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Abstract 

 

In response to needs of a government-wide initiative in nanotechnology led by a 

subcommittee within the White House’s Office of Science and Technology Policy, NIST 

established a nanotechnology environmental, health, and safety (nano-EHS) research 

program in 2009 that remained active through 2016. This document summarizes the 

NIST Nano-EHS Program goals, projects, outputs, and impacts. The program was 

designed to address, in collaboration with other agencies, the research needs for a 

comprehensive U.S. measurement infrastructure for nano-EHS as identified by federal 

agencies participating in the National Nanotechnology Initiative. Such an infrastructure 

included a suite of measurement tools—methods, protocols, standards (reference 

materials and documentary), instruments, models, and benchmark (validated) data. The 

NIST Nano-EHS Program made substantial progress in developing the required 

infrastructure, producing 9 reference materials, 24 web-accessible protocols, and 212 

archival journal articles, 59% of which have been published in journals with impact 

factors greater than 3. In addition, program team members held leadership positions in 

the nanotechnology committees of major standards development organizations and led 

and contributed to the development of standards in these committees. 
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1. Introduction 

1.1. What is Nano-EHS? 

Nano-EHS is a shorthand term for nanotechnology-related environmental, health, and 

safety issues, which may determine the potential risks of engineered nanomaterials 

(ENMs)1 and nanotechnology-enabled products (NEPs)2 to the environment and to 

humans. Nanotechnology has already led to new and improved products and remains 

poised to further “transform production processes and consumer products for everything 

from traditionally high-tech products like computers to less obvious sources of 

innovation and growth like sunscreen and paint” [1]. Potential nano-EHS risks must be 

identified, assessed, and managed to enable widespread commercialization and adoption 

of ENMs and NEPs.  Knowledge of such risks to workers, the public, and the 

environment will enable appropriate regulatory measures to be established, thus 

alleviating consumer concerns and spurring development and manufacturing of ENMs 

and NEPs. To perform science-based assessment and management of nano-EHS risks, 

industry and regulatory agencies need access to and the means to generate accurate and 

reproducible data on properties, exposure, and hazards of ENMs and NEPs. 

1.2. The National Nanotechnology Initiative and Nano-EHS 

The use of nanomaterials in art dates to the 4th century BC [2] and there are numerous 

examples of nanotechnology innovations dating from the mid-to-late 1900’s, such as the 

scanning tunneling microscope that enabled single atom imaging, the semiconductor 

transistor that is the basis of integrated circuits, and the discovery of novel nanomaterials 

including carbon nanotubes and quantum dots. In 2000, President Clinton launched the 

National Nanotechnology Initiative (NNI) to coordinate Federal agency nanotechnology 

efforts and to spur U.S competitiveness in nanotechnology, which led to the rapid 

promulgation of the term ‘nanotechnology’.  Three years later, Congress enacted the 21st 

Century Nanotechnology Research and Development Act [3], which established the 

statutory foundation for the NNI. The first NNI Strategic Plan [4], written by NNI 

Federal agency representatives to the Nanoscale Science, Engineering, and Technology 

Subcommittee (NSET) of the National Science and Technology Council’s Committee on 

Technology, was published in 2004. One of the Plan’s four goals was to Support the 

Responsible Development of Nanotechnology, which largely concerned nano-EHS issues. 

In addition, the formation of a Nanotechnology Environmental and Health Implications 

(NEHI) Working Group consisting of Federal agency representatives was mandated in 

this Strategic Plan.  The criticality of addressing EHS issues led to the 2006 publication 

of a document addressing nano-EHS research needs [5]. Subsequently, strategies for 

nano-EHS research in the Federal government were published in 2008 [6] and 2011 [7]. 

The NEHI Working Group developed all three of these documents, and NIST staff 

members have played an active and leading role in the NEHI Working Group since its 

inception. In addition, NIST led the development of a 2014 report [8] documenting the 

                                                 
1 Engineered nanomaterials (ENMs) are materials that have been purposely synthesized or manufactured to 

have at least one external dimension of approximately 1 to 100 nanometers (nm)—at the nanoscale—and 

that exhibit unique properties determined by this size. [7] 
2 Nanotechnology-enabled products (NEPs) are intermediate engineered nanoscale products, including 

ENMs embedded in a matrix material, that exist during manufacture and in final products. [7] 
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accomplishments and coordination of the NNI-NEHI agencies in response to the needs 

called out in the 2011 strategy document.  

1.3. The NIST Role in Federal Nano-EHS Efforts 

Figure 1 illustrates the inter-relationships and synergies of the six core research 

categories in the 2011 nano-EHS research strategy. The 

product of exposure and hazard is a measure of the risks 

of ENMs to humans and the environment. Quantifying 

risk requires accurate and reproducible measurements, 

which are central to the Nanomaterial Measurement 

Infrastructure (NMI) research category. The NMI 

consists of a “suite of complementary tools for accurate, 

precise, and reproducible measurements [that] is critical 

for reliable assessment of exposure and hazards for 

humans and the environment across all life cycle stages 

of…ENMs and…NEPs” [1]. The NMI is foundational 

because of the role “measurement tools play in supporting 

and enabling the research needs in the other research 

categories” [1]. Measurement tools are defined as methods, 

protocols, standards (reference material and documentary), 

instruments, models, and benchmark (validated) data. The goals of the NMI core research 

area are two-fold: 

(1) Develop measurement tools to detect and identify engineered nanoscale materials 

in products and relevant matrices and determine their physico-chemical properties 

throughout all stages of their life cycles 

(2) Develop measurement tools for determination of biological response, and to 

enable assessment of hazards and exposure for humans and the environment from 

ENMs and NEPs throughout all stages of their life cycles. 

NIST is the lead agency for the NMI research category. As described in subsequent 

sections of this report, the NIST Nano-EHS Program was well-aligned with the NMI 

goals.  

