NIST Special Publication 1198

Summary of Workshop on Structure Ignition in Wildland-Urban Interface (WUI) Fires

Sponsored by ASTM International E05 Committee

Samuel L. Manzello Stephen L. Quarles

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.SP.1198

National Institute of Standards and Technology U.S. Department of Commerce

NIST Special Publication 1198

Summary of Workshop on Structure Ignition in Wildland-Urban Interface (WUI) Fires

Sponsored by ASTM International E05 Committee

Samuel L. Manzello Fire Research Division Engineering Laboratory

Stephen L. Quarles Insurance Institute for Business & Home Safety Richburg, SC This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.SP.1198

September 2015

U.S. Department of Commerce Penny Pritzker, Secretary

National Institute of Standards and Technology Willie May, Under Secretary of Commerce for Standards and Technology and Director Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

The content of the oral presentations reproduced in this workshop report are those of the authors and do not necessarily represent NIST's perspective.

National Institute of Standards and Technology Special Publication 1198 Natl. Inst. Stand. Technol. Spec. Publ. 1198, 82 pages (September 2015) CODEN: NSPUE2

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.SP.1198

Table of contents

1. Introduction	1
1.1 Workshop Objectives	1
1.2 Program of Workshop	2
1.3 Participant Listing	5
2. Summary	8
3. Acknowledgements	9
Appendix 1 Presentations Delivered at Workshop	10

Introduction Workshop Objectives

A workshop entitled *Structure Ignition in Wildland-Urban Interface (WUI) Fires* was held on June 18-19, 2015 in Anaheim, CA. The workshop was sponsored by ASTM International Committee E05, and was under the direction of Dr. Samuel L. Manzello of the Fire Research Division, part of the National Institute of Standards and Technology's (NIST) Engineering Laboratory, and Dr. Stephen L. Quarles of the Insurance Institute for Business & Home Safety (IBHS).

Wildfires that spread into communities, commonly referred to as WUI fires, are a significant problem in Australia, Europe, and the United States. WUI fire spread is extraordinarily challenging and presents an emerging problem in fire safety science. While it is accepted that WUI fires are an important societal problem, little understanding exists on how to contain and mitigate the hazard associated with such fires.

From a simple point of view, the WUI fire problem can be seen as a structure ignition problem. Some building codes and standards already exist to guide construction of new structures in areas known to be prone to WUI fires in order to reduce the risk of structural ignition. These codes and standards have been developed based on best information at the time they were developed. Often this information was anecdotal.

This workshop has formally begun the discussion: *based on current research, are these current codes and standards adequate*? Proven, scientifically based retrofitting strategies are required for homes, and other buildings, located in areas prone to such fires.

The presentations of the workshop were separated into four topic areas: post-fire studies, structure ignition/firebrand accumulation and generation studies, WUI modeling, and evaluation of mitigation strategies.

This report is organized into specific sections with appendices. Specifically, Section 1.2 is the oral presentation schedule, Section 1.3 is participant listing, and there is an appendix that contains the oral presentations delivered at the workshop (Appendix 1).

Dedication

This workshop was dedicated to the memory of Dr. Robert Hawthorne White, a staff scientist at the US Department of Agriculture, Forest Service, Forest Products Laboratory, for 39 years. Dr. White made significant contributions to fire safety science and ASTM in particular. A slide highlighting his career was provided at the workshop and is also found in Appendix 1.

1.2 Program of Workshop

June 18 ,2015

1:00 pm	Introduction to Workshop Dr. Samuel L. Manzello, Co-Chair, Engineering Laboratory, NIST, USA
	Plenary Lecture Session Chair Dr. Stephen L. Quarles (IBHS)
1:10 pm	Are Existing Building and Fire Codes Providing Adequate Protection for Communities Exposed to Wildland-Urban Interface Fires - An Overview of Existing Wildland-Urban Interface Fire Codes Mr. Nelson Bryner, Engineering Laboratory, NIST, USA
	Regular SessionSession Chair Dr. Stephen L. Quarles (IBHS)
2:30 pm	Review of Pathways to Fire Spread in the Wildland Urban Interface Michael J. Gollner, Raquel Hakes, Sara Caton and Kyle Kohler, Department of Fire Protection, Engineering, University of Maryland, College Park, MD, USA
3:00 pm	Break
3:30 pm	Role of Event-Based Data in Wildland-Urban Interface Fire Mitigation – Limitations of Incident-based Data Nelson Bryner and Alexander Maranghides, Fire Research Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
4:00 pm	EcoSmart Fire as Structure Ignition Model in WUI: Predictions and Validations Mark A. Dietenberger and Charles R. Boardman, USDA Forest Products Laboratory, Madison, WI, USA
4:30 pm	Firebrand Generation and Impact on Wooden Constructions in the Wildland- Urban Interface Kamila Kempna, Mohamad El Houssami, Eric Mueller, Jan C. Thomas, Rory Hadden, and Albert Simeoni, Fire Safety Engineering Department, University of Edinburgh, Edinburgh, UK
5:00 pm	Adjourn

June 19, 2015

	Session Chair Dr. Samuel L. Manzello (NIST)
8:00 am	Upgrading Heritage Buildings to Resist Exterior Fire Exposure by Sympathetic Means and a Method to Assess Aggregate Envelope Performance Geir Jensen, Tobias Jarnskjold, Thomas Haavi, COWI AS, Trondheim, Norway
8:30 am	Fire Hazard in Camping Park Areas Miguel Almeida, Luís Mário Ribeiro and Domingos Viegas, Center for Forest Fire Research ADAI – LAETA, Coimbra, Portugal; José Raul Azinheira, Alexandra Moutinho, João Caldas Pinto, IDMEC/CSI – LAETA, Universidade de Lisboa, Lisbon, Portugal; Jorge Barata, Kouamana Bousson and Jorge Silva, AEROG – LAETA, Universidade da Beira Interior, Covilhã, Portugal; Marta Martins, INEGI – LAETA, Instituto de Engenharia Mecânica e Gestão Industrial, Porto, Portugal; and Rita Ervilha and José Carlos Pereira, IDMEC/LASEF – LAETA, Universidade de Lisboa, Lisbon, Portugal
9:00 am	Firebrand Production from Building Components with Siding Treatments Applied Sayaka Suzuki, National Research Institute for Fire and Disaster (NRIFD), Chofu, Tokyo, Japan; and Samuel L. Manzello, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
9:30 am	Accumulation Patterns of Wind-blown Embers around Buildings Stephen L. Quarles and Murray J. Morrison, Insurance Institute for Business & Home Safety (IBHS), Richburg, SC USA
10:00 am	Break
10:30am	Fire Performance of Exterior Wood Decks in Wildland-Urban Interface Laura E. Hasburgh and Samuel L. Zelinka, US Forest Products Laboratory, Madison, Wisconsin USA; and Donald S. Stone, Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin USA
11:00 am	Spot Fire Ignition of Natural Fuel Beds of Different Characteristics by Hot Aluminum Particles James L. Urban, Casey D. Zak and Carlos Fernandez-Pello, Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA USA

11:30 am	Experimental Investigation on Building Component Ignition by Mulch Beds Ignited by Firebrand Showers Samuel L. Manzello, Fire Research Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA; Sayaka Suzuki, National Research Institute of Fire and Disaster (NRIFD), Chofu, Tokyo, Japan; and Daisaku Nii, Building Research Institute (BRI), Tsukuba, Ibaraki, Japan
12:00 pm	End of Workshop

1.3 Participant Listing

LAST_NAME	FIRST_NAME	AFFILIATION
Alfawakhiri	Farid	American Iron & Steel Institute
Alfrey	Robert	Not Provided
Almeida	Miguel	ADAI (Portugal)
Alvares	Norman	Suite 431
Anderson	Erik	Koffel Associates
Badders	Barry	Intertek Testing Services, NA, Inc.
Banks	Eric	BASF Corporation
Barajas	Miguel	Not Provided
Beaton	Michael	Intertek Testing Services NA, Inc.
Bokkes	Southern	Riverside County Fire
Bovard	Timothy	Pittsburgh Corning Corporation
Bragg	Tammy	Not Provided
Brewer	Sarah	Unifrax I LLC
Brooks	Robert	Rob Brooks & Associates
Bueche	David	Hoover Treated Wood Products
Bundy	Matthew	NIST
Cerda	Oscar	Not Provided
Chulahwat	Akshat	Colorado State University (CSU)
Craft	Steven	CHM Fire Consultants Ltd
Dean	Aaron	Orange County
Delos Reyes	Kathleen	Los Angeles County Fire
		Department
Dietenberger	Mark	USDA Forest Products Laboratory
Fernandez- Pello	Carlos	University of California Berkley
Fletcher	Karen	Riverside County Fire
Frater	George	Canadian Steel Construction
		Council
Gales	John	Carleton University
Gann	Richard	NIST
Gebhart	Richard	Owens Corning
Gollner	Michael	University of Maryland
Hadden	Rory	University of Edinburgh
Hasburgh	Laura	USDA Forest Products Laboratory
Hasegawa	Harry	Firequest
Hathorn	Stan	Royal Mouldings
Hendricks	William	Safer Building Solutions

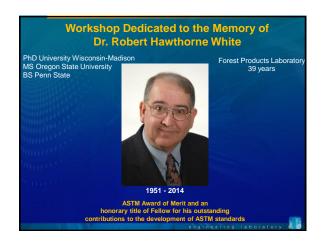
Hirschler	Marcelo	GBH International
Janssens	Marc	Southwest Research Institute
Jarnskjold	Nils M Tobias	NTNU
Jensen	Geir	Securo As
Johnston	David	Vinyl Siding Institute
Jourdain	Charles	California Redwood Association
Jumper	Alan	LP Building Products
Kane	Daniel	Not Provided
Kearns	Lyn	Not Provided
Keating	Jay	IKO Industries
Keltner	Ned	Fires Inc
Ladwig	Richard	PABCO Building Products, LLC
Manzello	Samuel	NIST
Mathes	Dennis	Lomanco, Inc
Merrick	Paul	Louisiana-Pacific Corporation
Morel	Sid	Not Provided
Murrell	Janet	Warrington Fire Research
Oaks	Don	Not Provided
Onodera	Gina	CertainTeed
Palumbo	Christopher	HPVA Laboratories
Patashnik	Oren	Not Provided
Pazera	Marcin	Not Provided
Pepper	Freddie	Riverside County Fire
Phillips	Aaron	Tamko Building Products Inc
Pickett	Brent	Western Fire Center Inc.
Quarles	Stephen	Insurance Institute for Business &
		Home Safety
Samuels	Matthew	USG Corp
Scoville	Christopher	Trex Company Inc.
Shinkoda	Pamela	CGC Inc.
Shipp	Paul	USG Corporation
Simontacchi	John	Firefree Coatings, Inc
Sloan	Dwayne	Underwriters Laboratories Inc
Stacy	Howard	Priest & Associates Consulting LLC
Stansberry	Herbert	Intertek
Suzuki	Sayaka	NRIFD (Japan)
Swanson	Rex	Louisiana-Pacific Corp
Traw	Jon	Traw Associates Consulting
Trevino	Javier	Priest Associates Consulting, LLC
Urban	James	University of California Berkeley
Van Zeeland	Ineke	Canadian Wood Council

Vargas	Melissa	LA County Fire Department
Wangel	Robert	Koppers Peformance Chemicals
Wessel	Robert	Gypsum Association
Woychak	Ronald	Firewise 2000, Inc.
Yang	Jiann	NIST
Yeh	Borjen	Apa-The Engineered Wood Assn
Zhou	Aixi	UNC Charlotte
Zicherman	Joe	Berkeley Engineering and Research

2. Summary

The workshop was a success and clearly highlighted the need for better interaction between those involved in the WUI codes and standards business with researchers involved in the fire safety science field. It was apparent that many of the researchers present had no idea how codes and standards are implemented in the WUI area, even though they are engaged in WUI research. The converse was true for the codes and standards representatives: there appeared to be no idea there was so much ongoing research even though it was published in many venues.

The plenary talk highlighted the deficiencies in the current WUI codes and standards, with the research presentations reinforcing these issues. The overarching issue was the lack of firebrands (embers) in the current building codes and standards, yet firebrand ignition are an accepted major structure ignition mechanism in these fires. The development of the NIST firebrand generator (NIST Dragon), currently used at IBHS, ADAI in Portugal, BRI and NRIFD in Japan, is beginning to help address the firebrand problem prevalent in WUI fires but it was clear far more research is required. A major result of this workshop is that is clear more such activities need to be arranged to allow transfer of research knowledge to the WUI codes and standards area. Finally, the NIST WUI Hazard Scale provided a framework to rate building elements to various WUI exposures.


Papers that were presented orally are eligible for submission to a special issue of *Fire Technology*, to be Co-Guest Edited by Dr. Stephen L. Quarles of IBHS, and Dr. Samuel L. Manzello of NIST.

3. Acknowledgements

The support of Dr. Marc Janssens, ASTM E05 Committee Chair, Dr. Matthew Bundy, ASTM E05 Committee Research Executive, Ms. Ellen Diegel, ASTM International Event Coordination, and Mr. Thomas O'Toole, ASTM E05 Staff Manager, is gratefully acknowledged for all their hard work to make this event a reality. All the presenters are appreciated for their hard work to deliver excellent presentations.

Appendix 1 Oral Presentations Delivered at Workshop

WUI Fires: Growing International Problem

- Fire safety science research has spent a great deal of effort to understand fire dynamics within buildings
- Research into WUI and urban fires is far behind other areas of fire safety science research
- Due to the fact that large outdoor fire spread is incredibly complex, involving the interaction of topography, weather, vegetation, and structures

Europe 2007 fires in Greece Several hundred structures destroyed More than 70 people perished

More than 70 people perished Australia 2009 Fires in Victoria

2009 Fires in Victoria More than a 1000 structures destroyed More than 170 people perished

South America 2014 Chile

More than 1000 structures destroyed USA 2003, 2007 Southern California Fires 2011 Bastrop Complex Fire in Texas 2012 Waldo Canyon Fire in Colorado 2013 Fires in California, Colorado, Texas

<section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><section-header><section-header>

Structure Ignition in WUI Fires

- Post-fire studies <u>firebrands</u> a major cause of ignition
 Understanding firebrand ignition of structures important to mitigate fire spread in communities
- Improved understanding of structure ignition in WUI fires Major recommendation (GAO 05-380)
- National Science & Technology Subcommittee on Disaster Reduction Homeland Security Presidential Directive (HSPD 8; Paragraph 11) Royal Commission in Australia

Workshop Objectives

- Some building codes and standards already exist to guide construction of new structures in areas known to be prone to WUI fires in order to reduce the risk of structural ignition
- These codes and standards have been developed based on best information at the time they were developed and often rely on flame contact and / radiant heat exposures to evaluate material performance
- Often this information was anecdotal
- The workshop will seek to answer the question whether current codes and standards are adequate since they do not usually explicitly address firebrand (ember) exposures

International Interest

- University of Maryland (USA)
- University of California Berkeley (USA)
- University of Edinburgh (UK)
- USDA Forest Service (USA) National Research Institute of Fire and Disaster (Japan)
- COWI AS (Norway)
- Center for Forest Fire Research ADAI (Portugal)
- NIST (USA)
- Insurance Institute for Business & Home Safety IBHS (USA)

Presentations Delineated into Four Areas

Post-fire studies

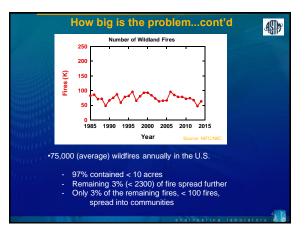
Structure ignition / firebrand (ember) accumulation/production

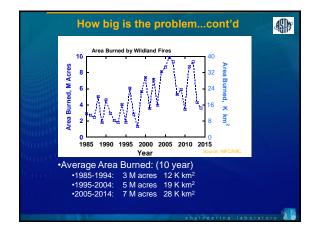
WUI modeling / hazard and risk

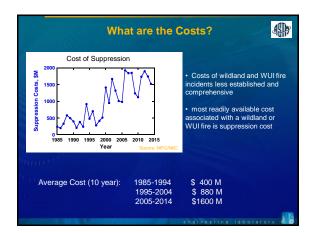
Evaluating mitigation strategies (USA)

Papers to be Published in Fire Technology

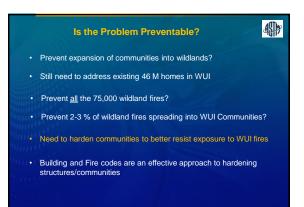
Special Issue Fire Technology Guest Editors: S. Manzello (NIST) and S. Quarles (IBHS)


Special Thanks


• Dr. M. Janssens (ASTM E05 Committee Chair) Dr. M. Bundy (ASTM E05 Committee Research Executive) Ms. Ellen Diegal, ASTM Event Coordinator Mr. Thomas O'Toole, ASTM E05 Staff Manager All presenters and attendees!!


