NIST Special Publication 1209

Summary of NIST/SIM Chemical Metrology Working Group Training Opportunity: Isotope Dilution-Mass Spectrometry Clinical Measurement Course

Jeanita S. Pritchett Katrice A. Lippa Mary Bedner Carolyn Q. Burdette Johanna E. Camara David L. Duewer Brian E. Lang Michael A. Nelson Antonio Possolo Jeanice Brown Thomas Lane C. Sander Lorna T. Sniegoski Susan S. Tai

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.1209

> National Institute of Standards and Technology U.S. Department of Commerce

NIST Special Publication 1209

Summary of NIST/SIM Chemical Metrology Working Group Training Opportunity: Isotope Dilution-Mass Spectrometry Clinical Measurement Course

Jeanita S. Pritchett Katrice A. Lippa Mary Bedner Carolyn Q. Burdette Johanna E. Camara David L. Duewer Brian E. Lang Michael A. Nelson Jeanice Brown Thomas Lane C. Sander Lorna T. Sniegoski Susan S. Tai *Chemical Sciences Division* Material Measurement Laboratory

Antonio Possolo Statistical Engineering Division Information Technology Laboratory

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.1209

December 2016

U.S. Department of Commerce Penny Pritzker, Secretary

National Institute of Standards and Technology Willie May, Under Secretary of Commerce for Standards and Technology and Director Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Special Publication 1209 Natl. Inst. Stand. Technol. Spec. Publ. 1209, 112 pages (December 2016) CODEN: NSPUE2

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.1209

Table of Contents

- 1. Introduction
 - 1.1 Course Overview
 - 1.2 Pre-course Survey Discussion
 - 1.3 Course Agenda
 - 1.4 Participant Listing
- 2. Summary
 - 2.1 Post-course Survey Discussion
 - 2.2 Post-course Resources
 - 2.3 Follow-up SIM Comparison
- 3. Acknowledgements

Appendix 1: Pre-course Survey Results Appendix 2: Post-course Survey Results

Appendix 3: Oral Presentations Delivered During Workshop

Introduction Course Overview

A week-long training opportunity entitled *Isotope Dilution/Mass Spectrometry (ID/MS) Clinical Measurement Course* was held at the National Institute of Standards and Technology hosted by the Chemical Sciences Division (CSD) on July 18-22, 2016. The training opportunity was offered as a part of the FY16 NIST International and Academic Affairs Office (IAAO)-SIM Engagement Opportunity. Participants from six NMIs from the Sistema Interamericano de Metrologia (SIM), the Regional Metrology Organization (RMO) for the Americas were invited to participate in the course which focused on the application of ID/MS methods for classical clinical biomarker (creatinine, cholesterol, and glucose) measurements. The SIM participants included representatives from the Instituto Nacional de Tecnología (INMETRO) – Brazil, Instituto Nacional de Metrología de Colombia (INM (CO)) – Colombia, Centro Nacional de Metrología (CENAM) – Mexico, Instituto Nacional de Calidad (INACAL) – Peru, and Laboratorio Tecnológico del Uruguay (LATU) – Uruguay.

During the 2015 Chemical Metrology Working Group (CMWG) of SIM meeting, several NMIs requested to receive chemical metrology training to assist in the development of their measurement services for clinical measurements. Katrice Lippa (NIST representative to the CMWG of SIM) and Valnei Cunha (Chair, CMWG of SIM) responded by proposing a one-week course to include a series of in-depth classroom lectures, hands-on and videotaped laboratory training modules, and in-class data analysis.

Coordinated by Jeanita Pritchett and Katrice Lippa, CSD organized a team of experts to provide details for the critical steps in sample preparation, instrumental analysis, and data processing related to clinical measurements. The team included Mary Bedner, Jeanice Brown Thomas, Carolyn Burdette, Johanna Camara, David Duewer, Brian Lang, Mike Nelson, Lane Sander, Lorna Sniegoski, Susan Tai, and Antonio Possolo from the Statistical Engineering Division (SED). Additionally, Mary Satterfield provided an overview of NIST and research efforts within the Material Measurements Laboratory (MML). Furthermore, the participants received biosafety training similar to that offered to NIST staff from Wing (William) Wong to learn how to safely handle biological samples.

1.2 Pre-course survey results

The participants were asked to self-assess their current knowledge and expertise through responses to a pre-course survey. The survey consisted of six subject areas: general knowledge, sample preparation, quantitation, purity, instrumentation, and measurement uncertainty. These results were used to design the most efficient format for the course to ensure that areas of need and interest were addressed throughout the course. The results from the survey are found in Appendix 1.

1.3 Course Agenda

2016 SIM Clinical Measurement Course Agenda July 18-22, 2016 National Institute of Standards and Technology Chemical Sciences Division 227/A105 July 18 2016 (Monday)

July 18, 201 Time	Topic	Instructor(s)	Section
8:00 am	Arrive at NIST; IAAO Briefing; Refreshments	Andrew Conn	
9:15 am	Welcome; Opening Remarks	Katrice A. Lippa	1
9:30 am	Overview of MML Introduction of Attendees	Mary Satterfield	
10:00 am	NIST Clinical Program Overview*; Introduction of Instructors;	Jeanita S. Pritchett; All instructors	2
11:00 am	Group Photo (In Front of Building 101)		
11:30 am	Biosafety Training (224/B309)	Wing Wong	15
12:30 pm	Lunch (NIST Cafeteria; On Your Own)		
1:30 pm	Lab Tour: 227		
2:00 pm	General Traceability and Chemical Metrology*	David L. Duewer	3
2:30 pm	Hazard Reviews*		
3:00	Break		
3:30	Internal Standards for ID/MS and Isotope Dilution in Practice*	Carolyn Q. Burdette, Jeanita S. Pritchett	4

2016 SIM Clinical Measurement Course Agenda July 18-22, 2016 National Institute of Standards and Technology Chemical Sciences Division 227/A105

Time	6 (Tuesday) Topic	Instructor(s)	Section
8:00 am	Arrive at NIST; Breakfast (NIST Cafeteria; On Your Own)		
9:00 am	Chemical Purity*	Mary Bedner and Michael A. Nelson	5
10:30 am	Density Determination (Video); Lab Tour	Brian E. Lang, Jeanita S. Pritchett, Lane C. Sander, and Lorna T. Sniegoski	
11:00 am	Break		
11:30 am	Quantitative Water Determination*	Brian E. Lang	6
12:30 pm	Lunch (NIST Cafeteria; on your own)		
1:30 pm	Calibration Approaches and Data Evaluation (video)	Mary Bedner, Michael A. Nelson, and Lane C. Sander	
3:00 pm	Break		
3:30 pm	Good laboratory Practices for Weighing (Video; Hands-On) (227/B143)	Jeanita S. Pritchett, Lane C. Sander, and Lorna T. Sniegoski	

2016 SIM Clinical Measurement Course Agenda July 18-22, 2016 National Institute of Standards and Technology Chemical Sciences Division 227/A105

Time	Торіс	Instructor(s)	Section
8:00 am	Arrive at NIST; Breakfast (NIST Cafeteria; On Your Own)		
9:00 am	Cholesterol and Glucose Overview*	Jeanita S. Pritchett and Lorna T. Sniegoski	7
9:30 am	Lab: Sample Preparation for Cholesterol (Hands-On) (227/B143 and 227/B141)	Jeanita S. Pritchett and Lorna T. Sniegoski	
11:00 am	Break		
11:30 am	Sample derivatization for GC; Separation Challenges in GC*	Jeanita S. Pritchett and Lorna T. Sniegoski	8
12:30 pm	Lunch (NIST Cafeteria; On Your Own)		
1:30 pm	Lab: GC-MS Operation and Sample Analysis (Hands-On) (227/A126)	Jeanita S. Pritchett and Lorna T. Sniegoski	
3:00 pm	Break		
3:30 pm	Data Analysis (Cholesterol)	Jeanita S. Pritchett and Lorna T. Sniegoski	7

2016 SIM Clinical Measurement Course Agenda

July 18-22, 2016 National Institute of Standards and Technology Chemical Sciences Division 227/A105 `

Time	Торіс	Instructor(s)	Section
8:00 am	Arrive at NIST; Breakfast (NIST Cafeteria; On Your Own)		
9:00 am	Creatinine Overview*	Johanna E. Camara and Jeanita S. Pritchett	9
9:30 am	Lab: Sample Preparation for Creatinine (Hands-On) (227/B143 and 227/A142)	Johanna E. Camara and Jeanita S. Pritchett	
11:00 am	Break		
11:30 am	Separation Challenges in LC*	Carolyn Q. Burdette and Lane C. Sander	10
12:30 pm	Lunch (NIST Cafeteria; On Your Own)		
1:30 pm	Lab: LC-MS(/MS) Operation and Sample Analysis (Hands-On) (227/A145)	Carolyn Q. Burdette, Johanna E. Camara, and Jeanita S. Pritchett	
3:00 pm	Break		
3:30 pm	Data Analysis (Creatinine)	Johanna E. Camara and Jeanita S. Pritchett	9
6:00 pm	Social Dinner: Dogfish Head Alehouse (800 W. Diamond Ave. Gaithersburg, MD 20878)		

**indicates that session may be videotaped*

2016 SIM Clinical Measurement Course Agenda

July 18-22, 2016 National Institute of Standards and Technology Chemical Sciences Division 227/A105

July 22, 201	6 (Friday)		
Time	Торіс	Instructor(s)	Section
8:00 am	Arrive at NIST; Breakfast (NIST Cafeteria; On Your Own)		
9:00 am	CCQM Data Review; Uncertainty Evaluation	Antonio Possolo	11
11:00 am	Break		
11:30 am	CCQM Data Review; Uncertainty Evaluation (Continued)	Antonio Possolo	11
12:30 pm	Lunch (NIST Cafeteria; On Your Own)		
1:30 pm	Reference Measurement Procedures and JCTLM*	Jeanita S. Pritchett and Susan S. Tai	12
2:00 pm	Other Biomarkers Overview*	Johanna E. Camara and Jeanice Thomas Brown	13
3:00 pm	Break		
3:30 pm	Challenges of Designing Pooled and Spiked Samples*	Johanna E. Camara and Jeanice Thomas Brown	14
4:30 pm	Wrap-Up	Katrice A. Lippa and Jeanita S. Pritchett	

1.4 Participant Listing

	N .
Affiliation	Name
Instituto Nacional de Tecnología Industrial (INTI) – Argentina	Illiana Valeria Lobatto
Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO) – Brazil	Wagner Wollinger
Instituto Nacional de Metrología de Colombia (INM (CO)) – Colombia	Sergio A. González-Mónico
Centro Nacional de Metrología (CENAM) – Mexico	Miryan Balderas Escamilla
Instituto Nacional de Calidad (INACAL) – Peru	Galia Ticona Canaza
Laboratorio Tecnológico del Uruguay (LATU) – Uruguay	Ana Silva

2. Summary

2.1. Post-course survey discussion

After completion of the course, the participants responded to a post-course survey to evaluate the effectiveness of the course. The same format was used as in the precourse survey; however, the participants were asked how well they felt each topic was presented throughout the duration of the course. Additionally, the participants had the opportunity to provide feedback about what they enjoyed about the course and make suggestions about additional topics that could be added in the future or serve as independent workshops. The general consensus from the participants was that the subject areas with the greatest needs were sufficiently or extensively covered during the course. The results from the post-course survey are found in Appendix 2. The workshop was a success as highlighted in the comments from the participants. They thoroughly appreciated the organization of the training course and the comprehensive list of topics that were covered. They also valued the willingness of the instructors to maintain contact via email to provide additional technical support and feedback.

2.2. Post-course resources

NIST provided a series of Standard Reference Materials (SRMs) value assigned for cholesterol, glucose, and creatinine in serum- and/or plasma-based materials to each participant and their home institute to aid with method development and expansion of their current capabilities. Additionally, a series of neat chemical SRMs (cholesterol, glucose, and creatinine) were provided for use in calibration solution preparation. Furthermore, videotapes of select lectures, slides of all oral presentations, and training videos were made available to all participants. The title and description of the training videos provided to the participants are found below.

Title / Technical Procedure Title	Time (min:sec)	Description
Calibration and Use of Analytical Balances	12:46	Demonstrations for several electronic balances (different mass ranges) and one mechanical balance
Preparation and Use of Calibration Solutions	19:10	Gravimetric preparation: include use of aluminum weigh boats and gas tight syringe to weigh solids and liquids
Approaches for Quantitation	38:41	Calibration models, peak integration, baselines, and interferences, reference standards and internal standards, experimental design
Method development for liquid chromatography	30:34	Basic guidelines for developing LC methods
Troubleshooting LC Instrumentation and Methods	29:16	Resolving issues associated with instrumentation and methods

2.3. Follow-up SIM comparison

A SIM inter-laboratory comparison for the measurement of glucose, creatinine, and/or cholesterol in a series of serum-based study materials is being planned for the participating NMIs in 2017. The results of this activity may be considered a SIM regional comparison, and will rely on NIST value assignment for the reference value of the study material. Participants will be asked to provide analyte mass fraction (mg/g) value assignment for a study material. Additionally, they will be asked to provide calibrant information, sample preparation and instrumentation details, control data, repeatability data, and a complete uncertainty budget. The NIST experts have agreed to continue to provide metrological support for the participants to address any concerns that may arise during their method development.

2.4 Future training courses

Due to the success of this training course, CSD intends to offer subsequent training opportunities for NMIs in the SIM region. Potential topics could include food metrology and safety, environmental contaminants, or climate change monitoring. Additional surveying of the CCQM SIM community will aid in identifying critical target areas for upcoming training opportunities.

3. Acknowledgements

The course was funded by a FY16 NIST IAAO-SIM Engagement Opportunity and the SIM Technical Committee. A sincere thanks is extended to Andrew Conn from IAAO for his assistance in organizing the logistics for the course. Also, we would like to thank Mary Satterfield, Chief of Staff from MML, for providing an overview of the research activities within MML. Finally, we would like to thank Wing Wong for providing a hands-on biosafety overview for the participants.

