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Preface 

Values for the stopping power ratio are necessary in order 
to obtain the energy absorbed in the wall of a cavity chamber 
from measurements of the ionization produced in the gas of 
the cavity. The stopping power ratios are also needed in 
the determination of the exposure dose from ionization 
measurements in a cavity chamber. 

The National Committee on Radiation Protection and 
Measurement has set up a task group to review the present 
information on these ratios and to recommend interim 
values. The task group which prepared this report con¬ 
sisted of the following members: 

W. C. Roesch, Chairman, General Electric Co., Richland, Wash. 
F. H. Attix, U.S. Naval Research Lab., Washington, D.C. 
M. Berger, National Bureau of Standards, Washington, D.C. 
W. Gross, Columbia University, New York, N.Y. 
G. N. Whyte, Queen’s University, Kingston, Ont., Canada 

This report has been reviewed for approval by Subcom¬ 
mittee M-3 on ‘‘Standards and Measurements of Absorbed 
Radiation Dose/’ which consists of the following: 

Members Consultants 

H. O. WyckofP, Chairman 
G. S. Hurst 
H. W. Koch 
H. M. Parker 
W. C. Roesch 
H. H. Rossi 
G. N. Whyte 

F. H. Attix 
M. Berger 
R. S. Caswell 
D. V. Cormack 
W. Gross 
H. E. Johns 
F. C. Maienschein 
J. W. Motz 
J. A. Sayeg 
R. H. Schuler 
R. W. Wallace 

The following parent organizations and individuals 
comprise the Main Committee: 

H. L. Andrews, USPHS and Subcommittee Chairman 
C. M. Barnes, Rep. Amer. Vet. Med. Assoc. 
E. C. Barnes, Am. Ind. Hyg. Assoc. 
C. B. Braestrup, Radiol. Soc. of North America and Subcommittee 

Chairman 
J, T. Brennan, Col., U.S. Army 
F. R. Bruce, Am. Nuclear Soc. 
J. C. Bugher, Representative at large 
R. H. Chamberlain, Amer. College of Radiology 
W. D. Claus, USAEC 
J. F. Crow, Univ. of Wise. 
R. L. Doan, Am. Nuclear Soc. 
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C. L. Dunham, US AEG 
T. P. Eberhard, Am. Radium Soc. and Subcommittee Chairman 
T. C. Evans, Am. Roentgen Ray Society 
G. Failla, Representative at large 
J. W. Healy, Health Physics Soc. and Subcommittee Chairman 
P. C. Hodges, Am. Medical Assn. 
E. R. King, Capt., U.S. Navy 
M. Kleinfeld, Internl. Assoc. Govt. Labor Officials 
H. W. Koch, Subcommittee Chairman 
G. V. LeRoy, Subcommittee Chairman 
D. R. Livermore, Lt. Col., U.S. Air Force 
W. B. Mann, Subcommittee Chairman 
W. A. McAdams, Atomic Indust. Forum and Subcommittee Chairman 
G. W. Morgan, Subcommittee Chairman 
K. Z. Morgan, Health Physics Soc. and Subcommittee Chairman 
H. J. Muller, Genetics Soc. of America 
R. J. Nelsen, Am. Dental Assoc. 
R. R. Newell, Am. Roentgen Ray Society 
W. D. Norwood, M. D. Indust. Medical Assoc. 
J. P. O’Neill, Internl. Assoc, of Govt. Labor Officials 
H. M. Parker, General Electric Co. 
C. Powell, USPHS 
E. H. Quimby, Am. Radium Society and Subcommittee Chairman. 
J. A. Reynolds, Natl. Electrical Mfgr. Assoc. 
H. H. Rossi, Subcommittee Chairman 
M. D. Schulz, Am. College of Radiology 
T. L. Shipman, Rep. Indust. Med. Assoc. 
L. S. Skaggs, Subcommittee Chairman 
Curt Stern, Genetics Soc. of America 
J, H. Sterner, Am. Indust. Hygiene Assoc. 
R. S. Stone, Radiol. Soc. of North America 
L. S. Taylor, NBS 
E. D. Trout, Natl. Electrical Mfgr. Assoc. 
B. F. Trum, Rep. Am. Vet. Med. Assoc. 
Shields Warren, Representative at large 
J. L. Weatherwax, Representative at large 
E. G. Williams, Representative at large 
H. O. Wyckoff, Subcommittee Chairman 

The following are the NCRP Subcommittees and their 
Chairmen: 
Subcommittee 1. 

Subcommittee 2. 
Subcommittee 3. 
Subcommittee 4. 

Subcommittee 5. 

Subcommittee 6. 

Subcommittee 7. 

Subcommittee 8. 

Subcommittee 9. 

Permissible Dose from External Sources, H. M. 
Parker. 

Permissible Internal Dose, K. Z. Morgan. 
X-rays up to Two Million Volts, T. P. Eberhard. 
Heavy Particles (Neutrons, Protons, and 

Heavier), H. H. Rossi. 
Electrons, Gamma Rays and X-rays Above Two 

Million Volts, H. W. Koch. 
Handling of Radioactive Isotopes and Fission 

Products, J. W. Healy. 
Monitoring Methods and Instruments, H. L. 

Andrews. 
Waste Disposal and Decontamination. (This 

subcommittee has been inactivated.) 
Protection Against Radiations from Ra, Co®°, 

and Cs^^T Encapsulated Sources, C. B. Brae- 
strup. 
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Subcommittee 10. 

Subcommittee 11. 
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Subcommittee M-1, 

Subcommittee M-2. 

Subcommittee M-3. 
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Regulation of Radiation Exposure Dose, W. A, 
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Standards and Measurement of Radioactivity 
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Standards and Measurement of Radiological 
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Stopping Powers for Use with Cavity Chambers 

1. Introduction 

The purpose of this report is to present a critical review 
of the literature concerning the stopping power ratio that is 
used in the interpretation of cavity ionization measurements 
in radiation dosimetry. 

The Bragg-Gray principle, which is discussed in detail, is 
the basic formula relating the ionization in a cavity chamber 
to the energy absorbed in the chamber wall material. One 
of the terms in this formula represents the ratio of energy 
absorption in the wall material to that in the gas. This 
term is called the stopping power ratio and will be denoted 
by s or rnS, when spealdng of energy absorbed per cubic 
centimeter or per gram, respectively. It is the evaluation 
of this term with which we are primarily concerned here. 

It is shown in the development of the Bragg-Gray principle 
that the interpretation of the s term has gradually changed 
over the years. Gray’s treatment considered the term as 
simply the ratio of continuous electron stopping powers in 
wall material to gas, ignoring the energy dependence of the 
stopping power. This may be regarded as a first approxi¬ 
mation to s. Laurence later took into account the energy 
dependence of the stopping power, thus taking for s a mean 
value of the stopping power ratio evaluated for the spectrum 
of electrons crossing the cavity. This constitutes a second 
approximation to s, more accurate than the first, but still 
ignoring the production of fast ‘‘secondary” electrons 
(5 rays) by electron-electron collisions. Finally the treat¬ 
ments of Burch and of Spencer and Attix take the latter 
effect into account to give a third approximation to 

It should be emphasized that, where the gas and cavity 
wall are fairly close in atomic number, the errors incurred 
by the use of the second approximation in place of the third 
are small. Even with as great a mismatch as air and alumi¬ 
num the differences from s as predicted by Spencer and 
Attix are only about 1 percent for cavities 0.6 cm in diameter, 
or 4 percent for cavities 0.1 cm in diameter (at one atmosphere 
pressure). With graphite or “air-equivalent” walls they 
predict a difference of the order of one-tenth of the above 
figures. 

In principle, considerations similar to those that follow 
apply to any ionizing radiation. However the emphasis in 

1 The next approximation, as yet nonexistent, would be one in which the modifying effect 
of the cavity gas upon the crossing electron flux is also taken into account. This would allow 
the application of cavity theory to larger cavities than is now possible. 
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the discussion has been placed upon X- and gamma radiations 
with only occasional reference to beta radiation, electron 
beam radiation, and neutrons. 

The development of cavity theory is described, more or 
less chronologically. Then a review of the theory and 
experimental information on ranges and stopping powers of 
charged particles is made to provide the data necessar}^ for 
appl^dng the theories. The information available from 
cavity chamber measurements is reviewed and compared 
with theory. Finally, conclusions as to what this study 
group considers to be the best currently available informatior 
about s are made. 

2. Cavity Chamber Theory 

2.1. Stopping Power 

If the energy of a charged particle changes an average of 
dT in a distance dx along its path, then the (linear) stopping 
power, S, is defined as S——dTldx. The mass stopping 
power, mS, is defined by mS=S/p where p is the density. 
In some studies it is desirable to exclude from the average 
energy loss the energy lost in discrete amounts greater than 
some value A. This exclusion will be denoted by including A 
among the argmnents of the quantity. For example, S{T, A) 
is the stopping power excluding the energy lost in discrete 
amounts greater than A. 

The unit of energy will be the electron volt (ev) or the 
meg-electron volt (Mev). 1 ev= 1.602 X10“^^ erg. The 
other units will be those of the familiar CGS system. 

2.2. Absorbed Dose 

A fundamental problem in radiation dosimetry is the 
measurement of the energy imparted to matter by radiations 
such as X- or gamma rays, fast neutrons, or beta rays. 

It will be worthwhile elaborating upon the phrase ^‘energy 
imparted to matter,’’ for the sake of clarity. First of all, 
this is meant in a macroscopic sense, referring to regions 
large enough to represent the average energy transfer of 
many individual events. At the same time one speaks of 
the energy absorbed “at a point,” by which one means the 
average value per unit mass in a small region surrounding 
the point. The accepted unit of this absorbed energy per 
unit mass, or “absorbed dose” is the rad (100 erg/g) (ICRU, 
1956). 
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The actual mechanisms for the transfer of energy from 
the radiation to the target material are important in inter¬ 
preting the meaning of ‘'energy imparted to matter.” With 
beta rays (i.e., fast electrons) the transfer is direct, taking 
the form of a series of Coulomb-force interactions between 
the passing electron and the atomic electrons in the irradiated 
material. In the wake of the fast electron is left a string of 
atoms that have either been ionized or left in an excited 
state. Roughly half of the energy is invested in ionization 
and half in excitation. When (and if) the excited and ionized 
atoms return to normal energy states, the energy they lose 
is finally degraded to thermal motion ^ that is measurable 
at least in principle by calorimetric methods. 

The above description applies equally well to the energy 
spent by X-rays in traversing material after the initial transfer 
of energy from electromagnetic quantum form to electron 
kinetic energy. Similarly a fast neutron transfers its energy 
to a nucleus (usually hydrogen, if present) by collision, 
whereupon the nucleus, stripped of some of its electrons, 
passes through the material ionizing and exciting atoms by 
Coulomb interactions as the electron did in the previous cases. 

It is important to observe that in the case of X-rays or 
neutrons, when one refers to the “energy imparted to matter” 
or “absorbed dose,” it is the deposition of energy by the 
ionizing particle that is meant rather than the initial transfer 
of energy to that particle. Except in the special case of 
secondary particle equilibrium, the two will differ in magni¬ 
tude at a given location. 

2.3. Ionizing Particle Equilibrium 

In the case of X- and gamma rays “ionizing particle equi¬ 
librium” is usually referred to as “electronic equilibrium” 
since the ionizing particles produced in that case are elec¬ 
trons. For neutrons the corresponding particles are pre¬ 
dominantly protons in most instances. We will discuss the 
case of X- and gamma rays for convenience of terminology. 

There are two types of electronic equilibrium, “complete” 
and “transient.” The former is said to exist at a point 
when, for every electron leaving a volume element surround¬ 
ing the point, another electron of the same energy enters. 
(Strictly, this can be true only in the sense of a statistical 
limit.) This condition is found only in the case of an ex¬ 
tended uniform medium in which a radioactive emitter is 

2 Note that if the ions are not allowed to recombine, if some of the energy is spent in changing 
the chemical or physical structure or in triggering exothermic or endothermic reactions, or if 
some of the energy escapes by radiation then the thermal heating will not be a true indication 
of the energy imparted by the radiation. 
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uniformly distributed. Complete electronic equilibrium will 
then exist at internal points sufficiently far from the boundary 
so as to be unaffected by it. Complete electronic equilibrimn 
implies that the energy lost by electrons within a volume 
element is equal to the kinetic energy (initial energy imparted 
minus that lost in coming out of the atom) of the electrons 
released within the volume element. 

When a beam of X- or gamma rays or neutrons enters a 
medium, the energy lost by the electrons or protons per unit 
volume at a location near the surface is less than the kinetic 
energy released per unit volume at the same location. The 
proportion between the two increases with depth until 
‘‘transient’’ electronic equilibrium exists; i.e., the ratio of 
the energy absorbed to that released within an elementary 
volume reaches a constant value independent of position along 
the beam direction. Brysk (1954) and later Eoesch (1958) 
showed that a constant ratio does occur. Furthermore the 
ratio is greater than 1; i.e., the absorbed energy at the point 
is the larger. In many cases this ratio is very close to 1.00, 
and complete electronic equilibrium is then said to exist, 
although it is in fact only approximated. Such situations 
are frequently encountered for X- and gamma rays below a 
few Mev and for neutrons below several tens of Mev, 

2.4. The Fano Theorem 

Before embarking upon a chronological review of the 
principal developments in cavity theory, it will be worth¬ 
while to present a fundamental theorem upon which the 
Bragg-Gray relation often depends. 

Fano (1954) pointed out that in many cases cavity cham¬ 
bers cannot be made small compared to the secondary 
electron ranges as is conventionally required for application 
of cavity theory. He stated that the application of the 
Bragg-Gray principle actually rests, more frequently, on 
another basis: the flow of corpuscular radiation will remain 
undisturbed by the presence of the cavity, provided that the 
elemental compositions of the gas and the surrounding ma¬ 
terial are identical, regardless of cavity size. Fano proved 
this in general, with mathematical rigor. 

Fano’s theorem is stated as follows: “In a medium of 
given composition exposed to a uniform flux of primary 
radiations (such as X- or gamma rays or neutrons), the flux 
of secondary radiation is also uniform and independent of 
the density of the medium as well as of the density variations 
from point to point.” 
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Fano^s mathematical treatment consists essentially of an 
application of the following reasoning to each infinitesimal 
volume of the medium. Consider first an infinite medium 
of uniform density with a radiation source also distributed 
with uniform density. The emission of the source need not 
be isotropic. Throughout the medium there will be a uni¬ 
form flux of all the secondaries of the radiation. Suppose 
now that the density of the medium is increased/-fold so that 
the source intensity is increased by a factor/. Suppose that 
at the same time all the stopping powers become / times 
larger; i.e., that the mass stopping powers are independent 
of density. The resulting flux of any secondary remains 
unchanged. Finally consider the medium as subdivided 
into two (or more) parts of different density with correspond¬ 
ing source strengths. Each portion “knows’’ about the 
others only through the flux at the boundary. Since this 
flux is independent of the density, the flux in any portion of 
the material remains fully unaffected by changes in density 
in other portions. 

There is a limitation on the applicability of Fano’s theorem. 
An /-fold change in density that increases the source density 
by / may not increase the stopping powers by/. The polar¬ 
ization effect results in reduced rates of energy loss in con¬ 
densed media (see sections 3.1 and 3.3.b and c). Consider 
again the two (or more) part system. On one side the density 
is / times that on the other so that the source intensity is 
increased/-fold. In the presence of the polarization effect 
the stopping powers of the secondaries are not, however, 
/ times larger in the denser material. This is because the 
stopping power per electron in the denser material is less 
than that in the other material. Hence to generate the same 
flux of secondaries on both sides of the boundary, the ele¬ 
mental composition of the denser material must be adjusted 
to make the stopping powers exactly / times smaller while 
maintaining the/-fold increase in source intensity. A third 
region of still another density would have to have yet a 
different composition, and so on. The situation is even 
further complicated by the fact that the ratio of the stopping 
powers of different materials is a function of the electron 
energy. Thus the flux of only one energy group of secondary 
electrons could be made equal on both sides of the boundary 
with a given selection of compositions. 

In a frequently encountered situation, a solid-wall cavity 
chamber irradiated by gamma rays in the energy range where 
Compton effect predominates, the source strength of secon¬ 
dary electrons is everywhere proportional to the electron 
density regardless of the atomic number. Thus, in general, 
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it will not be possible to select a wall material of the right 
composition simultaneously to increase the source strength 
by a factor / while decreasing the electron range by the 
reciprocal of that same factor. 

One must conclude then, that the Fano theorem holds only 
to the extent that polarization effect does not enter the pic¬ 
ture. This effect can be large at high energies in solid 
materials. In carbon the electron stopping power is altered 
by 3 percent at 1 Mev and 12 percent at 10 Mev. However 
at large energies where the polarization effect is large, the 
electron ranges are large also, and it is easier in practice to 
construct cavity chambers small in comparison. Thus the 
Fano theorem usually need not be relied upon in cases where 
it is least applicable. 

2.5. Basic Bragg-Gray Principle 

The cavity ionization chamber offers a method for obtain¬ 
ing the absorbed dose at a point by a computation based 
upon a measurement of the ionization produced at the point. 
In order to allow collection of this ionization by an electro¬ 
static field, the cavity contains a gas, which in general differs 
in stopping power from the (solid or liquid) wall material. 
The effect of the stopping power difference on the ionization 
must be taken into account in the computation. A suitable 
formula was first devised in essence by Bragg (1910), and 
later independently devised in more explicit form by Gray 
(1929, 1936). This Bragg-Gray formula will first be dis¬ 
cussed in its basic form, and then the later elaborations of 
Laurence, of Spencer and Attix, and of Burch will be 
considered. 

Cavity theory may also be applied to detectors such as 
scintillators, chemical dosimeters, etc., in which the energy 
imparted to the cavity material is deduced from measure¬ 
ments of light emission, extent of chemical reaction, etc. 
When the cavity is filled with a solid or liquid, its dimensions 
must be about three orders of magnitude smaller than a 
similar gas cavity. 

a. Gray’s Derivation 

Gray’s treatment of the cavity theory was based upon the 
assumption that an electron traversing a solid medium loses 
the same amount of energy in a distance AAT, short compared 
with its range, as it would lose in traversing a distance sAX 
of air, where s is a proportionality factor that is independent 
of the velocity of the particle. He then considers two small 
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geometrically similar volumes of arbitrary shape. Volume 
Vz contains the solid material Z, while Va contains air and 
has all its linear dimensions greater than those in Vz by the 
constant factor s. If these two volumes are each embedded 
in a large region containing the solid Z, and exposed to identi¬ 
cal, uniform fields of gamma rays, each will be traversed by 
a flux of electrons from the surrounding material Z. On 
account of the larger surface area, the number of electrons 
entering Va will be greater by the factor s\ but the volume 
of Va exceeds Vz by the factor s^. Hence the energy spent 
in the air per cubic centimeter will be less than that in the 
solid volume by the factor Thus we can write 

Ea=lE,, (1) 

where Ea and Ez are the energies lost by the electrons per 
cubic centimeter in traversing the air and solid volumes, 
respectively. (At this point in Gray’s argument his termi¬ 
nology has changed from ‘^energy lost” by the electrons to 
‘‘energy absorbed” in the media. This switch is only valid 
if the two terms are equivalent. More will be said of this 
later, but meanwhile we also assume this equivalence.) 