 

2. History of the NIST Nano-EHS Program 

2.1. Biomedical Applications 

Four years prior to the establishment of the NIST Nano-EHS Program, a NIST-wide 

effort in nanomaterial metrology and standards was initiated, with a focus on 

nanoparticles for cancer therapeutics. In 2005, the National Cancer Institute (NCI) 

established the Nanotechnology Characterization Laboratory (NCL) [9], the activities of 

which represent a formal scientific partnership between the NCI, the Food and Drug 

Administration (FDA), and NIST. The NCL’s mission is to “perform and standardize the 

pre-clinical characterization of nanomaterials intended for cancer therapeutics and 

diagnostics…and facilitate the development and translation of nanoscale particles and 

devices for clinical applications” [9]. The NCI awarded NIST $1.0 M/y for three years to 

develop quantitative, reproducible measurement methods and protocols for nanoparticle 

Fig 1. Interrelationships of 

the six core research areas  
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characterization and to collaborate with NCI and FDA researchers to determine the best 

measurement tools, protocols, and analysis methods for physically characterizing 

nanoparticles. One key output of the partnership was the production of three gold 

nanoparticle reference materials (RMs) with nominal diameters of 10 nm [10], 30 nm 

[11], and 60 nm [12]. These nanoscale RMs, formally requested by the Office of the 

Director of NCI, were the first of their kind appropriate for biomedical-related studies 

and applications. As a direct result of the gold nanoparticle RM project, NIST gained 

critical expertise and established core capabilities across a broad range of ENM property 

measurements, including quantitative analysis of nanomaterial size using six independent 

measurement techniques. This expertise and associated capabilities provided the initial 

foundation on which the NIST Nano-EHS Program was built, and established NIST 

internationally as a leader in nanomaterial metrology. 

2.2. Nano-EHS Funding 

Formal NIST-wide programs are typically established with new, federally appropriated 

“Initiative” funds that are designated for a specific topic. Such funds are a common 

means of increasing the NIST Scientific and Technical Research and Services (STRS) 

budget. After five years, Initiative funds become general undesignated STRS funds. The 

Program received funds from two Initiatives: Nano-EHS in 2009 and Nanomanufacturing 

in 2012. Additional one-year funds were received from the NIST Director in 2010 and 

2011. These designated funds are summarized in Table 1. Many of the Divisions 

involved in the Program supplemented their nano-EHS activities with their own STRS 

funds; these funds are not included in Table 1. 

 

 

 

Table 2. Nano-EHS investments reported to the NNI   

 Funds by Fiscal Year, $ M 

Source of Funds 2009 2010 2011 2012 2013 2014 2015 2016 

Nano-EHS Initiative 1.8 1.8 1.8 1.8 1.8       

NIST Director   1.0 1.0           

Nanomanufacturing 

Initiative 
      2.0 2.0 2.0 2.0 2.0 

Total funds 1.8 2.8 2.8 3.8 3.8 2.0 2.0 2.0 

Investments by Fiscal Year, $ M 

2009 2010 2011 2012 2013 2014 2015 2016 

3.5 3.4 3.2 7.2 6.2 5.1 6.7 5.9 

Table 1. Designated Nano-EHS funds 
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Annually, each Federal agency participating in the NNI is required to report its 

investments by topic, known as Principal Component Areas (PCAs). These investments 

are included in the annual NNI Supplement to the President’s Budget; the figures that 

NIST reported for the EHS PCA for years 2009-2016 [13-20] are shown in Table 2. The 

funding levels in Table 2 were obtained by directly querying the NIST Operating Units 

and include both designated and division funds.  

2.3. Nano-EHS Program Researchers 

Since its inception in 2009, the nano-EHS Program has involved researchers from at least 

seven Divisions and three Laboratories (Operating Units) within NIST. From 2012-2016, 

the participating Labs and Divisions were: 

 Engineering Laboratory 

  Materials and Structural Systems Division, 731 

 Material Measurement Laboratory 

  Materials Science and Engineering Division, 642 

Materials Measurement Science Division, 643 

Biosystems and Biomaterials Division, 644 

  Chemical Sciences Division, 646 

  Applied Chemicals and Materials Division, 647 

 Physical Measurement Laboratory 

  Engineering Physics Division, 682 

More than 90 researchers have worked on the Program over its eight-year span. The 

researchers, listed in Appendix A, are grouped into five categories: (1) NIST principal 

investigators; (2) NIST contributing staff members; (3) NRC postdoctoral fellows; (4) 

Postdoctoral research associates; and (5) Student research associates. 

 

3. NIST Nano-EHS Program Goals and Projects 

Throughout the tenure of the Program, the overarching focus has been on the 

development of measurement tools, defined here as methods, instrumentation, protocols 

and assays, and RMs. In developing measurement tools, studies on specific ENMs 

produced validated data that were published. The term “validated” implies that the data 

were reproducible and generated by metrologically valid methods to ensure the greatest 

accuracy and “quality” of the data.  

From the outset, the Program focused on ENMs of greatest regulatory concern based on 

production volume, widespread use in NEPs, and likely hazards—namely, silver (Ag) 

and titanium dioxide (TiO2) nanoparticles, and carbon nanotubes (CNTs), both single-

wall (SW) and multi-wall (MW). Gold (Au) nanoparticles are a key benchmark material 

for physico-chemical and toxicological measurements and are important in advanced 

biomedical applications such as cancer treatment. As the Program progressed, the media 

in which measurements were performed transitioned from simple media (e.g., air, 

vacuum, water) to complex media, including both environmental (e.g., sediment, soil) 

and biological (e.g., blood, tissue) media. From 2012–2016, a portion of the Program was 

devoted to the application of measurement tools to specific ENM-NEP systems. 

Throughout the Program, many researchers led or contributed to the development of 

documentary standards and guidance documents in three standards-related organizations, 
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namely ASTM International, the Organization for Economic Cooperation and 

Development (OECD), and the Organization for International Standardization (ISO).  

3.1. 2009‒2011 

In 2009, a Steering Committee was formed whose function was to distribute the Nano-

EHS Initiative and NIST Director’s funds. In 2009 and 2010, the funds were used to 

support single principal investigator research activities on the order of $25 K‒$150 K. 

