National Bureau of Standards

AUG 2 2 1947 IRPL_R4

INTERSERVICE RADIO PROPAGATION LABORATORY NATIONAL BUREAU OF STANDARDS WASHINGTON, D.C. Organized under Joint U.S. Communications Board Issued 31 Dec. 1943

RESPECTED

Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies.

Introduction

This paper describes the method used by the Interservice Radio Propagation Laboratory for long-time world-wide prediction of monthly average critical frequencies and maximum usable frequencies for the regular ionosphere layers. Tables are attached giving the necessary basic data for predicting for the ionosphere observatories which have been operating long enough for their trends to be well established.

The essential basis of long-time predictions is the fact that the critical frequencies and virtual heights of the ionosphere layers are subject to regular variations diurnally, seasonally, and from year to year with the sunspot cycle. These variations repeat themselves in a sufficiently regular manner so that average characteristics can be predicted with reasonable accuracy.

Superposed on the regular variations are random day-to-day variations which are difficult to forecast, and variations due to ionosphere storms, sudden ionosphere disturbances, and other similar phenomena. These day-to-day variations must be taken into account when use is made of average predictions. The present discussion, however, is confined entirely to the prediction of the regular average undisturbed diurnal variations of the ionosphere characteristics and maximum usable frequencies, for various times of year and epochs of the sunspot cycle.

Outline of General Prediction Method

The process of prediction of any quantity whose variations can be associated with a number of causes or periodicities consists principally of (1) analyzing the quantity into parts, each of which can be predicted separately by relating it to some other quantity whose variation can be readily predicted, and (2) recombining the separately predicted parts to obtain the predicted value of the whole.

The analysis which has proved satisfactory at the Interservice Radio Propagation Laboratory has been to break the maximum usable frequencies (m.u.f.), for transmission by a regular layer, at any latitude, inter-

(a) the vertical-incidence critical frequencies (f.),

(b) factors by which the f_c can be multiplied to obtain the m.u.f. for a standard distance (3500 km). (c) the relation of the m.u.f. factor for 3500 km to that for any other distance.

The f_c and m.u.f. factors for 3500 km have been considered as made up of three components, of which one varies with the local time of day, another with season of the year, and still another with the epoch of the sunspot cycle. The m.u.f. factor for other distances has been considered as bearing a fairly constant relation to the ones for 3500 km.

Extrapolation of trends manifested in the past for these variations is the basis for predicting future values of f_c and of the m.u.f. at any location for which ionosphere data have been available. Coordination of the predictions for a series of such stations, by determining latitude variations of the values of critical frequency at equal values of local time, and expressing longitude variations as equivalents of diurnal variations, afford the means of making world-wide predictions.

Variations with Sunspot Cycle

Since the ionosphere is produced by radiation from the sun, the variations of that radiation are related to at least some of the variations of the ionosphere. The first step in predicting ionosphere characteristics, therefore, is to predict the amount of ionizing radiation emitted from the sun. It has been found that in general, but not in detail, sunspot numbers are a measure of solar activity and of emission of ionizing radiation. On the average, a high value of sunspot number corresponds to a high value of ionizing radiation and consequent ionization of the earth's atmosphere.* Thus a prediction of the average sunspot number is the first step in making an ionosphere prediction.

Both for the purpose of smoothing out random irregularities and for that of later correlation with non-seasonal ionosphere trends, it has been found convenient to plot the 12-month running average of the monthly average Zurich sunspot number against time. Extrapolation of this curve to the middle of the season for which predictions are to be made affords an estimate of the moving average sunspot number, centered at the middle of that season.

It has been found advantageous to group the various months into seasons in each of which the colar radiation does not vary much. For temperate latitudes the months are thus grouped as follows: (a) November, December, January, February; (b) March, April; (c) May, June, July, August; (d) September,October. For the station of Huancayo, latitude 12°S, however, a preferable seasonal grouping appears to be: (a) October, November, December, January, February, March; (b) April, May; (c) June, July; (d) August, September.

The variation of critical frequency at a station with sunspot cycle, independent of seasonal variation, for any given local time, is conven-

"Trends of characteristics of the ionosphere for half a sunspot cycle," by N. Smith, T. R. Gilliland, and S.S.Kirby. J.Research N.B.S. 21, 335 (1938) iently shown by curves of 12-month running averages of the monthly average critical frequencies plotted against the 12-month running averages of the monthly average Zurich sunspot numbers. These are called trend curves. It is remarkable that such trend curves, for all stations, and for all times of day seem to exhibit approximately the same slope. This circumstance is fortunate in that it enables better extrapolation of such trend curves in cases where there are but few data. Slopes and zero intercepts of the trend curves for several observation stations are presented in Fable 1.

From the predicted average sunspot number for a given season, the predicted seasonal value of the 12-month running average of the monthly average critical frequency may be made, for a given station, for any time of day. This is done by extrapolation of a trend curve such as described above. Since for the E and F_1 layers it has been found that the diurnal variation of the critical frequency expressed as percentages of the noon value is independent of sunspot number, it is only necessary to estimate the 12-month running-average critical frequency for one time of day, usually for noon.

In the case of the F_{-}, F_{2} -layer, there are notable changes in the diurnal variation of critical frequency with the epoch of the sunspot cycle. It has been found convenient to predict first the 12-month running average of the monthly average critical frequencies at the approximate times of the low and high points of the curve of diurnal variation, i.e., at the pre-sunrise minimum and at noon. Similar estimates are made for every fourth hour during the day in order to establish other points on the diurnal curve.

Seasonal Variation

An average seasonal value of the predicted critical frequency is obtained by multiplying the predicted 12-month running-average value for the middle of the season by a "seasonal index", defined as the ratio of the seasonal average to the 12-month running average at midseason. The seasonal indexes menifest in general a sunspot-cycle variation; they are obtained by extrapolation of trend curves in cases where there are sufficient data available to make a correlation between them and the sunspot numbers. Curves are plotted of seasonal indexes vs sunspot numbers, for various times of day. For the F- and Fo-layer data, a reversal of the slope of these curves occurs in temperate latitudes when the season changes from summer to winter, and vice versa; similarly the slopes are opposite in northern and southern hem'spheres at the same time. In tropical latitudes for all seasons, and during the equinoctial seasons for north temperate latitudes, the variation of seasonal index with sunspot cycle is small, Similarly, only slight variation of E-layer and F_j -layer noon seasonal indexes occurs with changing sunspot number. Slopes and zero intercepts of the seasonal index trend curves, where these are fairly well established, as well as the average seasonal index, for all years of available data, for several observation stations, are presented in Table 2.

