Introduction

The Central Radio Propagation Laboratory "Ionospheric Predictions" is the successor to the former "Basic Radio Propagation Predictions," CRPL Series D. To make effective use of these predictions, National Bureau of Standards Handbook 90, "Handbook for the Use of Central Radio Propagation Laboratory Ionospheric Predictions," should be obtained from the Superintendent of Documents; U.S. Government Printing Office, Washington 25, D.C., price 40 cents. This Handbook includes required additional data, nomographs and graphical aids, as well as methods for the use of the predictions. The Handbook supersedes the now-obsolete Circular 465.

The basic prediction appears in tables 1 and 2, presenting predicted coefficients for foF2 and M(3000)F2 defining the numerical map functions describing the predicted worldwide variation of these characteristics. With additional auxiliary information, these coefficients may be used as input data for electronic computer programs solving specific high frequency propagation problems. The basic equations, their interpretation, and methods of using the numerical maps are described in two papers by W. B. Jones and R. M. Gallet, "The Representations of Diurnal and Geographic Variation of Ionospheric Data by Numerical Methods," Volume 66D, Number 4, July-August 1962, pages 419-438, and "Methods for Applying Numerical Maps of Ionospheric Characteristics," Volume 66D, Number 6, November-December 1962, pages 649-662, both in the Journal of Research of the National Bureau of Standards, Section D. Radio Propagation. The predicted numerical map coefficients of tables 1 and 2 may be purchased in the form of a tested set of punched cards. Write to the Prediction Services Section, Central Radio Propagation Laboratory, National Bureau of Standards, Boulder, Colorado, to arrange for the purchase of the set of punched cards and for further information and assistance in the application of computer methods and numerical prediction maps to specific propagation problems.

The graphical prediction maps, derived from the basic prediction, are provided for those unable to make use of an electronic computer. Figures 1 to 12 present world maps of MUF(zero) F2 and MUF(4000)F2 for each even hour of universal time. Figures 13 to 16 present the same predictions for hours 00 to 12 universal time for the North and South Polar areas. Predicted polar maps for each even hour of universal time may be obtained by special arrangements with the Central Radio Propagation Laboratory. The Handbook describes methods for including regular E-F1 propagation. Figure A is a graph of predicted and observed Zürich sunspot numbers which show the recent trend of solar activity. Table A lists observed and predicted Zürich smooth relative sunspot numbers and includes the sunspot number used for the current prediction.

In order to allow the users more time to make the transition to the new type of predictions, figures 17 to 24 present time charts for the central meridians of the four zones of the former CRPL-D Series that were derived from the basic prediction. These may be used in the same way as the former CRPL-D Series charts and will be discontinued after the February 1963 issue of these predictions.

Members of the U.S. Army, Navy, or Air Force desiring the Handbook and the Ionospheric Predictions should send requests to the proper service address; for the Navy: The Director, Naval Communications, Department of the Navy, Washington 25, D.C.; for the Air Force: Directorate of Telecommunications, Department of the Air Force, Washington 25, D.C., Attention: AFOAC. Army personnel should refer to the Handbook as TM 11-499 and to the monthly predictions as TB 11-499-(), predictions for the month of April 1963 being distributed in January 1963 and designated TB 11-499-(1), and should requisition these through normal publication channels.

Information concerning the theory of radio wave propagation and such important problems as absorption, field intensity, lowest useful high frequencies, etc., is given in National Bureau of Standards Circular 462, "Ionospheric Radio Propagation." This may be obtained from the Superintendent of Documents, price $1.25 (to foreign countries, $1.65). A revised work is in preparation which will be announced when available in the Ionospheric Prediction series. Additional information about radio noise may be found in C.C.I.R. Report Number 65, "Revision of Atmospheric Radio Noise Data," International Telecommunication Union, Geneva, 1957.