These activities focused on the development of methods to measure physico-chemical 

and biological properties of ENMs and on the development of ENM RMs. Examples of 

activities included the development of single-wall carbon nanotube and titanium dioxide 

RMs, methods for stabilizing silver nanoparticles in environmental and biological media, 

and protocols for assessing DNA damage in plants and organisms due to the presence of 

ENMs. These activities were not centrally coordinated, though some involved informal 

interactions between researchers at NIST and researchers from other government 

agencies, industry, and academia. 

In 2011, the Steering Committee defined three Program focus areas: (1) the determination 

of surface attributes and transformations involving molecular adsorbents on ENM 

surfaces; (2) measurement of the concentrations of nano-silver and silver ions in various 

media; and (3) toxicological measurements. Although the activities within the focus areas 

were not centrally coordinated, the collaborations among NIST staff members increased 

substantially and channels for information sharing became well established. 

3.2. 2012‒2014 

Beginning with the award of the Nanomanufacturing Initiative in 2012, a Technical 

Program Director was appointed to coordinate the Nano-EHS Program and the Steering 

Committee was disbanded. Three-year (2102‒2014) Program and Spend Plans were 

developed by this Director and approved by the NIST Director’s Office. The Plans were 

closely aligned with the research needs in the Nanomaterial Measurement Infrastructure 

(NMI) research category of the 2011 Nano-EHS Research Strategy [1].  Coordination 

with other NNI-NEHI agencies was strengthened and collaborations among various 

agencies were initiated and expanded, some continuing through 2016. Funds were 

allocated for specified research activities by designated researchers in the Divisions. The 

goals of the Program were two-fold: 

(1) Enable other organizations to perform accurate and reproducible measurements 

by providing validated measurement tools 

(2) Enable other organizations to detect and quantitatively characterize ENMs in 

NEPs using broadly available, commercial instruments 

Specific deliverables by year for 2012-2014 are presented in the Program Plan document 

in Appendix B. 

3.2.1. Goal 1 

There is an endless combination of ENMs subjected to various media during their 

lifecycles; thus, it was clear that NIST could not determine the properties of all ENMs of 

interest to multiple stakeholder groups under all possible scenarios. To maximize the 

impact of its investment, NIST focused on the provision of measurement tools to enable 
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other organizations to perform reproducible and accurate measurements on their own 

materials. This necessitated that the Program focus, to the extent possible, on common, 

affordable, and widely used instruments for which access was readily available to many 

organizations.  

The objectives of Goal 1 were to conduct the following activities of high-priority as 

determined by interactions with NNI-NEHI agency and industrial representatives: 

a) Develop and release RMs 

b) Develop and broadly disseminate validated measurement methods and protocols 

c) Lead and provide strong technical contributions to documentary and pre-

documentary standards development activities  

3.2.2 Goal 2 

For the duration of the Program, the number of NEPs on the market has continually 

increased [21]. Two prevalent NEPs are fabrics (textiles) containing nano-scale Ag, and 

NEPs manufactured from MWCNT-polymer composites. These two NEPs are the focus 

of the two objectives for Goal 2: 

a) Develop methods to detect and quantitatively characterize key properties3 of 

Ag nanoparticles in fabrics 

b) Develop methods to detect and quantitatively characterize key properties4 of 

MWCNTs in polymer matrix-based NEPs 

Teams were established among NIST Program participants to address the objectives for 

Goals 1 and 2. Team members also worked closely with other key agency partners, 

notably two of the five US regulatory agencies, i.e., the Consumer Product Safety 

Commission (CPSC) and the FDA, as well as other National Metrology Institutes 

(NMIs), including NRC Canada and BAM in Germany, and the European Commission 

Institute for Reference Materials and Methods (now the Joint Research Centre).  

3.3. 2015‒2016 

In 2015, four new project areas were defined by the Program Director in collaboration 

with several principal investigators in the Program. Funds were distributed to the seven 

participating Divisions for specific activities in these new projects and in an overarching 

measurement tool project that is a continuation of the work in Goal 1 above. These 

projects continued through 2016, when the NIST Nano-EHS Program formally ended. 

The five project areas were: 

1) Measurement Tools 

2) Release of MWCNTs from Polymer Composites 

3) Graphene in Microelectronic Devices 

4) Engineered Nanomaterials in Heterogeneous Matrices 

5) Lifecycle Speciation of Nano-silver 

                                                 
3 For example, number concentration and size and size distribution of Ag NPs; distribution and chemical 

form of Ag in fabrics. 
4 For example, size and size distribution, morphology, and number concentration of MWCNTs; distribution 

of MWCNTs in matrix. 
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Plans for each project were developed that included a team leader, team members, project 

goal, objectives, and deliverables by objective.  

 

4. NIST Nano-EHS Program Outputs 

During its eight-year tenure, the NIST Nano-EHS Program was prolific by any objective 

measure, producing a substantial number of publications, protocols, and RMs. Each 

output type will be described separately below. 

4.1. Publications 

The publications associated with the Program, presented in Appendix C, are organized by 

type and year published (2009-2018). The type and total number of each are as follows: 

1) Archival journal publications: 212 

2) Conference proceedings: 25 

3) NIST Technical Notes: 3 

4) Book chapters: 14 

In addition, two team members are co-editors of 

the book Metrology and Standardization of 

Nanomaterials - Protocols and Industrial 

Innovations, which has 31 chapters. 

One commonly used metric of a publication’s 

impact is the Journal Impact Factor (JIF). JIF is a 

measure that reflects the yearly average number of 

citations to recent articles published in 

that journal. 126 of the 212 archival journal publications had JIF values greater than 3. 

Table 3 shows the number of publications for several ranges of JIF values. JIF values of 5 

or above are generally considered representative of “high impact” journals. 

The journals with the greatest number of publications are: 

• Analytical and Bioanalytical Chemistry: 23 

• Environmental Science and Technology: 21 

• Journal of Nanoparticle Research:13 

• ACS Nano: 11 

• Nanotoxicology: 9 

These journals demonstrate the breadth of the NIST Nano-EHS Program, encompassing 

physico-chemical, environmental, and toxicological measurement research. As noted in 

Appendix C, several articles received special recognition from the journals in which they 

were published. 

