REFERENCE

A UNITED STATES DEPARTMENT OF COMMERCE PUBLICATION

NBS Publi-

cations

Alll04 937089

National Bureau of Standards Library, E-01 Admin. Bldg.

MAY 1 5 1970

Reference book not to be taken from the library.

UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

HANDBOOK H28 (1969)

PART I

SCREW-THREAD STANDARDS FOR FEDERAL SERVICES

00	
1	
1	
۱ CO.	
<i>₩</i> 20	1
PT.1 1969	8

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards 1 was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.

The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Measurement Services and the following technical divisions:

Applied Mathematics-Electricity-Metrology-Mechanics-Heat-Atomic and Molecular Physics-Radio Physics 2-Radio Engineering 2-Time and Frequency 2-Astrophysics ²--Cryogenics.²

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; develops, produces, and distributes standard reference materials; relates the physical and chemical properties of materials to their behavior and their interaction with their environments; and provides advisory and research services to other Government agencies. The Institute consists of an Office of Standard Reference Materials and the following divisions:

Analytical Chemistry—Polymers—Metallurgy—Inorganic Materials—Physical Chemistry. THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations in the development of technological standards, and test methodologies; and provides advisory and research services for Federal, state, and local government agencies. The Institute consists of the following technical divisions and offices:

Engineering Standards-Weights and Measures -- Invention and Innovation -- Vehicle Systems Research—Product Evaluation—Building Research—Instrument Shops—Measurement Engineering-Electronic Technology-Technical Analysis.

THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center consists of the following divisions:

Reactor Radiation-Linac Radiation-Nuclear Radiation-Applied Radiation.

THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in the selection, acquisition, and effective use of automatic data processing equipment; and serves as the principal focus for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards-Computer Information - Computer Services - Systems Development-Information Processing Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System, and provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

Office of Standard Reference Data-Clearinghouse for Federal Scientific and Technical Information 3-Office of Technical Information and Publications-Library-Office of Public Information-Office of International Relations.

¹ Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234. ³ Located at Boulder, Colorado 80302.

³ Located at 5285 Port Royal Road, Springfield, Virginia 22151.

NATIONAL BUREAU OF STANDARDS OCT 2 5 1971

-

5

UNITED STATES DEPARTMENT OF COMMERCE • MAURICE H. STANS, Secretary U, S, NATIONAL BUREAU OF STANDARDS • Lewis M. Branscomb, Director

HANDBOOK H28 (1969) SCREW-THREAD STANDARDS FOR FEDERAL SERVICES

PART I

UNIFIED UNJ UNIFIED MINIATURE SCREW THREADS

NBS Handbook H28 (1969)

Superseding H28 (1957) Part I and that applicable to Part I in the 1963 Supplement to H28

Nat. Bur. Stand. (U.S.), Handb. 28, 237 pages (Dec. 1969) CODEN: NBSHA

Issued March 1970

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Order by SD Catalog No. C 13.11:28) Price \$2.00

Library of Congress Catalog Card Number: 62-61883

Foreword

The Interdepartmental Screw Thread Committee (ISTC) was established to promote uniformity in screw-thread standards in the Department of Defense (including the Departments of the Army, Navy, and Air Force) and the Department of Commerce. The organization and functions of the ISTC are shown in its charter.

The ISTC shall be responsible for (1) recommending to appropriate activities research and development efforts relating to screw threads; (2) developing standards for screw threads; (3) participating in the development of standards for gages, dies, taps, and other items associated with the manufacture and use of interchangeable threaded parts employed by Government agencies; and (4) providing advisory services on science, technology, and standards of practice as these relate to screw threads.

The standards developed by the ISTC, on approval by the participating Departments and Agencies, are published in Handbook H28. The standards in Handbook H28 are revised as deemed necessary by the ISTC.

This 1969 issue of Part I is being published essentially to incorporate the changes in Part I made by the 1963 Supplement and to revise the sections on Nomenclature, and Gages and Gaging to be in general agreement with USA B1.7–1965 and USA B1.2–1966.

Handbook H28 is issued in 3 parts. This Part, Part I, contains information on Unified and Unified miniature screw threads. Part II contains information on pipe threads, including dryseal pipe threads; gas cylinder valve threads; hose coupling, including fire-hose coupling threads; and hose connections for welding and cutting equipment. Part III contains information on Acme, Stub-Acme, Buttress, and miscellaneous threads.

At this time, the latest issues of Parts II and III are those of 1957 identified by a block on the cover stating "Reprinted December 1966 with corrections". These two parts include the changes to the respective parts listed in the 1963 Supplement to H28.

In this 1969 issue of Part I, sections are being designated by arabic instead of roman numerals. Appendixes are designated by an arabic number preceded by A. To allow insertion of section 4 on UNJ threads, section I, Introduction, of the 1957 issue is included but without a section designation. Former sections II, III, and IV have been renumbered as sections 1, 2, and 3.

In this 1969 issue of Part I, when designating tables and figures, a number is only used once. For example, if a figure is designated figure 2.1, there will be no table 2.1.

In 1966, the American Standards Association (ASA) changed its name to the United States of America Standards Institute (USASI). In October 1969, USASI changed its name to the American National Standards Institute (ANSI).

All references to USASI herein will apply to the American National Standards Institute (ANSI). Preparation for printing of Handbook H28 has progressed too far to make the changes in name throughout the Handbook.

> ARTHUR G. STRANG, Chairman, Interdepartmental Screw Thread Committee

Metric Translation of Screw Thread Specifications

To facilitate and encourage the use of these unified screw thread standards in metric countries most of the specifications given in this document have been translated into metric language under the sponsorship of ASME and SAE. This translation appears as USA standard B1.1a–1968. The detailed specifications in metric language of the unified screw threads given in B1.1a–1968 is more extensive than is presently available for the ISO metric series of screw threads. Copies of USA standard B1.1a can be obtained for \$3.00 from the American National Standards Institute, 1430 Broadway, New York, New York 10018.

Declaration of Accord

with respect to the

Unification of Screw Threads

At is hereby declared that the undersigned, representatives of their Government and Industry Bodies, charged with the development of standards for screw threads, Agree that the standards for the Unified Screw Threads given in the publications of the Committees of the British Standards Institution, Canadian Standards Association, American Standards Association and of the Interdepartmental Screw Thread Committee fulfill all of the basic requirements for general interchangeability of threaded products made in accordance with any of these standards.

The Bodies noted above will maintain continuous cooperation in the further development and extension of these standards.

Signed in Washington, D. C., this 1sth day of November, 1948, at the National Bureau of Standards of the United States.

le D. Howe Jollo Orrow T.R.B. Sanders.

Eucondon

June P. Tisili

Milian & Barr

Ministry of Trade and Commerce, Dominion of Canada

Canadian Standards Association

Ministry of Supply, United Kingdom

British Standards Institution

Representative of British Industry

National Bureau of Standards H. S. Department of Commerce Interdepartmental Screw Thread Committee

American Standards Association The American Society of Mechanical Engineers Society of Automotive Engineers

Sponsors Council of United States and United Bingdom on the Unification of Screw Threads

APPROVAL BY

THE DEPARTMENTS OF DEFENSE AND COMMERCE

The accompanying Handbook H28 (1969), Part I, on Screw-Thread Standards for Federal Services, submitted by the Interdepartmental Screw Thread Committee, is hereby approved for use by the Departments of Defense and Commerce.

FOR THE DEPARTMENT OF DEFENSE:

rard a. Stassake

Lt. Col. LEONARD A. STASZAK, USAF Director for Standardization Department of Defense

FOR THE DEPARTMENT OF COMMERCE:

Lewish Manscomb

LEWIS M. BRANSCOMB Director National Bureau of Standards

Contents

Part I

			Page
Foreword.			iii
Declaratio	on of Acc	ord	v
Approval	by the D	epartments of Defense and Commerce	vi
	Compara	ble	
Section	USAS	I	
	Standa	rd	
1	B1.7	Nomenclature, definitions, and letter symbols for screw threads	
2	B1.1	Unified thread form and thread series for bolts, screws, nuts, tapped holes, and general applications	
3	B1.1	Unified threads of special diameters, pitches, and lengths of engagement	
4		Controlled radius root screw threads, UNJ symbol	
5	B1.10	Unified miniature screw threads	
6	B1.2	Gages and gaging for Unified screw threads	
Appendix			
A1		American National form of thread and thread series for bolts, machine screws, nuts, tapped holes, and general applications (inactive for new design)	
2		American National screw threads of special diameters, pitches, and lengths of engagement (deleted from this 1969 issue)	
A3		Recommended hole size limits before threading and tap drill sizes	
A4		Methods of wire measurement of pitch diameter of 60° threads (see also part III)	
A5		Design of special threads	
6		References (deleted from this 1969 issue)	

The purpose of Handbook H28 is to present complete dimensional data for the threads on the threaded products procured by the Federal Services. So far as practicable, these data are intended to conform to generally accepted commercial practice, although certain special requirements of the Federal Services necessitate the inclusion of some standards not generally applicable outside of the Government. References are cited throughout the text to the standards promulgated by the United States of America Standards Institute (USASI) and to such other published standards as are in agreement with the specifications herein.

The personnel of the Interdepartmental Screw Thread Committee is as follows:

Representing the Department of Defense:

MR. M. A. FORD, Office of the Assistant Secretary of De-fense (Installations and Logistics), 6th Floor, Lynn Building, 1111 North 19th Street, Arlington, Virginia 22209

Representing the Department of the Army:

- MR. M. L. FRUECHTENICHT, Metrology Engineering Division, Army Metrology and Calibration Center, Redstone Arsenal, Alabama 35809
- MR. IRWIN S. ROSEN, U.S. Army Mobility Equipment Command, SMEFB-RDE-KM, Fort Belvoir, Virginia 22060

Alternate:

MR. J. WILLIAM P. BEAVER, U.S. Army Mobility Equip-ment Command, SMEFB-RDE-KC, Fort Belvoir, Virginia 22060

Representing the Department of the Navy: MR. GARLAND NORMAN, Code: AIR-530323, Naval Air Systems Command, Department of the Navy, Washington, D.C. 20360

MR. JAMES E. WALTER, Code: AIR-52021C, Naval Air Systems Command, Department of the Navy, Washington, D.C. 20360

Alternate:

MR. HARRY L. BREUCKER, Weapons Engineering Standardization Office, Naval Air Engineering Center (X-22), Department of the Navy, Philadelphia, Pennsylvania 19112

Representing the Department of the Air Force:

MR. F. L. CALKINS, ASD (ASNPS-30), Wright-Patterson AFB, Ohio 45433

MR. FRANK A. HANNON, ASD (ASNFS-30), Wright-Patterson AFB, Ohio 45433

Representing the Department of Commerce:

- MR. A. G. STRANG, Chairman of ISTC, Chief, Engineering Metrology Section, National Bureau of Standards, Rm. A107, MET Bldg., Washington, D.C. 20234
- MR. J. R. REES, Secretary of ISTC, Engineering Mctrology Section, National Bureau of Standards, Rm. A107, MET Bldg., Washington, D.C. 20234
- Liaison Representatives of Standards Committees Organized Under the Procedures of the United States of America Standards Institute (USASI) and Sponsored by The American Society of Mechanical Engineers, the Society of Automotive Engineers, and the American Gas Association:

(The membership of the Industry Liaison Representatives on the USA Standards Committees closely allied with Screw Thread Standardization is shown following the representative's name and address. The titles of these USA Standards Committees are:

- on the Standardization and Unification of Screw B1 Threads
- on the Standardization of Pipe and Hose Coupling B2Threads
- **B18** on the Standardization of Bolts, Nuts, Rivets, Screws, and Similar Fasteners.
- B47 on the Standardization of Gage Blanks
- on Decimalized Measure on Dimensional Metrology.) **B87**
- B89
- MR. C. T. APPLETON, Causeway Street, Jefferson, Massachusetts 01522 (Member of USASI Committees B1 and B47)
- MR. T. C. BAUMGARTNER, Manager, Engineering, Standard Pressed Steel Co., Jenkintown, Pennsylvania 19046 (Member of USASI Committee B1)
- MR. RICHARD B. BELFORD, Technical Director, Industrial Fasteners Institute, 1505 East Ohio Building, 1717 East 9th Street, Cleveland, Ohio 44114 (Member of USASI Committees B1 and B18)
- MR. A. R. BREED, Technical Director, The Lamson & Sessions Co., 5000 Tiedeman Road, Cleveland, Ohio 44144 (Member of USASI Committees B18 and B87)
- MR. JOHN F. CRAMER, Chief, Standards and Specifications, The Boeing Company, P.O. Box 3999, Seattle, Washington 98124; Representing the National Aerospace Standards Committee of the Aerospace Industries Association of America, Inc. (Member of USASI Committees B1 and B18)
- MR. D. J. EMANUELLI, Greenfield Tap & Die, a Unitcd-Greenfield Division of TRW, Inc., Greenfield, Massachu-setts 01301 (Member of USASI Committee B1)
- MR. J. K. EMERY, The Van Keuren Company, 176 Waltham Street, Watertown, Massachusetts 02172 (Member of USASI Committee B89)
- MR. W. E. HAY, The Pipe Machinery Company, 29100 Lakeland Boulevard, Wickliffc, Ohio 44092 (Member of USASI Committees B1, B2, B47, and B89)
- MR. ERNEST J. HELDMANN, Chief Engineer and Director, R. & D., The Holo-Krome Company, P.O. Box 98, Elmwood Branch, Hartford, Connecticut 06110 (Member of USASI Committees B1 and B18)
- MR. STANLEY G. JOHNSON, The Johnson Gage Company, 534 Cottage Grove Road, Bloomfield, Connecticut 06002 (Member of USASI Committees B1 and B47)
- MR. S. I. KANTER, Chief Engineer and Research Director, The Hanson-Whitney Company, Hartford, Connecticut 06101 (Member of USASI Committees B1 and B47)
- MR. D. H. SECORD, Pratt and Whitney Aircraft Division, Engineering Building 3NW, East Hartford, Connecticut 06108; Representing the Air Breathing Propulsion Committee of the Aerospace Industries Association of America, Inc. (Member of USASI Committee B1)
- Mr. F. P. TISCH, Executive Engineer, Voi-Shan, a Division of VSI Corporation, P.O. Box 512, Culver City, Cali-fornia 90231 (Member of USASI Committees B1 and B18)
- MR. R. P. TROWBRIDGE, Director, Engineering Standards Scction, Engineering Staff, General Motors Corporation, General Motors Technical Center, Warren, Michigan 48090 (Member of USASI Committees B1 and B18)
- MR. J. E. WATSON, Pratt & Whitney, Cutting Tool and Gage Division of Colt Industries, West Hartford, Connecticut 06101 (Member of USASI Committees B1, B2, B47, and B89)

UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

HANDBOOK H28

SCREW-THREAD STANDARDS

FOR FEDERAL SERVICES

SECTION 1

1969

NOMENCLATURE, DEFINITIONS, AND LETTER SYMBOLS FOR SCREW THREADS

CONTENTS

Page

1.	General	1.01
2.	Definitions of Terms	1.01
3.	Terms Relating to Types of Screw Threads	1.01
4.	Terms Relating to Size and Fit	1.02
5.	Terms Relating to Geometrical Elements of Screw Threads	1.03
6.	Terms Relating to Dimensions of Screw Threads	1.04
7.	Screw Thread Definitions in Relation to Gaging and Measurement.	1.06
8.	Letter Symbols and Designations	1.08
	Index	1.15

This section is in general agreement with United States of America Standards Institute Standard USA B1.7, Nomenclature, Definitions, and Letter Symbols for Screw Threads, published by The American Society of Mechanical Engineers, United Engineering Center, 345 East 47th Street, New York, N.Y. 10017. The latest revision should be consulted when referring to this USA standard. As of date of issue of this section, USA B1.7–1965 is the latest revision. For further related definitions, see USA B18.12, Glossary of Terms for Mechanical Fasteners.

1. GENERAL

1.1. The purpose of this section is to establish uniform practices with regard to: (1) Screw-thread nomenclature, and (2) letter symbols for designating dimensions of screw threads for use on drawings, in tables of dimensions which set forth dimensional standards, and in other records, and for expressing mathematical relationships.

1.2. This section consists of a glossary of terms, tables of screw-thread dimensional symbols, illustrations showing the application of dimensional symbols, tables of thread series and dimensional designations, and an index.

1.3. Typography.—In accordance with the usual practice in published text, letter symbols and letter subscripts, whether upper or lower case, should be printed in italic type. An exception is Greek letters; Greek capital letters are always vertical, and lower case always resembles italics. In manuscripts this is indicated by underlining each symbol to be italicized. Coefficients, numeral subscripts, and exponents should be printed in vertical Arabic numerals. Standard mathematical notation should be followed.

2. DEFINITIONS OF TERMS

2.1. The terms commonly applied to screw threads may be classified in four general groups, namely, those relating to: (1) types of screw threads, (2) size and fit of mechanical parts in general, (3) geometrical elements of both straight and taper screw threads, and (4) dimensions of screw threads.

The definitions presented herein apply generally to theoretically correct leads and thread forms but also reflect practical considerations relative to production, gaging, and measurement of threads. With a few obvious exceptions the definitions apply generally to all forms of thread.

3. TERMS RELATING TO TYPES OF SCREW THREADS

3.1. Screw threads and the terms generally applied to designate the types of screw threads, are defined as follows:

3.2. SCREW THREAD.—A screw thread (hereinafter referred to as a thread), is a ridge, usually of uniform section and produced by forming a groove in the form of a helix on the external or internal surface of a cylinder, or in the form of a conical spiral on the external or internal surface of a cone or frustum of a cone. A screw thread formed on a cylinder is known as a *straight or parallel* thread, to distinguish it from a *taper* thread which is formed on a cone or frustum of a cone.

3.3. THREAD.—A thread is a portion of a screw thread encompassed by one pitch. On a single-start thread it is equal to one turn. (See par. 6.5 Threads per Inch and par. 6.6 Turns per Inch.)

3.4. SINGLE-START THREAD.—A single-start thread is one having the lead equal to the pitch. (See par. 6.2 Pitch and par. 6.3 Lead.)

3.5. MULTIPLE-START THREAD.—A multiple-start thread is one in which the lead is an integral multiple (other than one) of the pitch.

3.6. EXTERNAL THREAD.—An external thread is one on a cylindrical or conical external surface.

3.7. INTERNAL THREAD.—An internal thread is one on a cylindrical or conical internal surface.

3.8. RIGHT-HAND THREAD.—A thread is a righthand thread if, when viewed axially, it winds in a clockwise and receding direction. A thread is considered to be right-hand unless specifically indicated otherwise.

3.9. LEFT-HAND THREAD.—A thread is a left-hand thread if, when viewed axially, it winds in a counterclockwise and receding direction. All left-hand threads are designated LH.

3.10. COMPLETE THREAD.—The complete or full form thread is that cross section of a threaded length having full form at crest and root. (See par. 3.14 Effective Thread, par. 6.26 Length of Complete Thread.)

NOTE: Formerly in pipe thread terminology this was referred to as "the perfect thread" but that is no longer considered desirable.

3.11. INCOMPLETE THREAD.—An incomplete thread is a threaded profile having either crests or roots, or both crests and roots, not fully formed, resulting from their intersection with the cylindrical or end surface of the work or the vanish cone. It may occur at either end of the thread.

NOTE: Formerly in pipe thread terminology this was referred to as "the imperfect thread" but that is no longer considered desirable.

3.12. LEAD-THREAD.—The lead-thread is that portion of the incomplete thread that is fully formed at root but not fully formed at crest which occurs at the entering end of either external or internal threads. (See note at par. 6.26.)

3.13. VANISH THREAD.—(Partial Thread, Washout Thread, or Thread Run-out.) A vanish thread is that portion of the incomplete thread which is not fully formed at root or at crest and root. It is produced by the chamfer at the starting end of the thread forming tool. (See par. 5.28 Vanish Cone.)

NOTE: Threads produced employing a cam actuated single tool process (frequently referred to as the Cridan process) or by a process employing similar type equipment, may have fully formed roots which run out on a vanish cone which is formed by the tool withdrawal pattern.

3.14. EFFECTIVE THREAD.—The effective (or useful) thread includes the complete thread, and those portions of the incomplete thread which are fully formed at the root but not at the crest (in taper pipe threads this includes the so-called black crest threads); thus excluding the vanish thread.

3.15. TOTAL THREAD.—The total thread includes the complete and all of the incomplete thread; thus including the vanish thread.

3.16. CLASSES OF THREADS.—Classes of threads are distinguished from each other by the amounts of tolerance or tolerance and allowance specified.

3.17. THREAD SERIES.—Thread series are groups of diameter/pitch combinations distinguished from each other by the number of threads per inch applied to specific diameters.

3.18. STRUCTURAL THREAD.—A structural thread is intended to develop a significant amount of the core strength of the externally threaded member before breaking the core of that member or stripping the external or internal threads of a threaded connection. A structural thread is not intended for, but may be used for attaching purposes. (UNC and UNF thread series are examples of Structural Threads with tolerance calculations based on a length of engagement equal to one diameter.)

3.19. ATTACHING-PURPOSE THREAD (also sometimes referred to as constructional or retaining threads).—An attaching-purpose thread is not intended to develop a significant amount of core strength of the externally or internally threaded member of a threaded connection. An attachingpurpose thread is not normally intended for structural purposes. (12 UN and 16 UN uniform pitch thread series are examples of Attaching-Purpose Threads with tolerance calculations based on a length of engagement equal to nine pitches.)

4. TERMS RELATING TO SIZE AND FIT

(These are definitions applying to mechanical parts, generally.)

4.1. Terms relating to the size and fit of parts, which are generally applicable to mechanical parts, including threads, are defined as follows:

4.2. DIMENSION.—A dimension is a geometrical characteristic such as diameter, length, angle, or center distance.

4.3. SIZE.—Size is a designation of magnitude. When a value is assigned to a dimension it is referred to hereinafter as the size of that dimension.

NOTE: It is recognized that the words "dimension" and "size" are both used at times to convey the meaning of magnitude.

4.4. NOMINAL SIZE.—The nominal size is the designation which is used for the purpose of general identification.

4.5. BASIC SIZE.—The basic size is that size from which the limits of size are derived by the application of allowances and tolerances.

4.6. REFERENCE SIZE.—A reference size is a size without tolerance used only for information purposes and does not govern manufacturing or inspection operations.

4.7. DESIGN SIZE.—The design size is the basic size with allowance applied, from which the limits of size are derived by the application of tolerances. If there is no allowance the design size is the same as the basic size.

4.8. ACTUAL SIZE.—An actual size is a measured size.

4.9. LIMITS OF SIZE.—The limits of size are the applicable maximum and minimum sizes. (See par. 4.14.)

4.10. MAXIMUM-MATERIAL-LIMIT.—A maximummaterial-limit is that limit of size that provides the maximum amount of material for the part. Normally it is the maximum limit of size of an external dimension or the minimum limit of size of an internal dimension.

4.11. MINIMUM-MATERIAL-LIMIT.—A minimummaterial-limit is that limit of size that provides the minimum amount of material for the part. Normally it is the minimum limit of size of an external dimension or the maximum limit of size of an internal dimension.

NOTE: Examples of exceptions are; an exterior corner radius where the maximum radius is the minimum-material-limit and the minimum radius is the maximum-material-limit.

4.12. ALLOWANCE.—An allowance is a prescribed difference between the maximum-material-limits of mating parts. It is the minimum clearance (positive allowance) or maximum interference (negative allowance) between such parts. (See par. 4.17 Fit.)

4.13. TOLERANCE.—A tolerance is the total permissible variation of a size. The tolerance is the difference between the limits of size.

4.14. TOLERANCE LIMIT.—A tolerance limit is the variation, positive or negative, by which a size is permitted to depart from the design size. (See par. 4.9.)

4.15. UNILATERAL TOLERANCE.—A unilateral tolerance is a tolerance in which variation is permitted only in one direction from the design size.

4.16. BILATERAL TOLERANCE.—A bilateral tolerance is a tolerance in which variation is permitted in both directions from the design size.

4.17. FIT.—Fit is the general term used to signify the range of tightness or looseness which may result from the application of a specific combination of allowances and tolerances in the design of mating parts.

4.18. ACTUAL FIT.—The actual fit between two mating parts is the relation existing between them with respect to the amount of clearance or interference that is present when they are assembled.

 NOTE : Fits are of three general types: clearance, transition, and interference.

4.19. CLEARANCE FIT.—A clearance fit has limits of size so prescribed that a clearance always results when mating parts are assembled.

4.20. INTERFERENCE FIT.—An interference fit has limits of size so prescribed that an interference always results when mating parts are assembled.

4.21. TRANSITION FIT.—A transition fit has limits

of size so prescribed that either a clearance or an interference may result when mating parts are assembled.

4.22. UNILATERAL TOLERANCE SYSTEM.—A design plan which uses only unilateral tolerances is known as a unilateral tolerance system.

4.23. BILATERAL TOLERANCE SYSTEM.—A design plan which uses only bilateral tolerances is known as a bilateral tolerance system.

4.24. BASIC HOLE SYSTEM.—A basic hole system is a system of fits in which the design size of the hole is the basic size and the allowance, if any, is applied to the shaft.

4.25. BASIC SHAFT SYSTEM.—A basic shaft system is a system of fits in which the design size of the shaft is the basic size and the allowance, if any, is applied to the hole.

5. TERMS RELATING TO GEO-METRICAL ELEMENTS OF SCREW THREADS

5.1. Terms relating to geometrical elements of both straight and taper threads are defined as follows:

5.2. THREAD AXIS.—The thread axis is the axis of its pitch cylinder or cone. (See par. 7.2.)

5.3. MAJOR CYLINDER.—The major cylinder bounds the crests of an external straight thread or the roots of an internal straight thread.

5.4. SHARP MAJOR CYLINDER.—The sharp major cylinder bounds the sharp crests of an external straight thread or the sharp roots of an internal straight thread.

5.5. MAJOR CONE.—The major cone bounds the crests of an external taper thread or the roots of an internal taper thread.

5.6. SHARP MAJOR CONE.—The sharp major cone has an apex angle equal to that of the pitch cone, the surface of which bounds the sharp crests of an external taper thread or the sharp roots of an internal taper thread.

5.7. PITCH CYLINDER.—The pitch cylinder is one of such diameter and location of its axis that its surface would pass through a straight thread in such a manner as to make the widths of the thread ridge and the thread groove equal and, therefore, is located equidistantly between the sharp major and minor cylinders of a given thread form. On a theoretically perfect thread these widths are equal to one-half of the basic pitch. (See par. 5.2 Axis of Thread, par. 6.21 Pitch Diameter.)

5.8. PITCH CONE.—The pitch cone is one of such apex angle and location of its vertex and axis that its surface would pass through a taper thread in such a manner as to make the widths of the thread ridge and the thread groove equal and, therefore, is located equidistantly between the sharp major and minor cones of a given thread form. On a theoretically perfect taper thread these widths are equal to one-half of the basic pitch. (See par. 5.2 Axis of Thread and par. 6.21 Pitch Diameter.)

5.9. MINOR CYLINDER.—The minor cylinder

bounds the roots of an external straight thread or the crests of an internal straight thread.

5.10. SHARP MINOR CYLINDER.—The sharp minor cylinder bounds the sharp roots of an external straight thread or the sharp crests of an internal straight thread.

5.11. MINOR CONE.—The minor cone bounds the roots of an external taper thread or the crests of an internal taper thread.

5.12. SHARP MINOR CONE.—The sharp minor cone has an apex angle equal to that of the pitch cone, the surface of which bounds the sharp roots of an external taper thread or the sharp crests of an internal taper thread.

5.13. PITCH LINE.—The pitch line is a generator of the cylinder or cone specified in the definitions of par. 5.7 Pitch Cylinder and par. 5.8 Pitch Cone.

5.14. THREAD FORM.—The thread form is the thread profile in an axial plane for a length of one pitch of the complete thread.

5.15. BASIC THREAD FORM.—The basic thread form is the theoretical thread profile for a length of one pitch in an axial plane, from which the design thread forms for both the external and internal threads are developed.

5.16. DESIGN THREAD FORM.—The design thread form is the maximum material form permitted for the external or internal thread. In practice, however, the form of root is an indeterminate contour not encroaching on the maximum material form of the mating thread when assembled.

5.17. FUNDAMENTAL TRIANGLE.—The fundamental triangle is the triangle whose corners coincide with three consecutive intersections of the extended flanks of the basic thread form.

5.18. FLANK.—The flank (or side) of a thread is either surface connecting the crest with the root. The flank surface intersection with an axial plane is theoretically a straight line.

5.19. LEADING FLANK.—When a thread is about to be assembled with a mating thread, the leading flank of the thread faces the mating thread.

5.20. FOLLOWING FLANK.—The following flank of a thread faces the leading flank.

5.21. LOAD FLANK.—The load flank takes the externally applied axial load in an assembly. The term is used particularly in relation to buttress and other similar threads.

5.22. CLEARANCE FLANK.—The clearance flank faces the load flank.

5.23. CREST.—The crest is that surface of the thread which joins the flanks of the thread and is farthest from the cylinder or cone from which the thread projects.

5.24. Root.—The root is that surface of the thread which joins the flanks of adjacent thread forms and is identical with or immediately adjacent to the cylinder or cone from which the thread projects.

5.25. SHARP CREST (CREST APEX).—The sharp crest is the apex formed by the intersection of the flanks of a thread when extended, if necessary, beyond the crest.

5.26. SHARP ROOT (ROOT APEX).—The sharp root is the apex formed by the intersection of the ajdacent flanks of adjacent threads when extended, if necessary, beyond the root.

5.27. Base.—The base of a thread section coincides with the cylindrical or conical surface from which the thread projects.

5.28. VANISH CONE.—The surface of the vanish cone bounds the roots of the vanish thread formed by the lead or chamfer of the threading tool. (See fig. 1.2 and par. 3.13 Vanish Thread.)

5.29. PLANE OF VANISH POINT.—The plane of vanish point of an external thread is the intersection of generators of the vanish cone with generators of the cylinder of the largest major diameter of the thread. (See fig. 1.5.)

5.30. BLUNT START OR BLUNT END THREAD.— "Blunt start" or "blunt end" designates the removal of the incomplete thread at the end of the thread. This is a feature of threaded parts that are repeatedly assembled by hand, such as hose couplings and thread plug gages, to prevent cutting of hands and crossing of threads, and which was formerly known as a *Higbee cut*. (See fig. 1.1.)

FIGURE 1.1. Blunt start

5.31. GIMLET POINT.—A gimlet point is a threaded cone point at the entering end of an external thread.

5.32. CHAMFER.—A chamfer is a conical surface at the end of a thread or shaft.

5.33. COUNTERSINK.—A countersink is a bevel or flare at the end of a hole.

5.34. BOTTOM OF CHAMFER.—On a chamfered internal taper thread, the bottom of the chamfer is defined as the intersection of the chamfer cone and the pitch cone of the thread.

6. TERMS RELATING TO DIMEN-SIONS OF SCREW THREADS

6.1. Terms relating to dimensions of both straight and taper threads are defined as follows:

6.2. PITCH.—The pitch of a thread having uniform spacing is the distance, measured parallel to its axis, between corresponding points on adjacent

thread forms in the same axial plane and on the same side of the axis. The basic pitch is equal to the lead divided by the number of thread starts. (See par. 6.4 Helix Variation, par. 7.4.)

6.3. LEAD.—When a threaded part is rotated about its axis with respect to a fixed mating thread, the lead is the axial distance moved by the part in relation to the amount of angular rotation. The basic lead is commonly specified as the distance to be moved in one complete rotation. It is necessary to distinguish measurement of lead from measurement of pitch, as uniformity of pitch measurements does not assure uniformity of lead. Variations in either lead or pitch cause the functional diameter of thread to differ from the pitch diameter. (See par. 7.5.)

6.4. HELIX VARIATION.—Helix variation of a thread is a wavy deviation from true helical advancement. The "helical path" includes the helix with its superimposed variation and is measured either as the maximum deviation from the true helix or as the "cumulative pitch." The cumulative pitch is the distance measured parallel to the axis of the thread between corresponding points on any two thread forms whether or not they are in the same axial plane. (See par. 7.5.)

6.5. THREADS PER INCH.—The number of threads per inch is the reciprocal of the pitch in inches.

6.6. TURNS PER INCH.—The number of turns per inch is the reciprocal of the lead in inches.

6.7. INCLUDED ANGLE.—The included angle of a thread (or angle of thread) is the angle between the flanks of the thread measured in an axial plane.

6.8. FLANK ANGLE.—The flank angle is the angle between the flank and the perpendicular to the axis of the thread, measured in an axial plane. A flank angle of a symmetrical thread is commonly termed the *half-angle of thread*. (See par. 7.3.)

6.9. LEAD ANGLE.—On a straight thread, the lead angle is the angle made by the helix of the thread at the pitch line with a plane perpendicular to the axis. On a taper thread, the lead angle at a given axial position is the angle made by the conical spiral of the thread with the plane perpendicular to the axis, at the pitch line. (See fig. 1.2.)

6.10. HELIX ANGLE.—On a straight thread, the helix angle is the angle made by the helix of the thread at the pitch line with the axis. On a taper thread, the helix angle at a given axial position is the angle made by the conical spiral of the thread with the axis at the pitch line. The helix angle is the complement of the lead angle. (See fig. 1.2.)

NOTE: The helix angle was formerly defined in accordance with the present definition of lead angle. (See par. 6.9.)

6.11. THREAD RIDGE THICKNESS.—The thread ridge thickness is the distance between the flanks of one thread ridge, normally measured parallel to the axis at the specified pitch radius. The thread ridge thickness may be specified and measured parallel to the axis at any other specified radius.

NOTE: The pitch radius is equal to one-half of the pitch diameter.

6.12. THREAD GROOVE WIDTH.—The thread groove width is the distance between the flanks of adjacent thread ridges normally measured parallel to the axis at the specified pitch radius. The thread groove width may be specified and measured parallel to the axis at any other specified radius.

6.13. FUNDAMENTAL TRIANGLE HEIGHT.—The fundamental triangle height of a thread, that is, the height of a sharp-V thread, is the distance, measured radially, between the sharp major and minor cylinders or cones.

6.14. THREAD HEIGHT.—The thread height (or depth) is the distance measured radially between the major and minor cylinders or cones.

NOTE: In American practice the thread height is often expressed as a percentage of three-fourths of the fundamental triangle height.

6.15. ADDENDUM.—The addendum of an external thread is the radial distance between the major and pitch cylinders or cones. The addendum of an internal thread is the radial distance between the minor and pitch cylinders or cones.

6.16. DEDENDUM.—The dedendum of an external thread is the radial distance between the pitch and minor cylinders or cones. The dedendum of an internal thread is the radial distance between the major and pitch cylinders or cones.

6.17. CREST TRUNCATION.—The crest truncation of a thread is the radial distance between the sharp crest (crest apex) and the cylinder or cone that would bound the crest.

6.18. ROOT TRUNCATION.—The root truncation of a thread is the radial distance between the sharp root (root apex) and the cylinder or cone that would bound the root.

6.19. MAJOR DIAMETER.—On a straight thread the major diameter is that of the major cylinder. On a taper thread the major diameter at a given position on the thread axis is that of the major cone at that position. (See par. 5.3 Major Cylinder and par. 5.5 Major Cone.)

6.20. MINOR DIAMETER.—On a straight thread the minor diameter is that of the minor cylinder. On a taper thread the minor diameter at a given position on the thread axis is that of the minor cone at that position. (See par. 5.9 Minor Cylinder and par. 5.11 Minor Cone.)

6.21. PITCH DIAMETER.—On a straight thread the pitch diameter is the diameter of the pitch cylinder. (See par. 5.7.) On a taper thread, the pitch diameter at a given position on the thread axis is the diameter of the pitch cone at that position. (See par. 5.8.) On a single-start thread of perfect form and lead, it is also the length between intercepts of a line which is perpendicular to the thread axis and intersects thread flanks on opposite sides of the thread axis. (See par. 7.6.)

NOTE: When the crest of a thread is truncated beyond the pitch line, the pitch diameter, pitch cylinder, or pitch cone would be based on a theoretical extension of the thread flanks.

NOTE: Pitch diameter on the buttress casing thread is defined by the American Petroleum Institute in API Standard 5B, as being midway between the major and minor diameters.

6.22. THREAD GROOVE DIAMETER (SIMPLE EF-FECTIVE DIAMETER).—On a straight thread the thread groove diameter is the diameter of the coaxial cylinder, the surface of which would pass through the thread profiles at such points as to make the width of the thread groove equal to one-half of the basic pitch. It is the diameter yielded by measuring over or under cylinders (wires) or spheres (balls) inserted in the thread groove on opposite sides of the axis and computing the thread groove diameter as thus defined.

On a taper thread the thread groove diameter is the diameter at a given position on the thread axis of the coaxial cone, the surface of which would pass through the thread profiles at such points as to make the width of the thread groove (measured parallel to the axis) equal to one-half of the basic pitch. It is the diameter yielded by measuring over or under cylinders (wires) or spheres (balls) inserted in the thread groove on opposite sides of the axis and computing the thread groove diameter as thus defined. (See par. 7.6.)

6.23. THREAD RIDGE DIAMETER.—On a straight thread the thread ridge diameter is the diameter of the coaxial cylinder, the surface of which would pass through the thread profiles at such points as to make the thickness of the thread ridge equal to one-half of the basic pitch.

On a taper thread the thread ridge diameter is the diameter at a given position on the thread axis of the coaxial cone, the surface of which would pass through the thread profiles at such points as to make the thickness of the thread ridge (measured parallel to the axis) equal to one-half of the basic pitch. (See par. 7.6.)

6.24. FUNCTIONAL (VIRTUAL) DIAMETER.—The functional diameter of an external or internal thread is the pitch diameter of the enveloping thread of perfect pitch, lead, and flank angles, having full depth of engagement but clear at crests and roots, and of a specified length of engagement. It may be derived by adding to the pitch diameter in the case of an external thread, or subtracting from the pitch diameter in the case of an internal thread, the cumulative effects of deviations from specified profile, including variations in lead and flank angle over a specified length of engagement. The effects of taper, out-of-roundness, and surface defects may be positive or negative on either external or internal threads. (A perfect GO thread plug or ring gage, having a pitch diameter equal to that specified for the maximum-material-limit and having clearance at crest and root, is the enveloping thread corresponding to that limit.) (See par. 7.6.)

NOTE: Also called the Virtual Diameter, Effective Size, or Virtual Effective Diameter.

6.25. FORM DIAMETER.—The form diameter is the diameter at the point nearest the root from which the flank is required to be straight.

6.26. LENGTH OF COMPLETE THREAD.—The length of complete thread is the axial length of a part where the thread section has full form at both crest and root; that is, the vanish threads are not included. However, on commercial fasteners where there are unfilled crests at the start of rolled threads or a chamfer at the start of a thread, not exceeding two pitches in length, this is traditionally included in the specified thread length. (See par. 3.10 Complete Thread, par. 3.12 Lead Thread and par. 3.14 Effective Thread.)

Note: When designing threaded products, it is necessary to take cognizance of: (1) Such permissible length of chamfer and (2) the first threads which by virtue of gaging practice may exceed or be less than the product limits and which may be included within the length of complete thread. However, when the application is such as to require a minimum or maximum number, or length, of complete threads the specification shall so state. Similar specification is required for a definite length of engagement.

6.27. LENGTH OF THREAD ENGAGEMENT.—The length of thread engagement of two mating threads is the axial distance over which two mating threads are designed to contact. (See par. 6.26 Length of Complete Thread.)

6.28. DEPTH OF THREAD ENGAGEMENT.—The depth (or height) of thread engagement between two coaxially assembled mating threads is the radial distance by which their thread forms overlap each other.

6.29. MAJOR CLEARANCE.—The major clearance is the radial distance between the root of the internal thread and the crest of the external thread of the coaxially assembled design forms of mating threads.

6.30. MINOR CLEARANCE.—The minor clearance is the radial distance between the crest of the internal thread and the root of the external thread of the coaxially assembled design forms of mating threads.

6.31. TENSILE STRESS AREA.—The tensile stress area of an externally threaded part is the circular cross-sectional area, normal to the axis, of a theoretical circular cylinder which would fail under tension at the same load at which the threaded part fails, if the materials of both have the same mechanical properties.

6.32. THREAD SHEAR AREA.—The thread shear area of the external thread is the effective area in shear at a specified diameter of the mated internal thread. The thread shear area of the internal thread is the effective area in shear at a specified diameter of the mated external thread.

NOTE: The specified diameters are usually the maximum minor diameter of the mated internal thread and the minimum major diameter of the mated external thread.

6.33. STANDOFF.—The standoff is the axial distance between specified reference points on external and internal taper threaded members or gages, when assembled with a specified torque or under other specified conditions.

7. SCREW THREAD DEFINITIONS IN RELATION TO GAGING AND MEASUREMENT

7.1. The meanings of certain definitions, as given previously, require some explanation in regard to

their practical application and the values or results obtained in gaging or measurement of threads. The terms involved are: thread axis, flank angle, pitch, lead, and pitch diameter.

7.2. THREAD AXIS.—The thread axis is the axis of the pitch cylinder or cone. The pitch cylinder is one of such diameter and location of its axis that its surface would pass through a straight thread in such a manner as to make the widths of the thread ridge and the thread groove equal. The pitch cone is one of such apex angle and locations of its vertex and axis that its surface would pass through a taper thread in such a manner as to make the widths of the thread ridge and the thread groove equal.

It is required that measurements of pitch, lead, and flank angle of a thread gage be made in an axial plane, making it necessary that the direction or location of the axis be accurately known. To locate this axis accurately is relatively difficult. Normally the major cylinder or cone of an external thread, or the minor cylinder or cone of an internal thread, may be used as the reference surface, provided that it is round and concentric with the pitch cylinder or cone. The amount of eccentricity of such a surface, if any, may be determined at various points along and around the thread, by measuring the distance from the crest to the top of a cylinder (wire) or sphere (ball) laid in the thread. Also, the axis may be established by conical centers in the ends of a thread plug gage, with respect to which the thread was originally generated.

7.3. FLANK ANGLE.—The flank angle is the angle between the flank and the perpendicular to the axis of the thread, measured in an axial plane. A flank angle of a symmetrical thread is commonly termed the *half-angle of thread*.

A flank angle is generally measured with respect to a reference surface, such surface being an end surface of a thread plug or ring gage or the major or minor cylinder or cone. Prior to using such a surface as a reference it is necessary to determine its actual relationship to the thread axis. The flank angle may also be measured with respect to an axis established by conical centers at the ends of a thread plug gage, with respect to which the thread was originally generated.

7.4. PITCH.—The pitch of a thread is the distance, measured parallel to its axis, between corresponding points on adjacent thread forms in the same axial plane and on the same side of the axis.

Measurements of pitch are commonly made from thread groove to thread groove in an axial plane using a ball contact piece to touch both flanks simultaneously. Such measurements establish the number of threads per unit of length (per inch) when the pitch is uniform, or the variations from the nominal pitch when the pitch is either uniform or periodic throughout the measured length of thread. (See par. 6.2.)

7.5. LEAD AND HELIX VARIATIONS.—When a threaded part is rotated about its axis with respect to a fixed contact piece inserted in a thread groove, the lead is the axial distance moved by the part in

relation to the amount of angular rotation. Lead is commonly specified as the distance moved in one complete rotation. It is necessary to distinguish measurement of lead from measurement of pitch, as uniformity of pitch measurements does not assure uniformity of lead. Variations in either lead or pitch cause the functional diameter of a thread to differ from the pitch diameter.

Helix variation is a wavy deviation from true helical advancement.

Accordingly, it is necessary to measure lead or helix variation throughout one or more turns of a thread, in addition to measurements of pitch, in order to obtain full information regarding the dimensional deviations of the thread. (See pars. 6.3, 6.4.)

7.6. PITCH DIAMETER, FUNCTIONAL (VIRTUAL) DIAMETER, THREAD RIDGE DIAMETER, AND THREAD GROOVE DIAMETER.—(As the definitions of these terms are rather lengthy they are not repeated here, but reference should be made to pars. 6.21 to 6.24, inclusive. For threads of perfect form and lead the numerical value of the diameter defined by any one of these terms is equal to the pitch diameter.)

7.6.1. Because of the nearly perfect flank angles and lead of a thread plug gage, the measurement yielded by employing the three-wire system is considered to be the pitch diameter.

7.6.2. On threads of imperfect form or lead it is generally impracticable to determine accurately the pitch diameter as defined; the result obtained in measuring or gaging the thread is an approximation of either the pitch diameter or the functional (virtual) diameter. This approximation may be regarded as a pitch diameter, functional diameter, thread groove diameter, or thread ridge diameter, as related to respective types of equipment and conditions of verifying or measuring a thread. When a thread size is verified by means of a GO thread plug or ring gage, which is within specified gage limits or tolerances and engages the thread throughout a specified length of engagement, a determination is made by the method of attributes that the functional (virtual) diameter does not exceed the maximum-materiallimit. The size limit thus verified may be designated the "GO Functional Diameter." The GO thread plug or thread ring gage is the accepted criterion for verification of threaded product for GO functional diameter. However, various indicating type thread gages or thread snap gages having gaging elements which engage the thread over a length and flank engagement approximately equivalent to that of the GO thread plug or thread ring gage should give comparable results, and when properly correlated with the GO thread plug or thread ring gage may serve satisfactorily to give assurance that the functional diameter does not exceed the specified maximum-material-limit.

7.6.3. When a thread size is verified by means of a HI thread plug gage or LO thread ring gage, which is within specified gage limits or tolerances and enters or is entered with a drag over the length of thread specified, a determination is made that the functional diameter lies within the minimummaterial-limit. The size limit thus verified may be designated the "HI Functional Diameter" or the "LO Functional Diameter." The HI thread plug or the LO thread ring gage is the accepted criterion for verification of the HI and LO functional diameters of classes 1A, 2A, 1B, 2B, and 3B threads. However, various types of thread snap gages or indicating type thread gages with thread gaging elements which engage the thread over a length and flank engagement approximately equivalent to that of a HI thread plug gage or a LO thread ring gage should give comparable results, and when properly correlated with the HI thread plug or LO thread ring gage may serve satisfactorily to give assurance that the functional diameter is within the minimum-material-limit.

7.6.4. Gaging practice approximating pitch diameter measurement has been termed "LO Minimum-Material-Limit Gaging" and is the accepted criterion for verifying the minimum-material-limit of class 3A external threads. Such verification is accomplished by means of a limit type thread snap or indicating type thread gage with gaging elements having a thread form equivalent to that of the LO thread ring gage. Many thread snap and indicating type thread gages having gaging elements which contact the thread over a length of approximately two pitches are currently in use for determining the minimum-material-limit of various classes of screw threads. However, optimum results for verification of conformance to specifications utilizing differential analysis require a determination of pitch diameter, and this is achieved by means of gaging elements which contact the thread over a maximum length of one pitch. The size limit thus verified may be designated the "Min Single Element PD."

7.6.5. Indicating type thread gages may serve as suitable alternates for gaging the minimum single element PD. A gage having two gaging elements is preferred for detecting an elliptical condition, while a gage having three gaging elements is preferred for detecting the multi-lobed condition.

7.6.6. Gaging practices employing indicating type thread gages with thread forms of gaging elements suitable for approximating pitch diameter measurement, should give comparable results and serve satisfactorily to give assurance that the pitch diameter lies within the minimum-material-limit. Thread forms of gaging elements such as the cone and vee with radius contacts for pitch diameter or radius rolls (simulating the best wire) for thread groove diameter are employed in these instances, and, dependent on design and length of engagement, approximate pitch diameter measurement. The choice as to a cone and vee arrangement compared to radius rolls is a matter of individual preference, in consideration of including or excluding either flank angle or pitch deviations in the measurement. In general, it may be stated that a minimum length of engagement coupled with minimum flank contact results in the closest approximation of pitch diameter. Conversely it may be stated that by increasing the length of engagement and the flank contact, the gaging tends toward the LO functional diameter. In practice, the length of engagement varies from less than one to approximately three pitches for various designs of gaging elements.

7.6.7. In order to determine that the deviations in lead or flank angle do not exceed the equivalent of one-half of the pitch diameter tolerance, indicating type thread gages may be employed to indicate the differential between the GO functional diameter and the pitch diameter. When the differential exceeds the equivalent of one-half of the pitch diameter tolerance, it is necessary to make a further analysis to determine whether or not any individual thread element exceeds the equivalent of the allowable specified percentage of the pitch diameter tolerance. Deviations from specified size and profile include variations in lead, uniformity of helix, flank angle, and taper; also out-of-roundness, and surface defects. Indicating type thread gages for determining diameter equivalents of lead deviations have gaging elements of the specified form and length of the GO thread gage, by which a differential reading can be obtained between the measured functional diameter and the first-full-thread pitch diameter measured by a single ridge of the GO gaging element, excluding taper, if any. Indicating type thread gages for determining diameter equivalents of flank angle deviations are those by which a differential reading can be obtained between the first-full-thread pitch diameter determined by a single ridge of the GO gaging element and that determined by the indicating type thread gage for pitch diameter having radius-type gaging elements.

7.6.8. When a thread size of a taper thread is verified by means of a taper thread plug or ring gage, or equivalent, having a basic gaging notch or surface, or limit notches, and which is within specified gage limits or tolerances, a determination is made that the functional diameter throughout the specified length of hand engagement lies within specified size limits. The thread size thus verified may be designated the "Taper Thread Functional Diameter."

8. LETTER SYMBOLS AND DESIGNATIONS

8.1. Symbols associated with screw threads are of two kinds: (1) Letter symbols for designating dimensions of screw threads and threaded products; and (2) abbreviations used as designations for various standard thread forms and thread series.

8.2. DIMENSIONAL SYMBOLS.

8.2.1. Standard letter symbols to designate the dimensions of screw threads in text and formulas are given in tables 1.4 and 1.6. General symbols are given in table 1.4 and pipe-thread symbols in table 1.6. The application of general symbols is illustrated in figures 1.2 and 1.3, and pipe-thread symbols in figure 1.5.

8.2.2. ISO symbols to designate screw thread dimensions are given in table 1.7. These symbols are commonly applied in Recommendations for Screw Threads of the International Standardization Organization (ISO).

8.3. THREAD DESIGNATIONS.

8.3.1. Thread series designations are capital letter abbreviations of names used on drawings, in tables, and otherwise to designate various forms of thread and thread series, and commonly consist of combinations of such abbreviations. Assembled in tables 1.8 and 1.8a are the names and abbreviations which are now in use, together with references to standards in which they occur, for various standard threads.

8.3.2. Thread element designations are capital letter abbreviations based on names of various thread dimensions in thread designations. Such abbreviations are for use on drawings and are shown in table 1.9.

FIGURE 1.2. General screw thread symbols (see table 1.4).

INTERNAL THREAD

FIGURE 1.3. General screw thread symbols (see table 1.4). NOTE: These diagrams are not intended to show standard forms but illustrate only the applications of symbols.

TABLE 1.4. General Symbols (see figs. 1.2 and 1.3)
------------------------------	------------------------

Symbol Dimension Symbol Dimension	
$ \begin{array}{c} D \\ E \\ E \\ F \\ Pitch (liameter.*) \\ Minor diameter.* \\ P \\ Pitch (Equals 1/n). \\ L \\ Lead (Equals 1/n). \\ Lead (Equals 1/N). \\ length (per inch) (tpi) (Equals 1/p). \\ N \\ Number of threads (pitches) per unit of \\ length (per inch) (Equals 1/L). \\ H \\ Fundamental triangle height. \\ h \\ Dedendum. \\ h_{a} \\ Addendum. \\ h_{b} \\ Symmetrical thread height. \\ h_{c} \\ Dedendum. \\ h_{a} \\ Addendum. \\ h_{b} \\ Symmetrical thread height. \\ h_{c} \\ Magle between leading flank of thread \\ and normal to thread axis. \\ \lambda \\ Lead angle (cot \psi = L/\pi E). \\ \psi \\ Helix angle (cot \psi = L/\pi E). \\ \psi \\ Helix angle (cot \psi = L/\pi E). \\ \psi \\ Helix angle (cot \psi = L/\pi E). \\ Radius of rounding at: \\ r_{e} \\ r_{e} \\ Root of external thread \\ Radial distance from apex \\ of fundamental triangle to: \\ Rounded crest of external thread. \\ Radia distance from apex \\ of fundamental triangle to: \\ Rounded crest of external thread. \\ Radia t crest of external thread. \\ Fat a crest of external thread. \\ Fat a crest of external thread. \\ Fat a crest of external thread. \\ Radia t crest of external thread. \\ Radia t crest of external thread. \\ Fat a crest of$	f minor hread. hread. meter, $-(\cot \alpha)/2n.$ ameter, sec $\alpha - 1$)w. flank e.

Exception: B is used for basic major diameter when this differs from the nominal major diameter.
Subscripts s (for screw) or n (for nut) designating external and internal thread, respectively, may be used if necessary.
For 60° Unified thread this equals 0.75H = 100 percent thread height.
In addition to the symbol with subscript cs, symbols with subscripts rs, cn, and rn are also applicable as in the r_{cs}, etc.,

symbols above. • See National Physical Laboratory "Gauging and Measuring Screw Threads," 1951, p. 23; Appendix A4 of H28.

A α Alpha Δ δ DeltaH η EtaK κ IB β BetaE ϵ Epsilon Θ θ Theta Λ λ I Γ γ GammaZ ζ ZetaI ι IotaM μ I	$\begin{array}{c cccc} \mathbf{x} & \mathbf{N} \ \mathbf{\nu} \ \mathbf{N} \mathbf{u} & \mathbf{\Pi} \\ \mathrm{da} & \Xi \ \boldsymbol{\xi} \ \mathbf{X} \mathbf{i} & \mathbf{P} \\ \mathbf{O} \ \boldsymbol{o} \ \mathrm{Omicron} & \mathbf{\Sigma} \end{array}$	$ \begin{array}{ccc} \mathbf{I} \boldsymbol{\pi} & \mathbf{Pi} \\ \mathbf{P} \boldsymbol{\rho} & \mathbf{Rho} \\ \mathbf{Z} \boldsymbol{\sigma} & \mathbf{Sigma} \end{array} \begin{array}{c} \mathbf{T} \boldsymbol{\tau} & \mathbf{Tau} \\ \boldsymbol{\Upsilon} \boldsymbol{\upsilon} & \mathbf{Upsilon} \\ \boldsymbol{\Phi} \boldsymbol{\phi} & \mathbf{Phi} \end{array} $	$ \begin{array}{c} \mathbf{X} \ \boldsymbol{\chi} \ \mathrm{Chi} \\ \Psi \ \boldsymbol{\psi} \ \mathrm{Psi} \\ \Omega \ \boldsymbol{\omega} \ \mathrm{Omega} \end{array} $
---	--	---	--

FIGURE 1.5. Pipe and pipe thread symbols (see table 1.6).

TABLE 1.6. Pipe-thread symbols (see fig. 1.5)

Symbol	Dimension	Symbol	Dimension
$D \\ d \\ $	Outside diameter of pipe. Inside diameter of pipe. Wall thickness of pipe. Major diameter. Pitch diameter. Pitch diameter. Length of thread from plane of pipe end to plane containing basic diameter D_x , E_x , or K_x . Length of vanish cone (washout) threads. Half apex angle of pitch cone of taper thread. Angle of chamfer at end of pipe measured from a plane normal to the axis. Handtight standoff of face of coupling from a plane containing vanish point on pipe. Length from plane of handtight engagement to the face of coupling on internally threaded member. Distance of gaging step of plug gage from face of ring gage for handtight engagement. Standoff.	L_{n} $b_{$	 Length from center line of coupling, face of flange, or bottom of internal thread chamber to face of fitting. Width of bearing face on coupling. Angle of chamfer at bottom of recess or counterbore measured from the axis. Half apex angle of vanish cone. Length from center line of coupling, face of flange, or bottom of internal thread chamber to end of pipe, wrenched engagement. (1) Length of straight full thread (see table 1.4). (2) Length from plane of handtight engagement to small end of full internal taper thread. Diameter of recess or counterbore in fitting. Depth of recess or counterbore in fitting. Outside diameter of coupling or hub of fitting.

^a Subscript x denotes plane containing the diameter. For axial positions of planes see below.

^b Subscripts s (for screw) or n (for nut) designating external and internal threads, respectively, may also be used if necessary

DEFINITIONS OF PLANES DENOTED BY SUBSCRIPT x

- x =0 Plane of pipe end.
- x =1
- Plane of handtight engagement or plane at mouth of coupling (excluding recess, if present). On British pipe threads this is designated the "gauge plane" and the major diameter in this plane is designated the "gauge diameter."
- 2 = r
- Plane at which vanish threads on pipe commence. Plane in coupling reached by end of pipe in wrenched condition. (L_3 is measured from plane containing pipe end in 3 ---position of handtight engagement.)
- Plane containing vanish point of thread on pipe. x =4
- Plane at which major diameter cone of thread intersects outside diameter of pipe. x $\mathbf{5}$

Additional special subscripts are as follows:

- x = 6
- x = 7
- Plane of the pipe end for railing joints. Plane of the API gage point at a specified length from the plane of vanish point. Plane of the large end of the " L_8 thread ring gage" for the National Gas Taper (compressed-gas cylinder valve inlet x = 8connection) thread.
- Plane of the small end of the "L₉ thread plug gage" for the National Gas Taper (compressed-gas cylinder inlet) thread. 9

TABLE 1.7 ISO symbols

Symbol	Dimension			
<i>d</i>	Basic major diameter of bolt thread. Basic pitch (effective) diameter of bolt			
d_1 D_1 D_2 D_2	 Basic minor diameter of bolt thread. Basic major diameter of nut thread. Basic minor diameter of nut thread. Basic pitch (effective) diameter of nut 			
P n R H_1	thread. Pitch. Number of threads per inch. Radius of root of bolt thread. Depth of thread engagement. Number of threads in engagement			
S	Designation for thread engagement group Short.			
L	 Designation for thread engagement group Normal. Designation for thread engagement group Long. 			
$\begin{array}{c} T \\ T_{d}, T_{d^2}, T_{d^1}, \\ T_{D^1}, T_{D^2}. \end{array}$	Tolerance. Tolerance for major diameter of bolt thread, for pitch (effective) diameter of bolt thread, etc.			
ei, EI es, ES A	Lower deviation. Upper deviation. Allowance.			

		Reference		
Designation	Thread series	United States of America (USA) Standard	H28	
ACME-CACME-G	Acme threads, centralizing Acme threads, general purpose (See also "Stub Acme")	B1.5 B1.5	Part III Part III	
AMO ANPT	Aeronautical National form taper pipe threads	B1.11 MIL-P	Part III -7105	
F-PTF	Dryseal (fine) taper pipe threads ISO metric threads	B2.2	Part II Part III	
N BUTT N, NC, NF, NEF	Buttress threads See table 1.8a	B1.9	Part II1	
NGO (b) NGS NGT SGT	Gas Cylinder Valve Outlet and Inlet Threads: Gas outlet threads Gas straight threads Gas taper threads Special gas taper threads	B57.1	Part II	
NH, NPSH NH	Hose coupling threads Fire-hose coupling threads	B2.4	Part II Part II	
ANPT NPSC NPSL NPSM NPT NPTR	Pipe Threads (except Dryseal): Aeronautical National form taper pipe threads	MIL-P B2.1	-7105 Part II	
F-PTF NPSF NPSI PTF-SAE, SHORT PTF-SPL, SHORT PTF-SPL, EXTRA SHORT SPL-PTF	Dryseal Pipe Threads: Dryseal (fine) taper pipe threads Dryseal internal straight pipe threads Dryseal intermediate internal straight pipe threads Dryseal sAE short taper pipe threads Dryseal special short taper pipe threads Dryseal special extra short taper pipe threads Dryseal special extra short taper pipe threads Dryseal special extra short taper pipe threads	B2.2	Part II	
NR, NS SGT	See table 1.8a Special gas taper threads	B57.1	Part II	
SPL-PTF	See under "Dryseal pipe threads"			
STUB ACME	Stub Acme threads	B1.8	Part III Part III	
UNJ series UNJ series UNM	See table 1.8a (0.06 in. (1.5 mm) and larger) See table 1.8a (0.06 in. (1.5 mm) and larger) Unified Miniature thread series	B1.10	Section 5	

a Methods of designating multiple threads are shown in USA B1.5, Acme screw threads, and Part III of Handbook H28.

	External thread root	Constant pitch	Coarse	Fine	Extra fine	Special diameters, pitches, or lengths of engagement	Reference	
Basic thread series							United States of America (USA) Standard	H28
UN	With optional radius root on external thread.	UN	UNC	UNF	UNEF	UNS	B1.1 B1.1	Section 2 Section 3
UNJ	With 0.15011p to 0.18042p mandatory radius root on external thread.	UNJ	UNJC	UNJF	UNJEF	UNJS		Section 4
N ^a		N	NC	NF	NEF	NS		Appendix A1
NR		NR					MIL-1	3-7838

TABLE 1.8a. Designations for UN, UNJ, N, NR thread series

^a This series superseded by UN series.

TABLE 1.9 Dimensional designations for use on drawings

Designation	Dimension	Designation	Dimension
CR DR FD G LE PD PD	Crest radius. Differential reading. Functional diameter. Allowance. Lead. Length of thread engagement. Pitch. Pitch.	RR T TGD TGW TPI TRD TRT	Root radius. Tolerance. Thread groove diameter. Thread groove width. Threads per inch. Thread ridge diameter. Thread ridge thickness.

INDEX

Paragraph

Actual fit______ 4.18 Actual size______ 4.8 Addendum_______ 6.15 Allowance_______ 4.12 Attaching-purpose thread_______ 3.19 Axis, thread_______ 5.2

B

A

Base	5.27
Basic hole system	4.24
Basic shaft system	4.25
Basic size	4.5
Basic thread form	5.15
Bilateral tolerance	4.16
Bilateral tolerance system	4.23
Blunt end thread	5.30
Blunt start	5.30
Bottom of chamfer	5.34

С

Chamfer	5.32
Classes of threads	3.16
Clearance fit	4.19
Clearance flank	5.22
Complete thread	3.10
Constructional thread (see	
Attaching purpose thread)	3.19
Countersink	5.33
Crest	5.23
Crest apex	5.25
Crest truncation	6.17
Cumulative pitch	6.4

D

Dedendum	6.16
Definitions of terms	2
Depth of thread engagement	6.28
Design size	4.7
Design thread form	5.16
Designations	8.3
Differential reading	7.6.7
Dimension	4.2, 4.3
Dimensions of threads	6

Е

Effective size (See Functional	
Diameter)	6.24
Effective thread	3.14
External thread	3.6
	0.0

F

Paragraph

Fit Flank Flank angle Following flank Form diameter Form, thread	$\begin{array}{c} 4.17\\ 5.18\\ 6.8,7.3\\ 5.20\\ 6.25\\ 5.14\end{array}$
Full form thread (see Complete Thread). Functional diameter. Functional diameter, taper thread. Fundamental triangle. Fundamental triangle height.	$3.10 \\ 6.24, 7.6 \\ 7.6.8 \\ 5.17 \\ 6.13$

G

General	1
Geometrical elements	5
Gimlet point	5.31
GO functional diameter	7.6.2
Groove diameter (see Thread Groove	
Diameter)	6.22.7.6
	••, ••••

Η

Half-angle of thread	6.8, 7.3
Height, fundamental triangle	6.13
Height, thread	6.14
Helical path	6.4
Helix angle	6.10
Helix variation	6.4, 7.5
HI functional diameter	7.6.3
Higbee cut (See Blunt Start)	5.30

I

Imperfect thread (See Incomplete Thread)	3.11
Included angle	6.7
Incomplete thread	3.11
Interference fit	4.20
Internal thread	3.7
Iron pipe thread (see NPT, table 1.8)	
ISO symbols	8.2.2

L

Lead	6.3
Lead angle	6.9
Lead thread	3.12
Lead variation	6.3, 7.5
Leading flank	5.19
Left-hand thread	3.9
Length of complete thread	6.26
Length of thread engagement	6.27

Letter symbols	8
Limits of size	4.9
LO functional diameter	7.6.3
Load flank	5.21

M

Major clearance	6.29
Major cone	5.5
Major cylinder	5.3
Major diameter	6.19
Maximum-material-limit	4.10
Minimum-material-limit	4.11
Min single element PD	7.6.4
Minor clearance	6.30
Minor cone	5.11
Minor cylinder	5.9
Minor diameter	6.20
Multiple-start thread	3.5^{-1}

\mathbf{N}

.

P

Parallel thread (see Screw thread)	3.2
Partial thread	3.13
Pipe Thread Symbols	8.2.1
Pitch	6.2, 7.4
Pitch cone	5.8
Pitch cylinder	5.7
Pitch diameter	6.21, 7.6
Pitch line	$5.13^{'}$
Pitch radius	6.11
Plane of vanish point	5.29

R

Reference size	4.6
Retaining thread (see Attaching	
Purpose Thread)	3.19
Ridge diameter (see Thread Ridge Diameter)	6.23, 7.6
Right-hand thread	3.8
Root	5.24
Root apex	5.26
Root truncation	6.18

\mathbf{S}

Screw thread 3	.2
Sharp crest5	.25
Sharp major cone5	6.6
Sharp major cylinder 5	.4
Sharp minor cone 5	.12
Sharp minor cylinder5	.10
Sharp root 5	.26
Sharp-V thread height (See	
Fundamental Triangle Height)	.13
Simple effective diameter (See Thread	
Groove Diameter)	.22

Single-start thread	3.4
Single thread	3.3
Size	4.3
Standoff	6.33
Straight thread (see Screw Thread)	3.2
Sumbolo	3.18 9 1
Bympus	0.1

Т

Taper thread (See Screw Thread)	3.2
Tensile stress area	6.31
Thickness, thread ridge	6.11
Thread	3.3
Thread axis	5.2, 7.2
Thread depth	6.14
Thread, external	3.6
Thread form	5.14
Thread groove diameter	6.22, 7.6
Thread groove width	6.12
Thread height	6.14
Thread, internal	3.7
Thread ridge diameter	6.23, 7.6
Thread ridge thickness	6.11
Thread run-out	3.13
Thread series	3.17
Thread shear area	6.32
Thread size (see Size)	4.3
Threads per inch	6.5
Tolerance	4.13
Tolerance, bilateral	4.16
Tolerance limit	4.14
Tolerance system, bilateral	4.23
Tolerance system, unilateral	4.22
Tolerance, unilateral	4.15
Total thread	3.15
Transition fit	4.21
Truncation, crest or root	6.17, 6.18
Turns per inch	6.6
Typography	1.3

U

Unilateral	tolerance	4.15
Unilateral	tolerance system	4.22

V

Vanish cone	5.28
Vanish point	5.29
Vanish thread	3.13
Variation, helix	6.4, 7.5
Variation, lead	6.3, 7.5
Virtual diameter (see Functional Diameter)	6.24, 7.6
Virtual effective diameter (see Functional	,
Diameter)	6.24
,	

W

Washout thread	3.13
Width, thread groove	6.12

UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

HANDBOOK H28

SCREW-THREAD STANDARDS

FOR FEDERAL SERVICES

section 2

1969

UNIFIED THREAD FORM AND THREAD SERIES FOR BOLTS, SCREWS, NUTS, TAPPED HOLES, AND GENERAL APPLICATIONS

CONTENTS

Page

1	Introduction
$\frac{1}{2}$.	Unified Thread Form
3.	Thread Series, Order of Selection, and Suggested Applications
4.	Thread Classes
5.	Allowances
6.	Tolerances
7.	Length of Engagement
8.	Limits of Size
9.	Coated Threads
10.	Method of Designating Screw Threads
11.	Limits of Size for Unified Standard Screw Thread Series
12.	Gages
	Index

1. INTRODUCTION

The Unified thread standards shown in this section are in agreement with International Standardization Organization (ISO) Recommendations:

R68 Screw Threads (That part dealing with the ISO Basic Thread Profile), and

R263 ISO Inch Screw Threads, General Plan and Selection for Screws, Bolts, and Nuts (diameter range 0.06 to 6 inch).

This section is in general agreement with United States of America Standard USA B1.1, Unified Screw Threads, published by The American Society of Mechanical Engineers, 345 East 47th Street, New York, N.Y. 10017; also with CSA B1.1, Standard for Unified and American Screw Threads, published by the Canadian Standards Association, Ottawa, Canada; and with British Standard 1580, Unified Screw Threads, published by the British Standards Institution, 2 Park Street, London, W.1. The latest revision should be consulted when referring to such standards. As of date of issue of this section of H28, USA B1.1-1960 is the latest revision of B1.1.

The Unified screw thread standards shown in this section constitute the basic thread standards used in the United States for the screw threads used on threaded fasteners. Unified screw threads are a complete and integrated system of threads for fastening purposes in mechanisms and structures. Their outstanding characteristic is general interchangeability of threads achieved through the standardization of thread form, diameter-pitch combinations, and limits of size.

The standards have as their original basis the work done about a century ago by William Sellers in the United States and Sir Joseph Whitworth in Great Britain. Throughout the intervening years there have been many further developments and revisions, culminating in the system of Unified Threads approved and adopted for use by all inch-using countries.

Unification of screw thread standards received its impetus from the need for interchangeability among the billions of fasteners used in the complex equipment of modern warfare which equipment was, and continues to be, made in different countries. Equally important, however, are international trade in mechanisms of all kinds and the servicing of transportation equipment which moves from country to country. These have made unification not only highly advantageous but practically essential.

Unified screw threads had their origin in an Accord signed at Washington, D.C., on November 18, 1948, by representatives of Standardizing Bodies of Canada, the United Kingdom, and the United States. The Unified standard threads generally supersede the American standard threads. Threads are classed as Unified if they have the basic Unified thread form and have limits of size and tolerances based on the Unified formulations. Such threads are identified by the letter combination "UN" in the thread symbol. In relation to previous American practice, Unified threads have substantially the same thread form and are mechanically interchangeable with American National threads of the same diameter and pitch.

The principal differences between the two systems relate to the application of allowances, the variation of tolerances with size, difference in amount of pitch diameter tolerance on external and internal threads, and differences in thread designations. Under the Unified system, an allowance is provided on both the classes 1A and 2A external threads, whereas under the American National system only the class 1 external thread has an allowance. Under the Unified system, the pitch diameter tolerance of an internal thread is 30 percent greater than that of the external thread, but such tolerances are equal under the American National system. Since the tolerances differ, the letter "A" is used in the thread symbol to denote an external thread and the letter "B" is used to denote an internal thread. Unified tolerances and allowances for both standard and special diameter-pitch combinations are derived from the same formula, but American National tolerances for special threads have a different basis from that for some standard threads.

2. UNIFIED THREAD FORM

2.1. BASIC THREAD FORM.—The Unified thread form is the basis of all thread dimensions given in this section. The formulas for its proportions are given in table 2.1, together with figure 2.2, showing the basic profile from which the design forms are derived. Both the ISO basic profile and the American (U.S.) concept of the basic Unified thread form are shown. These are essentially alike except that in the second illustration the position of the basic minor diameter provides for the long established practice in the U. S. of considering 100 percent thread height as being equal to 0.75H measured from the basic major diameter.

2.1(a) Angle of thread.—The basic angle of thread between the flanks of the thread, measured in an axial plane, is 60°. The line bisecting this 60° angle is perpendicular to the axis of the screw thread.

2.1(b) Form of crest.—The form of the crest of external threads is flat. The crest of the basic thread form of the external thread shall be truncated from the sharp crest an amount equal to 0.125 H, where H is the depth of the fundamental triangle. The form of the crest of internal threads is flat and the crest shall be truncated from the sharp crest an amount equal to 0.25 H.

2.1(c) Rounded root forms.—The crest clearances allowed are such as to permit rounded root forms in both the external and internal threads. Rounded roots are required in some applications and are made by tools that are purposely rounded. Otherwise, rounded roots may be the result of tool wear.

2.1(d) Clearance at minor diameter.—A clearance is provided at the minor diameter of the internal thread by truncating from the sharp crest an amount equal to 0.25 H.

	Double height of external thread,	17H/12 = 1.226868/n	18	in 0.01534 0.01534 0.01704 0.02191 0.02191	.02788 .03067 .03408 .03834 .04382	.04544 .05112 .06134 .06816 .07668	.08763 .09437 .10224 .10668 .11153	.12269 .13632 .15336 .17527	.20448 .24537 .27264 .30672
	Double height of internal thread,	$2h_n = 5H/4 = 1.082532/n$	17	$in \\ 0.01353 \\ .01504 \\ .01691 \\ .01933 \\ .02255 +$.02460 .02706 .03007 .03383 .03866	.04009 .04511 .05413 .06014 .06766	.07732 .08327 .09021 .09413 .09841	.10825 +10825 +120281353215465	.18042 .21651 .24056 .27063
	Difference between max major and pitch diameters of internal thread,	$\frac{11H/12}{0.793857/n}$	16	in 0.00992 0.0103 0.01103 0.01240 0.01418 0.01654	01804 01985 - 02205 + 02481 02835 +	.02940 .03308 .03969 .049410 .04962	.05670 .06107 .06615+ .06903 .07217	.07939 .08821 .09923 .11341	.13231 .15877 .17641 .19846
	Thread height from basic flat crest to sharp root,	7H/8 = 0.75772/n	15	$in 0.00947 \\ 0.01052 \\ 0.01353 \\ 0.01353 \\ 0.01579$.01722 .01894 .02105 - .02368 .02706	$\begin{array}{c} .02807\\ .03157\\ .03789\\ .04210\\ .04736\end{array}$.05413 .05829 .06315 - .06589 .06889	.07578 .08420 .09472 .10825+	.12630 .15155+ .16839 .18944
	(^a) Twice the external thread addendum,	$h_b = 2h_{as} = 2h_{as} = 3H/4 = 0.649519/n$	14	$\begin{array}{c} in \\ 0.008119 \\ 0.009021 \\ 0.010149 \\ 0.011599 \\ 0.013532 \end{array}$.014762 .016238 .018042 .020297 .023197	.024056 .027063 .032476 .036084 .040595-	.046394 .049963 .054127 .056480 .059047	.064952 .072169 .081190 .092788	.108253 .129904 .144338 .162380
	if eight of external thread and max height of internal thread,	$h_{\rm s} = 17H/24 = 0.613435/n$	13	$in 0.00767 \\ 0.00352 \\ 0.00958 \\ 0.01095 \\ 0.01278 \\ 0.01278$.01394 .01534 .01704 .01917	.02272 .02556 .03067 .03408	04382 04719 05112 05334 05577	.06134 .06816 .07668 .08763	.10224 .12269 .13632 .15336
see fig. 2.4.	Height of internal thread and depth of thread engagement,	$h_n = h_e = h_e = 5H/8 = 0.541266/n$	12	in 0.00677 0.00752 0.00846 0.00846 0.00967 0.00967 0.00967 0.01128	.01230 .01353 .01504 .01691 .01933	02005 - 02255 + 02255 + 02205 02206 - 03307 03383	.03866 .04164 .04511 .04511 .04707	.05413 .06014 .06766 .07732	.09021 .10825 + .12028 .13532
ead form (.	Dedendum of internal thread and addendum of external thread,	$h_{dn} = h_{as} = h_{as} = 3H/8 = 0.324759/n$	11	in in 0.00406 .00451 .00507 .00580 .00580	00738 00812 00902 01015- 01160	.01203 .01353 .01624 .01804 .02030	02320 02498 02706 02824 02824	.03248 .03608 .04059 .04639	.05413 .06495+ .07217 .08119
Unified thr	Addendum of internal thread and truncation of internal thread crest,	$h_{an} = f_{cn} = f_{cn} = H/4 = 0.216506/n$	10	$in \\ 0.00271 \\ 0.00387 \\ 0.0338 \\ 0.0338 \\ 0.0387 \\ 0.0387 \\ 0.0381 \\ 0.0451 \\ 0.0$	$\begin{array}{c} .00492 \\ .00541 \\ .00601 \\ .00677 \\ .00773 \end{array}$.00802 .00902 .01083 .01203	01546 01665+ 01803 01883 01968	02165+ 02406 02706 03093	.03608 .04330 .04811 .05413
ead data,	Half addendum of external thread,	3H/16 = 0.162380/n	<i>ф</i>	${in\atop 0.00203} \ 0.00203 \ 0.00254 \ 0.00254 \ 0.00238 \ 0.00338 \ 0.00338$.00369 .00406 .00451 .00507 .00580	00601 00677 00812 00902 00902 01015-	01160 01249 01353 01412 01476	01624 01804 02030 02320	.02706 .03248 .03608 .04059
.Е 2.1. Th	Truncation of external thread rounded root,	${}^{8r_8}_{H/6} = 0.144338/n$	æ	in 0.00180 0.00180 0.00226 0.00226 0.00228 0.00228 0.00228 0.00228 0.00301 0	.00328 .00361 .00401 .00451 .00515+	00535 - 00535 - 00601 - 00722 - 00802 - 00902 - 00002 - 00002 - 0000000 - 000000 - 000000 - 000000 - 00000 - 00000 - 000	.01031 .01110 .01203 .01254 .01312	.01443 .01604 .01804 .02062	.02406 .02887 .03208 .03608
TABI	Max truncation of internal thread root and external thread	$f_{rn}^{resu} = f_{rs}^{resu} = H/8 = 0.108253/n$	7	in 0.00135+ 0.00150 0.00169 0.00193 0.00193	.00246 .00271 .00301 .00338	.00401 .00451 .00541 .00601 .00677	00773 00833 00902 00941 00984	.01083 .01203 .01353 .01353	.01804 .02165+ .02406 .02706
	Twice min truncation of internal thread root,	$2f_{rn} = H/12 = 0.0721688/n$	9	$in \\ 0.00090 \\ 0.00100 \\ 0.00113 \\ 0.00129 \\ 0.00150 \\ 0.000 \\ 0.00$	$\begin{array}{c} .00164 \\ .00180 \\ .00200 \\ .00226 \\ .00258 \end{array}$.00267 .00301 .00361 .00401	00515+ 00555+ 00601 00628 00656	.00722 .00802 .00902 .01031	.01203 .01443 .01604 .01804
	Height of sharp v-thread,	H = 8660254/n	5	in in 0.010825+ 0.010825+ 0.012028 0.013532 0.013532 0.0135465- 0.013645- 0.018042	$\begin{array}{c} .019682 \\ .021651 \\ .024056 \\ .027063 \\ .030929 \end{array}$	032075+ 036084 043301 048113 054127	.061859 .066617 .072169 .075307 .078730	086603 096225+ 108253 123718	.144338 .173205+ .192450 .216506
	Flat at internal thread root and external thread	$F_{rs}^{root} = F_{rs}^{root} = p/8 = 0.125/n$	4	$in in 0.00156 \\ .00174 \\ .00195+ \\ .00223 \\ .00260 \\ .00260$	$\begin{array}{c} .00284 \\ .00312 \\ .00347 \\ .00391 \\ .00391 \\ .00446 \end{array}$	$\begin{array}{c} .00463 \\ .00521 \\ .006250 \\ .00694 \\ .00781 \end{array}$.00893 .00962 .01042 .01087 .01136	.01250 .01389 .01562 .01786	.02083 .02500 .02778 .031250
	Flat at internal thread crest,	$\begin{array}{c} F_{cn} = \\ p/4 = \\ 0.25/n \end{array}$	3	${in\atop 0.00312} 0.00312 \\ 0.00347 \\ 0.00391 \\ 0.00446 \\ 0.00521$	00568 006250 00694 00781 00893	00926 01042 01250 01389 01562	01786 01923 02083 02174 02273	.02500 .02778 .031250 .03571	.04167 .05000 .05556 .06250
	Pitch,	p = 1/n	2	$in \\ 0.012500 \\ .013889 \\ .0156250 \\ .017857 \\ .020833$	022727 025000 027778 031250 035714	037037 041667 050000 055556 062500	.071429 .076923 .083333 .086957 .090909	.100000 .111111 .125000 .142857	.166667 .200000 .22222 .250000
	Threads per inch,	u	1	86642 86642 86642 86642 86642 86642 86642 86642 86642 86642 86642 86642 86642 86642 86642 86642 86642 860	44 32 32 86 04 82 82 82	$ \begin{array}{c} 27 \\ 28 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 10 \\ $	14 13 11.5 11.5	10 8 8 0 10	4 4 5 5

^a This is taken as 100 percent thread height and is now known as a symmetrical thread form. It is equivalent to the "basic height" h of the original American National form.

I

FIGURE 2.2. Basic unified thread form; ISO basic profile and American (U.S.) symmetrical thread form.

2.1(e) Clearance at major diameter.—A clearance is provided at the major diameter of the internal thread by making the thread form at the root such that its width is less than 0.125 p.

2.2. DESIGN FORM OF EXTERNAL THREAD.—The design form for an external Unified thread, i.e., the form of an external thread in its maximum material condition, shown in figure 2.3, is derived from the fundamental triangle. It is truncated at the major diameter to 0.125 H. In practice, due to providing for tool crest wear at the thread roots, i.e., the minor diameter, the roots are shown as a rounded contour and cleared beyond the flat width of 0.25 p for the minimum minor diameter of the internal thread. Also, in practice, the crests of the external threads may be rounded within the confines established by the major diameter tolerance.

2.3. DESIGN FORM OF INTERNAL THREAD.—The design form for an internal Unified thread, i.e., the form of an internal thread in its maximum material condition, shown in figure 2.3, is derived from the fundamental triangle. It is similar to the basic form except that the truncation at the minor diameter is an amount equal to one-quarter of the fundamental triangle height (0.25H). In practice, due to providing for tool crest wear at the thread roots, i.e., the major diameter, the roots are shown as a rounded contour and cleared beyond the flat width of 0.125 p for the maximum major diameter of the internal thread.

2.4. BASIC THREAD DATA.—The basic thread data for all standard pitches of the Unified form of thread are given in table 2.1.

3. THREAD SERIES, ORDER OF SELECTION, AND SUGGESTED APPLICATIONS

3.1. THREAD SERIES DEFINITION.—Thread series are groups of diameter-pitch combinations distinguished from each other by the number of threads per inch applied to series of specific diameters. The various diameter-pitch combinations of three series with graded pitches and 8 series with constant pitches are given in table 2.7, p. 2.08. The symbols for designating the various thread series are shown in table 2.7. In table 2.21, p. 2.26, the limits of size of the series in table 2.7 are given but the full range is not covered in the case of the 4UN, 6UN, and 8UN series. (See par. 11 Limits of Size, p. 2.25.)

3.2. ORDER OF SELECTION.—Whenever possible, selection should be made from table 2.21, p. 2.26, Standard series limits of size—Unified screw threads, preference being given to the coarse-thread and fine-thread series. If threads in the standard series do not meet the requirements of design, reference should be made to the selected combinations in table 3.1. The third expedient is to compute the limits of size for a special diameter-pitch combination in accordance with table 3.11. The fourth and last resort is calculation by the formulas in section 3.

3.3. UNC, COARSE-THREAD SERIES.—This series is generally utilized for the bulk production of bolts, screws, nuts, and other general engineering applications. It is used in general applications for threading into lower tensile strength materials such as cast iron, mild steel, and softer materials to obtain the optimum resistance to stripping of the internal

FIGURE 2.3. Unified internal and external screw thread design forms (maximum material condition).

NOTE: See table 2.1 for numerical values. In practice the crests of external threads may be rounded.

thread. It is applicable for rapid assembly or disassembly, or if corrosion or slight damage is possible. The basic dimensions and limits of size for this series are shown in tables 2.8 and 2.21.

3.4. UNF, FINE-THREAD SERIES.—This series is suitable for the production of bolts, screws, nuts, and other applications where the coarse series is not applicable. External threads of this series have greater tensile stress area than comparable sizes of the coarse series. The fine series is suitable when the resistance to stripping of both external and mating internal threads equals or exceeds the tensile load carrying capacity of the externally threaded member. It is also used where the length of engagement is short, where a smaller lead angle is desired, or where the wall thickness demands a fine pitch. It may also be used for threading into lower strength materials where maximum strength of the external thread is not required, otherwise, the length of engagement must be selected to meet the above required strength conditions.

Fine threads up to and including 1 in size are suitable for screw, bolt, and nut, and other threaded fastener applications. Sizes over 1 in may not be suitable unless the mating materials are compatible as outlined above. The basic dimensions and limits of

FIGURE 2.4. Symbols for thread data in table 2.1.

size for this series are shown in tables 2.9 and 2.21.

3.5. UNEF, EXTRA-FINE THREAD SERIES.—This series is applicable where even finer pitches of threads are desirable for short lengths of engagement and for thin-walled tubes, nuts, ferrules, or couplings. It is also generally applicable under the conditions stated above for the fine threads. The basic dimensions and limits of size for this series are shown in tables 2.10 and 2.21.

3.6. UN, CONSTANT PITCH SERIES.—The various constant-pitch series with 4, 6, 8, 12, 16, 20, 28, and 32 threads per inch, given in table 2.7, offer a comprehensive range of diameter-pitch combinations for those purposes where the threads in the UNC, UNF, and UNEF series do not meet the particular requirements of the design. The constant pitch series have application on parts that are repeatedly assembled and disassembled or where it might be advantageous to rethread oversize to recondition the threaded portions of the parts. Whenever a thread in a constant-pitch series also appears in the UNC, UNF, or UNEF series, the symbols, tolerances, and limits of size of those standard series are applicable. When selecting threads from these constant-pitch series, preference should be given whenever possible to those tabulated in the 8-, 12-, or 16-thread series. The basic dimensions for the 4-, 6-, 20-, 28-, and 32-thread series are shown in tables 2.11, 2.12, 2.16, 2.17, and 2.18.

3.6(a) 8UN, 8-thread series.—The 8UN series is a uniform-pitch series for large diameters or for use as a compromise between the coarse- and finethread series. Although originally intended for high-pressure-joint bolts and nuts, it is now widely used as a substitute for the coarse-thread series for diameters larger than 1 in. The basic dimensions for this series are shown in table 2.13.

3.6(b) 12UN, 12-thread series.—The 12UN series is a uniform-pitch series for large diameters requiring threads of medium-fine pitch. Although originally intended for boiler practice, it is now used as a continuation of the fine-thread series for diameters larger than 1.5 in. The basic dimensions for this series are shown in table 2.14.

3.6(c) 16UN, 16-thread series.—The 16UN series is a uniform-pitch series for large diameters requiring fine-pitch threads. It is suitable for adjusting collars and retaining nuts, and also serves as a continutation of the extra-fine-thread series for diameters larger than 1.6875 in. The basic dimensions for this series are shown in table 2.15.

3.7. HIGH-TEMPERATURE, HIGH-STRENGTH AP-PLICATIONS.—For these applications the coarsethread series is recommended in sizes from 0.25 to 1 in and the 8-thread series in sizes over 1 in. Limits of size are given in table 2.21. Some high-temperature applications involving special physical characteristics or conditions may require modification of thread dimensions. See italicized part in par. 4.2, p. 2.19, and par. 10.5, p. 2.24.

3.8. SELECTED COMBINATIONS OF UNS THREADS. —These data are tabulated in table 3.1 for some selected combinations of diameter and pitch of Unified special screw threads, designated UNS, with pitch diameter tolerances based on a length of thread engagement of 9 times the pitch. The pitch diameter limits are applicable to a length of engagement of from 5 to 15 times the pitch. (This should not be confused with the length of thread on mating parts, as it may exceed the length of engagement by a considerable amount.)

3.9. FINE THREADS FOR THIN-WALL TUBING.— The limits of size for a 27-thread series, ranging from 0.25 to 1 in nominal size, are included in table 3.1. These threads are recommended for general use on thin-wall tubing. For more detailed information see part II of Handbook H28.

3.10. THREADS OF SPECIAL DIAMETERS, PITCHES, AND LENGTHS OF ENGAGEMENT.—For information on special threads, see section 3.

FIGURE 2.5. Disposition of tolerances, allowances, and crests clearances for classes 1A, 2A, 1B, and 2B. NOTE: "Nominal minor diameter of external thread" is that specified in tables.

FIGURE 2.6. Disposition of tolerances and crest clearances for classes 3A and 3B. NOTE: "Nominal minor diameter of external thread" is that specified in tables.

TABLE 2.7. Unified standard screw thread series

Nomin	al size						Threads pe	er inch					Nominal
and l major d	basic liameter	Series	with graded	pitches				Series with	n constant p	itches			size and basic major diameter
Primary	Secondary	Coarse UNC	Fine UNF	Extra fine UNEF	4UN	6UN	8UN	12UN	16UN	20UN	28UN	32UN	
in .060 .086 .112	in .073 .099	$\begin{array}{c} 64\\ 56\\ 48\\ 40\end{array}$	80 72 64 56 48										1n .060 .073 .086 .099 .112
.125 .138 .164 .190	.216	$ \begin{array}{r} 40 \\ 32 \\ 32 \\ 24 \\ 24 \\ 24 \end{array} $	$ \begin{array}{r} 44 \\ 40 \\ 36 \\ 32 \\ 28 \end{array} $	32							UNF	UNC UNC UNF UNEF	.125 .138 .164 .190 .216
.250 .3125 .375 .4375		$ \begin{array}{r} 20 \\ 18 \\ 16 \\ 14 \end{array} $	28 24 24 20	32 32 32 28					UNC 16	UNC 20 20 UNF	UNF 28 28 UNEF	UNEF UNEF UNEF 32	.250 .3125 .375 .4375
$.500 \\ .5625 \\ .625$.6875	$\begin{vmatrix} 13\\12\\11\\$	20 18 18	$\begin{array}{c} 28\\24\\24\\24\\24\end{array}$				UNC 12 12	16 16 16 16	UNF 20 20 20 20	UNEF 28 28 28 28	32 32 32 32 32	$.500 \\ .5625 \\ .625 \\ .6875$
.750 .875	.8125	10 9 	16 14	20 20 20 20 20				12 12 12 12 12	UNF 16 16 16	UNEF UNEF UNEF UNEF	28 28 28 28	32 32 32 32 32	.750 .8125 .875 .9375
1.000 1.125	1.0625	8	12 12	20 18 18 18			UNC 8 8 8	UNF 12 UNF 12	$16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\$	UNEF 20 20 20 20	28 28 28 28 28	32	$1.000 \\ 1.0625 \\ 1.125 \\ 1.1875$
1.250 1.375	1.3125	7 6 	12 <u>12</u>	18 18 18 18		UNC 6	8 8 8 8	UNF 12 UNF 12	$16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\$	20 20 20 20 20	28 28 28 28 28		$1.250 \\ 1.3125 \\ 1.375 \\ 1.4375 \\ 1.4375$
$1.500 \\ 1.625$	1.5625	6 	12	18 18 18 18		UNC 6 6 6	8 8 8 8	UNF 12 12 12 12	$16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\$	20 20 20 20 20	28		$1.500 \\ 1.5625 \\ 1.625 \\ 1.6875$
$1.750 \\ 1.875$	1.8125	5				6 6 6 6	8 8 8 8	12 12 12 12 12	$16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\$	20 20 20 20 20			$1.750 \\ 1.8125 \\ 1.875 \\ 1.9375$
2.000 2.250	2.125	4.5 4.5				6 6 6 6	8 8 8 8	12 12 12 12 12	$16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\$	20 20 20 20 20			2.000 2.125 2.250 2.375
2.500 2.750	2.625 2.875	4 4 			UNC 4 UNC 4	6 6 6 6	8 8 8 8	$12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\$	$16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\$	20 20 20 20 20			$2.500 \\ 2.625 \\ 2.750 \\ 2.875$
3.000 3.250	3.125 3.375	4 4			UNC 4 UNC 4	6 6 6	8 8 8 8	12 12 12 12 12	$16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\$	20			$3.000 \\ 3.125 \\ 3.250 \\ 3.375$
3.500 3.750	3.625 3.875	4 4			UNC 4 UNC 4	6 6 6	8 8 8 8	12 12 12 12 12	$16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\$				$3.500 \\ 3.625 \\ 3.750 \\ 3.875$
4.000 4.250	4.125	4			UNC 4 4 4	6 6 6	8 8 8 8	12 12 12 12 12	16 16 16 16				$\begin{array}{r} 4.000 \\ 4.125 \\ 4.250 \\ 4.375 \end{array}$
4.500 4.750	4.625				4 4 4 4	6 6 6	8 8 8 8	12 12 12 12 12	$16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\$				$\begin{array}{r} 4.500 \\ 4.625 \\ 4.750 \\ 4.875 \end{array}$
5.000 5.250	5.125 5.375				4 4 4 4	6 6 6	8 8 8 8	12 12 12 12 12	$16 \\ 16 \\ 16 \\ 16 \\ 16$				$5.000 \\ 5.125 \\ -5.250 \\ 5.375$
5.500 5.750 6.000	5.625				4 4 4 4 4	6 6 6 6	8 8 8 8	12 12 12 12 12 12	$16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\$				$5.500 \\ 5.625 \\ 5.750 \\ 5.875 \\ 6.000$

Nomi and bas diame	nal size sic major eter, D	Threads per inch, n	Basic pitch diameter, E	Minor ^a diameter, external threads, K _s	Minor ^a diameter, internal threads, K _n	Lead angle at basic pitch diameter, λ		Lead angle at basic pitch diameter,Sectional area at minor diameter at $D-2h_b$	
Primary	Secondary								
in	in		in	in	in	deg	min	in^2	in^2
.086	.073	64 56 48 40	0.0629 .0744 .0855 .0958	0.0538 .0641 .0734 .0813	0.0561 .0667 .0764 .0849	4 4 4 4	31 22 26 45	0.00218 .00310 .00406 .00496	0.00263 .00370 .00487 .00604
. 125 . 138 . 164 . 190	.216	40 32 32 24 24	. 1088 . 1177 . 1437 . 1629 . 1889	.0943 .0997 .1257 .1389 .1649	.0979 .1042 .1302 .1449 .1709	4 4 3 4 4	11 50 58 39 1	.00672 .00745 .01196 .01450 .0206	.00796 .00909 .0140 .0175 .0242
. 250 . 3125 . 375 . 4375		20 18 16 14	.2175 .2764 .3344 .3911	. 1887 . 2443 . 2983 . 3499	. 1959 . 2524 . 3073 . 3602	4 3 3 3	11 40 24 20	.0269 .0454 .0678 .0933	.0318 .0524 .0775 .1063
.500 .5625 .625 .750 .875		13 12 11 10 9	.4500 .5084 .5660 .6850 .8028	. 4056 . 4603 . 5135 . 6273 . 7387	.4167 .4723 .5266 .6417 .7547	3 2 2 2 2	7 59 56 40 31	.1257 .162 .202 .302 .419	$\begin{array}{r}.1419\\.182\\.226\\.334\\.462\end{array}$
1.000 1.125 1.250 1.375 1.500		8 7 7 6 6	.9188 1.0322 1.1572 1.2667 1.3917	.8466 .9497 1.0747 1.1705 1.2955	.8647 .9704 1.0954 1.1946 1.3196	2 2 2 2 2 2	29 31 15 24 11	.551 .693 .890 1.054 1.294	.606 .763 .969 1.155 1.405
$1.750 \\ 2.000 \\ 2.250 \\ 2.500 \\ 2.750$		$5 \\ 4.5 \\ 4.5 \\ 4 \\ 4 \\ 4 \\ 4$	$1.6201 \\ 1.8557 \\ 2.1057 \\ 2.3376 \\ 2.5876$	$1.5046 \\ 1.7274 \\ 1.9774 \\ 2.1933 \\ 2.4433$	$1.5335 \\ 1.7594 \\ 2.0094 \\ 2.2294 \\ 2.4794$	2 2 1 1 1	15 11 55 57 46	$1.74 \\ 2.30 \\ 3.02 \\ 3.72 \\ 4.62$	1.90 2.50 3.25 4.00 4.93
3.000 3.250 3.500 3.750 4.000		4 4 4 4 4	2.8376 3.0876 3.3376 3.5876 3.8376	2.6933 2.9433 3.1933 3.4433 3.6933	2.7294 2.9794 3.2294 3.4794 3.7294	1 1 1 1	36 29 22 16 11	5.62 6.72 7.92 9.21 10.61	5.97 7.10 8.33 9.66 11.08

TABLE 2.8. Coarse thread series, basic dimensions, UNC

^a Design form. See fig. 2.3. ^b See formula under definition of tensile stress area in appendix A5.

TABLE 2.9. Fine thread series, basic dimensions, UNF

Primary Secondary in in in in in in in in in^2 in^2 060	$\left(\frac{3H}{16}\right)^2$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10 /
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	180
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	278 394
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	523 661
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	530 015
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	474
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28
$egin{array}{cccccccccccccccccccccccccccccccccccc$	84
-375	80
(4375)	78
	37
.500	99
.5625	3
<u>.625</u>	5
$-\frac{750}{16}$ $-\frac{16}{7094}$ $-\frac{6733}{6733}$ $-\frac{6823}{1}$ $-\frac{36}{351}$ $-\frac{351}{373}$	3
<u>.875</u> 14 .8286 .7874 .7977 1 34 .480 .509	9
1.000	3
1.125	6
1.250 12 1.1959 1.1478 1.1598 1 16 1.024 1.073	3
1.375 12 1.3209 1.2728 1.2848 1 9 1.260 1.316	5
1.300 1.307 1.3978 1.4098 1 3 1.521 1.581	1

^a For sizes larger than 1.5 inch, use the 12-thread series. See table 2.14.
 ^b Design form. See fig. 2.3.
 ^o See formula under definition of tensile stress area in appendix A5.

Nomir and bas diame	al size ^a ic major ter, D	Threads per inch, n	Basic pitch diameter, E	Minor ^b diameter, external threads, K ₈	Minor ^b diameter, internal threads, K _n	Lead angle at basic pitch diameter, λ		Sectional area at minor diameter at $D - 2h_b$	Tensile stresso area, $\pi \left(\frac{E}{2} - \frac{3H}{16}\right)^2$
Primary	Secondary								<pre> /</pre>
in	in		in	in	in	deg	min	in^2	in^2
$. 250 \\ . 3125 \\ . 375 \\ . 4375 $.216	32 32 32 32 32 28	$\begin{array}{c} 0.1957 \\ .2297 \\ .2922 \\ .3547 \\ .4143 \end{array}$	$\begin{array}{c} 0.1777\\.2117\\.2742\\.3367\\.3937\end{array}$	$\begin{array}{c} 0.1822 \\ .2162 \\ .2787 \\ .3412 \\ .3988 \end{array}$	2 2 1 1 1	55 29 57 36 34	$\begin{array}{c} 0.0242 \\ .0344 \\ .0581 \\ .0878 \\ .1201 \end{array}$	$\begin{array}{c} 0.0270 \\ .0379 \\ .0625 \\ .0932 \\ .1274 \end{array}$
. 500 . 5625 . 625	.6875	28 24 24 24 24	.4768 .5354 .5979 .6604	.4562 .5114 .5739 .6364	.4613 .5174 .5799 .6424	1 1 1 1	$22 \\ 25 \\ 16 \\ 9$.162 .203 .256 .315	. 170 . 214 . 268 . 329
.750 .875	. 8125	20 20 20 20	.7175 .7800 .8425 .9050	.6887 .7512 .8137 .8762	. 6959 . 7584 . 8209 . 8834	1 1 1 1	16 10 5 0	.369 .439 .515 .598	.386 .458 .536 .620
1.000 1.125	1.0625	20 18 18 18	$.9675 \\ 1.0264 \\ 1.0889 \\ 1.1514$	$.9387 \\ .9943 \\ 1.0568 \\ 1.1193$.9459 1.0024 1.0649 1.1274	0 0 0 0	57 59 56 53	.687 .770 .871 .977	.711 .799 .901 1.009
$1.250\\1.375$	1.3125 1.4375	18 18 18 18	$\begin{array}{c} 1.2139 \\ 1.2764 \\ 1.3389 \\ 1.4014 \end{array}$	$1.1818 \\ 1.2443 \\ 1.3068 \\ 1.3693$	$1.1899 \\ 1.2524 \\ 1.3149 \\ 1.3774$	0 0 0 0	50 48 48 43	$1.090 \\ 1.208 \\ 1.333 \\ 1.464$	$1.123 \\ 1.244 \\ 1.370 \\ 1.503$
$1.500 \\ 1.625$	1.5625	18 18 18 18	$1.4639 \\ 1.5264 \\ 1.5889 \\ 1.6514$	$1.4318 \\ 1.4943 \\ 1.5568 \\ 1.6193$	$1.4399 \\ 1.5024 \\ 1.5649 \\ 1.6274$	0 0 0 0	42 40 38 37	$1.60 \\ 1.74 \\ 1.89 \\ 2.05$	$1.64 \\ 1.79 \\ 1.94 \\ 2.10$

TABLE 2.10. Extra-fine thread series, basic dimensions, UNEF

^a For sizes larger than 1.6875 in, use 16-thread series. See table 2.15.
^b Design form. See fig. 2.3.
^c See formula under definition of tensile stress area in appendix A5.

Nomii and bas diame	nal size ic major ter, D	Basic pitch diameter, E	$\begin{array}{c} {\rm Minor}^{\rm b}\\ {\rm diameter,}\\ {\rm external}\\ {\rm threads,}\ K_s\end{array}$	Minor ^b diameter, internal threads, K _n	Lead angle at basic pitch diameter, λ		Sectional area at minor diameter at $D - 2h_b$	Tensile stress ^c area, $\pi \left(\frac{E}{2} - \frac{3H}{16}\right)^2$
Primary	Secondary							(2 10)
in 2.500ª 2.750 ^ª	in 2.625 2.875	in 2.3376 2.4626 2.5876 2.7126	in 2.1933 2.3183 2.4433 2.5683	$in \\ 2.2294 \\ 2.3544 \\ 2.4794 \\ 2.6044$	deg 1 1 1 1	min 57 51 46 41	in^2 3.72 4.16 4.62 5.11	in^2 4.00 4.45 4.93 5.44
3.000 ^a 3.250 ^a	3.125 	$\begin{array}{c} 2.8376 \\ 2.9626 \\ 3.0876 \\ 3.2126 \end{array}$	$\begin{array}{c} 2.6933\\ 2.8183\\ 2.9433\\ 3.0683 \end{array}$	$\begin{array}{c} 2.7294 \\ 2.8544 \\ 2.9794 \\ 3.1044 \end{array}$	1 1 1 1	36 32 29 25	$5.62 \\ 6.16 \\ 6.72 \\ 7.31$	$5.97 \\ 6.52 \\ 7.10 \\ 7.70$
3.500 ^a 3.750 ^a	3.625 	$3.3376 \\ 3.4626 \\ 3.5876 \\ 3.7126$	$3.1933 \\ 3.3183 \\ 3.4433 \\ 3.5683$	$3.2294 \\ 3.3544 \\ 3.4794 \\ 3.6044$	1 1 1 1	22 19 16 14	7.928.559.219.90	$egin{array}{c} 8.33 \\ 9.00 \\ 9.66 \\ 10.36 \end{array}$
4.000 ^a 4.250	4.125	$3.8376 \\ 3.9626 \\ 4.0876 \\ 4.2126$	3.6933 3.8183 3.9433 4.0683	$3.7294 \\ 3.8544 \\ 3.9794 \\ 4.1044$	1 1 1 1	11 9 7 5	10.61 11.34 12.10 12.88	11.08 11.83 12.61 13.41
4.500 4.750	4.625	$\begin{array}{r} 4.3376 \\ 4.4626 \\ 4.5876 \\ 4.7126 \end{array}$	$\begin{array}{r} 4.1933 \\ 4.3183 \\ 4.4433 \\ 4.5683 \end{array}$	$\begin{array}{r} 4.2294 \\ 4.3544 \\ 4.4794 \\ 4.6044 \end{array}$	1 1 1 0	3 1 0 58	$13.69 \\ 14.52 \\ 15.4 \\ 16.3$	$14.23 \\ 15.1 \\ 15.9 \\ 16.8$
$\begin{array}{c} 5.000\\ 5.250\end{array}$	5.125	$\begin{array}{r} 4.8376 \\ 4.9626 \\ 5.0876 \\ 5.2126 \end{array}$	$\begin{array}{r} 4.6933 \\ 4.8183 \\ 4.9423 \\ 5.0683 \end{array}$	$\begin{array}{r} 4.7294 \\ 4.8544 \\ 4.9794 \\ 5.1044 \end{array}$	0 0 0 0	$57 \\ 55 \\ 54 \\ 52$	$17.2 \\ 18.1 \\ 19.1 \\ 20.0$	17.8 18.7 19.7 20.7
5.500 5.750 6.000	5.625	5.3376 5.4626 5.5876 5.7126 5.8376	5.1933 5.3183 5.4433 5.5683 5.6933	5.2294 5.3544 5.4794 5.6044 5.7294	0 0 0 0 0	51 50 49 48 47	$21.0 \\ 22.1 \\ 23.1 \\ 24.2 \\ 25.3$	21.722.723.824.926.0

TABLE 2.11. 4-thread series, basic dimensions, 4UN

^a These are standard sizes of the UNC series.
 ^b Design form. See fig. 2.3.
 ^c See formula under definition of tensile stress area in appendix A5.

Nomi and bas diame	inal size sic major eter, D	Basic pitch diameter, E	$\begin{array}{c} {\rm Minor^b}\\ {\rm diameter},\\ {\rm external}\\ {\rm threads}, K_s \end{array}$	Minor ^b diameter, internal threads, K _n	Lead basi dia	angle at ic pitch meter, λ	Sectional area at minor diameter at $D - 2h_b$	Tensile stress ^o area, $\pi \left(\frac{E}{2} - \frac{3H}{16}\right)^2$
Primary	Secondary							
in 1.375 ^a	in 1.4375	in 1.2667 1.3292	$in \\ 1.1705 \\ 1.2330$	in 1.1946 1.2571	deg 2 2	min 24 17	in^2 1.054 1.171	in^2 1.155 1.277
1.500^{a}	1 5625	1.3917	1.2955	1.3196	2	11	1.294	1.405
1.625	1.6875	1.5167	1.4205 1.4830	1.5021 1.4446 1.5071	2 2 1	0 55	1.423 1.56 1.70	1.68 1.83
1.750	1.8125	$1.6417 \\ 1.7042$	1.5455 1.6080	1.5696 1.6321	1	51 47	1.85 2.00	1.98
1.875	1.9375	$1.7667 \\ 1.8292$	1.6705 1.7330	1.6946 1.7571	1	43 40	$2.16 \\ 2.33$	2.30 2.47
2.000	2.125	$1.8917 \\ 2.0167$	1.7955 1.9205	$1.8196 \\ 1.9446$	1	36 30	2.50 2.86	2.65
2.250	2.375	2.1417 2.2667	2 0455 2.1705	$2.0696 \\ 2.1946$	1	25 20	3.25 3.66	3.42 3.85
2.500	2.625	$2.3917 \\ 2.5167$	2.2955 2.4205	$2.3196 \\ 2.4446$	1	16 12	$4.10 \\ 4.56$	4.29
2.750	2.875	$2.6417 \\ 2.7667$	$\begin{array}{c} 2.5455\\ 2.6705\end{array}$	$\substack{\textbf{2.5696}\\\textbf{2.6946}}$	1	9 6	$5.04 \\ 5.55$	5.26 5.78
3.000	3,125	$2.8917 \\ 3.0167$	2.7955 2.9205	2.8196 2.9446	1	3	6.09	6.33
3.250	3.375	$3.1417 \\ 3.2667$	$3.0455 \\ 3.1705$	$3.0696 \\ 3.1946$	0	58 56	$7.23 \\ 7.84$	7.49 8.11
3.500	3.625	$3.3917 \\ 3.5167$	$3.2955 \\ 3.4205$	$3.3196 \\ 3.4446$	0	54 52	8.47 9.12	8.75 9.42
3.750	3.875	$3.6417 \\ 3.7667$	$\substack{3.5455\\3.6705}$	$3.5696 \\ 3.6946$	0	50 48	9.81 10.51	10.11 10.83
4.000	4.125	$3.8917 \\ 4.0167$	$3.7955 \\ 3.9205$	$3.8196 \\ 3.9446$	0	47 45	$11.24 \\ 12.00$	11.57
4.250	4.375	4.1417 4.2667	4.0455 4.1705	$4.0696 \\ 4.1946$	0	44 43	$12.78 \\ 13.58$	13.12 13.94
4.500	4,625	4.3917 4.5167	4.2955 4.4205	4.3196 4.4446	0	42 40	14.41	14.78
4.750	4.875	4.6417 4.7667	4.5455 4.6705	4.5696 4.6946	0	39 38	16.1 17.0	16.5 17.5
5.000	5 125	4.8917	4.7955	4.8196	0	37	18.0	18.4
5.250	5.375	5.1417 5.2667	5.0455	5.0696	0	35 35	19.9 20.9	20.3 21.3
5.500	5 625	5.3917	5.2955	5.3196	0	34	21.9	22.4
5.750	5.875	5.6417	5.5455	5.5696	0	32 32	23.0 24.0 25.1	23.4 24.5 25.6
6.000		5.8917	5.7955	5.8196	Ŏ	31	26.3	26.8

TABLE 2.12. 6-thread series, basic dimensions, 6UN

^a These are standard sizes of the UNC series.
 ^b Design form. See fig. 2.3.
 ^c See formula under definition of tensile stress area in appendix A5.

TABLE 2.13. 8-thread series, basic dimensions, a
--

Nomir and basi diame	nal size c major ter, D	Basic pitch diameter, E	Minor ^b diameter, external threads, K _s	Minor ^b diameter, internal threads, K _n	Lead angle at basic pitch diameter, λ		Lead angle at basic pitch diameter, λ Sectional area at minor diameter at $D-2k_b$		Sectional area at minor diameter at $D - 2h_b$	Tensile stress ^o area, $\pi \left(\frac{E}{2} - \frac{3H}{16}\right)^2$
Primary	Secondary							()		
in 1.000 ^a 1.125	in 1.0625 1.1875	in 0.9188 .9813 1.0438 1.1063	in 0.8466 .9091 .9716 1.0341	in 0.8647 .9272 .9897 1.0522	deg 2 2 2 2 2	min 29 19 11 4	in ² 0.551 .636 .728 .825	in ² 0.606 .695 .790 .892		
1.250 1.375	1.3125 1.4375	1.1688 1.2313 1.2938 1.3563	$1.0966 \\ 1.1591 \\ 1.2216 \\ 1.2841$	1.1147 1.1772 1.2397 1.3022	1 1 1 1	57 51 46 41	.929 1.039 1.155 1.277	$1.000 \\ 1.114 \\ 1.233 \\ 1.360$		
1.500 1.625	1.5625	1.4188 1.4813 1.5438 1.6063	$1.3466 \\ 1.4091 \\ 1.4716 \\ 1.5341$	$1.3647 \\ 1.4272 \\ 1.4897 \\ 1.5522$	1 1 1 1	36 32 29 25	1.405 1.54 1.68 1.83	1.492 1.63 1.78 1.93		
1.750 1.875	1.8125 1.9375	$1.6688 \\ 1.7313 \\ 1.7938 \\ 1.8563$	$1.5966 \\ 1.6591 \\ 1.7216 \\ 1.7841$	$1.6147 \\ 1.6772 \\ 1.7397 \\ 1.8022$	1 1 1 1	22 19 16 14	1.98 2.14 2.30 2.47	2.08 2.25 2.41 2.59		
2.000 2.250	2.125 2.375	1.9188 2.0438 2.1688 2.2938	$1.8466 \\ 1.9716 \\ 2.0966 \\ 2.2216$	1.8647 1.9897 2.1147 2.2397	1 1 1 1	11 7 3 0	2.65 3.03 3.42 3.85	2.77 3.15 3.56 3.99		
2.500 2.750	2.625	$\begin{array}{c} 2.4188 \\ 2.5438 \\ 2.6688 \\ 2.7938 \end{array}$	2.3466 2.4716 2.5966 2.7216	$\begin{array}{c} 2.3647 \\ 2.4897 \\ 2.6147 \\ 2.7397 \end{array}$	0 0 0 0	57 54 51 49	$\begin{array}{c} 4.29 \\ 4.76 \\ 5.26 \\ 5.78 \end{array}$	$4.44 \\ 4.92 \\ 5.43 \\ 5.95$		
3.000 3.250	3.125 3.375	2.9188 3.0438 3.1688 3.2938	2.8466 2.9716 3.0966 3.2216	$\begin{array}{c} 2.8647 \\ 2.9897 \\ 3.1147 \\ 3.2397 \end{array}$	0 0 0 0	47 45 43 42	$ \begin{array}{r} 6.32 \\ 6.89 \\ 7.49 \\ 8.11 \end{array} $	6.51 7.08 7.69 8.31		
3.500 3.750	3.625 3.875	3.4188 3.5438 3.6688 3.7938	3.3466 3.4716 3.5966 3.7216	3.3647 3.4897 3.6147 3.7397	0 0 0 0	40 39 37 36	8.75 9.42 10.11 10.83	8.96 9.64 10.34 11.06		
4.000 4.250	4.125	3.9188 4.0438 4.1688 4.2938	3.8466 3.9716 4.0966 4.2216	3.8647 3.9897 4.1147 4.2397	0 0 0 0	35 34 33 32	$11.57 \\ 12.34 \\ 13.12 \\ 13.94$	$11.81 \\ 12.59 \\ 13.38 \\ 14.21$		
4.500 4.750	4.625 4.875	$\begin{array}{r} 4.4188 \\ 4.5438 \\ 4.6688 \\ 4.7938 \end{array}$	$\begin{array}{r} 4.3466\\ 4.4716\\ 4.5966\\ 4.7216\end{array}$	$\begin{array}{r} 4.3647 \\ 4.4897 \\ 4.6147 \\ 4.7397 \end{array}$	0 0 0 0	31 30 29 29	$14.78 \\ 15.6 \\ 16.5 \\ 17.4$	$15.1 \\ 15.9 \\ 16.8 \\ 17.7$		
5.000 5.250	5.125 5.375	4.9188 5.0438 5.1688 5.2938	$\begin{array}{r} 4.8466 \\ 4.9716 \\ 5.0966 \\ 5.2216 \end{array}$	4.8647 4.9897 5.1147 5.2397	0 0 0 0	28 27 26 26	18.4 19.3 20.3 21.3	18.7 19.7 20.7 21.7		
5.500 5.750 6.000	5.625	5.4188 5.5438 5.6688 5.7938 5.9188	$\begin{array}{c} 5.3466 \\ 5.4716 \\ 5.5966 \\ 5.7216 \\ 5.8466 \end{array}$	5.3647 5.4897 5.6147 5.7397 5.8647	0 0 0 0 0	25 25 24 24 23	22.4 23.4 24.5 25.6 26.8	22.7 23.8 24.9 26.0 27.1		

^a This is a standard size of the UNC series.
 ^b Design form. See fig. 2.3.
 ^c See formula under definition of tensile stress area in appendix A5.

Nomia and basi diame	nal size ic major ter, D	Basic pitch diameter, E	$\begin{array}{c} {\rm Minor^b}\\ {\rm diameter,}\\ {\rm external}\\ {\rm threads,}\ K_s \end{array}$	Minor ^b diameter, internal threads, <i>Kn</i>	Lead angle at basic pitch diameter, λ		Sectional area at minor diameter at $D - 2h_b$	Tensile stress ^o area, $\pi \left(\frac{E}{2} - \frac{3H}{16}\right)^2$
Primary	Secondary							
in .5625ª .625	in .6875	in 0.5084 .5709 .6334	in 0.4603 .5228 .5853	in 0. 4723 . 5348 . 5973	deg 2 2 2 2	min 59 40 24	in^2 0.162 .210 .264	in^2 0.182 .232 .289
.750 .875	.8125 .9375	.6959 .7584 .8209 .8834	.6478 .7103 .7728 .8353	.6598 .7223 .7848 .8473	$\begin{array}{c}2\\2\\1\\1\end{array}$	11 0 51 43	.323 .390 .462 .540	.351 .420 .495 .576
1.000 ^a 1.125 ^a	1.0625 1.1875	$.9459 \\ 1.0084 \\ 1.0709 \\ 1.1334$.8978 .9603 1.0228 1.0853	.9098 .9723 1.0348 1.0973	1 1 1 1	36 30 25 20	.625 .715 .812 .915	.663 .756 .856 .961
1.250 ^a 1.375 ^a	1.3125 1.4375	$1.1959 \\ 1.2584 \\ 1.3209 \\ 1.3834$	$1.1478 \\ 1.2103 \\ 1.2728 \\ 1.3353$	$1.1598 \\ 1.2223 \\ 1.2848 \\ 1.3473$	1 1 1 1	$ \begin{array}{c} 16 \\ 12 \\ 9 \\ 6 \end{array} $	$1.024 \\ 1.139 \\ 1.260 \\ 1.388$	1.073 1.191 1.315 1.445
1.500 ^a 1.625	1.5625	$1.4459 \\ 1.5084 \\ 1.5709 \\ 1.6334$	$\begin{array}{c} 1.3978 \\ 1.4603 \\ 1.5228 \\ 1.5853 \end{array}$	${}^{1,4098}_{1,4723}\\{}^{1,5348}_{1,5973}$	1 1 0 0	3 0 58 56	$1.52 \\ 1.66 \\ 1.81 \\ 1.96$	$1.58 \\ 1.72 \\ 1.87 \\ 2.03$
1.750 1.875	1.8125 1.9375	1.6959 1.7584 1.8209 1.8834	$1.6478 \\ 1.7103 \\ 1.7728 \\ 1.8353$	$1.6598 \\ 1.7223 \\ 1.7848 \\ 1.8473$	0 0 0 0	54 52 50 48	2.12 2.28 2.45 2.63	2.19 2.35 2.53 2.71
2.000 2.250	2.125 	$1.9459 \\ 2.0709 \\ 2.1959 \\ 2.3209$	$1.8978 \\ 2.0228 \\ 2.1478 \\ 2.2728$	$1.9098 \\ 2.0348 \\ 2.1598 \\ 2.2848$	0 0 0 0	47 44 42 39	2.81 3.19 3.60 4.04	2.89 3.28 3.69 4.13
2.500 2.750	2.625	2.4459 2.5709 2.6959 2.8209	$\begin{array}{c} 2.3978 \\ 2.5228 \\ 2.6478 \\ 2.7728 \end{array}$	2.4098 2.5348 2.6598 2.7848	0 0 0 0	37 35 34 32	4.49 4.97 5.48 6.01	4.60 5.08 5.59 6.13
3.000 3.250	3.125	$\begin{array}{c} 2.9459 \\ 3.0709 \\ 3.1959 \\ 3.3209 \end{array}$	$\begin{array}{c} 2.8978 \\ 3.0228 \\ 3.1478 \\ 3.2728 \end{array}$	2.9098 3.0348 3.1598 3.2848	0 0 0 0	31 30 29 27	$6.57 \\ 7.15 \\ 7.75 \\ 8.38$	6.69 7.28 7.89 8.52
3.500 3.750	3.625 3.875	3.4459 3.5709 3.6959 3.8209	3.3978 3.5228 3.6478 3.7728	3.4098 3.5348 3.6598 3.7848	0 0 0 0	26 26 25 24	9.03 9.71 10.42 11.14	9.18 9.86 10.57 11.30
4.000 4.250	4.125 4.375	$\begin{array}{c} 3.9459 \\ 4.0709 \\ 4.1959 \\ 4.3209 \end{array}$	$\begin{array}{r} 3.8978 \\ 4.0228 \\ 4.1478 \\ 4.2728 \end{array}$	$\begin{array}{r} 3.9098 \\ 4.0348 \\ 4.1598 \\ 4.2848 \end{array}$	0 0 0 0	23 22 22 21	11.90 12.67 13.47 14.30	$12.06 \\ 12.84 \\ 13.65 \\ 14.48$
4.500 4.750	4.625	$\begin{array}{r} 4.4459 \\ 4.5709 \\ 4.6959 \\ 4.8209 \end{array}$	$\begin{array}{r} 4.3978 \\ 4.5228 \\ 4.6478 \\ 4.7728 \end{array}$	$\begin{array}{r} 4.4098 \\ 4.5348 \\ 4.6598 \\ 4.7848 \end{array}$	0 0 0 0	21 20 19 19	$15.1 \\ 16.0 \\ 16.9 \\ 17.8$	$15.3 \\ 16.2 \\ 17.1 \\ 18.0$
5.000 5.250	5.125 5.375	$\begin{array}{c} 4.9459 \\ 5.0709 \\ 5.1959 \\ 5.3209 \end{array}$	$\begin{array}{r} 4.8978 \\ 5.0228 \\ 5.1478 \\ 5.2728 \end{array}$	$\begin{array}{c} 4.9098 \\ 5.0348 \\ 5.1598 \\ 5.2848 \end{array}$	0 0 0 0	18 18 18 17	18.8 19.8 20.8 21.8	$ \begin{array}{r} 19.0 \\ 20.0 \\ 21.0 \\ 22.0 \\ \end{array} $
5.500 5.750 6.000	5.625	5.4459 5.5709 5.6959 5.8209 5.9459	5.3978 5.5228 5.6478 5.7728 5.8978	5.4098 5.5348 5.6598 5.7848 5.9098	0 0 0 0 0	17 16 16 16 15	22.8 23.9 25.0 26.1 27.3	$23.1 \\ 24.1 \\ 25.2 \\ 26.4 \\ 27.5$

TABLE 2.14. 12-thread series, basic dimensions, 12UN

-

_

^a These are standard sizes of the UNC or UNF series.
 ^b Design form. See fig. 2.3.
 ^c See formula under definition of tensile stress area in appendix A5.

Nominal size and basic major diameter, D		Basic pitch diameter, E	$\begin{array}{c} {\rm Minor^b}\\ {\rm diameter,}\\ {\rm external}\\ {\rm threads,}\ K_s \end{array}$	Minor ^b diameter, internal threads, <i>K</i> _n	Lead basi dia	angle at c pitch meter, λ	Sectional area at minor diameter at $D - 2h_b$	Tensile stress ^o area, $\pi \left(\frac{E}{2} - \frac{3H}{18}\right)^2$
Primary	Secondary							(2 10)
in .375 ^a .4375	in	in 0.3344 .3969	in 0.2983 .3608	in 0.3073 .3698	deg 3 2	min 24 52	in ² 0.0678 .0997	in² 0.0775 .1114
.500 .5625 .625	.6875	.4594 .5219 .5844 .6469	.4233 .4858 .5483 .6108	. 4323 . 4948 . 5573 . 6198	2 2 1 1	29 11 57 46	.1378 .182 .232 .289	.151 .198 .250 .308
.750 ^a .875	.8125	.7094 .7719 .8344 .8969	. 6733 . 7358 . 7983 . 8608	. 6823 . 7448 . 8073 . 8698	1 1 1 1	36 29 22 16	.351 .420 .495 .576	.373 .444 .521 .604
1.000 1.125	1.0625 1.1875	$\begin{array}{r} .9594 \\ 1.0219 \\ 1.0844 \\ 1.1469 \end{array}$	$\begin{array}{r} .9233 \\ .9858 \\ 1.0483 \\ 1.1108 \end{array}$.9323 .9948 1.0573 1.1198	1 1 1 1	11 7 3 0	.663 .756 .856 .961	. 693 . 788 . 889 . 997
1.250 1.375	1.3125	$1.2094 \\ 1.2719 \\ 1.3344 \\ 1.3969$	$1.1733 \\ 1.2358 \\ 1.2983 \\ 1.3608$	1.1823 1.2448 1.3073 1.3698	0 0 0 0	57 54 51 49	1.073 1.191 1.315 1.445	1.111 1.230 1.356 1.488
1.500 1.625	1.5625	$1.4594 \\ 1.5219 \\ 1.5844 \\ 1.6469$	$1.4233 \\ 1.4858 \\ 1.5483 \\ 1.6108$	1.4323 1.4948 1.5573 1.6198	0 0 0	47 45 43 42	$1.58 \\ 1.72 \\ 1.87 \\ 2.03$	$1.63 \\ 1.77 \\ 1.92 \\ 2.08$
1.750 1.875	1.8125	$1.7094 \\ i.7719 \\ 1.8344 \\ 1.8969$	$1.6733 \\ 1.7358 \\ 1.7983 \\ 1.8608$	$1.6823 \\ 1.7448 \\ 1.8073 \\ 1.8698$	0 0 0 0	40 39 37 36	2.19 2.35 2.53 2.71	2.24 2.41 2.58 2.77
2.000 2.250	2.125	1.9594 2.0844 2.2094 2.3344	$1.9233 \\ 2.0483 \\ 2.1733 \\ 2.2983$	$1.9323 \\ 2.0573 \\ 2.1823 \\ 2.3073$	0 0 0 0	35 33 31 29	2.89 3.28 3.69 4.13	2.95 3.35 3.76 4.21
2.500 2.750	2.625 2.875	$\begin{array}{c} 2.4594 \\ 2.5844 \\ 2.7094 \\ 2.8344 \end{array}$	$\begin{array}{c} 2.4233 \\ 2.5483 \\ 2.6733 \\ 2.7983 \end{array}$	$\begin{array}{c} 2.4323\\ 2.5573\\ 2.6823\\ 2.8073\end{array}$	0 0 0 0	28 26 25 24	$\begin{array}{c} 4.60 \\ 5.08 \\ 5.59 \\ 6.13 \end{array}$	$4.67 \\ 5.16 \\ 5.68 \\ 6.22$
3.000 3.250	3.125 3.375	$\begin{array}{c} \textbf{2.9594} \\ \textbf{3.0844} \\ \textbf{3.2094} \\ \textbf{3.3344} \end{array}$	2.9230 3.0483 3.1733 3.2983	2.9323 3.0573 3.1823 3.3073	0 0 0 0	23 22 21 21	6.69 7.28 7.89 8.52	6.78 7.37 7.99 8.63
3.500 3.750	3.625 3.875	3.4594 3.5844 3.7094 3.8344	3.4233 3.5483 3.6733 3.7983	3.4323 3.5573 3.6823 3.8073	0 0 0 0	20 19 18 18	9.18 9.86 10.57 11.30	9.29 9.98 10.69 11.43
4.000 4.250	4.125 4.375	3.9594 4.0844 4.2094 4.3344	3.9233 4.0483 4.1733 4.2983	$3.9323 \\ 4.0573 \\ 4.1823 \\ 4.3073$	0 0 0 0	17 17 16 16	$12.06 \\ 12.84 \\ 13.65 \\ 14.48$	12.19 12.97 13.78 14.62
4.500 4.750	4.625	$\begin{array}{r} 4.4594 \\ 4.5844 \\ 4.7094 \\ 4.8344 \end{array}$	$\begin{array}{r} 4.4233 \\ 4.5483 \\ 4.6733 \\ 4.7983 \end{array}$	$\begin{array}{r} 4.4323\\ 4.5573\\ 4.6823\\ 4.8073\end{array}$	0 0 0 0	15 15 15 14	15.34 16.2 17.1 18.0	15.5 16.4 17.3 18.2
5.000 5.250	5.125 5.375	$\begin{array}{r} 4.9594 \\ 5.0844 \\ 5.2094 \\ 5.3344 \end{array}$	$\begin{array}{r} 4.9233 \\ 5.0483 \\ 5.1733 \\ 5.2983 \end{array}$	$\begin{array}{r} 4.9323 \\ 5.0573 \\ 5.1823 \\ 5.3073 \end{array}$	0 0 0 0	14 13 13 13	$19.0 \\ 20.0 \\ 21.0 \\ 22.0$	$19.2 \\ 20.1 \\ 21.1 \\ 22.2$
5.500 5.750 6.000	5.625 5.875	5.4594 5.5844 5.7094 5.8344 5.9594	5.4233 5.5483 5.6733 5.7983 5.9233	5.4323 5.5573 5.6823 5.8073 5.9323	0 0 0 0 0	13 12 12 12 12 11	23.1 24.1 25.2 26.4 27.5	23.2 24.3 25.4 26.5 27.7

TABLE 2.15. 16-thread series, basic dimensions, 16UN

^a These are standard sizes of the UNC or UNF Series.
 ^b Design form. See fig. 2.3.
 ^c See formula under definition of tensile stress area in appendix A5.

Nomi and bas diame	nal size ic major eter, D	Basic pitch diameter, E	Minor ^b diameter, external threads, K _s	Minor ^b diameter, internal threads, K _n	Lead bas di	d angle at sic pitch ameter, λ	Sectional area at minor diameter at $D - 2h_b$	$\pi \left(\frac{E}{2} - \frac{3H}{16}\right)^2$
Primary	Secondary							
in .250ª .3125 .375 .4375ª	in 	in 0.2175 .2800 .3425 .4050	in 0.1887 .2512 .3137 .3762	in 0.1959 .2584 .3209 .3834	deg 4 3 2 2	min 11 15 40 15	in ² 0.0269 .0481 .0755 .1090	in ² 0.0318 .0547 .0836 .1187
. 500 ⁸ . 5625 . 625	.6875	.4675 .5300 .5925 .6550	.4387 .5012 .5637 .6262	. 4459 . 5084 . 5709 . 6334	1 1 1 1	57 43 32 24	.1486 .194 .246 .304	. 160 . 207 . 261 . 320
. 750 ^a . 875 ^a	.8125 ^a .9375 ^a	.7175 .7800 .8425 .9050	.6887 .7512 .8137 .8762	. 6959 . 7584 . 8209 . 8834	1 1 1 1	16 10 5 0	.369 .439 .515 .598	. 386 . 458 . 536 . 620
1.000 ^a 1.125	1.0625	.9675 1.0300 1.0925 1.1550	.9387 1.0012 1.0637 1.1262	.9459 1.0084 1.0709 1.1334	0 0 0 0	57 53 50 47	.687 .782 .882 .990	.711 .807 .910 1.018
1.250 1.375	1.3125 1.4375	$1.2175 \\ 1.2800 \\ 1.3425 \\ 1.4050$	1.1887 1.2512 1.3137 1.3762	1.1959 1.2584 1.3209 1.3834	0 0 0 0	45 43 41 39	1.103 1.222 1.348 1.479	1.133 1.254 1.382 1.51
1.500 1.625	1.5625	1.4675 1.5300 1.5925 1.6550	1.4387 1.5012 1.5637 1.6262	$1.4459 \\ 1.5084 \\ 1.5709 \\ 1.6334$	0 0 0 0	37 36 34 33	1.62 1.76 1.91 2.07	1.65 1.80 1.95 2.11
1.750 1.875	1.8125 1.9375	1.7175 1.7800 1.8425 1.9050	1.6887 1.7512 1.8137 1.8762	1.6959 1.7584 1.8209 1.8834	0 0 0 0	32 31 30 29	2.23 2.40 2.57 2.75	2.27 2.44 2.62 2.80
2.000 2.250	2.125 2.375	1.9675 2.0925 2.2175 2.3425	1.9387 2.0637 2.1887 2.3137	1.9459 2.0709 2.1959 2.3209	0 0 0 0	28 26 25 23	2.94 3.33 3.75 4.19	2.99 3.39 3.81 4.25
2.500 2.750 3.000	2.625	2.4675 2.5925 2.7175 2.8425 2.9675	2.4387 2.5637 2.6887 2.8137 2.9387	2.4459 2.5709 2.6959 2.8209 2.9459	0 0 0 0 0	22 21 20 19 18	4.66 5.15 5.66 6.20 6.77	4.72 5.21 5.73 6.27 6.84

TABLE 2 16. 20-thread series, basic dimensions, 20UN

^a These are standard sizes of the UNC, UNF, or UNEF series.
 ^b Design form. See fig. 2.3.
 ^c See formula under definition of tensile stress area in appendix A5.

TABLE 2.17. 28-thread series, be	asic dimensions,	28UN
----------------------------------	------------------	------

Nomia and bas diame	nal size ic major ter, D	Basic pitch diameter, E	$\begin{array}{c} {\rm Minor^b}\\ {\rm diameter,}\\ {\rm external}\\ {\rm threads,}\ K_s \end{array}$	Minor ^b diameter, internal threads, K _n	Lead basi dia	angle at c pitch meter, λ	Sectional area at minor diameter at $D - 2h_b$	Tensile stress ^o area, $\pi \left(\frac{E}{2} - \frac{3H}{16}\right)^2$
Primary	Secondary							
in .250 ^a .3125 .375 .4375 ^a	in .216ª	in 0.1928 .2268 .2893 .3518 .4143	in 0.1722 .2062 .2687 .3312 .3937	in 0.1773 .2113 .2738 .3363 .3988	deg 3 2 2 1 1	min 22 52 15 51 34	in ² 0.0226 .0326 .0556 .0848 .1201	in ² 0.0258 .0364 .0606 .0909 .1274
.500 ^a .5625 .625	.6875	. 4768 . 5393 . 6018 . 6643	. 4562 .5187 .5812 .6437	. 4613 .5238 .5863 .6488	1 1 1 0	22 12 5 59	.162 .209 .263 .323	.170 .219 .274 .335
.750 .875	.8125	.7268 .7893 .8518 .9143	.7062 .7687 .8312 .8937	.7113 .7738 .8363 .8988	0 0 0 0	54 50 46 43	.389 .461 .539 .624	. 402 . 475 . 554 . 640
1.000 1.125	1.0625	.9768 1.0393 1.1018 1.1643	$\begin{array}{r} .9562 \\ 1.0187 \\ 1.0812 \\ 1.1437 \end{array}$	$\begin{array}{r} .9613 \\ 1.0238 \\ 1.0863 \\ 1.1488 \end{array}$	0 0 0 0	40 38 35 34	.714 .811 .914 1.023	.732 .830 .933 1.044
1.250 1.375	1.3125	$\begin{array}{c} 1.2268 \\ 1.2893 \\ 1.3518 \\ 1.4143 \end{array}$	1.2062 1.2687 1.3312 1.3937	1.2113 1.2738 1.3363 1.3988	0 0 0 0	32 30 29 28	$1.138 \\ 1.259 \\ 1.386 \\ 1.52$	$1.160 \\ 1.282 \\ 1.411 \\ 1.55$
1.500		1.4768	1.4562	1.4613	0	26	1.66	1.69

^a These are standard sizes of the UNF or UNEF series.
 ^b Design form. See fig. 2.3.
 ^c See formula under definition of tensile stress area in appendix A5.

TABLE 2.18.	32-thread se	ries, basic d	imensions,	32UN

Nominal size and basic major diameter, D		Basic pitch diameter, E	Minor ^b diameter, external threads, K _s	Minor ^b diameter, internal threads, <i>Kn</i>	Lead bas dia	angle at ic pitch ameter, λ	Sectional area at minor diameter at $D - 2h_b$	Tensile stresso area, $\pi \left(\frac{E}{2} - \frac{3H}{16}\right)^2$
Primary	Secondary							(2 10)
in .138 ^a .164¤ .190¤	in 	in 0.1177 .1437 .1697 .1957	in 0.0997 .1257 .1517 .1777	in 0.1042 .1302 .1562 .1822	deg 4 3 3 2	min 50 58 21 55	${{{5}}{{}^{in^2}}{0.00745}}{.01196}{.01750}{.242}$	in^2 0.00909 .0140 .0200 .0270
. 250 ^a . 3125 ^a . 375 ^a . 4375		.2297 .2922 .3547 .4172	.2117 .2742 .3367 .3992	.2162 .2787 .3412 .4037	2 1 1 1	29 57 36 22	.0344 .0581 .0878 .1237	.0379 .0625 .0932 .1301
.500 .5625 .625	.6875	.4797 .5422 .6047 .6672	. 4617 .5242 .5867 .6492	.4662 .5287 .5912 .6537	1 1 0 0	11 3 57 51	.166 .214 .268 .329	. 173 . 222 . 278 . 339
.750 .875 1.000	.8125	.7297 .7922 .8547 .9172 .9797	.7117 .7742 .8367 .8992 .9617	.7162 .7787 .8412 .9037 .9662	0 0 0 0 0	47 43 40 37 35	.395 .468 .547 .632 .723	.407 .480 .560 .646 .738

^a These are standard sizes of the UNC. UNF, or UNEF series.
^b Design form. See fig. 2.3.
^c See formula under definition of tensile stress area in appendix A5.

4. THREAD CLASSES

Thread classes are distinguished from each other by the amounts of tolerance and allowance. The function of these classes is to assure the interchangeability of threaded parts. Six distinct classes of screw threads have been established for general use. These classes are: 1A, 2A, and 3A (for external threads only) and 1B, 2B, and 3B (for internal threads only). The disposition of the tolerances, allowances, and crest clearances for the various classes is illustrated in figures 2.5 and 2.6, p. 2.06.

The requirements for a screw-thread fit for a specific application can be met by specifying the proper combination of classes for the components. For example, an external thread made to class 2A limits can be used with an internal thread made to classes 1B, 2B, or 3B limits for specific applications. It is not the purpose of this standard to limit applications of the various standard classes.

4.1. CLASSES 1A AND 1B THREADS.—Classes 1A and 1B threads replace class 1 for new designs. These classes are intended for ordnance and other special uses. They are used on threaded components where quick and easy assembly is necessary and where a liberal allowance is required to permit ready assembly, even with slightly bruised or dirty threads.

Maximum diameters of class 1A (external) threads are less than basic by the amount of the same allowance as applied to class 2A. For the intended applications in American practice the allowance is not available for plating or coating. Where the thread is plated or coated, special provisions are necessary. The minimum diameters of class 1B (internal) threads, whether or not plated or coated, are basic, affording no allowance or clearance for assembly with maximum material external thread components having maximum diameters which are basic.

Allowances and tolerances for the respective thread series are specified in tables and their application is shown in figure 2.5.

4.2. CLASSES 2A AND 2B THREADS.—Class 2A for external threads and 2B for internal threads are the most commonly used thread standards for general applications, including production of bolts, screws, nuts, and similar threaded fasteners.

The maximum diameters of class 2A (external) uncoated threads are less than basic by the amount of the allowance. The allowance minimizes galling and seizing in high-cycle wrench assembly, or it can be used to accommodate plated finishes or other coating. However, for threads with additive finish, the maximum diameters of class 2A may be exceeded by the amount of the allowance; i.e., the 2A maximum diameters apply to an unplated part or to a part before plating whereas the basic diameters (the 2A maximum diameter plus allowance) apply to a part after plating. The minimum diameters of class 2B (internal) threads, whether or not plated or coated, are basic, affording no allowance or clearance in assembly at maximum material limits. See par. 3.7, p. 2.05.

Certain applications require an allowance to permit application of the proper lubricant when making up the assembly, particularly with pressure vessels and steel pipe flanges, fittings, and valves for high-temperature, high-pressure service. For such applications class 2A, which has an allowance, and class 2B are rècommended, replacing class 7 which was previously established for such applications but which has been discontinued as a standard. See par. 3.7. In this application, when the thread is coated, the 2A allowance may not be consumed by such coating.

Allowances and tolerances for the respective thread series are specified in the tables and their application is shown in figure 2.5.

4.3. CLASSES 3A AND 3B THREADS.—Class 3A for external threads and class 3B for internal threads provide for applications where closeness of fit and accuracy of lead and angle of thread are important. They are obtainable consistently only by the use of high quality production equipment supported by a very efficient system of gaging and inspection. The maximum diameters of class 3A (external) threads and the minimum diameters of class '3B (internal) threads, whether or not plated or coated, are basic, affording no allowance or clearance for assembly of maximum-material components.

No allowance is provided, but since the tolerances on GO gages are within the limits of size of the product, the gages will assure a slight clearance between product made to the maximum material limits. Tolerances for the respective thread series are specified in tables and their application is shown in figure 2.6.

5. ALLOWANCES

The allowance is minus and is applied from the basic size to below basic size. Allowance is applied only to the classes 1A and 2A external threads. Values of the allowance for these two classes are obtained by use of a C factor of 0.3 in the formula shown in par. 6.1.

6. TOLERANCES

The internal thread tolerance is plus and is applied from the basic size to above the basic size for all three thread classes.

The external thread tolerance is minus and is applied:

1. from the basic size to below the basic size for class 3A (see fig. 2.6),

2. from the design size (basic size minus allowance) to below design size for classes 1A and 2A (see fig. 2.5).

The tolerances specified represent the extreme variations permitted on the product.

6.1. PITCH DIAMETER TOLERANCES.—The basic formula for pitch diameter tolerance is composed of the following increments:

P.D. Tolerance

 $= C(0.0015\sqrt[3]{D} + 0.0015\sqrt[3]{L_e} + 0.015\sqrt[3]{p^2}),$

 $_{
m TABLE}$ 2.19. Increments in pitch diameter tolerance formula

PD tolerance = $C(0.0015\sqrt[3]{D} + 0.0015\sqrt{L_e} + 0.015\sqrt[3]{p^3})$

004108 004243 004373 004500 004623 $\begin{array}{c} 003000\\ 003047\\ 003092\\ 003137\\ 003162 \end{array}$ 003182003226003269003269003312.003396 .003437 .003478 .003478 .003478 003597 003636 003674 003824 003824 003969 004743 004861 004975 005087 005196 in 002312 002372 002430 002487 002487 $\begin{array}{c} 002543\\ 002598\\ 002652\\ 002704\\ 002739\end{array}$ 002756 002806 002856 002856 002905 $\frac{0.0015 \times}{\sqrt{L_e}}$.0000 .1250 .2500 .3750 5.7500 5.8750 6.0000 6.5000 7.0000 7.5000 8.0000 9.0000 9.5000 10.0000 10.5000 11.0000 11.5000 12.0000 3.3750 3.5000 3.6250 3.7500 3.7500 3.8750 $\begin{array}{c} 4.5000 \\ 4.6250 \\ 4.7500 \\ 4.8750 \\ 5.0000 \end{array}$ 5.12505.25005.37505.62505.6250 $\begin{array}{c} 2.8750 \\ 3.0000 \\ 3.1250 \\ 3.3333 \\ 3.3333 \end{array}$ 3750 5000 6250 7500 8571 Ľ ຸຂີ 4.5 -----7 9 --------------------1 1 \$ œ tor 20p Based on^b $\begin{array}{c} \mathbf{2.875}\\ \mathbf{3.000}\\ \mathbf{3.125}\\ \mathbf{3.250}\\ \mathbf{3.3333}\\ \mathbf{3.3333} \end{array}$ in 2.375 2.500 2.625 2.750 2.8571 1.000 1.125 1.250 1.375 1.4444 500 625 875 000 5.7505.8756.0006.5007.0007.5008.000 8.5009.000 9.500 $\begin{array}{c} 10.000\\ 10.500\\ 111.000\\ 111.500\\ 12.000 \end{array}$ 375 500 625 875 875 $\begin{array}{c} 125\\ 250\\ 500\\ 625\\ \end{array}$ D for sizes $\begin{array}{c} in \\ 0.001061 \\ 0.001118 \\ 0.001125 \\ 0.001126 \\ 0.001203 \end{array}$.001423.001452.001500.001546.001581.001591 .001635 .001677 .001701 .001701 .001759 .001793 .001798 .001837 .001837 .001875 .001912 .001936 .001949 .001949 .001984 .002012 .002019 .002019 .002023 $\begin{array}{c} 002088\\ 002121\\ 002187\\ 002187\\ 002236\\ 002250\end{array}$ 001244 001248 001268 001291 001299 .001327 .001352 .001357 .001369 .001369 $\frac{0.0015}{\sqrt{L_e}} \times$ in 0.5000 .5556 .5625 .6429 .6429 $\begin{array}{c} .9375 \\ .0000 \\ 1.0625 \\ 1.1111 \end{array}$ $\begin{array}{c} 1.1250 \\ 1.1875 \\ 1.2500 \\ 1.2857 \\ 1.3125 \end{array}$ 1.5625 1.6250 1.6667 1.6875 1.7391 $\begin{array}{c} 1.9375\\ 2.0000\\ 2.1250\\ 2.2222\\ 2.2500\end{array}$ 1.37501.42861.43751.50001.53851.75001.80001.81251.81821.81821.87506875 6923 7143 7407 7500 7826 8125 8182 8333 8750 9006 Le Length of engagement increments 11.5 ł 36 32 528 24 ເລ l œ 19 4 100 12 i= 2 6 ti fo g 4.5 11.5 ł į Based on^b 11 -Ì 2 œ ŝ 4 16 14 13 2 16 18 for tpi in .500 .5556 .5525 .625 .6429 .5625 .625 .6667 .6875 .7391 .900 .9375 .000 1.0625 .125 .1875 .250 .2857 .3125 .375 .4286 .4375 .500 .5385 .750 .800 .8125 .8182 .8182 $\begin{array}{c} 1.9375\\ 2.000\\ 2.125\\ 2.2222\\ 2.250\\ 2.250 \end{array}$ 7826 8125 8182 8333 8333 875 6875 6923 7143 750 ID for sizes $in \\ 0.000367 \\ 0.000375 \\ 0.000405 \\ 0.000419 \\ 0.000440 \\ 0.00040 \\ 0.00$ 000702 000712 000726 000750 000773 000791 000795 000795 000896 000819 000919 000937 000956 000968 000974 000992 001006 001006 $\begin{array}{c} 000459\\ 000472\\ 000496\\ 000502\\ 000503 \end{array}$ 000530 000557 000562 000562 000593 000601 000678 878000 $\begin{array}{c} 000839\\ 000850\\ 000859\\ 000866\\ 000880\\ \end{array}$ $\begin{array}{c} 000607\\ 000622\\ 000650\\ 000654\\ 000656\\ \end{array}$ $\frac{0.0015 \times 1}{\sqrt{L_e}}$ 11 0.0600 0.0625 0730 .0781 .0781 1250 1380 1406 1562 1607 4167 4219 4500 4545 $\begin{array}{c} 0938\\ 0990\\ 11094\\ 1120\\ 1125\end{array}$ 1640 1719 1875 1900 2031 2045 2160 2188 2250 2344 $\begin{array}{c} 2500\\ 2656\\ 2778\\ 2812\\ 2969\\ 2969\end{array}$ 3125 3214 3281 3333 3438 3571 3594 3750 3906 3906 L_{e} 12 109 48 ł 44-...... -----ļ 8 64 56 ----to pi 72 64 56 Based on^b 8 8 44 6 36 182 8 5 2 ່ຊ 5.5% in 060 0625 073 0781 086 .0938 .099 .1094 125 138 1406 1562 1607 164 1719 1875 190 2031 2045 216 2188 225 2344 3125 3214 3281 3333 3438 4167 4219 4375 450 4545 1125 250 2656 2778 2812 2969 3571 3594 375 3906 4062 ID for sizes $\begin{array}{c} 002193\\ 002222\\ 002250\\ 002250\\ 002277\\ 002304 \end{array}$ $\begin{array}{c} 002330\\ 002356\\ 002351\\ 002381\\ 002406\\ 002430\end{array}$ in 001870 001890 001928 001928 001966 002036 002069 002102 002133 002133 $\begin{array}{c} 002453\\ 002476\\ 002499\\ 002499\\ 002521\\ 002543\end{array}$ 002565 002586 002607 002628 002648 002668 002687 002707 002726 002726 002869 003000 003120 003232 003434 003615 003780 003931 004072 004327 $0.0015\sqrt[3]{D}$ Diameter increments in .9375 .0000 .1250 .2500 .3750 3750 5000 6250 8750 $\begin{array}{c} 5.\,6250\\ 5.\,7500\\ 5.\,8750\\ 6.\,0000\\ 7.\,0000\end{array}$ $\begin{array}{c} 8.0000\\ 9.0000\\ 10.0000\\ 112.0000\\ 14.0000\end{array}$ $\begin{array}{c} 16.0000\\ 18.0000\\ 20.0000\\ 24.0000\end{array}$ 5000 6250 7500 8750 0000 125025003750500062507500 8750 0000 1250 2500 0000 1250 2750 3750 5000 P .000859 .000862 .000900 .000945 .001018 .001082 .001139 .001191 .001238 in 000587 000595 000627 000662 000682 000694 000723 000750 000775 000821 .001324 .001363 .001400 .001435 .001435 .001500 .001531 .001560 .001588 .001588 .001642 .001668 .001693 .001717 .001741 001764 001786 001808 001829 001829 $0.0015\sqrt[3]{D}$ in 0600 0625 0730 0730 0938 1.00001.06251.12501.18751.2500 $\begin{array}{c} 1.6250\\ 1.6875\\ 1.7500\\ 1.8125\\ 1.8750\end{array}$ $\begin{array}{c} 0990 \\ 1120 \\ 1250 \\ 1380 \\ 1640 \\ 1640 \end{array}$ $\begin{array}{c} 1875 \\ 1900 \\ 2160 \\ 2500 \\ 3125 \end{array}$ 3750 4375 5000 5625 6250 6875 7500 8125 8750 9375 1.31251.37501.43751.50001.5625Q

$0.015\sqrt[3]{p^2}$	in 0.004099 0.004543 0.04543 0.045130 0.05503 0.05503
Threads per inch	ר 10 10 14 4 סיטיט
$0.015\sqrt[3]{p^2}$	in 0.002944 0.002344 0.003332 0.003352 0.003467
Threads per inch	11.5 10 8 8
$0.015\sqrt[3]{p^2}$	in 0.002184 .002362 .002582 .002713 .002713
Threads per inch	18 166 13 13
$0.015\sqrt[3]{p^2}$	in 0.001667 0.001709 0.001910 0.002036
Threads per inch	27 26 20 20 20
$(0.015)\sqrt[3]{p^2}$	in 0.001376 0.001429 001429 001554 001554
Threads per inch	2802348 283234
$0.015\sqrt[3]{p^3}$	in 0.001105 001136 001136 001241 001241 001282
Threads per inch	50 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
$0.015\sqrt[3]{p^2}$	in 0.000803 0.000833 0.000933 0.000979 0.001025
Threads per inch	80 56 56 56

Pitch increments

^a For class 2A, C = 1. For other classes, values of C are given in the table on p. 2.20. ^b For example: $L_c = 0.5000$ is equivalent to one diameter for the .500 inch size, 9 pitches for 18 threads per inch.

where

C = a factor which differs for each class, D = basic major (nominal) diameter of thread, L_e = length of thread engagement,

 $p_e = pitch of thread.$

The values of the factor C for the various thread classes are:

Class	Factor C	Class	Factor C
1A 2A 3A	$\begin{array}{c}1.5\\1.0\\0.75\end{array}$	1B 2B 3B	$\begin{array}{c}1.95\\1.30\\0.975\end{array}$

The incremental values of the above formula are shown in table 2.19. The P. D. tolerances obtained by the use of the formulas are shown in table 2.21. The length of thread engagement (L_e) used in the formula is 1D (diameter) or 9 pitches, depending on the series. (See par. 7, Length of engagement, p. 2.21, for the L_e for the various standard series of Unified threads.)

The factor C is 30 percent greater for internal than for external threads of a given class on account of the greater difficulties encountered in the manufacture of internal threads.

6.2. MAJOR DIAMETER TOLERANCES.—The class 1A major diameter tolerance is $0.090\sqrt[3]{p^2}$ and that for classes 2A and 3A is $0.060\sqrt[3]{p^2}$. The tolerance for class 2A coarse and the 8-thread series threads of unfinished, hot-rolled material is $0.090\sqrt[3]{p^2}$.

The internal thread major diameter tolerance for all classes is H/6 plus the pitch diameter tolerance of the class of thread involved. The maximum major diameter of the internal thread may be determined by adding 0.793857p (= 11H/12, table 2.1, p. 2.02) to the maximum pitch diameter of the internal thread. In dimensioning internal threads the maximum major diameter is not specified, being established by the crest of an unworn tool. In practice, the major diameter of an internal thread is satisfactory when accepted by a gage or gaging method that represents the maximum material condition of an external thread which has no allowance.

6.3. MINOR DIAMETER TOLERANCES.—*External* thread minor diameter tolerances are for reference only. At the nominal minor diameter, that is, at the intersection of the rounded root with its center line (see fig. 2.3, p. 2.04):

tolerance = P.D. tolerance + H/12

and applies only when the rounded root is a design requirement. Otherwise:

tolerance = P.D. tolerance + 0.25H.

The external thread minimum minor diameter is:

ext. thread min. P.D. $-0.649519 \ p$.

 $(0.649519 \ p = 0.75H; \text{ see table } 2.1.)$

In dimensioning external threads, the minimum minor diameter is not specified, being established by the crest of an unworn tool. In practice, the minor diameter of an external thread is satisfactory when accepted by a gage or gaging method that represents the maximum material condition of the internal thread less the allowance, if any. *Internal thread* minor diameter tolerances are as shown in table 2.20.

Nominal Size	Internal thread minor diameter tolerances for all standard thread series												
(diameter)	Classes 1B and 2B	Class 3B (all sizes)											
in Less than 0.25	$0.05\sqrt[3]{p^2}+0.03p/D-0.002$ in EXCEPT: Tolerances shall not exceed $0.394p$ Tolerances shall not be less than $0.25p-0.4p^2_{}$	$0.05\sqrt[3]{p^2} + 0.03p/D - 0.002$ in.											
0.25 and larger	$0.25p-0.4p^2$ EXCEPT: The formula is not applicable to threads coarser than 4 tpi. For such threads the tolerance is $0.15p$	EXCEPT: Tolerances shall not exceed $0.394p$.Tolerances shall not be less than, For 80 to 13 tpi, inclusive: $0.23 - 1.5p^2$ For 12 tpi and coarser: $0.120p$.											

TABLE 2.20. Minor diameter tolerances for internal threads

The tolerance of 0.394p corresponds to 53 percent of the basic thread height and applies in the range of the smallest sizes of the UNC and UNF thread series.

The tolerance of 0.120p corresponds to 74 percent of the basic thread height.

The formulas are suitable for general applications having lengths of engagement up to 1.5D. However, some thread applications require lengths of engagement which are greater than 1.5D or less than D. For such applications it may be advantageous to increase or decrease tolerances, as explained in section 3, or to use recommended hole size limits for different lengths of engagement as specified in appendix A3.

7. LENGTH OF ENGAGEMENT

The pitch diameter tolerances specified in table 2.21 for the UNC, UNF, 4UN, 6UN, and 8UN series are based on a length of engagement equal to the basic major (nominal) diameter and are applicable for lengths of engagement up to 1.5 diameters.

Where the length of engagement exceeds that for which these tolerances are applicable, the pitch diameter tolerances should be computed from the formula (table 2.21) values for the standard lengths of engagement of one diameter, as follows: for lengths of engagement over 1.5 to 3 diameters, the pitch diameter tolerances are 125 percent of the formula values; and for lengths of engagement over 3 diameters, the tolerances are 150 percent of the formula values.

The pitch diameter tolerances specified in table 2.21 for the UNEF, 12UN, 16UN, 20UN, 28UN, and 32UN series are based on a length of engagement of 9 pitches and are applicable for lengths of engagement up to 15 pitches.

Where the length of engagement exceeds that for which these tolerances are applicable, the pitch diameter tolerances should be computed from the formula (table 2.21) values for the standard lengths of engagement of 9 pitches, as follows: for lengths of engagement over 15 to 30 pitches, the pitch diameter tolerances are 125 percent of the formula values; and for lengths of engagement over 30 pitches, the tolerances are 150 percent of the formula values.

8. LIMITS OF SIZE

(For aeronautical applications, practices may deviate from those here specified. See Military Specification MIL-S-7742.)

With respect to the pitch diameter limits of size, it is intended, except as hereinafter qualified, that no portion of the complete thread be permitted to project beyond the envelope defined by the maximum-material limits on the one hand, or beyond that defined by the minimum-material limits on the other, and thus be outside of the tolerance zone as illustrated in figures 2.5 and 2.6.

NOTE: The full tolerance cannot, therefore, be used on pitch diameter unless deviations in all other thread elements are zero.

Diameter equivalents of variations in lead, uniformity of helix, and flank angle are in the direction toward maximum material. Also included in pitchdiameter limits are other variations from size and profile, such as taper, out-of-round, and surface defects. Thus the maximum-material pitch diameter limits are a limitation of the virtual diameter (effective size) and are so specified herein for all thread classes. It is intended that diameter equivalents of deviations in any given element except pitch diameter should not exceed 0.5 of the pitchdiameter tolerance. Values are given in table 2.22 for deviations in lead and half-angle equivalent to 0.5 of pitch diameter tolerances. Flank angle equivalents should be based on a depth of thread engagement of 0.625H.

Variations in taper and roundness of the pitch diameter, together with variations of the pitch diameter as a whole, may be in the direction of minimum material and thus the minimum-material pitch diameter limit may be specified as a limitation of the pitch diameter as a single element. However, in view of the interrelation of the pitch diameter, variations in lead and flank angle, etc., together with practical considerations relating to established production processes, product application and inspection procedures, except for class 3A, for fasteners and some custom threaded parts, it is customary to base acceptance at the minimum-material condition (minimum pitch diameter of the external thread and maximum pitch diameter of the internal thread) on threaded plug and ring gaging, with gages to the thread form and length specified in section 6. See paragraph on Dimensional acceptability of threads in section 6.

8.1. DIAMETER EQUIVALENT OF ANGLE DEVIA-TION.—The general formula expressing the relation between deviation in the half angle of thread and its diameter equivalent—that is, the amount of the pitch diameter tolerance absorbed by such a deviation—is:

$$\cot \,\delta\alpha \,=\, \frac{h_e}{\delta E \,\sin \alpha \cos \alpha} \pm \,\cot \,\alpha,$$

in which

- δE = pitch diameter increment due to deviation in half angle
- h_e = depth of thread engagement
- α = basic half angle of thread
- $\delta \alpha$ = deviation in half angle of thread.

In solving for δE the average value of $\delta \alpha$ for two sides of the thread, regardless of their sign, should be taken. The sign of $\cot \alpha$ is plus when the half angle of thread is less than basic, minus when the half angle is greater than basic. By omitting $\pm \cot \alpha$ from the formula an approximate mean value for $\delta \alpha$ or δE is obtained which differs very little from either extreme value. The Committee has, therefore, adopted for general use the formula

$$\cot \,\delta \alpha \,=\, \frac{h_e}{\delta E \,\sin \,\alpha \,\cos \,\alpha} \,.$$

For threads of Unified, American, or American National form, where $h_e = 0.625H$, this formula reduces to

$$\cot \delta \alpha = \frac{5p}{4\delta E}$$
 or $\delta E = 1.25p \tan \delta \alpha$.

8.2. DIAMETER EQUIVALENT OF LEAD DEVIATION. —The formula expressing the relation between lead deviation between any two threads within the length of engagement, and its diameter equivalent is as follows: in which

$$\delta E = (\pm \delta p) \cot \alpha,$$

- δE = pitch diameter increment due to lead deviation
- δp = the maximum pitch deviation between any two of the threads engaged
- α = half angle of thread.

The quantity δE is always added to the measured pitch diameter in the case of an external thread, and it is always subtracted in the case of an internal thread, regardless of the sign introduced by the lead deviation δp .

For threads of Unified, American, or American National form, the above formula reduces to

$$\delta E = 1.7321 \ \delta p.$$

9. COATED THREADS

It is not within the scope of this standard to make recommendations for thickness of, or to specify limits for, coatings. However, it will aid mechanical interchangeability if certain principles are followed whenever conditions permit.

It is desirable that the finished threads be within the limits of size established herein. To that end, external threads should not exceed the basic size after coating and internal threads should not be below the basic size after coating. However, it is recognized that there are some commonly used processes, such as hot-dip galvanizing, which are firmly established, and threads coated by such processes do not fall within the scope of this recommendation.

9.1. GUIDE FOR RELIEVING EXTERNAL THREADS. —(This does not apply to extremes of diameter, length, and pitch.) Class 2A provides both a tolerance and an allowance. Many requirements are such as those for coatings deposited by electroplating processes. In general the 2A allowance provides adequate relief for coatings up to a minimum thickness¹ of one-sixth of the 2A pitch diameter allowance, inasmuch as there are variables in thickness of coating and symmetry of coating resulting from commercial processes. See par. 4.2, p. 2.17. It should be stressed that threads after coating should be accepted by a basic size GO thread ring gage or equivalent functional gage.

