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Preface 

This Handbook brings together in a single volume material on experimental statistics 

that was previously printed for limited distribution as U.S. Army Ordnance Pamphlets 

ORDP 20-110, 20-111, 20-112, 20-113, and 20-114. These pamphlets are parts of the AMC 
Engineering Design Handbook series now under the jurisdiction of the Army Materiel 

Command. Future issues by the Army Materiel Command for its own use will be in the 

AMCP-706 series. 

The material contained in the present publication was prepared in the Statistical Engi¬ 
neering Laboratory, National Bureau of Standards, under a contract with the former Office 

of Ordnance Research (now Army Research Office—Durham). Although originally de¬ 

veloped with the needs of the Army in mind, it promises to be equally useful to other groups 

concerned with research and development, both within and outside the Government. To 
make this material more widely available to such groups, Experimental Statistics is now 

being published as a National Bureau of Standards Handbook for sale to the public through 
the Superintendent of Documents, U.S. Government Printing Office. 

F. S. Besson, Jr., A. V. Asttn, Director, 

Lt. Gen. U.S. Army, Commanding, National Bureau of 

Army Materiel Command. Standards. 
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FOREWORD 

INTRODUCTION 

This is one of a group of handbooks 
covering the engineering information and 
quantitative data needed in the design, de¬ 
velopment, construction, and test of ordnance 
equipment which (as a group) constitute the 
Ordnance Engineering Design Handbook. 

PURPOSE OF HANDBOOK 

The Handbook on Experimental Statistics 
has been prepared as an aid to scientists and 
engineers, engaged in Army Ordnance re¬ 
search and development programs, and espe¬ 
cially as a guide and ready reference for 
military and civilian personnel who have 
responsibility for the planning and inter¬ 
pretation of experiments and tests relating 
to the performance of Army Ordnance equip¬ 
ment in the design and developmental stages 
of production. 

SCOPE AND USE OF HANDBOOK 

This Handbook is a collection of statistical 
procedures useful in ordnance applications. 
It is presented in five sections, viz: 

ORDP 20-110, Section 1, Basic Concepts 
and Analysis of Measurement Data (Chapters 
1-6) 

ORDP 20-111, Section 2, Analysis of Enu- 
merative and Classificatory Data (Chapters 
7-10) 

ORDP 20-112, Section 3, Planning and 
Analysis of Comparative Experiments (Chap¬ 
ters 11-14) 

ORDP 20-113, Section 4, Special Topics 
(Chapters 15-23) 

ORDP 20-114, Section 5, Tables 

Section 1 provides an elementary introduc¬ 
tion to basic statistical concepts and fur¬ 
nishes full details on standard statistical 
techniques for the analysis and interpreta¬ 

tion of measurement data. Section 2 provides 
detailed procedures for the analysis and in¬ 
terpretation of enumerative and classifica¬ 
tory data. Section 3 has to do with the 
planning and analysis of comparative ex¬ 
periments. Section 4 is devoted to considera¬ 
tion and exemplification of a number of 
important but as yet non-standard statistical 
techniques, and to discussion of various 
other special topics. An index for the ma¬ 

terial in all five sections is placed at the 
end of Section 5. Section 5 contains all the 
mathematical tables needed for application 
of the procedures given in Sections 1 
through 4. 

An understanding of a few basic statistical 
concepts, as given in Chapter 1, is necessary; 
otherwise each of the first four sections is 
largely independent of the others. Each pro¬ 
cedure, test, and technique described is illus¬ 
trated by means of a worked example. A list 
of authoritative references is included, where 
appropriate, at the end of each chapter. 
Step-by-step instructions are given for at¬ 
taining a stated goal, and the conditions 
under which a particular procedure is strictly 
valid are stated explicitly. An attempt is 
made to indicate the extent to which results 
obtained by a given procedure are valid to 
a good approximation when these conditions 
are not fully met. Alternative procedures 
are given for handling cases where the more 
standard procedures cannot be trusted to 
yield reliable results. 

The Handbook is intended for the user 
with an engineering background who, al¬ 
though he has an occasional need for statis¬ 
tical techniques, does not have the time or 
inclination to become an expert on statistical 
theory and methodology. 

The Handbook has been written with three 
types of users in mind. The first is the per¬ 
son who has had a course or two in statistics, 
and who may even have had some practical 
experience in applying statistical methods 
in the past, but who does not have statistical 
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ideas and techniques at his fingertips. For 
him, the Handbook will provide a ready refer¬ 
ence source of once familiar ideas and tech¬ 
niques. The second is the person who feels, 
or has been advised, that some particular 
problem can be solved by means of fairly 
simple statistical techniques, and is in need 
of a book that will enable him to obtain the 
solution to his problem with a minimum of 
outside assistance. The Handbook should 
enable such a person to become familiar with 
the statistical ideas, and reasonably adept 
at the techniques, that are most fruitful in 
his particular line of research and develop¬ 
ment work. Finally, there is the individual 
who, as the head of, or as a member of a 
service group, has responsibility for analyz¬ 
ing and interpreting experimental and test 
data brought in by scientists and engineers 
engaged in ordnance research and develop¬ 
ment work. This individual needs a ready 
source of model work sheets and worked ex¬ 
amples corresponding to the more common 
applications of statistics, to free him from 
the need of translating textbook discussions 
into step-by-step procedures that can be fol¬ 
lowed by individuals having little or no previ¬ 
ous experience with statistical methods. 

It is with this last need in mind that some 
of the procedures included in the Handbook 
have been explained and illustrated in detail 
twice: once for the case where the important 
question is whether the performance of a 
new material, product, or process exceeds 
an established standard; and again for the 
case where the important question is whether 
its performance is not up to the specified 
standards. Small but serious errors are often 
made in changing “greater than” procedures 
into “less than” procedures. 

AUTHORSHIP AND ACKNOWLEDGMENTS 

The Handbook on Experimental Statistics 
was prepared in the Statistical Engineering 
Laboratory, National Bureau of Standards, 
under a contract with the Office of Ordnance 
Research. The project was under the gen¬ 
eral guidance of Churchill Eisenhart, Chief, 
Statistical Engineering Laboratory. 

Most of the present text is by Mary G. 
Natrella, who had overall responsibility for 
the completion of the final version of the 
Handbook. The original plans for coverage, 
a first draft of the text, and some original 
tables were prepared by Paul N. Somerville. 
Chapter 6 is by Joseph M. Cameron; most of 
Chapter 1 and all of Chapters 20 and 23 are by 
Churchill Eisenhart; and Chapter 10 is based 
on a nearly-final draft by Mary L. Epling. 

Other members of the staff of the Statis¬ 
tical Engineering Laboratory have aided in 
various ways through the years, and the 
assistance of all who helped is gratefully 
acknowledged. Particular mention should be 
made of Norman C. Severo, for assistance 
with Section 2, and of Shirley Young Leh¬ 
man for help in the collection and computa¬ 
tion of examples. 

Editorial assistance, art preparation, and 

the index were provided by John I. Thomp¬ 

son & Company, Washington, D. C. 
Appreciation is expressed for the generous 

cooperation of publishers and authors in 
granting permission for the use of their 
source material. References for tables and 
other material, taken wholly or in part, from 
published works, are given on the respective 
first pages. 

June 15, 1962 
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SECTION 1 

BASIC STATISTICAL CONCEPTS 

AND 

STANDARD TECHNIQUES FOR 

ANALYSIS AND INTERPRETATION OF MEASUREMENT DATA 



ORDP 20-110 

DISCUSSION OF TECHNIQUES 

IN CHAPTERS 2 THROUGH 6 

The techniques described in Chapters 2 
through 6 apply to the analysis of results of 
experiments expressed as measurements in 
some conventional units on a continuous 
scale. They do not apply to the analysis of 
data in the form of proportions, percentages, 
or counts. 

It is assumed that the underlying popula¬ 
tion distributions are normal or nearly 
normal. Where this assumption is not very im¬ 
portant, or where the actual population dis¬ 
tribution would show only slight departure 
from normality, an indication is given of the 
effect upon the conclusions derived from the 
use of the techniques. Where the normality 
assumption is critical, or where the actual 
population distribution shows substantial de¬ 
parture from normality, or both, suitable 
warnings are given. 

Table A-37 is a table of three-decimal-place 

random normal deviates that exemplify sam¬ 

pling from a normal distribution with zero 

mean (m = 0) and unit standard deviation 

(o- = 1). To construct numbers that will sim¬ 

ulate measurements that are normally dis¬ 

tributed about a true value of, say, 0.12, with 

a standard deviation of, say, 0.02, multiply 

the table entries by 0.02 and then add 0.12. 

The reader who wishes to get a feel for the 

statistical behavior of sample data, and to 

try out and judge the usefulness of particu¬ 

lar statistical techniques, is urged to carry 

out a few “dry runs” with such simulated 

measurements of known characteristics. 

All A-Tables referenced in these Chapters 

are contained in ORDP 20-114, Section 5. 



CHAPTER 1 

SOME BASIC STATISTICAL CONCEPTS AND 

PRELIMINARY CONSIDERATIONS 

1-1 INTRODUCTION 

Statistics deals with the collection, anal¬ 
ysis, interpretation, and presentation of 
numerical data. Statistical methods may be 
divided into two classes—descriptive and in¬ 
ductive. Descriptive statistical methods are 
those which are used to summarize or de¬ 
scribe data. They are the kind we see used 
everyday in the newspapers and magazines. 

Inductive statistical methods are used when 

we wish to generalize from a small body of 

data to a larger system of similar data. The 

generalizations usually are in the form of 

estimates or predictions. In this handbook 

we are mainly concerned with inductive sta¬ 

tistical methods. 

1-2 POPULATIONS, SAMPLES, AND DISTRIBUTIONS 

The concepts of a population and a sample 
are basic to inductive statistical methods. 
Equally important is the concept of a distri¬ 
bution. 

Any finite or infinite collection of individ¬ 
ual things—objects or events—constitutes a 
population. A population (also known as a 
universe) is thought of not as just a heap of 
things specified by enumerating them one 
after another, but rather as an aggregate 
determined by some property that distin¬ 
guishes between things that do and things 
that do not belong. Thus, the term popula¬ 
tion carries with it the connotation of com¬ 
pleteness. In contrast, a sample, defined as 
a portion of a population, has the connota¬ 
tion of incompleteness. 

Examples of populations are: 

(a) The corporals in the Marines on July 
1, 1956. 

(b) A production lot of fuzes. 

(c) The rounds of ammunition produced 
by a particular production process. 

(d) Fridays the 13th. 

(e) Repeated weighings of the powder 
charge of a particular round of ammunition. 

(f) Firings of rounds from a given pro¬ 
duction lot. 

In examples (a), (b), and (c), the “indi¬ 
viduals” comprising the population are ma¬ 
terial objects (corporals, fuzes, rounds) ; in 
(d) they are periods of time of a very re¬ 
stricted type; and in (e) and (f) they are 
physical operations. Populations (a) and 
(b) are clearly finite, and their constituents 
are determined by the official records of the 
Marine Corps and the appropriate produc¬ 
tion records, respectively. Populations (c), 
(d), and (e) are conceptually infinite. Off¬ 
hand, the population example (f) would 
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seem to be finite, because firing is a destruc¬ 

tive operation; but in order to allow for vari¬ 

ation in quality among “firings” performed 

in accordance with the same general proce¬ 

dure it is sometimes useful, by analogy with 

repetitive weighings, to regard an actual 

firing as a sample of size one from a con¬ 

ceptually infinite population of “possible” 

firings, any one of which might have been 

associated with the particular round con¬ 

ceived. In this connection, note that in exam¬ 

ples (e) and (f) the populations involved 

are not completely defined until the weighing 

and firing procedures concerned have been 

fully specified. 

Attention to some characteristic of the 

individuals of a population that is not the 

same for every individual leads immediately 

to recognition of the distribution of this 

characteristic in the population. Thus, the 

heights of the corporals in the Marines on 

July 1, 1956, the burning times of a produc¬ 

tion lot of fuzes, and the outcomes of succes¬ 

sive weighings of a powder charge (“ob¬ 

served weights” of the charge) are examples 

of distributions. The presence or absence of 

an attribute is a characteristic of an indi¬ 

vidual in a population, such as “tatooed” or 

“not tatooed” for the privates in the Marines. 

This kind of characteristic has a particularly 

simple type of distribution in the population. 

Attention to one, two, three, or more 

characteristics for each individual leads to 

a univariate, bivariate, trivariate, or multi¬ 

variate distribution in the population. The 

examples of populations given previously 

were examples of univariate distributions. 

Simultaneous consideration of the muzzle 

velocities and weights of powder charges of 

rounds of ammunition from a given produc¬ 

tion process determines a bivariate dis¬ 

tribution of these characteristics in the 

population. Simultaneous recognition of the 

frequencies of each of a variety of different 

types of accidents on Friday the 13th leads 

to a multivariate distribution. In connection 

with these examples, note that, as a general 
principle, the distribution of a characteristic 
or a group of characteristics in a population 
is not completely defined until the method or 
methods of measurement or enumeration in¬ 
volved are fully specified. 

The distribution of some particular prop¬ 
erty of the individuals in a population is a 
collective property of the population; and 
so, also, are the average and other charac¬ 
teristics of the distribution. The methods of 

inductive statistics enable us to learn about 

such population characteristics from a study 

of samples. 

An example will illustrate an important 

class of derived distributions. Suppose we 

select 10 rounds of ammunition from a given 

lot and measure their muzzle velocities when 

the rounds are fired in a given test weapon. 

Let X be the average muzzle velocity of the 

10 rounds. If the lot is large, there will be 

many different sets of 10 rounds which could 

have been obtained from the lot. For each 

such sample of 10 rounds, there will corre¬ 

spond an average muzzle velocity X{. These 

averages, from all possible samples of 10, 

themselves form a distribution of sample 

averages. This kind of distribution is called 

the sampling distribution of X for samples of 

size 10 from the population concerned. Sim¬ 

ilarly, we may determine the range R of 

muzzle velocities (i.e., the difference between 

the largest and the smallest) for each of all 

possible samples of 10 rounds each. These 

ranges R, (i = 1, 2, . . .) collectively deter¬ 

mine the sampling distribution of the range 

of muzzle velocities in samples of size 10 

from the population concerned. The methods 

of inductive statistics are based upon the 

mathematical properties of sampling distri¬ 

butions of sample statistics such as X and R. 

Let us summarize: A population in Sta¬ 

tistics corresponds to what in Logic is termed 

the “universe of discourse”—it’s what we 

are talking about. By the methods of in¬ 

ductive statistics we can learn, from a study 
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of samples, only about population character¬ 
istics—only about collective properties of the 
populations represented by the individuals 
in the samples—not about characteristics 
of specific individuals with unique idiosyn¬ 

crasies. The population studied may be large 
or small, but there must be a population; and 
it should be well defined. The characteristic 
of interest must be a collective property of 
the population. 

1-3 STATISTICAL INFERENCES AND SAMPLING 

1-3.1 STATISTICAL INFERENCES 

If we were willing or able to examine an 
entire population, our task would be merely 
that of describing that population, using 
whatever numbers, figures, or charts we 
cared to use. Since it is ordinarily incon¬ 
venient or impossible to observe every item 
in the population, we take a sample—a por¬ 
tion of the population. Our task is now to 
generalize from our observations on this 
portion (which usually is small) to the popu¬ 
lation. Such generalizations about charac¬ 
teristics of a population from a study of one 
or more samples from the population are 
termed statistical inferences. 

Statistical inferences take two forms: 
estimates of the magnitudes of population 
characteristics, and tests of hypotheses re¬ 
garding population characteristics. Both are 
useful for determining which among two or 
more courses of action to follow in practice 
when the “correct” course is determined by 
some particular but unknown characteristic 
of the population. 

Statistical inferences all involve reaching 
conclusions about population characteristics 
(or at least acting as if one had reached such 
conclusions) from a study of samples which 
are known or assumed to be portions of the 
population concerned. Statistical inferences 
are basically predictions of what would be 
found to be the case if the parent populations 
could be and were fully analyzed with respect 
to the relevant characteristic or character¬ 
istics. 

A simple example will serve to bring out 
a number of essential features of statistical 

inferences and the methods of inductive sta¬ 
tistics. Suppose that four cards have been 
drawn from a deck of cards and have been 
found to be the Ace of Hearts, the Five of 
Diamonds, the Three of Clubs, and the Jack 
of Clubs. The specific methods discussed in 
the following paragraphs will be illustrated 
from this example. 

First of all, from the example, we can 
clearly conclude at once that the deck con¬ 
tained at least one Heart, at least one Dia¬ 
mond, and at least two Clubs. We also can 
conclude from the presence of the Five and 
the Three that the deck is definitely not a 
pinochle deck. These are perhaps trivial in¬ 
ferences, but their validity is above question 
and does not depend in any way on the 
modus operandi of drawing the four cards. 

In order to be able to make inferences of 
a more substantial character, we must know 
the nature of the sampling operation that 
yielded the sample of four cards actually ob¬ 
tained. Suppose, for example, that the sam¬ 
pling procedure was as follows: The cards 
were drawn in the order listed, each card 
being selected at random from all the cards 
present in the deck when the card was drawn. 
This defines a hypothetical population of 
drawings. By using an appropriate tech¬ 
nique of inductive statistics—essentially, a 
“catalog” of all possible samples of four, 
showing for each sample the conclusion to 
be adopted whenever that sample occurs— 
we can make statistical inferences about 
properties of this population of drawings. 
The statistical inferences made will be rig¬ 
orous if, and only if, the inductive technique 
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used is appropriate to the sampling proce¬ 
dure actually employed. 

Thus, by taking the observed proportion 
of Clubs as an estimate of the proportion of 
Clubs in the abstract population of drawings, 
we may assert: the proportion of Clubs is 
50%. Since random sampling of the type 
assumed assures that the proportion of Clubs 
in the population of drawings is the same 
as the proportion of Clubs in the deck, we 
may assert with equal validity: the propor¬ 
tion of Clubs in the deck is 50%. If the deck 
concerned actually was a standard bridge 
deck, then in the present instance our esti¬ 
mate is wrong in spite of being the best 
single estimate available. 

We know from experience that with sam¬ 
ples of four we cannot expect to “hit the nail 
on the head” every time. If instead of at¬ 
tempting to make a single-number estimate 
we had chosen to refer to a “catalog” of 
interval estimates (see, for example, Table 
A-22*), we would have concluded that the 
proportion of Clubs is between 14% and 
86% inclusive, with an expectation of being 
correct 9 times out of 10. If the deck was 
in fact a standard bridge deck, then our 
conclusion is correct in this instance, but its 
validity depends on whether the sampling 
procedure employed in drawing the four 
cards corresponds to the sampling procedure 
assumed in the preparation of the “catalog” 
of answers. 

It is important to notice, moreover, that 
strictly we have a right to make statistical 
inferences only with respect to the hypo¬ 
thetical population of drawings defined by 
the sampling operation concerned. In the 
present instance, as we shall see, the sam¬ 
pling operation was so chosen that the pa¬ 
rameters (i.e., the proportions of Hearts, 
Clubs, and Diamonds) of the hypothetical 
population of drawings coincide with the 
corresponding parameters of the deck. 

* The A-Tables referenced in this handbook are 
contained in Section 5, ORDP 20-114. 

Hence, in the present case, inferences about 
the parameters of the population of draw¬ 
ings may be interpreted as inferences about 
the composition of the deck. This empha¬ 
sizes the importance of selecting and em¬ 
ploying a sampling procedure such that the 
relevant parameters of the population of 
drawings bear a known relation to the cor¬ 
responding parameters of the real-life situ¬ 
ation. Otherwise, statistical inferences with 
respect to the population of drawings carried 
over to the real-life population will be lack¬ 
ing in rigor, even though by luck they may 
sometimes be correct. 

1-3.2 RANDOM SAMPLING 

In order to make valid nontrivial gener¬ 
alizations from samples about characteristics 
of the populations from which they came, 
the samples must have been obtained by a 
sampling scheme which insures two condi¬ 
tions : 

(a) Relevant characteristics of the popu¬ 
lations sampled must bear a known relation 
to the corresponding characteristics of the 
population of all possible samples associated 
with the sampling scheme. 

(b) Generalizations may be drawn from 
such samples in accordance with a given 
“book of rules” whose validity rests on the 
mathematical theory of probability. 

If a sampling scheme is to meet these two 
requirements, it is necessary that the selec¬ 
tion of the individuals to be included in a 
sample involve some type of random selec¬ 
tion, that is, each possible sample must have 
a fixed and determinate probability of selec¬ 
tion. (For a very readable expository dis¬ 
cussion of the general principles of sampling, 
with examples of some of the more common 
procedures, see the article by Cochran, Mos- 
teller, and Tukey(1). For fuller details see, 
for example, Cochran’s book'2’. 

The most widely useful type of random 
selection is simple (or unrestricted) random 
sampling. This type of sampling is defined 
by the requirement that each individual in 
the population has an equal chance of being 
the first member of the sample; after the 
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first member is selected, each of the remain¬ 
ing individuals in the population has an 
equal chance of being the second member 
of the sample; and so forth. For a sampling 
scheme to qualify as simple random sam¬ 
pling, it is not sufficient that “each individual 
in the population have an equal chance of 
appearing in the sample,” as is sometimes 
said, but it is sufficient that “each possible 
sample have an equal chance of being se¬ 
lected.” Throughout this handbook, we shall 
assume that all samples are random samples 
in the sense of having been obtained by sim¬ 
ple random sampling. 

It cannot be overemphasized that the ran¬ 
domness of a sample is inherent in the sam¬ 
pling scheme employed to obtain the sample 
and not an intrinsic property of the sample 
itself. Experience teaches that it is not safe 
to assume that a sample selected haphaz¬ 
ardly, without any conscious plan, can be 
regarded as if it had been obtained by simple 
random sampling. Nor does it seem to be 
possible to consciously draw a sample at 
random. As stated by Cochran, Mosteller, 
and Tukey(1), 

We insist on some semblance of mechanical (dice, 
coins, random number tables, etc.) randomization 
before we treat a sample from an existent popula¬ 
tion as if it were random. We realize that if some¬ 
one just “grabs a handful,” the individuals in the 
handful almost always resemble one another (on the 
average) more than do the members of a simple 
random sample. Even if the “grabs” are randomly 
spread around so that every individual has an equal 
chance of entering the sample, there are difficulties. 
Since the individuals of grab samples resemble one 
another more than do individuals of random sam¬ 
ples, it follows (by a simple mathematical argu¬ 
ment) that the means of grab samples resemble 
one another less than the means of random samples 
of the same size. From a grab sample, therefore, 
we tend to underestimate the variability in the 
population, although we should have to overestimate 
it in order to obtain valid estimates of variability 
of grab sample means by substituting such an esti¬ 
mate into the formula for the variability of means 
of simple random samples. Thus, using simple ran¬ 
dom sample formulas for grab sample means intro¬ 
duces a double bias, both parts of which lead to an 
unwarranted appearance of higher stability. 

Instructions for formally drawing a sample 
at random from a particular population are 
given in Paragraph 1-4. 

Finally, it needs to be noticed that a par¬ 
ticular sample often qualifies as “a sample” 
from any one of several populations. For ex¬ 
ample, a sample of n rounds from a single 
carton is a sample from that carton, from 
the production lot of which the rounds in 
that carton are a portion, and from the pro¬ 
duction process concerned. By drawing these 
rounds from the carton in accordance with 
a simple random sampling scheme, we can 
insure that they are a (simple) random sam¬ 
ple from the carton, not from the produc¬ 
tion lot or the production process. Only 
if the production process is in a “state of 
statistical control” may our sample also be 
considered to be a simple random sample 
from the production lot and the production 
process. In a similar fashion, a sample of 
repeated weighings can validly be consid¬ 
ered to be a random sample from the con¬ 
ceptually infinite population of repeated 
weighings by the same procedure only if 
the weighing procedure is in a state of sta¬ 
tistical control (see Chapter 18, in Section 4, 
ORDP 20-113). 

It is therefore important in practice to 
know from which of several possible “par¬ 
ent” populations a sample was obtained by 
simple random sampling. This population is 
termed the sampled population, and may be 
quite different from the population of inter¬ 
est, termed the target population, to which 
we would like our conclusions to be applica¬ 
ble. In practice, they are rarely identical, 
though the difference is often small. A sam¬ 
ple from the target population of rounds of 
ammunition produced by a particular pro¬ 
duction process will actually be a sample 
from one or more production lots (sampled 
population), and the difference between sam¬ 
pled and target populations will be smaller 
if the sampled population comprises a larger 
number of production lots. The further the 
sampled population is removed from the 
target population, the more the burden of 
validity of conclusions is shifted from the 
shoulders of the statistician to those of the 
subject matter expert, who must place 
greater and greater (and perhaps unwar¬ 
ranted) reliance on “other considerations.” 
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1-4 SELECTION OF A RANDOM SAMPLE 

As has been brought out previously, the 
method of choosing a sample is an all-im¬ 
portant factor in determining what use can 
be made of it. In order for the techniques 
described in this handbook to be valid as 
bases for making statements from samples 
about populations, we must have unrestricted 
random samples from these populations. In 
practice, it is not always easy to obtain a 
random sample from a given population. 
Unconscious selections and biases tend to 
enter. For this reason, it is advisable to use 
a table of random numbers as an aid in se¬ 
lecting the sample. Two tables of random 
numbers which are recommended are by 
L. H. C. Tippett'3' and The Rand Corpora¬ 
tion'4 >. These tables contain detailed instruc¬ 
tions for their use. An excerpt from one of 
these tables'4’ is given in Table A-36. This 
sample is included for illustration only; a 
larger table should be used in any actual 
problem. Repeated use of the same portion 
of a table of random numbers will not 
satisfy the requirements of randomness. 

An illustration of the method of use of 
tables of random numbers follows. Suppose 
the population consists of 87 items, and we 
wish to select a random sample of 10. Assign 
to each individual a separate two-digit num¬ 
ber between 00 and 86. In a table of ran¬ 
dom numbers, pick an arbitrary starting 
place and decide upon the direction of read¬ 

ing the numbers. Any direction may be 
used, provided the rule is fixed in advance 
and is independent of the numbers occurring. 
Read two-digit numbers from the table, and 
select for the sample those individuals whose 
numbers occur until 10 individuals have been 
selected. For example, in Table A-36, start 
with the second page of the Table (p. T-83), 
column 20, line 6, and read down. The 10 
items picked for the sample would thus be 
numbers 38, 44, 13, 73, 39, 41, 35, 07, 14, 
and 47. 

The method described is applicable for 
obtaining simple random samples from any 
sampled population consisting of a finite set 
of individuals. In the case of an infinite 
sampled population, these procedures do not 
apply. Thus, we might think of the sampled 
population for the target population of 

weighings as comprising all weighings which 

might conceptually have been made during 

the time while weighing was done. We can¬ 

not by mechanical randomization draw a 

random sample from this population, and so 

must recognize that we have a random sam¬ 

ple only by assumption. This assumption 

will be warranted if previous data indicate 

that the weighing procedure is in a state of 

statistical control; unwarranted if the con¬ 

trary is indicated; and a leap in the dark if 

no previous data are available. 

1-5 SOME PROPERTIES OF DISTRIBUTIONS 

Although it is unusual to examine popula¬ 
tions in their entirety, the examination of a 
large sample or of many small samples from 
a population can give us much information 
about the general nature of the population’s 
characteristics. 

One device for revealing the general na¬ 
ture of a population distribution is a histo¬ 

gram. Suppose we have a large number of 

observed items and a numerical measure¬ 

ment for each item, such as, for example, a 

Rockwell hardness reading for each of 5,000 

specimens. We first make a table showing 

the numerical measurement and the num¬ 

ber of times (i.e., frequency) this measure¬ 

ment was recorded. 
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Rockwell 
Hardness 
Number Frequency 

55 1 
56 17 
57 135 
58 503 
59 1,110 
60 1,470 
61 1,120 
62 490 
63 125 
64 26 
65 3 

Data taken, by permission, from Sampling Inspection by 
Variables by A. H. Bowker and H. P. Goode, Copyright, 1952, 

McGraw-Hill Book Company, Inc. 

From this frequency table we can make the 
histogram as shown in Figure 1-1. The 
height of the rectangle for any hardness 
range is determined by the number of items 
in that hardness range. The rectangle is 
centered at the tabulated hardness value. If 
we take the sum of all the rectangular areas 
to be one square unit, then the area of an 
individual rectangle is equal to the propor¬ 
tion of items in the sample that have hard¬ 
ness values in the corresponding range. 
When the sample is large, as in the present 
instance, the histogram may be taken to 
exemplify the general nature of the corre¬ 
sponding distribution in the population. 

If it were possible to measure hardness in 
finer intervals, we would be able to draw a 
larger number of rectangles, smaller in 
width than before. For a sufficiently large 
sample and a sufficiently fine “mesh,” we 
would be justified in blending the tops of the 
rectangles into a continuous curve, such as 
that shown in Figure 1-2, which we could 
expect to more nearly represent the under¬ 
lying population distribution. 

Figure 1-1. Histogram representing the dis¬ 
tribution of 5,000 Rockivell hardness 

readings. 

Reproduced by permission from Sampling Inspection by Vari¬ 
ables by A. H. Bowker and H. P. Goode, Copyright, 1952, 

McGraw-Hill Book Company, Inc. 

Figure 1-2. Normal curve fitted to the dis¬ 
tribution of 5,000 Rockivell hardness 

readings. 

Reproduced by permission from Sampling• Inspection by Vari¬ 
ables by A. H. Bowker and H. P. Goode, Copyright, 1952, 

McGraw-Hill Book Company, Inc. 
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If we were to carry out this sort of scheme 
on a large number of populations, we would 
find that many different curves would arise, 
as illustrated in Figure 1-3. Possibly, the 
majority of them would resemble the class 
of symmetrical bell-shaped curves called 
“normal” or “Gaussian” distributions, an ex¬ 
ample of which is shown in the center of 
Figure 1-3. A normal distribution is uni- 
modal, i.e., has only a single highest point 
or mode, as also are the two asymmetrical 
curves in the lower left and upper right of 
Figure 1-3. 

A “normal” distribution is completely de¬ 
termined by two parameters: m, the arith¬ 
metic mean (or simply “the mean”) of the 
distribution, and <r, the standard deviation 
(often termed the “population mean” and 
“population standard deviation”). The vari¬ 
ance of the distribution is cr2. Since a nor¬ 
mal curve is both unimodal and symmetrical, 

REVERSE J-SHAPED CURVE SKEW CURVE 
EXTREME POSITIVE MODERATE POSITIVE 

SKEWNESS SKEWNESS 

SYMMETRICAL CURVE 

SKEW CURVE 
MODERATE NEGATIVE SKEWNESS U-SHAPED CURVE 

Figure 1-3. Frequency distributions 
of various shapes. 

Adapted with permission from Elements of Statistical Reasoning 
by A. E. Treloar, Copyright, 1939, 

John Wiley & Sons, Inc. 

Figure 1-f. Three different normal 
distributions. 

m is also the mode and the value which di¬ 
vides the area under the curve in half, i.e., 
the median. It is useful to remember that 
cr is the distance from m to either of the two 
inflection points on the curve. (The inflec¬ 
tion point is the point at which the curve 
changes from concave upward to concave 
downward.) This is a special property of 
the normal distribution. More generally, the 
mean of a distribution m is the “center of 
gravity” of the distribution; cr is the “radius 
of gyration” of the distribution about m, in 
the language of mechanics; and cr2 is the 
second moment about m. 

The parameter m is the location param¬ 
eter of a normal distribution, while o- is a 
measure of its spread, scatter, or dispersion. 
Thus, a change in m merely slides the curve 
right or left without changing its profile, 
while a change in cr widens or narrows the 
curve without changing the location of its 
center. Three different normal curves are 
shown in Figure 1-4. (All normal curves in 
this section are drawn so that the area un¬ 
der the curve is equal to one, which is a 
standard convention.) 

Figure 1-5 shows the percentage of ele¬ 
ments of the population contained in various 
intervals of a normal distribution, z is the 
distance from the population mean in units of 
the standard deviation and is computed using 
the formula z = (X-m) /cr, where X repre¬ 
sents any value in the population. Using z 
to enter Table A-l, we find P, the proportion 
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of elements in the population which have 
values of z smaller than any given z. Thus, 
as shown in Fig. 1-5, 34.13% of the popula¬ 
tion will have values of z between 0 and 1 
(or between 0 and -1); 13.59% of the popu¬ 
lation, between 1 and 2 (or between -1 and 
-2); 2.14% between 2 and 3 (or between -2 
and -3); and .14% beyond 3 (or beyond -3). 
Figure 1-5 shows these percentages of the 
population in various intervals of z. 

For example, suppose we know that the 
chamber pressures of a lot of ammunition 
may be represented by a normal distribu¬ 
tion, with the average chamber pressure m — 
50,000 psi and standard deviation cr = 5,000 

. X —50,000 , . 
psi. Then z =—5”ooO—anc* we ^now (Fig- 

1-5) that if we fired the lot of ammunition 
in the prescribed manner we would expect 
50% of the rounds to have a chamber pres¬ 
sure above 50,000 psi, 15.9% to have pres¬ 
sures above 55,000 psi, and 2.3% to have 
pressures above 60,000 psi, etc. 

O 

Figure 1-5. Percentage of the population in 
various intervals of a normal distribution. 
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1-6 ESTIMATION OF m and cr 

In areas where a lot of experimental work 
has been done, it often happens that we know 
m or cr, or both, fairly accurately. However, 
in the majority of cases it will be our task 
to estimate them by means of a sample. Sup¬ 
pose we have n observations, Xu X2, . . ., Xn 
taken at random from a normal population. 
From a sample, what are the best estimates 
of m and <r? Actually, it is usual to com¬ 
pute the best unbiased estimates of m and cr2, 

and then take the square root of the estimate 
of cr2 as the estimate of cr. These recom¬ 
mended estimates of m and cr2 are: * 

* - s P‘ 

£ (X, - x)■ 

X and s2 are the sample mean and sample 
estimate of variance, respectively, (s is often 
called “the sample standard deviation,” but 
this is not strictly correct and we shall avoid 
the expression and simply refer to s.) For 
computational purposes, the following for¬ 
mula for s2 is more convenient: 

«(«-!) 

* The Greek symbol 2 is often used as shorthand 
for “the sum of.” For example, 

XJ = X, + X2 + X3 + X, 

X) (Xi + F.) = (Xi+F.) + (X2+F2) + (X3+F3) 

£ XXi = XiY, + X2F2 + X2Y3 

3 

X! c — c+c + c = 3c 

Nearly every sample will contain differ¬ 

ent individuals, and thus the estimates X 
and s2 of m and cr2 will differ from sample 
to sample. However, these estimates are 
such that “on the average” they tend to be 
equal to m and cr2, respectively, and in this 
sense are unbiased. If, for example, we have 
a large number of random samples of size 
n, the average of their respective estimates 
of cr2 will tend to be near cr2. Furthermore, 
the amount of fluctuation of the respective 

s2’s about cr2 (or of the X’s about m, if we 
are estimating m) will be smaller in a cer¬ 
tain well-defined sense than the fluctuation 
would be for any estimates other than the 

recommended ones. For these reasons, X 
and s2 are called the “best unbiased” esti¬ 
mates of m and cr2, respectively.* 

As might be expected, the larger the sam¬ 
ple size n, the more faith we can put in the 

estimates X and s2. This is illustrated in 
Figures 1-6 and 1-7. Figure 1-6 shows the 

distribution of X (sample mean) for samples 
of various sizes from the same normal dis¬ 
tribution. The curve for n = 1 is the distri¬ 
bution for individuals in the population. All 
of the curves are centered at m, the popula- 

* On the other hand, s is not an unbiased esti¬ 
mator of <r. Thus, in samples of size n from a nor¬ 
mal distribution, the situation is: 

Sample size, n 
s is an unbiased 

estimator of: 

2 0.797 a 

3 0.886 

4 0.921 

5 0.940 

6 0.952 

7 0.959 

8 0.965 

9 0.969 

10 0.973 

20 0.987 

30 0.991 
40 0.994 

60 0.996 
120 0.998 

00 1.000 
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tion mean, but the scatter becomes less as n 
gets larger. Figure 1-7 shows the distribu¬ 
tion of s2 (sample variance) for samples of 
various sizes from the same normal distri¬ 
bution. 

Figure 1-6. Sampling distribution of X for 
random samples of size n from a normal 

population with mean m. 

Reproduced by permission from The Methods of Statistics, 
4th ed., by L. H. C. Tippett, Copyright, 1952, John Wiley & 

Sons, Inc. 

Figure 1-7. Sampling distribution of s2 for 
sample size n from a normal population 

with a = 1. 

Adapted with permission from Some Theory of Sampling, by 
W. Edwards Deming, Copyright, 1950, John Wiley & Sons, Inc. 

1-7 CONFIDENCE INTERVALS 

Inasmuch as estimates of m and cr vary 
from sample to sample, interval estimates 
of m and cr may sometimes be preferred to 
“single-value” estimates. Provided we have 
a random sample from a normal population, 
we can make interval estimates of m or cr 

with a chosen degree of confidence. The level 

of confidence is not associated with a par¬ 

ticular interval, but is associated with the 

method of calculating the interval. The in¬ 

terval obtained from a particular sample 

either brackets the true parameter value 

(m or cr, whichever we are estimating) or 

does not. The confidence coefficient y is sim¬ 

ply the proportion of samples of size n for 
which intervals computed by the prescribed 
method may be expected to bracket m (or 
cr). Such intervals are known as confidence 
intervals, and always are associated with a 
prescribed confidence coefficient. As we 
would expect, larger samples tend to give 
narrower confidence intervals for the same 
level of confidence. 

Suppose we are given the lot of ammuni¬ 
tion mentioned earlier (Par. 1-5) and wish 
to make a confidence interval estimate of 
the average chamber pressure of the rounds 
in the lot. The true average is 50,000 psi, 
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although this value is unknown to us. Let 
us take a random sample of four rounds and 
from this sample, using the given procedure, 
calculate the upper and lower limits for our 
confidence interval. Consider all the possi¬ 
ble samples of size 4 that could have been 

taken, and the resulting confidence intervals 
computed from each. If we compute 50% 
(90%) confidence intervals, then we expect 
50% (90%) of the computed intervals to 
cover the true value, 50,000 psi. See Fig¬ 
ure 1-8. 

60,000 

5 0,000 

40,000 

-1 
' 11 ■. 11. . ,1 i. Jill,lii | I iP| 1^ | |l.'ll il|^ 

, i1 Li 
Uh i11111 1 jIL LL 

tvH njpFTH 
j'lV1 'I" Jlll'l 1 

_. i i—1—i_i i  

N1 Ml1 1 
1 1 

_i_1_i_1_i 
1 i 

1 I1 . 

CASE A,50% CONFIDENCE INTERVALS 

Figure 1-8. Computed confidence intervals for 100 samples of size 4 drawn at random from 
a normal population with m = 50,000 psi, <t — 5,000 psi. Case A shows 50% confidence 

intervals; Case B shows 90% confidence intervals. 

Adapted with permission from ASTM Manual on Quality Control of Materials, Copyright, 1951, American Society for Testing 
Materials. 
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In Case A of Figure 1-8, 51 of the 100 

intervals actually include the true mean. For 

50% confidence interval estimates, we would 

expect in the long run that 50% of the inter¬ 

vals would include the true mean. Fifty-one 

out of 100 is a reasonable deviation from the 

expected 50%. In Case B, 90 out of 100 of 

the intervals contain the true mean. This is 

precisely the expected number for 90% inter¬ 

vals. 

Note also (Fig. 1-8) that the successive 

confidence intervals vary both in position 

and width. This is because they were com¬ 

puted (see Par. 2-1.4) from the sample 

statistics X and s, both of which vary from 
sample to sample. If, on the other hand, 
the standard deviation of the population 
distribution ar were known, and the con¬ 
fidence intervals were computed from the 

successive X’s and <r (procedure given in 
Par. 2-1.5), then the resulting confidence 
intervals would all be the same width, and 
would vary in position only. 

Finally, as the sample size increases, con¬ 
fidence intervals tend not only to vary less 
in both position and width, but also to 
“pinch in” ever closer to the true value of 
the population parameter concerned, as illus¬ 
trated in Figure 1-9. 

SAMPLE NUMBER 

Figure 1-9. Computed 50% confidence intervals for the population mean m from 100 
samples of 1+, 1+0 samples of 100, and 1+ samples of 1000. 

Adapted with permission from Statistical Method from the Viewpoint of Quality Control by W. A. Shewhart (edited by W. Edwards 
Deming), Copyright, 1939, Graduate School, U.S. Department of Agriculture, Washington, D. C. 
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1-8 STATISTICAL TOLERANCE LIMITS 

Sometimes what is wanted is not an esti¬ 
mate of the mean and variance of the popu¬ 
lation distribution but, instead, two outer 
values or limits which contain nearly all of 
the population values. For example, if ex¬ 
tremely low chamber pressures or extremely 
high chamber pressures might cause serious 
problems, we may wish to know approxi¬ 
mate limits to the range of chamber pres¬ 
sures in a lot of ammunition. More spe¬ 
cifically, we may wish to know within what 
limits 99%, for example, of the chamber 
pressures lie. If we knew the mean to and 
standard deviation cr of chamber pressures 
in the lot, and if we knew the distribution 
of chamber pressures to be normal (or very 
nearly normal), then we could take to — 3cr 
and to + 3a- as our limits, and conclude that 

approximately 99.7% of the chamber pres¬ 
sures lie within these limits (see Fig. 1-5). 
If we do not know to and <r, then we may 
endeavor to approximate the limits with 
statistical tolerance limits of the form 
X — Ks and X + Ks, based on the sample 
statistics X and s, with K chosen so that we 
may expect these limits to include at least P 
percent of the chamber pressures in the lot, 
at some prescribed level of confidence a. 

Three sets of such limits for P = 99.7%, 
corresponding to sample sizes n = 4, 100, 
and 1,000, are shown by the bars in Figure 
1-10. It should be noted that for samples of 
size 4, the bars are very variable both in 
location and width, but that for n = 100 and 
n = 1,000, they are of nearly constant width 

Figure 1-10. Computed statistical tolerance limits for 99.7% of the population from 100 
samples of size f, 1+0 samples of size 100, and 1+ samples of size 1000. 

Adapted with permission from Statistical Method from the Viewpoint of Quality Control by W. A. Shewhart (edited by W. Edwards 

Deming), Copyright, 1939, Graduate School, U.S. Department of Agriculture, Washington, D. C. 
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and position—and their end points approxi¬ 
mate very closely to m — So- and m + 3o\ In 
other words, statistical tolerance intervals 
tend to a fixed size (which depends upon P) 
as the sample size increases, whereas con¬ 
fidence intervals shrink down towards zero 
width with increasing sample size, as illus¬ 
trated in Figure 1-9. 

The difference in the meanings of the 
terms confidence intervals, statistical toler¬ 
ance limits, and engineering tolerance limits 

should be noted. A confidence interval is an 
interval within which we estimate a given 
population parameter to lie (e.g., the popula¬ 
tion mean m with respect to some character¬ 
istic) . Statistical tolerance limits for a given 
population are limits within which we ex¬ 
pect a stated proportion of the population 
to lie with respect to some measurable char¬ 
acteristic. Engineering tolerance limits are 
specified outer limits of acceptability with 
respect to some characteristic usually pre¬ 
scribed by a design engineer. 

1-9 USING STATISTICS TO MAKE DECISIONS 

1-9.1 APPROACH TO A DECISION PROBLEM 

Consider the following more-or-less typical 
practical situation: Ten rounds of a new 
type of shell are fired into a target, and the 
depth of penetration is measured for each 
round. The depths of penetration are 10.0, 
11.1, 10.5, 10.5, 11.2, 10.8, 9.8, 12.2, 11.0, 
and 9.9 cm. The average penetration depth 
of the comparable standard shell is 10.0 cm. 
We wish to know whether the new type shells 
penetrate farther on the average than the 
standard type shells. 

If we compute the arithmetic mean of the 
ten shells, we find it is 10.70 cm. Our first 
impulse might be to state that on the aver¬ 
age the new shell will penetrate 0.7 cm. 
farther than the standard shell. This, in¬ 
deed, is our best single guess, but how sure 
can we be that this actually is close to the 
truth ? One thing that might catch our notice 
is the variability in the individual penetra¬ 
tion depths of the new shells. They range 
from 9.8 cm. to 12.2 cm. The standard devi¬ 
ation as measured by s calculated from the 
sample is 0.73 cm. Might not our sample of 
ten shells have contained some atypical ones 
of the new type which have unusually high 
penetrating power ? Could it be that the new 
shell is, on the average, no better than the 
standard one? If we were obliged to decide, 

on the basis of the results obtained from 
these ten shells alone, whether to keep on 
making the standard shells or to convert 
our equipment to making the new shell, how 
can we make a valid choice ? 

A very worthwhile step toward a solution 
in such situations is to compute, from the 
data in hand, a confidence interval for the 
unknown value of the population parameter 
of interest. The procedure (given in Par. 
2-1.4) applied to the foregoing depth-of- 
penetration data for the new type of shell 
yields the interval from 10.18 to 11.22 cm. 
as a 95% confidence interval for the popu¬ 
lation mean depth of penetration of shells 
of the new type. Inasmuch as this interval 
lies entirely to the right of the mean for 
the standard shell, 10.00 cm., we are jus¬ 
tified in concluding that the new shell is, 
on the average, better than the standard, 
with only a 5% risk of being in error. 
Nevertheless, taking other considerations 
into account (e.g., cost of the new type, cost 
of changing over, etc.), we may conclude 
finally that the improvement—which may be 
as little as 0.18 cm., and probably not more 
than 1.22 cm.—is not sufficient to warrant 
conversion to the new type. On the other 
hand, the evidence that the new type is al¬ 
most certainly better plus the prospect that 
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the improvement may be as great as 1.22 cm. 
may serve to recommend further develop¬ 
mental activity in the direction “pioneered” 
by the new type. 

A somewhat different approach, which 
provides a direct answer to our question 
“Could it be that the new shell is on the 
average no better than the standard?” but 
not to the question of whether to convert to 
the new type, is to carry out a so-called test 
of significance (or test of a statistical hy¬ 
pothesis). In the case of the foregoing ex¬ 
ample, the formal procedure for the corre¬ 
sponding test of significance (Par. 3-2.2.1) 
turns out to be equivalent (as explained in 
ORDP 20-113, Chapter 21) to noting whether 
or not the confidence interval computed does 
or does not include the population mean for 
the standard shell (10.0 cm.). If, as in the 
present instance, the population mean for 
the standard shell is not included, this is 
taken to be a negative answer to our ques¬ 
tion. In other words, this is taken to be 
conclusive evidence (at the 5% level of sig¬ 
nificance) against the null hypothesis that 
“the new shell is on the average no better 
than the standard.” Rejection of the null 
hypothesis in this case is equivalent to ac¬ 
cepting the indefinite alternative hypothesis 
that “the new shell is better on the average 
than the standard.” If, on the other hand, 
the population mean for the standard shell 
is included in the confidence interval, this 
is taken as an affirmative answer to our 
question—not in the positive sense of defi¬ 
nitely confirming the null hypothesis (“is 
no better”), but in the more-or-less neutral 
sense of the absence of conclusive evidence 
to the contrary. 

As the foregoing example illustrates, an 
advantage of the confidence-interval ap¬ 
proach to a decision problem is that the con¬ 
fidence interval gives an indication of how 
large the difference, if any, is likely to be, 
and thus provides some of the additional 
information usually needed to reach a final 
decision on the action to be taken next. For 
many purposes, this is a real advantage of 
confidence intervals over tests of significance. 

However, all statistical decision problems 
are not amenable to solution via confidence 
intervals. For instance, the question at issue 
may be whether or not two particular char¬ 
acteristics of shell performance are mutually 
independent. In such a situation, any one 
of a variety of tests of significance can be 
used to test the null hypothesis of “no de¬ 
pendence.” Some of these may have a rea¬ 
sonably good chance of rejecting the null 
hypothesis, and thus “discovering” the ex¬ 
istence of a dependence when a dependence 
really exists—even though the exact nature 
of the dependence, if any, is not understood 
and a definitive measure of the extent of 
the dependence in the population is lacking. 

A precise test of significance will be possi¬ 
ble if: (a) the sampling distribution of some 
sample statistic is known (at least to a good 
approximation) for the case of “no depend¬ 
ence”; and (b) the effect of dependence on 
this statistic is known (e.g., tends to make 
it larger). For a confidence-interval ap¬ 
proach to be possible, two conditions are 
necessary: (a) there must be agreement on 
what constitutes the proper measure (pa¬ 
rameter) of dependence of the two charac¬ 
teristics in the population; and, (b) there 
must be a sample estimate of this depend¬ 
ence parameter whose sampling distribution 
is known, to a good approximation at least, 
for all values of the parameter. Confidence 
intervals tend to provide a more complete 
answer to statistical decision problems when 
they are available, but tests of significance 
are of wider applicability. 

1-9.2 CHOICE OF NULL AND ALTERNATIVE 

HYPOTHESES 

A statistical test always involves a null 
hypothesis, which is considered to be the 
hypothesis under test, as against a class of 
alternative hypotheses. The null hypothesis 
acts as a kind of “origin” or “base” (in the 
sense of “base line”), from which the alter¬ 
native hypotheses deviate in one way or an¬ 
other to greater and lesser degrees. Thus, 
in the case of the classical problem of the 
tossing of a coin, the null or base hypothesis 
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specifies that the probability of “heads” on 
any single trial equals 1/2. If, in a par¬ 
ticular situation, the occurrence of “heads” 
were an advantage, then we might be par¬ 
ticularly interested in the one-sided class of 
alternative hypotheses that the probability 
of “heads” on any single trial equals P, 
where P is some (unknown) fraction ex¬ 
ceeding 1/2. If neither “heads” nor ‘tails” 
were intrinsically advantageous, but a bias 
in favor of either could be employed to ad¬ 
vantage, then we could probably be inter¬ 
ested in the more general two-sided class 
of alternative hypotheses specifying that the 
probability of “heads” on any single toss 
equals P, where P is some fraction (less 
than, or greater than, but) not equal to 1/2. 

The important point is that the null hy¬ 
pothesis serves as an origin or base. In the 
coin-tossing instance, it also happens to be 
a favored, or traditional, hypothesis. This 
is merely a characteristic of the example 
selected. Indeed, the null hypothesis is often 
the very antithesis of what we would really 
like to be the case. 

1-9.3 TWO KINDS OF ERRORS 

In basing decisions on the outcomes of 
statistical tests, we always run the risks of 
making either one or the other of two types 
of error. If we reject the null hypothesis 
when it is true, e.g., announce a difference 
which really does not exist, then we make an 
Error of the First Kind. If we fail to reject 
a null hypothesis when it is false, e.g., fail 
to find an improvement in the new shell over 
the old when an improvement exists, then 
we make what is called an Error of the Sec¬ 
ond Kind. Although we do not know in a 
given instance whether we have made an 
error of either kind, we can know the prob¬ 
ability of making either type of error. 

1-9.4 SIGNIFICANCE LEVEL AND OPERATING 

CHARACTERISTIC (OC) CURVE OF 
A STATISTICAL TEST 

The risk of making an error of the first 
kind, a, equals what is by tradition called 

the level of significance of the test. The risk 
of making an error of the second kind, (3, 
varies, as one would expect, with the magni¬ 
tude of the real difference, and is summa¬ 
rized by the Operating Characteristic (OC) 
Curve of the test. See, for example, Figure 
3-5. Also, the risk (3 of making an error of 
the second kind increases as the risk a of 
making an error of the first kind decreases. 
Compare Figure 3-5 with Figure 3-6. Only 
with “large” samples can we “have our cake 
and eat it too”—and then there is the cost 
of the test to worry about. 

1-9.5 CHOICE OF THE SIGNIFICANCE LEVEL 

The significance level of a statistical test 
is essentially an expression of our reluctance 
to give up or “reject” the null hypothesis. 
If we adopt a “stiff” significance level, 0.01 
or even 0.001, say, this implies that we are 
very unwilling to reject the null hypothesis 
unjustly. A consequence of our ultracon¬ 
servatism in this respect will usually be that 
the probability of not rejecting the null hy¬ 
pothesis when it is really false will be large 
unless the actual deviation from the null 
hypothesis is large. This is clearly an en¬ 
tirely satisfactory state of affairs if we are 
quite satisfied with the status quo and are 
only interested in making a change if the 
change represents a very substantial im¬ 
provement. For example, we may be quite 
satisfied with the performance of the stand¬ 
ard type of shell in all respects, and not be 
willing to consider changing to the new type 
unless the mean depth of penetration of the 
new type were at least, say, 20% better 
(12.0 cm.). 

On the other hand, the standard shell may 
be unsatisfactory in a number of respects 
and the question at issue may be whether 
the new type shows promise of being able 
to replace it, either “as is” or with further 
development. Here “rejection” of the null 
hypothesis would not imply necessary aban¬ 
donment of the standard type and shifting 
over to the new type, but merely that the 
new type shows “promise” and warrants 
further investigation. In such a situation, 
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one could afford a somewhat higher risk of 

rejecting the null hypothesis falsely, and 

would take a = 0.05 or 0.10 (or even 0.20, 

perhaps), in the interest of increasing the 

chances of detecting a small but promising 

improvement with a small-scale experiment. 

In such exploratory work, it is often more 

important to have a good chance of detecting 

a small but promising improvement than to 

protect oneself against crying “wolf, wolf” 

occasionally—because the “wolf, wolf” will 

be found out in due course, but a promising 

approach to improvement could be lost for¬ 

ever. 

In summary, the significance level a of 

a statistical test should be chosen in the 

light of the attending circumstances, includ¬ 

ing costs. We are sometimes limited in the 

choice of significance level by the availability 

of necessary tables for some statistical tests. 

Two values of a, a — .05 and a = .01, have 

been most frequently used in research and 

development work; and are given in tabula¬ 

tions of test statistics. We have adopted 

these “standard” levels of significance for 

the purposes of this handbook. 

1-9.6 A WORD OF CAUTION 

Many persons who regularly employ sta¬ 

tistical tests in the interpretation of research 

and development data do not seem to realize 

that all probabilities associated with such 

tests are calculated on the supposition that 

some definite set of conditions prevails. 

Thus, a, the level of significance (or proba¬ 

bility of an error of the first kind), is com¬ 

puted on the assumption that the null hy¬ 

pothesis is strictly true in all respects; and 

P, the risk of an error of the second kind, 

is computed on the assumption that a par¬ 

ticular specific alternative to the null hypoth¬ 

esis is true and that the statistical test con¬ 

cerned is carried out at the a-level of signifi¬ 

cance. Consequently, whatever may be the 

actual outcome of a statistical test, it is 

mathematically impossible to infer from the 

outcome anything whatsoever about the odds 
for or against some particular set of condi¬ 
tions being the truth. 

Indeed, it is astonishing how often errone¬ 
ous statements of the type “since r exceeds 
the 1% level of significance, the odds are 99 
to 1 that there is a correlation between the 
variables” occur in research literature. How 
ridiculous this type of reasoning can be is 
brought out by the following simple exam¬ 
ple(5): The American Experience Mortality 
Table gives .01008 as the probability of an 
individual aged 41 dying within the year. 
If we accept this table as being applicable to 
living persons today (which is analogous to 
accepting the published tables of the signif¬ 
icance levels of tests which we apply to our 

data), and if a man’s age really is 41, then 

the odds are 99 to 1 that he will live out the 

year. On the other hand, if we accept the 

table and happen to hear that some promi¬ 

nent individual has just died, then we cannot 

(and would not) conclude that the odds are 

99 to 1 that his age was different from 41. 

Suppose, on the other hand, that in some 

official capacity it is our practice to check 

the accuracy of age statements of all persons 

who say they are 41 and then die within the 

year. This practice (assuming the applica¬ 

bility of the American Experience Mortality 

Table) will lead us in the long run to suspect 

unjustly the word of one person in 100 whose 

age was 41, who told us so, and who then 

was unfortunate enough to die within the 

year. The level of significance of the test is 

in fact 0.01008 (1 in 100). On the other 

hand, this practice will also lead us to dis¬ 

cover mis-statements of age of all persons 

professing to be 41 who are really some other 

age and who happen to die within the year. 

The probabilities of our discovering such 

mis-statements will depend on the actual 

ages of the persons making them. We shall, 

however, let slip by as correct all statements 

“age 41” corresponding to individuals who 

are not 41 but who do not happen to die 

within the year. 
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The moral of this is that all statistical 
tests can and should be viewed in terms of 
the consequences which may be expected to 
ensue from their repeated use in suitable 
circumstances. When viewed in this light, 

the great risks involved in drawing conclu¬ 
sions from exceedingly small samples be¬ 
comes manifest to anyone who takes the 
time to study the OC curves for the statis¬ 
tical tests in common use. 
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CHAPTER 2 

CHARACTERIZING THE MEASURED PERFORMANCE OF 

A MATERIAL, PRODUCT, OR PROCESS 

2-1 ESTIMATING AVERAGE PERFORMANCE FROM A SAMPLE 

2-1.1 GENERAL 

In this Chapter we present two important 
kinds of estimates of the average perform¬ 
ance of a material, product, or process from 
a sample. These include the best single esti¬ 
mate, and confidence interval estimates.* 

Specific procedures are given for obtaining 
confidence interval estimates when: 

(a) we have a sample from a normal 
population whose variability is unknown; 
and, 

(b) we have a sample from a normal 
population whose variability is known. 

When the departures from normality are 
not great, or when the sample sizes are 
moderately large, interval estimates made 
as described in Paragraphs 2-1.4 and 2-1.5 
will have confidence levels very little differ¬ 
ent from the chosen or nominal level. 

The following data will serve to illustrate 
the application of the procedures. 

Data Sample 2-1—Thickness of Mica Washers 

Form: Measurements Xu X2, . . ., Xn of n 
items selected independently at ran¬ 
dom from a much larger group. 

* The reader who is not familiar with the mean¬ 
ing and interpretation of confidence intervals should 
refer to Chapter 1, and to Paragraph 2-1.3 of this 
Chapter. 

Example: Ten mica washers are taken at 
random from a large group, and their 
thicknesses measured in inches: 

.123 .132 

.124 .123 

.126 .126 

.129 .129 

.120 .128 

In general, what can we say about the 
larger group on the basis of our sample? 
We show how to answer two questions: 

(a) What is our best guess as to the aver¬ 
age thickness in the whole lot ? 

(b) Can we give an interval which we 
expect, with certain confidence, to bracket 
the true average—i.e., a confidence interval? 

These two questions are answered in the 
paragraphs which follow, using the data 
shown above. Another question, which is 
sometimes confused with (b) above, is 
treated in Paragraph 2-5. This is the ques¬ 
tion of setting statistical tolerance limits, or 
estimating an interval which will include, 
with prescribed confidence, a specified pro¬ 
portion of the individual items in the popu¬ 
lation. 

2-1.2 BEST SINGLE ESTIMATE 

The most common and ordinarily the best 
single estimate of the population mean m is 
simply the arithmetic mean of the measure¬ 
ments. 
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Procedure 

Compute the arithmetic mean X of the n 
measurements Xu X2,..., Xn. 

* = s(sXi) 
Example 

Compute the arithmetic mean X of 10 
measurements (Data Sample 2-1): 

,-r .123 + .124 + .126 + . . . + .128 
A “ 10 

1.260 
10 

= .1260 inch 

2-1.3 SOME REMARKS ON CONFIDENCE 

INTERVAL ESTIMATES 

When we take a sample from a lot or a 
population, the sample average will seldom 
be exactly the same as the lot or population 
average. We do hope that it is fairly close, 
and we would like to state an interval which 
we are confident will bracket the lot mean. 
If we made such interval estimates in a 
particular fashion a large number of times, 
and found that these intervals actually did 
contain the true mean in 99% of the cases, 
we might say that we were operating at a 
99% confidence level. Our particular kind 

of interval estimates might likewise be called 
“99% confidence intervals.” Similarly, if 
our intervals included the true average 
“95% of the time”—strictly, in 95% of the 
times or instances involved—we would be 
operating at a 95% confidence level, and our 
intervals would be called 95% confidence in¬ 
tervals. In general, if in the long run we 
expect 100(1 — a) % of our intervals to con¬ 
tain the true value, we are operating at the 
100(1 — a) % confidence level. 

We may choose whatever confidence level 
we wish. Confidence levels y commonly used 
are 99% and 95%, which correspond to 
a = .01 and a = .05. If we wish to estimate 
the mean of some characteristic of a large 
group (population) using the results of a 
random sample from that group, the proce¬ 
dures of Paragraphs 2-1.4 and 2-1.5 will 
allow us to make interval estimates at any 
chosen confidence level. It is assumed that 
the characteristic of interest has a normal 
distribution in the population. We may elect 
to make a two-sided interval estimate, ex¬ 
pected to bracket the mean from both above 
and below; or we may make a one-sided in¬ 
terval estimate, limited on either the upper 
or the lower side, which is expected to con¬ 
tain the mean and to furnish either an upper 
or a lower bound to its magnitude. 

2-1.4 CONFIDENCE INTERVALS FOR THE POPULATION MEAN WHEN KNOWLEDGE 

OF THE VARIABILITY CANNOT BE ASSUMED 

2-1.4.1 Two-Sided Confidence Interval 

This procedure gives an interval which is expected to bracket m, the true mean, 100 (l-cc) % 
of the time. 

Procedure 

Problem: What is a two-sided 100 (1 — a) % 
confidence interval for the true mean m? 

(1) Choose the desired confidence level, 1 — a 

Example 

Problem: What is a two-sided 95% confidence 
interval for the mean thickness in the lot? 
(Data Sample 2-1) 

(1) Let 1 - a = .95 
a = .05 

(2) Compute: (2) 
X, the arithmetic mean (see Paragraph 

2-1.2), and 

-4 InZX* - (ZX)2 
n (n — 1) 

X = .1260 inch 

= 0.00359 inch 
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Procedure 

(3) Look up t = ti-a/2 for n — 1 degrees of 
freedom* in Table A-4. 

(4) Compute: 

Xu = X + t -i= 
vti 

XL = X - <-^= 
V n 

Conclude: The interval from XL to Xu is a 
100 (1 — a) % confidence interval for the 
population mean; i.e., we may assert with 
100 (1 — a) % confidence that XL < m < Xv. 

Example 

(3) t = <.976 for 9 degrees of freedom 
= 2.262 

(4) 

Y io,n , 2.262 (.00359) 

x“--1260 +vl- 
= .1286 inch 

1260 . 2,262 000359) 

Vio 
= .1234 inch 

Conclude: The interval from .1234 to .1286 inch 
is a 95% confidence interval for the lot mean; 
i.e., we may assert with 95% confidence that 
.1234 inch < lot mean < .1286 inch. 

2-1.4.2 One-Sided Confidence Interval 

The preceding computations can be used to make another kind of confidence interval state¬ 
ment. We can say that 100 (a/2) % of the time the entire interval in Paragraph 2-1.4.1 will 
lie above the true mean (i.e., XL, the lower limit of the interval will be larger than the true 
mean). The rest of the time—namely 100(1 —a/2) % of the time—XL will be less than the 
true mean. Hence the interval from XL to + oo is a 100(1 —a/2) % one-sided confidence in¬ 
terval for the true mean. In the example, Paragraph 2-1.4.1, 100(1 —a/2) % equals 97.5%. 
Thus, either of two open-ended intervals, “larger than .1234 inch,” or “less than .1286 inch” 
can be called a 97.5% one-sided confidence interval for the population mean. 

We now give the step-by-step procedure for determining a one-sided confidence interval 
for the population mean corresponding to a different choice of confidence level. 

* In A Dictionary of Statistical Terms,0) we find the following, under the phrase 
‘degrees of freedom”: 

“This term is used in statistics in slightly different senses. It was introduced by 
Fisher on the analogy of the idea of degrees of freedom of a dynamical system, that 
is to say the number of independent coordinate values which are necessary to deter¬ 
mine it. In this sense the degrees of freedom of a set of observations (which ex 
hypotliesi are subject to sampling variation) is the number of values which could be 
assigned arbitrarily within the specification of the system; for example, in a sample 
of constant size n grouped into k intervals there are k — 1 degrees of freedom be¬ 
cause, if A: — 1 frequencies are specified, the other is determined by the total size n; 

A sample of n variate values is said to have n degrees of freedom, whether the 
variates are dependent or not, and a statistic calculated from it is, by a natural exten¬ 
sion, also said to have n degrees of freedom. But, if k functions of the sample values 
are held constant, the number of degrees of freedom is reduced by k. For example, 

the statistic ^ (x< — x)2 where x is the sample mean, is said to have n — 1 

degrees of freedom. . . .” 

In this example, s2 = X; (Xi ~ x)2/(n ~ 1) and has “n ~ 1” degrees of freedom. 
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Procedure Example 

Problem: What is a one-sided 100 (1 — a) % 
confidence interval for the true mean? 

Problem: What is a value which we expect, with 
99% confidence, to be exceeded by the lot 
mean? (Alternatively, what is a value which we 
expect, with 99% confidence, to exceed the lot 
mean?) (Data Sample 2-1) 

(1) Choose the desired confidence level, 1 — a. (1) Let 1 - « = .99 
a = 0.01. 

(2) Compute: 
X 
s 

(2) 
X = .1260 inch 
s = 0.00359 inch 

(3) Look up t = ti_a for n — 1 degrees of free¬ 
dom in Table A-4. 

(3) t = <.99 for 9 degrees of freedom 
= 2.821 

(4) Compute: (4) 

Xi = X -t^= 
Vn 

(or compute 

XL — .1260 (2.821) C00359) 
Vio 

= .1228 

xi~x + ,vn) (or Xu = .1292) 

Conclude: We are 100 (1 — a) % confident that 
the lot mean m is greater than X'L (or, we are 
100 (1 — a) % confident that the lot mean m 
is less than Xu), i.e., we may assert with 
100 (1 — a) % confidence that m > XL (or, 
that m < Xu). 

Conclude: We are 99% confident that the lot 
mean is greater than .1228 inch (or, we are 99% 
confident that the lot mean is less than .1292 
inch), i.e., we may assert with 99% confidence 
that mean thickness in lot > .1228 inch (or, 
that mean thickness in lot < .1292 inch). 

2-1.5 CONFIDENCE INTERVAL ESTIMATES WHEN WE HAVE PREVIOUS KNOWLEDGE 

OF THE VARIABILITY 

We have assumed in the previous paragraph (2-1.4) that we had no previous information 
about the variability of performance of items and were limited to using an estimate of vari¬ 
ability obtained from the sample at hand. Suppose that in the case of the mica washers we 
had taken samples many times previously from the same process and found that, although 
each lot had a different average, there was always essentially the same amount of variation 
within a lot. We would then be able to take a, the standard deviation of the lot, as known and 
equal to the value indicated by this previous experience. This assumption should not be made 
casually, but only when warranted after real investigation of the stability of the variation 
among samples, using control chart techniques. 

The procedure for computing these confidence intervals is simple. In the procedures of 
Paragraph 2-1.4, merely replace s by cr and t by z and the formulas remain the same. Values 
of z are given in Table A-2. Note that tP for an infinite number of degrees of freedom 
(Table A-4) is exactly equal to zP. The following procedure is for the two-sided confidence 
interval. 
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Procedure 

Problem: Find a two-sided 100 (1 — a) % confi¬ 
dence interval for the lot mean, using known a. 

(1) Choose the desired confidence level, 1 — a. 

(2) Compute: 
X 

Example 

Problem: What is a two-sided 95% confidence 
interval for the lot mean? (Data Sample 2-1; 
and tr is known to equal .0040 inch.) 

(1) Let 1 - a = .95 
a = .05 

(2) 
X = .1260 inch 

(3) 2 — 2.975 

= 1.960 
(3) Look up 2 = Zi—a/2 in Table A-2. 

(4) Compute: 

Xu = X + 2 — 
V n 

XL = X-z-^= 
vn 

Conclude: The interval from XL to Xv is a 
100 (1 — a) % confidence interval for the lot 
mean. 

(4) 

Xu = .1260 + 1.960 
ViO 

= .1285 
XL = .1235 

Conclude: The interval from .1235 to .1285 inch 
is a 95% confidence interval for the lot mean. 

Discussion: When the value of cr, the standard deviation in the population, is known, Pro¬ 
cedure 2-1.5 should always be used in preference to Procedure 2-1.4, which is independent 
of our knowledge of cr. When available, Procedure 2-1.5 (cr known) will usually lead to a 
confidence interval for the population mean that is narrower than the confidence interval 
that would have been obtained by Procedure 2-1.4 (cr unknown). This is the case for our 
illustrative examples based on Data Sample 2-1, but the difference is very slight because 
o- and s were both very small—only 0.03% of the mean. 

Whatever level of confidence is chosen, the t value required for the application of Proce¬ 
dure 2-1.4 (cr unknown) will always be larger than the corresponding z value required for 
Procedure 2-1.5 (cr known). This is evident from Table A-4. For very small samples, the 
difference can be considerable. Nevertheless, it can happen, as a result of unusual sampling 
fluctuations, that the value of s obtained in a particular sample is so small in comparison to 
cr that, if Procedure 2-1.4 (cr unknown) were used, the resulting confidence interval 
would be narrower than the confidence interval given by Procedure 2-1.5 (cr known). This 
would have been the case, for instance, if Data Sample 2-1 had yielded an s less than 
1.960 (0.0040)/2.262 = 0.00347. With samples of size 10 (i.e., 9 degrees of freedom for s), 
the probability of such an occurrence is about one in three. In such a case, however, one 
must NOT adopt the confidence interval corresponding to Procedure 2-1.4 (cr unknown) be¬ 
cause it is narrower. To choose between Procedure 2-1.4 (cr unknown) and Procedure 2-1.5 
(cr known), when the value of cr IS known, by selecting the one which yields the narrower 
confidence interval in each instance, would result in a level of confidence somewhat lower 
than claimed. 
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2-2 ESTIMATING VARIABILITY OF PERFORMANCE FROM A SAMPLE 

2-2.1 GENERAL 

We take the standard deviation of per¬ 
formance in the population as our measure of 
the characteristic variability of performance. 
Presented here are various ways of estimat¬ 
ing the population standard deviation, in¬ 
cluding: 

(a) single-value estimates; 
(b) confidence-interval estimates based 

on random samples from the population; 
and, 

(c) techniques for estimating the popula¬ 
tion standard deviation when no appropriate 
random samples are available. 

The first two procedures are illustrated by 
application to the following data. 

Data Sample 2-2—Burning Time of 

Rocket Powder 

Form: n independent measurements Xu X2, 
. . ., Xn selected at random from a 
much larger group. 

Example: Ten unit amounts of rocket pow- 
der selected at random from a large 
lot were tested in a chamber and 
their burning times recorded as fol- 
lows (seconds) : 

50.7 69.8 
54.9 53.4 
54.3 66.1 

44.8 48.1 
42.2 35.5 

2-2.2 SINGLE ESTIMATES 

2-2.2.1 s2 and s 

The best estimate of cr2, 
normal population, is: 

, the variance of a 

SCX, X)2 X)X2 '-1- 7 
„■> i=i i=i n 

n - 1 n — 1 

For computational purposes, we usually find 
it more convenient to use 
mula: 

the following for- 

»txj-| i=1 :w 
n (n — 1) 

The formulas are algebraically identical. 
With any formula, it is important to carry 

a sufficient number of decimal places. If 
too few places are carried, the subtractions 
involved may result in a loss of significant 
figures in s2. Excessive rounding may even 
lead to a negative value for s2. The formula 
recommended for computational purposes is 
to be preferred on this account because only 
one subtraction is involved; and with a desk 
calculator one usually can retain all places in 
the computation of 2Xj2 and (2Xi)2. 

We take 

Fit*-(it*)' 
\ n (n — 1) 

as our estimate of cr, the population standard 
deviation. 
Example: Using Data Sample 2-2, 2X- = 
27987.54, ZXj = 519.8, and thus s2 = 107.593; 
and s = 10.37 seconds.* 

2-2.2.2 The Sample Range as an Estimate of 

the Standard Deviation 

The range of n observations is defined as 
the difference between the highest and the 

TABLE 2-1. TABLE OF FACTORS FOR CONVERT¬ 
ING THE RANGE OF A SAMPLE OF n TO AN 
ESTIMATE OF <7, THE POPULATION STANDARD 

DEVIATION. ESTIMATE OF <r = RANGE/d„ 

Size of 
Sample 

n 

d„ 1 

d„ 

Vn 
[See Nofe] 

2 1.128 .8865 1.414 
3 1.693 .5907 1.732 
4 2.059 .4857 2.000 

5 2.326 .4299 2.236 
6 2.534 .3946 2.449 
7 2.704 .3698 2.646 
8 2.847 .3512 2.828 
9 2.970 .3367 3.000 

10 3.078 .3249 3.162 
12 3.258 .3069 3.464 
16 3.532 .2831 4.000 

Note: d„ is approximately equal to /n for 3 n 
^ 10. Thus, for small n a quick estimate of a can 
be obtained by dividing the range by /w. 

* In a final report, values of s should be rounded 
to two significant figures, but as a basis for further 
calculations it is advisable to retain one or two addi¬ 
tional figures. For fuller explanation, see Chapters 
22 and 23, Section 4, ORDP 20-113. 
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lowest of the n values. For small samples, 
the sample range is a reasonably efficient 
substitute for s as an estimator of the stand¬ 
ard deviation of a normal population—not as 
efficient as s, but easier to calculate. Using 
the range is particularly valuable for a 
“quick look” at data from small samples. 

As the sample size gets larger, the range is 
not only troublesome to calculate, but is a 
very inefficient estimator of cr. Table 2-1 
gives the factors which convert from ob¬ 
served range in a sample of n observations 
to an estimate of population standard devia¬ 
tion cr. 

2-2.3 CONFIDENCE INTERVAL ESTIMATES* 

2-2.3.1 Two-Sided Confidence Interval Estimates 

We are interested in determining an interval which we may confidently expect to bracket 
the true value of the standard deviation of a normal population. 

Procedure 

Problem: What is a two-sided 100 (1 - a) % 
confidence interval for cr? 

(1) Choose the desired confidence level, 1 — a. 

(2) Compute: 

nZX] - (ZXt)2 

n (n — 1) 

(3) Look up Bv and BL for n — 1 degrees of 
freedom in Table A-20. 

(4) Compute: 

sL = Bls 

Su - Bus 

Conclude: The interval from sL to Su is a two- 
sided 100 (1 — a) % confidence interval estimate 
for o-; i.e., we may assert with 100 (1 — a) % 
confidence that sL < cr < Su. 

Example 

Problem: What is a 95% confidence interval for 
cr, the standard deviation of burning time in the 
lot of powder? (Data Sample 2-2) 

(1) Let 1 - a = .95 
a = .05 

(2) 

s = 10.37 seconds 

(3) For 9 degrees of freedom, 
Bl = .6657 
Bv = 1.746 

(4) 
S£ = (10.37) (.6657) 

= 6.90 seconds 
su = (10.37) (1.746) 

= 18.11 seconds 

Conclude: The interval from 6.90 to 18.11 is a 
two-sided 95% confidence interval for cr; i.e., we 
may assert with 95% confidence that 6.90 
seconds < <r < 18.11 seconds. 

2-2.3.2 One-Sided Confidence Interval Estimates 

In some applications we are not particularly interested in placing both an upper and a 
lower bound on cr, but only in knowing whether the variability is excessively large (or, 
exceptionally small). We would like to make a statement such as the following: We can state 

* The reader who is not familiar with the meaning and interpretation of confidence intervals should refer 
to Chapter 1, and to Paragraph 2-1.3 of this chapter. The remarks of Paragraph 2-1.3 concerning confidence 
intervals for the average carry over to confidence intervals for a measure of variability. 
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with 100(1 — a) % confidence that the variability as measured by o- is less than some value 
s'u computed from the sample. Similarly, but not simultaneously, we may wish to state with 
100(1 - a) % confidence that cr is greater than some value si. Either statement is a one¬ 
sided confidence interval estimate. 

Procedure 

Problem: What is a value s{j such that we may 
have 100 (1 — a) % confidence that <r is less 
than S(/? 

(1) Choose the desired confidence level, 1 - a. 

(2) Compute: 
s 

(3) Look up Ai_a for n — 1 degrees of freedom 
in Table A-21. 

(4) Compute: 
S{j = Ai_a s 

(5) With 100 (1 — a) % confidence we can as¬ 
sert that u is less than s(j. 

Example 

Problem: What is a value Su such that we have 
95% confidence that a is less than s6? (Data 
Sample 2-2) 

(1) Let 1 - a = .95 
a = .05 

(2) 
s = 10.37 seconds 

(3) For 9 degrees of freedom, 

A.96 = 1.645 

(4) 
sc) = (1.645) (10.37) 

= 17.06 seconds 

(5) We are 95% confident that the variability 
as measured by o- is less than Su = 17.06 
seconds. 

Should a lower bound to cr be desired, follow Procedure 2-2.3.2 with s'u and A^a replaced 

by si and Aa, respectively. Then it can be asserted with 100 (1 - a) % confidence thatcr > si. 

2-2.4 ESTIMATING THE STANDARD DEVIA¬ 

TION WHEN NO SAMPLE DATA ARE 

AVAILABLE 

It is often necessary to have some idea of 
the magnitude of the variation of some char¬ 
acteristic as measured by cr, its standard 
deviation in the population. In planning ex¬ 
periments, for example, the sample size re¬ 
quired to meet certain requirements is a 
function of cr. In almost any situation, one 
can get at least a very rough estimate of cr. 
The minimum necessary information in¬ 
volves the form of the distribution and the 
spread of values. For example, if the values 
of the individual items can be assumed to 
follow a normal distribution, then either of 
the following rules can be used to get an 
estimate of cr: 

(a) Estimate two values ai and bi between 
which you expect 99.7% (almost all) of the 
individuals to be. Then, estimate 

(b) Estimate two values a2 and b2 between 
which you expect 95% of the individuals to 

be. Then, estimate a as I a2.~ fed 
4 

If the distribution concerned cannot be as¬ 
sumed to be normal but can be assumed to 
follow one of the top four forms in Figure 
2-1, then the standard deviation may be esti¬ 
mated as indicated in the figure. This figure 
also illustrates the distribution and rules for 
(a) and (b) above. 
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DISTRIBUTION STANDARD 
DEVIATION 

b - a 

3.5 

a b 

K 

Figure 2-1. The standard deviation of some 
simple distributions. 

Adapted with permission from Some Theory of Sampling, by 
W. Edwards Deming, Copyright, 1950, John Wiley & Sons, Inc. 

2-3 NUMBER OF MEASUREMENTS REQUIRED TO ESTABLISH 
THE MEAN WITH PRESCRIBED ACCURACY 

2-3.1 GENERAL 

In planning experiments, we may need to 
know how many measurements or how large 
a sample to take in order to determine the 
mean of some distribution with prescribed 

accuracy. Suppose we are willing to allow 
a margin of error d, and a risk a that our 
estimate of m will be off by an amount d or 
greater. Since the sampling distribution of 
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X is “normal” to a good approximation for 
samples of four or more measurements from 
almost every population distribution likely 
to be met in practice, we can ascertain the 
required sample size n if we have an avail¬ 
able estimate s of cr, or if we are willing to 
assume that we know cr. If we have not 
made an estimate or are unwilling to assume 
a value for cr, then we must use a two-stage 
sample. The two-stage method will usually 
result in a smaller total sample size. In the 
two-stage method, we must start by guessing 
a value of cr, but the end results do not de¬ 
pend upon how good or bad is the guess. 

Sometimes we may have available to us 
one or more samples from the population of 
interest, from which we can derive an esti¬ 
mate s of cr based on v degrees of freedom. 
Other times we may have one or more sam¬ 
ples from some other population that has the 
same standard deviation as the population 
of interest, but possibly a different mean. 
Again, we can derive an estimate s of cr 
based on v degrees of freedom. In either 
case, we can utilize this preliminary estimate 
of cr to determine the sample size n required 
to estimate the mean of the population of 
interest with prescribed accuracy. 

2-3.2 ESTIMATION OF THE MEAN OF A POPULATION USING A SINGLE SAMPLE 

Procedure 

Problem: We wish to know the sample size re¬ 
quired to ascertain the mean m of a population. 
We are willing to take a risk a that our estimate 
is off by d or more. There is available an esti¬ 
mate s of the population standard deviation a, 
based on v degrees of freedom. 

(1) Choose d, the allowable margin of error, 
and a, the risk that our estimate of m will 
be off by d or more. 

(2) Look up fi_a/2 for v degrees of freedom in 
Table A-4. 

(3) Compute: 

Conclude: If we now compute the mean A of a 
random sample of size n from the population we 
may have 100 (1 — a) % confidence that the 
interval X — d to X + d will include the popu¬ 
lation mean m. 

Example 

Problem: We wish to know the average thick¬ 
ness of the washers in a given lot. We are willing 
to take a risk that 5 times in 100 the error in our 
estimate will be 0.002 inch or more. From a 
sample from another lot we have an estimate of 
the population standard deviation of s = .00359 
with 9 degrees of freedom. 

(1) Let d = 0.002 inch 
a = .05 

(2) t = f.975 for 9 degrees of freedom 
= 2.262. 

(3) 

(2.262)2 (-00359)2 
n ~ (.002)2 

= 17 (conventionally rounded up to 
the next integer.) 

Conclude: We may conclude that if we now com¬ 
pute the mean 1 of a random sample of size 
n = 17 from the lot of washers, we may have 
95% confidence that the interval X — .002 
to X + .002 will include the lot mean. 

If we know or, or assume some value for cr, replace s by cr and L_a/2 by Zi_a/i in the above 
procedure. Values of zx.a/1 are given in Table A-2. 

2-3.3 ESTIMATION USING A SAMPLE WHICH IS TAKEN IN TWO STAGES 

It is possible that we do not have a good estimate of o-, the standard deviation of the popu¬ 
lation. When the cost of sampling is high, rather than take a larger sample than is really 
necessary, we might prefer to take the sample in two stages. The method (sometimes called 
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Stein’s method) goes roughly as follows: Make a guess for the value of o\ From this deter¬ 
mine nx the size of the first sample. The first sample will provide an estimate s of the popula¬ 
tion standard deviation. Use this value of s to determine how large the second sample 
should be. 

Procedure 

Problem: We wish to know the sample size re¬ 
quired to ascertain the mean m of a population. 
We are willing to take a risk a that our estimate 
is off by d or more units. 

(1) Choose d, the allowable margin of error, 
and a, the risk that our estimate of m will 
be off by d or more. 

(2) Let o' be the best possible guess for the 
value of <r, the standard deviation of the 
population (see Paragraph 2-2.4). 

(3) Look up Zi-a/2 in Table A-2. 

(4) Compute: 

n' is the first estimate of the total sample 
size required. 

(5) Choose 7ii the size of the first sample. nx 
should be considerably less than n'. (If the 
guessed value of a is too large, this will pro¬ 
tect us against a first sample which is 
already larger than we need.) A rough rule 
might be to make nx > 30 unless n' < 60, 
in which case let nx be somewhere between 
.5n' and .In'. 

(6) Make the necessary observations on the 
sample of nx. Compute su the standard 
deviation. 

(7) Look up tx-a/2 for nx — 1 degrees of freedom 
in Table A-4. 

(8) Compute 

n is the total required sample size for the first 
and second samples combined. We then 
require a second sample size of n2 = n — nx. 

Example 

Problem: We have a large lot of devices, and 
wish to determine the average of some property. 
We are willing to take a risk of .05 of the esti¬ 
mate being in error by 30 units. 

(1) Let d = 30 
« = .05 

(2) From our knowledge of similar devices our 
best estimate of a is 200 units. 

(3) z.97B = 1.960 

(4) 

, (1.960)2(200)2 
71 (30)2 

= 170.7 

(5) Let nx - 50 

(6) From tests on 50 devices chosen at random, 
Si = 160 units. 

(7) t = t.975 for 49 degrees of freedom 
= 2.01. 

(8) 

= (2.01)2 (160)2 
(30)2 

= 114.9 
= 115 

n2 = 115 — 50 
= 65 
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If now we obtain the second sample of size nz and compute the mean X of the total sample 
of size n = nx + n2, we may have 100 (1 — a) % confidence that the interval X — d to X + d 
will include the population mean m. 

2-4 NUMBER OF MEASUREMENTS REQUIRED TO ESTABLISH 
THE VARIABILITY WITH STATED PRECISION 

We may wish to know the size of sample required to estimate the standard deviation with 
certain precision. If we can express this precision as a percentage of the true (unknown) 
standard deviation, we can use the curves in Figure 2-2. 

5 6 8 10 20 30 40 50 
p% 

Figure 2-2. Number of degrees of freedom required to 
estimate the standard deviation within P% of its 

true value with confidence coefficient y. 

Adapted with permission from Journal of the American Statistical Associationf Vol. 45 (1950), p. 258, from article entitled “Sample 
Size Required for Estimating the Standard Deviation as a Percent of its True Value” by J. A. Greenwood and M. M. Sandomire. 
The manner of graphing is adapted with permission from Statistics Manual by E. L. Crow, F. A. Davis, and M. W. Maxfield, 
NAVORD Report 3369, NOTS 948, U. S. Naval Ordnance Test Station, China Lake, Calif., 1955. (Reprinted by Dover Publications, 
Inc., New York, N.Y., 1960.) 
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Procedure 

Problem: If we are to make a simple series of 
measurements, how many measurements are re¬ 
quired to estimate the standard deviation with¬ 
in P percent of its true value, with prescribed 
confidence? 

(1) Specify P, the allowable percentage devia¬ 
tion of the estimated standard deviation 
from its true value. 

(2) Choose y, the confidence coefficient. 

(3) In Figure 2-2, find P on the horizontal 
scale, and use the curve for the appropriate 
y. Read on the vertical scale the required 
degrees of freedom. 

(4) For a simple series of measurements, the 
required number is equal to one plus the 
degrees of freedom. 

2-5 STATISTICAL 

2-5.1 GENERAL 

Sometimes we are more interested in the 
approximate range of values in a lot or popu¬ 
lation than we are in its average value. Sta¬ 
tistical tolerance limits furnish limits be¬ 
tween, above, or below which we confidently 
expect to find a prescribed proportion of in¬ 
dividual items of the population. Thus, we 
might like to be able to give two values A 
and B between which we can be fairly cer¬ 
tain that at least a proportion P of the popu¬ 
lation will lie, (two-sided limits), or a value 
A above which at least a proportion P will 
lie, (one-sided limit). 

Example 

Problem: How large a sample would be required 
to estimate the standard deviation within 20% 
of its true value, with confidence coefficient 
equal to 0.95? 

(1) Let P = 20% 

(2) Let y = .95 

(3) For y = .95, P = 20%, the required de¬ 
grees of freedom equals 46. 

(4) = 46 + 1 
= 47 

TOLERANCE LIMITS 

Thus for the data on thickness of mica 
washers (Data Sample 2-1), we could give 
two thickness values, stating with chosen 
confidence that a proportion P (at least) of 
the washers in the lot have thicknesses be¬ 
tween these two limits. We call the confi¬ 
dence coefficient y, and it refers to the pro¬ 
portion of the time that our method will 
result in correct statements. If a normal dis¬ 
tribution can be assumed, use the procedures 
of Paragraphs 2-5.2 and 2-5.3; otherwise use 
the procedures of Paragraph 2-5.4. 

2-5.2 TWO-SIDED TOLERANCE LIMITS FOR A NORMAL DISTRIBUTION 

When the mean m and standard deviation cr of a normally distributed quantity are known, 
symmetrical limits that include a prescribed proportion P of the distribution are readily 
obtained by adding and subtracting za cr from the known mean m, where za is read from 
Table A-2 with a = 4(P+1). When m and cr are not known, we can use an interval of the 
form X ± Ks. Since both X and s will vary from sample to sample it is impossible to 
determine K so that the limits X ± Ks will always include a specified proportion P of the 
underlying normal distribution. It is, however, possible to determine K so that in a long 
series of samples from the same or different normal distributions a definite proportion y of 

the intervals X ± Ks will include P or more of the underlying distribution (s). 
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Procedure 

Problem: We would like to state two limits 
between which we are 100 y percent confident 
that 100 P percent of the values lie. 

(1) Choose P, the proportion, and y, the confi¬ 
dence coefficient. 

(2) Compute from the sample: 
X 
s 

(3) Look up K for chosen P and y in Table A-6. 

(4) Compute: 
Xu = X -f- Ks 

XL = X - Ks 

Conclude: With 100 y % confidence we may pre¬ 
dict that a proportion P of the individuals of the 
population have values between XL and Xu. 

Example 

Problem: We would like to state thickness limits 
between which we are 95% confident that 90% 
of the values lie (Data Sample 2-1). 

(1) Let P = .90 
y = .95 

(2) 
X = .1260 inch 

s = 0.00359 inch 

(3) K = 2.839 

(4) 
Xu = .1260 + 2.839 (.00359) 

= 0.136 inch 
XL = .1260 - 2.839 (.00359) 

= 0.116 inch 

Conclude: With 95% confidence, we may say 
that 90% of the washers have thicknesses be¬ 
tween 0.116 and 0.136 inch. 

2-5.3 ONE-SIDED TOLERANCE LIMITS FOR A NORMAL DISTRIBUTION 

Sometimes we are interested only in estimating a value above which, or below which, a 
proportion P (at least) will lie. In this case the one-sided upper tolerance limit will be 

Xv = X + Ks; and XL = X — Ks will be the one-sided lower limit. The appropriate values 
for K are given in Table A-7 and are not the same as those of Paragraph 2-5.2. 

Procedure 

Problem: To find a single value above which we 
may predict with confidence y that a proportion 
P of the population will lie. 

(1) Choose P the proportion and y, the confi¬ 
dence coefficient. 

(2) Compute: 
X 
s 

(3) Look up K in Table A-7 for the appropriate 
n, y, and P. 

(4) XL = X - Ks 

Example 

Problem: To find a single value above which we 
may predict with 90% confidence that 99% of 
the population will lie. (Data Sample 2-1). 

(1) Let P = .99 
y = .90 

(2) 
X = .1260 inch 
s = 0.00359 inch 

(3) K (10, .90, .99) = 3.532 

(4) XL = .1260 - 3.532 (.00359) 
= .1133 inch 

Thus we are 90% confident that 99% of the 
mica washers will have thicknesses above 
.113 inch. 
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Note: Factors for some values of n, y, and P not covered in Table A-7 may be found in 
Sandia Corporation Monograph SCR-13(2). Alternatively, one may compute K using the fol¬ 
lowing formulas: 

o = l- ^ ,*y_ jn (where z can be found in Table A-2) 

K = zP + Vz£ - ab 

a 

2-5.4 TOLERANCE LIMITS WHICH ARE INDE¬ 

PENDENT OF THE FORM OF THE 

DISTRIBUTION 

The methods given in Paragraphs 2-5.2 
and 2-5.3 are based on the assumption that 
the observations come from a normal distri¬ 
bution. If the distribution is not in fact 
normal, then the effect will be that the true 
proportion P of the population between the 
tolerance limits will vary from the intended 
P by an amount depending on the amount of 
departure from normality. If the departure 
from normality is more than slight we can 
use a procedure which assumes only that the 
distribution has no discontinuities. The tol¬ 
erance limits so obtained will be substantially 
wider than those assuming normality. 

2-5.4.1 Two-Sided Tolerance Limits 

(Distribution-Free) 

Table A-30 gives values (r, s) such that 
we may assert with confidence at least y that 
100P% of a population lies between the rth 
smallest and the sth largest of a random sam¬ 
ple of n from that population. For example, 
from Table A-30 with y — .95, P = .75, and 
n = 60, we may say that if we have a sample 

of n = 60, then we may have a confidence of 
at least y = .95 that 100P% = 75% of the 
population will lie between the fifth largest 
(s = 5) and the fifth smallest (r = 5) of the 
sample values. That is, if we were to take 
many random samples of 60, and take the 
fifth largest and fifth smallest of each, we 
should expect to find that at least 95% of the 
resulting intervals would contain 75% of the 
population. 

Table A-32 may be useful for sample sizes 
of w ^ 100. This table gives the confidence 
y with which we may assert that 100P% of 
the population lies between the largest and 
smallest values of the sample. 

2-5.4.2 One-Sided Tolerance Litmits 

(Distribution-Free) 

Table A-31 gives the largest value of m 
such that we may assert with confidence at 
least y that 100P% of a population lies be¬ 
low the mth largest (or above the mth small¬ 
est) of a random sample of n from that pop¬ 
ulation. For example, from Table A-31 with 
y = .95, P = .90, and n = 90, we may say 
that we are 95% confident that 90% of a 
population will lie below the fifth largest 
value of a sample of size n = 90. 

REFERENCES 

1. M. G. Kendall and W. R. Buckland, A Dictionary of Statistical Terms, 
p. 79, Oliver and Boyd, London, 1957. 

2. D. B. Owen, Table of Factors for One-Sided Tolerance Limits for a 
Normal Distribution, Sandia Corporation Monograph SCR-13, April 
1958. 
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CHAPTER 3 

COMPARING MATERIALS OR PRODUCTS WITH RESPECT TO 

AVERAGE PERFORMANCE 

3-1 GENERAL REMARKS ON STATISTICAL TESTS 

One of the most frequent uses of statistics 
is in testing for differences. If we wish to 
know whether a treatment applied to a stand¬ 
ard round affects its muzzle velocity, we may 
conduct an experiment and apply a statisti¬ 
cal test to the experimental results to see 
whether we would be justified in concluding 
that there is a difference between the per¬ 
formance of treated and untreated rounds. 
In another case, two manufacturing proc¬ 
esses may be available—process A is cheaper 
and therefore preferable unless process B is 
demonstrated to be superior in some respect. 
Again, we apply a statistical, test to the ex¬ 
perimental results to see whether process B 
has demonstrated superiority. 

Ordinarily, the statistical test applied to 
the results observed on a sample will point 
the way to decision between a pair of alter¬ 
natives. For some tests, the two alternative 
decisions will be formally stated as follows: 

(a) There is a difference between the 
(population) averages of two materials, 
products, processes, etc. 

(b) No difference has been demonstrated. 

In other cases, the formal statement of the 
two alternative decisions will be: 

(a) The (population) average of product 
A is greater than that of product B. 

(b) We have no reason to believe that the 
(population) average of product A is greater 
than that of product B. 

In this Chapter and others, we shall con¬ 
sider a number of statistical tests of differ¬ 
ences. The application of each statistical 

test will result in making one of two deci¬ 
sions, as in the pairs given. In each case the 
pair of alternative decisions is chosen before 
the data are observed—this is important! 

Since we ordinarily obtain information on 
one or both of the products by means of a 
sample, we may sometimes make an errone¬ 
ous decision. However, the chance of making 
the wrong decision can be reduced by in¬ 
creasing the number of observations. There 
are two ways in which we can make a wrong 
decision: 

(a) When we conclude that there is a dif¬ 
ference where in fact there is none, we say 
that we make an Error of the First Kind; 

(b) When we fail to find a difference that 
really exists, then we say that we make an 
Error of the Second Kind. 

In any particular case, we never can be abso¬ 
lutely sure that the correct decision has been 
made, but we can know the probability of 
making either type of error. 

The probability of making an Error of the 
First Kind is usually denoted by a; and the 
probability of making an Error of the Sec¬ 
ond Kind is denoted by y8. The ability of a 
given statistical test to detect a difference 
(e.g., between averages) will in general de¬ 
pend on the size of the difference 8; thus, 
/3 has no meaning unless associated with a 
particular difference 8. The value of y3, >3(8), 
associated with a particular difference 8 will 
decrease as 8 increases. For a particular 
statistical test, the ability to detect a differ¬ 
ence will be determined by three quantities: 
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a, /3(d), and n the sample size. The comple¬ 
mentary quantity 1—y8(8) is termed the 
power of the test to detect a difference 8 with 
a sample of size n, when the test is carried 
out at the a-level of significance. 

The decision procedure is a very logical 
one. Suppose we wish to test whether two 
types of vacuum tubes have the same resist¬ 
ance in ohms, on the average. We take sam¬ 
ples of each type and measure their resist¬ 
ances. If the sample mean of one type of 
tube differs sufficiently from the sample 
mean of the other, we shall say that the two 
kinds of tubes differ in their average resist¬ 
ance. Otherwise, we shall say we failed to 
find a difference. How large must the differ¬ 
ence be in order that we may conclude that 
the two types differ, or that the observed dif¬ 
ference is “significant”?* This will depend 
on several factors: the amount of variability 
in the tubes of each type; the number of 
tubes of each type; and the risk we are 
willing to take of stating that a difference 
exists when there really is none, i.e., the 
risk of making an Error of the First Kind. 
We might proceed as follows: we would be 
willing to state that the true averages differ, 
if a difference larger than the observed dif¬ 
ference could arise by chance less than five 
times in a hundred when the true averages 
are in fact equal. The probability of an 
Error of the First Kind is then a = .05, or, 
as we commonly say, we have adopted a .05 
significance level. The use of a significance 
level of .05 or .01 is common, and these levels 
are tabulated extensively for many tests. 
There is nothing unique about these levels, 
however, and a test user may choose any 
value for a that he feels is appropriate. 

As we have mentioned, the ability to detect 
a difference will in general depend on the 
size of the difference 8. Let us denote by 
(3(8) the probability of failing to detect a 
specified difference 8. If we plot /3(8) ver¬ 
sus the difference 8, we have what we call 
an Operating Characteristic (OC) curve. 
Actually, we usually plot /3 (8) versus some 

* Or more accurately, statistically significant. A 
difference may be statistically significant and yet be 
practically unimportant. 

convenient function of 8. Figures 3-1 
through 3-8 show OC curves for a number 
of statistical tests when conducted at the 
a — .05 or a = .01 significance levels. 

An OC curve depicts the discriminatory 
power of a particular statistical test. For 
specified values of n and a, there is a unique 
OC curve. The curve is useful in two ways. 
If we have specified n and a, we can use the 
OC curve to read (3(8) for various values of 
8. If we are still at liberty to set the sample 
size for our experiment, and have a particu¬ 
lar value of 8 in mind, we can see what value 
of n is required by looking at the OC curves 
for specified a. If, for the a. chosen, the 
sample size required to achieve a reasonably 
small (3(8) is too large, and if it really is 
important to detect a difference of 8 when it 
exists, then a less conservative (i.e., larger) 
value of a must be used. Various uses of the 
OC curves shown in Figures 3-1 through 3-8 
are described in detail in the appropriate 
paragraphs of this Chapter. 

It is evident that for any /3 (8), n will in¬ 
crease as 8 decreases. It requires larger sam¬ 
ples to recognize smaller differences. In some 
cases, the experiment as originally thought 
of will be seen to require prohibitively large 
sample sizes. We then must compromise be¬ 
tween the sharp discriminatory power we 
think we need, the cost of the amount of test¬ 
ing required to achieve that power, and the 
risk of claiming a difference when none 
exists. If the experiment has already been 
run, and the sample size was fixed from other 
considerations, the OC curve will show what 
chance the experiment had of detecting a 
particular difference 8. 

To use the OC curves in this Chapter, we 
must know the population standard deviation 
cr, or at least be willing to choose some range 
for cr. It is quite often possible to assign 
some upper bound to the variability, even 
without the use of past data (see Paragraph 
2-2.4). After the experiment has been run, 
a possibly better estimate of cr will be avail¬ 
able, and a hindsight look at the OC curve 
using this value will help to evaluate the 
experiment. 
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We outline a number of different tests in 
this Chapter. For each test, we give the pro¬ 
cedure to be followed for a specified signifi¬ 
cance level a and sample size n. For most of 
the tests, we also give the OC curve which 
enables us to obtain the (approximate) value 
of /3 for any given difference. Tables are 
provided for determining n, the sample size 
required when a, S, and /3(8) have been 
specified. The tests given are exact when: 

(a) the observations for each item are 
taken randomly from a single population of 
possible observations; and, 

(b) the quality characteristic measured is 
normally distributed within this population. 
Ordinarily, the assumption of normality is 

not crucial, particularly if the sample size 
is not very small. 

Alternate procedures for most of the tests 
in this Chapter are given in ORDP 20-113, 
Chapters 15 and 16. Chapter 16 gives tests 
which require neither normality assump¬ 
tions nor knowledge of the variability of the 
populations; but this greater generality is 
achieved at the price of somewhat reduced 
discriminating power when normality can be 
assumed and the knowledge about the vari¬ 
ability of the populations, needed for the 
tests of this Chapter, is in hand. Chapter 
15 gives shortcut tests for small samples 
from normal populations which involve less 
computation than the tests of this Chapter 
with negligible loss of efficiency. 

3-2 COMPARING THE AVERAGE OF A NEW PRODUCT 
WITH THAT OF A STANDARD 

The average performance of a standard prod¬ 
uct is known to be m0. We shall consider three 
different problems: 

(a) To determine whether the average of a 
new product differs from the standard, Para¬ 
graph 3-2.1. 

(b) To determine whether the average of a 
new product exceeds the standard, Paragraph 
3-2.2. 

(c) To determine whether the average of a 
new product is less than the standard, Para¬ 
graph 3-2.3. 

For summary of the procedures appropriate 
for each of these three problems, see Table 3-1. 

It is necessary to decide which of the three 
problems is appropriate before taking the ob¬ 
servations. If this is not done and the choice of 
the problem is influenced by the observations, 
(for example, Paragraph 3-2.1 vs. 3-2.2), the 
significance level of the test, i.e., the probability 
of an Error of the First Kind, and the operating 
characteristics of the test may differ consider¬ 
ably from their nominal values. 

Ordinarily the variability of a new product is 
not known. At other times previous experience 
may enable us to state a value of <r. We shall 
outline the solutions of the three problems 
(Paragraphs 3-2.1, 3-2.2, and 3-2.3) for both 

cases, i.e., where the variability is estimated 
from the sample, and where a is known from 
previous experience. 

Symbols to be used: 

m = average of new material, product or 
process (unknown). 

Wo = average of standard material, product 
or process (known). 

X = average of sample of n measurements 
on new product. 

s = standard deviation estimate computed 
from n measurements on the new prod¬ 
uct (used where <j is unknown). 

a = the known standard deviation of the 
new product. 

Data Sample 3-2—Weight of Powder 

For a certain type of shell, specifications state 
that the amount of powder should average 0.735 
pound. In order to determine whether the 
average for a new stock meets the specification, 
20 shells are taken at random, and the amount 
of powder contained in each is weighed. 

The sample average X = .710 pound. 

The sample standard deviation estimate 
s = .0504 pound. In illustrating the known-o- 
case, we assume a known to be equal to 0.06 
pound. 
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TABLE 3-1. SUMMARY OF TECHNIQUES FOR COMPARING THE AVERAGE OF A NEW PRODUCT WITH THAT OF A STANDARD 
(FOR DETAILS AND WORKED EXAMPLES SEE PARAGRAPHS 3-2.1, 3-2.2, AND 3-2.3) 

We With to 
Teit 

Whether 

Para¬ 
graph 
Refer- 

Knowledge of 
Variation 

of New Item 
Test to be Made 

Operating 
Characteristics 

of the Test 
(for a = .05 
and a = .01) 

Sample Size Required Notes 

m differs 
from TO, 

3-2.1.1 a unknown; s = estimate 
of a from sample. 

\X — m0\> u See Figs. 3-1 
and 3-2* 

Use Table A-8. For a = .05, add 2 to 
tabular value. For a = .01, add 4 to 
tabular value. (t for n - 1 de¬ 

grees of freedom) 

3-2.1.2 a known \X — m0| > ti See Figs. 3-3 
and 3-4 

Use Table A-8. 

“ = 2i-te) 

m is larger 
than m0 

3-2.2.1 a unknown; s = estimate 
of a from sample. 

(X — m0) > tt See Figs. 3-5 
and 3-6* 

Use Table A-9. For o, = .05, add 2 to 
tabular value. For a = .01, add 3 to 
tabular value. (/ for n — 1 de¬ 

grees of freedom) 

3-2.2.2 a known (X — Too) > ti See Figs. 3-7 
and 3-8 

Use Table A-9. 

U=Z'-(Vn) 

m is smaller 
than m„ 

3-2.3.1 a unknown; s = estimate 
of a from sample. 

(m0 — X) > u See Figs. 3-5 
and 3-6* 

Use Table A-9. For a = .05, add 2 to 
the tabular values. For a = .01, add 
3 to the tabular values. u=tiA^) 

if, for n — 1 de¬ 
grees of freedom) 

3-2.3.2 a known (m0 - X) > u See Figs. 3-7 
and 3-8 

Use Table A-9. 

u = z'-°kk) 
* It is necessary to have some value for a (or two bounding values) in order to use the Operating Characteristic curve. Although a is unknown, in many situations it is possible 

to have some notion, however loose, about the magnitude of a and thereby to get helpful information from the OC curve. Paragraph 2-2.4 gives assistance in estimating a from 
general knowledge of the process.' 

3-2.1 TO DETERMINE WHETHER THE AVERAGE OF A NEW PRODUCT DIFFERS FROM THE 
STANDARD 

3-2.1.1 Does the Average of the New Product Differ from the Standard (cr Unknown)? 

[Two-sided t-test] 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up ti—a/2 for n — 1 degrees of freedom 
in Table A-4. 

(3) Compute 
X and s from the n measurements. 

(4) Compute 
. s 

U = fl_„/2 —r= 
Vn 

(5) If | X — m01 > u, decide that the average 
of the new type differs from that of the 
standard; otherwise, that there is no reason 
to believe that they differ. 

(6) Note: The interval X ± u is a 100 (1 — a) % 
confidence interval estimate of the true 
average of the new type. 

Example 

(1) Let a = .05 

(2) f,975 for 19 degrees of freedom = 2.093 

(3) 
X = .710 pound 
s = .0504 pound 

(Data Sample 3-2) 

(4) 
(2.093) (.0504) 

“ " V20 

= .0236 

(5) | X - m01 = | .710 - .7351 = .025. We con¬ 
clude that the average amount of powder in 
the new stock differs from 0.735, the speci¬ 
fied standard amount. 

(6) Note: .710 ± .0236 is a 95% confidence in¬ 
terval estimate of the true average of the 
new stock. 
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Operating Characteristics of the Test. Figures 3-1 and 3-2 give the operating characteristic (OC) 
curves of the preceding test for a = .05 and a = .01, respectively, and various values of n. 

Choose: 

5 = \m — m0\, 
the true absolute difference between the averages (unknown, of course) 

Some value of a. 

(One may use an estimate from previous data; lacking such an estimate, see Paragraph 
2-2.4. If the OC curve is consulted after the experiment, we may use the estimate 
from the experiment.) 

Compute 

We then can read from the OC curve for a given significance level a and sample size n, a value 
of 0(5). The /3(5) read from the curve is 0(51 <y, a, n), i.e., 0(5, given <r, a, n)—the probability of failing 
to detect this difference when the given test is carried out with a sample of size n, at the a-level of 
significance, and the population standard deviation actually is a. 

If we use too large a value for a, the effect is to underestimate d, and consequently to over¬ 
estimate 0(5), the probability of not detecting a difference of 5 when it exists. Conversely, if we 
choose too small a value of <r, then we shall overestimate d and underestimate 0(5). The true value 
of 0(5) is determined, of course, by the sample size n and the significance level a employed, and the 
true value of a. 

Selection of Sample Size n. If we choose 

5 = | m — m01, the absolute value of the average difference that we desire to detect 
a, the significance level of the test 
0, the probability of failing to detect a difference 5 

and compute 

, _ | m - Wp | 

then we may use Table A-8 to obtain a good approximation to the required sample size. If we take 
a = .01, then we must add 4 to the value obtained from the table. If we take a = .05, then we 
must add 2 to the table value. (In order to compute d, we must choose a value for a. See Paragraph 
2-2.4 if no other information is available.) 

As an example, suppose that we plan to take a = .05, and want to have 0 = .50 for a difference 
of .024 pound; that is, we wish to conduct a test at a significance level of .05 that will have a 50-50 
chance of detecting a difference of 0.024 pound. What sample size should we require? Suppose 
previous experience suggests that a lies between .04 and .06 pound. 

Taking a -- .04, with 5 = |m — m0\ = .024, gives d = 0.6. Using Table A-8, with a = .05, 
1 — 0 = .50, we find the required sample size as n = 11 + 2 = 13. Taking a = .06, yields d = .4. 
From the same table, we find that the required sample size is 25 + 2 = 27. To be safe, we would 
use n = 27. For a < .06, with a significance level of .05, this would give the two-sided t test at 
least a 50% chance of detecting a difference of 0.024 pound. 

If, when planning an investigation leading to a two-sided i-test, we overestimate a, the conse¬ 
quences are two-fold: first, we overestimate the sample size required, and thus unnecessarily increase 
the cost of the test; but, by employing a sample size that is larger than necessary, the actual value 
of 0(5) will be somewhat less than we intended, which will be all to the good. On the other hand, if 
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d or d1 

Figure 3-1. OC curves for the two-sided t-test (a = .05). 

Adapted with permission from Annals of Mathematical Statistics Vol. 17 No :2 June 1946 pp ^A97 trom article entitled “Operating 
Characteristics for the Common Statistical Tests of Significance by C. D. Ferns, F. E. Grubbs, and G. L. weaver. 

Note: These curves apply to the following tests: 

(a) Does the average m of a new product differ from a standard m0? 

5 = | m — m01 

d = \m~mA see Paragraph 3-2.1.1. 
a 

(b) Do the averages of two products differ? 

5 = | mA - mB | 

,* _ I'mA — mB\ 1 / nA nB 
a y/ n a + wb — 1 \ nA + wb ’ 

where aA = <?b = * hy assumption, and nA and nB are the respective sample sizes from 

products A and B. See Paragraph 3-3.1.1. 
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Figure 3-2. OC curves for the two-sided t-test (a = .01). 

Adapted with permission from Engineering Statistics by A. H. Bowker and G. J. Lieberman, Copyright, 1959, Prentice-Hall, Inc. 

Note: These curves apply to the following tests: 

(a) Does the average m of a new product differ from a standard m0? 
8 = | m — m01 

d = —-See Paragraph 3-2.1.1. 
<7 

(b) Do the averages of two products differ? 
8 = \mA - mB| 

d* = \mA - mB 1 1 / nAnB 
* VnA + nB — 1 \ nA + nB ’ 

where aA = aB = <j by assumption, and nA and nB are the respective sample sizes from 
products A and B. See Paragraph 3-3.1.1. 
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we underestimate o-, we shall underestimate the sample size actually required, and by using too 
small a sample size, /3(5) will be somewhat larger than we intended, and our chances of detecting 
real differences when they exist will be correspondingly lessened. 

The following brief table, built around the preceding example, serves to illustrate these points 
numerically for a situation where a = .05, and it is desired to have /3(<5) = .50 for 8 = |m — m0\ = 
.024, and a in fact is equal to .04 though this is unknown. 

Value of Resulting Corresponding 
a Assumed Sample Size <3 (.024) 

.08 45 .02 

.06 27 .15 

. 04 (true value) 13 .50 

.03 9 .64 

.02 5 .80 

Thus, if <r actually is .04, playing safe by taking a = .06 has more than doubled the sample size 
actually needed, but we have gained a reduction in /3 from .50 to .15. 

Finally, it should be noted that, inasmuch as the test criterion u = U _a/ 2 ^7= does not depend on <r, 

an error in estimating a when planning a two-sided £-test will not alter the level of significance of the 
test, which will be precisely equal to the value of a desired, provided that fx_a/2 is taken equal to the 
100 (1 — a/2) percentile of the t distribution for n — 1 degrees of freedom, where n is the sample 
size actually employed. 

3-2.1.2 Does the Average of the New Product Differ from the Standard (a Known)? 

[Two-sided Normal Test] 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up Zi_„/2 in Table A-2. 

(3) Compute 
X, the mean of the n measurements. 

(4) Compute 

(5) If | X — ra01 > u decide that the average 
of the new type differs from that of the 
standard; otherwise, that there is no reason 
to believe that they differ. 

(6) Note that the interval X ± u is a 100 
(1 — a) % confidence interval estimate of 
the true average m of the new type. 

Example 

(1) Let a = .05 

(2) z.975 = 1.960 

(3) 
X = .710 pound 

(Data Sample 3-2) 

(4) a is known to be equal to .06 pound. 

_ 1.96 (.06) 

u ~ V^o 

= .0263 

(5) | X - m01 = | .710 - .7351 = .025. We con¬ 
clude that there is no reason to believe that 
the average amount of powder in the new 
stock differs from 0.735 (the specified 
standard amount). 

(6) 

3-8 
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Operating Characteristics of the Test. Figures 3-3 and 3-4 give the operating characteristics of the 

preceding test for a = .05 and a = .01, respectively. For any given n and d = —-the value 
<T 

of (3(5) = (3(51 <r, a, n), the probability of failing to detect a difference of absolute size 5 = \ m — m01, 
can be read off directly. 

Selection of Sample Size n. If we specify a, the significance level, and /3, the probability or risk we 
are willing to take of not detecting a difference of absolute size 8 = \m — mQ\, then we can use 
Table A-8 to obtain n, the required sample size. As an example, if <r is known to be 0.04 pound, 
and we wish to have a 50-50 chance of detecting a difference of 0.024 pound, then d = 0.6. From 
Table A-8, we find that the required sample size is 11. 

When we know the correct value of a, we can achieve a desired value of (3(5) with fewer observa¬ 
tions by using the normal test at the desired level of significance a than by using the corresponding 
f-test. The saving is 2 or 4 observations according as a = .05 or .01, respectively. 

Overestimating or underestimating u when planning a two-sided normal test has somewhat 
different consequences than when planning a two-sided f-test. If we overestimate <r and choose 
<t' > a, we also overestimate the sample size required as in the case of the f-test. In addition, we 

overestimate the correct test criterion u = Zi_a/2 ~^= for the sample size n actually adopted, with the 

result that the effective significance level of the normal test is reduced to a, which is related to a 
by the equation 

Zl~a’/2 “ (* ) Zl~a'2- 

The actual probability of not detecting a difference of 8, (3'(5), is related to the intended risk (3(5) 
by the equation 

Zl-0' Zi-0. 

/3'(5) will be less than (3(5) when <r' > a for all (large) 5 for which (8(5) < 0.50; /3'(5) will be larger 
than (3(5) for all (small) 5 for which /3'(5) > 0.50. For the particular 5 for which (8(5) = 0.50, (3'(5) 
also will equal 0.50. Conversely, if we underestimate a, then we not only underestimate the sample 
size required but also the test criterion for the sample size actually used, so that the actual risk of 
an Error of the First Kind a will be larger than a, and the risk of an Error of the Second Kind 
|8'(5) will be increased for large 5, and decreased for small 5. 
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The following calculations serve to illustrate these points numerically for situations bordering 
on the conditions assumed in the preceding sample-size calculation: 

Intended significance level a = 0.05. 
Intended risk of Error of the Second Kind 0(5) = 0.50 for 5 = 0.024. 

TWO-SIDED NORMAL TEST 

Value of <7 

Assumed 
Sample Size 

Indicated 

Actual 
Significance 

Level, a' 

Actual Risk of 
Error of Second Kind, 

0' (0.024) 

.08 43 (45)* .00009 (.05)* 0.50 (.02)* 

.06 25 (27) .003 (.05) 0.50 (.15) 

.04 (true value) 11 (13) .05 (.05) 0.50 (.50) 

.03 7(9) .14 (.05) 0.50 (.64) 

.02 3(5) .33 (.05) 0.50 (.80) 

* Values in parentheses are for corresponding two-sided <-test. 

To obtain a numerical illustration of the more general case where /3(5) 0.50, let us modify the 
foregoing example by taking /3(5) = 0.20, say, as the intended risk of an Error of the Second Kind 
for 6 = 0.024: 

Intended significance level a = 0.05. 
Intended risk of Error of the Second Kind 0(5) = 0.20 for 8 = 0.024. 

TWO-SIDED NORMAL TEST 

Value of (7 

Assumed 
Sample Size 

Indicated 

Actual 
Significance 

Level, a 

Actual Risk of 
Error of Second Kind, 

0' (0.024) 

.08 88 (90)* .00009 (.05)* .046 (.0004)* 

.06 50 (52) .003 (.05) .103 (.01) 

. 04 (true value) 22 (24) .05 (.05) .20 (.20) 

.03 13 (15) .14 (.05) .26 (.43) 

.02 6(8) .33 (.05) .34 (.70) 

* Values in parentheses are for corresponding two-sided i-test. 
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Figure 3-3. OC curves for the two-sided normal test (a = .05). 

Adapted with permission from Annals of Mathematical Statistics, Vol. 
Characteristics for the Common Statistical Tests of Significance” by C. D. 

17, No. 2, June 1946, pp. 178-197, from article entitled “Operating 
Ferris, F. E. Grubbs, and C. L. Weaver. 

Note: These curves apply to the following tests: 

(a) Does the average m of a new product differ from a standard ra0? 

5 = | m — ra01 

d = ^m ~ m°\- See Paragraph 3-2.1.2. 
<7 

(b) Do the averages of two products differ? 

8 = \mA - mB\ 

d = Ian(j are known. See Paragraph 3-3.1.3. 
V <Ta + <*B 
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Figure 3-1+. OC curves for the two-sided normal test (a = .01). 

Adapted with permission from Engineering Statistics by A. H. Bowker and G. J. Lieberman, Copyright, 1959, Prentice-Hall, Inc. 

Note: These curves apply to the following tests: 

(a) Does the average m of a new product differ from a standard w0? 

8 = \m — mQ\ 

d = —-See Paragraph 3r2.1.2. 
a 

(b) Do the averages of two products differ? 

8 = \mA - mB\ 

d = -^7====-; <rA and <rB are known. See Paragraph 3-3.1.3. 
V a \ + ob 
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3-2.2 TO DETERMINE WHETHER THE AVERAGE OF A NEW PRODUCT EXCEEDS THE STANDARD 

3-2.2.1 Does the Average of the New Product Exceed the Standard (cr Unknown)? 

[One-sided t-test] 

Procedure Example 

(1) Choose a, the significance level of the test. (1) Let a = .05 

(2) Look up ti-a for n — 1 degrees of freedom 
in Table A-4. 

(3) Compute 
X and s 

(4) Compute 
, _s_ 

U — t\_a /— 
Vti 

(5) If (X — m0) > + u, decide that the aver¬ 
age of the new type exceeds that of the 
standard; otherwise, that there is no reason 
to believe that the average of the new type 
exceeds that of the standard. 

(6) Note that the open interval from (X — u) 
to + «5 is a one-sided 100 (1 — a) % con¬ 
fidence interval for the true mean of the 
new product. 

(2) t.96 for 19 degrees of freedom = 1.729 

(3) 
X = .710 pound 
s = .0504 pound 

(Data Sample 3.2) 

(4) 

(5) 

1.729 (.0504) 

““ V20 
= 0.019 

(X - m0) = (.710 - .735) = -.025. We 
conclude that there is no reason to believe 
that the average of the new product ex¬ 
ceeds the specified standard. 

(6) Note that the open interval from .691 to 
+ oo is a one-sided 95% confidence inter¬ 
val for true average of the new product. 

Operating Characteristics of the Test. Figures 3-5 and 3-6 give the operating characteristic (OC) 
curves of the above test for a = .05, and a = .01, respectively, and various values of n. 

Choose: 

5 = (m — m0), the true difference between averages, (unknown, of course) 

Some value of a. (We may use an estimate from previous data; lacking such an estimate, 
see Paragraph 2-2.4. If OC curve is consulted after the experiment, we 
may use the estimate from the experiment.) 

Compute 

d = s-. 
<T 

We then can read from the OC curve for a given significance level a and sample size n, a value 
of 0(5). The 0(5) read from the curve is 0(51 a, a, n), i.e., 0(5 given <r, a, n)—the probability of failing 
to detect this difference when the given test is carried out with a sample of size n, at the a-level 
of significance, and the population standard deviation actually is a. 

If we use too large a value for <r, the effect is to underestimate d and consequently to overestimate 
0(5), the probability of not detecting a difference of 5 when it exists. Conversely, if we choose too 
small a value of a, then we shall overestimate d and underestimate 0(5). The true value of 0(5) is 
determined, of course, by the sample size n and significance level a employed, and the true 
value of o'. 
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60 

Figure 3-5. OC curves for the one-sided t-test (a = .05). 

Adapted with permission from Engineering StcUietiee by A. H. Bowker and G. J. Lieberman, Copyright, 1959, Prentice-Hall, Inc. 

Note: These curves apply to the following tests: 

(a) Does the average m of a new product exceed a standard m0? 

8 = m — m0 

d = —-—0 See Paragraph 3-2.2.1. 
(T 

(b) Is the average m of a new product less than a standard m0? 

8 = m0 — m 

d = m° ~ m See Paragraph 3-2.3.1. 
O 

(c) Does the average of product A exceed that of product B? 

8 = mA — mB 

_ Wa — mB 1 / nA nB 
<y VnA + nB — 1 \nA + nB’ 

where aA = <rB = by assumption, and nA and nB are the respective sample sizes from 
products A and B. See Paragraph 3-3.2.1. 
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Figure 3-6. OC curves for the one-sided t-test (a = .01). 

Adapted with permission from Engineering Statistics by A. H. Bowker and G. J. Lieberman, Copyright, 1959, Prentice-Hall, Inc. 

Note: These curves apply to the following tests: 

(a) Does the average m of a new product exceed a standard m0? 

8 = m — m0 

d = —-— See Paragraph 3-2.2.1. 
<T 

(b) Is the average m of a new product less than a standard m0l 

8 = m0 — m 

d = See Paragraph 3-2.3.1. 
<T 

(c) Does the average of product A exceed that of product B? 

8 = mA — mB 

_ w-a - mB _1_ / nA nB 
<t VnA + nB - 1 \nA + nB’ 

where <rA = aB = a by assumption, and nA and nB are the respective sample sizes from 
products A and B. See Paragraph 3-3.2.1. 
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Selection of Sample Size n. If we choose 

8 = (m — w0), 
a, the significance level of the test 
/3, the probability of failing to detect a positive difference of size (w — w0) 

and compute 

d = 
m — Wp 

a 

then we may use Table A-9 to obtain a good approximation to the required sample size. If we are 
using a = .01, then we must add 3 to the table value. If we are using a = .05, then we must add 2 to 
the table value. (In order to compute d, we must choose a value for <r; see Paragraph 2-2.4 when 
no other information is available.) 

If, when planning an investigation leading to a one-sided /-test, we overestimate a, the conse¬ 
quences are two-fold: first, we overestimate the sample size required, and thus unnecessarily increase 
the cost of the test; but, by employing a sample size that is larger than necessary, the actual value 
of /3(<5) will be somewhat less than we intended, which will be all to the good. On the other hand, 
if we underestimate cr, we shall underestimate the sample size actually required, and by using too 
small a sample size, /3(5) will be somewhat larger than we intended, and our chances of detecting 
real differences when they exist will be correspondingly lessened. (A numerical example for the 
too-sided /-test is given in Paragraph 3-2.1.1. The one-sided case is similar). 

Finally, it should be noted, that inasmuch as the test criterion u = /i_a does not depend on a, 

an error in estimating <j when planning a one-sided /-test does not alter the level of significance of 
the test, which will be precisely equal to the value of a desired, provided that /i_„ is taken equal to 
the 100 (1 — a) percentile of the t distribution form — 1 degrees of freedom, where n is the sample 
size actually employed. 

3-2.2.2 Does the Average of the New Product Exceed the Standard (cr Known)? 

[One-sided Normal Test] 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up Zi_a in Table A-2. 

(3) Compute 
X, the sample mean 

(4) Compute 

“ = Zl~aV^ 

(5) If (X — w0) > u, decide that the average 
performance of the new type exceeds that 
of the standard; otherwise, that there is no 
reason to believe that the average of the 
new type exceeds that of the standard. 

(6) Note that the open interval from (X — u) 
to + * is a one-sided 100 (1 — a) % con¬ 
fidence interval for the true mean of the 
new product. 

Example 

(1) Let a = .05 

(2) z.96 = 1.645 

(3) 
X = 0.710 pound 

(Data Sample 3-2) 

(4) a is known to be equal to .06 pound. 

1.645 (.06) 

U~ V20 

= .022 

(5) (X - wo) = .710 - .735 = -.025, which 
is not larger than u. We conclude that there 
is no reason to believe that the average of 
the new product exceeds that of the 
standard. 

(6) Note that the open interval from .688 to 
+ oo is a 95% one-sided confidence inter¬ 
val for the true mean of the new product. 
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Operating Characteristics of the Test. Figures 3-7 and 3-8 give the operating characteristics of the 

above test for a = .05 and a = .01, respectively. For any given n and d = —-—, the value of 
<T 

0(8) = 0(81 a, a, n), the probability of failing to detect a positive difference 8 = (m — m0), can be 
read off directly. 

Selection of Sample Size n. If we specify 

8 = (m — m0), the magnitude of a positive difference of interest to us 
a, the significance level of the test 
0, the probability of failing to detect a positive difference of size 8 

and compute 

, m — m0 
a =- 

<7 

then we may use Table A-9 to obtain the required sample size. 

When we know the correct value of o, we can achieve a desired value of 0(8) with fewer observa¬ 
tions by using the normal test at the desired level of significance a than by using the corresponding 
f-test. The saving is 2 or 3 observations according as a = .05 or .01, respectively. 

Overestimating or underestimating o when planning a one-sided normal test has somewhat 
different consequences than when planning a one-sided f-test. If we overestimate o and choose o' > o, 

we also overestimate the sample size required as in the case of the f-test. In addition, we overestimate 

the correct test criterion u = Zi_a for the sample size n actually adopted, with the result that the 

effective significance level of the normal test is reduced to a', which is related to a by the equation 

The actual probability of not detecting a difference of 5, 0'(8), is related to the intended risk 0(8) 
by the equation 

Z1-/3. 

0'(8) will be less than 0(8) when o' > o for all (large) 8 for which 0(8) < 0.50; 0'(8) will be larger than 
0(8) for all (small) 8 for which 0'(8) > 0.50. For the particular 8 for which 0(8) = 0.50, 0'(8) also will 
equal 0.50. Conversely, if we underestimate o, then we not only underestimate the sample size 
required but also the test criterion for the sample size actually used, so that the actual risk of an 
Error of the First Kind a' will be larger than a, and the risk of an Error of the Second Kind 0'(8) 
will be increased for large 8, and decreased for small 8. (Numerical examples for the two-sided normal 
test are given in Paragraph 3-2.1.2. The one-sided case is similar.) 
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Figure 3-7. OC curves for the one-sided normal test (a = .05). 

Adapted with permission from Engineering Statistics by A. H. Bowker and G. J. Lieberman, Copyright, 1959, Prentice-Hall, Inc. 

Note: These curves apply to the following tests: 

(a) Does the average m of a new product exceed a standard mfl 

8 = m — Wo 

d = m ~ m° See Paragraph 3-2.2.2. 
O 

(b) Is the average m of a new product less than a standard m0? 

8 = m0 — m 

d = m° ~ m See Paragraph 3-2.3.2. 
O 

(c) Does the average of product A exceed that of product B? 

8 = mA — mB 

d = , m =, a a and aB are known. See Paragraph 3-3.2.3. 
V<ta + <tb 
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<30. -I.oo -0.50 0.0 0.50 1.00 1.50 2,00 2.50 3.00 

d 

Figure 3-8. 0C curves for the one-sided normal test (a = .01). 

Adapted with permission from Engineering Statistics by A. H. Bowker and G. J. Lieberman, Copyright, 1959, Prentice-Hall, Inc. 

Note: These curves apply to the following tests: 

(a) Does the average m of a new product exceed a standard mfl 

8 = m — m0 

d = —-— See Paragraph 3-2.2.2. 
<7 

(b) Is the average m of a new product less than a standard mfl 

8 = m0 — m 

d = —-— See Paragraph 3-2.3.2. 
(7 

(c) Does the average of product A exceed that of product B? 

8 = mA — mB 

d = —,m=, a a and <rB are known. See Paragraph 3-3.2.3. 
V <y A + <rB 
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3-2.3 TO DETERMINE WHETHER THE AVERAGE OF A NEW PRODUCT IS LESS THAN THE 
STANDARD 

3-2.3.1 Is the Average of the New Product Less than the Standard (cr Unknown)? 

[One-sided t-test] 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up ti_a for n — 1 degrees of freedom 
in Table A-4. 

(3) Compute 
X and s 

(4) Compute 

. s 
u = h-a —/= 

(5) If (ra0 — X) > u, decide that the average 
of the new type is less than that of the 
standard; otherwise, that there is no reason 
to believe that the average of the new type 
is less than the standard. 

(6) Note that the open interval from - » to 
(X + u) is a one-sided 100 (1 — a) % con¬ 
fidence interval for the true mean of the 
new type. 

Example 

(1) Let a = .05 

(2) t.96 for 19 degrees of freedom = 1.729 

(3) X = .710 pound 
s = .0504 pound 

(Data Sample 3-2) 

(4) 
1.729 (.0504) 

U~ V20 
= 0.019 

(5) .735 - .710 = .025. We conclude that the 
average of the new type is less than that of 
the standard. 

(6) Note that the open interval from — « to 
.729 is a one-sided 95% confidence interval 
for the true mean of the new type. 

Operating Characteristics of the Test. Figures 3-5 and 3-6 give the operating characteristic (OC) 
curves of the above test for a = .05, and a = .01, respectively, for various values of n. 

Choose: 

8 = (m0 — m), 

Some value of <j 

Compute 

, h 
d = - . 

a 

We then can read from the OC curve for a given significance level a and sample size n, a value 
of 0(5). The 13(8) read from the curve is (3(8 \cr, a, n), i.e., 13(8 given a, a, n)—the probability of failing 
to detect this difference when the given test is carried out with a sample of size n, at the a-level of 
significance, and the population standard deviation actually is <r. 

If we use too large a value for a, the effect is to underestimate d and consequently to overestimate 
/3(5), the probability of not detecting a difference of 8 when it exists. Conversely, if we choose too 
small a value of a, then we shall overestimate d and underestimate /3(8). The true value of /3(<5) is 
determined, of course, by the sample size n and significance level a employed, and the true value 
of a. 

the true difference between averages (unknown, of course) 

(We may use an estimate from previous data; lacking such an estimate, 
see Paragraph 2-2.4. If OC curve is consulted after the experiment, we 
may use the estimate from the experiment.) 
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Selection of Sample Size n. If we choose 

5 = (m0 — m), 
a, the significance level of the test 
(3, the probability of failing to find a negative difference of size (m0 — m); 

and compute 

, m0 — m 
a =- 

<r 

then we may use Table A-9 to obtain a good approximation to the required sample size. If we are 
using a = .01, then we must add 3 to the table value. If we are using a = .05, then we must add 
2 to the table value. (In order to use the table, we must have a value for cr. See Paragraph 2-2.4 
if no other information is available.) 

The effect of overestimating or underestimating cr is the same as when a one-sided i-test is to be 
used to detect a positive difference of magnitude 8 = m — m0. See Paragraph 3-2.2.1. 

3-2.3.2 Is the Average of the New Product Less Than That of the Standard (cr Known)? 

[One-sided Normal Test] 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up Zi—a in Table A-2. 

(3) Compute 
X, the sample mean 

(4) Compute 

cr 
U = Z\—a —7= 

Vn 

(5) If {m0 — X) > u, decide that the average 
of the new type is less than that of the 
standard; otherwise, that there is no reason 
to believe that the average of the new type 
is less than that of the standard. 

(6) Note that the open interval from — oo to 
(X + u) is a one-sided 100 (1 — a) % con¬ 
fidence interval for the true mean of the 
new type. 

Example 

(1) Let a = .05 

(2) z.9B = 1.645 

(3) 
X = 0.710 pound 

(Data Sample 3-2) 

(4) o- is known to be equal to .06 pound. 

1.645 (.06) 

U ~ V20 

= 0.022 

(5) (m0 - X) = (.735 - .710) = .025, which 
is larger than u. We conclude that the 
average of the new type is less than the 
standard. 

(6) Note that the open interval from — =o to 
.732 is a one-sided 95% confidence interval 
for the true mean of the new type. 

Operating Characteristics of the Test. Figures 3-7 and 3-8 give the operating characteristics of 

the test for a = .05 and a = .01, respectively. For any given n and d = —-— the value of 
(J 

(3(5) = j8(5| cr, a, n), the probability of failing to detect a negative difference of size (m0 — m), can 
be read off directly. 
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Selection of Sample Size n. If we specify 

5 = (m0 — m), the magnitude of a negative difference of interest to us 
a, the significance level of the test 
ft the probability of failing to detect a negative difference of size 8, 

and compute 

^ _ m0 — m 
a 

then we may use Table A-9 to obtain the required sample size. 

The effect of overestimating or underestimating a is the same as when the one-sided normal test 
is to be used to detect a positive difference of magnitude 8 = m — m0. See Paragraph 3-2.2.2. 

3-3 COMPARING THE AVERAGES OF TWO 

MATERIALS, PRODUCTS, OR PROCESSES 

We consider two problems: 
(a) We wish to test whether the averages of two materials, products, or processes differ, and we 

are not particularly concerned which is larger, Paragraph 3-3.1. 
(b) We wish to test whether the average of material, product, or process A exceeds that of 

material, product, or process B, Paragraph 3-3.2. 

TABLE 3-2. SUMMARY OF TECHNIQUES FOR COMPARING THE AVERAGE PERFORMANCE OF TWO PRODUCTS 
(FOR DETAILS AND WORKED EXAMPLES, SEE PARAGRAPHS 3-3.1 AND 3-3.2) 

We Wish to 
Test 

Whether 

Para¬ 
graph 
Refer- 

Knowledge of 
Variation Test to be Made 

Operating 
Characteristics 

of Test 

Determination of 
Sample Size n Notes 

mA differs 
from wia 

3-3.1.1 a a — <tb \ both 
unknown 

| XA — XB | > u, where For a = .05 and 
a = .01 see Figs. 
3-1 and 3-2* and 
Par. 3-3.1.1. 

Use Table A-8. For 
a = .05, add 1 to 
the tabular value. 
For a = .01, add 2 
to the tabular value. 

„ _ l(nA - 1) s*a + (sj - 1) 4 

u = tt-.nsPJ?±±J!Jl 
\ nAnB 

P \ nA + nB - 2 

a a 5^ ob \ both 
unknown 

1 Xa - XB1 > u, where 

u = t'M + * 
\nA nB 

See Notes. 

V is the value of for the effec¬ 
tive number of degrees of freedom 
, (4/nx+Se/Jl bY 
1 (4/»a)* (4/«e)* 

nA + 1 + nB + 1 

3-3.1.3 <ta, vb] both 
known 

1XA — XbI > u, where 

“=z,~'2\S+S 

For a = .05 and 
a = .01, see Figs. 
3-3 and 3-4. 

Use Table A-8. 

wix is greater 
than mB 

3-3.2.1 a a — <rB; both 
unknown 

(Xa — XB) > u, where For a = .05 and 
a = .01 see Figs. 
3-5 and 3-6* and 
Par. 3-3.2.1. 

Use Table A-9. For 
a = .05, add 1 to 
the tabular value. 
For a = .01, add 2 
to the tabular value. 

. . l(nA - 1) 4 + (»e - 1) 4 

u = sP -N + "« 
\ nA nB 

\ nA + nB - 2 

3-3.2.2 a a 5^ <jb \ both 
unknown 

(Xa - XB) > -u, where 

u-i'Ji + i 
'In a nB 

t' is the value of ti_ for the effective 
number of degrees of freedom 
, (4/nx + 4/n«)2 1 (4/nx)2 , (4 

71a “fr" 1 7lB + 1 

3-3.2.3 a A, <r«; both 
known 

(Xa - XB) > U, where 

1” ^lnA n b 

For a = .05 and 
a = .01 see Figs. 
3-7 and 3-8. 

Use Table A-9. 

* Although the common a is unknown, useful information may be obtained from the OC curve if a value (or 2 bounding values) of a can be assumed. 
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It again is important to decide which problem is appropriate before making the observations. 
If this is not done and the choice of the problem is influenced by the observations, the significance 
level of the test, i.e., the probability of an Error of the First Kind, and the operating characteristics 
of the test may differ considerably from their nominal values. It is assumed that the appropriate 
problem has been selected and that nA and nB observations are taken from products A and B, 
respectively. 

Ordinarily, we will not know oA or <xB. In some cases, it may be safe to assume that <rA is approxi¬ 
mately equal to <jb.* We give the solutions for the two problems (Paragraphs 3-3.1 and 3-3.2) for 
three situations with regard to knowledge of the variability, and for the special case where the 
observations are paired. 

Case 1—The variability in performance of each of A and B is unknown but can be assumed to be 
about the same. 

Case 2—The variability in performance of each of A and B is unknown, and it is not reasonable 
to assume that they both have the same variability. 

Case 3—The variability in performance of each of A and B is known from previous experience. 
The standard deviations are <xA and aB, respectively. 

Case k—The observations are paired. 

3-3.1 DO THE PRODUCTS A AND B DIFFER IN AVERAGE PERFORMANCE? 

3-3.1.1 (Case 1)—Variability of A and B is Unknown, But Can Be Assumed to be Equal. 

Data Sample 3-3.1.1—Latent Heat of Fusion of Ice 

Two methods were used in a study of the latent heat of fusion of ice. Both Method A (an electrical 
method) and Method B (a method of mixtures) were conducted with the specimens cooled to 
—0.72°C. The data represent the change in total heat from — 0.72°C to water at 0°C, in calories 
per gram of mass. 

Method A Method B 

79.98 
80.04 
80.02 
80.04 
80.03 
80.03 
80.04 
79.97 
80.05 
80.03 
80.02 
80.00 
80.02 

80.02 
79.94 
79.98 
79.97 
79.97 
80.03 
79.95 
79.97 

* For a procedure to test whether aA and aB differ, see Chapter 4. 
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[Two-sided t-test] 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up ti-a/2 for v = (nA + nB — 2) de¬ 
grees of freedom in Table A-4. 

