THERMAL EXPANSION OF INSULATING MATERIALS

By Wilmer H. Souder and Peter Hidnert

CONTENTS

Page
I. Introduction 387
II. Previous work on porcelain 388
III. Previous work on marble 388
IV. Apparatus and specimens 390
V. Porcelain 391
VI. Phenol condensation products, etc 399
VII. Marble and limestone 4 II
VIII. Summary 416

I. INTRODUCTION

The material here presented is selected from the mass of data accumulated during thermal expansivity tests, and is of importance where insulating materials are subjected to temperature variations. The range of expansion coefficients is rather large, extending from a value of 1.6×10^{-6} for certain porcelains to 109×10^{-8} for a specimen of celluloid.

In addition to the wide range in coefficients it has also been found that practically all of the molded materials, such as bakelite, condensite, hard rubber, and celluloid, take up a permanent length change when carried through a temperature cycle, especially if temperatures above $60^{\circ} \mathrm{C}$ are reached. This length change, always a shrinkage, may work to advantage in cases where a slight shrinkage tends to compress and retain metallic electrodes or inserts. On the other hand, these changes become very serious in precision apparatus depending upon accurate dimensions.

The following materials have been investigated and are included in this report: Porcelain, bakelite, condensite, formica, celluloid, hard rubber, marble, and limestone.

II. PREVIOUS WORK ON PORCELAIN

Some of the results of previous experimental determinations of the thermal expansion of porcelain are summarized in the following table. The values given for a and b are to be substituted in the general quadratic equation

$$
L_{\mathrm{t}}=L_{\mathrm{o}}\left(\mathrm{I}+a t+b t^{2}\right)
$$

where L_{o} is the length of the material at $o^{\circ} \mathrm{C}$ and L_{t} the length at $t^{\circ} \mathrm{C}$ within the proper temperature range.

TABLE 1

Kind of porcelain	Observer	Temperature range	Coefficients	
			a	b
		${ }^{\circ} \mathrm{C}$		
Bayeux.	Tutton $a_{\text {. }}$	0-120	2.522×10^{-6}	7.43×10^{-9}
Do.	Bedford..	0-600	3.425	1.07
Do.	Chappuis...	0-83	2.824	6.17
Berlin.	Holborn and Day b	250-625	2.954	1.125

a Proc. Phys. Soc. of Lond., 18, p. 182; 1901-1903.
${ }^{6}$ Ann. der Phys. und Chem., 2, p. 505; 1900.
Tutton agrees with Chappuis that the thermal expansion of Bayeux or Berlin porcelains can not be represented by a quadratic equation throughout a temperature range exceeding a very few hundred degrees.

Brundige ${ }^{1}$ is of the opinion that expansion effects cause the major part of insulator deterioration. However, he points out that there are other investigators who believe that practically all insulator deterioration is attributed to porosity.

III. PREVIOUS WORK ON MARBLE

Roiti's Physics (vol. x, sec. 399, Hungarian translation, p. 457), gives as the average coefficient of expansion for $\mathrm{I}^{\circ} \mathrm{C}$ between 0° and $100^{\circ} \mathrm{C}$, the following values:
White marble
o. 00000849 (Destigny)

Do..00001072 (Dunn and Sang)
Fröhlich ${ }^{2}$ found it necessary to know the coefficient of expansion of a large ring (standard of inductance) made from Carrara marble in order to determine the dimensions at a given temperature. From observations at room temperature and at $100^{\circ} \mathrm{C}$ (steam)

[^0]on a 30 cm specimen cut from the same block of marble used for the ring, he obtained 0.000012 for the average coefficient of expansion between 15 and $100^{\circ} \mathrm{C}$. However, he does not state whether the specimen returned to its original dimensions after cooling.

Kaye and Laby (Physical and Chemical Constants, etc., 191I) of the National Physical Laboratory give 1.4×10^{-6} to 3.5×10^{-6} for the coefficient of expansion of marble at $15^{\circ} \mathrm{C}$.

Grüneisen ${ }^{3}$ gives 4.3×10^{-8} as the coefficient between 14 and 24°, and 10.5×10^{-8} between 18 and $100^{\circ} \mathrm{C}$. After keeping a specimen at a constant temperature of $100^{\circ} \mathrm{C}$, he found the value 2.2×10^{-8} for the coefficient of expansion between 14 and $24^{\circ} \mathrm{C}$.