12

	Are Existing Wildland-Urban Interface Codes Providing	Are Wildland-Urban Interface Fire Codes Providing Adequate Protection?
	Adequate Protection Nelson Bryner Engineering Laboratory National Institute of Standards and Technology (NIST) Gaithersburg, MD	 How big is the problem? What are the trends – is the problem growing? Is the problem preventable? WUI Codes International Wildland-Urban Interface Fire Code
	Symposium on Structure Ignition in Wildland-Urban Interface Fires June 18, 2015 ASTM Committee E05 on Fire Standards	 California Wildland Hazard Building Code Australian Bushfire Construction Code Limitations of current WUI science and codes
NUSC National Institute of Benderds and Technology U.S. Deportment of Commerce	chalificering laboratory	englineering laboratory 25


How big is the pr	oblem?	States .
Top 15 U.S. Fire Loss I	ncidents ((NFPA)
Incident	Date	Adjusted Loss (2012 dollars)
1. World Trade Center, New York	2001	\$43 billion
2. Earthquake and Fire, San Francisco	1906	\$8.9 billion
3. Great Chicago Fire	1871	\$3.2 billion
4. Oakland Hills Fire, CA	1991	\$2.5 billion
5. So. California Firestorm, San Diego County	2007	\$2.0 billion
6. Great Boston Fire, Boston	1872	\$1.4 billion
7. Polyolefin Plant, Pasadena, TX	1989	\$1.4 billion
8. Cerro Grande Wildland Fire, Los Alamos	2000	\$1.3 billion
9. Wildland fire Cedar, Julian, CA	2003	\$1.3 billion
10. Baltimore conflagration, Baltimore, MD	1904	\$1.3 billion
11. "Old" Wildland Fire, San Bernadino, CA	2003	\$1.2 billion
12. Los Angeles Civil Disturbance	1992	\$0.9 billion
13. Cerro Grande Wildland Fire, Los Alamos	2000	\$0.9 billion
14. Southern California Wildfires	2008	\$0.9 billion
15. Laguna Beach Wildland Fire, CA	1993	\$0.8 billion

Is the Problem Preventable?	Is the Problem Preventable?
Are existing building and fire codes providing adequate protection?	"Urban" Codes are effective
Can codes provide more adequate protection?	Identify vulnerabilities to ignition & fire spread NFIRS & NFPA data Understand the underlying science
Consider "urban" building and fire codes	Exposure test methods adequately simulate exposure
 In 1976, the U.S. experienced 2.9 million fires and <u>8.800 fatalities</u>. 	"WUI" Codes do not provide adequate protection
 The Nation met this aggressive life safety goal. Between <u>1976 and 1995</u>, the total number of fire <u>deaths declined to about 4600</u> and the number of reported fires declined to 1.8 million, while the US. population gree by about 12 % 	Not able to systematically identify vulnerabilities Need more post fire analysis Community scale data
Since that time, the numbers of reported fires and <u>fatalities have declined</u> to 1.5 million and <u>3.300</u> , respectively.	Need more comprehensive understanding of science Extend "fire in the box" to include weather and terrain
Codes can be effective!!!	$0 m c^{-1}$
	that we are a second

S)

"WUI" Codes do not provide adequate protection

- Ongoing work on vulnerabilities & science

- Ongoing work on vulnerabilities & science

 Pathways to fire spread (Gollner et al.)

 Building components vulnerability to frebrand (Manzello et al.)

 Spot fire ignition science (Urban et al.)

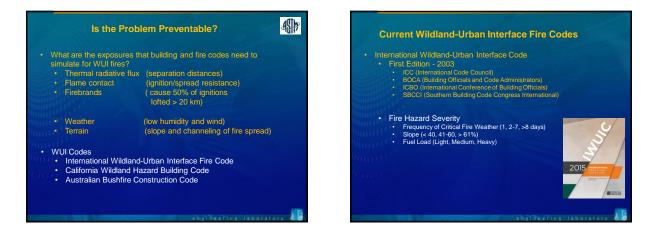
 Much Bed ignition (Manzello et al.)

 Wood Deck fire performance (Hasburgh et al.)

 Firebrand generation and wooden structures (Kempna et al.)

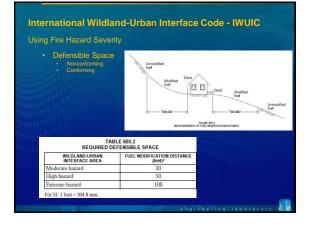
 Firebrand generation and wooden structures (Kempna et al.)

 Accumulation of firebrands (Quarles)


 EcoSmart Fire Ignition Model (Dietenberger and Boardman)

 Hardening Heritage Buildings (Jensen et al.)

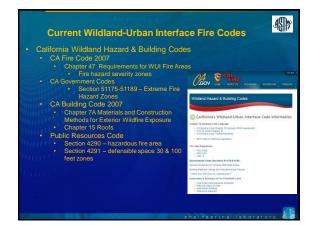
 Firebrane et al.)


Is the Problem Preventable? • "Urban" Codes are effective Identify vulnerabilities to ignition & fire spread
 NFIRS & NFPA data
 Understand the underlying science
 Exposure test methods adequately simulate exposure "WUI" Codes do not provide adequate protection
• Not able to systematically identify vulnerabilities Need more post fire analysis
Community scale data Need more comprehensive understanding of science
 Extend "fire in the box" to include weather and terrain

Current standards do not adequately consider the range of exposures during a WUI fire

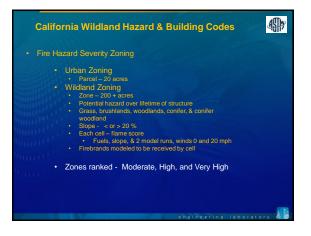
el Load
 Heavy – Vegetation consisting of round wood 3 to 8 inches (76 to 203 mm) in diameter.
Fuel Models of Fire Danger Rating System (USFS)
 Dense Conifer Stands (G): Clearcut conifer stash (I): Clearcut and heavily thinned conifer stands (J): Slash fuels (K): Closed stands of western long-needle pines (U)
Medium –
 Vegetation consisting of round wood 0.25 to 3 inches (6.4 to 76 mm) in diameter
 Fuel Models of Fire Danger Rating System (USFS) Miaed chaparel (B)-Ratentic-galibary understory-pine overstory of Southeast (D); Mature closed chamise stands and oakhush fields of Arzona (F); Short-needed confers (H); Dense brushlike fuels of Southeast (D); Alaskan black spruce (Q); Hardwood after lead out in spring (R); and Sagebrush grans types (T)
Light-
 Vegetation consisting of herbaceous plants and round wood less than 0.25 inch (6.4mm) in diameter
 Fuel Models of Fino Danger Rating System (USFS) Westem Grassbanks (A); Open prive stands (O); Hardwood and mixed conifer after leaf fail (E); Heavy grassbands (L); Sawyrass Florida (N); Closed thrifty stands of long-needled southere prive (P); Hardwood after leaf out in spring (R); and Alaskan
or alpine tundra (S)

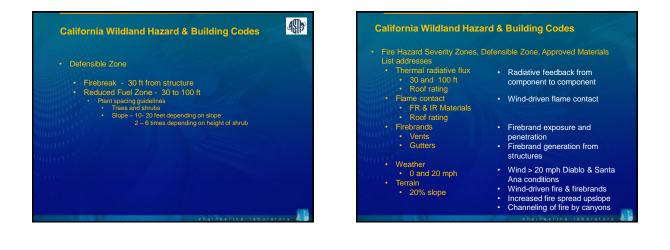
	Fuel Loa Moderate,	ad (Light,) Heavy) ne Haz		8 days)		
			CRITICAL FI	RE WEATHER I	FREQUENCY			
				2 to 7 days*			2 8 days"	
	≦ 1 Day*					2		
FUEL	Stope (%)	261	< 40	Slope (%)	261	< 40	Slope (%)	261
	Stope (%)	2 61 M	≤ 40 M	Slope (%)	2 61 M	≦ 40 M		≥ 61 H
MODEL ^b	Slope (%) 5 40 41-60			Slope (%) 41-60			Slope (%) 41-60	

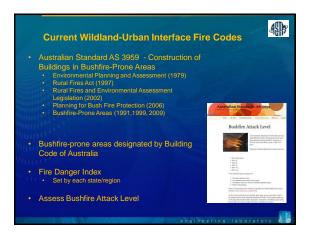


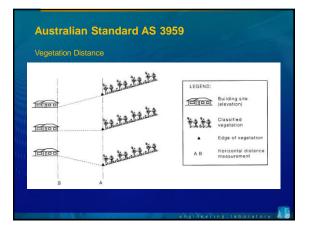
- Class 1 (designed to be most resistant) Class 2 Class 3

		IGNITION-F	TABLE 503.1 RESISTANT CONS	TRUCTION			
	12	(100) m	FIRE HAZA	RD SEVERITY		14/14/ - 15V	
	Modera	te Hazard	High	Hazard	Extrem	e Hazard	
DEFENSIBLE	Water Supply ⁶		Water	Supply ⁶	Water Supply ^b		
SPACE	Conforming	Nonconforming*	Conforming	Nonconforming*	Conforming®	Nonconforming	
Nonconforming	IR 2	IR 1	IR 1	IR 1 N.C.	IR I N.C.	Not Permitted	
Conforming	IR 3	IR 2	IR 2	IR 1	IR I	IR 1 N.C.	
1.5 × Conforming	Not Required	IR 3	IR 3	IR 2	IR 2	IR 1	
IR 1 = Ignition-rest IR 2 = Ignition-rest IR 3 = Ignition-rest	ave a conforming wat dant construction in se- dant construction in se- dant construction in se- ls shall have a fire-res allowed. on Section 603. on Section 404.	er supply in accordance coordance with Section 5 coordance with Section 5 coordance with Section 6 istance rating of not less	04. 05. 06.	exterior surfaces of such	walls shall be nonce	mbustable. Usage of	


	Roof Rating	Eaves (resistance rating)	Exterior Walls (resistance rating)	Decks ^a (resistance rating)	Vents
Class 1	Class A	1 hr fire Protected underside	1 hr fire Or noncombustible	1 hr fire Or noncombustible	Noncombustible mesh openings < 6.4 mm
Class 2	Class B	Min. Thickness Of 0.75 inch Exposed rafter tails if heavy timber	1 hr fire Or noncombustible	1 hr fire Or noncombustible	Noncombustible mesh openings < 6.4 mm
Class 3	Class C				







Fire Hazard Severity Zones Fuels and flame height		Hazard rity Zone	Roof Rating=	Eaves	Exterior Walls	Decks
Slope < 20 % and > 20 % Wind 0 mph and 20 mph	Very	y High A∕LRA⁵	Class A	FR Approved Material CA Listed	FR Approved Material GA Listed	FR Approved Material CA Listed
Zones – Very High, High, and Moderate and designed WUI Zone	Respon	State onsibility Area	Class B	IR Material or noncombustible	IR Material or noncombustible	IR Material or noncombustible
Identified across the state	New P	er Areas	Class C	IR Material or noncombustible	IR Material or noncombustible	IR Material or noncombustible
Determine design and materials Approved materials list		nd Urban ace Area	Class A	FR Approved Material	FR Approved Material CA Listed	FR Approved Material CA Listed
	⁵state R ⇒Locat A Wildianc IR (igniti FR(Fire I E E D Roof Asi	tion Resistan Resistant Ma Eaves – 300 k Exterior Walls	y Area – SR. onsibility Ar rface Fire Ar t Building N sterial) pass W/m2 expo s – 150 kW/m N/m2 expos ng – ASTM B	A rea – LRA rea – designated by e laterials) – flame spre ing CA test method sure (10 min) during e n2 exposure (10 min) ure (3 min) during 43 E 108	ead index < 25 (extend 40 minute test during 70 minute test	

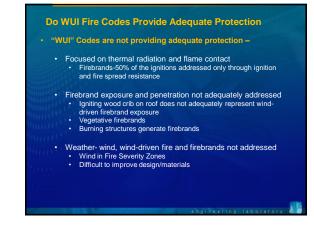
	HON OF BUS	HFIRE ATTA	CK LEVEL (B	AL)-FDI 10	0 (1090 K)		
		Bushfire Attack Levels (BALs)					
Vegetation	BAL-FZ	BAL-40	BAL-29	BAL-19	BAL-12		
classification	Dista	nce (m) of the site	from the predom	inant vegetatio	n class		
		All upslop	es and flat land (6	(degrees)			
A. Forest	<19	19-<25	25-<35	35-<48	48-<100		
B. Woodland	<12	12-<16	16-<24	24-<33	33-<100		
C. Shrubland	<10	10-<13	13-<19	19-<27	27-<100		
D. Scrub	<7	79	9-<13	13-<19	19-<100		
E. Mallee/Mulga	<6	6-<8	8-<12	12~<17	17~<100		
F. Rainforest	<8	8-<11	11-<16	16-<23	23-<100		
		Down	aslope >0 to 5 deg	rees			
A. Forest	<24	24-<32	32-<43	43-<57	57-<100		
B. Woodland	<15	15-<21	21-<29	29-<41	41-<100		
C. Shrubland	<11	11-<15	15-<22	22-<31	31-<100		
D. Scrub	<7	7-<10	10-<15	15-<22	22-<100		
E. Mallee/Mulga	<7	7-<9	9-<13	13-<20	20-<100		
F. Rainforest	<10	10-<14	14-<20	20-<29	29-<100		
100000		Down	slope >5 to 10 deg	rees			
A. Forest	<31	31-<39	39-<53	53-<69	69-<100		
B. Woodland	<20	20-<26	26-<37	37-<50	50-<100		
C. Shrubland	<12	12-<17	17-<24	24-<35	35-<100		
D. Scrub	<8	8-<11	11-<17	17-<25	25-<100		
E. Mallee/Mulga	<7	7-<10	10-<15	15-<23	23-<100		
F. Rainforest	<13	13-<18	18-<26	26-<36	36-<100		

Australian Standard AS 3959

Fire Resistance Level structural adequacy/integrity/insulation FRL 1206030 structural adequacy/20 min, integrity 60 min, and isulation for 30 min Bushine Resistant Material – AS 3837 HRR + 60 kw/m2 when exposed to 25 kw/m2 Radiant Heat and Small Fiaming Sources – AS 1503.0.1 BAL 40 40 kw/m2 x 2 min; tapering flux to 3 kw/m2 over 10 min BAL 19 10 kw/m2 x 2 min; tapering flux to 3 kw/m2 over 10 min BAL 19 10 kw/m2 x 2 min; tapering flux to 3 kw/m2 over 10 min BAL 19 10 kw/m2 x 2 min; tapering flux to 3 kw/m2 over 10 min BAL 19 10 kw/m2 x 2 min; tapering flux to 3 kw/m2 over 10 min BAL 19 10 kw/m2 x 2 min; tapering flux to 3 kw/m2 over 10 min BAL 19 10 kw/m2 x 2 min; tapering flux to 3 kw/m2 over 10 min BAL 19 10 kw/m2 x 2 min; tapering flux to 3 kw/m2 over 10 min BAL 19 10 kw/m2 x 2 min; tapering flux to 3 kw/m2 over 10 min BAL 19 10 kw/m2 x 2 min; tapering flux to 3 kw/m2 over 10 min