Class 1A provides an allowance, but in this case the allowance is maintained for both coated and uncoated product. Special provisions before coating are necessary where (1) the design requires that the class 2A allowance be available after coating, or (2) the design requires that an allowance be provided for class 3A threads, or (3) the thickness of coating is too great to be accomodated by the class 2A allowance. In these cases it is recommended that the limits of size before coating be reduced by the amount of the 2A allowance whenever that allowance is adequate, or that the maximum limits of the major and pitch diameters be decreased by an amount equal to six times the minimum coating thickness and the minimum limits be decreased by an amount equal to four times the minimum coating thickness.

9.2. Relief Of Internal Threads.-No provision is made for relieving internal threads as coatings on such threads are not generally required. Further, it is very difficult to deposit a significant thickness of coating on the flanks of internal threads. However, where a specific thickness of coating is required in an internal thread, it is suggested that the thread be relieved so that the thread after coating will be accepted by a GO thread plug gage of basic size. It is recommended that (1) the limits of size before coating be increased by the amount of the 2A allowance whenever that allowance is adequate, or (2) the minimum limits of the minor and pitch diameters be increased by an amount equal to six times the minimum coating thickness and the maximum limits be increased by an amount equal to four times the minimum coating thickness.

10. METHOD OF DESIGNATING SCREW THREADS

The basic method of designating screw threads is used when the standard tolerances or limits of size based on the standard length of engagement are applicable as indicated in par. 7, Length of engagement, p. 2.21. The designation specifies in sequence the nominal size in decimals, number of threads per inch, thread series symbol, and thread class symbol. The *nominal size* is the basic major diameter. The nominal size shall be shown in four place decimals unless there is a cipher in the fourth place. A cipher in the fourth place shall be omitted.

The *thread series symbol* is UNC, UNF, UNEF, or UN for any of the series shown in table 2.7 and UNS for any other diameter-pitch combination having tolerances to Unified formulation.

The thread class symbol is 1A, 1B, 2A, 2AG, 2B, 3A, or 3B in which the suffixes A and B relate to external and internal threads, respectively. Suffix G in the 2AG symbol indicates that the 2A dimensions are to be met after coating.

Examples:

Nominal size (basic major diameter in decimals)
Thread series symbol (see dimensional tables)
classes, p. 2.17.)
.250-20 UNC-2A formerly 1/4-20 UNC-2A .190-32 UNF-2A formerly 10-32 UNF-2A
.4375-20 UNF-2A formerly 7/16-20 UNF-2A. .4375-20 UNF-3A formerly 7/16-20 UNF-3A.

For uncoated standard series threads (table 2.7) these designations may optionally be supplemented by the addition of the pitch diameter limits of size.

¹ The maximum allowance at the maximum material condition of six times the minimum coating thickness is derived by dividing the deposit on the flank of the thread by the sine of the 30 degree half angle and multiplying the result by two for the diameter equivalent, then adding 50 percent for the plater's tolerance. The minimum allowance at the minimum material condition of four times the minimum coating thickness is two-thirds the maximum allowance, inasmuch as the thickness of coating will bring the limits of size within standard limits with the additional allowance for the plater's tolerance omitted.

Example: (PD limits are those in table 2.21 for class 2A.)

.250-20 UNC-2A PD .2164-2127 (Optional for uncoated threads).

UNS threads and threads having special length of engagement require certain additional information as shown on the following pages.

10.1. Designating Coated (Or PLATED) THREADS.—Specification on drawings of the before and after coating dimensions for screw threads is sometimes dictated by an engineering or production consideration that the size before and after coating be controlled. This results from coated screw threads having two stages of design: the before coating stage and the after coating stage. The threaded product may be produced by a supplier and coated by a user. In this case, it is necessary that a clear understanding of the coating requirements and the allowance for coating buildup be agreed upon by both supplier and user.

The before coating dimensions have a definite bearing on the strength of the screw threads. The after coating dimensions must allow the threads to assemble with their mating threads, as intended.

Recommended methods for designating coated threads under various conditions are described below:

For coated (or plated) class 1A external threads the max major and max pitch diameters may optionally be given followed by the words "AFTER COATING," thereby indicating that the thread before coating must have special provisions to allow for coating thickness. The major and pitch diameter limits of size before coating (calculated in accordance with footnote 1, p. 2.22, shall be given followed by the words "BEFORE COATING."

Example: (Major and PD limits are those in table 2.21 for class 1A for AFTER COATING and for class 1A minus allowance for BEFORE COATING.)

.250-20 UNC-1A MAJOR DIA .2489 MAX\AFTER COATING PD .2164 MAX | (Optional) MAJOR DIA .2478-.2356 SPL\BEFORE PD .2153-.2097 SPL | COATING

For coated (or plated) class 2A external threads the basic (max) major and basic (max) pitch diameters shall be given followed by the words "AFTER COATING." The major and pitch diameter limits of size before coating shall also be given followed by the words "BEFORE COATING."

Example:² (Major and PD limits are those in table 2.21 for class 3A (basic) for AFTER COATING and for class 2A for BEFORE COATING.)

.750-10 UNC-2A MAJOR DIA .7500 MAX PD .6850 MAX MAJOR DIA .7482-.7353 PD .6832-.6773 BEFORE COATING

Certain applications require an allowance for rapid assembly to permit application of the proper lubricant or for residual growth due to high temperature expansion. In these applications, when the thread is coated and the 2A allowance is not permitted to be consumed by such coating, the thread class symbol is qualified by the addition of the letter G (symbol for allowance) following the class symbol and the max major and max pitch diameters are reduced below basic size by the amount of the 2A allowance and followed by the words "AFTER COATING," thereby ensuring that the allowance is maintained. The thread before coating must have special provisions to allow for coating thickness. The major and pitch diameter limits of size before coating (calculated in accordance with par 9, p. 2.22) shall also be given followed by the words "BEFORE COATING."

Example: (Major and PD limits are those in table 2.21 for class 2A for AFTER COATING and for class 2A minus the allowance for BEFORE COATING.)

.750-10 UNC-2AG MAJOR DIA .7482 MAX PD .6832 MAX MAJOR DIA .7464-.7335 SPL\BEFORE PD .6814-.6755 SPL (COATING

For coated (or plated) class 3A external threads, the max major and max pitch diameters may optionally be given followed by the words "AFTER COATING," thereby indicating that the thread before coating must have special provisions to allow for coating thickness. The major and pitch diameter limits of size before coating (calculated in accordance with par. 9, p. 2.22) shall be given followed by the words "BEFORE COATING."

Example: (Major and PD limits for AFTER COATING are those in table 2.21 for class 3A.)

For coated (or plated) class 1B, 2B, or 3B internal threads the min minor diameter and min pitch diameter may optionally be given followed by the words "AFTER COATING." The minor and pitch diameter limits of size before coating (calculated in accordance with par. 9, p. 2.22) shall be given followed by the words "BEFORE COATING."

² Threads accepted to class 2A limits before coating are accepted after coating by basic size thread gages. The allowance given in the dimensional tables for class 2A threads is sufficient to allow for a limited amount of coating as described in par. 9. Coated threads, p. 2.22, but if a greater coating thickness is required, it will be necessary to calculate the before coating limits in accordance with that paragraph.

Examples: (The after coating limits for all of the examples given are the minor and PD limits in table 2.21 for the respective class of thread. The before coating limits for all of the examples are calculated using the 2A allowance where it is suitable for a minimum coating (or plating) thickness of 0.0002 in. on the thread flanks.)

.250-20 UNC-1B MINOR DIA .196 MIN\AFTER COATING PD .2175 MIN (Optional) MINOR DIA .197-.208 SPL\BEFORE PD .2186-.2259 SPL (COATING

.750-10 UNC-2B MINOR DIA .642 MIN\AFTER COATING PD .6850 MIN ∫(Optional) MINOR DIA .644-.665 SPL\BEFORE PD .6868-.6945 SPL ∫COATING

.250-28 UNF-3B MINOR DIA .2110 MIN\AFTER COATING PD .2268 MIN f(Optional) MINOR DIA .2122-.2198 SPL\BEFORE PD .2280-.2308 SPL fCOATING

10.2. DESIGNATING LEFT HAND THREADS.—Unless otherwise specified, threads are right-hand; a left-hand thread shall be designated LH as follows:

.250-20 UNC-3A-LH

10.3. DESIGNATING UNS THREADS (WITH UNI-FIED TOLERANCE FORMULATIONS).—UNS threads have the basic form of designation set out above, supplemented always by the limits of size.

Examples:

.250-24 UNS-3A MAJOR DIA .2500-.2428 PD .2229-.2201

.495-20 UNS-3A MAJOR DIA .4950-.4869 PD .4625-.4593

1.200-10 UNS-2B MINOR DIA 1.092-1.113 PD 1.1350-1.1432

10.4. DESIGNATING THREADS HAVING SPECIAL LENGTH OF ENGAGEMENT.—When a standard series thread has a special length of engagement differing from that for which the standard pitch diameter tolerances are applicable, as indicated in par. 7, Length of engagement, p. 2.21, the thread class symbol is qualified by the addition of the letters SE (special engagement) preceding the class symbol. The specification of the special pitch diameter limits of size and the length of engagement (LE) rounded to a two-place decimal are a requirement. Examples

.500-13 UNC-SE2A PD .4485-.4431 LE 1.00 .250-24 UNS-SE3A

MAJOR DIA .2500-.2428 PD .2229-.2198 LE .88

10.5. DESIGNATING THREADS HAVING MODIFIED CRESTS.—It is occasionally necessary to modify the limits of size of the major diameter of an external thread or the minor diameter of an internal thread to fit a specific application but without change in class of thread or pitch diameter limits. (It should be noted that standard pitch diameter gages may be used to accept such threads). Such threads shall be specified with the established thread designation followed by the designation "MOD" and a statement of the modified diameter limits.

Examples:

.375-24 UNF-3A MOD MAJOR DIA .3720-.3648 MOD

1.500-10 UNS-3B MOD MINOR DIA 1.398-1.409 MOD PD 1.4350-1.4412

10.6. DESIGNATING THREADS FOR ACCEPTANCE BY OTHER THAN GENERAL PRACTICE.—Threads to be accepted by gaging practices deviating from those outlined in section 6 require additional notes in the thread designation. The recommended methods of designating these threads are described in the following:

10.6.1. Designating class 3A threads for LO functional (virtual) diameters.—When it is desired to gage the minimum pitch diameter limits of class 3A external threads as functional (virtual) diameter, instead of as specified in section 6, the words "LO FUNCTIONAL DIAMETER" following the pitch diameter limits should be included in addition to the information normally given, as follows:

.375-24 UNF-3A PD .3468-.3430 LO FUNCTIONAL DIAMETER

10.6.2. Designating class 2A threads for LO pitch diameters.—When it is desired to gage the minimum pitch diameter limits of class 2A external threads as a single element instead of as specified in section 6, the words "LO PITCH DIAMETER" following the pitch diameter limits should be included in addition to the information normally given, as follows:

.375-16 UNC-2A PD .3331-.3287 LO PITCH DIAMETER 10.7. DESIGNATING OTHER THREADS.—Threads having tolerances that do not conform to Unified formulation, and threads having multiple starts or special form, also require additional data in the thread designation. The recommended methods of designating these threads are described in the following:

10.7.1. Designating threads having tolerances not to Unified formulation.—If a standard series thread is altered in any respect other than revised pitch diameter limits for a special length of engagement, the modification of crests or the adjustment of the limits of size to accommodate coating, as shown previously, it is designated in accordance with the following examples:

.500-13 UNIFIED FORM SPECIAL-INT MINOR DIA .424-.434 SPL PD .4500-.4580 SPL LE .50

.4375-24 UNIFIED FORM SPECIAL-EXT MAJOR DIA .4340-,4280 SPL PD .4065-.4025 SPL LE .38

10.7.2. Designating multiple-start threads.—If a thread is required with a multiple start, it is designated by specifying sequentially in decimals the nominal size, pitch, and lead as follows: (The number of starts is obtained by dividing the lead by the pitch.)

.75-.0625P-.1875L-(3 START)-UNIFIED FORM SPECIAL-EXT MAJOR DIA .7485-.7391 PD .7079-.7003 SPL LE .75

10.7.3. Designating special form threads.—If a thread for design considerations requires a deviation from Unified standard thread contour and is not covered by another recognized standard, such as when the detail of the root differs from that for the standard thread form, the designation shall neither include the letters "UN" nor the word "UNIFIED" but shall be as follows:

.875-18 SPECIAL FORM-EXT THREAD ANGLE 60° MAJOR DIA .8750-.8668 PD .8384-.8343 MAX MINOR DIA .8068 (as gaged) LE .69 NOTE. The "as gaged" diameter describes the maximum minor diameter of the GO thread ring gage.

10.7.4. Designating threads with long lengths of engagement.—In the assembly of threads in mating parts, the length of engagement varies according to the design requirements. It should be noted that the length of engagement is not necessarily the same as the full thread length provided on the part, but is the length of assembled thread in the mating parts.

In some instances, the length of engagement may be longer than that which is applicable to the tolerances for the standard length of engagement and additional precautions are necessary to assure proper assembly. In the case of custom parts, this may be taken into consideration when designing the parts. The proper pitch diameter tolerance may be obtained from the step tables in section 3 or computed from the formulas. The length of engagement shall be included in the designation as specified previously.

11. LIMITS OF SIZE FOR UNIFIED STANDARD SCREW THREAD SERIES

The limits of size, allowances, and pitch diameter tolerances for the Unified standard screw thread series are given in table 2.21. The sizes listed in table 2.21 are those shown in table 2.7 except for the omission of the secondary sizes over 2.5 in nominal size in the 4UN series, all sizes over 5 in. in the 6UN series, and all sizes over 4 in. in the 8UN series. However, the basic dimensions for these sizes omitted from table 2.21 are given in tables 2.11, 2.12, and 2.13.

The maximum-material pitch diameter limits (maximum external and minimum internal threads) are a limitation of the virtual diameter (effective size) for all thread classes. The minimum-material pitch diameter limits are to be interpreted in accordance with par. 8 Limits of size, p. 2.21.

Concerning class 2A threads with an additive finish, footnote b of table 2.21 on p. 2.37 should be specifically noted.

12. GAGES

Threads covered by this section shall be gaged in accordance with section 6.

						External	a				Internala							
Nominal size and threads per inch	Series designa- tion	Class	Allow- ance	Мајо	r diameter	limits	Pitch	diameter	limits	Minor diam-	Class	Minor eter l	diam- imits	Pitch	diameter	limits	Major diam- eter	
				Max ^b	Min	Min¢	Max ^b	Min	Toler- ance	eter ^d		Min	Max	Min	Max	Toler- ance	Min	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
.060-80	UNF	2A 3A	in 0.0005 .0000	in 0.0595 .0600	in 0.0563 .0568	in 	in 0.0514 .0519	in 0.0496 .0506	in 0.0018 .0013	in 0.0442 .0447	2B 3B	in 0.0465 .0465	in 0.0514 .0514	in 0.0519 .0519	in 0.0542 .0536	in 0.0023 .0017	in 0.0600 .0600	
.073-64	UNC	2A 3A	$.0006 \\ .0000$	$.0724 \\ .0730$.0686 .0692		$.0623 \\ .0629$.0603 .0614	.0020 .0015	$\substack{.0532\\.0538}$	2B 3B	$.0561 \\ .0561$	$.0623 \\ .0623$	$.0629 \\ .0629$.0655 .0648	.0026 .0019	.0730 .0730	
.073-72	UNF	2A 3A	.0006 .0000	$.0724 \\ .0730$.0689 .0695		$.0634 \\ .0640$.0615 .0626	.0019 .0014	$.0554 \\ .0560$	2B 3B	$.0580 \\ .0580$.0635 .0635	.0640 .0640	.0665 .0659	.0025 .0019	.0730 .0730	
.086-56	UNC	2A 3A	.0006 .0000	.0854 .0860	.0813 .0819		$.0738 \\ .0744$	$.0717 \\ .0728$.0021 .0016	.0635 .0641	2B 3B	.0667 .0667	$.0737 \\ .0737$.0744 .0744	.0772 .0765	.0028 .0021	.0860 .0860	
.086-64	UNF	2A 3A	.0006 .0000	.0854 .0860	.0816 .0822		$.0753 \\ .0759$.0733 .0744	.0020 .0015	$.0662 \\ .0668$	2B 3B	.0691 .0691	.0753 .0753	.0759 .0759	.0786 .0779	.0027 .0020	.0860 .0860	
.099-48	UNC	2A 3A	.0007 .0000	.0983 .0990	$.0938 \\ .0945$		$.0848 \\ .0855$	$.0825 \\ .0838$.0023 .0017	.0727 .0734	2B 3B	$.0764 \\ .0764$	$.0845 \\ .0845$.0855 .0855	.0885 .0877	.0030 .0022	.0990 .0990	
.099-56	UNF	2A 3A	.0007 .0000	.0983 .0990	.0942 .0949		$.0867 \\ .0874$.0845 .0858	.0022 .0016	.0764 .0771	2B 3B	.0797 .0797	.0865 .0865	.0874 .0874	.0902 .0895	.0028 .0021	.0990 .0990	
.112-40	UNC	2A 3A	.0008 .0000	.1112 .1120	. 1061 . 1069		$.0950 \\ .0958$.0925 .0939	.0025 .0019	.0805 .0813	2B 3B	.0849 .0849	.0939 .0939	.0958 .0958	.0991 .0982	.0033 .0024	.1120 .1120	
.112-48	UNF	2A 3A	.0007 .0000	.1113 .1120	.1068 .1075		.0978 .0985	. 0954 . 0967	.0024 .0018	.0857 .0864	2B 3B	$.0894 \\ .0894$	$.0968 \\ .0968$.0985 .0985	.1016 .1008	.0031 .0023	.1120 .1120	
.125-40	UNC	2A 3A	.0008	.1242 .1250	.1191 .1199		.1080 .1088	.1054 .1069	.0026 .0019	.0935 .0943	2B 3B	.0979 .0979	. 1062 . 1062	.1088 .1088	.1121 .1113	.0033 .0025	.1250 .1250	
.125-44	UNF	2A 3A	.0007 .0000	.1243 .1250	.1195 .1202		.1095 .1102	.1070 .1083	.0025 .0019	.0964 .0971	2B 3B	.1004 .1004	. 1079 . 1079	.1102 .1102	.1134 .1126	$.0032 \\ .0024$	$.1250 \\ .1250$	
.138-32	UNC	2A 3A	.0008 .0000	.1372 .1380	.1312 .1320		.1169 .1177	.1141 .1156	.0028 .0021	.0989 .0997	2B 3B	.104 .1040	.114 .1140	.1177 .1177	.1214 .1204	$.0037 \\ .0027$.1380 .1380	
.138-40	UNF	2A 3A	.0008 .0000	.1372 .1380	.1321 .1329		.1210 .1218	.1184 .1198	.0026 .0020	.1065 .1073	2B 3B	.111 .1110	.119 .1186	.1218 .1218	$.1252 \\ .1243$	$.0034 \\ .0025$.1380 .1380	
.164-32	UNC	2A 3A	.0009 .0000	.1631 .1640	.1571 .1580		.1428 .1437	.1399 .1415	.0029 .0022	.1248 .1257	2B 3B	.130 .1300	$.139 \\ .1389$.1437 .1437	.1475 .1465	.0038 .0028	.1640 .1640	
.164-36	UNF	2A 3A	.0008 .0000	.1632 .1640	.1577 .1585		$.1452 \\ .1460$.1424 .1439	.0028 .0021	.1291 .1299	2B 3B	.134 .1340	$.142 \\ .1416$.1460 .1460	.1496 .1487	.0036 .0027	.1640 .1640	
.190-24	UNC	2A 3A	.0010 .0000	.1390 .1900	.1818 .1828		$.1619 \\ .1629$.1586 .1604	.0033 .0025	$.1379 \\ .1389$	2B 3B	$.145 \\ .1450$	$.156 \\ .1555$.1629 .1629	.1672 .1661	$.0043 \\ .0032$.1900 .1900	
.190-32	UNF	2A 3A	.0009	.1891 .1900	.1831 .1840		.1688 .1697	.1658 .1674	.0030 .0023	.1508 .1517	2B 3B	$.156 \\ .1560$.164 .1641	.1697 .1697	.1736 .1726	.0039 .0029	.1900 .1900	
.216-24	UNC	2 A 3A	.0010 .0000	.2150 .2160	.2078 .2088		$.1879 \\ .1889$.1845 .1863	.0034 .0026	$.1639 \\ .1649$	2B 3B	.171 .1710	.181 .1807	.1889 .1889	.1933 .1922	.0044 .0033	$.2160 \\ .2160$	
.216-28	UNF	2A 3A	.0010 .0000	.2130 .2160	.2085 .2095		$.1918 \\ .1928$.1886 .1904	.0032 .0024	.1712 .1722	2B 3B	.177 .1770	.186 .1857	.1928 .1928	.1970 .1959	$\begin{array}{c} .0042\\ .0031 \end{array}$	$.2160 \\ .2160$	
.216-32	UNEF	2A 3A	.0009 .0000	.2151 .2160	.2091 .2100		$.1948 \\ .1957$.1917 .1933	.0031 .0024	.1768 .1777	2B 3B	$.182 \\ .1820$	$.190 \\ .1895$.1957 .1957	.1998 .1988	.0041 .0031	$.2160 \\ .2160$	
.250-20	UNC	1 A 2 A 3 A	.0011 .0011 .0000	.2489 .2489 .2500	.2367 .2408 .2419	0.2367	$.2164 \\ .2164 \\ .2175$.2108 .2127 .2147	.0056 .0037 .0028	$.1876 \\ .1876 \\ .1887$	1B 2B 3B	.196 .196 .1960	.207 .207 .2067	.2175 .2175 .2175 .2175	.2248 .2224 .2211	.0073 .0049 .0036	. 2500 . 2500 . 2500	
. 250-28	UNF	1A 2A 3A	.0010 .0010 .0000	$.2490 \\ .2490 \\ .2500$	$.2392 \\ .2425 \\ .2435$.2258 .2258 .2268	.2208 .2225 .2243	.0050 .0033 .0025	$.2052 \\ .2052 \\ .2062$	1B 2B 3B	.211 .211 .2110	.220 .220 .2190	.2268 .2268 .2268	.2333 .2311 .2300	$.0065 \\ .0043 \\ .0032$. 2500 . 2500 . 2500	
.250-32	UNEF	2A 3A	.0010 .0000	.2490 .2500	.2430 .2440		$.2287 \\ .2297$. 2255 . 2273	$.0032 \\ .0024$. 2107 . 2117	2B 3B	.216 .2160	$.224 \\ .2229$. 2297 . 2297	.2339 .2328	.0042 .0031	. 2500 . 2500	
.3125-18	UNC	1 A 2 A 3 A	.0012 .0012 .0000	.3113 .3113 .3125	$.2982 \\ .3026 \\ .3038$. 2982	.2752 .2752 .2764	.2691 .2712 .2734	.0061 .0040 .0030	$.2431 \\ .2431 \\ .2443$	1B 2B 3B	.252 .252 .2520	$.265 \\ .265 \\ .2630$.2764 .2764 .2764	.2843 .2817 .2803	.0079 .0053 .0039	. 3125 . 3125 . 3125 . 3125	
.3125-20	UN	2A 3A	.0012 .0000	.3113 .3125	.3032 .3044		.2788 .2800	.2748 .2770	.0040 .0030	$.2500 \\ .2512$	2B 3B	.258 .2580	.270 .2680	.2800 .2800	.2852 .2839	.0052 .0039	.3125 .3125	
.3125-24	UNF	1A 2A 3A	.0011 .0011 .0000	$.3114 \\ .3114 \\ .3125$	$.3006 \\ .3042 \\ .3053$		$.2843 \\ .2843 \\ .2854$.2788 .2806 .2827	.0055 .0037 .0027	$.2603 \\ .2603 \\ .2614$	1B 2B 3B	.267 .267 .2670	.277 .277 .2754	.2854 .2854 .2854 .2854	.2925 .2902 .2890	$.0071 \\ .0048 \\ .0036$	$.3125 \\ .3125 \\ .3125 \\ .3125$	
.3125-28	UN	2A 3A	.0010	$.3115 \\ .3125$	$.3050 \\ .3060$		$.2883 \\ .2893$.2849 .2867	.0034 .0026	.2677 .2687	2B 3B	.274 .2740	.282 .2807	.2893 .2893	. 2937 . 2926	.0044 .0033	$.3125 \\ .3125$	

TABLE 2.21. Standard series limits of size-Unified screw threads

=

TABLE 2.21. Standard series limits of size-Unified screw threads-Continued

		External®									Internals							
Nominal size and threads	Series designa- tion	Class	Allow-	Major	diameter	limits	Pitch	diameter	limits	Minor diam-	Class	Minor eter l	diam- limits	Pitch	diameter	limits	Major diam- eter	
lyer men		Class	ance	Max ^b	Min	Mine	Max ^b	Min	Toler- ance	eterd		Min	Max	Min	Max	Toler- ance	Min	
1	2	3	- 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
.3125-32	UNEF	2A 3A	in 0.0010 .0000	in 0.3115 .31 2 5	in 0.3055 .3065	in 	in 0.2912 .2922	in 0.2880 .2898	in 0.0032 .0024	in 0.2732 .2742	2B 3B	0.279 .2790	in 0.286 .2847	in 0.2922 .2922	in 0.2964 .2953	in 0.0042 .0031	$\overset{in}{0.3125}_{.3125}$	
.375-16	UNC	1A 2A 3A	.0013 .0013 .0000	.3737 .3737 .3750	$.3595 \\ .3643 \\ .3656$	0.3595	$.3331 \\ .3331 \\ .3344$.3266 .3287 .3311	.0065 .0044 .0033	.2970 .2970 .2983	1B 2B 3B	.307 .307 .3070	.321 .321 .3182	$.3344 \\ .3344 \\ .3344$.3429 .3401 .3387	.0085 .0057 .0043	. 37 50 . 3750 . 3750	
. 375-20	UN	2A 3A	.0012 .0000	.3738 .3750	.3657 .3669		.3413 .3425	.3372 .3394	.0041 .0031	.3125 .3137	2B 3B	.321 .3210	.332 .3 2 97	.3425 .3425	.3479 .3465	.0054 .0040	.3750 .3750	
.375-24	UNF	1A 2A 3A	.0011 .0011 .0000	.3739 .3739 .3750	$.3631 \\ .3667 \\ .3678$		$.3468 \\ .3468 \\ .3479$.3411 .3430 .3450	.0057 .0038 .0029	$.3228 \\ .3228 \\ .3239$	1B 2B 3B	.330 .330 .3300	.340 .340 .3372	.3479 .3479 .3479	.3553 .3528 .3516	.0074 .0049 .0037	$.3750 \\ .3750 \\ .3750 \\ .3750$	
.375-28	UN	2A 3A	.0011 .0000	.3739 .3750	$.3674 \\ .3685$.3507 .3518	.3471 .3491	.0036 .0027	.3301 .3312	2B 3B	.336 .3360	$.345 \\ .3426$	$.3518 \\ .3518$.3564 .3553	.0046 .0035	.3750 .3750	
.375-32	UNEF	2A 3A	.0010 .0000	.3740 .3750	.3680 .3690		.3537 .3547	.3503 .3522	.0034 .0025	.3357 .3367	2B 3B	.341 .3410	.349 .3469	$.3547 \\ .3547$.3591 .3580	.0044 .0033	$.3750 \\ .3750$	
. 4375-14	UNC	1 A 2A 3A	.0014 .0014 .0000	.4361 .4361 .4375	.4206 .4258 .4272	. 4206	.3897 .3897 .3911	.3826 .3850 .3876	.0071 .0047 .0035	$.3485 \\ .3485 \\ .3499$	1B 2B 3B	.360 .360 .3600	.376 .376 .3717	.3911 .3911 .3911	. 4003 . 3972 . 3957	.0092 .0061 .0046	.4375 .4375 .4375	
. 4375-16	UN	2A 3A	.0014 .0000	. 4361 . 4375	.4267 .4281		. 3955 . 3969	.3909 .3935	.0046 .0034	$.3594 \\ .3608$	2B 3B	.370 .3700	.384 .3800	.3969 .3969	. 4028 . 4014	.0059 .0045	.4375 .4375	
. 4375-20	UNF	1A 2A 3A	.0013 .0013 .0000	. 4362 . 4362 . 4375	.4240 .4281 .4294		. 4037 . 4037 . 4050	.3974 .3995 .4019	.0063 .0042 .0031	$.3749 \\ .3749 \\ .3762$	1B 2B 3B	.383 .383 .3830	.395 .395 .3916	. 4050 . 4050 . 4050	.4131 .4104 .4091	.0081 .0054 .0041	$.4375 \\ .4375 \\ .4375 \\ .4375$	
. 4375-28	UNEF	2A 3A	.0011	. 4364 . 4375	.4299		. 4132 . 4143	.4096	.0036	. 39 2 6 . 3937	2B 3B	.399 .3990	.407 .4051	.4143	.4189	.0046	$.4375 \\ .4375$	
.4375-32	UN	2A 3A	.0010 .0000	.4365 .4375	.4305 .4315		.4162 .4172	. 4128 . 4147	.0034 .0025	.3982 .3992	2B 3B	.404 .4040	. 411 . 4094	.4172 .4172	. 4216 . 4205	.0044 .0033	$.4375 \\ .4375$	
.500-13	UNC	1A 2A 3A	.0015 .0015 .0000	.4985 .4985 .5000	.4822 .4876 .4891	.4822	$.4485 \\ .4485 \\ .4500$.4411 .4435 .4463	.0074 .0050 .0037	.4041 .4041 .4056	1B 2B 3B	.417 .417 .4170	.434 .434 .4284	. 4500 . 4500 . 4500	.4597 .4565 .4548	.0097 .0065 .0048	$.5000 \\ .5000 \\ .5000$	
.500-16	UN	2A 3A	.0014	.4986 .5000	.4892 .4906		. 4580 . 4594	. 4533 . 4559	.0047 .0035	.4219 .4233	2B 3B	. 432 . 4320	.446 .4419	.4594 .4594	. 4655 . 4640	.0061 .0046	$.5000 \\ .5000$	
.500-20	UNF	1A 2A 3A	.0013 .0013 .0000	.4987 .4987 .5000	.4865 .4906 .4919		.4662 .4662 .4675	.4598 .4619 .4643	.0064 .0043 .0032	$.4374 \\ .4374 \\ .4387$	1B 2B 3B	$.446 \\ .446 \\ .4460$.457 .457 .4537	.4675 .4675 .4675	. 4759 . 4731 . 4717	.0084 .0056 .0042	.5000 .5000 .5000	
.500-28	UNEF	2A 3A	.0011 .0000	.4989 .5000	. 4924 . 4935		. 4757 . 4768	. 4720 . 4740	.0037 .0028	$.4551 \\ .4562$	2B 3B	.461 .4610	.470 .4676	.4768 .4768	.4816 .4804	.0048	.5000 .5000	
. 500-32	UN	2A 3A	.0010 .0000	. 4990 . 5000	. 4930 . 4940		. 4787 . 4797	.4752 .4771	.0035 .0026	. 4607 . 4617	2B 3B	. 466 . 4660	.474 .4719	. 4797 . 4797	.4842 .4831	.0045 .0034	.5000 .5000	
.5625-12	UNC	1A 2A 3A	.0016 .0016 .0000	$.5609 \\ .5609 \\ .5625$.5437 .5495 .5511	.5437	$.5068 \\ .5068 \\ .5084$.4990 .5016 .5045	.0078 .0052 .0039	. 4587 . 4587 . 4603	1B 2B 3B	.472 .472 .4720	.490 .490 .4843	.5084 .5084 .5084	.5186 .5152 .5135	.0102 .0068 .0051	.5625 .5625 .5625	
.5625-16	UN	2A 3A	.0014 .0000	.5611 .5625	.5517 .5531		.5205 .5219	.5158 .5184	.0047 .0035	.4844 .4858	2B 3B	. 495 . 4950	.509 .5040	.5219 .5219	$.5280 \\ .5265$.0061 .0046	$.5625 \\ .5625$	
. 5625-18	UNF	1A 2A 3A	.0014 .0014 .0000	$.5611 \\ .5611 \\ .5625$.5480 .5524 .5538		.5250 .5250 .5264	.5182 .5205 .5230	.0068 .0045 .0034	.4929 .4929 .4943	1B 2B 3B	.502 .502 .5020	.515 .515 .5106	.5264 .5264 .5664	.5353 .5323 .5308	.0089 .0059 .0044	.5625 .5625 .5625	
. 5625-20	UN	2A 3A	.0013	$.5612 \\ .5625$.5531 .5544		.5287 .5300	.5245 .5268	.0042	. 4999 .5012	2B 3B	.508 .5080	.520 .5162	. 5300 . 5300	. 5355	.0055	.5625 .5625	
.5625-24	UNEF	2A 3A	.0012 .0000	$.5613 \\ .5625$.5541 .5553		.5342 .5354	.5303 .5325	.0039 .0029	.5102 .5114	2B 3B	.517 .5170	.527 .5244	.5354 .5354	. 5405 . 5392	.0051	$.5625 \\ .5625$	
.5625-28	UN	2A 3A	.0011 .0000	$.5614 \\ .5625$	$.5549 \\ .5560$		$.5382 \\ .5393$	$.5345 \\ .5365$.0037 .0028	.5176 .5187	2B 3B	.524 .5240	$.532 \\ .5301$.5393 .5393	.5441 .5429	.0048 .0036	$.5625 \\ .5625$	
.5625-32	UN	2A 3A	.0010 .0000	$.5615 \\ .5625$.5555 .5565		.5412 .5422	.5377 .5396	.0035 .0026	$.5232 \\ .5242$	2B 3B	.529 .5290	.536 .5344	.5422 .5422	.5467 .5456	.0045 .0034	$.5625 \\ .5625$	
. 625-11	UNC	1A 2A 3A	.0016 .0016 .0000	$.6234 \\ .6234 \\ .6250$.6052 .6113 .6129	. 6052	$.5644 \\ .5644 \\ .5660$.5561 .5589 .5619	.0083 .0055 .0041	.5119 .5119 .5135	1B 2B 3B	.527 .527 .5270	$.546 \\ .546 \\ .5391$.5660 .5660 .5660	.5767 .5732 .5714	.0107 .0072 .0054	. 6250 . 6250 . 6250	
. 625-12	UN	2A 3A	.0016 .0000	. 6234 . 6250	.6120 .6136		.5693 .5709	.5639 .5668	.0054 .0041	.5112 .5228	2B 3B	.535 .5350	.553 .5463	.5709 .5709	.5780 .5762	.0071 .0053	. 6250 . 6250	

						External	a	Internala									
Nominal size and threads per inch	Series designa- tion	Class	Allow-	Major	diameter	limits	Pitch	diameter	limits	Minor diam-	Class	Minor eter	diam- imits	Pitch	diameter	limits Major diam- eter	
				Max ^b	Min	Mino	Max ^b	Min	Toler- ance	eterd		Min	Max	Min	Max	Toler- ance	Min
1	2	3	4	5	6	7	8	9	10	11	12	. 13	14	15	16	17	18
.625-16	UN	2A 3A	in 0.0014 .0000	$\overset{in}{\overset{0.6236}{.6250}}$	$\substack{in\\0.6142\\.6156}$	in 	$\substack{in\\0.5830\\.5844}$	$\substack{in\\0.5782\\.5808}$	in 0.0048 .0036	in 0.5469 .5483	2B 3B	in 0.557 .5570	$\substack{in\\0.571\\.5662}$	in 0.5844 .5844	in 0.5906 .5890	in 0.0062 .0046	in 0.6250 .6250
.625-18	UNF	1A 2A 3A	.0014 .0014 .0000	$.6236 \\ .6236 \\ .6250$.6105 .6149 .6163		$.5875 \\ .5875 \\ .5889$	$.5805 \\ .5828 \\ .5854$.0070 .0047 .0035	$.5554 \\ .5554 \\ .5568$	1B 2B 3B	$.565 \\ .565 \\ .5650$.578 .578 .5730	.5889 .5889 .5889	$.5980 \\ .5949 \\ .5934$.0091 .0060 .0045	. 6250 . 6250 . 6250
.625-20	UN	2A 3A	.0013 .0000	$.6237 \\ .6250$	$.6156 \\ .6169$		$.5912 \\ .5925$	$.5869 \\ .5893$	$.0043 \\ .0032$	$.5624 \\ .5637$	2B 3B	.571 .5710	.582 .5787	$.5925 \\ .5925$.5981 .5967	.0056 .0042	. 6250 . 6250
. 625-24	UNEF	2A 3A	.0012 .0000	$.6238 \\ .6250$	$.6166 \\ .6178$.5967 .5979	$.5927 \\ .5949$.0040 .0030	.5727 .5739	2B 3B	$.580 \\ .5800$	$.590 \\ .5869$	$.5979 \\ .5879$.6031 .6018	.0052 .0039	. 6250 . 6250
. 625-28	UN	2A 3A	.0011 .0000	$.6239 \\ .6250$	$.6174 \\ .6185$		$.6007 \\ .6018$.5969 .5990	.0038 .0028	$.5801 \\ .5812$	2B 3B	$.586 \\ .5860$. 595 . 5926	.6018 .6018	$.6067 \\ .6055$.0049 .0037	. 6250 . 6250
.625-32	UN	2A 3A	.0011 .0000	$.6239 \\ .6250$.6179 .6190		. 6036 . 6047	.6000 .6020	.0036 .0027	$.5856 \\ .5867$	2B 3B	.591 .5910	$.599 \\ .5969$.6047 .6047	$.6093 \\ .6082$.0046 .0035	. 6250 . 6250
.6875-12	UN	2A 3A	.0016 .0000	$.6859 \\ .6875$	$.6745 \\ .6761$		$.6318 \\ .6334$	$.6264 \\ .6293$.0054 .0041	$.5837 \\ .5853$	2B 3B	.597 .5970	$.615 \\ .6085$	$.6334 \\ .6334$	$.6405 \\ .6387$.0071 .0053	.6875 .6875
.6875-16	UN	2A 3A	.0014 .0000	$.6861 \\ .6875$	$.6767 \\ .6781$		$.6455 \\ .6469$	$.6407 \\ .6433$.0048 .0036	$.6094 \\ .6108$	2B 3B	$.620 \\ .6200$	$.634 \\ .6284$	$.6469 \\ .6469$	$.6531 \\ .6515$.0062 .0046	.6875 .6875
.6875-20	UN	2A 3A	.0013 .0000	.6862 .6875	.6781 .6794		$.6537 \\ .6550$.6494 .6518	$.0043 \\ .0032$	$.6249 \\ .6262$	2B 3B	.633 .6330	$.645 \\ .6412$	$.6550 \\ .6550$	$.6606 \\ .6592$.0056 .0042	.6875 .6875
.6875-24	UNEF	2A 3A	$.0012 \\ .0000$	$.6863 \\ .6875$	$.6791 \\ .6803$		$.6592 \\ .6604$	$.6552 \\ .6574$	$.0040 \\ .0030$	$.6352 \\ .6364$	2B 3B	$.642 \\ .6420$	$.652 \\ .6494$	$.6604 \\ .6604$	$.6656 \\ .6643$.0052 .0039	. 6875 . 6875
.6875-28	UN	2A 3A	.0011 .0000	$.6864 \\ .6875$	$.6799 \\ .6810$		$.6632 \\ .6643$	$.6594 \\ .6615$	$.0038 \\ .0028$	$.6426 \\ .6437$	2B 3B	$.649 \\ .6490$.657 .6551	$.6643 \\ .6643$	$.6692 \\ .6680$.0049 .0037	.6875 .6875
.6875-32	UN	2A 3A	.0011 .0000	$.6864 \\ .6875$	$.6804 \\ .6815$		$.6661 \\ .6672$	$.6625 \\ .6645$.0036 .0027	.6481 .6492	2B 3B	$.654 \\ .6540$	$.661 \\ .6594$	$.6672 \\ .6672$.6718 .6707	.0046 .0035	.6875 .6875
.750-10	UNC	1A 2A 3A	.0018 .0018 .0000	$.7482 \\ .7482 \\ .7500$.7288 .7353 .7371	0.7288	$.6832 \\ .6832 \\ .6850$	$.6744 \\ .6773 \\ .6806$	$.0088 \\ .0059 \\ .0044$	$.6255 \\ .6255 \\ .6273$	1B 2B 3B	.642 .642 .642 .6420	$.663 \\ .663 \\ .6545$	$.6850 \\ .6850 \\ .6850 \\ .6850$.6965 .6927 .6907	.0115 .0077 .0057	. 7500 . 7500 . 7500
.750-12	UN	2A 3A	.0017	.7483 .7500	$.7369 \\ .7386$		$.6942 \\ .6959$.6887 .6918	.0055 .0041	.6461 .6478	2B 3B	.660 .6600	.678 .6707	.6959 .6959	.7031 .7013	.0072 .0054	.7500 .7500
.750-16	UNF	1A 2A 3A	.0015 .0015 .0000	.7485 .7485 .7500	.7343 .7391 .7406		.7079 .7079 .7094	.7004 .7029 .7056	.0075 .0050 .0038	$.6718 \\ .6718 \\ .6733$	1B 2B 3B	$.682 \\ .682 \\ .6820$. 696 . 696 . 6908	.7094 .7094 .7094	.7192 .7159 .7143	$.0098 \\ .0065 \\ .0049$.7500 .7500 .7500
,750-20	UNEF	2A 3A	.0013	.7487 .7500	$.7406 \\ .7419$		$.7162 \\ .7175$.7118 .7142	.0044	$.6874 \\ .6887$	2B 3B	. 696 . 6960	.707 .7037	.7175 .7175	.7232 .7218	.0057	.7500 .7500
.750-28	UN	2A 3A	.0012 .0000	.7488 .7500	.7423 .7435		$.7256 \\ .7268$.7218 .7239	.0038 .0029	.7050 .7062	2B 3B	.711 .7110	.720 .7176	.7268 .7268	.7318	.0050	. 7500 . 7500
.750-32	UN	2A 3A	.0011	.7489 .7500	$.7429 \\ .7440$		$.7286 \\ .7297$.7250 .7270	.0036 .0027	.7106 .7117	2B 3B	.716 .7160	.724 .7219	.7297 .7297	.7344	.0047	. 7500 . 7500
.8125-12	UN	2A 3A	.0017	.8108 .8125	.7994 .8011		.7567 .7584	.7512 .7543	.0055 .0041	.7086 .7103	2B 3B	.722 .7220	.740 .7329	.7584 .7584	.7656 .7638	.0072	.8125 .8125
. 8125-16	UN	2A 3A	.0015	.8110 .8125	. 8016 . 8031		$.7704 \\ .7719$.7655 .7683	$.0049 \\ .0036$.7343 .7358	2B 3B	.745 .7450	.759 .7533	.7719 .7719	.7782 .7766	.0063 .0047	. 8125 . 8125
. 8125-20	UNEF	2A 3A	.0013	.8112 .8125	. 8031 . 8044		.7787 .7800	.7743 .7767	.0044	$.7499 \\ .7512$	2B 3B	.758 .7580	.770 .7662	.7800 .7800	.7857 .7843	.0057 .0043	.8125 .8125
.8125-28	UN	2A 3A	.0012	$.8113 \\ .8125$. 8048 . 8060		$.7881 \\ .7893$	$.7843 \\ .7864$.0038 .0029	.7675	2B 3B	.774 .7740	.782 .7801	.7893 .7893	.7943 .7930	.0050	. 8125 . 8125
.8125-32	UN	2A 3A	.0011	.8114 .8125	$.8054 \\ .8065$		$.7911 \\ .7922$.7875 .7895	.0036	$.7731 \\ .7742$	2B 3B	.779 .7790	.786 .7844	.7922 .7922	.7969 .7958	.0047	. 8125 . 8125
.875-9	UNC	1A 2A 3A	.0019 .0019 .0000	.8731 .8731 .8750	$.8523 \\ .8592 \\ .8611$. 8523	.8009 .8009 .8028	.7914 .7946 .7981	.0095 .0063 .0047	.7368 .7368 .7387	1B 2B 3B	. 755 . 755 . 7550	.778 .778 .7681	.8028 .8028 .8028	.8151 .8110 .8089	.0123 .0082 .0061	. 8750 . 8750 . 8750
.875-12	UN	2A 3A	.0017 .0000	.8733 .8750	$.8619 \\ .8636$		$.8192 \\ .8209$.8137 .8168	.0055 .0041	$.7711 \\ .7728$	2B 3B	.785 .7850	$.803 \\ .7952$.8209 .8209	.8281 .8263	.0072 .0054	. 8750 . 8750
. 875–14	UNF	1A 2A 3A	.0016 .0016 .0000	.8734 .8734 .8750	.8579 .8631 .8647		.8270 .8270 .8286	$.8189 \\ .8216 \\ .8245$.0081 .0054 .0041	.7858 .7858 .7874	1B 2B 3B	.798 .798 .7980	. 814 . 814 . 8068	. 8286 . 8286 . 8286	.8392 .8356 .8339	.0106 .0070 .0053	. 8750 . 8750 . 8750

TABLE 2.21. Standard series limits of size—Unified screw threads—Continued

2 22

See footnotes at end of table.

TABLE 2.21. Standard series limits of size-Unified screw threads-Continued

		External*										Internal*							
Nominal size and threads per inch	Series designa- tion	Class	Allow-	Majo	diameter	limits	Pitch	diameter	limits	Minor diam-	Class	Minor eter l	diam- limits	Pitch diameter li		limits Major diam- eter			
				Maxb	Min	Mine	Max ^b	Min	Toler- ance	eterd		Min	Max	Min	Max	Toler- ance	Min		
1	2	3	4	5	6	7	8	9	10	11	12	. 13	14	15	16	17	18		
.875-16	UN	2A 3A	$in \\ 0.0015 \\ .0000$	in 0.8735 .8750	in 0.8641 .8656	in	$\substack{in\\0.8329\\.8344}$	in 0.8280 .8308	in 0.0049 .0036	in 0.7968 .7983	2B 3B	in 0.807 .8070	in 0.821 .8158	in 0.8344 .8344	in 0.8407 .8391	in 0.0063 .0047	in 0.8750 .8750		
.875-20	UNEF	2A 3A	.0013	.8737 .8750	.8656 .8669		$.8412 \\ .8425$.8368 .8392	.0044 .0033	.8124 .8137	2B 3B	$.821 \\ .8210$.832 .8287	$.8425 \\ .8425$	$.8482 \\ .8468$	$.0057 \\ .0043$. 8750 . 8750		
. 875-28	UN	2A 3A	.0012	.8738 .8750	$.8673 \\ .8685$		$.8506 \\ .8518$	$.8468 \\ .8489$.0038 .0029	$.8300 \\ .8312$	2B 3B	$.836 \\ .8360$	$.845 \\ .8426$.8518 .8518	$.8568 \\ .8555$	$.0050 \\ .0037$.8750 .8750		
. 875-32	UN	2A 3A	.0011	.8739 .8750	. 8679 . 8690		$.8536 \\ .8547$. 8500 . 8520	.0036 .0027	.8356 .8367	2B 3B	.841 .8410	$.849 \\ .8469$.8547 .8547	$.8594 \\ .8583$.0047 .0036	. 8750 . 8750		
.9375-12	UN	2A 3A	.0017	$.9358 \\ .9375$	$.9244 \\ .9261$		$.8817 \\ .8834$.8760 .8792	.0057 .0042	$.8336 \\ .8353$	2B 3B	.847 .8470	$.865 \\ .8575$	$.8834 \\ .8834$. 8908 . 8889	$.0074 \\ .0055$.9375 .9375		
.9375-16	UN	2A 3A	.0015	.9360 .9375	.9266 .9281		$.8954 \\ .8969$	$.8904 \\ .8932$.0050 .0037	$.8593 \\ .8608$	2B 3B	.870 .8700	$.884 \\ .8783$	$.8969 \\ .8969$	$.9034 \\ .9018$.0065 .0049	.9375 .9375		
.9375-20	UNEF	2A 3A	.0014	.9361 .9375	$.9280 \\ .9294$.9036 .9050	.8991 .9016	.0045 .0034	.8748 .8762	2B 3B	.883 .8830	$.895 \\ .8912$.9050 .9050	$.9109 \\ .9094$.0059 .0044	.9375 .9375		
.9375-28	UN	2A 3A	.0012 .0000	.9363 .9375	$.9298 \\ .9310$		$.9131 \\ .9143$	$.9091 \\ .9113$.0040 .0030	$.8925 \\ .8937$	2B 3B	. 899 . 8990	.907 .9051	.9143 .9143	.9195 .9182	.0052 .0039	.9375 .9375		
.9375-32	UN	2A 3A	.0011 .0000	.9364 .9375	$.9304 \\ .9315$		$.9161 \\ .9172$.9123 .9144	.0038 .0028	.8981 .8992	2B 3B	.904 .9040	$.911 \\ .9094$	$.9172 \\ .9172$	$.9221 \\ .9209$.0049 .0037	.9375 .9375		
1.000-8	UNC	1A 2A 3A	.0020 .0020 .0000	$.9980 \\ .9980 \\ 1.0000$.9755 .9830 .9850	0.9755	$.9168 \\ .9168 \\ .9188$.9067 .9100 .9137	.0101 .0068 .0051	$.8446 \\ .8446 \\ .8466$	1 B 2B 3B	$.865 \\ .865 \\ .8650$.890 .890 .8797	.9188 .9188 .9188	.9320 .9276 .9254	$.0132 \\ .0088 \\ .0066$	$1.0000 \\ 1.0000 \\ 1.0000$		
1.000-12	UNF	1A 2A 3A	.0018 .0018 .0000	$.9982 \\ .9982 \\ 1.0000$	$.9810 \\ .9868 \\ .9886$		$.9441 \\ .9441 \\ .9459$	$.9353 \\ .9382 \\ .9415$.0088 .0059 .0044	.8960 .8960 .8978	1B 2B 3B	.910 .910 .9100	.928 .928 .9198	$.9459 \\ .9459 \\ .9459 \\ .9459$	$.9573 \\ .9535 \\ .9516$.0114 .0076 .0057	$1.0000 \\ 1.0000 \\ 1.0000$		
1.000-16	UN	2A 3A	.0015 .0000	$.9985 \\ 1.0000$.9891 .9906		$.9579 \\ .9594$	$.9529 \\ .9557$.0050 .0037	.9218 .9233	2B 3B	.932 .9320	.946 .9408	$.9594 \\ .9594$.9659 .9643	.0065 .0049	$1.0000 \\ 1.0000$		
1.000-20	UNEF	2A 3A	.0014	.9986 1,0000	.9905 .9919		$.9661 \\ .9675$.9616 .9641	.0045 .0034	.9373 .9387	2B 3B	.946 .9 4 60	.957 .9537	$.9675 \\ .9675$.9734 .9719	.0059 .0044	$1.0000 \\ 1.0000$		
1.000-28	UN	2A 3A	.0012 .0000	$.9988 \\ 1.0000$.9923 .9935		.9756 .9768	.9716 .9738	.0040 .0030	$.9550 \\ .9562$	2B 3B	$.961 \\ .9610$.970 .9676	.9768 .9768	$.9820 \\ .9807$.00 52 .0039	$1.0000 \\ 1.0000$		
1.000-32	UN	2A 3A	.0011 .0000	$.9989 \\ 1.0000$. 9929 . 9940		.9786 .9797	.9748 .9769	.0038 .0028	.9606 .9617	2B 3B	$.966 \\ .9660$.974 .9719	.9797 .9797	$.9846 \\ .9834$.0049 .0037	$1.0000 \\ 1.0000$		
1.0625-8	UN	2A 3A	.0020	$1.0605 \\ 1.0625$	$1.0455 \\ 1.0475$		$.9793 \\ .9813$.9725 .9762	.0068 .0051	.9071 .9091	2B 3B	.927 .9270	.952 .9422	.9813 .9813	.9902 .9880	.0089 .0067	$1.0625 \\ 1.0625$		
1.0625-12	UN	2A 3A	.0017 .0000	$1.0608 \\ 1.0625$	$1.0494 \\ 1.0511$	•	$1.0067 \\ 1.0084$	$1.0010 \\ 1.0042$.0057 .0042	.9586 .9603	2B 3B	.972 .9720	.990 .9823	$1.0084 \\ 1.0084$	$1.0158 \\ 1.0139$.0074 .0055	$1.0625 \\ 1.0625$		
1.0625-16	UN	2A 3A	.0015 .0000	$\substack{1.0610\\1.0625}$	$\substack{1.0516\\1.0531}$		$\substack{1.0204\\1.0219}$	$1.0154 \\ 1.0182$.0050 .0037	$.9843 \\ .9858$	2B 3B	.995 .9950	$1.009 \\ 1.0033$	$1.0219 \\ 1.0219$	$\substack{1.0284\\1.0268}$	$.0065 \\ .0049$	$1.0625 \\ 1.0625$		
1.0625-18	UNEF	2A 3A	.0014 .0000	$1.0611 \\ 1.0625$	$\substack{1.0524\\1.0538}$		$1.0250 \\ 1.0264$	$1.0203 \\ 1.0228$.0047 .0036	.9929 .9943	2B 3B	1.002 1.0020	$\substack{1.015\\1.0105}$	$1.0264 \\ 1.0264$	$1.0326 \\ 1.0310$	$.0062 \\ .0046$	$1.0625 \\ 1.0625$		
1.0625-20	UN	2A 3A	.0014 .0000	$\substack{1.0611\\1.0625}$	$\substack{1.0530\\1.0544}$		$1.0286 \\ 1.0300$	$1.0241 \\ 1.0266$.0045 .0034	.9998 1.0012	2B 3B	$1.008 \\ 1.0080$	$\substack{1.020\\1.0162}$	$1.0300 \\ 1.0300$	$1.0359 \\ 1.0344$.0059 .0044	$1.0625 \\ 1.0625$		
1.0625-28	UN	2A 3A	.0012 .0000	$1.0613 \\ 1.0625$	$1.0548 \\ 1.0560$		$\substack{1.0381\\1.0393}$	$\substack{1.0341\\1.0363}$.0040 .0030	$1.0175 \\ 1.0187$	2B 3B	$1.024 \\ 1.0240$	$\substack{1.032\\1.0301}$	$1.0393 \\ 1.0393$	$\substack{1.0445\\1.0432}$.0052 .0039	$1.0625 \\ 1.0625$		
1.125-7	UNC	1A 2A 3A	$.0022 \\ .0022 \\ .0000$	$\begin{array}{c} 1.1228 \\ 1.1228 \\ 1.1250 \end{array}$	$1.0982 \\ 1.1064 \\ 1.1086$	1.0982	$1.0300 \\ 1.0300 \\ 1.0322$	$\substack{1.0191\\1.0228\\1.0268}$.0109 .0072 .0054	.9475 .9475 .9497	1B 2B 3B	0.970 .970 .9700	0.998 .998 .9875	$\substack{1.0322\\1.0322\\1.0322}$	$1.0463 \\ 1.0416 \\ 1.0393$.0141 .0094 .0071	$1.1250 \\ 1.1250 \\ 1.1250 \\ 1.1250$		
1.125-8	UN	2A 3A	.0021 .0000	$1.1229 \\ 1.1250$	$1.1079 \\ 1.1100$	1,1004	$1.0417 \\ 1.0438$	$\substack{1.0348\\1.0386}$.0069 .0052	$.9695 \\ .9716$	2B 3B	.990 .9900	$1.015 \\ 1.0047$	$\substack{1.0438\\1.0438}$	$\substack{1.0528\\1.0505}$.0090 .0067	$1.1250 \\ 1.1250$		
1.125-12	UNF	1A 2A 3A	.0018 .0018 .0000	$\begin{array}{c} 1.1232 \\ 1.1232 \\ 1.1250 \end{array}$	$\begin{array}{c} 1.1060 \\ 1.1118 \\ 1.1136 \end{array}$		$1.0691 \\ 1.0691 \\ 1.0709$	$1.0601 \\ 1.0631 \\ 1.0664$	$.0090 \\ .0060 \\ .0045$	$1.0210 \\ 1.0210 \\ 1.0228$	1B 2B 3B	$1.035 \\ 1.035 \\ 1.0350$	$1.053 \\ 1.053 \\ 1.0448$	$1.0709 \\ 1.0709 \\ 1.0709 \\ 1.0709$	$1.0826 \\ 1.0787 \\ 1.0768$.0117 .0078 .0059	$1.1250 \\ 1.1250 \\ 1.1250 \\ 1.1250$		
1.125-16	UN	2A 3A	.0015 .0000	$1.1235 \\ 1.1250$	$1.1141 \\ 1.1156$		$1.0829 \\ 1.0844$	$1.0779 \\ 1.0807$.0050 .0037	$\substack{1.0468\\1.0483}$	2B 3B	$1.057 \\ 1.0570$	$1.071 \\ 1.0658$	$\substack{1.0844\\1.0844}$	$1.0909 \\ 1.0893$	$.0065 \\ .0049$	$1.1250 \\ 1.1250$		
1.125-18	UNEF	2A 3A	.0014	1.1236 1.1250	$1.1149 \\ 1.1163$		$1.0875 \\ 1.0889$	1.0828 1.0853	.0047 .0036	$1.0554 \\ 1.0568$	2B 3B	$1.065 \\ 1.0650$	$1.078 \\ 1.0730$	1.0889 1.0889	$1.0951 \\ 1.0935$	$.0062 \\ .0046$	1.1250 1.1250		
1.125-20	UN	2A 3A	.0014	1.1236 1.1250	$1.1155 \\ 1.1169$		$1.0911 \\ 1.0925$	$1.0866 \\ 1.0891$.0045 .0034	$1.0623 \\ 1.0637$	2B 3B	1.071 1.0710	$1.082 \\ 1.0787$	$1.0925 \\ 1.0925$	$1.0984 \\ 1.0969$.0059 .0044	$1.1250 \\ 1.1250$		

						External	a	Internala									
Nominal size and threads per inch	Series designa- tion	Class	Allow-	Major	diameter	limits	Piteh	diameter	limits	Minor diam-	Class	Minor eter l	diam- imits	Piteh	diameter	limits	Major diam- eter
				Maxb	Min	Min°	Maxb	Min	Toler- ance	eterd		Min	Max	Min	Max	Toler- ance	Min
1	2	3	4	5	6	7	8	9	10	11	12	. 13	14	15	16	17	18
1.125-28	UN	2A 3A	in 0.0012 .0000	$in \\ 1.1238 \\ 1.1250$	$in \\ 1.1173 \\ 1.1185$	in 	in 1.1006 1.1018	in 1.0966 1.0988	in 0.0040 .0030	in 1.0800 1.0812	2B 3B	in 1.086 1.0860	in 1.095 1.0926	in 1.1018 1.1018	$in \\ 1.1070 \\ 1.1057$	in 0.0052 .0039	$\stackrel{i\mathrm{n}}{1.1250}\ 1.1250$
1.1875-8	UN	2A 3A	.0021 .0000	$1.1854 \\ 1.1875$	$1.1704 \\ 1.1725$		$1.1042 \\ 1.1063$	$1.0972 \\ 1.1011$.0070 .0052	$1.0320 \\ 1.0341$	2B 3B	$\substack{1.052\\1.0520}$	$1.077 \\ 1.0672$	$1.1063 \\ 1.1063$	$\substack{1.1154\\1.1131}$.0091 .0068	$1.1875 \\ 1.1875$
1.1875-12	UN	2A 3A	.0017 .0000	$1.1858 \\ 1.1875$	$1.1744 \\ 1.1761$		$\substack{1.1317\\1.1334}$	$1.1259 \\ 1.1291$	$.0058 \\ .0043$	$1.0836 \\ 1.0853$	2B 3B	$1.097 \\ 1.0970$	$\substack{1.115\\1.1073}$	$1.1334 \\ 1.1334$	$1.1409 \\ 1.1390$.0075 .0056	$1.1875 \\ 1.1875$
1.1875-16	UN	2A 3A	.0015 .0000	$1.1860 \\ 1.1875$	$1.1766 \\ 1.1781$		$1.1454 \\ 1.1469$	$1.1403 \\ 1.1431$.0051 .0038	$1.1093 \\ 1.1108$	2B 3B	$\substack{1.120\\1.1200}$	$\substack{1.134\\1.1283}$	$1.1469 \\ 1.1469$	$1.1535 \\ 1.1519$.0066 .0050	$1.1875 \\ 1.1875$
1.1875-18	UNEF	2A 3A	.0015 .0000	$1.1860 \\ 1.1875$	$1.1773 \\ 1.1788$		$1.1499 \\ 1.1514$	$1.1450 \\ 1.1478$.0049 .0036	$1.1178 \\ 1.1193$	2B 3B	$\substack{1.127\\1.1270}$	$1.140 \\ 1.1355$	$1.1514 \\ 1.1514$	$1.1577 \\ 1.1561$.0063 .0047	$1.1875 \\ 1.1875$
1.1875-20	UN	2A 3A	.0014 .0000	$1.1861 \\ 1.1875$	$1.1780 \\ 1.1794$		$1.1536 \\ 1.1550$	$1.1489 \\ 1.1515$.0047 .0035	$\substack{1.1248\\1.1262}$	2B 3B	1.133 1.1330	$1.145 \\ 1.1412$	$1.1550 \\ 1.1550$	$1.1611 \\ 1.1595$.0061 .0045	$1.1875 \\ 1.1875$
1.1875-28	UN	2A 3A	.0012 .0000	$1.1863 \\ 1.1875$	$1.1798 \\ 1.1810$		$1.1631 \\ 1.1643$	$1.1590 \\ 1.1612$.0041 .0031	$\substack{1.1425\\1.1437}$	2B 3B	$1.149 \\ 1.1490$	1.157 1.1551	$1.1643 \\ 1.1643$	$1.1696 \\ 1.1683$.0053 .0040	$1.1875 \\ 1.1875$
1.250-7	UNC	1 A 2 A 3 A	.0022 .0022 .0000	$\substack{1.2478\\1.2478\\1.2500}$	$1.2232 \\ 1.2314 \\ 1.2336$	1.2232	$1.1550 \\ 1.1550 \\ 1.1572$	$1.1439 \\ 1.1476 \\ 1.1517$.0111 .0074 .0055	$1.0725 \\ 1.0725 \\ 1.0747$	1B 2B 3B	$1.095 \\ 1.095 \\ 1.095 \\ 1.0950$	$1.123 \\ 1.123 \\ 1.1125 $	1.1572 1.1572 1.1572	$1.1716 \\ 1.1668 \\ 1.1644$.0144 .0096 .0072	$1.2500 \\ 1$
1.250-8	UN	2A 3A	.0021 .0000	$1.2479 \\ 1.2500$	$1.2329 \\ 1.2350$	1.2254	$1.1667 \\ 1.1688$	$1.1597 \\ 1.1635$.0070 .0053	$1.0945 \\ 1.0966$	2B 3B	$1.115 \\ 1.1150$	$1.140 \\ 1.1297$	$1.1688 \\ 1.1688$	$1.1780 \\ 1.1757$.0092 .0069	$1.2500 \\ 1.2500$
1.250-12	UNF	1 A 2 A 3 A	.0018 .0018 .0000	$1.2482 \\ 1.2482 \\ 1.2500$	$1.2310 \\ 1.2368 \\ 1.2386$		$\begin{array}{c} 1.1941 \\ 1.1941 \\ 1.1959 \end{array}$	$1.1849 \\ 1.1879 \\ 1.1913$	$.0092 \\ .0062 \\ .0046$	$1.1460 \\ 1.1460 \\ 1.1478$	1B 2B 3B	$1.160 \\ 1.160 \\ 1.160 \\ 1.1600$	$1.178 \\ 1.178 \\ 1.1698 $	$1.1959 \\ 1.1959 \\ 1.1959 \\ 1.1959$	$1.2079 \\ 1.2039 \\ 1.2019$.0120 .0080 .0060	$1.2500 \\ 1.2500 \\ 1.2500 \\ 1.2500$
1.250-16	UN	2A 3A	.0015 .0000	$1.2485 \\ 1.2500$	$1.2391 \\ 1.2406$		1.2079 1.2094	$1.2028 \\ 1.2056$.0051 .0038	$1.1718 \\ 1.1733$	2B 3B	$1.182 \\ 1.1820$	1.196 1.1908	1.2094 1.2094	$1.2160 \\ 1.2144$.0066 .0050	$1.2500 \\ 1.2500$
1.250-18	UNEF	2A 3A	.0015	$1.2485 \\ 1.2500$	$1.2398 \\ 1.2413$		$1.2124 \\ 1.2139$	$1.2075 \\ 1.2103$.0049 .0036	$1.1803 \\ 1.1818$	2B 3B	$1.190 \\ 1.1990$	1.203 1.1980	1.2139 1.2139	$\substack{1.2202\\1.2186}$.0063 .0047	$1.2500 \\ 1.2500$
1.250-20	UN	2A 3A	.0014 .0000	$1.2486 \\ 1.2500$	$1.2405 \\ 1.2419$		$1.2161 \\ 1.2175$	$1.2114 \\ 1.2140$.0047 .0035	$1.1873 \\ 1.1887$	2B 3B	$1.196 \\ 1.1960$	1.207 1.2037	$1.2175 \\ 1.2175$	$1.2236 \\ 1.2220$.0061 .0045	$1.2500 \\ 1.2500$
1.250-28	UN	2A 3A	.0012 .0000	1.2488 1.2500	$1.2423 \\ 1.2435$		$1.2256 \\ 1.2268$	$1.2215 \\ 1.2237$.0041 .0031	$1.2050 \\ 1.2062$	2B 3B	$\substack{1.211\\1.2110}$	$1.220 \\ 1.2176$	$1.2268 \\ 1.2268$	$\substack{1.2321\\1.2308}$.0053 .0040	$1.2500 \\ 1.2500$
1.3125-8	UN	2A 3A	.0021 .0000	$\substack{1.3104\\1.3125}$	$1.2954 \\ 1.2975$		$1.2292 \\ 1.2313$	$1.2221 \\ 1.2260$.0071 .0053	$1.1570 \\ 1.1591$	2B 3B	$1.177 \\ 1.1770$	$1.202 \\ 1.1922$	1.2313 1.2313	$1.2405 \\ 1.2382$.0092 .0069	$1.3125 \\ 1.3125$
1.3125-12	UN	2A 3A	.0017 .0000	$\substack{1.3108\\1.3125}$	1.2994 1.3011		$1.2567 \\ 1.2584$	$\substack{1.2509\\1.2541}$.0058 .0043	$\substack{1.2086\\1.2103}$	2B 3B	$\begin{smallmatrix}1.222\\1.2220\end{smallmatrix}$	$\substack{1.240\\1.2323}$	$1.2584 \\ 1.2584$	$1.2659 \\ 1.2640$.0075 .0056	$1.3125 \\ 1.3125$
1.3125-16	UN	2A 3A	.0015 .0000	$\substack{1.3110\\1.3125}$	$1.3016 \\ 1.3031$		$1.2704 \\ 1.2719$	$\substack{\textbf{1.2653}\\\textbf{1.2681}}$.0051 .0038	$1.2343 \\ 1.2358$	2B 3B	$\begin{smallmatrix}1.245\\1.2450\end{smallmatrix}$	$1.259 \\ 1.2533$	$1.2719 \\ 1.2719$	$\substack{1.2785\\1.2769}$.0066 .0050	$1.3125 \\ 1.3125$
1.3125-18	UNEF	2A 3A	.0015 .0000	$\substack{1.3110\\1.3125}$	$\substack{1.3023\\1.3038}$		$1.2749 \\ 1.2764$	$1.2700 \\ 1.2728$.0049 .0036	$1.2428 \\ 1.2443$	2B 3B	$\substack{1.252\\1.2520}$	$1.265 \\ 1.2605$	$1.2764 \\ 1.2764$	$1.2827 \\ 1.2811$.0063 .0047	$1.3125 \\ 1.3125$
1.3125-20	UN	2A 3A	.0014 .0000	$1.3111 \\ 1.3125$	$1.3030 \\ 1.3044$		$1.2786 \\ 1.2800$	$1.2739 \\ 1.2765$.0047 .0035	$1.2498 \\ 1.2512$	2B 3B	$1.258 \\ 1.2580$	$1.270 \\ 1.2662$	1.2800 1.2800	$\substack{1.2861\\1.2845}$.0061 .0045	$1.3125 \\ 1.3125$
1.3125-28	UN	2A 3A	.0012 .0000	$1.3113 \\ 1.3125$	$1.3048 \\ 1.3060$		$1.2881 \\ 1.2893$	$1.2840 \\ 1.2862$.0041 .0031	$1.2675 \\ 1.2687$	2B 3B	$\substack{1.274\\1.2740}$	$1.282 \\ 1.2801$	1.2893 1.2893	$1.2946 \\ 1.2933$.0053 .0040	$\substack{1.3125\\1.3125}$
1.375-6	UNC	1 A 2 A 3 A	.0024 .0024 .0000	$1.3726 \\ 1.3726 \\ 1.3750$	$1.3453 \\ 1.3544 \\ 1.3568$	1.3453	$1.2643 \\ 1.2643 \\ 1.2667$	$1.2523 \\ 1.2563 \\ 1.2607$.0120 .0080 .0060	$1.1681 \\ 1.1681 \\ 1.1705$	1B 2B 3B	$1.195 \\ 1.195 \\ 1.195 \\ 1.1950$	$1.225 \\ 1.225 \\ 1.2146$	$1.2667 \\ 1.2667 \\ 1.2667 \\ 1.2667$	$1.2822 \\ 1.2771 \\ 1.2745$.0155 .0104 .0078	$1.3750 \\ 1.3750 \\ 1.3750 \\ 1.3750$
1.375-8	UN	2A 3A	.0022 .0000	$1.3728 \\ 1.3750$	$1.3578 \\ 1.3600$	1.3503	$1.2916 \\ 1.2938$	$1.2844 \\ 1.2884$.0072 .0054	$1.2194 \\ 1.2216$	2B 3B	$\substack{1.240\\1.2400}$	$1.265 \\ 1.2547$	1.2938 1.2938	$1.3031 \\ 1.3008$.0093 .0070	$1.3750 \\ 1.3750$
1.375-12	UNF	1 A 2 A 3 A	.0019 .0019 .0000	$1.3731 \\ 1.3731 \\ 1.3750$	$1.3559 \\ 1.3617 \\ 1.3636$		$\begin{array}{c} 1.3190 \\ 1.3190 \\ 1.3209 \end{array}$	$1.3096 \\ 1.3127 \\ 1.3162$.0094 .0063 .0047	$1.2709 \\ 1.2709 \\ 1.2728$	1B 2B 3B	$1.285 \\ 1.285 \\ 1.285 \\ 1.2850$	$1.303 \\ 1.303 \\ 1.2948$	$1.3209 \\ 1.3209 \\ 1.3209 \\ 1.3209$	$1.3332 \\ 1.3291 \\ 1.3270$.0123 .0082 .0061	$1.3750 \\ 1$
1.375-16	UN	2A 3A	.0015 .0000	1.3735	$1.3641 \\ 1.3656$		$1.3329 \\ 1.3344$	$1.3278 \\ 1.3306$.0051 .0038	1.2968 1.2983	2B 3B	$1.307 \\ 1.3070$	$\substack{1.321\\1.3158}$	$\substack{1.3344\\1.3344}$	$1.3410 \\ 1.3394$.0066 0050	$1.3750 \\ 1.3750$
1.375-18	UNEF	2A 3A	.0015 .0000	$1.3735 \\ 1.3750$	$1.3648 \\ 1.3663$		$1.3374 \\ 1.3389$	$1.3325 \\ 1.3353$.0049 .0036	$\substack{1.3053\\1.3068}$	2B 3B	$1.315 \\ 1.3150$	$1.328 \\ 1.3230$	$1.3389 \\ 1.3389$	$\substack{1.3452\\1.3436}$.0063 .0047	$1.3750 \\ 1.3750$
1.375-20	UN	2A 3A	.0014 .0000	$1.3736 \\ 1.3750$	$1.3655 \\ 1.3669$		$1.3411 \\ 1.3425$	$1.3364 \\ 1.3390$.0047 .0035	$1.3123 \\ 1.3137$	2B 3B	$\substack{1.321\\1.3210}$	$\substack{1.332\\1.3287}$	$1.3425 \\ 1.3425$	$1.3486 \\ 1.3470$.0061 .0045	$1.3750 \\ 1.3750$

TABLE 2.21. Standard series limits of	size—Unified	screw threads	Continued
---------------------------------------	--------------	---------------	-----------

TABLE 2.21. Standard series limits of size-Unified screw threads-Continued

						External	а						I	nternala			
Nominal size and threads per inch	Series designa- tion	Class	Allow-	Major	· diameter	limits	Pitch	diameter	limits	Minor diam-	Class	Minor eter l	diam- imits	Pitch	diameter	limits	Major diam- eter
For them		- Chao		Maxb	Min	Min¢	Maxb	Min	Toler- ance	eterd	Chaot	Min	Max	Min	Max	Toler- ance	Min
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1.375-28	UN	2A	in 0.0012	in 1.3738	in 1.3673	in	in 1.3506	in 1.3465	in 0.0041	in 1.3300	2B	in 1.336	in 1.345	in 1.3518	in 1.3571	in 0.0053	in 1.3750
1.4375-6	UN	2A 3A	.0000	1.3750	1.3085		1.3268	1.3487	.0031	1.3312	3D 2B 3B	1.3300	1.3420	1.3292 1.3292 1.3292	1.3396	.0040	1.3750
1.4375-8	UN	2A 3A	.0022	1.4353 1.4375	1.4203 1.4225		1.3541 1.3563	1.3469 1.3509	.0072	1.2819 1.2841	2B 3B	1.302	1.327	$1.3563 \\ 1.3563$	1.3657	.0094	1.4375
1.4375-12	UN	2A 3A	.0018	1.4357 1.4375	$1.4243 \\ 1.4261$		1.3816	1.3757	.0059	1.3335 1.33 5 3	2B 3B	1.347	1.365	$1.3834 \\ 1.3834$	1.3910	.0076	1.4375
1.4375-16	UN	2A 3A	.0016	$1.4359 \\ 1.4375$	$1.4265 \\ 1.4281$		$1.3953 \\ 1.3969$	$1.3901 \\ 1.3930$	$.0052 \\ .0039$	$1.3592 \\ 1.3608$	2B 3B	$1.370 \\ 1.3700$	$1.384 \\ 1.3783$	$1.3969 \\ 1.3969$	$1.4037 \\ 1.4020$	$.0068 \\ .0051$	$1.4375 \\ 1.4375$
1.4375-18	UNEF	2A 3A	.0015	$1.4360 \\ 1.4375$	$1.4273 \\ 1.4288$		$1.3999 \\ 1.4014$	$1.3949 \\ 1.3977$.0050 .0037	$1.3678 \\ 1.3693$	2B 3B	$1.377 \\ 1.3770$	$1.390 \\ 1.3855$	$\substack{1.4014\\1.4014}$	$1.4079 \\ 1.4062$	$.0065 \\ .0048$	$1.4375 \\ 1.4375$
1.4375-20	UN	2A 3A	.0014 .0000	$1.4361 \\ 1.4375$	$1.4280 \\ 1.4294$		$1.4036 \\ 1.4050$	$1.3988 \\ 1.4014$	$.0048 \\ .0036$	$1.3748 \\ 1.3762$	2B 3B	$1.383 \\ 1.3830$	$\substack{1.395\\1.3912}$	$1.4050 \\ 1.4050$	$1.4112 \\ 1.4096$	$.0062 \\ .0046$	$1.4375 \\ 1.4375$
1.4375-28	UN	2A 3A	.0013 .0000	$\substack{1.4362\\1.4375}$	$1.4297 \\ 1.4310$		$\substack{1.4130\\1.4143}$	$\substack{1.4088\\1.4112}$.0042 .0031	$1.3924 \\ 1.3937$	2B 3B	$1.399 \\ 1.3990$	$\substack{1.407\\1.4051}$	$\substack{1,4143\\1,4143}$	$\substack{1.4198\\1.4184}$	$.0055 \\ .0041$	$1.4375 \\ 1.4375$
1.500-6	UNC	1A 2A 3A	.0024 .0024 .0000	1.4976 1.4976 1.5000	$1.4703 \\ 1.4794 \\ 1.4818$	1.4703	1.3893 1.3893 1.3917	1.3772 1.3812 1.3856	.0121 .0081	1.2931 1.2931 1.2955	1B 2B 3B	$1.320 \\ 1.320 \\ 1.320 \\ 1.3200$	$1.350 \\ 1.350 \\ 1.3396$	1.3917 1.3917 1.3917	1.4075 1.4022 1.3996	.0158 .0105 .0079	1.5000 1.5000 1.5000
1.500-8	UN	2A 3A	.0022 .0000	$1.4978 \\ 1.5000$	$1.4828 \\ 1.4850$	1.4753	$1.4166 \\ 1.4188$	$1.4093 \\ 1.4133$.0073	$1.3444 \\ 1.3466$	2B 3B	$1.365 \\ 1.3650$	$1.390 \\ 1.3797$	$1.4188 \\ 1.4188$	1,4283 1,4259	.0095	1.5000
1.500-12	UNF	1A 2A 3A	.0019 .0019 .0000	$1.4981 \\ 1.4981 \\ 1.5000$	$1.4809 \\ 1.4867 \\ 1.4886$		1.4440 1.4440 1.4459	$1.4344 \\ 1.4376 \\ 1.4411$.0096 .0064 .0048	$1.3959 \\ 1.3959 \\ 1.3959 \\ 1.3978$	1B 2B 3B	$1.410 \\ 1.410 \\ 1.410 \\ 1.4100$	$1.428 \\ 1.428 \\ 1.4198$	$1.4459 \\ 1.4459 \\ 1.4459 \\ 1.4459 $	1.4584 1.4542 1.4522	.0125 .0083 .0063	1.5000
1.500-16	UN	2A 3A	.0016	1.4984	1.4890		1.4578	1.4526	.0052	1.4217	2B 3B	1.432 1.4320	1.446	1.4594	1.4662	.0068	1.5000
1.500-18	UNEF	2A 3A	.0015	1.4985	1.4898		1.4624	1.4574	.0050	1.4303	2B 3B	1.440	1.452	1.4639	1.4704	.0065	1.5000
1.500-20	UN	2A 3A	.0014	$1.4986 \\ 1.5000$	1.4905 1.4919		$1.4661 \\ 1.4675$	$1.4613 \\ 1.4639$.0048	$1.4373 \\ 1.4387$	2B 3B	$1.446 \\ 1.4460$	$1.457 \\ 1.4537$	$1.4675 \\ 1.4675$	1.4737 1.4721	.0062	1.5000
1.500-28	UN	2A 3A	.0013	$1.4987 \\ 1.5000$	$1.4922 \\ 1.4935$		$1.4755 \\ 1.4768$	$1.4713 \\ 1.4737$.0042	$1.4549 \\ 1.4562$	2B 3B	$1.461 \\ 1.4610$	$1.470 \\ 1.4676$	1.4768	1.4823	.0055	1.5000
1.5625-6	UN	2A 3A	.0024	$1.5601 \\ 1.5625$	1.5419 1.5443		$1.4518 \\ 1.4542$	$1.4436 \\ 1.4481$.0082 .0061	$1.3556 \\ 1.3580$	2B 3B	$1.382 \\ 1.3820$	$1.413 \\ 1.4021$	$1.4542 \\ 1.4542$	1.4648	.0106	$1.5625 \\ 1.5625$
1,5625-8	UN	2A 3A	.0022	1.5603 1.5625	$1.5453 \\ 1.5475$		$1.4791 \\ 1.4813$	$1.4717 \\ 1.4758$.0074	1.4069 1.4091	2B 3B	$1.427 \\ 1.4270$	$1.452 \\ 1.4422$	1.4813	$1.4909 \\ 1.4885$.0096 .0072	1.5625
1.5625-12	UN	2A 3A	.0018 .0000	$1.5607 \\ 1.5625$	$1.5493 \\ 1.5511$		$1.5066 \\ 1.5084$	1.5007	.0059 .0044	$1.4585 \\ 1.4603$	2B 3B	$1.472 \\ 1.4720$	$1.490 \\ 1.4823$	$1.5084 \\ 1.5084$	$1.5160 \\ 1.5141$.0076 .0057	$1.5625 \\ 1.5625$
1.5625-16	UN	2A 3A	.0016 .0000	$1.5609 \\ 1.5625$	1.5515 1.5531		1.5203 1.5219	$1.5151 \\ 1.5180$.0052 .0039	$1.4842 \\ 1.4858$	2B 3B	$1.495 \\ 1.4950$	$1.509 \\ 1.5033$	$1.5219 \\ 1.5219$	$1.5287 \\ 1.5270$.0068 .0051	$1.5625 \\ 1.5625$
1.5625-18	UNEF	2A 3A	.0015 .0000	1.5610 1.5625	$1.5523 \\ 1.5538$		$1.5249 \\ 1.5264$	$1.5199 \\ 1.5227$.0050 .0037	$1.4928 \\ 1.4943$	2B 3B	$1.502 \\ 1.5020$	$1.515 \\ 1.5105$	$1.5264 \\ 1.5264$	$1.5329 \\ 1.5312$.0065 .0048	1.5625 1.5625
1.5625-20	UN	2A 3A	.0014 .0000	$1.5611 \\ 1.5625$	$1.5530 \\ 1.5544$		$1.5286 \\ 1.5300$	$\substack{1.5238\\1.5264}$.0048 .0036	$1.4998 \\ 1.5012$	2B 3B	$\begin{array}{c}1.508\\1.5080\end{array}$	$\substack{1.520\\1.5162}$	$1.5300 \\ 1.5300$	$1.5362 \\ 1.5346$.0062 .0046	1.5625 1.5625
1.625-6	UN	2A 3A	.0025	$1.6225 \\ 1.6250$	$1.6043 \\ 1.5068$		$1.5142 \\ 1.5167$	$1.5060 \\ 1.5105$.0082 .0062	$1.4180 \\ 1.4205$	2B 3B	$1.445 \\ 1.4450$	$1.475 \\ 1.4646$	$1.5167 \\ 1.5167$	$1.5274 \\ 1.5247$.0107	1.6250
1.625-8	UN	2A 3A	.0022 .0000	$1.6228 \\ 1.6250$	$1.6078 \\ 1.6100$	1.6003	$1.5416 \\ 1.5438$	$1.5342 \\ 1.5382$.0074 .0056	$1.4694 \\ 1.4716$	2B 3B	1.490 1.4900	$1.515 \\ 1.5047$	1.5438 1.5438	$1.5535 \\ 1.5510$.0097 .0072	$1.6250 \\ 1.6250$
1.625-12	UN	2A 3A	.0018 .0000	$1.6232 \\ 1.6250$	$1.6118 \\ 1.6136$		1.5691 1.5709	$1.5632 \\ 1.5665$.0059 .0044	$\substack{1.5210\\1.5228}$	2B 3B	$\substack{1.535\\1.5350}$	$\begin{array}{c}1.553\\1.5448\end{array}$	$1.5709 \\ 1.5709$	$1.5785 \\ 1.5766$.0076 .0057	$1.6250 \\ 1.6250$
1.625-16	UN	2A 3A	.0016 .0000	$1.6234 \\ 1.6250$	$1.6140 \\ 1.6156$		$1.5828 \\ 1.5844$	$1.5776 \\ 1.5805$.0052 .0039	$\substack{1.5467\\1.5483}$	2B 3B	$1.557 \\ 1.5570$	$1.571 \\ 1.5658$	$1.5844 \\ 1.5844$	$1.5912 \\ 1.5895$.0068	$1.6250 \\ 1.6250$
1.625-18	UNEF	2A 3A	.0015 .0000	$1.6235 \\ 1.6250$	$\begin{array}{c} 1.6148\\ 1.6163\end{array}$		$1.5874 \\ 1.5889$	$\substack{1.5824\\1.5852}$	$.0050 \\ .0037$	$1.5553 \\ 1.5568$	2B 3B	$1.565 \\ 1.5650$	1.578 1.5730	$1.5889 \\ 1.5889$	$1.5954 \\ 1.5937$	$.0065 \\ .0048$	$1.6250 \\ 1.6250$
1.625-20	UN	2A 3A	.0014 .0000	$1.6236 \\ 1.6250$	$\begin{array}{c} 1.6155\\ 1.6169 \end{array}$		$1.5911 \\ 1.5925$	$\substack{\textbf{1.5863}\\\textbf{1.5889}}$.0048 .0036	$1.5623 \\ 1.5637$	2B 3B	$1.571 \\ 1.5710$	$\substack{\textbf{1.582}\\\textbf{1.5787}}$	$1.5925 \\ 1.5925$	$1.5987 \\ 1.5971$	$.0062 \\ .0046$	1.6250 1.6250

						External	а			1				Internal	8		
Nominal size and threads per inch	Series designa- tion	Class	Allow-	Major	diameter	· limits	Pítch	diameter	limits	Minor diam-	Class	Minor eter l	diam- imits	Pitch	diameter	limits	Major diam- eter Min 18 in 1.6875 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.8125 1.8125 1.8125 1.8125 1.8125 1.8125 1.8
				Maxb	Min	Miu¢	Max ^b	Min	Toler- ance	eter ^d		Min	Max	Min	Max	Toler- anee	Min
1	2	3	4	5	6	7	8	9	10	11	12	.13	14	15	16	17	18
1.6875-6	UN	2A 3A	$\stackrel{in}{.0025}_{.0000}$	in 1.6850 1.6875	in 1.6668 1.6693	in 	$in \\ 1.5767 \\ 1.5792$	$\overset{in}{1.5684}$ 1.5730	$\begin{smallmatrix}in\\0.0083\\.0062\end{smallmatrix}$	in 1.4805 1.4830	2B 3B	$\begin{smallmatrix}in\\1.507\\1.5070\end{smallmatrix}$	$in \\ 1.538 \\ 1.5271$	${}^{in}_{1.5792}_{1.5792}$	$in \\ 1.5900 \\ 1.5873$	in 0.0108 .0081	in 1.6875 1.6875
1.6875-8	UN	2A 3A	$.0022 \\ .0000$	$\substack{1.6853\\1.6875}$	$1.6703 \\ 1.6725$		$1.6041 \\ 1.6063$	$1.5966 \\ 1.6007$	$.0075 \\ .0056$	$\substack{1.5319\\1.5341}$	2B 3B	$\substack{1.552\\1.5520}$	$\substack{1.577\\1.5672}$	$1.6063 \\ 1.6063$	$1.6160 \\ 1.6136$.0097 .0073	$1.6875 \\ 1.6875$
1.6875-12	UN	2A 3A	$.0018 \\ .0000$	$1.6857 \\ 1.6875$	$1.6743 \\ 1.6761$		$\substack{1.6316\\1.6334}$	$\substack{1.6256\\1.6289}$	$.0060 \\ .0045$	$\substack{1.5835\\1.5853}$	2B 3B	$1.597 \\ 1.5970$	$1.615 \\ 1.6073$	$\substack{1.6334\\1.6334}$	$\substack{1.6412\\1.6392}$.0078 .0058	$1.6875 \\ 1.6875$
1.6875-16	UN	2A 3A	$.0016 \\ .0000$	$1.6859 \\ 1.6875$	$1.6765 \\ 1.6781$		$1.6453 \\ 1.6469$	$\substack{1.6400\\1.6429}$	$.0053 \\ .0040$	$\substack{1.6092\\1.6108}$	2B 3B	$\substack{1.620\\1.6200}$	$\substack{1.634\\1.6283}$	$1.6469 \\ 1.6469$	$\substack{1.6538\\1.6521}$	$.0069 \\ .0052$	$1.6875 \\ 1.6875$
1.6875-18	UNEF	2A 3A	.0015 .0000	$1.6860 \\ 1.6875$	$1.6773 \\ 1.6788$		$1.6499 \\ 1.6514$	$1.6448 \\ 1.6476$	$.0051 \\ .0038$	$\substack{1.6178\\1.6193}$	2B 3B	$1.627 \\ 1.6270$	$1.640 \\ 1.6355$	$1.6514 \\ 1.6514$	$1.6580 \\ 1.6563$	$.0066 \\ .0049$	$1.6875 \\ 1.6875$
1.6875-20	UN	2A 3A	$.0015 \\ .0000$	$1.6860 \\ 1.6875$	$1.6779 \\ 1.6794$		$1.6535 \\ 1.6550$	$1.6487 \\ 1.6514$.0048 .0036	$1.6247 \\ 1.6262$	2B 3B	$1.633 \\ 1.6330$	$1.645 \\ 1.6412$	$1.6550 \\ 1.6550$	$1.6613 \\ 1.6597$.0063 .0047	$1.6875 \\ 1.6875$
1.750-5	UNC	1 A 2 A 3 A	$.0027 \\ .0027 \\ .0000$	$1.7473 \\ 1.7473 \\ 1.7500$	$1.7165 \\ 1.7268 \\ 1.7295$	1.7165	$1.6174 \\ 1.6174 \\ 1.6201$	$1.6040 \\ 1.6085 \\ 1.6134$	$.0134 \\ .0089 \\ .0067$	$1.5019 \\ 1.5019 \\ 1.5046$	1B 2B 3B	$1.534 \\ 1.534 \\ 1.5340$	$1.568 \\ 1.568 \\ 1.5575$	$1.6201 \\ 1.6201 \\ 1.6201 \\ 1.6201$	$1.6375 \\ 1.6317 \\ 1.6288$.0174 .0116 .0087	$1.7500 \\ 1.7500 \\ 1.7500 \\ 1.7500$
1.750-6	UN	2A 3A	$.0025 \\ .0000$	$1.7475 \\ 1.7500$	$1.7293 \\ 1.7318$		$1.6392 \\ 1.6417$	$1.6309 \\ 1.6354$.0083 .0063	$1.5430 \\ 1.5455$	2B 3B	$\substack{1.570\\1.5700}$	$1.600 \\ 1.5896$	$1.6417 \\ 1.6417$	$\substack{1.6525\\1.6498}$.0108 .0081	$1.7500 \\ 1.7500$
1.750-8	UN	2A 3A	.0023 .0000	$1.7477 \\ 1.7500$	$1.7327 \\ 1.7350$	1.7252	$1.6665 \\ 1.6688$	$1.6590 \\ 1.6631$.0075 .0057	$1.5943 \\ 1.5966$	2B 3B	$1.615 \\ 1.6150$	$1.640 \\ 1.6297$	$1.6688 \\ 1.6688$	$1.6786 \\ 1.6762$.0098 .0074	$1.7500 \\ 1.7500$
1.750-12	UN	2A 3A	$.0018 \\ .0000$	$\begin{array}{c}1.7482\\1.7500\end{array}$	$1.7368 \\ 1.7386$		$1.6941 \\ 1.6959$	$1.6881 \\ 1.6914$.0060 .0045	$1.6460 \\ 1.6478$	2B 3B	$1.660 \\ 1.6600$	$1.678 \\ 1.6698$	$1.6959 \\ 1.6959$	1.7037	.0078 .0058	$1.7500 \\ 1.7500$
1.750-16	UN	2A 3A	$.0016 \\ .0000$	$1.7484 \\ 1.7500$	$1.7390 \\ 1.7406$		1.7078 1.7094	$1.7025 \\ 1.7054$.0053 .0040	$1.6717 \\ 1.6733$	2B 3B	$1.682 \\ 1.6820$	$1.696 \\ 1.6908$	$1.7094 \\ 1.7094$	$1.7163 \\ 1.7146$.0069 .0052	$1.7500 \\ 1.7500$
1.750-20	UN	2A 3A	$.0015 \\ .0000$	$1.7485 \\ 1.7500$	$1.7404 \\ 1.7419$		$1.7160 \\ 1.7175$	$1.7112 \\ 1.7139$.0048 .0036	$1.6872 \\ 1.6887$	2B 3B	$1.696 \\ 1.6960$	$1.707 \\ 1.7037$	$1.7175 \\ 1.7175$	$1.7238 \\ 1.7222$.0063 .0047	$1.7500 \\ 1.7500$
1.8125-6	UN	2A 3A	$.0025 \\ .0000$	$1.8100 \\ 1.8125$	$1.7918 \\ 1.7943$		$1.7017 \\ 1.7042$	$1.6933 \\ 1.6979$.0084	$1.6055 \\ 1.6080$	2B 3B	$\substack{1.632\\1.6320}$	$\substack{1.663\\1.6521}$	$1.7042 \\ 1.7042$	$1.7151 \\ 1.7124$.0109	$1.8125 \\ 1.8125$
1.8125-8	UN	2A 3A	.0023	$1.8102 \\ 1.8125$	$1.7952 \\ 1.7975$		$1.7290 \\ 1.7313$	$1.7214 \\ 1.7256$.0076 .0057	$1.6568 \\ 1.6591$	$^{2\mathrm{B}}_{3\mathrm{B}}$	$1.677 \\ 1.6770$	$1.702 \\ 1.6922$	$1.7313 \\ 1.7313$	$1.7412 \\ 1.7387$.0099 .0074	$1.8125 \\ 1.8125$
1.8125-12	UN	2A 3A	.0018 .0000	$1.8107 \\ 1.8125$	$1.7993 \\ 1.8011$		$1.7566 \\ 1.7584$	$1.7506 \\ 1.7539$	$.0060 \\ .0045$	$1.7085 \\ 1.7103$	2B 3B	$egin{smallmatrix} 1.722 \\ 1.7220 \end{smallmatrix}$	$1.740 \\ 1.7323$	$1.7584 \\ 1.7584$	$1.7662 \\ 1.7642$.0078 .0058	$1.8125 \\ 1.8125$
1.8125-16	UN	2A 3A	$.0016 \\ .0000$	$1.8109 \\ 1.8125$	$1.8015 \\ 1.8031$		$1.7703 \\ 1.7719$	$1.7650 \\ 1.7679$.0053	$1.7342 \\ 1.7358$	2B 3B	$1.745 \\ 1.7450$	$1.759 \\ 1.7533$	$1.7719 \\ 1.7719$	1.7788	.0069 .0052	$1.8125 \\ 1.8125$
1.8125-20	UN	2A 3A	$.0015 \\ .0000$	$1.8110 \\ 1.8125$	$1.8029 \\ 1.8044$		$1.7785 \\ 1.7800$	1.7737 1.7764	.0048 .0036	$1.7497 \\ 1.7512$	2B 3B	$1.758 \\ 1.7580$	$1.770 \\ 1.7662$	$1.7800 \\ 1.7800$	$1.7863 \\ 1.7847$.0063	$1.8125 \\ 1.8125$
1.875-6	UN	2A 3A	$.0025 \\ .0000$	$1.8725 \\ 1.8750$	$1.8543 \\ 1.8568$		$1.7642 \\ 1.7667$	$1.7558 \\ 1.7604$	$.0084 \\ .0063$	$1.6680 \\ 1.6705$	2B 3B	$1.695 \\ 1.6950$	$1.725 \\ 1.7146$	$1.7667 \\ 1.7667$	$1.7777 \\ 1.7749$	$.0110 \\ .0082$	$1.8750 \\ 1.8750$
1.875-8	UN	2A 3A	$.0023 \\ .0000$	$1.8727 \\ 1.8750$	$1.8577 \\ 1.8600$	1.8502	$1.7915 \\ 1.7938$	$1.7838 \\ 1.7881$.0077 .0057	$1.7193 \\ 1.7216$	2B 3B	$1.740 \\ 1.7400$	$1.765 \\ 1.7547$	$1.7938 \\ 1.7938$	$1.8038 \\ 1.8013$.0100 .0075	$1.8750 \\ 1.8750$
1.875-12	UN	2A 3A	.0018 .0000	$1.8732 \\ 1.8750$	$1.8618 \\ 1.8636$		$1.8191 \\ 1.8209$	$1.8131 \\ 1.8164$	$.0060 \\ .0045$	$1.7710 \\ 1.7728$	2B 3B	$1.785 \\ 1.7850$	$1.803 \\ 1.7948$	$1.8209 \\ 1.8209$	$1.8287 \\ 1.8267$.0078	$1.8750 \\ 1.8750$
1.875-16	UN	2A 3A	.0016	$1.8734 \\ 1.8750$	$1.8640 \\ 1.8656$		$1.8328 \\ 1.8344$	$1.8275 \\ 1.8304$.0053 .0040	$1.7967 \\ 1.7983$	2B 3B	$1.807 \\ 1.8070$	1.821	$1.8344 \\ 1.8344$	$1.8413 \\ 1.8396$.0069 .0052	$1.8750 \\ 1.8750$
1.875-20	UN	2A 3A	$.0015 \\ .0000$	$1.8735 \\ 1.8750$	$1.8654 \\ 1.8669$		$1.8410 \\ 1.8425$	$1.8362 \\ 1.8389$.0048	$1.8122 \\ 1.8137$	2B 3B	$1.821 \\ 1.8210$	$1.832 \\ 1.8287$	$1.8425 \\ 1.8425$	$1.8488 \\ 1.8472$.0063	$1.8750 \\ 1.8750$
1.9375 - 6	UN	2A 3A	$.0026 \\ .0000$	$1.9349 \\ 1.9375$	$1.9167 \\ 1.9193$		$1.8266 \\ 1.8292$	$1.8181 \\ 1.8228$.0085 .0064	$1.7304 \\ 1.7330$	2B 3B	$1.757 \\ 1.7570$	$1.788 \\ 1.7771$	$1.8292 \\ 1.8292$	$1.8403 \\ 1.8375$.0111	$1.9375 \\ 1.9375$
1.9375-8	UN	2A 3A	$.0023 \\ .0000$	$1.9352 \\ 1.9375$	$1.9202 \\ 1.9225$		$1.8540 \\ 1.8563$	$1.8463 \\ 1.8505$.0077 .0058	$1.7818 \\ 1.7841$	2B 3B	$1.802 \\ 1.8020$	$1.827 \\ 1.8172$	$1.8563 \\ 1.8563$	$1.8663 \\ 1.8638$.0100	$1.9375 \\ 1.9375$
1.9375-12	UN	2A 3A	$.0018 \\ .0000$	$1.9357 \\ 1.9375$	$1.9243 \\ 1.9261$		$1.8816 \\ 1.8834$	$1.8755 \\ 1.8789$.0061 .0045	$1.8335 \\ 1.8353$	2B 3B	$1.847 \\ 1.8470$	$1.865 \\ 1.8573$	$1.8834 \\ 1.8834$	$1.8913 \\ 1.8893$.0079 .0059	$1.9375 \\ 1.9375$
1.9375-16	UN	2A 3A	$.0016 \\ .0000$	$1.9359 \\ 1.9375$	$1.9265 \\ 1.9281$		$1.8953 \\ 1.8969$	$1.8899 \\ 1.8929$.0054	$1.8592 \\ 1.8608$	2B 3B	1.870	$1.884 \\ 1.8783$	$1.8969 \\ 1.8969$	1.9039	.0070	$1.9375 \\ 1.9375$
1.9375-20	UN	2A 3A	.0015 .0000	$1.9360 \\ 1.9375$	$1.9279 \\ 1.9294$		$1.9035 \\ 1.9050$	$\substack{1.8986\\1.9013}$.0049 .0037	$1.8747 \\ 1.8762$	2B 3B	$1.883 \\ 1.8830$	$1.895 \\ 1.8912$	$1.9050 \\ 1.9050$	1.9114 1.9098	.0064 .0048	1.9375 1.9375

TABLE 2.21. Standard series limits of size-Unified screw threads-Continued

-

Ni si ti pi

-

FABLE 2.21 . Standard series limits of	size—Unified screw threads—Continued
---	--------------------------------------

						Externa	а							Internal	a		
Nominal size and threads per inch	Series designa- tion	Class	Allow-	Majo	diameter	limits	Pitch	diameter	limits	Minor diam-	Class	Minor eter	diam- imits	Pitch	diameter	limits	Major diam- eter
box mon			unoo	Maxb	Min	Mine	Maxb	Min	Toler- ance	eterd		Min	Max	Min	Max	Toler- ance	Min
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
2.000-4.5	UNC	1A 2A 3A	in 0.0029 .0029 .0000	<i>in</i> 1.9971 1.9971 2.0000	in 1.9641 1.9751 1.9780	in 1.9641	in 1.8528 1.8528 1.8557	in 1.8385 1.8433 1.8486	in 0.0143 .0095 .0071	in 1.7245 1.7245 1.7274	1B 2B 3B	in 1.759 1.759 1.759	in 1.795 1.795 1.7861	in 1.8557 1.8557 1.8557	in 1.8743 1.8681 1.8650	in 0.0186 .0124 .0093	in 2.0000 2.0000 2.0000
2.000-6	UN	2A 3A	.0026	$1.9974 \\ 2.0000$	$1.9792 \\ 1.9818$		1.8891 1.8917	$1.8805 \\ 1.8853$.0086 .0064	$1.7929 \\ 1.7955$	2B 3B	1.820 1.8200	$1.850 \\ 1.8396$	$1.8917 \\ 1.8917$	1.9028 1.9000 [.]	.0111	$2.0000 \\ 2.0000$
2.000-8	UN	2A 3A	.0023	1.9977 2.0000	$1.9827 \\ 1.9850$	1.9752	$1.9165 \\ 1.9188$	1.9087	.0078	$1.8443 \\ 1.8466$	2B 3B	1.865	1.890 1.8797	$1.9188 \\ 1.9188$	$1.9289 \\ 1.9264$.0101	$2.0000 \\ 2.0000$
2.000-12	UN	2A 3A	.0018	1.9982	$1.9868 \\ 1.9886$		$1.9441 \\ 1.9459$	1.9380 1.9414	.0061	1.8960	2B 3B	1.910 1.9100	$1.928 \\ 1.9198$	$1.9459 \\ 1.9459$	$1.9538 \\ 1.9518$.0079 .0059	2.0000
2.000-16	UN	2A 3A	.0016	1.9984	$1.9890 \\ 1.9906$		$1.9578 \\ 1.9594$	1.9524 1.9554	.0054	1.9217 1.9233	2B 3B	1.932 1.9320	$1.946 \\ 1.9408$	$1,9594 \\ 1,9594$	$1.9664 \\ 1.9646$.0070	2.0000 2.0000
2.000-20	UN	2A 3A	.0015	1.9985	1.9904		1.9660 1.9675	1.9611	.0049	1.9372 1.9387	2B 3B	1.946 1.9460	1.957	1.9675 1.9675	1.9739 1.9723	.0064	2.0000
2.125-6	UN	2A 3A	.0026	2.1224	2.1042		2.0141	2.0054	.0087	1.9179	2B 3B	1.945	1.975	2.0167	2.0280	.0113	2.1250 2.1250
2.125-8	UN	2A 3A	.0024	2.1226	2.1076	2.1001	2.0414	2.0335	.0079	1.9692	2B 3B	1.990	2.015	2.0438	2.0540	.0102	2.1250
2.125-12	UN	2A 3A	.0018	2.1232	2.1118		2.0691	2.0630	.0061	2.0210	2B 3B	2.035	2.053	2.0709	2.0788	.0079	2.1250
2.125-16	UN	2A 3A	.0016	2.1234	2.1140		2.0828	2.0774	.0054	2.0467	2B 3B	2.057	2.071	2.0844	2.0914	.0070	2.1250
2.125-20	UN	2A 3A	.0015	2.1235	2.1154		2.0910	2.0861	.0049	2.0622	2B 3B	2.071	2.082	2.0925	2.0989	.0064	2.1250
2.250-4.5	UNC	1A 2A 3A	.0029 .0029 .0000	2.2471 2.2471 2.2500	2.2141 2.2251 2.2280	2.2141	2.1028 2.1028 2.1028 2.1057	2.0882 2.0931 2.0984	.0146 .0097 .0073	1.9745 1.9745 1.9774	1B 2B 3B	2.009 2.009 2.009	2.045 2.045 2.0361	2.1057 2.1057 2.1057 2.1057	2.1247 2.1183 2.1152	.0190 .0126 .0095	2.2500 2.2500 2.2500 2.2500
2.250-6	UN	2A 3A	.0026	$2.2474 \\ 2.2500$	$2.2292 \\ 2.2318$		$2.1391 \\ 2.1417$	2.1303 2.1351	.0088	2.0429 2.0455	2B 3B	2.070	$2.100 \\ 2.0896$	$2.1417 \\ 2.1417$	$2.1531 \\ 2.1502$.0114	2.2500
2.250-8	UN	2A 3A	.0024	$2.2476 \\ 2.2500$	$2.2326 \\ 2.2350$	2.2251	$2.1664 \\ 2.1688$	$2.1584 \\ 2.1628$.0080	$2.0942 \\ 2.0966$	2B 3B	2.115 2.1150	$2.140 \\ 2.1297$	$2.1688 \\ 2.1688$	$2.1792 \\ 2.1766$.0104	2.2500 2.2500
2.250-12	UN	2A 3A	.0018	2.2482 2.2500	$2.2368 \\ 2.2386$		$2.1941 \\ 2.1959$	2.1880 2.1914	.0061	2.1460 2.1478	2B 3B	$2.160 \\ 2.1600$	$2.178 \\ 2.1698$	2.1959 2.1959	2.2038 2.2018	.0079	2.2500 2.2500
2.250-16	UN	2A 3A	.0016	2.2484	2.2390 2.2406		2.2078 2.2094	2.2024 2.2054	.0054	2.1717	2B 3B	2.182	2.196	2.2094 2.2094	2.2164 2.2146	.0070	2.2500
2.250-20	UN	2A 3A	.0015	2.2485	2.2404		2.2160	2.2111	.0049	2.1872	2B 3B	2.196	2.207	2.2175	2.2239	.0064	2.2500
2.375-6	UN	2A 3A	.0027	2.3723	2.3541		2.2640	2.2551	.0089	2.1678	2B 3B	2.195	2.226	2.2667	2.2782	.0115	2.3750
2.375-8	UN	2A 3A	.0024	2.3726	2.3576		2.2914	2.2833	.0081	2.2192	2B 3B	2.240	2.265	2.2938	2.3043	.0105	2.3750
2.375-12	UN	2A 3A	.0019	2.3731	2.3617		2.3190	2.3128	.0062	2.2709	2B 3B	2.285	2.303	2.3209	2.3290	.0081	2.3750
2.375-16	UN	2A 3A	.0017	2.3733 2.3750	$2.3639 \\ 2.3656$		2.3327	2.3272	.0055	2.2966	2B 3B	2.307	2.321	2.3344 2.3344	2,3416	.0072	2.3750
2.375-20	UN	2A 3A	.0015	2.3735	2.3654		2.3410	2.3359	.0051	2.3122 2.3122 2.3137	2B 3B	2.321	2.332	2.3425	2.3491	.0066	2.3750
2 500-4	UNC	1A 24	.0031	2.4969	2.4612	2 4612	2.3345	2.3190	.0155	2.1902	1B 2B	2.229	2.267	2.3376	2.3578	.0202	2.5000
2.500-6	UN	3A 2A	.0000	2.5000	2.4762		2.3376	2.3298	.0078	2.1933	3B 2B	2.2290	2.2594	2.3376	2.3477	.0101	2.5000
2 500-8	IN	3A 2A	.0000	2.5000	2,4818	9 4751	2.3917	2.3850	.0067	2.2955	3B	2.3200	2.3396	2.3917	2.4004	.0087	2.5000
2.000-0		3A	.0000	2.5000	2.4850	2.4/01	2.4104	2.4082	.0082	2.3466	3B	2.3650	2.390	2.4188	2.4294 2.4268	.0080	2.5000
3.500-12	UN	2A 3A	.0019	2.4981 2.5000	2.4867 2.4886		2.4440 2.4459	2.4378 2.4413	.0062	2.3959 2.3978	2B 3B	2.410 2.4100	$2.428 \\ 2.4198$	2.4459 2.4459	$2.4540 \\ 2.4519$.0081	2.5000 2.5000
2.500-16	UN	2A 3A	.0017	$ \begin{array}{c c} 2.4983 \\ 2.5000 \end{array} $	$2.4889 \\ 2.4906$		$2.4577 \\ 2.4594$	$2.4522 \\ 2.4553$.0055 .0041	$2.4216 \\ 2.4233$	2B 3B	$ \begin{array}{c} 2.432 \\ 2.4320 \end{array} $	$2.446 \\ 2.4408$	$2.4594 \\ 2.4594$	$2.4666 \\ 2.4648$.0072 .0054	$2.5000 \\ 2.5000$

						External	a							Internala			
Nominal size and threads	Series designa- tion	Class	Allow-	Major	diameter	limits	Pitch	diameter	limits	Minor	Class	Minor eter l	diam- imits	Pitch	diameter	limits	Major diam- eter
per men		01265	ance	Max ^b	Min	Mine	Maxb	Min	Toler- ance	eter ^d	01400	Min	Max	Min	Max	Toler- ance	Min
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
.500-20	UN	2A 3A	in 0.0015 .0000	$in \\ 2.4985 \\ 2.5000$	in 2.4904 2.4919	in 	$in \\ 2.4660 \\ 2.4675$	${}^{in}_{2.4609}_{2.4637}$	$\substack{in\\0.0051\\.0038}$	in 2.4372 2.4387	2B 3B	in 2.446 2.4460	in 2.457 2.4537	${\stackrel{in}{{2.4675}}}_{{2.4675}}$	in 2.4741 2.4725	$\stackrel{in}{\stackrel{0.0066}{.0050}}$	$in \\ 2.5000 \\ 2.5000$
. 625-6	UN	2A 3A	.0027 .0000	$\substack{2.6223\\2.6250}$	$\substack{2.6041\\2.6068}$		$\substack{2.5140\\2.5167}$	$\substack{2.5050\\2.5099}$	$.0090 \\ .0068$	$\begin{array}{c} 2.4178 \\ 2.4205 \end{array}$	2B 3B	$\substack{2.445\\2.4450}$	$\substack{2.475\\2.4616}$	$\substack{2.5167\\2.5167}$	2.5285 2.5255	$.0118 \\ .0088$	$2.6250 \\ 2.6250$
625-8	UN	2A 3A	$.0025 \\ .0000$	$2.6225 \\ 2.6250$	$2.6075 \\ 2.6100$		$2.5413 \\ 2.5438$	$\substack{2.5331\\2.5376}$	$.0082 \\ .0062$	$\begin{array}{c} 2.4691 \\ 2.4716 \end{array}$	2B 3B	$2.490 \\ 2.4900$	2.515 2.5047	$2.5438 \\ 2.5438$	2.5545 2.5518	.0107	$2.6250 \\ 2.6250$
. 625-12	UN	2A 3A	.0019	2.6231 2.6250	$2.6117 \\ 2.6136$		$2.5690 \\ 2.5709$	$2.5628 \\ 2.5663$.0062	2.5209 2.5228	2B 3B	$2.535 \\ 2.5350$	$2.553 \\ 2.5448$	$2.5709 \\ 2.5709$	$2.5790 \\ 2.5769$.0081	2.6250 2.6250
.625-16	UN	2A 3A	.0017	2.6233 2.6250	2.6139 2.6156		2.5827 2.5844	2.5772 2.5803	.0055	2.5466 2.5483	2B 3B	2.557 2.5570	2.571 2.5658	2.5844 2.5844	2.5916 2.5898	.0072	2.6250 2.6250
. 625-20	UN	2A 3A	.0015	2.6235 2.6235 2.6250	2.6154 2.6169		2.5910 2.5925	2.5859	.0051	$2.5622 \\ 2.5637$	2B 3B	2.571	2.582 2.5787	2.5925 2.5925	2.5991 2.5975	.0066	2.6250 2.6250
.750-4	UNC	1A 2A 3A	.0032 .0032 .0000	$2.7468 \\ 2.7468 \\ 2.7500$	$2.7111 \\ 2.7230 \\ 2.7262$	2.7111	$2.5844 \\ 2.5844 \\ 2.5876$	$2.5686 \\ 2.5739 \\ 2.5797$	$.0158 \\ .0105 \\ .0079$	2.4401 2.4401 2.4433	1B 2B 3B	$2.479 \\ 2.479 \\ 2.479 \\ 2.4790$	$2.517 \\ 2.517 \\ 2.5094$	$2.5876 \\ 2.5876 \\ 2.5876 \\ 2.5876$	$2.6082 \\ 2.6013 \\ 2.5979$.0206 .0137 .0103	$2.7500 \\ 2.7500 \\ 2.7500 \\ 2.7500 $
.750 - 6	UN	2A 3A	.0027	$2.7473 \\ 2.7500$	$2.7291 \\ 2.7318$		$2.6390 \\ 2.6417$	$2.6299 \\ 2.6349$	$.0091 \\ .0068$	$2.5428 \\ 2.5455$	2B 3B	$2.570 \\ 2.5700$	$2.600 \\ 2.5896$	$2.6417 \\ 2.6417$	$2.6536 \\ 2.6506$.0119 .0089	$2.7500 \\ 2.7500$
750-8	UN	2A 3A	.0025	$2.7475 \\ 2.7500$	2.7325 2.7350	2.7250	$2.6663 \\ 2.6688$	2.6580 2.6625	.0083	$2.5941 \\ 2.5966$	2B 3B	$2.615 \\ 2.6150$	$2.640 \\ 2.6297$	2.6688 2.6688	$2.6796 \\ 2.6769$.0108	2.7500 2.7500
750-12	UN	2A 3A	.0019	2.7481 2.7500	2.7367 2.7386		2.6940 2.6959	2.6878 2.6913	.0062	2.6459 2.6478	2B 3B	2.660	2.678 2.6698	2.6959 2.6959	2.7040	.0081	2.7500
750-16	UN	2A 3A	.0017	$2.7483 \\ 2.7500$	2.7389 2.7406		2.7077 2.7094	2.7022 2.7053	.0055	2.6716 2.6733	2B 3B	$2.682 \\ 2.6820$	2.696 2.6908	2.7094 2 7094	2.7166 2 7148	$.0072 \\ 0054$	2.7500
750-20	UN	2A 3A	.0015	2.7485 2.7500	2.7404 2.7419		2.7160	2.7109	.0051	2.6872	2B 3B	2.696	2.707 2.7037	2.7175	2.7241 2.725	.0066	2.7500
875-6	UN	2A 3A	.0028	2.8722 2.8750	2.8540 2.8568		2.7639 2.7667	2.7547 2.7598	.0092	2.6677 2.6705	2B 3B	2.695 2.6950	2.725 2.7146	2.7667 2.7667	2.7787 2.7757	.0120	2.8750
875-8	UN	2A 3A	.0025	2.8725 2.8750	2.8575 2.8600		2.7913 2.7938	2.7829 2.7875	.0084	$2.7191 \\ 2.7216$	2B 3B	2.740 2.7400	2.765 2.7547	2.7938 2 7938	2.8048	.0110	2.8750
.875-12	UN	2A 3A	.0019	2.8731	2.8617 2.8636		2.8190	2.8127	.0063	2.7709	2B 3B	2.785	2.803	2.8209	2.8291	.0082	2.8750
.875-16	UN	2A 3A	.0017	2.8733 2.8750	2.8639 2.8656		2,8327 2,8344	2.8271	.0056	2.7966	2B 3B	2.807	2.821 2.8158	2.8344	2.8417	.0073	2.8750
. 875-20	UN	2A 3A	.0016	2.8734	2.8653 2.8669		2.8409 2.8425	2.8357	.0052	2.8121 2.8137	2B 3B	2.821	2.832	2.8425 2.8425	2.8493 2.8476	.0068	2.8750
.000-4	UNC	1A 2A 3A	$.0032 \\ .0032 \\ .0000$	$2.9968 \\ 2.9968 \\ 3.0000$	2.9611 2.9730 2.9762	2.9611	2.8344 2.8344 2.8376	2.8183 2.8237 2.8296	.0161 .0107 .0080	$2.6901 \\ 2.6901 \\ 2.6933$	1B 2B 3B	2.729 2.729 2.729 2.7290	2.767 2.767 2.7594	2.8376 2.8376 2.8376 2.8376	2.8585 2.8515 2.8480	.0209 .0139 .0104	3.0000 3.0000 3.0000
000-6	UN	2A 3A	.0028	2.9972 3.0000	$2.9790 \\ 2.9818$		$2.8889 \\ 2.8917$	$2.8796 \\ 2.8847$.0093	2.7927 2.7955	2B 3B	$2.820 \\ 2.8200$	$2.850 \\ 2.8396$	2.8917 2.8917	2.9038 2.9008	.0121	3.0000
000-8	UN	2A 3A	.0026	$2.9974 \\ 3.0000$	$2.9824 \\ 2.9850$	2.9749	$2.9162 \\ 2.9188$	2.9077 2.9124	.0085 .0064	$2.8440 \\ 2.8466$	2B 3B	$2.865 \\ 2.8650$	$2.890 \\ 2.8797$	$2.9188 \\ 2.9188$	$2.9299 \\ 2.9271$.0111	3.0000
000-12	UN	2A 3A	.0019	$2.9981 \\ 3.0000$	2.9867 2.9886		$2.9440 \\ 2.9459$	2.9377 2.9412	.0063	2.8959 2.8978	2B 3B	$2.910 \\ 2.9100$	$2.928 \\ 2.9198$	$2.9459 \\ 2.9459$	2.9541 2.9521	.0082 .0052	3,0000
000-16	UN	2A 3A	.0017	2.9983	2.9889 2.9906		2.9577 2.9594	2.9521 2.9552	.0056	2.9216 2.9233	2B 3B	2.932 2.9320	$2.946 \\ 2.9408$	$2.9594 \\ 2.9594$	2.9667 2.9649	.0073	3.000
000-20	UN	2A 3A	.0016	$2.9984 \\ 3.0000$	2.9903 2.9919		2.9659 2.9675	2.9607 2.9636	.0052	2.9371 2.9387	2B 3B	2.946 2.9460	2.957	2.9675 2.9675	2.9743 2.9726	.0068	3.0000
125-6	UN	2A 3A	.0028	$3.1222 \\ 3.1250$	3.1040		3.0139	3.0045	.0094	2.9177	2B 3B	2.945	2.975	3.0167	3.0289	.0122	3.1250
125-8	UN	2A 3A	.0026	3.1224 3.1250	3.1074		3.0412	3.0326	0010 0800.	2.9690	2B 3R	2.990	3.015	3.0438	3.0550	.0112	3.1250 3.1250
125-12	UN	2A 3A	.0019	3.1231	3.1117		3.0690	3.0627	.0063	3.0209	2B 3B	3.035	3.053	3.0709	3.0791	.0082	3.125
125-16	UN	2A	.0017	3.1233	3.1139		3.0827	3.0771	.0056	3.0466	2B	3.057	3.071	3.0844	3.0917	.0073	3.125

TABLE 2.21. Standard series limits of size-Unified screw threads-Continued

Not sint the per

-

3.2 3.2 3.2 3.2 3,2 3. 3, 3. 3

3

TABLE 2.21. Standard series limits of size-Unified screw threads-Continued

						Externa	la	1			Internalª						
Nominal size and threads per inch	Series designa- tion	Class	Allow-	Majo	r diameter	limits	Pitch	ı diameter	limits	Minor diam-	Class	Minor eter	diam- limits	Pitch	diameter	limits	Major diam- eter
per men		Class	ance	Maxb	Min	Mine	Maxb	Min	Toler- ance	eterd		Min	Max	Min	Max	Toler- ance	Min
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
3.250-1	UNC	1A 2A 3A	in 0.0033 .0033 .0000	in 3.2467 3.2467 3.2500	<i>in</i> 3.2110 3.2229 3.2262	in 3.2110	in 3.0843 3.0843 3.0876	in 3.0680 3.0734 3.0794	$in \\ 0.0163 \\ .0109 \\ .0082$	in 2.9400 2.9400 2.9433	1B 2B 3B	in 2.979 2.979 2.979 2.9790	in 3.017 3.017 3.0094	in 3.0876 3.0876 3.0876	in 3.1088 3.1017 3.0982	in 0.0212 .0141 .0106	in 3.2500 3.2500 3.2500 3.2500
3.250-6	UN	2A 3A	.0028 .0000	$3.2472 \\ 3.2500$	$3.2290 \\ 3.2318$		$3.1389 \\ 3.1417$	$3.1294 \\ 3.1346$	$.0095 \\ .0071$	$\substack{3.0427\\3.0455}$	2B 3B	$3.070 \\ 3.0700$	$3.100 \\ 3.0896$	$3.1417 \\ 3.1417$	3.1540 3.1509	.0123	$3.2500 \\ 3.2500$
3.250-8	UN	2A 3A	.0026 .0000	$3.2474 \\ 3.2500$	$3.2324 \\ 3.2350$	3.2249	$\begin{array}{r} 3.1662\\ 3.1688\end{array}$	$3.1575 \\ 3.1623$	$.0087 \\ .0065$	$3.0940 \\ 3.0966$	2B 3B	$3.115 \\ 3.1150$	$3.140 \\ 3.1297$	$3.1688 \\ 3.1688$	$3.1801 \\ 3.1773$.0113	$3.2500 \\ 3.2500$
3.250-12	UN	2A 3A	.0019 .0000	$3.2481 \\ 3.2500$	$3.2367 \\ 3.2386$		$3.1940 \\ 3.1959$	$3.1877 \\ 3.1912$.0063 .0047	$3.1459 \\ 3.1478$	2B 3B	$3.160 \\ 3.1600$	$3.178 \\ 3.1698$	$3.1959 \\ 3.1959$	$3.2041 \\ 3.2021$	$.0082 \\ .0062$	$3.2500 \\ 3.2500$
3.250-16	UN	2A 3A	.0017	$3.2483 \\ 3.2500$	$\substack{3.2389\\3.2406}$		$3.2077 \\ 3.2094$	$3.2021 \\ 3.2052$	$.0056 \\ .0042$	$3.1716 \\ 3.1733$	2B 3B	$3.182 \\ 3.1820$	$3.196 \\ 3.1908$	$3.2094 \\ 3.2094$	$3.2167 \\ 3.2149$.0073	$3.2500 \\ 3.2500$
3.375-6	UN	2A 3A	.0029 .0000	$3.3721 \\ 3.3750$	$3.3539 \\ 3.3568$		$3.2638 \\ 3.2667$	$3.2543 \\ 3.2595$	$.0095 \\ .0072$	$3.1676 \\ 3.1705$	2B 3B	$3.195 \\ 3.1950$	$egin{array}{c} 3.225 \ 3.2146 \end{array}$	$3.2667 \\ 3.2667$	$3.2791 \\ 3.2760$.0124 .0093	$3.3750 \\ 3.3750$
3.375-8	UN	2A 3A	.0026 .0000	$3.3724 \\ 3.3750$	$3.3574 \\ 3.3600$		$3.2912 \\ 3.2938$	$3.2824 \\ 3.2872$.0088	$3.2190 \\ 3.2216$	2B 3B	$3.240 \\ 3.2400$	$3.265 \\ 3.2547$	$3.2938 \\ 3.2938$	$3.3052 \\ 3.3023$.0114 .0085	$3.3750 \\ 3.3750$
3.375-12	UN	2A 3A	.0019 .0000	$3.3731 \\ 3.3750$	$3.3617 \\ 3.3636$		3.3190 3.3209	3.3126 3.3161	.0064 .0048	$3.2709 \\ 3.2728$	2B 3B	$3.285 \\ 3.2850$	$3.303 \\ 3.2948$	$3.3209 \\ 3.3209$	$3.3293 \\ 3.3272$	$.0084 \\ .0063$	$^{\circ}$ 3.3750 3.3750
3.375-16	UN	2A 3A	.0017 .0000	$3.3733 \\ 3.3750$	3.3639 3.36 5 6		$3.3327 \\ 3.3344$	3.3269 3.3301	.0058 .0043	$3.2966 \\ 3.2983$	2B 3B	3.307 3.3070	$3.321 \\ 3.3158$	$3.3344 \\ 3.3344$	$3.3419 \\ 3.3400$	$.0075 \\ .0056$	$3.3750 \\ 3.3750$
3.500-4	UNC	1A 2A 3A	.0033 .0033 .0000	$3.4967 \\ 3.4967 \\ 3.5000$	$3.4610 \\ 3.4729 \\ 3.4762$	3.4610	$3.3343 \\ 3.3343 \\ 3.3376$	3.3177 3.3233 3.3293	.0166 .0110 .0083	$3.1900 \\ 3.1900 \\ 3.1933$	1B 2B 3B	$3.229 \\ 3.229 \\ 3.229 \\ 3.2290$	$3.267 \\ 3.267 \\ 3.2594$	$3.3376 \\ 3.3376 \\ 3.3376 \\ 3.3376$	$3.3591 \\ 3.3519 \\ 3.3484$	$.0215 \\ .0143 \\ .0108$	$3.5000 \\ 3.5000 \\ 3.5000 \\ 3.5000$
3.500-6	UN	2A 3A	$.0029 \\ .0000$	$3.4971 \\ 3.5000$	$\substack{\textbf{3.4789}\\\textbf{3.4818}}$		$3.3888 \\ 3.3917$	$3.3792 \\ 3.3845$.0096 .0072	$3.2926 \\ 3.2955$	2B 3B	$3.320 \\ 3.3200$	$3.350 \\ 3.3396$	$3.3917 \\ 3.3917$	$3.4042 \\ 3.4011$	$.0125 \\ .0094$	$3.5000 \\ 3.5000$
3.500-8	UN	2A 3A	$.0026 \\ .0000$	$3.4974 \\ 3.5000$	$3.4824 \\ 3.4850$	3.4749	$\begin{array}{c}3.4162\\3.4188\end{array}$	$3.4074 \\ 3.4122$.0088	$3.3440 \\ 3.3466$	2B 3B	$3.365 \\ 3.3650$	$3.390 \\ 3.3797$	$\substack{3.4188\\3.4188}$	$3.4303 \\ 3.4274$	$.0115 \\ .0086$	$3.5000 \\ 3.5000$
3.500-12	UN	2A 3A	.0019	$3.4981 \\ 3.5000$	$\begin{array}{r} 3.4867\\ 3.4886\end{array}$		$3.4440 \\ 3.4459$	$3.4376 \\ 3.4411$.0064 .0048	$3.3959 \\ 3.3978$	2B 3B	$3.410 \\ 3.4100$	$3.428 \\ 3.4198$	$3.4459 \\ 3.4459$	$3.4543 \\ 3.4522$	$.0084 \\ .0063$	$3.5000 \\ 3.5000$
3.500-16	UN	2A 3A	.0017 .0000	$3.4983 \\ 3.5000$	$3.4889 \\ 3.4906$		$3.4577 \\ 3.4594$	$3.4519 \\ 3.4551$	$.0058 \\ .0043$	$3.4216 \\ 3.4233$	2B 3B	$3.432 \\ 3.4320$	$3.446 \\ 3.4408$	$\substack{3.4594\\3.4594}$	$3.4669 \\ 3.4650$	$.0075 \\ .0056$	$3.5000 \\ 3.5000$
3.625-6	UN	2A 3A	.0029.0000	$3.6221 \\ 3.6250$	$3.6039 \\ 3.6068$		$\substack{3.5138\\3.5167}$	$\substack{3.5041\\3.5094}$.0097 .0073	$3.4176 \\ 3.4205$	2B 3B	$3.445 \\ 3.4450$	$3.475 \\ 3.4646$	$3.5167 \\ 3.5167$	$4.5293 \\ 3.5262$	$.0126 \\ .0095$	$3.6250 \\ 3.6250$
3.625-8	UN	2A 3A	.0027 .0000	$3.6223 \\ 3.6250$	$3.6073 \\ 3.6100$		$\substack{3.5411\\3.5438}$	$3.5322 \\ 3.5371$.0089 .0067	$3.4689 \\ 3.4716$	2B 3B	$3.490 \\ 3.4900$	$3.515 \\ 3.5047$	$\substack{\textbf{3.5438}\\\textbf{3.5438}}$	$3.5554 \\ 3.5525$.0116	$3.6250 \\ 3.6250$
3.625-12	UN	2A 3A	.0019 .0000	$3.6231 \\ 3.6250$	$3.6117 \\ 3.6136$		3.5690 3.5709	$3.5626 \\ 3.5661$.0064 .0048	$3.5209 \\ 3.5228$	2B 3B	$3.535 \\ 3.5350$	$3.553 \\ 3.5448$	$3.5709 \\ 3.5709$	$3.5793 \\ 3.5772$.0084 .0063	$3.6250 \\ 3.6250$
3.6 25- 16	UN	2A 3A	$.0017 \\ .0000$	$3.6233 \\ 3.6250$	$3.6139 \\ 3.6156$		$\substack{3.5827\\3.5844}$	$3.5769 \\ 3.5801$.0058 .0043	$\substack{\textbf{3.5466}\\\textbf{3.5483}}$	2B 3B	$3.557 \\ 3.5570$	$3.571 \\ 3.5658$	$\substack{\textbf{3.5844}\\\textbf{3.5844}}$	$3.5919 \\ 3.5900$.0075 .0056	$3.6250 \\ 3.6250$
3.750-4	UNC	1A 2A 3A	$.0034 \\ .0034 \\ .0000$	$3.7466 \\ 3.7466 \\ 3.7500$	$3.7109 \\ 3.7228 \\ 3.7262$	3.7109	$3.5842 \\ 3.5842 \\ 3.5876$	$3.5674 \\ 3.5730 \\ 3.5792$	$.0168 \\ .0112 \\ .0084$	$3.4399 \\ 3.4399 \\ 3.4433$	1B 2B 3B	$3.479 \\ 3.479 \\ 3.479 \\ 3.4790$	$3.517 \\ 3.517 \\ 3.5094$	$3.5876 \\ 3.5876 \\ 3.5876 \\ 3.5876$	$3.6094 \\ 3.6021 \\ 3.5985$	$.0218 \\ .0145 \\ .0109$	$3.7500 \\ 3.7500 \\ 3.7500 \\ 3.7500$
3.750-6	UN	2A 3A	$.0029 \\ .0000$	$3.7471 \\ 3.7500$	$\substack{3.7289\\3.7318}$		$\substack{3.6388\\3.6417}$	$3.6290 \\ 3.6344$.0098 .0073	$3.5426 \\ 3.5455$	2B 3B	$3.570 \\ 3.5700$	$3.600 \\ 3.5896$	$3.6417 \\ 3.6417$	$3.6544 \\ 3.6512$	$.0127 \\ .0095$	$3.7500 \\ 3.7500$
3.750-8	UN	2A 3A	.0027	$3.7473 \\ 3.7500$	$3.7323 \\ 3.7350$	3.7248	$3.6661 \\ 3.6688$	3.6571 3.6621	.0090 .0067	$3.5939 \\ 3.5966$	2B 3B	$3.615 \\ 3.6150$	$3.640 \\ 3.6297$	$3.6688 \\ 3.6688$	$3.6805 \\ 3.6776$.0117 .0088	$3.7500 \\ 3.7500$
3.750-12	UN	2A 3A	$.0019 \\ .0000$	$\substack{3.7481\\3.7500}$	$3.7367 \\ 3.7386$		$3.6940 \\ 3.6959$	$3.6876 \\ 3.6911$.0064 .0048	$3.6459 \\ 3.6478$	2B 3B	$3.660 \\ 3.6600$	$3.678 \\ 3.6698$	$3.6959 \\ 3.6959$	$3.7043 \\ 3.7022$.0084 .0063	$3.7500 \\ 3.7500$
3.750-16	UN	2A 3A	.0017 .0000	$3.7483 \\ 3.7500$	$3.7389 \\ 3.7406$		$3.7077 \\ 3.7094$	3.7019 3.7051	.0058 .0043	$3.6716 \\ 3.6733$	2B 3B	$3.682 \\ 3.6820$	$3.696 \\ 3.6908$	$3.7094 \\ 3.7094$	$3.7169 \\ 3.7150$.0075	$3.7500 \\ 3.7500$
3.875-6	UN	2A 3A	.0030	$3.8720 \\ 3.8750$	$3.8538 \\ 3.8568$		$3.7637 \\ 3.7667$	$3.7538 \\ 3.7593$.0099 .0074	$3.6675 \\ 3.6705$	2B 3B	$3.695 \\ 3.6950$	$3.725 \\ 3.7146$	$3.7667 \\ 3.7667$	$3.7795 \\ 3.7763$	$.0128 \\ .0096$	$3.8750 \\ 3.8750$
3.875-8	UN	2A 3A	$.0027 \\ .0000$	$3.8723 \\ 3.8750$	$3.8573 \\ 3.8600$		$3.7911 \\ 3.7938$	$3.7820 \\ 3.7870$.0091	$3.7189 \\ 3.7216$	2B 3B	$3.740 \\ 3.7400$	$3.765 \\ 3.7547$	$3.7938 \\ 3.7938$	$3.8056 \\ 3.8026$	$.0118 \\ .0088$	$3.8750 \\ 3.8750$
3.875-12	UN	2A 3A	$.0020 \\ .0000$	$3.8730 \\ 3.8750$	$3.8616 \\ 3.8636$		$3.8189 \\ 3.8209$	$\begin{array}{r} 3.8124\\ 3.8160\end{array}$	$.0065 \\ .0049$	$3.7708 \\ 3.7728$	2B 3B	$3.785 \\ 3.7850$	3.803/ 3.7948	$3.8209 \\ 3.8209$	$3.8294 \\ 3.8273$	$.0085 \\ .0064$	$3.8750 \\ 3.8750$
3.875-16	UN	2A 3A	.0018 .0000	3.8732 3.8750	$3.8638 \\ 3.8656$		$\substack{\textbf{3.8326}\\\textbf{3.8344}}$	$3.8267 \\ 3.8300$.0059 .0044	$3.7965 \\ 3.7983$	2B 3B	$3.807 \\ 3.8070$	$3.821 \\ 3.8158$	$\substack{\textbf{3.8344}\\\textbf{3.8344}}$	$3.8420 \\ 3.8401$.0076 .0057	$3.8750 \\ 3.8750$

See footnotes at end of table.

10

			External*											Internalª			
Nominal size and threads	Series designa- tion	Class	Allow-	Majo	r diameter	limits	Pitch	diameter	limits	Minor diam-	Class	Minor eter	diam- limits	Pitch	diameter	limits	Major diam- eter
per men		01400	ance	Maxb	Min	Mine	Maxb	Min	Toler- ance	eterd		Min	Max	Min	Max	Toler- ance	Min
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
4.000-4	UNC	1A 2A 3A	<i>in</i> 0.0034 .0034 .0000	<i>in</i> 3.9966 3.9966 4.0000	in 3.9609 3.9728 3.9762	in 3.9609	in 3.8342 3.8342 3.8376	in 3.8172 3.8229 3.8291	in 0.0170 .0113 .0085	in 3.6899 3.6899 3.6933	1B 2B 3B	in 3.729 3.729 3.729 3.7290	in 3.767 3.767 3.7594	in 3.8376 3.8376 3.8376	in 3.8597 3.8523 3.8487	in 0.0221 .0147 .0111	in 4.0000 4.0000 4.0000
4.000-6	UN	2A 3A	.0030	3.9970 4.0000	3.9788 3.9818		$3.8887 \\ 3.8917$	$3.8788 \\ 3.8843$.0099 .0074	$3.7925 \\ 3.7955$	2B 3B	$3.820 \\ 3.8200$	$3.850 \\ 3.8396$	$3.8917 \\ 3.8917$	$3.9046 \\ 3.9014$.0129 .0097	4.0000 4.0000
4.000-8	UN	2A 3A	.0027	3.9973 4.0000	3.9823 3.9850	3.9748	$3.9161 \\ 3.9188$	3.9070 3.9120	.0091	$3.8439 \\ 3.8466$	2B 3B	3.865 3.8650	3.890 3.8798	$3.9188 \\ 3.9188$	$3.9307 \\ 3.9277$.0119 .0089	4.0000
4.000-12	UN	2A 3A	.0020	3.9980	3.9866 3.9886		$3.9439 \\ 3.9459$	$3.9374 \\ 3.9410$.0065	$3.8958 \\ 3.8978$	2B 3B	$3.910 \\ 3.9100$	3.928 3.9198	$3.9459 \\ 3.9459$	$3.9544 \\ 3.9523$.0085	4.0000
4.000-16	UN	2A 3A	.0018	3.9982	3.9888 3.9906		$3.9576 \\ 3.9594$	$3.9517 \\ 3.9550$.0059	$3.9215 \\ 3.9233$	2B 3B	$3.932 \\ 3.9320$	3.946 3.9408	$3.9594 \\ 3.9594$	3.9670 3.9651	.0076	4.0000
4.125-6	UN	2A 3A	.0030	$4.1220 \\ 4.1250$	4.1038		4.0137 4.0167	4.0037	.0100	$3.9175 \\ 3.9205$	2B 3B	$3.945 \\ 3.9450$	3.975 3.9646	4.0167 4.0167	4.0297 4.0264	.0130	4.1250 4.1250
4.125-12	UN	2A 3A	.0020	$4.1230 \\ 4.1250$	4.1116 4.1136		4.0689	$4.0624 \\ 4.0660$.0065	4.0208	2B 3B	$4.035 \\ 4.0350$	$4.053 \\ 4.0448$	$4.0709 \\ 4.0709$	4.0794	.0085	4.1250
4.125-16	UN	2A 3A	.0018	4.1232 4.1250	$4.1138 \\ 4.1156$		4.0826 4.0814	4.0767	.0059 .0044	$4.0465 \\ 4.0483$	2B 3B	4.057	4.071	4.0844	4.0920	.0076	4.1250
4.250-4	UN	2A 3A	.0034	$4.2466 \\ 4.2500$	$4.2228 \\ 4.2262$		$4.0842 \\ 4.0876$	4.0727	.0115	$3.9399 \\ 3.9433$	2B 3B	3.979 3.9790	4.017	4.0876	4.1025	.0149 .0112	$4.2500 \\ 4.2500$
4.250-6	UN	2A 3A	.0030	$4.2470 \\ 4.2500$	$4.2288 \\ 4.2318$		4.1387 4.1417	$4.1286 \\ 4.1342$.0101	$4.0425 \\ 4.0455$	2B 3B	4.070	4.100	4.1417	4.1548	.0131	4.2500
4.250-12	UN	2A 3A	.0020	4.2480	$4.2366 \\ 4.2386$		$4.1939 \\ 4.1959$	4.1874	.0065	$4.1458 \\ 4.1478$	2B 3B	4.160	4.178	4.1959 4.1959	4.2044	.0085	$4.2500 \\ 4.2500$
4.250-16	UN	2A 3A	.0018	4.2482	$4.2388 \\ 4.2406$		4.2076 4.2094	4.2017	.0059 .0044	$4.1715 \\ 4.1733$	2B 3B	$4.182 \\ 4.1820$	4.196	$4.2094 \\ 4.2094$	4.2170	.0076	$4.2500 \\ 4.2500$
4.375-6	UN	2A 3A	.0030	$4.3720 \\ 4.3750$	$4.3538 \\ 4.3568$		$4.2637 \\ 4.2667$	$4.2536 \\ 4.2591$.0101	$4.1675 \\ 4.1705$	2B 3B	4.195 4.1950	$4.225 \\ 4.2146$	4.2667 4.2667	$4.2799 \\ 4.2766$.0132	4.3750
4.375-12	UN	2A 3A	.0020	4.3730	$4.3616 \\ 4.3636$		$4.3189 \\ 4.3209$	$4.3124 \\ 4.3160$.0065	4.2708	2B 3B	$4.285 \\ 4.2850$	$4.303 \\ 4.2948$	4.3209	$4.3294 \\ 4.3273$.0085 .0064	4.3750
4.375-16	UN	2A 3A	.0018	$4.3732 \\ 4.3750$	$4.3638 \\ 4.3656$		$4.3326 \\ 4.3344$	$4.3267 \\ 4.3300$.0059 .0044	$4.2965 \\ 4.2983$	2B 3B	$4.307 \\ 4.3070$	$4.321 \\ 4.3158$	$4.3344 \\ 4.3344$	$4.3420 \\ 4.3401$.0076	4.3750
4.500-4	UN	2A 3A	.0035	4.4965	4.4727 4.4762		$4.3341 \\ 4.3376$	$4.3225 \\ 4.3289$.0116	4.1898	2B 3B	4.229 4.2290	4.267 4.2594	4.3376 4.3376	4.3527 4.3489	.0151	4.5000
4.500-6	UN	2A 3A	.0031	4.4969	$4.4787 \\ 4.4818$		4.3886	$4.3784 \\ 4.3840$.0102	$4.2924 \\ 4.2955$	2B 3B	$4.320 \\ 4.3200$	4.350	4.3917	4.4050	.0133 .0099	$4.5000 \\ 4.5000$
4.500-12	UN	2A 3A	.0020	4.4980	4.4866		4.4439	$4.4374 \\ 4.4410$.0065	4.3958	2B 3B	4.410	$4.428 \\ 4.4198$	4.4459 4.4459	4.4544	.0085	4.5000
4.500-16	UN	2A 3A	.0018	4.4982	4.4888		$4.4576 \\ 4.4594$	$4.4517 \\ 4.4550$.0059	4.4215 4.4233	2B 3B	4.432	4.446	$4.4594 \\ 4.4594$	4.4670	.0076	4.5000
4.625-6	UN	2A 3A	.0031	4.6219	4.6037		$4.5136 \\ 4.5167$	$4.5033 \\ 4.5090$.0103	$4.4174 \\ 4.4205$	2B 3B	4.445	$4.475 \\ 4.4646$	4.5167 4.5167	4.5300 4.5267	.0133	$4.6250 \\ 4.6250$
4.625-12	UN	2A 3A	.0020	$4.6230 \\ 4.6250$	4.6116		$4.5689 \\ 4.5709$	$4.5622 \\ 4.5659$.0067	$4.5208 \\ 4.5228$	2B 3B	$4.535 \\ 4.5350$	$4.553 \\ 4.5448$	4.5709	4.5796	.0087	$4.6250 \\ 4.6250$
4.625-16	UN	2A 3A	.0018	$4.6232 \\ 4.6250$	4.6138		4.5826	$4.5765 \\ 4.5799$.0061	$4.5465 \\ 4.5483$	2B 3B	4.557	$4.571 \\ 4.5658$	$4.5844 \\ 4.5844$	4.5923	.0079	$4.6250 \\ 4.6250$
4.750-4	UN	2A 3A	.0035	$4.7465 \\ 4.7500$	4.7227 4.7262		4.5841	$4.5724 \\ 4.5788$.0117	4.4398 4.4433	2B 3B	4.479 4.4790	$4.517 \\ 4.5094$	$4.5876 \\ 4.5876$	$4.6029 \\ 4.5990$.0153	4.7500
4.750-6	UN	2A 3A	.0031	4.7469	$4.7287 \\ 4.7318$		4.6386	$4.6283 \\ 4.6340$.0103	$4.5424 \\ 4.5455$	2B 3B	4.570	4.600	$4.6417 \\ 4.6417$	4.6551 4.6518	.0134	4.7500
4.750-12	UN	2A 3A	.0020	4.7480	$4.7366 \\ 4.7386$		$4.6939 \\ 4.6959$	4.6872	.0067	4.6458 4.6478	2B 3B	4.660	4.678	4.6959 4.6959	4.7046	.0087	4.7500
4.750-16	UN	2A 3A	.0018	4.7482	4.7388 4.7406		4.7076	4.7015	.0061	4.6715	2B 3B	4.682	4.696	4.7094	4.7173	.0079	4.7500
4.875-6	UN	2A 3A	.0031	4.8719 4.8750	4.8537		$4.7636 \\ 4.7667$	4.7532 4.7589	.0104	4.6674	2B 3B	4.695	4.725	4.7667	4.7802	.0135	4.8750
4.875-12	UN	2A 3A	.0020	4.8730	4.8616		4.8189	4.8122	.0067	4.7708	2B	4.785	4.803	4.8209	4.8296	.0087	4.8750

TABLE 2.21. Standard series limits of size-Unified screw threads-Continued

-

Sil Sil P

TABLE 2.21. Standard series limits of size—Unified screw threads—Continued	d
--	---

						External	a		_					Interna	la		
Nominal size and threads per inch	Series designa- tion	Class	Allow-	Major	r diameter	limits	Pitch	diameter	limits	Minor diam-	Class	Minor eter l	diam- imits	Pitch	diameter	limits	Major diam- eter
per men		Class	Lince	Maxb	Min	Min°	Maxb	Min	Toler- ance	eterd	C.uco	Min	Max	Min	Max	Toler- ance	Min
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
4.875-16	UN	2A 3A	in 0.0018 .0000	in 4.8732 4.8750	in 4.8638 4.8656	in	$in \\ 4.8326 \\ 4.8344$	$in \\ 4.8265 \\ 4.8299$	$in \\ 0.0061 \\ .0045$	in 4.7965 4.7983	2B 3B	$in \\ 4.807 \\ 4.8070$	in 4.821 4.8158	in 4.8344 4.8344	in 4.8423 4.8403	in 0.0079 .0059	in 4,8750 4,8750
5.000-4	UN	2A 3A	.0036	$4.9964 \\ 5.0000$	$4.9726 \\ 4.9762$		$4.8340 \\ 4.8376$	$4.8221 \\ 4.8287$.0119	$4.6897 \\ 4.6933$	2B 3B	$\frac{4.729}{4.7290}$	$4.767 \\ 4.7594$	$\frac{4.8376}{4.8376}$	$\frac{4.8530}{4.8492}$.0154	$5.0000 \\ 5.0000$
5.000-6	UN	2A 3A	.0031	$4.9969 \\ 5.0000$	4.9787		$4.8886 \\ 4.8917$	$4.8781 \\ 4.8839$.0105	$4.7924 \\ 4.7955$	2B 3B	$\frac{4.820}{4.8200}$	$4.850 \\ 4.8396$	4.8917 4.8917	$4.9053 \\ 4.9019$.0136	5.0000
5.000-12	UN	2A 3A	.0020	4.9980	4.9866 4.9886		4.9439 4.9459	4.9372 4.9409	.0067	$4.8958 \\ 4.8978$	2B 3B	$4.910 \\ 4.9100$	$4.928 \\ 4.9198$	$4.9459 \\ 4.9459$	$4.9546 \\ 4.9525$.0087	5.0000
5.000-16	UN	2A 3A	.0018	$4.9982 \\ 5.0000$	4.9888		$4.9576 \\ 4.9594$	$4.9515 \\ 4.9549$.0061	4,9215	2B 3B	4,932 4,9320	$4.946 \\ 4.9408$	$4.9594 \\ 4.9594$	$4.9673 \\ 4.9653$.0079	5.0000
5.125-12	UN	2A 3A	.0020	$5.1230 \\ 5.1250$	$5.1116 \\ 5.1136$		$5.0689 \\ 5.0709$	$5.0622 \\ 5.0659$.0067	$5.0208 \\ 5.0228$	2B 3B	$5.035 \\ 5.0350$	5.053	$5.0709 \\ 5.0709$	5.0796	.0087	$5.1250 \\ 5.1250$
5.125-16	UN	2A 3A	.0018 .0000	$5.1232 \\ 5.1250$	$5.1138 \\ 5.1156$		$5.0826 \\ 5.0844$	$5.0765 \\ 5.0799$.0061	$5.0465 \\ 5.0483$	2B 3B	5.057 5.0570	$5.071 \\ 5.0658$	$5.0844 \\ 4.0844$	5.0923 5.0903	.0079 .0059	$5.1250 \\ 5.1250$
5.250-4	UN	2A 3A	.0036	$5.2464 \\ 5.2500$	$5.2226 \\ 5.2262$		$5.0840 \\ 5.0876$	$5.0720 \\ 5.0786$.0120	4.9397 4.9433	2B 3B	4.979	5.017 5.0094	5.0876 5.0876	5.1032 5.0993	.0156	5.2500 5.2500
5.250-12	UN	2A 3A	.0020	$5.2480 \\ 5.2500$	$5.2366 \\ 5.2386$		5.1939 5.1959	$5.1872 \\ 5.1909$.0067	$5.1458 \\ 5.1478$	2B 3B	5.160	$5.178 \\ 5.1698$	$5.1959 \\ 5.1959$	5,2046 5,2025	.0087	5.2500 5.2500
5.250-16	UN	2A 3A	.0018	$5.2482 \\ 5.2500$	$5.2388 \\ 5.2406$		5.2076 5.2094	5.2015 5.2049	.0061	$5.1715 \\ 5.1733$	2B 3B	$5.182 \\ 5.1820$	5.196 5.1908	$5.2094 \\ 5.2094$	5.2173 5.2153	.0079	5.2500 5.2500
5.375-12	UN	2A 3A	.0020	5.3730 5.3750-	$5.3616 \\ 5.3636$		$5.3189 \\ 5.3209$	$5.3122 \\ 5.3159$.0067	$5.2708 \\ 5.2728$	2B 3B	$5.285 \\ 5.2850$	$5.303 \\ 5.2948$	$5.3209 \\ 5.3209$	5.3296 5.3275	.0087	5.3750 5.3750
5.375-16	UN	2A 3A	.0018	$5.3732 \\ 5.3750$	$5.3638 \\ 5.3656$		$5.3326 \\ 5.3344$	5.3265 5.3299	.0061	5.2965 5.2983	2B 3B	5.307 5.3070	$5.321 \\ 5.3158$	$5.3344 \\ 5.3344$	$5.3423 \\ 5.3403$.0079	5.3750 5.3750
5.500-4	UN	2A 3A	.0036	$5.4964 \\ 5.5000$	$5.4726 \\ 5.4762$		$5.3340 \\ 5.3376$	5.3219 5.3285	.0121	5.1897 5.1933	2B 3B	5.229 5.2290	5.267 5.2594	5.3376 5.3376	$5.3534 \\ 5.3494$.0158	5.5000
5.500-12	UN	2A 3A	.0020	$5.4980 \\ 5.5000$	5.4866 5.4886		5.4439 5.4459	5.4372 5.4409	.0067	5.3958 5.3978	2B 3B	5.410	5.428 5.4198	5.4459 5.4459	5.4546 5.4525	.0087	5.5000 5.5000
5.500-16	UN	2A 3A	.0018	$5.4982 \\ 5.5000$	$5.4888 \\ 5.4906$		5.4576 5.4594	5.4515	.0061	5.4215 5.4233	2B 3B	5.432 5.4320	5.446 5.4408	5.4594	5.4673 5.4653	.0079	5.5000
5.625-12	UN	2A 3A	.0021	$5.6229 \\ 5.6250$	5.6115 5.6136		5.5688	5.5619	.0069	5.5207	2B 3B	5.535	5.553	5.5709	5.5799	.0090	5,6250
5.625-16	UN	2A 3A	.0019	5.6231 5.6250	5.6137 5.6156		5.5825 5.5844	5.5763	.0062	5.5464	2B 2B	5.557	5.571	5.5844	5.5925	.0081	5.6250
5.750-4	UN	2A 3A	.0037	5.7463 5.7500	5.7225 5.7262		5.5839	5.5717	.0122	5.4396	2B 3B	5.479	5.517	5.5876	5.6035	.0159	5.7500
5.750-12	UN	2A 3A	.0021	$5.7479 \\ 5.7500$	5.7365 5.7386		5.6938	5.6869 5.6907	.0069	5.6457 5.6478	2B 3B	5.660	5.678 5.6698	5.6959 5.6959	5.7049 5.7026	.0090	5.7500
5.750-16	UN	2A 3A	.0019	5.7481	5.7387		5.7075	5.7013	.0062	5.6714	2B 3B	5.682	5.696	5.7094	5.7175	.0081	5.7500
5.875-12	UN	2A 3A	.0021	5.8729 5.8750	5.8615 5.8636		5.8188 5.8209	5.8119 5.8157	.0069	5.7707	2B 3B	5.785	5.803	5.8209	5.8299	.0090	5.8750
5.875-16	UN	2A 3A	.0019	5.8731 5.8750	5.8637 5.8656		5.8325 5.8344	5.8263 5.8297	.0062	5.7964	2B 3B	5.807 5.807	5.821	5.8344	5.8425	.0081	5.8750
6.000-4	UN	2A 3A	.0037	5,9963	5.9725 5.9762		5.8338 5.8376	5.8215 5.8283	.0124	5.6896	2B 3B	5.729	5.767	5.8376	5.8537	.0161	6.0000
6.000-12	UN	2A 3A	.0021	5.9979	5.9865		5.9438	5.9369	.0069	5.8957	2B 3B	5.910	5.928	5.9459	5.9549	.0090	6.0000
6.000-16	UN	2A 3A	.0019	5.9981 6.0000	5.9887 5.9906		5.9575 5.9594	5.9513 5.9547	.0062	5.9214 5.9233	2B 3B	5.932 5.9320	5.946 5.9408	$5.9594 \\ 5.9594$	5.9675 5.9655	.0081	6.0000 6.0000

Regarding combinations of thread classes, see par. 4, Thread classes, p. 2.17.
For class 2A threads having an additive finish the maximum is increased to the basic size, the value being the same as for class 3A shown in this column. See par. 4.2, p. 2.17, and par. 9, p. 2.2.
For unfinished hot-rolled material.
Jese figs. 2.3, 2.5, and 2.6.
Nore: See par. 11 Limits of Size, p. 2.25.