Hallock ${ }^{4}$ determined the expansion of several marbles by comparing them with brass, and gives the following values from room temperature to $100^{\circ} \mathrm{C}$:

A marble from Rutland, Vt...0. 00000659
66I
A marble from Knoxville, Tenn... . . . 00000495525
A marble, "Keowa," from Georgia o. 00000348A
A marble, "Creole," from Georgia
A marble, "Cherokee,' from Georgia. o. 00000740

The duplicate values are from different bars of the same marble.
He observed the phenomenon of permanent growth after heating, especially with the Vermont and Tennessee specimens. "Being heated for the first time to $100^{\circ} \mathrm{C}$ and allowed to cool, they did not contract to their original length, and the next two or three heatings resulted in continued but ever diminishing increments of length at ordinary temperatures; finally a permanent condition was reached." He also found that a Vermont marble when kept at constant temperature, contracted on drying and expanded on soaking in water.

In 1832, W. H. C. Bartlett ${ }^{5}$ made determinations on the expansion of some stones at ordinary temperatures (range about $100^{\circ} \mathrm{F}$). He gives for the coefficient of expansion of marble, $0.000005668=$ $\frac{1}{176429}$ per degree Fahrenheit. He reached the conclusion that the fractures of the stones at Fort Adams, Newport Harbor, were due to ordinary changes of temperature.

[^1]T. M. Reade ${ }^{6}$ also determined the expansion of several rocks, and gives as the coefficient of expansion of marbles the value $\frac{\mathrm{I}}{184797}$ per degree Fahrenheit. (Temperature range not indicated.)
N. E. Wheeler ${ }^{7}$ investigated a specimen of white marble from Carrara, Italy. He obtained the following values for the coefficients of expansion per degree centigrade at intervals of $100^{\circ} \mathrm{C}$:

Nisi ${ }^{8}$ used an Abbe and Pulfrich interferometer over a range extending from 0° to $40^{\circ} \mathrm{C}$. He found that the thermal expansion of white Carrara marble is different in different directions, and that the rate of expansion increases with temperature. He failed to obtain a marked permanent set, on account of his very limited temperature range. The coefficients of linear expansion for differently oriented specimens at temperatures between 0° and $40^{\circ} \mathrm{C}$ varied from -0.77×10^{-6} to $+11.24 \times 10^{-6}$.

Nisi states that marble is by no means an homogeneous mass, and that the anomalous behavior of marble as regards thermal expansion is closely connected with the cleavage planes.

IV. APPARATUS AND SPECIMENS

Each specimen was in the form of a straight rod or bar of uniform cross section. The length was about 30 cm and the cross section about 1 cm square. Both ends were cylindrical in shape.

Two kinds of apparatus ${ }^{9}$ were used in making the thermal expansion tests-an oil bath ${ }^{10}$ and air furnaces.

In the furnaces the specimen was supported horizontally and a 2 -mil platinum wire, which was previously annealed, hung

[^2]Scientific Papers of the Bureau of Standards, Vol. 15

Fig. i.-Furnace and traveling microscopes
over each end. Each wire, hanging through a hollow tube below the end of the specimen and extending downward through and below the furnace, had at its lower end a vane (or weight) immersed in oil in order to dampen the vibrations. Heating was effected by electric resistance coils (outside, inside, and end coils). With careful manipulation it was possible to adjust the circuits so that during an observation the specimen was at a uniform temperature within one-tenth degree centigrade, from end to end.

The length changes were determined with a comparator consisting of two microscopes rigidly clamped on an invar bar at a distance from each other equal to the length of the specimen $(30 \mathrm{~cm}$.). The microscopes were so arranged that they could first be sighted on a standard-length bar kept at constant temperature, and then on the vertically suspended wires which were in contact with the ends of the specimen.

The apparatus shown in Fig. I was used for part of this research and portrays the essential method of making observations on materials. The furnace is shown with the top lifted. The traveling microscopes, which are sighted (simultaneously) on the two vertical wires hung from the specimen, are displaced to the right in order to show the construction of the tube protecting the vertical or drop wires. The left oil pot is removed to show the weight attached to the wire.

The temperatures in the oil bath and furnaces were determined by means of a copper-constantan and a platinum-platinum rhodium thermocouple, respectively.

V. PORCELAIN

Data on the thermal expansion of 40 samples of various kinds of porcelain are presented in this paper.

The coefficients of expansion of these materials vary over a wide range, as may be seen from the accompanying curves and the following table. It is remarkable that the various kinds of porcelain, when heated to high temperatures and then cooled to room temperature, returned to their approximate initial lengths, as is evident from the last column in the table; that is, there is no marked set or permanent change in dimension due to the heat treatment.

