NIST Special Publication 1178

Impact of More Precise Construction Data on Estimated Savings from Energy Standard Adoption for Commercial Buildings

Joshua Kneifel David Butry

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.SP.1178

NIST Special Publication 1178

Impact of More Precise Construction Data on Estimated Savings from Energy Standard Adoption for Commercial Buildings

Joshua Kneifel David Butry Applied Economics Office Engineering Laboratory

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.SP.1178

December 2014

U.S. Department of Commerce Penny Pritzker, Secretary

National Institute of Standards and Technology Willie May, Acting Under Secretary of Commerce for Standards and Technology and Acting Director Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Special Publication 1178 Natl. Inst. Stand. Technol. Spec. Pub. 1178, 43 pages (December 2014) CODEN: NTNOEF

> This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.SP.1178

Abstract

The Applied Economics Office (AEO) of the Engineering Laboratory (EL) at the National Institute of Standards and Technology (NIST) has developed the Building Industry Reporting and Design for Sustainability (BIRDS) database, which estimates the sustainability (energy, economic, and environmental) performance for eleven commercial building prototypes designed to different energy efficiency levels. Analysis of the BIRDS database estimates both the average percentage change in energy consumption and the aggregate changes in energy consumption for one year's worth of new construction for each U.S. state. Due to the limited publically-available new construction data, the estimates are calculated by giving equal weighting to all the cities in a state that are included in the BIRDS database. However, such an approach leads to underweighting the importance of cities with more new construction and overweighting cities with less new construction.

The purpose of this study is to explore the impact of implementing a non-equal weighting approach on state-level energy consumption impacts of adopting a more restrictive state energy code. New construction floor area completion data for 2012 was obtained for each county in the United States to assist in increasing the accuracy of these impact estimates.

Keywords

commercial buildings; whole building energy simulation; energy efficiency; new construction data; geospatial mapping

Preface

This study was conducted by the Applied Economics Office (AEO) in the Engineering Laboratory (EL) at the National Institute of Standards and Technology (NIST). The study is designed to compare the sensitivity of estimated savings from energy standard adoption to the precision of the construction data. The intended audience includes researchers in the building sector concerned with energy performance in buildings.

Disclaimers

The policy of the National Institute of Standards and Technology is to use metric units in all of its published materials. Because this report is intended for the U.S. construction industry that uses U.S. customary units, it is more practical and less confusing to include U.S. customary units in addition to metric units. Measurement values in this report are therefore stated in metric units first, followed by the corresponding values in U.S. customary units within parentheses.

Acknowledgements

The author wishes to thank everyone for their advice and recommendations for the writing of this report, including Dr. Eric O'Rear and Dr. Robert Chapman of EL's Applied Economics Office, Matthew Boyd of EL's Energy and Environment Division, and Dr. Nicos S. Martys of EL's Materials and Structural Systems Division.

Author Information

Joshua D. Kneifel Economist National Institute of Standards and Technology 100 Bureau Drive, Mailstop 8603 Gaithersburg, MD 20899-8603 Tel.: 301-975-6857 Email: joshua.kneifel@nist.gov

David Butry Economist National Institute of Standards and Technology 100 Bureau Drive, Mailstop 8603 Gaithersburg, MD 20899-8603 Tel.: 301-975-6136 Email: david.butry@nist.gov

Contents

Abstract	V
Preface	iii
Acknowledgements	v
Author Information	v
List of Acronyms	xi
1 Introduction	
2 City Average Approach	
3 City Cluster Weighting Approach	9
4 Energy Consumption Savings Comparison	
4.1 Detailed Impacts for New York State	
4.2 Aggregate Impacts	
5 Discussion, Limitations, and Future Research	
5.1 Analysis	
5.2 Limitations and Future Research	
References	
A Building Type, New Construction, and Energy Savings	

List of Figures

Figure 2-1	New Floor Area by State (1000 m ²)	. 7
Figure 2-2	Total 10-Year Energy Use Savings by State (GWh)	. 7
Figure 3-1	Cities and Associated (Colored) County Clusters	. 9
Figure 3-2	New Floor Area by State and County Cluster	12
Figure 4-1	New Floor Area by City Cluster for New York	13
Figure 4-2	Difference between Energy Savings using the City Cluster Approach relativ	e
to City Ave	erage Approach	16
Figure 5-1	City Clusters - Kentucky and Surrounding States	18

List of Tables

Table 2-1 New Commercial Building Construction (U.S., 2003 through 2007)	6
Table 3-1 Crosswalk between BIRDS buildings and McGraw-Hill Dodge Construction	
project type and story class combinations1	1
Table 4-1 Change in Energy Consumption by Weighting Approach and Building Type -	
New York14	4
Table 4-2 Change in State Energy Consumption (GWh) by Weighting Approach 1:	5
Table A-1 CBECS Categories and Subcategories	3
Table A-2 New Commercial Building Construction Volume for 2003 through 2007 by	
State and Building Type (S-I)	5
Table A-3 New Commercial Building Construction Volume for 2003 through 2007 by	
State and Building Type (I-P)	6
Table A-4 New Commercial Building Construction Share by State and Building Type 2'	7
Table A-5 Energy Consumption Savings by State	8

List of Acronyms

Acronym	Definition
AEO	Applied Economics Office
ASHRAE	American Society of Heating, Refrigerating and Air-Conditioning Engineers
BIRDS	Building Industry Reporting and Design for Sustainability
CBECS	Commercial Buildings Energy Consumption Survey
EL	Engineering Laboratory
NIST	National Institute of Standards and Technology

1 Introduction

Energy efficiency requirements in current energy codes for commercial buildings vary across states, and many states have not yet adopted the latest editions of *American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 90.1*, which is the industry consensus standard to establish the minimum energy-efficient requirements of commercial and non-low-rise residential buildings. Some states do not have a code requirement for energy efficiency, leaving it up to the locality or jurisdiction to set its own requirement. There may be significant energy savings to be realized by states if they were to adopt more recent editions of the commercial building energy standards.

The Applied Economics Office (AEO) of the Engineering Laboratory (EL) at the National Institute of Standards and Technology (NIST) has developed the Building Industry Reporting and Design for Sustainability (BIRDS) database, which estimates the sustainability (energy, economic, and environmental) performance for eleven commercial building prototypes designed to different energy efficiency levels.¹ The analysis in Kneifel (2013a, 2013b, 2013c, 2013d, 2013e) uses the BIRDS database to estimate both the average percentage change in energy consumption and the aggregate changes in energy consumption for one year's worth of construction for each U.S. state. Due to the limited publically-available new construction data, the estimates are calculated by giving equal weighting to all the cities in a state that are included in the BIRDS database. However, such an approach leads to underweighting the importance of cities with more new construction and overweighting cities with less new construction.

The purpose of this study is to explore the impact of implementing a non-equal weighting approach on state-level energy consumption impacts of adopting a more restrictive state energy code. New construction floor area completion data from 1970 to 2012 was obtained from McGraw-Hill Dodge Construction database (2013) for each county in the United States to assist in increasing the accuracy of these impact estimates. Each county is associated with one of the 228 cities in the BIRDS database, creating a "cluster" of counties that use the average performance of each building type for the associated city to estimate the impacts of adopting a more stringent state energy code.

¹ For details on the design of the BIRDS database, see Kneifel (2011) and Kneifel (2012).

2 City Average Approach

The calculations used in previous analyses of the BIRDS database were twofold: (1) average percentage change in annual energy consumption in a state and by building in a state and (2) aggregate change in annual energy consumption in a state. They were calculated using a city average approach, detailed below.