Nominal size and				External					Internal		
Nominal size and threads per inch	Series des- ignation	Class	Half of pitch diameter tolerance	Equivalent deviation in lead	Equ devi hal	uvalent ation in f-angle	Class	Half of pitch diameter tolerance	Equivalent deviation in lead	Equi devi hal	valent ation in f-angle
1	2	3	4	5		6	7	8	9		10
.060-80	UNF	2A 3A	${}^{in}_{0.00090}_{0.00065}$	$\overset{in}{\overset{0.00052}{.00038}}$	deg 3 2	min 18 23	2B 3B	in 0.00115 .00085	in 0.00066 .00049	deg 4 3	min 13 7
.073-64	UNC	2A 3A	.00100 .00075	.00058 .00043	2 2	$\begin{array}{c} 56\\12\end{array}$	2B 3B	.00130 .00095	.00075	3 2	48 47
.073-72	UNF	2A 3A	.00095 .00070	.00055 .00040	3 2	8 19	2B 3B	.00125 .00095	.00072 .00055	4 3	7 8
.086-56	UNC	2A 3A	.00105 .00080	.00061 .00046	2 2	$42 \\ 3$	2B 3B	.00140 .00105	.00081 .00061	3 2	35 42
.086-64	UNF	2A 3A	.00100 .00075	.00058 .00043	2 2	$\begin{array}{c} 56 \\ 12 \end{array}$	2B 3B	.00135 .00100	.00078 .00058	3 2	57 56
.099-48	UNC	2A 3A	.00115 .00085	.00066 .00049	2 1	32 52	2B 3B	.00150 .00110	.00087 .00064	3 2	18 25
.099-56	UNF	2A 3A	.00110 .00080	.00064 .00046	22	49 3	2B 3B	.00140 .00105	.00081	3 2	35 42
.112-40	UNC	2A 3A	.00125 .00095	.00072 .00055	2	17 44	2B 3B	.00165 .00120	.00095 .00069	3 2	1 12
.112-48	UNF	2A 3A	.00120 .00090	.00069 .00052	2 1	38 59	2B 3B	.00155 .00115	.00089 .00066	3 2	24 32
.125-40	UNC	2A 3A	.00130 .00095	.00075 .00055	2	23 44	2B 3B	.00165 .00125	.00095 .00072	3 2	1 17
. 125–44	UNF	2A 3A	.00125 .00095	.00072 .00055	2	31 55	2B 3B	.00160 .00120	.00092 .00069	3 2	13 25
.138-32	UNC	2A 3A	.00140 .00105	.00081	2	$3 \\ 32$	2B 3B	.00185 .00135	.00107 .00078	2 1	43 59
.138-40	UNF	2A 3A	.00130 .00100	.00075	2	23 50	2B 3B	.00170 .00125	.00098 .00072	3 2	7 17
.164-32	UNC	2A 3A	.00145 .00110	.00084 .00064	2	8 37	2B 3B	.00190 .00140	.00110 .00081	2 2	47 3
.164-36	UNF	2A 3A	.00140 .00105	.00081 .00061	2 1	19 44	2B 3B	.00180 .00135	.00104 .00078	2 2	58 14
.190-24	UNC	2A 3A	.00165 .00125	.00095 .00072	1	49 22	2B 3B	.00215 .00160	.00124 .00092	2 1	22 46
. 190-32	UNF	2A 3A	.00150 .00115	.00087 .00066	2 1	12 41	2B 3B	.00195 .00145	.00113 .00084	22	51 8
. 216-24	UNC	2A 3A	.00170 .00130	.00098	1 1	52 26	2B 3B	.00220 .00165	.00127 .00095	2	25 49
.216-28	UNF	2A 3A	.00160 .00120	.00092 .00069	2 1	3 32	2B 3B	.00210 .00155	.00121 .00089	2 1	42 59
.216-32	UNEF	2A 3A	.00155 .00120	.00089 .00069	2 1	$\begin{array}{c} 16 \\ 46 \end{array}$	2B 3B	.00205 .00155	.00118 .00089	3 2	0 16
.250-20	UNC	1A 2A 3A	$.00280 \\ .00185 \\ .00140$.00162 .00107 .00081	$\begin{array}{c} 2\\ 1\\ 1\end{array}$	34 42 17	1B 2B 3B	.00365 .00245 .00180	.00211 .00141 .00104	$ \begin{array}{c} 3 \\ 2 \\ 1 \end{array} $	21 15 39
. 250–28	UNF	1 A 2 A 3 A	.00250 .00165 .00125	.00144 .00095 .00072	3 2 1	$\begin{array}{c} 12\\7\\36\end{array}$	1B 2B 3B	.00325 .00215 .00160	.00188 .00124 .00092	4 2 2	10 45 3
. 250 – 32	UNEF	2A 3A	.00160 .00120	.00092 .00069	2 1	21 46	2B 3B	.00210 .00155	.00121 .00089	3 2	5 16
. 3125-18	UNC	1A 2A 3A	.00305 .00200 .00150	.00176 .00115 .00087	$\begin{vmatrix} 2\\1\\1 \end{vmatrix}$	31 39 14	1B 2B 3B	.00395 .00265 .00195	.00228 .00153 .00113	3 2 1	15 11 37
.3125-20	UN	2A 3A	.00200	.00115 .00087	1	$\begin{array}{c} 50\\22\end{array}$	2B 3B	.00260 .00195	.00150 .00113	2 1	23 47
.3125-24	UNF	1A 2A 3A	.00275 .00185 .00135	.00159 .00107 .00078	$ \begin{array}{c} 3 \\ 2 \\ 1 \end{array} $	$\begin{array}{c}1\\2\\29\end{array}$	1B 2B 3B	.00355 .00240 .00180	.00205 .00139 .00104	$\begin{array}{c}3\\2\\1\end{array}$	54 38 59
.3125-28	UN	2A 3A	.00170 .00130	.00098 .00075	$\begin{array}{c} 2\\ 1\end{array}$	11 40	2B 3B	.00220 .00165	.00127 .00095	22	49 7

1

N L

1
				External					Internal		
Nominal size and threads per inch	Series des- ignation	Class	Half of pitch diameter tolerance	Equivalent deviation in lead	Equ dev half	uivalent iation in -angle	Class	Half of pitch diameter tolerance	Equivalent deviation in lead	Equ devi half	ivalent ation in -angle
1	2	3	4	5		6	7	8	9		10
.3125-32	UNEF	2A 3A	in .00160 .00120	in .00092 .00069	deg 2 1	min 21 46	2B 3B	.00210 .00155	in .00121 .00089	deg 3 2	min 5 16
.375-16	UNC	1A 2A 3A	.00325 .00220 .00165	.00188 .00127 .00095	2 1 1	23 37 13	1B 2B 3B	.00425 .00285 .00215	.00245 .00165 .00124	3 2 1	7 5 35
.375-20	UN	2A 3A	.00205 .00155	.00118 .00089	1	53 25	2B 3B	.00270 .00200	.00156 .00115	2 1	28 50
.375-24	UNF	1A 2A 3A	.00285 .00190 .00145	.00165 .00110 .00084	3 2 1	8 5 36	1B 2B 3B	.00370 .00245 .00185	.00214 .00141 .00107	4 2 2	$\overset{4}{\overset{42}{_2}}$
.375-28	UN	2A 3A	.00180 .00135	.00104 .00078	2 1	19 44	2B 3B	.00230 .00175	.00133 .00101	2 2	57 15
.375-32	UNEF	2A 3A	.00170 .00125	.00098 .00072	2 1	30 50	2B 3B	.00220 .00165	.00127 .00095	3 2	13 25
.43 75-1 4	UNC	1A 2A 3A	.00355 .00235 .00175	.00205 .00136 .00101	2 1 1	17 30 7	1B 2B 3B	.00460 .00305 .00230	.00266 .00176 .00133	2 1 1	57 57 29
.4375-16	UN	2A 3A	.00230 .00170	.00133 .00098	1	41 15	2B 3B	.00295 .00225	.00170 .00130	2 1	10 39
. 4375–20	UNF	1A 2A 3A	.00315 .00210 .00155	.00182 .00121 .00089	2 1 1	53 55 25	1B 2B 3B	.00405 .00270 .00205	.00234 .00156 .00118	3 2 1	42 28 53
.43 75– 28	UNEF	2A 3A	.00180 .00135	.00104 .00078	2 1	19 44	2B 3B	.00230 .00175	.00133 .00101	2 2	57 15
.4375-32	UN	2A 3A	.00170 .00125	.00098 .00072	2 1	30 50	2B 3B	.00220 .00165	.00127 .00095	3 2	13 25
.500-13	UNC	1 A 2A 3A	.00370 .00250 .00185	.00214 .00144 .00107	2 1 1	12 29 6	1B 2B 3B	.00485 .00325 .00240	.00280 .00188 .00139	2 1 1	53 56 26
.500-16	UN	2A 3A	.00235 .00175	.00136 .00101	1	43 17	2B 3B	.00305 .00230	.00176 .00133	2 1	14 41
.500-20	UNF	1A 2A 3A	.00320 .00215 .00160	.00185 .00124 .00092	2 1 1	56 58 28	1B 2B 3B	.00420 .00280 .00210	.00242 .00162 .00121	3 2 1	51 34 55
.500-28	UNEF	2A 3A	.00185 .00140	.00107 .00081	2 1	22 48	2B 3B	.00240 .00180	.00139 .00104	3 2	5 19
.500-32	UN	2A 3A	.00175	.00101 .00075	2 1	34 54	2B 3B	.00225 .00170	.00130 .00098	3 2	18 30
.5625-12	UNC	1A 2A 3A	.00390 .00260 .00195	.00225 .00150 .00113	2 1 1	9 26 4	1B 2B 3B	.00510 .00340 .00255	.00294 .00196 .00147	2 1 1	48 52 24
.5625-16	UN	2A 3A	.00235 .00175	.00136 .00101	1	43 17	2B 3B	.00305 .00230	.00176 .00133	2 1	14 41
.5625-18	UNF	1A 2A 3A	.00340 .00225 .00170	.00196 .00130 .00098	2 1 1	48 51 24	1B 2B 3B	.00445 .00295 .00220	.00257 .00170 .00127	3 2 1	40 26 49
.5625-20	UN	2A 3A	.00210 .00160	.00121 .00092		55 28	2B 3B	.00275 .00205	.00159 .00118	2 1	31 53
.5625-24	UNEF	2A 3A	.00195 .00145	.00113 .00084	2 1	9 36	2B 3B	.00255 .00190	.00147 .00110	2 2	48 5
.5625-28	UN	2A 3A	.00185 .00140	.00107 .00081	2 1	22 48	2B 3B	.00240 .00180	.00139 .00104	3 2	5 19
. 5625-32	UN	2A 3A	.00175 .00130	.00101 .00075	2 1	34 54	2B 3B	.00225	.00130 .00098	3 2	18 30
.6 25 –11	UNC	1A 2A 3A	.00415 .00275 .00205	.00240 .00159 .00118	2 1 1	5 23 2	1B 2B 3B	.00535 .00360 .00270	.00309 .00208 .00156	2 1 1	42 49 22
. 625-12	UN	2A 3A	.00270 .00205	.00156 .00118	1	29 8	2B 3B	.00355	.00205 .00153	1	57 27

TABLE 2.22. Deviations in lead and half-angle equivalent to one-half of pitch diamter tolerances, Unified	d screw threads—Continued
--	---------------------------

				External					Internal		
Nominal size and threads per inch	Series des- ignation	Class	Half of pitch diameter tolerance	Equivalent deviation in lead	Equ devi half	ivalent ation in -angle	Class	Half of pitch diameter tolerance	Equivalent deviation in lead	Equi devia half	ivalent stion in -angle
1	2	3	4	5		6	7	8	9		10
.625–16	UN	2A 3A	in .00240 .00180	<i>in</i> .00139 .00104	deg 1 1	min 46 19	2B 3B	in .00310 .00230	in .00179 .00133	deg 2 1	min 16 41
.625-18	UNF	1A 2A 3A	$.00350 \\ .00235 \\ .00175$.00202 .00136 .00101		53 56 27	1B 2B 3B	.00455 .00300 .00225	.00263 .00173 .00130	$\begin{array}{c} 3\\2\\1\end{array}$	45 28 51
,625-20	UN	2A 3A	.00215 .00160	$.00124 \\ .00092$	1	58 28	2B 3B	.00280 .00210	.00162 .00121	2 1	34 55
.625-24	UNEF	2A 3A	.00200 .00150	.00115 .00087	$\frac{2}{1}$	12 39	2B 3B	.00260 .00195	$.00150 \\ .00113$	$\frac{2}{2}$	51 9
.625-28	UN	2A 3A	.00190 .00140	.00110 .00081	$\frac{2}{1}$	$\frac{26}{48}$	2B 3B	$.00245 \\ .00185$.00141 .00107	32	8 22
.625 - 32	UN	2A 3A	$.00180 \\ .00135$	$.00104 \\ .00078$	$\frac{2}{1}$	$38 \\ 59$	2B 3B	.00230 .00175	.00133 .00101	32	$\frac{22}{34}$
.6875-12	UN	2A 3A	$.00270 \\ .00205$	$.00156 \\ .00118$	1	29 8	2B 3B	.00355 .00265	$.00205 \\ .00153$	1	57 27
.6875-16	UN	2A 3A	.00240 .00180	.00139 .00104	1	46 19	2B 3B	.00310 .00230	.00179 .00133	2	16 41
.6875-20	UN	2Å 3A	.00215 .00160	$.00124 \\ .00092$	1	58 28	2B 3B	.00280 .00210	.00162 .00121	2	$^{34}_{55}$
.6875 - 24	UNEF	2A 3A	.00200 .00150	.00115 .00087	2 1	$\frac{12}{39}$	2B 3B	.00260 .00195	.00150 .00113	22	51 9
.6875-28	UN	2A 3A	.00190 .00140	.00110 .00081	2 1	26 48	2B 3B	$.00245 \\ .00185$.00141 .00107	32	8 22
.6875-32	UN	2A 3A	.00180 .00135	.00104 .00078	2 1	38 59	2B 3B	.00230 .00175	.00133 .00101	3 2	22 34
.750-10	UNC	1A 2A 3A	.00440 .00295 .00220	.00254 .00170 .00127	2 1 1	$\begin{array}{c}1\\21\\0\end{array}$	1B 2B 3B	.00575 .00385 .00285	.00332 .00222 .00165	2 1 1	38 46 18
.750-12	UN	2A 3A	.00275 .00205	.00159 .00118	1	$^{31}_{8}$	2B 3B	.00360 .00270	$.00208 \\ .00156$	1	59 29
.750-16	UNF	1A 2A 3A	.00375 .00250 .00190	.00217 .00144 .00110	$\begin{vmatrix} 2\\ 1\\ 1 \end{vmatrix}$	45 50 24	1 B 2B 3B	.00490 .00325 .00245	.00283 .00188 .00141	3 2 1	35 23 48
.750 - 20	UNEF	2A 3A	.00220 .00165	.00127 .00095	2 1	1 31	2B 3B	.00285 .00215	$.00165 \\ .00124$	2 1	37 58
.750-28	UN	2A 3A	.00190 .00145	.00110 .00084	2	$\begin{array}{c} 26 \\ 52 \end{array}$	2B 3B	.00250 .00185	$.00144 \\ .00107$	3 2	12 22
.750-32	UN	2A 3A	.00180 .00135	$.00104 \\ .00078$	2 1	38 59	2B 3B	.00235 .00180	$.00136 \\ .00104$	$\frac{3}{2}$	$\frac{27}{38}$
.8125-12	UN	2A 3A	.00275 .00205	.00159 $.00118$	1	31 8	2B 3B	.00360 .00270	.00208 .00156	1 1	59 29
.8125-16	UN	2A 3A	.00245 .00180	$.00141 \\ .00104$	1	48 19	2B 3B	.00315 .00235	.00182 .00136	2 1	$19 \\ 43$
.8125-20	UNEF	2A 3A	.00220 .00165	.00127 .00095	2 1	1 31	2B 3B	$.00285 \\ .00215$	$.00165 \\ .00124$	2 1	37 58
. 8125-28	UN	2A 3A	$.00190 \\ .00145$.00110 .00084	2 1	$\begin{smallmatrix} 26\\52 \end{smallmatrix}$	2B 3B	.00250 .00185	$.00144 \\ .00107$	32	$\begin{array}{c}12\\22\end{array}$
.8125-32	UN	2A 3A	.00180 .00135	$.00104 \\ .00078$	2 1	38 59	2B 3B	.00235 .00180	.00136 .00104	$3 \\ 2$	$\frac{27}{38}$
. 875-9	UNC	1A 2A 3A	.00475 .00315 .00235	.00274 .00182 .00136	1 1 0	58 18 58	1B 2B 3B	.00615 .00410 .00305	.00355 .00237 .00176	2 1 1	$\begin{array}{c} 32\\41\\15\end{array}$
.875-12	UN	2A 3A	.00275 .00205	.00159 .00118	1	31 8	2B 3B	.00360	.00208 .00156	1	59 29
.875-14	UNF	1A 2A 3A	.00405 .00270 .00205	.00234 .00156 .00118	2 1 1	$\begin{array}{c} 36\\ 44\\ 19 \end{array}$	1B 2B 3B	.00530 .00350 .00265	.00306 .00202 .00153	$\begin{array}{c} 3\\2\\1\end{array}$	24 15 42
.875-16	UN	2A 3A	$.00245 \\ .00180$.00141 .00104	1 1	48 19	2B 3B	.00315 .00235	$.00182 \\ .00136$	2 1	$\begin{array}{c} 19\\ 43 \end{array}$

TABLE 2.22. Deviations in lead and half-angle equivalent to one-half of pitch diameter tolerances, Unified screw threads-Continued

=

				External			1		Internal		
Nominal size and threads per inch	Series des- ignation	Class	Half of pitch diameter tolerance	Equivalent deviation in lead	Ec dev hal	uivalent viation in f-angle	Class	Half of pitch diameter tolerance	Equivalent deviation in lead	Equ devi hal	ivalent ation in f-angle
1	2	3	4	5		6	7	8	9		10
. 875–20	UNEF	2A 3A	in .00220 .00165	$in \\ .00127 \\ .00095$	deg 2 1	min 1 31	2B 3B	in .00285 .00215	in .00165 .00124	deg 2 1	min 37 58
.875-28	UN	2A 3A	.00190 .00145	.00110 .00084	2 1	$\begin{array}{c} 26 \\ 52 \end{array}$	2B 3B	.00250 .00185	.00144 .C3107	$^{3}_{2}$	$\begin{smallmatrix}12\\22\end{smallmatrix}$
.875-32	UN	2A 3A	.00180 .00135	.00104 .00078	2 1	38 59	2B 3B	$.00235 \\ .00180$	$.00136 \\ .00104$	$\frac{3}{2}$	$\frac{27}{38}$
.9375-12	UN	2A 3A	.00285 .00210	.00165 .00121	1	$^{34}_{9}$	2B 3B	.00370 .00275	.00214 .00159	$^{2}_{1}$	$\frac{2}{31}$
.9375-16	UN	2A 3A	.00250 .00185	.00144 .00107	1	$\begin{array}{c} 50\\21\end{array}$	2B 3B	.00325 .00245	.00188 .00141	2 1	23 48
.9375-20	UNEF	2A 3A	.00225 .00170	.00130 .00098	2 1	4 33	2B 3B	$.00295 \\ .00220$.00170 .00127	22	42 1
.9375-28	UN	2A 3A	.00200 .00150	.00115 .00087	2 1	34 55	2B 3B	.00260 .00195	.00150 .00113	$\frac{3}{2}$	$\frac{20}{30}$
.9375-32	UN	2A 3A	.00190 .00140	.00110 .00081	2 2	47 3	2B 3B	.00245 .00185	.00141 .00107	3 2	35 43
1,000-8	UNC	1A 2A 3A	.00505 .00340 .00255	.00292 .00196 .00147	1 1 0	51 15 56	1B 2B 3B	.00660 .00440 .00330	$.00381 \\ .00254 \\ .00191$	2 1 1	25 37 13
1.000-12	UNF	1A 2A 3A	.00440 .00295 .00220	.00254 .00170 .00127		25 37 13	1B 2B 3B	.00570 .00380 .00285	$.00329 \\ .00219 \\ .00165$	3 2 1	8 5 34
1.000-16	UN	2A 3A	.00250 .00185	.00144 .00107	1	$50 \\ 21$	2B 3B	.00325 .00245	.00188 .00141	2 1	23 48
1.000-20	UNEF	2A 3A	.00225	.00130 .00098	$\frac{2}{1}$	4 33	2B 3B	.00295 .00220	.00170 .00127	$\frac{2}{2}$	$^{42}_{1}$
1.000-28	UŅ	2A 3A	.00200	.00115 .00087	$\frac{2}{1}$	34 55	2B 3B	$.00260 \\ .00195$.00150 .00113	3 2	$\frac{20}{30}$
1.00032	UN	2A 3A	.00190 .00140	.00110 .00081	$\frac{2}{2}$	47 3	2B 3B	.00245 .00185	.00141 .00107	$^{3}_{2}$	35 43
1.0625-8	UN	2A 3A	.00340 .00255	.00196 .00147	1	$15 \\ 56$	2B 3B	.00445 .00335	$.00257 \\ .00193$	1	38 14
1.0625-12	UN	2A 3A	.00285 .00210	.00165 .00121	1	34 9	2B 3B	.00370 .00275	$.00214 \\ .00159$	2 1	$^{2}_{31}$
1.0625-16	UN	2A 3A	.00250 .00185	.00144 .00107	1	50 21	2B 3B	.00325 .00245	.00188 .00141	2 1	$\begin{array}{c} 23 \\ 48 \end{array}$
1.0625-18	UNEF	2A 3A	.00235 .00180	.00136 .00104	1	56 29	2B 3B	.00310 .00230	.00179 .00133	2 1	33 54
1.0625-20	UN	2A 3A	.00225 .00170	.00130 .00098	2 1	4 33	2B 3B	.00295 .00220	.00170 .00127	2 2	$42 \\ 1$
1.0625-28	UN	2A 3A	.00200 .00150	.00115 .00087	2 1	34 55	2B 3B	.00260 .00195	.00150 .00113	32	$\frac{20}{30}$
1.125-7	UNC	1A 2A 3A	.00545 .00360 .00270	.00315 .00208 .00156	1 1 0	45 9 52	1B 2B 3B	.00705 .00470 .00355	.00407 .00271 .00205	2 1 1	$\begin{smallmatrix} 16\\30\\8\end{smallmatrix}$
1.125-8	UN	2A 3A	.00345	.00199	1	16 57	2B 3B	.00450 .00335	.00260 .00193	1	39 14
1.125-12	UNF	1A 2A 3A	.00450 .00300 .00225	.00260 .00173 .00130	2 1 1	$28 \\ 39 \\ 14$	1B 2B 3B	.00585 .00390 .00295	.00338 .00225 .00170	3 2 1	13 9 37
1.125-16	UN	2A 3A	.00250 .00185	.00144 .00107	1	50 21	2B 3B	.00325 .00245	.00188 .00141	2 1	23 48
1.125-18	UNEF	2A 3A	.00235 .00180	.00136 .00104	1 1	56 29	2B 3B	.00310 .00230	.00179 .00133	$\frac{2}{1}$	33 54
1.125-20	UN	2A 3A	.00225 .00170	.00130	$\frac{2}{1}$	4 33	2B 3B	.00295 .00220	.00170 .00127	$\frac{2}{2}$	42 1

TABLE 2.22. Deviations in lead and half-angle equivalent to one-half of pitch diameter tolerances, Unified screw threads-Continued

d =

-

				External					Internal		
Nominal size and threads per inch	Series des- ignation	Class	Half of pitch diameter tolerance	Equivalent deviation in lead	Equ devi half	ivalent ation in angle	Class	Half of pitch diameter tolerance	Equivalent deviation in lead	Equ devis half	ivalent ition in -angle
1	2	3	4	5		6	7	8	9		10
1.125-28	UN	2A 3A	in .00200 .00150	in .00115 .00087	deg 2 1	min 34 55	2B 3B	in .00260 .00195	in .00150 .00113	deg 3 2	min 20 30
1.1875-8	UN	2A 3A	.00350 .00260	.00202 .00150	1 0	17 57	2B 3B	.00455 .00340	.00263 .00196	1	40 15
1.1875-12	UN	2A 3A	.00290 .00215	.00167 .00124	1	36 11	2B 3B	.00375 .00280	.00217 .00162	2 1	4 32
1.1875-16	UN	2A 3A	.00255 .00190	.00147 .00110	1	52 24	2B 3B	.00330 .00250	.00191 .00144	2 1	25 50
1.1875-18	UNEF	2A 3A	$.00245 \\ .00180$.00141 .00104	2	1 29	2B 3B	.00315 .00235	.00182 .00136	2	36 56
1.1875-20	UN	2A 3A	.00235 .00175	.00136	2	9 36	2B 3B	.00305 .00225	.00176 .00130	2 2	48 4
1.1875-28	UN	2A 3A	.00205	.00118	2	38 59	2B 3B	.00265 .00200	.00153 .00115	32	24 34
1.250-7	UNC	1 A 2 A 3 A	.00555 .00370 .00275	.00320 .00214 .00159	1 1 0	47 11 53	1B 2B 3B	.00720 .00480 .00360	.00416 .00277 .00208	2 1 1	19 32 9
1.250-8	UN	2A 3A	.00350 .00265	.00202 .00153	1 0	17 58	2B 3B	.00460 .00345	.00266 .00199	1	41 16
1.250-12	UNF	1 A 2A 3A	.00460 .00310 .00230	.00266 .00179 .00133	2 1 1	32 42 16	1 B 2B 3B	.00600 .00400 .00300	.00346 .00231 .00173	3 2 1	18 12 39
1.250-16	UN	2A 3A	.00255 .00190	.00147 .00110	1 1	52 24	2B 3B	.00330 .00250	.00191 .00144	2 1	25 50
1.250-18	UNEF	2A 3A	.00245 .00180	.00141 .00104	2 1	1 29	2B 3B	.00315 .00235	.00182 .00136	2 1	36 56
1.250-20	UN	2A 3A	.00235 .00175	.00136 .00101	2	9 36	2B 3B	.00305 .00225	.00176 .00130	2 2	48 4
1.250-28	UN	2A 3A	.00205 .00155	.00118 .00089	2	38 59	2B 3B	.00265 .00200	.00153 .00115	3 2	24 34
1.3125-8	UN	2A 3A	.00355 .00265	.00205 .00153	1	18 58	2B 3B	.00460 .00345	.00266 .00199	1	41 16
1.3125-12	UN	2A 3A	.00290 .00215	.00167 .00124	1 1	36 11	2B 3B	.00375 .00280	.00217 .00162	2 1	4 32
1.3125-16	UN	2A 3A	.00255 .00190	.00147 .00110	1	52 24	2B 3B	.00330 .00250	.00191 .00144	2 1	25 50
1.3125-18	UNEF	2A 3A	.00245 .00180	.00141 .00104	2	1 29	2B 3B	.00315 .00235	.00182 .00136	$\begin{array}{c}2\\1\end{array}$	36 56
1.3125-20	UN	2A 3A	.00235 .00175	.00136 .00101	2	9 36	2B 3B	$.00305 \\ .00225$.00176 .00130	3 2	48 4
1.3125-28	UN	2A 3A	.00205 .00155	.00118 .00089	2	38 59	2B 3B	.00265	.00153 .00115	3 2	$\frac{24}{34}$
1.375-6	UNC	1 A 2A 3A	.00600 .00400 .00300	.00346 .00231 .00173	1 1 0	39 6 50	1 B 2B 3B	.00775 .00520 .00390	.00447 .00300 .00225	2 1 1	8 26 4
1.375-8	UN	2A 3A	.00360 .00270	.00208 .00156	1 0	19 59	2B 3B	.00465 .00350	.00268 .00202	1	42 17
1.375-12	UNF	1A 2A 3A	.00470 .00315 .00235	.00271 .00182 .00136	2 1 1	35 44 18	1B 2B 3B	.00615 .00410 .00305	.00355 .00237 .00176	3 2 1	23 15 41
1.375-16	UN	2A 3A	.00255 .00190	.00147 .00110	1	52 24	2B 3B	.00330 .00250	.00191 .00144	2 1	25 50
1.375-18	UNEF	2A 3A	.00245 .00180	.00141 .00104	2	1 29	2B 3B	.00315 .00235	.00182	2	36 56

TABLE 2.22. Deviations in lead and half-angle equivalent to one-half of pitch diameter tolerances, Unified screw threads-Continued

11

			<u>.</u>	External					Internal		
Nominal size and threads per inch	Series des- ignation	Class	Half of pitch diameter tolerance	Equivalent deviation in lead	Equi devia half-a	ivalent ation in angle	Class	Half of pitch diameter tolerance	Equivalent deviation in lead	Equ devia half	ivalent ation in S-angle
1	2	3	4	5		6	7	8	9		10
1.375-20	UN	2A 3A	in .00235 .00175	in .00136 .00101	deg 2 1	min 9 36	2B 3B	in .00305 .00225	in .00176 .00130	deg 2 2	min 48 4
1.375-28	UN	2A 3A	.00205 .00155	.00118 .00089	2 1	38 59	2B 3B	.00265 .00200	.00153 .00115	3 2	24 34
1.4375-6	UN	2A 3A	.00400	.00231 .00173	1 0	6 50	2B 3B	.00 52 0 .00390	.00300 .00225	1	$\frac{26}{4}$
1.4375-8	UN	2A 3A	.00360 .00270	.00208 .00156	1	19 59	2B 3B	.00470 .00355	.00 27 1 .00205	1	$\begin{array}{c} 43\\18\end{array}$
1.4375-12	UN	2A 3A	.00295 .00220	.00170 .00127	1	37 13	2B 3B	.00380 .00285	.00219 .00165	2 1	$\frac{5}{34}$
1.4375-16	UN	2A 3A	.00260 .00195	.00150	1	54 26	2B 3B	.00340 .00255	.00196 .00147	2 1	30 52
1.4375-18	UNEF	2A 3A	.00250	.00144	2	$\frac{4}{32}$	2B 3B	.00325 .00240	.00188	2	$\frac{41}{59}$
1.4375-20	UN	2A 3A	.00240	.00139	2	12 39	2B 3B	.00310 .00230	.00179	22	50 6
1.4375-28	UN	2A 3A	.00210 .00155	.00121 .00089	2 1	42 59	2B 3B	.00275 .00205	.00159 .00118	3 2	31 38
1.500-6	UNC	1A 2A 3A	.00605 .00405 .00305	.00349 .00234 .00176	1 1 0	40 7 50	1B 2B 3B	.00790 .00525 .00395	.00456 .00303 .00228	2 1 1	$\begin{array}{c}10\\27\\5\end{array}$
1.500-8	UN	2A 3A	.00365 .00275	.00211 .00159	1	20 0	2B 3B	.00475 .00355	.00274 .00205	1	44 18
1.500-12	UNF	1A 2A 3A	.00480 .00320 .00240	.00277 .00185 .00139	2 1 1	38 46 19	1B 2B 3B	.00625 .00415 .00315	.00361 .00240 .00182	3 2 1	26 17 44
1.500-16	UN	2A 3A	.00260 .00195	.00150 .00113	1	54 26	2B 3B	.00340 .00255	.00196 .00147	2 1	30 52
1.500-18	UNEF	2A 3A	.00250 .00185	.00144 .00107	2	4 32	2B 3B	.00325 .00240	.00188 .00139	2	41 59
1.500-20	UN	2A 3A	.00240 .00180	.00139 .00104	2	1 2 39	2B 3B	.00310 .00230	.00179 .00133	22	50 6
1.500-28	UN	2A 3A	.00210 .00155	.00121 .00089	2	42 59	2B 3B	.00275 .00205	.00159 .00118	32	31 38
1.5625-6	UN	2A 3A	.00410 .00305	.00237 .00176	1	8 50	2B 3B	.00530	.00306 .00 2 31	1	27 6
1.5625-8	UN	2A 3A	.00370 .00275	.00 2 14 .001 5 9	1	21 0	2B 3B	.00480 .00360	.00277 .00208	1	$\begin{array}{c} 46 \\ 19 \end{array}$
1.5625-12	UN	2A 3A	.00295 .00220	.00170 .00127	1	37 13	2B 3B	.00380 .00285	.00219 .00165	2	$5 \\ 34$
1.5625-16	UN	2A 3A	.00260	.00150	1	54 26	2B 3B	.00340	.00196	2	30 52
1.5625-18	UNEF	2A 3A	.00250	.00144	2	4 32	2B 3B	.00325	.00188 .00139	2	41 59
1.5625-20	UN	2A 3A	.00240	.00139	2	12 39	2B 3B	.00310	.00179	22	50 6
1.625-6	UN	2A 3A	.00410	.00237	1	8 51	2B 3B	.00535	.00309		28 6
1.6 25 -8	UN	2A 3A	.00370	.00214	1	21 2	2B 3B	.00485	.00280	1	47 19
1.625-12	UN	2A 3A	.00295	.00170	1	37 13	2B 3B	.00380	.00219	2	5 34
1.625-16	UN	2A 3A	.00260	.00150	1	54 26	2B 3B	.00340	.00196	2	30 52
1.625-18	UNEF	2A 3A	.00250	.00144 .00107	2 1	4 32	2B 3B	.00325 .00240	.00188	2	41 59

d

=

				External					Internal		
Nominal size and threads per inch	Series des- ignation	Class	Half of pitch diameter tolerance	Equivalent deviation in lead	Equi devia half-a	valent tion in angle	Class	Half of pitch diameter tolerance	Equivalent deviation in lead	Equi devia half	valent tion in -angle
1	2	3	4	5		6	7	8	9		10
1.625-20	UN	2A 3A	in .00240 .00180	in . 00139 . 00104	deg 2 1	min 12 39	2B 3B	in .00310 .00230	in .00179 .00133	deg 2 2	min 50 6
1.6875-6	UN	2A 3A	.00415 .00310	.00240 .00179	1 0	8 51	2B 3B	.00540 .00405	$.00312 \\ .00234$	1 1	$^{29}_{7}$
1.6875-8	UN	2A 3A	.00375 .00280	.00217 .00162	1	$\frac{22}{2}$	2B 3B	.00485 .00365	.00280 .00211	1	$\frac{47}{20}$
1.6875-12	UN	2A 3A	.00300 .00225	.00173 .00130	1	$39 \\ 14$	2B 3B	.00390 .00290	.00225 .00167	2 1	9 36
1.6875-16	UN	2A 3A	.00265 .00200	.00153 .00115	1	57 28	2B 3B	.00345	$.00199 \\ .00150$	2	$^{32}_{54}$
1.6875-18	UNEF	2A 3A	.00255 .00190	.00147 .00110	2 1	$\frac{6}{34}$	2B 3B	.00330 .00245	.00191 .00141	$\frac{2}{2}$	43 1
1.6875-20	UN	2A 3A	.00240 .00180	.00139 .00104	$\frac{2}{1}$	$^{12}_{39}$	2B 3B	.00315 .00235	$.00182 \\ .00136$	$\frac{2}{2}$	$53 \\ 9$
1.750 - 5	UNC	1A 2A 3A	.00670 .00445 .00335	.00387 .00257 .00193	1 1 0	$\begin{array}{c} 32\\1\\46\end{array}$	1B 2B 3B	.00870 .00580 .00435	.00502 .00335 .00251	2 1 1	$\begin{smallmatrix}&0\\20\\0\end{smallmatrix}$
1.750-6	UN	2A 3A	.00415 .00315	.00240 .00182	1 0	$\frac{8}{52}$	2B 3B	.00540 .00405	$.00312 \\ .00234$	1	29 7
1.750-8	UN	2A 3A	.00375 .00285	.00217 .00165	1	$^{22}_{3}$	2B 3B	.00490 .00370	.00283 .00214	1	48 21
1.750-12	UN	2A 3A	.00300 .00225	.00173	1	3914	2B 3B	.00390	.00225	2	9 36
1.750-16	UN	2A 3A	.00265 .00200	.00153 .00115	1	57 28	2B 3B	.00345 .00260	.00199 .00150	2 1	$32 \\ 54$
1.750-20	UN	2A 3A	.00240 .00180	.00139	2	$\frac{12}{39}$	2B 3B	.00315 .00235	.00182 .00136	$\frac{2}{2}$	53 9
1,8125-6	UN	2A 3A	.00420	.00242 .00182		$\frac{9}{52}$	2B 3B	.00545 .00410	.00315 .00237	1	30 8
1.8125-8	UN	2A 3A	.00380	.00219 .00165	1	$^{24}_{3}$	2B 3B	.00495	.00286 .00214	1	49 21
1.8125-12	UN	2A 3A	.00300	.00173	1	39 14	2B 3B	.00390	.00225	2	9 36
1.8125-16	UN	2A 3A	.00265	.00153	1	57 28	2B 3B	.00345	.00199	2	32 54
1.8125-20	UN	2A 3A	.00240	.00139	2	12 39	2B 3B	.00315	.00182	2	53
1.875-6	UN	2A 3A	.00420	.00242	1	9 52	2B 3B	.00550	.00318	1	31
1.875-8	UN	2A 3A	.00385	.00222	1	25 3	2B 3B	.00500	.00289	1	50 22
1.875-12	UN	2A 3A	.00300	.00173	1	39 14	2B 3B	.00390	.00225	2	9 36
1.875-16	UN	2A 3A	.00265	.00153	1	57	2B 3B	.00345	.00199	2	32 54
1.875-20	UN	2A	.00240	.00139	2	12	2B	.00315	.00130	2	53
1.9375-6	UN	2A	.00425	.00245	1	10	2B	.00555	.00320	1	32
1.9375-8	UN	2A	.00320	.00133	1	25	2B	.00500	.00240	1	50
1.9375-12	UN	2A 34	.00290	.00176	1	41	2B	.00395	.00217	2	10 22
1.9375-16	UN	2A 3A	.00220	.00156	1	59 00	2B	.00295	.00202	2	34 54
1.9375-20	UN	2A 3A	.00245	.00115 .00141 .00107	2 1	28 15 42	2B 3B	.00200 .00320 .00240	.00150 .00185 .00139	2 2	56 12

TABLE 2.22. Deviations in lead and half-angle equivalent to one-half of pitch diameter tolerances, Unified screw threads-Continued

11

-

				External					Internal		
Nominal size and threads per inch	Series des- ignation	Class	Half of pitch diameter tolerance	Equivalent deviation in lead	Equ devia half-	ivalent ation in angle	Class	Half of pitch diameter tolerance	Equivalent deviation in lead	Equ devi hal	ivalent ation in f-angle
1	2	3	4	5	-	6	7	8	9	-	10
2.000-4.5	UNC	1A 2A 3A	in .00715 .00475 .00355	in .00413 .00274 .00205	deg 1 0 0	min 28 59 44	1B 2B 3B	in .00930 .00620 .00465	in .00537 .00358 .00268	deg 1 1 0	min 55 17 58
2.000-6	UN	2A 3A	.00430 .00320	.00248 .00185	1 0	11 53	2B 3B	.00555 .00415	.00320 .00240	1	32 8
2.000-8	UN	2A 3A	.00390 .00290	.00225 .00167	1	$\frac{26}{4}$	2B 3B	.00505 .00380	.00292	1	51 24
2.000-12	UN	2A 3A	.00305 .00225	.00176 .00130	1	41 14	2B 3B	.00395 .00295	.00228 .00170	2	10 37
2.000-16	UN	2A 3A	.00270 .00200	.00156 .00115	1	59 28	2B 3B	.00350 .00260	.00202 .00150	2	34 54
2.000-20	UN	2A 3A	.00245 .00185	.00141 .00107	2 1	15 42	2B 3B	$.00320 \\ .00240$.00185	22	$56 \\ 12$
2.125-6	UN	2A 3A	.00435 .00325	.00251 .00188	1	$\begin{array}{c} 12 \\ 54 \end{array}$	2B 3B	.00565 .00420	.00326 .00242	1	33 9
2.125-8	UN	2A 3A	.00395 .00295	.00228 .00170	1 1	27 5	2B 3B	$.00510 \\ .00385$.00294 .00222	1	52 25
2.125-12	UN	2A 3A	.00305 .00225	.00176 .00130	1	41 14	2B 3B	.00395 .00295	.00228 .00170	2	10 37
2.125-16	UN	2A 3A	.00270 .00200	.00156 .00115	1	59 28	2B 3B	.00350 .00260	.00202	2	$^{34}_{54}$
2.125-20	UN	2A 3A	.00245 .00185	.00141 .00107	2	15 42	2B 3B	.00320	.00185 .00139	22	5612
2.250-4.5	UNC	1A 2A 3A	.00730 .00485 .00365	.00421 .00280 .00211	1 1 0	30 0 45	1B 2B 3B	.00950 .00630 .00475	.00548 .00364 .00274	1 1 0	58 18 59
2.250~6	UN	2A 3A	.00440 .00330	.00254 .00191	1 0	$^{13}_{54}$	2B 3B	.00570 .00425	.00329 .00245	1	34 10
2.250-8	UN	2A 3A	.00400 .00300	.00231 .00173	1		2B 3B	.00520 .00390	.00300 .00225	1	$\begin{array}{c} 54 \\ 26 \end{array}$
2.250-12	UN	2A 3A	.00305 .00225	.00176 .00130	1	41 14	2B 3B	.00395 .00295	.00228 .00170	2 1	10 37
2.250-16	UN	2A 3A	.00270 .00200	.00156 .00115	1	59 28	2B 3B	.00350 .00260	.00202 .00150	2 1	34 54
2.250-20	UN	2A 3A	.00245 .00185	.00141 .00107	2 1	15 42	2B 3B	.00320 .00240	.00185 .00139	22	56 12
2.375-6	UN	2A 3A	.00445 .00330	.00257 .00191	1 0	$13 \\ 54$	2B 3B	.00575 .00430	.00332 .00248	1	35 11
2.375-8	UN	2A 3A	.00405	.00234 .00173		29 6	2B 3B	.00525 .00395	.00303 .00228	1 1	55 27
2.375-12	UN	2A 3A	.00310 .00230	.00179 .00133	1	$\begin{array}{c} 42\\16\end{array}$	2B 3B	.00405 .00300	.00234 .00173	2 1	$\begin{array}{c}14\\39\end{array}$
2.375-16	UN	2A 3A	.00275 .00205	.00159 .00118	2	1 30	2B 3B	.00360 .00270	.00208 .00156	2 1	38 59
2.375-20	UN	2A 3A	.00255 .00190	.00147 .00110	2	20 44	2B 3B	.00330 .00250	.00191 .00144	3 2	1 17
2.500-4	UNC	1A 2A 3A	.00775 .00520 .00390	.00447 .00300 .00225	1 0 0	25 57 43	1B 2B 3B	.01010 .00675 .00505	.00583 .00390 .00292	1 1 0	51 14 56
2.500-6	UN	2A 3A	.00450 .00335	.00260 .00193	1 0	$\begin{smallmatrix}14\\55\end{smallmatrix}$	2B 3B	.00580 .00435	.00335 .00251	1 1	36 12
2.500-8	UN	2A 3A	.00410 .00305	.00237 .00176	1	30 7	2B 3B	.00530 .00400	.00306 .00231	1	57 28
2.500-12	UN	2A 3A	.00310 .00230	.00179 .00133	1 1	$\begin{array}{c} 42\\16\end{array}$	2B 3B	.00405 .00300	.00234 .00173	2 1	$\begin{array}{c}14\\39\end{array}$
2.500-16	UN	2A 3A	.00275 .00205	.00159 .00118	2 1	1 30	2B 3B	.00360	.00208 .00156	2 1	38 59

ed ||

				External					Internal		
Nominal size and threads per inch	Series des- ignation	Class	Half of pitch diameter tolerance	Equivalent deviation in lead	Equ devi half-	ivalent ation in angle	Class	Half of pitch diameter tolerance	Equivalent deviation in lead	Equ devi hal	ivalent ation in f-angle
1	2	3	4	5		6	7	8	9		10
2.500-20	UN	2A 3A	$\overset{in}{}_{.00190}$	<i>in</i> .00147 .00110	deg 2 1	min 20 44	2B 3B	in .00330 .00250	in .00191 .00144	deg 3 2	min 1 17
2.625-6	UN	2A 3A	.00450 .00340	.00260	1	$^{14}_{56}$	2B 3B	.00590 .00440	.00341 .00254	1	37 13
2.625-8	UN	2A 3A	.00410 .00310	.00237 .00179	1	$^{30}_{8}$	2B 3B	.00535	.00309 .00231	1	$\frac{58}{28}$
2.625-12	UN	2A 3A	.00310 .00230	.00179	1	$\frac{42}{16}$	2B 3B	.00405	.00234 .00173	$\frac{2}{1}$	14 39
2.625-16	UN	2A 3A	.00275 .00205	.00159 .00118	2	$\frac{1}{30}$	2B 3B	$.00360 \\ .00270$.00208	2	$\frac{38}{59}$
2.625-20	UN	2A 3A	.00255 .00190	.00147	2	$\frac{20}{44}$	2B 3B	.00330 .00250	.00191	32	1 17
2.750-4	UNC	1A 2A 3A	.00790 .00525 .00395	.00456 .00303 .00228	1 0 0	27 58 43	1B 2B 3B	.01030 .00685 .00515	.00595 .00395 .00297	1 1 0	53 15 57
2.750-6	UN	2A 3A	.00455 .00340	.00263 .00196	1 0	$\begin{smallmatrix}15\\56\end{smallmatrix}$	2B 3B	$.00595 \\ .00445$.00344 .00257	1	$\frac{38}{13}$
2.750-8	UN	2A 3A	.00415 .00315	.00240 .00182	1	31 9	2B 3B	.00540 .00405	$.00312 \\ .00234$	1	$59 \\ 29$
2.750-12	UN	2A 3A	.00310 .00230	.001 7 9 .00133	1	$\begin{array}{c} 42\\16\end{array}$	2B 3B	.00405	.00234 .00173	$\begin{vmatrix} 2\\1 \end{vmatrix}$	$ \begin{array}{c} 14 \\ 39 \end{array} $
2.750-16	UN	2A 3A	.00275 .00205	.00159 .00118	2 1	$\frac{1}{30}$	2B 3B	.00360 .00270	.00208	2	$38 \\ 59$
2.750-20	UN	2A 3A	.00255 .00190	.00147 .00110	2	20 44	2B 3B	.00330 .00250	.00191	32	$1 \\ 17$
2.875-6	UN	2A 3A	.00460 .00345	$.00266 \\ .00199$	1 0	16 57	2B 3B	.00600 .00450	.00346	1	$\frac{39}{14}$
2.875-8	UN	2A 3A	$.00420 \\ .00315$	$.00242 \\ .00182$	1	$32 \\ 9$	2B 3B	.00550 .00410	.00318 .00237	2	1 30
2.875-12	UN	2A 3A	.00315 .00235	$.00182 \\ .00136$	1	44 18	2B 3B	.00410 .00310	.00237 .00179	2	15 42
2.875-16	UN	2A 3A	.00280 .00210	$.00162 \\ .00121$	2	$3 \\ 32$	2B 3B	.00365 .00275	.00211 .00159	$\frac{2}{2}$	40 1
2.875-20	UN	2A 3A	.00260 .00195	$.00150 \\ .00113$	2 1	23 47	2B 3B	.00340 .00255	.00196	32	7 20
3.000-4	UNC	1A 2A 3A	.00805 .00535 .00400	.00465 .00309 .00231	1 0 0	$20 \\ 59 \\ 44$	1B 2B 3B	.01045 .00695 .00520	.00603 .00401 .00300	1 1 0	55 16 57
3.000-6	UN	2A 3A	.00465 .00350	.00268 .00202	1 0	17 58	2B 3B	.00605 .00455	.00349 .00263	1	40 15
3.000-8	UN	2A 3A	.00425 .00320	$.00245 \\ .00185$	1	33 10	2B 3B	.00555	.00320 .00240	$\frac{2}{1}$	$\frac{2}{31}$
3.000-12	UN	2A 3A	.00315 .00235	$.00182 \\ .00136$	1	44 18	2B 3B	$.00410 \\ .00310$.00237 .00179	2	15 42
3.000-16	UN	2A 3A	.00280 .00210	$.00162 \\ .00121$	2	$3 \\ 32$	2B 3B	.00365	.00211 .00159	22	$40 \\ 1$
3.000-20	UN	2A 3A	.00260 .00195	.00150 .00113	2	$\frac{23}{47}$	2B 3B	.00340	.00196	32	7 20
3.125-6	UN	2A 3A	.00470 .00350	.00271 .00202	1	18 58	2B 3B	.00610	.00352	1	41 16
3.125-8	UN	2A 3A	$.00430 \\ .00320$.00248 .00185	1	35 10	2B 3B	.00560	.00323	2	332
3.125-12	UN	2A 3A	.00315 .00235	.00182 .00136	1	44 18	2B 3B	.00410	.00237	2	15 42
3.125-16	UN	2A 3A	.00280 .00210	.00162 .00121	2 1	3 32	2B 3B	.00365 .00275	.00211 .00159	2-2-2	40 1

				External			1		Internal		
Nominal size and threads per inch	Series des ignation	Class	Half of pitch diameter tolerance	Equivalent deviation in lead	Eq dev half	uivalent iation in -angle	Class	Half of pitch diameter tolerance	Equivalent deviation in lead	Equ devi hali	ivalent ation in f-angle
1	2	3	4	5		6	7	8	9		10
3.250-4	UNC	1A 2A 3A	$in \\ .00815 \\ .00545 \\ .00410$	in .00471 .00315 .00237	deg 1 1 0	min 30 0 45	1B 2B 3B	in .01060 .00705 .00530	in .00612 .00407 .00306	deg 1 1 0	min 57 18 58
3.250-6	UN	2A 3A	.00475 .00355	$.00274 \\ .00205$	1 0	18 59	2B 3B	.00615 .00460	.00355 .00266	1 1	$\begin{array}{c} 41 \\ 16 \end{array}$
3.250-8	UN	2A 3A	$.00435 \\ .00325$.00251 .00188	1 1	$\begin{array}{c} 36\\11\end{array}$	2B 3B	$.00565 \\ .00425$	$.00326 \\ .00245$	2 1	$\frac{4}{33}$
3.250-12	UN	2A 3A	.00315 .00235	.00182 .00136	1	$\frac{44}{18}$	2B 3B	$.00410 \\ .00310$.00237 .00179	2 1	$\begin{array}{c} 15 \\ 42 \end{array}$
3.250-16	UN	2A 3A	.00280 .00210	.00162 .00121	2 1	$3 \\ 32$	2B 3B	$.00365 \\ .00275$.00211 .00159	22	$40 \\ 1$
3.375-6	UN	2A 3A	.00475 .00360	.00274 .00208	1 0	18 59	2B 3B	$.00620 \\ .00465$	$.00358 \\ .00268$	1	42 17
3.375-8	UN	2A 3A	$.00440 \\ .00330$.00254 .00191	1	37 13	2B 3B	$.00570 \\ .00425$	$.00329 \\ .00245$	2 1	5 33
3.375-12	UN	2A 3A	.00320 .00242	$.00185 \\ .00139$	1 1	46 19	2B 3B	$.00420 \\ .00315$	$.00242 \\ .00182$	2	$\begin{array}{c} 19 \\ 44 \end{array}$
3.375-16	UN	2A 3A	$.00290 \\ .00215$	$.00167 \\ .00124$	2 1	8 35	2B 3B	.00375 .00280	.00217 .00162	$\frac{2}{2}$	$45 \\ 3$
3.500-4	UNC	1 A 2A 3A	.00830 .00550 .00415	.00479 .00318 .00240	1 1 0	31 0 46	1B 2B 3B	.01075 .00715 .00540	.00621 .00413 .00312	1 1 0	58 19 59
3.500-6	UN	2A 3A	.00480 .00360	.00277 .00208	1 0	$19 \\ 59$	2B 3B	.00625 .00470	.00361 .00271	1	$\begin{array}{c} 43\\18\end{array}$
3.500-8	UN	2A 3A	.00440 .00330	.00254 .00191	1 1	37 13	2B 3B	.00575 .00430	$.00332 \\ .00248$	2 1	6 35
3.500-12	UN	2A 3A	.00320 .00240	.00185 .00139	1 1	$\begin{array}{c} 46 \\ 19 \end{array}$	2B 3B	$.00420 \\ .00315$	$.00242 \\ .00182$	2	19 44
3.500-16	UN	2A 3A	.00290 .00215	.00167 .00124	2 1	8 35	2B 3B	.00375 .00280	.00217 .00162	22	$^{45}_{3}$
3.625-6	UN	2A 3A	.00485 .00365	.00280 .00211	1	20 0	2B 3B	.00630 .00475	$.00364 \\ .00274$	1	44 18
3.625-8	UN	2A 3A	$.00445 \\ .00335$.00257 .00193	1	$\frac{38}{14}$	2B 3B	$.00580 \\ .00435$	$.00335 \\ .00251$	2 1	8 36
3.625-12	UN	2A 3A	.00320 .00240	.00185 .00139	1 1	46 19	2B 3B	$.00420 \\ .00315$	$.00242 \\ .00182$	2 1	$\begin{array}{c} 19\\ 44 \end{array}$
3.625-16	UN	2A 3A	$.00290 \\ .00215$.00167 .00124	2 1	8 35	2B 3B	.00375 .00280	.00217 .00162	22	$^{45}_{3}$
3.750-4	UNC	1A 2A 3A	.00840 .00560 .00420	.00485 .00323 .00242	1 1 0	$\begin{array}{c} 32\\2\\46\end{array}$	1B 2B 3B	$.01090 \\ .00725 \\ .00545$.00629 .00419 .00315	2 1 1	$\begin{array}{c} 0\\ 20\\ 0\end{array}$
3.750-6	UN	2A 3A	$.00490 \\ .00365$.00283 .00211	1 1	21 0	2B 3B	$.00635 \\ .00475$	$.00367 \\ .00274$	1	$\begin{smallmatrix} 45\\18\end{smallmatrix}$
3.750-8	UN	2A 3A	.00450 .00335	.00260 .00193	1 1	39 14	2B 3B	$.00585 \\ .00440$	$.00338 \\ .00254$	2 1	9 37
3.750-12	UN	2A 3A	$.00320 \\ .00240$.00185 .00139	1 1	46 19	2B 3B	$.00420 \\ .00315$.00242 .00182	2 1	$\begin{array}{c} 19\\ 44 \end{array}$
3.750-16	UN	2A 3A	$.00290 \\ .00215$.00167 .00124	2	8 35	2B 3B	.00375 .00280	.00217 .00162	22	$45 \\ 3$
3.875-6	UN	2A 3A	.00495 .00370	.00286 .00214	1 1	22 1	2B 3B	.00640 .00480	.00369 .00277	1	$\begin{smallmatrix} 46\\19\end{smallmatrix}$
3.875-8	UN	2A 3A	.00455 .00340	.00263 .00196	1 1	40 15	2B 3B	$.00590 \\ .00440$.00341 .00254	2 1	10 37
3.875-12	UN	2A 3A	$.00325 \\ .00245$.00188 .00141	1	47 21	2B 3B	.00425 .00320	$.00245 \\ .00185$	2 1	20 46
3.875-16	UN	2A 3A	.00295 .00220	.00170 .00127	2 1	10 37	2B 3B	.00380 .00285	.00219 .00165	2 2	47 5

TABLE 2.22. Deviations in lead and half-angle equivalent to one-half of pitch diameter tolerances, Unified screw threads—Continued

TA

=

N t

.....

				External					Internat		
Nominal size and threads per inch	Series des- ignation	Class	Half of pitch diameter tolerance	Equivalent deviation in lead	Eq dev hall	uivalent iation in f-angle	Class	Half of pitch diameter tolerance	Equivalent deviation in lead	Equ devi hal	ivalent ation in f-angle
1	2	3	4	5		6	7	8	9		10
-			in	in	deg	min		in	in	deg	min
4.000-4	UNC	1A 2A 3A	.00850 .00565 .00425	.00491 .00326 .00245	1 1 0	33 2 47	1B 2B 3B	.01105 .00735 .00555	.00638 .00424 .00320	2 1 1	2 21 1
4.000-6	UN	2A 3A	.00495 .00370	.00286 .00214	1	22 1	2B 3B	.00645 .00485	.00372 .00280	1 1	46 20
4.000-8	UN	2A 3A	.00455 .00340	.00263 .00196	1 1	40 15	2B 3B	.00595 .00445	.00344 .00257	2 1	11 38
4.000-12	UN	2A 3A	$.00325 \\ .00245$.00188 .00141	1	47 21	2B 3B	.00425 .00320	.00245 .00185	2 1	$\begin{array}{c} 20 \\ 46 \end{array}$
4.000-16	UN	2A 3A	.00295 .00220	.00170 .00127	2 1	$\begin{array}{c}10\\37\end{array}$	2B 3B	$.00380 \\ .00285$	$.00219 \\ .00165$	2 2	47 5
4.125-6	UN	2A 3A	.00500 .00375	.00289 .00217	1	22 2	2B 3B	.00650 .00485	.00375 .00280	1 1	47 20
4.125-12	UN	2A 3A	.00325 .00245	.00188 .00141	1	47 21	2B 3B	.00425 .00320	.00245 .00185	2 1	20 46
4.125-16	UN	2A 3A	.00295 .00220	.00170 .00127	2 1	10 37	2B 3B	.00380 .00285	.00219 .00165	2 2	47 5
4.250-4	UN	2A 3A	.00575 .00430	.00332 .00248	1 0	3 47	2B 3B	.00745 .00560	.00430 .00323	1	$22 \\ 2$
4.250-6	UN	2A 3A	.00505 .00375	.00292	1	23 2	2B 3B	.00655	.00378 .00283	1	48 21
4.250-12	UN	2A 3A	.00325 .00245	.00188 .00141	1	47 21	2B 3B	.00425 .00320	.00245 .00185	2 1	20 46
4.250-16	UN	2A 3A	.00295 .00220	.00170 .00127	2	10 37	2B 3B	.00380 .00285	.00219 .00165	2 2	47 5
4.375-6	UN	2A 3A	.00505	.00292 .00219	1	23 3	2B 3B	.00660 .00495	.00381 .00286	1	49 22
4.375-12	UN	2A 3A	.00325 .00245	.00188 .00141	1	47 21	2B 3B	.00425 .00320	.00245 .00185	2	20 46
4.375-16	UN	2A 3A	.00295 .00220	.00170	2 1	10 37	2B 3B	.00380 .00285	.00219 .00165	22	47 5
4.500-4	UN	2A 3A	.00580 .00435	.00335 .00251	1	4 48	2B 3B	.00755 .00565	.00436 .00326	1	23 2
4.500-6	UN	2A 3A	.00510 .00385	.00294 .00222	1	$\frac{24}{4}$	2B 3B	.00665 .00495	.00384 .00286	1	50 22
4.500-12	UN	2A 3A	.00325 .00245	.00188	1 1	47 21	2B 3B	.00425 .00320	.00245 .00185	2 1	20 46
4.500-16	UN	2A 3A	.00295 .00220	.00170 .00127	2 1	10 37	2B 3B	.00380 .00285	.00219 .00165	2 2	47 5
4.625-6	UN	2A 3A	.00515 .00385	.00297 .00222	1	$25 \\ 4$	2B 3B	.00665 .00500	.00384 .00289	1	50 22
4.625-12	UN	2A 3A	.00335 .00250	.00193 .00144	1	51 22	2B 3B	.00435 .00330	.00251 .00191	2 1	$\begin{array}{c} 23 \\ 49 \end{array}$
4.625-16	UN	2A 3A	.00305 .00225	.00176 .00130	2 1	14 39	2B 3B	.00395 .00295	.00228	22	54 10
4.750-4	UN	2A 3A	.00585 .00440	.00338 .00254	1 0	$4 \\ 48$	2B 3B	.00765 .00570	.00442 .00329	1	$\frac{24}{3}$
4.750-6	UN	2A 3A	.00515 .00385	.00297 .00222	1	$^{25}_{4}$	2B 3B	.00670 .00505	.00387 .00292	1	51 23
4.750-12	UN	2A 3A	.00335 .00250	.00193 .00144	1 1	51 22	2B 3B	.00435 .00330	.00251 .00191	2 1	$\begin{array}{c} 23\\ 49 \end{array}$
4.750-16	UN	2A 3A	.00305 .00225	.00176 .00130	2 1	14 29	2B 3B	.00395 .00295	.00228 .00170	$\frac{2}{2}$	54 10
4.875-6	UN	2A 3A	.00520 .00390	.00300 .00225	11	26 4	2B 3B	.00675 .00505	.00390 .00292	1 1	51 23

_

Í				External					Internal		
Nominal size and threads per inch	Series des- ignation	Class	Half of pitch diameter tolerance	Equivalent deviation in lead	Eq dev hal	uivalent viation in f-angle	Class	Half of pitch diameter tolerance	Equivalent deviation in lead	Equi devia half	valent ition in -angle
1	2	3	4	5		6	7	8	9		10
4.875-12	UN	2A 3A	in .00335 .00250	in .00193 .00144	deg 1 1	min 51 22	2B 3B	in . 00435 . 00330	in .00251 .00101	deg 1 1	min 23 49
4.875-16	UN	2A 3A	.00305 .00225	.00176 .00130	2 1	$\frac{14}{39}$	2B 3B	.00395 .00295	.00228 .00170	$\frac{2}{2}$	$54 \\ 10$
5.000-4	UN	2A 3A	.00595 .00445	.00344 .00257	10	5 49	2B 3B	$.00770 \\ .00580$	$.00445 \\ .00335$	1	$\frac{25}{4}$
5.000-6	UN	2A 3A	.00525 .00390	.00303	1	27 4	2B 3B	$.00680 \\ .00510$	$.00393 \\ .00294$	1	$\begin{array}{c} 52\\24\end{array}$
5.000-12	UN	2A 3A	.00335	.00193 .00144	1	$51 \\ 22$	2B 3B	.00435 .00330	.00251 .00191	2	$\frac{23}{49}$
5.000-16	UN	2A 3A	.00305	.00176	2	$ \begin{array}{c} 14 \\ 39 \end{array} $	2B 3B	.00395	$.00228 \\ .00170$	$\frac{2}{2}$	$\frac{54}{10}$
5.125-12	UN	2A 3A	.00335 .00250	.00193 .00144	1	$51 \\ 22$	2B 3B	.00435	.00251 .00191	2	$\frac{23}{49}$
5.125-16	UN	2A 3A	.00305 .00225	.00176	2	14 39	2B 3B	.00395	.00228 .00170	$\frac{2}{2}$	$\frac{54}{10}$
5.250 - 4	UN	2A 3A	.00600 .00450	.00346 .00260	1	$\frac{6}{50}$	2B 3B	.00780	.00450 .00338	1	26 -4
5.250-12	UN	2A 3A	.00335 .00250	.00193 .00144	1	$51 \\ 22$	2B 3B	.00435 .00330	.00251 .00191	$\frac{2}{1}$	$\frac{23}{49}$
5.250-16	UN	2A 3A	.00305	.00176	2	14 39	2B 3B	.00395	.00228 .00170	22	$\frac{54}{10}$
5.375-12	UN	2A 3A	.00335	.00193	1	51 22	2B 3B	.00435	.00251	2	23 49
5.375-16	UN	2A 3A	.00305	.00176	2	$14 \\ 39$	2B 3B	.00395	.00228	22	$\frac{54}{10}$
5.500-4	UN	2A 3A	.00605 .00455	.00349	1	7 50	2B 3B	.00790 .00590	$.00456 \\ .00341$	1	$^{27}_{5}$
5.500-12	UN	2A 3A	.00335 .00250	.00193 .00144	1	51 22	2B 3B	.00435 .00330	.00251 .00191	2	$23 \\ 49$
5.500-16	UN	2A 3A	.00305 .00225	.00176	2	14 39	2B 3B	.00395	.00228	$\frac{2}{2}$	$54 \\ 10$
5.625-12	UN	2A 3A	.00345 .00260	.00199	1	54 26	2B 3B	.00450	.00260 .00193	2 1	28 51
5,625-16	UN	2A 3A	.00310 .00235	.00179	2	$ \begin{array}{c} 16 \\ 43 \end{array} $	2B 3B	.00405	.00234 .00176	22	$\frac{58}{14}$
5.750-4	UN	2A 3A	.00610 .00460	.00352	1	7 51	2B 3B	.00795	.00459 .00344	1	27 5
5.750-12	UN	2A 3A	$.00345 \\ .00260$.00199	1	$\frac{54}{26}$	2B 3B	.00450 .00335	.00260 .00193	2	$\frac{28}{51}$
5.750-16	UN	2A 3A	$.00310 \\ .00235$.00179	2	$ \begin{array}{c} 16 \\ 43 \end{array} $	2B 3B	.00405	.00234 .00176	22	$\frac{58}{14}$
5.875-12	UN	2A 3A	$.00345 \\ .00260$.00199 .00150	1	$\frac{54}{26}$	2B 3B	.00450 .00335	.00260	2	$\frac{28}{51}$
5.875-16	UN	2A 3A	.00310	.00179	2	16 43	2B 3B	.00405	.00234	22	58 14
6.000-4	UN	2A 3A	.00620	.00358	1	8	2B 3B	.00805	.00465	1	$\frac{29}{6}$
6.000-12	UN	2A 3A	.00345	.00199	1	54 26	2B 3B	.00450	.00260	2	28 51
6.000-16	UN	2A 3A	.00310 .00235	.00179	2	16 43	2B 3B	.00405	.00234 .00176	22	58 14

TABLE 2.22. Deviations in lead and half-angle equivalent to one-half of pitch diameter tolerances, Unified screw threads-Continued

N N

INDEX

Allowances	2.17
American National screw threads compared with Unified	2.01
Angle deviations, diameter equivalent of	2.21
Classes, thread	2.17
Coarse-thread series	2.03
Coated threads	2.22
Constant pitch series	2.05
Data, thread	2.02
Design form of Unified thread	2.04
Designating screw threads	2.22
Diameter equivalent of	
Angle deviations	2 21
Lead deviations	2.21
Disposition of tolerances, allowances, and crest clearances	2.06
Engagement, length of	$\frac{00}{221}$
Extra-fine series	2 05
Fine thread series	2.04
Form of thread	$\frac{1}{201}$
High-temperature, high-strength applications	2.05
Increments in nitch diameter tolerance formula	2.18
Lead deviations, diameter equivalent of	2 21
Length of engagement	$\bar{2}\bar{2}1$
Limits of size	2 21
Modified threads	2 24
Solection order of	2.03
Series thread	2.00
Standard Unified series	2.00
Sumhals for thread data	2.00
This wall tubing threads	2.00
Thin-wan tubing threads	2.00
rolerances	4.11

UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

HANDBOOK H28

SCREW-THREAD STANDARDS

FOR FEDERAL SERVICES

section 3

1969

UNIFIED THREADS OF SPECIAL DIAMETERS, PITCHES, AND LENGTHS OF ENGAGEMENT

CONTENTS

Page

Introduction	
Types of special threads	
Unified thread form	
Preferred diameters and pitches	
Thread classes	
Allowances	
Tolerances	
Length of engagement	
Limits of size	
Method of designating screw threads	
Directions for determining limits of size of special threads	
Gages	
Index	
	Introduction

1. INTRODUCTION

The thread series, tolerances, and allowances specified in section 2 of H28 apply in general to bolts, nuts, and tapped holes of standard pitches and diameters. In addition, there are large quantities of threaded parts produced where the relations of diameter to pitch are necessarily different from those of the standard thread series, and the lengths of engagement either shorter or longer than for bolt and nut practice. Such threads are designated "threads of special diameters, pitches, and lengths of engagement". Selected combinations of Unified special screw threads are listed in table 3.1. Pitch diameter tolerances in this table are based on a length of thread engagement of 9 times the pitch. The pitch diameter limits are applicable to a length of engagement of from 5 to 15 times the pitch. (This should not be confused with the length of thread on mating parts, as it may exceed the length of engagement by a considerable amount.)

2. TYPES OF SPECIAL THREADS

There are various degrees of specialization in the design of special threads that may be classified as follows:

(1) A standard thread that is modified by the inclusion of some nonstandard feature as discussed in section 2,

(2) A thread of a standard diameter such as is found in one or more of the thread series in section 2 associated with a standard pitch listed in table 2.1 forming a diameter-pitch combination that is not in a standard thread series; for example, 1.000-10 UNS.

(3) A diameter of odd size such as 1.137 in. associated with a standard pitch,

(4) A thread of either standard or nonstandard diameter associated with a nonstandard pitch; for example, 1.000-15 UNS or .895-26 UNS,

(5) A thread of any of the first four degrees of specialization to which special tolerances are applied,

(6) A completely special thread that deviates from the standard Unified thread form.

In the interest of economy, the designer should adhere to standard threads or to thread features conforming as closely as possible to established standards. It should be remembered that special threads entail the design and manufacture of special threading tools and gages with consequent greater costs, increase in inventories, and difficulties in procuring spare parts when replacements are necessary.

In this section, standards for special threads are presented, including thread form, selected combinations of Unified special screw threads (table 3.1), allowances and tolerances, and detailed directions for specifying special threads on drawings. A discussion of factors affecting the design of special threads is presented in appendix A5.

3. UNIFIED FORM OF THREAD

The Unified form of thread profile as specified in section 2 shall be used.

4. PREFERRED DIAMETERS AND PITCHES

The use, whenever possible, of the standard series of screw threads listed in table 2.7 is recommended for all applications. Whenever sizes and pitches in table 2.7 are not suitable, the designer should, if possible, choose a thread from table 3.1 which lists selected combinations of Unified special screw threads. If a selection cannot be made from either table 2.7 or 3.1, consideration should be given to the following paragraphs in a choice of thread.

4.1. PREFERRED DIAMETERS.—Whenever possible, the basic diameter should be selected from series of diameter increments as follows:

Range	Diameter increments		
	First choice	Second choice	
in	in	in	
0.25 to 0.6	0.05		
bove 0.6 to 1.5	0.1	0.05	
bove 6 to 16	0.25	0.1	
above 16 to 24	1.0	0.5	

It is recommended that diameters less than 0.25 in conform to the standard sizes of screws under 0.25 in. as there is virtually no necessity for the selection of a diameter not included in those sizes. Furthermore, the coarse and fine thread series provide ample choice as to diameter-pitch combinations.

4.2. PREFERRED PITCHES.—Whenever possible, the pitch should be selected from the series 40, 36, 32, 28, 24, 20, 16, 12, 10, 8, 6, and 4 threads per inch. Intermediate pitches should be used only when absolutely necessary. Pitches coarser than 4 threads per inch are not recommended.

There are practical limits to both the largest and smallest diameters suitable for any pitch. The curves on the chart for determining minimum length of thread engagement in Appendix A5 stop at such limits.

4.3. BASIC THREAD DATA.—Basic thread data for standard pitches are given in table 2.1. These data are to be used in conjunction with the directions for specifying special threads on drawings as given in par. 5.4, p. 3.02.

5. THREAD CLASSES

Thread classes are distinguished from each other by the amounts of tolerance and allowance. The function of these classes is to assure the interchangeability of threaded parts. Six distinct classes of screw threads have been established for general use. These classes are: 1A, 2A, and 3A (for external threads only) and 1B, 2B, and 3B (for internal threads only).

Class 1AR (for external threads only, 16 threads per inch and coarser) is also included for special use. Class 1AR is produced by combining the American National class 1 allowances with class 1A tolerances.

The disposition of the tolerances, allowances, and crest clearances for the six general use classes is illustrated in figures 2.5 and 2.6.

The requirements for a screw thread fit for a specific application can be met by specifying the proper combination of classes for the components. For example, an external thread made to class 2A limits can be used with an internal thread made to classes 1B, 2B, or 3B limits for specific applications.

5.1. CLASSES 1A, 1AR, and 1B.—The combinations of classes 1A or 1AR and 1B are intended to cover the manufacture of threaded parts where quick and easy assembly is necessary, and where an allowance is required to permit ready assembly, even when the threads are slightly bruised or dirty.

Maximum diameters of class 1A (external) threads are less than basic by the amount of the same allowance as applied to class 2A. For the intended applications in American practice the allowance is not available for plating or coating. Where the thread is plated or coated, special provisions are necessary. The minimum diameters of class 1B (internal) threads, whether or not plated or coated, are basic, affording no allowance or clearance for assembly with maximum material external thread components having maximum diameters which are basic.

Allowances for all diameters and pitch diameter tolerances are specified in tables 3.2, 3.3, and 3.6. Their application is shown in figure 2.5.

5.2. CLASSES 2A and 2B.—Classes 2A for external threads and 2B for internal threads are designed for general use. A moderate allowance is provided for class 2A threads.

The maximum diameters of class 2A (external) uncoated threads are less than basic by the amount of the allowance. The allowance minimizes galling and seizing in high-cycle wrench assembly, or it can be used to accommodate plated finishes or other coating. However, for threads with additive finish, the maximum diameters of class 2A may be exceeded by the amount of the allowance; i.e., the 2A maximum diameters apply to an unplated part or to a part before plating, whereas the basic diameters (the 2A maximum diameter plus allowance) apply to a part after plating. The minimum diameters of class 2B (internal) threads, whether or not plated or coated, are basic, affording no allowance or clearance in assembly at maximum material limits.

Allowances for all diameters and pitch diameter tolerances are specified in tables 3.2, 3.4, and 3.7. Their application is shown in figure 2.5.

5.3. CLASSES 3A AND 3B.—Classes 3A for external threads and 3B for internal threads provides for applications where closeness of fit and accuracy of lead and angle of thread are important. They are obtainable consistently only by the use of high quality production equipment supported by a very efficient system of gaging and inspection. The maximum diameters of class 3A (external) threads and the minimum diameters of class 3B (internal) threads, whether or not plated or coated, are basic, affording no allowance or clearance for assembly of maximum material components

No allowance is provided, but since the tolerances on GO gages are within the limits of size of the product, the gages will assure a slight clearance between product made to the maximum-material limits. Pitch diameter tolerances are specified in tables 3.5 and 3.8. Their application is shown in figure 2.6.

5.4. SELECTION OF CLASS OF THREAD.—Consideration should first be given to the use of a class 2A external thread with a class 2B internal thread since these classes are designed for general use. The use of class 2A provides that there will always be a small clearance between maximum-material parts except when the external thread is plated. Plated parts are intended to be gaged with basic-size GO gages. In either case, it is expected that parts will assemble readily without galling or seizing. Tolerances are sufficiently large so that ordinary production methods are generally applicable.

Past experience with similar designs may indicate that a more accurately made or closer fitting thread is required than that which is permitted by classes 2A and 2B tolerances. In such cases consideration should be given to the use of classes 3A and 3B. The necessary increase in cost should not be overlooked.

In some designs there may be advantages in providing for greater average looseness of fit than that obtained with classes 2A and 2B. Such greater average looseness is provided by classes 1A and 1B or the assembly of class 1A external threads with class 2B internal threads. The minimum looseness, however, is the same as for classes 2A and 2B except that a positive allowance is provided for plated parts. When a greater minimum looseness is requisite to provide for adverse conditions of assembly, class 1AR is available, which is not a Unified class and is based on the American National class 1 allowance combined with class 1A tolerance. These classes also provide larger tolerances to the manufacturer, which may be of advantage if the thread is difficult to produce.

It should be noted that any class of external thread may be associated with any class of internal thread, there being no requirement to combine classes of like number.

6. ALLOWANCES

The allowance is minus and is applied from the basic size to below basic size. Allowance is applied only to the classes 1A, 1AR, and 2A external threads. Values of the allowance for classes 1A and 2A are obtained by use of a C factor of 0.3 in the formula shown in paragraph 7.3. Numerical values of classes 1A and 2A allowances for the commonly used pitches are listed in table 3.2.

The formula in paragraph 7.3 is not applicable to class 1AR as this class is produced by combining the American National class 1 allowances with class 1A tolerances. These allowances are larger than those for classes 1A and 2A and provide for ready assembly under adverse conditions.

Numerical values of class 1AR allowances are:

Threads per inch (tpi), n	Class 1AR allowance
16 14 12 10 8 6 4	in 0.0018 .0021 .0024 .0028 .0034 .0034 .0044 .0064

(Class 1AR allowances apply only to external threads, 16 tpi and coarser.)

7. TOLERANCES

The following general specifications apply to all classes specified for applications of the Unified form of thread.

7.1. UNIFORM MINIMUM INTERNAL THREAD.— The minimum major, pitch, and minor diameters of the internal thread are, respectively, the same for classes 1B, 2B, and 3B.

7.2. DIRECTION AND SCOPE OF TOLERANCES .---

(a) The tolerance on the internal thread is plus, and is applied from the basic size to above basic size.

(b) The tolerance on the external thread is minus and is applied from the maximum (or design) size to below the maximum size.

(c) The tolerances specified represent the extreme variations permitted on the product.

7.3. PITCH DIAMETER TOLERANCES.—The basic formula for pitch diameter tolerance is composed of the following increments:

P.D. Tolerance

$$= C(0.0015\sqrt[3]{\bar{D}} + 0.0015\sqrt{L_e} + 0.015\sqrt[3]{p^2}),$$

where

- C = a factor which differs for each class
- D =basic major diameter
- $L_e = \text{length of engagement}$

$$p = pitch.$$

This formula is based on the accuracy of present day threading practice, and is applicable to all reasonable combinations of diameter, pitch, and length of engagement. Numerical values of the increments in the formula for standard diameters, pitches, and lengths of engagement are given in table 2.19. The values of factor C for pitch diameter tolerances are as follows:

Class	Factor C
1A and	
IAR	1.500
18	1.950
2A 2B	1,000
3A	0.750
3B	.975

It will be noted that the factor C is 30 percent greater for internal than for external threads of a given class number on account of the relative difficulties of manufacture.

Numerical values of pitch diameter tolerances for classes 1A, 1AR, 1B, 2A, 2B, 3A, and 3B are given in tables 3.3 through 3.8. Two sets of tolerances are given: Those for 5 to 15 pitches length of engagement, based on lengths of 9 pitches, and those for 16 to 30 pitches length of engagement, which are 1.25 times the 9-pitch values. For lengths of engagement over 30 pitches, it is recommended that pitch diameter tolerances 1.5 times the 9-pitch values be used. If excessively small or large lengths of engagement are encountered, the thread tolerances may be calculated from the formulas, if considered advisable. Also, for threads per inch not included in the tables, tolerances should be calculated by applying the formulas.

7.4. MAJOR DIAMETER TOLERANCES.—(a) External threads.—The tolerance on major diameter for special threads is not specified, as it must be determined in relation to the requirements of a given design in accordance with the procedure outlined in appendix A5. Preferred tolerances equal to $0.060 \sqrt[3]{p^2}$ for classes 2A and 3A, and equal to $0.090 \sqrt[3]{p^2}$ for classes 1A and 1AR are as follows:

Threads	Major diameter tolerance		
per inch	Classes 1A and 1AR, $0.090\sqrt[3]{p^2}$	Classes 2A and 3A, $0.060\sqrt[3]{p^2}$	
	in	in	
80		0.0032	
72		.0035	
64		.0038	
56		.0041	
48		.0045	
44		.0048	
40	0.0077	.0051	
36	.0083	.0055	
32	.0089	.0060	
28	.0098	.0065	
27	.0100	.0067	
24	.0108	.0072	
20	.0122	.0081	
18	.0131	.0087	
16	.0142	.0094	
14	.0155	.0103	
12	.0172	.0114	
10	.0194	.0129	
8	.0225	.0150	
6	.0273	.0182	
4	.0357	.0238	

(b) Internal threads.—The tolerance on major diameter is for reference only. It is equal to H/6plus the pitch diameter tolerance of the class of thread involved. The maximum major diameter of the internal thread may be determined by adding 0.793857p (= 11H/12, table 2.1) to the maximum pitch diameter of the internal thread. However, this diameter shall not result in a root flat width less than p/24. In dimensioning internal threads the maximum major diameter is not specified, being established by the crest of an unworn tool. In practice, the major diameter of an internal thread is satisfactory when accepted by a gage or gaging method that represents the maximum material condition of an external thread which has no allowance.

7.5. MINOR DIAMETER TOLERANCES.—(a) Ex-ternal threads.—The tolerance on minor diameter of external threads is for reference only. At the nominal minor diameter, that is, at the intersection of the rounded root with its center line (see fig. 2.3) it equals the pitch diameter tolerance plus H/12 and applies only where the rounded root is a requirement of the design. Otherwise the tolerance shall be H/4 plus the pitch diameter tolerance. The minimum minor diameter of the external thread may be determined by subtracting 0.649519p (= 0.75H, table 2.1) from the minimum pitch diameter of the external thread. However, this diameter shall not result in a root flat width less than p/8. In dimensioning external threads the minimum minor diameter is not specified, being established by the crest of an unworn tool. In practice, the minor diameter of an external thread is satisfactory when accepted by a gage or gaging method that represents the maximum-material condition of the internal thread less the allowances, if any.

(b) Internal threads.—Formulas for the internal thread minor diameter tolerances are shown in table 2.20. Numerical values for the tolerances are shown in tables 3.9 and 3.10. To reduce the number of minor diameter tolerances to a practical minimum, tolerances are shown in these tables for selected pitches and diameters. In these tables, the tolerances are as follows:

Length of engagement	Percent of formula value	Tolerance ratio
Less than 0.33D From 0.33D to 0.67D Over 0.67D to 1.5D Over 1.5D	50% 75% 100% 125%	$0.5 \\ 0.75 \\ 1.0 \\ 1.25$

When the tolerance value so computed is more than 0.394p, which corresponds to a resulting minimum thread height of 53 percent, the value is adjusted to equal 0.394p.

8. LENGTH OF ENGAGEMENT

The values in tables 3.9 and 3.10 for lengths of engagement from 0.67D to 1.5D, are suitable for general applications.

Some thread applications have lengths of engagement which are greater than 1.5 diameters or less than 0.67D. For applications having shorter or longer lengths of engagement it may be advantageous to decrease or increase the internal thread minor diameter tolerance as explained below.

The principal practical factors that govern these tolerances are tapping difficulties, particularly tap breakage in the small sizes, availability of standard drill sizes in the medium and large sizes, and depth of engagement. Depth of engagement correlates with the stripping strength of the thread assembly, and thus also with the length of engagement. It also correlates with the tendency toward disengagement of the threads on one side when assembly is eccentric. The amount of possible eccentricity is one half of the sum of the pitch diameter allowance and tolerance on both mating threads. For a given pitch or height of thread this sum increases with the diameter, and accordingly this factor would require a decrease in minor diameter tolerance with increase in diameter. However, such decrease in tolerance often is not feasible without requiring special drill sizes; therefore, to be able to use as many as possible of the available standard drill sizes listed in USA B5.12, the minor diameter tolerance for classes 1B and 2B of a given pitch for 0.25 in. diameter and larger is constant, in accordance with the formula:

$$0.25p - 0.4p^2$$
.

There may be applications where the lengths of engagement of the mating threads or the combination of materials used for mating threads are such that the maximum tolerance may not provide the desired strength of the fastening. Experience has shown that for lengths of engagements less than 0.67D (the minimum thickness of standard nuts) the minor diameter tolerance may be reduced without causing tapping difficulties.

In other applications, the length of engagement of mating threads may be long because of design considerations or the combination of materials used for mating threads. As the threads engaged increase in number, their depth of engagement may be shallower and still develop stripping strength greater than the external thread breaking strength. In these cases the maximum tolerance should be increased to reduce the possibility of tapping difficulties.

Recommended internal thread minor diameter tolerances for various lengths of engagement are shown in tables 3.9 and 3.10. Recommended hole size limits before threading for different lengths of engagement are shown in appendix A3.

9. LIMITS OF SIZE

With respect to the pitch diameter limits of size, it is intended, except as hereinafter qualified, that no portion of the complete thread be permitted to project beyond the envelope defined by the maximum-material limits on the one hand, or beyond that defined by the minimum-material limits on the other, and thus be outside of the tolerance zone as illustrated in figures 2.5 and 2.6. The full tolerance cannot therefore, be used on pitch diameter unless deviations in other thread elements are zero.

Diameter equivalents of variations in lead, uniformity of helix, and flank angle are in the direction toward maximum material. Also included in pitchdiameter limits are other variations from size and profile, such as taper, out-of-round, and surface defects. Thus the maximum-material pitch diameter limits are a limitation of the virtual diameter (effective size) and are so specified herein for all thread classes. It is intended that diameter equivalents of deviations in any given element except pitch diameter should not exceed one-half of the pitch-diameter tolerance. Values are given in table 2.22 for deviations in lead and half-angle equivalent to one-half of pitch diameter tolerances. Flank angle equivalents should be based on a depth of thread engagement of 0.625H.

Variations in taper and roundness of the pitch diameter, together with variations of the pitch diameter as a whole, may be in the direction of minimum material and thus the minimum-material pitch diameter limit may be specified as a limitation of the pitch diameter as a single element. However, in view of the interrelation of the pitch diameter, variations in lead and flank angle, etc., together with practical considerations relating to established production processes, product application and inspection procedures, except for class 3A, for fasteners and some custom threaded parts, it is customary to base acceptance at the minimummaterial condition (minimum pitch diameter of the external thread and maximum pitch diameter of the internal thread) on threaded plug and ring gaging, with gages to the thread form and length specified in section 6. See Dimensional acceptability of threads in that section.

10. METHOD OF DESIGNATING SPECIAL SCREW THREADS

For the method of designating threads of special diameters, pitches, and lengths of engagement, and UNS threads (threads with Unified tolerance formulations), see also section 2.

The symbol "UNS" is applicable to any thread,

(1) having the basic Unified thread form,

(2) with limits based on Unified formulations, and(3) which is not listed in table 2.7.

Selected combinations of UNS threads are listed in table 3.1.

11. DIRECTIONS FOR DETERMINING LIMITS OF SIZE OF SPECIAL THREADS

The following directions are intended to simplify the task of the designer or specification writer in preparing the specification for a special thread:

The procedure to be followed in determining values for the essential thread elements (as shown in fig. 3.12) and the associated tolerances, is outlined in table 3.11. The application of this and other tables is illustrated by the following example:

Internal thread, 2.500-28UNS-2B Length of engagement, 1 in.

=	2.5000 in.
=	basic major diameter –
	0.75H (table 2.1)
=	2.5000 - 0.0232 =
	2.4768
=	min pitch diameter +
	tolerance (table 3.7)
=	2.4768 + 0.0064 =
	2.4832
=	basic major diameter –
	1.25H (table 2.1)
=	2.500 - 0.0387 = 2.461
=	min minor diameter +
	tolerance $(table 3.9)$
=	2.4613 + 0.0063 = 2.468.

The dimensions of the above internal thread may be stated on the drawing as follows:

Major diameter: 2.5000 min
Pitch diameter: $2.4768 + 0.0064$
- 0.0000
Minor diameter: $2.461 + 0.0063$
- 0.0000

Threads	Major diameter tolerance		
per inch	Classes 1A and 1AR, $0.090\sqrt[3]{p^2}$	Classes 2A and 3A, $0.060\sqrt[3]{p^2}$	
	in	in	
80		0.0032	
$\ddot{7}2$.0035	
64		.0038	
$\overline{56}$.0041	
48		.0045	
$\overline{44}$.0048	
40	0.0077	.0051	
36	.0083	.0055	
32	.0089	.0060	
28	.0098	.0065	
27	.0100	.0067	
24	.0108	.0072	
20	.0122	.0081	
18	.0131	.0087	
16	.0142	.0094	
14	.0155	.0103	
12	.0172	.0114	
10	.0194	.0129	
8	.0225	.0150	
6	.0273	.0182	
4	.0357	.0238	

(b) Internal threads.—The tolerance on major diameter is for reference only. It is equal to H/6plus the pitch diameter tolerance of the class of thread involved. The maximum major diameter of the internal thread may be determined by adding 0.793857p (= 11H/12, table 2.1) to the maximum pitch diameter of the internal thread. However, this diameter shall not result in a root flat width less than p/24. In dimensioning internal threads the maximum major diameter is not specified, being established by the crest of an unworn tool. In practice, the major diameter of an internal thread is satisfactory when accepted by a gage or gaging method that represents the maximum material condition of an external thread which has no allowance.

7.5. MINOR DIAMETER TOLERANCES.—(a) External threads.—The tolerance on minor diameter of external threads is for reference only. At the nominal minor diameter, that is, at the intersection of the rounded root with its center line (see fig. 2.3) it equals the pitch diameter tolerance plus H/12 and applies only where the rounded root is a requirement of the design. Otherwise the tolerance shall be H/4 plus the pitch diameter tolerance. The minimum minor diameter of the external thread may be determined by subtracting 0.649519p (= 0.75H, table 2.1) from the minimum pitch diameter of the external thread. However, this diameter shall not result in a root flat width less than p/8. In dimensioning external threads the minimum minor diameter is not specified, being established by the crest of an unworn tool. In practice, the minor diameter of an external thread is satisfactory when accepted by a gage or gaging method that represents the maximum-material condition of the internal thread less the allowances, if any.

(b) Internal threads.—Formulas for the internal thread minor diameter tolerances are shown in table 2.20. Numerical values for the tolerances are shown in tables 3.9 and 3.10. To reduce the number of minor diameter tolerances to a practical minimum, tolerances are shown in these tables for selected pitches and diameters. In these tables, the tolerances are as follows:

Length of engagement	Percent of formula value	Tolerance ratio
Less than 0.33D From 0.33D to 0.67D_ Over 0.67D to 1.5D Over 1.5D	$50\% \\ 75\% \\ 100\% \\ 125\%$	$0.5 \\ 0.75 \\ 1.0 \\ 1.25$

When the tolerance value so computed is more than 0.394p, which corresponds to a resulting minimum thread height of 53 percent, the value is adjusted to equal 0.394p.

8. LENGTH OF ENGAGEMENT

The values in tables 3.9 and 3.10 for lengths of engagement from 0.67D to 1.5D, are suitable for general applications.

Some thread applications have lengths of engagement which are greater than 1.5 diameters or less than 0.67D. For applications having shorter or longer lengths of engagement it may be advantageous to decrease or increase the internal thread minor diameter tolerance as explained below.

The principal practical factors that govern these tolerances are tapping difficulties, particularly tap breakage in the small sizes, availability of standard drill sizes in the medium and large sizes, and depth of engagement. Depth of engagement correlates with the stripping strength of the thread assembly, and thus also with the length of engagement. It also correlates with the tendency toward disengagement of the threads on one side when assembly is eccentric. The amount of possible eccentricity is one half of the sum of the pitch diameter allowance and tolerance on both mating threads. For a given pitch or height of thread this sum increases with the diameter, and accordingly this factor would require a decrease in minor diameter tolerance with increase in diameter. However, such decrease in tolerance often is not feasible without requiring special drill sizes; therefore, to be able to use as many as possible of the available standard drill sizes listed in USA B5.12, the minor diameter tolerance for classes 1B and 2B of a given pitch for 0.25 in. diameter and larger is constant, in accordance with the formula:

$$0.25p - 0.4p^2$$
.

There may be applications where the lengths of engagement of the mating threads or the combination of materials used for mating threads are such that the maximum tolerance may not provide the desired strength of the fastening. Experience has shown that for lengths of engagements less than 0.67D (the minimum thickness of standard nuts) the minor diameter tolerance may be reduced without causing tapping difficulties.

In other applications, the length of engagement of mating threads may be long because of design considerations or the combination of materials used for mating threads. As the threads engaged increase in number, their depth of engagement may be shallower and still develop stripping strength greater than the external thread breaking strength. In these cases the maximum tolerance should be increased to reduce the possibility of tapping difficulties.

Recommended internal thread minor diameter tolerances for various lengths of engagement are shown in tables 3.9 and 3.10. Recommended hole size limits before threading for different lengths of engagement are shown in appendix A3.

9. LIMITS OF SIZE

With respect to the pitch diameter limits of size, it is intended, except as hereinafter qualified, that no portion of the complete thread be permitted to project beyond the envelope defined by the maximum-material limits on the one hand, or beyond that defined by the minimum-material limits on the other, and thus be outside of the tolerance zone as illustrated in figures 2.5 and 2.6. The full tolerance cannot therefore, be used on pitch diameter unless deviations in other thread elements are zero.

Diameter equivalents of variations in lead, uniformity of helix, and flank angle are in the direction toward maximum material. Also included in pitchdiameter limits are other variations from size and profile, such as taper, out-of-round, and surface defects. Thus the maximum-material pitch diameter limits are a limitation of the virtual diameter (effective size) and are so specified herein for all thread classes. It is intended that diameter equivalents of deviations in any given element except pitch diameter should not exceed one-half of the pitch-diameter tolerance. Values are given in table 2.22 for deviations in lead and half-angle equivalent to one-half of pitch diameter tolerances. Flank angle equivalents should be based on a depth of thread engagement of 0.625H.

Variations in taper and roundness of the pitch diameter, together with variations of the pitch diameter as a whole, may be in the direction of minimum material and thus the minimum-material pitch diameter limit may be specified as a limitation of the pitch diameter as a single element. However, in view of the interrelation of the pitch diameter, variations in lead and flank angle, etc., together with practical considerations relating to established production processes, product application and inspection procedures, except for class 3A, for fasteners and some custom threaded parts, it is customary to base acceptance at the minimummaterial condition (minimum pitch diameter of the external thread and maximum pitch diameter of the internal thread) on threaded plug and ring gaging, with gages to the thread form and length specified in section 6. See Dimensional acceptability of threads in that section.

10. METHOD OF DESIGNATING SPECIAL SCREW THREADS

For the method of designating threads of special diameters, pitches, and lengths of engagement, and UNS threads (threads with Unified tolerance formulations), see also section 2.

The symbol "UNS" is applicable to any thread,

(1) having the basic Unified thread form,

(2) with limits based on Unified formulations, and(3) which is not listed in table 2.7.

Selected combinations of UNS threads are listed in table 3.1.

11. DIRECTIONS FOR DETERMINING LIMITS OF SIZE OF SPECIAL THREADS

The following directions are intended to simplify the task of the designer or specification writer in preparing the specification for a special thread:

The procedure to be followed in determining values for the essential thread elements (as shown in fig. 3.12) and the associated tolerances, is outlined in table 3.11. The application of this and other tables is illustrated by the following example:

Internal thread, 2.500-28UNS-2B Length of engagement, 1 in.

Min major diameter	=	2.5000 in.
Min pitch diameter	=	basic major diameter -
-		0.75H (table 2.1)
	=	2.5000 - 0.0232 =
		2.4768
Max pitch diameter	=	min pitch diameter +
-		tolerance (table 3.7)
	=	2.4768 + 0.0064 =
		2.4832
Min minor diameter	=	basic major diameter -
		1.25H (table 2.1)
	=	2.500 - 0.0387 = 2.461
Max minor diameter	=	min minor diameter +
		tolerance (table 3.9)
	=	2.4613 + 0.0063 = 2.468.

The dimensions of the above internal thread may be stated on the drawing as follows:

 External thread, 2.500-28UNS-2A (To mate with the above thread)

Max major diameter	=	basic major diameter	_
Ū.		allowance (table 3.2)	
	=	2.5000 - 0.0014 = 2.498	36
Min major diameter	=	max major diameter	_
		tolerance (tabulated	on
		p. 3.04)	
	=	2.4986 - 0.0065 = 2.492	21
Max pitch diameter	=	max major diameter	—
		0.75H (table 2.1)	
	=	2.4986 - 0.0232 = 2.478	54
Min pitch diameter	=	max pitch diameter – t	ol-
		erance (table 3.4)	
	=	2.4754 - 0.0049 = 2.470)5
Nom minor diameter	=	max_major diameter	
		17H/12 (1.4167H) (ta	ble
		2.1)	
	=	2.4986 - 0.0438 = 2.45	48.

The dimensions of the above external thread may

be stated on the drawing as follows:

The design of a special thread usually requires that consideration be given to various factors in order that the thread assembly will function properly. These factors are discussed in appendix A5. It is to be noted particularly that deviations from the preferred tolerances for major diameter of the external thread and for minor diameter of the internal thread may be necessary in order to arrive at the optimum design.

12. GAGES

The specifications for gages, including marking, as presented in section 6 apply also to gages for special threads.

TABLE 3.1. Selected combinations, Unified special screw threads, UNS

				Exte	rnala							Internal]a		
Nominal size and threads per inch	Class	Allowance	Major o	liameter	I	Pitch diam	eter	(c) Minor diameter	Class	Minor o	liameter	I	Pitch diam	eter	Major diameter
			Махь	Min	Max ^b	Min	Tolerance			Min	Max	Min	Max	Tolerance	Min
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
. 190-28	24	in 0.0010	in 0.1890	in 0 1825	in 0 1658	in 0 1625	in 0 0033	in 0 1452	2B	in 0 151	in 0 160	in 0 1668	in 0 1711	in 0.0043	in 0 1900
.190-36	24	0009	1891	1836	1711	1681	0030	1550	2B	160	.166	1720	1759	0039	1900
. 190-40	24	0009	1891	1840	1729	1700	0029	1584	2B	163	169	1738	1775	0037	1900
190-48	24	.0008	1892	1817	1757	1731	.0026	1636	2B	167	172	1765	1799	0034	1900
190-56	24	0007	1893	1859	1777	1759	0025	1674	2D 9B	171	175	1781	1816	0032	1900
216-36	24	0000	9151	2006	1971	10.11	0030	1810	2D 9B	186	102	1080	2010	0039	2160
.210-30	24	.0000	.2101	2100	1000	1060	.0030	1911	20	190	105	1000	2015	.0035	.2100
.210-40	24	.0005	.2151	.2100	.1909	1001	.0025	1996	2D	.109	100	.1990	.2055	.0037	.2100
.210-48	24	.0008	.2132	.2107	.2017	. 1991	.0020	1021	2D 0D	.195	.190	. 2025	.2009	.0034	.2100
.210-20	2A	.0007	.2153	.2112	. 2037	.2012	.0025	.1934	28	. 197	. 201	.2044	.2076	.0032	.2160
. 250-24	ZA	.0011	.2489	.2417	, 2218	.2181	.0037	.1978	28	.205	.215	. 2229	.2277	.0048	.2500
. 250-27	2A	.0010	.2490	.2423	. 2249	.2214	.0035	.2036	28	.210	. 219	. 2259	.2304	.0045	.2500
.250-36	2A	.0009	.2491	.2436	.2311	. 2280	.0031	.2150	28	.220	. 226	. 2320	.2360	.0040	.2500
. 250-40	2A	.0009	.2491	.2440	.2329	.2300	.0029	.2184	28	.223	.229	.2338	.2376	.0038	. 2500
.250-48	2A	.0008	.2492	. 2447	. 2357	.2330	.0027	.2236	28	. 227	.232	. 2365	.2401	.0036	. 2500
.250-56	2A	.0008	. 2492	.2451	.2376	. 2350	.0026	.2273	2B	.231	. 235	.2384	.2417	.0033	. 2500
.3125 - 27	2A	.0010	.3115	. 3048	.2874	. 2839	. 0035	. 2661	2B	.272	.281	.2884	. 2929	.0045	. 3125
.3125-36	2A	.0009	.3116	.3061	.2936	.2905	.0031	.2775	2B	. 282	. 289	. 2945	.2985	.0040	.3125
.3125 - 40	2A	.0009	.3116	.3065	.2954	. 2925	. 0029	. 2809	2B	. 285	.291	.2963	.3001	.0038	.3125
.3125-48	2A	.0008	.3117	. 3072	.2982	.2955	.0027	.2861	2B	. 290	.295	.2990	.3026	.0036	. 3125
.375-18	2A	.0013	.3737	.3650	.3376	.3333	.0043	.3055	2B	.315	.328	.3389	.3445	.0056	.3750
.375 - 27	2A	.0011	.3739	.3672	.3498	.3462	.0036	.3285	2B	.335	.344	.3509	.3556	.0047	.3750
.375-36	2A	.0010	.3740	.3685	.3560	.3528	.0032	.3399	2B	.345	.352	.3570	.3612	.0042	.3750
.375-40	2A	.0009	.3741	.3690	. 3579	.3548	.0031	.3434	2B	.348	.354	.3588	.3628	.0040	.3750
.390-27	2A	.0011	.3889	.3822	.3648	-, 3612	.0036	.3435	2B	.350	.359	. 3659	.3706	.0047	. 3900
.4375-18	2A	.0013	.4362	.4275	. 4001	.3958	.0043	.3680	2B	.377	.390	.4014	.4070	.0056	.4375
.4375-24	2A	.0011	.4364	. 4292	. 4093	. 4055	.0038	.3853	2B	. 392	.402	.4104	.4153	.0049	.4375
.4375-27	2A	.0011	.4364	. 4297	. 4123	.4087	.0036	.3910	2B	.397	.406	.4134	.4181	.0047	. 4375
.4375-36	2A	.0011	.4365	. 4310	.4185	.4153	.0032	.4024	2B	. 407	.414	. 4195	.4237	.0042	. 4375
.4375-40	2A	.0009	.4366	.4315	. 4204	. 4173	.0031	.4059	2B	.410	.416	. 4213	. 4253	.0040	. 4375
.500-12	2A 3A	.0016	$.4984 \\ .5000$	$.4870 \\ .4886$	$.4443 \\ .4459$	$.4389 \\ .4419$	$.0054 \\ .0040$	$.3962 \\ .3978$	2B 3B	.410 .4100	$.428 \\ .4223$	$.4459 \\ .4459$	$.4529 \\ .4511$.0070 .0052	.5000 .5000
.500-14	2A	.0015	.4985	.4882	.4521	.4471	.0050	.4109	2B	. 423	.438	.4536	.4601	.0065	. 5000
.500-18	2A	.0013	.4987	. 4900	.4626	.4582	.0044	.4305	2B	. 440	. 453	.4639	.4697	.0058	.5000
.500-24	2A	.0012	.4988	. 4916	.4717	.4678	.0039	.4477	2B	. 455	.465	. 4729	.4780	.0051	.5000
.500-27	2A	.0011	.4989	. 4922	.4748	.4711	.0037	.4535	2B	.460	.469	. 4759	. 4807	.0048	.5000
.500-36	2A	.0010	.4990	. 4935	.4810	. 4777	.0033	.4649	2B	.470	.476	.4820	.4863	.0043	.5000
.500-40	2A	.0010	.4990	.4939	.4828	. 4796	.0032	.4683	2B	.473	.479	.4838	. 4879	.0041	.5000
.5625-14	2A	.0015	.5610	.5507	.5146	.5096	.0050	.4734	2B	. 485	.501	.5161	.5226	.0065	.5625
.5625-27	2A	.0011	.5614	.5547	.5373	.5336	.0037	.5160	2B	.522	.531	.5384	.5432	.0048	.5625
.5625-36	24	.0010	.5615	5560	.5435	.5402	.0033	.5274	2R	.532	539	.5115	.5.188	.0043	5625
.5625-10	24	.0010	.5615	5561	5.152	5.191	.0000	5208	9R	525	541	5162	5504	0041	5695
625-14	2A	.0015	6235	6139	5771	5720	0051	5350	2B	518	564	5786	5859	0066	6250

See footnotes at end of table.

				Exter	nala							Interna	la		
Nominal size and threads per inch	Class	Allowance	Major d	iameter	Р	itch diam	eter	(e) Minor diameter	Class	Minor d	iameter	Р	itch diam	eter	Major diameter
·			Maxb	Min	Max ^b	Min	Tolerance			Min	Max	Min	Max	Tolerance	Min
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
625 97		in	in 6920	in 6170	in 5008	in 5060	in 00.28	in 5795	212	in 595	in 504	in 6000	in 6050	in 0050	in
625-36	2A 2A	0010	6240	6185	6060	6026	0034	5899	2D 2B	.505	.554	6070	6114	0030	6250
.625-40	2A	.0010	.6240	.6189	.6078	.6045	.0033	.5933	2B	.598	.604	.6088	.6131	.0043	. 6250
.750-14	2A	.0015	.7485	.7382	.7021	.6970	.0051	.6609	2B	.673	.688	.7036	.7103	.0067	.7500
.750-18	2A	.0014	.7486	.7399	.7125	.7079	.0046	.6804	2B	. 690	.703	.7139	.7199	.0060	.7500
.750-24	2A	.0012	.7488	.7416	.7217	.7176	.0041	.6977	2B	.705	.715	.7229	.7282	. 0053	.7500
.750-27	2A	.0012	.7488	.7421	.7247	.7208	.0039	.7034	2B	.710	.719	.7259	.7310	.0051	.7500
.750-36	2A	.0010	.7490	.7435	.7310	.7275	.0035	.7149	2B	.720	.726	.7320	.7365	.0045	.7500
.750-40	2A	.0010	.7490	.7439	.7328	.7294	.0034	.7183	2B	.723	.729	.7338	.7382	.0044	.7500
.875-10	2A	.0018	.8732	.8603	.8082	.8022	.0060	.7505	2B	.767	.788	.8100	.8178	.0078	.8750
.875-18	2A	.0014	.8736	.8649	. 8375	.8329	.0046	. 8054	2B	.815	. 828	. 8389	.8449	.0060	.8750
.875-24	2A	.0012	. 8738	. 8666	.8467	.8426	.0041	.8227	2B	. 830	.840	.8479	. 8532	.0053	.8750
.875-27	2A	.0012	. 8738	.8671	.8497	.8458	.0039	.8284	2 B	. 835	.844	.8509	. 8560	.0051	. 8750
.875-36	2A	.0010	. 8740	. 8685	.8560	. 8525	.0035	. 8399	2 B	.845	.852	. 8570	.8615	.0045	. 8750
.875-40	2A	.0010	. 8740	. 8689	.8578	.8544	.0034	.8433	2B	.848	.854	. 8588	. 8632	.0044	.8750
1.000-10	2A	.0018	. 9982	. 9853	.9332	.9270	.0062	. 8755	2B	. 892	.913	. 9350	.9430	.0080	1.0000
1.000-14 ^d	1A 2A 3A	.0017 .0017 .0000	.9983 .9983 1.0000	.9828 .9880 .9897	.9519 .9519 .9536	.9435 .9463 .9494	.0084 .0056 .0042	.9107 .9107 .9124	1B 2B 3B	.923 .923 .9230	.938 .938 .9315	.9536 .9536 .9536	.9645 .9609 .9590	.0109 .0073 .0054	$1.0000 \\ 1.0000 \\ 1.0000$
1.000-18	2A	.0014	.9986	.9899	.9625	.9578	.0047	.9304	2B	.940	.953	.9639	.9701	.0062	1.0000
1.000-24	2A	.0013	.9987	.9915	.9716	.9674	.0042	.9476	2B	.955	.965	.9729	.9784	.0055	1.0000
1.000-27	2A	.0012	.9988	.9921	.9747	.9707	.0040	.9534	2B	. 960	.969	.9759	.9811	.0052	1.0000
1.000-36	2A	.0011	. 9989	.9934	.9809	.9773	.0036	.9648	2B	.970	.976	.9820	. 9867	.0047	1.0000
1.000-40	2A	.0010	.9990	. 9939	.9828	.9793	.0035	.9683	2B	.973	.979	.9838	.9883	.0045	1.0000
1.125-10	2A	.0018	1.1232	1.1103	1.0582	1.0520	.0062	1.0005	2B	1.017	1.038	1.0600	1.0680	.0080	1,1250
1.125-14	2A	.0016	1.1234	1.1131	1.0770	1.0717	.0053	1.0358	2B	1.048	1.064	1.0786	1.0855	.0069	1.1250
1.125-24	2A	.0013	1.1237	1.1165	1.0966	1.0924	.0042	1.0726	2B	1.080	1.090	1.0979	1.1034	.0055	1.1250
1.250-10	2A	.0019	1.2481	1.2352	1.1831	1.1768	.0063	1.1254	2B	1.142	1.163	1.1850	1.1932	.0082	1.2500
1.250-14	2A	.0016	1.2484	1.2381	1.2020	1.1966	.0054	1.1608	2B	1.173	1.188	1.2036	1.2106	.0070	1.2500
1.250-24	2A	.0013	1.2487	1.2415	1.2216	1.2173	.0043	1.1976	2B	1.205	1.215	1.2229	1.2285	.0056	1.2500
1.375-10	2A	.0019	1.3731	1.3602	1.3081	1.3018	.0063	1.2504	2B	1.267	1.288	1.3100	1.3182	.0082	1.3750
1.375-14	2A	.0016	1.3734	1.3631	1.3270	1.3216	.0054	1.2858	2B	1.298	1.314	1.3286	1.3356	.0070	1.3750
1.375-24	2A	.0013	1.3737	1.3665	1.3466	1.3423	.0043	1.3226	2B	1.330	1.340	1.3479	1.3535	.0056	1.3750
1.500-10	2A	.0019	1.4981	1.4852	1.4331	1.4267	.0064	1.3754	2B	1.392	1.413	1.4350	1.4433	.0083	1.5000
1.500-14	2A	.0017	1.4983	1.4880	1.4519	1.4464	.0055	1.4107	2B	1.423	1.438	1.4536	1.4608	.0072	1.5000
1.500 - 24	2A	.0013	1.4987	1.4915	1.4716	1.4672	.0044	1.4476	2B	1.455	1.465	1.4729	1.4787	.0058	1.5000
1.625-10	2A	.0019	1.6231	1.6102	1.5581	1.5517	. 0064	1.5004	2B	1.517	1.538	1.5600	1.5683	.0083	1.6250
1.625-14	2A	.0017	1.6233	1.6130	1.5769	1.5714	.0055	1.5357	2B	1.548	1.564	1.5786	1.5858	.0072	1.6250
1.625-24	2A	.0013	1.6237	1.6165	1.5966	1.5922	.0044	1.5726	2B	1.580	1.590	1.5979	1.6037	.0058	1.6250
1.750-10	2A	.0019	1.7481	1.7352	1.6831	1.6766	.0065	1.6254	2B	1.642	1.663	1.6850	1.6934	.0084	1.7500
1.750-14	2A	.0017	1.7483	1.7380	1.7019	1.6963	.0056	1.6607	2B	1.673	1.688	1.7036	1.7109	.0073	1.7500

TABLE 3.1. Selected combinations, Unified special screw threads, UNS-Continued

N S

See footnotes at end of table.

				Exte	rnala							Internal	a		
Nominal size and threads per inch	Class	Allowance	Major o	liameter	F	'itch diam	etcr	(c) Minor diameter	Class	Minor o	liameter	F	'itch diam	eter	Major diameter
			Maxb	Min	Maxb	Min	Tolerance			Min	Max	Min	Max	Tolerance	Min
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1.750-18	2A	in .0015	in 1.7485	in 1.7398	in 1.7124	in 1.7073	in .0051	in 1,6803	2B	in 1.690	in 1.703	in 1.7139	$\overset{in}{1.7205}$	in .0066	in 1.7500
1.875-10	2A	.0019	1.8731	1.8602	1.8081	1.8016	.0065	1.7504	2B	1.767	1.788	1.8100	1.8184	.0084	1.8750
1.875-14	2A	.0017	1.8733	1.8630	1.8269	1.8213	.0056	1.7857	2B	1.798	1.814	1.8286	1.8359	.0073	1.8750
1.875-18	2A	.0015	1.8735	1.8648	1.8374	1.8323	.0051	1.8053	2B	1.815	1.828	1.8389	1.8455	.0066	1.8750
2.000-10	2A	.0020	1.9980	1.9851	1.9330	1.9265	.0065	1.8753	2B	1.892	1.913	1.9350	1.9435	.0085	2.0000
2.000-14	2A	.0017	1.9983	1.9880	1.9519	1.9462	.0057	1.9107	$^{2\mathrm{B}}$	1.923	1.938	1.9536	1.9610	.0074	2.0000
2.000-18	2A	.0015	1.9985	1.9898	1.9624	1.9573	.0051	1.9303	2B	1.940	1.953	1.9639	1.9706	.0067	2.0000
2.0625-16	2A 3A	.0016 .0000	$2.0609 \\ 2.0625$	$\substack{2.0515\\2.0531}$	$\substack{2.0203\\2.0219}$	$\begin{array}{c} 2.0149 \\ 2.0179 \end{array}$	$.0054 \\ .0040$	$\substack{1.9842\\1.9858}$	2B 3B	$1.995 \\ 1.9950$	$\substack{\textbf{2.009}\\\textbf{2.0033}}$	$\begin{array}{c} 2.0219\\ 2.0219\end{array}$	$2.0289 \\ 2.0271$	$.0070 \\ .0052$	$2.0625 \\ 2.0625$
2.1875-16	2A 3A	.0016 .0000	$2.1859 \\ 2.1875$	$2.1765 \\ 2.1781$	$\substack{2.1453\\2.1469}$	$2.1399 \\ 2.1428$	$.0054 \\ .0041$	$\substack{2.1092\\2.1108}$	2B 3B	$2.120 \\ 2.1200$	$\substack{\textbf{2.134}\\\textbf{2.1283}}$	$2.1469 \\ 2.1469$	$2.1539 \\ 2.1521$	$.0070 \\ .0052$	$2.1875 \\ 2.1875$
2.250-10	2A	.0020	2.2480	2.2351	2.1830	2.1765	.0065	2.1253	2B	2.142	2.163	2.1850	2.1935	.0085	2.2500
2.250-14	2A	.0017	2.2483	2.2380	2.2019	2.1962	.0057	2.1607	2B	2.173	2.188	2.2036	2.2110	.0074	2.2500
2.250-18	2A	.0015	2.2485	2.2398	2.2124	2.2073	.0051	2,1803	2B	2.190	2.203	2.2139	2.2206	.0067	2.2500
2.3125-16	2A 3A	.0017 .0000	$\substack{2.3108\\2.3125}$	$2.3014 \\ 2.3031$	$2.2702 \\ 2.2719$	$2.2647 \\ 2.2678$.0055 .0041	$\substack{2.2341\\2.2358}$	2B 3B	$\substack{2.245\\2.2450}$	$\substack{2.259\\2.2533}$	$2.2719 \\ 2.2719$	$2.2791 \\ 2.2773$	$.0072 \\ .0054$	$2.3125 \\ 2.3125$
2.4375-16	2A 3A	.0017 .0000	$2.4358 \\ 2.4375$	$2.4264 \\ 2.4281$	$2.3952 \\ 2.3969$	$2.3897 \\ 2.3928$.0055 .0041	$\substack{2.3591\\2.3608}$	2B 3B	$\substack{2.370\\2.3700}$	$\substack{2.384\\2.3783}$	$2.3969 \\ 2.3969$	$\substack{2.4041\\2.4023}$	$.0072 \\ .0054$	$2.4375 \\ 2.4375$
2.500-10	2A	.0020	2.4980	2.4851	2.4330	2.4263	.0067	2.3753	2B	2.392	2.413	2.4350	2.4437	.0087	2.5000
2.500-14	2A	.0017	2.4983	2.4880	2.4519	2.4461	.0058	2.4107	2B	2.423	2.438	2.4536	2.4612	.0076	2,5000
2.500-18	2A	.0016	2.4984	2.4897	2.4623	2.4570	.0053	2.4302	2B	2.440	2.453	2.4639	2.4708	. 00 69	2.5000
2.750-10	2A	.0020	2.7480	2.7351	2.6830	2.6763	.0067	2.6253	2B	2.642	2.663	2.6850	2.6937	.0087	2.7500
2.750-14	2A	.0017	2.7483	2.7380	2.7019	2.6961	.0058	2.6607	2B	2.673	2.688	2.7036	2.7112	.0076	2.7500
2.750-18	2A	.0016	2.7484	2.7397	2.7123	2.7070	.0053	2.6802	2B	2.690	2.703	2.7139	2.7208	.0069	2.7500
3.000-10	2A	.0020	2,9980	2.9851	2.9330	2.9262	.0068	2.8753	2B	2.892	2.913	2.9350	2.9439	.0089	3.0000
3.000-14	2A	.0018	2.9982	2.9879	2.9518	2.9459	.0059	2.9106	2B	2.923	2.938	2.9536	2.9613	.0077	3.0000
3.000-18	2A	.0016	2.9984	2.9897	2.9623	2.9569	.0054	2.9302	2B	2.940	2.953	2.9639	2.9709	.0070	3.0000
3.250-10	2A	.0020	3.2480	3.2351	3.1830	3.1762	.0068	3.1253	2B	3.142	3.163	3.1850	3.1939	.0089	3.2500
3.250-14	2A	.0018	3.2482	3.2379	3.2018	3.1959	.0059	3.1606	2B	3.173	3.188	3.2036	3.2113	.0077	3,2500
3.250-18	2A	.0016	3.2484	3.2397	3.2123	3.2069	.0054	3.1802	$^{2\mathrm{B}}$	3.190	3.203	3.2139	3.2209	.0070	3.2500
3.500-10	2A	.0021	3.4979	3.4850	3.4329	3.4260	.0069	3.3752	2B	3.392	3.413	3.4350	3.4440	.0090	3.5000
3.500-14	2A	.0018	3.4982	3.4879	3.4518	3.4457	.0061	3.4106	$^{2\mathrm{B}}$	3.423	3.438	3.4536	3.4615	. 0079	3.5000
3.500-18	2A	.0017	3.4983	3.4896	3.4622	3.4567	.0055	3.4301	$^{2\mathrm{B}}$	3.440	3.453	3.4639	3.4711	.0072	3.5000
3.750-10	2A	.0021	3.7479	3.7350	3.6829	3.6760	.0069	3.6252	2B	3.642	3.663	3.6850	3.6940	.0090	3.7500
3.750-14	2A	.0018	3.7482	3.7379	3.7018	3.6957	.0061	3.6606	2B	3.673	3.688	3.7036	3.7115	.0079	3.7500
3.750-18	2A	.0017	3.7483	3.7396	3.7122	3.7067	.0055	3.6801	2B	3.690	3.703	3.7139	3.7211	.0072	3.7500
4.000-10	2A	.0021	3.9979	3.9850	3.9329	3.9259	.0070	3.8752	2B	3.892	3.913	3.9350	3.9441	.0091	4.0000
4.000-14	2A	.0018	3.9982	3.9879	3.9518	3.9456	.0062	3.9106	2B	3.923	3.938	3.9536	3.9616	.0080	4.0000
4.250-10	2A	.0021	4.2479	4.2350	4.1829	4.1759	.0070	4.1252	2B	4.142	4.163	4.1850	4.1941	.0091	4.2500
4.250-14	2A	.0018	4.2482	4.2379	4.2018	4.1956	.0062	4.1606	2B	4.173	4.188	4.2036	4.2116	.0080	4.2500
4.500-10	2A	.0021	4.4979	4.4850	4.4329	4.4259	.0070	4.3752	2B	4.392	4.413	4.4350	4.4441	.0091	4,5000

TABLE 3.1. Selected combinations, Unified special screw threads, UNS-Continued

See footnotes at end of table.

				Exte	rnala							Internal	a		
Nominal size and threads per inch	Class	Allowance	Major o	liameter	F	itch diam	eter	(c) Minor diameter	Class	Minor	diameter	H	Pitch diam	eter	Major diameter
			Махь	Min	Maxb	Min	Tolerance			Min	Max	Min	Max	Tolerance	Min
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
4.500-14	2A	in .0018	in 4.4982	in 4.4879	in 4.4518	in 4.4456	in .0062	in 4.4106	2B	in 4.423	in 4.438	in 4.4536	in 4.4616	in .0080	in 4.5000
4.750-10	2A	.0022	4.7478	4.7349	4.6828	4.6756	.0072	4.6251	2B	4.642	4.663	4.6850	4.6944	.0094	4.7500
4.750-14	2A	.0019	4.7481	4.7378	4.7017	4.6953	.0064	4.6605	2B	4.673	4.688	4.7036	4.7119	.0083	4.7500
5.000-10	2A	.0022	4.9978	4.9849	4.9328	4.9256	.0072	4.8751	2B	4.892	4.913	4.9350	4.9444	.0094	5.0000
5.000-14	2A	.0019	4.9981	4.9878	4.9517	4.9453	.0064	4.9105	2B	4.923	4.938	4.9536	4.9619	.0083	5.0000
5.250-10	2A	.0022	5.2478	5.2349	5.1828	5.1756	.0072	5.1251	2B	5.142	5.163	5.1850	5.1944	.0094	5.2500
5.250-14	2A	.0019	5.2481	5.2378	5.2017	5.1953	.0064	5.1605	2B	5.173	5.188	5.2036	5.2119	.0083	5.2500
5.500-10	2A	.0022	5.4978	5.4849	5.4328	5.4256	.0072	5.3751	2B	5.392	5.413	5.4350	5.4444	.0094	5.5000
5.500~14	2A	.0019	5.4981	5.4878	5.4517	5.4453	.0064	5.4105	2B	5.423	5.438	5.4536	5.4619	.0083	5.5000
5.750-10	2A	.0022	5.7478	5.7349	5.6828	5.6754	.0074	5.6251	2B	5.642	5.663	5.6850	5.6946	.0096	5.7500
5.750-14	2A	.0020	5.7480	5.7377	5.7016	5.6951	.0065	5.6604	2B	5.673	5.688	5.7036	5.7121	.0085	5.7500
6.000-10	2A	.0022	5.9978	5.9849	5.9328	5.9254	.0074	5.8751	2B	5.892	5.913	5.9350	5.9446	.0096	6.0000
6.000-14	2A	.0020	5.9980	5.9877	5.9516	5.9451	.0065	5.9104	2B	5.923	5.938	5.9536	5.9621	.0085	6.0000

11 10-1

- MAL 1

-

10 - 1 h

^a Regarding combinations of thread classes, see under Thread classes in section 2.
 ^b For class 2A threads having an additive finish the maximum is increased to the basic size. See under Classes 2A and 2B threads, and Coated threads in section 2.
 ^c See figure 2.3, 2.4, and 2.5.
 ^d The 1.000-14 size was formerly NF. The tolerances and allowances for this size are based on one diameter length of engagement.

Allowance based on of \rightarrow	diameter	0.0625	0.09375	0.125	0.1875	0.25	0.375	0.5	0,625	0.75		1.25	1.5
For diameter range Above →		0.0470	0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.68	375 0.8	75 1.125	1.375
To and including -	+	0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.6875	0.87	5 1.1	25 1.375	1.625
Threads per i	nch		·	<u></u>	1	Major, pi	tch, and mine	or diameter	allowances	1			<u> </u>
20		in 0.0006	in 0,0006	in	in 0.0007	in 0.0007	in	in	in	in	in	in	in
72		.0006	.0006	.0006	.0007	.0007	0.0007						
64 56		.0006	.0007	.0007	.0007	.0007	.0008	0.0008	0.0009	.00	009		
48			.0007	.0008	.0008	.0008	.0009	.0009	.0009	.00	009	10	
44								.0003	.0000				•
40 36				.0008	.0009	.0009	.0009	.0010	.0010	.00		0.0011	0.0012
32				.0009	.0009	.0010	.0010	.0010	.0011	.00		11 .0012	.0012
27					.0010	.0010	.0011	.0011	.0011	.00	012 .00	12 .0012	.0013
24					.0011	.0011	.0011	.0012	.0012	.00	.00	13 .0013	.0013
20 18						.0012	.0012	.0013	.0013	.00			.0014
16							.0014	.0014	.0014	.00	.00	.0015	.0016
14								.0015	.0015	.00	017 .00	17 .0017	.0017
10										.00	018 .00	.0019	.0019
8												.0021	.0021
4													
		1		<u></u>		-	1	1					1
Allowance based on diameter of →	1.75	2		2.5	3	3.5	4	5		6	8	10	12
For diameter range Above →	1.625	1.8	875	2.25	2.75	3.25	3.75	4	.5	5.5	7	9	11
To and including \rightarrow	1.875	2.5	25	2.75	3.25	3.75	4.5	5	.5	7	9	11	13
Threads per inch					Maj	or, pitch, and	minor diam	eter allowan	ces				
80	in	in	i	n	in	in	in	in	in		in	in	in
72						•••••							
56						Classes 1A a	nd 2A allowa	nces are de	termined by	multin	ving class 2	A nitch diame	ter tolerances
48 44						(computed t	o six decimal	places) by 0	.3 and are b	ased on l	engths of eng	agement of nin	e pitches.
40													
36													
32 28	.001	3 .0	013 0	.0013	.0013	0.0014	0.0015	-					
27 24	.001	3 .0	013	.0014	.0014	.0014	.0015	0.00	015 0.	0016			
20	001		015	0015	0016	0016	0014		17	0017			
18	.001	5 .0	015	.0016	.0016	.0017	.0017	.00	17	0018	0.0019		
16	.001	0.07 7.07	017	.0017	.0017	.0017	.0018	.00	19	0019	.0019	0.0020	0.0022
12	.001	8 .0	018	.0019	.0019	.0019	.0020	.00	20	0021	.0021	.0022	.0023
10	.001	0.	020	.0020	.0020	.0021	.0021	.00	22 .	0022	.0023	.0024	.0024
6	.002	5 .0	025	.0025	.0026	.0026	.0026	.00	27	0027	.0028	.0029	.0026
4		0	030	.0031	.0031	.0031	.0032	.00		0033	.0034	.0034	.0035

TABLE 3.2 Allowances for external threads of special diameters and pitches, classes 1A and 2A a
(UNS threads. See par. 10, p. 3.05.)

• Class 1AR allowances are tabulated on p. 3.03.

CLASSES 1A, 2A ALLOWANCES

 TABLE 3.3. Pitch diameter tolerances for external threads of special diameters, pitches, and lengths of engagement, classes 1A and 1AR (UNS threads. See par. 7.3, p. 3.03; par. 10, p. 3.05.)

=

Tolerance based	l on diameter of →		0.0625	0.09375	0.125	0.1875	0.25	0.375	0.5	0.625	0.75	1
For diameter ra	nge		0.0470	0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.6875	0.875
To and includ	ling →		0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.6875	0.875	1.125
Threads	Length of e	engagement		I			Pitch diamet	ter tolerance	'	· <u> </u>	!	
per inch	Number of pitches	Inches							•			
80	5 to 15 16 to 30	0.06 to 0.19 0.191 to 0.38		in	in	in	in	in	in	in	in	in
72	{ 5 to 15 16 to 30	0.07 to 0.21 0.211 to 0.42										
64	$\begin{cases} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{cases}$	0.08 to 0.23 0.231 to 9.46					 					
56	{ 5 to 15 16 to 30	0.09 to 0.27 0.271 to 0.54										
48	$\begin{cases} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{cases}$	$\begin{array}{ccc} 0.10 & { m to} \; 0.31 \\ 0.311 & { m to} \; 0.62 \end{array}$										
44	{ 5 to 15 16 to 30	0.11 to 0.34 0.341 to 0.68		0.0038 .0048	$0.0039 \\ .0049$	0.0041 .0051	0.0042 .0053	0.0044	$0.0046 \\ .0058$	0.0047 .0059	0.0049 .0061	0.0051 .0063
40	$\left\{\begin{array}{c} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{array}\right.$	0.12 to 0.38 0.381 to 0.76			.0041 .0051	$.0043 \\ .0053$.0044 .0055	.0046 .0058	$.0048 \\ .0060$.0049 .0061	.0050 .0063	.0052 .0066
36	$\begin{cases} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{cases}$	0.14 to 0.42 0.421 to 0.84			$.0043 \\ .0054$	$.0045 \\ .0056$.0046 .0058	.0048 .0060	.0050 .0062	.0051 .0064	$.0052 \\ .0065$.0054 .0068
32	$\begin{cases} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{cases}$	0.16 to 0.47 0.471 to 0.94			.0045 .0057	. 0047 . 0059	.0048 .0061	.0050 .0063	$.0052 \\ .0065$.0053 .0067	.0055 .0068	.0057 .0071
28	$\begin{cases} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{cases}$	0.18 to 0.54 0.541 to 1.08				.0050 .0063	.0051 .0064	.0053 .0067	.0055 .0069	.0056 .0070	.0058 .0072	.0060 .0075
27	$\left\{\begin{array}{c} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{array}\right.$	0.19 to 0.56 0.561 to 1.12				.0051 .0064	$.0052 \\ .0065$.0054 .0068	.0056 .0070	.0057 .0072	.0058 .0073	.0060 .0076
24	$\left\{\begin{array}{c} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{array}\right.$	$\begin{array}{c} 0.21 & {\rm to} \; 0.62 \\ 0.621 & {\rm to} \; 1.24 \end{array}$.0054 .0067	.0055 .0069	.0057 .0071	.0059 .0073	.0060 .0075	.0061 .0077	. 0063 . 0079
20	$\left\{\begin{array}{cc} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{array}\right.$	$\begin{array}{c} 0.25 & {\rm to} \; 0.75 \\ 0.751 \; {\rm to} \; 1.50 \end{array}$.0060 .0075	.0062 .0077	.0063 .0079	.0065 .0081	.0066 .0083	.0068 .0085
18	$\left\{\begin{array}{cc} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{array}\right.$	0.28 to 0.83 0.831 to 1.66						.0065 .0081	.0067 .0083	.0068 .0085	.0069 .0086	.0071 .0089
16	$\left\{\begin{array}{cc} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{array}\right.$	0.31 to 0.94 0.941 to 1.88						.0069 .0086	.0070 .0088	.0072 .0089	.0073 .0091	.0075 .0094
14	$\left\{\begin{array}{cc} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{array}\right.$	0.36 to 1.07 1.071 to 2.14							.0075 .0093	.0076 .0095	.0077 .0097	. 0079 . 0099
12	$\left\{\begin{array}{cc} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{array}\right.$	0.42 to i.25 1.251 to 2.50							.0080 .0100	.0082 .0102	.0083 .0104	.0085 .0106
10	$\left\{\begin{array}{cc} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{array}\right.$	0.50 to 1.50 1.501 to 3.00									.0090 .0113	.0092 .0115
8	5 to 15 16 to 30	0.62 to 1.88 1.881 to 3.76										.0103 .0128
6	$\left\{\begin{array}{c} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{array}\right.$	$\begin{array}{c} 0.83 & \text{to} \ 2.50 \\ 2.501 & \text{to} \ 5.00 \end{array}$										
4	$\begin{cases} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{cases}$	1.25 to 3.75 3.751 to 7.50										

1A, 1AR P.D. TOLERANCES

 TABLE 3.3. Pitch diameter tolerances for external threads of special diameters, pitches, and lengths of engagement, classes 1A and 1AR—Con.

	1												
1.25	1.5	1.75	2	2,5	3	3.5	4	5	6	8	10	12	
1.125	1.375	1.625	1.875	2.25	2.75	3, 25	3. 75	4.5	5.5	7	9	11	
1.375	1.625	1.875	2.25	2.75	3.25	3, 75	4.5	5.5	7	9	11	13	
					Pitch d	iameter tole	ances						Thi per
. These va 2. Classes 1 pitches t . Classes 1 decimal . Pitches 1 . Toleranc countere	alues do not ag A and 1AR tol Aaken to six ded A and 1AR to places (see tab) isted are those es are tabulate d, see Design o	ree with and s erances in this imal places (su- lerances in this le 2,19) by a fa used most com d only for com f Special Thre	hall not be use table for 5 to 1. ee table 2.19) h is table for 16 uctor of 1.875 (c immonly and are binations of dia ads in appendi	d in place of a 5 pitches are b ya factor of 1 to 30 pitches sobtained by m recommended ameter, pitch, a x A5.	LEGEN I ny tabulatec ased on 9 pit 1.5. are obtained nultiplying th iultiplying th and length o	DS I values for ches and are by multiply at 1.5 factor rmediate pit f engagemen	the UNC, U obtained by ring the clas by 1.25). Fo ches are spec t which are o	NF, and 8U multiplying s 2A (extern r lengths of zified, the for considered to	N thread set the class 2/ al thread) t engagement rmula in par be generall;	ries in table : 4 (external t olerances for not tabulato . 7.3, p. 3.03 y used. For o	2.21. hread) toler 9 pitches t. d, see par. 7 , should be a other combi	ances for 9 aken to six 7.3, p. 3.03, applied, nations en-	
in 	in	in	in	in	in 	in	in	in	in	in	in	in	}
056	.0072												} 3
058 073	.0060 .0075	0.0061 .0077	0.0063 .0078	$0.0065 \\ .0081$	$0.0067 \\ .0083$								} 3
061	.0063	.0064	.0066	.0068	.0070	0.0071	0.0073						} 2
061	. 0064	.0065	.0066	. 0069	.0070	.0072	.0074	0.0076	0.0079				3 2
078	.0080	.0081	.0083	.0086	.0088	.0090	.0092	.0096	.0099				h -
081	.0083	.0085	.0086	.0089	.0092	.0094	.0096	.0099	.0102				
070 087	.0071 .0089	.0073 .0091	.0074 .0092	.0076 .0095	$.0078 \\ .0098$.0080	.0081 .0102	$.0084 \\ .0105$.0087	• • • • • • • • • • • • • • • • • • • •			} 2
073 091	$.0074 \\ .0093$	$.0076 \\ .0095$.0077 .0096	.0079 .0099	.0081 .0101	$.0083 \\ .0104$	$.0084 \\ .0105$	$.0087 \\ .0109$	$.0090 \\ .0112$	0.0094 .0117			} 1
077 096	.0078	.0079	.0081	.0083	.0085	.0086	.0088	.0091	.0093	.0097	0.0101		} 1
081	.0083	.0084	.0085	.0087	.0089	.0091	.0092	.0095	.0098	.0102	.0105	0.0108	1
101 087	.0103	.0105	.0106	.0109	.0112	.0114	.0116	.0119	.0122	.0127	.0132	.0135	
108	.0110	.0112	.0113	.0116	.0119	.0121	.0123	.0126	.0129	.0134	.0139	.0142	} 1:
094 118	.0096	.0097 1 .0121	$.0098 \\ .0123$.0100 .0125	.0102 .0128	$.0104 \\ .0130$	$.0106 \\ .0132$.0108 .0135	.0111 .0138	.0115 .0144	.0118 .0148	.0121 .0152	} 1
104 130	$.0106 \\ .0132$.0107 .0134	.0108 .0136	.0111 .0138	$.0113 \\ .0141$	$.0114 \\ .0143$	$.0116 \\ .0145$.0119 .0148	.0121 .0151	.0125	.0129 .0161	.0132 .0165	}
	.0121	.0123	.0124	.0126	.0128	.0130	.0131	.0134	.0137	.0141	.0144	.0147	}
	.0102	.0104	.0100	.0198	.0100	.0162	.0104	.0108	.0171	.0176	.0180	.0104	2
			.0151	.0154	.0155	.0157	.0159	.0162	.0164	.0168	.0172	.0175	n

1A, 1AR P.D. TOLERANCES

TABLE 3.4 Pitch diameter tolerances for external threads of special diameters, pitches, and lengths of engagement, class 2A(UNS threads. See par. 7.3, p. 3.03; par. 10, p. 3.05.)

Tolerance based	on diameter of \rightarrow		0.0625	0.09375	0.125	0.1875	0.25	0.375	0.5	0.625	0.75	1
For diameter ra Above \rightarrow	nge		0.0470	0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.6875	0.875
To and includ	ling →		0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.6875	0.875	1.125
	Length o	f engagement					Dial dias					
Threads per inch	Number of pitches	Inches	-				ritch diamet	er tolerances				
80	$\begin{cases} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{cases}$	0.06 to 0.19 0.191 to 0.38	in 0.0019 .0024	in 0.0020 .0025	$in \\ 0.0021 \\ .0026$	in 0.0022 .0027	$\stackrel{in}{\stackrel{0.0023}{.0028}}$	in	in	in	in	in
72	$\begin{cases} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{cases}$	$\begin{array}{c} 0.07 & { m to} \; 0.21 \\ 0.211 & { m to} \; 0.42 \end{array}$.0020 .0025	$.0021 \\ .0026$.0021 .0027	$.0023 \\ .0028$	$.0023 \\ .0029$	$0.0025 \\ .0031$				
64	$\begin{cases} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{cases}$	0.08 to 0.23 0.231 to 0.46	.0021 .0026	$.0022 \\ .0027$	$.0022 \\ .0028$	$.0024 \\ .0029$	$\substack{.0024\\.0031}$	$.0026 \\ .0032$	$0.0027 \\ .0034$			
56	$\begin{cases} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{cases}$	0.09 to 0.27 0.271 to 0.54		$.0023 \\ .0029$.0024 .0030	$.0025 \\ .0031$	$.0026 \\ .0032$.0027 .0034	$.0028 \\ .0035$	$0.0029 \\ .0036$	$0.0030 \\ .0037$	
48	$\begin{cases} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{cases}$	0.10 to 0.31 0.311 to 0.62		$.0025 \\ .0031$	$.0025 \\ .0032$	$.0026 \\ .0033$	$.0027 \\ .0034$	$\substack{.0029\\.0036}$	$.0030 \\ .0037$	$\substack{.0031\\.0038}$	$.0031 \\ .0039$	
44	$\begin{cases} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{cases}$	0.11 to 0.34 0.341 to 0.68		$.0026 \\ .0032$	$.0026 \\ .0033$	$.0027 \\ .0034$	$.0028 \\ .0035$	$.0030 \\ .0037$	$\substack{.0031\\.0038}$	$.0032 \\ .0040$	$.0032 \\ .0041$	$0.0034 \\ .0042$
40	$\left\{\begin{array}{c} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{array}\right.$	0.12 to 0.38 0.381 to 0.76			.0027 .0034	$.0029 \\ .0036$	$.0029 \\ .0037$	$\substack{.0031\\.0038}$	$\substack{.0032\\.0040}$.0033 .0041	$.0034 \\ .0042$	$.0035 \\ .0044$
36	{ 5 to 15 16 to 30	$\begin{array}{c} 0.14 \ \ \text{to} \ 0.42 \\ 0.421 \ \ \text{to} \ 0.84 \end{array}$			$.0029 \\ .0036$	$.0030 \\ .0037$	$\substack{.0031\\.0038}$	$\substack{.0032\\.0040}$	$\substack{.\ 0033\\.\ 0041}$	$.0034 \\ .0043$	$.0035 \\ .0044$.0036 .0045
32	$\begin{cases} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{cases}$	0.16 to 0.47 0.471 to 0.94			$.0030 \\ .0038$	$.0031 \\ .0039$	$\begin{smallmatrix}&&0.032\\&&0.040\end{smallmatrix}$	$\substack{.0034\\.0042}$.0035 .0043	$.0036 \\ .0045$	$.0036 \\ .0046$.0038 .0047
28	5 to 15 16 to 30 16 to 30	0.18 to 0.54 0.541 to 1.08				$.0033 \\ .0042$	$\substack{.0034\\.0043}$	$.0036 \\ .0044$	$.0037 \\ .0046$.0038 .0047	$.0038 \\ .0048$	$.0040 \\ .0050$
27	$\begin{cases} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{cases}$	0.19 to 0.56 0.561 to 1.12				$.0034 \\ .0042$	$.0035 \\ .0043$	$.0036 \\ .0045$	$.0037 \\ .0047$.0038 .0048	$.0039 \\ .0049$	$.0040 \\ .0050$
24	$\begin{cases} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{cases}$	0.21 to 0.62 0.621 to 1.24				$.0036 \\ .0045$	$.0037 \\ .0046$	$\substack{.0038\\.0048}$	$.0039 \\ .0049$	$.0040 \\ .0050$	$.0041 \\ .0051$	$.0042 \\ .0053$
20	$\left\{\begin{array}{c} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{array}\right.$	0.25 to 0.75 0.751 to 1.50					$.0040 \\ .0050$	$.0041 \\ .0052$	$\substack{.0042\\.0053}$	$.0043 \\ .0054$.0044 .0055	.0045 .0057
18	$\left\{\begin{array}{c} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{array}\right.$	0.28 to 0.83 0.831 to 1.66						$.0043 \\ .0054$	$\substack{.0044\\.0055}$	$.0045 \\ .0057$	$.0046 \\ .0058$.0047 .0059
16	$\left\{ \begin{array}{c} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{array} \right.$	0.31 to 0.94 0.941 to 1.88						$.0046 \\ .0057$	$.0047 \\ .0058$	$.0048 \\ .0060$	$.0049 \\ .0061$	$.0050 \\ .0062$
14	$\left\{\begin{array}{c} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{array}\right.$	0.36 to 1.07 1.071 to 2.14							$\begin{smallmatrix}&&0.0050\\&&0.0062\end{smallmatrix}$.0051 .0063	$.0051 \\ .0064$.0053 .0066
12	$\left\{\begin{array}{c} 5 \text{ to } 15\\ 16 \text{ to } 30\end{array}\right.$	0.42 to 1.25 1.251 to 2.50							.0054 .0067	$.0054 \\ .0068$	$.0055 \\ .0069$.0057 .0071
10	$\begin{cases} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{cases}$	0.50 to 1.50 1.501 to 3.00									$.0060 \\ .0075$.0062 .0077
8	$\left\{\begin{array}{c} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{array}\right.$	0.62 to 1.88 1.881 to 3.76										.0068 .0086
6	$\left\{\begin{array}{c} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{array}\right.$	0.83 to 2.50 2.501 to 5.00										
4	$\begin{cases} 5 \text{ to } 15\\ 16 \text{ to } 30 \end{cases}$	1.25 to 3.75 3.751 to 7.50										

TABLE 3.4. Pitch diameter tolerances for external threads of special diameters, pitches, and lengths of engagement, class 2A-Con

1.25	1.5	1.75	2	2.5	3	3.5	4	5	6	8	10	12	
1.125	1.375	1.625	1.875	2.25	2.75	3.25	3.75	4.5	5.5	7	9	11	
1.375	1.625	1.875	2.25	2.75	3.25	3.75	4.5	5.5	7	9	11	13	
					Pitch diam	eter tolerand	ces						Threads per inch
1. These val 2. Formula: Class 2 D = Le = 9 = 3. Length of lengths lengths of 4. Pitches lin 5. Tolerance encounter	ues do not a A tolerances basic major length of er engagement of engagement sted are thos s are tabulat ed, see Desig	gree with and $= 0.0015 \sqrt[3]{D}$ diameter gagement increments inc int greater that that that abulated e used most co gn of Special T	shall not be us $1 + 0.0015\sqrt{I}$ cluded in the ta n 15 to 30 pitcl , the formula in mmonly and a mbinations of hreads in appendix	ed in place of a $\overline{e} + 0.015 \sqrt[3]{p}$ bulated toleran nes are obtainen hegend 2 shot e recommende liameter, pitch hdix A5.	LEGEN I any tabulated where where ted by multipl and be applie d. When int a and length	DS d values for hs of engage lying the 9- d except as ermediate pi of engageme	the UNC, U ement of from pitch values modified by tches are sp ent which ar	NF, and 8U n 5 to 15 pitt taken to si par. 7.3, p. 5 ecified, the f e considered	N thread ser ches are base x decimal pl 3.03. ormula in len to be gener	ries in table d ou lengths aces (see tal gend 2 shoul ally used. Fo	2.21. of 9 pitches ble 2.19) by d be applied or other com	s; those for 7 1.25. For I. bbinations	
in	in	in	in	in	in	in	in	in	in	in	in	in	40
0.0037 .0047	0.0038 .0048												} 36
.0039	.0040	0.0041 .0051	0.0042 .0052	0.0043 .0054	0.0044 .0056	 							} 32
.0041	.0042	.0043	.0044 .0055	.0045 .0056	.0046 .0058	0.0048	0.0049 .0061						28
.0041 .0052	.0042	.0043 .0054	.0044 .00 55	.0046 .0057	.0047	.0048 .0060	.0049	$0.0051 \\ .0064$	0.0053				} 27
.0043 .0054	.0044	.0045 .0057	.0046 .0058	.0048 .0059	$.0049 \\ .0061$.0050 .0062	.0051 .0064	.0053	.0054				24
.0047	.0048	.0048 .0061	.0049	.0051 .0063	.0052 .0065	.0053 .0066	$.0054 \\ .0068$.0056 .0070	.0058				} 20
.0049 .0061	.0050	.0051 .0063	.0051 .0064	.0053 .0066	.0054 .0068	.0055	.0056	.0058	.0060	0.0062			} 18
.0051 .0064	.0052 .0065	.0053 .0066	.0054 .0067	.0055 .0069	.00 5 6 .0071	.0058 .0072	.0059	.0061	.0062	.0065	0.0067		} 16
.0054 .0068	.0055	.0056 .0070	.0057 .0071	.00 5 8 .0073	.0059 .0074	$.0061 \\ .0076$.0062	.0064 .0079	.0065	.0068	.0070	0.0072	} 14
.0058 .0072	.0059	.0060	.0061 .0076	$.0062 \\ .0077$	$.0063 \\ .0079$	$.0064 \\ .0080$.0065	.0067	.0069	.0072 .0090	.0074	.0076	} 12
.0063 .0078	.0064	.0065	.0065 .0082	.0067 .0084	.0068 .0085	.0069 .0087	.0070	.0072 .0090	.0074	.0077	.0079 .0099	.0081	} 10
.0070 .0087	.0071 .0088	.0071 .0089	.0072 .0090	$.0074 \\ .0092$.0075 .0094	.0076 .0095	.0077	.0079 .0099	.0081	.0083	.0086 .0107	.0088	} 8
	.0081 .0101	.0082 .0102	.0083 .0103	$.0084 \\ .0105$.0085 .0107	.0087 .0108	.0088	.0089 .0112	.0091 .0114	.0094 .0117	$.0096 \\ .0120$.0098 .0123	} 6
			.0101 .0126	.0102 .0128	$.0104 \\ .0130$.0105 .0131	.0106	.0108	.0109	.0112	.0114 .0143	.0116 .0145	} 4
		1											

0.0625 0.09375 0.125 0.1875 0.25 0.375 0.625 Tolerance based on diameter of \rightarrow 0.5 0.75 1 For diameter range 0.0781 Above -0.0470 0 1094 0.1562 0.21880.3125 0.4375 0.5625 0.6875 0.875 0.0781 0.1094 0.15620 2188 0.3125 0.4375 0.5625 0.6875 To and including \rightarrow 0.875 1.125 Length of engagement Threads Pitch diameter tolerances per inch Number of Inches pitches in 0.0014 in 0.0015 in 0.0015 in 0.0017 in in in in in in 0.0016 0.06 to 0.19 5 to 15 16 to 30 80 0.191 to 0.38 .0018 .0019 .0019 .0020 .0021 0.07 to 0.21 0.211 to 0.42 5 to 15 16 to 30 .0015 .0016 .0016 .0017 .0018 0.0019 72.0019 .0019 .0020 .0021 .0022 .0023 5 to 15 16 to 30 0.08 to 0.23 0.231 to 0.46 $.0016 \\ .0020$ $.0016 \\ .0020$.0017 $.0018 \\ .0022$.0018 .0019.0024 $0.0020 \\ .0025$ 64.0021 0.09 to 0.27 .0017 .0018 .0019 .0019 .0020 .0021 0.0022 0.0022 5 to 15 16 to 30 56 0.271 to 0.54 .0022 .0022 .0023 .0024 .0025 .0026 .0027 .0028 $.0019 \\ .0023$ 5 to 15 0.10 to 0.31 .0019 .0020 .0020 .0022 .0022 .0023 .0024 48 16 to 30 0.311 to 0.62 .0025 .0027 .0024.0026 .0028 .0029 .0030 .0019 .0020 .0021 .0022 0.0025 0.11 to 0.34 .0021 .0023 .0024 0024 5 to 15 44 16 to 30 0.341 to 0.68 .0024 .0025 .0026 .0026 .0028 .0029 .0030 .0030 .0032 0.12 to 0.38 0.381 to 0.76 .0021 .0021 .0022 .0023 .0025 5 to 15 .0024 .0025 .0026 40 16 to 30 .0026 .0027 0028 .0029 .0030 .0031 .0031 .0033 .0022 $.0022 \\ .0028$ $.0024 \\ .0030$ $.0026 \\ .0033$ 5 to 15 16 to 30 0.14 to 0.42 0.421 to 0.84 .0023.0029.0025 .0031 .0026 .0027 36 0.16 to 0.47 .0023 .0024 .0024 .0025 .0026 .0027 .0027 .0028 5 to 15 3216 to 30 0.471 to 0.94 .0028 .0029 .0030 .0032 .0033 .0033 .0034 .0035 5 to 15 16 to 30 0.18 to 0.54 $.0025 \\ .0031$.0026 . 0027 .0028 .0034 .0028 .0029 .0030 28 0.541 to 1.08 .0033 .0035 .0036 .00320.19 to 0.56 0.561 to 1.12 .0025 .0026 .0027 .0028 .0029 .0029 .0030 5 to 15 16 to 30 27.0032 .0033 .0034 .0035 .0036 .0037 .0027 .0028 .0029 .0029 .0030 5 to 15 0.21 to 0.62 .0031 .0032 24 16 to 30 0.621 to 1.24 .0034 .0034 .0036 .0037 .0038 .0040 .0030 .0037 .0031 .0033 .0034 5 to 15 16 to 30 0.25 to 0.75 0.751 to 1.50 $.0032 \\ .0040$ $.0032 \\ .0041$ 20.0032 .0033 .0034 .0035 .0036 5 to 15 0.28 to 0.83 18 16 to 30 0.831 to 1.66 .0041 .0042 .0042 .0043 .0044 0.31 to 0.94 0.941 to 1.88 .0034 .0035 .0036 .0036 .0037 5 to 15 16 16 to 30 .0043 .0044.0045.0045 .0037 0.36 to 1.07 0038 .0039 00.10 5 to 15 14 1.071 to 2.14 16 to 30 .0047 .0048 .0048 .0050 .0042 5 to 15 0.42 to 1.25 1.251 to 2.50 .0040 .0041 .0041 12 16 to 30 .0050 .0051.0052 .0053 .0046 5 to 15 16 to 30 0.50 to 1.50 1.501 to 3.00 $.0045 \\ .0056$ 10 0.62 to 1.88 .0051 5 to 15 8 16 to 30 1.881 to 3.76 .0064 0.83 to 2.50 2.501 to 5.00 5 to 15 16 to 30 6 1.25 to 3.75 3.751 to 7.50 5 to 15 4 16 to 30

 TABLE 3.5 Pitch diameter tolerances for external threads of special diameters, pitches, and lengths of engagement, class 3A (UNS threads. See par. 7.3, p. 3.03; par. 10, p. 3.05.)

1

TABLE 3.5 Pitch diameter tolerances for external threads of special diameters, pitches, and lengths of engagement, class 3A-Con

1.25	1.5	1.75	2	2.5	3	3.5	4	5	6	8	10	12			
1.125	1.375	1.625	1.875	2.25	2.75	3.25	3.75	4.5	5.5	7	9	11			
1.375	1.625	1.875	2.25	2.75	3.25	3.75	4.5	5.5	7	9	11	13			
	Pitch diameter tolerances														

Threads per inch

LEGENDS

These values do not agree with and shall not be used in place of any tabulated values for the UNC, UNF, and 8UN thread series in table 2.21.
 Class 3A tolerances in this table for 5 to 15 pitches are based on 9 pitches and are obtained by multiplying the class 2A (external thread) tolerances for 9 pitches taken to six decimal places by a factor of 0.75. (See table 2.19).
 Class 3A tolerances in this table for 16 to 30 pitches are obtained by multiplying the class 2A (external thread) tolerances for 9 pitches taken to six decimal places by a factor of 0.9375 (obtained by multiplying the 0.75 factor by 1.25.) (See table 2.19.) For lengths of engagement not tabulated, see par, 7.3, p. 3.03.
 Pitches listed are those used most commonly and are recommended. Where intermediate pitches are specified, the formula in par, 7.3, p. 3.03, should be applied.
 Tolerances are tabulated only for combinations of diameter, pitch, and length of engagement which are considered to be generally used. For other combinations encountered, see Design of Special Threads in appendix A5.

		···								4		1
in	in	in	in	in	in	in	in	in	in	in	in	in
$0.0028 \\ .0035$	$\substack{\textbf{0.0029}\\\textbf{.0036}}$											
$.0029 \\ .0037$	$.0030 \\ .0038$	$\substack{0.0031\\.0038}$	$\substack{\textbf{0.0031}\\.0039}$	$^{0.0032}_{.0040}$	$\substack{\textbf{0.0033}\\.0042}$							
$.0031 \\ .0038$.0031 .0039	$.0032 \\ .0040$.0033 .0041	$\substack{.0034\\.0042}$	$\substack{.0035\\.0044}$	0.0036	$\substack{\textbf{0.0036}\\.0046}$					
$.0031 \\ .0039$	$.0032 \\ .0040$	$.0033 \\ .0041$	$.0033 \\ .0041$	$.0034 \\ .0043$	$\substack{.\ 0035\\.\ 0044}$	$.0036 \\ .0045$	$.0037 \\ .0046$	$\substack{0.0038\\.0048}$	$0.0039 \\ .0049$			
.0033 .0041	.0033 .0042	$\begin{smallmatrix}&&0034\\&&0042\end{smallmatrix}$	$.0035 \\ .0043$	$.0036 \\ .0045$	$.0037 \\ .0046$	$.0037 \\ .0047$	$.0038 \\ .0048$	$.0040 \\ .0050$	$.0041 \\ .0051$			
$\substack{.0035\\.0044}$	$\substack{.0036\\.0045}$	$.0036 \\ .0045$.0037 .0046	$.0038 \\ .0048$	$.0039 \\ .0049$	$.0040 \\ .0050$	$.0041 \\ .0051$	$.0042 \\ .0053$	$.0043 \\ .0054$			
$.0036 \\ .0046$.0037 .0047	.0038 .0047	$.0039 \\ .0048$.0040 .0050	.0041 .0051	$.0041 \\ .0052$	$.0042 \\ .0053$	$.0044 \\ .0054$	$.0045 \\ .0056$	$0.0047 \\ .0059$		
$.0038 \\ .0048$	$.0039 \\ .0049$	$.0040 \\ .0050$	$.0040 \\ .0050$	$.0041 \\ .0052$	$\begin{array}{c} .\ 00\ 42\\ .\ 0053\end{array}$	$\substack{.0043\\.0054}$	$\substack{.0044\\.0055}$	$.0045 \\ .0057$	$.0047 \\ .0058$	$.0049 \\ .0061$	$0.0050 \\ .0063$	
$.0041 \\ .0051$.0041 .0052	$\substack{.0042\\.0052}$	$.0043 \\ .0053$	$.0044 \\ .0055$	$.0045 \\ .0056$	$.0045 \\ .0057$	$.0046 \\ .0058$	$.0048 \\ .0060$	$.0049 \\ .0061$	$.0051 \\ .0064$	$.0053 \\ .0066$	$0.0054 \\ .0068$
$.0043 \\ .0054$	$.0044 \\ .0055$	$.0045 \\ .0056$	$.0045 \\ .0057$	$.0046 \\ .0058$	$.0047 \\ .0059$	$.0048 \\ .0060$.0049 .0061	$.0050 \\ .0063$	$\substack{.0052\\.0065}$	$.0054 \\ .0067$.0055 .0069	.0057 .0071
$.0047 \\ .0059$.0048 .0060	.0048 .0061	$.0049 \\ .0061$.0050 .0063	$.0051 \\ .0064$	$.0052 \\ .0065$.0053 .0066	$\substack{.0054\\.0068}$	$.0055 \\ .0069$	$.0057 \\ .0072$	$.0059 \\ .0074$.0061 .0076
$.0052 \\ .0065$	$.0053 \\ .0066$	$.0054 \\ .0067$	$.0054 \\ .0068$.0055 .0069	$.0056 \\ .0070$.0057 .0071	$.0058 \\ .0072$	$.0059 \\ .0074$	$.0061 \\ .0076$.0063 .0078	$.0064 \\ .0080$	$.0066 \\ .0082$
	.0061 .0076	.0061 .0077	$.0062 \\ .0078$.0063 .0079	$.0064 \\ .0080$	$.0065 \\ .0081$	$.0066 \\ .0082$	$.0067 \\ .0084$	$.0068 \\ .0085$.0070 .0088	.0072 .0090	$.0074 \\ .0092$
			$.0076 \\ .0095$.0077 .0096	.0078 .0097	.0079 .0098	.0079 .0099	.0081 .0101	$.0082 \\ .0102$.0084 .0105	.0086 .0107	.0087 .0109

Folerance based	on diameter of \rightarrow		0.0625	0.09375	0.125	0.1875	0.25	0.375	0.5	0.625	0.75	1		
For diameter rate $Above \rightarrow$	nge		0.0470	0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.6875	0.875		
To and includ	ling →		0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.6875	0.875	1.12		
Threads	Length o				3	Pitch diamet	er tolerances	3						
per inch	Number of pitches	Inches												
80	{ 5 to 15 16 to 30	0.06 to 0.19 0.191 to 0.38	in	in	in 	in	in	in	in 	in 	in 	in		
72	{ 5 to 15 16 to 30	$\begin{array}{c} 0.07 \ \ {\rm to} \ 0.21 \\ 0.211 \ \ {\rm to} \ 0.42 \end{array}$												
64	{ 5 to 15 { 16 to 30	0.08 to 0.23 0.231 to 0.46												
56	{ 5 to 15 16 to 30	$\begin{array}{c} 0.09 & { m to} \; 0.27 \\ 0.271 & { m to} \; 0.54 \end{array}$												
48	{ 5 to 15 16 to 30	0.10 to 0.31 0.311 to 0.62												
44	5 to 15 16 to 30	$\begin{array}{c} 0.11 & {\rm to} \ 0.34 \\ 0.341 & {\rm to} \ 0.68 \end{array}$		$0.0050 \\ .0062$	$0.0051 \\ .0064$	0.0053 .0067	$0.0055 \\ .0069$	$\substack{0.0058\\.0072}$	$0.0060 \\ .0075$	0.0062	0.0063	0.006		
40	5 to 15 16 to 30	0.12 to 0.38 0.381 to 0.76			$.0054 \\ .0067$.0056 .0070	.0057 .0072	.0060 .0075	$.0062 \\ .0078$	$.0064 \\ .0080$.0065	.006		
36	{ 5 to 15 16 to 30	0.14 to 0.42 0.421 to 0.84			.0056 .0070	.0058	.0060	.0063	$.0065 \\ .0081$.0066 .0083	.0068	.007		
32	∫ 5 to 15 16 to 30	0.16 to 0.47 0.471 to 0.94			$.0059 \\ .0074$	$.0061 \\ .0077$.0063 .0079	$.0066 \\ .0082$.0068 .0085	.0070 .0087	.0071	.007		
28	5 to 15 16 to 30	0.18 to 0.54 0.541 to 1.08				$.0065 \\ .0081$. 0067 . 0083	. 0069 . 0087	$.0072 \\ .0089$	$.0073 \\ .0092$.0075 .0094	.007		
27	5 to 15 16 to 30	0.19 to 0.56 0.561 to 1.12				.0066 .0083	.0068 .0085	.0070 .0088	.0073 .0091	$.0074 \\ .0093$.0076	.007		
24	5 to 15 16 to 30	0.21 to 0.62 0.621 to 1.24				. 0070 . 0087	.0072 .0089	.0074 .0093	.0076 .0095	.0078 .0098	.0080	.008		
20	{ 5 to 15 16 to 30	0.25 to 0.75 0.751 to 1.50					.0078 .0097	.0080 .0101	.0083	.0084 .0105	.0086	.008		
18	{ 5 to 15 16 to 30	0.28 to 0.83 0.831 to 1.66						.0084 .0105	.0087 .0108	.0088 .0110	.0090	.009		
16	{ 5 to 15 16 to 30	0.31 to 0.94 0.941 to 1.88						.0089	.0091 .0114	$.0093 \\ .0116$.0095	.009		
14	5 to 15 16 to 30	0.36 to 1.07 1.071 to 2.14							.0097 .0121	.0099 .0124	.0100	.010		
12	5 to 15 16 to 30	$\begin{array}{c} 0.42 & { m to} \ 1.25 \\ 1.251 & { m to} \ 2.50 \end{array}$							$.0104 \\ .0130$.0106 .0133	.0108	.011		
10	∫ 5 to 15 16 to 30	0.50 to 1.50 1.501 to 3.00									.0117 .0147	.012		
8	5 to 15 16 to 30	0.62 to 1.88 1.881 to 3.76										.013		
6	∫ 5 to 15	0.83 to 2.50 2 501 to 5 00												

1B P.D. TOLERANCES

----- -----

.

4

5 to 15 16 to 30

ł

1.25 to 3.75 3.751 to 7.50

	12	10	8	6	5	4	3.5	3	2.5	2	1.75	1.5	1.25
	11	9	7	5.5	4.5	3.75	3.25	2.75	2.25	1.875	1.625	1.375	1.125
	13	11	9	7	5.5	4.5	3.75	3.25	2.75	2.25	1.875	1.625	1.375
Th						ances	iameter toler	Pitch di					
							EGENDS	L					
~) tolerances imal places	2.21. rnal thread) en to six deci 7.3, p. 3.03. should be should be ther combin	ies in table : lass 2A (exte pitches take ted, see par. 7.3, p. 3.03, used. For o	N thread ser iplying the c rances for 9 t not tabular mula in par. be generally	NF, and 80) ned by multi thread) tole f engagemen ified, the for onsidered to	the UNC, U nd are obtain 2A (external or lengths of ches are spec which are o	1 values for t n 9 pitches a ng the class 5 able 2.19.) F rmediate pit engagement	ny tabulated s are based or able 2.19.) yy multiplyin 1.25.) (See ta . Where inte and length of	(d) in place of a 5 to 15 pitches of 1.95. (See t i are obtained t 1.95 factor by 1 recommended ameter, pitch, a ix A5.	hall not be use to this table for uses by a factor 6 to 30 pitches litiplying the 1 monly and are binations of dia ads in appendi	'ee with and s] d) tolerances in x decimal plac his table for 1(bitained by mu used most com d only for com f Special Three	lues do not agr (internal threa- hes taken to si tolerances in t or of 2.4375 (of sted are those es are tabulated i, see Design o	These val Class 1B for 9 pitcl Class 1B by a fact Pitches li Tolerance countered
-	in	in 	in	in 	in	in	in	in	in	in	in	in	in
]}												0.0075	0.0073
}								0.0087	0.0084	0.0081	$0.0080 \\ .0100$.0078	.0076
- }						0.0095	$0.0093 \\ .0116$.0090 .0113	.0088	.0085	.0084	.0082	.0080
- }				0.0103	0.0099	$.0096 \\ 0120$.0094	$.0092 \\ .0114$.0089	.0085	.0085	.0083	.0080
- }				.0106	.0103	.0100	.0097	.0095	.0093	.0090	.0088	.0087	.0085
- }				.0133	.0129	.0124	.0122	.0101	.0099	.0096	.0095	.0093	.0091
-p -h			0.0122	.0141	.0137	.0132	.0130	.0127	.0124	.0120	.0018	.0097	.0095
- ^			.0152	.0146	.0142	.0137	.0135	.0132	.0129	.0125	.0123	.0121	.0118
11		0.0131	.0126				01.10	.0138	.0135	.0131	.0129	.0127	.0124
}		0.0131 .0164	.0126 .0158	.0151	.0148	.0143	.0140	0116	0111	0111	0100	0107	0105
}	0.0141	0.0131 .0164 .0137 .0171	$.0126 \\ .0158 \\ .0132 \\ .0165$.0121 .0151 .0127 .0159	.0113 .0148 .0124 .0155	.0143 .0120 .0150	.0140 .0118 .0148	$.0116 \\ .0145$.0114 .0142	.0111 .0138	.0109 .0136	$.0107 \\ .0134$.0105 .0132
}	0.0141 .0176 .0148 .0185	0.0131 .0164 .0137 .0171 .0144 .0180	.0126 .0158 .0132 .0165 .0140 .0175	.0121 .0151 .0127 .0159 .0134 .0168	.0113 .0148 .0124 .0155 .0131 .0164	.0143 .0120 .0150 .0128 .0159	.0118 .0118 .0148 .0126 .0157	.0116 .0145 .0123 .0154	.0114 .0142 .0121 .0151	.0111 .0138 .0118 .0147	.0109 .0136 .0116 .0145	.0107 .0134 .0115 .0143	.0105 .0132 .0113 .0141
- } } } }	0.0141 0176 .0148 .0185 .0158 .0197	0.0131 .0164 .0137 .0171 .0144 .0180 .0154 .0192	.0126 .0158 .0132 .0165 .0140 .0175 .0149 .0187	.0121 .0127 .0159 .0134 .0168 .0144 .0180	.0118 .0148 .0124 .0155 .0131 .0164 .0141 .0176	.0143 .0120 .0150 .0128 .0159 .0137 .0172	.0140 .0118 .0148 .0126 .0157 .0135 .0169	.0116 .0145 .0123 .0154 .0133 .0166	.0114 .0142 .0121 .0151 .0130 .0163	.0111 .0138 .0118 .0147 .0128 .0160	.0109 .0136 .0116 .0145 .0126 .0158	.0107 .0134 .0115 .0143 .0124 .0155	.0105 .0132 .0113 .0141 .0122 .0153
- } } } }	0.0141 .0176 .0148 .0185 .0158 .0197 .0171 .0214	0.0131 .0164 .0137 .0171 .0144 .0180 .0154 .0192 .0167 .0209	.0126 .0158 .0132 .0165 .0140 .0175 .0149 .0187 .0163 .0203	.0127 .0151 .0127 .0159 .0134 .0168 .0144 .0180 .0157 .0197	.0113 .0148 .0124 .0155 .0131 .0164 .0141 .0176 .0154 .0193	.0143 .0120 .0150 .0128 .0159 .0137 .0172 .0172 .0151 .0188	.0140 .0118 .0126 .0157 .0135 .0169 .0149 .0186	.0116 .0145 .0123 .0154 .0133 .0166 .0146 .0183	.0114 .0142 .0121 .0151 .0130 .0163 .0144 .0180	.0111 .0138 .0118 .0147 .0128 .0160 .0141 .0176	.0109 .0136 .0116 .0145 .0126 .0158 .0139 .0174	.0107 .0134 .0115 .0143 .0124 .0155 .0138 .0172	.0105 .0132 .0113 .0141 .0122 .0153 .0136 .0170
- } } } }	0.0141 0176 0148 0185 0158 0197 0171 0214 0239	0.0131 .0164 .0137 .0171 .0144 .0180 .0154 .0192 .0167 .0209 .0187 .0234	.0126 .0158 .0132 .0165 .0140 .0175 .0149 .0187 .0187 .0163 .0203 .0183 .0229	.0127 .0151 .0159 .0134 .0168 .0144 .0180 .0180 .0157 .0197 .0178 .0222	.0114 .0124 .0155 .0131 .0164 .0141 .0176 .0154 .0193 .0174	.0143 .0120 .0150 .0128 .0159 .0137 .0172 .0172 .0151 .0188 .0171 .0214	.0140 .0118 .0148 .0126 .0157 .0135 .0169 .0149 .0186 .0169 .0211	.0116 .0145 .0123 .0154 .0133 .0166 .0166 .0146 .0183 .0167 .0208	.0114 .0142 .0121 .0151 .0130 .0163 .0144 .0180 .0164 .0205	.0111 .0138 .0118 .0147 .0128 .0160 .0160 .0176 .0161 .0202	.0109 .0136 .0116 .0145 .0126 .0158 .0139 .0174 .0160 .0200	.0107 .0134 .0115 .0143 .0124 .0155 .0138 .0172 .0158 .0197	.0105 .0132 .0113 .0141 .0122 .0153 .0136 .0170

 TABLE 3.7. Pitch diameter tolerances for internal threads of special diameters, pitches, and lengths of engagement, class 2B

 (UNS threads. See par. 7.3, p. 3.03; par. 10, p. 3.05.)