Monthly Variation

If critical-frequency predictions are to be made for a given month, the previously determined seasonal average is multiplied by a "monthly index", which is defined as the ratio of the monthly average critical frequency to the seasonal average critical frequency, for the hour under consideration. Monthly indexes exhibit variation with sunspot cycle, also, although such variations appear to be somewhat less regular with seasonal and latitude change than are those shown by the seasonal indexes. Slopes and zero intercepts of the monthly index trend curves, where these are fairly well established, as well as the average monthly index, for all years of available data, for several observation stations, are presented in Table 3.

Diurnal Variations of E and F, Layers

Having thus determined monthly averages of the moon critical frequency for the E or F_1 layer for each station for which data are available, the prediction of the values at other hours is made by multiplying the predicted noon critical frequency by the average ratios of the critical frequency at other hours to that at noon, obtained from all previous data for the same month on a given station.

Construction of World-Wide Prediction Charts

It is convenient to express world-wide predictions of critical frequencies by means of conteur charts where longitude is expressed as its equivalent value of local time. To establish the contours on such charts, the times for integral values of the critical frequency(or other values selected for labeling the contour lines) are marked off on the line correspending to the latitude of each station for which prediction has been made. Since integral values of critical frequency will not, in general, correspond to integral hour values of local time for which the trend curves and diurnal variation ratios have been established, it is convenient to obtain the times of integral values of critical frequency for each station.

By preparing latitude variation curves among the various coordinated stations for any selected hour of local time, it is else possible to obtain as contour points the latitude locations of integral (or other selected) values of critical frequency. Usually, selection of such latitude variation curves at intervals of four hours is sufficient to delineate the contours adequately. In regions where there is wide separation between conteur points, and in determining the location of contour lines for the E layer is afforded by the well established fact that approximately equal critical frequencies exist for equal intensities of solar radiation. Actually, symmetry seems to exist about a location somewhat to the north of the subsolar point. The E-layer critical-frequency conteur lines are hence of shapes similar to lines passing through points equidistant from the subsolar point. The process of constructing predicted contour charts of F_{l} -layer critical frequencies is identical with that for the E-layer, except for the above mentioned close correlation between the shape of the contour lines and lines drawn through points of equal solar zenith angle.

Prediction of the Diurnal Variations of F- and F2-Layer Critical Frequencies.

The hourly values of predicted average F- and F_2 -layer critical frequencies for any station are obtained as follows. Hourly indexes are obtained for all available data, by dividing the difference between the hourly and the pre-sunrise minimum critical frequencies by the difference between the noon and pre-sunrise minimum critical frequencies. The mean hourly indexes for the month in question are then multiplied by the pre-dicted value of noon minus pre-sunrise minimum critical frequency, and the predicted pre-sunrise minimum value is added.

Because there is a slight change in shape of the diurnal variation curve with sunspot cycle, it is necessary to consider also the hourly values for selected times of day, predicted from trends previously hentioned. The change in shape is apparent when the sunspot cycle trend curves taken at any station for differing hours of day are examined. The process of applying the average hourly indexes for all past data, while smoothing the shape of the curve, also obliterates all sunspotcycle variation; an allowance should be made for this effect.

It is ordinarily sufficient for this purpose to obtain predicted values of the critical frequency for every four hours of local time, by reference to independent trend curves of (1) the 12-month running average of monthly average critical frequency, (2) the seasonal indexes, and (3) the monthly indexes. By modifying the predicted diurnal variation curve to include the points thus obtained, a somewhat better prediction of the values of critical frequency at each hour may be effected. Inspection of the progressive change shown in the monthly average diurnal curves of the station for previous years is also useful, and indicates whether further modification is necessary.

It is desirable to construct world-wide \mathbb{F}_{-} and \mathbb{F}_{2} -layer contour charts, for the predicted critical frequencies. Once the diurnal variation curves have been made for each station, as well as latitude variation curves correlating the values at each station for the same local time, the process of constructing contour charts is exactly the same as that for the E layer and \mathbb{F}_{1} layer. In the case of the F and \mathbb{F}_{2} layers, the variations of critical frequency with intensity of solar radiation are much less regular than for the E or \mathbb{F}_{1} layers. Therefore the use of lines equidistant from the subsolar point is no aid in establishing the form of the contour lines between predicted points.

Prediction Methods for Regions of Sparse Data

For stations where data establishing diurnal variation are available, but where insufficient past data exist for the delineation of a trend curve, two means of prediction are possible. If the station is within very short distance (2 or 3 degrees of latitude) of another station where sufficient data have accrued for the determination of a trend curve, the trend curve of the other station may be used. In general this is not feasible, so a commoner method is to determine the ratios of noon values of the critical frequency at the new station to those at an older station, for the same month for all available data. The average value of this ratio for the given month is then applied to the predicted value for the older station.

At latitudes where insufficient stations exist for a good determination of contour lines, an approximate determination may sometimes be afforded by applying data for similar latitudes in the opposite hemisphere, for a time six months previous, at the same latitude, with appropriate corrections for latitude and annual variations. Exact reversal between hemispheres of data taken six months apart is not found to occur, even after allowance has been made for variation in sunspot number during the six-month period.

Prediction of Maximum Usable Frequencies

The procedure for construction of predicted maximum usable frequency combour charts, for any desired distance, is similar to the procedure outlined above for critical frequency charts.

Maximum usable frequencies are in general obtained by multiplying the critical frequencies by their respective maximum usable frequency factors, characteristic of the transmission distance stated. Curves are prepared showing diurnal variation of the maximum usable frequency at each station, and the latitude variation among the stations for several constant values of local lime, and from them charts are constructed for maximum usable frequencies as above.

The F-, F_2 -layer maximum usable frequency factors for a given distance vary with sunspot cycle, season, local time of day, and latitude. Ordinarily measurements of these are furnished by most stations contributing other ionospheric data, but where this is not done, interpolated values obtained from latitude variation curves of the factor at chosen constant values of local time among the stations contributing such factor measurements, must be used.

In the case of the E layer and approximately also the F_1 layer, the m.u.f. factors are nearly constant for all times and latitudes, for any given distance, 4.51 at 1000 miles for the E layer, for example, and 3.87 at 2000 miles for the F_1 layer.

