Central Radio Propagation Laboratory
TK6540
.37447

IONOSPHERIC PREDICTIONS

for
 September
 IMPORTANT NOTICE
 SEE 1965
 INTRODUCTION PAGE

U.S. DEPARTMENT of COMMERCE

National Bureau of Standards
Number 30/Issued June 1965

U.S. DEPARTMENT OF COMMERCE
 John T. Connor, Secretary

NATIONAL BUREAU OF STANDARDS
A. V. Astin, Director

Central Radio Propagation Laboratory
 Ionospheric Predictions

for September 1965

Number 30
Issued
June 1965
[Formerly "Basic Radio Propagation Predietiong" CRPL Series D.]

The CRPL Ionospheric Predictions are issued monthly as an aid in determining the best sky-wave frequencies over any transmission path, at any time of day, for average conditions for the month. Issued three months in advance, each issue provides tables
of numerical coefficients that define the functions describing the predicted worldwide distribution of foF2 and $\mathbf{M}(3000) \mathrm{F} 2$ and maps for each even hour of universal time of MUF (Zero)F2 and MUF (4000) F2.

Note: Department of Defense personnel see back cover.

Use of funds for printing this publication approved by the Director of the Bureau of the Budget (June 19. 1961).
loor sale by the Superintendent of Documents, U.S. Government Printing Office. Washington, D.C., 20402. Price 25 cents.
Annual subscription (12 issues) $\$ 2.50$ (75 cents additional for foreign mailing).

National Bureau of Standards

The National Bureau of Standards serves as a principal focal point within the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. The Bureau is organized into four institutes as follows: The Institute for Basic Standards provides the central basis within the United States for a complete and consistent system of physical measurement; its responsibilities include administration of the National Standard Reference Data System. The Institute for Materials Research conducts a broad range of programs to provide a better understanding of the
basic properties and behavior of materials and to make available reliable quantitative data on their performance; it distributes a wide variety of carefully characterized reference materials to science and industry. The Institute for Applied Technology develops criteria for the evaluation of the performance of technological products and services, provides specialized information services to meet the needs of industry, and studies problems of technological innovation. The fourth institute, the Central Radio Propagation Laboratory, is described below.

The Central Radio Propagation Laboratory

The Central Radio Propagation Labolatory is the central agency of the Federal Government for obtaining and disseminating information on the propagation of electromagnetic waves, on the electromagnetic properties of man's environment, on the nature of electromagnetic noise and interference, and on methods for the more efficient use of the electromagnetic spectrum for telecommunication purposes. In carrying out these responsibilities, the Central Radio Propagation Laboratory:

1. Acts as the primary agency of the Federal Government for the conduct of basic and applied research in these fields;
2. Acts as the central repository for data, reports, and information in these fields;
3. Furnishes advisory and consuttative services in these fields to industry and to other government and non-government organizations;
4. Performs scientific liaison with other countries to advance knowledge in these fields, including that liaison required by international responsibilities and agreements;
5. Prepares and issues predictions of electromagnetic wave propagation conditions, and warnings of disturbances in those conditions.

NOTICE

TRIAL PERIOD FOR POLAR MAPS EXTENDED

The trial period for the polar prediction maps has been extended six months in order to permit more time to evaluate their utility. Some favorable comments have been received, but the response has been insufficient to justify the expense and effort required to publish them. Therefore, please send your comments as soon as possible if you wish these to continue.

ANNOUNCEMENT OF PUBLICATION OF NBS MONOGRAPH 80

IONOSPHERIC RADIO PROPAGATION

By Kenneth Davies of the Central Radio Propagation Laboratory, Boulder, Colorado.

This new textbook provides an authoritative and comprehensive digest of current information on the ionosphere. Emphasis is placed on the physics of the ionosphere and theoretical developments required for an understanding of ionospheric radio propagation.

Orders, accompanied by $\$ 2.75$ remittance, should be sent to: Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 20402.

INTRODUCTION

Tables 1 and 2, presenting predicted coefficients defining the numerical map functions for the worldwide variation of foF2 and $\mathrm{M}(3000) \mathrm{F} 2$, provide the basic prediction or F2-layer propagation. With additional auxiliary information, these coefficients may be used as input data for electronic computer programs solving specific high-frequency propagation problems. The graphical maps, which are derived from the basic predictions, are provided for those unable to make use of an electronic computer. Instructions for use of these maps, figures 1 through 24, may be found in National Bureau of Standards Handbook 90, "Handbook for CRPL Ionospheric Predictions Based on Numerical Methods of Mapping," which also includes required additional data, nomographs and graphical aids, and may be purchased from the Superintendent of Documents, U.S. Government Printing Office, Washington D.C., 20402, price 40 cents. The predicted sunspot number used for this month is shown in table A, which also lists previous observed and predicted Zurich smoothed relative sunspot numbers. Figure A shows the recent trend of solar activity, with both predicted and observed Zurich smoothed relative sunspot numbers.

The basic numerical mapping equations, their interpretation, and methods of using numerical maps are described in papers by W. B. Jones and R. M Gallet, "The Representation of Diurnal and Geographic Variations of Ionospheric Data by Numerical Mapping," vol. 66D, No. 4, July-Aug. 1962, pages 419-438, and "Methods for Applying Numerical Maps of Ionospheric Characteristics," vol. 66D, No. 6, Nov.-Dec. 1962, pages 649-662, both in the Journal of Research of the National Bureau of Standards, Section D. Radio Propagation. The predicted numerical map coefficients of tables 1 and 2 may be purchased in the form of a tested set of punched cards. Write to the Prediction Services Section, Central Radio Propagation Laboratory, National Bureau of Standards, Boulder, Colorado, 80301, to arrange for
purchase of the punched cards, and for information and advice on the application of computer methods and numerical prediction maps to specific propagation problems.