Appendix 1: Pre-course survey results

Appendix 2: Post-course survey results

Response 1	First of all, I want to emphasize the excellent management of the training course. Of course, the patience of all NIST colleagues was appreciated. It was a very
	pleasant staying.
Response 2	The course was very comprehensive, allowed us to have an overview of the considerations to look for in a measurement process. It provided us with valuable information to make improvements in measurement processes for glucose, cholesterol and creatinine that we have currently implemented. We were allowed to have contact with experts from different areas and we leave the door open to keep in touch with them in case of any feedback in the future.
Response 3	It covered several really important topics (purity assessment, clinical analysis, Karl Fischer determination, etc).
Response 4	The opportunity to learn from different NIST experts and the organization of the course.

Please describe what you like about the course:

Please describe any additional topics/learning objective that you would've liked covered during the training course:

Response 1	It can include more details about the preparation of the reference materials, commutability procedure, statistical evaluation of homogeneity and stability.
Response 2	I would have liked a little more detail on the side of purity.
Response 3	More information on qNMR
Response 4	The exposition of each topic was generally right for my level of knowledge on this subject.
Response 5	An evaluation of uncertainty of the thorough certification process, including stability and homogeneity.

Outside of clinical measurements, please list topics that you or other representatives from your NMI would like covered in a possible future training course:

Response 1	Determination of heavy metals in food matrix, hydrobiologic products in order to evaluate food safety; Determination of heavy metal to for environmental control (filter air, soil); Determination of heavy
	metals in minerals; Determination of neavy metals in minerals; Determination of salts purity, anions, heavy metals by coulometric titration; Determination ethanol purity.
Response 2	Determination of purity in organic compounds; Measurement of electrolytes in food and biological samples; Measurement of protein by LC-MS/MS.
Response 3	Contaminants in environmental or food samples; Coulometry; Dissolved oxygen (analysis and sensor calibration).
Response 4	<i>Purity determinations; Production of reference materials</i>
Response 5	Environmental analysis and preparation of matrix CRMs; food safety.

Appendix 3: Oral Presentations Delivered at Workshop

MATERIAL MEASUREMENT LABORATORY

NIST's Role in SIM Chemical Metrology

In order to most effectively address the unique needs of all 34 countries within SIM, whose capabilities in chemical metrology span a very broad range, we are focusing our SIM Chemical Metrology Working Group activities on training and capability assessment rather than participation in MRA-driven Key and Supplemental Comparisons

This is being accomplished through:

- Training in CMC preparation and review (e.g., SIM CMWG workshop, May 18)
- Hosting guest scientists from SIM NMI/DIs
- High-impact training courses at NIST (e.g., ID/MS Clinical Measurement Course, July 2016)

Long-Term Goal: Improved capabilities in chemical metrology across SIM and increased participation in CCQM and CIPM MRA-related activities

Meet the Instructors ID/MS Clinical Measurement Course Overview Designed to provide SIM NMI/DI laboratory personnel with in-depth classroom and hands-on laboratory experience Mary Bedner Car n Q. E • Focus on isotope dilution/mass spectrometry (ID/MS) methods in the application of clinical marker (cholesterol, glucose, and creatinine) peakratio (analyte/IS) measurements • Include lectures, hands-on sample Lane C. Si preparation/lab demonstrations, training videos and hands-on data 1.3 e/IS) processing/analysis d Use of Calibration ng Video (L. Sander MATERIAL MEASUREMENT LABORATORY NIST MATERIAL MEASUREMENT LABORATORY NIST

Post-course Resources

- NIST will provide a series of Standard Reference Materials (SRMs) that have been value assigned for cholesterol, glucose, and creatinine in serum- or plasma-based materials.
- A series of pure chemical SRMs (cholesterol, glucose, and creatinine) for use in calibration will also be provided.
- Videotapes of the select lectures may be made available to all participants.

Follow-up SIM Comparison (2017+)

- A SIM interlaboratory comparison for the measurement of glucose, creatinine, and/or cholesterol in a series of serum-based study materials
- Participants will be asked to provide analyte mass fraction (mg/g) value assignment for a study material. Additionally they will be asked to provide the following:
 - Calibrant information
 - Sample preparation and instrumentation details
 - Control dataRepeatability data
 - Complete uncertainty budget
- These results may be considered a SIM regional comparison (key or pilot), and will rely on NIST value assignment for the reference value of the study material

Welcome SIM Participants!

- Illiana Valeria Lobatto, Instituto Nacional de Tecnología Industrial (INTI) Argentina
- Wagner Wollinger, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO) – Brazil
- Sergio A. González-Mónico, Instituto Nacional de Metrología de Colombia (INM (CO)) – Colombia
- Miryan Balderas Escamilla, Centro Nacional de Metrología (CENAM) Mexico
- Galia Ticona Canaza, Instituto Nacional de Calidad (INACAL) Peru
- Ana Silva, Laboratorio Tecnológico del Uruguay (LATU) Uruguay

 Clinical Certified Reference Materials and Measurement Services at NIST

2016 SIM Clinical Measurement Course

NIST	MATERIAL MEASUREMENT LABORATORY	NIST	MATERIAL MEASUREMENT LABORATORY
			nts is essential for accurate diagnosis and cos atment of diseases.
		biologically-relevant materials (human fluids, marine species fluids and tissues)	E strange of the
recommendation or endorsement by NIST, equipment identified are necessarily the be		clinically-relevant species (elements and electrolytes, vitamins, metabolites, contaminants, proteins)	DETEL OPTION
*Certain commercial equipment, instrumer adequately specify the experimental proce		accurate, comparable reliable measurements	
		measurement infrastructure through methods, materials and da	ata
Disclaimer		NIST Biomedical and He	ealth Programs

Jessica kener Lane Sander Tracey Schock John Schiel Yamil Simon Loma Sniegoski Susan Tai Lee Yu	health monitoring materinals health moutoring materials metabolomics protein measurements metabolomics organic, chinical diagnostics SRMs, RMPs organic, chinical diagnostics SRMs inorganic, clinical diagnostics SRMs MATERIAL MEASUREMENT LABORATORY	Include lectures, hands-on sample preparation/lab demonstrations, training videos and hands-on data processing/analysis	Determination of Liquid Density Training Video (L. Sander) MATERIAL MEASUREM	Personal of a contraction of the second seco
Dan Bearden Ashiby Beasley-Green Mary Bedner Broce Benner Jeanice Brown Thomas Carolyn Brutette John Bowden David Bunk Johanna Camara Brittany Catron Trima Formolo City Davis Eric Kilpatrick Liaa Kilpatrick Jeania Pritchett Stephen Long Mark Lowenthal Jessize Beiner	volucional diagnostics SRMs organic, clinical diagnostics SRMs organic, clinical diagnostics SRMs microarthines GAP organic, clinical diagnostics SRMs hiptomics protein measurements, clinical diagnostics SRMs organic, clinical diagnostics SRMs protein measurements protein measurements protein measurements clinical standards, health monitoring materials inorganic, clinical diagnostics SRMs protein measurements protein measurements protein clinical diagnostics SRMs RMPs protein measurements mediam controline and approtein SRMs, RMPs protein measurements health monitoring materials	ID/MS CLINICAL MEASUR Pre-course survey to all participants to determine level of expertise, main training topics needed Training for the critical steps in amount of glucose, creatinine, and cholesterol determinations in serum- or plasma-based materials using ID/MS-based methods	2016 SIM CMWG Train Measurement P	RSE DETAILS

Analytical Techniques for Water and Clinical Research Areas Mary Bedner 646.02 mary.bedner@nist.gov		Vitamin D & Vitamin D Metabolite Determinations in Clinical, Food, and Dietary Supplement Matrices Carolyn Burdette 646.02 carolyn.burdette@nist.gov	
Focus Area: Water Research Developing CSD and MML Programs in Water Studies of organic disinfection byproducts in water using LC with MS, ECD, and UV detection Coordination of water research across MML Divisions and NIST Establishing collaborations with IMET Stabelishing collaborations with IMET Stabelishing collaborations with IMET Darticipation in CCQM comparisons for pu Member of MML Metabolomics Interest Gr Development of community-driven and coordination of the community-driven and coordination of community-driven and coordination of community-driven and coordination of community-driven and coordinations and contents of the community-driven and coordination in CCOM community-driven and coordination in CCOM community-driven and coordinations and the community-driven and coordinations	oup and Precision Medicine Focus Group	Main Focus: Method development for vitamin and metabolite determinations Sample Preparation, matrix specific • Internal Standard choices • Far Soluble va water soluble • Saponification, protein precipitation, etc. • Full extraction without analyte degredation LC-MS/MS Analysis • Reversed phase vs. normal phase • Els vs.APC, MRM transition choices Develop high throughput RMP for vitamin D metabolites in human serum	Other Research Interests: Method development for other analytes in similar matrices Vitamik in keip Carotenoids in baby food Model of the development for high throughput method flow through analysis of DBS (MML 2014 Angel Investor Award) Continued support for vitamin D metabolite in human serum measurements DEDAS (funded by VIII-005) Commutability study (headed by Johanna Camara, with VSBP) SBMD Development for critications and stability
Keywords: water, clinical, quality assurance, separations, mass spectrometry		Keywords: vitamins, serum, foods, dietary supplements, LC-MS/MS, SRM development	

İŞA	Applied Statistics and Measurement Uncertainty — Antonio Possolo — Statistical Engineering Division antonio.possolo@nist.gov	Forensic, and E Jean	invironmental Matrices ita S. Pritchett 646.02 vritchett@nist.gov	STEM
academia (Princeton Univ., Univ. of Education PhD (Vale Univ., 1983 Professional Service Associate Member, Commission on I Chair, Inter-American System of Met Member, Joint Committee for Guides Selected Publications Possolo, A. (2016) Spatial statistics: Possolo, A. (2015) Simple Guide for 1900. DOI 10.622NINST.TN.1900 A. R. Montoro Bustos, E. J. Peterse ICP-MS Size Measurements of NIS 10.1021/acs.analchem.5001741	s at NIST, 16 years in industry (General Electric, Boeing), 9 years in Washington in Seattle, Univ. of Lisboa, Portugal)) Isotopic Abundances and Atomic Weights (CIAAW, IUPAC) rology (SIM) Working Group on Statistics and Uncertainty	Main Focus: Method development of targeted metholic (C-MS/MS Assays LC-MS/MS Optimization Ion-pairing agents Columns screening (reverse, normal, multimote, HLIC) MRM transitions Assessing Nanotoxicity in Worm Model Systems Evaluate change in metabolites present in <i>C. elegans</i> and earthworms after oxidative manoparticles (Au, TiO ₂ , etc)	Nicotine and tobacco speci- Clinical Diagnostic Markers Creatinine, Choleste Folate Vitamers Forensic Applications Single use illicit drug printing	nethod development and analysis for hitrosamines in tobacco SRMs rol, Glucose, Billrubin, Uric Acid, material created with inkjet ffects on hair drug testing hip Awardee Time Faculty of the Year 2016
	00. DOI 10.1007/s00216-010-4379-z	Keywords: nanotoxicity, serum, urine, LC-MS(/MS), GC-MS, method development, SRM development, STEM Education		
NIST	MATERIAL MEASUREMENT LABORATORY	NIST	MATERIAL MEASUREMEN	T LABORATORY

I de ale de terrete atien la Olivier

and Standard Reference I Su 6	ce Measurement Procedures Materials for Clinical Analytes san Tai 46.02 ai@nist.gov	Vitamin and Micron Clinical, Food, and Dieta Jeanice Bro 646 jbthomas(ry Supplement Matrices wn Thomas 5.02
Main Focus: Development of RMPs Hormones in serum by LC-MSMS • Stereid hormones: cotila loi, progesterone, testosterone, estradiol • Thyroid hormones: total 17, total 13 Vitamin D metabolites in serum by LC-MSMS • 25-hydroxytitamin D3, 25-hydroxytitamin D3 • Antiepilepsy drugs in serum by LC-MSMS • Creating in the serum by LC-MSMS • Creating in serum by LC-MSMS • Creating in serum by LC-MSMS • Replexity by LC-MS Methylmalonic acid in serum by LC-MSMS Development of SRMs using RMP6 SRM 972a. SRM 2973: 25(OH)D2, 25(OH)D2 SRM 973a. SRM 2973: 25(OH)D2, 25(OH)D2	Other areas: Support for vitamin D metabolites in serum measurements • VDSP (Inded by NIH-ODS) • VIDSP (Inded by NIH-ODS) • VIDSP (Inded by NIH-ODS) • VIDSP (Inded by NIH-ODS) • Participation In COM comparisons • OSIEd and progeteromparison • OSIEd and progeteromparison • Osied and progeteromparison • Overandrosterone in urine (pilot study) • Lysergide unitro (pilot study) • Development of SRMs of drugs of abuse • Urine based (SRM 1507s, SRM 1508a) • Har based (SRM 1507s, SRM 1598a) • Serum based (SRM 1507s, SRM 2380) • Serum based (SRM 1507s, SRM 2380)	Main Focus: Characterization of NIST clinical- and food-related materials for vitamins and micronutrients • Area of expertise includes liquid chromatography, sample preparation, spectrophotometry, methods development • Serves as a coordinator for the NIST Micronutrients Measurement Quality Assurance Program • Plans research and conducts measurements in support of vitamin analysis in the clinical and food communities for laboratories worldwide	Other Research Interests: SRM Development/Support - Conducts measurements for certifications and stability - Provides continued support to the clinical community for fat- and water-soluble vitamins, carotenoids, and micronutrients in human serum measurements
topiramate SRM 967: Creatinine Keywords: hormones, serum, vitamin D metabolites, LC-MS/MS, RMP, SRM		Keywords: micronutrients, vitamins, serum, foods, dietary supplements, liquid chromatography, quality assurance, SRM development	
NIST	MATERIAL MEASUREMENT LABORATORY	NIST	MATERIAL MEASUREMENT LABORATORY

Measurement Uncertainty		Metrological Traceability	
 Are these results the same? how well do you know the result? essential part of being able to compare! are these results good enough? fit-for-purpose 		 Traceability is how you get units on your result in our simple model, convert from units of your measurement tool to units of the 'standard' the equation adjacent is a familiar "measurement model" it's converts a measured signal to a "calibrated" result 	$C_{\text{Unlown}} \frac{C_{\text{Standard}}}{S_{\text{Standard}}} S_{\text{Unlown}}$
	MATERIAL MEASUREMENT LABORATORY	NST	"Measurement Model" material measurement laboratory

MATERIAL MEASUREMENT LABORATORY

NIST

MATERIAL MEASUREMENT LABORATORY

Treasure does not Metrology Make...