Example 

(1) Let a = .05 

(2) nA = 13 
nB = 8 

v = 19 degrees of freedom 
£.976 for 19 d.f. = 2.093 

(3) Compute: XA and sAf XB and sB, for the nA (3) 
and nB measurements from A and B. 

XA = 80.02 
4 = .000574 

XB = 79.98 
4 = .000984 

(4) Compute 

(nA - 1) 4 + (nB - 1) 4 
nA + nB — 2 

(4) 

12 (.000574) + 7 (.000984) 
19 

= V.000725 
= .0269 

(5) Compute 

tl-a 4 nA + nB 
nA nB 

(5) 

u 2.093 (.0269) 

(.05630) (.4493) 
.025 

(6) If | XA — XB | > u, decide that A and B 
differ with regard to their average perform¬ 
ance; otherwise, that there is no reason to 
believe A and B differ with regard to their 
average performance. 

(6) \XA — XB \ = .04, which is larger than u. 
Conclude that A and B differ with regard 
to average performance. 

(7) Let mA, mB be the true average perform¬ 
ances of A and B (unknown of course). 
It is worth noting that the interval 
(XA - XB) ± u is a 100 (1 — a) % con¬ 
fidence interval estimate of (mA — mB). 

(7) The interval .04 ± .025, i.e., the interval 
from .015 to .065, is a 95% confidence inter¬ 
val for the true difference between the 
averages of the methods. 

Operating Characteristics of the Test. Figures 3-1 and 3-2 give the operating characteristic (OC) curves 
of the above test for a = .05 and a = .01, respectively, for various values of n = nA + nB — 1. 

Choose: 

8 = | mA — mB |, the true absolute difference between the averages 

Some value of <r (= <rA = <rB), the common standard deviation. 
(We may use an estimate from previous data; lacking such an estimate, see Para¬ 
graph 2-2.4. If OC curve is consulted after the experiment, we may use the estimate 
from the experiment.) 

Compute 

d* = \mA - mB| 1 I nAnB 
a VnA + nB - 1 \nA + nB 
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We then can read a value of /3(5) from the OC curve for a given significance level and effective sample 
size n = nA + nB — 1. The 0(5) read from the curve is 0(51 <x, a, nA, nB) i.e., 0(5, given a, a, nA and nB) 
the probability of failing to detect a real difference between the two population means of magnitude 
5 = ±(mA — mB) when the test is carried out with samples of sizes nA and nB, respectively, at the 
a-level of significance, and the two population standard deviations actually are both equal to a. 

If we use too large a value for a, the effect is to make us underestimate d* and consequently to 
overestimate (8(5). Conversely, if we choose too small a value of <r, then we shall overestimate d* 
and underestimate 0(5). The true value of 0(5) is determined, of course, by the sample sizes nA and nB 
and significance level a actually employed, and the true value of a (= <rA = aB). 

Since the test criterion u does not depend on the value of a (= <rA = <rB), an error in estimating a 
will not alter the significance level of the test, which will be precisely equal to the value of a desired, 
provided that the value of <i_0/2 is taken equal to the 100 (1 — a/2) percentile of the ^-distribution 
for nA + nB — 2 degrees of freedom, where nA and nB are the sample sizes actually employed, and 
it actually is true that <rA = aB. 

If crA <xB, then, whatever may be the ratio aA/<rB, the effective significance level a' will not differ 
seriously from the intended value a, provided that nA = nB, except possibly when both are as small 
as two. If, on the other hand, unequal sample sizes are used, and <rA ^ <sB, then the effective level 
of significance a can differ considerably from the intended value a, as shown in Figure 3-9 where 
a = .05. 

0=a2 /cr2 (LOGARITHMIC SCALE) 
A / B 

Figure 3-9. Probability of rejection of hypothesis 
mA = mB when true, plotted against 6. 

(A) nA = nB = 10, P(N) > 2.101; 
(B) nA = 5, ns = 15, P{\u\) > 2.101. 

Adapted with permission from Biometrika, Vol. XXIX, Parts III 
and IV, February 1938, from article entitled “The significance of the 
difference between two means when the population variances are un¬ 
equal” by B. L. Welch. 
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Selection of Sample Size n. If we choose 

8 = | mA — mB |, the absolute value of the average difference that we desire to detect 
a, the significance level of the test 
/3, the probability of failing to detect a difference of absolute size 8, 

and compute 

, | mA - mB\ 
a = 7^= , where a = a a = <rB , 

V 2cr2 

then we may use Table A-8 to obtain a good approximation to the required sample size 
n (= nA = nB). If we take a = .01, then we must add 2 to the value obtained from the table. 
If we take a = .05, then we must add 1 to the table value. 

In order to compute d, we must choose a value for a (= <ja - aB). (See Paragraph 2-2.4 if no 
other information is available.) If we overestimate <r, the consequences are two-fold: first, we over¬ 
estimate the sample size n (= nA = nB) required, and thus unnecessarily increase the cost of the 
test; but, by employing a sample size that is larger than necessary, the actual value of /3(5) will be 
somewhat less than we intended, which will be all to the good. On the other hand, if we under¬ 
estimate <7, we shall underestimate the sample size actually required, and by using too small a 
sample size, /S(5) will be somewhat larger than we intended, and our chances of detecting real 
differences when they exist will be correspondingly lessened. These effects of overestimating or 
underestimating a (= aA = aB) will be similar in magnitude to those considered and illustrated in 
Paragraph 3-2.1.1 for the case of comparing the mean m of a new material, product, or process, 
with a standard value m0. 

As explained in the preceding discussion of the operating characteristics of the test, an error in 
estimating a (= <rA = aB) will have no effect on the significance level of the test, provided that the 
value of £i_a/2 is taken equal to the 100 (1 — a/2) percentile of the ^-distribution for nA + nB — 2 

degrees of freedom, where nA and nB are the sample sizes actually employed; and if aA ^ <rB, the 
effect will not be serious provided that the sample sizes are taken equal. 

3-3.1.2 (Case 2)—Variability of A and B is Unknown, Cannot Be Assumed Equal. 

Data Sample 3-3.1.2—Compressive Strength of Concrete 

Two investigators using somewhat different techniques obtained specimen cores to determine the 
compressive strength of the concrete in a poured slab. The following results in psi were reported: 

A B 

3128 1939 
3219 1697 
3244 3030 
3073 2424 

2020 
2909 
1815 
2020 
2310 

3-26 



COMPARING AVERAGE PERFORMANCE ORDP 20-110 

Procedure* Example 

(1) Choose a, the significance level of the test. (1) Let a = .05 
(Actually, the procedure outlined will give 
a significance level of only approximately 
a). 

(2) Compute: XA and s2A, XB and s*,, for the nA (2) 
and nB measurements from A and B. 

XA = 3166.0 
4 = 6328.67 

nA = 4 
XB = 2240.4 
4 = 221,661.3 
nB = 9 

(3) Compute: (3) 

and 

the estimated variances of XA and XB, 
respectively. 

6328.67 
4 

1582.17 

_ 221,661.3 
9 

= 24629.03 

(4) Compute the “effective number of degrees (4) 
of freedom” 

f __jyA±vBy_ „ 
1 ~ vi vB 1 

nA + 1 nB + 1 

f (26211.20)2 
; 500652.4 + 60658911.9 

_ 687027005 0 

61159564 

= 11.233 - 2 
= 9.233 

(5) Look up ti-a/2 for /' degrees of freedom in (5) /' = 9 
Table A-4, where/' is the integer nearest to t[975 = 2.262 
f; denote this value by <'i_a/2. 

(6) Compute 

u = ti-a/2 y/VA + VB u = 2.262 V26211.20 
= 2.262 (161.9) 
= 366.2 

(7) If \XA — XB\> u, decide that A and B 
differ with regard to their average perform¬ 
ance; otherwise, decide that there is no 
reason to believe A and B differ in average 
performance. 

(7) \XA — XB \ = 925.6, which is larger than 
u. Conclude that A and B differ with 
regard to average performance. 

* See footnote on page 3-28. 
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Procedure* 

(8) If mA, mB are the true average perform¬ 
ances of A and B (unknown of course), 
then it is worth noting that the interval 
(XA — XB) ± u is approximately a 
100 (1 — a) % confidence interval estimate 
of mA — mB. 

Example 

(8) The interval 925.6 ± 366.2, i.e., the inter¬ 
val from 559.4 psi to 1291.8 psi is a 95% 
confidence interval for the true difference 
between the averages of the two methods. 

Discussion. 

To gain some understanding of the nature, properties, and limitations of this approximate 
procedure, note first that VA and VB are unbiased estimates of the true variances and o^/ub 
of the means XA and XB, respectively. Consequently, VA + VB is an unbiased estimate of the true 
variance of the difference XA — XB, provided only that XA and XB are the means of independent 
random samples of nA and nB observations from populations A and B, respectively. Note next that 
the effective number of degrees of freedom /, defined by the expression in step (4), also can be 
expressed in the form 

1 _ c2 , (1 - c)2 
/ + 2 fA +2 fB + 2 

where 

fA = nA-l and fB=nB- 1 

are the degrees of freedom associated with the variance estimates VA and VB, respectively, and, 

c = T/ an(j 1 — c = T/- 
v A -t V B v A V B 

are the fractions of the estimated variance of the difference XA — XB that are associated with 
XA and XB, respectively. From this expression for /, it is evident that / can never be less than the 
smaller of fA (= nA — 1) and fB( = nB — 1), and/cannot be larger than 

(/a + 2) + (fB + 2) — 2 = nA + nB. 

When Va is so large in comparison to VB that VB is negligible, then c ~ 1 and / ~ JA, which is 
intuitively reasonable—the fB degrees of freedom upon which VB is based are not making a useful 
contribution to the estimate of the variance of the difference XA — XB. Similarly, when VB 
dominates the situation, then c ~ 0 and / ~ fB. In intermediate situations where neither VA nor VB 
can be neglected, both the fA and the fB degrees of freedom make useful contributions, and the 
effective number of degrees of freedom / expresses the sum of their joint contributions. Thus, in 
our illustrative example, fA = 3 and fB = 8, but / = 9+. Both samples make their maximum con¬ 
tributions, that is, / achieves its maximum of nA + nB, only when VA/VB = (nA + 1 )/(nB + 1), 
i.e., when s2A/s2B = nA (nA + 1 )/nB (nB + 1). 

* The test procedure given here is an approximation, i.e., the stated significance level is only approximately achieved. 
The approximation is good provided nA and nB are not too small. A more accurate procedure is given in Biometrika 
Tables for Statisticians,(1) which (in the notation of the present procedure) provides 10% and 2% significance levels of 
|»| = If-X^ — XB) - (mA — mB) | /\/Va + VB for nA > 6, nB > 6, and 0 < Va/{Va + Vb) < 1. 5% and 1% sig¬ 
nificance levels of | w | for nA > 8 and nB > 8 and the same range of VA/(VA + VB) are given by Trickett, Welch, and 
James.<2) (When using either of the tables (1) or (2), it should be noticed that our “a” corresponds to their “2a".) 

The appropriate modification when the value of the ratio of the variances 6 = <rA/aB is known, but not their respective 
values, is indicated at the end of the Discussion that follows this procedure. 
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When samples of equal size (nA = nB = n) are involved, the present approximate procedure for 
Case 2 (aA and aB both unknown and presumably unequal) in Paragraph 3-3.1.2, and the exact 
procedure for Case 1 (<rA and <rB presumably equal, but their common value unknown) given in 
Paragraph 3-3.1.1 are the same in all respects except for the value of /i_a/2 to be used. In the exact 
procedure for Case 1, the value of /i_a/2 to be used when nA = nB = n is the 100 (1 — a/2) per¬ 
centile of the /-distribution for v = 2 (n — 1) degrees of freedom, and is completely determined by 
the choice of significance level a and the common sample size n. In contrast, the value of /i_a/2 to 
be used in the approximate procedure for Case 2 when nA = nB = n is the 100 (1 — a/2) percentile 
for the integral number of degrees of freedom /' nearest to the effective degrees of freedom 

/=(« + !) 
(4 + 4)2 

4 + 4 - 2, 

and thus depends not only on the choice of significance level a and common sample size n, but also 
on the ratio sA/sB of the sample estimates of <rA and <rB. Furthermore, since/can vary from (n — 1) 
to 2n, and equals 2n only when si = si, it is clear that the two procedures may lead to different 
results when <rA ~ aB. Consequently, when samples of equal size (nA = nB = n) are involved, the 
procedure for Case 1 of Paragraph 3-3.1.1 should be used even when it cannot be assumed that aA ~ aB. 
If in fact <ta = <jB, then the effective significance level a will be identically equal to the intended 
significance level a, and the test will have maximum sensitivity with respect to any real difference 
between the population means mA and mB. If, on the other hand, <ta ^ <rB, then the effective 
significance level a' will differ from the significance level a intended, but only slightly, as shown by 
curve (A) in Figure 3-9; and the test will tend to have greater sensitivity with respect to any real 
difference between mA and mB than would be the case if the procedure of the present section 
were used. 

In contrast, when the samples are of unequal size (nA ^ nB), the procedure of the present section 
should always be used unless it is known for certain that aA = oB. Otherwise, the effective significance 
level a may differ considerably from the significance level a intended, even when <rA ~ aB as shown 
by curve (B) in Figure 3-9. 

When the smaller sample comes from the more variable population, the effective number of 
degrees of freedom / to be used with the procedure of the present section is likely to be much smaller 
than nA + nB — 2, the degrees of freedom to be used with the procedure of Paragraph 3-3.1.1. 
Nevertheless, the small advantage of greater sensitivity to real differences between mA and mB that 
the procedure of Paragraph 3-3.1.1 provides when aA = aB is rapidly offset, as the inequality of 
<rA and <rB increases, by the much firmer control of the effective significance level by the procedure 
of the present section, except when / is very small (say < 6). 

Finally, it should be remarked that the effective number of degrees of freedom appropriate to the 
procedure of the present section is given more accurately by 

where 

(vA + VbY 

-1 

CnBe + nAy 
n2Bd2 n/i 

nA - 1 n\ 

vA = — and 
nA 

vB 
a\ 
nB 

are the true variances of XA and XB, respectively, and 9 = oa/ob. 
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It easily is shown that f* never is less than the smaller of nA — 1 and nB — 1, and never exceeds 
nA + nB - 2. If we know the values of a\ and <r|, then we could evaluate /*; but under these 
circumstances we should use the procedure of Paragraph 3-3.1.3, not the present approximate 
procedure. If we do not know the values of and a%, but do know their ratio 6, then the exact 
procedure (Case 3) of Paragraph 3-3.1.3 cannot be applied, but/* can be evaluated. Under these 
circumstances, the approximate procedure of the present section should be followed, with / replaced 
by /*. When we do not know the values of <t2a and a\, nor even their ratio 0, then we must rely on 
the best available sample estimate of /*; namely, / defined in Step (4) of the present procedure. 

3-3.1.3 (Case 3)—Variability in Performance of Each of A and B is Known from Previous Experience, 
and the Standard Deviations are aA and aB, respectively. 

Data Sample 3-3.1.3—Latent Heat of Fusion of Ice 

The observational data are those of Data Sample 3-3.1.1 and, in addition, it now is assumed to 
be known that <xA = 0.024 and <rB = 0.033 . 

[Two-sided Normal Test] 

Procedure 

(1) Choose a, the level of significance of the 
test. 

(2) Look up Zi-a/2 in Table A-2. 

(3) Compute: XA and XB, the means of the nA 
and nB measurements from A and B. 

(4) Compute 

u = 2 l-a/2 

(5) If | XA — XB \ > u, decide that A and B 
differ with regard to their average perform¬ 
ance; otherwise, decide that there is no 
reason to believe that A and B differ in 
average performance. 

(6) Let mAt mB be the true average perform¬ 
ances of A and B (unknown of course). 
It is worth noting that the interval 
(XA - XB) ± u is a 100 (1 - a) % con¬ 
fidence interval estimate of (mA — mB). 

Example 

(1) Let a = .05 

(2) 2.976 = 1.960 

(3) XA = 80.02 
<r2„ = 0.000576 
nA = 13 
XB = 79.98 
ai = 0.001089 
nB = 8 

(4) 

u = 1.960. 
/0.000576 , 0.001089 

13 + 8 

= 1.960 (.0134) 
= 0.026 

(5) \XA — XB \ = -04, which is larger than u. 
Conclude that methods A and B differ with 
regard to their averages. 

(6) The interval .04 ± .026 i.e., the interval 
from .014 to .066 is a 95% confidence inter¬ 
val for the true difference between the 
averages of the methods. 
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Operating Characteristics of the Test. Figures 3-3 and 3-4 give the operating characteristic (OC) 
curves of the above test for a = .05 and a = .01, respectively, for various values of n. 

If nA = nB = n, and (mA — mB) is the true difference between the two averages, then putting 

A _ |mA - mB\ 

we can read (3, the probability of failing to detect a difference of size ± (mA — mB). 

If nA = cnB, we can put d 
\mA -mB\ , 

, „ and, using n = nA, we can 
+ C<r% 

read /3, the probability of 

failing to detect a difference of size ± (mA — mB). 

Selection of Sample Size. We choose 

a, the significance level of the test 
/3, the probability of failing to detect a difference of size (mA — mB). 

If we wish nA = nB = n, we compute 

_ | mA — mB\ 

V Oa + Ob 

and we may use Table A-8 directly to obtain the required sample size n. 

If we wish to have nA and nB such that nA = cnB, then we may compute 

, _ \mA - mB | 
a “ J2 I /. _2 

&A T" CaB 

and use Table A-8 to obtain n = nA. 

3-3.1.4 (Case 4)—The Observations are Paired. 

Often, an experiment is, or can be, designed so that the observations are taken in pairs. The two 
units of a pair are chosen in advance so as to be as nearly alike as possible in all respects other than 
the characteristic to be measured, and then one member of each pair is assigned at random to treat¬ 
ment A, and the other to treatment B. For instance, the experimenter may wish to compare the 
effects of two different treatments on a particular type of device, material, or process. The word 
“treatments” here is to be understood in a broad sense: the two “treatments” may be different 
operators; different environmental conditions to which a material may be exposed, or merely two 
different methods of measuring one of its properties; two different laboratories in an interlaboratory 
test of a particular process of measurement or manufacture. Since the comparison of the two treat¬ 
ments is made within pairs, two advantages result from such pairing. First, the effect of extraneous 
variation is reduced and there is consequent increase in the precision of the comparison, and in its 
sensitivity to real differences between the treatments with respect to the measured characteristic. 
Second, the test may be carried out under a wide range of conditions representative of actual use 
without sacrifice of sensitivity and precision, thereby assuring wider applicability of any conclusions 
reached. 
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Data Sample 3-3.1.4—Capacity of Batteries 

The data below are measurements of the capacity (in ampere hours) of paired batteries, one from 
each of two different manufacturers: 

A B X
 

Q-
 

>
x 

146 141 5 
141 143 -2 
135 139 -4 
142 139 3 
140 140 0 
143 141 2 
138 138 0 
137 140 -3 
142 142 0 
136 138 -2 

Procedure Example 

(1) Let a = .05 

(2) Xd = -0.1 
sd = 2.807 

(3) f.,75 (9 d.f.) = 2.262 

(4) 

« = 2.262 (|f§|) 

= 2.008 

(5) | Xd\ = 0.1, which is less than u. Conclude 
that batteries of the two manufacturers do 
not differ in average capacity. 

(6) The interval —0.1 ± 2.0, i.e., the interval 
—2.1 to +1.9 is a 95% confidence interval 
estimate of the average difference in 
capacity between the batteries of the two 
manufacturers. 

(1) Choose a, the significance level of the test. 

(2) Compute: Xd and sd for the n differences, 
Xd. (Each Xd represents an observation on 
A minus the paired observation on B). 

(3) Look up fi_a/2 for n — 1 degrees of freedom 
in Table A-4. 

(4) Compute 

* 

U-tl-'Wn 

(5) If |Xd\ > u, decide that the averages dif¬ 
fer; otherwise, that there is no reason to 
believe they differ. 

(6) Note: The interval Xd ± u is a 
100 (1 — a) % confidence interval estimate 
of the average difference (A minus B). 

Operating Characteristics of the Test. Figures 3-1 and 3-2 give the operating characteristic (OC) 
curves of the above test for a = .05 and a = .01, respectively, for various values of n, the number 
of pairs involved. 
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Choose: 

5 = | mA — mB |, the true absolute difference between the averages (unknown, 
of course) 

Some value of <r (= ad), the true standard deviation of a signed difference Xd. 
(We may use an estimate from previous data. If OC curve is consulted after the 
experiment, we may use the estimate from the experiment.) 

Compute 

(T 

We then can read from the OC curve for a given significance level a and sample size n, a value of 
of 0(5). The 0(5) read from the curve is 0(51 a, a, n), i.e., 0(5, given a, a, n)—the probability of 
failing to detect a difference of ± (mA — mB) when it exists, if the given test is carried out with n 
pairs, at the a-level of significance, and the standard deviation of signed differences Xd actually is a. 

If we use too large a value for a, the effect is to underestimate d, and consequently to overestimate 
0(5), the probability of not detecting a difference of 5 when it exists. Conversely, if we choose too 
small a value of o-, then we shall overestimate d and underestimate 0(5). The true value of 0(5) is 
determined, of course, by the sample size n and the significance level a employed, and the true 
value of (t (= <rd). 

Selection of Number of Pairs n required. If we choose 

5 = |mA — mB\, the absolute value of the average difference that we desire to detect 
a, the significance level of the test 
0, the probability of failing to detect a difference of 5 

and compute 

d = \mA - mB | 

where o- is the standard deviation of the population of signed differences Xd for the type of pairs 
concerned, then we may use Table A-8 to obtain a good approximation to the required number of 
pairs n. If we take a = .01, then we must add 4 to the value obtained from the table. If we take 
a = .05, then we must add 2 to the table value. In order to compute d, we must choose a value for cr. 

If, when planning the test, we overestimate cr, the consequences are two-fold: first, we over¬ 
estimate the number of pairs required, and thus unnecessarily increase the cost of the test; but, by 
employing a sample size that is larger than necessary, the actual value of 0(5) will be somewhat 
less than we intended, which will be all to the good. On the other hand, if we underestimate a, 
we shall underestimate the number of pairs actually required, and by using too small a sample 
size, 0(5) will be somewhat larger than we intended, and our chances of detecting real differences 
when they exist will be correspondingly lessened. 

Finally, it should be noted, that inasmuch as the test criterion u f i—a/2 ^7^ does not depend on <r, 

an error in estimating <r when planning the test will not alter the level of significance, which will be 
precisely equal to the value of a desired, provided that £i_«/2 is taken equal to the 100 (1 — a/2) 
percentile of the ^-distribution for n — 1 degrees of freedom, where n is the number of pairs actually 
employed. 
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3-3.2 DOES THE AVERAGE OF PRODUCT A EXCEED THE AVERAGE OF PRODUCT B? 

3-3.2.1 (Case 1)—Variability of A and B is Unknown, but can be Assumed to be Equal. 

Data Sample 3-3.2.1—Surface Hardness of Steel Plates 

A study was made of the effect of two grinding conditions on the surface hardness of steel plates 
used for intaglio printing. Condition A represents surfaces “as ground” and Condition B represents 
surfaces after light polishing with emery paper. The observations are hardness indentation numbers. 

Condition A 

187 
157 
152 
164 
159 
164 
172 

Condition B 

157 
152 
148 
158 
161 

[One-sided t-test] 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up for v = nA + nB — 2 degrees 
of freedom in Table A-4. 

(3) Compute: XA and si, XB and si, from the 
nA and nB measurements from products A 
and B, respectively. 

(4) Compute 

_ l(nA -l)si + fa -1) 
SF~\ n* + n, - 2 

(5) Compute 

U = tl-a sl nA + nB 
nA nB 

(6) If {XA — XB) > u, decide that the average 
of A exceeds the average of B; otherwise, 
decide there is no reason to believe that the 
average of A exceeds the average of B. 

(7) Let mA and mB be the true averages of A 
and B. Note that the interval from 
{(XA — XB) — u) to <x> is a 1 — a one¬ 
sided confidence interval estimate of the 
true difference (mA — mB). 

Example 

(1) Let a = .05 

(2) nA = 7 
nB — 5 

V = 10 
(.95 for 10 d.f. = 1.812 

(3) XA = 165 
si = 134 

XB = 155.2 
si = 26.7 

(4) 
6 (134) + 4 (26.7) 

10 

u = (1.812) (9.544) 

= 17.294 (.5855) 
= 10.1 

(6) (XA — XB) = 9.8, which is not larger than 
u. There is no reason to believe that the 
average hardness for Condition A exceeds 
the average hardness for Condition B. 

(7) (XA — XB) — u = 9.8 - 10.1-0.3. 
The interval from —0.3 to °o is a 95% one¬ 
sided confidence interval estimate of the 
true difference between averages. 
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Operating Characteristics of the Test. Figures 3-5 and 3-6 give the operating characteristic (OC) curves 
of the above test for a = .05 and a = .01, respectively, for various values of n = nA + nB — 1. 

Choose: 

5 = (mA — mB), the true difference between the averages 

Some value of a (= aA = <rB), the common standard deviation 
(We may use an estimate from previous data; lacking 
such an estimate, see Paragraph 2-2.4. If OC curve is 
consulted after the experiment, we may use the estimate 
from the experiment). 

Compute 

mB)_1_ I nA nB 

a VnA + nB - 1 \nA + nB ' 

We then can read a value of /3(5) from the OC curve for a given significance level and effective 
sample size n. The /3(5) read from the curve is /3(51 <r, a, nA, nB) i.e., /S(5, given a, a, nA, and nB) the 
probability of failing to detect a real difference between the two population means of magnitude 
5 = + (■mA — mB) when the test is carried out with samples of sizes nA and nB, respectively, at 
the a-level of significance, and the two population standard deviations actually are both equal to a. 

If we use too large a value for a, the effect is to make us underestimate d*, and consequently to 
overestimate 8(5). Conversely, if we choose too small a value of <r, then we shall overestimate d* 
and underestimate /?(<$). The true value of (8(5) is determined, of course, by the sample sizes 
(nA and nB) and significance level a actually employed, and the true value of a (= aA = aB). 

Since the test criterion u does not depend on the value of o- (= aA = <tb), an error in estimating o- 
will not alter the significance level of the test, which will be precisely equal to the value of a desired, 
provided that the value of is taken equal to the 100 (1 — a) percentile of the ^-distribution for 
nA + nB — 2 degrees of freedom, where nA and nB are the sample sizes actually employed, and it 
actually is true that crA = <rB. 

If aA aB, then, whatever may be the ratio <ta/<tb, the effective significance level a will not 
differ seriously from the intended value a, provided that nA = nB, except possibly when both are as 
small as two. If, on the other hand, unequal sample sizes are used, and aA 9^ aB, then the effective 
level of significance a can differ considerably from the intended value a, as shown in Figure 3-9. 

Selection of Sample Size n. If we choose 

5 = (mA — mB), the value of the average difference that we desire to detect 
a, the significance level of the test 
(3, the probability of failing to detect a difference of size 5 

and compute 

, {mA - mB) 
d = 7== , where a = <ja = <rB , 

V 2 <r2 

then we may use Table A-9 to obtain a good approximation to the required sample size 
n( = nA = nB). If we take a = .01, then we must add 2 to the table value. If we take a = .05, 
then we must add 1 to the table value. 

In order to compute d, we must choose a value for a (= <rA = <rB)- (See Paragraph 2-2.4 if no 
other information is available.) If we overestimate a, the consequences are two-fold: first, we 
overestimate the sample size n (= nA = nB) required, and thus unnecessarily increase the cost of 
the test; but, by employing a sample size that is larger than necessary, the actual value of /3(5) will 
be somewhat less than we intended, which will be all to the good. On the other hand, if we under- 
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estimate <x, we shall underestimate the sample size actually required, and by using too small a 
sample size, 0(5) will be somewhat larger than We intended, and our chances of detecting real 
differences when they exist will be correspondingly lessened. These effects of overestimating or 
underestimating <r (= aA = <jb) will be similar in magnitude to those considered and illustrated in 
Paragraph 3-2.2.1 for the case of comparing the mean m of a new material, product, or process, 
with a standard value m0. 

As explained in the preceding discussion of the Operating Characteristics of the Test, an error 
in estimating <j (= aA = <rB) will have no effect on the significance level of the test, provided that 
the value of <i_a is taken equal to the 100 (1 — a) percentile of the (-distribution for nA + nB — 2 

degrees of freedom, where nA and nB are the sample sizes actually employed; and if aA <jb, the 
effect will not be serious provided that the sample sizes are taken equal. 

3-3.2.2 (Case 2)—Variability of A and B is Unknown, Cannot Be Assumed Equal. 

Consider the data of Data Sample 3-3.1.2. Suppose that (from a consideration of the methods, 
and not after looking at the results) the question to be asked was whether the average for Method A 
exceeded the average for Method B. 

Procedure* Example 

= .05 

= 3166.0 
= 6328.67 
= 4 
= 2240.4 
= 221,661.3 
= 9 

6328.67 
“ 4 

= 1582.17 

221,661.3 
9 

= 24629.03 

(26211.20)2 
" 500652.4 + 60658911.9 

= 11.233 - 2 
= 9.233 

= 9 
= 1.833 

= 1.833 V26211.20 
= 1.833 (161.90) 
= 296.76 

* See footnote on page 3-37. 

(1) Choose a, the significance level of the test. (1) Let a 

(2) Compute: XA and s^, XB and si, from the (2) XA 
nA and nB measurements from A and B. si 

nA 
XB 

q2 
nB 

(3) Compute: (3) 

VA-& VA 
nA 

and 

y* = —, y* 
nB 

the estimated variances of XA and XB, 
respectively. 

(4) Compute the “effective number of degrees 
of freedom” 

(4) 

t (V A. + V B)2 0 
3 ~ v\ VI / 

nA + 1 nB + 1 

(5) Look up ti-a for /' degrees of freedom in (5) r 
Table A-4, where /' is the integer nearest to 
f; denote this value by 

f .96 

(6) Compute (6) 
u = t'i-a y/VA + VB u 
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Procedure* 

(7) If (XA — XB) > u, decide that the average 
of A exceeds the average of B; otherwise, 
decide that there is no reason to believe 
that the average of A exceeds the average 
of B. 

(8) Let mA and mB be the true averages of 
A and B. Note that the interval from 
{(X,i — XB) — u\ to «> is approximately 
a one-sided 100 (1 — a) % confidence in¬ 
terval estimate of the true difference 
(mA - mB). 

Example 

(7) XA — XB = 925.6, which is larger than u. 
Conclude that the average for Method A 
exceeds the average for Method B. 

(8) (XA - XB) - u = 925.6 - 296.76 = 
628.8. The interval from 628.8 to oo is 
approximately a one-sided 95% confidence 
interval estimate of the true difference be¬ 
tween the averages for the methods. 

3-3.2.3 (Case 3)—Variability in Performance of Each of A and B is Known from Previous Experience 
and the Standard Deviations are aA and crB, Respectively. 

Data Sample 3-3.2.3 

The observational data are those of Data Sample 3-3.2.1 on surface hardness of steel plates. In 
addition, it now is assumed that the variability for the two conditions was known from previous 
experience to be aA = 10.25 and <rB = 5.00. 

[One-sided Normal Test] 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up zX-a. in Table A-2. 

(3) Compute: XA and XB, the means of the nA 
and nB measurements from A and.B. 

(4) Compute 

u = ZX- s. nA nB 

(5) If (XA — XB) > u, decide that the average 
of A exceeds the average of B; otherwise, 
decide that there is no reason to believe 
that the average of A exceeds the average 
of B. 

(4) 

(5) 

Example 

(1) 

(2) 

(3) 

Let a = .05 

Zx-a = 1-645 

XA = 165 
<4 = 105 

nA = 7 
XB = 155.2 

ai = 25 
nB = 5 

u = 1.645 V15 + 5 
= 1.645 (4.472) 
= 7.4 

(XA — XB) = 9.8, which is larger than u. 
Conclude that the average hardness for 
Condition A exceeds the average hardness 
for Condition B. 

(6) Let mA and mB be the true averages of 
A and B. Note that the interval from 
{(XA — XB) — u) to oo is a 1 — a one¬ 
sided confidence interval estimate of the 
true difference (mA — mB)- 

(6) The interval from 2.4 to =o is a 95% one¬ 
sided confidence interval estimate of the 
true difference between averages. 

* See footnotes, and also the discussion of the properties and limitations of this type of procedure, in Paragraph 3-3.1.2. 
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Operating Characteristics of the Test. Figures 3-7 and 3-8 give the operating characteristic (OC) 
curves of the above test for a = .05 and a = .01, respectively, for various values of n. 

If nA = nB = n and (mA — mB) is the true positive difference between the averages, then putting 

A _ (Wa - mB) 

we can read /3, the probability of failing to detect a difference of size (mA — mB). 

If nA = cnB, we can put 

, _ {mA - mB) 

\/oa + Coi 

and again read /3, the probability of failing to detect a difference of size (mA — mB). 

Selection of Sample Size. We choose 

a, the significance level of the test 
/3, the probability of failing to detect a difference of size (mA — mB). 

If we wish nA = nB = n, we compute 

, _ (mA - mB) 

V<rA + 0% 

and we may use Table A-9 directly to obtain the required sample size n. 

If we wish to have nA and nB such that nA = cnB, then we may compute 

, _ (mA - mB) 

Voi + Col 

and use Table A-9 to obtain n = nA. 

3-3.2.4 (Case 4)—The Observations are Paired. 

Often, an experiment is, or can be, designed so that the observations are taken in pairs. The two 
units of a pair are chosen in advance so as to be as nearly alike as possible in all respects other than 
the characteristic to be measured, and then one member of each pair is assigned at random to 
Treatment A, and the other to Treatment B. For a discussion of the advantage of this approach, 
see Paragraph 3-3.1.4. 

Data Sample 3-3.2.4—Molecular Weight of Dextrons 

During World War II bacterial polysaccharides (dextrons) were considered and investigated for 
use as blood plasma extenders. Sixteen samples of hydrolyze^ dextrons were supplied by various 
manufacturers in order to assess two chemical methods for determining the average molecular 
weight of dextrons. 

Method A Method B xd = xA- 

62,700 56,400 6,300 
29,100 27,500 1,600 
44,400 42,200 2,200 
47,800 46,800 1,000 
36,300 33,300 3,000 
40,000 37,100 2,900 
43,400 37,300 6,100 
35,800 36,200 - 400 

3-38 



COMPARING AVERAGE PERFORMANCE ORDP 20-110 

Method A Method B xd = XA — XB 

33,900 35,200 -1,300 
44,200 38,000 6,200 
34,300 32,200 2,100 
31,300 27,300 4,000 
38,400 36,100 2,300 
47,100 43,100 4,000 
42,100 38,400 3,700 
42,200 39,900 2,300 

Procedure Example 

(1) Choose a, the significance level of the test. (1) Let a = .05 

(2) Compute the Xd and sd for the n differ- (2) Xd = 2875 
ences, Xd. Each Xd represents an observa- sd = 2182.2 
tion on A minus the paired observation on 
B. 

n = 16 

(3) Look up £i_0 for n — 1 degrees of freedom (3) t.95 for 15 d.f. = 1.753 
in Table A-4. 

(4) Compute (4) 
sd - _co /2182.2N 

u - 1.753 4 ) 

= 1.753 (545.6) 
= 956.4 

(5) If Xd > u, decide that the average of A (5) Xd = 2875, which is larger than u. Con¬ 
exceeds that of B; otherwise, there is no clude that the average for Method A 
reason to believe the average of A exceeds exceeds the average for Method B. 
that of B. 

(6) Note that the open interval from X d — u (6) Xd - u = (2875 - 956) = 1919. The in¬ 
to + oo is a one-sided 100 (1 — a) % con¬ terval from 1919 to + oo is a one-sided 
fidence interval for the true difference 95% confidence interval for the true dif¬ 

(mA - mB). ference between the averages of the two 
methods. 

Operating Characteristics of the Test. Figures 3-5 and 3-6 give the operating characteristic (OC) 
curves of the test for a = .05 and a = .01, respectively, for various values of n, the number of pairs 
involved. 

Choose: 

5 = (mA — mB), the true difference between the averages (unknown, of course) 

Some value of a (= ad), the true standard deviation of a signed difference Xd. 
(We may use an estimate from previous data. If OC curve is 
consulted after the experiment, we may use the estimate from 
the experiment.) 

Compute 

d = 8-. 
a 
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We can then read from the OC curve for a given significance level a and number of pairs n, a value 
of /3(5). The /3(5) read from the curve is 13(8 | a, a, n), i.e., /3(5, given a, a, n)—the probability of failing 
to detect a difference (mA — mB) of magnitude +5 when the given test is carried out with n pairs, 
at the a-level of significance, and the population standard deviation of the differences Xd actually 
is a. 

If we use too large a value for a, the effect is to underestimate d, and consequently to overestimate 
/3(5), the probability of not detecting a difference (mA — mB) of size +5 when it exists. Conversely, 
if we choose too small a value of <j, then we shall overestimate d and underestimate /3(5). The true 
value of p(8) is determined, of course, by the actual number of pairs n, the significance level a 
employed, and the true value of a (= <rd). 

Selection of Number of Pairs (n). If we choose 

5 = (mA — mB), the value of the (positive) average difference that we desire to detect 
a, the significance level of the test 
/3, the probability of failing to detect a difference of +8 

and compute 

d = (mA - mB) 
<T 

where a (= <rd) is the standard deviation of the population of signed differences Xd of the type 
concerned, then we may use Table A-9 to obtain a good approximation to the required number of 
pairs n. If we take a = .01, then we must add 3 to the table value. If we take a = .05, then we 
must add 2 to the table value. (In order to compute d, we must choose a value for a.) 

If, when planning the test, we overestimate a, the consequences are two-fold: first, we over¬ 
estimate the number of pairs required, and thus unnecessarily increase the cost of the test; but, by 
employing a sample size that is larger than necessary, the actual value of /3(5) will be somewhat less 
than we intended, which will be all to the good. On the other hand, if we underestimate <r, we shall 
underestimate the number of pairs actually required, and by using too small a sample size, /3(8) will 
be somewhat larger than we intended, and our chances of detecting real differences when they exist 
will be correspondingly lessened. 

Finally, it should be noted, that inasmuch as the test criterion u = ti-a ^7= does not depend on a, 

an error in estimating a when planning the test will not alter the level of significance, which will be 
precisely equal to the value of a desired, provided that <i_a is taken equal to the 100 (1 — a) per¬ 
centile of the ^-distribution for n — 1 degrees of freedom, where n is the number of pairs actually 
employed. 

3-4 COMPARING THE AVERAGES OF SEVERAL PRODUCTS 

Do the averages of t products 1,2,... ,t differ? We shall assume that ni = n2 = ... = nt = n. 
If the n’s are in fact not all equal, but differ only slightly, then in the following procedure we may 
replace n by the harmonic mean of the n’s, 

= ^/(1/Wi + I/W2 + • • • + l/nt) 

and obtain a satisfactory approximation. 
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Data Sample 3-4—Breaking-strength of Cement Briquettes 

The following data relate to breaking-strength of cement briquettes (in pounds per square inch). 
The question to be answered is: Does the average breaking-strength differ for the different groups? 

Group 

1 2 3 4 5 

518 508 554 555 536 
560 574 598 567 492 
538 528 579 550 528 
510 534 538 535 572 
544 538 544 540 506 

Z Xi 2670 2682 2813 2747 2634 
rii 5 5 5 5 5 
Xi 534.0 536.4 562.6 549.4 526.8 
ZX2 1427404 1440924 1585141 1509839 1391364 

(ZX)2 

n 1425780 1438624.8 1582593.8 1509201.8 1387591.2 

XX. -2Si 
n 

1624 2299.2 2547.2 637.2 3772.8 

s2 406 574.8 636.8 159.3 943.2 

Excerpted with permission from Statistical Exercises, Part II, Analysis of Variance and Associated Techniques, by N. L. Johnson, Copyright, 1957 
Department of Statistics, University College, London. 

Procedure 

(1) Choose a, the significance level (the risk of (1) Let 
concluding that the averages differ, when 
in fact all averages are the same). 

(2) Compute: (2) 
si,si,... ,«*. 

(3) Compute (3) 

^ (s? + s| + ...'+ s?) 

If the rti are not all equal, the following 
formula usually is to be preferred: 

4 = 
(Wi — 1) si + (w2 — 1) 4 + . • • + {nt — 1) si 

(n1 + n2+ ... +nt) -t 

Example 

a = .01 

4 = 406.0 
4 = 574.8 
4 = 636.8 
4 = 159.3 
si = 943.2 

2720.1 
5 

= 544.0 

se = 23.32 
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Procedure 

(4) Look up <7i„a it, v) in Table A-10 where 
v =(ni + n2 + ...+ nt) — t. 

(5) Compute 

(4) 
V 

t 

9.99 (5,20) 

Example 

25-5 
20 
5 
5.29 

(5) 

w 
5.29 (23.32) 

V5 

123.36 
2.236 
55.2 

(6) If the absolute difference between any two 
sample means exceeds w, decide that the 
averages differ; otherwise, decide that there 
is no reason to believe the averages differ. 

(6) The greatest difference between sample 
means is 562.6 — 526.8 = 35.8, which is 
less than w. We, therefore, have no reason 
to believe that the group averages differ. 

Note: It is worth noting that we simultaneously can make confidence interval estimates for each of 

the *^2 pairs of differences between product averages, with a confidence of 1 — a that all of the 

estimates are correct. The confidence intervals are (Z» — X3) ± w, where Xit X3, are sample means 
of the ith and ;'th products. 
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CHAPTER 4 

COMPARING MATERIALS OR PRODUCTS WITH RESPECT TO 

VARIABILITY OF PERFORMANCE 

4-1 COMPARING A NEW MATERIAL OR PRODUCT WITH A STANDARD 

WITH RESPECT TO VARIABILITY OF PERFORMANCE 

The variability of a standard material, product, or process, as measured by its standard deviation, 
is known to be <r0. We consider the following three problems: 

(a) Does the variability of the new product differ from that of the standard? See Paragraph 
4-1.1. 

(b) Does the variability of the new product exceed that of the standard? See Paragraph 4-1.2. 
(c) Is the variability of the new product less than that of the standard? See Paragraph 4-1.3. 

It is important to decide which of the three problems is appropriate before taking the observa¬ 
tions. If this is not done, and the choice of problem is influenced by the observations, both the 
significance level of the test (i.e., the probability of an Error of the First Kind) and the operating 
characteristics of the test may differ considerably from their nominal values. 

The tests given are exact when: 
(a) the observations for an item, product, or process are taken randomly from a single population 

of possible observations; and, 
(b) within the population, the quality characteristic measured is normally distributed. 

4-1.1 DOES THE VARIABILITY OF THE NEW PRODUCT DIFFER FROM THAT OF THE STANDARD? 

The variability in the performance of a standard material, product, or process, as measured by 
its standard deviation, is known to be a0- We wish to determine whether a given item differs in 
variability of performance from the standard. We wish, from analysis of the data, to make one 
of the following decisions: 

(a) The variability in performance of the new product differs from that of the standard. 
(b) There is no reason to believe the variability of the new product is different from that of the 

standard. 

Data Sample 4-1.1—Capacity of Batteries 

The standard deviation <r0 of capacity for batteries of a standard type is known to be 1.66 ampere 
hours. The following capacities (ampere hours) were recorded for 10 batteries of a new type: 
146, 141, 135, 142, 140, 143, 138, 137, 142, 136. 

We wish to compare the new type of battery with the standard type with regard to variability 
of capacity. The question to be answered is: Does the new type differ from the standard type 
with respect to variability of capacity (either a decrease or an increase is of interest)? 
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Procedure 

(1) Choose a, the level of significance of the 
test. 

(2) Look up Bu and BL both for n — 1 degrees 
of freedom in Table A-20. 

(3) Compute s, from the n observations 

zX2 - (zX)2/n 
n — 1 

(4) Compute: 

Sl = Bls 

Su = Bv s 

(5) If <r0 does not lie between sL and sU} decide 
that the variability in performance of the 
new product differs from that of the stand¬ 
ard; otherwise, that there is no reason to 
believe the new product differs from the 
standard with regard to variability. 

(6) It is worth noting that the interval from sL 
to Sa is a 100 (1 — a) % confidence interval 
estimate of a, the standard deviation of the 
new product. (See Par. 2-2.3.1). 

Example 

(1) Let a = .05 

(2) n - 1 = 9 
Bu for 9 d.f. = 1.746 

Bu for 9 d.f. = .6657 

(3) 

196108 - 196000 

= # 9 
= Vl2 
= 3.464 

(4) 

sL = (.6657) (3.464) 
= 2.31 

sc; = (1.746) (3.464) 
= 6.05 

(5) Since <r0 = 1.66 does not lie between the 
limits 2.31 to 6.05, conclude that the vari¬ 
ability for the new type does differ from the 
variability for the standard type. 

(6) The interval from 2.31 to 6.05 ampere 
hours is a 95% confidence interval estimate 
for the standard deviation of the new type. 

Operating Characteristics of the Test. Operating-characteristic (OC) curves for this Neyman- 
Pearson “unbiased Type A” test of the null hypothesis that a = <r0 relative to the alternative that 
<r o-o are not currently available except for two special cases considered in the original Neyman- 
Pearson memoir.(15 These special cases and more general considerations indicate that the OC 
curves for this test will not differ greatly, except for the smallest sample sizes, from the OC curves 
for the corresponding traditional “equal-tail” test (see Figures 6.15 and 6.16 of Bowker and Lieber- 
man(2)). The OC curve for the present test for a given significance level and sample size n will lie 
above the OC curve of the corresponding “equal-tail” test for a > <ro and below the OC curve for the 
“equal-tail” test for a < <t0. In other words, the chances of failing to detect that a exceeds er0 are 
somewhat greater with the present test than with the “equal-tail” test, and somewhat less of failing 
to detect that a is less than <r0. The reader is reminded, however, that if there is special interest in 
determining whether <r > o-0, or special interest in determining whether a < a0, the problem and 
procedure of this Paragraph is not at all appropriate, and Paragraph 4-1.2 or 4-1.3 should be 
consulted. 
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4-1.2 DOES THE VARIABILITY OF THE NEW PRODUCT EXCEED THAT OF THE STANDARD? 

The variability in performance of a standard material, product, or process, as measured by its 
standard deviation, is known to be <r0. We wish to determine whether the variability in perform¬ 
ance of a new product exceeds that of the standard. We wish, from analysis of the data, to make 
one of the following decisions: 

(a) The variability in performance of the new product exceeds that of the standard. 
(b) There is no reason to believe the variability of the new product exceeds that of the standard. 

In terms of Data Sample 4-1.1, let us suppose that—in advance of looking at the data!—the 
important question is: Does the variability of the new type exceed that of the standard? 

Procedure Example 

(1) Choose a, the level of significance of the (1) Let a = .05 
test. 

(2) Look up Aa for n — 1 degrees of freedom in 
Table A-21. 

(3) Compute s, from the n observations. 

(4) Compute sL = Aas 

(5) If Sl exceeds <r0, decide that the variability 
of the new product exceeds that of the 
standard; otherwise, that there is no reason 
to believe that the new product exceeds the 
standard with regard to variability. 

(6) It is worth noting that the interval above 
Sl is a 100 (1 — a) % confidence interval 
estimate of cr, the standard deviation of the 
new product. (See Par. 2-2.3.2). 

(2) n - 1 = 9 
A.os for 9 d.f. = .7293 

(3) s = 3.464 

(4) sL = .7293 (3.464) 
= 2.53 

(5) Since 2.53 exceeds 1.66, conclude that the 
variability of the new type exceeds that of 
the standard type. 

(6) The interval from 2.53 to + » is a 95% 
confidence interval estimate of the stand¬ 
ard deviation of the new type. 

Operating Characteristics of the Test. Figure 4-1 provides operating-characteristic (OC) curves 
of the test for a = 0.05 and various values of n. Let <7i denote the true standard deviation of the 
new product. Then the OC curves of Figure 4-1 show the probability 0 = 0 (X | .05, n) of failing 
to conclude that <n exceeds a0 when <n = X<70 and the test is carried out at the a = 0.05 level of 
significance using a value of s derived from a sample of size n. Similar OC curves for the case of 
a = 0.01 are given in Figure 6.18 of Bowker and Lieberman.(2) OC curves are easily constructed 
for other values of n — and, if desired, other values of a — by utilizing the fact that if the test is 
conducted at the a level of significance using a value of s based on a sample of size n, then the 
probability of failing to conclude that ai exceeds <r0 when ai = X<r0 is exactly /3 for 

X = X (a, /3, n) = V(n — l)/xg (n — 1), 

where x2P (v) is the P-probability level of x2 for v degrees of freedom, as given in Table A-3. Values 
of p (a, (3, Wi) = X2 (a, 0, n) corresponding to a = 0.05 and a = 0.01, for /3 = 0.005, 0.01, 0.025, 
0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 0.975, 0.99, and 0.995 are given in Tables 8.1 and 8.2 of 
Eisenhart(3) for nx = n — 1 = 1(1)30(10)100, 120, °o. 
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Figure 1+-1. Operating characteristics of the one-sided x2-test to determine whether the standard deviation 
<7i of a new product exceeds the standard deviation a0 of a standard (a = .05). 

Adapted with permission from Annals of Mathematical Statistics, Vol. 17, No. 2, June 1946, from article entitled “Operating Characteristics for the 
Common Statistical Tests of Significance” by C. D. Ferris, F. E. Grubbs, and C. L. Weaver. 

Selection of Sample Size. If we choose 

a, the significance level of the test 
and, j8, the probability of failing to detect that <n exceeds <r0 when or = X<r0 

then for a = 0.05 we may use the OC curves of Figure 4-1 to determine the necessary sample 
size n. 

Example: Choose 

X = — = 1 5 
<70 

a = 0.05 
5 = 0.05 

then from Figure 4-1 it is seen that n = 30 is not quite sufficient, and n = 40 is more than sufficient. 
Visual interpolation suggests n = 35. 

Alternatively, one may compute the necessary sample size from the approximate formula 

, a W ...I/ Zi—a “I" X • Zi—b\ 2 
» = »(«, A X) - 1+2 [-x — ! ) 
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where zP is the P-probability point of the standard normal variable z, values of which are given in 
Table A-2 for various values of P. Thus, in the foregoing example we find 

, , 1 /l.645 + (1.5) (1.645)V 
’1-1+2l-DT^i-) 

-1 +1 -1 +11*-225)’ = 1 + 1 (67-66) 

= 34.8 

which rounds to n = 35. Chand(4) has found this formula generally quite satisfactory, and that 
“even for such a small value as n = 5” it “errs on the safe side in the sense that it gives (at least 
for a = (3) a sample size which will always be sufficient.” 

Check: For n = 35, 

X(X>5,.05,35)= 

= 1.50 

Hence /3 = 0.05 for X = 1.50. 

4-1.3 IS THE VARIABILITY OF THE NEW PRODUCT LESS THAN THAT OF THE STANDARD? 

The variability in performance of a standard material, product, or process, as measured by its 
standard deviation, is known to be o-0. We wish to determine whether the variability in perform¬ 
ance of the new product is less than that of the standard. We wish, from analysis of the data, to 
make one of the following decisions: 

(a) The variability in performance of the new product is less than that of the standard. 
(b) There is no reason to believe the variability in performance of the new product is less than 

that of the standard. 

Data Sample 4-1.3—Cutoff Bias of Tubes 

A manufacturer has recorded the cutoff bias of a sample of ten tubes, as follows (volts): 

12.1, 12.3, 11.8, 12.0, 12.4, 12.0, 12.1, 11.9, 12.2, 12.2. 

The variability of cutoff bias for tubes of a standard type as measured by the standard deviation 
is o-o = 0.208 volt. 

Let us assume with respect to Data Sample 4-1.3 that the important question is: Is the variability 
of the new type with respect to cutoff bias less than that of the standard type? 

Procedure Example 

(1) Choose a, the level of significance of the 
test. 

(1) Let a = .05 

(2) Look up Ai-a for n — 1 degrees of freedom (2) n - 1 = 9 
in Table A-21. A.95 for 9 d.f. = 1.645 

(3) Compute s, from the n observations (3) 

, _ /2*2 - (2Xy/n 
S - V n — 1 

= VT0333 
= .1826 
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Procedure 

(4) Compute Su = Ai_„ s 

(5) If Su is less than cr0, decide that the vari¬ 
ability in performance of the new product 
is less than that of the standard; otherwise, 
that there is no reason to believe the new 
product is less variable than the standard. 

(6) It is worth noting that the interval below Su 
is a 100 (1 — a) % confidence interval esti¬ 
mate of a, the standard deviation of the 
new product. (See Par. 2-2.3.2.) 

Example 

(4) sv = 1.645 (.1826) 
= 0.300 

(5) Since .300 is not less than .208, conclude 
that there is no reason to believe that the 
new type is less variable than the standard. 

(6) The interval below 0.300 is a 95% confi¬ 
dence interval estimate of the standard 
deviation of the new type. 

Operating Characteristics of the Test. Figure 4-2 provides operating-characteristic (OC) curves 
of the test for a = 0.05 and various values of n. Let <rx denote the true standard deviation of the 
new product. Then the OC curves of Figure 4-2 show the probability j8 = /3 (X | .05, n) of failing 
to conclude that ax is less than <r0 when ax = Xo-0 and the test is carried out at the a = 0.05 level 
of significance using a value of s derived from a sample of size n. Similar OC curves for the case 
of a = 0.01 are given in Figure 6.20 of Bowker and Lieberman.® OC curves are easily constructed 

Figure b-2. Operating characteristics of the one-sided x2-test to determine whether the standard deviation 
<ri of a new product is less than the standard deviation <r0 of a standard (a = .05). 

Adapted with permission from Annals of Mathematical Statistics, Vol. 17, No. 2, June 1946, from article entitled “Operating Characteristics for the 
Common Statistical Tests of Significance” by C. D. Ferris, F. E. Grubbs, and C. L. Weaver. 
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for other values of n — and, if desired, other values of a — by utilizing the fact that if the test is 
conducted at the a level of significance using a value of s based on a sample of size n, then the 
probability of failing to conclude that <n is less than <t0 when <n = X<r0 is exactly /3 for 

X = X (<*, /3, n) = Vxl (n - l)/xL/J (n - 1), 

where xP (v) is the P-probability level of x2 for v degrees of freedom, as given in Table A-3. 

Selection of Sample Size. If we choose 

a, the significance level of the test 
and, /8, the probability of failing to detect that o-i is less than <r0 when <n = Xo-0 

then for a = 0.05 we may use the OC curves of Figure 4-2 to determine the necessary sample size n. 

Example: Choose 

a = 0.05 

/3 = 0.05 

then from Figure 4-2 it is seen that n = 10 is not quite sufficient, and n = 15 is more than sufficient. 
Visual interpolation suggests n = 14. 

Alternatively, one may compute the necessary sample size from the approximate formula 

where zP is the P-probability point of the standard normal variable z, values of which are given in 
Table A-2 for various values of P. Thus, in the foregoing example we find 

= 13.18 

which rounds to n = 13. 

Check: For n = 13, 

= 0.499 < 0.50 

Hence, 0 = 0.05 for X = 0.50. 
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4-2 COMPARING TWO MATERIALS OR PRODUCTS WITH RESPECT TO 
VARIABILITY OF PERFORMANCE 

We consider two problems: 

(a) Does the variability of product A differ from that of product B? (We are not concerned 
which is larger). See Paragraph 4-2.1. 

(b) Does the variability of product A exceed that of product B? See Paragraph 4-2.2. 

It is important to decide which of these two problems is appropriate before taking the observa¬ 
tions. If this is not done, and the choice of problem is influenced by the observations, both the 
significance level of the test (i.e., the probability of an Error of the First Kind) and the operating 
characteristics of the test may differ considerably from their nominal values. The tests given are 
exact when: 

(a) the observations for an item, product, or process are taken randomly from a single population 
of possible observations; and, 

(b) within the population, the quality characteristic measured is normally distributed. 

In the following, it is assumed the appropriate problem is selected and then nA, nB observations 
are taken from items, processes, or products A and B, respectively. 

4-2.1 DOES THE VARIABILITY OF PRODUCT A DIFFER FROM THAT OF PRODUCT B? 

We wish to test whether the variability of performance of two materials, products, or processes 
differ, and we are not particularly concerned which is larger. We wish, from analysis of the data, 
to make one of the following decisions: 

(a) The two products differ with regard to their variability. 
(b) There is no reason to believe the two products differ with regard to their variability. 

Data Sample 4-2.1—Dive-bombing Methods 

The performance of each of two different dive-bombing methods is measured a dozen times with 
the following results: 

Method A Method B 

526 414 
406 430 
499 419 
627 453 
585 504 
459 459 
415 337 
460 598 
506 425 
450 438 
624 456 
506 385 

Let us suppose that, in the case of Data Sample 4-2.1, the question to be answered is: Do the two 
methods differ in variability (it being of interest if either is more variable than the other)? 
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Procedure 

(1) Choose a, the level of significance of the 
test. 

(2) Look up Fi—a/2 for (nA — 1, nB — 1) de¬ 
grees of freedom, and Fi_a/2 for (nB — 1, 
nA — 1) degrees of freedom, in Table A-5. 

(3) Compute sA and sB from the observations 
from A and B, respectively. 

(4) Compute F = s\/s2B 

(5) If F > Fi_/2 0nA - 1, nB - 1) or 

p <_I_ 
(nB - 1, nA - 1) 

decide that the two products differ with 
regard to their variability; otherwise, there 
is no reason to believe that they differ. 

(6) It is worth noting that the interval between 

_I_(sl\ 
Fi-a/2 (nA - 1, nB - 1) \s^/ 

and 

F\-a/2 (nB — 1, nA — 1) 

Example 

(1) Let a = .05 

(2) nA — 1 = 11 
»B — 1 = 11 

F.97B (11, 11) = 3.48 

(3) s2a = 5545 

s2b = 4073 

(4) F = 5545/4073 

= 1.36 

(5) F.97B (11, 11) = 3.48 

Since F is not larger than 3.48, and is not 
smaller than 0.29, there is no reason to 
believe that the two bombing methods 
differ in variability. 

(6) The interval between 0.39 (i.e., 0.29 X 
1.36) and 4.73 (i.e., 3.48 X 1.36) is a 95% 
confidence interval estimate of the ratio of 
the true variances, <r2A/<rB. 

is a 100 (1 — a) % confidence interval esti¬ 

mate of the ratio <t\/<t2b. 

Operating Characteristics of the Test. Operating-characteristic (OC) curves for this traditional 
“equal-tail” test of the null hypothesis that <rA = <jb relative to the alternative <rA <rB are given 
in Figures 7.1 and 7.2 of Bowker and Lieberman(2) for the case of equal sample sizes nA = nB = n, 
and significance levels a = 0.05 and a = 0.01, respectively. These curves may be used to deter¬ 
mine the common sample size nA = nB = n needed to achieve a preassigned risk /3 of failing to 
detect that <rA/<rB = X when the test is carried out at the a = 0.05 or a = 0.01 level of significance. 
The reader is reminded, however, that if there is special interest in determining whether <rA > <rB, 

the problem and procedure of this Paragraph is not at all appropriate, and Paragraph 4-2.2 should 
be consulted. 

4-2.2 DOES THE VARIABILITY OF PRODUCT A EXCEED THAT OF PRODUCT B? 

We wish to test whether the variability in performance of product A exceeds that of product B. 
We wish, as a result of analysis of the data, to make one of the following decisions: 

(a) The variability of product A exceeds that of product B. 
(b) There is no reason to believe that the variability of product A exceeds the variability of 

product B. 
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In terms of Data Sample 4-2.1, let us suppose that—in advance of looking at the data!—the 
important question is: Does the variability of Method A exceed that of Method B? 

Procedure 

(1) Choose a, the level of significance of the 
test. 

(2) Look up Fi_a for nA — 1, nB — 1 degrees of 
freedom, in Table A-5. 

(3) Compute s|, si, the sample variances of 
the observations from A and B, respec¬ 
tively. 

(4) Compute F = s|/s|- 

(5) If F > Fi-a, decide that the variability of 
product A exceeds that of B; otherwise, 
there is no reason to believe that the vari¬ 
ability of A is greater than that of B 

(6) Note that the interval above 

Fi-a/2 (nA - 1, nB - 1) \s2J 

is a 100 (1 — a) % confidence interval esti¬ 
mate of (r|/(r|. 

Example 

(1) Let a = .05 

(2) nA - 1 = 11 

nB — 1 = 11 

F. 96 (11, 11) = 2.82 

(3) s*A = 5545 

s| = 4073 

(4) F = 1.36 

(5) Since 1.36 is not larger than 2.82, there is 
no reason to believe that the variability of 
Method A is greater than the variability 
of Method B. 

(6) 

f.96 (11, il) = °-35 

The interval above 0.48 (i.e., 0.35 X 1.36) 
is a 95% confidence interval estimate of the 
ratio of the true variances, ct\/<jb. 

Operating Characteristics of the Test. Figures 4-3, 4-4, and 4-5 provide operating-characteristic 
(OC) curves of the test for a = 0.05 and various combinations of nA and nB. Let aA and aB denote 
the true standard deviations of the products A and B, respectively. These OC curves show the 
probability 0 = 0 (X | .05, n) of failing to conclude that <rA exceeds uB when <?A = \aB with X > 1 
and the test is carried out at the a = 0.05 level of significance using the values of sA and sB derived 
from samples of size nA and nB, respectively. Similar OC curves for the case of a = 0.01 and 
nA = nB are given in Figure 7.4 of Bowker and Lieberman.(2) OC curves are easily constructed for 
other values of nA and nB — and, if desired, other values of a — by utilizing the fact that if the test is 
conducted at the a level of significance using values of sA and sB based on samples of size nA and nB, 
respectively, then the probability of failing to conclude that <rA exceeds aB when <rA = \<jb is exactly 
0 for 

X X (a, 0, nA, nB) 4 F i-g (nA - 1, nB - 1) 
Fp (nA - 1, nB - 1) 

VFi_« (nA - 1, nB - 1) • Fi-p (nB - 1, nA - 1) 

where FP (nu n2) is the P-probability level of F for «i and n2 degrees of freedom, as given in 
Table A-5. Values of </> (a, 0, nu n2) = X2 (a, 0, nA, nB) corresponding to a = 0.05 and a = 0.01, 
for 0 = 0.005, 0.01, 0.025, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 0.975, 0.99, and 0.995 are given in 
Tables 8.3 and 8.4 of Eisenhart(3) for all combinations of values of n2 = nA — 1 and n2 = nB — 1 
derivable from the sequence 1(1)30(10)100, 120, °o. 
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Figure U-3. Operating characteristics of the one-sided F-test to determine whether the standard deviation 
<ta of product A exceeds the standard deviation <xB of product B (a = .05; nA = nB). 

Adapted with permission from Annals of Mathematical Statistics, Vol. 17, No. 2, June 1946, from article entitled “Operating Characteristics for the 
Common Statistical Tests of Significance” by C. D. Ferris, F. E. Grubbs, and C. L. Weaver. 

Selection of Sample Size. If we choose 

nA — nB = n 

a, the significance level of the test 
3, the probability of failing to detect that uA exceeds <rB when aA = \<rB 

then for a = 0.05, we may use the OC curve of Figure 4-3 to determine the necessary common 
sample size n. 
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Figure 4-4. Operating characteristics of the one-sided F-test to determine whether the standard deviation 
a a of product A exceeds the standard deviation <rB of product B 

(a = .05; nA = nB, 3nA = 2nB, 2nA = nB). 
Adapted with permission from Annals of Mathematical Statistics, Vol. 17, No. 2, June 1946, from article entitled “Operating Characteristics for the 

Common Statistical Teste of Significance” by C. D. Ferris, F. E. Grubbs, and C. L. Weaver. 

Example: Choose 

a = 0.05 
3 = 0.05 

then from Figure 4-3 it is seen that n = 50 is too small and n = 75 a bit too large. Visual inter¬ 

polation suggests n = 70. 
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Figure k-5. Operating characteristics of the one-sided F-test to determine whether the standard deviation 
aA of product A exceeds the standard deviation aB of product B 

(a = .05; nA - nB, 2nA = 3nB, nA = 2nB). 

Adapted with permission from Annals of Mathematical Statistics, Vol. 17, No. 2, June 1946, from article entitled “Operating Characteristics for the 
Common Statistical Tests of Significance” by C. D. Ferris, F. E. Grubbs, and C. L. Weaver. 

Alternatively, for nA = nB = n one may compute the necessary sample size from the approximate 
formula 

M = »(«,ftX)=2 + (S1<±^)! 
where zP is the P-probability point of the standard normal variable z, values of which are given in 
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Table A-2 for various values of P. Thus in the foregoing example we find 

n = 2 + 

= 2 + 

= 68. 

/1.645 + 1.645V 
V .4055 ) 

(Hi)’ ■1 2 3 * * + (8-11)! -2 +65-8 

If instead of choosing nA = nB we choose 3nA = 2nB or 2nA = nB, then for a = 0.05 we may 
use the OC curves of Figure 4-4 to determine the necessary combination of sample sizes nA and nB. 
Similarly, Figure 4-5 may be used if it is desired to have 2nA = 3nB or nA = 2nB. Alternatively, 
one may evaluate the harmonic mean h of nA — 2 and nB — 2 from the approximate formula 

h a + Zl-g 

10geX ) 
2 

and then determine the integer values of nA and nB (satisfying any additional requirements, e.g., 
nA = 2nB) that most closely satisfy the equation 
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CHAPTER 5 

CHARACTERIZING LINEAR RELATIONSHIPS 

BETWEEN TWO VARIABLES 

5-1 INTRODUCTION 

In many situations it is desirable to know 
something about the relationships between two 
characteristics of a material, product, or proc¬ 
ess. In some cases, it may be known from 
theoretical considerations that two properties 
are functionally related, and the problem is to 
find out more about the structure of this rela¬ 
tionship. In other cases, there is interest in 
investigating whether there exists a degree of 
association between two properties which could 
be used to advantage. For example, in specify¬ 
ing methods of test for a material, there may be 
two tests available, both of which reflect per¬ 
formance, but one of which is cheaper, simpler, 
or quicker to run. If a high degree of associa¬ 
tion exists between the two tests, we might wish 
to run regularly only the simpler test. 

In this chapter, we deal only with linear rela¬ 
tionships. Curvilinear relationships are dis¬ 
cussed in Chapter 6 (see Paragraph 6-5). It is 
worth noting that many nonlinear relationships 
may be expressed in linear form by a suitable 
transformation (change of variable). For exam¬ 
ple, if the relationship is of the form Y = aXb, 

then log Y = log o + b log X. Putting YT = 

log Y, b0 = log a, bi = b, XT = log X, we have 

the linear expression YT = b0 + biXT in terms 

of the new (transformed) variables XT and YT. 

A number of common linearizing transforma¬ 
tions are summarized in Table 5-4 and are dis¬ 
cussed in Paragraph 5-4.4. 

5-2 PLOTTING THE DATA 

Where only two characteristics are involved, 
the natural first step in handling the experi¬ 
mental results is to plot the points on graph 
paper. Conventionally, the independent vari¬ 
able X is plotted on the horizontal scale, and the 
dependent variable Y is plotted on the vertical 
scale. 

There is no substitute for a plot of the data to 
give some idea of the general spread and shape 
of the results. A pictorial indication of the 
probable form and sharpness of the relation¬ 
ship, if any, is indispensable and sometimes may 
save needless computing. When investigating 

a structural relationship, the plotted data will 
show whether a hypothetical linear relationship 
is borne out; if not, we must consider whether 
there is any theoretical basis for fitting a curve 
of higher degree. When looking for an empiri¬ 
cal association of two characteristics, a glance at 
the plot will reveal whether such association is 
likely or whether there is only a patternless 
scatter of points. 

In some cases, a plot will reveal unsuspected 
difficulties in the experimental setup which 
must be ironed out before fitting any kind of 
relationship. An example of this occurred in 
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measuring the time required for a drop of dye to 
travel between marked distances along a water 
channel. The channel was marked with dis¬ 
tance markers spaced at equal distances, and an 
observer recorded the time at which the dye 
passed each marker. The device used for re¬ 
cording time consisted of two clocks hooked up 
so that when one was stopped, the other started: 
Clock 1 recorded the times for Distance Mark¬ 
ers 1, 3, 5, etc.; and Clock 2 recorded times for 
the even-numbered distance markers. When 
the elapsed times were plotted, they looked 
somewhat as shown in Figure 5-1. It is ob¬ 
vious that there was a systematic time differ¬ 
ence between odd and even markers (presuma¬ 
bly a lag in the circuit connecting the two 
clocks). One could easily have fitted a straight 
line to the odd-numbered distances and a dif¬ 
ferent line to the even-numbered distances, with 
approximately constant difference between the 
two lines. The effect was so consistent, how¬ 

5 

E- 4- 
<3 

UJ 

I 3 \- 

2- 

ever, that the experimenter quite properly 
decided to find a better means of recording 
travel times before fitting any line at all. 

If no obvious difficulties are revealed by the 
plot, and the relationship appears to be linear, 
then a line Y = b0 + biX ordinarily should be 
fitted to the data, according to the procedures 
given in this Chapter. Fitting by eye usually is 
inadequate for the following reasons: 

(a) No two people would fit exactly the same 
line, and, therefore, the procedure is not ob¬ 
jective; 

(b) We always need some measure of how 
well the line does fit the data, and of the uncer¬ 
tainties inherent in the fitted line as a repre¬ 
sentation of the true underlying relationship— 
and these can be obtained only when a formal, 
well-defined mathematical procedure of fitting 
is employed. 

I 2 3 4 5 6 7 8 9 

DISTANCE 

Figure 5-1. Time required for a drop of dye to travel 
between distance markers. 
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5-3 TWO IMPORTANT SYSTEMS OF LINEAR RELATIONSHIPS 

Before giving the detailed procedure for fit¬ 
ting a straight line, we discuss different physical 
situations which can be described by a linear 
relationship between two variables. The meth¬ 
ods of description and prediction may be differ¬ 
ent, depending upon the underlying system. 
In general, we recognize two different and im¬ 
portant systems which we call Statistical and 
Functional. It is not possible to decide which is 
the appropriate system from looking at the 
data. The distinction must be made before 
fitting the line—indeed, before taking the 
measurements. 

5-3.1 FUNCTIONAL RELATIONSHIPS 

In the case of a Functional Relationship, 
there exists an exact mathematical formula (y as 
a function of a;) relating the two variables, and 
the only reason that the observations do not fit 
this equation exactly is because of disturbances 
or errors of measurement in the observed values 
of one or both variables. We discuss two cases 
of this type: 

FI—Errors of measurement affect only one 
variable (Y). (See Fig. 5-2). 

FII—Both variables (X and Y) are subject to 
errors of measurement. (See Fig. 5-3). 

Common situations that may be described by 
Functional Relationships include calibration 
lines, comparisons of analytical procedures, and 
relationships in which time is the X variable. 

For instance, we may regard Figure 5-2 as 
portraying the calibration of a straight-faced 
spring balance in terms of a series of weights 
whose masses are accurately known. By 
Hooke’s Law, the extension of the spring, and 
hence the position y of the scale pointer, should 
be determined exactly by the mass x upon the 
pan through a linear functional relationship* 
y = p0 4- & x. In practice, however, if a weight 

* Note on Notation for Functional Relationships: 
We have used x and y to denote the true or accurately 

known values of the variables, and X and Y to denote 
their values measured with error. In the FI Relation¬ 
ship, the independent variable is always without error, 
and therefore in our discussions of the FI case and in the 
paragraph headings we always use x. In the Worksheet, 

of mass Zi is placed upon the pan repeatedly and 

the position of the pointer is read in each 

instance, it usually is found that the readings Yx 

are not identical, due to variations in the per¬ 

formance of the spring and to reading errors. 

Thus, corresponding to the mass Xi there is a 

distribution of pointer readings Yx; correspond¬ 

ing to mass x2, a distribution of pointer readings 

Y2; and so forth—as indicated in Figure 5-2. 

It is customary to assume that these distribu¬ 

tions are normal (or, at least symmetrical and 

all of the same form) and that the mean of the 

distribution of Y/s coincides with the true value 

y{ = /30 + Pi Xi. 

If, instead of calibrating the spring balance in 

terms of a series of accurately known weights, 

we were to calibrate it in terms of another 

spring balance by recording the corresponding 

pointer positions when a series of weights are 

placed first on the pan of one balance and then 

on the pan of the other, the resulting readings 

(.X and Y) would be related by a linear struc¬ 

tural relationship FII, as shown in Figure 5-3, 

inasmuch as both X and Y are affected by errors 

of measurement. In this case, corresponding 

to the repeated weighings of a single weight Wi 

(whose true mass need not be known), there is a 

joint distribution of the pointer readings 

(Xi and Yi) on the two balances, represented by 

the little transparent mountain centered over 

the true point (xlt yi) in Figure 5-3; similarly at 

points (x2, y2) and (x3, y3), corresponding to re¬ 

peated weighings of other weights w2 and w3, 

respectively. Finally, it should be noticed that 

this FII model is more general than the FI 

model in that it does not require linearity of 

response of each instrument to the independent 

variable w, but merely that the response curves 

and Procedures and Examples for the FI case, however, 
we use X and Y because of the computational similarity 
to other cases discussed in this Chapter (i.e., the computa¬ 
tions for the Statistical Relationships). 

In the FII case, both variables are subject to error, and 
clearly we use X and Y everywhere for the observed 
values. 
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of the two instruments be linearly related, that 
is* that X = a + b • f(w) and Y = c + d • f(w), 
where f(w) may be linear, quadratic, exponen¬ 
tial, logarithmic, or whatever. 

Table 5-1 provides a concise characterization 

of FI and FII relationships. Detailed prob¬ 

lems and procedures with numerical examples 

for FI relationships are given in Paragraphs 

5-4.1 and 5-4.2, and for FII relationships in 

Paragraph 5-4.3. 

Y 

Figure 5-2. Linear functional relationship of Type FI 
{only Y affected by measurement errors). 
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Figure 5-3. Linear functional relationship of Type FII 
(both X and Y affected by measurement errors). 

5-3.2 STATISTICAL RELATIONSHIPS 

In the case of a Statistical Relationship, there 
is no exact mathematical relationship between 
X and Y; there is only a statistical association 
between the two variables as characteristics of 
individual items from some particular popula¬ 
tion. If this statistical association is of bi¬ 
variate normal type as shown in Figure 5-4, 
then the average value of the Y’s associated with 
a particular value of X, say Yx, is found to de¬ 
pend linearly on X, i.e., Yx = Po + Pi X; simi¬ 
larly, the average value of the X’s associated 
with a particular value of Y, say XY, depends 
linearly on Y (Fig. 5-4) i.e., XY = /3'0 + P[ Y; 

but—and this is important!—the two lines are 

not the same, i.e., P[ 5* ~ and (3'0 ^ — f5. * 
Pi Pi 

* Strictly, we should write 

mY.x = /So + Pi X , 

and 

mx.r = ft + « Y 

to conform to our notation of using m to signify a 
population mean. But this more exact notation tends 
to conceal the parallelism of the curve-fitting processes 
in the FI and SI situations. Consequently, to preserve 
appearances here and in the sequel, we use Yx in place 
of mY.x and XY in place of mx.y—and it should be 
remembered that these signify population means. 
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/ 
Figure 5-k- A normal bivariate frequency surface. 

If a random sample of items is drawn from the 
population, and the two characteristics X and Y 
are measured on each item, then typically it is 
found that errors of measurement are negligible 
in comparison with the variation of each char¬ 
acteristic over the individual items. This 
general case is designated SI. A special case 
(involving preselection or restriction of the 
range of one of the variables) is denoted by SII. 

SI Relationships. In this case, a random 
sample of items is drawn from some definite 
population (material, product, process, or 
people), and two characteristics are measured 
on each item. 

A classic example of this type is the relation¬ 
ship between height and weight of men. Any 
observant person knows that weight tends to 
vary with height, but also that individuals of 
the same height may vary widely in weight. It 
is obvious that the errors made in measuring 
height or weight are very small compared to 
this inherent variation between individuals. 
We surely would not expect to predict the exact 

weight of one individual from his height, but we 
might expect to be able to estimate the average 
weight of all individuals of a given height. 

The height-weight example is given as one 
which is universally familiar. Such examples 
also exist in the physical and engineering sci¬ 
ences, particularly in cases involving the inter¬ 
relation of two test methods. In many cases 
there may be two tests that, strictly speaking, 
measure two basically different properties of a 
material, product, or process, but these proper¬ 
ties are statistically related to each other in 
some complicated way and both are related to 
some performance characteristic of particular 
interest, one usually more directly than the 
other. Their interrelationship may be ob¬ 
scured by inherent variations among sample 
units (due to varying density, for example). 
We would be very interested in knowing 
whether the relationship between the two is 
sufficient to enable us to predict with reasonable 
accuracy, from a value given by one test, the 
average value to be expected for the other— 
particularly if one test is considerably simpler 
or cheaper than the other. 

The choice of which variable to call X and 
which variable to call Y is arbitrary—actually 
there are two regression lines. If a statistical 
association is found, ordinarily the variable 
which is easier to measure is called X. Note 
well that this is the only case of linear relation¬ 
ship in which it may be appropriate to fit two 
different lines, one for predicting Y from X and 
a different one for predicting X from Y, and the 
only case in which the sample correlation co¬ 
efficient r is meaningful as an estimate of the 
degree of association of X and Y in the popula¬ 
tion as measured by the population coefficient 
of correlation p = a/. The six sets of con¬ 
tour ellipses shown in Figure 5-5 indicate the 
manner in which the location, shape, and orien¬ 
tation of the normal bivariate distribution 
varies with changes of the population means 
(m.x and mY) and standard deviations (ox and oY) 

of X and Y and their coefficient of correlation in 
the population (pXY). 

If p = ±1, all the points lie on a line and 
Y = p0 + PiX and X = p'0 + p[Y coincide. 
If p = +1, the slope is positive, and if p = —1, 
the slope is negative. If p = 0, then X and Y 
are said to be uncorrelated. 
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Figure 5-5. Contour ellipses for normal bivariate distributions 
having different values of the five parameters mx, mY, <rx, aY, PxY. 

Adapted with permission from Statistical Inference by Helen M. Walker and Joseph Lev, copy- 
right, 1953, Holt, Rinehart and Winston, Inc., NewYork, N. Y. 

Sll Relationships. The general case described 
above (SI) is the most familiar example of a 
statistical relationship, but we also need to con¬ 
sider a common case of Statistical Relationship 
(SII) that must be treated a bit differently. In 

SII, one of the two variables, although a ran¬ 
dom variable in the population, is sampled only 

within a limited range (or at selected preas¬ 
signed values). In the height-weight example, 
suppose that the group of men included only 

those whose heights were between 5'4" and 
5'8". We now are able to fit a line predicting 
weight from height, but are unable to determine 
the correct line for predicting height from 
weight. A correlation coefficient computed 
from such data is not a measure of the true 
correlation among height and weight in the (un¬ 
restricted) population. 

The restriction of the range of X, when it is 
considered as the independent variable, does 
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not spoil the estimates of Yx when we fit the 
line Yx = bo + bxX. The restriction of the 
range of the dependent variable (i.e., of Y in 
fitting the foregoing line, or of X in fitting the 
line XY = b'0 + b[Y), however, gives a seriously 
distorted estimate of the true relationship. 

This is evident from Figure 5-6, in which the 
contour ellipses of the top diagram serve to 
represent the bivariate distribution of X and Y 
in the unrestricted population, and the “true” 
regression lines of Yx on X and XY on Y are 
indicated. The central diagram portrays the 
situation when consideration is restricted to 
items in the population for which a < X < b. 

It is clear that for any particular X in this in¬ 
terval, the distribution and hence the mean 
Yx of the corresponding Y’s is the same as in 
the unrestricted case (top diagram). Conse¬ 
quently, a line of the form Yx = b0 + bxX fitted 
to data involving either a random or selected set 
of values of X between X = a and X = b, but 
with no selection or restrictions on the corre¬ 
sponding Y’s, will furnish an unbiased estimate 
of the true regression line Yx = Pa + PiX in the 
population at large. In contrast, if considera¬ 
tion is restricted to items for which c < Y < d, 
as indicated in the bottom diagram, then it is 
clear that the mean value, say Y'x, of the 
(restricted) Y’s associated with any particular 
value of X > mx will be less than the corre¬ 
sponding mean value Yx in the population as 
a whole. Likewise, if X < mx, then the mean 
Y'x of the corresponding (restricted) Y’s will 
be greater than Yx in the population as a whole. 

Consequently, a line of the form Y'x = b0 + bxX 
fitted to data involving selection or restriction 
of Y’s will not furnish an unbiased estimate of 
the true regression line Yx = Pa + PiX in the 
population as a whole, and the distortion may 
be serious. In other words, introducing a re¬ 
striction with regard to X does not bias infer¬ 
ences with regard to Y, when Y is considered as 
the dependent variable, but restricting Y will 
distort the dependence of Yx on X so that the 
relationship observed will not be representative 
of the true underlying relationship in the popu¬ 
lation as a whole. Obviously, there is an 
equivalent statement in which the roles of X 
and Y are reversed. For further discussion and 
illustration of this point, and of the correspond¬ 
ing distortion of the sample correlation coeffi- 

Figure 5-6. Diagram showing effect of restrictions 
of X or Y on the regression of Y on X. 

cient r as a measure of the true coefficient of 
correlation p in the populations, when either X 
or Y is restricted, see Eisenhart(1) and Ezekiel.(2) 

As an engineering example of SII, consider a 
study of watches to investigate whether there 
was a relationship between the cost of a stop 
watch and its temperature coefficient. It was 
suggested that a correlation coefficient be com¬ 
puted. This was not possible because the 
watches had not been selected at random from 
the total watch production, but a deliberate 
effort had been made to obtain a fixed number 
of low-priced, medium-priced, and high-priced 
stop watches. 

In any given case, consider carefully whether 
one is measuring samples as they come (and 
thereby accepting the values of both properties 
that come with the sample) which is an SI Rela¬ 
tionship, or whether one selects samples which 
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are known to have a limited range of values of X 
(which is an SI I Relationship). 

Table 5-1 gives a brief summary characteriza¬ 
tion of SI and SII Relationships. Detailed 

problems and procedures with numerical exam¬ 

ples are given for SI relationships in Paragraph 

5-5.1 and for SII relationships in Paragraph 

5-5.2. 

BASIC WORKSHEET FOR ALL TYPES OF LINEAR RELATIONSHIPS 

X denotes 

ZX =_ 

X =_ 

7 denotes 

2 Y =_ 

7 =_ 

Number of points: n = 

Step (1) 2XY 

(2) (2X) (2 Y)/n = 

(3) Sxy 

(4) ZX2 =_ 

(5) {ZX)2/n =- 

(6) S„ = Step (4) - Step (5) 

(10) by = = Step (3) -h Step (6) 

(11) 7 =- 

(12) biX =_ 

(13) 60 = Y - 6iZ = Step (11)- Step (12) 

Equation of the line: 

Y = b0 + b,X 

s», = 

S>o = 

Step (1) — Step (2) 

(7) 272 

(8) (ZY)2/n = 

(9) Syy = Step (7) - - Step (8) 

(14) 
(Sxu)2 

Sxx 
= T 6 

(15) (n — 2) s2y = Step (9) - Step (14) 

(16) e2 Sy = Step (15) ■ - (w - 2) 

sY -- 

Estimated variance of the slope: 

s2bl = = Step (16) Step (6) 

Estimated variance of intercept: 

S‘y in + SZf 

Note: The following are algebraically identical: 

S„ = Z(X - X)2; Syv = 2(7 - F)2; Sxy = Z(X - X) (7 - 7). 

X 

Ordinarily, in hand computation, it is preferable to compute as shown in the steps above. Carry 
all decimal places obtainable—i.e., if data are recorded to two decimal places, carry four places in 
Steps (1) through (9) in order to avoid losing significant figures in subtraction. 
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5-4 PROBLEMS AND PROCEDURES FOR FUNCTIONAL RELATIONSHIPS 

5-4.1 FI RELATIONSHIPS (General Case) 

There is an underlying mathematical (func¬ 

tional) relationship between the two variables, 

of the form y = /30 + fax. The variable x can 

be measured relatively accurately. Measure¬ 

ments Y of the value of y corresponding to a 

given x follow a normal distribution with mean 

/80 + PiX and variance <j\.z which is independent 

of the value of x. Furthermore, we shall as¬ 

sume that the deviations or errors of a series of 

observed Y’s, corresponding to the same or dif¬ 

ferent x’s, all are mutually independent. See 

Paragraph 5-3.1 and Table 5-1. 

The general case is discussed here, and the 

special case where it is known that /S0 = 0 (i.e., 

a line known to pass through the origin) is dis¬ 

cussed in Paragraph 5-4.2. The procedure dis¬ 

cussed here also will be valid if in fact /30 = 0 

even though this fact is not known beforehand. 

However, when it is known that /30 = 0, the pro¬ 

cedures of Paragraph 5-4.2 should be followed 

because they are simpler and somewhat more 

efficient. 

It will be noted that SII, Paragraph 5-5.2, is 

handled computationally in exactly the same 

manner as FI, but both the underlying assump¬ 

tions and the interpretation of the end results 

are different. 

Data Sample 5-4.1—Young’s Modulus vs. 
Temperature for Sapphire Rods 

Observed values (Y) of Young’s modulus (y) 
for sapphire rods measured at different tempera¬ 
tures (x) are given in the following table. There 
is assumed to be a linear functional relationship 
between the two variables x and y. (For the 
purpose of computation, the observed Y values 
were coded by subtracting 4000 from each. To 
express the line in terms of the original units, 
add 4000 to the computed intercept; the slope 
will not be affected.) The observed data are 
plotted in Figure 5-7. 

X 

= Temperature 
°C 

Y 
- Young’s 
Modulus 

Coded Y 
= Young’s 
Modulus 

minus 4000 

30 4642 642 
100 4612 612 
200 4565 565 
300 4513 513 
400 4476 476 
500 4433 433 
600 4389 389 
700 4347 347 
800 4303 303 
900 4251 251 

1000 4201 201 
1100 4140 140 
1200 4100 100 
1300 4073 73 
1400 4024 24 
1500 3999 -1 

5-11 
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ifeo 3^0 400 500 ioo 700 000 900 1000 1100 1200 1300 1400 1500 

X = TEMPERATURE °C 

Figure 5-7. Young's modulus of sapphire rods as a function 
of temperature—an FI relationship. 

5-4.1.1 What is the Best Line to be Used for 
Estimating y From Given Values of x? 

CAUTION: Extrapolation, i.e., use of the 
line for prediction outside the range of data 
from which the line was computed, may- 
lead to highly erroneous conclusions. 

Procedure 

Using Worksheet (See Worksheet 5-4.1), 
compute the line Y = b0 + bix. This is an 
estimate of the true equation y = /30 + PiX. 
The method of fitting a line given here is a 

particular application of the general method of 
least squares. From Data Sample 5-4.1, the 
equation of the fitted line (in original units) is: 

Y = 4654.9846 - 0.44985482 x. 

The equation in original units is obtained by 
adding 4000 to the computed intercept 60. 
Since the F’s were coded by subtracting a con¬ 
stant, the computed slope bi was not affected. 
In Figure 5-8, the line is drawn and confidence 
limits for the line (computed as described in 
Paragraph 5-4.1.2.1) also are shown. 
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WORKSHEET 5-4.1 
EXAMPLE OF FI RELATIONSHIP 

YOUNG’S MODULUS AS FUNCTION OF TEMPERATURE 

X denotes Temperature, °C Y denotes Young’s Modulus — 4000 

2X = 12030 27 = 5068 

X = 751.875 7 = 316.75 

Number of points: n = 16 

(1) 2X7 2,300,860 

(2) (2X) (27)/n = 3,810,502.5 

(3) SXy = -1,509,642.5 

(4) 2X2 12,400,900 (7) 272 2,285,614 

(5) (2 xy/n 9,045,056.25 (8) (27)7w = 1,605,289. 

(6) sxx 3,355,843.75 (9) Syy 680,325. 

(10) 5 _ S*v _ 
0l ~~ sxx 

- .449,854,82 (14) 679,119.9614 

(11) Y 316.75 

O XX 

(15) (« - 2) s2k 1,205.0386 

(12) 

•N
 

r-O -338.2346 (16) 4 86.074 1857 

(13) 60 = Y - = 654.9846 Sy 9.277617 

b0 (in original units) = 4654.9846 

Estimated variance of the slope: 

si = J$- = .000 025 649 045 

Estimated variance of intercept: 

< = 4 {“ + £} = 19.879 452 

Equation of the line: 
(in original units) 

Y = b0 + bxX 

4654.9846 - .449,854,82 x 

sbl = _,005 064 

s&0 = _4,458 638 
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Figure 5-8. Young's modulus of sapphire rods as a function 
of temperature—showing computed regression line 

and confidence interval for the line. 

Using the Regression Equation for Prediction. 

The fitted regression equation may be used for 
two kinds of predictions: 

(a) To estimate the true value of y associated 
with a particular value of x, e.g., given x = x' to 
estimate the value of y' = p0 + Pix'l or, 

(b) To predict a single new observed value Y 
corresponding to a particular value of x, e.g., 
given x = x' to predict the value of a single 
measurement of y'. 

Which prediction should be made? In some 
cases, it is sufficient to say that the true value of 
y (for given x) lies in a certain interval, and in 
other cases we may need to know how large (or 
how small) an individual observed Y value is 
likely to be associated with a particular value of 
x. The question of what to predict is similar to 
the question of what to specify (e.g., whether to 
specify average tensile strength or to specify 
minimum tensile strength) and can be answered 

only with respect to a particular situation. The 
difference is that here we are concerned with 
relationships between two variables and there¬ 
fore must always talk about the value of y, or Y, 
for fixed x. 

The predicted y' or Y' value is obtained by 
substituting the chosen value {x') of x in the 
fitted equation. For a particular value of x, 
either type of prediction ((a) or (b)) gives the 
same numerical answer for y' or Y'. The un¬ 
certainty associated with the prediction, how¬ 
ever, does depend on whether we are estimating 
the true value of y', or predicting the value Y' 
of ,an individual measurement of y'. If the 
experiment could be repeated many times, each 
time obtaining n pairs of (x, Y) values, consider 
the range of Y values which would be obtained 
for a given x. Surely the individual Y values in 
all the sets will spread over a larger range than 
will the collection consisting of the average F’s 
(one from each set). 

5-14 



LINEAR RELATIONSHIPS BETWEEN TWO VARIABLES ordp 20-110 

To estimate the true value of y associated 
with the value x', use the equation 

y'c = bo + bxx'. 

The variance of y'c as an estimate of the true 
value y' = /30 + fax’ is 

This variance is the variance of estimate of a 
point on the fitted line. 

For example, using the equation relating 
Young’s modulus to temperature, we predict a 
value for y at x = 1200: 

y'c = 4654.9846 - .44985482 (1200) 
y'c = 4115.16 

-rr , fACO_ , (1200 - 751.875) 2_| 
Var yc - 86.074 [-0625 + 3^5^84^75 J 

= 86.074 (.0625 + .0598) 
= 86.074 (.1223) 

Var y[ = 10.53 

To predict a single observed value of Y corre¬ 
sponding to a given value (x') of x, use the same 
equation 

Y'c = b0 + hx'. 

The variance of Y[ as an estimate of a single 
new (additional, future) measurement of y' is 

1 . (X' - xy 
Var Y, c - sk-* + 

The equation for our example is 

Y = 4654.9846 - .44985482 x. 

To predict the value of a single determination of 
Young’s modulus at x = 750, substitute in this 
equation and obtain: 

Y'c = 4654.9846 - .44985482 (750) 
= 4317.59 

Vary;,4[i + i + <Y^] 

= 86.074 (1.0625) 
= 91.45 . 

5-4.1.2 What are the Confidence Interval Esti¬ 
mates for: the Line as a Whole; a 
Point on the Line; a Future Value of Y 
Corresponding to a Given Value of x? 

Once we have fitted the line, we want to make 
predictions from it, and we want to know how 
good our predictions are. Often, these pre¬ 
dictions will be given in the form of an interval 
together with a confidence coefficient associated 
with the interval—i.e., confidence interval esti¬ 
mates. Several kinds of confidence interval 
estimates may be made: 

(a) A confidence band for the line as a whole. 
(b) A confidence interval for a point on the 

line—i.e., a confidence interval for y' (the true 
value of y and the mean value of Y) correspond¬ 
ing to a single value of a; = x'. 

If the fitted line is, say, a calibration line 
which will be used over and over again, we will 
want to make the interval estimate described 
in (a). In other cases, the line as such may not 
be so important. The line may have been 
fitted only to investigate or check the structure 
of the relationship, and the interest of the 
experimenter may be centered at one or two 
values of the variables. 

Another kind of interval estimate sometimes 
is required: 

(c) A single observed value (Y') of Y corre¬ 
sponding to a new value of x = x'. 

These three kinds of confidence interval state¬ 
ments have somewhat different interpretations. 
The confidence interval for (b) is interpreted as 
follows: 

Suppose that we repeated our experiment a 
large number of times. Each time, we obtain n 
pairs of values (xit Yt-), fit the line, and compute 
a confidence interval estimate fory' = /30 + (Six', 
the value of y corresponding to the particular 
value x = x'. Such interval estimates of y' are 
expected to be correct (i.e., include the true 
value of y') a proportion (1 — a) of the time. 
If we were to make an interval estimate of y" 
corresponding to another value of x = x", these 
interval estimates also would be expected to 
include y" the same proportion (1 — a) of the 
time. However, taken together, these intervals 
do not constitute a joint confidence statement 
about y' and y" which would be expected to 
be correct exactly a proportion (1 — a) of the 
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time; nor is the effective level of confidence 
(1 — a)2, because the two statements are not 
independent but are correlated in a manner 
intimately dependent on the values x' and x" for 
which the predictions are to be made. 

The confidence band for the whole line (a) 
implies the same sort of repetition of the experi¬ 
ment except that our confidence statements are 
not now limited to one x at a time, but we can 
talk about any number of x values simultane¬ 
ously—about the whole line. Our confidence 
statement applies to the line as a whole, and 
therefore the confidence intervals for y corre¬ 
sponding to all the chosen x values will simulta¬ 
neously be correct a proportion (1 — a) of the 
time. It will be noted that the intervals in (a) 
are larger than the intervals in (b) by the ratio 

y/2,F/t. This wider interval is the “price” we 
pay for making joint statements about y for any 
number of or for all of the x values, rather than 
the y for a single x. 

Another caution is in order. We cannot use 
the same computed line in (b) and (c) to make a 
large number of predictions, and claim that 
100 (1 — a) % of the predictions will be correct. 
The estimated line may be very close to the true 
line, in which case nearly all of the interval 
predictions may be correct; or the line may be 
considerably different from the true line, in 
which case very few may be correct. In prac¬ 
tice, provided our situation is in control, we 
should always revise our estimate of the line to 
include additional information in the way of 
new points. 

5-4.1.2.1 What is the (1 — a) Confidence Band for the Line as a Whole? 

Procedure 

(1) Choose the desired confidence level, 1 — a 

(2) Obtain sY from Worksheet. 

(3) Look up Fi_„ for (2, n — 2) degrees of free¬ 
dom in Table A-5. 

(4) Choose a number of values of X (within the 
range of the data) at which to compute 
points for drawing the confidence band. 

(5) At each selected value of X, compute: 

Yc = Y + 6X (X - X) 
and 

^=V2FS,[i + ^^J 
(6) A (1 — a) confidence band for the whole 

line is determined by 
Yc ± Wl 

Example 

(1) Let: 1 - a = .95 

a = .05 

(2) sy = 9.277617 

from Worksheet 5-4.1 

(3) F.96 (2, 14) = 3.74 

(4) Let: X = 30 

X = 400 

X = 800 

X = 1200 

X = 1500, 

for example. 

(5) See Table 5-2 for a convenient computa¬ 
tional arrangement and the example cal¬ 
culations. 

(6) See Table 5-2. 
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Procedure 

(7) To draw the line and its confidence band, 
plot Yc at two of the extreme selected 
values of X. Connect the two points by 
a straight line. At each selected value of 
X, also plot Yc + Wi and Yc - Wx. Con¬ 
nect the upper series of points, and the 
lower series of points, by smooth curves. 

If more points are needed for drawing the 
curves for the band, note that, because of sym¬ 
metry, the calculation of Wi at n values of X 
actually gives Wi at 2n values of X. 

Example 

(7) See Figure 5-8. 

For example: Wi (but not Yc) has the same 
value at X = 400 (i.e., X — 351.875) as at 
X = 1103.75 (i.e., X + 351.875). 

TABLE 5-2. COMPUTATIONAL ARRANGEMENT FOR PROCEDURE 5-4.1.2.1 

X (X-X) Yc 

1 . (X-X)2 

n + Sxx s2yc Sre Wi Yc+ Wx Ye - Wi 

30 -721.875 4641.49 .21778 18.7452 4.3296 11.84 4653.33 4629.65 
400 -351.875 4475.04 .09940 8.5558 2.9250 8.00 4483.04 4467.04 
800 48.125 4295.10 .06319 5.4390 2.3322 6.38 4301.48 4288.72 

1200 448.125 4115.16 .12234 10.5303 3.2450 8.88 4124.04 4106.28 
1500 748.125 3980.20 .22928 19.7351 4.4424 12.15 3992.35 3968.05 

X = 751.875 Sy = 86.0741857 Yc = Y + &i (X - X) 

coded Y = 316.75 
- = .0625 
n 

Y (original units) = 4316.75 
hi-.44985482 Wx = 2.735 Sye 

Sxx = 3,355,843.75 

V2F = 2.735 
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5-4.1.2.2 Give a (1 — a) Confidence Interval Estimate for a Single Point on the Line (i.e., the Mean 
Value of Y Corresponding to a Chosen Value of x = x') 

Procedure Example 

(1) Choose the desired confidence level, 1 — a (1) Let: 1 — a = .95 
a = .05 

(2) Obtain sy from Worksheet. (2) sY = 9.277617 
from Worksheet 5-4.1 

(3) Look up ti—a/2 for n — 2 degrees of freedom (3) f.975 (14) = 2.145 
in Table A-4. 

(4) Choose X', the value of X at which we (4) Let X' = 1200 
want to make an interval estimate of the 
mean value of Y. 

(5) Compute: 

W$ = ti-a/2 Sy 
(X' - X)21* 

J 

(5) 

W2 = 2.145 (3.2451) 

= 6.96 

and 

Yc = Y + b, (X1 - X) Yc = 4115.16 

(6) A (1 — a) confidence interval estimate for 
the mean value of Y corresponding to 
X = X’ is given by 

Yc ± Ws. 

(6) A 95% confidence interval estimate for the 
mean value of Y corresponding to X = 1200 
is 

4115.16 ± 6.96 
= 4108.20 to 4122.12. 

Note: An interval estimate of the intercept of the line (/30) is obtained by setting X' = 0 in the 
above procedure. 
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5-4.1.2.3 Give a (1 — a) Confidence Interval Estimate for a Single (Future) Value (Y') of Y Corre¬ 
sponding to a Chosen Value (x') of x. 

Example Procedure 

(1) Choose the desired confidence level, 1 — a 

(2) Obtain sY from Worksheet. 

(3) Look up (1_a/2 for n — 2 degrees of freedom 
in Table A-4. 1 

(4) Choose X', the value of X at which we 
want to make an interval estimate of a 
single value of Y. 

(5) Compute: 

txt" , n r 1 . (X' - X)2~\i 
W3 - fj-wi Sr [l + ~ ^ J 

and 
Yc = Y + ft (X’ - X) 

(6) A (1 — a) confidence interval estimate for 
Y' (the single value of Y corresponding to 
X’) is 

Yc ± W3 . 

(1) Let: 1 - a = .95 
a = .05 

(2) sy = 9.277617 TP 
from Worksheet 5-4.1 

(3) t.975 (14) = 2.145 

(4) Let X' = 1200 

(5) 

W3 = 2.145 (9.8288) 
= 21.08 

Ye = 4115.16 

(6) A 95% confidence interval estimate for 
a single value of Y corresponding to 
X' = 1200 is 

4115.16 ± 21.08 
= 4094.08 to 4136.24 . 

5-4.1.3 What is the Confidence Interval Estimate for ft , the Slope of the True Line y = ft + ftx? 

Procedure 

(1) Choose the desired confidence level, 1 — a 

(2) Look up h-a/2 for n - 2 degrees of freedom 
in Table A-4. 

(3) Obtain sbl from Worksheet. 

(4) Compute 

Wi = ti-a/2 Sft1 

(5) A (1 — a) confidence interval estimate for 

ft is 

bi±Wt. 

Example 

(1) Let: 1 - a = .95 
a = .05 

(2) (,97B (14) = 2.145 

(3) s6l = .005064 
from Worksheet 5.4.1 

(4) 

W4 = 2.145 (.005064) 
= .010862 

(5) 61 = - .449855 
W* = .010862 

A 95% confidence interval for ft is the in¬ 
terval — .449855 ± .010862, i.e., the inter¬ 
val from -.460717 to -.438993 . 
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5-4.1.4 If We Observe n' New Values of Y (with Average V'), How Can We Use the Fitted Regression 
Line to Obtain an Interval Estimate of the Value of x that Produced These Values of Y? 

Example: Suppose that we obtain 10 new measurements of Young’s modulus (with 
average, Y' = 4500) and we wish to use the regression line to make an interval estimate 
of the temperature (z) at which the measurements were made. 

Procedure Example 

(1) Choose the desired confidence level, 1 — a (1) Let: 1 — a = .95 
a = .05 

(2) Look up fi_a/2 for n — 2 degrees of freedom (2) t.975 (14) = 2.145 
in Table A-4. 

(3) Obtain bx and sjji from Worksheet. (3) From Worksheet 5-4.1, 
&! = -.449855 

si = .0000256490 

(4) Compute 

C = b\ - (ti-a,2y si 

(4) 
C = .202370 - .000118 

= .202252 

(5) A (1 - a) confidence interval estimate for 
the X corresponding to Y' is computed 
from 

X' = X + 
bi (Y' ~ Y) 

(5) A 95% confidence interval would be com¬ 
puted as follows: 

X' = 751.875 - 
.449855 (4500 - 4316.75) 

.202252 
2.145 (9.277617) 

± .202252 

ylsMmk + <-1626> <-202262) 

= 751.875 - 407.590 

± 98.39452 V.0100066 + .0328660 

= 344.285 ± 98.39452 V.0428726 

= 344.285 ± 98.39452 (.20706) 

= 344.285 ± 20.374 

The interval from X = 323.911 to X = 
364.659 is a 95% confidence interval for the 
value of temperature which produced the 
10 measurements whose mean Young’s 
modulus was 4500. 
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5-4.1.5 Using the Fitted Regression Line, How Can We Choose a Value (x') of x Which We May 
Expect with Confidence (1 — a) Will Produce a Value of Y Not Less Than Some Specified 
Value Q? 

Example: What value (x') of temperature (x) can be expected to produce a value of 
Young’s modulus not less than 4300? 

Procedure Example 

(1) Choose the desired confidence level, 1 — a; (1) Let: 1 — a = .95 
and choose Q a = .05 

Q = 4300 

(2) Look up ti-a for n - 2 degrees of freedom (2) Z.9B (14) = 1.761 
in Table A-4. 

(3) Obtain &i and sBl from Worksheet. (3) From Worksheet 5-4.1, 
6i = -.449855 

4 = .0000256490 

(4) Compute (4) 

C = b\- («!_„)2 4 C = .202370 - .000080 
= .202290 

(5) Compute (5) The value of X' is computed as follows: 

X' = X + h 

4 tl-*sy l(Q - F)2 (^)c 
where the sign before the last term is + if 
&i is positive or — if 6j is negative. We 
have confidence (1 — a) that a value of 
X = X' will correspond to (produce) a 
value of Y not less than Q. (See discussion 
of “confidence” in straight-line prediction 
in Paragraph 5-4.1.2). 

X' = 751.875 

-.449855 (4300 - 4316.75) 
+ .202290 

1.761 (9.277617) w 
.202290 

'(4300 - 4316.75)2 /17\ r 
3,355,843.75 + \16J ° 

= 751.875 + 37.249 

- 80.764662 V.000084 + .214933 

= 751.875 + 37.249 

- 80.764662 V.215017 

= 751.875 + 37.249 - 37.450 

= 751.674 . 
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5-4.1.6 Is the Assumption of Linear Regression Justified? 

This involves a test of the assumption that the mean Y values (Yx) for given x values do lie on a 
straight line (we assume that for any given value of x, the corresponding individual Y values are 
normally distributed with variance a\, which is independent of the value of x). A simple test is 
available provided that we have more than one observation on Y at one or more values of x. 
Assume that there are n pairs of values (xt , Y;), and that among these pairs there occur only k 
values of x (where k is less than n). 

For example, see the data recorded in Table 5-3 which shows measurements of Young’s modulus 
(coded) of sapphire rods as a function of temperature. 

Each x is recorded in Column 1, and the corresponding Y values (varying in number from 1 to 3 
in the example) are recorded opposite the appropriate x. The remaining columns in the table 
are convenient for the required computations. 

TABLE 5-3. COMPUTATIONAL ARRANGEMENT FOR TEST OF LINEARITY 

X 
= Tem¬ 

per¬ 
ature 

Y 
= Young’s 
Modulus 

Minus 3000 
2 Y (2Y)2 2y2 Hi n{X, riiXi2 2XY 

(2YT 
0; 

500 328 328 107584 107584 1 500 250000 164000 107584 
550 296 296 87616 87616 1 550 302500 162800 87616 
600 266 266 70756 70756 1 600 360000 159600 70756 
603 260 244 504 254016 127136 2 1206 727218 303912 127008 
650 240 232 213 685 469225 156793 3 1950 1267500 445250 156408.3 
700 204 203 184 591 349281 116681 3 2100 1470000 413700 116427 
750 174 175 154 503 253009 84617 3 2250 1687500 377250 84336.3 
800 152 146 124 422 178084 59796 3 2400 1920000 337600 59361.3 
850 117 94 211 44521 22525 2 1700 1445000 179350 22260.5 
900 97 61 158 24964 13130 2 1800 1620000 142200 12482 
950 38 38 1444 1444 1 950 902500 36100 1444 

1000 30 5 35 1225 925 2 2000 2000000 35000 612.5 

TOTAL 4037 849003 24 18006 13952218 2756762 846296 

= Tl = t2 = n = t3 = T4 = t6 = t6 
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Procedure Example 

(1) Choose a, the significance level of the test. 

(2) Compute: 

y 
X the weighted average of X. 

(1) Let: a = .05 
1 - a = .95 

(2) 

v - 4037 
24 

= 168.21 

^ _ 18006 
A 24 

= 750.25 

(3) Compute 

Si = T6 
(Ttf 

n 

(4) Compute 

rp T3T1 

h Ti~^r 
T (■T3y 

4 n 

(5) Compute 

(3) 

(T,)2 
= 679057.04 

n 
Si = 846296 - 679057.04 

= 167238.96 

(4) 

, _ 2756762 - 3028759.25 
13952218 - 13509001.5 

_ -271997.25 
443216.5 

= -0.6136894 

S2 = -0.6136894 (-271997.25) 
= 166921.83 

(6) Compute (6) 

S3 = 849003 - 679057.04 
= 169945.96 

(7) Look up Fi_a for (k — 2, n — k) degrees of 
freedom in Table A-5. 

(7) n = 24 
k = 12 

F.95 for (10, 12) degrees of freedom = 2.75 

(8) Compute 

F = 'Si ~ (n~k\ 
,S3 - Si) \k - 2) 

_ /317.13\ /24 - 12\ 
V 2707 )\ 10 ) 

= (.11715) (1.2) 

= 0.14 

(9) If F > Fi-a, decide that the “array means” (9) Since F is less than Fx_a, the hypothesis of 
Yx do not lie on a straight line. If F < F^, linearity is not disproved, 
the hypothesis of linearity is not disproved. 
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5-4.2 FI RELATIONSHIPS WHEN THE INTERCEPT 
IS KNOWN TO BE EQUAL TO ZERO (LINES 
THROUGH THE ORIGIN) 

In Paragraph 5-4.1, we assumed: 
(a) that there is an underlying linear func¬ 

tional relationship between x and y of the form 
y = Po + PiX, with intercept ft and slope ft 
both different from zero; 

(b) that our data consist of observed values 
Yi, Y2, . . . , Yn of y, corresponding to accu¬ 
rately-known values Xi, x2, . . ., xn of x; and, 

(c) that the Y’s can be regarded as being 
independently and normally distributed with 
means equal to their respective true values (i.e, 
mean of Yi = ft + ftx,-, i = 1, 2, . . ., n) and 
constant variance a\.x = <r2 for all x. 

Furthermore, we gave: a procedure (Para¬ 
graph 5-4.1.2.2 with X' = 0) for determining 
confidence limits for ft, and hence for testing 
the hypothesis that ft = 0, in the absence of 
prior knowledge of the value of ft; and a proce¬ 
dure that is independent of the value of ft 
(Paragraph 5-4.1.3) for determining confidence 
limits for ft, and hence for testing the hypoth¬ 
esis that ft = 0. 

We now consider the analysis of data corre¬ 
sponding to an FI structural relationship when 
it is known that y = 0 when x = 0, so that the 
line must pass through the origin, i.e., when it is 
known that ft = 0. To begin with, we assume 
as in (b) and (c) above, that our data consist of 
observed values Yi, Y2,. . ., Yn, of a dependent 
variable y corresponding to accurately-known 
values Xi, x2,..., xn of the independent variable 
x and that these Y’s can be regarded as being 
independently and normally distributed with 
means ftxi, ftx2, . .., ftxn, respectively, and 
variances <r\.x that may depend on x. We 
consider explicitly the cases of constant vari¬ 
ance {a\.x = v2), variance proportional to 
x (<r2 .* = xcr2), and standard deviation propor¬ 
tional to x (<ry.x = x<t). Finally, we consider 
briefly the case of cumulative data where 
Xi < x2 < .. . < x„ and the error in Y, is of the 
form ex + e2 + . . . + e,-_i + et, that is, is the 
sum of the errors of all preceding Y’s plus a 
“private error” e, of its own. Following 
Mandel,(3) we assume that the errors (ef) are 
independently and normally distributed with 
zero means and with variances proportional to 
the length of their generation intervals, i.e., 

= (x; — Xi_i)cr2. Under these circumstances, 
the Y’s will be normally distributed with means 
ftxi, ftx2,.. ., ftxn, respectively, as before; and 
with variances <4; = x,-cr2, respectively; but will 
not be independent owing to the overlap among 
their respective errors. 

5-4.2.1 Line Through Origin, Variance of Y’s 
Independent of x. The slope of the 

best-fitting line of the form Y = ftx is given by 

S Xi Yi 
ft = ^- 

S x? 

and the estimated variance of 6X is 

where 

Z)(Yf-61x»)2 
i=i_ 

n — 1 

ib Y\ 

n — 1 

Consequently, we may effect a simplification of 
our Basic Worksheet—see Worksheet 5-4.2.1. 

Using the values of ft and sbl so obtained, 
confidence limits for ft, the slope of the true line 
through the origin, y = ftx, can be obtained by 
following the procedure of Paragraph 5-4.1.3 
using fi_a/2 for n — 1 degrees of freedom. Con¬ 
fidence limits for the line as a whole then are 
obtained simply by plotting the lines y = /3fx 
and y = ft^x, v/here and ftL are the upper and 
lower confidence limits for ft obtained in the 
manner just described. The limiting lines, in 
this instance, also furnish confidence limits for 
the value y' of y corresponding to a particular 
point on the line, say for x = x', so that an 
additional procedure is unnecessary. Confi¬ 
dence limits for a single future observed Y corre¬ 
sponding to x = x' are given by 

ftx' ± tl-a/2 Vs2y + (x')2 Si , 

where s\ and sbl are from our modified work¬ 
sheet and fi_a/2 corresponds to n — 1 degrees of 
freedom. 
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WORKSHEET 5-4.2.1 

WORKSHEET FOR FI RELATIONSHIPS WHEN THE INTERCEPT IS KNOWN TO BE ZERO 
AND THE VARIANCES OF THE Y’s IS INDEPENDENT OF x 

X denotes 

ZX =_ 

X =_ 

(2) ZX2 

(3) ZY2 

(4) 6i = 
ZXY 
zX2 

Y denotes 

ZY =_ 

Y =_ 

Number of points: n = 

Step (1) ZXY =_ 

Step (1) -v- Step (2) 

(5) 

(6) 

(ZXY)2 
ZX2 

(■n — 1) S2y 

(7) 4 

Step (3) — Step (5) 

Step (6) -r- (n — 1) 

Equation of the Line: 

Y = 

SY = - 

Estimated variance of the slope: 

si = ^J-2 = Step (7) -s- Step (2) 

s6l =- 

5-4.2.2 Line Through Origin, Variance Propor¬ 
tional to x (<7y.x = x<72). The slope of 

the best-fitting line of form Y = bix is given by 

hi = -r1- 

the ratio of the averages, and the estimated 
variance of 6, is 

where 

So¬ 

using the values of 6, and sbl so obtained, 
confidence limits for /S,, the slope of the true line 
through the origin, y = can be obtained by 
following the procedure of Paragraph 5-4.1.3 
using f i_a/2 for n — 1 degrees of freedom. Con¬ 
fidence limits for the line as a whole then are 
obtained simply by plotting the lines y = 
and y = pfx where and pf are the upper and 
lower confidence limits for Pi obtained in the 
manner just described. The limiting lines, in 
this instance, also furnish confidence limits for 
the value y’ corresponding to a particular point 
on the line, say for x = x’. Confidence limits 
for a single future observed Y corresponding to 
x = x‘, are given by 

bix' ± L-a/2 Vx's2 + (x')2 si, 

where sbl is computed as shown above and 
corresponds to n — 1 degrees of freedom. 
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5-4.2.3 Line Through Origin, Standard Devia¬ 
tion Proportional tox (ay.x = x<r). The 

slope of the best-fitting line of form Y = b iX is 
given by 

the average of the ratios 

and the estimated variance of ft is 

s2 
n 

where 

(n - 1) s2 

that is, 

s2 

for Ri 

n (n — 1) 

Yt 
Xi 

Using the values of 6i and sbl so obtained, 
confidence limits for ft, the slope of the true line 
through the origin, y = ftx, can be obtained by 
following the procedure of Paragraph 5-4.1.3 
using <i_„/2 for n — 1 degrees of freedom. Con¬ 
fidence limits for the line as a whole are then 
obtained simply by plotting the lines y = /ftx 
and y = /ftx where /ft and /ft are the upper and 
lower confidence limits for ft obtained in the 
manner just described. The limiting lines, in 
this instance, also furnish confidence limits for 
the value y' of y corresponding to a particular 
point on the line, say for x = x'. Confidence 
limits for a single future observed Y correspond¬ 
ing to x = x', are given by 

bix' ± fi_«/2 x' Vs2 + si , 

where sbl is computed as shown above and fi_„/2 
corresponds to n — 1 degrees of freedom. 

5-4.2.4 Line Through Origin, Errors of Y’s 
Cumulative (Cumulative Data). In 

many engineering tests and laboratory experi¬ 
ments the observed values Yi, Y2,..., Yt,..., 
of a dependent variable y represent the cumula¬ 
tive magnitude of some effect at successive 
values xi < x2 < x3 < . . . of the independent 

variablex. Thus, Ylr Y2,..., may denote: the 
total weight loss of a tire under road test, 
measured at successive mileages xly x2, . .. ; or 
the weight gain of some material due to water 
absorption at successive times xlyx2,... ; or the 
total deflection of a beam (or total compression 
of a spring) under continually increasing load, 
measured at loads xx, x2,... ; and so forth. In 
such cases, even though the underlying func¬ 
tional relationship takes the form of a line 
through the origin, y = (3x, none of the pro¬ 
cedures that we have presented thus far will be 
applicable, because of the cumulative effect of 
errors of technique on the successive Y’s; the 
deviation of Yz from its true or expected value 
yt will include the deviation (Y;_i — y,_i) of 
Y,_ i from its true or expected value, plus an 
individual “private deviation or error” et of its 
own. Hence, the total error of YL will be the 
sum (ex + e2 + . . . + et_i + ef) of the indi¬ 
vidual error contributions of Yx, Y2,. . ., TVi, , 
and its own additional deviation. 

If the test or experiment starts at x0 = 0, 
and the x’s form an uninterrupted sequence 
0 < Xi < x2 < ... < xn, and if we may regard 
the individual error contributions ex, e2,. .., as 
independently and normally distributed with 
zero means and variances proportional to the 
lengths of the x-intervals over which they ac¬ 
crue, i.e., if <7^ = (%i — Xi-1) <t2, then the best 
estimate of the slope of the underlying linear 
functional relation y = ftx is given by 

and estimated variance of ft 

1 f » (Yj - Yj-i)2 _ YU 
(n — 1) x„ \l=i Xi - x,_i xn) 

in which x0 = 0 and Y0 = 0 by hypothesis. 

Using the values of ft and sbl so obtained, 
confidence limits for ft, the slope of the true line 
through the origin, y = ftx, can be obtained by 
following the procedure of Paragraph 5-4.1.3 
using h-a/2 form — 1 degrees of freedom. Con¬ 
fidence limits for the line as a whole then are 
obtained simply by plotting the lines y = /3fx 
and y = ftft, where /ft and ftL are the upper and 
lower confidence limits for ft obtained in the 
manner just described. These limit lines also 
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provide confidence limits for a particular point 
on the line, say the value y' corresponding to 
x = x'. For the fitting of lines of this sort to 
cumulative data under more general conditions, 
and for other related matters, see Mandel’s 
article.(3) 

5-4.3 Fll RELATIONSHIPS 

Distinguishing Features. There is an under¬ 
lying mathematical (functional) relationship be¬ 
tween the two variables, of the form 

y = Po + ft*. 

Both X and Y are subject to errors of measure¬ 
ment. Read Paragraph 5-3.1 and Table 5-1. 

The full treatment of this case depends on the 
assumptions we are willing to make about error 
distributions. For complete discussion of the 
problem, see Acton.(4) 

5-4.3.1 A Simple Method of Fitting the Line In 
the General Case. There is a quick 

and simple method of fitting a line of the form 
Y = b0 + biX which is generally applicable 
when both X and Y are subject to errors of 
measurement. This method is described in 
Bartlett,(5) and is illustrated in this paragraph. 
Similar methods had been used previously by 
other authors. 

(a) For the location of the fitted straight line, 
use as the pivot point the center of gravity of 
all n observed points (X{, Yi), that is, the point 
with the mean coordinates (X, Y). In conse¬ 
quence, the fitted line will be of the form 
Y = b0 + b3X with b0 = Y — b3X, just as in 
the least-squares method in Paragraph 5-4.1. 

(b) For the slope, divide the n plotted points 
into three non-overlapping groups when con¬ 
sidered in the X direction. There should be an 
equal number of points, k, in each of the two 

extreme groups, with k as close to | as possible. 

Take, as the slope of the line, 

where 

Y3 = average Y for 3rd group 
Y1 = average Y for 1st group 
X3 = average X for 3rd group 
Xi - average X for 1st group. 

Data Sample 5-4.3.1—Relation of Two 
Colorimetric Methods 

The following data are coded results of two 
colorimetric methods for the determination of a 
chemical constituent. (The data have been 
coded for a special purpose which has nothing 
to do with this illustration). The interest here, 
of course, is in the relationship between results 
given by the two methods, and it is presumed 
that there is a functional relationship with both 
methods subject to errors of measurement. 

Sample 
Method I 

X 
Method II 

Y 

1 3720 5363 
2 4328 6195 
3 4655 6428 
4 4818 6662 
5 5545 7562 
6 7278 9184 
7 7880 10070 
8 10085 12519 
9 11707 13980 

(a) The _fitted line must pass through the 
point (X, Y), where 

X = 6668.4 
Y = 8662.6 

(b) To determine the slope, divide the points 
into 3 groups. Since there are 9 points, exactly 
3 equal groups are obtained. 

Yj = 12190 
Yi = 5995 
X3 = 9891 
Xx = 4234 

x3 - Xx 
_ 12190 - 5995 

9891 - 4234 
6195 
5657 

= 1.0951 
b0 = Y — bxX 

= 8662.6 - (6668.4) 

= 1360.0 . 
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The fitted line 

Y = 1360.0 + 1.0951 X 

is shown in Figure 5-9. 

Procedures are given in Bartlett(5) for deter¬ 
mining 100 (1 — a) % confidence limits for 
the true slope and for determining a 
100 (1 — a) % confidence ellipse for /30 and /3i 

jointly, from which 100 (1 — ex) % confidence 
limits for the line as a whole can be derived. 
For strict validity, they require that the meas¬ 
urement errors affecting the observed X{ be 
sufficiently small in comparison with the spacing 
of their true values x, that the allocation of the 
observational points (X[ i, Y{) to the three groups 
is unaffected. These procedures are formally 

-i-1-■ i- — -t-—i-1-1-1-1-1- 
4000 6000 8000 IOOOO 12000 

METHOD I 

Figure 5-9. Relationship between two methods of determining 
a chemical constituent—an FII relationship. 
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similar to those appropriate to the least-squares 
method in FI situations, but involve more com¬ 
plex calculations. We do not consider them 
further here. 

5-4.3.2 An Important Exceptional Case. Until 
comparatively recently it was not realized that 
there is a broad class of controlled experimental 
situations in which both X and Y are subject to 
errors of measurement, yet all of the techniques 
appropriate to the FI case (x’s accurately 
known, measurement errors affect the Y’s only) 
are strictly applicable without change. 

As an example, let us consider the case of an 
analytical chemist who, in order to obtain an 
accurate determination of the concentration of 
a potassium sulphate solution, decides to pro¬ 
ceed as follows: From a burette he will draw 
off 5, 10, 15, and 20 ml samples of the solution. 
Volume of solution is his independent variable 
x, and his target values are x4 = 5, x2 = 10, 
x3 = 15, and x4 = 20, respectively. The vol¬ 
umes of solution that he actually draws off 
Xi, X2, X3, and X4 will, of course, differ from 
the nominal or target values as a result of 
errors of technique, and he will not attempt to 
measure their volumes accurately. These four 
samples of the potassium sulphate solution then 
will be treated with excess barium chloride, and 
the precipitated barium sulphate dried and 
weighed. Let Ylf Y2, Y3, and Y4 denote the 
corresponding yields of barium sulphate. These 
yields actually will correspond, of course, to the 
actual inputs Xlt X2, X3, and X4, respectively; 
and will differ from the true yields associated 
with these inputs, say t/i(Xi), y2(X2), y3{X3), 
and y4(X4), respectively, as a result of errors of 
weighing and analytical technique. The sul¬ 
phate concentration of the original potassium 
sulphate solution then will be determined by 
evaluating the slope fo of the best fitting 
straight line Y = fo + fox, relating the observed 
barium sulphate yields (T1; Y2, Y3, and Y4) to 
the nominal or target volumes of solution 
(xi, x2, x3, and x4)—the intercept b0 of the line 
making appropriate allowance for the possibility 
of bias of the analytical procedure resulting in a 
non-zero blank. 

Without going into the merits of the foregoing 
as an analytical procedure, let us note a number 
of features that are common to controlled experi¬ 

ments: First, the experimental program involves 
a number of preassigned nominal or target 
values (xj, x2, .. .) of the independent variable 
x, to which the experimenter equates the inde¬ 
pendent variable in his experiment as best he 
can, and then observes the corresponding yields 
(7i, Y2, .. .) of the dependent variable y; 
Second, the experimenter, in his notebook, 
records the observed yields (Yi,Y2,...)as corre¬ 
sponding to, and treats them as if they were 
produced by, the nominal or target values 
(xi, x2,...) of the independent variable—where¬ 
as, strictly they correspond to, and were pro¬ 
duced by, the actual input values (Xi ,X2, ...), 
which ordinarily will differ somewhat from the 
nominal or target values (xlf x2, .. .) as a 
result of errors of technique. Furthermore, the 
effective values (X3, X2. . . .) of the independent 
variable actually realized in the experiment are 
not recorded at all—nor even measured! 

It is surprising but nevertheless true that an 
underlying linear structural relationship of the 
form y = fo + foz can be estimated validly 
from the results of such experiments, by fitting 
a line of the form Y = fo + fox in accordance 
with the procedures for FI situations (x’s known 
accurately, F’s only subject to error). This 
fact was emphatically brought to the attention 
of the scientific world by Joseph Berkson in a 
paper(6) published in 1950, and for its validity 
requires only the usual assumptions regarding 
the randomness and independence of the errors 
of measurement and technique affecting both 
of the variables (i.e., causing the deviations of 
the actual inputs X1} X2,..., from their target 
values Xi, x2,. . ., and the deviations of the ob¬ 
served outputs Yi, Y2, ..., from their true 
values of yl(Xl), y2(X2), . . .). The conclusion 
also extends to the many-variable case con¬ 
sidered in Chapter 6, provided that the relation¬ 
ship is linear, i.e., that 

y = fo + fox + p2u + foz> + • • • • 

If the underlying relationship is a polynomial 
in x (e.g., y = P0 + fox + fox2 + fox3), then 
Geary(7) has found that Berkson’s conclusion 
carries over to the extent that the usual least- 
squares estimates (given in Chapter 6) of the 
coefficients of the two highest powers of x (i.e., 
of fo and fo here) retain their optimum proper¬ 
ties of unbiasedness and minimum variance, but 

5-29 



ORDP 20-110 ANALYSIS OF MEASUREMENT DATA 

the confidence-interval and tests-of-significance 
procedures require modification. 

5-4.4 SOME LINEARIZING 
TRANSFORMATIONS 

If the form of a non-linear relationship be¬ 
tween two variables is known, it is sometimes 
possible to make a transformation of one or 
both variables such that the relationship be¬ 
tween the transformed variables can be ex¬ 
pressed as a straight line. For example, we 
might know that the relationship is of the form 
Y = abx. If we take logs of both sides of this 
equation, we obtain 

log Y = log a + X log b, 

which will be recognized to be a straight line 
whose intercept on the log Y scale is equal to 
log a, and whose slope is equal to log b. The 
procedure for fitting the relationship is given in 
the following steps. 

(1) Make the transformation YT = log Y 
(i.e., take logs of all the observed Y 
values). 

(2) Use the procedure of Paragraph 5-4.1.1 
to fit the line YT = b0 + biX, substi¬ 
tuting Yt everywhere for Y. 

(3) Obtain the constants of the original 
equation by substituting the calculated 
values of b0 and hi in the following 
equations: 

b0 = log a 
bi - log b, 

and taking the required antilogs. 

Some relationships between X and Y which 
can easily be transformed into straight-line 
form are shown in Table 5-4. This table gives 
the appropriate change of variable for each rela¬ 
tionship, and gives the formulas to convert the 
constants of the resulting straight line to the 
constants of the relationship in its original form. 
In addition to the ones given in Table 5-4, some 
more-complicated relationships can be handled 
by using special tricks which are not described 
here, but can be found in Lipka,(8) Rietz,(9) and 
Scarborough/10) 

It should be noted that the use of these trans¬ 
formations is certain to accomplish one thing 
only—i.e., to yield a relationship in straight-line 
form. The transformed data will not neces¬ 
sarily satisfy certain assumptions which are 
theoretically necessary in order to apply the 
procedures of Paragraph 5-4.1.1, for example, 
the assumption that the variability of Y given 
X is the same for all X. However, for practical 
purposes and within the range of the data con¬ 
sidered, the transformations often do help in 
this regard. 

Thus far, our discussion has centered on the 
use of transformations to convert a known rela¬ 
tionship to linear form. The existence of such 
linearizing transformations also makes it pos¬ 
sible to determine the form of a relationship em¬ 
pirically. The following possibilities, adapted 
from Scarborough/10) are suggested in this 
regard: 

(1) Plot Y against jj? on ordinary graph 

paper. If the points lie on a straight line, the 
relationship is 

Y-a+Z ■ 

(2) Plot y against X on ordinary graph 

paper. If the points lie on a straight line, the 
relationship is 

Y = a + bX . 

(3) Plot X against Y on semilog paper (X on 
the arithmetic scale, Y on the logarithmic scale). 
If the points lie on a straight line, the variables 
are related in the form 

Y - aebX, or 
Y = abx . 

(4) Plot Y against X on log-log paper. If 
the points lie on a straight line, the variables are 
related in the form 

Y = aXb . 
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TABLE 5-4. SOME LINEARIZING TRANSFORMATIONS 

If the Relationship 
Is of the Form: 

Plot the Transformed 
Variables 

Fit the Straight Line 
Yt = bo + biXr 

Convert Straight Line 
Constants (bo and bi) 

To Original Constants: 

Yr = XT = b0 = in = 

y-“ + i Y 1 
X Use the procedures of 

Paragraph 5-4.1.1. 

In all formulas given 
there, substitute values 
of Yr for Y and values 
of XT for X, as appro¬ 
priate. 

a b 

w 1 Y — ,v, or 
a -f- bX 

Y = a + bX 

1 
Y 

X a b 

Y X 
1 a + bX 

X 
Y 

X a b 

Y = abx log Y X log a log b 

Y = aebX log Y X log a b log e 

Y = aX» log Y log X log a b 

Y = a + bXn, 
where n is known 

Y xn a b 

5-5 PROBLEMS AND PROCEDURES FOR STATISTICAL RELATIONSHIPS 

5-5.1 SI RELATIONSHIPS 

In this case, we are interested in an associa¬ 
tion between two variables. See Paragraph 
5-3.2 and Table 5-1. 

We usually make the assumption that for 
any fixed value of X, the corresponding values 
of Y form a normal distribution with means 
Yx = P0 + P\X and variance <r\.x (read as 
“variance of Y given X”) which is constant for 
all values of X. * Similarly, we usually assume 
that for any fixed value of Y, the corresponding 
values of X form a normal distribution with 
meanlr = p'0 + p[Y and variance <j\.y , (vari¬ 

* Strictly, we should write 

rriY.x = Po + ft X 

and 

mx-Y = P'o + 01 Y . 

See Footnote in Paragraph 5-3.2. 

ance of X given 7) which is constant for all 
values of Y. * Taken together, these two sets 
of assumptions imply that X and Y are jointly 
distributed according to the bivariate normal 
distribution. In practical situations, we usually 
have only a sample from all the possible pairs 
of values X and Y, and therefore we cannot 
determine either of the true regression lines, 
Yx = Po + PiX or XY = p'0 + P[Y, exactly. If 
we have a random sample of n pairs of values 
(Xi, Yi), (X2, Y2), . . ., (X„, Yn), we can esti¬ 
mate either line, or both. Our method of fitting 
the line gives us best predictions in the sense 
that, for a given X = X' our estimate of the 
corresponding value of Y = Y' will: 

(a) on the average equal YX' the mean value 
of Y for X = X' (i.e., it will be on the true line 
Yx = Po + PiX); and 

(b) have a smaller variance than had we used 
any other method for fitting the line. 
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300- 

200 

100 

_I_I_I_I_ 
0 100 200 300 400 

TREAD LIFE ( HUNDREDS OF MILES ) BY THE WEIGHT METHOD 

Figure 5-10. Relationship between the weight method and the 
center groove method of estimating tread life— 

an SI relationship. 

500 
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Data Sample 5-5.1—Estimated Tread Wear of Tires 

The data used for illustration are from a 

study of two methods of estimating tread wear 

of commercial tires (Stiehler and others'11’). 

The data are shown here and plotted in Figure 

5-10. The variable which is taken as the inde¬ 

pendent variable X is the estimated tread 

life in hundreds of miles by the weight-loss 

method. The associated variable Y is the esti¬ 

mated tread life by the groove-depth method 

(center grooves). The plot seems to indicate a 

relationship between X and Y, but the relation¬ 

ship is statistical rather than functional or 

exact. The scatter of the points stems pri¬ 

marily from product variability and variation 

of tread wear under normal operating condi¬ 

tions, rather than from errors of measurement 

of weight loss or groove depth. Descriptions 

and predictions are applicable only “on the 

average.” 

X 
= Tread Life 

(Hundreds of Miles) 
Estimated By 

Weight Method 

Y 
= Tread Life 

(Hundreds of Miles) 
Estimated By 

Center Groove Method 

459 357 
419 392 
375 311 
334 281 
310 240 
305 287 
309 259 
319 233 
304 231 
273 237 
204 209 
245 161 
209 199 
189 152 
137 115 
114 112 

5-5.1.1 What is the Best Line To Be Used for Estimating Yx for Given Values of X? 

Procedure 

The procedure is identical to that of Paragraph 5-4.1.1. Using Basic Worksheet (see 
Worksheet 5-5.1), compute the line 

Y = b0 + b,X. 

This is an estimate of the true regression line 

Yx = 0o + frX. 

Using Data Sample 5-5.1, the equation of the fitted line is 

Y = 13.506 + 0.790212 X. 

In Figure 5-11, the line is drawn, and confidence limits for the line (see Paragraph 5-5.1.2) 
are shown. 
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WORKSHEET 5-5.1 

EXAMPLE OF SI RELATIONSHIP 

X denotes Tread Life Estimated 
by Weight Method 

Y denotes Tread Life Estimated 
by Center Groove Method 

M
 

N
 

ii 4505 2 Y = 3776 

X = 281.5625 Y = 236 

Number of points: : n = 16 

Step (1) 2XY 1,170,731 

(2) (2Z) (2 Y)/n = 1,063,180 

(3) SXy = 107551 

(4) 2X2 1,404,543 (7) 2 Y* 985740 

(5) (2 Xy/n 1,268,439.0625 (8) (2 YY/n _ 891136 

(6) sxx 136103.9375 (9) Syy = 94604 

(10) 6i = 
Sxy 
O .790212 (14) ^ -- 84988.119 

(11) f 

Oil 

236 

O XX 

(15) [n — 2) s2y _ 9615.881 

(12) biX = 222.494 (16) 4 _ 686.849 

(13) bo = Y — biX = 13.506 Sy — 26.21 

Equation of the line: Estimated variance of the slope: 

Y = 60 + b,X 
si = ^ = .005046504 

13.506 + .790212 X 
Estimated variance of intercept: 

sb, = 0.0710387 

Sb„ = 21.048 Sl° = s2y \\ + £:} = 443.002 

5-34 



LINEAR RELATIONSHIPS BETWEEN TWO VARIABLES ordp 20-110 

0 100 
_1_I_1_ 

200 300 400 

TREAD LIFE (HUNDREDS OF MILES) BY WEIGHT METHOD 

500 

Figure 5-11. Relationship between weight method and center 
groove method—the line shown with its confidence 
band is for estimating tread life by center groove 

method from tread life by weight method. 

_ Using the Regression Line for Prediction. The equation of the fitted line may be used to predict 
Yx, the average value of Y associated with a value of X. For example, using the fitted line, 
Y = 13.506 + 0.790212 X, the following are some predicted values for Yx. 

X Yx 

200 172 
250 211 
300 251 
350 290 
400 330 
450 369 
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5-5.1.2 What are the Confidence Interval Estimates for: the Line as a Whole; a Point on the Line; 
a Single Y Corresponding to a New Value of X? 

Read the discussion of the interpretation of three types of confidence intervals in Paragraph 
5-4.1.2, in order to decide which is the appropriate kind of confidence interval. 

The solutions are identical to those given in Paragraph 5-4.1.2, and are illustrated for the tread 
wear of commercial tires example (Data Sample 5-5.1). 

5-5.1.2.1 What Is the (1 — a) Confidence Band for the Line as a Whole? 

Procedure 

(1) Choose the desired confidence level, 1 — a 

(2) Obtain sY from Worksheet. 

(3) Look up Fi_a for (2, n — 2) degrees of free¬ 
dom in Table A-5. 

(4) Choose a number of values of X (within the 
range of the data) at which to compute 
points for drawing the confidence band. 

(5) At each selected value of X, compute: 

Yc = Y + b1 (X - X) 

and 

(6) A (1 — a) confidence band for the whole 
line is determined by 

Yc ± W1 . 

(7) To draw the line and its confidence band, 
plot Yc at two of the extreme selected 
values of X. Connect the two points by a 
straight line. At each selected value of X, 
plot also Yc + W1 and Yc - Wx. Connect 
the upper series of points, and the lower 
series of points, by smooth curves. 

If more points are needed for drawing the 
curves, note that, because of symmetry, the cal¬ 
culation of Wi at n values of X actually gives 
Wi at 2n values of X. 

Example 

(1) Let: 1 - a = .95 
a = .05 

(2) Sk = 26.21 

(3) n = 16 
F.95 (2, 14) = 3.74 

(4) Let: X = 200 
X = 250 
X = 300 
X = 350 
X = 400, 

for example. 

(5) See Table 5-5 for a convenient computa¬ 
tional arrangement, and the example cal¬ 
culations. 

(6) See Table 5-5. 

(7) See Figure 5-11. 