The *average percentage change in annual energy consumption in a state* is estimated using what will we have defined as the city average approach (CAA) as:

(1)
$$E_{PCT,j}^{CAA} = \frac{\sum_{i \in B}^{I_p} \frac{\sum_{k=PCT, ijk}^{K_j} E_{PCT, ijk}}{K_j}}{I_p}$$

where $E_{P_{ct,j}}$ = weighted-average percentage change in energy consumption for state *j*, $E_{P_{ct,jik}}$ = percentage change in energy consumption for city *k* for building type *i* for state *j*, I_p = number of prototype building types, B = set of prototype building types, and K_j = number of cities in state *j*.

The percentage change in annual energy consumption in a state $(E_{PCT,j}^{CAA})$ is calculated in two steps. First, calculate the average percentage change across all cities *K* in a state for building type

$$i(E_{PCT,ij} = \frac{\sum_{k}^{K_j} E_{PCT,ijk}}{K_j})$$
. Second, calculate the average of those average changes for all

building prototypes in the state $(\frac{\sum_{i\in B}^{I_p} E_{PCT,ij}}{I_p})$. The approach results in equal weighting across cities and building types.

This is mathematically equivalent to the following, which is the calculation implemented to calculate the results and allows for direct comparisons across approaches:

(2)
$$E_{PCT,j}^{CAA} = W_{1,j}^{CAA} * \sum_{i \in B}^{I_p} \sum_{k}^{K_j} E_{PCT,ijk}$$
, and
(3) $W_{1,j}^{CAA} = \frac{1}{K_j I_p}$

The approach leads to equal weighting for each city and building type.

The *average percentage change in annual energy consumption in a state by building type* is estimated using the city average approach as:

(4)
$$E_{PCT,ij}^{CAA} = W_{2,j}^{CAA} * \sum_{k}^{K_j} E_{PCT,ijk}$$
, and

(5)
$$W_{2,j}^{CAA} = \frac{1}{K_j}$$
.

Again, an equal weighting structure results.

The *aggregate change in annual energy consumption in a state* is estimated using the city average approach as:

(6)
$$E_{CFA,j}^{CAA} = \frac{\sum_{i \in B}^{I_p} CFA_{ij*} \frac{\sum_{k=1}^{K_j} E_{CFA,ijk}}{K_j}}{\frac{\sum_{i \in B}^{I_p} CFA_{ij}}{\sum_{i=1}^{I_p} CFA_{ij}}},$$

where $E_{CFA,j}$ = total change in energy consumption for state *j*,

- CFA_{ij} = newly constructed floor area for building type *i* for state *j* in 2012,
- $E_{CFA,ijk}$ = change in energy consumption per unit of floor area for city k for building type i for state j,

I = number of (all) building types, and

$$I_p$$
 = number of prototype building types.

The aggregate change in annual energy consumption in a state $(E_{CFA,j}^{CAA})$ is calculated in three steps. First, calculate the average change per unit of floor area across all cities *K* in a state for building type $i (E_{CFA,ij} = \frac{\sum_{k}^{K_j} E_{CFA,ijk}}{K_j})$. Second, calculate the aggregate change for building type $i (E_{CFA,ij}^{CAA})$ in the state by multiplying the change per unit of floor area $(E_{CFA,ij})$ by the amount of new floor area for building type *i* in the state (CFA_{ij}) . Third, sum the aggregate changes for all prototype building types $I_p (\sum_{i \in B}^{I_p} E_{CFA,ij}^{CAA})$ and divide by the fraction of statewide newly constructed floor area represented by the prototype buildings $(\frac{\sum_{i \in B}^{I_p} CFA_{ij}}{\sum_i^l CFA_{ij}})$. This final adjustment is to account for the new floor area not accounted for by the prototype buildings in the database.²

This is mathematically equivalent to the following:

(7)
$$E_{CFA,j}^{CAA} = \sum_{i \in B}^{I_p} W_{3,ij}^{CAA} \sum_{k}^{K_j} E_{CFA,ijk},$$

(8) $W_{3,ij}^{CAA} = \frac{CFA_{ij}}{K_j \frac{\sum_{i \in B}^{I_p} CFA_{ij}}{\sum_i^l CFA_{ij}}},$

² A key assumption is that the impacts for the building prototypes included in the BIRDS database are representative of all new construction in a state.

The *aggregate change in annual energy consumption in a state by building type* is estimated using the city average approach as:

(9)
$$E_{CFA,ij}^{CAA} = W_{4,ij}^{CAA} \sum_{k}^{K_j} E_{CFA,ijk},$$

(10) $W_{4,j}^{CAA} = \frac{CFA_{ij}}{K_j}.$

As is shown in Formula (6), the aggregate approach, implemented in previous analyses of the BIRDS database, estimates energy consumption savings that result from adoption of more stringent state energy codes. This approach uses new construction data aggregated at the state level. Jarnagin and Bandyopadhyay (2010) use the Commercial Buildings Energy Consumption Survey (CBECS) and McGraw-Hill Dodge Construction data on new commercial building construction by building type within a state. The Commercial Buildings Energy Consumption Survey (CBECS) is a sample survey that collects information on the existing stock of U.S. commercial buildings. The sample includes 5215 buildings across the U.S. in 14 building type categories, as shown in Table A-1. These categories include: education, food sales, food service, health care, lodging, mercantile, office, public assembly, public order and safety, religious worship, service, warehouse and storage, other, and vacant. The survey data do not report the age or specific location of the building to protect the confidentiality of the respondents. The McGraw-Hill dataset includes data for all new commercial buildings and additions, with over 254 000 records and 761.8 million m² (8.2 billion ft²) of new construction, for 2003 through 2007. The data are more detailed than the CBECS data, and includes year of construction and location.

Jarnagin and Bandyopadhyay (2010) map the more detailed McGraw-Hill dataset to the CBECS categories and subcategories shown in Table 2-1. The prototype commercial buildings analyzed in this study, shown in **bold**, represent 46.4 % of nationwide new commercial building stock square footage for 2003 through 2007. However, for this study a prototype building is assumed to represent its entire CBECS category (e.g. secondary school also represents primary school), which implies the prototypes together represent 56.8 % of the new commercial building stock for 2003 through 2007.

Building Detail		Conditioned Floor Area 1000 m ² (1000 ft ²)	Percentage in Category	Percentage of Total	
Office	Large	20 451 (220 134)	22.2 %	2.6 %	
Office	Medium	37 170 (400 091)	40.4 %	4.8 %	
Office	Small	34 468 (371 009)	37.4 %	4.5 %	
Retail		93 762 (1 009 246)		12.2 %	
Strip Mall		34 847 (375 093)		4.5 %	
School	Primary	30 697 (330 418)		4.0 %	
School	Secondary	63 686 (685 508)		8.3 %	
Hospital		21 194 (228 131)		2.8 %	
Other Health Care		26 865 (289 171)		3.5 %	
Restaurant	Sit Down	4055 (43 650)		0.5 %	
Restaurant	Fast Food	3605 (38 809)		0.5 %	
Hotel	Large	30 432 (327 562)		0.4 %	
Hotel/Motel	Small	10 576 (113 837)		1.4 %	
Warehouse		102 746 (1 105 951)		13.4 %	
Apartment	High-rise	55 114 (593 241)	55.1 %	7.2 %	
Apartment	Mid-rise	44 997 (484 343)	44.9 %	5.9 %	
No Prototype		153 270 (1 649 785)		20.0 %	
Total (2003-2007)		767 934 (8 265 977)		100.0 %	

 Table 2-1 New Commercial Building Construction (U.S., 2003 through 2007)

The types and floor area of buildings being constructed vary across states. Table A-2, Table A-3, and Table A-4 in the Appendix report new building construction for 2003 through 2007 by building type and state, in total square meters, total square feet, and percentage terms, respectively. Previous studies used these data to aggregate the total savings for the new construction in the CBECS categories represented by the eleven prototype buildings. Nine of the eleven prototype commercial buildings analyzed in this study are covered by data reported in Table 2-1. No data for dormitories are reported, and therefore, statewide impacts of the two types of dormitoriescannot be estimated..