Ea can be further expressed as wJ where J is the number of 
ion pairs formed per unit volume of air, and w is the average 
energy expended in the air by the electrons per ion pair 
produced. This yields the familiar Bragg-Gray relation: 

Ez=swJ. (2) 

We will not concern ourselves in detail with w. Gray was 
lead, by the experimental evidence available to him, to the 
conclusion that w had a constant value of 32.5 ev, irrespec¬ 
tive of the electron velocity. Present evidence would alter 
the value to a little less than 34 ev, but the constancy still 
appears to be valid, at least for electrons with initial energies 
above 20 kev. In any case the essence of the Bragg-Gray 
principle is contained in equation (1), which relates the en¬ 
ergy lost by electrons in the air to that in the solid. The 
further expression of Ea in terms of ionization is a secondary 
step that need not be discussed further here. 

b. The Nature of s in the Gray Derivation 

Gray initially calls s merely “a proportionality factor 
which is independent of the velocity of the particle.” He 
further identifies it, however, as the ratio of the stopping 
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power in the solid material to that in air, s= {dTldx)z-^{dTI 
dx)a, by the statement that ‘‘a beta particle traversing a 
solid medium loses the same amount of energy in a distance 
AX as it would do in traversing sAX of air,” where AX-^dx 
for infinitesimal cavities, as he later specifies. 

The derivation does not explicitly require dTjdx to repre¬ 
sent a continuous (frictionlike) energy loss. However, if one 
allows dTjdx to include large discrete energy transfers, the 
resulting energetic secondary electrons can carry some energy 
out of Va or Vz after such energy has been counted as having 
been ‘lost” within those volumes. Thus the energy actually 
absorbed within Va and Vz would be less than that lost there 
by the traversing electrons. Under these conditions there 
would be no a 'priori guarantee that the absorbed energies, 
say E'a and E'z, would be related by equation (1), even though 
Ea and Ez might be. One would have first to prove that the 
energies (Ea—E'a) and {Ez—E'z) carried out of Va and Vz 
by secondaries originating within were also related by 
equation (1). This could be done by showing that, in similar 
electron paths across Va and Vz, the production of secon¬ 
daries is alike in corresponding path elements s dx and dx, 
and also that the stopping powers experienced by those 
secondaries before escaping from Va or Vz are again related 
by the factor s. 

Consider the fii’st of these two requirements, and for the 
sake of argument assume the solid to be of higher atomic 
number than air. Spencer and Fano (1954) proposed that 
the production of secondaries is given approximately by the 
M0ller formula for knock-on colhsions (M0ller, 1931), and 
that it is thus dependent only on the number of atomic 
electrons present per cubic centimeter, irrespective of Z. 
Consequently more secondaries will be produced in the path 
element dx in the solid than in element s dx in the air, because 
more atomic electrons will be encountered in traversing the 
elemental distance in the solid. This results from the fact 
that the electronic stopping power in the higher-atomic- 
number solid is less than that in air.^’ ^ If Na and Nz are 
the number of electrons per cubic centimeter in the air and 
solid, respectively, then 

or 
^ {dTldx)z^Nz 

(il) (3) 
\jix /a 

* See Sec. 3 for more details about stopping powers. 
* For the moment we neglect the polarization effect. 
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Nz dx electrons per square centimeter will be encountered in 
traversing dx, while Na s dx electrons per square centimeter 
will be encountered in s dx. The ratio of secondary electron 
production in the two path elements is NglsNa, but from 
eq (3) above, this is greater than unity. 

Turning now to the second point, we examine whether the 
stopping powers experienced by those secondaries before 
escaping from Va or Vg are related by the factor s. The 
probability of production of a secondary electron increases 
rapidly the lower the energy of the secondary. Thus they 
will generally be much lower in energy than the primary 
electron that produced them. Since the linear dimensions 
of Va and Vg are adjusted to be in the ratio s, the stopping 
power ratio for the traversing electrons, one might question 
whether the same s still applies to the secondaries. In Gray’s 
derivation this point is inherently covered by the assumption 
that s must be independent of the energy. However that 
assumption is untenable except as a rough approximation in 
the hght of the experimental evidence on stopping power.^ 
s is actually found to decrease as the electron energy de¬ 
creases, if the solid is greater in atomic number than the air. 
Thus, of two identical secondaries generated in corresponding 
electron path elements dx and s dx in Vg and Ha, respectively, 
the latter secondary wiU lose the more energy before leaving 
its volume and will consequently carry less energy out of the 
volume. The ratio {dTldx)g-^{dTldx)a for the typical 
secondary is simply less than the s that relates the linear 
dimensions of Vg and Va. 

On the basis of the above two arguments it can be seen 
thatirZ2>Za: (a) more secondary electrons are produced 
by an electron crossing Vg, and (b) each secondary produced 
in Vg carries a larger fraction of its energy out of the volume 
than does a corresponding secondary in Va. Thus, due to 
the combined effect of (a) and (b), each electron traversing 
Vg will have a larger fraction of its lost energy removed from 
that volume by secondaries than will an electron traversing 
Va in a corresponding path. These two fractions would 
have to be the same in order that {Eg—Eg)=s (Ea—Ea). 

Thus it has been shown that Gray’s derivation of equation 
(1) as a relation of energies absorbed is not valid unless one 
requires that {dTjdx) include only continuous energy losses. 

One might be tempted to argue that equation (1) could 
be corrected by adjusting s to some average value that would 
take into account the secondaries as well; e.g., in the above 

6 Gray evidently included the assumption for ease of discussion in relation to his dual¬ 
volume model. It was thus possible for him to avoid dealing exphcitly with the spectrum of 
the traversing electrons. It was Laurence (1937) who first derived the Bragg-Gray relation 
without the restriction that s be a constant. 
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case where Zg^Za, to choose a somewhat larger value for s. 

Such an approach has been pursued by Burch (1955) and 
by Spencer and Attix (1955). It leads to the inevitable 
conclusion that the volumes Va and Vg cannot be dismissed 
as merely ‘infinitesimal/’ but must be specified in relation 
to the ranges of the secondary electrons originating within 
them. Thus if secondaries are allowed to enter the picture, 
s unavoidably becomes a function of the cavity size. This 
consequence will be discussed more fully later. 

2.6. Later Developments 

a. Laurence’s Derivation 

As mentioned in footnote 5, Laurence (1937) did not 
require s to be a constant with respect to electron velocity 
as did Gray. Neither did he employ the same model as 
Gray. Instead he compared the ionization produced in two 
identical small air-filled cavities, one having solid walls of 
material Z, the other gaseous air walls. Both are embedded 
in large regions of solid or of air and irradiated by identical 
uniform fields of gamma rays. Even in the absence of photo¬ 
electric effect the electron fluxes traversing the two cavities 
are not the same, because the ranges of the electrons (in 
electrons/cm^) will in general differ because of the different 
atomic numbers of the surrounding materials. Laurence 
takes this into account by considering the flux coming from 
all the production sites out to the maximum electron range 
from each cavity and allowing for the energy lost by each 
electron before arriving at the cavity. He first expresses the 
total ionization in terms of a function F{rio—x), which is the 
niunber of ion pafis produced per centimeter of path in a 
cavity for an electron that originated at a distance x from 
the cavity with an initial range in the wall material (Z or 
air). This function F is than replaced by the substitution 
F{rw—x) dx=G{T) {dTldx)~^ dT where Q\T) is the number 
of ion pairs per centimeter produced in a cavity by an elec¬ 
tron that enters the cavity with energy T. Thus the total 
ionization 

Joe (%') f" F(.r^-x)dxdTo 
J 0 \ai 0/ w J 

CTr..x/dfi\ f^O G(T) 

Jo WoAJo 
dTdTo (4) 
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where (duldTo)^ is the rate of production in the wall material 
per cubic centimeter, per gamma ray per square centimeter, 
of electrons having initial energies between Tq and To-^dT^. 
Notice that in making the change of variables the term 
idTldx) has appeared in the denominator. This is the stop¬ 
ping power for electrons of energy T in the wall material. 
Spencer and Fano (1954) and others have pointed out that 
{dTldx)~^ closely approximates the spectral distribution of 
the electron flux at a point about which there is electronic 
equilibrium, provided that the energy losses are required to 
be continuous (or infinitesimal). Thus in Laurence’s deriva¬ 
tion the ionization in either cavity depends on the product of 
the specific ionization G (proportional to the stopping power 
of the air) in the cavity and the traversing electron flux from 
the wall. In both of these quantities the production of delta 
rays has been ignored. This point will come up again and 
be discussed further in the Spencer-Attix derivation. 

Laurence expresses his ‘‘correction factor for wall effects,” 
as 

J f dfi\ 

KdTj, r WS) 1 dTdT, 

J j*^max 1 j:- WS') 1 dTdTo 

which is the ratio of ionization/cubic centimeter in the air 
cavity with walls of material Z to that in the identical air- 
walled cavity. 

Equation (1) can be shown to be a special case of equation 
(5) in the following way. First we make the assumption, as 
did Gray, that w and the ratios of stopping powers are both 
independent of electron energy. Thus GjidTldx) is a con¬ 
stant which can be removed from the integrals, and the 6^’s 
canceled. The energy absorbed per cubic centimeter in a 
material under equilibrium conditions, when exposed to one 
quantum hv of gamma rays per square centimeter, is 

(^) TdTo=>^T,=l^enhv, (6) 

where /ign is the energy absorption coefiicient (in cm~^) and 

To is the average energy given to an electron in an interaction. 
Thus equation (5) can be reduced to 

il^en) z ^ il^en) z^ 

il^en)a ^ il^en)a 
(7) 
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where Gray’s definition of s is made use of in obtaining the 
last equahty. 

The connection between the dual-volume model used by 
Gray and that used by Laurence can now be recognized by 
imagining both models to be exposed to the same field of 
gamma rays. The absorbed energy ® per cubic centimeter, 
Ea, in the two air cavities with solid walls would be identical. 
The absorbed energy per cubic centimeter (Eaa) in the uni¬ 
form air (Laurence’s air-filled ‘‘cavity” with air walls) would 
be (fJLen)a/ifJ^en)z times that (jE's) in the uniform sobd (Gray’s 
sobd-filled “cavity” in solid walls). Thus equation (7) 
becomes 

Eg ^1 (fXen)z 

{f^en^a jp ^ i^l^ev) a 
(8) 

which reduces to equation (1). Gray’s equation is thus shown 
to be a special case of Lamence’s where w and s are taken 
to be independent of electron energy. 

b. Derivation of Basic Bragg-Gray Principle by Spencer and Attix 

Spencer and Attix (1955) considered a single small air 
cavity within an extended solid medium under uniform 
gamma radiation. Electrons of initial energy To Mev are 
assumed to be generated at a rate 1 per g per sec ever3rwbere 
in the solid. Thus, as electronic equilibrium exists inside 
the solid, the energy absorbed at each point within is To 
Mev/g-sec. The solid is everywhere traversed by an equi¬ 
librium electron flux Iz{Tq,T) electrons/cm^-sec-Mev, the 
spectrum of which is characteristic of the atomic number Z 
of the material. This same flux traverses the cavity, which 
is assumed not to perturb the spectrum. Each electron 
crossing the cavity is considered as losing energy continuously 
(in infinitesimal steps) at a rate „i)S'a(T)Mev-cm^/g. Thus 
the energy dissipated per gram of air divided by that per 
gram of wall material is given by the ratio 

y.(ro)=^ L{T„ T)„Sa{T)dT. (9) 

If now only continuous energy losses are allowed in the 
wall material also, we can write 

® Note again that the phrases “absorbed energy” and “energy lost by the traversing elec¬ 
trons” can be used interchangeably so long as delta-ray production is ignored; see sections 
2.3.a and 2.3.b. 
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4(To, T) 
1 

(10) 

bearing in mind for the sake of dimensional equality the 
fact that one electron per second is generated in each gram 
of material. Then 

(11) 

If we assume, with Gray, that ratios of stopping powers are 
independent of energy and take the density ratio into account, 
this reduces to his expression for 

When there is a spectrum of initial electron energies, 

equation (9) must be replaced by 
al 0 

J 
Cl" max 

4(r„, T)„Sa{T)dTdT, 

J ~pp J- oflJ- 0 
0 0 

(12) 

for the ratio of the total energy absorbed per gram in the 
cavity to that in the wall. This evidently is equivalent to 
equation (5) from Laurence. 

c. Modified Theory by Spencer and Attix 

It has been stressed in the foregoing sections that all the 
previous derivations inherently require continuous energy 
losses by the electrons, both while they are in the cavity and 
while in the surrounding wall material. Allowing for the 
production of fast secondaries requires a basic change in 
approach to the problem. Such secondaries are produced 
in the cavity, carrying energy out, and are also produced 
in the wall material, thus modifying the spectrum of the 
electron flux traversing the cavity. A rigorous calculation 
would involve the complete analysis of the energy dissipated 
in the cavity, including 

a. Energy spent by electrons entering the cavity with 
insufficient range to span it. 

b. Energy spent by cavity-traversing electrons via pro¬ 
duction of secondaries incapable of reaching the 
cavity wall. 

c. Energy spent by fast secondaries originating in the 
cavity with sufficient energy to escape, and 

d. Energy spent by primary electrons generated by 
direct gamma ray interactions within the cavity. 
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It would be necessary in this analysis to consider the 
effect of the cavity shape as well as the configuration of the 
electron tracks under the influence of nuclear scattering as 
well as electron collisions. As Burch (1955) pointed out, 
such a rigorous treatment appears to present nearly insur¬ 
mountable mathematical difficulties. Furthermore, the cross 
sections for production of low energy secondaries are not 
well enough known for this purpose. Spencer and Attix 
(1955) reduced the degree of rigor just to the point where a 
numerical calculation seemed feasible, at the risk of over¬ 
simplifying the physical picture. First of all, the nuclear 
scattering, the configuration of the electron paths, and the 
cavity shape are not explicitly dealt with. Neither are 
primary gamma ray interactions. Other assumptions will 
emerge as the following dual-volume model is described. 

Consider a small solid-filled cavity Vz in an extended 
region of the same material under uniform gamma radiation. 
Vg need not be infinitesimal, but must be “smalP in a sense 
to be defined presently. Its shape is purposely vague, but 
its average diameter is characterized by A, the energy needed 
by an electron to be able to just cross it before stopping. 
We wish to write an expression for the energy dissipated per 
gram within Vg in terms of the equilibrium electron flux 
traversing it. This dissipated energy will be made up of 
the contributions described in “a,’' “b,’^ and “c” above for 
which some simpler picture must be substituted to allow 
calculation of the result. 

The following two-group picture was decided upon: all 
secondaries originating with energies less then A and other 
electrons falling below A in energy are called “slow’’ and are 
assumed to dissipate their energy on the spot where they 
originate or become “slow.” All electrons with starting 
energies greater than A carry their energy elsewhere and can 
thus be regarded as part of the “fast” electron flux.^ The 
electron removed in what is usually thought of as an ioni¬ 
zation event is here regarded as a slow secondary. 

The consequences of this are: First, that no energy is al¬ 
lowed to be brought into Vg by slow electrons, hence the 
contribution under “a” above is taken as zero, obviously an 
underestimate. Second, that the contribution from “b” 
consists of the total energy of all secondaries produced in 
Vg with original energy less than A, clearly an overestimate 
as some of these will leave the cavity. And third, that the 
contributions from “c” come only from secondaries with 
starting energies greater than A, and hence must be zero, 

7 Note that under the continuous-loss assumption all secondaries are regarded as droppin g 
their energies “on the spot.” 
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again an underestimate. The net result is probably an 
underestimate of the energy spent in Vz as the errors in “a’’ 
and ‘‘b” alone should compensate one another exactly in 
Vz (although only approximately in a cavity containing a 
material of different atomic number than the wall). The 
setting of ‘‘c” and “d” equal to zero thus causes a deficit. 

Based on this model one can write for the approximate 
energy absorbed (Mev/g-sec) in the wall material 

ro=4(ro, T)^SAT, A)dT, (13) 

where the uniform gamma ray field is again assumed to re¬ 
lease everywhere one electron per gram per second of en¬ 
ergy Tq. Iz{Tq, T) is the ‘hast’’ flux (T^A) of primary plus 
secondary electrons traversing the cavity. mSz{T, A) is a 
modified stopping power, based on the M0ller formula, in 
which only those interactions generating a secondary of 

A are counted. Whichever electron has the lesser energy 
after an interaction is to be regarded as the secondary. The 
integral is given the lower limit A since IzkTq, T) is taken as 
zero for T\A. Spencer and Fano (1954) express /2(J'o, T) 
by the product Rz{Tq, T)y^{yriSz{T))~'^, where Bz{T^, T) is 
the ratio of the total electron flux to the flux of primary 
electrons alone. 

Equation (13) can be viewed as an approximate expression 
of the familiar equilibrium conditions. The left side is the 
energy released by gamma rays and is precisely the energy 
absorbed. The right side is the energy absorbed from 
traversing electrons based on the above schematization. 

We must require A<< Tq partly for the reason that, were 
this not so, the assumption that the direct gamma ray in¬ 
teractions “d” can be neglected would not be valid and 
equation (13) would not hold. 

Consider now a second cavity of identical A, but filled 
with air instead of the solid material. The energy dissipated 
(Mev/g-sec) in this cavity will be given by 

I,{T„T)A{T,A)dT, (14) 

and the ratio of the energy absorbed in the air cavity to that 
in the solid cavity for primaries of energy Tq can be written 
as 

r^IziTQ, T)^Sa{T,^)dT 
MT„A)=%- (15) 

J ° UT„T)„S,{T,A)dT 
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This can be further extended over the whole spectrum of Tq 
giving an equation analogous to equation (12), with hmits 
of integration A to Tmax^ 

It was mentioned previously, in the discussion of the two- 
group schematization for secondaries, that it probably re¬ 
sults in an underestimate of the energy dissipation in a 
cavity. However, numerical computations of equation (13) 
for A<<To indicate that, with /2(To, T) and Sz{T, A) values 
as described further by Spencer and Attix (1955), the 
equality holds within about 1 percent. Furthermore, by 
expressing equation (15) as a ratio of similar terms, the 
errors tend to cancel out. The closer Zg and Z^ are to each 
other, the better the approximation will be. 

Note that /z(To, A) is a function of A, and may be ex¬ 
pected to vary with the cavity size or the gas pressure. 
Qualitatively, the physical explanation for this is as follows. 
If the ratio TnSa{T, i^)lmSz{T, A) increases with de¬ 
creasing T. As A (cavity size) decreases, Iz{Tq, T) contains 
electrons of lower and lower energies in numbers large enough 
to make their presence felt. Thus Jz{Tq, A) tends to 
increase. 

The theory does not predict in detail what Jz^Tq, A) should 
do as A approaches zero. This would depend upon the be¬ 
havior of the functions /(To, T) and mS{T, A) as A^O, which 
is comphcated by atomic binding effects and is not known 
at present. There is some experimental evidence (Larson, 
1956) (see section 4.1.) indicating that fz{TQ, A) should 
finally approach a constant slope for very small A, but this 
behavior is not exhibited by the calculated fziT^, A) for A as 
low as 2 kev. 

In application to a chamber of variable size fziT^, A) is to 
be calculated and apphed for each A-setting of the chamber 
size, where always A^^CTq, say A<0.1 To at most. The 
resulting plot of corrected ionization per gram of air versus 
A should be more nearly flat than the original uncorrected 
curve. An extrapolation to zero volume is then made 
possible. 

d. Modified Theory by Burch 

Burch (1955, 1957) used the familiar dual-volume model 
with the usual requirement of gamma ray field uniformit}^. 
In his initial paper (1955) only infinitesimal ® cavities were 
considered and attention was focused primarily on spher¬ 
ically shaped ones for the sake of simphcity. 