4.2. Protocols and Assays 

Protocols and assays, defined here as step-by-step, reproducible, and validated 

procedures (methods), are an essential first step in the harmonization of ENM/NEP 

property measurements by enabling direct comparisons of data between laboratories and 

greater consistency in reporting data. Protocols may address, either separately or 

JIF range Number of 

publications 

3-5 46 

5-10 63 

10-15 17 

Table 3. Number of publications 

per JIF range. 
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conjointly, sample preparation, conduct of measurements, and data analysis. The need for 

and importance of protocols are called out in the 2011 Nano-EHS Research Strategy [1], 

by agencies that regulate ENMs and NEPs, and by industry. Protocols can form the basis 

for the development of documentary standards published by ISO, ASTM International, 

and other standards-related organizations. 

The list of nanomaterial measurement protocols and assays relevant to nano-EHS that 

NIST published from 2012–2018 is presented in Appendix D. NIST has a dedicated web 

site containing 24 publicly available nanomaterial measurement protocols; see 

https://www.nist.gov/mml/nano-measurement-protocols. These protocols have been 

published in the 1200 series of NIST Special Publications (SPs) with citable DOI names 

to provide persistent identification. Five of these protocols were developed in conjunction 

with the Center for the Environmental Implications of NanoTechnology, a multi-

university entity led by Duke University with funding from the National Science 

Foundation and the Environmental Protection Agency. In addition, NIST team members 

have led the development of 11 assays that are publicly available on NCL’s Assay 

Cascade Protocol web site https://ncl.cancer.gov/resources/assay-cascade-protocols.  

4.3. Reference Materials 

Reference materials (RMs) is a generic term used here to include NIST Reference 

Materials, NIST Traceable Reference Materials™ and NIST Standard Reference 

Materials™ [22]. Definitions of these three types of RMs are provided on the NIST web 

site [23].  

The RMs of relevance to the Nano-EHS Program are listed in Appendix E, which 

includes technical and sales information. As mentioned previously, the NIST Nano-EHS 

Program focused on ENMs of greatest regulatory concern based on production volume, 

widespread use in NEPs, and potential hazards—namely, silver (Ag) and titanium 

dioxide (TiO2) nanoparticles and carbon nanotubes (CNTs), both single-wall (SW) and 

multi-wall (MW). From 2011-2018, NIST produced RMs for each of these ENMs. The 

three gold nanoparticle RMs, though released in 2008, are included in Appendix E 

because the large majority of the sales of these RMs occurred post-2008. To date, more 

than 2050 units of the nine RMs listed in Appendix E have been delivered to stakeholders 

world-wide. 

4.4. Documentary Standards 

ISO Technical Committee (TC) 229 on Nanotechnologies and ASTM International 

Committee E56 on Nanotechnology are arguably the two prevalent standards 

development organizations (SDOs) in nanotechnology. NIST researchers have played 

prominent leadership roles in these SDOs, both at the committee level and for specific 

technical standards.  

Committee-level leadership positions include: 

• Chair, US Technical Advisory Group (TAG) to ISO TC229 (2005–2010 and 

2015–2016) 

• Chair, US TAG to ISO TC229 Joint Working Group 2 (JWG2). Measurement and 

Characterization (2005–2016) 

• Convener, ISO TC229 WG 3, Health, Safety and the Environment (2006–2013) 
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• Chair, ASTM Committee E56 (2009–2015) 

• Vice-Chair, ASTM Committee E56 (2015–2016) 

• Co-Chair, ASTM Subcommittee E56.02, Physical and Chemical Characterization 

(2015–2016) 

• Chair, ASTM Subcommittee E56.05, Liaison and International Cooperation 

(2012–2016) 

• Chair, ASTM Subcommittee E56.07, Education and Workforce Development 

(2014–2016) 

NIST researchers have also led or co-led the writing nearly 20 ISO and ASTM standards, 

including those currently under development. NIST researchers have also participated 

substantially in the development of other standards as approved experts serving on the 

US delegation to ISO 229 and as subject matter experts within ASTM E56. Another 

international effort in which NIST researchers have been involved is the Organization for 

Economic Co-operation and Development (OECD), which has produced guidelines 

pertinent to nano-EHS. 

 

5. NIST Nano-EHS Program Impacts 

The number, quality, and breadth of outputs are indicative of the significant impacts of 

the NIST Nano-EHS Program. Two case studies presented below illustrate the magnitude 

of specific impacts. 

5.1. Case Study I: Gold Nanoparticle Reference Materials 

In 2008, NIST released a series of three gold nanoparticle 

RMs: 8011, nominal diameter = 10 nm; 8012, nominal 

diameter = 30 nm; and 8013, nominal diameter = 60 nm (Fig. 

2). Nanoparticle sizes were determined by six independent 

techniques, five of which use commonly available 

commercial instruments. While the RMs were originally 

intended to support pre-clinical biomedical efforts, they have 

found great utility in nano-EHS research and metrology 

development. Though anticipated to be used primarily to 

evaluate and qualify methodology and instrument 

performance for dimensional measurements, the RMs have 

been employed to develop and evaluate in vitro assays 

designed to assess biological response (e.g., cytotoxicity and 

hemolysis) of ENMs. Further, the RMs have been used in 

interlaboratory test comparisons for the development or uncertainty analysis of three 

ASTM E56 and one ISO TC 229 standard. RMs 8012 and 8013 have been widely 

adopted as calibration standards for single particle inductively coupled plasma mass 

spectrometry, an important and rapidly emerging measurement technology. Collectively 

and as of April 2018, 1783 units of the gold RMs have been sold in nearly equal numbers 

to US and foreign organizations. 