For example: Wi (but not Yc) has the same 
value at X = 250 (i.e., X - 31.56) as at 
X = 313.12 (i.e., X + 31.56). 
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TABLE 5-5. COMPUTATIONAL ARRANGEMENT FOR PROCEDURE 5-5.1.2.1 

X (X-X) Yc 1 

1 . (X-X)’ 
n 'r Sxx 4c syc Wi Yc+ Wx Yc - Wi 

200 -81.56 171.6 0.111375 76.50 8.746 23.9 195.5 147.7 
250 -31.56 211.1 0.069818 47.95 6.925 18.9 230.0 192.2 
300 +18.44 250.6 0.064998 44.64 6.681 18.3 268.9 232.3 
350 68.44 290.1 0.096915 66.57 8.159 22.3 312.4 267.8 
400 118.44 329.6 0.165569 113.72 10.66 29.2 358.8 300.4 

X = 281.5625 
Y = 236 

sV = 686.849 

- = .0625 
n 
61 = 0.790212 

S„ = 136103.9375 

Ye= Y + b1(X - X) 

, , ri , (X - xy~\ 
*--*L* + 

V2F = VTAS 
= 2.735 

W, = V2F sYc 

5-5.1.2.2 Give a (1 — a) Confidence Interval Estimate For a Single Point On the Line, i.e., the Mean 
Value of Y Corresponding to X = X'. 

Procedure 

(1) Choose the desired confidence level, 

Example 

a (1) Let: 1 - a = .95 
a = .05 

(2) Obtain sY from Worksheet. 

(3) Look up t1_a/2 for n — 2 degrees of freedom 
in Table A-4. 

(2) sK = 26.21 

(3) n = 16 
t.975 for 14 d.f. = 2.145 

(4) Choose X\ the value of X at which we (4) Let 
want to make an interval estimate of the 
mean value of Y. 

(5) Compute: 

W2 — ti—a/2 Sy 

and 

(5) 

X' = 250, 
for example. 

W2 = (2.145) (26.21) (.2642) 
= 14.85 

Yc = Y + b, (X' - X) Yc = 211.1 

(6) A (1 — a) confidence interval estimate for 
the mean value of Y corresponding to 
X = X' is given by 

Yc ± W2 . 

(6) A 95% confidence interval estimate for the 
mean value of Y corresponding to X = 250 
is 

211.1 ± 14.8 , 

the interval from 196.3 to 225.9 . 
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5-5.1.2.3 Give a (1 — a) Confidence Interval Estimate For a Single (Future) Value of Y Corresponding 
to a Chosen Value of X = X'. 

Procedure 

(1) Choose the desired confidence level, 

Example 

a (1) Let: 1 - a = .95 
a = .05 

(2) Obtain sY from Worksheet. 

(3) Look up ii_a/2 for n — 2 degrees of freedom 
in Table A-4. 

(2) sr = 26.21 

(3) n = 16 
t.975 for 14 d.f. = 2.145 

(4) Choose X', the value of X at which we 
want to make an interval estimate of a 
single value of Y. 

(5) Compute: 

W3 = ti-a/2 Sy 1 H-+ 
1 ■ (X'-xy 

and 

(4) Let 

(5) 

X' = 250, 
for example. 

W3 = (2.145) (26.21) (1.0343) 
= 58.1 

Ye = Y + b, (X' - X) Yc = 211.1 . 

(6) A (1 — a) confidence interval estimate for 
Y' (the single value of Y corresponding to 
X') is 

Yc ± W3 . 

(6) A 95% confidence interval estimate for a 
single value of Y corresponding to X' = 250 
is 211.1 ± 58.1, the interval from 153.0 to 
269.2 . 

5-5.1.3 Give a Confidence Interval Estimate 

Yx = /So + fcX. 

The solution is identical to that of Paragraph 5- 

Procedure 

(1) Choose the desired confidence level, 1 — a 

(2) Look up 11—a/2 for n — 2 degrees of freedom 
in Table A-4. 

(3) Obtain sbl from Worksheet. 

(4) Compute 

W4 = tl-a/2 sbl 

(5) A (1 — a) confidence interval estimate for 

0i is 

6x ± Wt . 

5- 

For 0x , the Slope of the True Regression Line, 

-4.1.3 and is illustrated here for Data Sample 5-5.1. 

Example 

(1) Let: 1 - a = .95 
a = .05 

(2) n = 16 
t.975 for 14 d.f. = 2.145 

(3) sbl = 0.0710387 

(4) 

W4 = (2.145) (.0710387) 
= 0.152378 

(5) by = 0.790212 
W4 = 0.152378 

A 95% confidence interval estimate for 0X 
is the interval 0.790212 ± 0.152378, i.e., 
the interval from 0.637834 to 0.942590 . 
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5-5.1.4 What Is the Best Line For Predicting Xy 
From Given Values of Y? 

For this problem, we fit a line X = b'0 + b[ Y 
(an estimate of the true line XY = 0'o + /3( 7). 
To fit this line we need to interchange the roles 
of the X and Y variables in the computations 
outlined in Worksheet 5-5.1 and proceed as in 
Paragraph 5-5.1.1. 

That is, the fitted line will be: 

X = b'0 + b[ Y , 

where 

K = X - b[ Y 

and 

From Data Sample 5-5.1: 
,, 107551 

1 94604 
= 1.136855 

= 281.5625 - (1.136855) (236) 

= 13.26 

The equation of the fitted line is: 

X = 13.26 + 1.136855 Y , 

and this line is shown in Figure 5-12, along with 
the line for predicting Y from X. 

In order to obtain confidence intervals, we 
need the following formulas: 

0 ' 100 1 2<$b 1 loo ' 4(5o ' 500 

TREAD LIFE ( HUNDREDS OF MILES) BY THE WEIGHT METHOD 

Figure 5-12. Relationship between weight method and center 
groove method—showing the two regression lines. 
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5-5.1.5 What is the Degree of Relationship of the Two Variables X and Y as Measured by p, the 
Correlation Coefficient? 

Procedure 

(1) Compute 

_ _Sly 

r ~ vs:, vs;. 

(2) A 95% confidence interval for p can be ob¬ 
tained from Table A-17, using the appro¬ 
priate n and r. If the confidence interval 
does not include p = 0, we may state that 
the data give reason to believe that there is 
a relationship (measured by p ^ 0) be¬ 
tween the two variables; otherwise, we may 
state that the data are consistent with the 
possibility that the two variables are un¬ 
correlated (p = 0). 

5-5.2 Sll RELATIONSHIPS 

In this case, we are interested in an associa¬ 
tion between two variables. This case differs 
from SI in that one variable has been measured 
at only preselected values of the other variable. 
(See Paragraph 5-3.2 and Table 5-1.) 

For any given value of X, the corresponding 
values of Y have a normal distribution with 
mean Yx = /3o + PiX, and variance a\.x which 
is independent of the value of X. We have n 
pairs of values (Xi, Fi), (X2, Y2),..., (X„, Yn), 
in which X is the independent variable. (The 
X values are selected, and the Y values are 
thereby determined.) We wish to describe the 
line which will enable us to make the best esti¬ 
mate of values of Y corresponding to given 
values of X. 

We have seen that for SI there are two lines, 
one for predicting Y from X and one for pre¬ 
dicting X from Y. When we use only selected 
values of X, however, the only appropriate line 
to fit is Y = b0 + biX. 

It should be noted that SII is handled com¬ 
putationally in the same manner as FI, but both 
the underlying assumptions and the interpreta¬ 
tion of the end results are different. 

Example 

(1) Using Worksheet 5-5.1, 

_107551 

T -n/136103.94 a/94604 

107551 
(368.92) (307.58) 

= 0.95 

(2) n = 16 
r = 0.95 

From Table A-17, the 95% confidence in¬ 
terval estimate of p is the interval from 
0.85 to 0.98. Since this interval does not 
include p = 0, we may state that the data 
give reason to believe that there is a rela¬ 
tionship between the two methods of esti¬ 
mating tread wear of tires. 

Data Sample 5-5.2—Estimated Tread Wear of Tires 

For our example, we use part of the data used 
in Data Sample 5-5.1 (the SI example). Sup¬ 
pose that, due to some limitation, we were only 
able to measure X values between X = 200 and 
X = 400, or that we had taken but had lost the 
data for X < 200 and X > 400. From Figure 
5-10, we use only the 11 observations whose X 
values are between these limits. The “se¬ 
lected” data are recorded in the following table. 

X 
= Tread Life 

(Hundreds of Miles) 
Estimated By 

Weight Method 

F 
= Tread Life 

(Hundreds of Miles) 
Estimated By 

Center Groove Method 

375 311 
334 281 
310 240 
305 287 
309 259 
319 233 
304 231 
273 237 
204 209 
245 161 
209 199 
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5-5.2.1 What Is the Best Line To Be Used for 

Estimating Yx From Given Values 

of X? 

Procedure 

Using Basic Worksheet (see Worksheet 
5-5.2), compute the line 7 = b0 + bxX. This 
is an estimate of the true line Yx = Po + PiX. 

Using Data Sample 5-5.2, the fitted line is 

Y = 48.965 + 0.661873 X. 

The fitted line is shown in Figure 5-13, and the 
confidence band for the line (see the procedure 
of Paragraph 5-5.2.2.1) also is shown. 

WORKSHEET 5-5.2 

EXAMPLE OF Sll RELATIONSHIP 

X denotes Tread Life Estimated Y denotes Tread Life Estimated by 
by Weight Method_ Center Groove Method 

II 

N
 3187 27 2648 

x = 289.727 7 240.727 

Number of points: n 11 

Step (1) 2XY = 785369 

(2) (2X) (2 Y)/n = 767197.818 

(3) Sxy = 18171.182 

(4) 2Z2 = 950815 (7) 272 _ 655754 

(5) (2X)2/w = 923360.818 (8) (2 YY/n 637445.818 

(6) S' * = 27454.182 (9) Syv ~ 18308.182 

(10) &! = ^ = 0.661873 (14) 
(sxvy 

Q — 12027.015 

(11) 7 

&xx 

240.727 (15) 

&XZ 

(n — 2) s2y = 6281.167 

(12) 6XZ = 191.762 (16) q2 by — 697.9074 

(13) b0 = Y - 6iX = 48.965 sy = 26.418 

Equation of the line: Estimated variance of the slope: 

Y = b0 + bxX 
si = 

q2 Sy 

V — .0254208 
= 48.965 + 0.661873 X 

0Xx 

Estimated variance of intercept: 
Sfci = 0.159439 . 

S>0 = 46.88 sl = CO
 

+
 

2197.313 
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400- 

300-- 

200- 

100- 

00 2io 300 400 

TREAD LIFE (HUNDREDS OF MILES) BY THE WEIGHT METHOD 

500 

Figure 5-13. Relationship between weight method and center 
groove method when the range of the weight method 

has been restricted—an SII relationship. 

5-5.2.2 What are the Confidence Interval Estimates for: the Line as a Whole; a Point on the Line; 
a Single Y Corresponding to a New Value of X? 

Read the discussion of the interpretation of these three types of confidence intervals in Paragraph 
5-4.1.2 in order to decide which is the appropriate kind of confidence interval. 
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5-5.2.2.1 What Is the (1 — a) Confidence Band For the Line as a Whole? 

The solution is identical to that of Procedure 5-4.1.2.1 and is illustrated here for Data Sample 
5-5.2. 

Procedure Example 

(1) Choose the desired confidence level, 1 — a (1) Let: 1 - a = .95 
a = .05 

(2) Obtain Sr from Worksheet. (2) From Worksheet 5-5.2 
sr = 26.418 

(3) Look up Fi_a for (2, n — 2) degrees of free¬ 
dom in Table A-5. 

(3) n = 11 
F.95 (2, 9) = 4.26 

(4) Choose a number of values of X (within the 
range of the data) at which to compute 
points for drawing the confidence band. 

(4) Let: X = 200 
X = 250 
X = 300 
X = 350 
X = 400, 
for example. 

(5) At each selected value of X, compute: (5) See Table 5-6 for a convenient computa¬ 
tional arrangement and the example cal¬ 

Yc = Y + bi (X — X) culations. 

and 

^ = V2FS,[i + (X,s/)] 

(6) A (1 — a) confidence band for the whole 
line is determined by 

(6) See Table 5-6. 

Yc ± Wx . 

(7) To draw the line and its confidence band, 
plot Yc at two of the extreme selected 
values of X. Connect the two points by a 
straight line. At each selected value of X, 
also plot Yc + Wx and Yc — Wx. Con¬ 
nect the upper series of points, and the 
lower series of points, by smooth curves. 

(7) See Figure 5-13. 

If more points are needed for drawing the curves 
for the band, note that, because of symmetry 
the calculation of Wx at n values of X actually 
gives Wx at 2n values of X. 

For example: Wx (but not Yc) has the same 
value at X = 250 (i.e., X — 39.73) as at 
X = 329.5 (i.e., X + 39.73). 
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TABLE 5-6. COMPUTATIONAL ARRANGEMENT FOR PROCEDURE 5-5.2.2.1 

X (X-X) Yc 

1 . (X-X)2 
n Sxx SYC wx Yc+ Wx Yc - Wj 

200 -89.73 181.3 0.384179 268.12 16.37 47.8 229.1 133.5 
250 -39.73 214.4 0.148404 103.57 10.18 29.7 244.1 184.7 
300 + 10.27 247.5 0.094751 66.127 8.132 23.7 271.2 223.8 
350 60.27 280.6 0.223219 155.79 12.48 36.4 317.0 244.2 
400 110.27 313.7 0.533810 372.55 19.30 56.3 370.0 257.4 

X = 289.727 
Y = 240.727 

s2y = 697.9074 

- = 0.0909091 
n 
bi = 0.661873 

S„ = 27454.182 

Yc= Y + b1(X - X) 

Cx - xy 

V2F = a/8.52 = 2.919 

Wx = V2F Sy 

5-5.2.2.2 Give a (1 — a) Confidence Interval For a Single Point On the Line, i.e., the Mean Value 
of y Corresponding To a Chosen Value of X (X'). 

Procedure Example 

(1) Choose the desired confidence level, 1 — a 

(2) Obtain sY from Basic Worksheet. 

(3) Look up £i_„/2 for n — 2 degrees of freedom 
in Table A-4. 

(4) Choose X', the value of X at which we want 
to make an interval estimate of the mean 
value of Y. 

(5) Compute: 

W2 

and 

ri , cx' - 

Y.-Y + b, (X' - X) 

(6) A (1 — a) confidence interval estimate for 
the mean value of Y corresponding to 
X = X' is given by 

Y + bx (X - X) ± W2 
= yc±w2 . 

(1) Let: 1 - a = .95 
a = .05 

(2) From Worksheet 5-5.2 
sY = 26.418 

(3) n = 11 
£.975 for 9 d.f. = 2.262 

(4) Let 

(5) 

X' = 300, 
for example. 

W2 = (2.262) (26.418) (0.3078) 
= 18.4 

Yc = 247.5 

(6) A 95% confidence interval estimate for the 
mean value of Y at X = 300 is the interval 
247.5 ± 18.4, i.e., the interval from 229.1 
to 265.9 
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5-5.2.2.3 Give a (1 — a) Confidence Interval Estimate For a Single (Future) Value of Y Corresponding 
To a Chosen Value of X = X'. 

Procedure Example 

(1) Choose the desired confidence level, 1 — a 

(2) Obtain sy from Worksheet. 

(3) Look up ti—a/2 for n — 2 degrees of freedom 
in Table A-4. 

(4) Choose X', the value of X at which we want 
to make an interval estimate of a single 
value of Y. 

(5) Compute: 

W‘ = h-n Sr + n + <Z ]' 

and 

Yc= F + ft (X' - X) 

(6) A (1 — a) confidence interval estimate for 
Y' (the single value of Y corresponding to 
X') is given by 

f + ft (X' - X) ± W3 
= Yc±W3 

(1) Let: 1 - a = .95 
a = .05 

(2) From Worksheet 5-5.2 
sY = 26.418 

(3) t.975 for 9 d.f. = 2.262 

(4) Let X' = 300, 
for example. 

(5) 

W3 = (2.262) (26.418) (1.0463) 
= 62.5 

Yc = 247.5 

(6) A 95% confidence interval estimate for Y 
at X = 300 is the interval 247.5 ± 62.5, 
i.e., the interval from 185.0 to 310.0 

5-5.2.3 What Is the Confidence Interval Estimate for ft, the Slope of the True Line, Yx = ft + ftX? 

Procedure Example 

(1) Choose the desired confidence level, 1 — a (1) Let: 1 — a = .95 
a = .05 

(2) Look up ti-an for n — 2 degrees of freedom 
in Table A-4. 

(2) n = 11 

t.975 for 9 d.f. = 2.262 

(3) Obtain sbl from Worksheet. 

(4) Compute 

W4 = t\—tt/2 S6l 

(3) From Worksheet 5-5.2 
sbl = 0.159439 

(4) 

Wt = 2.262 (0.159439) 
= 0.360651 

(5) A (1 — a) confidence interval estimate for (5) 

ft is 

ft ± W4 

ft = 0.661873 
W< = 0.360651 
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CHAPTER 6 

POLYNOMIAL AND MULTIVARIABLE RELATIONSHIPS 

ANALYSIS BY THE METHOD OF LEAST SQUARES 

6-1 INTRODUCTION 

In this Chapter, we give methods for estimating the coefficients of, and for answering various 
questions about, multivariable functional relationships of the form 

y = /So *o + fa X\ + . . . + Xjc-i (6-1) 

between a dependent variable y and a number of independent variables x0, xlt, x*_i. We restrict 
our discussion, however, to the case in which the values of the independent variables x0, xu ..., xt_i, 
are known exactly, and errors of measurement affect only the observed values Y of y, that is, to 
many-variable analogs of the FI functional relationships considered in Paragraphs 5-3.1 and 5-4.1. 

Methods for the analysis of many-variable relationships in which errors of measurement affect the 
values of the x’s involved as well as the observed Y’s, i.e., the multivariable analogs of the FII 
structural relationships considered in Paragraphs 5-3.1 and 5-4.3, are not discussed per se in this 
Chapter. If, however, the errors that affect the x’s are not errors of measurement, but rather are 
errors of control in the sense of Paragraph 5-4.3.2, i.e., are errors made in attempting to set 
X0, Xi,..., Xk-1, equal to their respective nominal values x'0, x[,.. ., xjLi, then the methods of 
this Chapter are applicable, provided that the errors made in adjusting X0, Xu . .., Xk-i, to their 
respective nominal values are mutually independent (or, at least, are uncorrelated). 

The techniques presented in this Chapter are general. They are applicable whenever we know 
the functional form of the relation between y and the x’s, and are primarily concerned with esti¬ 
mating the unknown values of the coefficients of the respective terms of the relationship. Thus, 
taking x0 = 1, xx = x, x2 = x2,. . ., xm = xm, the methods of this Chapter enable us to estimate the 
coefficients of, and to answer various questions about, an rath degree polynomial relationship 

y = ft + fax + fax2 + ... + (6-2) 

between a dependent variable y and a single independent variable x. Alternatively, taking x0 = 1, 
Xi = x, x2 = z, x3 = x2, x4 = xz, and x5 = z2, the techniques of this Chapter can be used to investi¬ 
gate the nature of a quadratic surface relationship 

V = fa + (fax + fazj + (fax2 + faxz + faz2) (6-3) 

between a dependent variable y and two independent variables x and z. For example, we may wish 
to test the hypothesis that the surface actually is a plane, i.e., that fa, fa, and fa, in Equation (6-3) 
are equal to zero, and so forth. 
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Multivariate* statistical relationships analogous to the SI and SII situations considered in 
Paragraphs 5-3.2 and 5-5.1 are not considered per se in this Chapter. If, however, Y and Xu 
X2,..., Xk-i, have a joint multivariate frequency (probability) distribution in some definite 
population, and if a sample of size n is drawn from this population, with or without selection or 
restrictions on the values of the X’s but without selection or restriction on the Y’s, then the methods 
of this Chapter, taking X0 = 1 throughout, are directly applicable to estimating the coefficients 
of, and to answering various questions about, the multivariate regression of Y on Xu X2, .. ., and 
Xk-i, namely, 

Y[x) = f3o + /3iXj + P2X2 + ... + Pk-iX/c-i, (6-4) 

where Y[x) is shorthand for mY.Xlx2. . . xk_v the mean value of all of the Y’s that are associated in 
the population with the particular indicated combination Xu X2. . . Xk-t, of values of the X’s 
(see footnote of Par. 5-3.2)—and, where 

/30 = mY - PimXl - &- ... - Pic-\mXk_„ (6-5) 

my, mxi,. . ., mXk_v are the population means of Yu Xu . . ., Xk_u respectively. The fitted regres¬ 
sion, yielded by the application of the methods of this Chapter to observational data of this kind, 
will be of the form 

Y[x) = 60 + 61X1 + 62X2 + . . . + 6i_iX*_i (6-6) 

with 60 = Y - 6iXx - 62X2 - ... - fe/t-jX*.! (6-7) 

where Y, Xu X2,. . ., Xk-\, are the means of Y, Xi, X2,. . ., and Xk-i, in the sample; and each b 
will be a best (i.e., minimum variance unbiased) estimate of the corresponding true f3. 

When, as in all of the previously mentioned situations, the relationship between y and the x’s is 
linear in the coefficients whose values are to be determined from the data in hand, the Method of 
Least Squares is the most generally accepted procedure for estimating the unknown values of the 
coefficients, and for answering questions about the relationship as a whole. A widely applicable 
Least Squares Theorem is given in Paragraph 6-2; and its application to a general linear situation 
is presented in detail in Paragraph 6-3, with worked examples. Special applications to polynomial 
and other situations are discussed in subsequent paragraphs of this Chapter. 

The numerical calculations required for least-squares analysis of multivariable relationships 
often are lengthy and tedious. Hence, this Chapter is directed toward arrangement of the work 
for automatic computation on modern electronic computers. Consequently, basic equations called 
for in the calculations are written both in traditional and in matrix forms. This Chapter concludes 
with a discussion of matrix operations that are useful both in formulating and in carrying out the 
requisite calculations, Paragraph 6-9. 

In most instances, related Procedures and Examples appear on facing pages in this Chapter. 

* The important distinction in statistical work between a variable and a variate is drawn in the Kendall-Buckland 
Dictionary of Statistical Termsw as follows: 

Variable—Generally, any quantity which varies. More precisely, a variable in the mathematical sense, i.e., a 
quantity which may take any one of a specified set of values. It is convenient to apply the same word to denote 
non-measurable characteristics, e.g., “sex” is a variable in this sense, since any human individual may take one of 
two “values”, male or female. 

It is useful, but far from being the general practice, to distinguish between a variable as so defined and a random 
variable or variate (q.v.). 
Variate—In contradistinction to a variable (q.v.) a variate is a quantity which may take any of the values of a 
specified set with a specified relative frequency or probability. The variate is therefore often known as a random 
variable. It is to be regarded as defined, not merely by a set of permissible values like an ordinary mathematical 
variable, but by an associated frequency (probability) function expressing how often those values appear in the 
situation under discussion. 
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6-2 LEAST SQUARES THEOREM 

If the n measurements Yu Y*,..., Y„ are statistically independent with common variance o-2 

and have expected values EfY,), 

E(Yi) = jSoXd + 0iXn + /32x2i + . . . + /3*_iX*_i.i 

E(Y2) = $qXq2 + &X12 + &X22 + . . . + Pk-iXk-1,2 (6-8) 

E(Yn) = PoXon + PlXln + P2X2n + . . . + Pk-\Xk-l,n 

then the best linear unbiased estimates 0O, Pu $2,, pk-u of the unknown coefficients are given by 
the solution of k simultaneous equations, called the normal equations, 

0o 2 xj; + 0i 2 x0Xi + . . . + Pk-i 2 x0x*_i = 2 x0 Y 

0o 2 XiXo + ft 2 xi + ... + Pk-i 2 x&k-k = 2 Xj Y (6-9) 

0o 2 X/.-_iXo + 0i 2 Xk-iXi + . . . + Pk-i 2 x|_j = 2 Xk-i Y 

where the summation is over all of the n values of the variables involved; e.g., 

2 X1X2 = 2 XU%2 i, 

and the estimate of a2 is given by 

S2 = —-r S [Yi — (PoXoi + 0iXii + . . . + Pk-iXk-i.i)]2 

n ~ k 1 (6-10) 

If no unique solution to Equation (6-9) exists (which will occur when one or more of the x’s are 
linearly dependent, for example, if Xi = ax2 4- 6x3), then not all k coefficients can be estimated 
from the data. Variables may be deleted or several variables may be replaced by a linear function 
of those variables so that a solvable system involving fewer equations results. 

In situations where the variance of the F’s is not the same for all Y’s and/or there is correlation 
among the Y’s, a transformation of variables is required. The methods for these cases are discussed 
later in this Chapter. 

This theorem can be restated using matrix notation as follows: 

Let, Y = n
 

, X = j- X01 Xn • - 

X02 X12 . 

■ • Xk-1,1 

■ . Xk-1,2 

j, and 0 - r a“ 
02 

_ Yn_ _ x0n Xln . . . Xk-1.„ J LfcJ 
The expected values of the Y’s then is expressed as 

E(Y) = Xp, (6-8M) 

and the condition of independence and common variance is expressed by 
Var (Y) = V = <r2J. 

Under these conditions, the minimum variance unbiased estimates 0 of 0 are given by the solution 
of the normal equations 

X'Xp = X'Y. (6-9M) 
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The estimate of a2 is given by 

s2 =^ZTk l(Y - Xfiy (Y - Xfo) 
(6-10M) 

= ^-=Tfc (y'y - $'X'Y)- 

Equations (6-8), (6-9), and (6-10) are given in the usual algebraic notation, and the corresponding 
equations in matrix notation are (6-8M), (6-9M), and (6-10M). 

6-3 MULTIVARIABLE FUNCTIONAL RELATIONSHIPS 

6-3.1 USE AND ASSUMPTIONS 

Least-squares methods for estimating the coefficients of a functional relation of the form 

y = /30x0 + PiXi + (32x2 + . . . + Pk-iXk-i (6-1) 

are used in a number of situations: 
(a) when it is known from theoretical considerations in the subject matter field that the rela¬ 

tionship is of this form; 
(b) when the exact expression relating y and the x’s either is unknown or is too complicated 

to be used directly and it is assumed that an approximation of this type will be satisfactory. 

In the latter case, the approximation often can be justified on the grounds that, for the limited 
range of the x's considered, the surface representing y as a function of the x’s is very nearly the 
hyperplane given by Equation (6-1). The method is strictly valid in (a), but in (b) there is danger 
of obtaining misleading results, analogous to the bias arising in the straight-line case from the 
assumption that the functional relation involved is linear when in fact it is not linear. 

In addition to the validity of Equation (6-1), the following assumptions must be satisfied:* 

(a) the random errors in the Y’s have mean zero and a common variance a-2; 
(b) the random errors in the Y’s are mutually independent in the statistical sense. 

For strict validity of the usual tests of significance, and confidence interval estimation procedures 
in Paragraph 6-3.3 (Steps 8 and 9), an additional assumption must be satisfied: 

(c) the random errors affecting the Y’s are normally distributed. 

The x variables may be powers or other functions of some basic variables, and several different 
functions of the same x variable may be used. (See, for example, Equation (6-2) or (6-3)). 

The data for analysis consist of the n points (x0i, xn,. .., x*_i,i, Yx) (x02, X12,. .., xfc_i,2 Y2), 
(x0n, Xin,. . ., x*_i,„, Y„), and usually are represented in tabular form as: 

Xo X! X2 . . • X*-l Y 

X01 X11 x2i X/t-i,i Yx 

X02 Xj2 X22 X/c-1,2 y2 

X0n xln x2„ Xlo-1,„ Yn 

* When these assumptions are not satisfied, see Paragraph 6-6 for the case of inequality of variance, and Paragraph 6-7 
for the case of correlation among the F’s. 
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Alternatively, the data may be expressed in the form of observational equations, 

P0X01 + PlXn + 02%21 + • • • + Pk-lXk-1,1 — Yl — 2/l + el 

PqX(>2 + 181X12 + 82^22 + • • • + Pk—lXk—1,2 = Y2 =2/2+62 

(6-11) 

PoXon + PlXl„ + P2X2n + . . . + Pk-lXk-l,n = Yn = yn + e„ 

where eu e2,. .., en denote the errors of the Y’s as measured values of the corresponding true y’s. 
When the number of observational equations exceeds the number of unknown coefficients, i.e., 
when n > k, the observational equations ordinarily are mutually contradictory; that is, the values 
of 80, Pi,, and pk—1 implied by any chosen solvable selection of k of the equations do not satisfy 
one or more of the remaining n — k equations. Hence, there is a need for best estimates of the p’s 
based on the data as a whole. 

For a unique least-squares solution, n must not be less than k, and the normal equations (6-9) 
must be uniquely solvable. If not, some variables must be deleted or suitably combined with other 
variables. 

6-3.2 DISCUSSION OF PROCEDURES AND EXAMPLES 

In setting forth the steps in the solution, the formulas are given in the usual algebraic notation 
and also in matrix notation where appropriate. 

Data Sample 6-3.2, selected for arithmetical simplicity, serves to illustrate the worked examples 
of numerical procedures involved in estimating the coefficients of, and in answering various questions 
about, multivariable functional relationships. 

Data Sample 6-3.2 

Xi x2 XZ Y 

1 8 1 2 

2 8 7 4 
2 6 0 4 
3 1 2 4 
4 2 7 3 
4 5 1 3 

We assume that these data correspond to a situation in which the functional dependence of y on 
Xi, x2, and x3, is of the form 

y = P1X1 + P2X2 + P3X3, (6-12) 

which is a special case of Equation (6-1) with the term p0x0 omitted; i.e., with 80 taken equal to 
zero. Equation (6-12) implies that the functional dependence of y on xlt x2, and x3, takes the form 
of a hyperplane* that passes through the origin (0, 0, 0, 0) of the four-dimensional Euclidean space 

* A flat surface in four or more dimensions is termed a hyperplane when it is the locus of points that vary in more 
than two dimensions. 
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whose coordinates are xu x2, x3, and y. If we wished to allow for the possibility that the dependence 
of y on Xi, x2, and x3, may take the form of a hyperplane that intersects the y-axis at some point 
(0, 0, 0, ft), not necessarily the origin, then we would substitute 

V = PoXo + ftlXl + 02%2 + ft^3 

for Equation (6-12), and take x0 = 1; i.e., amend Data Sample 6-3.2 by adding an x0 column of l’s. 

By analogy with Equations (6-11), Data Sample 6-3.2 and the assumed functional relationship 
Equation (6-12) can be summarized symbolically by observational equations of the form 

ft^n + ft £21 + 03%3i = Ei 
ft 1X12 -f- ft2x22 + ft3x32 = E2 

(6-13) 

ftlXtf + ftX26 + ft^X33 — E 6 

Substitution of the values of the x’s and E’s of Data Sample 6-3.2 in Equation (6-13) gives 

ft*l + ft*8 + ft*l = 2 

ft*2 + ft*8 + ft*7 = 4 

ft*2 + ft*6 + ft 3 • 0 = 4 (6-14) 

ft*3 + ft*l + ft*2 = 4 

ft-4 + ft*2 + ft-7 = 3 

ft-4 + ft* 5 + ft-1 = 3 

as the observational equations corresponding to Data Sample 6-3.2. 

6-3.3 PROCEDURES AND EXAMPLES 

Step 1 Procedure—Formation of Normal Equations. The normal equations are formed from the 
sums of squares and cross products as follows: 

ftSa^ + ftSXoXj + . . . + ft_i2x0xA_i = 2x0E 

ftZXiXo + ft2x? + . . . + ft-jSxjXi-x = 2xjE (6-9) 

ft2Xft_iXo + ft2Xi_xXi + . . . + ft_i2x|_! = XXk-iY 

or in matrix form 

X'Xft = X'Y =Q (6-9M) 

where Q' = (qu q2, . . . , qT), 

and qs = S ?h E<, (j = 0, 1, ..., k - 1). 
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Step 1 Example—Formation of Normal Equations. The normal equations (See Equations (6-9)) 
corresponding to the observational equations (6-13) are 

ft 2x? + ft 2xiX2 + ft 2XjX3 = 2XiY 

ft 2xjX2 + ft 2x^ + ft 2x2x3 = 2x2Y (6-15) 

ft 2XiX3 + ft 2x2x3 + ft 2X3 = 2x3Y 

or in matrix form 

X' X p = X'Y (6-15M) 

where /3 = [ ft-! 

ft 
_ftJ 

Numerical evaluation of the requisite sums of squares and sums of cross products for Data Sample 
6-3.2 and substitution in Equation (6-15), yields 

ft-50 + ft-67 + ft-53 = 54 

ft-67 + ft-194 + ft-85 = 97 (6-16) 

ft-53 + ft-85 + ft-104 = 62 

and the matrices involved in Equation (6-15M) become 

{X'X) 

{X'Y) 

I*? 2XiX2 2xiX3 = [50 67 53 

2xxx2 2Xj 2x2x3 67 194 85 

[_2XiX3 2x2x3 2x5; [53 85 104 

2x1Yl = [541 = r *" = Q (6-16M) 

2x2Y 97 Q2 

_2x3Y_] LeaJ L?3_ 
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Step 2 Procedure—Solution of Normal Equations. Equations (6-9) can be solved by a number of 
methods giving values for (30, j3u /32,. . ., which can be expressed as 

(3o — CooQo + Coi<7i + • • • + Co.k-iQ/t-i 

Pi = CioQo + cnqi + . . . + Ci ,k-iqic-i (6-17) 

(3*-i = c*_i,0go + Ck-i,iqi + . . . + Ck-i,k~iqk-i- 

A solution for the /3/s can be arrived at without explicitly computing the ct/s, of course, but in 
the following computations the c,/s are needed. The values of the c,/s depend only on the sums 
of squares and cross products of the independent variables x0, xu , xk, so that the estimates of 
the /3/s can be expressed as a linear function of the Y’s. 

In matrix notation, this step is given by computing the inverse of the matrix of normal equations, 

(X X) 1 — Coo Coi 

Cio Cl! 

Co,k-l 

Cl ,4-1 

_C*_ i,o C*—i ,1 

and Equations (6-17) become 

|3 = (X'X)-'X'Y 

= (X'X)-ig. 
(6-17M) 

6-8 



POLYNOMIAL AND MULTIVARIABLE RELATIONSHIPS ordp 20-110 

Step 2 Example—Solution of Normal Equations. The values 0i, 02, and 03, that constitute the 
solutions of the normal equations can be expressed (See Equations (6-17)) in the form 

= Cn <7i + C12 Q2 + C13 qz 

= Cn-54 + Ci2*97 + Ci3*62 

02 = c2j qi + c22 <72 + c23 93 (6-18) 

= c21 • 54 -|- c22 • 97 -f- c23 • 62 

03 = C31 91 + C32 Q2 + C33 <73 

= C31 • 54 -|- C32 • 97 -|- C33 • 62 

where the c’s are the elements of the inverse matrix 

(.X'X)-1 = f cn ci2 C13 

C21 C22 c23 

1_C31 C32 C33J 

(X'X)_1 may be computed in many ways. * The exact inverse of the matrix (X'X) determined by 

the first equation of Equations (6-16M) is 

(X'X)-' 
1 

239418 

12951 

-2463 

-4587 

-2463 

2391 

-699 

-4587] 

-699 

5211J 

(6-18M) 

where the factor in front of the matrix is to be applied to the individual terms in the matrix. 

Using the first equation of Equations (6-18), we get 

0i = 23^4X8 K12951) (54) + (-2463) (97) + (-4587) (62)} 

= 23^418 (699354 - 238911 - 284394} 

176049 
239418 

= 0.735 320 652. 

The other coefficients are obtained similarly: 

02 = 0.232 175 526 

03 = 0.031 664 286. 

The prediction equation, therefore, is 

Y = 0.735 320 652 x, + 0.232 175 526 z2 + 0.031 664 286 x3. 

* The advent of automatic electronic digital computers has reduced the inversion of matrices of even moderate size 
to a matter of seconds. Routines for matrix inversion are standard tools of automatic computation. In contrast, 
matrix inversion by desk calculators is a time-consuming and tedious affair. Detailed illustration at this juncture of 
any one of the common methods of matrix inversion by desk calculator would not only constitute a distractive interrup¬ 
tion to the orderly presentation of the essential features of this Chapter, but would lengthen it considerably. The two 
most common methods of matrix inversion by desk calculator—the Doolittle method, and the abbreviated Doolittle method 
(also called the Gauss-Doolittle method)—are described and illustrated by numerical examples in various statistical 
textbooks, e.g., in Chapter 15 of Anderson and Bancroft.® Details of the square-root method, favored by some com¬ 
puters, are given, with a numerical illustration, in Appendix 11A of O. L. Davies’ book.® All of the common methods 
of matrix inversion by desk calculators are described in considerable detail, illustrated by numerical examples, and 
compared with respect to advantages and disadvantages in a paper by L. Fox, Practical Solution of Linear Equations 
and Inversion of Matrices, included in Taussky.® Reference also may be made to the book of Dwyer.(5) The reader 
of this Handbook who is faced with matrix inversion by desk calculator is referred to these standard sources for guidance 
and details. 
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Step 3 Procedure—Calculation of Deviation Between Predicted and Observed Value of the Y’s. 

The predicted value at a given point (xoi, xu,. . ., xk~\Y,) is given by substituting the values 
of x in the prediction equation, i.e., 

Yi = foxoi + PiXu + 02^2 < + • • • + fik-iXk-i.i, 

and the residuals r{ = Yf — Yt are given by 

'/‘i — Y\ — Yi = Yi — (^o^oi + (3iXix + ... + Pk-iXk-i,i) 

Ti = Y2 — ^2 = Y2 — (|8oX<>2 4" filXl2 + • . . + (ik-lXk-1,2) 

(6-19) 

rn = Yn - ?n = Yn - 0oXon + &Xl» + . . . + $k-lXk-l.n) 

or in matrix notation 

r = Y - Xp (6-19M) 

where 

n 

r2 

r = 

_r„_ 

In classical least-squares analysis, Y{ is termed the adjusted value of the observed value Y,-. It is 
important to distinguish between the errors of the Yt- with respect to the corresponding true values 
yi} and the residuals of the Yt with respect to their adjusted or predicted values Y<; that is, between 
the e,- of Equations (6-11) and the r< of Equations (6-19). 

Step 4 Procedure—Estimation of a1. The estimate s2 of a2 is computed from 

- 5^1 )**■-?**'[ 
or in matrix notation 

s’-^~k (r'r) 

(6-20) 

(6-20M) 
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Step 3 Example—Calculation of Deviation Between Predicted and Observed Value of the Vs. The 
predicted, or adjusted values ?> corresponding to the observations Yt are obtained by substituting 
the values of the x’s into the prediction equation. For the first observation, substituting xn = 1, 
x2i - 8, x31 = 1 leads to 

?! = 0.735 320 652 (1) -f 0.232 175 526 (8) + 0.031 664 286 (1) 
= 2.624 389 146. 

The corresponding residual is 

r1=Y1- ?! 

= 2 - 2.624 389 146 

= -.624 389 146. 

The full data, the corresponding predicted values (Yi) and their residuals (rj), are: 

i Xu x2i x3i Y, ?< 
Residuals 

Ti 

1 1 8 1 2 2.624 389 146 -.624 389 146 

2 2 8 7 4 3.549 695 514 .450 304 486 

3 2 6 0 4 2.863 694 460 1.136 305 540 

4 3 1 2 4 2.501 466 054 1.498 533 946 

5 4 2 7 3 3.627 283 662 -.627 283 662 

6 4 5 1 3 4.133 824 524 -1.133 824 524 

Step 4 Example—Estimation of a2. The estimate s2 of o-2 may be computed directly from the sum 
of squared residuals. Thus, 

= | (5.808 473 047) 

= 1.936 157 682 

where n is the number of observational points (here 6) and k is the number of coefficients estimated 
from the data (here 3). Alternatively, s2 may be evaluated from 

= g-3-g {70 - (0.735 320 652) (54) - (0.232 175 526) (97) - (0.031 664 286) (62)} 

= | (5.808 473 038) 

= 1.936 157 679. 

Extracting the square root gives 

s = 1.391 4588. 
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Step 5 Procedure—Estimated Standard Deviations of the Coefficients. The estimated standard 
deviation of & is given by sVcii, where Cu is the ith diagonal term of the inverse of the matrix of 
normal equations 

est. s.d. of /So = 

est. s.d. of j8i = sVcn 

est. s.d. of ft = sa/c^ 
(6-21) 

est. s.d. of |3jfc_i = s-v/cm,m. 

Step 6 Procedure—Standard Deviation of a Linear Function of the /3’s. The standard deviation of 
L = a0/30 + arfi + a2/32 + .. . + ak~i$*_i is estimated by 

est. s.d. of L = sJg g OiOyCi/ (6-22) 
\ i=o J=0 

or in matrix form 

est. s.d. of L = sVl'(X'X)~H (6-22M) 

where Z' = (o0,ai, . .., a*_ 1). 

Cases of special interest are: 
(a) estimate of a single coefficient, i.e., L = $it in which case Equation (6-22) reduces to Equa¬ 

tion (6-21); 
(b) estimate of the difference of two coefficients, i.e., L = /§< — /3,-, in which case Equation (6-22) 

becomes 

est. s.d. of 0i — $j) = sVcu + Cjj — 2c<y. (6-23) 

Step 7 Procedure—Standard Deviation of a Predicted Point. Using the results of Step 6, the pre¬ 
dicted yield th, at any chosen point (xQh, xxh,..., xk-i,h), is given by 

h = PoXoh + PlXlh, + • • • + $k-i,Xk-l,h 

which is a linear function of the $’s. Application of Equation (6-22) leads to 

est. s.d. of fh = sJg g xihxjhci3- (6-24) 
\ i=0 1=0 

or in matrix notation 

est. s.d. of tH = sVl'(X'X)-H (6-24M) 

where l' = (xoh, xlh, ..., xk-llh) 
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Step 5 Example—Estimated Standard Deviations of the Coefficients. The values of the estimated 
standard deviations of the p’s are: 

Coefficient 

Estimated 
Standard Error of 
Coefficient, sVc7i 

Pi .232 581 .323 627 

P2 .099 934 .139 054 

Pz .147 531 .205 283 

Step 6 Example—Standard Deviation of a Linear Function of the Coefficients. For illustrative pur¬ 
poses, consider L = P2 — 10 (33. 

By Equation (6-22), or Equations (6-22M), 

est. s.d. of L = -|- 100 c33 — 20 c23 

in matrix notation 

est. s.d. of L = sy/l'iX'X^H 

with V = (0, 1, —10). 

Numerical evaluation in this instance gives 

est. s.d. of L = 1.391 4588 1 

= 2.0848. 

Step 7 Example—Standard Deviation of a Predicted Point. By Equation (6-24), or Equation 
(6-24M), the estimated standard deviation of the predicted yield Yh, corresponding to any chosen 
point (xlh, x2h, x3h), is given by 

est. s.d. of Yh = XihXjhCij 

or in matrix notation 

Yh = sVl\X'X)-H 

where l’ = (xlh, x2h, x3h). 

Thus, the estimated standard error of Yu the predicted or adjusted yield corresponding to the 
first observational point (1, 8, 1), is 

est. s.d. of 7i = s[cn + 8C12 + C\3 + 8c2i + 64c22 -(- 8c23 + c3i + 8c32 -j- c33]f 

-im 4588 0‘ 

= 0.949 235. 

6-13 



ORDP 20-110 ANALYSIS OF MEASUREMENT DATA 

Step 8 Procedure—Analysis of Variance Test of Significance of a Group of p < k of the Coefficients. 

To test the statistical significance of a set of p of the fts (for simplicity the last p), start with a 
reduced set of normal equations, omitting the last p rows and columns, and repeat Steps 2, 3, and 4, 
as a problem with (k — p) variables: 

(a) The equations in Step 2 then are reduced to 

2zj$0 + • • • + 2x0xk-p-i(3k-p-i = qo 

(6-25) 

ZXoXk-p-ipo + . . . + 2x|_p_i|8i_p_i = qk-p-i 

and its solution becomes 

0* = c*0q0 + . . . + c* 

(6-26) 

P*-p-i — cf,i_p_i<7o + . . . + c*-p-i,k-p-iqic-p-i- 

(b) These values c* will, in general, be different from the ctJ for the original equations, so that 
new coefficients 

ft , ft, ft , • • • , Pk-p-l 

will result. 

(c) A new value of s2, say s*\ is computed from 

*2 1 
n — (k — p) 2Y2 - "s' ft* (6-27) 

These operations can be handled conveniently by matrix methods. Paragraph 6-9 contains a 
further discussion of “Matrix Methods.” 

An Analysis of Variance table is formed as follows: 

d.f. Sum of Squares Mean Square 

Total n 272 

Reduction due to k constants k X) ft qi 0 
K 

Residual (after k constants) n — k 2Y2 - S & qi 
0 

s2 

Reduction due to k — p constants k — p 
0 

A 

Reduction due to additional p constants V S ft qi - ft* 0 0 
q< P 

Residuals after A; — p constants n — (k — p) SY2 - q{ 
0 

s*2 

If the y’s are normally distributed about their expected values, then 
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Step 8 Example—Analysis of Variance Test 

Analysis of Variance table is: 
of Significance of Last Coefficient. The required 

d.f. Sums of Squares Mean Square 

Total 6 70.000 000 

Reduction due to 3 constants {pu p2, and p3) 3 64.191 527 21.397 176 = K 

Residuals (after 3 constants) 3 5.808 473 1.936 158 = s2 

Reduction due to pi and p2 only 2 64.145 461 32.072 730 = A 

Residuals (after Pi and p2) 4 5.854 539 1.463 635 = s*2 

Reduction due to p3 1 .046 066 .046 066 = P 

As implied by Equation (6-27), the sum of squares for the reduction due to Pi and p2 only = 
P* qi + p* q2, where p* and p* are the estimates of Pi and p2 that are obtained when p3 is taken equal 
to zero; i.e., when the underlying functional relation is taken to be y = PiXi + p2x2. 

The steps required to evaluate p* and p* are 

- [S? m] 

io] 
[x;ri=[“]=[«;] 
[j|] = (X'X)-I [X[Y] 

194 -67] [54] 
5211 [- 67 5oJL97J. 

They yield 

$* = 0.763 193 245 

p* = 0.236 422 951. 

Hence, reduction due to p* and p* only is given by 

(0.763 193 245) (54) + (0.236 422 951) (97) = 64.145 461 

as shown in the Analysis of Variance table. 

6-15 



ORDP 20-110 ANALYSIS OF MEASUREMENT DATA 

Step 8 Procedure (Cont) 

(a,) F = — is distributed as F with d.f. = k,n - k, and serves as a test of whether all k constants 

account for a significant reduction in the error variance. 
p 

(b) F = — is distributed as F with d.f. = p, n — k, and serves as a test of whether the addition 

of the p coefficients accounts for a significant reduction in the error variance over that accounted 
for by the first k — p constants. 

NOTE: In cases where a constant term is involved (i.e., xn = 1) we would use 

which is distributed as F with (k — 1) and (n — k) degrees of freedom as a test for the efficacy of the 
prediction equation. 

Step 9 Procedure—Confidence Interval Estimates. Li and L2 constitute a 100 (1 — a) % confidence 
interval estimate for: 

(a) a coefficient /?;, 

when Li = (est. s.d. of /§,-) 

L2 = i(3; + £„_*,« (est. s.d. of /3,); 

(b) a predicted point on the curve Y „ 

when Li = Y{ — tn~k,a (est. s.d. of Y,-) 

L2 = Yi + tn-k,a (est. s.d. of Yi); 

(c) a difference of two coefficients (3{ — j3it 

when Lj = - $,) — tn-k,a (est. s.d. of & — $,) 

L2 = 0§i - fij) + tn—k,a (est. s.d. of 13i - 13j). 

In the above, tn-k,a is the value of Student’s t for (n — k) degrees of freedom exceeded with 

probability . 
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Step 8 Example (Cont) 

The test of significance for 03 is 

.046 060 
1.936 158 

= .024, d.f. = 1, 3. 

The value of F( 1, 3) exceeded with probability .05 is 10.13. The observed F does not exceed 
this critical value, so that & is not regarded as being statistically significantly different from zero. 

Step 9 Example—Confidence Interval Estimates. For ft, the 95% confidence interval estimate 
Li < ft < L2 is determined by 

Lx = & — f3,.os (est. s.d. of /3i) 

= 0.735 320 652 - 3.182 (.323 627) 

= - .294 460 

L2 = j§i + t3, .os (est. s.d. of &) 

= 0.735 320 652 + 3.182 (.323 627) 

=1.765 102 

where t3,,05 = 3.182 is the value of Student’s t distribution for three degrees of freedom exceeded 
with probability .025 (or exceeded in absolute value with probability .05). 

6-4 MULTIPLE MEASUREMENTS AT ONE OR MORE POINTS 

More than one measurement may be made at some or at all of the values of the independent 
variable x. This usually is done when the random errors are suspected of being composed of two 
components—one component associated with the variation of the points about the curve, and the 
other component associated with the variation of repeat determinations. The ;th measurement at 
the ith point then can be represented as 

Ya = PoXoi + PxXu + . .. + j3fc_iXk-x,i + et- + THj (6-28) 

where the e’s and 77’s are independent and have variances o-2 and <r§, respectively. 

If a number of repeat determinations are made at each of the n points, the estimation of <r2 
and <jq follows from a modification of the Analysis of Variance table: 
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Sum of Squares d.f. Mean Square 

Total gsn- = t ±Vi 
1 

Reduction due to fitted constants S & (2X;Y) = C k C/k 

Residual (after fitted constants) T -C = R 2 Pi — k Ft/(Zpi - k) 

Repeat determinations - Yi)2 = E0 2 pi — n Eg/(2pi - n) 

Variations of averages about the curve Ft — Eg = El n — k Ei/(n — k) 

The expected value of E0/2pi — n is <t\, and the expected value of Ei/n — k is <rl + p0<r2, 

where ^ (zp, - f^). 

The quantity [Ei/{n — k)]/[E0/(2pi — n)] = F is (under the assumption of a normal distribution 
for the e’s and Vs) distributed as F with n — k and 2— n degrees of freedom, and may be used 
to test the statistical significance of the component of variance associated with the e’s by comparing 
the observed F value with tables of the F distribution. 

The proper variance estimate to use in calculating the standard errors, or confidence intervals 
of the estimated constants, is Ex/(n — k). 

If all Pi = p, the above formulas simplify somewhat with 2p, reducing to np, and with p0 
becoming just p. 

6-5 POLYNOMIAL FITTING 

If it can be assumed that the relation between the dependent variable Y and the independent 
variable x is 

Yi = ft, + PiXi + fta;? + ...+ (3k—iXi 1 + ef (6-29) 

and that the errors of measurement e* are independent and have the same variance a2, then the 
techniques for multiple regression carry over without change, by setting: 

x0i = 1; xu = Xi; x2i = xk-i,i = a;*-1. 

The normal equations are 

nfio + 2Z0! + 2z2/32 + • • . + Sz*-1/?*-! = 2 Y 

2x/3o + 2x2/3i + 2x3& + . . . + 2x%_i = 2xY (6-30) 

2xi-1/30 + 2x*j81 + 2x*+1/32 + . . . + 2x2t-2/3ft_1 = 2xk~xY. 

Note that if the constant term is assumed to be zero, variable x0 is dropped, and the first row and 
column are dropped from the normal equations. 
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In using a polynomial as an approximation to some unknown function, or as an interpolation 
formula, the correct degree for the polynomial usually is not known. The following procedure 
usually is applied: 

(a) Carry through the steps in fitting polynomials of 2nd, 3rd, 4th, 5th, . .. , degrees. 
(b) If the reduction in the error sum of squares due to fitting the kth degree term is statistically 

significant on the basis of the F-test, whereas the similar test for the (k + 1) degree term is not, 
then the A:th degree polynomial is accepted as the best fitting polynomial. 

In this procedure, the degree of the polynomial is a random variable, and repetitions of the experi¬ 
ment will lead to different degree polynomials. When the law is truly polynomial, the computed 
curve will either be of correct degree and hence will give unbiased estimates of the coefficients or, 
if not of correct degree, will lead to biased estimates. 

When the law is not exactly a polynomial, the error distribution for the Y's will be centered 
around a value off the curve, and it will be difficult to assess the effect of such systematic errors. 
In the limiting case, where the variance of the Y’s is nearly zero, these systematic errors will be 
treated as the random error in the measurements. Usually, it will not be valid to assume that these 
systematic errors are uncorrelated. On the other hand, if these systematic errors are small relative 
to the measurement error, their effect probably can be neglected. 

6-6 INEQUALITY OF VARIANCE 

6-6.1 DISCUSSION OF PROCEDURES AND EXAMPLES 

When the measurements Y, have different precision, i.e., when V(Y,) = a\ and o-,-, ^ <r,-2 for at 
least one pair of subscripts 1 < ix < h < n, the conditions of the least squares theorem of Para¬ 
graph 6-2 are not satisfied. However, the transformed variates 

Ct 

have a common variance V(Y') = 1. Often, we have information on the relative magnitudes of 
the variances a\ only, and not on their absolute magnitudes. If the variances <r\ are expressed 
in the form 

A=~, (6-31) 
Wi’ 

then Wi is termed the relative weight* of the measurement Y,-, and the quantities Yf = y/vo, Y,- 
have common variance a\, the magnitude of which may be unknown. In other words, equality of 
variance is achieved through weighting the observations by quantities proportional to the reciprocals 
of their standard deviations. 

* The absolute weight of a measurement is, by definition, the reciprocal of its variance. 
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6-6.2 PROCEDURES AND EXAMPLES 

Procedures—The equations representing the expected values of the Y* are 

E(Y?) = VwiE(Yi) 

= PoVwi X0i + PiVwi Xu + ... -\- Pk-iVwi Xk-1 ,i (6-32) 
= Po x& + Pi x*i + ... + Pk-x Xt-i.i 

where x* = y/wt Xi,-. 

The normal equations for the estimation of the p's are 

2 w x\ Po + 2 w XoXiPi + . . . + 2 w XoXk-iPk-1 = 2 w x0Y 

2 w XqXiPq + 2 w x\pi + . . . + 2 w XiXk-iPk-i = 2 w XiY (6-33) 

2 w XoXk^Po + 2 w x&k-iPi + . . . + 2 w xl-iPk-i = 2w xk-i Y 

The estimate s2 of <r\ is given by the usual formula 

± yr - s 

n-k 

which may be written, in terms of the original variables, as 

?2 _ 2_r|w,- 
n — k 

2 WiY\ - 2 Wi Xu y)j 

n — k 

(6-34) 

(6-35) 

Note that in the case where the value of <rb is known, we may perform a test of significance of 
s2 

the closeness of the observed estimate to the known value by forming the ratio F = -5 and 
a0 

comparing this value with the 100 (1 - a) percentage point of the F distribution for n - k and « 
g2 

degrees of freedom; or, equivalently, we may compare x2 = --2- with the 100 (1 — a) 
ao 

percentage point of the x2 distribution for n — k degrees of freedom. Restatement of the foregoing, 

using matrix notation, goes as follows: 

If Var (Yi) = Diag («rf, of, .. ., <rl) 

= a2. Diag (—, —.iV 
\Wi Wi wn) ’ 

then the transformed variates 

y* = Diag (Vwi s/w2... y/vTnjY = WY and 

X* = Diag (Vwi ... V^n)X = WX 

satisfy the requirements of the least squares theorem of Paragraph 6-2, and the normal equations are 

(X*)'(X*)p = (X*)'Y* 

X' W2 X p = X' W2 Y. 
(6-33M) 
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The estimate of o% is given by 

s2 = ^4-fcfy*' Y*-p'(X*)'Y*} 

s2 
r' W*r 
n — k 

(6-34M) 

Examples—Fitting Straight Line Relation (Variance of Y Proportional to Abscissa). Consider the 
estimation of the coefficients of a line where 

y = a + 0Xi, 

and where Var(Y,) = tr2x„ i = 1, 2, . .., n. The equations of expectation are 

E{Yx) = a + 

E(Y2) = a + f}X2 
(6-36) 

E(Yn) = a + 0x„ 

Transforming to Yf = F./Va^, gives 

E(Y?) = -J= + fi\Yxi 

E(Yf) = ~^= + &Vx2 (6-37) 

E(Y*) = -y= + 
Vxn 

and the normal equations for estimating a and 8 become 

<J2- + ^n = 2 Yi/Xi 
Xi 

dn + |§ 2 * = 2 Yt 
(6-38) 

Direct solution of these equations gives 

P ~ / 1 \ (6-39) 

w 2 F< — 2 Xi ZYi/Xi 
(6-40) a ~ /1 \ 

*• - ™ 2 {xj 

and for the estimate of cr2, 

(6-41) 
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6-7 CORRELATED MEASUREMENT ERRORS 

6-7.1 DISCUSSION OF PROCEDURES AND EXAMPLES 

If the errors of measurement are not independent but instead are correlated so that they have 
covariances 

Covar (YifYj) = an = an (6-42) 

and variances 

Var (YO = a\, 

then a transformation of the variables Yu Y2, ..., Yn, to new variables Yf, Y*, ..., Y*, is 
required so that the method of least squares may be applied. In some simple cases, a transformation 
in the form of sums and differences of the original variables immediately suggests itself, and the 
expected values of the new variables are computed easily. The example used to illustrate the 
techniques presented in this Paragraph is such a case. 

6-7.2 PROCEDURES AND EXAMPLES 

Procedures—The variances and covariances may be represented by the n X n variance-covariance 
matrix 

V = a2, 
a 12 

a12 

o» 

ain 

a2n 

l_a „i a n2 

(6-42M) 

Assuming V to be of full rank, i.e., determinant of V is not zero, it is possible to factor V into the 
product 

V = T T' (6-43M) 

where T is lower triangular and T' is the transpose of T. The required transformation then is 
given by 

Y* = y-i y and X* = T~l X (6-44M) 

where (Y*)' = (Yf, Yf,. .., Yf) is the vector of transformed variables and Y' = (Yh Y2,..., Yn) 
is the vector of original variables. X* and X are the matrices representing the equations of 
expected values of the transformed variables and of the original variables, respectively. (See 
Paragraph 6-9 for the method of computing T and T~l). 

The normal equations then are 

(x*)'(x*) $ = (X*y y* 

or, in terms of the original variables, 

X'V-'X j§ = X'V-1 Y, 

and the estimates of the /3’s are given by 

$ = [(X*)'(X*)]-i(X*)'Y* 

= (X'V~'X)-'X'V-lY. 

The variance estimate 

— y'*)l 

(6-45M) 

(6-46M) 

(6-47M) 

(6-48) 

6-22 



POLYNOMIAL AND MULTIVARIABLE RELATIONSHIPS ordp 20-110 

Procedures (Cont) 

is an estimate of unity when the variances and covariances are known. 

- —Tic {Y'V-'Y - H'X'V-Yj 

{r'V-r) 

This may be written as 

(6-48M) 

where r is the column vector of deviations, r = Y — Xj3. 

If, instead of V, a matrix with entries proportional to the variances and covariances is used, say 

W = —2 V, then s2 is an estimate of 0%. 
°o 

Examples—Parabolic Relationship with Cumulative Errors. If the errors of measurements of Y at 
successive x values in a case of a parabolic law Y = ft + ftx + ftx2 are cumulative, i.e., 

Yi = ft + ftXi + ft*? + ei 

Y2 = ft + ftx2 + ftx2 +ei + «2 

Yn = ft + ftx„ + ftx2 + 

then E(Y) = r 1 

1 xi 

Xn X°n_ 

= X/3. 

If all the e’s are from the same distribution, 

then Var (7.) = i • a2 

Covar (Yi Yy) = 
% < j 
j < i 

and the variance covariance matrix becomes 

V = <r2 Tl 1 1 ... r 

2 2 2 

2 3 3 

n_j 

Taking W = —2V, the necessary transformation is given by factoring W into W = T T' 
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6-7.2 PROCEDURES AND EXAMPLES (CONT) 

Examples (Cont) 

A little computation gives 

W = 1 

1 

1 

1 

1 1 

1 1 1 

1 1 

1 

\ 1 1 ... 1 

1 

1 

1 

1 

w-1 = (27,)-ir-1 = r i -10 0 

1 -1 o 
i -l 

on r i 
0-1 1 

0 0-1 

1-10 0 

lj L 0 0 

2 -1 

-1 2 -1 

-1 2 -1 

-1 2 

-1 

which, for the transformed variate, gives 

* 1 1 ~Y1~ = 

-1 1 y2 
0 -1 1 y3 

r
 o

 

o
 

o
 1 L

 _Yn_ 

= TT 

1 

0 1 

0 -1 

1 

1 

Yj 

Y2 - Yi 
Y3 - Y2 

Y„ - Yn_! 
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Examples (Cont) 

and 

X* = T~'X = 

1 

-1 1 

0 0 0 

1 31 A 
0 x2 - Xx A -A 
0 X3 — z2 A - A 

0 Xn - Xn-x A - A- 

-1 

1 "l Xi A~ 
1 z2 A 
1 X3 A 

j x„ A_ 

Note that Y* = Y{ - Y,_! 

= (Xi — Xi-i)p0 + (A — A-i)Pi + €i for i> 2 

and Y* = Yi; 

hence, the Y*’s have the same variance, and have zero covariances. 

The normal equations become 

A U 

A + 2 (?i - a?»-i) (.A - A-x) 
2 

+ s (*? - a^-i)2 
2 j 

~Yi 

x1Yl + ±) (zf - z«) (Xi - Ft-_x) 

zx + S (*< ~ 3*-i)z 
1 

A 3? + S (*i — 3t-i) (z? — Z?_x) 
2 

z*Yx + ±; (a? - 4-1) (Y, - Y,_i) 
2 

J 
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6-7.2 PROCEDURES AND EXAMPLES (CONT) 

Examples (Cont) 

or, in terms of the original matrices X'W~lXp = X'W~lY, give 

1 1 

Xi x2 

-1 

2 

-1 2 -1 

-1 -1 

1 

1 4 

1 1 . . 1~ 2 -1 

Xi x2 xn -1 2 -1 

A xi_ 

l_ -1 1 

lY„. 

which, upon multiplication, will be seen to give the same normal equations as above. If the analysis 
is carried out in terms of the transformed variables, a2 is estimated by 

2Y*2 - (S x% Y?) 

n — 3 

or equivalently, in terms of the original variables, by 

1 
n 

{Y'W~'Y - riW-'Y). 

6-8 USE OF ORTHOGONAL POLYNOMIALS WITH EQUALLY SPACED * VALUES 

6-8.1 DISCUSSION OF PROCEDURES AND EXAMPLES 

The fitting of a polynomial 

Y = /So + fax + ftx2 + . . . + fr-ix*-1 (6-49) 

to observations at n equally-spaced values of x (spaced a distance D apart) can be simplified by 
transforming the x’s to new variables £,..., gk~u which are orthogonal to each other. 
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The variables then become 

£0 = £o = l 

ui ^ Xi — x 
£1 = ^i£i = n 

fi - - (Z'D *) -n121 

« - - ^ir)' (r^) + Jo -10"! + 

(6-50) 

9) 

«=«. - (x-^y - {h*) - x\3 5 (n2 - 7) 
18 

15n4 - 230w2 + 407\ 
1008 ) 

£2 (n2 _ £2) 
where £*+1 = £i£* - 4 (4jfc2 _ ^ £*-1. 

The X,- are chosen so that the elements of £, are integers. 

By fitting Y as a function 

Y = <J0£'o + «i£i + • • • + &k-\ £*—1, (6-51) 

the estimation of the <*’s and the analysis of variance are simplified because the normal equations 
are in diagonal form. 

In order to obtain the estimates of the /3’s and their associated standard errors, or to use Equa¬ 
tion (6-51) for predicting a value for a point not in the original data, an extra calculation but no 
matrix inversion is required. 

Tables of £', X, and S(£')2 are given by Fisher and Yates(6) for n < 75, and by Anderson and 
Houseman'75 for n < 104 for up to 5th degree polynomials; in DeLury(8) for n < 26 for all powers; 
and in Pearson and Hartley'95 for n < 52 for up to 6th degree polynomials. Table 6-1 is a sample 
from Fisher and Yates.'65 

To illustrate the calculations, consider the fitting of a cubic to the following (x, Y) points: 

X Y 

10 3.4 
20 11.7 
30 37.2 
40 80.1 
50 151.4 
60 253.2 
70 392.6 
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TABLE 6-1. SAMPLE TABLE OF ORTHOGONAL POLYNOMIALS 

3 

f'i f'i 
4 

ft ft ft 
5 

f'i f'i {'» £'. 

6 

f'i f'i f'» £'. 

7 

ft ft ft ft {'6 

8 

f'i £'. £'. £'. 

-1 +1 
0 -2 

+1 +1 

-1 -1 +3 
+1 -1 -3 
+3 +1 +1 

-2 +2 -1 +1 
-1 -1 +2 -4 
0-2 0+6 

+1 -1 -2 -4 
+2 +2 +1 +1 

-5 +5 -5 +1 -1 
-3 -1 +7 -3 +5 
-1 -4 +4 +2 -10 
+ 1 _4 -4 +2 +10 
+3 -1 -7 -3 -5 
+5 +5 +5 +1 +1 

-3 +5 -1 +3 -1 
-2 0 +1 -7 +4 
-1 -3 +1 +1 -5 
0-4 0+6 0 

+ 1 -3 -1 +1 +5 
+2 0 -1 -7 -4 
+3 +5 +1 +3 +1 

-7 +7 -7 +7 -7 
-5 +1 +5 -13 +23 

-1 -5 +3 +9 -15 
+1 -5 -3 +9 +15 
+3 -3 -7 -3 +17 
+5 +1 -5 -13 -23 
+7 +7 +7 +7 +7 

2 ({')* 2 6 
X 13 

20 4 20 
2 1 Jf 

10 14 10 70 

1 1 t H 

70 84 180 28 252 

2 # * A f* 
28 84 6 154 84 

1 1 i A A 
168 168 264 616 2184 

2 1 i A A 

f'i 
9 

£'» f'. f't f'i 
10 

f'a £'. t'i f'i 
11 

f'» £'« 1'. f'i 
12 

£'• f'i 

0 -20 0 +18 0 +1 -4 -12 + 18 +6 0 -10 0 +6 0 +i -35 -7 +28 +20 

+1 -17 -9 +9 +9 +3 -3 -31 +3 +11 +i -9 ' -14 +4 +4 +3 -29 -19 + 12 +44 
+2 -8 -13 -11 +4 +5 -1 -35 -17 +1 +2 -6 -23 -1 +4 +5 -17 -25 -13 +29 
+3 +7 -7 -21 -11 +7 +2 -14 -22 -14 +3 -1 -22 -6 -1 +7 +1 -21 -33 -21 
+4 +28 + 14 + 14 +4 +9 +6 +42 + 18 +6 +4 +6 -6 -6 -6 +9 +25 -3 -27 -57 

+5 +15 +30 +6 +3 +11 +55 +33 +33 +33 

S ({')’ 60 990 468 330 8,580 780 110 4,290 156 572 5,148 15,912 
2,772 2,002 132 2,860 858 286 12,012 8,008 

X 1 3 * T? 2 * 1 A tV 1 1 i A 2 3 i A & 

£'1 £'« 

13 

£'» £'. £'6 £'• f'i 
14 

£'. f'i f'i £'. £'1 
15 

£'. £'. £'. 

0 -14 0 +84 0 + 1 -8 -24 + 108 +60 0 -56 0 +756 0 

+1 -13 -4 +64 +20 +3 -7 -67 +63 +145 +1 -53 -27 +621 +675 
+2 -10 -7 +11 +26 +5 -5 -95 -13 + 139 +2 -44 -49 +251 + 1000 
+3 -5 -8 -54 + 11 +7 -2 -98 -92 +28 +3 -29 -61 -249 +751 
+4 +2 -6 -96 -18 +9 +2 -66 -132 -132 +4 -8 -58 -704 -44 
+5 + 11 0 -66 -33 + 11 +7 + 11 -77 -187 +5 + 19 -35 -869 -979 
+6 +22 + 11 +99 +22- +13 +13 + 143 + 143 + 143 +6 +52 +13 -429 -1144 

+7 +91 +91 +1001 +1001 

2 (*')* 182 572 6,188 910 97,240 235,144 280 39,780 10,581,480 
2,002 68,068 728 136,136 37,128 6,466,460 

A 1 1 i A 2 i 1 A A 1 3 i « U 
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TABLE 6-1. SAMPLE TABLE OF ORTHOGONAL POLYNOMIALS (Continued) 

t'l C, 
16 

f'. t'i 
17 

{'. t'i 
18 

c> t'i 

+1 -21 -63 + 189 +45 0 -24 0 +36 0 +1 -40 -8 +44 +220 
+3 -19 -179 +129 +115 +1 -23 -7 +31 +55 +3 -37 -23 +33 +583 
+5 -15 -265 +23 + 131 +2 -20 -13 + 17 +88 +5 -31 -35 + 13 +733 
+7 -9 -301 -101 +77 +3 -15 -17 -3 +83 +7 -22 -42 -12 +588 
+9 -1 -267 -201 -33 +4 -8 -18 -24 +36 +9 -10 -42 -36 +156 

+11 +9 -143 -221 -143 +5 +1 -15 -39 -39 +11 +5 -33 -51 -429 
+ 13 +21 +91 -91 -143 +6 + 12 -7 -39 -104 + 13 +23 -13 -47 -871 
+15 +35 +455 +273 +143 +7 +25 +7 -13 -91 +15 +44 +20 -12 -676 

+8 +40 +28 +52 + 104 + 17 +68 +68 +68 +884 

2 (£’)' 1.360 1,007,760 201,552 408 3,876 100,776 1,938 23,256 6,953,544 
5,712 470,288 7,752 16,796 23,256 28,424 

\ 2 1 ¥ Tf 1 1 i tV 2 f * 

Note: For n > 8, only the values for positive (i = x u * are given. 

Excerpt reproduced with permission from Statistical Tables for Biological, Agricultural and Medical Research (5th ed.). by R. A. Fisher and F. Yates. 
Copyright. 1957, Oliver and Boyd Ltd., Edinburgh. 

From Table 6-1, for n = 7 we copy out: 

£0 IS IS IS Y 

1 -3 5 -1 3.4 
1 -2 0 1 11.7 
1 -1 -3 1 37.2 
1 0 -4 0 80.1 
1 1 -3 -1 151.4 
1 2 0 -1 253.2 
1 3 5 1 392.6 

where 

IS = 1 X0 = 1 

IS I? ~ 4 X2 — 1 

r £ - , r Is — 0 X3 = l/o 

with x = 40, D = 10. 
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6-8.2 PROCEDURES AND EXAMPLES 

Step 1 Procedure—Form the quantities 

2Y 

S &Y 
MY 

(6-52) 

M-iY 

and, using the values of 2£(2, S^2Y, 
parameters, a0, alf . . ., as follows: 

d0 = 
2Y 
n y 

d2 

ML 
Mi2 

ML 

. . , given in Table 6-1 form the estimates of the 

(6-53) 

&k-1 
m2-! 

Step 2 Procedure—Calculate the deviations r* from 

fi = Yi — y — — <$2?2 ,i — ... — i€fc—i ,»■. (6-54) 
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Step 1 Example—Using the values copied from Table 6-1, the following calculations are made: 

2 &Y = 929.6 

2 £Y = 1764.8 

2 &Y = 1093.8 

2 &Y = 33.5 

The estimates of the coefficients in the representation of y as a function of the fj, i.e., as 

V = «o£o + + «3?3 

are given by 

do = 2&y/2# = 929.6/7 = 132.8 

dx = 2|;y/2?(2 = 1764.8/28 = 63.0285 7143 

d2 = 2?;y/2^2 = 1093.8/84 = 13.0214 2857 

d3 = 2gy/2g2 = 33.5/6 = 5.5833 3333. 

Step 2 Example—The predicted value for the point a: = 10 is given by substituting its corre¬ 
sponding values of the £’s (£„ = 1, £ = — 3, & = 5, and ^ = —1) in the equation 

Yx = 132.8 + 63.028 5714 £ + 13.021 4286 £ + 5.583 3333 

i.e., yw = 132.8 + 63.028 5714(-3) + 13.021 4286(5) + 5.583 3333 (-1) 

= 3.238 0955 

leading to a deviation between observed and calculated of 

ri„ = 3.4 - 3.238 0955 

= 0.161 9045. 

For the entire set of points, we get: 

Observed 
y 

Calculated 
y 

Residual 
r = Y -t 

3.4 

11.7 

37.2 

80.1 

151.4 

253.2 

392.6 

12.326 1905 

36.290 4761 

80.714 2856 

151.180 9523 

253.273 8095 

392.576 1905 

3.238 0955 0.161 9045 

-0.626 1905 

0.909 5239 

-0.614 2856 

0.219 0477 

-0.073 8095 

0.023 8095 
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Step 3 Procedure—The estimate of <r2 is given by 

s2 = {S72 - «o2Y - <8i2iiY - ... - • (6-55) 

Step 4 Procedure—The estimate of the standard deviations of the <J’s is given by 

s.d. (<*,) = (6-56) 

Step 5 Procedure—The Analysis of Variance table becomes: 

d.f. Sum of Squares 

Total n 2Y2 

Reduction due to fitting a0 1 do (2Y) = R0 

Deviations from fit with «0 n — 1 2Y2 - R0 

Reduction due to fitting ax 1 <*i (SfiY) = Rx 

Deviations from fit with a0, ax n — 2 2Y2 - Ro - Ri 

Reduction due to fit of a*-i 1 dfc-1 (2^_xY) = «*_! 

Deviations from fit with a0, au .. • , Otlc-l n — k 1 

0? 1 i 

6-32 



POLYNOMIAL AND MULTIVARIABLE RELATIONSHIPS ordp 20-110 

step 3 Example—The estimate of a2 is given by 

= ± (1.676 9048) 

= .558 9683 

s = V.558 9683 

= .7476. 

Step 4 Example—The standard deviations of the coefficients are given by 

s.d. (a,-) = s/Vsi? 

s.d. (a0) = .7476/V7 = .2826 

s.d. (*0 = .7476/V28 = .1413 

s.d. (d2) = .7476/V84 = .0816 

s.d. (d3) = .7476/V6 = .3052. 

Step 5 Example—The Analysis of Variance table becomes: 

d.f. Sum of Squares Mean Square 

Total 7 249 115.26 

Reduction due to coef. of £'0 1 123 450.88 123 450.88 

Residuals from a0|„ 6 125 664.38 20 944.06 

Reduction due to coef. of £( 1 111 232.822 86 111 232.82 

Residuals from d0£o + d^ 5 14 431.557 14 2 886.31 

Reduction due to coef. of £2 1 14 242.838 57 14 242.84 

Residuals from d0|0 + + d,^ 4 188.718 57 47.18 

Reduction due to coef. of £3 1 187.041 67 187.04 

Residuals from d0£„ + . . . + d3|( 3 1.676 90 .5590 
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Step 6 Procedure—Convert to an equation in the original x units by substituting the expressions 
in Equations (6-50) into Equation (6-51). By writing the /3’s as linear functions of the d’s, say 

h = X) bi &i, 

the standard deviation can be computed from 

s.d. of 0k = yj'hb) (s.d. of <*<)*. 

" The following Equations (6-57) show the /3’s as a function of the d’s for polynomials up to 5th 
degree. (If a polynomial of 4th degree is used, simply disregard the terms involving d6; if 3rd 
degree, disregard the terms involving d4 and d6; etc.) 

As an example, if a 4th degree polynomial is fitted, the estimate /33 is given by 

and the s.d. of /33 is estimated by 

See Equations (6-57) on page 6-36. 
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Step 6 Example—To obtain the equation in terms of the original x variable, i.e., expressing y as 
y = Is0 + /Six + 02x2 + /33x3, we substitute as follows: 

(x - 40\ r/x - 40\2 1 W / x — 40\3 n (x — 40\~] 
v 10 ;+ as 10 ) 4 J +6 L 

0
 

r"H
 

1 0
 

rH
 

- (ao 4«! + 12«2 6a3) + (1(j 10 «2 + 60 X + 10(j) X2 + X3. 

Substituting the estimated values for the <*’s gives 

Y = 3.4428 5714 - .299 007 9375 x + .018 547 6191 x2 + .000 930 5556 x3. 

The standard deviations of the /3’s are given by 

s.d. of j§0 = s.d. of (<*<> - 4di + 12d2 - 6d3) 

= s /I , (—4)2 (12)2 (—6)2 

\7 + 28 + 84 + 6 

= 2.170 

s.d. of /§i = _L /(6)2 (—48)2 ~~(4l)2 
60 \ 28 ^ 84 ^ 6 

= .2190 

s.d. of $2 = 
100 

= .006 158 

11 1 (~2)2 
V 84 + 6 

s.d. of $3 = 
6000 V6 

.0000 5087. 
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6-9 MATRIX METHODS 

6-9.1 FORMULAS USING TRIANGULAR FACTORIZATION OF NORMAL EQUATIONS 

The matrix for the left-hand side of normal equations can be factored into (X'X) = TT' where 
T is lower triangular, so that (Z'X)-1 = (717)-1 T_1 = (T-1)' T~K 

Thus, /§ = (T~1)' (T-'Q) where Q = X'Y. 

Denote the column vector T~lQ by 

g = T-iQ = rg ~ 

L 9k_ 

Therefore, /3 = (T~l)'g. 

This representation leads to certain simplifications, e.g.: 

(a) The estimate of a-2 is given by 

= ^~k(Y'Y-S'T-‘Q) 

(b) The variance of a linear function, L = a'(3 of the /3’s is given by 

s2 \a' (T-1)7 T-1 a} = s2 (T_1o)7 (T~la) 

when h = rhP = T_1o. 

(c) The reduction in sum of squares due to fitting the last p constants is 
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This formulation also permits us to make a detailed Analysis of Variance table. An important 
caution is in order. The reduction due to the addition of /3t is the reduction given that pu p2,..., /3,-_j, 
have been fitted to the data. The reduction due to 0, given that any other set of coefficients have 
been fitted will be different. 

The Analysis of Variance table becomes: 

d.f. Sum of Squares 

Reduction due to fitting /3i 1 9l 

Residual (after fitting pi) n — 1 2Y2 - gi 

Additional reduction fitting p2 1 g\ 

Reduction due to fitting Pi and p2 2 g\ + g\ 

Residual (after fitting Pi and p2) n — 2 2Y2 -g\- g\ 

Additional reduction due to fitting pk 1 g\ 

Reduction due to fitting pu $2, . . ., pk k 
k 

Residual (after fitting pu p2, , pk) n — k SY2 - s g\ 
1 

This form of analysis is especially useful in the analysis for polynomials where the ordering is by 
powers of x. In the multiple regression case, the reduction attributed to p{ is dependent upon the 
ordering of the parameters pu p2, ..., Pi-i, and will be different for different orders. 

6-9.2 TRIANGULARIZATION OF MATRICES 

The real symmetric matrix 

N = Ton dl2 

d2l ®22 

Uni On 2 

a In 

0/2 n 

can, if N is non-singular (i.e., if \N\ 5* 0), be factored into the product of two triangular matrices 
so that N = TT', i.e., 

an ®12 • • Oln = Cn Cn C21 . ■ C„1 

a21 a2 2 • • a2n C21 C22 C22 c„2 

L°nl an 2 ann_J _C„ 1 Cn 2 • • Cnn_ L c„„_ 
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The elements c„ are computed from the following (note that ct; = 0 for j > t): 

Cjj = V/oii 

C21 = (hi/Cu 

C„1 — ®nl/Cll 

C22 = V o22 - cl 

C32 = (O32 — C31 C21) / C22 

c„2 = (On2 — Cni C2l) /C22 

C„ = Voyy - Cy,y_i - C?,y_2 - ... - C^.i 

C,i = (O.y — Ci,y_iCy,/_i — Ci.y_2Cy.y_2 — ... — Cf.iCy,i)/Cyy. 

As an example, consider 

N = r 4 6 8 

! O 
6 25 20 27 

8 20 36 30 

L10 27 30 36_ 

Applying the formulas for c.y, we get 

C11 = V4 = 2 
c21 = 6/2 = 3 
C31 = 8/2=4 
c41 = 10/2 = 5 

c22 = V25 - (3)2 = 4 

c32 = [20 - 4(3) ]/4 = 2 

c42 = [27 - 5(3) ]/4 = 3 

C33 = V36 - 22 - 42 = 4 

C43 = [30 - 3(2) - 5(4) ]/4 = 1 

c44 = V36 - l2 - 32 - 52 = 1. 

This gives 

N = 
r2 

~2 3 4 5~ 

3 4 4 2 3 

4 2 4 4 1 

1—
 

cn
 

00
 

l
!

 

1_ 
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The inverse of a triangular matrix 

T = c 11 

C21 C22 

is given by 

T-i = 

Cn1 C„2 

"6ll 

621 &22 

Cnn_| 

L^nl ^"2 

where 

iu ■ d, 

621 = — (&llC2l)/C22 
&31 = — (C31 &11 + C32 621) /C3 

b„l ~ — (finl &11 + C„2 &21 + • • • + Cn,n—1 &n-l,l)/Cn 

, 1 
022 = ~ 

C22 
632 = — C32 622/C33 

642 = — (C42 622 + C43 ^32) /C44 

bn2 ~ — (Cn2 &22 + C„3 632 + . . . + 6n—1.2)/ 

bn = — (Cn bjj + Ci,j+i bj+u + ... + bi-ij)/Ci 

Example: 

For T = r2 

3 

4 

.5 

4 

2 

3 

4 

1 
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The elements of T-1 are 

1 
bn = 

b 21 — 
1 3 
2 4 

•— [*GD+*(-D*‘(-n)J'1 --8 
6,, = 

b«- -2(51/4-| 

“ - [* (I) + 1 (- I)]71 = - I 
h 1 
O33 - 4 

643 = "I 

644 = 1. 

Thus, T~l = ir 8 
16 -6 

-5 

L-17 
4 

-4 16 

and N-1 = (TT’)~l = (T'-1) (71-1) gives 

1 
N~1 = 

16 

6-9.3 REMARKS 

By forming the matrix product 

VXnAX,Y) =[X'X X'Yl 
lY'j Y’X Y'YJ 

-5 -17~ 1 ” 8 1 414 156 48 -272] 

-2 -10 

4 -4 
16 -6 4 

-5 -2 4 

_ 256 156 120 32 -160 

48 32 32 -64 

16 J — 17 -10 -4 16_ — 272 -160 -64 256_| 

686-= 0-63-14 
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and replacing Y'X by 0 (a null matrix) and Y'Y by I (the identity matrix), we obtain 

N = [X'X X'Yl 

L 0 I J. 

In this form, Y may be a single vector of observations Y' = (YiY2. . . Yn), or a set of p vectors 

_Ynl Ynp. 

Then, 

N~* = V{X'X)-' -pi 
L o ij 

where / is p X p and 0 is p X k, gives all the values needed for the computations of this Paragraph. 
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DISCUSSION OF TECHNIQUES IN CHAPTERS 7 THROUGH 10 

For some kinds of tests, it may be impossible 
to obtain actual measurements. An item may 
be subjected to a test and the result of that 
particular test can be expressed only in terms of 
a pre-established classification of possible re¬ 
sults. The simplest kind of classification, and 
the one most widely used in practice, consists of 
just two mutually exclusive categories. For ex¬ 
ample, the results of the test on each item may 
be recorded as pass or fail, hit or miss, fires or 
does not fire, larger than specification limit or 
less than specification limit, etc. Some other 
problems call for classification into more than 
two categories. In classifying types of metal 
fractures, we might establish such classes as 
smooth, rough, jagged, and splintery. Glass or 
plastic material after exposure to radiation 
might be classified as transparent, translucent, 
or opaque. In screening inspection, for ex¬ 
ample, we may have three established catego¬ 
ries — accept, reject, or rework. 

Once these qualitative observations have 
been recorded in the established categories of 
the classification scheme, we may count the 
number in any category, or we may compute the 
proportion of the total which falls in any cate¬ 
gory. In most of the analytical procedures 
given in these Chapters, we work with propor¬ 
tions, not with percentages, even though final 
presentation of results may be made in per¬ 
centages. 

The methods given in these Chapters also 
may be used for tests where exact measurements 
could have been obtained, but actually were not 
obtained because of the expense or incon¬ 
venience involved. For example, one always 

can measure a dimension; but, in large-scale 
production, go-no-go gauges may be used for 
routine checks. Whenever it is possible to ob¬ 
tain actual measurements, analysis of the meas¬ 
urements does provide more information than 
does analysis of counts. In planning experi¬ 
mental programs, various factors may con¬ 
tribute to the decision of whether to measure or 
to gauge — e.g., the availability of time, funds, 
and experienced personnel. When measure¬ 
ments are analyzed, the methods of these 
Chapters do not apply; the appropriate methods 
are given in ORDP 20-110, Chapters 2 
through 6. 

The problems considered in these Chapters 
parallel those of Chapters 2 through 6, as much 
as possible. Chapter 7 gives methods for 
making single estimates and interval estimates 
of a proportion. Instead of estimating the true 
average of a lot with respect to some property, 
we estimate the true proportion of items in the 
lot which have a particular property. Com¬ 
parisons may be made between a new product 
and a standard product, or between any two 
products, with regard to the proportion of items 
which exhibit the characteristic in question. 
Chapter 8 gives methods for making such com¬ 
parisons when the classification scheme consists 
of two categories. Chapter 9 gives methods 
for making such comparisons when the classifi¬ 
cation scheme consists of three or more catego¬ 
ries. Chapter 10 gives methods of analysis for 
a particular experimental situation which has 
generally been called “sensitivity testing.” 

All A-Tables referenced in these Chapters are 
contained in ORDP 20-114, Section 5. 



CHAPTER 7 

CHARACTERIZING THE QUALITATIVE PERFORMANCE 

OF A MATERIAL, PRODUCT, OR PROCESS 

7-1 GENERAL 

The problem is that of estimating the true 
proportion (or percentage) of items that have a 
given quality characteristic. The tested items 
have been classified into two previously estab¬ 
lished categories of classification. Methods are 
given for obtaining: 

(a) the best single estimate; and, 
(b) confidence interval estimates* of the pro¬ 

portion which is of interest. 
The following data will serve to illustrate the 

application of the procedures. 

Data Sample 7-1 — Proportion of Defective Fuzes 

Form: A sample of n items is selected at random 
from a much larger group. Upon ex¬ 
amination or test, r of the n items show 
the characteristic of interest. 

Example: Ten fuzes are taken at random from a 
production line, and are tested under a 
specified set of conditions. Four of the 
ten fail to function. 

In general, what can we say on the basis of 
our sample about the larger group with regard 
to the proportion of defective items contained 
therein? We show how to answer two questions: 

(a) What is the true proportion P of the 
fuzes produced that would be expected to fail 
under the specified conditions? 

(b) What is an interval which we can expect, 
with prescribed confidence, to bracket the true 
proportion of defective fuzes? 

7-2 BEST SINGLE ESTIMATE OF THE TRUE PROPORTION P 

The best single estimate of the true propor¬ 
tion of items having a given characteristic in 
some well defined population is the observed 
proportion of items having this characteristic in 
a random sample from the population, i.e., the 
number of sample items which have the charac¬ 
teristic divided by the total number of items in 
the sample. 

The best estimate from Data Sample 7-1 of 
the true proportion of fuzes that will fail is 

* The reader who is not familiar with the meaning and 
interpretation of confidence intervals should refer to 
Chapter 1 and to Paragraph 2-1.3 of ORDP 20-110. 

equal to the number of defective fuzes in the 
sample, divided by the total number of fuzes in 
the sample. 

Procedure 

(1) Compute the estimated proportion p, as 
follows: 

r 
V=n 

Example 

(1) From Data Sample 7-1, 
p = 4/10 

= .4 
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7-3 CONFIDENCE INTERVAL ESTIMATES OF THE TRUE PROPORTION P 

7-3.1 TWO-SIDED CONFIDENCE INTERVALS 

Although the best single estimate of the true 
proportion of items having a given character¬ 
istic is the proportion of such items in a random 
sample, an interval estimate may be preferred. 
A two-sided confidence interval is an interval 
expected to give upper and lower limits for the 
true proportion with prescribed confidence. 

7-3.1.1 Exact Limits for n < 30. Forw < 30, 
two-sided confidence limits are given in Table 
A-22. For example, using Data Sample 7-1, 
where n = 10 and r = 4, a two-sided 95% 
confidence interval for the true proportion is the 
interval from .150 to .733. 

7-3.1.2 Exact Limits for n > 30. Form >30, 
use the charts of Table A-24 for 90%, 95%, and 
99% confidence intervals, as desired. On the 
charts, there are two curves for each of a number 

of values of n. The upper and lower curve for 
a particular n constitute a confidence belt for 
the true proportion P. First, locate the ob¬ 
served proportion p = r/n, on the horizontal 
scale. From this point, travel up to the curves 
for the sample size n, and read off the upper and 
lower limits for the population proportion P. 
For example, in a sample of n = 100, where the 
observed proportion is .4, the interval from .31 
to .51 gives 95% confidence limits for the true 
proportion P. 

The three charts in Table A-24 give (1 — a) 
confidence interval estimates for a = .10, 
a = .05, and a = .01. If we use these charts 
a large number of times to make interval esti¬ 
mates of the true proportion P, we can expect 
100 (1 — a) % of these intervals to contain P. 
If the appropriate sample size requires inter¬ 
polation on the charts, the procedure of Para¬ 
graph 7-3.1.3 should be used instead of the 
charts of Table A-24. 

7-3.1.3 Approximate Limits for n > 30. This method should be used in lieu of interpolation on 
the charts (Table A-24). 

Procedure 

(1) Choose the desired confidence level, 1 — a. 

(2) Look up Zi_„/2 in Table A-2. 

(3) Compute: 

\ n 

(4) The interval from pi to p2 is a two-sided 
100 (1 — a) % confidence interval estimate 
of the true proportion P. 

Example 

(1) Let 1 - a = .90 
a = .10 

(2) z.95 = 1.645 

(3) Using n = 150, 
p = .40, 
for example, 

Pi = .40 - 1.645 V.0016 
= .40 - 1.645 (.04) 
= .40 - .07 
= .33 

p2 = .40 + .07 
= .47 

(4) The interval from .33 to .47 is a 90% two- 
sided confidence interval estimate of P. 
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7-3.2 ONE-SIDED CONFIDENCE INTERVALS 

A one-sided confidence interval estimate states that the true proportion P is less than a calculated 
proportion p2 (or alternatively, that P is larger than p[) and the statement is made at a prescribed 
confidence level. 

7-3.2.1 Exact Limits for n < 30. For n < 30, one-sided confidence limits are given in Table A-23. 
For example, using Data Sample 7-1, where n = 10 and r = 4, the upper 90% one-sided confidence 
limit is .646. (The lower 90% one-sided confidence limit would be .188 in this case.) 

7-3.2.2 Exact Limits for n > 30. Use the charts of Table A-24 to obtain .95, .975, or .995 one¬ 
sided confidence intervals, by using only the upper curve, or only the lower curve, of the belt for a 
given sample size. When used in this way, the chart labelled “Confidence Coefficient .90” yields 
one-sided 95% confidence intervals, the chart labelled “confidence coefficient .95” yields one-sided 
97.5% confidence intervals, and the chart labelled “confidence coefficient .99” yields one-sided 
99.5% confidence intervals. 

If the appropriate sample size requires interpolation on the charts, the procedure of Paragraph 
7-3.2.3 should be used instead of the charts of Table A-24. 

7-3.2.3 Approximate Limits for n > 30. This method should be used in lieu of interpolation on 
the charts (Table A-24). 

Procedure Example 

(1) Choose the desired confidence level, 1 — a. (1) Let 1 — a = .90 
a = .10 

(2) Look up Z\_a in Table A-2. 

(3) If a lower one-sided confidence limit is 

(2) z.90 = 1.282 

(3) Using n = 150, 
desired, compute p = .40, 

for example, 

p[ = .40 - 1.282 VM6 
= .40 - 1.282 (.04) 
= .40 - .05 
= .35 ; 

this is the lower 90% confidence limit for P, 
the true proportion defective. 

(4) Alternatively, if an upper one-sided confi¬ 
dence limit is desired, compute 

(4) Using n = 150, 
p = .40, 

for example, 

Pi = P + Zl-a Ip(i - p) pi = .40 + 1.282 (.04) 
= .40 + .05 
= .45; 

n 

this is the upper 90% confidence limit for 
P, the true proportion defective. 
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7-4 SAMPLE SIZE REQUIRED TO ESTIMATE THE TRUE PROPORTION 

We shall discuss two problems: 
(a) Determining the sample size required to estimate the true proportion with a specified, limit of 

error in both directions; i.e., when it is required to estimate P within ±5. (See Paragraph 7-4.1.) 
(b) Determining the sample size required to estimate the true proportion with a specified limit of 

error in only one direction; i.e., when it is required to estimate P within +6 (or to estimate P within 
—5). (See Paragraph 7-4.2.) 

In (a), we are indifferent as to whether our estimate is too high or too low. In (b), we wish to 
protect ourselves against an overestimate, but do not worry about an underestimate (or vice versa). 

7-4.1 DETERMINING THE SAMPLE SIZE REQUIRED TO ESTIMATE THE TRUE PROPORTION WITH A 

SPECIFIED LIMIT OF ERROR IN BOTH DIRECTIONS, i.e., WHEN IT IS REQUIRED TO ESTIMATE P 

WITHIN ±8 

7-4.1.1 Graphical Method. For the graphical method, the problem may be restated as follows: 
we wish to make a two-sided confidence interval estimate of P and the width of the interval should 
be not greater than 25. It, therefore, is possible to use the charts of Table A-24 in reverse; that is, 
to find the sample size belt whose maximum width (vertical distance on the charts) is equal to 25. 
The maximum width of confidence interval for a particular n will occur when the observed propor¬ 
tion is equal to 0.5. (If past records on the particular process indicate an upper or lower limit for 
the observed proportion, e.g., “the observed proportion always has been less than 0.1”, one may use 
the widths of the intervals for this value of p rather than the maximum widths.) 

Procedure 

Problem: What is the sample size n required to 
estimate the true proportion P within ±5? 

(1) Choose 1 — a, the confidence coefficient to 
be associated with the resulting estimate. 
(The charts of Table A-24 can be used for 
confidence coefficients .90, .95, and .99). 

(2) Specify 5, the error permitted in the esti¬ 
mate. 

(3) Lacking knowledge of a safe upper or lower 
bound for P, look at the vertical line for 
p = .50. (If a safe upper or lower bound 
can be assumed, use this value of p.) 

(4) Find the pair of n curves whose separation 
on this vertical line is not more than 25. 

(5) n is the required sample size. 

Example 

Problem: What is the sample size n required to 
estimate the true proportion P within ±.10 ? 

(1) Let 1 - « = .90 

Use Table A-24, 
confidence coefficient = .90. 

(2) Let 5 = .10 

(3) Locate, on Table A-24, the vertical line for 
p = .50. 

(4) At p = .50, n = 100 is the smallest n for 
which the interval is less than .20. 

(5) n = 100 is the required sample size. 

Note: n = 50 gives an interval approximately 
equal to .25, and n = 100 gives an interval 
approximately equal to .16, so that a sample 
somewhat less than 100 would be sufficient. 
The exact n, however, cannot be determined 
from the charts of Table A-24. 
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7-4.1.2 Numerical Method. The formula for sample size is 

_ Zl-a/2 -P(l ~ P) 
U ~ 82 

A sample of size n guarantees a probability not greater than a that our estimate of P is in error 
by more than 5. 

Since the true proportion P is unknown, we must substitute for it a value P' which is obtained 
as follows: 

(a) If no prior information about P is available, or if P is believed to be in the neighborhood of 
0.5, use P' = 0.5. The formula then simplifies to 

(b) If the true proportion P can safely be assumed to be less than 0.5, let P' be the largest 
reasonable guess for P. 

(c) If the true proportion P can safely be assumed to be greater than 0.5, let P' be the smallest 
reasonable guess for P. 

It is obvious that the largest sample size will be required when the true P is 0.5, and the purpose 
of these three rules is to be as conservative as possible. 

Procedure Example 

Problem: What is the sample size n required to 
estimate the true proportion P within ±5? 

Problem: What is the sample size n required to 
estimate the true proportion P within ±.10? 

(1) Choose 1 — a, the confidence coefficient to 
be associated with the resulting estimate. 

(1) Let 1 - « = .90 
a = .10 

(2) Specify 5, the error permitted in the esti¬ 
mate. 

(2) Let 8 = .10 

(3) Look up Zi-,,/2 in Table A-2. (3) z.95 = 1.645 

(4a) If there is no prior information about the 
true proportion P, compute 

(4a) 

_ Zl^/2 
n - 452 

(1.645)2 
.04 

2.706 
.04 

= 68, 
which is the required sample size. 

(4b) If it is safe to assume that the true propor¬ 
tion P is less than some value P', compute 

(4b) If it is safe to assume that the true propor¬ 
tion P is less than .40, for example, 

Zl-a/2 P' (1 — P') (1.645)2 (0.4) (0.6) 
U ~ 5* n ~ .01 

= 65, 
which is the required sample size. 

7-4.2 DETERMINING THE SAMPLE SIZE REQUIRED TO ESTIMATE THE TRUE PROPORTION WITH A 

SPECIFIED LIMIT OF ERROR IN ONLY ONE DIRECTION, i.e., WHEN IT IS REQUIRED TO ESTI¬ 

MATE P WITHIN +8 (OR TO ESTIMATE P WITHIN -8) 

In some problems, we would be unconcerned if our estimate of P was too large, but would wish 
to be protected against an underestimate. Alternatively, in other problems, an underestimate is 
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tolerable, but not an overestimate. The error in the estimate is to be only in the direction that we 
choose. 
The formula for sample size is 

z|_a P(1 - P) 
n ~ 8* 

A sample of size n guarantees a probability not greater than a that our estimate of P is in error by 
more than +5 (or more than —8, as we choose). 

Since the true proportion P is unknown, we must substitute for it a value P' which is obtained 
as follows: 

(a) If no prior information about P is available, or if P is believed to be in the neighborhood of 
0.5, use P' = 0.5. The formula then simplifies to 

n _ Z\-a 

462 ' 

(b) If the true proportion P can safely be assumed to be less than 0.5, let P' be the largest 
reasonable guess for P. 

(c) If the true proportion P can safely be assumed to be greater than 0.5, let P' be the smallest 
reasonable guess for P. 
The largest sample size will be required when P = 0.5, and the purpose of the rules is to be as 
conservative as possible. 

Procedure 

Problem: What is the sample size n required to 
estimate the true proportion P within +8 (or, 
within —5)? 

(1) Choose 1 — a, the confidence coefficient to 
be associated with the resulting estimate. 

(2) Specify +5 (or —8) the error permitted in 
the estimate. 

(3) Look up zx_a in Table A-2. 

(4a) If there is no prior information about P, 
compute 

(4b) If it is safe to assume that the true propor¬ 
tion P is less than some value P', compute 

z?_„P'(l - P') 
" =-e-^ 

Example 

Problem: What is the required sample size? In 
estimating P, we wish to be protected against 
making an estimate that is too small by more 
than 0.05. 

(1) Let 1 - « = .90 
a = .10 

(2) Let 8 = -.05 

(3) z. so = 1.282 

(4a) 

(1.282)2 
n ~ .01 

= 164, 
which is the required sample size. 

(4b) If it is safe to assume that the true propor¬ 
tion P is less than .40, for example, 

„ (1.282)2 (.4) (.6) 
.0025 
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CHAPTER 8 

COMPARING MATERIALS OR PRODUCTS WITH 

RESPECT TO A TWO-FOLD CLASSIFICATION 

OF PERFORMANCE 

(COMPARING TWO PERCENTAGES) 

In some situations, we are faced with the problem of comparing proportions or percentages. For 
example, the specification for a given kind of ammunition may prescribe the maximum allowable 
percentage of duds. Production lots of this ammunition will not be acceptable if they exceed this 
specified percent defective. The percentage of duds in a sample will provide an estimate of the 
percentage of duds in the lot, which then may be compared with the specified tolerance. When 
comparing an observed proportion with a specification or standard value, the procedures of Para¬ 
graph 8-1 are appropriate. The reader will note that the comparison is made by computing a 
confidence interval for the observed proportion and then looking to see whether the standard value 
is contained within this interval. This is a slightly different approach to answering the posed 
questions than was used in ORDP 20-110, Chapter 3, for example. Amplification of the relation¬ 
ship between confidence intervals and tests of significance of differences is given in ORDP 20-113, 
Chapter 21. 

A different kind of comparison is involved when we compare two percentages with each other, 
without regard to any standard value — for example, in comparing two production processes with 
regard to the percentages of defective items produced. When two percentages are compared with 
each other, the methods of Paragraph 8-2 are appropriate. 

8-1 COMPARING AN OBSERVED PROPORTION WITH A STANDARD 
PROPORTION 

8-1.1 DOES THE NEW PRODUCT DIFFER FROM THE STANDARD WITH REGARD TO THE PROPORTION 

OF ITEMS WHICH SHOW THE CHARACTERISTIC OF INTEREST? (DOES P DIFFER FROM P0?) 

8-1.1.1 Procedure for n < 30. 

Data Sample 8-1.1.1 —Defectives in Sample of New Product 

Form: A sample of n items is selected at random from a much larger group. On examination, 
r of the n items show the presence of the pertinent characteristic, p = r/n is the observed 
proportion, and is an estimate of P, the true proportion for the new product. P0 is the 
known proportion of individual items in the standard product that show the pertinent 
characteristic. 

Example: A sample of 20 components is taken from a production lot after a slight change in the 
process has been made. Three of the 20 items are classified as defectives. The observed 
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proportion, therefore, is p = 3/20 = 0.15. The proportion defective for this item with 
the standard process is known to be P0 = 0.10. 

The question to be answered is: Does the proportion defective in this lot, P, differ from 
the standard proportion defective (either an increase or a decrease being of interest)? 

Procedure Example 

(1) Choose a, the significance level of the test. 

Table A-22 gives 90%, 95%, and 99% two- 
sided confidence limits, appropriate to 
a = .10, a = .05, and a = .01, respec¬ 
tively. 

(2) Enter Table A-22 with observed n and r. 
Select appropriate column and read the 
limits. 

(3) If the tabled limits do not include P0, 
conclude that P differs from P0. 
If the tabled limits do include P0, there is 
no reason to believe that P differs from P0. 

(1) Let « = .10 
1 - « = .90 

Use the 90% confidence limits in Table 
A-22. 

(2) From Data Sample 8-1.1.1, 
n = 20 
r = 3 

From Table A-22, the 90% two-sided con¬ 
fidence limits for P are 0.056 to 0.328. 

(3) Since the tabled limits do include P0 = 
0.10, there is no reason to believe that the 
proportion defective in the lot differs from 
the standard. 

8-1.1.2 Procedure for n > 30. 

Data Sample 8-1.1.2 — Performance of a New Type of Mine Fuze 

Form: A sample of n items is selected at random from a much larger group. On examination, 
r of the n items show the presence of the pertinent characteristic, p = r/n is the observed 
proportion, and is an estimate of P, the true proportion for the new product. P0 is the 
known proportion of individual items in the standard product that show the pertinent 
characteristic. 

Example: In a program of testing mine fuzes, 216 fuzes of a new type are buried, simulated 
"tanks” are run over them, and 160 “proper hits” are recorded. The observed proportion, 
p, of proper hits is 160 /216 = 0.74. The specified value for proportion of proper hits is 
P0 = 0.85. 

The question to be answered is: Does the proportion of proper hits for this fuze differ 
from the standard proportion (either an increase or a decrease being of interest)? 
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Procedure 

(1) Choose a, the significance level of the test. 

Table A-24 gives two-sided 90%, 95%, and 
99% confidence limits appropriate to 
a = .10, a = .05, and a = .01, respec¬ 
tively. 

(2) Compute p = r/n and locate p on the 
horizontal scale. Locate curves for appro¬ 
priate n. 

(3) Read off upper and lower limits for P. 
If these limits do not include P0, conclude 
that P differs from P0. 
If the limits do include P0, there is no rea¬ 
son to believe that P differs from P0. 

Example 

(1) Let a = .10 
1 - a = .90 

Use the Chart for confidence coefficient .90 
in Table A-24. 

(2) From Data Sample 8-1.1.2, 
n = 216 
r = 160 
p = 160/216 

= 0.74 

(3) The chart does not show n = 216. Look 
at the belt for the next lower n, in this 
case n = 100. The belt for n = 100 will 
be wider than the belt for n = 216. Since 
the belt for n = 100 does not include 
P0 = 0.85, the belt for n = 216 would not 
include P0, and we conclude that the pro¬ 
portion of hits for this fuze does differ from 
the standard P0 = 0.85. 

8-1.2 DOES THE CHARACTERISTIC PROPORTION FOR THE NEW PRODUCT EXCEED THAT FOR 

THE STANDARD? (IS P > P0?) 

8-1.2.1 Procedure for n < 30. In terms of Data Sample 8-1.1.1, let us suppose that — in ad¬ 
vance of looking at the data — the important question is: Does the characteristic proportion of 
defectives in this lot exceed that for the standard? 

Procedure 

(1) Choose a, the significance level of the test. 

Table A-23 gives 90%, 95%, and 99% one¬ 
sided confidence limits appropriate to 
a = .10, a = .05, and a = .01, respec¬ 
tively. 

(2) In Table A-23, follow directions at the be¬ 
ginning of the table to obtain p[, a lower 
one-sided confidence limit for P. 

Example 

(1) Let a = .05 
1 - a = .95 

Use the 95% confidence limits in Table 
A-23. 

(2) From Data Sample 8-1.1.1, 
n = 20 
r = 3 

P0 = 0.10 is specified. 
The value in Table A-23, for n = 20, 
n — r = 17, is 0.958. The lower 95% 
limit for P is equal to 1 — 0.958 = 0.042. 
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Procedure 

(3) If the lower limit p[ obtained in Step (2) 
exceeds P0, so that P0 lies outside the confi¬ 
dence interval p[ < P < 1, conclude that 
the characteristic proportion for the new 
product P exceeds that for the standard 

Po. 
If the lower limit obtained in Step (2) is not 
larger than P0, so that P0 lies within the 
confidence interval p[ < P < 1, there is no 
reason to believe that the proportion for 
the new product P exceeds that for the 
standard P0. 

Example 

(3) 

Since 0.042 is less than P0 = 0.10, there is 
no reason to believe that the proportion of 
defectives in the lot exceeds the standard 
proportion. 

8-1.2.2 Procedure for n > 30. In terms of Data Sample 8-1.1.2, let us suppose that — in ad¬ 
vance of looking at the data — the important question is: Does the characteristic proportion of 
proper hits for this fuze exceed that for the standard? 

Procedure 

(1) Choose a, the significance level of the test. 

By using only the lower curve of the confi¬ 
dence belt, Table A-24 gives 95%, 97.5%, 
and 99.5% one-sided confidence limits 
appropriate to a = .05, a = .025, and 
a = .005, respectively. 

(2) Compute p = r/n, and locate p on the hori¬ 
zontal scale. Locate lower curve for 
appropriate n. 

(3) Read off the lower confidence limit for P. 

If Po is less than this limit, p[, so that 
Po lies outside the confidence interval 
p[ < P < 1, conclude that the proportion 
for the new product exceeds that for the 
standard product. 
If Po is larger than p{, and therefore 
is included in the confidence interval 
p[ < P < 1, there is no reason to believe 
that P is larger than P0. 

Example 

(1) Let a = .05 
1 - a = .95 

Use lower curves of the Chart labeled “con¬ 
fidence coefficient .90”, in Table A-24. 

(2) From Data Sample 8-1.1.2, 
n = 216 
r = 160 
p = 160/216 

= 0.74 
Po = 0.85 is specified. 

(3) From Table A-24, confidence coefficient 
.90, for p = 0.74 and n = 216, the lower 
95% confidence limit for P is seen to be 
approximately 0.68. 

Since P0 = 0.85 is larger than 0.68, there 
is no reason to believe that P is larger than 

Po. 
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8-1.3 IS THE CHARACTERISTIC PROPORTION FOR THE NEW PRODUCT LESS THAN THAT FOR 

THE STANDARD? (IS P < P„?) 

8-1.3.1 Procedure for n < 30. In terms of Data Sample 8-1.1.1, let us suppose that — in ad¬ 
vance of looking at the data — the important question is: Is the characteristic proportion of 
defectives in this lot less than that for the standard? 

Procedure 

(1) Choose a, the significance level of the test. 

Table A-23 gives 90%, 95%, and 99% one¬ 
sided confidence limits appropriate to 
a = .10, a = .05, and a = .01, respec¬ 
tively. 

(2) Enter Table A-23 with n and r and chosen 
confidence. Read the upper one-sided 
limit pi for P. 

(3) If the tabled upper limit pi is less than P0, 
so that P0 lies outside the confidence inter¬ 
val 0 < P < pi, conclude that the charac¬ 
teristic proportion for the new product is 
less than that for the standard. 
If the tabled limit is larger than P0, so that 
Po lies inside the confidence interval 
0 < P < pi, there is no reason to believe 
that the proportion for the new product is 
less than the standard. 

Example 

(1) Let a = .10 
1 - a = .90 

Use the 90% confidence limits in Table 
A-23. 

(2) From Data Sample 8-1.1.1, 
n = 20 
r = 3 

Po = 0.10 is specified. 
The upper 90% limit for P is 0.304. 

(3) 

Since the tabled limit (0.304) is larger than 
P0 = 0.10, there is no reason to believe 
that the proportion of defectives in the lot 
is less than the standard. 

8-1.3.2 Procedure for n > 30. In terms of Data Sample 8-1.1.2, let us suppose that — in ad¬ 
vance of looking at the data — the important question is: Is the proportion of proper hits for this 
fuze less than that for the standard? 

Procedure 

(1) Choose a, the significance level of the test. 

By using only the upper curve of the confi¬ 
dence belt, Table A-24 gives 95%, 97.5%, 
and 99.5% one-sided confidence limits 
appropriate to a = .05, a = .025, and 
a = .005, respectively. 

(2) Compute p = r/n, and locate p on the hori¬ 
zontal scale. Locate upper curve for ap¬ 
propriate n. 

Example 

(1) Let a = .025 
1 - a = .975 

Use the upper curve of the Chart labeled 
“confidence coefficient .95”, in Table A-24. 

(2) From Data Sample 8-1.1.2, 
n = 216 
r = 160 
p = 160/216 

= 0.74 
P0 = 0.85 is specified. 
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Procedure 

(3) Read off upper confidence limit p'2 for P. 

If P0 is larger than this limit, so that 
Po lies outside the confidence interval 
0 < P < p'2, conclude that the proportion 
for the new product is less than that for the 
standard product. 
If P0 is less than this limit, and therefore 
is included in the one-sided confidence limit 
0 < P < p'i, there is no reason to believe 
that P is less than P0. 

Example 

(3) From Table A-24, confidence coefficient 
.95, for p = 0.74 and n = 216, the upper 
97.5% confidence limit for P is seen to be 
approximately 0.81. 
Since P0 = 0.85 is larger than this limit, 
we conclude that the proportion of proper 
hits for this fuze is less than for the 
standard. 

8-1.4 SAMPLE SIZE REQUIRED TO DETECT A DIFFERENCE OF PRESCRIBED MAGNITUDE FROM A 

STANDARD PROPORTION WHEN THE SIGN OF THE DIFFERENCE IS NOT IMPORTANT 

Given: 

P0 = the known proportion of the population of standard items which exhibit the pertinent 
characteristic. P0 may be known from the process history, or may be given by the 
requirements of a specification or a standard. 

To be Specified for This Problem: 

8 = the absolute magnitude of the difference which is considered important to detect. 
a = the significance level, or the risk of announcing a difference when in fact there is none. 
/3 = the risk of failing to detect a difference when in fact P, the true proportion for the new 

product, differs from the standard by an amount 8 (i.e., 8 = |P — P0|). 

Tables to be Used: 

Table A-25 gives the required sample size for a number of values of P0 and P for a = .05 and 
1 — p = .50, .80, .90, .95, and .99. This table is given largely for illustration, to demonstrate 
how the required sample size is affected by the magnitude of the P0 and 8 involved, and also by 
different choices of 0. For desired values of a and 0 which are not included in Table A-25, use 
Table A-27, a table to convert the difference between the proportions into the form necessary for 
use with Table A-8. 

Procedure Example 

(1) Specify 5, the absolute magnitude of the 
difference considered important to detect. 

(1) Assume P0 = .30 
Specify 8 = .10 

(2) Choose a and /?. (2) Let a = .05 
0 = .20 

(3) For a = .05, and 1 — 0 = .50, .80, .90, 
.95, and .99, go to Table A-25. 

(3) Use Table A-25 with 1 — 0 = .80 

(4) Let P = P0 + 5, or P = P0 — 8, which¬ 
ever makes P closer to 0.5. 

(4) P = .30 + .10 
= .40 
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Procedure 

(5) If either P or P0 is less than 0.5, enter 
Table A-25 with P and P0. 
If neither P nor P0 is less than 0.5, enter 
Table A-25 with 1 — P and 1 — P0. 
In either case, the smaller of the two pro¬ 
portions determines the column and the 
larger determines the row in Table A-25. 

Read off n directly, n is the required 
sample size for the new product. 

(6) For values of a, /3, and P which are not 
included in Table A-25, go to Table A-27. 
Look up: 

0O = 6 corresponding to P0 
0 = 6 corresponding to P 

(7) Compute d = 16 — 0O \ 

(8) Enter Table A-8 with chosen a, 1 — /3, and 
d (from Step (7)). 

The tabled n is the required sample size for 
the new product. (The footnote to Table 
A-8 should be ignored.) 

For values of d not given in Table A-8, the 
sample size may be computed using the 
formula 

„ _ (Zl-g/2 + Zl-fl)2 

71 ~ d2 

Example 

(5) Enter Table A-25 in column .30 and 
row .40. 

The required sample size is n = 178. 

(6) Assume that we had wished to specify 
a = .01,/8 = .20, P0 = .30, and P = .40. 
From Table A-27, 

60 = 1.16 
6 = 1.37 

(7) d = 0.21 

(8) From Table A-8, the sample size for 
d = 0.2 is n = 292. 

In this area of the table, interpolation is 
not recommended. 

To obtain the sample size for d = 0.21, 
compute 

(2.576 + 0.84)2 
n (0.21)2 

= 265 

8-1.5 SAMPLE SIZE REQUIRED TO DETECT A DIFFERENCE OF PRESCRIBED MAGNITUDE FROM A 

STANDARD PROPORTION WHEN THE SIGN OF THE DIFFERENCE IS IMPORTANT 

Given: 

P0 = the known proportion of the population of standard items which exhibit the pertinent 
characteristic. P0 may be known from the process history, or may be given by the 
requirements of a specification or a standard. 

To be Specified for This Problem: 

S = the absolute magnitude of the difference which is considered important to detect. 
P = P0 + S, if we wish to distinguish between P0 and a proportion larger than P0; 
or, 
P = P0 — S, if we wish to distinguish between P0 and a proportion smaller than P0. 
a = the significance level, or the risk of announcing a difference when in fact there is none. 
/3 = the risk of failing to detect a difference when in fact the true proportion for the new 

product is P, where P = P0 + 8 or P = P0 — 8, depending on the choice made above. 

Tables to be Used: 

Table A-26 gives the required sample size for a number of values of P0 and P for a = .05 and 
1 — 0 = .50, .80, .90, .95, and .99. The Table is given largely for illustration, to demonstrate 
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how the required sample size is affected by the magnitude of the P0 and 5 involved, and also by 
different choices of p. For desired values of a and P which are not included in Table A-26, use 
Table A-27, a table to convert the difference between the proportions into the form necessary for 
use with Table A-9. 

Procedure 

(1) Choose a and p. 

(2) For a = .05, and 1 — p = .50, .80, .90, 
.95, and .99, go to Table A-26. 

(3) Let P = P0 + S, or 
P = P0 — S, as specified. 

(4) If either P or P0 is less than 0.5, enter 
Table A-26 with P and P0. 
If neither P nor P0 is less than 0.5, enter 
Table A-26 with 1 — P and 1 — P0. 

Example 

(1) Let a = .05 
P = .10 

(2) Use Table A-26, with 1 — p = .90 

(3) Assume P0 = 0.70 
Specify P = 0.70 + 0.10 

= 0.80 

Since neither P nor P0 is less than 0.5, 
take 1 — P = 0.20 

1 - P0 = 0.30. 

Use column 0.20 and row 0.30 in Table 
A-26. 

In either case, the smaller of the two pro¬ 
portions determines the column and the 
larger determines the row in Table A-26. 

Read off n directly, n is the required 
sample size for the new product. 

The required sample size is n = 160. 

(5) For values of a, p, and P not included in 
Table A-26, go to Table A-27. Look up: 

0O = 9 corresponding to P0 
9 = 0 corresponding to P 

(6) Compute d = 19 — 901 

(7) Enter Table A-9 with chosen a, 1 — p, and 
d (from Step (6)). 
The tabled n is the required sample size for 
the new product. 

For values of d not given in Table A-9, the 
sample size may be computed using the 
formula 

_ (Zi-„ + Zi-p)2 

n~ d* 

(5) Assume that we had specified a = .01, 
p = .10, P0 = .10, and P = .40. 
From Table A-27, 

00 = .64 
9 = 1.37 

(6) d = 0.73 

(7) From Table A-9, the sample size for 
d = 0.6 is n = 37, and for d = 0.8, is 
n = 21, so that the required sample size 
for d = 0.73 is greater than 21 and less 
than 37. 
In this area of the table, interpolation is 
not recommended. 
To obtain the sample size for d = 0.73, 
compute 

(2.326 + 1.282)2 
n (0.73)2 

_ 13.018 
.5329 

= 24.4 

As is conventional in sample size calcula¬ 
tions, we round up to n = 25. 
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8-2 COMPARING TWO OBSERVED PROPORTIONS 

We assume that nA and nB items are taken 
from products A and B, respectively. The 
items are to be examined or tested, and then 
classified into one of two mutually-exclusive 
categories. Some examples of two-category 
classifications are: hit or miss; pass or fail; 
white or black; damaged or not damaged; with¬ 
in tolerance or outside tolerance; etc. For pur¬ 
poses of illustration, we call the two categories 
Class I and Class II. 

After examination of the nA items, a number 
rA are classified as Class I, and after examina¬ 
tion of the nB items, a number rB are classified 
as Class I. The observed classification of the 
items is recorded in a two-row, two-column 
table (often called a 2 X 2 table) as shown in 
Table 8-1. Since there are just two mutually- 
exclusive classes, the entries for Class II can be 
filled in by subtracting the number recorded for 
Class I from the total number for each sample. 

TABLE 8-1. OBSERVED FREQUENCIES FROM 

TWO SAMPLES IN TWO MUTUALLY 

EXCLUSIVE CATEGORIES (A 2 X 2 TABLE) 

Class 
1 

Class 
II Total 

Sample from A rA sA nA = rA + sA 
Sample from B rB Sb nB = rB + sB 

Total r s n 

The rows in the Table represent the two 
samples, and the columns are the two classes 
into which the observed items have been classi¬ 
fied. Entries in the Table are counts — e.g., 
in the A sample (consisting of nA items), rA 
items are found to be Class I and sA items 
(sa = nA — rA) are Class II. 

Although the problems will be posed in terms 
of proportions, and final results presented in 
terms of proportions, most of the techniques 
given use the observed counts. In terms of 
Table 8-1, if Class I is the property of interest, 
the observed proportions are pA = rA/nA and 
Vb = rB/nB. 

Since the selection of available techniques 
depends on the sample sizes involved, this sec¬ 
tion is organized in three subparagraphs: 

8-2.1 Comparing two proportions when the 
sample sizes are equal (nA = nB). 

8-2.2 Comparing two proportions when the 
sample sizes are unequal and small (nA X nB; 
both less than 20). 

8-2.3 Comparing two proportions when the 
sample sizes are unequal and large. 

In each paragraph, procedures will be given 
for answering two questions: 

(a) Does the characteristic proportion for 
product A differ from that for product B? 

(b) Does the characteristic proportion for 
product A exceed that for product B? 

As always, it is important to decide which ques¬ 
tion is appropriate before taking the observa¬ 
tions. If this is not done, and if the choice of 
the problem is influenced by the observations, 
both the significance level of the test and the 
operating characteristics of the test may differ 
considerably from their nominal values. 

8-2.1 COMPARING TWO PROPORTIONS WHEN 

THE SAMPLE SIZES ARE EQUAL 

The solution involves three operations: 

(a) Recording the observed counts in the 
form shown in Table 8-1; 

(b) Selecting the proper pair of entries from 
among the four entries in the table; and, 

(c) Comparing that pair with the “minimum 
contrast” pair given in Table A-28, to determine 
whether or not the observed contrast is sig¬ 
nificant at the chosen level. The procedure is 
detailed in Paragraphs 8-2.1.1 and 8-2.1.2; and, 
with a little practice, can be done quickly by 
eye. 

Table A-28 gives “minimum contrasts” for 
nA = nB = 1(1)20(10)100(50)200(100)500 cor¬ 
responding to significance levels a = .05 and 
a = .01 for two-sided tests (see Paragraph 
8-2.1.1); or to a = .025 and a = .005 for one¬ 
sided tests (see Paragraph 8-2.1.2). By “mini¬ 
mum contrast” is meant the “least different” 
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pair which is significant at the chosen signifi¬ 
cance level. A “more different” pair is of 
course significant also. For example, look at 
the entries in Table A-28 for nA = nB = 17. 
The "minimum contrasts required” at signifi¬ 
cance level a = .05 for the two-sided test 
(Does PA differ from PB ?) are (0, 5), (1, 7), 
(2, 9), (3, 10), etc. Since (0, 5) is significant, 
so also is (0, 6), (0, 7), etc. Since (1, 7) is 
significant, so also is (1, 8), (1, 9), etc. 

It is worth noting that Table A-28 can be 
used to give satisfactory answers for values of n 
intermediate to those tabulated (see Note to 
Table A-28). 

Data Sample 8-2.1 — Small-scale Comparison 

Test of Two Types of Mine Fuzes 

Seventeen impact fuzes of each of two dif¬ 
ferent types are tested, and the number of 
successful firings are recorded, as follows: 

Fuze Type 
Success 

(Class I) 
Failure 

(Class II) Total 

Type A fA = 15 sA = 2 nA = 17 
Type B rB = 7 sB = 10 nB = 17 

Total r = 22 s = 12 n = 34 

8-2.1.1 Does the Characteristic Proportion for Product A Differ From That for Product B? (Does 

PA Differ From PB ?) In terms of Data Sample 8-2.1, we wish to compare the proportion 
of successful firings for the two types of fuzes. The question to be answered is: Does Type A differ 
from Type B with regard to the proportion of successful firings? 

Procedure 

(1) Choose a, the significance level of the test. 
Table A-28 provides “minimum contrasts” 
corresponding to a = .05 and a = .01 for 
this two-sided test. * 

(2) Record the observed counts as in Table 8-1. 

(3) Let: Oi = smallest of all four entries 
o2 = entry in the same class as ax from 

the other sample. 
The “observed contrast” pair is the ordered 
pair (oi, a2). 
If Oi = a2, no further analysis is necessary. 
The data give no reason to believe that the 
two proportions differ. 

(4) Enter Table A-28 with sample size nA = nB. 

(5) Call the tabled pairs (Alt A2). Find the 
tabled pair where Ai = Oi; this is the 
“least different” pair which is significant at 
the chosen level. 

(6) If a2 is equal to or larger than A2, the ob¬ 
served contrast is significant at the chosen 
level, and we conclude that the two prod¬ 
ucts differ with regard to the characteristic 
proportion considered. 
If a2 is smaller than A2, there is no reason 
to believe that the two proportions differ. 

Example 

(1) Let a = .01 

(2) See Data Sample 8-2.1. 

(3) ax = 2 
a2 = 10 

The “observed contrast” pair is (2, 10). 

(4) nA = nB = 17 

(5) From Table A-28, with a = .01 and ai = 2, 
the “least different” pair (Ai, A2) = 

(2, 11). 

(6) 
Since o2 = 10 is less than A2 = 11, the 
observed contrast is not significant at the 
.01 level, and we conclude that there is no 
reason to believe that the two fuze types 
differ with regard to the proportion of 
successful firings. 

* Table A-29 and the more complicated procedure of Paragraph 8-2.2.1 can be used to conduct equivalent two-sided 
tests corresponding to a = ^10, .05, .02, and .01, when nA = nB < 20, thus extending the present two-sided test 
procedure to the underscored values of a for equal sample sizes up to 20. 
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8-2.1.2 Does the Characteristic Proportion for Product A Exceed That for Product B? (Is PA Larger 

Than PB ?) In terms of Data Sample 8-2.1, let us suppose that — in advance of looking 
at the data — the important question is: Does the proportion of successful firings for Type A 
exceed the proportion of successes for Type B? 

Procedure 

(1) Choose a, the significance level of the test. 
Table A-28 provides “minimum contrasts” 
corresponding to a = .025 and a = .005 
for this one-sided test. * 

(2) Record the observed counts as in Table 8-1. 

(3) Compute pA, the observed proportion for 
Product A, and pB, the observed propor¬ 
tion for Product B. 

If Class I is the class of interest, pA = rA/nA 
and pB = rB/nB. 
If Class II is the class of interest, 
Pa = sA/nA and pB = sB/nB. 

(4) If pA is not larger than pB, conclude at once 
that there is no reason to believe that the 
true proportion PA is larger than PB; 
otherwise, proceed to Step (5). 

(5) If pA is larger than pB, let: 
Ci = smallest of all four entries 
02 = entry in the same class as ai from 

the other sample. 
The “observed contrast” pair is the ordered 
pair (alf 02). 

(6) Enter Table A-28 with sample size nA = nB. 

(7) Call the tabled pairs (A1( A2). Find the 
tabled pair where Ax = al) this is the 
“least different” pair which is significant at 
the chosen level. 

(8) If C2 is equal to or is larger than A2, the 
observed contrast is significant at the 
chosen level, and we conclude that the pro¬ 
portion for Product A exceeds that for 
Product B. 
If C2 is smaller than A2, there is no reason 
to believe that the two proportions differ. 

Example 

(1) Let a = .025 

(2) See Data Sample 8-2.1 

(3) pA = 15/17 
= 0.88 

Pb = 7/17 
= 0.41 

(4) Since pA is larger than pB, proceed to 
Step (5). 

ai = 2 
02 = 10 

The “observed contrast” pair is (2, 10). 

(6) nA = nB — 17 

(7) From Table A-28, with a = .025 and Oi = 
2, the “least different” pair {Ai, A2) = 
(2,9). 

(8) Since C2 = 10 is larger than A2 = 9, we 
conclude that the proportion of successes 
for type A exceeds that for type B. 

* Table A-29 and the more complicated procedure of Paragraph 8-2.2.2 can be used to conduct equivalent one-sided 
tests corresponding to a = .05, .025, .01, and .005, when nA = nB < 20, thus extending the present one-sided test 
procedure to the underscored values of a for equal sample sizes up to 20. 

8-11 



ORDP 20-111 TWO PERFORMANCE CATEGORIES 

8-2.2 COMPARING TWO PROPORTIONS WHEN THE SAMPLE SIZES ARE UNEQUAL AND SMALL 

(nA 9^ nB ; BOTH NO GREATER THAN 20) 

8-2.2.1 Does the Characteristic Proportion for Product A Differ From That for Product B? 

Data Sample 8-2.2.1 —Small-scale Comparison Test of Two Types of Artillery Fuzes 

The following data are recorded from an artillery fuze-testing program: 

Fuze Type 
Fires 

(Class I) 
Does Not Fire 

(Class II) Total 

Type A rA = 4 sA = 2 nA = 6 
Type B rB = 8 sB = 2 nB = 10 

Total r = 12 s = 4 n = 16 

Procedure 

(1) Choose a, the significance level of the test. 
Table A-29 provides a listing of “significant 
contrasts” corresponding to a = .10, .05, 
.02, and .01 for this two-sided test. * 

(2) Record the observed counts as in Table 8-1. 

(3) In order to use Table A-29 for this problem, 
we must have the data arranged in a special 
way. Arrange the data as shown in Table 
8-2 so that the results from the larger sam¬ 
ple are in the first row, and re-label the 
entries n, r2, etc., as shown in Table 8-2. 
Retain the original product identification 
of the samples. 

Example 

(1) Let a = .02 

(2) See Data Sample 8-2.2.1 

(3) See Rearranged Data Sample 8-2.2.1A 

TABLE 8-2. REARRANGEMENT OF TABLE 8-1 FOR CONVENIENT USE IN TESTING 

SIGNIFICANCE WITH TABLE A-29 

Class 1 Class II Total 

Larger Sample n Si Wi 

Smaller Sample n s2 n2 

Total r s n 

* It should be noted that Table A-29 also could be used for equal sample sizes up to 20. For equal samples and 
a = .05 or .01, however, the method of Paragraph 8-2.1.1 is recommended because of simplicity. 

8-12 



COMPARING TWO OBSERVED PROPORTIONS ORDP 20-111 

Rearranged Data Sample 8-2.2.1 A 

Fuze Type 
Fires 

(Class I) 
Does Not Fire 

(Class II) Total 

Larger sample (Type B) n = 8 Si = 2 rii = 10 
Smaller sample (Type A) r2 = 4 s2 = 2 n2 = 6 

Total r = 12 s = 4 n = 16 

Procedure 

(4) Compute the four proportions: 
Pi — Ti/rii 

p2 = r2/n2 

qi = Si/«i 

q2 = s2/n2 

Example 

(4) 
Pi = 8/10 

= .80 
p2 = 4/6 

= .67 
qi = 2/10 

= .20 
q2 = 2/6 

= .33 

(5) If pi is larger than or is equal to p2, focus 
attention on Class I. 
For use with Table A-29, take 

Oi = n 

(h — r2 

If <7i is larger than or is equal to q2, focus 
attention on Class II. 
For use with Table A-29, take 

Oi = Si 

&2 = §2 

(6) Enter Table A-29 with , n2, and Oi (de¬ 
termined from Step (5)). 

The observed (h (from Step (5)) must be 
equal to or smaller than the tabled a2 
(bold-face in Table A-29) for significance at 
the chosen level. Therefore, if the ob¬ 
served (h is equal to or is smaller than bold¬ 
face (h in Table A-29, conclude that the 
two products differ with regard to the pro¬ 
portion of interest. 
If the observed <h is larger than the tabled 
02, there is no reason to believe that the 
two products differ. 

(5) Since pi is larger than p2, focus on Class I. 

dl = Ti 

= 8 
d-l = t2 

= 4 

(6) From Table A-29, for nx = 10, n2 = 6, 
Oi = 8, and a = .02, the tabled ch is 0. 

Since the observed 02 = 4 is larger than the 
tabled 02, there is no reason to believe that 
the two fuzes differ in regard to the propor¬ 
tion which fire. 
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8-2.2.2 Does the Characteristic Proportion for Product A Exceed That for Product B? (Is PA Larger 

Than PB?) 

Data Sample 8-2.2.2 — Small-scale Comparison Test of Two Types of Impact Fuzes 

The following data are recorded from an impact fuze-testing program: 

Fuze Type 
Fires 

(Class I) 
Does Not Fire 

(Class II) Total 

Type A rA =4 sA =2 nA = 6 
Type B rB = 0 sB = 10 nB = 10 

Total r = 4 s = 12 n = 16 

Procedure 

(1) Record the observed counts as shown in 
Table 8-1. 

(2) Focus on the class of interest. If this is 
Class I, compute: 

Pa = rA/nA 

pB = rB/nB 

(If Class II were the class of interest pA 
would equal sA/nA, and pB would equal 
sB/nB). 
If pA is larger than pB, proceed to Step (3). 
If pA is not larger than pB, conclude at once 
that the data give no reason to believe that 
the true proportion PA is larger than PB. 

(3) Choose a, the significance level of the test. 
Table A-29 is used for this one-sided test * for 
a = .05, .025, .01, and .005. 

(4) In order to use Table A-29 for this problem, 
we must have the data arranged in a special 
way. Arrange the data as shown in Table 
8-2 so that the results from the larger sam¬ 
ple are in the first row, and relabel the 
entries rx, r2, etc., as shown in Table 8-2. 
Retain the original product identification 
of the samples. 

Example 

(1) See Data Sample 8-2.2.2. 

(2) Since we are interested in comparing the 
proportions of fuzes which do fire, compute: 

pA = rA/nA 
= 4/6 
= .67 

pB = rB/nB 
= 0/10 
= 0 

Since pA is larger than pB, proceed to 
Step (3). 

(3) Let « = .01 

(4) See Rearranged Data Sample 8-2.2.2A. 

* It should be noted that Table A-29 also could be used for equal sample sizes up to 20. For equal sample sizes and 
a = .025 and a = .005, however, the method of Paragraph 8-2.1.2 is recommended because of simplicity. 
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Rearranged Data Sample 8-2.2.2A 

Fuze Type 
Fires 

(Class I) 
Does Not Fire 

(Class II) Total 

Larger sample (Type B) n = 0 Sx = 10 n i = 10 
Smaller sample (Type A) r2 = 4 s2 = 2 n2 = 6 

Total r = 4 s = 12 n — 16 

Procedure Example 

(5) Compute the four proportions: (5) 
Pi = ri/ni Pi = 0/10 

= 0 
Pi = r2/n2 Pi = 4/6 

= .67 

qx = Sx/nx Qi = 10/10 
= 1.00 

q2 = s2/n2 72 = 2/6 
= .33 

Note that: 
Pi = pA if nA is the larger sample; 
Pi = Pb if nB is the larger sample. 

(6) If pi is larger than or is equal to p2, focus 
attention on Class I. 
For use with Table A-29, take 

«i = n 
a2 = r2. 

If qi is larger than or is equal to q2, focus 
attention on Class II. 
For use with Table A-29, take 

®l = Si 

a 2 — §2 

(7) Enter Table A-29 with nx, n2, and the Oi 
(determined from Step (6)). 
The observed a2 (from Step (6)) must be 
equal to or smaller than the tabled a2 (bold 
face in Table A-29) for significance at the 
chosen level. 
Therefore, if observed a2 is equal to or is 
smaller than bold-face a2 in Table A-29, 
conclude that the proportion of interest for 
product A exceeds the proportion for prod¬ 
uct B. 
If the observed a2 is larger than the tabled 
a2, there is no reason to believe that the 
two proportions differ. 

(6) 

Since qx is larger than q2, focus attention on 
Class II. 

Ox = Si 

= 10 
a2 = s2 

= 2 

(7) From Table A-29, for nx = 10, n2 = 6, 
ax = 10, and a = .01, the tabled a2 is 2. 

Since the observed a2 is equal to the tabled 
a2, we conclude that the proportion of suc¬ 
cessful fuzes of type A exceeds that for 
type B. 

8-15 



ORDP 20-111 TWO PERFORMANCE CATEGORIES 

8-2.3 COMPARING TWO PROPORTIONS WHEN THE SAMPLE SIZES ARE LARGE* 

8-2.3.1 Does the Characteristic Proportion for Product A Differ From That for Product B? (Does 

PA Differ From PB"i) 

Data Sample 8-2.3.1 — Field Trials of Two Types of Mine Fuzes 

In field trials of mine fuzes, 216 of each of two new types of fuze were buried, simulated tanks run 
over them, and the number of “proper hits” recorded. The results are as follows: 

Fuze Type Hit Not Hit Total 

Type A rA = 181 sA = 35 nA = 216 
Type B rB = 160 sB = 56 nB = 216 

Total r = 341 s = 91 n = 432 

Let us assume with respect to Data Sample 8-2.3.1 that the important question is: Is the propor¬ 
tion of hits for Type A different from the proportion of hits for Type B? 

Procedure Example 

(1) Choose a, the significance level of the test. (1) Let a = .10 

(2) Look up xf_a for one degree of freedom in (2) x290 for 1 d.f. = 2.71 
Table A-3. 

(3) Compute (3) 

rAsB - rBsA 
x2 = 

nArnBs 

(See Note below.) 

_ 432 (4536 - 216)2 
(73656)(19656) 

= 5.57 

(4) If x2 > Xi_a, decide that the two products 
differ with regard to the proportion having 
the given characteristic; otherwise, there is 
no reason to believe that the products 
differ in this respect. 

(4) Since x2 is larger than x290 , we conclude 
that the two types of fuzes do differ with 
regard to the proportion of “proper hits”. 

* The procedures of this paragraph must be used for large samples of unequal size, and may be used for samples of 
equal size. If the sample sizes are equal and are included in Table A-28, the procedures of Paragraph 8-2.1 are to be 
preferred because of simplicity. 
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Procedure 

Note: The computation of x2 is most con¬ 
veniently done in terms of the actual counts in 
the table, as given in Step (3) above. The for¬ 
mula can be expressed in terms of the observed 
proportions as follows: 

(»'\Va ~ Vb | - I) 

n'p( 1 - p) 

where 

Pa = rA/nA 

pB = rB/nB 

_ ta + rB 
v ~ nA + nB 

Example 

Note: Using Data Sample 8-2.3.1 with this 
formula: 

= (108 (.097) - 1/2)2 
108 (.789) (.211) 

= (9.976)2 
17.980 

= 5.54 

pA = 181/216 
= .838 

pB = 160/216 
= .741 

p = 341/432 
= .789 

1 - p = .211 

and 

nAnB 

nA + nB 
n' = 46656/432 

= 108 

This formula and the formula in Step (3) are 
algebraically equivalent, but use of the form 
given in the Note requires extra arithmetic and 
rounding. In spite of the fact that the question 
is put in terms of the difference between pro¬ 
portions, the answer is obtained more easily and 
more accurately using observed counts, i.e., the 
formula of Step (3) is preferred. Furthermore, 
using the formula in terms of counts (Step (3)) 
highlights the fact that one cannot judge the 
difference between two proportions without 
knowing the sample sizes involved. 
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8-2.3.2 Is the Characteristic Proportion for Product A Larger Than That for Product B? (Is PA Larger 

Than PB?) In terms of Data Sample 8-2.3.1, let us suppose that — in advance of 
looking at the data — the important question is: Is the proportion of hits for type A larger than the 
proportion of hits for type B? 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up Xi_2a for one degree of freedom in 
Table A-3. 