8 By this Burch does not mean infinitesimal in a mathematical sense. The cavities are 
large enough'to contain macroscopic portions of electron tracks and to allow for production 
of secondaries which may or may not reach the wall. They are said to be infinitesimal enough, 
though, to avoid the necessity of dealing with (a) electrons entering the cavity with insuf¬ 
ficient energy to cross, or (b) direct gamma ray interactions. 
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The cavities are related in their sizes (both being infini¬ 
tesimal) by 

where iT^a and It,z are the average path lengths within the 
air or solid cavities, respectively, of electrons with energies 
between T and T-\rdT. {dTjdx) is the average energy they 
dissipate per unit distance along their track within either 
cavity. Energy carried out of the cavity by secondaries or 
by radiative processes is not counted in dTjdx, which is thus 
a function of cavity size and shape. (dTjpdx) corresponds 
in meaning to the term TnS{T, A) used by Spencer and Attix. 
p is the density in g/cm^. 

As an approximation, Burch defines as completely dis¬ 
sipative any collision within the cavity resulting in the 
production of a secondary of energy rj less than the average 
energy, or needed to reach the cavity wall. Second¬ 
aries having energies greater than or rjz are taken to be 
completely nondissipative. This differs from the Spencer- 
Attix assumption in two respects. 

In the first place, they take A as the energy needed on the 
average to span the cavity rather than to escape it from the 
inside. As was discussed in section 2.4.c, this is clearly an 
overestimate but is needed to partially offset other known 
underestimates in the energy dissipated in the cavity. 
Specifically, in the Spencer-Attix schematization, electrons 
with energies less than A are not allowed to enter the cavity 
nor to leave it. Actually they do both and tend to compen¬ 
sate one another. Burch (1957) has referred to this omission 
of what he calls ‘‘tail-ends” of tracks (for “noninfinitesimal” 
cavities) and to the overestimate of A as being two separate 
errors. Bather they are complementary assumptions. In 
Burch’s picture, on the other hand, an electron of energy 
less than rja or 772 is allowed to enter and dissipate, but a 
corresponding secondary electron starting inside the cavity 
and carrying some of its energy out will also be counted as 
fully dissipative so that the two cannot balance one another 
and a surplus results. His discounting of dissipated energy 
by all secondaries of rja, Vz, however, throws away more 
energy of the kind described under “c” in section 2.4.c than 
does the corresponding assumption by Spencer and Attix, 
since A> rja, tjz. Hence there is again some qualitative 
compensation. 

The energy balance situation in the Burch cavities is thus 
found to be qualitatively very similar to that discussed in 
section 2.4.C; Neither treatment rigorously accounts for 
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all the energy dissipated in a cavity, and in the final analysis 
both rely on the ratio of energies spent in the two cavities 
being insensitive to similar errors applying to both cavities. 

A second, and more important, difference between the 
two models is the fact that Burch uses a different cutoff 
energy, rja, in the air cavity than that, rjz, in the solid cavity. 
Spencer and Attix use the same A for both. In fact, the 
failure of Burch’s theory to reach the point of full numerical 
solution was ascribed by him to the immense difficulties 
encountered in deriving the relationship between T]a and 
It is easy to show that Burch is, strictly speaking, correct 
in this requirement. Equation (16) relates the two cavity 
dimensions by the ratio of the energy-dissipation powers at 
energy T. At much lower energies, T^rja, Vz, the same 
ratio will not hold strictly, so that the average energy rja 
needed by a secondary to reach the wall in the air cavity will 
in general differ from If Zz^Za, and ignoring nuclear 
scattering, rja would be greater than rjz. Nuclear scattering, 
however, would make the path of an electron more circuitous 
in the solid. This effect will be more pronounced for sec¬ 
ondaries than for the higher energy electrons crossing the 
cavity, tending to make rjz^Va- Thus the two effects tend 
to compensate, but it would be difficult to say how well. 
The assumption 77^= rjz would seem to be the best one can do 
to achieve a numerical solution at present. 

Burch’s derivation proceeds along the lines used by Gray, 
except for the substitution of dissipative for the total 
stopping power. He defines a term 

(17) 

as the mass energy dissipation ratio for traversing electrons 
of energies between T and T-\-dT (analogous to Gray’s s 
multiplied by the density ratio). This is shown to be the 
ratio of energy absorbed per gram of solid to that in air for 
electrons between T and T-\-dT. This is integrated over 

T from 0 to Tq to obtain the average value K. 

(18) 
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Here nT,adT is the number of electrons crossing the cavity 
during the irradiation having a kinetic energy (at the cavity) 
in the range T toT+dT. UtJt.a (dTIdx)^ dTcsiU be seen to be 
a weighting factor for Rt that depends on the spectrum of the 
incoming flux of electrons and on cavity shape and size 
effects. 

Burch carried out one pilot calculation for a 2 cm diameter 
spherical graphite wall air cavity for Co®° and Na^^ gamma 
rays. He initially ^sumed ’72=40 kev and then cor¬ 

rected the resulting R, equal to the ratio of ionization in a 
free-air chamber to that in the cavity, downward by 0.5 
percent on the basis of an estimated difference between 
7]a and rjz. For Co®*^ this procedure resulted in an ionization 
ratio e/air/«/graphite of 0.994, indicating that a graphite walled 
cavity should yield more ionization than free air for Co®® 
gamma rays. This effect should become apparent in experi¬ 
ments where the air pressure is varied in a graphite cavity; 
i.e., the ionization per unit pressure should increase slightly 
as the pressure is reduced. The reverse was actually found 
to be the case (Whyte, 1957; Attix, 1957) (section 5.1.). 
Calculations based upon the Spencer-Attix formulation agree 
with these experiments. Burch’s result would more nearly 
agree with these if the difference between r]a and rj^ were 
neglected. This indicates that this difference is needed for 
compensating for some other unbalance. 

2.7. Other Considerations 

a. Electronic Equilibrium Requirement ^ 

In each derivation uniform gamma radiation was required 
over a region of material large enough to produce complete 
electronic equilibrium conditions at the site of the cavity. 
This requirement is necessary only if the primary electron 
spectrum is to be characterized by the reciprocal of the 
stopping power, 1/S{T). There is no fundamental reason 
why equation (15), for example, could not be used with 
any type of IziTo, T) so long as it could be identified and 
was sensibly constant over the dimensions of the cavity 
itself. Thus cavity ionization measurements should be 
meaningful if the electron flux does not vary appreciably over 
the cavity itself, even though the flux of primary gamma rays 
or neutrons might vary greatly in intensity over the region 

« See also section 2.3. 
>0 Complete electronic equilibrium will never exist in the cavity itself unless Za~Zt, as 

can be seen from equations (13) and (15). This is because, under complete equilibrium, the 
energy carried out of a volume by electrons generated by gamma ray interactions within it 
must be just balanced by energy spent within the volume by electrons generated elsewhere. 
Equation (13) expresses this relation, while equation (15) shows that the relation does not 
hold where the cavity material differs from its surroundings. 
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in which the cavity-traversing electrons originate. The 
difficulty then arises in evaluating the spectrum of the (non¬ 
equilibrium) electron flux crossing the cavity. Such diffi¬ 
culties can be expected for X or gamma rays above a few 
Mev because such rays will be appreciably attenuated over 
the region in which the cavity-traversing electrons originate. 
If a beam of beta rays or of charged particles is incident on a 
chamber from the outside, there will usually be a nonequilib¬ 
rium flux at the cavity. 

b. Polarization Effect 

Polarization can be treated as a perturbation on the stop¬ 
ping power formulas used in evaluating the Bragg-Gray 
relation (Whyte, 1954). It alters the high-energy flux 
entering the cavity and the energy dissipation within a 
solid-filled cavity, but it is not appreciable in a gas. It 
tends to decrease the stopping power of a solid below that 
for a gas of the same Z, and it is not smoothly Z dependent.^^ 

3. Ranges and Stopping Powers 

In section 2 it is shown that in Gray’s approximation the 
s in the Bragg-Gray formula is the relative stopping power 
of the wall and the gas in the cavity. In more refined 
approximations s is still a function of the stopping powers of 
the materials. This makes it necessary to review our know¬ 
ledge of these stopping powers. Only the stopping powers 
of electrons are needed for the analysis of cavity chamber 
data to be done later. The value of the mean excitation 
potential that appears iu the electron stopping power equa¬ 
tion must be found experimentally, however, and this is best 
done through experiments with heavy charged particles. 
This requires that the stopping powers of the latter be re¬ 
viewed also. 

The subject of stopping powers is very important to 
modern physics. The theory itself has been of fundamental 
importance in developing atomic models. The resulting 

11 The paper by Spencer and Attix (1955) contains an error in the treatment of the polariza¬ 
tion effect. It is there included in it? effect upon the incoming flux but not in the effect on 
energy dissipation within the solid filled cavity. Equation 3b in that paper should be altered 
to read 

ft (To,A) = 
(ZM)ai 

■ {Z/A), 

To 
.(To.T) 1 \dT-\- 

AR^(To,A) rnair(A) 

To 1 n*(A) ]|- 
and the values given in table II changed correspondingly. A corrected table has been pre¬ 
pared in an errata sheet sent out with reprints. 
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range-energy curves and stopping-power-energy curves ar- 
used to determine energies and masses and to make correce 
tions in nuclear cross section measurements. Because of its 
importance the subject has been reviewed fairly often. 
Bethe and Ashkin (1953) prepared a definitive review of the 
entire subject covering the literature up to December 31, 
1951. The subject of stopping of heavy particles was re¬ 
viewed by Allison and Warshaw (1953) covering the literature 
up to June 1953 and later by Uehling (1954) covering the 
literature to April 1954. The present report will use these 
reviews as a foundation to bring the subject up to date, 
especially in those aspects related to dosimetry. In general, 
references will be limited to those appearing since these 
reviews. 

In September 1958, at Gatlinburg, Tenn., the National 
Academy of Sciences-National Research Council held a 
conference on the penetration of charged particles through 
matter. The latest information and evaluations of range 
and stopping power data were available at the conference. 
This material was used in the preparation of the present 
report. Proceedings of the conference will be published 
later.^^® In the meantime, the present authors report their 
impressions of the data and views of the speakers at the 
conference.The special reference notation (Gatlinburg, 
1958) will be used for information obtained in this way. 

3.1. Theoretical Formulas for Stopping Powers 

Charged particles heavier than electrons passing through 
matter lose energy principally by inelastic collisions with the 
atomic electrons of the material. The energy lost in indi¬ 
vidual encounters is so small that on a macroscopic scale the 
particle seems to lose energy continuously. The main 
changes in direction are due to relatively infrequent scattering 
by nuclei with little energy loss; therefore, the theory con¬ 
cerns itself only with the energy loss to the atomic electrons. 
The probability that a passing particle will raise an atom to 
an excited state can be calculated using Born’s approxi¬ 
mation. The energy lost, multiplied by the probability of 
the loss, and summed over all possible energy losses times the 
atomic density gives the stopping power S=—dTldx. The 
resulting formula for the mass stopping power of charged 

iia Nuclear Science Series, Report 29, National Academy of Sciences-National Research 
Council, 1960. 

12 The authors wish to acknowledge the private advice of several members of the conference 
on matters of range and stopping power. 
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particles heavier than electrons in a material of atomic 
number Z and atomic weight A is 

Zm/ L (1-/3")/ ^ Z 2 (19) 

e is the charge on the electron, ^ is the number of electronic 
charges on the heavy particle, tuq is the rest mass of the elec¬ 
tron, and v=^c is the velocity of the charged particle, b is 
a polarization correction. I is the mean excitation potential. 

The Cl (usually written Ok, Ol, etc., to denote the elec¬ 
tron shell) are correction terms. The Ci are large when the 
particle velocity is comparable with the velocity of the elec¬ 
trons in the ith shell; at higher energies they decrease in in¬ 
verse proportion to the energy. The formula for mS without 
the Ci terms can be derived with Born’s approximation and 
the limitation to velocities The Ci corrections 
extend the validity to lower velocities. At still lower velo¬ 
cities the Born approximation requires modification. Fur¬ 
thermore, at very low velocities the probability of the charged 
particle capturing an electron is appreciable; no attempt is 
made in the present formulas to correct for the capture 
process. 

6 is a correction for the polarization of the medium brought 
about by the electric field of the charged particle. The total 
polarization correction contains an energy independent 
term that depends on the electron density of the medium. 
It is customary to incorporate this constant term in the 

quantity I. Then b is zero for where e is the static 
dielectric constant. 

I is called the mean excitation potential of the medium. 
Theoretically it depends only on the nature of the medium 
and not on the velocity or the type of charged particle. It 
may depend on the electron density of the medium because 
of the combination with the polarization correction just 
mentioned. Bloch (1933) deduced that for a medium of free 
atoms I should be proportional to the atomic number; i.e., 
I—kZ. Except for a factor to account for the polarization 
effect, / is the geometric mean of the average excitation 
potentials of all shells in the atom weighted by the oscillator 
strengths of the shells. Unfortunately this information is 
generally not available, theoretically or experimentally, so 
I cannot be calculated. In general, the values of I must be 
found by fitting equation (19) to experimental data for 
stopping powers or ranges. 

22 



In application of the theory to electrons it is necessary to 
take into account the indistinguishability of the incident 
electron and the atomic electron after their interaction. It 
is conventional to identify the electron with the most energy 
after the interaction as the primary one. This means that 
an electron can lose up to half its energy in a single inter¬ 
action. There will be a much larger spread ('‘straggling”) 
in the energy losses about the average value than in the case 
of heavy particles, but the concept of an average is still a 
useful one. Electrons are also much more strongly deflected 
by collisions with nuclei than heavy particles. The theory 
gives the rate of energy loss along the actual path of the 
electron rather than along a line in the direction of incidence. 
The resulting formula for the mass stopping power of elec¬ 
trons due to ionization and excitation of atomic electrons of 
the stopping medium is 

27re WZ r 

ArriQV^ L^^4(1— 

(20) 

W is the total energy of the electron; W=T-\-mQC^. The 
other symbols are the same as above. In particular, the 
same value of I is expected to apply to both heavy particles 
and to electrons. There is no theory for Ci corrections 
for electrons. Fortunately the corrections would be small 
except for very low energy electrons. 

Positrons can be distinguished from the atomic electrons 
after their interaction so it is necessary to allow for the 
possibility that the positron may lose all its energy in a 
single collision. Furthermore, the positron-electron cross 
section differs from the electron-electron cross section for 
large energy transfers. 

27re WZ r 

Am,v^ L 

12 { 

2mQV^T 

23- 
14 

+ 2 
10 

(t + 2)2' 
(21) 

In this equation, r—TjmQC^. 

3.2. Comparison of Theory and Experiment 

The methods of studying the penetration of charged par¬ 
ticles may be divided into roughly three classes: (1) Those 
in which the loss of energy is measured for layers that are a 
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small fraction of a range thick. Such measurements are 
direct tests of the stopping power formulas. Scattering cor¬ 
rections in this type of measurement are small. The loss of 
energy is small and therefore difficult to measure. At low 
energies thin layers are required for solid or liquid absorbers 
and it is difficiilt to make them uniform and to determine 
their thickness. (2) Those in which the energy loss is meas¬ 
ured in layers that are a major fraction of a range thick but 
not equal to the total range. The stopping power must be 
integrated to give a range figure for comparison. 

Ti S 
(22) 

If the low energy limit, Ti, is high enough, the Ci corrections 
will be small and can be made accurately. Scattering cor¬ 
rections are important. Scattering for electrons is so large 
that measurements of this type are of value only for heavy 
particles. (3) Those in which the total range for a given 
energy is determined. Scattering is important. It is neces¬ 
sary to have almost complete knowledge of the Ci for accu¬ 
rate comparison. Actually a complete comparison is not 
possible in this way because the theory is not applicable at 
very low energies. One must compute AZ? from (22) above 
some low reference energy for which the range is reasonably 
weU known and compare it with the observed range minus 
the reference range. 

a. Heavy Particles 

In general, at the time of the reviews referred to above the 
experimental data for heavy particles were considered to be 
in fairly good agreement with the theory. The work of 
Lindhard and Scharff (1953), however, particularly as inter¬ 
preted by Allison and Warshaw (1953), suggested that I 
might be a function of the velocity of the particle instead of 
being velocity independent. 

According to the theory of Lindhard and Scharff (1953), 
the stopping number per electron of heavy particles, cor¬ 
rected for relativistic effects, is a function of the variable 
x= {hvle^YIZ. 

,5'In (1 -/32) =f(x). (23) 

13 The stopping number per electron is defined as 

Amov'^ /_dT\ 
iTrpNZe^z^ dx J 
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Obtaining fpm equation (19), but not including the Ct 
or b, and substituting it in (23) gives 

^B’=\n ^=ln ^ r (24) 

13.60 ev^; k=IIZ. Data for ^B' for all elements plotted 
versus log x should lie on a straight line with unit slope as 
long as the Ci corrections are small (i.e., as long as a?>>Z) 
and / is independent of veloci ty. Lindhard and Scharff found 
that the available data did lie on a straight line for x greater 
than about 100. Below this value of x the data fell below the 
straight line (see fig. 1). 

The first deviation from the straight line extrapolated 
from high energy data was due to the results of Sachs and 
Richardson (1951) for protons of 18 Mev. These results 
are now known to be in error. MacKenzie reported 
(Gatlinburg, 1958) that long after the experiment was com¬ 
pleted, it was discovered that multiple scattering in the 
stopping foil had interfered with the energy analysis of the 
transmitted beam. Later experiments by Sonett and 
MacKenzie (1955) and Burkig and MacKenzie (1957) in 
the same energy region showed that the points for protons 
were on a straight line that was at least parallel to the line 
extrapolated from higher energies. This is shown in figure 1. 
Both experiments gave relative stopping powers, so normal¬ 
ization at one point was necessary; hence it could not be 
said that they were on the same straight line. An experiment 
of Brolley and Ribe (1955) with 4.43 Alev protons and 8.86 
Mev deuterons gave a straight line parallel to the high energy 
extrapolation but displaced slightly from it (part of their 
measurements were absolute and were used to normalize the 
rest). 

It has always been recognized that not all data should lie 
on a straight line on the Lindhard-Scharff plot. By con¬ 
vention actual experimental data are put on this plot without 
correction for the Ci. If the Ci are included, they account 
for a small part of the deviation from linearity found by 
Lindhard and Scharff. In the case of aluminum about 
one-third of the deviation could be due to the Ci. Uehling 
demonstrated (Gatlinburg, 1958) that, particularly for the 
light elements, most of the pertinent Ci corrections for a 
given atomic number but variable energy were approximately 
linear when placed on a Lindhard-Scharff type of scale. 
This causes the uncorrected experimental data to lie on 
straight lines having a slope different from unity and causes 
lines for different materials to be slightly displaced from one 
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Figure 1. Lindhard-Scharff 'plot of stopping power data. 

Data compiled by Lindhard and Scharff, to which have been added later data; points for 
Al, Au, and Th by Teasdale; and points for Al, Bi, and Th by Kelly. Along a line, which 
is parallel to a line through the present data, are shown the points for H2, He, N2, O2, Ne, 
Ar, Kr, and Xe obtained by Brolley and Ribe. iVo=(Sonnett and MacKenzie, 1955). 

another. He also showed that data of different investigators 
for constant energy but different atomic numbers lay on 
straight lines with slope not equal to unity. He showed 
that plotting versus a modified variable due to Brandt 
(see section 3.3.c), x' corrected the 
slopes to unity but left lines for different energies slightly 
displaced. The displacement is presumably due to the 
effects of the Ci. 