Members of the U.S. Army, Navy, or Air Force desiring. Handbook 90 and the monthly issues of Ionospheric Predictions should send requests to the proper service address; for Navy: The Director, Naval Communications, Department of the Navy, Washington, D.C., 20350; for Air Force: Directorate of Command Control and Communications, Headquarters, United States Air Force, Washington, D.C., 20330. ATTN: AFOCCAA. Army personnel should requisition these through normal publication channels, and should refer to Handbook 90 as TM 11-499 and to the monthly ionospheric predictions as TB 11-499-(), with the serial number of the desired monthly predictions booklet inserted in the parenthesis. (For example, for Ionospheric Predictions Number 30, issued June 1965 and containing predictions for September 1965, the Army number would be TB 11-499-(30).)

Information on the physics of the ionosphere and the theory of radio wave propagation, including such problems as absorption, field intensity, etc., may be found in National Bureau of Standards Monograph 80, "Ionospheric Radio Propagation," by Kenneth Davies, which may be purchased from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 20402, price $\$ 2.75$. Additional information on radio noise may be found in C.C.I.R. Report Number 322, "Revision of Atmospheric Noise Data," International Telecommunications Union, Geneva, 1964.

Reports to this Laboratory of experience with these predictions would be appreciated. Correspondence should be addressed to the Prediction Services Section, Central Radio Propagation Laboratory, National Bureau of Standards, Boulder, Colorado, 80301.

NOTE: The MUF (ZERO)F2 values of figures 1A through 12A were derived by adding one-half the gyrofrequency to the foF2 calculated by use of the predicted coefficients in table 1. The error introduced by this approximation is generally not important compared to other uncertainties in the predictions, and is significant only when the foF2 is near or below the gyrofrequency. If more precise values of predicted fxF 2 are desired, the theoretical relationships should be applied to the foF2 values calculated by the coefficjents in table 1 .