(3) Compute: 

nA r nB 

and 

Pa = rA/nA 

pB = rB/nB 

(See Note at end of procedure of Paragraph 
8-2.3.1) 

(4) If X2 > x?_2a and pA is larger than pB, 
decide that PA exceeds PB; otherwise, 
there is no reason to believe the propor¬ 
tions differ. 

Example 

(1) Let a = .025 

(2) x296 for 1 d.f. = 3.84 

= 432 (4536 - 216)2 
(73656)(19656) 

= 5.57 

pA = 181/216 
= .84 

pB = 160/216 
= .74 

(4) Since x2 is larger than x29B and pA = .84 is 
larger than pB = .74, conclude that the 
proportion of hits for type A is larger than 
the proportion of hits for type B. 

8-2.4 SAMPLE SIZE REQUIRED TO DETECT A DIFFERENCE BETWEEN TWO PROPORTIONS 

8-2.4.1 Sample Size Required to Detect a Difference of Prescribed Magnitude Between Two Propor¬ 

tions When the Sign of the Difference Is Not Important. Unfortunately, the sample size 
required depends on the true but unknown values of the two proportions involved. Very often, the 
experimenter has some idea of the magnitude of (or an upper bound for) one of these values, and then 
must specify the size of the difference which the experiment should be designed to detect. For a 
fixed difference to be detected, the largest sample sizes will be required if the true proportions are 
in the neighborhood of 0.5. A look at Table A-25, however, will show that over-conservatism may 
not pay. Suppose, for example, that one of the proportions can safely be assumed to be less than 
0.4. The most conservative assumption would be that it is equal to 0.4 (this being the closest 
reasonable guess to 0.5). Attempting to be over-cautious by using the value 0.45 will extract a 
heavy price in the number of tests to be run. 

Given: 

For this problem there is nothing given, but — 

Assumed: 

P' = an estimate of one of the two proportions. 
To be conservative, make this estimate as close to 0.5 as is reasonable. 

8-18 



COMPARING TWO OBSERVED PROPORTIONS ORDP 20-111 

To be Specified for This Problem: 

a = the significance level, or the risk of announcing a difference when in fact there is none. 
0 = the risk of failing to detect a difference when in fact the true proportions differ by an 

amount 8 (i.e., \P' — P"\= 8). 
8 = the absolute magnitude of the difference which is considered important to detect. 

Tables to be Used: 

Table A-25 can be used for a = .05 and 1 — 0 = .50, .80, .90, .95, and .99, and for certain 
values of the proportions. The entry in Table A-25 must be doubled to give nand n' is the 
required sample size to be taken from each product. 

For other desired values of a and 0, use Table A-27, a table to convert the difference between 
the proportions into the form necessary for use with Table A-8. 

The question to be answered by the experiment is: Does PA differ from PB ? 

Procedure 

(1) Specify 8, the absolute magnitude of the 
difference considered important to detect. 

(2) Choose a and 0. 

(3) For a = .05 and 1 — 0 = .50, .80, .90, 
.95, or .99, go to Table A-25. 

(4) Let P' = an estimate of one of the pro¬ 
portions. 
Let P" = P' + 8 or P' — 8, whichever 
makes P" closer to 0.5. 

(5) If either P' or P" is less than 0.5, enter 
Table A-25 with P' and P". 
If neither P' nor P" is less than 0.5, enter 
Table A-25 with 1 — P' and 1 — P". 
In either case, the smaller of the two pro¬ 
portions determines the column and the 
larger of the two determines the row in 
Table A-25. 

Read off n, and double it to obtain n'. 
n' is the required sample size to be taken 
from each product. 

Example 

(1) Specify 5 = .10 

(2) Let a = .05 
0 = .20 

(3) Use Table A-25 with 1 — 0 = .80 

(4) Let P' = .20 

Let P" = .20 + .10 
= .30 

(5) Enter Table A-25 in column .20 and 
row .30. 

n = 146 
n' = 292, the required sample size 

to be taken from each product. 

(6) For other values of a and 0, and for values 
of P' and P" not included in Table A-25, 
go to Table A-27. Look up: 

9' = 9 corresponding to P' 
9" = 6 corresponding to P" 

(7) Compute d = 16' - 9" | 

(6) Assume that we had specified a. = .01, 
0 = .20, P' = .34, and P" = .44. From 
Table A-27, 

9' = 1.25 
9" = 1.45 

(7) d = 11.25 - 1.451 
= .20 
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Procedure Example 

(8) Enter Table A-8 with a, p, and d (from 
Step (7)). 

Read off n and double it to obtain n'. 
Then, n' is the required sample size to be 
taken from each product. 
(Rounding two-decimal values of d to the 
nearest value considered in Table A-8 may 
lead to excessively high (or low) values of n, 
and thence of n'. Interpolation for values 
of n corresponding to values of d not con¬ 
sidered in Table A-8 is not recommended. 
For values of d not given in Table A-8, the 
sample size may be computed using the 
formula 

_ fa—a/2 + Zi_g)2 

n ~ d* 

8-2.4.2 Sample Size Required to Detect a Difference of Prescribed Magnitude Between Two Propor¬ 
tions When the Sign of the Difference Is Important. Read the general discussion at the 

beginning of Paragraph 8-2.4.1. 

Given: 

For this problem, there is nothing given, but — 

Assumed: 

P' = an estimate of one of the two proportions. P' may be Pi, an estimate of PA, or PB , 
an estimate of PB. 
To be conservative, make this estimate as close to 0.5 as is reasonable. 

To be Specified for This Problem: 

a = the significance level, or the risk of announcing a difference when in fact there is none. 
p = the risk of failing to detect a difference when in fact the true proportion for the other 

product is P" = P' + 8 or is P" = P' — 8. 
8 = the absolute magnitude of the difference considered important to detect. 

Tables to be Used: 

Table A-26 can be used for a = .05 and 1 — p = .50, .80, .90, .95, and .99; and for certain 
values of the proportions. 

For other desired values of a and p, use Table A-27, a table to convert the difference between 
the proportions into the form necessary for use with Table A-9. 

The question to be answered by the experiment is: Is PA larger than PB ? 

(8) From Table A-8 with a = .01,1 — p = .80, 
and d = .20, n = 292. 

n' = 584, the required sample size to be 
taken from each product. 

Procedure 

(1) Specify 8, the absolute magnitude of the 
difference considered important to detect. 
If the estimate PA is available, then 
P" = Pf - 8. 
If the estimate PA is available, then 
P" = PA + 8. 

Example 

(1) Specify 8 = .05 

Let PA, the estimate of PA, = .10 
Then, P" = .10 - .05 

= .05 
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Procedure 

(2) Choose a and 0. 

(3) For a = .05, 1 — 0 = .50, .80, .90, .95, 
or .99, go to Table A-26. 

(4) If either P' or P" is less than 0.5, enter 
Table A-26 with P' and P". 

If neither P' nor P" is less than 0.5, enter 
Table A-26 with 1 — P' and 1 — P". 
In either case, the smaller of the two pro¬ 
portions determines the column and the 
larger determines the row in Table A-26. 

(5) Read off n, and double it to obtain n'. (5) 
n' is the required sample size to be taken 
from each product. 

Example 

(2) Let a = .05 
/3 = .10 

(3) Use Table A-26 with 1 - 0 = .90 

(4) Since both P' and P" are less than 0.5, 
enter Table A-26 in column .05 and 
row .10. 

n = 232 
n' = 464, the required sample size 

to be taken from each product. 

(6) For other values of a and /3, and for values 
of P' and P" not included in Table A-26, 
go to Table A-27. 
Look up: 

0' = 0 corresponding to P' 
0" = 0 corresponding to P" 

(7) Compute d = 10' — 0" \ 

(8) Enter Table A-9 with a, /3, and d (from 
Step (7)). 

Read off n, and double it to obtain n'. 
n' is the required sample size to be taken 
from each product. 

Rounding two-decimal values of d to the 
nearest value considered in Table A-9 may 
lead to excessively high (or low) values of n, 
and thence of n'. 
Interpolation for values of n corresponding 
to values of d not considered in Table A-9 
is not recommended. 
For values of d not given in Table A-9, the 
sample size may be computed using the 
formula 

_ (21—a + Zi-g)2 

71 ~ d* 

(6) Assume that we had specified a = .01, 
1 - 0 = .90, P' = .70, and P" = .50 . 

From Table A-27 
0' = 1.98 

0" = 1.57 

(7) d = |1.98 - 1.57| 
= .41 

(8) From Table A-9, for d = A, n = 82. 

n' = 164 is an upper bound to the required 
sample size to be taken from each product. 

In the present instance, 

(2.326 + 1.282)2 
(.41 y 

13.018 
.1681 

= 78 

8-21 
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CHAPTER 9 

COMPARING MATERIALS OR PRODUCTS WITH 

RESPECT TO SEVERAL CATEGORIES OF PERFORMANCE 

(CHI-SQUARE TESTS) 

In some inspection and testing procedures, a 

two-category classification of performance (e.g., 

success or failure) is not sufficient. In inspec¬ 

tion work, the classification scheme might con¬ 

sist of three categories; for example, (1) accept¬ 

able, (2) reworkable, and (3) unusable. In 

process control, we might wish to record occur¬ 

rences of each of a number of types of defects, 

and to make comparisons between shifts or be¬ 

tween time periods with regard to the distribu¬ 

tion of the types of defects. Similarly, reports 

of types of failures of machinery, or of records of 

repairs, may call for a classification scheme with 

more than two categories. Classifications by 

size, color, and structure are other possible 

examples of classifications likely to require three 

or more categories. 

Where the classification scheme provides for 

three or more categories, the procedures of this 

Chapter are appropriate. (The methods of 

Chapter 8 could be used only if we were to 

consider a single class as, for example, success, 

with all the other classes lumped together as 

failure.) 

If the classification scheme has a large num¬ 

ber of categories, and if we are interested in a 

special group of these classes, the individual 

classes in the group may be combined and con¬ 

sidered as one grand category. For example, 

in records of the causes of aircraft accidents, we 

may consider the one large category collision, or 

we may have this information broken down into 

several classes, e.g., between two in air, with 

ground, with water, and other types of collision. 
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9-1 COMPARING A MATERIAL OR PRODUCT WITH A STANDARD 

9-1.1 WHEN THE COMPARISON IS WITH A 
STANDARD MATERIAL OR PRODUCT 

Data Sample 9-1.1 —Inspections and Tests of 
Clinical Thermometers 

Form: A sample of n items is selected at random 
from a much larger group. After in¬ 
spection or test, each sample item (or 
observation) is classified into one of k 
categories, according to some established 
classification scheme. The result is that 
Wi items are observed to be in category 1, 
n2 items in category 2, items in the ith 
category, etc., and 

Wi + w2 + ... + nk = n. 

Let: Pi equal the known proportion of 
standard items that are classified in cate¬ 
gory 1; P2 equal the known proportion in 
category 2; and P, equal the known pro¬ 
portion of standard items in the zth cate¬ 
gory. 

The relevant question to be asked is: “Does 
the new product differ from the standard with 
regard to the proportions in each category?" 

Example: The inspection and testing of clinical 
thermometers provides an illustrative ex¬ 
ample. Clinical thermometers are classi¬ 
fied into one of the following four cate¬ 
gories, on the basis of inspection and test: 

1. Non-defective; 

2. Defective — class A (Defects in glass, 
defective markings, dimensional non¬ 
conformance, etc.); 

3. Defective — class B (Defects in mer¬ 
cury column); 

4. Defective — class C (Nonconform¬ 
ance to precision and accuracy re¬ 
quirements). 

Over a period of time, it has been found 
that thermometers produced by a certain 
manufacturer are distributed among the 
four categories in the following average 
proportions: 

1. Non-defective — 87 percent 
(Px = 0.87); 

2. Class A — 9 percent (P2 = 0.09); 

3. Class B — 3 percent (P3 = 0.03); 

4. Class C — 1 percent (P4 = 0.01). 

A new lot of 1336 thermometers is sub¬ 
mitted by the manufacturer for inspec¬ 
tion and test, and the following dis¬ 
tribution into the four categories results: 

Category 
No. of 

Thermometers 
Reported 

1 1188 (w,) 
2 91 (n2) 
3 47 (w3) 
4 10 (n4) 

n = 1336 

The question asked is: “Does this new lot of 
thermometers differ from previous experience 
with regard to proportions of thermometers in 
each category?” 
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Procedure* 

(1) Choose a, the significance level of the test. 

(2) Look up Xi_„ for k — 1 degrees of freedom 
in Table A-3. 

(3) Compute nP,, the theoretical value for 
each category. 

(4) Compute 

x2 = 2 (n]/nPi) — n 
i= 1 

(5) If x2 > xl-a, conclude that the material, 
product, or process differs from the stand¬ 
ard with regard to the proportions in the 
categories; otherwise, there is no reason 
to believe that they differ. 

Example 

(1) Let a = .05 
1 - a = .95 

(2) k - 1=3 
x29B for 3 d.f. = 7.81 

(3) For a convenient computational arrange¬ 
ment, see Table 9-1. 

(4) See Table 9-1, 

x2 = 9.72 

(5) Since x2 is larger than x29B, we conclude 
that the new lot of thermometers is differ¬ 
ent from previous lots submitted by the 
same manufacturer with regard to the pro¬ 
portions in the respective inspection-test 
categories. 

TABLE 9-1. COMPUTATIONAL ARRANGEMENT FOR DATA SAMPLE 9-1.1 

Thermometer 
Class 

No. of 
Thermometers in 

Each Category 

Known Propor¬ 
tion for 

Standard Product 

{Pi) 

Expected No. 
(nP.) 

n\ 
nPi 

1. Non-defective 1188 .87 1162.32 1214.25 
2. Class A 91 .09 120.24 68.87 
3. Class B 47 .03 40.08 55.11 
4. Class C 10 .01 13.36 7.49 

Total n = 1336 1.00 1336.00 1345.72 

x2 = 2{rii/nPi) - n = 1345.72 - 1336 = 9.72 

* This x* procedure is based on a large-sample approximation, but if nP< > 5.0 for all categories, the approximation 
ordinarily is very good. If nP, < 5 for several categories, these categories may be pooled to obtain a theoretical 
frequency of at least 5 for the combined cells, and a corresponding improvement in the accuracy of the approximate 
solution, but at the price of some loss of resolution. 

9-3 
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9-1.2 WHEN THE COMPARISON IS WITH A THEORETICAL “STANDARD" 

The following example illustrates an application of the foregoing procedure in which the “stand¬ 
ard” is of a theoretical nature. 

Data Sample 9-1.2 — Breakdowns of Electricity Meters 

Form: There are k different types of meters in current use. The total number of each type in service 
at the beginning of the service period under consideration was Nlt N2,..., Nk, respectively. 
If the probability of a meter breaking down during the service period is the same for all k 
types, then we would expect the total number of breakdowns during this period to be dis¬ 
tributed among the k types in proportion to their respective numbers in service. For 
example, suppose that a total of n meters break down. Among these n, we would expect 
to find the proportion 

Nx 
Nx+ N2 + ... + Nk 

of them to be of type 1; the proportion 

P2 
N2 

Nr + N2 + . . . + Nk 

to be of type 2; etc. The actual number of each type that are found in the n breakdowns 
are rii,n2,... ,nk (and rii + n2 + . . . + nk = n). The actual proportions ni/n, n2/n,. . . , 
nk/n, rarely will conform to the theoretical values, Pi, P2,..., Pk, even when the hypothesis 
that all types are equally likely to break down is true. The relevant question is: Are the 
differences between the observed and theoretical proportions sufficient to cast doubt on the 
supposition that the probability of a breakdown is the same for all k types of meters? 

Example: There are (approximately) equal numbers of four different types of meters in service. 
If all types are equally likely to break down, the reported failures during a given period 
should be distributed (approximately) equally among the four types — i.e., 

Pl = p2 = p3 = p4 = I. 

The actual number of breakdowns reported are given in the following list. Have we evi¬ 
dence to conclude that the chances of failure of the four types are not all equal? 

Type of Meter No. of Breakdowns Reported 
rii 

1 30 
2 40 
3 33 
4 47 

n = 150 
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Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up xf_a for k — 1 degrees of freedom 
in Table A-3. 

(3) Compute nP,, the theoretical frequency for 
each category. 

(4) Compute 

x2 = X) (ril/nPi) — n 
i=l 

(5) If x2 > x2_, conclude that the probabili¬ 
ties of failure are not the same for all of the 
types*; otherwise, that there is no reason to 
believe that they differ. 

Example 

(1) Let a = .10 
1 - a = .90 

(2) A: — 1=3 
x290 for 3 d.f. 6.25 

(3) For a convenient computational arrange¬ 
ment, see Table 9-2. 

(4) See Table 9-2, 

x2 = 4.62 

(5) Since x2 is not larger than x290 , we have no 
reason to discard the hypothesis that the 
probability of failure is the same for each 
type. 

TABLE 9-2. COMPUTATIONAL ARRANGEMENT FOR DATA SAMPLE 9-1.2 

Type of Meter 
No. of Breakdowns 

Reported 

(».-) 

Expected No. of 
Breakdowns 

(n Pi) 

n? 
nPi 

1 30 37.5 24.00 
2 40 37.5 42.67 
3 33 37.5 29.04 
4 47 37.5 58.91 

Total n = 150 154.62 

Pi = the theoretical proportion for each category. In Data Sample 9-1.2, P, = .25 for all categories. 

x2 = 2(nVnPi) - n = 154.62 - 150 = 4.62. 

* In reaching this conclusion on the basis of evidence that the P’s are not all equal to their theoretical values, we 
are assuming, of course, that our information on the numbers of meters of each type in service is correct. In practice, 
this assumption should be checked before accepting the conclusion that the probabilities of failure are not the same 
for all of the types. 
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9-2 COMPARING TWO OR MORE MATERIALS OR PRODUCTS 

Data Sample 9-2 — Causes of Rejection of Metal Castings 

Form: There are m things to be compared with regard to the percentage of items distributed among 
several categories. The m things may be materials, products, processes, shifts, time periods 
(days, weeks, months, etc.) or any other such groups of interest. From each of the m groups, 
a sample is available, and each item in the sample is classified into one of k categories. The 
data is tabulated conveniently in the following form: 

Material, 
Product, 

or Process 

Category 

Total 

1 2 k 

1 fn fn flk Til 

2 /21 f22 f2k n2 

m fml fm2 fmk nm 

Total Cx c2 ck n 

where: 
m = number of materials, products, processes, etc., to be compared; 
k = number of categories of classification; 

7i, = size of sample for the 7th material, product, or process; 
= number of items of the ith kind which are classified in the ;th category; 

Cj = total number in the ;th category; 
n = total number of items. 

The relevant question to be asked is: “Do the materials, products, etc., differ with regard to the 
proportion of items in the categories?” 

Example: Rejects of metal castings were classified by cause of rejection for three different weeks, 
as given in the following tabulation. The question to be answered is: Does the distribution 
of rejects differ from week to week? 

Cause of Rejection 

Sand Misrun Shift Drop Corebreak Broken Other Total 

Week 1 97 8 18 8 23 21 5 180 
Week 2 120 15 12 13 21 17 15 213 
Week 3 82 4 0 12 38 25 19 180 

Total 299 27 30 33 82 63 39 573 

Data adapted with permission from Industrial Quality Control, Vol. IV, No. 4, p. 26, 1948, from article entitled “A Training Program Becomes a 
Clinic,” by George A. Hunt. 
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Procedure’" 

(1) Choose a, the significance level of the test. 

(2) Look up x?_a for (k — 1) (m — 1) degrees 
of freedom in Table A-3. 

(3) Compute 

That is, compute each column total Cj. 

Compute each row total n,-. For each cell 
in the table, square the number and 
divide by the product nlCj. Sum the re¬ 
sulting values for all cells in the table; sub¬ 
tract one, and multiply by n. 

(4) If x2 > xf_a, decide that the materials, 
products, or processes differ with regard to 
the proportions in the categories; other¬ 
wise, that there is no reason to believe that 
they differ in this regard. 

Example 

(1) Let a = .10 
1 - a = .90 

(2) k = 7 
m = 3 

(k - 1) (m - 1) = 12 
x290 for 12 d.f. = 18.55 

(3) See Table 9-3 for a convenient computa¬ 
tional arrangement. 

x2 = 45.84 

(4) Since x2 is larger than x290 , we conclude 
that the weeks differ with regard to pro¬ 
portions of various types of rejections. 

TABLE 9-3. TABLE OF -COMPUTATIONAL ARRANGEMENT FOR DATA SAMPLE 9-2 
itiCj 

Sand Misrun Shift Drop Corebreak Broken Other Total 

Week 1 
9409 64 324 64 529 441 25 
53820 

= 0.175 
4860 

= 0.013 
5400 

= 0.060 
5940 

= 0.011 
14760 

= 0.036 
11340 

= 0.039 
7020 

= 0.004 0.338 

Week 2 
14400 
63687 

= 0.226 

225 
5751 

= 0.039 

144 
6390 

= 0.023 

169 
7029 

= 0.024 

441 
17466 

= 0.025 

289 
13419 

= 0.022 

225 
8307 

= 0.027 0.386 

Week 3 
6724 
53820 

= 0.125 

16 
4860 

= 0.003 

0 
144 

5940 
= 0.024 

1444 
14760 

= 0.098 

625 
11340 

= 0.055 

361 
7020 

= 0.051 0.356 

Total 0.526 0.055 0.083 0.059 0.159 0.116 0.082 1.080 

= 573 (1.080 - 1) 

= 573 (.080) 

= 45.84 

* The solution is approximate, but should be quite accurate if the smallest riiCj/n > 5. 
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Simplified Computation for the Special Case m = 2. In this case, the tabulation would consist of 
only the first two rows of the schematic table shown in Data Sample 9-2, and 

The degrees of freedom for x2 is k — 1. 

This form is convenient if the data are given in terms of proportions. 

Further Simplification for m = 2 When ni = n2. When there are only two rows, and the row totals 
are equal, then, 

2 _ -A (A? — hi)2 

X U hi+hi 

with k — 1 degrees of freedom. 

Note: This shortcut has an analog for m = 3 when nx = n2 = n3. For each category, take all 
three possible differences, sum the squares of the three differences, and divide by the sum of the 
three observations. Finally, sum this quantity over all of the categories, to obtain 

(hi ~ hi)2 + (hi ~ h,)2 + (/„• - hi)' 

fli + hi + hi 

9-3 A TEST OF ASSOCIATION BETWEEN TWO METHODS OF CLASSIFICATION 

There are situations in which individual items are classified into categories in terms of two dif¬ 
ferent criteria. For example, in a study of tire wear, see Swan/11 records of scrapping of tires were 
kept and tires were classified as front and rear, left and right. In another study of the cause of 
failure of vacuum tubes, see Day,(2) the two criteria of classification were position in shell and type 
of failure. In each study the question was: Is there any association or relation between the criteria 
of classification? 

Basically, this is a different problem than the problem of Paragraph 9-2, but it is discussed here 
because of the similarity in analysis. 

We assume that we have a total of n individual items, and that each item is classified by criteria 
A and B into k and m categories, respectively. Let hi be the number of individuals in the «th 
category of A and thej'th category of B. Let Ri and C, be the total numbers of individuals classified 
in the ith category of A and the jib. category of B, respectively. 
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We tabulate these data as follows: 

Criterion B 

Total 

1 2 k 

1 /n /12 flk Ri 

C
ri

te
ri

o
n
 A

 

3 
N

) 

fn Iti fik r2 

/ml fm2 fmk Rm 

Total C! c2 Ck n 

The relevant question to be asked is: “Is there a relation or association between the two criteria 
of classification?” 

Data Sample 9-3 — Vacuum Tube Failures 

In the development of the VT fuze during World War II, a study was made of the causes of failure 
of vacuum tubes. The criteria of classification were: position in shell and type of failure. The 
following entries are the number of tubes that failed. 

Position Type of Failure 
in Total 

Shell 
A B C 

Top block 75 10 15 100 = R\ 

Bottom block 40 30 10 80 = R2 

Total 115 40 25 180 = n 

Adapted with permission from Review of the International Statistical Institute, Vol. 17, Nos. 3 and 4, 
>p. 129-155, 1949, from article entitled “Application of Statistical Methods to Research and Development in 
Engineering" by Besse B. Day. 

The question to be asked is: Is the type of tube failure associated with the position in the shell? 

Procedure* Example 

Choose a, the level of significance of the (1) Let a = .10 
test. 1 - a = .90 

Look up x?_« for (k — 1) (m — 1) degrees (2) k = 3 
of freedom in Table A-3. m = 2 

Oc - 1) (m - 1) = (2) (1) 
= 2 

x290 for 2 d.f. =4.61 

* The solution is approximate, but should be quite accurate if the smallest of RiCj/n > 5.0. 
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Procedure 

(3) Compute 

x2 = n (§ § RC, ~ 

That is, compute each row total R,. Com¬ 
pute each column total C,. For each cell 
in the table, square the number fi3 and 
divide by the product R,Cj. Sum the re¬ 
sulting values for all cells in the table; 
subtract one, and multiply by n. 

(4) If x2 > Xi_a, conclude that there is an asso¬ 
ciation between the two criteria of classifi¬ 
cation; otherwise, that there is no reason to 
believe that such an association exists. 

Example 

(3) See Table 9-4 for a computational arrange¬ 
ment. 

x2 = 180 (1.1092 - 1) 
= 19.66 

(4) Since x2 is greater than x290 , we conclude 
that the type of failure is associated with 
the position in the shell. 

TABLE 9-4. TABLE OF ^ — COMPUTATIONAL ARRANGEMENT 

FOR DATA SAMPLE 9-3 

Position in Shell 

Type of Failure 

Total 

A B C 

Top block 5625/11500 
= .4891 

100/4000 
= .0250 

225/2500 
= .0900 .6041 

Bottom block 1600/9200 
=.1739 

900/3200 
= .2812 

100/2000 
= .0500 .5051 

Total .6630 .3062 .1400 1.1092 

= 180 (1.1092 - 1) 

= 180 (.1092) 

= 19.66 

REFERENCES 
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CHAPTER 10 

SENSITIVITY TESTING 

10-1 EXPERIMENTAL SITUATION 

The term “sensitivity test” is commonly ap¬ 
plied to the following situation: 

1. A test item will respond or not respond to a 
certain level of test stimulus (e.g., a shell will 
explode or will not explode when subjected to a 
certain shock). 

2. The test is destructive to the item being 
tested, no matter what the outcome of the test. 
Either the item is destroyed completely, or the 
characteristics of the item are so changed that 
further tests are meaningless. 

3. The percentage of items expected to re¬ 
spond (fail, explode, die) increases as the severity 
of the test is increased. 

In this general situation, there are variable (and 
usually controllable) levels of test which can be 
applied; e.g., height of drop in a shock test, 
dosage of a poison in tests of insecticides, etc. 
We assume that each object has an associated 
critical level or threshold value. If the test 
stimulus applied equals or exceeds this critical 
level, the object responds (fails, explodes, dies). 
If the test stimulus applied does not equal or 
exceed this critical level, the object does not 
respond. For any particular object, the exact 
critical level cannot be determined. More than 
one object may be tested at a given test level, 
however, and inferences may be made about the 
distribution of critical levels in a population of 
objects from which the tested samples came. 

The experimenter obtains data of the follow¬ 
ing type: objects were tested at the k stimulus 
levels X\, x2, ..., xk; of the n{ objects tested 
at level xi} ri responded and n, — r, did not 
respond. 

An ordnance example might involve the deto¬ 
nation of samples of an explosive in powder 
form by dropping a specified weight on them 
from various heights. If the weight is dropped 
from a height below the sample’s critical level 
(in this case, the lowest height at which the 
weight will cause the sample to explode), the 
sample does not explode, but the powder may 
be packed more tightly than before and, there¬ 
fore, the test cannot be repeated at increased 
height. If the weight is dropped from above the 
sample’s critical level, the sample is destroyed. 

A partial list of the many ordnance problem 
areas in which tests of increased severity can be 
used is as follows. 

1. Sensitivity to mechanical shock: 
a. Impact tests of high explosives; 
b. Impact tests of artillery fuzes; 
c. Izod impact test of metals; 
d. Izod impact test of plastics; 
e. Impact or drop test of packing cases. 

2. High explosives sensitivity to setback 
pressures. 

3. Missile components sensitivity to acceler¬ 
ation. 

4. Explosives sensitivity to friction. 

5. Fuzes and explosives sensitivity to ve¬ 
locity. 

6. Artillery fuzes and missile components 
sensitivity to voltage. 

7. Pyrotechnic materials sensitivity to elec¬ 
tric spark. 

8. Explosives and missile components sensi¬ 
tivity to temperature. 
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The following ordnance example is used to 
illustrate the computational techniques. 

Data Sample 10-1 —Peak-Voltage Test of Fuzes 

Groups of fuzes are subjected to specified 
values of peak voltage. 

For each group we observe the number which 
fire in less than a specified time. The observa¬ 
tions are summarized as follows: 

Peak 
Voltage n r p = r/n 

10.0 12 0 0 
15.0 12 0 0 
17.5 12 1 .08 
20.0 13 2 .15 
22.5 10 3 .30 
25.0 13 6 .46 
30.0 12 8 .67 
35.0 13 9 .69 
40.0 13 11 .85 
50.0 11 10 .91 
60.0 11 11 1.00 

Several methods for collecting and analyzing 
such data are described and illustrated in this 
Chapter. Paragraphs 10-2 and 10-3 detail 
methods of analysis for the usual testing situa¬ 
tion, where the levels of test are assigned before 
the test begins. Paragraph 10-4 details a spe¬ 
cial method applicable when the test levels can 
be different for each successive object tested, 
and can be changed easily during the course of 
the experiment. Paragraph 10-5 discusses the 
situation where the test levels cannot be com¬ 
pletely controlled. 

Most of the methods involve assumptions 
about the distribution of the critical levels such 
as, for example, that the distribution is normal. 
The distribution of critical levels as measured in 
the original units (or natural units) may not 
meet these assumptions, but there may exist a 
transformation such that the distribution of the 
transformed values does meet the assumption. 
The logarithm of the original value is perhaps 
the most frequently used transformation. 

When a transformation is used, all comments 
on the selection of testing levels and all compu¬ 
tational instructions refer to the transformed 
values, not the original ones. Usually, how¬ 
ever, it is desirable to state the final results of 
the analysis in terms of the original units. For 
most transformations (including the logarith¬ 
mic), the percentile estimates* and their asso¬ 
ciated confidence intervals are converted into 
the original units easily. Suppose that the 
stimulus levels are originally measured in “y” 
units, and transformed values, e.g., x = log y, 
are used in the computations. If xP is an esti¬ 
mate of xP, as here defined,* and [a, b] is a 
1 — a confidence interval estimate of xP, then 
antilog xP and [antilog a, antilog b] give, re¬ 
spectively, a point estimate and a 1 — a con¬ 
fidence interval estimate of yP, the (100 P)th 
percentile of the distribution of y values. This 
relationship does not hold for the means and 
standard deviations of the distributions. If m 
and s are estimates of the mean and standard 
deviation of the distribution of the x values, 
antilog m and antilog s should not be consid¬ 
ered estimates of the (arithmetic) mean and 
standard deviation of the distributions of y’s. f 

Note: In this Chapter, normal means that the 
expected proportion of items responding at a 
stimulus level x is given by 

P(x) = —7^= [ e-(*-M>2/2*2 dx t 
(7V27I J_m 

i.e., the probability that an individual item has 
a critical level or threshold value <x. 

* For any random variable X, the “(100 P)th per¬ 
centile” of its distribution is the value xp such that the 
probability that X is <xP is equal to P. 

t If x = log y, then 

x = ^ S 1°8 Vi 

= log (yiJ/2... y,iY 

= log (geometric mean of the y’s). 
Hence, antilog m will be an estimate of the geometric mean 
of the distribution of the y’s. Since the geometric mean 
of a set of different numbers always is less than their 
arithmetic mean, it follows that antilog m will tend to 
underestimate the population mean of the y’s. 
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10-2 KARBER METHOD OF ANALYSIS 

This method gives simple nonparametric 
estimates of the mean and standard deviation of 
the distribution of critical levels. There are 
three situations for which this method might be 
chosen: 

(1) the shape or mathematical form of the 
distribution is unknown; 

(2) quick and easy procedures for routine 
laboratory calculations are desired; and, 

(3) good initial estimates or first approxima¬ 
tions are needed for iterative computational pro¬ 
cedures; for example, the Exact Probit Solution 
given in Paragraph 10-3.2. 

The Karber method provides very good esti¬ 
mates of the mean and standard deviation of the 
distribution of critical levels in most laboratory 
situations. It must be remembered that the 
Karber method gives an estimate of the mean of 
the distribution; the mean of the distribution is 
not equal to the 50th percentile (that level x0 

such that half the objects have critical levels 
less than x0 and half have critical levels greater 
than x0) unless it is known that the distribution 
is symmetrical about its mean. 

For further discussion of the Karber method, 
see Cornfield and Mantel.(x) 

Selection of Stimulus Levels. Order the stim¬ 
ulus levels to be used in the test by their magni¬ 
tude — in other words, let Xi < x2 < ... < xk. 
For the Karber method to be applicable, Xi must 
be sufficiently low that there are no responses 
among the objects tested (ri = 0), and xk must 
be sufficiently high that all objects tested re¬ 
spond (rk = nk). In other words, xx and xk are 
to be chosen so that they are likely to cover the 
entire range of critical levels in the population. 
In addition, it is preferable to have more (and 
consequently, more closely spaced) test levels 
with fewer objects tested at each level than to 
have only a few test levels and a large number 
of objects tested at each level. 

Note: The following segments of Chapter 10 are paged and spaced as necessary to allow a facing- 
page arrangement of Procedures and Examples. Thus, Procedure steps appear on left-hand pages, 
and their associated Example steps appear on facing right-hand pages. The only exception is in 
Paragraph 10-3.3, where both the Procedure and Example are complete on the same page. 
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10-2.1 GENERAL SOLUTION FOR THE KARBER METHOD 

10-2.1.1 Procedure. Prepare a table with nine columns headed x, n, r, p, (pi+1 — pi), a, o2, d, 
and d2. (See Table 10-1.) 

(1) In column 1, enter the stimulus levels used in the test from lowest to highest — that is, 
enter Xi, x2, . .., xk where Xi < x2 < . . . < xk. 

(2) In columns 2 and 3, for each xit enter the corresponding n, (number of objects tested at 
that level) and r, (number of responses). 

(3) Corresponding to each x, compute pl = ^ and enter this in column 4. (Remember that 

Pi must equal 0 and pk must equal 1 if this solution is to be used.) 

(4) Corresponding to each x{ (except xk), compute pi+1 — px and enter in column 5. There 
is no entry in this column corresponding to xk. 

(5) Corresponding to each x, (except xk), compute a, = Xl, the midpoint of the interval 

from Xi to xi+i. Tabulate the o, values in column 6. There is no entry in this column 
corresponding to xk. 

(6) Corresponding to each , enter a? in column 7. 

(7) Corresponding to each x{ (except xk), compute d{ = xi+1 — xit the length of the interval 
from Xi to xi+1. Tabulate the d{ values in column 8. There is no entry in this column 
corresponding to xk. 

(8) Corresponding to each d{, enter di in column 9. 

(9) Compute m = 2(p,-+i — pija,, the sum of products of corresponding entries in the 5th and 
6th columns, m is our estimate of the mean of the distribution of critical levels. 

(10) Compute: 

51 = 2(pt+1 — pi)a?, the sum of products of corresponding entries in the 5th and 7th 
columns; 

52 = 2(pl+i — pi)dx2, the sum of products of corresponding entries in the 5th and 9th 
columns; 

s’ - & - -1- 

s is our estimate of the standard deviation of the distribution of critical levels. 
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10-2.1.2 Example. The observations of Data Sample 10-1 are used to illustrate the Procedure. 
The problem is to estimate the mean and standard deviation of the distribution of critical values 
of peak voltage. In this example, we assume that nothing is known about the distribution of 
critical levels, and the computations are performed in natural units. If the distribution of critical 
levels were known or presumed to be log-normal, and if the Karber method were being used to 
provide a quick and easy answer, or to provide initial estimates for the exact probit solution 
(Paragraph 10-3.2), then the computations would have been performed on the transformed values 
x = log (peak voltage). 

The entries and calculations of Steps (1) through (8) of the Procedure are shown in columns 1 
through 9 of Table 10-1. The calculations of Steps (9) and (10) are shown at the bottom of 
Table 10-1. 

TABLE 10-1. KARBER METHOD OF ANALYSIS FOR FUZE PEAK VOLTAGE TEST DATA 
(SEE DATA SAMPLE 10-1) 

Level of 
Stimulus, 

Peak 
Voltage 

X 

Number 
of 

Objects 
Tested 

n 

Number 
of Objects 
Respond¬ 

ing 
r r/n = p Pi+l — P‘ a a2 d d2 

Col. (1) (2) (3) (4) (5) (6) (7) (8) (9) 

10.0 12 0 0 0 12.50 156.25 5.0 25.00 
15.0 12 0 0 .08 16.25 264.06 2.5 6.25 
17.5 12 1 .08 .07 18.75 351.56 2.5 6.25 
20.0 13 2 .15 .15 21.25 451.56 2.5 6.25 
22.5 10 3 .30 .16 23.75 564.06 2.5 6.25 
25.0 13 6 .46 .21 27.50 756.25 5.0 25.00 
30.0 12 8 .67 .02 32.50 1056.25 5.0 25.00 
35.0 13 9 .69 .16 37.50 1406.25 5.0 25.00 
40.0 13 11 .85 .06 45.00 2025.00 10.0 100.00 
50.0 11 10 .91 .09 55.00 3025.00 10.0 100.00 
60.0 11 11 1.00 

Step (9): m = 2 (pi+i — pf) a* Step (10) 
= 29.68 
= mean value of critical peak 

voltage. 

s2 = Si - m2 - (S2/12) 
= 1002.4051 - 880.9024 - 2.3021 
= 119.2006 

s = 10.92 
= estimated standard deviation of 

critical peak voltage. 

: Si = 2 (pi+i - pi) a,-2 
= 1002.4051 

S2 = 2 (p^i - pd di2 
= 27.6250 
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10-2.2 SIMPLIFIED SOLUTION (KARBER METHOD) FOR THE SPECIAL CASE WHEN TEST LEVELS 
ARE EQUALLY SPACED AND EQUAL NUMBERS OF ITEMS ARE TESTED AT EACH LEVEL 

10-2.2.1 Procedure. Prepare a table with columns headed x, r, p, and cumulative p. (See 
Table 10-2.) 

(1) In the x column, enter the test levels from lowest to highest, i.e., enter xu x2, ..., xk, 
where xx < x2 < ... < xk. 

(2) Enter r,, the number of objects responding at each a;,. 

(3) Corresponding to each xit compute p, = r./w. (n is the number of objects tested at each 
level and is the same for all levels). Remember that pi must equal 0 and pk must equal 1 
for this solution to be used. 

(4) In the last column, enter the cumulative p, i.e., at xt, the sum of all p up to and including p,. 

(5) Let: xk 
d 

51 

52 

highest test level. 
interval between successive test levels. 
sum of column p. 
sum of column cumulative p. 

(6) Compute m = xk — d(Sx — \). 

(7) Compute s2 = d2(2S2 — St — S[ — ^). 
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10-2.2.2 Example. In order to demonstrate the computing procedure, the fuze data (Data 
Sample 10-1) have been changed arbitrarily, to have equal spacing in x and equal numbers of 
objects at each level. Assume that 12 objects were tested at each level, and that the responses 
were as shown in Table 10-2. Steps (1) through (4) of the Procedure consist of preparing and 
filling out the four columns of Table 10-2. Steps (5) through (7) are shown at the bottom of 
Table 10-2. 

TABLE 10-2. SIMPLIFIED SOLUTION FOR THE KARBER METHOD OF ANALYSIS WHEN THE TEST 
LEVELS (x) ARE EQUALLY SPACED AND EQUAL NUMBERS OF OBJECTS (n) 

ARE TESTED AT EACH LEVEL 

Peak Voltage 
X 

Number of Objects 
Responding 

r 

Proportion of Objects 
Responding 

P = r/12 
Cumulative Proportion 

10.0 0 0 0 
15.0 0 0 0 
20.0 2 .17 .17 
25.0 6 .50 .67 
30.0 8 .67 1.34 
35.0 9 .75 2.09 
40.0 10 .83 2.92 
45.0 10 .83 3.75 
50.0 11 .92 4.67 
55.0 12 1.00 5.67 

Si = 5.67 S2 = 21.28 

Step (5) xk = highest test level 
= 55 

d = interval in x 
= 5 

51 = sum of p 
= 5.67 

52 = sum of cumulative p 
= 21.28 

Step (6) m = xk — d (Si — I) 
= 55 - 5 (5.67 - .50) 
= 29.15 
= mean value of critical peak 

voltage. 

Step (7) s2 = d2 (2S2 - Si - S\ - A) 
= 25 (42.56 - 5.67 - 32.15 - .08) 
= 116.50 

s = 10.79 
= estimated standard deviation of critical peak voltage. 
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10-3 PROBIT METHOD OF ANALYSIS 

When it is assumed that the distribution of critical levels is of a particular type, methods for 
estimating the properties of the distribution are tailored to it. There are three types of distributions 
for sensitivity data that have been studied extensively in the statistical literature — the normal, 
the logistic, and the angular. Only the normal will be discussed in detail here because it is most 
frequently used in ordnance sensitivity testing. For the logistic, see Berkson(2) and Hodges,t3) for 
the angular, see Knudsen and Curtis(4) and Fisher and Yates.(5) When the stimulus levels used 
in the test are between the levels which cut off the lower and upper 10% of the distribution (most 
testing is performed in this range), any one of these types will fit the data nearly as well (or as 
poorly) as another, no matter what the true distribution of critical levels is. However, estimates 
of the parameters of the logistic or the angular distributions involve simpler computations than are 
given here for the normal; for example, see the technique described in Hodges(3> for the logistic 
curve. 

The procedures described here assume that the distribution of critical values is normal — that 
is, for all x the proportion of objects which have critical levels between x and x + dx is equal to the 
area of some normal curve between x and x + dx. In general, the procedures are not very sensitive 
to moderate departures from normality, provided one does not extrapolate beyond the range of 
the data. 

The problem may be summarized as follows: k different levels Xi, x2, .. ., xk of a stimulus are 
applied to %, n2, ..., nk objects, with r1} r2, ..., rk responses, respectively. Let p, = r,-/%,•. 
The questions to be answered are: 

(1) At what level m of the stimulus would half of similar objects be expected to respond? Or 
equivalently, under the assumption of normality, what is the mean of the critical levels of all such 
objects? 

(2) Estimate the relation between the level of the stimulus and the proportion of objects 
responding. 

Selection of Stimulus Levels. There are no simple cut-and-dried rules. A general guide can be 
given in terms of the purpose of the experiment: 

(1) If the experimenter is interested in estimating a specific percentage point, the stimulus 
levels to be used in the test should be fairly close to that point, and should bracket the point. It is 
pertinent here to emphasize that extrapolations may lead to serious error, particularly if the 
experimenter attempts to estimate an extreme percentage point (say, the 5% or 99% point) from 
observations at stimulus levels which all lie to one side of that point. 

(2) The test levels should cover a range sufficiently wide so that the proportion responding p, 
varies from near 0 to near 1, if: 

(a) One is interested in the relation between stimulus level and percentage response over the 
entire range; or, 
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(b) One is interested in estimating the standard deviation of the distribution of critical levels 
(or equivalently, the slope of the regression line in the probit solution); or, 

(c) One is interested in testing the assumption of normality. 

Basis of the Method. If the critical levels are normally distributed (with unknown mean y and 
standard deviation <0, then Y[, which can be determined from tables of the normal integral, is a 
linear function of the corresponding stimulus level xt. 

Y- is determined from: 

The "5” in the upper limit of the integral is introduced for computational convenience. 

Least squares procedures are used to estimate the best straight line passing through the k points 
(Y-, Xi). The formulas take account of the fact that the points do not have equal weights. The 
line will be expressed as 

Yp = 5 + b(x — m) 

where m and b are estimated from the data, x is the stimulus level, and Yp is related to p, the 
probability that an object’s critical level is <x, by the formula 

m is an estimate of y (the mean and 50th percentile of the underlying normal distribution), and 6 is 
an estimate of l/<r (the reciprocal of the standard deviation of the critical values). 

Solutions Described. We describe two methods of solution: the graphical probit method in 
Paragraph 10-3.1; and the computational {exact) probit method in Paragraph 10-3.2. The 
graphical method is much simpler, and is sufficiently precise for many purposes. When a more 
accurate solution is desired, the graphical method furnishes a first approximation for the exact probit 
method. 
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10-3.1 GRAPHICAL PROBIT SOLUTION 

10-3.1.1 Procedure. To facilitate the calculations, prepare a table with nine columns, headed 
respectively, x, n, r, p, Y\ Y, W, nW, nWx. (See Table 10-3.) 

(1) In column x, enter the levels Xi, x2, ..., xk used in the experiment. 

(2) In columns n and r, record the values of rii and r{, corresponding to x,. 

(3) In column p, compute the respective proportions responding, p, = ri/w,-. 

(4) Use Table A-2 to obtain zp corresponding to p. In column Y', enter Y' = zp + 5 corre¬ 
sponding to each p. 

(5) Plot Y' as ordinate against x as abscissa, on ordinary rectangular coordinate graph paper. 
See Figure 10-1. If probit paper* is available, it can be used, and the column Y' is omitted 
from the table. The percentages responding at each x (% response = 100 pi) are plotted 
on probit paper, using the left vertical scale; the right vertical scale gives the corresponding 
zp, and hence the corresponding Y minus 5. 

(6) Whichever graph paper is used, draw a straight line by eye to fit the k points. Only 
vertical deviations from the line are to be considered in fitting; and points for which the 
value of Y' is outside the interval 2.5 to 7.5 may almost be disregarded unless n{ for those 
points is much larger than for points inside the interval. (Points outside this interval are 
beyond the range of the probit paper). 

(7) For each value of x plotted on the graph, read the ordinate Y of the line (on probit scale if 
on probit paper), and record the values in the Y column of the table.f 

* “Probit paper” also is called “normal deviate paper”, “normal ruling”, etc. 

t Instead of reading the Y values from the graph, we may complete step (8), and use the equation thus obtained 
to compute Y. 
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10-3.1.2 Example. The observations of Data Sample 10-1 were plotted on normal probability 
paper, using both x = peak voltage and x = log™ (peak voltage), as abscissa. The data plot 
more nearly as a straight line when transformed using the equation x = logi0 (peak voltage); there¬ 
fore, all of the probit method calculations are done on the transformed variable. (See Table 10-3.) 

Steps (1) through (4) of the Procedure result in filling in the first 5 columns of Table 10-3 
(through Y'). 

TABLE 10-3. GRAPHICAL PROBIT SOLUTION USING DATA SAMPLE 10-1 

Level of 
Stimulus 

= logiopeak 
Voltage 

X 

Number 
of 

Objects 
Tested 

n 

Number 
of Objects 
Respond¬ 

ing 
r 

Proportion 
of Objects 
Respond¬ 

ing 

P = r/n Y' Y IV nW nWx 

1.0000 12 0 0 _ 2.0 .015 0.180 0.180 
1.1761 12 0 0 — 3.2 .180 2.160 2.540 
1.2430 12 1 .08 3.59 3.7 .336 4.032 5.012 
1.3010 13 2 .15 3.96 4.1 .471 6.123 7.966 
1.3522 10 3 .30 4.48 4.5 .581 5.810 7.856 
1.3979 13 6 .46 4.90 4.8 .627 8.151 11.394 
1.4771 12 8 .67 5.44 5.3 .616 7.392 10.919 
1.5441 13 9 .69 5.50 5.8 .503 6.539 10.097 
1.6021 13 11 .85 6.04 6.2 .370 4.810 7.706 
1.6990 11 10 .91 6.34 6.9 .154 1.694 2.878 
1.7782 11 11 1.00 — 7.4 .062 0.682 1.213 

2 nW = 47.573 
2 nWx = 67.761 

Steps (5) through (7) — Plot Y' against x on ordinary graph paper, as shown in Figure 10-1. 
A straight line is fitted to the plotted points by eye. The ordinate Y of the line is read off at each 
observed x, and is entered in the Y column of Table 10-3. * 

* Or, complete step (8), and use the equation Y = 5 + b(x — m) to obtain the Y values. 
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10-3.1.1 Procedure (Cont) 

Note: Before proceeding further, it is often desirable to determine whether the line is an adequate 
representation of the data. The procedure given in Paragraph 10-3.3 may be used for this purpose. 

(8) Calculate b, the slope of the fitted line, as the increase in Y for a unit increase in x. Mark 
two convenient points, c and d, on the line. Read off the corresponding values for both x 
and Y. 

xc = Yc = 
xd = Yd = 

Y _ y 
Then b = x _ x■ Read off m, the value of x corresponding to Y = 5. (Probit = 5, 

on probit paper). We may then write the equation of the line as Y = 5 + b(x — m). 

(9) The relation between a given level of stimulus x' and the proportion of individuals respond¬ 
ing p' is estimated by the relationship zp> = b(x' — m) where the p corresponding to zp> is 
given in Table A-l. (Or, this relationship can be read directly from the straight line drawn 
on probit paper.) 
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10-3.1.2 Example (Cont) 

7.0 

6.0 

Y' 

5.0 

4.0 

L2 |~4 L6 LS 

X= log|Q PEAK VOLTAGE 

Figure 10-1. Probit regression line (fitted by eye). 

Step (8) — The slope b of the line is calculated as follows: 

Equation of the line: 

= 1.3 
= 1.6 

Yc = 4.0 
Yd = 6.0 

6 - ~ 
xd — xc 

6.0 - 4.0 
0.3 

= 7 

m (the value of x at Y = 5) = 1.43. 

Y = 5 + b(x — m) 
= 5 + 7x - 10.01 
= -5.01 + lx. 

Step (9) — If we wish to estimate the proportion of individuals responding at a peak voltage = 18, 
for example, then: 

x' = logio 18 
= 1.255 

V = ~ m) 
= 7(1.255 - 1.43) 
= 8.785 - 10.01 
= -1.22 

p' = .11, the proportion which may be expected to respond at PV = 18. 
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10-3.1.1 Procedure (Cont) 

m is our estimate of n, the stimulus level at which we would expect half of similar indi¬ 
viduals to respond. A (1 — a) confidence interval estimate of n may be computed as follows: 

(10) Look up Zi-a/2 in Table A-2. 

(11) In the column W, corresponding to each value of Y, enter the value of W obtained from 
Table A-18. 

(12) Corresponding to each value of x, compute nW and nWx, and enter them in the last columns 
of the table. 

(13) Compute 'LniWi and ’ZniWixi, the totals for the last two columns. 

(14) Compute s2m = ^ ’ t^ie est'mate °f the variance of m. This estimate is slightly too 

small on the average, but the bias is negligible provided that x = ’ZnWx/I.nW is approxi¬ 
mately equal to m. If the two differ considerably, then the quantity 

Sxx = ZriiWtXi2 - (ZnWxy/ZnW 

should be computed, and our estimate of the variance of m becomes 

_ 1 ( 1 \ (m - x)2 

~ 62 \2nW) + Sxx - 

(15) A (1 — a) confidence interval estimate of n is the interval from m — Zi-a/2 sm to m + Zi_a/2 sm. 
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10-3.1.2 Example (Cont) 

Steps (10) through (15) — A 95% confidence interval estimate of n (the level at which we would 
expect half of the individuals to respond) is obtained as follows: 

Columns W, nW, and nWx, are computed and entered in Table 10-3. 

Compute: 
2 nW = 47.573 

ZnWx = 67.761 

'ZnWx 
X ~ 2nW 

67.761 
47.573 

= 1.424 

2 1 1 
Sm ~ ¥ ’LnW 

49 V47.573 

1 
2331.077 

= .000429 

sm = .0207 

(Since x = 1.424, approximately equal to m (= 1.43), we do not bother to use the more 
complicated formula for s„.) 

Let: a = .05 
*!_/2 = 1.96 

A 95% confidence interval estimate of n is the interval m ± 1.96 sm = 1.43 ± .04, the interval 
from 1.39 to 1.47. 
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10-3.2 EXACT PROBIT SOLUTION 

The graphical solution very often is adequate, but complications in the data may make this 
solution less satisfactory in some cases and an arithmetic technique may be necessary. For 
example, the points may be too irregular for us to place any confidence in a line drawn by eye; or, 
the weights (nW), that should be attached to each point, may be so different as to make it difficult 
to adjust for them visually. 

10-3.2.1 Procedure. The probit solution given here involves a series of successive approxima¬ 
tions, the first of which is given by the graphical probit solution or by the Karber method described 
in Paragraph 10-2. For the exact solution, we need a table with ten columns headed, respectively, 
x, n, r, p, Y, W, nW, nWx, y, nWy. (See Table 10-4). 

(1) In column x, enter the levels Xi, x2, . .., xk used in the experiment. 
(2) In columns n and r, record the values of », and , corresponding to . 
(3) In column p, compute the respective proportions responding p* = r;/w;. 
(4) Obtain values for column Y by either method (a) or (b): 

(a) Follow instructions (1) through (7) of the graphical probit solution in Paragraph 10-3.1 
to obtain the Y-values. These then are tabulated in the table for the exact solution. 

(b) Follow instructions (1) through (10) of the Karber method described in Paragraph 10-2 

to compute m and s. For initial estimates, take m0 = m, b0 = ^; and corresponding 

to each x{, use the equation Y{ = 5 + b0(Xi — wi0) to compute the values for the 
Y column of the table for the exact solution. Unless n is very large, 1 decimal in 
Y is sufficient. If 2 decimals in Y should be required, Tables A-18 and A-19 in ORDP 
20-114 of this Handbook are not convenient; consult Finney(6) for more extensive 
tables. 

(5) In column W, corresponding to each value of Y, enter the value of W obtained from 
Table A-18. 

(6) Corresponding to each value of x, compute riiWi and UiWiXi, and enter them in the nW 
and nWx columns, respectively, of the table. 

(7) Corresponding to each “expected probit” Y in the Y column, use Table A-19 to compute 
the “working probit” y, as follows: 

For Y < 5.0, y = y0 + p (i^) ; 

For Y > 5.0, y = j/ioo - (l - p) ; 

where, for each Y, p is the corresponding entry in the p column of the Table, and Table A-19 

gives the values for y0 (or ym) and . Tabulate the values in column y. 

(8) For each value of y, calculate the value niWlyi, and enter it in column nWy. 
(9) Compute: 

2 UiWi, the sum of column nW 
2 UiWiXi, the sum of column nWx 
2 niWt/yi, the sum of column nWy 

51 = 2 UiWiXi, the sum of the products of elements in columns x and nWx. 
52 = 2 UiWiX^i, the sum of products of corresponding elements in columns nWx and y. 

53 = 2 nWy2 
Sxx = Si - (2 nWxy/V nW 
Sxv = Si - (2 nWx) (2 nWy)/? nW 
Syy = S3 - (2 nWyYI'L nW 
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10-3.2.2 Example. The observations of Data Sample 10-1 are used for illustration, and the 

line fitted graphically in Paragraph 10-3.1 is used as the first approximation. 

Steps (1) through (3) consist of filling in the first four columns of Table 10-4. 
Step (4) — The Y values entered are copied from the Y column of the graphical probit solution 

(Table 10-3). These are the ordinates of the line at each observed x. 
Step (5) through (8) — fill in the remaining columns of Table 10-4. 

TABLE 10-4. EXACT PROBIT SOLUTION 

logioPV 

X 

No. of 
Objects 
Tested 

n 

No. of 
Objects 

Respond¬ 
ing 
r 

Proportion 
of Objects 
Respond¬ 

ing 
P = r/n 

Expected 
Probit 

r W nW nWx 

Work¬ 
ing 

Probit 

y nWy 

1.0000 12 0 0 2.0 .015 0.180 0.180 1.695 0.305 
1.1761 12 0 0 3.2 .180 2.160 2.540 2.745 5.929 
1.2430 12 1 .08 3.7 .336 4.032 5.012 3.602 14.523 
1.3010 13 2 .15 4.1 .471 6.123 7.966 3.972 24.321 
1.3522 10 3 .30 4.5 .581 5.810 7.856 4.476 26.006 
1.3979 13 6 .46 4.8 .627 8.151 11.394 4.900 39.940 
1.4771 12 8 .67 5.3 .616 7.392 10.919 5.436 40.183 
1.5441 13 9 .69 5.8 .503 6.539 10.097 5.461 35.709 
1.6021 13 11 .85 6.2 .370 4.810 7.706 6.020 28.956 
1.6990 11 10 .91 6.9 .154 1.694 2.878 5.966 10.106 
1.7782 11 11 1.00 7.4 .062 0.682 1.213 7.766 5.296 

Step (9) — 2 nW 
2 nWx 
2 nWy 

51 

52 

Sxx 

Sxv 

47.573 
67.761 
231.274 

2 nWx2 
97.4232 

2 nWxy 
335.4415 

& - (2 nWxy/?; nW 
0.9073 

S2 - (2 nWx) (2 nWy)/2 nW 
6.0244 
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10-3.2.1 Procedure (Cont) 

(10) Compute: 

b = Sxv/Sxx 
x = 2 nWxfZ nW 
y = 2riWJ2nW 

The equation of the probit regression line is 

Y = y + b(x - x). 

The procedure for obtaining the best line is an iterative one, and in theory we should repeat the 
above procedure until the same equation is obtained for two successive iterations. Practically, 
we often may be able to see that an additional iteration will not change the equation materially. 

Next Iteration: 

The procedure for obtaining an additional iteration is as follows: Make a table with nine columns 
headed x, n, p, Y, W, nW, nWx, y, nWy. (See Table 10-5.) 

(11) Copy the three columns, x, n, p from Table 10-4. 

(12) For each value of x, compute the corresponding value of Y, using the equation 

Y = y + b(x - x) 

calculated in the previous iteration. 

(13) Follow instructions of steps (5) through (10). 

To test whether the line is a good fit to the data, use the test procedure outlined in Paragraph 
10.3.3, using the y, x, and b obtained from the last iteration performed, to compute a new 

Y = y + b(x - x) 

for each value of x used in the test. 
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10-3.2.2 Example (Cont) 

Step (10) — x = 2 nWx/I, nW = 1.4244 

5 = 2 nWy/2 nW = 4.8615 

6 = SXJSXX = 6.640 

The equation of the probit regression line is 

Y = y + b(x - x) = -4.5965 + 6.640 x. 

Next Iteration. An additional iteration is shown in Table 10-5. The first three columns (x, n, p) 
of Table 10-5 are copied from Table 10-4. The Y column is calculated by substituting observed 
values of x in the equation shown in Step (10) above. The remaining columns of Table 10-5 are 
filled in as described in Steps (5) through (8) of the Procedure. 

TABLE 10-5. EXACT PROBIT SOLUTION (SECOND ITERATION) 

logioPV 

X 

No. of 
Objects 
Tested 

n 

Proportion 
of Objects 
Respond¬ 

ing 
P = r/n Y W nW nWx y nWy 

1.0000 12 0 2.0 .015 0.180 0.180 1.695 0.305 
1.1761 12 0 3.2 .180 2.160 2.540 2.745 5.929 
1.2430 12 .08 3.7 .336 4.032 5.012 3.602 14.523 
1.3010 13 .15 4.0 .439 5.707 7.425 3.964 22.623 
1.3522 10 .30 4.4 .558 5.580 7.545 4.477 24.982 
1.3979 13 .46 4.7 .616 8.008 11.194 4.904 39.271 
1.4771 12 .67 5.2 .627 7.524 11.114 5.432 40.870 
1.5441 13 .69 5.7 .532 6.916 10.679 5.482 37.914 
1.6021 13 .85 6.0 .439 5.707 9.143 6.036 34.447 
1.6990 11 .91 6.7 .208 2.288 3.887 6.217 14.224 
1.7782 11 1.00 7.2 .092 1.012 1.800 7.592 7.683 

Step (9) — 2 nW = 49.114 Step (10) — x 

2 nWx = 70.519 

2 nWy = 242.771 y 

51 = 2 nWx* = 102.2663 

52 = 2 nWxy = 355.3694 b 

53 = 2 nWy* = 1247.7433 

S„ = 1.0135 

Sxy = 6.7933 

Svv = 47.7238 

The equation of the probit regression line is: 

Y = y + 6(x - x) = -4.6812 + 6.703 x. 

Using this equation to calculate values of Y, the Y values obtained differ very little from those 
obtained on the first iteration, and no further iterations are considered necessary. 

= 2 nWx/2 nW 

= 1.4358 

= 2 nWy/2 nW 

= 4.943 

= SXy/SXZ 

= 6.703 
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10-3.3 TESTING WHETHER THE LINE IS AN ADEQUATE REPRESENTATION OF THE DATA 

10-3.3.1 Procedure. To facilitate the calculations, we require a table with ten columns: x, n, 

r, Y, P, nP, 1 - P, nP(l - P), r - nP, and . See Table 10-6. 

(1) Choose a, the level of significance of the test. In columns x, n, r, copy the values from the 
probit solution table. If the graphical probit solution was used, copy the Y column of that 
table as the Y column here. If the exact probit solution was used, use the y, x, and b 
obtained from the last iteration performed to compute, corresponding to each x, 

Y = y + b(x - x) 

and tabulate these values in the Y column here. 

(2) Look up x?_a for k — 2 degrees of freedom in Table A-3. k = number of rows in the table 
(see Table 10-6). 

(3) Put zP = Y — 5, and for each Y, using Table A-l, obtain the value of P corresponding to zP. 

(4) Compute the required quantities in the last columns of the table. 

(5) Obtain x2 = 
* (n - fijPj)2 

U. riiPii 1 - Pi) 
the sum of the values in the last column. 

(6) If x2 < x?_a, decide that there is no reason to believe that the line does not adequately 
represent the data. If x2 > x\_a, decide that the straight line does not adequately describe 
the relation between stimulus and response. If a significant value of x2 is obtained, check 
to see whether an unusually large contribution to x2 comes from one class or from a few 
classes with very small expected values, i.e., small nP or nil — P). If this is the case, 
several such classes may be combined (for details, see Finney(6)). 

10-3.3.2 Example. The test of the final probit equation is shown in Table 10-6. If a = .05, 
we find in Step (2) that x29B for 9 d.f. = 16.92. In Step (5), the calculated x2 = 2.37. Since this 
is not larger than x296 , we accept the fitted line. 

TABLE 10-6. TEST OF LINEARITY — FINAL PROBIT EQUATION 

logioPV 
X 

n r Y P nP 1 - P nP(1 - P) r-nP 
(r - nP)2 

nP(l - P) 

1.0000 12 0 2.02 .0014 0.02 .9986 0.02 -.02 .02 
1.1761 12 0 3.20 .04 0.48 .96 0.46 -.48 .50 
1.2430 12 1 3.65 .09 1.08 .91 0.98 -.08 .01 
1.3010 13 2 4.04 .17 2.21 .83 1.83 -.21 .02 
1.3522 10 3 4.38 .27 2.70 .73 1.97 .30 .05 
1.3979 13 6 4.69 .38 4.94 .62 3.06 1.06 .37 
1.4771 12 8 5.22 .59 7.08 .41 2.90 .92 .29 
1.5441 13 9 5.67 .75 9.75 .25 2.44 -.75 .23 
1.6021 13 11 6.06 .86 11.18 .14 1.57 -.18 .02 
1.6990 11 10 6.71 .96 10.56 .04 0.42 -.56 .75 
1.7782 11 11 7.24 .99 10.89 .01 0.11 + .11 .11 

x2 = 2.37 
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10-3.4 USING THE PROBIT REGRESSION LINE FOR PREDICTION 

The procedures which follow describe how to use the probit regression line for estimation, in¬ 
cluding confidence interval estimates. If a nonsignificant value of x2 was obtained in the test of 
linearity, Paragraph 10-3.3, the formulas given here are directly applicable. If a significant value 
of x2 was obtained, these formulas do not apply without adjustment. For details, see Finney.(6) 

10-3.4.1 Level of Stimulus x' At Which a Specified Proportion P' of the Individuals Would Be 
Expected To Respond. 

Single Estimate 
(1) Choose P' 
(2) Use Table A-2 to find corresponding to P' 
(3) Let 7' = 5 + Zp< 
(4) Compute x' = x + (Y' — y)/b. 

This x’ is the value at which we would expect a proportion P' of the individuals to respond. 

Confidence Interval Estimate 

For a confidence interval estimate, see Finney.(6) 

10-3.4.2 Level of Stimulus x' At Which 50% of the Individuals Would Be Expected To Respond. 

The estimate of p, the mean and the 50th percentile of the distribution of critical levels, is 

A (1 — a) confidence interval estimate of n is computed as follows:* 

(1) Look up Z\_a/2 in Table A-2. 

(2) Compute 

(3) A (1 — a) confidence interval estimate of n is the interval from m — Zi_a/2 sm to 
m + Z\—q/2 sm • 

10-3.4.3 Proportion of Individuals Which Would Be Expected To Respond At a Specified Level of 
Stimulus. The probit regression equation Y = y + b(x — x) gives the expected value of 7(7') at 
a specified value of x{x’). 

The variance of 7, sY, is given by the formula 

A (1 — a) confidence interval estimate for 7 at a single specified value of x is given by the 
formula 

7' ± tl—a/2 Sy. 

If we want to make confidence interval statements for several values of x using the same fitted line, 
however, we must use the wider interval given by 

7' ±V2Fsy, 

as discussed in Chapter 5 (see Paragraph 5-4.1.2), ORDP 20-110. 

* This method is sufficiently good for most purposes. For an exact method, see Finney. <6> 
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10-4 THE UP-AND-DOWN DESIGN 

The up-and-down design, sometimes called the “Bruceton” method, is one of a class of designs 
that are called staircase methods because the test level for the next trial or group of trials depends 
on the results of the preceding trial or group of trials. In the up-and-down design, only one object 
is tested at a time. Starting at a level where about 50% responses are expected, the test level is 
moved up one level after each non-response, and down one level after each response. The experi¬ 
ment is concluded after a specified number of trials. 

The use of the up-and-down design, of course, presumes that it is convenient to test one object 
at a time and all staircase methods presume that the results of test can be known immediately, 
and that the test level can be adjusted quickly and easily. 

If x’s represent responses, and o’s represent non-responses, then the pattern of the experiment 
looks like this: 

Y2 x 

Yi o 

Y0 x o 

Y-1 o x x o 

Y_ 2 o oo 

The up-and-down design and its analysis are described in detail here. The Procedure assumes 
normal distribution of the critical levels and, in such a case, gives a more accurate estimate of the 
mean (which also is the 50th percentile) than any other method described in this Chapter. For 
further discussion of the up-and-down method, see Brownlee, Hodges, and Rosenblatt,(7) Dixon 
and Massey,(8) Dixon and Mood.(9) For a completely worked-out example of an ordnance applica¬ 
tion, see Culling.(10) Other staircase methods are described in Anderson, McCarthy, and Tukey.(11) 

The up-and-down design requires initial guesses of the mean and standard deviation of the 
distribution of critical levels (x0 = guess for mean, d = guess for standard deviation). The method 
of estimation makes some allowance for a poor initial guess of the mean x0, and, in fact, is a par¬ 
ticularly useful way of estimating the mean when the experimenter has little idea what the true 
mean is. So long as the initial guess for the standard deviation is between half and twice the true 
standard deviation of the distribution, the method of estimation described is appropriate. 

Determine equally-spaced test levels, ..., x_3, x_2, x_i, x0, Xi, x2, x3, .. ., so that the distance 
between two successive levels is d. (d = xx — x0 = x0 — X-lt etc.). The first object is tested at 
level x0; if it “responds,” the second object is tested at level x_i; if it “does not respond,” the 
second object is tested at level xx. Similarly, each succeeding object is tested at the level one step 
below the level used in the preceding test if it resulted in a “response,” or, at the level one step above 
the level used in the preceding test if it resulted in “no response.” 
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Procedure. Count the total number R = 2r, of responses, and let N = 2n, be the total number 

of objects tested. If R < perform steps (1) through (6); if R > perform steps (1') 

through (6'). 

When R <f: 

(1) Prepare a four-column table with columns headed y, r, j, j2. 

(2) Let: ya = the lowest level at which a “response” occurred 
yi = the level one step above y0 
y2 = the level two steps above y0 
yk = the highest level at which a “response” occurred. 

Enter y0, yu . .., yk in column y. 

(3) In column r, corresponding to each yjt enter r3 = the number of “responses” at level y,. 

(4) Enter the numbers 0, 1, ..., k, in column 

(5) Corresponding to each entry in column j, enter its square in column j2. 

(6) Compute: 

A = 2 j rj, the sum of products of corresponding entries in columns r and j. 
B = 2 j2 Tj, the sum of products of corresponding entries in columns r and j2. 

m-y. + d(±-l) 

s = 1.620d (RBA2 + .029) . 

When R > £: 

(1') Prepare a four-column table with columns headed y, n — r, j, j2. 

(2') Let: y0 = the lowest level at which “no response” occurred 
yi = the level one step above y0 
y2 = the level two steps above y0 
yk = the highest level at which “no response” occurred. 

Enter y0, yk, ..., yk, in column y. 

(3') In column n — r, corresponding to each yjt enter rij — r}, the number of “no response” 
at level y3. 

(4') Enter the numbers 0, 1, .. ., k, in column j. 

(5') Corresponding to each entry in column j, enter its square in column j2. 

(6') Compute: 
A = 2 j (»y — Tj), the sum of products of corresponding entries in columns n — r and j 
B =2 j2 (rij — Tj), the sum of products of corresponding entries in columns n — r and;2. 

s = 1 .62d | 
CN - R)B - A2 

(.N - R)2 
+ .029 >. 

m is our estimate of the mean (and the 50th percentile) of the distribution of critical 
levels. 

s is our estimate of the standard deviation of the distribution of critical levels. 
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10-5 SENSITIVITY TESTS WHEN THE STIMULUS LEVELS 

CANNOT BE CONTROLLED 

The methods discussed in Paragraphs 10-2 
through 10-4 assumed that the stimulus levels 
can be preassigned and accurately controlled. 
Although this is the usual case in experimental 
work, there are times when conditions cannot be 
sufficiently well controlled to insure that the 
level used is exactly the one that the experi¬ 
menter intended to use. For example: he may 
intend to fire a group of 10 projectiles, each at a 
velocity of 2000 f/s; but, because of random 
variation in velocities for a fixed charge, the 
actual observed velocities range from 1975 to 
2020 f/s. 

In such a case, when the level used in the test 
can be measured directly, the experimenter has 
two choices for analyzing the data. If the 
actual levels used cluster so closely about the 
intended levels that: 

(1) there is no overlapping between two of 
these clusters; 

and, 

(2) the range of any cluster is so small that 
the probability of “response” at any of 
the actual levels differs little from the 
probability of response at the intended 
level; 

then the experimenter may simply assume that 
each test was conducted at the intended level, 
and use the methods already presented in 
Paragraphs 10-2 through 10-4. However, if 
one or both of these conditions are not met, 
none of the methods described in this Chapter 
are valid. Techniques for handling such data 
when the underlying distribution is normal are 
described in Golub and Grubbs.<12) 
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SECTION 3 

THE PLANNING AND ANALYSIS OF 

COMPARATIVE EXPERIMENTS 



DISCUSSION OF TECHNIQUES 

IN CHAPTERS 11 THROUGH 14 

In this Section, we attempt to give only the 
following coverage: 

(1) some broad consideration to the planning 
of experiments, in Chapter 11; 

(2) some examples of the more widely used 
experimental designs, with appropriate methods 
of analysis, in Chapters 12 and 13; 

(3) a brief description of new techniques that 
are useful when the purpose of experimentation 
is that of seeking maximum or optimum levels 
of the experimental factors, in Chapter 14. 

Excellent books are available to give more 
extensive catalogs of experimental designs and 
more details regarding precautions in applying 
and analyzing these designs. A list of recom¬ 
mended books is given at the end of Chapter 11. 
When actually faced with the problem of plan¬ 
ning an experiment, however, books will not be 
sufficient. The planning of experiments cannot 
be done in an ivory tower; and does not consist 
merely of writing down a few key words or 
parameters, looking them up in an index, and 
then selecting a specific plan. The proper ex¬ 

perimental plan depends on: the purpose of the 
experiment; physical restrictions on the process 
of taking measurements; and other restrictions 
imposed by limitations of time, money, and the 
availability of material and personnel, etc. 
The novice experimenter is advised to consult a 
competent statistician and give him all the in¬ 
formation available — not only what is thought 
to be important, but also what may be thought 
to be unimportant. In the words of Cochran 
and Cox*: 

* W. G. Cochran and G. M. Cox, Experimental De¬ 
signs, (2d edition), p. 10, John Wiley and Sons, Inc., 
New York, N.Y., 1957. 

Participation in the initial stages of experiments in 
different areas of research leads to a strong conviction 
that too little time and effort is put into the planning of 
experiments. The statistician who expects that his con¬ 
tribution to the planning will involve some technical 
matter in statistical theory finds repeatedly that he 
makes a much more valuable contribution simply by 
getting the investigator to explain clearly why he is doing 
the experiment, to justify the experimental treatments 
whose effects he proposes to compare, and to defend his 
claim that the completed experiment will enable its 
objectives to be realized. . . . 

It is good practice to make a written draft of the pro¬ 
posals for any experiment. This draft will in general 
have three parts: (i) a statement of the objectives; (ji) a 
description of the experiment, covering such matters as 
the experimental treatments, the size of the experiment, 
and the experimental material; and (iii) an outline of the 
method of analysis of the results. 

In outlining the methods of conducting and 
analyzing an experiment, Anderson and Ban¬ 
croft f give the following advice: 

(i) The experimenter should clearly set forth his ob¬ 
jectives before proceeding with the experiment. Is 
this a preliminary experiment to determine the 
future course of experimentation, or is it intended 
to furnish answers to immediate questions? Are 
the results to be carried into practical use at once, 
or are they to be used to explain aspects of theory 
not adequately understood before? Are you 
mainly interested in estimates or in tests of sig¬ 
nificance? Over what range of experimental con¬ 
ditions do you wish to extend your results? 

(ii) The experiment should be described in detail. The 
treatments should be clearly defined. Is it neces¬ 
sary to use a control treatment in order to make 
comparisons with past results? The size of the 
experiment should be determined. If insufficient 
funds are available to conduct an experiment from 
which useful results can be obtained, the experi¬ 
ment should not be started. And above all, the 
necessary material to conduct the experiment 
should be available. 

(iii) An outline of the analysis should be drawn up before 
the experiment is started. 

All A-Tables referenced in these chapters are 
contained in ORDP 20-114, Section 5. 

t R. L. Anderson and T. A. Bancroft, Statistical Theory 
in Research, p. 223, McGraw-Hill Book Co., Inc., New 
York, N.Y., 1952. 



CHAPTER 11 

GENERAL CONSIDERATIONS 

IN PLANNING EXPERIMENTS 

11-1 THE NATURE OF EXPERIMENTATION 

An experiment has been defined, in the most 
general sense, as “a considered course of action 
aimed at answering one or more carefully 
framed questions.” Observational programs in 
the natural sciences and sample surveys in the 
social sciences are clearly included in this gen¬ 
eral definition. In ordnance engineering, how¬ 
ever, we are concerned with a more restricted 
kind of experiment in which the experimenter 
does something to at least some of the things 
under study and then observes the effect of his 
action. 

The things under study which are being delib¬ 
erately varied in a controlled fashion may be 
called the factors. These factors may be quan¬ 
titative factors such as temperature which can 
be varied along a continuous scale (at least for 
practical purposes the scale may be called con¬ 
tinuous) or they may be qualitative factors 
(such as different machines, different operators, 
different composition of charge, etc.). The use 
of the proper experimental pattern aids in the 
evaluation of the factors. See Paragraph 11-2. 

In addition to the factors, which are varied in 
a controlled fashion, the experimenter may be 
aware of certain background variables which 
might affect the outcome of the experiment. 
For one reason or another, these background 
variables will not be or cannot be included as 
factors in the experiment, but it is often possible 
to plan the experiment so that: 

(1) possible effects due to background vari¬ 
ables do not affect information obtained about 

the factors of primary interest; and, 

(2) some information about the effects of the 
background variables can be obtained. See 

Paragraph 11-3. 

In addition, there may be variables of which 
the experimenter is unaware which have an 
effect on the outcome of the experiment. The 
effects of these variables may be given an oppor¬ 
tunity to “balance out” by the introduction of 
randomization into the experimental pattern. 
See Paragraph 11-4. 

Many books have been written on the general 
principles of experimentation, and the book by 
Wilson(1) is especially recommended. There 
are certain characteristics an experiment ob¬ 
viously must have in order to accomplish any¬ 
thing at all. We might call these requisites of a 
good experiment, and we give as a partial listing 
of requisites: 

(1) There must be a clearly defined objective. 

(2) As far as possible, the effects of the 
factors should not be obscured by other vari¬ 
ables. 

(3) As far as possible, the results should not 
be influenced by conscious or unconscious bias 
in the experiment or on the part of the experi¬ 

menter. 

11-1 
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(4) The experiment should provide some 
measure of precision.* 

To aid in achieving these requisites, statistical 
design of experiments can provide some tools for 
sound experimentation, which are listed in Table 

(5) The experiment must have sufficient pre¬ 
cision to accomplish its purpose. 

11-1. 

The tools given include: experimental pattern, 
planned grouping, randomization, and replica¬ 

* This requisite can be relaxed in some situations, i.e., 
when there is a well-known history of the measurement 
process, and consequently good a priori estimates of 
precision. 

tion. Their functions in experimentation are 
shown in Table 11-1, and are amplified in Para¬ 
graphs 11-2 through 11-5. 

TABLE 11-1. SOME REQUISITES AND TOOLS FOR SOUND EXPERIMENTATION 

Requisites Tools 

1. The experiment should have carefully de¬ 
fined objectives. 

1. The definition of objectives requires all of 
the specialized subject-matter knowledge of 
the experimenter, and results in such things 
as: 
(a) Choice of factors, including their range; 
(b) Choice of experimental materials, pro¬ 

cedure, and equipment; 
(c) Knowledge of what the results are 

applicable to. 

2. As far as possible, effects of factors should 
not be obscured by other variables. 

2. The use of an appropriate EXPERIMEN¬ 
TAL PATTERN** (see Par. 11-2) helps to 
free the comparisons of interest from the 
effects of uncontrolled variables, and sim¬ 
plifies the analysis of the results. 

3. As far as possible, the experiment should be 
free from bias (conscious or unconscious). 

3. Some variables may be taken into account 
by PLANNED GROUPING (see Par. 
11-3). For variables not so taken care of, 
use RANDOMIZATION (Par. 11-4). The 
use of REPLICATION aids RANDOM¬ 
IZATION to do a better job. 

4. Experiment should provide a measure of 
precision (experimental error). * 

4. REPLICATION (Par. 11-5) provides the 
measure of precision; RANDOMIZATION 
assures validity of the measure of precision. 

5. Precision of experiment should be sufficient 
to meet objectives set forth in requisite 1. 

5. Greater precision may be achieved by: 
Refinements of technique 
EXPERIMENTAL PATTERN (including 

PLANNED GROUPING) 
REPLICATION. 

* Except where there is a well-known history of the 
measurement process. 

** Capitalized words are discussed in the following 
paragraphs. 

11-2 



GENERAL CONSIDERATIONS IN PLANNING ORDP 20-112 

11-2 EXPERIMENTAL PATTERN 

The term experimental pattern is a broad one 
by which we mean the planned schedule of 
taking the measurements. A particular pat¬ 
tern may or may not include the succeeding 
three tools {planned grouping, randomization, 
and replication). Each of these three tools can 
improve the experimental pattern in particular 
situations. The proper pattern for the experi¬ 
ment will aid in control of bias and in measure¬ 
ment of precision, will simplify the requisite 
calculations of the analysis, and will permit 

clear estimation of the effects of the factors. 

A common experimental pattern is the so- 
called factorial design experiment, wherein we 
control several factors and investigate their 
effects at each of two or more levels. If two 
levels of each factor are involved, the experi¬ 
mental plan consists of taking an observation at 
each of the 2n possible combinations. The fac¬ 
torial design, with examples, is discussed in 
greater detail in Chapter 12. 

11-3 PLANNED GROUPING 

An important class of experimental patterns 
is characterized by planned grouping. This 
class is often called block designs. The use of 
planned grouping (blocking) arose in compara¬ 
tive experiments in agricultural research, in 
recognition of the fact that plots that were close 
together in a field were usually more alike than 
plots that were far apart. In industrial and 
engineering research, the tool of planned group¬ 
ing can be used to take advantage of naturally 
homogeneous groupings in materials, machines, 
time, etc., and so to take account of “back¬ 
ground variables” which are not directly “fac¬ 
tors” in the experiment. 

Suppose we are required to compare the effect 
of five different treatments of a plastic material. 
Plastic properties vary considerably within a 
given sheet. To get a good comparision of the 

five treatment effects, we should divide the 
plastic sheet into more or less homogeneous 
areas, and subdivide each area into five parts. 
The five treatments could then be allocated to 
the five parts of a given area. Each set of five 
parts may be termed a block. In this case, had 
we had four or six treatments, we could as well 
have had blocks of four or six units. This is 
not always the case — the naturally homo¬ 

geneous area (block) may not be large enough to 
accommodate all the treatments of interest. 

If we are interested in the wearing qualities of 
automobile tires, the natural block is a block of 
four, the four wheels of an automobile. Each 
automobile may travel over different terrain or 

have different drivers. However, the four tires 
on any given automobile will undergo much the 

same conditions, particularly if they are rotated 
frequently. 

In testing different types of plastic soles for 
shoes, the natural block consists of two units, 
the two feet of an individual. 

The block may consist of observations taken 
at nearly the same time or place. If a machine 
can test four items at one time, then each run 

may be regarded as a block of four units, each 
item being a unit. 

Statisticians have developed a variety of es¬ 
pecially advantageous configurations of block 
designs, named and classified by their structure 
into randomized blocks, Latin squares, incom¬ 
plete blocks, lattices, etc., with a number of sub¬ 
categories of each. Some of these block designs 
are discussed in detail in Chapter 13. 
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11-4 RANDOMIZATION 

Randomization is necessary to accomplish 
Requisites 3 and 4 in Table 11-1. In order to 
eliminate bias from the experiment (Requisite 
3), experimental variables which are not spe¬ 
cifically controlled as factors, or “blocked out” 
by planned grouping, should be randomized — 
e.g., the allocations of specimens to treatments 
or methods should be made by some mechanical 
method of randomization. 

Randomization also assures valid estimates of 
experimental error (Requisite 4), and makes pos¬ 
sible the application of statistical tests of sig¬ 
nificance and the construction of confidence 

intervals. 

There are many famous examples of experi¬ 
ments where failure to randomize at a crucial 
stage led to completely misleading results. As 
always, however, the coin has another side; the 
beneficial effects of randomization are obtained 
in the long run, and not in a single isolated 
experiment. Randomization may be thought 

of as insurance, and, like insurance, may some¬ 
times be too expensive. If a variable is thought 
unlikely to have an effect, and if it is very diffi¬ 
cult to randomize with respect to the variable, 
we may choose not to randomize. 

In general, we should try to think of all vari¬ 
ables that could possibly affect the results, select 
as factors as many variables as can reasonably 
be studied, and use planned grouping where 
possible. Ideally, then, we randomize with 
respect to everything else — but it must be 
recognized that the ideal cannot always be 
realized in practice. 

The word randomization has been used rather 
than randomness to emphasize the fact that 
experimental material rarely, if ever, has a ran¬ 
dom distribution in itself, that we are never 
really safe in assuming that it has, and that con¬ 

sequently randomness has to be assured by for¬ 
mal or mechanical randomization. 

11-5 REPLICATION 

In order to evaluate the effects of factors, a 
measure of precision (experimental error) must 
be available. In some kinds of experiments, 
notably in biological or agricultural research, 

this measure must be obtained from the experi¬ 
ment itself, since no other source would provide 
an appropriate measure. In some industrial 
and engineering experimentation, however, 
records may be available on a relatively stable 
measurement process, and this data may pro¬ 
vide an appropriate measure. Where the meas¬ 

ure of precision must be obtained from the ex¬ 

periment itself, replication provides the meas¬ 

ure. In addition to providing the measure of 

precision, replication provides an opportunity 

for the effects of uncontrolled factors to balance 

out, and thus aids randomization as a bias- 

decreasing tool. (In successive replications, 

the randomization features must be independ¬ 

ent.) Replication will also help to spot gross 

errors in the measurements. 
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11-6 THE LANGUAGE OF EXPERIMENTAL DESIGN 

In discussing applications of statistical de¬ 
sign of experiments in the field of physical 
sciences and engineering, we are extremely 

handicapped by the classical language of experi¬ 
mental design. The early developments and 
applications were in the field of agriculture, 
where the terms used in describing the designs 
had real physical meaning. The experimental 
area was an area — a piece of ground. A block 
was a smaller piece of ground, small enough to 
be fairly uniform in soil and topography, and 
thus was expected to give results within a block 
that would be more alike than those from differ¬ 
ent blocks. A plot was an even smaller piece of 
ground, the basic unit of the design. As a unit, 
the plot was planted, fertilized, and harvested, 

and it could be split just by drawing a line. A 
treatment was actually a treatment (e.g., an 
application of fertilizer) and a treatment combi¬ 
nation was a combination of treatments. A 
yield was a yield, a quantity harvested and 
weighed or measured. 

Unfortunately for our purposes, these are the 
terms commonly used. Since there is no par¬ 
ticular future in inventing a new descriptive 

language for a single book, we must use these 
terms, and we must ask the engineer or scientist 
to stretch his imagination to make the terms fit 
his experimental situation. 

Experimental area can be thought of as the 
scope of the planned experiment. For us, a 
block can be a group of results from a particular 
operator, or from a particular machine, or on a 
particular day — any planned natural grouping 
which should serve to make results from one 
block more alike than results from different 
blocks. For us, a treatment is the factor being 
investigated (material, environmental condi¬ 
tion, etc.) in a single factor experiment. In 
factorial experiments (where several variables 

are being investigated at the same time) we 
speak of a treatment combination and we mean 
the prescribed levels of the factors to be applied 
to an experimental unit. For us, a yield is a 
measured result and, happily enough, in chem¬ 
istry it will sometimes be a yield. 

Many good books on experimental design are 
available. See the following list of References 
and Recommended Textbooks. 
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CHAPTER 12 

FACTORIAL EXPERIMENTS 

12-1 INTRODUCTION 

12-1.1 SOME GENERAL REMARKS AND 
TERMINOLOGY 

Factorial experiment is the name commonly 
applied to an experiment wherein we control 
several factors and investigate their effects at 
each of two or more levels. The experimental 
plan consists of taking an observation at each 

one of all possible combinations that can be 
formed for the different levels of the factors. 
Each such different combination is called a 
treatment combination. 

Suppose that we are interested in investigat¬ 
ing the effect of pressure and temperature on the 

yield of some chemical process. Pressure and 
temperature will be called the factors in the ex¬ 
periment. Each specific value of pressure to be 
included will be called a level of the pressure 
factor, and similarly each specific value of tem¬ 

perature to be included will be called a level of 
the temperature factor. In the past, one com¬ 
mon experimental approach has been the so- 
called “one at a time” approach. This kind of 
experiment would study the effect of varying 

pressure at some constant temperature, and 
then study the effect of varying temperature at 
some constant pressure. Factors would be var¬ 
ied “one at a time.” The results of such an 
experiment are fragmentary in the sense that we 
have learned about the effect of different pres¬ 
sures at one temperature only (and the effect of 
different temperatures at one pressure only). 
The reaction of the process to different pressures 
may depend on the temperature used; if we had 
chosen a different temperature, our observed 
relation of yield to pressure may have been 
quite different. In statistical language, there 
may be an interaction effect between the two 

factors within the range of interest, and the 
“one at a time” procedure does not enable us to 
detect it. 

In a factorial experiment, the levels of each 
factor we wish to investigate are chosen, and a 
measurement is made for each possible combina¬ 
tion of levels of the factors. Suppose that we 
had chosen two levels, say 7cm. and 14cm. for 
pressure, and two levels, say, 70°F. and 100°F. 

for temperature. There would be four possible 
combinations of pressure and temperature, and 
the factorial experiment would consist of four 

trials. In our example, the term level is used in 
connection with quantitative factors, but the 
same term is also used when the factors are 
qualitative. 

In the analysis of factorial experiments, we 
speak of main effects and interaction effects (or 
simply interactions). Main effects of a given 
factor are always functions of the average re¬ 
sponse or yield at the various levels of the fac¬ 
tor. In the case where a factor has two levels, 
the main effect is the difference between the re¬ 

sponses at the two levels averaged over all levels 
of the other factors. In the case where the fac¬ 
tor has more than two levels, there are several 
independent components of the main effect, the 
number of components being one less than the 

number of levels. If the difference in the re¬ 
sponse between two levels of factor A is the 
same regardless of the level of factor B (except 

for experimental error), we say that there is no 
interaction between A and B, or that the AB 
interaction is zero. Figure 12-1 shows two ex¬ 
amples of response or yield curves; one example 
shows the presence of an interaction, and the 
other shows no interaction. If we have two 
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RESPONSE 

J_i_L 

0 I 2 

LEVEL OF FACTOR A 

Effect of different 

levels of A on the 

response for three 

different levels of 

B - interaction 

present. 

RESPONSE 

Effect of different 

levels of A on the 

response for two 

different levels of 

C - no interaction 

present. 

j_1! 

0 I 2 

LEVEL OF FACTOR A 

Figure 12-1. Examples of response curves showing presence or absence of interaction. 

levels of each of the factors A and B, then the 
AB interaction (neglecting experimental error) 
is the difference in the yields of A at the second 
level of B minus the difference in the yields of A 
at the first level of B. If we have more than 
two levels of either or of both A and B, then the 
AB interaction is composed of more than one 
component. If we have a levels of the factor A 
and b levels of the factor B, then the AB inter¬ 

action has (a — 1)(6 — 1) independent com¬ 
ponents. 

For factorial experiments with three or more 
factors, interactions can be defined similarly. 
For instance, the ABC interaction is the inter¬ 
action between the factor C and the AB inter¬ 
action (or equivalently between the factor B 
and the AC interaction, or A and the BC inter¬ 

action). 
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12-1.2 ESTIMATES OF EXPERIMENTAL ERROR 
FOR FACTORIAL-TYPE DESIGNS 

12-1.2.1 Internal Estimates of Error. As in 
any experiment, we must have a measure of ex¬ 
perimental error to use in judging the signifi¬ 
cance of the observed differences in treatments. 
In the larger factorial designs, estimates of 
higher-order interactions will be available. The 
usual assumption is that high-order interactions 
are physically impossible, and that the esti¬ 
mates so labelled are actually estimates of ex¬ 
perimental error. As a working rule we often 
use third- and higher-order interactions for 
error. This does not imply that third-order 
interactions are always nonexistent. The judg¬ 
ment of the experimenter will determine which 

interactions may reasonably be assumed to be 
meaningful, and which may be assumed to be 
nothing more than error. These latter inter¬ 
actions may be combined to provide an internal 
estimate of error for a factorial experiment of 
reasonable size. For very small factorials, e.g., 

23 or smaller, there are no estimates of high- 
order interactions, and the experiment must be 
replicated (repeated) in order to obtain an esti¬ 

mate of error from the experiment itself. 

In the blocked factorial designs (Paragraph 
12-3 and Table 12-3), some of the higher-order 
interactions will be confounded with blocks, and 
will not be available as estimates of error (see 

Paragraph 12-3.1). For example, note the plan 
in Table 12-3 for a 23 factorial arranged in two 
blocks of four observations. The single third- 

order interaction provides the blocking, i.e., the 
means of subdividing the experiment into homo¬ 
geneous groups, and therefore will estimate 

block effects, not error. Here again it may be 
necessary to replicate the experiment in order to 

have an estimate of experimental error. 

In the case of fractional factorials, there is 
obviously no point in replication of the experi¬ 
ment; further experimentation would probably 
be aimed at completing the full factorial or a 

larger fraction of the full factorial. The smaller 
fractional factorial designs (Paragraph 12-4 and 
Table 12-4) do not contain high-order interac¬ 
tions that can suitably be assumed to be error. 
In fact, none of the particular plans given in 

Table 12-4 provides a suitable internal estimate 
of error. Accordingly then, an independent 
estimate of error will be required when using a 
small fractional factorial. Occasionally and 
cautiously we might use second-order interac¬ 
tion effects to test main effects, if the purpose of 
the experiment were to look for very large main 
effects (much larger than second-order effects). 
In using interactions as estimates of error, how¬ 
ever, we must decide before conducting the ex¬ 
periment (or at least before having a knowledge 
of the responses or yields) which of the effects 
may be assumed to be zero, so that they may be 
used in the estimate of the variation due to 

experimental error. 

12-1.2.2 Estimates of Error From Past Expe¬ 
rience. In the cases discussed in Para¬ 
graph 12-1.2.1 that do not provide adequate 

estimates of error from the experiment itself, we 
must depend on an estimate based upon past 
experience with the measurement process. In 
laboratory and industrial situations, this infor¬ 
mation is often at hand or can be found by 

simple analysis of previously recorded data. 

12-2 FACTORIAL EXPERIMENTS (EACH FACTOR AT TWO LEVELS) 

12-2.1 SYMBOLS 

A factorial experiment in which we have n 
factors, each at two levels, is known as a 2" 
factorial experiment. The experiment consists 
of 2" trials, one at each combination of levels of 
the factors. To identify each of the trials, we 
adopt a conventional notation. A factor is 

identified by a capital letter, and the two levels 
of a factor by the subscripts zero and one. If 
we have three factors A, B, and C, then the 
corresponding levels of the factors are A0, Ax; 
B0, By \ and C0, Ci; respectively. By conven¬ 
tion, the zero subscript refers to the lower level, 
to the normal condition, or to the absence of a 
condition, as appropriate. A trial is represented 
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by a combination of small letters denoting the 
levels of the factors in the trial. The presence 
of a small letter means that the factor is at the 
level denoted by the subscript 1 (the higher level 
for quantitative factors); the absence of a letter 
means that the factor is at the level denoted by 
the subscript zero (the lower level for quantita¬ 
tive factors). Thus, the symbol a represents 
the treatment combination where A is at the 

level A i, B is at B0, and C is at C0. The sym¬ 
bol be represents the treatment combination 
where A is at the level A0, B is at Bx, and C is 
at Ci. Conventionally, the symbol (1) repre¬ 
sents the treatment combination with each fac¬ 

tor at its zero level. In an experiment with 
three factors, each at two levels, the 23 = 8 
combinations, and thus the eight trials, are 
represented by (1), a, b, ab, c, ac, be, abc. 

The experiment has four factors, each at two 
levels, i.e., is a 24 factorial. Note that all fac¬ 
tors are qualitative in this experiment. The 
experimental factors and levels are: 

FACTORS 

A — Fabric 

B — Treatment 

C — Laundering 
condition 

D — Direction of 

test 

LEVELS 

A0 — Sateen 
A i — Monks cloth 

B0 — Treatment x 
Bi — Treatment y 

Co — Before laundering 
Ci —After one laundering 

Do — Warp 
Dx —Fill 

Data Sample 12-2 — Flame Tests of Fire- 
Retardant Treatments 

The data are taken from a larger experiment 
designed to evaluate the effect of laundering on 
certain fire-retardant treatments for fabrics. 

The observations reported in Table 12-1 are 
inches burned, measured on a standard size 
sample after a flame test. For reference, the 
conventional symbol representing the treatment 
combination appears beside the resulting ob¬ 
servation. 

TABLE 12-1. RESULTS OF FLAME TESTS OF FIRE-RETARDANT TREATMENTS 
(FACTORIAL EXPERIMENT OF DATA SAMPLE 12-2) 

A0 Ax 

Bo B, Bo Bx 

Co 
Do 4.2 (1) 4.5 b 3.1 a 2.9 ab 

Di 4.0 d 5.0 bd 3.0 ad 2.5 abd 

Cl 
Do 3.9 c 4.6 be 2.8 ac 3.2 abc 

Di 4.0 cd 5.0 bed 2.5 acd 2.3 abed 
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12-2.2 ANALYSIS 

12-2.2.1 Estimation of Main Effects and Interactions. Yates’ method is a systematic method for 

obtaining estimates of main effects and interactions for two-level factorials. The method was 
originally described by Yates(l), and may be found in various textbooks (Cochran and Cox(2) and 
Davies(3)). The method as given here applies to factorials, blocked factorials (Paragraph 12-3), and 
fractional factorials (Paragraph 12-4), for which we have 2n observations.* The first step in the 
Yates’ procedure is to make a table with n + 2 columns, where n is the number of factors in the 
factorial experiment. For example, see Table 12-2, where n + 2 = 6. In Table 12-2, the treat¬ 
ment combinations are listed in a standardized order in the first column, and after following the 
prescribed procedure, estimated main effects and interactions result in the last column (column 
n + 2). The order in which the treatment combinations are listed in column 1 determines the order 
of estimated effects in column n + 2. 

For factorials or blocked factorials, the treatment combinations should be listed in “standard 
order” in the first column, i.e., 

For two factors: (1), a, b, ab 
For three factors: (1), a, b, ab, c, ac, be, abc 
For four factors: (1), a, b, ab, c, ac, be, abc, d, ad, bd, abd, cd, acd, bed, abed 

etc. 

“Standard order” for five factors is obtained by listing all the treatment combinations given for 
four factors, followed by e, ae, be, abe, . . ., abede (i.e., the new element multiplied by all previous 
treatment combinations). Standard order for a higher number of factors is obtained in similar 
fashion, beginning with the series for the next smaller number of factors, and continuing by multi¬ 
plying that series by the new element introduced. 

The estimated main effects and interactions also appear in a standard order: 

For two factors: T, A, B, AB 
For three factors: T, A, B, AB, C, AC, BC, ABC 

etc. 

where T corresponds to the overall average effect, A to the main effect of factor A, AB to the 
interaction of factors A and B, etc. 

For fractional factorials, the treatment combinations in column 1 should be listed in the order 
given in the plans of Table 12-4. The order of the estimated effects is also given in Table 12-4. 
For fractional factorial plans other than those given in Table 12-4, see Davies(3) for the necessary 
ordering for the Yates method of analysis. 

* In a ~b fraction of a 2" factorial, there are 2n' observations, where n' = n — b (See Par. 12-4). 
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The systematic procedure for Yates’ method is as follows: 

Procedure 

(1) Make a table with n + 2 columns. In the 

first column, list the treatment combina¬ 
tions in standard order. 

(2) In column 2, enter the observed yield or 
response corresponding to each treatment 
combination listed in column 1. 

(3) In the top half of column 3, enter, in order, 
the sums of consecutive pairs of entries in 
column 2. In the bottom half of the col¬ 
umn enter, in order, the differences between 
the same consecutive pairs of entries, i.e., 
second entry minus first entry, fourth entry 

minus third entry, etc. 

(4) Obtain columns 4, 5, . . ., n + 2, in the 
same manner as column 3, i.e., by obtaining 
in each case the sums and differences of the 
pairs in the preceding column in the man¬ 

ner described in step 3. 

(5) The entries in the last column (column 

n + 2) are called gT, gA, gB, gAB, etc., cor¬ 
responding to the ordered effects T, A, 
B, AB, etc. Estimates of main effects 

and interactions are obtained by dividing 
the appropriate g by 2"~'. gT divided by 
2"_1 is the overall mean. 

Example 

(1) Use Data Sample 12-2, the results of which 
are summarized in Table 12-1. This is a 24 
factorial (n =4). Therefore, our Table 
will have six columns, as shown in Table 
12-2. 

(2) See Table 12-2. 

(3) See Table 12-2. For example: 

4.2 + 3.1 = 7.3 

4.5 + 2.9 = 7.4 
3.9 + 2.8 = 6.7 

etc., 
and, 
3.1 - 4.2 = -1.1 

2.9 - 4.5 = -1.6 
2.8 - 3.9 = -1.1 
etc. 

(4) See Table 12-2. 

(5) In Table 12-2, 

gA = -12.9; 

the estimated main effect of 

A = -12.9/8 
= -1.6. 

gAD = -2.5; 

the estimated effect of AD interaction 

= -2.5/8 
= -0.3, 

etc. 

Note: The following Steps are checks on the 
computations in Table 12-2. 

Note: The remaining Steps of this procedure 
are checks on the computation. 
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Procedure Example 

(6) The sum of all the 2n individual responses 
(column 2) should equal the total given in 
the first entry of the last column (column 

n + 2). 

(7) The sum of the squares of the individual 
responses (column 2) should equal the sum 
of the squares of the entries in the last 
column (column n + 2) divided by 2". 

(8) For any main effect, the entry in the last 
column (column n + 2) equals the sum of 
the responses in which that factor is at its 
higher level minus the sum of the responses 
in which that factor is at its lower level. 

(6) The sum of column 2 should equal gT, 
57.5 = 57.5 

(7) The sum of squares of entries in column 2 
should equal the sum of squares of the 
entries in the last column, divided by 24 

(= 16), 

219.15 = 3506.40 - 16 
= 219.15 

(8) gA = (a + ab + ac + abc + ad -f abd 
+ acd + abed) 
— ((1) + 6 + c + be + d + bd 
-p cd -|- bed) 

= (22.3) - (35.2) 
= -12.9 

gR — (b + ab + be + abc + bd + abd 
+ bed + abed) 

— ((1) + a + c + ac + d + od 

+ cd + acd) 
= (30.0) - (27.5) 
- 2.5 

gc = (c + ac + be + abc + cd + acd 
+ bed + abed) 

— ((1) d- a -(- b -)- ab -T d -|- ad 
-|- bd -|- abd) 

= (28.3) - (29.2) 
= -0.9 

go = id + ad + bd + abd + cd + acd 
+ bed + abed) 

— ((1) -p a -p b -p ab -p c -p ac 
+ be + abc) 

= (28.3) - (29.2) 
= -0.9 
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TABLE 12-2. YATES’ METHOD OF ANALYSIS USING DATA SAMPLE 12-2 

1 
Treatment 

Combination 

2 
Response 

(Yield) 

3 4 5 6 

9 

(1) 4.2 7.3 14.7 29.2 57.5 _ 9t 

a 3.1 7.4 14.5 28.3 -12.9 = gA , an estimate of 8A 
b 4.5 6.7 14.5 -5.2 2.5 = 9b SB 

ab 2.9 7.8 13.8 -7.7 - 3.5 = 9ab SAB 

c 3.9 7.0 -2.7 1.2 - 0.9 = 9c SC 
ac 2.8 7.5 -2.5 1.3 - 0.5 = 9 AC SAC 
be 4.6 6.5 -3.5 -0.8 1.3 = 9bc SBC 

abc 3.2 7.3 -4.2 -2.7 0.5 = 9 ABC 8 ABC 
d 4.0 -1.1 0.1 -0.2 - 0.9 = 9d 8 D 

ad 3.0 -1.6 1.1 -0.7 - 2.5 = 9 ad SAD 

bd 5.0 -1.1 0.5 0.2 0.1 = 9bd 8 BD 

abd 2.5 -1.4 0.8 -0.7 - 1.9 = 9 abd ’ 8 ABD 

cd 4.0 -1.0 -0.5 1.0 - 0.5 = 9cd 8 CD 

acd 2.5 -2.5 -0.3 0.3 - 0.9 = 9 ACD 8 ACD 

bed 5.0 -1.5 -1.5 0.2 - 0.7 = 9bcd 8 BCD 

abed 2.3 -2.7 -1.2 0.3 0.1 = 9abcd SABCD 

Total 57.5 

Sum of 
Squares 219.15 3506.40 

12-2.2.2 Testing for Significance of Main Effects and Interactions. Before using this procedure, 

read Paragraph 12-1.2 and perform the computation described in Paragraph 12-2.2.1. 

Procedure 

(1) Choose a, the level of significance. 

(2) If there is no available estimate of the vari¬ 
ation due to experimental error,* find the 
sum of squares of the g’s corresponding to 
interactions of three or more factors in 
Table 12-2. 

(3) To obtain s2, divide the sum of squares ob¬ 
tained in Step 2 by 2,lv, where v is the num¬ 
ber of interactions included. In a 2" 
factorial, the number of third and higher 
interactions will be 2n — (n2 + n + 2)/2. 
If an independent estimate of the variation 
due to experimental error is available, use 
this s2. 

Example 

(1) Let a = .05 

(2) Using Table 12-2, 

9abc + 9 abd + 9 acd + 9bcd + 9abcd 

= 5.17 

(3) n = 4 

V = 5 
2v = 16 (5) 

= 80 
s2 = 5.17/80 

= .0646 
s = .254 

? See Paragraph 12-1.2. 

12-8 



FACTORIAL EXPERIMENTS ORDP 20-112 

Procedure 

(4) Look up h-a/2 for v degrees of freedom in 
Table A-4. 
If higher order interactions are used to ob¬ 
tain s-, v is the number of interactions 

included. 
If an independent estimate of s2 is used, v is 
the degrees of freedom associated with this 

estimate. 

(5) Compute 

w = (2n)^i _a/2s 

(6) For any main effect or interaction X, if the 
absolute value of gx is greater than w, con¬ 
clude that X is different from zero, e.g., if 

| gA | > w, conclude that the A effect is dif¬ 
ferent from zero. Otherwise, there is no 
reason to believe that X is different from 

zero. 

Example 

(4) f.975 for 5 d.f. = 2.571 

(5) 

w = 4 (2.571) (0.254) 
= 2.61 

(6) See Table 12-2. | gA |' =? 12.9, and | gAB \ = 
3.5 are greater than w; therefore, the main 
effect of A and the interaction AB are 

believed to be significant. 

12-3 FACTORIAL EXPERIMENTS WHEN UNIFORM CONDITIONS CANNOT BE 
MAINTAINED THROUGHOUT THE EXPERIMENT 

(EACH FACTOR AT TWO LEVELS) 

12-3.1 SOME EXPERIMENTAL ARRANGEMENTS 

When the number of factors to be investigated are more than just a few, it may be that the 
required number of trials 2" is too large to be carried out under reasonably uniform conditions — 
e.g., on one batch of raw material, or on one piece of equipment. In such cases, the design can be 
arranged in groups or blocks so that conditions affecting each block can be made as uniform as 
possible. The use of planned grouping within a factorial design (i.e., a blocked factorial) will im¬ 
prove the precision of estimation of experimental error, and will enable us to estimate the main 
effects free of block differences; but, the structure of the designs is such that certain interaction 
effects will be inextricable from block effects. In most designs, however, only three-factor and 
higher-order interactions will be confused (“confounded”) with blocks. 

Some experimental arrangements of this kind are given in Table 12-3, and their analysis and 
interpretation are given in Paragraph 12-3.2. 

Blocked factorial designs have not been very widely used in experimentation in the physical 
sciences, and the presumption is that they are usually not the most suitable designs for the kinds 
of non-homogeneity that occur in these applications. (See Chapter 13 for other designs which 
make use of blocking.) For this reason, no numerical example is given in this Paragraph. This 
Paragraph is included for completeness, and serves to link the full factorials (Paragraph 12-2) and 
the fractional factorials (Paragraph 12-4). 
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TABLE 12-3. SOME BLOCKED FACTORIAL PLANS 
(FOR USE WHEN FACTORIAL EXPERIMENT MUST BE SUB-DIVIDED INTO HOMOGENEOUS GROUPS) 

Plans for Three Factors: 23 = 8 Observations 

(i) Four observations per block {ABC confounded with block effects). 

Block 1 (1), ab, ac, be 

Block 2 a, b, c, abc 

Plans for Four Factors: 24 = 16 Observations 

(i) Eight observations per block (ABCD interaction confounded with block effects). 

Block 1 (1), ab, ac, be, ad, bd, cd, abed 

Block 2 a, b, c, abc, d, abd, acd, bed 

(ii) Four observations per block {AD, ABC, BCD, confounded with block effects). 

Block 1 (1), be, abd, acd 

Block 2 a, abc, bd, cd 

Block 3 b, c, ad, abed 

Block 4 d, bed, ab, ac 

Plans for Five Factors: 25 = 32 Observations 

(i) Sixteen pbservations per block {ABCDE interaction confounded with block effects). 

Block 1 (1), ab, ac, be, ad, bd, cd, abed, or, be, ce, abce, de, abde, aede, bede 

Block 2 a, b, c, abc, d, abd, acd, bed, e, abe, ace, bee, ode, bde, ede, abede 

(ii) Eight observations per block {BCE, ADE, ABCD, confounded with block effects). 

Block 1 (1), ad, be, abed, abe, bde, ace, ede 

Block 2 a, d, abc, bed, be, abde, ce, aede 

Block 3 b, abd, c, acd, ae, de, abce, bede 

Block 4 e, a de, bee, abede, ab, bd, ac, cd 

(iii) Four observations per block {AD, BE, ABC, BCD, CDE, ACE, ABDE, confounded with 

block effects). 

Block 1 (1), bee, acd, abde 

Block 2 a, abce, cd, bde 

Block 3 b, ce, abed, ade 

Block 4 c, be, ad, abede 

Block 5 d, bede, ac, abe 

Block 6 e, be, aede, abd 

Block 7 ab, ace, bed, de 

Block 8 ae, abc, ede, bd 
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TABLE 12-3. SOME BLOCKED FACTORIAL PLANS (Continued) 

Plans for Six Factors: 26 = 64 Observations 

(i) Thirty-two observations per block (ABCDEF confounded with block effects). 

Block 1 (1), abcdef, plus all treatment combinations represented by two letters (e.g., ab, ac, 

etc.) and by four letters (e.g., abed, bede, etc.) 

Block 2 All treatment combinations represented by a single letter, by three letters, and by 
five letters. 

(ii) Sixteen observations per block (ABCD, BCEF, ADEF, confounded with block effects). 

Block 1 (1), be, ad, abed, ef, beef, adef, abcdef, bde, ede, abe, ace, bdf, cdf, abf, acf 

Block 2 a, abe, d, bed, aef, abcef, def, bedef, abde, aede, be, ce, abdf, aedf, bf, cf 

Block 3 b, c, abd, acd, bef, cef, abdef, aedef, de, bede, ae, abce, df, bedf, af, abef 

Block 4 e, bee, ade, abede, f, bef, adf, abedf, bd, cd, ab, ac, bdef, edef, abef, acef 

(iii) Eight observations per block {ADE, BCE, ACF, BDF, ABCD, ABEF, CDEF, confounded 
with block effects). 

Block 1 (1), ace, bde, abed, adf, edef, abef, bef 

Block 2 a, ce, abde, bed, df, aedef, bef, abef 

Block 3 b, abce, de, acd, abdf, bedef, aef, cf 

Block 4 c, ae, bede, abd, aedf, def, abcef, bf 

Block 5 d, aede, be, abe, af, cef, abdef, bedf 

Block 6 e, ac, bd, abede, adef, cdf, abf, beef 

Block 7 /, acef, bdef, abedf, ad, ede, abe, be 

Block 8 ab, bee, ade, cd, bdf, abcdef, ef, acf 

(iv) Four observations per block {AD, BE, CF, ABC, BCD, CDE, DEF, ACE, AEF, ABF, BDF, 
ABDE, BCEF, ACDF, ABCDEF, confounded with block effects). 

Block 1 (1), beef, aedf, abde 

Block 2 a, abcef, cdf, bde 

Block 3 b, cef, abedf, ade 

Block 4 c, bef, adf, abede 

Block 5 d, bedef, acf, abe 

Block 6 e, bef, aedef, abd 

Block 7 f, bee, acd, abdef 

Block 8 ab, acef, bedf, de 

Block 9 ac, abef, df, bede 

Block 10 ad, abcdef, cf, be 

Block 11 ae, abef, edef, bd 

Block 12 af, abce, cd, bdef 

Block 13 be, ef, abdf, aede 

Block 14 bf, ce, abed, adef 

Block 15 abe, aef, bdf, ede 

Block 16 abf, ace, bed, def 
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TABLE 12-3. SOME BLOCKED FACTORIAL PLANS (Continued) 

Plans for Seven Factors: 27 = 128 Observations 

(i) Sixty-four observations per block (ABCDEFG confounded with block effects). 

Block 1 (1), and all treatment combinations represented by two letters, four letters, or 
six letters (e.g., ab, abed, etc.). 

Block 2 All treatment combinations represented by a single letter, by three letters, and 
by five letters, plus abedefg. 

(ii) Thirty-two observations per block (ABCD, ABEFG, CDEFG, confounded with block effects). 

Block 1 (1), ab, abed, ace, acf, aeg, ade, adf, adg, bee, bef, edef, edeg, cdfg, abedef, abedeg, 

Block 2 

abedfg, abef, beg, bde, bdf, bdg, abeg, abfg, cd, ef, eg, fg, acefg, adefg, bcefg, bdefg 

a, b, bed, ce, ef, eg, de, df, dg, abce, abef, aedef, aedeg, aedfg, bedef, bedeg, bedfg, bef, 

abeg, abde, abdf, abdg, beg, bfg, acd, aef, aeg, afg, cefg, defg, abcefg, abdefg 

Block 3 c, abe, abd, ae, af, ag, aede, aedf, aedg, be, bf, def, deg, dfg, abdef, abdeg, abdfg, abcef, 

bg, bede, bedf, bedg, abceg, abefg, d, cef, efg, aefg, aedefg, befg, bedefg, ceg 

Block 4 e, abe, abede, ac, acef, aceg, ad, adef, adeg, be, beef, cdf, edg, edefg, abedf, abedg, 

abedefg, abf, bceg, bd, bdef, bdeg, abg, abefg, ede, f, g, efg, acfg, adfg, befg, bdfg 

(iii) Sixteen observations per block {ABCD, BCEF, ADEF, ACFG, BDFG, ABEG, CDEG, con¬ 
founded with block effects). 

Block 1 (1), bde, adg, abeg, beg, edeg, abed, ace, efg, bdfg, adef, abf, beef, cdf, abedefg, acfg 

Block 2 

Block 3 

Block 4 

Block 5 

Block 6 

Block 7 

a, abde, dg, beg, abeg, aedeg, bed, ce, aefg, abdfg, def, bf, abcef, aedf, bedefg, efg 

b, de, abdg, aeg, eg, bedeg, acd, abce, befg, dfg, abdef, af, cef, bedf, aedefg, abefg 

c, bede, aedg, abceg, bg, deg, abd, ae, cefg, bedfg, aedef, abef, bef, df, abdefg, afg 

d, be, ag, abdeg, bedg, ceg, abe, aede, defg, bfg, aef, abdf, bedef, ef, abcefg, aedfg 

e, bd, adeg, abg, bceg, edg, abede, ac, fg, bdefg, adf, abef, bef, edef, abedfg, acefg 

f, bdef, adfg, abefg, befg, edefg, abedf, acef, eg, bdg, ade, ab, bee, cd, abedeg, aeg 

Block 8 g, bdeg, ad, abe, be, ede, abedg, aceg, ef, bdf, adefg, abfg, bcefg, cdfg, abedef, acf 

(iv) Eight observations per block {ACF, ADE, BCE, BDF, CDG, ABG, EFG, ABEF, CDEF, 

ABCD, BDEG, ACEG, ADFG, BCFG, ABCDEFG, confounded with block effects). 

Block 1 (1), aceg, bdeg, abed, adfg, edef, abef, befg 

Block 2 

Block 3 

Block 4 

Block 5 

Block 6 

Block 7 

Block 8 

Block 9 

Block 10 

Block 11 

Block 12 

Block 13 

Block 14 

Block 15 

Block 16 

a, ceg, abdeg, bed, dfg, aedef, bef, abefg 

b, abceg, deg, acd, abdfg, bedef, aef, efg 

c, aeg, bedeg, abd, aedfg, def, abcef, bfg 

d, aedeg, beg, abe, afg, cef, abdef, bedfg 

e, aeg, bdg, abede, adefg, cdf, abf, bcefg 

f, acefg, bdefg, abedf, adg, ede, abe, beg 

g, ace, bde, abedg, adf, edefg, abefg, bef 

ab, bceg, adeg, cd, bdfg, abedef, ef, acfg 

ac, eg, abedeg, bd, cdfg, adef, beef, abfg 

ad, edeg, abeg, be, fg, acef, bdef, abedfg 

ae, eg, abdg, bede, defg, aedf, bf, abcefg 

af, cefg, abdefg, bedf, dg, aede, be, abeg 

ag, ce, abde, bedg, df, aedefg, befg, abef 

bg, abce, de, aedg, abdf, bedefg, aefg, ef 

abg, bee, ade, edg, bdf, abedefg, efg, acf 
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12-3.2 ANALYSIS OF BLOCKED FACTORIAL EXPERIMENTS WHEN EACH FACTOR IS AT 
TWO LEVELS 

12-3.2.1 Estimation of Main Effects and Interactions. The procedure of Paragraph 12-2.2.1 
(Yates’ method) should be used. Remember that certain of the interactions are confounded with 
block effects. 

12-3.2.2 Testing for Significance of Main Effects and Interactions. Before using this procedure, 
read Paragraph 12-1.2, and perform the computations described in Paragraph 12-2.2.1. 

Procedure 

(1) Choose a, the level of significance. 

(2) If there is no estimate of the variation due to experimental error available*, find the sum of 
squares of the g’s corresponding to interactions of three or more factors in the Yates’ Table 
(omitting those interactions that are confounded with blocks). 

(3) To obtain s2, divide the sum of squares obtained in Step 2 by 2nv, where v is the number of 
interactions included. If an independent estimate of the variation due to experimental error 

is available, use this s2. 

(4) Look up ti-a/2 for v degrees of freedom in Table A-4. 
If higher order interactions are used to obtain s2, v is the number of interactions included. 
If an independent estimate of s2 is used, v is the degrees of freedom associated with this estimate. 

(5) Compute 

w = (2n)Hi-a/2 s 

(6) For any main effect or interaction X, if \gx\> w, conclude that X is different from zero, e.g., 

if | gA | > w, conclude that the A effect is different from zero. Otherwise, there is no reason 
to believe that X is different from zero. 

* See Paragraph 12-1.2. 
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12-4 FRACTIONAL FACTORIAL EXPERIMENTS (EACH FACTOR 
AT TWO LEVELS) 

12-4.1 THE FRACTIONAL FACTORIAL DESIGNS 

If there are many factors, a complete factorial experiment (Paragraph 12-2), requiring all possible 
combinations of levels of the factors, involves a large number of tests. This is true even when 
only two levels of each factor are being investigated. In such cases, the complete factorial experi¬ 
ment may overtax the available facilities. In other situations, it may not be practical to plan 
the entire experimental program in advance, and we may wish to conduct a few smaller experi¬ 
ments to serve as a guide to future work. It is possible that the complete set of experiments may 
furnish more information or precision than is needed for the purpose in hand. 

In these cases, it is useful to have a plan that requires fewer tests than the complete factorial 
experiment. Recent developments in statistics have considered the problem of planning multi¬ 
factor experiments that require measuring only a fraction of the total number of possible combina¬ 
tions. The fraction is a carefully prescribed subset of all possible combinations; its analysis is 

relatively straightforward; and the use of a fractional factorial does not preclude the possibility 
of later completion of the full factorial experiment. 

In Figures 12-2,12-3, and 12-4, let the letters A , B ,C, D, E, F, and G, stand for seven factors to 
be investigated, and let the subscripts zero and one denote two alternative levels of each factor. 
The 128 (= 27) possible experimental conditions are represented by the 128 cells of Figure 12-2. 
The shaded squares represent those experimental combinations to be investigated if the experi¬ 
menter wishes to measure only half the 128 possible combinations. In the same way, the shaded 
cells in Figures 12-3 and 12-4 illustrate plans requiring only 32 and 16 measurements, respectively, 

instead of the full set of 128. 

Fractional factorial experiments obviously cannot produce as much information as the full 
factorial. Economy is achieved at the expense of assuming that certain of the interactions between 

factors are negligible. Some of the larger fractions (e.g., the half-replicate shown in Figure 12-2) 
require only that third-order (and higher) interactions be assumed negligible, and this assumption 
is not uncommon. However, the plan calling for one-eighth of the possible combinations, as 
shown in Figure 12-4, can only be used for evaluating the main effects of each of the seven factors, 
and will not allow the evaluation of any two-factor interactions. 

In a complete factorial experiment we have 2" tests. In the analysis of a complete factorial, 
we have n main effects, 2n—n — l interaction effects, and an overall average effect. The 2n 

tests can be used to give independent estimates of the 2" effects. In a fractional factorial ^say the 

fraction there will be only 2n~b tests and, therefore, 2n~b independent estimates. In designing 

the fractional plans (i.e., in selecting an optimum subset of the 2" total combinations), the goal is 
to keep each of the 2n~b estimates as “clean” as possible — i.e., to keep the estimates of main 
effects and if possible second-order interactions free of confusion with each other. 

If we plan to test whether or not certain of the effects are significant, we must have an estimate 
of the variation due to experimental error which is independent of our estimates of the effects. 
See Paragraph 12-1.2. 
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Table 12-4 gives a number of useful two-level fractional factorial plans, together with the effects 
that can be estimated (assuming three-factor and higher-order interaction terms are negligible). 
The treatment combinations should be randomly allocated to the experimental material. More 
two-level plans may be found in reference (4), and fractional factorial plans for factors at three 
levels may be found in reference (5). 

TABLE 12-4. SOME FRACTIONAL FACTORIAL PLANS 

Treatment Estimated 
Plans Combinations! Effects! 

Plan 1: (1) T 

Three factors (n = 3) ac A - BC 

l > replication (6 = 1) be B - AC 
4 observations ab -C + AB 

Plan 2: (1) T 

Four factors (n = 4) ad A 
Yi replication (6 = 1) bd B 

8 observations ab AB + CD 
cd C 
ac AC + BD 
be BC + AD 
abed D 

Plan 3: (1) T 

Five factors (n = 5) ae A 
Yi replication (6 = 1) be B 

16 observations ab AB 

ce C 
ac AC 
be BC 
abce -DE 

de D 

ad AD 
bd BD 

abde -CE 

cd CD 
aede -BE 

bede -AE 

abed -E 

t The order given is the order in which the data are to be listed in the first column of the Yates method of analysis 
(see Pars. 12-2.2.1 and 12-4.2.1). 

J The order given is the order in which estimated effects come out in the last column of the Yates method of analysis. 
See Pars. 12-2.2.1 and 12-4.2.1. 
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TABLE 12-4. SOME FRACTIONAL FACTORIAL PLANS (Continued) 

Treatment Estimated 
Plans Combinations! Effects! 

Plan 4: (1) T 
Five factors (n = 5) ad A - DE 

replication (6 = 2) bde B -CE 
8 observations abe AB + CD 

cde C - BE 
ace AC + BD 
be -E + BC A AD 
abed D - AE 

Plan 5: 

Six factors (n = 6) 
34 replication (6 = 2) 
16 observations 

(1) 
ae 
bef 
abf 
cef 
acf 
be 
abce 

df 
adef 
bde 
abd 
cde 
acd 

bedf 
abedef 

T 

A 
B 
AB + CE 

C 
AC + BE 
BC + AE + DF 
E 
D 

AD + EF 
BD ACF 

CD + BF 

F 
AF + DE 

Plan 6: (1) T 
Six factors {n = 6) adf A - DE -CF 

% replication (6 = 3) bde B - CE - DF 
8 observations abef AB + CD + EF 

edef C - AF - BE 

ace -F A AC A BD 
bef -E A AD A BC 
abed D - AE - BF 

11 See footnote on page 12-16. 

* To be used in our estimate of the variation due to experimental error. 
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TABLE 12-4. SOME FRACTIONAL FACTORIAL PLANS (Continued) 

Treatment Estimated 
Plans Combinationsf EffectsJ 

Plan 7: (1) T 

Seven factors (n = 7) aeg A 

Ps replication (6 = 3) befg B 

16 observations abf AB +CE + DG 

cef C 
acfg AC + BE + FG 
beg BC + AE + DF 

abce E 

dfg D 

adef AD + EF + BG 

bde BD +CF + AG 

abdg G 

edeg CD ABF + EG 

acd * 

bedf F 

abedefg AF + DE + CG 

Plan 8: (1) T 

Eight factors (n = 8) aegh A 

14 replication (6 = 4) befg B 

16 observations abfh AB + CE + DG + FH 

cefh C 

acfg AC + BE + FG + DH 

begh BC + AE + DF + GH 

abce E 

dfgh D 

adef AD + EF + BG + CH 

bdeh BD + AG + CF + EH 

abdg G 

edeg CD + AH + BF + EG 

aedh H 

bedf F 

abcdefgh AF + DE + CG + BH 

11 * See footnotes, pages 12-16 and 12-17. 
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Data Sample 12-4 — Flame Tests of Fire-Retardant Treatments 

Using Data Sample 12-2, we assume that a fractional factorial design had been used, instead of 
the full factorial. From Table 12-4, we use plan 2, a one-half replicate of four factors (n = 4, 
b = 1). The plan is reproduced as follows: 

TREATMENT 

COMBINATIONS 

(1) 

ad 

bd 

ab 

cd 

ac 

be 

abed 

The resulting data are shown in Table 12-5. 

ESTIMATED 

EFFECTS 

T 

A 

B 

AB + CD 

C 

AC + BD 

BC + AD 

D 

TABLE 12-5. RESULTS OF FLAME TESTS OF FIRE-RETARDANT TREATMENTS 
(FRACTIONAL FACTORIAL EXPERIMENT OF DATA SAMPLE 12-4) 

A0 Ar 

Bo Br Bo Br 

C0 

Do 4.2 (1) 2.9 ab 

Dr 5.0 bd 3.0 ad 

C, 

Do 4.6 be 2.8 ac 

Dr 4.0 cd 2.3 abed 

12-4.2 ANALYSIS 

12-4.2.1 Estimates of Main Effects and Interactions. We use the Yates procedure described in 
Paragraph 12-2.2.1, replacing n by n' where n' = n — b for the particular fractional factorial used 
(see Table 12-4). In other words, make a table with n' + 2 columns. In column 1 of the Yates 
table, list the treatment combinations in the order given in the plan in Table 12-4. The last column 
of the Yates table (column n' + 2) will give the g’s corresponding to the effects, in the order listed 
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in the “estimated effects” column of Table 12-4. To obtain the estimates of main effects and 
interactions, divide each g by 2"'~'. In Table 12-6, we show the Yates method of analysis applied 
to a fractional factorial experiment, using the results of Data Sample 12-4. 

For fractional factorial plans that are not given in Table 12-4, see Davies{3) for the Yates method 
of analysis. 

TABLE 12-6. YATES’ METHOD OF ANALYSIS USING DATA SAMPLE 12-4 

2 3 4 5 
Treatment Response Estimated 

Combination (Yield) 9 Effect 

(1) 4.2 7.2 15.1 28.8 T 
ad 3.0 7.9 13.7 -6.8 A 
bd 5.0 6.8 -3.3 0.8 B 

ab 2.9 6.9 -3.5 -2.0 AB + CD 
cd 4.0 -1.2 0.7 -1.4 C 
ac 2.8 -2.1 0.1 -0.2 AC + BD 
be 4.6 -1.2 -0.9 -0.6 BC + AD 

abed 2.3 -2.3 -1.1 -0.2 D 

Total 
Sum of 

28.8 

Squares 110.34 882.72 

Checks: (see Steps 6, 7, and 8 of Paragraph 12-2.2.1). 

The sum of column 2 should equal gT, the first entry in column 5. 

The sum of squares of entries in column 2 should equal the sum of squares of the g’s divided 
by 2"' = 2* = 8. (110.34 = 882.72/8 = 110.34). 

g_i = sum of all yields in which A is at its higher level minus sum of all yields in which A is at 

its lower level. 

gA = 11.0 - 17.8 = -6.8. 

Similarly, 

g„ = 14.8 - 14.0 = 0.8 

gr = 13.7 - 15.1 = -1.4. 
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12-4.2.2 Testing for Significance of Main Effects and interactions. Before using this procedure, 
read Paragraph 12-1.2, and perform the computations specified in Paragraph 12-4.2.1. 

Procedure 

(1) Choose a, the level of significance. 

(2) If no external estimate of the variation due 
to experimental error is available,* 1 check 
the lines in the Yates table that correspond 
to estimated effects which are expected to 
be zero. Compute the sum of squares of 
the g’s for the lines checked. 

(3) To obtain s2 3, divide the sum of squares ob¬ 
tained in Step (2) by 2"V, where v is the 
number of interactions included. If an 
independent estimate of the variation due to 
experimental error is available, use this s'-. 

(4) Look up ti-a/2 for v degrees of freedom in 
Table A-4. 

(5) Compute 

W = (2n')%-a/o s 

(6) For any main effect or interaction X, if the 
absolute value of gx is greater than w, con¬ 
clude that X is different from zero. For 
example, if | gA | > w, conclude that the A 
effect is different from zero. Otherwise, 
there is no reason to believe that X is 
different from zero. 

* See Paragraph 12-1.2. 

Example 

(1) Let « = .05 

(2) See Step (3). 

(3) In the analysis, we use an independent esti¬ 
mate of s'2, from 24 pairs of duplicate 
measurements obtained in another part of 
the larger program: 

s2 = .0408 
s = .202 
* = 24 

(4) t.975 for 24 d.f. = 2.064 

(5) 

w = V8 (2.064) (0.202) 
= (2.828) (0.417) 
= 1.18 

(6) See Table 12-6. 1^1 = 6.8, \gc\ = 1.4, 
and | Qah+cd \ = 2.0 are all greater than w; 
therefore, the main effect of A, the main 
effect of C, and the mixed interaction 
AB + CD are believed to be significant. 
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CHAPTER 13 

RANDOMIZED BLOCKS, LATIN SQUARES, 

AND OTHER SPECIAL-PURPOSE DESIGNS 

13-1 INTRODUCTION 

The experimental designs treated in this chapter (with a single exception) make use of the 
planned grouping discussed in Chapter 11. The exception is the completely-randomized design 
discussed in Paragraph 13-2, which is included here as a contrast to the blocked designs that follow. 
In Paragraph 13-3, we discuss the simplest type of blocked design, randomized blocks, where blocking 
is made with respect to one source of inhomogeneity and the block is large enough to accommodate 
all the treatments we wish to test. In Paragraph 13-4, incomplete-block designs, the blocking again 

is one-way, but the block size is not large enough for all treatments to be tested in every block. 
In one case, the designs are called balanced incomplete-block plans (Paragraph 13-4.2), because 
certain restrictions on the assignment of treatments to blocks lead to equal precision in the estima¬ 
tion of differences between treatments. 

The chain block design, a special type of incomplete block design without this balance in the 
precision of the estimates, is discussed in Paragraph 13-4.3. 

When the experimental plan is designed to eliminate two sources of inhomogeneity, two-way 
blocking is used. The Latin squares and Youden squares (Paragraphs 13-5 and 13-6) are examples 

of such designs. 

13-2 COMPLETELY-RANDOMIZED PLANS 

13-2.1 PLANNING 

This plan is simple, and is the best choice when the experimental material is homogeneous and 
background conditions can be well controlled during the experiment. If there are a total of N 
available experimental units, and we wish to assign nx, n2, . . ., nt experimental units respectively 
to each of the t treatments or products, then we proceed to assign the experimental units to the 
treatments at random. As an example, suppose we wish to test three types of ammunition of a 
given size and caliber, to see which type has the highest velocity. We have nx, n2, n3 shells, 
respectively, of the three types. If the conditions under which the shells are fired are assumed 
to be the same for each shell, i.e., temperature, barrel conditions, etc., then the simplest plan is to 
choose the shells at random and fire them in that order. It is obvious that if we fired all the shells 
of one type first, and then fired all the shells of the next type, etc., we would have no insurance 
against influences on velocity such as the wearing of the gun barrel or changes in atmospheric 
conditions such as temperature. Randomization affords insurance against uncontrollable dis¬ 
turbances in the sense that such disturbances have the same chance of affecting each of the factors 
under study, and will be balanced out in the long run. 

The results of a completely-randomized plan can be exhibited in a table such as Table 13-1. 
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TABLE 13-1. SCHEMATIC PRESENTATION OF RESULTS FOR COMPLETELY-RANDOMIZED PLANS 

Observation 
Treatment 

1 2 t 

1 
2 
3 

Total 

Mean 

13-2.2 ANALYSIS 

Follow the procedure of Chapter 3, Paragraph 3-4, which gives the method for comparing the 
averages of several products. 

13-3 RANDOMIZED BLOCK PLANS 

13-3.1 PLANNING 

In comparing a number of treatments, it is clearly desirable that all other conditions be kept as 
nearly constant as possible. Often the required number of tests is too large to be carried out under 
similar conditions. In such cases, we may be able to divide the experiment into blocks, or planned 
homogeneous groups (see Chapter 11). When each such group in the experiment contains exactly 
one observation on every treatment, the experimental plan is called a randomized block plan. 

There are many situations where a randomized block plan can be profitably utilized. For 

example, a testing scheme may take several days to complete. If we expect some systematic dif¬ 
ferences between days, we might plan to observe each item on each day, or to conduct one test 
per day on each item. A day would then represent a block. In another situation, several persons 
may be conducting the tests or making the observations, and differences between operators are 
expected. The tests or observations made by a given operator can be considered to represent a 

block. 

The size of a block may be restricted by physical considerations. Suppose we wished to test 
the wearing qualities of two different synthetic substances used as shoe soles. The two feet of an 
individual constitute a logical block, since the kind and amount of wear usually is very nearly the 
same for each foot. 

In general, a randomized block plan is one in which each of the treatments appears exactly once 
in every block. The treatments are allocated to experimental units at random within a given 

block. 

The results of a randomized block experiment can be exhibited in a two-way table such as Table 

13-2, assuming we have b blocks and t treatments. 
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TABL£ 13-2. SCHEMATIC PRESENTATION OF RESULTS FOR RANDOMIZED BLOCK PLANS 

Block 
Treatment 

Total Block Mean 

1 2 t 

= B/t 

1 
2 

B i 
b2 

b Bb 

Total Ti T, Tt G 

Treatment 
Mean = T/b 

Since each treatment occurs exactly once in every block, the treatment totals or means are 
directly comparable without adjustment. 

13-3.2 ANALYSIS 

The analysis of a randomized block experiment depends on a number of assumptions. We assume 
that each of the observations is the sum of three components. If we let Ya be the observation on 
the ith treatment in the yth block, then 

Y ,-j = <pi + fij + e ij, 

where /3, is a term peculiar to a given block. It is the amount by which the response of 
a given treatment in the yth block differs from the response of the same treatment averaged 
over all blocks, assuming no experimental error. 

<Pi is a term peculiar to the tth treatment, and is constant for all blocks regardless of the 
block in which the treatment occurs. It may be regarded as the average value of the ith. 
treatment averaged over all blocks in the experiment, assuming no experimental error. 

e;j is the experimental error associated with the measurement Yl7. 

In order to make interval estimates for, or to make tests on, the <p/s or the /3/s, we generally 
assume that the experimental errors e,/s are independently and normally distributed. However, 
if the experiment was randomized properly, failure of this assumption will, in general, not cause 
serious difficulty. 
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Data Sample 13-3.2 — Conversion Gain of Resistors 

The following data, tabulated as outlined in Table 13-2, represent conversion gain of four re¬ 
sistors measured in six test sets. Conversion gain is defined as the ratio of available current-noise 
power to applied direct-current power expressed in decibel units, and is a measure of the efficiency 
with which a resistor converts direct-current power to available current-noise power. 

We are interested in possible differences among treatments (test sets) and blocks (resistors). 

Resistor 
(Blocks) 

Test Set (Treatments) 
Total Mean 

1463 1506 1938 1946 1948 2140 

3 138.0 141.6 137.5 141.8 138.6 139.6 By = 837.1 by = 139.52 

4 152.2 152.2 152.1 152.2 152.0 152.8 B2 = 913.5 b2 = 152.25 

5 153.6 154.0 153.8 153.6 153.2 153.6 B3 = 921.8 63 = 153.63 
6 141.4 141.5 142.6 142.2 141.1 141.9 B, = 850.7 64 = 141.78 

Ti = r2 = t3 = t4 = t5 = r6 = G = 

Total 585.2 589.3 586.0 589.8 584.9 587.9 3523.1 

Mean 
h = 

146.30 
t% = 

147.32 
tt = 

146.50 
U = 

147.45 
n = 

146.22 
te = 

146.98 

13-3.2.1 Estimation of the Treatment Effects. A treatment effect <pt is estimated by the mean of 
the observations on the ith treatment. That is, the estimate of is tt = T,/b. 

For example, see Data Sample 13-3.2. The estimate of the effect of Test Set 1463 is h = 7\/4 = 
585.2/4 = 146.30. Similarly, t2 = 147.32, t3 = 146.50, 14 = 147.45, tb = 146.22, f6 = 146.98. 
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13-3.2.2 Testing and Estimating Differences in Treatment Effects. 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up qi_„ (t, v) in Table A-10, 
where 

* = (& - 1) (< - 1) 

(3) Compute 
S, = (Tl + Tl + ... + Tf)/b - G2/tb 

(4) Compute 
Sb = + B2 + ... + B\)/t — G2/tb 

(5) Compute 

S = - G2/tb, 

i.e., compute the sum of the squares of all 
the observations, and subtract G2/tb. 

(6) Compute 
s2 = (S - Sb- St)/(b - 1) (t - 1) 

and 
s 

(7) Compute 

w = <7i_« s/y/b 

(8) If the absolute difference between any two 
estimated treatment effects exceeds w, de¬ 
cide that the treatment effects differ; other¬ 
wise, the experiment gives no reason to 
believe the treatment effects differ. 