Tolerance based on diameter of \rightarrow			0.0625	0.09375	0.125	0.1875	0.25	0.375	0.5	0.625	0.75	1			
For diameter rate $Above \rightarrow$	nge		0.0470	0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.6875	0.875			
To and includ	ling →		0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.6875	0.875	1.125			
Threads	Length o	Pitch diameter tolerances													
per inch	Number of pitches	Number of Inches pitches													
80	$\begin{cases} 5 \text{ to } 15\\ 16 \text{ to } 30 \end{cases}$	0.06 to 0.19 0.191 to 0.38	in 0.0025 .0031	in 0.0026 .0032	in 0.0027 .0033	in 0.0028 .0035	in 0.0029 .0037	în	in	in	in	in			
72	$\left\{\begin{array}{c} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{array}\right.$	$\begin{array}{c} 0.07 \ \ {\rm to} \ 0.21 \\ 0.211 \ \ {\rm to} \ 0.42 \end{array}$	$.0026 \\ .0032$	$.0027 \\ .0034$	$.0028 \\ .0035$	$.0029 \\ .0037$	$.0030 \\ .0038$	$0.0032 \\ .0040$							
64	{ 5 to 15 16 to 30	0.08 to 0.23 0.231 to 0.46	$.0027 \\ .0034$	$.0028 \\ .0035$	$.0029 \\ .0037$.0031 .0038	$.0032 \\ .0040$	$.0034 \\ .0042$	$0.0035 \\ .0044$						
56	{ 5 to 15 16 to 30	0.09 to 0.27 0.271 to 0.54		$.0030 \\ .0037$.0031 .0039	$.0032 \\ .0040$	$.0033 \\ .0042$	$.0035 \\ .0044$	$.0037 \\ .0046$	$0.0038 \\ .0047$	$0.0039 \\ .0049$				
48	5 to 15 16 to 30	0.10 to 0.31 0.311 to 0.62		$.0032 \\ .0040$	$.0033 \\ .0041$	$.0034 \\ .0043$	$.0036 \\ .0044$	$.0037 \\ .0047$	$.0039 \\ .0048$	$.0040 \\ .0050$.0041 .0051				
44	5 to 15 16 to 30	0.11 to 0.34 0.341 to 0.68		$.0033 \\ .0042$	$.0034 \\ .0043$	$.0036 \\ .0045$	$.0037 \\ .0046$.0039 .0048	$.0040 \\ .0050$	$.0041 \\ .0051$.0042	$0.0044 \\ .0055$			
40	5 to 15 16 to 30	0.12 to 0.38 0.381 to 0.76			.0036 .0045	$.0037 \\ .0046$	$.0038 \\ .0048$.0040 .0050	$.0041 \\ .0052$	$.0043 \\ .0053$	$.0044 \\ .0055$.0045 .0057			
36	{ 5 to 15 { 16 to 30	0.14 to 0.42 0.421 to 0.84			$.0037 \\ .0047$	$.0039 \\ .0049$.0040	$.0042 \\ .0052$.0043 .0054	$.0044 \\ .0055$	$.0045 \\ .0057$	$.0047 \\ .0059$			
32	5 to 15 16 to 30	0.16 to 0.47 0.471 to 0.94			.0030 .0049	$.0041 \\ .0051$	$.0042 \\ .0052$	$.0044 \\ .0055$	$.0045 \\ .0056$	$.0046 \\ .0058$	$.0047 \\ .0059$.0049 .0061			
28	$\begin{cases} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{cases}$	0.18 to 0.54 0.541 to 1.08				$.0043 \\ .0054$	$.0044 \\ .0056$	$.0046 \\ .0058$	$.0048 \\ .0060$	$.0049 \\ .0061$	$.0050 \\ .0062$	$.0052 \\ .0065$			
27	5 to 15 16 to 30 16 to 30	$\begin{array}{c} 0.19 \ \ {\rm to} \ 0.56 \\ 0.561 \ {\rm to} \ 1.12 \end{array}$				$.0044 \\ .0055$	$.0045 \\ .0057$	$.0047 \\ .0059$	$.0048 \\ .0061$.0050 .0062	$.0051 \\ .0063$	$.0052 \\ .0066$			
24	{ 5 to 15 16 to 30	0.21 to 0.62 0.621 to 1.24				$.0047 \\ .0058$	$.0048 \\ .0060$	$.0049 \\ .0062$	$.0051 \\ .0064$	$.0052 \\ .0065$.0053 .0066	.0055 .0069			
20	{ 5 to 15 { 16 to 30	0.25 to 0.75 0.751 to 1.50					.0052 .0065	$.0054 \\ .0067$	$.0055 \\ .0069$	$.0056 \\ .0070$	$.0057 \\ .0072$.0059 .0074			
18	$\left\{ \begin{array}{c} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{array} \right.$	$\begin{array}{c} 0.28 \ \ {\rm to} \ 0.83 \\ 0.831 \ {\rm to} \ 1.66 \end{array}$.0056 .0070	.0058 .0072	.0059 .0074	$.0060 \\ .0075$.0062 .0077			
16	$\left\{ \begin{array}{c} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{array} \right.$	0.31 to 0.94 0.941 to 1.88						$.0059 \\ .0074$	$.0061 \\ .0076$	$.0062 \\ .0077$	$.0063 \\ .0079$.0065 .0081			
14	$\left\{\begin{array}{c} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{array}\right.$	$\begin{array}{c} 0.36 \ \ {\rm to} \ 1.07 \\ 1.071 \ {\rm to} \ 2.14 \end{array}$							$.0065 \\ .0081$	$.0066 \\ .0082$	$.0067 \\ .0084$.0069 .0086			
12	$\left\{\begin{array}{c} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{array}\right.$	0.42 to 1.25 1.251 to 2.50							.0070 .0087	$.0071 \\ .0088$	$.0072 \\ .0090$	$.0074 \\ .0092$			
10	5 to 15 16 to 30	0.50 to 1.50 1.501 to 3.00									$.0078 \\ .0098$.0080 .0100			
8	$ \begin{cases} 5 to 15 \\ 16 to 30 \end{cases} $	0.62 to 1.88 1.881 to 3.76										$.0089 \\ .0111$			
6	{ 5 to 15 16 to 30	0.83 to 2.50 2.501 to 5.00													
4	$\left\{\begin{array}{c} 5 \text{ to } 15\\ 16 \text{ to } 30\end{array}\right.$	1.25 to 3.75 3.751 to 7.50													
TABLE 3.7 Pitch diameter tolerances for internal threads of special diameters, pitches, and lengths of engagement, class 2B-Con

					_									
1.25	1.5	1.75	2	2.5	3	3.5	4	5	6		10	12		
1,125	1.375	1.625	1.875	2.25	2.75	3.25	3.75	4.5	5.5	7	9	11		
1.375	1.625	1.875	2.25	2.75	3.25	3.75	4.5	5.5	7	9	11	13		
	Pitch diameter tolerances													

LEGENDS

These values do not agree with and shall not be used in place of any tabulated values for the UNC, UNF, and 8UN thread series in table 2.21.
 Class 2B (internal thread) tolerances in this table for 5 to 15 pitches are based on 9 pitches and are obtained by multiplying the class 2A (external thread) tolerances for 9 pitches taken to six decimal places by a factor of 1.3. (See table 2.19.)
 Class 2B tolerances in this table for 16 to 30 pitches are obtained by multiplying the class 2A (external thread) tolerances for 9 pitches taken to six decimal places by a factor of 1.3. (See table 2.19.)
 Class 2B tolerances in this table for 16 to 30 pitches are obtained by multiplying the class 2A (external thread) tolerances for 9 pitches taken to six decimal places by a factor of 1.3. (See table 2.19.)
 Class 2B tolerances in this table for 16 to 30 pitches are obtained by multiplying the class 2A (external thread) tolerances for 9 pitches taken to six decimal places by a factor of 1.3. (See table 2.19.)
 Class 2B tolerances are those used most commonly and are recommended. Where intermediate pitches are specified, the formula in par. 7.3, p. 3.03, should be applied.
 Tolerances are tabulated only for combinations of diameter, pitch, and length of engagement which are considered to be generally used. For other combinations encountered, see Design of Special Threads in appendix A5.

	1												1
in	in	in	in	in	in	in	in	in	in	in	in 	in	} 40
0.0049 .0061	0.0050) } 36
$.0051 \\ .0063$	$.0052 \\ .0065$	$0.0053 \\ .0066$	$0.0054 \\ .0068$	$0.0056 \\ .0070$	$0.0058 \\ .0072$								} 32
$.0053 \\ .0067$.0055 .0068	.0056 .0070	.0057 .0071	.0059 .0073	.0060 .0075	0.0062	0.0063						} 28
.0053 .0067	.0055 .0069	.0056 .0071	.0057 .0072	$.0059 \\ .0074$	$.0061 \\ .0076$.0063 .0078	.0064 .0080	$0.0066 \\ .0083$	0.0068				} 27
.0056 .0070	.0058 .0072	$.0059 \\ .0074$.0060 .0075	.0062 .0077	$.0064 \\ .0079$.0065 .0081	.0066 .0083	.0069 .0086	.0071 .0089				} 24
.0061 .0076	$.0062 \\ .0077$.0063 .0079	.0064 .0080	.0066 .0083	.0068 .0085	.0069 .0086	.0070 .0088	.0073 .0091	.0075 .0094				} 20
.0063 .0079	.0065 .0081	$.0066 \\ .0082$.0067 .0083	.0069 .0086	.0070 .0088	.0072 .0090	.0073 .0091	.0076 .0094	.0078 .0097	0.0081 .0101			} 18
.0066 .0083	.0068 .0085	.0069 .0086	.0070 .0087	.0072 .0090	$.0073 \\ .0092$.0075 .0094	$.0076 \\ .0095$.0079 .0098	.0081 .0101	.0084 .0105	0.0087		} 16
.0070 .0088	.0072 .0089	.0073 .0091	$.0074 \\ .0092$.0076 .0095	.0077 .0097	.0079 .0099	.0080 .0100	.0083 .0103	.0085 .0106	.0088 .0110	.0091 .0114	0.0094 .0117	} 14
.0075 .0094	.0076 .0096	.0078 .0097	.0079 .0098	.0081 .0101	$.0082 \\ .0103$	$.0084 \\ .0105$	$.0085 \\ .0106$.0087 .0109	.0090 .0112	.0093 .0116	.0096 .0120	.0099 .0123	} 12
$.0082 \\ .0102$.0083 .0104	.0084 .0105	.0085 .0106	.0087 .0109	.0089 .0111	.0090 .0113	$.0091 \\ .0114$.0094 .0117	.0096 .0120	.0100 .0124	$.0103 \\ .0128$.0105 .0131	} 10
.0090	.0092 .0115	.0093 .0116	.0094 .0118	.0096 .0120	$.0098 \\ .0122$.0099 .0124	.0100 .0125	$.0103 \\ .0128$.0105 .0131	.0108 .0136	.0111 .0139	.0114 .0143	} 8
	.0105 .0132	.0106 .0133	.0108 .0134	.0109 .0137	.0111 .0139	.0113 .0141	.0114 .0142	.0116 .0145	.0118 .0148	.0122 .0152	.0125 .0156	.0128 .0159	} ε
			.0131 .0164	.0133 .0166	$.0135 \\ .0168$.0136 .0170	.0138 .0172	.0140 .0175	.0142 .0178	.0146 .0182	.0149 .0186	.0151 .0189	} 4

2B P.D. TOLERANCES

 TABLE 3.8 Pitch diameter tolerances for internal threads of special diameters, pitches, and lengths of engagement, class 3B

 (UNS threads. See par. 7.3, p. 3.03; par. 10, p. 3.05.)

1

Tolerance base	$1 \text{ on diameter of } \rightarrow$		0.0625	0.09375	0.125	0.1875	0.25	0.375	0.5	0.625	0.75	1
For diameter ra	inge		0.0470	0.0781	0,1094	0,1562	0.2188	0,3125	0,4375	0.5625	0,6875	0.875
To and inclue	ding→		0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.6875	0.875	1.125
	Length	f engagement			ļ				11			
Threads per inch	Number of pitches	Inches	-]	Pitch diamet	er tolerance	5			
80	$\begin{cases} 5 \text{ to } 15 \\ 16 \text{ to } 20 \end{cases}$	0.06 to 0.19	in 0.0019 0023	in 0.0019 0024	in 0.0020 0025	in 0.0021 0026	in 0.0022 0027	in	in 	in	in	in
72	5 to 15	0.191 to 0.33	.0019	.0020	.0021	.0020	.0023	0.0024				
64	$\begin{cases} 16 \text{ to } 30 \\ 5 \text{ to } 15 \end{cases}$	0.211 to 0.42	.0024	.0023	.0022	.0023	.0024	.0025	0.0026			
56	$\begin{cases} 16 \text{ to } 30 \\ 5 \text{ to } 15 \end{cases}$	0.231 to 0.46 0.09 to 0.27	.0026	.0027	.0027	.0029	.0030	.0031	.0033	0.0028	0.0029	
48	∫ 16 to 30 ∫ 5 to 15	0.271 to 0.54 0.10 to 0.31		.0028	.0029	.0030	.0031	.0033	.0034	.0030	.0036	
41	\ 16 to 30 ∫ 5 to 15	0.311 to 0.62 0.11 to 0.34		.0030	.0031	.0032	.0033	.0035	.0036	.0037	.0038	0.0033
10	16 to 30 ∫ 5 to 15	0.341 to 0.68 0.12 to 0.38		.0031	.0032	.0033	.0034	.0036	.0037	.0039	.0040	.0041
40	16 to 30	0.381 to 0.76 0.14 to 0.42			.0033	.0035	.0036	.0037	.0039	.0040	.0041	.0043
36	(16 to 30	0.421 to 0.84 0.16 to 0.47			.0035	.0036	.0037	.0039	.0040	.0042	.0043	.0044
32	16 to 10	0.471 to 0.94			.0037	.0038	.0039	.0041	.0042	.0043	.0044	.0046
28	16 to 30	0.541 to 1.08				.0041	.0042	.0043	.0045	.0046	.0047	.0048
27	5 to 15 16 to 30	0.19 to 0.56 0.561 to 1.12				.0033	.0034	.0035	.0036	.0037	.0038	.0038
24	$\begin{cases} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{cases}$	$\begin{array}{c} 0.21 & \text{to} \ 0.62 \\ 0.621 & \text{to} \ 1.24 \end{array}$.0035	.0036 .0045	.0037 .0046	.0038 .0048	.0039 .0049	.0040	.0041
20	$\begin{cases} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{cases}$	0.25 to 0.75 0.751 to 1.50					$.0039 \\ .0049$	$.0040 \\ .0050$	$.0041 \\ .0052$	$.0042 \\ .0053$.0043 .0054	.0044
18	$\left\{ \begin{array}{c} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{array} \right.$	0.28 to 0.83 0.831 to 1.66						$.0042 \\ .0053$	$.0043 \\ .0054$	$.0044 \\ .0055$	$.0045 \\ .0056$.0046
16	{ 5 to 15 16 to 30	0.31 to 0.94 0.941 to 1.88						$.0045 \\ .0056$.0046 .0057	$.0046 \\ .0058$.0047 .0059	.0049
14	5 to 15 16 to 30	0.36 to 1.07 1.071 to 2.14							$.0049 \\ .0061$	$.0049 \\ .0062$.00 5 0 .0063	.0052 .0064
12	$\begin{cases} 5 \text{ to } 15 \\ 16 \text{ to } 30 \end{cases}$	0.42 to 1.25 1.251 to 2.50							$.0052 \\ .0065$.0053 .0066	.0054 .0067	.0055
10	5 to 15	0.50 to 1.50 1.501 to 3.00									.0059 .0073	.0060
8	5 to 15 16 to 30	0.62 to 1.88 1.881 to 3.76										.0067
6	{ 5 to 15 16 to 30	0.83 to 2.50 2.501 to 5.00										
4	{ 5 to 15 { 16 to 30	1.25 to 3.75 3.751 to 7.50										

3B P.D. TOLERANCES

	12	10	8	6	5	4	3.5	3	2.5	2	1.75	1.5	1.25
	11	9	7	5.5	4.5	3.75	3.25	2.75	2.25	1.875	1.625	1.375	1.125
	13	11	9	7	5.5	4.5	3.75	3.25	2.75	2.25	1.875	1.625	1.375
Th per						ances	iameter toler	Pitch d					
-							LEGENDS						
) tolcrances imal places 03. .pplied. nations en-	rnal thread) n to six deci r, 7.3, p. 3.6 should be a other combin	lass 2A (exte pitches take lated, see pa 7.3, p. 3.03, 7 used. For c	plying the cl erances for 9 ent not tabu mula in par. be generally	the by multip thread) tole of engageme ified, the for considered to	nd are obtain 2A (external For lengths ches are spec t which are c	n 9 pitches an ng the class : 2 table 2.19.) rmediate pit f engagement	s are based o table 2.19.) by multiplyi y 1.25.) (See . Where inte and length o	5 to 15 pitches c of 0.975. (See s are obtained 0.975 factor b 3 recommended ameter, pitch, a ix A5.	n this table for ces by a factor 6 to 30 pitches uultiplying the immonly and are binations of di ads in appendi	ad) tolerances i six decimal plan this table for 1 (obtained by r : used most com ed only for com of Special Thre	3 (internal thre iches taken to 3 tolerances in tor of 1.21875 listed are those ces are tabulat ed, see Design	Class 3B for 9 pit Class 3E by a fac Pitches 1 Tolerand countere
}	in	in	in	in	in	in	in	in	in	in	in	in	in
}												0.0037	0.0036
}								0.0043	0.0042	0.0041	0.0040	.0039	.0038
l)						0.0047	0.0046	.0054	.0053	.0051	.0050	.0049	.0048
1				0.0051	0.0050	. 0059	.0058	.0057	.0055	.0053	.0052	.0051	.0050
}				.0064	.0062	.0060	.0059	.0057	.0056	.0054	.0053	.0052	.0051
}				.0053	.0052 .0064	.0050 .0062	.0049 .0061	.0048 .0060	.0046 .0058	$.0045 \\ .0056$.0044 .0055	.0043	.0042
}				.0056 .0070	.0055 .0068	.0053	$.0052 \\ .0065$	$.0051 \\ .0063$	$.0050 \\ .0062$	$.0048 \\ .0060$.0047 .0059	.0046 .0058	$.0045 \\ .0057$
													.0047
}			$0.0061 \\ .0076$.0058 .0073	.0057 .0071	.0055 .0069	$.0054 \\ .0067$	$.0053 \\ .0066$	$.0051 \\ .0064$.0050 .0063	.0049 .0062	.0048	.0059
}		0.0066	0.0061 .0076 .0063 .0079	.0058 .0073 .0061 .0076	.0057 .0071 .0059 .0074	.0055 .0069 .0057 .0072	$.0054 \\ .0067 \\ .0056 \\ .0070$.0053 .0066 .0055 .0069	.0051 .0064 .0054 .0067	.0050 .0063 .0052	.0049 .0062 .0052 .0065	.0048 .0060 .0051 .0063	.0059 .0050 .0062
}	0.0070	0.0066 .0082 .0068	0.0061 .0076 .0063 .0079 .0066	.0058 .0073 .0061 .0076 .0063	.0057 .0071 .0059 .0074 .0062 .0077	.0055 .0069 .0057 .0072 .0060 .0075	.0054 .0067 .0056 .0070 .0059	.0053 .0066 .0055 .0069 .0058 .0058	.0051 .0064 .0054 .0067 .0057	.0050 .0063 .0052 .0066 .0055	.0049 .0062 .0052 .0065 .0055	.0048 .0060 .0051 .0063 .0054	.0059 .0050 .0062 .0053
} }	0.0070 .0088 .0074	0.0066 .0082 .0068 .0086 .0072	0.0061 .0076 .0063 .0079 .0066 .0083 .0070	.0058 .0073 .0061 .0076 .0063 .0079 .0067	.0057 .0071 .0059 .0074 .0062 .0077 .0066	.0055 .0069 .0057 .0072 .0060 .0075 .0064	.0054 .0067 .0056 .0070 .0059 .0074 .0063	.0053 .0066 .0055 .0069 .0058 .0072 .0062	.0051 .0064 .0054 .0067 .0057 .0071	.0050 .0063 .0052 .0066 .0055 .0069 .0059	.0049 .0062 .0052 .0065 .0065 .0068 .0055	.0048 .0060 .0051 .0063 .0054 .0067 .0057	.0059 .0050 .0062 .0053 .0066 .0056
} }	0.0070 .0088 .0074 .0093 .0079	0.0066 .0082 .0068 .0086 .0072 .0090 .0077	0.0061 .0076 .0063 .0079 .0066 .0083 .0070 .0087 .0075	.0058 .0073 .0061 .0076 .0063 .0079 .0067 .0084 .0072	.0057 .0071 .0059 .0074 .0062 .0077 .0066 .0082 .0070	.0055 .0069 .0057 .0072 .0060 .0075 .0064 .0080 .0069	.0054 .0067 .0056 .0070 .0059 .0074 .0063 .0078 .0068	.0053 .0066 .0055 .0069 .0058 .0072 .0062 .0077 .0066	.0051 .0064 .0054 .0067 .0057 .0071 .0060 .0076 .0065	.0050 .0063 .0052 .0066 .0055 .0069 .0059 .0074 .0064	.0049 .0062 .0052 .0065 .0055 .0068 .0058 .0073 .0063	.0048 .0060 .0051 .0063 .0054 .0067 .0057 .0072 .0062	.0059 .0050 .0062 .0053 .0066 .0056 .0070 .0061
<pre>} } }</pre>	0.0070 0088 0074 0093 0079 0099	0.0066 .0082 .0088 .0086 .0072 .0090 .0077 .0096	0.0061 .0076 .0063 .0079 .0066 .0083 .0070 .0087 .0075 .0093	.0058 .0073 .0061 .0076 .0063 .0079 .0067 .0084 .0072 .0090	.0057 .0071 .0059 .0074 .0062 .0077 .0066 .0082 .0070 .0088	$\begin{array}{c} .0055\\ .0069\\ .0057\\ .0072\\ .0072\\ .0060\\ .0075\\ .0064\\ .0080\\ .0080\\ .0086\\ .0086\\ .0075\end{array}$.0054 .0067 .0056 .0070 .0059 .0074 .0063 .0078 .0068 .0084	.0053 .0066 .0055 .0069 .0058 .0072 .0062 .0077 .0066 .0083	.0051 .0064 .0067 .0057 .0071 .0060 .0076 .0082 .0082	.0050 .0063 .0052 .0066 .0055 .0069 .0074 .0064 .0080	.0049 .0062 .0055 .0055 .0068 .0058 .0073 .0063 .0079	.0048 .0060 .0051 .0063 .0054 .0067 .0072 .0072 .0072 .0078	.0059 .0050 .0062 .0053 .0066 .0056 .0070 .0061 .0076
<pre>} } }</pre>	 0.0070 .0088 .0074 .0093 .0079 .0099 .0086 .0107	0.0066 .0082 .0068 .0086 .0072 .0090 .0077 .0096 .0084 .0104	0.0061 .0076 .0063 .0079 .0066 .0083 .0070 .0087 .0093 .0075 .0093 .0081 .0102	.0058 .0073 .0061 .0076 .0063 .0079 .0084 .0072 .0090 .0079 .0098	.0057 .0071 .0059 .0074 .0062 .0077 .0066 .0082 .0070 .0088 .0077 .0096	$\begin{array}{c} .0055\\ .0069\\ .0057\\ .0072\\ .0060\\ .0075\\ .0064\\ .0080\\ .0086\\ .0086\\ .0075\\ .0094\\ \end{array}$	$\begin{array}{c} .0054\\ .0067\\ .0056\\ .0070\\ .0059\\ .0074\\ .0063\\ .0078\\ .0068\\ .0084\\ .0084\\ .0074\\ .0093\\ \end{array}$.0053 .0066 .0055 .0069 .0058 .0072 .0062 .0077 .0066 .0083 .0073 .0091	.0051 .0064 .0054 .0067 .0077 .0070 .0060 .0076 .0065 .0082 .0072 .0090	.0050 .0063 .0062 .0066 .0055 .0069 .0074 .0064 .0080 .0071 .0088	.0049 .0062 .0052 .0055 .0068 .0058 .0073 .0073 .0079 .0070 .0087	.0048 .0060 .0051 .0063 .0057 .0072 .0072 .0072 .0073 .0062 .0078 .0069 .0086	.0059 .0050 .0062 .0053 .0066 .0056 .0070 .0061 .0076 .0068 .0085
<pre>} } }</pre>	0.0070 0088 0074 0093 0099 0099 0086 0107 0096 0120	0.0066 .0082 .0086 .0086 .0072 .0090 .0077 .0096 .0084 .0104 .0104	0.0061 .0076 .0063 .0079 .0066 .0083 .0081 .0093 .0093 .0081 .0102 .0091 .0114	.0058 .0073 .0061 .0076 .0063 .0079 .0084 .0072 .0090 .0079 .0098 .0098 .0089 .0111	.0057 .0071 .0059 .0074 .0062 .0077 .0066 .0082 .0070 .0088 .0077 .0096 .0087 .0109	$\begin{array}{c} .0055\\ .0069\\ .0057\\ .0072\\ .0072\\ .0060\\ .0075\\ .0064\\ .0080\\ .0089\\ .0086\\ .0086\\ .0075\\ .0094\\ .0085\\ .0107\\ \end{array}$	$\begin{array}{c} .0054\\ .0067\\ .0056\\ .0070\\ .0059\\ .0074\\ .0063\\ .0078\\ .0068\\ .0084\\ .0084\\ .0093\\ .0084\\ .0093\\ .0084\\ .0106\end{array}$.0053 .0066 .0055 .0069 .0058 .0072 .0062 .0077 .0062 .0077 .0062 .0073 .0091	.0051 .0064 .0057 .0057 .0071 .0060 .0076 .0065 .0082 .0072 .0090 .0082 .0103	.0050 .0063 .0052 .0066 .0055 .0069 .0074 .0074 .0080 .0071 .0088 .0071 .0088	.0049 .0062 .0055 .0055 .0068 .0058 .0073 .0073 .0073 .0079 .0070 .0087 .0080 .0100	.0048 .0060 .0051 .0054 .0057 .0057 .0072 .0062 .0078 .0069 .0086 .0079 .0099	.0059 .0050 .0062 .0053 .0066 .0056 .0070 .0061 .0076 .0068 .0085

3B P.D. TOLERANCES

TABLE 3.9. Minor diameter tolerances for internal special screw threads, classes 1B and 2B (UNS threads, see par. 10, p. 3.05.)

-

Toleran For dist Abor To a

-

The per

-

							(0110 011		Jan. 10, p	. 0.00.)		-					
Tolerance b	pased on basi	ic major	diameter	of \rightarrow	0.060	0.073	0.086	0.09	99 0	.112	0.125	0.138	0.16	64 0	. 190	0.216	
For diameter	er range				0.053	0.066	0.079	0.09	92 0	. 105	0.118	0.131	0.18	51 0	.177	0.203	All larger diameters
To and in	$ncluding \rightarrow$				0.066	0.079	0.092	0.10	05 0	0.118	0.131	0.151	0.13	77 0	. 203	0.233	
Threads per inch	Tolerance ratios	Lengt in ter	h of engag ms of dian	ement netera			1B, 2B		Minor	diamete	er tolcrances	,b	1B, 2	2B			
		Abo	ve to incl	and uding													
80	$ \left\{\begin{array}{c} 0.5 \\ 0.75 \\ 1.0 \\ 1.25 \end{array}\right. $	0 0.3 0.6 1.5	33D (37D 1 5D 3).33D).67D 1.5D 3D	<i>in</i> 0.0035 .0049 .0049 .0049	$in \\ 0.0029 \\ .0044 \\ .0049 \\ .0049 \\ .0049$	in 0.0025 .0038 .0049 .0049	in 0.00 .00 .00	$22 0. \\ 34 . \\ 45 . \\ 49 . \\ 19 . \\ 19 . \\ 0 . \\ 19 . \\ 19 . \\ 10 . \\ 1$	$\begin{array}{c}n\\0020\\0030\\0040\\0049\end{array}$	in 0.0018 .0028 .0037 .0046	in 0.0017 .0026 .0034 .0043	in 0.001 .002 .003 .003	in 16 0.0 23 .0 31 .0 39 .0	2 0016 0023 0031 0039	$in \\ 0.0016 \\ .0023 \\ .0031 \\ .0039$	in 0.0016 .0023 .0031 .0039
72	$\left\{\begin{array}{c} 0.5\\ 0.75\\ 1.0\\ 1.25\end{array}\right.$	0 0.3 0.6 1.5	33D 0 37D 1 5D 3).33D).67D 1.5D 3D	.0039 .0055 .0055 .0055 .0055	$0033 \\ 0049 \\ 0055 \\ 0055$.0029 .0043 .0055 .0055	.00 .00 .00 .00	26 . 38 . 51 . 55 .	0023 0035 0046 0055	.0021 .0032 .0042 .0053	.0020 .0029 .0039 .0049	.001 .002 .005 .004	$ \begin{bmatrix} 17 & .0 \\ 26 & .0 \\ 34 & .0 \\ 43 & .0 \end{bmatrix} $)017)026)034)042	.0017 .0026 .0034 .0042	.0017 .0026 .0034 .0042
64	$\left\{\begin{array}{c} 0.5\\ 0.75\\ 1.0\\ 1.25\end{array}\right.$	0 0.3 0.6 1.5	33 <i>D</i> (57 <i>D</i> 1 5 <i>D</i> 3).33D).67D .5D 3D	$.0045 \\ .0062 \\ .0062 \\ .0062 \\ .0062$.0038 .0057 .0062 .0062	.0033 .0049 .0062 .0062	.00 .00 .00	$ \begin{array}{cccc} 29 & . \\ 44 & . \\ 59 & . \\ 62 & . \\ \end{array} $	$\begin{array}{c} 0027 \\ 0040 \\ 0053 \\ 0062 \end{array}$	$.0024 \\ .0037 \\ .0049 \\ .0061$.0023 .0034 .0045 .0057	.002 .003 .00- .005	20 .0 30 .0 40 .0 50 .0)019)028)038)048	.0019 .0028 .0038 .0048	.0019 .0028 .0038 .0048
56	$\left\{\begin{array}{c} 0.5 \\ 0.75 \\ 1.0 \\ 1.25 \end{array}\right.$	0 0.3 0.6 1.5	33 <i>D</i> 57 <i>D</i> 5 <i>D</i>	0.33D 0.67D 1.5D 3D		$.0044 \\ .0066 \\ .0070 \\ .0070$.0038 .0057 .0070 .0070	.000 .000 .000	34 . 51 . 68 . 70 .	0031 0046 0062 0070	.0029 .0043 .0057 .0070	.0026 .0040 .0053 .0066	.002 .003 .004 .005	23 .0 35 .0 17 .0 59 .0	0022 0032 0043 0054	$.0022 \\ .0032 \\ .0043 \\ .0054$.0022 .0032 .0043 .0054
48	$\left\{\begin{array}{c} 0.5\\ 0.75\\ 1.0\\ 1.25\end{array}\right.$	0 0.3 0.6 1.8	33D 37D 5D	0.33D 0.67D 1.5D 3D			.0045 .0068 .0082 .0082	.00 .00 .00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0037 \\ 0055 \\ 0074 \\ 0082 \end{array}$	$.0034 \\ .0051 \\ .0068 \\ .0082$.0032 .0047 .0063 .0079	.002 .004 .005 .007	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0025 0038 0051 0063	$.0025 \\ .0038 \\ .0050 \\ .0062$.0025 .0038 .0050 .0062
44	$\left\{\begin{array}{c} 0.5\\ 0.75\\ 1.0\\ 1.25\end{array}\right.$	0 0.3 0.0 1.8	33D 67D 5D	0.33D 0.67D 1.5D 3D			.0050 .0075 .0090 .0090	.00 .00 .00	44 . 67 . 89 . 90 .	0040 0061 0081 0090	.0037 .0056 .0075 .0090	.0035 .0052 .0070 .0087	.003 .004 .006 .007	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0028 0042 0056 0070	$.0028 \\ .0041 \\ .0055 \\ .0069$	$.0028 \\ .0041 \\ .0055 \\ .0069$
40	$\left\{\begin{array}{cc} 0.5\\ 0.75\\ 1.0\\ 1.25\end{array}\right.$	0 0.3 0.6 1.8	33D 67D 5D	0.33D 0.67D 1.5D 3D				00 00 00 00	49 74 98 98	0045 0067 0090 0098	.0041 .0062 .0083 .0098	$.0039 \\ .0058 \\ .0077 \\ .0096$.003 .005 .006 .008	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	0031 0047 0062 0078	$.0030 \\ .0045 \\ .0060 \\ .0075$.0030 .0045 .0060 .0075
36	$\left\{\begin{array}{cc} 0.5\\ 0.75\\ 1.0\\ 1.25\end{array}\right.$	0 0.3 0.0 1.3	33D 67D 5D	0.33D 0.67D 1.5D 3D						0050 0075 0100 0109	.0046 .0069 .0093 .0109	.0043 .0065 .0086 .0108	.003 .005 .007 .009	38 .0 58 .0 77 .0 96 .0	035 052 070 087	$.0033 \\ .0050 \\ .0066 \\ .0082$.0033 .0050 .0066 .0082
32	$\left\{\begin{array}{cc} 0.5\\ 0.75\\ 1.0\\ 1.25\end{array}\right.$	0 0.3 0.0 1.3	33D 67D 5D	0.33D 0.67D 1.5D 3D								.0049 .0073 .0098 .0122	.004 .006 .008 .010	43 .0 55 .0 87 .0 98 .0	039 059 079 0099	.0037 .0056 .0074 .0092	$.0037 \\ .0056 \\ .0074 \\ .0092$
28	$\left\{\begin{array}{cc} 0.5\\ 0.75\\ 1.0\\ 1.25\end{array}\right.$	0 0.3 0.0 1.3	33 <i>D</i> 67 <i>D</i> 5 <i>D</i>	$\begin{array}{c} 0.33D \\ 0.67D \\ 1.5D \\ 3D \end{array}$	·		Tol	erances in so apply to	this rang	;e). 	0045 0068 0091 0113	$.0042 \\ .0063 \\ .0084 \\ .0105$	$.0042 \\ .0063 \\ .0084 \\ .0105$
27	$\left\{\begin{array}{c} 0.5\\ 0.75\\ 1.0\\ 1.25\end{array}\right.$	0 0.3 0.0 1.3	33D 67D 5D	$\begin{array}{c} 0.33D \\ 0.67D \\ 1.5D \\ 3D \end{array}$					as. 				· · · · · · · · · · · · · · · · · · ·		0047 0071 0094 0118	.0044 .0065 .0087 .0109	$.0044 \\ .0065 \\ .0087 \\ .0109$
24	$\left\{\begin{array}{c} 0.5\\ 0.75\\ 1.0\\ 1.25\end{array}\right.$	0 0.3 0.0 1.3	33 <i>D</i> 67 <i>D</i> 5 <i>D</i>	0.33D 0.67D 1.5D 3D				-).)053)079)106)132	.0049 .0073 .0098 .0122	$.0048 \\ .0073 \\ .0097 \\ .0121$
Toler-	Length of e ment in t of diam	engage- erms eter						(Not app	Minor licable to	diamete diamet	er tolerances ers less than	0.25 in)	4				
ratios	Above	to and ncluding	20 tpi	18 tpi	16 tpi	14 tpi	13 tpi	12 tpi	11 tpi	10 tpi	9 tpi	8 tpi	7 tpi	6 tpi	5 tpi	4.5 tpi	4 tpi
$0.5 \\ 0.75 \\ 1.0 \\ 1.25$	$0 \\ 0.33D \\ 0.67D \\ 1.5D$	0.33D 0.67D 1.5D 3D	in 0.0058 0.0086 0.0115 0.0144	$in \\ 0.006 \\ 0.009 \\ 0.012 \\ 0.015 \end{cases}$	$\begin{array}{c c} & in \\ 4 & 0.007 \\ 5 & 0.010 \\ 7 & 0.014 \\ 9 & 0.017 \end{array}$	$\begin{smallmatrix} & in \\ 0 & 0.0079 \\ 6 & 0.0118 \\ 1 & 0.0158 \\ 6 & 0.0198 \end{smallmatrix}$	in 0.0085 0.0128 0.0170 0.0213	in 0.0090 0.0135 0.0180 0.0225	$in \\ 0.0097 \\ 0.0146 \\ 0.0194 \\ 0.0242$	in 0.010 0.015 0.021 0.026	$\begin{array}{c c} & in \\ 5 & 0.0114 \\ 8 & 0.0171 \\ 0 & 0.0228 \\ 2 & 0.0286 \end{array}$	${ \begin{smallmatrix} in \\ 0.0125 \\ 0.0188 \\ 0.0250 \\ 0.0312 \end{smallmatrix} }$	in 0.0138 0.0207 0.0276 0.0344	$in \\ 0.0153 \\ 0.0230 \\ 0.0306 \\ 0.0382$	$in \\ 0.0170 \\ 0.0255 \\ 0.0340 \\ 0.0425$	$in \\ 0.0179 \\ 0.0268 \\ 0.0358 \\ 0.0448$	$ \begin{array}{c} in \\ 0.0188 \\ 0.0281 \\ 0.0375 \\ 0.0469 \end{array} $

^a Tolerances for lengths of engagement in terms of pitch should be selected from equivalent lengths of engagement in terms of diameter ranges. If the minor diameter tolerance as selected from this table is less than the pitch diameter tolerance, use the latter. See Design of Special Threads in appendix A5.

 TABLE 3.10. Minor diameter tolerances for internal special screw threads, class 3B (UNS threads, see par. 10, p. 3.05.)

								F === + F								
Tolerance ba	ased on basic	major diam	eter of \rightarrow		0.164	0.190	0.216	0.250	0.3125	0.375	0.4375	0.500	0.5625	0.625	0.6875	A 11
For diameter Above \rightarrow	r range			0.053	0.151	0.177	0.203	0.233	0.281	0.344	0.406	0.469	0.531	0.594	0.656	larger diam-
To and in	cluding→			0.151	0.177	0.203	0.233	0.281	0.344	0.406	0.469	0.531	0.594	0.656	0.719	eters
Threads per inch	Tolerance ratios	Length o ment i of dia	of engage- n terms meter ^a		,	3B	,		Minor dia	ameter tole	erancesb			3B	·	•
		Above	to and including													
80	$\left\{\begin{array}{c} 0.5\\ 0.75\\ 1.0\\ 1.25\end{array}\right.$	${0 \atop 0.33D \atop 0.67D \ 1.5D}$	$\begin{array}{c} 0.33D \\ 0.67D \\ 1.5D \\ 3D \end{array}$	(c)	$\begin{smallmatrix} in \\ 0.0015 \\ .0022 \\ .0030 \\ .0037 \end{smallmatrix}$	in 0.0013 .0020 .0027 .0033	$\begin{smallmatrix} in \\ 0.0013 \\ .0020 \\ .0026 \\ .0033 \end{smallmatrix}$	$\begin{smallmatrix} in \\ 0.0013 \\ .0020 \\ .0026 \\ .0033 \end{smallmatrix}$	in 0.0013 .0020 .0026 .0033	in 	in 	in 	in 	in 	in	in
72	$\left\{\begin{array}{c} 0.5 \\ 0.75 \\ 1.0 \\ 1.25 \end{array}\right.$	$\begin{array}{c} 0 \\ 0.33D \\ 0.67D \\ 1.5D \end{array}$	$\begin{array}{c} 0.33D \\ 0.67D \\ 1.5D \\ 3D \end{array}$.0017 .0026 .0034 .0043	.0015 .0023 .0031 .0039	.0015 .0022 .0029 .0036	.0015 .0022 .0029 .0036	.0015 .0022 .0029 .0036	$\begin{array}{r} 0.0015 \\ .0022 \\ .0029 \\ .0036 \end{array}$	$\begin{array}{c} 0.0015 \\ .0022 \\ .0029 \\ .0036 \end{array}$					
64	$\left\{\begin{array}{c} 0.5 \\ 0.75 \\ 1.0 \\ 1.25 \end{array}\right.$	$\begin{array}{c} 0 \\ 0.33D \\ 0.67D \\ 1.5D \end{array}$	$\begin{array}{c} 0.33D \\ 0.67D \\ 1.5D \\ 3D \end{array}$.0020 .0030 .0040 .0050	.0018 .0027 .0036 .0045	$.0016 \\ .0025 \\ .0033 \\ .0041$	$.0016 \\ .0024 \\ .0032 \\ .0040$	$.0016 \\ .0024 \\ .0032 \\ .0040$.0016 .0024 .0032 .0040	$.0016 \\ .0024 \\ .0032 \\ .0040$	$\begin{array}{r} 0.0016 \\ .0024 \\ .0032 \\ .0040 \end{array}$	$\begin{array}{r} 0.0016 \\ .0024 \\ .0032 \\ .0040 \end{array}$			
56	$\left\{\begin{array}{c} 0.5 \\ 0.75 \\ 1.0 \\ 1.25 \end{array}\right.$	$\begin{array}{c} 0 \\ 0.33D \\ 0.67D \\ 1.5D \end{array}$	$\begin{array}{c} 0.33D \\ 0.67D \\ 1.5D \\ 3D \end{array}$.0023 .0035 .0047 .0059	.0021 .0032 .0042 .0053	$.0019 \\ .0029 \\ .0039 \\ .0049$	$.0018 \\ .0027 \\ .0036 \\ .0045$	$\begin{array}{r} .0018\\ .0027\\ .0036\\ .0045\end{array}$	$\begin{array}{c} .0018\\ .0027\\ .0036\\ .0045\end{array}$	$\begin{array}{r} .0018\\ .0027\\ .0036\\ .0045\end{array}$.0018 .0027 .0036 .0045	$\begin{array}{c} .\ 0018\\ .\ 0027\\ .\ 0036\\ .\ 0045\end{array}$	$\begin{array}{c} 0.0018 \\ .0027 \\ .0036 \\ .0045 \end{array}$	$\begin{array}{r} 0.0018 \\ .0027 \\ .0036 \\ .0045 \end{array}$	$\begin{array}{r} 0.0018 \\ .0027 \\ .0036 \\ .0045 \end{array}$
48	$\left\{\begin{array}{c} 0.5\\ 0.75\\ 1.0\\ 1.25\end{array}\right.$	$\begin{array}{c} 0 \\ 0.33D \\ 0.67D \\ 1.5D \end{array}$	$\begin{array}{c} 0.33D \\ 0.67D \\ 1.5D \\ 3D \end{array}$.0028 .0042 .0056 .0070	.0025 .0038 .0051 .0063	.0023 .0035 .0047 .0059	.0021 .0032 .0043 .0054	.0021 .0031 .0041 .0052	.0021 .0031 .0041 .0052	.0021 .0031 .0041 .0052	.0021 .0031 .0041 .0052	.0021 .0031 .0041 .0052	.0021 .0031 .0041 .0052	.0021 .0031 .0041 .0052	.0021 .0031 .0041 .0052
44	$\left\{\begin{array}{c} 0.5\\ 0.75\\ 1.0\\ 1.25\end{array}\right.$	$\begin{array}{c} 0 \\ 0.33D \\ 0.67D \\ 1.5D \end{array}$	$\begin{array}{c} 0.33D \\ 0.67D \\ 1.5D \\ 3D \end{array}$.0031 .0046 .0062 .0077	$\begin{array}{c} .0028\\ .0042\\ .0056\\ .0070\end{array}$	$\begin{array}{c} .0026\\ .0039\\ .0052\\ .0065\end{array}$.0024 .0036 .0047 .0059	.0022 .0033 .0045 .0056	.0022 .0033 .0045 .0056	.0022 .0033 .0045 .0056	.0022 .0033 .0045 .0056	.0022 .0033 .0045 .0056	.0022 .0033 .0045 .0056	.0022 .0033 .0045 .0056	.0022 .0033 .0045 .0056
40	$\left\{\begin{array}{c} 0.5 \\ 0.75 \\ 1.0 \\ 1.25 \end{array}\right.$	$\begin{array}{c} 0 \\ 0.33D \\ 0.67D \\ 1.5D \end{array}$	$\begin{array}{c} 0.33D \\ 0.67D \\ 1.5D \\ 3D \end{array}$		$.0034 \\ .0051 \\ .0068 \\ .0086$.0031 .0047 .0062 .0078	.0029 .0043 .0057 .0072	.0026 .0040 .0053 .0066	.0024 .0036 .0048 .0062	$.0024 \\ .0036 \\ .0048 \\ .0062$.0024 .0036 .0048 .0060	.0024 .0036 .0048 .0060	.0024 .0036 .0048 .0060	$\begin{array}{r} .0024\\ .0036\\ .0048\\ .0060\end{array}$.0024 .0036 .0048 .0060	.0024 .0036 .0048 .0060
36	$\left\{\begin{array}{c} 0.5\\ 0.75\\ 1.0\\ 1.25\end{array}\right.$	$\begin{array}{c} 0 \\ 0.33D \\ 0.67D \\ 1.5D \end{array}$	$0.33D \\ 0.67D \\ 1.5D \\ 3D$.0038 .0058 .0077 .0096	.0035 .0052 .0070 .0087	.0032 .0048 .0064 .0081	$.0030 \\ .0044 \\ .0059 \\ .0074$.0026 .0039 .0053 .0066	.0026 .0039 .0052 .0065	.0026 .0039 .0052 .0065	.0026 .0039 .0052 .0065	.0026 .0039 .0052 .0065	$.0026 \\ .0039 \\ .0052 \\ .0065$.0026 .0039 .0052 .0065	.0026 .0039 .0052 .0065
32	$\left\{\begin{array}{c} 0.5\\ 0.75\\ 1.0\\ 1.25\end{array}\right.$	$\begin{array}{c} 0 \\ 0.33D \\ 0.67D \\ 1.5D \end{array}$	$0.33D \\ 0.67D \\ 1.5D \\ 3D$		$.0043 \\ .0065 \\ .0087 \\ .0108$.0039 .0059 .0079 .0099	$.0036 \\ .0055 \\ .0073 \\ .0091$	$.0034 \\ .0050 \\ .0067 \\ .0084$.0030 .0045 .0060 .0075	.0029 .0043 .0057 .0072	.0029 .0043 .0057 .0072	.0029 .0043 .0057 .0072	.0029 .0043 .0057 .0072	.0029 .0043 .0057 .0072	.0029 .0043 .0057 .0072	.0029 .0043 .0057 .0072
28	$\left\{\begin{array}{cc} 0.5 \\ 0.75 \\ 1.0 \\ 1.25 \end{array}\right.$	$egin{array}{c} 0 \\ 0.33D \\ 0.67D \\ 1.5D \end{array}$	$\begin{array}{c} 0.33D \\ 0.67D \\ 1.5D \\ 3D \end{array}$			$.0045 \\ .0068 \\ .0091 \\ .0113$.0042 .0063 .0084 .0105	.0039 .0058 .0077 .0096	.0034 .0051 .0069 .0086	.0032 .0047 .0063 .0079	.0032 .0047 .0063 .0079	.0032 .0047 .0063 .0079	.0032 .0047 .0063 .0079	.0032 .0047 .0063 .0079	.0032 .0047 .0063 .0079	.0032 .0047 .0063 .0079
27	$\left\{\begin{array}{cc} 0.5 \\ 0.75 \\ 1.0 \\ 1.25 \end{array}\right.$	$\begin{array}{c} 0 \\ 0.33D \\ 0.67D \\ 1.5D \end{array}$	$\begin{array}{c} 0.33D \\ 0.67D \\ 1.5D \\ 3D \end{array}$.0047 .0071 .0094 .0118	.0044 .0065 .0087 .0109	.0040 .0060 .0080 .0100	.0036 .0053 .0071 .0089	.0032 .0048 .0065 .0081	.0032 .0048 .0065 .0081	.0032 .0048 .0065 .0081	.0032 .0048 .0065 .0081	.0032 .0048 .0065 .0081	.0032 .0048 .0065 .0081	.0032 .0048 .0065 .0081
24	$\left\{\begin{array}{c} 0.5\\ 0.75\\ 1.0\\ 1.25\end{array}\right.$	$\begin{array}{c} 0 \\ 0.33D \\ 0.67D \\ 1.5D \end{array}$	$egin{array}{c} 0.33D \\ 0.67D \\ 1.5D \\ 3D \end{array}$			$.0053 \\ .0079 \\ .0106 \\ .0132$	$\begin{array}{c} .0049\\ .0073\\ .0098\\ .0122\end{array}$	$.0045 \\ .0068 \\ .0090 \\ .0113$.0040 .0060 .0080 .0100	.0037 .0055 .0073 .0092	.0035 .0052 .0070 .0087	.0035 .0052 .0070 .0087	.0035 .0052 .0070 .0087	.0035 .0052 .0070 .0087	.0035 .0052 .0070 .0087	.0035 .0052 .0070 .0087
20	$\left\{\begin{array}{c} 0.5\\ 0.75\\ 1.0\\ 1.25\end{array}\right.$	$\begin{array}{c} 0 \\ 0.33D \\ 0.67D \\ 1.5D \end{array}$	$\begin{array}{c} 0.33D \\ 0.67D \\ 1.5D \\ 3D \end{array}$					$.0054 \\ .0081 \\ .0108 \\ .0135$.0048 .0072 .0096 .0120	$.0044 \\ .0066 \\ .0088 \\ .0110$	$.0041 \\ .0062 \\ .0082 \\ .0103$.0039 .0058 .0078 .0097	.0039 .0058 .0078 .0097	.0039 .0058 .0078 .0097	.0039 .0058 .0078 .0097	.0039 .0058 .0078 .0097
18	$\left\{\begin{array}{cc} 0.5 \\ 0.75 \\ 1.0 \\ 1.25 \end{array}\right.$	$\begin{array}{c} 0 \\ 0.33D \\ 0.67D \\ 1.5D \end{array}$	$0.33D \\ 0.67D \\ 1.5D \\ 3D$.0053 .0080 .0106 .0133	.0049 .0073 .0097 .0122	.0045 .0068 .0091 .0114	$.0043 \\ .0065 \\ .0086 \\ .0108$.0041 .0062 .0082 .0103	.0041 .0061 .0081 .0102	.0041 .0061 .0081 .0102	.0041 .0061 .0081 .0102
16	$\left\{\begin{array}{c} 0.5\\ 0.75\\ 1.0\\ 1.25\end{array}\right.$	$\begin{array}{c} 0 \\ 0.33D \\ 0.67D \\ 1.5D \end{array}$	$0.33D \\ 0.67D \\ 1.5D \\ 3D$							$.0054 \\ .0082 \\ .0109 \\ .0136$.0051 .0076 .0102 .0127	.0048 .0072 .0096 .0120	.0046 .0069 .0092 .0115	.0044 .0067 .0089 .0111	.0043 .0064 .0086 .0108	.0043 .0064 .0085 .0106

^a Tolerances for lengths of engagement in terms of pitch should be selected from equivalent lengths of engagement in terms of diameter ranges.
 ^b If the minor-diameter tolerance as selected from the table is less than pitch-diameter tolerance, use the latter. See Design of Special Threads in appendix A5.
 ^c For 0.151 in diam sizes and smaller, tolerance values for all three classes are the same. For these smaller sizes, tolerance values are given in table 3.9.

Tolerance based on basic major diameter of→ 0.500 0.5625 0.6250.6875 0.375 0.4375 0.750 0.8125 0.875 0.9375 All For diameter range Above \rightarrow larger 0.344 0.4060.469 0.5310.5940.6560.719 0.781 0.844 0.906 diameters To and including \rightarrow 0.406 0.469 0.531 0.594 0.656 0.719 0.781 0.844 0.906 0.969 Length of engagement in terms of diametera Threads Tolerance 3B3Bper inch ratios Minor diameter tolerancesb Above to and including in .0058 .0086 .0052 .0078 ${0.33D \atop 0.67D}$.0054 .0050 .0049.0073 .0047 .0071 .0046.0069.0045 .0044 $^{0.5}_{0.75}$.0044 Û 0.33D 0067 14 $1.0 \\ 1.25$ 0.67D 1.5D 1.5D 3D .0100 .0115 .0109 .0104 .0097 .0095 .0092 .0091 .0089 .0088 .0136 .0144 .0130 .0122 .0118 .0116 .0113 .0111 .0110 .0058 $\substack{0.5\\0.75}$ 0.33D .0056 .0054 0052 .0050 .0050 .0049 .0048 .0047 0 .0083 .0030 .0076 .0101 .0126 0.33D0.67D.0087 .0080 .0078 .0074 .0073 .0071 13 0.67D 1.5D $1.0 \\ 1.25$ $\frac{1.5D}{3D}$.0117 .0107 .0104 0099 .0097 .0095 .0094 .0139 .0124 ${0.5 \\ 0.75 \\ 1.0 \\ 1.25 }$ 0,33D .0063 .0060 .0056 .0054 .0058 .0053 .0052 .0051 .0050 0 0.33D 0.67D 0.67D 1.5D .0094 .0125 .0090 .0087 .0084 .0082 .0080 .0078 .0077 .0075 12 0100 1.5D3D.0157 .0150 .0144 .0140 .0136 .0133 .0130 .0128 .0125 $0.5 \\ 0.75 \\ 1.0 \\ 1.25$ $\begin{array}{c} 0.33D \\ 0.67D \\ 1.5D \\ 3D \end{array}$.0058 A .0062,0060 .0058 .0056 .0055 .0054 0.33D .0094 .0091 .0121 .0086 .0084 .0082 .0082 11 0.67D 1.5D .0125 .0117 .0115 .0110 ------.0156 .0140 .0151 .0144 .0136 $^{0.5}_{0.75}$ 0.33D.0066.0099 .0064 $.0062 \\ .0093$.0061 .0060 0 .0060 0.33D 0.67D 1.5D 3D 0.33D 10 .0131 .0128 .0125 .0156 .0122 .0120 .0120 1.0 0.67D1.25 1.5D 0.33D .0068 .0067 0.5 0 .0066 .0066 0.33D 0.67D 0.75 .0103 .0137 .0171 0.67D 1.5D .0100 .0100 .0100 9 1.25 1.5D3D.0168 .0166 .0166 $\begin{array}{c} 0.33D \\ 0.67D \\ 1.5D \\ 3D \end{array}$ $0.5 \\ 0.75$ $0 \\ 0.33D$.0075 .0075 .0075 .0075 .0112 .0112 .0112 .0112 8 $1.0 \\ 1.25$ 0.67D.0150 .0150 .0150 .0150 1.5D.0188 .0188 .0188 .0188 0.5 ${0.33D \atop 0.67D}$.0086 n .0086 0.75 0.33D .0129 .0129 7 $1.0 \\ 1.25$ 1.5D3D.0171 0.67D.0171 1.5D .0214 0.50.33D0 .0100 0.33D 0.67D 0.67D 1.5D $0.75 \\ 1.0$.0150 6 -----.0200 1.25 1.5D $\dot{3}D$.0250 $\begin{array}{c} 0.33D \\ 0.67D \\ 1.5D \\ 3D \end{array}$ $0.5 \\ 0.75$ 0 .0120 0.33D.0180 5 1.0 0.67D .0240 1.25 1.5D.0300 0.50.33D.0133 n 0.33D 0.67D 1.5D 3D 0.75 0.33D 4.5 $1.0 \\ 1.25$ $0.67D \\ 1.5D$.0267 $0.5 \\ 0.75 \\ 1.0 \\ 1.0$ 0.33D.0150 0 0.67D 1.5D 3D 0.33D 0.67D .0225 4 1.25 1.5D .0375

 TABLE 3.10. Minor diameter tolerances for internal special screw threads, class 3B—Continued (UNS threads, see par. 10, p. 3.05.)

See previous page for footnotes.

TABLE 3.11. Consolidated method for the calculation of dimensions of special threads

	Thread element		Min major dia	Tolerance on major dia	Min pitch dia	Tolerance on pitch dia	Min minor dia	Tolerance on minor dia
thread	Class 3B				major diameter shown	Table 3.8 APPLY PLUS	c major diameter and and larger. For class) length of engagement se values for applicable tith directions for design- 3 at 0 2B values to the us 3B values are to be
Interna	Class 2B		Nominal size	col. 8.	, col. 14, from minimum	Table 3.7 APPLY PLUS	1, col. 17. from the basi t 0.001 in for sizes 0.138 ir yield four decimal places.	ise value for 0.57 D to 1.51 For specific applications u r compute in accordance w preadix 54 APPLY PLU dr round off for classess 11 dr round off for classess for es 0.138 in and larger; cla est 0.0001 in.
	Class 1B			H/6(0.1667H), table 2.1, APPLY PLUS.	Subtract 0.75 <i>H</i> , table 2.1 above.	Table 3.6 APPLY PLUS	Subtract 1.25 <i>H</i> , table 2. round off to the nearest 3B a cipher is added to	For general applications u from table 3.9 or 3.10 length of engagement or ling special threads in a min minor diameter an nearest 0.001 in for size rounded off to the near
	Class 3A		Nominal size	gning special threads in		Table 3.5 APPLY MINUS	is is a reference dimen-	
	Class 2A		Table 3.2	ance with directions for desig	diameter shown above.	Table 3.4 APPLY MINUS	cimum major diameter. Th	
External thread	Class 1AR	minal size minus allowance	Tabulated on p. 3.03	3.04 or compute in accordan INUS.	ol. 14, from maximum major	Table 3.3 APPLY MINUS	table 2.1, col. 18, from max	col. 6.
	Class 1A	Noi	Table 3.2	Use values tabulated on p. appendix A5. APPLY M.	Subtract 0.75 <i>H</i> , table 2.1, c	Table 3.3 APPLY MINUS	Subtract 17H/12(1.4167H), sion only.	H/12(0.0833H), table 2.1, APPLY MINUS
	Thread element		Max major dia	Tolerance on major dia	Max pitch dia	Tolerance on pitch dia	Max minor dia	Tolerance on minor dia

FIGURE 3.12. Thread dimensions to be determined for a special thread.

INDEX

3.03Allowances _____ Classes of thread_____ 3.023.02Class selection_____ Designating_____ Dimensions_____ 3.053.05Form of thread 3.01Length of engagement_____ 3.04_____ 3.05Limits of size___ Preferred diameters and pitches 3.01Selected combinations 3.07Tolerances_____ 3.03_____ Types.... 3.01

Page

UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

HANDBOOK H28

SCREW-THREAD STANDARDS

FOR FEDERAL SERVICES

SECTION 4

1969

CONTROLLED RADIUS ROOT SCREW THREADS UNJ SYMBOL

This section of Handbook H28 has not as yet been fully coordinated. As soon as coordination has been completed, it will be issued as a separate document.

Section 4 will be in general agreement with Military Specification MIL-S-8879, Screw Threads, Controlled Radius Root with Increased Minor Diameter; General Specification for.

Also in process of coordination is USAS B1.15 which is the industry standard for the UNJ thread.

UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

HANDBOOK H28

SCREW-THREAD STANDARDS

FOR FEDERAL SERVICES

SECTION 5

1969

UNIFIED MINIATURE SCREW THREADS

CONTENTS

Page

1.	Introduction	5.01
2.	Thread form	5.01
3.	Unified Miniature thread series	-5.06
4.	Classification and tolerances	-5.06
5.	Coated threads	-5.06
6.	Thread designations	-5.06
7.	Limits of size	-5.06
8.	Gages and gaging	-5.06

1. INTRODUCTION

This section is in general agreement with United States of America Standards Institute (USASI) Standard USA B1.10, Unified Miniature Screw Threads, published by The American Society of Mechanical Engineers, United Engineering Center, 345 East 47th Street, New York, N.Y. 10017. The latest revision should be consulted when referring to this USA standard. As of date of issue of this part of H28, USA B1.10-1958 is the latest revision.

The thread sizes shown in this section are those endorsed by the American-British-Canadain Conference as the basis for a Unified standard among the inch-using countries.

This section presents a thread series known as Unified Miniature Screw Threads and is intended for general purpose fastening screws and similar uses in watches, instruments, and miniature mechanisms. The series covers a diameter range from 0.30 to 1.40 mm (0.0118 to 0.0551 in) and thus supplements the Unified thread series that begin at 0.060 in.

The 14 sizes are systematically distributed, providing a uniformly proportioned selection over the entire range. They are alternately separated into two categories. The primary sizes are selections made in the interest of simplification and are those to which it is recommended that usage be confined whenever the circumstances of design permit. For more restrictive conditions, the secondary sizes are available.

The diameter-pitch combinations have been determined to provide both maximum strength against stripping and optimum conditions for manufacture on an interchangeable basis.

The values of all dimensions are supplied in both metric and inch units. The standard being basically metric, only the metric values of the nominal diameters and pitches are rational. Consequently, metric units are stipulated for all formulas and the inch dimensions derived by conversion of the unrounded metric values, using the conversion factor 25.4 mm/in.

Use of this series is recommended on all new products in place of the many improvised and unsystematized sizes now in existence that have never arrived at broad acceptance nor recognition by any standardization bodies.

2. THREAD FORM

2.1. BASIC THREAD FORM—The theoretical profile on which the design forms of the threads covered by this section are based is, except for one element, the Unified basic thread form as specified in section 2 and shown in figure 5.1. In exception is thread height, for which a basic value of 0.48p is used instead of

FIGURE 5.1. Basic thread form, Unified Miniature threads, UNM.

0.54127p (=5H/8). Selection of this value is based on the extensive simplification that it affords throughout the calculations for this standard. Resulting coefficients in the formulas for many of the other thread dimensions derived from this property thereby become simple, finite multiples of the lowest common denominator (40) of the fractional equivalents of all but two of the metric pitches, thus yielding values for the majority of metric dimensions that are finite within the decimal place limits of the tables. Also, the calculation of inch equivalents from the terminal metric values is thereby simplified and discrepancies between the metric and inch tables kept to a minimum. This modification will not affect interchangeability with product made to any other standards retaining 0.54127p, as the resulting difference is negligible and completely offset by practical considerations in tapping, full internal thread heights being invariably avoided in these small sizes to escape excessive tap breakage.

2.2. DESIGN FORMS OF THREADS.—The design forms (maximum material condition) of external and internal Unified Miniature threads are shown in figure 5.2.

2.3. BASIC THREAD DATA.—The formulas for the various features of the thread form are as follows:

Dimension	Symbol	Formula ª
Basi	e thread f	orm
Angle of thread Half angle of thread Pitch of thread No. of threads per inch Height of sharp-V thread Addendum of basic thread Height of basic thread (Unified and ISO) ^b . Height of basic thread	2α α p n H h _{ab} h _b	60°. 30°. 25.4/p. 0.866025p. 0.32476p. 0.54127p.

Desig	n thread	form
Addendum of external		
thread	has	0.32476n
Height of external		
thread	h_s	0.56p.
Flat at crest of external	-	
thread	F'cs	0.125p.
tornal thread		0.158m (annual)
Depth of thread engage-	Trs	0.138 <i>p</i> (approx.).
ment	$h_{a} = h_{b}$	0.48n
Height of internal thread	h_n	0.516p.
Flat at crest of internal		-
thread	F_{cn}	0.32074p.
Radius at root of in-		
ternal thread	Trn	0.072p (approx.).

^a The formulas are applied to the metric values of *p*. Tabulated inch dimensions are derived from the unrounded metric dimensions.

^b This item is listed for reference only. For the present standard all dependent details of thread form and dimensions are based on a height of 0.48p.

The corresponding thread data for the various standard pitches are shown in table 5.3. The formulas for basic and design thread sizes are as follows:

\mathbf{Symbol}	Formula
D	
D_s	<i>D</i> .
D_n	$D - 2h_b + 2h_n = D + 0.072p.$
Ε	$D - 2h_{ab} = D - 0.64952p.$
E_s	Е.
E_n	Ε.
$K \atop K_s$	$\begin{array}{l} D - 2h_b = D - 0.96p. \\ D - 2h_s = D - 1.12p. \end{array}$
Kn	К.
	Symbol D Ds Dn E Es Es En K Ks Kn

		Basic				F		Internal thread				
Threads per inch ^a n	Pitch, p	Height of sharp V thread, H = 0.866025p	Height, $h_b = 0.48p$	Addendum, $h_{ab} =$ $h^{a_s} =$ 0.32476p	$\begin{array}{l} \text{Height,} \\ h_{s} = \\ 0.56 p \end{array}$	Flat at crest, $F_{cs} =$ 0.125 p	Radius at root, $r_{rs} =$ 0.158p	Basis for minimum flat at root, 0.64p	$\begin{array}{l} \text{Min. flat} \\ \text{at root,} \\ F_{rs} = \\ 0.136p \end{array}$	Height, $h_n =$ 0.516p	Flat at crest, $F_{cn} =$ 0.32074p	Radius at root, $r_{rn} =$ 0.072p
1	2	3	4	5	6	7	8	9	10	11	12	13
	${}^{mm}_{0.080}_{.090}_{.100}_{.125}_{.150}_{.150}_{.175}_{.200}_{.225}_{.250}$	mm 0.0693 .0779 .0866 .1083 .1299 .1516 .1732 .1949 .2165	mm 0.0384 0.132 0.480 .0600 .0720 .0840 .0960 .1080 1200	mm 0.0260 .0292 .0325 .0406 .0487 .0568 .0650 .0731 .0812	mm 0.045 .050 .056 .070 .084 .098 .112 .126 .140	mm 0.0100 .0112 .0125 .0156 .0188 .0219 .0250 .0281 .0312	mm 0.0126 .0142 .0158 .0237 .0237 .0277 .0316 .0356 .0395	$\begin{array}{c} mm \\ 0.0512 \\ .0576 \\ .0640 \\ .0800 \\ .0960 \\ .1120 \\ .1280 \\ .1440 \\ .1600 \end{array}$	mm 0.0109 .0122 .0136 .0170 .0204 .0238 .0272 .0306 .0340	mm 0.0413 .0464 .0516 .0645 .0774 .0903 .1032 .1161 .1290	$\begin{array}{c} mm \\ 0.0257 \\ .0289 \\ .0321 \\ .0401 \\ .0481 \\ .0561 \\ .0641 \\ .0722 \\ .0802 \end{array}$	mm 0.0058 .0065 .0072 .0090 .0108 .0126 .0144 .0162 .0180
317½ 28239 254 203½ 169⅓	.300 in 0.003150 .003543 .003937 .004921 .005906	. 2598 in 0.00273 .00307 .00341 .00426 .00511	.1440 in 0.00151 .00170 .00189 .00236 .00283	$\begin{array}{c} .0974\\ in\\ 0.00102\\ .00115\\ .00128\\ .00160\\ .00192\end{array}$.168 in 0.00176 .00198 .00220 .00276 .00331	$\begin{array}{r} 0.0375\\ in\\ 0.00039\\ .00044\\ .00049\\ .00062\\ .00074\end{array}$.0474 in 0.00050 .00056 .00062 .00078 .00093	$\begin{array}{c} .1920\\ in\\ 0.00202\\ .00227\\ .00252\\ .00315\\ .00378\end{array}$	$\begin{array}{c} .0408\\ in\\ 0.00043\\ .00048\\ .00054\\ .00067\\ .00080\end{array}$.1548 in 0.00163 .00183 .00203 .00254 .00305	.0962 in 0.00101 .00114 .00126 .00158 .00189	.0216 in 0.00023 .00026 .00028 .00035 .00043
145½ 127 11286	$.006890 \\ .007874 \\ .008858$.00597 .00682 .00767	$.00331 \\ .00378 \\ .00425$	$.00224 \\ .00256 \\ .00288$	$.00386 \\ .00441 \\ .00496$	$.00086 \\ .00098 \\ .00111$	$.00109 \\ .00124 \\ .00140$	$.00441 \\ .00504 \\ .00567$	$.00094 \\ .00107 \\ .00120$	$.00356 \\ .00406 \\ .00457$	$.00221 \\ .00253 \\ .00284$.00050 .00057 .00064
101 ³ /5 84 ² /3	.009843 .011811	$.00852 \\ .01023$	$.00472 \\ .00567$	$.00320 \\ .00384$.00551 .00661	$.00123 \\ .00148$	$.00156 \\ .00187$	$.00630 \\ .00756$	$.00134 \\ .00161$.00508 .00609	.00316 .00379	.00071 .00085

TABLE 5.3. Thread form data, Unified Miniature screw threads, UNM

^a In all subsequent tables these values are rounded to the nearest whole number.

Size des	signation	Pitch.	Basic major	Basic pitch diameter, $E =$	Minor diameter external	Minor diameter internal	Major diameter internal	Lead basi	angle at c pitch	Sectional area at minor
Primary	Secondary	p	$\overset{\text{diameter,}}{D}$	D = 0.64952 p	threads, $K_s = D - 1.12p$	threads, $K_n = K = D - 0.96p$	threads, $D_n = D + 0.072 p$	dia	meter, λ	$\begin{array}{c} \text{diameter at} \\ D-1.28p \end{array}$
1	2	3	4	5	6	7	8		9	10
.30UNM .40UNM .50UNM	.35UNM .45UNM	mm .080 .090 .100 .100 .125	$mm \\ 0.300 \\ .350 \\ .400 \\ .450 \\ .500$	$mm \\ 0.248 \\ .292 \\ .335 \\ .385 \\ .419$	mm 0.210 .250 .288 .338 .360	${}^{mm}_{\ \ 223}$.264 .304 .354 .380	mm 0.306 .356 .407 .457 .509	deg 5 5 5 4 5	min 52 37 26 44 26	${}^{mm^2}$ 0.0307 0433 0581 0814 0908
.60UNM .80UNM	.55UNM .70UNM .90UNM	.125 .150 .175 .200 .225	. 550 . 600 . 700 . 800 . 900	.469 .503 .586 .670 .754	.410 .432 .504 .576 .648	.430 .456 .532 .608 .684	.559 .611 .713 .814 .916	4 5 5 5 5 5	$51 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26 \\ 2$.1195 .1307 .1780 .232 .294
1.00UNM 1.20UNM	1.10UNM 1.40UNM	.250 .250 .250 .300	$1.000 \\ 1.100 \\ 1.200 \\ 1.400$.838 .938 1.038 1.205	.720 .820 .920 1.064	.760 .860 .960 1.112	$1.018 \\ 1.118 \\ 1.218 \\ 1.422$	5 4 4 4	26 51 23 32	$.363 \\ .478 \\ .608 \\ .811$
.30UNM .40UNM .50UNM	.35UNM .45UNM .55UNM	threads per inch 318 282 254 254 203 203	in 0.0118 .0138 .0157 .0177 .0197 .0217	$in \\ 0.0098 \\ .0115 \\ .0132 \\ .0152 \\ .0152 \\ .0165 \\ .0185$	in 0.0083 .0098 .0113 .0133 .0142 .0161	in 0.0088 0104 0.120 0.0139 .0139 .0150 .0169	$in \\ 0.0120 \\ .0140 \\ .0160 \\ .0180 \\ .0200 \\ .0220$	deg 5 5 5 4 5 4	min 52 37 26 44 26 51	sq in × 10 ⁻⁴ 0.475 .671 .901 1.262 1.407 1.852
.60UNM .80UNM	.70UNM	169 145 127 113	.0236 .0276 .0315 .0354	.0198 .0231 .0264 .0297	.0170 .0198 .0227 .0255	.0180 .0209 .0239 .0269	.0240 .0281 .0321 .0361	5 5 5 5 5	$ \begin{array}{c} 26 \\ 26 \\ 26 \\ 26 \end{array} $	$\begin{array}{c} 2.03 \\ 2.76 \\ 3.60 \\ 4.56 \end{array}$
1.00UNM 1.20UNM	1.10UNM 1.40UNM	$102 \\ 102 \\ 102 \\ 85$.0394 .0433 .0472 .0551	.0330 .0369 .0409 .0474	.0283 .0323 .0362 .0419	$.0299 \\ .0339 \\ .0378 \\ .0438$	$\begin{array}{r} .0401\\ .0440\\ .0480\\ .0560\end{array}$	5 4 4 4	$26 \\ 51 \\ 23 \\ 32$	5.63 7.41 9.43 12.57

TABLE 5.4. Basic and design sizes, Unified Miniature thread series, UNM

5
R
5
2
2
Ś
5
0
\$
~
a
ø
5
3
2
-3
-
, a
22
.2
-
1
-
°S.
in the second
1
è
5
\sim
S
8
~
8
- E
6
\sim
*2
~
ž
8
~
8
.0
S
4
0
\$
2
. 2
.5
~
10
ŝ
67
5
8
7
- 1
_

iameter limits	neter limits	Max. ^b	19	$mm \\ 0.327 \\ 0.380 \\ .432 \\ .482 \\ .538 \\ .538$.588 .644 .750 .962	$1.068 \\ 1.168 \\ 1.268 \\ 1.480$	in 0.0129 0.0129 0.0170 0.0170 0.0190 0.0190	$\begin{array}{c} .0231 \\ .0254 \\ .0237 \\ .0337 \\ .0379 \end{array}$.0420 .0460 .0499 .0583
	Major diar	Min.e	18	mm 0.306 0.306 .356 .407 .457 .509	.559 .611 .713 .814 .916	$1.018 \\ 1.118 \\ 1.218 \\ 1.422 \\ 1.422$	in 0.0120 0.0140 0.0180 0.0180 0.0180 0.0180 0.0180 0.00180 0.00180 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000	$\begin{array}{c} 0.220\\ 0.240\\ 0.281\\ 0.321\\ 0.361\\ 0.361\end{array}$	0401 0440 0480 0480 0560
	nits	Tol.	17	mm 0.014 0.015 .015 .016 .016 .018	$\begin{array}{c} 0.18\\ 0.22\\ 0.024\\ 0.024\\ 0.024\end{array}$	$\begin{array}{c} 0.28\\ 0.28\\ 0.28\\ 0.32\\ 0.32\end{array}$	${}^{in}_{0.006}$.0006 .0006 .0006 .0006	0000	.0011 .0011 .0013 .0013
threads	diameter lir	Max.	16	mm 0.262 .307 .351 .401 .437	$ \begin{array}{c} 487 \\ 523 \\ 608 \\ .694 \\ .780 \\ \end{array} $.866 .966 1.066 1.237	$\begin{array}{c} in \\ 0.0104 \\ .0121 \\ .0138 \\ .0158 \\ .0172 \end{array}$	$\begin{array}{c} 0192 \\ 0206 \\ 0240 \\ 0273 \\ 0307 \end{array}$.0341 .0380 .0420 .0487
Internal	Pitch	Min.	15	mm 0.248 0.248 0.335 0.335 0.419	.469 .503 .586 .670	$^{838}_{-938}$ $^{938}_{1.038}$ $^{1.205}_{1.205}$	${\stackrel{in}{0.008}} 0.0098 \\ .0115 \\ .0132 \\ .0152 \\ .0165 \\ .0165$	$\begin{array}{c} 0185\\ 0198\\ 0231\\ 0264\\ 0297\end{array}$.0330 .0369 .0409 .0472
	nits	Tol.	14	mm 0.037 0.041 0.044 0.044 0.052	.052 .060 .068 .076	$\begin{array}{c} 0.92\\ 0.92\\ 0.02\\ 0.08\\ 0.08\end{array}$	${\stackrel{in}{0.0014}} {\stackrel{in}{0.0014}} {\stackrel{.0016}{.0017}} {\stackrel{.0017}{.0018}} {\stackrel{.0020}{.0020}}$.0021 .0023 .0027 .0030	.0036 .0036 .0036 .0036
	diameter lir	Max.	13	mm 0.260 0.305 .348 .398 .398	$ \begin{array}{c} 482 \\ 516 \\ 600 \\ 684 \\ 768 \\ \end{array} $	$ \begin{array}{c} .852 \\ .952 \\ 1.052 \\ 1.220 \\ \end{array} $	$\stackrel{in}{0.0102}$ 0.0120 0.0120 0.0137 0.0137 0.0157 0.0170	$\begin{array}{c} 0190\\ 0203\\ 0286\\ 0269\\ 0302\end{array}$	0335 0375 0414 0480
	Minor	Min.	12	mm 0.223 .264 .304 .354	.430 .456 .608 .684	$ \begin{array}{c} .760\\ .860\\ .960\\ 1.112\end{array} $	in 0.0088 0.0088 0.0104 0.0120 0.0120 0.0139 0.0139 0.0130 0.01000 0.0000000000	0169 0180 0209 0239 0239	$\begin{array}{c} 0.299\\ 0.339\\ 0.378\\ 0.438\\ 0.438\end{array}$
	eter limits	Min.b	11	mm 0.189 0.189 .228 .314 .312	.382 .400 .468 .536	$ \begin{array}{c} .672 \\ .772 \\ .872 \\ 1.008 \end{array} $	$\begin{array}{c} in \\ 0.0074 \\ 0.0090 \\ 0.0124 \\ 0.0131 \end{array}$	$\begin{array}{c} .0150 \\ .0157 \\ .0184 \\ .0211 \\ .0238 \end{array}$	0265 0304 0343 0397
	Minor diame	Max. ^a	10	mm 0.210 .250 .338 .338	$ \begin{array}{c} 410 \\ -376 \\ -576 \\ -648 \\ \end{array} $	$ \begin{array}{c} .720\\ .820\\ .920\\ 1.064 \end{array} $	$in 0.0083 \\ 0.0083 \\ 0.0098 \\ 0.0133 \\ 0.0133 \\ 0.0142 $	0161 0170 0198 0227 0227	$\begin{array}{c} 0.283\\ 0.323\\ 0.362\\ 0.419\end{array}$
	iits	Tol.	6	mm 0.014 0.015 0.016 0.016 0.016 0.018	.018 .020 .022 .024 .026	.028 .028 .032	$in 0.006 \\ 0.0006 \\ 0.0006 \\ 0.0006 \\ 0.007 $.0008 .0009 .0009 .00100	$\begin{array}{c} .0011\\ .0011\\ .0012\\ .0012\end{array}$
reads	diameter lin	Min.	×	mm 0.234 .277 .319 .369 .401	$ \begin{array}{c} 451 \\ 483 \\ 564 \\ 646 \\ 728 \\ \end{array} $	$\begin{array}{c} .810 \\ .910 \\ 1.010 \\ 1.173 \\ 1.173 \end{array}$	$in \\ 0.0092 \\ 0.0092 \\ 0.0126 \\ 0.0126 \\ 0.0128 \\ 0.0158 \\ 0.005$	0177 0190 0222 0254 0287	$\begin{array}{c} 0319\\ 0358\\ 0397\\ 0462\\ 0462 \end{array}$
External th	Pitch	Max.	7	mm 0.248 0.248 .335 .335 .385 .119	.469 .503 .586 .670	$\begin{array}{c} .838\\ .938\\ 1.038\\ 1.205\end{array}$	$\stackrel{in}{0.0098}$ $\stackrel{0.0098}{.0115}$ $\stackrel{0.115}{.0132}$ $\stackrel{0.132}{.0152}$	$\begin{array}{c} 0185\\ 0198\\ 0231\\ 0224\\ 0264\\ 0297\end{array}$	0330 0369 0409 0474
	s	Tol.	9	mm 0.016 .017 .018 .018 .018	$\begin{array}{c} 0.21\\ 0.24\\ 0.27\\ 0.33\\ 0.33\end{array}$.036 .036 .036 .042	${\stackrel{in}{0.006}} {\stackrel{in}{0.006}} {\stackrel{.0006}{0.007}} {\stackrel{.0007}{0.008}} {\stackrel{.0007}{0.008}}$.0009 .0009 .0011 .0012	.0014 .0014 .0014
	diameter limi	Min.	5	mm 0.284 .333 .382 .432 .432	.529 .576 .73 .770 .867	$\begin{array}{c} .964 \\ 1.064 \\ 1.164 \\ 1.358 \\ 1.358 \end{array}$	in 0.0112 0.131 0.150 0170 0189	.0208 .0227 .0265 .0303	.0380 .0419 .0458
	Major	Max.	T J ¹	mm 0.300 .350 .400 .450	.550 .700 .800	1.000 1.100 1.200 1.400	\hat{nn} 0.0118 0.0138 0.0138 0.138 0.177 0.177	.0217 .0236 .0276 .0315	.0394 .0433 .0472 .0551
	Pitch		3	$mm \\ 0.080 \\ 0.090 \\ 0.100 \\ 0.125 \\ 0.125$.125 .150 .175 .200	. 250 . 250 . 300	breads per in 282 254 254 203	203 169 145 1127 113	102 102 85
nation		Secondary	3	.35UNM .45UNM	MNU05. MNU00. 90UNM	1.10UNM 1.40UNM		MNU02. MNU00.	1.10UNM 1.40UNM
Size desig		Primary	-	.30UNM	MNN09.	1.00UNM 1.20UNM	MNU06.	MNU08.	1.20UNM

^a This limit is provided for reference only. In practice, the form of the threading toon is relied upon tor this limit. Control by grading is not imposed. ^e This limit is provided for reference only and is not graged. For grading, the maximum major diameter of the external thread is applied. North-Inhibit in this table have been determined by direct conversion of corresponding metric dimensions prior to rouding off. Inch tolerances are the differences between the inch limits and, consequently, differ in some instances by 0.0001 inch from the inch equivalent of the metric tolerance.

3. UNIFIED MINIATURE THREAD SERIES

The diameter-pitch combinations which constitute the Unified Miniature thread series, and the design sizes, are those shown in table 5.4. All threads are of the single (single-start) type.

4. CLASSIFICATION AND TOLERANCES

4.1. CLASSIFICATION.—There is established herein only one class of thread, with zero allowance on all diameters.

4.2. TOLERANCES.—All tolerances governing limits of size are based on functions of the pitch only and apply to lengths of engagement from 0.67 to 1.5 times the nominal diameter. (See note, table 5.5.) The limits of size resulting from the application of the specified tolerances are illustrated in figure 5.6. Length of engagement and nominal diameter have not been incorporated in any of the tolerance formulas in view of the following: (1) In the small thread sizes covered by this standard, lengths of engagement appreciably below or above the range covered by the formulas are seldom employed. (2) Functional fitness in these small sizes is dependent principally upon the properties of the thread rather than the size of the threaded member. (3) Total tolerances are too small to permit the imposition of minor order modifications.

Tolerances are tabulated in table 5.5 and are based on the following formulas:

	External thread a	${\rm Internal}\ {\rm thread}^{b}$
Major diameter Pitch diameter Minor diameter	$\begin{array}{c} 0.12p + 0.006 \\ 0.08p + 0.008 \\ 0.16p + 0.008^c \end{array}$	$\begin{array}{r} 0.168p + 0.008^{d} \\ 0.08p + 0.008 \\ 0.32p + 0.012 \end{array}$

NOTE: Metric units (millimeters) apply in these formulas. Inch tolerances are not derived by direct conversions of the metric values but are the differences between the rounded-off limits of size in inch units.

 a Tolerances on external threads are applied to the design sizes in the minus direction.

 b Tolerances on internal threads are applied to the design sizes in the *plus* direction.

^c This formula is for reference only. In practice, the form of the threading tool is relied upon for controling the minimum minor diameter, and this limit is not gaged, except in confirming new tools.

^{*d*} This formula is for reference only and is comprised of the pitch diameter tolerance and an extension of the thread form of 0.08p beyond the basic major diameter. In practice, this limit is applied to the threading tool (tap) and is not gaged on the product.

5. COATED THREADS

It is not within the scope of this standard to make recommendations for thicknesses of, or to specify limits for, coatings. However, it is obvious that in these small sizes any coatings applied must be kept thin because of the smallness of the threads. Generally, the coatings employed in practice are confined to those of the electroplated or oxide types and are limited to a flash thickness. For applications where these eoatings are inadequate the product is usually made of a eorrosion-resistant material, thereby avoiding the problems attendant to providing for heavier coatings. However, where coatings of a measurable thickness are required, it is essential that they be included within the maximum-material limits since no allowance is provided between these limits of the external and internal thread. In other words, the maximum material limits given in this standard apply to both uncoated and coated threads.

6. THREAD DESIGNATIONS

Serew threads of this series shall be designated on engineering drawings, in specifications, and on tools and gages (when space permits) by the size designations shown in columns 1 and 2 of table 5.4 in which the symbol UNM designates the Unified Miniature series. To these designations may be affixed, in parentheses, the ineh equivalent of the basic major diameter, but this addition is optional. Thus, for example, the thread size identified by the designation .80UNM may also be designated .80UNM (.0315).

7. LIMITS OF SIZE

The limits of size of both external and internal threads, resulting from the application of the specified tolerances, are given in table 5.5 in both the metric and English systems and are illustrated in figure 5.6. For hole size limits before tapping, see appendix A3.

8. GAGES AND GAGING

The development of a gaging standard for Unified Miniature threads is anticipated after the accumulation of more experience with this standard. The following procedures are at present being successfully used by some producers:

1. GAGING OF EXTERNAL THREADS.—The major diameter of the external thread is inspected by either contact gaging or optical projection. All other dimensions, such as pitch diameter, lead, thread form, and minor diameter are inspected by optical projection methods. There is presented in figure 5.7 an illustration of a chart which has been found very satisfactory for the optical projection method of

FIGURE 5.6. Disposition of tolerances and crest clearances, Unified Miniature threads, UNM.

FIGURE 5.7. Suggested chart for projection inspection of external Unified Miniature threads, UNM.

inspection of external threads. Inspection at a magnification of 100 is recommended and at this scale the charts should be accurate to within ± 0.01 in on all diameters and on pitches cumulatively up to five.

2. GAGING OF INTERNAL THREADS.—The minor diameter of the internal thread is gaged with GO and NOT GO plain cylindrical plug gages. All other elements are checked only for assembleability limits by means of a GO thread plug gage. For the minimum-material limit of the internal thread the accuracy and performance of the tap is relied upon. This implies that the major and pitch diameters of the tap do not exceed the maximum internal thread limits for these elements and disregards overcutting, which is rarely incurred because of the flexibility of these small taps and the manner in which they are generally fluted.

9. WIRE MEASUREMENT OF PITCH DIATETER

For information concerning the wire measurement of pitch diameter, see appendix A4.

HANDBOOK H28

SCREW-THREAD STANDARDS

FOR FEDERAL SERVICES

SECTION 6

1969

GAGES AND GAGING FOR UNIFIED SCREW THREADS

CONTENTS

Page

1.	Introduction	-6.01
2.	Basic principles	6.01
	2.1. Gage classification	-6.01
	2.2. Gages for reference	-6.01
	2.3. Limit gages	-6.01
	2.4. Final conformance gaging	-6.02
	2.5. Screw thread conformance	6.02
	2.6. Limitations of gaging	6.02
	2.7. Surveillance of gages	-6.02
	2.8 Measurement of gages	-6.02
3	Gaging and verification of product threads	6.03
0.	3.1 Use of gages	6.03
	2.9 Limitations	6.04
	3.2 Infinitediolog	6.05
Λ	Shoat far the store age of the store	6.05
ч.	A 1 Conorol design	6.05
	4.2. Degizin of going blonks	6.05
	4.2. Design of gage of an Ks	6.05
	4.4. Specifications for gauge onlice ble to product internal threads	6.06
	4.4. Specifications for gages applicable to product internal tireads	6 10
	4.5. Specifications for gages applicable to product external threads	0.10
	4.6. Inread setting plug gages	0.10
-	4.7. Plain plug acceptance check gages	0.17
5.	Recommended gaging practices	6.17
	5.1. Dimensional acceptability of threads	6.17
	5.2. Procedure in setting adjustable limit and indicating thread gages	6.18
	5.3. Limit gages for use in manufacturing	6.20
	5.4. Differential gaging	6.21
	5.5. Thread analysis utilizing indicating thread gages	6.21
	5.6. Gaging functional depth limits of product internal threads	6.24
	5.7. Determination of limits of size of gages	-6.26
6.	Indicating thread gages	6.27
	Index	6.77

This section is in general agreement with United States of America Standards Institute (USASI) Standard USA B1.2 Gages and Gaging for Unified Screw Threads, published by The American Society of Mechanical Engineers, United Engineering Center, 345 East 47th Street, New York, N.Y. 10017. The latest revision should be consulted when referring to this USA Standard. As of date of issue of this part of H28, USA B1.2–1966 is the latest revision.

A related standard is Commercial Standard CS8, Gage Blanks which is for sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. The Industry standard for Gage Blanks is USA B47.1, published by The American Society of Mechanical Engineers. The latest revision should be consulted when referring to these standards. As of date of issue of this part of H28, CS8-61 and USA B47.1–1962 are the latest revisions.

1. INTRODUCTION

Gaging of screw threads is the process of investigating or determining the extent to which they conform dimensionally to prescribed limits of size. Dimensional gages are the means applied for that purpose.

This section for gages and gaging practice is supplementary to sections 2 and 3 and is intended to facilitate adherence to the limits of size specified therein without in any sense restricting the requirements more severely than those specified. Adherence to the gaging principles laid down, which have been tested by many years of practical use, will assure interchangeable assembly of product threads, the acceptance of satisfactory threads, and the rejection of threads that are outside of prescribed limitations.

This section covers gaging methods for final conformance and provides the essential specifications for the applicable gages required in line with the provisions of par. 5.1, p. 6.17.

It is not the intent to preclude the use of other gaging systems or dimensional control systems provided they are properly correlated by the user to this section and yield comparable results with respect to conformance within specified limits.

This section includes specifications for the following gages used for product inspection:

For Product Internal Thread:

(a) GO Thread Plug Gage for functional (virtual) diameter maximum-material limit.

(b) HI Thread Plug Gage for HI functional diameter minimum-material limit.

(c) GO and NOT GO Plain Plug Gages for minimum and maximum limits of the minor diameter.

For Product External Thread:

(a) GO Thread Ring Gage for functional (virtual) diameter maximum-material limit.

(b) LO Thread Ring Gage for LO functional diameter minimum-material limit.

(c) Indicating Thread Gages to establish numerical values for determining Functional Differential Reading for use in verifying conformance of the thread elements.

(d) LO Limit Thread Snap or Indicating Gages for LO minimum-material limit.

(e) GO and LO Thread Setting Plug Gages for (a) through (d) above.

(f) Plain Gages for minimum and maximum limits of the major diameter.

2. BASIC PRINCIPLES

2.1. GAGE CLASSIFICATION.—The limits of size of the threads to be produced should be represented in: (1) Gages used in checking the threads as they are produced, known as "working gages"; (2) gages for use in the acceptance of the product, known as "inspection gages"; and (3) gages used to determine the accuracy of the two preceding classes of gages known as "master" and "setting gages."

2.2. GAGES FOR REFERENCE. (a) Master gage. — The master gage is a thread plug gage which represents the physical dimensions of the basic size of the part. It clearly establishes the minimum size of the internal thread and the maximum size of the external thread at the point at which interference between mating parts begins when no allowance is provided. A master gage shall be accompanied by a record of its measurement.

(b) Setting gage (check gage).—Threaded setting gages.—A setting gage is a thread plug gage to which adjustable thread ring gages, thread snap gages, and other thread comparators are set to size. Threaded setting plug gages are of two standard designs which are designated as "basic-crest setting plugs" and "truncated setting plugs."

The basic-crest setting plug is one having a width of flat at the crest equal to 0.125*p*. It is frequently used for setting thread snap gages and indicating type gages. See par. 5.2, p. 6.18.

The truncated setting plug of standard design, as shown in CS8 or B47.1, is similar to the basic-crest setting plug except that the crest of the thread is truncated for half the length of the gage, giving a full-form portion and a truncated portion, as specified in par. 4.6.3, p. 6.16. In setting thread gages to size, the truncated portion controls the pitch diameter, and the full-form portion assures that proper clearance is provided at the major diameter of the ring gage. Also, the use of the full-form portion in conjunction with the truncated portion checks, to some degree, the flank angle of the thread gage.

Plain cylindrical plug acceptance check gages.—GO and NOT GO plain cylindrical plug acceptance check gages are required to check the minor diameter limits of thread ring gages of the smaller sizes, after the gage has been properly set to the thread setting plug gage. Standard measuring equipment is usually employed in lieu of plain cylindrical plug gages for minor diameters larger than 0.375 in.

2.3. LIMIT GAGES.—Limit gages are of two categories: (1) maximum-material-limit gages, designated GO gages and (2) minimum-material-limit gages, designated low limit (LO) gages for the functional diameter of external threads and high limit (HI) gages for internal threads.¹

 $\bar{(a)}$ Maximum-material-limit or GO gages.—The maximum-material-limit or GO gages, check or control the extent of the tolerance, as applied to a specific screw thread, in the direction of the limit of maximum material and represent the maximum limit of external threads and the minimum limit of internal threads. The ideal maximum-material-limit or GO gage is a threaded counterpart of the thread, made exactly to its prescribed maximum-material limits and, in length, equal to the length of engagement of the thread with its mating thread. Such gages would most nearly duplicate the assembly conditions of threads. They control the virtual diameter (or effective size) at the maximum-material limit. See par. 5.1, p. 6.17.

(b) Minimum-material-limit or HI/LO gages.— The minimum-material-limit gages control the ex-

^{1&}quot;H1" and "LO" gages were previously shown in 1128 as "Not go" gages.

tent of the tolerance in the direction of the limit of minimum material and represent the minimum limit of external threads and the maximum limit of internal threads. The minimum-material pitch diameter limits are necessarily a limitation of the pitch diameter as a single thread element. Also, it is a principle of limit gaging that each element or dimension can be checked only singly by a minimummaterial-limit gage. Accordingly, separate gages are required to check pitch, major, and minor diameters at minimum-material limits. That is, for external threads two gages are necessary: one to check the major diameter and another to check the pitch diameter; internal threads require a gage to check the pitch diameter and another to check the minor diameter. A third factor in minimum-material-limit gaging is nontechnical but of practical importance, namely, the economics of the gaging means and procedures, as thorough checking of a thread requires several individual gaging operations along and around the thread. It is not feasible, therefore, to establish an ideal gage design for gaging pitch diameter and approach that ideal closely in practice, as is done for maximum-material-limit gages.

As a result, two distinct gaging practices are widely used, as follows:

(1) The use of minimum-material-limit thread plug and ring gages provides a satisfactory means of gaging when proper functioning of the thread assembly only requires control of the virtual diameter (or effective size) of the threads at the minimummaterial limits. The use of such gages is referred to as "virtual diameter (or effective size) gaging ractice." See par. 5.1, p. 6.17.

(2) The use of minimum-material-limit thread snap or indicating gages conforming to the thread length requirements stated in paragraphs 4.4.2.2, p. 6.07, and 4.5.2.2, p. 6.12, controls to a close degree the pitch diameter at the minimum-material limit as a single element. Thus, without further checking, their use provides an economical means of control over such other variables as lead, uniformity of helix, flank angle, taper, roundness, and surface condition. The use of such gages, however, is referred to as "single element gaging practice." See par. 5.1, p. 6.17.

2.4. FINAL CONFORMANCE GAGING.—The object of final conformance gaging of product threads is to determine the extent they conform dimensionally to prescribed limits of size, and to segregate or reject product threads that are outside of prescribed limitations.

There are two general methods of approach to dimensional inspection of product threads, namely, inspection by attributes and inspection by variables.

Inspection by attributes involves the application of limit gages to assure that the product threads are within prescribed limits of size. Inspection by attributes forms the basis of final conformance gaging except as noted in the next paragraph.

Inspection by variables forms the basis of final conformance gaging where it is required by supplemental specifications that individual elements of product threads be controlled. Dimensional Inspection by variables is most useful in the control of manufacturing tools and processes and to collect manufacturing data for the analysis of product thread deviations. Inspection by variables involves the application of indicating gages or measuring instruments (optical, mechanical, pneumatic, or electrical) to determine the extent of deviations of product threads and their individual elements relative to prescribed limits.

118 119

nduc

5285

mait

ģō.

ile f

10

100

lbo

Nd.

2.5. SCREW THREAD CONFORMANCE.—Final dimensional acceptance of product threads shall be in accordance with the limits of size as determined by the final conformance gages outlined in par. 5.1, p. 6.17. It is important that the method of final conformance gaging be understood by both the producer and user. See par. 3.2, p. 6.04.

Thread plug gages are controlled by *direct* measuring methods. Thread ring, thread snap limit gages, and indicating thread gages are controlled by reference to the appropriate setting plugs.

2.6. LIMITATIONS OF GAGING.—Product threads accepted by a gage of one type may be verified by other types. It is possible, however, that parts which are near either rejection limit may be accepted by one type and rejected by another. Also, it is possible for two individual limit gages of the same type to be at the opposite extremes of the gage tolerances permitted, and borderline product threads accepted by one gage could be rejected by another. See under par. 3 which follows.

Large product external and internal threads may present additional problems for technical and economic reasons. In these instances, verification may be based on use of gages or measurement of thread elements. Various types of gages or measuring devices in addition to those defined in this section are available and acceptable when properly correlated to this section. It is essential to achieve agreement between producer and consumer with respect to method and equipment used.

2.7. SURVEILLANCE OF GAGES.—Periodic rechecking and surveillance of gages is a necessary precaution to assure satisfactory product thread conformance.

2.8. Measurement Of Gages.

2.8.1. Determining Pitch Diameter.—The threewire method of determining pitch diameter of thread plug gages is standard for gages in this section. Sizes of ring thread gages are determined by their fit on their respective setting plugs so measured. Other thread gages for product external threads are controlled by reference to appropriate setting plugs so measured. See appendix A4.

2.8.2. Standard Temperature.—The standard temperature used internationally for linear measurements is 68 °F (20 °C). Nominal dimensions of gages and product, as specified, and actual dimensions, as measured, shall be within specified limits at this temperature.

As product threads are frequently checked at temperatures which are not controlled, it is desirable that the coefficient of thermal expansion of gages be the same as that of the product on which they are used. Inasmuch as the majority of threaded product consists of iron or steel, and screw-thread gages are ordinarily made of hardened steel, this condition is usually fulfilled without special attention. When the materials of the product thread and the gage are dissimilar, the differing thermal coefficients can cause serious complications and must be taken into account.

2.8.3. Measuring Force for Wire Measurements of 60 Degree Threads.—In measuring the pitch diameter of screw thread gages by means of wires, the following measuring forces shall be used:

	Measuring Force in
Threads per Inch	Pounds $(\pm 10\%)$
20 or less	2.5
Above 20 to and including 40	1
Above 40 to and including 80	0.5

The thread wires should be calibrated by the procedure specified in appendix A4.

3. GAGING AND VERIFICATION OF PRODUCT THREADS

Gages are classified as to type and use, together with specific details of gaging practice applicable to each type, in the following paragraphs.

GO thread gages check the maximum-material size, to assure interchangeable assembly. HI and LO thread gages check the minimum-material size.

The thread form of GO thread gages corresponds to maximum product thread depth of engagement to assure clearance at the major diameter of the product internal thread or the minor diameter of the product external thread.

GO and NOT GO plain cylindrical plug gages, snap, or indicating gages, check the limits of size of the minor diameter of product internal threads and the major diameter of product external threads, respectively.

At the product thread maximum-material limit, the gages used for final conformance gaging arc within the extreme limits of size of the product thread. At the product thread minimum-material limit the usual practice for gages used for final conformance gaging is to have the gage tolerance within the extreme limits of size of the product thread. However, to assure that usable product thread at the extreme limit of size (minimum-material limit) is not rejected, in border-line cases, the consumer may elect to use HI/LO gages having pitch diameter tolerances outside the product thread limits.

3.1. Use Of Gages.

3.1.1. Threaded and Plain Gages for Verification of Product Internal Threads:

Unless otherwise specified, all thread gages which directly check the product thread shall be X tolerance for all classes.

GO Thread Plug Gages. GO thread plug gages must enter the full threaded length of the product freely. The GO thread plug gage is a cumulative check of all thread elements except the minor diameter.

HI Thread Plug Gages. HI thread plug gages when applied to the product internal thread may engage only the end threads (which may not be representative of the complete thread). Entering threads on product are incomplete and permit gage to start. Starting threads on HI plugs are subject to greater wear than the remaining threads. Such wear in combination with the incomplete product threads permit further entry of the gage. Surveillance facilities ordinarily available in the field are often inadequate for fully determining such gage wear. Also, it is not practical to control nor limit the torque applied by operators, nor that utilized by a specific operator at various times and under varying conditions. For these reasons the following standard practice has been adopted with respect to permissible entry. Threads are acceptable when the HI thread plug gage is applied to the product internal thread if: (a) it does not enter, or if (b) all complete product threads can be entered, provided that a definite drag from contact with the product material results on or before the third turn of entry. The gage should not be forced after the drag is definite. Special requirements such as exceptionally thin or ductile material, or small number of threads, may necessitate modification of this practice.

GO and NOT GO Plain Plug Gages for Minor Diameter of Product Internal Thread. GO plain plug gages must completely enter the product internal thread to assure that the minor diameter does not exceed the maximum-material limit. NOT GO plain plug gages must not enter the product internal thread to provide adequate assurance that the minor diameter does not exceed the minimummaterial limit.

3.1.2. Thread Setting Plug Gages.

GO and LO Truncated Setting Plugs. W tolerance truncated setting plugs are recommended for setting adjustable thread ring gages up to and including 6.25 inches nominal size and may be used for setting thread snap gages and indicating thread gages. Above 6.25 in. nominal size, the difference in feel between the full form and truncated sections in setting thread ring gages is insignificant, and the basic crest setting plug may be used.

When setting adjustable thread ring gages to size, the truncated portion of the setting plug controls the functional size, and the full form portion assures that adequate clearance is provided at the major diameter of the ring gage. The full form portion, in conjunction with the truncated portion, checks to some degree—the half-angle accuracy of the gage. The same procedure may be applied to detect uneven angle wear of ring gages in use.

GO and LO Basic-crest (Full Form) Setting Plugs. W tolerance basic crest setting plugs are frequently used for setting thread snap limit gages and indicating thread gages. They may also be used for setting large adjustable thread ring gages, especially those above 6.25 inches nominal size. When they are so used it may be desirable to take a cast of the ring gage thread form to check the half-angle and profile. See par. 5.2.1.1, p. 6.18.

GO and NOT GO Plain Plug Acceptance Check Gages for Checking Minor Diameter of Thread Ring Gages. The GO plain plug gage is made to the minimum minor diameter specified for the thread ring gage (GO or LO), while the NOT GO gage is made to maximum minor diameter specified for the thread ring gage (GO or LO). After the adjustable thread ring gages have been set to the applicable thread setting plugs, the GO and NOT GO plain plug acceptance check gages are applied to check the minor diameter of the ring gage to assure that it is within the specified limits. An alternate method for checking minor diameter of thread ring gages is by the use of measuring equipment.

3.1.3. Threaded and Plain Ring, Snap, and Indicating Thread Gages for Verification of Product External Thread.

GO Thread Ring Gages. GO thread ring gages must be set to the applicable W tolerance setting plugs to assure they are within specified limits. The product thread must freely enter the GO thread ring gage for the entire length of the threaded portion. The GO thread ring gage is a cumulative check of all thread elements except the major diameter.

LO Thread Ring Gages. LO Thread ring gages must be set to the applicable W tolerance setting plugs to assure that they are within specified limits. LO thread ring gages when applied to the product external thread may engage only the end threads (which may not be representative of the complete product thread). Starting threads on LO rings are subject to greater wear than the remaining threads. Such wear in combination with the incomplete threads at the end of the product thread permit further entry in the gage. Surveillance facilities ordinarily available in the field are often inadequate for fully determining such gage wear. Also, it is not practical to control nor limit the torque applied by operators, nor that utilized by a specific operator at various times and under varying conditions. For these reasons the following standard practice has been adopted with respect to permissible entry. Threads are acceptable when the LO thread ring gage is applied to the product external thread if (a) it is not entered, or if (b) all complete product threads can be entered provided that a *definite* drag from contact with the product material results on or before the third turn of entry. The gage should not be forced after the drag is definite. Special requirements such as exceptionally thin or ductile material, small number of threads, etc., may necessitate modification of this practice.

LO Thread Snap Limit Gages or Indicating Thread Gages. LO thread snap limit gages (or indicating thread gages) check Class 3A product external thread LO minimum-material limit. The gages must be set to the applicable W tolerance setting plugs. The gage is then applied to the product thread at various points around the circumference and over the entire length of complete product thread. In applying the thread snap limit gage, threads are dimensionally acceptable when the gaging elements do not pass over the product thread or just pass over the product thread with perceptible drag from contact with the product material and the gage. Indicating thread gages provide a numerical value for the product thread size. Product external threads are dimensionally acceptable when the value derived in applying the gage (as described above) is not less than the specified minimum-material limit.

3.1.4. Check of Effect of Lead and Flank Angle Deviations on Product Thread. When this check is specified, there are two general methods available for the inspection procedures involved, as follows:

Direct Measurement of Deviations. The lead and flank angle of the product thread may be measured by means of available measuring equipment such as projection comparators, measuring microscopes, graduated cone points, lead measuring machines, helix variation measuring machines, and thread flank charting equipment. Formulas for obtaining the diameter equivalents of lead and flank angle deviations are given in subsection "Limits of size" in section 2. See also table 2.22 for such deviations equivalent to half the pitch diameter tolerances for Standard Unified Threads.

Differential gaging utilizing indicating thread gages with appropriate gaging elements as outlined under par. 5.4, p. 6.21, and par. 6, p. 6.27, may be used.

3.1.5. GO and NOT GO Plain Rings and Adjustable Snap Limit and Indicating Gages for Checking Major Diameter of Product External Thread. The GO gage must completely receive or pass over the major diameter of the product external thread to assure that the major diameter does not exceed the maximum-material limit. The NOT GO gage must not pass over the major diameter of the product external thread to assure that the major diameter is not less than the minimum-material limit.

3.2. Limitations.

Product threads accepted by a gage of one type may be verified by other types. It is possible, however, that parts which are near either rejection limit may be accepted by one type and rejected by another. Also, it is possible for two individual limit gages of the same type to be at the opposite extremes of the gage tolerances permitted and borderline product threads accepted by one gage could be rejected by another. In such instances (except when LO limit snap or indicating thread gages are specified) limit plug and ring thread gages that approximate as closely as practicable the extreme maximum-material product-limit and minimum-material product-limit shall be used to determine whether or not the product threads under inspection are within the specified limits of size.

Large product external and internal threads above 6.25 in. nominal size may present additional problems

for technical and cconomic reasons. In these instances verification may be based on use of gages or measurement of thread elements. Various types of indicating thread gages are shown under par. 6, p. 6.27. Producer and user should agree on the method and equipment used.

3.3. SURVEILLANCE.

Gages are subject to wear and/or damage from normal usage. Periodic rechecking and surveillance is a necessary precaution to assure product thread conformance.

4. SPECIFICATIONS FOR GAGES

4.1. GENERAL DESIGN.

The design of gages is specified herein only to the extent that it affects the results obtained in the gaging of product threads. Moreover, to serve their intended purposes satisfactorily, thread gages should be produced by the latest and best manufacturing techniques. The type of steel or wear-resistant material selected, together with the heat-treating and stabilization processes, should provide wear life and dimensional stability. Thread gaging elements should be precisely manufactured to assure adequate refinement of surface texture, prevention or eliminaton of amorphous or smear metal, and uniformity of thread form over the entire length of the gaging member. Precision lapping of thread flanks of thread plug and ring gages is a commonly used practice in manufacture.

4.2. DESIGN OF GAGE BLANKS.

Designs of standard blanks for thread plug and ring gages, setting plug gages, plain cylindrical plug and ring gages, and plain snap gages have been developed by the American Gage Design Committee. The designs have proved satisfactory in many years of use and have been published in CS8 and B47.1, Gage Blanks. Also see tables 6.11 and 6.12.

GO gage blanks should theoretically approximate the length of engagement of the product thread with its mating thread, while HI/LO blanks may be shorter.

Where indicating thread gages are used, the length of GO gaging elements should approximate the length of the corresponding GO thread gage.

43. Specific Design Requirements.

4.3.1. Thread Form. The specifications for thread form of thread gages applicable to both external and internal threads are stated below for each particular type gage. These specifications for thread form apply over the entire circumference and threaded length of the gaging element.

4.3.2 Limits of Size. The specifications and format for tables of limits of size of thread gages and setting plugs are summarized in tables 6.6 and 6.7. Constants for the various standard thread pitches which are required to determine gage dimensions are tabulated in table 6.5.

4.3.3. Standard Gage Tolerances. Standard tolerances for thread plug and ring gages and thread setting plugs are: (1) W tolerances, shown in table 6.9, which represent the highest commercial grade

of accuracy and workmanship, and are specified for truncated setting plugs; (2) X tolerances, shown in table 6.8 are larger than W tolerances.

4.3.3.1. Application of Tolerances. Thread Setting Plugs. Regardless of product thread class, all thread setting plugs for final conformance gaging shall be to W tolerances. For other than final conformance gaging, see par. 5.3.2, p. 6.20.

Thread Gages. Final conformance gages which directly check the product thread shall be to X tolerances for all classes unless otherwise specified.

4.3.3.2. Direction of Tolerances on Gages. At the maximum-material limit (GO), the dimensions of all gages used for final conformance gaging are within the extreme limits of size of the product thread. At the minimum-material limit (HI/LO), the usual practice for gages used for final conformance gaging, unless otherwise specified, is to have the gage tolerance within the extreme limits of size of the product thread. Dimensions for such gages are listed in columns 6 and 15 of table 6.19, p. 6.30, and col. 9 of table 6.20. However in order to assure that usable product thread at the extreme limit of size is not rejected, the consumer may elect to use (HI/LO) gages having pitch diameter tolerances outside of the product thread limit. Dimensions for such gages are listed in columns 7 and 16 of table 6.19, p. 6.30, and col. 10 of table 6.20.

Direction of Tolerances for Individual Gage Elements. The direction of tolerances for the individual elements of the various types of gages arc specified in tables 6.6 and 6.7.

4.3.3.3. Tolerance on Lead (cumulative effect of progressive or erratic helix variation and thick-end or thin-end thread deviations) is specified as an allowable variation between any two threads not farther apart than the length of the standard taperlock or trilock gage as shown in CS8 or B47.1, Gage Blanks. In the case of setting plugs, the specified tolerance shall be applicable to the thread length in the mating ring gage or 9 pitches, whichever is smaller. *The tolerance on lead establishes the width of a zone, measured parallel to the axis of the thread. within which the actual helical path must lie for the specified length of the thread. Measurements will be taken from a fixed reference point located at the start of the first full thread to a sufficient number of positions along the entire helix to detect all types of lead deviations. The amounts that these positions deviate from their basic (theoretical) positions will be recorded with due respect to sign. The greatest deviation in each direction (+ and -) will be selected and the sum of their values, disregarding sign, shall not exceed the specified tolerance. If the deviations are all in one direction, the maximum

^{*}NOTE: It has been customary in the past to specify tolerances on lead as plus or minus (\pm) values. Under the requirement established above, the width of the tolerance zone is the nominal tolerance value specified *regardless of sign*. In view of the preceding, the tolerance symbols, plus or minus, (\pm) , should be omitted in referencing lead tolerances. The omission of the plus and minus does not change the total tolerance.

value governs conformance. In the case of truncated setting plugs, the lead deviations present on the full-form portion and the truncated portion of an individual gage shall not differ from each other by more than 0.0001 in. over any portion equivalent to the length of the thread ring gage, or nine pitches, whichever is smaller.

4.3.3.4. Tolerances on Half-Angle. Tolerances are specified for the half-angle rather than the included angle to assure that the bisector of the included angle will be perpendicular to the axis of the thread within proper limits. The equivalent of the deviation from the true thread form caused by such irregularities as convex or concave flanks, rounded crests, or slight projections on the thread form, shall not exceed the tolerance permitted on half-angle.

4.3.3.5. Interpretation of Tolerances. Tolerances on lead, half-angle, and pitch diameter are deviations which may be taken independently for each of these elements and may be taken to the full extent allowed by respective tabulated tolerances. The tabulated tolerance on any one element must not be exceeded even though deviations in the other two elements are smaller than the respective tabulated tolerances.

4.3.3.6. Tolerances for Plain Gages. Standard tolerances for plain plug gages for checking minor diameter of product internal threads and for gages for checking major diameter of product external threads are Z tolerances, as shown in table 6.10.

4.3.4. Identification. Each gage shall be plainly and permanently marked with the minimum marking essential for positive identification.

For multi-piece gages it may be desirable to identify individual components and handles or frames.

When it is impracticable to identify the gaging elements, due to size and/or lack of suitable space for marking, and they are packaged separately, it is suggested that identification be accomplished by a tag suitably attached or by marking the container.

4.4. Specifications For Gages Applicable To Product Internal Threads.

4.4.1. GO Thread Plug Gages.

4.4.1.1. Purpose. The GO thread plug gage checks the limit of tolerance of product internal thread in the direction of maximum material. The GO thread plug gage represents the minimum size limit of the product internal thread and its purpose is to achieve interchangeable assembly of maximum material mating parts. (See par. 4.4.3, p. 6.09, for gaging of minor diameter.) For gaging practice, see par. 3.1.1, p. 6.03.

4.4.1.2. Basic Design. Ideally, the maximummaterial-limit or GO thread plug gage should be made to the prescribed maximum-material limit of the product internal thread, and, in length, be at least equal to the length of engagement of the mating product thread.

Gage Blanks. For practical and economic reasons, the design and lengths of the gaging members and handles have been standardized for various size ranges and pitches. (See CS8 or B47.1 and table 6.11.)

4.4.1.3. Thread Form. The specifications for thread form are stated in detail below and are summarized in table 6.6 and figure 6.1.

Thread Crests. The major diameter of the GO thread plug gage shall be the same as the minimum (basic) major diameter of the product internal thread, with a plus gage tolerance. The thread crests shall be flat in an axial section and parallel to the axis.

Thread Roots. The minor diameter of the GO thread plug gage shall be cleared beyond a p/8 width of flat either by an extension of the sides of the thread toward a sharp V or by an undercut no greater than p/8 maximum width and approximately central. (See fig. 6.1.)

Concentricity of Pitch and Major Cylinders. The pitch and major cylinders of GO thread plug gages should be concentric as stated hereafter. On thread plug gages, an eccentric condition produces an oversize effective major diameter, having a width of flat less than p/8, which may encroach on the minimum permissible limit for the root profile of the product internal thread. The permissible maximum effective major diameter, as determined by measurement of runout (total indicator variation) with respect to the pitch cylinder, shall not exceed the maximum major diameter specified.

Pitch Cylinder. The pitch cylinder shall be round and straight within the gage pitch diameter limits specified.

4.4.1.4. Lead and Half-Angle Deviations. Lead and half-angle deviations shall be within the limits specified. (See table 2.22.)

4.4.1.5. End Threads. The feather edge at both ends of the threaded section of the gaging member shall be removed. On pitches coarser than 28 threads per inch, not more than one complete turn of the end threads shall be removed to obtain a full thread form blunt start. See figure 6.4. On pitches 28 threads per inch and finer a 60° chamfer from the axis of the gage is acceptable in lieu of the blunt start.

4.4.1.6. Chip Grooves. Each GO thread plug gage, except in sizes No. 8(0.164) and smaller, shall be provided with a chip groove at the entering end. On reversible gages, a chip groove shall be provided at each end. Chip grooves are acceptable that are in accordance with commercial practice, such as a groove cut at an angle with the axis or a longitudinal groove cut parallel with the axis and extending the complete length of the gaging member. The groove shall be located circumferentially at the start of the full thread, and in all cases the depth shall extend below the root of the first full thread. The distance from the major diameter of the thread plug to the crest of the convolution rise in front of the chip groove, due to the radius of the convoluting tool, shall be a minimum of H/2 as shown in figure 6.4. The beginning of the first thread shall be of full form. The recommended widths for chip grooves are as follows:

Nominal diameter	Chip groove width (inches)					
(inches)	Max	Min				
.164 and smaller	No chip groove	required				
including .216	0.036	0.026				
Above .216 to and including .375	0.052	0.042				
including .500	0.067	0.057				
Above .500 to and including 1.000	0.083	0.067				
Above 1.000 to and including 1.750	0.130	0.067				
Above 1.750	0.193	0.067				

4.4.1.7. Identification. The GO thread plug gage is basic and common to all classes of thread for any particular nominal size and series. Accordingly, it is recommended that the gage be identified by nominal size, threads per inch, series, and GO pitch diameter. Example:

.250–20 (or 1/4–20) UNC GO PD .2175 .190–32 (or 10–32) UNF GO PD .1697

4.4.2. HI Thread Plug Gages.

4.4.2.1. Purpose. The HI thread plug gage checks the limit of tolerance of a product internal thread in the direction of minimum-material. The HI thread plug gage represents the maximum size limit of the product internal thread and provides a satisfactory method of gaging the functional diameter at the minimum-material limit. For gaging practice, see par. 3.1.1, p. 6.03.

4.4.2.2. Basic Design. In order that the HI thread plug gage may effectively check the minimummaterial functional diameter, the half-angle contact should be reduced by truncating the major diameter and the length of the gaging element, where practical, should be less than that of the GO gage.

Gage Blanks. For practical and economic reasons the designs and lengths of the gaging members and handles have been standardized for various size

See paras. 4.4.1.3, 4.4.2.3, 4.5.1.3, 4.5.2.3 relative root clearance. FIGURE 6.1. Thread forms of gages for product external and internal threads.

ranges and pitches. (See CS8 or B47.1 and table 6.11.)

4.4.2.3. Thread Form. The specifications for thread form are stated in detail below and are summarized in table 6.6 and figure 6.1.

Thread Crests. The maximum major diameter of the HI thread plug gage shall be equal to the maximum pitch diameter of the product internal thread plus H/2 with the gage tolerance minus. This corresponds to a width of flat at the crest of the gage equal to p/4. However, the maximum major diameter of the HI thread plug gage shall not exceed the minimum major diameter of the product internal thread minus 0.0375H or $0.05h_b$. (See col. 16 of table 6.5.)

Thread Roots. The minor diameter of the HI thread plug gage shall be cleared beyond a p/4 width of flat by an extension toward a sharp V of

the sides of the thread from the position corresponding to this approximate width or by an undercut to any dimension no wider than the width resulting from p/8 maximum width either side of and approximately central with the center line of the thread groove.

Concentricity of Pitch and Major Cylinders. The pitch and major cylinders of HI thread plug gages shall be concentric as stated hereafter. On thread plug gages an eccentric condition produces an oversize effective major diameter, having a width of flat less than p/4. The permissible maximum effective major diameter, as determined by measurements of runout (total indicator variation) with respect to the pitch cylinder, shall not exceed the maximum major diameter specified.

Pitch Cylinder. The pitch cylinder shall be round and straight within the gage pitch diameter limits specified.

See paras. 4.4.1.3, 4.4.2.3, 4.6.3.3 relative root clearance. See col. 13 of table 6.7 relative crest of full portion of LO thread gage. FIGURE 6.2. Thread form of truncated thread setting plug gages.

See paras. 4.4.1.2, 4.4.2.2, 4.6.3.3 relative root clearance. See col. 13 of table 6.7 relative crest of LO thread gage. FIGURE 6.3. Thread forms of basic crest thread setting plug gages.

FIGURE 6.4. Removal of partial thread and chip groove.

4.4.2.4. Lead and Half-Angle Deviations. Lead and half-angle deviations shall be within the limits specified. See table 2.22.

4.4.2.5. End Threads. The feather edge at both ends of the threaded section of the gaging member shall be removed. On pitches coarser than 28 threads per inch, not more than one complete turn of the end threads shall be removed to obtain a full thread blunt start. On pitches 28 threads per inch and finer, a 60° chamfer from the axis of the gage is acceptable in lieu of the blunt start.

4.4.2.6. Identification. The HI thread plug gage should be marked with the nominal size, threads per inch, thread series, class, HI, and pitch diameter.

Example:

.250–20 UNC-2B HI PD .2224 .190–32 UNF-2B HI PD .1736

4.4.3. Plain Plug Gages for Minor Diameters. 4.4.3.1. Purpose and Basic Design. The GO and HI thread plug gages are cleared at the root and do not check the minor diameter of the product internal thread. Accordingly, GO and NOT GO plain plug gages are necessary to check the maximummaterial and minimum-material limits at the minor diameter. For gaging practice, see par. 3.1.1, p. 6.03.

Gage Blanks. The designs of the gaging elements and handles have been standardized. (See CS8 or B47.1, Gage Blanks.)

Threads per inch, n	Pitch, p	$3_{4}^{3}p = 0.75p$	p/4=0.25p	p/8=0.125p	0.067p	0.10048 <i>p</i>	$0.060\sqrt[3]{p^2}$	0.017 <i>p</i>	$0.060\sqrt[3]{p^2}$ +0.017p	Height of sharp V- thread, H= 0.866025p	¾ H= 0.649519p	H/2= 0.43301 p	H/4= 0.21651p	$\begin{array}{c} 0.13395H \\ = 0.116p \\ = (2 \times \\ 0.058p) \end{array}$	$0.0375H = 0.05h_b = 0.03248p$
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$ \begin{array}{r} 80\\ 72\\ 64\\ 56\\ 48\\ 44\\ 40\\ 36\\ 32\\ 28\\ 27\\ 24\\ 20 \end{array} $	in 0.012500 013889 015625 017857 020833 022727 025000 027778 031250 035714 037037 041667 050000	in 0.00938 01042 01172 01339 01562 01875 02083 02344 02679 02778 03125 03750	$\begin{array}{c} in\\ 0.00312\\ .00347\\ .00391\\ .00446\\ .00521\\ .00568\\ .00625\\ .00694\\ .00781\\ .00893\\ .00926\\ .01042\\ .01250\\ \end{array}$	$\begin{array}{c} in\\ 0.00156\\ .00174\\ .00195\\ .00223\\ .00260\\ .00284\\ .00312\\ .00347\\ .00391\\ .00446\\ .00463\\ .00463\\ .00521\\ .00625\end{array}$	in 0.00084 .00093 .00105 .00120 .00140 .00152 .00168 .00209 .00239 .00248 .00279 .00235	$\begin{array}{c} in\\ 0.\ 00126\\ .\ 00140\\ .\ 00157\\ .\ 00179\\ .\ 00209\\ .\ 00228\\ .\ 00251\\ .\ 00279\\ .\ 00314\\ .\ 00359\\ .\ 00372\\ .\ 00419\\ .\ 00419\\ .\ 004502\end{array}$	$\begin{array}{c} in\\ 0.00323\\ .00347\\ .00375\\ .00410\\ .00454\\ .00454\\ .00550\\ .00595\\ .00595\\ .00651\\ .00667\\ .00721\\ .00814\\ \end{array}$	in 0.00021 0.0024 0.0027 0.0030 0.0035 0.0039 0.0042 0.0047 0.0053 0.0061 0.0063 0.0061	$\begin{array}{c} in\\ 0.0034\\ .0037\\ .0040\\ .0044\\ .0049\\ .0056\\ .0056\\ .0065\\ .0065\\ .0071\\ .0073\\ .0079\\ .0079\\ .0090\\ \end{array}$	$\begin{array}{c} in\\ 0,010825\\ .012028\\ .013322\\ .015465\\ .018042\\ .021651\\ .024056\\ .027063\\ .030929\\ .032075\\ .036084\\ .043301\\ \end{array}$	$\begin{array}{c} in\\ 0.\ 008119\\ .009021\\ .010149\\ .011599\\ .013532\\ .014762\\ .016238\\ .018042\\ .020297\\ .023197\\ .024056\\ .027063\\ .032476\end{array}$	$\begin{array}{c} in\\ 0.\ 00541\\ .\ 00601\\ .\ 00677\\ .\ 00773\\ .\ 00902\\ .\ 00902\\ .\ 00984\\ .\ 01083\\ .\ 01203\\ .\ 01203\\ .\ 01353\\ .\ 01546\\ .\ 01604\\ .\ 02165\end{array}$	$\begin{array}{c} in\\ 0.00271\\ .00301\\ .00338\\ .00387\\ .00451\\ .00492\\ .00541\\ .00601\\ .00677\\ .00773\\ .00802\\ .00802\\ .00902\\ .01083\end{array}$	in 0.00145 .00161 .00181 .00207 .00242 .00264 .00290 .00322 .00362 .00414 .00430 .00483 .00580	in 0.00041 .00045 .00058 .00058 .00058 .00068 .00074 .00090 .00101 .00116 .00120 .00125 .00162
18 16	055556 062500	.04167 .04688	.01389 .01562	. 00694 . 00781	. 00372 . 00419	. 00558 . 00628	. 00874 . 00945	. 00094 . 00106	. 0097 . 0105	. 048113 . 054127	. 036084 . 040595	. 02406 . 02706	. 01203 . 01353	. 00644 . 00725	. 00180 . 00203
$14 \\ 13 \\ 12 \\ 11.5 \\ 11$. 071429 . 076923 . 083333 . 086957 . 090909	$\begin{array}{c} .\ 05357\\ .\ 05769\\ .\ 06250\\ .\ 06522\\ .\ 06818\end{array}$	$\begin{array}{c} . \ 01786 \\ . \ 01923 \\ . \ 02083 \\ . \ 02174 \\ . \ 02273 \end{array}$. 00893 . 00962 . 01042 . 01087 . 01136	. 00479 . 00515 . 00558 . 00583 . 00609	. 00718 . 00773 . 00837 . 00874 . 00913	$\begin{array}{c} . \ 01033 \\ . \ 01085 \\ . \ 01145 \\ . \ 01178 \\ . \ 01213 \end{array}$	$\begin{array}{r} . \ 00121 \\ . \ 00131 \\ . \ 00142 \\ . \ 00148 \\ . \ 00155 \end{array}$	$\begin{array}{c} . \ 0115 \\ . \ 0122 \\ . \ 0129 \\ . \ 0133 \\ . \ 0137 \end{array}$. 061859 . 066617 . 072169 . 075307 . 078730	$\begin{array}{c} .\ 046394\\ .\ 049963\\ .\ 054127\\ .\ 056480\\ .\ 059047\end{array}$. 03093 . 03331 . 03608 . 03765 . 03936	$\begin{array}{r} . \ 01546 \\ . \ 01665 \\ . \ 01804 \\ . \ 01883 \\ . \ 01968 \end{array}$	$\begin{array}{c} . \ 00829 \\ . \ 00892 \\ . \ 00967 \\ . \ 01009 \\ . \ 01055 \end{array}$. 00232 . 00250 . 00271 . 00282 . 00295
10 9 8 7	. 100000 . 111111 . 125000 . 142857	. 07500 . 08333 . 09375 . 10714	. 02500 . 02778 . 03125 . 03571	. 01250 . 01389 . 01562 . 01786	. 00670 . 00744 . 00838 . 00957	$\begin{array}{c} . \ 01005 \\ . \ 01116 \\ . \ 01256 \\ . \ 01435 \end{array}$. 01293 . 01387 . 01500 . 01640	.00170 .00189 .00212 .00243	. 0146 . 0158 . 0171 . 0188	$\begin{array}{r} .\ 086603\\ .\ 096225\\ .\ 108253\\ .\ 123718\end{array}$.064952 .072169 .081190 .092788	$\begin{array}{r} . \ 04330 \\ . \ 04811 \\ . \ 05413 \\ . \ 06186 \end{array}$	$\begin{array}{c} . \ 02165 \\ . \ 02406 \\ . \ 02706 \\ . \ 03093 \end{array}$. 01160 . 01289 . 01450 . 01657	. 00325 . 00361 . 00406 . 00464
${}^6_{4.5}$	$\begin{array}{c} . \ 166667 \\ . \ 200000 \\ . \ 222222 \\ . \ 250000 \end{array}$.12500 .15000 .16667 .18750	$\begin{array}{c} . \ 04167 \\ . \ 05000 \\ . \ 05556 \\ . \ 06250 \end{array}$. 02083 . 02500 . 02778 . 03125	. 01117 . 01340 . 01489 . 01675	.01675 .02010 .02233 .02512	. 01817 . 02052 . 02201 . 02381	. 00283 . 00340 . 00378 . 00425	. 0210 . 0239 . 0258 . 0281	$\begin{array}{r} .144338\\ .173205\\ .192450\\ .216506\end{array}$	$\begin{array}{c} .\ 108253\\ .\ 129904\\ .\ 144338\\ .\ 162380\end{array}$.07217 .08660 .09623 .10825	$\begin{array}{r} .\ 03608\\ .\ 04330\\ .\ 04811\\ .\ 05413\end{array}$. 01933 . 02320 . 02578 . 02900	.00541 .00650 .00722 .00812

TABLE 6.5. Constants for computing thread gage dimensions

4.4.3.2. Identification. The GO plain plug gage members for Unified threads are common to all classes of Unified threads, and as such should be marked with: Nominal size, threads per inch, thread designation, GO, and minor diameter.

Example:

.250-20 UNC GO .1960

The NOT GO plain plug gage members are not common to all classes, and should be marked with: Nominal size, threads per inch, thread designation, tolerance, class, NOT GO, and minor diameter. Example:

.250-20 UNC-3B NOT GO .2067.

4.5. Specifications For Gages Applicable To Product External Threads.

4.5.1. GO Thread Ring Gages.

4.5.1.1. Purpose. The GO thread ring gage checks the limit of tolerance of a product external thread in the direction of maximum material. The GO thread ring gage, when properly set on its respective thread setting plug, represents the maximum size limit of the product external thread and its purpose is to achieve interchangeable assembly of maximum material mating parts. For gaging practice, see par. 3.1.3, p. 6.04. See par. 4.5.5, p. 6.16, for gaging of major diameter.

4.5.1.2. Basic Design. Ideally, the maximummaterial-limit or GO thread ring gage should be made to the prescribed maximum-material limit of the product external thread and, in length, equal to the length of engagement of the mating product thread.

threaded and plain gages for Unified external and internal threads

Gage Blanks. For practical and economic reasons, the designs and thicknesses of thread ring gages have been standardized for various size ranges and pitches. (See CS8 or B47.1 and table 6.12.) The AGD (American Gage Design Standard) thread ring gage is adjustable to facilitate manufacturing and setting.

4.5.1.3. Thread Form. The specifications for thread form are stated in detail below and are summarized in table 6.6 and figure 6.1.

Thread Crests. The minor diameter of the GO thread ring gage shall be equal to the maximum pitch diameter of the product external thread minus H/2 with a minus gage tolerance. This corresponds to a width of flat of p/4. The thread crests shall be flat in an axial section and parallel to the axis.

Thread Roots. The major diameter of the GO thread ring gage shall be cleared by a clearance cut of substantially p/8 width and approximately central. The root clearance must be such that the maximum major diameter of the full form section of the thread setting plug gage is cleared after the gage has been properly set to size.

Concentricity of Pitch and Minor Cylinders. The pitch and minor cylinders of the GO thread ring gage shall be concentric as stated hereinafter. On thread ring gages an eccentric condition results in

		size and threads	per men		21	
		Series desig-	пачюп		20	
		Class			19	
	ages	gages linor eter GO*			18	Max, minor diameter of internal thread. Gage tolerance minus.
	Plain g	diam		G0	17	Min. minor diameter of internal thread. Gage tolerance plus.
ds			meter	Plus tol. gage	16	Max, pitch diameter of internal thread. Gage tolerance plus, (optional)
Gages for internal threa		IH	Piteh dia	Minus tol. gage	15	Max. pitch diameter of internal thread. Gage tolerance minus.
	hread gages		Major	diameter	14	Max. pitch diameter of internal thread plus $0.5H$ but not to exceed min. major diameter of GO thread gage for internal thread minus $0.0375H$ ($=0.05h_{s}$). Gage tolerance minus.
	T	0	Ditch	diameter	13	Min. pitch diameter of internal thread. Gage tolerance plus. When wear allowance is required, add the appli- cable wear allowance to the min. pitch diameter and then apply the gage tolerance plus.
		0	Maior	diameter	12	Min. major diameter of internal thread. Gage tolerance plus.
	or major ter	. G0 *	Unfinished	hot-rolled material	11	Min. major diameter of external thread of hot-rolled ma- terial in UVC-2A, and 8UN. Gage tolerance plus.
	in gages f diame	LON	Semi-	Semi- finished		Min. major diameter of external thread. Gage tolerance plus.
	Pla		GO			Max, major diameter of external thread. Gage tolerance minus.
al threads			Minor	Minor diameter		Min. pitch diameter of external thread minus 0.25H but not less than min. minor diameter of CO thread but not less than intrin minor diameter of CO thread bis. (3375 H ($= 0.053$ h), (322 H ($= 0.053$ h), (322 H ($= 0.054$ h), (322 H ($= 0.054$ h)), (322 H ($= 0.054$ h), (322 H ($= 0.054$ h)), (322 H ($= 0.054$ h), (322 H ($= 0.054$ h)), (322 H ($= 0.054$ h), (322 H ($= 0.054$ h)), (322 H ($= 0.054$ h), (322 H ($= 0.054$ h)), (322
for extern		ΓO	liameter	Minus tol.gage	2	Min, pitch diameter of external thread. Gage tolerance minus, (optional)
Gages	read gages		Piteh c	Plus tol.gage	9	Min. pitch diameter of external thread, Gage tolerance plus .
	Th	c	Minor	diameter	S	Max. pitch diameter of external thread minus 0.5H. Gage tolerance minus.
		Ğ	Pitch	diameter	4	Max. pitch diameter of external thread. Gage tolerance minus. When werr allowance is required, subtract the applicable wear allowance from the max. pitch diameter and then apply the gage tolerance minus.
		Class			e	
		Series desig- nation			6	
	Nominal Size and Size and Aper inch n				1	

NOTE: While the maximum diameters of Class 2A uncoated threads are less than basic by the amount of the allowance, the allowance may be used to accommodate additive finishes. It follows that unless specifically specifically specified otherwise, for threads with additive finish, the maximum diameters of Class 2A may be exceeded by the amount of the allowance. In this event GO gages to basic pitch diameter would be applicable. Such gages are made interestions as the ables for Class 2A threads.

175H

	Series				Trunca	ated setting	g plugs			Basic-crest setting plugs					
Nominal			Plug for GO				Plug for LO				Plug for GO Plug for LO				
threads per inch	desig- nation	Class	Class	Major dia	meter	Pitch	Major d	liameter	Pitch o	liameter	Major	Pitch	Major	Pitch d	iameter
			Truncated	Full- form	diameter	Trun- cated	Full- form	Plus tol. gage.	Minus tol. gage.	diame- ter	diame- ter	diameter	Plus tol. gage	Minus tol. gage	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
			Max. major diameter of external thread (=min. major diameter of full portion of GO setting plug, see eol. 5) minus (0.060 $\sqrt[3]{p^2} + 0.01Tp$). Gage tolerance minus.	Max. major diameter of external thread. Gage tolerance plus.	Max, pitch diameter of external thread. Gage tolerance minus. When wear allowance is required, subtract the applicable wear allowance from the max, pitch diameter and then apply the gage tolerance minus.	Min. pitch diameter of external thread plus 0.5H. Gage tolerance minus.	Same as column 13.	Min. pitch diameter of external thread. Gage tolerance plus.	Min. pitch diameter of external thread. Gage tolerance minus (optional).	Max. major diameter of external thread. Gage tolerance plus.	Same as column 6.	Max. major diameter of external thread provided that, after applying the X major diameter tolerance, the max. major diameter of the gage corresponds to a truncation of not less than 0.067 m o.0009 in., whichever is the greater. Gage tolerance plus. See par. 4.6.3.2, p. 000, and accompanying note.	Min. pitch diameter of external thread. Gage tolerance plus.	Min. pitch diameter of external thread. Gage tolerance minus (optional).	

TABLE 6.7. Specifications and format for tables of limits of size of threaded setting plug gages for Unified, external threads

an undersize effective minor diameter having a width of flat less than p/4, which may encroach on the maximum permissible limit for the root profile of the product external thread. The permissible minimum effective minor diameter, as determined by measurements of runout (total indicator variation) with respect to the pitch cylinder, shall not be less than the specified minimum minor diameter minus the sum of the gage tolerances for the pitch and minor diameters.

Pitch Cylinder, Lead, and Half-Angle. Satisfactory conformance of these elements is normally determined by the setting of the thread ring gage to the applicable truncated setting plug gage.

4.5.1.4. End Threads. The feather edge at both ends of the thread ring gage shall be removed. On gages larger than 0.5 in. nominal size or on those having less than 20 threads per inch, from half to one pitch of the partially formed thread at each end shall be removed to obtain a full thread blunt start. On gages 0.5 in. nominal size and smaller or on those having 20 or more threads per inch, a 60° chamfer on the end threads from the axis of the gage to a depth of half to one pitch is acceptable in lieu of the blunt start.

4.5.1.5. Chip Grooves. GO thread ring gages of the adjustable type (AGD standard) do not require chip grooves as the adjusting slots serve this purpose.

4.5.1.6. Identification. The GO Thread Ring Gage for Class 3A is basic, and also is applicable for

acceptance of Class 2A after coating. Accordingly, it is recommended that the gage be identified by nominal size, threads per inch, series, and GO pitch diameter. Example:

.250–20 UNC GO PD .2175.

The GO gages for Classes 1A and 2A are below basic size, having a common allowance. Accordingly, it is recommended that the gage be identified by nominal size, threads per inch, series, class, and GO pitch diameter. Example:

.250–20 UNC 1A-2A GO PD .2164.

4.5.2. LO Thread Ring Gages.

4.5.2.1. Purpose. The LO thread ring gage checks the limit of tolerance of a product external thread in the direction of minimum material. The LO thread ring gage when properly set on its respective set plug represents the minimum size limit of the product external thread and provides a satisfactory method of gaging the functional diameter at the minimum-material limit. For Gaging Practice, see par. 3.1.3, p. 6.04.

4.5.2.2. Basic Design. In order that the LO thread ring gage may effectively check the minimummaterial functional diameter, the half-angle contact should be less than that of the GO gage and the length of the gaging element, where practical, should be less than that of the GO gage.

Gage Blanks. For practical and economic reasons, the thicknesses of thread ring gages have been standardized for various size ranges and pitches. (See CS8 or B47.1 and table 6.12.) TABLE 6.8. X Tolerances for GO, HI, and LO Thread Gages

Threads	Toler-	Toler- ance on	Tolera major o diam	ncc on r minor letcrs	Tolerance on pitch diameter				
per inch	ance on lead ^a	half- angle of thread	To and includ- ing 4 in dia	Above 4 in dia	To and includ- ing 1.5 in dia	Above 1.5 to 4 in dia	Above 4 to 8 in dia	Above 8 to 12 in dia ^b	
1	2	3	4	5	6	7	8	9	
	in	deg min	in	in	in	in	in	in	
80 72 64	$\begin{array}{c} 0.\ 0002\\ .\ 0002\\ .\ 0002\end{array}$	$ \begin{array}{c} 0 & 30 \\ 0 & 30 \\ 0 & 30 \end{array} $	$\begin{array}{c} 0.0003\\ .0003\\ .0004\end{array}$		$\begin{array}{c} 0.\ 0002\\ .\ 0002\\ .\ 0002\end{array}$				
56 48	.0002 .0002	$\begin{array}{ccc} 0 & 30 \\ 0 & 30 \end{array}$.0004 .0004		.0002 .0002	0.0003			
44 40 36	.0002 .0002 .0002	$\begin{array}{ccc} 0 & 20 \\ 0 & 20 \\ 0 & 20 \end{array}$.0004 .0004 .0004		.0002 .0002 .0002	.0003			
32 28	.0003 .0003		.0005	0.0007 .0007	.0003	. 0004	$0.0005 \\ .0005$	0.0006	
27 24 20 18 16	. 0003 . 0003 . 0003 . 0003 . 0003	$\begin{array}{cccc} 0 & 15 \\ 0 & 15 \\ 0 & 15 \\ 0 & 10 \\ 0 & 10 \end{array}$.0005 .0005 .0005 .0005 .0005	.0007 .0007 .0007 .0007 .0007 .0009	.0003 .0003 .0003 .0003 .0003	.0004 .0004 .0004 .0004 .0004	. 0005 . 0005 . 0005 . 0005 . 0005	.0006 .0006 .0006 .0006 .0008	
14 13 12 11.5 11	. 0003 . 0003 . 0003 . 0003 . 0003	$\begin{array}{cccc} 0 & 10 \\ 0 & 10 \\ 0 & 10 \\ 0 & 10 \\ 0 & 10 \\ 0 & 10 \end{array}$.0006 .0006 .0006 .0006 .0006	. 0009 . 0009 . 0009 . 0009 . 0009	. 0003 . 0003 . 0003 . 0003 . 0003	.0004 .0004 .0004 .0004 .0004	.0006 .0006 .0006 .0006 .0006	. 0008 . 0008 . 0008 . 0008 . 0008	
10 9 8 7	. 0003 . 0003 . 0004 . 0004	$\begin{array}{ccc} 0 & 10 \\ 0 & 10 \\ 0 & 5 \\ 0 & 5 \end{array}$.0006 .0007 .0007 .0007	. 0009 . 0011 . 0011 . 0011	. 0003 . 0003 . 0004 . 0004	.0004 .0004 .0005 .0005	. 0006 . 0006 . 0006 . 0006	. 0008 . 0008 . 0008 . 0008	
6 5 4.5 4	. 0004 . 0004 . 0004 . 0004	$\begin{array}{ccc} 0 & 5 \\ 0 & 5 \\ 0 & 5 \\ 0 & 5 \end{array}$.0008 .0008 .0008 .0009	. 0013 . 0013 . 0013 . 0013 . 0015	. 0004	.0005 .0005 .0005 .0005	. 0006 . 0006 . 0006 . 0006	. 0008 . 0008 . 0008 . 0008	

• Allowable variation in lead between any two threads not farther apart than the length of the standard gage, shown in CS8 or B47.1. It has been customary in the past to specify tolerances on lead as plus or minus (\pm) values. Under the requirement established above, the width of the tolerance zone is the nominal tolerance value specified regardless of sign. In view of the preceding, the tolerances, minus (\pm), should be removed in referencing lead tolerances. The omission of the plus and minus does not change the total tolerance. \pm Above 12 in, the tolerance is directly proportional to the tolerance in column 9, in the ratio of the diameter to 12 in.

4.5.2.3. Thread Form. The specifications for thread form are stated in detail below and are summarized in table 6.6 and figure 6.1.

Thread Crests. The minimum minor diameter of the LO thread ring gage shall be equal to the minimum pitch diameter of the external thread minus 0.25H. This corresponds to a width of flat at the crest of the gage equal to 0.375p. However, the minimum minor diameter of the LO thread ring gage shall not be less than the minimum minor diameter of the GO thread ring gage plus 0.0375Hor $0.05h_b$. See col. 16 of table 6.5. This requirement is necessary to assure that the minor diameter of the gage is not less than the minor diameter of the GO thread ring gage which may occur with a 0.375pflat on the LO ring thread crest when there is a pitch diameter allowance on the product external thread combined with a large pitch diameter tolerance.

Thread Roots. The major diameter of the LO thread ring gage shall be cleared by a clearance cut of substantially 0.25p width, approximately central.

The LO thread ring gage shall clear the maximum major diameter of the product external thread or the maximum major diameter of the full-form portion of the truncated thread setting plug for the LO thread ring gage, whichever is the greater. Thus, contact of the thread gage can occur on the sides of the threads but not on the crest or root. Also, the effect of angle deviation on the fit of the gage with the product thread is minimized.

Concentricity of Pitch and Minor Diameter Cylinders. The pitch and minor cylinders of the LO thread ring gage shall be concentric as stated hereinafter. On thread ring gages, an eccentric condition results in an undersize effective minor diameter having a width of flat less than 0.375p. The permissible minimum effective minor diameter as determined by runout (total indicator variation) with respect to the pitch cylinder shall not be less than the specified minimum minor diameter minus twice the sum of the gage tolerances for pitch and minor diameter.

Pitch Cylinder, Lead, and Half-Angle. Satisfactory conformance of these elements is normally determined by the setting of the thread ring gage to the applicable truncated setting plug gage.

4.5.2.4. End Threads. The feather edge at both ends of the thread ring gage shall be removed. On gages larger than 0.5 in nominal size or on those having less than 20 threads per in., not more than one complete turn of the end threads shall be removed to obtain a full thread blunt start. On gages 0.5 in nominal size and smaller or on those having 20 or more threads per inch, a 60° chamfer on the end threads from the axis of the gage, is acceptable in lieu of the blunt start.

4.5.2.5. Identification. The LO thread ring gage should be identified by nominal size, threads per inch, series, class, and LO pitch diameter. Example:

.250–20 UNC 2A LO PD .2127.

4.5.3. Thread Snap Limit Gages or Indicating Thread Gages for LO Minimum-material limit.

4.5.3.1. Purpose. Thread snap limit gages or indicating thread gages having gaging elements as specified in par. 4.5.3.3, check Class 3A LO minimummaterial limit. For gaging practices, see par. 3.1.3, p. 6.04.

4.5.3.2. Basic Design. The design is specified only to the extent that it affects the results obtained in gaging. Design details, etc., are optional and not included herein.

Thread snap limit gages are adjustable, and the gaging elements are adjusted and set to setting plugs and locked in proper position. Indicating thread gages are adjusted and set with reference to the applicable thread setting plugs.

4.5.3.3. Gaging Elements. The gaging elements should engage the thread over a length of approximately two pitches. The profile of the gaging element should be that of the LO thread ring gage.

4.5.3.4. Identification. Where practicable, the gaging elements should be marked with the minimum marking essential for identification. When space available for marking is inadequate and the gages

	Tolerance on lead ^a		Toleranee	Tolerance on	major or min	or diamcters	Tolerance on pitch diamcter					
Threads pcr inch	To and including 0.5 in dia	Above 0.5 in dia	on half- angle of thread	To and including 0.5 in dia	Above 0.5 in. to 4 in. dia	A bove 4 in. dia	To and ineluding 0.5 in dia	Above 0.5 in. to 1.5 in dia	Above 1.5 in. to 4 in. dia	Above 4 in. to 8 in. dia	Above 8 in. to 12 in. dia ^b	
1	2	3	4	5	6	7	8	9	10	11	12	
80 72	in 0.0001	in 0.00015 00015	$deg min \pm 0 20 0 20$	in 0.0003 0003	in 0.0003	in	in 0.0001	in 0.00015 .00015	in	in	in	
64 56 48	. 0001 . 0001 . 0001 . 0001	. 00015 . 00015 . 00015		. 0003 . 0003 . 0003	. 0004 . 0004 . 0004		. 0001 . 0001 . 0001	. 00015 . 00015 . 00015	0.0002 .0002			
$44 \\ 40 \\ 36 \\ 32 \\ 28$. 0001 . 0001 . 0001 . 0001 . 00015	00015 00015 00015 00015 00015	$\begin{array}{cccc} 0 & 15 \\ 0 & 15 \\ 0 & 12 \\ 0 & 12 \\ 0 & 8 \end{array}$. 0003 . 0003 . 0003 . 0003 . 0005	. 0004 . 0004 . 0004 . 0005 . 0005	0.0007 .0007	. 0001 . 0001 . 0001 . 9001 . 0001	. 00015 . 00015 . 00015 . 00015 . 00015	. 0002 . 0002 . 0002 . 0002 . 0002	0. 00025 . 00025	0. 0003	
$27 \\ 24 \\ 20 \\ 18 \\ 16$	$\begin{array}{r} . \ 00015 \\ . \ 00015 \\ . \ 00015 \\ . \ 00015 \\ . \ 00015 \\ . \ 00015 \end{array}$	$\begin{array}{c} . \ 00015 \\ . \ 00015 \\ . \ 00015 \\ . \ 00015 \\ . \ 00015 \\ . \ 00015 \end{array}$	$egin{array}{ccc} 0 & 8 \ 0 & 8 \ 0 & 8 \ 0 & 8 \ 0 & 8 \ 0 & 8 \ 0 & 8 \ 0 & 8 \ 0 & 8 \ \end{array}$. 0005 . 0005 . 0005 . 0006 . 0006	. 0005 . C005 . 0005 . 0005 . 0005 . 0006	. 0007 . 0007 . 0007 . 0007 . 0009	. 0001 . 0001 . 0001 . 0001 . 0001	.00015 .00015 .00015 .00015 .00015 .0002	. 0002 . 0002 . 0002 . 0002 . 0002 . 00025	$\begin{array}{c} . \ 00025 \\ . \ 00025 \\ . \ 00025 \\ . \ 00025 \\ . \ 00025 \\ . \ 0003 \end{array}$. 0003 . 0003 . 0003 . 0003 . 0003 . 0004	
$14 \\ 13 \\ 12 \\ 11.5 \\ 11$. 0002 . 0002 . 0002 . 0002 . 0002 . 0002	. 0002 . 0002 . 0002 . 0002 . 0002 . 0002	$\begin{array}{ccc} 0 & 6 \\ 0 & 6 \\ 0 & 6 \\ 0 & 6 \\ 0 & 6 \\ 0 & 6 \end{array}$. 0006 . 0006 . 0006 . 0006 . 0006	. 0006 . 0006 . 0006 . 0006 . 0006 . 0006	. 0009 . 0009 . 0009 . 0009 . 0009 . 0009	$\begin{array}{c} . \ 00015 \\ . \ 00015 \\ . \ 00015 \\ . \ 00015 \\ . \ 00015 \\ . \ 00015 \\ . \ 00015 \end{array}$.0002 .0002 .0002 .0002 .0002	. 00025 . 00025 . 90025 . 00025 . 00025 . 00025	$\begin{array}{c} . \ 0003 \\ . \ 0003 \\ . \ 0003 \\ . \ 0003 \\ . \ 0003 \\ . \ 0003 \end{array}$. 0004 . 0004 . 0004 . 0004 . 0004	
$ \begin{array}{c} 10 \\ 9 \\ 8 \\ 7 \end{array} $. 00025 . 00025 . 00025 . 0003	$\begin{array}{ccc} 0 & 6 \\ 0 & 6 \\ 0 & 5 \\ 0 & 5 \end{array}$. 0006 . 0007 . 0007 . 0007	. 0009 . 0011 . 0011 . 0011		.0002 .0002 .0002 .0002	. 00025 . 00025 . 00025 . 00025	. 0003 . 0003 . 0003 . 0003	. 0004 . 0004 . 0004 . 0004	
${6 \atop {5} \\ {4.5} \\ {4}$. 0003 . 0003 . 0003 . 0003	$\begin{array}{ccc} 0 & 5 \\ 0 & 4 \\ 0 & 4 \\ 0 & 4 \end{array}$. 0008 . 0008 . 0008 . 0009	. 0013 . 0013 . 0013 . 0013 . 0015		. 0002	. 00025 . 00025 . 00025 . 00025 . 00025	. 0003 . 0003 . 0003 . 0003 . 0003	. 0004 . 0004 . 0004 . 0004	

TABLE 6.9. W Tolerances for GO, HI, and LO Thread Gages

* Allowable variation in lead between any 2 threads not farther apart than the length of the standard gage, shown in CS8 or B47.1. It has been customary in the past to specify tolerances on lead as plus or minus (\pm) values. Under the requirement established above, the width of the tolerance zone is the nominal tolerance value specified *regardless of sign*. In view of the preceding, the tolerance symbols, plus or minus (\pm) , should be removed in referencing lead tolerances. The omission of the plus and minus does not change the total tolerance. ^b Above 12 ineles the tolerance is directly proportional to the tolerance in column 12, in the ratio of the diameter to 12 inches.

Size range		Tolerances				
Above—	To and in- cluding—	XX	X	Y	Z	ZZ
1	2	3	4	5	6	7
in	in	in	in	in	in	in
0.029 825	0.825	0.00002	0.00004	0.00007	0.00010	0.00020
1,510	2, 510	. 00004	. 00008	.00012	.00016	. 00032
2.510	4.510	. 00005	. 00010	. 00015	. 00020	.00040
4.510	6.510	. 000065	. 00013	. 00019	. 00025	. 00050
6.510	9.010	. 00008	. 00016	. 00024	. 00032	. 00064
9.010	12.010	.00010	. 00020	. 00030	. 00040	. 00080

TABLE 6.10. Tolerances for Plain Gages
TABLE 6.11. Lengths of AGD taperlock and trilock thread plug gage blanks selected from CS8 or B47.1

Thread	d sizes	Thread lengths								
Decima	il range	T	hread p	Fine pitch instrument thread plug gages						
Above	To and including	(GO		`нı	GO	III			
1	2		3		4	5	6			
$in \\ 0.059 \\ .105 \\ .150 \\ .240$	$in \\ 0.105 \\ .150 \\ .240 \\ .365$	$0.25 \\ .3125 \\ .40625 \\ .5$	in		$in \\ 0.1875 \\ .21875 \\ .28125 \\ .3125$	${ \begin{smallmatrix} in \\ 0.1875 \\ 0.21875 \\ 0.28125 \\ 0.3125 \\ \end{smallmatrix} }$	$ \begin{smallmatrix} in \\ 0.125 \\ 0.15625 \\ 0.21875 \\ 0.25 \end{smallmatrix} $			
$.365 \\ .510 \\ .825$	$.510 \\ .825 \\ 1.135$	$.75 \\ .875 \\ 1$			$.375 \\ .5 \\ .625$	$.375 \\ 0.5 \\ 0.625$	$\begin{array}{c} 0.3125 \\ 0.375 \\ 0.4375 \end{array}$			
1.135	1.510	12 tpi and finer 1		Coarser than 12 tpi 1.25	.75	0.75	0.5			
		7 tpi Fine and 7 tr Coarser Co tl 16	er than oi and arser han) tpi	16 tpi and finer						
$1.510 \\ 2.010 \\ 2.510 \\ 3.010$	$2.010 \\ 2.510 \\ 3.010 \\ 12.010$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 25 \\ 375 \\ 5 \\ 5 \end{array} $	$0.875 \\ .875 \\ 1 \\ 1$	$.875 \\ .875 \\ 1 \\ 1 \\ 1$	0.75 0.75	0.625 0.625			

NOTE 1: For Trilock Plug Blanks above 0.760 to and including 1.510, see CS8 or B47.1. NOTE 2: For Wire Type Plug Blanks in sizes below 0.760, see CS8 or B47.1.

TABLE 6.12. Lengths of AGD thread ring gage blanks and total thread lengths of standard truncated setting plug gage blanks selected from CS8 or B47.1

_

Threa	d sizes	 1	hread lengtl	hs	Total thre	ad lengths o	f truncated		
Decima	al range	Tł	nread ring ga	ges	thread setting plugs				
Above	To and including	Thin Ring	Thick Ring	Fine-pitch instrument ring	For thin ring	For thick ring	For fine- pitch in- strument ring		
1	2	3	4	5	6	7	8		
$\begin{array}{c} 0.059 \\ .090 \\ .150 \\ .240 \\ .365 \\ .510 \end{array}$	$0.090 \\ .150 \\ .240 \\ .365 \\ .510 \\ .825$	$\begin{array}{r} 0.09375\\.15625\\.1875\\.34375\\.4375\\.5625\end{array}$	0.75	.25 .3125 .46875	$\begin{array}{c} 0.21875 \\ .375 \\ .40625 \\ .75 \\ 1 \\ .\end{array}$	1.875	0.5628 .6878		
$\begin{array}{r} .825\\ 1.135\\ 1.510\\ 2.010\\ 2.510\\ 3.010\\ 3.510\\ 4.010\end{array}$	$\begin{array}{c} 1.135\\ 1.510\\ 2.010\\ 2.510\\ 3.010\\ 3.510\\ 4.010\\ 6.260\\ \end{array}$.6875 .75 .8125 .875 .875 .9375 .9375 1.	$\begin{array}{c} .9375\\ 1.125\\ 1.25\\ 1.3125\\ 1.375\\ 1.4375\\ 1.5\\ 1.5\\ 1.5\end{array}$.53125 .625 .625 .6875	$1.5 \\ 1.625 \\ 1.875 \\ 2. \\ 1.875 \\ 2. \\ 2. \\ 2. \\ 2.125$	$\begin{array}{c} 2.125\\ 2.375\\ 2.875\\ 3.\\ 3.\\ 3.125\\ 3.25\\ 3.25\\ 3.25\\ \end{array}$	1.125 1.3128 1.3128 2.4378		

NOTE 3: For diameters 0.059 to 0.510 in, use thin blank for all pitches, recessing sides where applicable. Above 0.510 to 1.135 in, use thick blank for pitches coarser than 12 TPI, thin blank for pitches 12 to 28 TPI, and fine pitch instrument blank for pitches 30 and finer. Above 1.135 to 6.260 in incl., use thick blank for pitches coarser than 10 TPI, thin blank for pitches 10 to 28 TPI, and fine pitch instrument blank for pitches 30 and finer.

and gaging elements are packaged separately, the containers should be suitably marked and/or the gaging elements suitably tagged.

4.5.4. Indicating Thread Gages for Differential Gaging.

4.5.4.1. Purpose. The purpose of indicating thread gages used in differential gaging within this standard is two-fold. The gages are used: (a) by consumers, but only where it is required by supplemental specifications to determine final conformance, (b) by manufacturers, to determine cumulative effect of deviations of product thread elements as an aid in control of manufacturing. For gaging practice, see par. 3.1.4, p. 6.04.

4.5.4.2. Basic Design. The design is specified only to the extent that it affects the results obtained in gaging. Other design details pertaining to frame construction, method of operation, readout, etc., are not included herein.

4.5.4.3. Gaging Elements. The gaging elements for functional differential reading to verify conformance of product thread elements shall be so designed that:

(a) The first set shall engage over a length which approximates the thickness of the GO thread ring blank. The thread form of the gaging elements shall be the same as that of the applicable GO thread ring gage.

(b) The second set shall engage over a length of approximately two pitches and contact the thread flanks 0.375H (i.e. the same as that of the comparable LO thread snap gage).

NOTE: Some representative gaging elements in current use are shown in subsection 6, p. 6.27. See the fourth paragraph under subsection 1, p. 6.01, par. 5.4, p. 6.21, par. 5.5, regarding use of gaging elements.

4.5.4.4. Identification. Where practicable, the gaging elements should be marked with the minimum marking essential for identification. When space available for marking is inadequate and the comparators and gaging elements are packaged separately, the containers should be suitably marked and/or the gaging elements suitably tagged.

4.5.5. Plain Gages for Major Diameter.

4.5.5.1. Purpose. The GO and LO thread ring gages clear the major diameter of the product external thread. To check the major diameter limits, plain ring, snap, or indicating gages are required. For gaging practice, see par. 3.1.5, p. 6.04.

4.5.5.2. Basic Design. To assure that the maximum-material limit is not exceeded, a plain cylindrical ring gage is used for the GO gage while a snap or indicating gage is preferred to assure conformance within the minimum-material limit. Plain progressive snap or indicating gages may be used.

Gage Blanks. Plain cylindrical ring blanks and plain progressive adjustable snap gages have been standardized for various size ranges. See CS8 or B47.1.

4.5.5.3. Identification. Fixed limit gages for major diameter of product external threads are to be identified by GO and the major diameter as follows: GO .2500. 4.6. THREAD SETTING PLUG GAGES.

4.6.1. Purpose. Thread setting plug gages are used to set adjustable thread ring gages, thread snap limit gages, and indicating thread gages to specified size. Thread setting plug gages are also applied to detect wear on gages and gaging elements in use. GO thread setting plug gages are made to the maximum-material limit of the thread specification while LO thread setting plug gages are made to the minimum-material limit of the thread specification. For gaging practice, see par. 3.1.2, p. 6.03.

4.6.2. Basic Design. Thread setting plug gages are of two standard designs which are designated as basic-crest (full form) and truncated setting plugs. The basic-crest GO setting plug is one having a width of flat at the crest equal to 0.125*p*. The truncated GO setting plug is the same as the basiccrest setting plug except that it is longer and the crest of the thread is truncated a greater amount for half the length of the gage giving a full form portion and a truncated portion.

Gage Blanks. For practical and economic reasons the lengths of setting plug gages have been standardized for various size ranges and pitches. See CS8 or B47.1 and table 6.12. The length of the full form and the length of the truncated sections are each at least equal in length to the thickness of the corresponding thread ring gage.

4.6.3. Thread Form. The specifications for thread form of setting plug gages are stated in detail below and are summarized in table 6.7 and figure 6.2.