Other experiments at even lower energies also show that 
I does not vary with energy. I calculated to fit the experi¬ 
mental data of Kahn (1953) is constant above a;=2.5 for 
aluminum, 2.2 for copper, and 0.8 for gold. Below these 
points the Cl corrections that were not made would become 
important and finally the theory would be inapplicable 
because of the assumptions on which it is based. Reynolds, 
Dunbar, Wentzel, and Whaling (1953) showed similarly 
that I for low Z gases is nearly velocity independent at 
x=3. 
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Sachs and Richardson (1953) pointed out the possible 
existence of another type of variation of I with proton 
energy above lO^Mev for aluminum. This conjecture was 
based on experimental data that showed a logarithmic 
decrease in I with increasing proton energy. Caldwell (1955) 
made a new computation of the Ct corrections for these data 
and showed that with the exception of the / value measured 
at about 300 Mev by Mather and Segre (1951), the data 
were consistent with I being independent of velocity. There 
are four sets of data at high energies with which Mather and 
Segre’s may be compared, Bakker and Segre (1951), Thomp¬ 
son (1952), Zrelov and Stoletov (1959), and Barkas and 
von Friessen (1959, 1961). The first two were both relative 
S measurements and the interpretation depends on what is 
taken as the reference. If the I values obtained by Bakker 
and Segre are normalized so /a1==150 ev (this also fixes 
Thompson’s results since he referred to the Bakker-Segre 
value for copper), which is close to Mather and Segre’s 
result, then there is poor agreement among the Iqu and /p^ 
values (table 1). If the Bakker-Segre values are normalized 
so /a1=164 to agree with the low energy results (see sec. 
3.3.a and table 2), then the Icn and /pb values are in excellent 
agreement but Bakker-Segre’s Iq is high. Thompson demon¬ 
strated that it is very difficult to measure stopping power in 
graphite because the result depends on the orientation of 
the sample. Zrelov and Stoletov made an absolute measure¬ 
ment for copper with 660-Mev protons, using a technique 
similar to that of Mather and Segre. They found an ioniza¬ 
tion potential of 305 ev, which is in good agreement with 
Mather and Segre’s 310 ev. The agreement between the 
two groups of investigators strongly suggests that we accept 
their value for copper, in which case we must accept the re¬ 
normalization of the Bakker-Segre results described above, 
unless we say that the relative values of Bakker and Segre 
are not right. However, the latter have recently been 
confirmed by Barkas and von Friessen (1959, 1961) who 
made relative stopping power measurements with 750 Mev 
protons. They agree with the general shape of I/Z found by 
Bakker and Segre. Using for the purpose of normalization 
an ionization potential of 163 ev for alumLinum, and assuming 
that at 750 Mev the only tight-binding corrections required 
are those for the K and L shells, Barkas and von Friessen 
find the following ionization potentials: copper. 323; lead, 
826; uranium, 917; and emulsion, 328. On the basis of all 
the evidence discussed above we conclude that there is 
probably no variation of / with proton velocity. 
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b. Electrons: The Polarization Correction 

Measurements of range or stopping power for electrons 
are hard to interpret in terms of equations (20) and (21) 
because of the strong scattering of the electrons and because 
the energy loss in individual collisions is subject to such 
wide statistical variation that determination of average 
values is difficult (the latter effect is referred to as ‘^energy 
straggling’’). In addition, electrons lose energy by radiation, 
and such losses are very important at high energies. Radi¬ 
ation losses are not included in (20) or (21); formulas for the 
radiation losses are available (Bethe, 1953). Furthermore, 
high energy electrons have velocities high enough that the 
velocity dependent part of the polarization correction is 
appreciable. Several recent experiments have further at¬ 
tested to the correctness of the theoretical stopping power 
formulas for electrons and to the accuracy of the calculation 
of the polarization correction. 

Hudson (1957) made very precise measurements of the 
energy loss of 150-Mev electrons in thin layers of lithium, 
beryllium, carbon, and aluminum. The results were in 
agreement with the theory to within 2 percent. The polar¬ 
ization corrections were taken from Sternheimer (1952, 
1956). Sternheimer made two sets of calculations, one on 
the basis of I values from Bakker and Segre (1951) and one 
on the basis of values from Caldwell (1955b The differences 
are not large, but Hudson’s results were in better agreement 
with the latter. 

Goldwasser, Mills, and Robillard (1955) used 15.7-Mev 
electrons to show that the difference in stopping powers for 
solid and gaseous teflon and Kel-F due to the dependence of 
the polarization correction on density were correctly given 
by Sternheimer. Barber (1956) demonstrated that the 
energy and density dependence of the polarization effect in 
gases for 2 to 35 Mev electrons was in fair agreement with 
Sternheimer’s calculations. 

3.3. The Mean Excitation Potentials 

A simple way of summarizing knowledge about stopping 
powers is to give the value of the mean excitation potential 
/. There is difficulty in determining I accurately. Measure¬ 
ments of stopping powers or of ranges determine In / rather 
than I. As a result the relative errors in the / values are 
five to ten times those in the measured stopping power or 
range. Conversely, of course, the I values do not have to 
be known as accurately to get accurate values for the stop¬ 
ping power. 
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For X- and gamma ray, beta ray, and electron beam 
dosimetry, one is dealing only with relatively high velocity 
electrons. There are no Ci corrections to worry about. In 
section 4 the cavity chamber formulas for s will be put in 
such a form that one need only know the I values of the 
wall and gas to evaluate s. 

Since S must be known quite accurately to obtain a good 
value for /, experiments with electrons are not employed for 
this purpose because of the large corrections necessary for 
straggling, scattering, and radiation losses. These compli¬ 
cations in the passage of electrons through matter are dis¬ 
cussed by Birkhoff (1958). Recently experiments were 
begun in which electron stopping powers are measured calori- 
metrically (Kalil et ah, 1959; Ziemer et ah, 1959). These 
show considerable promise because the stopping foil can be 
made thin enough to minimize the corrections needed while 
the electron beam intensity can be made large enough to 
give an easily measurable temperature rise in the foil. Until 
better data for electrons become available, data for heavy 
particles such as protons, deuterons, and alpha particles are 
used in the determination of I. 

a. The Elements 

Table 1 presents measured I values for the elements 
reported since 1950. Entries in parentheses are relative 
values determined by assuming the value indicated by an 
asterisk for a standard substance. 

When it is found that an / value, /i, determined relative 
to /q] for some standard substance is in error because the 
value for the standard substance has been redetermined to 
be /o2, then the renormalized value, I2, can be found from 

Aluminum and copper are the standard substances usually 
used in relative measurements. The / value for aluminum 
is now quite accurately known. When the result of Mather 
and Segre is rejected as discussed above, the average of the 
absolute measurements listed in table 1 gives /ai=163 ev. 
The value obtained by Sachs and Richardson (1953; 
Caldwell, 1955) was included in this average although, in 
general, their results are considered erroneous (section 
3.2.a). MacKenzie (Gatlinburg, 1958) said that Sachs and 
Richardson’s stopping power for aluminum fell very close 
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to the straight line extrapolation from high energy on the 
Lindhard-Scharff plot and that therefore it evidently did 
not suffer much from multiple scattering and could be 
accepted. 

Bichsel (Gatlinburg, 1958) reported a new treatment 
of the data of Bichsel, Mozley, and Aron (1957) given in 
table 1. The values listed in the table were obtained with 
Ck, Cl, Cm, etc., corrections taken or estimated from the 
literature. Only the Ck correction is expected to be very 
accurate for aluminum this way. In the new treatment 
the Ck correction was applied to the data for aluminum and 
then an as3nnptotic form for Cl (proportional to T~'^) was 
fitted to the data at the highest energies and a value for 
/ai found. Then Cl at the low energies was calculated 
using this /ai. Finally, the asymptotic expression was 
varied until the low energy Cl took on what appeared to be 
a physically reasonable form. The corresponding /ai could 
not be fixed exactly but was between 163 and 164 ev. 
Bichsel preferred 164. 

The results of Burkig and MacKenzie (1957) and Bakker 
and Segre (1951) have been renormalized to /ai=164 ev. 
The renormalized values are given in table 2. 

Table 2. Recent measurements of I—renormalized values ^ 

Element 
Burkig, 

MacKenzie 
(1957) 

Author 

Thompson 
(1952) 

Bakker, 
Segre 
(1951) 

1 H_ 20. 7 ev 
3 I i_ 38 ev 
4 Be_ 62 ev 67 
6C_ _ - -- J 78. 4 84.0 
7 N_ 85.1 
8 0_ . _ 98. 3 

13 AI_ _ 164* 164* 
26 Fe__- . _ 324 264 
29 Cu_ 361 306* 303 
47 Ag ___ - .- 580 462 
50 Sn_ 517 
74 W. _ . _ 911 750 
79 Au .. ______ 987 
82 Pb _ . - _ 1,060 814 
92 U_ 945 

a The substance used as a reference in the renormalization is indicated by *. 

Thompson’s measurements (1952) were relative to /cu=279 
ev taken from Bakker and Segre. The renormalized value 
for Bakker and Segre (303 ev) is in good agreement with the 
result of Mather and Segre (310 ev) and of Zrelov and Stole- 
tov (305 ev). There also happens to be good agreement with 

31 



the low energy point of Kahn (313 ev), but in view of the ab¬ 
sence of any Cl correction in this work the agreement cannot 
be considered significant. There is serious disagreement be¬ 
tween these high energy values and the lower energy results of 
Bloembergen and van Heerden (370 ev) and Bichsel, Alozley, 
and Aron (375.6 ev). Bichsel (Gatlinburg, 1958) reported a 
tentative analysis of some new data for nickel. He obtained 
7x1 = 337 ev if Ck-\-Cl, but no corrections were applied. 
An estimated Cm correction led to a variable 7ni of about 
314 ev. Correcting these to copper by proportion to the 
atomic number gives the values 349 and 325 ev. These are 
closer to the high energy values, but are still significantly 
different. A reconciliation of these results requires a dis¬ 
cussion of the variation of 7/Z with Z. This will be done in 
section 3.3.d. The conclusion drawn from that discussion 
will be that we should accept the high-energy values. 

Thompson’s results have been renormalized to 7cu=306 
ev, an average between the values of Bakker and Segre and 
Mather and Segre, and close to the recent results of Zrelov 
and Stoletov and of Barkas and von Friessen. The 
renormalized values are given in table 2. 

Thompson’s values for the mean excitation potentials of 
hydrogen, carbon, nitrogen, and oxygen, were increased 
about 12 percent by the renormalization. This increase is 
supported by the work of Phelps, Huebner, and Hutchinson 
(1954). They found that the stopping powers of thin or¬ 
ganic films for alpha particles calculated from the original 
Thompson I values were too high by approxunately 3 per¬ 
cent. The increase in Thompson’s I values due to the renor¬ 
malization gives agreement within the experimental errors 
of the measurements. 

b. Bragg’s Law 

Some mean excitation potentials have been measured for 
compounds and homogeneous mixtures, but according to 
Bragg’s law they can be obtained from the I values for the 
elements. Bragg’s law assumes that the atoms of a material 
act independently and independent of molecular binding 
forces in the stopping of charged particles. Under these con¬ 
ditions the energy lost by a charged particle is the sum of the 
losses to the constituents considered separately. Then the 
stopping power is given by 

S=^ViSi, 
i 
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In these equations the Vi are the fractions by volume and Ui 
are the fractions by weight of the 'tth element in the com¬ 
pound or mixture. Another way of expressing the Bragg law 
is to say that formulas (19), (20), and (21) hold for com¬ 
pounds and mixtures with proper average values used for 
the param.eters that depend on the nature of the medium. 
The proper average values are 

II Zi 
Ui A,’ (27.a) 

(27.b) 

II 

) 
(27.c) 

0
7

 II V‘ T- (27.d) 

Since most of the electrons in an atom are unaffected by 
chemical and intermolecular forces, their contribution to the 
stopping power should be the same for compounds as for 
free atoms. The valence electrons of an atom are influenced 
by these forces and will contribute differently to the stopping. 
When the proportion of valence electrons is large, as it is in 
the light elements, the change in stopping power may be 
appreciable and Bragg’s law may not hold. When the 
velocity of the charged particle is low, the inner electrons of 
an atom are less effective in stopping. This makes the 
effective relative number of valence electrons larger and 
hence accentuates the deviations from Bragg’s law. It is 
necessary to determine experimentally how large the devi¬ 
ations from Bragg’s law are at high energies due to the first 
of these effects and at what energy the second effect becomes 
important. 

Gray (1944) found that in 38 alpha particle range measure¬ 
ments in 15 gaseous compounds of hydrogen, carbon, 
nitrogen, and oxygen, departures from the Bragg law ex¬ 
ceeded 3 percent in only 3 cases and did not amount on the 
average to more than 1.5 percent. Reynolds et al. (1953) 
tested the law for 0.03 to 0.6 Mev protons in gases. H2O, 
NH3, and N2O followed the law for protons above 0.2 Mev. 
NO never followed it in the range tested (this was apparent 
in Gray’s review also); the stopping power was about 
4 percent higher than calculated from the data for nitrogen 
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and oxygen. This could be explained by the results of 
Thompson (below) if at least part of the changes he found 
were due to molecular binding effects. 

Thompson (1952) gave the Bragg law a very precise test 
using protons of 270-Mev average energy. He found it to 
hold to about 1 percent. The largest deviations were for 
hydrogen and were about 2 percent. The deviations were 
negligible for chlorine (and, presumably, for heavier 
elements). He interpreted these small deviations as changes 
in the I values of the elements in the compounds due to 
molecular binding. As will become apparent below, some 
of the variation may also be due to differences in the polar¬ 
izability of the substances. Renormalizing Thompson’s 
results as described above gives the values listed in table 3 
for different conditions of molecular binding. 

Table 3. / Values for elements in compounds 

Thompson (1952) 

Element Molecular binding I ev 

1 II_ (Saturated . .. __ 1 17.6 
! Unsaturated____ _ ( 14.8 
(Saturated ______ _____ 1 77.3 

6 C _ -{Unsaturated . - - _ i 75.1 
(Highly chlorinated_____ 1 64.8 

7 N _ (Amines, nitrates.- ___ 1 99.5 
; 76.8 IRing____ _ __ 

8 0_ r-0- - _ 1 98.5 
10=_ ) 88.9 

17 Cl-- _ All _ 170 

Westermark (1954) was able to give a qualitative explana¬ 
tion for some of Thompson’s results by comparing the change 1 
in I value with the change in chemical binding in compounds | 
as reflected in changes in molar refraction. 1 

Brandt (1958a) pointed out that some cases in which the 
Bragg law holds may result from a compensation of opposing 
effects. Combining atoms in a molecule in such a way that 
increased binding of the valence electrons causes an increase i 
in the mean excitation potential results in a decrease in j 
stopping power. This may be offset by a simultaneous } 
decrease of the polarizability which decreases the polarization 
effect and increases the stopping power. 

c. Mean Excitation Potential of Air 

The stopping power of air is very important in dosimetry. 
Most relative stopping powers are desired relative to air 
because it is the gas used in most ionization chambers. 
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Unfortunately there is not a great deal of data from which 
I for air can be derived. 

The value of /air=80.5 ev found by Bethe (1937) has been 
used for several years. He determined this I by making the 
calculated difference in range between the alpha particles 
from ThC' and Po agree with experiment. A recalculation 
using the same experimental data but newer values of the 
fundamental constants and new Ck corrections by Walsko 
(1952) gives /air=85±l ev. The data of Brolley and Ribe 
(1955) for 4.43-Mev protons give/air=85.5ih 1 ev. 

Other sources of information are not very useful. The 
results of Reynolds et ah, given in table 1 can be combined 
according to the Bragg law, equation (27.b), to give 95 ev, but 
no Cl correction was made to their data and it would be 
significant for 0.6 A4ev protons. Wilson (1941) measured the 
stopping power of aluminum relative to air for protons in the 
range 2 to 4 Mev. He calculated /ai =150 ev using Bethe’s 
value, 80.5, for air. If instead we now accept /ai=164 ev, 
Wilson’s data yield the value /air=90±7 ev. 

The value adopted for this report is /air=85 ev. 
Thompson’s (1952) data for nitrogen and oxygen listed 

in table 2 (plus an estimated /a=220 ev based on proportion 
to atomic number) combine according to the Bragg law to 
give /air=89±l ev, or about 5 percent higher than 85 ev. 
His measurements, however, were made in liquid oxygen 
and nitrogen. Sternheimer (1954) predicted that liquefied 
gases would have higher / values than the gaseous form due 
to the polarization effect that is combined with the mean 
excitation potential. The polarization effect should be 
negligible for the gases. He made some rough estimates 
that indicated oxygen should give 16 to 38 percent and 
nitrogen, 18 to 41 percent higher / values in the condensed 
state. Brandt (1956) used a better method of estimating 
the effect and calculated 5 and 4 percent increases for the 
two materials. This is good agreement with the observed 
increase. We can conclude that /air=85 ev for the gas, 
but that the materials of ‘‘air equivalent” ion chamber 
walls will have about 5 percent higher I values; i.e., about 
1 percent higher stopping power. 

There is independent evidence that the mean excitation 
potentials in gases and in solids or liquids are different. 
The measurements of Phelps et ah, (1954) mentioned above 
support Thompson’s I values for solids. Aniansson (1955) 
found stopping powers for alpha particles in solids that 
were an average of 3.3 percent less than those found by 
Gray (1944) for gases. Ellis, Rossi, and Failla (1952) 
found the relative mass stopping power of polystyrene and 
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acetylene was 0.99 ±0.02 and concluded that there was no 
difference between solid and gas. The 1 percent difference, 
if real, would indicate a 7 percent higher I value in the solid. 
It is possible that the effects of chemical binding are different 
between polystyrene and acetylene and tend to cancel 
the polarization effect. They also found (1955) that the 
relative stopping power of water in the liquid and vapor 
forms was 1.00 ±0.05. A real difference of a few percent 
would have escaped them. 

To summarize the discussion of the Bragg law: we can 
expect it to hold to better than 1 percent in stopping power 
in most cases involving the light elements and for Z 
if we use the appropriate /’s for gases and for condensed 
media. In a few cases larger deviations will occur due to 
strong molecular binding forces. Table 3 can serve as a 
limited guide for anticipating these special cases. In heavy 
elements the Bragg law should hold to even better accuracy. 

d. Interpolation Between I values 

Bloch (1933) applied stopping power theory to the Fermi- 
Thomas model of the atom and concluded that the mean 
excitation potential should be proportional to the atomic 
number, I=kZ. It was not possible to calculate the value 
of k theoreticalh^. It had to be determined experimentally 
by fitting the observed values of S. The existence of such 
a constant would provide a means of interpolation between 
existing / value data to elements that have not yet been 
measured. 

Table 4 shows IjZ for the experimentally determined I 
values listed in tables 1 and 2. Data rejected for various 
reasons in the preceding discussion were omitted from this 
table. As noted earlier the / values for aluminum are in 
good agreement at all energies. For our adopted value 
of /ai=164 ev, we get //Z=12.6 ev. Hydrogen and helium 
have I/Z values distinctly different from the other elements. 
They would be expected to be different because they are 
so elementary in structure that statistical averages that 
would result in regularities between atoms with more 
electrons would not apply to them The value for beryllium 
is also much higher than for the other elements. This 
was predicted by Bohr (1949) and is due to the screening 
effect of conduction electrons. The effects of the low energy 
polarization effect between gases (data of Brolley and Ribe) 
and liquids or solids (data of Thompson) that was discussed 
above is readily apparent. 
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There is a clear cut discrepancy in the values of 7/Z for 
elements heavier than aluminum between measurements 
at proton energies near 20 Mev and those near 300 Mev. 
The former are all close to an average value of 12.6 that is 
the same as that for aluminum. The latter are all close to 
an average value of 10. 

Brandt (1956) made a theoretical study of this problem. 
He first pointed out that the regularity predicted by Bloch 
would only be expected to hold between isolated atoms. 
The polarization effect and the changes in binding energy of 
valence electrons when atoms combine into molecules and 
condense into liquids and solids may change the mean 
excitation potential significantly from the value for an iso¬ 
lated atom. Furthermore these changes will not be any 
regular function of atomic number. Finally, he recalled a 
more complete theoretical analysis of Jensen (1937) that led 
to the conclusion that 

Iq is the mean excitation potential of the isolated atom. 
Jensen calculated an approximate value 0.77 for a. Brandt 
(Gatlinburg, 1958) obtained a=0.25 by means of a varia¬ 
tional calculation. 