The expansion curves of porcelain may be divided into three classes: Straight-line, concave, and convex curves. In the straight-line curve, the rate of expansion is constant. (See S494
in Table 2.) The concave expansion curve shows that the rate of expansion increases with temperature, but the convex curve indicates that the rate of expansion decreases with temperature. Examples of concave curves are shown by S_{472}, S_{47}, $\mathrm{S}_{496 \text {, and }}$ S500; and examples of convex curves by S436, S480, and S501.

TABLE 2

$\begin{gathered} \text { Bu- } \\ \text { reaus } \\ \text { of } \\ \text { tand- } \\ \text { ards } \\ \text { No. } \end{gathered}$	Composition.							Average coefficients $\times 10^{6}$				Changeingelengthaftertest(percent)
	$\begin{aligned} & \text { Per } \\ & \text { cent } \\ & \text { clay } \end{aligned}$		Per cent flint	Per cent whit ing	Per cent cal- cine No. $14 e$	Per cent silli- manite e	$\begin{gathered} \text { Per } \\ \text { cent } \\ \mathrm{Al}_{2} \mathrm{O}_{2} \end{gathered}$	Room tem-perature $200^{\circ} \mathrm{C}$	$\begin{aligned} & 2000^{\text {to }} \\ & 400^{\circ} \end{aligned}$	$\begin{aligned} & 400 \\ & 540^{\circ} \mathrm{to} \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \mathrm{to} \\ & 600^{\circ} \mathrm{C} \end{aligned}$	
S391								4.4	5.4		5.8	0.00
S392								4.6	5.4		6.0	. 00
S393								3.7	5.0		5.4	+. 01
S399								5.8	4.7		7.8	+. 01
S400								5.2	5.6	6.8		+. 02
S401								4.8	5.9	8.8		$+.04$
S402								4.3	6.1		7.9	$+.01$
S405								2.9	3.7		3.8	$-.01$
S416								5.2	4.4		4.9	. 00
S417								5.3	4.4		4.8	+. 01
S436a	50		20					19.4	9.4	5.5		$-.02$
S437	50		30		20			19.6	11.1	8.1		+. 03
S438	50		20		30			10.4	5.4	4.5		$-.01$
S442b	50		30					7.3	6.1	4.7		. 00
S443c	50		20					8.9	4.4	4.1		. 00
S444	50		20		30			10.8	5.5	4.4		. 00
S445	40				20	40		3.4	4.2	4.8		. 00
S472d	50		15					1.6	3.0	3.6	$-.01$
S476								5.7	6.7	8.4		. 00
S477								5.8	6.8	8.8		. 00
S478	48				18	34	10.4	5.6	4.4		$-.01$
S479	40				16	44		10.9	6.6	7.8		+. 06
S480	45				15	40		8.9	5.0	5.1		-. 01
S485	71.5	15.6	2.4	1.4			9.1	2.9	4.0			-. 02
S486	50	16	32.5	1.5				6.2	4.6			. 00
S487	77	12.5		1.45			9.05	3.4	3.9			-. 01
S488	80.1	9.5		1.43			8.97	3.1	3.8			-. 01
S489	85	13.5		1.5				3.2	3.5			-. 01
S490	80	18.5		1.5				2.9	4.0			-. 01
S491	80	13.5	5	1.5				3.3	3.2			$-.01$
S492	75	23.5		1.5				3.5	4.5			$+.01$
S493	75	18.5	5	1.5				3.2	3.7			-. 01
S494	75	10	13.5	1.5				4.1	4.1			-. 01
S495	70	23.5	5	1.5				3.7				-. 09
S496	70	19	9.5	1.5				3.3	4.0			. 00
S497	70	15	13.5	1.5				3.4	3.6			. 00
S499	80	10	8.5	1.5				4.7	4.6			. 00
S500	75	13.5	10	1.5				3.7	4.3			$-.01$
S501	70	10	18.5	1.5				6.1	5.1		4.5	$-.02$
S502	50	16	34					4.7	4.6			. 00

[^3]

Fig. 2.-Expansion of porcelain (S 472)

Fig. 3.-Expansion of porcelain (S 476)

```
1338550}-19-
```


Fig. 4.-Expansion of porcelain (S 490)

Fig. 5.-Expansion of porcelain (S 500)

Fig. 6.-Expansion of porcelain (S 430)

Fig. 7.-Expansion of porcelain (S 480)

The constituents of the calcines are given in the accompanying table.