Example 

(1) Let a = .05 

(2) From Data Sample 13-3.2, 

q.95 (6, 15) = 4.59 

(3) 
St = 517,181.998 - 517,176.400 

= 5.598 

(4) 
Sb = 518,104.065 - 517,176.400 

= 927.665 

(5) 

S = 518,123.13 - 517,176.40 
= 946.73 

(6) 
s2 = 13.467/15 

= 0.8978 

s = 0.9475 

(7) 

w = (4.59) (0.9475)/\/4 
= 2.175 

(8) Since there is no pair of treatment means 
whose difference exceeds 2.175, we have no 
reason to conclude that test sets differ. 

Note: It should be noted that for all possible pairs of treatments i and j, we can make the 
statements 

U — tj — W < (pi — <pj < U — tj + w 

with 1 — a confidence that all the statements are simultaneously true. 

13-3.2.3 Estimation of Block Effects. The block effect is estimated by the mean of the obser¬ 
vations in the jth block minus the grand mean. That is, the estimate of ft, the ;th block effect, 
is bj = Bj/t - G/bt. 

For example, using Data Sample 13-3.2, the grand average equals G/bt = 3523.1/24 = 146.80. 

6i = 139.52 - 146.80 
= - 7.28 

b2 = 152.25 - 146.80 
= 5.45 

b3 = 153.63 - 146.80 
= 6.83 

bi = 141.78 - 146.80 
= - 5.02 

686-511 O - 
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13-3.2.4 Testing and Estimating Differences in Block Effects. 

Procedure Example 

(1) Choose a, the significance level of the test. (1) Let a = .05 

(2) Look up (?i_a (6, v) in Table A-10, (2) From Data Sample 13-3.2 : 
where 

* = (6 - 1) (f - 1) 

(3) ' 

(4) Same as Steps (3), (4), (5), and (6), in 

(5) Paragraph 13-3.2.2 

(6) . 

(7) Compute 

w' = <?i_a s/s/i 

V = (4 - 1) (6 - 1) 
= 15 

g.95 (4, 15) = 4.08 

(3) St = 5.598 

(4) Sh = 927.665 

(5) S = 946.73 

(6) s2 = 0.8978 
s = 0.9475 

(7) 

w' = (4.08) (0.9475)/V6 
= 1.578 

(8) If the absolute difference between any two 
block effects exceeds w', conclude that the 
block effects differ; otherwise, the experi¬ 
ment gives no reason to believe that block 
effects differ. 

(8) See Paragraph 13-3.2.3. The absolute dif¬ 
ference between two block effects does 
exceed 1.578, and we conclude that re¬ 
sistors do differ. 

Note: As in the case of treatment effects, we can make simultaneous statements about the 
difference between pairs of blocks i and j, with confidence 1 — a that all the statements are simul¬ 
taneously true. The statements are, for all i and j, 

bi - bj - w' < Pi — Pj< bi — bj + w'. 

13-4 INCOMPLETE BLOCK PLANS 

13-4.1 GENERAL 

Incomplete block plans are similar to the randomized block plans of Paragraph 13-3, in that 
they make use of planned grouping. The distinguishing feature of incomplete block plans is that 
the block size is not large enough to accommodate all treatments in one block. For example, 
suppose that a block is one day, but that the time required for each test is so long that all experi¬ 
mental treatments cannot be run in one day. The limitation may be due to lack of space; such is 
the case in spectrographic analysis where a block may be one photographic plate, and the number 
of specimens to be compared may exceed the capacity of the plate. 
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We discuss two kinds of randomized incomplete block plans — balanced incomplete block plans 
in Paragraph 13-4.2, and chain block plans in Paragraph 13-4.3. The former have the advantage 
of easy analysis and the important property that all differences between treatment effects are 
estimated with the same precision. The chain block plans have an advantage when we wish to 
keep the number of duplicate observations on treatments to a minimum, and are very useful when 
the difference in treatments considered worth detecting is large in comparison to the amount of 
experimental error. (Experimental error may be thought of as the difference between an observed 
treatment and the average of a large number of similar observations under similar conditions.) 

Other incomplete block designs are available if these two classes do not meet the desires of the 
experimenter with regard to number of blocks, size of blocks, number of treatments, etc. An 
important and very large class of designs is the class called the “partially-balanced incomplete 
block designs” (see Bose, et al.(1)). Experiments using these plans, which are not discussed here, 

are slightly more complicated to analyze. 

13-4.2 BALANCED INCOMPLETE BLOCK PLANS 

13-4.2.1 Planning. We define r, b, t, k, X, E, and N as follows: 

r = number of replications (number of times each treatment appears in the plan); 
b = number of blocks in the plan; 
t = number of treatments; 

k = number of treatments which appear in every block; 

X = number of blocks in which a given treatment-pair appears, X = —^ 

E = a constant used in the analysis, E = t\/rk; 
N = total number of observations, N = tr = bk. 

Using this nomenclature, it is possible to enumerate the situations in which it is combinatorially 
possible to construct a balanced incomplete block design. Plans are listed in Table 13-3 for 
4 < t < 10, r < 10. For some other balanced incomplete block plans, see Cochran and Cox. 21 

If we wish to estimate and to make tests of block effects as well as treatment effects, we should 
consider the plans where b = t, i.e., the number of blocks equals the number of treatments. In 
such plans, called symmetrical balanced incomplete block designs, differences between block effects 
are estimated with equal precision for all pairs of blocks. 

To use a given plan from Table 13-3, proceed as follows: 

(1) Rearrange the blocks at random. (In a number of the plans in Table 13-3, the blocks are 
arranged in groups. In these plans, rearrange the blocks at random within their respective groups). 

(2) Randomize the positions of the treatment numbers within each block. 

(3) Assign the treatments at random to the treatment numbers in the plan. 
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TABLE 13-3. BALANCED INCOMPLETE BLOCK PLANS (4 < t < 10, 

Index 

r < 10) 

t k r b X Et Plan 
No.ft 

4 2 3 6 i 2/3 1 
3 3 4 2 8/9 * 

5 2 4 10 1 5/8 2 
3 6 10 3 5/6 * 
4 4 5 3 15/16 * 

6 2 5 15 1 3/5 3 
3 5 10 2 4/5 4 
3 10 20 4 4/5 5 
4 io 15 6 9/10 6 
5 5 6 4 24/25 * 

7 2 6 21 1 7/12 * 

3 3 7 1 7/9 7 
4 4 7 2 7/8 8 
6 6 7 5 35/36 * 

8 2 7 28 1 4/7 9 
4 7 14 3 6/7 10 
7 7 8 6 48/49 * 

9 2 8 36 1 9/16 * 

3 4 12 1 3/4 11 
4 8 18 3 27/32 12 
5 10 18 5 9/10 13 
6 8 12 5 15/16 14 
8 8 9 7 63/64 * 

10 2 9 45 1 5/9 15 
3 9 30 2 20/27 16 
4 6 15 2 5/6 17 
5 9 18 4 8/9 18 
6 9 15 5 25/27 19 
9 9 10 8 80/81 * 

t The constant E = t\/rk is used in the analysis. 
ft The asterisk indicates plans that may be constructed by forming all possible combinations of the t treatments in 

blocks of size k. The number of blocks b serves as a check that no block has been missed. 

Plan 1: t = 4, k = 2, r = 3, b = 6, X = 1, E = 2/3 

Group I Group II Group III 

(1) 1, 2 (3) 1, 3 

(2) 3, 4 (4) 2, 4 

(5) 1,4 
(6) 2,3 

Plan 2: t = 5, k = 2, r = 4, b = 10, X = 1, E = 5/8 

Group I Group II 

(1) 1, 2 (6) 1,3 
(2) 2, 5 (7) 2,4 

(3) 3,4 (8) 3, 2 
(4) 4, 1 (9) 4,5 
(5) 5, 3 (10) 5, 1 
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TABLE 13-3. BALANCED INCOMPLETE BLOCK PLANS* (Continued) 
(4 < t < 10, r < 10) 

t = 6, k = 2, r = 5, h = 15, X = 1, E = 3/5 

Group I Group II Group III Group IV Group V 

(1) 1, 2 
(2) 3,4 
(3) 5, 6 

(4) 1,3 

(5) 2, 5 
(6) 4, 6 

(7) 1, 4 
(8) 2, 6 

(9) 3, 5 

(10) 1, 5 

(11) 2,4 
(12) 3,6 

(13) 1, 6 
(14) 2, 3 
(15) 4, 5 

Plan 4: t = 6, k = 3, r = 5, b m10, X = 2, E = 4/5 

(1) 1, 2, 5 (5) 1, 4, 5 
(2) 1, 2, 6 (6) 2, 3, 4 
(3) 1, 3, 4 (7) 2, 3, 5 
(4) 1, 3, 6 

(8) 2, 4, 6 
(9) 3, 5, 6 

(10) 4, 5, 6 

Plan 5: t = 6, k = 3, r = 10, b = 20, X = 4, f = 4/5 

Group I Group II 

(1) 1, 2, 3 
(2) 4, 5, 6 

(3) 1, 2, 4 
(4) 3, 5, 6 

Group V Group VI 

(9) 1, 3, 4 
(10) 2, 5, 6 

(11) 1, 3, 5 
(12) 2, 4, 6 

Group IX 

(17) 1, 4, 6 
(18) 2, 3, 5 

= 6, k = 4, r = 10, b = 15, X = 6, E 

Group III Group IV 

(5) 1, 2, 5 

(6) 3, 4, 6 
(7) 1, 2, 6 
(8) 3, 4, 5 

Group VII Group VIII 

(13) 1, 3, 6 
(14) 2, 4, 5 

(15) 1, 4, 5 

(16) 2, 3, 6 

Group X 

(19) 1, 5, 6 
(20) 2, 3, 4 

9/10 

Group I 

(1) 1, 2, 3, 4 
(2) 1, 4, 5, 6 

(3) 2, 3, 5, 6 

Group II 

(4) 1, 2, 3, 5 

(5) 1, 2, 4, 6 
(6) 3, 4, 5, 6 

Group III 

(7) 1, 2, 3, 6 

(8) 1, 3, 4, 5 
(9) 2, 4, 5, 6 

Group IV Group V 

(10) 1, 2, 4, 5 
(11) 1, 3, 5, 6 
(12) 2, 3, 4, 6 

(13) 1, 2, 5, 6 
(14) 1, 3, 4, 6 
(15) 2, 3, 4, 5 

the Dinan^twLnnS^bi ?umbers are in parentheses followed by numbers which indicate treatments. In a number of 
me plans given, the blocks are arranged in p-rmins Tn asiiinu nr> ttio ovr.o,.;»v»o*,t _i_ 
possible 
same group, 

g7fn’;f ^bl-mkSmre ai?an,gjuin grouP-s~ In settinS UP the experiment, make the groups as homogeneous as 
i.e., if possible there should be more difference between blocks in different groups than between blocks in the 
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TABLE 13-3. BALANCED INCOMPLETE BLOCK PLANS* 
(4 < t < 10, r < 10) 

(Continued) 

Plan 7: t = 7, k = 3, r = 3, b = 7, X = 1, E = 7/9 

(1) 1, 2, 4 (3) 3, 4, 6 (5) 5, 6, 1 (7) 7, 1, 3 
(2) 2, 3, 5 (4) 4, 5, 7 (6) 6, 7, 2 

Plan 8: f = 7, k = 4, r = 4, fe = 

(1) 1, 2, 3, 6 

= 7, X = 2, E = 7/8 

(3) 3, 4, 5, 1 (5) 5, 6, 7, 3 (7) 7, 1, 2, 5 
(2) 2, 3, 4, 7 (4) 4, 5, 6, 2 (6) 6, 7, 1, 4 

Plan 9: t = 8, k = 2, r = 7, b = 

Group I 

= 28, X = 1, E = 4/7 

Group II Group III Group IV 

(1) 1, 2 (5) 1,3 (9) 1,4 (13) 1, 5 
(2) 3,4 (6) 2, 8 (10) 2, 7 (14) 2, 3 

(3) 5, 6 (7) 4, 5 (11) 3, 6 (15) 4, 7 

(4) 7,8 (8) 6, 7 (12) 5, 8 (16) 6, 8 

Group V Group VI Group VII 

(17) 1, 6 (21) 1, 7 (25) 1, 8 
(18) 2, 4 (22) 2, 6 (26) 2, 5 
(19) 3, 8 (23) 3, 5 (27) 3, 7 
(20) 5, 7 (24) 4, 8 (28) 4, 6 

Plan 10: t = 8, k = 4, r = 7, b 

Group I 

= 14, X = 3, E = 6/7 

Group II Group III Group IV 

(1) 1, 2, 3, 4 (3) 1, 2, 7, 8 (5) 1, 3, 6, 8 (7) 1, 4, 6, 7 
(2) 5, 6, 7, 8 (4) 3, 4, 5, 6 (6) 2, 4, 5, 7 (8) 2, 3, 5, 8 

Group V Group VI Group VII 

(9) 1, 2, 5, 6 (11) 1,3, 5, 7 (13) 1, 4, 5, 8 

(10) 3, 4, 7, 8 (12) 2, 4, 6, 8 (14) 2, 3, 6, 7 

See footnote on page 13-9. 
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TABLE 13-3. BALANCED INCOMPLETE BLOCK PLANS* (Continued) 
(4 < t < 10, r < 10) 

Plan 11: f = 9, k = 3, r = 4, b = 12, X = 1, E = 3/4 

Group I Group II Group III Group IV 

(1) 1, 2, 3 (4) 1, 4, 7 (7) 1, 5, 9 (10) 1, 8, 6 
(2) 4,5,6 (5) 2, 5, 8 (8) 7, 2, 6 (11) 4, 2, 9 
(3) 7, 8, 9 (6) 3, 6, 9 (9) 4, 8, 3 (12) 7, 5, 3 

= 9, k = 4, r = 8, b = 18, A = 3, E = 27/32 

Group I Group II 

(1) 1, 4, 6, 7 (10) 1, 2, 5, 7 

(2) 2, 6, 8, 9 (11) 2, 3, 6, 5 

(3) 3, 8, 9, 1 (12) 3, 4, 7, 9 
(4) 4, 1, 3, 2 (13) 4, 9, 2, 1 

(5) 5, 7, 1, 8 (14) 5, 1, 9, 6 

(6) 6, 9, 4, 5 (15) 6, 8, 1, 3 

(7) 7, 3, 2, 6 (16) 7, 6, 4, 8 

(8) 8, 2, 5, 4 (17) 8, 5, 3, 4 

(9) 9, 5, 7, 3 (18) 9, 7, 8, 2 

Plan 13: t = 9, k = 5, r = 10, b = 18, A = 5, E = 9/10 

Group I Group II 

(1) 1, 2, 3, 7, 8 (10) 1, 2, 3, 5, 9 
(2) 2, 6, 8, 4, 1 (11) 2, 6, 5, 1, 8 
(3) 3, 8, 5, 9, 2 (12) 3, 5, 1, 4, 6 
(4) 4, 3, 9, 2, 6 (13) 4, 3, 2, 8, 7 
(5) 5, 1, 7, 3, 4 (14) 5, 7, 9, 2, 4 
(6) 6, 4, 2, 5, 7 (15) 6, 8, 7, 3, 5 
(7) 7, 9, 1, 6, 3 (16) 7, 4, 8, 9, 1 
(8) 8, 5, 4, 1, 9 (17) 8, 9, 4, 6, 3 
(9) 9, 7, 6, 8, 5 (18) 9, 1, 6, 7, 2 

6, r= 8, b = 12, A = 5, E= 15/16 

Group I Group II 

(1) 1, 2, 4, 5, 7, 8 (4) 1, 2, 5, 6, 7, 9 
(2) 2, 3, 5, 6, 8, 9 (5) 1, 3, 4, 5, 8, 9 
(3) 1, 3, 4, 6, 7, 9 (6) 2, 3, 4, 6, 7, 8 

Group III Group IV 

(7) 1, 3, 5, 6, 7, 8 GO) 4, 5, 6, 7, 8, 9 
(8) 1, 2, 4, 6, 8, 9 (ID 1, 2, 3, 4, 5, 6 
(9) 2, 3, 4, 5, 7, 9 (12) 1, 2, 3, 7, 8, 9 

See footnote on page 13-9. 
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TABLE 13-3. BALANCED INCOMPLETE BLOCK PLANS* (Continued) 
(4 < t < 10, r < 10) 

Plan 15: 

Plan 16: 

Plan 17: 

t = 10, k = 2, r = 9, b = 45, X = 1, E = 5/9 

Group I Group II Group III Group IV Group V 

(1) 1, 2 (6) 1, 3 (11) 1, 4 (16) 1, 5 (21) 1, 6 
(2) 3,4 (7) 2, 7 (12) 2, 10 (17) 2, 8 (22) 2, 9 
(3) 5, 6 (8) 4, 8 (13) 3, 7 (18) 3, 10 (23) 3, 8 
(4) 7,8 (9) 5, 9 (14) 5, 8 (19) 4, 9 (24) 4, 10 
(5) 9, 10 (10) 6, 10 (15) 6, 9 (20) 6, 7 (25) 5, 7 

Group VI Group VII Group VIII Group IX 

(26) 1, 7 (31) 1, 8 (36) 1, 9 (41) 1, 10 
(27) 2, 6 (32) 2, 3 (37) 2, 4 (42) 2, 5 
(28) 3, 9 (33) 4, 6 (38) 3, 5 (43) 3, 6 
(29) 4, 5 (34) 5, 10 (39) 6, 8 (44) 4, 7 
(30) 8, 10 (35) 7, 9 (40) 7, 10 (45) 8, 9 

t = 10, k = 3, r = 9, b = 30, X = 2, E = 20/27 

(1) 1, 2, 3 (ID 1, 2, 4 (21) 1, 3, 5 

(2) 2, 5, 8 (12) 2, 3, 6 (22) 2, 7, 6 

(3) 3, 7, 4 (13) 3, 4, 8 (23) 3, 8, 9 

(4) 4, 1, 6 (14) 4, 9, 5 (24) 4, 2, 10 

(5) 5, 8, 7 (15) 5, 7, 1 (25) 5, 6, 3 

(6) 6, 4, 9 (16) 6, 8, 9 (26) 6, 1, 8 

(7) 7, 9, 1 (17) 7, 10, 3 (27) 7, 9, 2 

(8) 8, 10, 2 (18) 8, 1, 10 (28) 8, 4, 7 

(9) 9, 3, 10 (19) 9, 5, 2 (29) 9, 10, 1 
(10) 10, 6, 5 (20) 10, 6, 7 (30) 10, 5, 4 

f = 10, k = 4, r = 6, b = 15, X = 2, E = 5/6 

(1) 1, 2, 3, 4 (6) 1, 6, 8, 10 (ID 3, 5, 9, 10 

(2) 1, 2, 5, 6 (7) 2, 3, 6, 9 (12) 3, 6, 7, 10 

(3) 1, 3, 7, 8 (8) 2, 4, 7, 10 (13) 3, 4, 5, 8 
(4) 1, 4, 9, 10 (9) 2, 5, 8, 10 (14) 4, 5, 6, 7 
(5) 1, 5, 7, 9 (10) 2, 7, 8, 9 (15) 4, 6, 8, 9 
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TABLE 13-3. BALANCED INCOMPLETE BLOCK PLANS* (Continued) 
(4 < t < 10, r < 10) 

t = 10, k = 5, r = 9, b = 18, X = 4, E = 8/9 

(1) 1, 2, 3, 4, 5 (7) 1, 4, 5, 6, 10 (13) 2, 5, 6, 8, 10 

(2) 1, 2, 3, 6, 7 (8) 1, 4, 8, 9, 10 (14) 2, 6, 7, 9, 10 

(3) 1, 2, 4, 6, 9 (9) 1, 5, 7, 9, 10 (15) 3, 4, 6, 7, 10 

(4) 1, 2, 5, 7, 8 (10) 2, 3, 4, 8, 10 (16) 3, 4, 5, 7, 9 

(5) 1, 3, 6, 8, 9 (11) 2, 3, 5, 9, 10 (17) 3, 5, 6, 8, 9 

(6) 1, 3, 7, 8, 10 (12) 2, 4, 7, 8, 9 (18) 4, 5, 6, 7, 8 

t = 10, k = 6, r = 9, b = 15, X = 5 , E = 25/27 

(1) 1, 2, 4, 5, 8, 9 (6) 2, 3, 4, 6, 8, 10 (11) 1, 4, 5, 7, 8, 10 

(2) 5, 6, 7, 8, 9, 10 (7) 1, 2, 6, 7, 9, 10 (12) 1, 2, 3, 5, 7, 10 

(3) 2, 4, 5, 6, 9, 10 (8) 1, 3, 5, 6, 8, 9 (13) 2, 3, 5, 6, 7, 8 

(4) 1, 2, 4, 6, 7, 8 (9) 1, 2, 3, 8, 9, 10 (14) 1, 3, 4, 5, 6, 10 

(5) 3, 4, 7, 8, 9, 10 (10) 2, 3, 4, 5, 7, 9 (15) 1, 3, 4, 6, 7, 9 

* See footnote on page 13-9. 

For analysis, the results of a balanced incomplete block design may be exhibited in a table such 
as Table 13-4, which shows the arrangement for Plan 7 of Table 13-3. 

TABLE 13-4. SCHEMATIC REPRESENTATION OF RESULTS FOR A BALANCED INCOMPLETE 
BLOCK PLAN 

Plan 7 of Table 13-3 is used here for illustration. 

Block 
Treatment 

Total 
A B C D E F G 

1 X X X Pi 
2 X X X b2 
3 X X X b3 
4 X X X Ba 
5 X X X b5 
6 X X X Be 
7 X X X B- 

Total ta Tb Tc TV Te TV TG G 
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13-4.2.2 Analysis. In the analysis of the balanced incomplete block plans the same model is 
used and the same assumptions are made as in the randomized block plans. The only difference 
is that, in the present case, the blocks do not each contain all of the treatments. 

The analysis described here is sometimes called the intra-block analysis. 

Data Sample 13-4.2.2 — Noise Measurement of Resistors 

A certain film-type composition resistor used in electronic equipment is of the type which is 
mounted on a ceramic plate. An investigation was designed to determine the effects of four dif¬ 
ferent geometrical shapes of resistors on the current-noise of these resistors. Since only three 
resistors could be mounted on one plate, an incomplete block design was used. The plan required 
a total of 12 resistors (three of each of the four shapes). In the plan, the ceramic plates are blocks 

(6 = 4); the resistor shapes are treatments (t = 4) and the plan is summarized by the following 
parameters: t = 4, b = 4, Jc = 3, r = 3, \ = 2, E = 8/9, N = 12. Note that this is a symmetrical 
balanced incomplete block design; i.e., the number of blocks equals the number of treatments. 

The following entries are logarithms of the noise measurement. 

Plates 
(Blocks) 

Shapes (Treatments) 

Total 

A B C D 

1 1.11 .95 .82 Bt = 2.88 

2 1.70 1.22 .97 B2 = 3.89 

3 1.60 1.11 1.52 Bx = 4.23 

4 1.22 1.54 1.18 B4 = 3.94 

Total T, =4.41 T2 = 3.55 T3 = 4.01 T4 = 2.97 G = 14.94 

t = 4, k = 3, b = 4, r = 3, X = 2, E = N = 12. 
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13-4.2.2.1 Estimating Treatment Effects. We assume that the observations have been exhibited 
in a table such as Table 13-4. The treatment effects cannot be estimated directly from the treat¬ 
ment averages, and must be adjusted for possible block effects. The estimate of <p,, the effect of 
the fth treatment, is 

t; = Q ,/Ev + G/vt, 

where 

Qi = Ti — [(Sum of totals of all blocks containing treatment i)/k] 

For example, using Data Sample 13-4.2.2, 

Q, = T, - (g| + f + B>) 

I 4.41-if® 

= 4.41 - 3.6667 

= 0.7433 

Similarly, 

Qn = 3.55 - 
12.06 

3 

= 3.55 - 4.0200 

= -0.4700 

= 4.01 - 
11.05 

= 4.01 - 3.6833 

= 0.3267 

= 2.97 - 

= 2.97 - 3.5700 

= -0.6000 

E = 8/9, r = 3, Er = 2.6667, t = 4, rt = 12, 
G/rt = 14.94/12 

= 1.2450 

- Hi +12450 
= 1.5237 

, 0.3267 , . 
U 2.6667 + 1'245° 

= 1.3675 

. _ -0.4700 
t2 2.6667 + i-2450 

= 1.0688 

_ -0.6000 
t: 2.6667 + 1>245° 

= 1.0200 
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13-4.2.2.2 Testing and Estimating Differences in Treatment Effects. 

Procedure Example 

(1) Choose a, the significance level of the test. 

(2) Look up </i_„ (t, v) in Table A-10, 
where 

v = tr — t — 6 + 1 

(3) Compute Q, and t, for each treatment. 
(The sum of the Q, should equal zero.) 

(4) Compute 

(1) Let a = .05 

(2) From Data Sample 13-4.2.2 : 

t = 4 
v = 5 

q.95 (4, 5) = 5.22 

(3) See Paragraph 13-4.2.2.1 

(4) 

o _ Ql + Ql + • • • + Ql 
bt Er 

(5) Compute (5) 

„ _ B{ -f- Bo -f- .. . -f- B\ G- 
bb ~ k rt 

(6) Compute (6) 

S = ZY\j - G*/rt; 

i.e., compute the sum of the squares of all 
the observations and subtract G-/rt. 

(7) Compute (7) 

, _ S - St - sh 
S~ tr - t - b + 1 

(8) Compute (8) 

tv — qi-a s/y/Er 

= 1.24012778 
2.6667 

= 0.46504 

Sh 
56.8430 

3 

0.34737 

- 18.60030 

S = 19.4812 - 18.6003 
= 0.88090 

„ 0.06849 
32=-^“ 

= 0.0137 

s = 0.117 

_ (5.22) (0.117) 
1.63 

0.611 
1.63 

= 0.375 

(9) If the absolute difference between two esti¬ 
mated treatment effects exceeds w, con¬ 
clude that the treatment effects differ; 
otherwise, conclude that the experiment 
gives no reason to believe that the treat¬ 
ment effects differ. 

Note: We can make simultaneous confidence 
pairs of treatments i and j, with confidence 1 

The statements are, for all i and j, 

t; — tj — IV < <pi 

(9) Since there are differences between pairs of 
treatment effects that do exceed 0.375, we 
conclude that resistor shapes differ with 
regard to their effect on current noise. 

interval statements about the differences between 
- a that all statements are simultaneously true. 

— ipj < ti — tj + iv. 
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13-4.2.2.3 Estimating Block Effects. Like the treatment effects, block effects cannot be esti¬ 
mated directly from block averages, but must be adjusted according to which treatments occur in 
them. We discuss estimation of the block effects for symmetrical plans only, i.e., where b = t, 
the number of blocks equals the number of treatments. If it is required to estimate or test block 
effects in a balanced incomplete block plan which is not symmetric, a statistical text book 
such as Cochran and Cox(2) or Fisher and Yates(3) should be consulted. 

For symmetric plans, the estimate of fij, the /th block effect, is 

bj = Q'j/Er 
where 

Q) = Bj — (sum of totals of all treatments occurring in the /th block /r). 

For example, using Data Sample 13-4.2.2. 

Q\ = B, - ( 
T1 + T, + 7Y 

= 2.88 - 
11.39 

= 2.88 - 3.7967 

= - 0.9167. 

Similarly, 

= 3.89 - 

= 3.89 - 

= 0.2467 

Qs = 4.23 - 

= 4.23 - 

= 0.2400 

Q[ = 3.94 - 

= 3.94 - 

= 0.4300 

10.93 

3 

3.6433 

11.97 
3 

3.9900 

10.53 
3 

3.5100 

Er = 2.6667 

&! = - 0.9167/2.6667 
= - 0.34376 

b2 = 0.2467/2.6667 

= 0.09251 

b3 = 0.2400/2.6667 
= 0.09000 

&4 = 0.4300/2.6667 
= 0.16125 
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13-4.2.2.4 Testing and Estimating Differences in Block Effects. The procedure described applies 
to symmetrical balanced incomplete block plans only. 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up qi_a (b, v) in Table A-10, 
where 

v = tr - t - b + 1 

(3) Compute and 6, for each block. (The 
sum of the Q' should equal zero.) 

(4) Compute 

Si = (Q'i~ + Q'2 + .. . + Q',2)/Er 

(5) Compute 

S't = {T\ + T\ + ... + T2t)/r - G2/rt 

(6) Compute 

S = 2 Y^ - G2/rt; 

i.e., compute the sum of the squares of all 
individual observations and subtract G2/rt. 

(7) Compute 

s2 = (S — S[ — S'b) / {tr — t — 6 + 1) 

and 

s 

Note: S't + Si (as computed in steps (4) and (5) 
above) should equal St + Sb (as computed in 
Paragraph 13-4.2.2.2), and therefore the s2 
here should equal s2 computed in Paragraph 
13-4.2.2.2. 

(8) Compute 

w' = qi-a s/y/Er 

Example 

(1) Let a = .05 

(2) See Data Sample 13-4.2.2 

t = 4 
6 = 4 
r = 3 
v = 5 

q.95 (4, 5) = 5.22 

(3) See Paragraph 13-4.2.2.3 

(4) 
Er = 2.6667 

St = 1.14369978/2.6667 
= 0.42888 

(5) 

S't = 56.9516/3 - 18.60030 

= 18.98387 - 18.60030 
= 0.38357 

(6) 

S = 19.4812 - 18.60030 
= 0.88090 

(7) 

s2 = 0.06845/5 

= 0.0137 

s = 0.117 

Note: S't + Si = 0.81245 from steps (4) and (5) 
above. St + Sb = 0.81241 from Paragraph 
13-4.2.2.2. The discrepancy is due to rounding 
error, and would be larger if fewer decimal 

places were carried in the computation. 

(8) 

w' = (5.22) (0.117)/1.63 
= 0.611/1.63 
= 0.375 
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Procedure Example 

(9) If the absolute difference between any two (9) Since there are differences between pairs of 
estimated block effects exceed w', conclude block effects that exceed 0.375, we con- 
that the block effects differ; otherwise, con- elude that blocks (plates) do differ, 
elude that the experiment gives no reason 

to believe the block effects differ. 

Note: We can make simultaneous statements about the differences between pairs of blocks i 
and j, with confidence 1 — a that all the statements are simultaneously true. The statements are, 
for all i and j, 

bi — bj — w' < /?,- — (ij < b; — bj + w'. 

13-4.3 CHAIN BLOCK PLANS 

13-4.3.1 Planning. The chain block plan is useful when observations are expensive and the 
experimental error is small. Such a plan can handle a large number of treatments relative to the 
total number of observations. We need make only a few more observations than we have treat¬ 
ments to compare. Before using a chain block plan, however, we should be confident that the 
important differences in treatment effects are substantially larger than experimental error. 

In a chain block design, some treatments are observed once and some treatments are observed 
twice. Schematically, the plan can be represented as in Table 13-5. 

TABLE 13-5. SCHEMATIC REPRESENTATION OF A CHAIN BLOCK PLAN 

Blocks 

1 2 b - 1 b 

A{ At ALi Ah 

A" A" A'b A” 
X X X 

X X X 

X X X 

Total B1 B, #6-1 B„ G 
(= Grand 

Total) 

In Table 13-5, A'- represents either a treatment or a group of treatments, and A” represents the 
same treatment or group of treatments. The x’s represent treatments for which we have only one 
observation, and we need not have the same number of such treatments in every block. 

When the experimental conditions are appropriate for their use, chain blocks are a flexible and 
efficient design. They are easy to construct. After following through the example below, and 
with the help of Cochran and Cox/21 the user should be able to produce a chain block plan suitable 
to his own needs. For a given number of blocks b and a given number of treatments t, various 
different plans may be constructed. The analysis is not too difficult, but is not as straightforward 
as the analysis of some simpler designs. 
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Two examples of chain block designs (Plan 1 and Plan 2) are given here. The numbers in each 
block represent treatments. 

Plan 1: 

4 Blocks (b = 4) 

13 Treatments (t = 13) 

Block 

1 2 3 4 

/1\ M M w W ■ w w 
m m m w W w w 

9 10 11 12 

13 

Schematically, Plan 1 may be written: 

Block 

In Plan 1, treatments 1 and 2 constitute the group Ax, which appears in block 1 and block 4; 
treatments 3 and 4 constitute the group A2 (in block 1 and block 2); treatments 5 and 6 constitute 
the group A:j (in block 2 and block 3); and treatments 7 and 8 constitute the group A4 (in block 3 
and block 4). The remaining treatments (9 through 13) are distributed among the blocks to 
make the number of treatments per block as equal as possible. 

Treatments 1 through 8 appear twice each; treatments 9 through 13 appear once only. Treat¬ 
ment 1 never occurs without treatment 2, treatment 3 never occurs without treatment 4, etc. 

Thus, the treatments which are replicated twice fall into four groups (schematically Ai, A2, A:t, A4), 
and these groups are the links in the chain of blocks. Treatments 3 and 4 link blocks 1 and 2, 
treatments 5 and 6 link blocks 2 and 3, treatments 7 and 8 link blocks 3 and 4, and treatments 1 

and 2 complete the chain by linking blocks 4 and 1. 
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Plan 2: 

3 Blocks (6 = 3) 

11 Treatments (t = 11) 

Block 

1 2 3 

fll 
1 2 !- 

(41 f7] 
^5'- 

(3J l«J 

(41 f7l fll 
^ 5 S- 
16J W 13] 

10 11 

Schematically, Plan 2 may be written: 

Block 

1 2 3 

A{ Ao A5 
A.7 Ar A," 
X X 

In Plan 2, the group of treatments 1, 2, and 3 are group A \; treatments 4, 5, 6 constitute the 
group A2; and treatments 7, 8, 9 constitute the group A;i. The remaining two treatments (10 
and 11) are assigned to blocks 1 and 2. Treatments 1 through 9 appear twice each, and treat¬ 
ments 10 and 11 appear once each. Treatments 1, 2, and 3 always occur together as a group; 

treatments 4, 5, and 6 always occur together; and treatments 7, 8, and 9 always occur together. 
Thus, the treatments which are replicated twice fall into three groups (schematically Ai, A>, A:i). 
Group Ao links blocks 1 and 2, group A:i links blocks 2 and 3, and group A, completes the chain by 
linking blocks 3 and 1. 

To use a given chain block plan, the numbers should be allocated to the treatments at random. 

13-4.3.2 Analysis. For purposes of analysis, the observations should be recorded in the form 
shown in Table 13-5. 

The parameters of the plan are: 
b = number of blocks in the plan; 

k, = number of observations in the fth block; 
t = number of treatments; 

m = number of treatments in each group A' and A”; 

N = total number of observations. 
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Data Sample 13-4.3.2 — Spectrographic Determination of Nickel 

The data are spectrographic determinations of nickel content of 42 rods prepared from the same 
ingot. Only about 18 determinations could be made on the same photographic plate, and there 
were 42 “treatments” to be compared; therefore, a chain block plan was used. In the experiment, 
there are three blocks (the photographic plates involved in the determinations) and 42 treatments 
(the rods). The selected chain block plan is shown schematically in Table 13-6. The parameters 
of this plan are: b = 3, k = 18, t = 42, m = 4, and IV = 54. 

The amounts of nickel were recorded as logarithms (base 10) of the ratio of the intensity of the 
nickel spectral line to the iron spectral line. In Table 13-7, these determinations have been coded 
by multiplying by 10:i and then subtracting 170. 

The primary question to be answered is: Are there significant differences among rods (treat¬ 

ments)? 

TABLE 13-6. SCHEMATIC REPRESENTATION OF THE CHAIN BLOCK DESIGN 
DESCRIBED IN DATA SAMPLE 13-4.3.2 

i 

Block 

2 3 

1 f 5 f 9 
a; J2 . A' J 6 A' ) 10 

13 1 ^ 111 
U l 8 [12 

f5 f 9 f 1 
A” J 6 A" j 10 A(' 1 2 

7 lH 3 
[8 [12 l 4 

13 23 33 

14 24 34 

15 25 35 

16 26 36 

17 27 37 

18 28 38 

19 29 39 

20 30 40 

21 31 41 

22 32 42 

The numbers in the blocks represent treatments. 
The parameters of this plan are: b = 3, k = 18, 

t = 42, m = 4, N = 54. 
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TABLE 13-7. SPECTROGRAPHIC DETERMINATION OF NICKEL 
(DATA SAMPLE 13-4.3.2) 

Plates (Blocks) 

1 2 

1 f 8 U r 4 U 
A[ ] i 7 u a: 3 a; J 

114 t. 10 t- 
I 9 u 1 6 

r 13 <5 f 5 ^ ' 1 

J15 <6 A" I 7 t\n A'/ 1 5 
j 12 t- 2 tu 1 2 
[ 9 U { 6 <I# l o 

11 10 5 

5 9 -1 

17 6 -3 

14 7 -6 

12 6 2 

13 4 -2 

14 7 -2 

12 7 0 

8 9 1 

21 10 2 

Total Bt = 214 B, = 118 B3 = - 8 G = 324 
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13-4.3.2.1 Estimating Treatment and Block Effects. Since the method of estimating treatment 
effects requires calculation of the estimated block effects, we compute the block effects first. 

Procedure 

(1) Compute the sum of the observations for each of the groups A', A". Call the totals X\, X". 

(2) Record the totals X[, X[', etc., as shown: 

X[ XI ... XU xi G' 
X[' X" ... Xu XI' G" 

D} Do ... D,,-! D,, 

Compute: 

D, = X', - xy 
G' = X[ + X'n + . . . + X'l, 

G" = X[' + xy + ... + xi' 
G"' = sum of all observations on treatments which occur once only. 

G = G' + G" + G'" 

(3) Compute 

L\ = (6 — 1) (D1 — D%) -f- (6 — 3) (Du — D-,i) + (b — 5) (Db-1 — Dd -)-... 
where the sum is over 6/2 terms if 6 is even, and (6 — l)/2 terms if 6 is odd. 

(4) Compute 

H = {G" - G')/mb 

(5) If there are m treatments in each group A' or A'', then we may estimate the first block effect as 

61 - L1/2mb. 

(6) Compute: 

62 = 61 + Di/m + H 
63 = 60 + D*/m + H 

bh — &6_i + Di/m + H. 
bi, 62, . . ., bb are the estimated block effects. 

Check: The sum of the estimated block effects should equal zero. 

(7) The estimated treatment effects U are computed as follows: 

If the treatment occurs twice, the estimated treatment effect is the average of the two 
observations minus the average of the estimated block effects for the two blocks in which the 

observations occur. 

If the treatment occurs once, the estimated treatment effect is the observation on the 
treatment minus the estimate of block effect for the block in which the treatment occurs. 

Check: The sum of the estimated treatment effects should equal G — + G"). 
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(1) See Table 13-7. 
Sum of group A/ = 38 = xs 
Sum of group A” = 8 = xs 
Sum of group AS = 23 = xs 
Sum of group AS' = 49 = xs 
Sum of group AS = -12 = xs 
Sum of group AS' = 20 = xs 

Example 

(2) XS 
XS' 

Di = 30 

XS = 
XS' = 

D. = -26 

XS G' = 49 
G" = 77 

D, = -32 

G' = 49 
G" = 77 
G'" = 198 (from Table 13-7) 
G = 324 (from Table 13-7) 

(3) In the example, 6=3 (odd), and there will be only one term. 
Li = (3 — 1) (30 + 26) 

= (2) (56) 
= 112 

(4) H = 
77 - 49 

4 (3) 

_ ?8 
12 

= 2.33 

(5) h — 
1 - 2mb 

112 

(2) (4) (3) 

= 4.67 

(6) 6, = 4.67 + + 2.33 

= 0.50 

_qo 
63 = 0.50 + + 2.33 

= -5.17 

Check: bi + 62 + 6* = 0. 

13-25 



ORDP 20-112 PLANNING AND ANALYSIS OF EXPERIMENTS 

Example (cont) 

(7) Treatments 1 through 12 occur twice. In estimating these treatments, we need the following 
averages of block effects: 

61 -f- b:j —0.50 
2 = ~~2~ 

= -0.25 

hi + 62 _ 5.17 
2 2 

= 2.58 

62 + b, _ —4^67 
2 _ 2 

= -2.33 

Treatments 1 through 4 (occurring in Groups A/ and A/', in blocks 1 and 3) are estimated 
as follows: 

h = 

U = 

t, ~ 

U = 

8 + 1 
2 

4.75 

7 + 5 
2 

6.25 

+ 0.25 

+ 0.25 

+ 0.25 

8.25 

9 + 0 
2 

4.75 

+ 0.25 

Treatments 5 through 8 (occurring in Groups A., and A", in blocks 1 and 2) are estimated 
as follows: 

h = - 2.58 

h = 

= 5.92 

3 + 15 
2 

= 6.42 

- 2.58 

f7=^-2-2.58 

= 8.42 

ts = ^ - 2.58 

= 4.92 

13-26 



INCOMPLETE BLOCK PLANS ORDP 20-112 

Example (cont) 

Treatments 9 through 12 (occurring in Groups A/ and A3", in blocks 2 and 3) are estimated 
as follows: 

t9 = ~ \+ 5 + 2.33 

= 4.33 

fio = + 2.33 

= 5.83 

in = ~32+2 + 2.33 

= 1.83 

k, = ~-82+6 + 2.33 

= 1.33 

Treatments 13 through 42 occur only once, and are estimated as follows: 

11 - 4.67 = 6.33 
5 - 4.67 = 0.33 

17 - ” = 12.33 
14 - ” = 9.33 
12 - ” = 7.33 

13 - ” = 8.33 
14 - ” = 9.33 
12 - ” = 7.33 

8 - ” = 3.33 
21 - ” I 16.33 

Check: 2 U = 261.00; G 

10 - 0.50 = 9.50 
9 - 0.50 = 8.50 
6 — ” = 5.50 
7 - ” = 6.50 
6 - ” = 5.50 
4 - ” = 3.50 

7 - " = 6.50 
7 - ” = 6.50 
9 - ” = 8.50 

10 - ” = 9.50 

i (G' + G") = 324 - 63 

5 - (- 5.17) = 10.17 
-1 - (- 5.17) = 4.17 
-3 - ” - 2.17 
-6 - ” = - 0.83 

2 - ” = 7.17 
-2 - ” - 3.17 
-2 - ” - 3.17 

0 - ” = 5.17 
1 - ” 6.17 
2 - ” = 7.17 

261. 
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13-4.3.2.2 Testing and Estimating Differences in Treatment Effects. To test for differences in 

treatment effects, we proceed as follows: 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up Fi_« (t - 1, N - b - t + 1), in Table A-5. 

(3) Compute Sb = B\/ki + B\/k2 + . . . + B\/kh — G-/N. 

(4) Compute S' = {G' — G")2/2bm. 

(5) From each of the observations in A[ subtract the observation on the same treatment in A['. 

Call these differences dn, du, , dim, and compute 

= (d?i + di2 + ... + d\m)/2 — D\/2m. 

Compute the comparable quantities S2, S2, . . . , Sb. 

(6) Compute: Se 
and 

S' Si -f- S2 + • . • + Si, 

SK/ (N — b — t -f- 1). 

(7) Compute S (sum of squares of all the observations) — G-/N. 

(8) Compute St = S - Sh - Se. 

(9) Compute F = (N — b — t + — 1)5,.. 

(10) If F > Fi_a, conclude that the treatments differ; otherwise, conclude that the experiment 

gives no reason to believe that the treatments differ. 
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Example 

(1) Let a = .01 

(2) t = 42, b = 3, N = 54 (see Table 13-6). 
f - 1 = 41, N-b-t + l = 10 
F.99 (41, 10) = 4.17 

(3) See Table 13-7. 

_(2W 
lS" “ 18 + 

_ 59784 _ 
18 

= 1377.333 

(118)* 
18 

104976 
' 54 

(- 8)2 _ (324)2 
+ 18 54 

= 3321.333 - 1944.0 

(4) 
(49 - 77)2 784 
(2) (3) (4) 24 

= 32.667 

(5) d i: = 12 
du = 9 

900 
8 

139 - 112.5 

= 26.5 

dn = - 9 d,,= ~ 2 
d22 = - 12 d24 = - 3 

S2 = ~ - 84.5 = 119 - 84.5 

= 34.5 

d3i = — 6 d33 = — 5 
dn = - 7 d:u = - 14 

= ^ - 128 = 153 - 128 

= 25 

Dx = 30 

D, = - 26 

D:i = - 32 

(6) = 32.667 + 26.5 + 34.5 + 25 
= 118.667 

, 118.667 
s' = ~Io- 

I 11.8667 

(7) S = 3862 - = 3862 - 1944 
54 

= 1918 

(8) St = 1918 - 1377.333 - 118.667 
= 422 

q F = (10) (422) 4220 
1 (41) (118.667) 4865.347 

= 0.8674 

(10) Since F is not greater than F.99f we say there is not sufficient evidence to conclude that 
treatments (rods) differ. 
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13-5 LATIN SQUARE PLANS 

13-5.1 PLANNING 

A Latin square plan (or the Youden square plans in Paragraph 13-6) is useful when it is necessary 
or desirable to allow for two specific sources of non-homogeneity in the conditions affecting test 
results. Such designs were originally applied in agricultural experimentation when the two di¬ 
rectional sources of non-homogeneity were simply the two directions on the field, and the “square” 
was literally a square plot of ground. Its usage has been extended to many other applications 
where there are two sources of non-homogeneity that may affect experimental results — for example, 
machines, positions, operators, runs, days. A third variable, the experimental treatment, is then 
associated with the two source variables in a prescribed fashion. The use of Latin squares is 
restricted by two conditions: 

(1) the number' of rows, columns, and treatments must all be the same; 
(2) there must be no interactions between row and column factors (see Chapter 12, Para¬ 

graph 12-1.1, for definition of interaction). 

Youden square plans (Paragraph 13-6) are less restrictive than Latin squares; the number of rows, 
columns, and treatments need not be the same, but only certain number combinations are possible. 

As an example of a Latin square, suppose we wish to compare four materials with regard to their 
wearing qualities. Suppose further that we have a wear-testing machine which can handle four 
samples simultaneously. Two sources of inhomogeneity might be the variations from run to run, 

and the variation among the four positions on the wear machine. In this situation, a 4 X 4 Latin 
square will enable us to allow for both sources of inhomogeneity if we can make four runs. The 
Latin square plan is as follows: (The four materials are labelled A, B, C, D). 

A 4 X4 Latin Square 

Run 

Position Number 

(1) (2) (3) (4) 

1 A B C D 

2 B C D A 

3 C D A B 

4 D A B C 

Examples of Latin squares from size 3 X 3 to 12 X 12 are given in Table 13-8. In the case of 
the 4x4 Latin square, four are given; when a 4 X 4 Latin square is needed, one of the four should 
be selected at random. The procedure to be followed in using a given Latin square is as follows: 

(a) Permute the columns at random; 
(b) Permute the rows at random; 
(c) Assign letters randomly to the treatments. 
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TABLE 13-8. SELECTED LATIN SQUARES 

3X3 4X4 

ABC A 
B C A B 
CAB C 

D 

1 

BCD A 
ADC B 
DBA C 
CAB D 

2 3 

BCD ABC 
C D A B D A 
DAB CAD 
ABC D C B 

4 

D A B C D 
C B A D C 
B C D A B 
A D C B A 

5 X 5 6 X < 

A B C D E A B c D 
B A E C D B F D C 
C D A E B C D E F 
D E B A C D A F E 
E C D B A E C A B 

F E B A 

7X7 

E F A B C D E F G 
A E B C D E F G A 
B A C D E F G A B 
C B D E F G A B C 
F D E F G A B C D 
D C F G A B C D E 

G A B C D E F 

8X8 9X9 10X10 

A B C D E F G H A B C D E F G H r I A B C D E F G H I J 
B C D E F G H A B C D E F G H I A B C D E F G H I J A 
C D E F G H A B C D E F G H I A B C D E F G H I J A B 
D E F G H A B C D E F G H I A B C D E F G H I J A B C 
E F G H A B C D E F G H I A B C D E F G H I J A B C D 
F G H A B C D E F G H I A B C D E F G H I J A B C D E 
G H A B C D E F G H I A B C D E F G H I J A B C D E F 
H A B C D E F G H I A B C D E F G H I J A B C D E F G 

I A B C D E F G H I J A B C D E F G H 
J A B C D E F G H I 

11 X 11 12 X 12 

A B C D E F G H I J K A B C D E F G H I J K L 
B C D E F G H I J K A B C D E F G H I J K L A 
C D E F G H I J K A B C D E F G H I J K L A B 
D E F G H I J K A B C D E F G H I J K L A B C 
E F G H I J K A B C D E F G H I J K L A B C D 
F G H I J K A B C D E F G H I J K L A B C D E 
G H I J K A B C D E F G H I J K L A B C D E F 
H I J K A B C D E F G H I J K L A B C D E F G 
I J K A B C D E F G H I J K L A B C D E F G H 
J K A B C D E F G H I J K L A B C D E F G H I 
K A B C D E F G H I J K L A B C D E F G H I J 

L A B C D E F G H I J K 
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(If squares of 5 X 5 and higher are used very frequently, then, strictly speaking, each time we use 
one we should choose a square at random from the set of all possible squares. Fisher and Yates(3) 
give complete representation of the squares from 4 X 4 to 6 X 6, and sample squares up to the 
12 X 12. 

The results of a Latin square experiment are recorded in a two-way table similar to the plan 
itself. The treatment totals and the row and column totals of the Latin square plan are each 
directly comparable without adjustment. 

13-5.2 ANALYSIS 

The analysis of Latin and Youden Squares (see Paragraph 13-6) is based on essentially the same 
assumptions as the analysis of randomized blocks. The essential difference is that in the case of 
randomized blocks we allow for one source of inhomogeneity (represented by blocks) while in the 
case of Latin and Youden squares we are simultaneously allowing for two kinds of inhomogeneity 
(represented by rows and columns). If we let Y,]m be the observation on the ith treatment which 
occurs in the yth row and rath column, then we assume that Y.ijm is made up of four components; i.e., 

Yijm = <pi + pj -f Km + e,jni, 

where pj is a term peculiar to the /th row, and is constant regardless of column or treatment 

effects. 

K,n is a term peculiar to the mth column, and is defined similarly to pj. 

<p; is a term peculiar to the ith treatment, and is the same regardless of the row or column 
in which the treatment occurs. It may be regarded as the average value of the ith 
treatment for any given row (or column) averaged over all columns (or rows), assuming 
there is no experimental error. 

eiJm is the experimental error involved in the observation YlJw. 

As in the case of randomized blocks, in order to make interval estimates, or to make tests, we 
generally assume that the experimental errors (e;jm’s) are each independently and normally dis¬ 
tributed. However, provided the experiment was randomized properly, failure of the latter 
assumption will in general not cause serious difficulty. 

In the analysis, we assume the data are exhibited in a two-way table following the plan. We 
use the following notation for the various totals: 

T, = Sum of the observations on the ith treatment; 

R; = Sum of the observations in the ith row; 

C; = Sum of the observations in the ith column; 

G = Sum of all the observations. 
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Data Sample 13-5.2 — Temr jtu' ference Cells 

This is a study of chemical cells used as a means of setting up a reference temperature. For 
various reasons, only one thermometer could be applied to a cell at one time. The columns are 
the four thermometers and the rows are the four cells investigated. The letters refer to four runs, 
each run made on a separate day. The readings are converted to degrees Centigrade; only the 
third and fourth decimal places are recorded, because all the readings agreed up to the last two 

places. 

Cells 

Thermometers 

Total Mean 

I II III IV 

1 A 36 B 38 C 36 D 30 R, = 140 35.0 

2 C 17 D 18 A 26 B 17 R2 = 78 19.5 

3 B 30 C 39 D 41 A 34 R3 = 144 36.0 

4 D 30 A 45 B 38 C 33 Ri = 146 36.5 

Total Ci - = 113 C2 = 140 C3 = 141 C4 = 114 G = 508 

Mean 28.25 35.0 35.25 28.5 

13-5.2.1 Estimation of Treatment Effects. The estimate U of the ith treatment effect <pt can be 

obtained directly by the treatment average T,-/r, where r is the number of times the treatment 
occurs (r also equals the number of treatments, the number of rows, and the number of columns). 

For example, from Data Sample 13-5.2: 

T—1 

E-h Tc = 125 

Tb = 123 Td = 119 

r = 4, and 

tA = 141/4 tc = 125/4 
= 35.25 = 31.25 

tB = 123/4 tD = H9/4 
= 30.75 = 29.75 
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13-5.2.2 Testing and Estimating Differences in Treatment Effects. 

Procedure 

(1) Choose a, the significance level of the test 

-) in Table A-10, (2) Look up q^a (r, 
where 

* = (r - 2) (r - 1). 

(3) Compute 

T\ + n + .. . + TJ 
St = 

(4) Compute 

Sr = 
Rl + R\ + . . . + R-r 

(5) Compute 

C\ + C\ T- 
Sc = 

+ a 

(6) Compute 

S = (sum of squares of all the observa¬ 
tions) — G-/r- 

(7) Compute: 

. S - St~ Sr ~ Sc 
(r - 2) (r - 1) 

and 

s 

(8) Compute 

w - gi_a s/Vr 

(9) If the absolute difference between any two 
estimated treatment effects exceeds w, de¬ 
cide that the treatment effects differ; 
otherwise, decide that the experiment gives 
no reason to believe the treatment effects 
differ. 

Example 

(1) Let a = .05 

(2) From Data Sample 13-5.2 : 

r = 4, 
v = 6 

q.9i (4,6) = 4.90 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

St = 
64796 

4 

= 16199 

= 70 

258064 

16 

16129 

= 67736 _ 16129 
4 

= 805 

_ 65246 _ 16129 
4 

= 182.5 

S = 17230 - 16129 
= 1101 

, 43d) 
S' 6 

= 7.25 

s = 2.693 

w =,(4.90) (2.693)/-\/4 

= 6.60 

(9) The largest difference between pairs of 
treatment effects is 5.50, which does not 
exceed 6.60. We conclude that treat¬ 
ments (runs) do not differ. 

Note: We can make simultaneous statements about the differences between pairs of treatments i 
and j, with confidence 1 — a that all the statements are true simultaneously. The statements 
are, for all % and j, 

ti — tj — W < (pi — <pj < ti — tj + w. 
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13-5.2.3 Estimation of Row (or Column) Effects. The row (or column) effects can be estimated 

directly by subtracting G r- from the row (or column) averages. That is, we estimate p, by 
r; = R r — G r-, and k, by c, = C, r — G r-. 

For example, from Data Sample 13-5.2 : 

G/r- = 508 16 

= 31.75 

T-31.75 
4 

1 
CO 
—

 

3.25 = - 3.50 

7.8 9 - 31.75 
4 

; O
 

1 

- 12.25 = 3.25 

144 
- . - 31.75 

4 

Cs
 II 

(P*
. 

4^
 

1 

4.25 = 3.50 

~6- - 31.75 
4 

1 1 II 5J 

4.75 = - 3.25 

13-5.2.4 Testing and Estimating Differences in Row (or Column) Effects. 

Procedure 

(1) f 
through*] Same as in Paragraph 13-5.2.2 

(7) l 

(8) Compute 

to - qs/s/r 

(9) If the absolute difference between any two 
estimated row effects r, exceeds w, con¬ 
clude that the row effects differ; otherwise, 
there is no reason to believe that row 
effects differ. 

If the absolute difference between any two 
estimated column effects c,: exceeds w, con¬ 
clude that the column effects differ; other¬ 
wise there is no reason to believe that 
column effects differ. 

Example 

f Using Data Sample 13-5.2 : 
(1) I s = 2.693, 

through*) and ordinarily would have already 
(7) | been computed for the test of Para¬ 

graph 13-5.2.2. 

(8) 

to = 6.60 

(9) See Paragraph 13-5.2.3. 
There is at least one pair of row effects that 
differ by more than 6.60. We therefore 
conclude that rows (cells) do differ. 

There is at least one pair of column effects 
that differ by more than 6.60. We there¬ 
fore conclude that columns (thermometers) 
do differ. 

Note: We can make simultaneous statements about the differences between pairs of rows i and j 
with confidence 1 — a that all the statements are simultaneously true. The statements are, for 
all i and j, 

r.; — rj — W < Pi — pj < T; — Tj + W . 

(For a similar set of statements about the columns, replace 

rit rj, p.i, pj, by Ci, cj, m, kj). 
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13-6 YOUDEN SQUARE PLANS 

13-6.1 PLANNING 

The Youden square, like the Latin square, is used when we wish to allow for two kinds of inhomo¬ 
geneity. The conditions for the use of a Youden square, however, are less restrictive than for the 
Latin square. The use of Latin square plans is restricted by the fact that the number of rows, 
columns, and treatments must all be the same. Youden squares have the same number of rows and 
treatments, but a fairly wide choice in the number of columns is possible. We use the following 
notation: 

t = number of treatments to be compared; 

b = number of levels of one source of inhomogeneity (rows); 

k = number of levels of the other source of inhomogeneity (columns); 

r = number of replications of each treatment. 

In a Youden square, t = b and k = r. 

In Paragraph 13-5 (Latin Square plans), an example was shown in which we wished to test four 
materials with regard to their wearing qualities. There were two sources of inhomogeneity; these 
were the variation among the four positions on the machine, and the variations from run to run. 
In order to use the Latin square plan, we had to make 4 runs. A Youden square arrangement for 

this case would require only 3 runs. In all the plans given in Table 13-9, the analysis is essentially 
the same; and for each of the designs, all differences between treatment effects are estimated with 
the same precision. 

The procedure to be followed in using a given Youden square is as follows: 

(a) Permute the rows at random; 

(b) Permute the columns at random; 

(c) Assign letters at random to the treatments. 

The results of an experiment using a Youden square plan are recorded in a two-way table which 
looks like the plan itself. See the plans shown in Table 13-9. 

In some instances where there are two sources of inhomogeneity, a suitable Latin or Youden 
square may not exist. For a number of sets of values of t, b, and k, other plans or arrangements 
do exist which enable the experimenter to allow for the two sources of heterogeneity, in a fairly 
simple manner. Because the analysis and interpretation is more complicated than for the plans 

given in this Chapter, a statistician should be consulted. 
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TABLE 13-9. YOUDEN SQUARE 

Index 

ARRANGEMENTS (r < 10) 

Plan 
Number t = b r = k X E = t\/rk Remarks 

1 3 2 1 3/4 * 
2 4 3 2 8/9 * 

3 5 4 3 15/16 * 
4 6 5 4 24/25 * 

5 7 3 1 7/9 
6 7 4 2 7/8 •(■Complement of Plan 5 
'■ 7 6 5 35/36 * 
8 8 7 6 48/49 * 
9 9 8 7 63/64 * 

10 10 9 8 80/81 * 
11 11 5 2 22/25 
12 11 6 3 11/12 Complement of Plan 11 
13 11 10 9 99/100 * 
14 13 4 1 13/16 
15 13 9 6 26/27 Complement of Plan 14 
16 15 7 3 45/49 
17 15 8 4 15/16 Complement of Plan 16 
18 16 6 2 8/9 
19 16 10 6 24/25 
20 19 9 4 76/81 
21 19 10 5 19/20 Complement of Plan 20 
22 21 5 1 21/25 
23 25 9 3 25/27 ' 
24 31 6 1 31/36 
25 31 10 3 93/100 
26 37 9 2 74/81 See Cochran and Cox(2) pp. 529-535. 
27 57 8 1 57/64 
28 73 9 1 73/81 
29 91 10 1 91/100 

* Blocks in these Plans are columns of Latin squares with one row deleted. 
t The “complement” of a plan is developed as follows: Construct the first block (column) by writing all treatments 

that did not appear in the first block of th^ original plan. With these letters as starting points, complete each row 
by writing in alphabetical order all remaining treatment letters followed by A, B, C, . . . until every treatment letter 
appears once in each row. For example, Plan 6 is developed from Plan 5 as follows: The first block of Plan 5 is ABD; 
its complement and therefore the first block of Plan 6 is CEFG. The complete layout for Plan 6 is: 

Row 
Block 

1 2 3 4 5 6 7 

1 C D E F G A B 
2 E F G A B C D 
3 F G A B C D E 
4 G A B C D E F 

Note: The detailed plans given are only those which are not easily derivable from other designs — 
see Index at beginning of this Table. 

Plan 5: t = b = 7, r = Ic = 3 

Row 
Block 

1 2 3 4 5 6 7 

1 A B C D E F G 
2 B C D E F G A 
3 D E F G A B C 
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TABLE 13-9. YOUDEN SQUARE ARRANGEMENTS (r < 10) (Continued) 

Plan 11: f = b= ll,r = fc = 5 

Row 

Block 

1 2 3 4 5 6 7 8 9 10 11 

1 A B C D E F G H I J K 
2 E F G H I J K A B C D 

3 F G H I J K A B C D E 
4 G H I J K A B C D E F 

5 I J K A B C D E F G H 

Row 
1 

Block 

2 3 4 5 6 7 8 9 10 11 12 13 

1 A B C D E F G H I J K L M 
2 B C D E F G H I J K L M A 

3 D E F G H I J K L M A B C 
4 J K L M A B C D E F G H I 

Plan 16: t = b = 15, r = k = 7 

Row 
Block 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 A B C D E F G H I J K L M N O 

2 B C D E F G H I J K L M N O A 

3 C D E F G H I J K L M N 0 A B 

4 E F G H I J K L M N O A B C D 

5 F G H I J K L M N 0 A B C D E 

6 I J K L M N 0 A B C D E F G H 

7 K L M N 0 A B C D E F G H I J 

Row 
Block 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 A B C D E F G H I J K L M N O P 
2 B C D A F G H E J K L I N O P M 

3 C D A B G H E F K L I J O P M N 
4 E F G H I J K L M N O P A B C D 

5 L I J K P M N O D A B C H E F G 
6 M N O P A B C D E F G H I J K L 
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TABLE 13-9. YOUDEN SQUARE ARRANGEMENTS (r < 10) (Continued) 

Plan 19: t = b = 16, r = k = 10 

Row 
Block 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 A B C D E F G H I J K L M N O P 

2 C A B E F D J I H G M K L P N 0 

3 D C A K M G H E L I J B P 0 F N 
4 N E P A H B D C F K 0 G I J L M 

5 M N O P B A F D E C G I J H K L 
6 B J H G A I L 0 M N D C E F P K 

7 L K I B 0 P N A D F C H G E M J 

8 J H F L G M A P K O B N C D E I 

9 I P L 0 N K C M J A H E F B D G 

10 0 M K J L N P G A E F D B I C H 

Plan 20: # = Jb = 19,r = fc = 10 

Row 
Block 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 A B C D E F G H I J K L M N O P Q R S 
2 C D E F G H I J K L M N O P Q R S A B 

3 E F G H I J K L M N O P Q R S A B C D 

4 F G H I J K L M N O P Q R S A B C D E 

5 G H I J K L M N O P Q R S A B C D E F 
6 H I J K L M N O P Q R s A B C D E F G 
7 K L M N O P Q R s A B C D E F G H I J 
8 N 0 P Q R S A B c D E F G H I J K L M 
9 O P Q R S A B C D E F G H I J K L M N 

Plan 22: f = fa = 21,r = fr = 5 

Row 
Block 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

1 A B C D E F G H I J K L M N O P Q R S T U 
2 B C D E F G H I J K L M N 0 P Q R S T U A 
3 E F G H I J K L M N O P Q R S T U A B C D 
4 O P Q R S T U A B C D E F G H I J K L M N 
5 Q R S T U A B C D E F G H I J K L M N O P 

13-39 



ORDP 20-112 PLANNING AND ANALYSIS OF EXPERIMENTS 

13-6.2 ANALYSIS 

The same model is used, and the same assumptions are made, as in the Latin square analysis in 
Paragraph 13-5.2. The analysis presented here is sometimes called the intrablock analysis. 

In the analysis we assume that the data are exhibited in a two-way table following the plan. 
(See the plans given in Table 13-9). We label the various totals as follows: 

T, = sum of the observations on the fth treatment; 

Ri = sum of the observations in the fth row; 

C,- = sum of the observations in the fth column; 

G = sum of all observations. 

Data Sample 13-6.2 — Intercomparison of Thermometers* 

The example involves an intercomparison of thermometers. Seven thermometers, designated 
by the letters A, B, C, D, E, F, G, were set up in a bath. The bath temperature could not be kept 
exactly constant, and the experiment was designed so that valid comparisons could be made among 
the thermometers, despite the variations in bath temperature. 

The seven thermometers were read in sets of three, as follows: 

Set 

Order of Reading Within a Set 

1 2 3 

1 A B D 
2 E F A 
3 B C E 
4 F G B 
5 C D F 
6 G A C 
7 D E G 

The two sources of inhomogeneity here are the order of reading within a set, and the set-to-set 
variation. 

Number of treatments (thermometers). t = 7 
Number of rows (sets). 6 = 7 
Number of columns (order). A; = 3 
Number of replications of each treatment. r = 3. 

* Adapted with permission from Statistical Methods for Chemists (pp. 102-105) by W. J. Youden, copyright, 1951, John Wiley and Sons, Inc. 
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Data Sample 13-6.2 — Intercomparison of Thermometers (cont) 

The thermometers had scale divisions of one-tenth of a degree, and were read to the third place 
with optical aid. The readings were made just above 30°C; for convenience, only the last two 
places are entered in the following tabulation, i.e., the entry 56 represents a reading of 30.056°C. 

Set 

Order of Reading Within a 

1 2 

Set 

3 Total 

1 A 56 B 31 D 35 Ei = 122 

2 E 16 F 41 A 58 Ri = 115 

3 B 41 C 53 E 24 E, = 118 

4 F 46 G 32 B 46 Ei = 124 

5 C 54 D 43 F 50 R-o = 147 

6 G 34 A 68 C 60 R* = 162 

7 D 50 E 32 G 38 Ei = 120 

Total Ci = 297 C, = 300 C, = 311 G = 908 

13-6.2.1 Estimation of Treatment Effects. The estimate t,, of the ith treatment effect tp; is 

t; = Qi/Et -(- G/bk, 

where 

Q; = T: — (Un Ri w,'2 E2 + . .. 4* 71,7, Rh)/r 

Ti = total for the ith treatment 

E = total for the row 

ti A = the number of times the ith treatment occurs in the ;th row. 
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13-6.2.1 (cont) 

For example, using Data Sample 13-6.2, 

where E = 7/9,k = r = S,b = 7,Er = 21/9 

Ta = 182 

Tn = 118 

Tc = 167 

Td = 128 

122 + 115 + 162 
Q i = 182 - 

= 182 - 

= 49 

Qn = 118 - 

133 

122 + 118 + 124 

= 118 - 121.33333 

= - 3.33333 

Qc = 167 

= 167 - 142.33333 

= 24.66667 

Qn = 128 
122 + 147 + 120 

= 128 - 129.66667 

= - 1.66667 

Te = 72 

TF = 137 

Tc, = 104 

= 72 - 
115 + 118 + 120 

= 72 - 117.66667 

= - 45.66667 

Qp_137-U6 + l|4 + 147 

= 137 - 128.66667 

= 8.33333 

118 + 147 + 162 ^ = 1Q4 _ 124 + 162 + 120 

= 104 - 135.33333 

= - 31.33333 

Er = ^,M = 21, i 
G 

bk 
= 43.238095 

t, = 9 (49) 
+ 43.238095 

21 

= 21 + 43.238095 

= 64.238095 

tn = 
9 (- 3.33333) 

21 
+ 43.238095 

= - 1.428570 + 43.238095 

= 41.809525 

tc = 
9 (24.66667) 

21 
+ 43.238095 

= 10.571430 + 43.238095 

= 53.809525 

tn = 
9 (- 1.66667) 

21 
-7 + 43.238095 

= - 0.714287 + 43.238095 

= 42.523808 

t,.: = 
9 (- 45.66667) 

21 
43.238095 

= - 19.571430 + 43.238095 

= 23.666665 

ty = 
9 (8.33333) 

21 
+ 43.238095 

= 3.571427 + 43.238095 

= 46.809522 

tc; — 
9 (- 31.33333) 

21 
+ 43.238095 

= - 13.428570 + 43.238095 

= 29.809525 
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13-6.2.2 Testing and Estimating Differences in Treatment Effects. 

Procedure Example 

(1) Choose a, the significance level of the test. (1) Let a = .05 

(2) Look up <7i_„ (t, v) in Table A-10, (2) Using Data Sample 13-6.2, 

where 

v = (b - 1) (r - 2) 

(3) Compute 

g _ Qi_+_Q::« + • • • + Qi 
1 Er 

(4) Compute 

™ _ R\ + R-> + . ■. + Rl _ G/ 
- ' wp bk 

(5) Compute 

ci C\ + C| + . . . -T C'r- G- 
~ b bk 

(6) Compute 

S = (sum of squares of all observa¬ 
tions) — G2 bk 

(7) Compute: 

, _ S - St - Sr - Sr 
S~ (b - 1) (r - 2) 

and 

s 

(8) Compute 

w = q i_a s/y/Er 

(3) 

(4) 

(5) 

(6) 

(8) 

v = 6 (1) = 6 

q.n (7,6) = 5.90 

S, = ^ (6160.00019) 

= 2640.000 

„ _ 119662 824464 
3 21 

= 627.143 

Slr = _ 39260.190 

= 15.524 

S = 42558 - 39260.190 

= 3297.810 

s2 = 15.143/6 

= 2.524 

s = 1.589 

_ 5.90 (1.589) 
W 1.528 

= 6.136 

(9) If the absolute difference between any two 

estimated treatment effects exceeds w, de¬ 
cide that the treatment effects differ; other¬ 

wise, decide that the experiment gives no 
reason to believe the treatment effects 
differ. 

(9) See the estimated treatment effects in 
Paragraph 13-6.2.1. Taken in pairs, there 

are differences which exceed 6.136, and we 
conclude that thermometers do differ. 

Note: We can make simultaneous statements about the differences between pairs of treatments 
i and j, with confidence 1 — a that all the statements are simultaneously true. The statements 
are, for all i and j, 

t; — tj — W < <pi — <pj < t; ~ tj + W . 
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13-6.2.3 Estimation of Column Effects. The column effects can be estimated directly from the 
column means; i.e., the estimate of the fth column effect is 

C; = C,/b - G/bk. 

For example, using Data Sample 13-6.2, 

r 297 908 
1 7 21 

= 42.43 - 43.24 

= - 0.81 

Co ~ - 43.24 
300 

1 

42.86 - 43.24 

- 0.38 

C, = ~ - 43.24 

= 44.43 _ 43.24 

= 1.19 

13-6.2.4 Testing and Estimating Differences in Column Effects. 

Procedure Example 

(1) Choose a, the significance level of the test. (1) Let a = .05 

(2) Look up <7,_a (k, v) in Table A-10, 
where 

V = (b - 1) (r - 2). 

(2) 

„ = 6 (1) = 6 
q.vs (3,6) = 4.34 

(3) 
through 

(7) 

Same as Steps (3) 
Paragraph 13-6.2.2. 

through (7) of 

(8) Compute 

v\. = q^a s/\/b 

(9) 

(3) 
through 

(7) 

(8) 

See Paragraph 13-6.2.2. 
s = 1.589 

4.34 (1.589) 

2.646 

= 2.61 

(9) There are no differences between pairs of 
column effects that exceed 2.61. We con¬ 
clude that the column effects (order of 
reading within set) do not differ. 

If the absolute difference between any two 

estimated column effects exceeds de¬ 
cide that the column effects differ; other¬ 
wise, decide that the experiment gives no 
reason to believe the column effects differ. 

Note: As in the case of treatment effects, we can make a set of simultaneous statements about 
the difference between pairs of columns i and j. The statements are, for all i and j, 

C; — Cj — V',. < K.; — Kj <yC; — Cj + V\.. 
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13-6.2.5 Estimation of Row Effects. The estimate of the /th row effect pj is rj = Q'j Er, 

where 

Q'j = Rj — (Wi; + Way T> + . . . + Ubj Tb)/r 

and, as before, n,7 is the number of times the fth treatment occurs in the ;th row. 

For example, using Data Sample 13-6.2: 

Q, = 122 _ 182 + 118 + 128 

= 122 - 142.67 

= - 20.67 

Qi = 115 
72 + 137 + 182 

= 115 - 130.33 

= - 15.33 

Qs = 118 
118 + 167 + 72 

3 

118 - 119.00 

- 1.00 

Q{ = 124 - 
137 + 104 + 118 

= 124 - 119.67 

= 4.33 

Q' = 147 - 
167 + 128 + 137 

= 147 - 144.00 

= 3.00 

Qe = 162 - 
104 + 182 + 167 

= 162 - 151.00 

= 11.00 

Qj = 120 
128 + 72 + 104 

= 120 - 101.33 

= 18.67 

Er 
_9_ 
21 

9 (- 20.67) 
Tl 21 

= - 8.86 

9 (- 15.33) 
7-2 21 

= - 6.57 

9 (- 1.00) 
r:i 21 

= - 0.43 

9 (4.33) 
r' 21 

= 1.86 

F5 = 

r6 = 

9 (3.00) 
21 

1.29 

9 (11.00) 

21 

4.71 

9 (18.67) 
21 

8.00 
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13-6.2.6 Testing and Estimating Differences in Row Effects. 

Procedure Example 

(1) Choose a, the significance level of the test. 

(2) Look up <7i_0 (b, v) in Table A-10, 
where 

V = {b - 1) (r - 2). 

(3) 
through 

(7) 

(8) Compute 

= q i~a 

Same as Steps (3) through (7) of 
Paragraph 13-6.2.2. 

'V k 

(1) Let a = .05 

(2) From Data Sample 13-6.2 : 

(b - 1) (r - 2) = 6 (1) 
= 6 

q.95 (7, 6) = 5.90 

(3) 
through 
(7) [ 

See Paragraph 13-6.2.2. 

s = 1.589 

(8) 

5.90 (1.589) 
1.732 

= 5.41 

(9) If the absolute difference between any two 
estimated row effects exceeds wr, decide 
that the row effects differ; otherwise, decide 
that the experiment gives no reason to 
believe that row effects differ. 

(9) There are differences between pairs of row 
effects that exceed 5.41. Therefore, we 
conclude that rows (sets) do differ. 

Note: As in the case of the treatment and column effects, we can make a set of simultaneous 
statements about the differences between pairs of columns i and j. The statements are, for 

all i and j, 

ri — Tj — U\ < Pi — Pj < r; — Tj + u\. 
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CHAPTER 14 

EXPERIMENTS TO DETERMINE OPTIMUM CONDITIONS OR LEVELS 

14-1 INTRODUCTION 

In many industrial-type processes, there is a 
measurable end-property whose value is of 
primary interest and which we would like to 
have attain some optimum value. This end- 
property is called yield or response in the lan¬ 
guage of experimental design. For example, 
the end-property might be: 

(a) the actual yield of the process, which we 
would like to maximize; 

(b) a strength property, which we would like 
to maximize; 

(c) cost, which we would like to minimize; 
or, 

(d) some chemical or physical characteristic 
that would be most desirable at a maximum or 

at a minimum, as specified. 

The value of this primary end-property will 

depend on the values or settings of a number of 

factors in the process which affect the end- 

property. In such cases, the goal of experi¬ 

mentation is to find the settings of the factors 

which result in an optimum response. Often, 

we are interested in knowing not only the values 

of the variables that result in optimum re¬ 

sponse, but also how much change in response 

results from small deviations from the optimum 

settings — i.e., we would like to know the na¬ 

ture of the response function in the vicinity of 

this optimum. 

14-2 THE RESPONSE FUNCTION 

In a factorial experiment where the levels of 
all factors are quantitative (e.g., time, temper¬ 
ature, pressure, amount of catalyst, purity of 
ingredients, etc.), we can think of the response y 
as a function of the levels of the experimental 
factors. For an n-factor experiment, we could 
write: 

True yield 

y = 4> (xi, x-2, . . ., xn) 

where 

Xi = level of factor 1 
Xo = level of factor 2 

etc. 

For observed values of y, we can write: 

Y„ = <1 (xu,, x-2,,, . . . , x„„) + e„ 

where 

Y„ = the wth observation of y, where u = 

1, 2, . . ., N represent the N observa¬ 
tions in the factorial experiment; 

xu, = level of factor 1 for the uth observation; 
x->„ = level of factor 2 for the wth observation; 

etc.; 

and 

e„ = the experimental error of the uth. ob¬ 
servation. 
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The function <f> can be called the response 
function. If we could determine the function 
<t, we could describe the results of the experi¬ 
ment completely, and could even predict y for 
values of the factors that were not included in 

the experiment (but the function should not be 
used for prediction outside the range of experi¬ 

ment). Ordinarily, the mathematical form of 
the function is completely unknown, but often 
it can be satisfactorily approximated within a 
limited region by a polynomial in x,„. Just as 

the relation y = <t> (x) can be represented by a 
curve, the relation between y and two factors 
Xi and Xi, i.e., y = $ (xx, xf), can be represented 
by a surface called the response surface, as 
shown in Figure 14-1; or, alternatively, by a 
contour diagram which traces contours of equal 
response as shown in Figure 14-2. 

Figure 14-1- A response surface. 

Adapted with permission from The Design and Analysis of Industrial 
Experiments, edited by Owen L. Davies, Copyright, 1954, Oliver and 
Boyd, Ltd., Edinburgh. 

TIME . HOURS 

Figure 14.-2. Yield contours for the surface of 
Figure 14-1 with 2- factorial design. 

Adapted with permission from The Design and Analysis of Industrial 
Experiments, edited by Owen L. Davies, Copyright, 1954, Oliver and 
Boyd, Ltd., Edinburgh. 

The study of response surfaces is a very com¬ 
plex topic. A general notion of possible appli¬ 
cations is given here, but no details are pro¬ 
vided. An extensive bibliography is given at 
the end of this Chapter. Since this is a rela¬ 
tively new field, the bibliography is fairly 
complete at the time of preparation. 
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14-3 EXPERIMENTAL DESIGNS 

Experimental designs and methods of analysis 
have been developed for fitting polynomials of 
the first and second degree; these designs are 
called first and second order designs, respec¬ 
tively. One will hear these designs described 
as, for example, “a first order design in 2 dimen¬ 
sions” or ‘‘a second order design in 4 dimen¬ 
sions” — in general, a &th order design in n 
dimensions. The dimension n refers to the 
number of independent variables (x,) in the 
response function, and the order k refers to the 
degree of the fitted polynomial function. 

A design in which only one variable is con¬ 

trolled is a one-dimensional design, and we 
observe y as a function of the single variable x, 
i.e., y = 4> (x). The first approach in de¬ 
scribing such a relationship may be that of 
fitting a first order equation, i.e., a straight line 

y = 0o + ySi x, as detailed in ORDP 20-110, 
Chapter 5. If it has been determined that the 
relationship cannot be adequately represented 
by a straight line, a second-degree (or higher 
degree) polynomial may be fitted as detailed in 
ORDP 20-110, Chapter 6. A one-dimensional 

design, however, is not usual in this kind of 
experimentation and, ordinarily, more variables 

will be involved. 

If we are interested in studying response y as 
a function of two variables (xi and x->), we repre¬ 
sent the function as 

y = <t> (x\, x->). 

Again, as a first step, we could fit a first order 
model (now the equation of a plane) 

y = A. + 0i xi + 0, x->. 

Where three or more variables are controlled, 
we have a function of the type 

y = 4> (xi, x>, . . . , x„). 

A general aim in selecting and constructing 
experimental designs when observing a function 
of several quantitative variables, is that the 
selected design should permit relatively simple 
and straightforward estimation of the coeffi¬ 
cients of the fitted equation. Two-level fac¬ 
torial designs are important designs for fitting 
first order models — particularly in the two- 
dimensional case. New designs, with special 
advantageous properties, have been developed 
by G.E.P. Box and followers. Most first order- 
designs will provide information about the 
adequacy of the first order model, and second 
order designs are available when first order 

models are inadequate. 

14-4 FINDING THE OPTIMUM 

In general, experimentation proceeds se¬ 
quentially. Initial levels of the variables are 
chosen so that the levels are either near present 
operating conditions or are believed to be near 
optimum response. A design is chosen, and 

experimental observations are made at values 
of the variables which are specified by the 
design. In general, first order designs will pro¬ 
vide information on the adequacy of the first 
order model, will indicate whether the response 

is near the optimum, and will indicate the di¬ 

rection to move to approach closer to the 

optimum. Another first order design may then 

be run at a new position, or a second order 

design may be run at the original position. The 

methods are extremely flexible and useful. A 

complete description of the methods cannot be 

included here, and the reader is advised to con¬ 

sult the references described in Paragraph 14-5. 
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14-5 RECOMMENDED SOURCES FOR FURTHER STUDY 

The bibliography contains references which 

have been classified into three groups: 

I. Elementary and Introductory Reading 
II. Advanced Reading 

III. Applications. 

Group I contains those articles that will be 
most helpful to the novice. For the reader who 
is completely unacquainted with the techniques, 
the following reading program is suggested. 
First, read the series of articles by Bradley'1’ 
and Hunter'2’ which appeared in Industrial 
Quality Control. Follow this by reading the 
appropriate chapter in Cochran and Cox,:il or 

Davies'", or by reading the Hunter article"’1. 
Another introductory article, which requires a 

higher level of mathematical background, is by 
Box and Hunter"' . From these introductory 
readings, proceed 1o the articles in Group II or 
HI which are of particular interest. 

The classification into the three groups had 
to be somewhat arbitrary. In particular, the 
reader will notice some anomalies in Group II 
where some articles are not highly mathe¬ 
matical, but have been included for historical 
reasons. The level of mathematics required for 
the Group 11 references varies a great deal, but 
one can ordinarily predict the level by knowl¬ 
edge of the journal in which the article appears. 

Group III contains articles that deal pri¬ 
marily with applications. 
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DISCUSSION OF TECHNIQUES IN CHAPTERS 15 THROUGH 23 

In this Section, a number of important but as yet non-standard techniques 
are presented for answering questions similar to those considered in ORDP 
20-110, Section 1. In addition, various special topics, such as transformation 
of data to simplify the statistical analysis, treatment of outlying observations, 
expression of uncertainties of final results, use of control charts in experimental 
work, etc., are discussed in sufficient detail to serve as an introduction for the 
reader who wishes to pursue these topics further in the published literature. 

All A-Tables referenced in these Chapters are contained in ORDP 20-114, 
Section 5. 



CHAPTER 15 

SOME SHORTCUT TESTS FOR SMALL SAMPLES 

FROM NORMAL POPULATIONS 

15-1 GENERAL 

Shortcut tests are characterized by their simplicity. The calculations are simple, and often may 
be done on a slide rule. Further, they are easily learned. An additional advantage in their use 
is that their simplicity implies fewer errors, and this may be important where time spent in checking 
is costly. 

The main disadvantage of the shortcut tests as compared to the tests given in ORDP 20-110, 
Chapters 3 and 4, is that with the same values of a and n, the shortcut test will, in general, have a 
larger /3, — i.e., it will result in a higher proportion of errors of the second kind. For the tests 
given in this chapter, this increase in error will usually be rather small if the sample sizes involved 
are each of the order of 10 or less. 

Unlike the nonparametric tests of Chapter 16, these tests require the assumption of normality of 
the underlying populations. Small departures from normality, however, will usually have a 
negligible effect on the test — i.e., the values of a and /?, in general, will differ from their intended 

values by only a slight amount. 

No descriptions of the operating characteristics of the tests or of methods of determining sample 
size are given in this chapter. 

15-2 COMPARING THE AVERAGE OF A NEW PRODUCT WITH THAT 

OF A STANDARD 

15-2.1 DOES THE AVERAGE OF THE NEW PRODUCT DIFFER FROM THE STANDARD? 

Data Sample 15-2.1 —Depth of Penetration 

Ten rounds of a new type of shell are fired into a target, and the depth of penetration is measured 
for each round. The depths of penetration are: 

10.0, 9.8, 10.2, 10.5, 11.4, 10.8, 9.8, 12.2, 11.6, 9.9 cms. 

The average penetration depth, w„, of the standard comparable shell is 10.0 cm. 
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The question to be answered is: Does the new type differ from the standard type with respect 
to average penetration depth (either a decrease, or an increase, being of interest)? 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up <pi—a/2 in Table A-12 for the appro¬ 
priate n. 

(3) Compute X, the mean of the n observa¬ 
tions. 

(4) Compute w, the difference between the 
largest and smallest of the n observations. 

(5) Compute <p = (X — mH)/w 

(6) If | <p| > (pi—a/i, conclude that the average 
performance of the new product differs 
from that of the standard; otherwise, there 
is no reason to believe that they differ. 

Example 

(1) Let a = .01 

(2) n = 10 

<p. 995 = 0.333 

(3) X = 10.62 

(4) 

cd II 

(5) 
10.62 - 10.00 

v ~ 2.4 

= 0.258 

(6) Since 0.258 is not larger than 0.333, there 
is no reason to believe that the new type 
shell differs from the standard. 

15-2.2 DOES THE AVERAGE OF THE NEW PRODUCT EXCEED THE STANDARD? 

In terms of Data Sample 15-2.1, let us suppose that — in advance of looking at the data — the 
important question is: Does the average of the new type exceed that of the standard? 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up <pi-a in Table A-12, for the appro¬ 

priate n. 

(3) Compute X, the mean of the n observa¬ 
tions. 

(4) Compute w, the difference between the 
largest and smallest of the n observations. 

(5) Compute <p = (X — m»)/w 

(6) If <p > (pi—a, conclude that the average of 
the new product exceeds that of the stand¬ 
ard ; otherwise, there is no reason to believe 
that the average of the new product 
exceeds the standard. 

Example 

(1) Let a = .01 

(2) n = 10 

(p. 99 = 0.288 

(3) X = 10.62 

(4) w = 2.4 

10.62 - 10.00 
(5) <p_= ' 2A 

= 0.258 

(6) Since 0.258 is not larger than 0.288, there ; 
is no reason to believe that the average of 
the new type exceeds that of the standard. I 
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15-2.3 IS THE AVERAGE OF THE NEW PRODUCT LESS THAN THE STANDARD? 

In terms of Data Sample 15-2.1, let us suppose that — in advance of looking at the data — the 
important question is: Is the average of the new type less than that of the standard? 

Procedure Example 

(1) Choose a, the significance level of the test. (1) Let a = .01 

(2) Look up <£i_„ in Table A-12, for the appro¬ 
priate n. 

(2) n = 10 
= 0.288 

(3) Compute X, the mean of the n observa¬ 

tions. 

(3) X = 10.62 

(4) Compute w, the difference between the 
largest and smallest of the n observations. 

(4) w = 2.4 

(5) Compute <p - (mn — X)/w 
10.00 - 10.62 

(5) v - 2 4 

= - 0.258 

(6) If <p > <pi-a, conclude that the average of 
the new product is less than that of the 

standard; otherwise, there is no reason to 
believe that the average of the new product 
is less than that of the standard. 

(6) Since — 0.258 is not larger than 0.288, 
there is no reason to believe that the 
average of the new type is less than that of 
the standard. 
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15-3 COMPARING THE AVERAGES OF TWO PRODUCTS 

15-3.1 DO THE PRODUCTS A AND B DIFFER IN AVERAGE PERFORMANCE? 

Data Sample 15-3.1 —Capacity of Batteries 

Form: A set of n measurements is available from each of two materials or products. The proce¬ 
dure* given requires that both sets contain the same number of measurements (i.e., nA — nB = ni. 

Example: There are available two independent sets of measurements of battery capacity. 

Set A Set B 

138 140 
143 141 
136 139 
141 143 
140 138 
142 140 
142 142 
146 139 
137 141 

135 138 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up <p\-a/i in Table A-13, for the appro¬ 
priate n. 

(3) Compute X., , X/t, the means of the two 
samples. 

(4) Compute wA, wlit the ranges (or difference 
between the largest and smallest values) 

for each sample. 

(5) Compute 

, = XA - XH 

^ \ (Wa + Wn) 

(6) If \<p'\ > (p'i-a/2, conclude that the aver¬ 
ages of the two products differ; otherwise, 
there is no reason to believe that the 
averages of A and B differ. 

Example 

(1) Let a i .01 

(2) n = 10 

¥>.995 = 0.419 

(3) XA = 140.0 
Xn = 140.1 

(4) WA = 146 - 135 
= 11 

II'n = 143 - 138 

= 5 

(5) <p' = 
140.0 - 140.1 

8 

= - 0.0125 

(6) Since 0.0125 is not larger than 0.419, 
there is no reason to believe that the 
average of A differs from the average of B. 

* This procedure is not appropriate when the observations are “paired”, i.e., when each measurement from A is 
associated with a corresponding measurement from B (see Paragraph 3-3.1.4). In the paired observation case, the 
question may be answered by the following procedure: compute X,t as shown in Paragraph 3-3.1.4 and follow the 
procedure of Paragraph 15-2.1, using X = X,i and mn = 0 . 
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15-3.2 DOES THE AVERAGE OF PRODUCT A EXCEED THE AVERAGE OF PRODUCT B? 

In terms of Data Sample 15-3.1, let us suppose that — in advance of looking at the data — the 
important question is: Does the average of A exceed the average of B? 

Again, as in Paragraph 15-3.1, the procedure is appropriate when two independent sets of 
measurements are available, each containing the same number of observations (nA = n« = n), 
but is not appropriate when the observations are paired (see Paragraph 3-3.1.4). In_the paired 
observation case, the question may be answered by the following procedure: compute X,, as shown 
in Paragraph 3-3.2.4, and follow the procedure of Paragraph 15-2.2, using X = X,, and ra0 = 0. 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up in Table A-13, for the appro¬ 
priate n. 

(3) Compute XA , Xu, the means of the two 
samples. 

(4) Compute wA , , the ranges (or difference 
between the largest and smallest values) 
for each sample. 

(5) Compute 

, = XA - XH 

^ | (w.-i + W») 

(6) If ^ > <p\-a, conclude that the average of 
A exceeds that of B; otherwise, there is no 
reason to believe that the average of A 
exceeds that of B. 

Example 

(1) Let a = .05 

(2) n = 10 

ip\95 = .250 

(3) XA = 140.0 
= 140.1 

(4) to A = 11 
Wh - 5 

, 140.0 - 140.1 
(5) <p — g 

= - 0.0125 

(6) Since — 0.0125 is not larger than 0.250, 
there is no reason to believe that the 
average of A exceeds the average of B. 
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15-4 COMPARING THE AVERAGES OF SEVERAL PRODUCTS 

DO THE AVERAGES OF t PRODUCTS DIFFER? 

Data Sample 15-4—Breaking-Strength of Cement Briquettes 

The following data relate to breaking-strength of cement briquettes (in pounds per square 
inch). 

Group 

1 2 3 4 5 

518 508 554 555 536 

560 574 598 567 492 

538 528 579 550 528 

510 534 538 535 572 

544 538 544 540 506 

2X, 2670 2682 2813 2747 2634 

rii 5 5 5 5 5 
Xi 534.0 536.4 562.6 549.4 526.8 

Excerpted with permission from Statistical Exercises, “Part II, Analysis of Variance and Associated Techniques,” by N. L. Johnson, Copyright, 
1957, Department of Statistics, University College, London. 

The question to be answered is: Does the average breaking-strength differ for the different 
groups? 

Procedure Example 

(1) Choose a, the significance level of the test. (1) Let a = .01 

(2) Look up La in Table A-15, corresponding (2) t = 5 
to t and n. n = 5 
n = ni = Wo = . . . = nt, the number of La = 1.02 

observations on each product. 

(3) Compute Wi,wit.. . ,wt, the ranges of the (3) W i = 50 

n observations from each product. w2 = 66 

w3 = 60 

WA = 32 
w5 = 80 

(4) Compute Xlt X2, ... , Xt, the means of (4) Xi = 534.0 
the observations from each product. x2 = 536.4 

X3 = 562.6 
X, = 549.4 

*5 = 526.8 

(5) Compute w' = wi + w2 + . .. + ivt. (5) w' = 288 
Compute w", the difference between the w" = 562.6 - 526.8 
largest and the smallest of the means X,. = 35.8 
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Procedure (Cont) Example (Cont) 

Compute L = nw"/w' (6) L = 179/288 
= 0.62 

If L > La, conclude that the averages of 
the t products differ; otherwise, there is no 
reason to believe that the averages differ. 

(7) Since L is less than La, there is no reason to 
believe that the group averages differ. 

15-5 COMPARING TWO PRODUCTS WITH RESPECT TO VARIABILITY 

OF PERFORMANCE 

15-5.1 DOES THE VARIABILITY OF PRODUCT A DIFFER FROM THAT OF PRODUCT B? 

The data of Data Sample 15-3.1 are used to illustrate the procedure. 
The question to be answered is: Does the variability of A differ from the variability of B? 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up F'a,2 (nA, nB) and 
F[-a/2 (nA , nB) in Table A-ll*. 

(3) Compute wA ,wB, the ranges (or difference 
between the largest and smallest observa¬ 
tions) for A and B, respectively. 

(4) Compute F' = wA/wB 

(5) If F' < F'a/2 (nA ,nB) or 
F' > F{_a,2 (n.i, nB), conclude that the 
variability in performance differs; other¬ 
wise, there is no reason to believe that the 
variability differs. 

Example 

(1) Let a = .01 

(2) n \ = 10 
nB = 10 

F[nos (10, 10) = .37 
f;995 (10, 10) = 2.7 

(3) wA =11 
WH = 5 

(4) F' = 11/5 
= 2.2 

(5) Since F' is not less than .37 and is not 
greater than 2.7, there is no reason to 
believe that the variability differs. 

* When using Table A-ll, sample sizes need not be equal, but cannot be larger than 10. 
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15-5.2 DOES THE VARIABILITY OF PRODUCT A EXCEED THAT OF PRODUCT B? 

In terms of Data Sample 15-3.1, the question to be answered is: Does the variability of A exceed 

the variability of B? 

Procedure Example 

(1) Choose a , the significance level of the test. 

(2) Look up F\_a (w.i, nn) in Table A-ll*. 

(3) Compute wA ,wR, the ranges (or difference 
between the largest and smallest observa¬ 
tions) for A and B, respectively. 

(4) Compute F' = wA/wn 

(5) If F' > F\-a (nA , nH), conclude that the 
variability in performance of A exceeds the 
variability in performance of B; otherwise, 
there is no reason to believe that the vari¬ 
ability in performance of A exceeds that of 
B. 

(1) Let a = .01 

(2) nA = 10 

nn = 10 
F:99 (10, 10) = 2.4 

(3) ivA = 11 
w„ = 5 

(4) F' = 11/5 
= 2.2 

(5) Since F' is not larger than F(99, there is no 
reason to believe that the variability of set 

A exceeds that of set B. 

* When using Table A-ll, sample sizes need not be equal, but cannot be larger than 10. 
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CHAPTER 16 

SOME TESTS WHICH ARE INDEPENDENT OF THE FORM OF 

THE DISTRIBUTION 

16-1 GENERAL 

This chapter outlines a number of test procedures in which very little is assumed about the 
nature of the population distributions. In particular, the population distributions are not assumed 
to be “normal”. These tests are often called “nonparametric” tests. The assumptions made 
here are that the individual observations are independent* and that all observations on a given 
material (product, or process) have the same underlying distribution. The procedures are strictly 
correct only if the underlying distribution is continuous, and suitable warnings in this regard are 
given in each test procedure. 

In this chapter, the same wording is used for the problems as was used in ORDP 20-110, Chapter 3 
(e.g., “Does the average differ from a standard?”), because the general import of the questions is the 
same. The specific tests employed, however, are fundamentally different. 

If the underlying populations are indeed normal, these tests are poorer than the ones given in 
Chapter 3, in the sense that 0, the probability of the second kind of error, is always larger for given 
a and n. For some other distributions, however, the nonparametric tests actually may have a 
smaller error of the second kind. The increase in the second kind of error, when nonparametric 
tests are applied to normal data, is surprisingly small and is an indication that these tests should 

receive more use. 

Operating characteristic curves and methods of obtaining sample sizes are not given for these 
tests. Roughly speaking, most of the tests of this chapter require a sample size about 1.1 times that 

required by the tests given in Chapter 3 (see Paragraphs 3-2 and 3-3 for appropriate normal sample 
size formulas). For the sign test (Paragraphs 16-2.1, 16-3.1, 16-4.1, 16-5.1, and 16-6.1), a factor 

of 1.2 is more appropriate. 

For the problem of comparing with a standard (Paragraphs 16-2, 16-3, and 16-4), two methods 
of solution are given and the choice may be made by the user. The sign test (Paragraphs 16-2.1, 
16-3.1, and 16-4.1) is a very simple test which is useful under very general conditions. The Wil- 
coxon signed-ranks test (Paragraphs 16-2.2, 16-3.2, and 16-4.2) requires the assumption that the 
underlying distribution is symmetrical. When the assumption of symmetry can be made, the 
signed-ranks test is a more powerful test than the sign test, and is not very burdensome for fairly 

small samples. 

For the problem of comparing two products (Paragraphs 16-5 and 16-6), two methods of solution 

are also given, but each applies to a specific situation with regard to the source of the data. 

The procedures of this chapter assume that the pertinent question has been chosen before taking 

the observations. 

* Except for certain techniques which are given for “paired observations”; in that case, the pairs are assumed to be 
independent. 
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16-2 DOES THE AVERAGE OF A NEW PRODUCT DIFFER 

FROM A STANDARD? 

Data Sample 16-2 — Reverse-Bias Collector Current of Ten Transistors 

The data are measurements of Ic bo for ten transistors of the same type, where I a no is the reverse- 
bias collector current recorded in microamperes. 

The standard value ma is 0.28jua. 

Transistor Icno 

1 0.28 
2 .18 
3 .24 
4 .30 
5 .40 
6 .36 
7 .15 
8 .42 
9 .23 

10 .48 

16-2.1 DOES THE AVERAGE OF A NEW PRODUCT DIFFER FROM A STANDARD? THE SIGN TEST 

Procedure 

(1) Choose «, the significance level of the test. 
Table A-33 provides for values of a = .25, 
.10, .05, and .01 for this two-sided test. 

(2) Discard observations which happen to be 
equal to m0, and let n be the number of 
observations actually used. (If more than 
20% of the observations need to be dis¬ 

carded, this procedure should not be used). 

(3) For each observation X,, record the sign of 
the difference X, — ma. 
Count the number of occurrences of the less 
frequent sign. Call this number r. 

(4) Look up r (a, n), in Table A-33. 

(5) If r is less than, or is equal to, r (a, n), con¬ 
clude that the average of the new product 
differs from the standard; otherwise, there 
is no reason to believe that the averages 
differ. 

Example 

(1) Let a = .05 

(2) In Data Sample 16-2, mn = .28. Discard 
the first observation. 

n = 9 

(3) The less frequent sign is — . 

Since there are 4 minus signs, 
r = 4 

(4) r (.05, 9) = 1 

(5) Since r is not less than r (.05,9), there is no 
reason to believe that the average current 

differs from m0 = .2S^a. 
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16-2.2 DOES THE AVERAGE OF A NEW PRODUCT DIFFER FROM A STANDARD? THE WILCOXON 
SIGNED-RANKS TEST 

Procedure Example 

(1) Choose a, the significance level of the test. 
Table A-34 provides for values of a = .05, 
.02, and .01 for this two-sided test. Dis¬ 
card any observations which happen to be 
equal to mt), and let n be the number of 

observation's actually used. 

(2) Look up T„ (w), in Table A-34. 

(3) For each observation X:, compute 

X’ = X, - mn 

(4) Disregarding signs, rank the X', according 

to their numerical value, i.e., assign the 
rank of 1 to the X', which is numerically 
smallest, the rank of 2 to the X', which is 
next smallest, etc. In case of ties, assign 
the average of the ranks which would have 
been assigned had the X'’s differed only 
slightly. (If more than 20rj of the ob¬ 
servations are involved in ties, this proce¬ 

dure should not be used.) 
To the assigned ranks 1, 2, 3, etc., prefix a 
+ or a — sign, according to whether the 
corresponding X', is positive or negative. 

(5) Sum the ranks prefixed by a + sign, and 
the ranks prefixed by a — sign. Let T be 
the smaller (disregarding sign) of the two 

sums. 

(6) If T < Ta (n), conclude that the average 
performance of the new type differs from 
that of the standard; otherwise, there is no 
reason to believe that the averages differ. 

(1) Let a = .05 
In Data Sample 16-2, ma = .28. Discard 
the first observation. 

n = 9 

(2) T.„s(9) = 6 

(3) (4) 

X; — Win 

- .10 
- .04 
+ .02 

+ .12 
+ .08 
- .13 

+ .14 
-.05 
+ .20 

(5) Sum + = 28 
Sum - = 17 

T = 17 

(6) Since T is not less than T.„5(9), there is no 
reason to believe that the average current 
differs from mn = ,28/ua. 

Signed rank 

-5 
-2 
+ 1 
+6 
+4 
— 7 

+8 
-3 

+9 
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16-3 DOES THE AVERAGE OF A NEW PRODUCT EXCEED 

THAT OF A STANDARD? 

Data Sample 16-3 — Reverse-Bias Collector Current of Twenty Transistors 

The data are a set of measurements ICro for 20 transistors, where ICuo is the reverse-bias collector 
current recorded in microamperes. 

The standard value mn is 0.28/ia. 

Transistor I cun 

1 0.20Ma 
2 .16 
3 .20 
4 .48 
5 .92 
6 .33 
7 .20 
8 .53 
9 .42 

10 .50 
11 .19 
12 .22 

13 .18 
14 .17 
15 1.20 
16 .14 

17 .09 
18 .13 
19 .26 

20 .66 

16-3.1 DOES THE AVERAGE OF A NEW PRODUCT EXCEED THAT OF A STANDARD? THE SIGN TEST 

Procedure 

(1) Choose a, the significance level of the test. 
Table A-33 provides for values of a = .125, 
.05, .025, and .005 for this one-sided test. 

(2) Discard observations which happen to be 
equal to ra0, and let n be the number of 
observations actually used. (If more than 
20% of the observations need to be dis¬ 
carded, this procedure should not be used.) 

(3) For each observation X;, record the sign of 
the difference X, — m„. 
Count the number of minus signs. 
Call this number r. 

Example 

(1) Let a = .025 

(2) In Data Sample 16-3, ma = .28. Since no 
observations are equal to m», 

n = 20 

(3) 

I = 12 

(4) r (.025,20) = 5 (4) Look up r («, n), in Table A-33. 
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Procedure (Cont) 

(5) If r is less than, or is equal to, r (a, n), con¬ 
clude that the average of the new product 
exceeds the standard; otherwise, there is no 
reason to believe that the average of the 
new product exceeds that of the standard. 

Example (Cont) 

(5) Since r is not less than r (.025,20), there is 
no reason to believe that the average cur¬ 
rent exceeds m„ = .28^. 

16-3.2 DOES THE AVERAGE OF A NEW PRODUCT EXCEED THAT OF A STANDARD? 
THE WILCOXON SIGNED-RANKS TEST 

Procedure Example 

(1) Choose a, the significance level of the test. 
Table A-34 provides for values of a = .025, 
.01, and .005 for this one-sided test. Dis¬ 
card any observations which happen to be 
equal to m0, and let n be the number of 

observations actually used. 

(2) Look up Ta (n), in Table A-34. 

(3) For each observation X;, compute 

X'i = X,- - m„. 

(4) Disregarding signs, rank the X'i according 
to their numerical value, i.e., assign the 

rank of 1 to the X', which is numerically 
smallest, the rank of 2 to the X', which is 
next smallest, etc. In case of ties, assign 
the average of the ranks which would have 
been assigned had the X'’s differed only 
slightly. (If more than 20% of the ob¬ 
servations are involved in ties, this proce¬ 
dure should not be used.) 

To the assigned ranks 1, 2, 3, etc., prefix a 
+ or a — sign according to whether the X', 
is positive or negative. 

(5) Let T be the absolute value of the sum of 
the ranks preceded by a negative sign. 

(6) If T < Ta (n), conclude that the average 

performance of the new product exceeds 
that of the standard; otherwise, there is no 
reason to believe that the average of the 
new product exceeds that of the standard. 

(1) Let « = .025 

In Data Sample 16-3, II to
 

00
 

T;
 

P
 

no observations are equal to mn, 

n = 20 

(2) T.n25 (20) = 52 

(3) (4) 

A,- - m» Signed Rank 

-0.08 - 5 
-0.12 -10 
-0.08 - 5 

0.20 + 15 
0.64 + 19 
0.05 + 2 

-0.08 — 5 
0.25 + 17 
0.14 +11.5 
0.22 +16 

-0.09 — 7 

-0.06 - 3 
-0.10 - 8 

-0.11 - 9 
0.92 +20 

-0.14 -11.5 
-0.19 -14 
-0.15 -13 
-0.02 - 1 

0.38 + 18 

(5) T = 91.5 

(6) Since T is not smaller than T „25 (20), there 
is no reason to believe that the average cur¬ 
rent exceeds m„H.28^a. 
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16-4 IS THE AVERAGE OF A NEW PRODUCT LESS THAN 

THAT OF A STANDARD? 

Data Sample 16-4 — Tensile Strength of Aluminum Alloy 

The data are measurements of ultimate tensile strength (psi) for twenty test specimens of alu¬ 
minum alloy. The standard value for tensile strength is mn = 27,000 psi. 

cimen 
Ultimate Tensile 

Strength (psi) 

1 24,200 
2 25,900 
3 26,000 
4 26,000 
5 26,300 
6 26,450 
7 27,250 
8 27,450 
9 27,550 

10 28,550 
11 29,150 
12 29,900 

13 30,000 
14 30,400 

15 30,450 

16 30,450 

17 31,450 
18 31,600 
19 32,400 

20 33,750 

16-4.1 IS THE AVERAGE OF A NEW PRODUCT LESS THAN THAT OF A STANDARD? THE SIGN TEST 

Procedure 

(1) Choose a, the significance level of the test. 
Table A-33 provides for values of a = .125, 
.05, .025, and .005 for this one-sided test. 

(2) Discard observations which happen to be 
equal to m0, and let n be the number of 
observations actually used. (If more than 
20% of the observations need to be dis¬ 
carded, this procedure should not be used.) 

(3) For each observation X,-, record the sign 

of the difference X,- — m0. 
Count the number of plus signs. Call this 
number r. 

(4) Look up r (a, n), in Table A-33. 

Example 

(1) Let a = .025 

(2) In Data Sample 16-4, mu = 27,000. Since 

no observations are equal to mn, 

n = 20 

(3) 

There are 14 plus signs. 
r = 14 

(4) r (.025, 20) = 5 
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Procedure (Cont) 

(5) If r is less than, or is equal to, r (a, n), con¬ 
clude that the average of the new product 
is less than the standard; otherwise, there 
is no reason to believe that the average of 
the new product is less than the standard. 

Example (Cont) 

(5) Since r is not less than r (.025,20), there is 
no reason to believe that the average tensile 
strength is less than m» = 27,000 psi. 

16-4.2 IS THE AVERAGE OF A NEW PRODUCT 
THE WILCOXON SIGNED-RANKS TEST 

Procedure 

(1) Choose a, the significance level of the test. 
Table A-34 provides for values of a = .025 , 
.01, and .005 for this one-sided test. Dis¬ 
card any observations which happen to be 

equal to m», and let n be the number of 
observations actually used. 

(2) Look up Ta (n), in Table A-34. 

(3) For each observation X;, compute 

(4) Disregarding signs, rank the X', according 
to their numerical value, i.e., assign the 
rank of 1 to the X' which is numerically 
smallest, the rank of 2 to the X' which is 
next smallest, etc. In case of ties, assign 
the average of the ranks which would have 
been assigned had the X-’s differed only 
slightly. (If more than 20% of the ob¬ 
servations are involved in ties, this proce¬ 
dure should not be used.) 
To the assigned ranks 1, 2, 3, etc., prefix a 
+ or a — sign according to whether the 
corresponding X' is positive or negative. 

(5) Let T be the sum of the ranks preceded by 
a + sign. 

(6) If T < Ta (n), conclude that the average of 
the new product is less than that of the 
standard; otherwise, there is no reason to 
believe that the average of the new product 
is less than that of the standard. 

LESS THAN THAT OF A STANDARD? 

Example 

(1) Let a = .025 
In Data Sample 16-4, 

mn = 27,000. 

Since no observations are equal to m «, 

n = 20 

(2) T. „23 (20) = 52 

(3) (4) 

Xj - 7ft,i Signed Rank 

-2800 -11 

-1100 - 8 

-1000 — 6.5 

-1000 - 6.5 
- 700 - 5 

- 550 - 3.5 

250 + 1 
450 + 2 
550 + 3.5 

1550 + 9 
2150 + 10 

2900 + 12 
3000 + 13 
3400 +14 
3450 + 15.5 

3450 + 15.5 
4450 + 17 
4600 + 18 

5400 + 19 

6750 +20 

(5) T = 169.5 

(6) Since T is not less than T.l)23 (20), there is 
no reason to believe that the average tensile 
strength is less than m0 = 27,000 psi. 



ORDP 20-113 DISTRIBUTION-FREE TESTS 

16-5 DO PRODUCTS A AND B DIFFER IN AVERAGE PERFORMANCE? 

Two procedures are given to answer this question. Each of the procedures is applicable to a 
different situation, depending upon how the data have been taken. 

Situation 1 (for which the sign test of Paragraph 16-5.1 is applicable) is the case where observa¬ 
tions on the two things being compared have been obtained in pairs. Each of the two observations 
on a pair has been obtained under similar conditions, but the different pairs need not have been 
obtained under similar conditions. Specifically, the sign test procedure tests whether the median 
difference between A and B can be considered equal to zero. 

Situation 2 (for which we use the Wilcoxon-Mann-Whitney test of Paragraph 16-5.2) is the case 
where two independent samples have been drawn — one from population A and one from popula¬ 
tion B. This test answers the following kind of questions — if the two distributions are of the 
same form, are they displaced with respect to each other? Or, if the distributions are quite different 
in form, do the observations on A systematically tend to exceed the observations on B? 

16-5.1 DO PRODUCTS A AND B DIFFER IN AVERAGE PERFORMANCE? THE SIGN TEST FOR PAIRED 
OBSERVATIONS 

Data Sample 16-5.1 —Reverse-Bias Collector Currents of Two Types of Transistors 

Ten pairs of measurements of Into on two types of transistors are available, as follows: 

Type A Type B 

.19 .21 

.22 .27 

.18 .15 

.17 .18 
1.20 .40 

.14 .08 

.09 .14 

.13 .28 

.26 .30 

.66 .68 
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Procedure 

(1) Choose a, the significance level of the test. 
Table A-33 provides for values of a = .25, 
.10, .05, and .01 for this two-sided test. 

(2) For each pair, record the sign of the differ¬ 
ence XA — Xrt. Discard any difference 
which happens to equal zero. Let n be the 
number of differences remaining. (If more 
than 20% of the observations need to be 
discarded, this procedure should not be 
used.) 

(3) Count the number of occurrences of the less 
frequent sign. Call this r. 

(4) Look up r (a, n), in Table A-33. 

(5) If r is less than, or is equal to, r (a, n), con¬ 
clude that the averages differ; otherwise, 
there is no reason to believe that the 
averages differ. 

Example 

(1) Let a = .10 

(2) In Data Sample 16-5.1, 

n = 10 

(3) There are 3 plus signs. 
r = 3 

(4) r (.10, 10) = 1 

(5) Since r is not less than r (.10, 10), there is 
no reason to believe that the two types 
differ in average current. 

Note: The Wilcoxon Signed-Ranks Test also may be used to compare the averages of two 
products in the paired-sample situation; follow the procedure of Paragraph 16-2.2, substituting 

X', = XA — XH for X', = X, — ran in step (3) of that procedure. 

16-5.2 DO PRODUCTS A AND B DIFFER IN AVERAGE PERFORMANCE? THE WILCOXON-MANN- 

WHITNEY TEST FOR TWO INDEPENDENT SAMPLES 

Data Sample 16-5.2 — Forward Current Transfer Ratio of Two Types of Transistors 

The data are measurements of hJe for two independent groups of transistors, where hle is the 
small-signal short-circuit forward current transfer ratio. 

Group A Group B 

50 .5 (9)* 57, .0 (17) 
37. .5 (1) 52. .0 (11) 
49, .8 (7) 51, .0 (10) 
56. .0 (15.5) 44. .2 (3) 
42. .0 (2) 55. .0 (14) 
56. .0 (15.5) 62. .0 (19) 
50. .0 (8) 59, .0 (18) 
54, .0 (13) 45 .2 (5) 
48, .0 (6) 53 .5 (12) 

44 .4 (4) 

in 
* The numbers shown in parentheses are the ranks, from lowest to highest, for all observations combined, as required 
Step (2) of the following Procedure and Example. 
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Procedure 

(1) Choose a, the significance level of the test. 
Table A-35 provides for values of a = .01, 
.05, .10, and .20 for this two-sided test 
when n.\ ,nn < 20. 

(2) Combine the observations from the two 
samples, and rank them in order of in¬ 
creasing size from smallest to largest. 
Assign the rank of 1 to the lowest, a rank 
of 2 to the next lowest, etc. (Use algebraic 
size, i.e., the lowest rank is assigned to the 
largest negative number, if there are nega¬ 
tive numbers). In case of ties, assign to 
each the average of the ranks which would 
have been assigned had the tied observa¬ 
tions differed only slightly. (If more than 
20% of the observations are involved in 
ties, this procedure should not be used.) 

(3) Let: nx = smaller sample 

7i 2 = larger sample 
n = rii + n2 

(4) Compute R, the sum of the ranks for the 
smaller sample. (If the two samples are 
equal in size, use the sum of the ranks for 
either sample.) 

Compute R' = ni (n + 1) — R 

(5) Look up Ra (ti!, Tio), in Table A-35. 

(6) If either R or R' is smaller than, or is equal 

to, Ra (7&1, no), conclude that the averages 
of the two products differ; otherwise, there 
is no reason to believe that the averages of 
the two products differ. 

Example 

(1) Let a = .10 

(2) In Data Sample 16-5.2, the ranks of the 
nineteen individual observations, from low¬ 
est to highest, are shown in parentheses 
beside the respective observations. Note 
that the two tied observations (56.0) are 
each given the rank 15.5 (instead of ranks 
15 and 16), and that the next larger obser¬ 
vation is given the rank 17. 

(3) nx = 9 
no = 10 

71 = 19 

(4) R = 77 

R' = 9 (20) - 77 
= 103 

(5) R.in (9, 10) = 69 

(6) Since neither R nor R' is smaller than 
ft.10 (9, 10), there is no reason to believe 
that the averages of the two groups differ. 

16-6 DOES THE AVERAGE OF PRODUCT A EXCEED THAT OF PRODUCT B? 

Two procedures are given to answer this question. In order to choose the procedure that is 

appropriate to a particular situation, read the discussion in Paragraph 16-5. 
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16-6.1 DOES THE AVERAGE OF PRODUCT A EXCEED THAT OF PRODUCT B? THE SIGN TEST 

FOR PAIRED OBSERVATIONS 

In terms of Data Sample 16-5.1, assume that we had asked in advance (not after looking at the 
data) whether the average Icno was larger for Type A than for Type B. 

Procedure 

(1) Choose a, the significance level of the test. 
Table A-33 provides for values of a = .125, 
.05, .025, and .005 for this one-sided test. 

(2) For each pair, record the sign of the differ¬ 
ence XA - Xu. Discard any difference 

which happens to equal zero. Let n be the 
number of differences remaining. (If more 
than 20% of the observations need to be 

discarded, this procedure should not be 
used.) 

(3) Count the number of minus signs. Call 
this number r. 

(4) Look up r (a, n), in Table A-33. 

(5) If r is less than, or is equal to, r (a, n), con¬ 
clude that the average of product A ex¬ 

ceeds the average of product B; otherwise, 
there is no reason to believe that the aver¬ 
age of product A exceeds that of product B. 

Example 

(1) Let a = .025 

(2) In Data Sample 16-5.1, 

n = 10 

(3) There are 7 minus signs. 

r = 7 

(4) r (.025, 10) = 1 

(5) Since r is not less than r (.025, 10), there is 
no reason to believe that the average of 
Type A exceeds the average of Type B. 

Note: The Wilcoxon Signed-Ranks Test also may be used to compare the averages of two 
products in the paired-sample situations; follow the procedure of Paragraph 16-3.2, substituting 
X't = XA — Xn for X'i = X; — m,i in Step (3) of that Procedure. 

16-6.2 DOES THE AVERAGE OF PRODUCT A EXCEED THAT OF PRODUCT B? THE WILCOXON- 

MANN-WHITNEY TEST FOR TWO INDEPENDENT SAMPLES 

Data Sample 16-6.2 — Output Admittance of Two Types of Transistors 

The data are observations of h„b for two types of transistors, where h„b = small-signal open-circuit 
output admittance. 

Type A Type B 

.291 (5)* .246 (1) 

.390 (10) .252 (2) 

.305 (7) .300 (6) 

.331 (9) .289 (4) 

.316 (8) .258 (3) 

* The numbers shown in parentheses are the ranks, from lowest to highest, for all observations combined, as required 
in Step (2) of the following Procedure and Example. 
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Does the average hob for Type A exceed that for Type B? 

Procedure Example 

(1) Choose a, the significance level of the test. (1) Let a = .05 
Table A-35 provides for values of 
a = .005, .025, .05, and .10 for this one¬ 
sided test, when nA,nH < 20. 

(2) Combine the observations from the two 
populations, and rank them in order of 
increasing size from smallest to largest. 

Assign the rank of 1 to the lowest, a rank 
of 2 to the next lowest, etc. (Use alge¬ 

braic size, i.e., the lowest rank is assigned 
to the largest negative number if there are 
negative numbers). In case of ties, assign 
to each the average of the ranks which 
would have been assigned had the tied 
observations differed only slightly. (If 
more than 20% of the observations are 
involved in ties, this procedure should not 
be used.) 

(2) In Data Sample 16-6.2, the ranks of the 
ten individual observations, from lowest 
to highest, are shown beside the respective 

observations. 

(3) Let: nx = smaller sample 
no = larger sample 
n = n, + no 

(4) Look up Ra (nx, no), in Table A-35. 

(5a) If the two samples are equal in size, or if 
nR is the smaller, compute Rr the sum of 
the ranks for sample B. If R„ is less 
than, or is equal to, Ra (nx, n->), conclude 
that the average for product A exceeds 
that for product B; otherwise, there is no 
reason to believe that the average for 
product A exceeds that for product B. 

(3) n i = 5 
no = 5 

n — 10 

(4) £.,*(5,5) = 19 

(5a) R„ = 16 
Since RH is less than R.,* (5, 5), conclude 
that the average for Type A exceeds that 

for Type B. 

(5b) If nA is smaller than nH, compute RA the 
sum of the ranks for sample A, and com¬ 
pute R\ = nA (n + 1) - Ra . 
If R'a is less than, or is equal to, Ra (nx, n->), 
conclude that the average for product A 
exceeds that for product B; otherwise, 
there is no reason to believe that the 
two products differ. 
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16-7 COMPARING THE AVERAGES OF SEVERAL PRODUCTS 

DO THE AVERAGES OF t PRODUCTS DIFFER? 

Data Sample 16-7 — Life Tests of Three Types of Stopwatches 

Samples from each of three types of stopwatches were tested. The following data are thousands 
of cycles (on-off-restart) survived until some part of the mechanism failed. 

Type 1 Type 2 Type 3 

1. .7 (1)* 13.6 (6) 13.4 (5) 
1. .9 (2) 19.8 (8) 20.9 (9) 
6, .1 (3) 25.2 (12) 25.1 (10.5) 

12. .5 (4) 46.2 (16.5) 29.7 (13) 
16. .5 (7) 46.2 (16.5) 46.9 (18) 
25 .1 (10.5) 61.1 (19) 
30 .5 (14) 
42 .1 (15) 
82 .5 (20) 

* The numbers shown in parentheses are the ranks, from lowest to highest, for all observations combined, as required 
in Step (3) of the following Procedure and Example. 

TABLE 16-1. WORK TABLE FOR DATA SAMPLE 16-7 

Ranks Ranks Ranks 
Type 1 Type 2 Type 3 

1 6 5 
2 8 9 
3 12 10.5 
4 16.5 13 
7 16.5 18 

10.5 19 
14 
15 
20 

R; = 76.5 R, = 78.0 Rz = 55.5 
n,■ 9 6 5 
Rr/rii 650.25 1014.00 616.05 
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Does the average length of “life” differ for the three types? 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up xi-« for t — 1 degrees of freedom, 
in Table A-3, where t is the number of 
products to be compared. 

(3) We have %i, n2, . . . , nt observations on 
each of the products 1,2,... , t. 

N = rii + n2 + . . . + nt. 

Assign ranks to each observation according 
to its size in relation to all N observations. 
That is, assign rank 1 to the smallest, 2 to 
the next larger, etc., and N to the largest. 
In case of ties, assign to each of the tied 
observations the average of the ranks which 
would have been assigned had the observa¬ 
tions differed slightly. (If more than 20% 

of the observations are involved in ties, 
this procedure should not be used.) 

(4) Compute R, , the sum of the ranks of the 
observations on the fth product, for each of 
the products. 

(5) Compute 

H = wwVi]Sf -w + i) 

(6) If H > x\_a, conclude that the averages of 

the t products differ; otherwise, there is no 
reason to believe that the averages differ. 

Example 

(1) Let a = .10 

(2) t = 3 
x?90 for 2 d.f. = 4.61 

(3) In Data Sample 16-7, 

N = 9 + 6+ 5 =20. 

The assigned ranks are shown in Data 
Sample 16-7 and in Table 16-1. 

(4) R i = 76.5 
R 2 = 78.0 

R, = 55.5 

(5) 

H = ^ (2280.30) - 63 

= 2.15 

(6) Since H is not larger than x290 , there is no 
reason to believe that the averages for the 
three types differ. 

Note: When using this Procedure, each of the n, should be at least 5. If any n, are less than 5, 
the level of significance a may be considerably different from the intended value. 

16-14 



CHAPTER 17 

THE TREATMENT OF OUTLIERS 

17-1 THE PROBLEM OF REJECTING OBSERVATIONS 

Every experimenter, at some time, has obtained a set of observations, purportedly taken under 
the same conditions, in which one observation was widely different, or an outlier from the rest. 

The problem that confronts the experimenter is whether he should keep the suspect observation 
in computation, or whether he should discard it as being a faulty measurement. The word reject 
will mean reject in computation, since every observation should be recorded. A careful experi¬ 
menter will want to make a record of his “rejected” observations and, where possible, detect and 
carefully analyze their cause (s). 

It should be emphasized that we are not discussing the case where we know that the observation 
differs because of an assignable cause, i.e., a dirty test-tube, or a change in operating conditions. 
We are dealing with the situation where, as far as we are able to ascertain, all the observations are 
on approximately the same footing. One observation is suspect however, in that it seems to be 
set apart from the others. We wonder whether it is not so far from the others that we can reject 
it as being caused by some assignable but thus far unascertained cause. 

When a measurement is far-removed from the great majority of a set of measurements of a 
quantity, and thus possibly reflects a gross error, the question of whether that measurement should 
have a full vote, a diminished vote, or no vote in the final average — and in the determination of 
precision — is a very difficult question to answer completely in general terms. If on investigation, 

a trustworthy explanation of the discrepancy is found, common sense dictates that the value con¬ 
cerned should be excluded from the final average and from the estimate of precision, since these 
presumably are intended to apply to the unadulterated system. If, on the other hand, no explana¬ 
tion for the apparent anomalousness is found, then common sense would seem to indicate that it 
should be included in computing the final average and the estimate of precision. Experienced 
investigators differ in this matter. Some, e.g., J. W. Bessel, would always include it. Others 
would be inclined to exclude it, on the grounds that it is better to exclude a possibly “good” measure¬ 
ment than to include a possibly “bad” one. The argument for exclusion is that ivhen a “good” 
measurement is excluded we simply lose some of the relevant information, with consequent decrease 
in precision and the introduction of some bias (both being theoretically computable); whereas, 
when a truly anomalous measurement is included it vitiates our results, biasing both the final average 
and the estimate of precision by unknown, and generally unknowable, amounts. 

There have been many criteria proposed for guiding the rejection of observations. For an excel¬ 
lent summary and critical review of the classical rejection procedures, and some more modern 
ones, see P. R. Rider11'. One of the more famous classical rejection rules is “Chauvenet’s criterion,” 
which is not recommended. This criterion is based on the normal distribution and advises rejection 
of an extreme observation if the probability of occurrence of such deviation from the mean of the n 
measurements is less than In. Obviously, for small n, such a criterion rejects too easily. 
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A review of the history of rejection criteria, and the fact that new criteria are still being proposed, 
leads us to realize that no completely satisfactory rule can be devised for any and all situations. 
We cannot devise a criterion that will not reject a predictable amount from endless arrays of per¬ 
fectly good data; the amount of data rejected of course depends on the rule used. This is the price 
we pay for using any rule for rejection of data. No available criteria are superior to the judgment 
of an experienced investigator who is thoroughly familiar with his measurement process. For an 
excellent discussion of this point, see E. B. Wilson, Jr.('21. Statistical rules are given primarily for 
the benefit of inexperienced investigators, those working with a new process, or those who simply 
want justification for what they would have done anyway. 

Whatever rule is used, it must bear some resemblance to the experimenter’s feelings about the 
nature and possible frequency of errors. For an extreme example — if the experimenter feels that 
about one outlier in twenty reflects an actual blunder, and he uses a rejection rule that throws out 
the two extremes in every sample, then his reported data obviously will be “clean” with respect 
to extreme blunders — but the effects of “little” blunders may still be present. The one and only 
sure way to avoid publishing any “bad” results is to throw away all results. 

With the foregoing reservations, Paragraphs 17-2 and 17-3 give some suggested procedures for 
judging outliers. In general, the rules to be applied to a single experiment (see Paragraph 17-3) 
reject only what would be rejected by an experienced investigator anyway. 

17-2 REJECTION OF OBSERVATIONS IN ROUTINE EXPERIMENTAL WORK 

The best tools for detection of errors (e.g., systematic errors, gross errors) in routine work are the 
control charts for the mean and range. These charts are described in Chapter 18, which also 
contains a table of factors to facilitate their application, Table 18-2. 

17-3 REJECTION OF OBSERVATIONS IN A SINGLE EXPERIMENT 

We assume that our experimental observations (except for the truly discordant ones) come from 
a single normal population with mean m and standard deviation a. In a particular experiment, 
we have obtained n observations and have arranged them in order from lowest to highest 
(Xx < X-! < ... < X„). We consider procedures applicable to two situations: when observa¬ 
tions which are either too large or too small would be considered faulty and rejectable, see Para¬ 
graph 17-3.1; when we consider rejectable those observations that are extreme in one direction 
only (e.g., when we want to reject observations that are too large but never those that are too 
small, or vice versa), see Paragraph 17-3.2. The proper choice between the situations must be 
made on a priori grounds, and not on the basis of the data to be analyzed. 

For each situation, procedures are given for four possible cases with regard to our knowledge of 
m and a. 
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17-3.1 WHEN EXTREME OBSERVATIONS IN EITHER DIRECTION ARE CONSIDERED REJECTABLE 

17-3.1.1 Population Mean and Standard Deviation Unknown — Sample in Hand is the Only Source 
of Information. 

[The Dixon Criterion] 

Procedure 

(1) Choose a, the probability or risk we are willing to take of rejecting an observation that really 
belongs in the group. 

(2) If: 3 < n < 7 
8 < n < 10 

11 < n < 13 
14 < n < 25 

where r,-> is computed as follows: 

Tjj If X„ is Suspect 

no (X„ - Xn.1)/(XH - X0 
ru (X„ - Xn_x)/(Xn - X2) 

r-n (X„ - Xn_2)/(X„ - X*) 
r22 (Xn - X„-i)/(Xn - X,) 

Compute rw 
Compute rn 
Compute r-n 
Compute r22, 

If Xi is Suspect 

(X* - X,)/(Xn- X0 
(X2 - Xl)/(Xn-l - Xi) 
(X, - XJ/iXn^ - X,) 
(■X, - X1)/(Xn-2 - X,) 

(3) Look up ri_a 2 for the r;j from Step (2), in Table A-14. 

(4) If r;j > ri-c/2, reject the suspect observation; otherwise, retain it. 

17-3.1.2 Population Mean and Standard Deviation Unknown — Independent External Estimate of 
Standard Deviation is Available. 

[The Studentized Range] 

Procedure 

(1) Choose a, the probability or risk we are willing to take of rejecting an observation that really 
belongs in the group. 

(2) Look up qi-a (n, v) in Table A-10. n is the number of observations in the sample, and v is 
the number of degrees of freedom for s„ the independent external estimate of the standard 
deviation obtained from concurrent or past data — not from the sample in hand. 

(3) Compute w = qi-as. 

(4) If X„ — Xj > w, reject the observation that is suspect; otherwise, retain it. 

17-3.1.3 Population Mean Unknown — Value for Standard Deviation Assumed. 

Procedure 

(1) Choose a, the probability or risk we are willing to take of rejecting an observation that really 
belongs in the group. 

(2) Look up <7i_a (n, °c) in Table A-10. 

(3) Compute w = qx_a a. 

(4) If Xn — X] > w, reject the observation that is suspect; otherwise, retain it. 
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17-3.1.4 Population Mean and Standard Deviation Known. 

Procedure 

(1) Choose a, the probability or risk we are 
willing to take of rejecting an observation 
when all n really belong in the same group. 

(2) Compute a = 1 — (1 — a)17" 
(We can compute this value using loga¬ 
rithms, or by reference to a table of frac¬ 
tional powers.) 

(3) Look up Zw/2 in Table A-2. 
(Interpolation in Table A-2 may be re¬ 

quired. The recommended method is 
graphical interpolation, using probability 
paper.) 

(1) Let a = 
for example, 

Example 

.10, 

(2) If n = 20, 

for example, 
«' = 1 - (1 - .10),/2° 

= 1 - (.90)1/20 
= 1 - .9947 
= .0053 

(3) 1 /2 = 1 — (.0053/2) 
= .9974 

97., = 2.80 

(4) Compute: 

a = m — <jZ\_a> /2 

b = m + oz i-a' /o 

(5) Reject any observation that does not lie in 
the interval from a to b. 

(4) 

a = m — 2.80 a 
b = vt T 2.80 cr 

(5) Reject any observation that does not lie in 

the interval from 
m — 2.80 <r to 
m -f- 2.80 c. 

17-3.2 WHEN EXTREME OBSERVATIONS IN ONLY ONE DIRECTION ARE CONSIDERED REJECTABLE 

17-3.2.1 Population Mean and Standard Deviation Unknown — Sample in Hand is the Only Source 
of Information. 

[The Dixon Criterion] 

Procedure 

(1) Choose a, the probability or risk we are willing to take of rejecting an observation that really 
belongs in the group. 

(2) If: 3 < n < 7 

8 < n < 10 
11 < n < 13 
14 < n < 25 

where r,; is computed as follows: 

Compute rio 
Compute ru 

Compute r2i 
Compute r22, 

r,-; 
If Only Large Values 

are Suspect 
If Only Small Values 

are Suspect 

V in QCn - Xn-i)/(Xn - Zd (X, - X,)/{Xn - xo 

rn (Xn - Xn^)/{Xn - Z2) (Z2 - X1)/(Xn-1 - X,) 
r2i (Xn — ,Z„_2)/(Zn - Xt) (X, - X1)/(Xn^1 - Zd 

r22 {Xn - Z„_2)/(Z„ - Xt) (Z:t - Zd/(Z„_2 - Xd 

(3) Look up ri_0 for the r:j from Step (2), in Table A-14. 

(4) If ru > fi_„, reject the suspect observation; otherwise, retain it. 
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17-3.2.2 Population Mean and Standard Deviation Unknown — Independent External Estimate of 
Standard Deviation is Available. 

[Extreme Studentized Deviate From Sample Mean; The Nair Criterion) 

Procedure 

(1) Choose a, the probability or risk we are willing to take of rejecting an observation that really 
belongs in the group. 

(2) Look up ta (n, v) in Table A-16. n is the number of observations in the sample, and v is the 
number of degrees of freedom for s„ the independent external estimate of the standard deviation 
obtained from concurrent or past data — not from the sample in hand. 

(3) If only observations that are too large are considered rejectable, compute 

tn - (Xn — X)/Sy. 

Or, if only observations that are too small are considered rejectable, compute 

t\ = (X — X\)/s„. 

(4) If tn (or 11, as appropriate) is larger than ta (n, v), reject the observation that is suspect; 
otherwise, retain it. 

17-3.2.3 Population Mean Unknown — Value for Standard Deviation Assumed. 

[Extreme Standardized Deviate From Sample Mean] 

Procedure 

(1) Choose a, the probability or risk we are willing to take of rejecting an observation that really 
belongs in the group. 

(2) Look up ta(n, x) in Table A-16. 

(3) If observations that are too large are considered rejectable, compute 

tn = (Xn ~ X)/XT. 

Or, if observations that are too small are considered rejectable, compute 

ti = (X — Xi)/XT . 

(4) If tn (or ti, as appropriate) is larger than ta (n, x), reject the observation that is suspect; 
otherwise, retain it. 
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17-3.2.4 Population Mean and Standard Deviation Known. 

Procedure 

(1) Choose a, the probability or risk we are 
willing to take of rejecting an observation 

when all n really belong in the same group. 

(2) Compute a! 2 = 1 — (1 — a)1'". 

(We can compute this value using loga¬ 
rithms, or by reference to a table of frac¬ 
tional powers.) 

(3) Look up 2 in Table A-2. 
(Interpolation in Table A-2 may be re¬ 
quired. The recommended method is 
graphical interpolation using probability 
paper.) 

(4) Compute: 

a = m — crZi—a'i» 

b = m + azi_„' 2 

(5) Reject any observation that does not lie in 
the interval from a to b. 

Example 

(1) Let a = .10, 
for example. 

(2) If n = 20, 
for example, 

a! /2 = 1 - (1 - .10)1/20 

= 1 - (.90)1/2" 
= 1 - .9947 

= .0053 

(3) 1 - «"2 = 1 - .0053 
= .9947 

2.99,7 = 2.55 

a = m — 2.55 a 
b = m + 2.55 <r 

(5) Reject any observation that does not lie in 

the interval from 

m — 2.55 a to 
m + 2.55 a. 
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CHAPTER 18 

THE PLACE OF CONTROL CHARTS IN EXPERIMENTAL WORK 

18-1 PRIMARY OBJECTIVE OF CONTROL CHARTS 

Control charts have very important functions 
in experimental work, although their use in 
laboratory situations has been discussed only 
briefly by most textbooks. Control charts can 
be used as a form of statistical test in which the 
primary objective is to test whether or not the 
process is in statistical control. The process is in 
statistical control when repeated samples from 
the process behave as random samples from a 
stable probability distribution; thus, the under¬ 
lying conditions of a process in control are such 
that it is possible to make predictions in the 
probability sense. 

The control limits are usually computed by 
using formulas which utilize the information 

from the samples themselves. The computed 

limits are placed as lines on the specific chart, 
and the decision is made that the process was in 
control if all points fall within the control limits. 
If all points are not within the limits, then the 
decision is made that the process is not in control. 

The basic assumption underlying most sta¬ 
tistical techniques is that the data are a random 
sample from a stable probability distribution, 
which is another way of saying that the process 
is in statistical control. It is the validity of this 
basic assumption which the control chart is 
designed to test. The control chart is used to 
demonstrate the existence of statistical control, 
and to monitor a controlled process. As a 
monitor, a given control chart indicates a par¬ 
ticular type of departure from control. 

18-2 INFORMATION PROVIDED BY CONTROL CHARTS 

Control charts provide a running graphical 
record of small subgroups of data taken from a 
repetitive process. Control charts may be kept 
on any of various characteristics of each small 
subgroup — e.g., on the average, standard de¬ 
viation, range, or proportion defective. The 
chart for each particular characteristic is de¬ 
signed to detect certain specified departures in 
the process from the assumed conditions. The 
process may be a measurement process as well 
as a production process. The order of groups is 
usually with respect to time, but not necessarily 
so. The grouping is such that the members of 
the same group are more likely to be alike than 
are members of different groups. 

Primarily, control charts can be used to 
demonstrate whether or not the process is in 
statistical control. When the charts show lack 

of control, they indicate where or when the 
trouble occurred. Often they indicate the na¬ 
ture of the trouble, e.g., trends or runs, sudden 
shifts in the mean, increased variability, etc. 

In addition to serving as a method of testing 
for control, control charts also provide addi¬ 
tional and useful information in the form of 
estimates of the characteristics of a controlled 
process. This information is altogether too- 
frequently overlooked. For example, one very 
important piece of information which can be 
obtained from a control chart for the range or 
standard deviation is an estimate of the varia¬ 
bility a of a routine measurement or production 
process. It should be remembered that many 
of the techniques of Section 1, Chapter 3, are 
given in parallel for known a and unknown a. 
Most experimental scientists have very good 

18-1 



ORDP 20-113 CONTROL CHARTS 

knowledge of the variability of their measure¬ 
ments, but hesitate to assume known a without 
additional justification. Control charts can be 

used to provide the justification. 

Finally, as was pointed out in Chapter 17, 
Paragraph 17-2, a control chart is the most 
satisfactory criterion for rejection of observa¬ 
tions in a routine laboratory operation. An ex¬ 
cellent discussion of the use of control charts to 
detect particular kinds of trouble is given by 
01mstead(n. The three most important types 
of control charts in this connection are the 
charts for the average X, range R, and stand¬ 
ard deviation a. The order of usefulness of 
each type of chart in particular situations is 

shown in Table 18-1, where a “1” means most 
useful, “2” is the next best, and dots denote 

“not appropriate”. 