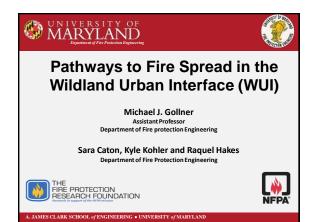
Fire-resistance test of elements of construction AS 1530.8.4 (ISO 834) Standard time temperature curve conducted in furnace

Allack			hte
		nstructions Requirement	
BUSHFI		S AND CORRESPONDING SECTION TRUCTION REQUIREMENTS	ONS FOR
Bushfire Attack Level (BAL)	Classified vegetation within 100 m of the site and heat flux exposure thresholds	Description of predicted bushfire attack and levels of exposure	Constructio Section
BAL-LOW	See Clause 2.2.3.2	There is insufficient risk to warrant specific construction requirements	4
BAL-12.5	≤12.5 kW/m ²	Ember attack	3 and 5
BAL-19	$>12.5 \text{ kW/m}^2$ $\leq 19 \text{ kW/m}^2$	Increasing levels of ember attack and burning debris ignited by windborne embers together with increasing heat flux	3 and 6
BAL-29	>19 kW/m ² ≤29 kW/m ²	Increasing levels of ember attack and burning debris ignited by windborne embers together with increasing beat flux	3 and 7
BAL-40	>29 kW/m² ≤40 kW/m²	Increasing levels of ember attack and burning debris ignited by windborne embers together with increasing beat flux with the increased likelihood of exposure to flames	3 and 8
BAL-FZ	>40 kW/m ²	Direct exposure to flames from fire front in addition to heat flux and ember attack	3 and 9


40 10 get datage 10 get datage 10 get dataget 10 get 10 get dataget 10 get 10 get 10 get	Bushfire Attack Level Flame Zone	Roof Rating Large Flame Approved Noncombustible	Eaves FR Approved Material CA Listed Fiber coment	Exterior Walls Noncombustible Large Flame Approved FRL 30/30/30 Steel, Fiber rement	Decks Noncombustible Fiber cement, Large Flame Approved	Vent Corrosion Resistart Metal mesh < 2mm opening Corrosion
2 2	40	< 2mm opening	Rad Heat & Small Flame Approved	Calcium silicate, Rad Heat & Small Flame Approved	Rad Heat & Small Flame	opening
10 Their or Their regis Their orange balance Their orange balance Their orange balance Their orange balance Neuroimability balance Resistant Mass and opening 12 Neuroimability Target share their target share their tar	29	Tiled or Sheet Fully Sarked < 2mm opening	Fiber cement Bushfire resistant	Fiber cement Bushfire resistant		Resistant Metal mesh < 2mm
12.5 Tied of Sheet Park convert Fair Fair convert Fair co	19	Tiled or Sheet Fully Sarked < 2mm opening	Fiber cement Bushfire resistant timber	Fiber cement Bushfire resistant timber		Resistant Metal mesh < 2mm
Fire Resistance Level structural adequacyfintegrityfinsulation		Tiled or Sheet Fully Sarked < 2mm opening	Fiber cement Bushfire resistant timber	Fiber cement Bushfire resistant timber		
FRL 120/60/30 structural adequacy120 min, integrity 60 min, and insulation for 30 min Bushfire Resistant Material = AS 3837	Fire Resista	nce Level structural ad FRL 120/60/3	lequacyfintegrityfinsu 0 structural adequad	lation	60 min, and insulation for 3	0 min

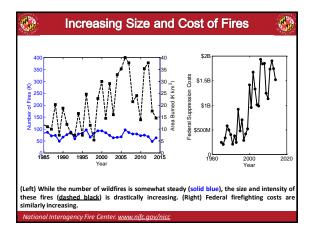
18

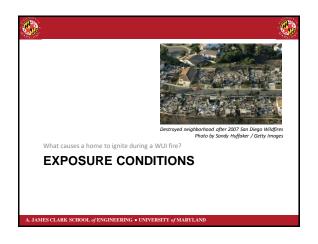
1 -

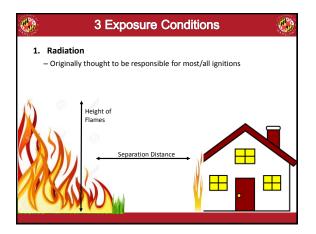

Australian Standard AS 3959

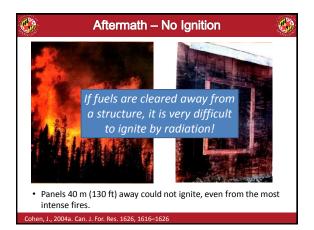
Thermal radiative flux BAL levels Vegetation separation Roof rating	Radiative feedback from component to component
 Fire Resistance Level Flame contact Bushfire Resistand Materials 	Wind-driven flame contact
Roof rating Fire Resistance Level Firebrands Vents gutters	 Firebrand exposure and penetration Firebrand generation
Weather ? Terrain Flat, upslope and 5 -20	 Wind-driven fire & firebrands Increased fire spread upslope Channeling of fire by canyons % slope

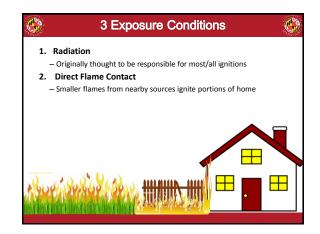
Do WUI Fire Codes Provide Adequate Protection	Do WUI Fire Codes Provide Adequate Protection?
"WUI" Codes are not providing adequate protection –	"WUI" Codes are not providing adequate protection –
 Terrain - slope Limited to 20%, not all codes consider upslope Impact of canyons, hills, chutes, cliffs not addressed 	"WUI" Codes are a reflection of current science Lack of WUI fire data Typically count destroyed structures Useful data in structures that survived
 Fire timeline Firebrands arrive before fire front Structures on edge of community exposed to firebrands & flames Structures on interior of community exposed to firebrands Do parts of community need same level of protection? 	 Not able to identify vulnerable parts of structure/community Need community-scale data to understand complex interactions
Defensive Actions	Need more comprehensive understanding of the science
Fire department Homeowner Passive and active prevention technologies	 Need more representative test methods Drive development of better design/materials
englineering laboratory	englineering laboratory

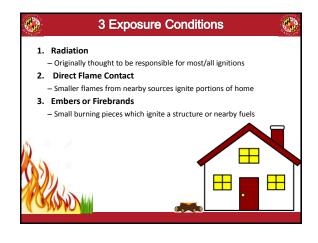




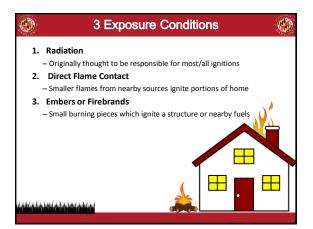








()-


Direct Flame Contact

- Flames must directly contact long enough to cause ignition
- Typically, does not occur from the main fire front - Unless extreme conditions present
 - Often secondary source: nearby burning material (mulch, wood pile, etc.)
- Traditional wildfire literature describes flame lengths and ROS of vegetative fuels under various ambient conditions
- Existing fire models cannot determine effectiveness or size of a needed fuel break.

nney, M.A., Cohen, J.D., McAllister, S.S., Jolly, W.M., 2013. Int. J. Wildl. Fire 22, 25. phard, A.D., Keeley, J.E., Brennan, T.J., 2011. Int. J. Wildl. Fire 20, 764

63

(f)

Roofing

60

- Even Class A roofs found to ignite (Manzello et al.)
 - "Brand" test may not be appropriate no accumulation
 - Tile roofs
 - · With tar paper and bird stops removed OSB would ignite
 - · Smoldering sometimes occurred with proper bird stop/tar paper installation · If needles and leaves are deposited under the tiles, ceramic tile roofing
 - assemblies were ignitable under all conditions considered · Flat tile terracotta roofing assembly performed best (interlocking design)
 - Asphalt roof
 - · Assemblies (OSB, tar paper, and asphalt shingles) failed to ignited under firebrand exposure in 60° and 90° valleys
 - · Asphalt shingles did melt, but no ignition was observed
 - A potential cost-effective mitigation strategy would be to use a continuous underlayment of firebrand-resistant sarking

es, S.L., 2012. Vulnerabilities of Buildings to Wildfire Exposure nzello, S.L., Hayashi, Y., Yoneki, T., Yamamoto, Y., 2010a. Fire Saf. J. 45, 35–43

 debris should not be stored near a structure lgnite by direct flame contact or firebrands and ignite the home Mulch Ignition & Flaming Tests Manzello et al. (2006b) mulches including shredded hardwood, pine straw and dried cut grass. Ignition dependent on <i>number of flux of brands</i> (<u>one insufficient</u>) Steward (2003) tested 13 different mulches When igniting with a torch, all mulches eventually ignited, but with ground rubber and pine needles igniting significantly faster than other mulches. Quarles and Smith (2004) measured some relative flammability properties for 8 multhces in 8 foot (2 5 m) diameter plots. 			
 debris should not be stored near a structure - Ignite by direct flame contact or firebrands and ignite the home Mulch Ignition & Flaming Tests - Manzello et al. (2006b) mulches including shredded hardwood, pine straw and dried cut grass. • Ignition dependent on <i>number or flux of brands</i> (<u>one insufficient</u>) - Steward (2003) tested 13 different mulches • When igniting with a torch, all mulches eventually ignited, but with ground rubber and pine needles igniting significantly faster than other mulches. - Quarles and Smith (2004) measured some relative flammability properties for 8 mulches in 8 foot (2.5 m) diameter plots 	Mulch and Debris	(Eaves and Vents
www.tontennetationg.com A schematic of vents used to ventil	 debris should not be stored near a structure Ignite by direct flame contact or firebrands and ignite the home Mulch Ignition & Flaming Tests Manzello et al. (2006b) mulches including shredded hardwood, pine straw and dried cut grass. Ignition dependent on <i>number or flux of brands</i> (one insufficient) Steward (2003) tested 13 different mulches When igniting with a torch, all mulches ventually ignited, but with groum rubber and pine needles igniting significantly faster than other mulches. Quarles and Smith (2004) measured some relative flammability properties for 8 mulches in 8 foot (2.5 m) diameter plots 		 Most homes have these vents both for thermal efficiency is to minimize the chance of moisture buildup Ridge It is common to have at least one outlet vent type Gable Ridge Soffit

www.finehombuilding.com

Ember Penetration Test (A) • New standard: ASTM E2886, Standard Test Method for Evaluating the Ability of Exterior Vents to Resist the Entry of Embers and Direct Flame Impingement • Ember exclusion/intrusion test and a flame intrusion test Different than previous tests performed with NIST Dragon - Embers fall through vertical shaft and through a vent onto a cotton target - Considered a worst-case scenario, therefore used in test standard - Compared to NIST Dragon tests performed horizontally in a large-scale fire wind tunnel

of BRI / NIST Full Sca

Fences

- In investigation of the 2007 Witch Creek and Guejito fires, 45% of homes with attached wood fences were destroyed
- Wooden trellises and other yard structures were also burned
 Post-fire studies on the Waldo Canyon Fire in Colorado determined wood fences were vulnerable to ignition from firebrand showers
- No experimental verification of this ignition mechanism
- NIST is currently performing research on this topic
- Obvious to keep all flammable materials away from home

 Separation distances required

6.)

6

6

needs research

Naranghides, A., McNamara, D., Mell, W., Trook, J., Toman, B., 2013. NIST report #2 BHS, 2008. MEGA FIRES: The Case for Mitigation. <u>http://www.disastersofety.ora</u>

Decks, Porches and Patios

- Decks significant source of ignition in 2007 San Diego Fires

 Wooded slopes with overhanging decks created a large hazard
 - Combustibles under deck major hazard
 Direct flame impingement from small surface fire observed
- Angora fire: surroundings had small or no fire, but deck ignited homes
 Deck material tested for flame spread properties and ignition
- potential from direct flame contact, but not firebrands or the potential radiant energy production from the deck to ignite the adjacent structure
- Manzello and Suzuki tested deck sections in re-entrant corner
- Decks need better national tests (CA has CBC 12-7A-4)

Quarles, S., Leschak, P., Cowger, R., Worley, K., Brown, R., Iskowitz, C., 201: Wurphy, K., Rich, T., Sexton, T., 2007. US For. Serv. Tech. Pap. RS-TP-025. Mell, W., Maranghides, A., 2009. NIST Technical Note 1635 Wanzello. S.L., Suzuki, S., 2014. Fire Saf. Sci. 11

()

E)

Sidings, Windows and Glazing

- Ignition of materials on exterior walls major concern

 Siding often ignites due to direct flame contact or radiant heat
- Under wind-driven conditions, re-entrant corners lead to the formation of a small recirculation zone which can attach the flame close to a wall (essentially mimicking a fire whirl) and lead to a higher vulnerability to ignition.
- Siding treatments have been studied using NIST Dragon
 - Vinyl siding: firebrands melted through siding
 - Polypropylene siding: melted, did not ignite
 - In actual wildfire: winds can be above 20 m/s
 Test illustrates potential hazards

Wildfire Home Assessment and Checklist. http://www.disastersafety.org Manzello, S.L., Suzuki, S., Hayashi, Y., 2012a. Fire Saf. J. 54, 181–196 Manzello, S.L., Suzuki, S., Hayashi, Y., 2012b. Fire Saf. J. 50, 25–34

Sidings, Windows and Glazing

- Firebrand accumulation around glazing assemblies possible mechanism for window breakage
 - Contributor to fire penetration into a structure?
 - Embers could accumulate in the framing of a double hung assembly, more so in a vertical wall assembly, but none sustained sufficient damage to break the glass or penetrate the structure
- · Windows tested for radiant exposure
 - Glass is the most vulnerable part of a window
 - Dual-pane tempered glass did not fail even with a 25 min exposure 35kW/m²
 Conclusion supports code, such as NFPA 1144 5.7.2 which requires the use of tempered or other fire-resistant glass (NFPA, 2013).
- Plastic Skylights highlighted as risk
 - While obvious, no data available to back up the assessment

anzello, S.L., Suzuki, S., Hayashi, Y., 2012b. Fire Saf. J. 50, 25–34 and <u>disastersafety.org</u>

Structure-to-Structure Spacing

- Siding ignition from ICFME proposed 2 story structures spaced about 39 feet apart (based on radiant heat fluxes)
- Large-scale experiments at NIST (only in literature)
 Fire spread to buildings clad with combustible material vs. non
 - combustible (fire-rated gypsum wallboard) – Spread rate was significantly slowed with non-combustible cladding (1-
 - hour fire rated assembly, spaced 6 ft (1.8 m))
 - Most significant spread from flames exiting/entering broken windows
 - Heat fluxes on adjacent wall peaked between 60 110 kW/m² at the top of the wall
 - A 1-hour fire-rated wall could increase protection for closely spaced homes, but complete hardening of a home will require other protection methods (Quarles et al., 2012).

More testing needed

hen, J.D., 1995. USDA Forest Service Gen. Tech. Rep. PSW-GTR-158. aranghides, A., Johnsson, E., 2008. NIST Technical Note 1600.