TABLE 3

Composition	Clay	$\mathbf{M g C O} 3$	Flint	Boric acid	$\mathrm{Al}_{2} \mathrm{O}_{3}$
Calcine No. 8A.	44.30	14.40	41.30		
Calcine No. 13.	76.15	23.85			
Calcine No. 14.	56.00	18.20	25.80		
Sillimanite.	70.20			2.00	27.80

Fig. 8.-Expansion of porcelain (S 50I)
Attention is directed to the curve applying to $S_{43} 6$, which shows the convexity found in a number of cases. This characteristic is the opposite to that exhibited by most materials (including porcelain in general), especially metals which are used as electrodes or clamps. The expansion curves of metals are usually concave, and give positive values for the b in the expansion formula:

$$
L_{\mathrm{t}}=L_{\mathrm{o}}\left(\mathrm{I}+a t+b t^{2}\right)
$$

where L_{t} is the length at any temperature t and L_{0} the length at $0^{\circ} \mathrm{C}$, whereas in the case of porcelain $\mathrm{S}_{43} 6$ this coefficient b is decidedly negative, causing the value of the rate of expansion to decrease with temperature. In the former case, however, the instantaneous coefficient or rate of expansion increases with temperature.

The fact that the average coefficient of S 436 between room temperature and $550^{\circ} \mathrm{C}$ is about the same as that of certain steels does not mean that these steels may be used as perfect matches for expansion (in spark plugs, for example). The rate of expansion of this porcelain decreases rapidly with temperature (see curve S 436 and Table 2), while the rate of expansion of steel increases. Serious cracking of the porcelain may occur when the differential expansion approaches a maximum.

Porcelains having low coefficients of expansion have been found to exhibit marked resistance to sudden temperature changes. Plunging cold specimens into the blast flame did not cause checking or cracking.

The large number of varying constituents in the porcelains makes it difficult to obtain an exact relationship between the composition and the coefficients of expansion. However, some relations have been deduced.

The coefficients of porcelains having the same amounts of clay, flint, and calcines depend on the kind of calcines contained. Porcelains containing calcines No. 8A, No. 14, and No. I3 have relatively large, intermediate, and small coefficients of expansion, respectively. For example, the following comparison shows the variations in the coefficients of $S_{436}, S_{43} 8$, and S_{443}, which contain 50 per cent clay, 20 per cent flint, and 30 per cent calcine. (The kind of calcine is different in each case.)

$\begin{aligned} & \text { Bureau } \\ & \text { of } \\ & \text { Stand- } \\ & \text { ards } \\ & \text { No. } \end{aligned}$	Kind of calcine	Average coefficients	
		200 to $400^{\circ} \mathrm{C}$	400 to $540^{\circ} \mathrm{C}$
S436	No. 8A.	9.4×10^{-6}	
S438	No. 14.	5.4	
S443	No. 13.	4.4	4.1

All porcelains containing 50 per cent clay, 20 or 30 per cent flint, and the remainder calcine (No. 8A, 13, or 14) have convex expansion curves. (See $\mathrm{S}_{436}, \mathrm{~S}_{437}, \mathrm{~S}_{43} 8, \mathrm{~S}_{442}$, S_{443}, and S_{444}.)

The porcelain (S_{472}) containing 35 per cent beryl, in addition to 50 per cent clay and is pei cent flint, gave the lowest coefficient of expansion. Beryl is probably the constituent causing the small thermal expansion.

In a porcelain containing 40 per cent clay, an increase of 4 per cent in sillimanite and a corresponding decrease in calcine No. 14,
caused a marked increase in the coefficients, as shown by the following values:

Bureau of Standards No.	Sillimanite, per cent	$\left\{\begin{array}{c} \text { Calcine } \\ \text { No. 14, per } \\ \text { cent } \end{array}\right.$	Average coefficients		
			Room temperature to $200^{\circ} \mathrm{C}$	200 to $400^{\circ} \mathrm{C}$	400 to $540^{\circ} \mathrm{C}$
S445..	40	20	3.4×10^{-6}	4.2×10^{-6}	4.8×10^{-6}
S479.	44	16	10.9	6.6	7.8

In a porcelain containing 40 per cent sillimanite, an increase of 5 per cent in clay and a corresponding decrease in calcine No. 14, caused an increase in the coefficients, as shown by the following values:

Bureau of Standards No.	Clay, per cent	$\begin{gathered} \text { Calcine } \\ \text { No. } 14, \text { per } \\ \text { cent } \end{gathered}$	Average coefficlents		
			Room temperature to $200^{\circ} \mathrm{C}$	200 to $400^{\circ} \mathrm{C}$	400 to $540^{\circ} \mathrm{C}$
S445.	40	20	3.4×10^{-6}	4.2×10^{-6}	4.8×10^{-6}
S480..	45	15	8.9	5.0	5.1

Three specimens, $\mathrm{S}_{4} 85, \mathrm{~S}_{4} 87$, and $\mathrm{S}_{4} 88$, containing from 71.5 to 80.1 per cent clay and about 9 per cent $\mathrm{Al}_{2} \mathrm{O}_{3}$ had low coefficients of expansion (2.9 to $3.4 \times 10-{ }^{6}$ between room temperature and $200^{\circ} \mathrm{C}$, and 3.8 to $4.0 \times 10-{ }^{6}$ between 200 and $400^{\circ} \mathrm{C}$).

The porcelains, $\mathrm{S}_{4} 89$ to S_{501}, inclusive, containing from 70 to 85 per cent clay, in addition to feldspar (10 to 23.5 per cent), flint (o to 18.5 per cent), and Whiting (1.5 per cent), have low coefficients of expansion, which vary from 2.9 to $6.1 \times 10-{ }^{6}$ and from 3.2 to 5.1×100^{6} for the ranges extending from room temperature to $200^{\circ} \mathrm{C}$ and from 200° to $400^{\circ} \mathrm{C}$, respectively.

Most of the porcelains described above are products of this Bureau's Pittsburgh laboratory, from which additional information ${ }^{11}$ relating to composition, baking, etc., may be secured.

[^4]VI. PHENOL CONDENSATION PRODUCTS, ETC.

An extended study was made of these materials with a view to determining their applicability for use in instruments of high precision which may be subjected to temperature variations.

The accompanying representative figures are self-explanatory, and in general show the tendency of contraction at constant tem-

Fig. 9.-Expansion of bakelite-dilecto (black) S 446
perature (above $60^{\circ} \mathrm{C}$). In most cases, after cooling to room temperature, these materials show a marked diminution in length. The numbers near the circles represent the order of the observations. The time elapsing between consecutive observations is indicated. When the time is less than one hour (except at critical temperatures) it is not indicated.

Fig. ro.-Expansion of bakelite-dilecto (black) $S 447$

Fig. Ix.-Expansion of bakelite-dilecto (natural XX grade) $S 448$ $133855^{\circ}-19-3$

Fig. 12.-Expansion of bakelite-dilecto (natural XX grade) S 449

Fig. 13.-Expansion of bakelite-dilecto (XX grade) $S 439$

Fig. 14.-Expansion of condensite (No. 128) S 423, first test

Fig. 15.-Expansion of condensite (No. 128) S 423, second test

Fig. 16.-Expansion of formica (grade M) $S 432$

Fig. 17.-Expansion of formica (grade M) S 435

TEMPERATURE IN DEGREES CENTIGRADE
Fig. 18.-Expansion of hard rubber (S 508)

Fig. 19.-Expansion of celluloid (S 505) second heating

The coefficients of expansion obtained on various samples of these materials are summarized in the following table:

TABLE 4

a Expansion very irregular.
${ }^{b}$ Nos. S_{432} and S_{433} were cut perpendicular to Nos. S_{434} and S_{435}.
Most of these materials when kept at some constant temperature above $60^{\circ} \mathrm{C}$ shrink in length and lose weight (give off vapors). When the temperature of the material increases it expands, but when kept at a constant temperature above $60^{\circ} \mathrm{C}$ it contracts.

The following table gives the maximum temperatures to which the specimens were heated and the changes in weight and in length after the test. The plus $(+)$ sign indicates a gain in weight or length and the minus (-) sign a diminution in weight or length