As can be seen from Table 18-1, the X and R 
charts are the most useful of the three types. 
The R chart is preferred to the a chart because 
of its simplicity and versatility; and, unless 
there are compelling reasons to use the a chart, 

the R chart is the method of choice. 

TABLE 18-1. TESTS FOR LOCATING AND 
IDENTIFYING SPECIFIC TYPES OF 

ASSIGNABLE CAUSES 

Type of Assignable Cause 

Control Charts* 

X R <T 

Gross Error (Blunder) 1 2 
Shift in Average 1 
Shift in Variability 1 2 
Slow Fluctuation (Trend) 1 
Fast Fluctuation (Cycle) 1 2 
Combination: 

(a) Production 1 2 
(b) Research 

Covariation 1 

* The numeral 1 denotes the most useful type of chart; 
2 denotes the next best; and, . . denote charts which are 
not appropriate for the particular cause. 

Adapted with permission from Industrial Quality Control, Vol. IX, 
No. 3, (November, 1952) and No. 4, (January, 1953) from article 
entitled “How to Detect the Type of an Assignable Cause” by P. S. 
Olmstead. 

18-3 APPLICATIONS OF CONTROL CHARTS 

Table 18-2 is a summary table of factors for 
control charts for X, R, and a, when equal size 
samples are involved. Note carefully the foot¬ 
note to Table 18-2, beginning “When using 

s = M-X-/ ~ X) ”, because s is so defined 
\ n — 1 

in this Handbook. The last column of Table 

18-2 gives values of A L for convenience in 
\ n 

using the Table factors with values of s. 

The most explicit details of application to a 

variety of possible situations, e.g., to samples of 
unequal size, are given in the ASTM Manual02’; 
in using that Manual, however, the reader again 
must be wary of the difference between the defi¬ 
nition of a given therein, and the definition of s 
given in this Handbook. 

Actual examples of laboratory applications in 
the chemical field can be found in a series of 
comprehensive bibliographies published in Ana¬ 
lytical Chemistry(3 4 5i6’. These four articles 
are excellent reviews that successively bring 
up-to-date the recent developments in statis¬ 

tical theory and statistical applications that 
are of interest in chemistry. Further, these 
bibliographies are divided by subject matter, 
and thus provide means for locating articles on 
control charts in the laboratory. They are not 
limited to control chart applications, however. 

Industrial Quality Control7’, the monthly 
journal of the American Society for Quality 
Control, is the most comprehensive publication 
in this field. 

For a special technique with ordnance exam¬ 

ples, see Grubbs0"’. 

18-2 



APPLICATION OF CHARTS ORDP 20-113 

TABLE 18-2. FACTORS FOR COMPUTING 3-SIGMA CONTROL LIMITS 

Chart for Averages Chart for Standard Deviations Chart for Ranges 

Number of 
Observations 
in Sample, n 

Factors for 
Control Limits 

Factors for 
Central Line 

Factors for 
Control Limits 

Factors for 
Central Line 

Factors for 
Control Limits 

A A, At «: l/c. B, .. Si B. 4 l/d. </, 0, D, D, D, 

2 2.121 3.760 1.880 0.5642 1.7725 0 1.843 0 3.267 1.128 0.8865 0.853 0 3.686 0 3.267 .70711 
3 1.732 2.394 1.023 0.7236 1.3820 0 1.858 0 2.568 1.693 0.5907 0.888 0 4.358 0 2.575 .81650 
4 1.500 1.880 0.729 0.7979 1.2533 0 1.808 0 2.266 2.059 0.4857 0.880 0 4.698 0 2.282 .86603 
5. 1.342 1.596 0.577 0.8407 1.1894 0 1.756 0 2.089 2.326 0.4299 0.864 0 4.918 0 2.115 i .89443 

6 1.225 1.410 0.483 0.8686 1.1512 0.026 1.711 0.030 1.970 2.534 0.3946 0.848 0 5.078 0 2.004 .91287 
7. 1.134 1.277 0.419 0.8882 1.1259 0.105 1.672 0.118 1.882 2.704 0.3698 0.833 0.205 5.203 | 0.076 1.924 .92582 
8 1.061 1.175 0.373 0.9027 1.1078 0.167 1.638 0.185 1.815 2.847 0.3512 0.820 0.387 5.307 0.136 1.864 .93541 
9. 1.000 1.094 0.337 0.9139 1.0942 0.219 1.609 0.239 1.761 2.970 0.3367 0.808 0.546 5.394 ! 0.184 1.816 .94281 

10 0.949 1.028 0.308 0.9227 1.0837 0.262 1.584 0.284 1.716 3.078 0.3249 0.797 0.687 5.469 0.223 1.777 .94868 

li.! 0.905 0.973 0.285 0.9300 1.0753 0.299 1.561 0.321 1.679 3.173 0.3152 0.787 0.812 5.534 0.256 1.744 .95346 
12. 0.866 0.925 0.266 0.9359 1.0684 0.331 1.541 0.354 1.646 3.258 0.3069 0.778 0.924 5.592 0.284 1.716 .95743 
13. 0.832 0.884 0.249 0.9410 1.0627 0.359 1.523 0.382 1.618 3.336 0.2998 0.770 1.026 5.646 0.308 1.692 .96077 
14. 0.802 0.848 0.235 0.9453 1.0579 0.384 1.507 0.406 1.594 3.407 0.2935 0.762 1.121 5.693 0.329 1.671 .96362 
15.J 0.775 0.816 0.223 0.9490 1.0537 0.406 1.492 0.428 1.572 3.472 0.2880 0.755 1.207 5.737 0.348 1.652 .96609 

16. 0.750 0.788 0.212 0.9523 1.0501 0.427 1.478 0.448 1.552 3.532 0.2831 0.749 1.285 5.779 0.364 1.636 .96825 

17. 0.728 0.762 0.203 0.9551 1.0470 0.445 1.465 0.466 1.534 3.588 0.2787 0.743 1.359 5.817 0.379 1.621 .97014 
18. 0.707 0.738 0.194 0.9576 1.0442 0.461 1.454 0.482 1.518 3.640 0.2747 0.738 1.426 5.854 0.392 1.608 .97183 
19. 0.688 | 0.717 0.187 0.9599 1.0418 0.477 1.443 0.497 1.503 3.689 0.2711 0.733 1.490 5.888 0.404 1.596 .97333 
20 0.671 0.697 0.180 0.9619 1.0396 0.491 1.433 0.510 1.490 3.735 0.2677 0.729 1.548 5.922 0.414 1.586 .97468 

21. 0.655 0.679 0.173 0.9638 1.0376 0.504 1.424 0.523 1.477 3.778 0.2647 0.724 1.606 5.950 0.425 1.575 .97590 
22 0.640 0.662 , 0.167 0.9655 ! 1.0358 0.516 ! 1.415 0.534 1.466 3.819 0.2618 0.720 1.659 5.979 0.434 1.566 .97701 
23 0.626 0.647 0.162 , 0.9670 1.0342 0.527 j 1.407 0.545 1.455 3.858 0.2592 0.716 1.710 6.006 0.443 1.557 .97802 
24. 0.612 0.632 0.157 : 0.9684 1.0327 0.538 | 1.399 0.555 1.445 3.895 0.2567 0.712 1.759 6.031 0.452 1.548 j .97895 
25. 0.600 0.619 * 1 2 0.153 0.9696 1.0313 o.548; 1.392 0.565 1.435 3.931 0.2544 0.709 1.804 6.058 0.459 1.541 ! .97980 

Adapted with permia 4 STM Ma of Material*, lyright, 195 il. America n Society f or Tearing Material*. 

FORMULAS* 

Purpose of Chart Chart for Central Line 
3-Sigma 

Control Limits 

For analyzing past data for control (X, a, J f Averages 1 X ± Ai?, or 
R are average values for the data being J X ± AoR 
analyzed) | Standard deviations d B:id and BAd 

[ Ranges R D3R and DAR 

For controlling performance to standard { Averages X' X' ± Aa , or 
values (X', cr', R„' are selected stand¬ X’ ± A.,R,/ 
ard values; R,,' = dW for samples of Standard deviations C><r' Bia' and B><r' 
size n) Ranges d-ia’, or Di<t' and Dua , c 

| 
l r,: D3R„' and DaRh 

* When using s = -Ai for the standard deviation of a sample instead of <r = A -(X; — X)-, one must 
V n - 1 \ n 

make the following changes in the formulas for the central line and for the 3-sigma limits: 

(1) Replace A, by A n ~ 1 ^ . replace a by s ; make no change in B* and Bt ; 
\ n _ 

(2) Replace c», B,, B-, by —w - c±, » 71 B, and A —-—- B>, respectively. 

This material is reproduced from the American Standard Control Chart Method of Controlling Quality During Production, Z1.3—1958, copyright 
1959 by ASA, copies of which may be purchased from the American Standards Association at io East 40th Street., New York lti, N. Y. 

18-3 

686-511 0 - 63 - 25 



ORDP 20-113 CONTROL CHARTS 

REFERENCES 

1. P. S. Olmstead, “How to Detect the Type of 
an Assignable Cause,” Parts I and II, 
Industrial Quality Control, Vol. IX, Nos. 3, 
pp. 32-38 (November 1952) and 4, pp. 22- 
32 (January 1953). 

2. ASTM Manual on Quality Control of Ma¬ 
terials, American Society for Testing Ma¬ 

terials, 1916 Race St., Philadelphia 3, Pa., 
1951. 

3. G. Wernimont, “Statistics Applied to Anal¬ 
ysis”, Analytical Chemistry, Vol. 21, p. 
115, 1949. 

4. R. J. Hader and W. J. Youden, “Experi¬ 
mental Statistics”, Analytical Chemistry, 
Vol. 24, p. 120, 1952. 

5. J. Mandel and F. J. Linnig, “Statistical 
Methods in Chemistry”, Analytical Chem¬ 
istry, Vol. 28, p. 770, 1956. 

6. Ibid., Vol. 30, p. 739, 1958. 

7. Industrial Quality Control, Monthly Journal, 
The American Society for Quality Con¬ 
trol, 161 W. Wisconsin Ave., Milwaukee 
3, Wis. 

8. F. E. Grubbs, “The Difference Control 
Chart with Example of Its Use”, Indus¬ 
trial Quality Control, Vol. Ill, No. 1, 
pp. 22-25, July 1946. 

SOME RECOMMENDED GENERAL TEXTS 

American Standard Z 1.3-1958, Control Chart 
Method of Controlling Quality During Pro¬ 
duction, available from American Standards 
Association, Inc., 10 East Fortieth St., 
New York 16, N. Y. 
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CHAPTER 19 

STATISTICAL TECHNIQUES FOR ANALYZING EXTREME-VALUE DATA* 

19-1 EXTREME-VALUE DISTRIBUTIONS 

Classical applications of statistical methods, 
which frequently concern average values and 
other quantities following the symmetrical nor¬ 
mal distribution, are inadequate when the quan¬ 
tity of interest is the largest or the smallest in a 
set of magnitudes. Applications of the tech¬ 
niques described in this Chapter already have 
been made in a number of fields. Meteorologi¬ 
cal phenomena that involve extreme pressures, 
temperatures, rainfalls, wind velocities, etc., 
have been treated by extreme-value techniques. 
The techniques are also applicable in the study 
of floods and droughts. 

Other examples of extreme-value problems 
occur in the fracturing of metals, textiles, and 

other materials under applied force, and in 
fatigue phenomena. In these instances, the 
observed strength of a specimen often differs 
from the calculated strength, and depends, 
among other things, upon the length and vol¬ 
ume. An explanation is to be found in the 
existence of weakening flaws assumed to be dis¬ 
tributed at random in the body and assumed 

not to influence one another in any way. The 
observed strength is determined by the strength 
of the weakest region — just as no chain is 

stronger than its weakest link. Thus, it is 

apparent that whenever extreme observations 

are encountered it will pay to consider the use of 

extreme-value techniques. 

19-2 USE OF EXTREME-VALUE TECHNIQUES 

19-2.1 LARGEST VALUES 

A simplified account is given here. Primary 
sources for the detailed theory and methods are 
References 1, 2, 3, which also contain extensive 
bibliographies. References 4 through 10, also 
given at the end of this Chapter, provide addi¬ 
tional information and examples of applications. 

Figure 19-1 illustrates the frequency form of a 
typical curve for the distribution of largest 
observations. 

The curve in Figure 19-1 is the derivative of the 
function 

<%) = exp [-exp (-t/)]. 

Unlike the normal distribution, this curve is 
skewed, with its maximum to the left of the 
mean and the longer of its tails extending to the 
right. The outstanding feature of such a dis¬ 
tribution is that very large values are much 

more likely to occur than are very small values. 
This agrees with common experience. Very 
low maximum values are most unusual, while 
very high ones do occur occasionally. Theo¬ 
retical considerations lead to a curve of this 

nature, called the distribution of largest values or 
the extreme-value distribution. 

In using the extreme-value method, all the 
observed maxima, such as the largest wind 
velocity observed in each year during a fifty- 

* Adapted with permission from The American Statistician, Vol. 8, No. 5, December 1954, from article entitled “Some Applications of Extreme- 
Value Methods” by E. J. Gumbel and J. Lieblein; and, from National Bureau of Standards Technical News Bulletin 38, No. 2, pp. 29-31, February 
1954, from article entitled “Extreme-Value Methods for Engineering Problems”. 
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do y 

Figure 19-1. Theoretical distribution of largest values. 

Adapted with permission from The American Statistician, Vol. 8, No. 5, December 1954, from article entitled “Some Applications of Extreme- 
Value Methods” by E. J. Gumbel and J. Lieblein. 

year period, are first ranked in order of size from 
the smallest to the largest,' 

Xt < X. < . . . < X, < ... < x„. 
A plotting position (X,, P,) is obtained for each 
observation by associating with X, the proba¬ 

bility coordinate P, = i (n -\- 1), where i is the 
rank of the observation, counting from the 
smallest. The data are plotted on a special 
graph paper, called extreme-value probability 
paper*, designed so that the “ideal” extreme- 
value distribution will plot exactly as a straight 

line. Consequently, the closeness of the plotted 
points to a straight line is an indication of how 
well the data fit the theory. 

* Extreme-value probability paper may be obtained 
from three sources: (a) U. S. Department of Commerce, 
Weather Bureau; (b) Environmental Protection Section, 
Research and Development Branch, Military Planning 
Division, Office of the Quartermaster General; (c) Techni¬ 
cal and Engineering Aids for Management, 104 Belrose 
Ave., Lowell, Mass. 

Extreme-value probability paper has a uni¬ 
form scale along one axis, usually the vertical, 
which is used for the observed values as shown 
in Figure 19-2. The horizontal axis then serves 
as the probability scale, and is marked accord¬ 
ing to the doubly-exponential formula. Thus, 
in Figure 19-2, the space between 0.01 and 0.5 is 
much less than the space between 0.5 and 0.99. 
The limiting values zero and one are never 

reached, as is true of any probability paper de¬ 
signed for an unlimited variate. 

An extreme-value plot (Figure 19-2) of the 
maximum atmospheric pressures in Bergen, 
Norway, for the period between 1857 and 1926, 
showed by inspection that the observed data 
satisfactorily fitted the theory. Fitting the line 
by eye may be sufficient. Details of fitting a 
computed line are given in Gumbel.11 From 
the fitted straight line, it is possible to predict, 
for example, that a pressure of 793 mm corre¬ 
sponds to a probability of 0.994 ; that is, press 
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RETURN PERIOD 

1.05 1.25 2 5 10 20 50 100 200 

PROBABILITY <D(x) 

Figure 19-2. Annual maxima of atmospheric pressure, Bergen, Norway, 1857-1926. 

Adapted with permission from The American Statistician, Vol. 8, No. 5, December 1954, from article entitled “Some Applications of Extreme- 
Value Methods” by E. J. Gumbel and J. Lieblein. 

sures of this magnitude have less than one 
chance in 100 of being exceeded in any par¬ 
ticular year. 

In studies of the normal acceleration incre¬ 
ments experienced by an airplane flying through 
gusty air, see Gumbel and Carlson/41 page 394, 
an instrument was employed that indicated only 
the maximum shocks. Thus, only one maxi¬ 
mum value was obtained from a single flight. 
A plot representing 26 flights of the same air¬ 
craft indicated that the probability that the 
largest recorded gust will not be exceeded in any 
other flight was 0.96; i.e., a chance of four in 100 
of encountering a gust more severe than any 
recorded. A more recent study, Lieblein/'" 
presents refinements especially adapted to very 
small samples of extreme data, and also to 
larger samples where it is necessary to obtain 
the greatest amount of information from a 
limited set of costly data. 

19-2.2 SMALLEST VALUES 

Extreme-value theory can also be used to 
study the smallest observations, since the corre¬ 
sponding limiting distribution is simply related 
to the distribution of largest values. The steps 
in applying the “smallest-value” theory are 
very similar to those for the largest-value case. 
For example, engineers have long been inter¬ 
ested in the problem of predicting the tensile 
strength of a bar or specimen of homogeneous 
material. One approach is to regard the speci¬ 
men as being composed of a large number of 
pieces of very short length. The tensile strength 
of the entire specimen is limited by the strength 
of the weakest of these small pieces. Thus, the 
tensile strength at which the entire specimen 
will fail is a smallest-value phenomenon. The 
smallest-value approach can be used even 
though the number and individual strengths of 
the “small pieces” are unknown. 
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This method has been applied with consider¬ 
able success by Kase(r,) in studying the tensile 
testing of rubber. Using 200 specimens ob¬ 
tained so as to assure as much homogeneity as 
possible, he found that the observed distribution 
of their tensile strengths could be fitted remark¬ 
ably well by the extreme-value distribution for 
smallest values. The fitted curve given by this 
data indicates that one-half of a test group of 
specimens may be expected to break under a 
tensile stress of 105 kg./cm.2 or more, while only 
one in 1,000 will survive a stress exceeding 
126 kg./cm.2. 

Other examples of applications are given by 

Epstein and Brooks'7’ and by Freudenthal and 
Gumbel(S|(9’. 

19-2.3 MISSING OBSERVATIONS 

It has been found that fatigue life of speci¬ 

mens under fixed stress can be treated in the 

same manner as tensile strength — by using the 

theory of smallest values. An extensive appli¬ 

cation of this method is given in Lieblein and 

Zelen(,0). 

In such cases, tests may be stopped before all 

specimens have failed. This results in a sample 

from which some observations are missing — a 

“censored” sample. Methods for handling 

such data are included in Lieblein and Zelen(ini. 
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CHAPTER 20 

THE USE OF TRANSFORMATIONS 

20-1 GENERAL REMARKS ON THE NEED FOR TRANSFORMATIONS 

The scale on which a property is usually measured” (that is, the units in which it is ordinarily ex¬ 
pressed) may not be the most suitable for statistical analysis and interpretation. Statistical tech¬ 
niques are always based on assumptions. The validity of results obtained through their use in practice 
always depends, sometimes critically, on the assumed conditions being met, at least to a sufficient 
degree of approximation. Essentially all of the standard techniques for the statistical analysis 
and interpretation of measurement data (e.g., those given in ORDP 20-110, Section 1, Chapters 1 
through 6) are based upon assumed normality of the underlying distribution involved; and many 
(e.g., the majority of those considered in Chapters 5 and 6) also require (at least approximate) 
equality of variances from group to group. Furthermore, the analysis-of-variance tests considered 
in ORDP 20-112, Section 3, depend not only on normality and equality of variances among sub¬ 
groups, but also on additivity of the “effects” that characterize real differences of interest among 
the materials, processes, or products under consideration; see Eisenhart.'" 

Real-life data do not always conform to the conditions required for the strict, or even approxi¬ 
mate, validity of otherwise appropriate techniques of statistical analysis. When this is the case, 
a transformation (change of scale) applied to the raw data may put the data in such form that the 
appropriate conventional analysis can be performed validly^Bartlett('2' provides a good general 
survey of the practical aspects of transformations, together with a fairly complete bibliography 
of the subject to 1947. 

20-2 NORMALITY AND NORMALIZING TRANSFORMATIONS 

20-2.1 IMPORTANCE OF NORMALITY 

The dependence of many standard statistical techniques on normality of the underlying dis¬ 
tribution is twofold. First, standard statistical techniques are in the main based on the sample 
mean X, and the sample estimate s of the population standard deviation. A normal distribution 
is completely determined by its mean m and its standard deviation a ; and in sampling from a normal 
distribution, X and s together summarize all of the information available in the sample about the 
parent distribution. This 1009c efficiency of X and s in samples from a normal distribution does 
not carry over to non-normal distributions. Consequently, if the population distribution of a 
characteristic of interest is markedly non-normal, confidence intervals for the population mean m 
and standard deviation a based on X and s will tend to be wider, and tests of hypotheses regarding 
m or <r will have less power, than those based on the particular functions of the sample values that 
are the efficient estimators of the location and dispersion parameters of the non-normal distribution 
concerned. In other words, use of X and s as sample measures of the location and dispersion 
characteristics of a population distribution may result in an intrinsic loss of efficiency in the case 
of markedly non-normal distributions, even if the correct sampling distributions of x-, t, F, etc., 
appropriate to the non-normal distribution concerned are employed. 
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Second, the customary tables of percentage points of x2, t, F, and of factors for confidence 
intervals, tolerance limits, and so forth, are based on the assumption of sampling from a normal 
distribution. These percentage points, tolerance-limit factors, and so forth, are not strictly valid 
when sampling from non-normal distributions. The distribution of s2, which is identically that 
of xV2, v for v degrees of freedom in the case of sampling from a normal distribution, is especially 
sensitive to departures from normality. Consequently, the actual significance levels, confidence 
coefficients, etc., associated with the procedures of Chapter 4 may differ somewhat from their 
nominal values when sampling from only moderately non-normal material is involved. Fortu¬ 
nately, the percentage points of t- and F-tests of hypotheses about means are not so sensitive to 
departures from normality, so that the standard tests of hypotheses about, and confidence intervals 
for, population means will be valid to a good approximation for moderately non-normal populations 
— but there may be some loss of efficiency, as noted above. 

20-2.2 NORMALIZATION BY AVERAGING 

Many physical measurement processes produce approximately normally-distributed data; some 
do not. Even when measurement errors are approximately normally distributed, sampling of a 
material, product, or process may be involved, and the distribution of the characteristic of interest 
in the sampled population may be definitely non-normal — or, at least, it may be considered risky 
to assume normality. In such cases, especially when the basic measurements are plentiful or easy 
to obtain in large numbers, an effective normalization almost always can be achieved — except 
for extremely non-normal distributions — if the questions of interest with respect to the population 
concerned can be rephrased in terms of the parameters of the corresponding sampling distribution 
of the arithmetic means of random samples of size four or more. This normalizational trick is of 
extremely wide applicability; but results, of course, in a substantial reduction in the number of 
observations available for statistical analysis. Consequently, it should not be applied when the 
basic measurements themselves are few in number and costly to obtain. In such cases, if assump¬ 
tion of normality of the population distribution of the basic observations is considered risky, or 
definitely is known to be false, then we may take recourse in available distribution-free techniques; 

see Chapter 16. 

20-2.3 NORMALIZING TRANSFORMATIONS 

If we know from theoretical considerations or previous experience that some simple transforma¬ 
tion will approximately normalize the particular kind of data in hand, then, both for convenience 

and in the interest of efficiency, we may prefer to use normal-based standard techniques on the 
transformed data, rather than use distribution-free techniques on the data in their original form. 
For example, certain kinds of data are quite definitely known to be approximately normal in logs, 
and the use of a log transformation in these cases may become routine. Indeed, this transformation 
is the subject of an entire book which is devoted to its theoretical and empirical bases, and its-uses 
and usefulness in a wide variety of situations; see Aitchison and Brown.<:i) 

Table 20-1 gives a selection of transformations that are capable of normalizing a wide variety 
of non-normal types. They are arranged in groups according as the range of variation of the original 
variable X is from 0 to °c , from 0 to 1, or from — 1 to +1. Their “normalizing power” is exempli¬ 
fied in Figure 20-1. For the theoretical bases of these and other normalizing transformations, the 
advanced reader is referred to the papers of Curtiss'4’ and Johnson.(5) 
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Original Distributions Transformed Distributions 

Figure 20-1. Normalizing effect of some frequently used transformations. 

20-3 



ORDP 20-113 USE OF TRANSFORMATIONS 

20-3 INEQUALITY OF VARIANCES, AND VARIANCE-STABILIZING 

TRANSFORMATIONS 

20-3.1 IMPORTANCE OF EQUALITY OF VARIANCES 

Many standard statistical techniques for the analysis and comparison of two or more materials, 
products, or processes with respect to average performance depend on equality of variability within 
groups. When the magnitude of the common within-groups variance a'1 is unknown, it is cus¬ 
tomary (as in Procedures of Paragraphs 3-3.1.1, 3-3.2.1, and 3-4) to combine the sample evidence 
on variability of performance within the respective groups, to obtain a pooled estimate of <j- . The 
advantages of pooling are: the resultant pooled estimate s'2 is a more precise estimate of a- than is 
available from data of any of the individual groups alone; it leads to narrower confidence 
intervals for each of the individual group means, and for differences between them; and hence, it 
leads to more powerful tests of significance for differences between group means. If, however, 
the assumption of equality of within-group variances is false, then the resultant pooled s2 does not 
provide a valid estimate of the standard error of any of the group averages, or of any of the differ¬ 
ences between them. When marked inequalities exist among the true within-group variances, the 
standard errors of individual group averages and of differences between them, derived from a 
pooled s2, may be far from the true values; and confidence intervals and tests of significance based 
on the pooled s2 may be seriously distorted. 

Thus, in Chapter 3, we emphasized that the standard i-tests for the comparison of averages of 
two groups of unpaired observations (Paragraphs 3-3.1.1 and 3-3.2.1) are based on the assumption 
of equal variances within the two groups. Furthermore, we noted that if the two samples involved 
are of equal size, or of approximately equal size, then the significance levels of the two sided t-test 
of the difference of two means (Paragraph 3-3.1.1) will not be seriously increased (Figure 3-9, 
curve (A)); but the power of the test may be somewhat lessened if the two variances are markedly 
unequal. Similarly, two-sided confidence intervals derived from t for the difference between the 
two population means will tend to be somewhat narrower than if proper allowance were made for 
the inequality of the variances, but the effective confidence coefficient will not be seriously less 
than the value intended. These remarks carry over without change to one-sided f-tests (Para¬ 
graph 3-3.2.1) and to the corresponding one-sided confidence intervals. In other words, the com¬ 
parison of averages of two groups by means of the standard two sample t-test procedures and 
associated confidence intervals results only in some loss of efficiency when the samples from the two 
groups are of equal size, and the reduction in efficiency will be comparatively slight unless the two 
variances are markedly different. 

In contrast, if the samples from the two groups differ appreciably in size, then not only may the 
significance levels of standard two-sample f-tests be seriously affected (Figure 3-9, curve (B)) but 
their power (i.e., the entire OC curve) also may be altered considerably, especially if the smallest 
sample comes from the group having the larger variance. Hence, in the case of samples of unequal 
size, inequality of variances may invalidate not only a standard two-sample t-test for comparison 
of averages, but also the associated confidence-interval procedures for estimating the difference 
between the corresponding population means. 

The foregoing remarks carry over without modification to the Studentized-range techniques 
given in Paragraph 3-4 for the comparison of averages of several groups, and in ORDP 20-112, 
Section 3, Chapters 12 and 13, for the comparison of averages and groups of averages in complex 
and more specialized forms of comparative experiments. In all of these cases, if the true within- 
group variances differ appreciably from one group to another (or from subgroups to subgroups), 
there ordinarily will be a loss of efficiency in the estimation of, say, product means, or treatment 
differences. Similarly, there will be a loss of power in tests of significance. If the samples from 
the respective groups are of unequal sizes and the true within-group variances are markedly un- 
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equal, these losses may be substantial. Some of the estimates of group means and differences 
between group means may have much smaller or much larger standard errors than others, so that 
pair-wise (-tests, or Studentized-range tests, derived from a pooled standard-deviation estimate s 
may correspond to significance levels far from those intended; and the actual effective confidence 
coefficients associated with the corresponding confidence intervals may differ substantially from 
one another, and from their nominal values. 

20-3.2 TYPES OF VARIANCE INHOMOGENEITY 

The situations in which variance inhomogeneity may present a problem can be divided into 
two types: 

(a) Situations in which there is a functional dependence of the variance of an observation 
on the mean of the group to which it belongs. Functional dependence of the variance of an obser¬ 
vation on its mean or expected value is an intrinsic characteristic of many non-normal distributions. 
The second column of Table 20-1 gives some specific examples. Or, it may be a basic property of 
the phenomena under investigation quite apart from the form of the underlying distribution 
involved. Thus, in studies of various types of “growth” phenomena, the amount of variation 
present at any given stage of the “growth,” as measured by the standard deviation of observations 

at that stage, is apt to be proportional to the average size characteristic of that stage. 

TABLE 20-1. SOME FREQUENTLY USED TRANSFORMATIONS 

TT“" 

Appropriate Situation Approximate Variance 
on Transformed Scale 

Examples of Appropriate Distributions 

Ron^e o4 
Variable 

Characteristics of 
Distribution 

Distribution and IN Approximate Variance on 
Transformed Scale 

Vx 1 0 < X < * 

i 

i 

| Variance proportional to 
the mean 

Var = X: • mean Xs/4 

Continuous 
Gamma distributions 
Mean = p0 

Var = p0' 
l/4p 

Discrete 
Poisson distribution* 

X = 0,1, 2, ... 

Var = m 

1/4 

log.* 
t 

log,. X 
rsis- 

Standard deviation propor- 

| Var = X* (mean)1 For log., Xs 
For log,,. 0.189 1= 

I Distributions of s1 in samples of size n 
for normal distribution 

| Var = *C\ = („ 2 f) (mean)' 

For log,,—-—j 

„ . 0.377 
For logio, - _ j 

log. yzrx f 2 tanh" {2X ~ l) 

i x 
log'0 i _ x 

0<X<1 Type A 

Var = Xs m (1 - m) 
For Iog" n (1- m) 

For logio, 

Beta distributions 

j Mean - -j—j 
p + q 

Var --2®- 
(P + ?)' (P + 7 + 1) 

TypeB 

Var = X’m' (1 - n.)' 

For log,, X1 
For log,0, 0.189 X1 Empirical 

arcsin \ X (radians) 

arcsin y/X (degrees) 

0 < X < 1 
Var = X! m (1 - m) 

For radians, XV4 
For degrees, 821 X1 

Continuous 
Beta distributions For radians, -r~,——;—tt 4 (p + q + 1) 

„ . 821 
For degrees, p + g + 1 

Discrete 
Binomial distributions! 

X = 0, 1/n, 2in.»/» 
Mean = p 

[ Var = p (1 - p)/n 

For radians, l/4n 
For degrees, 821n 

J log, | ^ = tanh-1 X 

l~ I+_* 

-1 <x< +1 Var = X: [1 - (mean)9!* For $ log,, X9 
For log,,. 0.754 X9 

Distribution of correlation coefficient r 
in samples from a normal distribution 

Mean - r[l - + . ,] 

Var = a-,,'Q + ^--] | 

For i log,, “g 

„ , 0.754 
For log,., J ' - 

Probit Sensitivity Testing See ORDP 20-111, Chapter 10 

t Use log. (X + 1) or log,, (X + 1) to svoid difficulty 
t For greater accuracy, use Bartlett’s'*1 modification. 
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(b) Situations in which there is present incidental desultory heterogeneity of variance, arising 
from inadequate control of conditions or procedure; from differences or shortcomings of equipment 
or personnel; from use of inhomogeneous material or inadequate sampling methods; or from other 
disturbing features (e.g., partial failure of one or more of the products or treatments) that tend to 
produce less, or greater, variability among observations in some groups than in others in an irregular 
manner. 

Situations of the first type, in which the variance inhomogeneity present is simply the conse¬ 
quence of a functional dependence of the variance of an observation on its mean or expected value, 
are most easily handled statistically by employing an appropriate variance-stabilizing transforma¬ 
tion. Details are given in Paragraph 20-3.3. Statistical analyses of data arising from the second 
irregular type of variance heterogeneity should be left to experts. Variance-stabilizing transforma¬ 
tions are of little or no help in such situations. Helpful advice, illustrated by worked examples, 
can be found in two papers by Cochran/6’ 7) Recourse usually must be made to subdividing the 
experimental observations into approximately homogenous subgroups; or to omission of parts 
of the experiment that have yielded data very different from the rest. An overall analysis may be 
impossible. Combination of the pertinent evidence from the respective subdivisions of the data 
may involve complex weighting and laborious arithmetic. Various procedures for the combination 

of evidence from different experiments, or from separately analyzed parts of a single experiment, 
have been examined and evaluated in a later paper by Cochran.(f,) Irregular heterogeneity of 
variance should be avoided whenever possible, by adequate design of experiments and careful 
attention to the control of conditions, procedures, etc. 

20-3.3 VARIANCE-STABILIZING TRANSFORMATIONS 

When experimentally determined values Xx, X2, . . ., are such that their variances o-.v, are 
functionally dependent on their mean values mx. in accordance with a common functional relation¬ 

ship, say 

<r.v; = g (m.v.), (i = 1,2,...), (20-1) 

then we may gain the advantages of variance homogeneity in the statistical analysis of such data 

by replacing the original values X i, X2,. . . , by transformed values Y i = / (Xi), Y2 = f (X2),..., 
whose variances <rY{ are (at least, to a good approximation) functionally independent of their mean 
values mY;. Five such variance-stabilizing transformations Y = / (X) are given in the first column 
of Table 20-1; the “situations” (i.e., the range of X and the form of the function g (m) in equation 
(20-1)) for which each is appropriate* are indicated in the second column; and the third column 
shows the approximate variances of the corresponding transformed values Y, as given by the 

approximate formula 

<n2- (m)] a2x, (20-2) 

where /'(m) denotes the derivative of the function y = f (X) evaluated at X = m, the mean value 

of the original variable X. 

Figure 20-2 presents comparisons of the actual values of the variances <rY of the transformed 
values Y and the corresponding approximate values given by formula (20-2), for four of the trans¬ 

formations listed in Table 20-1. 

* The third transformation in the first column of Table 20-1, log ^ ^ , is variance-stabilizing only for “situations” 

of type B. 
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Panel 
(1) 

Dependence of the variances of two functions of a sample 
value X from a Poisson distribution on the Poisson 

parameter, m. (1) Variance of s/X; (2) Variance of 

2~ | “\/X. + \/X + 11 • 

The ratio of the variance of log,s2 to its approximate 
value 2/(n — 1) in samples of size n from a normal 
distribution. 

Panel 
(3) 

Panel 
(4) 

Dependence of the variances of three functions of a sample 
proportion X/n on the population proportion p when 
the sample size is 10. (1) 40 Var (X/n) ; 

(2) 40 Var (sin-1 y/X/n) ; (3) 40 Var (<p0) , where 

{sin-1 y/1/4 n for X =0 

sin-1 y/X/n for X = 1, 2.n — 1 

sin-1 \/(4 n — l)/4 n for X = n 

Dependence of the variances of three functions of a sample 
proportion X/n on the population proportion p when 
the sample size is 20. (1) 80 Var (X/n) ; 

(2) 80 Var (sin-1 y/X/n) ; (3) 80 Var (<pf), where 

fsin-1 y/l/A n for X = 0 

<p9 = \ sin-1 y/X/n for X = 1, 2.n — 1 

(sin-1 V(4« - l)/4 n for X = n 

Panel 
(5) 

Dependence of the variance of the sample correlation 
coefficient r and of the variance of the transformation 

z' = | log Q on the true correlation coefficient p 

for sample size n = 5 . (1) Variance of z' ; 
(2) Variance of r . 

Dependence of the variance of the sample correlation 
coefficient r and of the variance of the transformation 

z' = | log T^j on the true correlation coefficient p 

for sample size n = 11 . (1) Variance of z' ; 
(2) Variance of r . 

Figure 20-2. Variance-stabilizing effect of some frequently used transformations. 
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The logarithmic transformation log s2 is “variance-stabilizing” for all values of n, since the 
variance of log s2 is functionally independent of its mean for all values of n ; and, as is evident from 

2 
panel 2 of Figure 20-2, the variance pf log s- is close to its limiting value --^ for all values of 

n > 5, say. For further details on this transformation, see Bartlett and Kendall.0” 

The other four transformations depicted in Figure 20-2 are variance-stabilizing (to a good 
approximation at least), only for favorable combinations of the parameters concerned. Thus, in 

the case of the Poisson distribution (panel 1), we see that the variance of y/X is independent of mx 
to a good approximation only for m > 10, say; but the variance of the more sophisticated trans¬ 

formation £ (y/X + y/X + 1), devised by Freeman and Tukey(,;% is nearly constant for n > 3, 
say. A table to facilitate the use of this transformation has been published by Mosteller et al(11 ■ 12). 
Similarly, for the binomial distribution: from panel 3 we see that when n = 10, the variance of 

arcsin y/X/n is no more stable as p ranges from 0 to 1, than is the variance of X/n itself; but 
with Bartlett’s modifications^■ 041 for X = 0 and X = 1, the variance is essentially constant 

(at from p = 0.25 to p = 0.75. On the other hand, when n = 20 (panel 4), the variance 

of the unmodified transformation is nearly constant from p = 0.25 to p = 0.75, so that the un¬ 
modified transformation is quite adequate for this range of p. However, by adopting Bartlett’s 

modifications, the range of variance constancy (at can be extended to p = 0.12 and 

p = 0.88. When n — 30, the unmodified transformation is adequate from p = 0.18 to p = 0.82, 

and with Bartlett’s modifications, nearly constant variance (at is achieved from p = 0.08 

1 + r 
to p = 0.92. Finally, panels 5 and 6 show the variance-stabilizing power of the log ^ trans¬ 

formation of the correlation coefficient r, due to Fisher,05' for n = 5 and n = 10. 

Figure 20-2 and the foregoing discussion serve to bring out a very important feature of variance- 
stabilizing transformations: over any range of favorable circumstances for which a particular 
variance-stabilizing transformation Y has an essentially constant and known variance a\, we also 
have, in addition to the advantages of variance constancy, all of the attendant advantages of 
‘Vknown” techniques. However, in practice, before proceeding on the assumption that <r>- has a 
particular theoretical value, we should always evaluate an estimate of <r2, say s2, from the data 
on hand, and check to see whether sf- is consistent with the presumed theoretical value of a'f-. If 
it is, then ‘V-known” techniques should be used in the interest of greater efficiency. On the other 
hand, if the magnitude of s2 indicates that the effective value of a\ is substantially greater than 
its theoretical value, then “cr-unknown” techniques, based on Sr, must be used. In such cases} 
the excess of s \ over the theoretical value of a \ indicates the amount of additional variation present 
in the data, which, in principle at least, could be eliminated in future experiments of the same 
kind by improved experiment design and measurement-error control. 
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20-4 LINEARITY, ADDITIVITY, AND ASSOCIATED TRANSFORMATIONS 

20-4.1 DEFINITION AND IMPORTANCE OF LINEARITY AND ADDITIVITY 

Experimental data are much easier to interpret when the effects of the variables concerned are 
linear and additive. 

When only a single independent variable x is involved, then linearity of the phenomena under 
investigation means that the response y corresponding to input x can be expressed in the form 

V = 0o + fax (20-3) 

when x and y are expressed on appropriate scales. Equation (20-3) is the equation of a straight 
line in the x, ?/-plane. The analysis and interpretation of such linear relationships derived from 
experimental data are considered in detail in Chapter 5. 

In the case of two independent or input variables, say x and z, if the dependence of the response y 
on these two variables is of the form 

y = 0O + 0iX + jSsz + P&z 

= (j80 + 02z) + (0i + 0;1z)x (20-4) 
= (00 + 01X) + (02 + 03x)z 

then clearly the response y depends linearly on x for fixed values of z, and linearly on z for fixed 
values of x; but the effect of changes in x and z will be additive if and only if the cross product 
term is missing (i.e., 0:) = 0). Only in this case will a given change in x, say 5x, produce the same 
change in y regardless of the value of z, and a given change in z, say 5z, produce the same change 
in y regardless of the value of x ; and hence together produce the same total change in y, irrespective 
of the “starting values” of x and z. In other words, for linearity and additivity in the case of two 
independent variables, the response surface must be of the form 

y = 0o + 0xX + 02z (20-5) 

which is the equation of a plane in the three-dimensional x, z, t/-space. 

Similar remarks extend to the case of three or more independent variables, in which case for 
linearity and additivity the response surface must be of the form 

y = 0U + 0,x + 02z + 0,tt + 04r + 05w + . . . (20-6) 

which is the equation of a hyperplane in the (x, z, u, v, w, . . . , y)-space. 

When, as in equation (20-4), the cross-product term 03xz is present, the effect of a given change 
in x, say 8x, will depend upon the corresponding value of z; the effect of a given change in z, 
say 8z, will depend upon the corresponding value of x ; and the joint effect of 8x and 8z will depend 
on the “starting values” of x and z. In such cases, we say that there is an interaction between the 
factors x and z with respect to their effect on the response y. Hence, in the contrary case, when 
the changes in y resulting from changes in the two variables x and z are additive, it is customary 
to say that there is no interaction between x and z with respect to their effect on the response y. 

Many of the standard techniques of statistical analysis, especially analysis-of-variance tech¬ 
niques, depend explicitly on linearity and additivity of the phenomenon under investigation. Thus, 
the usual analysis of randomized-block experiments (Paragraph 13-3.2) is based on the assumption 
that the response y;j of the ith treatment in the /th block can be expressed in the form 

Vu — <Pi + 0;> (20-7) 

where serves to characterize the expected response of the ith. treatment, and may be regarded 
as the average response of the ith. treatment over all of the blocks of the experiment; and 0; charac¬ 
terizes the effect of the /th block, and is the amount by which the response in the /th block of any 
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one of the treatments may be expected to differ from its average response over all blocks. Similarly, 
in the analysis of Latin-square experiments (Paragraph 13-5.2.1), it usually is assumed that yijm, 
the response of the itYi treatment under conditions corresponding to the yth row and the rath column, 

can be represented in the form 

Vijm = <Pi + Pi + «m, (20-8) 

where, as before, <p.; serves to characterize the ith treatment, and may be regarded as the expected 
response for the ith treatment averaged over all combinations of conditions (corresponding to the 
rows and columns) included in the experiment; p, serves to characterize the yth row, and may be 
regarded as the amount by which the response of any one of the treatments may be expected to 
differ under the conditions of the yth row from its response averaged over all of the experiment; 
and Km serves to characterize the rath column, and may be regarded as the amount by which the 
response of any treatment may be expected to differ under the conditions of the rath column from 
its response averaged over the entire experiment. 

In the case of factorial-type experiments involving many factors (Chapter 12), complete addi¬ 
tivity as defined by equation (20-6) is rarely realistic. However, if internal estimates of experimental 
error are to be obtainable from the experimental data in hand (Paragraph 12-1.2.1), then at least 
some of the higher-order interaction terms, involving, say, three or more factors (e.g., terms in 
xzw, xzu, . . . ; xzwu, . . . ; xzwuv, . . .) must either be absent or at least of negligible magnitude 
in comparison to a, the actual standard deviation of the measurements involved. 

Thus the importance of additivity in the analysis and interpretation of randomized-block, Latin- 
square, and other multi-factor experiments is seen to be twofold: first, only when the effects of 
treatments and blocks, or treatments and rows and columns, etc., are strictly additive can we use 
a single number <p, to represent the effect of the ith treatment under the range of conditions included 
in the experiment; and second, only when strict additivity prevails will the residual deviations of 
the observed responses Y from response surfaces of the form of equation (20-5), (20-6), (20-7), or 
(20-8), provide unbiased estimates s2 of the actual experimental-error variance <r2 associated with 
the experimental setup concerned. In the absence of strict additivity, for example, when “inter¬ 
action” cross-product terms (<p/3)need to be added to equation (20-7), the actual effect of the ith 
treatment will depend upon the conditions corresponding to the particular block concerned, being 

<Pi + (<pP)ii for the first block, <p; -f for the second block, etc. Furthermore, if the experi¬ 
mental data are analyzed on the supposition that equation (20-7) holds, whereas the cross-product 
terms actually are necessary to describe the situation accurately, then the resulting residual sum 
of squares will contain a component due to the sum of the squares of the interaction terms 
(<p(3) ;i. Consequently, the resulting variance estimates s2 will tend to exceed the true experimental- 
error variance a'1, to reduce the apparent “significance” of experimental estimates of the actual 
treatment effects <p,-, and to yield unnecessarily wide confidence interval estimates for the tp!f and 
for differences between them. Worse, the customary distribution theory will no longer be strictly 
applicable, so that the resulting tests for significance and confidence interval estimates will, at best, 
be only approximately valid. 

Therefore, it is highly desirable that the effects of treatments and other factors involved in a 
complex experiment, if not additive, at least have negligible interactions, in the sense that the 
corresponding terms needed to depict the situation accurately be individually and collectively 
negligible in comparison with the corresponding main effects |<p,-, j3j, etc.) and also with respect 
to the true experimental-error variance a-. 
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20-4.2 TRANSFORMATION OF DATA TO ACHIEVE LINEARITY AND ADDITIVITY 

It should be noted that in connection with the linear relationship in equation (20-3) we added a 
qualifying phrase “when x and y are expressed on appropriate scales.” This qualification was 
added because, if a response y depends non-linearly on the corresponding input x and the form of 
this non-linear relationship is known, then sometimes it is possible to make a transformation of one 
or both of the variables so that the relationship between the transformed variables y' and x' is of 
the form of equation (20-3) with y' in place of y and x' in place of x. A number of such linearizing 
transformations are considered in Paragraph 5-4.4, and are summarized in Table 5-4. 

The art of transformation of data to achieve additivity is far less well developed than are the arts 
of transformation to achieve normality, constancy of variance, and linearity. The only situation 
that comes to mind for which the exact transformation needed to achieve additivity is obvious, 
is the case where, say, treatment, row, and column effects are multiplicative in the original units, 
so that instead of equation (20-8) we have 

y ,jm = <p;PjKm . (20-9) 

On taking logarithms this becomes 

log y Um = log <pi -f log pj + log k,„ , (20-10) 

which clearly is of the form given in equation (20-8) in terms of the variables 

y'ijm = log yijm, = log ip;, p'j = log Pi, and Km = log 

Fortunately, it often happens that a transformation chosen for the purpose of achieving con¬ 
stancy of variance also improves the situation to some extent with respect to linearity and addi¬ 
tivity. But, this will not always be the case. In some situations, if we can find a transformation 

that improves linearity or additivity we may choose to forego the advantages of constancy of 
variance. Such is the case, for example, when we adopt the probit transformation (Chapter 10) 
in order to achieve linearity, with the consequent necessity of performing weighted analyses of the 

transformed data to allow for non-constancy of variance. In other cases, variance constancy may 
be so advantageous that we are willing to proceed on the assumption that additivity also is achieved 
by the transformation to stabilize variance — a situation explored by Cochran(llil for the cases of 

binomial or Poisson-distributed data. 

20-5 CONCLUDING REMARKS 

One important characteristic of all of the transformations given in Table 20-1 is that they all 
are order preserving: the relative rank order (with respect to magnitude) of the original individual 
measurements Xu X>, ... is strictly preserved in their transforms Yi = f (X{), Y-> = f (X>) . . . . 
Consequently, the relative rank order of subgroup means X{U, XrJ), . . . of the original measure¬ 
ments will usually — but not necessarily* — be preserved in the corresponding subgroup means 

?r,,, ... evaluated from the transformed data. When these subgroup means on the T-scale 
are transformed back to the X-scale by the inverse transformation X = g (Y), their transforms 
X',i, = g (?{V), X',o) = g (Yn,), . . . will always be in the same relative rank order as the subgroup 

* For example, let the original data consist of the following two groups of two observations each: 1, 10 and 5,5. 
Then, .V, = 5.5 , X'. = 5 , and .V, > A'-j. If now we change to Y = log,,, X, the data become 0 , 1 and 0.699 , 0.699 

so that Pi = 0.5, Y-. = 0.699 , and F, < Y<. 
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means Y,u , Y(2), ... on the Y-scale; and hence, usually — but not always — in the same relative 
rank order as the original subgroup means X(I), X(2), ... on the X-scale. In other words, by 
using one of these transformations, we ordinarily will not seriously distort the relative magnitudes 
of treatment effects, of block effects, etc. 

The “transformed-back” subgroup means X\u, X'(2), . . . , will, of course, not have the same 
meaning as the “straight-forward” subgroup means X(1), X(2), .... Thus, in the case of the 
logarithmic transformation y = log X, if the subgroup means Y(1), Y(2), ... on the transformed 
scale (Y) are arithmetic means of the corresponding Y values, then the “transformed-back” sub¬ 
group means X\d = anti-log YU), X\2) = anti-log Y(2), ... , are estimates, not of the corre¬ 
sponding population arithmetic means ^(U, m2), . . . , but rather of the corresponding population 
geometric means yn), y(2), . . . . On the other hand, if instead of considering subgroup means, we 
were to consider subgroup medians X(1), X(2), . . . , then the corresponding subgroup medians 
Y(d , Y(2), . . . , on the Y-scale will always be in the same relative rank order as the original sub¬ 
group medians on the X-scale; and the “transformed-back” subgroup medians X'w = g (Y(U), 
X\o) = g (Y(2)), . . . , will be identically equal to the original subgroup medians Xw, X(2), . . . . 
Consequently, if there is some danger of distortion through the use of a transformation to achieve 
normality, constancy of variance, linearity, or additivity, then consideration should be given to: 

(a) whether, for the technical purposes at issue, discussion might not be equally or perhaps even 
more conveniently conducted in terms of the transformed values Y, thus obviating the necessity 
of transforming back to the original X-scale; or, 

(b) whether, for purposes of discussion, population medians rather than population means 
might well be equally or perhaps more meaningful. 

In this connection, it must be pointed out that confidence limits for means, differences between 
means (medians, differences between medians) etc., evaluated in terms of the transformed values Y 
can be “transformed back” directly into confidence limits for the corresponding magnitudes* on 
the original AT-scale. On the other hand, estimated standard errors of means (medians), differences 
between means (differences between medians), etc., evaluated on the transformed scale Y cannot 
be “transformed-back” directly into standard errors of the corresponding “transformed-back” 
magnitudes on the original scale X. Hence, if standard errors of final results are to be given as a 
way of indicating their respective imprecisions, such standard errors must be evaluated for, and 
stated as being applicable only to, final results expressed on the transformed scale Y. 

As so eloquently remarked by Acton07- »■> 22'1’^S): 

“These three reasons for transforming . . . [i.e., to achieve normality, constancy of variance, or additivity] have no 
obvious mathematical compulsion to be compatible; a transformation to introduce additivity might well throw out 
normality and mess up the constancy of variance beyond all recognition. Usually, the pleasant cloak of obscurity 
hides knowledge of all but one property from us — and so we cheerfully transform to vouchsafe unto ourselves this 
one desirable property while carefully refraining from other considerations about which query is futile. But there 
is a brighter side to this picture. The gods who favor statisticians have frequently ordained that the world be well 
behaved, and so we often find that a transformation to obtain one of these desiderata in fact achieves them all (well, 
almost achieves them!).” 

Nevertheless, the following sobering advice from Tippettos- »>> should not go unheeded: — 

“If a transformed variate [#], having convenient statistical properties, can be substituted for x in the technical argu¬ 
ments from the results and in their applications, there is everything to be said for making the transformation. But 
otherwise the situation can become obscure. Suppose, for example, that there is an interaction between treatments 
and looms when the measure is warp breakage rate and that the interaction disappears for the logarithm of the warp 
breakage rate. It requires some clear thinking to decide what this signifies technically; and the situation becomes 
somewhat obscure when, as so often happens, the effects are not overwhelmingly significant, and it is remembered that 
a verdict ‘no significant interaction’ is not equivalent to ‘no interaction.’ If the technical interpretation has to be in 
terms of the untransformed variate x, and after the statistical analysis has been performed on [y\, means and so on 
have to be converted back to x, statistical difficulties arise and the waters deepen. Readers are advised not to make 
transformations on statistical grounds alone unless they are good swimmers and have experience of the currents.” 

* E.g., for geometric means on the .Y-scale, if the transformation involved is Y = log X and arithmetic means are 
employed on the Y-scale. 
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CHAPTER 21 

THE RELATION BETWEEN CONFIDENCE INTERVALS 

AND TESTS OF SIGNIFICANCE* 

21-1 INTRODUCTION 

Several chapters in this Handbook are con¬ 
cerned with statistical tests of significance — 
see, for example, ORDP 20-110, Chapters 3 and 
4. In Paragraph 3-2.1.1, the problem is that 

of deciding whether the average of a new 
product differs from the known or specified 
average mn of the standard product. The test 
procedure involves computing a quantity u and 
comparing u with the difference between the ob¬ 
served average X and the standard average mn. 
This comparison is the test of significance. A 
further step in the procedure, however, notes 
that the interval X ± u is in fact a confidence 
interval estimate of the true mean of the new 
product. 

In ORDP 20-111, Chapter 8, the problem of 
comparing an observed proportion with a stand¬ 
ard proportion is done directly in terms of the 
confidence interval for the observed proportion, 
completely omitting the test-of-significance step 
given in Chapter 3 for comparisons involving 
quantitative data. Tables and charts that give 
confidence intervals for an observed proportion 
are used, and we “test” whether the observed 
proportion differs from the standard by noting 
whether or not the standard proportion is in¬ 
cluded in the appropriate interval. 

Many statistical consultants, when analyzing 
an experiment for the purpose of testing a 
statistical hypothesis, e.g., when comparing 
means of normal populations, find that they 
prefer to present results in terms of the appro¬ 
priate confidence interval. 

It must be noted of course that not every 
statistical test can be put in the form of a con¬ 
fidence interval. In general, tests that are 
direct tests of the value of a parameter of the 
parent population can be expressed in terms of 

confidence intervals. 

When the results of a statistical test can 
alternatively be stated in terms of a confidence 
interval for a parameter, why would we prefer 
the confidence interval statement? Some au¬ 
thorities have stressed the point that experi¬ 
menters are not typically engaged in disproving 
things, but are looking for evidence for affirma¬ 
tive conclusions; after rejecting the null hypoth¬ 
esis, the experimenter will look for a reasonable 
hypothesis to accept. The relation between 
confidence intervals and tests of significance is 
mentioned only briefly in most textbooks, and 
ordinarily no insight is given as to which con¬ 
clusion might be more appropriate. (A notable 
exception is Wallis and Roberts01.) 

* Adapted with permission from The American Statistician, Vol. 14, No. 1, 1960, from article entitled “The Relation Between Confidence 
Intervals and Tests of Significance — A Teaching Aid” by Mary G. Natrella. 
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21-2 A PROBLEM IN COMPARING AVERAGES 

In this Chapter, we review both procedures 
with reference to a numerical example, which 
was given in Paragraph 3-2.1.1. 

For a certain type of shell, specifications state 
that the amount of powder should average 0.735 
lb. In order to determine whether the average 
for the present stock meets the specification, 
twenty shells are taken at random and the 
weight of powder is determined. The sample 
average X is 0.710 lb. The estimated standard 
deviation s is 0.0504 lb. The question to be 

answered is whether or not the average of 
present stock differs from the specification 
value. In order to use a two-sided test of sig¬ 
nificance at the (1 — a) probability level, we 
compute a critical value, to be called u. Let 

t*s 

U ~ Vn 

where t* is the positive number exceeded by 

100 % of the ^-distribution with n — 1 

degrees of freedom. (See Table A-4.) 

In the above example with a = .05, t* 
equals 2.09 and u equals 0.0236 lb. The test of 
significance says that if |X — 0.7351 > u, we 
decide that the average for present stock differs 

from the specified average. Since 

i 0.710 - 0.735| > 0.0236, 

we decide that there is a difference. 

From the same data, we also can compute a 
95% confidence interval for the average of 
present stock. This confidence interval is 
X =b u = 0.710 ± 0.0236, or the interval from 
0.686 to 0.734 lb. The confidence interval can 
be used for a test of significance; since it does 
NOT include the standard value 0.735, we con¬ 
clude that the average for the present stock 

DOES differ from the standard. 

Comparisons of two materials (see Paragraph 
3-3.1.1 for the case of both means unknown and 
equal variances) may be made similarly. In 
computing a test of significance, we compare the 
difference between sample means, \XA — XK\, 
with a computed critical quantity, again called 
u. If [ XA — Xu | is larger than u, we declare 
that the means differ significantly at the chosen 
level. We also note that the interval 

(W.t — Xu) =b u 

is a confidence interval for the difference be¬ 
tween the true means (mA — mH); if the com¬ 
puted interval does not include zero, we conclude 
from the experiment that the two materials 

differ in mean value. 

21-3 TWO WAYS OF PRESENTING THE RESULTS 

Here then are two ways to answer the original 
question. We may present the result of a test 
of significance, or we may present a confidence 

interval. The significance test is a go no-go 
decision. We compute a critical value u, and 
we compare it with an observed difference. If 
the observed difference exceeds u, we announce 
a significant difference; if it does not, we 
announce that there is NO difference. If we 

had no OC curve for the test, our decision 

would be a yes-no proposition with no shadow- 

land of indifference. The significance test may 

have said NO, but only the OC curve can 

qualify this by showing that this particular 

experiment had only a ghost of a chance of 

saying YES to this particular question. For 
example, see Figure 21-1. If the true value of 

d = I —-— I were equal to 0.5, a sample of 10 
I V I 

is not likely to detect a difference, but a sample 
of 100 is almost certain to detect such a 
difference. 

Using a rejection criterion alone is not the 
proper way to think of a significance test; we 
should always think of the associated OC curve 
as part and parcel of the test. Unfortunately, 
this has not always been the case. As a matter 
of fact, many experimenters who use signifi¬ 
cance tests are using them as though there were 
no such thing as an OC curve. 
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Figure 21-1. Reprint of Figure 3-1. OC curves for the two-sided t-test (a = .05). 

Adapted with permission from Annals of Mathematical Statistics, Vol. 17, No. 2, June 1946, pp. 178-197, from article entitled “Operating Charac¬ 
teristics for the Common Statistical Tests of Significance” by C. D. Ferris, F. E. Grubbs, and C. L. Weaver. 
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21-4 ADVANTAGES OF THE CONFIDENCE-INTERVAL APPROACH 

A confidence-interval procedure contains in¬ 
formation similar to the appropriate OC curve, 
and, at the same time, is intuitively more ap¬ 
pealing than the combination of a test of sig¬ 
nificance and its OC curve. If the standard 
value is contained in the confidence interval, we 
can announce NO difference. The width of the 
confidence interval gives a good idea of how firm 
is the Yes or No answer; however, there is a 
caution in this regard which is explained in the 
following paragraphs. 

Suppose that the standard value for some 
property is known to be 0.735, and that a 
100 (1 — a) % confidence interval for the same 
property of a possibly different material is de¬ 
termined to be the interval from 0.600 to 0.800. 
It is true that the standard value does lie within 
this interval, and that we would declare no 
difference. All that we really know about the 
new product, however, is that its mean probably 
is between 0.6 and 0.8. If a much more exten¬ 
sive experiment gave a 100 (1 — a) % confi¬ 
dence interval of 0.60 to 0.70 for the new mean, 
our previous decision of no difference would be 
reversed. 

On the other hand, if the computed confi¬ 
dence interval for the same confidence coeffi¬ 
cient had been 0.710 to 0.750, our answer would 
still have been no difference, but we would have 
said NO more loudly and firmly. The confi¬ 
dence interval not only gives a Yes or No 
answer, but, by its width, also gives an indica¬ 
tion of whether the answer should be whispered 
or shouted. 

This is certainly true when the width of the 
interval for a given confidence coefficient is a 
function only of n and the appropriate disper¬ 
sion parameter (e.g., known a). When the 
width itself is a random variable (e.g., is a fixed 

multiple of s, the estimate of a from the sample), 
we occasionally can be misled by unusually 
short or long intervals. But the average width 
of the entire family of intervals associated with 
a given confidence-interval procedure is a defi¬ 
nite function of the appropriate dispersion 
parameter, so that on the average the random 
widths do give similar information. For a 
graphical illustration of confidence intervals 
computed from 100 random samples of n = 4 
(actually random normal deviates), see Figure 
21-2. Despite the fluctuation in size and posi¬ 

tion of the individual intervals, a proportion of 
intervals which is remarkably close to the speci¬ 
fied proportion do include the known popula¬ 
tion average. If a were known rather than esti¬ 
mated from the individual sample, the intervals 
would fluctuate in position only, of course. 

The significance test gives the same answer, 
and a study of the OC curve of the test indicates 
how firm is the answer. If the test is dependent 
on the value of a, the OC curve has to be given 
in terms of the unknown a. In such a situa¬ 
tion, we must use an upper bound for a in order 
to interpret the OC curve, and again we may be 
misled by a poor choice of this upper bound. 
On the other hand, the width of the confidence 
interval is part and parcel of the information 
provided by that method. No a priori esti¬ 
mates need be made of a as would be necessary 
to interpret the OC curve. Furthermore, a 
great advantage of confidence intervals is that 
the width of the interval is in the same units as 
the parameter itself. The experimenter finds 
this information easy to grasp, and easy to com¬ 
pare with other information he may have. 

The most striking illustration of information 
provided by confidence intervals is shown in the 
charts of confidence limits for a binomial param¬ 
eter. In this case, the limits depend only on n 
and the parameter itself, and we cannot be mis¬ 
led in an individual sample. 
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Suppose that a new item is being tested for 

comparison with a standard. We observe two 

defectives in a sample of 10, and we estimate the 

proportion defective for the new item as 0.20. 

The 95% confidence interval given in Table 

A-22, corresponding to an observed proportion 

of 0.20 (n = 10), is 0.04 to 0.60. Assume that 

the known proportion defective for the standard 

Pu is 0.10. Our experiment with a sample of 10 

gives a confidence interval which includes P„; 

and, therefore, we announce no difference be¬ 

tween the new item and the standard in this 
regard. Intuitively, however, we feel that the 
interval 0.04 to 0.60 is so wide that our experi¬ 
ment was not very indicative. Suppose that 
we test 100 new items and observe 20 defectives. 
The observed proportion defective again is 0.20. 
The confidence interval from Table A-24 is 
0.13 to 0.29, and does not include Pn = 0.10. 
This time, we are forced to announce that the 
new item is different from the standard; and the 
narrower width of the confidence interval (0.13 
to 0.29) gives us some confidence in doing so. 
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CASE A,50% CONFIDENCE INTERVALS 

Figure 21-2. Reprint of Figure 1-8. Computed confidence intervals for 100 samples of size k 
drawn at random from a normal population with m = 50,000 psi, a = 5,000 psi. 

Case A shows 50% confidence intervals; Case B shows 90% confidence intervals. 

Adapted with permission from ASTM Manual of Quality Control of Materials, Copyright, 1951, American Society for Testing Materials. 
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21-5 DEDUCTIONS FROM THE OPERATING CHARACTERISTIC (OC) CURVE 

The foregoing paragraphs have shown that it 
is possible to have some notion of the discrimin¬ 
atory power of the test from the size of confi¬ 
dence intervals. Is it also possible, in reverse, 
to deduce from the OC curve what kind of con¬ 
fidence interval we would get for the new mean? 
Although we cannot deduce the exact width of 
the confidence interval, we can infer the order of 
magnitude. Suppose that: we have measured 
100 items; we have performed a two-sided t-test 
(does the average m differ from m„T); and we 
have obtained a significant result. Look at the 
curve for n = 100 in Figure 21-1, which plots 
the probability of accepting Hu (the null hy¬ 

pothesis) against d = I —-— . From the 
<T 

curve, we see that when d is larger than 0.4, the 
probability of accepting the null hypothesis is 
practically zero. Since our significance test did 
reject the null hypothesis, we may reasonably 

assume that our d = | m ^ m" | is larger than 

0.4, and may perhaps infer a bound for the true 
value of | m — Wo | — in other words, some 
“confidence interval” for m. 

On the other hand, suppose that only 10 
items were tested and a significant result was 
obtained. If we look at the curve for n = 10, 
we see that the value of d which is practically 
certain to be picked up on a significance test is 
d = 1.5 or larger. As expected, a significant 
result from an experiment which tested only 10 
items corresponds to a wider confidence inter¬ 
val for m than the interval inferred from the 
test of 100 items. A rough comparison of the 
relative widths may be made. More quantita¬ 
tive comparisons could be made, but the pur¬ 
pose here is to show a broad general relation¬ 
ship. 

21-6 RELATION TO THE PROBLEM OF DETERMINING SAMPLE SIZE 

The problem of finding the sample size re¬ 
quired to detect differences between means can 
be approached in two ways also. We can 
specify tolerable risks of making either kind of 
wrong decision (errors of the first or the second 
kind) — thereby fixing two points on the OC 
curve of the pertinent test. Matching these 

two points with computed curves for various n, 

enables us to pick the proper sample size for the 
experiment. 

Alternatively, we can specify the magnitude 
of difference between means which is of impor¬ 
tance. We then compute the sample size re¬ 
quired to give a confidence interval of fixed 
length equal to the specified difference. 

21-7 CONCLUSION 

Presentation of results in terms of confidence 
intervals can be more meaningful than is the 
presentation of the usual tests of significance (if 
the test result is not considered in connection 
with its OC curve). Things are rarely black or 
white; decisions are rarely made on one-shot 
tests, but usually in conjunction with other 

information. Confidence intervals give a feel¬ 
ing of the uncertainty of experimental evidence, 
and (very important) give it in the same units, 
metric or otherwise, as the original observa¬ 
tions. A recent development in statistical 
theory that stems from the intuitive preference 
for confidence intervals is given in Birnbaum(2). 
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CHAPTER 22 

NOTES ON STATISTICAL COMPUTATIONS 

22-1 CODING IN STATISTICAL COMPUTATIONS 

Coding is the term used when arithmetical 
operations are applied to the original data in 
order to make the numbers easier to handle in 

computation. The possible coding operations 
are: 

(a) Multiplication (or its inverse, division) to 

change the order of magnitude of the recorded 
numbers for computing purposes. 

(b) Addition (or its inverse, subtraction) of a 
constant — applied to recorded numbers which 
are nearly equal, to reduce the number of figures 
which need be carried in computation. 

When the recorded results contain non-signifi¬ 
cant zeros, (e.g., numbers like .000121 or like 
11,100), coding is clearly desirable. There ob¬ 
viously is no point in copying these zeros a large 
number of times, or in adding additional useless 
zeros when squaring, etc. Of course, these re¬ 
sults could have been given as 121 X 10-4 or 

11.1 X 103, in which case coding for order of 
magnitude would not be necessary. 

The purpose of coding is to save labor in 
computation. On the other hand, the process 
of coding and decoding the results introduces 
more opportunities for error in computation. 
The decision of whether to code or not must be 
considered carefully, weighing the advantage of 
saved labor against the disadvantage of more 
likely mistakes. With this in mind, the follow¬ 
ing five rules are given for coding and decoding. 

1. The whole set of observed results must be 
treated alike. 

2. The possible coding operations are the two 
general types of arithmetic operations: 

(a) addition (or subtraction); and, 
(b) multiplication (or division). Either 

(a) or (b), or both together, may be used as 
necessary to make the original numbers more 
tractable. 

3. Careful note must be kept of how the data 
have been coded. 

4. The desired computation is performed on 
the coded data. 

5. The process of decoding a computed re¬ 
sult depends on the computation that has been 

performed, and is indicated separately for 
several common computations, in the following 
Paragraphs (a) through (d). 

(a) The mean is affected by every coding 
operation. Therefore, we must apply the in¬ 
verse operation and reverse the order of opera¬ 
tions used in coding, to put the coded mean 
back into original units. For example, if the 
data have been coded by first multiplying by 
10,000 and then subtracting 120, decode the 
mean by adding 120 and then dividing by 
10,000. 

Observed Coded 
Results Results 

.0121 1 

.0130 10 

.0125 5 

Mean . 0125 Coded mean 5 

Decoding: Mean 
Coded mean + 120 

10,000 

125 
10,000 

= .0125 

(b) A standard deviation computed on 
coded data is affected by multiplication or divi¬ 
sion only. The standard deviation is a measure 
of dispersion, like the range, and is not affected 
by adding or subtracting a constant to the 

whole set of data. Therefore, if the data have 
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been coded by addition or subtraction only, no 
adjustment is needed in the computed standard 
deviation. If the coding has involved multi¬ 
plication (or division), the inverse operation 
must be applied to the computed standard 
deviation to bring it back to original units. 

(c) A variance computed on coded data 
must be: multiplied by the square of the coding 
factor, if division has been used in coding; or 
divided by the square of the coding factor, if 
multiplication was used in coding. 

(d) Coding which involves loss of significant 
figures: The kind of coding thus far discussed 
has involved no loss in significant figures. 
There is another method of handling data, how¬ 
ever, that involves both coding and rounding, 
and is also called “coding”. This operation is 
sometimes used when the original data are con¬ 
sidered to be too finely-recorded for the purpose. 

For example, suppose that the data consist of 
weights (in pounds) of shipments of some bulk 
material. If average weight is the character¬ 
istic of interest, and if the range of the data is 
large, we might decide to work with weights 

coded to the nearest hundred pounds, as follows: 

Observed Weights 
Units: lbs. 

Coded Data 
Units: 100 lbs. 

7,123 71 
10,056 101 

100,310 1003 
5,097 51 

543 5 

etc. etc. 

Whether or not the resulting average of the 
coded data gives us sufficient information will 
depend on the range of the data and the in¬ 
tended use of the result. It should be noted 
that this “coding” requires a higher order of 
judgment than the strictly arithmetical coding 

discussed in previous examples, because some 
loss of information does occur. The decision to 
“code” in this way should be made by someone 
who understands the source of the data and the 
intended use of the computations. The group¬ 
ing of data in a frequency distribution is coding 

of this kind. 

22-2 ROUNDING IN STATISTICAL COMPUTATIONS 

22-2.1 ROUNDING OF NUMBERS 

Rounded numbers are inherent in the process 
of reading and recording data. The readings of 
an experimenter are rounded numbers to start 
with, because all measuring equipment is of 
limited accuracy. Often he records results to 
even less accuracy than is attainable with the 
available equipment, simply because such re¬ 
sults are completely adequate for his immediate 
purpose. Computers often are required to 
round numbers — either to simplify the arith¬ 
metic calculations, or because it cannot be 
avoided, as when 3.1416 is used for w or 1.414 is 
used for \/2. 

When a number is to be rounded to a specific 
number of significant figures, the rounding 

procedure should be carried out in accordance 
with the following three rules. 

1. When the figure next beyond the last place 
to be retained is less than 5, the figure in the last 
place retained should be kept unchanged. 

For example, .044 is rounded to .04. 
2. When the figure next beyond the last fig¬ 

ure or place to be retained is greater than 5, the 
figure in the last place retained should be in¬ 
creased by 1. 

For example, .046 is rounded to .05. 
3. When the figure next beyond the last fig¬ 

ure to be retained is 5, and, 
(a) there are no figures or are only zeros 

beyond this 5, an odd figure in the last place to 
be retained should be increased by 1, an even 
figure should be kept unchanged. 
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For example, .045 or .0450 is rounded to 
.04; .055 or .0550 is rounded to .06. 

(b) if the 5 is followed by any figures other 
than zero, the figure in the last place to be 
retained should be increased by 1, whether odd 
or even. 

For example, in rounding to two deci¬ 
mals, .0451 is rounded to .05. 

A number should always be rounded off in one 
step to the number of figures that are to be 
recorded, and should not be rounded in two or 

more steps of successive roundings. 

22-2.2 ROUNDING THE RESULTS OF SINGLE 

ARITHMETIC OPERATIONS 

Nearly all numerical calculations arising in 
the problems of everyday life are in some way 
approximate. The aim of the computer should 
be to obtain results consistent with the data, 
with a minimum of labor. We can be guided in 
the various arithmetical operations by some 
basic rules regarding significant figures and the 

rounding of data: 

1. Addition. When several approximate num¬ 
bers are to be added, the sum should be rounded 
to the number of decimal places (not significant 

figures) no greater than in the addend which 
has the smallest number of decimal places. 

Although the result is determined by 
the least accurate of the numbers en¬ 
tering the operation, one more decimal 
place in the more-accurate numbers 
should be retained, thus eliminating 
inherent errors in the numbers. 

For example: 

4.01 
.002 
.623 

4.635 

The sum should be rounded to and recorded 
as 4.64. 

2. Subtraction. When one approximate num¬ 
ber is to be subtracted from another, they must 

both be rounded off to the same place before 
subtracting. 

Errors arising from the subtraction of 
nearly-equal approximate numbers are 
frequent and troublesome, often mak¬ 
ing the computation practically worth¬ 
less. Such errors can be avoided when 

the two nearly-equal numbers can be 
approximated to more significant 
digits. 

3. Multiplication. If the less-accurate of two 
approximate numbers contains n significant 
digits, their product can be relied upon for n 
digits at most, and should not be written with 
more. 

As a practical working plan, carry in¬ 
termediate computations out in full, 
and round off the final result in ac¬ 
cordance with this rule. 

4. Division. If the less-accurate of either the 
dividend or the divisor contains n significant 
digits, their quotient can be relied upon for n 
digits at most, and should not be written with 
more. 

Carry intermediate computations out 
in full, and round off the final result in 
accordance with this rule. 

5. Powers and Roots. If an approximate num¬ 
ber contains n significant digits, its power can be 
relied upon for n digits at most; its root can be 
relied upon for at least n digits. 

6. Logarithms. If the mantissa of the loga¬ 
rithm in an w-place log table is not in error by 
more than two units in the last significant 
figure, the antilog is correct to n — 1 significant 
figures. 

The foregoing statements are working rules 
only. More complete explanations of the 
rules, together with procedures for determining 
explicit bounds to the accuracy of particular 
computations, are given in Scarborough"', and 
the effects of rounding on statistical analyses of 
large numbers of observations are discussed in 
Eisenhart(-’. 
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22-2.3 ROUNDING THE RESULTS OF A SERIES 
OF ARITHMETIC OPERATIONS 

Most engineers and physical scientists are 
well acquainted with the rules for reporting a 
result to the proper number of significant fig¬ 
ures. From a computational point of view, 
they know these rules too well. It is perfectly 
true, for example, that a product of two num¬ 
bers should be reported to the same number of 
significant figures as the least-accurate of the 
two numbers. It is not so true that the two 
numbers should be rounded to the same num¬ 
ber of significant figures before multiplication. 
A better rule is to round the more-accurate 
number to one more figure than the less-accu¬ 
rate number, and then to round the product to 
the same number of figures as the less-accurate 
one. The great emphasis against reporting 
more figures than are reliable has led to a 
prejudice against carrying enough figures in 
computation. 

Assuming that the reader is familiar with the 
rules of the preceding Paragraph 22-2.2, regard¬ 
ing significant figures in a single arithmetical 
operation, the following paragraphs will stress 
the less well-known difficulties which arise in a 
computation consisting of a long series of dif¬ 
ferent arithmetic operations. In such a com¬ 
putation, strict adherence to the rules at each 
stage can wipe out all meaning from the final 
results. 

For example, in computing the slope of a 
straight line fitted to observations containing 
three significant figures, we would not report 
the slope to seven significant figures; but, if we 
round to three significant figures after each 
necessary step in the computation, we might 
end up with no significant figures in the value 
of the slope. 

It is easily demonstrated by carrying out a 
few computations of this nature that there is 
real danger of losing all significance by too- 

strict adherence to rules devised for use at the 
final stage. The greatest trouble of this kind 
comes where we must subtract two nearly- 
equal numbers, and many statistical computa¬ 
tions involve such subtractions. 

The rules generally given for rounding-off, 
were given in a period when the average was the 
only property of interest in a set of data. 
Reasonable rounding does little damage to the 
average. Now, however, we almost always cal¬ 
culate the standard deviation, and this statistic 
does suffer from too-strict rounding. Suppose 

we have a set of numbers: 

3.1 
3.2 
3.3 

Avg. = 3.2 

If the three numbers are rounded off to one sig¬ 
nificant figure, they are all identical. The 
average of the rounded figures is the same as the 
rounded average of the original figures, but all 
information about the variation in the original 
numbers is lost by such rounding. 

The generally recommended procedure is to 
carry two or three extra figures throughout the 
computation, and then to round off the final 
reported answer (e.g., standard deviation, slope 
of a line, etc.) to a number of significant figures 
consistent with the original data. However, in 
some special computations such as the fitting of 
equations by least squares methods given in 
ORDP 20-110, Chapters 5 and 6, one should 
carry extra decimals in the intermediate steps 
— decimals sufficiently in excess of the number 
considered significant to insure that the com¬ 
putational errors in the final solutions are 
negligible in relation to their statistical impreci¬ 
sion as measured by their standard errors. For 
example, on a hand-operated computing ma¬ 
chine, use its total capacity and trim the figures 
off as required in the final results. (See 
Chapter 23.) 
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CHAPTER 23 

EXPRESSION OF THE UNCERTAINTIES OF FINAL RESULTS 

23-1 INTRODUCTION 

Measurement of some property of a thing in 
practice always takes the form of a sequence of 
steps or operations that yield as an end result a 
number that serves to represent the amount or 
quantity of some particular property of a 
thing — a number that indicates how much of 
this property the thing has, for someone to use 
for a specific purpose. The end result may be 
the outcome of a single reading of an instru¬ 
ment, with or without corrections for departures 
from prescribed conditions. More often, it is 
some kind of average; e.g., the arithmetic mean 
of a number of independent determinations of 
the same magnitude, or the final result of a least 
squares “reduction” of measurements of a num¬ 
ber of different magnitudes that bear known 

relations with each other in accordance with a 
definite experimental plan. In general, the 
purpose for which the answer is needed deter¬ 
mines the precision or accuracy of measurement 
required, and ordinarily also determines the 
method of measurement employed. 

Although the accuracy required of a reported 
value depends primarily on the use, or uses, for 
which it is intended, we should not ignore the 
requirements of other uses to which the re¬ 
ported value is likely to be put. A certified or 
reported value whose accuracy is entirely un¬ 
known is worthless. 

Strictly speaking, the actual error of a re¬ 

ported value, that is, the magnitude and sign of 
its deviation from the truth, is usually un¬ 
knowable. Limits to this error, however, can 

usually be inferred — with some risk of being 
incorrect — from the precision of the measure¬ 
ment process by which the reported value was 
obtained, and from reasonable limits to the pos¬ 
sible bias of the measurement process. The 
bias, or systematic error, of a measurement proc¬ 

ess is the magnitude and direction of its tend¬ 
ency to measure something other than what was 
intended; its precision refers to the typical 
closeness together of successive independent 
measurements of a single magnitude generated 
by repeated applications of the process under 
specified conditions; and, its accuracy is deter¬ 
mined by the closeness to the true value charac¬ 
teristic of such measurements. 

Precision and accuracy are inherent charac¬ 
teristics of the measurement process employed, 
and not of the particular end result obtained. 
From experience with a particular measurement 
process and knowledge of its sensitivity to un¬ 
controlled factors, we can often place reasonable 
bounds on its likely systematic error (bias). It 
also is necessary to know how well the particular 
value in hand is likely to agree with other values 
that the same measurement process might have 
provided in this instance, or might yield on re¬ 
measurement of the same magnitude on another 
occasion. Such information is provided by the 
standard error of the reported value, which 
measures the characteristic disagreement of re¬ 

peated determinations of the same quantity by 
the same method, and thus serves to indicate 
the precision (strictly, the imprecision) of the 
reported value. 

The uncertainty of a reported value is indi¬ 
cated by giving credible limits to its likely inac¬ 
curacy. No single form of expression for these 
limits is universally satisfactory. In fact, dif¬ 
ferent forms of expression are recommended, the 
choice of which will depend on the relative 
magnitudes of the imprecision and likely bias; 
and on their relative importance in relation to 
the intended use of the reported value, as well as 
to other possible uses to which it may be put. 
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Four distinct cases need to be recognized: 

1. Both systematic error and imprecision 
negligible in relation to the requirements of the 
intended and likely uses of the result. 

2. Systematic error not negligible, but im¬ 
precision negligible, in relation to the require¬ 
ments. 

3. Neither systematic error nor imprecision 
negligible in relation to the requirements. 

4. Systematic error negligible, but impreci¬ 
sion not negligible in relation to the require¬ 

ments. 

Specific recommendations are made below 
with respect to each of these four cases, sup¬ 
plemented by further discussion of each case in 
Paragraphs 23-2 through 23-5. These recom¬ 
mendations may be summarized as follows: 

(a) Two numerics, respectively expressing 
the imprecision and bounds to the systematic 
error of the result, should be used whenever: 
(1) the margin is narrow between ability to 
measure and the accuracy or precision require¬ 

ments of the situation; or, (2) the imprecision 

and the bounds to the systematic error are 
nearly equal in indicating possible differences 
from the true value. Such instances come under 

Case 3. 
(b) A quasi-absolute type of statement with 

one numeric, placing bounds on the inaccuracy 
of the result, should be used whenever: (1) a 
wide or adequate margin exists between ability 
to measure and the accuracy requirements of 
the situation (Case 1); (2) the imprecision is 
negligibly small in comparison with the bounds 
placed on the systematic error (Case 2); or, 
(3) the control is so satisfactory that the extent 
of error is known. 

(c) A single numeric expressing the impreci¬ 
sion of the result should be used whenever the 
systematic error is either zero by definition or 
negligibly small in comparison with the impreci¬ 
sion (Case 4). 

(d) Expressions of uncertainty should be 
given in sentence form whenever feasible. 

(e) The form “a ± b” should be avoided as 
much as possible; and never used without ex¬ 
plicit explanation of its connotation. 

23-2 SYSTEMATIC ERROR AND IMPRECISION BOTH NEGLIGIBLE 
(CASE 1) 

In this case, the certified or reported result 
should be given correct to the number of sig¬ 
nificant figures consistent with the accuracy 
requirements of the situation, together with an 
explicit statement of its accuracy or correctness. 

For example: 
. . . the wavelengths of the principal visible 
lines of mercury 198 have been measured 

relative to the 6057.802106 A (Angstrom 
units) line of krypton 98, and their values 
in vacuum are certified to be 

5792.2685 A 
5771.1984 A 

5462.2706 A 
4359.5625 A 
4047.7146 A 

correct to eight significant figures. 

It must be emphasized that when no state¬ 
ment of accuracy or precision accompanies a 
certified or reported number, then, in accord¬ 
ance with the usual conventions governing 
rounding, this number will be interpreted as 
being accurate within ±1 unit in the last sig¬ 
nificant figure given; i.e., it will be understood 
that its inaccuracy before rounding was less 
than ±5 units in the next place. 

23-2 



SYSTEMATIC ERROR AND IMPRECISION ORDP 20-113 

23-3 SYSTEMATIC ERROR NOT NEGLIGIBLE, IMPRECISION NEGLIGIBLE 

(CASE 2) 

In such cases: 

(a) Qualification of a certified or reported 
result should be limited to a single quasi¬ 
absolute type of statement that places bounds 
on its inaccuracy; 

(b) These bounds should be stated to no 
more than two significant figures; 

(c) The certified or reported result itself 
should be given (i.e., rounded) to the last place 
affected by the stated bounds, unless it is de¬ 
sired to indicate and preserve such relative 
accuracy or precision of a higher order that the 
result may possess for certain particular uses; 

(d) Accuracy statements should be given 
in sentence form in all cases, except when a 
number of results of different accuracies are pre¬ 
sented, e.g., in tabular arrangement. If it is 
necessary or desirable to indicate the respective 
accuracies of a number of results, the results 

should be given in the form a ± 6 (or a ^ , if 

necessary) with an appropriate explanatory 
remark (as a footnote to the table, or incor¬ 
porated in the accompanying text) to the effect 

that the ± 6, or + ^, signify bounds to the 

errors to which the a’s may be subject. 

The particular form of the quasi-absolute 
type of statement employed in a given instance 
ordinarily will depend upon personal taste, 
experience, current and past practice in the 
field of activity concerned, and so forth. Some 

examples of good practice are: 
... is (are) not in error by more than 1 part 

in ( x ). 
... is (are) accurate within ± (x units) (or 

±C x)%). 
... is (are) believed accurate within 

(.)• 

Positive wording, as in the first two of these 
quasi-absolute statements, is appropriate only 
when the stated bounds to the possible inac¬ 
curacy of the certified or reported value are 

themselves reliably established. On the other 
hand, when the indicated bounds are somewhat 
conjectural, it is desirable to signify this fact 
(and thus put the reader on guard) by inclusion 
of some modifying expression such as “be¬ 
lieved”, “considered”, “estimated to be”, 
“thought to be”, and so forth, as exemplified by 
the third of the foregoing examples. 

Results should never be presented in the form 
“a ± 6”, without explanation. If no explana¬ 
tion is given, many persons will automatically 

take ±6 to signify bounds to the inaccuracy of 
a. Others may assume that b is the standard 
error or the probable error of a, and hence that 
the uncertainty of a is at least ±36, or ±46, 

respectively. Still others may take 6 to be an 
indication merely of the imprecision of the in¬ 

dividual measurements; that is, to be the 
standard deviation, the average deviation, or the 
probable error of a SINGLE observation. Each 
of these interpretations reflects a practice of 
which instances can be found in current scien¬ 
tific literature. As a step in the direction of 
reducing this current confusion, we urge that 
the use of “a ± 6” in presenting results in 
official documents be limited to that sanctioned 

under (d) above. 

The term uncertainty, with the quantitative 
connotation of limits to the likely departure 

from the truth, and not simply connoting vague 
lack of certainty, may sometimes be used effec¬ 
tively to achieve a conciseness of expression 
otherwise difficult or impossible to attain. 
Thus, we might make a statement such as: 

The uncertainties in the above values are 
not more than ±0.5 degree in the range 
0° to 1100°C, and then increase to ±2 
degrees at 1450°C.; 

or, 
The uncertainty in this value does not ex¬ 
ceed .excluding (or, including) the 
uncertainty of.in the value. 
adopted for the reference standard in¬ 

volved. 
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Finally, the following forms of quasi-absolute 
statements are considered poor practice, and 
should be avoided: 

The accuracy of.is 5 percent. 
The accuracy of.is ±2 percent. 

These statements are presumably intended to 

mean that the result concerned is not inaccu¬ 

rate, i.e., not in error, by more than 5 percent 

or 2 percent, respectively; but they explicitly 

state the opposite. 

23-4 NEITHER SYSTEMATIC ERROR NOR IMPRECISION NEGLIGIBLE 

(CASE 3) 

In such cases: 

(a) A certified or reported result should be 
qualified by: (1) a quasi-absolute type of state¬ 
ment that places bounds on its systematic 
error; and, (2) a separate statement of its 
standard error or its probable error, explicitly 
identified, as a measure of its imprecision; 

(b) The bounds to its systematic error and 
the measure of its imprecision should be stated 
to no more than two significant figures; 

(c) The certified or reported result itself 
should be stated, at most, to the last place 
affected by the finer of the two qualifying state¬ 

ments, unless it is desired to indicate and pre¬ 
serve such relative accuracy or precision of a 
higher order that the result may possess for 
certain particular uses; 

(d) The qualification of a certified or re¬ 
ported result, with respect to its imprecision and 
systematic error, should be given in sentence 
form, except when results of different precision 
or with different bounds to their systematic 
errors are presented in tabular arrangement. 
If it is necessary or desirable to indicate their 
respective imprecisions or bounds to their re¬ 
spective systematic errors, such information 
may be given in a parallel column or columns, 
with appropriate identification. 

Here, and in Paragraph 23-5, the term stand¬ 
ard error is to be understood as signifying the 
standard deviation of the reported value itself, 
not as signifying the standard deviation of a 
single determination (unless, of course, the re¬ 
ported value is the result of a single determina¬ 
tion only). 

The above recommendations should not be 
construed to exclude the presentation of a 
quasi-absolute type of statement placing bounds 

on the inaccuracy, i.e., on the overall uncer¬ 
tainty, of a certified or reported value, provided 
that separate statements of its imprecision and 
its possible systematic error are included also. 
Bounds indicating the overall uncertainty of a 
reported value should not be numerically less 
than the corresponding bounds placed on the 
systematic error outwardly increased by at least 
two times the standard error. The fourth of 
the following examples of good practice is an 
instance at point: 

The standard errors'of these values do not 
exceed 0.000004 inch, and their systematic 
errors are not in excess of 0.00002 inch. 

The standard errors of these values are less 
than (x units), and their systematic errors 
are thought to be less than ± (y units). 

. . . with a standard error of (x units), and 
a systematic error of not more than 

± (y units). 

. . . with an overall uncertainty of ±3 per¬ 
cent based on a standard error of 0.5 per¬ 
cent and an allowance of ±1.5 percent for 

systematic error. 

When a reliably established value for the 
relevant standard error is available, based on 
considerable recent experience with the meas¬ 
urement process or processes involved, and the 
dispersion of the present measurements is in 
keeping with this experience, then this estab¬ 
lished value of the standard error should be 
used. When experience indicates that the rele¬ 
vant standard error is subject to fluctuations 
greater than the intrinsic variation of such a 
measure, then an appropriate upper bound 
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should be given, e.g., as in the first two of the 
above examples, or by changing “a standard 
error ...” in the third and fourth examples to 
‘‘an upper bound to the standard error . . .”. 

When there is insufficient recent experience 
with the measurement processes involved, an 
estimate of the standard error must of necessity 
be computed, by recognized statistical proce¬ 
dures, from the same measurements as the certi¬ 
fied or reported value itself. It is essential that 
such computations be carried out according to 
an agreed-upon standard procedure, and that 
the results thereof be presented in sufficient 
detail to enable the reader to form his own judg¬ 
ment and make his own allowances for their 
inherent uncertainties. To avoid possible mis¬ 
understanding in such cases: 

(a) the term computed standard error should 
be used; 

(b) the estimate of the standard error em¬ 
ployed should be that obtained from the relation 

estimate of standard error 

|sum of squared residuals 
\ nv 

where n is the (effective) number of completely 
independent determinations of which a is the 
arithmetic mean (or, other appropriate least 
squares adjusted value) and v is the number of 
degrees of freedom involved in the sum of 
squared residuals (i.e., the number of residuals 
minus the number of fitted constants and/or 
other independent constraints); and, 

(c) the number of degrees of freedom v 
should be explicitly stated. 

If the reported value a is the arithmetic 
mean, then: 

estimate of standard error = A r 
\ n 

where s- is computed as shown in ORDP 20-110, 
Chapter 2, Paragraph 2-2.2, and n is the num¬ 
ber of completely independent determinations 
of which a is the arithmetic mean. 

For example: 
The computed probable error (or, standard 
error) of these values is (x units), based on 
( v ) degrees of freedom, and the system¬ 
atic error is estimated to be less than 

± (y units). 

. . . which is the arithmetic mean of ( n ) 
independent determinations and has a com¬ 
puted standard error of. 

. . . with an overall uncertainty of ±5.2 
km sec based on a standard error of 1.5 
km sec and bounds of ±0.7 km sec on the 
systematic error. (The figure 5.2 equals 
0.7 plus 3 times 1.5). 

Or, if based on a computed standard error: 

. . . with an overall uncertainty of ±7 
km/sec derived from bounds of ±0.7 
km/sec on the systematic error and a com¬ 
puted standard error of 1.5 km/sec based 
on 9 degrees of freedom. (The figure 7 is 

approximately equal to 0.7 + 4.3 (1.5), 
where 4.3 is the two-tail 0.002 probability 
value of Student’s t for 9 degrees of free¬ 
dom. As v —> x , tM)-i (v) —>3.090.) 

23-5 SYSTEMATIC ERROR NEGLIGIBLE, IMPRECISION NOT NEGLIGIBLE 
(CASE 4) 

In such cases: 

(a) Qualification of a certified or reported 
value should be limited to a statement of its 
standard error or of an upper bound thereto, 
whenever a reliable determination of such value 
or bound is available. Otherwise, a computed 

value of the standard error so designated should 
be given, together with a statement of the num¬ 
ber of degrees of freedom on which it is based; 

(b) The standard error or upper bound 
thereto, should be stated to not more jthan two 
significant figures; 
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(c) The certified or reported result itself 
should be stated, at most, to the last place 
affected by the stated value or bound to its im¬ 
precision, unless it is desired to indicate and 
preserve such relative precision of a higher order 
that the result may possess for certain par¬ 
ticular uses; 

(d) The qualification of a certified or re¬ 
ported result with respect to its imprecision 
should be given in sentence form, except when 
results of different precision are presented in 
tabular arrangement and it is necessary or de¬ 

sirable to indicate their respective imprecisions, 
in which event such information may be given 
in a parallel column or columns, with appro¬ 
priate identification. 

The above recommendations should not be 
construed to exclude the presentation of a quasi¬ 
absolute type of statement placing bounds on 
its possible inaccuracy, provided that a sepa¬ 
rate statement of its imprecision is included also. 

Such bounds to its inaccuracy should be nu¬ 
merically equal to at least two times the stated 
standard error. The fourth of the following 

examples of good practice is an instance at 
point: 

The standard errors of these values are less 
than (x units). 
. . . with a standard error of (x units). 

. . . with a computed standard error of 
(x units) based on ( v ) degrees of freedom. 
. . . with an overall uncertainty of ±4.5 
km /sec derived from a standard error of 
1.5 km/sec. (The figure 4.5 equals 3 times 
1.5). 

Or, if based on a computed standard error: 

. . . with an overall uncertainty of ±6.5 
km/sec derived from a computed standard 
error of 1.5 km/sec (based on 9 degrees of 
freedom). (The figure 6.5 equals 4.3 times 
1.5, where 4.3 is the two-tail 0.002 proba¬ 
bility value of Student’s t for 9 degrees of 
freedom. As v —» oc , t,002 (v) —> 3.090. 

The remarks with regard to a computed 
standard error in Paragraph 23-4 apply with 

equal force to the last two of the above examples. 
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SECTION 5 

TABLES 

This section contains all the mathematical tables referenced throughout 
Sections 1 through 4 of this handbook, and needed in the application of the 
given procedures. The tables have been informally arranged in groups as follows: 
Tables A-l through A-5 are needed for the “standard” tests of significance; 
Tables A-6 through A-21 are further tables concerning the analysis of samples 
from normal distributions; Tables A-22 through A-27 are concerned with 
analysis of samples from binomial distributions; Tables A-30 through A-35 are 
for distribution-free techniques; and Tables A-36 and A-37 are sample pages of 
tables of random numbers and random normal deviates. 
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TABLE A-l. CUMULATIVE NORMAL DISTRIBUTION — VALUES OF P 

ZP 

Values of P corresponding to Zp for the normal curve. 

z is the standard normal variable. The value of P for —zp equals one minus the value of P for + Zp, 

e.g., the P for -1.62 equals 1 - .9474 = .0526. 

ZP .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852 

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133 

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993 
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997 
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998 
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TABLE A-3. PERCENTILES OF THE x2 DISTRIBUTION 

Values of Xp corresponding to P 

df *2005 
Y2 
A .01 X2025 X205 

Y2 
A .10 

Y2 
a.90 

Y2 
a.95 

Y2 
a.975 

Y2 
A.99 

Y2 
A .995 

1 .000039 .00016 .00098 .0039 .0158 2.71 3.84 5.02 6.63 7.88 

2 .0100 .0201 .0506 .1026 .2107 4.61 5.99 7.38 9.21 10.60 

3 .0717 .115 .216 .352 .584 6.25 7.81 9.35 11.34 12.84 

4 .207 .297 .484 .711 1.064 7.78 9.49 11.14 13.28 14.86 

5 .412 .554 .831 1.15 1.61 9.24 11.07 12.83 15.09 16.75 

6 .676 .872 1.24 1.64 2.20 10.64 12.59 14.45 16.81 18.55 

7 .989 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48 20.28 

8 1.34 1.65 2.18 2.73 3.49 13.36 15.51 17.53 20.09 21.96 

9 1.73 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67 23.59 

10 2.16 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21 25.19 

11 2.60 3.05 3.82 4.57 5.58 17.28 19.68 21.92 24.73 26.76 

12 3.07 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22 28.30 

13 3.57 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69 29.82 

14 4.07 4.66 5.63 6.57 7.79 21.06 23.68 26.12 29.14 31.32 

15 4.60 5.23 6.26 7.26 8.55 22.31 25.00 27.49 30.58 32.80 

16 5.14 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00 34.27 

18 6.26 7.01 8.23 9.39 10.86 25.99 28.87 31.53 34.81 37.16 

20 7.43 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57 40.00 

24 9.89 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98 45.56 

30 13.79 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89 53.67 

40 20.71 22.16 24.43 26.51 29.05 51.81 55.76 59.34 63.69 66.77 

60 35.53 37.48 40.48 43.19 46.46 74.40 ' 79.08 83.30 88.38 91.95 

120 83.85 86.92 91.58 95.70 100.62 140.23 146.57 152.21 158.95 163.64 

For large degrees of freedom, 

Xp = £(zP + \/2v — l)2 approximately, 

where v = degrees of freedom and zP is given in Table A-2. 

Adapted with permission from Introduction to Statistical Analysis (2d ed.) by W. J. Dixon and F. J. Massey, Jr., Copyright, 1957, 
McGraw-Hill Book Company, Inc. 
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TABLE A-4. PERCENTILES OF THE t DISTRIBUTION 

df t. 60 t. 70 t 80 t. 90 

ctO°lo 
t. 95 

CffW 

t. 975 t. 99 t. 995 

1 .325 .727 1.376 3.078 6.314 12.706 31.821 63.657 
2 .289 .617 1.061 1.886 2.920 4.303 6.965 9.925 
3 .277 .584 .978 1.638 2.353 3.182 4.541 5.841 
4 .271 .569 .941 1.533 2.132 2.776 3.747 4.604 
5 .267 .559 .920 1.476 2.015 2.571 3.365 4.032 

6 .265 .553 .906 1.440 1.943 2.447 3.143 3.707 
7 .263 .549 .896 1.415 1.895 2.365 2.998 3.499 
8 .262 .546 .889 1.397 1.860 2.306 2.896 3.355 
9 .261 .543 .883 1.383 1.833 2.262 2.821 3.250 

10 .260 .542 .879 1.372 1.812 2.228 2.764 3.169 

11 .260 .540 .876 1.363 1.796 2.201 2.718 3.106 
12 .259 .539 .873 1.356 1.782 2.179 2.681 3.055 
13 .259 .538 .870 1.350 1.771 2.160 2.650 3.012 
14 .258 .537 .868 1.345 1.761 2.145 2.624 2.977 
15 .258 .536 .866 1.341 1.753 2.131 2.602 2.947 

16 .258 .535 .865 1.337 1.746 2.120 2.583 2.921 
17 .257 .534 .863 1.333 1.740 2.110 2.567 2.898 
18 .257 .534 .862 1.330 1.734 2.101 2.552 2.878 
19 .257 .533 ' .861 1.328 1.729 2.093 2.539 2.861 
20 .257 .533 .860 1.325 1.725 2.086 2.528 2.845 

21 .257 .532 .859 1.323 1.721 2.080 2.518 2.831 
22 .256 .532 .858 1.321 1.717 2.074 2.508 2.819 
23 .256 .532 .858 1.319 1.714 2.069 2.500 2.807 
24 .256 .531 .857 1.318 1.711 2.064 2.492 2.797 
25 .256 .531 .856 1.316 1.708 2.060 2.485 2.787 

26 .256 .531 .856 1.315 1.706 2.056 2.479 2.779 
27 .256 .531 .855 1.314 1.703 2.052 2.473 2.771 
28 .256 .530 .855 1.313 1.701 2.048 2.467 2.763 
29 .256 .530 .854 1.311 1.699 2.045 2.462 2.756 
30 .256 .530 .854 1.310 1.697 2.042 2.457 2.750 

40 .255 .529 .851 1.303 1.684 2.021 2.423 2.704 
60 .254 .527 .848 1.296 1.671 2.000 2.390 2.660 

120 .254 .526 .845 1.289 1.658 1.980 2.358 2.617 
oo .253 .524 .842 1.282 1.645 1.960 2.326 2.576 

Adapted by permission from Introduction to Statistical Analysis (2d ed.) by W. J. Dixon and F. J. Massey, Jr., Copyright, 1957, McGraw-Hill Book 
Company, Inc. Entries originally from Table III of Statistical Tables by R. A. Fisher and F. Yates, 1938, Oliver and Boyd, Ltd., London. 
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TABLE A-6. FACTORS FOR TWO-SIDED TOLERANCE LIMITS FOR NORMAL DISTRIBUTIONS 

Factors K such that the probability is y that at least a proportion P of the distribution will be included 
between X ± Ks, where X and s are estimates of the mean and the standard deviation computed 

from a sample size of n. 

y = 0.75 y = 0.90 

X 0.75 0.90 0.95 0.99 0.999 0.75 0.90 0.95 0.99 0.999 

2 4.498 6.301 7.414 9.531 11.920 11.407 15.978 18.800 24.167 30.227 

3 2.501 3.538 4.187 5.431 6.844 4.132 5.847 6.919 8.974 11.309 

4 2.035 2.892 3.431 4.471 5.657 2.932 4.166 4.943 6.440 8.149 

5 1.825 2.599 3.088 4.033 5.117 2.454 3.494 4.152 5.423 6.879 

6 1.704 2.429 2.889 3.779 4.802 2.196 3.131 3.723 4.870 6.188 

7 1.624 2.318 2.757 3.611 4.593 2.034 2.902 3.452 4.521 5.750 

8 1.568 2.238 2.663 3.491 4.444 1.921 2.743 3.264 4.278 5.446 

9 1.525 2.178 2.593 3.400 4.330 1.839 2.626 3.125 4.098 5.220 

10 1.492 2.131 2.537 3.328 4.241 1.775 2.535 3.018 3.959 5.046 

11 1.465 2.093 2.493 3.271 4.169 1.724 2.463 2.933 3.849 4.906 

12 1.443 2.062 2.456 3.223 4.110 1.683 2.404 2.863 3.758 4.792 

13 1.425 2.036 2.424 3.183 4.059 1.648 2.355 2.805 3.682 4.697 

14 1.409 2.013 2.398 3.148 4.016 1.619 2.314 2.756 3.618 4.615 

15 1.395 1.994 2.375 3.118 3.979 1.594 2.278 2.713 3.562 4.545 

16 1.383 1.977 2.355 3.092 3.946 1.572 2.246 2.676 3.514 4.484 

17 1.372 1.962 2.337 3.069 3.917 1.552 2.219 2.643 3.471 4.430 

18 1.363 1.948 2.321 3.048 3.891 1.535 2.194 2.614 3.433 4.382 

19 1.355 1.936 2.307 3.030 3.867 1.520 2.172 2.588 3.399 4.339 

20 1.347 1.925 2.294 3.013 3.846 1.506 2.152 2.564 3.368 4.300 

21 1.340 1.915 2.282 2.998 3.827 1.493 2.135 2.543 3.340 4.264 

22 1.334 1.906 2.271 2.984 3.809 1.482 2.118 2.524 3.315 4.232 

23 1.328 1.898 2.261 2.971 3.793 1.471 2.103 2.506 3.292 4.203 

24 1.322 1.891 2.252 2.959 3.778 1.462 2.089 2.489 3.270 4.176 

25 1.317 1.883 2.244 2.948 3.764 1.453 2.077 2.474 3.251 4.151 

26 1.313 1.877 2.236 2.938 3.751 1.444 2.065 2.460 3.232 4.127 

27 1.309 1.871 2.229 2.929 3.740 1.437 2.054 2.447 3.215 4.106 

Adapted by permission from Techniques of Statistical Analysis by C. Eisenhart, M. W. Hastay, and W. A. Wallis, Copyright 1947, 
McGraw-Hill Book Company, Inc. 
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TABLE A-6 (Continued). FACTORS FOR TWO-SIDED TOLERANCE LIMITS FOR 
NORMAL DISTRIBUTIONS 

7 = 0.95 y = 0.99 

X 0.75 0.90 0.95 0.99 0.999 0.75 0.90 0.95 0.99 0.999 

2 22.858 32.019 37.674 48.430 60.573 114.363 160.193 188.491 242.300 303.054 

3 5.922 8.380 9.916 12.861 16.208 13.378 18.930 22.401 29.055 36.616 

4 3.779 5.369 6.370 8.299 10.502 6.614 9.398 11.150 14.527 18.383 

5 3.002 4.275 5.079 6.634 8.415 4.643 6.612 7.855 10.260 13.015 

6 2.604 3.712 4.414 5.775 7.337 3.743 5.337 6.345 8.301 10.548 

7 2.361 3.369 4.007 5.248 6.676 3.233 4.613 5.488 7.187 9.142 

8 2.197 3.136 3.732 4.891 6.226 2.905 4.147 4.936 6.468 8.234 

9 2.078 2.967 3.532 4.631 5.899 2.677 3.822 4.550 5.966 7.600 

10 1.987 2.839 3.379 4.433 5.649 2.508 3.582 4.265 5.594 7.129 

11 1.916 2.737 3.259 4.277 5.452 2.378 3.397 4.045 5.308 6.766 

12 1.858 2.655 3.162 4.150 5.291 2.274 3.250 3.870 5.079 6.477 

13 1.810 2.587 3.081 4.044 5.158 2.190 3.130 3.727 4.893 6.240 

14 1.770 2.529 3.012 3.955 5.045 2.120 3.029 3.608 4.737 6.043 

15 1.735 2.480 2.954 3.878 4.949 2.060 2.945 3.507 4.605 5.876 

16 1.705 2.437 2.903 3.812 4.865 2.009 2.872 3.421 4.492 5.732 

17 1.679 2.400 2.858 3.754 4.791 1.965 2.808 3.345 4.393 5.607 

18 1.655 2.366 2.819 3.702 4.725 1.926 2.753 3.279 4.307 5.497 

19 1.635 2.337 2.784 3.656 4.667 1.891 2.703 3.221 4.230 5.399 

20 1.616 2.310 2.752 3.615 4.614 1.860 2.659 3.168 4.161 5.312 

21 1.599 2.286 2.723 3.577 4.567 1.833 2.620 3.121 4.100 5.234 
22 1.584 2.264 2.697 3.543 4.523 1.808 2.584 3.078 4.044 5.163 

23 1.570 2.244 2.673 3.512 4.484 1.785 2.551 3.040 3.993 5.098 
24 1.557 2.225 2.651 3.483 4.447 1.764 2.522 3.004 3.947 5.039 
25 1.545 2.208 2.631 3.457 4.413 1.745 2.494 2.972 3.904 4.985 
26 1.534 2.193 2.612 3.432 4.382 1.727 2.469 2.941 3.865 4.935 
27 1.523 2.178 2.595 3.409 4.353 1.711 2.446 2.914 3.828 4.888 
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TABLE A-6 (Continued). FACTORS FOR TWO-SIDED TOLERANCE LIMITS FOR 
NORMAL DISTRIBUTIONS 

7 = 0.75 7 = 0.90 

\ p 

n \ 
0.75 0.90 0.95 0.99 0.999 0.75 0.90 0.95 0.99 0.999 

30 1.297 1.855 2.210 2.904 3.708 1.417 2.025 2.413 3.170 4.049 

35 1.283 1.834 2.185 2.871 3.667 1.390 1.988 2.368 3.112 3.974 

40 1.271 1.818 2.166 2.846 3.635 1.370 1.959 2.334 3.066 3.917 

45 1.262 1.805 2.150 2.826 3.609 1.354 1.935 2.306 3.030 3.871 

50 1.255 1.794 2.138 2.809 3.588 1.340 1.916 2.284 3.001 3.833 

55 1.249 1.785 2.127 2.795 3.571 1.329 1.901 2.265 2.976 3.801 

60 1.243 1.778 2.118 2.784 3.556 1.320 1.887 2.248 2.955 3.774 

65 1.239 1.771 2.110 2.773 3.543 1.312 1.875 2.235 2.937 3.751 

70 1.235 1.765 2.104 2.764 3.531 1.304 1.865 2.222 2.920 3.730 

75 1.231 1.760 2.098 2.757 3.521 1.298 1.856 2.211 2.906 3.712 

80 1.228 1.756 2.092 2.749 3.512 1.292 1.848 2.202 2.894 3.696 

85 1.225 1.752 2.087 2.743 3.504 1.287 1.841 2.193 2.882 3.682 

90 1.223 1.748 2.083 2.737 3.497 1.283 1.834 2.185 2.872 3.669 

95 1.220 1.745 2.079 2.732 3.490 1.278 1.828 2.178 2.863 3.657 

100 1.218 1.742 2.075 2.727 3.484 1.275 1.822 2.172 2.854 3.646 

no 1.214 1.736 2.069 2.719 3.473' 1.268 1.813 2.160 2.839 3.626 

120 1.211 1.732 2.063 2.712 3.464 1.262 1.804 2.150 2.826 3.610 

130 1.208 1.728 2.059 2.705 3.456 1.257 1.797 2.141 2.814 3.595 

140 1.206 1.724 2.054 2.700 3.449 1.252 1.791 2.134 2.804 3.582 

150 1.204 1.721 2.051 2.695 3.443 1.248 1.785 2.127 2.795 3.571 

160 1.202 1.718 2.047 2.691 3.437 1.245 1.780 2.121 2.787 3.561 

170 1.200 1.716 2.044 2.687 3.432 1.242 1.775 2.116 2.780 3.552 

180 1.198 1.713 2.042 2.683 3.427 1.239 1.771 2.111 2.774 3.543 

190 1.197 1.711 2.039 2.680 3.423 1.236 1.767 2.106 2.768 3.536 

200 1.195 1.709 2.037 2.677 3.419 1.234 1.764 2.102 2.762 3.529 

250 1.190 1.702 2.028 2.665 3.404 1.224 1.750 2.085 2.740 3.501 

300 1.186 1.696 2.021 2.656 3.393 1.217 1.740 2.073 2.725 3.481 

400 1.181 1.688 2.012 2.644 3.378 1.207 1.726 2.057 2.703 3.453 

500 1.177 1.683 2.006 2.636 3.368 1.201 1.717 2.046 2.689 3.434 

600 1.175 1.680 2.002 2.631 3.360 1.196 1.710 2.038 2.678 3.421 

700 1.173 1.677 1.998 2.626 3.355 1.192 1.705 2.032 2.670 3.411 

800 1.171 1.675 1.996 2.623 3.350 1.189 1.701 2.027 2.663 3.402 

900 1.170 1.673 1.993 2.620 3.347 1.187 1.697 2.023 2.658 3.396 

1000 1.169 1.671 1.992 2.617 3.344 1.185 1.695 2.019 2.654 3.390 

co 1.150 1.645 1.960 2.576 3.291 1.150 1.645 1.960 2.576 3.291 
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TABLE A-6 (Continued). FACTORS FOR TWO-SIDED TOLERANCE LIMITS FOR 
NORMAL DISTRIBUTIONS 

y = 0.95 y = 0.99 

\ p 
n N. 

0.75 0.90 0.95 0.99 0.999 0.75 0.90 0.95 0.99 0.999 

30 1.497 2.140 2.549 3.350 4.278 1.668 2.385 2.841 3.733 4.768 

35 1.462 2.090 2.490 3.272 4.179 1.613 2.306 2.748 3.611 4.611. 

40 1.435 2.052 2.445 3.213 4.104 1.571 2.247 2.677 3.518 4.493 

45 1.414 2.021 2.408 3.165 4.042 1.539 2.200 2.621 3.444 4.399 

50 1.396 1.996 2.379 3.126 3.993 1.512 2.162 2.576 3.385 4.323 

55 1.382 1.976 2.354 3.094 3.951 1.490 2.130 2.538 3.335 4.260 

60 1.369 1.958 2.333 3.066 3.916 1.471 2.103 2.506 3.293 4.206 

65 1.359 1.943 2.315 3.042 3.886 1.455 2.080 2.478 3.257 4.160 

70 1.349 1.929 2.299 3.021 3.859 1.440 2.060 2.454 3.225 4.120 

75 1.341 1.917 2.285 3.002 3.835 1.428 2.042 2.433 3.197 4.084 

80 1.334 1.907 2.272 2.986 3.814 1.417 2.026 2.414 3.173 4.053 

85 1.327 1.897 2.261 2.971 3.795 1.407 2.012 2.397 3.150 4.024 

90 1.321 1.889 2.251 2.958 3.778 1.398 1.999 2.382 3.130 3.999 

95 1.315 1.881 2.241 2.945 3.763 1.390 1.987 2.368 3.112 3.976 

100 1.311 1.874 2.233 2.934 3.748 1.383 1.977 2.355 3.096 3.954 

no 1.302 1.861 2.218 2.915 3.723 1.369 1.958 2.333 3.066 3.917 

120 1.294 1.850 2.205 2.898 3.702 1.358 1.942 2.314 3.041 3.885 

130 1.288 1.841 2.194 2.883 3.683 1.349 1.928 2.298 3.019 3.857 

140 1.282 1.833 2.184 2.870 3.666 1.340 1.916 2.283 3.000 3.833 

150 1.277 1.825 2.175 2.859 3.652 1.332 1.905 2.270 2.983 3.811 

160 1.272 1.819 2.167 2.848 3.638 1.326 1.896 2.259 2.968 3.792 

170 1.268 1.813 2.160 2.839 3.527 1.320 1.887 2.248 2.955 3.774 

180 1.264 1.808 2.154 2.831 3.616 1.314 1.879 2.239 2.942 3.759 

190 1.261 1.803 2.148 2.823 3.606 1.309 1.872 2.230 2.931 3.744 

200 1.258 1.798 2.143 2.816 3.597 1.304 1.865 2.222 2.921 3.731 

250 1.245 1.780 2.121 2.788 3.561 1.286 1.839 2.191 2.880 3.678 

300 1.236 1.767 2.106 2.767 3.535 1.273 1.820 2.169 2.850 3.641 

400 1.223 1.749 2.084 2.739 3.499 1.255 1.794 2.138 2.809 3.589 

500 1.215 1.737 2.070 2.721 3.475 1.243 1.777 2.117 2.783 3.555 
600 1.209 1.729 2.060 2.707 3.458 1.234 1.764 2.102 2.763 3.530 
700 1.204 1.722 2.052 2.697 3.445 1.227 1.755 2.091 2.748 3.511 
800 1.201 1.717 2.046 2.688 3.434 1.222 1.747 2.082 2.736 3.495 
900 1.198 1.712 2.040 2.682 3.426 1.218 1.741 2.075 2.726 3.483 

1000 1.195 1.709 2.036 2.676 3.418 1.214 1.736 2.068 2.718 3.472 
OO 1.150 1.645 1.960 2.576 3.291 1.150 1.645 1.960 2.576 3.291 
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TABLE A-7. FACTORS FOR ONE-SIDED TOLERANCE LIMITS FOR NORMAL DISTRIBUTIONS 

Factors K such that the probability is 7 that at least a proportion P of the distribution will be less than 
X + Ks (or greater than X — Ks), where X and s are estimates of the mean and the standard 

deviation computed from a sample size of n. 

7 = 0.75 7 = 0.90 

\ p 

n \ 0.75 0.90 0.95 0.99 0.999 0.75 0.90 0.95 0.99 0.999 

3 1.464 2.501 3.152 4.396 5.805 2.602 4.258 5.310 7.340 9.651 

4 1.256 2.134 2.680 3.726 4.910 1.972 3.187 3.957 5.437 7.128 

5 1.152 1.961 2.463 3.421 4.507 1.698 2.742 3.400 4.666 6.112 

6 1.087 1.860 2.336 3.243 4.273 1.540 2.494 3.091 4.242 5.556 

7 1.043 1.791 2.250 3.126 4.118 1.435 2.333 2.894 3.972 5.201 

8 1.010 1.740 2.190 3.042 4.008 1.360 2.219 2.755 3.783 4.955 

9 0.984 1.702 2.141 2.977 3.924 1.302 2.133 2.649 3.641 4.772 

10 0.964 1.671 2.103 2.927 3.858 1.257 2.065 2.568 3.532 4.629 

11 0.947 1.646 2.073 2.885 3.804 1.219 2.012 2.503 3.444 4.515 

12 0.933 1.624 2.048 2.851 3.760 1.188 1.966 2.448 3.371 4.420 

13 0.919 1.606 2.026 2.822 3.722 1.162 1.928 2.403 3.310 4.341 

14 0.909 1.591 2.007 2.796 3.690 1.139 1.895 2.363 3.257 4.274 

15 0.899 1.577 1.991 2.776 3.661 1.119 1.866 2.329 3.212 4.215 

16 0.891 1.566 1.977 2.756 3.637 1.101 1.842 2.299 3.172 4.164 

17 0.883 1.554 1.964 2.739 3.615 1.085 1.820 2.272 3.136 4.118 

18 0.876 1.544 1.951 2.723 3.595 1.071 1.800 2.249 3.106 4.078 

19 0.870 1.536 1.942 2.710 3.577 1.058 1.781 2.228 3.078 4.041 

20 0.865 1.528 1.933 2.697 3.561 1.046 1.765 2.208 3.052 4.009 

21 0.859 1.520 1.923 2.686 3.545 1.035 1.750 2.190 3.028 3.979 

22 0.854 1.514 1.916 2.675 3.532 1.025 1.736 2.174 3.007 3.952 

23 0.849 1.508 1.907 2.665 3.520 1.016 1.724 2.159 2.987 3.927 

24 0.845 1.502 1.901 2.656 3.509 1.007 1.712 2.145 2.969 3.904 

25 0.842 1.496 1.895 2.647 3.497 0.999 1.702 2.132 2.952 3.882 

30 0.825 1.475 1.869 2.613 3.454 0.966 1.657 2.080 2.884 3.794 

35 0.812 1.458 1.849 2.588 3.421 0.942 1.623 2.041 2.833 3.730 

40 0.803 1.445 1.834 2.568 3.395 0.923 1.598 2.010 2.793 3.679 

45 0.795 1.435 1.821 2.552 3.375 0.908 1.577 1.986 2.762 3.638 

50 0.788 1.426 1.811 2.538 3.358 0.894 1.560 1.965 2.735 3.604 

Adapted by permission from Industrial Quality Control, Vol. XIV, No. 10, April 1958, from article entitled “Tables for One-Sided 
Statistical Tolerance Limits” by G. J. Lieberman. 
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TABLE A-7 (Continued). FACTORS FOR ONE-SIDED TOLERANCE LIMITS FOR 
NORMAL DISTRIBUTIONS 

= 0.95 7 = 0.99 

\ p 

n \ 
0.75 0.90 

1 

0.95 0.99 0.999 0.75 0.90 0.95 0.99 0.999 

3 3.804 6.158 7.655 10.552 13.857 
4 2.619 4.163 5.145 7.042 9.215 — — — — — 

5 2.149 3.407 4.202 5.741 7.501 — — — — — 

6 1.895 3.006 3.707 5.062 6.612 2.849 4.408 5.409 7.334 9.540 
- 7 1.732 2.755 3.399 4.641 6.061 2.490 3.856 4.730 6.411 8.348 

8 1.617 2.582 3.188 4.353 5.686 2.252 3.496 . 4.287 5.811 7.566 
9 1.532 2.454 3.031 4.143 5.414 2.085 3.242 3.971 5.389 7.014 

10 1.465 2.355 2.911 3.981 5.203 1.954 3.048 3.739 5.075 6.603 

11 1.411 2.275 2.815 3.852 5.036 1.854 2.897 3.557 4.828 6.284 
12 1.366 2.210 2.736 3.747 4.900 1.771 2.773 3.410 4.633 6.032 
13 1.329 2.155 2.670 3.659 4.787 1.702 2.677 3.290 4.472 5.826 
14 1.296 2.108 2.614 3.585 4.690 1.645 2.592 3.189 4.336 5.651 
15 1.268 2.068 2.566 3.520 4.607 1.596 2.521 3.102 4.224 5.507 

16 1.242 2.032 2.523 3.463 4.534 1.553 2.458 3.028 4.124 5.374 
17 1.220 2.001 2.486 3.415 4.471 1.514 2.405 2.962 4.038 5.268 
18 1.200 1.974 2.453 3.370 4.415 1.481 2.357 2.906 3.961 5.167 
19 1.183 1.949 2.423 3.331 4.364 1.450 2.315 2.855 3.893 5.078 
20 1.167 1.926 2.396 3.295 4.319 1.424 2.275 2.807 3.832 5.003 

21 1.152 1.905 2.371 3.262 4.276 1.397 2.241 2.768 3.776 4.932 
22 1.138 1.887 2.350 3.233 4.238 1.376 2.208 2.729 3.727 4.866 
23 1.126 1.869 2.329 3.206 4.204 1.355 2.179 2.693 3.680 4.806 
24 1.114 1.853 2.309 3.181 4.171 1.336 2.154 2.663 3.638 4.755 
25 1.103 1.838 2.292 3.158 4.143 1.319 2.129 2.632 3.601 4.706 

30 1.059 1.778 2.220 3.064 4.022 1.249 2.029 2.516 3.446 4.508 
35 1.025 1.732 2.166 2.994 3.934 1.195 1.957 2.431 3.334 4.364 
40 0.999 1.697 2.126 2.941 3.866 1.154 1.902 2.365 3.250 4.255 
45 0.978 1.669 2.092 2.897 3.811 1.122 1.857 2.313 3.181 4.168 
50 0.961 1.646 2.065 2.863 3.766 1.096 1.821 2.296 3.124 4.096 
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TABLE A-8. SAMPLE SIZES REQUIRED TO DETECT PRESCRIBED DIFFERENCES 
BETWEEN AVERAGES WHEN THE SIGN OF THE DIFFERENCE IS NOT IMPORTANT 

The table entry is the sample size (n) required to detect, with probability 1 — /3, that the average m 
of a new product differs from the standard m0 (or that two product averages mA and raB differ). The 
standardized difference is d, where 

d - 1 (or d = lmA mi*l_ if we are comparing two products). 
" V°l + “b 

The standard deviations are assumed to be known, and n is determined by the formula: 

_ (Zl-.a/2 + Zj-fl)2 

d2 

.01 

d .50 .60 .70 .80 .90 .95 .99 

.1 664 801 962 1168 1488 1782 2404 

.2 166. 201 241 292 372 446 601 

.4 42 51 61 73 93 112 151 

.6 19 23 27 33 42 50 67 

.8 11 13 16 19 24 28 38 
1.0 7 9 10 12 15 18 25 
1.2 5 6 7 9 11 13 17 
1.4 4 5 5 6 8 10 13 
1.6 3 4 4 5 6 7 10 
1.8 3 3 3 4 5 6 8 
2.0 2 3 3 3 4 5 7 
3.0 1 1 2 2 2 2 3 

If we must estimate a from our sample and use Student’s t, then we should add 4 to the tabulated values to obtain 
the approximate required sample size. (If we are comparing two product averages, add 2 to the tabulated values, to 
obtain the required size of each sample. For this case, we must have aA = <rB). 

a = .05 

d .50 .60 .70 .80 .90 .95 .99 

.1 385 490 618 785 1051 1300 1838 

.2 97 123 155 197 263 325 460 

.4 25 31 39 50 66 82 115 

.6 11 14 18 22 30 37 52 

.8 7 8 10 13 17 21 29 
1.0 4 5 7 8 11 13 19 
1.2 3 4 5 6 8 10 13 
1.4 2 3 4 5 6 7 10 
1.6 2 2 3 4 5 6 8 
1.8 2 2 2 3 4 5 6 
2.0 1 2 2 2 3 4 5 
3.0 1 1 1 1 2 2 3 

If we must estimate <r from our sample and use Student’s t, then we should add 2 to the tabulated values to obtain 
the approximate required sample size. (If we are comparing two product averages, add 1 to the tabulated values to 
obtain the required size of each sample. For this case, we must have aA = <rB.). 
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TABLE A-9. SAMPLE SIZES REQUIRED TO DETECT PRESCRIBED DIFFERENCES BETWEEN 
AVERAGES WHEN THE SIGN OF THE DIFFERENCE IS IMPORTANT 

The table entry is the sample size (n) required to detect with probability 1 — /3 that: 
(a) the average m of a new product exceeds that of a standard m0 
(b) the average m of a new product is less than that of a standard m0 
(c) the average of a specified product mA exceeds the average of another specified product mB. 

The standardized difference is d, where: 

(b) d = 
a 

(c) d = m; 7 mB 
V + <r| 

The standard deviations are assumed to be known, and n is calculated from the following formula: 
_ (Zi—g + Zi-p)2 

n ~ d2 

a = .01 

\ 1-/3 
d .50 .60 .70 .80 .90 .95 .99 

.1 542 666 813 1004 1302 1578 2165 

.2 136 167 204 251 326 395 542 

.4 34 42 51 63 82 99 136 

.6 16 19 23 28 37 44 61 

.8 9 11 13 16 21 25 34 
1.0 6 7 9 11 14 16 22 
1.2 4 5 6 7 10 11 16 
1.4 3 4 5 6 7 9 12 
1.6 3 3 4 4 6 7 9 
1.8 2 3 3 4 5 5 7 
2.0 2 2 3 3 4 4 6 
3.0 1 1 1 2 2 2 3 

If we must estimate a from our sample, and use Student’s t, add 3 to the tabulated values to obtain the approximate 
required sample size. (If we are comparing two product averages, add 2 to the tabulated values to obtain the required 
size of each sample. For this case, we must have <rA = <rB). 

a = .05 
'5D

. 
/ 

/ 
.50 .60 .70 .80 .90 .95 .99 

.1 271 361 471 619 857 1083 1578 

.2 68 91 118 155 215 271 395 

.4 17 23 30 39 54 68 99 

.6 8 11 14 18 24 31 44 

.8 5 6 8 10 14 17 25 
1.0 3 4 5 7 9 11 16 
1.2 2 3 4 5 6 8 11 
1.4 2 2 3 4 5 6 9 
1.6 2 2 2 3 4 5 7 
1.8 1 2 2 2 3 4 5 
2.0 1 1 2 2 3 3 4 
3.0 1 1 1 1 1 2 2 

If we must estimate <r from our sample, and use Student’s f, add 2 to the tabulated values to obtain the approximate 
required sample size. (If we are comparing two product averages, add 1 to the tabulated values to obtain the required 
size of each sample. For this case, we must have <rA = <rB). 

T-17 



ORDP 20-114 TABLES 

TABLE A-10. PERCENTILES OF THE STUDENTIZED RANGE, q 

q = w/s where w is the range of t observations, and v is the number 
of degrees of freedom associated with the standard deviation s. 

(l. 90 

t 

v \ 2 3 4 5 6 7 8 9 10 

i 8.93 13.44 16.36 18.49 20.15 21.51 22.64 23.62 24.48 
2 4.13 5.73 6.77 7.54 8.14 8.63 9.05 9.41 9.72 
3 3.33 4.47 5.20 5.74 6.16 6.51 6.81 7.06 7.29 
4 3.01 3.98 4.59 5.03 5.39 5.68 5.93 6.14 6.33 
5 2.85 3.72 4.26 4.66 4.98 5.24 5.46 5.65 5.82 

6 2.75 3.56 4.07 4.44 4.73 4.97 5.17 5.34 5.50 
7 2.68 3.45 3.93 4.28 4.55 4.78 4.97 5.14 5.28 
8 2.63 3.37 3.83 4.17 4.43 4.65 4.83 4.99 5.13 
9 2.59 3.32 3.76 4.08 4.34 4.54 4.72 4.87 5.01 

10 2.56 3.27 3.70 4.02 4.26 4.47 4.64 4.78 4.91 

11 2.54 3.23 3.66 3.96 4.20 4.40 4.57 4.71 4.84 
12 2.52 3.20 3.62 3.92 4.16 4.35 4.51 4.65 4.78 
13 2.50 3.18 3.59 3.88 4.12 4.30 4.46 4.60 4.72 
14 2.49 3.16 3.56 3.85 4.08 4.27 4.42 4.56 4.68 
15 2.48 3.14 3.54 3.83 4.05 4.23 4.39 4.52 4.64 

16 2.47 3.12 3.52 3.80 4.03 4.21 4.36 4.49 4.61 
17 2.46 3.11 3.50 3.78 4.00 4.18 4.33 4.46 4.58 
18 2.45 3.10 3.49 3.77 3.98 4.16 4.31 4.44 4.55 
19 2.45 3.09 3.47 3.75 3.97 4.14 4.29 4.42 4.53 
20 2.44 3.08 3.46 3.74 3.95 4.12 4.27 4.40 4.51 

24 2.42 3.05 3.42 3.69 3.90 4.07 4.21 4.34 4.44 
30 2.40 3.02 3.39 3.65 3.85 4.02 4.16 4.28 4.38 
40 2.38 2.99 3.35 3.60 3.80 3.96 4.10 4.21 4.32 
60 2.36 2.96 3.31 3.56 3.75 3.91 4.04 4.16 4.25 

120 2.34 2.93 3.28 3.52 3.71 3.86 3.99 4.10 4.19 
oo 2.33 2.90 3.24 3.48 3.66 3.81 3.93 4.04 4.13 

Adapted by permission from Biometrika, Vol. 46, Dec. 1959, from article entitled “Tables of the Upper 10% Points of the Studentized 
Range (Accompanied by Revised Tables of 5 % and 1 % Points)," by James Pachares. 
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TABLE A-l0 (Continued). PERCENTILES OF THE STUDENTIZED RANGE, q 

*1.90 

\ t 

V \ 1 1 12 13 14 15 16 17 18 19 20 

1 25.24 25.92 26.54 27.10 27.62 28.10 28.54 28.96 29.35 29.71 
2 10.01 10.26 10.49 10.70 10.89 11.07 11.24 11.39 11.54 11.68 
3 7.49 7.67 7.83 7.98 8.12 8.25 8.37 8.48 8.58 8.68 
4 6.49 6.65 6.78 6.91 7.02 7.13 7.23 7.33 7.41 7.50 
5 5.97 6.10 6.22 6.34 6.44 6.54 6.63 6.71 6.79 6.86 

6 5.64 5.76 5.87 5.98 6.07 6.16 6.25 6.32 6.40 6.47 
7 5.41 5.53 5.64 5.74 5.83 5.91 5.99 6.06 6.13 6.19 
8 5.25 5.36 5.46 5.56 5.64 5.72 5.80 5.87 5.93 6.00 
9 5.13 5.23 5.33 5.42 5.51 5.58 5.66 5.72 5.79 5.85 

10 5.03 5.13 5.23 5.32 5.40 5.47 5.54 5.61 5.67 5.73 

11 4.95 5.05 5.15 5.23 5.31 5.38 5.45 5.51 5.57 5.63 
12 4.89 4.99 5.08 5.16 5.24 5.31 5.37 5.44 5.49 5.55 
13 4.83 4.93 5.02 5.10 5.18 5.25 5.31 5.37 5.43 5.48 
14 4.79 4.88 4.97 5.05 5.12 5.19 5.26 5.32 5.37 5.43 
15 4.75 4.84 4.93 5.01 5.08 5.15 5.21 5.27 5.32 5.38 

16 4.71 4.81 4.89 4.97 5.04 5.11 5.17 5.23 5.28 5.33 
17 4.68 4.77 4.86 4.93 5.01 5.07 5.13 5.19 5.24 5.30 
18 4.65 4.75 4.83 4.90 4.98 5.04 5.10 5.16 5.21 5.26 
19 4.63 4.72 4.80 4.88 4.95 5.01 5.07 5.13 5.18 5.23 
20 4.61 4.70 4.78 4.85 4.92 4.99 5.05 5.10 5.16 5.20 

24 4.54 4.63 4.71 4.78 4.85 4.91 4.97 5.02 5.07 5.12 
30 4.47 4.56 4.64 4.71 4.77 4.83 4.89 4.94 4.99 5.03 
40 4.41 4.49 4.56 4.63 4.69 4.75 4.81 4.86 4.90 4.95 
60 4.34 4.42 4.49 4.56 4.62 4.67 4.73 4.78 4.82 4.86 

120 4.28 4.35 4.42 4.48 4.54 4.60 4.65 4.69 4.74 4.78 
co 4.21 4.28 4.35 4.41 4.47 4.52 4.57 4.61 4.65 4.69 
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TABLE A-10 (Continued). PERCENTILES OF THE STUDENTIZED RANGE, q 

(K 95 

1 
V \ 2 3 4 5 6 7 8 9 10 

1 17.97 26.98 32.82 37.08 40.41 43.12 45.40 47.36 49.07 
2 6.08 8.33 9.80 10.88 11.74 12.44 13.03 13.54 13.99 
3 4.50 5.91 6.82 7.50 8.04 8.48 8.85 9.18 9.46 
4 3.93 5.04 5.76 6.29 6.71 7.05 7.35 7.60 7.83 
5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 

6 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 
7 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 
S 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 
9 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 

10 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 

11 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 
12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39 
13 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 
14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 
15 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 

16 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 
17 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 
18 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 
19 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 
20 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 

24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 
30 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 
40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 
60 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 

120 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 
oo 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 



TABLES ORDP 20-114 

TABLE A-l0 (Continued). PERCENTILES OF THE STUDENTIZED RANGE, q 

*1.95 

ii 12 13 14 15 16 17 18 19 20 

1 50.59 51.96 53.20 54.33 55.36 56.32 57.22 58.04 58.83 59.56 

2 14.39 14.75 15.08 15.38 15.65 15.91 16.14 16.37 16.57 16.77 

3 9.72 9.95 10.15 10.35 10.52 10.69 10.84 10.98 11.11 11.24 

4 8.03 8.21 8.37 8.52 8.66 8.79 8.91 9.03 9.13 9.23 

5 7.17 7.32 7.47 7.60 7.72 7.83 7.93 8.03 8.12 8.21 

6 6.65 6.79 6.92 7.03 7.14 7.24 1 7.34 7.43 7.51 7.59 

7 6.30 6.43 6.55 6.66 6.76 6.85 6.94 7.02 7.10 7.17 

8 6.05 6.18 6.29 6.39 6.48 6.57 6.65 6.73 6.80 6.87 

9 5.87 5.98 6.09 6.19 6.28 6.36 6.44 6.51 6.58 6.64 

10 5.72 5.83 5.93 6.03 6.H 6.19 6.27 6.34 6.40 6.47 

11 5.61 ! 5.71 5.81 5.90 5.98 6.06 6.13 6.20 6.27 6.33 

12 5.51 5.61 5.71 5.80 5.88 5.95 6.02 6.09 6.15 6.21 

13 5.43 j 5.53 5.63 5.71 5.79 5.86 5.93 5.99 6.05 6.11 

14 5.36 5.46 j 5.55 5.64 5.71. 5.79 5.85 5.91 5.97 6.03 

15 5.31 5.40 5.49 5.57 5,65 5.72 5.78 5.85 5.90 5.96 

16 5.26 5.35 5.44 5.52 5.59 5.66 5.73 5.79 5.84 5.90 

17 5.21 ! 5.31 5.39 5.47 5.54 5.61 5.67 5.73 5.79 5.84 

18 5.17 5.27 5.35 5.43 5.50 5.57 5.63 5.69 5.74 5.79 

19 5.14 5.23 5.31 5.39 5.46 5.53 5.59 5.65 5.70 5.75 

20 5.11 5.20 5.28 5.36 5.43 5.49 5.55 5.61 5.66 5.71 

24 5.01 5.10 5.18 5.25 5.32 5.38 5.44 5.49 5.55 5.59 

30 4.92 5.00 5.08 5.15 5.21 5.27 5.33 5.38 5.43 5.47 

40 4.82 4.90 4.98 5.04 5.11 5.16 5.22 5.27 5.31 5.36 

60 4.73 4.81 4.88 4.94 5.00 5.06 5.11 5.15 5.20 5.24 

120 4.64 ! 4.71 4.78 4.84 4.90 4.95 5.00 5.04 5.09 5.13 
oc 4.55 4.62 4.68 | 4.74 4.80 4.85 4.89 4.93 4.97 5.01 
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TABLE A-10 (Continued). PERCENTILES OF THE STUDENTIZED RANGE, q 

99 

N. t 

v 2 3 4 5 6 7 8 9 10 

i 90.03 135.0 164.3 185.6 202.2 215.8 227.2 237.0 245.6 
2 14.04 19.02 22.29 24.72 26.63 28.20 29.53 30.68 31.69 
3 8.26 10.62 12.17 13.33 14.24 15.00 15.64 16.20 16.69 
4 6.51 8.12 9.17 9.96 10.58 11.10 11.55 11.93 12.27 
5 5.70 6.98 7.80 8.42 8.91 9.32 9.67 9.97 10.24 

6 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 
7 4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 
3 4.75 5.64 6.20 6.62 6.96 7.24 7.47 7.68 7.86 
9 4.60 5.43 5.96 6.35 6.66 6.91 7.13 7.33 7.49 

10 4.48 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21 

11 4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 
12 4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81 
13 4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 
14 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 
15 4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 

16 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 
17 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 
18 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 
19 4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 
20 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 

24 3.96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 
30 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 
40 3.82 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60 
60 3.76 4.28 4.59 4.82 4.99 5.13 5.25 5.36 5.45 

120 3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 
oo 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 
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TABLE A-10 (Continued). PERCENTILES OF THE STUDENTIZED RANGE, q 

fl. 99 

N. t 

V \ 11 12 13 14 15 16 17 18 19 20 

1 253.2 260.0 266.2 271.8 277.0 281.8 286.3 290.4 294.3 298.0 
2 32.59 33.40 34.13 34.81 35.43 36.00 36.53 37.03 37.50 37.95 
3 17.13 17.53 17.89 18.22 18.52 18.81 19.07 19.32 19.55 19.77 
4 12.57 12.84 13.09 13.32 13.53 13.73 13.91 14.08 14.24 14.40 
5 10.48 10.70 10.89 11.08 11.24 11.40 11.55 11.68 11.81 11.93 

6 9.30 9.48 9.65 9.81 9.95 10.08 10.21 10.32 10.43 10.54 
7 8.55 8.71 8.86 9.00 9.12 9.24 9.35 9.46 9.55 9.65 
8 8.03 8.18 8.31 8.44 8.55 8.66 8.76 8.85 8.94 9.03 
9 7.65 7.78 7.91 8.03 8.13 8.23 8.33 8.41 8.49 8.57 

10 7.36 7.49 7.60 7.71 7.81 7.91 7.99 8.08 8.15 8.23 

11 7.13 7.25 7.36 7.46 7.56 7.65 7.73 7.81 7.88 7.95 
12 6.94 7.06 7.17 7.26 7.36 7.44 7.52 7.59 7.66 7.73 
13 6.79 6.90 7.01 7.10 7.19 7.27 7.35 7.42 7.48 7.55 
14 6.66 6.77 6.87 6.96 7.05 7.13 7.20 7.27 7.33 7.39 
15 6.55 6.66 6.76 6.84 6.93 7.00 7.07 7.14 7.20 7.26 

16 6.46 6.56 6.66 6.74 6.82 6.90 6.97 7.03 7.09 7.15 
17 6.38 6.48 6.57 6.66 6.73 6.81 6.87 6.94 7.00 7.05 
18 6.31 6.41 6.50 6.58 6.65 6.73 6.79 6.85 6.91 6.97 
19 6.25 6.34 6.43 6.51 6.58 6.65 6.72 6.78 6.84 6.89 
20 6.19 6.28 6.37 6.45 6.52 6.59 6.65 6.71 6.77 6.82 

24 6.02 6.11 6.19 6.26 6.33 6.39 6.45 6.51 6.56 6.61 
30 5.85 5.93 6.01 6.08 6.14 6.20 6.26 6.31 6.36 6.41 
40 5.69 5.76 5.83 5.90 5.96 6.02 6.07 6.12 6.16 6.21 
60 5.53 5.60 5.67 5.73 5.78 5.84 5.89 5.93 5.97 6.01 

120 5.37 5.44 5.50 5.56 5.61 5.66 5.71 5.75 5.79 5.83 
00 5.23 5.29 5.35 5.40 5.45 5.49 5.54 5.57 5.61 5.65 
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TABLE A-ll. PERCENTILES OF F' = — 
wB 

l>B Cum. 
Prop. 

nA 

2 3 4 5 6 7 8 9 10 

2 .005 .0078 .096 .21 .30 .38 .44 .49 .54 .57 
.01 .0157 .136 .26 .38 .46 .53 .59 .64 .68 
.025 .039 .217 .37 .50 .60 .68 .74 .79 .83 
.05 .079 .31 .50 .62 .74 .80 .86 .91 .95 
.95 12.7 19.1 23 26 29 30 32 34 35 
.975 25.5 38.2 52 57 60 62 64 67 68 
.99 63.7 95 116 132 142 153 160 168 174 
.995 127 191 230 250 260 270 280 290 290 

3 .005 .0052 .071 .16 .24 .32 .38 .43 .47 .50 
.01 .0105 .100 .20 .30 .37 .43 .49 .53 .57 
.025 .026 .160 .28 .39 .47 .54 .59 .64 .68 
.05 .052 .23 .37 .49 .57 .64 .70 .75 .80 
.95 3.19 4.4 5.0 5.7 6.2 6.6 6.9 7.2 7.4 
.975 4.61 6.3 7.3 8.0 8.7 9.3 9.8 10.2 10.5 
.99 7.37 10 12 13 14 15 15 16 17 
.995 10.4 14 17 18 20 21 22 23 25 

4 .005 .0043 .059 .14 .22 .28 .34 .39 .43 .46 
.01 .0086 .084 .18 .26 .33 .39 .44 .48 .52 
.025 .019 .137 .25 .34 .42 .48 .53 .57 .61 
.05 .043 .20 .32 .42 .50 .57 .62 .67 .70 
.95 2.02 2.7 3.1 3.4 3.6 3.8 4.0 4.2 4.4 
.975 2.72 3.5 4.0 4.4 4.7 5.0 5.2 5.4 5.6 
.99 3.83 5.0 5.5 6.0 6.4 6.7 7.0 7.2 7.5 
.995 4.85 6.1 7.0 7.6 8.1 8.5 8.8 9.3 9.6 

5 .005 .0039 .054 .13 .20 .26 .32 .36 .40 .44 
.01 .0076 .079 .17 .24 .31 .36 .41 .45 .49 
.025 .018 .124 .23 .32 .38 .44 .49 .53 .57 
.05 .038 .18 .29 .40 .46 .52 .57 .61 .65 
.95 1.61 2.1 2.4 2.6 2.8 2.9 3.0 3.1 3.2 
.975 2.01 2.6 2.9 3.2 3.4 3.6 3.7 3.8 3.9 
.99 2.64 3.4 3.8 4.1 4.3 4.6 4.7 4.9 5.0 
.995 3.36 4.1 4.6 4.9 5.2 5.5 5.7 5.9 6.1 

Adapted with permission from Introduction to Statistical Analysis (2d ed.) by W. J. Dixon and F. J. Massey, Jr., 
Copyright, 1957, McGraw-Hill Book Company, Inc. 
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TABLE A-l 1 (Continued). PERCENTILES OF F' = — 
wB 

nB 

Cum. 
Prop. 

nA 

2 3 4 5 6 
1 7 

8 9 10 

6 .005 .0038 .051 .12 .19 .25 .30 .35 .38 .42 
.01 .0070 .073 .16 .23 .29 .34 .39 .43 .46 
.025 .017 .115 .21 .30 .36 .42 .46 .50 .54 
.05 .035 .16 .27 .36 .43 .49 .54 .58 .61 
.95 1.36 1.8 2.0 2.2 2.3 2.4 2.5 2.6 2.7 
.975 1.67 2.1 2.4 2.6 2.8 2.9 3.0 3.1 3.2 
.99 2.16 2.7 3.0 3.2 3.4 3.6 3.7 3.8 3.9 
.995 2.67 3.1 3.5 3.8 4.0 4,1 4.3 4.5 4.6 

7 .005 .0037 .048 .12 .18 .24 .29 .33 .37 .40 
.01 .0066 .069 .15 .22 .28 .33 .37 .41 .45 
.025 .016 .107 .20 .28 .34 .40 .44 .48 .52 
.05 .032 .15 .26 .35 .41 .47 .51 .55 .59 
.95 1.26 1.6 1.8 1.9 2.0 2.1 2.2 2.3 2.4 
.975 1.48 1.9 2.1 2.3 1 2.4 2.5 2.6 2.7 2.8 
.99 1.87 2.3 2.6 2.8 2.9 3.0 3.1 3.2 3.3 
.995 2.28 2.7 2.9 3.1 3.3 3.5 3.6 3.7 3.8 

8 .005 .0036 .045 .11 .18 .23 .28 .32 .36 .39 
.01 .0063 .065 .14 .21 .27 .32 .36 .40 .43 
.025 .016 .102 .19 .27 .33 .38 .43 .47 .50 
.05 .031 .14 .25 .33 .40 .45 .50 .53 .57 
.95 1.17 1.4 1.6 1.8 1.9 1.9 2.0 2.1 2.1 
.975 1.36 1.7 1.9 2.0 2.2 2.3 2.3 2.4 2.5 
.99 1.69 2.1 2.3 2.4 2.6 2.7 2.8 2.8 2.9 
.995 2.03 2.3 2.6 2.7 2.9 3.0 3.1 3.2 3.3 

9 .005 .0035 .042 .11 .17 .22 .27 .31 .35 .38 
.01 .0060 .062 .14 .21 .26 .31 .35 .39 .42 
.025 .015 .098 .18 .26 .32 .37 .42 .46 .49 
.05 .030 •14 .24 .32 .38 .44 .48 .52 .55 
.95 1.10 1.3 1.5 1.6 1.7 1.8 1.9 1.9 2.0 
.975 1.27 1.6 1.8 1.9 2.0 2.1 2.i 2.2 2.3 
.99 1.56 1.9 2.1 2.2 2.3 2.4 2.5 2.6 2.6 
.995 1.87 2.1 2.3 2.5 2.6 2.7 2.8 2.9 3.0 

10 .005 .0034 .041 .10 .16 .22 .26 .30 .34 .37 
.01 .0058 .060 .13 .20 .26 .30 .34 .38 .41 
.025 .015 .095 .18 .25 .31 .36 ■41 .44 .48 
.05 .029 .13 .23 .31 .37 .43 .47 .51 .54 
.95 1.05 1.3 1.4 1.5 1.6 1.7 1.8 1.8 1.9 
.975 1.21 1.5 1.6 J 1.8 ! 1.9 1.9 2.0 i 2.0 2.1 
.99 1.47 1.8 1.9 2-1 | 2.2 2.2 2.3 2.4 2.4 
.995 1.75 2.0 2.2 2.3 2.4 2.5 2.6 2.6 2.7 
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TABLE A-12. PERCENTILES FOR 0 = --— 
w 

Sample 
Size 0.95 0.975 0.99 0.995 0.999 0.9995 

2 3.175 6.353 15.910 31.828 159.16 318.31 
3 .885 1.304 2.111 3.008 6.77 9.58 
4 .529 .717 1.023 1.316 2.29 2.85 
5 .388 .507 .685 .843 1.32 1.58 

6 .312 .399 .523 .628 .92 1.07 
7 .263 .333 .429 .507 .71 .82 
8 .230 .288 .366 .429 .59 .67 
9 .205 .255 .322 .374 .50 .57 

10 .186 .230 .288 .333 .44 .50 

11 .170 .210 .262 .302 .40 .44 
12 .158 .194 .241 .277 .36 .40 
13 .147 .181 .224 .256 .33 .37 
14 .138 .170 .209 .239 .31 .34 
15 .131 .160 .197 .224 .29 .32 

16 .124 .151 .186 .212 .27 .30 
17 .118 .144 .177 .201 .26 .28 
18 .113 .137 .168 .191 .24 .26 
19 .108 .131 .161 .182 .23 .25 
20 .104 .126 .154 .175 .22 .24 

Adapted with permission from Biometrika, Vol. 34 (1947) from article entitled “The Use of the Range in Place of the 
Standard Deviation in the t Test” by E. Lord. 