Brandt (1956) accepted the results of Bakker and Segre 
and of Thompson after renormalization so /ai = 165 ev (an 
insignificant difference from our value, (164 ev). He then 
calculated corrections for polarization and valence effects in 
order to compute Iq from the observed mean excitation 
potentials. The resulting Iq’s were fitted to Jensen’s relation 
andgave/o=8.2 Z(1 + 0.7 (Brandt, 1958a,see fig. 2). 
There is considerable uncertainty in the value of a. The 
relation would be expected to apply to heavy elem.ents where 
the statistical model of the atom would apply. Actually it 
seems to work well for ah atomic numbers. One quite im¬ 
portant consequence of this study was an explanation of the 
rather large difference in I/Z between aluminum and the 
heavier elements. It appears that aluminum is an excep¬ 
tional material just like beryllium is. Brandt (Gatlinburg, 
1958) estimated that the screening effect of conduction | 
electrons should increase the mean excitation potential for ) 
aluminum 35 percent above the value for the isolated atom, j 
The observed is this much greater than the Iq calculated | 
from Brandt’s fit of equation (28). [ 
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Figure 2. Reduced mean excitation 'potentials of isolated atoms. 

Analysis according to Brandt (1956, 1958). 

O HZ of bound atoms, measured with 340-Mev protons (Bakker and Segre, 1951), evaluated 
relative to /ai = 165 ev. 

• htZ of isolated atoms, calculated by Brandt. 

A HZ measured with 10 to 20 Mev protons (Caldwell, 1955; Bichsel, Mozley and Aron, 1957) 
and corrected for inner shells. 

The solid curve represents a fit to Brandt’s theoretical values, based on use of Jensen’s 
formula (eq 28). 

To explain the difference in IjZ for heavy elements between 
low an(i high energy experiments, Brandt (Gatlinburg, 1958) 
determined what total 6k+Gl+ . . . correction would have 
to be applied to the experimental stopping powers of Burkig 
and MacKenzie in order to give mean excitation potentials 
that agreed with the high energy data. When these are 
compared with corrections obtained or estimated from the 
work of Walske (1952, 1956), the agreement is good for low 
atomic number but the Walske-type corrections are too 
low for high atomic number. Walske’s calculations were 
based on the use of hydrogen-like wave functions for the 
atomic electrons. This should be a good approximation for 
the electrons of the innermost shells of an atom. For the 
heavy elements, the Cm and higher shell corrections may be 
higher than those due to the inner shells. The hydrogenic 
wave function approximation is not expected to be applicable 
to these electrons. Brandt employed an approximate 
method of calculating the Ci that is due to Lindhard and 
Scharff. The method is a statistical one that ignores the 
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properties of individual electron shells and considers only 
average electron behavior. The results of this calculation 
were in good agreement with the corrections necessary to 
resolve the disagreement between the low and high energy 
sets of data. 

The solution to the problem of interpolating between 
measured I values for elements that have not been measured 
is: first calculate /o from (28). Then calculate the polariza¬ 
tion and valence corrections (Sternheimer, 1952 and 1956; 
Brandt, 1956) to obtain /. For practical purposes it will 
often be necessary to assume I=kZ and interpolate between 
the values for the high energy measurements in table 4. 
At worst this latter procedure should not result in more than 
a few percent error in a stopping power. Table 3 can serve 
as a guide for estimating valence and polarization effects. 

e. Selected I Values 

When evaluating the para^meters that enter into cavity 
ionization chamber theory, it is desirable to use consistently 
one set of values of the ionization potential. The preceding 
review indicates that there is still a certain amount of 
scatter in the experimental results for I. This is not serious, 
however, because / enters the formulas for the stopping 
power and other relevant parameters only logarithmically. 

In table 5 we list a set of ionization potentials that were 
made the basis for the computation of other parameters. 
Unavoidably, the selection had to be somewhat arbitrary, 
but it was done with care so as to be representative of the 
experimental situation. Main reliance was placed on results 
obtained with high-energy protons (Mather and Segre’s 
result for aluminum was omitted and Thompson’s results for 
graphite was accepted). Inasmmch as the application of this 
report is principally to cavity ionization chambers for 
electrons, it seemed reasonable to choose / values obtained 
with protons that have velocities matching as nearly as 
possible the velocities of the electrons of interest. More¬ 
over, at high energies the interpretation of the experiments 
is simplified in that smaller shell corrections are needed. 

The selection of table 5 was completed before the recent 
results of Zrelov and Stoletov, and of Barkas and von 
Friessen became available. It has turned out, however, 
that these new data are in very good agreement with our 
selection, so that there was no need for a revision. It 
should be kept in mind, however, that further theoretical and 
experimental work are needed before arriving at definite 
/-values. 
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Table 5. Selected I values 

Element I ev Author b 

1 H_ 20.7 
38 
67 
78.4 
85.1 
85 
98.3 

164 
264 
306 
462 
517 
750 
812 
945 

T_ 
3 Li _ BS_ 

BS _ 
6 C _ T _ 
7 N__ T_.._ 
Air -- -- - __ Text _ 
8 0 _ T _ 
13 A1 _ Text _ 
26 Fe_ BS.._ 
29 Cu _ BS, MS_ 
47 Ag_ _ BS_.■_ 
50 Sn - .. BS_ 
74 W _ BS_ _ 
82 Pb _ BS, MS_ 
92 U_ BS_ 

Notes 

Liquid 

Graphite 
Liquid 
Gas 
Liquid 

a All of table 3 is to be considered part of this table. 
b BS = Bakker and Segre (1951) renormalized, T = Thompson (1952) renormalized, MS = 

Mather and Segre (1951). 

4. Theoretical Values of rnS 

Section 2 presents us with a theory for cavity chambers. 
Section 3 gives us the data necessary to evaluate the constant 
s that appears in the theory. We will now examine how to 
calculate s in order to be able to compare it with experimental 
data in section 5. 

It is convenient to deal with mS=spalpz rather than s, be¬ 
cause the stopping powers contain the density as a factor. 
Removal of this factor gives numbers having the same order 
of magnitude for all phases. The Bragg-Gray formula can 
be changed to incorporate by using energies absorbed or 
ionization produced per unit mass of material, mE or rnJ- 

E =— E i^a m-^z (29) 

mEz — nSWffiJ (30) 

The notation will be used when it is necessary to specify 
the nature of the wall material, w, and the gas, g. 

4.1. Basic Bragg-Gray Principle 

Laurence’s result for the average of the stopping powers 
that is required for is given by equation (11) due to 
Spencer and Attix. The equation gives/=1/toS rather than 
mS. This is convenient because the observed quantity, is 
proportional to l/ms; see (29). When averages are taken, 
they have to be of l/mS. Using equation (20) for the stop- 
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I 
ping poAver and using the stopping number per electron 
defined in footnote 13, we can rewrite (11) as 

8a does not appear in this equation because the polarization | 
effect in the gas in the chamber is negligible except at very i 
high energies. ^ 

It is convenient to introduce two functions bz{To) and j 
dziTo) defined so that j 

Both functions have been calculated for useful energies and 
materials, bz is given in table 6; dz is given in table 7. 
Calculations of gB by Nelms (1956) show that the low energy 
limit of gB, InOiey^^iTII), is accurate to within 4 percent up 
to 3 Alev. The low energy limit can be integrated to give 

(33) 

Ei is the exponential integraP^ that has been tabulated; 
e.g., by the Federal Works Agency (1940). 

Although bz depends on the I values chosen for the calcu¬ 
lation, the dependence is only logarithmic. The greatest 
uncertainty in experhnental / values is only about 25 per¬ 
cent. The resulting uncertainty in bz is only a few percent. 
This is satisfactory because the resulting uncertainties in 
/ are smaller still. The important dependence of the second 
term of (32) on the I values is through the factor In Izlla- 
This factor is left to be evaluated by the experimenter so he 
can use the latest knowledge about the I values. / values 
based on Bakker and Segre’s work were used to compute bz- 
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Table 6. &z(To) 

To Mev 

0.100 
.200 
.300 
.327 
.400 

.500 

.600 

.654 

.700 

.800 

1.000 
1.200 
1.308 
1.500 

C 

0.16430 
.14764 
.13938 
.13780 
. 13404 

. 13020 

. 12722 

. 12598 

. 12480 

. 12278 

.11956 

. 11704 

.11580 

.11410 

A1 

0.18772 
.16600 
.15544 
. 15346 
. 14862 

.14366 

. 13980 

. 13832 

. 13664 

. 13396 

. 12968 

. 12634 

.12478 

. 12246 

Cu 

0. 22408 
.19262 
.17812 
.17540 
.16908 

.16264 

.15774 

.15570 

.15380 

.15054 

.14536 

.14136 

. 13940 

Sn 

0. 28880 
.23148 
. 20786 
. 20320 
. 19388 

. 18424 

. 17702 

. 17380 

.17132 

.16666 

,15940 
.15392 
.15120 
.14764 

Pb 

0. 30712 
.24916 
.22408 
. 21936 
.20896 

.19836 

. 19048 

.18706 

.18424 

.17912 

.17104 

.16490 

.16204 

.15790 

Table 7. dziTo) 

To Mev C AI 

0.300 0.00115 0.00006 
.327 .00154 .00013 
.400 .00272 .00051 
.500 .00439 .00120 
.600 .00606 .00203 
.654 .00696 .00253 
.700 .00770 .00291 
.800 .00930 .00397 

1.000 .01240 .00597 
1.100 .01391 .00693 
1.200 .01537 .00790 
1.308 .01692 .00891 

dz depends quite strongly on the / values chosen for the 
calculation. The dependence is a complicated one so that 
a separation into two factors as in the other term is not 
possible. Sternheimer calculated two sets of the polariza¬ 
tion correction, 5 (1952, 1956). One was for the original 
Bakker-Segre / values, the other was for I values from Sachs 
and Richardson. Since the first of these have been re¬ 
normalized and the latter rejected as being in error, fresh 
calculations are generally needed. Fortunately, however, 
the dz term is relatively small in the cases we wish to consider 
except for chamber walls of carbon and aluminum. The 1 
values for these materials used in the 1956 calculations were 
78 and 163 ev. This is excellent agreement with Thompson’s 
/(.=78.4 ev (table 2) and our adopted value of /ai=164 ev. 
These calculations were used to obtain the dz in table 7. 
dz for other materials will be neglected. The worst error 
will be for copper and will be only a few tenths of a percent 
in/. 
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Equation (11) and its descendents (31) and (32) appl}^ to 
an emitter of monoenergetic electrons of energy To distrib¬ 
uted uniformly through the chamber walls. It can be used, 
e.g., for a chamber exposed to gamma rays if the chief inter¬ 
action in the chamber walls is photoelectric absorption be¬ 
cause the photoelectrons Avill all have closely the same 
energy. For other cases,/^(To) must be averaged over the 
spectrum of initial energies as shown in equation (12). This 
was done for the spectrum of recoil electrons from Compton 
scattering. The results can be expressed by 

[1 +a.(r7)ln 4/4+ACTt) 1, (34) 

where az and Dz are averages over hz and dz, respectively. 
The same remarks apply to az and Dz as applied to hz 
anddz. Results for are presented in table 8, for Dz ii\ table 9. 

Table 8. az(Ty) 

T7 Mev C A1 Cu Sn Pb 

0.15 0.20020 0. 23796 0.30636 0. 46582 0.48180 
.25 .17318 .20012 .24436 .33174 . 34982 
.4 .15450 .17552 .20650 .25848 .27864 
.6 .14210 .15904 . 18360 .21852 . 23478 

1.0 .12948 .14272 .16184 . 18396 .19780 
1.5 . 12166 .13240 . 14894 .16496 .17702 
2.0 
2.5 

.11672 

. 11334 
.12592 
,12150 

Table 9. Dz{Ty) 

Ty Mev C A1 

0.4 0.00014 0.0000 
.6 .00148 .00022 

1.0 .00597 .00219 
1.5 .01167 .00567 

4.2. Modified Theory of Spencer and Attix 

The Spencer-Attix result for the inverse cavity chamber 
stopping power ratio is given in equation (15). It can be 
treated in the same way we have just treated (11) (see 
footnote 11). The result may be written in a form very 
much like (32). 

[1+C+4„,A) ln^y4(4„)]. (35) 
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The dependence on A, the energy of the electron that can 
just cross the average dimension of the chamber, is through 
the factor Cz{Tq,^) that replaces hz^To). Like hz, Cz is not a 
sensitive function of the I values. I values based on the 
work of Bakker and Segre were used to calculate Cz. The 
results are in table 10. 

The term in (35) that represents the polarization effect is 
the same as in (32). The reason that it is the same is that 
the changes in the flux of cavity-traversing electrons that 
Spencer and Attix allowed for are of importance for low 
energy electrons for which the polarization effect is negligible. 

fz{To,A) applies to a monoenergetic emitter so an 
averaging process is necessary whenever there is a spectrum 
of starting energies. Averaging is difficult because there is 
so little data for/^(To,A). The process that has been used 
is based on the fact that /^(To,A)//^(To) is found to be 
relatively insensitive to energy^ If it is assumed to be 

constant at the value it has for T, the average energy of the 
electrons in the starting spectrum, then the average value is 
given by 

UTy,A)=-^ffj^MTy). (36) 
JzK-^ ) 

and/^(T7)_can be obtained from (34). For Compton recoil 

electrons T=hv{aala) where o-a and a are the Compton 
absorption and total coefficients, respectively. 

Table 10. cz(To,A) 

To Mev A Kev C A1 Cu Sn Pb 

1.308 81.8 0.12360 0.13372 0.14958 0.16032 0.17416 
40.9 . 12956 .14110 .15896 .17168 .18812 
20.4 .13716 . 1.5058 .17130 . 18668 .20682 
10.2 . 14594 .16192 .18660 .20614 .23260 
5.1 .15706 .17662 .20764 .23402 . 27172 
2. 56 .17046 .19468 .23744 . 27664 

.654 81.8 .12806 .14014 .15674 .16930 .18512 
40.9 .13510 .14876 .16782 .18246 .20124 
20.4 .14242 . 15810 .18018 . 19776 .22062 
10.2 .15200 . 17050 .19688 . 21898 .24838 
5.1 .16332 . 18576 . 21910 .24852 .28914 
2. 56 .17772 .20670 .25118 .29454 

.327 81.8 . 13282 . 14672 . 16460 .17850 . 19594 
40.9 .14006 .15560 . 17596 .19262 . 21284 
20.4 . 14874 .16660 . 19040 .21028 .23510 
10.2 .15796 .17880 . 20738 .23196 .26382 
5.1 .17018 .19526 .23128 .26390 . 30856 
2. 56 .18530 .21690 .26512 .31244 
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From (36) it is eTiclent that/z(F,A)//;j(T) is a measure of 
how much the modified theory of Spencer and Attix differs 
from the original theory of Gray and of Laurence. The 
ratio is plotted in figures 3.a-e. For materials close to air 
in atomic number, there is only a few tenths percent differ¬ 
ence. For a material as different as lead, there is a difference 
of as much as 20 percent. 

Table 11 gives the range R of an electron of energy A. 
In the Spencer-Attix theory, A is fixed by requiring R to 
equal the average diameter of the chamber. 

Table 11. Range of low energy electrons 

A R 

Kev cm STP air 

2.56 0.015 
5.1 .051 

10.2 .19 
20.4 .64 
40.9 2.2 
81.8 7.3 

1.005 

.000 

- 0.995 
fz(h A) 

bD 1.05 

1.00 

T, Mev 

/1.308 

CARBON 

_ 

(a) 

^0.654 r 
0.327^ 

(b) 

T, Mev 

/1.308/0.6 

ALUMINUM 

54.0.327 

0.5 1.0 1.5 

R (cm-atmospheres) 

2.0 

Figure 3.a and 3.b. Predictions of Spencer-Attix theory for variation of 
mJ with pressure. 
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Figure 3.c and 3.d. Predictions of Spencer-Attix theory for variation 
of mJ with 'pressure. 
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0 0.5 1.0 1.5 2.0 

R (cm-atmospheres) 

Figure 3.e. Predictions of Spencer-Attix theory for variation of mJ 
iL'ith pressure. 

4.3. Variation of rnJ With Pressure 

Since proportional to/=l/^s, equations (35) and (36) 
of the Spencer-Attix theory predict that will vary with A, 
A is the energy of an electron whose range equals the average 
diameter of the chamber. It, and hence mJ, can be varied 
by changing either the chamber size or the pressure of the 
gas in the chamber. No such variation is predicted by the 
Gray or Laurence theory. In fact, they require the absence 
of such a variation as prerequisite for their proper application. 

^om eq_uation (36) we see that will be proportional to 

fz(T,A)lfz{T) which can be written 

.«5^_,+ra<i4=^)]i„4 (3„ f.ir) L f.W J 
This ratio is plotted in figures 3.a-e versus the electron range 
7? in air that corresponds to the energy A. For application 
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to experimental data R can be taken to be the product of 
the mean diameter of the chamber (in centimeters) and the 
air pressure in the cavity in atmospheres. 

5. Cavity Chamber Measurements 

In this section we will compare experimental results for 
mS with values calculated by the methods of the preceding 
section. There are several types of experiments that give 
useful information. We will first describe the data con¬ 
cerning the variation of with pressure since there is an 
important difference between the newer and older theories 
on this point. Then the relative values of that can be 
obtained from comparing chambers that are identical except 
as to wall material or from comparing different gases in a 
single chamber will be studied. Finally, the absolute values 
of rnS that can be obtained by separately measuring each of 
the other factors in the Bragg-Gray equation will be con¬ 
sidered. 

5.1. Variation of mJ With Pressure 

A distinctive feature of the miodified theories of Spencer 
and Attix and of Burch as distinguished from the theories 
of Gray and of Laurence is that the former predict that mJ 
will vary with pressure (for constant cavity size, or with 
cavity size at constant pressure) even for very low pressures 
(or cavity size). We will now review the experimentaJ 
evidence on this point. The existence and magnitude of the 
effect is important for verifying the theory, for interpreting 
experimentally m^easured ^^s's, and for supplying information 
needed in the interpretation of measurements with the Failla 
(1937) extrapolation chamber. 

Gray (1936) stated: “The (Bragg-Gray) equation may be 
considered valid in any circumstances in which the ionization 
remains proportional to the pressure as the pressure is re¬ 
duced below the normal value.” In other words, for suffi¬ 
ciently small pressures rnJ should achieve a constant value, 
independent of further reduction in pressure (or cavity size 
at constant pressure). Gray demonstrated experimentally 
that this was so, within 1 percent, for air-filled graphite 
chambers of 0.1 and 2.0 cm^ volume, with gamma rays from 
radon. Reduction of the pressure from 74 cm to 10 cm Hg 
produced no significant variation in mJ’ On tlie other hand, 
a similar measurement in a lead-walled cavity of 0.1 cm^ 
revealed a 7-percent increase in foi' the same pressure 
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decrease. Gray concluded that the (basic) Bragg-Gray equa- j 
tion was not valid for this situation, but no attempt was ! 
made to explain the effect. ! 

One interesting feature of Gray’s result for lead was that 
the plot of rnJ versus pressure did not tend to level off 
toward a constant value at low pressures. If anything, it 
appeared to be slightly concave upward but was roughly a 
straight Ime with negative slope. From these data, there is 
no promise that constancy can be achieved by going to still 
lower pressures. Others have obtained similar results. 