4.6.3.1. Thread Crests of Truncated and Basic-Crest Maximum-Material-Limit (GO) Thread Setting Plugs.

The major diameter of the basic-crest setting plug and of the full form portion of the truncated maximum-material-limit (GO) thread setting plug is equal to the maximum major diameter of the product external thread.

The major diameter of the truncated portion of the truncated maximum-material-limit (GO) thread setting plug is equal to the maximum major diameter of the product external thread minus $(0.060 \sqrt[3]{p^2} + 0.017p)$. See col. 10 of table 6.5.

4.6.3.2. Thread Crests of Truncated and Basic-Crest Minimum-Material-Limit (LO) Thread Setting Plugs.

The major diameter of the basic-crest setting plug and of the full form portion of the truncated minimum-material-limit (LO) thread setting plug is equal to the maximum major diameter of the product external thread. (Same as GO thread setting plug.) The maximum major diameter of the gage must correspond to a truncation that is not less than 0.067H (0.067p flat) or 0.0009 in. (0.001 in flat) whichever is the greatest truncation.

NOTE: Method of Computation. Select the smallest of following three values. (a) Maximum major diameter of the product external thread (Max pitch diameter of product external thread plus 0.75H (b) Minimum pitch diameter of the product external thread plus (H - 0.00173) minus gage tolerance. (c) Minimum pitch diameter of the product external thread plus 0.75p.

The major diameter of the truncated portion of the truncated minimum-material-limit (LO) thread setting plug is equal to the minimum pitch diameter of the product external thread plus 0.5H.

4.6.3.3. Thread Roots. The minor diameter of thread setting plug gages shall be cleared beyond a 0.125p width of flat either by an extension of the sides of the thread toward a sharp V or by an undercut no wider than 0.125p. See figures 6.2 and 6.3.

4.6.3.4. Pitch Diameter, Limitation of Taper. To effect proper setting of a thread gage, the maximum permissible taper over the entire length of the setting plug shall be within the following limits: For sizes to and including 1.50 in. nominal diameter, maximum taper equals 0.0001 in., except that for threads coarser than 16 threads per inch the maximum taper equals 0.00015 in. For sizes larger than 1.50 in. to and including 6.25 in. nominal-diameter, maximum taper equals 0.0002 in. The permissible taper shall be back taper (largest diameter at entering end) and shall be confined within the gage pitch diameter limits.

4.6.3.5. End Threads. The feather edge at both ends of the threaded section of the setting plug shall be removed. On pitches coarser than 28 threads per inch, not more than one complete turn of the end threads shall be removed to obtain a full thread blunt start. On pitches 28 threads per inch and finer, a 60° chamfer from the axis of the gage is acceptable in lieu of the blunt start.

4.6.3.6. Lead Deviation. Deviation in lead shall be within the limits specified. See table 2.22, par. 4.3.3.3, p. 6.05.

4.6.3.7. Half-Angle Deviations. Deviations in half-angle shall be within the limits specified. See table 2.22.

4.6.4. Identification. The GO thread setting plug for Class 3A gage is basic and is applicable to Class 2A after coating. Accordingly, it is recommended that the gage be identified by set plug, nominal size, threads per inch, series, and GO pitch diameter.

Example:

SET PLUG .250-20 UNC GO PD .2175

The GO thread setting plug gages for Classes 1A and 2A are under basic, having a common allowance. Accordingly, it is recommended that the gage be identified by set plug, nominal size, threads per inch, series, class, and GO pitch diameter.

Example:

SET PLUG .250–20 UNC 1A-2A GO PD .2164

The LO thread setting plug gage is different for each class and accordingly should be identified by set plug, nominal size, threads per inch, series, class, and LO pitch diameter.

Example:

SET PLUG .250-20 UNC-2A LO PD .2127

4.7. PLAIN PLUG ACCEPTANCE CHECK GAGES.

4.7.1. Purpose. GO and NOT GO plain plug acceptance check gages verify the minor diameter limits of size of thread ring gages after the thread rings have been properly set with the applicable thread setting plug gages. For gaging practice, see par. 3.1.2, p. 6.03.

4.7.2. Basic Design. The direction of the gage tolerances on plain plug acceptance check gages is reversed as follows: The GO plain plug gage is made to the minimum minor diameter of the thread ring gage with the tolerance *taken minus*. See table 6.10. The NOT GO plain plug gage is made to the maximum minor diameter of the thread ring gage with the tolerance *taken plus*.

Gage Blanks. For standardization and economic reasons the gaging members and handles have been standardized for various size ranges. See CS8 or B47.1.

4.7.3. Identification.

The GO and NOT GO plain plug acceptance check gages for the GO thread ring gage should be identified as GO and NOT GO Acceptance Checks for GO Thread Ring Minor Dia XXXX–XXXX.

The GO and NOT GO plain plug acceptance check gages for the LO thread ring gage should be identified as GO and NOT GO Acceptance Checks for LO Thread Ring Minor Dia XXXX–XXXX.

5. RECOMMENDED GAGING PRACTICES

5.1. DIMENSIONAL ACCEPTABILITY OF THREADS. —General practice as to the dimensional acceptability of threads shall be based on the interpretations of pitch diameter limits of size in subsection on Limits of size in section 3 and the following specifications of gages and gaging practices:

(a) At maximum-material limits²—For referec purposes, the dimensional acceptability of threads at the maximum-material limits shall be based on gaging with GO thread plug and ring gages conforming as closely as practicable to the limits of size of the thread and to the thread form and length specified for such gages. (See par. 2.3, p. 6.01.)

(b) At minimum-material limits.—Unless otherwisc specified on the drawing or procurement document, dimensional acceptability at the minimummaterial pitch-diameter limits shall be based on the following accepted practices:

(1) Functional (virtual) diameter gaging practice— Functional (virtual) diameter gaging practice, involving the use of thread plug gages and thread ring gages, conforming as closely as practicable to the limits of size of the thread and to the thread form and lengths specified in this section for such gages, is specified for the minimum-material limits of classes 1A and 2A external threads, and classes 1B, 2B, and 3B internal threads.

² External and internal threads larger than 6 in nominal diameter present additional problems for technical and economical reasons. It is recommended that acceptance of these be alternatively based on measurement of the thread elements. A clear understanding of requirements and method of gaging should be reached between supplier and consumer.

(2) Single element gaging practice.—Single element gaging practice, involving the use of thread snap gages or indicating type gages having thread form in accordance with this section, or its equivalent, engaging the thread over a length of two pitches, is specified for the minimum-material limits of class 3A external threads.

5.2. PROCEDURE IN SETTING ADJUSTABLE LIMIT AND INDICATING THREAD GAGES.—The size of adjustable limit or indicating thread gages is controlled by utilizing the applicable W tolerance thread setting plugs. The observance of uniform setting procedures will aid in the proper setting and surveillance of the thread gages and facilitate correlation of gaging results.

5.2.1. Adjustable Thread Ring Gages.—In setting an AGD adjustable thread ring gage, the sealing compound should be removed and the locking screw loosened. Turning the adjusting screw to the right enlarges the ring so that it turns freely onto the thread setting plug. Alternately adjusting the adjusting screw and tightening the locking screw, a firm fit on the smallest portion of the thread in the ring should result. While making the adjustment, the knurled outside diameter and both sides of the ring should be lightly tapped with a soft-tip or plastic hammer to permit the threads of the ring to wrap themselves around the threads of the setting plug.

Care should be taken to assure that there is no lateral displacement of the sectors comprising the ring gage that would produce a lead deviation beyond the prescribed tolerance zone. After satisfactory adjustment has been obtained, the ring is to be removed from the plug and the same procedure of tapping is repeated with slightly greater emphasis to the sides. If the thread ring gage possesses proper rigidity, the same feel should be still there when the setting gage again is turned into the ring. A tighter fit or inability to reenter the setting gage denotes a fault of the locking device, that should then be taken apart and checked for dimensional conformity to CS8 or B47.1. It is often advisable to do this before even attempting to adjust the thread ring gage. When proper adjustment has been obtained, the gage should be sealed.

In setting to a truncated setting plug, the ring gage may be set to either the full or the truncated portion. It is common practice to set slightly freer than a snug fit to the truncated portion and then to check the root clearance and wear of flank angle by screwing the ring onto the full portion. Extreme caution is required when this practice is followed to prevent damage to the thread crest of the setting plug. The opposite practice is to adjust and set the ring to the full portion and then determine the fit of the gage on the truncated portion. If the thread form of the ring gage is satisfactory, there will be slight or no change of fit. In the case of a worn thread ring gage, the presence of shake or play when on the truncated portion indicates that the sides of the thread are no longer straight near the root and the gage should be relapped or discarded.

In order to provide maximum wear life of a setting plug, the plug should be threaded into a ring as few times as possible. This will prevent uneven wear and a taper on the truncated end of the plug. When setting plugs are thus used properly they do not wear unevenly. However, when setting plugs are applied repeatedly to check thread ring gages, the criteria for acceptability will vary with the type and application of the ring. A LO ring, for example, should be a snug fit at full engagement and provide some resistance to turning at one or two turns engagement. GO thread ring gages should also be a snug fit at full engagement. When the length of the product thread permits engagement with the full length of the GO ring, the requirement as to partial engagement may be relaxed to permit a slightly freer fit. However, there should be no relaxation in the requirements when short product threads, that only partly engage the GO ring, are being engaged.

If a basic-crest setting plug is used to set a thread ring gage, root clearance of the thread in the ring should be determined by the procedure outlined below.

The ring gage should be given further inspection to determine whether or not the minor diameter is within the specified limits. The minor diameter may be inspected by means of GO and NOT GO plain cylindrical plug acceptance check gages or by, direct measurement.

5.2.1.1. Procedure for Determining the Clearance in Thread Ring Gages.—The roots of threads of ring gages, particularly LO ring gages, frequently do not clear the maximum major diameter of the external thread. To assist the gage maker and gage inspector, the recommended procedure for determining the clearance at root of thread of ring gages is given to supplement, or substitute for, the use of truncated setting plugs described in par. 5.2.1. For this purpose an optical examination of a sulfurgraphite, plaster of Paris, copper-amalgam, or other suitable cast of the thread is made by means of a projection comparator, toolmaker's microscope, or universal measuring microscope. The actual magnification of the instrument as used must be known.

(a) Methods of making sulfur-graphite casts.—Sulfur-graphite casts are made from a thorough mixture of finely powdered graphite and crushed lump sulfur which is heated in a ladle until the sulfur is completely melted and becomes viscous. This mixture may be used repeatedly by crushing and remelting. The graphite should constitute about 7 percent of the mixture by weight, although in the practice of various users, the proportion varies from 4 to 20 percent. The graphite is added to eliminate reflections that would be produced by a plain sulfur cast, and to reduce the tendency to shrink upon cooling.

The casting mold may be formed by holding the ring gage between thin plates in the jaws of a vise, the top edge of the plate on one side being well below the thread axis. For small sizes of threads, a convenient arrangement is to use a taper mandrel that is provided with a lengthwise groove having smooth surfaces and an included angle of about 90°, into which the mixture is poured, and in which the cast is later mounted for examination. The bottom of the slot has a slight taper toward the axis at the small end. A square metal stop clamped in the groove serves as a wall in casting. The mandrel is also useful in making copper-amalgam casts, in which case the casting mixture is pressed in.

The sulfur-graphite casting mixture is poured into the mold when the temperature is from 260° to 266° F, and allowed to solidify with slow cooling. The cast may be marked with an identification number with a steel stylus. Sulfur-graphite casts warp considerably after a few hours.

(b) Method of making plaster of Paris casts.-A plaster of Paris cast is usually made to determine errors in thread angle, and this cast can usually be used to determine clearance. Such a cast is made by mixing 5 parts (28 g or 1 oz) of a good grade of dental plaster of Paris with from 4 to 5 (26 ml) parts by weight of potassium-bichromate solution made by dissolving 40 g in 1 liter of water. The potassium bichromate inhibits rusting of the gage. This mixture is applied to the threads inside a mold which may be fashioned from cardboard or a strip of copper, with modeling clay pressed into the threads along the outside bottom edges of the mold. It should be allowed to harden completely before removal. Plaster of Paris casts have less shrinkage than sulfur-graphite, but do not retain dimensions over extended periods of time. They are difficult to remove from rough finish threads without damage.

(c) Determining clearance of GO thread ring gages.— The flat at the crest of the maximum external thread is 0.125p, therefore, if the root of thread of the GO ring is relieved to a width of 0.125p, the ring threads clear the maximum major diameter of the thread. If the roots of the GO ring gage threads are not relieved, they must be to a sharp enough V to clear a flat of 0.125p. The flanks of the thread should be straight to the point where the 0.125p flat will make contact with the flanks of the thread. The width of flat on the chart or template used should be 0.125ptimes the magnification of the comparator.

(d) Determining clearance of LO thread ring gages.— The flat at the crest of a screw with maximum major diameter and minimum pitch diameter is determined by the formula:

Flat
$$=\frac{p}{2} - h' \tan 30^\circ = \frac{p}{2} - 0.57735h'$$

for the Unified form of thread, where h' = maximum major diameter minus minimum pitch diameter.

If the LO ring gage has a relief of 0.25p as recommended, it is necessary to determine whether or not the relief is deep enough. To do this, make a chart or template representing a 60° thread with a flat at the crest equal to the flat, as determined by the above formula, times the magnification of the comparator. This chart or template should fit the image of the thread and contact the flanks of the thread image without contacting in the relief. If the ring threads are not relieved, they must be sharp enough to permit the chart or template to contact on the flanks of the image rather than in the root.

5.2.2. Thread Snap Gages.—The gaging elements of most types of thread snap gages are mounted on eccentric pins or studs which can be securely locked in position by means of locking screws or nuts. Since thread snap gages may be of different designs, the above description is used only to illustrate a general classification.

It is essential that proper setting procedures be utilized to assure uniform contact pressure between the gaging elements and their applicable thread setting plugs. The gaging elements should be adjusted so that the thread setting plug will have a minimum perceptible drag when passing it through the gaging elements. One method is to adjust the gage so that the pressure between the gaging elements and the thread setting plug will just support the weight of the thread snap gage and, as the setting plug is slowly rotated, the thread snap gage will drop off by its own weight.

In setting large diameter thread snap gages, it may be desirable to support the thread snap gage in a vise or other holding means. Care should be taken to avoid deformation of the gage frame. Uniform gaging pressure can be attained by holding the gage frame in a vertical position and adjusting the gaging elements so that the thread setting plug will have perceptible drag and will just drop through the gaging elements by its own weight.

Care should be taken not to use too much force when checking or setting thread snap gages so that deformation, brinelling, or permanent damage to the gaging elements, gage frame, or thread setting plug does not occur.

Standard AGD truncated or basic-crest thread setting plugs may be used for setting thread snap gages. Large diameter thread snap gages are sometimes adjusted and set to the proper pitch diameter by direct measurement, size blocks, or various types of setting bars. Details of design and specific instructions covering the use of various types of setting means for large diameter thread snap gages are available directly from the gage manufacturer.

5.2.3. Indicating Thread Gages.—Indicating thread gages are of various designs but most of them are of the comparator type which compare and indicate the variation in size between a thread setting plug of known size and the size of the product thread being checked. Indicating thread gages provide an adjustable gaging force as an inherent part of the gage body construction. This gaging force may be varied according to the particular characteristics (i.e., weight, size, shape, etc.) of the product being checked. The accuracy of the setting and gaging is not normally influenced by variations in the gaging force as the gage is set and used with the same force applied in both instances. Care should be used in selecting the gaging force to be applied in relation to the deformability of product threads.

Usually the applicable GO and LO AGD trun-

cated or basic crest thread setting plugs are used to set the indicating thread gages. However, a thread setting plug of other than the applicable size is sometimes used and the tolerance zone for the product thread is established with reference to the size of the thread setting plug employed. This practice is advantageous as it eliminates the necessity for having applicable setting plugs for each of the various classes of thread as well as special limits. Modification of limits of size to provide allowance for coating and limits of size after coating may be readily established with reference to the size of a thread setting plug gage.

Gage manufacturers usually offer specific information regarding the operation, checking, setting, and surveillance to cover their particular designs of indicating type thread gages.

5.3. LIMIT GAGES FOR USE IN MANUFACTURING.

5.3.1. In the manufacture of product threads it is necessary to control the limits of size and the various individual thread elements so that the threads produced will be acceptable with final conformance gages. Adoption and use of specific manufacturing gages is the prerogative of individual organizations. If the producer uses gages other than those described in this section, he should evaluate the results obtained to assure correlation with the final conformance gages specified in this section and final conformance within the specifications in section 2.

5.3.2. Limit gages used in manufacturing checking may be of the same general design of thread plug and ring gages used in final conformance gaging. It is important, however, that thread plug and ring gages used in manufacturing checking have pitch diameter tolerances so applied as to be within the product limits of size: i.e., GO thread plugs with tolerance plus, HI thread plugs with tolerance minus, GO thread rings and GO setting plugs with tolerance minus. LO thread rings and LO setting plugs with tolerance plus. Whereas final conformance gages should be as close as practical to the extreme limits of size of the product threads, gages for manufacturing checking should be as far removed from those extremes as is practicable while still within X gage tolerances. When X pitch diameter tolerance is specified for setting plugs, it is recommended that W tolerances for lead and half-angle be specified. (See par. 4.3.3.1, p. 6.05.)

5.3.3. A practice sometimes utilized is to check the pitch diameter of new gages as received, to assign for final conformance gaging those closest to the extreme sizes of the product thread and to assign for manufacturing checking those farthest from the extreme limits of size of the product thread.

5.3.4. Periodic surveillance of both final conformance and manufacturing gages will disclose when the manufacturing gages, due to wear, approach approximately the same size as those used as final conformance gages. At such time either of two courses of action is suggested.

(a) Manufacturing gages (GO) may be transferred to the final conformance application, and be replaced with new gages from the manufacturing gage stock, or

(b) Final conformance gages (HI/LO) may be transferred to the manufacturing gage application, and vice versa.

Perhaps the most difficult point to reconcile in such a program is that of deviations resulting from normal use. Starting threads of both plugs and rings bear the brunt of use when making an inspection. Wear is seldom uniformly distributed over the gaging length and the thread flanks, resulting in inaccuracies of flank angle and pitch diameter. It is important for the success of such a program that inspection and manufacturing personnel agree on the position for the pitch diameter check and the degree of taper which may be tolerated before that gage should be taken out of service. The HI/LO gaging practice which permits the minimum-material-limit gages to assemble for their entire length. provided a definite drag is achieved on or before the third thread of entry, has alleviated appreciably the problem of worn end threads.

5.3.5. There are a number of other styles of limit thread gages utilized as manufacturing gages for technical or economic reasons. Among these are caliper or snap gages using gaging elements of various configurations. Included are those utilizing rolls, segments, serrated anvils, wires, probes, and ball points. Whereas all of these would accept perfect threads with little or no appreciable difference, they may react quite differently on threads having acceptable deviations.

5.3.6. There is an additional problem, primarily stemming from economics, where a relatively few parts with threads are involved, when neither limit nor indicating gages are available and it is economically impracticable to procure them. Such situations are daily problems in model shops, experimental and research departments, tool rooms, and job shops. A discussion of some commonly used practices follows:

5.3.7. Adequate means for determining accuracy of thread angle, thread form, and lead (both linear and helical) are essential. Optical projection or mechanical gages of a general nature are used frequently for such checking.

5.3.8. Numerical values for groove diameter may be determined by use of the three-wire method or for LO minimum-material limit by the use of thread micrometers. The accuracy of these values is affected by the following factors.

5.3.9. Values obtained from three-wire measurement are influenced by:

Deviation in geometry and pitch of product thread. Product thread characteristics (cleanliness, surface texture, hardness, etc.).

Measuring force exerted over the wires.

Operating skill in handling part, wires, and micrometer.

5.3.10. Values obtained with thread micrometers are influenced by factors enumerated in par. 5.3.9, as applicable, and accuracy of the cone and vee contact elements. 5.3.11. To make use of the values covered in par. 5.3.8 (as applicable to the maximum-material limit, i.e., functional diameter), the diameter equivalents of deviations in lead and half-angle must be taken into account.

5.3.12. For use as a manufacturing check at minimum-material limit the values covered in par. 5.3.8 may be used without change. However, one must realize that these values may be more restrictive of pitch diameter limits than would be experienced with limit gages.

5.4. DIFFERENTIAL GAGING.

5.4.1. Differential Gaging provides an economical method of checking for thread element deviations of product complete threads. The principle involved is the determination of values for two essential features or characteristics and by subtraction to determine the difference, i.e., the differential reading. This principle as utilized in checking Unified Screw Threads is a convenient and effective manner of evaluating the effect of deviations of the several elements and some other characteristics. It is helpful to the manufacturer in control of tools and processes. It is not intended that values determined for Differential Gaging be utilized for verification of size conformance.

5.4.2. The following differential readings determined thru the use of appropriate gaging elements are utilized for final conformance gaging of thread elements when specified. See par. 4.5.4.3, p. 6.16, and par. 5.5.

5.4.3. Functional Differential Reading Par. 4.5.4.3, p. 6.16, utilizes Gaging Elements 6.5(a), p. 6.27, for determination of GO functional size, and 6.5(b) for determination of LO minimum-material limit. When the difference between values so determined (Functional Differential Reading) exceeds the specified percentage of the applicable pitch diameter tolerance, it is necessary to make a further analysis to determine if either lead or flank angle exceeds the allowable tolerance. Functional Differential Reading may not be used in thread analysis. (See par. 5.5.)

NOTE 1: The numerical value determined for the Functional Differential Reading will not correlate with that determined by measurement, nor that determined in Thread Analysis except in the case of a perfect thread. Reason is that the contour of the gaging elements 6.5(b), p. 6.27, engage a significant portion of the flank angle and approximately two pitches length of engagement. To be completely assured that no single element exceeds the specified tolerance, the Functional Differential Reading should not exceed one-half of the specified tolerance.

5.4.4. Cumulative Differential Reading.—The size (using gaging elements 6.5(d), (f), (g), or (i) with (j), (k), (l), or (m), p. 6.28, profile) devoid of any effect from lead or angle deviations is subtracted from the value for functional size (using gaging elements 6.5(a)) to establish the CUMULATIVE DIFFERENTIAL READING. When this differential reading does not exceed the specified percentage of the applicable pitch diameter tolerance, the thread elements (lead and flank angle) are well within tolerance. If differential reading exceeds the

specified percentage of the applicable pitch diameter tolerance, it is necessary to make a further analysis of lead and flank angle separately. See pars. 5.4.5, 5.4.6, and 5.5. The values determined and utilized in Differential Gaging should not be used for verification of size conformance.

5.4.5. Lead Differential Reading.—Lead Deviation is evaluated using gaging elements as provided in subsection 6, p. 6.27. Gaging elements 6.5(a) engage the thread over approximately the normal length of engagement. Gaging elements 6.7(n) engage the thread over a length not exceeding one pitch. Both contact the thread with a flank engagement of 0.625*H*. Care must be taken to avoid any error in product thread cylindricity affecting the readings. The difference between the values is used to determine the LEAD DIFFERENTIAL READING. It is intended that this reading should not exceed the specified percentage of the applicable pitch diameter tolerance.

5.4.6. Flank Angle Differential Reading.—Flank Angle Deviation is evaluated using gaging elements as provided in subsection 6, p. 6.27. Gaging elements 6.5(c) engage the thread flank 0.375H (i.e., that which is available at minimum-material condition of the major diameter). Gaging elements 6.6(1) contact the gage flank with curved contacts, or contacts having a slight flat. Both gaging elements engage the thread not over one pitch in length. Care must be taken to avoid any effect of product thread cylindricity affecting the reading. The difference between the values so determined, multiplied by two, is the FLANK ANGLE DIFFERENTIAL READ-ING. It is intended that this reading should not exceed the specified percentage of the applicable pitch diameter tolerance.

5.5. THREAD ANALYSIS UTILIZING INDICATING THREAD GAGES.

5.5.1. Differential Gaging provides an economical method of checking to verify conformance of thread elements of product complete threads. However, when a numerical value for deviations in each of the several elements is desired, more comprehensive Differential Gaging and Thread Analysis are utilized as covered in the following paragraphs.

The most effective manner by which to convey and understand Thread Analysis utilizing Indicating Thread Gages is to outline the procedures and interpretations. The following applies to gages for product external threads. Comparable techniques and procedures are utilized for checking product internal threads but are not covered in detail herein. Details of gaging elements are presented in subsection 6, p. 6.27.

5.5.2. Differential Gaging Procedures.—The value yielded for the product complete thread, when checked with an indicating thread gage utilizing gaging elements 6.5(a), p. 6.27, to determine Functional Diameter, should at no point along the thread exceed the specified maximum-material limit.

On a perfect thread, the reading obtained when utilizing applicable indicating thread gages would be identical for Functional, Pitch, Groove, and Ridge Diameters. The deviation in any single thread element, such as lead and flank angle, may not exceed the diameter equivalent of the allowable specified percentage of the pitch diameter tolerance. This is interpreted to mean that no deviation in any single thread element may exceed the allowable specified percentage of the pitch diameter tolerance even though the size of the thread falls within the specified maximum and minimum-material limits.

Any deviations in lead and flank angle of product threads are reflected in the direction of maximum material. Thus, the numerical value for Functional Diameter will differ from the numerical values for LO Minimum-Material Size or Pitch Diameter, as applicable. This difference in numerical values is referred to as the Differential Reading of which there are four as covered in par. 5.4. These numerical values are affected by some features of the gaging elements and some conditions of the product threads which are overlooked all too frequently. The following examples in this category and explanations may be of assistance in evaluating and selecting the applicable gaging elements.

NOTE 1: Pitch Diameter.—It is recognized that numerical values determined by various gaging elements reflect deviations in pitch and flank angle. (See subsection 6, p. 6.27.) When pitch and flank angle of product threads are within acceptable deviations (see par. 5.5.2.1) the difference in numerical values between gaging elements engaging in the groove or engaging both the thread ridge and groove is of negligible magnitude. A few examples are given below to illustrate the magnitude of this difference on product threads having maximum permissible progressive lead deviation for Unified Threads over a length of engagement comparable to the thickness of the applicable GO thread ring gage. See par. 4.5.4.3., p. 6.16. These values are yielded by the following formula:

V = 0.866LT/NTR

where: V = Variation between pitch diameter and groove diameter values

 $LT = \max \text{ acceptable lead deviation in product thread}$ NTR = number of threads in thread ring gage.

	1A	2A	3A
.250–20 UNC .250–28 UNF .250–32 UNEF	$\begin{array}{c} 0.00021\ .00013 \end{array}$	$\begin{array}{c} 0.00014 \\ .00009 \\ .00007 \end{array}$	0.00010 .00007 .00005
.750–10 UNC .750–16 UNF .750–20 UNEF	.00029 .00021	.00020 .00014 .00011	.00015 .00010 .00007

NOTE 2: Flank Angle

(a) Effect of engagement of gaging contacts on thread flanks. Functional Differential Reading utilizes 0.625H and 0.375H flank engagements for verifying conformance, whereas Cumulative Differential Reading utilizes 0.625H and curved (or slight flat) contacts to determine a numerical value representative of the extent of the deviation. Values achieved are significantly different as illustrated by the formulas and tabulation which follow.

Formulas:

M

Plus Angle
$$\begin{cases} A = 0.10825 \ p \ \text{tan } 30^{\circ} \\ B = A \ \cot(\alpha +) \\ \text{Variation} = 2(0.10825 \ p - B) \\ \text{inus Angle} \end{cases}$$
inus Angle
$$\begin{cases} A = 0.10825 \ p \ \text{tan } 30^{\circ} \\ B = A \ \cot(\alpha -) \\ \text{Variation} = 4(B - 0.10825 \ p) \end{cases}$$

	1.	A	2	A	3A		
	+ angle	- angle	+ angle	— angle	+ angle	- angle	
. 250-20 UNC . 250-28 UNF . 250-32 UNEF . 750-10 UNC . 750-16 UNF . 750-00 UNEF	$0.00106 \\ .00092 \\ .00166 \\ .00142$	0.00240 .00216 .00372 .00370	$\begin{array}{c} 0.00072\\.00064\\.00060\\.00104\\.00098\\.00082\end{array}$	0.00164 .00136 .00136 .00244 .00204 .00184	$\begin{array}{c} 0.00056\\ .00050\\ .00046\\ .00086\\ .00076\\ .00064\end{array}$	0.0011: .0010 .0010 .0018 .0015 .0015	

(2)

brea

prod

2. 6.

first

oft

the

the

eler

eler

ist

18

dia

that

(b) Effect of deviations in plus direction and minus direction. The dual formulas and sets of values in the table result from the unequal heights above and below the pitch line (addendum and dedendum). This complexity may be resolved by locating the curved (or slight flat) contacts above the pitch line as shown in 6.6(l) and (m), p. 6.29.

(c) Effect of deviations in major diameter. A specific deviation in flank angle yields significantly different values when the major diameter is at maximum and when it is at minimum when using 0.625H and curved (or slight flat) contacts. This complexity may be resolved by using 6.5(c), p.6.28, (0.375H) which bears on flank length and 6.5(d), 6.6(l), or (m) (curved or slight flat) contacts. Multiplying the resultant figure by two converts the reading to that which is applicable to the full 0.625H length of flank.

5.5.2.1. When the Cumulative Differential Reading is not greater than the allowable specified percentage of the pitch diameter tolerance, the product thread is verified as well within the specification. (See par. 5.4.4, p. 6.21.) When the Cumulative Differential Reading is greater than the allowable specified percentage of the pitch diameter tolerance, the product thread must be analyzed further to assure that the diameter equivalent of the deviation of either lead or flank angle does not exceed the allowable percentage of the pitch diameter tolerance. Lead equivalent deviation, for practical purposes, applies over the length of the applicable GO thread ring blank in CS8 or B47.1.

5.5.3. Analysis of Deviations in Product Threads.

5.5.3.1. Deviation in Lead. Deviation in lead is especially important since it affects pitch diameter in the ratio of 1.732 to 1 in a 60° thread. To check deviation in lead:

(a) Determine the straightness of the product thread by checking at different positions along the product thread using the 6.5(d), (e), (g), or (i), p. 6.28, gaging elements and note the position of the first full thread.

(b) Determine and note the functional diameter of the product thread.

(c) Engage the product thread at the position of the first full product thread as determined in (a) with the first thread of the functional diameter gaging elements 6.5(a) or with 6.7(n) single rib gaging elements, and note the difference in readings. This is the Lead Differential Reading. If the difference is greater than the allowable percentage of pitch diameter tolerance, exclusive of taper, it signifies that the lead deviation is excessive.

NOTE 3: In steps (b) and (c) the results are not affected by deviation in flank angle since the length of flank angle contact in both steps is the same. The only difference in contact is in the length of engagement. Lead deviation may be wholly compensated for by taper deviation since the diameter equivalent of lead deviation will not influence the reading until it exceeds the taper deviation. The extent of taper deviation is known as measured in step (a). If the lead differential reading exceeds this taper deviation by more than the pitch diameter equivalent for lead deviation, the lead deviation is excessive. If the lead differential reading does not exceed the permissible taper deviation, it indicates that the pitch diameter equivalent for lead deviation is less than the maximum taper deviation. If the taper deviation is within the required percentage of pitch diameter tolerance, then it would follow that the lead deviation is also within the required percentage of pitch diameter tolerance and in conformance with specified tolerance.

5.5.3.2. Deviation in Flank Angle. Deviation in flank angle may be revealed by engaging the first full product thread with the 6.5(d), (f), (g), or (i) gaging elements (see 6.5, p. 6.28) and then engaging the same thread with 6.7(n) single rib gaging elements or 6.5(a) gaging elements. If this Flank Angle Differential Reading exceeds the specified percentage of pitch diameter tolerance, it may be that the product thread has excessive flank angle deviation. (See Note 6.)

Analysis of Thread Flank Deviation. With the above types of elements, there are two product deviations which can affect the differential reading. These are: direction of angle deviation (Note 4) and actual major diameter of product thread (Note 5). To reduce these effects, the gaging elements may consist of 6.6(1) or (m) limited contact elements used in conjunction with 0.375H LO single element profile elements 6.5c. The difference between readings obtained using this combination of gaging elements, multiplied by two, is the diameter equivalent of flank angle variation present in that product thread.

NOTE 4: The reading for a plus angle deviation on the product thread checked, will be greater than that for a minus angle deviation of the same angular mangitude. This results from unequal height of profile, above and below the pitch line (addendum and dedendum) for Unified threads.

NOTE 5: The differential so obtained is greater for a product thread having maximum major diameter than for one having minimum major diameter.

5.5.3.3. Taper. Taper is determined by checking at several positions along and over the length of engagement of the product thread using the 6.5(d), (e), (f), (g), or (i) gaging elements, p. 6.28.

5.5.3.4. Deviation in Minor Diameter or Root Fillet. Oversized minor diameter or root fillet may be revealed by engaging the first full product thread in the 6.5(d), (f), (g), or (i) gaging elements and then engaging the same thread in the 6.7(n) single rib gaging elements or 6.5(a) gaging elements. If this Flank Angle Differential Reading exceeds the specified percentage of pitch diameter tolerance, it may be that the product thread has an oversized minor diameter or root fillet. (See Note 6.)

NOTE 6: For further analysis of product thread profile and control of threading tools, optical projection methods are suggested. They are particularly useful in checking thread form, flank angle, and pitch deviations of product threads and manufacturing tools.

5.5.3.5. Out-of-Round. Out-of-Round in a product thread may be elliptical, oval, egg-shaped, or lobed (frequently called clover leaf). Ovality is detected most effectively with two-point gaging contacts in an indicating thread gage. Lobing can be detected most effectively with three-point gaging contacts in an indicating thread gage. See figures 6.13, 6.14, and 6.15, p. 6.24, and notes 7 and 8.

NOTE 7: A gage having two gaging elements is preferred for detecting an elliptical condition, while a gage having three gaging elements is preferred for detecting the multi-lobed condition.

NOTE 8: Any helix variation (deviation in helical path or "drunkenness") may be reflected in the check for roundness. When an excessive deviation from roundness is detected, further analysis should be made utilizing equipment of a universal nature capable of differentiating and evaluating helix variation, or equipment especially made for evaluating helical path deviation. This check is applicable when the product thread call-out specifies control and inspection of thread elements.

5.5.4. Determining Allowances on Pitch Diameter to Compensate for Lead Deviation in Product Threads with Long Length of Engagement.

5.5.4.1. Determine the straightness of the product thread and note the location of the first full product thread with reference to the starting thread using the pitch diameter gaging elements with an indicating thread gage.

5.5.4.2. Determine and note the functional diameter of the product thread using the functional diameter indicating thread gage.

5.5.4.3. Engage the first full product thread (as determined in par. 5.5.4.1) in the first thread of the functional diameter gaging elements and note the size indication.

5.5.4.4. Subtract the first full product thread diameter numerical value (par. 5.5.4.3) from the functional diameter numerical value (par. 5.5.4.2). This difference in readings is the differential numerical value and represents the pitch diameter equivalent of the lead deviation in the product thread over a length equal to the length of the functional diameter gaging elements.

FIGURE 6.13. Out-of-round: elliptical, oval, or egg-shaped. (Utilizing segments for gaging elements).

FIGURE 6.14. Out-of-round: elliptical, oval, or egg-shaped. (Utilizing rolls for gaging elements).

FIGURE 6.15. Out-of-round: Lobed. (Utilizing rolls for gaging elements).

5.5.4.5. Divide the length of engagement of the product thread by the length of the functional diameter gaging elements. This result is the Length Factor.

5.5.4.6. Multiply the differential reading (par. 5.5.4.4) by the length factor (par. 5.5.4.5). This result is the amount by which the specified maximummaterial functional diameter of that external product thread must be below the specified maximum-material limit. This will compensate for the lead deviation in that product thread and will assure acceptance over full length engagement with a mating product thread made to its specified maximummaterial size.

5.6. GAGING FUNCTIONAL DEPTH LIMITS OF PRODUCT INTERNAL THREADS.

5.6.1. The data herein represents current practice and should be helpful in specifying depth limit steps on thread plug gages. Specifications for the location of depth limit steps on GO thread plug gages, which are otherwise made in accordance with details in this section, are as follows.

5.6.2. Object of Depth Limit Steps. The object of depth limit steps on GO plug thread gages is to determine the extent a product functionally conforms to the specified thread depth.

There are two types of specifications referring to depth of internal threads. One type specifies minimum depth only and therefore requires only one depth limit step on the gage. The other type specifies minimum and maximum values for depth of thread and requires two depth limit steps on the gage.

5.6.3. Use of Gages with Depth Limit Steps. The step limit GO thread plug gage is applied to the product as far as it will go without the application of significant force which would tend to deform the product material. The position of the limit steps in relation to the face of the product is noted to determine conformance.

5.6.4. Location of Limit Steps. Limit steps shall be located with reference to the front end face of the gage as shown in figures 6.16 and 6.17 and at a point on the circumference that will approximately bisect the crest flat of the gage.

The first full crest of the GO thread plug gage with a depth limit step shall start at a location 0.5p from the front end face of the gage as shown in figures 6.16 and 6.18.

The limit step face shall be straight for the depth of thread and shall be ground at 90 degrees to the axis of the gage.

Reversible style thread gages are generally made with only one set of limit steps from one end of the gage in order to eliminate confusion and error from runout of one set of steps running into steps from the other end. The design of the depth step is based on the length from the centerline of the crest on the first full thread ridge (which is untouched by removal of the thread convolution or chamfer at the end of the thread plug gage). The length from the end of the thread gage to the depth step is calculated by adding 0.5p to the functional depth of the full depth thread form required in the product.

When measuring the step length over the end of the gage, the step length tolerance will apply only if the

CENTERLINE OF CREST ON FIRST FULL THREAD RIDGE

FRONT END FACE OF GAGE

.5p MAXIMUM

.06p----

exact 0.5p length is held from the first full thread ridge centerline to the end. This dimension may vary without affecting the function, so long as the variation from 0.5p is taken into account, when measuring the step length over the end of the thread plug gage. Variation of the 0.5p dimension should be in a minus direction only and should not be of such magnitude as to infringe on the engaging flank of the first full thread ridge.

FIGURE 6.17. Location of depth step on gage (in plane which bisects crest flat).

FIGURE 6.16. Depth limit thread plug gage.

FUNCTIONAL DEPTH

STEP FACE

CREST FLAT

FIGURE 6.18. Start of perfect thread on gage.

5.7. DETERMINATION OF LIMITS OF SIZE OF GAGES

An example of limits of size and tolerances of gages required for an external and an internal thread is presented below. A diameter/pitch size was chosen from table 3.1. All calculations were made from the specifications and formulas in tables 6.6, 6.7, 6.8, and 6.9, p. 6.11. Example: 2–18 UNS-2A

GAGES FOR PRODUCT EXTERNAL THREADS

GO Thread Ring Gage			
ere and thing chage	Max	Min	Tolerance
Major Dia	Cleared	1/1111	1 Oler anot
Pitch Dia	1.9624	1.9620	0.0004
Minor Dia	1.9383	1.9378	0.0001
Truncated Setting Plug for GO	Thread Ring Gage	1.0010	0.0000
Major Dia:			
-Truncated Portion	1.9888	1.9883	0.0005
—Full Portion	1.9990	1.9985	0.0005
	200000	110000	0.0000
Pitch Dia	1.9624	1.9622	0.0002
Minor Dia	Cleared	1.0011	0.0002
LO Thread Ring Gage	0100100		
Major Dia	Cleared		
Pitch Dia:			
—Tolerance plus	1.9577	1.9573	0.0004
—Tolerance minus	1.9573	1.9569	0.0004
Minor Dia	1.9458	1.9453	0.0005
Truncated Setting Plug for LO	Thread Ring Gage	1.0100	0.0000
Major Dia:			
—Truncated Portion	1.9814	1.9809	0.0005
—Full Portion	1.9990	1.9985	0.0005
Pitch Dia:		2.00000	0.0000
—Tolerance plus	1.9575	1.9573	0.0002
Tolerance minus	1.9573	1.9571	0.0002
Minor Dia	Cleared		
Basic-Crest Setting Plug for GC	Thread Snap Gage		
Major Dia	1.9990	1.9985	0.0005
Pitch Dia	1.9624	1.9622	0.0002
Minor Dia	Cleared		
Basic-Crest Setting Plug for LO	Thread Snap Gage		
Major Dia	1.9990	1.9985	0.0005
Pitch Dia:			0.0000
—Tolerance plus	1.9575	1.9573	0.0002
—Tolerance minus	1.9573	1.9571	0.0002
Minor Dia	Cleared		
GO Plain Ring or Snap Gage fo	r Major Diameter		
Diameter	1.99850	1.99834	0.00016
NOT GO Plain Ring or Snap G	age for Major Diameter		
Diameter	- 1.98996	1.98980	0.00016

CO The al Dhan Ca

GAGES FOR PRODUCT INTERNAL THREADS

GO Inteau I lug Gage			
	Max	Min	Tolerance
Major Dia	2.0005	2.0000	0.0005
Pitch Dia	1.9643	1.9639	0.0004
Minor Dia	Cleared		
HI Thread Plug Gage			
Major Dia	1.9947	1.9942	0.0005
Pitch Dia:			
—Tolerance minus	1.9706	1.9702	0.0004
—Tolerance plus	1.9710	1.9706	0.0004
Minor Dia	$\operatorname{Cleared}$		
GO Plain Plug Gage for Minor	r Diameter		
Diameter	1.94016	1.94000	0.00016
NOT GO Plain Plug Gage for	Minor Diameter		
Diameter	1.95300	1.95284	0.00016

6. INDICATING THREAD GAGES

6.1. Many types of indicating thread gages have been designed to meet specific needs in gaging both external and internal threads. The following descriptions apply to gages for checking external threads. Comparable techniques and principles are utilized for checking internal threads but are not covered in detail herein.

6.2. There were many factors which encouraged the development of indicating thread gages such as:

(1) A need for a numerical value for size to facilitate adjustments of manufacturing tools or processes.

(2) Means for a faster method of gaging.

(3) Flexibility in application to accommodate the several tolerance classes both before and after coating.

(4) Ability to determine numerical values for deviations in the essential thread elements to serve more effectively the needs of statistical quality control techniques.

6.3. Practically all indicating thread gages utilize mechanisms which facilitate application of the gage to the product thread or application of the product thread to the gage. Gages are set to a thread setting plug or pair of thread setting plugs of known size. Deviations are read from a scale when utilizing mechanical, electronic, or pneumatic amplification, or from an enlarged image when utilizing optical projection.

6.4. It is generally impracticable to determine precisely the pitch diameter of product threads as defined because of variations in form and/or lead. However, the result obtained with many types of gages in gaging product threads is a close approximation of either pitch diameter or functional diameter. Certain types of gaging elements consisting of two or more rolls, segments, probes, or wires, with configurations as described and illustrated are in general use.

6.5. Some Representative Gaging Elements in Current Use.

(a) Gaging elements which, in length, approximate the width of the applicable GO thread ring gage blank and which, in contour, engage the product thread flank 0.625H (approximating the flank contact of the GO thread ring gage) check Functional Diameter (Defined in section 1).

(b) Gaging elements which, in length, approximate two pitches and in contour, engage the product thread flank 0.375H (approximating the flank contact of the LO thread ring gage) check LO Minimum-Material Limit (Defined in section 1). (Deviation in product thread flank angle and lead affects this determination. See Notes 2 and 3 in par. 5.5, p. 6.21).

(c) Gaging elements which engage not over one pitch in length and in contour engage the product thread flank 0.375H (approximating the flank contact of the LO thread ring gage) check Groove Diameter to yield LO Minimum-Material Size. (Deviation in product thread flank angle affects this determination. See Note 2 in par. 5.5, p. 6.21.)

(d) Gaging elements which engage not over one pitch in length and have a curved contact simulating best wire size or contacts having a slight flat, check. Thread Groove Diameter (Defined in section 1) closely approximating pitch diameter.³ (See 6.6 j, k, l, or m).

(e) Cone and vee⁴ gaging elements which engage not over one pitch in length and in contour engage the flank 0.375H (approximating the flank contact of the LO thread ring gage) check groove and ridge diameter to yield LO Minimum-Material Size. (Deviation in product thread flank angle affects this determination. See Note 2 in par. 5.5, p. 6.21.)

(f) Cone and vee gaging elements which engage not over one pitch in length and have curved contacts simulating best wire size or contacts having a slight flat, check groove and ridge diameter closely approximating pitch diameter. (See 6.6 j, k, l, or m).

(g) Single radial probe contacting not more than one pitch, with ball point contact (simulating best size wire) checks Groove Diameter closely approximating pitch diameter. (See 6.6 k, j, l, or m).

(h) Same as (g) except with angular cone contact of the LO ring thread gage. Checks Groove Diameter to yield LO Minimum-Material Size. (Deviation in product thread flank angle affects this determination. See Note 2 in par. 5.5, p. 6.21).

(i) Wire gaging contacts (simulating best size wire) check Groove Diameter closely approximating pitch diameter.

⁸ The values obtained by the use of gaging elements shown above (Types d, f, g, and i) may be used to determine deviations from the size of respective setting plugs and may, through calculation, yield pitch diameter of the product threads.

⁴ "Cone" signifies a single contact design which engages the product thread groove and complete reference must also state profile of contact. "Vee" signifies a double contact design which engages the product thread ridge and complete reference must also state profile of contact.

6.6. Typical cross sections of limited contact gaging elements are as follows:

(j) Gaging elements with curved contacts simulating best wire size, designed to contact approximately at the pitch line.

(k) Gaging elements with short straight flank contacts, designed to straddle contact approximately at the pitch line.

(1) Gaging elements with curved contacts designed to contact above the pitch line approximately midway on available flank (i.e., that flank which is engaged when using 6.7(0) gaging elements.)

(m) Gaging elements with short straight flank contacts, designed to straddle contact above the pitch line approximately midway on available flank.

6.7. Cross sections of full and LO flank angle gaging elements are as follows:

(o) Gaging elements with LO (0.375H) flank contacts, (approximating the flank contact of the LO thread ring gage) designed to contact for partial depth of thread engagement.

6.8. The several designs of gages and multiplicity of gaging elements embrace developments over many years. Each was conceived to meet a specific need, and to the degree which that need was valid, and the gage filled it, that design has been utilized.

threads
screw
Unified
series,
thread
standard
for
Gages.
Е 6.19.
ABLA

Nominal size and threads per inch						. 060-80	. 073-64	. 073-72	. 086-56	. 086-64	. 099-48	. 099-56	.112-40	.112-48	. 125-40
		Series destana-	tion		20	UNF	UNC	UNF	UNC	UNF	UNC	UNF	UNC	UNF	UNC
	Class				19	2B 3B	$^{2\mathrm{B}}_{3\mathrm{B}}$	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B
	lug gages diameter		00 GO		18	${in\atop 0.0514} 0.0514$.0513 .0513 .0513	0623 0622 0623 0623	0635 0634 0633 0335	. 0737 . 0736 . 0737 . 0736	$0753 \\ 0752 \\ 0752 \\ 0753 \\ 0752 \\ $. 0845 . 0844 . 0845 . 0845	0865 0864 0865 0865	. 0939 . 0938 . 0938 . 0938	7960 . 8960 . 8960 .	1062 1061 1062 1062 1061
	Z plain p or minor		GO		17	in 0.0465 0.0465 0.0465 0.0465 0.0465	$\begin{array}{c} 0561 \\ 0562 \\ 0561 \\ 0561 \end{array}$	$\begin{array}{c} 0580\\ 0581\\ 0581\\ 0580\\ 0581\end{array}$. 0667 . 0668 . 0668 . 0668	$\begin{array}{c} 0691\\ 0692\\ 0691\\ 0692\end{array}$	0764 0765 0764 0764	$^{0797}_{0798}$	$ \begin{array}{c} 0849 \\ 0850 \\ 0849 \\ 0850 \\ \end{array} $	$0894 \\ 0895 \\ 0894 \\ 0895 \\ 0895 $	$\begin{array}{c} 0.079\\ 0.0950\\ 0.0979\\ 0.0980\\ 0.0980\end{array}$
l threads			lameter	Plus toler- ance gage	16	${in\atop 0.0544} 0.0542$ ${0.0536\atop 0.0538}$	$ \begin{array}{c} 0655\\ 0657\\ 0648\\ 0650\\ 0650\end{array} $. 0665 . 0667 . 0659 . 0661	$0772 \\ 0774 \\ 0765 \\ 0767 \\ $	$0786 \\ 0789 \\ 0779 \\ 0781 \\ $	$\begin{array}{c} . 0885 \\ . 0887 \\ . 0877 \\ . 0879 \\ . 0879 \end{array}$	$0902 \\ 0904 \\ 0895 \\ 0897 \\ $	0991 0993 0982 0982 0984	. 1016 . 1018 . 1008 . 1010	. 1121 . 1123 . 1113 . 1115
or interna	gages	H	Pitch d	Minus toler- ance gage	15	$\begin{array}{c} in \\ 0.0542 \\ 0.0540 \\ 0.0536 \\ 0.0534 \end{array}$.0655 .0653 .0648 .0646	0665 0663 0659 0657	$0772 \\ 0770 \\ 0765 \\ 0763 \\ $. 0786 . 0784 . 0779 . 0777	$\begin{array}{c} . & 0885 \\ . & 0883 \\ . & 0883 \\ . & 0877 \\ . & 0875 \end{array}$	$0902 \\ 0895 \\ 0893 \\ $	$\begin{array}{c} . 0991 \\ . 0989 \\ . 0982 \\ . 0982 \\ . 0980 \end{array}$.1016 .1014 .1008 .1006	. 1121 . 1119 . 1113 . 11113
Gages fo	ead plug		Major diam- eter		14	$in in 0.0596 \\ 0.0593 \\ 0.0593 \\ 0.0587 \\ 0.0587$	$\begin{array}{c} . 0723 \\ . 0719 \\ . 0716 \\ . 0712 \end{array}$	0725 0722 0719 0716	$\begin{array}{c} .0849 \\ .0845 \\ .0845 \\ .0838 \\ .0838 \end{array}$	$0854 \\ 0850 \\ 0847 \\ 0843 \\ 0843$. 0975 . 0971 . 0967 . 0963	0979 0975 0975 0972 0968	.1099 .1095 .1095 .1096	.1106 .1102 .1098 .1094	.1229 .1225 .1221 .1217
	X thr	0		Piteh diam- eter	13	$in \\ 0.0519 \\ 0.0519 \\ 0.0519 \\ 0.0521 \\ 0.0521$.0629 .0631 .0629 .0631	0640 0642 0642 0642 0642	$0744 \\ 0746 \\ 0746 \\ 0744 \\ 0746 \\ 0746$	0.0759 0.0761 0.0761 0.0759 0.0761	$0855 \\ 0857 \\ 0857 \\ 0855 \\ 0857 \\ $. 0874 . 0876 . 0876 . 0876	. 0958 . 0960 . 0958 . 0960	. 0985 . 0987 . 0987 . 0987	$\begin{array}{c} . 1088 \\ . 1090 \\ . 1088 \\ . 1090 \\ . 1090 \end{array}$
		Ċ	GG Major diam- eter		12	${}^{in}_{0.0600}$ ${}^{0.0600}_{0.0600}$ ${}^{0.0600}_{0.0603}$	0730 0734 0734 0730 0730	.0730 .0733 .0733 .0733	.0860 .0864 .0864 .0864	$ \begin{array}{c} 0860 \\ 0864 \\ 0860 \\ 0864 \\ 0864 \\ \end{array} $. 0990 . 0994 . 0990 . 0990	. 0990 . 0994 . 0990 . 0990	.1120 .1124 .1124 .1124	. 1120 . 1124 . 1126 . 1124	.1250 .1254 .1254 .1254 .1254
	for major	r G0	Un-	finished hot- rolled material	11	in									
	ing gages diameter	ŌŃ		Semi- finished	10	in in 0.0563 0.0564 0.0568 0.0568 0.0569	0686 0687 0692 0692	. 0689 . 0690 . 0695	.0813 .0814 .0819 .0820	$\begin{array}{c} .0816 \\ .0817 \\ .0822 \\ .0823 \end{array}$.0938 .0939 .0945 .0946	$0942 \\ 0943 \\ 0949 \\ 0950 \\ 0950 \\ 0950 \\ 0950 \\ 0950 \\ 0950 \\ 0950 \\ 0950 \\ 0950 \\ 0950 \\ 000$	1061 1062 1062 1070	1068 1069 1075 1075	$\begin{array}{c} .1191 \\ .1192 \\ .1199 \\ .1199 \\ .1200 \end{array}$
rreads	Z plain r		60		6	$\begin{array}{c} in \\ 0.0595 \\ .0594 \\ .0600 \\ .0599 \end{array}$	$0724 \\ 0723 \\ 0730 \\ 0729 \\ 0729$	$0724 \\ 0723 \\ 0730 \\ 0729 \\ 0729$	$ \begin{array}{c} 0.854 \\ 0.853 \\ 0.860 \\ 0.859 \\ 0.859 \\ \end{array} $	$\begin{array}{c} 0.854 \\ 0.853 \\ 0.0859 \\ 0.0859 \\ 0.0859 \end{array}$	$\begin{array}{c} 0.983\\ 0.0982\\ 0.0990\\ 0.0989\end{array}$	0983 0982 0990 0989	. 1112 . 1111 . 11120 . 1119	$ \begin{array}{c} .1113\\ .1112\\ .1112\\ .1120\\ .1119\\ .1119\end{array} $.1242 .1241 .1250 .1249
tternal th				Minor diam- etcr	~	$\begin{array}{c} in \\ 0.0469 \\ .0472 \\ .0472 \\ .0482 \end{array}$	0569 0573 0573 0580 0584	. 0585 . 0588 . 0596 . 0599	$\begin{array}{c} 0678 \\ 0682 \\ 0689 \\ 0693 \end{array}$.0699 .0703 .0710	0780 0784 0793 0797	$ \begin{array}{c} 0.806 \\ 0.810 \\ 0.819 \\ 0.823 \\ 0.823 \\ \end{array} $	$0871 \\ 0.0875 \\ 0.0875 \\ 0.0885 \\ 0.0885 \\ 0.0889 \\ 0.0898 \\ 0.0898 \\ 0.0898 \\ 0.0898 \\ 0.0$	0909 0913 0922 0926	. 1000 . 1004 . 1015 . 1019
iges for ex	gages	го	iameter	Minus toler- ance gage	2	$in in 0.9496 \\ 0.9494 \\ 0.0506 \\ 0.0504$.0603 .0601 .0614 .0612	.0615 .0613 .0626 .0624	$\begin{array}{c} . \ 0717 \\ . \ 0715 \\ . \ 0728 \\ . \ 0726 \end{array}$	$\begin{array}{c} .0733 \\ .0731 \\ .0731 \\ .0744 \\ .0742 \end{array}$	$ \begin{array}{c} 0.825 \\ 0.823 \\ 0.838 \\ 0.836 \\ 0.836 \\ \end{array} $	0845 0843 0843 0858 0856	0925 0923 0939 0937	0954 0952 0967 0965	1054 1052 1069 1067
Q ₈	read ring		Pitch d	Plus toler- ance gage	9	$in \\ 0.0496 \\ 0.0498 \\ 0.0506 \\ 0.0508 \\ 0.050$	$\begin{array}{c} . 0603 \\ . 0605 \\ . 0614 \\ . 0616 \end{array}$	0615 0617 0626 0628	$\begin{array}{c} . 0717 \\ . 0719 \\ . 0719 \\ . 0728 \\ . 0730 \end{array}$	0.0733 0.0735 0.0744 0.0746	$ \begin{array}{c} 0825 \\ 0827 \\ 0838 \\ 0840 \\ 0840 \\ \end{array} $	$\begin{array}{c} 0845 \\ 0847 \\ 0847 \\ 0858 \\ 0860 \end{array}$	0925 0927 0939 0939 0941	0954 0956 0967 0969	1054 1056 1069 1071
	X th	0		Minor diam- eter	2	$in in 0.0460 \\ 0.0467 \\ 0.0465 \\ 0.0465 \\ 0.0462$	0555 0551 0551 0551 0551 0551 0557 0557	0574 0571 0580 0580	. 0661 . 0657 . 0667 . 0663	0685 0681 0691 0687	. 0758 . 0754 . 0765 . 0761	. 0620 9870 9870	$0842 \\ 0838 \\ 0850 \\ 0850 \\ 0846 \\ $	$\begin{array}{c} 0888\\ 0884\\ 0885\\ 0895\\ 0891 \end{array}$	$0972 \\ 0968 \\ 0980 \\ 0980 \\ 0976 \\ 0976 \\ 0976 \\ 0076 \\ 00076 \\ 0000 \\$
		0		Pitch diam- eter	4	in in 0.0514 0.0512 0.0512 0.0517 0	.0623 .0621 .0629 .0629	0634 0632 0640 0638	0.0738 0.736 0.736 0.744 0.742	. 0753 . 0751 . 0759 . 0757	0848 0846 0855 0853	$\begin{array}{c} 0.867\\ 0.865\\ 0.865\\ 0.874\\ 0.872\end{array}$	0950 0948 0958 0956	. 0978 . 0976 . 0985 . 0983	$ \begin{array}{c} 1080 \\ .1078 \\ .1088 \\ .1086 \\ .1086 \end{array} $
	Olass				e	2A 3A	2A 3A	2A 3A	$^{2A}_{3A}$	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A
Series designa- tion					2	UNF	UNC	UNF	UNC	UNF	UNC	UNF	UNC	UNF	UNC
	Nominal size and threads per inch				-	. 060-80	. 073-64	. 073-72	. 086-56	. 086-64	. 099-48	. 099-56	.112-40	. 112-48	.125-40

120-11

ALVAL .

2 8.3

11 0202

1 1001

1.11.1

.125-44	.138-32	.138-40	. 164-32	.164-36	. 190-24	. 190-32	.216-24	.216-28	.216-32	. 250-20	. 250-28	. 250-32	.3125-18
UNF	UNC	UNF	UNC	UNF	UNC	UNF	UNC	UNF	UNEF	UNC	UNF	UNEF	UNC
2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	1B 2B 3B	1B 2B 3B	2B 3B	11B 21B 31B
6201 · .	. 1140 . 1139 . 1130 . 1130	. 1190 . 1189 . 1186 . 1185	. 1390 . 1389 . 1389 . 1388	. 1420 . 1419 . 1416 . 1415	.1560 .1559 .1555 .1555	1640 1639 1641 1641	. 1810 . 1809 . 1807 . 1806	. 1860 . 1859 . 1857 . 1856	$ \begin{array}{c} 1900 \\ .1899 \\ .1895 \\ .1894 \\ .1894 \\ \end{array} $. 2070 . 2069 . 2069 . 2069 . 2066	2200 2199 2199 2199 2189	. 2240 . 2239 . 2229 . 2228	2650 2650 2649 2649 2649 2630
.1004 .1005 .1005	1040 1041 1041 1040 1041	0111 1111 01111 11111	$\begin{array}{c} 1300\\ .1301\\ .1301\\ .1300\\ .1301\end{array}$	1340 1341 1341 1341 1341	. 1450 . 1451 . 1451 . 1451	.1560 .1561 .1561 .1561	$\begin{array}{c} 1710\\ 1711\\ 1711\\ 1711\\ 1711\\ 1711\end{array}$	$\begin{array}{c} 1770\\ 1771\\ 1771\\ 1770\\ 1771\\ 1771\end{array}$	$ \begin{array}{c} 1820 \\ .1821 \\ .1820 \\ .1821 \\ .1821 \\ \end{array} $	1961 1961 1961 1961 1961 1961	$\begin{array}{c} 2110\\ 22110\\ 22110\\ 22110\\ 22110\\ 22110\\ 22110\\ 22110\\ \end{array}$	2160 2161 2161 2160 2161	. 2520 . 2521 . 2521 . 2521 . 2521
.1134 .1136 .1126 .1128	. 1214 . 1217 . 1204 . 1207	. 1252 . 1254 . 1243 . 1245	.1475 .1478 .1465 .1468	$ \begin{array}{c} 1496 \\ 1487 \\ 1487 \\ 1489 \\ 1489 \\ \end{array} $	$\begin{array}{c} 1672\\ 1675\\ 1661\\ 1661\\ 1664\end{array}$. 1736 . 1739 . 1726 . 1729	$ \begin{array}{c} 1933 \\ 11936 \\ 11922 \\ 11925 \\ 11925 \\ \end{array} $	1970 1973 1959 1962	$ \begin{array}{c} 1998 \\ 2001 \\ 11988 \\ 11991 \\ \end{array} $. 2248 . 2251 . 2224 . 2224 . 2214	2333 2336 2311 2314 2300 2303	2339. 2342 . 2328 . 2328 . 2331 .	$\begin{array}{c} 2843 \\ 2846 \\ 2817 \\ 2820 \\ 2803 \\ 2803 \\ 2803 \\ \end{array}$
. 1134 . 1132 . 1126 . 1126	1214 1211 1204 1204	1252 1250 1241	$ \begin{array}{c} 1475 \\ 1472 \\ 11465 \\ .1462 \\ \end{array} $.1496 .1494 .1487 .1485	$ \begin{array}{c} 1672 \\ 1669 \\ 1661 \\ 1658 \\ 1658 \\ \end{array} $.1736 .1733 .1726 .1728	.1933 .1930 .1922 .1919	. 1970 . 1967 . 1959 . 1956	.1998 .1995 .1988 .1985	$\begin{array}{c} 2248\\ 22245\\ 2224\\ 2221\\ 2221\\ 2208\\ \end{array}$	$\begin{array}{c} 2333\\ 2330\\ 2311\\ 2311\\ 2300\\ 2300\\ 2297\\ \end{array}$	2339 2336 2328 2328 2325	2843 2840 2817 2814 2814 2803 2803
. 1232 . 1228 . 1224 . 1224	1349 1344 1334 1339	.1360 .1356 .1351 .1347	.1610 .1605 .1600 .1595	.1616 .1612 .1607 .1603	.1852 .1847 .1841 .1841 .1836	$ \begin{array}{c} .1871\\ .1866\\ .1866\\ .1856\\ .1856 \end{array} $	2113 2108 2102 2097	2125 2120 2114 2109	2133 2128 2128 2128 2118	$\begin{array}{c} 2465\\ 2460\\ 2441\\ 2441\\ 2428\\ 2428\\ 2428\\ 2423\\ \end{array}$	$\begin{array}{c} 2488\\ 2483\\ 2466\\ 2461\\ 2461\\ 2455\\ 2450\\ 2450\end{array}$	2474 2469 2463 2458	3084 3079 3058 3058 3058 3058 3058 3044
. 1102 . 1104 . 1102 . 1102	1177 1180 1177 1177	1218 1220 1218 1220	1437 1440 1440 1437 1440	.1460 .1462 .1460 .1462	1629 1632 1632 1629 1632	1697 1700 1697 1700	. 1889 . 1892 . 1889 . 1892	1928 1931 1928 1928 1931	.1957 .1960 .1957 .1960	2175 2175 2175 2176 2178 2178 2178	2268 2271 2268 2268 2271 2271	. 2297 . 2300 . 2297 . 2300	2764 2764 2764 2764 2767 2767 2767
.1250 .1254 .1250 .1254	.1380 .1385 .1385 .1380	$ \begin{array}{c} 1380 \\ 1384 \\ 1384 \\ 1386 \\ 1384 \\ 1384 \\ \end{array} $.1640 .1645 .1645 .1640 .1645	.1640 .1644 .1644 .1640 .1644	.1900 .1905 .1905 .1905	. 1900 . 1905 . 1905 . 1905	2160 2165 2165 2160 2165	2160 2165 2165 2160 2165	2160 2165 2165 2165 2165	2500 2505 2505 2505 2505 2505	2500 2505 2505 2505 2505 2505	. 2500 . 2505 . 2500 . 2505	. 3125 . 3130 . 3125 . 3125 . 3125 . 3126 . 3125
										0.2367			. 2982
. 1195 . 1196 . 1202 . 1203	. 1312 . 1313 . 1320 . 1320	.1321 .1322 .1329 .1330	.1571 .1572 .1580 .1581	.1577 .1578 .1585 .1586	.1818 .1819 .1828 .1828 .1829	.1831 .1832 .1840 .1841	2078 2079 2088 2089	2085 2086 2095 2096	2091 2092 2100 2101	2367 2368 2408 2409 2419 2419 2420	2392 2393 2425 2426 2426 2436 2436 2436	2430 2431 2440 2441	2982 2983 3026 3027 3038 3039
1243 1242 1250 1250 1249	$\begin{array}{c} .1372 \\ .1371 \\ .1380 \\ .1379 \end{array}$	$\begin{array}{c} 1372\\ 1371\\ 1380\\ 1380\\ 1379\end{array}$.1631 .1630 .1640 .1639	1632 1631 1640 1640 1639	$ \begin{array}{c} 1890 \\ 1889 \\ 1900 \\ 1899 \\ \end{array} $	$ \begin{array}{c} 1891 \\ 1890 \\ 1900 \\ 1899 \\ 1899 \\ \end{array} $	2150 2149 2160 2159	2150 2149 2160 2159	2151 2150 2160 2160 2159	2489 2489 2489 2488 2488 2499	2490 2489 2489 2489 2489 2490 2499	2490. 2490. 2500. 2500. 2499	.3113 .3112 .3112 .3112 .3125 .3125
1021 1025 1034 1038	$ \begin{array}{c} 1073 \\ 1078 \\ 1078 \\ 1093 \\ 1093 \\ \end{array} $	1130 1134 1144 1148	.1331 .1336 .1347 .1347	.1364 .1368 .1379 .1383	1496 1501 1514 1519	.1590 .1595 .1606 .1611	$ \begin{array}{c} 1755 \\ 1776 \\ 1773 \\ 1778 \\ 1778 \\ \end{array} $.1809 .1814 .1827 .1827 .1832	$ \begin{array}{c} 1849 \\ 1854 \\ 1865 \\ 1870 \\ 1870 \\ \end{array} $	2000 2019 2024 2024 2039 2039	2131 2136 2136 2148 2153 2153 2153	2187 2192 2205 2210	. 2571 . 2576 . 2592 . 2597 . 2614
1070 1068 1081 1081	. 1141 . 1138 . 1156 . 1156	$ \begin{array}{c} 1184\\ 1182\\ 1198\\ 1198\\ 1196\\ 1196 \end{array} $.1399 .1396 .1415 .1412	. 1424 . 1422 . 1439 . 1437	.1586 .1583 .1604 .1601	.1658 .1655 .1674 .1674 .1671	$ \begin{array}{c} 1845 \\ 1842 \\ 1863 \\ 1860 \\ 1860 \\ 1860 \\ \end{array} $. 1886 . 1883 . 1904 . 1901	.1917 .1914 .1933 .1930	. 2108 . 2105 . 2127 . 2124 . 2147 . 2147	$\begin{array}{c} 2208\\ 2205\\ 2225\\ 2222\\ 22243\\ 22243\\ 2243\\ 2243\\ 2243\\ \end{array}$	2255 2252 2273 2273 2270	2691 2688 2712 2734 2734 2731
.1070 .1072 .1083 .1085	$ \begin{array}{c} 1141 \\ 1144 \\ 1156 \\ .1159 \\ .1159 \\ \end{array} $	$ \begin{array}{c} 1184\\ 1186\\ 1198\\ 1198\\ 1200\\ \end{array} $.1399 .1402 .1415 .1418	.1424 .1426 .1430 .1439	.1586 .1589 .1604 .1607	1658 1661 1674 1674	$ \begin{array}{c} 1845 \\ 1848 \\ 1866 \\ 1866 \\ 1866 \\ \end{array} $	$ \begin{array}{c} 1886 \\ 1889 \\ 1904 \\ 1907 \\ 1907 \\ \end{array} $	1917 1920 1933 1936	2108 2111 2127 2127 2130 2130 2150	2208 2211 2225 2228 2243 2243 2246	2255 2258 2273 2273 2276	2691 2694 2712 2715 2734 2737
$\begin{array}{c} . \ 0997 \\ . \ 0993 \\ . \ 1004 \\ . \ 1090 \end{array}$.1034 .1029 .1042 .1037	$\begin{array}{c} 1102\\ .1098\\ .1110\\ .1110\\ .1106\end{array}$.1293 .1288 .1302 .1297	.1332 .1328 .1340 .1336	.1439 .1434 .1449 .1449	.1553 .1548 .1562 .1557	1699. 1694 . 1709 . 1709 . 1704	1763 1758 1773 1773 1773	. 1813 . 1808 . 1822 . 1822	$\begin{array}{c} 1947\\ 1942\\ 1947\\ 1947\\ 1958\\ 1958\\ 1953\end{array}$	2103 2098 2098 2098 2098 2113 2113	2152 2147 2162 2162 2157	2511 2506 2511 2511 2506 2523 2523
.1095 .1093 .1102 .1100	. 1169 . 1166 . 1177 . 1177	$\begin{array}{c} 1210\\ 1208\\ 1218\\ 1218\\ 1216\\ 1216\end{array}$.1428 .1425 .1437 .1434	.1452 .1450 .1460 .1460 .1458	.1619 .1616 .1629 .1629	$ \begin{array}{c} .1688 \\ .1685 \\ .1697 \\ .1694 \\ .1694 \end{array} $	$ \begin{array}{c} 1879 \\ .1876 \\ .1886 \\ .1886 \\ .1886 \\ \end{array} $	$ \begin{array}{c} 1918 \\ 1915 \\ 11928 \\ 11925 \\ 11925 \end{array} $.1948 .1945 .1957 .1954	2164 2161 2161 2164 2161 2175 2172	. 2258 2255 2258 2258 2268 2268	. 2287 . 2284 . 2297 . 2294	2752 2752 2752 2764 2764 2764
2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	$^{2\Lambda}$	$^{2A}_{3A}$	1A 2A 3A	1A 2A 3A	2A 3A	1 A 2 A 3 A
UNF	UNC	UNF	UNC	UNF	UNC	UNF	UNC	UNF	UNEF	UNC	UNF	UNEF	UNC
.125-44	. 138-32	.138-40	. 164~32	. 164-36	. 190-24	. 190-32	. 216-24	. 216–28	. 216-32	. 250-20	. 250-28	. 250-32	.3125-18

TABLE 6.19. Gages for standard thread series, Unified screw threads-Continued

		Nominal size and	threads per inch		21	. 3125-20	. 3125-24	. 3125-28	. 3125–32	. 375-16	. 375-20	. 375-24	. 375–28	. 375-32
		Series desima.	tion		20	NN	UNF	ND	UNEF	UNC	ND	UNF	UN	UNEF
	Class					2B 3B	1B 2B 3B	2B 3B	2B 3B	1B 2B 3B	2B 3B	1B 2B 3B	2B 3B	2B 3B
	lug gages diameter		NOT GO		18	$in in 0.2700 \\ .2699 \\ .2680 \\ .2679$	2770 2769 2770 2769 2754 2753	2820 2819 2807 2806	2860 2859 2847 2846	. 3210 . 3209 . 3209 . 3209 . 3182 . 3181	. 3320 . 3319 . 3297 . 3296	. 3400 . 3399 . 3399 . 3372 . 3372 . 3371	3450 3449 3426 3425	.3490 .3489 .3469 .3468
	Z plain p for minor		60		17	$in in 0.2580 \\ .2581 \\ .2581 \\ .2581 \\ .2581 \\ .2581$	2670 2671 2671 2670 2670 2670 2670	2740 2741 2740 2740 2741	2790 2791 2790 2791	3070 3071 3071 3070 3070 3070 3070	$\begin{array}{c} 3210\\ 3211\\ 3210\\ 3210\\ 3211\end{array}$	$\begin{array}{c} 3300\\ .3301\\ .3300\\ .3301\\ .3301\\ .3301\\ .3301\\ .3301\end{array}$	3360 3361 3360 3361	$\begin{array}{c} 3410\\ .3411\\ .3411\\ .3410\\ .3411\end{array}$
al threads			iameter	Plus toler- ance gage	16	$in \\ 0.2852 \\ .2855 \\ .2839 \\ .2842$	2925 2928 2902 2905 2890 2893 2893	2937 2940 2926 2929	. 2964 . 2967 . 2953 . 2956	$\begin{array}{c} 3429\\ 3432\\ 3401\\ 3404\\ 3387\\ 3387\\ 3390\end{array}$.3479 .3482 .3465 .3465 .3468	$\begin{array}{c} 3553\\ .3556\\ .3556\\ .3528\\ .3531\\ .3516\\ .3519\end{array}$. 3564 . 3567 . 3553 . 3553	.3591 .3594 .3580 .3583
or intern	gages	IH	Pitch d	Minus toler- ance gage	15	in 0. 2852 . 2849 . 2839 . 2836	. 2925 . 2922 . 2902 . 2899 . 2887	. 2937 . 2934 . 2926 . 2923	. 2964 . 2961 . 2953 . 2950	$\begin{array}{c} 3429\\ .3426\\ .3401\\ .3338\\ .3387\\ .3384\end{array}$. 3479 . 3476 . 3465 . 3462	. 3553 . 3550 . 3550 . 3528 . 3528 . 3516 . 3513	.3564 .3561 .3553 .3550	.3591 .3588 .3580 .3580
Gages f	read plug			Major diam- eter	14	$\begin{array}{c} in \\ 0.\ 3069 \\ .\ 3056 \\ .\ 3056 \\ .\ 3056 \end{array}$. 3105 . 3100 . 3082 . 3077 . 3077 . 3076 . 3065	.3092 .3087 .3081 .3081	. 3099 . 3094 . 3088 . 3083	. 3700 . 3694 . 3672 . 3656 . 3658 . 3658 . 3658	. 3696 . 3691 . 3682 . 3677	. 3733 . 3728 . 3728 . 3708 . 3708 . 3696 . 3691	. 3719 . 3714 . 3708 . 3703	. 3726 . 3721 . 3715 . 3715 . 3710
	X th	0		Pitch diam- eter	13	$\begin{array}{c} in \\ 0.\ 2800 \\ .\ 2803 \\ .\ 2803 \\ .\ 2803 \\ .\ 2803 \end{array}$. 2854 . 2857 . 2854 . 2857 . 2857	2893 2896 2893 2893	2922. 2925 . 2925 . 2925 . 2925	. 3344 . 3347 . 3344 . 3344 . 3347 . 3347 . 3347	3425 3428 3428 3428 3428	. 3479 . 3482 . 3482 . 3479 . 3479 . 3482 . 3482	. 3518 . 3521 . 3521 . 3521 . 3521	. 3547 . 3550 . 3550 . 3550
		G Major diam- eter		12	$\begin{array}{c} in \\ 0.3125 \\ .3130 \\ .3130 \\ .3130 \\ .3130 \end{array}$. 3125 . 3125 . 3130 . 3125 . 3125 . 3125 . 3125 . 3125	.3125 .3130 .3130 .3125 .3125	. 3125 . 3130 . 3130 . 3125 . 3130	. 3750 . 3756 . 3756 . 3756 . 3756 . 3756	. 3750 . 3755 . 3755 . 3755 . 3755	. 3750 . 3755 . 3755 . 3755 . 3755 . 3755 . 3755	. 3750 . 3755 . 3755 . 3755 . 3755	. 3750 . 3755 . 3755 . 3755	
	for major	1 GO	Un-	finished hot- rolled material	11	in				0.3595				
	ring gages diameter	LON		Semi- finished	10	in 0.3032 .3033 .3044 .3045	. 3006 . 3007 . 3043 . 3053 . 3054	. 3050 . 3051 . 3061 . 3061	. 3055 . 3056 . 3065 . 3066	. 3595 . 3596 . 3643 . 3644 . 3656 . 3656	3657 3658 3658 3669 3670	. 3631 . 3632 . 3667 . 3668 . 3668 . 3678	. 3674 . 3675 . 3685 . 3685	. 3680 . 3681 . 3690 . 3691
ıreads	Z plain		GO		6	in in 0.3113 .3112 .3125 .3125 .3124	$\begin{array}{c} .3114 \\ .3113 \\ .3114 \\ .3114 \\ .3113 \\ .3113 \\ .3125 \\ .3126 \end{array}$.3115 .3114 .3125 .3125 .3124	.3115 .3114 .3125 .3125 .3124	. 3737 . 3736 . 3736 . 3736 . 3736 . 3749 . 3749	. 3738 . 3737 . 3750 . 3749	$\begin{array}{c} .3739\\ .3739\\ .3739\\ .3739\\ .3750\\ .3750\\ .3749\\ .3749\end{array}$. 3739 . 3738 . 3750 . 3749	$\begin{array}{c} .3740 \\ .3739 \\ .3750 \\ .3749 \\ .3749 \end{array}$
xternal tl				Minor diam- eter	8	${in\atop 0.2640} {0.2640} {0.2645} {0.2662} {0.2667} {0.267$	2698 2703 2716 2721 2737 2742	2772 2777 2777 2790 2795	2812 2817 2830 2835	$\begin{array}{c} 3131\\ 3137\\ 3152\\ 3152\\ 3158\\ 3158\\ 3176\\ 3182\end{array}$	3264 3269 3286 3291	$\begin{array}{c} 3321\\ 3326\\ 3346\\ 3345\\ 3360\\ 3365\\ \end{array}$.3394 .3399 .3414 .3419	3435 3440 3454 3454
tges for e	gages	го	lameter	Minus toler- ance gage	7	$in in 0.2748 \\ .2745 \\ .2770 \\ .2767 \\ .2767$. 2788 . 2785 . 2785 . 2806 . 2803 . 2823	2849 2846 2867 2867 2864	2880 2877 2898 2895	$\begin{array}{c} 3266\\ 3283\\ 3287\\ 3284\\ 3284\\ 3311\\ 3308\end{array}$	3372. 3369 . 3394 . 3391 .	$\begin{array}{c} 3411 \\ 3408 \\ 3430 \\ 3430 \\ 3450 \\ 3450 \\ 3447 \end{array}$.3471 .3468 .3491 .3481	$\begin{array}{c} .3503 \\ .3500 \\ .3522 \\ .3519 \end{array}$
Ga	read ring		Pitch d	Plus toler- ance gage	9	${in\atop 2751} 0.2748$.2751 .2770 .2773	2788 2791 2791 2806 2809 2827 2827 2827	2849 2852 2867 2867 2870	2880 2883 2898 2898 2901	$\begin{array}{c} .3266 \\ .3269 \\ .3287 \\ .3290 \\ .3311 \\ .3314 \end{array}$.3372 .3375 .3394 .3397	$\begin{array}{c} 3411 \\ 3414 \\ 3430 \\ 3433 \\ 3450 \\ 3453 \\ 3453 \end{array}$	3471 3474 3491 3494	. 3503 . 3506 . 3525 . 3525
	X th	0		Minor diam- eter	5	${in\atop 2566} 0.2571 \ .2566 \ .2578 \ .2578$	2663 2658 2658 2663 2658 2674	. 2728 . 2723 . 2738 . 2733	2777 2772 2772 2787 2782	. 3054 . 3054 . 3054 . 3060 . 3054 . 3073 . 3067	$\begin{array}{c} . 3196 \\ . 3191 \\ . 3208 \\ . 3203 \\ . 3203 \end{array}$	328 3283 3283 3283 3283 3299 3299	.3352 .3347 .3363 .3358	3402 3397 3412 3407
		Ð		Pitch diam- eter	4	${in\atop 2785} 0.2788$.2785 .2785 .2797	$\begin{array}{c} 2843\\ 2840\\ 2843\\ 2843\\ 2840\\ 2854\\ 2854\\ 2851\\ \end{array}$	2883 2880 2893 2890	2912 2909 2922 2923	$\begin{array}{c} .3331\\ .3328\\ .3331\\ .3331\\ .3328\\ .3344\\ .3344\\ .3341\end{array}$.3413 .3410 .3425 .3425 .3422	3468 3465 3465 3465 3465 3479 3476	. 3507 . 3504 . 3518 . 3515	. 3537 . 3534 . 3547 . 3544
		Class			3	2A 3A	14 24 34	2A 3A	2A 3A	1A 2A 3A	2A 3A	1A 2A 3A	2A 3A	2A 3A
		Series designa-	tion		2	NU	UNF	NN	UNEF	UNC	NN	UNF	NN	UNEF
	Nominal size and threads per inch				1	. 3125-20	. 3125-24	. 3125-28	. 3125-32	. 375-16	. 375–20	. 375-24	. 375–28	. 375-32

ş

-

	. 4375-14		. 4375-16	. 4375-20	. 4375–28	. 4375-32	. 500-13	. 500-16	. 500-20	. 500–28	. 500-32	. 5625-12	. 5625-16	. 5625-18
	UNC		NN	UNF	UNEF	NN	UNC	UN	UNF	UNEF	NN	UNC	UN	UNF
IB	2B	3B	2B 3B	11B 21B 31B	2B 3B	2B 3B	11B 21B 31B	2B 3B	11B 21B 31B	2B 3B	2B 3B	1B 2B 3B	2B 3B	11B 21B 31B
. 3760	. 3760	. 3716 . 3716 . 3716		$\begin{array}{c} 3950 \\ 3949 \\ 3950 \\ 3950 \\ 3949 \\ 3916 \\ 3915 \\ 3915 \end{array}$. 4070 . 4069 . 4051 . 4050	$ \begin{array}{c} .4110\\ .4109\\ .4094\\ .4093 \end{array} $	$\begin{array}{c} 4340 \\ 4339 \\ 4340 \\ 4339 \\ 4339 \\ 4284 \\ 4283 \end{array}$. 4460 . 4459 . 4419 . 4418 . 4418 .	$\begin{array}{c} 4570\\ 4569\\ 4570\\ 4570\\ 4570\\ 4537\\ 4537\\ 4536\end{array}$. 4700 . 4699 . 4676 . 4675 .	. 4740 . 4739 . 4719 . 4718	$\begin{array}{c} 4900\\ . 4899\\ . 4899\\ . 4899\\ . 4843\\ . 4842\\ . 4842\end{array}$.5090 .5089 .5040 .5039	. 5150 . 5149 . 5149 . 5150 . 5106
.3600	3600	.3600	. 3700 . 3701 . 3700 . 3701	.3830 .3831 .3830 .3831 .3831 .3831 .3830 .3831	23990 23991 23990 23991	.4040 .4041 .4040 .4041	$ \begin{array}{r} 4170 \\ \cdot 4171 \\ \end{array} $. 4320 . 4321 . 4321 . 4321 . 4321 .	$\begin{array}{c} 4460\\ .4461\\ .4460\\ .4460\\ .4161\\ .4460\\ .4461\end{array}$	$ \begin{array}{r} 4610 \\ 4611 \\ 4610 \\ 4611 \\ 4611 \\ \end{array} $	$ \begin{array}{r} 4660 \\ 4661 \\ 4660 \\ 4661 \\ 4661 \\ 4661 \\ \end{array} $	$ \begin{array}{r} 4720 \\ -4721 \\ -4720 \\ -4720 \\ -4720 \\ -4720 \\ -4720 \\ \end{array} $	$^{+4950}_{-4951}$	5020 5020 5020 5020 5020 5020
.4003	. 3972	. 3957	$ \begin{array}{r} 4028\\ -4031\\ -4014\\ -4017\\ \end{array} $	$\begin{array}{c} 4131\\ 4134\\ 4104\\ 4107\\ 4091\\ 4091\\ \end{array}$	$ \begin{array}{c} 4189 \\ 4192 \\ 4178 \\ 4181 \\ 4181 \\ \end{array} $. 4216 . 4219 . 4205 . 4208 . 4208 .	$\begin{array}{r} 4597 \\ 4560 \\ 4565 \\ 4568 \\ 4548 \\ 4551 \end{array}$	$\begin{array}{c} 4655\\ 4658\\ 4658\\ 4640\\ 4643\\ \end{array}$	$\begin{array}{r} 4759\\ 4762\\ 4731\\ 4731\\ 4717\\ 4717\\ 4720\\ \end{array}$	$ \begin{array}{r} 4816 \\ 4819 \\ 4804 \\ 4807 \\ 4807 \\ \end{array} $. 4842 . 4845 . 4831 . 4831 . 4834	5186 5152 5155 5155 5135 5135	2280 5283 5265 5268 5268	5353 5356 5326 5326 5326 5328 5311
.4003	. 3972	. 3957	$ \begin{array}{c} 4028 \\ -4025 \\ -4014 \\ -4011 \\ \end{array} $	$\begin{array}{c} 4131\\ -4128\\ -4104\\ -4101\\ -4091\\ -4088\end{array}$	$ \begin{array}{r} 4189\\ 4186\\ 4178\\ 4175\\ 4175\\ \end{array} $	$\begin{array}{c} 4216\\ 4213\\ 14205\\ 14205\\ \end{array}$	$\begin{array}{r} 4597 \\ 4594 \\ 4565 \\ 4565 \\ 4562 \\ 4548 \\ 4545 \end{array}$	$\begin{array}{c} 4655\\ 4652\\ 4640\\ 4637\end{array}$	$\begin{array}{r} 4759\\ 4756\\ 4756\\ 4731\\ 4717\\ 4717\\ 4714\end{array}$	$ \begin{array}{r} 4816 \\ 4813 \\ 4804 \\ 4801 \\ 4801 \\ \end{array} $	$ \begin{array}{r} 4842 \\ 4839 \\ 4831 \\ 4828 \\ 4828 \\ \end{array} $. 5186 . 5183 . 5183 . 5132 . 5135 . 5135 . 5135	5280 5277 5265 5262	5353 5350 5323 5320 5328 5308 5308
. 4312	. 4281	.4270 .4266 .4260	$ \begin{array}{c} 4299 \\ -4293 \\ -4285 \\ -4279 \\ \end{array} $	$\begin{array}{c} 4348\\ 4343\\ -4321\\ -4326\\ -4308\\ -4308\\ -4303\end{array}$	$\begin{array}{c} 4344\\ 4339\\ 4339\\ 4333\\ 4328\\ 4328\end{array}$	$\begin{array}{c} 4351\\ \cdot 4346\\ \cdot 4340\\ \cdot 4335\\ \cdot 4335\end{array}$	$\begin{array}{c} 4930\\ 4924\\ -4898\\ -4892\\ -4892\\ -4881\\ -4875\end{array}$	$ \begin{array}{c} 4926\\ 4920\\ 4911\\ 4905 \end{array} $	$\begin{array}{c} 4976\\ 4971\\ 4948\\ 4943\\ 4943\\ 4934\\ 4929\end{array}$. 4971 . 4966 . 4959 . 4954	$\begin{array}{c} 4977\\ 4972\\ 4966\\ 4966\\ 4961\end{array}$. 5547 . 5541 . 5541 . 5513 . 5507 . 5496	.5551 .5545 .5536 .5536 .5530	. 5594 . 5589 . 5564 . 5559 . 5549 . 5549
. 3911	.3911	. 3914 . 3911 . 3914	3969 3972 3969 3972	$\begin{array}{c} 4050\\ -4050\\ -4050\\ -4050\\ -4053\\ -4053\\ -4053\end{array}$.4143 .4146 .4146 .4146	.4172 .4175 .4172 .4172 .4175	$\begin{array}{c} .4500\\ .4503\\ .4503\\ .4503\\ .4503\\ .4503\\ .4503\\ \end{array}$. 4594 . 4597 . 4594 . 4597	4675 4675 4678 4678 4678 4675	$\begin{array}{c} 4768 \\ 4771 \\ 4771 \\ 4768 \\ 4771 \end{array}$. 4797 . 4797 . 4797 . 4797 . 4800 . 4800 .	$\begin{array}{c} 5084\\ 5087\\ 5087\\ 5084\\ 5087\\ 5087\\ 5087\\ 5087\\ 5087\end{array}$	$\begin{array}{c} 5219\\ 5222\\ 5222\\ 5219\\ 5222\\ 5222\end{array}$. 5264 . 5264 . 5264 . 5267 . 5267
.4375	. 4375	.4351 .4375 .4381	. 4375 . 4381 . 4381 . 4381 . 4381	$ \begin{array}{r} 4375 \\ \cdot 4380 \\ \cdot 4375 \\ \cdot 4375 \\ \cdot 4375 \\ \cdot 4380 \\ \cdot 4380 \\ \end{array} $.4375 .4380 .4380 .4375 .4380	$ \begin{array}{r} 4375 \\ 4380 \\ 4375 \\ 4375 \\ 4380 \\ 4380 \\ \end{array} $	5006 5006 5006 5006 5006 5006 5006	25006 25006 25006 25006	$\begin{array}{c} 5000\\ 5005\\ 5005\\ 5005\\ 5005\\ 5005\\ 5005\end{array}$	25005 5005 5005 5005	. 5000 . 5005 . 5005 . 5005	5625 5631 5625 5631 5631 5631 5631	.5625 .5631 .5625 .5631	. 5625 . 5630 . 5630 . 5630 . 5630 . 5630 . 5630
	. 4206	.4207					. 4822					. 5437		
. 4206	. 4258	. 4272 . 4272 . 4273	.4267 .4268 .4281 .4281	$\begin{array}{c} 4240\\ 4241\\ 4281\\ 4281\\ 4282\\ 4292\\ 4294\\ 4295\end{array}$.4299 .4300 .4310 .4311	.4305 .4306 .4315 .4316 .4316	$\begin{array}{c} 4822 \\ 4823 \\ 4876 \\ 4877 \\ 4891 \\ 4892 \end{array}$.4892 .4893 .4906 .4907	$\begin{array}{r} 4865 \\ 4866 \\ 4906 \\ 4907 \\ 4919 \\ 4919 \\ 4920 \end{array}$.4924 .4925 .4935 .4936	$\begin{array}{c} . 4930 \\ . 4931 \\ . 4931 \\ . 4940 \\ . 4941 \end{array}$	$\begin{array}{c} 5437\\ 5437\\ 5495\\ 5495\\ 5496\\ 5511\\ 5511\end{array}$.5517 .5518 .5531 .5532	.5480 .5481 .5524 .5525 .5538 .5539
.4361	.4361	.4300 .4375 .4374	. 4361 . 4360 . 4360 . 4375 . 4374 .	$\begin{array}{c} 4362\\ -4361\\ -4361\\ -4361\\ -4375\\ -4376\end{array}$	$ \begin{array}{r} 4364 \\ 4363 \\ 4375 \\ 4374 \\ 4374 \\ \end{array} $. 4365 . 4364 . 4375 . 4374 .	$\begin{array}{c} 4985\\ 4985\\ 4984\\ 4985\\ 5000\\ 4999\end{array}$	$ \begin{array}{c} 4986 \\ 4985 \\ 5000 \\ 4999 \\ \end{array} $	$\begin{array}{r} 4987\\ 4987\\ 4986\\ 4986\\ 5000\\ 000000000000000000000000000000000$. 4989 . 4988 . 5000 . 4999 .	.4990 .4989 .5000 .4999	5609 5609 5609 5608 5624	.5611 .5610 .5625 .5624	5611 5610 5611 5610 5625 5624
.3671	.3695	.3721	3774 3780 3800 3806	$\begin{array}{c} 3866 \\ 3871 \\ 3887 \\ 3887 \\ 3892 \\ 3911 \\ 3916 \\ \end{array}$	$\begin{array}{c} . \ 4019 \\ . \ 4024 \\ . \ 4039 \\ . \ 4044 \end{array}$	$\begin{array}{c} .\ 4060\\ .\ 4065\\ .\ 4079\\ .\ 4084\end{array}$	$\begin{array}{r} 4245\\ 4251\\ -4251\\ -4269\\ -4275\\ -4297\\ -4303\end{array}$	$\begin{array}{c} 4398\\ 4404\\ 4424\\ 4430\end{array}$	$\begin{array}{c} 4490\\ 4495\\ 4511\\ 4516\\ 4535\\ 4535\\ 4530\\ \end{array}$.4643 .4648 .4663 .4668	$ \begin{array}{r} 4684 \\ 4689 \\ 4703 \\ 4708 \\ 4708 \\ \end{array} $	$\begin{array}{c} 4810\\ -\ 4816\\ -\ 4836\\ -\ 4842\\ -\ 4865\\ -\ 4871\\ -\ 4871\end{array}$	25023 5029 5049 5055	$\begin{array}{c} 5062\\ 5067\\ 5085\\ 5086\\ 5090\\ 5110\\ 5115\end{array}$
. 3826	.3850	. 3847 . 3876 . 3873	. 3909 3906 . 3935 . 3932	$\begin{array}{c} 3974 \\ 3971 \\ 3995 \\ 3995 \\ 3992 \\ 3992 \\ 4019 \\ 4016 \end{array}$	$ \begin{array}{c} 4096 \\ 4093 \\ 4116 \\ 4113 \\ \end{array} $	4128 4125 4147 4144	$\begin{array}{c} 4411\\ 4428\\ 4435\\ 4432\\ 4463\\ 4463\\ 4463\\ 4463\\ 4460\end{array}$	$\begin{array}{c} 4533\\ 4530\\ \cdot 4559\\ \cdot 4556\\ \cdot 4556\\ \end{array}$	$\begin{array}{r} 4598 \\ 4595 \\ 4619 \\ 4616 \\ 4643 \\ 4643 \\ 4640 \\ \end{array}$.4720 .4717 .4740 .4737	$ \begin{array}{r} 4752 \\ 4749 \\ 4771 \\ 4768 \\ \end{array} $	$\begin{array}{c} 4990\\ 4987\\ 5016\\ 5013\\ 5045\\ 5042\\ \end{array}$. 5158 . 5155 . 5184 . 5181	5182 5179 5205 5205 5230 5230
. 3826	. 3850	. 3876 . 3876 . 3879	3909 3912 3935 3938	$\begin{array}{c} 3974 \\ 3977 \\ 3995 \\ 3995 \\ 3998 \\ 3998 \\ 4019 \\ 4019 \\ 4022 \end{array}$	$ \begin{array}{c} .4096\\ .4099\\ .4116\\ .4119\\ .\end{array} $.4128 .4131 .4147 .4150	$\begin{array}{c} 4411\\ 4414\\ 4414\\ 4435\\ 4438\\ 4463\\ 4463\\ 4466\\ 4466\end{array}$.4533 .4536 .4559 .4562	$\begin{array}{r} 4598\\ -4601\\ -4619\\ -4619\\ -4622\\ -4643\\ -4646\\ -4646\end{array}$	4720 4723 4740 4743 4743 4743 4743 4743 4743 4743 4743 4743 4743 4743 4743 4744 4743 4744	. 4752 . 4755 . 4771 . 4774	$\begin{array}{c} 4990\\ .\ 4993\\ .\ 5016\\ .\ 5019\\ .\ 5045\\ .\ 5048\\ .\ 5048\end{array}$.5158 .5161 .5161 .5184 .5187	. 5182 . 5185 . 5205 . 5208 . 5230 . 5233
. 3588	.3588	3596. 3596 . 3596	. 3684 . 3678 . 3698 . 3692	$\begin{array}{c} 3820\\ .3815\\ .3815\\ .3815\\ .3815\\ .3833\\ .3828\\ .3828\end{array}$.3977 .3972 .3988 .3983	$ \begin{array}{c} 4027 \\ 4022 \\ 4037 \\ .4032 \\ .4032 \\ \end{array} $	$\begin{array}{c} . 4152 \\ . 4152 \\ . 4152 \\ . 4152 \\ . 4167 \\ . 4167 \\ . 4161 \end{array}$	$ \begin{array}{r} .4309\\ .4303\\ .4323\\ .4317\\ \end{array} $	$\begin{array}{c} 4445\\ 4446\\ 4446\\ 4446\\ 4446\\ 4458\\ 4458\\ 4458\\ 4458\\ 4458\\ 4458\\ \end{array}$.4602 .4597 .4613 .4608	.4652 .4647 .4662 .4657	$\begin{array}{r} 4707\\ 4701\\ 4701\\ 4707\\ 4701\\ 4723\\ 4717\end{array}$.4934 .4928 .4948 .4942 .4942	5009 5004 5004 5004 5023 5023
.3897	.3897	.3894 .3911 .3908	.3955 .3952 .3969 .3966	$\begin{array}{r} 4037\\ 4034\\ 4037\\ 4037\\ 4034\\ 4050\\ 4050\end{array}$	$ \begin{array}{c} .4132\\ .4129\\ .4143\\ .4140\\ .4140\end{array} $.4162 .4159 .4172 .4172 .4169	$\begin{array}{r} 4485\\ 4485\\ 4485\\ 4485\\ 4482\\ 4500\\ 4497\\ 4497\end{array}$.4580 .4577 .4594 .4591	$\begin{array}{c} 4662\\ 4659\\ .4652\\ .4652\\ .4675\\ .4672\\ .4672\end{array}$. 4757 . 4754 . 4768 . 4765	. 4787 . 4784 . 4797 . 4794	. 5068 . 5065 . 5068 . 5068 . 5084 . 5081	.5205 .5202 .5219 .5216	. 5250 . 5247 . 5247 . 5250 . 5247 . 5264 . 5264
14	2A	3Λ	2A 3A	1A 2A 3A	2A 3A	2A 3A	1A 2A 3A	2A 3A	1A 2A 3A	2A 3A	2A 3A	1.A 2.A 3.A	2A 3A	1A 2A 3A
	UNC		NN	UNF	UNEF	NN	UNC	NN	UNF	UNEF	NN	UNC	NN	UNF
	. 4375-14		. 4375–16	. 4375–20	. 4375–28	. 4375-32	. 500-13	. 500-16	. 500-20	. 50028	. 500-32	. 5625-12	. 5625-16	. 5625-18

-Continued
threads-
screw
Unified
series,
thread
r standard
Gages for
TABLE 6.19.

		Nominal size and	threads per inch		21	. 5625-20	. 5625-24	. 5625-28	. 5625-32	. 625-11	. 625-12	. 625-16	. 625-18	. 625-20
		Series designa-	tion		20	NU	UNEF	ND	ND	UNC	ND	NN	UNF	ND
		Class			19	2B 3B	2B 3B	2B 3B	2B 3B	1B 2B 3B	2B 3B	2B 3B	1B 2B 3B	2B 3B
	ug gages diameter		TON 0.0		18	${in\atop 5162} 0.5200$ ${.5199}$ ${.5162}$ ${.5161}$.5270 .5269 .5244 .5243	.5320 .5319 .5301 .5301	.5360 .5359 .5344 .5343	5460 5459 5450 5459 5459 5391	. 5530 . 5529 . 5463 . 5462	.5710 .5709 .5662 .5661	. 5780 . 5779 . 5779 . 5779 . 5730 . 5729	. 5820 . 5819 . 5787 . 5786
	Z plain pl for minor		GO		17	${{in}\atop{5080}} 0.5080$ ${5081}\atop{5081}$ ${5081}\atop{5081}$. 5170 . 5171 . 5170 . 5171	.5240 .5241 .5240 .5240	.5290 .5291 .5290 .5291	. 5270 . 5271 . 5271 . 5271 . 5271 . 5271	. 5350 . 5351 . 5351 . 5351	. 5570 . 5571 . 5570 . 5571	. 5650 . 5651 . 5651 . 5650 . 5651 . 5651 . 5651	. 5710 . 5711 . 5710 . 5711
al threads			iameter	Plus toler- ance gage	16	${}^{in}_{-5355}$ 0.5355 .5358 .5341 .5341	.5405 .5408 .5392 .5395	5441 5444 5429 .5432	. 5467 . 5470 . 5456 . 5459	5767 5770 5773 5735 5735 5714	.5780 .5783 .5762 .5765	. 5906 . 5909 . 5893	. 5980 . 5983 . 5949 . 5949 . 5937 . 5937	. 5981 . 5984 . 5967 . 5970
or interna	gages	IH	Piteh d	Minus toler- ance gage	15	$in \\ 0.5355 \\ .5352 \\ .5341 \\ .5338 \\ .5338$	$\begin{array}{c} 5405\\ 5402\\ 5392\\ 5389\end{array}$.5441 .5438 .5429 .5426	. 5467 . 5464 . 5456 . 5453	. 5767 . 5764 . 5732 . 5732 . 5729 . 5714	. 5780 . 5777 . 5762 . 5759	. 5906 . 5903 . 5890 . 5887	. 5980 . 5949 . 5946 . 5946 . 5934 . 5931	. 5981 . 5978 . 5967 . 5964
Gages fo	GO GM A thread plug g GO A Major diam- diam- diam- eter eter		Major diam- eter	14	in 0.5572 .5567 .5558 .5558	. 5585 . 5580 . 5580 . 5567	.5596 .5591 .5584 .5579	. 5602 . 5597 . 5591 . 5586	. 6161 . 6155 . 6126 . 6126 . 6120 . 6108	. 6141 . 6135 . 6135 . 6123 . 6117	.6177 .6171 .6161 .6155	.6221 .6216 .6190 .6185 .6185 .6175	.6198 .6193 .6184 .6184	
	gages for major X thread plug gr meter X thread plug gr NOT GO GO GO GO emi- finished inshed Major tean- diam- tean- diam- tean- diam-			Pitch diam- eter	13	$\begin{array}{c} in \\ 0.5300 \\ .5303 \\ .5300 \\ .5303 \\ .5303 \end{array}$. 5354 . 5357 . 5357 . 5357	.5393 .5396 .5393 .5393	.5422 .5425 .5425 .5425	. 5660 . 5663 . 5663 . 5663 . 5663	.5709 .5712 .5709 .5712	. 5844 . 5847 . 5847 . 5847 . 5847	5892 5892 5892 5892 5892 5892	. 5925 . 5928 . 5925 . 5928
		Ċ		Major diam- eter	12	$\begin{array}{c} in \\ 0.5625 \\ .5630 \\ .5625 \\ .5625 \\ .5630 \end{array}$.5625 .5630 .5630 .5625 .5630	. 5625 . 5630 . 5630 . 5630	. 5625 . 5630 . 5630 . 5630	. 6250 . 6256 . 6250 . 6250 . 6256 . 6256 . 6256	$\begin{array}{c} . 6250 \\ . 6256 \\ . 6256 \\ . 6256 \\ . 6256 \end{array}$. 6250 . 6256 . 6256 . 6256 . 6256	. 6250 . 6255 . 6255 . 6255 . 6255 . 6255 . 6255	$\begin{array}{c} 6250 \\ 6255 \\ 6255 \\ 6250 \\ 6255 \end{array}$
	for major	GO	Un-	finished hot- rolled material	11	in				0.6052 0.6053				
	ng gages diameter	LON		Semi- finished	10	in in 0.5531. 5532 .5544	.5541 .5542 .5553 .5553	. 5549 . 5550 . 5560 . 5561	. 5555 . 5556 . 5565 . 5565	$\begin{array}{c} 6052\\ 6053\\ 60113\\ 6114\\ 6114\\ 6129\\ 6130\end{array}$. 6120 . 6121 . 6136 . 6137	.6142 .6143 .6156 .6157	.6105 .6106 .6149 .6150 .6163	.6156 .6157 .6169 .6170
reads	Z plain ri		GO		6	$\begin{array}{c} in \\ 0.5612 \\ .5611 \\ .5625 \\ .5624 \end{array}$	5613 5612 5625 5624	5614 5613 5625 5624	.5615 .5614 .5625 .5624	$\begin{array}{c} 6234\\ 6233\\ 6233\\ 6233\\ 6233\\ 6233\\ 6249\\ \end{array}$	6234 6233 6250 6249	. 6236 . 6235 . 6250 . 6249	. 6236 . 6235 . 6235 . 6235 . 6249	.6237 .6236 .6250 .6249
ternal th				Minor diam- eter	∞	$\begin{array}{c} in \\ 0.5137 \\ .5142 \\ .5160 \\ .5165 \end{array}$.5213 .5218 .5235 .5240	.5268 .5273 .5273 .5293	.5309 .5314 .5328 .5333	5364 5370 5392 5392 5422 5422	.5459 .5465 .5488 .5494	. 5647 . 5653 . 5673 . 5679	. 5685 . 5690 . 5708 . 5713 . 5739	.5761 .5766 .5785 .5790
ges for ex	gages	ΓO	iameter	Minus toler- ance gage	2	in 0.5245 .5242 .5268 .5268	.5303 .5300 .5325 .5325 .5322	.5345 .5342 .5365 .5362	. 5377 . 5374 . 5396 . 5393	. 5561 . 5558 . 5589 . 5589 . 5619 . 5619	. 5639 . 5636 . 5668 . 5665	.5782 .5779 .5808 .5805	. 5805 . 5802 . 5828 . 5828 . 5828 . 5854	.5869 .5866 .5893 .5893
Ga	ead ring		Pitch d	Plus toler- anee gage	9	in 0. 5245 . 5248 . 5268 . 5271	. 5303 . 5306 . 5325 . 5328	. 5345 . 5348 . 5365 . 5368	. 5377 . 5396 . 5399	. 5561 . 5564 . 5589 . 5592 . 5619 . 5619	. 5639 . 5642 . 5668 . 5671	.5782 .5785 .5808 .5811	. 5805 . 5808 . 5828 . 5831 . 5831 . 5857	.5869 .5872 .5893 .5896
	X thread		Minor diam- eter	5	${}^{in}_{5065}$. 5065 . 5083 . 5078	. 5162 . 5157 . 5174 . 5169	. 5227 . 5222 . 5238 . 5233	. 5277 . 5272 . 5287 . 5282	. 5250 . 5244 . 5250 . 5250 . 5266 . 5266	.5332 .5326 .5348 .5342	. 5559 . 5553 . 5573 . 5567	$\begin{array}{c} 5634\\ .5634\\ .5634\\ .5634\\ .5648\\ .5648\\ .5643\\ .5643\\ \end{array}$. 5695 . 5690 . 5708 . 5703	
	G G G G G G G G G G G G G G G G G G G		Pitch diam- eter	4	$in \\ 0.5287 \\ .5284 \\ .5300 \\ .5297$. 5342 . 5339 . 5354 . 5351	. 5382 . 5379 . 5393 . 5393	.5412 .5409 .5422 .5419	5644 5641 5644 5644 5644 5641 5660 5660	.5693 .5690 .5709 .5706	.5830 .5827 .5844 .5841	. 5875 . 5875 . 5875 . 5885 . 5889 . 5889	.5912 .5909 .5925 .5925	
	Class			3	2A 3A	2A 3A	2A 3A	2A 3A	1A 2A 3A	2A 3A	2A 3A	1A 2A 3A	2A 3A	
		Series	tion		2	NN	UNEF	NN	NN	UNC	NN	ND	UNF	ND
	Nominal E threads ber Inch				1	. 5625-20	. 5625-24	. 5625-28	. 5625-32	. 625-11	. 625-12	. 625-16	. 625-18	. 625-20

6.34

A STALL AND ALE AND AND A LONG A LEON A LAND A LAND A LAND

. 625-24	. 625-28	. 625-32	. 6875-12	.6875-16	. 6875-20	. 6875-24	. 6875-28	. 6875-32	.750-10	. 750–12	. 750-16	. 750-20	. 750-28	. 750-32
UNEF	UN	NN	NN	NN	NN	UNEF	NU	NN	UNC	NN	UNF	UNEF	NN	UN
2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	1B 2B 3B	2B 3B	11B 21B 31B	2B 3B	2B 3B	$^{2\mathrm{B}}_{3\mathrm{B}}$
. 5900 . 5899 . 5869 . 5869	.5950 .5949 .5926 .5925	. 5990 . 5989 . 5969 . 5968	$ \begin{array}{c} .6150\\.6149\\.6085\\.6085\\.6084\end{array} $	6340 6339 6284 6283	.6450 .6449 .6412 .6411	.6520 .6519 .6494 .6493	. 6570 . 6569 . 6551 . 6550	.6610 .6609 .6594 .6593	6630 6629 6630 6630 6545 6545 6544	.6780 .6779 .6706 .6706	. 6960 . 6959 . 6959 . 6908 . 6908	7070 7037 7036 7037	. 7200 . 7199 . 7176 . 7175	. 7240 . 7239 . 7219 . 7218
. 5800 . 5801 . 5800 . 5800	2860 5861 5861 5860 5861	$\begin{array}{c} .5910\\ .5911\\ .5910\\ .5910\\ .5911\end{array}$	25970 5971 5971 5971	.6200 .6201 .6200 .6201	.6330 .6331 .6330 .6331	$\begin{array}{c} . 6420 \\ . 6421 \\ . 6420 \\ . 6421 \\ . 6421 \end{array}$.6490 .6491 .6490 .6491	.6540 .6541 .6540 .6541	$\begin{array}{c} 6420\\ .6421\\ .6421\\ .6420\\ .6420\\ .6420\\ .6421\end{array}$. 6600 . 6601 . 66	. 6820 . 6821 . 6820 . 6821 . 6821 . 6821	. 6960 . 6960 . 6961 . 6961 . 6961 . 6961 .	$\begin{array}{c} 7110\\ 7117\\ 7117\\ 7117\\ 71111\\ 71111\\ 7111\\ 7111\\ 7111\\ 7111\\ 7111\\ 7111\\ 7111\\ 7111\\ 7111\\ 7111\\ 711$. 7160 . 7161 . 7161 . 7161
$\begin{array}{c} .6031 \\ .6034 \\ .6018 \\ .6018 \\ .6021 \end{array}$. 6067 . 6055 . 6058	$ \begin{array}{c} 6093 \\ 6096 \\ 6082 \\ 6085 \\ 6085 \\ \end{array} $.6531 .6534 .6515 .6518	. 6606 . 6609 . 6592 . 6592	. 6656 . 6659 . 6643 . 6646	$ \begin{array}{c} 6692 \\ 6680 \\ 6683 \\ 6683 \\ 6683 \\ 6683 \\ \hline \end{array} $	$\begin{array}{c} 6718\\ 6721\\ 6707\\ 6710\\ \end{array}$	$\begin{array}{c} 6965\\ 6968\\ 6927\\ 6927\\ 6930\\ 6907\\ 6910\\ \end{array}$	$\begin{array}{c} 7031\\ 7034\\ 7013\\ 7013\\ 7016\end{array}$	7192 7195 7159 7162 7143 7146	. 7232 . 7235 . 7218 . 7218	$\begin{array}{c} 7318\\ 7321\\ 7305\\ 7305\\ 7308\end{array}$. 7344 . 7347 . 7333 . 7336
.6031 .6028 .6018 .6015	$\begin{array}{c} 6067\\ 6064\\ 6055\\ 6052\\ 6052\end{array}$	6093 6090 6090 6079	.6405 .6402 .6387 .6384	.6531 .6528 .6515 .6512	.6606 .6603 .6592 .6589	. 6656 . 6653 . 6643 . 6640	$ \begin{array}{c} 6692 \\ 6689 \\ 6680 \\ 6677 \\ 6677 \\ \end{array} $.6718 .6715 .6707 .6704	$\begin{array}{c} 6965\\ 6962\\ 6927\\ 6927\\ 6907\\ 6904\\ \end{array}$	7031 7028 7013 7010	. 7192 . 7189 . 7159 . 7156 . 7143 . 7140	.7232 .7229 .7215 .7215	$\begin{array}{c} 7318\\ 7315\\ 7315\\ 7305\\ 7302\\ \end{array}$	$\begin{array}{c} 7344 \\ 7341 \\ 7333 \\ 7333 \\ 7330 \end{array}$
. 6211 . 6206 . 6198 . 6193	$\begin{array}{c} 6222\\ 6217\\ 6216\\ 6216\\ 6205\end{array}$.6228 .6223 .6217 .6212	.6766 .6760 .6748 .6742		. 6823 . 6818 . 6809 . 6804 . 6804 .	. 6836 . 6831 . 6823 . 6818			$\begin{array}{c} 7398\\ .7392\\ .7360\\ .7354\\ .7340\\ .7334\end{array}$. 7392 . 7386 . 7374 . 7368	$\begin{array}{c} 7463\\ .7457\\ .7457\\ .7430\\ .7424\\ .7414\\ .7408\\ \end{array}$. 7449 . 7444 . 7435 . 7430	7473 7468 7460 7455	$\begin{array}{c} 7479\\ .7474\\ .7468\\ .7468\\ .7463\end{array}$
. 5979 . 5982 . 5982 . 5982	$\begin{array}{c} 6018\\ 6021\\ 6021\\ 6018\\ 6021\end{array}$.6047 .6050 .6047 .6050	.6334 .6337 .6334 .6337	.6469 .6472 .6472 .6469 .6472	. 6550 . 6553 . 6553 . 6553	. 6604 . 6607 . 6607 . 6607 . 6607 .	.6643 .6646 .6646 .6646	.6672 .6675 .6672 .6672	. 6850 . 6850 . 6850 . 6850 . 6850 . 6853 . 6853	. 6959 . 6962 . 6962 . 6962	7094 7094 7094 7097 7097	7175 7178 7178 7175	$\begin{array}{c} 7268\\ .7271\\ .7271\\ .7268\\ .7271\\ \end{array}$. 7297 . 7300 . 7297 . 7300
. 6250 . 6255 . 6255 . 6255	.6250 .6255 .6255 .6255	.6250 .6255 .6255 .6255	$ \begin{array}{c} .6875 \\ .6881 \\ $	$ \begin{array}{c} . 6875 \\ . 6881 \\ . 6881 \\ . 6881 \\ . 6881 \\ \end{array} $	$ \begin{array}{c} . 6875 \\ . 6880 \\ . 680 \\ . 680 \\ . 680 \\ $	$ \begin{array}{c} .6875 \\ .6880 \\ .680 \\$. 6875 . 6880 . 6880 . 6880		$\begin{array}{c} 7500\\ .7506\\ .7506\\ .7506\\ .7506\\ .7506\\ .7506\end{array}$.7500 .7506 .7506 .7506	. 7500 . 7506 . 7506 . 7506 . 7506 . 7506	. 7500 . 7505 . 7505 . 7505	.7500 .7505 .7505 .7505	. 7500 . 7505 . 7505 . 7505
									. 7288					
. 6166 . 6178 . 6179 . 6179	.6174 .6175 .6185 .6185 .6186	6179 .6180 .6190 .6191	.6745 .6746 .6746 .6761 .6762	$\begin{array}{c} . 6767 \\ . 6768 \\ . 6768 \\ . 6781 \\ . 6782 \end{array}$.6781 .6782 .6794 .6795	$\begin{array}{c} . 6791 \\ . 6792 \\ . 6803 \\ . 6804 \end{array}$	$\begin{array}{c} . 6799 \\ . 6800 \\ . 6810 \\ . 6811 \\ . 6811 \end{array}$		7372 7353 7354 7371 7371	$\begin{array}{c} 7369\\ .7370\\ .7386\\ .7386\\ .7387\end{array}$	$\begin{array}{c} 7343\\ 7344\\ 7391\\ 7391\\ 7392\\ 7406\\ 7407\end{array}$	$^{7406}_{7407}$	$^{7423}_{7424}$ $^{7424}_{7435}$ $^{7435}_{7436}$	$\begin{array}{c} 7429 \\ . \ 7430 \\ . \ 7440 \\ . \ 7441 \end{array}$
. 6238 . 6237 . 6237 . 6249	$ \begin{array}{c} 6239 \\ 6238 \\ 6250 \\ 6249 \\ 6249 \\ \end{array} $	$\begin{array}{c} 6239\\ 6238\\ 6238\\ 6250\\ 6249\end{array}$	6859 6858 6875 6874 6874	$ \begin{array}{c} 6861 \\ 6860 \\ 6875 \\ 6874 \\ 6874 \\ \end{array} $	6862 6861 6861 6875 6874 .	$\begin{array}{c} 6863 \\ 6862 \\ 6875 \\ 6874 \\ 6874 \end{array}$	$ \begin{array}{r} 6864 \\ 6863 \\ 6875 \\ 6875 \\ 6874 \\ 6874 \\ \end{array} $		$\begin{array}{c} .7482 \\ .7481 \\ .7481 \\ .7482 \\ .7500 \\ .7499 \end{array}$. 7483 . 7482 . 7500 . 7499	.7485 .7484 .7485 .7485 .7484 .7500	. 7487 . 7486 . 7500 . 7499	. 7488 . 7487 . 7500 . 7499	$\begin{array}{c} 7489\\ .7488\\ .7488\\ .7500\\ .7499\end{array}$
. 5837 . 5842 . 5859 . 5864	$ \begin{array}{c} 5892 \\ 5897 \\ 5913 \\ 5918 \\ 5918 \\ \end{array} $. 5932 . 5937 . 5952 . 5957	$\begin{array}{c} .6084 \\ .6090 \\ .6113 \\ .6119 \end{array}$	$\begin{array}{c} . \ 6272 \\ . \ 6278 \\ . \ 6298 \\ . \ 6304 \end{array}$	$\begin{array}{c} 6386\\ .6391\\ .6410\\ .6415\end{array}$.6462 .6467 .6484 .6484 .6489	6517 6522 6538 6538		.6528 .6534 .6557 .6563 .6590	$\begin{array}{c} 6707\\ 6713\\ 6713\\ 6738\\ 6738\\ 6744\end{array}$	$\begin{array}{c} 6869 \\ 6875 \\ 6894 \\ 6994 \\ 6900 \\ 6921 \\ 6927 \\ \end{array}$	7010 7015 7034 7039	.7141 .7146 .7162 .7167	. 7182 . 7187 . 7202 . 7207
5927 5924 5949 5946	. 5969 . 5966 . 5990 . 5987	. 6000 . 5997 . 6020 . 6017	6264 6261 6293 6293	.6407 .6404 .6433 .6430	.6494 .6491 .6518 .6515	.6552 .6549 .6574 .6571	6594 6591 6615 6612	.6625 .6622 .6645 .6642	$\begin{array}{c} 6744 \\ . \ 6741 \\ . \ 6773 \\ . \ 6770 \\ . \ 6806 \\ . \ 6803 \end{array}$		$\begin{array}{c} 7004\\ .7029\\ .7026\\ .7056\\ .7056\end{array}$.7118 .7115 .7142 .7139	. 7218 . 7215 . 7239 . 7236	. 7250 . 7247 . 7270 . 7270
.5927 .5930 .5949 .5952	. 5969 . 5972 . 5990 . 5993	.6000 .6003 .6020 .6023 .6023 .6023 .	$\begin{array}{c} 6264 \\ 6267 \\ 6293 \\ 6293 \\ 6296 \end{array}$.6407 .6410 .6433 .6436 .6436	.6494 .6497 .6518 .6521	.6552 .6555 .6574 .6574	.6594 .6597 .6615 .6618	6625 6628 6645 6645	$\begin{array}{c} 6744 \\ 6747 \\ 6773 \\ 6773 \\ 6776 \\ 6806 \\ 0809 \\ \end{array}$. 6887 . 6890 . 6918 . 6921	7004 7007 7029 7032 7056 7059	. 7118 . 7121 . 7142 . 7145	.7218 .7221 .7239 .7242	. 7250 . 7253 . 7270 . 7273
. 5787 . 5782 . 5799	5852 5847 5863 5863	25901 5896 5912 5907	. 5957 . 5951 . 5973 . 5967	$ \begin{array}{c} 6184\\ 6178\\ 6198\\ 6192\\ 6192 \end{array} $	6320 6315 6333 6328 6328	.6412 .6407 .6424 .6419	.6477 .6472 .6472 .6488 .6483	.6526 .6521 .6537 .6532	$\begin{array}{c} 6399\\ 6393\\ 6393\\ 6393\\ 6393\\ 6393\\ 6417\\ 6411\end{array}$. 6581 . 6575 . 6598 . 6592	$ \begin{array}{c} 6808 \\ 6802 \\ 6802 \\ 6802 \\ 6823 \\ 6817 \\ 6817 \\ \end{array} $. 6945 . 6940 . 6958 . 6953	. 7101 . 7096 . 7113 . 7108	. 7151 . 7146 . 7162 . 7157
. 5967 . 5964 . 5979 . 5976	$\begin{array}{c} 6007\\ 6004\\ 6018\\ 6015\\ \end{array}$.6036 .6036 .6033 .6047 .6044	. 6318 . 6315 . 6334 . 6331	6455 6462 6462 6469 6466	. 6537 . 6534 . 6550 . 6550	. 6592 . 6589 . 6604 . 6601	. 6632 . 6629 . 6643 . 6640	. 6661 . 6658 . 6658 . 6669	.6832 .6829 .6829 .6829 .6829 .6847	. 6942 . 6939 . 6959 . 6956	7079 7076 7079 7079 7076 7094	.7162 .7159 .7175 .7175	.7256 .7253 .7268 .7268	. 7286 . 7283 . 7297 . 7294
2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	1A 2A 3A	2A 3A	1A 2A 3A	2A 3A	2A 3A	2A 3A
UNEF	NN	NN	NN	NN	NN	UNEF	NN	NN	UNC	NN	UNF	UNEF	ND	NN
. 625-24	. 625-28	. 625-32	. 6875-12	. 6875-16	. 6875-20	. 6875-24	. 6875-28	. 6875-32	.750-10	. 750-12	.750-16	. 750-20	. 750–28	. 750-32

		Nominal size and	threads per inch		21	. 8125-12	.8125-16	. 8125-20	. 8125-28	. 8125-32	. 875-9	. 875-12	. 875-14	. 875-16	. 875-2)
		Series designa-	tion		20	UN	UN	UNEF	NIJ	NN	UNC	UN	UNF	ΩN	UNEF
		Class			19	2B 3B	2B 3B	$^{2B}_{3B}$	2B 3B	2B 3B	11B 21B 31B	2B 3B	1B 2B 3B	2B 3B	2B 3B
	ug gages diameter		N0T G0		18	$in \\ 0.7400 \\ .7399 \\ .7329 \\ .7328 \\ .7328$. 7590 . 7589 . 7533 . 7532	. 7700 . 7699 . 7662 . 7661	. 7820 . 7819 . 7801 . 7801	. 7860 . 7859 . 7844 . 7843	$\begin{array}{c} 77800\\ 77788\\ 77788\\ 77788\\ 77788\\ 77788\\ 76810\\ 76810\\ 76798\end{array}$. 80300 . 80288 . 79520 . 79508	$\begin{array}{c} 81400\\ 81388\\ 81388\\ 81400\\ 81388\\ 81388\\ 80680\\ 80680\\ 80668\end{array}$. 82100 . 82088 . 81580 . 81568	. 83200 . 83188 . 82870 . 82858
s	Z plain pl for minor		60		17	${}^{in}_{0.\ 7220}_{.\ 7221}_{.\ 7220}_{.\ 7220}_{.\ 7220}_{.\ 7221}_{.\ 7221}_{.\ 7221}$. 7450 . 7451 . 7451 . 7451 . 7451	.7580 .7581 .7581 .7580 .7581	. 7740 . 7741 . 7740 . 7740 . 7741	1677.	. 75500 . 75512 . 75500 . 75500 . 75512 . 75512 . 75512	. 78500 . 78512 . 78512 . 78512 . 78512	$\begin{array}{c} . \ . \ . \ . \ . \ . \ . \ . \ . \ . $	$\begin{array}{c} .80700\\ .80712\\ .80700\\ .80700\\ .80712\end{array}$. 82100 . 82112 . 82100 . 82112
al thread			iameter	Plus toler- ance gage	16	<i>in</i> 0.7656 7659 .7639 .7631	. 7782 . 7785 . 7766 . 7769	. 7857 . 7860 . 7843 . 7846	. 7943 . 7946 . 7930 . 7933	. 7969 . 7972 . 7958 . 7961	.8151 .8154 .8154 .8110 .8113 .8089 .8089	.8281 .8284 .8263 .8266	. 8395 . 8395 . 8356 . 8359 . 8355 . 8355 . 8355 . 8355 . 83556 . 83566 . 835666 . 835666 . 835666 . 835666666666666666666666666666666666666		. 8482 . 8485 . 8468 . 8471
or intern	gages	IH	Pitch d	Minus toler- ance gage	15	in 0.7656 7653 7638 .7638	. 7782 . 7779 . 7766 . 7763	.7857 .7854 .7843 .7840	$\begin{array}{c} . \ 7943 \\ . \ 7940 \\ . \ 7930 \\ . \ 7927 \end{array}$. 7969 . 7956 . 7958 . 7955	. 8151 . 8151 . 8148 . 8107 . 8089 . 8089	$\begin{array}{c} 8281\\ 8278\\ 8278\\ 8263\\ 8263\\ 8260\end{array}$. 8392 . 8356 . 8356 . 8356 . 8353 . 8353 . 8339 . 8339 . 8339 . 8339 . 8339	8407 . 8404 . 8391 . 8388	. 8482 . 8479 . 8465 . 8465
Gages fo	ead plug	Pitch Major liam- diam- eter eter		Major diam- eter	14	${in\atop 0.8017\8011\8011\8099\7999\7993$		8074 8069 8060 8060 8060 8055	. 8098 . 8093 . 8085 . 8085		. 8632 . 8625 . 8591 . 8584 . 8584 . 8563	.8642 .8636 .8624 .8618 .8618	. 8701 . 8695 . 8665 . 8659 . 8659 . 8642 . 8642	. 8678 . 8672 . 8662 . 8656	. 8699 . 8694 . 8685 . 8685
	X thr	X thre GO iajor fiam- eter eter		Pitch diam- eter	13	in 0.7584 .7587 .7587 .7587	. 7719 . 7722 . 7719 . 7722	$ \begin{array}{c} 7800 \\ 7803 \\ 7803 \\ 7803 \\ 7803 \\ 7803 \\ \end{array} $. 7893 . 7896 . 7893 . 7893	.7922 .7925 .7922 .7925	$\begin{array}{c} 8028\\ 8031\\ 8031\\ 8028\\ 8031\\ 8031\\ 8028\\ 8031\\ 8031\end{array}$		$\begin{array}{c} 8286\\ 8289\\ 8286\\ 8286\\ 8286\\ 8286\\ 8286\\ 8286\\ 8289\\ 8286\\$.8344 .8347 .8347 .8344 .8347	. 8425 . 8428 . 8428 . 8428
		GO GO GO GO Lun- Un- much- hot- teter d teter d			12	$in in 0.8125 \\ .8131 \\ .8131 \\ .8131 \\ .8131$.8125 .8130 .8130 .8130 .8130 .8130 .	.8125 .8130 .8130 .8130 .8130 .8130 .8130 .	.8750 .8757 .8757 .8750 .8757 .8757 .8757	. 8750 . 8756 . 8756 . 8756	.8750 8756 8756 8756 8756 8756 8756		. 8750 . 8755 . 8755 . 8755 . 8755
	or major	GO	tin-	finished hot- rolled material	11	in					0.85230 0.85242				
	ng gages f liameter	TON		Semi- finished	10	$in in 0.7994 \ .7995 \ .7995 \ .8011 \ .8012$			$\begin{array}{c} 8048\\ 8049\\ 8060\\ 8061\end{array}$	$\begin{array}{c} 8054 \\ 8055 \\ 8065 \\ 8065 \\ 8066 \end{array}$	$\begin{array}{c} 85230\\ 85242\\ 85920\\ 85932\\ 86110\\ 86122\\ \end{array}$.86190 .86202 .86360 .86372	$\begin{array}{c} 85790\\ \cdot 85802\\ \cdot 85802\\ \cdot 86310\\ \cdot 86322\\ \cdot 86470\\ \cdot 86482\\ \cdot 86482$.86410 .86422 .86560 .86572 .86572	.86560 .86572 .86690 .86690
nreads	Z plain ri		60		6	$in \\ 0.8108 \\ .8107 \\ .8125 \\ .8124 \\ .8124$.8110 .8109 .8125 .8125	.8112 .8111 .8125 .8125 .8124		.8114 .8113 .8125 .8125	$\begin{array}{c} 87310\\ 87298\\ 87298\\ 87310\\ 87509\\ 87500\\ 87488\end{array}$. 87340 . 87328 . 87328 . 87328 . 87328 . 87328	. 87350 . 87338 . 87500 . 87500 . 87488	. 87370 . 87358 . 87500 . 87500 . 87488
tternal th				Minor diam- eter	8	${}^{in}_{7332}$ ${}^{0.7332}_{7338}$ ${}^{7363}_{7369}$ ${}^{7369}_{7369}$.7520 .7526 .7548 .7554	. 7635 . 7640 . 7669 . 7664	7771 7771 7787 7787	. 7807 . 7812 . 7827 . 7832	7673 7705 7712 7712 7740	. 7957 . 7963 . 7988 . 7994	$\begin{array}{c} 8034\\ 8040\\ 8061\\ 8067\\ 8067\\ 8090\\ 8096\\ 8096\\ \end{array}$.8145 .8151 .8173 .8173 .8173	. 8260 . 8265 . 8284 . 8284 . 8289
ges for ex	gages	го	ameter	Minus toler- ance gage	2	${}^{in}_{7512}$ ${}^{.7512}_{.7509}$ ${}^{.7543}_{.7540}$.7655 .7652 .7683 .7680	. 7743 . 7740 . 7767 . 7767	. 7843 . 7840 . 7864 . 7861	.7875 .7872 .7895 .7892	$\begin{array}{c} 7914 \\ 7911 \\ 7911 \\ 7946 \\ 7943 \\ 7943 \\ 7981 \\ 7978 \end{array}$.8137 .8134 .8168 .8165	$\begin{array}{c} 8189\\ 8186\\ 8216\\ 8213\\ 8213\\ 8245\\ 8245\\ 8242\\ \end{array}$. 8368 . 8365 . 8392 . 8392
Ga	ead ring		Pitch d	Plus toler- ance gage	9	${in\atop7512} 0.7512$. 7515 . 7543 . 7543 . 7546	7655 7658 7683 7686	. 7743 . 7746 . 7767 . 7770	. 7843 . 7846 . 7864 . 7864	. 7875 . 7878 . 7895 . 7895	$\begin{array}{c} 7914 \\ 7917 \\ 7917 \\ 7946 \\ 7949 \\ 7981 \\ 7981 \\ 7984 \end{array}$		$\begin{array}{c} 8189\\ 8192\\ 8216\\ 8216\\ 8219\\ 8245\\ 8248\\ \end{array}$. 8368 . 8371 . 8392 . 8395
	X thread		Minor diam- eter	5	${}^{in}_{0.\ 7206}_{.\ 7223}_{.\ 7217}_{.\ 7217}$. 7433 . 7427 . 7448 . 7442	. 7570 . 7565 . 7583 . 7578	. 7726 . 7721 . 7738 . 7738	. 7776 . 7771 . 7787 . 7782 . 7782	$\begin{array}{c} 7528\\ .7521\\ .7521\\ .7523\\ .7547\\ .7547\\ .7540\end{array}$. 7831 . 7825 . 7848 . 7842	. 7955 . 7955 . 7955 . 7977 . 7971			
	GO Pitch diam- cter			Pitch diam- cter	4	${in\atop 7567} 0.7567$.7564 .7584 .7581	. 7704 . 7701 . 7719 . 7716	. 7787 . 7784 . 7800 . 7797	. 7881 . 7878 . 7893 . 7890	. 7911 . 7908 . 7922 . 7919	. 8006 . 8006 . 8006 . 8006 . 8028 . 8028 . 8028	.8192 .8189 .8209 .8206	.8270 .8267 .8267 .8267 .8286 .8288	.8329 .8326 .8344 .8341	.8412 .8409 .8425 .8425
	Glass				ę	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	1A 2A 3A	2A 3A	1A 2A 3A	2A 3A	2A 3A
	Series designa- tion			2	UN	UN	UNEF	NN	NN	UNC	NN	UNF	NN	UNEF	
	Nominal size and threads per inch				1	.8125-12	. 8125–16	. 8125-20	. 8125-28	. 8125-32	. 875-9	.875-12	. 875-14	. 875-16	.875-20

. 870-23

2020

TABLE 6.19. Gages for standard thread series, Unified screw threads-Continued

. 875-23	. 875-32	. 9375-12	. 9375-16	. 9375-20	. 9375-28	. 9375-32	1, 000-8	1, 000-12	1.000-16	1.000-20	1.000-28	1.000-32	1.0625-8	1, 0625-12
NN	NN	NN	NN	UNEF	NN	UN	ONU	UNF	NN	UNEF	NN	NN	NN	NN
2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	$^{2\mathrm{B}}_{3\mathrm{B}}$	2B 3B	11B 21B 31B	1B 2B 3B	2B 3B	$^{2B}_{3B}$	2B 3B	2B 3B	2B 3B	$^{2B}_{3B}$
. 84500 . 84488 . 84488 . 84260 . 84248	. 84900 . 84888 . 84690 . 84678	. 86500 . 86488 . 85750 . 85738	. 88400 . 88388 . 87830 . 87818	. 89500 . 89488 . 89120 . 89108	$\begin{array}{c} .90700\\ .90688\\ .90510\\ .90498\end{array}$	$\begin{array}{c} 91100\\ .91088\\ .90940\\ .90928\end{array}$. 89000 . 88988 . 89000 . 88988 . 87970 . 87958	92800 92788 92500 91980 91968	$ \begin{array}{c} 94600\\ -94588\\ -94588\\ -94068\\ -94068 \end{array} $. 95700 . 95688 . 95370 . 95358	$\begin{array}{c} 97000\\ .96988\\ .96760\\ .96748\\ .96748\end{array}$.97400 .97388 .97190 .97178	$ \begin{array}{c} 95200 \\ 95188 \\ 94220 \\ 94208 \\ \end{array} $	$\begin{array}{c} 99000\\ 98958\\ 98230\\ 98230\\ 98218\end{array}$
83600 .83612 .83600 .83612						$\begin{array}{c} 90400\\ 90412\\ 90412\\ 90400\\ 90412\end{array}$	$\begin{array}{c} 86500\\ 86512\\ 86512\\ 86500\\ 86512\\ 86512\\ 86512\\ 86512\\ \end{array}$	$\begin{array}{c} . 91000 \\ . 91012 \\ . 91012 \\ . 91012 \\ . 91012 \\ . 91012 \end{array}$	$\begin{array}{c} 93200\\ 93212\\ 93200\\ 93212\\ 93212\\ \end{array}$	$\begin{array}{c} 94600\\ .94612\\ .94612\\ .94600\\ .94612\end{array}$	$\begin{array}{c} 96100\\ -96112\\ -96112\\ -96100\\ -96112\end{array}$	$\begin{array}{c} 96600\\ .96612\\ .96600\\ .96600\\ .96612\end{array}$	$\begin{array}{c} 92700\\ 92712\\ 92700\\ 92700\\ 92712\end{array}$. 97200 . 97212 . 97200 . 97212
.8568 .8571 .8555 .8555	. 8594 . 8597 . 8583 . 8583		$\begin{array}{c} 9034\\ 9037\\ 9018\\ 9021\end{array}$	$\begin{array}{c} . 9109 \\ . 9112 \\ . 9094 \\ . 9097 \end{array}$	$\begin{array}{c} . 9195 \\ . 9198 \\ . 9182 \\ . 9185 \\ . 9185 \end{array}$	$\begin{array}{c} . 9221 \\ . 9224 \\ . 9209 \\ . 9212 \end{array}$	$\begin{array}{c} 9320\\ 9324\\ 9276\\ 9280\\ 9254\\ 9258\\ 0258\end{array}$. 9573 . 9576 . 9535 . 9538 . 9516 . 9519	. 9659 . 9662 . 9643 . 9646	$\begin{array}{c} 9734\\ 9737\\ 9737\\ 9719\\ 9722\end{array}$	$ \begin{array}{c} 9820 \\ 9823 \\ 9807 \\ 9810 \\ 9810 \\ \end{array} $	$\begin{array}{c} 9846\\ 9849\\ 9834\\ 9834\\ 9837\end{array}$	$\begin{array}{c} 9902\\ 9906\\ 9880\\ 9884\\ \end{array}$	$\begin{array}{c} 1.\ 0158\\ 1.\ 0161\\ 1.\ 0139\\ 1.\ 0142\\ \end{array}$
. 8568 . 8565 . 8555 . 8555 . 8552	. 8594 . 8591 . 8583 . 8583 . 8580 . 8580	. 8908 . 8905 . 8889 . 8889	$\begin{array}{c} . 9034 \\ . 9031 \\ . 9018 \\ . 9015 \\ . 9015 \end{array}$	$\begin{array}{c} . 9109 \\ . 9106 \\ . 9094 \\ . 9091 \end{array}$	$\begin{array}{c} 9195\\ 9192\\ 9182\\ 9182\\ 9179\end{array}$	$\begin{array}{c} .9221 \\ .9218 \\ .9209 \\ .9206 \\ .9206 \end{array}$	$\begin{array}{c} 9320\\ 9316\\ 9276\\ 9272\\ 9254\\ 0250\\ \end{array}$	9573 9570 9535 9535 9516 9518	.9659 .9656 .9643	$\begin{array}{c} .9734 \\ .9731 \\ .97119 \\ .9716 \\ .9716 \end{array}$.9820 .9817 .9807 .9804	$\begin{array}{c} . 9846 \\ . 9843 \\ . 9834 \\ . 9831 \\ . 9831 \end{array}$	$^{9902}_{-9898}$	1. 0158 1. 0155 1. 0139 1. 0139
. 8723 . 8718 . 8710 . 8705		.9269 .9263 .9250 .9244	$\begin{array}{c} . 9305 \\ . 9299 \\ . 9289 \\ . 9283 \\ . 9283 \end{array}$	$\begin{array}{c} 9326\\ 9321\\ 9311\\ 9311\\ 9316\\ 9306\end{array}$	$\begin{array}{c} .9350 \\ .9315 \\ .9337 \\ .9332 \end{array}$.9356 .9351 .9344 .9339	. 9861 . 9854 . 9817 . 9817 . 9810 . 9785	. 9934 . 9928 . 9896 . 9890 . 9877	. 9930 . 9924 . 9914 . 9908	$\begin{array}{c} . 9951 \\ . 9946 \\ . 9936 \\ . 9931 \\ . 9931 \end{array}$. 9975 . 9970 . 9962 . 9957	$\begin{array}{c} 9981\\ 9976\\ 9969\\ 9969\\ 9964\end{array}$	$\begin{array}{c} 1.\ 0443\\ 1.\ 0426\\ 1.\ 0421\\ 1.\ 0414\\ 1.\ 0414 \end{array}$	1. 0519 1. 0513 1. 0500 1. 0500 1. 0494
. 8518 . 8521 . 8518 . 8521 . 8521	. 8547 . 8550 . 8550 . 8547 . 8550	. 8834 . 8837 . 8837 . 8834 . 8837		.9050 .9053 .9053 .9053	$\begin{array}{c} .9143 \\ .9146 \\ .9146 \\ .9143 \\ .9146 \end{array}$	$\begin{array}{c} . \ 9172 \\ . \ 9175 \\ . \ 9172 \\ . \ 9172 \\ . \ 9175 \end{array}$	$\begin{array}{c} 9188\\ 9192\\ 9188\\ 9192\\ 9192\\ 9188\\ 9192\\ 0192\end{array}$	$\begin{array}{c} 9459\\ 9462\\ 9462\\ 9459\\ 9459\\ 9459\\ 9462\\ 9462\\ 9462\\ \end{array}$. 9594 . 9597 . 9594 . 9597	$\begin{array}{c} . 9675 \\ . 9678 \\ . 9678 \\ . 9678 \\ . 9678 \end{array}$. 9768 . 9771 . 9768 . 9768	. 9797 . 9800 . 9797 . 9800	$\begin{array}{c} . 9813 \\ . 9817 \\ . 9813 \\ . 9813 \\ . 9817 \end{array}$	$\begin{array}{c} 1.\ 0084\\ 1.\ 0087\\ 1.\ 0084\\ 1.\ 0087\end{array}$
. 8750 . 8755 . 8755 . 8755	.8750 .8755 .8755 .8755	$\begin{array}{c} . 9375 \\ . 9381 \\ . 9381 \\ . 9381 \\ . 9381 \end{array}$. 9375 . 9381 . 9381 . 9381	. 9375 . 9380 . 9375 . 9375	. 9375 . 9380 . 9375 . 9375	$\begin{array}{c} . 9375 \\ . 9380 \\ . 9380 \\ . 9380 \\ . 9380 \end{array}$	$\begin{array}{c} 1.\ 0000\\ 1.\ 0007\\$	$\begin{array}{c} 1.\ 0000\\ 1.\ 0006\\ 1.\ 0006\\ 1.\ 0006\\ 1.\ 0006\\ 1.\ 0006\\ 0.\ 0.\ 006\\ 0.\ 0.\ 006\\ 0.\ 0.\ 006\\ 0.\ 0.\ 0.\ 006\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$	$\begin{array}{c} 1.\ 0000\\ 1.\ 0006\\ 1.\ 0006\\ 1.\ 0006 \end{array}$	$\begin{array}{c} 1.\ 0000\\ 1.\ 0005\\ 1.\ 0000\\ 1.\ 0005 \end{array}$	$\begin{array}{c} 1.\ 0000\\ 1.\ 0005\\ 1.\ 0005\\ 1.\ 0005 \end{array}$	$\begin{array}{c} 1.\ 0000\\ 1.\ 0005\\ 1.\ 0005\\ 1.\ 0005 \end{array}$	$\begin{array}{c} 1.\ 0625\\ 1.\ 0632\\ 1.\ 0632\\ 1.\ 0632\end{array}$	$\begin{array}{c} 1.\ 0625\\ 1.\ 0631\\ 1.\ 0625\\ 1.\ 0625\\ 1.\ 0631\end{array}$
							. 97550							
. 86730 . 86742 . 86850 . 86850		$\begin{array}{c} 92440 \\ 92452 \\ 92610 \\ 92622 \end{array}$	$\begin{array}{c} 92660\\ 92672\\ 92810\\ 92822\\ 92822 \end{array}$	$\begin{array}{c} 92800\\ 92812\\ 92940\\ 92952\end{array}$	$\begin{array}{c} 92980\\ 92992\\ 93100\\ 93112 \end{array}$	$\begin{array}{c} 93040\\ -\ 93052\\ -\ 93150\\ -\ 93162\\ -\ 93162 \end{array}$	$\begin{array}{c} . 97550 \\ . 97562 \\ . 98300 \\ . 98312 \\ . 98500 \\ . 98512 \end{array}$	$\begin{array}{c} .98100\\ .98112\\ .98692\\ .98692\\ .98860\\ .98860\\ .98872\end{array}$	$\begin{array}{c} 98910\\ 98922\\ 99060\\ 99072\\ 99072 \end{array}$	$\begin{array}{c} 99050\\ 99062\\ 99190\\ 99202\\ \end{array}$	$\begin{array}{c} 99230\\ 99242\\ 99350\\ 99362\end{array}$	$\begin{array}{c} 99290\\ 99302\\ 99400\\ 99412\\ 99412 \end{array}$	$\begin{array}{c} 1.\ 04550\\ 1.\ 04562\\ 1.\ 04750\\ 1.\ 04762\\ 1.\ 04762\\ \end{array}$	1. 04940 1. 04952 1. 05110 1. 05122
. 87380 . 87368 . 87500 . 87488	. 87390 . 87378 . 87378 . 87500 . 87488	. 93580 . 93568 . 93750 . 93738	. 93600 . 93588 . 93750 . 93738	. 93610 . 93598 . 93750 . 93738	. 93630 . 93618 . 93750 . 93738	$ \begin{array}{c} 93640 \\ \cdot 93628 \\ \cdot 93750 \\ \cdot 93738 \\ \cdot 93738 \end{array} $. 99800 . 99788 . 99800 . 99788 . 99788 1. 00000 1. 00000	. 99820 . 99820 . 99820 . 998808 1. 00000 1. 99988	$\begin{array}{c} .99850\\ .99838\\ .99838\\ 1.00000\\ .99988\end{array}$	$\begin{array}{c} .99860\\ .99848\\ 1.00000\\ .99988\end{array}$	$\begin{array}{c} .99880\\ .99868\\ 1.00000\\ .99988\end{array}$. 99890 . 99878 1. 00000 . 99988	$\begin{array}{c} 1.\ 06050\\ 1.\ 06038\\ 1.\ 06250\\ 1.\ 06238\\ 1.\ 06238 \end{array}$	$\begin{array}{c} 1.\ 06080\\ 1.\ 06068\\ 1.\ 06250\\ 1.\ 06238\\ 1.\ 06238 \end{array}$
.8391 .8396 .8412 .8417	.8432 .8437 .8452 .8452	. 8580 . 8586 . 8612 . 8618	. 8769 . 8775 . 8797 . 8803	. 8883 . 8888 . 8908 . 8913	. 9014 . 9019 . 9036 . 9041	. 9055 . 9060 . 9076 . 9081	. 8796 . 8803 . 8829 . 8836 . 8836 . 8873	$\begin{array}{c} 9173\\ 9179\\ 9202\\ 9208\\ 9235\\ 9235\\ 9235\\ 9241\end{array}$	$\begin{array}{c} 9394 \\ 04100 \\ 0422 \\ 0428 \\ 0428 \end{array}$. 9508 . 9513 . 9533 . 9538	$\begin{array}{c} .9639\\ .9644\\ .9661\\ .9666\end{array}$	$ \begin{array}{c} 9680 \\ 9685 \\ 9701 \\ 9706 \\ 9706 \\ \end{array} $	$\begin{array}{c} 9454\\ 9461\\ 9491\\ 9498\\ 9498\end{array}$	9830 9836 9862 9862
. 8468 . 8465 . 8489 . 8489	. 8500 . 8497 . 8520 . 8517	. 8760 . 8757 . 8792 . 8789	$\begin{array}{c} 8904\\ .8901\\ .8932\\ .8929\\ \end{array}$. 8991 . 8988 . 9016 . 9013	$\begin{array}{c} 9091\\ 9088\\ 9113\\ 9110\\ 9110\end{array}$	$\begin{array}{c} .9123 \\ .9120 \\ .9144 \\ .9141 \\ .9141 \end{array}$	$\begin{array}{c} 9067\\ -9063\\ -9100\\ -9137\\ -9137\\ -9133\end{array}$	$\begin{array}{c} 9353 \\ 9350 \\ 9382 \\ 9379 \\ 9415 \\ 9412 \end{array}$.9529 .9526 .9557 .9554	$\begin{array}{c} 9616\\ 9613\\ 9641\\ 9638\\ 9638\end{array}$. 9716 . 9713 . 9738 . 9735	.9748 .9745 .9769 .9766	$\begin{array}{c} 9725\\ 9721\\ 9762\\ 9762\\ 9758\end{array}$	$\begin{array}{c} 1.0010\\ 1.0007\\ 1.0042\\ 1.0039\end{array}$
.8468 .8471 .8489 .8489	. 8500 . 8503 . 8520 . 8520		. 8904 . 8907 . 8932 . 8935		$\begin{array}{c} 9091\\ 9094\\ 9113\\ 9116\\ 9116\end{array}$.9123 .9126 .9144 .9147	$\begin{array}{c} 9067\\ 9071\\ 9071\\ 9100\\ 9104\\ 9137\\ 9137\\ 9141\end{array}$	9353 9356 9382 9382 9385 9415	. 9529 . 9532 . 9557 . 9560	$\begin{array}{c} 9616\\ 9619\\ 9641\\ 9641\\ 9644\end{array}$. 9716 . 9719 . 9738 . 9741	$\begin{array}{c} 9748\\ 9751\\ 9769\\ 9772\end{array}$	$\begin{array}{c} 9725\\ 9729\\ 9762\\ 9766\end{array}$	$\begin{array}{c} 1.\ 0010\\ 1.\ 0013\\ 1.\ 0042\\ 1.\ 0045\end{array}$
. 8351 . 8346 . 8363 . 8358		.8456 .8450 .8473 .8467			8976 8971 8988 8983	$\begin{array}{c} 9026\\ 9021\\ 9037\\ 9032\\ 9032\end{array}$	$\begin{array}{c} 8627\\ 8627\\ 8627\\ 8627\\ 8647\\ 8647\\ 8640\\ \end{array}$	$\begin{array}{c} 9080\\ 9074\\ 9080\\ 9074\\ 9074\\ 9098\\ 9092\end{array}$	$\begin{array}{c} 9308\\ 9302\\ 9323\\ 9317\\ 9317\end{array}$.9444 .9439 .9458 .9453	. 9596 . 9596 . 9613	$\begin{array}{c} 9651 \\ 9646 \\ 9662 \\ 9657 \end{array}$	$\begin{array}{c} 9252 \\ 9245 \\ 9272 \\ 9265 \end{array}$. 9706 . 9700 . 9723 . 9717
. 8506 . 8503 . 8513 . 8515	.8536 .8533 .8533 .8547 .8544	.8817 .8814 .8834 .8834 .8831	8954 8951 8969 8966	.9036 .9036 .9050 .9047	$\begin{array}{c} .9131\\ .9128\\ .9128\\ .9143\\ .9140\end{array}$.9161 .9158 .9172 .9169	$\begin{array}{c} 9168\\ 9164\\ 9168\\ 9168\\ 9184\\ 9188\\ 9184\end{array}$	$\begin{array}{c} 9441\\ 9438\\ 9438\\ 9438\\ 9438\\ 9459\\ 9456\\ 9459\end{array}$. 9579 . 9576 . 9594 . 9591	$ \begin{array}{c} 9661 \\ 9658 \\ 9675 \\ 9672 \\ 9672 \\ \end{array} $.9756 .9753 .9768 .9765	. 9786 . 9783 . 9797 . 9794	$\begin{array}{c} .9793 \\ .9789 \\ .9813 \\ .9809 \end{array}$	$\begin{array}{c} 1.\ 0067\\ 1.\ 0064\\ 1.\ 0084\\ 1.\ 0081 \end{array}$
2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	1A 2A 3A	1A 2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A
NN	NN	NN	NN	UNEF	NN	NN	UNC	JUU	NN	UNEF	NN	NN	NN	NN
. 875–28	.875-32	. 9375-12	.9375-16	. 9375-20	.9375-28	.9375-32	1. 000-8	1. 000-12	1.000-16	1. 000-20	1.000-28	1.000-32	1. 0625-8	1. 0625-12

s-Continued
thread
screw
Unified
series,
thread
standard
s for
Gages
TABLE 6.19 .