Observed and Predicted Zurich Smoothed Relative Sunspot Numbers

Month	Jan.	Feb.	Mar.	Apr.	May	June	Ju1y	Aug.	Sept.	Oct.	Nov.	Dec.
1954	$\begin{gathered} 6 \\ (14) \end{gathered}$	$\begin{gathered} 6 \\ (12) \end{gathered}$	$\begin{gathered} 4 \\ (11) \end{gathered}$	$\begin{gathered} 3 \\ (10) \end{gathered}$	$\begin{gathered} 4 \\ (10) \end{gathered}$	$\begin{gathered} 4 \\ (9) \end{gathered}$	$\begin{gathered} 5 \\ (8) \end{gathered}$	$\begin{gathered} 7 \\ (8) \end{gathered}$	$\begin{gathered} 8 \\ (8) \end{gathered}$	$\begin{gathered} 8 \\ (10) \end{gathered}$	$\begin{gathered} 10 \\ (10) \end{gathered}$	$\begin{gathered} 12 \\ (11) \end{gathered}$
1955	$\begin{gathered} 14 \\ (12) \end{gathered}$	$\begin{gathered} 16 \\ (14) \end{gathered}$	$\begin{gathered} 20 \\ (14) \end{gathered}$	$\begin{gathered} 23 \\ (13) \end{gathered}$	$\begin{gathered} 29 \\ (16) \end{gathered}$	$\begin{gathered} 35 \\ (18) \end{gathered}$	$\begin{gathered} 40 \\ (22) \end{gathered}$	$\begin{gathered} 46 \\ (27) \end{gathered}$	$\begin{gathered} 55 \\ (30) \end{gathered}$	$\begin{gathered} 64 \\ (31) \end{gathered}$	$\begin{gathered} 73 \\ (35) \end{gathered}$	$\begin{gathered} 81 \\ (42) \end{gathered}$
1956	$\begin{gathered} 89 \\ (48) \end{gathered}$	$\begin{gathered} 98 \\ (53) \end{gathered}$	$\begin{aligned} & 109 \\ & (60) \end{aligned}$	$\begin{aligned} & 119 \\ & (68) \end{aligned}$	$\begin{aligned} & 127 \\ & (77) \end{aligned}$	$\begin{aligned} & 137 \\ & (89) \end{aligned}$	$\begin{aligned} & 146 \\ & (95) \end{aligned}$	$\begin{gathered} 150 \\ (105) \end{gathered}$	$\begin{gathered} 151 \\ (119) \end{gathered}$	$\begin{gathered} 156 \\ (135) \end{gathered}$	$\begin{gathered} 160 \\ (147) \end{gathered}$	$\begin{gathered} 164 \\ (150) \end{gathered}$
1957	$\begin{gathered} 170 \\ (150) \end{gathered}$	$\begin{gathered} 172 \\ (150) \end{gathered}$	$\begin{gathered} 174 \\ (150) \end{gathered}$	$\begin{gathered} 181 \\ (150) \end{gathered}$	$\begin{gathered} 186 \\ (150) \end{gathered}$	$\begin{gathered} 188 \\ (150) \end{gathered}$	$\left\lvert\, \begin{gathered} 191 \\ (150) \end{gathered}\right.$	$\begin{gathered} 194 \\ (150) \end{gathered}$	$\begin{gathered} 197 \\ (150) \end{gathered}$	$\begin{gathered} 200 \\ (150) \end{gathered}$	$\begin{gathered} 201 \\ (150) \end{gathered}$	$\begin{gathered} 200 \\ (150) \end{gathered}$
1958	$\begin{gathered} 199 \\ (150) \end{gathered}$	$\begin{gathered} 201 \\ (150) \end{gathered}$	$\begin{gathered} 201 \\ (150) \end{gathered}$	$\begin{gathered} 197 \\ (150) \end{gathered}$	$\begin{gathered} 191 \\ (150) \end{gathered}$	$\begin{gathered} 187 \\ (150) \end{gathered}$	$\begin{gathered} 185 \\ (150) \end{gathered}$	$\begin{gathered} 185 \\ (150) \end{gathered}$	$\begin{gathered} 184 \\ (150) \end{gathered}$	$\begin{gathered} 182 \\ (150) \end{gathered}$	$\begin{gathered} 181 \\ (150) \end{gathered}$	$\begin{gathered} 180 \\ (150) \end{gathered}$
1959	$\begin{gathered} 179 \\ (150) \end{gathered}$	$\begin{gathered} 177 \\ (150) \end{gathered}$	$\begin{gathered} 174 \\ (150) \end{gathered}$	$\begin{gathered} 169 \\ (150) \end{gathered}$	$\begin{gathered} 165 \\ (146) \end{gathered}$	$\begin{gathered} 161 \\ (143) \end{gathered}$	$\begin{gathered} 156 \\ (141) \end{gathered}$	$\begin{gathered} 151 \\ (142) \end{gathered}$	$\begin{gathered} 146 \\ (141) \end{gathered}$	$\begin{gathered} 141 \\ (139) \end{gathered}$	$\begin{gathered} 137 \\ (137) \end{gathered}$	$\begin{gathered} 132 \\ (137) \end{gathered}$
1960	$\begin{gathered} 129 \\ (136) \end{gathered}$	$\begin{gathered} 125 \\ (135) \end{gathered}$	$\begin{gathered} 122 \\ (133) \end{gathered}$	$\begin{gathered} 120 \\ (130) \end{gathered}$	$\begin{gathered} 117 \\ (125) \end{gathered}$	$\begin{gathered} 114 \\ (120) \end{gathered}$	$\begin{gathered} 109 \\ (118) \end{gathered}$	$\begin{gathered} 102 \\ (115) \end{gathered}$	$\begin{gathered} 98 \\ (110) \end{gathered}$	$\begin{gathered} 93 \\ (108) \end{gathered}$	$\begin{gathered} 88 \\ (105) \end{gathered}$	$\begin{gathered} 84 \\ (100) \end{gathered}$
1961	$\begin{gathered} 80 \\ (100) \end{gathered}$	$\begin{gathered} 75 \\ (90) \end{gathered}$	$\begin{gathered} 69 \\ (90) \end{gathered}$	$\begin{gathered} 64 \\ (90) \end{gathered}$	$\begin{gathered} 60 \\ (85) \end{gathered}$	$\begin{gathered} 56 \\ (85) \end{gathered}$	$\begin{gathered} 53 \\ (80) \end{gathered}$	$\begin{gathered} 52 \\ (75) \end{gathered}$	$\begin{gathered} 52 \\ (70) \end{gathered}$	$\begin{gathered} 51 \\ (70) \end{gathered}$	$\begin{gathered} 50 \\ (65) \end{gathered}$	$\begin{gathered} 49 \\ (60) \end{gathered}$
1962	$\begin{gathered} 45 \\ (60) \end{gathered}$	$\begin{gathered} 42 \\ (50) \end{gathered}$	$\begin{gathered} 40 \\ (48) \end{gathered}$	$\begin{gathered} 39 \\ (45) \end{gathered}$	$\begin{gathered} 39 \\ (42) \end{gathered}$	$\begin{gathered} 38 \\ (37) \end{gathered}$	$\begin{gathered} 37 \\ (34) \end{gathered}$	$\begin{gathered} 35 \\ (31) \end{gathered}$	$\begin{gathered} 33 \\ (29) \end{gathered}$	$\begin{gathered} 31 \\ (28) \end{gathered}$	$\begin{gathered} 30 \\ (27) \end{gathered}$	$\begin{gathered} 30 \\ (34) \end{gathered}$
1963	$\begin{gathered} 29 \\ (31) \end{gathered}$	$\begin{gathered} 30 \\ (28) \end{gathered}$	$\begin{gathered} 30 \\ (26) \end{gathered}$	$\begin{gathered} 29 \\ (25) \end{gathered}$	$\begin{gathered} 29 \\ (25) \end{gathered}$	$\begin{gathered} 28 \\ (25) \end{gathered}$	$\begin{gathered} 28 \\ (23) \end{gathered}$	$\begin{gathered} 27 \\ (21) \end{gathered}$	$\begin{gathered} 27 \\ (20) \end{gathered}$	$\begin{gathered} 26 \\ (18) \end{gathered}$	$\begin{gathered} 24 \\ (18) \end{gathered}$	$\begin{gathered} 21 \\ (17) \end{gathered}$
1964	$\begin{gathered} 20 \\ (17) \end{gathered}$	$\begin{gathered} 18 \\ (17) \end{gathered}$	$\begin{gathered} 15 \\ (17) \end{gathered}$	$\begin{gathered} 13 \\ (17) \end{gathered}$	$\begin{gathered} 11 \\ (17) \end{gathered}$	$\begin{gathered} 10 \\ (17.5) \end{gathered}$	$(1,7.3)$	(17.0)	(17.0)			
1965	(15.0)	(16.0)	(16.0)	(16.0)	(15.0)	(17.0)	$(21.0)(28.9)(22.0) *$					
1966												

Note: Final numbers are listed through June 1964, the succeeding values being based on provisional data. The predicted numbers are in parentheses.

* Number used for predictions in this issue.