- There's a treasure chest of "Best Practices in Analytical Chemistry and Biochemistry, Data Analysis, and..." that are in use at NIST
 - this treasure, while precious, doesn't make up *Metrology*
- Skillful measurements aren't enough – one needs comparability and context to support decision-making

MATERIAL MEASUREMENT LABORATORY

RESOURCES

MATERIAL MEASUREMENT LABORATORY

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.1209

Internal Standard Approach to Quantitation

- One or more compounds are added to both calibrants and unknowns as the internal standard(s)
- Calibration is based on the ratio of responses for analytes and internal standards
- <u>Advantages:</u> losses from transfers, dilutions, etc. are compensated; may compensate changes in instrumental response; less skill is required
- <u>Disadvantages:</u> calculations more complex; internal standards must be identified and used
- Internal standards are added at the earliest opportunity
- Knowledge of volumes is not required
- Quantitative transfers are not required

\sim	
	 -

MATERIAL MEASUREMENT LABORATORY

Isotope Dilution

- The internal standard choice is an isotopically labeled form of the analyte of interest
 - At least 2 mass units difference for detection
- Mixed Calibrant: known amount analyte and known amount of isotopically labeled species
- Use signal response ratios to calculate a calibration relationship
- Response Factor common in foods/dietary supplements measurements
- · Calibration Curve common in clinical measurements
- <u>Sample</u>: mixture of a known amount of matrix and known amount of isotopically labeled specie(s)

NIST

Other Types of Stable Isotopes				ID/MS	
² H	Isotope ¹ H	Exact Mass 1.007825	Abundance 0.99985	Advantages	Disadvantages
¹³ C	² H ¹² C	2.014102 12.00000	0.00015 0.9893	 Relative measurements (isotope abundances) 	 Price Limited availability of isotopically
¹⁵ N ¹⁸ O	¹³ C ¹⁴ N	13.003355 14.003074	0.0107 0.9963	 Ideal internal standard (the same element/compound) 	 labelled compounds Isotopic effects on separation
	¹⁵ N ¹⁶ O	15.000109 15.994915	Concolon for signal and	processes (e.g. fully deuterated compounds)The measured isotope abundances	
	¹⁷ 0 ¹⁸ 0	16.999131 17.999159	0.00038 0.00200	 Correction for volume/sample losses Excellent precision and accuracy 	must be accurate (spectral interferences, mass bias, detector non-linearity, etc.)

	NIST	MATERIAL MEASUREMENT LABORATORY	NIST
--	------	---------------------------------	------

Recommendations

- Relative Response Factor
- Aim for 1:1 ratio or different ratio but keep the same between calibrants and samples
- Average response, slope, etc.
- Fit for purpose discussion

Miscellaneous Considerations

Sample handling

- Add the internal standard at the earliest opportunity, i.e., before
 extraction
- Consider employing mass fraction based quantitation (use fluid masses rather than volumes)
- Devise weighing schemes so "weight by difference" does not involve the difference of two large numbers

NIST

MATERIAL MEASUREMENT LABORATORY

NIST

					-
Miscellaneous Considerations		Miscellaneous Considerations			
Calibration solutions Use at least two independently weighed cal 	librants	 Sample Introduction (Liquid Chromat Injection is a volumetric process; or that the density of calibrants and u 	quantitation with mas		
 Avoid the use of a single "stock solution" – the original solution? 		 If densities differ, a bias will be intrinjection of different masses 	oduced through the	Solvent pentane hexane	Density (g/mL) 0.629 0.659
 Dilutions are OK if analyte masses are too sweighted 	small to be accurately	 Injection volumes should be as sm 10 μL for 4.6 mm i.d. columns 3 μL for 2 mm i.d., columns 	nall as practical	cyclohexane acetonitrile isopropanol methanol acetone	0.779 0.782 0.786 0.796 0.818
Best accuracy results if calibrants closely m	natch unknowns	 If possible, the sample and calibra match the mobile phase compositi 		toluene THF water methylene chloride chloroform	0.867 0.880 1.000 1.336 1.500
	TERIAL MEASUREMENT LABORATORY	NIST	MATERIAL MEASU	REMENT LABORAT	DRY

Examples

Cholestero

 Ellerbe, P.; Meiselman, S.; Sniegoski, L.T.; Welch, M.J.; White, V.E.; Determination of Serum Cholesterol by a Modification of the Isotope Dilution Mass Spectrometric Definitive Method; Anal. Chem., Vol. 61, pp. 1718–1723 (1989).
 Z. Edwards, S.H.: Kimbert, M.N.: Pvatt, S.D.; Stihlins, S.L.: Dobin, K.D.: Wers, G.L.: Proposed Serum Cholesterol Reference Measurement.

 Euwards, S.H., Killoetty, M.M., Fyait, S.D., Subbilli, S.L., Dubulin, K.D., Myers, S.L., Poposed Serum Crotesteror Reference weasure Procedure by Gas Chromatography–Isotope Dilution Mass Spectrometry, Clin. Chem., Vol. 57, pp. 614–622 (2011).

Glucose

 White, V.E.; Welch, M.J.; Sun, T.; Sniegoski, L.T.; Schaffer, R.; Hertz, H.S.; Cohen, A.; The Accurate Determination of Serum Glucose by Isotope Diution Mass Spectrometry - Two Methods; Biomed. Mass Spectrom., Vol. 9, pp. 395–405 (1982).
 Prendergast, J.L.; Sniegoski, L.T.; Welch, M.J.; Phinney, K.W.; Modifications to the NIST reference measurement procedure (RMPP) for the

2. Frencergast, 3.L., singusta, L.I., reach, m.3., Fininey, K.W., wooncalost to the MST reference measurement procedure (NMFF) for the determination of serum glucose by isotope dilution gas chromatography/mass spectrometry, Anal. Bioanal. Chem., Vol 397, pp 1779-1785 (2010).

Creatinine

 Dodder, N. G.; Tai, S.; Sniegoski, L.T.; Zhang, N. F.; Welch, M.J.; Certification of Creatinine in a Human Serum Reference Material by GC-MS and LC-MS; Clin. Chem., Vol. 53, pp 1694–1699 (2007).

 Stokes, P.; O'Connor, G.; Development of a Liquid Chromatograpy-Mass Spectrometry Method for the High-Accuracy Determination of Creatinine in Serum; J. Chromatogr. B., Vol. 794, pp 125–136 (2003).

Cholesterol

- Add isotopically labeled cholesterols to approximately match levels in the sample
 - Cholesterol-d₇ [Cholest-5-en-25,26,26,26,27,27,27-d₇-3-ol(3β)]
 - Cholesterol-¹⁴C₄
 - Cholesteryl Oleate-¹⁴C₄
- Hydrolyze and extract the labeled and unlabeled cholesterol
- Convert into trimethyl esters for GC/MS analsysis
- Add isotopically labeled cholesterols to approximately match levels in the sample
 Cholesterol-¹³C₃ [Cholest-5-en-25,26,27-¹³C₃-3-ol(3β)]
- Hydrolyze and extract the labeled and unlabeled cholesterol
- · Convert into trimethylsilyl (TMS) derivatives for GC/MS analsysis

MATERIAL MEASUREMENT LABORATORY

Glucose

- Add isotopically labeled glucose to approximately match levels in the sample
 Glucose-¹³C₆
- Sodium azide is added and the sample is equilibrated overnight at room temperature
- Deproteinization, concentration, derivatization for GC/MS analysis

Creatinine

- Add isotopically labeled creatinine to approximately match levels in the sample
 Departure 130
 - Creatinine-¹³C₂
- Ion-exchange chromatography used to separate creatine from creatinine
 Derivatization for GC/MS analysis
- Add isotopically labeled creatinine to approximately match levels in the sample
 - Creatinine-d₃
 - Protein precipitation, concentration, reconstitution, filtration
- Dilution for LC/MS analysis

MATERIAL MEASUREMENT LABORATORY

NIST

Verification Of Accuracy

- Independent Weighings of Primary Reference Compound (neat compounds or calibration solutions)
- Independent Sets for Sample Preparation
- Use of Previous SRMs as Controls (if available) for Validation

Checking for Potential Interferences

- Blank Run injection of only the solvent used to resuspend samples look to see if there is any signal for either the isotopically labeled analyte and the unlabeled analyte
- Internal Standard Look to see if there is any signal for the unlabeled analyte
- Reference Compound Look to see if there is any signal for the isotopically labeled
 analyte
- Matrix Blank Complete sample preparation without adding the internal standard and look to see if there is any signal for the isotopically labeled analyte
- Method Blank Complete sample preparation without any sample or internal standard and look to see if there is any signal for either the isotopically labeled analyte and the unlabeled analyte

NIST

MATERIAL MEASUREMENT LABORATORY

NIST

Sample Queue Design: some suggestions Prepare an equal number of calibrant 	ts and unknown samples (approx)	Drift and Inl Plot data as a function Randomize samples	on of run order a	nd processing or		
 Intersperse calibrants and unknowns Order samples and calibrants using a To permit assessment of within samp subsamples from a single bottle for co bottles 	a random selection scheme le and between sample effects, process	ReCtar	No instrumental DM No both to Both informageneity are = 10 = - 6	No Botto to Botto Into a c - 50 a - 0.5	No horsenancial CPR Botto to Bottos tehonogonany or Sample processing off are 2.0	No instrumental DM no bala bis files Monogorety *** 0 Segare values sample
Plot measurements Levels vs run order Levels vs sample processing order (or bo	nttle fill order) material measurement laboratory	Picoser Prossing O				REMENT LABORATORY

Use of Controls

- Ideally, a measurement control should offer the same analytical challenges
 as the sample
 - Matched matrix
 - Matched analyte levels
 - Interferences
 - Bulk propertiesCommutability
- Analyte levels determined should overlap the certified or reference levels (within measurement uncertainty)
- If suitable SRMs are not available, use other commercial or in-house controls (e.g., spiked blanks)

<u> </u>	

MATERIAL MEASUREMENT LABORATORY

Concluding Thoughts...

Isotope Dilution Mass Spectrometry has great advantages

- Correction for signal drift
- Correction for matrix effects
- Correction for volume/sample losses
- Excellent precision and accuracy

Careful consideration must be taken into account

- Choice of labeled internal standard
- Equilibration and reactivity of non-labeled vs labeled
- Chemical impurities of internal standards
- Instrument calibration errors

NIST

"Freedom from adulteration or contamination"

"the quality of not being mixed with anything else" or "the quality of or condition of containing some extraneous or foreign admixture, especially of an inferior or baser kind" -The Oxford English Dictionary

Overview

- Principles and concepts: The role of purity assessments in clinical metrology
- · Analytical techniques and the information each provides
- Interpretation of chemical purity data: Combining distinct measurement inferences to achieve a sound consensus value
- · Examples: Evaluation of neat chemical standards

Purity.....

MATERIAL MEASUREMENT LABORATORY

NIST

Traceability		Traceability matters	
 " property of a measurement result whereby the result can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty." (International vocabulary of metrology - VIM) Traceability is a property of a measurement result that allows for comparability amongst similarly-calibrated results across time and space 	primary cellorado primary cellorado manufacturers wohing manufacturers manufacturers manufacturers manufacturers manufacturers	Traceability of state requires complete kno analyzed (NIST1012) This degree of underst impractical, perhaps u Traceability to SI of ne	ments of chemical purity to SI units wledge of the composition of the material tanding of chemical composition is an nattainable, state of knowledge. at materials may be <i>practically</i> realized on of chemical structure (identification) and
 Neat chemical reference materials have a central role in establishing traceability of chemical measurements 	http://www.unsportest.org/web/rofs/public/unt1/reference_materiati/ reference/MaterialinGenetiCrtssing.ahtml		
NIST	MATERIAL MEASUREMENT LABORATORY	NIST	MATERIAL MEASUREMENT LABORATORY

mportant considerations	Important considerations (continued)
 What is the measurand? Purity is a property characterized by the relative amount or entity of interest within an aggregate body Which quantity will the measurement characterize? Mole Fraction – amount relative to the aggregate of the primary component (PC) and impurity components (IC) Mass Fraction – for organic chemical species, often derived from conversion of amount of substance to mas of substance using a relative molar mass of the PC Unique species, stereoisomers, tautomers, isotopomers class of compounds? How will the identity be confirmed? 	 Define tolerable limits of uncertainty primary standard or instrument calibration CRM? Matrix measurement calibrator? What is the observed or anticipated uncertainty of the final calibrated result? A sensitivity assessment of the calibration hierarchy may provide insight to the relative weight of the uncertainty

 Gravimetry Often not viable for accurate or assessments 		NIST	WATERIAL MEASUREMENT LABORATORY
internal standard (primary ratio) Titrimetry (primary) Measures functional groups thr chemical reactivity. Traceable through calibration o Coulometry (H⁺); Karl Fischer T IC determination Differential Scanning calorimetry (restriction) 	of titrant Titration (H_2O) common for	content • Accuracy may be ac identification of all in • Limited sample prep chemistry need • Typically no deriv	echnique to determine mass fraction hieved without detection or complete apurities aration effort, chemical separation, or wet vatization, reduction, or chromatography is assessment of neat materials
Measurement methods: Direct determination of the print • Quantitative nuclear magnetic reso			o direct measurement of the primary chemical component (PC)

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.1209

Mass Balance Approach -Quantification of organic impurities	Mass Balance Approach -Quantification of organics: chromatography
 NMR – survey structural moieties of prominent and low-level impurities, may have limited specificity for highly-related isomers (low-level stereoisomers, enantiomers) Chromatographic approaches tailored to chemical properties of the PC provide high-resolution separation of structurally related compounds and are sensitive (generally) GC with MS, ECD, FID GC-MS libraries (EI) facilitate identification (NIST Mass Spec Database) FID closest to 'universal' detector – i.e. provides near-equivalent responses LC with MS, UV/DAD, CAD, NMR (off-line or on-line) CE with MS, UV/DAD 	 MS spectra provide best structural information, followed by absorbance spectra from DAD Absolute identification requires retention time and spectral matching with known standard Use of orthogonal methods to ensure comprehensiveness of identification/detection (e.g. GC and LC; different column chemistries) Use of compatible detectors in series to maximize information (e.g. UV and MS) Using data from both NMR and separation methods combined with chemical inference is highly valuable for IC species identification

Chromatography Tips and Lessons Learned: Estradiol (cont'd)	Chromatography Tips and Lessons Learned: Estradiol (cont'd)
LC-UV of identified Organic IC's: Calibration with Response Factors from External Standards	LC-UV of unidentified organic IC's: Pseudo- 'calibration' using range of response factors derived from identified impurities and the PC
Values in mg/g sample LC/UV-ph LC/UV-CN Mean SD Mean SD ?-Hydroxyestradiol 0.12 0.08 0.19 0.04 17β-Dihyroequilenin 0.32 0.02 0.31 0.01 9-Dehydroestradiol 0.17 0.02 0.17 0.02 1-Methylestradiol 0.31 0.03 0.32 0.03 4-Methylestradiol 4.88 0.09 5.23 0.13 ph = phenyl CN = cyano column CN = cyano	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.1209

NIST Cholesterol Reference Measurement Procedure (RMP)

Sample Preparation

- Weigh serum sample containing 0.2 mg cholesterol, add known mass of cholesterol- $^{13}\mathrm{C}_3$ in ethanol, and equilibrate.
- Add alcoholic KOH and heat at 37 °C for 3 hrs to saponify esters.
- Extract with 2 mL hexane, vortex, evaporate 1 mL aliquot from hexane layer under N₂. Derivatize with BSA, and heat at 60 °C for 30 min.