		Nominal size and	threads		21	1,0625-16	1.0625-18	1.0625-20	1.0625-28	1. 125~7	1. 125-8	1, 125-12	1. 125-16	1.125-18	1. 125–20
		Series designa-	tion		20	UN	UNEF	NN	NN	UNC	UN	UNF	NN	UNEF	NN
		Class	0000		19	2B 3B	2B 3B	2B 3B	2B 3B	1B 2B 3B	2B 3B	1B 2B 3B	2B 3B	2B 3B	2B 3B
	lug gages diameter		NOT GO		18	in in 00900 1.00808 1.00330 1.00330 1.00330 1.00331	$\begin{array}{c} 1.\ 01500\\ 1.\ 01488\\ 1.\ 01050\\ 1.\ 01038 \end{array}$	$\begin{array}{c} 1.\ 02000\\ 1.\ 01988\\ 1.\ 01620\\ 1.\ 01608 \end{array}$	$\begin{array}{c} 1.\ 03200\\ 1.\ 03188\\ 1.\ 03010\\ 1.\ 02998 \end{array}$. 99800 99788 99788 99788 98750 98750	$\begin{array}{c} 1.\ 01500\\ 1.\ 01488\\ 1.\ 00470\\ 1.\ 00458\end{array}$	$\begin{array}{c} 1.\ 05300\\ 1.\ 05288\\ 1.\ 05288\\ 1.\ 05288\\ 1.\ 05288\\ 1.\ 04480\\ 1.\ 04468\end{array}$	$\begin{array}{c} 1.\ 07100\\ 1.\ 07088\\ 1.\ 06580\\ 1.\ 06568\end{array}$	$\begin{array}{c} 1.\ 07800\\ 1.\ 07788\\ 1.\ 07300\\ 1.\ 07288\\ 1.\ 07288 \end{array}$	1. 08200 1. 08188 1. 07870 1. 07858
s	Z plain pl for minor		00		17	$in \\ 99500 \\ 99512 \\ 99510 \\ 99512 \\ 99512$	$\begin{array}{c} 1.\ 00200\\ 1.\ 00212\\ 1.\ 00200\\ 1.\ 00212\\ \end{array}$	$\begin{array}{c} 1.\ 00800\\ 1.\ 00812\\ 1.\ 00800\\ 1.\ 00812\\ 1.\ 00812 \end{array}$	$\begin{array}{c} 1.\ 02400\\ 1.\ 02412\\ 1.\ 02400\\ 1.\ 02412\\ 1.\ 02412 \end{array}$	$\begin{array}{c} . \ 97000 \\ . \ 97012 \\ . \ 97010 \\ . \ 97012 \\ . \ 97012 \\ . \ 97012 \\ . \ 97012 \end{array}$. 99000 . 99012 . 99000 . 99012	$\begin{array}{c} 1.\ 03500\\ 1.\ 03512\\ 1.\ 03500\\ 1.\ 03512\\ 1.\ 03512\\ 1.\ 03512\\ 1.\ 03512\end{array}$	$\begin{array}{c} 1.\ 05700\\ 1.\ 05712\\ 1.\ 05700\\ 1.\ 05712\end{array}$	$\begin{array}{c} 1.\ 06500\\ 1.\ 06512\\ 1.\ 06500\\ 1.\ 06512\\ 1.\ 06512 \end{array}$	1. 07100 1. 07112 1. 07100 1. 07112
al thread			iameter	Plus toler- ance gage	16	$in in 1.0284 \\ 1.0287 \\ 1.0287 \\ 1.0268 \\ 1.0268 \\ 1.0271 $	1. 0326 1. 0329 1. 0310 1. 0313	$\begin{array}{c} 1.\ 0359\\ 1.\ 0362\\ 1.\ 0344\\ 1.\ 0347\\ 1.\ 0347 \end{array}$	1. 0445 1. 0448 1. 0432 1. 0432	$\begin{array}{c} 1.\ 0463\\ 1.\ 0467\\ 1.\ 0416\\ 1.\ 0416\\ 1.\ 0393\\ 1.\ 0393\\ 1.\ 0397 \end{array}$	$\begin{array}{c} 1.\ 0528\\ 1.\ 0532\\ 1.\ 0505\\ 1.\ 0509\end{array}$	$\begin{array}{c} 1.\ 0826\\ 1.\ 0829\\ 1.\ 0787\\ 1.\ 0790\\ 1.\ 0768\\ 1.\ 0771\\ \end{array}$	$\begin{array}{c} 1.\ 0909\\ 1.\ 0912\\ 1.\ 0893\\ 1.\ 0896\end{array}$	$\begin{array}{c} 1.0951\\ 1.0954\\ 1.0935\\ 1.0938\\ 1.0938\end{array}$	$\begin{array}{c} 1.0984\\ 1.0987\\ 1.0969\\ 1.0972\\ 1.0972 \end{array}$
or intern	gages	IH	Pitch d	Minus toler- ance gage	15	$in in 1.0284 \\ 1.0281 \\ 1.0268 \\ 1.0265 \\ 1.0265$	$\begin{array}{c} 1.\ 0326\\ 1.\ 0323\\ 1.\ 0310\\ 1.\ 0307 \end{array}$	$\begin{array}{c} 1.\ 0359\\ 1.\ 0356\\ 1.\ 0344\\ 1.\ 0341\end{array}$	$\begin{array}{c} 1.\ 0445\\ 1.\ 0442\\ 1.\ 0432\\ 1.\ 0429\\ 1.\ 0429 \end{array}$	$\begin{array}{c} 1.\ 0463\\ 1.\ 0459\\ 1.\ 0416\\ 1.\ 0412\\ 1.\ 0393\\ 1.\ 0389\end{array}$	$\begin{array}{c} 1.\ 0528\\ 1.\ 0524\\ 1.\ 0505\\ 1.\ 0501\end{array}$	$\begin{array}{c} 1.\ 0826\\ 1.\ 0823\\ 1.\ 0787\\ 1.\ 0784\\ 1.\ 0768\\ 1.\ 0765\end{array}$	1. 0909 1. 0906 1. 0893 1. 0893	$\begin{array}{c} 1.\ 0951\\ 1.\ 0948\\ 1.\ 0935\\ 1.\ 0932\end{array}$	1.0984 1.0981 1.0969 1.0969
Gages fi	ead plug			Major diam- eter	14	in 1. 0555 1. 0555 1. 0539 1. 0539 1. 0533	$\begin{array}{c} 1.\ 0567\\ 1.\ 0562\\ 1.\ 0551\\ 1.\ 0551\\ 1.\ 0546 \end{array}$	$\begin{array}{c} 1.\ 0576\\ 1.\ 0571\\ 1.\ 0561\\ 1.\ 0556\end{array}$	$\begin{array}{c} 1.\ 0600\\ 1.\ 0595\\ 1.\ 0587\\ 1.\ 0582\end{array}$	$\begin{array}{c} 1.\ 1082\\ 1.\ 1075\\ 1.\ 1035\\ 1.\ 1035\\ 1.\ 1028\\ 1.\ 1012\\ 1.\ 1005 \end{array}$	1. 1069 1. 1062 1. 1046 1. 1039	$\begin{array}{c} 1.\ 1187\\ 1.\ 1181\\ 1.\ 1181\\ 1.\ 1148\\ 1.\ 1129\\ 1.\ 1129\\ 1.\ 1123\end{array}$	1.1180 1.1174 1.1164 1.1158	$\begin{array}{c} 1.\ 1192\\ 1.\ 1187\\ 1.\ 1176\\ 1.\ 1171 \end{array}$	1, 1201 1, 1196 1, 1186 1, 1181
	A three T thre				13	in in 0.0219 1.0219 1.0222 1.0219 1.0222	$\begin{array}{c} 1.\ 0264\\ 1.\ 0267\\ 1.\ 0264\\ 1.\ 0267\\ 1.\ 0267\end{array}$	$\begin{array}{c} 1.\ 0300\\ 1.\ 0303\\ 1.\ 0303\\ 1.\ 0303\end{array}$	$\begin{array}{c} 1.0393\\ 1.0396\\ 1.0396\\ 1.0393\\ 1.0396\end{array}$	$\begin{array}{c} 1.\ 0322\\ 1.\ 0326\\ 1.\ 0322\\ 1.\ 0326\\ 1.\ 0326\\ 1.\ 0326\\ 1.\ 0326 \end{array}$	$\begin{array}{c} 1.\ 0438\\ 1.\ 0442\\ 1.\ 0442\\ 1.\ 0438\\ 1.\ 0442 \end{array}$	$\begin{array}{c} 1.\ 0709\\ 1.\ 0712\\ 1.\ 0709\\ 1.\ 0712\\ 1.\ 0712\\ 1.\ 0712\\ 1.\ 0712\\ 1.\ 0712\\ \end{array}$	$\begin{array}{c} 1.\ 0844\\ 1.\ 0847\\ 1.\ 0844\\ 1.\ 0847\\ 1.\ 0847\end{array}$	$\begin{array}{c} 1.\ 0889\\ 1.\ 0892\\ 1.\ 0892\\ 1.\ 0892\\ 1.\ 0892 \end{array}$	$\begin{array}{c} 1.\ 0925\\ 1.\ 0928\\ 1.\ 0925\\ 1.\ 0928\\ 1.\ 0928 \end{array}$
		ġ		Major diam- eter	12	in in 0.025 1.0625 1.0631 1.0631 1.0631	$\begin{array}{c} 1.\ 0625\\ 1.\ 0630\\ 1.\ 0625\\ 1.\ 0630\end{array}$	$\begin{array}{c} 1.\ 0625\\ 1.\ 0630\\ 1.\ 0620\\ 1.\ 0630\\ 1.\ 0630\end{array}$	$\begin{array}{c} 1.\ 0625\\ 1.\ 0630\\ 1.\ 0625\\ 1.\ 0630\\ 1.\ 0630\end{array}$	$\begin{array}{c} 1.\ 1250\\ 1.\ 1257\\ 1.\ 1257\\ 1.\ 1257\\ 1.\ 1257\\ 1.\ 1257\\ 1.\ 1257\end{array}$	$\begin{array}{c} 1.1250\\ 1.1257\\ 1.1257\\ 1.1257\\ 1.1257\end{array}$	1, 1250 1, 1256 1, 1256 1, 1256 1, 1256 1, 1256 1, 1256	$\begin{array}{c} 1.1250\\ 1.1256\\ 1.1256\\ 1.1256\\ 1.1256\end{array}$	$\begin{array}{c} 1.1250\\ 1.1255\\ 1.1255\\ 1.1250\\ 1.1255\end{array}$	$\begin{array}{c} 1.1250\\ 1.1255\\ 1.1255\\ 1.1250\\ 1.1255\end{array}$
	for major	NOT GO Un-	finished hot- rolled material	п	in				1.09820 1.09832	1. 10040 1. 10052					
	ng gages i diameter	LON		Semi- finished	10	$\begin{array}{c} in\\ 1.\ 05160\\ 1.\ 05172\\ 1.\ 05310\\ 1.\ 05322\end{array}$	$\begin{array}{c} 1.\ 05240\\ 1.\ 05252\\ 1.\ 05380\\ 1.\ 05392 \end{array}$	$\begin{array}{c} 1.\ 05300\\ 1.\ 05312\\ 1.\ 05440\\ 1.\ 05452 \end{array}$	$\begin{array}{c} 1.\ 05480\\ 1.\ 05492\\ 1.\ 05600\\ 1.\ 05612 \end{array}$	$\begin{array}{c} 1.\ 09820\\ 1.\ 09832\\ 1.\ 10640\\ 1.\ 10652\\ 1.\ 10860\\ 1.\ 10872 \end{array}$	1. 10790 1. 10802 1. 11000 1. 11012	$\begin{array}{c} 1.\ 10600\\ 1.\ 10612\\ 1.\ 11180\\ 1.\ 11192\\ 1.\ 11360\\ 1.\ 11372\end{array}$	1. 11410 1. 11422 1. 11560 1. 11572	$\begin{array}{c} 1.\ 11490\\ 1.\ 11502\\ 1.\ 11630\\ 1.\ 11642 \end{array}$	$\begin{array}{c} 1.\ 11550\\ 1.\ 11562\\ 1.\ 11690\\ 1.\ 11702\\ \end{array}$
neads	Z plain ri		GO		6	-in 1. 06100 1. 06088 1. 06250 1. 06238	$\begin{array}{c} 1.\ 06110\\ 1.\ 06098\\ 1.\ 06250\\ 1.\ 06238\\ 1.\ 06238 \end{array}$	$\begin{array}{c} 1.\ 06110\\ 1.\ 06098\\ 1.\ 06250\\ 1.\ 06238\\ 1.\ 06238 \end{array}$	$\begin{array}{c} 1.\ 06130\\ 1.\ 06138\\ 1.\ 06118\\ 1.\ 06250\\ 1.\ 06238 \end{array}$	$\begin{array}{c} 1.12280\\ 1.12268\\ 1.12268\\ 1.12268\\ 1.12268\\ 1.12500\\ 1.12488 \end{array}$	$\begin{array}{c} 1.\ 12290\\ 1.\ 12278\\ 1.\ 12500\\ 1.\ 12488\\ 1.\ 12488 \end{array}$	$\begin{array}{c} 1.12320\\ 1.12320\\ 1.12308\\ 1.12308\\ 1.12308\\ 1.12500\\ 1.12488\end{array}$	$\begin{array}{c} 1.\ 12350\\ 1.\ 12338\\ 1.\ 12500\\ 1.\ 12500\\ 1.\ 12488 \end{array}$	$\begin{array}{c} 1.12360\\ 1.12348\\ 1.12500\\ 1.12488\\ 1.12488\end{array}$	$\begin{array}{c} 1.12360\\ 1.12348\\ 1.12500\\ 1.12488 \end{array}$
tternal th				Minor diam- eter	×	$in \\ 1.0019 \\ 1.0025 \\ 1.0047 \\ 1.0053 $	$\begin{array}{c} 1.0083\\ 1.0088\\ 1.0108\\ 1.0113\\ 1.0113 \end{array}$	$\begin{array}{c} 1.\ 0133\\ 1.\ 0138\\ 1.\ 0158\\ 1.\ 0163\\ 1.\ 0163 \end{array}$	$\begin{array}{c} 1.0264\\ 1.0269\\ 1.0269\\ 1.0291\\ 1.0291 \end{array}$	$\begin{array}{c} 9882\\ 9889\\ 9919\\ 9926\\ 9959\\ 9959\\ 9959\\ \end{array}$	$\begin{array}{c} 1.\ 0077\\ 1.\ 0084\\ 1.\ 0115\\ 1.\ 0122 \end{array}$	$\begin{array}{c} 1.\ 0421\\ 1.\ 0427\\ 1.\ 0451\\ 1.\ 0457\\ 1.\ 0457\\ 1.\ 0484\\ 1.\ 0490 \end{array}$	$\begin{array}{c} 1.\ 0644\\ 1.\ 0650\\ 1.\ 0672\\ 1.\ 0672\\ 1.\ 0678 \end{array}$	$\begin{array}{c} 1.\ 0708\\ 1.\ 0713\\ 1.\ 0733\\ 1.\ 0738\\ 1.\ 0738 \end{array}$	$\begin{array}{c} 1.\ 0758\\ 1.\ 0763\\ 1.\ 0783\\ 1.\ 0783\\ 1.\ 0788\\ \end{array}$
ges for ea	gages	ΓO	iameter	Minus toler- ance gage	-	in in 1.0154 1.0154 1.0151 1.0182 1.0182	$\begin{array}{c} 1.\ 0203\\ 1.\ 0200\\ 1.\ 0228\\ 1.\ 0225\\ 1.\ 0225 \end{array}$	$\begin{array}{c} 1.\ 0241\\ 1.\ 0238\\ 1.\ 0266\\ 1.\ 0263\\ 1.\ 0263 \end{array}$	$\begin{array}{c} 1.\ 0341\\ 1.\ 0338\\ 1.\ 0363\\ 1.\ 0360\\ 1.\ 0360 \end{array}$	$\begin{array}{c} 1.\ 0191\\ 1.\ 0187\\ 1.\ 0228\\ 1.\ 0228\\ 1.\ 0268\\ 1.\ 0264\\ \end{array}$	$\begin{array}{c} 1.\ 0348\\ 1.\ 0344\\ 1.\ 0386\\ 1.\ 0382\end{array}$	$\begin{array}{c} 1.0601\\ 1.0598\\ 1.0631\\ 1.0628\\ 1.0664\\ 1.0661\\ 1.0661 \end{array}$	$\begin{array}{c} 1.\ 0779\\ 1.\ 0776\\ 1.\ 0807\\ 1.\ 0804\end{array}$	$\begin{array}{c} 1.0828\\ 1.0825\\ 1.0853\\ 1.0850\\ 1.0850\end{array}$	$\begin{array}{c} 1.0866\\ 1.0863\\ 1.0891\\ 1.0888\\ 1.0888 \end{array}$
Ga	ead ring		Piteh d	Plus toler- ance gage	9	$in in 0.154 \\ 1.0154 \\ 1.0157 \\ 1.0182 \\ 1.0182 \\ 1.0185$	$\begin{array}{c} 1.\ 0203\\ 1.\ 0206\\ 1.\ 0228\\ 1.\ 0231\\ 1.\ 0231 \end{array}$	$\begin{array}{c} 1.\ 0241\\ 1.\ 0244\\ 1.\ 0266\\ 1.\ 0269\\ 1.\ 0269 \end{array}$	$\begin{array}{c} 1.\ 0341\\ 1.\ 0344\\ 1.\ 0363\\ 1.\ 0366\\ 1.\ 0366\end{array}$	$\begin{array}{c} 1.\ 0191\\ 1.\ 0195\\ 1.\ 0228\\ 1.\ 0232\\ 1.\ 0268\\ 1.\ 0268\\ 1.\ 0272 \end{array}$	$\begin{array}{c} 1.\ 0348\\ 1.\ 0352\\ 1.\ 0386\\ 1.\ 0390 \end{array}$	$\begin{array}{c} 1.\ 0601\\ 1.\ 0604\\ 1.\ 0631\\ 1.\ 0632\\ 1.\ 0667\\ 1.\ 0667\\ \end{array}$	$\begin{array}{c} 1.\ 0779\\ 1.\ 0782\\ 1.\ 0807\\ 1.\ 0810 \end{array}$	$\begin{array}{c} 1.0828\\ 1.0831\\ 1.0831\\ 1.0853\\ 1.0856\end{array}$	$\begin{array}{c} 1.\ 0866\\ 1.\ 0869\\ 1.\ 0891\\ 1.\ 0894 \end{array}$
	X threed of the second			Minor diam- eter	5	$in \\ 9933 \\ 9927 \\ 9948 \\ 9942 \\ 9942$	$\begin{array}{c} 1.\ 0009\\ 1.\ 0004\\ 1.\ 0023\\ 1.\ 0018 \end{array}$	$\begin{array}{c} 1.\ 0069\\ 1.\ 0064\\ 1.\ 0083\\ 1.\ 0078\end{array}$	$\begin{array}{c} 1.\ 0226\\ 1.\ 0221\\ 1.\ 0238\\ 1.\ 0233\\ 1.\ 0233\end{array}$	$\begin{array}{c} 9681\\ 9674\\ .9674\\ .9674\\ .9674\\ .9703\\ .9696\end{array}$	$^{9876}_{-9897}$	$\begin{array}{c} 1.\ 0330\\ 1.\ 0324\\ 1.\ 0324\\ 1.\ 0324\\ 1.\ 0324\\ 1.\ 0342\\ 1.\ 0342 \end{array}$	$\begin{array}{c} 1.\ 0558\\ 1.\ 0552\\ 1.\ 0552\\ 1.\ 0567\\ 1.\ 0567\end{array}$	$\begin{array}{c} 1.\ 0634\\ 1.\ 0629\\ 1.\ 0648\\ 1.\ 0643\end{array}$	$\begin{array}{c} 1.\ 0694\\ 1.\ 0689\\ 1.\ 0708\\ 1.\ 0703 \end{array}$
	G(Pitch diam- eter				4	in in 0.0204 1.0204 1.0201 1.0219 1.0219	$\begin{array}{c} 1.\ 0250\\ 1.\ 0247\\ 1.\ 0264\\ 1.\ 0261\end{array}$	$\begin{array}{c} 1.\ 0286\\ 1.\ 0283\\ 1.\ 0300\\ 1.\ 0297 \end{array}$	$\begin{array}{c} 1.\ 0381\\ 1.\ 0378\\ 1.\ 0393\\ 1.\ 0390\\ 1.\ 0390 \end{array}$	$\begin{array}{c} 1.\ 0300\\ 1.\ 0296\\ 1.\ 0300\\ 1.\ 0296\\ 1.\ 0322\\ 1.\ 0318 \end{array}$	$\begin{array}{c} 1.\ 0417\\ 1.\ 0413\\ 1.\ 0413\\ 1.\ 0438\\ 1.\ 0434\end{array}$	1,0691 1,0691 1,0688 1,0691 1,0709 1,0709 1,0706	$\begin{array}{c} 1.0829\\ 1.0826\\ 1.0826\\ 1.0844\\ 1.0841\end{array}$	$\begin{array}{c} 1.0875\\ 1.0872\\ 1.0889\\ 1.0886\\ 1.0886\end{array}$	$\begin{array}{c} 1.0911\\ 1.0908\\ 1.0925\\ 1.0922\\ 1.0922 \end{array}$
	Glass				en l	2A 3A	$^{2A}_{3A}$	2A 3A	2A 3A	1A 2A 3A	2A 3A	1A 2A 3A	2A 3A	2A 3A	2A 3A
	Series designa- tion				61	NN	UNEF	NN	NN	UNC	NN	UNF	NN	UNEF	NN
	Nominal size and threads per inch				1	1.6625-16	1.0625-18	1. 0625-20	1. 0625–28	1. 125-7	1, 125–8	1. 125-12	1. 125–16	1.125-18	1.125-20

1.120-28

ND | DE

1. 125-28	1. 1875-8	1. 1875–12	1. 1875-16	1. 1875-18	1. 1875-20	1, 1875–28	1.250-7	1.250-8	1.250-12	1.250-16	1.250-18	1,250-20	1.250-28	1, 3125-8
NN	NN	UN	NN	UNEF	NN	NN	UNC	NN	UNF	NN	UNEF	NIJ	NN	NU
2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	$^{2\mathrm{B}}_{3\mathrm{B}}$	$^{2B}_{3B}$	1B 2B 3B	2B 3B	1B 2B 3B	$^{2\mathrm{B}}_{3\mathrm{B}}$	2B 3B	2B 3B	2B 3B	2B 3B
$\left \begin{array}{c} 1.\ 09500\\ 1.\ 09488\\ 1.\ 09260\\ 1.\ 09248\\ 1.\ 09248\\ \end{array} \right $	1. 07700 1. 07688 1. 06720 1. 06720	$\begin{array}{c} 1.\ 11500\\ 1.\ 11488\\ 1.\ 10730\\ 1.\ 10718\\ 1.\ 10718 \end{array}$	$\begin{array}{c} 1.13400\\ 1.13388\\ 1.12830\\ 1.12818\\ 1.12818 \end{array}$	$\begin{array}{c} 1.\ 14000\\ 1.\ 13988\\ 1.\ 13550\\ 1.\ 13538\\ 1.\ 13538\end{array}$	$\begin{array}{c} 1.\ 14500\\ 1.\ 14488\\ 1.\ 14120\\ 1.\ 14108\\ 1.\ 14108 \end{array}$	$\begin{array}{c} 1.\ 15700\\ 1.\ 15688\\ 1.\ 15510\\ 1.\ 15498\\ 1.\ 15498 \end{array}$	1. 12300 1. 12288 1. 12288 1. 12288 1. 11250 1. 11238	1. 14000 1. 13988 1. 12970 1. 12958	1. 17800 1. 17789 1. 17789 1. 17789 1. 17788 1. 16980 1. 16968	1. 19600 1. 19588 1. 19080 1. 19068	1. 20300 1. 20288 1. 19800 1. 19788	$\begin{array}{c} 1.\ 20700\\ 1.\ 20688\\ 1.\ 20688\\ 1.\ 20358\\ 1.\ 20358\end{array}$	1. 22000 1. 21988 1. 21760 1. 21748	$\begin{array}{c} 1.20200\\ 1.20188\\ 1.19220\\ 1.19208\\ 1.19208\end{array}$
$\begin{array}{c} 1.\ 08600\\ 1.\ 08612\\ 1.\ 08600\\ 1.\ 08612\\ 1.\ 08612 \end{array}$	$\begin{array}{c} 1.\ 05200\\ 1.\ 05212\\ 1.\ 05212\\ 1.\ 05212\\ 1.\ 05212\end{array}$	$\begin{array}{c} 1.\ 09700\\ 1.\ 09712\\ 1.\ 09712\\ 1.\ 09712\\ 1.\ 09712 \end{array}$	$\begin{array}{c} 1.12000\\ 1.12012\\ 1.12012\\ 1.12000\\ 1.12012 \end{array}$	1. 12700 1. 12712 1. 12712 1. 12712 1. 12712	$\begin{array}{c} 1.13300\\ 1.13312\\ 1.13300\\ 1.13300\\ 1.13312 \end{array}$	$\begin{array}{c} 1.14900\\ 1.14912\\ 1.14900\\ 1.14900\\ 1.14912 \end{array}$	$\begin{array}{c} 1.\ 09500\\ 1.\ 09512\\ 1.\ 09502\\ 1.\ 09502\\ 1.\ 09502\\ 1.\ 09502\\ 1.\ 09512 \end{array}$	$\begin{array}{c} 1.\ 11500\\ 1.\ 11512\\ 1.\ 11500\\ 1.\ 11512\\ 1.\ 11512 \end{array}$	$\begin{array}{c} 1.16000\\ 1.16012\\ 1.16012\\ 1.16000\\ 1.16000\\ 1.16000\\ 1.16012\\ 1.16012\\ \end{array}$	$\begin{array}{c} 1.\ 18200\\ 1.\ 18212\\ 1.\ 18200\\ 1.\ 18212\\ 1.\ 18212 \end{array}$	$\begin{array}{c} 1. \ 19000 \\ 1. \ 19012 \\ 1. \ 19000 \\ 1. \ 19012 \end{array}$	$\begin{array}{c} 1.\ 19600\\ 1.\ 19612\\ 1.\ 19600\\ 1.\ 19612\\ 1.\ 19612 \end{array}$	$\begin{array}{c} 1.21100\\ 1.21112\\ 1.21100\\ 1.21112\\ 1.21112\end{array}$	1. 17700 1. 17712 1. 17700 1. 17700 1. 17712
1, 1070 1, 1073 1, 1057 1, 1057 1, 1060	1. 1154 1. 1158 1. 1158 1. 1131 1. 1135	$\begin{array}{c} 1.1409\\ 1.1412\\ 1.1390\\ 1.1393\end{array}$	1. 1535 1. 1538 1. 1538 1. 1519 1. 1522	1. 1577 1. 1580 1. 1580 1. 1561 1. 1564	1. 1611 1. 1614 1. 1595 1. 1598	1. 1696 1. 1699 1. 1699 1. 1683 1. 1686	$\begin{array}{c} 1.1716\\ 1.1720\\ 1.1668\\ 1.1668\\ 1.1672\\ 1.1644\\ 1.1648\\ 1.1648\end{array}$	$\begin{array}{c} 1.1780\\ 1.1784\\ 1.1784\\ 1.1757\\ 1.1761\\ 1.1761 \end{array}$	$\begin{array}{c} 1.\ 2079\\ 1.\ 2082\\ 1.\ 2039\\ 1.\ 2042\\ 1.\ 2019\\ 1.\ 2022 \end{array}$	$\begin{array}{c} 1.2160 \\ 1.2163 \\ 1.2144 \\ 1.2147 \\ 1.2147 \end{array}$	$\begin{array}{c} 1.2202\\ 1.2205\\ 1.2186\\ 1.2189\end{array}$	$\begin{array}{c} 1.\ 2236\\ 1.\ 2239\\ 1.\ 2220\\ 1.\ 2223\\ 1.\ 2223\end{array}$	1. 2321 1. 2324 1. 2308 1. 2311	$\begin{array}{c} 1.2405\\ 1.2409\\ 1.2382\\ 1.2386\\ 1.2386\end{array}$
1. 1070 1. 1067 1. 1057 1. 1054	1. 1154 1. 1150 1. 1131 1. 1131 1. 1127	$\begin{array}{c} 1.\ 1409\\ 1.\ 1406\\ 1.\ 1390\\ 1.\ 1387\\ 1.\ 1387 \end{array}$	1. 1535 1. 1532 1. 1532 1. 1519 1. 1516	$\begin{array}{c} 1.\ 1577\\ 1.\ 1574\\ 1.\ 1561\\ 1.\ 1558\\ 1.\ 1558\end{array}$	1. 1611 1. 1608 1. 1595 1. 1592	1. 1696 1. 1693 1. 1683 1. 1680	$\begin{array}{c} 1. \ 1716\\ 1. \ 1720\\ 1. \ 1668\\ 1. \ 1664\\ 1. \ 1644\\ 1. \ 1644\end{array}$	1.1780 1.1776 1.1757 1.1757 1.1753	$\begin{array}{c} 1.\ 2079\\ 1.\ 2076\\ 1.\ 2039\\ 1.\ 2036\\ 1.\ 2019\\ 1.\ 2016\\ 1.\ 2016\end{array}$	$\begin{array}{c} 1.2160\\ 1.2157\\ 1.2144\\ 1.2144\\ 1.2141\end{array}$	$\begin{array}{c} 1.\ 2202\\ 1.\ 2199\\ 1.\ 2186\\ 1.\ 2183\end{array}$	$\begin{array}{c} 1.\ 2236\\ 1.\ 2233\\ 1.\ 2220\\ 1.\ 2220\\ 1.\ 2217\end{array}$	$\begin{array}{c} 1.\ 2321\\ 1.\ 2318\\ 1.\ 2308\\ 1.\ 2305\\ 1.\ 2305\end{array}$	1. 2405 1. 2401 1. 2382 1. 2378
$\begin{array}{c} 1.\ 1225\\ 1.\ 1220\\ 1.\ 1212\\ 1.\ 1207\\ 1.\ 1207 \end{array}$	1. 1695 1. 1695 1. 1688 1. 1672 1. 1665	1. 1770 1. 1764 1. 1751 1. 1745	$\begin{array}{c} 1.\ 1806\\ 1.\ 1800\\ 1.\ 1790\\ 1.\ 1784\\ 1.\ 1784 \end{array}$	1. 1818 1. 1813 1. 1802 1. 1797	1, 1828 1, 1823 1, 1812 1, 1812 1, 1807	1. 1851 1. 1846 1. 1838 1. 1833 1. 1833	$\begin{array}{c} 1.\ 2335\\ 1.\ 2328\\ 1.\ 2287\\ 1.\ 2280\\ 1.\ 2263\\ 1.\ 2263\\ 1.\ 2256\end{array}$	$\begin{array}{c} 1.\ 2321\\ 1.\ 2314\\ 1.\ 2298\\ 1.\ 2291\\ 1.\ 2291 \end{array}$	$\begin{array}{c} \textbf{1. } 2440\\ \textbf{1. } 2434\\ \textbf{1. } 2400\\ \textbf{1. } 2394\\ \textbf{1. } 2380\\ \textbf{1. } 2374\end{array}$	$\begin{array}{c} 1.\ 2431\\ 1.\ 2425\\ 1.\ 2415\\ 1.\ 2409\end{array}$	$\begin{array}{c} 1.\ 2443\\ 1.\ 2438\\ 1.\ 2427\\ 1.\ 2422\\ 1.\ 2422\end{array}$	$\begin{array}{c} 1.2453\\ 1.2448\\ 1.2437\\ 1.2437\\ 1.2432\end{array}$	$\begin{array}{c} 1.2476\\ 1.2471\\ 1.2463\\ 1.2463\\ 1.2458\end{array}$	1. 2946 1. 2939 1. 2923 1. 2916
$\begin{array}{c} 1.\ 1018\\ 1.\ 1021\\ 1.\ 1018\\ 1.\ 1021\\ 1.\ 1021 \end{array}$	1. 1063 1. 1067 1. 1067 1. 1063 1. 1067	$\begin{array}{c} 1. \ 1334 \\ 1. \ 1337 \\ 1. \ 1334 \\ 1. \ 1337 \\ 1. \ 1337 \end{array}$	1, 1469 1, 1472 1, 1469 1, 1472 1, 1472	1. 1514 1. 1517 1. 1514 1. 1514 1. 1517	1. 1550 1. 1553 1. 1553 1. 1553 1. 1553	1. 1643 1. 1646 1. 1646 1. 1648 1. 1646	1, 1572 1, 1576 1, 1576 1, 1572 1, 1572 1, 1572 1, 1572	$\begin{array}{c} 1.\ 1688\\ 1.\ 1692\\ 1.\ 1688\\ 1.\ 1692\\ 1.\ 1692 \end{array}$	1. 1959 1. 1962 1. 1959 1. 1959 1. 1959 1. 1962	$\begin{array}{c} 1.\ 2094\\ 1.\ 2097\\ 1.\ 2094\\ 1.\ 2097\\ 1.\ 2097 \end{array}$	$\begin{array}{c} 1.\ 2139\\ 1.\ 2142\\ 1.\ 2139\\ 1.\ 2142\\ 1.\ 2142\end{array}$	$\begin{array}{c} 1.\ 2175\\ 1.\ 2178\\ 1.\ 2178\\ 1.\ 2178\\ 1.\ 2178\end{array}$	$\begin{array}{c} 1.\ 2268\\ 1.\ 2271\\ 1.\ 2268\\ 1.\ 2268\\ 1.\ 2271 \end{array}$	$\begin{array}{c} 1. \ 2313 \\ 1. \ 2317 \\ 1. \ 2313 \\ 1. \ 2313 \\ 1. \ 2317 \end{array}$
$\begin{array}{c} 1.1250\\ 1.1255\\ 1.1255\\ 1.1255\\ 1.1255\end{array}$	$\begin{array}{c} 1.\ 1875\\ 1.\ 1882\\ 1.\ 1882\\ 1.\ 1882\\ 1.\ 1882\end{array}$	$\begin{array}{c} 1.\ 1875\\ 1.\ 1881\\ 1.\ 1875\\ 1.\ 1881\\ 1.\ 1881\end{array}$	$\begin{array}{c} 1.\ 1875\\ 1.\ 1881\\ 1.\ 1881\\ 1.\ 1881\end{array}$	$\begin{array}{c} 1.\ 1875\\ 1.\ 1880\\ 1.\ 1880\\ 1.\ 1880\end{array}$	1. 1875 1. 1880 1. 1880 1. 1880 1. 1880	$\begin{array}{c} 1.1875\\ 1.1880\\ 1.1880\\ 1.1875\\ 1.1880\\ 1.1880 \end{array}$	$\begin{array}{c} 1.\ 2500\\ 1.\ 2507\\ 1.\ 2507\\ 1.\ 2507\\ 1.\ 2500\\ 1.\ 2507\end{array}$	$\begin{array}{c} 1.\ 2500\\ 1.\ 2507\\ 1.\ 2500\\ 1.\ 2507\\ 1.\ 2507 \end{array}$	$\begin{array}{c} 1.2500\\ 1.2506\\ 1.2506\\ 1.2506\\ 1.2506\\ 1.2506\\ 1.2506\end{array}$	$\begin{array}{c} 1.\ 2500\\ 1.\ 2506\\ 1.\ 2506\\ 1.\ 2506\\ 1.\ 2506 \end{array}$	$\begin{array}{c} 1.\ 2500\\ 1.\ 2505\\ 1.\ 2500\\ 1.\ 2505\\ 1.\ 2505 \end{array}$	$\begin{array}{c} 1.\ 2500\\ 1.\ 2505\\ 1.\ 2500\\ 1.\ 2505\\ 1.\ 2505 \end{array}$	$\begin{array}{c} 1.\ 2500\\ 1.\ 2505\\ 1.\ 2500\\ 1.\ 2505\\ 1.\ 2505\end{array}$	$\begin{array}{c} 1.3125 \\ 1.3132 \\ 1.3132 \\ 1.3132 \\ 1.3132 \end{array}$
							1. 22320	1. 22540 1. 22552						
$\begin{array}{c} 1.\ 11730\\ 1.\ 11742\\ 1.\ 11850\\ 1.\ 11862\\ 1.\ 11862\\ \end{array}$	$\begin{array}{c} 1.\ 17040\\ 1.\ 17052\\ 1.\ 17250\\ 1.\ 17262\\ 1.\ 17262 \end{array}$	$\begin{array}{c} 1.\ 17440\\ 1.\ 17452\\ 1.\ 17610\\ 1.\ 17622\\ 1.\ 17622 \end{array}$	$\begin{array}{c} 1.\ 17660\\ 1.\ 17672\\ 1.\ 17810\\ 1.\ 17822\\ 1.\ 17822 \end{array}$	$\begin{array}{c} 1.\ 17730\\ 1.\ 17742\\ 1.\ 17880\\ 1.\ 17892\\ 1.\ 17892 \end{array}$	$\begin{array}{c} 1.\ 17800\\ 1.\ 17812\\ 1.\ 17940\\ 1.\ 17952\\ 1.\ 17952 \end{array}$	$\begin{array}{c} 1.\ 17980\\ 1.\ 17992\\ 1.\ 18100\\ 1.\ 18112\\ 1.\ 18112\\ \end{array}$	$\begin{array}{c} 1.\ 22320\\ 1.\ 22332\\ 1.\ 23140\\ 1.\ 23152\\ 1.\ 23360\\ 1.\ 23372\\ \end{array}$	$\begin{array}{c} 1.\ 23290\\ 1.\ 23302\\ 1.\ 23500\\ 1.\ 23512\\ \end{array}$	$\begin{array}{c} 1.\ 23100\\ 1.\ 23112\\ 1.\ 23680\\ 1.\ 23692\\ 1.\ 23872\\ 1.\ 23872 \end{array}$	$\begin{array}{c} 1.\ 23910\\ 1.\ 23922\\ 1.\ 24060\\ 1.\ 24072 \end{array}$	$\begin{array}{c} 1.\ 23980\\ 1.\ 23992\\ 1.\ 24130\\ 1.\ 25142 \end{array}$	$\begin{array}{c} 1.\ 24050\\ 1.\ 24062\\ 1.\ 24190\\ 1.\ 24202\\ 1.\ 24202 \end{array}$	$\begin{matrix} 1.\ 24230\\ 1.\ 24242\\ 1.\ 24350\\ 1.\ 24362\end{matrix}$	1. 29540 1. 29552 1. 29750 1. 29762
1. 12380 1. 12368 1. 12500 1. 12488	$\begin{array}{c} 1.\ 18540\\ 1.\ 18528\\ 1.\ 18750\\ 1.\ 18738\\ 1.\ 18738 \end{array}$	$\begin{array}{c} 1.\ 18580\\ 1.\ 18568\\ 1.\ 18750\\ 1.\ 18738\\ 1.\ 18738 \end{array}$	$\begin{array}{c} 1.\ 18600\\ 1.\ 18588\\ 1.\ 18750\\ 1.\ 18738\\ 1.\ 18738 \end{array}$	$\begin{array}{c} 1.\ 18600\\ 1.\ 18588\\ 1.\ 18750\\ 1.\ 18738\\ 1.\ 18738 \end{array}$	1. 18610 1. 18598 1. 18750 1. 18738	$\begin{array}{c} 1.\ 18630\\ 1.\ 18618\\ 1.\ 18750\\ 1.\ 18738\\ 1.\ 18738 \end{array}$	$\begin{array}{c} 1.\ 24780\\ 1.\ 24768\\ 1.\ 24768\\ 1.\ 24768\\ 1.\ 24768\\ 1.\ 25000\\ 1.\ 24988 \end{array}$	$\begin{array}{c} 1.\ 24790\\ 1.\ 24778\\ 1.\ 25000\\ 1.\ 24988\\ 1.\ 24988 \end{array}$	$\begin{array}{c} 1.\ 24820\\ 1.\ 24808\\ 1.\ 24808\\ 1.\ 24808\\ 1.\ 24808\\ 1.\ 24988\\ 1.\ 24988\\ \end{array}$	$\begin{array}{c} 1.\ 24850\\ 1.\ 24838\\ 1.\ 24838\\ 1.\ 25000\\ 1.\ 24988 \end{array}$	$\begin{array}{c} 1.\ 24850\\ 1.\ 24838\\ 1.\ 25000\\ 1.\ 24988\\ 1.\ 24988 \end{array}$	$\begin{array}{c} 1.\ 24860\\ 1.\ 24848\\ 1.\ 25000\\ 1.\ 24988\\ \end{array}$	$\begin{array}{c} 1.\ 24880\\ 1.\ 24868\\ 1.\ 25000\\ 1.\ 24988\\ \end{array}$	$\begin{array}{c} 1.\ 31040\\ 1.\ 31028\\ 1.\ 31250\\ 1.\ 31238\\ 1.\ 31238 \end{array}$
$\begin{array}{c} 1.\ 0889\\ 1.\ 0894\\ 1.\ 0911\\ 1.\ 0916\\ 1.\ 0916 \end{array}$	$\begin{array}{c} 1.\ 0701\\ 1.\ 0708\\ 1.\ 0740\\ 1.\ 0747\end{array}$	$\begin{array}{c} 1.\ 1079\\ 1.\ 1085\\ 1.\ 1111\\ 1.\ 1117\\ 1.\ 1117\\ \end{array}$	$\begin{array}{c} 1.1268\\ 1.1274\\ 1.1296\\ 1.1302\\ 1.1302 \end{array}$	1. 1330 1. 1335 1. 1358 1. 1363	$\begin{array}{c} 1.1381\\ 1.1386\\ 1.1386\\ 1.1407\\ 1.1412 \end{array}$	$\begin{array}{c} 1.\ 1513\\ 1.\ 1518\\ 1.\ 1535\\ 1.\ 1540\\ 1.\ 1540 \end{array}$	$\begin{array}{c} 1.1130\\ 1.1137\\ 1.1167\\ 1.1174\\ 1.1174\\ 1.1208\\ 1.1215\end{array}$	$\begin{array}{c} 1.1326\\ 1.1333\\ 1.1333\\ 1.1364\\ 1.1371\end{array}$	1. 1669 1. 1675 1. 1699 1. 1705 1. 1733 1. 1739	$\begin{array}{c} 1.\ 1893\\ 1.\ 1899\\ 1.\ 1921\\ 1.\ 1927\\ 1.\ 1927\end{array}$	$\begin{array}{c} 1.\ 1955\\ 1.\ 1960\\ 1.\ 1983\\ 1.\ 1988\\ 1.\ 1988 \end{array}$	$\begin{array}{c} 1.2006\\ 1.2011\\ 1.2032\\ 1.2037\\ 1.2037\end{array}$	$\begin{array}{c} 1.\ 2138\\ 1.\ 2143\\ 1.\ 2160\\ 1.\ 2165\\ 1.\ 2165\end{array}$	$\begin{array}{c} 1.1950\\ 1.1957\\ 1.1989\\ 1.1996\\ 1.1996\end{array}$
$\begin{array}{c} 1.\ 0966\\ 1.\ 0963\\ 1.\ 0988\\ 1.\ 0985\\ 1.\ 0985 \end{array}$	$\begin{array}{c} 1.\ 0972\\ 1.\ 0968\\ 1.\ 1011\\ 1.\ 1007\\ 1.\ 1007\\ \end{array}$	$\begin{array}{c} 1.\ 1259\\ 1.\ 1256\\ 1.\ 1291\\ 1.\ 1288\end{array}$	$\begin{array}{c} 1.\ 1403\\ 1.\ 1400\\ 1.\ 1431\\ 1.\ 1428\\ 1.\ 1428 \end{array}$	1. 1450 1. 1447 1. 1478 1. 1478 1. 1475	$\begin{array}{c} 1.\ 1489\\ 1.\ 1486\\ 1.\ 1515\\ 1.\ 1512\\ 1.\ 1512 \end{array}$	$\begin{array}{c} 1.\ 1590\\ 1.\ 1587\\ 1.\ 1612\\ 1.\ 1609\\ 1.\ 1609 \end{array}$	1, 1439 1, 1435 1, 1476 1, 1472 1, 1472 1, 1517 1, 1513	1. 1597 1. 1593 1. 1635 1. 1631	$\begin{array}{c} 1.\ 1849\\ 1.\ 1846\\ 1.\ 1876\\ 1.\ 1876\\ 1.\ 1913\\ 1.\ 1910\\ 1.\ 1910 \end{array}$	$\begin{array}{c} 1.\ 2028\\ 1.\ 2025\\ 1.\ 2056\\ 1.\ 2053\\ 1.\ 2053 \end{array}$	$\begin{array}{c} 1.2075 \\ 1.2072 \\ 1.2103 \\ 1.2100 \end{array}$	$\begin{array}{c} 1.2114 \\ 1.2111 \\ 1.2140 \\ 1.2137 \\ 1.2137 \end{array}$	$\begin{array}{c} 1.\ 2215\\ 1.\ 2212\\ 1.\ 2237\\ 1.\ 2234\\ 1.\ 2234 \end{array}$	$\begin{array}{c} 1.\ 2221\\ 1.\ 2217\\ 1.\ 2260\\ 1.\ 2256\end{array}$
$\begin{array}{c} 1.\ 0966\\ 1.\ 0969\\ 1.\ 0998\\ 1.\ 0991\\ \end{array}$	$\begin{array}{c} 1.\ 0972\\ 1.\ 0976\\ 1.\ 1011\\ 1.\ 1015\\ 1.\ 1015 \end{array}$	$\begin{array}{c} 1.1259\\ 1.1262\\ 1.1291\\ 1.1294\\ 1.1294\end{array}$	$\begin{array}{c} 1.1403\\ 1.1406\\ 1.1431\\ 1.1431\\ 1.1434 \end{array}$	$\begin{array}{c} 1.\ 1450\\ 1.\ 1453\\ 1.\ 1478\\ 1.\ 1481\\ 1.\ 1481 \end{array}$	1, 1489 1, 1492 1, 1515 1, 1518	1. 1590 1. 1593 1. 1612 1. 1615	$\begin{array}{c} 1,1439\\ 1,1443\\ 1,1476\\ 1,1476\\ 1,1480\\ 1,1517\\ 1,1517\\ 1,1521\end{array}$	$\begin{array}{c} 1.1597\\ 1.1601\\ 1.1635\\ 1.1639\\ 1.1639\end{array}$	$\begin{array}{c} 1.1849\\ 1.1852\\ 1.1852\\ 1.1879\\ 1.1882\\ 1.1913\\ 1.1916\\ 1.1916\end{array}$	$\begin{array}{c} 1.2028\\ 1.2031\\ 1.2056\\ 1.2059\\ 1.2059\end{array}$	$\begin{array}{c} 1.2075\\ 1.2078\\ 1.2078\\ 1.2103\\ 1.2106\end{array}$	$\begin{array}{c} 1.2114 \\ 1.2117 \\ 1.2140 \\ 1.2143 \\ 1.2143 \end{array}$	$\begin{array}{c} 1.\ 2215\\ 1.\ 2218\\ 1.\ 2237\\ 1.\ 2240\\ \end{array}$	$\begin{array}{c} 1.\ 2221\\ 1.\ 2225\\ 1.\ 2260\\ 1.\ 2264\\ \end{array}$
$\begin{array}{c} 1.\ 0851\\ 1.\ 0846\\ 1.\ 0863\\ 1.\ 0858\\ 1.\ 0858 \end{array}$	$\begin{array}{c} 1.\ 0501\\ 1.\ 0494\\ 1.\ 0522\\ 1.\ 0515\\ 1.\ 0515 \end{array}$	1. 0956 1. 0950 1. 0973 1. 0967	$\begin{array}{c} 1. \ 1183 \\ 1. \ 1177 \\ 1. \ 1198 \\ 1. \ 1192 \\ 1. \ 1192 \end{array}$	$\begin{array}{c} 1.1258\\ 1.1253\\ 1.1253\\ 1.1273\\ 1.1268\end{array}$	1. 1319 1. 1314 1. 1333 1. 1328 1. 1328	1. 1476 1. 1471 1. 1488 1. 1488 1. 1483	$\begin{array}{c} 1.\ 0931\\ 1.\ 0924\\ 1.\ 0931\\ 1.\ 0924\\ 1.\ 0953\\ 1.\ 0946 \end{array}$	1. 1126 1. 1119 1. 1147 1. 1140	$\begin{array}{c} 1.1580\\ 1.1574\\ 1.1574\\ 1.1574\\ 1.1574\\ 1.1598\\ 1.1598\end{array}$	$\begin{array}{c} 1.1808\\ 1.1802\\ 1.1802\\ 1.1823\\ 1.1817\end{array}$	$\begin{array}{c} 1.\ 1883\\ 1.\ 1878\\ 1.\ 1898\\ 1.\ 1893\\ 1.\ 1893 \end{array}$	$\begin{array}{c} 1. \ 1944 \\ 1. \ 1939 \\ 1. \ 1958 \\ 1. \ 1953 \\ 1. \ 1953 \end{array}$	$\begin{array}{c} 1.2101\\ 1.2096\\ 1.2113\\ 1.2108\\ 1.2108\end{array}$	1. 1751 1. 1754 1. 1772 1. 1772 1. 1765
1. 1006 1. 1003 1. 1018 1. 1015	1. 1042 1. 1038 1. 1063 1. 1059	1. 1317 1. 1314 1. 1334 1. 1334 1. 1331	1. 1454 1. 1451 1. 1469 1. 1466	1. 1499 1. 1496 1. 1514 1. 1511	1. 1536 1. 1533 1. 1533 1. 1550 1. 1547	$\begin{array}{c} 1.1631\\ 1.1628\\ 1.1628\\ 1.1643\\ 1.1640\end{array}$	1. 1550 1. 1550 1. 1550 1. 1556 1. 1572 1. 1568	$\begin{array}{c} 1.1667\\ 1.1663\\ 1.1688\\ 1.1684\\ 1.1684\end{array}$	1. 1941 1. 1938 1. 1938 1. 1938 1. 1938 1. 1959 1. 1956	$\begin{array}{c} 1.2079\\ 1.2076\\ 1.2094\\ 1.2094\\ 1.2091 \end{array}$	1. 2124 1. 2121 1. 2139 1. 2136	1. 2161 1. 2158 1. 2158 1. 2175 1. 2172	$\begin{array}{c} 1.2256\\ 1.2253\\ 1.2268\\ 1.2265\\ 1.2265\end{array}$	1. 2292 1. 2288 1. 2313 1. 2309
2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	1A 2A 3A	2A 3A	1A 2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2.A 3.A
NN	NN	NN	NN	UNEF	NN	NN	UNC	NN	UNF	NN	UNEF	NN	NN	NN
1.125-28	1. 1875–8	1. 1875-12	1. 1875–16	1. 1875-18	1.1875-20	1. 1875–28	1. 250-7	2. 250-8	1. 250-12	1.250-16	1, 250–18	1. 250-20	1. 250-28	1.3125-8

ued
utin
Coi
reads-
screw th
Unified
series,
thread
standard
for :
Gages
TABLE 6.19.

		Nominal size and	threads per inch		21	1. 3125-12	1. 3125-16	1.3125-18	1. 3125-20	1.3125-28	1.375-6	1. 375-8	1.375-12	1. 375-16	1. 375-18
		Series designa-	tion		20	NN	NN	UNEF	NN	NN	UNC	NN	UNF	NN	UNEF
		Class			19	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	1B 2B 3B	2B 3B	1B 2B 3B	2B 3B	2B 3B
	ug gages diameter		NOT		18	in in 1.24000 1.23988 1.23230 1.23218	$\begin{array}{c} 1.\ 25900\\ 1.\ 25888\\ 1.\ 25330\\ 1.\ 25318\\ 1.\ 25318 \end{array}$	$\begin{array}{c} 1.\ 26500\\ 1.\ 26488\\ 1.\ 26050\\ 1.\ 26038\\ 1.\ 26038 \end{array}$	$\begin{array}{c} 1.\ 27000\\ 1.\ 26988\\ 1.\ 26620\\ 1.\ 26608\\ 1.\ 26608 \end{array}$	$\begin{array}{c} 1.\ 28200\\ 1.\ 28188\\ 1.\ 28010\\ 1.\ 27998 \end{array}$	$\begin{array}{c} 1.\ 22500\\ 1.\ 22488\\ 1.\ 22500\\ 1.\ 22488\\ 1.\ 21460\\ 1.\ 21448 \end{array}$	$\begin{array}{c} 1.\ 26500\\ 1.\ 26488\\ 1.\ 26488\\ 1.\ 25470\\ 1.\ 25458 \end{array}$	$\begin{array}{c} 1.\ 30300\\ 1.\ 30288\\ 1.\ 30288\\ 1.\ 30288\\ 1.\ 30288\\ 1.\ 29480\\ 1.\ 29468 \end{array}$	$\begin{array}{c} 1.\ 32100\\ 1.\ 32088\\ 1.\ 31580\\ 1.\ 31568\\ 1.\ 31568\end{array}$	$\begin{array}{c} 1.\ 32800\\ 1.\ 32788\\ 1.\ 32300\\ 1.\ 32288\\ 1.\ 32288 \end{array}$
	Z plain pl for minor		0Đ		17	$in in 22200 \\ 1.22212 \\ 1.22212 \\ 1.22200 \\ 1.22212 \\ 1.22220 \\ 1.2220 \\ 1.22220 \\ 1.22220 \\ 1.22220 \\ 1.22200 \\ 1.2220 \\ 1.22200 \\ 1.22200 \\ 1.22200 \\ 1.22200 \\ 1.22200 \\ 1.$	$\begin{array}{c} 1.\ 24500\\ 1.\ 24512\\ 1.\ 24500\\ 1.\ 24512\\ 1.\ 24512\end{array}$	$\begin{array}{c} 1.\ 25200\\ 1.\ 25212\\ 1.\ 25200\\ 1.\ 25212\\ 1.\ 25212 \end{array}$	$\begin{array}{c} 1.\ 25800\\ 1.\ 25812\\ 1.\ 25800\\ 1.\ 25812\\ 1.\ 25812 \end{array}$	$\begin{array}{c} 1.\ 27400\\ 1.\ 27412\\ 1.\ 27400\\ 1.\ 27412\\ 1.\ 27412 \end{array}$	$\begin{array}{c} 1.\ 19500\\ 1.\ 19512\\ 1.\ 19500\\ 1.\ 19502\\ 1.\ 19512\\ 1.\ 19512\\ 1.\ 19512\end{array}$	$\begin{array}{c} 1.\ 24000\\ 1.\ 24012\\ 1.\ 24000\\ 1.\ 24012\\ 1.\ 24012 \end{array}$	$\begin{array}{c} 1.28500\\ 1.28512\\ 1.28500\\ 1.28502\\ 1.28502\\ 1.28512\\ 1.28512\end{array}$	$\begin{array}{c} 1.\ 30700\\ 1.\ 30712\\ 1.\ 30700\\ 1.\ 30712\\ 1.\ 30712 \end{array}$	1. 31500 1. 31512 1. 31512 1. 31512 1. 31512
al thread			iameter	Plus toler- ance gage	16	in in 2659 1. 2659 1. 2662 1. 2640 1. 2643	$\begin{array}{c} 1.\ 2785\\ 1.\ 2788\\ 1.\ 2769\\ 1.\ 2772\\ 1.\ 2772 \end{array}$	$\begin{array}{c} 1.\ 2827\\ 1.\ 2830\\ 1.\ 2811\\ 1.\ 2814\\ 1.\ 2814 \end{array}$	$\begin{array}{c} 1.\ 2861\\ 1.\ 2864\\ 1.\ 2845\\ 1.\ 2848\end{array}$	$\begin{array}{c} 1.\ 2946\\ 1.\ 2949\\ 1.\ 2933\\ 1.\ 2936\\ 1.\ 2936\end{array}$	$\begin{array}{c} 1.\ 2822\\ 1.\ 2826\\ 1.\ 2771\\ 1.\ 2775\\ 1.\ 2745\\ 1.\ 2749\\ 1.\ 2749 \end{array}$	1. 3031 1. 3035 1. 3035 1. 3008 1. 3012	$\begin{array}{c} 1.\ 3332\\ 1.\ 3335\\ 1.\ 3291\\ 1.\ 3294\\ 1.\ 3270\\ 1.\ 3270\\ 1.\ 3273 \end{array}$	$\begin{array}{c} 1.\ 3410\\ 1.\ 3413\\ 1.\ 3394\\ 1.\ 3397\\ 1.\ 3397 \end{array}$	1. 3452 1. 3455 1. 3436 1. 3436 1. 3439
or intern	gages	IH	Pitch d	Minus toler- ance gage	15	$in \\ 1. 2659 \\ 1. 2656 \\ 1. 2640 \\ 1. 2637 \\$	1. 2785 1. 2782 1. 2769 1. 2766	$\begin{array}{c} 1.\ 2827\\ 1.\ 2824\\ 1.\ 2811\\ 1.\ 2808\end{array}$	$\begin{array}{c} 1.2861\\ 1.2858\\ 1.2845\\ 1.2842\\ 1.2842 \end{array}$	$\begin{array}{c} 1.\ 2946\\ 1.\ 2943\\ 1.\ 2933\\ 1.\ 2930\\ 1.\ 2930\end{array}$	$\begin{array}{c} 1.\ 2822\\ 1.\ 2818\\ 1.\ 2771\\ 1.\ 2767\\ 1.\ 2745\\ 1.\ 2741\\ 1.\ 2741 \end{array}$	1. 3031 1. 3027 1. 3008 1. 3004	1. 3332 1. 3329 1. 3291 1. 3298 1. 3288 1. 3267 1. 3267	1. 3410 1. 3407 1. 3394 1. 3391	1. 3452 1. 3449 1. 3436 1. 3436 1. 3433
Gages f	ead plug			Major diam- eter	14	in in 1.3020 1.3020 1.3014 1.3001 1.2995	$\begin{array}{c} 1.\ 3056\\ 1.\ 3050\\ 1.\ 3040\\ 1.\ 3034\end{array}$	$\begin{array}{c} 1.3068\\ 1.3063\\ 1.3052\\ 1.3052\\ 1.3047\end{array}$	1. 3078 1. 3073 1. 3062 1. 3062 1. 3057	1. 3101 1. 3096 1. 3088 1. 3083	$\begin{array}{c} 1.\ 3544\\ 1.\ 3536\\ 1.\ 3536\\ 1.\ 3493\\ 1.\ 3485\\ 1.\ 3467\\ 1.\ 3459\end{array}$	$\begin{array}{c} 1.3572 \\ 1.3565 \\ 1.3549 \\ 1.3542 \\ 1.3542 \end{array}$	$\begin{array}{c} 1.3693\\ 1.3687\\ 1.3652\\ 1.3646\\ 1.3646\\ 1.3631\\ 1.3625\end{array}$	1. 3681 1. 3675 1. 3665 1. 3659	1. 3693 1. 3688 1. 3677 1. 3677 1. 3672
	X thu GO GO ajor Pitch an- eter					$in \\ 1.2584 \\ 1.2587 \\ 1.258$	$\begin{array}{c} 1.\ 2719\\ 1.\ 2722\\ 1.\ 2719\\ 1.\ 2722\\ 1.\ 2722\end{array}$	1. 2764 1. 2767 1. 2767 1. 2764 1. 2767	$\begin{array}{c} 1.\ 2800\\ 1.\ 2803\\ 1.\ 2800\\ 1.\ 2803\\ 1.\ 2803 \end{array}$	1. 2893 1. 2896 1. 2893 1. 2893 1. 2896	1. 2667 1. 2667 1. 2667 1. 2667 1. 2667 1. 2667 1. 2667	1. 2938 1. 2942 1. 2938 1. 2938	$\begin{array}{c} 1.\ 3209\\ 1.\ 3212\\ 1.\ 3209\\ 1.\ 3209\\ 1.\ 3209\\ 1.\ 3209\\ 1.\ 3212 \end{array}$	1. 3344 1. 3347 1. 3347 1. 3344 1. 3347	1. 3389 1. 3392 1. 3392 1. 3392 1. 3392
		G G G G G G G G G G G G G G G G G G G		Major diam- eter	12	in 1. 3125 1. 3131 1. 3131 1. 3131 1. 3131	1. 3125 1. 3131 1. 3131 1. 3131 1. 3131	$\begin{array}{c} 1.\ 3125\\ 1.\ 3130\\ 1.\ 3125\\ 1.\ 3125\\ 1.\ 3130 \end{array}$	1. 3125 1. 3130 1. 3130 1. 3125 1. 3130	1. 3125 1. 3130 1. 3130 1. 3130 1. 3130	$\begin{array}{c} 1.\ 3750\\ 1.\ 3758\\ 1.\ 3750\\ 1.\ 3758\\ 1.\ 3758\\ 1.\ 3758\\ 1.\ 3758\end{array}$	1. 3750 1. 3757 1. 3757 1. 3757 1. 3757	1. 3750 1. 3756 1. 3756 1. 3756 1. 3756 1. 3756 1. 3756	1. 3750 1. 3756 1. 3756 1. 3756 1. 3756	1. 3750 1. 3755 1. 3755 1. 3750 1. 3755
	for major	GO		finished hot- rolled material	11	in					1.34530	1. 35030 1. 35042			
	ng gages fo diameter NOT NOT Semi- finished		10	$in in 29940 \\ 1.29952 \\ 1.29952 \\ 1.30110 \\ 1.30122$	$\begin{array}{c} 1.30160\\ 1.30172\\ 1.30310\\ 1.30322\\ 1.30322\end{array}$	$\begin{array}{c} 1.30230\\ 1.30242\\ 1.30380\\ 1.30392\end{array}$	$\begin{array}{c} 1.30300\\ 1.30312\\ 1.30312\\ 1.30440\\ 1.30452 \end{array}$	$\begin{array}{c} 1.30480\\ 1.30492\\ 1.30600\\ 1.30612 \end{array}$	$\begin{array}{c} 1.34530\\ 1.34542\\ 1.35440\\ 1.35452\\ 1.35680\\ 1.35682\\ 1.35692\end{array}$	$\begin{array}{c} 1.\ 35780\\ 1.\ 35792\\ 1.\ 36000\\ 1.\ 36012 \end{array}$	1. 35590 1. 35602 1. 36170 1. 36170 1. 36182 1. 36360 1. 36372	$\begin{array}{c} 1.36410\\ 1.36422\\ 1.36560\\ 1.36572\\ \end{array}$	$\begin{array}{c} 1.36480\\ 1.36492\\ 1.36630\\ 1.36642\\ 1.36642 \end{array}$		
rreads	Z plain ri		90		6	$in in 1.31080 \\ 1.31068 \\ 1.31068 \\ 1.31250 \\ 1.31238 $	$\begin{array}{c} 1.\ 31100\\ 1.\ 31088\\ 1.\ 31250\\ 1.\ 31238\\ 1.\ 31238 \end{array}$	$\begin{array}{c} 1.\ 31100\\ 1.\ 31088\\ 1.\ 31250\\ 1.\ 31238\\ 1.\ 31238\end{array}$	$\begin{array}{c} 1.\ 31110\\ 1.\ 31098\\ 1.\ 31250\\ 1.\ 31238\\ 1.\ 31238\end{array}$	$\begin{array}{c} 1.\ 31130\\ 1.\ 31118\\ 1.\ 31250\\ 1.\ 31238\\ 1.\ 31238\end{array}$	$\begin{array}{c} 1.\ 37260\\ 1.\ 37248\\ 1.\ 37260\\ 1.\ 37248\\ 1.\ 37248\\ 1.\ 37500\\ 1.\ 37488\end{array}$	$\begin{array}{c} 1.\ 37280\\ 1.\ 37268\\ 1.\ 37500\\ 1.\ 37488 \end{array}$	$\begin{array}{c} 1.\ 37310\\ 1.\ 37298\\ 1.\ 37298\\ 1.\ 37298\\ 1.\ 37298\\ 1.\ 37500\\ 1.\ 37488\end{array}$	$\begin{array}{c} 1.\ 37350\\ 1.\ 37338\\ 1.\ 37500\\ 1.\ 37488\\ 1.\ 37488 \end{array}$	1. 37350 1. 37338 1. 37338 1. 37500 1. 37488
kternal tl				Minor diam- eter	œ	in 1. 2329 1. 2335 1. 2361 1. 2367	$\begin{array}{c} 1.2518\\ 1.2524\\ 1.2524\\ 1.2552\\ 1.2552\end{array}$	$\begin{array}{c} 1.\ 2580\\ 1.\ 2585\\ 1.\ 2608\\ 1.\ 2613\\ 1.\ 2613 \end{array}$	$\begin{array}{c} 1.2631\\ 1.2636\\ 1.2657\\ 1.2662\\ 1.2662\end{array}$	$\begin{array}{c} 1.\ 2763\\ 1.\ 2768\\ 1.\ 2768\\ 1.\ 2790\\ 1.\ 2790\end{array}$	$\begin{array}{c} 1.\ 2162\\ 1.\ 2170\\ 1.\ 2202\\ 1.\ 2210\\ 1.\ 2246\\ 1.\ 2254\end{array}$	$\begin{array}{c} 1.\ 2573\\ 1.\ 2580\\ 1.\ 2613\\ 1.\ 2620 \end{array}$	$\begin{array}{c} 1.\ 2916\\ 1.\ 2922\\ 1.\ 2947\\ 1.\ 2953\\ 1.\ 2982\\ 1.\ 2988\end{array}$	1. 3143 1. 3149 1. 3171 1. 3171 1. 3177	1. 3205 1. 3210 1. 3233 1. 3238 1. 3238
ges for e	gages	ΓO	lameter	Minus toler- ance gage	4	$in in 1.2509 \\ 1.2506 \\ 1.2541 \\ 1.2538 \\ 1.25$	$\begin{array}{c} 1.\ 2653\\ 1.\ 2650\\ 1.\ 2681\\ 1.\ 2678\\ 1.\ 2678\end{array}$	$\begin{array}{c} 1.\ 2700\\ 1.\ 2697\\ 1.\ 2728\\ 1.\ 2725\\ 1.\ 2725 \end{array}$	$\begin{array}{c} 1.\ 2739\\ 1.\ 2736\\ 1.\ 2765\\ 1.\ 2762\\ 1.\ 2762 \end{array}$	$\begin{array}{c} 1.2840\\ 1.2837\\ 1.2862\\ 1.2859\\ 1.2859\end{array}$	$\begin{array}{c} 1.\ 2523\\ 1.\ 2519\\ 1.\ 2563\\ 1.\ 2559\\ 1.\ 2607\\ 1.\ 2603\end{array}$	$\begin{array}{c} 1.\ 2844\\ 1.\ 2840\\ 1.\ 2884\\ 1.\ 2880\\ 1.\ 2880\end{array}$	$\begin{array}{c} 1.3096\\ 1.3093\\ 1.3127\\ 1.3124\\ 1.3124\\ 1.3159\\ 1.3159\end{array}$	1. 3278 1. 3275 1. 3306 1. 3303	1. 3325 1. 3322 1. 3353 1. 3350
Ga	Gage: ead ring ga ead ring ga Pitch diar Plus W toler- gage		Plus toler- ance gage	9	$in in 1.2509 \\ 1.2512 \\ 1.2541 \\ 1.2544$	$\begin{array}{c} 1.2653\\ 1.2656\\ 1.2681\\ 1.2684\\ 1.2684\end{array}$	$\begin{array}{c} 1.\ 2700\\ 1.\ 2703\\ 1.\ 2728\\ 1.\ 2731\\ 1.\ 2731\end{array}$	$\begin{array}{c} 1.\ 2739\\ 1.\ 2742\\ 1.\ 2765\\ 1.\ 2768\\ 1.\ 2768\end{array}$	$\begin{array}{c} 1.2840\\ 1.2843\\ 1.2862\\ 1.2865\\ 1.2865\end{array}$	$\begin{array}{c} 1.\ 2523\\ 1.\ 2527\\ 1.\ 2563\\ 1.\ 2567\\ 1.\ 2567\\ 1.\ 2607\\ 1.\ 2607\\ \end{array}$	$\begin{array}{c} 1.\ 2844\\ 1.\ 2848\\ 1.\ 2884\\ 1.\ 2888\\ 1.\ 2888\end{array}$	$\begin{array}{c} 1.\ 3096\\ 1.\ 3099\\ 1.\ 3127\\ 1.\ 3130\\ 1.\ 3165\\ 1.\ 3165\end{array}$	1. 3278 1. 3281 1. 3306 1. 3309	1. 3325 1. 3328 1. 3358 1. 3356 1. 3356	
	X three 30 Addition diam-			Minor diam- eter	÷	in 1. 2206 1. 2200 1. 2223 1. 2217	$\begin{array}{c} 1.\ 2433\\ 1.\ 2427\\ 1.\ 2448\\ 1.\ 2442\\ 1.\ 2442 \end{array}$	$\begin{array}{c} 1.\ 2508\\ 1.\ 2503\\ 1.\ 2523\\ 1.\ 2518\\ 1.\ 2518 \end{array}$	$\begin{array}{c} 1.\ 2569\\ 1.\ 2564\\ 1.\ 2583\\ 1.\ 2578\end{array}$	$\begin{array}{c} 1.\ 2726\\ 1.\ 2721\\ 1.\ 2738\\ 1.\ 2733\\ 1.\ 2733\end{array}$	1. 1921 1. 1913 1. 1921 1. 1913 1. 1945 1. 1945 1. 1937	1. 2375 1. 2368 1. 2368 1. 2397 1. 2390	$\begin{array}{c} 1.\ 2829\\ 1.\ 2823\\ 1.\ 2829\\ 1.\ 2848\\ 1.\ 2848\\ 1.\ 2842\end{array}$	1. 3058 1. 3052 1. 3073 1. 3067	1. 3133 1. 3128 1. 3128 1. 3148 1. 3143
	G(diam- eter				4	$in \\ 1.\ 2567 \\ 1.\ 2564 \\ 1.\ 2584 \\ 1.\ 2581 \\ 1.\ 1.\ 1.\ 1.\ 1.\ 1.\ 1.\ 1.\ 1.\ 1.\$	$\begin{array}{c} 1.\ 2704\\ 1.\ 2701\\ 1.\ 2719\\ 1.\ 2716\\ 1.\ 2716\end{array}$	$\begin{array}{c} 1.\ 2749\\ 1.\ 2746\\ 1.\ 2764\\ 1.\ 2761\\ 1.\ 2761\end{array}$	$\begin{array}{c} 1.\ 2786\\ 1.\ 2783\\ 1.\ 2783\\ 1.\ 2800\\ 1.\ 2797\end{array}$	$\begin{array}{c} 1.\ 2881\\ 1.\ 2878\\ 1.\ 2893\\ 1.\ 2890\\ 1.\ 2890 \end{array}$	$\begin{array}{c} 1.\ 2643\\ 1.\ 2639\\ 1.\ 2643\\ 1.\ 2643\\ 1.\ 2667\\ 1.\ 2667\\ 1.\ 2663\end{array}$	1. 2916 1. 2912 1. 2938 1. 2934	1. 3190 1. 3187 1. 3187 1. 3190 1. 3190 1. 3209 1. 3209	1. 3329 1. 3326 1. 3344 1. 3341 1. 3341	1. 3374 1. 3371 1. 3389 1. 3386 1. 3386
	Class				3	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	1A 2A 3A	2A 3A	1A 2A 3A	2A 3A	2A 3A
	Series designa- tion				2	NU	NN	UNEF	NN	NN	UNC	NN	UNF	NN	UNEF
	Nominal size and threads per Inch				1	1. 3125-12	1.3125-16	I. 3125–18	1. 3125-20	1.3125-28	1. 375–6	1. 375-8	1. 375-12	1.375-16	1. 375-18

1.375-20

77.5

2.13

33200 ||

32100

1. 375-20	1. 375-28	1. 4375–6	1. 4375-8	1, 4375–12	1. 4375–16	1. 4375-18	1. 4375-20	1, 4375–28	1. 500-6	1. 500-8	1. 500-12	1.500-16	1. 500–18	
ŨМ	NN	UN	UN	UN	NN	UNEF	UN	UN	UNC	UN	UNF	UN	UNEF	
2B 3B	$^{2B}_{3B}$	2B 3B	2B 3B	2B 3B	2B 3B	$^{2\mathrm{B}}_{3\mathrm{B}}$	2B 3B	$^{2\mathrm{B}}_{3\mathrm{B}}$	1B 2B 3B	$^{2\mathrm{B}}_{3\mathrm{B}}$	1B 2B 3B	2B 3B	2B 3B	
1. 33200 1. 33188 1. 32870 1. 32870 1. 32858	$\begin{array}{c} 1.\ 34500\\ 1.\ 34488\\ 1.\ 34260\\ 1.\ 34288\\ 1.\ 34248 \end{array}$	$\begin{array}{c} 1.\ 28800\\ 1.\ 28788\\ 1.\ 27710\\ 1.\ 27698 \end{array}$	$\begin{array}{c} 1.\ 32700\\ 1.\ 32688\\ 1.\ 31720\\ 1.\ 31708\\ 1.\ 31708 \end{array}$	$\begin{array}{c} 1.\ 36500\\ 1.\ 36488\\ 1.\ 35730\\ 1.\ 35718\\ 1.\ 35718 \end{array}$	$\begin{array}{c} 1.\ 38400\\ 1.\ 38388\\ 1.\ 37830\\ 1.\ 37818\\ 1.\ 37818 \end{array}$	$\begin{array}{c} 1.\ 39000\\ 1.\ 38988\\ 1.\ 38550\\ 1.\ 38538\\ 1.\ 38538 \end{array}$	$\begin{array}{c} 1.\ 39500\\ 1.\ 39488\\ 1.\ 39120\\ 1.\ 39120\\ 1.\ 39108 \end{array}$	$\begin{array}{c} 1.\ 40700\\ 1.\ 40688\\ 1.\ 40688\\ 1.\ 40498\\ 1.\ 40498 \end{array}$	$\begin{array}{c} 1.\ 35000\\ 1.\ 34988\\ 1.\ 35960\\ 1.\ 34988\\ 1.\ 33960\\ 1.\ 33948\\ 1.\ 33948 \end{array}$	$\begin{array}{c} 1.39000\\ 1.38988\\ 1.37970\\ 1.37958\\ 1.37958\end{array}$	$\begin{array}{c} 1.42800\\ 1.42800\\ 1.42788\\ 1.42788\\ 1.41980\\ 1.41980\\ 1.41968\end{array}$	$\begin{array}{c} 1.\ 44600\\ 1.\ 44588\\ 1.\ 44080\\ 1.\ 44068\\ 1.\ 44068 \end{array}$	$\begin{array}{c} 1.\ 45200\\ 1.\ 45188\\ 1.\ 44800\\ 1.\ 44788\\ 1.\ 44788\end{array}$	
$\left \begin{array}{c} 1.32100\\ 1.32112\\ 1.32100\\ 1.32100\\ 1.32112 \end{array} \right $	$\begin{array}{c} 1.33600\\ 1.33612\\ 1.33600\\ 1.33612\\ 1.33612\end{array}$	$\begin{array}{c} 1.\ 25700\\ 1.\ 25712\\ 1.\ 25712\\ 1.\ 25712\\ 1.\ 25712\end{array}$	$\begin{array}{c} 1.\ 30200\\ 1.\ 30212\\ 1.\ 30212\\ 1.\ 30212\\ 1.\ 30212 \end{array}$	$\begin{array}{c} 1.\ 34700\\ 1.\ 34712\\ 1.\ 34712\\ 1.\ 34700\\ 1.\ 34712 \end{array}$	$\begin{array}{c} 1.\ 37000\\ 1.\ 37012\\ 1.\ 37000\\ 1.\ 37012\\ 1.\ 37012 \end{array}$	$\begin{array}{c} 1.\ 37700\\ 1.\ 37712\\ 1.\ 37712\\ 1.\ 37712\\ 1.\ 37712\end{array}$	$\begin{array}{c} 1.38300\\ 1.38312\\ 1.38300\\ 1.38312\\ 1.38312\end{array}$	$\begin{array}{c} 1.\ 39900\\ 1.\ 39912\\ 1.\ 39900\\ 1.\ 39912\\ 1.\ 39912 \end{array}$	$\begin{array}{c} 1.\ 32000\\ 1.\ 32012\\ 1.\ 32012\\ 1.\ 32012\\ 1.\ 32012\\ 1.\ 32012\\ 1.\ 32012\\ \end{array}$	$\begin{array}{c} 1.36500\\ 1.36512\\ 1.36500\\ 1.36512\\ 1.36512 \end{array}$	$\begin{array}{c} 1.41000\\ 1.41012\\ 1.41012\\ 1.41000\\ 1.41012\\ 1.41012\\ 1.41012\\ \end{array}$	$\begin{array}{c} 1.\ 43200\\ 1.\ 43212\\ 1.\ 43200\\ 1.\ 43212\\ 1.\ 43212\end{array}$	$\begin{array}{c} 1.\ 44000\\ 1.\ 44012\\ 1.\ 44000\\ 1.\ 44012\\ 1.\ 44012\\ \end{array}$	
$\begin{array}{c} 1.3486\\ 1.3489\\ 1.3470\\ 1.3470\\ 1.3473\end{array}$	$\begin{array}{c} 1.3571\\ 1.3574\\ 1.3558\\ 1.3561\\ 1.3561 \end{array}$	$\begin{array}{c} 1.3396\\ 1.3400\\ 1.3370\\ 1.3374\\ 1.3374\end{array}$	$\begin{array}{c} 1.3657\\ 1.3661\\ 1.3634\\ 1.3638\\ 1.3638\end{array}$	$\begin{array}{c} 1.\ 3910\\ 1.\ 3913\\ 1.\ 3891\\ 1.\ 3894\\ 1.\ 3894 \end{array}$	$\begin{array}{c} 1.\ 4037\\ 1.\ 4040\\ 1.\ 4020\\ 1.\ 4023\\ 1.\ 4023 \end{array}$	$\begin{array}{c} 1.4079\\ 1.4082\\ 1.4062\\ 1.4065\\ 1.4065\end{array}$	$\begin{matrix} 1.\ 4112\\ 1.\ 4115\\ 1.\ 4096\\ 1.\ 4099\end{matrix}$	$\begin{array}{c} 1.4198\\ 1.4201\\ 1.4184\\ 1.4187\\ 1.4187\end{array}$	$\begin{array}{c} 1.\ 4075\\ 1.\ 4079\\ 1.\ 4079\\ 1.\ 4022\\ 1.\ 3996\\ 1.\ 3996\\ 1.\ 4000 \end{array}$	$\begin{array}{c} 1.4283\\ 1.4287\\ 1.4259\\ 1.4263\\ 1.4263\end{array}$	$\begin{array}{c} 1.\ 4584\\ 1.\ 4587\\ 1.\ 4587\\ 1.\ 4545\\ 1.\ 4522\\ 1.\ 4522\\ 1.\ 4522\end{array}$	$\begin{array}{c} 1.4662\\ 1.4665\\ 1.4645\\ 1.4648\\ 1.4648\end{array}$	$\begin{array}{c} 1.\ 4704\\ 1.\ 4707\\ 1.\ 4687\\ 1.\ 4690\\ \end{array}$	
$\begin{array}{c} \mathbf{1.\ 3486}\\ \mathbf{1.\ 3483}\\ \mathbf{1.\ 3483}\\ \mathbf{1.\ 3467}\\ \mathbf{1.\ 3467}\end{array}$	$\begin{array}{c} 1.3571\\ 1.3568\\ 1.3558\\ 1.3555\\ 1.3555\end{array}$	$\begin{array}{c} 1.\ 3396\\ 1.\ 3392\\ 1.\ 3370\\ 1.\ 3366\\ 1.\ 3366\end{array}$	$\begin{array}{c} 1.\ 3657\\ 1.\ 3653\\ 1.\ 3634\\ 1.\ 3630\\ 1.\ 3630\end{array}$	$\begin{array}{c} 1.\ 3910\\ 1.\ 3907\\ 1.\ 3891\\ 1.\ 3888\\ 1.\ 3888 \end{array}$	$\begin{array}{c} 1.4037\\ 1.4034\\ 1.4034\\ 1.4020\\ 1.4017\end{array}$	$\begin{array}{c} 1.4079\\ 1.4076\\ 1.4062\\ 1.4059\\ 1.4059\end{array}$	$\begin{array}{c} 1.\ 4112\\ 1.\ 4109\\ 1.\ 4096\\ 1.\ 4093\\ 1.\ 4093 \end{array}$	$\begin{array}{c} 1.4198\\ 1.4195\\ 1.4184\\ 1.4184\\ 1.4181\end{array}$	$\begin{array}{c} 1.\ 4075\\ 1.\ 4071\\ 1.\ 4071\\ 1.\ 4022\\ 1.\ 4018\\ 1.\ 3996\\ 1.\ 3992 \end{array}$	$\begin{array}{c} 1.\ 4283\\ 1.\ 4279\\ 1.\ 4259\\ 1.\ 4255\\ 1.\ 4255\end{array}$	$\begin{array}{c} 1.4584\\ 1.4581\\ 1.4582\\ 1.4542\\ 1.4539\\ 1.4519\\ 1.4519\end{array}$	$\begin{array}{c} 1.4662\\ 1.4659\\ 1.4645\\ 1.4642\\ 1.4642\end{array}$	$\begin{array}{c} 1.\ 4704\\ 1.\ 4701\\ 1.\ 4687\\ 1.\ 4684\\ 1.\ 4684 \end{array}$	
$\begin{array}{c} 1.\ 3703\\ 1.\ 3698\\ 1.\ 3687\\ 1.\ 3682\\ 1.\ 3682 \end{array}$	$\begin{array}{c} 1.\ 3726\\ 1.\ 3721\\ 1.\ 3713\\ 1.\ 3708\\ 1.\ 3708 \end{array}$	$\begin{array}{c} 1.\ 4118\\ 1.\ 4110\\ 1.\ 4092\\ 1.\ 4084\end{array}$	$\begin{array}{c} 1.4198\\ 1.4191\\ 1.4175\\ 1.4175\\ 1.4168\end{array}$	$\begin{array}{c} 1.\ 4271\\ 1.\ 4265\\ 1.\ 4252\\ 1.\ 4246\\ 1.\ 4246\end{array}$	$\begin{array}{c} 1.4308\\ 1.4302\\ 1.4291\\ 1.4291\\ 1.4285\end{array}$	$\begin{array}{c} 1.\ 4320\\ 1.\ 4315\\ 1.\ 4303\\ 1.\ 4298\\ 1.\ 4298 \end{array}$	$\begin{array}{c} 1.\ 4329\\ 1.\ 4324\\ 1.\ 4313\\ 1.\ 4308\\ 1.\ 4308\end{array}$	$\begin{array}{c} 1.4353\\ 1.4348\\ 1.4339\\ 1.4339\\ 1.4334\end{array}$	$\begin{array}{c} 1.\ 4797\\ 1.\ 4789\\ 1.\ 4789\\ 1.\ 4744\\ 1.\ 4718\\ 1.\ 4718\\ 1.\ 4710\end{array}$	$\begin{array}{c} 1.\ 4824\\ 1.\ 4817\\ 1.\ 4800\\ 1.\ 4793\end{array}$	$\begin{array}{c} 1.\ 4945\\ 1.\ 4939\\ 1.\ 4903\\ 1.\ 4897\\ 1.\ 4883\\ 1.\ 4877\end{array}$	$\begin{array}{c} 1.4933\\ 1.4927\\ 1.4916\\ 1.4910\\ 1.4910 \end{array}$	$\begin{array}{c} 1.\ 4945\\ 1.\ 4940\\ 1.\ 4928\\ 1.\ 4928\\ 1.\ 4923 \end{array}$	
$\begin{array}{c} 1. \ 3425 \\ 1. \ 3428 \\ 1. \ 3425 \\ 1. \ 3428 \\ 1. \ 3428 \end{array}$	$\begin{array}{c} 1.3518\\ 1.3521\\ 1.3521\\ 1.3518\\ 1.3521\\ 1.3521 \end{array}$	$\begin{array}{c} 1.\ 3292\\ 1.\ 3296\\ 1.\ 3292\\ 1.\ 3296\\ 1.\ 3296 \end{array}$	$\begin{array}{c} 1.\ 3563\\ 1.\ 3567\\ 1.\ 3567\\ 1.\ 3567\end{array}$	$\begin{array}{c} 1.\ 3834\\ 1.\ 3837\\ 1.\ 3834\\ 1.\ 3837\\ 1.\ 3837\end{array}$	$\begin{array}{c} 1.\ 3969\\ 1.\ 3972\\ 1.\ 3969\\ 1.\ 3972\\ 1.\ 3972 \end{array}$	$\begin{array}{c} 1.4014\\ 1.4017\\ 1.4014\\ 1.4017\\ 1.4017\end{array}$	$\begin{array}{c} 1.4050\\ 1.4053\\ 1.4053\\ 1.4053\\ 1.4053\end{array}$	$\begin{array}{c} 1.\ 4143\\ 1.\ 4146\\ 1.\ 4146\\ 1.\ 4146\\ 1.\ 4146\end{array}$	$\begin{array}{c} 1.3917\\ 1.3921\\ 1.3917\\ 1.3917\\ 1.3921\\ 1.3917\\ 1.3921\\ 1.3921 \end{array}$	$\begin{array}{c} 1.\ 4188\\ 1.\ 4192\\ 1.\ 4188\\ 1.\ 4188\\ 1.\ 4192\end{array}$	1. 4459 1. 4459 1. 4459 1. 4459 1. 4459 1. 4462 1. 4462	$\begin{array}{c} 1.\ 4594\\ 1.\ 4597\\ 1.\ 4594\\ 1.\ 4597\\ 1.\ 4597\end{array}$	1. 4639 1. 4639 1. 4642 1. 4642 1. 4642	
$\begin{array}{c} 1.\ 3750\\ 1.\ 3755\\ 1.\ 3755\\ 1.\ 3755\\ 1.\ 3755\end{array}$	$\begin{array}{c} 1.\ 3750\\ 1.\ 3755\\ 1.\ 3755\\ 1.\ 3755\\ 1.\ 3755\end{array}$	$\begin{matrix} 1.\ 4375\\ 1.\ 4383\\ 1.\ 4383\\ 1.\ 4383\\ 1.\ 4383\end{matrix}$	$\begin{array}{c} 1.4375\\ 1.4382\\ 1.4382\\ 1.4375\\ 1.4382\end{array}$	$\begin{array}{c} 1.4375\\ 1.4381\\ 1.4381\\ 1.4375\\ 1.4381\end{array}$	$\begin{matrix} 1.\ 4375\\ 1.\ 4381\\ 1.\ 4381\\ 1.\ 4381\\ 1.\ 4381\end{matrix}$	$\begin{array}{c} 1.4375\\ 1.4380\\ 1.4375\\ 1.4375\\ 1.4380\end{array}$	$\begin{array}{c} 1.4375\\ 1.4380\\ 1.4380\\ 1.4375\\ 1.4380\end{array}$	$\begin{array}{c} 1.\ 4375\\ 1.\ 4380\\ 1.\ 4380\\ 1.\ 4375\\ 1.\ 4380\end{array}$	$\begin{array}{c} 1.5000\\ 1.5000\\ 1.5000\\ 1.5000\\ 1.5000\\ 1.5008\\ 1.5008\end{array}$	$\begin{array}{c} 1.\ 5000\\ 1.\ 5007\\ 1.\ 5000\\ 1.\ 5007\end{array}$	$\begin{array}{c} 1.5000\\ 1.5006\\ 1.5006\\ 1.5006\\ 1.5006\\ 1.5006 \end{array}$	$\begin{array}{c} 1.5000\\ 1.5006\\ 1.5006\\ 1.5006\\ 1.5006 \end{array}$	$\begin{array}{c} 1.5000\\ 1.5005\\ 1.5005\\ 1.5005 \end{array}$	
									1.47030	1. 47530 1. 47542				
$\begin{array}{c} 1.\ 36550\\ 1.\ 36562\\ 1.\ 36690\\ 1.\ 36702\\ 1.\ 36702 \end{array}$	$\begin{array}{c} 1.36730\\ 1.36742\\ 1.36850\\ 1.36850\\ 1.36862\\ 1.36862 \end{array}$	$\begin{array}{c} 1.\ 41690\\ 1.\ 41702\\ 1.\ 41930\\ 1.\ 41932\\ 1.\ 41942 \end{array}$	$\begin{array}{c} 1.\ 42030\\ 1.\ 42042\\ 1.\ 42250\\ 1.\ 42262\\ 1.\ 42262 \end{array}$	$\begin{array}{c} 1.\ 42430\\ 1.\ 42442\\ 1.\ 42610\\ 1.\ 42622\\ 1.\ 42622 \end{array}$	$\begin{array}{c} 1.42650\\ 1.42662\\ 1.42810\\ 1.42810\\ 1.42822 \end{array}$	$\begin{array}{c} 1.\ 42730\\ 1.\ 42742\\ 1.\ 42880\\ 1.\ 42892\\ 1.\ 42892 \end{array}$	$\begin{array}{c} 1.\ 42800\\ 1.\ 42812\\ 1.\ 42940\\ 1.\ 42952\\ 1.\ 42952\end{array}$	$\begin{array}{c} 1.\ 42970\\ 1.\ 42982\\ 1.\ 43100\\ 1.\ 43112\\ 1.\ 43112 \end{array}$	$\begin{array}{c} 1.\ 47030\\ 1.\ 47042\\ 1.\ 47940\\ 1.\ 47952\\ 1.\ 48180\\ 1.\ 48192\end{array}$	$\begin{array}{c} 1.48280\\ 1.48292\\ 1.48500\\ 1.48512\\ 1.48512 \end{array}$	$\begin{array}{c} 1.48090\\ 1.48102\\ 1.48670\\ 1.48682\\ 1.48682\\ 1.48860\\ 1.48872\end{array}$	$\begin{array}{c} 1.48900\\ 1.48912\\ 1.49060\\ 1.49060\\ 1.49072 \end{array}$	$\begin{array}{c} 1.48980\\ 1.48992\\ 1.49130\\ 1.49142\\ 1.49142 \end{array}$	
$\begin{array}{c} 1.\ 37360\\ 1.\ 37348\\ 1.\ 37500\\ 1.\ 37488\\ 1.\ 37488 \end{array}$	$\begin{array}{c} 1.37380\\ 1.37368\\ 1.37500\\ 1.37488\\ 1.37488\end{array}$	$\begin{array}{c} 1.\ 43510\\ 1.\ 43498\\ 1.\ 43750\\ 1.\ 43738\\ 1.\ 43738 \end{array}$	$\begin{array}{c} 1.\ 43530\\ 1.\ 43518\\ 1.\ 43750\\ 1.\ 43738\\ 1.\ 43738 \end{array}$	$\begin{array}{c} 1.43570\\ 1.43558\\ 1.43750\\ 1.43738\\ 1.43738\end{array}$	$\begin{array}{c} 1.43590\\ 1.43578\\ 1.43750\\ 1.43750\\ 1.43738 \end{array}$	$\begin{array}{c} 1.43600\\ 1.43588\\ 1.43750\\ 1.43738\\ 1.43738\end{array}$	$\begin{array}{c} 1.43610\\ 1.43598\\ 1.43750\\ 1.43738\\ 1.43738 \end{array}$	$\begin{array}{c} 1.43620\\ 1.43608\\ 1.43750\\ 1.43738\\ 1.43738 \end{array}$	$\begin{array}{c} 1.\ 49760\\ 1.\ 49748\\ 1.\ 49760\\ 1.\ 49760\\ 1.\ 49748\\ 1.\ 50000\\ 1.\ 49988\end{array}$	$\begin{array}{c} 1.49780\\ 1.49768\\ 1.50000\\ 1.49988\\ 1.49988 \end{array}$	$\begin{array}{c} 1.\ 49810\\ 1.\ 49798\\ 1.\ 49810\\ 1.\ 49798\\ 1.\ 50000\\ 1.\ 49988\end{array}$	$\begin{array}{c} 1.49840\\ 1.49828\\ 1.50000\\ 1.49988\\ 1.49988 \end{array}$	$\begin{array}{c} 1.49850\\ 1.49838\\ 1.50000\\ 1.49988\\ 1.49988 \end{array}$	
$\begin{array}{c} 1.\ 3256\\ 1.\ 3261\\ 1.\ 3282\\ 1.\ 3282\\ 1.\ 3287 \end{array}$	$\begin{array}{c} 1.\ 3388\\ 1.\ 3393\\ 1.\ 3410\\ 1.\ 3415\\ 1.\ 3415 \end{array}$	$\begin{array}{c} 1.\ 2827\\ 1.\ 2835\\ 1.\ 2871\\ 1.\ 2879\\ 1.\ 2879\end{array}$	$\begin{array}{c} 1.\ 3198\\ 1.\ 3205\\ 1.\ 3238\\ 1.\ 3238\\ 1.\ 3245 \end{array}$	$\begin{array}{c} 1.\ 3577\\ 1.\ 3583\\ 1.\ 3610\\ 1.\ 3616\\ 1.\ 3616 \end{array}$	$\begin{array}{c} 1.\ 3766\\ 1.\ 3772\\ 1.\ 3795\\ 1.\ 3801\\ 1.\ 3801 \end{array}$	$\begin{array}{c} 1.3829\\ 1.3834\\ 1.3857\\ 1.3862\\ 1.3862 \end{array}$	$\begin{array}{c} 1.3880\\ 1.3885\\ 1.3906\\ 1.3911\\ 1.3911 \end{array}$	$\begin{array}{c} 1.4011\\ 1.4016\\ 1.4035\\ 1.4040\\ 1.4040 \end{array}$	$\begin{array}{c} 1.3411\\ 1.3419\\ 1.3451\\ 1.3459\\ 1.3459\\ 1.3495\\ 1.3503\end{array}$	$\begin{array}{c} 1.\ 3822\\ 1.\ 3829\\ 1.\ 3862\\ 1.\ 3869\\ 1.\ 3869 \end{array}$	$\begin{array}{c} 1.4164\\ 1.4170\\ 1.4196\\ 1.4202\\ 1.4231\\ 1.4237\\ 1.4237\end{array}$	$\begin{array}{c} 1.\ 4391\\ 1.\ 4397\\ 1.\ 4420\\ 1.\ 4426\\ 1.\ 4426\end{array}$	1. 4454 1. 4459 1. 4482 1. 4487	
$\begin{array}{c} \mathbf{1.\ 3364}\\ \mathbf{1.\ 3361}\\ \mathbf{1.\ 3390}\\ \mathbf{1.\ 3387}\\ \mathbf{1.\ 3387}\end{array}$	$\begin{array}{c} 1.\ 3465\\ 1.\ 3462\\ 1.\ 3487\\ 1.\ 3484\\ 1.\ 3484 \end{array}$	$\begin{array}{c} 1.\ 3188\\ 1.\ 3184\\ 1.\ 3232\\ 1.\ 3228\\ 1.\ 3228 \end{array}$	$\begin{array}{c} 1.3469\\ 1.3465\\ 1.3509\\ 1.3505\\ 1.3505 \end{array}$	$\begin{array}{c} 1.\ 3757\\ 1.\ 3754\\ 1.\ 3754\\ 1.\ 3790\\ 1.\ 3787\end{array}$	$\begin{array}{c} 1.\ 3901\\ 1.\ 3898\\ 1.\ 3930\\ 1.\ 3927\\ 1.\ 3927 \end{array}$	$\begin{array}{c} 1.\ 3949\\ 1.\ 3946\\ 1.\ 3977\\ 1.\ 3974\\ 1.\ 3974 \end{array}$	$\begin{array}{c} 1.3988\\ 1.3985\\ 1.4014\\ 1.4011\\ 1.4011 \end{array}$	$\begin{array}{c} 1.4088\\ 1.4085\\ 1.4112\\ 1.4112\\ 1.4109\end{array}$	$\begin{array}{c} 1.\ 3772\\ 1.\ 3768\\ 1.\ 3812\\ 1.\ 3808\\ 1.\ 3856\\ 1.\ 3856\\ 1.\ 3852 \end{array}$	$\begin{array}{c} 1.\ 4093\\ 1.\ 4089\\ 1.\ 4133\\ 1.\ 4129\\ 1.\ 4129 \end{array}$	$\begin{array}{c} 1.4344\\ 1.4341\\ 1.4376\\ 1.4373\\ 1.4411\\ 1.4411\\ 1.4408\\ 1.4408\end{array}$	$\begin{array}{c} 1.\ 4526\\ 1.\ 4523\\ 1.\ 4555\\ 1.\ 4552\\ 1.\ 4552\end{array}$	$\begin{array}{c} 1.\ 4574\\ 1.\ 4571\\ 1.\ 4502\\ 1.\ 4599\\ 1.\ 4599\end{array}$	
$\begin{array}{c} 1.\ 3364\\ 1.\ 3367\\ 1.\ 3390\\ 1.\ 3393\\ 1.\ 3393\end{array}$	$\begin{array}{c} 1.3465\\ 1.3468\\ 1.3468\\ 1.3487\\ 1.3490\\ 1.3490 \end{array}$	$\begin{array}{c} 1.3188\\ 1.3192\\ 1.3232\\ 1.3236\\ 1.3236\end{array}$	$\begin{array}{c} 1.3469\\ 1.3473\\ 1.3509\\ 1.3513\\ \mathbf{P}.3513 \end{array}$	$\begin{array}{c} \mathbf{1.\ 3757}\\ \mathbf{1.\ 3760}\\ \mathbf{1.\ 3790}\\ \mathbf{1.\ 3793}\\ \mathbf{1.\ 3793}\end{array}$	$\begin{array}{c} 1.\ 3901\\ 1.\ 3904\\ 1.\ 3930\\ 1.\ 3933\\ 1.\ 3933\end{array}$	$\begin{array}{c} 1.\ 3949\\ 1.\ 3952\\ 1.\ 3977\\ 1.\ 3980\\ 1.\ 3980 \end{array}$	$\begin{array}{c} 1.3988\\ 1.3991\\ 1.4014\\ 1.4017\\ \end{array}$	$\begin{array}{c} 1.4088\\ 1.4091\\ 1.4112\\ 1.4115\\ 1.4115\end{array}$	$\begin{array}{c} 1.\ 3772\\ 1.\ 3776\\ 1.\ 3812\\ 1.\ 3816\\ 1.\ 3856\\ 1.\ 3856\\ 1.\ 3860 \end{array}$	$\begin{array}{c} 1.\ 4093\\ 1.\ 4097\\ 1.\ 4133\\ 1.\ 4137\\ 1.\ 4137\end{array}$	$\begin{array}{c} 1.4344\\ 1.4347\\ 1.4376\\ 1.4379\\ 1.4411\\ 1.4411\\ 1.4411\\ 1.4414\end{array}$	$\begin{array}{c} 1.\ 4526\\ 1.\ 4529\\ 1.\ 4555\\ 1.\ 4558\\ 1.\ 4558\end{array}$	$\begin{array}{c} 1.\ 4574\\ 1.\ 4577\\ 1.\ 4602\\ 1.\ 4602\\ 1.\ 4605\end{array}$	
$\begin{array}{c} 1.3194 \\ 1.3189 \\ 1.3208 \\ 1.3203 \\ 1.3203 \end{array}$	$\begin{array}{c} 1.\ 3351\\ 1.\ 3346\\ 1.\ 3346\\ 1.\ 3363\\ 1.\ 3358\end{array}$	$\begin{array}{c} 1.\ 2546\\ 1.\ 2538\\ 1.\ 2570\\ 1.\ 2562\\ 1.\ 2562\\ \end{array}$	$\begin{array}{c} 1.\ 3000\\ 1.\ 2993\\ 1.\ 3022\\ 1.\ 3015 \end{array}$	$\begin{array}{c} 1. \ 3455\\ 1. \ 3449\\ 1. \ 3473\\ 1. \ 3467\\ 1. \ 3467\end{array}$	$\begin{array}{c} 1.3682\\ 1.3676\\ 1.3676\\ 1.3698\\ 1.3692\end{array}$	$\begin{array}{c} 1.\ 3758\\ 1.\ 3753\\ 1.\ 3773\\ 1.\ 3768\\ 1.\ 3768 \end{array}$	$\begin{array}{c} 1.\ 3819\\ 1.\ 3814\\ 1.\ 3833\\ 1.\ 3828\\ 1.\ 3828 \end{array}$	$\begin{array}{c} 1.\ 3975\\ 1.\ 3970\\ 1.\ 3988\\ 1.\ 3983\\ 1.\ 3983\end{array}$	$\begin{array}{c} 1.\ 3171\\ 1.\ 3163\\ 1.\ 3171\\ 1.\ 3163\\ 1.\ 3163\\ 1.\ 3195\\ 1.\ 3187\\ 1.\ 3187\\ \end{array}$	$\begin{array}{c} 1.3625\\ 1.3618\\ 1.3647\\ 1.3647\\ 1.3640\end{array}$	$\begin{array}{c} 1.4079\\ 1.4073\\ 1.4073\\ 1.4073\\ 1.4073\\ 1.4098\\ 1.4092 \end{array}$	$\begin{array}{c} 1.4307\\ 1.4301\\ 1.4323\\ 1.4323\\ 1.4317\end{array}$	$\begin{array}{c} 1.4383\\ 1.4378\\ 1.4398\\ 1.4398\\ 1.4393\\ 1.4393\end{array}$	
$\begin{array}{c} 1.3411\\ 1.3408\\ 1.3425\\ 1.3425\\ 1.3422\end{array}$	$\begin{array}{c} 1.3506\\ 1.3503\\ 1.3518\\ 1.3518\\ 1.3515\end{array}$	$\begin{array}{c} 1.\ 3268\\ 1.\ 3264\\ 1.\ 3292\\ 1.\ 3288\\ 1.\ 3288 \end{array}$	$\begin{array}{c} 1.\ 3541\\ 1.\ 3537\\ 1.\ 3563\\ 1.\ 3559\\ 1.\ 3559\end{array}$	$\begin{array}{c} 1.3816\\ 1.3813\\ 1.3834\\ 1.3831\\ 1.3831\end{array}$	1. 3953 1. 3950 1. 3969 1. 3966	$\begin{array}{c} 1.3999\\ 1.3996\\ 1.4014\\ 1.4011\\ 1.4011 \end{array}$	$\begin{array}{c} 1.4036\\ 1.4033\\ 1.4050\\ 1.4047\\ 1.4047\end{array}$	$\begin{array}{c} 1.4130\\ 1.4127\\ 1.4143\\ 1.4140\\ 1.4140\end{array}$	$\begin{array}{c} 1.3893\\ 1.3893\\ 1.3893\\ 1.3893\\ 1.3889\\ 1.3817\\ 1.3917\\ 1.3913\end{array}$	$\begin{array}{c} 1.4166\\ 1.4162\\ 1.4188\\ 1.4184\\ 1.4184\end{array}$	1. 4440 1. 4440 1. 4440 1. 4440 1. 4459 1. 4459 1. 4459	$\begin{array}{c} 1.4578\\ 1.4575\\ 1.4594\\ 1.4591\\ 1.4591 \end{array}$	$\begin{array}{c} 1.\ 4624\\ 1.\ 4621\\ 1.\ 4639\\ 1.\ 4636\end{array}$	
2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	1A 2A 3A	2A 3A	1A 2A 3A	2A 3A	2A 3A	
UN	NU	NU	NU	NN	ND	UNEF	NU	NU	UNC	NN	UNF	NN	UNEF	
1, 375–20	1.375-28	1.4375-6	1. 4375–8	1, 4375–12	1. 4375–16	1.4375–18	1. 4375–20	1. 4375–28	1.500-6	1. 500-8	1.500–12	1.500-16	1.500-18	

Ъ
ē
7
E C
- 5
f
1
-2
\odot
S
.a
g
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~
1
2
2
e.
5
Ś
$\sim$
3
÷.
5
2
1
$\sim$
S
. 9
2
e
$\sim$
~
ã
õ
5
4
~
$\mathcal{B}$
5
2
. Q
8
0
st
2
5
S
3
2
25
$\sim$
6
<i>—</i>
9
F-3
5
ž
-
~
H

		Nominal size and	threads per inch		21	1. 500-20	1. 500-28	1. 5625-6	1.5625-8	1. 5625-12	1. 5625-16	1. 5625-18	1. 5625-20	1. 625-6	1.625-8
		Series designa-	tion		20	NN	NN	NN	NN	NN	UN	UNEF	NN	UN	UN
		Class			19	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B
	dug gages diameter		NOT	5	18		$\begin{array}{c} 1.\ 47000\\ 1.\ 46988\\ 1.\ 46760\\ 1.\ 46748\\ 1.\ 46748 \end{array}$	$\begin{array}{c} 1.\ 41300\\ 1.\ 41284\\ 1.\ 40210\\ 1.\ 40194 \end{array}$	$\begin{array}{c} 1.\ 45200\\ 1.\ 45184\\ 1.\ 44220\\ 1.\ 44204 \end{array}$	$\begin{array}{c} 1.\ 49000\\ 1.\ 48984\\ 1.\ 48230\\ 1.\ 48214\\ 1.\ 48214 \end{array}$	$\begin{array}{c} 1.50900\\ 1.50884\\ 1.50330\\ 1.50314\\ 1.50314\end{array}$	$\begin{array}{c} 1.51500\\ 1.51484\\ 1.51050\\ 1.51034\\ 1.51034 \end{array}$	$\begin{array}{c} 1.52000\\ 1.51984\\ 1.51620\\ 1.51620\\ 1.51604 \end{array}$	1. 47500 1. 47500 1. 46460 1. 46440 1. 46444	$\begin{array}{c} 1.51500\\ 1.51484\\ 1.50470\\ 1.50454\\ 1.50454\end{array}$
s	Z plain p for minor		050	)	17	$in in 1.44600 \\ 1.44610 \\ 1.44612 \\ 1.44612 \\ 1.44612 \\ 1.44612 \\ 1.44612 \\ 1.44612 \\ 1.44612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.4612 \\ 1.46$	$\begin{array}{c} 1.46100\\ 1.46112\\ 1.46110\\ 1.46110\\ 1.46112 \end{array}$	$\begin{array}{c} 1.38200\\ 1.38216\\ 1.38200\\ 1.38200\\ 1.38216 \end{array}$	$\begin{array}{c} 1.\ 42700\\ 1.\ 42716\\ 1.\ 42700\\ 1.\ 42700\\ 1.\ 42716 \end{array}$	$\begin{array}{c} 1.\ 47200\\ 1.\ 47216\\ 1.\ 47200\\ 1.\ 47200\\ 1.\ 47216\end{array}$	$\begin{array}{c} 1.\ 49500\\ 1.\ 49516\\ 1.\ 49500\\ 1.\ 49500\\ 1.\ 49516\end{array}$	$\begin{array}{c} 1.50200\\ 1.50216\\ 1.50200\\ 1.50216\\ 1.50216 \end{array}$	$\begin{array}{c} 1.50800\\ 1.50816\\ 1.50800\\ 1.50800\\ 1.50816 \end{array}$	$\begin{array}{c} 1.\ 44500\\ 1.\ 44516\\ 1.\ 44500\\ 1.\ 44500\\ 1.\ 44516\end{array}$	$\begin{array}{c} 1.49000\\ 1.49016\\ 1.49016\\ 1.49016\\ 1.49016\end{array}$
al thread			iameter	Plus toler- ance gage	16	in in 4737 1.4737 1.4740 1.4721 1.4721 1.4724	$\begin{array}{c} 1.\ 4823\\ 1.\ 4826\\ 1.\ 4809\\ 1.\ 4812\\ \end{array}$	$\begin{array}{c} 1.\ 4648\\ 1.\ 4653\\ 1.\ 4622\\ 1.\ 4622\\ 1.\ 4627\end{array}$	$\begin{array}{c} 1.\ 4909\\ 1.\ 4914\\ 1.\ 4885\\ 1.\ 4890\\ 1.\ 4890 \end{array}$	$\begin{array}{c} 1.5160\\ 1.5164\\ 1.5164\\ 1.5141\\ 1.5145\\ 1.5145\end{array}$	$\begin{array}{c} 1.5287\\ 1.5291\\ 1.5291\\ 1.5270\\ 1.5274 \end{array}$	$\begin{array}{c} 1.\ 5329\\ 1.\ 5333\\ 1.\ 5312\\ 1.\ 5316\\ 1.\ 5316\end{array}$	$\begin{array}{c} 1.\ 5362\\ 1.\ 5366\\ 1.\ 5346\\ 1.\ 5350\\ 1.\ 5350 \end{array}$	$\begin{array}{c} 1.5274\\ 1.5279\\ 1.5279\\ 1.5247\\ 1.5252\end{array}$	$\begin{array}{c} 1.5535\\ 1.5540\\ 1.5510\\ 1.5515\\ 1.5515 \end{array}$
or intern	g gages	IH	Pitch d	Minus toler- ance gage	15	<i>in</i> 1. 4737 1. 4734 1. 4721 1. 4721 1. 4718	$\begin{array}{c} 1.4823\\ 1.4820\\ 1.4809\\ 1.4806\\ 1.4806 \end{array}$	1. 4648 1. 4643 1. 4622 1. 4617	$\begin{array}{c} 1.\ 4909\\ 1.\ 4904\\ 1.\ 4885\\ 1.\ 4880\\ 1.\ 4880 \end{array}$	$\begin{array}{c} 1.5160\\ 1.5156\\ 1.5156\\ 1.5141\\ 1.5137\end{array}$	$\begin{array}{c} 1.5287\\ 1.5283\\ 1.5283\\ 1.5270\\ 1.5266\end{array}$	$\begin{array}{c} 1.\ 5329\\ 1.\ 5325\\ 1.\ 5312\\ 1.\ 5308\\ 1.\ 5308 \end{array}$	$\begin{array}{c} 1.\ 5362\\ 1.\ 5358\\ 1.\ 5346\\ 1.\ 5342\\ 1.\ 5342 \end{array}$	$\begin{array}{c} 1.5274\\ 1.5269\\ 1.5247\\ 1.5242\\ 1.5242 \end{array}$	$\begin{array}{c} 1.5535\\ 1.5520\\ 1.5510\\ 1.5510\\ 1.5505 \end{array}$
Gages fo	read plu			Major diam- eter	14	in 1. 4954 1. 4949 1. 4938 1. 4938 1. 4933	$\begin{array}{c} 1.\ 4978\\ 1.\ 4973\\ 1.\ 4964\\ 1.\ 4959\\ 1.\ 4959\end{array}$	$\begin{array}{c} 1.5370\\ 1.5362\\ 1.5344\\ 1.5336\\ 1.5336\end{array}$	$\begin{array}{c} 1.5450\\ 1.5443\\ 1.5443\\ 1.5426\\ 1.5419\end{array}$	$\begin{array}{c} 1.5521\\ 1.5515\\ 1.5502\\ 1.5496\\ 1.5496\end{array}$	$\begin{array}{c} 1.5558\\ 1.5552\\ 1.5552\\ 1.5541\\ 1.5535\end{array}$	$\begin{array}{c} 1.5570\\ 1.5565\\ 1.5553\\ 1.5548\\ 1.5548\end{array}$	$\begin{array}{c} 1.5579\\ 1.5574\\ 1.5563\\ 1.5558\\ 1.5558\end{array}$	$\begin{array}{c} 1.5996\\ 1.5988\\ 1.5969\\ 1.5961\\ 1.5961 \end{array}$	$\begin{array}{c} 1.\ 6076\\ 1.\ 6069\\ 1.\ 6051\\ 1.\ 6044 \end{array}$
	for major GO GO GO GO GO GO GO GO GO GO				13	in in 1.4675 1.4675 1.4678 1.4675 1.4675 1.4675	$\begin{array}{c} 1.4768\\ 1.4771\\ 1.4771\\ 1.4768\\ 1.4771 \end{array}$	1. 4542 1. 4547 1. 4547 1. 4542 1. 4547	$\begin{array}{c} 1.4813\\ 1.4818\\ 1.4818\\ 1.4813\\ 1.4818\end{array}$	$\begin{array}{c} 1.5084\\ 1.5088\\ 1.5088\\ 1.5084\\ 1.5088\end{array}$	$\begin{array}{c} 1.\ 5219\\ 1.\ 5223\\ 1.\ 5223\\ 1.\ 5223\\ 1.\ 5223\end{array}$	$\begin{array}{c} 1.5264\\ 1.5268\\ 1.5268\\ 1.5268\\ 1.5268\end{array}$	$\begin{array}{c} 1.5300\\ 1.5304\\ 1.5304\\ 1.5304\\ 1.5304\end{array}$	1. 5167 1. 5172 1. 5172 1. 5167 1. 5172	$\begin{array}{c} 1.\ 5438\\ 1.\ 5443\\ 1.\ 5443\\ 1.\ 5443\\ 1.\ 5443\end{array}$
		G		Major diam- eter	12	in in 1.5000 1.5000 1.5005 1.5005 1.5005	$\begin{array}{c} 1.5000\\ 1.5005\\ 1.5000\\ 1.5000\\ 1.5005 \end{array}$	$\begin{array}{c} 1.5625\\ 1.5633\\ 1.5633\\ 1.5623\\ 1.5633\\ 1.5633\end{array}$	$\begin{array}{c} 1.5625\\ 1.5632\\ 1.5632\\ 1.5632\\ 1.5632\end{array}$	$\begin{array}{c} 1.5625\\ 1.5631\\ 1.5631\\ 1.5625\\ 1.5631\end{array}$	$\begin{array}{c} 1.5625\\ 1.5631\\ 1.5631\\ 1.5631\\ 1.5631\end{array}$	$\begin{array}{c} 1.5625\\ 1.5630\\ 1.5630\\ 1.5630\\ 1.5630\end{array}$	$\begin{array}{c} 1.5625\\ 1.5630\\ 1.5630\\ 1.5630\\ 1.5630\end{array}$	$\begin{array}{c} 1.\ 6250\\ 1.\ 6258\\ 1.\ 6258\\ 1.\ 6258\\ 1.\ 6258\end{array}$	$\begin{array}{c} 1. \ 6250\\ 1. \ 6257\\ 1. \ 6257\\ 1. \ 6250\\ 1. \ 6257\end{array}$
	for major	60	-un	finished hot- rolled material	11	in									$\begin{array}{c} 1.\ 60030\\ 1.\ 60046\\ \end{array}$
	ing gages diameter	LON		Semi- finished	10	$\begin{array}{c} in\\ 1.49050\\ 1.49062\\ 1.49190\\ 1.49202 \end{array}$	$\begin{array}{c} 1.\ 49220\\ 1.\ 49232\\ 1.\ 49350\\ 1.\ 49362\\ 1.\ 49362\end{array}$	$\begin{array}{c} 1.54190\\ 1.54206\\ 1.54430\\ 1.54430\\ 1.54446\end{array}$	$\begin{array}{c} 1.\ 54530\\ 1.\ 54546\\ 1.\ 54750\\ 1.\ 54750\\ 1.\ 54766 \end{array}$	$\begin{array}{c} 1.\ 54930\\ 1.\ 54946\\ 1.\ 55110\\ 1.\ 55126\\ 1.\ 55126 \end{array}$	$\begin{array}{c} 1.\ 55150\\ 1.\ 55166\\ 1.\ 55310\\ 1.\ 55326\\ 1.\ 55326\end{array}$	$\begin{array}{c} 1.\ 55230\\ 1.\ 55246\\ 1.\ 55230\\ 1.\ 55396\\ 1.\ 55396\end{array}$	$\begin{array}{c} 1.55300\\ 1.55316\\ 1.55316\\ 1.55440\\ 1.55456\end{array}$	$\begin{array}{c} 1.\ 60430\\ 1.\ 60446\\ 1.\ 60680\\ 1.\ 60696\\ 1.\ 60696 \end{array}$	$\begin{array}{c} 1.\ 60780\\ 1.\ 60796\\ 1.\ 61000\\ 1.\ 61016 \end{array}$
hreads	Z plain r		GO		6	$\begin{array}{c} in\\ 1.\ 49860\\ 1.\ 49848\\ 1.\ 50000\\ 1.\ 49988\end{array}$	$\begin{array}{c} 1.\ 49870\\ 1.\ 49858\\ 1.\ 50000\\ 1.\ 49988\\ 1.\ 49988 \end{array}$	$\begin{array}{c} 1.56010\\ 1.55994\\ 1.56250\\ 1.56250\\ 1.56234\end{array}$	$\begin{array}{c} 1.56030\\ 1.56014\\ 1.56250\\ 1.56234\\ 1.56234\end{array}$	$\begin{array}{c} 1.56070\\ 1.56054\\ 1.56250\\ 1.56234\\ 1.56234\end{array}$	$\begin{array}{c} 1.56090\\ 1.56074\\ 1.56250\\ 1.56250\\ 1.56234\end{array}$	$\begin{array}{c} 1.56100\\ 1.56084\\ 1.56250\\ 1.56234\\ 1.56234\end{array}$	$\begin{array}{c} 1.56110\\ 1.56094\\ 1.56250\\ 1.56234\\ 1.56234\end{array}$	$\begin{array}{c} 1.\ 62250\\ 1.\ 62234\\ 1.\ 62234\\ 1.\ 622600\\ 1.\ 62484\end{array}$	$\begin{array}{c} 1.\ 62280\\ 1.\ 62264\\ 1.\ 62264\\ 1.\ 62500\\ 1.\ 62484\end{array}$
xternal t				Minor diam- eter	œ	in 1. 4505 1. 4510 1. 4531 1. 4531 1. 4536	$\begin{array}{c} 1.\ 4636\\ 1.\ 4641\\ 1.\ 4660\\ 1.\ 4665\end{array}$	$\begin{array}{c} 1.4075\\ 1.4083\\ 1.4120\\ 1.4128\\ 1.4128\end{array}$	$\begin{array}{c} 1.\ 4446\\ 1.\ 4453\\ 1.\ 4487\\ 1.\ 4494\end{array}$	$\begin{array}{c} 1.\ 4827\\ 1.\ 4833\\ 1.\ 4860\\ 1.\ 4866\\ 1.\ 4866\end{array}$	$\begin{array}{c} 1.5016\\ 1.5022\\ 1.5045\\ 1.5051\\ 1.5051 \end{array}$	$\begin{array}{c} 1.5079\\ 1.5084\\ 1.5107\\ 1.5112\\ 1.5112 \end{array}$	1. 5130 1. 5135 1. 5135 1. 5156 1. 5161	$\begin{array}{c} 1.\ 4699\\ 1.\ 4707\\ 1.\ 4744\\ 1.\ 4752\\ 1.\ 4752\end{array}$	$\begin{array}{c} 1.5071\\ 1.5078\\ 1.5111\\ 1.5111\\ 1.5118 \end{array}$
ages for e	gages	LO	liameter	Minus toler- ance gage	4	in 1. 4613 1. 4610 1. 4639 1. 4639 1. 4636	$\begin{array}{c} 1.4713\\ 1.4710\\ 1.4737\\ 1.4737\\ 1.4734\end{array}$	$\begin{array}{c} 1.4436\\ 1.4431\\ 1.4431\\ 1.4481\\ 1.4481\\ 1.4476\end{array}$	$\begin{array}{c} 1.\ 4717\\ 1.\ 4712\\ 1.\ 4758\\ 1.\ 4758\\ 1.\ 4753\end{array}$	$\begin{array}{c} 1.5007\\ 1.5003\\ 1.5040\\ 1.5036\\ 1.5036\end{array}$	$\begin{array}{c} 1.5151\\ 1.5147\\ 1.5147\\ 1.5180\\ 1.5176\\ 1.5176\end{array}$	$\begin{array}{c} 1.5199\\ 1.5195\\ 1.5227\\ 1.5223\\ 1.5223\end{array}$	$\begin{array}{c} 1.5238\\ 1.5234\\ 1.5264\\ 1.5260\\ 1.5260\end{array}$	1. 5060 1. 5055 1. 5105 1. 5100	$\begin{array}{c} 1.5342\\ 1.5337\\ 1.5337\\ 1.5382\\ 1.5377\end{array}$
Ğ	read ring		Pitch d	Plus toler- anec gage	9	<i>in</i> 1. 4613 1. 4616 1. 4639 1. 4632	$\begin{array}{c} 1.\ 4713\\ 1.\ 4716\\ 1.\ 4737\\ 1.\ 4740\\ 1.\ 4740 \end{array}$	$\begin{array}{c} 1.\ 4436\\ 1.\ 4441\\ 1.\ 4481\\ 1.\ 4481\\ 1.\ 4486\end{array}$	$\begin{array}{c} 1.\ 4717\\ 1.\ 4722\\ 1.\ 4758\\ 1.\ 4763\\ 1.\ 4763\end{array}$	$\begin{array}{c} 1.5007\\ 1.5011\\ 1.5040\\ 1.5044\\ 1.5044\end{array}$	$\begin{array}{c} 1.5151\\ 1.5155\\ 1.5155\\ 1.5180\\ 1.5184\end{array}$	$\begin{array}{c} 1.5199\\ 1.5203\\ 1.5227\\ 1.5231\\ 1.5231 \end{array}$	$\begin{array}{c} 1.5238\\ 1.5242\\ 1.5264\\ 1.5268\\ 1.5268\end{array}$	$\begin{array}{c} 1.5060\\ 1.5065\\ 1.5105\\ 1.5110\\ 1.5110\end{array}$	$\begin{array}{c} 1.5342\\ 1.5347\\ 1.5382\\ 1.5382\\ 1.5387\end{array}$
	X thread			Minor diam- eter	5	in 1. 4444 1. 4444 1. 4439 1. 4458 1. 4458	$\begin{array}{c} 1.4600\\ 1.4595\\ 1.4613\\ 1.4608\\ 1.4608\end{array}$	$\begin{array}{c} 1.3796\\ 1.3788\\ 1.3820\\ 1.3812\\ 1.3812 \end{array}$	$\begin{array}{c} 1.\ 4250\\ 1.\ 4243\\ 1.\ 4272\\ 1.\ 4265\\ 1.\ 4265\end{array}$	$\begin{array}{c} 1.\ 4705\\ 1.\ 4699\\ 1.\ 4723\\ 1.\ 4717\\ \end{array}$	$\begin{array}{c} 1.\ 4932\\ 1.\ 4926\\ 1.\ 4948\\ 1.\ 4942\\ 1.\ 4942 \end{array}$	$\begin{array}{c} 1.5008\\ 1.5003\\ 1.5003\\ 1.5018\\ 1.5018\end{array}$	$\begin{array}{c} 1.5069\\ 1.5064\\ 1.5083\\ 1.5083\\ 1.5078\end{array}$	1.4420 1.4412 1.4445 1.4445 1.4437	$\begin{array}{c} 1.\ 4875\\ 1.\ 4868\\ 1.\ 4897\\ 1.\ 4897\\ 1.\ 4890\end{array}$
	GC diam- eter			Pitch diam- eter	474	in 1. 4661 1. 4658 1. 4675 1. 4672 1. 4672	$\begin{array}{c} 1.\ 4755\\ 1.\ 4752\\ 1.\ 4768\\ 1.\ 4765\\ 1.\ 4765\end{array}$	$\begin{array}{c} 1.\ 4518\\ 1.\ 4513\\ 1.\ 4542\\ 1.\ 4537\\ 1.\ 4537\end{array}$	$\begin{array}{c} 1.\ 4791\\ 1.\ 4786\\ 1.\ 4786\\ 1.\ 4813\\ 1.\ 4808 \end{array}$	$\begin{array}{c} 1.5066\\ 1.5062\\ 1.5084\\ 1.5084\\ 1.5080\end{array}$	$\begin{array}{c} 1.5203\\ 1.5199\\ 1.5219\\ 1.5219\\ 1.5215 \end{array}$	$\begin{array}{c} 1.5249\\ 1.5245\\ 1.5264\\ 1.5264\\ 1.5260\end{array}$	$\begin{array}{c} 1.5286\\ 1.5282\\ 1.5280\\ 1.5300\\ 1.5296\end{array}$	1. 5142 1. 5137 1. 5167 1. 5162 1. 5162	$\begin{array}{c} 1.5416\\ 1.5411\\ 1.5411\\ 1.5438\\ 1.5433\end{array}$
	Class			3	2A 3A	2A 3A	2A 3A	2A 3A	$\frac{2A}{3A}$	$\frac{2A}{3A}$	2A 3A	2A 3A	2A 3A	2A 3A	
	Series designa- tion				2	UN	NN	UN	UN	UN	NN	UNEF	UN	UN	UN
	Nominal Se size and des threads t				1	1. 500–20	1.500-28	1. 5625–6	1. 5625-8	1. 5625-12	1, 5625–16	1. 5625-18	1. 5625-20	1.625-6	1. 625-8

1.625-12	1, 625-16	1. 625-18	1, 625-20	1. 6875-6	1.6875-8	1.6875-12	1.6875-16	1.6875-18	1.6875-20	1. 750-5	1.750-6	1.750-8	1.750-12	1.750-16
UN	ND	UNEF	NN	UN	UN	NN	UN	UNEF	UN	UNC	NN	NU	UN	NN
2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	1B 2B 3B	$^{2\mathrm{B}}_{3\mathrm{B}}$	$^{2\mathrm{B}}_{3\mathrm{B}}$	2B 3B	2B 3B
$\left  \begin{array}{c} 1.55300 \\ 1.55284 \\ 1.54480 \\ 1.54464 \\ 1.54464 \\ \end{array} \right $	$\begin{array}{c} 1.57100\\ 1.57084\\ 1.56580\\ 1.56564\\ 1.56564\end{array}$	$\begin{array}{c} 1.57800\\ 1.57784\\ 1.57300\\ 1.57300\\ 1.57284\\ \end{array}$	$\begin{array}{c} 1.58200\\ 1.58184\\ 1.57870\\ 1.57854\\ 1.57854\end{array}$	$\begin{array}{c} 1.53800\\ 1.53784\\ 1.53784\\ 1.52710\\ 1.52694 \end{array}$	$\begin{array}{c} 1.57700\\ 1.57684\\ 1.56720\\ 1.56704\\ 1.56704 \end{array}$	$\begin{array}{c} 1.\ 61500\\ 1.\ 61484\\ 1.\ 60730\\ 1.\ 60714\\ \end{array}$	$\begin{array}{c} 1.\ 63400\\ 1.\ 63384\\ 1.\ 62830\\ 1.\ 62814\\ 1.\ 62814\end{array}$	$\begin{array}{c} 1.\ 64000\\ 1.\ 63984\\ 1.\ 63550\\ 1.\ 63534\\ 1.\ 63534\end{array}$	$\begin{array}{c} 1.\ 64500\\ 1.\ 64484\\ 1.\ 64120\\ 1.\ 64104\\ 1.\ 64104 \end{array}$	$\begin{array}{c} 1.56800\\ 1.56784\\ 1.56784\\ 1.56784\\ 1.56784\\ 1.55750\\ 1.55734\\ \end{array}$	$\begin{array}{c} 1.\ 60000\\ 1.\ 59984\\ 1.\ 58960\\ 1.\ 58944\\ 1.\ 58944 \end{array}$	$\begin{array}{c} 1.64000\\ 1.63984\\ 1.62970\\ 1.62970\\ 1.62954 \end{array}$	$\begin{array}{c} 1.\ 67800\\ 1.\ 67784\\ 1.\ 66980\\ 1.\ 66964\\ 1.\ 66964 \end{array}$	1. 69600 1. 69584 1. 69080 1. 69064
$\begin{array}{c} 1.53500\\ 1.53516\\ 1.53500\\ 1.53500\\ 1.53516\end{array}$	$\begin{array}{c} 1.55700\\ 1.55716\\ 1.55716\\ 1.55700\\ 1.55716\end{array}$	$\begin{array}{c} 1.56500\\ 1.56516\\ 1.56516\\ 1.56500\\ 1.56516 \end{array}$	$\begin{array}{c} 1.57100\\ 1.57116\\ 1.57110\\ 1.57110\\ 1.57116\end{array}$	$\begin{array}{c} 1.50700\\ 1.50716\\ 1.50700\\ 1.50700\\ 1.50716 \end{array}$	$\begin{array}{c} 1.55200\\ 1.55200\\ 1.55200\\ 1.55200\\ 1.55216\end{array}$	$\begin{array}{c} 1.59700\\ 1.59716\\ 1.59700\\ 1.59700\\ 1.59716\end{array}$	$\begin{array}{c} 1.62000\\ 1.62016\\ 1.62000\\ 1.62000\\ 1.62016 \end{array}$	$\begin{array}{c} 1.\ 62700\\ 1.\ 62716\\ 1.\ 62700\\ 1.\ 62716\\ 1.\ 62716 \end{array}$	$\begin{array}{c} 1.\ 63300\\ 1.\ 63316\\ 1.\ 63300\\ 1.\ 63316\\ 1.\ 63316 \end{array}$	$\begin{array}{c} 1.53400\\ 1.53416\\ 1.53416\\ 1.53416\\ 1.53416\\ 1.53416\\ 1.53416\\ 1.53416\end{array}$	$\begin{array}{c} 1.57000\\ 1.57016\\ 1.57000\\ 1.57000\\ 1.57016 \end{array}$	$\begin{array}{c} 1.\ 61500\\ 1.\ 61516\\ 1.\ 61516\\ 1.\ 61516\\ 1.\ 61516\end{array}$	$\begin{array}{c} 1.\ 66000\\ 1.\ 66016\\ 1.\ 66016\\ 1.\ 66016\\ 1.\ 66016 \end{array}$	1. 68200 1. 68216 1. 68200 1. 68200 1. 68216
$\begin{array}{c} 1.5785\\ 1.5789\\ 1.5770\\ 1.5770 \end{array}$	$\begin{array}{c} 1.5912 \\ 1.5916 \\ 1.5895 \\ 1.5899 \\ 1.5899 \end{array}$	$\begin{array}{c} 1.5954\\ 1.5958\\ 1.5937\\ 1.5941\\ 1.5941 \end{array}$	$\begin{array}{c} 1. \ 5987\\ 1. \ 5991\\ 1. \ 5971\\ 1. \ 5975\\ 1. \ 5975 \end{array}$	$\begin{array}{c} 1.5900\\ 1.5905\\ 1.5873\\ 1.5878\\ 1.5878\end{array}$	$\begin{array}{c} 1.\ 6160\\ 1.\ 6165\\ 1.\ 6165\\ 1.\ 6141\\ 1.\ 6141 \end{array}$	$\begin{array}{c} 1.6412\\ 1.6416\\ 1.6392\\ 1.6396\\ 1.6396\end{array}$	$\begin{array}{c} 1.6538\\ 1.6542\\ 1.6521\\ 1.6525\\ 1.6525\end{array}$	$\begin{array}{c} 1.\ 6580\\ 1.\ 6584\\ 1.\ 6563\\ 1.\ 6567\\ 1.\ 6567\end{array}$	$\begin{array}{c} 1.\ 6613\\ 1.\ 6617\\ 1.\ 6597\\ 1.\ 6601\\ 1.\ 6601 \end{array}$	$\begin{array}{c} 1.6375\\ 1.6375\\ 1.6317\\ 1.6317\\ 1.6322\\ 1.6322\\ 1.6293\\ 1.6293\end{array}$	$\begin{array}{c} 1.\ 6525\\ 1.\ 6530\\ 1.\ 6498\\ 1.\ 6503\\ 1.\ 6503 \end{array}$	$\begin{array}{c} 1.\ 6786\\ 1.\ 6791\\ 1.\ 6762\\ 1.\ 6767\\ 1.\ 6767\end{array}$	$\begin{array}{c} 1.\ 7037\\ 1.\ 7041\\ 1.\ 7017\\ 1.\ 7021\\ 1.\ 7021 \end{array}$	1, 7163 1, 7167 1, 7146 1, 7146 1, 7150
1. 5785 1. 5781 1. 5766 1. 5762	$\begin{array}{c} 1.5912\\ 1.5908\\ 1.5895\\ 1.5891\\ 1.5891 \end{array}$	$\begin{array}{c} 1.5954\\ 1.5950\\ 1.5937\\ 1.5933\\ 1.5933\end{array}$	$\begin{array}{c} 1.5987\\ 1.5983\\ 1.5971\\ 1.5971\\ 1.5967\end{array}$	$\begin{array}{c} 1.5900\\ 1.5895\\ 1.5873\\ 1.5868\\ 1.5868\end{array}$	1. 6160 1. 6155 1. 6155 1. 6136 1. 6131	$\begin{array}{c} 1.\ 6412\\ 1.\ 6408\\ 1.\ 6392\\ 1.\ 6388\end{array}$	$\begin{array}{c} 1.6538\\ 1.6534\\ 1.6521\\ 1.6521\\ 1.6517\end{array}$	$\begin{array}{c} 1.\ 6580\\ 1.\ 6576\\ 1.\ 6563\\ 1.\ 6559\\ 1.\ 6559\end{array}$	$\begin{array}{c} 1.\ 6613\\ 1.\ 6609\\ 1.\ 6597\\ 1.\ 6593\end{array}$	$\begin{array}{c} 1.\ 6375\\ 1.\ 6375\\ 1.\ 6377\\ 1.\ 6317\\ 1.\ 6312\\ 1.\ 6288\\ 1.\ 6283\\ 1.\ 6283\\ \end{array}$	$\begin{array}{c} 1.\ 6525\\ 1.\ 6520\\ 1.\ 6498\\ 1.\ 6493\\ 1.\ 6493 \end{array}$	$\begin{array}{c} 1.\ 6786\\ 1.\ 6781\\ 1.\ 6782\\ 1.\ 6762\\ 1.\ 6757\end{array}$	$\begin{array}{c} 1.\ 7037\\ 1.\ 7033\\ 1.\ 7017\\ 1.\ 7013\\ 1.\ 7013\end{array}$	1. 7163 1. 7159 1. 7146 1. 7142
$\begin{array}{c} 1.\ 6146\\ 1.\ 6140\\ 1.\ 6127\\ 1.\ 6127\\ 1.\ 6121\end{array}$	$\begin{array}{c} 1.6183\\ 1.6177\\ 1.6166\\ 1.6160\\ 1.6160\end{array}$	$\begin{array}{c} 1.\ 6195\\ 1.\ 6190\\ 1.\ 6178\\ 1.\ 6173\\ 1.\ 6173 \end{array}$	$\begin{array}{c} 1.\ 6204\\ 1.\ 6199\\ 1.\ 6188\\ 1.\ 6183\\ 1.\ 6183\end{array}$	$\begin{array}{c} 1.\ 6622\\ 1.\ 6614\\ 1.\ 6595\\ 1.\ 6587\\ 1.\ 6587\end{array}$	$\begin{array}{c} 1.\ 6701\\ 1.\ 6694\\ 1.\ 6677\\ 1.\ 6677\\ 1.\ 6670 \end{array}$	$\begin{array}{c} 1.\ 6773\\ 1.\ 6767\\ 1.\ 6753\\ 1.\ 6753\\ 1.\ 6747\end{array}$	$\begin{array}{c} 1.6809\\ 1.6803\\ 1.6792\\ 1.6792\\ 1.6786 \end{array}$	$\begin{array}{c} 1.\ 6821\\ 1.\ 6816\\ 1.\ 6804\\ 1.\ 6799\end{array}$	$\begin{array}{c} 1.\ 6830\\ 1.\ 6825\\ 1.\ 6814\\ 1.\ 6809\\ 1.\ 6809 \end{array}$	$\begin{array}{c} 1.7241\\ 1.7233\\ 1.7183\\ 1.7175\\ 1.7175\\ 1.7154\\ 1.7154\\ 1.7154\end{array}$	$\begin{array}{c} 1.7247\\ 1.7239\\ 1.7239\\ 1.7220\\ 1.7212\\ 1.7212 \end{array}$	$\begin{array}{c} 1.7327\\ 1.7320\\ 1.7303\\ 1.7303\\ 1.7296\end{array}$	$\begin{array}{c} 1.\ 7398\\ 1.\ 7392\\ 1.\ 7378\\ 1.\ 7372\\ 1.\ 7372 \end{array}$	$\begin{array}{c} 1.7434\\ 1.7428\\ 1.7417\\ 1.7417\\ 1.7411\\ 1.7411\end{array}$
1. 5709 1. 5713 1. 5713 1. 5713 1. 5713	$\begin{array}{c} 1.5844\\ 1.5848\\ 1.5848\\ 1.5844\\ 1.5848\\ 1.5848\end{array}$	$\begin{array}{c} 1.5889\\ 1.5893\\ 1.5893\\ 1.5889\\ 1.5893\\ 1.5893\end{array}$	$\begin{array}{c} 1. \ 5925\\ 1. \ 5929\\ 1. \ 5929\\ 1. \ 5929\\ 1. \ 5929 \end{array}$	$\begin{array}{c} 1.5792\\ 1.5797\\ 1.5792\\ 1.5792\\ 1.5797\\ 1.5797\end{array}$	$\begin{array}{c} 1.\ 6063\\ 1.\ 6068\\ 1.\ 6063\\ 1.\ 6068\\ 1.\ 6068 \end{array}$	$\begin{array}{c} 1.\ 6334\\ 1.\ 6338\\ 1.\ 6334\\ 1.\ 6334\\ 1.\ 6338\end{array}$	$\begin{array}{c} 1. \ 6469 \\ 1. \ 6473 \\ 1. \ 6469 \\ 1. \ 6469 \\ 1. \ 6473 \end{array}$	$\begin{array}{c} 1.\ 6514\\ 1.\ 6518\\ 1.\ 6518\\ 1.\ 6514\\ 1.\ 6518\\ 1.\ 6518\end{array}$	$\begin{array}{c} 1.\ 6550\\ 1.\ 6554\\ 1.\ 6550\\ 1.\ 6550\\ 1.\ 6554\end{array}$	$\begin{array}{c} 1.\ 6201\\ 1.\ 6206\\ 1.\ 6201\\ 1.\ 6206\\ 1.\ 6201\\ 1.\ 6206\\ 1.\ 6206\end{array}$	$\begin{array}{c} 1.\ 6417\\ 1.\ 6422\\ 1.\ 6417\\ 1.\ 6417\\ 1.\ 6422\end{array}$	$\begin{array}{c} 1.\ 6688\\ 1.\ 6693\\ 1.\ 6688\\ 1.\ 6693\\ 1.\ 6693\end{array}$	1. 6959 1. 6959 1. 6959 1. 6959 1. 6963	$\begin{array}{c} 1.\ 7094\\ 1.\ 7098\\ 1.\ 7094\\ 1.\ 7098\\ 1.\ 7098\end{array}$
$\begin{array}{c} 1.\ 6250\\ 1.\ 6256\\ 1.\ 6256\\ 1.\ 6256\\ 1.\ 6256\end{array}$	1. 6250 1. 6256 1. 6256 1. 6256 1. 6256	$\begin{array}{c} 1.\ 6250\\ 1.\ 6255\\ 1.\ 6250\\ 1.\ 6255\\ 1.\ 6255\end{array}$	$\begin{array}{c} 1.\ 6250\\ 1.\ 6255\\ 1.\ 6250\\ 1.\ 6250\\ 1.\ 6255\end{array}$	$\begin{array}{c} 1.\ 6875\\ 1.\ 6883\\ 1.\ 6883\\ 1.\ 6875\\ 1.\ 6883\end{array}$	$\begin{array}{c} 1.\ 6875\\ 1.\ 6882\\ 1.\ 6875\\ 1.\ 6875\\ 1.\ 6882\end{array}$	$\begin{array}{c} 1.\ 6875\\ 1.\ 6881\\ 1.\ 6875\\ 1.\ 6881\\ 1.\ 6881 \end{array}$	$\begin{array}{c} 1.\ 6875\\ 1.\ 6881\\ 1.\ 6881\\ 1.\ 6875\\ 1.\ 6881\\ 1.\ 6881 \end{array}$	$\begin{array}{c} 1.6875\\ 1.6880\\ 1.6875\\ 1.6875\\ 1.6880\\ 1.6880 \end{array}$	$\begin{array}{c} 1.\ 6875\\ 1.\ 6880\\ 1.\ 6875\\ 1.\ 6875\\ 1.\ 6880\end{array}$	$\begin{array}{c} 1.\ 7500\\ 1.\ 7508\\ 1.\ 7500\\ 1.\ 7500\\ 1.\ 7500\\ 1.\ 7500\\ 1.\ 7500 \end{array}$	$\begin{array}{c} 1.\ 7500\\ 1.\ 7508\\ 1.\ 7500\\ 1.\ 7508\\ 1.\ 7508\end{array}$	$\begin{array}{c} 1.\ 7500\\ 1.\ 7507\\ 1.\ 7500\\ 1.\ 7507\\ 1.\ 7507 \end{array}$	$\begin{array}{c} 1.\ 7500\\ 1.\ 7506\\ 1.\ 7506\\ 1.\ 7506\\ 1.\ 7506 \end{array}$	1. 7500 1. 7506 1. 7506 1. 7506
										1.71650 $1.71666$		$   \begin{array}{c}     1.72520 \\     1.72536 \\   \end{array} $		
$\begin{array}{c} 1.\ 61180\\ 1.\ 61196\\ 1.\ 61360\\ 1.\ 61376\\ 1.\ 61376\end{array}$	$\begin{array}{c} 1.\ 61400\\ 1.\ 61416\\ 1.\ 61560\\ 1.\ 61576\\ 1.\ 61576\end{array}$	$\begin{array}{c} 1.\ 61480\\ 1.\ 61496\\ 1.\ 61630\\ 1.\ 61630\\ 1.\ 61646\end{array}$	$\begin{array}{c} 1.\ 61550\\ 1.\ 61566\\ 1.\ 61690\\ 1.\ 61706\\ 1.\ 61706 \end{array}$	$\begin{array}{c} 1.\ 66680\\ 1.\ 66696\\ 1.\ 66930\\ 1.\ 66930\\ 1.\ 66946 \end{array}$	$\begin{array}{c} 1.\ 67030\\ 1.\ 67046\\ 1.\ 67250\\ 1.\ 67266\\ 1.\ 67266\end{array}$	$\begin{array}{c} 1.\ 67430\\ 1.\ 67446\\ 1.\ 67610\\ 1.\ 67626\\ 1.\ 67626 \end{array}$	$\begin{array}{c} 1.\ 67650\\ 1.\ 67666\\ 1.\ 67810\\ 1.\ 67810\\ 1.\ 67826 \end{array}$	$\begin{array}{c} 1.\ 67730\\ 1.\ 67746\\ 1.\ 67880\\ 1.\ 67896\\ 1.\ 67896 \end{array}$	$\begin{array}{c} 1.\ 67790\\ 1.\ 67806\\ 1.\ 67940\\ 1.\ 67940\\ 1.\ 67956\end{array}$	$\begin{array}{c} 1.\ 71650\\ 1.\ 71666\\ 1.\ 72680\\ 1.\ 72696\\ 1.\ 72950\\ 1.\ 72966\end{array}$	$\begin{array}{c} 1.72930\\ 1.72946\\ 1.73180\\ 1.73180\\ 1.73196 \end{array}$	$\begin{array}{c} 1.\ 73270\\ 1.\ 73286\\ 1.\ 73286\\ 1.\ 73500\\ 1.\ 73516 \end{array}$	$\begin{array}{c} 1.73680\\ 1.73696\\ 1.73860\\ 1.73860\\ 1.73876 \end{array}$	$\begin{array}{c} 1.\ 73900\\ 1.\ 73916\\ 1.\ 74060\\ 1.\ 74076\end{array}$
$\begin{array}{c} 1.\ 62320\\ 1.\ 62304\\ 1.\ 62304\\ 1.\ 62484\\ 1.\ 62484\end{array}$	$\begin{array}{c} 1.\ 62340\\ 1.\ 62324\\ 1.\ 62324\\ 1.\ 62500\\ 1.\ 62484 \end{array}$	$\begin{array}{c} 1.\ 62350\\ 1.\ 62334\\ 1.\ 62500\\ 1.\ 62484\\ 1.\ 62484 \end{array}$	$\begin{array}{c} 1.62360\\ 1.62344\\ 1.62500\\ 1.62484\\ 1.62484\end{array}$	$\begin{array}{c} 1,68500\\ 1,68484\\ 1.68750\\ 1.68734\\ 1.68734\end{array}$	$\begin{array}{c} 1.68530\\ 1.68514\\ 1.68750\\ 1.68734\\ 1.68734 \end{array}$	$\begin{array}{c} 1.68570\\ 1.68554\\ 1.68750\\ 1.68734\\ 1.68734 \end{array}$	$\begin{array}{c} 1.68590\\ 1.68574\\ 1.68750\\ 1.68750\\ 1.68734\end{array}$	$\begin{array}{c} 1.\ 68600\\ 1.\ 68584\\ 1.\ 68750\\ 1.\ 68734\\ 1.\ 68734 \end{array}$	$\begin{array}{c} 1.68600\\ 1.68584\\ 1.68750\\ 1.68734\\ 1.68734 \end{array}$	$\begin{array}{c} 1.\ 74730\\ 1.\ 74714\\ 1.\ 74730\\ 1.\ 74714\\ 1.\ 74984\\ 1.\ 74984 \end{array}$	$\begin{array}{c} 1.74750\\ 1.74734\\ 1.75000\\ 1.74984\\ 1.74984\end{array}$	$\begin{array}{c} 1.\ 74770\\ 1.\ 74754\\ 1.\ 75000\\ 1.\ 74984\\ 1.\ 74984 \end{array}$	$\begin{array}{c} 1.74820\\ 1.74804\\ 1.75000\\ 1.75900\\ 1.74984 \end{array}$	$\begin{array}{c} 1.74840\\ 1.74824\\ 1.75000\\ 1.74984 \end{array}$
$\begin{array}{c} 1.5452\\ 1.5458\\ 1.5485\\ 1.5485\\ 1.5491 \end{array}$	$\begin{array}{c} 1.5641\\ 1.5647\\ 1.5670\\ 1.5670\\ 1.5676\end{array}$	$\begin{array}{c} 1.5704\\ 1.5709\\ 1.5732\\ 1.5737\\ 1.5737\end{array}$	$\begin{array}{c} 1.5755\\ 1.5760\\ 1.5780\\ 1.5781\\ 1.5786\\ 1.5786\end{array}$	$\begin{array}{c} 1.5323\\ 1.5331\\ 1.5369\\ 1.5369\\ 1.5377\end{array}$	$\begin{array}{c} 1.5695\\ 1.5702\\ 1.5736\\ 1.5736\\ 1.5743 \end{array}$	$\begin{array}{c} 1.\ 6076\\ 1.\ 6082\\ 1.\ 6109\\ 1.\ 6115\\ \end{array}$	$\begin{array}{c} 1.\ 6265\\ 1.\ 6271\\ 1.\ 6294\\ 1.\ 6300\\ \end{array}$	$\begin{array}{c} 1.\ 6328\\ 1.\ 6323\\ 1.\ 6333\\ 1.\ 6361\\ 1.\ 6361\\ \end{array}$	$\begin{array}{c} 1.6379\\ 1.6384\\ 1.6406\\ 1.6411\\ 1.6411 \end{array}$	$\begin{array}{c} 1.5607\\ 1.5615\\ 1.5652\\ 1.5660\\ 1.5600\\ 1.5709\\ 1.5709\end{array}$	$\begin{array}{c} 1.5948\\ 1.5956\\ 1.5993\\ 1.6001\\ 1.6001 \end{array}$	$\begin{array}{c} 1.\ 6319\\ 1.\ 6326\\ 1.\ 6360\\ 1.\ 6367\\ 1.\ 6367\\ \end{array}$	$\begin{array}{c} 1.\ 6701\\ 1.\ 6707\\ 1.\ 6734\\ 1.\ 6740\\ 1.\ 6740 \end{array}$	$\begin{array}{c} 1.6890 \\ 1.6896 \\ 1.6919 \\ 1.6925 \\ 1.6925 \end{array}$
$\begin{array}{c} 1.5632\\ 1.5628\\ 1.5665\\ 1.5661\\ 1.5661 \end{array}$	$\begin{array}{c} 1.\ 5776\\ 1.\ 5772\\ 1.\ 5805\\ 1.\ 5801\\ 1.\ 5801 \end{array}$	$\begin{array}{c} 1.5824\\ 1.5820\\ 1.5820\\ 1.5852\\ 1.5848\\ 1.5848 \end{array}$	$\begin{array}{c} 1.5863\\ 1.5859\\ 1.5889\\ 1.5889\\ 1.5885\end{array}$	$\begin{array}{c} 1.5684\\ 1.5679\\ 1.5730\\ 1.5725\\ 1.5725 \end{array}$	$\begin{array}{c} 1.5966\\ 1.5961\\ 1.6007\\ 1.6002 \end{array}$	$\begin{array}{c} 1.\ 6256\\ 1.\ 6252\\ 1.\ 6289\\ 1.\ 6285\\ 1.\ 6285\end{array}$	$\begin{array}{c} 1. \ 6400 \\ 1. \ 6396 \\ 1. \ 6429 \\ 1. \ 6429 \\ 1. \ 6425 \end{array}$	$\begin{array}{c} 1. \ 6448 \\ 1. \ 6444 \\ 1. \ 6476 \\ 1. \ 6472 \\ 1. \ 6472 \end{array}$	$\begin{array}{c} 1.6487\\ 1.6483\\ 1.6514\\ 1.6510\\ 1.6510 \end{array}$	$\begin{array}{c} 1.\ 6040\\ 1.\ 6035\\ 1.\ 6085\\ 1.\ 6080\\ 1.\ 6124\\ 1.\ 6129\end{array}$	$\begin{array}{c} 1.6309\\ 1.6304\\ 1.6354\\ 1.6354\\ 1.6349\end{array}$	$\begin{array}{c} 1.\ 6590\\ 1.\ 6585\\ 1.\ 6631\\ 1.\ 6626\\ 1.\ 6626 \end{array}$	$\begin{array}{c} 1.6881\\ 1.6877\\ 1.6914\\ 1.6910\\ 1.6910 \end{array}$	1. 7025 1. 7021 1. 7054 1. 7050
$\begin{array}{c} 1.5632\\ 1.5636\\ 1.5665\\ 1.5669\\ 1.5669\end{array}$	$\begin{array}{c} 1.5776\\ 1.5780\\ 1.5805\\ 1.5809\\ 1.5809 \end{array}$	$\begin{array}{c} 1.5824\\ 1.5828\\ 1.5852\\ 1.5852\\ 1.5856\end{array}$	$\begin{array}{c} 1.5863\\ 1.5867\\ 1.5889\\ 1.5893\\ 1.5893\end{array}$	$\begin{array}{c} 1.5684\\ 1.5689\\ 1.5730\\ 1.5730\\ 1.5735\end{array}$	$\begin{array}{c} 1.5966\\ 1.5971\\ 1.6007\\ 1.6012\\ 1.6012 \end{array}$	$\begin{array}{c} 1.\ 6256\\ 1.\ 6260\\ 1.\ 6289\\ 1.\ 6293\\ 1.\ 6293 \end{array}$	$\begin{array}{c} 1.\ 6400\\ 1.\ 6404\\ 1.\ 6429\\ 1.\ 6433\\ 1.\ 6433 \end{array}$	$\begin{array}{c} 1. \ 6448 \\ 1. \ 6452 \\ 1. \ 6476 \\ 1. \ 6480 \\ 1. \ 6480 \end{array}$	$\begin{array}{c} 1.\ 6487\\ 1.\ 6491\\ 1.\ 6514\\ 1.\ 6518\\ 1.\ 6518 \end{array}$	$\begin{array}{c} 1.\ 6040\\ 1.\ 6045\\ 1.\ 6085\\ 1.\ 6090\\ 1.\ 6134\\ 1.\ 6139\end{array}$	$\begin{array}{c} 1.6309\\ 1.6314\\ 1.6354\\ 1.6354\\ 1.6359\end{array}$	$\begin{array}{c} 1. \ 6590 \\ 1. \ 6595 \\ 1. \ 6631 \\ 1. \ 6636 \end{array}$	$\begin{array}{c} 1.6881\\ 1.6885\\ 1.6914\\ 1.6918\\ 1.6918 \end{array}$	1. 7025 1. 7029 1. 7054 1. 7058
$\begin{array}{c} 1.5330\\ 1.5324\\ 1.5348\\ 1.5348\\ 1.5342 \end{array}$	$\begin{array}{c} 1.\ 5557\\ 1.\ 5551\\ 1.\ 5557\\ 1.\ 5567\\ 1.\ 5567\end{array}$	$\begin{array}{c} 1.5633\\ 1.5628\\ 1.5648\\ 1.5648\\ 1.5643\end{array}$	$\begin{array}{c} 1.5694\\ 1.5689\\ 1.5708\\ 1.5703\\ 1.5703\end{array}$	$\begin{array}{c} 1.5045\\ 1.5037\\ 1.5070\\ 1.5062\\ 1.5062 \end{array}$	$\begin{array}{c} 1.5500\\ 1.55493\\ 1.5522\\ 1.5515\\ 1.5515\end{array}$	$\begin{array}{c} 1.5955\\ 1.5949\\ 1.5973\\ 1.5973\\ 1.5967\end{array}$	$\begin{array}{c} 1.6182\\ 1.6176\\ 1.6198\\ 1.6192\\ 1.6192 \end{array}$	$\begin{array}{c} 1.6258\\ 1.6253\\ 1.6253\\ 1.6268\\ 1.6268\end{array}$	$\begin{array}{c} 1.6318\\ 1.6313\\ 1.6333\\ 1.6328\\ 1.6328 \end{array}$	$\begin{array}{c} 1.5308\\ 1.5308\\ 1.5308\\ 1.5308\\ 1.5335\\ 1.5335\\ 1.5335\end{array}$	$\begin{array}{c} 1.5670\\ 1.5662\\ 1.5695\\ 1.5687\\ 1.5687 \end{array}$	$\begin{array}{c} 1.\ 6124\\ 1.\ 6117\\ 1.\ 6147\\ 1.\ 6140\\ 1.\ 6140 \end{array}$	$\begin{array}{c} 1.6580\\ 1.6574\\ 1.6598\\ 1.6592\\ 1.6592\end{array}$	1. 6807 1. 6807 1. 6817 1. 6817
1. 5691 1. 5687 1. 5709 1. 5705	$\begin{array}{c} 1.5828\\ 1.5824\\ 1.5844\\ 1.5846\\ 1.5840 \end{array}$	$\begin{array}{c} 1.5874\\ 1.5870\\ 1.5889\\ 1.5889\\ 1.5885\end{array}$	$\begin{array}{c} 1.5911\\ 1.5907\\ 1.5925\\ 1.5925\\ 1.5921\end{array}$	$\begin{array}{c} 1.5767\\ 1.5762\\ 1.5792\\ 1.5792\\ 1.5787\end{array}$	$\begin{array}{c} 1.\ 6041\\ 1.\ 6036\\ 1.\ 6063\\ 1.\ 6063\\ 1.\ 6058 \end{array}$	$\begin{array}{c} 1.\ 6316\\ 1.\ 6312\\ 1.\ 6334\\ 1.\ 6334\\ 1.\ 6330\end{array}$	$\begin{array}{c} 1. \ 6453 \\ 1. \ 6449 \\ 1. \ 6469 \\ 1. \ 6469 \\ 1. \ 6465 \end{array}$	$\begin{array}{c} 1. \ 6499 \\ 1. \ 6495 \\ 1. \ 6514 \\ 1. \ 6510 \\ 1. \ 6510 \end{array}$	$\begin{array}{c} 1.\ 6535\\ 1.\ 6531\\ 1.\ 6550\\ 1.\ 6546\\ 1.\ 6546 \end{array}$	$\begin{array}{c} 1.\ 6174\\ 1.\ 6169\\ 1.\ 6169\\ 1.\ 6169\\ 1.\ 6169\\ 1.\ 6201\\ 1.\ 6196\end{array}$	$\begin{array}{c} 1.\ 6392\\ 1.\ 6387\\ 1.\ 6417\\ 1.\ 6412\\ 1.\ 6412 \end{array}$	$\begin{array}{c} 1.\ 6665\\ 1.\ 6660\\ 1.\ 6688\\ 1.\ 6683\\ 1.\ 6683 \end{array}$	$\begin{array}{c} 1.\ 6941\\ 1.\ 6937\\ 1.\ 6959\\ 1.\ 6955\end{array}$	$\begin{array}{c} 1.\ 7078\\ 1.\ 7074\\ 1.\ 7094\\ 1.\ 7094\\ 1.\ 7090 \end{array}$
2A 3A	2A 3A	2A 3A	2A 3A	2A `3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	1A 2A 3A	2A 3A	2A 3A	2A 3A	37 37
UN	UN	UNEF	UN	UN	NN	UN	UN	UNEF	NN	UNC	UN	UN	NN	NU
1. 625–12	1.625-16	1.625-18	1.625-20	1.6875-6	1.6875-8	1.6875 - 12	1.6875–16	1.6875-18	1. 6875-20	1. 750-5	1.750-6	1.750-8	1,750–12	1.750-16

fied screw threads—Continued	
d thread series, Uni	
Gages for standar	
ABLE 6.19.	