Ibrahim and Wilson (1952) used a flat extrapolation 
chamber, varying the gap width down to about 0.5 mm at 1 
atmmsphere air pressure. X-rays of moderate filtration, up 
to 124 kev (effective), were employed to irradiate the cham¬ 
ber. The walls were of graphite, aluminum, copper, and j 
somm miolded compositions. Graphite showed linear be¬ 
havior, as in Gray’s results, while the other materials, having 
Z greater than that of air, again gave an increasing with 
decreasing gap. This experimient was complicated by the 
fact that the X-rays were of low energies, so that the average 
starting energy of the primary electrons was not large com¬ 
pared to the cavity size, as required for proper application of 
cavity theor}^. Thus much of the apparent rise in with 
decreasing gap size is caused by the transition from the 
predominance of electrons originating in the air gap to that j 
of electrons originating in the wall. There are more of the ; 
latter, due to the photoelectric effect, hence the exaggerated i 
rise in rnJ- A further complication, also augmenting the ' 
rise in is the loss of electrons out the edge of the chamber, 
which had an electric-field guard ring of Incite rather than of 
the wall materials under consideration. These losses be¬ 
come progressively greater as the gap width is increased. 

Attix, DeLaVergne, and Ritz (1958) carried out a similar 
experiment with a flat extrapolation chamber of an improved < 
design, having guard rings of the same material as the rest 
of the walls, and less extraneous material in the radiation i 
beam to produce scattered photons. Walls of carbon, | 
aluminum, copper, tin, and lead were studied with heavily I 
filtered X-ray energies from 38 to 206 kev (effective) and | 
with gamma rays of 411 (Au^®®), 670 (Cs^^^), and 1,250 kev 
(Co'o)^ 

The experimental results were generally similar to those 
of Ibrahim and Wilson at the lower energies. For walls 
other than graphite, the steep rise of rnJ was observed as the 
gap width was reduced from 10 mm to 0.5 mm. Some edge 
losses of electrons were observed in spite of the improved 
chamber design. For graphite was found to rise slightly 
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with reduction in gap width for X-ray energies greater than 
100 kev because of these edge losses; however, at 38 kev a 
very marked decrease in rn,J was observed for graphite, con¬ 
trary to all the other results. decreased by about 24 
percent as the gap was reduced from 1.0 cm to 0.05 cm. 
This can be ascribed to the previously mentioned influence 
of electrons originating in the air. Their effect was particu¬ 
larly pronounced in this case because the air has consider¬ 
ably more photoelectric effect than the wall and the resulting 
photoelectrons have much longer ranges than the Compton 
recoils. It is interesting to notice that Ibrahim and 
Wilson observed no similar effect with their 38 kev X-ray 
measurements with graphite. The difference may be due to 
their greater spectral width, as they used lightly filtered 100 
Kvp X-rays while the present work employed 50 Kvcp 
X-rays, heavily filtered. 

The gamma ray measurements were found to give more 
modest rises of mJ with decreasing gap width, the maximum 
being about 50 percent for lead walls. An auxiliary experi¬ 
ment was tried with the Co®° gamma ray measurements to 
determine the size of the electron edge losses. Rings of the 
same materials as the walls were fitted into the chamber to 
close the edges of the gap. The results showed that most 
of the rise in with gamma rays was due to this cause so 
that only about 9 percent remained for lead. The modified 
theory of Spencer and Attix (with I values based on the 
original Bakker-Segre work) was then compared and found 
to predict the pressure variation of rnJ fairly well for all 
materials. There was no observable tendency for the slope 
of mJ to ‘‘flatten out” at small gap widths except for graphite 
which appeared flat for all widths after the edge losses were 
eliminated. The experimental results for Co®° with the 
chambers with side walls are shown in figure 4. The curves 
for the Spencer-Attix theory were calculated as in section 4.2. 
with the values of / from table 5. 

Cormack and Johns (1954) also employed a flat extrapola¬ 
tion chamber with walls of carbon, aluminum, copper, tin, 
and lead using a Co^° gamma ray source and 22 Mv X-rays. 
They avoided edge losses by means of spacing rings. ^ Their 
results indicate complete proportionality between ionization 
and separation for all materials. This result does not agree 
with any of the other measurements given in the literature 
for high atomic number walls; however, the reason for the 
discrepancy is not apparent. 

Larson (1956) used a flat chamber with fixed plate separa¬ 
tion of about 1.5 cm and walls of aluminum and copper. 
Air pressure was varied from one atmosphere down to 2 mm 
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s • m'^oir 

WALL SEPARATION, mm 

Figure 4. Variation of with cavity size. 

mJ is proportional to HmS. The points are the experimental data of Attix, DeLavergne, 
and Ritz (1958) for Co^o and extrapolation chambers whose sides were enclosed with the same 
material as the plates. The solid lines are the theory of section 4.2. 

Hg going to cavity ‘‘sizes” of about one-tenth of the mini¬ 
mum usable cavity size attained in previous studies. This 
is apparently about the minimum usable cavity size for reli¬ 
able results, because at lower pressures Larson found that 
he could not attain current saturation even with the optimum 
flat chamber design. 

Larson found that, although rnJ did not become constant 
at low pressures, it increased only slowl}^ and with a constant 
slope. Thus it was possible to extrapolate his results to zero 

15 Sievert (1940), Taylor (1951), and Wilson (1954) also encountered this difficulty for 
chambers of this order of pressure-size. Presumably some of their difficulties may have been 
due to multiplication taking place in the gas. The situation is further complicated by the 
presence of the Greening effect (1954) in which the observed current is not entirely from ioni¬ 
zation but is partially a current of very low energy electrons emigrating from one electrode 
to the other under the influence of the electric field. These electrons are the low energy tail 
on the spectrum of charged particles existing in the chamber walls due to the interactions 
with the photons. Measurements of the spectra of these electrons have been rejiorted by 
Nelson et al. (1959) and by Finston et al. (1959). 
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pressure with some degree of confidence. Larson used mono- 
energetic characteristic X-rays as his source; the energies 
were between 8 and 34 kev. It would be of interest to do 
a similar experiment where the pressure is reduced to these 
low values for gamma rays where the starting energies of the 
primary electrons are much greater than the chamber dimen¬ 
sions. Thus one would be effectively investigating even 
smaller cavities than those achieved by Larson relative to 
the electron ranges present. A region of constant might 
be observable under these conditions, if indeed it exists at all. 

Greening (1957) studied the pressure variation of in 
small cylindrical chambers about 1 cm by 1 cm in size. The 
walls were of carbon, copper, tin, tantalum, and lead; the 
sources were Co®®, Cs^^^, and Aid®*. As the pressure was re¬ 
duced to about 5 cm Hg, Greening observed a variation in 
mJ for copper, tin, and lead that compared well with the 
theoretical predictions of Spencer and Attix (1955) and had 
an increasingly steep negative slope with decreasing pressure. 

Whyte (1957) used a chamber 7 cm long by 5 cm diameter, 
with walls of beryllium, carbon, aluminum, and copper; the 
source was Co®®. The pressure was varied from one atmos¬ 
phere down to about 8 cm Hg. Over this range for 
copper and aluminum was observed to increase with nearly 
constant slope with only a trace of the upward concavity 
observed by Greening and by Attix, DeLavergne, and Ritz. 
For both carbon and beryllium a corresponding decrease in 
mJ was observed. For carbon it was only a few tenths of a 
percent which could easily have been missed in less accurate 
experiments previously described. 

Attix and Ritz (1957) made some pressure variation 
measurements in the course of a determination of the radium 
gamma ray emission. Their chamber was cylindrical, 4 cm 
diameter by 5 cm long, with walls of carbon, aluminum, 
and copper. The source was Co®®. The pressure was 
varied from one atmosphere down to 0.1 atmosphere. 
The graphite chamber ionization was observed to decrease 
by 0.15 percent which was somewhat less of a change than 
that observed by Whyte, but nevertheless significant. 
for aluminum and copper walls was found to increase with 
a steepening slope as the pressure was reduced. The slope 
changed more rapidly than predicted by theory for pressures 
above about 0.3 atmosphere. This discrepancy probably 
results from the large size of the cavity; at the higher pressure 
the cavity size restriction on the theory is not adequately 
fulfilled. 

The results on the variation of with pressure or cavity 
size can be summarized as follows: For energies in the X-ray 
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range, rnJ experimentally varies linearly with pressure-size 
for small pressure-size. With the exception of the work of 
Cormack and Johns, experiments for energies in the gamma 
ray range show that as a function of pressure-size has an 
increasing negative slope as the pressure-size is reduced. 

The nature of the agreement between experim.ent and the 
Spencer-At fix theor}^ can be seen in figures 4 and 5. The 
points m figure 4 are the experimental data of Attix, 
DeLaVergne, and Ritz with Co®° for chambers completely 
enclosed with the wall material being studied. The solid 
lines are the predictions of Spencer and Attix, for the new 
/ values of table 5 as discussed in section 4.2. For these 
curves, A was taken as the energy of an electron whose range i 
was twice the wall separation. (The authors used a range 
equal to the wall separation; the present choice was felt to 
give a better average value of A for the cavity.) Evidently 
the experimental points are tending toward the theoretical 
curve at small wall separations. 

The difference between the theory and experiment can be 
analyzed as suggested in section 2.6.c. In figure 5 are 
plotted the experimental values of m-sSr/m-sfir minus the 
difference between the Spencer-Attix theory and the basic i 
Bragg-Gray value for the same quantity. The curvature ; 
of the rnJ curves is removed by this procedure and a linear 
extrapolation can be m.ade to zero wall separation. Indeed, 
as shown, this linear extrapolation passes through the basic ; 
Bragg-Gray value at zero wall separation. This procedure j 
is in the spirit suggested in the introduction (section 1). i 
The Laurence-Bragg-Gray theory is an approximation to 
cavit}^ chamber theory. The Spencer-Attix theory is a 
further approximation that takes into account delta ray 
effects, but does not account for perturbations in the cavity 
traversing flux due to the presence of the cavity. When 
the Spencer-Attix theory is treated as a correction, as above, 
the remaining difference from the Bragg-Gray-Laurence value 
is interpreted as due to the flux perturbation and will pre¬ 
sumably be explained by a better approximation that has not 
yet been made. 

5.2. Chambers With Different Atomic-Number Walls 
I 

When chambers with walls made of different atomic 
number materials are exposed to identical fluxes of radiation, 
the absorbed doses in the walls are proportional to the mass 
energy-absorption coefficients of the waU materials. If the 
chambers are filled with the same gas, w can be assumed 
to be the same for all of them. Then 
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(38) 
m^a 

o2' 
mPa 

where is the mass energy-absorption coefficient. Since 
in each exposure the results are given at constant air density, 
the ratio of the «7’s can be used in place of the ratio of the 
mJ S. 

Figure 5. Effect of flux perturbation on mJ. 

The points are the experimental data of figure 4 minus the difference between the Spencer- 
Attix theory and the Bragg-Gray-Laurence theory. 

a. Energy-Absorption Coefficients 

mtien is obtained from experimental data on gamma ray 
absorption coefficients. There is, however, lack of agree¬ 
ment between different authors as to how this is to be done. 
In the theory of absorption measurements (see, e.g., Johns 
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and Laughlin, 1956) there appears a quantity called the true 
absorption coefficient and defined by 

(39) 

where mT, and are the mass absorption coefficients 
for photoelectric absorption, Compton absorption, and pair 
production by photons of energy hv. Alany authors identify 
the energy-absorption coefficient with the true absorption 
coefficient (see, e.g.. Spiers, 1956). Alarinelli (1953), how¬ 
ever, said the photoelectric component, for the K shell, should 
be given by 

(40) 

where is the mass absorption coefficient for photo- 
electric absorption (in the K shell) for photons of energy 
hv, / is the K shell fluorescent yield, and Kvk is the K shell 
binding energy. This assumes that the chamber walls are 
thin enough that most of the fluorescent radiation emitted 
in filling the K shell vacancy escapes from the chamber. 
The other authors implicitly assume that the wall of the 
chamber is thick enough to prevent escape of the fluorescent 
radiation. The actual case must lie between these two 
extremes. The fluorescent X-rays may have an absorption 
coefficient greater, equal to, or less than that of the primary 
rays so that little of it, some of it, or most of it (respectively) 
may escape from the chamber. 

In order to get some idea of the effect of the escape or 
nonescape of fluorescent radiation, we will consider a simple 
case in which the effect can be computed. The case chosen 
is that of the dose rate at the center of an infinite slab of 
thickness 2t in the direction of a beam of gamma rays. 
Physically this would apply to the center of a chamber whose 
walls were of thickness t and whose dimensions perpendicular 
to the beam were very large. The latter is not usually 
true so the result cannot often be applied directly, but it 
does give one a deeper understanding of the problem. A 
convenient way of presenting the result of this calculation is 
to give a factor g that can be inserted in (40) to indicate the 
extent of the escape of fluorescent rays, 

(40. a) 
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This method of presentation is convenient because it 
turns out that g is a function of just the thickness t and the 
ratio of the absorption coefficients of the fluorescent and 
primary rays. From (40) and (40.a) we find that the ratio 
of the dose due to the fluorescent rays to that due to the 
primary rays is 

i^-g) 
jhvK 

hv 

1 —jhvK/hv 
(40.b) 

The maximum value of g will be one and occurs when all the 
fluorescent radiation escapes. Capture of fluorescent radia^ 
tion leads to values of g that are less than one and may 
even be negative. 

When hv is small enough that the bracket in (40) is sig¬ 
nificantly different from unity, photoelectric absorption far 
exceeds any other type of gamma ray interaction. The 
absorption of the gamma rays can be represented as ex¬ 
ponential and no allowance need be made for a buildup 
of scattered radiation. The fluorescent X-rays will be 
emitted isotropically. The energy of the X-rays will be 
approximately Kvk', actually it will be slightly less. Under 
these conditions, in the middle of a block of material of 
thickness 2t exposed to a beam of gamma rays 

-\-Ei(Tt—TKt)—Ei{—Tt—TKt) — (e^^—e~'^^)Ei{—Txt) (41) 

where is the absorption (practically all by photoelectric 
effect) coefficient of the fluorescent X-rays. If 
then 

g Tj^t) (41.a) 

Figure 6 shows the behavior of ^ as a function of H for 
different relative values of tk and r. For very small t 
(relative to or 1/r), g is slightly less than 1, meaning 

16 If I is distance measured into the slab and y is distance measured perpendicular to x 
then a unit flux of primary gamma rays will produce a fluorescence radiation dose equal to 

II+I? 
\t—Tk 

e-rx fT2irydydx • 
4,r[(«-z) 2+2/2] 

Equation (41) can be obtained from this and equations (40) and (40.b). Some details of the 
calculation are given by Goldstein (1954) who treated the problem for t infinite. Ei is the 
notation for the exponential integraljjsee footnote 14. 
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Figuee 6. The correction f or escape of fluorescence radiation. 

that most of the fluorescent X-rays escape. For larger ; 
if g becomes quite small; it actually becomes slightly \ 
negative near Tt=l. This means that most of the X-rays i 
are captured near their point of origin. The negative value i 
indicates that the X-ray dose at a point is due principally i 
to those X-rays released before that point in the beam. ] 
If g becomes negative without limit as t increases. i 
This means that X-rays reach a given point from throughout 
the medium and keep on increasing with the size of the i 
medium. i 

Effects in the L shell can be treated as follows: In the i 
bracket of (40.a) there should be a thu’d term, similar to the ( 
first but to allow for the production of L X-rays following i 
photoelectric absorption in the K shell. In all cases of prac- i 
tical importance up to the present, however, is so large ] 
that the g factor can be considered zero so the term vanishes. ( 
In mixen there should also be a term of the form of (40.a) but i 

with for the L shell; since g can be considered zero, the 
bracket will equal unity. • j 

The question of escape or non-escape of secondary radiation § 
must also be considered for Compton scattering and pair j 
production. The Compton component of rntJ^en is usually f 

given as 0's where the symbols are the macroscopic ; t 
Compton energy-absorption, total, and scattering cross sec- ; t 
tions per unit mass, respectively (Johns and Laughlin, 1956). j t 
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This assumes complete escape of the scattered rays. The 
effect of secondary absorption can be given in a way similar 
to that used in (40.a) by saying that a factor j in 
measures the number of rays that escape; i.e., the dose due to 
scattered rays is proportional to (l-j). j = l means that 
all the scattered rays escaped. Calculation of j is very 
difficult. The scattered rays are not monoenergetic nor are 
they emitted isotropically. To make a rough estimate of j, 
let us suppose that the scattered rays continue to move in 
the same direction as the original rays, that they all have the 
energy {mO's/mO') {hv) equal to the average energy of the scat¬ 
tered rays, and that a is much larger than t^k. Then 

i-l-cr/b (42) 

where the prime refers to the scattered rays. The wall 
thickness of a chamber will be about equal to the maximum 
range of the secondary electrons; this will make at about 
0.03. The average energy of the scattered rays is about half 
that of the primary rays and their absorption coefficient 
about 50 percent greater. Roughly o-a ~ a-j ~ jia. This gives 
j = 0.98. Although this is just a crude estimate, it indicates 
that care is needed in interpreting experiments that make 
use of mi^en- It should be noted that equation (38) requires 
only a ratio of energy absorption coefficients. Where Comp¬ 
ton scattering is the predominant interaction, the correction 
for secondary ray absorption will amount to very nearly 
equal factors in both coefficients and cancel out of the ratio. 

In the case of pair production, (39) assumes that the an¬ 
nihilation radiation escapes. A correction for its capture 
could be introduced. The annihilation radiation would be 
monoenergetic and most of it would be isotropic, but cal¬ 
culation of the amount escaping would be difficult because 
the rays would be emitted at the end of the positron track 
rather than at the point where the gamma ray was absorbed. 
Fortunately, in most cases of current interest, k is small 
compared with r+o- and we can neglect the capture without 
introducing appreciable error. 

When an experimenter corrects for absorption by adding 
material of the same composition as the chamber to the out¬ 
side of the chamber and then extrapolating back to zero 
absorber, he is really correcting for two things. He corrects 
for the absorption of the primary radiation and for the cap¬ 
ture of the different secondary radiations. By extrapolating 
to zero absorber thickness, he converts his measurements to 
the conditions where most of the secondary rays (except. 

59 



e.g., L X-rays) escape. Under these conditions miJ^en is 
properly given by 

_/i JhvKmr^^^\ , , 2moC^\ 

hv / 

Since calculation of the capture of secondary radiation is 
difficult and differs for each chamber and since it is often 
small or cancels out of ratios, mMen calculated according to 
(43) will be used in the analysis of most experiments studied 
below regardless of how the absorption corrections were 
made. 

In most of the papers analyzed below the author does not 
give the values of the energy-absorption coefficient he used 
so, to compare results on a standard basis, new coefficients 
were calculated. The values of and were taken from 
Grodstein (1957). The values of ^o-a were taken from Lea 
(1946). The values of/were taken from Broyles, Thomas, ^ 
and Haynes (1953). The values of were taken from HiU, 
Church, and Mihelich (1952). A comprehensive tabulation 
of energy absorption coefficients based on the latest ex- j 
perimental data has been given by B.T. Berger (1961). Re- » 
suits computed according to (43) are given in table 12. | 

b. Experimental Results 

Many early papers comparing two materials exist that 
have not been covered in this report. They were summarized 
by Sievert (1940). 

A correction common to all these experiments is the amount 
of absorption in the chamber walls. This varied from less i 
than 1 percent to as much as 86 percent. Each author 
corrected his own data, but the methods used do not neces¬ 
sarily agree with those of other experimenters. Due to the ' ) 
complexity of the corrections, they have not been recalcu¬ 
lated here and there may be a lack of uniformity resulting. 