TABLE 5

Bureau of Standdards No.	Material	Sample heated in-	$\begin{array}{\|c\|} \text { Maxi- } \\ \text { mum } \\ \text { tempera- } \\ \text { ture } \end{array}$	$\begin{array}{\|c} \text { Change } \\ \text { in weight } \\ \text { after } \\ \text { test } \end{array}$	Change in length after test
			${ }^{\circ} \mathrm{C}$	Per cent	Per cent
S446	Bakelite-dilecto (black)	Air furnace.	172	-6.3	-0.4
S447	..do.	Oil bath..	147	-. 1	-. 2
S448	Bakelite-dilecto (natural XX grade).	Air furnace.	191	- 2.8	-. 2
S449	...do.	Oil bath.	175	- . 3	-. 2
S439	Bakelite-dilecto (XX grade) a	Air furnace .	253	-20.4	-1.5
S440	Bakelite Micarta (32X grade).	do	195	- 2.7	-. 4
S441	Bakelite Micarta (323 grade) a .	do	246	-27.6	-4.0
S451	Continental bakelite (bakelized canvas)	...do	170	-2.0	. 1
S450	. do.	Oil bath	160	+. 1	-. 2
S422	Condensite (No. 100):				
	First test	Air furnace .	79		-. 2
	Second test b	.do	288		-4.3
S423	Condensite (No. 128):				
	First test	.do	94	-. 5	-. 1
	Second test.	.do	304	- 4.0	. 6
S424	Condensite (No. 5053H)	do	124	-2.3	. 3
S432	Formica (grade M).	Oil bath	60	+ . 2	-. 01
S433	..do.	Air furnace	79	-. 6	-. 14
S434	. do.	Oil bath	61	$+.2$. 00
S435	...do.	Air furnace . .	66	. 3	$-.03$
S508	Hard rubber	do	100	-. 1	. 8
S505	Celluloid (2 heatings).	do	103	- 1.1	-1.4

${ }^{a}$ After test, specimen was found warped, cracked on sides, and blistered on upper and lower surfaces.
${ }^{b}$ At 288°, specimen was contracting so rapidly that one end left support of the apparatus.
${ }^{c}$ After test r , specimen kept in oven at $100^{\circ} \mathrm{C}$. for several days. It showed a change in weight and in length of -0.6 per cent and -0.1 per cent, respectively.

From a study of the work on these materials it is evident that the length is a function of the temperature, medium in which the material is heated (air or oil), time, rapidity of heating or cooling, etc

From these experiments the conclusion may be drawn that delicate apparatus made from these materials or containing these materials as essential parts should not be heated above $60^{\circ} \mathrm{C}$ ($140^{\circ} \mathrm{F}$), if loss in weight and shrinkage or warpage are to be avoided.

The Bureau takes this opportunity of thanking the manufacturers of the above products for their cooperation in this research. Practically all of the above samples were given the Bureau by the respective manufacturers.

VII. MARBLE AND LIMESTONE

This research ${ }^{12}$ includes 10 grades of marble ${ }^{13}$ selected from the quarries of Vermont, Tennessee, and Georgia, and one specimen of Indiana limestone. After heating, it was found that each showed an increase in length. This growth is roughly proportional to the maximum temperature, as is shown by S209 (Florentine blue), which was heated to $100^{\circ} \mathrm{C}$, cooled to room temperature, then heated to 150°, and cooled to room temperature, and so on. Each cycle of increased temperature caused an additional increase in length. The dotted line represents how the material would have behaved if it had been heated directly to $300^{\circ} \mathrm{C}$. (See S207.) Then after being cooled, it would have returned approximately to point 11 , which represents a growth of more than 0.3 per cent. In other words, the growth is approximately the same, whether the specimen is heated by cycles or heated directly to the maximum temperature.

Sr98 (Pittsford Italian) and S285 (Appalachian gray) show the changes in length on two heatings and two coolings. It will be noticed that the growth after the second heating is less than that after the first heating. Repeated heatings tend to bring the marble to a constant or permanent state. The Vermont marble shows a larger growth than the Tennessee.

S296 (Silver gray) shows the changes in length at low temperatures. On cooling below room temperature, it is seen that the specimen expands, contrary to the usual behavior of most materials. The coefficient of expansion of this specimen on the first cooling was numerically (but opposite in sign) about the same as that of steel at room temperature. For the other marbles tested, however, the coefficients of expansion on cooling are quite small, as may be seen from Table 7. The peculiar phenomenon of minimum length is common to all the specimens tested. This point of minimum length is not constant for the different kinds of marble, and usually occurs below room temperature, in some instances as low as $-20^{\circ} \mathrm{C}$. Attention is directed to the slight permanent lengthening of specimens when passed through the cooling cycle.