		Nominal size and	threads per inch		21	1. 750-20	1.8125-6	1.8125-8	1.8125-12	1.8125-16	1.8125-20	1.875-6	1.875-8	1.875-12	1. 875-16	1. 875-20
		Scries designa-	tion		20	NU	NŊ	UN	0N	UN	UN	NN	NU	NN	NN	NU
		Class			19	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B
	ug gages diameter		N0T 0.0		18	$\begin{array}{c} in \\ 1.\ 70700 \\ 1.\ 70684 \\ 1.\ 70370 \\ 1.\ 70354 \end{array}$	$\begin{array}{c} 1.66300\\ 1.66284\\ 1.65210\\ 1.65210\\ 1.65194 \end{array}$	$\begin{array}{c} 1.\ 70200\\ 1.\ 70184\\ 1.\ 69220\\ 1.\ 69204\\ 1.\ 69204 \end{array}$	$\begin{array}{c} 1.\ 74000\\ 1.\ 73984\\ 1.\ 73230\\ 1.\ 73214\\ 1.\ 73214 \end{array}$	$\begin{array}{c} 1.75900\\ 1.75884\\ 1.75330\\ 1.75330\\ 1.75314 \end{array}$	$\begin{array}{c} \textbf{1.77000}\\ \textbf{1.76984}\\ \textbf{1.76620}\\ \textbf{1.76620}\\ \textbf{1.76604} \end{array}$	1. 72500 1. 72484 1. 71460 1. 71444	$\begin{array}{c} 1.\ 76500\\ 1.\ 76484\\ 1.\ 75470\\ 1.\ 75454\\ 1.\ 75454\end{array}$	$\begin{array}{c} 1.80300\\ 1.80284\\ 1.79480\\ 1.79464\\ 1.79464 \end{array}$	$\begin{array}{c} 1.82100\\ 1.82084\\ 1.81580\\ 1.81564\\ 1.81564\end{array}$	1. 83200 1. 83184 1. 82870 1. 82870
10	Z plain p for minor		60		17	in in 69600 1. 69616 1. 69616 1. 69616 1. 69616	$\begin{array}{c} 1.63200\\ 1.63216\\ 1.63200\\ 1.63200\\ 1.63216\end{array}$	$\begin{array}{c} 1.\ 67700\\ 1.\ 67716\\ 1.\ 67716\\ 1.\ 67716\\ 1.\ 67716\end{array}$	$\begin{array}{c} 1.72200\\ 1.72216\\ 1.72200\\ 1.72200\\ 1.72216\end{array}$	$\begin{array}{c} 1.\ 74500\\ 1.\ 74516\\ 1.\ 74500\\ 1.\ 74500\\ 1.\ 74516\end{array}$	$\begin{array}{c} 1.\ 75800\\ 1.\ 75816\\ 1.\ 75800\\ 1.\ 75816\\ 1.\ 75816\end{array}$	$\begin{array}{c} 1.\ 69500\\ 1.\ 69516\\ 1.\ 69500\\ 1.\ 69516\\ 1.\ 69516 \end{array}$	$\begin{array}{c} 1.\ 74000\\ 1.\ 74016\\ 1.\ 74016\\ 1.\ 74000\\ 1.\ 74016\\ 1.\ 74016\end{array}$	$\begin{array}{c} 1.\ 78500\\ 1.\ 78516\\ 1.\ 78500\\ 1.\ 78516\\ 1.\ 78516\end{array}$	1. 80700 1. 80716 1. 80706 1. 80716 1. 80716	1. 82100 1. 82116 1. 82100
al threads			iameter	Plus toler- ance gage	16	$in in 1.7238 \\ 1.7242 \\ 1.7222 \\ 1.7226 \\ 1.7226$	1. 7151 1. 7156 1. 7124 1. 7129	$\begin{array}{c} 1.\ 7412\\ 1.\ 7417\\ 1.\ 7387\\ 1.\ 7392\\ \end{array}$	1. 7662 1. 7666 1. 7642 1. 7646 1. 7646	1. 7788 1. 7792 1. 7771 1. 7775	$\begin{array}{c} 1.\ 7863\\ 1.\ 7867\\ 1.\ 7847\\ 1.\ 7851\\ 1.\ 7851 \end{array}$	$\begin{array}{c} 1.\ 7777\\ 1.\ 7782\\ 1.\ 7782\\ 1.\ 7749\\ 1.\ 7754\end{array}$	$\begin{array}{c} 1.8038\\ 1.8043\\ 1.8013\\ 1.8018\\ 1.8018 \end{array}$	$\begin{array}{c} 1.8287\\ 1.8291\\ 1.8291\\ 1.8267\\ 1.8271\end{array}$	$\begin{array}{c} 1.8413\\ 1.8417\\ 1.8396\\ 1.8396\\ 1.8400\end{array}$	1.8488 1.8492 1.8472 1.8472
or intern	gages	ІН	Pitch d	Minus toler- ance gage	15	in 1. 7238 1. 7234 1. 7234 1. 7218	1. 7151 1. 7146 1. 7124 1. 7124 1. 7119	1. 7412 1. 7407 1. 7387 1. 7382 1. 7382	$\begin{array}{c} 1.\ 7662\\ 1.\ 7658\\ 1.\ 7642\\ 1.\ 7638\\ 1.\ 7638 \end{array}$	1. 7788 1. 7784 1. 7771 1. 7771 1. 7767	1. 7863 1. 7859 1. 7847 1. 7847 1. 7843	1.7777 1.7772 1.7749 1.7749 1.7744	$\begin{array}{c} 1.8038\\ 1.8033\\ 1.8013\\ 1.8013\\ 1.8008 \end{array}$	$\begin{array}{c} 1.\ 8287\\ 1.\ 8283\\ 1.\ 8267\\ 1.\ 8263\\ 1.\ 8263\end{array}$	$\begin{array}{c} 1.8413\\ 1.8409\\ 1.8396\\ 1.8396\\ 1.8392 \end{array}$	1. 8488 1. 8484 1. 8472 1. 8472
Gages fo	ead plug			Major diam- cter	14	in in 1.7455 1.7455 1.7450 1.7439 1.7439	$\begin{array}{c} 1.\ 7873\\ 1.\ 7865\\ 1.\ 7846\\ 1.\ 7838\\ 1.\ 7838 \end{array}$	$\begin{array}{c} 1.\ 7953\\ 1.\ 7946\\ 1.\ 7928\\ 1.\ 7921\\ 1.\ 7921 \end{array}$	$\begin{array}{c} 1.\ 8023\\ 1.\ 8017\\ 1.\ 8003\\ 1.\ 7997\\ 1.\ 7997 \end{array}$	$\begin{array}{c} 1.8059\\ 1.8053\\ 1.8042\\ 1.8036\\ 1.8036\end{array}$	$\begin{array}{c} 1.8080\\ 1.8075\\ 1.8064\\ 1.8064\\ 1.8059\end{array}$	$\begin{array}{c} 1.8499\\ 1.8491\\ 1.8471\\ 1.8471\\ 1.8463\end{array}$	$\begin{array}{c} 1.8579\\ 1.8572\\ 1.8554\\ 1.8554\\ 1.8547\end{array}$	$\begin{array}{c} 1.8648\\ 1.8642\\ 1.8622\\ 1.8622\\ 1.8622\end{array}$	$\begin{array}{c} 1.8684\\ 1.8678\\ 1.8667\\ 1.8667\\ 1.8661\\ 1.8661 \end{array}$	1.8705 1.8700 1.8689 1.8689
	X thr	0		Pitch diam- eter	13	in 1. 7175 1. 7179 1. 7179 1. 7179 1. 7179 1. 7179	$\begin{array}{c} 1.\ 7042\\ 1.\ 7047\\ 1.\ 7042\\ 1.\ 7047\\ 1.\ 7047 \end{array}$	$\begin{array}{c} 1.\ 7313\\ 1.\ 7318\\ 1.\ 7318\\ 1.\ 7313\\ 1.\ 7318\end{array}$	$\begin{array}{c} 1.\ 7584\\ 1.\ 7588\\ 1.\ 7588\\ 1.\ 7588\\ 1.\ 7588\end{array}$	$\begin{array}{c} 1.\ 7719\\ 1.\ 7723\\ 1.\ 7719\\ 1.\ 7723\\ 1.\ 7723\end{array}$	$\begin{array}{c} 1.7800\\ 1.7804\\ 1.7804\\ 1.7800\\ 1.7804\end{array}$	$\begin{array}{c} 1.\ 7667\\ 1.\ 7672\\ 1.\ 7667\\ 1.\ 7667\\ 1.\ 7672\end{array}$	1. 7938 1. 7943 1. 7938 1. 7938 1. 7943	$\begin{array}{c} 1.8209\\ 1.8213\\ 1.8209\\ 1.8213\\ 1.8213\end{array}$	$\begin{array}{c} 1.8344\\ 1.8348\\ 1.8348\\ 1.8344\\ 1.8348\end{array}$	1. 8425 1. 8429 1. 8429 1. 8425
		Ċ		Major diam- eter	12	in 1. 7500 1. 7505 1. 7505 1. 7505 1. 7505	$\begin{array}{c} 1.8125\\ 1.8133\\ 1.8133\\ 1.8125\\ 1.8133\end{array}$	$\begin{array}{c} 1.8125\\ 1.8132\\ 1.8132\\ 1.8125\\ 1.8132\end{array}$	$\begin{array}{c} 1.8125\\ 1.8131\\ 1.8131\\ 1.8125\\ 1.8131\\ 1.8131\end{array}$	$\begin{array}{c} 1.8125\\ 1.8131\\ 1.8131\\ 1.8125\\ 1.8131\end{array}$	$\begin{array}{c} 1.8125\\ 1.8130\\ 1.8130\\ 1.8125\\ 1.8130\end{array}$	$\begin{array}{c} 1.8750\\ 1.8758\\ 1.8758\\ 1.8750\\ 1.8758\\ 1.8758\end{array}$	$\begin{array}{c} 1.\ 8750\\ 1.\ 8757\\ 1.\ 8757\\ 1.\ 8757\\ 1.\ 8757\end{array}$	$\begin{array}{c} 1.8750\\ 1.8756\\ 1.8756\\ 1.8750\\ 1.8756\\ 1.8756\end{array}$	$\begin{array}{c} 1.\ 8750\\ 1.\ 8756\\ 1.\ 8756\\ 1.\ 8756\\ 1.\ 8756\end{array}$	1.8750 1.8755 1.8755 1.8755
	for major	0.0	Un-	finished hot- rolled material	11	in							1. 85020 1. 85036			
	ng gages diameter	LON		Semi- finished	10	in 1. 74040 1. 74056 1. 74190 1. 74206	$\begin{array}{c} 1.\ 79180\\ 1.\ 79196\\ 1.\ 79430\\ 1.\ 79446\\ 1.\ 79446\end{array}$	$\begin{array}{c} 1.\ 79520\\ 1.\ 79536\\ 1.\ 79750\\ 1.\ 79766\\ 1.\ 79766\end{array}$	$\begin{array}{c} 1.79930\\ 1.79946\\ 1.80110\\ 1.80126\\ 1.80126 \end{array}$	$\begin{array}{c} 1.80150\\ 1.80166\\ 1.80310\\ 1.80326\\ 1.80326\end{array}$	$\begin{array}{c} 1.80290\\ 1.80306\\ 1.80346\\ 1.80440\\ 1.80456\end{array}$	$\begin{array}{c} 1.85430\\ 1.85446\\ 1.85680\\ 1.85696\\ 1.85696\end{array}$	$\begin{array}{c} 1.85770\\ 1.85786\\ 1.85786\\ 1.86000\\ 1.86016\end{array}$	$\begin{array}{c} 1.86180\\ 1.86196\\ 1.86360\\ 1.86376\\ 1.86376\end{array}$	$\begin{array}{c} 1.86400\\ 1.86416\\ 1.86560\\ 1.86560\\ 1.86576\end{array}$	$\begin{array}{c} 1.86540\\ 1.86556\\ 1.86690\\ 1.86706\\ \end{array}$
rreads	Z plain ri		60		6	$\begin{array}{c} in\\ 1.74850\\ 1.74834\\ 1.75000\\ 1.74984\end{array}$	$\begin{array}{c} 1.81000\\ 1.80984\\ 1.81250\\ 1.81234\\ 1.81234\end{array}$	$\begin{array}{c} 1.81020\\ 1.81004\\ 1.81250\\ 1.81234\\ 1.81234\end{array}$	$\begin{array}{c} 1.81070\\ 1.81054\\ 1.81250\\ 1.81234\\ 1.81234\end{array}$	$\begin{array}{c} 1.81090\\ 1.81074\\ 1.81250\\ 1.81234\\ 1.81234\end{array}$	$\begin{array}{c} 1.81100\\ 1.81084\\ 1.81250\\ 1.81234\\ 1.81234\end{array}$	$\begin{array}{c} 1.\ 87250\\ 1.\ 87234\\ 1.\ 87500\\ 1.\ 87484\\ 1.\ 87484 \end{array}$	$\begin{array}{c} 1.87270\\ 1.87254\\ 1.87500\\ 1.87484\\ 1.87484\end{array}$	$\begin{array}{c} 1.87320\\ 1.87304\\ 1.87500\\ 1.87484\\ 1.87484\end{array}$	$\begin{array}{c} 1.\ 87340\\ 1.\ 87324\\ 1.\ 87500\\ 1.\ 87484\\ 1.\ 87484 \end{array}$	1.87350 1.87334 1.87334 1.87500 1.87484
tternal th				Minor diam- eter	8	in in 1.7004 1.7009 1.7031 1.7031	$\begin{array}{c} 1.\ 6572\\ 1.\ 6580\\ 1.\ 6618\\ 1.\ 6626\end{array}$	$\begin{array}{c} 1.\ 6943\\ 1.\ 6950\\ 1.\ 6985\\ 1.\ 6992\end{array}$	1. 7326 1. 7332 1. 7359 1. 7365	1. 7515 1. 7521 1. 7544 1. 7550	1. 7629 1. 7634 1. 7656 1. 7661	1. 7197 1. 7205 1. 7243 1. 7251	1. 7567 1. 7574 1. 7610 1. 7617	1. 7951 1. 7957 1. 7984 1. 7990	1. 8140 1. 8146 1. 8146 1. 8169 1. 8175	1.8254 1.8259 1.8281 1.8286
ges for e	gages	ΓO	iameter	Minus toler- ance gage	7	$in in 1.7112 \\ 1.7108 \\ 1.7108 \\ 1.7139 \\ 1.7135$	$\begin{array}{c} 1.\ 6933\\ 1.\ 6928\\ 1.\ 6979\\ 1.\ 6974 \end{array}$	$\begin{array}{c} 1.7214\\ 1.7209\\ 1.7256\\ 1.7251\\ 1.7251 \end{array}$	$\begin{array}{c} 1.\ 7506\\ 1.\ 7502\\ 1.\ 7539\\ 1.\ 7535\\ 1.\ 7535\end{array}$	$\begin{array}{c} 1.\ 7650\\ 1.\ 7646\\ 1.\ 7679\\ 1.\ 7675\end{array}$	1. 7737 1. 7733 1. 7764 1. 7764 1. 7760	1. 7558 1. 7553 1. 7604 1. 7599	1. 7838 1. 7833 1. 7881 1. 7881 1. 7876	1.8131 1.8127 1.8164 1.8164 1.8160	$\begin{array}{c} 1.8275\\ 1.8271\\ 1.8304\\ 1.8306\\ 1.8300\end{array}$	1.8362 1.8358 1.8389 1.8385
Ga	ead ring		Pitch d	Plus toler- ance gage	9	in in 1.7112 1.7112 1.7116 1.7139 1.7139 1.7139	$\begin{array}{c} 1.\ 6933\\ 1.\ 6938\\ 1.\ 6979\\ 1.\ 6984\end{array}$	$\begin{array}{c} 1.7214\\ 1.7219\\ 1.7256\\ 1.7256\\ 1.7261 \end{array}$	$\begin{array}{c} 1.\ 7506\\ 1.\ 7510\\ 1.\ 7539\\ 1.\ 7543\\ 1.\ 7543 \end{array}$	1. 7650 1. 7654 1. 7679 1. 7683	$\begin{array}{c} 1.\ 7737\\ 1.\ 7741\\ 1.\ 7764\\ 1.\ 7768\\ 1.\ 7768\end{array}$	$\begin{array}{c} 1.7558\\ 1.7563\\ 1.7563\\ 1.7604\\ 1.7609\end{array}$	$\begin{array}{c} 1.7838\\ 1.7843\\ 1.7881\\ 1.7881\\ 1.7886\end{array}$	1. 8131 1. 8135 1. 8164 1. 8164 1. 8168	$\begin{array}{c} 1.8275\\ 1.8279\\ 1.8204\\ 1.8308\\ 1.8308\end{array}$	1. 8362 1. 8366 1. 8389 1. 8393
	X th	0		Minor diam- eter	5	in in 6943 1. 6943 1. 6938 1. 6958 1. 6953	$\begin{array}{c} 1.\ 6295\\ 1.\ 6287\\ 1.\ 6320\\ 1.\ 6312 \end{array}$	$\begin{array}{c} 1.\ 6749\\ 1.\ 6742\\ 1.\ 6772\\ 1.\ 6765\end{array}$	$\begin{array}{c} 1.7205\\ 1.7199\\ 1.7223\\ 1.7217\\ 1.7217\end{array}$	$\begin{array}{c} 1.\ 7432\\ 1.\ 7426\\ 1.\ 7448\\ 1.\ 7442\\ 1.\ 7442 \end{array}$	1. 7568 1. 7563 1. 7583 1. 7583 1. 7578	$\begin{array}{c} 1.\ 6920\\ 1.\ 6912\\ 1.\ 6945\\ 1.\ 6937\end{array}$	1. 7374 1. 7367 1. 7397 1. 7390 1. 7390	$\begin{array}{c} 1.7830\\ 1.7824\\ 1.7848\\ 1.7842\\ 1.7842 \end{array}$	1.8057 1.8051 1.8073 1.8073 1.8067	$\begin{array}{c} 1.8193\\ 1.8188\\ 1.8208\\ 1.8208\\ 1.8203\end{array}$
		5		Pitch diam- eter	4	<i>in</i> 1. 7160 1. 7156 1. 7175 1. 7175	$\begin{array}{c} 1.\ 7017\\ 1.\ 7012\\ 1.\ 7042\\ 1.\ 7037\\ \end{array}$	$\begin{array}{c} 1.7290 \\ 1.7285 \\ 1.7313 \\ 1.7308 \\ 1.7308 \end{array}$	1. 7566 1. 7562 1. 7584 1. 7580 1. 7580	1. 7703 1. 7699 1. 7719 1. 7715	1. 7785 1. 7781 1. 7781 1. 7796 1. 7796	$\begin{array}{c} 1.7642 \\ 1.7637 \\ 1.7667 \\ 1.7662 \\ 1.7662 \end{array}$	1. 7915 1. 7916 1. 7938 1. 7933	$\begin{array}{c} 1.8191 \\ 1.8187 \\ 1.8209 \\ 1.8205 \\ 1.8205 \end{array}$	$\begin{array}{c} 1.8328\\ 1.8324\\ 1.8324\\ 1.8344\\ 1.8340\\ 1.8340 \end{array}$	$\begin{array}{c} 1.8410\\ 1.8406\\ 1.8425\\ 1.8421\\ 1.8421 \end{array}$
		Class			<b>8</b> .	2A 3.A	2.A 3.A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A
		Series designa-	tion		61	UN	UN	UN	ΩN	UN	UN	NU	UN	NIJ	NN	UN
		Nominal size and	threads per inch		1	1. 750-20	1.8125-6	1.8125-8	1.8125-12	1.8125-16	1.8125-20	1.875-6	1.875-8	1.875-12	1.875-16	1.875-20

1. 9375-6	1. 9375-8	1. 9375–12	1.9735-16	1. 9375-20	2,000-4.5	2.000-6	2.000-8	2.000-12	2,000-16	2.000-20	2, 125-6	2.125-8	2, 125-12	2,125-16
NN	UN	UN	UN	UN	UNC	UN	UN	UN	UN	UN	NU	UN	NIJ	UN
2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	1B 2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B
1. 78800 1. 78784 1. 77710 1. 77694	1. 82700 1. 82684 1. 81720 1. 81704	$\begin{array}{c} 1.86500\\ 1.86484\\ 1.85730\\ 1.85714\\ 1.85714 \end{array}$	$\begin{array}{c} 1. 88400\\ 1. 88384\\ 1. 87830\\ 1. 87814\\ 1. 87814 \end{array}$	1. 89500 1. 89484 1. 89120 1. 89104	$\begin{array}{c} 1.\ 79500\\ 1.\ 79484\\ 1.\ 79500\\ 1.\ 79484\\ 1.\ 78610\\ 1.\ 78594 \end{array}$	$\begin{array}{c} 1.85000\\ 1.84984\\ 1.83960\\ 1.83944\\ 1.83944 \end{array}$	$\begin{array}{c} 1.\ 89000\\ 1.\ 88984\\ 1.\ 87970\\ 1.\ 87954\\ 1.\ 87954\end{array}$	$\begin{array}{c} 1.92800\\ 1.92784\\ 1.91980\\ 1.91964\\ 1.91964 \end{array}$	$\begin{array}{c} 1. \ 94600\\ 1. \ 94584\\ 1. \ 94080\\ 1. \ 94064\\ 1. \ 94064 \end{array}$	$\begin{array}{c} 1. \ 95700\\ 1. \ 95684\\ 1. \ 95370\\ 1. \ 95354\\ \end{array}$	$\begin{array}{c} 1. \ 97500 \\ 1. \ 97484 \\ 1. \ 96460 \\ 1. \ 96444 \\ 1. \ 96444 \end{array}$	$\begin{array}{c} 2.\ 01500\\ 2.\ 01484\\ 2.\ 00470\\ 2.\ 00454\\ 2.\ 00454\\ \end{array}$	$\begin{array}{c} 2.\ 05300\\ 2.\ 05284\\ 2.\ 04480\\ 2.\ 04464\\ 2.\ 04464 \end{array}$	2. 07100 2. 07084 2. 06580 2. 06564
1. 75700 1. 75716 1. 75716 1. 75716 1. 75716	$\begin{array}{c} 1.80200\\ 1.80216\\ 1.80200\\ 1.80200\\ 1.80216 \end{array}$	$\begin{array}{c} 1.84700\\ 1.84716\\ 1.84700\\ 1.84700\\ 1.84716\\ 1.84716\\ \end{array}$	1.87000 1.87016 1.87016 1.87000 1.87016	1, 88300 1, 88316 1, 88300 1, 88300 1, 88316	1. 75900 1. 75916 1. 75900 1. 75900 1. 75916 1. 75916	$\begin{array}{c} 1.82000\\ 1.82016\\ 1.82016\\ 1.82000\\ 1.82016\\ \end{array}$	$\begin{array}{c} 1.86500\\ 1.86516\\ 1.86516\\ 1.86500\\ 1.86516 \end{array}$	$\begin{array}{c} 1.\ 91000\\ 1.\ 91016\\ 1.\ 91000\\ 1.\ 91016\\ 1.\ 91016 \end{array}$	$\begin{array}{c} 1.93200\\ 1.93216\\ 1.93200\\ 1.93200\\ 1.93216\end{array}$	1. 94600 1. 94616 1. 94600 1. 94600 1. 94616	$\begin{array}{c} 1. \ 94500\\ 1. \ 94516\\ 1. \ 94500\\ 1. \ 94500\\ 1. \ 94516\end{array}$	$\begin{array}{c} 1.\ 99000\\ 1.\ 99016\\ 1.\ 99016\\ 1.\ 99016\\ 1.\ 99016 \end{array}$	2. 03500 2. 03516 2. 03500 2. 03500 2. 03516	2. 05700 2. 05716 2. 05716 2. 05716 2. 05716
$\begin{array}{c} 1.8403\\ 1.8408\\ 1.8375\\ 1.8375\\ 1.8380\end{array}$	$\begin{array}{c} 1.8663\\ 1.8668\\ 1.8638\\ 1.8638\\ 1.8643\end{array}$	$\begin{array}{c} 1.8913\\ 1.8917\\ 1.8893\\ 1.8893\\ 1.8897\end{array}$	$\begin{array}{c} 1.\ 9039\\ 1.\ 9043\\ 1.\ 9021\\ 1.\ 9025\\ 1.\ 9025 \end{array}$	$\begin{array}{c} 1.\ 9114\\ 1.\ 9118\\ 1.\ 9098\\ 1.\ 9102\\ 1.\ 9102 \end{array}$	$\begin{array}{c} 1.8743\\ 1.8743\\ 1.8748\\ 1.8681\\ 1.8686\\ 1.8650\\ 1.8655\end{array}$	$\begin{array}{c} 1.\ 9028\\ 1.\ 9033\\ 1.\ 9000\\ 1.\ 9005 \end{array}$	$\begin{array}{c} 1.\ 9289\\ 1.\ 9294\\ 1.\ 9264\\ 1.\ 9269\\ 1.\ 9269\end{array}$	$\begin{array}{c} 1.\ 9538\\ 1.\ 9542\\ 1.\ 9518\\ 1.\ 9522\\ 1.\ 9522 \end{array}$	$\begin{array}{c} 1.9664\\ 1.9668\\ 1.964\delta\\ 1.9650\\ 1.9650 \end{array}$	$\begin{array}{c} 1.\ 9739\\ 1.\ 9743\\ 1.\ 9723\\ 1.\ 9727\\ 1.\ 9727\end{array}$	$\begin{array}{c} 2.\ 0280\\ 2.\ 0285\\ 2.\ 0251\\ 2.\ 0256 \end{array}$	$\begin{array}{c} 2.\ 0540\\ 2.\ 0545\\ 2.\ 0515\\ 2.\ 0520\\ \end{array}$	$\begin{array}{c} 2.\ 0788\\ 2.\ 0792\\ 2.\ 0768\\ 2.\ 0772\\ 2.\ 0772\\ \end{array}$	2. 0914 2. 0918 2. 0906 2. 0900
$\begin{array}{c} 1.8403\\ 1.8398\\ 1.8375\\ 1.8375\\ 1.8370\end{array}$	$\begin{array}{c} 1.8663\\ 1.8658\\ 1.8658\\ 1.8638\\ 1.8633\\ 1.8633\end{array}$	$\begin{array}{c} 1.\ 8913\\ 1.\ 8909\\ 1.\ 8893\\ 1.\ 8889\end{array}$	$\begin{array}{c} 1. \ 9039\\ 1. \ 9035\\ 1. \ 9021\\ 1. \ 9021\\ 1. \ 9017 \end{array}$	$\begin{array}{c} 1.\ 9114\\ 1.\ 9110\\ 1.\ 9098\\ 1.\ 9094\\ 1.\ 9094 \end{array}$	1. 8743 1. 8733 1. 8681 1. 8676 1. 8650 1. 8645 1. 8645	$\begin{array}{c} 1.9028\\ 1.9023\\ 1.9000\\ 1.8995\\ 1.8995 \end{array}$	$\begin{array}{c} 1.9289\\ 1.9284\\ 1.9264\\ 1.9264\\ 1.9259\end{array}$	$\begin{array}{c} 1.\ 9538\\ 1.\ 9534\\ 1.\ 9518\\ 1.\ 9518\\ 1.\ 9514 \end{array}$	$\begin{array}{c} 1.\ 9664\\ 1.\ 9660\\ 1.\ 9646\\ 1.\ 9642\\ 1.\ 9642 \end{array}$	$\begin{array}{c} 1.\ 9739\\ 1.\ 9735\\ 1.\ 9723\\ 1.\ 9723\\ 1.\ 9719\end{array}$	$\begin{array}{c} 2.\ 0280\\ 2.\ 0275\\ 2.\ 0251\\ 2.\ 0246\\ \end{array}$	$\begin{array}{c} 2.\ 0540\\ 2.\ 0535\\ 2.\ 0515\\ 2.\ 0510\\ \end{array}$	$\begin{array}{c} 2.\ 0788\\ 2.\ 0784\\ 2.\ 0768\\ 2.\ 0768\\ 2.\ 0764\\ \end{array}$	2.0914 2.0910 2.0896 2.0892
$\begin{array}{c} 1.\ 9125\\ 1.\ 9117\\ 1.\ 9097\\ 1.\ 9089\end{array}$	$\begin{array}{c} 1.\ 9204\\ 1.\ 9197\\ 1.\ 9179\\ 1.\ 9179\\ 1.\ 9172 \end{array}$	$\begin{array}{c} 1. \ 9274 \\ 1. \ 9268 \\ 1. \ 9254 \\ 1. \ 9254 \\ 1. \ 9248 \end{array}$	$\begin{array}{c} 1.9310\\ 1.9304\\ 1.9292\\ 1.9286\\ 1.9286\end{array}$	$\begin{array}{c} 1.9331\\ 1.9326\\ 1.9315\\ 1.9315\\ 1.9310\end{array}$	$\begin{array}{c} 1. \ 9705\\ 1. \ 9697\\ 1. \ 9643\\ 1. \ 9635\\ 1. \ 9602\\ 1. \ 9604\end{array}$	$\begin{array}{c} 1.\ 9750\\ 1.\ 9742\\ 1.\ 9722\\ 1.\ 9714\\ 1.\ 9714 \end{array}$	$\begin{array}{c} 1.9830\\ 1.9823\\ 1.9805\\ 1.9798\\ 1.9798 \end{array}$	$\begin{array}{c} 1.\ 9899\\ 1.\ 9893\\ 1.\ 9879\\ 1.\ 9873\end{array}$	$\begin{array}{c} 1.\ 9935\\ 1.\ 9929\\ 1.\ 9917\\ 1.\ 9911\\ 1.\ 9911 \end{array}$	$\begin{array}{c} 1.\ 9956\\ 1.\ 9951\\ 1.\ 9940\\ 1.\ 9935\end{array}$	$\begin{array}{c} 2.\ 1002\\ 2.\ 0994\\ 2.\ 0973\\ 2.\ 0965 \end{array}$	$\begin{array}{c} 2. \ 1081 \\ 2. \ 1074 \\ 2. \ 1056 \\ 2. \ 1049 \end{array}$	$\begin{array}{c} 2. \ 1149\\ 2. \ 1143\\ 2. \ 1129\\ 2. \ 1123\\ 2. \ 1123\\ \end{array}$	2, 1185 2, 1179 2, 1167 2, 1161
$\begin{array}{c} 1.8292\\ 1.8297\\ 1.8292\\ 1.8292\\ 1.8297\end{array}$	$\begin{array}{c} 1.8563\\ 1.8568\\ 1.8568\\ 1.8563\\ 1.8568\end{array}$	$\begin{array}{c} 1.8834\\ 1.8838\\ 1.8838\\ 1.8834\\ 1.8838\\ 1.8838\end{array}$	$\begin{array}{c} 1.8969\\ 1.8973\\ 1.8969\\ 1.8969\\ 1.8973\end{array}$	$\begin{array}{c} 1. \ 9050\\ 1. \ 9054\\ 1. \ 9050\\ 1. \ 9050\\ 1. \ 9054 \end{array}$	$\begin{array}{c} 1.8557\\ 1.8562\\ 1.8557\\ 1.8557\\ 1.8557\\ 1.8557\\ 1.8562\\ 1.8562\end{array}$	$\begin{array}{c} 1.8917\\ 1.8922\\ 1.8917\\ 1.8917\\ 1.8922\\ 1.8922 \end{array}$	$\begin{array}{c} 1. \ 9188\\ 1. \ 9193\\ 1. \ 9193\\ 1. \ 9188\\ 1. \ 9193\\ 1. \ 9193\end{array}$	$\begin{array}{c} 1.\ 9459\\ 1.\ 9463\\ 1.\ 9463\\ 1.\ 9463\\ 1.\ 9463\end{array}$	$\begin{array}{c} 1.\ 9594\\ 1.\ 9598\\ 1.\ 9594\\ 1.\ 9598\\ 1.\ 9598\end{array}$	$\begin{array}{c} 1.\ 9675\\ 1.\ 9679\\ 1.\ 9675\\ 1.\ 9679\\ 1.\ 9679\end{array}$	$\begin{array}{c} 2.\ 0167\\ 2.\ 0172\\ 2.\ 0167\\ 2.\ 0167\\ 2.\ 0172 \end{array}$	$\begin{array}{c} 2. \ 0438\\ 2. \ 0443\\ 2. \ 0443\\ 2. \ 0443\\ 2. \ 0443\\ \end{array}$	$\begin{array}{c} 2. & 0709 \\ 2. & 0713 \\ 2. & 0709 \\ 2. & 0713 \end{array}$	2. 0844 2. 0844 2. 0844 2. 0848
$\begin{array}{c} 1. \ 9375\\ 1. \ 9383\\ 1. \ 9375\\ 1. \ 9383\\ 1. \ 9383\end{array}$	$\begin{array}{c} 1.\ 9375\\ 1.\ 9382\\ 1.\ 9382\\ 1.\ 9375\\ 1.\ 9382\\ 1.\ 9382\end{array}$	$\begin{array}{c} 1.\ 9375\\ 1.\ 9381\\ 1.\ 9381\\ 1.\ 9375\\ 1.\ 9381\\ 1.\ 9381 \end{array}$	$\begin{array}{c} 1.\ 9375\\ 1.\ 9381\\ 1.\ 9375\\ 1.\ 9375\\ 1.\ 9381\end{array}$	$\begin{array}{c} 1.\ 9375\\ 1.\ 9380\\ 1.\ 9375\\ 1.\ 9380\\ 1.\ 9380 \end{array}$	$\begin{array}{c} 2.20008\\ 2.20008\\ 00008\\ 00008\\ 00008\\ 0000\\ 0008\\ 0000\\ 0008\\ 0000\\ 0008\\ 0000\\ 0008\\ 0000\\ 0008\\ 0000\\ 0008\\ 0000\\ 0008\\ 0000\\ 0008\\ 0000\\ 0008\\ 0000\\ 0008\\ 0000\\ 0008\\ 0000\\ 0008\\ 0000\\ 0008\\ 0000\\ 0008\\ 0000\\ 0008\\ 0000\\ 0008\\ 0000\\ 0008\\ 0000\\ 0008\\ 0000\\ 0008\\ 0000\\ 0008\\ 0000\\ 0008\\ 0000\\ 0008\\ 0000\\ 0008\\ 0000\\ 0008\\ 0000\\ 0000\\ 0008\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 0$	$\begin{array}{c} 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 0000\\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ 2,\ 000\ $	$\begin{array}{c} 2, \ 0000\\ 2, \ 0007\\ 2, \ 0000\\ 2, \ 0000\\ 2, \ 0007\\ \end{array}$	$\begin{array}{c} 2,\ 0000\\ 2,\ 0006\\ 2,\ 0006\\ 2,\ 0006\\ \end{array}$	$\begin{array}{c} 22 \\ 22 \\ 22 \\ 0006 \\ 22 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0006 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 000$	$\begin{array}{c} 2.\ 0000\\ 2.\ 0005\\ 2.\ 0000\\ 2.\ 0005\\ \end{array}$	$\begin{array}{c} 2.1250\\ 2.1258\\ 2.1258\\ 2.1258\\ 2.1258\end{array}$	$\begin{array}{c} 2.1250\\ 2.1257\\ 2.1257\\ 2.1250\\ 2.1257\end{array}$	$\begin{array}{c} 2.1250\\ 2.1256\\ 2.1256\\ 2.1256\\ 2.1256\end{array}$	2. 1250 2. 1256 2. 1256 2. 1256 2. 1256
					1.96410		1. 97520 1. 97536					2. 10010 2. 10026		
1.91670 1.91686 1.91930 1.91930	$\begin{array}{c} 1.\ 92020\\ 1.\ 92036\\ 1.\ 92250\\ 1.\ 92266\\ 1.\ 92266 \end{array}$	$\begin{array}{c} 1. \ 92430 \\ 1. \ 92446 \\ 1. \ 92610 \\ 1. \ 92626 \\ 1. \ 92626 \end{array}$	$\begin{array}{c} 1.\ 92650\\ 1.\ 92666\\ 1.\ 92810\\ 1.\ 92826\\ 1.\ 92826 \end{array}$	$\begin{array}{c} 1.\ 92790\\ 1.\ 92806\\ 1.\ 92940\\ 1.\ 92956\\ 1.\ 92956 \end{array}$	$\begin{array}{c} 1.96410\\ 1.96426\\ 1.97510\\ 1.97526\\ 1.97800\\ 1.97816\\ \end{array}$	$\begin{array}{c} 1.\ 97920\\ 1.\ 97936\\ 1.\ 98180\\ 1.\ 98196\\ 1.\ 98196 \end{array}$	$\begin{array}{c} 1.98270\\ 1.98286\\ 1.98500\\ 1.98516\\ 1.98516 \end{array}$	$\begin{array}{c} 1.98680\\ 1.98696\\ 1.98860\\ 1.98876\\ 1.98876 \end{array}$	$\begin{array}{c} 1.98900\\ 1.98916\\ 1.99066\\ 1.99076 \end{array}$	$\begin{array}{c} 1.99040\\ 1.99056\\ 1.99190\\ 1.99206\\ 1.99206 \end{array}$	$\begin{array}{c} 2.\ 10420\\ 2.\ 10436\\ 2.\ 10680\\ 2.\ 10696\\ 2.\ 10696 \end{array}$	$\begin{array}{c} 2.\ 10760\\ 2.\ 10776\\ 2.\ 11000\\ 2.\ 11016\\ 2.\ 11016 \end{array}$	$\begin{array}{c} 2.\ 11180\\ 2.\ 11196\\ 2.\ 11360\\ 2.\ 11376\\ 2.\ 11376 \end{array}$	2. 11400 2. 11416 2. 11560 2. 11576
$\begin{array}{c} 1. \ 93490\\ 1. \ 93474\\ 1. \ 93474\\ 1. \ 93750\\ 1. \ 93734\end{array}$	$\begin{array}{c} 1. \ 93520\\ 1. \ 93504\\ 1. \ 93750\\ 1. \ 93734\\ 1. \ 93734 \end{array}$	$\begin{array}{c} 1. \ 93570 \\ 1. \ 93554 \\ 1. \ 93750 \\ 1. \ 93734 \\ 1. \ 93734 \end{array}$	$\begin{array}{c} 1. \ 93590 \\ 1. \ 93574 \\ 1. \ 93750 \\ 1. \ 93734 \end{array}$	$\begin{array}{c} 1. \ 93600\\ 1. \ 93584\\ 1. \ 93750\\ 1. \ 93734 \end{array}$	$\begin{array}{c} 1. \ 99710\\ 1. \ 99694\\ 1. \ 99694\\ 1. \ 99694\\ 2. \ 00000\\ 1. \ 99984 \end{array}$	$\begin{array}{c} 1. \ 99740\\ 1. \ 99724\\ 2. \ 00000\\ 1. \ 99984\\ 1. \ 99984 \end{array}$	$\begin{array}{c} 1.\ 99770\\ 1.\ 99754\\ 2.\ 00000\\ 1.\ 99984\\ 1.\ 99984 \end{array}$	$\begin{array}{c} 1. \ 99820 \\ 1. \ 99804 \\ 2. \ 00000 \\ 1. \ 99984 \end{array}$	$\begin{array}{c} 1. \ 99840 \\ 1. \ 99824 \\ 2. \ 00000 \\ 1. \ 99984 \\ 1. \ 99984 \end{array}$	$\begin{array}{c} 1. \\ 99850 \\ 1. \\ 99834 \\ 2. \\ 00000 \\ 1. \\ 99984 \end{array}$	$\begin{array}{c} 2.\ 12240\\ 2.\ 12224\\ 2.\ 12500\\ 2.\ 12484\\ 2.\ 12484 \end{array}$	$\begin{array}{c} 2.12260\\ 2.12244\\ 2.12244\\ 2.12500\\ 2.12484\end{array}$	$\begin{array}{c} 2.12320\\ 2.12304\\ 2.12500\\ 2.12484\\ 2.12484 \end{array}$	2. 12340 2. 12324 2. 12500 2. 12484
$\begin{array}{c} 1.7820\\ 1.7828\\ 1.7867\\ 1.7867\\ 1.7875 \end{array}$	$\begin{array}{c} 1.8192\\ 1.8199\\ 1.8234\\ 1.8234\\ 1.8241\\ \end{array}$	$\begin{array}{c} 1.8575\\ 1.8581\\ 1.8609\\ 1.8615\\ 1.8615 \end{array}$	$\begin{array}{c} 1.8764\\ 1.8770\\ 1.8770\\ 1.8794\\ 1.8800\\ 1.8800 \end{array}$	$\begin{array}{c} 1.8878\\ 1.8883\\ 1.8883\\ 1.8905\\ 1.8910\\ \end{array}$	$\begin{array}{c} 1.7904\\ 1.7912\\ 1.7952\\ 1.7952\\ 1.8005\\ 1.8013\\ 1.8013 \end{array}$	$\begin{array}{c} 1.8444\\ 1.8452\\ 1.8492\\ 1.8500\\ 1.8500 \end{array}$	$\begin{array}{c} 1.8816\\ 1.8823\\ 1.8859\\ 1.8856\\ 1.8866\end{array}$	$\begin{array}{c} 1.9200\\ 1.9206\\ 1.9234\\ 1.9234\\ 1.9240 \end{array}$	$\begin{array}{c} 1. \ 9389\\ 1. \ 9395\\ 1. \ 9419\\ 1. \ 9425\\ 1. \ 9425 \end{array}$	$\begin{array}{c} 1.\ 9503\\ 1.\ 9508\\ 1.\ 9530\\ 1.\ 9535\\ 1.\ 9535 \end{array}$	$\begin{array}{c} 1. \ 9693 \\ 1 \ 9701 \\ 1. \ 9741 \\ 1. \ 9749 \\ 1. \ 9749 \end{array}$	$\begin{array}{c} 2.\ 0064\\ 2.\ 0071\\ 2.\ 0108\\ 2.\ 0115 \end{array}$	$\begin{array}{c} 2.\ 0450\\ 2.\ 0456\\ 2.\ 0484\\ 2.\ 0490\end{array}$	$\begin{array}{c} 2.\ 0639\\ 2.\ 0645\\ 2.\ 0669\\ 2.\ 0675 \end{array}$
$\begin{array}{c} 1.8181\\ 1.8176\\ 1.8228\\ 1.8228\\ 1.8223\\ 1.8223 \end{array}$	$\begin{array}{c} 1.8463\\ 1.8458\\ 1.8505\\ 1.8500\\ 1.8500 \end{array}$	$\begin{array}{c} 1.\ 8755\\ 1.\ 8751\\ 1.\ 8751\\ 1.\ 8789\\ 1.\ 8785\end{array}$	$\begin{array}{c} 1.8899\\ 1.8895\\ 1.8929\\ 1.8929\\ 1.8925 \end{array}$	$\begin{array}{c} 1.8986\\ 1.8982\\ 1.9013\\ 1.9009\end{array}$	1. 8385 1. 8380 1. 8433 1. 8433 1. 8428 1. 8486 1. 8481	$\begin{array}{c} 1.8805\\ 1.8800\\ 1.8853\\ 1.8848\\ 1.8848 \end{array}$	$\begin{array}{c} 1.9087\\ 1.9082\\ 1.9130\\ 1.9125\\ 1.9125 \end{array}$	$\begin{array}{c} 1.9380\\ 1.9376\\ 1.9414\\ 1.9410\\ 1.9410 \end{array}$	$\begin{array}{c} 1.\ 9524\\ 1.\ 9520\\ 1.\ 9554\\ 1.\ 9550\\ 1.\ 9550 \end{array}$	$\begin{array}{c} 1.9611\\ 1.9607\\ 1.9638\\ 1.9634\\ 1.9634\end{array}$	$\begin{array}{c} 2.\ 0054\\ 2.\ 0049\\ 2.\ 0102\\ 2.\ 0097 \end{array}$	$\begin{array}{c} 2.\ 0335\\ 2.\ 0330\\ 2.\ 0379\\ 2.\ 0374\\ 2.\ 0374 \end{array}$	$\begin{array}{c} 2,0630\\ 2,0626\\ 2,0664\\ 2,0660\\ \end{array}$	$\begin{array}{c} 2.\ 0774\\ 2.\ 0770\\ 2.\ 0804\\ 2.\ 0800 \end{array}$
1.8181 1.8186 1.8228 1.8228 1.8233	$\begin{array}{c} 1.8463\\ 1.8468\\ 1.8505\\ 1.8510\\ 1.8510 \end{array}$	$\begin{array}{c} 1.\ 8755\\ 1.\ 8759\\ 1.\ 8789\\ 1.\ 8793\\ 1.\ 8793\end{array}$	$\begin{array}{c} 1.8899\\ 1.8903\\ 1.8929\\ 1.8933\\ 1.8933\end{array}$	$\begin{array}{c} 1.8986\\ 1.8990\\ 1.9013\\ 1.9017 \end{array}$	$\begin{array}{c} 1.8385\\ 1.8390\\ 1.8433\\ 1.8438\\ 1.8438\\ 1.8486\\ 1.8486\\ 1.8491 \end{array}$	$\begin{array}{c} 1.8805\\ 1.8810\\ 1.8853\\ 1.8858\\ 1.8858\end{array}$	$\begin{array}{c} 1.\ 9087\\ 1.\ 9092\\ 1.\ 9130\\ 1.\ 9135 \end{array}$	$\begin{array}{c} 1.9380\\ 1.9384\\ 1.9414\\ 1.9418\\ 1.9418 \end{array}$	$\begin{array}{c} 1.9524\\ 1.9528\\ 1.9554\\ 1.9558\\ 1.9558\end{array}$	$\begin{array}{c} 1.9611\\ 1.9615\\ 1.9638\\ 1.9632\\ 1.9642 \end{array}$	$\begin{array}{c} 2.\ 0054\\ 2.\ 0059\\ 2.\ 0102\\ 2.\ 0107 \end{array}$	$\begin{array}{c} 2.\ 0335\\ 2.\ 0340\\ 2.\ 0379\\ 2.\ 0384\end{array}$	$\begin{array}{c} 2.\ 0630\\ 2.\ 0664\\ 2.\ 0668\\ 2.\ 0668\\ \end{array}$	2. 0774 2. 0778 2. 0804 2. 0808
1. 7544 1. 7536 1. 7570 1. 7562	$\begin{array}{c} 1.\ 7999\\ 1.\ 7992\\ 1.\ 8022\\ 1.\ 8015\end{array}$	$\begin{array}{c} 1.8455\\ 1.8449\\ 1.8449\\ 1.8473\\ 1.8467\end{array}$	$\begin{array}{c} 1.8682\\ 1.8676\\ 1.8698\\ 1.8692\\ 1.8692 \end{array}$	$\begin{array}{c} 1.8818\\ 1.8813\\ 1.8813\\ 1.8833\\ 1.8828\\ \end{array}$	1. 7566 1. 7558 1. 7558 1. 7558 1. 7595 1. 7595	$\begin{array}{c} 1.8169\\ 1.8161\\ 1.8195\\ 1.8195\\ 1.8187\end{array}$	$\begin{array}{c} 1.8624\\ 1.8617\\ 1.8647\\ 1.8640\\ 1.8640\end{array}$	$\begin{array}{c} 1.\ 9080\\ 1.\ 9074\\ 1.\ 9098\\ 1.\ 9092 \end{array}$	$\begin{array}{c} 1.\ 9307\\ 1.\ 9301\\ 1.\ 9323\\ 1.\ 9317\\ 1.\ 9317 \end{array}$	$\begin{array}{c} 1. \ 9443 \\ 1. \ 9438 \\ 1. \ 9458 \\ 1. \ 9453 \end{array}$	$\begin{array}{c} 1. \ 9419\\ 1. \ 9411\\ 1. \ 9445\\ 1. \ 9437\\ 1. \ 9437\end{array}$	$\begin{array}{c} 1.\ 9873\\ 1.\ 9866\\ 1.\ 9897\\ 1.\ 9890\\ 1.\ 9890 \end{array}$	$\begin{array}{c} 2.\ 0330\\ 2.\ 0324\\ 2.\ 0348\\ 2.\ 0342\\ \end{array}$	2. 0557 2. 0551 2. 0573 2. 0567
1. 8266 1. 8261 1. 8292 1. 8292 1. 8287	$\begin{array}{c} 1.8540\\ 1.8535\\ 1.8563\\ 1.8563\\ 1.8558\end{array}$	$\begin{array}{c} 1.8816\\ 1.8812\\ 1.8834\\ 1.8834\\ 1.8830\end{array}$	$\begin{array}{c} 1.8953\\ 1.8949\\ 1.8969\\ 1.8965\end{array}$	$\begin{array}{c} 1.\ 9035\\ 1.\ 9031\\ 1.\ 9050\\ 1.\ 9046\\ 1.\ 9046 \end{array}$	$\begin{array}{c} 1.8528\\ 1.8528\\ 1.8528\\ 1.8528\\ 1.8552\\ 1.8557\\ 1.8552\end{array}$	$\begin{array}{c} 1.8891\\ 1.8886\\ 1.8917\\ 1.8912\\ 1.8912 \end{array}$	$\begin{array}{c} 1.\ 9165\\ 1.\ 9160\\ 1.\ 9188\\ 1.\ 9183\\ 1.\ 9183 \end{array}$	$\begin{array}{c} 1. \ 9441 \\ 1. \ 9437 \\ 1. \ 9459 \\ 1. \ 9455 \\ 1. \ 9455 \end{array}$	$\begin{array}{c} 1.\ 9578\\ 1.\ 9574\\ 1.\ 9594\\ 1.\ 9596\end{array}$	1. 9660 1. 9656 1. 9675 1. 9671	$\begin{array}{c} 2.\ 0141\\ 2.\ 0136\\ 2.\ 0167\\ 2.\ 0162 \end{array}$	$\begin{array}{c} 2.\ 0414\\ 2.\ 0409\\ 2.\ 0438\\ 2.\ 0433\\ \end{array}$	$\begin{array}{c} 2.\ 0691\\ 2.\ 0687\\ 2.\ 0709\\ 2.\ 0705\end{array}$	$\begin{array}{c} 2.\ 0828\\ 2.\ 0824\\ 2.\ 0846\\ 2.\ 0840 \end{array}$
2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	1A 2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A
UN	NU	NU	NU	NN	UNC	UN	NN	NN	NN	NN	NN	UN	UN	UN
1. 9375-6	1. 9375-8	1. 9375-12	1. 9375-16	1. 9375-20	2.000-4.5	2. 000-6	2.000-8	2. 000-12	2.000-16	2.000-20	2.1256	2.125-8	2, 125-12	2.125-16

reads-Continued
screw th
Unified
series,
thread
for standard
Gages .
<b>TABLE 6.19.</b>

		Nominal size and	threads per inch		21	2.125-20	2. 250-4. 5	2. 250–6	2. 250-8	2. 250-12	2. 250-16	2. 250-20	2. 375–6	2, 375-8	2.375-12
		Series designa-	tion		20	UN	UNC	UN	NN	UN	UN	UN	NN	ND	NN
		Class			19	2B 3B	1B 2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B
	dug gages diameter		NOT 00		18	in 2. 08200 2. 08184 2. 07870 2. 07870	$\begin{array}{c} 2.\ 04500\\ 2.\ 04484\\ 2.\ 04484\\ 2.\ 04484\\ 2.\ 04484\\ 2.\ 03594\\ 2.\ 03594\\ \end{array}$	$\begin{array}{c} 2.10000\\ 2.09984\\ 2.08960\\ 2.08944\\ 2.08944 \end{array}$	$\begin{array}{c} 2.\ 14000\\ 2.\ 13984\\ 2.\ 12970\\ 2.\ 12954 \end{array}$	$\begin{array}{c} 2.17800\\ 2.17784\\ 2.16980\\ 2.16964 \end{array}$	$\begin{array}{c} 2. \ 19600\\ 2. \ 19584\\ 2. \ 19080\\ 2. \ 19064\\ \end{array}$	$\begin{array}{c} 2.\ 20700\\ 2.\ 20684\\ 2.\ 20370\\ 2.\ 20354 \end{array}$	$\begin{array}{c} 2.\ 22600\\ 2.\ 22584\\ 2.\ 21460\\ 2.\ 21444 \end{array}$	$\begin{array}{c} 2.\ 26500\\ 2.\ 26484\\ 2.\ 25470\\ 2.\ 25454\\ 2.\ 25454 \end{array}$	2. 30300 2. 30284 2. 29480 2. 29464 2. 29464
s	Z plain p for minor		G O		17	$in in 2.07100 \\ 2.07116 \\ 2.07116 \\ 2.07116 \\ 2.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.0716 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\ 0.07116 \\$	$\begin{array}{c} 2.\ 00900\\ 2.\ 00916\\ 2.\ 00900\\ 2.\ 00916\\ 2.\ 00916\\ 2.\ 00916 \end{array}$	2. 07000 2. 07016 2. 07016 2. 07000 2. 07016	$\begin{array}{c} 2.\ 11500\\ 2.\ 11516\\ 2.\ 11500\\ 2.\ 11516\\ 2.\ 11516 \end{array}$	2. 16000 2. 16016 2. 16016 2. 16010 2. 16016	2.18200 2.18216 2.18200 2.18200 2.18216	2. 19600 2. 19616 2. 19616 2. 19616 2. 19616	2. 19500 2. 19516 2. 19500 2. 19516 2. 19516	$\begin{array}{c} 2.\ 24000\\ 2.\ 24016\\ 2.\ 24016\\ 2.\ 24016\\ 2.\ 24016\end{array}$	2. 28500 2. 28516 2. 28500 2. 28500 2. 28516
al thread			liameter	Plus toler- ance gage	16	$in \\ 2.0989 \\ 2.0993 \\ 2.0973 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.0977 \\ 2.097$	$\begin{array}{c} 2.\ 1247\\ 2.\ 1252\\ 2.\ 1183\\ 2.\ 1188\\ 2.\ 1152\\ 2.\ 1157\\ 2.\ 1157\\ \end{array}$	$\begin{array}{c} 2.1531 \\ 2.1536 \\ 2.1502 \\ 2.1507 \\ 2.1507 \end{array}$	2. 1792 2. 1797 2. 1766 2. 1771 2. 1771	$\begin{array}{c} 2.\ 2038\\ 2.\ 2042\\ 2.\ 2018\\ 2.\ 2022\\ \end{array}$	2. 2164 2. 2168 2. 2146 2. 2150	$\begin{array}{c} 2.\ 2239\\ 2.\ 2243\\ 2.\ 2223\\ 2.\ 2227\\ 2.\ 2227\end{array}$	2. 2782 2. 2787 2. 2753 2. 2758	$\begin{array}{c} 2.\ 3043\\ 2.\ 3048\\ 2.\ 3017\\ 2.\ 3022\\ 2.\ 3022\\ \end{array}$	2. 3290 2. 3294 2. 3269 2. 3273
for intern	g gages	IH	Piteh d	Minus toler- ance gage	15	$\begin{array}{c} in \\ 2, 0989 \\ 2, 0985 \\ 2, 0973 \\ 2, 0969 \end{array}$	$\begin{array}{c} 2.1247\\ 2.1242\\ 2.1183\\ 2.1178\\ 2.1178\\ 2.1152\\ 2.1152\\ \end{array}$	2. 1531 2. 1526 2. 1526 2. 1502 2. 1497	2. 1792 2. 1787 2. 1766 2. 1766 2. 1761	2. 2038 2. 2034 2. 2018 2. 2014	2. 2164 2. 2160 2. 2146 2. 2142	2, 2239 2, 2235 2, 2223 2, 2219	2. 2782 2. 2777 2. 2753 2. 2753 2. 2748	2. 3043 2. 3038 2. 3038 2. 3017 2. 3012	2. 3290 2. 3286 2. 3269 2. 3269 2. 3265
Gages 1	read plu			Major diam- eter	1	in 2. 1206 2. 1201 2. 1190 2. 1185 2. 1185	$\begin{array}{c} 2.2209\\ 2.2201\\ 2.2145\\ 2.2137\\ 2.2137\\ 2.2106\\ \end{array}$	2. 2253 2. 2245 2. 2224 2. 2216	2, 2333 2, 2326 2, 2307 2, 2307 2, 2300	2, 2399 2, 2393 2, 2379 2, 2373	2. 2435 2. 2429 2. 2417 2. 2411	2. 2456 2. 2451 2. 2440 2. 2435	2. 3504 2. 3496 2. 3475 2. 3467 2. 3467	2. 3584 2. 3577 2. 3558 2. 3558 2. 3551	2. 3651 2. 3645 2. 3630 2. 3624 2. 3624
	X th	0		Pitch diam- eter	13	in 2. 0925 2. 0929 2. 0925 2. 0929 2. 0929	$\begin{array}{c} 2.1057\\ 2.1062\\ 2.1062\\ 2.1062\\ 2.1062\\ 2.1062\\ \end{array}$	2. 1417 2. 1422 2. 1417 2. 1422 2. 1422	2. 1688 2. 1693 2. 1688 2. 1693 2. 1693	2. 1959 2. 1963 2. 1959 2. 1963	$\begin{array}{c} 2.\ 2094\\ 2.\ 2098\\ 2.\ 2094\\ 2.\ 2098\end{array}$	2. 2175 2. 2179 2. 2179 2. 2179	2. 2667 2. 2672 2. 2672 2. 2672	2. 2938 2. 2943 2. 2943 2. 2943	2. 3209 2. 3213 2. 3213 2. 3209 2. 3213
		0		Major diam- eter	12	in 2. 1250 2. 1255 2. 1255 2. 1255 2. 1255	2, 2508 2, 2508 2, 2508 2, 2508 2, 2508 2, 2508	$\begin{array}{c} 2.2500 \\ 2.2508 \\ 2.2508 \\ 2.2508 \\ \end{array}$	2, 2500 2, 2507 2, 2507 2, 2507	2, 2500 2, 2506 2, 2506 2, 2506	2, 2500 2, 2506 2, 2506 2, 2506	$\begin{array}{c} 2.2500\\ 2.2505\\ 2.2505\\ 2.2505\\ \end{array}$	2. 3750 2. 3758 2. 3758 2. 3758 2. 3758	2. 3750 2. 3757 2. 3757 2. 3750 2. 3757	2. 3750 2. 3756 2. 3750 2. 3756 2. 3756
	for major	90	Un-	finished hot- rolled material	11	in	2.21410 2.21426		2. 22510 2. 22526						
	ing gages : diameter	LON		Semi- finished	10	$\begin{array}{c} in\\ 2.11540\\ 2.11556\\ 2.11690\\ 2.11706\end{array}$	$\begin{array}{c} 2.\ 21410\\ 2.\ 21426\\ 2.\ 22510\\ 2.\ 225260\\ 2.\ 22816\\ 2.\ 22816\end{array}$	2. 22920 2. 22936 2. 23180 2. 23196	$\begin{array}{c} 2.\ 23260\\ 2.\ 23276\\ 2.\ 23500\\ 2.\ 23516 \end{array}$	2. 23680 2. 23696 2. 23860 2. 23876	$\begin{array}{c} 2.\ 23900\\ 2.\ 23916\\ 2.\ 24060\\ 2.\ 24076 \end{array}$	2. 24040 2. 24056 2. 24190 2. 24206	$\begin{array}{c} 2.35410\\ 2.35426\\ 2.35680\\ 2.35696 \end{array}$	2.35760 2.35776 2.36000 2.36016	$\begin{array}{c} 2.36170\\ 2.36186\\ 2.36360\\ 2.36376\\ \end{array}$
hreads	Z plain r		GО		6	in 2. 12350 2. 12334 2. 12334 2. 12484 2. 12484	$\begin{array}{c} 2.\ 24710\\ 2.\ 24694\\ 2.\ 24694\\ 2.\ 24694\\ 2.\ 25040\\ 2.\ 24984 \end{array}$	$\begin{array}{c} 2.\ 24740\\ 2.\ 24724\\ 2.\ 25000\\ 2.\ 24984\\ \end{array}$	$\begin{array}{c} 2.\ 24760\\ 2.\ 24744\\ 2.\ 25000\\ 2.\ 24984\end{array}$	$\begin{array}{c} 2.24820\\ 2.24804\\ 2.25000\\ 2.24984\\ \end{array}$	$\begin{array}{c} 2.\ 24840\\ 2.\ 24824\\ 2.\ 25000\\ 2.\ 24984\end{array}$	$\begin{array}{c} 2.\ 24850\\ 2.\ 24834\\ 2.\ 25000\\ 2.\ 24984\\ \end{array}$	$\begin{array}{c} 2.37230\\ 2.37214\\ 2.37500\\ 2.37484\\ 2.37484 \end{array}$	$\begin{array}{c} 2.37260\\ 2.37244\\ 2.37500\\ 2.37484\\ \end{array}$	2. 37310 2. 37294 2. 37500 2. 37484 2. 37484
xternal t				Minor diam- cter	×	in 2. 0753 2. 0758 2. 0780 2. 0780 2. 0785	$\begin{array}{c} 2.\ 0401\\ 2.\ 0450\\ 2.\ 0456\\ 2.\ 0458\\ 2.\ 0503\\ 2.\ 0511\\ 2.\ 0511\\ \end{array}$	$\begin{array}{c} 2.\ 0942\\ 2.\ 0950\\ 2.\ 0990\\ 2.\ 0998 \end{array}$	2. 1313 2. 1320 2. 1357 2. 1364	2.1700 2.1706 2.1734 2.1740	$\begin{array}{c} 2.1889\\ 2.1895\\ 2.1919\\ 2.1925\\ 2.1925 \end{array}$	2.2003 2.2008 2.2035	$\begin{array}{c} 2.\ 2190\\ 2.\ 2198\\ 2.\ 2240\\ 2.\ 2248\\ 2.\ 2248 \end{array}$	$\begin{array}{c} 2.2562 \\ 2.2569 \\ 2.2607 \\ 2.2614 \\ \end{array}$	$\begin{array}{c} 2.\ 2948\\ 2.\ 2954\\ 2.\ 2983\\ 2.\ 2989\end{array}$
iges for e	gages	ΓO	liameter	Minus toler- ance gage	2	in 2. 0861 2. 0857 2. 0888 2. 0888 2. 0884	$\begin{array}{c} 2.\ 0882\\ 2.\ 0877\\ 2.\ 0931\\ 2.\ 0926\\ 2.\ 0984\\ 2.\ 0979 \end{array}$	2. 1303 2. 1298 2. 1351 2. 1351 2. 1346	2. 1584 2. 1579 2. 1628 2. 1623	2. 1880 2. 1876 2. 1914 2. 1910	2. 2024 2. 2024 2. 2050 2. 2050	2.2111 2.2107 2.2138 2.2134	$\begin{array}{c} 2.2551 \\ 2.2546 \\ 2.2546 \\ 2.2596 \end{array}$	2. 2833 2. 2828 2. 2878 2. 2873	2.3128 2.3124 2.3163 2.3159
G	read ring		Pitch o	Plus toler- ance gage	9	in 2. 0861 2. 0865 2. 0888 2. 0892	$\begin{array}{c} 2.\ 0882\\ 2.\ 0887\\ 2.\ 0931\\ 2.\ 0936\\ 2.\ 0984\\ 2.\ 0989\end{array}$	2. 1303 2. 1308 2. 1351 2. 1356	2.1584 2.1589 2.1589 2.1633 2.1633	2. 1880 2. 1884 2. 1914 2. 1918	2. 2024 2. 2028 2. 2058 2. 2058	2.2111 2.2115 2.2138 2.2138	2, 2551 2, 2556 2, 2601 2, 2606	2. 2833 2. 2838 2. 2878 2. 2883	2.3128 2.3132 2.3163 2.3163 2.3167
	X th	o		Minor diam- cter	5	in 2. 0693 2. 0708 2. 0708 2. 0703	$\begin{array}{c} 2.\ 0066\\ 2.\ 0058\\ 2.\ 0058\\ 2.\ 0058\\ 2.\ 0095 \end{array}$	$\begin{array}{c} 2.\ 0669\\ 2.\ 0661\\ 2.\ 0695\\ 2.\ 0687\end{array}$	2.1123 2.1116 2.11147 2.1140	$\begin{array}{c} 2.1580\\ 2.1574\\ 2.1598\\ 2.1592\\ 2.1592 \end{array}$	2. 1807 2. 1801 2. 1823 2. 1817 2. 1817	$\begin{array}{c} 2.1943\\ 2.1938\\ 2.1958\\ 2.1958\\ 2.1953\end{array}$	2. 1918 2. 1910 2. 1945 2. 1945 2. 1937	2. 2373 2. 2366 2. 2397 2. 2390	2. 2829 2. 2823 2. 2848 2. 2842
		6		Piteh diam- eter	4	in in 22, 0910 22, 0906 22, 0905 22, 0925 22, 0921 22, 0921 22, 0921 22, 0921 22, 0921 23, 0921 23, 0921 24, 0921 25, 0921 24, 0921 25, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24, 0921 24,	$\begin{array}{c} 2.1028\\ 2.1028\\ 2.1028\\ 2.1028\\ 2.1023\\ 2.1057\\ 2.1057\end{array}$	2. 1391 2. 1386 2. 1417 2. 1412 2. 1412	2. 1664 2. 1659 2. 1688 2. 1683 2. 1683	2. 1941 2. 1937 2. 1959 2. 1955	2.2078 2.2074 2.2094 2.2090	2.2160 2.2156 2.2175 2.2171	2. 2640 2. 2635 2. 2667 2. 2667 2. 2662	2. 2914 2. 2909 2. 2938 2. 2933	2.3190 2.3186 2.3209 2.3209
		Class	66010		.3	2A 3A	1A 2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A
		Series designer	tion		2	UN	UNC	NN	NN	NN	UN	NN	NN	NN	ŪŅ
		Nominal size and	threads per inch		1	2.125-20	2. 250-4. 5	2. 250-6	2. 250-8	2. 250-12	2. 250-16	2. 250-20	2.375-6	2.375-8	2.375-12

2, 375-10

2. 32100 || 212 || UN

2.375-16	2.375-20	2. 500-4	2.500-6	2. 500-8	2, 500-12	2. 500-16	2.500-20	2.625-6	2.625-8	2. 625-12	2.625-16	2.625-20	2.750-4	2.750-6
UN	NŊ	UNC	NN	NN	NN	NN	NN	NN	NN	UN	UN	UN	UNC	NN
2B 3B	2B 3B	1B 2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	1B 2B 3B	2B 3B
$\begin{array}{c} 2.32100 \\ 2.32084 \\ 2.31580 \\ 2.31564 \\ 2.31564 \end{array}$	$\begin{array}{c} 2.\ 33200\\ 2.\ 33184\\ 2.\ 32870\\ 2.\ 32854\\ \end{array}$	$\begin{array}{c} 2.\ 26700\\ 2.\ 26684\\ 2.\ 26684\\ 2.\ 26684\\ 2.\ 25940\\ 2.\ 25924 \end{array}$	$\begin{array}{c} 2.\ 35000\\ 2.\ 34984\\ 2.\ 33960\\ 2.\ 33944 \end{array}$	$\begin{array}{c} 2.\ 39000\\ 2.\ 38984\\ 2.\ 37970\\ 2.\ 37954 \end{array}$	$\begin{array}{c} 2.\ 42800\\ 2.\ 42784\\ 2.\ 41980\\ 2.\ 41964 \end{array}$	$\begin{array}{c} 2.\ 44600\\ 2.\ 44584\\ 2.\ 44080\\ 2.\ 44080\\ 2.\ 44064 \end{array}$	$\begin{array}{c} 2.\ 45700\\ 2.\ 45684\\ 2.\ 45370\\ 2.\ 45370\\ \end{array}$	$\begin{array}{c} 2.\ 4750\\ 2.\ 4748\\ 2.\ 4646\\ 2.\ 4644\end{array}$	$\begin{array}{c} 2.5150\\ 2.5148\\ 2.5047\\ 2.5045\end{array}$	$\begin{array}{c} 2.5530\\ 2.5528\\ 2.5448\\ 2.5446\\ 2.5446\end{array}$	$\begin{array}{c} 2.5710\\ 2.5708\\ 2.5658\\ 2.5656\\ 2.5656\end{array}$	$\begin{array}{c} 2.5820\\ 2.5818\\ 2.5787\\ 2.5785\\ 2.5785 \end{array}$	$\begin{array}{c} 2.5170\\ 2.5168\\ 2.5170\\ 2.5168\\ 2.5094\\ 2.5092\\ \end{array}$	2. 6000 2. 5998 2. 5896 2. 5894 2. 5894
2.30700 2.30716 2.30716 2.30716 2.30716	$\begin{array}{c} 2.32100\\ 2.32116\\ 2.32100\\ 2.32100\\ 2.32116 \end{array}$	$\begin{array}{c} 2.\ 22900\\ 2.\ 22916\\ 2.\ 22916\\ 2.\ 22916\\ 2.\ 22916\\ 2.\ 22916\\ 2.\ 22916\\ \end{array}$	$\begin{array}{c} 2.32000\\ 2.32016\\ 2.32000\\ 2.32016\\ 2.32016 \end{array}$	$\begin{array}{c} 2.36500\\ 2.36516\\ 2.36500\\ 2.36500\\ 2.36516 \end{array}$	$\begin{array}{c} 2.\ 41000\\ 2.\ 41016\\ 2.\ 41000\\ 2.\ 41000\\ 2.\ 41016 \end{array}$	$\begin{array}{c} 2.\ 43200\\ 2.\ 43216\\ 2.\ 43200\\ 2.\ 43200\\ 2.\ 43216 \end{array}$	$\begin{array}{c} 2.\ 44600\\ 2.\ 44616\\ 2.\ 44600\\ 2.\ 44600\\ 2.\ 44616 \end{array}$	$\begin{array}{c} 2.\ 4450\\ 2.\ 4452\\ 2.\ 4452\\ 2.\ 4452\\ 2.\ 4452\\ \end{array}$	$\begin{array}{c} 2.\ 4900\\ 2.\ 4902\\ 2.\ 4902\\ 2.\ 4902\\ \end{array}$	$\begin{array}{c} 2.5350\\ 2.5352\\ 2.5352\\ 2.5352\\ 2.5352\\ \end{array}$	$\begin{array}{c} 2.5570\\ 2.5572\\ 2.5572\\ 2.5572\\ \end{array}$	$\begin{array}{c} 2.5710\\ 2.5712\\ 2.5710\\ 2.5710\\ 2.5712 \end{array}$	$\begin{array}{c} 2.4790\\ 2.4792\\ 2.4792\\ 2.4792\\ 2.4792\\ 2.4792\\ \end{array}$	$\begin{array}{c} 2.5700\\ 2.5702\\ 2.5700\\ 2.5702\\ \end{array}$
$\begin{array}{c} 2.3416\\ 2.3420\\ 2.3398\\ 2.3402\\ 2.3402 \end{array}$	$\begin{array}{c} 2.3491 \\ 2.3495 \\ 2.3475 \\ 2.3479 \\ 2.3479 \end{array}$	$\begin{array}{c} 2.\ 3578\\ 2.\ 3583\\ 2.\ 3511\\ 2.\ 3516\\ 2.\ 3477\\ 2.\ 3482\\ \end{array}$	$\begin{array}{c} 2.4033\\ 2.4038\\ 2.4004\\ 2.4009 \end{array}$	$\begin{array}{c} 2.4294 \\ 2.4299 \\ 2.4268 \\ 2.4273 \end{array}$	$\begin{array}{c} 2.4540\\ 2.4544\\ 2.4519\\ 2.4523\\ \end{array}$	$\begin{array}{c} 2.4666\\ 2.4670\\ 2.4648\\ 2.4652\\ 2.4652\end{array}$	$\begin{array}{c} 2.4741\\ 2.4745\\ 2.4725\\ 2.4729\\ 2.4729\end{array}$	$\begin{array}{c} 2.5285\\ 2.5290\\ 2.5255\\ 2.5260\\ 2.5260\end{array}$	$\begin{array}{c} 2.5545\\ 2.5550\\ 2.5518\\ 2.5523\\ 2.5523\end{array}$	$\begin{array}{c} 2.5790 \\ 2.5794 \\ 2.5769 \\ 2.5773 \\ 2.5773 \end{array}$	$\begin{array}{c} 2.5916\\ 2.5920\\ 2.5898\\ 2.5902\\ \end{array}$	$\begin{array}{c} 2.5991\\ 2.5995\\ 2.5975\\ 2.5979\end{array}$	$\begin{array}{c} 2.6082\\ 2.6087\\ 2.6013\\ 2.6018\\ 2.5879\\ 2.5984\\ \end{array}$	$\begin{array}{c} 2.\ 6536\\ 2.\ 6541\\ 2.\ 6506\\ 2.\ 6511\\ \end{array}$
$\begin{array}{c} 2.3416\\ 2.3412\\ 2.3398\\ 2.3394\\ 2.3394\end{array}$	2. 3491 2. 3487 2. 3475 2. 3471 2. 3471	$\begin{array}{c} 2.\ 3578\\ 2.\ 3573\\ 2.\ 3511\\ 2.\ 3506\\ 2.\ 3477\\ 2.\ 3472\\ 2.\ 3472 \end{array}$	$\begin{array}{c} 2.4033\\ 2.4028\\ 2.4004\\ 2.3999\end{array}$	$\begin{array}{c} 2.4294 \\ 2.4289 \\ 2.4268 \\ 2.4263 \end{array}$	$\begin{array}{c} 2.\ 4540\\ 2.\ 4536\\ 2.\ 4519\\ 2.\ 4515\end{array}$	$\begin{array}{c} 2.\ 4666\\ 2.\ 4662\\ 2.\ 4648\\ 2.\ 4644\\ \end{array}$	2. 4741 2. 4737 2. 4725 2. 4721 2. 4721	$\begin{array}{c} 2.5285\\ 2.5280\\ 2.5255\\ 2.5250\\ 2.5250\end{array}$	$\begin{array}{c} 2.5545\\ 2.5540\\ 2.5518\\ 2.5513\\ 2.5513\end{array}$	$\begin{array}{c} 2.5790 \\ 2.5786 \\ 2.5769 \\ 2.5769 \\ 2.5765 \end{array}$	$\begin{array}{c} 2.5916\\ 2.5912\\ 2.5898\\ 2.5894\\ 2.5894\end{array}$	$\begin{array}{c} 2.5991 \\ 2.5987 \\ 2.5975 \\ 2.5975 \\ 2.5971 \end{array}$	$\begin{array}{c} 2.\ 6082\\ 2.\ 6077\\ 2.\ 6013\\ 2.\ 6008\\ 2.\ 5979\\ 2.\ 5974\end{array}$	$\begin{array}{c} 2.\ 6536\\ 2.\ 6531\\ 2.\ 6506\\ 2.\ 6501\\ 2.\ 6501 \end{array}$
2, 3687 2, 3681 2, 3669 2, 3669 2, 3663	2. 3708 2. 3703 2. 3692 2. 3687	$\begin{array}{c} 2.\ 4661\\ 2.\ 4594\\ 2.\ 4594\\ 2.\ 4585\\ 2.\ 4586\\ 2.\ 4560\\ 2.\ 4551\end{array}$	2. 4755 2. 4747 2. 4726 2. 4718 2. 4718	$\begin{array}{c} 2.4835\\ 2.4828\\ 2.4809\\ 2.4802\\ \end{array}$	$\begin{array}{c} 2.\ 4901\\ 2.\ 4895\\ 2.\ 4880\\ 2.\ 4874\\ \end{array}$	$\begin{array}{c} 2.4937\\ 2.4931\\ 2.4919\\ 2.4913\\ 2.4913\end{array}$	$\begin{array}{c} 2.4958\\ 2.4953\\ 2.4942\\ 2.4937\\ \end{array}$	$\begin{array}{c} 2.\ 6007\\ 2.\ 5999\\ 2.\ 5977\\ 2.\ 5969\\ 2.\ 5969\end{array}$	$\begin{array}{c} 2.6086\\ 2.6079\\ 2.6059\\ 2.6052\\ 2.6052\end{array}$	$\begin{array}{c} 2.6151 \\ 2.6145 \\ 2.6130 \\ 2.6124 \\ 2.6124 \end{array}$	$\begin{array}{c} 2.\ 6187\\ 2.\ 6181\\ 2.\ 6169\\ 2.\ 6163\\ 2.\ 6163\end{array}$	$\begin{array}{c} 2.\ 6208\\ 2.\ 6203\\ 2.\ 6192\\ 2.\ 6187\end{array}$	2. 7165 2. 7156 2. 7096 2. 7087 2. 7062 2. 7053	2. 7258 2. 7258 2. 7228 2. 7228 2. 7228
$\begin{array}{c} 2.3344\\ 2.3348\\ 2.3344\\ 2.3344\\ 2.3348 \end{array}$	$\begin{array}{c} 2. & 3425\\ 2. & 3429\\ 2. & 3429\\ 2. & 3429\\ 2. & 3429\\ \end{array}$	$\begin{array}{c} 2.\ 3376\\ 2.\ 3381\\ 2.\ 3376\\ 2.\ 3381\\ 2.\ 3376\\ 2.\ 3381\\ 2.\ 3381\\ \end{array}$	$\begin{array}{c} 2.\ 3917\\ 2.\ 3922\\ 2.\ 3917\\ 2.\ 3922\\ 2.\ 3922\\ \end{array}$	$\begin{array}{c} 2.4188\\ 2.4193\\ 2.4193\\ 2.4188\\ 2.4193\end{array}$	$\begin{array}{c} 2.\ 4459\\ 2.\ 4463\\ 2.\ 4459\\ 2.\ 4453\\ 2.\ 4463\end{array}$	$\begin{array}{c} 2.4594\\ 2.4598\\ 2.4598\\ 2.4594\\ 2.4598\\ \end{array}$	$\begin{array}{c} 2.4675\\ 2.4679\\ 2.4679\\ 2.4679\\ 2.4679\end{array}$	$\begin{array}{c} 2.5167\\ 2.5172\\ 2.5167\\ 2.5167\\ 2.5172\\ \end{array}$	$\begin{array}{c} 2.5438\\ 2.5443\\ 2.5443\\ 2.5443\\ 2.5443\end{array}$	$\begin{array}{c} 2.5709\\ 2.5713\\ 2.5709\\ 2.5713\\ 2.5713\end{array}$	$\begin{array}{c} 2.5844\\ 2.5848\\ 2.5848\\ 2.5844\\ 2.5848\\ 2.5848\\ \end{array}$	$\begin{array}{c} 2.5925\\ 2.5929\\ 2.5929\\ 2.5929\\ 2.5929\end{array}$	$\begin{array}{c} 2.5876\\ 2.5881\\ 2.5881\\ 2.5881\\ 2.5881\\ 2.5881\\ 2.5881\\ \end{array}$	$\begin{array}{c} 2.\ 6417\\ 2.\ 6422\\ 2.\ 6417\\ 2.\ 6422\\ 2.\ 6422\\ \end{array}$
2.3750 2.3756 2.3756 2.3756 2.3756	$\begin{array}{c} 2.\ 3750\\ 2.\ 3755\\ 2.\ 3755\\ 2.\ 3755\\ 2.\ 3755 \end{array}$	$\begin{array}{c} 2.5000\\ 2.5009\\ 2.5009\\ 2.5009\\ 2.5009\\ \end{array}$	$\begin{array}{c} 2.5000\\ 2.5008\\ 2.5008\\ 2.5008\\ \end{array}$	$\begin{array}{c} 2.5000 \\ 2.5007 \\ 2.5000 \\ 2.5007 \end{array}$	2. 5000 2. 5006 2. 5006 2. 5006	2, 5000 2, 5006 2, 5006 2, 5006	$\begin{array}{c} 2.5000 \\ 2.5005 \\ 2.5005 \\ 2.5005 \end{array}$	$\begin{array}{c} 2.\ 6250\\ 2.\ 6258\\ 2.\ 6258\\ 2.\ 6258\\ 2.\ 6258\\ \end{array}$	$\begin{array}{c} 2.\ 6250\\ 2.\ 6257\\ 2.\ 6250\\ 2.\ 6250\\ 2.\ 6257\end{array}$	$\begin{array}{c} 2.\ 6250\\ 2.\ 6256\\ 2.\ 6256\\ 2.\ 6256\\ 2.\ 6256\end{array}$	$\begin{array}{c} 2.\ 6250\\ 2.\ 6256\\ 2.\ 6256\\ 2.\ 6256\end{array}$	$\begin{array}{c} 2.\ 6250\\ 2.\ 6255\\ 2.\ 6255\\ 2.\ 6255\\ 2.\ 6255\\ \end{array}$	$\begin{array}{c} 2.7500\\ 2.7509\\ 2.7509\\ 2.7509\\ 2.7509\\ 2.7509\end{array}$	$\begin{array}{c} 2.7500\\ 2.7508\\ 2.7500\\ 2.7500\\ 2.7508\\ \end{array}$
		2. 46120 2. 46136		2.47510 2.47526									2,7111	
$\begin{array}{c} 2.\ 36390\\ 2.\ 36406\\ 2.\ 36560\\ 2.\ 36576 \end{array}$	$\begin{array}{c} 2.36540\\ 2.36556,\\ 2.36690\\ 2.36690\\ 2.36706 \end{array}$	$\begin{array}{c} 2.\ 46120\\ 2.\ 46136\\ 2.\ 47310\\ 2.\ 47326\\ 2.\ 47620\\ 2.\ 47636\end{array}$	$\begin{array}{c} 2.\ 47910\\ 2.\ 47926\\ 2.\ 48180\\ 2.\ 48196\\ 2.\ 48196 \end{array}$	$\begin{array}{c} 2.\ 48260\\ 2.\ 48276\\ 2.\ 48500\\ 2.\ 48516\\ 2.\ 48516 \end{array}$	$\begin{array}{c} 2.\ 48670\\ 2.\ 48686\\ 2.\ 48860\\ 2.\ 48876\\ \end{array}$	$\begin{array}{c} 2.48890\\ 2.48906\\ 2.49060\\ 2.49076\end{array}$	$\begin{array}{c} 2.\ 49040\\ 2.\ 49056\\ 2.\ 49190\\ 2.\ 49206\\ \end{array}$	$\begin{array}{c} 2.\ 6041\\ 2.\ 6043\\ 2.\ 6068\\ 2.\ 6070\end{array}$	$\begin{array}{c} 2.6075\\ 2.6077\\ 2.6100\\ 2.6102\\ \end{array}$	$\begin{array}{c} 2.\ 6117\\ 2.\ 6119\\ 2.\ 6136\\ 2.\ 6138\\ 2.\ 6138 \end{array}$	$\begin{array}{c} 2.\ 6139\\ 2.\ 6141\\ 2.\ 6156\\ 2.\ 6158\\ 2.\ 6158\\ \end{array}$	$\begin{array}{c} 2.\ 6154\\ 2.\ 6156\\ 2.\ 6169\\ 2.\ 6171\\ \end{array}$	$\begin{array}{c} 2.7111\\ 2.7113\\ 2.7230\\ 2.7232\\ 2.7262\\ 2.7264\\ 2.7264\\ \end{array}$	2. 7291 2. 7293 2. 7318 2. 7320
2.37330 2.37314 2.37500 2.37484 2.37484	2. 37350 2. 37334 2. 37500 2. 37484 2. 37484	$\begin{array}{c} 2.\ 49690\\ 2.\ 49674\\ 2.\ 49690\\ 2.\ 49690\\ 2.\ 49690\\ 2.\ 49984 \end{array}$	$\begin{array}{c} 2.\ 49730\\ 2.\ 49714\\ 2.\ 50000\\ 2.\ 49984\\ 2.\ 49984 \end{array}$	$\begin{array}{c} 2.\ 49760\\ 2.\ 49744\\ 2.\ 50000\\ 2.\ 49984\\ \end{array}$	$\begin{array}{c} 2.49810\\ 2.49794\\ 2.50000\\ 2.49984\\ \end{array}$	$\begin{array}{c} 2.\ 49830\\ 2.\ 49814\\ 2.\ 50000\\ 2.\ 49984\\ 2.\ 49984 \end{array}$	$\begin{array}{c} 2.\ 49850\\ 2.\ 49834\\ 2.\ 5000\\ 2.\ 49984\\ 2.\ 49984 \end{array}$	$\begin{array}{c} 2.\ 6223\\ 2.\ 6221\\ 2.\ 6221\\ 2.\ 6248\\ 2.\ 6248 \end{array}$	$\begin{array}{c} 2.\ 6225\\ 2.\ 6223\\ 2.\ 6223\\ 2.\ 6248\\ 2.\ 6248 \end{array}$	$\begin{array}{c} 2.6231\\ 2.6229\\ 2.6229\\ 2.6248\\ 2.6248\\ \end{array}$	$\begin{array}{c} 2.6233\\ 2.6231\\ 2.6231\\ 2.6248\\ 2.6248\end{array}$	$\begin{array}{c} 2.\ 6235\\ 2.\ 6233\\ 2.\ 6233\\ 2.\ 6248\\ 2.\ 6248 \end{array}$	$\begin{array}{c} 2.7468\\ 2.7466\\ 2.7466\\ 2.7466\\ 2.7466\\ 2.7406\\ 2.7498 \end{array}$	2.7473 2.7471 2.7500 2.7498
2.3137 2.3143 2.3143 2.3168 2.3174	2. 3251 2. 3256 2. 3279 2. 3284	$\begin{array}{c} 2.\ 2649\\ 2.\ 2658\\ 2.\ 2700\\ 2.\ 2709\\ 2.\ 2757\\ 2.\ 2766\end{array}$	2. 3439 2. 3447 2. 3489 2. 3497	$\begin{array}{c} 2.3811\\ 2.3818\\ 2.3856\\ 2.3863\\ 2.3863\end{array}$	2. 4198 2. 4204 2. 4233 2. 4239 2. 4239	2. 4387 2. 4393 2. 4418 2. 4424 2. 4424	$\begin{array}{c} 2.4501\\ 2.4506\\ 2.4529\\ 2.4534\\ 2.4534\end{array}$	$\begin{array}{c} 2.4689\\ 2.4697\\ 2.4738\\ 2.4738\\ 2.4746\end{array}$	2.5060 2.5067 2.5105 2.5112	$\begin{array}{c} 2.5448\\ 2.5454\\ 2.5483\\ 2.5483\\ 2.5489\end{array}$	2. 5637 2. 5643 2. 5668 2. 5674	2. 5751 2. 5756 2. 5779 2. 5779 2. 5784	$\begin{array}{c} 2. \ 5145\\ 2. \ 5154\\ 2. \ 5198\\ 2. \ 5207\\ 2. \ 5265\\ 2. \ 5265\end{array}$	$\begin{array}{c} 2.5938\\ 2.5946\\ 2.5988\\ 2.5998\\ 2.5996\end{array}$
2. 3272 2. 3268 2. 3303 2. 3299	2. 3359 2. 3355 2. 3387 2. 3383 2. 3383	$\begin{array}{c} 2.\ 3190\\ 2.\ 3185\\ 2.\ 3241\\ 2.\ 3236\\ 2.\ 3236\\ 2.\ 3298\\ 2.\ 3293\\ 2.\ 3293\\ 2.\ 3293\\ 2.\ 3293\\ 2.\ 3293\\ 2.\ 3293\\ 2.\ 3293\\ 2.\ 3293\\ 2.\ 3293\\ 2.\ 3293\\ 2.\ 3293\\ 2.\ 3293\\ 2.\ 3293\\ 2.\ 3293\\ 2.\ 3293\\ 2.\ 3293\\ 2.\ 3293\\ 2.\ 3293\\ 2.\ 3293\\ 2.\ 3293\\ 2.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3.\ 3293\\ 3293\\ 3293\\ 3293\\ 3293\\ 3293\\ 3293\\ 3293\\ 3293\\ 3293\\ 3293\\ 3293\\ 32$	$\begin{array}{c} 2.3800\\ 2.3795\\ 2.3850\\ 2.3845\\ \end{array}$	$\begin{array}{c} 2.4082\\ 2.4077\\ 2.4127\\ 2.4127\\ 2.4122\end{array}$	$\begin{array}{c} 2.\ 4378\\ 2.\ 4374\\ 2.\ 4413\\ 2.\ 4409\\ \end{array}$	$\begin{array}{c} 2.4522\\ 2.4518\\ 2.4553\\ 2.4553\\ 2.4549\end{array}$	$\begin{array}{c} 2.4609\\ 2.4605\\ 2.4637\\ 2.4633\\ 2.4633\end{array}$	$\begin{array}{c} 2.5050\\ 2.5099\\ 2.5099\\ 2.5094\\ 2.5094 \end{array}$	2. 5331 2. 5326 2. 5326 2. 5376 2. 5371	$\begin{array}{c} 2.5628\\ 2.5624\\ 2.5663\\ 2.5663\\ 2.5659\end{array}$	$\begin{array}{c} 2.5772 \\ 2.5768 \\ 2.5803 \\ 2.5799 \\ 2.5799 \end{array}$	$\begin{array}{c} 2.5859\\ 2.5855\\ 2.5887\\ 2.5883\\ 2.5883\end{array}$	$\begin{array}{c} 2.5686\\ 2.5681\\ 2.5739\\ 2.5734\\ 2.5797\\ 2.5797\\ 2.5792 \end{array}$	$\begin{array}{c} 2.\ 6299\\ 2.\ 6294\\ 2.\ 6349\\ 2.\ 6344\\ 2.\ 6344 \end{array}$
2. 3272 2. 3276 2. 3303 2. 3303 2. 3307	2. 3359 2. 3363 2. 3387 2. 3391 2. 3391	$\begin{array}{c} 2.3190\\ 2.3195\\ 2.3241\\ 2.3246\\ 2.3298\\ 2.3298\\ 2.3303\\ 2.3303 \end{array}$	2.3800 2.3805 2.3850 2.3855	2.4082 2.4087 2.4127 2.4132	$\begin{array}{c} 2.\ 4378\\ 2.\ 4382\\ 2.\ 4413\\ 2.\ 4417\\ 2.\ 4417 \end{array}$	$\begin{array}{c} 2.4522\\ 2.4526\\ 2.4553\\ 2.4553\\ 2.4557\end{array}$	$\begin{array}{c} 2.4609\\ 2.4613\\ 2.4637\\ 2.4637\\ 2.4641\end{array}$	$\begin{array}{c} 2.5050\\ 2.5055\\ 2.5099\\ 2.5104\end{array}$	2. 5331 2. 5336 2. 5376 2. 5381 2. 5381	$\begin{array}{c} 2.5628\\ 2.5632\\ 2.5663\\ 2.5663\\ 2.5667\end{array}$	2. 5772 2. 5776 2. 5803 2. 5803 2. 5807	$\begin{array}{c} 2.5859\\ 2.5863\\ 2.5887\\ 2.5891\\ \end{array}$	$\begin{array}{c} 2.5686\\ 2.5691\\ 2.5739\\ 2.5744\\ 2.5797\\ 2.5802\\ \end{array}$	$\begin{array}{c} 2.\ 6299\\ 2.\ 6304\\ 2.\ 6349\\ 2.\ 63549\\ 2.\ 63549\end{array}$
2: 3056 2: 3050 2: 3073 2: 3067	$\begin{array}{c} 2.\ 3193\\ 2.\ 3188\\ 2.\ 3208\\ 2.\ 3203\\ 2.\ 3203 \end{array}$	$\begin{array}{c} 2.\ 2262\\ 2.\ 2253\\ 2.\ 2253\\ 2.\ 2253\\ 2.\ 2293\\ 2.\ 2284\\ \end{array}$	$\begin{array}{c} 2.3168\\ 2.3160\\ 2.3195\\ 2.3195\\ 2.3187\end{array}$	$\begin{array}{c} 2.3623\\ 2.3616\\ 2.3647\\ 2.3640\\ 2.3640 \end{array}$	$\begin{array}{c} 2.4079\\ 2.4073\\ 2.4098\\ 2.4098\\ 2.4092 \end{array}$	$\begin{array}{c} 2.\ 4306\\ 2.\ 4300\\ 2.\ 4323\\ 2.\ 4317\\ \end{array}$	$\begin{array}{c} 2.\ 4443\\ 2.\ 4438\\ 2.\ 4458\\ 2.\ 4453\\ 2.\ 4453\\ \end{array}$	$\begin{array}{c} 2.\ 4418\\ 2.\ 4410\\ 2.\ 4445\\ 2.\ 4437\\ 2.\ 4437\\ \end{array}$	$\begin{array}{c} 2.\ 4872\\ 2.\ 4865\\ 2.\ 4897\\ 2.\ 4890\\ 2.\ 4890 \end{array}$	$\begin{array}{c} 2. \ 5329\\ 2. \ 5323\\ 2. \ 5348\\ 2. \ 5342\\ 2. \ 5342 \end{array}$	2. 5556 2. 5550 2. 5573 2. 5567 2. 5567	$\begin{array}{c} 2. \ 5693 \\ 2. \ 5688 \\ 2. \ 5708 \\ 2. \ 5703 \end{array}$	2. 4761 2. 4761 2. 4761 2. 4761 2. 4793 2. 4793 2. 4784	$\begin{array}{c} 2.5668\\ 2.5660\\ 2.5695\\ 2.5687\\ 2.5687\end{array}$
$\begin{array}{c} 2.3327\\ 2.3323\\ 2.3344\\ 2.3340\\ 2.3340 \end{array}$	$\begin{array}{c} 2.3410\\ 2.3406\\ 2.3425\\ 2.3421\\ 2.3421 \end{array}$	$\begin{array}{c} 2.\ 3345\\ 2.\ 3345\\ 2.\ 3346\\ 2.\ 3346\\ 2.\ 3376\\ 2.\ 3376\\ 2.\ 3371\\ \end{array}$	$\begin{array}{c} 2.3890\\ 2.3885\\ 2.3917\\ 2.3912\\ 2.3912 \end{array}$	$\begin{array}{c} 2.4164\\ 2.4159\\ 2.4188\\ 2.4188\\ 2.4183\end{array}$	$\begin{array}{c} 2.\ 4440\\ 2.\ 4436\\ 2.\ 4459\\ 2.\ 4459\\ 2.\ 4455\end{array}$	2. 4577 2. 4573 2. 4594 2. 4590	$\begin{array}{c} 2.4660\\ 2.4656\\ 2.4675\\ 2.4671\\ 2.4671\end{array}$	$\begin{array}{c} 2.5140 \\ 2.5135 \\ 2.5167 \\ 2.5167 \\ 2.5162 \end{array}$	$\begin{array}{c} 2.5413\\ 2.5408\\ 2.5438\\ 2.5433\\ 2.5433\end{array}$	$\begin{array}{c} 2.5690 \\ 2.5686 \\ 2.5709 \\ 2.5709 \\ 2.5705 \end{array}$	$\begin{array}{c} 2.5827\\ 2.5823\\ 2.5844\\ 2.5840\\ 2.5840 \end{array}$	$\begin{array}{c} 2.5910\\ 2.5926\\ 2.5925\\ 2.5921\\ \end{array}$	$\begin{array}{c} 2.5844\\ 2.5839\\ 2.5839\\ 2.5839\\ 2.5876\\ 2.5876\\ 2.5871 \end{array}$	$\begin{array}{c} 2.\ 6390\\ 2.\ 6385\\ 2.\ 6417\\ 2.\ 6412\\ 2.\ 6412 \end{array}$
2A 3A	2A 3A	1 A 2 A 3 A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	14 24 34	2A 3A
UN	ND	UNC	NN	NN	NN	NN	ND	NN	NN	NN	NN	NŊ	UNC	NN
2.375-16	2.375-20	2. 500-4	2.500-6	2. 500-8	2.500-12	2.500-16	2. 500-20	2.625-6	2. 625-8	2.625-12	2.625-16	2.625-20	2. 750-4	2.750-6

	Class Series Nominal designa- tion threads the form			21	2.750-8	2.750-12	2.750-16	2.750-20	2.875-6	2.875-8	2.875-12	2.875-16	2.875-20	3. 000-4	
		Series	tion		20	UN	UN	NN	NIJ	NU	NN	NIJ	NN	NN	OND
		Jose	Class		19	2B 3B	2B 3B	3B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	1B 2B 3B
	lug gages diameter		TON		18	in 2.6400 2.6398 2.6297 2.6295	2. 6780 2. 6780 2. 6698 2. 6696	2. 6960 2. 6958 2. 6908 2. 6908	2. 7070 2. 7068 2. 7035 2. 7035	2.7250 2.7248 2.7146 2.7144	2. 7650 2. 7650 2. 7547 2. 7545	2.8030 2.8028 2.7948 2.7946	2. 8210 2. 8208 2. 8158 2. 8156	2.8320 2.8318 2.8287 2.8285	2. 7670 2. 7668 2. 7668 2. 7668 2. 7594 2. 7594
s	Z plain pl for minor		C C C	2	17	in 2.6150 2.6152 2.6150 2.6150 2.6152	$\begin{array}{c} 2.6600\\ 2.6602\\ 2.6602\\ 2.6602\\ \end{array}$	$\begin{array}{c} 2.\ 6820\\ 2.\ 6822\\ 2.\ 6822\\ 2.\ 6822\end{array}$	$\begin{array}{c} 2.\ 6960\\ 2.\ 6962\\ 2.\ 6962\\ 2.\ 6962\\ \end{array}$	2. 6950 2. 6950 2. 6950 2. 6950	2. 7400 2. 7402 2. 7400 2. 7400	2. 7850 2. 7852 2. 7852 2. 7852	$\begin{array}{c} 2.8070\\ 2.8072\\ 2.8070\\ 2.8072\\ \end{array}$	$\begin{array}{c} 2.8210\\ 2.8212\\ 2.8210\\ 2.8210\\ 2.8212\\ \end{array}$	2. 7290 2. 7292 2. 7292 2. 7292 2. 7292 2. 7292
al thread			iameter	Plus toler- anee gage	16	in 2. 6796 2. 6801 2. 6769 2. 6774	$\begin{array}{c} 2.7040\\ 2.7044\\ 2.7019\\ 2.7023 \end{array}$	2.7166 2.7170 2.7148 2.7152	$\begin{array}{c} 2.7241\\ 2.7245\\ 2.7225\\ 2.7225\\ 2.7229\end{array}$	2. 7787 2. 7792 2. 7757 2. 7767 2. 7762	$\begin{array}{c} 2.8048\\ 2.8053\\ 2.8020\\ 2.8025\end{array}$	2. 8291 2. 8295 2. 8271 2. 8271	$\begin{array}{c} 2.8417\\ 2.8421\\ 2.8399\\ 2.8403\\ \end{array}$	$\begin{array}{c} 2.8493\\ 2.8497\\ 2.8476\\ 2.8480\\ \end{array}$	$\begin{array}{c} 2.8585\\ 2.8590\\ 2.8515\\ 2.8515\\ 2.8520\\ 2.8485\\ 2.8485\\ \end{array}$
or intern	gages	H	Pitch d	Minus toler- anee gage	15	<i>in</i> 2. 6796 2. 6791 2. 6769 2. 6769	$\begin{array}{c} 2.7040\\ 2.7036\\ 2.7019\\ 2.7015 \end{array}$	2.7166 2.7162 2.7148 2.7144	$\begin{array}{c} 2.7241 \\ 2.7237 \\ 2.7225 \\ 2.7221 \\ 2.7221 \end{array}$	2. 7787 2. 7782 2. 7757 2. 7757 2. 7752	$\begin{array}{c} 2.8048\\ 2.8043\\ 2.8020\\ 2.8015 \end{array}$	2. 8291 2. 8287 2. 8271 2. 8267	$\begin{array}{c} 2.8417\\ 2.8413\\ 2.8399\\ 2.8395\\ 2.8395 \end{array}$	$\begin{array}{c} 2.8493 \\ 2.8489 \\ 2.8476 \\ 2.8472 \end{array}$	$\begin{array}{c} 2.8585\\ 2.8580\\ 2.8515\\ 2.8515\\ 2.8510\\ 2.8475\\ 2.8475 \end{array}$
Gages fo	ead plug			Major diam- eter	14	$\begin{array}{c} in\\ 2.7337\\ 2.7330\\ 2.7330\\ 2.7310\\ 2.7303\end{array}$	$\begin{array}{c} 2.7401\\ 2.7395\\ 2.7380\\ 2.7374\\ \end{array}$	$\begin{array}{c} 2.7437\\ 2.7431\\ 2.7431\\ 2.7419\\ 2.7413\end{array}$	$\begin{array}{c} 2.7458\\ 2.7453\\ 2.7442\\ 2.7437\\ \end{array}$	$\begin{array}{c} 2.8509\\ 2.8501\\ 2.8479\\ 2.8471\\ 2.8471 \end{array}$	$\begin{array}{c} 2.8589\\ 2.8582\\ 2.8561\\ 2.8554\\ \end{array}$	2.8652 2.8646 2.8632 2.8626	$\begin{array}{c} 2.8688\\ 2.8682\\ 2.8670\\ 2.8664 \end{array}$	$\begin{array}{c} 2.8710 \\ 2.8705 \\ 2.8693 \\ 2.8688 \\ \end{array}$	$\begin{array}{c} 2.9668\\ 2.9598\\ 2.9598\\ 2.9589\\ 2.9563\\ 2.9563\\ 2.9554\\ \end{array}$
	X thr	0		Piteh diam- eter	13	${}^{in}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.6693}_{2.66$	2, 6959 2, 6963 2, 6963 2, 6963 2, 6963	2, 7094 2, 7098 2, 7094 2, 7098	2.7175 2.7175 2.7179 2.7175 2.7179	2. 7667 2. 7672 2. 7672 2. 7667 2. 7672	2. 7938 2. 7943 2. 7943 2. 7943	2. 8209 2. 8213 2. 8213 2. 8213	$\begin{array}{c} 2.8344\\ 2.8348\\ 2.8348\\ 2.8348\\ 2.8348\\ \end{array}$	$\begin{array}{c} 2.8425\\ 2.8429\\ 2.8429\\ 2.8429\\ 2.8429\\ \end{array}$	2. 8376 2. 8381 2. 8381 2. 8381 2. 8381 2. 8381 2. 8381
		Ċ		Major diam- eter	12	in 2. 7500 2. 7500 2. 7500 2. 7500 2. 7507	2, 7500 2, 7506 2, 7506 2, 7506 2, 7506	2.7500 2.7506 2.7506 2.7506	2.7500 2.7500 2.7500 2.7500	$\begin{array}{c} 2.8750\\ 2.8758\\ 2.8758\\ 2.8756\\ 2.8758\end{array}$	$\begin{array}{c} 2.8750\\ 2.8757\\ 2.8757\\ 2.8750\\ 2.8757\end{array}$	$\begin{array}{c} 2.8750\\ 2.8756\\ 2.8756\\ 2.8756\\ 2.8756\end{array}$	2.8750 2.8756 2.8756 2.8756	2.8750 2.8755 2.8755 2.8755	$\begin{array}{c} 3.\ 0000\\ 3.\ 0000\\ 3.\ 0000\\ 3.\ 0000\\ 3.\ 0000\\ 0000\\ \end{array}$
	for major	GO	Iľn.	finished hot- rolled material	11	2.7250 2.7250									2.9613
	ring gages diameter	TON		Semi- finished	10	in 2. 7325 2. 7327 2. 7350 2. 7350 2. 7352	2. 7367 2. 7369 2. 7386 2. 7386	2. 7389 2. 7391 2. 7406 2. 7408	2. 7404 2. 7406 2. 7419 2. 7421	$\begin{array}{c} 2.8540\\ 2.8542\\ 2.8568\\ 2.8570\\ \end{array}$	$\begin{array}{c} 2.8575\\ 2.8577\\ 2.8600\\ 2.8602\\ 2.8602 \end{array}$	$\begin{array}{c} 2.8617\\ 2.8619\\ 2.8636\\ 2.8638\\ 2.8638\end{array}$	$\begin{array}{c} 2.8639\\ 2.8641\\ 2.8656\\ 2.8656\\ \end{array}$	2, 8653 2, 8655 2, 8669 2, 8671	$\begin{array}{c} 2. \ 9611\\ 2. \ 9613\\ 2. \ 9730\\ 2. \ 9732\\ 2. \ 9762\\ 2. \ 9764\end{array}$
Ireads	Z plain I		60		6	<i>in</i> 2. 7475 2. 7473 2. 7498 2. 7498	$\begin{array}{c} 2.7481\\ 2.7479\\ 2.7500\\ 2.7498\\ \end{array}$	$\begin{array}{c} 2.7483\\ 2.7481\\ 2.7481\\ 2.7498\\ 2.7498\end{array}$	2. 7485 2. 7483 2. 7483 2. 7498	$\begin{array}{c} 2.8722\\ 2.8720\\ 2.8750\\ 2.8748\\ 2.8748 \end{array}$	$\begin{array}{c} 2.8725\\ 2.8723\\ 2.8750\\ 2.8748\\ 2.8748\end{array}$	$\begin{array}{c} 2.8731\\ 2.8729\\ 2.8750\\ 2.8748\\ \end{array}$	$\begin{array}{c} 2.8733\\ 2.8731\\ 2.8750\\ 2.8748\\ 2.8748 \end{array}$	$\begin{array}{c} 2.8734\\ 2.8732\\ 2.8750\\ 2.8758\\ 2.8748\end{array}$	$\begin{array}{c} 2.9968\\ 2.9966\\ 2.9966\\ 3.0000\\ 2.99966\\ 2.99966\\ \end{array}$
tternal th				Minor diam- eter	×	$\begin{array}{c} in\\ 2.\ 6309\\ 2.\ 6316\\ 2.\ 6354\\ 2.\ 6361\end{array}$	$\begin{array}{c} 2.\ 6698\\ 2.\ 6704\\ 2.\ 6733\\ 2.\ 6739\\ 2.\ 6739\end{array}$	$\begin{array}{c} 2.6887\\ 2.6893\\ 2.6918\\ 2.6924\\ 2.6924\end{array}$	$\begin{array}{c} 2.7001\\ 2.7006\\ 2.7029\\ 2.7034\\ \end{array}$	$\begin{array}{c} 2.7186\\ 2.7194\\ 2.7237\\ 2.7245\\ 2.7245 \end{array}$	2.7558 2.7565 2.7604 2.7611	$\begin{array}{c} 2.7947\\ 2.7953\\ 2.7982\\ 2.7988\\ 2.7988\end{array}$	$\begin{array}{c} 2.8136\\ 2.8142\\ 2.8167\\ 2.8167\\ 2.8173\end{array}$	$\begin{array}{c} 2.8249\\ 2.8254\\ 2.8278\\ 2.8278\\ 2.8283\\ \end{array}$	2. 7642 2. 7651 2. 7696 2. 7705 2. 7765 2. 7765
ges for e)	gages	$_{\rm L0}$	lameter	Minus toler- anee gage	-	${}^{in}_{2.6580}$ 2. $6575$ 2. $6625$ 2. $6625$ 2. $6620$	$\begin{array}{c} 2.6878\\ 2.6874\\ 2.6913\\ 2.6909\\ \end{array}$	$\begin{array}{c} 2.7022\\ 2.7018\\ 2.7053\\ 2.7049\\ \end{array}$	2, 7109 2, 7105 2, 7137 2, 7137 2, 7133	$\begin{array}{c} 2.7547\\ 2.7542\\ 2.7598\\ 2.7593\\ 2.7593\end{array}$	$\begin{array}{c} 2.7829\\ 2.7824\\ 2.7875\\ 2.7875\\ 2.7870\end{array}$	$\begin{array}{c} 2.8127\\ 2.8123\\ 2.8123\\ 2.8162\\ 2.8158\\ 2.8158\\ \end{array}$	2. 8271 2. 8267 2. 8302 2. 8298	2.8357 2.8353 2.8386 2.8386 2.8382	2, 8183 2, 8178 2, 8237 2, 8233 2, 8239 2, 8291 2, 8291
Ga	ead ring		Pitch d	Plus toler- ance gage	9	in in 2.6580 2.6580 2.6585 2.6625 2.6630 2.6630	$\begin{array}{c} 2.6878\\ 2.6882\\ 2.6913\\ 2.6917\\ \end{array}$	2. 7022 2. 7026 2. 7053 2. 7057	2.7109 2.7113 2.7137 2.7141	2. 7547 2. 7552 2. 7598 2. 7603	$\begin{array}{c} 2.\ 7829\\ 2.\ 7834\\ 2.\ 7834\\ 2.\ 7880\\ 2.\ 7880 \end{array}$	$\begin{array}{c} 2.8127\\ 2.8131\\ 2.8162\\ 2.8166\\ 2.8166\end{array}$	$\begin{array}{c} 2.8271 \\ 2.8275 \\ 2.8302 \\ 2.8306 \\ 2.8306 \end{array}$	2. 8357 2. 8361 2. 8386 2. 8390	2, 8183 2, 8183 2, 8188 2, 8237 2, 8236 2, 8296 2, 8301
	X thr	0		Minor diam- eter	5	$in in 2.6122 \\ 2.6115 \\ 2.6115 \\ 2.6147 \\ 2.6140 \\ 2.6140 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ $	$\begin{array}{c} 2.\ 6579\\ 2.\ 6573\\ 2.\ 6598\\ 2.\ 6592\\ 2.\ 6592\\ \end{array}$	$\begin{array}{c} 2.6806\\ 2.6800\\ 2.6823\\ 2.6817\\ 2.6817 \end{array}$	$\begin{array}{c} 2.6943\\ 2.6938\\ 2.6958\\ 2.6953\\ 2.6953\end{array}$	$\begin{array}{c} 2.\ 6917\\ 2.\ 6909\\ 2.\ 6945\\ 2.\ 6937\\ \end{array}$	2. 7372 2. 7365 2. 7397 2. 7390 2. 7390	2. 7829 2. 7829 2. 7848 2. 7842	$\begin{array}{c} 2.8056\\ 2.8050\\ 2.8073\\ 2.8067\\ 2.8067\end{array}$	$\begin{array}{c} 2.8192 \\ 2.8187 \\ 2.8208 \\ 2.8203 \\ 2.8203 \end{array}$	2.7261 2.7261 2.7261 2.7261 2.7293 2.7284
		G		Piteh diam- eter	4	in 2. 6663 2. 6688 2. 6688 2. 6688 2. 6683	$\begin{array}{c} 2.\ 6940\\ 2.\ 6936\\ 2.\ 6959\\ 2.\ 6955\\ \end{array}$	2.7077 2.7073 2.7094 2.7090	2.7160 2.7156 2.7175 2.7175 2.7171	2. 7639 2. 7634 2. 7667 2. 7667 2. 7662	$\begin{array}{c} 2.\ 7913\\ 2.\ 7908\\ 2.\ 7938\\ 2.\ 7933\\ 2.\ 7933\\ \end{array}$	$\begin{array}{c} 2.8190 \\ 2.8186 \\ 2.8209 \\ 2.8205 \\ 2.8205 \end{array}$	$\begin{array}{c} 2.8327\\ 2.8323\\ 2.8324\\ 2.8344\\ 2.8340 \end{array}$	2.8409 2.8405 2.8425 2.8425 2.8421	2.8344 2.8339 2.8339 2.8339 2.8339 2.8376 2.8376 2.8376
		Class			ŝ	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	1 A 2 A 3 A
		Series designa-	tion		5	UN	NN	NN	UN	NN	NU	NN	NN	NU	UNC
		Nominal size and	threads per ineh		1	2.750-8	2.750-12	2.750-16	2.750-20	2.875-6	2.875-8	2.875-12	.2.875-16	2.875-20	3. 000-4

TABLE 6.19. Gages for standard thread series, Unified screw threads-Continued

3. 000-6	3. 000-8	3.000-12	3.000-16	3.000-20	3, 125-6	3. 125-8	3, 125-12	3.125-16	3. 250-4	3. 250-6	3. 250-8	3. 250-12	3. 250-16	3.375-6
NN	NN	UN	NN	UN	UN	UN	ND	UN	UNC	ND	ND	NN	NN	Ŋ
2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	1B 2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B
2. 8500 2. 8498 2. 8396 2. 8394	2. 8900 2. 8898 2. 8797 2. 8795 2. 8795	2, 9280 2, 9278 2, 9198 2, 9196	$\begin{array}{c} 2. \ 9460\\ 2. \ 9458\\ 2. \ 9408\\ 2. \ 9406\\ 2. \ 9406 \end{array}$	$\begin{array}{c} 2.9570\\ 2.9568\\ 2.9537\\ 2.9535\end{array}$	2. 9750 2. 9748 2. 9646 2. 9644	$\begin{array}{c} 3.\ 0150\\ 3.\ 0148\\ 3.\ 0045\\ 3.\ 0045 \end{array}$	$\begin{array}{c} 3.\ 0530\\ 3.\ 0528\\ 3.\ 0448\\ 3.\ 0446\\ 3.\ 0446 \end{array}$	$\begin{array}{c} 3.\ 0710\\ 3.\ 0708\\ 3.\ 0658\\ 3.\ 0656\\ 3.\ 0656\end{array}$	$\begin{array}{c} 3.\ 0170\\ 3.\ 0168\\ 3.\ 0168\\ 3.\ 0168\\ 3.\ 0168\\ 3.\ 0094\\ 3.\ 0092\\ \end{array}$	$\begin{array}{c} 3.1000\\ 3.0998\\ 3.0896\\ 3.0894\\ 3.0894 \end{array}$	3. 1400 3. 1398 3. 1297 3. 1295	3. 1780 3. 1778 3. 1698 3. 1696	3, 1960 3, 1958 3, 1908 3, 1906	3. 2250 3. 2248 3. 2146 3. 2144
2.8200 2.8202 2.8200 2.8200	$\begin{array}{c} 2.8650\\ 2.8652\\ 2.8652\\ 2.8652\\ 2.8652\end{array}$	$\begin{array}{c} 2.\ 9100\\ 2.\ 9102\\ 2.\ 9102\\ 2.\ 9102\\ \end{array}$	$\begin{array}{c} 2. \ 9320 \\ 2. \ 9322 \\ 2. \ 9322 \\ 2. \ 9322 \\ 2. \ 9322 \end{array}$	$\begin{array}{c} 2.\ 9460\\ 2.\ 9462\\ 2.\ 9460\\ 2.\ 9462\\ 2.\ 9462\\ \end{array}$	$\begin{array}{c} 2.\ 9450\\ 2.\ 9452\\ 2.\ 9452\\ 2.\ 9452\\ 2.\ 9452\\ \end{array}$	$\begin{array}{c} 2.9900\\ 2.9902\\ 2.9902\\ 2.9902\\ 2.9902\\ \end{array}$	$\begin{array}{c} 3.\ 0350\\ 3.\ 0352\\ 3.\ 0352\\ 3.\ 0352\\ 3.\ 0352\end{array}$	$\begin{array}{c} 3.\ 0570\\ 3.\ 0572\\ 3.\ 0572\\ 3.\ 0572\\ 3.\ 0572\end{array}$	$\begin{array}{c} 2.\ 9790\\ 2.\ 9792\\ 2.\ 9792\\ 2.\ 9792\\ 2.\ 9792\\ 2.\ 9792\\ \end{array}$	$\begin{array}{c} 3.\ 0700\\ 3.\ 0702\\ 3.\ 0702\\ 3.\ 0702\\ 3.\ 0702\end{array}$	$\begin{array}{c} 3.1150\\ 3.1152\\ 3.1152\\ 3.1150\\ 3.1152\end{array}$	$\begin{array}{c} 3.1600\\ 3.1602\\ 3.1602\\ 3.1600\\ 3.1602\end{array}$	$\begin{array}{c} 3.1820\ 3.1822\ 3.1822\ 3.1822\ 3.1822\ 3.1822\ 3.1822\ \end{array}$	3, 1950 3, 1952 3, 1950 3, 1952 3, 1952
$\begin{array}{c} 2,9038\\ 2,9043\\ 2,9008\\ 2,9013 \end{array}$	2. 9299 2. 9304 2. 9271 2. 9276	$\begin{array}{c} 2. \ 9541 \\ 2. \ 9545 \\ 2. \ 9521 \\ 2. \ 9525 \\ 2. \ 9525 \end{array}$	2. 9667 2. 9671 2. 9649 2. 9653	$\begin{array}{c} 2.\ 9743\\ 2.\ 9747\\ 2.\ 9726\\ 2.\ 9730\\ 2.\ 9730 \end{array}$	$\begin{array}{c} 3.\ 0289\\ 3.\ 0294\\ 3.\ 0259\\ 3.\ 0264\\ 3.\ 0264\end{array}$	$\begin{array}{c} 3.\ 0550\\ 3.\ 0555\\ 3.\ 0522\\ 3.\ 0522\\ 3.\ 0527 \end{array}$	$\begin{array}{c} 3.\ 0791\\ 3.\ 0795\\ 3.\ 0771\\ 3.\ 0775\\ \end{array}$	$\begin{array}{c} 3.\ 0917\\ 3.\ 0921\\ 3.\ 0899\\ 3.\ 0903\\ \end{array}$	$\begin{array}{c} 3.\ 1088\\ 3.\ 1093\\ 3.\ 1017\\ 3.\ 1017\\ 3.\ 0982\\ 3.\ 0987\\ 3.\ 0987\\ \end{array}$	$\begin{array}{c} 3. \ 1540 \\ 3. \ 1545 \\ 3. \ 1509 \\ 3. \ 1514 \\ 3. \ 1514 \end{array}$	$\begin{array}{c} 3.1801\\ 3.1806\\ 3.1773\\ 3.1773\\ 3.1778\end{array}$	$\begin{array}{c} 3.\ 2041\\ 3.\ 2045\\ 3.\ 2021\\ 3.\ 2025\\ \end{array}$	3, 2167 3, 2171 3, 2149 3, 2153	3. 2791 3. 2796 3. 2760 3. 2765
$\begin{array}{c} 2.9038\\ 2.9008\\ 2.9008\\ 2.9008\\ 2.9003\\ \end{array}$	2. 9299 2. 9294 2. 9271 2. 9266	$\begin{array}{c} 2.9541\\ 2.9537\\ 2.9537\\ 2.9521\\ 2.9517\end{array}$	$\begin{array}{c} 2.\ 9667\\ 2.\ 9663\\ 2.\ 9649\\ 2.\ 9645\end{array}$	$\begin{array}{c} 2.\ 9743\\ 2.\ 9739\\ 2.\ 9726\\ 2.\ 9722\\ 2.\ 9722\\ \end{array}$	$\begin{array}{c} 3.\ 0289\\ 3.\ 0284\\ 3.\ 0259\\ 3.\ 0254\\ 3.\ 0254\end{array}$	$\begin{array}{c} 3.\ 0550\\ 3.\ 0545\\ 3.\ 0522\\ 3.\ 0517\\ 3.\ 0517 \end{array}$	3. 0791 3. 0787 3. 0771 3. 0767 3. 0767	$\begin{array}{c} 3.\ 0917\\ 3.\ 0913\\ 3.\ 0899\\ 3.\ 0895\\ 3.\ 0895 \end{array}$	$\begin{array}{c} 3.\ 1088\\ 3.\ 1083\\ 3.\ 1017\\ 3.\ 1012\\ 3.\ 0982\\ 3.\ 0982\\ 3.\ 0977\\ \end{array}$	$\begin{array}{c} 3. \ 1540 \\ 3. \ 1535 \\ 3. \ 1509 \\ 3. \ 1504 \\ 3. \ 1504 \end{array}$	3. 1801 3. 1796 3. 1773 3. 1773 3. 1773	3. 2041 3. 2037 3. 2021 3. 2021 3. 2017	3. 2167 3. 2163 3. 2149 3. 2149 3. 2145	3. 2791 3. 2786 3. 2760 3. 2755
$\begin{array}{c} 2.\ 9760\\ 2.\ 9752\\ 2.\ 9730\\ 2.\ 9722\\ \end{array}$	$\begin{array}{c} 2. \ 9840 \\ 2. \ 9833 \\ 2. \ 9812 \\ 2. \ 9805 \end{array}$	$\begin{array}{c} 2. & 9902 \\ 2. & 9896 \\ 2. & 9882 \\ 2. & 9876 \\ 2. & 9876 \end{array}$	$\begin{array}{c} 2. \ 9938\\ 2. \ 9932\\ 2. \ 9920\\ 2. \ 9914\\ 2. \ 9914 \end{array}$	$\begin{array}{c} 2.9960\\ 2.9955\\ 2.9943\\ 2.9938\\ 2.9938\end{array}$	$\begin{array}{c} 3.\ 1011\\ 3.\ 1003\\ 3.\ 0981\\ 3.\ 0973\\ 3.\ 0973 \end{array}$	$\begin{array}{c} 3.\ 1091\\ 3.\ 1084\\ 3.\ 1063\\ 3.\ 1056\\ 3.\ 1056 \end{array}$	$\begin{array}{c} 3.\ 1152\\ 3.\ 1146\\ 3.\ 1132\\ 3.\ 1132\\ 3.\ 1126\end{array}$	$\begin{array}{c} 3.1188\\ 3.1182\\ 3.1170\\ 3.1170\\ 3.1164\end{array}$	3, 2171 3, 2162 3, 2100 3, 2091 3, 2055 3, 2056	$\begin{array}{c} 3.\ 2262 \\ 3.\ 2254 \\ 3.\ 2231 \\ 3.\ 2223 \end{array}$	3. 2342 3. 2335 3. 2314 3. 2314 3. 2307	$\begin{array}{c} 3.\ 2402\\ 3.\ 2396\\ 3.\ 2382\\ 3.\ 2382\\ 3.\ 2376\end{array}$	3. 2438 3. 2432 3. 2420 3. 2414 3. 2414	<ol> <li>3.3513</li> <li>3.3505</li> <li>3.3482</li> <li>3.3474</li> </ol>
$\begin{array}{c} 2.8917\\ 2.8922\\ 2.8917\\ 2.8922\\ 2.8922\end{array}$	$\begin{array}{c} 2.\ 9188\\ 2.\ 9193\\ 2.\ 9193\\ 2.\ 9193\\ 2.\ 9193 \end{array}$	$\begin{array}{c} 2. \ 9459\\ 2. \ 9463\\ 2. \ 9453\\ 2. \ 9453\\ 2. \ 9463\end{array}$	$\begin{array}{c} 2,  9594 \\ 2,  9598 \\ 2,  9594 \\ 2,  9598 \\ 2,  9598 \end{array}$	$\begin{array}{c} 2. \ 9675\\ 2. \ 9679\\ 2. \ 9675\\ 2. \ 9679\\ 2. \ 9679\end{array}$	3, 0167 3, 0172 3, 0167 3, 0167 3, 0172	$\begin{array}{c} 3.\ 0438\\ 3.\ 0443\\ 3.\ 0443\\ 3.\ 0443\\ 3.\ 0443\\ \end{array}$	$\begin{array}{c} 3.\ 0709\\ 3.\ 0713\\ 3.\ 0713\\ 3.\ 0713\\ 3.\ 0713\end{array}$	$\begin{array}{c} 3.\ 0844\\ 3.\ 0848\\ 3.\ 0848\\ 3.\ 0844\\ 3.\ 0848\\ \end{array}$	$\begin{array}{c} 3.\ 0876\\ 3.\ 0876\\ 3.\ 0881\\ 3.\ 0881\\ 3.\ 0876\\ 3.\ 0881\\ 3.\ 0881\\ \end{array}$	3. 1417 3. 1422 3. 1422 3. 1417 3. 1422	$\begin{array}{c} 3. \ 1688\\ 3. \ 1693\\ 3. \ 1693\\ 3. \ 1693\\ 3. \ 1693\end{array}$	3. 1959 3. 1959 3. 1959 3. 1959 3. 1963	$\begin{array}{c} 3.\ 2094\\ 3.\ 2098\\ 3.\ 2098\\ 3.\ 2098\\ 3.\ 2098 \end{array}$	3. 2667 3. 2672 3. 2667 3. 2667 3. 2672
3,0000 3,0000 3,0000 3,0000	$\begin{array}{c} \textbf{3.0000}\\ \textbf{3.0007}\\ \textbf{3.0007}\\ \textbf{3.0007}\\ \textbf{3.0007} \end{array}$	$\begin{array}{c} 3.\ 0000\\ 3.\ 0006\\ 3.\ 0006\\ 3.\ 0006\end{array}$	$\begin{array}{c} 3.\ 0000\\ 3.\ 0006\\ 3.\ 0006\\ 3.\ 0006\end{array}$	$\begin{array}{c} 3.\ 0000\\ 3.\ 0005\\ 3.\ 0005\\ 3.\ 0005\end{array}$	$\begin{array}{c} 3.\ 1250\\ 3.\ 1258\\ 3.\ 1258\\ 3.\ 1258\\ 3.\ 1258\end{array}$	3. 1250 3. 1257 3. 1257 3. 1257 3. 1257	$\begin{array}{c} 3.\ 1250\\ 3.\ 1256\\ 3.\ 1256\\ 3.\ 1256\\ 3.\ 1256\end{array}$	$\begin{array}{c} 3.1250\\ 3.1256\\ 3.1256\\ 3.1256\\ 3.1256\\ 3.1256\end{array}$	$\begin{array}{c} 3.\ 2500\\ 3.\ 2509\\ 3.\ 2509\\ 3.\ 2509\\ 3.\ 2509\\ 3.\ 2509\\ \end{array}$	$\begin{array}{c} 3.\ 2500\\ 3.\ 2508\\ 3.\ 2508\\ 3.\ 2508\\ 3.\ 2508 \end{array}$	3. 2500 3. 2507 3. 2507 3. 2500 3. 2507	$\begin{array}{c} 3.\ 2500\\ 3.\ 2506\\ 3.\ 2506\\ 3.\ 2506\\ 3.\ 2506 \end{array}$	$\begin{array}{c} 3.\ 2500\\ 3.\ 2506\\ 3.\ 2506\\ 3.\ 2506\\ 3.\ 2506\end{array}$	3. 3750 3. 3758 3. 3758 3. 3758 3. 3758
	2.9749 2.9751								3.2110		3. 2249 3. 2251			
$\begin{array}{c} 2.\ 9790\\ 2.\ 9792\\ 2.\ 9818\\ 2.\ 9820\\ \end{array}$	$\begin{array}{c} 2. \ 9824 \\ 2. \ 9826 \\ 2. \ 9850 \\ 2. \ 9852 \end{array}$	2. 9867 2. 9869 2. 9886 2. 9888	$\begin{array}{c} 2. \\ 2. \\ 2. \\ 9891 \\ 2. \\ 9906 \\ 2. \\ 9908 \end{array}$	$\begin{array}{c} 2. \ 9903\\ 2. \ 9905\\ 2. \ 9919\\ 2. \ 9921\\ 2. \ 9921 \end{array}$	$\begin{array}{c} 3.\ 1040\\ 3.\ 1042\\ 3.\ 1068\\ 3.\ 1070\end{array}$	$\begin{array}{c} 3.\ 1074\\ 3.\ 1076\\ 3.\ 1100\\ 3.\ 1102\\ 3.\ 1102\\ \end{array}$	$\begin{array}{c} 3.\ 1117\\ 3.\ 1119\\ 3.\ 1136\\ 3.\ 1138\\ 3.\ 1138\end{array}$	3. 1139 3. 1141 3. 1156 3. 1158 3. 1158	3, 2110 3, 2112 3, 2229 3, 2229 3, 2264 3, 2264	$\begin{array}{c} 3.\ 2290\\ 3.\ 2292\\ 3.\ 2318\\ 3.\ 2320\\ \end{array}$	3. 2324 3. 2326 3. 2350 3. 2352	3. 2367 3. 2369 3. 2386 3. 2388 3. 2388	$\begin{array}{c} 3.\ 2389\\ 3.\ 2391\\ 3.\ 2406\\ 3.\ 2408\\ \end{array}$	3. 3539 3. 3541 3. 3568 3. 3568 3. 3570
2. 9972 2. 9970 3. 0000 2. 9998	$\begin{array}{c} 2. \\ 9974 \\ 2. \\ 9972 \\ 3. \\ 0000 \\ 2. \\ 9998 \end{array}$	$\begin{array}{c} 2.9981\\ 2.9979\\ 3.0000\\ 2.9998\\ 2.9998 \end{array}$	$\begin{array}{c} 2.9983\\ 2.9981\\ 3.0000\\ 2.9998 \end{array}$	$\begin{array}{c} 2.9984\\ 2.9982\\ 3.0000\\ 2.9998\end{array}$	$\begin{array}{c} 3.\ 1222\\ 3.\ 1220\\ 3.\ 1250\\ 3.\ 1248\\ 3.\ 1248 \end{array}$	$\begin{array}{c} 3.\ 1224\\ 3.\ 1222\\ 3.\ 1250\\ 3.\ 1248\\ 3.\ 1248\end{array}$	$\begin{array}{c} 3.\ 1231\\ 3.\ 1229\\ 3.\ 1250\\ 3.\ 1248\\ 3.\ 1248 \end{array}$	$\begin{array}{c} 3.\ 1233\\ 3.\ 1231\\ 3.\ 1250\\ 3.\ 1248\\ 3.\ 1248\end{array}$	3. 2467 3. 2467 3. 2467 3. 2465 3. 2465 3. 2498	$\begin{array}{c} 3.\ 2472\\ 3.\ 2470\\ 3.\ 2500\\ 3.\ 2498\\ 3.\ 2498 \end{array}$	$\begin{array}{c} 3.\ 2474\\ 3.\ 2472\\ 3.\ 2500\\ 3.\ 2498\\ 3.\ 2498 \end{array}$	$\begin{array}{c} 3.\ 2481\\ 3.\ 2479\\ 3.\ 2500\\ 3.\ 2498\\ 3.\ 2498 \end{array}$	$\begin{array}{c} 3.\ 2483\\ 3.\ 2481\\ 3.\ 2500\\ 3.\ 2498\\ 3.\ 2498 \end{array}$	3, 3721 3, 3719 3, 3750 3, 3748 3, 3748
$\begin{array}{c} 2.8435\\ 2.8443\\ 2.8486\\ 2.8494\\ 2.8494 \end{array}$	$\begin{array}{c} 2.8806\\ 2.8813\\ 2.8853\\ 2.8860\\ 2.8860 \end{array}$	$\begin{array}{c} 2. \ 9197 \\ 2. \ 9203 \\ 2. \ 9232 \\ 2. \ 9238 \end{array}$	$\begin{array}{c} 2.\ 9386\\ 2.\ 9392\\ 2.\ 9417\\ 2.\ 9423 \end{array}$	$\begin{array}{c} 2. \ 9499\\ 2. \ 9504\\ 2. \ 9528\\ 2. \ 9533\end{array}$	$\begin{array}{c} 2.\ 9684\\ 2.\ 9692\\ 2.\ 9736\\ 2.\ 9744\\ \end{array}$	$\begin{array}{c} 3.\ 0055\\ 3.\ 0062\\ 3.\ 0103\\ 3.\ 0110\end{array}$	$\begin{array}{c} 3.\ 0447\\ 3.\ 0453\\ 3.\ 0453\\ 3.\ 0482\\ 3.\ 0488\\ \end{array}$	$\begin{array}{c} 3.\ 0636\\ 3.\ 0642\\ 3.\ 0667\\ 3.\ 0673\\ \end{array}$	$\begin{array}{c} 3.\ 0139\\ 3.\ 0148\\ 3.\ 0193\\ 3.\ 0202\\ 3.\ 0253\\ 3.\ 0262\\ 3.\ 0262\\ \end{array}$	$\begin{array}{c} 3.\ 0933\\ 3.\ 0941\\ 3.\ 0985\\ 3.\ 0993\\ 3.\ 0993 \end{array}$	$\begin{array}{c} 3. \ 1304\\ 3. \ 1311\\ 3. \ 1352\\ 3. \ 1359\\ 3. \ 1359\end{array}$	3. 1697 3. 1703 3. 1732 3. 1732 3. 1738	$\begin{array}{c} 3. \ 1886\\ 3. \ 1892\\ 3. \ 1917\\ 3. \ 1923\\ 3. \ 1923 \end{array}$	3. 2182 3. 2190 3. 2234 3. 2242
$\begin{array}{c} 2.8796 \\ 2.8791 \\ 2.8847 \\ 2.8842 \\ 2.8842 \end{array}$	$\begin{array}{c} 2.\ 9077\\ 2.\ 9072\\ 2.\ 9124\\ 2.\ 9119\end{array}$	$\begin{array}{c} 2. \ 9377\\ 2. \ 9373\\ 2. \ 9412\\ 2. \ 9408 \end{array}$	$\begin{array}{c} 2.\ 9521\\ 2.\ 9517\\ 2.\ 9552\\ 2.\ 9548\\ 2.\ 9548 \end{array}$	2. 9607 2. 9603 2. 9636 2. 9632	$\begin{array}{c} 3.\ 0045\\ 3.\ 0040\\ 3.\ 0097\\ 3.\ 0092\\ 3.\ 0092\\ \end{array}$	$\begin{array}{c} 3.\ 0326\\ 3.\ 0321\\ 3.\ 0374\\ 3.\ 0369\\ 3.\ 0369\end{array}$	$\begin{array}{c} 3.\ 0627\\ 3.\ 0623\\ 3.\ 0662\\ 3.\ 0658\\ 3.\ 0658\\ \end{array}$	$\begin{array}{c} 3.\ 0771\\ 3.\ 0767\\ 3.\ 0802\\ 3.\ 0798\\ 3.\ 0798\end{array}$	$\begin{array}{c} 3.0680\\ 3.0675\\ 3.0734\\ 3.0729\\ 3.0794\\ 3.0789\end{array}$	$\begin{array}{c} 3. \ 1294 \\ 3. \ 1289 \\ 3. \ 1346 \\ 3. \ 1341 \\ 3. \ 1341 \end{array}$	$\begin{array}{c} 3. \ 1575 \\ 3. \ 1570 \\ 3. \ 1623 \\ 3. \ 1618 \\ 3. \ 1618 \end{array}$	$\begin{array}{c} 3.\ 1877\\ 3.\ 1873\\ 3.\ 1912\\ 3.\ 1908\\ 3.\ 1908 \end{array}$	$\begin{array}{c} 3.\ 2021\\ 3.\ 2017\\ 3.\ 2052\\ 3.\ 2048\\ 3.\ 2048 \end{array}$	3. 2543 3. 2538 3. 2595 3. 2590
$\begin{array}{c} 2.8796\\ 2.8801\\ 2.8847\\ 2.8852\\ 2.8852 \end{array}$	$\begin{array}{c} 2.\ 9077\\ 2.\ 9082\\ 2.\ 9124\\ 2.\ 9129\end{array}$	$\begin{array}{c} 2.\ 9377\\ 2.\ 9381\\ 2.\ 9412\\ 2.\ 9416\\ 2.\ 9416 \end{array}$	2, 9521 2, 9525 2, 9552 2, 9556	$\begin{array}{c} 2.\ 9607\\ 2.\ 9611\\ 2.\ 9636\\ 2.\ 9640\\ \end{array}$	$\begin{array}{c} 3.\ 0045\\ 3.\ 0050\\ 3.\ 0097\\ 3.\ 0102\end{array}$	$\begin{array}{c} 3.\ 0326\\ 3.\ 0331\\ 3.\ 0374\\ 3.\ 0374\\ 3.\ 0379\end{array}$	$\begin{array}{c} 3.\ 0627\\ 3.\ 0631\\ 3.\ 0662\\ 3.\ 0666\\ 3.\ 0666\end{array}$	$\begin{array}{c} 3.\ 0771\\ 3.\ 0775\\ 3.\ 0802\\ 3.\ 0806\\ 3.\ 0806 \end{array}$	$\begin{array}{c} 3.\ 0680\\ 3.\ 0685\\ 3.\ 0734\\ 3.\ 0739\\ 3.\ 0799\\ 3.\ 0799\end{array}$	$\begin{array}{c} 3. \ 1294 \\ 3. \ 1299 \\ 3. \ 1346 \\ 3. \ 1351 \end{array}$	$\begin{array}{c} 3.\ 1575\\ 3.\ 1580\\ 3.\ 1623\\ 3.\ 1628\\ 3.\ 1628\end{array}$	$\begin{array}{c} 3.\ 1877\\ 3.\ 1881\\ 3.\ 1912\\ 3.\ 1916\\ 3.\ 1916\end{array}$	$\begin{array}{c} 3.\ 2021\\ 3.\ 2025\\ 3.\ 2052\\ 3.\ 2056\\ 3.\ 2056 \end{array}$	$\begin{array}{c} 3.\ 2543\\ 3.\ 2548\\ 3.\ 2595\\ 3.\ 2600\\ \end{array}$
2.8167 2.8159 2.8195 2.8195 2.8187	$\begin{array}{c} 2.8621\\ 2.8614\\ 2.8647\\ 2.8640\\ 2.8640 \end{array}$	$\begin{array}{c} 2.9079\\ 2.9073\\ 2.9098\\ 2.9092\\ 2.9092 \end{array}$	$\begin{array}{c} 2.9306\\ 2.9300\\ 2.9323\\ 2.9317\\ \end{array}$	2. 9442 2. 9437 2. 9458 2. 9453	$\begin{array}{c} 2. \ 9417 \\ 2. \ 9409 \\ 2. \ 9445 \\ 2. \ 9437 \end{array}$	$\begin{array}{c} 2.9871\\ 2.9864\\ 2.9897\\ 2.9890\\ 2.9890 \end{array}$	3. 0329 3. 0323 3. 0348 3. 0342	3. 0556 3. 0550 3. 0573 3. 0573 3. 0567	2. 9760 2. 9760 2. 9760 2. 9760 2. 9793 2. 9784 2. 9784	$\begin{array}{c} 3.\ 0667\\ 3.\ 0659\\ 3.\ 0695\\ 3.\ 0687\\ \end{array}$	3. 1121 3. 1114 3. 11147 3. 1147 3. 1140	$\begin{array}{c} 3. \ 1579 \\ 3. \ 1573 \\ 3. \ 1598 \\ 3. \ 1592 \\ 3. \ 1592 \end{array}$	$\begin{array}{c} 3.\ 1806\\ 3.\ 1800\\ 3.\ 1823\\ 3.\ 1817\\ 3.\ 1817 \end{array}$	3, 1916 3, 1908 3, 1945 3, 1945 3, 1937
$\begin{array}{c} 2.8889\\ 2.8884\\ 2.8917\\ 2.8912\\ 2.8912\\ \end{array}$	$\begin{array}{c} 2.\ 9162\\ 2.\ 9157\\ 2.\ 9188\\ 2.\ 9183\\ 2.\ 9183\\ \end{array}$	$\begin{array}{c} 2.\ 9440\\ 2.\ 9436\\ 2.\ 9459\\ 2.\ 9455\\ 2.\ 9455 \end{array}$	$\begin{array}{c} 2. \ 9577\\ 2. \ 9573\\ 2. \ 9594\\ 2. \ 9590\\ 2. \ 9590\\ \end{array}$	2. 9659 2. 9655 2. 9675 2. 9671	$\begin{array}{c} 3.\ 0139\\ 3.\ 0134\\ 3.\ 0167\\ 3.\ 0162\\ 3.\ 0162\\ \end{array}$	$\begin{array}{c} 3.\ 0412\\ 3.\ 0407\\ 3.\ 0438\\ 3.\ 0433\\ 3.\ 0433 \end{array}$	$\begin{array}{c} 3.\ 0690\\ 3.\ 0686\\ 3.\ 0709\\ 3.\ 0705 \end{array}$	$\begin{array}{c} 3.\ 0827\\ 3.\ 0823\\ 3.\ 0844\\ 3.\ 0840\\ 3.\ 0840 \end{array}$	$\begin{array}{c} 3.0843\\ 3.0843\\ 3.0843\\ 3.0843\\ 3.0876\\ 3.0876\\ 3.0871\\ \end{array}$	3. 1389 3. 1389 3. 1384 3. 1417 3. 1412	3. 1662 3. 1657 3. 1657 3. 1688 3. 1683	<ol> <li>3. 1940</li> <li>3. 1936</li> <li>3. 1959</li> <li>3. 1955</li> </ol>	3. 2077 3. 2073 3. 2094 3. 2094 3. 2090	3. 2638 3. 2638 3. 2667 3. 2667 3. 2662
2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	1A 2A 3A	2A 3A	2A 3A	2.A 3.A	2A 3A	2A 3A
UN	ND	NN	NN	NU	NN	NN	ND	NN	UNC	ND	NN	NN	ND	NU
3.000-6	3.000-8	3. 000-12	3. 000-16	3. 000-20	3. 125-6	3. 125-8	3. 125-12	3. 125-16	3. 250-4	3. 250-6	3. 250-8	3. 250-12	3. 250-16	3. 375–6

ned
tin
on
$\bigcirc$
-spr
three
screw
ed
nifi
C'
eries,
ad s
uare
rd
v da
star
for
ges )
Ga
6.19.
ABLE
F

		ss Nominal na- size and threads per inch			21	3. 375-8	3. 375-12	3.375-16	3. 500-4	3. 500-6	3. 500-8	3. 500-12	3.500-16	3. 625-6	3. 625-8
		Series designa-	tion		20	UN	UN	UN	UNC	UN	UN	NN	UN	UN	NN
		Class			19	2B 3B	2B 3B	2B 3B	1B 2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B
	lug gages diameter		$_{ m GO}^{ m NOT}$		18	<i>in</i> 3. 2650 3. 2648 3. 2545 3. 2545	3. 3030 3. 3028 3. 2948 3. 2946	3. 3210 3. 3208 3. 3158 3. 3156	3. 2670 3. 2668 3. 2668 3. 2668 3. 2594 3. 2594	3. 3500 3. 3498 3. 3396 3. 3394	3. 3900 3. 3898 3. 3797 3. 3795	3. 4280 3. 4280 3. 4198 3. 4196 3. 4196	3. 4460 3. 4458 3. 4408 3. 4408 3. 4406	3. 4750 3. 4750 3. 4646 3. 4644	3. 5150 3. 5148 3. 5047 3. 5045 3. 5045
s	Z plain p for minor		ĢŌ		17	in 3. 2400 3. 2402 3. 2400 3. 2400 3. 2402	$\begin{array}{c} 3.\ 2850 \\ 3.\ 2852 \\ 3.\ 2852 \\ 3.\ 2852 \\ 3.\ 2852 \end{array}$	$\begin{array}{c} 3.\ 3070\\ 3.\ 3072\\ 3.\ 3072\\ 3.\ 3072\\ 3.\ 3072\end{array}$	$\begin{array}{c} 3,\ 2290\\ 3,\ 2292\\ 3,\ 2292\\ 3,\ 2292\\ 3,\ 2292\\ 3,\ 2292\\ 3,\ 2292\\ \end{array}$	$\begin{array}{c} 3.\ 3200\\ 3.\ 3202\\ 3.\ 3200\\ 3.\ 3202\\ 3.\ 3202 \end{array}$	$\begin{array}{c} 3.\ 3650\\ 3.\ 3652\\ 3.\ 3652\\ 3.\ 3652\\ 3.\ 3652\end{array}$	$\begin{array}{c} 3.\ 4100\\ 3.\ 4102\\ 3.\ 4100\\ 3.\ 4102\\ 3.\ 4102\\ \end{array}$	3. 4320 3. 4322 3. 4322 3. 4320 3. 4322	$\begin{array}{c} 3.\ 4450\\ 3.\ 4452\\ 3.\ 4450\\ 3.\ 4450\\ 3.\ 4452\end{array}$	$\begin{array}{c} 3.4900\\ 3.4902\\ 3.4902\\ 3.4900\\ 3.4902 \end{array}$
al thread			iameter	Plus toler- ance gage	16	${}^{in}_{3.3052}$ 3.3052 3.3023 3.3023 3.3028	3. 3293 3. 3297 3. 3272 3. 3276 3. 3276	$\begin{array}{c} 3. \ 3419\\ 3. \ 3423\\ 3. \ 3423\\ 3. \ 3400\\ 3. \ 3404 \end{array}$	$\begin{array}{c} 3.3591 \\ 3.3596 \\ 3.3519 \\ 3.3524 \\ 3.3489 \\ 3.3489 \end{array}$	$\begin{array}{c} 3.\ 4042\\ 3.\ 4047\\ 3.\ 4011\\ 3.\ 4016\\ 3.\ 4016\end{array}$	$\begin{array}{c} 3.\ 4303\\ 3.\ 4308\\ 3.\ 4274\\ 3.\ 4279\\ 3.\ 4279\end{array}$	$\begin{array}{c} 3.\ 4543\\ 3.\ 4547\\ 3.\ 4522\\ 3.\ 4526\\ 3.\ 4526\end{array}$	$\begin{array}{c} 3.\ 4669\\ 3.\ 4673\\ 3.\ 4650\\ 3.\ 4654\\ 3.\ 4654\end{array}$	$\begin{array}{c} 3.\ 5293\\ 3.\ 5298\\ 3.\ 5262\\ 3.\ 5267\\ 3.\ 5267\end{array}$	3. 5554 3. 5559 3. 5529 3. 5520 3. 5530
or intern	gages	IH	Pitch d	Minus toler- anee gage	15	in 3. 3052 3. 3047 3. 3047 3. 3023 3. 3018	3, 3293 3, 3289 3, 3272 3, 3268	$\begin{array}{c} 3.\ 3419\\ 3.\ 3415\\ 3.\ 3415\\ 3.\ 3400\\ 3.\ 3396 \end{array}$	$\begin{array}{c} 3.3591\\ 3.3586\\ 3.3519\\ 3.3514\\ 3.3484\\ 3.3479\\ 3.3479\end{array}$	$\begin{array}{c} 3.\ 4042\\ 3.\ 4037\\ 3.\ 4011\\ 3.\ 4006\\ 3.\ 4006 \end{array}$	$\begin{array}{c} 3.\ 4303\\ 3.\ 4298\\ 3.\ 4274\\ 3.\ 4269\\ 3.\ 4269\end{array}$	$\begin{array}{c} 3.\ 4543\\ 3.\ 4539\\ 3.\ 4522\\ 3.\ 4518\\ 3.\ 4518\end{array}$	$\begin{array}{c} 3.4669\\ 3.4665\\ 3.4650\\ 3.4646\\ 3.4646\end{array}$	3. 5293 3. 5293 3. 5288 3. 5262 3. 5257	3. 5554 3. 55549 3. 5525 3. 5520 3. 5520
Gages f	ead plug			Major diam- eter	14	<i>in</i> 3. 3593 3. 3566 3. 3564 3. 3557	$\begin{array}{c} 3.\ 3654\\ 3.\ 36548\\ 3.\ 3633\\ 3.\ 3627\\ 3.\ 3627 \end{array}$	$\begin{array}{c} 3.\ 3690\\ 3.\ 3684\\ 3.\ 3671\\ 3.\ 3665\\ 3.\ 3665\end{array}$	3. 4674 3. 4665 3. 4662 3. 4593 3. 4567 3. 4558	$\begin{array}{c} 3.\ 4764\\ 3.\ 4756\\ 3.\ 4736\\ 3.\ 4733\\ 3.\ 4725\\ 3.\ 4725\end{array}$	$\begin{array}{c} 3.\ 4844\\ 3.\ 4837\\ 3.\ 4815\\ 3.\ 4808\\ 3.\ 4808 \end{array}$	$\begin{array}{c} 3.\ 4904\\ 3.\ 4898\\ 3.\ 4883\\ 3.\ 4877\\ 3.\ 4877\end{array}$	$\begin{array}{c} 3.\ 4940\\ 3.\ 4934\\ 3.\ 4921\\ 3.\ 4915\end{array}$	$\begin{array}{c} 3.\ 6015\\ 3.\ 6007\\ 3.\ 5984\\ 3.\ 5976\end{array}$	$\begin{array}{c} 3.\ 6095\\ 3.\ 6095\\ 3.\ 6066\\ 3.\ 6056\\ 3.\ 6059\\ \end{array}$
	X thi	Ģ		Piteh diam- eter	13	<i>in</i> 3. 2938 3. 2943 3. 2943 3. 2943	$\begin{array}{c} 3.\ 3209\\ 3.\ 3213\\ 3.\ 3209\\ 3.\ 3213\\ 3.\ 3213 \end{array}$	$\begin{array}{c} 3.\ 3344\\ 3.\ 3348\\ 3.\ 3348\\ 3.\ 3344\\ 3.\ 3348\\ 3.\ 3348\end{array}$	3, 3376 3, 3376 3, 3376 3, 3381 3, 3381 3, 3376 3, 3381	3. 3917 3. 3922 3. 3917 3. 3922	$\begin{array}{c} 3.4188\\ 3.4193\\ 3.4193\\ 3.4188\\ 3.4193\end{array}$	$\begin{array}{c} 3.\ 4459\\ 3.\ 4463\\ 3.\ 4459\\ 3.\ 4459\\ 3.\ 4463\\ \end{array}$	$\begin{array}{c} 3.\ 4594\\ 3.\ 4598\\ 3.\ 4598\\ 3.\ 4598\\ 3.\ 4598\\ 3.\ 4598\end{array}$	3. 5167 3. 5172 3. 5172 3. 5172 3. 5172	3.5438 3.5438 3.5443 3.5443 3.5443
		0		Major diam- eter	12	<i>in</i> 3. 3750 3. 3757 3. 3757 3. 3757 3. 3757	3. 3750 3. 3756 3. 3756 3. 3756 3. 3756	3. 3750 3. 3756 3. 3756 3. 3756 3. 3756	$\begin{array}{c} 3.5000\\ 3.5009\\ 3.5009\\ 3.5009\\ 3.5009\\ 3.5009\\ 3.5009\end{array}$	$\begin{array}{c} 3.5000\\ 3.5008\\ 3.5008\\ 3.5008\\ 3.5008\end{array}$	$\begin{array}{c} 3.5000 \\ 3.5007 \\ 3.5000 \\ 3.5007 \\ 3.5007 \end{array}$	3. 5000 3. 5006 3. 5006 3. 5006	3.5000 3.5006 3.5006 3.5006	$\begin{array}{c} 3.\ 6250\\ 3.\ 6258\\ 3.\ 6258\\ 3.\ 6258\\ 3.\ 6258\\ \end{array}$	3. 6250 3. 6250 3. 6250 3. 6250 3. 6257
	for major	r G0	Un-	finished hot- rolled material	11	<i>in</i>			3.4610 3.4612		3. 4749 3. 4751				
	ing gages diameter	LON		Semi- finished	10	<i>in</i> 3. 3574 3. 3576 3. 3600 3. 3602	3. 3617 3. 3619 3. 3636 3. 3638	$\begin{array}{c} 3.\ 3639\\ 3.\ 3641\\ 3.\ 3656\\ 3.\ 3658\\ 3.\ 3658\\ \end{array}$	$\begin{array}{c} 3.4610\\ 3.4612\\ 3.4729\\ 3.4762\\ 3.4762\\ 3.4762\\ 3.4764\end{array}$	$\begin{array}{c} 3.\ 4789\\ 3.\ 4791\\ 3.\ 4818\\ 3.\ 4820\\ 3.\ 4820 \end{array}$	$\begin{array}{c} 3.\ 4824\\ 3.\ 4826\\ 3.\ 4850\\ 3.\ 4852\\ 3.\ 4852\end{array}$	$\begin{array}{c} 3.\ 4867\\ 3.\ 4869\\ 3.\ 4886\\ 3.\ 4888\\ 3.\ 4888\\ \end{array}$	$\begin{array}{c} 3.4889\\ 3.4801\\ 3.4906\\ 3.4908\\ 3.4908\end{array}$	$\begin{array}{c} 3.\ 6039\\ 3.\ 6041\\ 3.\ 6068\\ 3.\ 6070\end{array}$	3.6073 3.6075 3.6100 3.6102
nreads	Z plain r		GO		6	in 3. 3724 3. 3724 3. 3722 3. 3750 3. 3748	$\begin{array}{c} 3.3731\\ 3.3729\\ 3.3750\\ 3.3748\\ 3.3748\end{array}$	$\begin{array}{c} 3.3733\\ 3.3731\\ 3.3750\\ 3.3750\\ 3.3748\end{array}$	3. 4967 3. 4967 3. 4965 3. 4965 3. 5000 3. 4998	$\begin{array}{c} 3.\ 4971\\ 3.\ 4969\\ 3.\ 5000\\ 3.\ 4998\\ 3.\ 4998\end{array}$	$\begin{array}{c} 3.\ 4974\\ 3.\ 4972\\ 3.\ 5000\\ 3.\ 4998\\ 3.\ 4998\end{array}$	$\begin{array}{c} 3.\ 4981\\ 3.\ 4979\\ 3.\ 5000\\ 3.\ 4998\\ 3.\ 4998\end{array}$	$\begin{array}{c} 3.\ 4983\\ 3.\ 4981\\ 3.\ 5000\\ 3.\ 4998\\ 3.\ 4998\\ \end{array}$	$\begin{array}{c} 3.\ 6221\\ 3.\ 6219\\ 3.\ 6250\\ 3.\ 6248\\ 3.\ 6248 \end{array}$	$\begin{array}{c} 3.\ 6223\\ 3.\ 6221\\ 3.\ 6250\\ 3.\ 6248\\ 3.\ 6248 \end{array}$
xternal tl				Minor diam- eter	×	in 3. 2553 3. 2560 3. 2601 3. 2608	$\begin{array}{c} 3.\ 2946\\ 3.\ 2952\\ 3.\ 2981\\ 3.\ 2987\\ 3.\ 2987\\ \end{array}$	$\begin{array}{c} 3.\ 3134\\ 3.\ 3140\\ 3.\ 3166\\ 3.\ 3172\\ 3.\ 3172 \end{array}$	3. 2636 3. 2645 3. 2692 3. 2701 3. 2761 3. 2761	3, 3431 3, 3439 3, 3484 3, 3492 3, 3492	$\begin{array}{c} 3,3803\\ 3,3810\\ 3,3851\\ 3,3858\\ 3,3858\\ \end{array}$	$\begin{array}{c} 3.\ 4196\\ 3.\ 4202\\ 3.\ 4231\\ 3.\ 4237\\ 3.\ 4237\end{array}$	$\begin{array}{c} 3.\ 4384\\ 3.\ 4390\\ 3.\ 4416\\ 3.\ 4422\\ 3.\ 4422\\ \end{array}$	$\begin{array}{c} 3.\ 4680\\ 3.\ 4688\\ 3.\ 4733\\ 3.\ 4741\\ 3.\ 4741 \end{array}$	3. 5051 3. 5058 3. 5100 3. 5107
ages for e	gages	го	liameter	Minus toler- anee gage	4	in 3. 2824 3. 2819 3. 2867 3. 2867	3.3126 3.3122 3.3161 3.3157	3. 3269 3. 3265 3. 3201 3. 3297	3. 3177 3. 3172 3. 3233 3. 3238 3. 3228 3. 3293 3. 3293 3. 3288	$\begin{array}{c} 3.3792 \\ 3.3787 \\ 3.3845 \\ 3.3840 \\ 3.3840 \end{array}$	3.4074 3.4069 3.4122 3.4117 3.4117	3. 4376 3. 4372 3. 4411 3. 4411 3. 4407	3. 4519 3. 4515 3. 4551 3. 4551 3. 4547	$\begin{array}{c} 3.5041 \\ 3.5036 \\ 3.5094 \\ 3.5094 \\ 3.5089 \end{array}$	3. 5322 3. 5317 3. 5317 3. 5371 3. 5366
G	read ring		Piteh d	Plus toler- anee gage	9	in 3. 2824 3. 2829 3. 2872 3. 2877	3.3126 3.3130 3.3161 3.3165 3.3165	3. 3269 3. 3273 3. 3301 3. 3305 3. 3305	3. 3177 3. 3182 3. 3233 3. 3233 3. 3238 3. 3293 3. 3298	3. 3792 3. 3797 3. 3845 3. 3850	$\begin{array}{c} 3.4074\\ 3.4079\\ 3.4122\\ 3.4127\\ 3.4127\end{array}$	3. 4376 3. 4380 3. 4411 3. 4411 3. 4415	$\begin{array}{c} 3.\ 4519\\ 3.\ 4523\\ 3.\ 4551\\ 3.\ 4555\\ \end{array}$	3. 5041 3. 5046 3. 5094 3. 5099	3. 5322 3. 5327 3. 5371 3. 5371 3. 5376
	X th	0		Minor diam- eter	5	<i>in</i> 3. 2371 3. 2364 3. 2397 3. 2397	$\begin{array}{c} 3.\ 2829\\ 3.\ 2823\\ 3.\ 2848\\ 3.\ 2842\\ 3.\ 2842 \end{array}$	3. 3056 3. 3050 3. 3073 3. 3073 3. 3067	3. 2260 3. 2251 3. 2251 3. 2251 3. 2293 3. 2293	3.3166 3.3158 3.3195 3.3195 3.3195	$\begin{array}{c} 3.3621\\ 3.3614\\ 3.3647\\ 3.3647\\ 3.3640\end{array}$	3. 4079 3. 4073 3. 4098 3. 4098 3. 4092	$\begin{array}{c} 3.\ 4306\\ 3.\ 4300\\ 3.\ 4323\\ 3.\ 4317\\ 3.\ 4317\end{array}$	3. 4416 3. 4408 3. 4445 3. 4445 3. 4437	3. 4870 3. 4863 3. 4897 3. 4897 3. 4890
		0		Piteh diam- eter	4	<i>in</i> 3. 2912 3. 2938 3. 2938 3. 2938	3.3190 3.3186 3.3209 3.3209 3.3205	$\begin{array}{c} 3.\ 3327\\ 3.\ 3323\\ 3.\ 3324\\ 3.\ 3346\\ 3.\ 3340\end{array}$	3. 3343 3. 3343 3. 3343 3. 3343 3. 3338 3. 3376 3. 3376 3. 3371	3. 3888 3. 3883 3. 3917 3. 3912	$\begin{array}{c} 3.\ 4162\\ 3.\ 4157\\ 3.\ 4188\\ 3.\ 4183\\ 3.\ 4183\end{array}$	$\begin{array}{c} 3.\ 4440\\ 3.\ 4436\\ 3.\ 4459\\ 3.\ 4459\\ 3.\ 4455\end{array}$	3. 4577 3. 4573 3. 4594 3. 4594 3. 4590	3. 5138 3. 5133 3. 5167 3. 5162 3. 5162	$\begin{array}{c} 3.5411\\ 3.5406\\ 3.5438\\ 3.5438\\ 3.5433\\ 3.5433\end{array}$
		Class			3	$^{2\mathrm{A}}_{3\mathrm{A}}$	2A 3A	2A 3A	1A 2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A
		Series designa-	tion		2	NU	NN	NN	UNC	NN	NN	NN	NN	ND -	NN
		Nominal size and	threads per inch		I	3. 375-8	3.375-12	3.375-16	3. 500-4	3.500-6	3. 500-8	3.500-12	3.500-16	3.625-6	3. 625-8