Hormonic		0	I		2		3		4				
		0	1	2	3	4	5	6	7	8			
I		$7.294753 C E C O$	2.3471851600	1．8588056E OC	－7．8717819E－01	$1.4724523 \mathrm{E}-01$	－2．1339822E－01	－5．3614737E－01		－1．85t99CLE－01			
	1	$8.6214943 \mathrm{E}-\mathrm{Cl}$	1.0057676 E 00	－1．0C79053E 00	1.8659395600	－3．8495470E－01	－2．1116172E－01	－9．2882265E－C1	－6．1668030E－C2	1．2980072E－01			
	2	－9．2541296E 00	－5．7445366E OO	1.5791896 E O1	9.2989867 E 00	1.8007109 E 00	－1．9901086E 00	－1．2307985E 00	－2．1589835E CO	3.4 BtOOEOE 00			
	3	4.69039 \＆3E OC	1．1710993E 01	3.3737730 E 01	－3．8699282E 00	$-2.9623854 \mathrm{E} 00$	4.0587168 FCO	$7.6840587 \mathrm{E} \quad 00$	1.1466228 ECO	3.36514 C 4 E OC			
	4	1.9569053 E 01	－ $2.4861349 \mathrm{E} \quad 00$	－1．2343945E 02	－2．6989677E 01	－5．4144354E 00	2.2899732 E 01	1.4668750 ECl	1.7648751 ECl	－1．8424651E 01			
	5	－3．9487582E 01	－1．0598336E 02	－1．9785376E 02	－2．6t815Cbe Jl	2.3392901 E 01	－2．3934421E 01	－2．1285892E 01	－3．8868694E CO	－2．3790486E 01			
	6	－7．3689049E Cl	3． 3336549 E O1	3.7503896 E O2	－8．0895838E 00	－1．0094439E O1	－9．1622838E 01	－3．5179212E 01	－6．2432972E し1	$4.3491156 E^{2} 01$			
	7	9.4920228 E O1	$2.7282358 \mathrm{E} \quad 02$	$4.3651311 E 02$	9.5184458 EEOL	－5．7496065E 01	5.4922613 E 01	5.2401066 E 01	5．4963067E OC	5.4016988 E 01			
	8	$1.6349815 \mathrm{E} \mathrm{O2}$	－5．2014847E 01	－5．7386134E 02	1．2265570E O2	4.8890421 E 01	1.6928965 E 02	3.3193629 El	1.0412910 E O2	－5．20．14111E OL			
	9	－1．0049111E 02	－2．8498481E O2	－4．1415227E 02	－1．0642247E 02	5.9585312 E Ol	－5．3313122E 01	－5．0401323E 01	－3．4447927E CO	－5．1c00783E O1			
	10	－1．6340888E 02	$3.2630725 E 01$	$4.4 \mathrm{C59923E} 02$	－1．5850327E 02	－5．578C059E O1	－1．4586800E 02	－1．0658492E OL	－8．2192800E U1	3.2528804 E OL			
	11	3.9839338 E Cl	1．2541530E O2	$1.4244042 \mathrm{E} \mathrm{O2}$	$3.9562123 E 01$	－2．2099567E U1	1.8491293 E O	1.8635011 E O1	7.1369757 E－C 1	1.7286045801			
	12	5.9916037 t 01	－7．8328043E 00	－1．3547955E 02	6.2512840 E CI	2.0405579 El	$4.7484924 \mathrm{E} \mathrm{D1}$	－3．3553453E－01	2.4753470 E Cl	－8．29712C7E 00			
D	13	7．3005960E－C2	1．3042782f－01	$1.8448714 \mathrm{E}-01$	－7．3117445E－02	－5．1944620E－02	$4.3348505 \mathrm{t}-02$	$1.6835128 E-01$	－2．7947396E－C2	$-6.391178 C E-02$			
	14	$1.2218679 E-i 1$	－3．7469637E－02	$1.7658073 \mathrm{E}-01$	－4．3C10854E－01	－7．5618317E－02	$9.5707786 \mathrm{E}-02$	1．5177466E－C1	8.5910609 ECL$3.3057871 \mathrm{E}-01$				
	15	$4.1919366 \mathrm{E}-$ し1	－6．64913C4E－01 S．1559399E－01		6．1797716E－02	$3.2583129 E-01$	$-4.1413886 \mathrm{E}-02$	－2．0645549E－01					
	16	－1．3494530E CO	－1．7136933E 00	－7．8C29093E CC	－4．5585012E 00	－2．0501538E OC	－7．5541327E－01	$-1.4203676 E 00$	$3.3057871 \mathrm{E}-01$ $5.9559878 \mathrm{E}-01$	$-2.0788853 \mathrm{E}-01$ -1.0230959 O			
	17	－7．0509403E 00	-4.4329330 E DO	－8．9594281E CO	4．3820444E 00	－5．5850524E－01	－4．3798739E－01	－3．1233793E 00	$9.0859300 E-C 1$				
	18	－ 2.0074789 E O	$-2.9075893 \mathrm{E} 00$	－8．1579697E OC	$5.2990751 E$ OL	5．3827409E－U2	－5．1657107E 00	－3．9258043E 00	$9.0859300 \mathrm{E}-\mathrm{Cl}$ -1.0700607 ECO	$3.85514 t 1 E$ $4.3814728 E$ 100			
	19	2.2215611600	8．2773029E 00	－1．7659504E 01	－6．6794859E OU	－7．1806180E CO	－7．9624199E－01 $6.2144082 E-01$		－3．6592250E OO 2．2205559E				
	20	$7.3913262 E^{\text {O }}$	6.3535154 E OI	1．1378811E O2	5.5157646 E 01	3．1163079E 01	5.9054275 E 00	$2.1360079 E 01$	－4．18C2609E LO	1．25364C8E O1			
	21	1.0958857 E O2	8.2300851 E 01	9.7004175 E 01	－4．0679013E O1	$4.30835 C 2 E 00$	－1．551C053E－01 2．4765988E O1		－1．0749809E C1－3．74078CBE O1				
	22	$6.7972 \mathrm{b75E} 01$	2.4927161801	1．0749629E O2	$-2.5234464 E^{\text {O }} 01$	3.4502931 EOO	$5.0619210 t \quad 013.6175442 \mathrm{E} 01$		$6.436717 C E ~ C O ~$$1.3842082 E ~ O 1$ －1．3255327E Ol				
	23	－3．9040300E CI	－5．0517942E 01	9.4879410 E O1	3.2651041 EO	4.7290323 E 01	6.9221219 E OO 6．8070200E 00						
	24	－4．1419845E 02	－3．5347111E 02	－4．9t99555E 02	－2．3611298E O2	－1．5131769E 02	$-1.6749664 E$ 01 $-1.1418391 E$ 02 $1.776 C 540 E$ $C 1$ $-5.31287 C 5 E$ 01 $7.0449051 E$ 00 $-9.7436872 E$ 01 $4.6772301 E$ 01 $1.4502069 E$ 02						
	25	－5．4656495E C2	－4．4120558E 02	－3．9219144E 02	1.6875929 E O2	－1．5965352E 01							
	26	－1．7125849E 02	－7．4079046E O1	－5．1C06385E 02	8．35C3048E O1	－3．1035965E C1	$-1.9772253 E$ 02 $-1.4087895 E$ 02 $-2.0822995 E$ $O 1$ $1.0137901 E$ 02 $-2.2438272 E ~ U 1 ~$ $-2.8273568 E ~ O 1 ~$ $-2.1851809 E$ O1 $3.88174 E 2 E$ 01						
	27	1.3396156 E （2	1．4933039E $02-2.0636817 E 02$		－6．6571835E O1	－1．2666172E 02							
	28	$9.2109323 E C 2$	7．5896947E O2	$9.3372833 \mathrm{E} ~ 02$	$-3.4395383 E O 2$	$3.3688741 t$ 3.5387719 E	$\begin{array}{rlll}1.9859964 E & 01 & 2.6427060 E & 02 \\ -1.9257236 E ~ & \text { O1 } & 1.9470176 E & 02\end{array}$		－8．9632685E O1－2．6451084E O2				