Summary

The method of predicting critical frequencies of all ionospheric layers consists, essentially, of obtaining from all available data, for any observation station, at a given hour of day, the relation between the 12-month running average of monthly average Zurich sunspot number and (a) the 12-month running average of monthly average critical frequency, (b) the ratio of seasonal average critical frequency to the 12-month running average of monthly average critical frequency at midseason (seasonal index), and (c) the ratio of monthly average to seasonal average of critical frequency (monthly index), Extrapolation of the trend curves thus obtained and the time trend of 12-month running average of monthly average Zurich sunspot number to the time for which prediction is to be made gives a set of separately predicted values which may be combined to form the predicted critical frequency. This prediction is made for the noon values of E-layer and F1-layer critical frequency, and for every four hours, as well as for the pre-sunrise minimum value of the F-,Fp-layer critical frequency.

Predicted monthly average diurnal values of critical frequency for each station are obtained by the aid of hourly indexes. In the case of the E layer and \mathbb{F}_1 layer, the hourly index is the average ratio, for all past data on the month of prediction, of the critical frequency for the hour in question to that at noon. This, multiplied by the predicted noon value gives the predicted value for the hour in question. In the case of the $\mathbb{F}_*\mathbb{F}_2$ layer, the hourly index is the average ratio for all past data on the month of prediction, of the critical frequency for the hour in question to the critical frequency range between noon and the pre-sunrise minimum. This, multiplied by the predicted range, after the predicted pre-sunrise minimum value has been added, gives a predicted value of critical frequency for the hour, which may be adjusted with that determined independently from the trend curves of 12-month running everage value, seasonal index, and monthly index.

World-wide predictions are obtained by interpolation and extrapolation of latitude variation curves drawn, for any given hour, between the predicted values for various observation stations.

Maximum usable frequencies are predicted by multiplying the predicted critical frequencies by a factor which, for a given distance, is approximately constant in the case of the E layer and F_1 layer (a different factor for each layer, however). The factor for the F_*F_2 layer varies with sunspot cycle epoch, season, hour of day, and latitude, and for a given distance must be predicted by a method similar to that used in the prediction of critical frequency. For any ionospheric layer the ratio of the maximum usable frequency at any selected distance to that at another selected distance is, to a practical approximation, considered constant.

Tables are furnished giving the zero intercepts and slopes of the verious trend curves (approximately restilinear) where these seem fairly well established, and the average values of seasonal and monthly indexes, for several observation stations.

Running Ave Presunris Munimum 0-Inter: 5 2.36 2.36 2.36 2.41 2.41 2.41 2.54 2.54 2.54 7.90 5.69 5.69	12-Month Running Average Monthly Average Sumepoi Number 12 Wonth Running Average Monthly Average Oritical Frequency Trands \tilde{r}_{1} Layet Trand		11006 O-Inter-Slope O Inter-Slope O-Inter-Slope O-Inter-IO ² cept x 10 ² cept x 10 ² cept x 10 ² cept	2.29 · J.42 1.94 2.70 4.15 3.75 3.78 J.32 3.10 2.53 5.64 3.76	5.18 3.54 2.83 2.84 3.52 2.99 3.07 2.35			50	Slope 0-Inter-Slope 0-Inver-Blope 0-Inter-Slope x 102 cept x 102 cspv x 102 cept x 102	3 76 3 48 0.53 2.46 0. 3 76 3 65 0.54 3.09 0.	4.53 4.15 3.61 4.36 0.90 3.75 0.63 3.48 6.97 2.60 4.32 1.22 3.55 0.54	3.77 3.12 4.18 1.12 3.04 0. 4.19 1.05 5.12 0.
	erage Monthly Average (and the second	love O-Inter- 10 ² cept	2°59 •	ເຕົອ 25 25 25 25 25 25 25 25 25 25 25 25 25	,	Free Tre		0-Inter- cept	4 75	ຳ ຕຳ ຄູ່ ອີງເຊີຍ ອີງເລີຍ ອີງເຊີຍ ອີງເລີຍ ອີງເຊີຍ ອີງເຊີຍ ອີງເຊີຍ ອີງເຊີຍ ອີງເຊີຍ ອີງເຊີຍ ອີງເລີອີງເລີຍ ອີງເລີຍ ອີງເລີຍ ອີງເລີຍ ອີງເລີຍ ອີງເລີຍ ອີງເລີຍ ອີງເລີຍ ອີງເລີຍ ອີງເລີຍ ອີງເລີຍ ອີງເລີຍ ອີງເລີຍ ອີງເລີຍ ອີງເລີຍ ອີງເລີຍ ອີງເລີຍ ອີງເລີອີ ອີມ ອີມ ອີມ ອີມ ອີມ ອີມ ອີມ ອີມ ອີມ	3.7.

Table L

3

,

Table 2 - Seasonai Indexes Averages Seasonal Index - 12-Month Running Average Monthly Average Sunspot Number Trenda

Slope 0 056 0,126 260°0 0 160 10² × 0 1 103 1 074 1.155 1.075 0.950 1.056 1 130 0 956 1 037 010 Intercept 6 2 1-4 646 0 109 BEe Aver p= 4 Slope .0.033 6.033 Sicpe -0.048 -0.026 0 002 0,006 к.²01 K CY f⁰-Layer Trend 1,080 1,105 0,942 0 966 I.025 I.021 1.099 915 1.060 1.060 Inter Inter Cept Cept ð 08 0 0,766 1.027 1,053 ឧខូច Aver age Aver-Slope 0_049 Stope -0.045 0.045 N 205 -0 191 10² Leyer Trend -Layer Triend 0.995 1 116 -0.911 1.029 0 995 1.028 0 995 1.011 1.040 1.036 1.004 Inter Inter cept 0.805 კ お 0 0.818 0.943 0.980 054 Average age AV23-Po H 24 Slope Slupe -0 030 0 043 -0.087 -0.252 0.830 0.856 -0.046 0,284 FO2 NO² 1,055 1,076 1,248 1,225 0.8230.616 0.786 1.084 1.146 1.222 1.395 Inter Inter-Cept cept Layer Trend ő 6 8 8 0,810 Aver-ම ශ්රී ශ්රී age Aver Slope Siupe 0°249 °0° 193 0 165 Minimum -0.200 0,011 -0,063 102 102 10² 10 14 14 14 0.956 1.086 -0.918 1.036 1.044 -1.146 0.958 1,116 0,995 0,918 1,091 1,136 0,953 1,090 Inter-Inter-Presunrise cept cept 6 6 ٩ Aver 824 1.163 Aver age 8<u>6</u>e 0 College Alaska College, Alaska. Time; Times Fuerto Rico Puerto Rico Mt Stromlo Washington Mt Stremlo Weshington Station: Local Local Fuancayo Stations Huenceyo # a cherco astheroo Winter Slough