Calibration Standards

- Prepare primary standard solution by dissolving known mass of SRM 911c Cholesterol (purity 99.2 ± 0.4%) in known mass of ethanol (warm in hot water bath/ swirl gently).
- Add constant mass of cholesterol- ${}^{13}C_3$ in ethanol to series of tubes and add masses of primary standard solution to the tubes such that the unlabeled/labeled cholesterol ratio ranges from 0.7 to 1.2.

NIST	MATERIAL MEASUREMENT LABORATORY	NIST

NIST Cholesterol Reference Measurement Procedure (RMP)

GC/MS MEASUREMENTS

VIST	MATERIAL MEASUREMENT LABORATORY
Measurements:	Run standards containing known ratios of unlabeled to labeled material along with samples. Analyze standards first, followed by samples, then by the samples and standards in reverse order.
MS Conditions:	Quadrupole instruments, electron ionization at 70ev, Selected ion monitoring (SIM) monitoring of m/z 458 and 461(derivatives)
GC Conditions:	30 m DB-5ms (0.25 mm i.d., splitless, Column temperature: 200 °C, 0.5 min hold time, 20 °C/min to 300 °C, 5 min hold time, for a total run time of 10.5 min.

Background: Glucose

- · Glucose is a six-carbon monosaccharide
- Serves as the major source of energy for cells in the body
- Its concentration in blood is carefully regulated in healthy individuals through production of insulin that acts to stimulate absorption of glucose by the cells in liver, muscle, and adipose tissue

NIST

MATERIAL MEASUREMENT LABORATORY

Significance of Glucose in Diabetes

- Diabetes is a metabolic disorder where the body isn't able to regulate levels of glucose in the blood.
- Either insulin production or activity is reduced, leading to elevated blood levels.
- Blood glucose is measured to determine if diabetes is present and if so, to what extent is the glucose of normal ranges.
- The nature and timing of treatments depend upon these measurements, so accuracy in these measurements is important to properly diagnose and treat.

Diagnostic Testing for Diabetes

- Routine clinical laboratory measurements of blood glucose generally use enzymatic methods based upon hexokinase, glucose oxidase, or other enzymes that act on glucose.
- Such methods may not be specific to glucose and methodmethod differences can be large.
- Thus, there is a need for higher order methods to provide an accuracy base to which the routine methods can be compared.
 - Definitive method
 - Adapted Reference Measurement Procedure (ID-GC-MS method)

MATERIAL MEASUREMENT LABORATORY

NIST

NIST	Glucose	Modified	Reference	Measurement
Proce	dure (RN	MP)		

Sample Preparation

- Weigh serum sample containing glucose, gravimetrically add known mass of glucose-¹³C₆ in distilled water.
- Add 0.1 mL aliquot of sodium azide solution, swirl, then allow to equilibrate overnight.
- Deproteinize samples by adding ~2.5 volumes of ice-cold absolute ethanol, mix, then centrifuge (2500 rpm for 15 min).
- Transfer supernatant, concentrate to dryness at 40 to 50 °C under a stream of nitrogen.
- Derivatize with butylboronic acid in pyridine (95 °C for 50-60 minutes).
- Add acetic anhydride, mix, let stand 1-2 hrs, evaporate under stream of nitrogen at 40 to 50 °C.
- Reconstitute in isooctane containing 1% acetic anhydride (warm in hot water bath).
- Dilute further with isooctane-acetic anhydride; GC-MS analysis.

MATERIAL MEASUREMENT LABORATORY

NIST Glucose Modified RMP (continued)

Calibration Standards

• Prepare primary standard solution by dissolving known mass of SRM 917c Glucose (purity 99.6 \pm 0.1%) in known mass of distilled water.

 Add constant mass of glucose-¹³C₆ in distilled water to series of tubes and add masses of primary standard solution to the tubes such that the unlabeled/labeled glucose ratio ranges from 0.7 to 1.2.

· Calibrants are derivatized in a similar manner as the samples.

NIST

NIST	MATERIAL MEASUREMENT LABORATORY	NIST	MATERIAL MEASUREMENT LABORATORY
Measurements:	Run standards containing known ratios of unlabeled to labeled material along with samples. Analyze standards first, followed by samples, then by the samples and standards in reverse order.	calculated from the mass of glucose- ${}^{13}C_6$ added and the mass of the serum sample.	Representative SIM Advanced Biology of the BBA derivatives of glucose and glucose T-(qui SIM 1950, IRCIA 646.2-15-047)
MS Conditions:	Quadrupole instruments, electron ionization at 70ev, MS Quad 150 °C, MS Source 230 °C. Selected ion monitoring (SIM) monitoring of m/z 297 and 303 (derivatives).	ratios for the samples from the measured intensity ratios. • Glucose concentrations are	lon 303.0 (302.7-303.7)
GC/MS MEASUREMENTS GC Conditions: 30 m DB-5ms (0.25 mm i.d., split injection (20:1) at 200 °C temperature program: 150 °C, one minute hold time, 40°C/min to 200 °C, 10 min hold time.		 The measured ratios for each standard were subjected to linear regression analysis, and the least squares fit was then used to calculate the weight 	lon 297.0 (296.7-297.7)
Procedure	se Modified Reference Measurement (RMP)	Quantification of Glucose	

What does derivatization accomplish?

Increases volatility:

- Eliminates the presence of polar groups
- Derivatization targets O, S, N, and P functional groups (with hydrogens available)
- Increases detectability
- Increases stability

Conditions for choosing a derivatizing agent

- Produce a derivatization reaction that is 95-100% complete
- Will not cause any rearrangements or structural alterations during formation of the derivative
- Does not contribute to loss of the sample during the reaction
- Produce a derivative that will not interact with the analytical column
- Produce a derivative that is stable with respect to time

MATERIAL MEASUREMENT LABORATORY

NIST

Main types of derivatizations		Silylation derivatization Replaces active hydrogens with a TMS (trimethylsilyl) group 	מוות
 Silylation Readily volatizes the sample Most prevalent method 		 Silylation occurs through nucleophilic attack (SN2). The b the better the siliylation. 	
 Alkylation Used as the first step to further derivatizations or a certain active hydrogens 	s a method of protection of	• Silylation reagents will react with water and alcohols first. ensure that both sample and solvents are dry.	Care must be taken to
 Acylation Commonly used to add fluorinated groups (ECD) Chiral derivatization 		 Solvents should be as pure as possible. This will eliminate using as little solvent as possible as this will prevent a large 	
		 Pyridine is the most commonly used solvent. Although py tailing, it is an acid scavenger and will drive the reaction for 	
NST	MATERIAL MEASUREMENT LABORATORY		IAL MEASUREMENT LABORATORY

	Must use aprotic (no protons available) organic solvents MATERIAL MEASUREMENT LABORATORY
Acobal > Phenol > Carboxyl > Annule > Annule hydroxyl hydroxyl The order of alcohols being:	 Disadvantages Silylation reagents are moisture sensitive
The ease of reactivity of the functional group toward silylation follows the order:	Easily prepared
Many reagents require heating (not in excess of 60 °C for about 10-15 minutes, to prevent breakdown). Hindered products require long term heating.	Ability to silylate a wide variety of compounds Large number of silylating reagents available
In many cases, the need for a solvent is eliminated with silylating reagents. (If a sample readily dissolves in the reagent, it usually is a sign that the derivatization is complete).	Advantages and disadvantages of silylation • Advantages
Silylation derivatization (continued)	Adventages and disadventages of silvlation

NIST	MATERIAL MEASUREMENT LABORATORY	NIST MATERIAL MEASUREMENT LABORATORY
		The presence of a carbonyl group next to the halogenated carbons enhances the ECD.
 TMSI (Trimethylsilylimidazole) TMS-DEA (trimethlysildiethylamine) Halo-methylsilyl derivatization reagents (BMDMCS) 	and CMDMCS)	 Acylations are normally carried out in pyridine, tetrahydrofuran, or another solvent capable of accepting the acid by-product.
HMDS (Hexamethyldisilzane) TMCS (trimethylchlorosilane) TMCI (Trimethylchlorosilane)		 Acylation converts these compounds with active hydrogens into esters, thioesters, and amides.
 BSTFA (Bistrimethylsilyltrifluroacetamide) MSTFA (N-methyl-trimethylsilyltrifluroacetamide) MTBSTFA (N-methyl-N-t-butyldimethylsilyltrifluoroacetamide) 	cetamide)	 In comparison to silvlating reagents, the acylating reagents target highly polar, multifunctional compounds, such as carbohydrates and amino acids.
BSA (Bistrimethylsilylacetamide)		 Acylation reduces the polarity of amino, hydroxyl, and thiol groups and adds halogenated functionalities for ECD.
Common silylating reagent	S	Acylation derivatization

Advantages and disadvantages of acylation

Advantages

- · Addition of halogentated carbons increases detectability by ECD
- · Derivatives are hydrolytically stable
- · Increased sensitivity by adding molecular weight
- · Acylation can be used as a first step to activate carboxylic acids prior to esterfications (alkylation)

Disadvantages

- · Acylation derivatives can be difficult to prepare
- · Reactions products (acid by-products) often need to be removed before
- analysis

- · Acylation reagents are moisture sensitive
- · Reagents are hazardous and odorous

MATERIAL MEASUREMENT LABORATORY

Common acylating reagents

Fluorinated anhydrides

- TFAA- trifluoroacetic anhydride
- · PFPA-pentafluropropionic anhydride HFBA-heptafluorobutyric anhydride
- Fluoracylimidazoles
- TFAI-trifluoroacetylimidazole
- PFPI-Pentafluoropropanylimidazole
- HFBI-Heptaflurobutyrylimidazole
- MBTFA-N-Methyl-bis(trifluoroacetamide)
- PFBCI-Pentafluorobenzoyl chloride
- PFPOH- pentafluropropanol

NIST

MATERIAL MEASUREMENT LABORATORY

MATERIAL MEASUREMENT LABORATORY

Alkylation derivatization

- · Alkylation reduces molecular polarity by replacing active hydrogens with an alkyl group.
- · Used to modify compounds with acidic hydrogens, such as carboxylic acids and phenols to produce esters, ethers, alkyl amines and alkyl amides.
- · The principle reaction employed for preparation of these derivatives is nucleophilic displacement.
- Alkylation can be used in conjunction with acylation and silylation.

MATERIAL MEASUREMENT LABORATORY

Advantages and disadvantages of alkylation

Advantages

- · Wide range of alkylation reagents available
- · Reaction conditions can vary from strongly acidic to strongly basic
- · Some reactions can be done in aqueous solutions
- Alkylation derivatives are generally stable

Disadvantages

NIST

- · Limited to amines and acidic hydroxyls
- · Reaction conditions are frequently severe
- · Reagents are often toxic

NIST

	Causes	Solutions	Fronting Peak	.0	
Leaks	Leaks	 Check for leaks at the injector and press- fit connections. Replace critical seals. 			
	Analyte adsorption	 Maintain inlet liner and GC column. Use properly deactivated liners, seals, and columns. 	1. 1.	Causes	Solutions
١	Resolution/integration issues	Avoid sample overload.		Incompatible	Select appropriate stationary phase
	Incorrect column/oven program	 Optimize column temperatures and oven temperature program. 		stationary phase	
	Incorrect or variable carrier gas flow rate/linear velocity	Optimize the carrier gas glow and linear velocity.		Column overloading	Decrease amount injected, dilute sample.Increase column inner diameter and/or film
	Poor control of oven temperature programming	 Verify GC oven program falls within instrument manufacturer's recommendation. 			thickness.
	Incorrect oven equilibration time	Extend GC oven equilibration.			
	Manual injection: delay between pushing start and actual injection	 Use autosampler or standardize manual injection procedure. 			
		MATERIAL MEASUREMENT LABORATORY	NIST		MATERIAL MEASUREMENT LABORATORY
ailing Peaks			Carryover/C	Ghost Peaks	
--------------	---	---	-------------	--	--
	Causes	Solutions		Causes	Solutions
	Adsorption due to surface activity or	Use properly cleaned and	Injection 1	Gauses	Solutions
44	contamination	deactivated liner, seal, and column.		Contaminated syringe or rinse solvent	Replace rinse solvent.Rinse or replace syringe.
		Trim inlet end of column.Replace column if damaged.		Backflash (sample volume exceeds liner volume)	Inject smaller amount.Use a liner with a larger international statements.
Λ	Adsorption due to chemical composition of compound	Derivatize compound.			 diameter. Increase head pressure to
	Leak in system	 Check for leaks at all connections, replace critical seals if needed. 	Injection 2		contain the vapor cloud.Use slower injection rate.Increase split flow.
	Installation issues	Minimize dead volume.Verify that the column is cut	AL. I		Use liner with packaging.Use pressure-pulse injection.
		 Verify correct installation distances. 		Last analysis ended too soon	 Extend analysis time to all components and/or matrix interferences to elute.