	29	1．2056467E C3	$9.9995370 \mathrm{E}_{\text {O2 }} \mathrm{O}$ 7．4247848E O2										
	30	$1.7020429 E 02$	8．1145022E 011.0499605 E C3		\cdots－1．8310787E 02 9.3230724 E 01		$\begin{array}{llll}3.6773307 E & 02 & 2.6307983 F & 02 \\ 3.0715826 t & 01 & 3.6061377 E & 01\end{array}$		$3.3222530 \mathrm{ECl}-1.7224953 \mathrm{E} \mathrm{O2}$				
	31	－1．8569341E L2	－1．9272324E $021.8218934 \mathrm{EC2}$		6.8553537 E O1 1.44311 C 3 E 02								
	32	－9．0096558E C2	-7.1212141 E O2－7．9254578E 02		－4．1855478E O2 $-3.4821690 \mathrm{EC2}$		－7．7539157E 00	－2．7158167E 02	5.6668113 E C1－8．40C6743E 01				
	33	－1．2041158E 03	－1．0160964t $03-6.6520056 \mathrm{E} 02$		3．3020862E O2－3．7142640E CI		2.0278574 E 01	－1．8724031E O2	7.8814797 E CI	$2.2636124 E 02$			
	34	－3．2088052E OL	－1．24051C7E $01-9.7599822 \mathrm{E}$ O2		2．0395937E O2－1．1532058E O2		－3．2375464E C2	－2．3239243E 02	－2．4165069 CL	1.4733863 E O2			
	35	9.0606282 E U	8．7751961E O1－5．9247716E 01		－3．0102403E $01-5.8320253 E \quad 0$		$-1.4483518 \mathrm{E} \quad 01$	－1．4941943E Cl	－3．5504041E CO 2.08428 CSE 01				
	36	3.2182300 E ¢2	$2.4590783 E 0$$3.4132556 E 0$	$\begin{aligned} & 2.5 C 04736 E \quad O 2 \\ & 2.2835734 E \quad O 2 \end{aligned}$	$\begin{array}{rlll}1.4506632 E & 02 & 1.3471455 E & 02 \\ -1.1847569 E & 02 & 1.4263247 E ~ & \text { O1 }\end{array}$		－5．2441138E－01	1.0180449 E 02	－2．5272042E Cl 2.6509235 E 01				
	37	4.4402692 E 02					－7．7516140E OÓ	$6.8455109 E ~$7.7748742 E	$\begin{array}{r} -2.61965 \mathrm{ClE} \mathrm{C} \\ 6.3388410 \mathrm{CO} \end{array}$	$\begin{aligned} & -7.3050639 E \\ & -4.9534636 E \end{aligned} 01$			
	38	－2．0767966E O1	－1．7641218E 01	3.3821318 E 02	－8．4598397E 01	5.0510769 El	1.0844284 EL						
III	39	1．4567396E－01	2．00478C9E－02－8．1067450E－02		－7．9540865E－C2	－2．633043日E－02	－6．7705256E－02	$4.3314524 \mathrm{E}-02$	$1.0157559 \mathrm{E}-\mathrm{C} 2$	－4．16325t8E－02			
	40	4．1809212t－02	$3.1915964 \mathrm{E}-02$	－1．0044289E－01	$-1.0920803 E-01$$2.9934053 E-01$	$-6.1867698 E-02$$8.7062879 E-02$	$-3.7903283 E-03$$-7.1433546 E-02$	$1.0316326 E-01$	$\begin{array}{r} -2.0371706 \mathrm{E}-\mathrm{C} 2 \\ 1.3763432 \mathrm{E}-\mathrm{C} 3 \end{array}$	－3．268552CE－02			
	41	$9.6691530 \mathrm{E}-01$	$2.20226 \mathrm{C} 9 \mathrm{E} \rightarrow 01$	－7．6945018E－01				－9．0820578E－02		$7.85215 \mathrm{E} 2 \mathrm{E}-02$			
	42	$3.5494604 \mathrm{E}-01$	1．4724364E－01	$3.6689287 \mathrm{E}-01$	4．9C52142E－01	$1.2887228 \mathrm{E}-01$	$5.4904359 \mathrm{E}-03$$5.0881909 \mathrm{E}-01$	$\begin{aligned} & -4.4365579 E-02 \\ & -8.6075963 E-01 \end{aligned}$	$\begin{aligned} & -4.2378252 \mathrm{E}-\mathrm{C} \\ & -1.9223413 \mathrm{E}-\mathrm{C} \end{aligned}$	$\begin{aligned} & 3.8830812 \mathrm{E}-02 \\ & 8.9912086 \mathrm{E}-01 \end{aligned}$			
	43	－4．3743201E－01	$3.6517237 \mathrm{E}+02$	－1．1637785E－01	$1.2222692 \mathrm{E}-\mathrm{Cl}$	－1．5419894E－02							
	44	－3．7211007E－01	$\begin{aligned} & -4.1448549 \mathrm{E}-01 \\ & -1.2830047 \mathrm{E}-01 \end{aligned}$	1.1985933 EOO	5．3737661E－C1	3.1653934 E－01	$2.8368025 E-02-1.1391833 \mathrm{E} 00$		$4.9960471 \mathrm{E}-03$$-3.880 C 865-62$	1．1941044E－01			
	45	－2．0605792E 00		3.3738706 E O3	－3．9401207E－01	－2．2793819E－デ1	$1.3698403 \mathrm{E}-01$	$\begin{array}{r} 4.1894010 \mathrm{E}-01 \\ -1.3391198 \mathrm{E}-01 \end{array}$					
	46	－6．5188090E－L3	$\begin{aligned} & -1.2836047 E-01 \\ & -4.2934993 E-02 \end{aligned}$	－4．6905278E－C1	－9．8167703E－01	－5．6123273E－02	$\begin{array}{r} 5.8348641 \mathrm{E}-02 \\ -9.5876931 \mathrm{E}-01 \\ 9.3846759 \mathrm{E}-04 \end{array}$		$-6.4142222 \mathrm{E}-03$	－5．7746975E－01			
	47	－3．0334645E－C2	$\begin{array}{r} 1.9830082 \mathrm{E}-01 \\ -1.9477462 \mathrm{E}-02 \end{array}$	－1．2915463E－01	－2．4880295E－01	－2．5119252E－01		3.0357128 E3.4003.41180 E CO		$\begin{aligned} & -2.52735 E 7 E 00 \\ & -1.0329 B 21 E-01 \end{aligned}$			
	48	$4.0958500 \mathrm{E}-02$		－1．0970224E 00	$-4.5369273 E-02$	－5．8909480E－02			$6.9197370 \mathrm{E}-02$ $-1.1568383 \mathrm{E}-\mathrm{C}$				
	49	1．357528LE－02	$\begin{array}{ll} 1.6565066 E-01 & -3.7550664 E 00 \\ 4.5714857 E-02 & \end{array}$			－7．2449165E－02	－5．6549211E－02	$\begin{array}{r} -2.8326403 \mathrm{E}-01 \\ 4.8244806 \mathrm{E}-01 \\ -2.5691454 \mathrm{E} \text { UO } \end{array}$$-2.9020533 \mathrm{E} 00$	$\begin{array}{r} 4.5446610 \mathrm{E}-02 \\ 1.4810451 \mathrm{E}-\mathrm{C} 2 \\ -6.3507414 \mathrm{E}-\mathrm{C} 2 \end{array}$				
	$5)$				$\begin{array}{r} -2.5344589 \mathrm{E}-02 \\ -1.8503016 \mathrm{E}-02 \\ 2.2 C 81864 \mathrm{E}-01 \end{array}$	$\begin{aligned} & 7.9469694 \mathrm{E}-02 \\ & 2.4661342 \mathrm{E}-01 \end{aligned}$							
	51 52				$2.2 C 81864 E-01$		$\begin{array}{ll} -2.5691454 E & 00 \\ -2.9020533 E & 00 \end{array}$						