5

Table 2 Seasonal Indexes (continued)

							f a La	- Fe	CROAL						
Local							EL EL			1					
Times	Presunris e		Minimum		00			10			96	-		2	
	Avera		Slope	Aver	ö	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Art with	0	Slupe	Aver	-0	Scope	ATET	0	Sidpe
/	388	Znter-	X	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Inter	<	ase	Inter	ы,	988 988	Inter-	×	afe	Inter-	x 2
Stations		cept	102		cept	C.V.		Cept	704		cept	102		cept	105
	6 (-												2900		
COLLEGE MARKE	Corres												0.0200		
Washington	1.037 1.020		0,053	1.082	1.084	-0.005	1,039	1.032	0.022	1,026	0,991	0,043	1.030	1,054	-0°014
0	0.971			1.107		rikati sonin	1.005			1.012			1,130		
	0 . 942 (0.951	0.942 0.951 0.021	0.993		-0° 174			=0.0 22	0,976 0	J. 993	=0.0 12		0°966	0,040
c 	0.950	280.5	-0.202	0.942	1,064	-0,189	0.955	1_0L7	-0.142	1°073	1,260	=0.275	1.107	1,160	°0°060
Mt.Stromlo	1.010						IN IT CALL						1.089	1,130	-0°037
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ayer	Trend		fr Lay	Layer Trend	pue	f ^U =Leyer		Trend			
Local	-		2 * ° *				~1								
Time:		16			20			12			12				
/	Aver-	9	Slope	Aver-	0	Slope	Aver-	9	Slope	Aver-	0	Slope			
/	ම වර ස	Inter-	н	age	Inter-	ĸ	age]	Inter-	×	afe	Inter	ĸ			
Stations	-	cept	102		cept	IOZ		cept	105		cept	105		,	
							-							•	
College, Alaska			-				1.123	dib i sen si		1,147					
	1.039 1.018	1.018	0°024		1°139	-0.039	1,046			1.012	: °053	1-0°045			
ico	1°084			1.027			1.056				•				
	0.981 0.960 0.041	096°	0.041	0.975 0.984	manufa.d	0°00#	0,996 0	0°992	0°00#	0.978	0。956	0°038			
	1.131	L.277	-0.207	1.026		-0°230	0.998	1°050		0.983	1°007	-0°037			
Mt.Stromlo							1,023			1,024			Ę		

Table 2 - Seasonai Indexes (continued)

Slope 0.115 0,182 -0.020 0.123 0.181 × 01 0.788 0.789 0.948 0.968 0.750 0.968 0.859 0.968 0.826 0°852 0°974 0852 0974 Inter cept 9 Average 0.089 0.089 Slope 0.026 ALC: NUMBER OF TAXABLE PARTY. 0.035 Slope 0°031 0,011 102 х ^{су} ro Layer Trend 0.948 0.935 0.952 0.931 0.320 0.910 1.075 1.069 ୍ ୍ରମିଟ 0.812 0° 753 Inter--19 4 PT-"ept cept 60 ő ÷ 2 0,968 1000 °. . بالح بالح AEe Aver--見ないで 19.30 Slope 0°026 -0°339 0,078 Stope No. N -0°.00 0,166 ¥0 IT Layer Trend Layer Trend 0.975 0.922 0.950 0.953 : . 145 inter-C. 539 7. 874 0°506 0°884 Inter-223 1027 cept 0 1.129 1.029 0.919 0.921 0° 999 ATET いた õ 280 Perer an 50°. E.F. þ Slope Slope 0.030 0.175 0.167 -0.235 0.117 0.053 10² 1.105 1.282 1.228 0.832 0.695 0.733 0.855 0.846 0.758 0.682 0.620 1.117 1.095 Inter-Inter cept cept -Layer Trend ð 9 2 8 1.138 Aver-88¢ 88e Aver Slope 0°075 -0°243 Slope C.079 0.162 0.812 0.873 -0.076 Presunrise Minimum Aver- 0- Slope 0°195 H^{C2}OS к^оо 0.903 0.840 0.837 0.992 = 0.849 1.021 0.824 0.765 0.972 0.863 Inter-1.036 0.505 TOTICE 5490 cept 6 2 1,0099 age Aver age College, Alaska College, Alaska Times. Times **Puerto** Rico Mt. Stromlo Fuerto Rico Washington Weshington Mt.Stromlo Local Huencayo Watheroo Huancayo Watheroo Station: Stations Local Summer Slough

s---1 e---1 h

ŝ

Table 2 Sessonal Indexes (contiaued)

SLOTE 0,030 0.338 0.012 -0.010 ROS 0°954 128 016 Laber 0 .904 1.081 CEDE ð 2 1,124 620°T 0.977 1.016 110°I 1000° 1°093 age Aver S. ope -0°005 0°222 Stope N SS 0°003 ..0.006 0.072 0.095 10² rE Layer Trend 0.975 0.930 -2.138 0.994 1.003 1.006 1.042 0.995 3,060 3. I. S. S. Y. -1.008 1.007 Inter 3626 cept 0 80 (V) #1 d 5. 43H 1.028 Aver-Aver 250 935 Slope 0.379 0.442 0,045 40.15 0.12h 0.128 10² Layer Trend Layer Trend 1.014 0.932 0.886 1.033 1.320 1.048 0.758 Inter ! 0.970 Inter fert cept ő N S 50 0.997 0.999 1.035 0.989 1,020 ATOTA n L L L \$00 10 10 AVOT-0 521 *1 C 120 Slope -0.230 0.497 Slope 0°295 0.016 0.179 0.100 N N N 102 102 1.002 1.172 1.092 0.785 Inter 0°779 0.919 0.970 Intercept cept -Layer Trend 6 6 8 2 1.037 C 1.015 0.974 1.171 Aver-828 Aver 380 Slope 0.061 -0°266 0°443 Slope 0.020 0.205 1.069 0.035 Presunrise Minimus Par Car x of 102 1.007 0.963 0.906 Inter-1.097 1.069 1.096 0.926 0.912 1.041 0.910 Inter 1.027 1.235 1.117 0.830 cept 氏 o b 6 10 9 Aver-0.951 age Aver 860 College Alaska College, Alaska Time: Puerto Rico Times Puerto Rico Washington Mt . Stromlo mashington Mt . Stromlo Stations Huancayo Watheroc Stations Local Local Huancayo Watheroo Slough L'all

