A GRAPHICAL METHOD FOR CALCULATING GROUND REFLECTION COEFFICIRNTS

By Newbern Smith

In problems involving radiation from and reception on radio antennas it is usualiy necessary to obtain the planewave reflection coefficients of the earth for vertically and horizontally polarized waves. These are designated as $R_{\text {g }}$ and RHo respectively.

Since the earth is an imperfectiy conducting dielectric the effective dielectric constant is a complex number. Hence the refractive index is also a complex number, the imaginary part of which is a measure of the absorption of the wave in theground. and of the phase change of the wave upon reflection from the ground. The evaluation of RV and RH is thus a rather tedious process. involvine transformations of complex numbers. Under certain simplifying assumptions, however, which are justified to the degree of accuracy with which the ground constants are knowno a graphical representation of $R V$ and R_{H} can be made, which assists in their calculation.

The reflection coofficients of the eartho for a plane wave whose direction of propagatiou makes a vertical angle with the ground are for the vector directions of Fig. 1:

$$
\begin{gathered}
\text { Ry } \equiv \frac{u \sqrt{1-u^{2} \cos ^{2}} \theta_{0}}{u \sqrt{\sin \theta}-\sqrt{1-u^{2} \cos ^{2} \theta}+\sin \theta} \text { (for an electric vector in the plane of } \\
\text { propagation) }
\end{gathered}
$$

anc.

$$
R_{H}=\frac{u \sin \theta-\sqrt{1-u^{2} \cos ^{2} \theta}}{u \sin \theta+\sqrt{1-u^{2} \cos ^{2} \theta}} \quad \text { (for an electric vector pervendicular to }
$$

For ground reflection these refer to vertically and horizontally polarized waves. respectively. In the formulas:

$$
\begin{aligned}
u^{2} & =\frac{1}{\epsilon-j x}=(\alpha+j \beta)^{2} \\
& =\text { specific inductive capacity of earth } \\
x & =\frac{18000 \gamma}{f} \\
\gamma & =\text { conductivity of earth in mhos per meter. }
\end{aligned}
$$

Wor most types of soil u^{2} is not greater then 0.2% less than 5% error is introduced into $1 \pm$ Ry and $1 \pm$ R $\begin{aligned} & \text { I } \\ & \text { by neglecting } \\ & u^{2} \\ & \cos 2 \theta\end{aligned}$ in comparison with 1. (A considerably greater error may occur in RV near Brewster's angle. however, for high frequencles and low conductivities).

Thus, to a good approximation, we may consider:

$$
A_{V}=\frac{u-\sin \theta}{u+\sin \theta} \quad 1+\Delta V=\frac{2 u}{u+\sin \theta} \quad 1-R V=\frac{2}{u \csc \theta+1}
$$

$R_{H} \frac{\sin \theta-1}{u \sin \theta+1} \cdot 1+R_{H}=\frac{2 u}{u+\csc \theta} \quad 1-R_{H}=\frac{2}{u \sin \theta+1}$

The graphical construction shown in Fig. 2 illustrates the relations bem tween numerators and denominators of RV and Afio Let OA be unit. AF and AF' be equal to $\frac{1}{|n|}$ and the phase angle of Lay off the length $n=\sin \phi$ perpendicular to $F A F^{\beta} ;$ then $m=\cos \phi$. Draw $F D$ and $F^{\prime} D^{\prime}$ parallel to $O A$ and equal to unity.

If $A B=A B^{\prime \prime}=\frac{1}{|u|} \sin \theta$, then $\frac{O B}{O B^{\prime}}=\mid$ RV \mid and angle $B O B^{\prime}=$ phase of AT .

NOW $O B^{2}=(A B-m)^{2}+m^{2}$ and $O B^{12}=(A B+m)^{2}+n^{2}$
Tofind the minimum value of $\frac{O B}{O B^{\prime}}$ set
$\frac{\partial}{\partial A B} \log \frac{O B^{2}}{O B^{2}}=0=\frac{2(A B-n)}{(A B-M)^{2}+n^{2}}=\frac{2(A B+n)}{(A B+m)^{2}+n^{2}}=\frac{2(A B-m)}{A B 2-2 A B+1}-\frac{2(A B+M)}{A B^{2}+2 A B A+1}$

This will be the case if:

$$
2(A B \sim m)\left(A B^{2}+2 A B m+1\right)=2(A B+B)\left(A B^{2}=2 A B n+1\right)
$$

i.e.o if $A B=1$ and therefore $=O A_{0}$

Now when $A B=A B^{\prime}=O A$ angle $B O B^{\prime}=90^{\circ}$ and $|u|=\sin 0$
Therefore Ry m minimum and its phase $=90^{\circ}$ when \mid u $\mid=\sin \theta$