Nationwide average annual construction from 2003 to 2007 is 153.6 million m² (1.7 billion ft²), with significant variation across states from as low as 200 000 m² (2.2 million ft²) to as high as 16.5 million m² (177.6 million ft²), as shown in Figure 2-1.

Figure 2-1 New Floor Area by State (1000 m²)

This study considers the change in energy consumption from adoption of the Low Energy Case (LEC) design (based on ASHRAE 189.1-2009) relative to each state's energy code as of December 2011. The results are shown in Table A-5 in the Appendix in descending order of energy consumption savings. These results are also shown on the map of U.S. states in Figure 2-2, which shows that the change in energy consumption varies from 37 GWh to 3791 GWh. By comparing Figure 2-1 to Figure 2-2, it can be seen that the states with the greatest amount of new floor area (Florida, California, Georgia, Illinois, New York, and Texas) realize the greatest amount of energy consumption savings from adopting the LEC design.

Figure 2-2 Total 10-Year Energy Use Savings by State (GWh)

This analysis approach has its limitations. Each city is weighted equally even though variation in new construction across cities could be significant, leading to overweighting cities with little to no new construction and underweighting cities with greater new construction. Additionally, the publically available construction data covers a time period (2003 to 2007) that is not representative of historical or current construction volume. The timeframe spans the five years of significant expansion immediately before the beginning of the severe economic recession. As a result, the annual construction volume for 2003 to 2007 is significantly higher than the amount of new floor area that has been constructed in more recent years.

3 City Cluster Weighting Approach

In order to address the limitations of the previous approach, a more detailed new-construction database was obtained from McGraw-Hill Dodge Construction, which includes the amount of new floor area for each county in the United States for 1 for the 2012 calendar year.³ The BIRDS database results are for 228 cities across the United States, and in order to associate these city data with the county construction data it is necessary to determine which city results should be used for each county.

The approach implemented in this study to map the city-level and county-level data is referred to as "clustering," where "clusters" of counties are mapped to a particular city. In this study, a county is matched to the closest city in its state based on distance to the city from the centroid (geometric center of a two-dimensional region) of the county within the same climate zone. If there is not a city located in the same climate zone within the state, then the closet city located within the same state is selected. Of the 3140 counties, 2911 counties are matched to a city within the same climate zone. Figure 3-1 shows the 228 cities in the BIRDS database and their associated county clusters.

Figure 3-1 Cities and Associated (Colored) County Clusters

Three county-cluster-based weights are used to produce (1) the weighted-average percentage change in energy consumption by state, (2) the weighted-average percentage change in energy consumption by state/building type combination, (3) the aggregate change in energy consumption by state, and (4) the aggregate change in energy consumption by state/building type combination.

The *average percentage change in annual energy consumption in a state* is estimated using the city county cluster approach (CWA) as:

(11)
$$E_{PCT,j}^{CWA} = \sum_{i \in B}^{I_p} \sum_{k}^{K_j} W_{1,ijk}^{CWA} * E_{PCT,ijk},$$

³ McGraw-Hill Dodge Construction (2013)

(12)
$$W_{1,ijk}^{CWA} = \frac{CFA_{ijk}}{\sum_{i}^{I} \sum_{k}^{K_{j}} CFA_{ijk}}$$

The weight $(W_{1,ijk}^{CWA})$ is the proportion of newly constructed floor area for building type *i* in citycounty-cluster *k* with respect to total newly constructed floor area within state *j* in 2012. The sum of the percentage changes for building type *i* in city-county-cluster k ($E_{PCT,ijk}$) multiplied by its weight over all city-county-clusters and building prototypes is the average percentage change for the state ($E_{PCT,ij}^{CWA}$).

The *average percentage change in annual energy consumption in a state by building type* is estimated using the city-county-cluster approach as:

,

(13)
$$E_{PCT,ik}^{CWA} = \sum_{k}^{K} W_{2,ijk}^{CWA} * E_{PCT,ijk}$$

(14) $W_{2,ijk}^{CWA} = \frac{CFA_{ijk}}{\sum_{k}^{K_{j}} CFA_{ijk}}$.

The weight $(W_{2,ijk}^{CWA})$ is the proportion of newly constructed floor area for building type *i* in city county-cluster *k* with respect to total newly constructed floor area within state *j* for building type *i* in 2012.

The *aggregate change in annual energy consumption in a state* is estimated using the citycounty-cluster approach as:

(15)
$$E_{CFA,j}^{CWA} = \sum_{i \in B}^{I_p} \sum_{k}^{K_j} W_{3,ijk}^{CWA} * E_{CFA,ijk},$$
$$(16) W_{3,ijk}^{CWA} = \frac{CFA_{ijk} \sum_{i \in B}^{I_p} \sum_{k}^{K_j} CFA_{ijk}}{\sum_{i}^{I} \sum_{k}^{K_j} CFA_{ijk}}.$$

The weight $(W_{3,ijk}^{CWA})$ is the amount of newly constructed floor area by state, cluster, and building type combination normalized by the proportion of newly constructed floor area in the prototypical building types with respect to total newly constructed floor area within state *j* in 2012.

The change per unit of floor area for building type *i* in city-county-cluster $k(E_{CFA,ijk})$ multiplied by its weight, and then summed over all city-county-clusters and building prototypes is the average percentage change for the state $(E_{CFA,ij}^{CWA})$.

The *aggregate change in annual energy consumption in a state by building type* is estimated using the city-county-cluster approach as:

(17) $E_{CFA,ij}^{CWA} = \sum_{k}^{K_j} W_{4,ijk}^{CWA} * E_{CFA,ijk},$ (18) $W_{4,j}^{CWA} = CFA_{ijk}.$

The weight is the amount of newly constructed floor area by state, cluster, and building type combination.

The crosswalk between the building types in the BIRDS database and the McGraw-Hill Dodge Construction project type is shown in Table 3-1.

Table 3-1 Crosswalk between BIRDS buildings and McGraw-Hill Dodge Construction
project type and story class combinations

BIRDS	McGraw-Hill Dodge Construction						
Building	Project Type	Story Class					
A04	Apartments with 5 or more units	Mid-Rise					
A06	Apartments with 5 or more units	High-Rise					
D04	Lodging	Mid-Rise					
D06	Lodging	Mid-Rise					
H15	Lodging	High-Rise					
HS2	Education	Low-Rise					
HS2	Education	Mid-Rise					
HS2	Education	High-Rise					
O03	Office	Low-Rise					
O08	Office	Mid-Rise					
O16	Office	High-Rise					
RET	Stores	Low-Rise					
RET	Stores	Mid-Rise					
RET	Stores	High-Rise					

Figure 3-2 shows the new floor area constructed in 2012 by both state and county cluster. Depending on the state, the importance of appropriately weighting each city cluster may have a significant impact on the results. For example, major city clusters in Texas (Dallas/Fort Worth, Austin, and Houston) are realizing new construction of over 3.7 m^2 (40.0 million ft²) while northern Texas clusters have construction of less than 372 000 m² (4.0 million ft²). As a result, the previous approach would lead to under/overweighting by a factor of ten, muting any differences in energy savings across cities.