[^5]

Fig. 20.-Expansion and growth of marble (S 209)

Fig. 21.-Expansion of marble. (S 207)

Fig. 22.-Expansion of marble (S 198)

Fig. 23.-Expansion of marble (S 285)

Fig. 24.-Expansion of marble at low temperature (S 296)

TABLE 6.-Average Coefficients Above Room Temperature HEATING

$\underset{\text { ber }}{\text { Num- }}$	Name	Heated in-	20 to $65^{\circ} \mathrm{C}$	25 to $100^{\circ} \mathrm{C}$	100 to $200^{\circ} \mathrm{C}$	200 to $300^{\circ} \mathrm{C}$	
S198	Pittsford Italian, \perp (Pittsford, Vt.)	Oll...		14×10^{-6}	23×10^{-6}	25×10^{-6}	
S207	Rutland blue, \perp (Rutland, Vt.).	.do.		16	25	29	
S208	Dorset gray (Dorset, Vt.)....	.do.	10×10^{-6}				
S209	Florentine blue, \perp (Plorence, Vt.).	...do.		10			
S210	Riverside, \perp (Proctor, Vt.).	. .do		13	
S285	Appalachian gray, \perp.	Air.		10	22	27	
S286	Appalachian gray, (Asbury, Tenn.).	. do.		10	20	27	
S310	Rutland blue, \perp (Rutland, Vt.)..	...do.		15	23	28	
S296	Silver gray, \\| (Tate, Ga.).		${ }^{1}$				
S514	Hollister \\| (Florence, Vt.).	Air		5	13	15	
S513	Indiana limestone.	do		9	17	22	

cooling

$\underset{\text { Ber. }}{\text { Num- }}$	Name	Heated in-	300 to $200^{\circ} \mathrm{C}$	200 to $100^{\circ} \mathrm{C}$	100 to $25^{\circ} \mathrm{C}$	65 to $20^{\circ} \mathrm{C}$	
S198	Pittsford Italian, \perp (Pittsford, Vt.).	Oil......	17×10^{-6}	11×10^{-6}	6×10^{-6}		
S207	Rutland blue, \perp (Rutland, Vt.)..	.do	16	10	4		
S208	Dorset gray (Dorset, Vt.)..	do.				7×10^{-6}	
S285	Appalachian gray, 1.	Air.	19	18	9		
S286	Appalachian gray, \\|. (Asbury, Tean.)	.do.	18	17	10		
S310	Rutland blue, \perp (Rutland, Vt.)..	.do.	15	9	4		
S296	Silver gray, I (Tate, Ga.)					${ }^{0} 0.5$	
S514	Vermont, I.	Air.	7	3	0		
S513	Indiana limestone.	. .do	15	14	10		

a After cooling test.
TABLE 7.-Average Coefficients on Cooling Below Room Temperature

No.	Name	$\begin{aligned} & 25 \text { to } \\ & 0^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{r} 0 \text { to } \\ -20^{\circ} \mathrm{C} \end{array}$	$-20 \text { to }-40^{\circ}$	$\begin{aligned} & =40^{\text {to }} \\ & -60^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{r} -60 \text { to } \\ -80^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & -80 \text { to } \\ & -95^{\circ} \mathrm{C} \end{aligned}$
S283	Victoria pink \perp (Knorville, Tenn.):	$\begin{aligned} & 4 \times 10^{-6} \\ & 3 \end{aligned}$	$\begin{aligned} & 1 \times 10^{-6} \\ & 1 \end{aligned} .$				
	First test. .						
	Second test.			-4×10^{-6}	-4×10-6	-2×10^{-6}	
S287	Cumberland pink \perp (Meadow, Tenn.):	\square					
	First test...................	4	1	- 3	- 3	- 2	-1×10^{-6}
	Second test....		0	-2	- 2		
S296	Silver gray, \| (Tate, Ga.) :						
	First test.	-13	-10	-10	-10	-12	
	Second test.	-4	-6	- 6	-7		

Tables 6 and 7 give the coefficients of expansion of the various samples. The former table gives the values on the first heating; and the latter, on cooling below room temperature. The coefficients are higher on the first heating than on any subsequent heating. The symbols \perp and $\|$ are used in the table to indicate the direction of the grain, the former representing specimens cut perpendicular to the bed and the latter parallel to the bed. Little, if any, difference in expansion can be detected; e. g., S285 and S 286 are from the same block of marble, but cut in opposite directions to the grain.

