and correlation coefficient of 0.45. The configuration using RDA dataset as meteo-
rological forcing shows lower bias and RMSD and slightly better correlation coefficient.
By using MADIS dataset, the bias is reduced down to -0.18 m s-1 and the RMSD to 1.38
m s-1, however, the correlation coefficient is also reduced. The configuration using the
updated land use (MODIS) presents lower bias and RMSD but it also shows a lower corre-
lation coefficient than the control run. The configuration using analysis nudging with the
RDA dataset improve the RMSD but worsen the correlation coefficient. By using MADIS
instead, the bias and RMSD are the smallest of all configuration while the correlation co-
efficient is better than the MODIS configuration and similar to the control run, (Table 4).
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Table 4. Bias, RMSD (m s-1) and correlation coefficient for the predicted wind speed.

wind speed Bias RMSD R
CONTROL 1.01 1.81 0.45
RDA 0.84 1.60 0.46
MADIS -0.18 1.38 0.35
MODIS 0.78 1.75 0.39
MODIS+RDA 0.78 1.59 0.33
MODIS+MADIS -0.18 1.30 0.43

The wind direction presents a bias of 4.24° for the control run with a RMSD of 52.09°
which is the smallest for all the configurations. The correlation coefficient, 0.73, is also
the best for all configurations. The configuration using the RDA dataset for meteorological
forcing shows a larger bias and RMSD, with a decreased correlation coefficient of 0.61
By using MADIS dataset, the bias changes sign, being better than the control run but with
larger RMSD and smaller correlation coefficient. By updating the land use (MODIS) the
bias is reduced down to -0.54° but the RMSD is slightly increased. The correlation coeffi-
cient is similar to the control run. By using the RDA dataset, the bias increases, the RMSD
slightly decreases and the correlation coefficient stays the same. The forcing with MADIS
dataset slightly worsen the bias, RMSD and the correlation coefficient, (Table 5).

Table 5. Bias, RMSD (°) and correlation coefficient for the predicted wind direction.

wind direction Bias RMSD R
CONTROL 4.24 52.09 0.73
RDA 8.99 61.72 0.61
MADIS -3.66 59.67 0.65
MODIS -0.54 53.99 0.71
MODIS+RDA 1.71 53.16 0.71
MODIS+MADIS -2.97 56.37 0.70

No big improvements were found by using updated land use or analysis nudging.
However, the configuration with updated land use and analysis nudging with MADIS
(MODIS+MADIS) presented the smallest bias and RMSD for temperature and wind speed
with acceptable values for wind direction and, therefore, we selected this configuration
for the rest of the analysis in this paper. More research optimizing the analysis nudging
parameters and perhaps including observation nudging might lead to better results.

3.2 VPRM Parameters Optimization

Figure 2 shows the observed and predicted NEE for the three vegetation categories dur-
ing the two months used for optimizing the parameters. Each vegetation category show
different photosynthesis and respiration. Deciduous broadleaf forest shows the lowest am-
plitude in the cycle, with minimum values of -25 µmol m-2 s-1 and respiration peaks around
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Fig. 2. Observed and simulated NEE evolution for the optimization period for a) Deciduous
broadleaf forest, b) Soybean and c) Corn.

10 µmol m-2 s-1. The photosynthetic activity is almost constant during September and is
reduced slowly during October. Soybean shows lower values of NEE during September,
reaching more than -30 µmol m-2 s-1. In addition, the respiration peaks are more frequent
during this month. Unlike before, the activity is reduced during September reaching the
minimum after the first week of October. Corn presents the more negative values of NEE,
reaching -40 µmol m-2 s-1. It also reaches the maximum values of respiration being well
over 10 µmol m-2 s-1. The activity is reduced during September, reaching the minimum
after the second week of October. The model captures well the daily cycle and the pho-
tosynthetic activity, showing the reduction of activity in a timely manner. However, the
model does not capture the respiration peaks.

Table 6 shows the VPRM optimized parameters, which show the differences between
each vegetation category. Table 7 shows the statistical evaluation of the modeled NEE
during the optimization period. The optimization method achieves a nearly unbiased NEE
for the 3 vegetation categories, with RMSD values between 3.29 µmol m-2 s-1 and 4.09
µmol m-2 s-1. The correlation coefficients are in the range 0.84 – 0.93, showing a very
good agreement between observed and predicted NEE, especially for Soybean and Corn
fields.

Table 6. Optimized VPRM parameters.

RAD0 λ α β

Deciduous 1266 0.0983 0.0975 1.044
Soybean 1667 0.0770 0.2507 -0.40
Cornfields 2203 0.0916 0.2059 1.176

Table 7. Bias, RMSD (µmol m-2 s-1) and correlation coefficient for the predicted NEE after
optimization of the VPRM parameters for the optimization period.