Reports to this Laboratory of experience with these predictions would be appreciated. Correspondence should be addressed to the Predictions Services Section, Central Radio Propagation Laboratory, National Bureau of Standards, Boulder, Colorado.
Central Radio Propagation Laboratory

Ionospheric Predictions
for April 1963

[Formerly "Basic Radio Propagation Predictions," CRPL Series D.]

The CRPL Ionospheric Predictions are issued monthly as an aid in determining the best sky-wave frequencies over any transmission path, at any time of day, for average conditions for the month. Issued three months in advance, each issue provides tables of numerical coefficients that define the functions describing the predicted worldwide distribution of foF2 and M(3000)F2 and maps for each even hour of Universal Time of MUF(Zero)F2 and MUF(4000)F2.

NOTE: Department of Defense personnel see back cover.

Use of funds for printing this publication approved by the Director of the Bureau of the Budget (June 19, 1961).

Annual subscription (12 issues) $1.50. (To foreign countries, $2.00).

National Bureau of Standards

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. The Bureau also serves as the Federal Technical research center in a number of specialized fields.

Central Radio Propagation Laboratory

The Central Radio Propagation Laboratory at Boulder, Colorado, is the central agency of the Federal Government for the collection, analysis, and dissemination of information on propagation of radio waves at all frequencies along the surface of the earth, in the atmosphere, and in space, and performs scientific studies looking toward new techniques for the efficient use and conservation of the radio spectrum. To carry out this responsibility, the CRPL—

1. Acts as the central agency for the conduct of basic research on the nature of radio waves, the pertinent properties of the media through which radio waves are transmitted, the interaction of radio waves with those media, and on the nature of radio noise and interference effects. This includes compilation of reports by other foreign and domestic agencies conducting research in this field and furnishing advice to government and nongovernment groups conducting propagation research.

2. Performs studies of specific radio propagation mechanisms and performs scientific studies looking toward the development of techniques for efficient use and conservation of the radiofrequency spectrum as part of its regular program or as requested by other government agencies. In an advisory capacity, coordinates studies in this area undertaken by other government agencies.

3. Furnishes advisory and consultative service on radio wave propagation, on radiofrequency utilization, and on radio systems problems to other organizations within the United States, public and private.

4. Prepares and issues predictions of radio wave propagation and noise conditions and warnings of disturbances in these conditions.

5. Acts as a central repository for data, reports, and information in the field of radio wave propagation.

6. Performs scientific liaison and exchanges data and information with other countries to advance knowledge of radio wave propagation and interference phenomena and spectrum conservation techniques, including that liaison required by international responsibilities and agreements.
Table A
Observed and Predicted Zurich Smoothed Relative Sunspot Numbers