Figure 3-2 New Floor Area by State and County Cluster

This clustering approach leads to more accurate estimates than the previous approach by controlling for both the variation in building performance across a state due to weather as well as the amount of new construction for each building type for each location considered in this study. Additionally, the more recent new construction data (2012) is more representative of current and near-future construction volume because the data is post-recession and less than two years old.

4 Energy Consumption Savings Comparison

In this chapter, the impact of a nationwide adoption of the LEC design as a state's energy code is estimated using the two approaches defined in Section 2 and Section 3 for new construction in 2012. Results are first analyzed in detail for a single state (New York) to show how differences in the amount of new construction across city clusters will impact the magnitude of the energy consumption savings realized by adopting the LEC design as a state's energy code. These results are then calculated and compared for all states in the nation. Finally, the aggregate results are analyzed at the Census region and national level.

4.1 Detailed Impacts for New York State

The amount of new floor area constructed in New York in 2012 was 5.0 million m^2 (53.4 million ft²). The city average approach calculates the average change in energy consumption per unit of floor area for all cities for each building type, and associates statewide newly constructed floor area to each building type. The city cluster approach uses the same amount of new construction, but each city cluster is weighted based on its associated amount of construction for each building type. Figure 4-1 shows that New York City is the only city cluster that had more than 1.9 million m² (20.0 million ft²) of new construction, Albany is the only cluster with 465 000 m² to 929 000 m² (5.0 million ft²). As a result, New York is an ideal state with which to test the impact of using the more precise city weighting approach.

Figure 4-1 New Floor Area by City Cluster for New York

Table 4-1 shows the percentage change in energy consumption and aggregate change in energy consumption for New York State for each weighting approach. The city cluster weighting approach leads to a 1.7 percentage point decrease (11.8 % versus 13.5 %) in the average annual percentage reduction in energy consumption relative to the city average approach. The impact

varies across building types due to different types of buildings being constructed in different locations of the state. The greatest difference occurs for the 16-story office building (6.6 %) and 15-story hotel (4.9 %).

Building	Change in Ene	ergy Use (%)	Change in Energy Use (GWh)			
Туре	City Average	City Cluster	City Average	City Cluster		
A04	-9.2	-10.3	-28 428	-28 335		
A06	-9.6	-11.1	-28 569	-26 529		
D05 ¹	-10.1	-10.4	-10 873	-10 645		
H15	-11.2	-16.1	-12 364	-15 669		
HS2	-6.2	-8.7	-9227	-10 312		
O03	-16.9	-16.8	-5083	-5127		
O08	-17.0	-16.5	-2091	-2301		
016	-13.9	-20.5	-9746	-13 103		
RET	-12.4	-11.1	-16 832	-15 699		
Total	-11.8	-13.5	-123 213	-127 720		
¹ BIRDS build	lings D04 and D06 m	ap to the same McG	raw-Hill project type and	d story class		

Table 4-1 Change in Energy Consumption by Weighting Approach and Building Type -New York

combination. A new 'building' type was created, D05, which is the average of D04 and D06.

The aggregate change in energy consumption is shown to vary across the two weighting approaches. Based on the City Average Approach approach, the estimated yearly energy consumption savings for the prototypical buildings in New York over a 10-year study period is 123 213 GWh. Based on the city cluster approach, the estimated energy consumption savings is 128 000 GWh.

4.2 Aggregate Impacts

The total change in energy consumption by state based on the amount of construction in 2012, for each of the weighting approaches, is presented in Table 4-2. Averaged over all states, the city average weighting approach results in smaller savings, per state, than does the cluster weighting approach (average of 360 GWh). However, the effects are not consistent. For 19 states, the savings are smaller using the city average approach, with Arizona experiencing the largest total difference. For 26 states, the savings are larger using the cluster approach, with Florida showing the largest total difference. For five states, the city average and clustering approach produce identical results because there is only one city for each of those states, in which case there are not multiple cities for which to weight. The difference in nationwide aggregate savings is 17 985 GWh, or 0.3 % of total nationwide aggregate savings.

STATE	CITY AVG	CLUSTER	PCT DIFF	STATE	CITY AVG	CLUSTER	PCT DIFF
ALABAMA	-172 679	-172 154	-0.3%	MONTANA	-12 522	-14 246	13.8%
ALASKA	-20 224	-24 752	22.4%	NEBRASKA	-28 594	-30 415	6.4%
ARIZONA	-227 327	-213 284	-6.2%	NEVADA	-27 572	-28 041	1.7%
ARKANSAS	-100 822	-100 857	0.0%	NEW HAMPSHIRE	-16 738	-16 738	0.0%
CALIFORNIA	-321 313	-325 799	1.4%	NEW JERSEY	-76 482	-77 550	1.4%
COLORADO	-218 658	-227 666	4.1%	NEW MEXICO	-17 417	-17 191	-1.3%
CONNECTICUT	-30 820	-30 926	0.3%	NEW YORK	-203 376	-210 815	3.7%
DELAWARE	-16 686	-16 686	0.0%	NORTH CAROLINA	-161 947	-161 884	0.0%
FLORIDA	-300 706	-314 072	4.4%	NORTH DAKOTA	-86 962	-86 732	-0.3%
GEORGIA	-172 637	-169 557	-1.8%	ОНІО	-120 417	-121 847	1.2%
HAWAII	-18 839	-19 842	5.3%	OKLAHOMA	-154 549	-153 724	-0.5%
IDAHO	-21 766	-21 135	-2.9%	OREGON	-27 474	-29 457	7.2%
ILLINOIS	-133 006	-126 683	-4.8%	PENNSYLVANIA	-136 972	-141 259	3.1%
INDIANA	-119 282	-119 375	0.1%	RHODE ISLAND	-4991	-4991	0.0%
IOWA	-60 532	-58 014	-4.2%	SOUTH CAROLINA	-100 796	-102 879	2.1%
KANSAS	-116 306	-120 004	3.2%	SOUTH DAKOTA	-37 712	-37 759	0.1%
KENTUCKY	-49 077	-49 512	0.9%	TENNESSEE	-160 339	-162 684	1.5%
LOUISIANA	-69 830	-70 731	1.3%	TEXAS	-644 137	-644 976	0.1%
MAINE	-35 146	-31 486	-10.4%	UTAH	-72 754	-76 154	4.7%
MARYLAND	-102 881	-102 881	0.0%	VERMONT	-10 934	-10 934	0.0%
MASSACHUSETTS	-93 607	-95 153	1.7%	VIRGINIA	-153 217	-152 597	-0.4%
MICHIGAN	-58 388	-54 930	-5.9%	WASHINGTON	-82 713	-82 012	-0.8%
MINNESOTA	-150 063	-141 749	-5.5%	WEST VIRGINIA	-39 578	-37 785	-4.5%
MISSISSIPPI	-135 049	-135 985	0.7%	WISCONSIN	-88 896	-87 158	-2.0%
MISSOURI	-171 388	-169 205	-1.3%	WYOMING	-26 371	-26 211	-0.6%

 Table 4-2 Change in State Energy Consumption (GWh) by Weighting Approach

Figure 4-2 shows that the state-level results for the city cluster approach are relatively similar to the results using the city average approach. The energy consumption changes by 2.5 % or less for 31 states (62 %) and 5.0 % or less for 41 states (82 %). Using the city cluster approach leads to energy consumption changes greater than 10 % for only three states (Alaska, Montana, and Maine). All three states have relatively small amounts of new construction, which can cause small changes in magnitude to be large percentages.