Bias RMSD R
Deciduous -0.02 4.09 0.84
Soybean 0 3.29 0.93
Cornfields 0 3.7 0.92
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Fig. 3. Simulated vs observed total CO2 at towers a) 1, b) 7 and c) 10.

3.3 Total CO2 Mixing Ratio

Figure 3 shows the hourly CO2 concentration measurements at towers 1, 7 and 10 during
the two months together with simulated CO2. The low frequency trend correction applied
to the model appears to be suitable for the purpose of comparing simulations to observa-
tions. The figure shows how the model performs in capturing day to day variability of the
concentration. Also the amplitude of the signal is captured reasonably well for both day-
time minimum and nighttime maximum by the model in many cases. It is worth noting the
reduction in the amplitude of the signal during the end of the third week and the beginning
of the fourth week of October that occurs in all the towers is well captured by the model.
However, the model tends to overestimate the nighttime maximums in occasions. This is
specially important for tower 10, Figure 3.c, where the spikes reach unreasonably high val-
ues. There are 9 events with unreasonable high values and 2 with extremely large values.
We argue that this is due to the direct influence of the power plant plume during nighttime
plus the fact that the stack height is misrepresented in the model, causing extremely large
accumulations at the tower.

Table 8 shows the statistical evaluation of the simulated total CO2 mixing ratio at the
different tower locations. The low frequency trend correction applied removed most of the
bias, ranging from 0.01 ppm at tower 1 to 1.81 ppm at tower 10. The RMSD ranged from
8.8 ppm at tower 2 to 49.4 ppm at tower 10. Towers 3, 6 and 10 presented the largest
RMSD, coinciding with the largest bias as well. The correlation coefficient ranged from
0.31 to 0.67. However, only tower 10 presented such a low correlation coefficient while
the rest of towers presented values larger than 0.54. Towers 3 and 10 are under the direct
influence of the plume of the power plant during the prevailing wind conditions (SW) and
the misrepresentation of the emissions height may cause part of the error in the model.
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Table 8. Bias, RMSD (ppm) and correlation coefficient for the predicted CO2 mixing ratio at the
different tower locations.

Tower ID Bias RMSD R
1 0.01 8.9 0.65
2 0.03 8.8 0.65
3 0.30 22.6 0.54
4 0.03 10.6 0.64
5 0.07 10.0 0.65
6 0.76 23.1 0.67
7 0.14 15.0 0.64

10 1.81 49.4 0.31
11 0.10 11.3 0.64
13 0.08 11.7 0.59

Table 9 shows the statistical evaluation of the simulated total CO2 mixing ratio at the
different tower locations during the afternoon hours (17 - 21 UTC). It is clear that the errors
are largely reduced during the well-mixed conditions of the afternoon hours. In this case,
the RMSD ranged from 6.3 ppm at tower 13 to 11.8 ppm at tower 10. The correlation
coefficients were also improved, ranging from 0.59 to 0.78. This fact indicates that a large
share of the errors is due to the misrepresentation of nighttime stable conditions in the
model, causing an overestimation of the nighttime peaks.

Table 9. Bias, RMSD (ppm) and correlation coefficient for the predicted CO2 mixing ratio at the
different tower locations during the afternoon hours (17 – 21 UTC).

Tower ID Bias RMSD R
1 0.07 8.1 0.69
2 0.05 6.9 0.75
3 0.09 9.5 0.70
4 0.04 7.5 0.68
5 0.09 7.8 0.71
6 0.10 9.6 0.70
7 0.07 9.0 0.71

10 0.01 11.8 0.59
11 0.12 9.1 0.74
13 0.04 6.3 0.78

Figure 4 shows the observed and simulated averaged CO2 daily cycle for towers 7, 10
and 11. The daily cycle at tower 7 is well reproduced by the model, Figure 4.a. Towers
1, 3, 4 and 13 present similar behavior. Tower 10 presents a maximum at 3 EST (0800
UTC) that deviates largely from observations, Figure 4.b. This maximum is probably due
to the misrepresentation of the power plant stack height, the stable conditions during the
nighttime and the direct influence of the plume on this tower. Tower 6 shows a similar
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Fig. 4. Observed and simulated averaged CO2 daily cycle for the towers a) 7, b) 10 and c) 11.

overestimation at the same time, showing a excessive nocturnal accumulation of the sur-
rounding emissions. Towers 2, 5, 10 and 11 show a delayed collapse of the nocturnal stable
boundary layer, similar to that shown in Figure 4.c for Tower 11, occurring, in average, at
9 EST, an hour later than in the observations, 8 EST (1300 UTC). The rest of the towers
present a timely collapse of the nocturnal stable boundary layer.