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1952</td>
<td>43</td>
<td>42</td>
<td>39</td>
<td>36</td>
<td>34</td>
<td>32</td>
<td>31</td>
<td>29</td>
<td>28</td>
<td>28</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>(53)</td>
<td>(51)</td>
<td>(52)</td>
<td>(52)</td>
<td>(52)</td>
<td>(52)</td>
<td>(51)</td>
<td>(49)</td>
<td>(46)</td>
<td>(43)</td>
<td>(38)</td>
<td>(33)</td>
</tr>
<tr>
<td>1953</td>
<td>24</td>
<td>22</td>
<td>20</td>
<td>19</td>
<td>17</td>
<td>15</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>1954</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>(14)</td>
<td>(12)</td>
<td>(11)</td>
<td>(10)</td>
<td>(10)</td>
<td>(9)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(10)</td>
<td>(10)</td>
<td>(11)</td>
</tr>
<tr>
<td>1955</td>
<td>14</td>
<td>16</td>
<td>20</td>
<td>23</td>
<td>29</td>
<td>35</td>
<td>40</td>
<td>46</td>
<td>55</td>
<td>64</td>
<td>73</td>
<td>81</td>
</tr>
<tr>
<td>1956</td>
<td>89</td>
<td>98</td>
<td>109</td>
<td>119</td>
<td>127</td>
<td>137</td>
<td>146</td>
<td>150</td>
<td>151</td>
<td>156</td>
<td>160</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>(48)</td>
<td>(53)</td>
<td>(60)</td>
<td>(68)</td>
<td>(77)</td>
<td>(89)</td>
<td>(95)</td>
<td>(105)</td>
<td>(119)</td>
<td>(135)</td>
<td>(147)</td>
<td>(150)</td>
</tr>
<tr>
<td>1957</td>
<td>170</td>
<td>172</td>
<td>174</td>
<td>181</td>
<td>186</td>
<td>188</td>
<td>191</td>
<td>194</td>
<td>197</td>
<td>200</td>
<td>201</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>(150)</td>
</tr>
<tr>
<td>1958</td>
<td>199</td>
<td>201</td>
<td>201</td>
<td>197</td>
<td>191</td>
<td>187</td>
<td>185</td>
<td>185</td>
<td>184</td>
<td>182</td>
<td>181</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>(150)</td>
</tr>
<tr>
<td>1959</td>
<td>179</td>
<td>177</td>
<td>174</td>
<td>169</td>
<td>165</td>
<td>161</td>
<td>156</td>
<td>151</td>
<td>146</td>
<td>141</td>
<td>137</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>(150)</td>
<td>(150)</td>
<td>(150)</td>
<td>(150)</td>
<td>(150)</td>
<td>(143)</td>
<td>(141)</td>
<td>(142)</td>
<td>(141)</td>
<td>(139)</td>
<td>(137)</td>
<td>(137)</td>
</tr>
<tr>
<td>1960</td>
<td>129</td>
<td>125</td>
<td>122</td>
<td>120</td>
<td>117</td>
<td>114</td>
<td>109</td>
<td>102</td>
<td>98</td>
<td>93</td>
<td>88</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>(136)</td>
<td>(135)</td>
<td>(133)</td>
<td>(130)</td>
<td>(125)</td>
<td>(120)</td>
<td>(118)</td>
<td>(115)</td>
<td>(110)</td>
<td>(108)</td>
<td>(105)</td>
<td>(100)</td>
</tr>
<tr>
<td>1961</td>
<td>80</td>
<td>75</td>
<td>69</td>
<td>64</td>
<td>60</td>
<td>56</td>
<td>53</td>
<td>52</td>
<td>52</td>
<td>51</td>
<td>50</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>(100)</td>
<td>(90)</td>
<td>(90)</td>
<td>(85)</td>
<td>(85)</td>
<td>(85)</td>
<td>(80)</td>
<td>(75)</td>
<td>(70)</td>
<td>(70)</td>
<td>(65)</td>
<td>(60)</td>
</tr>
<tr>
<td>1962</td>
<td>44</td>
<td>41</td>
<td>39</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(60)</td>
<td>(50)</td>
<td>(48)</td>
<td>(45)</td>
<td>(42)</td>
<td>(37)</td>
<td>(34)</td>
<td>(31)</td>
<td>(29)</td>
<td>(28)</td>
<td>(27)</td>
<td>(34)</td>
</tr>
<tr>
<td>1963</td>
<td>(31)</td>
<td>(28)</td>
<td>(26)</td>
<td>(25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Final numbers are listed through June 1961, the succeeding values being based on provisional data. The predicted numbers are in parentheses.

* Number used for predictions in this issue.
<table>
<thead>
<tr>
<th>Harmonic</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.17604080E-01</td>
<td>2.04132800E-02</td>
<td>5.09375500E-01</td>
<td>2.73234690E-01</td>
</tr>
<tr>
<td>4</td>
<td>1.17804080E-01</td>
<td>2.04132800E-02</td>
<td>5.09375500E-01</td>
<td>2.73234690E-01</td>
</tr>
<tr>
<td>5</td>
<td>1.17604080E-01</td>
<td>2.04132800E-02</td>
<td>5.09375500E-01</td>
<td>2.73234690E-01</td>
</tr>
</tbody>
</table>

Note: For each entry the number given by the first eight digits and sign is multiplied by the power of ten defined by the last two digits and sign.