10.00

ि २२३ २२१ Table 3 Month y Indexes Hunning Average Monthly Average Suasoot Number Trends Averages, Monshly Index - 12 Month

-0.037 0.054 Stope -0,052 0.095 0.021 K ON 0.903 1.025 -0.939 0.957 0.984 -0.922 0.900 0.959 0.982 0.925 0.885 Inter Cept N 6 0.951 0°990 1°104 ase Aver. Slope Slope =0°031 0.912 0.952 -0.068 -0°041 -0.033 0,001 -0°00 10² NOS N fr-Layer Trend 0.598 0.925 leter-C° 995 0°991 0°995 1.011 1.032 Inter cept C & C ó 10 ő 0.983 0°954 0.900 1.027 1.000 1.004 AVer-Sverage 838 8 The Trance Trend Stope -0.362 Slope -0.282 Sector Sector K OF K SO -Layer Frend 0.802 0.876 -Inter-0.951 1.124 Intercept cept 6 nijo nijo 0.976.0 L.027 0.988 0° 854 1.013 0.987 1.000 AV OT--A5 aße ARE D Fa 0,048 0,053 Sicpe 0.911 0.972 - 0.200 Stope 0°054 0.955 0.996 -0.060 R Q 102 0.942 0.840 0.820 0.990 6.952 Inter-0.942 0.872 Inter Cept cept ro Layer Trend ð 8 9 2 1°008 AVE?" AV RT= age 928 8 1.083 -0.163 Slope Slope -0°032 -0°212 0°949 0°984 50°042 0.029 0.081 Fresunrise Minimum ×201 10² 0,782 0,793 -0,899 1,050 -0,947 0.954 0.962 0.945 0.938 0.996 Inter Inter cept cept ð ð 0 0.946 0.909 0.975 0.876 1.032 1.020 AVer-0.842 298 Aver 8,g,e College, Alaska College "Alaska Great Baddow Times Puerto Rico Puerto Ricc Time. Washington Mashington Mt Stromlo Mt . Stromlc Stanford Huancayo Earghesd Huancayo Watheroo Stanford Watheroo Local Local Stations Station anuary ULTRWA Ottawa

1.5

Tanke 3 Murrely Indexes Countioned

0,195 adors 0.126 0.034 0,075 05x 1,004 0.985 0.985 0.978 0.826 0.992 0.945 1915 0.925 222 10 . 945 1.021 rept. Ó 2 - 2000 2 -0,949 AVAY 4) N 10 Sicpe Slope 0,087 0.002 0.014 0,050 0,155 0°011 A CO K NOM IE Leyer Trend 0, 937 0, 930 0, 895 0, 934 0, 990 0.984 0.985 0.975 0.985 Inter 0,986 0,846 1,025 rent 0 13 40 L.138 0.993 1.032 1.006 °002 5 G & ଞ୍ଚିଟ୍ରିକ Aver Level Siche Second Second 0 066 Layer Trend 51.150 0 012 к. С. К. к 0⁴ Lever Trend 101 850 1.058)。938 325 Suter. 1090 Cept jo Ģ N 1.083 1.063 1.030 1.054 1.012 0°984 0°579 200 100 100 100 age AUME AVET 3 120 214 0.033 0.035 Slope 10 X 10 そうりゃ 121-6 750°0 K CA 0.151 0.940 0.991 0.926 0.916 0.865 Inter 1,003 1.058 0.895 Inter-1.131 1.043 CeD: cept Trend 00 13 6 20 0.958 1.072 Layer 9 60 00 କ୍ଷ୍ମ କ Aver-Aver N. CI Slope Sicpe 0.025 0.051 0.032 0.110 Presunrise Minimum 0.081 0°098 × 205 ×07 0.866 2.061 0.863 1.032 1.032 1.035 1.035 1.035 1.035 0.831 0.839 0.839 1.041 0.958 0.927 0.939 0.918 Inter Inter-1.008 0.935 cept cept Ś Ô 0 0,960 Avera ABe AVerage College Alaska College "Alaska Local Great Baddow Time Puerto Rico Puerto Rico Washington Mt. Stromlo Washington Mt.Stromlo Burghead Vatheroo ebruary Stenford Huancayo Local Stanford Stations Huancayo Watheroo Station 0.tawa Ottawa

1

Slope 0°00 0°03 0°00 00 0.027 0.025 NOS TOS 1.016 0.986 0.962 0.962 0.960 0.960 Inter-1.065 1,021 ceps 6 Cų. 1.017 1.080 8.Ee Aver Sirpe Stepe 0.063 ့ ၀၅ဧ x CJ 0.081 0°067 0,010 0.051 × 04 fo Layer Trend 0.932 0.965 Inter . 033 0°990 1.085 0.987 1.028 Inter-1.020 1.000 Cep 0 cept NO 080 0.980 0°966 OHO, L 0,984 0,989 022 Aver 8*8*8 PY OT-956 5.15 0.15 0.0 Slope 0,020 Sicpe K S ±02 Jasyar Trend Layer Trend 0.951 0.968 1.057 1.006 0.934 1,004 0.994 Inter Inter Capt 1000 30 0 0.972 0.988 1,000 1.004 0,997 2.017 d Ę ि मिन्द्र () मिन्द्र () (मन age ري ان ان ان 107 Aver-Aver 10120 0.981 0.991 -0.016 Slope Stope -0.015 °0°,100 0,004 0.101 K CO 105 105 -0.960 0.970 = 1.084 1.220 -1.129 1.190 1.056 1.054 0.968 0.899 Inter Intercept cept Leyer Trend 6 8 20 0 0.892 88 8 age Aver Aver Slope C IN CU 0. 8 80 0. 503 0. 994 0. 995 -0. 008 0.015 Slope 0.068 -0°0,047 700°0 Presunrise Minimum ~0.040 102 10² 0.887 0.938 0.963 1.020 1.010 1.040 0.959 0.954 0.950 0.983 Inter-1.051 1.017 Intercept Cept 6 97 ð 0.879 1.087 Aver-1°056 age Aver-ឧឌ College "Alæska College, Alaska Great Baddow Puerto Rico Puerto Rico Times Washington Times Washington Mt Stromlo Mt . Stromlo Burghead Stanford Huancayo Watheroo Stanford Huanceyo Local Watheroo Stations Local Station Ottawa Ottawa March