		1 1	Causes	Solutions
Causes	Solutions	Spiking	Carrier gas leak or contamination	 Leak check connections and replace seals if needed.
Improper column conditioning	 Increase conditioning time and/or temperature. 		Injector or detector contamination	 Clean system and perform regular maintenance.
Contamination	Trim column and/or heat to		Column contamination or stationary phase bleed.	Condition, trim, and rinse column.
	maximum temperature to remove contaminants.Replace carrier gas and/or		Septum coring/bleeding	 Replace septum. Inspect inlet liner for septa particles ar replace liner if needed.
	detector gas filters.Clean injector and detector.		Loose cable or circuit board connections	Clean and repair electrical connection
Leak in system and oxidation of stationary phase	 Check for oxygen leaks across the entire system and replace seals and/or filters. 	Drift	Variable carrier gas or detector gas flows	 Verify flow rates are steady and reproducible; may need to replace or repair flow controller. Leak check system.
	Replace column.	W.	Detector not ready	 Allow enough time for detector temperatures and flows to equilibrate.

onse Variat	Causes	Solutions	No peaks		
	Sample issues	Verify sample concentration.		Causes	Solutions
		Verify sample preparation procedure. Verify sample decomposition/shelf life.		Injection problems	 Obstructed syringe; clean or replace syringe.
	Syringe problems	Replace syringe.Check autosampler operation.			Verify there is sample in the syringe.Injecting into wrong inlet; reset autosampler.
	Electronics	 Verify signal settings and adjust if needed. Repair or replace cables or boards. 			
	Dirty or damaged detector	 Perform detector maintenance or replace parts. 		Broken Column	 Verify carrier gas is flowing. Replace column
	Flow/temperature settings wrong or variable	 Verify steady flow rates and temperatures, 		Broken Column	Replace column
WL		then adjust settings and/or replace parts if needed.		Column installed into wrong injector or detector	Re-install column.
	Adsorption/reactivity	 Remove contamination and use properly deactivated liner, seal, and column. 		Detector problems	 Signal not recorded; check detector cables and verify that
	Leaks	 Check for leaks at all connections and repair connections as needed. 			 detector cables and verify that detector is turned on. Detector gas turned off or wrong
	Change in sample introduction/injection method	 Verify injection technique and change back to original technique. 			flow rates used; turn detector or and/or adjust flow rates.
	method	 Check that split ratio is correct. Verify that the splitless hold time is correct. 			and/or adjust flow rates.

Introduction

NST

- The concentration of creatinine in serum is a diagnostic marker for chronic kidney disease (CKD)
- Early detection of CKD, followed by drug treatments, can prevent or postpone kidney failure
 - Most simple, widespread method of detecting kidney disease is through measurement of blood creatinine concentrations
- Recognizing that more accurate blood creatinine measurements will lead to better diagnosis of early stage kidney disease, the Laboratory Working Group of the National Kidney Disease Education Program (NKDEP) outlined a series of recommendations, including development of a reference material

Creatinine

MATERIAL MEASUREMENT LABORATORY

Creatinine Reference Materials at NIST

- Crystalline, neat material
- SRM 914a Creatinine
- Matrix-based material
 - SRM 967a Creatinine in Frozen Human Serum
 - SRM 3667 Creatinine in Frozen Human Urine
 - SRM 909c Frozen Human Serum
 - SRM 1950 Metabolites in Human Plasma

NIST

of a Low-Level Creatinine Material Formulated with Synthetic Serum Johanna Camara	 SRM 967a Creatinine in Frozen Human Serum Sells 140 units/year 2 levels of creatinine: adult normal (0.847 mg/dL) and high levels (3.877 mg/dL) NIST has Reference Measurement Procedures for creatinine in serum Welch, MJ et al. Anal. Chem., 1986, 58 (8), pp 1681–1685 (ID-GC-MS) Dodder, NG et al. Clin. Chem., 2007, 53:9, 1694-1699 (ID-LC-MS)
	 NKDEP has voiced concern that the current SRM does not cover the pediatric range (<0.4 mg/dL)

 measured at 520 nm Cheap, fast, easily automated in the free nces: hemolysis, ictere glucose Enzymatic methods Fewer interferences compared acid) Creatinine + H₂O Creatine + H₂O Sarcosine + H₂O +O₂ PDD 	mia, lipemia, ammonium heparin, protein, to Jaffe (hemoglobin, bilirubin, ascorbic reatine Sarcosine + Urea	 Options for Filling the Gap Obtaining large volumes of pediatric donor serum is not feasible Creatinine remains in charcoal-stripped serum, so it cannot be used to dilute normal serum Commercial synthetic serum options offer new choices for dilution and spiking to produce desired levels of clinical analytes in serum
NIST	(Diasystems) material measurement laboratory	

What is Synthetic Serum?

- Mixture of chemicals specifically designed to have physical and chemical characteristics similar to human serum/plasma (pH, density, viscosity, protein, lipid, electrolyte, phospholipids)
 - SeraFlx E
 - Does not contain vitamins, steroids, minerals, hormones, drugs, DNA/RNA, antibodies
 - Designed for analysis of endogenous compounds
 - Contains phospholipid to control for MS ion suppression
 - SeraFlx M
 - Glucose-free
 - · Designed for analysis of xenobiotic compounds
 - · Pre-Market material from Sigma
 - Unknown content
 - Likely human serum albumin in sodium phosphate buffer

NIST

MATERIAL MEASUREMENT LABORATORY

Initial Characterization of Creatinine in Artificial Matrices

- Do these commercially prepared materials contain detectible creatinine and, if so, how much?
- ID-LC-MS analysis
 - SRM 914a Creatinine calibration standard
 - d_{3} -creatinine internal standard
 - Ice-cold ethanol protein precipitation
 - Centrifugation
 - Dry down under N₂(g)
 - Resuspend in H₂O
 Filter
 - Analyze by LC-MS

Spiked Recovery of Creatinine		Matrice		y or ore	Citinino	in oʻynano	tic Serum
 Each material was spiked in batches at several clinically- and equilibrated overnight Each batch was split and processed in triplicate by ID-LC 			Sample	Target Concentration (µg/g)	Calculated Concentration (µg/g)	Mean Measured Concentration (n=3) (µq/q)	% Recovery
			SeraFlx-E 0.5	0.5	0.509	0.509	N/A
 Recovery was calculated as (measured/expected) x 100 	%		SeraFlx-E 4	4	3.969	3.916	99
			SeraFix-E 8	8	9.005	8.419	94
			SeraFlx-E 16	16	16.786	16.476	98
			SeraFlx-M 3.3	3.3	3.295	3.295	N/A
			SeraFlx-M 8	8	4.231	4.454	105
			SeraFix-M 35	35	35.436	36.764	104
			SigMatrix Ultra 0	0	0	0	N/A
			SigMatrix Ultra 4	4	4.097	4.230	103
			SigMatrix Ultra 8	8	8.345	8.681	104
			SigMatrix Ultra 32	32	32.788	32.921	100

Conclusions

- SeraFlx-E, SeraFlx-M, and SigMatrix Ultra remain viable candidate bases or diluents for further study
- SeraFlx-E or SigMatrix Ultra could be spiked with crystalline creatinine to achieve $\approx\!\!0.4$ mg/dL goal level
- SeraFlx-E or SigMatrix Ultra could be used to dilute "normal serum" 50:50 to achieve ${\approx}0.4$ mg/dL goal level
- SeraFlx-M may be appropriate "as is" or could be spiked with small amount of crystalline creatinine to achieve ≈0.4 mg/dL goal level

Future Plans

- Requesting additional SD funds for FY2016 to continue project
- Prepare candidate mixtures for routine method/laboratory evaluation
- NKDEP has offered to help facilitate a round robin study of candidate materials
 - Manufacturers and clinical laboratories running routine serum creatinine methods
 - Jaffe assay
 - enzymatic methods
 - Siemens, Beckman, Roche, Abbott, Ortho

NST

MATERIAL MEASUREMENT LABORATORY

Separation by LC vs by MS

- Ideally you would have every analyte physically separated from each other and no coelution with any other compounds. This is not always practical or possible.
- Compounds with the same exact mass and fragmentation (e.g. isotopes) need to be physically separated by LC.
- Compounds with different masses can coelute from the column because the mass spectrometer can detect the different compounds.
- Other compounds found in the matrix can be reduced through sample preparation and chromatographic parameters.

Method Development for Liquid Chromatography

Begin sections... stop by 19:28

NIST

MATERIAL MEASUREMENT LABORATORY

Throughput vs Quality

on reducing analysis time.

MATERIAL MEASUREMENT LABORATORY

Always strive for separation quality and analyte sensitivity first, then focus

Integration

- Chromatographic resolution and/or selective detection is always the best solution!
 - Always inspect how baselines are set by the data system.
 - If appropriate, adjust integration settings and/or manually reintegrate to achieve best estimate of peak area.
 - Use peak areas rather than peak heights: peak area does not change with changes in retention.

Watch and learn

MATERIAL MEASUREMENT LABORATORY

NIST

1 2		
• M • M • M	$R_{s} = \Delta t, / \text{ ave peak width} \qquad R_{s} = [N^{1/2}/2] \cdot [(\alpha - 1)/(\alpha + 1)] \cdot [k'_{swe}/(1 + k_{swe})]$ efficiency selectivity retention $f(x) = \frac{1}{2} \int_{0}^{1/2} \int_{0}^{$	Method Development for Liquid Chromatography 19:28 to the end
	Take home message: If possible, fully separate the constituents in either the chromatographic or detection domains	

	MATERIAL MEASUREMENT LABORATORY	
MF = 1 MF < 1 MF > 1	indicates no matrix effects indicates ion suppression indicates ion enhancement	
	ak response in presence of matrix ions eak response in mobile phase	 by ion suppression/enhancement, unless the suppression doesn't allow for quantitation detection of the analyte(s) Sample preparation techniques can be used to reduce the matrix Column chemistry can be changed to reduce coelution compounds
standard solutions, you n	IS parameters based on the LC parameters and eed to reevaluate the analysis using a natural atrix effects for each analyte.	 Depending on your calibration scheme, you might want to see no matrix effects If you are able to have matrix matched calibrants, you will be less effected
onization		Ionization

- <u>Blank</u> Run injection of only the solvent used to resuspend samples look to see if there is any signal for either the isotopically labeled analyte and the unlabeled analyte
- Internal Standard Look to see if there is any signal for the unlabeled analyte
- <u>Reference Compound</u> Look to see if there is any signal for the isotopically labeled analyte
- <u>Matrix Blank</u> Complete sample preparation without adding the internal standard and look to see if there is any signal for the isotopically labeled analyte
- <u>Method Blank</u> Complete sample preparation without any sample or internal standard and look to see if there is any signal for either the isotopically labeled analyte and the unlabeled analyte

MATERIAL MEASUREMENT LABORATORY

Known Interferences

- Could be an isotope or a similar compound that can not be distinguished be the mass spectrometer
- Use standards to assess the chromatography and make sure the interfering compounds are well
 resolved

Unknown Interferences

- Could be a compound found naturally in the matrix or produced during the sample preparation that
 can not be distinguished be the mass spectrometer
- Monitor control material results, peak shape and compound ratios in samples, monitor qualitative ion transitions
- If a level seems abnormally high or abnormally low, and you have time, run the sample using a different column chemistry to remove the coeluting compound
- Adjust the MS parameters and change the ion transition(s) monitored
- If necessary, adjust the sample preparation technique to remove the interference(s)

 For LC-MS, creatine can undergo a water loss during ionization, creating a possible interference for the detection of creatinine. The compounds must be separated by LC prior to detection. 			
 Known Interference Example: Creatine For GC-MS, creatine must be separated from the creatinine before derivatization, since the reaction products are the same. Ion-exchange chromatography: The resin was slurry packed into 20 cm × 10 mm columns using water. The volume of resin in each column was 5 mL. Each column was washed with 150 mL water. The samples were added to the columns; each vial was rinsed 3 times. The creatine was eluted with 75 mL water. This fraction was discarded. The creatinine was eluted with 75 mL of 1.0 M NH4OH. This fraction was collected in 24/40 flat-bottomed round-bottom flasks. 	 LC-MS chromatograms of creatinine, creatine, and creatinine-d₃ in diluted SRM 3667 Creatinine in Frozen Human Urine. Creatine, a possible MS interferent due to water loss in the MS source, is well separated from creatinine prior to detection. 	S response (arbitrary units)	
Creatinine Interferences	Creatinine Interferences		0

Vitamin D Interferences

- Known Interference Example: Isotopes, 3-epi-25(OH)D vs 25(OH)D
 - There are studies that show the bioavailability of the isomers are not the same, therefor separate detection of each isomer is important. Currently, only 25(OH)D₃ and 25(OH)D₂ are used in the determination of total 25(OH)D serum levels and the epimers need to be fully separated by the chromatography to remove bias in the quantitation
- Unknown Interference Example: storage/preparation, Blood bag interference
 - During routine analysis of serum samples, an unresolved peak was observed with the 3-epi-25(OH)D_3 $\,$
 - Through further inspection and high resolution MS analysis, it was determined that the compound was from the collection process of the blood and had another ion transition that could be used to detect its presence.

MATERIAL MEASUREMENT LABORATORY

25(OH)D3

3-epi-25(OH)D₃ Unknown Interference

3-epi-25(OH)D₃ 3-epi-25(OH)D₃-d3

/?