Figure 4-2 Difference between Energy Savings using the City Cluster Approach relative to City Average Approach

5 Discussion, Limitations, and Future Research

This study explores the importance of increased precision in the construction data used to estimate the state-level impacts of more stringent energy efficiency requirements in newly constructed commercial buildings based on the BIRDS database. Newly constructed floor area data for 2012 was obtained for each county in the United States to assist in increasing the accuracy of these impact estimates relative to state-level construction data. Each county is associated with one of the 228 cities in the BIRDS database, creating a "cluster" of counties that use the average performance for each building type for the associated city to estimate the impacts of adopting a more stringent state energy code.

5.1 Analysis

A number of key results have been identified from the analysis in this study. For many states, the amount of new construction by city cluster varies significantly. For example, new construction is over three times greater in the New York City cluster than most of the other city clusters in the State of New York. As a result, there is potential that more detailed construction data could lead to significant impacts on the estimated energy savings. The state average percentage reduction in energy use from adopting the Low Energy Case (LEC) as New York's state energy code for a given building type can be significantly different depending on the weighting approach used in the analysis, ranging from 0.3 percentage points to 6.6 percentage points, with an average of 1.7 percentage points (11.8 % using the city average approach versus 13.5 % using the city cluster weighting approach). Similarly, using the city cluster weighting approach, the aggregate energy savings for a given building type varies by 0.3 % to 34.4 % relative to the simple average approach with the total aggregate results can vary significantly while at the state level, it appears that the results are relatively similar. More precise construction data can increase the accuracy of the results, but the relative magnitude of the results is similar.

The city cluster weighting approach leads to 19 states realizing smaller savings and 26 states realizing larger savings relative to the city average approach. Five states realize identical results because there is only one city for each of those states in the BIRDS database, in which case there are not multiple cities for which to weight. Since states are split between realizing smaller and larger estimated savings, the difference in nationwide aggregate savings is small at 0.3 % of the total nationwide aggregate savings.

The state-level results for the city cluster approach are relatively similar to the results using the city average approach. The energy consumption changes by 2.5 % or less for 31 states (62 %) and 5.0 % or less for 41 states (82 %). Using the city cluster approach leads to greater than 10 % for only three states (Alaska, Montana, and Maine). All three states have relatively small amounts of new construction, which can cause small changes in magnitude to be large changes in percentage terms.

5.2 Limitations and Future Research

This study attempts to improve upon the analysis approach from previous research using the BIRDS database. Based on the results, it appears that the accuracy of the energy savings estimates are impacted by the weighting approach used in the analysis. The city cluster approach described in this study alleviates some of the inherent issues/problems created in using the equal weighting approach. However, there are still aspects of this approach that can be improved upon to increase the accuracy of the results.

First, the current cluster approach restricted clustering across state borders even though the closest city may be in a bordering state. An example of this can be seen in Figure 5-1, where the counties within Kentucky and the surrounding states are mapped to a city that is often much further away than a city in another state. As a result, the climatic and economic conditions for those counties may not be matched to the optimal (i.e., most representative) city in the database.

Figure 5-1 City Clusters - Kentucky and Surrounding States

The reason for the state border restriction was because the results from the BIRDS database used for this study are based on comparison of the LEC design to each state's energy code as of December 2011, which may vary across states. Future work should use the results in the BIRDS database to match each county with the closest city regardless of state, but use the results for the standard edition that meets the county's state energy code. For example, the counties on the northern border of western Kentucky will be matched to the energy performance of buildings located in Evansville, Indiana instead of Louisville, Kentucky while using the building designs that meet Kentucky's state energy code.

Second, the results are estimated using the current eleven building types in the BIRDS database and the new construction data associated with those building types. The results are then extrapolated to the entire new building stock. Future research should incorporate additional building types into the BIRDS database to increase the fraction of building stock directly accounted for in BIRDS, which will increase the accuracy of the estimated impacts.

Third, the analysis in this study updates the impact estimates for energy consumption savings. The same city cluster weighting approach should be applied to the other sustainability metrics included in the BIRDS database: energy costs, life-cycle costs, and the twelve environmental impact categories.

Finally, future research should test the sensitivity of the sustainability performance results to other underlying assumptions in the analysis approach for which city and/or county level data may be available. For example, electricity prices can vary significantly across cities in a state. Doing so should further increase the accuracy of the results.

References

ArcMap 10.2 software, ArcGIS desktop package, ESRI, Redlands, CA, http://www.esri.com/.

- J. Kneifel, 2011, Prototype Commercial Buildings for Energy and Sustainability Assessment: Whole Building Energy Simulation Design, September 2011, NIST, Technical Note 1716.
- J. Kneifel, 2012, Prototype Commercial Buildings for Energy and Sustainability Assessment: Design Specification, Life-Cycle Costing and Carbon Assessment, January 2012, NIST, Technical Note 1732.
- J. Kneifel, 2013a, Benefits and Costs of Energy Standard Adoption in New Commercial Buildings, February 2013, NIST, Special Publication 1147.
- J. Kneifel, 2013b, Benefits and Costs of Energy Standard Adoption in New Commercial Buildings: Northeast Census Region, February 2013, NIST, Special Publication 1148-1.
- J. Kneifel, 2013c, Benefits and Costs of Energy Standard Adoption in New Commercial Buildings: Midwest Census Region, February 2013, NIST, Special Publication 1148-2.
- J. Kneifel, 2013d, Benefits and Costs of Energy Standard Adoption in New Commercial Buildings: South Census Region, February 2013, NIST, Special Publication 1148-3.
- J. Kneifel, 2013e, Benefits and Costs of Energy Standard Adoption in New Commercial Buildings: West Census Region, March 2013, NIST, Special Publication 1148-4.
- McGraw-Hill Dodge Construction, 2013, County-level new construction floor area database-2012.
- U.S. Energy Information Administration, 2003 Commercial Buildings Energy Consumption Survey (CBECS), <u>http://www.eia.gov/consumption/commercial/</u>.

A Building Type, New Construction, and Energy Savings

Table A-1 CBECS Categories and Subcategories

Category	Subcategory		Category	Subcategory
Education	elementary or middle school		Public Assembly	social or meeting
	high school		11000111019	recreation
	college or university			entertainment or culture
	preschool or daycare			library
	adult education			funeral home
	career or vocational training			student activities center
	religious education			armory
Food Sales	grocery store or food market			exhibition hall
	gas station with a convenience			broadcasting studio
				transportation terminal
	convenience store			
Food Service	fast food		Public Order and Safety	police station
	restaurant or cafeteria			fire station
Health Care	hospital			jail, reformatory, or penitentiary
mputon	inpatient rehabilitation			courthouse or probation office
			Religious Worship	None
Health Care Outpatient	medical office (see previous column)		Service	vehicle service or vehicle repair shop
	clinic or other outpatient health care			vehicle storage/ maintenance (car barn)
	outpatient rehabilitation			repair shop
	veterinarian			dry cleaner or laundromat
				post office or postal center
Lodging	motel or inn			car wash
	hotel			gas station
	dormitory, fraternity, or sorority			photo processing shop
	retirement home			beauty parlor or barber shop
	nursing home, assisted living, etc.			tanning salon
	convent or monastery			copy center or printing shop
	shelter, orphanage, halfway house			kennel
				Remier