PREDICTED COEFFICIENTS D_p DEFINING THE FUNCTION η(λ,θ,1) FOR MONTHLY MEDIAN f₂ F₂ (Mc/s)

APRIL 1963
TABLE 2

TIME VARIATION

<table>
<thead>
<tr>
<th>Harmonic</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3.063390E+00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3.359293E-01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3.359287E+00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3.359287E-01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3.359293E+00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>3.359287E-01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>3.359293E+00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

GEOGRAPHICAL VARIATION

<table>
<thead>
<tr>
<th>Harmonic</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3.063390E+00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3.359293E-01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3.359287E+00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3.359287E-01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3.359293E+00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>3.359287E-01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>3.359293E+00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

GEOPHYSICAL VARIATION

<table>
<thead>
<tr>
<th>Harmonic</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3.063390E+00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3.359293E-01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3.359287E+00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3.359287E-01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3.359293E+00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>3.359287E-01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>3.359293E+00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1 - Main latitudinal variation. Mixed latitudinal and longitudinal variation
II - First order in longitude. III - Second order in longitude

Notation: For each entry the number given by the first eight digits and sign is multiplied by the power of ten defined by the last two digits and sign.

PREDICTED COEFFICIENTS D_{sk} DEFINING THE FUNCTION \(\Gamma(\lambda, \theta, t) \) FOR MONTHLY MEDIAN M(3000)F2

APRIL 1963
FIG. 2A. PREDICTED MEDIAN MUF(ZERO)F2 (Mc/s)

FIG. 2B. PREDICTED MEDIAN MUF(4000)F2 (Mc/s)
FIG. 3A PREDICTED MEDIAN MUF(ZERO)F2 (Mc/s)

FIG. 3B PREDICTED MEDIAN MUF(4000)F2 (Mc/s)
FIG. 4A. PREDICTED MEDIAN MUF(ZERO)F2 (Mc/s)

FIG. 4B. PREDICTED MEDIAN MUF(4000)F2 (Mc/s)
FIG. 5A. PREDICTED MEDIAN MUF(ZERO)F2 (Mc/s)

FIG. 5B. PREDICTED MEDIAN MUF(4000)F2 (Mc/s)
FIG. 7A. PREDICTED MEDIAN MUF(ZERO)F₂ (Mc/s)

FIG. 7B. PREDICTED MEDIAN MUF(4000)F₂ (Mc/s)
FIG. 11A. PREDICTED MEDIAN $\mu F(\text{ZERO})F2$ (Mc/s)

FIG. 11B. PREDICTED MEDIAN $\mu F(4000)F2$ (Mc/s)
FIG. 14A. PREDICTED MEDIAN MUF(ZERO)F2 (Mc/s)

FIG. 14B. PREDICTED MEDIAN MUF(4000)F2 (Mc/s)
FIG. 15A. PREDICTED MEDIAN MUF(0)F2 (Mc/s)

FIG. 15B. PREDICTED MEDIAN $\text{MUF(4000)F2 (Mc/s)}$
SOUTH POLAR AREA
APRIL 1963 UT = 12

FIG. 16A. PREDICTED MEDIAN MUF(ZERO)F2 (Mc/s)

FIG. 16B. PREDICTED MEDIAN MUF(4000)F2 (Mc/s)
FIG. 17. PREDICTED MEDIAN MUF(ZERO)F2 (Mc/s), 70°W (W ZONE), APRIL 1963
FIG. 18. PREDICTED MEDIAN MUF(4000)F2 (Mc/s), 70° W (W ZONE), APRIL 1963
FIG. 19. PREDICTED MEDIAN MUF(ZERO)F2 (Mc/s), 20° E (AFRO-EUROPEAN I ZONE), APRIL 1963
FIG. 21. PREDICTED MEDIAN MUF(ZERO) F2 (Mc/s), 110°E (E ZONE), APRIL 1963
FIG. 22. PREDICTED MEDIAN MUF(4000)F2 (Mc/s), 110°E (E ZONE), APRIL 1963
FIG. 24. PREDICTED MEDIAN MUF(4000)F2 (Mc/s), 160°W (PACIFIC I ZONE), APRIL 1963
An Indispensable New Instruction Book