MATERIAL MEASUREMENT LABORATORY

12.0 14.0 15.0

401 m/z → 383 m/z

 $404 m/z \rightarrow 386 m/z$ $419 m/z \rightarrow 401 m/z$

20.0 21.0 22.1 23.0

Evaluating and Expressing Measurement Uncertainty

Antonio Possolo July 22nd, 2016

SIM Clinical Measurement Workshop

Outline

- References

 Creatinine in Serum NIST Uncertainty Machine

 Simple Guide

 Measurement

 Uncertainty

 Probability Distributions & Random Variables

 Simple Guide Procedure
 Halocarbons in Air Calibration & Analysis

Watch and learn

Trouble shooting LC Instrumentation and Methods

N	

MATERIAL MEASUREMENT LABORATORY

Outline

- References

References

- A. Possolo (2015) Simple Guide for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Technical Note 1900 http://dx.doi.org/10.6028/NIST.TN.1900
- B. N. Taylor and C. E. Kuyatt (1994) Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Technical Note 1297 http://physics.nist.gov/Pubs/guidelines/ TN1297/tn1297s.pdf
- T. Lafarge and A. Possolo (2015) The NIST Uncertainty Machine, NCLSI Measure Journal of Measurement Science, 10(3): 20–27

Dutline	Creatinine in Serum — References	Creatinine in Serum	Creatinine in Serum — RRF
References Creatinine in Serum — NIST Uncertainty Machine Simple Guide	 P. Stokes and G. O'Connor (2003) Development of a liquid chromatography-mass spectrometry method for the high-accuracy determination of creatinine in serum 	MassFracCreat = AreaCreatSample × MassIntStd AreaIntStd × RRF × MassSample	RAF = AreaCreatCal × MassintStGCal AreatetStGCal × MassCreatCal INPUTS Value Std. Unc. DF
	Journal of Chromatography B 794: 125–136	INPUTS	AreaCreatCal 7.925871 × 10 ⁺⁵ 4.162320 × 10 ⁺⁴ 7
Uncertainty Probability Distributions & Random Variables Simple Guide — Procedure Halocarbons in Air — Calibration & Analysis	 N. G. Dodder, S. SC. Tai, L. T. Sniegoski, N. F. Zhang, and M. J. Welch (2007) Certification of creatinine in a human serum reference material by GC-MS and LC-MS <i>Clinical Chemistry</i> 53(9): 1694–1699 	AreaCreatSample Area Creatinine Sample MassintStd Mass Internal Standard Sample AreaIntStd Area Internal Standard Sample MassSample Mass Sample	MassintStructal 3.512884 2.301860 × 10 ⁻³ 3 AreaIntStructal 8.12838 × 10 ⁻⁵ 2.468830 × 10 ⁻⁴ 7 MassCreatCal 3.558677 6.817934 × 10 ⁻² 3 OUTPUT Value / µg/g Std. Unc. / µg/g DF
		OUTPUT	RRF (GUM) 9.519450 × 10 ⁻¹ 6.051330 × 10 ⁻² 11.4
		MassFracCreat Mass Fraction Creatinine Sample	RRF (GUM-S1) 9.532161 × 10 ⁻¹ 7.965566 × 10 ⁻² 11.4
Possolo — 5/65	Pessolo — 6/65	Possala 9/65	Passolo — 10/65

Relative Response Factor (RRF) DEGREES OF FREEDOM (3/3)

What's the idea behind all this?

- GUM's evaluation of u(y) relies on approximation y ≈ c₁x₁ + ··· + c_nx_n for some coefficients {c_i}
- If inputs were Gaussian random variables, then so would be the output. If inputs are Student's t random variables, output will not be Student's t
- But a Student's t may still provide a good approximation to y's distribution: need to find "right" number of degrees of freedom for this approximant

	AreaCreatSample × I AreaIntStd × RRF × M		
INPUTS	Value	Std. Unc.	DF
AreaCreatSample	6.902806 × 10+5	9.646364 × 10+3	11
MassIntStd	3.531904	9.043918×10^{-3}	6
AreaIntStd	7.643268 × 10+5	$7.932141 \times 10^{+3}$	11
RRF	9.514679×10^{-1}	6.051330×10^{-2}	11.4
MassSample	$4.369950 imes 10^{-1}$	$2.899449 imes 10^{-3}$	5
OUTPUT	Value / µg/g	Std. Unc. / µg/g	DF
MassFracCreat (GUM)	7.667736	0.508300	32.
MassFracCreat (GUM-S1)	7,700564	0.518967	9.3

NIST Uncertainty Machine

- Sample drawn from distribution of y can be downloaded for further analysis in other software environments
- Graphical and tabular output also can be downloaded
- Implements novel method to evaluate relative contributions of identified sources of uncertainty based on Monte Carlo results

Lafarge & Possolo (2015)

Creatinine in Serum NIST UNCERTAINTY MACHINE - INPUT

RRF

RRF

NIST Uncertainty Machine

uncertainty.nist.gov

- User's Manual available for download from same page
- Applicable to measurement equations y = f(x₁,...,x_n) where f is fully specified function and inputs do not depend on output
- Standard uncertainty u(y) evaluated using Gauss's formula (GUM Equation (13)) Monte Carlo Method (GUM-S1)

NIST Uncertainty Machine REQUIRED INPUTS

$y = f(x_1, \ldots, x_n)$

- For each input must specify
- Measured value x_j
- Standard uncertainty u(x_j)
- Probability distribution with mean x_j and standard deviation u(x_j)
- Any additional parameters will also have to be specified (for example, number of degrees of freedom for Student's t)

Creatinine in Serum NIST UNCERTAINTY MACHINE — OUTPUT (Gauss's Formu

Creatinine in Serum Mass Fraction

Outline

Simple Guide — Uncertainty

MEANING

Uncertainty is the condition of being uncertain (unsure, doubtful, not possessing complete or fully reliable knowledge)

Also a qualitative or quantitative expression of the degree or extent of such condition

It is a subjective condition because it pertains to the perception or understanding that **you** have of the object of interest

Simple Guide — Measurement Uncertainty

Measurement uncertainty is the doubt about true value of measurand that remains after making a measurement Mea

Measurement uncertainty is described fully and quantitatively by probability distribution on set of values of measurand

Simple Guide — Probability distribution

 Frequency distribution of students' estimates Depicts dispersion of measurement results Characterizes students' collective uncertainty

Random Variables

- Random variable is a mathematical model for unknown value of a quantity that has a probability distribution as an attribute
 - All quantities about whose values there is uncertainty can be modeled as random variables Even if the quantity value is fixed (but unknown)
 Irrespective of whether they relate to *chance* events

Outline

)	
D	Probablity Distributions & Random Variables

Simple Guide — Probability

- Probability distribution is mathematical object that may be visualized by analogy with distribution of may be visualized by analogy with mathematic mass in region of space Oil paint on carvas applied with painter's palette knife • Thickness of coating is uneven • Thickness of coating is uneven
- Mass of paint on subset of canvas represents probability of subset
- Probability may be interpreted in any one of many different ways: two common interpretations are
 Subjective degree of belief (credence) Long-run frequency

Probability Distributions & Random Variables

- Random variable Ar(B) describes atomic weight of boror in sample known to come from one of main commercial sources in US, Turkey, Chile, Argentina, or Russia
- Probability density gives probability of A_r(B)'s value being in any given interval as area under curve

Outline Simple Guide — Procedure

Simple Guide — Procedure (1/4)

Define measurand

- · Formulate measurement model Measurement equations Measurand is function of inputs
- Observation equations Measurand is function of parameters of probability distributions of inputs
- EXAMPLE Observed rupture stress of alumina coupc has Weibull probability distribution, and expected rupture strength (measurand) is known function of Weibull shape and scale parameters

Simple Guide — Procedure (2/4)

- Observe or estimate values of inputs
- Evaluate associated uncertainties
- Possolo & Elster (2014) Evaluating the uncertainty of input quantities in measurement models Metrologia, 51(3): 339–353 Elicitation of expert knowledge (MATCH) optics.eee.nottingham.ac.uk/match/uncertainty.php

Simple Guide — Procedure (3a/4)

UNCERTAINTY EVALUATION — Types

- Bottom-up (Uncertainty Budget + GUM)
- Top-down (Interlaboratory study)

UNCERTAINTY EVALUATION - Modes

- Measurement Equation NIST Uncertainty Machine
- Observation Equation Custom statistical methods

Simple Guide — Measurement Models

 Measurement Equation for temperature t measured using PRT $\boldsymbol{t} = t_0 + (R/R_0 - 1)/\alpha$ Observation Equation for mean temperature **t** of thermal bath, using readings taken every minute during period of 100 min

WHITE NOISE $\epsilon_1, \epsilon_2, \dots$ independent Gaussian RVs with mean 0 and standard deviation d

 $t_i = \boldsymbol{\tau} + \varphi_1(t_{i-1} - \boldsymbol{\tau}) + \varphi_2(t_{i-2} - \boldsymbol{\tau}) + \varepsilon_i$

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.1209

Simple Guide — Procedure (4/4)

- Measurement Result Provide estimate of measurand and report evaluation of associated uncertainty:
 - Standard uncertainty (for scalar measurands), or analogous summary of dispersion of values attributable to measurand (for non-scalar measurands)
 - Coverage region Set of possible values of measurand that, with specified probability, is believed to include true value of measurand
 - Probability distribution for value of measurand, characterized either analytically (exactly or approximately) or by suitably large sample

Outline
Simple Guide
Measurement
Uncertainty
Probablity Distributions & Random Variables
Halocarbons in Air — Calibration & Analysis

HCFC 22 — Measurement

 GC-MS applied to air in sample cylinder and to air in lot standard in close temporal proximity produces instrumental indications S for sample and L for lot standard

• Measurement based on ratio r = S/L

 SAMPLE
 RATIO
 SAMPLE
 RATIO

 CC412019
 0.9893637
 CC416173
 0.9655671

 CC412019
 1.0192335
 CC416173
 0.9717108

 ...
 ...
 ...
 ...

Possolo - 49/

HCFC 22 — Measurement

 Translate ratios into amount-of-substance fractions traceable to the International System of Units, and qualify them with evaluation of measurement uncertainty

Halocarbons in Air (SRM 1722)

- Chlorodifluoromethane (CHCIF₂) HCFC 22 ~ 240 pmol/mol
- Propellant and refrigerant with very high global warming potential (1810 times greater than CO₂) and unacceptably high ozone depletion potential

 18 cylinders filled with northern continental air at Niwot Ridge, Colorado (NOAA)

HCFC 22 — Measurement

- Make measurements of calibration standards with amount fractions of HCFC 22 that are traceable to SI and that include range of amounts in SRM
 Each standard has certified amount fraction of HCFC 22 qualified with statement of measurement
- Build analysis function: given instrumental indications for a cylinder in SRM, produces estimate of amount fraction of HCFC 22 in cylinder
- of amount fraction of HCFC 22 in cylinder • Evaluate uncertainty associated estimate

Calibration & Analysis — Concept

Calibration Data

- Amounts-of-substance fractions of measurand in several standards c1,..., cn and associated uncertainties u(c1),..., u(cn)
- Corresponding instrumental responses r₁,..., r_n and associated uncertainties u(r₁),..., u(r_n)
 Analysis
- Use calibration data to build analysis function that, given instrumental responses, produces estimates of amount-of-substance fractions of measurand in cylinders

Possolo - 52/65

Calibration & Analysis — Illustration

Errors.	in-Variable	es — Con	cents

- Observed ratios for the standards differ from true ratios owing to measurement error: r_j = ρ_j + δ_j
 Measured amount-of-substance fractions for the
- Measured amount-of-substance fractions for the standards differ from true fractions owing to measurement error: $c_j = \gamma_j + \epsilon_j$
- To build a model for relationship between ratios $\{r_j\}$ and amount-of-substance fractions $\{c_j\}$ must take into account errors in both variables
- Model for analysis function typically is polynomial of low degree

REFERENCES • ISO 6143:2001 Gas analysis — Comparison methods for determining and checking the composition of calibration gas mixtures

HCFC 22 — Calibration

- composition of calibration gas mixtures
 F. R. Guenther and A. Possolo (2011) Calibration and uncertainty assessment for certified reference gas mixtures, Analytical and Bioanalytical Chemistry 399: 489–500
- HCFC 22 Calibration Data

STANDARD	r	c pmol/mol	u(c) pmol/mo
FF14687	0.9124537	215.00	0.80
FF14687	0.8951557	215.00	0.80
AAL073358	0.9204826	221.50	3.00
AAL073358	0.9209551	221.50	3.00
FF4266	0.9638986	231.22	0.60
FF4266	0.9635659	231.22	0.60
FF23619	1.0231399	241.80	0.90
FF23619	1.0243111	241.80	0.90
FF23624	1.0479179	256.84	0.63
FF23624	1.0736115	256.84	0.63

NIST Consensus Builder

NIST Consensus Builder

Antonio Possolo July 22nd, 2016

SIM Clinical Measurement Workshop

NIST

Ρι

Degrees of Freedom

CIPM (2014)

 Uncertainties evaluated at level of one standard

- uncertainty
- Information must be given on number of effective degrees of freedom required for proper estimation of level of confidence
- Number of degrees of freedom
 - Conveys reliability of associated evaluation of measurement uncertainty
 Expresses extent of underlying evidentiary basis

NIST Consensus Builder

	and the second
About the MET Common Builder	taken .
	000 000 100, 00 00, 00
the fact of the second s	Manual Adda at
	NUMBER AND ADD ADD ADD
	Decisi di cherteri si
Draw a rabative pages	(Sector Sector Sector Company)
Defense and	Automotive of Cogness of Streams
Name and Address of Street, or other	#1812#
	Transportation in the local division of the
1948-118-	10
	Trans Location
	a litera dana disarika

pose — Consensus Value	Purpose — Degrees of Equivalence		NIST Consensus Builder — Inputs	
 Combine measurement results obtained by different laboratories or by application of different measurement methods, into consensus estimate Qualify consensus estimate with evaluation of measurement uncertainty that captures Stated uncertainty is associated with individual measured values Additional component of uncertainty uncovered when measured values are intercompared dark uncertainty 	 Differences between measured values and consensus value, and associated expanded uncertainties (0₁, U₁₉₅₅(0₁)), (0_n, U₁₉₅₅(0_n)) Differences between pairs of measured values, and associated expanded uncertainties (B₁₂, U₁₉₅₅₅(B₁₂)), (B_{n-1n}, U₁₉₅₅₅(B_{n-1n})) 		 Lab names Measured values x₁,, x_n Standard uncertainties u₁,, u_n associated with measured values Numbers of degrees of freedom v₁,, standard uncertainties are based on Coverage probability 	(REQUIRED) (REQUIRED) (REQUIRED) (OPTIONAL) (REQUIRED)
2/22		3/22		6/22