- 15 -

- Monthly Indexes (continued) m Table

0.983 0.885 0.953 0.933 0.933 Slope 1.051 1.084 -0.042 1.038 1.030 0.010 1.050 1.061 -0.011 0.920 0.935 -0.024 105 H Inter cept ყ 2 0°984 AVOT-8 0 0.960 1.057 1.100 -0.063 Slope 600°0-Slope 0.967 1.005 -0.050 010.0-0°007 102 10² f. Layer Trend 1.030 1.060 0.980 0.986 Later Later-1.019 1.013 cept cept 08 9 25 6 1.034 1.016 0.931 1.012 0.978 8 C 0 AVOTO 8 E 8 Aver-. 0°046 -0.102 Slope Slope 10² 10² -Layer Trend -Layer Trend 1.049 1.115 -(0.994 1.064 -(0°996 0°970 Later-Intercept cept お 6 2 9 1.003 1.028 1.016 0,999 1.015 960 0°995 0.983 AVOTO age AVOT Fo Banks O FO Slope Slope 0.017 1.124 1.200 -0.103 0.944 0.958 -0.026 -0.029 0.191 -0.13W NO2 X 102 1.001 1.064 1.084 0.916 0.800 Inter 1.019 1.013 Inter-1.032 1.127 copt Capt -Layer Tread 6 88 8 L. JOS 888 92° AVOT AVET NA I Slope -0.135 Slope -0.068 0.026 0.014 0.948 0.979 -0.050 Presuarise Minimum 102 NO 1.113 0.998 0.979 1.000 0.979 1.050 1.034 1.006 0.997 Int wr Intercapt Copt 6 0 9 0.960 0°913 1.120 1.097 Aver-1.121 260 -IBAW 933 College, Alaska College, Alaska Great Baddow Mt. Stroulo Puerto Rico Puerto Rico Mt. Stronlo Time: Times Washington Washington Burghead Huancayo Watheroo Local Staaford Huaacayo Watheroo Stanford Local Station: Stationa Ottawa 0tt&wa April

-16-

0.068 Slope 1.124 1.063 -0.049 1.042 1.058 -0.008 -0°081 0.120 н 10² Inter-1.091 1.154 0°.049 0.897 1.078 0.955 cept 2 9 1.089 1.104 1.112 1.090 Aver-934 Slope 10°001 Slope -0.032 0.026 0.046 1.063 1.005 0.050 1.024 1.053 -0.029 -0.086 0.005 10² 10² fg-Layer Trend 1.066 0.943 0.920 1.082 1.140 0.971 0.949 0.996 1.017 Inter-Inter-0.984 0.975 cept cept 08 9 12 հ 1.009 0.918 Aver-Aver-920 960 0.091 Slope Slope 102 102 IF -Layer Trend -Layer Tread 1.069 0.958 0.893 1.052 1.065 -Inter-Intercept cept ყ 12 ყ お 1.055 0.840 1.005 0.985 0.994 Aver-AVOT-1.028 1.010 860 age ro Fr.F2 0.040 0.143 Slope Slope 0.100 -0.008 1.021 1.046 -0.031 102 10² 1.028 0.936 0.929 1.029 0.929 1.021 0.970 0.876 0.800 1.027 1.032 Inter-Interfr. Fo-Layer Trend cept cept ყ 8 9 ର 1.062 Aver-Aver-98 96 0°074 Slope 0.055 Slope 1.063 1.095 -0.041 0.112 0.048 0.082 Presurise Minimum 102 102 10² 1.075 0.913 0.856 1.122 1.050 1.030 1.064 1.005 1.002 0.923 1.019 0.962 Inter-Intercept cept 16 ძ 9 0.948 1.084 1.147 1.183 1.038 1.073 Aver-980 Aver-9 g e College, Alaska College, Alaska Great Baddow Timet Puerto Rico Stromlo Time: Puerto Rico Mt. Stromlo Washington Washington Local Burghead Stanford Huancayo Watheroo Stanford Huancayo Watheroo Station: Station: Local Ottawa Ottawa Mt.

-1-

Slope -0°018 0°030 -0°096 -0°00# -0°00 102 1.030 1.014 0.994 0.979 0.960 0.956 0.961 0.977 1.044 Inter-1.006 1.025 cept 6 2 1.006 1.004 1.025 1.002 ATOTage Slope Slope 0.020 -0.018 1.007 1.017 -0.009 0.961 0.983 -0.034 1.005 1.131 -0.191 -0.005 10² NO2 fo-Layer Trend 0.994 0.980 Inter-1.008 1.025 Latercept cept 08 ძ R 6 1.036 0.959 1.032 0°979 479.0 1.057 Avera ATOT-860 ege 1.045 1.100 -0.089 1.009 1.070 -0.078 Slope Slope 0.998 0.993 1.078 -0.126 1.037 0.995 0.053 H C 102 Trend Inter-Inter-Trend -Layer cept cept 6 6 đ 2 -layer 0.976 1.026 0.996 1.000 1.070 0.984 Aver-Avera 269 a g e OF ¢ fr. H. Slope Slope -0.206 -0.051 1.009 1.030 -0.030 0.899 1.044 -0.206 0.028 0.987 1.001 -0.001 102 r02 1.053 0.995 0.976 1.006 Inter-Intercept cept Tread 9 8 9 2 1°046 860 AVOT-Aver--Layer age I'B'S H 1.016 1.015 0.982 0.995 0.013 1.011 1.030 -0.023 Slope Slope 0.998 1.088 -0.130 1.007 1.021 -0.016 0.994 1.045 -0.068 Presuarise Minimum 102 10² Intor-Intercept cept 9 16 9 1.052 Average 1.113 1.177 1.127 1.001 1.131 1.000 Bg0 Aver-College Alaska College, Alaska Great Baddow Time: Time: Puerto Rico Mt. Stromlo Puerto Rico Mt. Stronlo Washington Washington Burghead Stanford HUBBCRYO Watheroo Stanford Huancayo Local Watheroo Local Station: Station: Ottawa Ottawa oune