Hormonlc		5		6		7		8	
	$k 5$	9	10	11	12	13	14	15	16
I	0	$7.3623931 \mathrm{E}-02$	$2.3840258 \mathrm{E}-01$	－1．17946398－01	1．36C8066E－02			9．2C02751E－C2	－4．5762109E－04
	1	－2．3236065E－02	6．7351966E－02	－3．9025986E－02	－2．1515383E－02	$1.8657861 \mathrm{E}-$ し2	－9．1072507E－J3	2.0246961 E－C2	3．2215830E－02
	2	－7．2922742E－02	－4．6794347E－01	$1.1163581 \mathrm{f}-01$	－4．1466133E－02	$6.7180598 \mathrm{E}-02$	$1.8724787 \mathrm{E}-01$	－ $2.7114973 \mathrm{E}-\mathrm{Cl}$	－7．9315272E－05
	3	$1.4354473 \mathrm{E}-05$	－9．7421676E－02	$5.75084 \overline{C L E}-02$	$8.482 \mathrm{Cl} 150 \mathrm{E}-03$	－9．6949793E－C3	$1.049 \mathrm{Cb} 25 \mathrm{E}-02$	－2．9820879E－02	－3．5C33000E－02
	4	－2．7961980E－03	2．5C43629E－01	$1.6205416 \mathrm{E}-03$	$3.2620135 \mathrm{E}-02$	－4．1758912E－02	－8．8249158E－02	8．6175154E－02	$1.7540108 E-03$