3.4 Simulated CO2 Sectoral Contribution

Figure 5 shows the averaged and relative simulated CO2 contributions at the INFLUX tow-
ers for the different sectors. The biogenic contribution is important, being larger than the
anthropogenic contribution for the towers, 1, 2, 4, 5, 8, 9 and 13 during this period. In
absolute values, the largest biogenic contribution is seen at tower 8 (12.6 ppm), followed
by towers 6, 13 and 4, (Figure 5, a) The minimum average biogenic contribution is seen at
tower 1 (5 ppm). In relative terms, towers 8, 13, 4 and 9 present the largest contribution
(Figure 5, b), being larger than 60 % while tower 6 presents the lowest, 26.7 %. On the
other hand, towers 6, 10 and 3 present the largest anthropogenic contribution, 23, 18 and
15 ppm respectively, while tower 9 presents the lowest, 3.5 ppm. In general, the anthro-
pogenic contribution is dominated by the Electricity Production, ranging from 6.5 % to 39
%, Mobility, ranging from 11 % to 56 %, and Industrial sectors, ranging from 4.8 % to 10
%. Towers 10 and 3 are clearly dominated by the electricity production sector due to the
proximity to the power plant, with contributions of 10 ppm (39 %) and 6 ppm (24 %) re-
spectively. Tower 6 is clearly dominated by traffic emissions with 17.5 ppm, that accounts
for 56 % of the total contribution at this tower. In addition, towers 3, 7 and 10 present
a large share of traffic contribution. Contributions from the Residential, Commercial and
Non-road sectors are present in all the towers with similar values, ranging from 1.3 % to
3.6 %, from 1.1 % to 3.6 % and from 1.3 % to 2.5 % respectively. Lastly, Aircraft and
Cement sectors contribute very little to the total CO2.
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Fig. 5. a) Averaged and b) relative simulated sectoral CO2 contributions for the INFLUX towers.
(Biogenic (BIO), Aircraft (AIR), Cement (CEM), Commercial (COM), Industrial (IND), Nonroad
(NON), Onroad (MOB), Residential (RES) and Electricity Production (UTL)).

4. Conclusions

We have used the high-resolution Weather Research and Forecasting Model (WRF-ARW)
along with a modified version of the Greenhouse Gases chemistry module for simulating
the CO2 mole fraction transport during September and October 2013. Sectoral anthro-
pogenic CO2 emissions were obtained from Hestia 2013 and from Vulcan 2002 beyond
the spatial coverage of Hestia. Biogenic CO2 emissions were simulated by using an aug-
mented version of the “Vegetation Photosynthesis and Respiration Model” (VPRM) in-
cluded in WRF-CHEM. The results were compared with a network of stations deployed in
Indianapolis as part of the Indianapolis Flux Experiment (INFLUX).

We ran 6 WRF configuration including different land use datasets and different source
of meteorological data used in analysis nudging. No big improvements were found by
using updated land use or analysis nudging. However, the configuration with updated land
use and analysis nudging with MADIS (MODIS+MADIS) presented the smallest bias and
RMSD for temperature and wind speed with acceptable values for wind direction.

Each vegetation category showed different photosynthesis and respiration with decidu-
ous broadleaf forest having the lowest amplitude while corn had the largest amplitude. The
biogenic emissions model (VPRM) captured well the NEE daily cycle and the photosyn-
thetic activity, showing the reduction of activity in a timely manner. However, the model
did not capture the respiration peaks.

The atmospheric model performed well in capturing day to day variability of the con-
centration. Also the amplitude of the signal was captured reasonably well for both day-
time minimum and nighttime maximum by the model in many cases. However, the model
tended to overestimate the nighttime maximums in occasions. This was specially important
for tower 10 due to the direct influence of the power plant plume during nighttime plus the
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fact that the stack height was misrepresented in the model. The errors were largely reduced
during the well-mixed conditions of the afternoon hours indicating that a large share of the
errors was due to the misrepresentation of nighttime stable conditions in the model, causing
an overestimation of the nighttime peaks.

In general, the averaged daily cycle was well represented by the model with the excep-
tion of towers 10 and 6 were the presence of nearby strong sources caused an overestima-
tion during the nighttime. In addition, 4 towers presented a slightly delayed collapse of the
nocturnal stable boundary layer.

The biogenic contribution was important, being larger than the anthropogenic contribu-
tion for 7 out of 12 towers during this period. In general, the anthropogenic contribution
was dominated by the Electricity Production, ranging from 6.5 % to 39 %, Mobility, rang-
ing from 11 % to 56 %, and Industrial sectors, ranging from 4.8 % to 10 %.
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