Fig. 2. Units of RMs 

8011, 8012, and 8013. 
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A detailed impact study was performed on RM 8012 [11], with information collected and 

analyzed as of July 10, 2015. Sales statistics for RM 8012 are presented in Table 4. It is 

notable that, of the 479 units sold, nearly 90 % were purchased by industry and 

government agencies, including National 

Metrology Institutes world-wide.  

As of August 2016, there were more than 

90 peer-reviewed publications and 8 non-peer 

reviewed documents (application notes, 

documentary standards, white papers, and 

notes) that utilize one or more of the three 

gold RMs (8011, 8012, and 8013) for a 

variety of purposes, or in which the gold RMs 

are a significant focus of discussion. A graph 

of the publications related to the gold RMs as 

of September 2015 is shown in Fig. 3. The 

principal uses of the gold RMs, from both 

published and anecdotal sources, include: 

• Quality control and quality assurance 

(especially in analytical services labs and 

pharmaceutical companies) 

• Method and instrument calibration 

• Interlaboratory studies and comparisons 

• Basic research 

• Metrology research 

• Method and technique comparisons 

• Toxicological and environmental 

investigations 

In summary, the NIST gold nanoparticle RMs have been used across the world, with 

significant impacts on nano-EHS, biomedical applications and nanometrology as 

demonstrated by sales and documented uses. 

5.2. Case Study II: Measurement Assurance for a Nanotoxicity Assay 

Cell-based toxicity assays (i.e., cytotoxicity assays) are commonly employed as screening 

tools to identify potential hazards associated with new chemicals and materials used in 

manufacturing. These assays are also used to evaluate biological effects associated with 

ENMs. Significant variability in such assays due to various sources have led to 

conflicting hazard data. For ENMs, some sources may include nanometer dimensions, 

large surface-to-volume ratios, wide ranges of composition and coatings, and the 

introduction of ENMs into living cell culture systems. The need to improve cell-based 

assays for nano-cytotoxicity has been demonstrated in interlaboratory studies coordinated 

by the International Alliance for Nano-EHS Harmonization wherein large variabilities in 

measurements were obtained. 

Purchasers of RM 8012 
Units, number or 

% of total sold 

Total number 479 

Domestic organizations 47% 

Foreign organizations 53% 

Industry 46% 

Government  42% 

Academia 12% 

NMIs (part of government) 12 
Publications Related to NIST Gold RMs

year

2007 2008 2009 2010 2011 2012 2013 2014 2015

n
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total publications = 93

Fig 3. Number of publications by year. 

Table 4. Purchasers of RM 8012 as of September 2015 
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In response to this need, researchers in the Cell Systems Science group developed an 

approach to determine sources of variability that uses a novel measurement system to 

assess quality metrics for nano-cytotoxicity assay performance. The system is a 96-well 

plate based on the well-known MTS assay and uses protocols for cell line identification 

testing, dosing preparation, and pipetting procedures.  Seven in-line quality assessment 

controls include reagent quality, cell seeding quality, cell function, and nanoparticle 

interference (Fig. 4). Measurements using the well plate and associated protocols yield a 

nano-cytotoxicity value and six additional results that characterize the measurement 

system. The system enables intermediate measurements pertinent to the assay that could 

be used to validate comparability of measurements between different laboratories and 

different nanomaterials.  

The validity of the measurement system was assessed by an interlaboratory study 

including EMPA (Switzerland), NanoTEC (Thailand), Joint Research Centre (European 

Commission) and KRISS (Korea). The results of this study indicated several sources of 

variability associated with: (1) cell line identification; (2) rinsing attached cell layers; and 

(3) nanoparticle dispersion techniques. The large number of data sets from the different 

laboratories resulted in performance specifications for each of the in-line process controls 

and provided criteria that can be used to ensure comparability between data sets. 

This work culminated in three publications [24-26] and the development of an ISO 

International standard (ISO/DIS 19007: Nanotechnologies – In vitro MTS assay for 

measuring the cytotoxic effect of nanoparticles) using the MTS assay in nano-

cytotoxicity testing [14-16].  This work serves as an exemplar for developing high-

quality assays and translating measurement science into a documentary standard.   

 

 
Fig. 4. 96-well plate layout for cytotoxicity assays on ENMs  
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6. Conclusions 

The eight-year NIST Nano-EHS Program has been successful by several objective 

measures. Outputs from the Program—publications, protocols, and RMs—are diverse 

and large in number. The significant impact of the Program has been demonstrated here 

through two case studies: the NIST gold nanoparticle RMs and the toxicity assay 

measurement assurance. Beginning in 2012, the teamwork demonstrated by all the 

researchers has been profound. The measurement infrastructure and knowledge base 

established through the NIST Nano-EHS Program will be beneficial in other innovative 

application areas of importance to commerce and healthcare, such as biomedical devices, 

energy generation, and water purification. The combined experience, expertise, and 

facilities resulting principally from the Program represent new core competencies at 

NIST, which can be further exploited to address a wide range of nanotechnology 

measurement issues of importance to a broad range of stakeholders, including industry 

and regulatory bodies. Finally, the interdivisional and interdisciplinary network of 

scientists, established in large part due to the Program, will have a lasting legacy that 

reaches beyond nano-EHS and nanotechnology. 
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Appendix B: Nano-EHS Initiative Program Plan, FY12-14 

 

Excerpts from the Program Plan are given below. 

Program Goals, Objectives, and Deliverables 

The technical work described below will significantly advance the establishment of a 

nanomaterial measurement infrastructure consisting of critical tools—standards, 

measurement methods, and validated data and models. The technical scope of the work 

will encompass four of the five Research Needs identified in the Nanomaterial 

Measurement Infrastructure Research Chapter of the NNI 2011 Nano-EHS Research 

Strategy: (1) determination of the physico-chemical properties of ENMs, a necessary first 

step in exposure and hazard evaluation; (2) detection of ENMs and NEPs; (3) evaluation 

of transformations of ENMs; and (4) evaluation of biological responses to ENMs and 

NEPs. The Program will provide the metrological foundation and measurement tools 

essential to the fifth Research Need, evaluation of release mechanisms of ENMs from 

NEPs. To maximize the relevance and impact of NIST work, FY12-FY14 priorities in 

Research Needs (1) and (2) are MWNCTs in polymer matrix-based NEPs such as 

sporting goods, and Ag NPs in NEPs such as fabrics. These ENM-NEP priorities are also 

consistent with those of the NanoRelease Project, a group of international representatives 

and technical experts from government agencies, industry, non-governmental 

organizations, and universities focused on the identification and development of methods 

to detect and characterize ENMs released from NEPs. 