TABLE A-l3. PERCENTILES FOR 0' = A , B , 
i(wA + wB) 

n — nA =iib 0 .95 0/. 9 76 <t>'. 99 0/. 995 0 .999 0 .9995 

2 2.322 3.427 5.553 7.916 17.81 25.23 
3 .974 1.272 1.715 2.093 3.27 4.18 
4 .644 .813 1.047 1.237 1.74 1.99 
5 .493 .613 .772 .896 1.21 1.35 

6 .405 .499 .621 .714 .94 1.03 
7 .347 .426 .525 .600 .77 .85 
8 .306 .373 .459 .521 .67 .73 
9 .275 .334 .409 .464 .59 .64 

10 .250 .304 .371 .419 .53 .58 

11 .233 .280 .340 .384 .48 .52 
12 .214 .260 .315 .355 .44 .48 
13 .201 .243 .294 .331 .41 .45 
14 .189 .228 .276 .311 .39 .42 
15 .179 .216 .261 .293 .36 .39 

16 .170 .205 .247 .278 .34 .37 
17 .162 .195 .236 .264 .33 .35 
18 .155 .187 .225 .252 .31 .34 
19 .149 .179 .216 .242 .30 .32 
20 .143 .172 .207 .232 .29 .31 

Adapted with permission from Biometrika, Vol. 34 (1947) from article entitled “The Use of the Range in Place of the 
Standard Deviation in the t Test” by E. Lord. 
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TABLE A-14. CRITERIA FOR REJECTION OF OUTLYING OBSERVATIONS 

Statistic 
Number of 

Obser¬ 
vations, 

n 

Upper Percentiles 

.70 .80 .90 .95 .98 .99 .995 

3 .684 .781 .886 .941 .976 .988 .994 

4 .471 .560 .679 .765 .846 .889 .926 
Tio 

5 .373 .451 .557 .642 .729 .780 .821 

6 .318 .386 .482 .560 .644 .698 .740 

7 .281 .344 .434 .507 .586 .637 .680 

8 .318 .385 .479 .554 .631 .683 .725 

Til 9 .288 .352 .441 .512 .587 .635 .677 

10 .265 .825 .409 .477 .551 .597 .639 

11 .391 .442 .517 .576 .638 .679 .713 

t*21 12 .370 .419 .490 .546 .605 .642 .675 

13 .351 .399 .467 .521 .578 .615 .649 

14 .370 .421 .492 .546 .602 .641 .674 

15 .353 .402 .472 .525 .579 .616 .647 

16 .338 .386 .454 .507 .559 .595 .624 

17 .325 .373 .438 .490 .542 .577 .605 

18 .314 .361 .424 .475 .527 .561 .589 

19 .304 .350 .412 .462 .514 .547 .575 
t*22 

20 .295 .340 .401 .450 .502 .535 .562 

21 .287 .331 .391 .440 .491 .524 .551 

22 .280 .323 .382 .430 .481 .514 .541 

23 .274 .316 .374 .421 .472 .505 .532 

24 .268 .310 .367 .413 .464 .497 .524 

25 .262 .304 .360 .406 .457 .489 .516 

Adapted by permission from Introduction to Statistical Analysis (2d ed.) by W. J. Dixon and F. J. Massey, Jr., Copyright, 1957, 
McGraw-Hill Book Company, Inc. 
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TABLE A-l 5. CRITICAL VALUES OF L FOR LINK-WALLACE TEST 

a = .05 

Adapted by permission from “Some Short Cuts to Allowances,” Table 1, by R. F. Link and D. L. Wallace, Princeton University, 
(unpublished manuscript). 
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TABLE A-l 5 (Continued). CRITICAL VALUES OF L FOR LINK-WALLACE TEST 

a = .01 

t = number of groups = number of ranges 
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TABLE A-16. PERCENTAGE POINTS OF THE EXTREME STUDENTIZED DEVIATE 
FROM SAMPLE MEAN, 

tn = (X„ - X)/*» (o0 U = (X - XO/s, 

This table is to be used with s„, an external estimate of <r, based on v degrees of freedom, not with 
the s computed from the sample in hand. 

V a = .05 a = .01 

A 3 4 5 6 7 8 9 12 3 4 5 6 7 8 9 12 

10 2.01 2.27 2.46 2.60 2.72 2.81 2.89 3.08 2.78 3.10 3.32 3.48 3.62 3.73 3.82 4.04 
11 1.98 2.24 2.42 2.56 2.67 2.76 2.84 3.03 2.72 3.02 3.24 3.39 3.52 3.63 3.72 3.93 
12 1.96 2.21 2.39 2.52 2.63 2.72 2.80 2.98 2.67 2.96 3.17 3.32 3.45 3.55 3.64 3.84 
13 1.94 2.19 2.36 2.50 2.60 2.69 2.76 2.94 2.63 2.92 3.12 3.27 3.38 3.48 3.57 3.76 
14 1.93 2.17 2.34 2.47 2.57 2.66 2.74 2.91 2.60 2.88 3.07 3.22 3.33 3.43 3.51 3.70 

15 1.91 2.15 2.32 2.45 2.55 2.64 2.71 2.88 2.57 2.84 3.03 3.17 3.29 3.38 3.46 3.65 
16 1.90 2.14 2.31 2.43 2.53 2.62 2.69 2.86 2.54 2.81 3.00 3.14 3.25 3.34 3.42 3.60 
17 1.89 2.13 2.29 2.42 2.52 2.60 2.67 2.84 2.52 2.79 2.97 3.11 3.22 3.31 3.38 3.56 
18 1.88 2.11 2.28 2.40 2.50 2.58 2.65 2.82 2.50 2.77 2.95 3.08 3.19 3.28 3.35 3.53 
19 1.87 2.11 2.27 2.39 2.49 2.57 2.64 2.80 2.49 2.75 2.93 3.06 3.16 3.25 3.33 3.50 

20 1.87 2.10 2.26 2.38 2.47 2.56 2.63 2.78 2.47 2.73 2.91 3.04 3.14 3.23 3.30 3.47 
24 1.84 2.07 2.23 2.34 2.44 2.52 2.58 2.74 2.42 2.68 2.84 2.97 3.07 3.16 3.23 3.38 
30 1.82 2.04 2.20 2.31 2.40 2.48 2.54 2.69 2.38 2.62 2.79 2.91 3.01 3.08 3.15 3.30 
40 1.80 2.02 2.17 2.28 2.37 2.44 2.50 2.65 2.34 2.57 2.73 2.85 2.94 3.02 3.08 3.22 

60 1.78 1.99 2.14 2.25 2.33 2.41 2.47 2.61 2.29 2.52 2.68 2.79 2.88 2.95 3.01 3.15 
120 1.76 1.96 2.11 2.22 2.30 2.37 2.43 2.57 2.25 2.48 2.62 2.73 2.82 2.89 2.95 3.08 

oo 1.74 1.94 2.08 2.18 2.27 2.33 2.39 2.52 2.22 2.43 2.57 2.68 2.76 2.83 2.88 3.01 

Adapted by permission from Biometrika Tables for Statisticians, Vol. I (2d ed.), edited by E. S. Pearson and H. O. Hartley, 
Copyright, 1958, Cambridge University Press. 
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TABLES ORDP 20-114 

TABLE A-17. CONFIDENCE BELTS FOR THE CORRELATION COEFFICIENT 

(CONFIDENCE COEFFICIENT .95) 

SCALE OF r (SAMPLE CORRELATION COEFFICIENT) 

THE NUMBERS ON THE CURVES INDICATE SAMPLE SIZE 

Reproduced by permission from Biometrika Tables for Statisticians, Vol. I (2d ed.), edited by E. S. Pearson and H. O. Hartley, 
Copyright, 1958, Cambridge University Press. 
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TABLE A-l9. MAXIMUM AND MINIMUM WORKING PROBITS AND RANGE 

Expected 
Probit 

y 

Minimum 
Working 

Probit 
Yo 

Range 
1 Z 

Maximum 
Working 

Probit 
y ioo 

Expected 
Probit 

y 

1.1 0.8579 5034 9.1421 8.9 
1.2 0.9522 3425 9.0478 8.8 
1.3 1.0462 2354 8.9538 8.7 
1.4 1.1400 1634 8.8600 8.6 
1.5 1.2334 1146 8.7666 8.5 

1.6 1.3266 811.5 8.6734 8.4 
1.7 1.4194 580.5 8.5806 8.3 
1.8 1.5118 419.4 8.4882 8.2 
1.9 1.6038 306.1 8.3962 8.1 
2.0 1.6954 225.6 8.3046 8 0 

2.1 1.7866 168.00 8.2134 7.9 
2.2 1.8772 126.34 8.1228 7.8 
2.3 1.9673 95.96 8.0327 7.7 
2.4 2.0568 73.62 7.9432 7.6 
2.5 2.1457 57.05 7.8543 7.5 

2.6 2.2339 44.654 7.7661 7.4 
2.7 2.3214 35.302 7.6786 7.3 
2.8 2.4081 28.189 7.5919 7.2 
2.9 2.4938 22.736 7.5062 7.1 
3.0 2.5786 18.522 7.4214 7.0 

3.1 2.6624 15.240 7.3376 6.9 
3.2 2.7449 12.666 7.2551 6.8 
3.3 2.8261 10.633 7.1739 6.7 
3.4 2.9060 9.015 7.0940 6.6 
3.5 2.9842 7.721 7.0158 6.5 

3.6 3.0606 6.6788 6.9394 6.4 
3.7 3.1351 5.8354 6.8649 6.3 
3.8 3.2074 5.1497 6.7926 6.2 
3.9 3.2773 4.5903 6.7227 6.1 
4.0 3.3443 4.1327 6.6557 6.0 

4.1 3.4083 3.7582 6.5917 5.9 
4.2 3.4687 3.4519 6.5313 5.8 
4.3 3.5251 3.2025 6.4749 5.7 
4.4 3.5770 3.0010 6.4230 5.6 
4.5 3.6236 2.8404 6.3764 5.5 

4.6 3.6643 2.7154 6.3357 5.4 
4.7 3.6982 2.6220 6.3018 5.3 
4.8 3.7241 2.5573 6.2759 5.2 
4.9 3.7407 2.5192 6.2593 5.1 
5.0 3.7467 2.5066 6.2533 5.0 

Discrepancies between the source table and some other tables were noted in the entries for ya corresponding to Y = 
1.5 and Y = 2.6. These two values were recalculated and altered from the source table in the last place. 

Adapted with permission from Statistical Tables for Biological, Agricultural and Medical Research (5th ed.) by R. A. Fisher and F. Yates. 
Copyright, 1957, Oliver and Boyd Ltd., Edinburgh. (Published in U. S. by Hafner Publishing Company, Inc.) 
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TABLE A-20. FACTORS FOR COMPUTING TWO-SIDED CONFIDENCE LIMITS FOR <r 

Degrees 
of 

a = .05 a = .01 a = .001 

Freedom 

Bu Bl Bu Bl Bu Bl 

1 17.79 .3576 86.31 .2969 844.4 .2480 
2 4.859 .4581 10.70 .3879 33.29 .3291 
3 3.183 .5178 5.449 .4453 11.65 .3824 
4 2.567 .5590 3.892 .4865 6.938 .4218 
5 2.248 .5899 3.175 .5182 5.085 .4529 
6 2.052 .6143 2.764 .5437 4.128 .4784 
7 1.918 .6344 2.498 .5650 3.551 .5000 
8 1.820 .6513 2.311 .5830 3.167 .5186 
9 1.746 .6657 2.173 .5987 2.894 .5348 

10 1.686 .6784 2.065 .6125 2.689 .5492 

1 1 1.638 .6896 1.980 .6248 2.530 .5621 
12 1.598 .6995 1.909 .6358 2.402 .5738 
13 1.564 .7084 1.851 .6458 2.298 .5845 
14 1.534 .7166 1.801 .6549 2.210 .5942 
15 1.509 .7240 1.758 .6632 2.136 .6032 
16 1.486 .7308 1.721 .6710 2.073 .6116 
17 1.466 .7372 1.688 .6781 2.017 .6193 
1 8 1.448 .7430 1.658 .6848 1.968 .6266 
19 1.432 .7484 1.632 .6909 1.925 .6333 
20 1.417 .7535 1.609 .6968 1.886 .6397 

21 1.404 .7582 1.587 .7022 1.851 .6457 
22 1.391 .7627 1.568 .7074 1.820 .6514 
23 1.380 .7669 1.550 .7122 1.791 .6568 
24 1.370 .7709 1.533 .7169 1.765 .6619 
25 1.360 .7747 1.518 .7212 1.741 .6668 
26 1.351 .7783 1.504 .7253 1.719 .6713 
27 1.343 .7817 1.491 .7293 1.698 .6758 
28 1.335 .7849 1.479 .7331 1.679 .6800 
29 1.327 .7880 1.467 .7367 1.661 .6841 
30 1.321 .7909 1.457 .7401 1.645 .6880 

31 1.314 .7937 1.447 .7434 1.629 .6917 
32 1.308 .7964 1.437 .7467 1.615 .6953 
33 1.302 .7990 1.428 .7497 1.601 .6987 
34 1.296 .8015 1.420 .7526 1.588 .7020 
35 1.291 .8039 1.412 .7554 1.576 .7052 
36 1.286 .8062 1.404 .7582 1.564 .7083 
37 1.281 .8085 1.397 .7608 1.553 .7113 
38 1.277 .8106 1.390 .7633 1.543 .7141 
39 1.272 .8126 1.383 .7658 1.533 .7169 
40 1.268 .8146 1.377 .7681 1.523 .7197 

41 1.264 .8166 1.371 .7705 1.515 .7223 
42 1.260 .8184 1.365 .7727 1.506 .7248 
43 1.257 .8202 1.360 .7748 1.498 .7273 
44 1.253 .8220 1.355 .7769 1.490 .7297 
45 1.249 .8237 1.349 .7789 1.482 .7320 
46 1.246 .8253 1.345 .7809 1.475 .7342 
47 1.243 .8269 1.340 .7828 1.468 .7364 
48 1.240 .8285 1.335 .7847 1.462 .7386 
49 1.237 .8300 1.331 .7864 1.455 .7407 
50 1.234 .8314 1.327 .7882 1.449 .7427 

Adapted with permission from Biometrika, Vol. 47, (1960), from article entitled “Tables for Making Inferences About the Variance of a Normal 
Distribution” by D. V. Lindley, D. A. East, and P. A. Hamilton. 
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TABLE A-20 (Continued). FACTORS FOR COMPUTING TWO-SIDED CONFIDENCE LIMITS FOR <7 

Degrees 
of 

« = .05 « = .01 - = .001 

Freedom 

Bu Bl Bl Bu Bl 

51 1.232 .8329 1.323 .7899 1.443 .7446 
52 1.229 .8343 1.319 .7916 1.437 .7466 
53 1.226 .8356 1.315 .7932 1.432 .7485 
54 1.224 .8370 1.311 .7949 1.426 .7503 
55 1.221 .8383 1.308 .7964 1.421 .7521 
56 1.219 .8395 1.304 .7979 1.416 .7539 
57 1.217 .8408 1.301 .7994 1.411 .7556 
58 1.214 .8420 1.298 .8008 1.406 .7573 
59 1.212 .8431 1.295 .8022 1.402 .7589 
60 1.210 .8443 1.292 .8036 1.397 .7605 

61 1.208 .8454 1.289 .8050 1.393 .7621 
62 1.206 .8465 1.286 .8063 1.389 .7636 
63 1.204 .8475 1.283 .8076 1.385 .7651 
64 1.202 .8486 1.280 .8088 1.381 .7666 
65 1.200 .8496 1.277 .8101 1.377 .7680 
66 1.199 .8506 1.275 .8113 1.374 .7694 
67 1.197 .8516 1.272 .8125 1.370 .7708 
68 1.195 .8525 1.270 .8137 1.366 .7722 
69 1.194 .8535 1.268 .8148 1.363 .7735 
70 1.192 .8544 1.265 .8159 1.360 .7749 

71 1.190 .8553 1.263 .8170 1.356 .7761 
72 1.189 .8562 1.261 .8181 1.353 .7774 
73 1.187 .8571 1.259 .8191 1.350 .7787 
74 1.186 .8580 1.257 .8202 1.347 .7799 
75 1.184 .8588 1.255 .8212 1.344 .7811 
76 1.183 .8596 1.253 .8222 1.341 .7822 
77 1.182 .8604 1.251 .8232 1.338 .7834 
78 1.181 .8612 1.249 .8242 1.336 .7845 
79 1.179 .8620 1.247 .8252 1.333 .7856 
80 1.178 .8627 1.245 .8261 1.330 .7868 

81 1.176 .8635 1.243 .8270 1.328 .7878 
82 1.176 .8642 1.241 .8279 1.325 .7889 
83 1.174 .8650 1.239 .8288 1.323 .7899 
84 1.173 .8657 1.238 .8297 1.320 .7909 
85 1.172 .8664 1.236 .8305 1.318 .7920 
86 1.171 .8671 1.235 .8314 1.316 .7930 
87 1.170 .8678 1.233 .8322 1.313 .7939 
88 1.168 .8684 1.231 .8331 1.311 .7949 
89 1.167 .8691 1.230 .8338 1.309 .7959 
90 1.166 .8697 1.228 .8346 1.307 .7968 

91 1.165 .8704 1.227 .8354 1.305 .7977 
92 1.164 .8710 1.225 .8362 1.303 .7987 
93 1.163 .8716 1.224 .8370 1.301 .7996 
94 1.162 .8722 1.222 .8377 1.298 .8004 
95 1.161 .8729 1.221 .8385 1.297 .8013 
96 1.160 .8734 1.219 .8392 1.295 .8022 
97 1.159 .8741 1.218 .8399 1.293 .8031 
98 1.158 .8746 1.217 .8406 1.291 .8039 
99 1.158 .8752 1.216 .8413 1.289 .8047 

100 1.157 .8757 1.214 .8420 1.288 .8055 
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TABLE A-21. FACTORS FOR COMPUTING ONE-SIDED CONFIDENCE LIMITS FOR <r 

Degrees of 
Freedom 

V 

A 06 A 96 A.025 A. 976 A oi A.99 A. 005 A.995 

1 .5103 15.947 .4461 31.910 .3882 79.786 .3562 159.576 
2 .5778 4.415 .5207 6.285 .4660 9.975 .4344 14.124 
3 .6196 2.920 .5665 3.729 .5142 5.111 .4834 6.467 
4 .6493 2.372 .5992 2.874 .5489 3.669 .5188 4.396 

5 .6721 2.089 .6242 2.453 .5757 3.003 .5464 3.485 
6 .6903 1.915 .6444 2.202 .5974 2.623 .5688 2.980 
7 .7054 1.797 .6612 2.035 .6155 2.377 .5875 2.660 
8 .7183 1.711 .6754 1.916 .6310 2.204 .6037 2.439 
9 .7293 1.645 .6878 1.826 .6445 2.076 .6177 2.278 

10 .7391 1.593 .6987 1.755 .6564 1.977 .6301 2.154 
11 .7477 1.551 .7084 1.698 .6670 1.898 .6412 2.056 
12 .7554 1.515 .7171 1.651 .6765 1.833 .6512 1.976 
13 .7624 1.485 .7250 1.611 .6852 1.779 .6603 1.909 
14 .7688 1.460 .7321 1.577 .6931 1.733 .6686 1.854 
15 .7747 1.437 .7387 1.548 .7004 1.694 .6762 1.806 
20 .7979 1.358 .7650 1.444 .7297 1.556 .7071 1.640 
25 .8149 1.308 .7843 1.380 .7511 1.473 .7299 1.542 

30 .8279 1.274 .7991 1.337 .7678 1.416 .7477 1.475 
40 .8470 1.228 .8210 1.279 .7925 1.343 .7740 1.390- 
50 .8606 1.199 .8367 1.243 .8103 1.297 .7931 1.337 
60 .8710 1.179 .8487 1.217 .8239 1.265 .8078 1.299 
70 .8793 1.163 .8583 1.198 .8349 1.241 .8196 1.272 
80 .8861 1.151 .8662 1.183 .8439 1.222 .8293 1.250 
90 .8919 1.141 .8728 1.171 .8515 1.207 .8376 1.233 

100 .8968 1.133 .8785 1.161 .8581 1.195 .8446 1.219 

For large degrees of freedom, we may use the approximate formula: 

Ap = '\/2dv/(^Zp -(- — 1), 

where zP is found in Table A-2. 

T-36 



TABLES ORDP 20-114 

TABLE A-22. CONFIDENCE LIMITS FOR A PROPORTION (TWO-SIDED) 

For confidence limits for n > 30, see Table A-24. 

Upper limits are in boldface. The observed proportion in a random sample is r/n 

' 
90% 95% 99% 

' 
90% 95% 99% 

n = 2 

0 0 .900 0 .950 0 .990 0 0 .684 0 .776 0 .900 
1 .100 1 .050 1 .010 1 1 .051 .949 .025 + .975- .005 + .995- 

2 .316 1 .224 1 .100 1 

n = 3 n = 4 

0 0 .536 0 .632 0 .785- 0 0 .500 0 .527 0 .684 
1 .035- .804 .017 .865 - .003 .941 1 .026 .680 .013 .751 .003 .859 
2 .196 .965 + .135 + .983 .059 .997 2 .143 .857 .098 .902 .042 .958 
3 .464 1 .368 1 .215 + 1 3 .320 .974 .249 .987 .141 .997 

4 .500 1 | .473 1 | .316 1 

n = 5 n = 6 

0 0 .379 0 .500 0 .602 0 0 .345- 0 .402 0 .536 
1 .021 .621 .010 .657 .002 .778 1 .017 .542 .009 .598 .002 .706 
2 .112 .753 .076 .811 .033 .894 2 .093 .667 .063 .729 .027 .827 
3 .247 .888 .189 .924 .106 .967 3 .201 .799 .153 .847 .085 - .915 + 
4 .379 .979 .343 .990 .222 .998 4 .333 .907 .271 .937 .173 .973 
5 .621 1 .500 1 .398 1 5 .458 .983 .402 .991 .294 .998 

6 .655 + 1 .598 1 .464 1 

n = 7 n = 8 

0 0 .316 0 .377 0 .500 0 0 .255- 0 .315 + 0 .451 
1 .015- .500 .007 .554 .001 .643 1 .013 .418 .006 .500 .001 .590 
2 .079 .684 .053 .659 .023 .764 2 .069 .582 .046 .685- .020 .707 
3 .170 .721 .129 .775- .071 .858 3 .147 .745 + .111 .711 .061 .802 
4 .279 .830 .225 + .871 .142 .929 4 .240 .760 .193 .807 .121 .879 
5 .316 .921 .341 .947 .236 .977 5 .255- .853 .289 .889 .198 .939 

6 .500 .985 + .446 .993 .357 .999 6 .418 .931 .315 + .954 .293 .980 
7 .684 1 .623 1 .500 1 7 .582 .987 .500 .994 .410 .999 

8 .745 + 1 .685- 1 .549 1 

n = 9 n = 10 

0 0 .232 0 .289 0 .402 0 0 .222 0 .267 0 .376 
1 .012 .391 .006 .443 .001 .598 ] .010 .352 .005 + .397 .001 .512 
2 .061 .515 + .041 .558 .017 .656 2 .055 — .500 .037 .603 .016 .624 
3 .129 .610 .098 .711 .053 .750 3 .116 .648 .087 .619 .048 .703 
4 .210 .768 .169 .749 .105 + .829 4 .188 .659 .150 .733 .093 .782 
5 .232 .790 .251 .831 .171 .895- 5 .222 .778 .222 .778 .150 .850 

6 .390 .871 .289 .902 .250 .947 6 .341 .812 .267 .850 .218 .907 
7 .485- .939 .442 .959 .344 .983 7 .352 .884 .381 .913 .297 .952 
8 .609 .988 .557 .994 .402 .999 8 .500 .945 + .397 .963 .376 .984 
9 .768 1 .711 1 . 598 1 9 .648 .990 .603 .995- .488 .999 

10 .778 1 .733 1 .624 1 

n = 11 n = 12 

0 0 .197 0 .250 0 .359 0 
° 

.184 0 .236 0 .321 
1 .010 .315 + .005- .369 .001 .500 1 .294 .004 .346 .001 .445 + 
2 .049 .423 .033 .500 .014 .593 2 .045 + .398 .030 .450 .013 .555 — 
3 .105- .577 .079 .631 .043 .660 3 .096 .500 .072 .550 .039 .679 
4 .169 .685- .135 + .667 .084 .738 4 .154 .602 .123 .654 .076 .698 
5 .197 .698 .200 .750 .134 .806 5 .184 .706 .181 .706 .121 .765 + 

6 .302 .803 .250 .800 .194 .866 6 .271 .729 .236 .764 .175- .825 + 
7 .315 + .831 .333 .865- .262 .916 7 .294 .816 .294 .819 .235- .879 
8 .423 .895 + .369 .921 .340 .957 8 .398 .846 .346 .877 .302 .924 
9 .577 .951 .500 .967 .407 .986 9 .500 .904 .450 .928 .321 .961 

10 .685- .990 .631 .995 + .500 .999 10 .602 .955- .550 .970 .445 + .987 

11 .803 x .750 1 .641 x 11 .706 .991 .654 .996 .555- .999 
12 .816 1 .764 1 .679 1 

Reproduced by permission from Statistics Manual, NAVORD REPORT 3369, NOTS 948, by E. L. Crow, F. A. Davis, and M. W. Maxfield, 
1955, U.S. Naval Ordnance Test Station, China Lake, California. 
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TABLE A-22 (Continued). CONFIDENCE LIMITS FOR A PROPORTION (TWO-SIDED) 

' 
90% 95% 99% 

' 
90% 95% 99% 

n = 13 n = 14 

0 0 .173 0 .225 + 0 .302 0 0 .163 0 .207 0 .286 
1 .008 .276 .004 .327 .001 .429 1 .007 .261 .004 .312 .001 .392 
2 .042 .379 .028 .434 .012 .523 2 .039 .365 + .026 .389 .011 .500 
3 .088 .470 . 066 .520 .036 .594 3 .081 .422 .061 .500 .033 .608 
4 .142 .545- .113 .587 .069 .698 4 .131 .578 .104 .611 .064 .636 
5 .173 .621 .166 .673 .111 .727 5 .163 .594 .153 .629 .102 .714 

6 .246 .724 .224 .740 .159 .787 6 .224 .645 + .206 .688 .146 .751 
7 .276 .754 .260 .776 .213 .841 7 .261 .739 .207 .793 .195- .805 + 
8 .379 .827 .327 .834 .273 .889 8 .355- .776 .312 .794 .249 .854 
9 .455 + .858 .413 .887 .302 .931 9 .406 .837 .371 .847 .286 .898 

10 .530 .912 .480 .934 .406 .964 10 .422 .869 .389 .896 .364 .936 

11 .621 .958 .566 .972 .477 .988 11 .578 .919 .500 .939 .392 .967 
12 .724 .992 .673 .996 .571 .999 12 .635- .961 .611 .974 .500 .989 
13 .827 .775- .698 13 .739 .993 .688 .996 .608 .999 

14 .837 1 .793 1 .714 

n = 15 n = 16 

0 0 .154 0 .191 0 .273 0 0 .147 0 .179 0 .264 
1 .007 .247 .003 .302 .001 .373 1 .007 .235 + .003 .273 .001 .357 
2 .036 .326 .024 .369 .010 .461 2 .305 + .352 .010 .451 
3 .076 .400 .057 .448 .031 .539 3 .071 .381 !o53 .429 .029 .525 - 
4 .122 .500 .097 .552 .059 .627 4 .114 .450 .090 .500 .055 + .579 
5 .154 .600 .142 .631 .094 .672 5 .147 .550 .132 .571 .088 .643 

6 .205 + .674 .191 .668 .135- .727 6 .189 .619 .178 .648 .125 + .705- 
7 .247 .675- .192 .706 .179 .771 7 .235 + .695- .179 .727 .166 .739 
8 .325 + .753 .294 .808 .229 .821 8 .299 .701 .272 .728 .212 .788 
9 .326 .795- .332 .809 .273 .865 + 9 .305 + .765- .273 .821 .261 .834 

10 .400 .846 .369 .858 .328 .906 10 .381 .811 .352 .822 .295 + .875- 

11 .500 .878 .448 .903 .373 • .941 11 .450 .853 .429 .868 .357 .912 
12 .600 .924 .552 .943 .461 .969 12 .550 .886 .500 .910 .421 .945- 
13 .674 .964 .631 .976 .539 .990 13 .619 .929 .571 .947 .475 + .971 
14 .753 .993 .698 .997 .627 .999 14 .695- .966 .648 .977 .549 .990 
15 .846 1 .809 1 .727 1 15 .765- .993 .727 .997 .643 .999 

16 .853 1 .821 1 .736 1 

n = 17 (1 = 18 

0 0 .140 0 .167 0 .243 0 0 .135- 0 .157 0 .228 
1 .006 .225 + .003 .254 .001 .346 1 .006 .216 .003 .242 .001 .318 
2 .032 .290 .021 .337 .009 .413 2 .030 .277 .020 .325- .397 
3 .067 .364 .050 .417 .027 .500 3 .063 .349 .047 .381 !o25 + .466 
4 .107 .432 .085- .489 .052 .587 4 .101 .419 .080 .444 .049 .534 
5 .140 .500 .124 .544 .082 .620 5 .135- .482 .116 .556 .077 .603 

6 .175 + .568 166 .594 .117 .662 6 .163 .536 .156 .619 .110 .682 
7 .225 + .636 +67 .663 .155 + .757 7 .216 .584 .157 .625 + .145 + .686 
8 .277 .710 .253 .746 .197 .758 8 .257 .651 .236 .675 + .184 .772 
9 .290 .723 .254 .747 .242 .803 9 .277 .723 .242 .758 .226 .774 

10 .364 .775 - .337 .833 .243 .845 10 .349 .743 .325- .764 .228 .816 

11 .432 .825 - .406 .834 .338 .883 11 .416 .784 .375- .843 .314 .855- 
12 .500 .860 .456 .876 .380 .918 12 .464 .837 .381 .844 .318 .890 
13 .568 .893 .511 .915 + .413 .948 13 .518 .865 + .444 .884 .397 .923 
14 .636 .933 .583 .950 .500 .973 14 .581 .899 .556 .920 .466 .951 
15 .710 .968 .663 .979 .587 .991 15 .651 .937 .619 .953 .534 .975- 

16 .775- .994 .746 .997 .654 .999 16 .723 .970 .675 + .980 .603 .992 
17 .860 1 .833 .757 1 17 .784 .994 .758 .997 .682 .999 

18 .865 + 1 .843 1 .772 1 

n = 19 n = 20 

0 0 .130 0 .150 0 .218 0 0 .126 0 .143 0 .209 
.006 .209 .003 .232 .001 .305 + .005 + .203 .003 .222 .001 .293 

2 .028 .265 + .019 .316 .008 .383 2 .027 .255- .018 .294 .008 .375- 
.059 .337 .044 .365- .024 .455 + 3 .056 .328 .042 .351 .023 .424 

4 .095 + .387 .075 + .426 .046 .515 + 4 .090 .367 .071 .411 .044 .500 
5 .130 .440 .110 .500 .073 .564 5 .126 .422 .104 .467 .069 .576 

6 .151 .560 .147 .574 .103 .617 6 .141 .500 .140 .533 .098 .601 
7 .209 .613 .150 .635 + .137 .695- 7 .201 .578 .143 .589 .129 .637 
8 .238 .614 .222 .655 + .173 .707 8 .221 .633 209 .649 .163 .707 
9 .265 + .663 .232 .688 .212 .782 9 .255- .642 .222 .706 .200 .726 

10 .337 .735- .312 .768 .218 .788 10 .325 .675 + .293 .707 .209 .791 

11 .386 .762 .345- .778 .293 .827 11 .358 .745 + .294 .778 .274 .800 
12 .387 .791 .365- .850 .305 + .863 12 .367 .779 .351 .791 .293 .837 
13 .440 .849 .426 .853 .383 .897 13 .422 .799 .411 .857 .363 .871 
14 .560 .870 .500 .890 .436 .927 14 .500 .859 .467 .860 .399 .902 
15 .613 .905 - .574 .925 - .485- .954 15 .578 .874 .533 .896 .424 .931 

16 .663 .941 .635 + .956 .545- .976 16 .633 .910 .589 .929 .500 .956 
17 .735- .972 .684 .981 .617 .992 17 .672 .944 .649 .958 .576 .977 
18 .791 .994 .768 .997 .695- .999 18 .745 + .973 .706 .982 .625 + .992 
19 .870 1 .850 1 .782 1 19 .797 .995 - .778 .997 .707 .999 

20 .874 1 .857 1 .791 1 
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TABLE A-22 (Continued). CONFIDENCE LIMITS FOR A PROPORTION (TWO-SIDED) 

' 
90% 95% 99% 90% 95% 99% 

n = 21 n = 22 

0 0 .123 0 .137 0 .201 0 0 .116 0 .132 0 .194 
.005 + .192 .002 .213 .000 .283 1 .005- .182 .002 .205 + .000 .273 

2 .026 .245- .017 .277 .007 .347 2 .024 .236 .016 .264 .007 .334 
3 .054 .307 .040 .338 .022 .409 3 .051 .289 .038 .326 .021 .396 
4 .086 .353 .068 .398 .041 .466 4 .082 .340 . 065 — .389 .039 .454 
5 .121 .407 .099 .455 + .065 + .534 5 .115- .393 .094 .424 .062 .505 - 
6 .130 .458 .132 .506 .092 .591 6 .116 .444 .126 .500 .088 .550 
7 .191 .542 .137 .551 .122 .653 7 .181 .500 .132 .576 .116 .604 
8 .192 .593 .197 .602 .155- .661 8 .182 .556 .187 .582 .147 .666 
9 .245- .647 .213 .662 .189 .717 9 .236 .607 .205 + .617 .179 .682 

10 .306 .693 .276 .723 .201 .743 10 .289 .660 .260 .674 .194 .727 

11 .307 .694 .277 .724 .257 .799 11 .290 .710 .264 .736 .242 .758 
12 .353 .755 + .338 .787 .283 .811 12 .340 .711 .326 .740 .273 .806 
13 .407 .808 .398 .803 .339 .845 + 13 .393 .764 .383 .795- .318 .821 
14 .458 .809 .449 .863 .347 .878 14 .444 .818 .418 .813 .334 .853 
15 .542 .870 .494 .868 .409 .908 15 .500 .819 .424 .868 .396 .884 

16 .593 .879 .545- .901 .466 .935- 16 .556 .884 .500 .874 .450 .912 
17 .647 .914 .602 .932 .534 .959 17 .607 .885 + .576 .906 .495 + .938 
18 .693 .946 .662 .960 .591 .978 18 .918 .611 .935 + .546 .961 
19 .755 + .974 .723 .983 .653 .993 19 .711 .949 .674 .962 .604 .979 
20 .808 .995- .787 .998 .717 1.000 20 .764 .976 .736 .984 .666 .993 

21 .877 .863 1 .799 21 .818 .995 + .795- .998 727 ] 1.000 
22 .884 1 .868 1 ^806 1 

n = 23 n = 24 

0 0 .111 0 .127 0 .187 0 0 .105 + 0 .122 0 .181 
1 .005- .174 .002 .198 .000 .265 + 1 .004 .165 + .002 .191 .000 .259 
2 .023 .228 .016 .255- .007 .323 2 .022 .221 .015 + .246 .006 .313 
3 .049 .274 .037 .317 .020 .386 3 .047 .264 .035- .308 .019 .364 
4 .078 .328 .062 .361 .038 .429 4 .075- .317 .059 .347 .036 .416 
5 .110 .381 .090 .409 .059 .500 5 .105- .370 .086 .396 .057 .464 

6 .111 .431 .120 .457 .084 .571 6 .105 + .423 .115- .443 .080 .536 
7 .173 .479 .127 .543 .111 .580 7 . 165 — .448 .122 .500 .106 .584 
8 .174 .522 .178 .591 .140 .616 8 .165 + .552 .169 .557 .133 .636 
9 .228 .569 .198 .639 .171 .677 9 .221 .553 .191 .604 .163 .638 

10 .273 .619 .247 .640 .187 .702 10 .259 .587 .234 .653 .181 .687 

11 .274 .672 .255- .683 .229 .735- n .264 .630 .246 .661 .216 .720 
12 .328 .726 .317 .745 + .265 + .771 12 .317 .683 308 .692 .257 .743 
13 .381 .727 .360 .753 .298 .813 13 .370 .736 .339 .754 .784 
14 .431 .772 .361 .802 .323 .829 14 .413 .741 .347 .766 i313 .819 
15 .478 .826 .409 .822 .384 .860 15 .447 .779 .396 .809 .362 .837 

16 .521 .827 .457 .873 .420 .889 16 .448 .835- .443 .831 .364 .867 
17 .569 .889 .543 .880 .429 .916 17 .552 .835 + .500 .878 .416 .894 
18 .619 .890 .591 .910 .500 .941 18 .577 .895- .557 .885 + .464 .920 
19 .672 .922 639 .938 .571 .962 19 .630 .895 + .604 .914 .536 .943 
20 .726 .951 .683 .963 .614 .980 20 .683 .925 + .653 .941 .584 .964 

21 .772 .977 .745 + .984 .677 .993 21 .736 .953 .692 .965 + .636 .981 
22 .826 .995 + .802 .998 .735- ] 1.000 22 .779 .978 .754 .985- .687 .994 
23 .889 1 .873 1 .813 1 23 .835- .996 .809 .998 .741 ] 1.000 

24 .895- 1 .878 1 .819 1 

I) = 25 n = 26 

0 0 .102 0 .118 0 .175 + 0 0 .098 0 .114 0 .170 
.004 .159 .002 .185 + .000 .246 1 .004 .152 .002 .180 .000 .235- 

2 .021 .214 .014 .238 .006 .305- 2 .021 .209 .014 .230 .006 .298 
3 .045- .255- .034 .303 .018 .352 3 .043 .247 .032 .283 .017 .342 
4 .072 .307 .057 .336 .034 .403 4 .069 .299 .054 .325 + .033 .393 
5 .101 .362 .082 .384 .054 .451 5 .097 .343 .079 .374 .052 .442 

6 .102 .390 .110 .431 .077 .500 6 .098 .377 .106 .421 .073 .487 
7 .158 .432 .118 .475- .101 .549 7 .151 .419 .114 .465- .097 .526 
8 .159 .500 .161 .525 + .127 .597 8 .152 .460 .154 .506 .122 .562 
9 .214 .568 .185 + .569 .155 + .648 9 .209 .540 .180 .542 .149 .607 

10 .246 .610 .222 .616 . 175 + .658 10 .233 .581 .212 .579 .170 .658 

11 .255- .611 .238 .664 .205 + .695 + 11 .247 .623 .230 .626 .195- .678 
12 .307 .640 .296 .683 .245 + .754 12 .299 .657 .282 .675- .234 .702 
13 .360 .693 .317 .704 .246 .755- 13 .342 .658 .283 .717 .235- .765 + 
14 .389 .745 + .336 .762 .305- .795- 14 .343 .701 .325 + .718 .298 .766 
15 .390 .754 .384 ,778 .342 .825- 15 .377 .753 .374 .770 .322 .805 + 
16 .432 .786 .431 .815- .352 .845- 16 .419 .767 .421 .788 .342 .830 
17 .500 .841 .475- .839 .403 .873 17 .460 .791 .458 .820 .393 .851 
18 .568 .842 .525 + .882 .451 .899 18 .540 .848 .494 .846 .438 .878 
19 .610 .898 .569 .890 .500 .923 19 .581 .849 .535 — .474 .903 
20 .638 .899 .616 .918 .549 .946 20 .623 .902 .579 .894 .513 .927 

21 .693 .928 .664 .943 .597 .966 21 .657 .903 626 .921 .558 .948 
22 .745 + .955 + .966 .982 22 .701 .931 675 — .946 .607 .967 
23 .786 .979 .762 .986 .695 + .994 23 .753 .957 .717 .968 .658 .983 
24 .841 .996 .815- .998 .754 1 1.000 24 .791 .979 .770 .986 .702 .994 
25 .898 1 .882 1 .825- 1 25 .848 .996 .820 .998 .765+ ] 1.000 

26 .902 1 .886 1 .830 1 
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TABLE A-22 (Continued). CONFIDENCE LIMITS FOR A PROPORTION (TWO-SIDED) 

r 

90% 95% 99% 

' 

90% 95% 99% 

n= 27 n = 28 

0 0 .093 0 .110 0 .166 0 0 .090 0 .106 0 .162 
1 .004 .146 .002 .175 - .000 .225- 1 .004 .140 .002 .170 .000 .218 
2 .020 .204 .013 .223 .006 .297 2 .019 .201 .013 .217 .005 + .273 
3 .042 .239 .031 .270 .017 .332 3 .040 .232 .030 .259 .016 .323 
4 .066 .291 .052 .316 .032 .384 4 .064 .284 .050 .307 .031 .365- 
5 .093 .327 .076 .364 .050 .419 5 .089 .312 .073 .357 .048 .408 

6 .094 .365 + .101 .415- .070 .461 6 .090 .355- .098 .384 .068 .449 
7 .145 + .407 .110 .437 .093 .539 7 .139 .396 .106 .424 .089 .500 
8 .146 .447 .148 .500 .117 .581 8 .140 .435 + .142 .463 .112 .551 
9 .204 .500 .175- .563 .143 .587 9 .197 .473 .170 .537 .137 .592 

10 .221 .553 .202 .570 .166 .617 10 .208 .527 .192 .576 .162 .635 + 

11 .239 .593 .223 .598 .185- .668 11 .232 .565- .217 .616 .175 + .636 
12 .291 .635 - .269 .636 .224 .702 12 .284 .604 .258 .619 .214 .677 
13 .326 .673 .270 .684 .225- .716 13 .310 .645 + .259 .645 + .218 .727 
14 .327 .674 .316 .730 .284 .775 + 14 .312 .688 .307 .693 .272 .728 
15 .365 + .709 .364 .731 .298 .776 15 .355- .690 .355- .741 .273 .782 

16 .407 .761 .402 .777 .332 .815 + 16 .396 .716 .381 .742 .323 .786 
17 .447 .779 .430 .798 .383 .834 17 .435 + .768 .384 .783 .364 .825- 
18 .500 .796 .437 .825 + .413 .857 18 .473 .792 .424 .808 .365- .838 
19 .553 .854 .500 .852 .419 .883 19 .527 .803 .463 .830 .408 .863 
20 .593 .855- .563 .890 .461 .907 20 . 565 — .860 .537 .858 .449 .888 

21 .635- .906 .585 + .899 .539 .930 21 .604 .861 .576 .894 .500 .911 
22 .673 .907 .636 .924 .581 .950 22 .645 + .910 .616 .902 .551 .932 
23 .709 .934 .684 .948 .616 .968 23 .688 .911 .643 .927 .592 .952 
24 .761 .958 .730 .969 .668 .983 24 .716 .936 .693 .950 .635 + .969 
25 .796 .980 .777 .987 .703 .994 25 .768 .960 .741 .970 .677 .984 

26 .854 .996 .825 + .998 .775+ 1 1.000 26 .799 .981 .783 .987 .727 .995- 
27 .907 1 .890 1 .834 1 27 .860 .996 .830 .998 .782 1 .000 

28 .910 1 .894 1 .838 1 

n = 29 n = 30 

0 0 .087 0 .103 0 .160 0 0 .084 0 .100 0 .152 
1 .004 .135- .002 .166 .000 .211 1 .004 .130 .002 .163 .000 .206 
2 .018 .190 .012 .211 .005 + .263 2 .018 .183 .012 .205 + .005 + .256 
3 .039 .225 - .029 .251 .015 + .316 3 .037 .219 .028 .244 .015- .310 
4 .062 .279 .049 .299 .030 .354 4 .059 .266 .047 .292 .028 .345- 
5 .086 .303 .070 .340 .046 .397 5 .083 .295- .068 .325- .045- .388 

6 .087 .345- .094 .374 .065 + .438 6 .084 .336 .091 .364 .063 .430 
7 .134 .385 + .103 .413 .086 .477 7 .129 .376 .100 .403 .083 .469 
8 .135- .425- .136 .451 .108 .523 8 .130 .416 .131 .440 .104 .505 + 
9 .189 .463 .166 .500 .132 .562 9 .182 .455 + .163 .476 .127 .538 

10 .190 .500 .184 .549 .157 .603 10 .183 .492 .175 + .524 .151 .570 

n .225- .537 .211 .587 .165 + .646 11 .219 .524 .205 + .560 .152 .612 
12 .276 .575 + .247 .626 .206 .654 12 .265- .554 .236 .597 .198 .655 + 
13 .294 .615- .251 .660 .211 .684 13 .266 .584 .244 .636 .206 .671 
14 .303 .655 + .299 .661 .260 .737 14 .295- .624 .292 .675 + .249 .692 
15 .345- .697 .339 .701 .263 .740 15 .336 .664 .324 .676 .256 .744 

16 .385 + .706 .340 .749 .316 .789 16 .376 .705 + .325- .708 .308 .751 
17 .425- .724 .374 .753 .346 .794 17 .416 .734 .364 .756 .329 .794 
18 .463 .775 + .413 .789 .354 .835- 18 .446 .735 + .403 .764 .345- .802 
19 .500 .810 .451 .816 .397 .843 19 .476 .781 .440 .795- .388 .848 
20 .537 .811 .500 .834 .438 .868 20 .508 .817 .476 .825- .430 .849 

21 .575 + .865 + .549 .864 .477 .892 21 .545- .818 .524 .837 .462 .873 
22 .615- .866 .587 .897 .523 .914 22 .584 .870 .560 .869 . 495 - .896 
23 .655 + .913 .626 .906 .562 .935- 23 .624 .871 .597 .900 .531 .917 
24 .697 .914 .660 .930 .603 .954 24 .664 .916 .636 .909 .570 .937 
25 .721 .938 .701 .951 .646 .970 25 .705 + .917 .675 + .932 .612 .955 + 

26 .775 + .961 .749 .971 .684 .985- 26 .734 .941 .708 .953 .655 + .972 
27 .810 .982 .789 .988 .737 .995 - 27 .781 .963 .756 .972 .690 .985 + 
28 .865 + .996 .834 .998 .789 1 1.000 28 .817 .982 .795- .988 .744 .995- 
29 .913 1 .897 1 .840 1 29 .870 .996 .837 .998 .794 1 .000 

30 .916 1 .900 1 .848 1 
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TABLE A-23. CONFIDENCE LIMITS FOR A PROPORTION (ONE-SIDED) 

For confidence limits for n > 30, see Table A-24. 

If the observed proportion is r/n, enter the table with n and r for an upper one-sided limit. 
For a lower one-sided limit, enter the table with n and n — r and subtract the table entry from 1. 

' 
90% 95% 99% 90% 95% 99% 

' 
90% 95% 99% 

„ = 2 „ = = 3 n = 4 

0 .684 .776 .900 0 .536 .632 .785- 0 .438 .527 .684 
1 .949 .975- .995- 1 .804 .865- .941 l .680 .751 .859 

2 .965 + .983 .997 2 .857 .902 .958 
3 .974 .987 .997 

n = 5 n = = 6 n = = 7 

0 .369 .451 .602 0 .319 .393 .536 0 .280 .348 .482 
1 .584 .657 .778 1 .510 .582 .706 1 .453 .521 .643 
2 .753 .811 .894 2 .667 .729 .827 2 .596 .659 .764 
3 .888 .924 .967 3 .799 .847 .915 + 3 .721 .775- .858 
4 .979 .990 .998 4 .907 .937 .973 4 .830 .871 .929 

5 .983 .991 .998 5 .921 .947 .977 
6 .985 + .993 .999 

n = 8 n = = 9 n = = 10 

0 .250 .312 .438 0 .226 .283 .401 0 .206 .259 .369 
1 .406 .471 .590 1 .368 .429 .544 1 .337 .394 .504 
2 .538 .600 .707 2 .490 .550 .656 2 .450 .507 .612 
3 . 655 + .711 .802 3 .599 .655 + .750 3 .552 .607 .703 
4 .760 .807 .879 4 .699 .749 .829 4 .646 .696 .782 
5 .853 .889 .939 5 .790 .831 .895- 5 .733 .778 .850 

6 .931 .954 .980 6 .871 .902 .947 6 .812 .850 .907 
7 .987 .994 .999 7 .939 .959 .983 7 .884 .913 .952 

8 .988 .994 .999 8 .945 + .963 .984 
9 .990 .995- .999 

n = ll n = = 12 n = 13 

0 .189 .238 .342 0 .175- .221 .319 0 .162 .206 .298 
1 .310 .364 .470 1 .287 .339 .440 1 .268 .316 .413 
2 .415 + .470 .572 2 .386 .438 .537 2 .360 .410 .506 
3 .511 .564 .660 3 .475 + .527 .622 3 .444 .495- .588 
4 .599 .650 .738 4 .559 .609 .698 4 .523 .573 .661 
5 .682 .729 .806 5 .638 .685- .765 + 5 .598 .645 + .727 

6 .759 .800 .866 6 .712 .755 - .825 + 6 .669 .713 .787 
7 .831 .865- .916 7 .781 .819 .879 7 .736 .776 .841 
8 . 895 + .921 .957 8 .846 .877 .924 8 .799 .834 .889 
9 .951 .967 .986 9 .904 .928 .961 9 .858 .887 .931 

10 .990 .995 + .999 10 .955- .970 .987 10 .912 .934 .964 

1 1 .991 .996 .999 1 1 .958 .972 .988 
12 .992 .996 .999 

n = 14 n = 15 n = 16 

0 .152 .193 .280 0 .142 .181 .264 0 .134 .171 .250 
1 .251 .297 .389 1 .236 .279 .368 1 .222 .264 .349 
2 .337 . 385 + .478 2 .317 .363 .453 2 .300 .344 .430 
3 .417 .466 .557 3 .393 .440 .529 3 .371 .417 .503 
4 .492 .540 .627 4 .464 .511 .597 4 .439 .484 .569 
5 .563 .610 .692 5 .532 .577 .660 5 .504 .548 .630 

Reproduced by permission from Statistics Manual, NAVORD REPORT 3369, NOTS 948, by E. L. Crow, F. A. Davis, and M. W. Maxfield, 
1955, U.S. Naval Ordnance Test Station, China Lake, California. 

T-41 



ORDP 20-114 TABLES 

TABLE A-23 (Continued). CONFIDENCE LIMITS FOR A PROPORTION (ONE-SIDED) 

' 
90% 95% 99% r 90% 95% 99% 90% 95% 99% 

n = 1 4 (Continued) n = 15 (Continued) n = 16 (Continued) 

6 .631 .675- .751 6 .596 .640 .718 6 .565 + .609 .687 
7 .695 + .736 .805 + 7 .658 .700 .771 7 .625- .667 .739 
8 .757 .794 .854 8 .718 .756 .821 8 .682 .721 .788 
9 .815- .847 .898 9 .774 .809 .865 + 9 .737 .773 .834 

10 .869 . .896 .936 10 .828 .858 .906 10 .790 .822 .875- 

1 1 .919 .939 .967 1 1 .878 .903 .941 1 1 .839 .868 .912 
12 .961 .974 .989 12 .924 .943 .969 12 .886 .910 .945- 

13 .993 .996 .999 13 .964 .976 .990 13 .929 .947 .971 
14 .993 .997 .999 14 .966 .977 .990 

15 .993 .997 .999 

n = 17 n = 18 n = 19 

0 .127 .162 .237 0 .120 .153 .226 0 .114 .146 .215 + 

1 .210 .250 .332 1 .199 .238 .316 1 .190 .226 .302 
2 .284 .326 .410 2 .269 .310 .391 2 .257 .296 .374 
3 .352 .396 .480 3 .334 .377 .458 3 .319 .359 .439 
4 .416 .461 .543 4 .396 .439 .520 4 .378 .419 .498 
5 .478 .522 .603 5 .455 + .498 .577 5 .434 .476 .554 

6 .537 .580 .658 6 .512 .554 .631 6 .489 .530 .606 
7 .594 .636 .709 7 .567 .608 .681 7 .541 .582 .655 + 

8 .650 .689 .758 8 .620 .659 .729 8 .592 .632 .702 
9 .703 .740 .803 9 .671 .709 .774 9 .642 .680 .746 

10 .754 .788 .845- 10 .721 .756 .816 10 .690 .726 .788 

, , .803 .834 .883 1 1 .769 .801 .855- 1 1 .737 .770 .827 
12 .849 .876 .918 12 .815 — .844 .890 12 .782 .812 .863 
13 .893 .915 + .948 13 .858 .884 .923 13 .825- .853 .897 
14 .933 .950 .973 14 .899 .920 .951 14 .866 .890 .927 
15 .968 .979 .991 15 .937 .953 .975- 15 . 905 — .925- .954 

16 .994 .997 .999 16 .970 .980 .992 16 .941 .956 .976 
17 .994 .997 .999 17 .972 .981 .992 

18 .994 .997 .999 

n = 20 n = 21 n — 22 

0 .109 .139 .206 0 .104 .133 .197 0 .099 .127 .189 
1 .181 .216 .289 1 .173 .207 .277 1 .166 .198 .266 
2 .245- .283 .358 2 .234 .271 .344 2 .224 .259 .330 
3 .304 .344 .421 3 .291 .329 .404 3 .279 .316 .389 
4 .361 .401 .478 4 .345 + .384 .460 4 .331 .369 .443 
5 .415- .456 .532 5 .397 .437 .512 5 .381 .420 .493 

6 .467 .508 .583 6 .448 .487 .561 6 .430 .468 .541 
7 .518 .558 .631 7 .497 .536 .608 7 .477 .515 + .587 
8 .567 .606 .677 8 .544 .583 .653 8 .523 .561 .630 
9 .615 + .653 .720 9 .590 .628 .695 + 9 .568 .605- .672 

10 .662 .698 .761 10 .636 .672 .736 10 .611 .647 .712 

1 1 .707 .741 .800 1 1 .679 .714 .774 1 1 .654 .689 .750 
12 .751 .783 .837 12 .722 .755 + .811 12 .695 + .729 .786 
13 .793 .823 .871 13 .764 .794 .845 + 13 .736 .767 .821 
14 .834 .860 .902 14 .804 .832 .878 14 .775 + .804 .853 
15 .873 .896 .931 15 .842 .868 .908 15 .813 .840 .884 

16 .910 .929 .956 | 16 .879 .901 .935- 16 .850 .874 .912 
17 .944 .958 .977 17 .914 .932 .959 17 . 885 + .906 .938 
18 .973 ! .982 .992 1 8 .946 .960 .978 1 8 .918' .935 + .961 
19 .995- .997 .999 I 19 .974 .983 .993 19 .949 .962 .979 

20 .995- .988 1.000 20 .976 .984 1 .993 
21 .995 + .998 j 1.000 
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TABLE A-23 (Continued). CONFIDENCE LIMITS FOR A PROPORTION (ONE-SIDED) 

90% 95% 99% r 90% 95% 99% - | 90% 95% 99% 

n = 23 n = 24 " = 25 

0 .095 + .122 .181 0 .091 .117 .175- 0 .088 .113 .168 
1 .159 .190 .256 1 .153 .183 .246 1 .147 .176 .237 
2 .215 + .249 .318 2 .207 .240 .307 2 .199 .231 .296 
3 .268 .304 .374 3 .258 .292 .361 3 .248 .282 .349 
4 .318 .355- .427 4 .306 .342 .412 4 .295- .330 .398 
5 .366 .404 .476 5 .352 .389 .460 5 .340 .375 + .444 

6 .413 .451 .522 6 .398 .435- . 505 — 6 .383 .420 .488 
7 .459 .496 .567 7 .442 .479 .548 7 .426 .462 .531 
8 .503 .540 .609 8 .484 .521 .590 8 .467 .504 .571 
9 .546 .583 .650 9 .526 .563 .630 9 .508 .544 .610 

10 .589 .625- .689 10 .567 .603 .668 10 .548 .583 .648 

,, .630 .665- .727 1 1 .608 .642 .705- 1 1 .587 .621 .684 
12 .670 .704 .763 12 .647 .681 .740 12 .625- .659 .719 
13 .710 .742 .797 13 .685 + .718 .774 13 .662 .695- .752 
14 .748 .778 .829 14 .723 .754 .806 14 .699 .730 .784 
15 .786 .814 .860 15 .759 .788 .837 15 .735- .764 .815 + 

16 .822 .848 .889 16 .795 + .822 .867 16 .770 .798 .845 + 
17 .857 .880 .916 17 .830 .854 .894 17 .804 .830 .873 
1 8 .890 .910 .941 1 8 .863 . 885 + .920 18 .837 .861 .899 
19 .922 .938 .962 19 .895 + .914 .943 19 .869 .890 .923 
20 .951 .963 .980 20 .925 + .941 .964 20 .899 .918 .946 

21 .977 .984 .993 21 .953 .965 + .981 21 .928 .943 .966 
22 .995 + .998 1.000 22 .978 .985- .994 22 .955 + .966 .982 

23 .996 .998 1.000 23 .979 .986 .994 
24 .996 .998 1.000 

n = 26 n = 27 n = 28 

0 .085- .109 .162 0 .082 .105 + .157 0 .079 .101 .152 
1 .142 .170 .229 1 .137 .164 .222 1 .132 .159 .215- 
2 .192 .223 .286 2 .185 + .215 + .277 2 .179 .208 .268 
3 .239 .272 .337 3 .231 .263 .326 3 .223 .254 .316 
4 .284 .318 .385- 4 .275- .308 .373 4 .265 + .298 .361 
5 .328 .363 .430 5 .317 .351 .417 5 .306 .339 .404 

6 .370 .405 + .473 6 .358 .392 .458 6 .346 .380 .445- 
7 .411 .447 .514 7 .397 .432 .498 7 .385- .419 .484 
8 .451 .487 . 554 8 .436 .471 .537 8 .422 .457 .521 
9 .491 .526 .592 9 .475- .509 .574 9 .459 .494 .558 

10 .529 .564 .628 10 .512 .547 .610 10 .496 .530 .593 

11 .567 .602 .664 1 1 .549 .583 .645 + 1 1 .532 .565 + .627 
12 .604 .638 .698 12 .585- .618 .679 12 .567 .600 .660 
13 .641 .673 .731 13 .620 .653 .711 13 .601 .634 .692 
14 .676 .708 .763 14 .655 + .687 .743 14 .635 + .667 .723 
15 .711 .742 .794 15 .689 .720 .773 15 .669 .699 .753 

16 .746 .774 .823 16 .723 .752 .802 16 .701 .731 .782 
17 .779 .806 .851 17 .756 .783 .831 17 .733 .762 .810 
18 .812 .837 .878 18 .788 .814 .857 18 .765- .792 .837 
19 .843 .866 .903 19 .819 .843 .883 19 .796 .821 .863 
20 .874 .894 .927 20 .849 .871 .907 20 .826 .849 .888 

21 .903 .921 .948 21 .879 .899 .930 21 .855 + .876 .911 
22 .931 .946 .967 22 .907 .924 .950 22 .883 .902 .932 
23 .957 .968 .983 23 .934 .948 .968 23 .911 .927 .952 
24 .979 .986 .994 24 .958 .969 .983 24 .936 .950 .969 
25 .996 .998 1.000 25 .980 .987 .994 25 .960 .970 .984 

26 .996 .998 1.000 26 .981 .987 .995- 
27 .996 .998 1.000 
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TABLE A-23 (Continued). CONFIDENCE LIMITS FOR A PROPORTION (ONE-SIDED) 

r 
90% 95% 99% 90% 95% 99% 

n = 29 „ = 30 

0 .076 .098 .147 0 .074 .095 + .142 
1 .128 .153 .208 1 .124 .149 .202 
2 .173 .202 .260 2 .168 .195 + .252 
3 .216 .246 .307 3 .209 .239 .298 
4 .257 .288 .350 4 .249 .280 .340 
5 .297 .329 .392 5 .287 .319 .381 

6 .335- .368 .432 6 .325- .357 .420 
7 .372 .406 .470 7 .361 .394 .457 
8 .409 .443 .507 8 .397 .430 .493 
9 .445 + .479 .542 9 .432 .465 + .527 

10 .481 .514 .577 10 .466 .499 .561 

1 1 .515 + .549 .610 1 1 .500 .533 .594 
12 .550 .583 .643 12 .533 .566 .626 
13 .583 .616 .674 13 .566 .598 .657 
14 .616 .648 .705- 14 .599 .630 .687 
15 .649 .680 .734 15 .630 .661 .716 

16 .681 .711 .763 16 .662 .692 .744 
17 .712 .741 .791 17 .692 .721 .772 
1 8 .743 .771 .818 18 .723 .750 .799 
19 .774 .800 .843 19 .752 .779 .824 
20 .803 .828 .868 20 .782 .807 .849 

21 .832 .855- .892 21 .810 .834 .873 
22 .860 .881 .914 22 .838 .860 .896 
23 .888 .906 .935- 23 .865 + .885 + .917 
24 .914 .930 .954 24 .891 .909 .937 
25 .938 .951 .970 25 .917 .932 .955 + 

26 .961 .971 .985- 26 .941 .953 .972 
27 .982 .988 .995- 27 .963 .972 .985 + 
28 .996 .998 1.000 28 .982 .988 .995- 

29 .996 .998 1.000 
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TABLE A-24. CONFIDENCE BELTS FOR PROPORTIONS FOR n > 30 

(CONFIDENCE COEFFICIENT .90) 

For tables of confidence limits for n < 30, see Tables A-22 and A-23 

P 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

p - r/n 

Reproduced, in part, by permission from Introduction to Statistical Analysis (2d ed.) by W. J. Dixon and F. J. Massey, Jr., Copyright, 1957, 
McGraw-Hill Book Company, Inc. 
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TABLE A-24 (Continued). CONFIDENCE BELTS FOR PROPORTIONS FOR n > 30 

(CONFIDENCE COEFFICIENT .95) 

For tables of confidence limits for n < 30, see Tables A-22 and A-23 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

p - r/n 

Reproduced, in part, with permission from Biometrika, Vol. 26, (1934), from article entitled “The Use of Confidence or Fiducial Limits Illustrated 
in the Case of the Binomial” by C. J. Clopper and E. S. Pearson. 
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TABLE A-24 (Continued). CONFIDENCE BELTS FOR PROPORTIONS FOR n > 30 

(CONFIDENCE COEFFICIENT .99) 

For tables of confidence limits for n < 30, see Tables A-22 and A-23 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

p~ r/n 

Reproduced, in part, with permission from Biomelrika, Vol. 26, (1934), from article entitled “The Use of Confidence or Fiducial Limits Illustrated 
in the Case of the Binomial” by C. J. Clopper and E. S. Pearson. 
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TABLE A-25. SAMPLE SIZE REQUIRED FOR COMPARING A PROPORTION WITH A 
STANDARD PROPORTION WHEN THE SIGN OF THE DIFFERENCE IS NOT IMPORTANT 

The use of Table A-25 (or equivalent use of Tables A-27 and A-8) is based on the inverse-sine 
transformation of the binomial to an approximately normal distribution. 

Exact determination of required sample size could be made from tables of the binomial distribu¬ 
tion, so far as the tables are available. (See Tables of the Cumulative Binomial Probability Distribu¬ 
tion, Staff, Computation Laboratory, Harvard University, Section IV of the “Introduction” 
entitled “Applications”, Harvard University Press, 1955.) 

The entries computed for the tables were rounded to three significant figures, and the rounding 
was always upward. 

These tables also may be used to determine the sample size required for comparing two propor¬ 
tions, as discussed in Chapter 8. 

a = .05, 1 - 0 = .50 

Larger 
Propor¬ 

tion 

Smaller Proportion 

| .50 .001 .002 .005 .01 .02 .05 .10 .20 .30 .40 .45 

.01 205 313 1120 

.02 80 102 190 551 — — — — — — | — — 

.05 26 30 41 62 138 — — j — — 

.10 12 13 16 20 30 104 — — — — — — 

.20 6 6 7 8 10 17 48 ' 1 — — — — 

.30 4 4 4 5 6 8 15 72 — — — — 

.40 3 3 3 3 4 5 8 20 88 — — — 

.45 2 3 3 3 3 4 6 14 40 376 — — < 

.50 2 2 2 3 3 4 5 10 23 95 383 — 

.55 2 2 2 2 2 3 4 7 15 43 96 383 

.60 2 2 2 2 2 3 4 6 11 24 43 95 

.70 2 2 2 2 2 2 3 4 6 11 15 23 

.80 1 1 1 1 2 2 2 3 4 6 7 10 

.90 1 1 1 1 1 1 2 2 3 4 4 5 
1.00 1 1 1 1 1 1 1 1 1 2 2 2 
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TABLE A-25 (Continued). SAMPLE SIZE REQUIRED FOR COMPARING A PROPORTION WITH A 
STANDARD PROPORTION WHEN THE SIGN OF THE DIFFERENCE IS NOT IMPORTANT 

a = .05, 1 - 0 = .80 

Larger 
Propor- 

Smaller Proportion 

tion 
.001 .002 .005 .01 .02 .05 .10 .20 .30 .40 .45 .50 

.01 419 640 2280 

.02 
162 208 388 1130 — — — — — — — 

.05 53 61 82 125 281 — — — — — — 

.10 24 26 32 40 61 212 — — — — — 

.20 11 12 13 15 19 35 98 — — — — — 

.30 7 7 8 9 11 16 30 146 — — _ — 

.40 5 5 6 6 7 10 15 41 178 — — — 

.45 4 5 5 5 
6 

8 12 27 82 767 — — 

.50 4 1 
4 4 5 5 7 10 19 47 194 782 — 

.55 4 4 4 4 5 6 8 15 30 87 196 782 

.60 3 3 3 4 4 5 7 11 21 49 87 194 

.70 3 3 3 3 3 4 5 8 12 21 30 47 

.80 2 1 2 2 2 3 3 4 5 8 11 15 19 

.90 2 2 2 2 2 2 3 4 5 7 8 10 
1.00 1 t 1 1 1 1 2 2 2 2 3 3 4 

a = .05, 1 - 0 = .90 

Larger 
Propor¬ 

Smaller Proportion 

tion 
.001 .002 .005 .01 .02 .05 .10 .20 .30 .40 .45 .50 

.01 560 857 3040 

.02 217 279 520 1510 — — — — — — — — 

.05 70 81 110 168 376 — — — — — — — 

.10 32 35 42 54 82 284 — — —. — — 

.20 15 15 18 20 26 47 131 — — — — — 

.30 9 10 11 12 14 21 40 196 — — _ — 

.40 7 7 7 8 9 13 20 54 239 — — — 

.45 6 6 6 7 8 11 16 36 109 1030 — — 

.50 5 5 6 6 7 9 13 26 63 260 1050 — 

.55 5 5 5 5 6 8 10 20 41 116 262 1050 

.60 4 4 4 5 5 7 9 15 28 65 116 260 

.70 3 3 4 4 4 5 6 10 16 28 41 63 

.80 3 3 3 3 3 4 5 7 10 15 20 26 

.90 2 2 2 2 3 3 4 5 6 9 10 13 
1.00 2 2 2 2 2 2 2 3 3 4 4 5 
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TABLE A-25 (Continued). SAMPLE SIZE REQUIRED FOR COMPARING A PROPORTION WITH A 
STANDARD PROPORTION WHEN THE SIGN OF THE DIFFERENCE IS NOT IMPORTANT 

a = .05, 1 - 0 = .95 

Larger 
Propor- 

Smaller Proportion 

tion 
.001 .002 .005 .01 .02 .05 .10 .20 .30 .40 .45 .50 

.01 693 1060 3760 

.02 268 345 642 1870 — — — — — — — — 

.05 87 100 136 207 465 — — — — — — — 

.10 39 43 52 67 101 351 — — — — — — 

.20 18 19 22 25 32 58 162 — - — — — 

.30 11 12 13 15 17 26 49 242 — — — — 

.40 8 8 9 10 12 16 25 67 295 — — — 

.45 7 7 8 9 10 13 19 45 135 1270 — — 

.50 6 6 7 7 8 11 16 32 77 321 1300 — 

.55 6 6 6 7 7 9 13 24 50 143 324 1300 

.60 5 5 5 6 6 8 11 19 35 81 143 321 

.70 4 4 4 5 5 6 8 12 20 35 50 77 

.80 3 3 4 4 4 5 6 8 12 19 24 32 

.90 3 3 3 3 3 4 4 6 8 11 13 16 
1.00 2 2 2 2 2 2 3 3 4 5 5 6 

a = .05, 1 - 0 = .99 

Larger 
Propor¬ 

Smaller Proportion 

tion 
.001 .002 .005 .01 .02 .05 .10 .20 .30 .40 .45 .50 

.01 979 1500 5320 

.02 378 487 908 2640 — — — — — — — — 

.05 123 141 192 293 658 — — — — — — — 

.10 55 60 73 94 142 496 — — — — — — 

.20 25 27 30 35 45 81 229 — — — — — 

.30 16 17 18 20 24 37 70 342 — — — — 

.40 11 12 13 14 16 22 35 94 417 — — — 

.45 10 10 11 12 14 18 27 63 190 1800 — — 

.50 9 9 9 10 12 15 22 45 109 453 1830 — 

.55 8 8 8 9 10 13 18 34 71 202 458 1830 

.60 7 7 7 8 9 11 15 26 49 114 202 453 

.70 5 6 6 6 7 8 11 17 28 49 71 109 

.80 4 5 5 5 5 6 8 12 17 26 34 45 

.90 4 4 4 4 4 5 6 8 11 15 18 22 
1.00 2 2 3 3 3 3 3 4 5 6 7 8 
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TABLE A-26. SAMPLE SIZE REQUIRED FOR COMPARING A PROPORTION WITH A 
STANDARD PROPORTION WHEN THE SIGN OF THE DIFFERENCE IS IMPORTANT 

The use of Table A-26 (or the equivalent use of Tables A-27 and A-9) is based on the inverse-sine 
transformation of the binomial to an approximately normal distribution. 

Exact determination of required sample size could be made from tables of the binomial distribu - 
tion, so far as the tables are available. (See Tables of the Cumulative Binomial Distribution, Staff, 
Computation Laboratory, Harvard University, Section IV of the “Introduction” entitled “Appli¬ 
cations”, Harvard University Press, 1955.) 

The entries computed for the tables were rounded to three significant figures, and the rounding 
was always upward. 

These tables may also be used to determine the sample size required for comparing two propor¬ 
tions, as discussed in Chapter 8. 

a = .05, 1 - j8 = .50 

Larger 
Propor¬ 

tion 

Smaller Proportion 

.50 .001 .002 .005 .01 .02 .05 .10 .20 .30 .40 .45 

.01 145 221 783 

.02 56 72 134 389 — — — — — — — 

.05 19 21 29 44 97 — — — — — — — 

.10 9 9 11 14 21 74 — — — — — 1 — 

.20 4 4: 5 6 7 12 34 — — — — ! — 

.30 3 3 3 3 4 6 11 51 — j — — — 

.40 2 2 2 2 3 4 6 14 62 — ! — — 

.45 2 2 2 2 2 3 4 10 28 265 — — 

.50 2 2 2 2 2 3 4 7 16 67 ! 270 — 

.55 2 2 2 2 2 2 3 5 11 30 68 270 

.60 1 i 2 2 2 2 3 4 8 17 30 67 

.70 1 i 1 1 1 2 2 3 4 8 i 11 16 

.80 1 i 1 1 1 1 2 2 3 4 5 7 

.90 1 i 1 1 1 1 1 2 2 3 3 4 
1.00 1 i 1 1 1 1 1 1 1 1 1 2 

T-51 



ORDP 20-114 TABLES 

TABLE A-26 (Continued). SAMPLE SIZE REQUIRED FOR COMPARING A PROPORTION WITH A 
STANDARD PROPORTION WHEN THE SIGN OF THE DIFFERENCE IS IMPORTANT 

a = .05, 1 - 0 = .80 

Larger 
Propor¬ 

tion 

Smaller Proportion 

.001 .002 .005 .01 .02 .05 .10 .20 .30 .40 .45 .50 

.01 330 504 1790 

.02 128 164 306 888 — — — — — — — — 

.05 42 48 65 99 222 — — — — — — — 

.10 19 21 25 32 48 167 — — — — — — 

.20 9 9 11 12 15 28 77 — — — — — 

.30 6 6 6 7 9 13 24 115 — — — — 

.40 4 4 5 5 6 8 12 32 141 — — — 

.45 4 4 4 4 5 6 10 21 64 604 — — 

.50 3 3 4 4 4 5 8 15 37 153 617 — 

.55 3 3 3 3 4 5 6 12 24 68 155 617 

.60 3 3 3 3 3 4 5 9 17 39 68 153 

.70 2 2 2 2 3 3 4 6 10 17 24 37 

.80 2 2 2 2 2 2 3 4 6 9 12 15 

.90 2 2 2 2 2 2 2 3 4 5 6 8 
1.00 1 1 1 1 1 1 1 2 2 2 3 3 

a = .05, 1 - 0 = .90 

Larger 
Propor¬ 

Smaller Proportion 

tion 
.001 .002 .005 .01 .02 .05 .10 .20 .30 .40 .45 .50 

.01 457 698 2480 

.02 177 227 424 1230 — — — — — — — — 

.05 57 66 90 137 307 — — — — — — — 

.10 26 28 34 44 67 232 — — — — — — 

.20 12 13 14 17 21 38 107 — — — — — 

.30 8 8 9 10 12 18 33 160 — — — — 

.40 6 6 6 7 8 11 17 44 195 — — — 

.45 5 5 5 6 7 9 13 30 89 837 — — 

.50 4 4 5 5 6 7 10 21 51 212 854 — 

.55 4 4 4 4 5 6 9 16 33 95 214 854 

.60 3 4 4 4 4 5 7 13 23 53 95 212 

.70 3 3 3 3 3 4 5 8 13 23 33 51 
80 2 2 2 3 3 3 4 6 8 13 16 21 

.90 2 2 2 2 2 3 3 4 5 7 9 10 
1.00 1 1 1 1 2 2 2 2 3 3 4 4 
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TABLE A-26 (Continued). SAMPLE SIZE REQUIRED FOR COMPARING A PROPORTION WITH A 
STANDARD PROPORTION WHEN THE SIGN OF THE DIFFERENCE IS IMPORTANT 

a = .05, 1 - j8 = .95 

Larger 
Propor- 

Smaller Proportion 

tion 
.001 .002 .005 .01 .02 .05 .10 .20 .30 .40 .45 .50 

.01 577 882 3140 

.02 223 287 535 1560 — — — — — — — — 

.05 73 83 113 173 388 — — — — — — — 

.10 33 36 43 56 84 293 — — — — — — 

.20 15 16 18 21 27 48 135 — — — — — 

.30 10 10 11 12 15 22 41 202 — — — — 

.40 7 7 8 8 10 13 21 56 246 — — — 

.45 6 6 7 7 8 11 16 37 112 1060 — — 

.50 5 5 6 6 7 9 13 27 64 267 1080 — 

.55 5 5 5 6 6 8 11 20 42 119 270 1080 

.60 4 4 5 5 5 7 9 16 29 67 119 267 

.70 3 4 4 4 4 5 7 10 16 29 42 64 

.80 3 3 3 3 3 4 5 7 10 16 20 27 

.90 2 2 2 3 3 3 4 5 7 9 11 13 
1.00 2 2 2 2 2 2 2 3 3 4 4 5 

a = .05, 1 — jS = .99 

Larger 
Propor¬ 

Smaller Proportion 

tion 
.001 .002 .005 .01 .02 .05 .10 .20 .30 .40 .45 .50 

.01 841 1290 4570 

.02 325 418 779 2270 — — — — — — — — 

.05 105 121 165 251 565 — — — — — — — 

.10 47 52 63 81 122 426 — — — — — — 

.20 22 23 26 30 39 70 196 — — — — — 

.30 14 14 16 18 21 32 60 293 — — — — 

.40 10 10 11 12 14 19 30 81 358 — — — 

.45 8 9 9 10 12 16 24 54 163 1540 — — 

.50 7 8 8 9 10 13 19 39 94 389 1580 — 

.55 7 7 7 8 9 11 15 29 61 174 393 1580 

.60 6 6 6 7 8 10 13 23 42 98 174 389 

.70 5 5 5 5 6 7 9 15 24 42 61 94 

.80 4 4 4 4 5 6 7 10 15 23 29 39 

.90 3 3 3 3 4 4 5 7 9 13 15 19 
1.00 2 2 2 2 2 3 3 4 5 6 6 7 
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TABLE A-27. TABLE OF ARC SINE TRANSFORMATION FOR PROPORTIONS 

6 = 2 arc sin Vp 

p e P e P e P e 

.00 .00 .25 1.05 .50 1.57 .75 2.09 

.01 .20 .26 1.07 .51 1.59 .76 2.12 

.02 .28 .27 1.09 .52 1.61 .77 2.14 

.03 .35 .28 1.12 .53 1.63 .78 2.17 

.04 .40 .29 1.14 .54 1.65 .79 2.19 

.05 .45 .30 1.16 .55 1.67 .80 2.21 

.06 .49 .31 1.18 . 56 1.69 .81 2.24 

.07 .54 .32 1.20 .57 1.71 .82 2.27 

.08 .57 .33 1.22 .58 1.73 .83 2.29 

.09 .61 .34 1.25 .59 1.75 .84 2.32 

.10 .64 .35 1.27 .60 1.77 .85 2.35 

.11 .68 .36 1.29 .61 1.79 .86 2.37 

.12 .71 .37 1.31 .62 1.81 .87 2.40 

.13 .74 .38 1.33 .63 1.83 .88 2.43 

.14 .77 .39 1.35 .64 1.85 .89 2.47 

.15 .80 .40 1.37 .65 1.88 .90 2.50 

.16 .82 .41 1.39 .66 1.90 .91 2.53 

.17 .85 .42 1.41 .67 1.92 .92 2.57 

.18 .88 .43 1.43 .68 1.94 .93 2.61 

.19 .90 .44 1.45 .69 1.96 .94 2.65 

.20 .93 .45 1.47 .70 1.98 .95 2.69 

.21 .95 .46 1.49 .71 2.00 .96 2.74 

.22 .98 .47 1.51 .72 2.03 .97 2.79 

.23 1.00 .48 1.53 .73 2.05 .98 2.86 

.24 1.02 .49 1.55 .74 2.07 .99 
1.00 

2.94 
3.14 
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TABLE A-28. MINIMUM CONTRASTS REQUIRED FOR SIGNIFICANCE IN 
2X2 TABLES WITH EQUAL SAMPLES 

Note that some entries in this table have been omitted in instances where they are easy to 
supply. For example, see wA = ns = 80, 5% Level. There is an entry (16,29) followed by an 
entry (23,36). The difference between the first numbers of these pairs is the same as the difference 
between the second numbers of the pairs. Thus contrast pairs (17,30), (18,31), (19,32), etc., are 
also significant contrasts, but have been omitted to save space. 

In many cases this table can be used to give a good idea of the significance of an observed contrast 
for values of n intermediate to those tabulated. For example, consider two samples of n = 320 
items each: 

Class I Class II Total 

Sample A 92 228 320 
Sample B 117 203 320 

We find the entry (95,119) in the table for n = 300, hence (92,116) is a significant contrast for 
n = 300. For n = 400, we find (100,126), hence (92,118) is a significant contrast for n = 400. We 
conclude that the observed contrast (92,117) is approximately significant at the 5% level. 

If this method is not considered sufficient in a particular case, use the x2 method described in 
Chapter 8. The x2 method is an approximation which gives good results for cases not covered 
by this table. 

5% Level, Two-Sided (Is PA different from PB?) 
2.5% Level, One-Sided (Is PA larger than PB?) 

1% Level, Two-Sided (Is PA different from PB?) 
0.5% Level, One-Sided (Is PA larger than PB?) 

Sample 
Size 

nA=n b 
Ai, A2 

Sample 
Size 

nA = ob 
Ax, A2 

4 0,4 

5 0,4 5 0,5 

6 0,5 6 0,6 

7 0,5 1,6 7 0,6 

8 0,5 1,6 8 0,6 

9 0,5 1,6 9 0,6 1,8 

10 0,5 1,7 2,8 10 0,7 1,8 

11 0,5 1,7 2,8 11 0,7 1,8 2,9 

12 0,5 1,7 2,8 3,9 12 0,7 1,8 2,10 

Adapted with permission from Tables for Use with Binomial Samples by D. Mainland, L. Herrera, and M. Sutcliffe, Copyright, 1956, 
Department of Medical Statistics, New York University College of Medicine. 
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TABLE A-28 (Continued). MINIMUM CONTRASTS REQUIRED FOR SIGNIFICANCE IN 
2X2 TABLES WITH EQUAL SAMPLES 

5% Level, Two-Sided (Is PA different from PB?) 
2.5% Level, One-Sided (Is PA larger than PB?) 

1% Level, Two-Sided (Is PA different from Pr?) 
0.5% Level, One-Sided (Is PA larger than PB?) 

Sample 
Size Ai, a2 

Sample 
Size Ai, a2 

«A = «B nA = nB 

13 0,5 1,7 2,8 3,9 13 0,7 1,9 2,10 

14 0,5 1,7 2,8 3,10 14 0,7 1,9 2,10 3,11 

15 0,5 1,7 2,9 3,10 15 0,7 1,9 2,10 3,11 
4,11 

16 0,5 1,7 2,9 3,10 16 0,7 1,9 2,10 3,12 
4,11 

17 0,5 1,7 2,9 3,10 17 0,7 1,9 2,11 3,12 
4,11 5,12 4,13 

18 0,5 1,7 2,9 3,10 18 0,7 1,9 2,11 3,12 
4,11 5,12 4,13 

19 0,5 1,7 2,9 3,10 19 0,7 1,9 2,11 3,12 
4,11 5,12 4,13 5,14 

20 0,5 1,7 2,9 3,10 20 0,7 1,9 2,11 3,12 
4,11 5,13 6,14 4,13 5,15 

30 0,6 1,8 2,9 3,11 30 0,8 1,10 2,12 3,13 
4,12 5,13 6,15 7,16 4,15 9,20 
8,17 9,18 10,19 

40 0,6 1,8 2,9 3,11 40 0,8 1,10 2,12 3,14 
4,12 5,14 6,15 7,16 4,15 5,17 8,20 9,22 
8,18 9,19 10,20 15,25 13,26 

50 0,6 1,8 2,10 3,11 50 0,8 1,10 2,12 3,14 
4,13 5,14 6,15 7,17 4,15 5,17 6,18 7,20 
8,18 9,19 10,20 11,22 9,22 10,24 18,32 

19,30 

60 0,6 1,8 2,10 3,11 60 0,8 1,10 2,12 3,14 
4,13 5,14 6,16 7,17 4,16 5,17 6,19 8,21 
8,18 9,20 10,21 11,22 9,23 11,25 12,27 19,34 

12,23 13,24 14,26 24,36 20,36 22,38 
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TABLE A-28 (Continued). MINIMUM CONTRASTS REQUIRED FOR SIGNIFICANCE IN 
2X2 TABLES WITH EQUAL SAMPLES 

5% Level, Two-Sided (Is P 
2.5% Level, One-Sided (Is 

different from Pb?) 
Pa larger than PB?) 

1% Level, Two-Sided (Is PA different from PB?) 
0.5% Level, One-Sided (Is PA larger than PB?) 

Sample Sample 
Size A, a2 Size Ai, A, 

nA = nB nA = nB 

70 0.6 1,8 2,10 3,11 70 0,8 1,10 2,12 3,14 
4,13 5,14 6,16 7,17 4,16 5,17 6,19 7,20 
8,18 9,20 10,21 11,22 8,22 10,24 11,26 14,29 

12,23 13,25 18,30 19,32 15,31 21,37 22,39 26,43 
20,33 28,41 

80 0,6 1,8 2,10 3,11 80 0,8 1,10 2,12 3,14 
4,13 5,14 6,16 7,17 4,16 5,18 6,19 7,21 
8,19 9,20 10,21 11,22 9,23 10,25 12,27 13,29 

12,24 13,25 14,26 15,27 16,32 17,34 24,41 25,43 
16,29 23,36 24,38 33,47 31,49 

90 0,6 1,8 2,10 3,11 90 0,8 1,10 2,12 3,14 
4,13 5,14 6,16 7,17 4,16 5,18 .6,19 7,21 
8,19 9,20 10,21 11,23 8,22 9,24 11,26 12,28 

12,24 13,25 14,26 15,28 15,31 16,33 19,36 20,38 
20,33 21,35 31,45 32,47 28,46 29,48 35,54 
37,52 

100 0,6 1,8 2,10 3,11 100 0,8 1,10 2,13 3,14 
4,13 5,15 6,16 7,17 4,16 5,18 6,19 7,21 
8,19 9,20 10,21 11,23 8,22 9,24 10,25 11,27 

12,24 13,25 14,27 18,31 14,30 15,32 18,35 19,37 
19,33 25,39 26,41 42,57 23,41 24,43 33,52 34,54 

40,60 

150 0.6 1,8 2,10 3,12 150 0,8 1,11 2,13 3,15 
4,13 5,15 6,16 7,18 4,16 5,18 6,20 7,21 
8,19 9,20 10,22 11,23 8,23 9,24 10,26 11,27 

12,24 13,26 14,27 15,28 12,29 14,31 15,33 17,35 
16,30 19,33 20,35 25,40 18,37 21,40 22,42 26,46 
26,42 32,48 33,50 41,58 27,48 31,52 32,54 39,61 
42,60 66,84 40,63 51,74 52,76 63,87 

200 0,6 1,8 2,10 3,12 200 0,8 1,11 2,13 3,15 
4,13 5,15 6,16 7,18 4,16 5,18 6,20 7,21 
8,19 9,21 10,22 11,23 8,23 9,24 10,26 11,27 

12,25 13,26 14,27 15,29 12,29 13,30 14,32 16,34 
18,32 19,34 22,37 23,39 17,36 19,38 20,40 23,43 
27,43 28,45 33,50 34,52 24,45 26,47 27,49 31,53 
41,59 42,61 51,70 52,72 32,55 36,59 37,61 43,67 
65,85 66,87 89,110 44,69 51,76 52,78 63,89 

64,91 86,113 

T-57 



ORDP 20-114 TABLES 

TABLE A-28 (Continued). MINIMUM CONTRASTS REQUIRED FOR SIGNIFICANCE IN 
2X2 TABLES WITH EQUAL SAMPLES 

5% Level, Two-Sided (Is P\ different from PB?) 1% Level, Two-Sided (Is PA different from PB?) 
2.5% Level, One-Sided (Is PA larger than PB?) 0.5% Level, One-Sided (Is PA larger than PB?) 

Sample Sample 
Size Ai, a2 Size Ai, a2 

n.\ = />b nA =nB 

300 0,6 1,8 2,10 3,12 300 0,8 1,11 2,13 3,15 
4,13 5,15 6,16 7,18 4,17 5,18 6,20 7,22 
8,19 9,21 10,22 11,24 8,23 9,25 10,26 11,28 

12,25 13,26 14,28 15,29 12,29 13,31 15,33 16,35 
16,30 17,31 18,33 19,34 17,36 18,38 20,40 21,42 
20,35 21,37 24,40 25,42 23,44 24,46 27,49 28,51 
29,46 30,48 35,53 36,55 31,54 32,56 35,59 36,61 
41,60 42,62 48,68 49,70 40,65 41,67 45,71 46,73 
56,77 57,79 66,88 67,90 51,78 52,80 58,86 59,88 
78,101 79,103 95,119 96,121 66,95 67,97 76,106 77,108 

137,162 88,119 
133,166 

89,121 107,139 108,141 

400 0,6 1,8 2,10 3,12 400 0,8 1,11 2,13 3,15 
4,13 5,15 6,17 7,18 4,17 5,18 6,20 7,22 
8,19 9,21 10,22 11,24 8,23 9,25 10,26 11,28 

12,25 13,26 14,28 15,29 12,29 13,31 14,32 15,34 
16,30 17,32 20,35 21,37 17,36 18,38 19,39 20,41 
24,40 25,42 28,45 29,47 22,43 23,45 26,48 27,50 
33,51 34,53 38,57 39,59 29,52 30,54 33,57 34,59 
44,64 45,66 51,72 52,74 37,62 38,64 41,67 42,69 
58,80 59,82 67,90 68,92 46,73 47,75 52,80 53,82 
76,100 77,102 87,112 88,114 57,86 58,88 64,94 65,96 

100,126 101,128 117,144 118,146 71,102 72,104 79,111 80,113 
141,169 142,171 185,214 88,121 89,123 98,132 99,134 

111,146 112,148 127,163 128,165 
152,189 153,191 181,219 

500 0,6 1,8 2,10 3,12 500 0,8 1,11 2,13 3,15 
4,13 5,15 6,17 7,18 4,17 5,18 6,20 7,22 
8,19 9,21 10,22 11,24 8,24 9,25 10,27 11,28 

12,25 13,26 14,28 15,29 12,30 14,32 15,34 16,35 
16,30 17,32 18,33 19,34 17,37 19,39 20,41 22,43 
20,36 23,39 24,41 27,44 23,45 25,47 26,49 28,51 
28,46 32,50 33,52 37,56 29,53 32,56 33,58 35,60 
38,58 42,62 43,64 48,69 36,62 40,66 41,68 44,71 
49,71 55,77 56,79 62,85 45,73 49,77 50,79 54,83 
63,87 70,94 71,96 79,104 55,85 59,89 60,91 65,96 
80,106 89,115 90,117 100,127 66,98 72,104 73,106 79,112 

101,129 113,141 114,143 128,157 80,114 86,120 87,122 95,130 
129,159 147,177 148,179 172,203 96,132 104,140 105,142 115,152 
173,205 234,266 116,154 127,165 128,167 141,180 

142,182 159,199 160,201 184,225 
185,227 229,271 
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TABLE A-29. TABLES FOR TESTING SIGNIFICANCE IN 2 X 2 TABLES WITH UNEQUAL SAMPLES 

Table A-29 shows (1) in bold type for given Ox, nu and n2, the value of a2 which is just significant 
at the probability level quoted in parentheses for a two-sided test and without parentheses for a 
one-sided test, (2) in small type, for given nu n2 and ax + a2, the exact probability (if there is 
independence) that a2 is equal to or less than the integer shown in bold type. 

Adapted from a table of the same form with probabilities to 4 decimals prepared in the Statistical Engineering Laboratory, National Bureau of 
Standards, by Anna M. Glinski and John Van Dyke from Tables of the Hypergeomelric Probability Distribution by Gerald J. Lieberman and Donald B. 
Owen, Technical Report No. 50 (Contract Nonr-225(53) (NR 042 002)), Applied Mathematics and Statistics Laboratories, Stanford University, 

Stanford, California. 
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TABLE A-29 (Continued). TABLES FOR TESTING SIGNIFICANCE IN 2 X 2 TABLES WITH 
UNEQUAL SAMPLES 

ai 

Significance Level 

ai 

Significance Level 

0.05 
(0.10) 

0.025 

(0.05) 

0.01 
(0.02) 

0.005 

(0.01) 
0.05 

(0.10) 

0.025 

(0.05) 
0.01 

(0.02) 
0.005 
(0.01) 

n\ = 9 n2 = 5 9 2 .027 1 .005 - 1 .005 - 1 .005 - Tli = 10 712 = 4 10 1 .011 1 .011 0 .001 0 .001 
8 1 .023 1 .023 0 .003 0 .003 9 1 .041 0 .005 - 0 .005 - 0 .005 - 
7 0 .010 + 0 .010 + — — 8 0 .015 - 0 .015 - — — 

6 0 .028 — — — 7 0 .035 - — — — 

4 9 1 .014 1 .014 0 .001 0 .001 3 10 1 .038 0 .003 0 .003 0 .003 
8 0 .007 0 .007 0 .007 — 9 0 .014 0 .014 — — 

7 0 .021 0 .021 — — 8 0 .035 - —. — — 

6 0 .049 — — — 

2 10 0 .015 + 0 .015 + — — 

3 9 1 .045 + 0 .005 - 0 .005 - 0 .005 - 9 0 .045 + — — — 

8 0 .018 0 .018 — — 

7 0 .045 + — — — 

Tli = 11 712 = 11 11 7 .045 + 6 .018 5 .006 4 .002 

2 9 0 .018 0 .018 — — 10 5 .032 4 .012 3 .004 3 .004 
— — — — 9 4 .040 3 .015 - 2 .004 2 .004 

Til —10 n2 = 10 10 6 .043 5 .016 4 .005 + 3 .002 8 3 .043 2 .015 - 1 .004 1 .004 
9 4 .029 3 .010 - 3 .010 - 2 .003 7 2 .040 1 .012 0 .002 0 .002 
8 3 .035 - 2 .012 1 .003 1 .003 6 1 .032 0 .006 0 .006 — 

7 2 .035 - 1 .010 - 1 .010 - 0 .002 5 0 .018 0 .018 — — 

6 1 .029 0 .005 + 0 .005 + — 4 0 .045 + — — — 

5 0 .016 0 .016 — — 

4 0 .043 — — — 10 11 6 .035 + 5 .012 4 .004 4 .004 

10 4 .021 4 .021 3 .007 2 .002 

9 10 5 .033 4 .011 3 .003 3 .003 9 3 .024 3 .024 2 .007 1 .002 

9 4 .050 - 3 .017 2 .005 - 2 .005 - 8 2 .023 2 .023 1 .006 0 .001 
8 2 .019 2 .019 1 .004 1 .004 7 1 .017 1 .017 0 .003 0 .003 
7 1 .015 - 1 .015 - 0 .002 0 .002 6 1 .043 0 .009 0 .009 — 

6 1 .040 0 .008 0 .008 — 5 0 .023 0 .023 — — 

5 0 .022 0 .022 — — 

9 11 5 .026 4 .008 4 .008 3 .002 

8 10 4 .023 4 .023 3 .007 2 .002 10 4 .038 3 .012 2 .003 2 .003 
9 3 .032 2 .009 2 .009 1 .002 9 3 .040 2 .012 1 .003 1 .003 
8 2 .031 1 .008 1 .008 0 .001 8 2 .035 - 1 .009 1 .009 0 .001 
7 1 .023 1 .023 0 .004 0 .004 7 1 .025 - 1 .025 - 0 .004 0 .004 

6 0 .011 0 .011 — — 6 0 .012 0 .012 — — 

5 0 .029 — 5 0 .030 

7 10 3 .015 - 3 .015 - 2 .003 2 .003 8 11 4 .018 4 .018 3 .005 - 3 .005 - 
9 2 .018 2 .018 1 .004 1 .004 10 3 .024 3 .024 2 .006 1 .001 
8 1 .013 1 .013 0 .002 0 .002 9 2 .022 2 .022 1 .005 - 1 .005 - 
7 1 .036 0 .006 0 .006 — 8 1 .015 - 1 .015 - 0 .002 0 .002 

6 0 .017 0 .017 — — 7 1 .037 0 .007 0 .007 — 

5 0 .041 — — — 6 0 .017 0 .017 — — 

5 0 .040 — — — 

6 10 3 .036 2 .008 2 .008 1 .001 
9 2 .036 1 .008 1 .008 0 .001 7 11 4 .043 3 .011 2 .002 2 .002 
8 1 .024 1 .024 0 .003 0 .003 10 3 .047 2 .013 1 .002 1 .002 
7 0 .010 + 0 .010 + — — 9 2 .039 1 .009 1 .009 0 .001 
6 0 .026 — — — 8 1 .025 - 1 .025 - 0 .004 0 .004 

7 0 .010 + 0 .010 + — — 

5 10 2 .022 2 .022 1 .004 1 .004 6 0 .025 - 0 .025 - — — 

9 1 .017 1 .017 0 .002 0 .002 
8 1 .047 0 .007 0 .007 — 6 11 3 .029 2 .006 2 .006 1 .001 
7 0 .019 0 .019 — — 10 2 .028 1 .005 + 1 .005 + 0 .001 
6 0 .042 9 1 .018 1 .018 0 .002 0 .002 
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Cl\ 

Significance Level 

a i 

Significance Level 

0.05 
(0.10) 

0.025 
(0.05) 

0.01 

(0.02) 
0.005 
(0.01) 

0.05 

(0.10) 

0.025 

(0.05) 
0.01 

(0.02) 
0.005 

(0.01) 

ttl = ll 712 = 6 8 1 .043 0 .007 0 .007 _ 7ii = 12 n2 = 9 7 1 .037 0 .007 0 .007 _ 

7 0 .017 0 .017 — — 6 0 .017 0 .017 — — 

6 0 .037 — — — 5 0 .039 — — — 

5 11 2 .018 2 .018 1 .003 1 .003 8 12 5 .049 4 .014 3 .004 3 .004 

10 1 .013 1 .013 0 .001 0 .001 11 3 .018 3 .018 2 .004 2 .004 

9 1 .036 0 .005 - 0 .005 - 0 .005 - 10 2 .015 + 2 .015 + 1 .003 1 .003 
8 0 .013 0 .013 — — 9 2 .040 1 .010 - 1 .010 - 0 .001 

7 0 .029 — — — 8 1 .025 - 1 .025 - 0 .004 0 .004 
7 0 .010 + 0 .010 + — — 

4 11 1 .009 1 .009 1 .009 0 .001 6 0 .024 0 .024 — — 

10 1 .033 0 .004 0 .004 0 .004 

9 0 .011 0 .011 — — 7 12 4 .036 3 .009 3 .009 2 .002 

8 0 .026 — — — 11 3 .038 2 .010- 2 .010 - 1 .002 
10 2 .029 1 .006 1 .006 0 .001 

3 11 1 .033 0 .003 0 .003 0 .003 9 1 .017 1 .017 0 .002 0 .002 
10 0 .011 0 .011 — — 8 1 .040 0 .007 0 .007 — 

9 0 .027 — — — 7 0 .016 0 .016 — — 

6 0 .034 — — — 

2 11 0 .013 0 .013 — — 

10 0 .038 — — — 6 12 3 .025 - 3 .025 - 2 .005 - 2 .005 - 
11 2 .022 2 .022 1 .004 1 .004 

Til = 12 7l2 = 12 12 8 .047 7 .019 6 .007 5 .002 10 1 .013 1 .013 0 .002 0 .002 

11 6 .034 5 .014 4 .005 - 4 .005 - 9 1 .032 0 .005 - 0 .005 - 0 .005 - 
10 5 .045 - 4 .018 3 .006 2 .002 8 0 .011 0 .011 — — 

9 4 .050 - 3 .020 2 .006 1 .001 7 0 .025 - 0 .025 - — — 

8 3 .050 - 2 .018 1 .005 - 1 .005 - 6 0 .050 - — — — 

7 2 .045 - 1 .014 0 .002 0 .002 

6 1 .034 0 .007 0 .007 — 5 12 2 .015 - 2 .015 - 1 .002 1 .002 
5 0 .019 0 .019 — — 11 1 .010 - 1 .010 - 1 .010 - 0 .001 
4 0 .047 — — — 10 1 .028 0 .003 0 .003 0 .003 

9 0 .009 0 .009 0 .009 — 

11 12 7 .037 6 .014 5 .005 - 5 .005 - 8 0 .020 0 .020 — — 

11 5 .024 5 .024 4 .008 3 .002 7 0 .041 — — — 

10 4 .029 3 .010 + 2 .003 2 .003 
9 3 .030 2 .009 2 .009 1 .002 4 12 2 .050 1 .007 1 .007 0 .001 
8 2 .026 1 .007 1 .007 0 .001 11 1 .027 0 .003 0 .003 0 .003 
7 1 .019 1 .019 0 .003 0 .003 10 0 .008 0 .008 0 .008 — 

6 1 .045 - 0 .009 0 .009 — 9 0 .019 0 .019 — — 

5 0 .024 0 .024 8 0 .038 — — 

10 12 6 .029 5 .010 - 5 .010 - 4 .003 3 12 1 .029 0 .002 0 .002 0 .002 

11 5 .043 4 .015 + 3 .005 - 3 .005 - 11 0 .009 0 .009 0 .009 — 

10 4 .048 3 .017 2 .005 - 2 .005 - 10 0 .022 0 .022 — — 

9 3 .046 2 .015 - 1 .004 1 .004 9 0 .044 — — — 

8 2 .038 1 .010 + 0 .002 0 .002 
7 1 .026 0 .005 - 0 .005 - 0 .005 - 2 12 0 .011 0 .011 — — 

6 0 .012 0 .012 — — 11 0 .033 — — — 

5 0 .030 — — — — 

Til = 13 712 = 13 13 9 .048 8 .020 7 .007 6 .003 
9 12 5 .021 5 .021 4 .006 3 .002 12 7 .037 6 .015 + 5 .006 4 .002 

11 4 .029 3 .009 3 .009 2 .002 11 6 .048 5 .021 4 .008 3 .002 
10 3 .029 2 .008 2 .008 1 .002 10 4 .024 4 .024 3 .008 2 .002 

9 2 .024 2 .024 1 .006 0 .001 9 3 .024 3 .024 2 .008 1 .002 
8 1 .016 1 .016 0 .002 0 .002 8 2 .021 

1 
2 .021 1 .006 0 .001 
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UNEQUAL SAMPLES 

Ol 

Significance Level 

ai 

Significance Level 

0.05 
(0.10) 

0.025 

(0.05) 

0.01 
(0.02) 

0.005 
(0.01) 

0.05 

(0.10) 

0.025 

(0.05) 
O.Ol 

(0.02) 

0.005 
(0.01) 

rti = 13 n2 = 13 7 2 .048 1 .015 + 0 .003 0 .003 Wi = 13 rc2 = 7 ii 2 .022 2 .022 1 .004 1 .004 

6 1 .037 0 .007 0 .007 — 10 1 .012 1 .012 0 .002 0 .002 

5 0 .020 0 .020 — — 9 1 .029 0 .004 0 .004 0 .004 
4 0 .048 — — — 8 0 .010 + 0 .010 + — — 

7 0 .022 0 .022 — — 

12 13 8 .039 7 .015 - 6 .005 + 5 .002 6 0 .044 — — — 

12 6 .027 5 .010 - 5 .010 - 4 .003 

11 5 .033 4 .013 3 .004 3 .004 6 13 3 .021 3 .021 2 .004 2 .004 
10 4 .036 3 .013 2 .004 2 .004 12 2 .017 2 .017 1 .003 1 .003 

9 3 .034 2 .011 1 .003 1 .003 11 2 .046 1 .010 - 1 .010 - 0 .001 
8 2 .029 1 .008 1 .008 0 .001 10 1 .024 1 .024 0 .003 0 .003 
7 1 .020 1 .020 0 .004 0 .004 9 1 .050 - 0 .008 0 .008 — 

6 1 .046 0 .010 - 0 .010 - — 8 0 .017 0 .017 — — 

5 0 .024 0 .024 — — 7 0 .034 — — — 

11 13 7 .031 6 .011 5 .003 5 .003 5 13 2 .012 2 .012 1 .002 1 .002 
12 6 .048 5 .018 4 .006 3 .002 12 2 .044 1 .008 1 .008 0 .001 

11 4 .021 4 .021 3 .007 2 .002 11 1 .022 1 .022 0 .002 0 .022 
10 3 .021 3 .021 2 .006 1 .001 10 1 .047 0 .007 0 .007 — 

9 3 .050 - 2 .017 1 .004 1 .004 9 0 .015 - 0 .015 - — — 

8 2 .040 1 .011 0 .002 0 .002 8 0 .029 — — — 

7 1 .027 0 .005 - 0 .005 - 0 .005 - 
6 0 .013 0 .013 — — 4 13 2 .044 1 .006 1 .006 0 .000 

5 0 .030 — — — 12 1 .022 1 .022 0 .002 0 .002 

11 0 .006 0 .006 0 .006 — 

10 13 6 .024 6 .024 5 .007 4 .002 10 0 .015 - 0 .015 - — — 

12 5 .035 - 4 .012 3 .003 3 .003 9 0 .029 — — — 

11 4 .037 3 .012 2 .003 2 .003 

10 3 .033 2 .010 + 1 .002 1 .002 3 13 1 .025 1 .025 0 .002 0 .002 

9 2 .026 1 .006 1 .006 0 .001 12 0 .007 0 .007 0 .007 — 

8 1 .017 1 .017 0 .003 0 .003 11 0 .018 0 .018 — — 

7 1 .038 0 .007 0 .007 — 10 0 .036 — — — 

6 0 .017 0 .017 — — 

5 0 .038 — — — 2 13 0 .010 - 0 .010 - 0 .010 - — 

12 0 .029 — — — 

9 13 5 .017 5 .017 4 .005 - 4 .005 - — 

12 4 .023 4 .023 3 .007 2 .001 Tii = 14 m2 = 14 14 10 .049 9 .020 8 .008 7 .003 

11 3 .022 3 .022 2 .006 1 .001 13 8 .038 7 .016 6 .006 5 .002 

10 2 .017 2 .017 1 .004 1 .004 12 6 .023 6 .023 5 .009 4 .003 

9 2 .040 1 .010 + 0 .001 0 .001 11 5 .027 4 .011 3 .004 3 .004 

8 1 .025 - 1 .025 - 0 .004 0 .004 10 4 .028 3 .011 2 .003 2 .003 

7 0 .010 + 0 .010 + — — 9 3 .027 2 .009 2 .009 1 .002 

6 0 .023 0 .023 — — 8 2 .023 2 .023 1 .006 0 .001 

5 0 .049 — — — 7 1 .016 1 .016 0 .003 0 .003 

6 1 .038 0 .008 0 .008 — 

8 13 5 .042 4 .012 3 .003 3 .003 5 0 .020 0 .020 — — 

12 4 .047 3 .014 2 .003 2 .003 4 0 .049 — — — 

11 3 .041 2 .011 1 .002 1 .002 
10 2 .029 1 .007 1 .007 0 .001 13 14 9 .041 8 .016 7 .006 6 .002 

9 1 .017 1 .017 0 .002 0 .002 13 7 .029 6 .011 5 .004 5 .004 

8 1 .037 0 .006 0 .006 — 12 6 .037 5 .015 + 4 .005 + 3 .002 

7 0 .015 - 0 .015 - — — 11 5 .041 4 .017 3 .006 2 .001 

6 0 .032 — — — 10 4 .041 3 .016 2 .005 - 2 .005 - 

9 3 .038 2 .013 1 .003 1 .003 

7 13 4 .031 3 .007 3 .007 2 .001 8 2 .031 1 .009 1 .009 0 .001 

12 3 .031 2 .007 2 .007 1 .001 
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Significance Level Significance Level 

0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005 

Ol (0.10) (0.05) (0.02) (0.01) CL\ (0.10) (0.05) (0.02) (0.01) 

7l\ — 14 712 —13 7 1 .021 1 .021 0 .004 0 .004 7ii = 14 n2 = 7 14 4 .026 3 .006 3 .006 2 .001 

6 1 .048 0 .010 + — — 13 3 .025 2 .006 2 .006 1 .001 

5 0 .025 - 0 .025 - — — 12 2 .017 2 .017 1 .003 1 .003 

11 2 .041 1 .009 1 .009 0 .001 
12 14 8 .033 7 .012 6 .004 6 .004 10 1 .021 1 .021 0 .003 0 .003 

13 6 .021 6 .021 5 .007 4 .002 9 1 .043 0 .007 0 .007 — 

12 5 .025 + 4 .009 4 .009 3 .003 8 0 .015 - 0 .015 - — — 

11 4 .026 3 .009 3 .009 2 .002 7 0 .030 — — — 

10 3 .024 3 .024 2 .007 1 .002 
9 2 .019 2 .019 1 .005 - 1 .005 - 

6 
14 3 .018 3 .018 2 .003 2 .003 

8 2 .042 1 .012 0 .002 0 .002 13 2 .014 2 .014 1 .002 1 .002 

7 1 .028 0 .005 + 0 .005 + — 12 2 .037 1 .007 1 .007 0 .001 
6 0 .013 0 .013 — — 11 1 .018 1 .018 0 .002 0 .002 

5 0 .030 — — — 10 1 .038 0 .005 + 0 .005 + — 

9 0 .012 0 .012 — — 

11 14 7 .026 6 .009 6 .009 5 .003 8 0 .024 0 .024 — — 

13 6 .039 5 .014 4 .004 4 .004 7 0 .044 — — — 

12 5 .043 4 .016 3 .005 - 3 .005 - 

11 4 .042 3 .015 - 2 .004 2 .004 5 14 2 .010 + 2 .010 + 1 .001 1 .001 

10 3 .036 2 .011 1 .003 1 .003 13 2 .037 1 .006 1 .006 0 .001 

9 2 .027 1 .007 1 .007 0 .001 12 1 .017 1 .017 0 .002 0 .002 

8 1 .017 1 .017 0 .003 0 .003 U 1 .038 0 .005 - 0 .005 - 0 .005 - 
7 1 .038 0 .007 0 .007 — 10 0 .011 0 .011 — — 

6 0 .017 0 .017 — — 9 0 .022 0 .022 — 

5 0 .038 

8 

0 .040 — 

10 14 6 .020 6 .020 5 .006 4 .002 4 14 2 .039 1 .005 - 1 .005 - 1 .005 - 
13 5 .028 4 .009 4 .009 3 .002 13 1 .019 1 .019 0 .002 0 .002 

12 4 .028 3 .009 3 .009 2 .002 12 1 .044 0 .005 - 0 .005 - 0 .005 - 
11 3 .024 3 .024 2 .007 1 .001 11 0 .011 0 .011 — — 

10 2 .018 2 .018 1 .004 1 .004 10 0 .023 0 .023 — — 

9 2 .040 1 .011 0 .002 0 .002 
9 

0 .041 — — — 

8 1 .024 1 .024 0 .004 0 .004 

7 , 0 .010 - 0 .010 - 0 .010 - — 3 14 1 .022 1 .022 0 .001 0 .001 

6 0 .022 0 .022 — — 13 0 .006 0 .006 0 .006 — 

5 0 .047 — — — 12 0 .015 - 0 .015 - — 

11 0 .029 — - — 

9 14 6 .047 5 .014 4 .004 4 .004 

13 4 .018 4 .018 3 .005 - 3 .005 - 2 14 0 .008 0 .008 0 .008 — 

12 3 .017 3 .017 2 .004 2 .004 13 0 .025 0 .025 — — 

11 
10 

3 .042 2 .012 1 .002 1 .002 

12 

0 .050 — — — 

9 1 .017 1 .017 0 .002 0 .002 7ll = 15 712 = 15 15 1 1 .050 - 10 .021 9 .008 8 .003 

8 1 .036 0 .006 0 .006 — 14 9 .040 8 .018 7 .007 6 .003 

7 0 .014 0 .014 — — 13 7 .025 + 6 .010 + 5 .004 5 .004 

6 0 .030 — — — 12 6 .030 5 .013 4 .005 - 4 .005 - 

11 5 .033 4 .013 3 .005 - 3 .005 - 

8 14 5 .036 4 .010 - 4 .010 - 3 .002 10 4 .033 3 .013 1 2 .004 2 .004 

13 4 .039 3 .011 2 .002 2 .002 9 3 .030 2 .010 + 1 .003 1 .003 

12 3 .032 2 .008 2 .008 1 .001 8 2 .025 + 1 .007 1 .007 0 .001 
11 2 .022 2 .022 1 .005 - 1 .005 - 

7 
1 .018 1 .018 0 .003 0 .003 

10 2 .048 1 .012 0 .002 0 .002 6 1 .040 0 .008 0 .008 

9 j 1 .026 0 .004 0 .004 0 .004 5 0 .021 0 .021 — 

8 1 0 .009 0 .009 0 .009 — 4 0 .050 - — — _ 
7 0 .020 0 .020 — 

6 0 .040 
2 
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a i 

Significance Level 

ai 

Significance Level 

0.05 
(0.10) 

0.025 

(0.05) 

0.01 

(0.02) 

0.005 

(0.01) 
0.05 

(0.10) 
0.025 
(0.05) 

0.01 

(0.02) 
0.005 
(0.01) 

n! = 15 n2 = 14 15 10 .042 9 .017 8 .006 7 .002 7ii = 15 w2 = 9 13 4 .042 3 .013 2 .003 2 .003 
14 8 .031 7 .013 6 .005 - 6 .005 - 12 3 .032 2 .009 2 .009 1 .002 
13 7 .041 6 .017 5 .007 4 .002 11 2 .021 2 .021 1 .005 - 1 .005 - 
12 6 .046 5 .020 4 .007 3 .002 10 2 .045 - 1 .011 0 .002 0 .002 
11 5 .048 4 .020 3 .007 2 .002 9 1 .024 1 .024 0 .004 0 .004 
10 4 .046 3 .018 2 .006 1 .001 8 1 .048 0 .009 0 .009 — 

9 3 .041 2 .014 1 .004 1 .004 7 0 .019 0 .019 — — 

8 2 .033 1 .009 1 .009 0 .001 6 0 .037 — — — 

7 1 .022 1 .022 0 .004 0 .004 

6 1 .049 0 .011 — — 8 15 5 .032 4 .008 4 .008 3 .002 

5 0 .025 + — — — 14 4 .033 3 .009 3 .009 2 .002 

13 3 .026 2 .006 2 .006 1 .001 
13 15 9 .035 - 8 .013 7 .005 - 7 .005 - 12 2 .017 2 .017 1 .003 1 .003 

14 7 .023 7 .023 6 .009 5 .003 11 2 .037 1 .008 1 .008 0 .001 
13 6 .029 5 .011 4 .004 4 .004 10 1 .019 1 .019 0 .003 0 .003 
12 5 .031 4 .012 3 .004 3 .004 9 1 .038 0 .006 0 .006 — 

11 4 .030 3 .011 2 .003 2 .003 8 0 .013 0 .013 — — 

10 3 .026 2 .008 2 .008 1 .002 7 0 .026 — — — 

9 2 .020 2 .020 1 .005 -f 0 .001 6 0 .050 - — — — 

8 2 .043 1 .013 0 .002 0 .002 

7 1 .029 0 .005 + 0 .005 + — 7 15 4 .023 4 .023 3 .005 - 3 .005 - 
6 0 .013 0 .013 — — 14 3 .021 3 .021 2 .004 2 .004 

5 0 .031 — — — 13 2 .014 2 .014 1 .002 1 .002 
12 2 .032 1 .007 1 .007 0 .001 

12 15 8 .028 7 .010 - 7 .010 - 6 .003 11 1 .015 + 1 .015 + 0 .002 0 .002 

14 7 .043 6 .016 5 .006 4 .002 10 1 .032 0 .005 - 0 .005 - 0 .005 - 
13 6 .049 5 .019 4 .007 3 .002 9 0 .010 + 0 .010 + — — 

12 5 .049 4 .019 3 .006 2 .002 8 0 .020 0 .020 — — 
11 4 .045 + 3 .017 2 .005 - 2 .005 - 7 0 .038 — — — 

10 3 .038 2 .012 1 .003 1 .003 

9 2 .028 1 .007 1 .007 0 .001 6 15 3 .015 + 3 .015 + 2 .003 2 .003 

8 1 .018 1 .018 0 .003 0 .003 14 2 .011 2 .011 1 .002 1 .002 

7 1 .038 0 .007 0 .007 — 13 2 .031 1 .006 1 .006 0 .001 

6 0 .017 0 .017 — — 12 1 .014 1 .014 0 .002 0 .002 

& 0 .037 — — — 11 1 .029 0 .004 0 .004 0 .004 

10 0 .009 0 .009 0 .009 — 

11 15 7 .022 7 .022 6 .007 5 .002 9 0 .017 0 .017 — — 

14 6 .032 5 .011 4 .003 4 .003 8 0 .032 — — — 

13 5 .034 4 .012 3 .003 3 .003 
12 4 .032 3 .010 + 2 .003 2 .003 5 15 2 .009 2 .009 2 .009 1 .001 

11 3 .026 2 .008 2 .008 1 .002 14 2 .032 1 .005 - 1 .005 - 1 .005 - 
10 2 .019 2 .019 1 .004 1 .004 13 1 .014 1 .014 0 .001 0 .001 

9 2 .040 1 .011 0 .002 0 .002 12 1 .031 0 .004 0 .004 0 .004 

8 1 .024 1 .024 0 .004 0 .004 11 0 .008 0 .008 0 .008 — 
7 1 .049 0 .010 - 0 .010 -1 — 10 0 .016 0 .016 — — 
6 0 .022 0 .022 — — 9 0 .030 — — — 
5 0 .046 — — — 

4 15 2 .035 + 1 .004 1 .004 1 .004 

10 15 6 .017 6 .017 5 .005 - 5 .005 - 14 1 .016 1 .016 0 .001 0 .001 

14 5 .023 5 .023 4 .007 3 .002 13 1 .037 0 .004 0 .004 0 .004 

13 4 .022 4 .022 3 .007 2 .001 12 0 .009 0 .009 0 .009 — 

12 3 .018 3 .018 2 .005 - 2 .005 - 11 0 .018 0 .018 — — 

11 3 .042 2 .013 1 .003 1 .003 10 0 .033 — — — 

10 2 .029 1 .007 1 .007 0 .001 
9 1 .016 1 .016 0 .002 0 .002 3 15 1 .020 1 .020 0 .001 0 .001 

8 1 .034 0 .006 0 .006 — 14 0 .005 - 0 .005 - 0 .005 - 0 .005 - 

7 0 .013 0 .013 — — 13 0 .012 0 .012 — — 

6 0 .028 — — — 12 0 .025 - 0 .025 - — — 

11 0 .043 — — — 

9 15 6 .042 5 .012 4 .003 4 .003 
14 5 .047 4 .015 - 3 .004 3 .004 2 15 0 .007 0 .007 0 .007 — 

14 0 .022 0 .022 — — 

13 0 .044 1 
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ai 

Significance Level 

ai 

Significance Level 

0.05 
(0.10) 

0.025 

(0.05) 

0.01 
(0.02) 

0.005 

(0.01) 

0.05 

(0.10) 

0.025 

(0.05) 

0.01 
(0.02) 

0.005 
(0.01) 

7ii = 16 n2 = 16 16 11 .022 11 .022 10 .009 9 .003 tti = 16 n2 = 12 16 8 .024 8 .024 7 .008 6 .002 

15 10 .041 9 .019 8 .008 7 .003 15 7 .036 6 .013 5 .004 5 .004 

14 8 .027 7 .012 6 .005 - 6 .005 - 14 6 .040 5 .015 - 4 .005 - 4 .005 - 

13 7 .033 6 .015 - 5 .006 4 .002 13 5 .039 4 .014 3 .004 3 .004 

12 6 .037 5 .016 4 .006 3 .002 12 4 .034 3 .012 2 .003 2 .003 

11 5 .038 4 .016 3 .006 2 .002 11 3 .027 2 .008 2 .008 1 .002 

10 4 .037 3 .015 - 2 .005 - 2 .005 - 10 2 .019 2 .019 1 .005 - 1 .005 - 

9 3 .033 2 .012 1 .003 1 .003 9 2 .040 1 .011 0 .002 0 .002 

8 2 .027 1 .008 1 .008 0 .001 8 1 .024 1 .024 0 .004 0 .004 
7 1 .019 1 .019 0 .003 0 .003 7 1 .048 0 .010 - 0 .010 - — 

6 1 .041 0 .009 0 .009 — 6 0 .021 0 .021 — — 

5 0 .022 0 .022 — — 5 0 .044 — 

15 16 11 .043 10 .018 9 .007 8 .002 11 16 7 .019 7 .019 6 .006 5 .002 

15 9 .033 8 .014 7 .005 + 6 .002 15 6 .027 5 .009 5 .009 4 .002 

14 8 .044 7 .019 6 .008 5 .003 14 5 .027 4 .009 4 .009 3 .002 

13 6 .023 6 .023 5 .009 4 .003 13 4 .024 4 .024 3 .008 2 .002 

12 5 .024 5 .024 4 .009 3 .003 12 3 .019 3 .019 2 .005 + 1 .001 

11 4 .023 4 .023 3 .008 2 .002 11 3 .041 2 .013 1 .003 1 .003 

10 4 .049 3 .020 2 .006 1 .001 10 2 .028 1 .007 1 .007 0 .001 

9 3 .043 2 .016 1 .004 1 .004 9 1 .016 1 .016 0 .002 0 .002 

8 2 .035 - 1 .010 + 0 .002 0 .002 8 1 .033 0 .006 0 .006 — 

7 1 .023 1 .023 0 .004 0 .004 7 0 .013 0 .013 — — 

6 0 .011 0 .011 — — 6 0 .027 — — — 

5 0 .026 — — — 

10 16 7 .046 6 .014 5 .004 5 .004 

14 16 10 .037 9 .014 8 .005 + 7 .002 15 5 .018 5 .018 4 .005 + 3 .001 

15 8 .025 + 7 .010 - 7 .010 - 6 .003 14 4 .017 4 .017 3 .005 - 3 .005 - 
14 7 .032 6 .013 5 .005 - 5 .005 - 13 4 .042 J .014 2 .003 2 .003 

13 6 .035 + 5 .014 4 .005 + 3 .001 12 3 .032 2 .009 2 .009 1 .002 

12 5 .035 + 4 .014 3 .005 - 3 .005 - 11 2 .021 2 .021 1 .005 - 1 .005 - 

11 4 .033 3 .012 2 .004 2 .004 10 2 .042 1 .011 0 .002 0 .002 

10 3 .028 2 .009 2 .009 1 .002 9 1 .023 1 .023 0 .004 0 .004 

9 2 .021 2 .021 1 .006 0 .001 8 1 .045 - 0 .008 0 .008 — 

8 2 .045 - 1 .013 0 .002 0 .002 7 0 .017 0 .017 — — 
7 1 .030 0 .006 0 .006 — 6 0 .035 - — — — 

6 
0 .013 0 .013 — — 

5 0 .031 — — — 9 16 6 .037 5 .010 - 5 .010 - 4 .002 

15 5 .040 4 .012 3 .003 3 .003 

13 
16 9 .030 8 .011 7 .004 7 .004 14 4 .034 3 .010 - 3 .010 - 2 .002 

15 8 .047 7 .019 6 .007 5 .002 13 3 .025 + 2 .007 2 .007 1 .001 

14 6 .023 6 .023 5 .008 4 .003 12 2 .016 2 .016 1 .003 1 .003 

13 5 .023 5 .023 4 .008 3 .003 11 2 .033 1 .008 1 .008 0 .001 
12 4 .022 4 .022 3 .007 2 .002 10 1 .017 1 .017 0 .002 0 .002 

U 4 048 3 .018 2 .005 + J .001 9 1 .034 0 .006 0 .006 — 

10 3 .039 2 .013 1 .003 1 .003 ' 8 0 .012 0 .012 — — 

9 2 .029 1 .008 1 .008 0 .001 7 0 .024 0 .024 — — 

8 1 .018 1 .018 0 .003 0 .003 6 0 .045 + — — — 

1 7 1 .038 0 .007 0 .007 — 

1 6 
0 .017 0 .017 — — 

5 0 .037 
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«1 

Significance Level 

ai 

Significance Level 

0.05 

(0.10) 

0.025 

(0.05) 

0.01 

(0.02) 

0.005 
(0.01) 

0.05 1 

(0.10) 

0.025 

(0.05) 

0.01 

(0.02) 
1 

0.005 
(0.01) 

r? ] = 16 n ■ = 8 16 5 .028 4 007 4 .007 3 .001 w, = 16 7i2 = 3 16 1 .018 1 .018 0 .001 0 .001 

15 4 ,028 3 .007 3 .007 2 001 15 0 .004 0 .004 0 .004 0 .004 

14 3 ,021 3 ,021 2 005 - 2 .005 - 14 0 .010 + 0 .010 + — — 

13 3 ,047 2 ,013 1 .002 1 002 13 0 .021 0 .021 — — 

12 2 ,028 1 006 1 .006 0 .001 12 0 .036 — — — 

! 11 1 .014 1 014 0 .002 0 ,002 

10 1 027 0 .004 0 .004 0 .004 2 16 0 .007 0 .007 0 .007 — 

9 0 ,009 0 ,009 0 ,009 — 15 0 .020 0 .020 — — 

8 0 .017 0 .017 — — 14 0 .039 — — — 
7 0 .033 — — — — — — 

rii = 17 n2 = 17 17 12 .022 12 .022 1 1 .009 10 .004 

7 16 4 ,020 4 020 3 ,004 3 .004 16 11 .043 10 .020 9 .008 8 .003 

15 3 .017 3 .017 2 .003 2 .003 15 9 .029 8 .013 7 .005 + 6 .002 

14 3 ,045 + 2 011 1 002 1 .002 14 8 .035 + 7 .016 6 .007 5 .002 

13 2 .026 1 .005 - 1 .005 - 1 .005 - 13 7 .040 6 .018 5 .007 4 .003 

12 1 .012 1 012 0 .001 0 .001 12 6 .042 5 .019 ! 4 .007 3 .002 

11 1 .024 1 .024 0 ,003 0 .003 11 5 .042 4 .018 3 .007 2 .002 

I 10 1 .045 - 0 .007 0 .007 — 10 4 .040 3 .016 2 .005 + 1 .001 

9 0 .014 0 .014 — — 9 3 .035 + 2 .013 1 .003 1 .003 

8 0 .026 — — — 8 2 .029 1 .008 1 .008 0 .001 

7 0 .047 . — -8 — 7 1 .020 1 .020 0 .004 0 .004 

6 1 .043 0 .009 0 .009 — 

6 16 3 .013 3 .013 2 .002 2 .002 5 0 .022 0 .022 — — 

15 3 .046 2 .009 2 .009 1 .001 

14 2 .025 + 1 .004 1 .004 1 .004 16 17 12 .044 11 .018 10 .007 9 .003 

13 1 .011 1 1 .011 0 .001 0 .001 16 10 .035 - 9 .015 - 8 .006 7 .002 

12 1 .023 1 .023 0 .003 0 .003 15 9 .046 8 .021 7 .009 6 .003 

11 1 .043 0 .006 0 .006 — 14 7 .025 + : 6 .011 5 .004 5 .004 

10 0 .012 0 012 — — 13 6 .027 5 .011 4 .004 4 .004 

9 0 .023 0 .023 — — 12 5 .027 4 .011 3 .004 3 .004 

8 0 .040 — — — 11 4 .025 + i 3 .009 3 .009 2 .003 

10 3 .022 3 .022 2 .007 1 .002 

5 16 3 .048 2 .008 2 .008 1 .001 9 3 .046 2 .017 1 .004 1 .004 

15 2 .028 1 .004 1 .004 1 .004 8 2 .036 1 .011 0 .002 0 .002 

14 1 .011 1 .011 0 .001 0 .001 7 1 .024 1 .024 0 .005 - 0 .005 - 

13 1 .025 + 0 .003 0 .003 0 .003 6 0 .011 0 .011 — — 

12 1 .047 0 .006 0 .006 — 5 0 .026 — — — 

11 0 .012 0 .012 — — 

10 0 .023 0 .023 — — 15 17 11 .038 10 .015 - 9 .006 8 .002 
9 0 .039 — — — 16 9 .027 8 .011 7 .004 7 .004 

15 8 .035 + 7 .015 - 6 .006 5 .002 

4 16 2 .032 1 .004 1 .004 1 .004 14 7 .040 6 .017 5 .006 4 .002 

15 1 .013 1 .013 0 .001 0 .001 13 6 .041 5 .017 4 .006 3 .002 

14 1 .032 0 .003 0 .003 0 .003 12 5 .039 4 .016 3 .005 + 2 .001 

13 0 .007 0 .007 0 .007 — 11 4 .035 + 3 .013 2 .004 2 .004 

12 0 .014 0 .014 — — 10 3 .029 2 .010 - 2 .010 - 1 .002 

11 0 .026 — — 9 2 .022 2 .022 1 .006 0 .001 

10 0 .043 — — — 8 2 .046 1 .014 0 .002 0 .002 

7 1 .030 0 .006 0 .006 — 

6 0 .014 0 .014 — — 

5 0 .031 - 
J 
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ai 

Significance Level 

a i 

Significance Level 

0.05 

(0.10) 