Mercantile Non- Mall	retail store	Warehouse and Storage	refrigerated warehouse			
	beer, wine, or liquor store		non-refrigerated warehouse			
	rental center		distribution or shipping center			
	dealership or showroom for vehicles or boats	Other	airplane hangar			
	studio/gallery		crematorium			
			laboratory			
Mercantile Malls	enclosed mall		telephone switching			
	strip shopping center					
Office	administrativa or professional		agricultural with some retail space			
onice	office		manufacturing or industrial with			
	government office		some retail space			
	go verimient office		data center or server farm			
	mixed-use office	Vacant	None			
	bank or other financial institution	vacant	None			
	medical office (see previous column)					
	sales office					
	contractor's office					
	non-profit or social services					
	research and development					
	city hall or city center					
	religious office					
	call center					

Table A-2New Commercial Building Construction Volume for 2003 through 2007 by Stateand Building Type (S-I)

State	ate Building Construction Volume (1,000 m ²)										
AK	Apartment 19	Healthcare 130	Hotel 126	Office 226	Public Assembly 111	Restaurant 13	Retail 208	School 231	Warehouse 126	No Prototype 259	Total 1448
AL	801	705	853	1504	639	169	2485	1534	842	1740	11 272
AR	118	465	483	647	335	77	1359	1295	335	815	5928
AZ	1043	1505	1047	4030	1180	271	4891	2294	3721	3808	23 790
CA	9761	3310	3129	9219	3092	534	10 623	7085	13 364	12 345	72 462
СО	2033	1387	997	2158	708	199	2896	1654	1541	2889	16 461
СТ	611	403	489	618	510	65	1245	1194	817	1271	7223
DC	1174	71	111	1462	112	4	104	191	34	830	4092
DE	70	155	124	224	119	16	237	290	160	323	1719
FL	21 397	3399	2979	9031	3124	678	11 904	7760	9692	12 748	82 712
GA	3696	1551	1510	3630	1212	331	5893	5580	7449	5350	36 202
HI	1280	91	92	171	59	9	273	92	132	485	2682
IA	143	639	427	999	657	74	1350	1262	621	1062	7234
ID	233	372	221	716	230	46	699	636	360	496	4008
IL	7303	1765	1304	2930	1714	232	5660	3083	6473	4179	34 643
IN	360	1728	856	1746	1323	255	3302	2558	3771	2415	18 313
KS	98	533	353	877	295	97	1122	826	513	670	5384
KY	268	757	643	1167	760	138	1667	1270	2001	1106	9778
LA	169	650	807	1175	593	135	1736	842	1011	1379	8498
MA	2959	728	884	1103	632	121	1772	1356	854	2484	12895
MD	3341	813	826	2802	580	109	1549	1527	1989	3388	16 924
ME	64	209	166	224	134	34	566	313	281	494	2485
MI	446	1797	713	1696	1359	200	3245	2058	864	2442	14 820
MN	1437	1018	473	1633	527	102	2135	1175	803	2342	11 645
мо	875	940	881	1226	780	158	2513	1626	819	1972	11 791
MS	150	336	479	631	411	55	1166	743	1593	692	6255
MT	45	122	118	149	94	18	253	174	76	142	1190
NC	1607	1362	1178	3368	1119	230	4472	3418	1910	3520	22 185
ND	7	118	91	138	221	14	331	1/4	240	100	1145
NE	147	455	303	031	331	54	649	514	101	670	4599
NH	141	706	220	1225	154	51	2404	411	2008	438	2/03
NIM	2807	247	945	617	250	62	2494	2027	3008	401	1/ 362
NV	2867	528	2063	1626	1195	157	2382	960	1660	3231	17 579
NV	11.622	1630	1050	3330	1075	210	3633	2247	1286	3354	30 354
ОН	635	2452	925	2674	1266	372	5132	4452	3382	3243	24 533
OK	115	794	512	763	878	141	1364	1179	932	1271	7950
OR	1253	918	360	922	383	68	1382	651	1142	1648	8727
PA	1503	1908	1406	2424	1354	219	3762	3660	3512	3556	23 305
RI	238	60	192	251	81	26	278	197	114	236	1674
SC	1981	746	563	1539	539	168	2600	2222	1101	2132	13 590
SD	13	119	86	257	126	13	341	268	88	205	1515
TN	987	1036	683	2296	733	199	3581	1809	2698	2337	16 360
TX	5548	4508	3571	8328	3325	849	13 121	12 693	10 609	9676	72 230
UT	622	569	314	1365	475	76	1424	1269	1274	1201	8590
VA	3502	1011	1361	3693	1096	200	3014	2387	1826	4406	22 495
VT	161	99	96	113	71	6	63	136	88	165	998
WA	3397	1085	871	2435	833	107	2504	1841	1880	3598	18 551
WI	906	1519	583	1556	746	137	2489	1129	882	1981	11 928
WV	65	215	148	193	117	39	668	484	179	288	2397
WY	4	72	166	66	127	9	158	254	67	228	1151
Total	100 111	48 059	41 007	92 089	38 550	7661	128 609	94 383	98 773	118 693	767 935

Table A-3 New Commercial Building Construction Volume for 2003 through 2007 by Stateand Building Type (I-P)