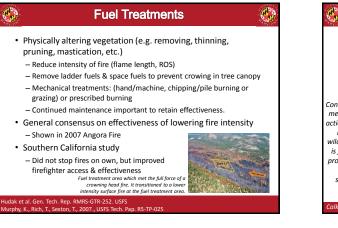
Community Planning

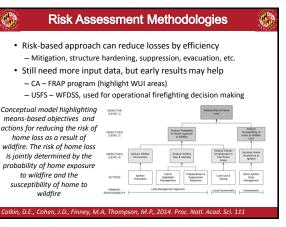
(H. 1)

- Waldo Canyon fire
 - 12 -20 ft (3 -6 m) spacing where home-to-home ignition occurred
- Witch and Guejito Fires

 Correlation found between vegetation near a home and number of
 - structures destroyed – Spread within community primarily governed by structure-tostructure spread
- Syphard studied effect of land use planning (California)
 - Areas with low structure density or isolated clusters (separation of 100m or more) more likely to burn (more than high density).
 - The most important location-dependent variable found was historical fire frequency, which corresponded with wind corridors.
 - Structures on edge of community or steep slopes also susceptible

uarles, S., Leschak, P., Cowger, R., Worley, K., Brown, R., Iskowitz, C., 2012. Lessons Learned aranghides, A., McNamara, D., Mell, W., Troak, J., Toman, B., 2013. NIST report #2 phard, A.D., Keeley, J.E., Massada, A.B., Brennan, T.J., Radeloff, V.C., 2012. PLoS One 7, e33954




🚯 Some Available Codes and Standards 🛛 🍪

- <u>NFPA 1141</u>: Standard for fire protection infrastructure for land development in wildland, rural, and suburban areas
- <u>NFPA 1142</u>: Standard on water supplies for suburban and rural firefighting
- NFPA 1143: Standard for wildland fire management
- <u>NFPA 1144</u>: Standard for reducing structure ignition hazards from wildland fire
- ICC International Wildland-Urban Interface Code
- <u>California Building Code Chapter 7A</u>: Materials and Construction Methods for Exterior Wildfire Exposure
- Designed for AHJ's, planners, developers and communities

30 23	IDFINIOF			Insurance	ALL.	
	IRFMISE			s' Institute for Business & Home Safety'	READY, SET. GOI	
-ki				Salety	. A. D.	
	NFPX					eddint Rightsty
FIREN	APPENDIX C KZARO SEVERITY FORM			SUSSEMENT ANTIGATION GUIDE		na na katala na kata Na katala na
	er normaliser, ander geschlicht referenset is die abgelegen	diam.	ATTRIBUT THE	MOLATON RECOMMENDATIONS	PROPERTY	1
	konstituijies af blik bij i suiteenische ke konstantij		ADDECOMENT (FEING	W/SERVICE RECORDERCO/YORE	1 the het	
Access Name Print	 Reserves 				A management	
Technological solution	 Maximum Marcella Bellow Bar 375 241 arcsen halter An 315 		India and		4 instant	
One way and it, one way and so	1	- C			COMPANY AND	
Watter Chinary, Read	0. Budlay Stanial		Tops of a subscription		2,10	
					2.000	
and the second se	Der Chu Real	1			1000	Knew Teur Spins
Real profession and an Fi	L Indente-Barber		1 CRAMENTO LOUGH			Section of Antisana
Investor Real Vesting	NOTIFICATION CONTINUES AND AND ADDRESS OF THE ADDRESS AND ADDRESS		Ingeni des auf - manuschaddar Bingleunis aug		SMONE	
Learned, ed in my till avants long take of \$ long parts			(Introduce Red will not page 1		0 feet	a transiti
California memorial Restaurantes de Millanuel Res autores		1.1			A heatertoold	3.90
Realizationals prote that Million	Final Action of Final States of States of States		fame part foundation		No. 12	3 Australia Australia
Security.					And a same	
	 Neuralizable eduglicada dals dell Contentino alla para dals 	100	Littler an and an gallery, and areadors		a sec	A Berniss
Property						
Number of Street Street	6. Utilitariya sediar dutuk)				a statement	a management
Property photosoff (1) Referiteson Ref. (1)	Al antiprovision On advanced on Arranged					
	At antigrant office 1 On antigrant on decayrood 3 At decayout at				a fearment	A house
Sequent Reffiger Reffiger Maleen Rec)	All antisground others 				And in the owner.	a leer
Negroom particul (N13) Reference Res (1)(2) Lege Medice	d1 and general value L Correctly provided in the angened T A1 deregational M_correctly and M_correctly and Model and Model and Model and L Control and					
Negroom particul (N13) Reference Res (1)(2) Lege Medice	At antigrant office 1 On antigrant on decayned 3 At decayned at					

G	🔇 Defensible Space 🚷							
•	NIST investiga	ation of the Witch Creek	and Guejito Fires					
	Zone	Destroyed Structures With Wildland Vegetation	Destroyed Structures Without Wildland Vegetation					
	0 - 30 ft from the structure 67% 32%							
	30 - 100 ft from the 59% 27%							
	100 - 200 ft from the 54% 27%							
	Beyond 200 ft 64% 17%							
	Percent structure destroyed with and without wildland vegetation							
•	 Many Firewise recommendations effective in reducing ignition 							
٠	Firewise does not explicitly recognize the hazard that an							
	untreated property can have on an adjacent properties							
	e.g. homeowners pushed fuel piles away from their homes,							
	but in effect pushed closer to neighbor's house							
•	Recent study	: structures were more l	ikely to survive a fire with					
	defensible sp	ace immediately adjace	nt to them					
		J., Kelley, J.E., 2014. Int. J. Wildland I ara. D., Mell. W., Trook, J., Toman. B.,						

Wetting/Covering Agents

6.)

(***)

6

- Exterior sprinklers, gel and foam agents, exterior blankets, etc.
 Some mentioned in 2012 ICC WUI Code
- Most not evaluated in actual-scale WUI eventBench-scale tests focus on radiant heating

E)

- Unrealistic conditions (flame contact, firebrands)
- Some gel and foam coatings delay ignition
 Benefit is short term (hours after application)
 - Note the benefit is short term (hours) and it <u>must not blow off</u>! (typical hot, dry, windy conditions)
- Only 1 published study on exterior sprinklers
 - All but one structure with a working sprinkler system survived *a* fire
 Does not *PROVE* this works no record of individual exposure conditions
 - Water availability issues if implemented at large scale
- ., 2013. Fire Mater. 563–580. Johnson, J.F., Downing, T., Nelson, K.C., 200

Identified Gaps

- · Quantification of Risk and Hazard
 - Pre- and Post-Fire Data Collection
 - Testing of Firebrands
 - Understanding of Ember Fundamentals
 - Understanding of Wildland Fire Fundamentals
 - Structural Ignition
- Practical and Specific Issues
 - Fuel Management, Defensible Space and Community Planning
 - Test Standards and Design of WUI Materials
 - Effectiveness of Mitigation Strategies
 - Impact of Wildland Fires on Health and Environment
 - Firefighting Techniques
 - Identification of Educational Needs

10 **Overarching Theme** Most all studies fail to <u>quantify</u> effects in a repeatable manner - Difficult to create test standards or regulations without a scale Performance-based design difficult without know-how - Basic knowledge still lacking on HOW to quantify (e.g., ember flux?) Available knowledge focused on wildland fire behavior (fuel, slope topography) and density of structures · Quantitative values needed for risk analysis and models Wildland Fuels Proposed scale for WUI exposure from wildland fuels by Maranghides A and Mell (2013) Local Weathe

Pre and Post-Fire Data Collection

- Data could greatly enhance our current understanding of how WUI fires spread to help better address the problem
 - Identify risks
 - Build statistical/risk models
- Some guidelines and tools for WUI data collection have been proposed by workshops
- · More verification of Mitigation Strategies
 - Some Firewise recommendations validated after Witch & Guejito fire
 Implementation of home fire sprinklers, which is offered to
 - decrease home separation distance from 30 ft to 15 ft in NFPA 1141 have no data in the literature to support them.
 - What if power/water goes out during WUI fire need for *resilience*

ellegrino, J.L., Bryner, N.P., Johnsson, E.L., 2013. Wildland-Urban Interface Fire Research Needs Yorkshop Summary Report, NIST.

Understanding Firebrands

- · Firebrands least understood component of WUI fires
 - More knowledge needed on generation & ignition
 - Testing needed on different fuels under more extreme conditions
- · Firebrand tests on structural components
 - Most tests on fuel beds, not structural components
 - Higher velocities and flux of firebrands needed
 - Interaction of multiple building components
 - Re-entrant corners (worst case?)
- With more knowledge can build materials & assemblies that resist ignition and deposition of brands
- Fundamental knowledge will enable scale model testing and development of new solutions & test standards

🌑 Community Planning – Best Practices 🔅

- Very little work has been done to develop <u>strategies to design</u> <u>a WUI community</u>
- No publication was found in which a strategy was proposed to aid in the design of a WUI community
 - Most aimed at homeowner maintenance
 - Codes say what you can't do but what can we do?
- Greenbelts, parks, walking/bike paths or other defensible spaces may be particularly effective design strategies, however no guidance appears available for their use
- Two sides to WUI home protection: engineering and maintenance
 - Just like inside a structure, *education and enforcement* are needed to ensure proper function
 - Continue community-wide programs such as Firewise

🚯 Test Standards and Design of Components 🎡

- Measure ignition and fire resistance
 - Must be coupled to exposure, which needs further study
 - Still need to fundamentally know how items ignite!
 - Can we engineer a solution for debris?
- Specific tests needing development/improvement

 <u>Roof tests</u>: Class A rated by UL 790, ASTM-E108 or NFPA 276 have
 - failed wind-tunnel firebrand shower tests (Manzello et al., 2013) – <u>Gutters</u> and other roofing products - to keep debris accumulation
 - minimal or nonexistent
 - Fences and sidings: little known, research first
 - <u>Mulch</u>: test standards proposed (Beyler et al, 2014), but still need to look at ability of these mulches to ignite homes.
 - <u>Decks/Porches</u>: need better national tests (CA has CBC 12-7A-4.)
 - <u>Sprinklers</u>: on home outside or inside. Need tests for coatings, first we need to understand more!

()

Acknowledgements

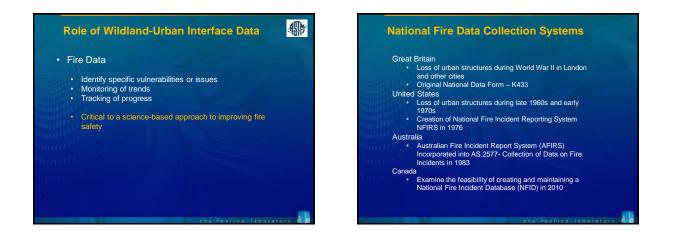
- 🚯

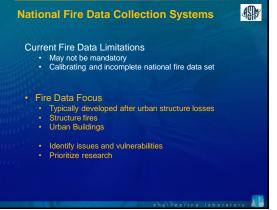
Project Technical Panel

• Randall Bradley, Nelson Bryner, Ryan Depew, Steve Gage, Steve Quarles, Don Oaks, Michele Steinberg, Rick Swan

Casey Grant (NFPA FPRF) for his efforts coordinating this project **Comments from many experts in the field**

• Jack Cohen, Alexander Maranghides and Kevin Tolhurst

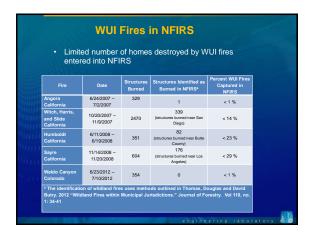

NFPA for funding this research


THE FIRE PROTECTION RESEARCH FOUNDATION

Read our Report: ter.ps/wuireport

National Fire Data – NFIRS & NFPA

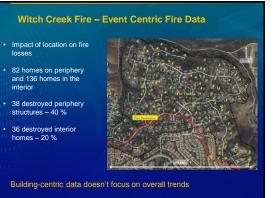
- Urban Structure Fires
 - Identify issues and track trends
 Prioritize or focus research efforts

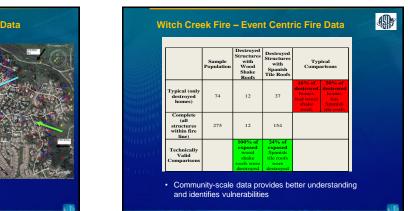

1011020	0	100003	100001011	Chorto

First Item Ignited- Urban Structure Fires Home/Residential Fires – 2013*		Civilian Deaths	Civilian Injuries	Direct Property Damage (\$M)
Upholstered Furniture	6,300	450	810	334
Mattress/Bedding	9,900	330	1,360	361
Combustible liquids or gases	15,500	200	1,060	317
Cooking materials, including food	106,300	130	3,580	471
Structural member or framing	20,500	130	410	1,088
Clothing	7,700	130	520	176
Unclassified furniture or utensil	6,500	120	440	209
Electric wire or cable insulation	17,600	100	440	443
Interior wall covering	7,500	100	290	313
Unclassified structural component or finish	7,900	70	200	358
Subtotal of Above Categories	205,700	1,760	9,110	4,070
Totals	366,600	2,570	13,210	7,208
^a Ahrens, M., Home Structure Fires, National Fire Prof www.nfpa.org	ection Associat			
		engin	eering	aborato

4 Event-Centric Fire Data – WUI **Need for Event-Centric WUI Fire Data** Wildland-Urban Interface Fires Building Centric Data Does not adequately capture complex interactions when · Difficult to identify issues and track trends · Difficult to focus research efforts community exposed to WUI fire Need to shift to event-centric fire data collection Collect data on community-scale Interaction between multiple structures · Vegetation to structure interaction WeatherTerrain Difficult to identify WUI structure/community vulnerabilities Difficult to prioritize WUI research otal of Above Categorie 2400 2135 14,000 Fotals

Witch Creek Fire Event Centric Fire DataImage: Strain Strai


Witch Creek Fire – Event Centric Fire Data Less than 14% of home destroyed were reported in NFRS None of 90 homes destroyed/damaged in the Trails Community were entered into NFIRS Post-fire analysis by Maranghides et al. document community events Demonstrate need to collect community scale data


Witch Creek Fire – Event Centric Fire Data

- Event occurred over 12
 hours
- Community experienced at least three different exposures
- Firebrands arrived an hour ahead of fire
- Fire ignited structures on edge of community
- Structure firebrands ignited additional structures

Building-centric data has little ability to capture different exposures

Witch Creek Fire – Event Centric Fire Data

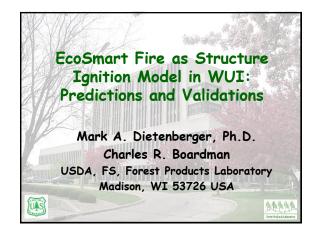
- Terrain impacts fire spread
- Small canyons/chutes channeled fire spread into specific areas of community
- Wind carried firebrands, structural and vegetative, into interior of community
- Building-centric data has difficulty documenting terrain and wind

Role of Wildland-Urban Interface Data

₽₽

- Event-Centric Fire Data
 Critical to a science-based approach to improving fire safety
 Identify specific vulnerabilities or issues

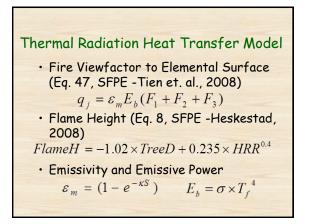
- National Fire Data Systems
 Developed out of urban fire scenarios
 Incomplete data
 Building-centric approach


- Community-Scale Fire Data
 Captures complex interactions
 Exposures thermal flux and firebrands
 Structure location periphery vs interior
 Identifies vulnerabilities
 Impact of weather and terrain
 Needed to focus research

1

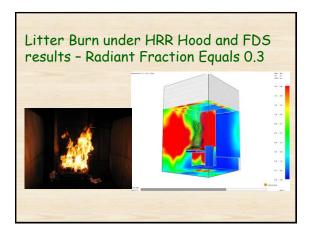
Questions or Comments?