The following table gives the principal constituents of the marbles investigated:

TABLE 8.-Chemical Analysis

Numbera	CaO	CO_{2}	$\mathbf{M g O}$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	Loss on ignition	Insoluble in HCl
S198.	54.49	43.65	1.33	0.20	0.05	43.81	0.44
S207.	55.90	43.80	. 27	. 06	. 02	43.90	. 34
S208.	55.40	43.46	. 35	. 06	. 04	43.78	. 70
S209.	55.60	43.94	. 44	. 07	. 01	43.86	. 30
S210 b	55.40	43.76	. 35	. 10	. 01	43.70	. 24
S285.	55.60	43.58	. 07	. 26	. 06	43.89	. 15
S286.	55.60	43.58	. 07	. 26	. 06	43.89	. 15
S310.	55.90	43.80	. 27	. 06	. 02	43.90	. 34
S296.	55.00	43.18	. 41	. 09	. 04	43.37	1.10
S514.	55.54	43.75	. 46	. 09	. 03	43.81	. 24
S283.	55.38	43.52	Trace	. 14	. 06	43.95	. 08
S287.	55.80	42.65	. 06	. 45	. 16	43.68	. 54

a Trace of SiO_{3} in all samples except S_{514}.
$b \mathrm{SiO}_{2}=0.26$.
The difference in the coefficients of the various marbles when compared with each other or the difference of some marbles when compared with certain metals, raises a question of the advisability of assembling these in structures, subject to large temperature variations, where close or accurate relative dimensions are to be maintained unless proper compensating facilities are provided.

Length measurements made two years after these tests indicate that the growth of marble after heating is permanent.

VIII. SUMMARY

The present paper gives data on the thermal expansion of some of the more important insulating materials.

A short description of the method employed in making the observations is given. A photograph of one of the furnaces and the microscopes is shown in Fig. I.

The dimensional changes incident to temperature variations have been measured. In most cases the expansions are too irregular to justify the use of the general quadratic equations.

The coefficients of 40 samples of various kinds of porcelain were found to vary over a wide range, from 1.6 to 19.6 millionths per unit length per degree centigrade. The coefficients of expansion are given in Table 2. The expansion curves of most materials are concave; but with porcelain three kinds of curves were found, namely, straight-line, concave, and convex curves. No marked set or permanent change in dimension due to the heat treatment was observed. Porcelains having low coefficients exhibited marked resistance to sudden temperature changes.

To understand the work done on the phenol condensation products (bakelite, condensite, formica, etc.), it is necessary to refer to the representative figures. (See p. 399.) The most striking peculiarity is the shrinkage and the loss in weight of most of these materials when subjected to temperatures above $60^{\circ} \mathrm{C}$. A summary of the values obtained is given in Tables 4 and 5 .

Marble and limestone showed a permanent growth when subjected to heat treatment. On cooling below room temperature, it was found that marble has a negative coefficient of expansion. The coefficients of expansion are given in Tables 6 and 7.

A knowledge of the thermal behavior of these materials is essential before assembling them in certain types of apparatus subjected to wide temperature variations.

We are indebted to John O. Eisinger for assistance in computing, etc.

Washington, June 30, 1919.

.
.

1

F
$+$

[^0]: ${ }^{1}$ Trans. Amer. Inst. Elec. Eng., 36, p. 535; 1917.
 ${ }^{2}$ Wiedemann Annalen der Physik und Chemie, 61, p. 206; 1907.

[^1]: ${ }^{2}$ Recueil de Constantes Physiques, p. 188; 19x3. ${ }^{5}$ Amer. Jour. of Science, rst series, 22, p. 136.
 ${ }^{4}$ U. S. Geol. Survey Bull., No. 77. p. 109; 189r.

[^2]: ${ }^{6}$ The Origin of Mountain Ranges; 1886.
 ${ }^{7}$ Trans. Royal Soc. of Canada, 3d series, 4, p. 19; 1910-1r.
 ${ }^{8}$ Tokyo Math.-Phys. Soc. Proc., 2d series, 7, p. 97; 1913-14.
 ${ }^{9}$ This consists essentially of the apparatus designed and installed by A. W. Gray and L. W. Schad, formerly of this Bureau.
 ${ }^{10}$ For short description, see Preliminary Determination of the Thermal Expansion of Molybdenum, Scientific Papers, No. 332, p. 3 r.

[^3]: a Calcine No. $8 \mathrm{~A}=30$ per cent. (See Table 3.) $\quad c$ Calcine No. $\mathrm{r}_{3}=30$ per cent. e See Table 3. ${ }^{b}$ Calcine No. $x_{3}=20$ per cent. (See Table 3.) $\quad d$ Beryl $=35$ per cent.

[^4]: ${ }^{11}$ Bleininger and Riddle, J. Am. Ceram. Soc., 2, 564; 19 r9.

[^5]: ${ }^{12}$ Parts of these data on marble were taken under the direction of L. W. Schad, formerly of this Bureau.
 ${ }^{28}$ Selected by D. W. Kessler, of this Bureau. For additional physical and chemical properties see Bureau of Standards Technologic Paper No. 123.