The minimum value of R is therefore given by:

$$
\begin{gathered}
\operatorname{Imin}_{\min }=\frac{\alpha-\sqrt{\alpha^{2}+\beta^{2}+j^{\beta}}}{\alpha+\sqrt{\alpha^{2}+\beta^{2}+j^{\beta}}}=\frac{\alpha^{2}-\left(\alpha^{2}+\beta^{2}\right)+2 j \beta \sqrt{\alpha^{2}+\beta^{2}}+\beta^{2}}{\alpha^{2}+\left(\alpha^{2}+\beta^{2}\right)+2 \alpha \sqrt{\alpha^{2}+\beta^{2}}+\beta^{2}} \\
=\frac{\alpha \beta}{\alpha+\sqrt{\alpha^{2}+\beta^{2}}}=\frac{\beta}{\alpha+\sqrt{\alpha^{2}+\beta^{2}}} / 90^{\circ}
\end{gathered}
$$

Now ϕ_{0} the phase angle of $\frac{1}{u^{\beta}} \cdot \infty \tan ^{-1} \frac{\beta}{\alpha}=-\sin ^{-1} \frac{\beta}{\sqrt{\alpha^{2+} \beta^{2}}}=00^{-1} \frac{\alpha}{\sqrt{\alpha^{2}+\beta^{2}}}$

$$
\left|\tan \frac{1}{2} p\right| \frac{\frac{\beta}{\sqrt{\alpha^{2}+\beta^{2}}}}{1+\frac{\alpha}{\sqrt{\alpha^{2}+\beta^{2}}}}=\left|R_{\min }\right|
$$

Further,

$$
1-E_{\gamma}=\frac{2 \sin \theta=\frac{2 \sin \theta}{u+\sin \theta} \sqrt{(\alpha+\sin \theta)^{2}+\beta^{2}}}{\left\langle\phi_{1}\right.} \text { where } \beta_{1} \tan ^{-1} \frac{\beta}{\alpha \sin \theta}
$$

and if $R_{\text {PO }}=$ value of R_{y} for $\theta \geqslant 0$

$$
2=B_{\text {bo }}=0 \quad \angle \theta_{0} \quad \text { where } \theta_{0}=-\tan ^{-1} \quad \frac{\beta}{\alpha}
$$

Therefore

$$
\begin{aligned}
\sin \left(\phi_{1-\infty} \beta_{0}\right) & =\frac{\beta(\alpha+\sin \theta)-\alpha \beta}{\sqrt{(\alpha+\sin \theta)^{2}+\beta^{2} \sqrt{\alpha^{2}+\beta^{2}}}}=\frac{\sin \theta}{\sqrt{(\alpha+\sin \theta)^{2}+\beta^{2}}} \cdot \frac{\beta}{\sqrt{\alpha^{2}+\beta^{2}}} \\
& =\frac{\beta}{2 \sqrt{\alpha^{2}+\beta^{2}}}\left|1-R_{V}\right|
\end{aligned}
$$

and thus $I=R_{V}$ lies on a circle in the complex plane, and therefore $R_{\text {p }}$ itself lies on a circle.

Similarly.
$2 \infty I_{H} \neq \frac{2}{u \sin \theta+1}=\frac{2}{\sqrt{(\alpha \sin \theta+1)^{2}+\beta^{2} \sin ^{2} \theta}} / \phi_{2}$ where $\phi_{2}=\tan ^{-1} \frac{\beta \sin \theta}{\alpha \sin \theta+1}$
and so it may be shows that

$$
\sin \left(\phi_{2}-\phi_{0}\right)=\frac{\beta}{2^{\alpha^{2}+\beta^{2}}}\left|1-R_{H}\right|
$$

so that 1 - $P_{H 0}$ and hence also $R_{H 0}$ lies on the same circle as R_{V}.
This leads at once to the obvious graphical construction for R_{V} and R_{H} show in Fig. B_{0}. On the perpendicular bisector of a line of length 2 lay off the length $R_{\min } \tan \frac{1}{2}$ upward. From the top of this length drop down a distance $P=\frac{1+R^{2} \min }{2 R_{\min }}$ to locate the center of a circle of radius P and
draw the arc of this circle of which the base line of length 2 is the chord.
To find Ry lay off the angle $W_{1}=2 \beta_{1}=2 \tan ^{-1} \frac{\beta}{\alpha+\sin \%}$ and draw R_{V} from the center of the base line to the circle as shown. To find R_{H} Lay off the angle $\psi 2=2 \phi_{2}=2 \tan ^{-1} \frac{\beta \sin \theta}{\alpha \sin \theta+1}$ and draw A $_{H}$ in the above manner. This comes about from that the fact that the arc ψ is subtended by the phase angle of $1-\mathbb{R}$ and is therefore twice that angle. The nomograms of Figsi_{0}. 5,86 are attached for ready calculation of ψ_{1} and ψ_{2} 。