0.025 

(0.05) 

0.01 

(0.02) 
0.005 
(0.01) 

0.05 
(0.10) 

0.025 
(0.05) 

0.01 
(0.02) 

0.005 

(0.01) 

7!, = 17 n-,= 14 17 10 .032 9 .012 8 .004 8 .004 7lj = 17 n2 = ll 13 4 .042 3 .014 2 .004 2 .004 

16 8 .021 8 .021 7 .008 6 .003 12 3 .031 2 .009 2 .009 1 .002 

15 7 .020 6 .010 - 6 .010 - 5 .003 11 2 .020 2 .020 1 .005 - 1 .005 - 
14 6 .028 5 .011 4 .004 4 004 10 2 .040 1 .011 0 .001 0 .001 

13 5 .027 4 .010 - 4 .010 - 3 .003 9 1 .022 1 .022 0 .004 0 .004 

12 4 .024 4 .024 3 .008 2 .002 8 1 .042 0 .008 0 .008 — 

11 4 .049 3 .019 2 .006 1 .001 7 0 .016 0 .016 — — 

10 3 .040 2 .014 1 .003 1 .003 6 0 .033 — — — 

9 2 .029 1 .008 1 .008 0 .001 

8 1 .018 1 .018 0 .003 0 .003 10 17 7 .041 6 .012 5 .003 5 .003 
7 1 .038 0 .007 0 .007 — 16 6 .047 5 .015 + 4 .004 4 .004 

6 0 .017 0 .017 — — 15 5 .043 4 .014 3 .004 3 .004 

5 0 .036 — — 14 4 .034 3 .010 + 2 .002 2 .002 

13 3 .024 3 .024 2 .007 1 .001 
13 17 9 .026 8 .009 8 .009 7 .003 12 3 .049 2 .015 + 1 .003 1 .003 

16 8 .040 7 .015 + 6 .005 + 5 .002 11 2 .031 1 .007 1 .007 0 .001 
15 7 .045 + 6 .018 5 .006 4 .002 10 1 .016 1 .016 0 .002 0 .002 
14 6 045 + 5 018 4 .006 3 .002 9 1 .031 0 .005 + 0 .005 + — 

13 5 .042 4 .016 3 .005 + 2 .001 8 0 .011 0 .011 — — 

12 4 .035 + 3 .013 2 .004 2 .004 7 0 .022 0 .022 — — 

11 3 .028 2 .009 2 .009 1 .002 6 0 .042 — — — 

10 2 .019 2 .019 1 .005 - 1 .005 - 

9 2 .040 1 .011 0 .002 0 .002 9 17 6 .032 5 .008 5 .008 4 .002 

8 1 .024 1 .024 0 .004 0 .004 16 5 .034 4 .010 - 4 .010 - 3 .002 
7 1 .047 0 .010 - 0 .010 - — 15 4 .028 3 .008 3 .008 2 .002 

6 0 .021 0 .021 — — 14 3 .020 3 .020 2 .005 - 2 .005 - 

5 0 .043 — — — 13 3 .042 2 .012 1 .002 1 .002 
12 2 .025 + 1 .006 1 .006 0 .001 

12 17 8 .021 8 .021 7 .007 6 .002 11 2 .048 1 012 0 .002 0 .002 
16 7 .030 6 .011 5 .003 5 .003 10 1 .024 1 .024 0 .004 0 .004 

15 6 .033 5 .012 4 .004 4 .004 9 1 .045 - 0 .008 0 .008 — 
14 5 .030 4 .011 3 .003 3 .003 8 0 .016 0 .016 — — 

13 4 .026 3 .008 3 .008 2 .002 7 0 .030 — — — 

12 3 .020 3 .020 2 .006 1 .001 

11 3 .041 2 .013 1 .003 1 .003 8 17 5 .024 5 .024 4 .006 3 .001 

10 2 .028 1 .007 1 .007 0 .001 16 4 .023 4 .023 3 .006 2 .001 
9 1 .016 1 .016 0 .002 0 .002 15 3 .017 3 .017 2 .004 2 .004 
8 1 .032 0 .006 0 .006 — 14 3 .039 2 .010 - 2 .010 - 1 .002 
7 0 .012 0 .012 — — 13 2 .022 2 .022 1 .004 1 .004 
6 0 .026 — — — 12 2 .043 1 .010 - 1 .010 - 0 .001 

11 1 .020 1 .020 0 .003 0 .003 

11 17 7 .016 7 .016 6 .005 - 6 .005 - 10 1 .038 0 .006 0 .006 — 

16 6 .022 6 .022 5 .007 4 .002 9 0 .012 0 .012 — — 

15 5 .022 5 .022 4 .007 3 .002 8 0 .022 0 .022 — — 

14 4 .019 4 .019 3 .006 2 .001 7 0 .040 
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Significance Level 

ai 

Significance Level 

a 1 

0.05 
(0.10) 

0.025 

(0.05) 

0.01 

(0.02) 

0.005 

(0.01) 
0.05 

(0.10) 

0.025 

(0.05) 

0.01 
(0.02) 

0.005 

(0.01) 

7i\ —17 712 — 7 17 4 .017 4 .017 3 .003 3 .003 Mi = 18 n2-18 18 13 .023 13 .023 12 .010 - 11 .004 
16 3 .014 3 .014 2 .003 2 .003 17 12 .044 11 .020 10 .009 9 .004 
15 3 .038 2 .009 2 .009 1 .001 16 10 .030 9 .014 8 .006 7 .002 
14 2 .021 2 .021 1 .004 1 .004 15 9 .038 8 .018 7 .008 6 .003 
13 2 .042 1 .009 1 .009 0 .001 14 8 .043 7 .020 6 .009 5 .003 
12 1 .018 1 .018 0 .002 0 .002 13 7 .046 6 .022 5 .009 4 .003 

11 1 .034 0 .005 - 0 .005 - 0 .005 - 12 6 .047 5 .022 4 .009 3 .003 
10 0 .010 - 0 .010 - 0 .010 - — 11 5 .046 4 .020 3 .008 2 .002 

9 0 .019 0 .019 — — 10 4 .043 3 .018 2 .006 1 .001 
8 0 .033 — — — 9 3 .038 2 .014 1 .004 1 .004 

8 2 .030 1 .009 1 .009 0 .001 

6 17 3 .011 3 .011 2 .002 2 .002 7 1 .020 1 .020 0 .004 0 .004 

16 3 .040 2 .008 2 .008 1 .001 6 1 .044 0 .010 - 0 .010 - — 

15 2 .021 2 .021 1 .003 1 .003 5 0 .023 0 .023 — — 

14 2 .045 + 1 .009 1 .009 0 .001 
13 1 .018 1 .018 0 .002 0 .002 17 18 13 .045 + 12 .019 11 .008 10 .003 
12 1 .035 - 0 .005 - 0 .005 - 0 .005 - 17 11 .036 10 .016 9 .007 8 .002 

11 0 .009 0 .009 0 .009 — 16 10 .049 9 .023 8 .010 - 7 .004 

10 0 .017 0 .017 — — 15 8 .028 7 .012 6 .005 - 6 .005 - 

9 0 .030 — — — 14 7 .030 6 .013 5 .005 + 4 .002 

8 0 .050 - — — — 13 6 .031 5 .013 4 .005 - 4 .005 - 

12 5 .030 4 .012 3 .004 3 .004 

5 17 3 .043 2 .006 2 .006 1 .001 11 4 .028 3 .010 + 2 .003 2 .003 

16 2 .024 2 .024 1 .003 1 .003 10 3 .023 3 .023 2 .008 1 .002 

15 1 .009 1 .009 1 .009 0 .001 9 3 .047 2 .018 1 .005 - 1 .005 - 

14 1 .021 1 .021 0 .002 0 .002 8 2 .037 1 .011 0 .002 0 .002 

13 1 .039 0 .005 - 0 .005 - 0 .005 - 7 1 .025 - 1 .025 - 0 .005 - 0 .005 - 

12 0 .010 - 0 .010 - 0 .010 - — 6 0 .011 0 .011 — — 

11 0 .018 0 .018 — — 5 0 .026 — — — 

10 0 .030 — — — 

9 0 .049 — — — 16 18 12 .039 11 .016 10 .006 9 .002 

17 10 .029 9 .012 8 .005 - 8 .005 - 

4 17 2 .029 1 .003 1 .003 1 .003 16 9 .038 8 .017 7 .007 6 .002 

16 1 .012 1 .012 0 .001 0 .001 15 8 .043 7 .019 6 .008 5 .003 

15 1 .028 0 .003 0 .003 0 .003 14 7 .046 6 .020 5 .008 4 .003 

14 0 .006 0 .006 0 .006 — 13 6 .045 + 5 .020 4 .007 3 .002 

13 0 .012 0 .012 — — 12 5 .042 4 .018 3 .006 2 .002 

12 0 .021 0 .021 — — 11 4 .037 3 .015 - 2 .004 2 .004 

11 0 .035 + — — — 10 3 .031 2 .011 1 .003 1 .003 

9 2 .023 2 .023 1 .006 0 .001 

3 17 1 .016 1 .016 0 .001 0 .001 8 2 .046 1 .014 0 .002 0 .002 

16 1 .046 0 .004 0 .004 0 .004 7 1 .030 0 .006 0 .006 — 

15 0 .009 0 .009 0 .009 — 6 0 .014 0 .014 — — 

14 0 .018 0 .018 — — 5 0 .031 — — — 

13 0 .031 — — — 

12 0 .049 — — — 15 18 11 .033 10 .013 9 .005 - 9 .005 - 

17 9 .023 9 .023 8 .009 7 .003 

2 17 0 .006 0 .006 0 .006 — 16 8 .029 7 .012 6 .004 6 .004 

16 0 .018 0 .018 — — 15 7 .031 6 .013 5 .005 - 5 .005 - 

15 0 .035 + — — — 14 6 .031 5 .013 4 .004 4 .004 

13 5 .029 4 .011 3 .004 3 .004 
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Significance Level 

a i 

Signiflcai nee Level 

0.05 
(0.10) 

0.025 

(0.05) 

0.01 

(0.02) 
0.005 
(0.01) 

0.05 

(0.10) 
0.025 
(0.05) 

0.01 
(0.02) 

0.005 

(0.01) 

Mi = 18 m2 = 15 12 4 .025 + 3 .009' 3 .009 2 .003 n! = 18 n2 = 12 10 2 .038 1 .010 + 0 .001 0 .001 
11 3 .020 3 .020 2 .006 1 .001 9 1 .021 1 .021 0 .003 0 .003 
10 3 .041 2 .014 1 .004 1 .004 8 1 .040 0 .007 0 .007 — 

9 2 .030 1 .008 1 .008 0 .001 7 0 .016 0 .016 — — 

8 1 .018 1 .018 0 .003 0 .003 6 0 .031 — — — 

7 1 .038 0 .007 0 .007 — 

6 0 .017 0 .017 — — 11 18 8 .045 + 7 .014 6 .004 6 .004 
5 0 .036 — — — 17 6 .018 6 .018 5 .006 4 .001 

16 5 .018 5 .018 4 .005 + 3 .001 
14 18 10 .028 9 .010 - 9 .010 - 8 .003 15 5 .043 4 .015 - 3 .004 3 .004 

17 9 .043 8 .017 7 .006 6 .002 14 4 .033 3 .011 2 .003 2 .003 
16 8 .050 - 7 .021 6 .008 5 .003 13 3 .023 3 .023 2 .007 1 .001 
15 6 .022 6 .022 5 .008 4 .003 12 3 .046 2 .014 1 .003 1 .003 
14 6 .049 5 .020 4 .007 3 .002 11 2 .029 1 .007 1 .007 0 .001 
13 5 .044 4 .017 3 .006 2 .001 10 1 .015 - 1 .015 - 0 .002 0 .002 
12 4 .037 3 .013 2 .004 2 .004 9 1 .029 0 .005 - 0 .005 - 0 .005 - 
11 3 .028 2 .009 2 .009 1 .002 8 0 .010 + 0 .010 + — — 

10 2 .020 2 .020 1 .005 - 1 .005 - 7 0 .020 0 .020 — — 

9 2 .039 1 .011 0 .002 0 .002 
6 

0 .039 — — — 

8 1 ,02i 1 .024 0 .004 0 .004 
7 1 .047 0 .009 0 .009 — 10 18 7 .037 6 .010 + 5 .003 5 .003 
6 0 .020 0 .020 — — 17 6 .041 5 .013 4 .003 4 .003 
5 0 .043 — — — 16 5 .036 4 .011 3 .003 3 .003 

15 4 .028 3 .008 3 .008 2 .002 
13 18 9 .023 9 .023 8 .008 7 .002 14 3 .019 3 .019 2 .005 - 2 .005 - 

17 8 .034 7 .012 6 .004 6 .004 13 3 .039 2 .011 1 .002 1 .002 
16 7 .037 6 .014 5 .005 - 5 .005 - 12 2 .023 2 .023 1 .005 + 0 .001 
15 6 .036 5 .014 4 .004 4 .004 11 2 .043 1 .011 0 .001 0 .001 
14 5 .032 4 .012 3 .004 3 .004 10 1 .022 1 .022 0 .003 0 .003 
13 4 .027 3 .009 3 .009 2 .002 9 1 .040 0 .007 0 .007 — 

12 3 .020 3 .020 2 .006 1 .001 8 0 .014 0 .014 — — 

11 3 .040 2 .013 1 .003 1 .003 7 0 .027 — — — 

10 2 .027 1 .007 1 .007 0 .001 6 0 .049 — — — 

9 1 .015 + 1 .015 + 0 .002 0 .002 
8 1 .031 0 .006 0 .006 — 9 18 6 .029 5 .007 5 .007 4 .002 
7 0 .012 0 .012 — — 17 5 .030 4 .008 4 .008 3 .002 
6 0 .025 + — — — 16 4 .023 4 .023 3 .006 2 .001 

15 3 .016 3 .016 2 .004 2 .004 
12 18 8 .018 8 .018 7 .006 6 .002 14 3 .034 2 .009 2 .009 1 .002 

17 7 .026 6 .009 6 .009 5 .003 13 2 .019 2 .019 1 .004 1 .004 
16 6 .027 5 .009 5 .009 4 .003 12 2 .037 1 .009 1 .009 0 .001 
15 5 .024 5 .024 4 .008 3 .002 11 1 .018 1 .018 0 .002 0 .002 
14 4 .020 4 .020 3 .006 2 .001 10 1 .033 0 .005 + 0 .005 + — 

13 4 .042 3 .014 2 .004 2 .004 9 0 .010 + 0 .010 + — — 

12 3 .030 2 .009 2 .009 1 .002 8 0 .020 0 .020 — — 

11 2 .019 2 .019 1 .005 - 1 .005 - 7 0 .036 

T-69 



ORDP 20-114 TABLES 

TABLE A-29 (Continued). TABLES FOR TESTING SIGNIFICANCE IN 2 X 2 TABLES WITH 
UNEQUAL SAMPLES 

a i 

Significance Level Significance Level 

0.05 

(0.10) 

0.025 

(0.05) 

0.01 

(0.02) 

0.005 

(0.01) <X] 

0.05 

(0.10) 

0.025 j 

(0.05) 

1 
0.01 

(0.02) 
0.005 
(0.01) 

71i = 18 ti2 = 8 18 5 .022 5 .022 4 .005 - 4 .005 - Wi = 18 7i2 = 4 13 0 .017 0 .017 
17 4 .020 4 .020 3 .004 3 .004 12 0 .029 — — — 

16 3 .014 3 .014 2 .003 2 .003 11 0 .045 + — — — 

15 3 .032 2 .008 2 .008 1 .001 
14 2 .017 2 .017 1 .003 1 .003 3 18 1 .014 1 .014 0 .001 0 .001 

13 2 .034 1 .007 1 .007 0 .001 17 1 .041 0 .003 0 .003 0 .003 

12 1 .015 + 1 .015 + 0 .002 0 .002 16 0 .008 0 .008 0 .008 — 

11 1 .028 0 .004 0 .004 0 .004 15 0 .015 + 0 .015 + — — 

10 1 .049 0 .008 0 .008 — 14 0 .026 — — — 

9 0 .016 0 .016 — — 
13 

0 .042 — — — 

8 0 .028 — — — 

7 0 .048 — — — 2 18 0 .005 + 0 .005 + 0 .005 + — 

17 0 .016 0 .016 — — 

7 18 4 .015 + 4 .015 + 3 .003 3 .003 16 0 .032 — — — 

17 3 .012 3 .012 2 .002 2 .002 — 

16 3 .032 2 .007 2 .007 1 .001 Til = 19 71-2 = 19 19 14 .023 14 .023 13 .010 - 12 .004 

15 2 .017 2 .017 1 .003 1 .003 18 13 .045 - 12 .021 1 1 .009 10 .004 

14 2 .034 1 .007 1 .007 0 .001 17 11 .031 10 .015 - 9 .006 8 .003 

13 1 .014 1 .014 0 .002 0 .002 16 10 .039 9 .019 8 .009 7 .003 

12 1 .027 0 .004 0 .004 0 .004 15 9 .046 8 .022 6 .004 6 .004 

11 1 .046 0 .007 0 .007 — 14 8 .050 - 7 .024 5 .004 5 .004 

10 0 .013 0 .013 — — 13 6 .025 + 5 .011 4 .004 4 .004 

9 0 .024 0 .024 — — 12 5 .024 5 .024 3 .003 3 .003 

8 0 .040 — — — 11 5 .050 - 4 .022 3 .009 2 .003 

10 4 .046 3 .019 2 .006 1 .002 

6 18 3 .010 - 3 .010 - 3 .010 - 2 .001 9 3 .039 2 .015 - 1 .004 1 .004 

17 3 .035 + 2 .006 2 .006 1 .001 8 2 .031 1 .009 1 .009 0 .002 

16 2 .018 2 .018 1 .003 1 .003 7 1 .021 1 .021 0 .004 0 .004 

15 2 .038 1 .007 1 .007 0 .001 6 1 .045 - 0 .010 - 0 .010 - — 

14 1 .015 - 1 .015 - 0 .002 0 .002 5 0 .023 0 .023 — — 

13 1 .028 0 .003 0 .003 0 .003 
12 1 .048 0 .007 0 .007 — 18 19 14 .046 13 .020 12 .008 11 .003 

11 0 .013 0 .013 — — 18 12 .037 11 .017 10 .007 9 .003 

10 0 .022 0 .022 — — 17 10 .024 10 .024 8 .004 8 .004 

9 0 .037 — — — 16 9 .030 8 .014 7 .006 6 .002 

15 8 .033 7 .015 + 6 .006 5 .002 

5 18 3 .040 2 .006 2 .006 1 .001 14 7 .035 + 6 .016 5 .006 4 .002 

17 2 .021 2 .021 1 .003 1 .003 13 6 .035 - 5 .015 + 4 .006 3 .002 

16 2 .048 1 .008 1 .008 0 .001 12 5 .033 4 .014 3 .005 - 3 .005 - 

15 1 .017 1 .017 0 .002 0 .002 11 4 .030 3 .011 2 .004 2 .004 

14 1 .033 0 .004 0 .004 0 .004 10 3 .025 - 3 .025 - 2 .008 1 .002 

13 0 .007 0 .007 0 .007 — 9 3 .049 2 .019 1 .005 + 0 .001 

12 0 .014 0 .014 — — 8 2 .038 1 .012 0 .002 0 .002 

11 0 .024 0 .024 — — 7 1 .025 + 0 .005 - 0 .005 - 0 .005 - 

10 0 .038 — — — 6 0 .012 0 .012 — — 

5 0 .027 — — — 

4 18 2 .026 1 .003 1 .003 1 .003 

17 1 .010 - 1 .010 - 1 .010 - 0 .001 17 19 13 .040 12 .016 11 .006 10 .002 

16 1 .024 1 .024 0 .002 0 .002 18 11 .030 10 .013 9 .005 + 8 .002 

15 1 .046 0 .005 - 0 .005 - 0 .005 - 17 10 .040 9 .018 8 .008 7 .003 

14 0 .010 - 0 .010 - 0 .010 - 

16 9 
.047 8 .022 7 .009 6 .003 
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ai 

Signified nee Level 

«1 

Signified nee Level 

0.05 

(0.10) 

0.025 

(0.05) 

0.01 
(0.02) 

0.005 

(0.01) 

0.05 

(0.10) 

0.025 
(0.05) 

0.01 
(0.02) 

0.005 

(0.01) 

rii = 19 n2 = 17 15 8 .050 - 7 .023 6 .010 - 5 .004 711 = 19 712 = 13 19 9 .020 9 .020 8 .006 7 .002 

14 6 .023 6 .023 5 .010 - 4 .003 18 8 .029 7 .010 + 6 .003 6 .003 

13 6 .049 5 .022 4 .008 3 .003 17 7 .031 6 .011 5 .004 5 .004 

12 5 .045 - 4 .019 3 .007 2 .002 16 6 .029 5 .011 4 .003 4 .003 

11 4 .039 3 .015 + 2 .005 - 2 .005 - 15 5 .025 + 4 .009 4 .009 3 .003 
10 3 .032 2 .011 1 .003 1 .003 14 4 .020 4 .020 3 .006 2 .002 

9 2 .024 2 .024 1 .007 0 .001 13 4 .041 3 .015 - 2 .004 2 .004 

8 2 .047 1 .015 - 0 .002 0 .002 12 3 .029 2 .009 2 .009 1 .002 

7 1 .031 0 .006 0 .006 — 11 2 .019 2 .019 1 .005 - 1 .005 - 

6 0 .014 0 .014 — — 10 2 .036 1 .010 - 1 .010 - 0 .001 

5 0 .031 — — — 9 1 .020 1 .020 0 .003 0 .003 

8 1 .038 0 .007 0 .007 — 

16 19 12 .035 - 11 .013 10 .005 - 10 .005 - 7 0 .015 - 0 .015 - — — 

18 10 .024 10 .024 9 .010 - 8 .004 6 0 .030 — — — 

17 9 .031 8 .013 7 .005 + 6 .002 

16 8 .035 - 7 .015 + 6 .006 5 .002 12 19 9 .049 8 .016 7 .005 - 7 .005 - 

15 7 .036 6 .015 + 5 .006 4 .002 18 7 .022 7 .022 6 .007 5 .002 
14 6 .034 5 .014 4 .005 + 3 .002 17 6 .022 6 .022 5 .007 4 .002 

13 5 .031 4 .012 3 .004 3 .004 16 5 .019 5 .019 4 .006 3 .002 
12 4 .027 3 .010 - 3 .010 - 2 .003 15 5 .042 4 .015 + 3 .004 3 .004 
11 3 .021 3 .021 2 .007 1 .002 14 4 .032 3 .011 2 .003 2 .003 
10 3 .042 2 .015 - 1 .004 1 .004 13 3 .023 3 .023 2 .006 1 .001 

9 2 .030 1 .009 1 .009 0 .001 12 3 .043 2 .014 1 .003 1 .003 
8 1 .018 1 .018 0 .003 0 .003 11 2 .027 1 .007 1 .007 0 .001 
7 1 .037 0 .007 0 .007 — 10 2 .050 - 1 .014 0 .002 0 .002 

6 0 .017 0 .017 — — 9 1 .027 0 .005 - 0 .005 - 0 .005 - 

5 0 .036 — — — 8 1 .050 - 0 .010 - 0 .010 - — 

7 0 .019 0 .019 — — 

15 19 11 .029 10 .011 9 .004 9 .004 6 0 .037 — — — 

18 10 .046 9 .019 8 .007 7 .002 

17 8 .023 8 .023 7 .009 6 .003 11 19 8 .041 7 .012 6 .003 6 .003 

16 7 .025 - 7 .025 - 6 .010 - 5 .003 18 7 .047 6 .016 5 .004 5 .004 

15 6 .024 6 .024 5 .009 4 .003 17 6 .043 5 .015 - 4 .004 4 .004 
14 5 .022 5 .022 4 .008 3 .002 16 5 .035 + 4 .012 3 .003 3 .003 

13 5 .045 + 4 .018 3 .006 2 .002 15 4 .027 3 .008 3 .008 2 .002 
12 4 .037 3 .014 2 .004 2 .004 14 3 .018 3 .018 2 .005 - 2 .005 - 
11 3 .029 2 .009 2 .009 1 .002 13 3 .035 + 2 .010 + 1 .002 1 .002 

10 2 .020 2 .020 1 .005 + 0 .001 12 2 .021 2 .021 1 .005 - 1 .005 - 
9 2 .039 1 .011 0 .002 0 .002 11 2 .040 1 .010 + 0 .001 0 .001 

8 1 .023 1 .023 0 .004 0 .004 10 1 .020 1 .020 0 .003 0 .003 
7 1 .046 0 .009 0 .009 — 9 1 .037 0 .006 0 .006 — 

6 0 .020 0 .020 — — 8 0 .013 0 .013 — — 

5 0 .042 — — — 7 0 .025 - 0 .025 - — — 

6 0 .046 — — — 

14 19 10 .024 10 .024 9 .008 8 .003 

18 9 .037 8 .014 7 .005 - 7 .005 - 10 19 7 .033 6 .009 6 .009 5 .002 

17 8 .042 7 .017 6 .006 5 .002 18 6 .036 5 .011 4 .003 4 .003 

16 7 .042 6 .017 5 .006 4 .002 17 5 .030 4 .009 4 .009 3 .002 

15 6 .039 5 .015 + 4 .005 + 3 .001 16 4 .022 4 .022 3 .006 2 .001 
14 5 .034 4 .013 3 .004 3 .004 15 4 .047 3 .015 - 2 .004 2 .004 

13 4 .027 3 .009 3 .009 2 .003 14 3 .030 2 .008 2 .008 1 .002 

12 3 .020 3 .020 2 .006 1 .001 13 2 .017 2 .017 1 .004 1 .004 
11 3 .040 2 .013 1 .003 1 .003 12 2 .033 1 .008 1 .008 0 .001 
10 2 .027 1 .007 1 .007 0 .001 11 1 .016 1 .016 0 .002 0 .002 

9 1 .015 - 1 .015 - 0 .002 0 .002 10 1 .029 0 .005 - 0 .005 - 0 .005 - 
8 1 .030 0 .005 + 0 .005 + — 9 0 .009 0 .009 0 .009 — 

7 0 .012 0 .012 — — 8 0 .018 0 .018 — — 

6 0 .024 0 .024 — — 7 0 .032 — — — 

5 0 .049 
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TABLE A-29 (Continued). TABLES FOR TESTING SIGNIFICANCE IN 2 X 2 TABLES WITH 
UNEQUAL SAMPLES 

a\ 

Significance Level 

a\ 

Significance Level 

0.05 
(0.10) 

0.025 

(0.05) 
0.01 

(0.02) 

0.005 

(0.01) 
0.05 

(0.10) 

0.025 

(0.05) 
0.01 

(0.02) 
0.005 
(0.01) 

ni = 19 n2 = 9 19 6 .026 5 .006 5 .006 4 .001 7ii = 19 n2 = 5 12 0 .019 0 .019 _ 

18 5 .026 4 .007 4 .007 3 .001 11 0 .030 — — — 

17 4 .020 4 .020 3 .005 - 3 .005 - 10 0 .047 — — — 

16 4 .044 3 .013 2 .003 2 .003 

15 3 .028 2 .007 2 .007 1 .001 4 19 2 .024 2 .024 1 .002 1 .002 

14 2 .015 - 2 .015 - 1 .003 1 .003 18 1 .009 1 .009 1 .009 0 .001 

13 2 .029 1 .006 1 .006 0 .001 17 1 .021 1 .021 0 .002 0 .002 
12 1 .013 1 .013 0 .002 0 .002 16 1 .040 0 .004 0 .004 0 .004 

11 1 .024 1 .024 0 .004 0 .004 15 0 .008 0 .008 0 .008 — 

10 1 .042 0 .007 0 .007 — 14 0 .014 0 .014 — — 

9 0 .013 0 .013 — — 13 0 .024 0 .024 — — 

8 0 .024 0 .024 — — 12 0 .037 — — — 

7 0 .043 — — — 

3 19 1 .013 1 .013 0 .001 0 .001 

8 19 5 .019 5 .019 4 .004 4 .004 18 1 .038 0 .003 0 .003 0 .003 

18 4 .017 4 .017 3 .004 3 .004 17 0 .006 0 .006 0 .006 — 

17 4 .044 3 .011 2 .002 2 .002 16 0 .013 0 .013 — — 

16 3 .027 2 .006 2 .006 1 .001 15 0 .023 0 .023 — — 

15 2 .014 2 .014 1 .002 1 .002 14 0 .036 — — — 

14 2 .027 1 .006 1 .006 0 .001 

13 2 .049 1 .011 0 .001 0 .001 2 19 0 .005 - 0 .005 - 0 .005 - 0 .005 - 

12 1 .021 1 .021 0 .003 0 .003 18 0 .014 0 .014 — — 

11 1 .038 0 .006 0 .006 — 17 0 .029 — — — 

10 0 .011 0 .011 — — 16 0 .048 — — — 

9 0 .020 0 .020 ' — — — — — 

8 0 .034 — — — Wi = 20 n2 = 20 20 15 .024 15 .024 13 .004 13 .004 

19 14 .046 13 .022 12 .010 - 11 .004 

7 19 4 .013 4 .013 3 .002 3 .002 18 12 .032 11 .015 + 10 .007 9 .003 

18 4 .047 3 .010 + 2 .002 2 .002 17 11 .041 10 .020 9 .009 8 .004 

17 3 .028 2 .006 2 .006 1 .001 16 10 .048 9 .024 7 .005 - 7 .005 - 

16 2 .014 2 .014 1 .002 1 .002 15 8 .027 7 .012 6 .005 + 5 .002 

15 2 .028 1 .005 + 1 .005 + 0 .001 14 7 .028 6 .013 5 .005 + 4 .002 

14 1 .011 1 .011 0 .001 0 .001 13 6 .028 5 .012 4 .005 - 4 .005 - 

13 1 .021 1 .021 0 .003 0 .003 12 5 .027 4 .011 3 .004 3 .004 

12 1 .037 0 .005 + 0 .005 + — 11 4 .024 4 .024 3 .009 2 .003 

11 0 .010 - 0 .010 - 0 .010 - — 10 4 .048 3 .020 2 .007 1 .002 

10 0 .017 0 .017 — — 9 3 .041 2 .015 + 1 .004 1 .004 

9 0 .030 — — — 8 2 .032 1 .010 - 1 .010 - 0 .002 

8 0 .048 — — — 7 1 .022 1 .022 0 .004 0 .004 

6 1 .046 0 .010 + — — 

6 19 4 .050 3 .009 3 .009 2 .001 5 0 .024 0 .024 — — 

18 3 .031 2 .005 + 2 .005 + 1 .001 

17 2 .015 + 2 .015 + 1 .002 1 .002 19 20 15 .047 14 .020 13 .008 1 2 .003 

16 2 .032 1 .006 1 .006 0 .000 19 13 .039 12 .018 11 .008 10 .003 

15 1 .012 1 .012 0 .001 0 .001 18 11 .026 10 .012 9 .005 - 9 .005 - 

14 1 .023 1 .023 0 .003 0 .003 17 10 .032 9 .015 - 8 .006 7 .002 

13 1 .039 0 .005 + 0 .005 + — 16 9 .036 8 .017 7 .007 6 .003 

12 0 .010 - 0 .010 - 0 .010 - — 15 8 .038 7 .018 6 .008 5 .003 

11 0 .017 0 .017 — — 14 7 .039 6 .018 5 .007 4 .003 

10 0 .028 — — — 13 6 .038 5 .017 4 .007 3 .002 

9 0 .045 + — — — 12 5 .035 + 4 .015 + 3 .005 + 2 .002 

11 4 .031 3 .012 2 .004 2 .004 

5 19 3 .036 2 .005 - 2 .005 - 2 .005 - 10 3 .026 2 .009 2 .009 1 .002 

18 2 .018 2 .018 1 .002 1 .002 9 2 .019 2 .019 1 .005 + 0 .001 

17 2 .042 1 .006 1 .006 0 .000 8 2 .039 1 .012 0 .002 0 .002 

16 1 .014 1 .014 0 .001 0 .001 7 1 .026 0 .005 + 0 .005 + — 

15 1 .028 0 .003 0 .003 0 .003 6 0 .012 0 .012 — — 

14 1 .047 0 .006 0 .006 — 5 0 .027 — — — 

13 0 .011 0 .011 — — 
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TABLE A-29 (Continued). TABLES FOR TESTING SIGNIFICANCE IN 2 X 2 TABLES WITH 
UNEQUAL SAMPLES 

ai 

Significance Level 

ai 

Significance Level 

0.05 
(0.10) 

0.025 

(0.05) 
0.01 

(0.02) 
0.005 
(0.01) 

0.05 

(0.10) 

0.025 

(0.05) 

0.01 

(0.02) 

0.005 

(0.01) 

?ii = 20 7i2 = 18 20 14 .041 13 .017 12 .007 11 .003 «! = 20 712 = 15 13 4 .028 3 .010 - 3 .010 - 2 .003 

19 12 .032 11 .014 10 .006 9 .002 12 3 .020 3 .020 2 .006 1 .001 

18 1 1 .043 10 .020 9 .008 8 .003 11 3 .039 2 .013 1 .003 1 .003 

17 10 .050 - 9 .024 7 .004 7 .004 10 2 .026 1 .007 1 .007 0 .001 

16 8 .026 7 011 6 .005 - 6 .005 - 9 2 .049 1 .015 - 0 .002 0 .002 

15 7 .027 6 .012 5 .004 5 .004 8 1 .029 0 .005 + 0 .005 + — 

14 6 .026 5 .011 4 .004 4 .004 7 0 .012 0 .012 — — 

13 5 .024 5 .024 4 .009 3 .003 6 0 .024 0 .024 — — 

12 5 .047 4 .020 3 .007 2 .002 5 0 .048 — — — 

11 4 .041 3 .016 2 .005 + 1 .001 

10 3 .033 2 .012 1 .003 1 .003 14 20 10 .022 10 .022 9 .007 8 .002 

9 2 .024 2 .024 1 .007 0 .001 19 9 .032 8 .012 7 .004 7 .004 

8 2 .048 1 .015 - 0 .003 0 .003 18 8 .035 + 7 .014 6 .005 - 6 .005 - 

7 1 .031 0 .006 0 .006 — 17 7 .035 - 6 .013 5 .005 - 5 .005 - 

6 0 .014 0 .014 — — 16 6 .031 5 .012 4 .004 4 .004 

5 0 .031 — — — 15 5 .026 4 .009 4 .009 3 .003 
14 4 .020 4 .020 3 .007 2 .002 

17 20 13 .036 12 .014 11 .005 + 10 .002 13 4 .040 3 .015 - 2 .004 2 .004 
19 11 .026 10 .011 9 .004 9 .004 12 3 .029 2 .009 2 .009 1 .002 

18 10 .034 9 .015 - 8 .006 7 .002 11 2 .018 2 .018 1 .005 - 1 .005 - 
17 9 .038 8 .017 7 .007 6 .003 10 2 .035 + 1 .010 - 1 .010 - 0 .001 

16 8 .040 7 .018 6 .007 5 .003 9 1 .019 1 .019 0 .003 0 .003 
15 7 .039 6 .017 5 .007 4 .002 8 1 .037 0 .007 0 .007 — 

14 6 .037 5 .016 4 .006 3 .002 7 0 .014 0 .014 — — 

13 5 .033 4 .013 3 .005 - 3 .005 - 6 0 .029 — — — 

12 4 .028 3 .010 + 2 .003 2 .003 

11 3 .022 3 .022 2 .007 1 .002 13 20 9 .017 9 .017 8 .005 + 7 .002 

10 3 .042 2 .015 + 1 .004 1 .004 19 8 .025 - 8 .025 - 7 .008 6 .003 
9 2 .031 1 .009 1 .009 0 .001 18 7 .026 6 .009 6 .009 5 .003 
8 1 .019 1 .019 0 .003 0 .003 17 6 .024 6 .024 5 .008 4 .002 

7 1 .037 0 .008 0 .008 — 16 5 .020 5 .020 4 .007 3 .002 

6 0 .017 0 .017 — — 15 5 .041 4 .015 + 3 .005 - 3 .005 - 

5 0 .036 — — — 14 4 .031 3 .011 2 .003 2 .003 

13 3 .022 3 .022 2 .006 1 .001 

16 20 12 .031 11 .012 10 .004 10 .004 12 3 .041 2 .013 1 .003 1 .003 

19 11 .049 10 .021 9 .008 8 .003 11 2 .026 1 .007 1 .007 0 .001 

18 9 .026 8 .011 7 .004 7 .004 10 2 .047 1 .013 0 .002 0 .002 

17 
8 .028 7 .012 6 .004 6 .004 9 1 .026 0 .004 0 .004 0 .004 

16 7 .028 6 .012 5 .004 5 .004 8 1 .047 0 .009 0 .009 — 

15 6 .026 5 .011 4 .004 4 .004 7 0 .018 0 .018 — — 

14 5 .023 5 .023 4 .009 3 .003 6 0 .035 - — — — 

13 5 .046 4 .019 3 .007 2 .002 

12 4 .038 3 .014 2 .004 2 .004 12 20 9 .044 8 .014 7 .004 7 .004 

11 3 .029 2 .010 - 2 .010 - 1 .002 19 7 .018 7 .018 6 .006 5 .002 

10 2 .020 2 .020 1 .005 + 0 .001 18 6 .018 6 .018 5 .006 4 .002 

9 2 .039 1 .011 0 .002 0 .002 17 6 .043 5 .016 4 .005 - 4 .005 - 

8 1 .023 1 .023 0 .004 0 .004 16 5 .034 4 .012 3 .003 3 .003 

7 1 .045 + 0 .009 0 .009 — 15 4 .025 + 3 .008 3 .008 2 .002 

6 0 .020 0 .020 — — 14 4 .049 3 .017 2 .005 - 2 .005 - 

5 0 .041 — — — 13 3 .033 2 .010 - 2 .010 - 1 .002 
12 2 .020 2 .020 1 .005 - 1 .005 - 

15 20 11 .026 10 .009 10 .009 9 .003 11 2 .036 1 .009 1 .009 0 .001 

19 10.040 9 .016 8 .006 7 .002 10 1 .018 1 .018 0 .003 0 .003 

18 9 .046 8 .019 7 .007 6 .002 9 1 .034 0 .006 0 .006 — 

17 8 .047 7 .020 6 .008 5 .003 8 0 .012 0 .012 — — 

16 7 .045 - 6 .019 5 .007 4 .002 7 0 .023 0 .023 — — 

15 6 .040 5 .017 4 .006 3 .002 6 0 .043 — — — 

14 5 .034 4 .013 3 .004 3 .004 
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TABLE A-29 (Continued). TABLES FOR TESTING SIGNIFICANCE IN 2 X 2 TABLES WITH 
UNEQUAL SAMPLES 

a, 

Significance Level 

ai 

Significance Level 

0.05 
(0.10) 

0.025 

(0.05) 

0.01 

(0.02) 
0.005 
(0.01) 

0.05 

(0.10) 

0.025 

(0.05) 

0.01 
(0.02) 

0.005 

(0.01) 

II 

©
 

£
 20 8 .037 7 .010 + 6 .003 6 .003 Tii =20 7i2 = 7 20 4 .012 4 .012 3 .002 3 .002 

19 7 .042 6 .013 5 .004 5 .004 19 4 .042 3 .009 3 .009 2 .001 

18 6 .037 5 .012 4 .003 4 .003 18 3 .024 3 .024 2 .005 - 2 .005 - 
17 5 ,029 4 .009 4 .009 3 .002 17 3 .050 - 2 .011 1 .002 1 .002 

16 4 .021 4 .021 3 .006 2 .001 16 2 .023 2 .023 1 .004 1 .004 

15 4 .042 3 .014 2 .003 2 .003 15 2 .043 1 .009 1 .009 0 .001 
14 3 .028 2 .008 2 .008 1 .001 14 1 .016 1 .016 0 .002 0 .002 

13 2 .016 2 .016 1 .003 1 .003 13 1 .029 0 .004 0 .004 0 .004 
12 2 .029 1 .007 1 .007 0 .001 12 1 .048 0 .007 0 .007 — 

11 1 .014 1 .014 0 .002 0 .002 11 0 .013 0 .013 — — 

10 1 .026 0 .004 0 .004 0 .004 10 0 .022 0 .022 — — 

9 1 .046 0 .008 0 .008 — 9 0 .036 — — — 

8 0 .016 0 .016 — — 

7 0 .029 — — — 6 20 4 .046 3 .008 3 .008 2 .001 

19 3 .028 2 .005 - 2 .005 - 2 .005 - 

10 20 7 .030 6 .008 6 .008 5 .002 18 2 .013 2 .013 1 .002 1 .002 

19 6 .031 5 .009 5 .009 4 .002 17 2 .028 1 .004 1 .004 1 .004 

18 5 .026 4 .007 4 .007 3 .002 16 1 .010 - 1 .010 - 1 .010 - 0 .001 

17 4 .018 4 .018 3 .005 - 3 .005 - 15 1 .018 1 .018 0 .002 0 .002 

16 4 .039 3 .012 2 .003 2 .003 14 1 .032 0 .004 0 .004 0 .004 

15 3 .024 3 .024 2 .006 1 .001 13 0 .007 0 .007 0 .007 — 

14 3 .045 + 2 .013 1 .003 1 .003 12 0 .013 0 .013 — — 

13 2 .025 + 1 .006 1 .006 0 .001 11 0 .022 0 .022 — — 

12 2 .045 - 1 .011 0 .001 0 .001 10 0 .035 - — — — 

11 1 .021 1 .021 0 .003 0 .003 
10 1 .037 0 .006 0 .006 — 5 20 3 .033 2 .004 2 .004 2 .004 

9 0 .012 0 .012 — — 19 2 .016 2 .016 1 .002 1 .002 

8 0 .022 0 .022 — — 18 2 .038 1 .005 + 1 .005 + 0 .000 

7 0 .038 — — — 17 1 .012 1 .012 0 .001 0 .001 

16 1 .023 1 .023 0 .002 0 .002 

9 20 6 .023 6 .023 5 .005 + 4 .001 15 1 .040 0 .005 - 0 .005 - 0 .005 - 

19 5 .022 5 .022 4 .005 + 3 .001 14 0 .009 0 .009 0 .009 — 

18 4 .016 4 .016 3 .004 3 .004 13 0 .015 - 0 .015 - — — 

17 4 .037 3 .010 + 2 .002 2 .002 12 0 .024 0 .024 — — 

16 3 .022 3 .022 2 .005 + 1 .001 11 0 .038 — — — 

15 3 .043 2 .012 1 .002 1 .002 

14 2 .023 2 .023 1 .005 - 1 .005 - 4 20 2 .022 2 .022 1 .002 1 .002 

13 2 .041 1 .009 1 .009 0 .001 19 1 .008 1 .008 1 .008 0 .000 

12 1 .018 1 .018 0 .002 0 .002 18 1 .018 1 .018 0 .001 0 .001 

11 1 .032 0 .005 - 0 .005 - 0 .005 - 17 1 .035 + 0 .003 0 .003 0 .003 

10 0 .009 0 .009 0 .009 — 16 0 .007 0 .007 0 .007 — 

9 0 .017 0 .017 — — 15 0 .012 0 .012 — — 

8 0 .029 — — — 14 0 .020 0 .020 — — 

7 0 .050 - — — — 13 0 .031 — — — 

12 0 .047 — — — 

8 20 5 .017 5 .017 4 .003 4 .003 

19 4 .015 - 4 .015 - 3 .003 3 .003 3 20 1 .012 1 .012 0 .001 0 .001 

18 4 .038 3 .009 3 .009 2 .002 19 1 .034 0 .002 0 .002 0 .002 

17 3 .022 3 .022 2 .005 - 2 .005 - 18 0 .006 0 .006 0 .006 — 

16 3 .044 2 .011 1 .002 1 .002 17 0 .011 0 .011 — — 

15 2 .022 2 .022 1 .004 1 .004 16 0 .020 0 .020 — — 

14 2 .040 1 .009 1 .009 0 .001 15 0 .032 — - - 
13 1 .016 1 .016 0 .002 0 .002 14 0 .047 — - 
12 1 .029 0 .004 0 .004 0 .004 
11 1 .048 0 .008 0 .008 — 2 20 0 .004 0 004 0 .004 0 .004 

10 0 .014 0 .014 — — 19 0 .013 0 .013 — — 

9 0 .024 0 .024 — — 18 0 .026 — — — 

8 0 .041 — — — 17 0 .043 — — — 

1 20 0 .048 - - — 
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TABLE A-30. TABLES FOR DISTRIBUTION-FREE TOLERANCE LIMITS (TWO-SIDED) 

Values (r, s) such that we may assert with confidence at least y that 100P percent of a population 
lies between the rth smallest and the sth largest of a random sample of n from 

that population (no assumption of normality required) 

y = 0.75 7 = 0.90 

.75 .90 .95 .99 .75 .90 .95 .99 

50 5,5 2,1 _ 5,4 1,1 
55 6,6 2,2 1,1 — 5,5 2,1 — — 

60 7,6 2,2 1,1 — 6,5 2,1 — — 

65 7,7 3,2 1,1 — 6,6 2,2 — — 

70 8,7 3,2 1,1 — 7,6 2,2 — — 

75 8,8 3,3 1,1 — 7,7 2,2 — — 

80 9,8 3,3 2,1 — 8,7 3,2 1,1 — 

85 10,9 4,3 2,1 — 8,8 3,2 1,1 — 

90 10,10 4,3 2,1 — 9,8 3,2 1,1 — 

95 11,10 4,3 2,1 — 9,9 3,3 1,1 — 

100 11,11 4,4 2,1 — 10,10 3,3 1,1 — 

1 10 12,12 5,4 2 2 — 11,11 4,3 2,1 — 

120 14,13 5,5 2 2 — 12,12 4,4 2,1 — 

130 15,14 6,5 3^2 — 13,13 5,4 2,1 — 

140 16,15 6,6 3,2 14,14 5,5 2 2 — 

150 17,17 6,6 3,3 16,15 5,5 2 2 — 

170 20,19 7,7 4,3 18,17 6,6 3^2 — 

200 23,23 9,8 4,4 — 21,21 8,7 3,3 — 

300 35,35 13,13 6,6 1,1 33,32 12,11 5,5 — 

400 47,47 18,18 9,8 2,1 45,44 16,16 8,7 1,1 
500 59,59 23,22 11,11 2,1 57,56 21,20 10,9 1,1 
600 72,71 28,27 13,13 2,2 68,68 26,25 12,11 2,1 
700 84,83 33,32 16,15 3,2 80,80 30,30 14,14 2,2 
800 96,96 37,37 18,18 3,3 92,92 35,34 16,16 3,2 
900 108,108 42,42 21,20 4,3 104,104 40,39 19,18 3,2 

1000 121,120 47,47 23,22 4,4 117,116 44,44 21,20 3,3 

7 = 0.95 7 = 0.99 

.75 .90 .95 .99 .75 .90 .95 .99 

50 4,4 1,1 _ _ 3,3 _ _ _ 
55 5,4 1,1 — — 4,3 — — — 
60 5,5 1,1 — — 4,4 — — — 
65 6,5 2,1 — — 5,4 1,1 — — 
70 6,6 2,1 — — 5,5 1,1 — — 
7 5 7,6 2,1 — — 5,5 1,1 — — 
80 7,7 2,2 — — 6,5 1,1 — — 
85 8,7 2,2 — — 6,6 2,1 — — 
90 8,8 3,2 — — 7,6 2,1 — — 
95 9,8 3,2 1,1 — 7,7 2,1 — — 

100 9,9 3,2 1,1 — 8,7 2,2 — — 
110 10,10 3,3 1,1 — 9,8 2,2 — — 
120 11,11 4,3 1,1 — 10,9 3,2 — — 
130 13,12 4,4 2,1 — 11,10 3,3 1,1 — 
140 14,13 4,4 2,1 — 12,11 3,3 1,1 — 
1 50 15,14 5,4 2,1 — 13,13 4,3 1,1 — 
170 17,16 6,5 2 2 — 15,15 5,4 2,1 — 
200 20,20 7,6 3^2 — 18,18 6,5 2,2 — 
300 32,31 11,11 5,4 — 29,29 10,9 4,3 — 
400 43,43 15,15 7,6 — 40,40 14,13 6,5 — 
500 55,54 20,19 9,8 1,1 52,51 18,17 7,7 — 
600 67,66 24,24 11,10 1,1 63,63 22,22 9,9 — 
700 78,78 29,28 13,13 2,1 75,74 26'26 11,11 1,1 
800 90,90 33,33 15,15 2 2 86,86 31,30 13,13 1,1 
900 102,102 38,37 18,17 2 2 98,97 35,35 15,15 2,1 

1000 114,114 43,42 20,19 3*2 110,109 40,39 18,17 2,1 

When the values of r and s given in the table are not equal, they are interchangeable; i.e., for 
n = 120 with confidence at least 0.75 we may assert that 75% of the population lies between the 
14th smallest and the 13th largest values, or between the 13th smallest and the 14th largest values. 

Adapted with permission from Annals of Mathematical Statistics, Vol. 29, No. 2, June 1958, pp. 599-601, from article entitled “Tables 
for Obtaining Non-Parametric Tolerance Limits” by Paul N. Somerville. 
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TABLE A-31. TABLES FOR DISTRIBUTION-FREE TOLERANCE LIMITS (ONE-SIDED) 

Largest values of m such that we may assert with confidence at least y that 100P percent of a 
population lies below the mth largest (or above the mth smallest) of a random sample 

of n from that population (no assumption of normality required) 

7 = 0.75 7 = 0.90 7 = 0.95 7 = 0.99 

.75 .90 .95 .99 .75 .90 .95 .99 .75 .90 .95 .99 .75 .90 .95 .99 

50 10 3 1 — 9 2 1 — 8 2 — 6 1 — _ 

55 12 4 2 - 10 3 1 - 9 2 - 7 1 — — 

60 13 4 2 — 11 3 1 — 10 2 1 — 8 1 — — 

65 14 5 2 - 12 4 1 - 11 3 1 - 9 2 — — 

70 15 5 2 - 13 4 1 - 12 3 1 - 10 2 — — 

75 16 6 2 — 14 4 1 - 13 3 1 — 10 2 — — 

80 17 6 3 - 15 5 2 - 14 4 1 - 11 2 — — 

85 19 7 3 — 16 5 2 — 15 4 1 — 12 3 — — 

90 20 7 3 - 17 5 2 - 16 5 1 - 13 3 1 — 

95 21 7 3 - 18 6 2 - 17 5 2 - 14 3 1 — 

100 22 8 3 - 20 6 2 - 18 5 2 - 15 4 1 — 

110 24 9 4 - 22 7 3 - 20 6 2 - 17 4 1 — 

120 27 10 4 - 24 8 3 - 22 7 2 - 19 5 1 — 

130 29 11 5 26 9 3 — 25 8 3 - 21 6 2 — 

140 31 12 5 1 28 10 4 - 27 8 3 - 23 6 2 — 

150 34 12 6 1 31 10 4 - 29 9 3 - 26 7 2 — 

170 39 14 7 1 35 12 5 33 11 4 - 30 9 3 — 

200 46 17 8 1 42 15 6 40 13 5 - 36 11 4 — 

300 70 26 12 2 65 23 10 1 63 22 9 1 58 19 7 — 

400 94 36 17 3 89 32 15 2 86 30 13 1 80 27 11 — 

500 118 45 22 3 113 41 19 2 109 39 17 2 103 35 14 1 

600 143 55 26 4 136 51 23 3 133 48 21 2 126 44 18 1 

700 167 65 31 5 160 60 28 4 156 57 26 3 149 52 22 2 

800 ; 192 74 36 6 184 69 32 5 180 66 30 4 172 61 26 2 

900 216 84 41 7 208 79 37 5 204 75 35 4 195 70 30 3 

1000 i 241 94 45 8 233 88 41 6 228 85 39 5 219 79 35 3 

Adapted with permission from Annals of Mathematical Statistics, Vol. 29, No. 2, June 1958, pp. 599-601, from article entitled “Tables 
for Obtaining Non-Parametric Tolerance Limits" by Paul N. Somerville. 
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TABLE A-32. CONFIDENCE ASSOCIATED WITH A TOLERANCE LIMIT STATEMENT 

Confidence y with which we may assert that 100P percent of the population lies between 
the largest and smallest of a random sample of n from that population 

(continuous distribution assumed) 

n P = .75 P = .90 P = .95 P = .99 

3 .16 .03 .01 .00 
4 .26 .05 .01 .00 
5 .37 .08 .02 .00 
6 .47 .11 .03 .00 
7 .56 .15 .04 .00 
8 .63 .19 .06 .00 
9 .70 .23 .07 .00 

10 .76 .26 .09 .00 
11 .80 .30 .10 .01 
12 .84 .34 .12 .01 
13 .87 .38 .14 .01 
14 .90 .42 .15 .01 
15 .92 .45 .17 .01 
16 .94 .49 .19 .01 
17 .95 .52 .21 .01 
18 .96 .55 .23 .01 
19 .97 .58 .25 .02 
20 .98 .61 .26 .02 
25 .99 .73 .36 .03 
30 1.00- .82 .45 .04 
40 - .92 .60 .06 
50 .97 .72 .09 
60 .99 .81 .12 
70 — .99 .87 .16 
80 — 1.00- .91 .19 
90 — — .94 .23 

100 — .96 .26 

Adapted with permission from Annals of Mathematical Statistics, Vol. 29, No. 2, June 1958, pp. 599-601, from article entitled “Tables 
for Obtaining Non-Parametric Tolerance Limits” by Paul N. Somerville. 
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TABLE A-33. CRITICAL VALUES OF r FOR THE SIGN TEST 

.01 

.005 

<v for Two 

.05 

a for One 

.025 

Sided Test a for Two-Sided Test 

.10 .25 .01 
1 

.05 .10 .25 

Sided Test a for One-Sided Test 

.05 .125 .005 .025 .05 .125 

1 46 13 15 16 18 
2 — — / - — 47 14 16 17 19 
3 — — — 0 48 14 16 17 19 
4 — — — 0 49 15 17 18 19 
5 — — 0 0 50 15 17 18 20 

6 _ 0 0 1 51 15 18 19 20 
7 — 0 0 1 52 16 18 19 21 
8 0 0 1 1 53 16 18 20 21 
9 0 1 1 2 54 17 19 20 22 

10 0 1 1 2 55 17 19 20 22 

1 1 0 1 2 3 56 17 20 21 23 
12 1 2 2 3 57 18 20 21 23 
13 1 2 3 3 58 18 21 22 24 
14 1 2 3 4 59 19 21 22 24 
1 5 2 3 3 4 60 19 21 23 25 

16 2 3 4 5 61 20 22 23 25 
1 7 2 4 4 5 62 20 22 24 25 
1 8 3 4 5 6 63 20 23 24 26 
1 9 3 4 5 6 64 21 23 24 26 
20 3 5 5 6 65 21 24 25 27 

21 4 5 6 7 66 22 24 25 27 
22 4 5 6 7 67 22 25 26 28 
23 4 6 7 8 68 22 25 26 28 
24 5 6 7 8 69 23 25 27 29 
25 5 7 7 9 70 23 26 27 29 

26 6 7 8 9 71 24 26 28 30 
27 6 7 8 10 72 24 27 28 30 
28 6 8 9 10 73 25 27 28 31 
29 7 8 9 10 74 25 28 29 31 
30 7 9 10 11 75 25 28 29 32 

31 7 9 10 11 76 26 

00 30 32 
32 8 9 10 12 77 26 29 30 32 
33 8 10 11 12 78 27 29 31 33 
34 9 10 11 13 79 27 30 31 33 
35 9 11 12 13 80 28 30 32 34 

36 9 11 12 14 81 28 31 32 34 
37 10 12 13 14 82 28 31 33 35 
38 10 12 13 14 83 29 32 33 35 
39 11 12 13 15 84 29 32 33 36 
40 11 13 14 15 85 30 32 34 36 

41 11 13 14 16 86 30 33 34 37 
42 12 14 15 16 87 31 33 35 37 
43 12 14 15 17 88 31 34 35 38 
44 13 15 16 17 89 31 34 36 38 
45 13 15 16 18 90 32 35 36 39 

For values of n larger than 90, approximate values of r may be found by taking the nearest integer less than 
(n — l)/2 — ky/n + 1, where k is 1.2879, 0.9800, 0.8224, 0.5752 for the 1, 5, 10, 25% values, respectively. 

Adapted with permission from Introduction to Statistical Analysis (2d ed.) by W. J. Dixon and F. J. Massey, Jr., Copyright, 1957, 
McGraw-Hill Book Company, Inc. 
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TABLE A-34. CRITICAL VALUES OF TJn) FOR THE WILCOXON SIGNED-RANKS TEST 

T„ is the integer such that the probability that T < Ta is closest to a. For example, for n = 8, 
PrJ T < 3 j = .020 and PrJ T < 4} = .027; hence we list T.m (8) = 4. 

a for One-Sided Test 

n 

.025 .01 .005 

a for Two-Sided Test 

.05 .02 .01 

6 0 
7 2 0 — 

8 4 2 0 
9 6 3 2 

10 8 5 3 

1 1 11 7 5 
12 14 10 7 
13 17 13 10 
14 21 16 13 
15 25 20 16 

16 30 24 20 
17 35 28 23 
18 40 33 28 
19 46 38 32 
20 52 43 38 

21 59 49 43 
22 66 56 49 
23 73 62 55 
24 81 69 61 
25 89 77 68 

For large n, 

T r{n) 
n(n + 1) 

4 

n{n + l)(2w + 1) 

24 
approximately 

where 2 is given in Table A-2. 

Adapted with permission from Some Iiapid Approximate Statistical Procedures by F. Wilcoxon, 1949, American Cyanamid Company. 
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TABLE A-36. SHORT TABLE OF RANDOM NUMBERS 

46 96 85 77 27 92 86 26 45 21 89 91 71 42 64 64 58 22 75 81 74 91 48 46 18 
44 19 15 32 63 55 87 77 33 29 45 00 31 34 84 05 72 90 44 27 78 22 07 62 17 
34 39 80 62 24 33 81 67 28 11 34 79 26 35 34 23 09 94 00 80 55 31 63 27 91 
74 97 80 30 65 07 71 30 01 84 47 45 89 70 74 13 04 90 51 27 61 34 63 87 44 
22 14 61 60 86 38 33 71 13 33 72 08 16 13 50 56 48 51 29 48 30 93 45 66 29 

40 03 96 40 03 47 24 60 09 21 21 18 00 05 86 52 85 40 73 73 57 68 36 33 91 
52 33 76 44 56 15 47 75 78 73 78 19 87 06 98 47 48 02 62 03 42 05 32 55 02 
37 59 20 40 93 17 82 24 19 90 80 87 32 74 59 84 24 49 79 17 23 75 83 42 00 
11 02 55 57 48 84 74 36 22 67 19 20 15 92 53 37 13 75 54 89 56 73 23 39 07 
10 33 79 26 34 54 71 33 89 74 68 48 23 17 49 18 81 05 52 85 70 05 73 11 17 

67 59 28 25 47 89 11 65 65 20 42 23 96 41 64 20 30 89 87 64 37 93 36 96 35 
93 50 75 20 09 18 54 34 68 02 54 87 23 05 43 36 98 29 97 93 87 08 30 92 98 
24 43 23 72 80 64 34 27 23 46 15 36 10 63 21 59 69 76 02 62 31 62 47 60 34 
39 91 63 18 38 27 10 78 88 84 42 32 00 97 92 00 04 94 50 05 75 82 70 80 35 
74 62 19 67 54 18 28 92 33 69 98 96 74 35 72 11 68 25 08 95 31 79 11 79 54 

91 03 35 60 81 16 61 97 25 14 78 21 22 05 25 47 26 37 80 39 19 06 41 02 00 
42 57 66 76 72 91 03 63 48 46 44 01 33 53 62 28 80 59 55 05 02 16 13 17 54 
06 36 63 06 15 03 72 38 01 58 25 37 66 48 56 19 56 41 29 28 76 49 74 39 50 
92 70 96 70 89 80 87 14 25 49 25 94 62 78 26 15 41 39 48 75 64 69 61 06 38 
91 08 88 53 52 13 04 82 23 00 26 36 47 44 04 08 84 80 07 44 76 51 52 41 59 

68 85 97 74 47 53 90 05 90 84 87 48 25 01 11 05 45 11 43 15 60 40 31 84 59 
59 54 13 09 13 80 42 29 63 03 24 64 12 43 28 10 01 65 62 07 79 83 05 59 61 
39 18 32 69 33 46 58 19 34 03 59 28 97 31 02 65 47 47 70 39 74 17 30 22 65 
67 43 31 09 12 60 19 57 63 78 11 80 10 97 15 70 04 89 81 78 54 84 87 83 42 
61 75 37 19 56 90 75 39 03 56 49 92 72 95 27 52 87 47 12 52 54 62 43 23 13 

78 10 91 11 00 63 19 63 74 58 69 03 51 38 60 36 53 56 77 06 69 03 89 91 24 

93 23 71 58 09 78 08 03 07 71 79 32 25 19 61 04 40 33 12 06 78 91 97 88 95 
37 55 48 82 63 89 92 59 14 72 19 17 22 51 90 20 03 64 96 60 48 01 95 44 84 
62 13 11 71 17 23 29 25 13 85 33 35 07 69 25 68 57 92 57 11 84 44 01 33 66 
29 89 97 47 03 13 20 86 22 45 59 98 64 53 89 64 94 81 55 87 73 81 58 46 42 

16 94 85 82 89 07 17 30 29 89 89 80 98 36 25 36 53 02 49 14 34 03 52 09 20 
04 93 10 59 75 12 98 84 60 93 68 16 87 60 11 50 46 56 58 45 88 72 50 46 11 
95 71 43 68 97 18 85 17 13 08 00 50 77 50 46 92 45 26 97 21 48 22 23 08 32 

86 05 39 14 35 48 68 18 36 57 09 62 40 28 87 08 74 79 91 08 27 12 43 32 03 

59 30 60 10 41 31 00 69 63 77 01 89 94 60 19 02 70 88 72 33 38 88 20 60 86 

05 45 35 40 54 03 98 96 76 27 77 84 80 08 64 60 44 34 54 24 85 20 85 77 32 

71 •85 17 74 66 27 85 19 55 56 51 36 48 92 32 44 40 47 10 38 22 52 42 29 96 

80 20 32 80 98 00 40 92 57 51 52 83 14 55 31 99 73 23 40 07 64 54 44 99 21 
13 50 78 02 73 39 66 82 01 28 67 51 75 66 33 97 47 58 42 44 88 09 28 58 06 

67 92 65 41 45 36 77 96 46 21 14 39 56 36 70 15 74 43 62 69 82 30 77 28 77 

72 56 73 44 26 04 62 81 15 35 79 26 99 57 28 22 25 94 80 62 95 48 98 23 86 
28 86 85 64 94 11 58 78 45 36 34 45 91 38 51 10 68 36 87 81 16 77 30 19 36 

69 57 40 80 44 94 60 82 94 93 98 01 48 50 57 69 60 77 69 60 74 22 05 77 17 

71 20 03 30 79 25 74 17 78 34 54 45 04 77 42 59 75 78 64 99 37 03 18 03 36 

89 98 55 98 22 45 12 49 82 71 57 33 28 69 50 59 15 09 25 79 39 42 84 18 70 

58 74 82 81 14 02 01 05 77 94 65 57 70 39 42 48 56 84 31 59 18 70 41 74 60 

50 54 73 81 91 07 81 26 25 45 49 61 22 88 41 20 00 15 59 93 51 60 65 65 63 

49 33 72 90 10 20 65 28 44 63 95 86 75 78 69 24 41 65 86 10 34 10 32 00 93 

11 85 01 43 65 02 85 69 56 88 34 29 64 35 48 15 70 11 77 83 01 34 82 91 04 

34 22 46 41 84 74 27 02 57 77 47 93 72 02 95 63 75 74 69 69 61 34 31 92 13 

Adapted with permission from A Million Random Digits by The Rand Corporation, Copyright, 1955, The Free Press. 
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TABLE A-36 (Continued). SHORT TABLE OF RANDOM NUMBERS 

23 06 26 23 08 66 16 11 75 28 81 56 14 62 82 45 65 80 36 02 76 55 63 

16 06 57 12 46 22 90 97 78 67 39 06 63 60 51 02 07 16 75 12 90 41 16 

15 08 82 64 87 29 01 20 46 72 05 80 19 27 47 15 76 51 58 67 06 80 54 

98 41 67 44 28 71 45 08 19 47 76 30 26 72 33 69 92 51 95 23 26 85 76 

03 84 32 62 83 27 48 83 09 19 84 90 20 20 50 87 74 93 51 62 10 23 30 

18 41 23 74 73 51 72 90 40 52 95 41 20 89 48 98 27 38 81 33 83 82 94 

64 75 91 98 09 40 64 89 29 99 46 35 69 91 50 73 75 92 90 56 82 93 24 

53 77 78 06 62 37 48 82 71 00 78 21 65 65 88 45 82 44 78 93 22 78 09 

23 32 01 09 46 36 43 66 37 15 35 04 88 79 83 53 19 13 91 59 81 81 87 

97 48 21 41 84 22 72 77 99 81 83 30 46 15 90 26 51 73 66 34 99 40 60 

44 83 43 25 56 33 28 80 99 53 27 56 19 80 76 32 53 95 07 53 09 61 98 

76 93 86 35 68 45 37 83 47 44 92 57 66 59 64 16 48 39 26 94 54 66 40 

38 38 23 36 10 95 16 01 10 01 59 71 55 99 24 88 31 41 00 73 13 80 62 

50 29 17 73 97 04 20 39 20 22 71 11 43 00 15 10 12 35 09 11 00 89 05 

33 87 92 92 04 49 73 96 57 53 57 08 93 09 69 87 83 07 46 39 50 37 85 

67 79 44 57 40 29 10 34 58 63 51 18 07 41 02 39 79 14 40 68 10 01 61 

71 72 43 27 36 24 59 88 82 87 26 31 11 44 28 58 99 47 83 21 35 22 88 
83 48 07 41 56 68 11 14 77 75 48 68 08 90 89 63 87 00 06 18 63 21 91 

97 42 27 11 80 51 13 13 03 42 91 14 51 22 15 48 67 52 09 40 34 60 85 

94 21 49 96 51 69 99 85 43 76 55 81 36 11 88 68 32 43 08 14 78 05 34 

48 87 11 84 00 85 93 56 43 99 21 74 84 13 56 41 90 96 30 04 19 68 73 

84 82 71 23 66 33 19 25 65 17 90 84 24 91 75 36 14 83 86 22 70 86 89 

28 24 88 49 28 69 78 62 23 45 53 38 78 65 87 44 91 93 91 62 76 09 20 
31 06 70 92 73 27 83 57 15 64 40 57 56 54 42 35 40 93 55 82 08 78 87 

87 12 27 41 07 91 72 64 63 42 06 66 82 71 28 36 45 31 99 01 03 35 76 

22 23 46 10 75 83 62 94 44 65 46 23 65 71 69 20 89 12 16 56 61 70 41 

21 56 98 42 52 53 14 86 24 70 25 18 23 23 56 24 03 86 11 06 46 10 23 

18 37 01 32 20 18 70 79 20 85 77 89 28 17 77 15 52 47 15 30 35 12 75 
47 79 60 75 24 15 31 63 25 93 27 66 19 53 52 49 98 45 12 12 06 00 32 

71 01 73 46 39 60 37 58 22 25 20 84 30 02 03 62 68 58 38 04 06 89 94 

48 46 72 50 14 24 47 67 84 37 32 84 82 64 97 13 69 86 20 09 80 46 75 

98 90 70 29 34 25 33 23 12 69 90 50 38 93 84 32 28 96 03 65 70 90 12 
77 18 21 91 66 11 84 65 48 75 26 94 51 40 51 53 36 39 77 69 06 25 07 
94 06 80 61 34 28 46 28' 11 48 48 94 60 65 06 63 71 06 19 35 05 32 56 
02 85 80 29 67 27 44 07 67 23 20 28 22 62 97 59 62 13 41 72 70 71 07 

88 51 00 33 56 15 84 34 28 50 16 65 12 81 56 43 54 14 63 37 74 97 59 
37 45 62 09 95 93 16 59 35 22 91 ! 78 04 97 98 80 20 04 38 93 13 92 30 
12 95 32 87 99 32 83 65 40 17 92 1 57 22 68 98 79 16 23 53 56 56 07 47 
13 16 10 52 57 71 40 49 95 25 55 36 95 57 25 25 77 05 38 05 62 57 77 

83 67 90 68 74 88 17 22 38 01 04 33 49 38 47 57 61 87 15 39 43 87 00 

68 53 63 29 27 31 66 53 39 34 88 87 04 35 80 69 52 74 99 16 52 01 65 
61 42 65 05 72 27 28 18 09 85 24 59 46 03 91 55 38 62 51 71 47 37 38 
78 90 47 41 38 36 33 95 05 90 26 72 85 23 23 30 70 51 56 93 23 84 80 
20 81 21 57 57 85 00 47 26 10 87 22 45 72 03 51 75 23 38 38 56 77 97 
12 15 08 02 18 74 56 79 21 53 63 41 77 15 07 39 87 11 19 25 62 19 30 

77 60 29 09 25 09 42 28 07 15 40 67 56 29 58 75 84 06 19 54 31 16 53 
39 19 29 64 97 73 71 61 78 03 24 02 93 86 69 76 74 28 08 98 84 08 23 
85 64 64 93 85 68 08 84 15 41 57 84 45 11 70 13 17 60 47 80 10 13 00 
17 08 79 03 92 85 18 42 95 48 27 37 99 98 81 94 44 72 06 95 42 31 17 
08 21 91 23 76 72 84 98 26 23 66 54 86 88 95 14 82 57 17 99 16 28 99 
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TABLE A-36 (Continued). SHORT TABLE OF RANDOM NUMBERS 

03 46 38 56 84 81 20 89 68 52 45 41 01 71 55 14 18 05 18 01 74 94 50 66 07 
74 12 14 57 26 12 48 83 67 04 88 69 05 27 23 68 84 23 52 07 21 67 13 52 01 
08 23 73 51 23 92 93 05 54 32 84 46 61 33 92 13 30 91 73 11 30 44 21 71 20 
99 21 30 24 79 30 18 06 96 20 62 06 47 96 07 04 82 93 01 56 62 70 43 22 85 
96 82 59 39 23 22 20 95 72 00 24 85 63 57 75 88 05 79 13 75 78 64 25 89 85 

62 16 18 23 64 50 90 57 50 54 04 96 09 08 17 14 63 17 80 80 56 10 17 11 57 
21 40 82 41 45 41 41 89 46 18 55 86 94 32 57 44 12 64 75 12 78 01 13 69 81 
13 83 48 82 60 78 96 30 67 13 40 28 10 24 48 73 50 92 70 18 72 86 54 09 76 
29 65 33 93 92 99 26 01 86 11 85 42 48 86 59 24 96 35 07 87 67 31 25 89 62 
17 49 05 12 13 53 01 98 80 17 83 35 38 14 79 82 83 56 44 51 35 40 70 68 22 

14 36 47 29 15 14 22 27 62 93 15 60 43 13 05 25 75 40 08 85 44 70 89 64 13 
78 09 76 61 07 48 31 27 48 28 96 11 26 95 03 06 86 81 52 72 66 74 71 60 25 
83 17 94 26 39 01 48 68 56 97 05 76 82 89 15 66 81 63 81 96 12 44 71 57 43 
87 12 89 46 85 58 09 94 39 92 09 08 76 54 88 82 73 24 94 39 02 79 07 58 27 
44 30 30 40 85 96 34 99 87 03 93 03 00 74 18 67 13 97 11 12 59 30 54 51 66 

54 56 85 50 81 32 42 53 60 36 98 03 65 10 60 26 52 64 74 35 28 13 24 65 23 

65 99 30 88 88 44 91 22 50 72 61 95 90 98 80 65 03 45 04 27 88 70 88 40 49 

55 56 01 94 09 94 02 71 85 10 27 20 51 27 86 09 15 11 62 41 03 22 82 10 60 

55 78 63 40 57 16 20 17 73 02 76 09 62 95 85 67 75 45 99 63 59 55 88 27 99 

83 78 98 57 23 38 95 61 06 58 69 07 35 82 10 35 61 61 66 06 75 45 83 33 70 

20 14 56 25 85 78 33 37 34 15 50 63 78 74 56 49 84 72 58 00 93 68 11 47 46 

48 04 07 78 13 43 03 62 46 20 06 94 09 27 69 00 71 51 43 84 21 12 86 03 51 
61 10 14 39 57 87 76 60 77 02 06 50 15 60 46 22 27 52 87 43 69 58 65 79 02 
64 91 36 96 42 22 57 18 13 44 46 81 95 15 37 91 81 63 33 38 39 50 47 45 94 

89 53 11 10 33 10 46 41 63 84 20 46 86 41 05 82 95 56 76 23 03 13 94 28 49 

96 45 86 42 40 85 95 17 28 74 65 20 70 90 34 33 61 11 01 31 37 28 81 00 31 

84 11 25 39 49 31 80 86 53 51 35 48 22 28 25 27 06 38 71 90 50 77 40 41 58 

29 75 56 28 39 23 26 12 23 48 89 28 34 08 52 21 05 73 08 04 83 42 91 01 91 

68 92 40 32 19 49 20 85 32 69 34 17 99 11 56 39 15 67 55 53 65 29 15 51 32 

94 19 67 99 27 70 71 04 43 18 44 18 75 11 70 53 21 60 78 30 92 54 21 02 42 

86 84 68 46 85 58 91 23 65 24 71 19 67 18 79 90 83 47 86 32 48 69 97 10 87 

63 22 84 35 10 02 05 03 47 93 45 70 25 27 90 32 98 41 45 96 39 86 91 78 79 

42 53 20 46 19 11 16 93 21 93 14 91 74 92 31 97 68 24 20 35 19 54 75 37 84 

37 90 76 51 58 49 25 58 28 69 55 55 73 10 22 66 79 23 80 03 51 11 00 81 37 

20 12 97 40 25 45 94 35 18 65 10 99 31 24 42 14 53 78 41 79 36 57 79 19 76 

24 11 65 19 92 46 11 76 64 37 33 23 96 23 73 93 99 53 14 49 40 01 63 17 74 

98 21 62 16 29 73 52 06 26 35 30 52 74 61 20 57 45 86 36 54 75 29 64 49 43 

02 82 14 07 19 72 77 97 39 77 25 32 60 39 04 04 88 65 47 20 81 72 40 65 48 

97 20 87 54 01 93 38 53 07 38 61 00 22 95 65 79 69 26 90 49 24 61 78 19 40 

17 86 31 34 32 29 40 23 66 71 14 91 93 75 02 10 13 86 27 32 59 36 40 06 61 

75 50 70 16 34 21 99 87 09 37 27 40 66 07 73 13 44 06 10 43 91 11 73 13 97 

47 53 77 58 88 52 47 37 21 60 83 58 21 59 82 88 05 35 17 66 33 62 15 09 88 
20 93 99 76 58 93 00 39 77 75 59 39 49 61 13 68 11 80 07 72 81 65 95 94 53 

91 02 65 18 16 57 93 64 76 45 21 49 51 58 96 12 62 42 10 79 57 44 97 35 66 
58 49 25 97 76 12 90 94 85 25 36 40 97 46 71 83 36 55 41 38 49 98 82 70 96 

98 51 20 13 77 75 86 22 62 68 36 87 02 47 99 68 80 27 34 10 09 22 84 59 33 

05 32 54 17 31 87 20 77 78 80 98 42 48 42 47 41 76 11 41 79 41 48 26 94 59 

40 96 49 91 79 57 18 61 50 48 06 07 68 43 07 01 04 06 22 03 11 11 75 95 02 
58 43 93 93 53 01 61 75 76 90 25 97 08 76 69 35 65 24 83 85 00 49 37 05 46 

76 98 86 43 60 47 85 65 73 62 66 15 98 17 20 43 96 27 87 53 57 37 92 86 46 
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TABLE A-36 (Continued). SHORT TABLE OF RANDOM NUMBERS 

98 24 93 58 63 66 58 26 24 45 65 91 42 68 67 42 61 74 77 93 46 
67 02 81 01 67 54 08 81 34 00 79 62 38 52 14 88 38 66 59 41 97 
37 73 34 11 74 14 91 86 82 41 02 76 12 36 71 38 43 72 84 36 27 
54 98 00 41 47 44 63 13 27 50 18 75 16 72 40 90 02 45 87 82 15 
22 91 22 96 38 41 03 27 15 67 26 36 81 75 11 82 94 33 62 08 94 

83 05 31 23 08 07 40 00 60 44 65 70 16 31 73 05 46 41 47 64 68 
76 82 88 42 76 51 58 49 58 75 38 23 57 06 64 69 46 90 09 55 68 
25 12 05 41 70 28 03 59 97 37 64 48 69 48 59 60 89 76 35 83 05 
98 88 93 70 86 59 46 84 08 32 31 75 61 19 49 11 28 46 76 79 28 
63 83 78 78 76 36 89 51 16 47 35 86 69 96 69 88 91 22 47 24 84 

08 17 43 53 31 09 60 34 34 61 93 66 01 94 37 13 24 09 75 29 21 
50 13 89 69 00 05 99 45 82 01 53 86 68 81 36 50 75 20 17 94 47 
01 97 76 21 64 34 62 43 02 84 38 13 60 26 32 36 81 43 17 56 41 
02 75 41 33 91 28 82 97 57 38 49 27 26 97 34 44 26 12 00 68 24 
91 43 95 15 13 26 33 27 45 48 33 80 80 26 69 76 04 87 83 58 32 

30 71 24 75 92 73 07 81 13 35 46 88 62 80 64 69 86 25 73 92 98 
17 77 99 55 32 85 13 35 48 49 80 83 59 06 34 94 06 03 61 85 02 
89 54 66 29 35 88 50 46 65 50 26 62 45 80 61 95 07 99 57 10 54 
77 46 38 33 88 55 21 56 18 93 32 94 24 80 97 03 78 39 73 87 70 
96 73 60 77 21 06 76 59 78 55 96 99 07 53 91 95 99 60 56 61 79 

19 22 29 41 56 76 83 48 49 82 79 79 20 00 26 40 22 50 14 30 73 
19 18 00 60 50 28 32 44 18 35 99 28 91 50 53 62 21 61 26 46 81 
20 39 25 46 84 39 27 39 92 42 59 04 64 15 09 35 07 11 25 51 17 
87 14 33 79 07 66 60 43 66 57 57 57 59 01 78 80 13 77 63 58 10 
70 09 36 16 24 04 74 05 65 29 64 67 37 28 13 98 01 48 29 75 89 

34 52 81 38 52 96 14 54 27 32 41 74 84 83 90 01 97 59 87 66 41 
32 93 91 76 70 31 50 22 09 40 89 64 85 82 76 91 16 71 99 98 70 
92 46 42 46 47 22 87 16 20 65 82 01 45 21 49 80 17 39 70 74 03 
06 59 65 14 84 04 82 28 46 64 05 89 81 80 09 89 56 11 27 81 44 
59 32 15 83 04 01 20 82 92 25 34 88 84 80 76 69 25 10 04 86 02 

56 78 97 49 14 85 01 58 31 16 20 53 74 03 27 05 80 39 15 67 49 
36 54 10 77 95 88 90 84 52 16 52 58 87 51 31 71 68 53 11 85 50 
54 63 83 64 15 30 21 86 48 17 11 68 92 16 17 49 36 05 17 80 24 
23 14 28 01 76 47 65 12 58 24 27 61 59 43 20 15 93 47 30 56 27 
91 97 85 48 99 50 40 96 30 66 97 82 66 06 90 97 65 28 44 98 08 

52 65 95 03 48 75 64 25 04 13 85 80 13 37 08 18 09 28 63 07 69 
28 27 34 53 42 35 44 12 40 64 35 06 28 14 37 23 97 38 07 60 80 
15 71 06 96 22 93 77 46 73 57 51 22 54 82 37 99 96 27 25 87 77 
87 72 42 13 57 77 61 07 94 24 62 17 76 19 45 18 98 11 47 40 31 
37 32 09 72 81 22 87 70 81 93 78 93 37 22 32 25 38 45 38 03 31 

58 16 49 99 19 03 62 98 79 81 98 15 03 62 32 93 68 24 14 44 50 
25 52 97 87 98 15 85 99 01 86 59 00 11 39 32 53 49 18 62 51 65 
03 22 32 45 42 61 97 83 04 26 30 48 49 40 99 99 69 96 13 94 21 
32 42 02 58 32 14 83 73 02 82 49 25 62 91 14 94 70 72 64 50 51 
79 36 07 12 92 61 89 93 77 82 08 23 74 75 67 56 37 45 35 13 44 

99 08 62 02 26 82 52 90 72 51 94 84 59 79 34 19 95 76 21 49 91 
90 27 60 94 15 70 17 74 92 31 85 24 47 55 64 51 91 47 13 39 69 
18 15 57 29 51 62 95 84 20 83 01 11 90 66 80 81 40 43 65 87 35 
50 18 89 86 16 50 09 97 04 76 51 41 20 56 50 20 33 53 70- 10 22 
30 84 43 40 57 32 18 09 47 16 69 41 03 38 24 02 16 41 58 39 58 
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TABLE A-37. SHORT TABLE OF RANDOM NORMAL DEVIATES 

m = 0, a = 1 

0.048 1.040 -0.111 -0.120 1.396 -0.393 -0.220 0.422 0.233 0.197 
-0.521 -0.563 -0.116 -0.512 -0.518 -2.194 2.261 0.461 -1.533 -1.836 
-1.407 -0.213 0.948 -0.073 -1.474 -0.236 -0.649 1.555 1.285 -0.747 

1.822 0.898 -0.691 0.972 -0.011 0.517 0.808 2.651 -0.650 0.592 
1.346 -0.137 0.952 1.467 -0.352 0.309 0.578 -1.881 -0.488 -0.329 

0.420 -1.085 -1.578 -0.125 1.337 0.169 0.551 -0.745 -0.588 1.810 
-1.760 -1.868 0.677 0.545 1.465 0.572 -0.770 0.655 -0.574 1.262 
-0.959 0.061 -1.260 -0.573 -0.646 -0.697 -0.026 -1.115 3.591 -0.519 

0.561 -0.534 -1.730 -1.172 -0.261 -0.049 0.173 0.027 1.138 0.524 
-0.717 0.254 0.421 -1.891 2.592 -1.443 -0.061 -2.520 -0.497 0.909 

-2.097 -0.180 -1.298 -0.647 0.159 0.769 -0.735 -0.343 0.966 0.595 
0.443 -0.191 0.705 0.420 -0.486 -1.038 -0.396 1.406 0.327 1.198 
0.481 0.161 -0.044 -0.864 — 0.587 -0.037 -1.304 -1.544 0.946 -0.344 

-2.219 -0.123 -0.260 0.680 0.224 -1.217 0.052 0.174 0.692 -1.068 
1.723 -0.215 -0.158 0.369 1.073 -2.442 -0.472 2.060 -3.246 -1.020 

-0.937 1.253 0.321 -0.541 -0.648 0.265 1.487 -0.554 1.890 0.499 
-0.568 -0.146 0.285 1.337 -0.840 0.361 -0.468 0.746 0.470 0.171 
-1.717 -1.293 — 0.556 — 0.545 1.344 0.320 -0.087 0.418 1.076 1.669 
-0.151 -0.266 0.920 -2.370 0.484 -1.915 -0.268 0.718 2.075 -0.975 

2.278 -1.819 0.245 -0.163 0.980 -1.629 -0.094 -0.573 1.548 -0.896 

-0.650 0.669 -0.761 0.154 0.872 0.914 -0.563 -1.434 -0.006 -0.975 
-1.086 0.810 0.461 -0.528 2.130 -0.218 0.111 -0.412 -0.580 -1.487 
-0.143 -1.196 -1.254 -0.133 0.937 -0.475 -2.348 0.618 -0.057 -0.710 
-2.072 0.711 1.241 0.066 -0.341 0.356 1.220 0.431 0.263 -1.623 
-0.394 -0.368 -2.108 0.605 0.485 2.068 0.687 -1.474 0.071 -1.196 

0.174 -1.131 0.870 2.114 0.201 -0.373 -0.284 -0.234 -2.087 -1.304 
0.020 0.102 -1.911 -1.132 1.267 0.420 0.791 1.548 -0.147 -0.453 
0.297 0.449 -0.604 -0.858 -1.739 1.143 0.131 0.740 -1.596 0.165 
1.160 0.253 0.716 -1.032 — 0.595 -1.662 0.632 -0.315 -0.374 0.700 

-0.351 -0.490 -0.632 -0.409 -0.116 -1.153 -0.266 -0.125 0.489 -0.366 

-0.594 -0.214 -0.461 0.030 — 0.595 -0.889 0.638 -0.488 0.418 -0.693 
-1.882 1.890 -0.236 0.006 0.966 -0.723 0.229 -2.136 -1.017 -0.008 

0.041 2.955 -1.526 2.114 -0.540 1.040 0.753 0.025 0.462 1.221 
-0.403 1.237 -1.938 -1.704 -0.103 -0.346 1.214 0.826 0.336 -1.140 
-0.068 0.599 0.192 1.503 -0.579 -1.485 — 1.645 0.302 -1.348 0.553 

-0.361 0.958 0.807 0.787 -0.547 -0.074 -1.378 -0.010 -1.096 0.789 
-0.251 0.629 0.459 -0.165 0.016 0.489 -1.205 -0.260 -0.256 -0.399 
-1.011 0.893 -0.741 -0.514 -0.576 -0.929 0.478 -0.374 1.950 -0.695 

0.780 -2.464 -0.522 0.767 -1.657 -0.983 0.217 -0.529 -0.648 1.454 
-0.712 -0.355 -0.564 1.052 -0.169 -0.410 1.543 -2.330 -0.008 -0.955 

-0.612 -1.068 -0.644 -0.007 -0.835 0.623 0.093 0.105 -0.318 -0.228 
-0.064 0.012 -0.676 0.349 0.303 1.539 0.792 -0.101 -0.344 -0.096 
-0.379 1.504 2.375 0.498 -0.996 0.174 -1.268 -1.137 -0.618 0.173 

1.145 -1.403 0.770 0.799 0.844 -1.361 -1.059 0.128 1.398 0.277 
-0.117 0.585 -1.763 -0.632 0.239 -0.854 1.684 1.024 -0.067 -0.045 

1.333 1.374 -0.515 -1.655 0.607 -0.885 -0.902 -1.010 -1.297 -0.139 
-0.249 -0.747 1.044 -0.930 0.346 0.575 0.335 -1.159 -1.651 -1.642 
-1.022 0.085 -1.441 -0.198 0.844 0.697 0.548 -0.080 0.656 0.443 
-0.780 -0.534 -0.339 -0.642 -0.902 -0.827 0.071 -0.678 -0.359 -0.479 
-0.687 -0.418 0.991 0.331 -1.003 0.061 -1.416 0.876 0.125 -2.246 

Adapted with permission from A Million Random Digits by The Rand Corporation, Copyright, 1955, The Free Press. 
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TABLE A-37 (Continued). SHORT TABLE OF RANDOM NORMAL DEVIATES 
m = 0, a = 1 

-0.670 0.518 0.387 0.523 0.641 1.243 0.322 -2.607 -1.097 -0.012 
-2.912 1.448 1.343 -0.122 0.726 -0.617 0.609 2.319 -0.450 -1.197 
-0.028 -0.790 0.057 1.425 1.940 1.161 -0.878 -0.716 -0.244 -1.151 
-1.257 0.774 0.003 0.388 1.060 1.028 -0.236 1.172 0.442 -0.157 

2.372 -1.376 -1.318 1.236 0.738 0.337 -0.534 0.090 0.886 0.676 

-0.970 0.438 -0.672 -0.180 0.667 1.370 -0.481 0.329 0.842 0.449 
-1.228 0.129 -0.426 -0.165 0.028 2.696 1.201 -1.351 0.724 -1.017 
-0.369 0.310 0.432 0.237 0.884 -1.224 0.539 0.852 0.497 -0.283 

1.161 1.219 1.615 0.336 1.100 -0.528 0.161 0.278 0.675 -1.143 
-0.284 2.609 0.792 1.825 -0.249 1.654 0.621 0.979 -1.472 -1.173 

— 0.578 -0.789 0.106 0.832 — 0.597 0.496 -0.561 -1.033 — 0.578 -0.378 
0.074 0.261 -0.766 -1.046 0.361 -0.043 -1.927 1.527 0.605 1.475 
0.230 0.046 0.978 -1.901 1.162 — 0.545 0.697 1.151 2.033 0.080 
2.162 -0.562 1.190 0.925 — 1.057 0.015 -1.371 1.067 -1.080 -1.129 

-1.020 -1.130 -0.315 0.628 -0.140 2.050 -0.030 -0.629 0.128 -1.221 

1.323 -0.836 -0.284 -0.249 -0.768 1.242 -0.879 -0.417 0.013 -0.502 
2.329 1.884 0.033 0.598 -0.217 0.260 0.431 -1.914 0.205 1.155 
2.761 1.800 -0.562 0.714 -0.407 0.009 -0.724 -1.168 0.247 1.166 

-0.232 0.605 -0.023 -0.531 0.542 — 0.155 0.697 1.037 -0.316 -0.003 
-0.742 0.210 -0.741 -1.099 0.158 2.112 — 0.765 -0.319 -0.247 0.345 

-1.410 0.413 0.705 1.444 1.057 -0.843 0.043 -0.571 -0.001 0.203 
2.272 -0.719 0.679 2.007 -0.180 0.698 -1.137 0.688 -0.571 -0.100 
2.832 0.925 -1.350 1.529 -0.260 -1.007 -2.350 -1.501 0.289 1.522 

-1.086 — 0.558 -0.973 -1.285 -0.021 0.077 0.915 -0.241 -0.249 -0.529 
0.134 1.815 0.313 1.571 -0.216 2.261 0.696 -0.130 0.393 0.017 

0.783 0.600 -0.745 1.127 -0.684 -0.519 0.125 -0.499 1.543 -0.082 
0.174 -0.897 0.575 — 0.751 0.694 -2.959 0.529 1.587 0.339 -0.813 

-1.319 0.556 2.963 1.218 1.199 -1.746 1.611 0.467 -0.490 0.202 
1.298 -0.940 -1.143 -1.136 — 1.516 0.548 0.629 0.250 -1.087 0.322 

-0.676 -1.107 -1.483 0.278 0.493 -0.442 1.078 -0.336 -0.177 — 0.057 

-1.287 0.775 -1.095 1.161 -1.877 1.874 1.703 -1.619 -0.725 -1.407 
0.260 -0.028 -1.982 0.811 0.999 1.662 0.908 1.476 -1.137 -0.945 
0.481 1.060 1.441 0.163 0.720 1.490 -0.026 -0.502 0.427 -0.351 
0.794 0.725 1.971 0.384 — 0.579 -1.079 -1.440 -0.859 -0.346 0.077 
0.584 — 0.554 1.460 0.791 -0.426 -0.682 0.430 1.922 -2.099 0.221 

-0.114 0.379 -0.698 1.570 -0.511 -0.725 0.680 -0.591 -1.091 0.357 
-1.128 -1.707 0.921 -0.859 — 1.566 1.523 -0.900 -0.988 0.264 0.282 

0.691 0.153 0.076 1.691 0.553 0.457 -1.107 0.322 0.633 0.007 
1.115 0.777 -0.738 0.868 1.484 -1.792 0.950 -0.842 -0.192 0.620 

-0.389 0.559 0.670 -0.315 1.234 0.475 1.117 1.286 -0.649 -1.880 

0.330 0.750 -0.642 0.148 -0.608 0.866 -1.720 0.653 -0.210 -0.959 
-0.333 -0.084 1.239 -0.049 -0.095 -0.197 -0.213 -1.420 -0.491 0.102 

1.718 1.111 -0.548 -0.653 1.534 -0.456 -0.395 1.614 -0.531 — 0.785 
-0.182 0.620 1.178 -1.071 0.444 -0.072 -1.001 1.325 -0.302 -1.119 

1.260 -1.192 0.182 -0.397 — 0.705 -1.085 -1.492 1.642 0.673 -0.707 

-1.204 -1.725 1.695 1.473 0.665 -0.489 0.020 0.267 1.230 0.865 
-0.619 0.307 -0.226 -0.096 0.987 -1.195 -1.412 0.433 2.052 0.022 
-0.272 -0.096 0.137 -0.361 0.653 -0.156 1.309 -0.480 -0.397 1.302 

0.245 -0.690 0.493 -1.123 1.465 0.132 0.582 -0.429 0.225 0.125 
0.101 -0.855 0.782 -1.040 2.113 -1.423 -1.010 0.158 0.106 -1.232 
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TABLE A-37 (Continued). SHORT TABLE OF RANDOM NORMAL 1 DEVIATES 
m = 0, <y — 1 

0 .117 -0 .130 0.820 -1, .213 0.131 -0.738 0.918 1.002 -0.846 0.288 
0 .519 -0 .787 -1.128 1. .100 1.609 0.797 0.382 -1.157 -1.320 -2.056 

-0 . 870 -0, .832 -0.788 1. .490 -0.923 -0.710 -2.149 -1.967 0.088 1.158 
0 .311 0 .494 0.357 0 .025 -0.016 0.448 0.733 -0.199 0.440 0.609 

-1 .041 0, .027 -0.957 0. .777 0.304 -0.581 1.495 -1.564 -1.471 -1.097 

0 .239 0, .001 1.091 -0 .060 0.521 -0.777 0.461 0.919 -0.091 1.412 
-0 .151 0 . 004 0.596 0 .370 -0.346 -0.526 -1.557 -0.180 -0.323 0.918 

0 .902 -0, .502 -0.967 0 .859 0.916 -1.525 0.064 1.023 0.001 -1.577 
1 .573 — 1. .912 -1.010 1, .780 -0.771 2.390 — 0.188 -0.593 -0.608 -0.561 

-0 .742 0. .137 0.503 0. .887 -0.740 -1.410 -0.818 -0.545 1.130 -0.741 

-0 .143 -1. .299 -1.869 0. .191 -0.789 -0.296 -2.232 0.268 -1.582 0.389 
-1 .433 1. .109 -0.733 1. .176 -0.582 1.060 0.447 0.305 -2.418 -1.209 
-1 . 940 1. .045 -1.705 -1. .544 1.701 0.972 0.346 -0.341 -1.240 -0.194 
-0 .885 0, .247 -1.230 -1 .401 0.175 2.072 1.174 -0.223 -1.106 0.028 
-0 .040 0, .513 -0.201 -0, .740 0.727 0.668 -0.433 -0.991 -0.174 1.421 

-0. .083 -0. .101 0.964 -1. .182 0.485 0.901 1.321 0.803 -0.727 -0.569 
-0, .749 -0. .029 -1.150 0. .122 -0.016 -0.690 1.261 1.884 0.758 -0.035 

0 .995 0. .542 0.448 0. .796 0.616 0.261 1.072 -1.153 -1.866 -1.029 
0 .274 -0. .188 -0.840 1. .557 0.554 0.514 0.723 -0.322 -0.805 0.178 
1 .120 -0. .396 2.110 -1. ,469 -0.589 0.779 0.338 -0.093 1.629 0.134 

-0 .008 -0. , 078 0.400 0. .092 0.944 -0.728 -0.358 -1.206 -0.783 0.510 
1 .583 -0. . 730 -0.911 0, .126 1.864 -0.296 -0.980 -1.022 0.315 0.274 
1 .050 1. .102 1.236 _2, .039 -1.299 -0.722 -0.630 1.359 0.511 0.448 
0 .477 -0. .433 0.110 -o' .182 -0.363 0.716 -1.355 1.579 -0.574 0.043 

-1 .538 0. .137 -0.382 0. .578 1.053 0.489 1.552 1.520 0.391 -1.026 

-0. .314 -0. ,889 -0.913 0. ,417 0.537 -0.426 -0.100 1.467 0.483 -0.627 
0. .730 -0. ,940 -0.231 -0. 671 -0.798 1.330 -1.006 -0.123 0.442 1.513 
0. .270 -0. 473 0.477 1. 076 0.316 -0.600 -0.146 0.090 -0.608 -1.198 

-0. . 038 -1. 270 -0.447 -1. ,101 -1.107 -1.433 0.349 0.546 -0.283 0.887 
0. .497 -0. ,829 0.745 0. ,469 1.975 0.130 0.367 0.202 -0.433 0.630 

-0. . 709 -0. ,800 -1.034 -1. ,615 0.120 0.493 0.103 -0.639 1.732 1.066 
-1. .384 0. 453 0.586 -1. .549 -0.421 0.815 -1.319 -0.805 -0.009 -0.100 

0. .784 1. 980 -1.205 0. ,239 1.189 -0.382 0.047 -0.582 0.806 -1.336 
-0. .035 -0. 514 -0.087 -0. ,202 0.925 -0.047 -0.926 -1.157 0.498 -1.066 

0. . 078 0. 917 0.376 1. ,282 -1.176 0.622 2.123 0.646 -0.730 0.026 

0. .179 0. ,841 -0.298 _2. ,437 -0.740 -0.039 0.226 0.247 -1.614 0.492 
0. 111 -0. .044 0.209 o'. ,527 0.598 -0.200 -1.042 -0.012 0.757 0.840 
1. .000 -0. .919 0.956 0. .808 1.793 -0.079 1.953 -1.494 0.559 1.290 

-0. 307 -1. ,174 -0.858 0. ,039 — 1.505 0.037 -0.107 0.120 0.557 1.809 
_2 .407 0. . 273 -0.899 -0. ,691 -1.092 -1.374 1.238 2.046 0.879 0.296 

0. ,275 -1. 313 -0.331 0. 305 0.404 -0.399 0.591 0.280 -1.802 1.207 
-0. ,514 -0. 713 0.501 1. 214 0.001 0.360 -0.124 1.373 1.857 -1.135 

0. 982 -0. 139 1.113 -0. 433 -0.761 0.182 -0.405 0.714 -0.616 -1.402 
-0. 071 -0. 115 -0.344 0. 429 0.316 -0.667 1.676 — 0.155 1.085 -1.780 
-1. 975 -1. 410 1.367 -0. 592 0.480 0.406 0.701 1.077 -1.475 1.024 

0. 027 -1. 440 -0.404 -1. 180 1.223 -1.116 -1.017 1.051 0.051 -0.853 
0. 010 -1. 118 -1.228 1. 382 -0.502 0.494 -0.612 2.755 -0.809 -1.216 
0. 584 -1. 410 -0.551 -0. 002 -0.381 -0.078 -1.310 1.198 1.359 0.115 
0. , 009 -0. 011 -0.452 0. 302 -1.026 -0.331 -1.047 0.618 0.931 -0.218 
0. 070 -1. 598 -0.500 -0. 812 1.203 -2.110 0.049 0.059 1.890 0.421 
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TABLE A-37 (Continued). SHORT TABLE OF RANDOM NORMAL DEVIATES 

m = 0, cr = 1 

1.801 0.459 1.102 -1.072 -0.336 0.942 -0.290 -0.716 1.396 -0.466 
— 0.175 -0.754 -0.134 1.231 1.483 -0.149 0.555 1.401 -1.142 0.205 
-0.861 -1.460 0.526 0.239 -0.206 2.021 0.313 -0.253 -0.891 1.135 
-0.577 0.335 -0.820 0.140 -0.333 0.426 0.209 -0.024 0.323 1.223 

0.827 0.802 -0.457 0.560 0.643 -0.729 -0.249 0.338 -0.281 -1.804 

-1.344 0.949 -1.459 -1.210 1.016 -0.148 —1.737 0.069 -1.185 0.040 
1.476 1.262 -1.428 0.489 -0.523 -0.646 1.721 0.749 0.179 -0.922 
0.527 -1.045 0.877 0.646 2.957 -0.972 -1.796 0.309 2.224 -0.070 

-0.645 0.117 0.059 -0.080 -1.637 -0.746 1.256 2.520 -0.673 0.994 
-0.514 -1.510 -0.714 -1.581 0.905 1.745 1.767 0.682 -0.648 -1.742 

-0.656 -0.217 0.287 0.114 1.175 0.791 -0.263 -0.695 -1.348 1.239 
-0.778 1.177 0.180 1.156 0.458 1.089 0.339 1.304 0.402 -0.831 

0.352 -1.829 -0.645 0.236 0.641 0.920 -1.287 -0.187 -2.339 -0.237 
1.352 -0.076 -1.962 0.827 0.252 1.621 0.770 1.324 0.488 -0.037 
0.017 0.030 0.211 2.276 0.693 -1.733 0.773 0.652 -0.947 0.148 

-0.218 -1.060 — 0.553 1.043 2.305 0.380 -0.794 -1.498 1.088 -0.689 
1.118 0.816 0.713 0.485 0.185 0.318 -1.050 0.110 0.563 1.177 

-1.622 0.436 0.481 0.021 2.070 -0.845 -0.257 -0.680 -0.565 0.024 
-1.103 -0.210 -1.088 -0.033 -1.022 0.366 -0.531 2.022 0.210 1.037 
-0.677 -0.737 -0.950 -1.517 1.148 0.377 -0.397 -1.902 -0.748 -1.753 

1.110 1.120 1.163 1.577 -1.172 -0.133 -0.213 0.154 -0.435 0.218 
-0.278 0.569 0.586 1.523 -0.244 -0.170 -1.274 0.874 -1.020 -0.809 

0.178 1.314 0.462 -0.253 -0.122 0.108 -1.256 -0.137 1.043 -0.135 
0.312 -2.287 -0.655 -1.459 0.075 -0.457 -0.206 -0.326 0.489 -0.149 
0.469 -2.066 -0.973 -1.009 -1.410 0.505 0.459 -0.572 -1.186 0.978 

-0.730 1.650 0.760 -0.520 -0.671 -0.122 -0.324 -0.202 0.411 -2.103 
0.834 0.280 0.744 0.598 0.122 -0.460 -1.310 -1.271 -0.917 0.650 

-1.397 -1.053 0.412 1.286 -0.820 -0.371 0.826 -0.666 0.505 0.733 
0.238 -0.668 1.861 0.051 0.460 0.079 1.008 -0.487 0.306 -0.061 
0.102 -0.907 -0.833 1.103 -0.921 0.145 -0.904 -0.401 0.553 -1.422 

-0.160 0.567 -0.638 0.355 0.427 -0.695 -0.846 0.359 1.500 -0.926 
0.496 1.179 -0.776 0.511 -1.325 0.275 -0.130 -0.123 1.175 -0.102 
0.307 -0.328 -2.474 -0.121 1.371 0.266 1.235 1.827 -0.296 -2.715 

-0.559 0.523 1.264 -0.018 -2.791 0.139 1.515 1.976 0.173 -1.728 
0.658 -0.261 0.004 -1.296 0.568 -1.215 0.104 0.178 1.126 1.134 

-0.856 -2.278 -0.140 -0.164 1.416 -0.043 0.243 -1.399 -0.448 0.120 
2.778 0.245 0.282 0.301 -1.506 1.805 1.798 1.078 1.629 -0.648 
0.543 0.761 -2.038 -0.533 -0.594 1.742 0.487 1.432 -0.210 -0.358 

-0.008 -0.445 -2.551 0.935 1.961 -0.270 -1.557 -1.318 -0.744 -0.860 
-1.147 -1.151 -0.522 -2.118 -0.667 0.906 0.639 1.005 -0.480 -1.354 

-0.851 0.585 0.672 0.481 -0.888 -0.480 0.041 0.345 -0.537 -0.589 
0.023 0.609 0.623 0.356 0.279 -0.051 0.158 -0.353 0.776 0.102 

-0.257 0.152 -1.413 0.175 0.149 -1.354 0.286 1.794 -0.571 -0.202 
-0.421 -0.344 -0.803 0.832 0.256 -1.296 -1.390 0.379 0.955 0.366 
-1.681 2.444 -1.025 1.178 -0.827 -0.200 0.727 0.778 0.169 -1.363 

0.717 -1.666 1.071 -2.061 -1.367 -0.450 -0.038 -1.004 -1.240 0.901 
-1.266 0.256 -1.312 -0.582 -0.351 -1.002 0.648 0.873 0.015 0.641 

0.350 0.552 -1.549 -1.080 1.417 -0.769 -0.514 -1.900 1.017 -1.222 
-0.186 0.006 0.148 0.560 -1.081 -0.637 -1.968 -0.623 0.009 -0.369 

1.359 1.027 0.740 -2.067 0.543 1.099 0.543 0.064 0.589 -0.016 
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procedure, testing assumption of linear regression, 5-23 
when intercept is known equal to zero, lines through the origin, discussion, 5-24 

procedure, variance of Y’s independent of x , 5-24 
worksheet example, 5-25 
procedure, variance proportional to x , 5-25 
procedure, errors of Y’s cumulative (cumulative errors), 5-26 
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Linear Relationships (cont) 
between two variables (cont) 

FII relationship 
distinguishing features of, discussion, 5-27 
figure showing, 5-5 
procedure, simple method of fitting the line (general case), 5-27 

data sample, 5-27 
figure showing relationship between two methods of determining a chemical 

constituent, 5-28 
important exceptional case, discussion and examples, 5-29 

statistical relationships SI and SII, discussion and definitions, 5-5 
SI relationship 

discussion with example, 5-6 
figure showing normal bivariate frequency surface, 5-6 
figure showing six contour ellipses for normal bivariate distributions having 

different values of five parameters, 5-7 
SII relationships 

discussion and example, 5-7 
figure showing effect of restrictions of X or Y on regression of F on X, 5-8 

Link, R. F., T-28 
Link-Wallace test, table of critical values of L for, T-28 
Linnig, F. J., 18-4 
Lipka, J., 5-46 
Lord, E., T-26 

M 

to , arithmetic mean (or “the mean”) of the distribution, 1-8 
to , average of new material, product, or process, (unknown), 3-3 
to , center of gravity of a distribution, 1-8 
to , location parameter of a normal distribution, 1-8 
to , median of a curve (the center of gravity), 1-8 
to , number of materials, etc., to be compared, 9-6 
Too , average performance of a standard material, product, or process (known), 3-3 
The Macmillan Company, 11-6 
Madhava, K. B., 14-7 
Mainland, D., T-55 
Mandel, J., 5-46, 18-4 
Mantel, N., 10-24 
Massey, F. J., Jr., 1-19; 10-24; T-4, -5, -24, -27, -45, -78 
Matrix Methods, 6-37 

formulas using triangular factorization of normal equations, 6-37 
triangularization of matrices, 6-38 

Maxfield, M. W., 2-12; T-37, -41 
McCarthy. P. J., 10-24 
McGraw-Hill Book Company, Inc., 1-7, -19; 4-14; 6-42; 10-24; 11-6; 14-6; 17-6; 20-13; 

22-4; T-4, -5, -10, -24, -27, -45, -78 
Mean, Population 

(See Population Mean) 
Measured Performance 

(See Performance, Measured) 
Measurements 

(See also: Performance, Measured; Samples) 
number required to establish distribution mean with prescribed accuracy, discussion 

of methods for determining, 2-9 
number required to establish variability with stated precision, 2-12 

Metal castings, causes of rejection, data sample, 9-6 
Meters, electricity, breakdowns of, data sample, 9-4 
Methods of inductive statistics, 1-2 
Metron, 20-13 
Mickey, M. R., 14-6 
Mooney, R. B., 14-8 
Moroney, M. J., 1-19 
Mosteller, F., 1-4. -5, -19; 20-13 
Multivariable Relationships 

(See Polynomial and Multivariable Relationships) 
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N 

n , total number of items, 9-6 
n , total number of observations, 1-10 
tii, degrees of freedom for numerator, T-6 
tk , degrees of freedom for denominator, T-6 
tii , size of sample for the fth material, product, or process, 9-6 
National Bureau of Standards, 4-14, 6-42, 12-21; 19-1, -4; T-59 
Natrella, Mary G., Title pages, iii, 21-1 
Nature, 14-6 
National Advisory Committee for Aeronautics, Technical Note, 19-4 
Naval Ordnance Laboratory, White Oak, Md., 10-24 
Naval Ordnance Test Station, China Lake, Calif., 2-13; T-37, -41 
New York Academy of Science, 14-7 
New York University, 14-6, -7; T-55 
Neyman, J., 4-14 
New products, defectives in sample of, data sample, 8-1 
Nickel, spectographic determination of, data sample, 13-22 
Non-linear Relationships 

(See also, Linear Relationships) 
between two variables, transformation to linear, 5-30 

Normal Deviates, random, short table of, T-86 
Normal Distribution 

(See also, Distribution, Normal) 
determined by m and a , 1-8 

North Carolina Agricultural Experiment Station, 13-46 
North Carolina State College, 14-4, -6, -7, -8 
v , degrees of freedom, 2-10 
Null Hypothesis 

(See also, Hypotheses) 
definition, 1-16 

Numbers 
(See Random Numbers) 

o 

Observations, table of, criteria for rejection of outlying, T-27 
OC Curves 

(See: Curves; Operating Characteristic (OC) Curves; Performance Average; Per¬ 
formance, Variability of; Statistical Analysis; Statistical Tests) 

Oliver and Boyd, London, 2-15; 6-29, -42; T-5, -32, -33 
Oliver and Boyd, Ltd., Edinburgh, 11-6; 13-46; 14-2, -4, -5 
Olmstead, P. S., 18-2, -4 
Olson, L. R., 14-7 
Operating Characteristics 

(See: Operating Characteristic (OC) Curves; Performance Average; Performance. 
Variability of; Statistical Analysis; Statistical Tests) 

Operating Characteristic (OC) Curves 
(See also: Curves; Performance, Average; Performance Variability of; Statistical 

Analysis; Statistical Tests) 
of a statistical test, 1-17 
figures showing curves for 

one-sided x~ test, to determine whether o, exceeds <r0 (a = .05) . 4-4 
one-sided x* test, to determine whether o, is less than o„ (a = .05) , 4-6 
one-sided F-test, to determine whether o-i exceeds on (a = .05; ??, = »«) , 4-11 
one-sided F-test, to determine whether a* exceeds on (a- = .05: iia = ??» , 

SnA = 2nB , 2nA = n„) , 4-12 
one-sided F-test, to determine whether oA exceeds on (a = .05; iii = Vn . 2nA = 3??« ; 

vA = 2n„) , 4-13 
one-sided normal test (n = .01) , 3-19 
one-sided normal test (a = .05) , 3-18 
two-sided normal test (n = .01) , 3-2 
two-sided normal test (a = .05) , 3-11 
one-sided f-test (a = .01) , 3-15 
one-sided f-test (a = .05) , 3-14 
two-sided f-test (a = .01) , 3-7 
two-sided f-test (a = .05) , 3-6, 21-3 
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Optimum Conditions or Levels 
(See also, Response Function) 
discussion, general, 14-1 
experimental designs to determine, 14-3 
experiments to determine, 14-1 through 14-8 
finding the optimum, 14-3 
recommended sources for further study, 14-4 

Orthogonal Polynomials 
(See Polynomial and Multivariable Relationships) 

Outliers, Treatment of, 17-1 through 17-6 
rejecting observations 

discussion of problem, 17-1 
in routine experimental work, 17-2 
in a single experiment 

extreme observations in only one direction considered rejectable, 17-4 
mean and standard deviation unknown, sample is only source of information, 

17-4 
Dixon criterion, procedure, 17-4 

mean unknown, value of standard deviation assumed, 17-5 
extreme standardized deviate from sample mean, procedure, 17-5 

mean and standard deviation unknown, independent external estimate of devi¬ 
ation available, 17-5 
extreme studentized deviate from sample mean; the Nair criterion, proce¬ 

dure, 17-5 
mean and standard deviation known, 17-6 

procedure and example, 17-6 
extreme observations in either direction considered rejectable, 17-3 

mean unknown, value for standard deviation assumed, 17-3 
procedure, 17-3 

mean and standard deviation unknown, sample is only source of information, 
17-3 
Dixon criterion, procedure and example, 17-3 

mean and standard deviation unknown, independent external estimate of devi¬ 
ation available, 17-3 
studentized range, procedure, 17-3 

mean and standard deviation known, 17-4 
procedure and example, 17-4 

table, criteria for rejection of outlying observations, T-27 
Owen, D. B., 2-15, T-59 

P 

P , proportion of elements in a population, 1-8, -9 
Pachares, J., T-18 
Pearson, E. S„ 3-42; 4-14; 6-42; T-6, -30, -31 
Penguin Books, Inc., 1-19 
Percentages 

(See also: Performance, Average; Performance, Variability of) 
figure showing percentage of population in various intervals of normal distribution, 

1-9 
table, percentage points of extreme studentized deviate from sample mean, T-30 
table, percentiles of the x~ distribution, T-4 
table, F distribution, T-6 

table, F' = — , T-24 
VOn 

table, for 0 , T-26 
table, for 0', T-26 
table, for the studentized range, q , T-18 
table, for the t-distribution, T-5 

Performance Average 
(See also: Tests, Distribution-free; Tests, Shortcut) 
best single estimate of, 2-1 

procedure and example, 2-2 
comparing materials or products 

discussion, 3-1 
statistical tests, discussion of uses in testing for differences, 3-1 

confidence interval estimates of, 2-1 
general remarks, 2-2 
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Performance, Average (cont) 
estimating from a sample, discussion, 2-1 
comparing new product with a standard 

discussion, 3-3 
table, summary of Chapter 3 techniques for comparing, 3-4 
does new product differ from a standard 

(a known) two-sided normal test 
operating characteristics of test, 3-9 
figure showing OC curves (a = .01) , 3-12 
figure showing OC curves (a = .05) , 3-11 
procedure and example, 3-8 
selection of sample size n , 3-9 

(a unknown) two-side f-test 
operating characteristics of test, 3-5 
figure showing OC curves (a = .01) , 3-7 
figure showing OC curves (a = .05) , 3-6 
procedure and example, 3-4 
selection of sample size n, 3-5 

does new product exceed a standard 
(<7 known) one-sided normal test 

operating characteristics of test, 3-17 
figure showing OC curves (a = .01) , 3-19 
figure showing OC curve (a = .05) , 3-18 
procedure and example, 3-16 
selection of sample size n , 3-17 

does new product exceed a standard (cont) 
(a unknown) one-sided t-test 

operating characteristics of test, 3-13 
figure showing OC curves (a = .01) , 3-15 
figure showing OC curves (a = .05) , 3-14 
procedure and example, 3-13 
selection of sample size n , 3-16 

is new product less than a standard 
(o- known) one-sided normal test 

operating characteristics of test, 3-21 
figure showing OC curves (a = .01) ,3-19 
figure showing OC curves (a = .05) , 3-18 
procedure and example, 3-21 
selection of sample size n, 3-22 

(cr unknown) one-sided t-test 
operating characteristics of test, 3-20 
figure showing OC curves (a = .01) , 3-15 
figure showing OC curves (a - .05) , 3-14 
procedure and example, 3-20 
selection of sample size n , 3-21 

comparing two materials, products, or processes 
discussion, 3-22 
table, summary of Chapter 3 techniques for comparing, 3-22 
do products A and B differ 

ax and gb known, two-sided normal test 
operating characteristics of test, 3-31 
figure showing OC curves (a = .05) , 3-11 
procedure and example, 3-30 
selection of sample size n , 3-31 

o a and a a unknown, but assumed equal, two-sided t-test 
operating characteristics of test, 3-24 
figure showing probability of rejection of hypothesis mA = ms , 3-25 
procedure and example, 3-24 
selection of sample size n , 3-26 

<ja and crB unknown, cannot be assumed equal, two-sided t-test 
discussion of test procedure, 3-28 
figure showing OC curves (a = .05) , 3-6 
procedure and example, 3-27 

paired observations 
discussion, 3-31 
operating characteristics of test, 3-32 
procedure and example, 3-32 
selection of number of pairs n , 3-33 
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Performance, Average (cont) 
comparing two materials, products, or processes (cont) 

does product A exceed B 
<ta and <7a known, one-sided normal test 

operating characteristics of test, 3-38 
figure showing OC curves (a = .01) , 3-19 
figure showing OC curves (a = .05) , 3-18 
procedure and example, 3-37 
selection of sample size n , 3-38 

paired observations 
discussion, 3-38 
operating characteristics of test, 3-39 
procedure and example, 3-39 
selection of number of pairs n , 3-40 

<xa and on unknown, but assumed equal, one-sided t-test 
operating characteristics of test, 3-35 
figure showing OC curves (a = .01) , 3-15 
figure showing OC curves (a = .05) , 3-14 
procedure and example, 3-34 
selection of sample size n , 3-35 

a a and on unknown, cannot be assumed equal 
procedure and example, 3-36 

comparing several products 
do t products differ, equal sample sizes 

discussion, 3-40 
procedure and example, 3-41 

Performance, Measured 
characterizing of a material, product, or process, 2-1 

Performance, Qualitative 
characterizing of 

data sample, 7-1 
discussion, 7-1 
one-sided confidence intervals, 7-3 
approximate limits for n > 30 (one-sided), procedure and example, 7-3 
exact limits for n 30 (one-sided), 7-3 
exact limits for w > 30 (one-sided), 7-3 
best single estimate of true proportion, procedure and example, 7-1 
confidence interval estimates of true proportion, 7-2 

two-sided intervals, 7-2 
approximate limits for n > 30 (two-sided), procedure and example, 7-2 
exact limits for n ?= 30 (two-sided), 7-2 
exact limits for w > 30 (two-sided), 7-2 

sample size required to estimate true proportion; 
discussion, 7-4 
with a specified limit of error in both directions (± S) , 7-4 

graphical method 
discussion, 7-4 
procedure and example, 7-4 

numerical method 
discussion, 7-5 
procedure and example, 7-5 

with a specified limit in only one direction (+ S or — S) 
discussion, 7-5 
procedure and example, 7-6 

Performance, Several Categories 
comparing materials or products with respect to (chi-square test) 

discussion of classification scheme, 9-1 
test of association between two methods of classification 

data sample, 9-9 
discussion, 9-8 
procedure and example, 9-9 
table, computational arrangement for data sample on vacuum tube failures, 9-10 

comparing with a standard 
data sample, 9-2 
procedure and example, 9-3 
table, computational arrangement for data sample on clinical thermometers, 9-3 

comparing with a theoretical standard 
data sample, 9-4 
procedure and example, 9-5 
table, computational arrangement for data sample on electricity meters, 9-5 

comparing two or more products 
data sample, 9-6 
definitions of symbols used, 9-6 
procedure and example, 9-6 
simplified computation for m = 2, 9-8 
simplified computation for m = 2 when v, = , 9-8 
table, computational arrangement for data sample on metal castings, 9-7 
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Performance, Two-fold Classification 
comparing materials or product with respect to, discussion, 8-1 
comparing observed proportion with a standard 

does new product differ from a standard 
procedure for n ^ 30, 8-1 

data sample, 8-1 
procedure and example, 8-2 

procedure for n > 30, 8-2 
data sample, 8-2 
procedure and example, 8-3 

does new product exceed a standard 
procedure for n — 30, 8-3 

procedure and example, 8-3 
procedure for n > 30, 8-4 

procedure and example, 8-4 
is new product less than a standard 

procedure for n — 30, 8-5 
procedure and example, 8-5 

procedure for n > 30, 8-5 
procedure and example, 8-5 

sample size required to detect a difference of prescribed magnitude 
when sign of difference is important, 8-7 

procedure and example, 8-8 
when sign of difference is not important, 8-6 

procedure and example, 8-6 

comparing two observed proportions 
discussion, 8-9 
table, observed frequencies from two samples from two mutually-exclusive cate¬ 

gories, 8-9 
table, rearranged for use with Table A-29, 8-12 
when sample sizes are equal 

data sample, 8-10 
discussion, 8-9 
does product A differ from B, 8-10 

procedure and example, 8-10 
does product A exceed B, 8-11 

procedure and example, 8-11 
when sample sizes are large 

does product A differ from B, 8-16 
data sample, 8-16 
procedure and example, 8-16 

does product A exceed B, 8-18 
procedure and example, 8-18 

when sample sizes are unequal and small 
does product A differ from B, 8-12 

data sample, 8-12 
data, rearranged for use with Table A-29, 8-13 
procedure and example, 8-12 

does product A exceed B, 8-14 
data sample, 8-14 
data, rearranged for use with Table A-29, 8-15 
procedure and example, 8-14 

sample size required to detect a difference of prescribed magnitude 
when the sign of difference is important, 8-20 

procedure and example, 8-20 
when sign of difference is not important, 8-18 

procedure and example, 8-19 

Performance, Variability of 
estimating, general discussion, 2-6 
estimating when no sample data are available, discussion, 2-8 
single estimates of s- and s, procedure and example, 2-6 
one-sided confidence interval estimates for (s,. or s( ) , discussion, 2-7 

procedure and example, 2-8 
two-sided confidence interval estimates for (sL and Sv) , procedure and example, 2-7 
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Performance, Variability of (cont) 
comparing new material or product with a standard 

discussion, 4-1 
does new product differ from a standard, 4-1 

operating characteristics of test, 4-2 
procedure and example, 4-2 

does new product exceed a standard, 4-3 
operating characteristics of test, 4-3 
figure showing OC curves of one-sided x2-test (a = .05) and various n values, 4-4 
procedure and example, 4-3 
selection of sample size, 4-4 

is new product less than a standard, 4-5 
operating characteristics of test, 4-6 
figure showing OC curves of one-sided *2-test (a = .05) and various n values, 4-6 
procedure and example, 4-5 
selection of sample size, 4-7 

comparing two materials or products 
discussion, 4-8 
does product A differ from B, 4-8 

operating characteristics of test, 4-9 
procedure and example, 4-9 

does product A exceed B, 4-9 
operating characteristics of test, 4-10 
figure showing OC curves of one-sided F-test (a = .05; nA = nB) , 4-11 
figure showing OC curves of one-sided F-test (a = .05; nA = nB, 3nA = 2nB , 

2nA = nB) , 4-12 
figure showing OC curves of one-sided F-test (a = .05; nA = nB, 2nA = 3nB, 

nA = 2nB) , 4-13 
procedure and example, 4-10 
selection of sample size, 4-11 

Pesek, J. T., 14-8 
Planning 

(See Experiments, Planning and Analysis of) 
Pike, F. P., 14-8 

Plates, surface hardness of, data sample, 3-34 
Plotting 

(See: Data: Histograms; Linear Relationships; Plotting paper) 

Plotting paper, procedures for use of to determine form of a relationship empirically, 
5-30 

Polynomial and Multivariable Relationships 
analysis by method of least squares, 6-1 
discussion of many-variable relationships and analysis techniques, 6-1 
correlated measurement errors, 6-22 

discussion of procedures and examples, 6-22 
examples, 6-23 
procedures, 6-22 

inequality of variance, 6-19 
discussion of procedures and examples, 6-19 
examples, 6-21 
procedures, 6-20 

least squares theorem, discussion and example equations, 6-3 
matrix methods, 6-37 

formulas using triangular factorization of normal equations, 6-37 
remarks on values needed for computations, 6-41 
triangularization of matrices, 6-38 

multiple measurements at one or more points, discussion and example equations, 6-17 
multivariable functional relationships, 6-4 

discussion of procedures and examples, with data sample and equations, 6-5 
use and assumptions, discussion and sample of tabulated data and equations, 6-4 
formation of normal equations, Step (1) 

example, 6-7 
procedure, 6-6 

solution of normal equations, Step (2) 
example, 6-9 
procedure, 6-8 

calculation of deviation between predicted and observed values of F’s, Step (3) 
example, 6-11 
pi'ocedure, 6-10 

estimation of <r2, Step (4) 
example, 6-11 
procedure, 6-10 

estimation standard deviations of the coefficients, Step (5) 
example, 6-13 
procedure, 6-12 
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Polynomial and Multivariable Relationships (cont) 
multivariable functional relationships (cont) 

standard deviation of a linear function of the /3’s, Step (6) 
example, 6-13 
procedure, 6-12 

standard deviation of a predicted point, Step (7) 
example, 6-13 
procedure, 6-12 

analysis of variance test of significance of group of p < k of coefficients, Step (8), 
procedure, 6-14 

analysis of variance test of significance of last coefficient, Step (8), example, 6-15 
confidence interval estimates, Step (9) 

example, 6-17 
procedure, 6-16 

polynomial fitting, 6-18 
discussion and example equations, 6-18 

use of orthogonal polynomials with equally spaced x values, 6-26 
discussion of procedures and examples, 6-26 
equations showing /3’s as a function of a’s for polynomials up to 5th degree, 6-36 
sample table of orthogonal polynomials, 6-28 
Step (1), example, 6-31 

procedure, 6-31 
Step (2), example, 6-31 

procedure, 6-30 
Step (3), example, 6-33 

procedure, 6-32 
Step (4), example, 6-33 

procedure, 6-32 
Step (5), example, 6-33 

procedure, 6-32 
Step (6), example, 6-35 

procedure, 6-34 
polynomials, up to 5th degree, equation showing /3’s as a function of a’s, 6-36 

Population Mean, Estimation of 
using a single sample 

procedure and example for determining sample size required, 2-10 
using sample taken in two stages 

discussion of method, 2-10 
procedure and example for determining sample size required, 2-11 

Populations 
concepts, 1-1 
examples of, 1-1 
importance of knowing “parent” population from which sample is taken, 1-5 
types of “parent” populations, 1-5 

Powder 
(See also, Rocket powder) 
weight of for shells, data sample, 3-3 

Prentice-Hall, Inc., 1-19; 3-7, -12, -13, -14, -18, -19; 4-14; 18-4 
Princeton University, T-28 
Probability Level 

one-sided and two-sided tests 
tables for testing significance in 2 X 2 tables with unequal sample sizes, T-59 

Probit Method of Analysis, 10-8 
(See also, Sensitivity Testing) 
table, maximum and minimum working probits and range, T-33 
table, weighting coefficients for, T-32 

Probit paper, use of to plot probit solution, 10-10 
Probits 

(See Probit Method of Analysis) 
Proportion 

table, arc sine transformation for, T-54 
table, confidence belts for (sample sizes greater than 30), T-45 
table, one-sided confidence limits for (sample sizes less than 30), T-41 
table, two-sided confidence limits for (sample sizes less than 30), T-37 
table, cumulative normal distribution, values of P corresponding to zp for normal 

curve, T-2 
table, sample sizes required for comparing with a standard, sign of difference is im¬ 

portant, T-51 
table, sample sizes required for comparing with a standard, sign of difference is not 

important, T-48 
Proschan, F., 17-6 
Publications, referenced for adapted, reproduced, quoted, or recommended statistical 

works 
American Standard Control Chart Method of Controlling Quality During Production, 

Z 1.3 - 1958, 18-3, -4 
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Publications (Cont) 
The American Statistician, 19-1, -2, -3; 21-1 
Analyst, 14-5 
Analytical Chemistry, 18-4 
Annals of Mathematical Statistics, 3-6, -11; 4-4, -6, -11, -12, -13; 14-5, -6, 7; 17-6; 

20- 13; 21-3; T-75, -76, -77 
ASTM Manual of Quality Control of Materials, 18-3, -4; 21-5 
Basic Engineering, 14-5 
Biometrics, 5-46; 14-5, -6, -7; 17-6; 20-13 
Biometrika, 3-25, -42; 14-5, -6; 20-13; T-18, -26, -34, -46 
Biometrika Tables for Statisticians, T-7, -30, -31 
Chemical Engineering Progress, 14-7, -8 
A Dictionary of Statistical Terms, 2-3, 6-2 
Empire Journal of Experimental Agriculture, 20-13 
The Engineer, 9-10 
Industrial and Engineering Chemistry, 14-7, -8 
Industrial Quality Control, 9-6; 14-4, -5; 17-6; 18-2, -4; T-14 
Journal of the Aeronautical Sciences, 19-4 
Journal, American Ceramic Society, 14-7 
Journal of American Statistical Association, 1-19; 2-12; 5-46; 10-24; 14-5, -6; 19-4; 

21- 6 
Journal of Applied Physics, 19-4 
Journal of Industrial Engineering, 14-8 
Journal of Polymer Science, 19-4 
Journal of Research, National Bureau of Standards, 19-4 
Journal of the Royal Statistical Society, 14-6, 20-13 
Metron, 20-13 
National Bureau of Standards Applied Mathematics Series, 19-4 
National Bureau of Standards News Bulletin 38, 19-1 
Nature, 14-6 
Proceedings of The Royal Society A, 19-4 
Review, International Statistical Institute, 14-7 
Rubber Age, 5-46 
Tappi, 14-7 
Technometrics, 14-5, -6, -7 
Washington University Studies, New Series, Science and Technology, 17-6 

Publishers, of adapted, reproduced, or recommended statistical works 
Addison-Wesley Publishing Co., Inc., 20-13 
American Cyanamid Company, T-79 
American Society for Quality Control, 14-4, -5, -7, -8 
American Society for Testing Materials (ASTM), 1-12; 18-3, -4; 21-5 
American Soil Sciences Society, 14-7 
American Standards Association, 18-3, -4 
American Statistical Association, 1-19, 2-12, 5-46, 10-24, 19-4 
Cambridge University Press, 1-19; 3-42; 6-42; 10-24; 20-13; T-6, -30, -31 
Columbia University Press, 19-4 
Dover Publications, Inc., 2-12 
The Free Press, 1-19; 21-6; T-82, -86 
Hafner Publishing Company, Inc., 10-24; 11-6; 12-21; 13-46; 14-4, -5; T-32, -33 
Harvard University Press, T-48, -51 
Holt, Rinehart, and Winston, Inc., 5-7 
Houghton Mifflin Company, 5-46 
International Statistical Institute, 9-9, -10; 14-7 
Interstate Printers and Publishers, Inc., T-80 
Institute of Radio Engineers, 14-7 
Institute of Statistics, Raleigh, N. C., 13-46, 14-6 
Iowa State College, 6-42, 14-8 
Richard D. Irwin, Inc., 18-4 
The Johns Hopkins Press, 5-46, 22-4 
Johns Hopkins University, Baltimore, Md., 14-6 
McGraw-Hill Book Company, Inc., 1-7, -19; 4-14; 6-42; 10-24; 11-6; 14-6; 17-6; 18-4; 

20-13; 22-4; T-4, -5, -10, -24, -27, -45, -78 
National Advisory Committee for Aeronautics, 19-4 
New York Academy of Science, 14-7 
New York University, 14-6, -7; T-55 
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Replication 
(See Experiments, Planning and Analysis of) 

Resistors 
conversion gain of, data sample, 13-4 
noise measurement of, data sample, 13-14 
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probit method of analysis 
discussion, 10-8 
method, basis of, discussion and formulas, 10-9 
selection of stimulus level, 10-8 
solutions, discussion, 10-9 
exact probit solution, discussion, 10-16 

example, 10-17 
procedure, 10-16 
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Significance 
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choice of, for statistical tests, 1-17 
table, minimum contrasts required for, in 2 X 2 tables with equal sample sizes, T-55 

T-55 
tables, for testing significance in 2 X 2 tables with unequal sample sizes (one-sided 

and two-sided tests), T-59 
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figure showing frequency distributions of various shapes, 1-8 

Smith, A. C„ 14-7 
Smith, W. N., 14-7 
Square Plans 

(See: Latin Square Plans; Youden Square Plans) 
Somerville, P. N., iii; T-75, -76, -77 
Staircase Methods 

(See, Sensitivity Testing, Up-and-Down Designs) 
Standard Deviation 

(See Deviation, Standard) 
Stanford University, T-59 
Statement of Tolerance Limits 
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table, factors for computing one-sided confidence limits for o , T-36 
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Statistical Inferences 
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Statistical methods, inductive, 1-1 
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problems and procedures for, 5-31 
SI relationships 

data sample, 5-33 
discussion and examples, 5-31 
estimating confidence band for line as a whole, 

procedure and example, 5-36 
table, computational arrangement for, 5-37 

confidence interval estimate for slope of true regression line, procedure and 
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SI relationships (cont) 
confidence interval estimate for single (future) value of Y corresponding to 
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5-37 
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best line for predicting A'y from given values of Y, procedure and example, 5-39 
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5-32 
figure showing two regression lines, using relationship between two methods 

of estimating tread life, 5-39 
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confidence interval for slope of true line, procedure and example, 5-45 
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confidence interval for a single (future) value of Y corresponding to chosen 

value of X , procedure_and example, 5-45 
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uses in testing for differences in average performance, discussion, 3-1 

Statistical Tolerance Limits 
(See Tolerance limits, Statistical) 

Statistics 
preliminary considerations, 1-1 
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referenced A-Tables, T-l through T-89 
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example of use of, 1-6 

Rockwell hardness reading as first step in preparing a histogram, 1-7 
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Tate, M. W., T-80 
Taussky, 0., 6-42 
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ples, T-55 
table, percentiles of F distribution, T-6 
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discussion, general, 16-1 
comparing average of new product with a standard, 16-2 

data sample, 16-2 
does new differ from standard 

the sign test, 16-2 
procedure and example, 16-2 

the Wilcoxon signed-ranks test, 16-3 
procedure and example, 16-3 

does new exceed standard, 16-4 
data sample, 16-4 
the sign test, 16-4 

procedure and example, 16-4 
the Wilcoxon signed-ranks test, 16-5 

procedure and example, 16-5 
is new less than standard, 16-6 

data sample, 16-6 
the sign test, 16-6 

procedure and example, 16-6 
the Wilcoxon signed-ranks test, 16-7 

procedure and example, 16-7 
comparing averages of several products, 16-13 

do t pi’oducts differ, 16-13 
data sample, 16-13 
procedure and example, 16-14 
work table for data sample, 16-13 

comparing averages of two products, 16-8 
discussion, general, 16-8 
does A differ from B , 16-8 

the sign test for paired observations, 16-8 
data sample, 16-8 

the Wilcoxon-Mann-Whitney test for two independent samples, 16-9 
data sample, 16-9 
procedure and example, 16-10 

does A exceed B , 16-10 
the sign test for paired observations, 16-11 

procedure and example, 16-11 
the Wilcoxon-Mann-Whitney test for two independent samples, 16-11 

data Sample, 16-11 
procedure and example, 16-12 
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data sample, 15-1 
procedure and example, 15-2 

does new exceed standard, 15-2 
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procedure and example, 15-3 

comparing averages of several products, 15-6 
do t products differ, 15-6 

data Sample, 16-6 
procedure and example, 15-6 

comparing averages of two products, 15-4 
does A differ from B , 15-4 

data sample, 15-4 
procedure and example, 15-4 
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procedure and example, 15-5 

comparing variability of performance, 15-7 
does A differ from B , 15-7 

procedure and example, 15-7 
does A exceed B , 15-8 

procedure and example, 15-8 
Tests of Significance 
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and confidence intervals, relation between, 21-1 

introduction, discussion of, 21-1 
comparing averages, a problem in, 21-2 

figure showing OC curves for two-sided t-test (a = .05) , 21-3 
presenting results, two ways of, 21-2 

Thermometers, clinical, inspections and tests of, data sample, 9-2 
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Thompson, John I. and Co., iii 
Tidwell, P. W„ 14-8 

Tippett, L. H. C., 1-6, -11, -19; 20-13 
Tires 

estimated tread wear of, two methods, data sample, 5-33 
estimated tread wear of, 5-40 

Tolerance Limits 
(See also, Distribution-free Techniques) 
table, confidence associated with a statement of, T-77 
tables, one-sided distribution-free limits, T-761 
tables, two-sided distribution-free limits, T-75 
table, factors for normal distributions, T-14 
table, factors for normal distributions (two-sided), T-10 
engineering, definition of term, as different from confidence intervals and statistical 

tolerance limits, 1-15 
statistical 

basic concepts and examples, 1-14 
definition of term, as different from confidence intervals and engineering tolerance 

limits, 1-15 
two-sided and one-sided values, discussion of, 2-13 
figure showing computed limits for 99.7% of population, with intervals tending 

to a fixed size as sample size increases, 1-14 
determining one-sided limits with stated precision (Xu or XL) , procedure and 

example, 2-14 
determining two-sided limits with stated precision (Xu and XL) , procedure and 

example, 2-14 
determining limits independent of form of distribution (distribution-free), dis¬ 

cussion of methods, 2-15 
one-sided limits (distribution-free), procedure, 2-15 
two-sided limits (distribution-free), procedure, 2-15 
one-sided limits for normal distribution, discussion, 2-14 
two-sided limits for normal distribution, discussion, 2-13 
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20-3 
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linearity, additivity, and associated transformations, 20-9 

definition and importance of, 20-9 
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5-25 
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X, representing any value in a population, 1-8 

different sets of observations of any element in a population sample, 1-10 
_ observations taken at random from normal population, 1-10 
X : average muzzle velocity of 10 rounds, 1-2 

best unbiased sample estimate of m , 1-10 
average of sample of n measurements on new product, 3-3 
sample mean, 1-10 
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Yates, F., 6-29, -42; 10-24; 12-21; 13-46; T-5, -32, -33 
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factorials, 12-5 through 12-21 
Youden, W. J., 11-6, 13-40, 18-4 
Youden Square Plans 

analysis, 13-40 
data sample, 13-40 
estimation of column effects, 13-44 
estimation of row effects, 13-45 
estimation of treatment effects, 13-41 
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testing and estimating differences in column effects, 13-44 

procedure and example, 13-44 
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procedure and example, 13-45 
testing and estimating differences in treatment effects, 13-43 

procedure and example, 13-43 
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table showing arrangement of eight plans, 13-37 
Youle, P. V., 14-6 
Young’s modulus, as example data, 5-20, -21 
Young’s modulus vs. temperature for sapphire rods 

data sample, 5-11 
figure showing (FI), 5-12 
example worksheet (FI), 5-13 
figure showing computed regression line and confidence interval for the line, 5-14 
table, computational arrangement for test of linearity, 5-22 
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