NoİロI子ォ 7ロゴHdシタ90ヨ9

TABLE 2
time variation

Hormonic		0	1		2		3	
	k S	\bigcirc	1	2	3	4	5	6
I	$\begin{aligned} & c \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{array}{r} 3.02428 C 4 \mathrm{E} 00 \\ -1.9843708 \mathrm{E}-01 \\ 1.4643703 \mathrm{E} 00 \\ 1.1925818 \mathrm{E} 00 \\ -4.2021921 \mathrm{E} 00 \\ -2.3272800 \mathrm{E} 0 \\ 4.3159937 \mathrm{O} 00 \\ 1.3138729 \mathrm{E} 00 \\ -1.4826882 \mathrm{E} 00 \end{array}$				$-9.9573129 \mathrm{~F}-02$ $-4.020428 \mathrm{E}-01$ $-2.4448937 \mathrm{E}-01$ 2.036394 E 1.00 -230916900 -2.8777980 E 00 -1.9773233 E 1.200 1.2905427 E 00 $9.6115388 \mathrm{E}-01$	$\begin{array}{r} 4.3215998 \mathrm{E}-02 \\ -2.7561298 \mathrm{E}-02 \\ -1.0071631 \mathrm{E} \\ \hline 6.2851816 \mathrm{E} \\ 3.02 \\ 3.9596744 \mathrm{E} 0 \mathrm{OC} \\ 5.7850901 \mathrm{E}-02 \\ -5.3388507 \mathrm{O} \\ -9.4315716 \mathrm{E}-02 \\ 2.3655728 \mathrm{E} 00 \end{array}$	$-3.5881069 \mathrm{E}-02$ $4.249866 \mathrm{E}-02$ $-3.8950676 \mathrm{E}-01$ $-1.510304 \mathrm{E}-01$ 1.4537638 E 00 $2.692235 \mathrm{E}-01$ $-1.891114 \mathrm{E}-00$ $-1.4319109 \mathrm{E}-01$ $8.4403629 \mathrm{E}-01$
II	$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \end{array}$							
III	$\begin{aligned} & 27 \\ & 28 \\ & 29 \\ & 30 \\ & 31 \\ & 32 \\ & 33 \\ & 34 \\ & 35 \\ & 36 \end{aligned}$		$\begin{array}{r} -1.8181529 \mathrm{E}-02 \\ -1.6996236 \mathrm{E}-02 \\ -1.0286972 \mathrm{E}-01 \\ 1.7526817 \mathrm{E}-02 \\ 5.4143662 \mathrm{EE}-02 \\ 1.9056273 \mathrm{E}-01 \\ 2.0302716 \mathrm{E}-01 \end{array}$	$6.8396618 \mathrm{E}-03$ $-4.4436215 \mathrm{E}-03$ $-1.5366110 \mathrm{E}-01$ $-1.3701457 \mathrm{E}-1$ $4.6546413 \mathrm{E}-\mathrm{C} 2$ $-4.747184 \mathrm{E}-2$ $3.3646499 \mathrm{E}-01$ $3.5619496 \mathrm{E}-01$ $4.1334772 \mathrm{~F}-\mathrm{C} 2$	$\begin{array}{r} -1.8191036 \mathrm{E}-02 \\ -3.3710913 \mathrm{E}-03 \\ 3.0611370 \mathrm{E}-03 \\ 4.0188659 \mathrm{E}-02 \\ 6.7565519 \mathrm{E}-\mathrm{C} 2 \\ -6.3681709 \mathrm{E}-03 \end{array}$	$\begin{array}{r} 1.0660473 \mathrm{E}-02 \\ 9.4829434 \mathrm{E}-03 \\ -2.9015821 \mathrm{E}-02 \end{array}$	$\begin{array}{r} 3.2469809 \mathrm{E}-04 \\ 0.9862080 \mathrm{E}-14 \\ -1.2206959-03 \\ -2.2908131 \mathrm{E}-03 \end{array}$	$\begin{array}{r} -3.2849080 \mathrm{E}-03 \\ 5.9643681 \mathrm{E}-03 \\ 1.9507224 \mathrm{E}-02 \\ 4.3701742 \mathrm{E}-03 \\ 8.5284269 \mathrm{E}-03 \\ -4.9716911 \mathrm{E}-02 \end{array}$

Hormonic		4		5		6	
	K^{5}	7	8	9	10	11	12
I	3 1 2 3	$\begin{array}{r} 3.7689777 \mathrm{E}-\mathrm{C} 2 \\ 2.9558890 \mathrm{E}-\mathrm{C} 2 \\ -3.0453580 \mathrm{E} 2 \\ -4.6798478 \mathrm{E}-02 \end{array}$	$\begin{array}{r} 1.4951981 \mathrm{E}-02 \\ 9.4141 \mathrm{G} 9 \mathrm{E}-\mathrm{n} \\ -1.0944431 \mathrm{E}-02 \end{array}$	$\begin{array}{r} 5.0 C 57950 E-C 3 \\ -7.1438069 E-C 3 \\ -8.4415112 E-03 \end{array}$	$\begin{array}{r} 3.5782671 \mathrm{E}-\mathrm{C2} \\ 8.9274088 \mathrm{E}-03 \\ -3.0831338 \mathrm{E}-02 \\ -1.6851657 \mathrm{E}-02 \end{array}$	$\begin{array}{r} -1.7944883 \mathrm{E}-02 \\ 1.4489036 \mathrm{E}-05 \\ 1.7747460 \mathrm{E}-02 \\ 1.4079831 \mathrm{E}-03 \end{array}$	$\begin{array}{r} -3.6869019 \mathrm{E}-03 \\ -1.4474540 \mathrm{E}-03 \\ -3.7857977 \mathrm{E}-03 \\ 8.6447066 \mathrm{E}-04 \end{array}$

I - Moin lotitudinol voriotion. Mixed lotitudinal ond longitudinol voriation: II - First order in longitude, 且-Second order in longitude.
Nototion: For eoch entry the number given by the first eight digits ond sign is multiplied by the power of ten defined by the last iwo digits and sign.
PREDICTED COEFFICIENTS $D_{S K}$ DEFINING THE FUNCTION $\Gamma(\lambda, \theta, t)$ FOR MONTHLY MEDIAN M(30OO)F2 SEPTEMBER 1965