-18-

								•	8						
July Local	1	N				FD.F.	Layer	Trend							
Time	Presunrise		Minimum		8		•	70			08			12	
/	Aver-	1	Slope	Aver	9	Slope	Aver-	0	Slope	Aver-	-0	Slope	Aver-	9	Slope
Stattor:	age	Inter	# C	8 8 8 8	Inter-		860	Inter-	x 25 C	ម សា ស	Inter	× 20°	. age	Inter-	× 102
TIOTODA			2		A 70 7	>			24		200			2200	
College, Alaska	0.809					0							0.946		
Burghead	0.933														
Great Baddow	0.901												0,940	0.955	-0°010
Ottawa	0°939				1		,			ĩ	,		0°933		
Washington	0.968	0°960	0°025	0.998	0.966	0°037	0.962	0°969	0°000	C. 964	0° 360	10000	0°972	0°994	-0°CH5
Stanford	0.948												0.959		
Puerto Ricc	0.972			0°976			0.987			0.930			0°934		
Hunncayo	1.004	0.915	0.125		1.020	-0°024		0.920	0.128	0.993	0°-990	0.005		0.975	0°02#
	0.933	0.933 0.967	1	0.946	0°979	-0°0/1/1	146.0	0°-990	-0°068	0.941	0.914	0.039	0.928	-	0°010
Mt.Stromlo	0.960												0°954	0.970	-0.008
Lovel			LE ES	-Layer T	Trend		1- 4 4	-Layer Tr	Trend	fLayer		Trend			
Time		16	3		20			12			12.	A A A A A A A A A A A A A A A A A A A	1		
	Aver-	0	Slope	Aver-	-0	Slope	Aver-		Slope	Aver-	0	Slope	ł		
/	age Age	Inter-	ĸ	age	Inter-	ĸ	<u>କ୍ଷ</u> ର ଜୁନ୍ଦିତ	1	ĸ	280	Inter	×.			
Station		cept	104		cept	104		cept	105		cept	104	1		
College,Alaska							0.979			0°996		***			
Ottawa							0.973			0.992					
Washington	0°954	0°954 0°946	0.010	0°975 0°943	0° 343	0°053	0.937			1.010	1.015	-0°003			
Bientord Biento Biro	ηιο Ο			U ORL			10.088								
	0.985	0.985 0.976	0.020	0.991	0.982	0.018	1.003			1.006	1.027	±0.028			
	0.945	0.926	0°030	0°507	0.989	711°0=	0°997				0°981	hlo.o			
Mt.Strould							0.9871			0.982	-		1		

-19-

Slope -0°035 -0.120 0.113 0.058 10² 0.913 0.922 1.120 0.975 0.951 1.002 1.041 Inter-1.009 C.939 1.011 0.954 cept 6 Ň 0,940 0.926 age Aver-Slope Slope -0.031 -0.049 -0.015 0.138 -0.028 0.005 10² 10² fg-Layer Trend 0.986 1.008 1.034 1.078 0.947 0.911 0.920 1.015 1.060 0.999 0.995 1.048 Inter-Inter-1.007 0.932 cept cept 80 പ്പ 6 6 0.959 0.959 0.996 age 1,040 Average Aver-Slope 0.068 0.093 Slope 102 Trend 0.945 0.956 0.900 0.971 0.975 Inter-Inter-0.966 0.925 -Layer Trend -Layer cept cept հ 5 2 L 6 0.973 0.994 1.029 age 1.007 1.033 1.002 1.025 Average Aver-OF F. F. Slope 0.105 0.106 Slope 0.032 0.057 1.016 1.062 -0.041 10² 10² 0.942 0.950 0.935 1.164 1.159 0.908 0.943 0.887 1.050 0.981 Inter-0.936 0.930 Intercept -Layer Trend cept 8 d 9 8 Average age Aver-0.789 0.939 0.972 0.972 0.972 0.948 0.962 0.006 1.043 1.022 0.032 IN HO Slope Slope 270.0 -0.022 -0°066 Presunrise Minirum 10² 10² 0.996 0.929 0.954 -0.9514 1.020 -Inter-Inter-0.989 0.951 cept cept 6 16 9 0.818 0.925 Aver-8 8 6 Average College, Alaska College, Alaska Great Baddow Time: Time Puerto Rico Puerto Rico Washington Mt . Stromlo Washington Mt.Stromlo Burghead Stanford Huancayo Stanford Watheroo Huencayo Station: Local Station: Watheroo Local Ottawa Ottawa August

-20-

September Local					4	f, F, -Le	-Layer Trend	pu							
Time:	Prefuncise		Minimum		8			ŧ			80			12	
/	Aver-	1 I	Slope	Aver-	հ	Slope	Aver-	6	S1 ope	Aver-	9	Slope	Aver-	2	Slope
Station	ම දිට ත්	Inter-	N C	age	Inter-	N N	age	Inter-	х 201	age	Inter-	× C	986	Inter-	х Sor
TTO TO ROAD		201			1	2	T		2		1	2	T	Cepr	24
College.Alaska	1.036												0°945	******	
Burghead	0.956												0° 964		
Great Baddow	1.064	-											0,956	0.951	0°001
Veshington	0°360	0.870	0,144	0,988	0.972	0.041	0,961 0.860	0.860	0°154	0.910	0.910 0.978	-0.038	0.896	0.918	-0°073
Stanford	0.983	-		•					`				176.0		
Fuerto Rico	1.083			1.055			1.079			0.939			0.958		
uanoayo	1.052	1,40.1	-0°010	1.057	1.128	-0.123	1.043	1.105	-0.100	1.089	1.082	0°007	1.048	1.144	-0.122
Vetherae	0.943	ι°ομ	0.943 1.047 -0.139	0.915	0°935	-0.025	0°955	1.045	-0.120	1.024	1.000	0°031	166.0	0.896	0.131
OTHOJIC SW	0° č 89												I NC N°T	T°002	2-165
Local			fr, F2-	layer	Trend		frL	-Layer T _I	Trend	f ^o -Layer	yer Tr	Trend			
Time		16			50			12			12		4		
/	Aver-	.0	Slope	Aver-	9	Slope	Aver-	9	Slope	Aver-	6	Slope	1		
/	age	Inter-	×	age	Inter-	ĸ	age	Inter-	x,	age	Inter-	×			
Stationt		cept	104		cept	106		cept	105		cept	104	1		
erland 1 ere [[all	1						090 1			* 06 1					
Ottawa							1.035			1,000					
Washington	0.892 0.967	0.967	-0.072	1°066	°066 1.168	-0.142	1.014			1.026	1.030	-0.002			
Starford							1.000			1.013					
Puerto Rico	0°996			1,109			1.007							,	
Huancayo	1.071 1.055	1.055		1.049	1.069	-0.039	1.006			1.013	066°0	0°029			
Watheroo	0°998	0°557	0°025	0°, 946	0.892	0,069	0.989			666	0°984	0.022			
Mt.Stromlo							0.4901			0.990			1		