State					Building Cor	struction Volu	ne (1,000 ft ²)				
~	Apartment	Healthcare	Hotel	Office	Public Assembly	Restaurant	Retail	School	Warehouse	No Prototype	Total
AK	201	1401	1357	2428	1190	137	2240	2484	1356	2787	15 581
AL	8619	7587	9184	16 191	6876	1821	26 748	16 514	9060	18 729	121 329
AR	1272	5000	5198	6962	3611	829	14 624	13 936	3609	8768	63 810
AZ	11 223	16 195	11 272	43 383	12 701	2918	52 646	24 692	40 052	40 986	256 068
CA	105 071	35 633	33 678	99 228	33 281	5747	114 344	76 262	143 853	132 882	779 978
СО	21 885	14 926	10 735	23 225	7618	2142	31 177	17 804	16 582	31 094	177 186
СТ	6582	4333	5261	6651	5485	698	13 403	12 856	8798	13 679	77 746
DC	12 636	769	1199	15 734	1202	38	1122	2051	363	8934	44 047
DE	755	1672	1330	2410	1282	173	2551	3126	1722	3480	18 501
FL	230 315	36 591	32 071	97 212	33 622	7299	128 133	83 524	104 327	137 213	890 306
GA	39 780	16 699	16 254	39 076	13 043	3563	63 430	60 062	80 180	57 586	389 672
HI	13 773	979	989	1838	630	95	2939	985	1417	5220	28 865
IA	1542	6875	4598	10 749	7069	796	14 534	13 586	6688	11 426	77 863
ID	2506	4001	2375	7703	2478	493	7526	6847	3876	5343	43 147
IL	78 609	18 998	14 037	31 542	18 451	2497	60 928	33 180	69 674	44 977	372 893
IN	3875	18 600	9210	18 791	14 242	2747	35 539	27 535	40 591	25 992	197 123
KS	1057	5734	3795	9442	3178	1039	12 076	8892	5521	7216	57 950
KY	2888	8150	6922	12 558	8185	1489	17 941	13 672	21 538	11 906	105 248
LA	1823	7001	8689	12 647	6386	1454	18 681	9061	10 886	14 841	91 469
MA	31 854	7832	9516	11 868	6808	1306	19 079	14 599	9197	26 742	138 802
MD	35 967	8750	8888	30 163	6242	1173	16 672	16 432	21 414	36 463	182 163
ME	687	2245	1791	2411	1441	368	6088	3374	3021	5320	26 745
MI	4800	19 346	7671	18 251	14 629	2153	34 934	22.151	9305	26 283	159 523
MN	15 465	10 954	5093	17 575	5673	1098	22.985	12 643	8643	25 212	125 342
MO	9420	10 121	9483	13 197	8395	1705	27.054	17 497	8818	21 226	126 915
MS	1613	3618	5153	6789	4423	587	12 551	7999	17 146	7447	67 326
MT	481	1313	1265	1602	1007	195	2723	1871	821	1533	12 810
NC	17 294	14 663	12.678	36 249	12 044	2481	48 139	36 794	20 559	37 891	238 792
ND	76	1265	082	1/100	12 011	155	3567	1871	617	1077	12 320
NE	1586	4880	3263	6790	3562	577	12 360	5533	3660	7279	12 320
NH	1500	2440	2437	2974	1653	548	6970	4421	2059	4717	29 741
NI	30.209	8563	10 145	13 295	8335	1210	26 842	28 280	32 383	27.841	187 103
NM	957	2655	4499	6636	3770	670	8235	8097	3142	5290	43 950
NV	30.856	5684	31 894	17 504	12 863	1691	25 644	10 337	17 969	34 776	189 218
NV	125 095	17 630	21.083	35.842	11 572	2259	39 107	24 186	13 845	36 104	326 732
OH	6832	26 393	9959	28 780	13 630	4004	55 245	47 919	36 400	34 909	264 071
OK	1242	8547	5511	8216	9450	1523	14 686	12 601	10.032	13 680	85 577
OR	13 /02	0885	3878	0027	/118	728	14 000	7004	12 201	17 738	03 0/1
PA	16 177	20.535	15 135	26.096	14 577	2361	40.489	30 307	37 805	38 280	250.852
DI	2550	640	2060	20 000	977	2501	2000	2125	1228	2540	18 021
SC	2557	8033	6056	16 562	5801	1810	27.084	2125	11 8/18	2340	146 284
SD	142	1285	922	2767	1354	1310	3668	23 720	950	22)4)	16 312
TN	10.621	11 152	7347	2/07	7801	2145	38 548	10.476	29.045	2202	176 095
TV	50 722	48 510	29 /27	24 /10	25 704	0142	141 229	126 620	114 102	104 156	777 472
	39 123	40 519	2294	14 609	53 /94	9142	141 230	12 657	114 195	12 026	02 462
VA	37 604	10.997	14 646	30 740	11 704	2140	32 /20	25 601	10 650	12 920	2/2 402
VA	1726	10 00/	14 040	1214	775	2149	274	1462	19 039	4/ 422	10 727
V I WA	1/30	1003	1030	1214	201	08	0/4	1403	940	1///	10/3/
WA	30 300	11 083	93/8	20 209	8904	114/	20 954	19 81/	20 236	38 / 31	199 085
W I	9754	0000	02/3	10 / 51	8030	14/4	20 /93	12 148	9497	21 323	128 393
WV	697	2314	1592	2081	1259	421	/191	2215	1930	3098	25 /9/
W I	42	517 202	1/8/	/13	414.052	97	1 284 220	1.015.025	1.062.190	1 277 507	12 38/
rotat	10// 303	517 502	441 399	771 233	414 933	02 439	1 304 339	1 013 923	1 003 100	1 2// 39/	0 203 911