Much of the early work in the study of cavity chambers 
was done with radium. Radium has a spectrum of gamma 
ray energies that makes it difficult to analyze results. Most ; 
of the gamma rays have energies in the range where Compton 
scattering predominates in the light elements. In this range 
of energies and for these elements the ratio of the energy- 
absorption coefficients in (38) equals the ratio of the number 
of electrons per unit mass; i.e., it is independent of energy 
and therefore independent of the choice of the average 
energy. For the heavy elements studied, particularly lead, 
photoelectric absorption is appreciable and the value of the j 
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energy-absorption coefficient depends strongly on the energy \ ji 
of the gamma rays. Because of the complexity of the radium \ ‘ li 
spectrum and of the effect of filtration on the spectrum, it ;j s 
was decided to compute the energy-absorption coefficients 'i d 
for use in (38) for the average energy ray of the spectrum i i d 
and accept the error that this produces in the stopping t 
powers for the heavy elements. Graphite was chosen as the 
reference substance. t 

Gray (1936) used small thimble chambers (0.4 cm ID j ii 
and 1 cm long including a hemispherical end) to compare lc 
walls of different atomic numbers for radium gamma rays. -J g 
A common graphite center electrode was used in all the j p 
chambers except the lead chamber which had a lead electrode, j [ g 
The wall thicknesses were chosen to have the same number ’ | a 
of electrons/cm^ as 0.3 cm of graphite except for beryllium i s 
which had the equivalent of 0.25 cm; these, and particularly I t 
the latter, may have been too thin to give electronic equilib- j d 
rium. The insulator accounted for about 8 percent of the { j 
area of the inner surface of the chamber. Later Gray (1937) | d 
used larger chambers (1.2 cm ID) with thicker walls (elec- j , is 
tronically equivalent to 0.4 cm graphite) and collecting j ti 
electrodes made of the same material as the walls. Alum- 11 n 
inum was the highest atomic number materials used in the i c 
latter experiments so the effects of the change in size of the I i 
chambers on the measured current ratios due to the variation | a 
of mJ with pressure size were small enough that they were j i tl 
not seen. I a 

Mayneord and Roberts (1937) performed an experiment 'fa 
similar to Gray’s with cylindrical chambers, 2 by 2 cm. i i n 
The collecting electrode was elektron metal for all of the '! tJ 
chambers. The wall thickness was varied and the wall jlig 
correction determined by extrapolating the wall absorption j gi 
curve to zero thickness. The authors felt that there may 11] 
have been some beta ray contributions for the thinner walls, j a 
Since only low atomic number chambers were used, the effect j f( 
of pressure-size should be small. n 

Estulin (1951) employed large flat chambers (20 by 20 by 
1 cm) to ol)tain larger ion currents. The gamma rays were o: 
incident perpendicular to the large face and he feels that at c( 
worst his chamber offered a path length of about 2 cm to 5 

traversing electrons. The collecting electrode was a small ' a 
brass frame for all chambers. When the sidewalls were the ; e] 
same material as those of the flat faces, Estulin obtained ■ 
results differing from those of Gray. When he substituted ; ^ 
sidewalls of graphite so that 10 percent of the inner surface j al 
area was a low atomic number material (compared to ; cj 
8 percent for Gray), he got results in agreement with Gray. | 



J Myers (1953) used cylindrical chambers that were fairly 
J large (2 cm ID, 10 cm long, 1 g/cm^ thick). The pressure- 
' size effect should influence his results for the higher atomic 
j number materials. The chamber size is comparable to that 

I used by Estulin so these two authors should nearly agree for 
the high atomic number chambers. 

The results of these authors for radium are collected in 
i table 13. The amount of filtration of the radium sources is 

indicated in the table. The theoretical value shown was 
i calculated from equations (32) and (34) assuming that the 
j gamma ray energy was 0.95 Mev. This negelects any 

pressure-size variation of The agreement is not very 
good. Considering the assumptions necessary about the 
average energy and the differences in filtration, chamber 

i size, and in the amount of low atomic number material in 
i the chamber walls, it is probably surprising that the agree¬ 
ment is as good as it is. 

The interpretation of the current ratios obtained for 
I different atomic number chambers when exposed to X-rays 

is very difficult. A basic difficulty is again that the radia¬ 
tion covers a spectrum of energies. The energies are in the 
region where photoelectric absorption is very strong, so the 
choice of an average energy for the spectrum is very critical. 
Absorption of the X-rays in the chamber wall can change the 
average energy significantly. Another difficulty is that 
the chamber must be very small if perturbation of the second¬ 
ary electron flux traversing the chamber is to be negligible 
and if production of secondary electrons in the gas is to be 
negligible. If the atomic number of the wall is less than 

I that of the gas, the greater photoelectric absorption in the 
j gas makes the elimination of the secondary production in the 

gas very difficult (Attix, 1958). For reasons of this sort, 
the experiments of Clarkson (1941), Aly and Wilson (1949), 

I and Ibrahim and Wilson (1952) do not give useful information 
I for our present purpose of comparing theoretical and experi- 
j mental stopping powers. 

The results of Attix, DeLaVergne, and Ritz (1958) and 
' of Larson (1956) with X-rays have already been discussed in 

connection with the variation of mJ with pressure-size (sec. 
5.1). They will be discussed again later since both involved 
a separate measurement of the dose rate with a free-air 

i chamber (sec. 5.4.c). 
I In recent years strong sources of radioactive isotopes 

emitting monoenergetic gamma radiation have become avail¬ 
able. These are ideally suited for experiments with cavity 
chambers since there is no difficulty about the average energy. 
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Table 13. wsf<, relative to graphite for radium gamma rays 

Author 

Gray, 1936 Gray, 
1937 

May- 
neord, 

Roberts, 
1937 

Estulin, 1951 Myers, 
1953 

Theoret¬ 
ical 

'^X^Filter 

\ 

0.012 cm 
Ag; 0.079 
cm Pb 

2 cm 
Pb 

Unspec¬ 
ified 

0.1 cm 
monel 

0.5 cm 
Pb 

2.0 cm 
Pb 

0.05 cm 
Pt 

Wax a_ 1.157 1.16 1.22 
4 Be_ .884 .91 
6 0_ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
12 Mg .932 .929 .946 .94 
Elektron b_ .939 .959 .98 
13 Al_ .880 .884 .880 . 85 .86 .94 .88 
16 S.. .914 .91 
26 Fe - .67 .67 .84 
29 Cu_ .68 .75 .62 .64 .76 .75 
47 Ag_ .58 .66 
50 Sn_ .50 .54 .64 
82 Pb_ .31 .52 .43 .50 .53 .55 

a Taken to be CH2. 
b Taken to be Mg, 92.9%; Al, 3.4%; Zn, 3.3%; Cu, 0.2%. 

M3WS (1953) used the same chambers he had used with 
radium to compare different atomic number chambers wdth 
Co®°. In an experiment following his radium work, Estulin 
(1953) used his flat chambers to compare^the cmTents in 
lead and graphite chambers for a series of gamma ra^^s with 
energies between 0.32 and 2.76 Mev. The work of Cormack 
and Johns (1954) with Co®°, and Greening (1957) and Attix, 
DeLaVergne, and Ritz (1958) with Au^®®, Cs^^^, and Co®^ 
was described in section 5.1. Onl}^ the last two of these 
groups observed the pressure-size variation of rnJ^ The 
results for Au^®^, Cs^^^, and Co®° are presented in tables 
14.a and 14.b. To avoid the complication of the pressme-size 
variation of rnJ, the relative 5’s are given for an average 
chamber dimension of 1 cm at atmospheric pressure. The 
theoretical values were calculated from (36). 

The results of Attix, DeLaVergne, and Ritz for Au^®® and 
Cs^^^ are given even though they did not have side walls of 
the same material as the main walls. With this reservation 
on the validity of their data, the results for these two isotopes 
are in fair agreement among experimenters and with theorj^. 

All results for Co®° were for completely enclosed chambers. 
There is pretty good agreement among the different authors 
for this isotope. There is good agreement between theory 
and experiment for the low and medium atomic numbers. 
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For lead the experimental results are significantly higher 
than the theoretical. This can be understood in the light 
of the earlier discussion of the perturbation of the cavity 
traversing flux (sec. 5.1 and fig. 5). Figure 5 indicates that 

would be about 13 percent higher than the value 
calculated from the Spencer-Attix theory due to the pertur¬ 
bation. The results for lead in table 14.b are about 8 
percent higher. This is satisfactory agreement. 

Table 14.a. msf,> relative to graphite for gamma rays 

Gamma emitter.. Auiw CS’37 

hv.. 0.41 0.66 Theoret¬ 
ical 

EstuUn, Greening, Attix et Theoret¬ Greening, Attix et 
1953 1957 al., 1958 ical 1957 al., 1958 

6 C.... 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
13 A1___ .91 .84 .90 .86 
29 Cu. .68 .73 .71 .72 .76 .72 
50 Sn... .44 .49 .58 .56 .64 .60 
73 Ta. .52 .51 .50 .53 
82 Pb.. .575 .48 .47 .50 .53 .48 .52 

Table 14.b. ^sf,> relative to graphite for gamma rays 

Gamma emitter_ Co98 

hv- (1.25) Theoret¬ 
ical 

Myers, Estulin, Cormack Greening, Attix et 
1953 1953 and Johns, 1957 al., 1958 

1954 

6C.... 1.00 1.00 1.00 1.00 1.00 1.00 
13 Al. .90 .89 .90 .87 
29 Cu.. .75 .73 .76 .75 .75 
47 Ag. .64 .65 .66 
50 Sn... .62 .66 .63 
73 Ta. .56 .54 
82 . .59 .57 .58 .53 .58 .54 

The effects of cavity perturbation are also evident in table 
15 which gives Estulin’s results for different energy gamma 
rays. The theoretical values are from (36) for a 1-cm-atmos- 
phere chamber. Part of his experimental results are higher 
than the theoretical. Ru^°^ and Zn®^ are lower; this might 
be explained as due to an admixture of lower energy gamma 
rays. There is no evident reason why the Na^^ experimental 
value should be so low. The data show the effects of the 
cavity perturbation but are otherwise valueless in a study 
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of s-values until a theory for the perturbation has been 
developed. 

Table 15. mSair relative to graphite for gamma rays 

(Estulin, 1953) 

Gamma emitter hv 
-V 

Experimen¬ 
tal 

ksfir 

Theoretical 

Crsi_ 0. 32 0.625 0. 50 
In”®_- _ .336 .635 .50 
Aui98_ .412 .575 .50 
Ruio®___ .726 .400 .51 
Zn85_ 1.11 .518 .53 
C060_ (1.25) .573 .54 
Na2<_ 1.38 .438 .56 

2.76 

5.3. Chambers With Different Atomic Number Gases 

When a given chamber is exposed to identical fluxes of 
radiation while filled with different gases, the absorbed dose 
in the walls is always the same and 

m '^ga3 

„wair 
m "^air 

'^alr m 

"^gasm 

^alr 

J. 
(44) 

Since the relative values of w are quite well knovm and only 
relative current measurements are needed, relative s values 
of good accuracy should be obtained. 

Hersh and Paterna (described by Failla, 1956) introduced 
a convenient method for obtaining identical fluxes. They 
prepared thick, uniformly dispersed beta ray sources by 
mixing the emitter in polystyrene powder and then molding 
it into blocks that were used as one plate of^an extrapolation 
chamber. Extrapolation was necessary both to satisfy the 
Bragg-Gray requirements on chamber size and to eliminate 
the perturbing effect of the gas on the beta ray dose dis¬ 
tribution. Because of the symmetry between the two walls 
of an extrapolation chamber, the same sort of electronic 
equilibrium exists at the cavity as would exist in a uniform 
medium of the emitter. It is necessary to average the cur¬ 
rents for opposite polarity collecting voltages to cancel out 
the current contribution of the beta rays. It was not pos¬ 
sible to do this for Ni®® because of the influence of the col¬ 
lecting field on the large number of low energy beta rays. 
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Hersh and Paterna used relative w values determined by 
Gross (1954) and listed in table 16. 

This same technique was used by Baily and Brown (1958a, 
b) to cover a wider range in atomic number. They used 
spectroscopically pure noble gases and recirculated the 
helium and neon over charcoal. This is important because 
w for the noble gases is sensitive to the presence of impu¬ 
rities. They used relative w values taken from Jesse and 
Sadauskis (1957). 

The results of these two groups are given in table 16. 
Calculations such as those in section 4 for gamma rays have 
not been made for beta rays so there is difficulty in comparing 
with theory. To obtain the “theoretical’' value given in 
table 16, it was assumed that an equation of the type (34) 
should fit the data. Then the value of apoiystyrene(T) was 
sought that would give the best fit. The data for all beta ray 
energies were lumped together for this purpose. The result 
was a=0.17 which compares well with the gamma ray values 
given in table 8. 

The agreement between the experimental and theoretical 
values is generally within 1 to 2 percent which is about the 
experimental uncertainty. The difference is slightly more 
for krypton and carbon dioxide. The chief differences are 
for helium, neon, and xenon which gave measured values 30, 
20, and 13 percent lower than the theoretical ones. These 
differences may be due to errors in w. Jesse and Sadauskis 
(1953) found that very minute amounts of impurities 
reduced w for helium and neon by 30 and 20 percent, respec¬ 
tively—the same amount the observed s’s are low. It seems 
that in spite of the care exercised by Baily and Brown, 
contamination of these gases by traces of gas from the plastic 
electrodes occurred. 

5.4. Comparison With Other Measurements of Absorbed 
Dose 

If some other method can be found for measuring the 
absorbed dose, Ez in the Bragg-Gray formula, then measure¬ 
ments with a cavity chamber permit a determination of the 
product ws. For practical purposes this is all that is needed 
in use of the Bragg-Gray formula. For our present purpose, 
however, we will adopt a value of w in order to compare the 
s’s obtained this way with theoretical values or other 
experimental values. The recently determined value of 
Wg,ir=33.7 ev per ion pair has been assumed (Bay, 1957; 
Gross, 1957). 
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a. Total Absorption Method 

If all the energy emitted as gamma rays by a source is 
absorbed in a very large medium, such energy must equal the 
integral absorbed dose in the medium. If the source is a 
point source emitting energy Q in the form of gamma rays 

^00 ^00 

Q= I £'2 47^r^^Zr=47^s^y I Jr^dr. (45) 
Jo Jo 

Gray (1937a) imbedded a radium source in a large mass of 
aluminum and measured the ionization in an air-filled cavity 
as a function of distance from the source. Q was obtained 
from a calorimetric measurement of the gamma ray energy 
emitted per gram of radium. Unfortunately this particular 
measurement suffered from two large uncertainties. One 
arose from the fact that the ionization measurements were 
based on a cavity of 1 cm radius in the aluminum, and a 
correction was made for the extra attenuation the radiation 
would undergo to reach an infinitely small cavity located at 
the center of this volume. This correction was calculated 
from the theoretical energy absorption coeflicients for radium 
gamma rays and amounted to 6.8 percent. An examination 
of the measured curve of ionization versus distance indicates 
that the correction might be as high as 10 percent. So there 
is an uncertainty of about 3 percent in the ionization measure¬ 
ments from this cause alone. There seems to be an uncer¬ 
tainty of comparable size in the calorimetric determination 
of Q, One cannot, therefore, deduce a useful value for the 
stopping power ratio. 

b. Beta Emitters in Chamber Walls 

If a beta ray emitter is uniformly dispersed in a uniform 
medium such as the walls of a cavity chamber, the absorbed 
dose rate equals the rate of energy emission per gram. 

Gray (1949) employed gel-lined ionization chambers where 
the radioactive material was uniformly distributed through 
the gel. Correction had to be made for the size of the 
chamber, the gamma ray contribution to the ionization, 
absorption in a paraffin film on the gel, and the failure to 
attain equilibrium thickness. These, coupled with the un¬ 
certainties in the disintegration rates of the isotopes em¬ 
ployed, make these data unsuitable for stopping power 
determinations. This experiment requires absolute values 
for all factors which makes accuracy extremely difficult. 

Caswell (1952) put the active material in water solution 
to form one electrode of a parallel plate extrapolation cham- 
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ber. The solution depth was greater than the maximum 
beta ray range. The extrapolated values of the current 
per unit volume were used to calculate the average energy 
per disintegration. By accepting the values of the average 
energy obtained from beta ray spectrum measurements, 
the relative stopping power of water to air can be calculated 
from his data. These are given in table 17 where correction 
has also been made to w=S3.7. For comparison we can 
calculate a theoretical value of mS for beta rays as was done 
in section 5.3. It will be assumed that az{T) for water is 
the same as the value found there for polystyrene, a=0.17. 
This gives „iSaif®’^=l-15. CaswelPs values are consistently 
much lower. He did not find J proportional to the wall 
separation so that there are uncertainties in his extra¬ 
polation procedure which together with uncertainties in the 
disintegration rates could account for the discrepancy. 

Table 17. mSair"' for beta rays 

Isotope Caswell, 1952 Gross et al., 
1957 

S35 ... 1.17 
Ca45____ 1.09 
T13I 1.02 
P32 1.07 
Y90 1.07 

Gross, Wingate, and Failla (1957) performed an experi¬ 
ment almost identical with the previous one. The sample 
used for the water electrode was energy calibrated by means 
of a microcalorimeter. Most of the difficulties present in the 
previous work were eliminated here. The energy liberated 
per gram of sample does not enter since the 33.7 value for w 
was taken from Bay, Mann, Seliger, and Wyckoff (1957) and 
is based on the same solution. Any basic error in either 
measurement, however, would certainly influence the result. 
Using the authors’ values, the uncertainty should be less 
than 2 percent. This time the results were used to find w. 
liw=33.7 is used, can be calculated and is given in 
table 17. It is within the experimental uncertainty of the 
theoretical value. 

c. Free-Air Chamber 

Under electronic equilibrium conditions, the energy ab¬ 
sorbed per unit mass in air and in air-equivalent material are 
the same for a given flux of radiation. This energy is given 
by WmJfac where mJfac is the current per unit mass of air 
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measured with a free-air ion chamber. In a material other 
than air equivalent, the energy absorption will be greater by 
the ratio of the mass energy-absorption coefficients. From 
another point of view, the free-air chamber can be con¬ 
sidered an air wall chamber in the type of measurements dis¬ 
cussed in section 5.2. Equation (38) applies with rrSa 
strictly equal to unity. There is no chance for polarization 
effects to make the stopping power of the gas and wall dif¬ 
ferent in the case of the free-air chamber. This method has 
the advantage that the results are independent of w. 

Larson (1956) compared a free-air chamber and aluminum 
and copper extrapolation chambers for K fluorescence X-rays 
of 8.2, 16.1, 23.7, and 34.3 kev. He used computed values of 
ra8 to predict the relative currents in order to study the appli¬ 
cability of the Bragg-Gray principle in this low energy region. 
For the case of the copper chamber, capture of fluorescence 
radiation is appreciable. Fortunately, Larson’s chambers 
are sufficiently close to the example considered in section 
5.3.a that that calculation can be used to correct m\^en' His 
copper chamber walls were 0.0013 g/cm^ thick; is about 40 
for copper; tkI is 0.052 and (41.a) gives ^=0.82. Table 18 
shows CTjUew calculated according to (43) and also corrected 
for escape according to (40.a) and the corresponding rrS de¬ 
rived from Larson’s data. For comparison, theoretical 
values calculated according to (32) and (33) are given. For 
aluminum the agreement between theory and experiment is 
not quite as good as the 4 to 5 percent accuracy expected for 
the experiment. There appears to be a systematic trend in 
the results in a direction contrary to that predicted. In the 
case of the uncorrected copper data, the agreement is some¬ 
what worse and, in general, applying the escape correction 
makes it worse still. The large uncertainties in Larson’s 
experiment are associated with the low energies used. At 
higher energies the method would probably give a better 
check on theory. 