Pinciples (1/4) Pinciples Pinciples Pinciples (1/2) Pinciples (1/2)	principles (2/4) P2 No measured value should dominate consensus value simply because associated measurement uncertainty is much smaller than uncertainties associated with other measured values being combined	Approaches	Prescription expressionImage: constraint of the state of the s
Principles (3/4)	Principles (4/4)	Prescriptive Approaches Cox (2002, 2007)	Model-Based Approaches 1/2
(3/4)	Principles (4/4)	Prescriptive approaches Cox (2002, 2007)	Mouet-based Approaches 1/2
	P4 Statistical procedure used for data reduction should be determined only after substantive	 Procedure A Special case of DerSimonian-Laird 	Laboratory Effects Model

P3 Participating laboratories and measurement methods should be selected and characterized sufficiently well to warrant belief that measured values, taken as a group, are roughly centered at true value of measurand P4 Statistical procedure used for data reduction should be determined only after substantive data selection, and exploratory analysis of measurement results

DerSimonian-Laird
Hierarchical Bayes
Linear Pool

 Procedure A Special case of DerSimonian-Laird NICOB selects it automatically when no heterogenity is detected Largest Consistent Subset (LCS) Violates P1 Other shortcomings reviewed by Toman & Possolo (2009, 2010: ACQUAL 14, 15) 	12/22	Laboratory Effects Model $\star x_i = \mu + \lambda_i + \epsilon_j$ x_i Valued measured by lab $j = 1,, n$ μ Measurand λ_i Effect of lab j ϵ_j Measurement error for lab j

Introduction

- In addition to creatinine, cholesterol, and glucose, NIST provides measurement services for other biomarkers
 - Additional classic blood chemistry
 - o Urea, uric acid, glycerides
 - Nutritional markers
 - $\circ~$ Pyridoxal 5'-phosphate (vitamin $B_6),$ tocopherols, retinol, beta-carotene, 25-hydroxyvitamin D, fatty acids
 - Hormones
 - o Cortisol, progesterone, testosterone

Determination of Pyridoxal 5'-Phosphate (PLP) in SRM 3950 Vitamin ${\rm B_6}$ in Frozen Human Serum

- Vitamin B_6 status associated with multiple disease states - Cardiovascular disease, stroke, hypertension
- PLP is the major circulating form of vitamin ${\sf B}_6$ and the most common direct measure of this vitamin in serum or plasma
- Lack of reference materials and methods to allow comparison of multiple
 measurement methods and capabilities of different laboratories
- NIST developed an ID-LC-MS/MS method for the quantification of PLP in serum in order to assign values to the new SRM 3950 Vitamin $\rm B_6$ in Frozen Human Serum
- PLP certified values were the result of combining values from NIST ID-LC-MS/MS with Centers for Disease Control and Prevention (CDC) LC-fluorescence values

MATERIAL MEASUREMENT LABORATORY

Current State of Candidate SRM 3949 Folate Vitamers in Frozen Human Serum

- Single-donor serum from 15 donors was screened at the CDC by ID-LC-MS/MS for all 5 folates + MeFox
 - Zia Fazili
- NIST was able to create a blending protocol which should achieve the desired
- concentrations of 5-mTHF and folic acid in all 3 SRM levels without dilution or spiking Some minor folates required spiking to be detectable
- Measurements at NIST and the CDC by ID-LC-MS/MS to obtain final data for certified and reference values

Analyte	Conc. ng/mL	Method	Reference
T4	50-110	LC-MS LC-MS/MS	Clin Chem 2002, 48, 637 Clin Chem 2005, 51, 161
ТЗ	0.5-2	LC-MS/MS	Anal Chem 2004, 76, 5092 Clin Chem 2005, 51, 2303
Cortisol	30-230	LC-MS LC-MS/MS	Anal Chem 2004, 76, 1008
Estradiol	<0.01-0.35 (F) 0.01-0.04 (M)	LC-MS/MS	Anal Chem 2005, 77, 6359
Progesterone	0.15 to 25 (F) <0.05-0.3 (M)	LC-MS/MS	Anal Chem 2006, 78, 6628
Testosterone	0.2-0.75 (F) 3-10 (M)	LC-MS/MS	Anal Bioanal Chem 2007 388, 1087-1094
Norandrosterone (in urine)	2 (threshold)	LC-MS/MS	Anal Chem 2006, 78, 3393
			MATERIAL MEASUREMENT LABORATORY

Higher-order RMP for Hormones in Serum and Urine

MATERIAL MEASUREMENT LABORATORY

			MATERIAL MEASUREMENT LABORATORY	NIST	MATERIAL MEASUREMENT LABORATORY
19-NA	CRM (NMIA)	19-NA- <i>d</i> ₄	N/A		
Testosterone	CRM (NMIA)	Testosterone-d ₃	SRM 971		
Progesterone	Sigma	Progesterone-13C2	IRMM 347, SRM 971	0=	
Estradiol	Sigma	Estradiol-d ₃	IRMM 576, 577, 578		
Cortisol	SRM 921	Cortisol-d ₃	IRMM 192, 193, SRM 971		
Т3	CRM (IRMM)	T3- ¹³ C ₉	N/A		
Т4	CRM (IRMM)	T4- ¹³ C ₆ or T4-d ₅	N/A		
Analyte	Ref Compound	Internal Standard	Control CRM (serum-based)		CH ₃
nigher	-order Ri	MPs for Horr	nones	Structure of Pro	ogesterone

• LC/MS/MS • Strong product ions from transitions at m/z 315 \rightarrow 97 and m/z 317 \rightarrow 99	Internal Standard : Progesterone-13C2
 ~ up to 230 ng/mL (pregnancy) Male serum: <0.05 to 0.3 ng/mL 	TGA: <0.01% Karl Fischer: 0.024% ± 0.018%
 ~ 0.15 to ~ 25 ng/mL (non-pregnancy) 	GC-FID: 99.7% ± 0.5% DSC: 99.7% ± 0.09%
Low concentrations in serum Female serum:	Indirect method
	qNMR: 99.6% [98.09, 99.98] (U ₉₅)
incandescent light at reduced intensity	Direct method
 Progesterone is light sensitive Prepared standards and samples with minimal exposure to light 	Reference compound: Sigma lot # 065k0171
C/MS/MS Method for Progesterone in Serum	Reference Compound and Internal Standard

Summary	of M	lethod	s for Pro	geste	erone	Considerations when implementing	g D Me H	H ₉ C H
	Lab CENAM KRISS LGC NIM NIST NMIA NMIA PTB	Method GC/MS ID-LC/MS/MS ID-LC/MS/MS ID-GC/MS & ID-LC/MS/MS ID-GC/MS ID-GC/MS	Primary Stant Sigma Sigma #065k0171 Candidate LGC RM 1891 Dr. Ehrenstorfer, Germany Sigma #056k0171 Dr. Ehrenstorfer, Germany NMU-purified material Sigma # 065k0171	ard Purity assessed by Self NIST Self Supplier Self Self Self	Internal Standard Cortisol-43 Progesterone- ¹³ C ₂ Progesterone- ¹³ C ₂ Progesterone- ¹³ C ₂ Progesterone- ¹³ C ₂ Progesterone- ¹³ C ₂	 Natural isotope effects Choice of labeled internal standard (d vs ¹³C) Non-equilibration Chemical impurities of internal standards Instrument calibration errors 	Progesterone-d ₃ subject to intramolecular rearrangement	Progesterone- ¹³ C ₃
NIST			MA	FERIAL ME	ASUREMENT LAE	NIST	es er es la la la massratio (analyte/IS) MATERIAL MEASU	135 128 104 106 108 110 112 114 mass ratio (analyte/15) REMENT LABORATORY

Currently Directed	omparison Studies are d Toward the Measurement of: tinol, α-tocopherol, γ/β-tocopherol, <i>trans</i> - and total		
carotene, trans- and total α -	: Retinyl palmitate, δ -tocopherol, total <i>cis</i> - β -carotene, <i>trans</i> - and total lycopene, total α - and β -tal zeaxanthin, coenzyme Q ₁₀ , phylloquinone, and	2016 SIM Clinica	e Measurement Procedures and JCTLM I Measurement Course ett, Susan Tai, and Ashley Beasley Green
NIST	MATERIAL MEASUREMENT LABORATORY	NST Nitrael latitive of Brodech and Nationage 13. Supervised Connects	MATERIAL MEASUREMENT LABORATORY
	MATERIAL MEASUREMENT LABURATURT		

Standardization	of Clinical	Measurements

- Clinical measurements provide medical information for patient care
 - Health care providers use clinical measurements to make medical decisions for patients
- Therefore, high accuracy and standardization of clinical analytes is imperative for high quality medical practice
- Significant step toward achieving high quality and traceable measurements is via reference measurement procedures and reference materials
- Joint Committee for Traceability in Laboratory Medicine (JCTLM)

 Plays a significant role in the standardization and global harmonization of clinical
- analytes
 Establishes a database of available higher-order reference materials, available higher-order reference measurement procedures and reference measurement laboratories for laboratory medicine

Clin Biochem Rev. 2007 Aug; 28(3): 105-114.

NIST	MATERIAL MEASUREMENT LABORATORY	NIST	MATERIAL MEASUREMENT LABORA	TORY			
	This Directive recognizes the importance of certified reference materials in reducing inter- and intra-laboratory variability		100				
-nationall	y/internationally recognized certified reference materials	 Purpose: To establis services of laborato 	sh criteria and processes for listing reference measure	nent			
order"		-	oup 2 (WG2): Reference Measurement Laborat				
Essential Re • IVD Calibrat	quirements tors and/or control materials must be traceable to <u>"standards of a higher</u>	publishing, list(s) of Higher Order Certified Reference Materials and Reference Measurement Procedures required for industry compliance with the EC IVDD					
	the entire EU market with one single product approval (CE Mark)	Procedures Purpose: To establic	sh a process for identifying, reviewing against agreed o	riteria and			
	Eliminate trade barriers within Europe by ensuring access to		oup 1 (WG1): Reference Materials and Referen	ce			
	Stated Purpose of Directive		atory medicine as a means to reduce between method roved clinical outcomes and patient safety	variability in			
* * * *	EU IVD Directive went into effect in 2003 It affects U.S. IVD industry that exports to EU	Purpose: To produce	oup (WG) on Traceability: Education and Prome e and promote educational materials to demonstrate the	ne value of			
.***.	A New Driver:	Medicine (JCTLI	(I)	Jo t Litt			
New Regu	latory Requirement: EU IVD Directive		on Traceability in Laboratory	TOTIM			

	FERIAL MEASUREMENT LABORATORY	NIST	MATERIAL MEASUREMENT LABORATORY
RMSs for entry into databas analyte categories: • Blood gases • Coagulation factors • Electrolytes • Metabolites and substrates • Non-electrolyte metals • Nucleic acids • Vitamins and micronutrients	 e for the following Blood grouping Drugs Enzymes Microbial serology Non-peptide hormones Proteins 	 samples of biological measurement proced ISO 15194: <i>In vitro</i> di samples of biological content of supporting ISO 15195: Laboratori laboratories ISO 18153: <i>In vitro</i> di biological samples 	agnostic medical devices Measurement of quantities in origin Requirements for certified reference materials and the
ICTLM Review Process Review teams of experts rev 	,	RMPs • ISO 17511: In vitro di	andards for Higher-Order CRMs and agnostic medical devices Measurement of quantities in Metrological traceability of values assigned to calibrators and

Definitions of Reference Materials

- Reference Material (RM): material, sufficiently homogeneous and stable with reference to specified properties, which has been established to be fit for its intended use in measurement or in examination of nominal properties [VIM:1993, 5.13]
- Certified Reference Material (CRM): reference material, accompanied by documentation issued by an authoritative body and providing one or more specified property values with associated uncertainties and traceabilities, using valid procedures [VIM:1993,5.14]
- Standard Reference Material (SRM): Certified Reference Material (CRM) issued by the National Institute of Standards and Technology (NIST)
 - · Homogeneous, stable material well-characterized for one or more chemical and/or physical properties
 - Assist laboratories worldwide in validating analytical measurements of chemical composition

MATERIAL MEASUREMENT LABORATORY

NIST Clinical Diagnostic SRMs For calibration/traceability • 17 Pure, Crystalline Standards SRM 911c Cholesterol SRM 914a Creatinine

- 2 Solutions (ethanol)
- SRM 2972a Vitamin D Calibration Solutions
- · For method validation (to improve accuracy and comparability) 20 Serum/Plasma Materials
 - SRM 1951c Lipids in Frozen Human Serum
 - · SRM 1955 Homocysteine and Folate in Frozen Human Serum
 - SRM 956c Electrolytes in Frozen Human Serum
 - 8 Urine Material
- SRM 3668 Mercury, Perchlorate, and Iodide in Frozen Human Urine SRM 3667 Creatinine in Frozen Human Urine

Modes Used at NIST for Value-Assignment of Reference Independent Analytical Methods Approach for Materials for Chemical Composition Certification of Organic Constituents in SRMs NIST Special Publication 260-136: Definition of Terms and Modes used at NIST for Value-Assignment of Reference Materials for Chemical Measurements Use of Multiple Analytical Methods to Exploit Difference in 1. Certification at NIST Using a Primary Method (Definitive Method or Reference Measurement Procedure) with Confirmation by Other Me 2. Certification at NIST Using Two Independent Critically-Evaluated Methods 3. Certification/Value-Assignment Using One Method at NIST and Different Methods by Outside Collaborating Laboratories Isolation and Extraction Cleanup 4. Value-Assignment Based On Measurements by Two or More Laboratorie Using Different Methods in Collaboration with NIST Separation and Detection 5. Value-Assignment Based on a Method-Specific Protocol 6. Value-Assignment Based on NIST Measurements Using a Single Method or Measurements by an Outside Collaborating Laboratory Using a Single Method imize the possibility oundetected bias in 7. Value-Assignment Based on Selected Data from Interlaboratory Studies MATERIAL MEASUREMENT LABORATORY MATERIAL MEASUREMENT LABORATORY