					Percentag	e of Building Co	nstruction V	/olume				
State	Apartment	Healthcare	Hotel	Office	Public Assembly	Restaurant	Retail	School	Warehouse	No Prototype	Total	Rep. by Study
AK	1.3 %	9.0 %	8.7 %	15.6 %	7.6 %	0.9 %	14.4 %	15.9 %	8.7 %	17.9 %	100.0 %	56.8 %
AL	7.1 %	6.3 %	7.6 %	13.3 %	5.7 %	1.5 %	22.0 %	13.6 %	7.5 %	15.4 %	100.0 %	65.2 %
AR	2.0 %	7.8 %	8.1 %	10.9 %	5.7 %	1.3 %	22.9 %	21.8 %	5.7 %	13.7 %	100.0 %	67.1 %
AZ	4.4 %	6.3 %	4.4 %	16.9 %	5.0 %	1.1 %	20.6 %	9.6 %	15.6 %	16.0 %	100.0 %	57.1 %
CA	13.5 %	4.6 %	4.3 %	12.7 %	4.3 %	0.7 %	14.7 %	9.8 %	18.4 %	17.0 %	100.0 %	55.7 %
СО	12.4 %	8.4 %	6.1 %	13.1 %	4.3 %	1.2 %	17.6 %	10.0 %	9.4 %	17.5 %	100.0 %	60.4 %
СТ	8.5 %	5.6 %	6.8 %	8.6 %	7.1 %	0.9 %	17.2 %	16.5 %	11.3 %	17.6 %	100.0 %	58.5 %
DC	28.7 %	1.7 %	2.7 %	35.7 %	2.7 %	0.1 %	2.5 %	4.7 %	0.8 %	20.3 %	100.0 %	74.4 %
DE	4.1 %	9.0 %	7.2 %	13.0 %	6.9 %	0.9 %	13.8 %	16.9 %	9.3 %	18.8 %	100.0 %	55.9 %
FL	25.9 %	4.1 %	3.6 %	10.9 %	3.8 %	0.8 %	14.4 %	9.4 %	11.7 %	15.4 %	100.0 %	65.0 %
GA	10.2 %	4.3 %	4.2 %	10.0 %	3.3 %	0.9 %	16.3 %	15.4 %	20.6 %	14.8 %	100.0 %	57.0 %
HI	47.7 %	3.4 %	3.4 %	6.4 %	2.2 %	0.3 %	10.2 %	3.4 %	4.9 %	18.1 %	100.0 %	71.4 %
IA	2.0 %	8.8 %	5.9 %	13.8 %	9.1 %	1.0 %	18.7 %	17.4 %	8.6 %	14.7 %	100.0 %	58.8 %
ID	5.8 %	9.3 %	5.5 %	17.9 %	5.7 %	1.1 %	17.4 %	15.9 %	9.0 %	12.4 %	100.0 %	63.6 %
П	21.1 %	5.1 %	3.8 %	8.5 %	4.9 %	0.7 %	16.3 %	8.9 %	18.7 %	12.1 %	100.0 %	59.2 %
IN	2.0 %	94%	47%	95%	7.2.%	14%	18.0 %	14.0 %	20.6 %	13.2.%	100.0 %	49.6 %
KS	1.8 %	9.9%	65%	163%	5.5 %	1.1 %	20.8 %	15.3 %	9.5 %	12.5 %	100.0 %	62.6%
KY	2.7 %	7.7%	6.6%	11.9 %	7.8 %	1.0 %	17.0 %	13.0 %	20.5 %	11.3 %	100.0 %	52.7 %
LA	2.7 %	7.7%	0.0 %	13.8 %	7.0%	1.4 %	20.4.%	0.0%	11.0 %	16.2 %	100.0 %	57.2.%
MA	22.0 %	5.6%	6.0%	8.6%	1.0 %	0.9%	13.7.%	10.5 %	6.6 %	10.2 %	100.0 %	63.6 %
MD	10.7.%	1.8.0%	4.0.%	16.6 %	4.9 /0	0.5%	0.2.%	0.0%	11.8.04	20.0.%	100.0 %	60.0.%
ME	19.7 %	4.8 %	4.9 70	0.0.%	5.4 %	1.4.0/	9.2 70	9.0 %	11.8 %	20.0 %	100.0 %	55.0.0/
ML	2.0 %	0.4 %	0.7 %	9.0 %	0.2.0/	1.4 %	22.0 %	12.0 %	5.8 %	19.9 %	100.0 %	56.4.%
MI	3.0 %	12.1 %	4.0 %	11.4 %	9.2 %	1.5 %	21.9 %	10.1 %	5.8 %	10.5 %	100.0 %	50.7 %
MO	12.3 %	8.7 %	4.1 %	14.0 %	4.3 %	0.9 %	10.5 %	10.1 %	6.9 %	20.1 %	100.0 %	39.7 %
MC	7.4 %	8.0 %	7.5 %	10.4 %	0.0 %	1.5 %	21.5 %	15.6 %	0.9 %	10.7 %	100.0 %	01.7 %
MS	2.4 %	5.4 %	1.1%	10.1 %	0.0 %	0.9 %	18.0 %	11.9 %	25.5 %	11.1 %	100.0 %	51.5 %
MI	3.8 %	10.2 %	9.9 %	12.5 %	7.9 %	1.5 %	21.3 %	14.0 %	0.4 %	12.0 %	100.0 %	63.5 %
NC	7.2 %	6.1 %	5.3 %	15.2 %	5.0 %	1.0 %	20.2 %	15.4 %	8.6 %	15.9 %	100.0 %	64.3 %
ND	0.6 %	10.3 %	8.0 %	12.1 %	9.9 %	1.3 %	29.0 %	15.2 %	5.0 %	8.7 %	100.0 %	00.1 %
NE	5.2 %	9.9 %	6.6 %	13.7 %	7.2 %	1.2 %	25.0 %	11.2 %	7.4 %	14.7 %	100.0 %	60.8 %
NH	5.1 %	8.2 %	8.2 %	10.0 %	5.6 %	1.8 %	23.4 %	14.9 %	6.9 %	15.9 %	100.0 %	63.5 %
NJ	16.1 %	4.6 %	5.4 %	7.1 %	4.5 %	0.6 %	14.3 %	15.1 %	17.3 %	14.9 %	100.0 %	58.8 %
NM	2.2 %	6.0 %	10.2 %	15.1 %	8.6 %	1.5 %	18.7 %	18.4 %	7.1 %	12.0 %	100.0 %	66.2 %
NV	16.3 %	3.0 %	16.9 %	9.3 %	6.8 %	0.9 %	13.6 %	5.5 %	9.5 %	18.4 %	100.0 %	62.3 %
NY	38.3 %	5.4 %	6.5 %	11.0 %	3.5 %	0.7 %	12.0 %	7.4 %	4.2 %	11.1 %	100.0 %	75.8 %
OH	2.6 %	10.0 %	3.8 %	10.9 %	5.2 %	1.5 %	20.9 %	18.1 %	13.8 %	13.2 %	100.0 %	57.8 %
OK	1.5 %	10.0 %	6.4 %	9.6 %	11.0 %	1.8 %	17.2 %	14.8 %	11.7 %	16.0 %	100.0 %	51.3 %
OR	14.4 %	10.5 %	4.1 %	10.6 %	4.4 %	0.8 %	15.8 %	7.5 %	13.1 %	18.9 %	100.0 %	53.1 %
PA	6.4 %	8.2 %	6.0 %	10.4 %	5.8 %	0.9 %	16.1 %	15.7 %	15.1 %	15.3 %	100.0 %	55.7 %
RI	14.2 %	3.6 %	11.5 %	15.0 %	4.9 %	1.5 %	16.6 %	11.8 %	6.8 %	14.1 %	100.0 %	70.6 %
SC	14.6 %	5.5 %	4.1 %	11.3 %	4.0 %	1.2 %	19.1 %	16.4 %	8.1 %	15.7 %	100.0 %	66.8 %
SD	0.9 %	7.9 %	5.7 %	17.0 %	8.3 %	0.8 %	22.5 %	17.7 %	5.8 %	13.5 %	100.0 %	64.5 %
TN	6.0 %	6.3 %	4.2 %	14.0 %	4.5 %	1.2 %	21.9 %	11.1 %	16.5 %	14.3 %	100.0 %	58.4 %
TX	7.7 %	6.2 %	4.9 %	11.5 %	4.6 %	1.2 %	18.2 %	17.6 %	14.7 %	13.4 %	100.0 %	61.1 %
UT	7.2 %	6.6 %	3.7 %	15.9 %	5.5 %	0.9 %	16.6 %	14.8 %	14.8 %	14.0 %	100.0 %	59.0 %
VA	15.6 %	4.5 %	6.0 %	16.4 %	4.9 %	0.9 %	13.4 %	10.6 %	8.1 %	19.6 %	100.0 %	62.9 %
VT	16.2 %	9.9 %	9.6 %	11.3 %	7.1 %	0.6 %	6.3 %	13.6 %	8.8 %	16.6 %	100.0 %	57.6 %
WA	18.3 %	5.9 %	4.7 %	13.1 %	4.5 %	0.6 %	13.5 %	9.9 %	10.1 %	19.4 %	100.0 %	60.1 %
WI	7.6 %	12.7 %	4.9 %	13.0 %	6.3 %	1.1 %	20.9 %	9.5 %	7.4 %	16.6 %	100.0 %	57.0 %
WV	2.7 %	9.0 %	6.2 %	8.1 %	4.9 %	1.6 %	27.9 %	20.2 %	7.5 %	12.0 %	100.0 %	66.7 %
WY	0.3 %	6.2 %	14.4 %	5.8 %	11.1 %	0.8 %	13.7 %	22.1 %	5.8 %	19.8 %	100.0 %	57.1 %
Total	13.0 %	6.3 %	5.3 %	12.0 %	5.0 %	1.0 %	16.7 %	12.3 %	12.9 %	15.5 %	100.0 %	60.4 %

Table A-4 New Commercial Building Construction Share by State and Building Type

State	Code	Average Annual New Floor Area 1000 m ² (1000 ft ²)	Energy Use (GWh)
FL	2007	16 542 (178 061)	3790.5
TX	2007	14 446 (155 495)	2831.6
CA	2007	14 492 (155 996)	2543.2
AZ	1999	4758 (51 214)	1857.5
GA	2007	7240 (77 934)	1348.0
IL	2007	6929 (74 579)	1212.7
CO	2001	3292 (35 437)	1112.9
AL	1999	2254 (24 266)	1050.6
NY	2007	6071 (65 346)	1037.6
MO	None	2358 (25 383)	984.7
VA	2007	4499 (48 426)	871.3
NC	2007	4437 (47 758)	827.9
OH	2007	4907 (52 814)	826.8
MN	2004	2329 (25 068)	816.7
TN	2004	3272 (35 219)	807.8
PA	2007	4661 (50 170)	764.9
NV	2004	3516 (37 844)	709.0
MS	1999	1251 (13 465)	689.6
IN	2007	3663 (39 425)	656.9
MD	2007	3385 (36 433)	622.2
OK	1999	1590 (17 115)	598.1
SC	2004	2718 (29 257)	594.5
NJ	2007	3476 (37 421)	581.6
WA	2007	3710 (39 937)	525.0
MI	2007	2964 (31 905)	511.9

Table A-5 Energy Consumption Savings by State