Attix, DeLaVergne, and Bitz (1958) reported similar ex¬ 
periments with heavily filtered X-rays in the range of effec¬ 
tive energies from 38 to 206 kev for carbon, aluminum, cop¬ 
per, tin, and lead extrapolation chambers. Mention was 
made of this work in section 5.1. The ratio mJzImJfac was 
found to vary considerably and nonlinearly with wall separa¬ 
tion. This makes the choice of the value for use in (38) 
arbitrary. Larson (1956) compared his results with those of 
these authors and concluded that if they had been able to go 
to wall separations smaller by an order of magnitude they 
would have obtained current ratios with a small linear 
variation that could be extrapolated to zero wall separation. 
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Table 18. ^^^lirfor nearly monoenergetic X-rays (Larson 1956) 

z hv kev , air 

With escape 
correction 

Without escape 
correction Theo¬ 

retical 

m^air z 
mMen 

z 
m^en »n^air 

13 A1.. 8.2 8. 75 47.2 0. 84 0.78 
16.1 1.04 6.18 .84 .81 
23.7 .306 1.87 .80 .82 
34.3 .094 .57 .78 .83 

29 Cu. 16.1 1.04 48.4 .69 52.2 0. 75 .59 
23.7 .306 18.2 .70 19.1 .73 .63 
34.3 .094 5.96 .59 6.16 .62 .66 

d. Whyte’s Method 

Whyte (1957) introduced another method for obtaining 5 
that makes use of the currents in two different chambers and 
equation (38) but has equal to unity. 

A corollary to the Fano theorem (sec. 2.4) is that mJ will 
be independent of pressure in a cavity chamber if the gas 
and walls are identical in elemental composition and there 
is no difference in polarization effect between the walls and 
gas. For such a chamber, ^5=1. For Whyte’s apphcation 
it is also necessary to establish that these are the only condi¬ 
tions under which will be independent of pressure. It is 
easily seen from the arguments used to estabhsh the theorem 
that if the elemental compositions are the same, then there 
must be no difference in polarization effect between wall and 
gas, and vice versa. This leaves the possibility that both 
might be different in the wall and gas in such a way to leave 
mJ independent of pressure. In terms of the two region model 
of section 2.4, this requires varying the elemental composi¬ 
tion on the two sides of the boundary so that an/-fold change 
in source intensity is accompanied by an /-fold change in 
stopping power. Since the polarization effect is a function 
of the electron energy while the elemental composition is 
not, this can only be done for a single energy, not for the 
whole spectrum of secondary electrons. 

Whyte’s procedure is to measure as a function of pressure 
in several chambers with walls of different materials but 
filled with the same gas. Some parameter that measures 
the variation of the with pressure is plotted versus the 
for a given pressure. It is then assumed that these points 
are part of a smooth curve and that the value of mJ on the 
curve at the point where the parameter indicates zero pres¬ 
sure variation is what would be obtained for a chamber with 
walls and gas having the same composition and polarization 
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effect (and, hence, Mathematically, the assumption 
is that both and its pressure variation are functions of a 
single variable. In the absence of the polarization effect 
and in the energy region where Compton effect is practically 
the only gamma ray interaction (and neglecting our ignorance 
of cavity perturbation effects), this would be expected to be 
the case. The source intensities of secondary electrons 
would depend on the electron densities and their stopping 
powers would depend on the electron densities and the mean 
excitation potentials. As in the Fano theorem, we could 
expect the mutual dependence on electron density to cancel 
out, leaving the mean excitation potentials of the wall ma¬ 
terials as the single variable desired. The inclusion of 
polarization effects, however, introduces other variables. 
First, we note that though theoretically depends on the 
polarization effect, the pressure variation does not.^’’ In 
Sternheimer’s method of calculating density effects, the 
variables are the mean excitation potentials and the energy 
levels of the atoms. These are related, of course, and it 
may be that they can be considered a single variable. In 
view of the good results obtained by Whyte, this would 
seem to be the case. 

Whyte measured and its pressure variation for Co®® 
gamma rays and chambers of beryllium, graphite, aluminum, 
and copper. In the pressure-size range he used, about 0.5 
to 5 cm-atmospheres, mJ varied linearly with pressure. The 
parameter chosen to measure the pressure variation was just 
the slopes of these lines. The results for rnS for a 1-cm- 
atmosphere chamber are given in table 19, together with 
theoretical values calculated from equation (36). The 
agreement is excellent except for copper where there is 4.5 
percent difference. 

Table 19. ,nsf,r hy Whyte’s method for Co^^ gamma rays 
Whyte (1957) 

z 
m^air 

Theoretical Experimental 

4 Be—.....-.. 0. 909 0.915±0.007 
6 0 ____ 1.003 1.004±0.005 

13 A1 .... .874 . 877±0. 006 
29 Cu...... .747 .71 ±0.01 

17 See equation (37). The pressure variation does not depend on 5, but it does depend on 
the constant part of the polarization effect that is incorporated in the mean excitation potential. 
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e. Calorimetric Methods 

Calorimetric techniques have had considerable develop¬ 
ment in recent years and can be applied in several ways to 
cavity chamber studies. Genna and Laughlin (1955) meas¬ 
ured the intensity of a beam of Co®° gamma rays calorimetri- 
cally and then measured the ionization produced by the 
same beam in a polystyrene extrapolation chamber. The 
absorbed dose rate in the walls of the chamber is the product 
of the intensity and the mass energy-absorption coefficient. 
If the energy-absorption coefficient of the radiation in 
polystyrene is assumed to be accurately known, the measure¬ 
ments yield the product 39.1 ±0.4 ev/ion pair. 
If ic=33.7±0.3 ev/ion pair, this gives 1.16±0.02. 
The value calculated from equation (36) is 1.12 which dis¬ 
agrees by more than the stated uncertainty. 

McElhinney, Zendle, and Domen (1957) did a similar 
experiment with a beam of 1,400-kilovolt X-rays. In this 
case the extrapolation chamber had walls of graphite. The 
energy-absorption coefficients were obtained from Grodstein 
(1957) and averaged over an empirical X-ray spectrum. 
From the results one can calculate ^c^s|[r^‘'’*®=34.0. Putting 
w=33.7 gives ^§^[^^'’^‘*^=1.01. Equation (36) gives a value of 
1.00 which is probably within the experimental uncertainty. 

]Myers (1958) measured the total rate of energy emission 
in the form of beta and gamma rays from a 2-curie Co®*^ 
source enclosed in lead calorimeter. From this and the 
known decay scheme of Co®®, the intensity at any point can 
be calculated. The ionization in an air-filled aluminum 
cavity chamber (volume 1.33 cm^) at a known distance from 
the source was measured. His results give WmStiT—‘^9.0 ± 0.7 
For ^^;=33.7±0.3, this gives ws4i^=0.860±0.027. This 
is within the experimental uncertainty of the value 0.87 
from equation (36). 

Bernier, Skarsgard, Cormack, and Johns (1956) made use 
of calorimetric techniques in an even more direct way. They 
measured the energy absorbed per gram by graphite and 
aluminum blocks in a beam of Co®® gamma rays by calo¬ 
rimetry and then measured the ionization per unit mass of 
air in 1 cm^ cavities in graphite and aluminum at the same 
point. These authors were unable to achieve complete 
voltage saturation in their chambers. Lack of complete 
correction would make their results for too high. The 
result for graphite was mE/mJ=0.110S±0.0007 erg/g per 
esu/g, and for aluminum 0.0979 ±0.0006 erg/g per esu/g. 
These figures give =33.1 ±0.2 ev/ion pair and 
^mSa/r=29.4±0.2 ev/ion pair. For w=33.7±0.3 these in 
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turn give 0.015 and 873dz0.016. 
For comparison, equation (36) gives 1.00 and 0.87. This 
is good agreement for the aluminum, but slightly outside 
the limits of uncertainty for graphite. 

f. Chemical Dosimetry 

Chemical dosimeters such as the ferrous sulfate dosimeter 
can be used to measure absorbed dose. If is the number 
of ferric ions formed per gram of solution and G is the number 
of ferric ions formed per 100 ev absorbed, then 100 mXIG is 
the energy per gram absorbed by the dosimeter. Sinclair 
and Shalek (1958) give 6^=15.6. As remarked earlier, 
cavity theories will apply to chemical dosimeters provided 
they are thin enough to satisfy the Bragg-Gray requirements. 
If, instead_, the dosimeters are quite thick, 100 mYIG is the 
average absorbed dose in the dosimeter. The ratio of the 
absorbed dose in the walls to that in the dosimeter will 
equal the ratio of the mass energy-absorption coefficients. 

Weiss and Bernstein (1955) measured 2-Mv X-rays with 
a ferrous sulfate dosimeter in a polystyrene container and 
with a polystyrene extrapolation chamber. Their chemical 
dosimeter was 0.79 cm thick; an extrapolation was performed 
to correct for X-ray absorption and change in solid angles, 
but the smallest thickness actually measured was 0.79 cm. 
This thickness is greater than the range of practically all of 
the secondary electrons. The authors assume that the 
dosimeter is very thick. Then the dosimeter measures the 
average absorbed dose within itself. The absorbed dose 
in the polystyrene wall differs from this by the ratio of the 
energy-absorption coefficients. Then 

polystyrene 1 nn 'W 

^polystyrene__ 

” wo„j 

This approximation is not perfect because the range of many 
of the electrons is comparable to the size of the dosimeter so 
that transition effects will occur through a good share of 
the dosimeter; however, the effects should be small. 

Weiss and Bernstein used their data with calculated 
stopping powers to determine w values. If we assume 
tt)air=33.7, assume the relative w values found by Gross 
(table 16) which are independent of any stopping power 
values, and assume i^=26.4 for argon from Jesse and Sadaus- 
kis (1955), the data may be used to calculate The 
results are given in table 20. Theoretical values of s 
averaged over X-ray spectra are not available, but the 
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Table 20. for 2-Mv X-rays 

0 polystyrene 
gas 

Gas 

Absolute 
value 

Relative to 
air 

Air______ 1.12 1.00 
N2__-.-__ 1.10 1.00 
Oj....... 1.12 1.02 
CO2____ 1.12 .99 
A--.......... 1.28 1.29 
CH4____—.- .79 .70 
C2H4__-.... .92 .79 

present results may be compared with those for beta rays 
in table 16. For this purpose the third column of table 20 
shows the present results relative to air. The comparison 
shows agreement within the 1 to 2 percent experimental 
uncertainty except for the case of argon. For a comparison 
of absolute values we can assmne that the average energy 
of the 2-Mv X-rays is about the same as the energy of 
Co®® gamma rays. From equation (36) for 
Co®®. This is the same as found experimentally for the 
X-rays. 

Zsula, Luizzi, and Laughlin (1957) measured 10- and 
20-Mev electrons from a betatron in the same manner. At 
the depth of the cavity the mean electron energies were 6.3 
and 16 Mev. The chemical dosimeter was 0.3 cm thick which 
is thin enough to permit application of cavity theory; how¬ 
ever, the spectrum of electrons at the cavity would be quite 
different from that for exposure to gamma rays of comparable 
energies. The authors were able to show that the dosimeter 
and extrapolation chamber responses were in agreement, 
using calculated stopping powers, provided the proper cor¬ 
rection for the polarization effect were made. 

6. Conclusions 

6.1. Practical Applications 

In the introduction it was said that the original Bragg-Gray 
theory, which was based on the assumption of an energy 
independent ratio of continuous electron stopping powers 
for the wall and gas, could be considered a first approximation 
in cavity theory. Laurence’s work took into account the 
energy dependence and could be considered a second approxi¬ 
mation. Comparison of the Laurence approximation with 
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experimental data and with calculations for a third approxi¬ 
mation (Spencer-Attix) shows that it is probably in error 
by no more than 20 percent in the very worst case, that of a 
lead-wall chamber filled with air. Such a wide difference in 
atomic number of the wall and gas is hardly ever needed in 
the practical applications of cavity chambers. On the 
contrary, the most common use (measurement of exposure 
dose) requires an air-filled chamber with air-equivalent wall; 
i.e., no difference in atomic number. Most of the experi¬ 
mental data for walls of low atomic number agree with the 
Laurence approximation to within the experimental uncer¬ 
tainties, which are generally 1 to 2 percent. Whyte’s method 
(sec. 5.4.d), though subject to some criticism, gives the best 
available check on the theory for an air-filled cavity in nearly 
air-equivalent (graphite) walls. The predictions of the 
Laurence and Spencer-Attix approximations differ by only 
0.15 percent for this case, and Whyte’s result is within 0.1 
percent of both, although only 0.5 percent experimental 
uncertainty is claimed. 

For the practical application of cavity chambers whose 
walls and gas differ only slightly in atomic number, we 
recommend that the Bragg-Gray-Laurence theory for mS be 
used. mS can be calculated from equations (32) to (34) with 
the help of the accompanying tables. Most of the mean 
excitation potentials required can be obtained from tables 
3 and 5. Selection of / values for elements not listed in these 
two tables can be made on the basis of the discussion in 
section 3.3.d. For beta rays, the empirical information in 
section 5.3 may be used in making these calculations. 

6.2. Cavity Chamber Theory 

Although the practical importance of the higher approxi¬ 
mations in cavity theory is not very great, they are very 
important in developing our understanding of the interaction 
and penetration of radiation through matter. The experi¬ 
ments with chambers having walls of atomic number much 
different from those of the gas are important because the 
largest deviations from the lower approximations are to be 
expected in this case. 

The Spencer-Attix theory is the only higher approximation 
that has been developed to the point where comparison with 
experiment is generally possible. Their theory is not a 
rigorous one. At the risk of oversimplifying the physical 
picture, rigor was reduced to the point where numerical 
calculations became feasible. A major omission from this 
(and other) theories is allowance for the effect of the cavity 
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in perturbing the flux of electrons traversing it. Their 
theory also does not predict what/^(T, A) = l/mS will do as A 
approaches zero; i.e., pressure-size of the cavity approaches 
zero. 

Spencer and Attix’s calculated values of fz{T, A) tend to 
deviate more and more from those calculated in the Laurence 
approximation as A becomes smaller. There is no certainty 
as to what the behavior of fz{T, A) should be expected to be 
as A approaches zero. Some people feel that as the cavity 
size becomes negligible, the delta ray effect would vanish, 
leaving/^(T, A) equal to the value calculated in the Laurence 
approximation. Others see no need for the delta ray effect 
to vanish. They point out that the energy deposition per 
gram of gas in the chamber as described by the Bragg-Gray 
equation is different from what it would be in the same mass 
of wall material and that this difference does not vanish with 
chamber size; perhaps the delta ray effect behaves in a 
similar fashion. The behavior for decreasing A is of concern 
to more than just cavity theory because it is involved in the 
operation of extrapolation chambers. The available experi¬ 
mental data are of no help on this problem because they do 
not exist for chambers of sufficiently small pressure-size. 
The Greening (1954) effect prevents the extension of meas¬ 
urements to very much smaller pressure-sizes. 

Although theory is lacking for the cavity perturbation and 
the small-cavity delta ray effects, the following procedure 
for determining absorbed dose appears to be applicable: 
measure mJ as a function of pressure-size of the cavity; 

multiply rnJ by wlJ{Ty,A), where /(Ty,A) is obtained from 
the Spencer-xAttix theory, equations (35) and (36). This 
corrects for the delta ray effect. For not too small pressure- 
size, the resulting data generally appear to lie on a straight 
line that can be extrapolated to zero pressure-size. This ex¬ 
trapolation takes care of the cavity perturbation effect. 
Tlie extrapolated value is the absorbed dose in the wall of the 
chamber. 

Calculations of the Spencer-Attix type have not been 
made for X-ray energies. The experimental evidence ap¬ 
pears to indicate that the delta ray correction must be small 
for X-rays. 

No experimental data have been reported that show evi¬ 
dence of a delta ray effect in beta ray measurements. In 
particular, the measurements of Baily and Brown (see sec. 
5.3) for beta emitters in the plastic walls of chambers con¬ 
taining xenon gas give constant for small pressure-size. 
One feels that if a high atomic number wall and low atomic 
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number gas give a detectable delta ray effect, then there 
should be a detectable effect for low atomic number wall and 
high atomic number gas. The plastic-xenon chamber may 
be compared roughly with a tin-air chamber for which the 
delta ray effect is small but detectable for gamma rays. It 
may be that there is some difference between the two types 
of chambers that makes the delta ray effect in the low Z 
wall-high Z gas chamber so small as to be undetectable. 

It is evident that more work, both theoretical and experi¬ 
mental, is needed before we can claim to completely under¬ 
stand cavity chambers. Theory is needed for the cavity 
perturbation. The theory of the delta ray effect needs 
development for very small cavities, for X-ray energies, for 
beta rays, and for low Z wall-high Z gas chambers. Experi¬ 
mental data are needed on the same problems. 

A topic for which both theory and experiment are lacking 
at the present is the use of cavity chambers when electronic 
equilibrium does not exist. This was discussed in section 
2.6.a where it was shown that the Bragg-Gray equation 
should still apply but that s is expected to be different from 
its value for equilibrium conditions. One expects that it is 
not radically different. It would be of interest to know just 
how much different s becomes for applications such as 
dosimetry in the transition region of high energy gamma rays 
or for tissue near bone. 

6.3. Stopping Powers 

The mean excitation potential, I, is an experimentally 
adjusted parameter in the stopping power formulas. At the 
present time there is considerable experimental uncertainty 
in the / values. The values given in table 5 were selected 
on the basis of the review given in section 3. It is possible 
that the values for the heavy elements are in error by 20 
to 30 percent. Ps for the lighter elements are generally 
better known. Aside from any practical applications of the 
stopping power formulas, it is clearly necessary to improve 
the measurements of the I values to answer important 
theoretical questions about the interaction of charged parti- 

' cles with matter. One or more new proton stopping power 
experiments, particularly ones at a few hundred Mev energy, 

I are needed for this purpose. 
For practical dosimetry purposes, one uses equation (34) 

for rnS and deals with walls and gases of low atomic number 
and similar I. In equation (34) the error in calculating 
mS is 0.1 to 0.2 the cumulative error in the ratio of the Ps 
of the wall and gas. The latter could be several percent, so 
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the error in mS could be several tenths of a percent. This is 
comparable to the experimental uncertainty in the best 
cavity chamber measurements. The present I values, there¬ 
fore, are good enough for most practical purposes. For 
special purposes it is desirable that the I values be known 
more accurately. 

For basic investigations into cavity theory, large differ¬ 
ences in atomic number between wall and gas are desired. 
The effects of errors in I are then more serious in calculating 
mS and errors of as much as 10 percent can result from 
20 to 30 percent errors in I. The development of a more 
complete cavity theory will depend on having more certain 
values for I. 

This study group would like to encourage future experi¬ 
menters doing stopping power studies to include light ele¬ 
ments in then’ work. These are apt to be overlooked because 
the present theoretical interest is in elements heavy enough 
that statistical theories can be applied and tested. Such 
things as graphite, air, and plastics are very important to 
dosimetry. The stopping power of graphite has been studied 
frequently, but materials such as air and plastics are avoided 
because they are mixtures. Those who must work with these 
materials would welcome definitive stopping power data for 
air and a few simple plastics. 

The group would also like to encourage more work on 
polarization and chemical binding effects. These effects are 
at their largest in the light elements and moderate energies 
encountered in dosimetry. 
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No. Price 

73 Protection Against Radiations from Sealed Gamma Sources $0. 35 
74 Building Code Requirements for Reinforced Masonry_ . 15 
75 Measurement of Absorbed Dose of Neutrons, and of Mix¬ 

tures of Neutrons and Gamma Rays_ . 35 
76 X-ray Protection up to Three Million Volts_ . 25 
77 Precision Measurement and Calibration: 

Volume I—Electricity and Electronics_ 6. 00 
Volume II—Heat and Mechanics_ 6. 75 
Volume III—Optics, Metrology, and Radiation_ 7. 00 

78 Report of the International Commission on Radiological 
Units and Measurements (ICRU) 1959_ . 65 

79 Stopping Powers for Use With Cavity Chambers_ 35 