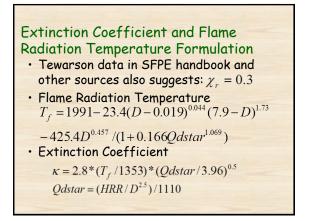
•Thank you for the opportunity to discuss community-scale fire data

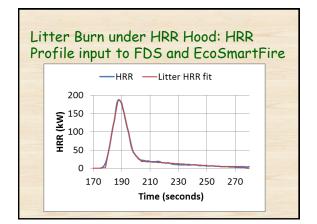

Outline

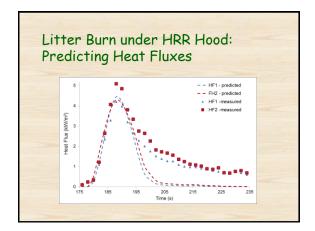
- Modeling Heat Damage & Ignition of Structures from Landscaped Tree Fires
- Damage/Ignitability Model versus Litter Fire Under HRR Hood
- Model Verifications with PC Version
- Ecosmart Landscape Website Implementation using Google Earth

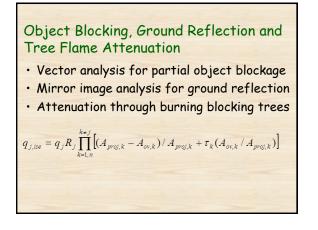
Selective Fuel Clearances to Mitigate Heat Damage and Ignition on Structures

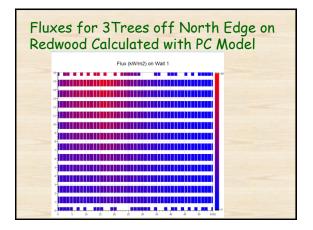

- Model Fuel Flame Threat to Structures for Added Protection as Separate from the Firebrand-only Threats
- Collaboration with Greg McPherson of PSW station and with UC Davis to develop Ecosmart Landscape Website
- Funded by CalFire

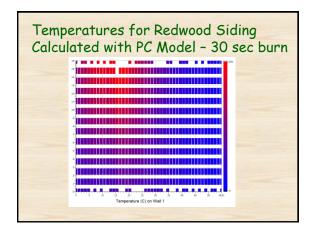

Tree Heat Release Model • Douglas fir (from SPFE Figure 3.1.67) $HRR = \frac{2 \times mass \times 400}{(1+0.0538 \times MCper)}$ • Generic tree (from SFPE Figure 3.1.70) $HRR = \frac{2 \times mass \times 700}{(1+0.1295 \times MCper)}$ • Burntime estimation is foliar mass times heat of combustion (13.1 MJ/kg) as divided by HRR (Usually about 30s)

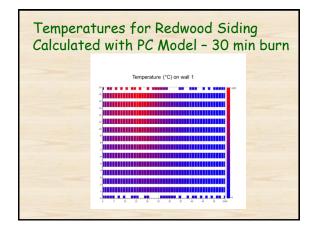


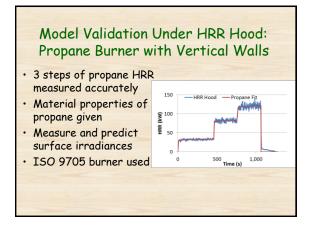

Extinction Coefficient and Flame Radiation Temperature Formulation

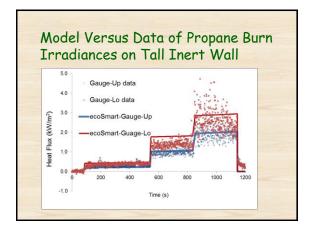

- SFPE handbook: $\kappa = 0.8m^{-1}, T_f = 1732K$
- These values will give radiant fraction, $\chi_r = \varepsilon_m E_b A_f / HRB$ reater than 1
- Using FDS provides radiant fraction = 0.3 for the litter fire to agree with heat flux data





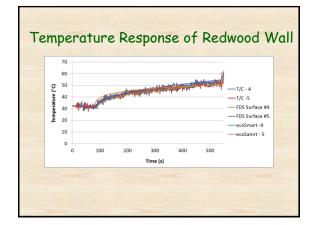



Transient Surface Heat Conduction:
Required with Short Burn Time of 30 s


$$T_{s,ise}(t) = T_a + (\varepsilon_{ise}q_{j,ise}/h_{ig})/\{1 + (F_{thick}^n + F_{thin}^n)^{(-1/n)}\}$$

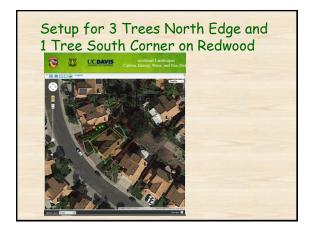
 $\varepsilon_{ise}q_{cr} = h_c(T_{ig} - T_a) + \varepsilon_{ise}\sigma(T_{ig}^4 - T_a^4) = h_{ig}(T_{ig} - T_a)$
 $n = (2.68 + 0.4Bi)/(1 + Bi)$
 $F_{thick} = \sqrt{\frac{4}{\pi}Bi^2Fo}$ $F_{thin} = \exp\left(\frac{BiFo}{1 + 0.254Bi}\right) - 1$
 $Bi = h_{ig}\delta_m/k$ $Fo = (k/\rho c)t/\delta_m^{-2}$

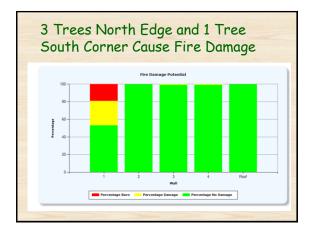
		oper	ties a	1 2	uil	uces	
	mm		W/m K	kg/m^3	J/kg K	Temp (K)	Temp (K)
-	thickness	emissivity	conductivity	density	specific heat	Tdamage	Tignite
Roof Type							
Cedar	25	0.85	0.156	395	2300	473	629
Asphalt Shingle Class A	6	0.91	0.324	1560	920	473	642
ACQ-SYP	25	0.92	0.284	607	2300	473	581
EverX	24	0.95	0.264	1033	2000	473	578
Exterior							
Vinyl siding + KPS foam	0.93	0.89	0.145	1889	882.3	473	700
Clear Grade Redwood T&G	19.2	0.82	0.171	410	2512.5	473	600
#2 ponderosa pine T&G	18.5	0.83	0.169	420	2313	473	621
Painted plywood	12.8	0.83	0.211	500	2654	473	629



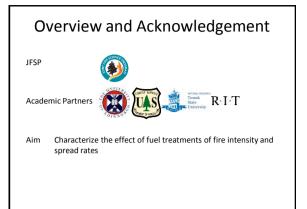
Temperature Response of Redwood Wall

- Redwood properties from Wood Handbook
- Measure and predict surface temperatures
- T/Cs at center and 4 corners
- Heat damaging sap flow around 120 degrees Celsius


Simplifications for Ecosmart Landscape Website Implementation

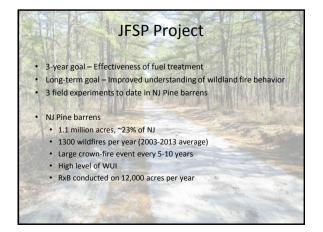

- 4 walls and 1 flat roof
- Choice of redwood or vinyl wall
- · Choice of Asphalt shingle or cedar shakes
- Up to 9 trees total anywhere on property
- Trees considered dried at 20% MC
- Wind speed is 5.7 m/s
- Ambient temperature is 25 Celsius
- · PC version is much more flexible

Conclusion

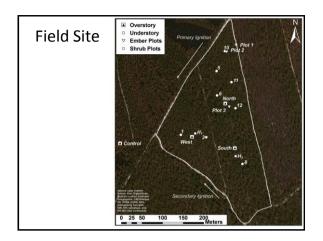

- Successful Modeling required empirical functions for flame radiation temperature and smoke extinction
- Short tree burn times required abandonment of critical fluxes in favor of damaging or ignition temperature.
- Ecosmart Landscape Website Implementation using Google Earth Demonstrated

Model Development Needs

- Need new data on HRR of ornamental vegetation
- Need cone calorimeter data on additional surfaces of buildings
- Need new features for fire model
- Need validations of fire model
- Need funding to replace CalFire support

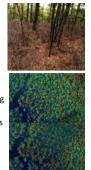


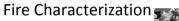
Philosophy: Ignition of structures in WUI

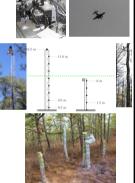

- Identify the failure mode
- Quantify the fire load to the structure
 - Multi-scale experimental observations
 - Firebrand flux, radiation, flame impingement, exposure duration
- Identify fundamental controlling mechanisms
 Smouldering ignition, flaming ignition, heat transfer

Philosophy: Ignition of structures in WUI

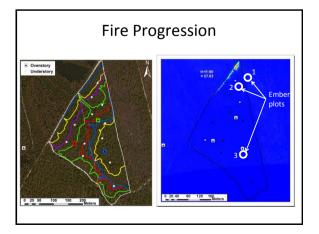
- Identify the failure mode
- Quantify the fire load to the structure
 - Multi-scale experimental observations
 - Firebrand flux, radiation, flame impingement, exposure duration
- Identify fundamental controlling mechanisms
 Smouldering ignition, flaming ignition, heat transfer



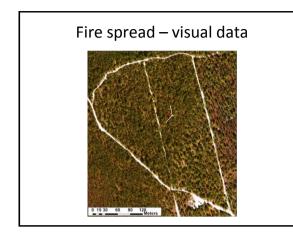


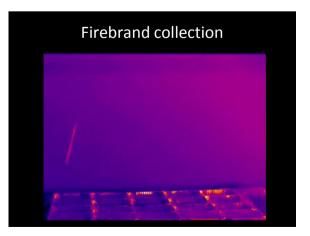

Fuel characterization

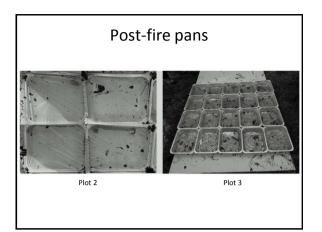
- 36 pre- and post-fire clip plots (3 per understory tower)
- Fuels sampled by size class • Forest floor: fine, repro., 1hr, 10hr, 100hr
- Shrub and Oak layer: 1hr, 10hr (live and dead)
- Pre- and post-fire Airborne Laser Scanning data (400 kHz, pulse density 5.12 pts/m²)
- Provides canopy height and bulk densities (calibrated by upward sensing LiDAR)
- Resolution of 10 x 10 x 1 m

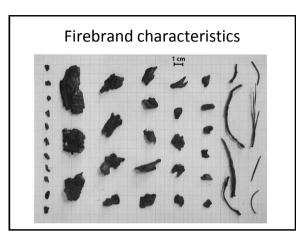


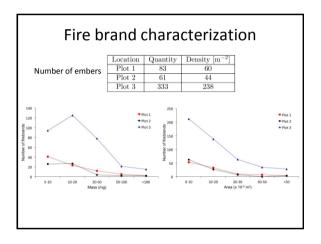


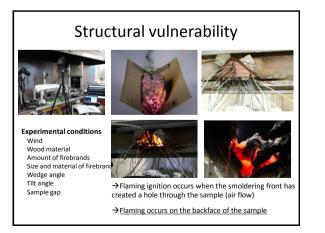

- Aerial imagery: Series of georeferenced stills taken using RIT's Wildfire Airborne Sensor Program (WASP)
- Towers: overstory (8 thermocouples and 1 3D Sonic Anemometer) and understory (5 thermocouples, 1 vertical flow sensor, 1 vertical dualband radiometer)
- Fire behaviour packages: 4 thermocouples, 6 thin-skin calorimeters (total heat flux), 3D flow velocity

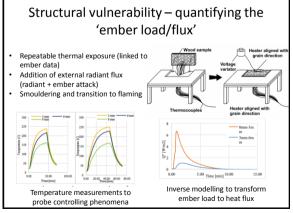





Fire spread – Crown fire



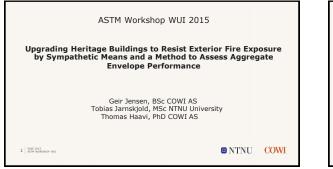


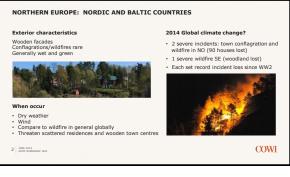


Conclusions

- Much more work to be done to thoroughly analyze results from both years!!
- · Valuable data collected on fire behavior in a forested environment
- Firebrand characterization linked to
 - Both fire progression/behavior and total fuel consumption
 - Estimation of fire-line intensity for different types of fire spread
 - Analysis of fire behavior related to fuel distribution and wind
- Use of field data to inform laboratory experiment
- Lab experiments used to calculate 'ember load/flux' to predict impact on structure

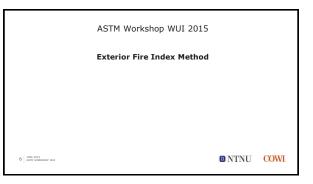
The whole story...


FIRE TECHNOLOGY


Fire Technology May 2015 Date: 12 May 2015

Experimental Procedures Characterising Firebrand Generation in Wildland Fires

Mohamad El Houssami, Eric Mueller, Alexander Filkov, Jan C. Thomas, Nicholas Skowronski, Michael R. Gallagher, Kenneth Clark, Robert Kremens, Albert Simeoni


- Wooden heritage, 200-800 years old
- Wooden residences, historic town centres
- Rainscreen (termed PER or double-barrier weather protection) common
- 2 or 3 glass layer windows common
- ISO 834 enclosure fire resistance rating used for facades – need to review practice in terms of wildfire, conflagration.

3 ASTM WORKSHOP WUI

Case study: The fire in Lærdal 19th January 2014

Characteristics

- 42 houses completely destroyed Fire reported 22:53
- (Under control 16:45, 18h) Building-to-Building
- Interviews (qualitative analysis) Interesting exceptions (hip roof, no ventilation,
- (nip root, no ventilation, newly painted, the work of fire fighters)
 Ignition high above ground (gable wall, cornice, rooftop)
 Factors and parameters

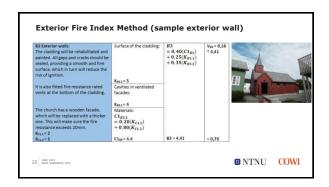
7 JUNE 2015

NTNU COWI

Exterior Fire Index Method

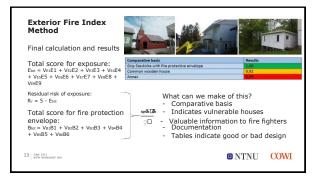
	EXPOSURE MAIN FACTORS	Sub-factors	Weighting
Exterior Fire Index	E1 Climate	KELLEFITE Spread index KELLEWind speed	18%
Excertor the index	E2 Protection zones		12%
Method	E3 Fire stairs	Kess Fire stairs in protective zone Kess Ignite able material to exterior walls	6%
	E4 Fire break		5%
	ES Gardening		6%
Calculation	E6 Outdoor tidiness and maintenance		11%
	E7 Fences and connections		11%
 Exposure: 	E8 Location		12%
important factors (E)	E9 Other buildings in protection zone		18%
	PROTECTIVE ENVELOPE ELEMENTS	Parameters	Weighting
 Fire protective envelope: 	C1 Materials	Kcui Type of material Kcui Time to burn through	Depended on fire element
important parameters and	B1 Decks	Kn11 Design of deckings Kn12 Type of decks	18%
details in the building	B2 Roof	Ks2.1 Type of roofing Ks2.2 Ventilation	28%
envelope (B)	B3 Exterior walls	Kass The surface of the cladding Kass Cavities	18%
	B4 Foundation	Kaks The height of the foundation Kaks Ventilation	14%
	B5 Doors	KwistCrevices KwistCavities , vent, drainage	9%
	86 Windows	Kst.: Type of window Kst.: Cavities, vent, drainage	13%
9 AGTM WEDREGHOP WILL		NTNU	COWI

Exterior Fire Index Method (sample exterior wall) Calculation example

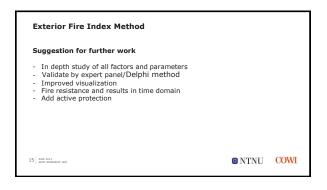

Grip Stave Church:

B3 Exterior wall (protective cladding): Rehabilitation, increasing cladding thickness and installation of EI classified vents.