 

 
 

A. Objective:  Develop and release standard reference materials (SRMs) and 

reference materials (RMs)  

 

Task FY Deliverable 

i 

Develop methods for next-

generation SRMs and RMs, i.e., 

zeta potential measurement, 

positive toxicity controls 

12 Progress reports 

ii 

Complete SRMs and RMs for key 

ENMs (TiO2 and Ag NPs and 

single-wall CNTs) certified for 

specific surface area and 

dimensions 

12 SRMs and RMs 

iii 

Demonstrate the applicability of 

new hyphenated instruments to 

next generation SRMs and RMs, 

i.e., ENMs in complex matrices 

and Ag NPs in aqueous media  

12-

13 
Progress reports 

Goal 1:  Enable other organizations to perform accurate, precise, and reproducible 

measurements by providing measurement tools 
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iv 

Design and produce prototype 

SRMs and RMs for zeta potential 

measurement and positive 

toxicity controls 

12-

13 

Progress reports, 

prototype SRMs and 

RMs  

v 

Design and produce prototype 

SRMs and RMs for determination 

of chirality in purified SWCNTs 

12-

13 

Progress reports, 

SRMs and RMs 

vi 

Develop methods and produce 

prototype SRMs and RMs for 

ENMs in complex matrices such 

as soil 

13-

14 

Progress reports, 

prototype SRMs and 

RMs  

vii 

Develop methods and produce 

prototype SRMs and RMs for 

determination of concentration of 

total Ag, Ag ions, and Ag NPs in 

relevant media  

13-

14 

Progress reports, 

prototype SRMs and 

RMs 

viii 

Evaluate potential for RMs on 

other key ENMs, i.e., MWCNTs, 

CeO NPs, and nanoclays 

13-

14 
Progress reports 

ix 

Initiate production of SRMs and 

RMs for zeta potential 

measurement, positive toxicity 

controls, and determination of 

chirality in purified SWCNTs 

14 
WCF proposals, 

progress reports 

 

B. Objective:  Develop and broadly disseminate validated measurement 

protocols and assays 

 

Task FY Deliverable 

i 

Prepare manuscripts on three 

NIST protocols for dispersion of 

TiO2 in various media 

12 

NIST Special 

Publications (SPs) 

NIST website postings 

ii 

Demonstrate the adequacy and 

extensibility of at least two 

existing in vitro and in vivo 

toxicity assays to ENMs  

12 
Progress reports, 

publications 

iii 

Complete a VAMAS 

interlaboratory study (ILS) on 

chirality measurements of single 

wall CNT mixtures and develop 

a protocol  

12-

13 

Report on ILS results 

NIST SP on protocol 

NIST website posting 

iv 
Develop protocols to stabilize 

soluble NPs such as Ag 

12-

13 

NIST Special 

Publication (SP) 

NIST website posting 
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v 

Develop in vitro and in vivo 

toxicity assays, based on 

existing or new assays 

13-

14 

Progress reports, 

publications 

vi 

Evaluate and initiate 

development of sample 

preparation and measurement 

protocols for other key ENMs, 

i.e., MWCNTs, and CeO NPs, 

and nanoclays 

13-

14 

Reports by study 

groups (internal and 

external) and on ILS’s 

initiated in VAMAS 

and ASTM E56 

vii 

Develop draft protocols for the 

use of hyphenated instruments, 

e.g., DMA/AFFF/ICP-MS 

14 Progress reports 

 

C. Objective:  Lead and provide strong technical contributions to 

documentary and pre-documentary standards development activities 

 

Task FY Deliverable 

i 

Increase staff leadership and 

participation in nano-EHS-

related SDOs and pre-

standardization organizations 

12-

14 

Listing of leadership 

positions and active 

staff members 

ii 

i. Lead and participate in the 

completion and publication of 

ongoing work items  

12-

13 

Listing of published 

standards with noted 

NIST leadership role 

iii 
Lead and participate in the 

development of new work items 

12-

14 

Listing of new work 

items with noted NIST 

leadership role 

Progress reports 

iv 

Co-organize workshops that 

enable the prioritization and 

increased use and value of 

documentary standards  

12-

14 

Workshop reports 

 

v 

Facilitate communication, 

cooperation, and coordination of 

activities among SDOs 

12-

14 

Reports describing 

actions taken 
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A. Objective:  Develop methods to detect and quantitatively characterize Ag 

NPs in fabrics  

 

Task FY Deliverable 

i 

Evaluate the applicability, 

advantages, and limitations of 

FE-SEM, TEM, AFM, ICP-MS, 

SEC, and XPS for the detection 

of Ag NPs; develop sample 

preparation approaches for each 

method 

12 

Progress reports, 

publications 

 

ii 

Evaluate the applicability, 

advantages, and limitations of 

FE-SEM, TEM, AFM, ICP-MS, 

SEC, and XPS for quantitative 

measurements of Ag NPs; 

identify specific properties that 

can be determined with each 

method 

12-

13 

Progress reports, 

publications 

 

iii 

Generate data and associated 

measurement uncertainties using 

FE-SEM, TEM, AFM, ICP-MS, 

SEC, and XPS   

13-

14 

Progress reports, 

publications 

 

iv 

Evaluate the feasibility of 

extending the capabilities of FE-

SEM, TEM, AFM, ICP-MS, 

SEC, and XPS, (e.g., high 

throughput and three-

dimensional measurements) for 

the detection and 

characterization of Ag NPs 

14 

Progress reports, 

publications 

 

 

  

Goal 2:  Enable other organizations to detect and quantitatively characterize ENMs in 