SEPTEMBER 1965 UT =02
LONGITUDE

LONGITUDE

SEPTEMBER 1965 UT $=06$
LONGITUDE

FIG. 4 B. PREDICTED MEDIAN MUF (4000)F2 (Mc / s)

SEPTEMBER 1965 UT=08
LONGITUDE

SEPTEMBER 1965 UT = 10 LONGITUDE

FIG. 6 B. PREDICTED MEDIAN MUF (4000)F2 (Mc / s)

SEPTEMBER 1965 UT=12
LONGITUDE

SEPTEMBER 1965 UT $=14$
LONGITUDE

FIG. 8 A. PREDICTED MEDIAN MUF(ZERO)F2 (Mc / s)

FIG. 8 B. PREDICTED MEDIAN MUF (4000)F2 (Mc / s)

LONGITUDE

FIG. 9 B. PREDICTED MEDIAN MUF (4000)F2 (Mc / s)

SEPTEMBER 1965 UT $=18$
LONGITUDE

LONGITUDE

SEPTEMBER 1965 UT $=22$

FIG. I2 B. PREDICTED MEDIAN MUF (4000)F2 (Mc / s)

FIG. I3 A. PREDICTED MEDIAN MUF (ZERO)F2 (MC/S)

NORTH POLAR AREA

FIG. 13 B. PREDICTED MEDIAN MUF (4000)F2 (Mc / S)

FIG. 14 A. PREDICTED MEDIAN MUF (ZERO)F2 (MC/S)

NORTH POLAR AREA

SOUTH POLAR AREA

FIG. 14 B. PREDICTED MEDIAN MUF (4000) F2 (Mc / s)

FIG. I5 A. PREDICTED MEDIAN MUF(ZERO)F2 (MC/S)

SOUTH POLAR AREA

FIG. I5 B. PREDICTED MEDIAN MUF (4000) F2 (MC/S)

FIG. I6 A. PREDICTED MEDIAN MUF (ZERO)F2 (MC/s)

NORTH POLAR AREA
SOUTH POLAR AREA

FIG. 16 B. PREDICTED MEDIAN MUF (4000)F2 (MC/S)

FIG. 17 A. PREDICTED MEDIAN MUF (ZERO)F2 (MC/S)

NORTH POLAR AREA

SOUTH POLAR AREA

FIG. 17 B. PREDICTED MEDIAN MUF (4000)F2 (MC/S)

FIG. 18 A. PREDICTED MEDIAN MUF(ZERO)F2 (MC/S)

NORTH POLAR AREA
SOUTH POLAR AREA

FIG. 18 B. PREDICTED MEDIAN MUF (4000)F2 (MC / S)

SOUTH POLAR AREA

FIG. 19 A. PREDICTED MEDIAN MUF(ZERO)F2 (Mc / s)

NORTH POLAR AREA
SOUTH POLAR AREA

FIG. 19 B. PREDICTED MEDIAN MUF (4000) F2 (Mc / s)

FIG.20A. PREDICTED MEDIAN MUF(ZERO)F2 (MC/S)

NORTH POLAR AREA

FIG. 20 B . PREDICTED MEDIAN MUF (4000) F2 (MC / S)

NORTH POLAR AREA

SOUTH POLAR AREA

FIG. 21 A. PREDICTED MEDIAN MUF (ZERO)F2 (MC/s)

FIG.22A. PREDICTED MEDIAN MUF (ZERO)F2 (MC/s)

FIG. 22 B. PREDICTED MEDIAN MUF (4000) F2 (MC / s)

FIG.23A. PREDICTED MEDIAN MUF (ZERO)F2 (MC/s)

NORTH POLAR AREA

FIG. 23 B. PREDICTED MEDIAN MUF (4000) F2 (MC / S)

FIG.24A. PREDICTED MEDIAN MUF(ZERO)F2 (MC/S)

NORTH POLAR AREA

SOUTH POLAR AREA

FIG. 24 B. PREDICTED MEDIAN MUF (4000) F2 (MC/s)

UNITED STATES
GOVERNMENT PRINTING OFFICE DIVISION OF PUBLIC DOCUMENTS

WASHINGTON, D. C., 20402
official business

DEPARTMENTS OF THE ARMY
AND THE AIR FORCE
Washington, D.C., 20301, 1 June 1965
TB 11-499-30/TO 31-3-28, Central Radio Propagation Laboratory Ionospheric Predictions for September 1965 , is published for the use of all concerned.

By Order of the Secretaries of the Army and the Air Force:

HAROLD K. JOHNSON, General, United States Army, Chief of Staff.

OfFicial:

J. C. LAMBERT,

Major General, United States Army,
The Adjutant General.

Official:

R. J. PUGH,

Colonel, United States Air Force, Director of Administrative Services.

Distribution :

Active Army:
USASA (4); USA Elct Comd (5) ; USA M1 Comd (2) ; USA Test \& Eval Comd (1); CC-E (1); US CONARC (3); ARADCOM (2); OS Maj Comd (5); OS Base Comd (2); Log Comd (2); MDW (1); Armies (5); Corps (2) ; Div (2); USAEPG (2); USA Elct RD Agcy, W (4); Sve Colleges (4); Br Sve Sch (4) except USASCS (20); USAADCEN (4); ARADCOM Rgn (2); WSMR (5); USA Elct RD Agey A (4); JBUSMC (12); USA Corps (1) ; USA Mbl Spt Cen (1); USAMC (1); USACDA (1); USA Msl Spt Comd (1); Units org under fol TOE: 11-18 (1); 11-95 (1); 11-500 (AC) (1); ATAD (1).
$N G:$ None.
USAR: None.
For explanation of abbreviations used, see AR 320-50.