Wooden facade cavity need adequate



Exterior Fire Index Method (sample exterior wall) B3 Exterior walls: $K_{B3.1}$ Surface of the cladding $K_{B3.2}$ Cavity in ventilated facades C1 Materials: Kc1.1 Material classification Kc1.2 Time to burn-through C1B3 = 0,20(Kc1.1) + 0,80(Kc1.2) Total rating of B3 is given by 0,35(KB3.2) 11 JUNE 2015 ASTM WORKSHOP WU NTNU COWI



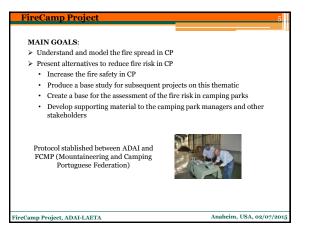
air exchange rate and fire resistance rated linear vents.

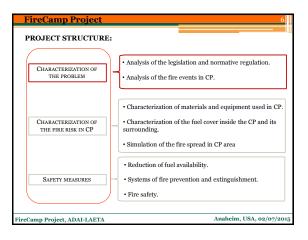
10 JUNE 2015 ASTM WORKSHOP WUI

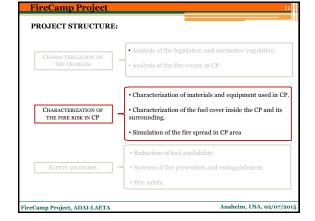
Method characteristics		
 To some extent a need for q Transparent, communication Simple Checklist Can be adapted for wildfire, bulding-to-building 	across disciplines	
14 JUNE 2015 ASTM WORKSHOP WUI	I NT	NH CON

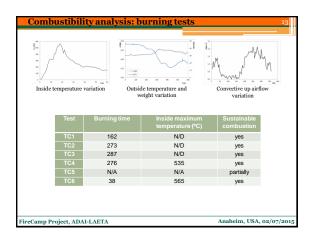
Workshop on Structure Ignition in WUI Fires

FireCamp - Analysis of fire hazard in camping park areas


🔷 Laeta


Presented by: Miguel Almeida LAETA/ADAI/CEIF miguelalmeida@adai.pt Anaheim, June 19th, 2015 Authors: Miguel Almeida, José Raul Azinheira, Jorge Barata, Kouamana Bousson Rita Ervilha, Marta Martins, Alexandra Moutinho, José Carlos Pereira, João Caldas Pinto, Luís Mário Ribeiro, Jorge Silva, Domingos Xavier Viegas

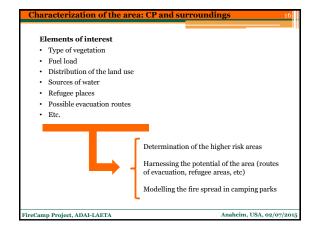


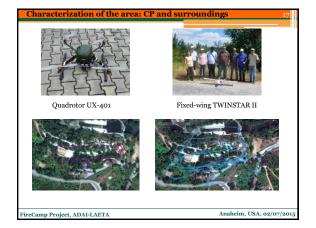


FireCamp Project, ADAI-LAETA

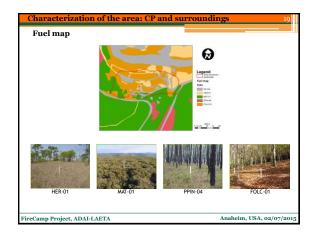
Anaheim, USA, 02/07/2015

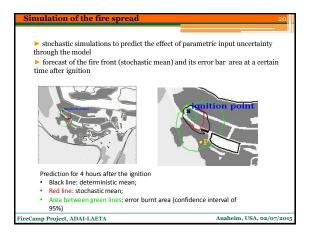
Combustibility analysis : burning tests

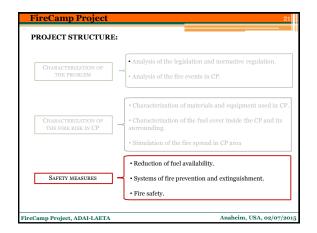

Experimental findings:

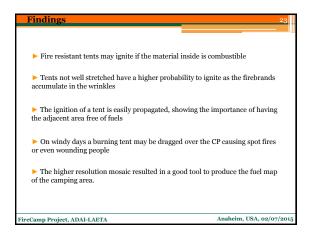

- Very fast burning of the tents and great dependence of the origin of the ignition;
- Melted incandescent material drip;
- · Release of toxic smoke;
- Extinguishing the fire with water is very dangerous;
- Relevance of cotton sublayer to support combustion;
- Great importance of the inside materials in the combustion. Irrelevance of the fireproof treatment when there is flammable material inside, except when this tissue is the source of ignition;
- In the presence of wind the tent can inflate and be dragged easily causing new spot fires.

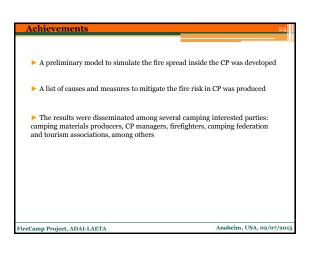
FireCamp Project, ADAI-LAETA


Anaheim, USA, 02/07/2015


Code	RI	E1	F	31	WI	п	1	21	SB1	CPI
Sample						- Are				
ricture		-	1		0			10	-	00
Description	Tent roof	Tent entranc door	e Tent	t base	Tent wall	Tent interior	Tent er mose protect	quito	Sleeping bag	Campin mattres
Material	Polyester or polyamide	Rip stop		en PE	coated	cotton	Oxfore	d alash	100%	
Material	coated with a PU or silicone	nylon	SIIO	eting Tarp"	polyester and vinyl	with polyester	and		polyester	PE foar
н	coated with a PU or silicone	nylon ic Valu	"Poly	eting Tarp"	and vinyl alts	polyester	and 1	nesh	polyester	PE foar
Н	coated with a PU or silicone igher Calorif Code Sample	nylon ic Value R1	"Poly e (HCV E1	 Tarp" 7) rest B1 	and vinyl alts W1	polyester I1	and r	nesh SB1	cP1	PE foan
н	coated with a PU or silicone igher Calorif Code Sample ICV (MJ/Kg)	nylon ic Value 23.13	"Poly e (HCV E1 29.27	eting Tarp" 7) rest 81 45.5	and viny1 alts W1 1 22.58*	11 22.09	and 1 P1 22.86	sB1 22.45	CP1 41.45	PE foar
н	coated with a PU or silicone igher Calorif Code Sample	nylon ic Value 23.13 es specific	e (HCV E1 29.27 accessorie	eting Tarp" 7) rest 81 45.5 es for m	and vinyl alts W1 1 22.58* easurements a	II 22.09 s it contains	P1 22.86 halogena	sB1 22.45	CP1 41.45	PE foar
н	coated with a PU or silicone igher Calorif Code Sample ICV (MJ/Kg)	nylon ic Value 23.13 es specific	e (HCV E1 29.27 accessorie nition	eting Tarp" 7) rest 81 45.5 es for m time	and vinyl nlts 1 22.58* easurements a at 25kW.:	II 22.09 s it contains m ⁻² resu	P1 22.86 halogena lts	SB1 22.45 tted comp	CP1 41.45	PE foar
н	coated with a PU or silicone igher Calorif Code Sample ICV (MJ/Kg)	nylon ic Value 23.13 es specific	e (HCV E1 29.27 accessorie nition	eting Tarp" 7) rest 81 45.5 es for m	and vinyl nlts 1 22.58* easurements a at 25kW.:	II 22.09 s it contains m ⁻² resu Mea	P1 22.86 halogena	SB1 22.45 ited comp	CP1 41.45	PE foar
н	coated with a PU or silicone igher Calorif Code Sample ICV (MJ/Kg)	nylon ic Value 23.13 es specific	e (HCV E1 29.27 accessorie nition	eting Tarp" 7) rest 81 45.5 es for m time ample	and vinyl nlts 1 22.58* easurements a at 25kW.:	II 22.09 s it contains m ⁻² resu Mea ti	P1 22.86 halogena lts n ignit	SB1 22.45 ited comp	CP1 41.45	PE foar
н	coated with a PU or silicone igher Calorif Code Sample ICV (MJ/Kg)	nylon ic Value R1 23.13 es specific Ig	e (HCV E1 29.27 accessorie nition	eting Tarp" /) rest 45.5 es for m time ample	and vinyl ults W1 1 22.58* casurements a at 25kW.:	II 22.09 s it contains m ⁻² resu Mea ti	P1 22.86 halogena his n ignit ime (s)	SB1 22.45 ited comp	CP1 41.45	PE foar
н	coated with a PU or silicone igher Calorif Code Sample ICV (MJ/Kg)	nylon ic Value R1 23.13 es specific Ig Q	e (HCV E1 29.27 accessorie nition	eting Tarp" 7) rest 45.5 es for m time ample Re Ba	and viny1 ults W1 1 22.58* easurements a at 25kW.:	II 22.09 s it contains m ⁻² resu Mea ti	P1 22.86 halogena his n ignit ime (s) >1200	SB1 22.45 ited comp	CP1 41.45	PE foan







Future work

- ▶ Extend the analysis to other equipment and materials e.g. caravans
- Develop a methodology to classify the CP in respect to fire risk
- ▶ Extend the results to other realities e.g temporary CP of music festivals
- Support the adaptation of the existing legislation.

Workshop on Structure Ignition in WUI Fires

FireCamp - Analysis of fire hazard in camping park areas

Laeta

Presented by: Miguel Almeida LAETA/ADAI/CEIF miguelalmeida@adai.pt Anaheim, June 19th, 2015 Authors (alphabetic order): Miguel Almeida, José Raul Azinheira, Jorge Barata, Kouamana Bousson, Rita Ervilha, Marta Martins, Alexandra Moutinho, José Carlos Pereira, João Caldas Pinto, Luís Mário Ribeiro, Jorge Silva, Domingos Xavier Viegas

FireCamp Project, ADAI-LAETA

Anaheim, USA, 02/07/2015

Firebrand Production from Building Components with Siding Treatments Applied

Sayaka Suzuki, Ph.D. National Research Institute of Fire and Disaster, Japan sayakas@fri.go.jp Samuel L. Manzello, Ph.D.

National Institute of Standards and Technology, USA

Workshop on Structure Ignition in Wildland-Urban Interface (WUI) Fires Sponsored by ASTM International Committee E05 Anaheim, CA, USA

Structure Ignition in WUI Fires

- Post-fire studies firebrands a major cause of ignition
- Understanding firebrand ignition of structures important to mitigate fire spread in communities
- Improved understanding of structure ignition in WUI fires Major recommendation (GAO 05-380) National Science and Technology Subcommittee on Disaster Reduction Homeland Security Presidential Directive (HSPD 8; Paragraph 11)

2007 Southern California Fire

Previous Research on Firebrands

- Firebrands: generation, transport, ignition
- Research focused on how far firebrands travel for 40 yrs!!
- Nice Academic Problem Not helpful to design structures
- NIST Dragon (ignition research)
 - Simulate firebrands by coupling with the wind tunnel in BRI, Japan
 - Firebrands by NIST Dragon are tied with the firebrand data from vegetation and from Angora fire (2007)

Firebrand Generation from Structures

- Firebrands are produced not only as vegetation burns but also as structures are ignited and burned
- Little data exists regarding firebrand production from actual structures
- Firebrand production from burning structures needed for EL-NIST's modeling of WUI fires
- Data will also enable the NIST Firebrand Generator to generate firebrand showers representative of burning structures

Previous studies							
	Peak Fire Intensity	Material Used	Wind Speed	Measurement Techniques	Significant Results		
Vodvarka	Not provided	standard frame construction with wood siding /asphalt siding applied over sheet rock / brick veneer over a wood frame	Not specified	Sheets of polyurethane plastic	89% of firebrands less than 0.23 cm ²		
Vodvarka	Not provided	all wood construction /cement-block construction with wooden floors and asphalt shingles over wood sheathing	Not specified	Sheets of polyurethane plastic	85% of firebrands less than 0.23 cm ²		
Manzello and Foote	Not mentioned	Not specified	4.5 m/s to 6.7 m/s	trampoline outdoor furniture	more than 95 % of firebrands less than 1.0 cm ²		
Rissel and Ridenour	Not mentioned	Not specified	5.4 m/s to 6.3 m/s	Trampolines	more than 90 % of firebrands less than 0.5 cm ²		

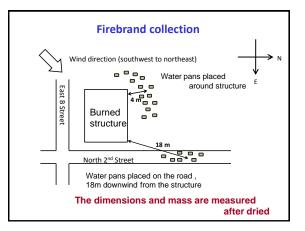
	Peak Fire Intensity	Material Used	Wind Speed	Measurement Techniques	Significant Result
Shinohara et al.	Not measured	Not mentioned	an average wind speed of 7.2 – 12.1 m/s	Collected after fire	Most of the firebrands less tha 10 cm ² and 0.5 g
Ohmiya and Iwami	Not measured	Not mentioned	an average 7 m/s	Survey	Most of the firebrands less tha 5 cm maximum dimension
Yoshioka et al.	1.08 MW/m²	fire prevented wood with outer wall siding and slate roofing	4 m/s	Pan filled with water and no water	83 % of firebrands the wet pan between 0.25 and cm ²
3 story school building burn	Not mentioned	Wood and gypsum boards	4.6 m/s	Collected after fire	Most firebrands were found to be between 1 and 3 cr

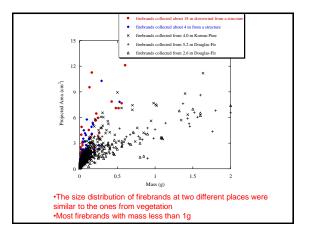
Previous studies

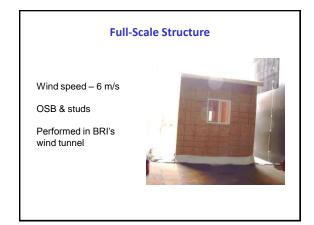
Previous Study by Vodvarka

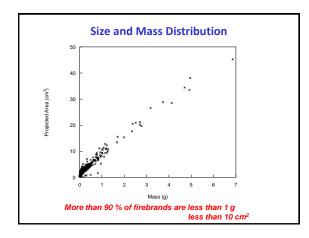
- Measured firebrand generation by laying out 3 m x 3 m plastic sheets downwind from five separate residential buildings burned in full-scale fire experiments
- Measured firebrand size and transport distances of 4,748 firebrands that were collected from five full-scale experimental building fires
- Very small firebrands dominated the size distribution
 89% of the firebrands less than 0.23 cm² (0.1875 in x 0.1875 in)