NEPs using broadly available, commercial instruments 
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B. Objective:  Develop methods to detect and quantitatively characterize 

MWCNTs in polymer matrix-based NEPs 

 

Task FY Deliverable 

i 

Evaluate the applicability, 

advantages, and limitations of FE-

SEM, TEM, AFM, ICP-MS, SEC, 

and XPS for the detection of 

MWCNTs; develop sample 

preparation approaches for each 

method 

12 

Progress reports, 

publications 

 

ii 

Evaluate the applicability, 

advantages, and limitations of FE-

SEM, TEM, AFM, ICP-MS, SEC, 

and XPS for quantitative 

measurements of MWCNTs; 

identify specific properties that 

can be determined with each 

method 

12-

13 

Progress reports, 

publications 

 

iii 

Generate data and associated 

measurement uncertainties using 

FE-SEM, TEM, AFM, ICP-MS, 

SEC, and XPS   

13-

14 

Progress reports, 

publications 

 

iv 

Evaluate the feasibility of 

extending the capabilities of FE-

SEM, TEM, AFM, ICP-MS, SEC, 

and XPS, (e.g., high throughput 

and three-dimensional 

measurements) for the detection 

and characterization of MWCNTs 

14 

Progress reports, 

publications 
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Appendix C: Nano-EHS Program Publications 

 

(in increasing chronological order by type of publication) 

 

Archival Journal Articles 

1. Hackley VA, Fritts M, Kelly JF, Patri AK, Rawle AF (August 2009) Enabling 

standards for nanomaterial characterization. InfoSim – Informative Bulletin of the 

Interamerican Metrology System, The Organization of American States, 24-29. 

2. Duan J, Park K, MacCuspie R, Vaia RA, Pachter R (2009) Optical properties of 

rodlike metallic nanostructures: insight from theory and experiment. Journal of 

Physical Chemistry C 113:15524–15532. https://doi.org/10.1021/jp902448f 

3. Decker JE, et al. (2009) Sample preparation protocols for realization of 

reproducible characterization of single-wall carbon nanotubes. Metrologia 
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Fujita D, Van de Voorde M (Wiley-VCH Verlag GmBH & Co., Weinheim, 

Germany), pp 307-322. https://doi.org/10.1002/9783527800308.ch19 
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Appendix D: Nano-EHS Program Protocols and Assays 

 

NIST Nano–Measurement Protocols 

https://www.nist.gov/mml/nano-measurement-protocols 

 

1. Taurozzi JS, Hackley VA, Wiesner MR (2012) Reporting guidelines for the 

preparation of aqueous nanoparticle dispersions from dry materials. NIST Special 

Publication 1200-1. Ver 2.1, 9 pp. http://dx.doi.org/10.6028/NIST.SP.1200-1  

2. Taurozzi JS, Hackley VA, Wiesner MR (2012) Preparation of nanoparticle 
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Publication 1200-2. Ver 1.1, 15 pp. http://dx.doi.org/10.6028/NIST.SP.1200-2  

3. Taurozzi JS, Hackley VA, Wiesner MR (2012) Preparation of a nanoscale TiO2 
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Publication 1200-3. Ver 1.2, 11 pp. http://dx.doi.org/10.6028/NIST.SP.1200-3  

4. Taurozzi JS, Hackley VA, Wiesner MR (2012) Preparation of nanoscale TiO2 
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Publication 1200-4. Ver 1.1, 13 pp. http://dx.doi.org/10.6028/NIST.SP.1200-4  

5. Taurozzi JS, Hackley VA, Wiesner MR (2012) Preparation of nanoscale TiO2 

dispersions in an environmental matrix for eco-toxicological assessment. NIST 

Special Publication 1200-5r1. Ver 1.2, 12 pp. 

http://dx.doi.org/10.6028/NIST.SP.1200-5r1  

6. Hackley VA, Clogston JD (2015) Measuring the size of nanoparticles in aqueous 

media using batch-mode dynamic light scattering. NIST Special Publication 1200-6. 

Ver 1.2, 14 pp. http://dx.doi.org/10.6028/NIST.SP.1200-6 

7. Gorham JM, et al. (2015) Preparation of silver nanoparticle loaded cotton threads to 
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1200-8. Ver 1.0, 18 pp. http://dx.doi.org/10.6028/NIST.SP.1200-8 

8. Davis CS, Woodcock JW, Gilman JW (2015) Preparation of multi-walled carbon 
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NIST Special Publication 1200-9. Ver 1.0, 13 pp. 

http://dx.doi.org/10.6028/NIST.SP.1200-9 
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photoelectron spectroscopy. NIST Special Publication 1200-10. Ver 1.0, 9 pp. 
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nanoparticle dissolution in complex biological and environmental matrices using 
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13. Zook JM, MacCuspie RI, Elliott JT, Petersen EJ (2015) Reliable preparation of 

nanoparticle agglomerates of different sizes in cell culture media. NIST Special 

Publication 1200-14. Ver 1.0, 7 pp. http://dx.doi.org/10.6028/NIST.SP.1200-14 

14. Sung L, Nguyen T (2015) Protocols for accelerating laboratory weathering and 

measurements of degradation of polymer-multiwalled carbon nanotube composites. 