The quantity $l_{\square} \mathbb{R}$ is found by drawing a line from A to the point where R intersects the circle, and the phase of $I-R$ is minus the angle measured clockwise from line $A B$ to the line $I-R$. The quantity $I+R$ is found by drawing a line from B to the point where R intersects the circle and the phase angle is that measured counter-clockwise from line $A B$ to the line $1+\mathrm{R}^{2}$

It was mentioned above that the greatest error is likely to occur in the values of p_{p} near the Brewster angle θ_{B} i.e.o the value of θ for which By is a minimum This error is largely in the angle op itself rather then In the variation of I_{V} with θ 。A better value of θ may be calculated from the formula

$$
B_{B}=\sin n^{-1} \text { थ }\left[1-\frac{u^{2}}{2\left(1+|u|^{2}\right)}\right]
$$

Although this method of determining R_{H} and R_{V} is quantitatively valid only for materials with dielectric constants and conductivities, the rep presentation of R_{H} and R_{V} as vectors lying on a single curve, as a Fig. 3_{0} is generally useful。for example in optics, in showing how the reflection coefficients vary with angle. In the case of a perfect reflector, both the RH ind RV vectors lie at the left-hand end of the curve (point B) for all values of θ except that R_{V} is indeterminate at $\theta-0$.

In the case of a perfect dielectric $(x=0)$

$$
u=\sqrt{\frac{1}{\epsilon}} \cdot \alpha=\sqrt{\frac{2}{\epsilon}}, \beta=0, R_{\min }=\operatorname{Lim}_{\beta \rightarrow 0} \frac{\varepsilon}{2 \alpha}, \beta=\operatorname{Lim}_{\varepsilon \rightarrow 0} \frac{\alpha}{\varepsilon}
$$

and $\quad 1=\lim _{\epsilon \rightarrow 0} \frac{2 \epsilon}{\alpha+\sin \theta} \quad 2^{\operatorname{Lim}_{\epsilon \rightarrow 0} \frac{2 \epsilon}{\alpha+\cos \theta}}$ and the curve of
Fig. 3 is a straight line between B and A and $R V$ and RH have phases of either 0° or 180°.

Thus $\rho \psi_{1}=\frac{2 \alpha}{\alpha+\sin \theta}$ and $\rho \psi_{2}=\frac{2 \alpha}{\alpha+\csc \theta}$. represent the distances from B along the straight line of Fig. 2 to the ends of the vectors RV and R_{H} respectively. at $\theta=30^{\circ} \quad \rho \psi_{1}=\rho \psi_{2}=\frac{2 \alpha}{1+\alpha}$ and $R_{V} R_{H}-\frac{1-\alpha}{1+\alpha}$ $=\frac{\sqrt{6}-1}{\sqrt{6}+1}$ as is the usual formula for normal incidence. At Brewster ${ }^{\theta} s$ angle $\sin \theta=\alpha$ and $\rho \psi_{1}=1$ giving $R_{V}=0$. For 0 less than Brewster ${ }^{\circ}$ angle $\rho \psi_{I}>1$ and so R_{V} lies to the right and has a phase 00_{i} for θ greater than Brewster's angle lies to the left. and for any angle BH lies to the left, and so has a phase of 180°.

A. FOR VERTICALLY POLARIZED ELECTRIC FIELD.

B. FOR HORIZONTALLY POLARIZED ELECTRIC FIELD.

Fig. 1. DIRECTION CONVENTIONS FOR ELECTRIC AND MAGNETIC VECTORS. $\odot=$ DIRECTED OUT OF PAPER. $\otimes=$ DIRECTED INTO PAPER.

Fig. 2. GRAPHICAL REPRESENTATION OF NUMERATORS AND DENOMINATORS OF $R_{V} A N D R_{H}$.

Fig. 3. GRAPHICAL CONSTRUCTION FOR R_{V} AND R_{4}.

Fig. 4.

Fig. 5.

Fig. 6.