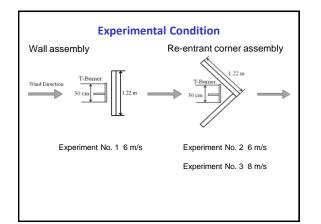
Firebrand Generation - Research Plan

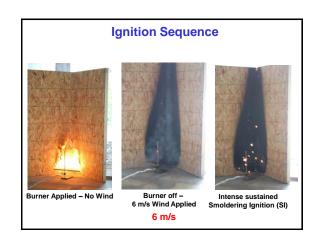

- Firebrand production from an actual full-scale structure burn conducted by NIST in Dixon, CA
- Firebrand production from a real-scale structure burn in BRI's wind tunnel
- Firebrand production from real-scale building components under well-controlled laboratory conditions in BRI's wind tunnel
 - Firebrand production from <u>building components with</u> <u>sidings</u> under well-controlled laboratory conditions in BRI's wind tunnel <u>in order to see the influence of siding</u> <u>treatment applied</u>

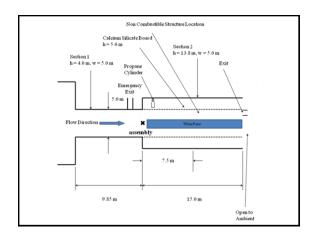

Full Scale burn in CA

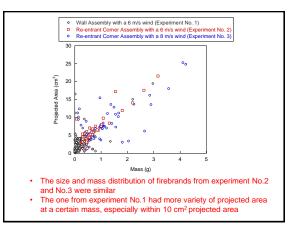

- In collaboration with Northern California Fire Prevention Officers, (NORCAL FPO), a full scale, proof-of-concept experiment conducted to investigate firebrand production from burning structure
- The structure is mainly built from wood and brick
- Wind speed 5.8 m/s
- This burn was as a part of firefighter training

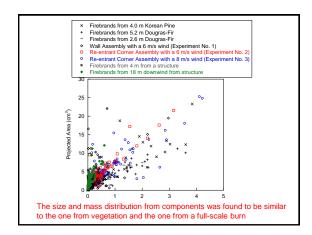


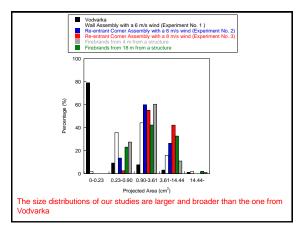


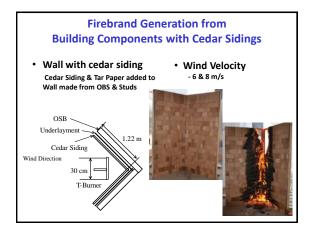

Firebrand Generation from Components

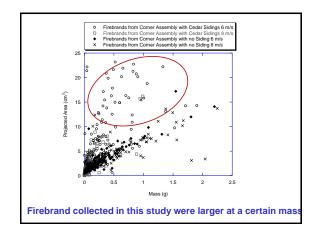

- To determine if simple component tests can provide insights into firebrand generation data from full-scale structures
- Simple building components
 OSB & studs
- Two configurations
 Wall & reentrant corner assembly
- Varying wind speed
 6 & 8 m/s

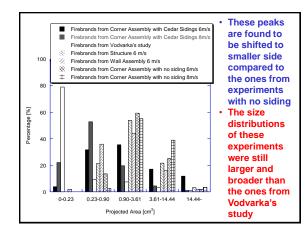


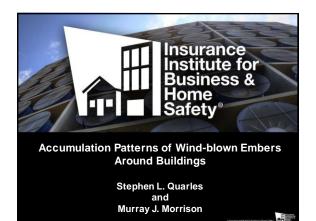

Wind Velocity – 8 m/s Corner assembly





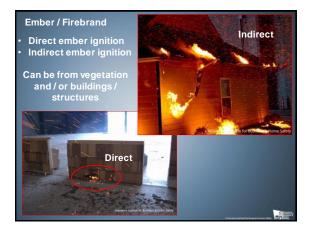




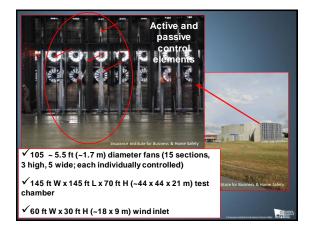


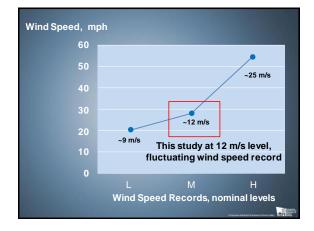
Summary

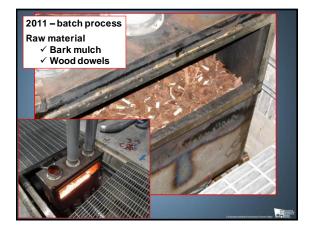
- Firebrands were collected from burning building components with cedar siding and compared with the previous firebrand data in order to see the influence of siding treatment applied
- The same ignition method was used to ignite assemblies and a series of water pans were used to collect firebrands
- Firebrands collected here had larger projected area and lower mass class compared to the ones collected from previous components test with no siding
- The results suggest that <u>siding treatment do influence of</u> <u>firebrand production process</u>

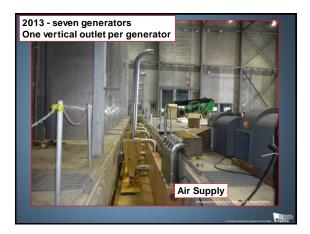

Acknowledgements

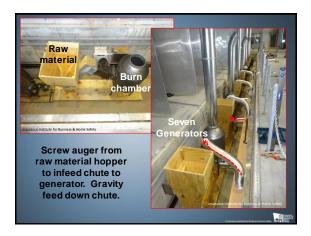
- Dr. Daisaku Nii from BRI
- Dr. Ichiro Hagiwara from BRI
- Mr. Marco Fernandez from EL-NIST

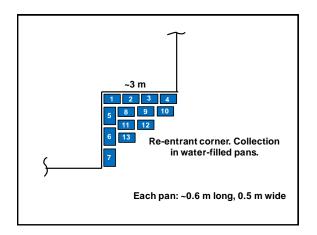


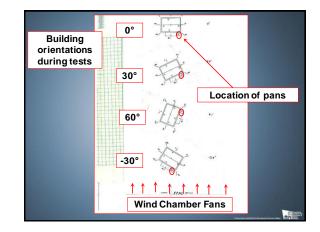

- Accumulation of embers (firebrands) around a building.
 - o Focus on re-entrant corner
 - Influence of wind direction (building orientation)

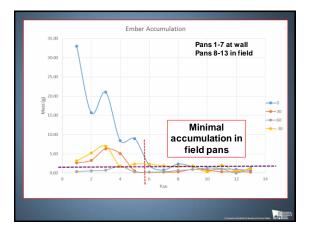

E

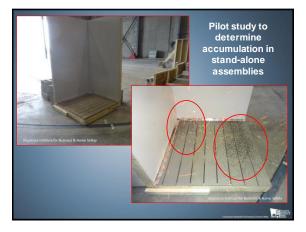






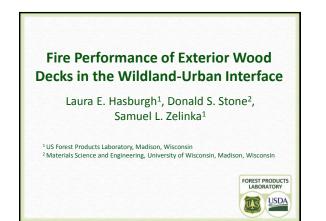


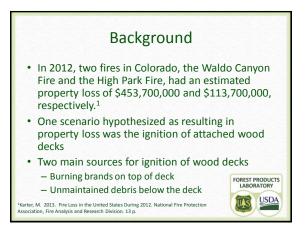


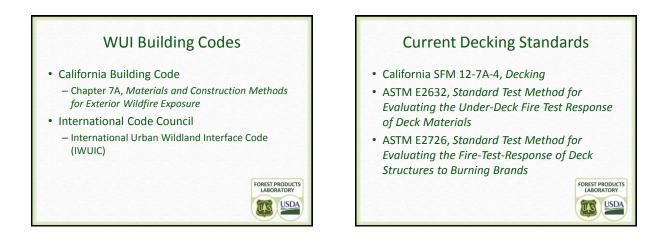


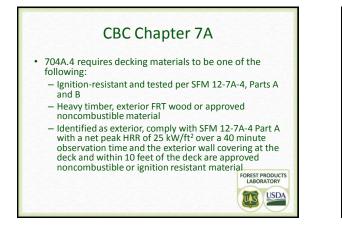
Relative amount of total mass of embers collected for four tests, as a function of building orientation.

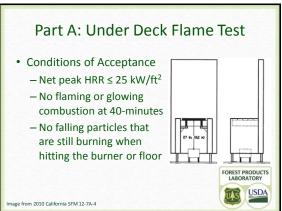
0 30 60	61 13
	13
60	
	6
-30	20

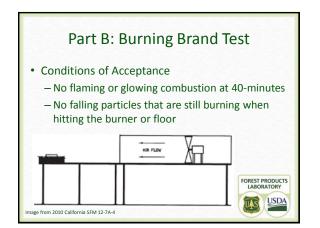


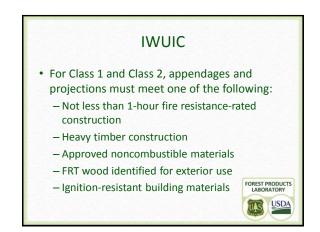

Summary -

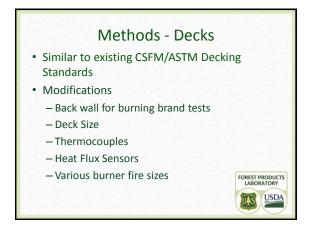

- Wind-blown ember accumulation in the reentrant corner occurred predominantly occurred in Pans 1 – 5 which were located in the corner and along one wall.
- With stand-alone corner assemblies, accumulation also occurred in the field of the deck, away from the re-entrant corner.

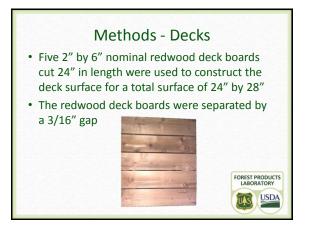


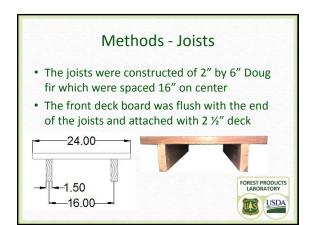


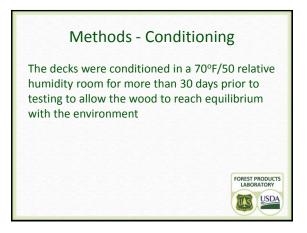


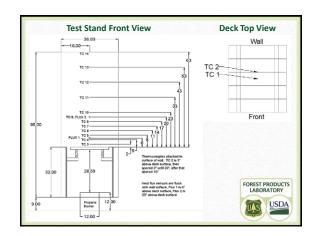


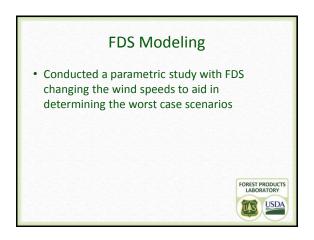


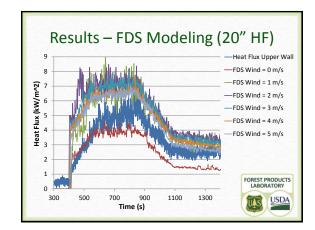


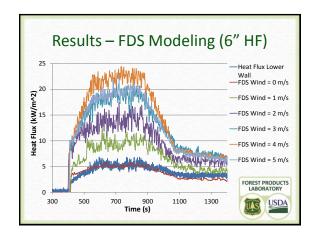


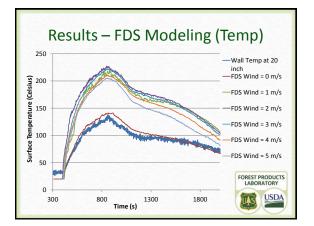


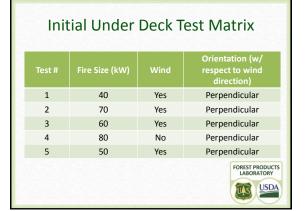


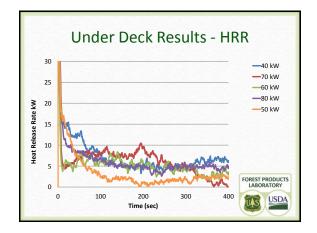

Methods – Test Frame

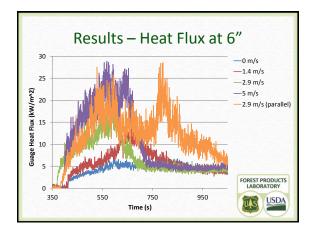

- Metal test frame was used to hold the deck
- The frame was high enough so that the bottom of the deck was 28 ¾" inches above a 12" x 12" propane burner that was used for below-test tests
- The frame allows the deck to sit directly next to a wall

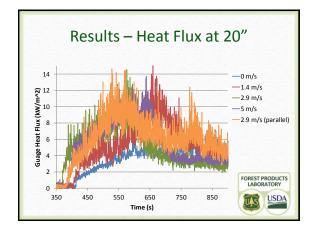


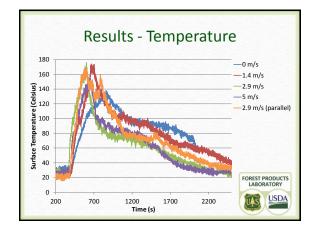




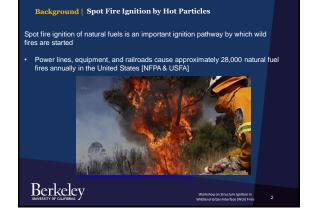


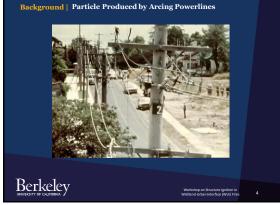


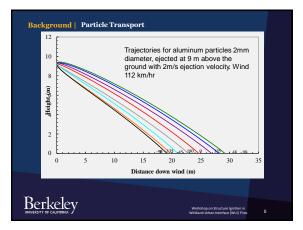


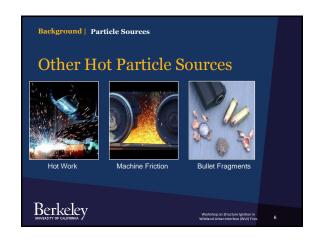


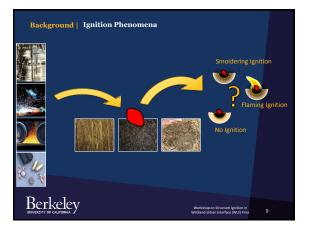
Initia	al Burning	Brand	Test Matrix
Test #	Brand	Wind (m/s)	Orientation (w/ respect to wind direction)
6	А	0	Perpendicular
7	А	1.4	Perpendicular
8	А	2.9	Perpendicular
9	А	2.9	Parallel
10	А	5	Perpendicular
			FOREST PRODUCTS LABORATORY

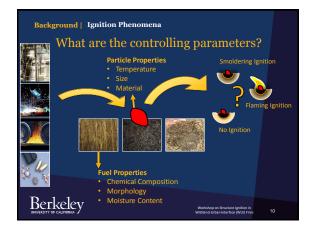


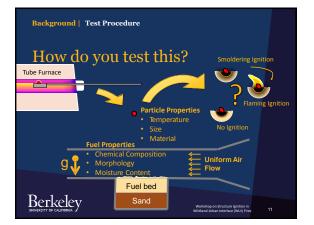

Spot Fire Ignition of Natural Fuels by Hot Aluminum Particles

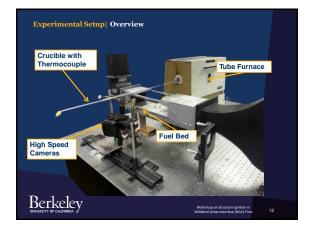

James L. Urban, Casey D. Zak & Carlos Fernandez-Pello

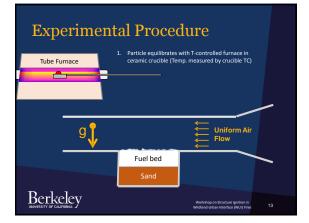


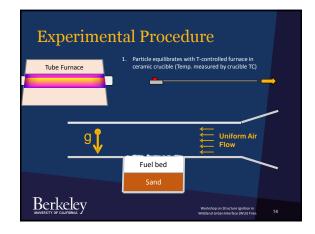


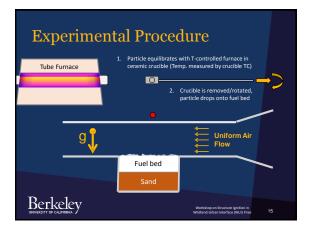

Background | Parameters Controlling Ignition Background | Research Benefits What happens when particles land on **Research Benefits** a combustible material? A better understanding of this ignition pathway could lead to improved: • What determines the ignition of a wildland fuel by a metal particle? • Do the different metals have the same propensity to cause ignition? Prediction Do the different wildland fuel beds have the same propensity for Identify high-risk fuels Assess particle source risk • Do the fuel moisture and ambient conditions affect the potential of a Predict spot fire initiation · Do live fuels behave the same as dead fuels? Prevention Prioritize fuel treatments Set intelligent clearance distances Set work site regulations Berkeley Workshop on Structure Ignition in Wildland-Urban Interface (WUI) Fires

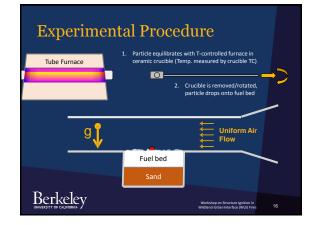


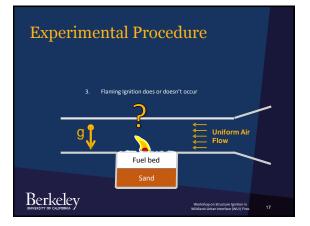

ignition?