VIM Definition of a Reference Measurement Procedure

"Measurement procedure accepted as providing measurement results **fit for their intended use** in assessing measurement trueness of measured quantity values obtained from other measurement procedures for **quantities of the same kind**, in calibration, or in characterizing reference materials" [VIM:1993, 2.7]

- In simpler terms, a RMP is a measurement procedure which:
 Provides measurements which have been thoroughly
 - assessed for bias
 - Has been validated to measure what it is intended to measure
 - Provides the results that we need

NIST

MATERIAL MEASUREMENT LABORATORY

NIST

MATERIAL MEASUREMENT LABORATORY

Uses of Reference Measurement Procedures (RMPs)

Assessment of the performance characteristics of routine assay

· Detection of analytical biases on quantities in routine samples

· Value-assignment of certified reference materials (CRMs)

Comparison of routine assays

systems (instrumentation and reagents)

	Eastant	Type	Subclause in this international Standard	[ISO 15193:2009]	
ISO Guide 15193:2009 In vitro diagnostic medical devices Measurement of quantities in samples of biological origin Requirements for content and presentation of reference measurement procedures	Ter rapi Contenti di Contenti	Meastainy Optional Optional Optional Stanialistry Optional Optional Optional Optional Optional Optional Optional Meastainy		Mandatory Descriptive I • Title • Forward • Warning and safety precautions • Scope • Type of materials to which the RMP will be applied • Objective of the RMP • Limits for values • Interferences • Reagents (description and use) • Apparatus (description, preparation	Elements for RMPs: Principle and method of measureme Sampling and Samples: Pre-analytical factors that influence measurement Sample storage Sample preparation Data processing Analytical performance Inter-laboratory validation References Dates of authorization and revision

Procedures	d jci	LM	
Toxic elements in whole blood/serum/urine: RNAA(INAA (As, Cd, Co) iD/ICP-MS (Cd, Pb, Hg) Nutritional elements/electrolytes in whole blood/serum: RNAA/INAA (Cu, Zn) AA (Ca) FAAS/FAES (Li, K, Na) ID/ICP-MS (Ca, Mg, K, Na) ID/ICP-MS (Ca, Li, Mg, K) Coulometric titration (Cl) Gravimetry (Na) Metabolites/biomarkers in serum:	59 RMPs in Total 28 RMPs in Organic • Antiepileptic drugs in serum: • ID/LC-MS/MS (lamotrigine, phenobarbital, phenytoin, topiramate) • Thyroid and steroid hormones in serum: • ID/LC-MS/MS (cortisol, 17b-estradiol, norandrosterone, progesterone, testosterone, total tihiodothyronine)	Challenges of Designing I Samples 2016 SIM Clinical Measurement Course	
 ID/GC-MS (creatinine, glucose, homocysteine, total cholesterol, total glycerides, triglycerides, urea, uric acid) ID/LC-MS (creatinine, homocysteine) ID/LC-MS/MS (homocysteine) 	Vitamin metabolites in serum: ID/LC-MS (methyltetrahydrofolic acid) ID/LC-MS/MS (folic acid, 25- hydroxyvitamin D2, 25-hydroxyvitamin D3, methyltetrahydrofolic acid)	Jeanice Brown Thomas, Johanna Camara, Da	avid Duewer, Margaret Kline MATERIAL MEASUREMENT LABORATORY

Donor	PGA	5-mTHP	THP	5-fTHF	5,10-	MeFox ^a	Leve		PGA	Target concen 5-mTHF	tration (nmol/l THF	.) MeFox
	(nmol/L)	(nmol/L)	(nmol/L)	(nmol/L)	methenylTHF ^a (nmol/L)	(nmol/L)						
А	1.8 ± 0.4	22 ± 1.3	0.72 ± 0.3	<lod< td=""><td><lod< td=""><td>0.32 ± 0.0</td><td>1</td><td></td><td>1 ± 0.5</td><td>10 ± 5</td><td>na</td><td>na</td></lod<></td></lod<>	<lod< td=""><td>0.32 ± 0.0</td><td>1</td><td></td><td>1 ± 0.5</td><td>10 ± 5</td><td>na</td><td>na</td></lod<>	0.32 ± 0.0	1		1 ± 0.5	10 ± 5	na	na
в	1.0 ± 0.2	33 ± 0.5	0.57 ± 0.1	<lod< td=""><td><lod< td=""><td>2.98 ± 0.0</td><td>NIST uses contract</td><td>1</td><td>10 ± 4</td><td>50 ± 5</td><td>na</td><td>na</td></lod<></td></lod<>	<lod< td=""><td>2.98 ± 0.0</td><td>NIST uses contract</td><td>1</td><td>10 ± 4</td><td>50 ± 5</td><td>na</td><td>na</td></lod<>	2.98 ± 0.0	NIST uses contract	1	10 ± 4	50 ± 5	na	na
С	4.1 ± 0.3	16 ± 1.1	0.38 ± 0.1	<lod< td=""><td><lod< td=""><td>1.70 ± 0.0</td><td>clinical research</td><td></td><td>5 ± 3</td><td>30 ± 5</td><td>5 ± 3</td><td>5 ± 3</td></lod<></td></lod<>	<lod< td=""><td>1.70 ± 0.0</td><td>clinical research</td><td></td><td>5 ± 3</td><td>30 ± 5</td><td>5 ± 3</td><td>5 ± 3</td></lod<>	1.70 ± 0.0	clinical research		5 ± 3	30 ± 5	5 ± 3	5 ± 3
D*	14.1± 2.0	36 ± 1.3	1.27 ± 0.3	<lod< td=""><td><lod< td=""><td>0.39 ± 0.0</td><td>laboratory for the collection</td><td></td><td></td><td></td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td>0.39 ± 0.0</td><td>laboratory for the collection</td><td></td><td></td><td></td><td></td><td></td></lod<>	0.39 ± 0.0	laboratory for the collection					
Е	0.6 ± 0.2	8 ± 0.6	0.59 ± 0.3	<lod< td=""><td><lod< td=""><td>0.80 ± 0.1</td><td>and pooling of sera</td><td>Combine</td><td></td><td>neoretical conc</td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td>0.80 ± 0.1</td><td>and pooling of sera</td><td>Combine</td><td></td><td>neoretical conc</td><td></td><td></td></lod<>	0.80 ± 0.1	and pooling of sera	Combine		neoretical conc		
F*	21.3 ± 3.0	72 ± 3.8	2.23 ± 0.3	<lod< td=""><td>0.6 ± 0.1</td><td>0.53 ± 0.0</td><td></td><td>donors</td><td>PGA</td><td>5-mTHF</td><td>THF</td><td>MeFox</td></lod<>	0.6 ± 0.1	0.53 ± 0.0		donors	PGA	5-mTHF	THF	MeFox
G*	1.6 ± 0.4	16 ± 2.1	0.50 ± 0.1	<lod< td=""><td><lod< td=""><td>0.50 ± 0.1</td><td>1</td><td>C, E, G, K, N</td><td></td><td>13.2</td><td>na</td><td>na</td></lod<></td></lod<>	<lod< td=""><td>0.50 ± 0.1</td><td>1</td><td>C, E, G, K, N</td><td></td><td>13.2</td><td>na</td><td>na</td></lod<>	0.50 ± 0.1	1	C, E, G, K, N		13.2	na	na
н	1.8 ±0.5	26 ± 1.0	0.86 ± 0.5	<lod< td=""><td><lod< td=""><td>1.53 ± 0.1</td><td>2</td><td>D, F, J, L , N</td><td></td><td>44.55</td><td>na</td><td>na</td></lod<></td></lod<>	<lod< td=""><td>1.53 ± 0.1</td><td>2</td><td>D, F, J, L , N</td><td></td><td>44.55</td><td>na</td><td>na</td></lod<>	1.53 ± 0.1	2	D, F, J, L , N		44.55	na	na
1	1.0 ± 0.3	27 ± 1.2	0.76 ± 0.1	<lod< td=""><td><lod< td=""><td>0.67 ± 0.0</td><td>3</td><td>A, B, H, I, O</td><td>6.7</td><td>28.1</td><td>0.9</td><td>1.6</td></lod<></td></lod<>	<lod< td=""><td>0.67 ± 0.0</td><td>3</td><td>A, B, H, I, O</td><td>6.7</td><td>28.1</td><td>0.9</td><td>1.6</td></lod<>	0.67 ± 0.0	3	A, B, H, I, O	6.7	28.1	0.9	1.6
1	2.2 ± 0.5	46 ± 2.0	0.86 ± 0.3	<lod< td=""><td><lod< td=""><td>3.22 ± 0.2</td><td>Leve</td><td></td><td></td><td>D/LC-MS/MS</td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td>3.22 ± 0.2</td><td>Leve</td><td></td><td></td><td>D/LC-MS/MS</td><td></td><td></td></lod<>	3.22 ± 0.2	Leve			D/LC-MS/MS		
к	0.4 ± 0.2	5 ± 1.4	0.25 ± 0.1	<lod< td=""><td><lod< td=""><td>0.13 ± 0.1</td><td></td><td></td><td>PGA</td><td>5-mTHF</td><td>THF</td><td>MeFox</td></lod<></td></lod<>	<lod< td=""><td>0.13 ± 0.1</td><td></td><td></td><td>PGA</td><td>5-mTHF</td><td>THF</td><td>MeFox</td></lod<>	0.13 ± 0.1			PGA	5-mTHF	THF	MeFox
L	1.2 ± 0.2	32 ± 2.9	0.92 ± 0.0	<lod< td=""><td><lod< td=""><td>1.49 ± 0.1</td><td>1</td><td></td><td>1.6 ± 0.1</td><td>16.0 ± 0.3</td><td>na</td><td>na</td></lod<></td></lod<>	<lod< td=""><td>1.49 ± 0.1</td><td>1</td><td></td><td>1.6 ± 0.1</td><td>16.0 ± 0.3</td><td>na</td><td>na</td></lod<>	1.49 ± 0.1	1		1.6 ± 0.1	16.0 ± 0.3	na	na
м	0.7 ± 0.1	17 ± 2.9	0.42 ± 0.0	<lod< td=""><td><lod< td=""><td>1.43 ± 0.3</td><td>2</td><td></td><td>9.19 ± 0.5</td><td>49.2 ± 2.2</td><td>na</td><td>na</td></lod<></td></lod<>	<lod< td=""><td>1.43 ± 0.3</td><td>2</td><td></td><td>9.19 ± 0.5</td><td>49.2 ± 2.2</td><td>na</td><td>na</td></lod<>	1.43 ± 0.3	2		9.19 ± 0.5	49.2 ± 2.2	na	na
N*	11.6 ± 0.4	39 ± 1.6	0.37 ± 0.2	<lod< td=""><td><lod< td=""><td>1.29 ± 0.1</td><td>3</td><td></td><td>6.50 ± 0.45</td><td>32.7 ± 1.16</td><td>0.62 ± 0.14</td><td>1.92 ± 0.06</td></lod<></td></lod<>	<lod< td=""><td>1.29 ± 0.1</td><td>3</td><td></td><td>6.50 ± 0.45</td><td>32.7 ± 1.16</td><td>0.62 ± 0.14</td><td>1.92 ± 0.06</td></lod<>	1.29 ± 0.1	3		6.50 ± 0.45	32.7 ± 1.16	0.62 ± 0.14	1.92 ± 0.06
0*	32.3 ± 2.7 r supplemented w	35 ± 0.4	1.70 ± 0.3	<lod< td=""><td>0.3 ± 0.1</td><td>2.74 ± 0.0</td><td></td><td></td><td></td><td></td><td></td><td></td></lod<>	0.3 ± 0.1	2.74 ± 0.0						

SRM 967a Creatinine in Frozen Human Serum

- SRM 967a contains an adult normal and adult high level of creatinine; creatinine values assigned based on NIST ID/LC/MS RMP
- Cannot obtain a high level from healthy donors; high level is associated with kidney dysfunction
- · High level was achieved by spiking crystalline creatinine into normal serum
- A commutability study was performed for the original SRM 967 in collaboration with the National Kidney Disease Education Program
- Both levels of SRM 967 were commutable with routine clinical lab methods based on enzymatic or chemical reactions

MATERIAL MEASUREMENT LABORATORY

SRM 2378 Fatty Acids in Frozen Human Serum

- · New SRM designed with three levels representing different fatty acid profiles
 - Level 1- donors taking fish oil supplements (1000 mg/day for one month prior to donation)
 - Level 2- donors taking flaxseed supplements (1000 mg/day) for one month prior to donation)
- Level 3- donors not taking fish oil or flaxseed supplements
- · Fatty acid values were assigned by combining data from CDC ID-GC-MS and NIST ID-GC-MS

MATERIAL MEASUREMENT LABORATORY

SRM 972a Vitamin D Metabolites in Frozen Human Serum

- The original SRM 972 was prepared with pooled donor serum, with some levels being artificially augmented
 - · Level 2 was normal human serum diluted with horse serum to obtain a lower level 25(OH)D₃
 - Level 3 was spiked to obtain equivalent concentrations of 25(OH)D₂ and 25(OH)D₃
- The diluted and spiked levels of SRM 972 were not commutable with several routine assays
- Newer SRM 972a was also designed with four levels containing different combinations of vitamin D metabolites
 - · Level 1-Level 3: all concentrations achieved by pooling donors
 - Level 4: spiked to create a high level of 3-epi-25(OH)D₃; cannot be achieved by pooling MATERIAL MEASUREMENT LABORATORY

Design of the SRM 968 Serum Series:

Fat-soluble Vitamins, Carotenoids, Cholesterol in Human Serum

SRM 968 3 Levels 1989	SRM 968a 3 Levels 1991	SRM 968b 3 Levels 1995	SRM 968c 2 Levels 1999	SRM 968d 2 Levels 2008	SRM 968e 3 Levels 2010	SRM 968f 2 Levels In progress
5 analytes	12 analytes	15 analytes	21 analytes	12 analytes	17 analytes	??
Lyophilized	Lyophilized	Lyophilized	Lyophilized	Liquid frozen	Liquid Frozen	Liquid Frozen
Spiked Blended	Spiked Blended	Spiked Blended	Spiked Blended	Blended	Blended	Blended
	NIST		MATE	RIAL MEASUREMENT	LABORATORY	

NST