NIST Special Publication 1200-15. Ver 1.0, 16 pp. 

http://dx.doi.org/10.6028/NIST.SP.1200-16 

15. Scott K, Giannuzzi LA (2015) Strategies for transmission electron microscopy 

specimen preparation of polymer composites. NIST Special Publication 1200-16. Ver 

1.0, 10 pp. http://dx.doi.org/10.6028/NIST.SP.1200-16 

16. Vladár AE (2015) Strategies for scanning electron microscopy sample preparation 

and characterization of multiwall carbon nanotube polymer composites. NIST Special 

Publication 1200-17. Ver 1.0, 16 pp. http://dx.doi.org/10.6028/NIST.SP.1200-17 

17. Nelson BC, Petersen EJ, Jaruga P, Dizdaroglu M (2015) GC/MS measurement of 

nanomaterial-induced DNA modifications in isolated DNA. NIST Special Publication 

1200-18. Ver 1.0, 13 pp. http://dx.doi.org/10.6028/NIST.SP.1200-18 
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nanomaterial-induced DNA modifications in isolated DNA. NIST Special Publication 
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1200-20. Ver 1.0, 11 pp. http://dx.doi.org/10.6028/NIST.SP.1200-20 

20. Murphy KE, Liu J-Y, Montoro Bustos AR, Johnson ME, Winchester MR (2015) 

Characterization of nanoparticle suspensions using single particle inductively coupled 

plasma mass spectrometry. NIST Special Publication 1200-21. Ver 1.0, 29 pp. 

http://dx.doi.org/10.6028/NIST.SP.1200-21 

21. Underwood SJ, Gorham JM (2017) Challenges and approaches for particle size 

analysis on micrographs of nanoparticles loaded onto textile surfaces. NIST Special 

Publication 1200-22. Ver 1.0, 13 pp. https://doi.org/10.6028/NIST.SP.1200-22 

22. Johnson ME, et al. (2017) Sucrose density gradient centrifugation for efficient 

separation of engineered nanoparticles from a model organism, Caenorhabditis 

elegans. NIST Special Publication 1200-24. Ver 1.1, 18 pp. 

https://doi.org/10.6028/NIST.SP.1200-24 

23. Savelas AR, Yu LL, Jacobs DS, Nguyen T, Sung L (2017) Protocol for collecting and 

quantifying release from weathered epoxy-nanosilica coatings: Using a simulated rain 

method and inductively coupled plasma-optical emission spectrometry. NIST Special 

Publication 1200-25. Ver 1.0, 10 pp. https://doi.org/10.6028/NIST.SP.1200-25 
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24. Cho TJ, Hackley VA (2018) Assessing the chemical and colloidal stability of 

functionalized gold nanoparticles. NIST Special Publication 1200-26. 13 pp. 

https://doi.org/10.6028/NIST.SP.1200-26 

 

 

NIST-NCL Assay Protocols 

Nanotechnology Characterization Laboratory (NCL), National Cancer Institute 

https://ncl.cancer.gov/resources/assay-cascade-protocols [accessed 2018 August 17]. 

 

1. Grobelny J, et al. (2009) Size measurement of nanoparticles using atomic force 

microscopy. NIST - NCL Joint Assay Protocol, PCC-6. Ver 1.1, 2009, 20 pp. 

[accessed 2018 July 3]. 

https://ncl.cancer.gov/sites/default/files/protocols/NCL_Method_PCC-2.pdf 

2. Hackley VA, Clogston JD (2010) Measuring the size of nanoparticles in aqueous 

media using batch-mode dynamic light scattering. NIST - NCL Joint Assay Protocol, 

PCC-1. Ver 1.1, 22 pp. [accessed 2018 July 3]. 

https://ncl.cancer.gov/sites/default/files/protocols/NCL_Method_PCC-1.pdf 

3. Bonevich JE, Haller WK (2010) Measuring the size of nanoparticles using 

transmission electron microscopy (TEM). NIST - NCL Joint Assay Protocol, PCC-7. 

Ver 1.1, 13 pp. [accessed 2018 July 3]. 

https://ncl.cancer.gov/sites/default/files/protocols/NCL_Method_PCC-7.pdf 

4. Yu LL, Wood LJ, Long SE (2010) Determination of gold in rat tissue with inductively 
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21 pp. [accessed 2018 July 3]. http://nanolab.cancer.gov/NCL_Method_PCC-8.pdf 

5. Yu LL, Wood LJ, Long SE (2010) Determination of gold in rat blood with inductively 

coupled plasma mass spectrometry. NIST - NCL Joint Assay Protocol, PCC-9. Ver 1.1, 

20 pp. [accessed 2018 July 3]. http://nanolab.cancer.gov/NCL_Method_PCC-9.pdf 

6. Pease III LF, Tsai D-H, Zangmeister RA, Winchester MR, Tarlov MJ (2010) Analysis 

of gold nanoparticles by electrospray differential mobility analysis (ES-DMA). NIST - 

NCL Joint Assay Protocol, PCC-10. Ver 1.1, 8 pp. [accessed 2018 July 3]. 

http://nanolab.cancer.gov/NCL_Method_PCC-10.pdf 

7. Winchester MR (2010) Method for determination of the mass fraction of particle-

bound gold in suspensions of gold nanoparticles. NIST - NCL Joint Assay Protocol, 

PCC-11. Ver 1.1, 16 pp. [accessed 2018 July 3]. 

http://nanolab.cancer.gov/NCL_Method_PCC-11.pdf 
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nanoemulsion-based magnetic resonance imaging contrast agent formulations using 
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Appendix E: Nanoscale Reference Materials 

 

RM: Reference Material; SRM: Standard Reference Material; NP: nanoparticle; CNT: 

carbon nanotube 

 

Material 

Type 
Identifier(s) Form Reference 

Property 

Nominal 

Value 

Release 

Date 

Total # 

Units 

Sold* 

gold NPs 

RM 8011 
in aqueous 

suspension 

mean 

diameter 

30 nm 12/17/07 555 

RM 8012 60 nm 12/17/07 615 

RM 8013 100 nm 12/17/07 613 

TiO2 NPs SRM 1898 dry powder 

specific 

surface 

area 

55 m2/g 6/14/12 118 

silver NPs RM 8017 freeze-dried 
mean 

diameter 
75 nm 12/6/14 67 

silicon NPs RM 8027 
in toluene 

suspension 

mean 

diameter 
2 nm 2/4/14 9  

single-wall 

CNTs 

SRM 2483 dry soot 
mass 

fraction 

impurity 

elements 
11/14/11 62 

RM 8281 
in aqueous 

suspension 
length 

"long", 

"medium", 

"short" 

7/9/13 15 

multiwall 

CNTs 
SRM 2484 dry soot 

mass 

fraction 

impurity 

elements 
6/1/17  0 

 

*As of July 2018 
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