ł

-21-

Slope 1.008 1.080 -0.085 1.002 1.120 -0.149 0.000 -0.005 0.027 102 102 1.056 1.036 1.043 1.043 1.066 0.970 0.974 Inter-1.109 1.100 cept 9 2 1.056 1.042 86e hyer-Slope 0.030 Slope -0.219 -0.029 0.974 0.980 -0.005 0°035 10² 105 f.-Layer Trend Inter-1.112 1.090 0.976 1.008 Inter-1.010 0.985 ...089 1.293 1.000 1.024 cept cept 80 2 ძ 9 1.000 1.061 0.939 0.987 0.977 1.010 Aver-Average age Slope Slope -0.133 0.124 1.039 1.159 -0.159 102 10² IF -Layer Trend 1.158 1.256 1.045 0.950 Inter-Intercept cept ძ კ IF.F. -Layer Trend 히 0.965 1.011 0.930 1.000 1.011 1.010 Aver-0.921 Average 860 Slope Slope 1.021 1.043 40.043 -0.229 0.008 0.891 1.041 1.041 -0.006 1.054 1.110 -0.078 0.116 10² 10² 0.945 1.190 1.354 1.085 Inter-Inter-0.934 0.864 cept cept -Layer Trend 9 പ്പ 9 8 Aver-Average age HO HO HO HO Slope Slope 1.108 1.110 -0.001 1.030 1.038 -0.010 1.002 1.054 -0.072 -0.121 -0.221 0.135 Presunrise Minimum 102 102 1.312 Inter-Inter-1.105 cept cept ყ 5 9 1.035 1.058 1.145 0.936 1.017 1.004 0.964 1.044 1.014 0.917 1,112 Aver-Aver-280 age College, Alaska College, Alaska Great Baddow Puerto Rico Puerto Rico Time: Time: Mt. Stromlo Washington Mt. Stromlo Weshington Stanford Hunncayo. Burghead Stanford Huancayo Watheroo Local Watheroo Station: Station: Local October Ottawa Ottawa

-22-

Slape 1.078 1.141 -0.076 1.073 1.103 -0.060 1.062 1.155 -0.113 0.480 0.030 10² 1.076 0.795 1.076 1.060 1.040 Intercept 27 0 1.114 1.011 0.946 1,134 age Aver-Slope 0.019 Slape 0.139 0.035 0.034 0.005 0.012 102 10² fg-Layer Trend 1.000 0.993 1.004 0.996 1.080 1.066 1.100 0.996 1.001 0.999 0.986 1.009 1.012 0.988 Inter-Inter-1.129 1.105 cept cept 0 80 1 CU 6 1.016 1.112 Aver-Average age 0.492 0°.274 Slope Sløpe 102 10² fr -Layer Trend 0,952 1,040 0,943 1,090 0,887 Inter-0.973 0.650 Interfront Trend cept cept 2 9 9 70 1.064 1.012 1.032 0°987 1.029 1.000 0.999 AVerage Average Slepe 0.039 Slope 0.042 0.042 0.115 0.436 10² ^x² 1.042 1.005 1.114 1.065 1,072 0,964 0,840 1.067 1.075 -0.005 1.015 0.684 20-Inter-1.073 0.990 Inter-1.059 1.028 cept -Layer Trend cept i d 8 6 Average AVerage F BE F Slope 0.169 0.245 Slape 0,121 Presunrise Minimum -0.031 0.061 10² 10² 1.050 1.071 1.110 1.064 1.061 1.059 0.991 0.897 0.978 1.086 0.965 1.132 0.951 Inter-Intercept cept 9 9 1,124 0.946 1.083 1.054 1.018 Aver-Average 8ge College, Alaska College, Alaska Great Baddow Time: Puerto Rico Puerto Rico Time: Washington Mashington Mt . Stromlo Mt .Stromlo Stanford Burghead Stanford Huancayo November Watheroo Local Huencayo Watheroo Local Station: Stations Ottawa Ottawa

-23-

Slepe 0.056 -0°044 -0,012 -0.045 -0.1C8 102 1.009 1.046 0.952 1.060 1.080 0.989 0.918 1.020 1.032 Intercept 2 9 1.043 1.076 1.076 926 Aver-0.003 -0.026 Slope Slope 0.027 0.973 1.025 -0.069 0.030 0.005 105 H 10² Ģ frend Trend 1.050 1.007 1.003 0.973 0.971 0.973 0.966 1.012 1.031 1.014 0.995 1,002 1,022 Inter-Intercept cept SU. 200 9 9 1.004 0.909 Aver-Average age 0.259 0.036 Slope Slepe 0.944 1.042 -0.136 1.025 1.180 -0.225 102 10² 17 -Layer Trend 0.982 0.972 0.791 1.107 1.080 Inter-Inter-IP.F. -Layer Trend cept cept 9 9 đ 0.999 0.970 1.018 1.011 age 1.006 1.021 Aver-Average Slope 0°15# -0.062 Slepe -0.084 -0°074 H0.105 102 10² 1.020 1.075 1.064 1.105 0.830 0.722 1.076 1.127 Inter-0.912 0.983 Intercept cept -Layer Trend 9 9 8 8 1.009 1.027 Average Average 0.060 Slepe 1.008 1.174 -0.239 0.067 Slope L E E E E 0.950 1.040 1.079 -0.059 1.013 1.037 -0.036 NO2 Presunrise Minimum 0.003 10² Inter-Inter-0.988 0.939 0.976 0.977 1.125 1.081 cept cept 9 2 6 0.969 1.059 1.243 1.009 1.200 Aver-1.001 age Average College, Alaska College, Alaska Great Baddow Time: Puerto Eico Puerto Rico Time: Weshington Washington Mt.Stromlo Mt.Stromlo December Burgheed Stanford Huanceyo Starford Station: Watheres Local Huencayo Matherco Local Station: Ottewa Ottewa

-24-

Î