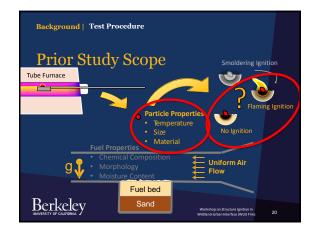

Berkeley

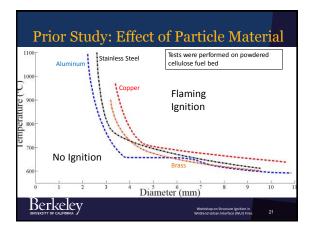

particle to ignite a given fuel?

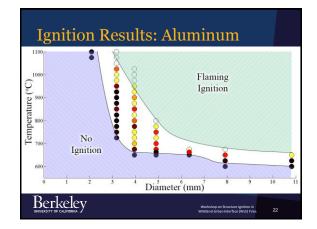


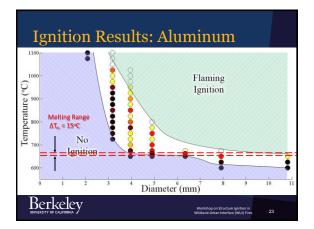


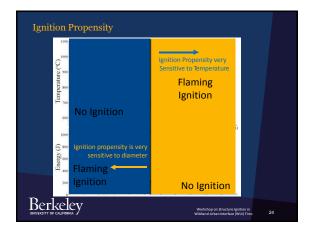


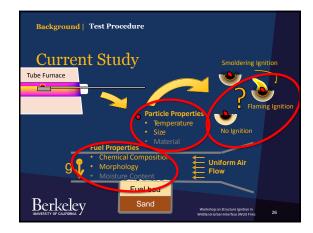


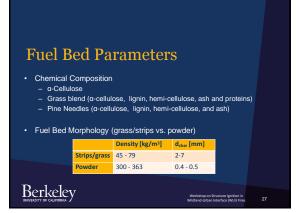




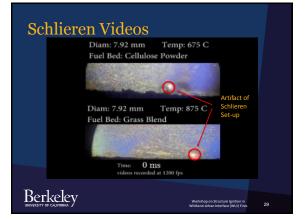


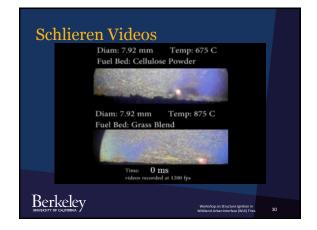

Prior Study Effect of Particle Material, Size and Temperature



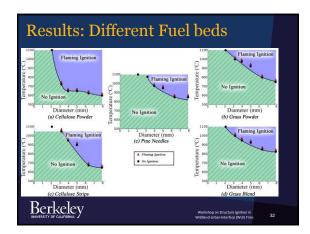


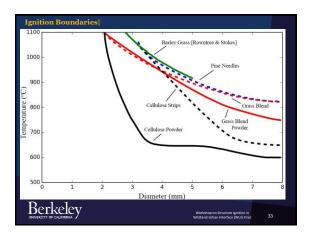
Current Study

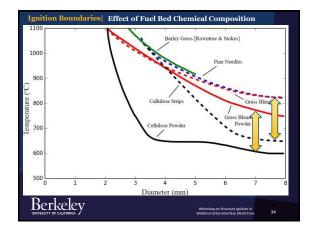

Effect of Fuel Bed Chemical Composition and Morphology

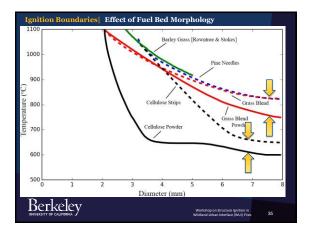


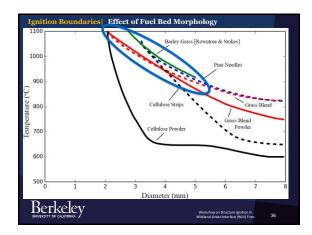
Berkeley









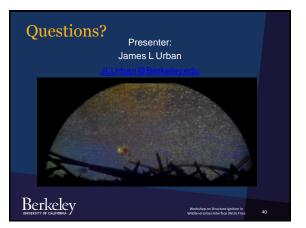


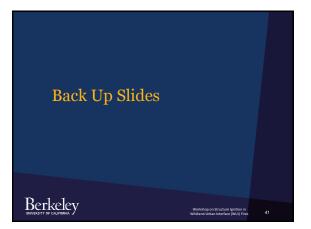
Summary

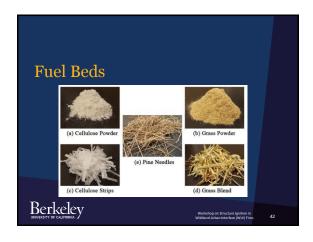
- Simulated spot fire ignition by dropping hot aluminum particles onto cellulose and natural fuel beds
- Investigated role of fuel bed chemistry and morphology on ignition propensity
- · Powdered fuels are more easily ignited than their strip/grass counterparts
- The effects of fuel bed composition and morphology appear to be more important for larger particles than for smaller particles
- The results indicate (as in previous studies) that the ignition mechanisms for large low temperature particles and small high temperature particles appear to be different

Workshop on Structure Ignition in Wildland-Urban Interface (WUI) Fires

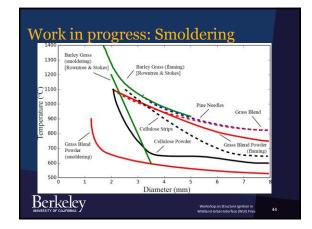
Berkeley

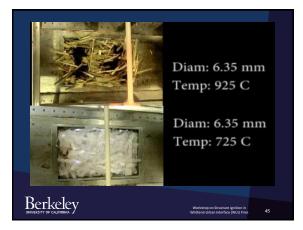

References


- C. Egan, S. Holland, The AGE National, 2009. S. Badger, Large-Loss Fires in the United States 2011, Technical Report, National Fire Protection Association, U.S., Quincy, Massachusetts 02169, 2012. H. Wakelin, Ignition Thresholds for Activity Controls on Public Conservation Land in Canterbury, Technical Report, University of Cantebury, Cantebury, NZ, 2010. U.S. Fire Administration. 10.5. Fire Administration. U.S. Fire Administration. Statistics/estimates/wildfire.shtms (accessed 04.12.14). Emergency Incident Statistics 2009–2010. New Zealand Fire Service, Wellington, New Zealand, 2010.

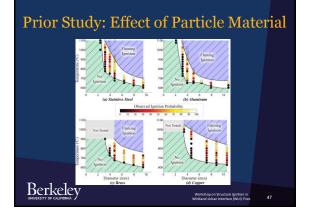

38

Berkeley





uel	Density [kg/m ³]	perti	Chemical Composition	d _{char} [mm]
Cellulose Powder	363 ± 34.4	6.5 ± 2	4000/ 0.11	0.4
Cellulose Strips	45 ± .2	7.3 ± 2	100% α – Cell.	5
Pine Needles	59 ± 1.0	8.5 ± 2	38-42% Cellulose 13-21% Lignin 6-8% Ash [33]	2
Grass Blend Powder	299 ± 2.4	6.9 ± 2	33-45% α – Cell. 22-27% Hemi-Cell. 6-15% Lignin	0.5
	79 ± 1.0	7.6 ± 2	5-7% Protein 8-10% Ash	7.5

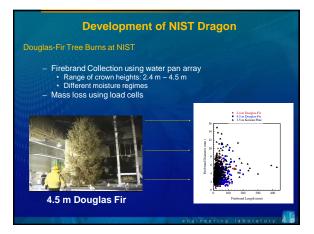

Aluminum Particle Parameters

	Aluminum (solid)		• H fu
<i>k</i> (W/mK)	237	90	fu
α (mm^2/s)	90	33	-
ρc _ρ (MJ/m³K)	2.4	2.71	• Dia _
∆ <i>T_m</i> (°C)	650	n/a	
∆h _m (MJ/kg)	390	n/a	
Berke	eley		

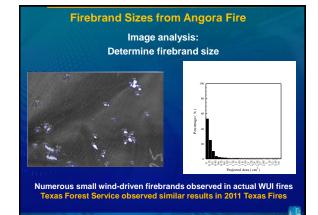
Heated using tube iurnace: Max Temp. 1100°C - Aluminum

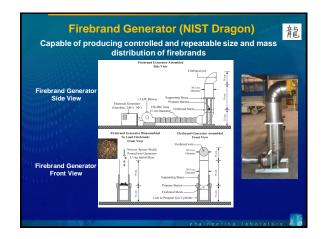
> Workshop on Structure Ignition in Wildland-Urban Interface (WUI) Fires

Diameter range:

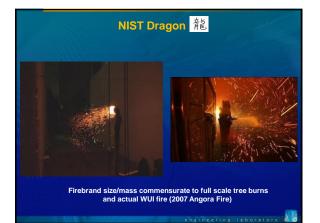

Large Outdoor Fires • Wildfires fires that spread into communities, known as Wildland-Urban Interface (WUI) fires have destroyed communities throughout the world • Japan numerous earthquakes - many fires produced in the aftermath • Large outdoor fires that pose risk to built environment are urban fires in Japan • Z014 Chile Fires • 1995 Kobe Earthquake • 2007 Southern California Fires

Challenges


- Post-fire studies <u>firebrands</u> a major cause of ignition
- Understanding firebrand ignition of structures important to mitigate fire spread in communities
- · Firebrands: generation, transport, ignition
- Research focused on how far firebrands travel for 40 yrs!!
- Nice Academic Problem Not helpful to design structures
- Vulnerable points where firebrands may enter structure
 Unknown/guessed!
- Difficult to replicate firebrand attack!
- Entirely new experimental methods needed!

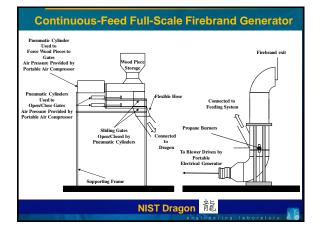

Goals

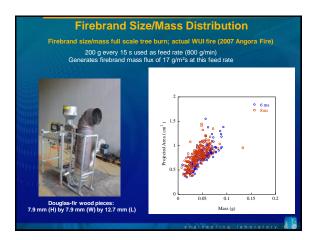
Science - Building Codes/Standards; Retrofit construction Harden structures to resistant firebrand ignition



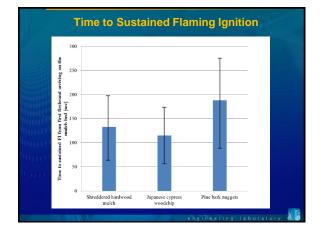
Building Research Institute (BRI)

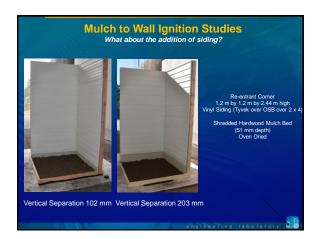
- Fire Research Wind Tunnel Facility (FRWTF)
- Unique facility investigate influence of wind on fire

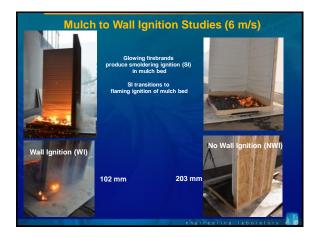


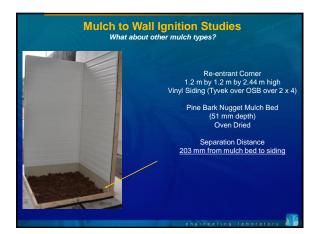


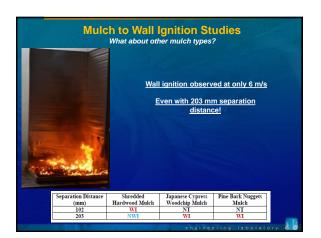
Mulch Studies

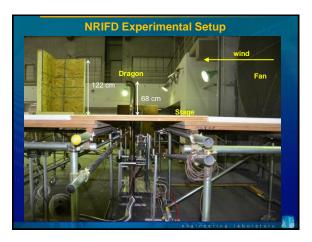

- Are wind-driven firebrand showers capable of igniting common wood mulches found in WUI communities?
 Data collected for only shredded hardwood mulch
- Once ignited, are wood mulches capable of igniting building components?
- What about siding treatments?

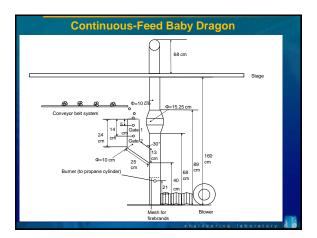


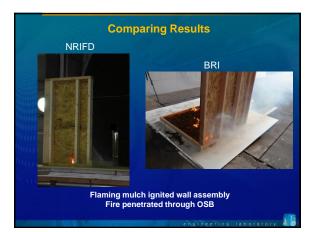




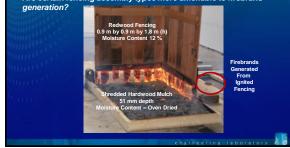








<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text>


Roofing Assemblies Are Class 'A' roofing assemblies really ignition resistant? May leader ASTM E108; UL 790 roofing test be modified to consider wind-driven firebrand exposure to roofing assemblies?

Fencing Assemblies

- Do fencing assemblies, ignited by firebrand showers, transfer or link the fire to the structure ?
- Are certain fencing assembly types more amenable to firebrand

Summary

- Research into WUI fires, and how to potentially mitigate the loss of structures in such fires, is far behind other areas of fire safety science research
- Fire spread in the WUI is incredibly complex, involving the interaction of structures with topography, weather, and vegetation, and other structures
- Attempted to delineate a series of current research gaps in order to be able to begin to harden structures to firebrand showers, an important aspect of WUI fire exposures

Physical understanding collected from full-scale experiments will be used develop reduced-scale test methods that will be able to reproduce results of the full-scale experiments

chainsering laboratory