H ANDBOOK

for

C RPL I ONOSPHERIC PREDICTIONS

Based on Numerical Methods of Mapping

NBS Handbook 90 — by S. M. Ostrow — 58 pages — December 1962 — $0.40

All persons engaged in the solution of high frequency radio propagation problems will need this new Handbook, which replaces Instructions for the Use of Basic Radio Propagation Predictions, Circular 465 of the National Bureau of Standards.

Beginning with the January 1963 issue, the monthly radio propagation predictions from the Central Radio Propagation Laboratory of the National Bureau of Standards at Boulder, Colorado, will be entitled CRPL Ionospheric Predictions, instead of Basic Radio Propagation Predictions (CRPL-D Series), as now called.

CRPL Ionospheric Predictions will fulfill the same functions as its predecessor. However, this new version will be prepared by numerical mapping methods, using an electronic computer. The predictions will be presented in two forms, giving the user the choice of either computer or graphical methods. Those using a computer will derive maximum benefits from the system. However, even when a computer cannot be used, the new prediction maps will provide more information than the earlier zone prediction charts, which were prepared by manual methods and designed primarily for graphical solution of high frequency propagation problems.

Thus the new Handbook is a necessity. All users of the CRPL Ionospheric Predictions should discard the now-obsolete Instructions and obtain a copy of the Handbook.

Use the order form below. Please order promptly so that you will have your Handbook by the time the January issue of Predictions arrives.

Superintendent of Documents
U.S. Government Printing Office
Washington 25, D.C.

Enclosed find $________ in check□ money order□ for which please send ______ copies of NBS Handbook 90, Handbook for CRPL Ionospheric Predictions to:

Name ___

Organization __

Address __

City __________________________ Zone ______ State (or Country)________

(Please Note: Remittances from foreign countries should be by international money order or by draft on a U.S. bank.)
THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its major laboratories in Washington, D.C., and Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title.

WASHINGTON, D. C.

Office of Weights and Measures.

BOULDER, COLO.

CENTRAL RADIO PROPAGATION LABORATORY

RADIO STANDARDS LABORATORY

DEPARTMENTS OF THE ARMY
AND THE AIR FORCE
WASHINGTON 25, D.C., 1 January 1963

TB 11-499-1/TO 31-3-28, CRPL Ionospheric Predictions for April 1963, published for the information and guidance of all concerned.

By Order of the Secretaries of the Army and the Air Force:

EARLE G. WHEELER,
General, United States Army,
Chief of Staff.

CURTIS E. LEMAY,
Chief of Staff, United States Air Force.

Official:
J. C. LAMBERT,
Major General, United States Army,
The Adjutant General.

Official:
R. J. PUGH,
Colonel, United States Air Force,
Director of Administrative Services.

Distribution:
Active Army:
USASA (2); CofEngs (1); TSG (1); CSigO (5); CofT (1); USA Abn, Elec & SPWAR Bd (2); USAARMED (2); USACD Agcy (1); USA Elec Mat Spt Agcy (10); USA Sig Msl Spt Agcy (2); USCONARC (3); ARADCOM (2); OS Maj Comd (5); OS Base Comd (2); Log Comd (2); MDW (1); Armies (5); Corps (2); Div (2); USA Msl Comd (3); Atlanta Army Dep (1); Svc Colleges (4); Br Svc Sch (4) except USASCS (20); USAAMC (2); ARADCOM Rgn (2); WSMR (2); USASRD Lab (8); USA Elec PG (10); USA Elec R & D Actv (8); JBUSMC (11); USA Corps (1); ACS (2); USA Mob Spt Cen (1); Units org under fol TOE: 11-18 (1); 11-95 (1); 11-500 (AC) (1).

NG: None

USA: None.

For explanation of abbreviation used, see AR 320-50