02203 | B. 67713 | B. 01134 | B. 67418 | B. 87722 | B. 64003 | B. 60113
3.625-12	3.625-16	3.750-4	3. 750-6	3. 750-8	3. 750-12	3.750-16	3, 875-6	3. 875-8	3. 875-12	3.875-16	4.000-4	4.000-6	4. 000-8
UN	UN	UNC	NN	NN	NN	NN	NN	UN	NN	UN	UNC	NN	N N
2B 3B	2B 3B	1B 2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	1B 2B 3B	2B 3B	3B 3B
3. 5530 3. 5528 3. 5448 3. 5446 3. 5446	<ol> <li>3. 5710</li> <li>3. 5708</li> <li>3. 5658</li> <li>3. 5656</li> </ol>	$\begin{array}{c} 3. \ 5170\\ 3. \ 5168\\ 3. \ 5168\\ 3. \ 5168\\ 3. \ 5094\\ 3. \ 5094\\ 3. \ 5092 \end{array}$	3. 6000 3. 5998 3. 5896 3. 5894	3. 6400 3. 6398 3. 6297 3. 6297 3. 6295	3. 6780 3. 6778 3. 6698 3. 6698	3. 6960 3. 6958 3. 6908 3. 6908 3. 6906	3. 7250 3. 7248 3. 7146 3. 7144	3. 7650 3. 7648 3. 7547 3. 7545	3. 8030 3. 8028 3. 7948 3. 7946	3.8210 3.8208 3.8158 3.8158 3.8156	3. 7670 3. 7670 3. 7668 3. 7668 3. 7594 3. 7594	3. 8500 3. 8498 3. 8396 3. 8394	3. 8900 3. 8797 3. 8797 3. 8795
3. 5350 3. 5352 3. 5352 3. 5350 3. 5352	3. 5570 3. 5572 3. 5572 3. 5572 3. 5572	3. 4790 3. 4792 3. 4792 3. 4792 3. 4792 3. 4792 3. 4792	3. 5700 3. 5702 3. 5702 3. 5702 3. 5702	$\begin{array}{c} 3.\ 6150\\ 3.\ 6152\\ 3.\ 6152\\ 3.\ 6152\\ 3.\ 6152\end{array}$	3, 6600 3, 6602 3, 6602 3, 6602	3. 6820 3. 6822 3. 6822 3. 6820 3. 6822	3. 6950 3. 6952 3. 6952 3. 6952 3. 6952	$\begin{array}{c} 3.7400\\ 3.7402\\ 3.7402\\ 3.7402\\ 3.7402\end{array}$	3. 7850 3. 7852 3. 7852 3. 7850 3. 7852	$\begin{array}{c} 3.8070\\ 3.8072\\ 3.8072\\ 3.8070\\ 3.8072\end{array}$	$\begin{array}{c} 3.7290\\ 3.7292\\ 3.7292\\ 3.7292\\ 3.7292\\ 3.7292\\ 3.7292\\ \end{array}$	3. 8200 3. 8202 3. 8200 3. 8200 3. 8202	3. 8650 3. 8650 3. 8650 3. 8652 3. 8652
3.5793 3.5797 3.5772 3.5772 3.5776	3. 5919 3. 5923 3. 5900 3. 5904	$\begin{array}{c} 3.6094\\ 3.6099\\ 3.6026\\ 3.5985\\ 3.5990\\ 3.5990\\ \end{array}$	3. 6544 3. 6549 3. 6512 3. 6512 3. 6517	3.6805 3.6810 3.6776 3.6776 3.6781	3. 7043 3. 7047 3. 7022 3. 7026	3. 7169 3. 7173 3. 7173 3. 7150 3. 7154	3. 7795 3. 7800 3. 7763 3. 7768	3. 8056 3. 8061 3. 8026 3. 8021 3. 8031	3. 8294 3. 8298 3. 8273 3. 8277 3. 8277	$\begin{array}{c} 3.8420\\ 3.8424\\ 3.8401\\ 3.8401\\ 3.8405 \end{array}$	3.8597 3.8502 3.8523 3.8528 3.8528 3.8487 3.8492 3.8492	$\begin{array}{c} 3.9046\\ 3.9051\\ 3.9014\\ 3.9019\\ 3.9019 \end{array}$	3. 9307 3. 9312 3. 9277 3. 9282 3. 9282
3. 5793 3. 5793 3. 5772 3. 5772 3. 5768	3.5919 3.5915 3.5900 3.5896	3. 6094 3. 6094 3. 6021 3. 6016 3. 5985 3. 5985 3. 5980	3.6544 3.6539 3.6539 3.6507 3.6507	3.6805 3.6800 3.6776 3.6771	3. 7043 3. 7039 3. 7022 3. 7018	3.7169 3.7165 3.7150 3.7150 3.7146	3. 7795 3. 7790 3. 7763 3. 7758	3.8056 3.8051 3.8026 3.8021 3.8021	3.8294 3.8290 3.8273 3.8273 3.8269	3.8420 3.8416 3.8401 3.8397 3.8397	3.8597 3.8592 3.8523 3.8518 3.8487 3.8487 3.8487	$\begin{array}{c} 3.\ 9046\\ 3.\ 9041\\ 3.\ 9014\\ 3.\ 9009\\ 3.\ 9009 \end{array}$	3. 9307 3. 9307 3. 9272 3. 9272
3.6154 3.6148 3.6148 3.6133 3.6127	3.6190 3.6184 3.6171 3.6171 3.6165	3. 7177 3. 7168 3. 71045 3. 7095 3. 70695 3. 7059	3. 7266 3. 7258 3. 7234 3. 7226	3. 7346 3. 7339 3. 7317 3. 7310	3. 7404 3. 7398 3. 7383 3. 7387	3. 7440 3. 7434 3. 7421 3. 7415	3.8517 3.8509 3.8485 3.8485	3.8597 3.8590 3.8560 3.8560	3.8655 3.8649 3.8649 3.8628 3.8628	3.8691 3.8685 3.8672 3.8672 3.8666	3. 9680 3. 9671 3. 9506 3. 9597 3. 9561	3. 9768 3. 9760 3. 9736 3. 9736 3. 9728	3, 9848 3, 9841 3, 9818 3, 9818 3, 9811 3, 9811
3. 5709 3. 5713 3. 5713 3. 5713 3. 5713	3. 5844 3. 5848 3. 5848 3. 5848 3. 5848	3. 5876 3. 5876 3. 5881 3. 5881 3. 5881 3. 5881 3. 5881	3.6417 3.6422 3.6422 3.6422 3.6422	3. 6688 3. 6693 3. 6693 3. 6693 3. 6693	3. 6959 3. 6963 3. 6963 3. 6959 3. 6963	3. 7094 3. 7098 3. 7094 3. 7094	3. 7667 3. 7672 3. 7667 3. 7667 3. 7672	3. 7938 3. 7943 3. 7938 3. 7943	3.8209 3.8213 3.8213 3.8209 3.8213	3. 8344 3. 8348 3. 8348 3. 8344 3. 8348	3. 8376 3. 8376 3. 8381 3. 8381 3. 8381 3. 8381 3. 8381 3. 8381	3.8917 3.8922 3.8922 3.8917 3.8922	3.9188 3.91938 3.91938 3.91938
3. 6250 3. 6256 3. 6256 3. 6250 3. 6256	3. 6250 3. 6256 3. 6256 3. 6256 3. 6256	3. 7509 3. 7509 3. 7509 3. 7509 3. 7509 3. 7509	3. 7500 3. 7508 3. 7508 3. 7508	3. 7500 3. 7507 3. 7507 3. 7500 3. 7507	3. 7500 3. 7506 3. 7506 3. 7506 3. 7506	3. 7500 3. 7506 3. 7506 3. 7506 3. 7506	3. 8750 3. 8758 3. 8758 3. 8758 3. 8758	3.8750 3.8757 3.8757 3.8750 3.8757	3. 8750 3. 8756 3. 8756 3. 8756 3. 8756	3.8750 3.8756 3.8756 3.8756 3.8756	4. 0000 4. 0000 4. 0000 4. 0000 4. 0000 4. 0000	4. 0008 4. 0008 4. 0008 4. 0008	4.0000
		3.7109 3.7111		3. 7248 3. 7250							3.9609 3.9611		3. 9748 3. 9750
3.6117 3.6119 3.6136 3.6136 3.6138	3. 6139 3. 6141 3. 6156 3. 6158 3. 6158	3. 7109 3. 7111 3. 7228 3. 7228 3. 7230 3. 7264	3.7289 3.7291 3.7318 3.7320	3. 7323 3. 7325 3. 7350 3. 7352	3. 7367 3. 7369 3. 7386 3. 7388	$\begin{array}{c} 3.7389\\ 3.7391\\ 3.7406\\ 3.7406\\ 3.7408\end{array}$	3.8538 3.8540 3.8568 3.8568 3.8570	3.8573 3.8575 3.8600 3.8600 3.8602	3, 8616 3, 8618 3, 8618 3, 8636 3, 8638	3.8638 3.8640 3.8656 3.8658 3.8658	3. 9609 3. 9611 3. 9728 3. 9730 3. 9762 3. 9764	3. 9788 3. 9790 3. 9818 3. 9820	3, 9823 3, 9825 3, 9855 3, 9855
3. 6231 3. 6239 3. 6229 3. 6229 3. 6248	$\begin{array}{c} 3.\ 6233\\ 3.\ 6231\\ 3.\ 6231\\ 3.\ 6248\\ 3.\ 6248\\ \end{array}$	3. 7466 3. 7464 3. 7464 3. 7464 3. 7464 3. 7498 3. 7498	3. 7471 3. 7469 3. 7500 3. 7498	$\begin{array}{c} 3.\ 7473\\ 3.\ 7471\\ 3.\ 7500\\ 3.\ 7498\\ 3.\ 7498 \end{array}$	3. 7481 3. 7479 3. 7500 3. 7498	3. 7483 3. 7481 3. 7500 3. 7498	$\begin{array}{c} 3.8720\\ 3.8718\\ 3.8750\\ 3.8748\\ 3.8748 \end{array}$	3. 8723 3. 8721 3. 8750 3. 8748 3. 8748	3. 8730 3. 8728 3. 8728 3. 8748 3. 8748	$\begin{array}{c} 3.8732\\ 3.8730\\ 3.8730\\ 3.8750\\ 3.8748\\ 3.8748\end{array}$	3. 9966 3. 9964 3. 9966 3. 9964 4. 0000 3. 9998	$\begin{array}{c} 3.\ 9970\\ 3.\ 9968\\ 4.\ 0000\\ 3.\ 9998\\ 3.\ 9998 \end{array}$	3. 9973 3. 9971 3. 9998 3. 9998
3. 5446 3. 5452 3. 5481 3. 5481 3. 5487	<ol> <li>3. 5634</li> <li>3. 5640</li> <li>3. 5666</li> <li>3. 5672</li> </ol>	$\begin{array}{c} 3.5133\\ 3.5142\\ 3.5189\\ 3.5198\\ 3.5261\\ 3.5261\\ 3.5260 \end{array}$	3. 5929 3. 5937 3. 5983 3. 5991	$\begin{array}{c} 3.\ 6300\\ 3.\ 6307\\ 3.\ 6357\\ 3.\ 6357\end{array}$	3.6696 3.6702 3.6731 3.6737	$\begin{array}{c} 3.\ 6884\\ 3.\ 6890\\ 3.\ 6916\\ 3.\ 6922\\ 3.\ 6922\\ \end{array}$	3. 7177 3. 7185 3. 7232 3. 7240	3. 7549 3. 7556 3. 7599 3. 7606	<ol> <li>3. 7944</li> <li>3. 7950</li> <li>3. 7980</li> <li>3. 7986</li> </ol>	3. 8132 3. 8138 3. 8165 3. 8165 3. 8171	3. 7631 3. 7640 3. 7688 3. 7697 3. 7750 3. 7759	3.8427 3.8435 3.8482 3.8490 3.8490	3, 8799 3, 8806 3, 8849 3, 8856 3, 8856
3.5626 3.5626 3.5661 3.5661 3.5657	3. 5769 3. 5765 3. 5801 3. 5797	3. 5674 3. 5674 3. 5730 3. 5735 3. 5792 3. 5787	3. 6290 3. 6290 3. 6344 3. 6339	3. 6571 3. 6566 3. 6626 3. 6621 3. 6616	3. 6876 3. 6872 3. 6911 3. 6911 3. 6907	3. 7019 3. 7015 3. 7051 3. 7047	3. 7538 3. 7533 3. 7593 3. 7593 3. 7588	3. 7820 3. 7815 3. 7815 3. 7865 3. 7865	3.8124 3.8120 3.8160 3.8160 3.8156	3. 8267 3. 8263 3. 8300 3. 8296	$\begin{array}{c} 3.8172\\ 3.8167\\ 3.8229\\ 3.8224\\ 3.8224\\ 3.8291\\ 3.8286\end{array}$	3. 8788 3. 8788 3. 8843 3. 8843 3. 8838	3. 9070 3. 9065 3. 9120 3. 9115
3.5626 3.5630 3.5661 3.5665	$\begin{array}{c} \textbf{3.5769}\\ \textbf{3.5773}\\ \textbf{3.5801}\\ \textbf{3.5805}\\ \textbf{3.5805} \end{array}$	3. 5674 3. 5679 3. 5730 3. 5735 3. 5792 3. 5797	$\begin{array}{c} 3.\ 6290\\ 3.\ 6295\\ 3.\ 6344\\ 3.\ 6349\\ 3.\ 6349\end{array}$	3. 6571 3. 6576 3. 6621 3. 6626	3.6876 3.6880 3.6911 3.6915	3. 7019 3. 7023 3. 7051 3. 7055	<ol> <li>3. 7538</li> <li>3. 7543</li> <li>3. 7593</li> <li>3. 7598</li> </ol>	3. 7820 3. 7825 3. 7875 3. 7875	3.8124 3.8128 3.8160 3.8160 3.8164	3.8267 3.8271 3.8300 3.8304 3.8304	$\begin{array}{c} 3.\ 8172\\ 3.\ 8177\\ 3.\ 8229\\ 3.\ 8234\\ 3.\ 8291\\ 3.\ 8296\end{array}$	3. 8788 3. 8793 3. 8843 3. 8843 3. 8848	3, 9070 3, 9075 3, 9120 3, 9125
3. 5329 3. 5323 3. 5348 3. 5342	<ol> <li>3. 5556</li> <li>3. 5550</li> <li>3. 5550</li> <li>3. 5567</li> </ol>	3. 4759 3. 4750 3. 4750 3. 4750 3. 4750 3. 4793 3. 4793 3. 4784	<ol> <li>3. 5666</li> <li>3. 5658</li> <li>3. 5695</li> <li>3. 5687</li> </ol>	$\begin{array}{c} 3.6120\\ 3.6113\\ 3.61147\\ 3.6147\\ 3.6140\end{array}$	3. 6579 3. 6573 3. 6598 3. 6592	$\begin{array}{c} 3.6806\\ 3.6800\\ 3.6823\\ 3.6817\\ 3.6817 \end{array}$	3. 6915 3. 6907 3. 6945 3. 6937	3. 7370 3. 7363 3. 7397 3. 7397 3. 7390	3. 7828 3. 7822 3. 7848 3. 7842	<ol> <li>8055</li> <li>8055</li> <li>8049</li> <li>8073</li> <li>8067</li> </ol>	3. 7259 3. 7259 3. 7259 3. 7259 3. 7293 3. 7284	3. 8165 3. 8157 3. 8195 3. 8195 3. 8187	3.8620 3.8613 3.8647 3.8640 3.8640
3. 5690 3. 5686 3. 5709 3. 5705	3. 5827 3. 5823 3. 5844 3. 5840 3. 5840	3. 5842 3. 5842 3. 5842 3. 5837 3. 5837 3. 5876 3. 5871	3. 6388 3. 6383 3. 6417 3. 6412 3. 6412	3.6661 3.6656 3.6688 3.6683 3.6683	3. 6940 3. 6936 3. 6959 3. 6959 3. 6955	3. 7077 3. 7073 3. 7094 3. 7094	3. 7637 3. 7632 3. 7667 3. 7667 3. 7662	3. 7911 3. 7906 3. 7938 3. 7933	3. 8189 3. 8185 3. 8209 3. 8205 3. 8205	3. 8326 3. 8326 3. 8344 3. 8344 3. 8340	3. 8342 3. 8337 3. 8337 3. 8337 3. 8337 3. 8371 3. 8371	3. 8887 3. 8882 3. 8917 3. 8912	3, 9161 3, 9156 3, 9188 3, 9183 3, 9183
2A 3A	2A 3A	1A 2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	1A 2A 3A	2A 3A	2A 3A
NN	NN	UNC	NN	NN	NN	NN	NN	NN	NN	NN	UNC	NN	NU
3. 625-12	3.625-16	3.750-4	3.750-6	3. 750-8	3. 750-12	3. 750-16	3.875-6	3.875-8	3. 875-12	3.875-16	4. 0004	4.000-6	4.000-8

	major     reages for internal unreads       00     GO     HI       100     GO     HI       101     Gir minor diameter       101     GO       101     HI       102     HI       103     GO       104     Major       104     Alain       104     Alain       104     Alain       104     Alain       104     Alain				21	4, 000-12	4. 000-16	4. 125-6	4.125-12	4.125-16	4. 250-4	4. 250-6	4.250-12	4. 250-16	4. 375-6
	Tages for external threadsClages for internal threadsTages for external threadsTages for majorTages for majorTages for majorNonreadsTLOLORominor diameterInternal threadsInternal threadsInternal threadsLOLONOT GOGOHIInternal threadsInternal threadsLoNOT GOGOHIInternal threadsInternal threadsInternal threadsMinusMinorGOGOHIInternal threadsInternal threadsMinusMinorSemi-Un-diam-diam-threadstotereterdiam-diam-diam-diam-threadstotereterdiam-diam-diam-diam-threadstotereterctertoterthreadsthreadsthreadstotereterctertotertotertotertoter				20	NN	NN	UN	UN	NN	NN	NN	NN	NN	NN
		Class			19	2B 3B	2B 3B	2B 3B	$^{2B}_{3B}$	3B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B
	lug gages diameter		NOT GO		18	in 3.9280 3.9278 3.9198 3.9196 3.9196	$\begin{array}{c} 3. \ 9460\\ 3. \ 9458\\ 3. \ 9408\\ 3. \ 9406\\ 3. \ 9406 \end{array}$	3. 9750 3. 9748 3. 9646 3. 9644	4. 0530 4. 0528 4. 0448 4. 0446	4. 0710 4. 0708 4. 0658 4. 0656	4. 0170 4. 0168 4. 0094 4. 0092	4. 1000 4. 0998 4. 0896 4. 0894	4. 1780 4. 1778 4. 1698 4. 1696	$\begin{array}{c} 4. \ 1960 \\ 4. \ 1958 \\ 4. \ 1908 \\ 4. \ 1906 \end{array}$	4. 2250 4. 2248 4. 2146 4. 2144
10	Z plain pl for minor		GO		17	$in \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9102 \\ 3.9102 \\ 3.9102 \\ 3.9102 \\ 3.9102 \\ 3.9102 \\ 3.9102 \\ 3.9102 \\ 3.9102 \\ 3.9102 \\ 3.9102 \\ 3.9102 \\ 3.9102 \\ 3.9102 \\ 3.9102 \\ 3.9102 \\ 3.9102 \\ 3.9102 \\ 3.9102 \\ 3.9102 \\ 3.9102 \\ 3.9102 \\ 3.9102 \\ 3.9102 \\ 3.9102 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.9100 \\ 3.910$	3. 9320 3. 9322 3. 9322 3. 9322	3.9450 3.9450 3.9452 3.9450 3.9452	$\begin{array}{c} 4.\ 0350\\ 4.\ 0352\\ 4.\ 0352\\ 4.\ 0352\end{array}$	4. 0570 4. 0572 4. 0572 4. 0572	3. 9790 3. 9792 3. 9792 3. 9792	4. 0700 4. 0702 4. 0700 4. 0702	4. 1600 4. 1602 4. 1602 4. 1602	4. 1820 4. 1822 4. 1822 4. 1822	4. 1950 4. 1952 4. 1952 4. 1952
il threads			iameter	Plus toler- ance gage	16	in 3. 9544 3. 9548 3. 9523 3. 9527	$\begin{array}{c} 3.9670\\ 3.9674\\ 3.9651\\ 3.9651\\ 3.9655\end{array}$	$\begin{array}{c} 4.\ 0297\\ 4.\ 0303\\ 4.\ 0264\\ 4.\ 0270 \end{array}$	4. 0794 4. 0800 4. 0773 4. 0779	$\begin{array}{c} 4.\ 0920\\ 4.\ 0926\\ 4.\ 0901\\ 4.\ 0907 \end{array}$	$\begin{array}{c} 4.\ 1025\\ 4.\ 1031\\ 4.\ 0988\\ 4.\ 0994 \end{array}$	4. 1548 4. 1554 4. 1515 4. 1515	$\begin{array}{c} 4.\ 2044\\ 4.\ 2050\\ 4.\ 2023\\ 4.\ 2029\end{array}$	4. 2170 4. 2176 4. 2151 4. 2157	4. 2799 4. 2805 4. 2766 4. 2772
or interns	gages	IH	Pitch đ	Minus toler- anee gage	15	in 3. 9544 3. 9540 3. 9523 3. 9519 3. 9519	3. 9670 3. 9666 3. 9666 3. 9651 3. 9647	$\begin{array}{c} 4.\ 0297\\ 4.\ 0291\\ 4.\ 0264\\ 4.\ 0258\end{array}$	4. 0794 4. 0788 4. 0788 4. 0773	$\begin{array}{c} 4.\ 0920\\ 4.\ 0914\\ 4.\ 0901\\ 4.\ 0895 \end{array}$	$\begin{array}{c} 4.\ 1025\\ 4.\ 1019\\ 4.\ 0988\\ 4.\ 0982 \end{array}$	4. 1548 4. 1542 4. 1515 4. 1509	4. 2044 4. 2038 4. 2023 4. 2017	4. 2170 4. 2164 4. 2164 4. 2151 4. 2145	4. 2799 4. 2793 4. 2766 4. 2760
(lages fo	read plug			Major diam- eter	14	in 3. 9905 3. 9899 3. 9884 3. 9884 3. 9878	$\begin{array}{c} 3. \ 9941 \\ 3. \ 9935 \\ 3. \ 9922 \\ 3. \ 9916 \end{array}$	$\begin{array}{c} 4. \ 1019 \\ 4. \ 1006 \\ 4. \ 0986 \\ 4. \ 0973 \end{array}$	4. 1155 4. 1155 4. 1136 4. 1125	4. 1191 4. 1182 4. 1172 4. 1172 4. 1163	4. 2108 4. 2093 4. 2071 4. 2056	4. 2270 4. 2257 4. 2237 4. 2224	4. 2405 4. 2396 4. 2384 4. 2375	4. 2441 4. 2432 4. 2422 4. 2413	4. 3521 4. 3528 4. 3488 4. 3475
	X thi	0		Pitch diam- eter	13	in 3. 9459 3. 9463 3. 9463 3. 9463 3. 9463	$\begin{array}{c} 3. \ 9594 \\ 3. \ 9598 \\ 3. \ 9594 \\ 3. \ 9598 \\ 3. \ 9598 \end{array}$	4. 0167 4. 0173 4. 0167 4. 0167	$\begin{array}{c} 4.\ 0709\\ 4.\ 0715\\ 4.\ 0709\\ 4.\ 0715\\ 4.\ 0715\end{array}$	4. 0844 4. 0850 4. 0850 4. 0850 4. 0850	4. 0876 4. 0882 4. 0882 4. 0882	4. 1417 4. 1423 4. 1417 4. 1423	4. 1959 4. 1965 4. 1959 4. 1965	4. 2094 4. 2100 4. 2094 4. 2100	4. 2667 4. 2667 4. 2667 4. 2667
		d Major d diam- eter		12	in 4.0000 4.0006 4.0000 4.0000	4.0000 4.0006 4.0006 4.0006	$\begin{array}{c} 4.1250 \\ 4.1263 \\ 4.1250 \\ 4.1250 \\ 4.1263 \end{array}$	4.1250 4.1259 4.1259 4.1259	4. 1250 4. 1259 4. 1259 4. 1259	$\begin{array}{r} 4.\ 2500\\ 4.\ 2515\\ 4.\ 2500\\ 4.\ 2515\\ 4.\ 2515\end{array}$	$\begin{array}{c} 4.\ 2500\\ 4.\ 2513\\ 4.\ 2500\\ 4.\ 2513\\ 4.\ 2513\end{array}$	4. 2500 4. 2509 4. 2509 4. 2509	4. 2500 4. 2509 4. 2509 4. 2509	4. 3750 4. 3763 4. 3763 4. 3763 4. 3763	
	for major	F G0	Un-	finished hot- rolled material	11	in									
	ing gages diameter	NO'		Semi- finished	10	in 3. 9866 3. 9868 3. 9886 3. 9886 3. 9888	3. 9888 3. 9890 3. 9906 3. 9908	$\begin{array}{c} 4.\ 1038\\ 4.\ 1040\\ 4.\ 1068\\ 4.\ 1070\end{array}$	4. 1116 4. 1118 4. 1136 4. 1138	4. 1138 4. 1138 4. 1156 4. 1156	4. 2228 4. 2230 4. 2262 4. 2264	4. 2288 4. 2290 4. 2318 4. 2320	4. 2366 4. 2368 4. 2386 4. 2388	4. 2388 4. 2390 4. 2406 4. 2408	4. 3538 4. 3540 4. 3568 4. 3570
Ireads	Z plain r		GO		6	<i>in</i> 3. 9980 3. 9978 4. 0000 3. 9998	$\begin{array}{c} 3. \ 9982\\ 3. \ 9980\\ 4. \ 0000\\ 3. \ 9998\end{array}$	$\begin{array}{c} 4.1220\\ 4.1218\\ 4.1250\\ 4.1250\\ 4.1248\end{array}$	$\begin{array}{c} 4.1230\\ 4.1228\\ 4.1228\\ 4.1250\\ 4.1248\end{array}$	$\begin{array}{c} 4.\ 1232\\ 4.\ 1230\\ 4.\ 1230\\ 4.\ 1248\\ \end{array}$	$\begin{array}{c} 4.\ 2466\\ 4.\ 2464\\ 4.\ 2500\\ 4.\ 2498\end{array}$	$\begin{array}{c} 4.2470\\ 4.2468\\ 4.2500\\ 4.2498\end{array}$	$\begin{array}{r} 4.2480\\ 4.2478\\ 4.2500\\ 4.2498\end{array}$	4. 2482 4. 2480 4. 2500 4. 2498	$\begin{array}{c} 4.\ 3720\\ 4.\ 3718\\ 4.\ 3750\\ 4.\ 3748\\ 4.\ 3748 \end{array}$
xternal th				Minor diam- eter	×	in 3. 9194 3. 9200 3. 9230 3. 9236 3. 9236	$\begin{array}{c} 3.\ 9382\\ 3.\ 9388\\ 3.\ 9415\\ 3.\ 9421\\ 3.\ 9421 \end{array}$	$\begin{array}{c} 3.\ 9676\\ 3.\ 9689\\ 3.\ 9731\\ 3.\ 9744\\ 3.\ 9744 \end{array}$	4. 0444 4. 0453 4. 0480 4. 0489	$\begin{array}{c} 4.\ 0632\\ 4.\ 0641\\ 4.\ 0665\\ 4.\ 0674\end{array}$	$\begin{array}{c} 4.\ 0186\\ 4.\ 0201\\ 4.\ 0249\\ 4.\ 0264\\ \end{array}$	$\begin{array}{c} 4.\ 0925\\ 4.\ 0938\\ 4.\ 0981\\ 4.\ 0994 \end{array}$	4. 1694 4. 1703 4. 1730 4. 1739 4. 1739	4. 1882 4. 1891 4. 1915 4. 1924	$\begin{array}{c} 4.\ 2175\\ 4.\ 2188\\ 4.\ 2230\\ 4.\ 2243\\ \end{array}$
iges for e	gages	ΓO	iameter	Minus toler- anec gage	2	in 3. 9374 3. 9370 3. 9410 3. 9406	$\begin{array}{c} 3. \ 9517\\ 3. \ 9513\\ 3. \ 9550\\ 3. \ 9546\\ 3. \ 9546 \end{array}$	$\begin{array}{c} 4.\ 0037\\ 4.\ 0031\\ 4.\ 0092\\ 4.\ 0086\end{array}$	$\begin{array}{c} 4.\ 0624\\ 4.\ 0618\\ 4.\ 0660\\ 4.\ 0654\end{array}$	4. 0767 4. 0761 4. 0800 4. 0800 4. 0794	4. 0727 4. 0721 4. 0790 4. 0784	4. 1286 4. 1280 4. 1342 4. 1336	4. 1874 4. 1868 4. 1910 4. 1904	4. 2017 4. 2011 4. 2050 4. 2044	4. 2536 4. 2530 4. 2591 4. 2585
G:	read ring		Pitch d	Plus toler- ance gage	9	in 3. 9374 3. 9378 3. 9410 3. 9414	$\begin{array}{c} 3.\ 9517\\ 3.\ 9521\\ 3.\ 9550\\ 3.\ 9554\\ 3.\ 9554\end{array}$	$\begin{array}{c} 4.\ 0037\\ 4.\ 0043\\ 4.\ 0092\\ 4.\ 0098\end{array}$	$\begin{array}{c} 4.\ 0624\\ 4.\ 0630\\ 4.\ 0660\\ 4.\ 0666\end{array}$	$\begin{array}{c} 4.\ 0767\\ 4.\ 0773\\ 4.\ 0800\\ 4.\ 0806\end{array}$	$\begin{array}{c} 4.\ 0727\\ 4.\ 0733\\ 4.\ 0790\\ 4.\ 0796\end{array}$	4.1286 4.1292 4.1342 4.1348	4. 1874 4. 1880 4. 1910 4. 1916	4. 2017 4. 2023 4. 2050 4. 2056	4. 2536 4. 2542 4. 2591 4. 2597
	X th	9		Minor diam- cter	2	in 3. 9078 3. 9072 3. 9098 3. 9092	3. 9305 3. 9299 3. 9323 3. 9317	$\begin{array}{c} 3. \ 9415\\ 3. \ 9402\\ 3. \ 9445\\ 3. \ 9432\\ 3. \ 9432\\ \end{array}$	$\begin{array}{c} 4. \ 0328 \\ 4. \ 0319 \\ 4. \ 0348 \\ 4. \ 0339 \end{array}$	4. 0555 4. 0546 4. 0573 4. 0564	3. 9759 3. 9744 3. 9793 3. 9793 3. 9778	4. 0665 4. 0652 4. 0695 4. 0682	4.1578 4.1569 4.1598 4.1589	4. 1805 4. 1796 4. 1823 4. 1814	4. 1915 4. 1902 4. 1945 4. 1932
		0		Pitch diam- eter	4	in 3. 9439 3. 9435 3. 9455 3. 9455	$\begin{array}{c} 3.\ 9576\\ 3.\ 9572\\ 3.\ 9594\\ 3.\ 9590\end{array}$	$\begin{array}{c} 4. \ 0137 \\ 4. \ 0131 \\ 4. \ 0167 \\ 4. \ 0161 \end{array}$	$\begin{array}{c} 4.\ 0689\\ 4.\ 0683\\ 4.\ 0709\\ 4.\ 0703\end{array}$	$\begin{array}{c} 4.\ 0826\\ 4.\ 0820\\ 4.\ 0838\\ 4.\ 0838\end{array}$	4. 0842 4. 0836 4. 0876 4. 0870	4. 1387 4. 1381 4. 1417 4. 1411	4. 1939 4. 1933 4. 1959 4. 1953	4. 2076 4. 2070 4. 2094 4. 2088	4. 2637 4. 2631 4. 2667 4. 2661
	Class				e,	2A 3A	2A 3A	2.A 3.A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A
	Series designa- tion			5	NU	NN	NN	NN	NN	NN	NIJ	NN	NN	ND	
	Nominal size and threads per inch				1	4. 000-12	4.000-16	4. 125–6	4. 125-12	4. 125-16	4. 250-4	4. 250-6	4, 250-12	4. 250-16	4. 375–6

TABLE 6.19. Gages for standard thread series, Unified screw threads-Continued

4. 375-12	4.375-16	4. 500-4	4. 500-6	4. 500-12	4. 500-16	4. 625-6	4. 625-12	4. 625-16	4.750-4	4. 750–6	4.750-12	4.750-16	4.875-6	4.875-12	4.875-16
UN	UN	NN	NN	UN	UN	NN	UN	NŃ	UN	UN	NN	NN	NU	NU	ND
2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B
4. 3030 4. 3028 4. 2948 4. 2946	4. 3210 4. 3208 4. 3158 4. 3156	4. 2670 4. 2668 4. 2594 4. 2592	4. 3500 4. 3498 4. 3396 4. 3394	4. 4280 4. 4278 4. 4198 4. 4196	4. 4460 4. 4458 4. 4408 4. 4408	4. 47500 4. 47475 4. 46460 4. 46480	$\begin{array}{r} 4.55300\\ 4.55275\\ 4.54480\\ 4.54455\\ 4.54455\end{array}$	$\begin{array}{c} 4.57100\\ 4.57075\\ 4.56580\\ 4.56555\\ \end{array}$	$\begin{array}{c} 4.51700\\ 4.51675\\ 4.50940\\ 4.50940\\ 4.50915\end{array}$	$\begin{array}{c} 4.\ 60000\\ 4.\ 59975\\ 4.\ 58960\\ 4.\ 58935 \end{array}$	4. 67800 4. 67775 4. 66980 4. 66955	$\begin{array}{c} 4.\ 69600\\ 2.\ 69575\\ 4.\ 69080\\ 4.\ 69055\\ \end{array}$	4. 72500 4. 72475 4. 71460 4. 71435	4. 80300 4. 80275 4. 79480 4. 79455	4. 82100 4. 82075 4. 81580 4. 81555
4. 2850 4. 2852 4. 2850 4. 2852	4. 3070 4. 3072 3. 3072 4. 3072	4. 2290 4. 2292 4. 2292 4. 2292	$\begin{array}{c} 4.3200\\ 4.3202\\ 4.3202\\ 4.3200\\ 4.3202\end{array}$	$\begin{array}{c} 4.\ 4100\\ 4.\ 4102\\ 4.\ 4100\\ 4.\ 4102\\ 4.\ 4102\\ \end{array}$	4. 4320 4. 4322 4. 4322 4. 4322	4. 44500 4. 44525 4. 44500 4. 44500	$\begin{array}{r} 4.53500\\ 4.53525\\ 4.53520\\ 4.53500\\ 4.53525\end{array}$	4. 55700 4. 55725 4. 55700 4. 55725	$\begin{array}{r} 4.47900 \\ 4.47925 \\ 4.47900 \\ 4.47900 \\ \end{array}$	$\begin{array}{r} 4.57000 \\ 4.57025 \\ 4.57000 \\ 4.57025 \end{array}$	$\begin{array}{c} 4.\ 66000\\ 4.\ 66025\\ 4.\ 66000\\ 4.\ 66025\\ 4.\ 66025\\ \end{array}$	$\begin{array}{c} 4.68200\\ 4.68225\\ 4.68200\\ 4.68225\\ 4.68225\\ \end{array}$	$\begin{array}{c} 4.\ 69500\\ 4.\ 69525\\ 4.\ 69500\\ 4.\ 69525\end{array}$	4. 78500 4. 78525 4. 78500 4. 78500 4. 78525	4. 80700 4. 80725 4. 80700 4. 80725
4. 3294 4. 3300 4. 3273 4. 3273	4. 3420 4. 3426 4. 3401 4. 3407	4. 3527 4. 3533 4. 3489 4. 3495	4. 4050 4. 4056 4. 4016 4. 4022	4.4544 4.4550 4.4523 4.4523 4.4529	4. 4670 4. 4676 4. 4651 4. 4657	4. 5300 4. 5306 4. 5267 4. 5273	4. 5796 4. 5802 4. 5775 4. 5781	4. 5923 4. 5929 4. 5903 4. 5909	4. 6029 4. 6035 4. 5990 4. 5996	4. 6551 4. 6557 4. 6518 4. 6524	4. 7046 4. 7052 4. 7025 4. 7031	4. 7173 4. 7179 4. 7159 4. 7159 4. 7159	4. 7802 4. 7808 4. 7768 4. 7774	4.8296 4.8302 4.8275 4.8281	4.8423 4.8429 4.8403 4.8403
4. 3294 4. 3298 4. 3273 4. 3267	4. 3420 4. 3414 4. 3401 4. 3395	4. 3527 4. 3521 4. 3489 4. 3483	4. 4050 4. 4044 4. 4016 4. 4010	4. 4544 4. 4538 4. 4523 4. 4517	4. 4670 4. 4664 4. 4651 4. 4645	4. 5300 4. 5294 4. 5267 4. 5261	4. 5796 4. 5790 4. 5775 4. 5775	4. 5923 4. 5917 4. 5903 4. 5897	4. 6029 4. 6023 4. 5990 4. 5984	3. 6551 4. 6545 4. 6518 4. 6512	4. 7046 4. 7040 4. 7025 4. 7019	4. 7173 4. 7167 4. 7153 4. 7153 4. 7147	4. 7802 4. 7796 4. 7768 4. 7768	4.8296 4.8290 4.8275 4.8269	4, 8423 4, 8417 4, 8403 4, 8397
4. 3655 4. 3655 4. 3634 4. 3634 4. 3625	4. 3691 4. 3682 4. 3672 4. 3663	4. 4610 4. 4595 4. 4572 4. 4557	4. 4772 4. 4759 4. 4738 4. 4738 4. 4725	4. 4905 4. 4896 4. 4884 4. 4875	4. 4941 4. 4932 4. 4922 4. 4913	4. 6022 4. 6009 4. 5989 4. 5976	4. 6157 4. 6148 4. 6136 4. 6127 4. 6127	4. 6194 4. 6185 4. 6174 4. 6165	4. 7112 4. 7097 4. 7073 4. 7058	4. 7273 4. 7260 4. 7240 4. 7227	4. 7407 4. 7398 4. 7386 4. 7377	4. 7444 4. 7435 4. 7424 4. 7415	4.8524 4.8511 4.8490 4.8477	4.8657 4.8648 4.8636 4.8636 4.8627	4. 8694 4. 8685 4. 8674 4. 8665
4. 3209 4. 3215 4. 3209 4. 3215	4. 3344 4. 3350 4. 3350 4. 3350 4. 3350	4. 3376 4. 3382 4. 3382 4. 3382 4. 3382	4. 3917 4. 3923 4. 3917 4. 3917 4. 3923	4. 4459 4. 4465 4. 4459 4. 4459 4. 4465	4. 4594 4. 4600 4. 4594 4. 4594 4. 4600	4. 5167 4. 5173 4. 5173 4. 5167 4. 5173	4. 5709 4. 5715 4. 5709 4. 5715 4. 5715	4. 5844 4. 5850 4. 5844 4. 5844 4. 5850	4. 5876 4. 5882 4. 5882 4. 5882 4. 5882	4. 6417 4. 6423 4. 6417 4. 6423	4. 6959 4. 6959 4. 6959 4. 6959 4. 6965	4.7094 4.7100 4.7094 4.7100	4. 7667 4. 7673 4. 7667 4. 7667 4. 7667	4, 8209 4, 8215 4, 8209 4, 8215	4. 8344 4. 8350 4. 8354 4. 8344 4. 8350
4. 3750 4. 3759 4. 3750 4. 3750	4. 3750 4. 3759 4. 3759 4. 3759 4. 3759	4. 5000 4. 5015 4. 5015 4. 5000 4. 5015	$\begin{array}{c} 4.5000\\ 4.5013\\ 4.5000\\ 4.5013\\ 4.5013\end{array}$	4.5000 4.5009 4.5000 4.5000	4. 5000 4. 5009 4. 5009 4. 5009	4. 6250 4. 6250 4. 6263 4. 6263	4. 6250 4. 6259 4. 6259 4. 6259 4. 6259	4. 6250 4. 6259 4. 6259 4. 6259 4. 6259	4. 7500 4. 7515 4. 7500 4. 7515	4. 7500 4. 7513 4. 7500 4. 7513	4. 7500 4. 7509 4. 7509 4. 7500 4. 7500	4. 7500 4. 7509 4. 7509 4. 7500	4. 8750 4. 8763 4. 8763 4. 8750 4. 8763	4. 8750 4. 8759 4. 8759 4. 8759 4. 8759	4. 8750 4. 8759 4. 8759 4. 8759 4. 8759
4. 3616 4. 3618 4. 3636 4. 3638	4. 3638 4. 3640 4. 3656, 4. 3658	4. 4727 4. 4729 4. 4762 4. 4764	4. 4787 4. 4789 4. 4818 4. 4820	4. 4866 4. 4868 4. 4886 4. 4886	4. 4888 4. 4890 4. 4906 4. 4908	4. 60370 4. 60395 4. 60680 4. 60680 4. 60705	4. 61160 4. 61185 4. 61360 4. 61360 4. 61385	4. 61380 4. 61380 4. 61560 4. 61560 4. 61585	4. 72270 4. 72295 4. 72620 4. 72620 4. 72645	4. 72870 4. 72895 4. 73180 4. 73205	4. 73660 4. 73685 4. 73860 4. 73860 4. 73885	4. 73880 4. 73905 4. 74060 4. 74085	4. 85370 4. 85395 4. 85680 4. 85680 4. 85705	4. 86160 4. 86185 4. 86360 4. 86360 4. 86385	4. 86380 4. 86405 4. 86560 4. 86560 4. 86585
4. 3730 4. 3728 4. 3728 4. 3748 4. 3748	4. 3732 4. 3730 4. 3750 4. 3748	4. 4965 4. 4963 4. 5000 4. 4998	4. 4969 4. 4967 4. 5000 4. 4998	4. 4980 4. 4978 4. 5000 4. 4998	4. 4982 4. 4980 4. 5000 4. 4998	4. 62190 4. 62165 4. 62500 4. 62500 4. 62475	$\begin{array}{c} 4.\ 62300\\ 4.\ 62275\\ 4.\ 62500\\ 4.\ 62500\\ 4.\ 62475\end{array}$	$\begin{array}{r} 4.\ 62320\\ 4.\ 62295\\ 4.\ 62500\\ 4.\ 62500\\ 4.\ 62475\end{array}$	4. 74650 4. 74625 4. 75000 4. 74975	4. 74690 4. 74665 4. 75000 4. 74975	4. 74800 4. 74775 4. 75000 4. 74975	4. 74820 4. 74795 4. 75000 4. 74975	4. 87190 4. 87165 4. 87500 4. 87500 4. 87475	4.87300 4.87275 4.87500 4.87500 4.87475	4.87320 4.87295 4.87500 4.87475
4. 2944 4. 2953 4. 2980 4. 2989	4. 3132 4. 3141 4. 3165 4. 3174	4. 2684 4. 2699 4. 2748 4. 2763	$\begin{array}{c} 4. \ 3423 \\ 4. \ 3436 \\ 4. \ 3479 \\ 4. \ 3492 \end{array}$	4. 4194 4. 4203 4. 4230 4. 4230 4. 4239	4. 4382 4. 4391 4. 4415 4. 4424	4. 4672 4. 4685 4. 4729 4. 4742	4. 5442 4. 5451 4. 5479 4. 5488	4. 5630 4. 5639 4. 5664 4. 5673	4. 5183 4. 5198 4. 5247 4. 5262	$\begin{array}{c} 4.5922\\ 4.5935\\ 4.5979\\ 4.5992 \end{array}$	$\begin{array}{c} 4.\ 6692\\ 4.\ 6701\\ 4.\ 6729\\ 4.\ 6738\end{array}$	4. 6880 4. 6889 4. 6914 4. 6923	4. 7171 4. 7184 4. 7228 4. 7241	4. 7942 4. 7951 4. 7979 4. 7988	4.8130 4.8139 4.8164 4.8164 4.8173
4.3124 4.3118 4.3160 4.3154	4. 3267 4. 3261 4. 3300 4. 3294	4. 3225 4. 3219 4. 3289 4. 3283	4. 3784 4. 3778 4. 3840 4. 3834	4. 4374 4. 4368 4. 4410 4. 4404	4. 4517 4. 4511 4. 4550 4. 4544	4. 5033 4. 5027 4. 5090 4. 5084	4. 5622 4. 5616 4. 5659 4. 5653 4. 5653	4. 5765 4. 5759 4. 5799 4. 5799	4. 5724 4. 5718 4. 5788 4. 5782 4. 5782	4. 6283 4. 6277 4. 6340 4. 6334	$\begin{array}{c} 4.\ 6872\\ 4.\ 6866\\ 4.\ 6909\\ 4.\ 6903\\ \end{array}$	4. 7015 4. 7009 4. 7049 4. 7043	4. 7532 4. 7526 4. 7589 4. 7583	4.8122 4.8116 4.8159 4.8159 4.8153	4. 8265 4. 8259 4. 8299 4. 8299
4. 3124 4. 3130 4. 3160 4. 3166	4. 3267 4. 3273 4. 3300 4. 3306	$\begin{array}{c} 4.\ 3225\\ 4.\ 3231\\ 4.\ 3289\\ 4.\ 3295 \end{array}$	4. 3784 4. 3790 4. 3840 4. 3846	4. 4374 4. 4380 4. 4410 4. 4416	4. 4517 4. 4523 4. 4550 4. 4556	4. 5033 4. 5039 4. 5090 4. 5096	$\begin{array}{c} 4.5622\\ 4.5628\\ 4.5659\\ 4.5665\\ 4.5665\end{array}$	4. 5765 4. 5771 4. 5799 4. 5805	4.5724 4.5730 4.5788 4.5794	$\begin{array}{c} 4.\ 6283\\ 4.\ 6289\\ 4.\ 6340\\ 4.\ 6346\end{array}$	$\begin{array}{c} 4.\ 6872\\ 4.\ 6878\\ 4.\ 6909\\ 4.\ 6915\end{array}$	4. 7015 4. 7021 4. 7049 4. 7055	4. 7532 4. 7538 4. 7589 4. 7595	4. 8122 4. 8128 4. 8159 4. 8165	4.8265 4.8271 4.8299 4.8305
4. 2828 4. 2819 4. 2848 4. 2839	4. 3055 4. 3046 4. 3073 4. 3064	4. 2258 4. 2243 4. 2293 4. 2278	4. 3164 4. 3151 4. 3195 4. 3182	4. 4078 4. 4069 4. 4098 4. 4089	4. 4305 4. 4296 4. 4323 4. 4314	4.4414 4.44401 4.4445 4.4432	$\begin{array}{c} 4.5328\\ 4.5319\\ 4.5348\\ 4.5339\\ 4.5339\end{array}$	4. 5555 4. 5556 4. 5573 4. 5573 4. 5564	4. 4758 4. 4743 4. 4793 4. 4793 4. 4778	$\begin{array}{r} 4.5664\\ 4.5651\\ 4.5695\\ 4.5682\\ \end{array}$	$\begin{array}{r} 4.6578 \\ 4.6569 \\ 4.6598 \\ 4.6598 \\ 4.6589 \\ 4.6589 \end{array}$	4. 6805 4. 6796 4. 6823 4. 6814	4. 6914 4. 6914 4. 6945 4. 6932	4. 7828 4. 7819 4. 7848 4. 7839	4. 8055 4. 8046 4. 8073 4. 8064
4.3189 4.3183 4.3209 4.3209 4.3203	4. 3326 4. 3320 4. 3344 4. 3338	4. 3341 4. 3335 4. 3376 4. 3376 4. 3370	4. 3886 4. 3880 4. 3917 4. 3911	4. 4439 4. 4433 4. 4453 4. 4453	4. 4576 4. 4570 4. 4594 4. 4588	4. 5136 4. 5130 4. 5167 4. 5167 4. 5161	4. 5689 4. 5683 4. 5709 4. 5703	4. 5826 4. 5820 4. 5844 4. 5838	4. 5841 4. 5835 4. 5835 4. 5876 4. 5870	4. 6386 4. 6380 4. 6417 4. 6411	4. 6939 4. 6933 4. 6959 4. 6953	4. 7076 4. 7070 4. 7094 4. 7088	4. 7636 4. 7630 4. 7667 4. 7661 4. 7661	4. 8189 4. 8183 4. 8209 4. 8203	4. 8326 4. 8320 4. 8334 4. 8334 4. 8338
2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A
UN	NN	UN	NU	ND	ND	ND	ND	NN	NN	NN	NN	NN	NN	ND	ND
4.375-12	4. 375-16	4. 500-4	4. 500-6	4, 500–12	4. 500-16	4.625–6	4.625-12	4.625-16	4.750-4	4. 750–6	4. 750–12	4.750-16	4.875–6	4.875-12	4.875-16

Continu
threads-
d screw
Unified
series,
thread
n dard
for sta
Gages
6.19.
TABLE

led

		Nominal size and	threads per inch		21	5, 000-4	5. 000-6	5.000-12	5, 000-16	5, 125-12	5, 125-16	5. 250-4	5.250-12	5, 250-16	5.375-12
		Series designa-	tion		20	NN	ΩN	NIJ	Ū.V.	NÛ	NŊ	UN	ΩN	NIJ	NN
		Class			19	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B
	lug gages diameter		$^{\rm NOT}_{ m G0}$		18	$\begin{array}{c} in\\ 4.76700\\ 4.76675\\ 4.75940\\ 4.75915\end{array}$	$\begin{array}{c} 4.85000\\ 4.84975\\ 4.83960\\ 4.83935\\ 4.83935\end{array}$	$\begin{array}{c} 4.92800\\ 4.92775\\ 4.91980\\ 4.91955\end{array}$	$\begin{array}{c} 4.\ 94600\\ 4.\ 94575\\ 4.\ 94080\\ 4.\ 94055\end{array}$	$\begin{array}{c} 5.\ 05300\\ 5.\ 05275\\ 5.\ 04480\\ 5.\ 04455\end{array}$	$\begin{array}{c} 5.\ 07100\\ 5.\ 07075\\ 5.\ 06580\\ 5.\ 06555\\ 5.\ 06555\end{array}$	$\begin{array}{c} 5.\ 01700\\ 5.\ 01675\\ 5.\ 00940\\ 5.\ 00915 \end{array}$	$\begin{array}{c} 5. \ 17800 \\ 5. \ 17775 \\ 5. \ 16980 \\ 5. \ 16955 \end{array}$	$\begin{array}{c} 5. \ 19600\\ 5. \ 19575\\ 5. \ 19080\\ 5. \ 19055\end{array}$	$\begin{array}{c} 5.30300\\ 5.30275\\ 5.29480\\ 5.29455\\ 5.29455 \end{array}$
30	Z plain p for minor		G0		17	in 4. 72900 4. 72925 4. 72925 4. 72925	$\begin{array}{c} 4.82000\\ 4.82025\\ 4.82000\\ 4.82000\\ 4.82025\end{array}$	$\begin{array}{c} 4.\ 91000\\ 4.\ 91025\\ 4.\ 91000\\ 4.\ 91025\\ 4.\ 91025 \end{array}$	$\begin{array}{c} 4.\ 93200\\ 4.\ 93225\\ 4.\ 93220\\ 4.\ 93225\\ 4.\ 93225\end{array}$	$\begin{array}{c} 5.\ 03500\\ 5.\ 03525\\ 5.\ 03520\\ 5.\ 03525\\ 5.\ 03525\end{array}$	$\begin{array}{c} 5.\ 05700\\ 5.\ 05725\\ 5.\ 05720\\ 5.\ 05725\\ 5.\ 05725 \end{array}$	$\begin{array}{c} 4.97900\\ 4.97925\\ 4.97900\\ 4.97925\end{array}$	$\begin{array}{c} 5.\ 16000\\ 5.\ 16025\\ 5.\ 16020\\ 5.\ 16020\\ 5.\ 16025 \end{array}$	$\begin{array}{c} 5.18200\\ 5.18225\\ 5.18226\\ 5.18200\\ 5.18225\end{array}$	$\begin{array}{c} 5.\ 28500\\ 5.\ 28525\\ 5.\ 28500\\ 5.\ 28525\\ 5.\ 28525 \end{array}$
al thread			lameter	Plus toler- anee gage	16	<i>in</i> 4.8530 4.8536 4.8492 4.8498	4. 9053 4. 9059 4. 9019 4. 9025	4. 9546 4. 9552 4. 9525 4. 9531	4. 9673 4. 9679 4. 9653 4. 9659	5.0796 5.0802 5.0775 5.0781	$\begin{array}{c} 5.\ 0923\\ 5.\ 0929\\ 5.\ 0903\\ 5.\ 0909\end{array}$	$\begin{array}{c} 5.\ 1032\\ 5.\ 1038\\ 5.\ 0993\\ 5.\ 0999\end{array}$	$5.2046 \\ 5.2052 \\ 5.2025 \\ 5.2031 \\$	$\begin{array}{c} 5.\ 2173\\ 5.\ 2179\\ 5.\ 2153\\ 5.\ 2159\end{array}$	$\begin{array}{c} 5.3296\\ 5.3302\\ 5.3275\\ 5.3281\\ 5.3281 \end{array}$
or intern	g gages	IH	Pitch d	Minus toler- anee gage	15	<i>in</i> 4. 8530 4. 8530 4. 8492 4. 8492 4. 8486	4.9053 4.9047 4.9019 4.9013	4.9546 4.9540 4.9525 4.9519	4. 9673 4. 9667 4. 9653 4. 9647	5. 0796 5. 0790 5. 0775 5. 0769	$\begin{array}{c} 5.\ 0923\\ 5.\ 0917\\ 5.\ 0903\\ 5.\ 0897\end{array}$	$\begin{array}{c} 5.\ 1032\\ 5.\ 1026\\ 5.\ 0993\\ 5.\ 0987\end{array}$	$\begin{array}{c} 5.2046 \\ 5.2040 \\ 5.2025 \\ 5.2019 \end{array}$	5. 2173 5. 2167 5. 2153 5. 2147	5.3296 5.3290 5.3275 5.3269
Gages f	read plug			Major diam- eter	14	in 4. 9613 4. 9598 4. 9575 4. 9560	4.9775 4.9762 4.9741 4.9728	4. 9907 4. 9898 4. 9886 4. 9886	4. 9944 4. 9935 4. 9924 4. 9915	5. 1157 5. 1148 5. 1148 5. 1127	5. 1194 5. 1185 5. 1174 5. 1165	5.2115 5.2100 5.2076 5.2061	5. 2407 5. 2398 5. 2386 5. 2377	$\begin{array}{c} 5.\ 2444 \\ 5.\ 2435 \\ 5.\ 2424 \\ 5.\ 2415 \end{array}$	5. 3657 5. 3648 5. 3636 5. 3627
	X th	0		Piteh diam- eter	13	<i>in</i> 4. 8376 4. 8382 4. 8382 4. 8382 4. 8382	4. 8917 4. 8923 4. 8917 4. 8917 4. 8923	4.9459 4.9465 4.9459 4.9459	4. 9594 4. 9600 4. 9594 4. 9600	$\begin{array}{c} 5.\ 0709\\ 5.\ 0715\\ 5.\ 0709\\ 5.\ 0715\\ \end{array}$	$\begin{array}{c} 5.\ 0844 \\ 5.\ 0850 \\ 5.\ 0844 \\ 5.\ 0850 \end{array}$	5. 0876 5. 0882 5. 0882 5. 0882	5. 1959 5. 1959 5. 1959 5. 1965	$\begin{array}{c} 5.\ 2094 \\ 5.\ 2100 \\ 5.\ 2094 \\ 5.\ 2100 \end{array}$	5. 3209 5. 3215 5. 3209 5. 3215
		G G G Major d Major eter		12	in in 5.0000 5.0000 5.0000 5.0015	$\begin{array}{c} 5.\ 0000\\ 5.\ 0013\\ 5.\ 0013\\ 5.\ 0013\end{array}$	5.0009 5.0009 5.0009 5.0009	5.0000 5.0000 5.0000 5.0000	$\begin{array}{c} 5.\ 1250\\ 5.\ 1259\\ 5.\ 1259\\ 5.\ 1259\end{array}$	5. 1250 5. 1259 5. 1259 5. 1259	5.2500 5.2515 5.2515 5.2515	5.2509 5.2509 5.2509 5.2509	5.2500 5.2500 5.2500 5.2500	5. 3750 5. 3759 5. 3759 5. 3759	
	for major	0.00	Un-	finished hot- rolled material	11	<i>in</i>									
	ing gages diameter	LON		Semi- finished	10	in 4. 97260 4. 97285 4. 97620 4. 97620 4. 97645	$\begin{array}{c} 4.\ 97870\\ 4.\ 97895\\ 4.\ 98180\\ 4.\ 98205\\ 4.\ 98205 \end{array}$	$\begin{array}{c} 4.\ 98660\\ 4.\ 98685\\ 4.\ 98860\\ 4.\ 98885\\ 4.\ 98885 \end{array}$	$\begin{array}{c} 4.\ 98880\\ 4.\ 98905\\ 4.\ 99060\\ 4.\ 99085\\ 4.\ 99085 \end{array}$	5. 11160 5. 11185 5. 11360 5. 11385	5. 11380 5. 11405 5. 11560 5. 11585	5. 22260 5. 22285 5. 22620 5. 22645	5. 23660 5. 23685 5. 23860 5. 23885	5. 23880 5. 23905 5. 24060 5. 24085	5.36160 5.36185 5.36360 5.36360 5.36385
hreads	Z plain 1		GO		6	in 4. 99640 5. 0000 4. 99975 4. 99975	$\begin{array}{c} 4. \ 99690 \\ 4. \ 99665 \\ 5. \ 00000 \\ 4. \ 99975 \end{array}$	$\begin{array}{c} 4.\ 99800\\ 4.\ 99775\\ 5.\ 00000\\ 4.\ 99975 \end{array}$	$\begin{array}{c} 4. \ 99820 \\ 4. \ 99795 \\ 5. \ 00000 \\ 4. \ 99975 \end{array}$	$\begin{array}{c} 5.\ 12300\\ 5.\ 12275\\ 5.\ 12200\\ 5.\ 12475\end{array}$	5. 12320 5. 12295 5. 12295 5. 12500 5. 12475	$\begin{array}{c} 5.\ 24640\\ 5.\ 24615\\ 5.\ 25000\\ 5.\ 24975\end{array}$	$\begin{array}{c} 5.\ 24800\\ 5.\ 24775\\ 5.\ 25000\\ 5.\ 24975 \end{array}$	5. 24820 5. 24795 5. 25000 5. 24975	$\begin{array}{c} 5.37300 \\ 5.37275 \\ 5.37500 \\ 5.37475 \\ 5.37475 \end{array}$
xternal t				Minor diam- eter	×	<i>in</i> 4. 7680 4. 7695 4. 7746 4. 7761	4.8420 4.8433 4.8433 4.8478 4.8491	4. 9192 4. 9201 4. 9229 4. 9238	4. 9380 4. 9389 4. 9414 4. 9423	$\begin{array}{c} 5.\ 0442\\ 5.\ 0451\\ 5.\ 0479\\ 5.\ 0488\end{array}$	5. 0630 5. 0639 5. 0664 5. 0673	$\begin{array}{c} 5.0179 \\ 5.0194 \\ 5.0245 \\ 5.0260 \end{array}$	5. 1692 5. 1701 5. 1729 5. 1738	$\begin{array}{c} 5.1880\\ 5.1889\\ 5.1914\\ 5.1923\\ 5.1923\end{array}$	5. 2942 5. 2951 5. 2979 5. 2988
ages for e	gapes	L0	liameter	Minus toler- anee gage	t-	<i>in</i> 4. 8221 4. 8215 4. 8287 4. 8287	$\begin{array}{c} 4.8781 \\ 4.8775 \\ 4.8839 \\ 4.8833 \\ 4.8833 \end{array}$	$\begin{array}{c} 4.9372 \\ 4.9366 \\ 4.9409 \\ 4.9403 \end{array}$	4. 9515 4. 9509 4. 9549 4. 9543	$\begin{array}{c} 5.\ 0622\\ 5.\ 0616\\ 5.\ 0659\\ 5.\ 0653\end{array}$	5. 0765 5. 0759 5. 0799 5. 0793	$\begin{array}{c} 5.\ 0720 \\ 5.\ 0714 \\ 5.\ 0786 \\ 5.\ 0780 \end{array}$	5. 1872 5. 1866 5. 1909 5. 1903	$\begin{array}{c} 5.\ 2015\\ 5.\ 2009\\ 5.\ 2049\\ 5.\ 2043\\ \end{array}$	5.3122 5.3116 5.3159 5.3153
Ö	read ring		Pitch 6	Plus toler- anee gage	9	<i>in</i> 4. 8221 4. 8227 4. 8287 4. 8293	$\begin{array}{c} 4.8781 \\ 4.8787 \\ 4.8839 \\ 4.8839 \\ 4.8845 \end{array}$	$\begin{array}{c} 4. \ 9372 \\ 4. \ 9378 \\ 4. \ 9409 \\ 4. \ 9415 \end{array}$	4. 9515 4. 9521 4. 9549 4. 9555	$\begin{array}{c} 5.\ 0622\\ 5.\ 0628\\ 5.\ 0659\\ 5.\ 0655\end{array}$	5. 0765 5. 0771 5. 0799 5. 0805	$\begin{array}{c} 5.\ 0720 \\ 5.\ 0726 \\ 5.\ 0726 \\ 5.\ 0792 \end{array}$	5. 1872 5. 1878 5. 1909 5. 1915	$\begin{array}{c} 5.2015\\ 5.2021\\ 5.2049\\ 5.2055\end{array}$	5. 3122 5. 3128 5. 3159 5. 3165
	X th	0		Minor diam- eter	ŝ	<i>in</i> 4. 7257 4. 7257 4. 7242 4. 7293 4. 7278	4.8164 4.8151 4.8195 4.8195	4. 9078 4. 9069 4. 9098 4. 9089	4. 9305 4. 9296 4. 9323 4. 9314	$\begin{array}{c} 5.\ 0328\\ 5.\ 0319\\ 5.\ 0348\\ 5.\ 0339\end{array}$	5. 0555 5. 0546 5. 0573 5. 0564	4. 9757 4. 9742 4. 9793 4. 9778	5. 1578 5. 1569 5. 1598 5. 1589	5. 1805 5. 1796 5. 1823 5. 1814	5. 2828 5. 2819 5. 2848 5. 2839
		9		Piteh diam- eter	4	<i>in</i> 4. 8340 4. 8334 4. 8376 4. 8376	$\begin{array}{r} 4.8886\\ 4.8880\\ 4.8917\\ 4.8911\end{array}$	4. 9439 4. 9433 4. 9459 4. 9453	$\begin{array}{r} 4.9576 \\ 4.9570 \\ 4.9594 \\ 4.9588 \\ 4.9588 \end{array}$	$\begin{array}{c} 5.\ 0689\\ 5.\ 0683\\ 5.\ 0709\\ 5.\ 0703\end{array}$	$\begin{array}{c} 5.0826\\ 5.0820\\ 5.0844\\ 5.0838\\ 5.0838\end{array}$	$\begin{array}{c} 5.0840\\ 5.0834\\ 5.0876\\ 5.0870\end{array}$	5. 1939 5. 1933 5. 1959 5. 1953	$\begin{array}{c} 5.\ 2076\\ 5.\ 2070\\ 5.\ 2094\\ 5.\ 2088 \end{array}$	5. 3189 5. 3183 5. 3209 5. 3209
	Class				er	2.A 3.A	2.A 3.A	2A 3A	2A 3A	$^{2A}_{3A}$	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A
	Series designa- tion			2	NN	UN	NN	UN	NN	NN	UN	UN	UN	UN	
	Nominal size and threads per inch				Т	5.000-4	5.000-6	5.000-12	5.000-16	5.125-12	5.125-16	5.250-4	5. 250-12	$5.250{-}16$	5.375-12

5.375-16	5.500-4	5.500-12	$5,500{-}16$	5.625-12	5.625-16	5.750-4	5.750-12	5.750-16	5.875-12	5.875-16	6, 000-4	6.000-12	6.000-16
UN	NN	ND	UN	NN	NN	NI	UN	UN	NN	UN	UN	NN	NN
2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B
5. 32100 5. 32075 5. 31580 5. 31555	$\begin{array}{c} 5.\ 26700\\ 5.\ 26675\\ 5.\ 25940\\ 5.\ 25915 \end{array}$	$\begin{array}{c} 5.\ 42800\\ 5.\ 42775\\ 5.\ 41980\\ 5.\ 41955\end{array}$	5. 44600 5. 44575 5. 44080 5. 44080	5. 55300 5. 55275 5. 54480 5. 54455	5. 57100 5. 57075 5. 56580 5. 56555	$\begin{array}{c} 5.\ 51700\\ 5.\ 51675\\ 5.\ 50940\\ 5.\ 50915 \end{array}$	5.67800 5.67775 5.60980 5.60955	$\begin{array}{c} 5.69600\\ 5.69575\\ 5.69080\\ 5.69055\end{array}$	$\begin{array}{c} 5.80300\\ 5.80275\\ 5.79480\\ 5.79455\end{array}$	$\begin{array}{c} 5.82100\\ 5.82075\\ 5.81580\\ 5.81550\\ 5.81555\end{array}$	$\begin{array}{c} 5.\ 76700\\ 5.\ 76675\\ 5.\ 75940\\ 5.\ 75915 \end{array}$	$\begin{array}{c} 5.92800\\ 5.92775\\ 5.91980\\ 5.91955 \end{array}$	5. 94600 5. 94575 5. 94080 5. 94055
$\begin{array}{c} 5.30700\\ 5.30725\\ 5.30725\\ 5.30725\\ 5.30725\end{array}$	$\begin{array}{c} 5.\ 22900\\ 5.\ 22925\\ 5.\ 22900\\ 5.\ 22925\end{array}$	$\begin{array}{c} 5.41000\\ 5.41025\\ 5.41000\\ 5.41025\\ 5.41025\end{array}$	$\begin{array}{c} 5.43200\\ 5.43225\\ 5.43220\\ 5.43225\\ 5.43225\end{array}$	$\begin{array}{c} 5.53500\\ 5.53525\\ 5.53525\\ 5.53500\\ 5.53525\end{array}$	$\begin{array}{c} 5.55700\\ 5.55725\\ 5.55725\\ 5.55700\\ 5.55725\end{array}$	$\begin{array}{c} 5.\ 47900\\ 5.\ 47925\\ 5.\ 47925\\ 5.\ 47925\\ 5.\ 47925\end{array}$	$\begin{array}{c} 5.\ 66000\\ 5.\ 66025\\ 5.\ 66020\\ 5.\ 66025\\ 5.\ 66025 \end{array}$	$\begin{array}{c} 5.68200\\ 5.68225\\ 5.68226\\ 5.68200\\ 5.68225\end{array}$	$\begin{array}{c} 5.\ 78500\\ 5.\ 78525\\ 5.\ 78500\\ 5.\ 78525\\ 5.\ 78525\end{array}$	5.80700 5.80725 5.80725 5.80700 5.80725	$\begin{array}{c} 5.72900\\ 5.72925\\ 5.72926\\ 5.72926\\ 5.72925\end{array}$	$\begin{array}{c} 5.91000\\ 5.91025\\ 5.91000\\ 5.91000\\ 5.91025\end{array}$	$\begin{array}{c} 5. \ 93200 \\ 5. \ 93225 \\ 5. \ 93225 \\ 5. \ 93225 \\ 5. \ 93225 \end{array}$
5. 3423 5. 3429 5. 3403 5. 3409	$\begin{array}{c} 5.\ 3534\\ 4.\ 3540\\ 5.\ 3494\\ 5.\ 3500 \end{array}$	$\begin{array}{c} 5.\ 4546\\ 5.\ 4552\\ 5.\ 4525\\ 5.\ 4531\end{array}$	$\begin{array}{c} 5.\ 4673\\ 5.\ 4679\\ 5.\ 4659\\ 5.\ 4659\end{array}$	5.5799 5.5805 5.5776 5.5782	$\begin{array}{c} 5.5925\\ 5.5931\\ 5.5905\\ 5.5911 \end{array}$	$\begin{array}{c} 5.6035\\ 5.6041\\ 5.5995\\ 5.6001 \end{array}$	$\begin{array}{c} 5.\ 7049\\ 5.\ 7055\\ 5.\ 7026\\ 5.\ 7032\end{array}$	5.7175 5.7181 5.7181 5.7165 5.7161	$\begin{array}{c} 5.8299\\ 5.8305\\ 5.8276\\ 5.8282\end{array}$	$\begin{array}{c} 5.8425\\ 5.8431\\ 5.8431\\ 5.8405\\ 5.8411\end{array}$	$\begin{array}{c} 5.8537\\ 5.8543\\ 5.8496\\ 5.8502\\ \end{array}$	$\begin{array}{c} 5. \ 9549 \\ 5. \ 9555 \\ 5. \ 9526 \\ 5. \ 9532 \\ 5. \ 9532 \end{array}$	5, 9675 5, 9681 5, 9681 5, 9661
5. 3423 5. 3417 5. 3403 5. 3397	5. 3534 5. 3528 5. 3494 5. 3488	$\begin{array}{c} 5.\ 4546\\ 5.\ 4540\\ 5.\ 4525\\ 5.\ 4519\end{array}$	5. 4673 5. 4667 5. 4653 5. 4647	5. 5799 5. 5793 5. 5776 5. 5770	5, 5925 5, 5919 5, 5905 5, 5899	5. 6035 5. 6029 5. 5995 5. 5989	$\begin{array}{c} 5.7049 \\ 5.7043 \\ 5.7026 \\ 5.7020 \end{array}$	5. 7175 5. 7169 5. 7155 5. 7149	5. 8299 5. 8293 5. 8276 5. 8270	$\begin{array}{c} 5.8425\\ 5.8419\\ 5.8405\\ 5.8399\\ 5.8399\end{array}$	$\begin{array}{c} 5.8537\\ 5.8531\\ 5.8496\\ 5.8490\\ 5.8490\end{array}$	$\begin{array}{c} 5.9549\\ 5.9543\\ 5.9526\\ 5.9526\\ 5.9520\end{array}$	5. 9675 5. 9669 5. 9655 5. 9649
5.3694 5.3685 5.3674 5.3665	5. 4617 5. 4602 5. 4577 5. 4562	$\begin{array}{c} 5.\ 4907\\ 5.\ 4898\\ 5.\ 4886\\ 5.\ 4877\end{array}$	$\begin{array}{c} 5.\ 4944\\ 5.\ 4935\\ 5.\ 4924\\ 5.\ 4915\end{array}$	$\begin{array}{c} 5.\ 6160\\ 5.\ 6151\\ 5.\ 6137\\ 5.\ 6128\end{array}$	$\begin{array}{c} 5.\ 6196\\ 5.\ 6187\\ 5.\ 6176\\ 5.\ 6167\\ \end{array}$	5. 7118 5. 7103 5. 7078 5. 7063	$\begin{array}{c} 5.\ 7410\\ 5.\ 7401\\ 5.\ 7387\\ 5.\ 7378\end{array}$	$\begin{array}{c} 5.\ 7446\\ 5.\ 7437\\ 5.\ 7426\\ 5.\ 7417\end{array}$	5. 8660 5. 8651 5. 8637 5. 8628	5. 8696 5. 8687 5. 8676 5. 8667	$\begin{array}{c} 5.\ 9620\\ 5.\ 9605\\ 5.\ 9579\\ 5.\ 9564 \end{array}$	$\begin{array}{c} 5. \ 9910 \\ 5. \ 9801 \\ 5. \ 9887 \\ 5. \ 9878 \end{array}$	5, 9946 5, 9937 5, 9926 5, 9917
5. 3344 5. 3350 5. 3344 5. 3350 5. 3350	5. 3376 5. 3382 5. 3382 5. 3382	5. 4459 5. 4465 5. 4465 5. 4465	$\begin{array}{c} 5.4594 \\ 5.4594 \\ 5.4594 \\ 5.4594 \\ 5.4600 \end{array}$	5. 5709 5. 5715 5. 5709 5. 5715	5, 5844 5, 5850 5, 5844 5, 5844	5, 5876 5, 5882 5, 5882 5, 5882	5. 6959 5. 6965 5. 6959 5. 6965	5. 7094 5. 7100 5. 7100 5. 7100	$\begin{array}{c} 5.8209 \\ 5.8215 \\ 5.8209 \\ 5.8215 \\ 5.8215 \end{array}$	$\begin{array}{c} 5.8344 \\ 5.8350 \\ 5.8344 \\ 5.8350 \\ 5.8350 \end{array}$	5, 8376 5, 8382 5, 8382 5, 8382 5, 8382	5.9459 5.9465 5.9465 5.9465	5, 9594 5, 9594 5, 9594 5, 9600
5.3750 5.3759 5.3759 5.3759	5. 5000 5. 5015 5. 5015 5. 5015	5, 5000 5, 5009 5, 5009 5, 5009	5, 5000 5, 5000 5, 5000 5, 5000	5.6250 5.6259 5.6259 5.6259 5.6259	5.6250 5.6259 5.6259 5.6259 5.6259	5. 7500 5. 7515 5. 7515 5. 7515 5. 7515	5. 7500 5. 7509 5. 7509 5. 7509	5. 7500 5. 7509 5. 7509 5. 7509	5.8750 5.8759 5.8759 5.8759 5.8759	5.8759 5.8759 5.8759 5.8759 5.8759	6, 0000 6, 0015 6, 0015 6, 0015	$\begin{array}{c} 6.\ 0000\\ 6.\ 0000\\ 6.\ 0000\\ 6.\ 0000\\ \end{array}$	6. 0000 6. 0000 6. 0000
5.36380 5.36405 5.36560 5.36585 5.36585	$\begin{array}{c} 5.\ 47260\\ 5.\ 47285\\ 5.\ 47620\\ 5.\ 47645\\ 5.\ 47645\end{array}$	$\begin{array}{c} 5.\ 48660\\ 5.\ 48685\\ 5.\ 48885\\ 5.\ 48885\\ 5.\ 48885\end{array}$	$\begin{array}{c} 5.48880\\ 5.48905\\ 4.49060\\ 5.49085\end{array}$	$\begin{array}{c} 5.\ 61150\\ 5.\ 61175\\ 5.\ 61360\\ 5.\ 61385\\ 5.\ 61385\end{array}$	5.61370 5.61395 5.61560 5.61560 5.61585	$\begin{array}{c} 5.72250 \\ 5.72275 \\ 5.72620 \\ 5.72645 \\ 5.72645 \end{array}$	5.73650 5.73675 5.73860 5.73885 5.73885	5.73870 5.73895 5.74060 5.74085	$\begin{array}{c} 5.86150\\ 5.86175\\ 5.86360\\ 5.86360\\ 5.86385 \end{array}$	5. 86370 5. 86395 5. 86560 5. 86560 5. 86585	5.97250 5.97275 5.97620 5.97645	5.98650 5.98675 5.98860 5.98885	5. 98870 5. 98895 5. 99060 5. 99085
$\begin{array}{c} 5.37320\\ 5.37295\\ 5.37500\\ 5.37475\\ \end{array}$	$\begin{array}{c} 5.\ 49640\\ 5.\ 49615\\ 5.\ 50000\\ 5.\ 49975 \end{array}$	$\begin{array}{c} 5.\ 49800\\ 5.\ 49775\\ 5.\ 50000\\ 5.\ 49975 \end{array}$	$\begin{array}{c} 5.\ 49820\\ 5.\ 49795\\ 5.\ 50000\\ 5.\ 49975 \end{array}$	$\begin{array}{c} 5.\ 62290\\ 5.\ 62265\\ 5.\ 62500\\ 5.\ 62475\\ 5.\ 62475 \end{array}$	$\begin{array}{c} 5.\ 62310\\ 5.\ 62285\\ 5.\ 62500\\ 5.\ 62475\\ \end{array}$	$\begin{array}{c} 5.\ 74630\\ 5.\ 74605\\ 5.\ 75000\\ 5.\ 74975\\ 5.\ 74975 \end{array}$	$\begin{array}{c} 5.\ 74790\\ 5.\ 74765\\ 5.\ 75000\\ 5.\ 74975\\ \end{array}$	$\begin{array}{c} 5.\ 74810\\ 5.\ 74785\\ 5.\ 74785\\ 5.\ 74975\\ 5.\ 74975 \end{array}$	$\begin{array}{c} 5.87290 \\ 5.87265 \\ 5.87265 \\ 5.87500 \\ 5.87475 \end{array}$	$\begin{array}{c} 5.87310 \\ 5.87285 \\ 5.87500 \\ 5.87500 \\ 5.87475 \end{array}$	$\begin{array}{c} 5. \ 99630\\ 5. \ 99605\\ 6. \ 00000\\ 5. \ 99975 \end{array}$	$\begin{array}{c} 5. 99790\\ 5. 99765\\ 6. 00000\\ 5. 99975 \end{array}$	$\begin{array}{c} 5.\ 99810\\ 5.\ 99785\\ 6.\ 00000\\ 5.\ 99975 \end{array}$
5.3130 5.3139 5.3139 5.3164 5.3173	$\begin{array}{c} 5.\ 2678\\ 5.\ 2693\\ 5.\ 2744\\ 5.\ 2759\end{array}$	$\begin{array}{c} 5.\ 4192\\ 5.\ 4201\\ 5.\ 4229\\ 5.\ 4238\\ \end{array}$	$\begin{array}{c} 5.4380\\ 5.4389\\ 5.4414\\ 5.4423\\ \end{array}$	$\begin{array}{c} 5.\ 5439\\ 5.\ 5448\\ 5.\ 5477\\ 5.\ 5486\\ 5.\ 5486\end{array}$	$\begin{array}{c} 5, 5628\\ 5, 5637\\ 5, 5662\\ 5, 5662\\ 5, 5671 \end{array}$	$\begin{array}{c} 5.5176\\ 5.5191\\ 5.5243\\ 5.5243\\ 5.5258\end{array}$	$\begin{array}{c} 5.\ 6689\\ 5.\ 6698\\ 5.\ 6727\\ 5.\ 6727\\ 5.\ 6736\end{array}$	$\begin{array}{c} 5.6878\\ 5.6887\\ 5.6912\\ 5.6921\\ 5.6921 \end{array}$	5, 7939 5, 7948 5, 7977 5, 7986	$\begin{array}{c} 5.8128\\ 5.8137\\ 5.8137\\ 5.8162\\ 5.8162\\ 5.8171\end{array}$	5. 7674 5. 7689 5. 7742 5. 7742 5. 7757	$\begin{array}{c} 5.9189\\ 5.9198\\ 5.9227\\ 5.9236\\ \cdot\end{array}$	$\begin{array}{c} 5.9378 \\ 5.9387 \\ 5.9412 \\ 5.9421 \end{array}$
5. 3265 5. 3259 5. 3299 5. 3293	$\begin{array}{c} 5.3219\\ 5.3213\\ 5.3285\\ 5.3285\\ 5.3279\end{array}$	$\begin{array}{c} 5.4372\\ 5.4366\\ 5.4409\\ 5.4403\\ \end{array}$	$\begin{array}{c} 5.\ 4515\\ 5.\ 4520\\ 5.\ 4549\\ 5.\ 4543\\ 5.\ 4543\end{array}$	5. 5619 5. 5613 5. 5657 5. 5657 5. 5651	5.5763 5.5757 5.5797 5.5797 5.5791	5.5717 5.5711 5.5784 5.5784 5.5778	$\begin{array}{c} 5.\ 6869\\ 5.\ 6863\\ 5.\ 6907\\ 5.\ 6901 \end{array}$	$\begin{array}{c} 5.7013 \\ 5.7007 \\ 5.7047 \\ 5.7041 \\ 5.7041 \end{array}$	5. 8119 5. 8113 5. 8157 5. 8157 5. 8151	5.8263 5.8257 5.8297 5.8297 5.8291	5.8215 5.8209 5.8283 5.8283 5.8277	$\begin{array}{c} 5.9369\\ 5.9363\\ 5.9407\\ 5.9407\\ 5.9401 \end{array}$	5.9513 5.9507 5.9547 5.9541
5.3265 5.3271 5.3299 5.3305	5. 3219 5. 3225 5. 3285 5. 3291	$\begin{array}{c} 5.4372\\ 5.4378\\ 5.4409\\ 5.4415\end{array}$	$\begin{array}{c} 5.4515\\ 5.4521\\ 5.4529\\ 5.4549\\ 5.4555\end{array}$	$\begin{array}{c} 5.5619\\ 5.5625\\ 5.5657\\ 5.5663\\ \end{array}$	5. 5763 5. 5769 5. 5797 5. 5803	5.5717 5.5723 5.5784 5.5790	5. 6869 5. 6875 5. 6907 5. 6913	$\begin{array}{c} 5.7013 \\ 5.7019 \\ 5.7047 \\ 5.7053 \end{array}$	5.8119 5.8125 5.8157 5.8157 5.8163	5. 8263 5. 8269 5. 8297 5. 8303	5. 8215 5. 8221 5. 8283 5. 8289	5.9369 5.9375 5.9407 5.9413	5. 9513 5. 9519 5. 9547 5. 9553
5.3055 5.3046 5.3073 5.3064	5. 2257 5. 2242 5. 2293 5. 2293	$\begin{array}{c} 5.\ 4078\\ 5.\ 4069\\ 5.\ 4098\\ 5.\ 4098\end{array}$	5. 4305 5. 4296 5. 4323 5. 4314	$\begin{array}{c} 5.\ 5327\\ 5.\ 5318\\ 5.\ 5348\\ 5.\ 5348\\ 5.\ 5339\end{array}$	5. 5554 5. 5545 5. 5545 5. 5564 5. 5564	5. 4756 5. 4741 5. 4793 5. 4778	5. 6577 5. 6568 5. 6598 5. 6599	$\begin{array}{c} 5.6804 \\ 5.6795 \\ 5.6823 \\ 5.6814 \\ 5.6814 \end{array}$	5. 7827 5. 7818 5. 7848 5. 7848	5. 8054 5. 8045 5. 8073 5. 8064	5. 7256 5. 7241 5. 7293 5. 7293	5. 9077 5. 9068 5. 9098 5. 9089	5. 9304 5. 9295 5. 9323 5. 9314
5. 3326 5. 3320 5. 3344 5. 3338	5. 3340 5. 3334 5. 3334 5. 3376 5. 3370	5. 4439 5. 4433 5. 4459 5. 4459 5. 4453	5. 4576 5. 4570 5. 4594 5. 4588	5. 5688 5. 5682 5. 5709 5. 5703	5. 5825 5. 5819 5. 5844 5. 5838	5. 5839 5. 5833 5. 5876 5. 5870 5. 5870	5. 6938 5. 6932 5. 6932 5. 6959	5. 7075 5. 7069 5. 7094 5. 7088	5. 8188 5. 8182 5. 8209 5. 8203	5.8325 5.8319 5.8344 5.8338	5.8339 5.8333 5.8333 5.8376 5.8370	5. 9438 5. 9432 5. 9459 5. 9453	5.9575 5.9569 5.9584 5.9588
2A 3A	2A 3A	2A 3A	2.A 3.A	2A 3A	2A 3A	2.A 3.A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	$^{2.\Lambda}_{3.\Lambda}$	2A 3A
NN	UN	NN	ПN	UN	NU	NiJ	NIJ	NJ	NA	ПN	CN.	NN	UN
5.375-16	5.500-4	5.500-12	5.500-16	5.625-12	5.625-16	5.750-4	5.750-12	5.750-16	5.875-12	5.875-16	6, 000-4	6.000-12	6. 000–16

TABLE $6.20$ .	Setting	plug	gages,	Unified	screw	threads
----------------	---------	------	--------	---------	-------	---------

N d H p

					W trun	eated settin	ıg pl <b>u</b> gs			E	Basie-erest s	setting plu	gs
Nominal	Series		Plug for	GO threa	nd gage a	Ph	ug for LO	thread gag	e a		Major d	lameter	
size and threads per inch	designa- tion	Class	Major di	ameter	Piteh	Major d	iameter	Piteh d	liameter	Plug f thread	or GO gage ¤,b	Plug thread	for LO gage ^a ,c
			Trun- eated	Full	diameter	Trun- eated	Full	Plus toleranee gage	Minus toleranee gage	W tolerance	X tolerance	W toleranee	X tolerance
1	2	3	4	5	6	7	8	9	10	11A	11B	12A	12B
. 060-80	UNF	2A 3A	in 0. 0561 . 0558 . 0566 . 0563	<i>in</i> 0. 0595 . 0598 . 0600 . 0603	<i>in</i> 0. 0514 . 0513 . 0519 . 0518	<i>in</i> 0. 0550 . 0547 . 0560 . 0557	in 0. 0584 . 0587 0594 . 0597	<i>in</i> 0. 0496 . 0497 . 0506 . 0507	in 0. 0496 . 0495 . 0506 . 0505	<i>in</i> 0. 0595 . 0598 . 0600 . 0603	<i>in</i> 0.0595 .0598 .0600 .0603	<i>in</i> 0. 0584 . 0587 . 0594 . 0597	in 0.0584 .0587 .0594 .0597
. 073-64	UNC	2A 3A	.0684 .0681 .0690 .0687	. 0724 . 0727 . 0730 . 0733	. 0623 . 0622 . 0629 . 0628	.0671 .0668 .0682 .0679	. 0717 . 0720 . 0728 . 0731	0.0603 0.0604 0.0614 0.0615	. 0603 . 0602 . 0614 . 0613	. 0724 . 0727 . 0730 . 0733	. 0724 . 0728 . 0730 . 0734	. 0717 . 0720 . 0728 . 0731	. 0717 . 0721 . 0728 . 0732
. 073-72	UNF	2A 3A	. 0687 . 0684 . 0693 . 0690	. 0724 . 0727 . 0730 . 0733	. 0634 . 0633 . 0640 . 0639	. 0675 . 0672 . 0686 . 0683	. 0715 . 0718 . 0726 . 0729	0615 0616 0626 0627	.0615 .0614 .0626 .0625	. 0724 . 0727 . 0730 . 0733	. 0724 . 0727 . 0730 . 0733	.0715 .0718 .0726 .0729	. 0715 . 0718 . 0726 . 0729
. 086-56	UNC	2A 3A	. 0810 . 0807 . 0816 . 0813	.0854 .0857 .0860 .0863	. 0738 . 0737 . 0744 . 0743	. 0794 . 0791 . 0805 . 0802	. 0850 . 0853 . 0860 . 0863	. 0717 . 0718 . 0728 . 0729	.0717 .0716 .0728 .0727	.0854 .0857 .0860 .0863	. 0854 . 0858 . 0860 . 0864	.0850 .0853 .0860 .0863	. 0850 . 0854 . 0860 . 0864
. 086-64	UNF	2A 3A	0814 0811 0820 0817	. 0854 . 0857 . 0860 . 0863	. 0753 . 0752 . 0759 . 0758	. 0801 . 0798 . 0812 . 0809	. 0847 . 0850 . 0858 . 0861	. 0733 . 0734 . 0744 . 0745	.0733 .0732 .0744 .0743	.0854 .0857 .0860 .0863	.0854 .0858 .0860 .0864	.0847 .0850 .0858 .0861	. 0847 . 0851 . 0858 . 0862
. 099-48	UNC	2A 3A	.0934 .0931 .0941 .0938	. 0983 . 0986 . 0990 . 0993	.0848 .0847 .0855 .0854	. 0915 . 0912 . 0928 . 0925	. 0981 . 0984 . 0990 . 0993	. 0825 . 0826 . 0838 . 0839	. 0825 . 0824 . 0838 . 0837	. 0983 . 0986 . 0990 . 0993	. 0983 . 0987 . 0990 . 0994	.0981 .0984 .0990 .0993	. 0981 . 0985 . 0990 . 0994
. 099-56	UNF	2A 3A	.0939 .0936 .0946 .0943	. 0983 . 0986 . 0990 . 0993	. 0867 . 0866 . 0874 . 0873	. 0922 . 0919 . 0935 . 0932	. 0978 . 0981 . 0990 . 0993	. 0845 . 0846 . 0858 . 0859	.0845 .0844 .0858 .0857	. 0983 . 0986 . 0990 . 0993	. 0983 . 0987 . 0990 . 0994	.0978 .0981 .0990 .0993	.0978 .0982 .0990 .0994
. 112-40	UNC	2A 3A	.1056 .1053 .1064 .1061	.1112 .1115 .1120 .1123	. 0950 . 0949 . 0958 . 0957	. 1033 . 1030 . 1047 . 1044	.1112 .1115 .1120 .1123	. 0925 . 0926 . 0939 . 0940	.0925 .0924 .0939 .0938	.1112 .1115 .1120 .1123	.1112 .1116 .1120 .1124	.1112 .1115 .1120 .1123	.1112 .1116 .1120 .1124
. 112–48	UNF	2A 3A	. 1064 . 1061 . 1071 . 1068	.1113 .1116 .1120 .1123	. 0978 . 0977 . 0985 . 0984	. 1044 . 1041 . 1057 . 1054	.1110 .1113 .1120 .1123	. 0954 . 0955 . 0967 . 0968	. 0954 . 0953 . 0967 . 0966	.1113 .1116 .1120 .1123	.1113 .1117 .1120 .1124	.1110 .1113 .1120 .1123	. 1110 . 1114 . 1120 . 1124
. 125-40	UNC	2A 3A	.1186     .1183     .1194     .1191	. 1242 . 1245 . 1250 . 1253	.1080 .1079 .1088 .1087	.1162 .1159 .1177 .1174	. 1242 . 1245 . 1250 . 1253	. 1054 . 1055 . 1069 . 1070	. 1054 . 1053 . 1069 . 1068	. 1242 . 1245 . 1250 . 1253	.1242 .1246 .1250 .1254	.1242 .1245 .1250 .1253	. 1242 . 1246 . 1250 . 1254
. 125-44	UNF	2A 3A	. 1191 . 1188 . 1198 . 1195	. 1243 . 1246 . 1250 . 1253	. 1095 . 1094 . 1102 . 1101	.1168 .1165 .1181 .1178	. 1240 . 1243 . 1250 . 1253	. 1070 . 1071 . 1083 . 1084	.1070 .1069 .1083 .1082	.1243 .1246 .1250 .1253	.1243 .1247 .1250 .1254	.1240 .1243 .1250 .1253	. 1240 . 1244 . 1250 . 1254
. 138–32	UNC	2A 3A	. 1307 . 1304 . 1315 . 1312	. 1372 . 1375 . 1380 . 1383	.1169 .1168 .1177 .1176	.1276 .1273 .1291 .1288	. 1372 . 1375 . 1380 . 1383	.1141 .1142 .1156 .1157	.1141 .1140 .1156 .1155	. 1372 . 1375 . 1380 . 1383	.1372 .1377 .1380 .1385	. 1372 . 1375 . 1380 . 1383	. 1372 . 1377 . 1380 . 1385
. 138–40	UNF	2A 3A	. 1316 . 1313 . 1324 . 1321	.1372 .1375 .1380 .1383	.1210 .1209 .1218 .1217	$     . 1292 \\     . 1289 \\     . 1306 \\     . 1303   $	. 1372 . 1375 . 1380 . 1383	.1184 .1185 .1198 .1199	. 1184 . 1183 . 1198 . 1197	.1372 .1375 .1380 .1383	. 1372 . 1376 . 1380 . 1384	. 1372 . 1375 . 1380 . 1383	.1372 .1376 .1380 .1384
. 164-32	UNC	2A 3A	.1566 .1563 .1575 .1572	. 1631 . 1634 . 1640 . 1643	.1428 .1427 .1437 .1436	.1534 .1531 .1550 .1547	.1631 .1634 .1640 .1643	.1399 .1400 .1415 .1416	.1399 .1398 .1415 .1414	.1631 .1634 .1640 .1643	.1631 .1636 .1640 .1645	. 1631 . 1634 . 1640 . 1643	.1631 .1636 .1640 .1645
. 164–36	UNF	2A 3A	.1572 .1569 .1580 .1577	.1632 .1635 .1640 .1643	.1452 .1451 .1460 .1459	.1544 .1541 .1559 .1556	. 1632 . 1635 . 1640 . 1643	.1424 .1425 .1439 .1440	.1424 .1423 .1439 .1438	.1632 .1635 .1640 .1643	.1632 .1636 .1640 .1644	.1632 .1635 .1640 .1643	.1632 .1636 .1640 .1644
. 190–24	UNC	2A 3A	.1811 .1806 .1821 .1816	. 1890 . 1895 . 1900 . 1905	.1619 .1618 .1629 .1628	. 1766 . 1761 . 1784 . 1779	. 1890 . 1895 . 1900 . 1905	.1586 .1587 .1604 .1605	.1586 .1585 .1604 .1603	. 1890 . 1895 . 1900 . 1905	. 1890 . 1895 . 1900 . 1905	. 1890 . 1895 . 1900 . 1905	. 1890 . 1895 . 1900 . 1905

					W trun	eated settin	g plugs			В	as <b>ie-e</b> rest s	setting plu	gs
Nominal	Series		Plug for	GO threa	ad gage a	Ph	ig for LO	thread gag	e a		Major d	liameter	· · · · · · · · · · · · · · · · · · ·
size and threads per inch	designa- tion	Class	Major d	iameter	Piteh	Major di	iameter	Piteh d	iameter	Plug f thread	or GO gage ^{a,b}	Plug thread	for LO gage ^{a,c}
			Trun- eated	Full	diameter	Trun- cated	Full	Plus tolerance gage	Minus toleranee gage	W toleranee	X tolerance	W tolerance	X toleranee
1	2	3	4	5	6	7	8	9	10	11A	11B	12A	12B
. 190–32	UNF	2A 3A	in 0. 1826 . 1823 . 1835 . 1832	in 0. 1891 . 1894 . 1900 . 1903	$in \\ 0.1688 \\ .1687 \\ .1697 \\ .1696$	in 0. 1793 . 1790 . 1809 . 1806	in 0. 1891 . 1894 . 1900 . 1903	$in \\ 0.1658 \\ .1659 \\ .1674 \\ .1675$	<i>in</i> 0. 1658 . 1657 . 1674 . 1673	<i>in</i> 0. 1891 . 1894 . 1900 . 1903	in 0. 1891 . 1896 . 1900 . 1905	<i>in</i> 0. 1891 . 1894 . 1900 . 1903	in 0. 1891 . 1896 . 1900 . 1905
. 216–24	UNC	2A 3A	. 2071 . 2066 . 2081 . 2076	$\begin{array}{c} .\ 2150\\ .\ 2155\\ .\ 2160\\ .\ 2165\end{array}$	. 1879 . 1878 . 1889 . 1888	$\begin{array}{c} .\ 2025\\ .\ 2020\\ .\ 2043\\ .\ 2038 \end{array}$	$\begin{array}{c} .\ 2150 \\ .\ 2155 \\ .\ 2160 \\ .\ 2165 \end{array}$	.1845 .1846 .1863 .1864	. 1845 . 1844 . 1863 . 1862	$\begin{array}{c} .\ 2150\\ .\ 2155\\ .\ 2160\\ .\ 2165\end{array}$	2150 2155 2160 2165	2150 2155 2160 2165	.2150 .2155 .2160 .2165
. 216–28	UNF	2A 3A	.2079 .2074 .2089 .2084	$\begin{array}{c} .\ 2150\\ .\ 2155\\ .\ 2160\\ .\ 2165\end{array}$	. 1918 . 1917 . 1928 . 1927	2041 2036 2059 2054	2150 2155 2160 2165	. 1886 . 1887 . 1904 . 1905	. 1886 . 1885 . 1904 . 1903	2150 2155 2160 2165	$\begin{array}{r} .\ 2150\\ .\ 2155\\ .\ 2160\\ .\ 2165\end{array}$	2150 2155 2160 2165	.2150 .2155 .2160 .2165
. 216–32	UNEF	2A 3A	. 2086 . 2083 . 2095 . 2092	.2151 .2154 .2160 .2163	. 1948 . 1947 . 1957 . 1956	2052 2049 2068 2065	.2151 .2154 .2160 .2163	. 1917 . 1918 . 1933 . 1934	.1917 .1916 .1933 .1932	. 2151 . 2154 . 2160 . 2163	2151 2156 2160 2165	.2151 .2154 .2160 .2163	.2151 .2156 .2160 .2165
. 250-20	UNC	1A 2A 3A	.2399 .2394 .2399 .2394 .2394 .2410 .2405	. 2489 . 2494 . 2489 . 2494 . 2500 . 2505	$\begin{array}{c} .\ 2164\\ .\ 2163\\ .\ 2164\\ .\ 2163\\ .\ 2163\\ .\ 2175\\ .\ 2174\end{array}$	2325 2320 2344 2339 2364 2359	. 2483 . 2488 . 2489 . 2494 . 2500 . 2505	$\begin{array}{c} .\ 2108\\ .\ 2109\\ .\ 2127\\ .\ 2128\\ .\ 2147\\ .\ 2148\end{array}$	$\begin{array}{r} .\ 2108\\ .\ 2107\\ .\ 2127\\ .\ 2126\\ .\ 2147\\ .\ 2146\end{array}$	.2489 .2494 .2489 .2489 .2494 .2500 .2505	$\begin{array}{r} .\ 2489\\ .\ 2494\\ .\ 2489\\ .\ 2494\\ .\ 2494\\ .\ 2500\\ .\ 2505\end{array}$	$\begin{array}{r} .\ 2483\\ .\ 2488\\ .\ 2489\\ .\ 2494\\ .\ 2500\\ .\ 2505\end{array}$	.2483 .2488 .2489 .2494 .2500 .2505
. 250–28	UNF	1A 2A 3A	2419 2414 2419 2419 2414 2429 2424	. 2490 . 2495 . 2490 . 2495 . 2500 . 2505	$\begin{array}{c} .\ 2258\\ .\ 2257\\ .\ 2258\\ .\ 2257\\ .\ 2268\\ .\ 2267\\ .\ 2267\end{array}$	2363 2358 2380 2375 2398 2398 2393	.2476 .2481 .2490 .2495 .2500 .2505	$\begin{array}{r} .\ 2208\\ .\ 2209\\ .\ 2225\\ .\ 2226\\ .\ 2243\\ .\ 2244\end{array}$	2208 2207 2225 2224 2243 2243 2242	2490 2495 2490 2490 2495 2500 2505	2490 2495 2490 2490 2495 2506 2505	2476 2481 2490 2495 2500 2505	2476 2481 2490 2495 2500 2505
. 250–32	UNEF	2A 3A	2425 2422 2435 2435 2432	. 2490 . 2493 . 2500 . 2503	2287 2286 2297 2296	$.2390 \\ .2387 \\ .2408 \\ .2405 $	. 2489 . 2492 . 2500 . 2503	2255 2256 2273 2274	2255 2254 2273 2273 2272	.2490 .2493 .2500 .2503	.2490 .2495 .2500 .2505	.2489 .2492 .2500 .2503	$     \begin{array}{r}       .2489 \\       .2494 \\       .2500 \\       .2505     \end{array} $
. 3125-18	UNC	1A 2A 3A	$\begin{array}{r} .\ 3016\\ .\ 3011\\ .\ 3016\\ .\ 3011\\ .\ 3028\\ .\ 3023\end{array}$	. 3113 . 3118 . 3113 . 3113 . 3118 . 3125 . 3130	$\begin{array}{r} .\ 2752\\ .\ 2751\\ .\ 2752\\ .\ 2751\\ .\ 2751\\ .\ 2764\\ .\ 2763\end{array}$	$\begin{array}{r} .\ 2932\\ .\ 2927\\ .\ 2953\\ .\ 2948\\ .\ 2975\\ .\ 2970\end{array}$	. 3108 . 3113 . 3113 . 3113 . 3118 . 3125 . 3130	$\begin{array}{r} .\ 2691\\ .\ 2692\\ .\ 2712\\ .\ 2713\\ .\ 2734\\ .\ 2735\end{array}$	$\begin{array}{r} .\ 2691 \\ .\ 2690 \\ .\ 2712 \\ .\ 2711 \\ .\ 2734 \\ .\ 2733 \end{array}$	$\begin{array}{c} .\ 3113\\ .\ 3113\\ .\ 3113\\ .\ 3118\\ .\ 3125\\ .\ 3130\end{array}$	.3113 .3118 .3113 .3113 .3118 .3125 .3130	.3108 .3113 .3113 .3113 .3118 .3125 .3130	$\begin{array}{c} .3108\\ .3113\\ .3113\\ .3118\\ .3125\\ .3125\\ .3130\end{array}$
. 3125–20	UN	2A 3A	. 3023 . 3018 . 3035 . 3030	.3113 .3118 .3125 .3130	. 2788 . 2787 . 2800 . 2799	. 2965 . 2960 . 2987 . 2982	.3113 .3118 .3125 .3130	.2748 .2749 .2770 .2770 .2771	2748 2747 2770 2769	$\begin{array}{c} .\ 3113\\ .\ 3118\\ .\ 3125\\ .\ 3130 \end{array}$	$     . 3113 \\     . 3118 \\     . 3125 \\     . 3130   $	$.3113 \\ .3118 \\ .3125 \\ .3130$	.3113 .3118 .3125 .3130
. 3125-24	UNF	1 A 2 A 3 A	$\begin{array}{r} . \ 3035 \\ . \ 3030 \\ . \ 3035 \\ . \ 3030 \\ . \ 3046 \\ . \ 3041 \end{array}$	. 3114 . 3119 . 3114 . 3119 . 3125 . 3130	$\begin{array}{r} .\ 2843\\ .\ 2842\\ .\ 2843\\ .\ 2843\\ .\ 2842\\ .\ 2854\\ .\ 2853\end{array}$	. 2968 . 2963 . 2986 . 2981 . 3007 . 3002	. 3100 . 3105 . 3114 . 3119 . 3125 . 3130	$\begin{array}{r} .\ 2788\\ .\ 2789\\ .\ 2806\\ .\ 2807\\ .\ 2827\\ .\ 2828\end{array}$	$\begin{array}{r} .\ 2788\\ .\ 2787\\ .\ 2806\\ .\ 2805\\ .\ 2827\\ .\ 2826\end{array}$	$\begin{array}{c c} & .\ 3114 \\ & .\ 3119 \\ & .\ 3114 \\ & .\ 3119 \\ & .\ 3125 \\ & .\ 3130 \end{array}$	$\begin{array}{c} .\ 3114\\ .\ 3119\\ .\ 3114\\ .\ 3119\\ .\ 3125\\ .\ 3130\\ \end{array}$	.3100 .3105 .3114 .3119 .3125 .3130	$egin{array}{c} .3100\ .3105\ .3114\ .3119\ .3125\ .3125\ .3130 \end{array}$
. 3125–28	UN	2A 3A	. 3044 . 3039 . 3054 . 3049	. 3115 . 3120 . 3125 . 3130	$\begin{array}{r} .\ 2883\\ .\ 2882\\ .\ 2893\\ .\ 2892\end{array}$	.3004 .2999 .3022 .3017	.3115 .3120 .3125 .3130	$     . 2849 \\     . 2850 \\     . 2867 \\     . 2868 $	.2849 .2848 .2867 .2866	$\begin{array}{r} .\ 3115\\ .\ 3120\\ .\ 3125\\ .\ 3130\end{array}$	.3115 .3120 .3125 .3130	.3115 .3120 .3125 .3130	.3115 .3120 .3125 .3130
. 3125-32	UNEF	2A 3A	. 3050 . 3047 . 3060 . 3057	. 3115 . 3118 . 3125 . 3128	$\begin{array}{c} .\ 2912\\ .\ 2911\\ .\ 2922\\ .\ 2921\end{array}$	.3015 .3012 .3033 .3030	.3114 .3117 .3125 .3128	$     \begin{array}{r}         2880 \\         2881 \\         2898 \\         2899 \\         2899     \end{array} $	.2880 .2879 .2898 .2897	.3115 .3118 .3125 .3128	.3115 .3120 .3125 .3130	.3114 .3117 .3125 .3128	. 3114 . 3119 . 3125 . 3130
. 375–16	UNC	1A 2A 3A	$\begin{array}{r} .3632\\ .3626\\ .3632\\ .3626\\ .3645\\ .3639\end{array}$	. 3737 . 3743 . 3737 . 3743 . 3750 . 3756	$\begin{array}{r} .\ 3331\\ .\ 3330\\ .\ 3331\\ .\ 3330\\ .\ 3344\\ .\ 3343\end{array}$	. 3537     . 3531     . 3558     . 3552     . 3582     . 3576	. 3735 . 3741 . 3737 . 3743 . 3750 . 3756	.3266 .3267 .3287 .3288 .3311 .3312	$\begin{array}{r} .\ 3266\\ .\ 3265\\ .\ 3287\\ .\ 3286\\ .\ 3311\\ .\ 3310\end{array}$	. 3737 . 3743 . 3737 . 3743 . 3759 . 3756	.3737 .3743 .3737 .3737 .3743 .3750 .3756	.3735 .3741 .3737 .3743 .3750 .3756	. 3735 . 3741 . 3737 . 3743 . 3750 . 3750
. 375–20	UN	2A 3A	.3648 .3643 .3660 .3655	. 3738 . 3743 . 3750 . 3755	.3413 .3412 .3425 .3424	.3589 .3584 .3611 .3606	.3738 .3743 .3750 .3755	.3372 .3373 .3394 .3395	.3372 .3371 .3394 .3393	$     \begin{array}{r}         3738 \\         3743 \\         3750 \\         3755     \end{array} $	$     \begin{array}{r}         .3733 \\         .3743 \\         .3750 \\         .3755     \end{array} $	. 3738 . 3743 . 3750 . 3755	. 3738 . 3743 . 3750 . 3755

					W trune	eated settin	g plugs			E	asie-erest s	setting plug	;S
Nominal	Series		Plug for	GO threa	id gage a	Plu	ig for LO	thread gag	e a		Major d	liameter	
size and threads per inch	designa- tion	Class	Major di	ameter	Piteh	Major di	iameter	Piteh d	liameter	Plug f thread	or GO gage ^{a,b}	Plug f thread	or LO gage a,c
			Trun- eated	Full	diameter	Trun- eated	Full	Plus toleranee gage	Minus toleranee gage	W toleranee	X toleranee	W toleranee	$\mathbf{X}$ toleranee
1	2	3	4	5	6	7	8	9	10	11A	11B	12A	12B
. 375-24	UNF	1A 2A 3A	<i>in</i> 0.3660 .3655 .3660 .3655 .3671 .3666	in 0. 3739 . 3744 . 3739 . 3744 . 3750 . 3755	in 0.3468 .3467 .3468 .3467 .3479 .3479 .3478	in 0.3591 .3586 .3610 .3605 .3630 .3625	in 0. 3724 . 3729 . 3739 . 3744 . 3750 . 3755	$in\\0.3411\\.3412\\.3430\\.3431\\.3450\\.3451$		$ \begin{smallmatrix} in \\ 0.3739 \\ .3744 \\ .3739 \\ .3744 \\ .3750 \\ .3750 \\ .3755 \end{smallmatrix} $	in 0.3739 .3744 .3739 .3744 .3750 .3755	in 0. 3724 . 3729 . 3739 . 3744 . 3750 . 3755	in 0.3724 .3729 .3739 .3744 .3750 .3755
. 375–28	UN	2A 3A	. 3668 . 3663 . 3679 . 3674	.3739 .3744 .3750 .3755	.3507 .3506 .3518 .3517	$.3626 \\ .3621 \\ .3646 \\ .3641$	. 3739 . 3744 . 3750 . 3755	.3471 .3472 .3491 .3492	$     \begin{array}{r}       .3471 \\       .3470 \\       .3491 \\       .3490 \\       .3490     \end{array} $	.3739 .3744 .3750 .3755	.3739 .3744 .3750 .3755	.3739 .3744 .3750 .3755	. 3739 . 3744 . 3750 . 3755
. 375–32	UNEF	2A 3A	$     \begin{array}{r}             .3675 \\             .3672 \\             .3685 \\             .3682 \\         \end{array}     $	.3740 .3743 .3750 .3753	.3537 .3536 .3547 .3546	$.3638 \\ .3635 \\ .3657 \\ .3654$	. 3737 . 3740 . 3750 . 3753	.3503 .3504 .3522 .3523	$     \begin{array}{r}         .3503 \\         .3502 \\         .3522 \\         .3521     \end{array} $	.3740 .3743 .3750 .3753	.3740 .3745 .3750 .3755	.3737 .3740 .3750 .3753	. 3737 . 3742 . 3750 . 3755
. 4375–14	UNC	1A 2A 3A	.4246 .4240 .4246 .4240 .4240 .4260 .4254	. 4361 . 4367 . 4361 . 4367 . 4375 . 4375 . 4381	. 38970 . 38955 . 38970 . 38955 . 39110 . 39095	$     . 4135 \\     . 4129 \\     . 4159 \\     . 4153 \\     . 4185 \\     . 4179   $	. 4361 . 4367 . 4361 . 4367 . 4375 . 4381	. 38260 . 38275 . 38500 . 38515 . 38760 . 38775	.38260 .38245 .38500 .38485 .38760 .38745	$\begin{array}{c} .\ 4361\\ .\ 4367\\ .\ 4361\\ .\ 4367\\ .\ 4367\\ .\ 4375\\ .\ 4381\end{array}$	.4361 .4367 .4361 .4367 .4367 .4375 .4381	.4361 .4367 .4361 .4367 .4367 .4375 .4381	. 4361 . 4367 . 4361 . 4367 . 4375 . 4381
. 4375–16	UN	2A 3A	$     \begin{array}{r}       4256 \\       4250 \\       4270 \\       4264 \\     \end{array} $	. 4361 . 4367 . 4375 . 4381	. 3955 . 3954 . 3969 . 3968	.4180 .4174 .4206 .4200	. 4361 . 4367 . 4375 . 4381	$     \begin{array}{r}       .3909 \\       .3910 \\       .3935 \\       .3936     \end{array} $	. 3909 . 3908 . 3935 . 3934	.4361 .4367 .4375 .4381	.4361 .4367 .4375 .4381	.4361 .4367 .4375 .4381	.4361 .4367 .4375 .4381
. 4375-20	UNF	1A 2A 3A	$\begin{array}{r} .\ 4272 \\ .\ 4267 \\ .\ 4272 \\ .\ 4267 \\ .\ 4267 \\ .\ 4285 \\ .\ 4280 \end{array}$	. 4362 . 4367 . 4362 . 4367 . 4375 . 4380	$\begin{array}{r} .\ 4037\\ .\ 4036\\ .\ 4037\\ .\ 4036\\ .\ 4050\\ .\ 4049\end{array}$	.4191 .4186 .4212 .4207 .4236 .4231	$     . 4350 \\     . 4355 \\     . 4362 \\     . 4367 \\     . 4375 \\     . 4380 $	.3974 .3975 .3995 .3996 .4019 .4020	.3974 .3973 .3995 .3994 .4019 .4018	$\begin{array}{c c} . \ 4362 \\ . \ 4367 \\ . \ 4362 \\ . \ 4367 \\ . \ 4367 \\ . \ 4375 \\ . \ 4380 \end{array}$	.4362 .4367 .4362 .4367 .4367 .4375 .4380	.4350 .4355 .4362 .4367 .4367 .4375 .4380	. 4350 . 4355 . 4362 . 4367 . 4375 . 4380
. 4375-28	UNEF	2A 3A	$     . 4293 \\     . 4288 \\     . 4304 \\     . 4299   $	. 4364     . 4369     . 4375     . 4380	.4132 .4131 .4143 .4143 .4142	$\begin{array}{r} .\ 4251 \\ .\ 4246 \\ .\ 4271 \\ .\ 4266 \end{array}$	$     . 4364 \\     . 4369 \\     . 4375 \\     . 4380 $	.4096 .4097 .4116 .4117	$ \begin{array}{r} . 4096 \\ . 4095 \\ . 4116 \\ . 4115 \end{array} $	$ \begin{array}{r}     . 4364 \\     . 4369 \\     . 4375 \\     . 4380 \\ \end{array} $	$     . 4364 \\     . 4369 \\     . 4375 \\     . 4380 $	$.4364 \\ .4369 \\ .4375 \\ .4380$	.4364 .4369 .4375 .4380
. 4375-32	UN	2A 3A	$     \begin{array}{r}       4300 \\       4297 \\       4310 \\       4307     \end{array} $	. 4365     . 4368     . 4375     . 4378	.4162 .4161 .4172 .4171	.4263 .4260 .4282 .4279	$     . 4362 \\     . 4365 \\     . 4375 \\     . 4378 $	.4128 .4129 .4147 .4148	.4128 .4127 .4147 .4147 .4146	. 4365 . 4368 . 4375 . 4378	. 4365     . 4370     . 4375     . 4380	.4362 .4365 .4375 .4378	.4362 .4367 .4375 .4380
. 500–13	UNC	1A 2A 3A	.4863     .4857     .4863     .4857     .4857     .4878     .4872     .4872     .	. 4985 . 4991 . 4985 . 4991 . 5000 . 5006	.44850 .44835 .44850 .44835 .45000 .44985	.4744 .4738 .4768 .4762 .4796 .4790	. 4985 . 4991 . 4985 . 4991 . 5000 . 5006	.44110 .44125 .44350 .44365 .44630 .44645	.44110 .44095 .44350 .44335 .44630 .44615	. 4985 . 4991 . 4985 . 4991 . 5000 11 . 5006	.4985 .4991 .4985 .4991 .5000 .5006	. 4985 . 4991 . 4985 . 4991 . 5000 . 5006	. 4985 . 4991 . 4985 . 4991 . 5000 . 5006
. 500–16	UN	2A 3A	. 4881 . 4875 . 4895 . 4889	. 4986 . 4992 . 5000 . 5006	. 4580 . 4579 . 4594 . 4593	. 4804 . 4798 . 4830 . 4824	. 4986 . 4992 . 5000 . 5006	$\begin{array}{r} .4533\\ .4534\\ .4559\\ .4560\end{array}$	. 4533 . 4532 . 4559 . 4558	. 4986 . 4992 . 5000 . 5006	. 4986 . 4992 . 5000 . 5006	. 4986 . 4992 . 5000 . 5006	. 4986 . 4992 . 5000 . 5006
. 500-20	UNF	1A 2A 3A	$\begin{array}{r} . \ 4897 \\ . \ 4892 \\ . \ 4897 \\ . \ 4892 \\ . \ 4910 \\ . \ 4905 \end{array}$	. 4987 . 4992 . 4987 . 4992 . 5000 . 5005	.4662 .4661 .4662 .4661 .4675 .4674	. 4815     . 4810     . 4836     . 4831     . 4860     . 4855	. 4973 . 4978 . 4987 . 4992 . 5000 . 5005	$\begin{array}{c c} .4598\\ .4599\\ .4619\\ .4620\\ .4643\\ .4644\end{array}$	.4598 .4597 .4619 .4618 .4643 .4643	. 4987 . 4992 . 4987 . 4992 . 5000 . 5005	$\begin{array}{r} .\ 4987\\ .\ 4992\\ .\ 4987\\ .\ 4992\\ .\ 5000\\ .\ 5005\end{array}$	$\begin{array}{r} .\ 4973 \\ .\ 4978 \\ .\ 4987 \\ .\ 4987 \\ .\ 5000 \\ .\ 5005 \end{array}$	. 4973 . 4978 . 4987 . 4992 . 5000 . 5005
. 500-28	UNEF	2A 3A	.4918 .4913 .4929 .4924	. 4989 . 4994 . 5000 . 5005	.4757 .4756 .4768 .4767	. 4875     . 4870     . 4895     . 4890	. 4988 . 4993 . 5000 . 5005	.4720 .4721 .4740 .4741	$. 4720 \\ . 4719 \\ . 4740 \\ . 4739$	.4989 .4994 .5000 .5005	.4989 .4994 .5000 .5005	. 4988 . 4993 . 5000 . 5005	. 4988 . 4993 . 5000 . 5005
. 500-32	UN	2A 3A	.4925 .4922 .4935 .4932	. 4990 . 4993 . 5000 . 5003	.4787 .4786 .4797 .4796	. 4887 . 4884 . 4906 . 4903	. 4986 . 4989 . 5000 . 5003	. 4752 . 4753 . 4771 . 4772	. 4752 . 4751 . 4771 . 4770	. 4990 . 4993 . 5000 . 5003	. 4990 . 4995 . 5000 . 5005	. 4986 . 4989 . 5000 . 5003	. 4986 . 4991 . 5000 . 5005

No th

					W tru	ncated setting	plugs			Basic-crests	setting plugs
			Plug for	GO thread	gage a	P	lug for LO	thread gage ^a		Major d	liameter
Nominal size and threads per inch	Serics des- ignation	Class	Major di	umeter	Pitch diameter	Major dia	ameter	Pitch di	ameter	Plug for GO thread gage a,b	Plug for LO thread gage a,c
			Truncated	Full		Truncated	Full	Plus toler- ance gage	Minus tolerance gage	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
. 5625–12	UNC	1A 2A 3A	$in \\ 0.5480 \\ .5474 \\ .5480 \\ .5474 \\ .5496 \\ .5490$	$in \\ 0.5609 \\ .5615 \\ .5609 \\ .5615 \\ .5615 \\ .5625 \\ .5631$	$in \\ 0.5068 \\ .5066 \\ .5068 \\ .5068 \\ .5084 \\ .5084 \\ .5082$	$in \\ 0.5351 \\ .5345 \\ .5377 \\ .5371 \\ .5406 \\ .5400$	$in \\ 0.5609 \\ .5615 \\ .5609 \\ .5615 \\ .5615 \\ .5625 \\ .5631$	in 0.4990 .4992 .5016 .5018 .5045 .5045	in 0. 4990 . 4988 . 5016 . 5014 . 5045 . 5043	$in \\ 0.5609 \\ .5615 \\ .5609 \\ .5615 \\ .5625 \\ .5631$	$in \\ 0.5609 \\ .5615 \\ .5609 \\ .5615 \\ .5625 \\ .5625 \\ .5631$
. 5625-16	UN	2A 3A	.5506     .5500     .5520     .5514	$\begin{array}{r} .5611 \\ .5617 \\ .5625 \\ .5631 \end{array}$	5205 5203 5219 5217	.5429     .5423     .5455     .5449	.5611 .5617 .5625 .5631	.5158 .5160 .5184 .5186	.5158 .5156 .5184 .5182	.5611 .5617 .5625 .5631	$\begin{array}{c} .5611 \\ .5617 \\ .5625 \\ .5631 \end{array}$
. 5625–18	UNF	1A 2A 3A	. 5514 . 5509 . 5514 . 5509 . 5528 . 5528 . 5523	.5611 .5616 .5611 .5616 .5625 .5630	.52500 .52485 .52500 .52485 .52640 .52625	$     \begin{array}{r}       5423 \\       5418 \\       5446 \\       5441 \\       5471 \\       5466 \\     \end{array} $	5599 5604 5611 5616 5625 5630	51820 51835 52050 52065 52300 52315	51820 51805 52050 52035 52300 52285	.5611 .5616 .5611 .5616 .5625 .5630	5599 5604 5611 5616 5625 5630
. 5625–20	UN	2A 3A	.5522 .5517 .5535 .5530	$     . 5612 \\     . 5617 \\     . 5625 \\     . 5630 $	. 52870 . 52855 . 53000 . 52985	.5462     .5457     .5485     .5480	.5612 .5617 .5625 .5630	$\begin{array}{c} .52450 \\ .52465 \\ .52680 \\ .52695 \end{array}$	.52450 .52435 .52680 .52665	.5612 .5617 .5625 .5630	.5612 .5617 .5625 .5630
. 5625–24	UNEF	2A 3A	$     \begin{array}{r}         .5534 \\         .5529 \\         .5546 \\         .5541 \\         $	$\begin{array}{r} .5613 \\ .5618 \\ .5625 \\ .5630 \end{array}$	.53420 .53405 .53540 .53525	.5483     .5478     .5505     .5500	.5613 .5618 .5625 .5630	. 53030 . 53045 . 53250 . 53265	. 53030 . 53015 . 53250 . 53235	.5613 .5618 .5625 .5630	$\begin{array}{r} .5613 \\ .5618 \\ .5625 \\ .5630 \end{array}$
. 5625-28	UN	2A 3A	$     \begin{array}{r}         .5543 \\         .5538 \\         .5554 \\         .5549 \\         .5549     \end{array} $	$     . 5614 \\     . 5619 \\     . 5625 \\     . 5630 $	.53820 .53805 .53930 .53915	.5500 .5495 .5520 .5515	.5613 .5618 .5625 .5630	. 53450 . 53465 . 53650 . 53665	$\begin{array}{c} . 53450 \\ . 53435 \\ . 53650 \\ . 53635 \end{array}$	.5614 .5619 .5625 .5630	.5613 .5618 .5625 .5630
. 5625–32	UN	2A 3A	$     .5550 \\     .5545 \\     .5560 \\     .5555     .   $	.5615     .5620     .5625     .5630	.54120 .54105 .54220 .54205	.5512 .5507 .5531 .5526	.5611 .5616 .5625 .5630	. 53770 . 53785 . 53960 . 53975	53770 53755 53960 53945	.5615 .5620 .5625 .5630	.5611 .5616 .5625 .5630
. 625-11	UNC	1A 2A 3A	$\begin{array}{r} . \ 6097 \\ . \ 6091 \\ . \ 6097 \\ . \ 6091 \\ . \ 6091 \\ . \ 6113 \\ . \ 6107 \end{array}$	.6234 .6240 .6234 .6240 .6250 .6256	5644 5642 5644 5642 5660 5658	5955 5949 5983 5977 6013 6007	.6234 .6240 .6234 .6240 .6250 .6256	5561 5563 5589 5591 5619 5621	. 5561 . 5559 . 5589 . 5587 . 5619 . 5617	.6234 .6240 .6234 .6240 .6250 .6256	. 6234 . 6240 . 6234 . 6240 . 6250 . 6256
. 625–12	UN	2A 3A	.6105 .6099 .6121 .6115	$\begin{array}{c} .6234\\ .6240\\ .6250\\ .6256\end{array}$	. 5693 . 5691 . 5709 . 5707	.6000 .5994 .6029 .6023	. 6234 . 6240 . 6250 . 6256	$\begin{array}{c} .\ 5639 \\ .\ 5641 \\ .\ 5668 \\ .\ 5670 \end{array}$	. 5639 . 5637 . 5668 . 5666	.6234 .6240 .6250 .6256	.6234 .6240 .6250 .6256
. 625-16	UN	2A 3A	$     \begin{array}{r}         .6131 \\         .6125 \\         .6145 \\         .6139     \end{array} $	.6236 .6242 .6250 .6256	.5830     .5828     .5844     .5842	. 6053 . 6047 . 6079 . 6073	.6236 .6242 .6250 .6256	. 5782 . 5784 . 5808 . 5810	. 5782 . 5780 . 5808 . 5806	.6236 .6242 .6250 .6256	.6236 .6242 .6250 .6256
. 625-18	UNF	1A 2A 3A	$\begin{array}{c} .\ 6139\\ .\ 6134\\ .\ 6139\\ .\ 6134\\ .\ 6153\\ .\ 6148\end{array}$	.6236 .6241 .6236 .6241 .6250 .6255	. 58750 . 58735 . 58750 . 58735 . 58890 . 58875	$\begin{array}{r} . \ 6046 \\ . \ 6041 \\ . \ 6069 \\ . \ 6064 \\ . \ 6095 \\ . \ 6090 \end{array}$	.6222 .6227 .6236 .6241 .6250 .6255	.58050 .58065 .58280 .58295 .58540 .58555	.58050 .58035 .58280 .58265 .58540 .58525	.6236 .6241 .6236 .6241 .6250 .6255	. 6222 . 6227 . 6236 . 6241 . 6250 . 6255
. 625–20	UN	2A 3A	.6147 .6142 .6160 .6155	$\begin{array}{c} . \ 6237 \\ . \ 6242 \\ . \ 6250 \\ . \ 6255 \end{array}$	59120 59105 59250 59235	$ \begin{array}{c} . 6086 \\ . 6081 \\ . 6110 \\ . 6105 \end{array} $	. 6237 . 6242 . 6250 . 6255	. 58690 . 58705 . 58930 . 58945	.58690 .58675 .58930 .58915	.6237 .6242 .6250 .6255	.6237 .6242 .6250 .6255
. 625-24	UNEF	2A 3A	.6159 .6154 .6171 .6166	$\begin{array}{c} .6238\\ .6243\\ .6250\\ .6255\end{array}$	. 59670 . 59655 . 59790 . 59775	.6107 .6102 .6129 .6124	.6238 .6243 .6250 .6255	59270 59285 59490 59505	.59270 .59255 .59490 .59475	.6238 .6243 .6250 .6255	.6238 .6243 .6250 .6255
. 625-28	UN	2A 3A	$\begin{array}{c} . \ 6168 \\ . \ 6163 \\ . \ 6179 \\ . \ 6174 \end{array}$	.6239 .6244 .6250 .6255	.60070 .60055 .60180 .60165	.6124 .6119 .6145 .6140	.6237 .6242 .6250 .6255	.59690 .59705 .59900 .59915	.59690 .59675 .59900 .59885	.6239 .6244 .6250 .6255	.6237 .6242 .6250 .6255

See footnotes at end of table.

-

					W trui	neated setting	plugs			Basie-erests	etting plugs
			Plug for	GO thread	gage a	Р	lug for LO	thread gage ^a		Major d	liameter
Nominal size and threads per inch	Series des- ignation	Class	Major dia	nmeter	Piteh diameter	Major di	ameter	Piteh di	ameter	Plug for GO thread gage ^{a,b}	Plug for LO thread gage a.c
			Truneated	Full		Truneated	Full	Plus toler- anee gage	Minus toleranee gage	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
. 625–32	UN	2A 3A	in . 6174 . 6169 . 6185 . 6180	in . 6239 . 6244 . 6250 . 6255	<i>in</i> . 60360 . 60345 . 60470 . 60455	$in \\ . 6135 \\ . 6130 \\ . 6155 \\ . 6150$	in . 6234 . 6239 . 6250 . 6255	<i>in</i> . 60000 . 60015 . 60200 . 60215	in . 60000 . 59985 . 60200 . 60185	in . 6239 . 6244 . 6250 . 6255	in . 6234 . 6239 . 6250 . 6255
. 6875-12	UN	2A 3A	$     \begin{array}{r}       . 6730 \\       . 6724 \\       . 6746 \\       . 6740 \\     \end{array} $	. 6859     . 6865     . 6875     . 6881	.6318 .6316 .6334 .6332	$\begin{array}{r} .\ 6625 \\ .\ 6619 \\ .\ 6654 \\ .\ 6648 \end{array}$	. 6859     . 6865     . 6875     . 6881	.6264 .6266 .6293 .6295	.6264 .6262 .6293 .6291	.6859 .6865 .6875 .6881	. 6859 . 6868 . 6877 . 6881
. 6875–16	UN	2A 3A	. 6756 . 6750 . 6770 . 6764	$     . 6861 \\     . 6867 \\     . 6875 \\     . 6881 $	$\begin{array}{r} .6455 \\ .6453 \\ .6469 \\ .6467 \end{array}$	.6678 .6672 .6704 .6698	.6861 .6867 .6875 .6881	. 6407     . 6409     . 6433     . 6435	$.6407 \\ .6405 \\ .6433 \\ .6431$	.6861 .6867 .6875 .6881	. 6861 . 6867 . 6875 . 6881
. 6875-20	UN	2A 3A	.6772 .6767 .6785 .6780	.6862 .6867 .6875 .6880	$\begin{array}{r} .65370 \\ .65355 \\ .65500 \\ .65485 \end{array}$	.6711 .6706 .6735 .6730	. 6862 . 6867 . 6875 . 6880	. 64940     . 64955     . 65180     . 65195	.64940 .64925 .65180 .65165	. 6862 . 6867 . 6875 . 6880	. 6862 . 6867 . 6877 . 6880
. 6875-24	UNEF	2A 3A	.6784 .6779 .6796 .6791	.6863 .6868 .6875 .6880	.65920 .65905 .66040 .66025	.6732 .6727 .6754 .6749	. 6863 . 6868 . 6875 . 6880	.65520 .65535 .65740 .65755	.65520 .65505 .65740 .65725	.6863 .6868 .6875 .6880	. 6868 . 6868 . 6873 . 6880
. 6875–28	UN	2A 3A	.6793 .6788 .6804 .6799	.6864 .6869 .6875 .6880	.66320 .66305 .66430 .66415	.6749 .6744 .6770 .6765	. 6862 . 6867 . 6875 . 6880	.65940 .65955 .66150 .66165	.65940 .65925 .66150 .66135	.6864 .6869 .6875 .6880	. 6862 . 6863 . 6877 . 6880
. 6875-32	UN	2A 3A	.6799 .6794 .6810 .6805	.6864 .6869 .6875 .6880	.66610 .66595 .66720 .66705	.6760 .6755 .6780 .6775	. 6859 . 6864 . 6875 . 6880	.66250 .66265 .66450 .66465	.66250 .66235 .66450 .66435	.6864 .6869 .6875 .6880	. 6859 . 6864 . 6874 . 6880
.750-10	UNC	1A 2A 3A	. 7336 . 7330 . 7336 . 7330 . 7354 . 7348	.7482 .7488 .7482 .7488 .7500 .7506	.6832 .6830 .6832 .6830 .6850 .6848	.7177 .7171 .7206 .7200 .7239 .7233	. 7482 . 7488 . 7482 . 7488 . 7500 . 7506	.6744 .6746 .6773 .6775 .6806 .6808	.6744 .6742 .6773 .6771 .6806 .6804	. 7482 . 7488 . 7482 . 7482 . 7488 . 7500 . 7506	. 748 . 748 . 748 . 748 . 748 . 748 . 7500 . 7500
. 750-12	UN	2A 3A	.7354 .7348 .7371 .7365	.7483 .7489 .7500 .7506	.6942 .6940 .6959 .6957	. 7248 . 7242 . 7279 . 7273	. 7483 . 7489 . 7500 . 7506	. 6887 . 6889 . 6918 . 6920	.6887 .6885 .6918 .6916	. 7483 . 7489 . 7500 . 7506	. 748 . 748 . 7500 . 7500
. 750-16	UNF	1A 2A 3A	. 7380 . 7374 . 7380 . 7374 . 7395 . 7389	. 7485 . 7491 . 7485 . 7491 . 7500 . 7506	.7079 .7077 .7079 .7077 .7077 .7094 .7092	. 7275 . 7269 . 7300 . 7294 . 7327 . 7321	. 7473 . 7479 . 7485 . 7491 . 7500 . 7506	. 7004 . 7006 . 7029 . 7031 . 7056 . 7058	. 7004 . 7002 . 7029 . 7027 . 7056 . 7054	. 7485 . 7491 . 7485 . 7491 . 7500 . 7506	. 747 . 747 . 748 . 748 . 749 . 7500 . 7500
. 750–20	UNEF	2A 3A	$\begin{array}{r} .7397 \\ .7392 \\ .7410 \\ .7405 \end{array}$	. 7487 . 7492 . 7500 . 7505	. 71620 . 71605 . 71750 . 71735	. 7335     . 7330     . 7359     . 7354	. 7487 . 7492 . 7500 . 7505	.71180 .71195 .71420 .71435	. 71180 . 71165 . 71420 . 71405	. 7487 . 7492 . 7500 . 7505	. 748 . 749 . 750 . 750
. 750-28	UN	2A 3A	.7417 .7412 .7429 .7424	. 7488 . 7493 . 7500 . 7505	. 72560 . 72545 . 72680 . 72665	$     . 7373 \\     . 7368 \\     . 7394 \\     . 7389   $	. 7486 . 7491 . 7500 . 7505	.72180 .72195 .72390 .72405	.72180 .72165 .72390 .72375	. 7488 . 7493 . 7500 . 7505	. 748 . 749 . 750 . 750
. 750-32	UN	2A 3A	.7424 .7419 .7435 .7430	. 7489 . 7494 . 7500 . 7505	. 72860 . 72845 . 72970 . 72955	.7385 .7380 .7405 .7400	. 7484 . 7489 . 7500 . 7505	. 72500 . 72515 . 72700 . 72715	. 72500 . 72485 . 72700 . 72685	. 7489 . 7494 . 7500 . 7505	. 748 . 748 . 750 . 750
. 8125-12	UN	2A 3A	. 7979 . 7973 . 7996 . 7990	.8108 .8114 .8125 .8131	.7567 .7565 .7584 .7582	. 7873 . 7867 . 7904 . 7898	. 8108 . 8114 . 8125 . 8131	.7512 .7514 .7543 .7543 .7545	.7512 .7510 .7543 .7541	. 8108 . 8114 . 8125 . 8131	. 810 . 811 . 812 . 813
. 8125-16	UN	2A 3A	$\begin{array}{r} .\ 8005\\ .\ 7999\\ .\ 8020\\ .\ 8014\end{array}$	$     . 8110 \\     . 8116 \\     . 8125 \\     . 8131 $	. 7704 . 7702 . 7719 . 7717	. 7926 . 7920 . 7954 . 7948	. 8110     . 8116     . 8125     . 8131	.7655 .7657 .7683 .7685	.7655 .7653 .7683 .7681	. 8110 . 8116 . 8125 . 8131	. 811 . 811 . 812 . 813

TABLE 6.20.	Setting plug gages,	Unified screw	threads-Continued
-------------	---------------------	---------------	-------------------

			8		W tru	incated setting	g plugs	-		Basic-erest setting plugs		
			Plug for	GO thread	l gage ª	Р	lug for LO	thread gage ^a		Major o	liameter	
Nominal size and threads per inch	Series des- ignation	Class	Major di	ameter	Piteh diameter	Major di	ameter	Piteh di	ameter	Plug for GO thread gage ^{a,b}	Plug for LO thread gage ^{a,e}	
			Truncated	Full		Truneated	Full	Plus toler- anee gage	Minus toleranee gage	W and X tolerances	W and X tolerances	
1	2	3	4	5	6	7	8	9	10	11	12	
. 8125-20	UNEF	2A 3A	$in \\ . 8022 \\ . 8017 \\ . 8035 \\ . 8030$	in . 8112 . 8117 . 8125 . 8130	in . 77870 . 77855 . 78000 . 77985	in . 7960 . 7955 . 7984 . 7979	in . 8112 . 8117 . 8125 . 8130	in . 77430 . 77445 . 77670 . 77685	in . 77430 . 77415 . 77670 . 77655	in . 8112 . 8117 . 8125 . 8130	in . 8112 . 8117 . 8125 . 8130	
. 8125-28	UN	2A 3A	$     . 8042 \\     . 8037 \\     . 8054 \\     . 8049   $	$     . 8113 \\     . 8118 \\     . 8125 \\     . 8130   $	. 78810 . 78795 . 78930 . 78915	. 7998 . 7993 . 8019 . 8014	. 8111 . 8116 . 8125 . 8130	. 78430 . 78445 . 78640 . 78655	.78430 .78415 .78640 .78625	. 8113 . 8118 . 8125 . 8130	. 8111 . 8116 . 8125 . 8130	
. 8125–32	UN	2A 3A	. 8049 . 8044 . 8060 . 8055	.8114 .8119 .8125 .8130	. 79110 . 79095 . 79220 . 79205	. 8010 . 8005 . 8030 . 8025	. 8109 . 8114 . 8125 . 8130	. 78750 . 78765 . 78950 . 78965	. 78750 . 78735 . 78950 . 78935	. 8114 . 8119 . 8125 . 8130	. 8109 . 8114 . 8125 . 8130	
. 875–9	UNC	1A 2A 3A	. 8573     . 8566     . 8573     . 8566     . 8592     . 8585	. 8731 . 8738 . 8731 . 8738 . 8750 . 8757	. 8009 . 8007 . 8009 . 8007 . 8028 . 8026	. 8395     . 8388     . 8427     . 8420     . 8462     . 8455     .	. 8731 . 8738 . 8731 . 8738 . 8750 . 8757	.7914 .7916 .7946 .7948 .7981 .7983	. 7914 . 7912 . 7946 . 7944 . 7981 . 7979	. 8731 . 8738 . 8731 . 8738 . 8738 . 8750 . 8757	. 8731 . 8738 . 8731 . 8738 . 8738 . 8750 . 8757	
.875-12	UN	2A 3A	$     . 8604 \\     . 8598 \\     . 8621 \\     . 8615   $	. 8733 . 8739 . 8750 . 8756	. 8192 . 8190 . 8209 . 8207	. 8498 . 8492 . 8529 . 8523	. 8733 . 8739 . 8750 . 8756	. 8137 . 8139 . 8168 . 8170	$     . 8137 \\     . 8135 \\     . 8168 \\     . 8166   $	. 8733 . 8739 . 8750 . 8756	. 8733 . 8739 . 8750 . 8756	
. 875–14	UNF	1A 2A 3A	. 8619     . 8613     . 8619     . 8613     . 8613     . 8635     . 8629     .	. 8734 . 8740 . 8734 . 8740 . 8750 . 8756	.8270 .8268 .8270 .8268 .8286 .8286 .8284	. 8498 . 8492 . 8525 . 8519 . 8554 . 8548	. 8725 . 8731 . 8734 . 8740 . 8750 . 8756	.8189 .8191 .8216 .8218 .8245 .8247	.8189 .8187 .8216 .8214 .8245 .8243	. 8734 . 8740 . 8734 . 8740 . 8740 . 8750 . 8756	. 8725 . 8731 . 8734 . 8740 . 8750 . 8750	
. 875–16	UN	2A 3A	.8630 .8624 .8645 .8639	. 8735 . 8741 . 8750 . 8756	.8329 .8327 .8344 .8342	. 8551 . 8545 . 8579 . 8573	. 8735 . 8741 . 8750 . 8756	. 8280 . 8282 . 8308 . 8310	. 8280 . 8278 . 8308 . 8306	. 8735 . 8741 . 8750 . 8756	. 8735 . 8741 . 8750 . 8756	
. 875–20	UNEF	2A 3A	.8647 .8642 .8660 .8655	. 8737 . 8742 . 8750 . 8755	.84120 .84105 .84250 .84235	. 8585 . 8580 . 8609 . 8604	. 8737 . 8742 . 8750 . 8755	. 83680 . 83695 . 83920 . 83935	. 83680 . 83665 . 83920 . 83905	. 8737 . 8742 . 8750 . 8755	. 8737 . 8742 . 8750 . 8755	
. 875–28	UN	2A 3A	. 8667 . 8662 . 8679 . 8674	. 8738 . 8743 . 8750 . 8755	. 85060 . 85045 . 85180 . 85165	$     . 8623 \\     . 8618 \\     . 8644 \\     . 8639 $	. 8736 . 8741 . 8750 . 8755	.84680 .84695 .84890 .84905	. 84680     . 84665     . 84890     . 84875	. 8738 . 8743 . 8750 . 8755	.8736 .8741 .8750 .8755	
. 875–32	UN	2A 3A	.8674 .8669 .8685 .8680	. 8739 . 8744 . 8750 . 8755	. 85360 . 85345 . 85470 . 85455	. 8635     . 8630     . 8655     . 8650     . 8650	. 8734 . 8739 . 8750 . 8755	. 85000 . 85015 . 85200 . 85215	$     . 85000 \\     . 84985 \\     . 85200 \\     . 85185   $	. 8739 . 8744 . 8750 . 8755	. 8734 . 8739 . 8750 . 8755	
. 9375–12	UN	2A 3A	$\begin{array}{r} .9229\\ .9223\\ .9246\\ .9240\end{array}$	. 9358 . 9364 . 9375 . 9381	. 8817 . 8815 . 8834 . 8832	. 9121 . 9115 . 9153 . 9147	.9358 .9364 .9375 .9381	. 8760 . 8762 . 8792 . 8794	. 8760 . 8758 . 8792 . 8790	. 9358 . 9364 . 9375 . 9381	. 9358 . 9364 . 9375 . 9381	
. 9375–16	UN	2A 3A	$     .9255 \\     .9249 \\     .9270 \\     .9264 $	. 9360 . 9366 . 9375 . 9381	. 8954 . 8952 . 8969 . 8967	.9175 .9169 .9203 .9197	.9360 .9366 .9375 .9381	. 8904 . 8906 . 8932 . 8934	. 8904 . 8902 . 8932 . 8930	. 9360 . 9366 . 9375 . 9381	. 9360 . 9366 . 9375 . 9381	
. 9375–20	UNEF	2A 3A	.9271 .9266 .9285 .9280	. 9361 . 9366 . 9375 . 9380	. 90360 . 90345 . 90500 . 90485	. 9208 . 9203 . 9233 . 9228	. 9361 . 9366 . 9375 . 9380	. 89910 . 89925 . 90160 . 90175	. 89910     . 89895     . 90160     . 90145	. 9361 . 9366 . 9375 . 9380	. 9361 . 9366 . 9375 . 9380	
. 9375–28	UN	2A 3A	$     . 9292 \\     . 9287 \\     . 9304 \\     . 9299 $	. 9363 . 9368 . 9375 . 9380	. 91310 . 91295 . 91430 . 91415	$\begin{array}{c} . \ 9246 \\ . \ 9241 \\ . \ 9268 \\ . \ 9263 \end{array}$	.9359 .9364 .9375 .9380	. 90910 . 90925 . 91130 . 91145	$   \begin{array}{r}     90910 \\     90895 \\     91130 \\     91115   \end{array} $	. 9363 . 9368 . 9375 . 9380	. 9359 . 9364 . 9375 . 9380	
. 9375–32	UN	2A 3A	. 9299 . 9294 . 9310 . 9305	. 9364 . 9369 . 9375 . 9380	. 91610 . 91595 . 91720 . 91705	. 9258 . 9253 . 9279 . 9274	. 9357 . 9362 . 9375 . 9380	. 91230 . 91245 . 91440 . 91455	.91230 .91215 .91440 .91425	. 9364 . 9369 . 9375 . 9380	. 9357 . 9362 . 9375 . 9380	

TABLE 6.20. Setting plug gages, Unified screw threads—Continued	
-----------------------------------------------------------------	--

					W tru	ncated setting	plugs			Basic-crest setting plugs		
			Plug for	GO thread	l gage ª	Р	lug for LO		Major diameter			
Nominal size and threads per inch	Series des- ignation	Class	Major di	ameter	Pitch diameter	Major di	ameter	Pitch di	ameter	Plug for GO thread gage ^{a,b}	Plug for LO thread gage ^{a,c}	
			Truncated	Full		Truncated	Full	Plus toler- ance gage	Minus tolerance gage	W and X tolerances	W and X tolerances	
1	2	3	4	5	6	7	8	.9	10	11	12	
1.000-8	UNC	1A 2A 3A	$in \\ .9809 \\ .9802 \\ .9802 \\ .9809 \\ .9802 \\ .9829 \\ .9829 \\ .9822$	in . 9980 . 9987 . 9980 . 9987 1. 0000 1. 0007	$in \\ .9168 \\ .9166 \\ .9168 \\ .9166 \\ .9188 \\ .9186$	$in \\ .9608 \\ .9601 \\ .9641 \\ .9634 \\ .9678 \\ .9671$	in . 9980 . 9987 . 9980 . 9987 1. 0000 1. 0007	<i>in</i> . 9067 . 9069 . 9100 . 9102 . 9137 . 9139	in . 9067 . 9065 . 9100 . 9098 . 9137 . 9135	<i>in</i> . 9980 . 9987 . 9980 . 9987 1. 0000 1. 0007	$in \\ .9980 \\ .9987 \\ .9980 \\ .9980 \\ .9987 \\ 1.0000 \\ 1.0000 \\ 1.0007$	
1.000-12	UNF	1A 2A 3A	. 9853 . 9847 . 9853 . 9847 . 9847 . 9871 . 9865	$\begin{array}{r} .9982\\ .9988\\ .9982\\ .9988\\ 1.0000\\ 1.0006\end{array}$	$\begin{array}{c} . \ 9441 \\ . \ 9439 \\ . \ 9441 \\ . \ 9439 \\ . \ 9439 \\ . \ 9459 \\ . \ 9457 \end{array}$	$\begin{array}{c} .9714\\ .9708\\ .9743\\ .9737\\ .9737\\ .9776\\ .9770\\ \end{array}$	$\begin{array}{r} .9978\\ .9984\\ .9982\\ .9988\\ 1.0000\\ 1.0006\end{array}$	. 9353     . 9355     . 9382     . 9384     . 9415     . 9417	$\begin{array}{c} . \ 9353 \\ . \ 9351 \\ . \ 9382 \\ . \ 9380 \\ . \ 9415 \\ . \ 9413 \end{array}$	. 9982 . 9988 . 9982 . 9988 . 9988 1. 0000 1. 0006	. 9978 . 9984 . 9982 . 9988 1. 0000 1. 0006	
1.000-16	UN	2A 3A	. 9880 . 9874 . 9895 . 9889	.9985 .9991 1.0000 1.0006	.9579 .9577 .9594 .9592	.9800     .9794     .9828     .9822	. 9985 . 9991 1. 0000 1. 0006	. 9529 . 9531 . 9557 . 9559	. 9529 . 9527 . 9557 . 9555	. 9985 . 9991 1. 0000 1. 0006	. 9985 . 9991 1. 0000 1. 0006	
1.000-20	UNEF	2A 3A	. 9896 . 9891 . 9910 . 9905	.9986 .9991 1.0000 1.0005	. 96610 . 96595 . 96750 . 96735	. 9833 . 9828 . 9858 . 9853	. 9986 . 9991 1. 0000 1. 0005	.96160 .96175 .96410 .96425	.96160 .96145 .96410 .96395	. 9986 . 9991 1. 0000 1. 0005	. 9986 . 9991 1. 0000 1. 0005	
1.000-28	UN	2A 3A	. 9917 . 9912 . 9929 . 9924	.9988 .9993 1.0000 1.0005	. 97560 . 97545 . 97680 . 97665	.9871     .9866     .9893     .9888	. 9984 . 9989 1. 0000 1. 0005	. 97160 . 97175 . 97380 . 97395	.97160 .97145 .97380 .97365	. 9988 . 9993 1. 0000 1. 0005	. 9984 . 9989 1. 0000 1. 0005	
1.000-32	UN	2A 3A	.9924 .9919 .9935 .9930	.9989 .9994 1.0000 1.0005	.97860 .97845 .97970 .97955	.9883 .9878 .9904 .9899	.9982 .9987 1.0000 1.0005	.97480 .97495 .97690 .97705	.97480 .97465 .97690 .97675	. 9989 . 9994 1. 0000 1. 0005	. 9982 . 9987 1. 0000 1. 0005	
1.0625-8	UN	2A 3A	$1.0434 \\ 1.0427 \\ 1.0454 \\ 1.0447$	$\begin{array}{c} 1.\ 0605\\ 1.\ 0612\\ 1.\ 0625\\ 1.\ 0632 \end{array}$	.9793 .9791 .9813 .9811	$\begin{array}{c} 1.\ 0266\\ 1.\ 0259\\ 1.\ 0303\\ 1.\ 0296 \end{array}$	$\begin{array}{c} 1.\ 0605\\ 1.\ 0612\\ 1.\ 0625\\ 1.\ 0632 \end{array}$	. 9725 . 9727 . 9762 . 9764	. 9725 . 9723 . 9762 . 9760	$\begin{array}{c} 1,0605\\ 1,0612\\ 1,0625\\ 1,0632\end{array}$	1. 0605 1. 0612 1. 0625 1. 0632	
1.0625-12	UN	2A 3A	$1.0479 \\ 1.0473 \\ 1.0496 \\ 1.0490$	$\begin{array}{c} 1.\ 0608\\ 1.\ 0614\\ 1.\ 0625\\ 1.\ 0631 \end{array}$	$1.0067 \\ 1.0065 \\ 1.0084 \\ 1.0082$	$1.0371 \\ 1.0365 \\ 1.0403 \\ 1.0397$	$\begin{array}{c} 1.0608\\ 1.0614\\ 1.0625\\ 1.0631 \end{array}$	$\begin{array}{c} 1.\ 0010\\ 1.\ 0012\\ 1.\ 0042\\ 1.\ 0044 \end{array}$	$\begin{array}{c} 1.\ 0010\\ 1.\ 0008\\ 1.\ 0042\\ 1.\ 0040 \end{array}$	$1.0608 \\ 1.0614 \\ 1.0625 \\ 1.0631$	$     \begin{array}{r}       1.0608 \\       1.0614 \\       1.0625 \\       1.0631 \\       \end{array} $	
1.0625-16	UN	2A 3A	$1.0505 \\ 1.0499 \\ 1.0520 \\ 1.0514$	$1.0610 \\ 1.0616 \\ 1.0625 \\ 1.0631$	$1.0204 \\ 1.0202 \\ 1.0219 \\ 1.0217$	$\begin{array}{c} 1.\ 0425\\ 1.\ 0419\\ 1.\ 0453\\ 1.\ 0447 \end{array}$	$\begin{array}{c} 1.\ 0610\\ 1.\ 0616\\ 1.\ 0625\\ 1.\ 0631 \end{array}$	$\begin{array}{c} 1.\ 0154\\ 1.\ 0156\\ 1.\ 0182\\ 1.\ 0184 \end{array}$	$\begin{array}{c} 1.\ 0154 \\ 1.\ 0152 \\ 1.\ 0182 \\ 1.\ 0180 \end{array}$	$1.0610 \\ 1.0616 \\ 1.0625 \\ 1.0631$	$1.0610 \\ 1.0616 \\ 1.0625 \\ 1.0631$	
1.0625-18	UNEF	2A 3A	$1.0514 \\ 1.0509 \\ 1.0528 \\ 1.0523$	$\begin{array}{c} 1.\ 0611 \\ 1.\ 0616 \\ 1.\ 0625 \\ 1.\ 0630 \end{array}$	$\begin{array}{c} 1.\ 02500\\ 1.\ 02485\\ 1.\ 02640\\ 1.\ 02625 \end{array}$	$\begin{array}{c} 1.\ 0444\\ 1.\ 0439\\ 1.\ 0469\\ 1.\ 0464 \end{array}$	$\begin{array}{c} 1.\ 0611\\ 1.\ 0616\\ 1.\ 0625\\ 1.\ 0630 \end{array}$	$\begin{array}{c} 1.\ 02030\\ 1.\ 02045\\ 1.\ 02280\\ 1.\ 02295 \end{array}$	$\begin{array}{c} 1.\ 02030\\ 1.\ 02015\\ 1.\ 02280\\ 1.\ 02265 \end{array}$	$1.0611 \\ 1.0616 \\ 1.0625 \\ 1.0630$	1.0611 1.0616 1.0625 1.0630	
1.0625-20	UN	2A 3A	$\begin{array}{c} 1.\ 0521\\ 1.\ 0516\\ 1.\ 0535\\ 1.\ 0530\end{array}$	$\begin{array}{c} 1.\ 0611 \\ 1.\ 0616 \\ 1.\ 0625 \\ 1.\ 0630 \end{array}$	$\begin{array}{c} 1.\ 02860\\ 1.\ 02845\\ 1.\ 03000\\ 1.\ 02985 \end{array}$	$\begin{array}{c} 1.\ 0458\\ 1.\ 0453\\ 1.\ 0483\\ 1.\ 0478\end{array}$	$\begin{array}{c} 1.\ 0611\\ 1.\ 0616\\ 1.\ 0625\\ 1.\ 0630 \end{array}$	$\begin{array}{c} 1.\ 02410\\ 1.\ 02425\\ 1.\ 02660\\ 1.\ 02675 \end{array}$	$\begin{array}{c} 1.\ 02410\\ 1.\ 02395\\ 1.\ 02660\\ 1.\ 02645 \end{array}$	$\begin{array}{c} 1.\ 0611\\ 1.\ 0616\\ 1.\ 0625\\ 1.\ 0630\end{array}$	$\begin{array}{c} 1.\ 0611\\ 1.\ 0616\\ 1.\ 0625\\ 1.\ 0630\end{array}$	
1.0625-28	UN	2A 3A	$\begin{array}{c c}1.0542\\1.0537\\1.0554\\1.0549\end{array}$	$\begin{array}{c} 1.\ 0613\\ 1.\ 0618\\ 1.\ 0625\\ 1.\ 0630 \end{array}$	$\begin{array}{c} 1.\ 03810\\ 1.\ 03795\\ 1.\ 03930\\ 1.\ 03915 \end{array}$	$\begin{array}{c} 1.\ 0496 \\ 1.\ 0491 \\ 1.\ 0518 \\ 1.\ 0513 \end{array}$	$\begin{array}{c} 1.0609\\ 1.0614\\ 1.0625\\ 1.0630 \end{array}$	$\begin{array}{c} 1.\ 03410\\ 1.\ 03425\\ 1.\ 03630\\ 1.\ 03645 \end{array}$	$\begin{array}{c} 1.\ 03410\\ 1.\ 03395\\ 1.\ 03630\\ 1.\ 03615 \end{array}$	$\begin{array}{c} 1.\ 0613\\ 1.\ 0618\\ 1.\ 0625\\ 1.\ 0630\end{array}$	$\begin{array}{c} 1.\ 0609\\ 1.\ 0614\\ 1.\ 0625\\ 1.\ 0630\end{array}$	
1.125-7	UNC	1A 2A 3A	$\begin{array}{c} 1.\ 1040\\ 1.\ 1033\\ 1.\ 1040\\ 1.\ 1033\\ 1.\ 1062\\ 1.\ 1055\\ \end{array}$	$\begin{array}{c} 1.1228\\ 1.1235\\ 1.1228\\ 1.1228\\ 1.1235\\ 1.1250\\ 1.1257\end{array}$	$\begin{array}{c} 1.\ 0300\\ 1.\ 0298\\ 1.\ 0300\\ 1.\ 0298\\ 1.\ 0322\\ 1.\ 0320 \end{array}$	$\begin{array}{c} 1.\ 0810\\ 1.\ 0803\\ 1.\ 0847\\ 1.\ 0840\\ 1.\ 0887\\ 1.\ 0880 \end{array}$	$\begin{array}{c} 1.\ 1228\\ 1.\ 1235\\ 1.\ 1228\\ 1.\ 1235\\ 1.\ 1235\\ 1.\ 1250\\ 1.\ 1257\end{array}$	$\begin{array}{c} 1.\ 0191\\ 1.\ 0193\\ 1.\ 0228\\ 1.\ 0230\\ 1.\ 0268\\ 1.\ 0270\\ \end{array}$	$\begin{array}{c} 1.\ 0191\\ 1.\ 0189\\ 1.\ 0228\\ 1.\ 0226\\ 1.\ 0268\\ 1.\ 0266\\ 1.\ 0266\\ \end{array}$	$\begin{array}{c} 1.1228\\ 1.1235\\ 1.1228\\ 1.1228\\ 1.1235\\ 1.1250\\ 1.1250\\ 1.1257\end{array}$	$\begin{array}{c} 1.1228\\ 1.1235\\ 1.1228\\ 1.1228\\ 1.1235\\ 1.1250\\ 1.1257\end{array}$	
1.125-8	UN	2A 3A	$1.1058 \\ 1.1051 \\ 1.1079 \\ 1.1072$	$\begin{array}{c} 1.\ 1229\\ 1.\ 1236\\ 1.\ 1250\\ 1.\ 1257 \end{array}$	$\begin{array}{c} 1.\ 0417\\ 1.\ 0415\\ 1.\ 0438\\ 1.\ 0436 \end{array}$	$\begin{array}{c} 1.\ 0889\\ 1.\ 0882\\ 1.\ 0927\\ 1.\ 0920 \end{array}$	$\begin{array}{c} 1.\ 1229\\ 1.\ 1236\\ 1.\ 1250\\ 1.\ 1257 \end{array}$	$\begin{array}{c} 1.\ 0348\\ 1.\ 0350\\ 1.\ 0386\\ 1.\ 0388\end{array}$	$\begin{array}{c} 1.\ 0348\\ 1.\ 0346\\ 1.\ 0386\\ 1.\ 0384 \end{array}$	$\begin{array}{c} 1.1229 \\ 1.1236 \\ 1.1250 \\ 1.1257 \end{array}$	$\begin{array}{c} 1.1229 \\ 1.1236 \\ 1.1250 \\ 1.1257 \end{array}$	
1.125–12	UNF	1A 2A 3A	$\begin{array}{c} 1.\ 1103\\ 1.\ 1097\\ 1.\ 1103\\ 1.\ 1097\\ 1.\ 1121\\ 1.\ 1115 \end{array}$	$\begin{array}{c} 1.\ 1232\\ 1.\ 1238\\ 1.\ 1232\\ 1.\ 1238\\ 1.\ 1238\\ 1.\ 1250\\ 1.\ 1256 \end{array}$	$\begin{array}{c} 1.\ 0691\\ 1.\ 0689\\ 1.\ 0691\\ 1.\ 0689\\ 1.\ 0709\\ 1.\ 0707\\ \end{array}$	$\begin{array}{c} 1.\ 0962\\ 1.\ 0956\\ 1.\ 0992\\ 1.\ 0986\\ 1.\ 1025\\ 1.\ 1019 \end{array}$	$\begin{array}{c} 1.\ 1226\\ 1.\ 1232\\ 1.\ 1232\\ 1.\ 1238\\ 1.\ 1250\\ 1.\ 1256 \end{array}$	$\begin{array}{c} 1.\ 0601\\ 1.\ 0603\\ 1.\ 0631\\ 1.\ 0633\\ 1.\ 0664\\ 1.\ 0666\end{array}$	$\begin{array}{c} 1.\ 0601\\ 1.\ 0599\\ 1.\ 0631\\ 1.\ 0629\\ 1.\ 0664\\ 1.\ 0662 \end{array}$	$\left \begin{array}{c} 1.1232\\ 1.1238\\ 1.1232\\ 1.1232\\ 1.1238\\ 1.1250\\ 1.1256\end{array}\right $	$\begin{array}{c} 1.\ 1226\\ 1.\ 1232\\ 1.\ 1232\\ 1.\ 1238\\ 1.\ 1238\\ 1.\ 1250\\ 1.\ 1256\end{array}$	

					W tru	ncated setting	plugs			Basic-crest setting plugs		
			Plug for	GO thread	gage a	Р	lug for LO	thread gage ^a		Major d	liameter	
Nominal size and threads per inch	Series des- ignation	Class	Major di	Major diameter		Major di	ameter	Piteh di	ameter	Plug for G O thread gage ^{a,b}	Plug for LO thread gage a.c	
			Truncated	Full		Truncated	Full	Plus toler- ancc gage	Minus tolerance gage	W and X tolcrances	W and X tolerances	
1	2	3	4	5	6	7	8	9	10	11	12	
1.125-16	UN	2A 3A	$in \\ 1.1130 \\ 1.1124 \\ 1.1145 \\ 1.1139$	in 1, 1235 1, 1241 1, 1250 1, 1256	in 1. 0829 1. 0827 1. 0844 1. 0842	$in\\1,1050\\1,1044\\1,1078\\1,1072$	in 1. 1235 1. 1241 1. 1250 1. 1256	<i>in</i> 1. 0779 1. 0781 1. 0807 1. 0809	<i>in</i> 1. 0779 1. 0777 1. 0807 1. 0805	<i>in</i> 1, 1235 1, 1241 1, 1250 1, 1256	in 1. 1235 1. 1241 1. 1250 1. 1256	
1. 125–18	UNEF	2A 3A	$\begin{array}{c} 1.\ 1139\\ 1.\ 1134\\ 1.\ 1153\\ 1.\ 1148 \end{array}$	$\begin{array}{c} 1.1236 \\ 1.1241 \\ 1.1250 \\ 1.1255 \end{array}$	$\begin{array}{c} 1.\ 08750\\ 1.\ 08735\\ 1.\ 08890\\ 1.\ 08875 \end{array}$	$\begin{array}{c} 1.\ 1069 \\ 1.\ 1064 \\ 1.\ 1094 \\ 1.\ 1089 \end{array}$	$\begin{array}{c} 1.\ 1236\\ 1.\ 1241\\ 1.\ 1250\\ 1.\ 1255 \end{array}$	$\begin{array}{c} 1.\ 08280\\ 1.\ 08295\\ 1.\ 08530\\ 1.\ 08545 \end{array}$	$\begin{array}{c} 1.\ 08280\\ 1.\ 08265\\ 1.\ 08530\\ 1.\ 08515 \end{array}$	$\begin{array}{c} 1,1236\\ 1,1241\\ 1,1250\\ 1,1255\end{array}$	$\begin{array}{c} 1.\ 1236\\ 1.\ 1241\\ 1.\ 1250\\ 1.\ 1255\end{array}$	
1. 125–20	UN	2A 3A	$1.1146 \\ 1.1141 \\ 1.1160 \\ 1.1155$	$\begin{array}{c} 1.\ 1236 \\ 1.\ 1241 \\ 1.\ 1250 \\ 1.\ 1255 \end{array}$	$\begin{array}{c} 1.\ 09110\\ 1.\ 09095\\ 1.\ 09250\\ 1.\ 09235 \end{array}$	$\begin{array}{c} 1.\ 1083\\ 1.\ 1078\\ 1.\ 1108\\ 1.\ 1103\end{array}$	$\begin{array}{c} 1.\ 1236\\ 1.\ 1241\\ 1.\ 1250\\ 1.\ 1255 \end{array}$	$\begin{array}{c} 1.\ 08660\\ 1.\ 08675\\ 1.\ 08910\\ 1.\ 08925 \end{array}$	$\begin{array}{c} 1.\ 08660\\ 1.\ 08645\\ 1.\ 08910\\ 1.\ 08895 \end{array}$	1. 1236 1. 1241 1. 1250 1. 1255	$1.1236 \\ 1.1241 \\ 1.1250 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1.1255 \\ 1$	
1. 125–28	UN	2A 3A	1.11671.11621.11791.1174	$\begin{array}{c} 1.\ 1238\\ 1.\ 1243\\ 1.\ 1250\\ 1.\ 1255\end{array}$	$\begin{array}{c} 1.\ 10060\\ 1.\ 10045\\ 1.\ 10180\\ 1.\ 10165 \end{array}$	$1.1121 \\ 1.1116 \\ 1.1143 \\ 1.1138$	$\begin{array}{c} 1.\ 1234\\ 1.\ 1239\\ 1.\ 1250\\ 1.\ 1255\end{array}$	$\begin{array}{c} 1.\ 09660\\ 1.\ 09675\\ 1.\ 09880\\ 1.\ 09895 \end{array}$	$\begin{array}{c} 1.\ 09660\\ 1.\ 09645\\ 1.\ 09880\\ 1.\ 09865 \end{array}$	$\begin{array}{c} 1.1238 \\ 1.1243 \\ 1.1250 \\ 1.1255 \end{array}$	$\begin{array}{c} 1.\ 1234\\ 1.\ 1239\\ 1.\ 1250\\ 1.\ 1255\end{array}$	
1, 1875-8	UN	2A 3A	$1.1683 \\ 1.1676 \\ 1.1704 \\ 1.1697$	$\begin{array}{c} 1.\ 1854 \\ 1.\ 1861 \\ 1.\ 1875 \\ 1.\ 1882 \end{array}$	$\begin{array}{c} 1.\ 1042 \\ 1.\ 1040 \\ 1.\ 1063 \\ 1.\ 1061 \end{array}$	$1.1513 \\ 1.1506 \\ 1.1552 \\ 1.1545$	$\begin{array}{c} 1.\ 1854 \\ 1.\ 1861 \\ 1.\ 1875 \\ 1.\ 1882 \end{array}$	$\begin{array}{c} 1.\ 0972 \\ 1.\ 0974 \\ 1.\ 1011 \\ 1.\ 1013 \end{array}$	$\begin{array}{c} 1.\ 0972\\ 1.\ 0970\\ 1.\ 1011\\ 1.\ 1009 \end{array}$	$1,1854 \\ 1,1861 \\ 1,1875 \\ 1,1882$	1, 1854 1, 1861 1, 1875 1, 1882	
1. 1875–12	UN	2A 3A	$1.1729 \\ 1.1723 \\ 1.1746 \\ 1.1740$	$\begin{array}{c} 1.\ 1858 \\ 1.\ 1864 \\ 1.\ 1875 \\ 1.\ 1881 \end{array}$	$1.1317 \\ 1.1315 \\ 1.1334 \\ 1.1332$	$1.1620 \\ 1.1614 \\ 1.1652 \\ 1.1646$	$1.1858 \\ 1.1864 \\ 1.1875 \\ 1.1881$	$1.1259 \\ 1.1261 \\ 1.1291 \\ 1.1293$	$1.1259 \\ 1.1257 \\ 1.1291 \\ 1.1289$	1. 1858 1. 1864 1. 1875 1. 1881	1.1858 1.1864 1.1875 1.1881	
1. 1875–16	UN	2A 3A	1.1755 1.1749 1.1770 1.1764	1.1860 1.1866 1.1875 1.1881	$1.1454 \\ 1.1452 \\ 1.1469 \\ 1.1467$	$1.1674 \\ 1.1668 \\ 1.1702 \\ 1.1696$	1, 1860 1, 1866 1, 1875 1, 1881	$1.1403 \\ 1.1405 \\ 1.1431 \\ 1.1433$	$1.1403 \\ 1.1401 \\ 1.1431 \\ 1.1429$	1. 1860 1. 1866 1. 1875 1. 1881	1.1860 1.1860 1.1875 1.1881	
1. 1875–18	UNEF	2A 3A	$1.1763 \\ 1.1758 \\ 1.1778 \\ 1.1773$	1. 1860 1. 1865 1. 1875 1. 1880	1. 14990 1. 14975 1. 15140 1. 15125	$\begin{array}{c} 1.\ 1691 \\ 1.\ 1686 \\ 1.\ 1719 \\ 1.\ 1714 \end{array}$	1, 1860 1, 1865 1, 1875 1, 1880	$1.14500 \\ 1.14515 \\ 1.14780 \\ 1.14795$	1, 14500 1, 14485 1, 14780 1, 14765	$1.1860 \\ 1.1865 \\ 1.1875 \\ 1.1880$	$1.1860 \\ 1.1863 \\ 1.1873 \\ 1.1873 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1.1880 \\ 1$	
1. 1875-20	UN	2A 3A	$     1.1771 \\     1.1766 \\     1.1785 \\     1.1780 $	1. 1861 1. 1866 1. 1875 1. 1880	$1.15360 \\ 1.15345 \\ 1.15500 \\ 1.15485$	$1.1706 \\ 1.1701 \\ 1.1732 \\ 1.1727$	$1.1861 \\ 1.1866 \\ 1.1875 \\ 1.1880$	$1.14890 \\ 1.14905 \\ 1.15150 \\ 1.15165$	$\begin{array}{c} 1.\ 14890\\ 1.\ 14875\\ 1.\ 15150\\ 1.\ 15135 \end{array}$	1. 1861 1. 1866 1. 1875 1. 1880	$ \begin{array}{c} 1.1861\\ 1.1866\\ 1.1873\\ 1.1880 \end{array} $	
1.1875-28	UN	2A 3A	$1.1792 \\ 1.1787 \\ 1.1804 \\ 1.1799$	1, 1863 1, 1868 1, 1875 1, 1880	$\begin{array}{c} 1.\ 16310\\ 1.\ 16295\\ 1.\ 16430\\ 1.\ 16415 \end{array}$	$1.1745 \\ 1.1740 \\ 1.1767 \\ 1.1762$	1, 1858 1, 1863 1, 1875 1, 1880	$\begin{array}{c} 1,15900\\ 1,15915\\ 1,16120\\ 1,16135 \end{array}$	$\begin{array}{c} 1.\ 15900\\ 1.\ 15885\\ 1.\ 16120\\ 1.\ 16105 \end{array}$	1, 1863 1, 1868 1, 1875 1, 1880	1. 1853 1. 1863 1. 1873 1. 1880	
1. 250-7	UNC	1A 2A 3A	$\begin{array}{c} 1.\ 2290\\ 1.\ 2283\\ 1.\ 2290\\ 1.\ 2283\\ 1.\ 2312\\ 1.\ 2305 \end{array}$	$\begin{array}{c} 1.\ 2478\\ 1.\ 2485\\ 1.\ 2478\\ 1.\ 2478\\ 1.\ 2485\\ 1.\ 2500\\ 1.\ 2507\end{array}$	$\begin{array}{c} 1.\ 1550\\ 1.\ 1548\\ 1.\ 1550\\ 1.\ 1548\\ 1.\ 1548\\ 1.\ 1572\\ 1.\ 1570\end{array}$	$\begin{array}{c} 1.\ 2058\\ 1.\ 2051\\ 1.\ 2095\\ 1.\ 2088\\ 1.\ 2136\\ 1.\ 2129 \end{array}$	$\begin{array}{c} 1.\ 2478\\ 1.\ 2485\\ 1.\ 2485\\ 1.\ 2478\\ 1.\ 2485\\ 1.\ 2485\\ 1.\ 2500\\ 1.\ 2507 \end{array}$	$\begin{array}{c} 1.\ 1439\\ 1.\ 1441\\ 1.\ 1476\\ 1.\ 1478\\ 1.\ 1517\\ 1.\ 1519\end{array}$	$\begin{array}{c} 1.\ 1439\\ 1.\ 1437\\ 1.\ 1476\\ 1.\ 1476\\ 1.\ 1474\\ 1.\ 1517\\ 1.\ 1515\end{array}$	$\begin{array}{c} 1.2478\\ 1.2485\\ 1.2485\\ 1.2478\\ 1.2485\\ 1.2500\\ 1.2507\end{array}$	$\begin{array}{c} 1.\ 2478\\ 1.\ 2485\\ 1.\ 2478\\ 1.\ 2478\\ 1.\ 2483\\ 1.\ 2500\\ 1.\ 2500\end{array}$	
1.250-8	UN	2A 3A	$\begin{array}{c} 1.\ 2308 \\ 1.\ 2301 \\ 1.\ 2329 \\ 1.\ 2322 \end{array}$	$\begin{array}{c} 1.\ 2479\\ 1.\ 2486\\ 1.\ 2500\\ 1.\ 2507 \end{array}$	$1.1667 \\ 1.1665 \\ 1.1688 \\ 1.1686$	$\begin{array}{c} 1.\ 2138\\ 1.\ 2131\\ 1.\ 2176\\ 1.\ 2169 \end{array}$	$\begin{array}{c} 1.\ 2479\\ 1.\ 2486\\ 1.\ 2500\\ 1.\ 2507\end{array}$	$\begin{array}{c} 1.\ 1597 \\ 1.\ 1599 \\ 1.\ 1635 \\ 1.\ 1637 \end{array}$	$\begin{array}{c} 1.\ 1597 \\ 1.\ 1595 \\ 1.\ 1635 \\ 1.\ 1633 \end{array}$	1. 2479 1. 2486 1. 2500 1. 2507	$\begin{array}{c} 1.\ 2479\\ 1.\ 2486\\ 1.\ 2500\\ 1.\ 2500\end{array}$	
1. 250–12	UNF	1A 2A 3A	$\begin{array}{c} 1,2353\\ 1,2347\\ 1,2353\\ 1,2347\\ 1,2347\\ 1,2371\\ 1,2365\end{array}$	$\begin{array}{c} 1.\ 2482\\ 1.\ 2488\\ 1.\ 2482\\ 1.\ 2482\\ 1.\ 2488\\ 1.\ 2500\\ 1.\ 2506\end{array}$	$\begin{array}{c} 1.\ 1941 \\ 1.\ 1939 \\ 1.\ 1941 \\ 1.\ 1939 \\ 1.\ 1939 \\ 1.\ 1959 \\ 1.\ 1957 \end{array}$	$\begin{array}{c} 1.\ 2210\\ 1.\ 2204\\ 1.\ 2240\\ 1.\ 2234\\ 1.\ 2274\\ 1.\ 2268 \end{array}$	$\begin{array}{c} 1.\ 2474\\ 1.\ 2480\\ 1.\ 2482\\ 1.\ 2488\\ 1.\ 2500\\ 1.\ 2506\end{array}$	$\begin{array}{c} 1.1849\\ 1.1851\\ 1.1879\\ 1.1881\\ 1.1913\\ 1.1915 \end{array}$	$\begin{array}{c} 1.\ 1849\\ 1.\ 1847\\ 1.\ 1879\\ 1.\ 1877\\ 1.\ 1913\\ 1.\ 1911 \end{array}$	$\begin{array}{c} 1.\ 2482\\ 1.\ 2488\\ 1.\ 2482\\ 1.\ 2482\\ 1.\ 2488\\ 1.\ 2506\\ 1.\ 2506\end{array}$	$\begin{array}{c} 1.\ 2474\\ 1.\ 2484\\ 1.\ 2485\\ 1.\ 2485\\ 1.\ 2485\\ 1.\ 2506\\ 1.\ 2506\end{array}$	
1.250-16	UN	2A 3A	$\begin{array}{c} 1.\ 2380\\ 1.\ 2374\\ 1.\ 2395\\ 1.\ 2389 \end{array}$	$\begin{array}{c} 1.\ 2485\\ 1.\ 2491\\ 1.\ 2500\\ 1.\ 2506 \end{array}$	$\begin{array}{c} 1.\ 2079\\ 1.\ 2077\\ 1.\ 2094\\ 1.\ 2092 \end{array}$	$\begin{array}{c} 1,2299\\ 1,2293\\ 1,2327\\ 1,2321 \end{array}$	$\begin{array}{c} 1.\ 2485\\ 1.\ 2491\\ 1.\ 2500\\ 1.\ 2506 \end{array}$	$\begin{array}{c} 1.\ 2028\\ 1.\ 2030\\ 1.\ 2056\\ 1.\ 2058 \end{array}$	$\begin{array}{c} 1.\ 2028\\ 1.\ 2026\\ 1.\ 2056\\ 1.\ 2054 \end{array}$	$\begin{array}{c} 1.\ 2485\\ 1.\ 2491\\ 1.\ 2500\\ 1.\ 2506 \end{array}$	$\begin{array}{c} 1.\ 2483\\ 1.\ 2493\\ 1.\ 2500\\ 1.\ 2500\end{array}$	
1.250-18	UNEF	2A 3A	$\begin{array}{c} 1.\ 2388\\ 1.\ 2383\\ 1.\ 2403\\ 1.\ 2398 \end{array}$	$\begin{array}{c} 1.\ 2485\\ 1.\ 2490\\ 1.\ 2500\\ 1.\ 2505 \end{array}$	$\begin{array}{c} 1.21240\\ 1.21225\\ 1.21390\\ 1.21375\end{array}$	$\begin{array}{c} 1,2316\\ 1,2311\\ 1,2344\\ 1,2339 \end{array}$	$\begin{array}{c} 1.\ 2485\\ 1.\ 2490\\ 1.\ 2500\\ 1.\ 2505 \end{array}$	$\begin{array}{c} 1.20750\\ 1.20765\\ 1.21030\\ 1.21045\end{array}$	$\begin{array}{c} 1.\ 20750\\ 1.\ 20735\\ 1.\ 21030\\ 1.\ 21015 \end{array}$	1. 2485 1. 2490 1. 2500 1. 2505	$\begin{array}{c} 1.\ 2483\\ 1.\ 2490\\ 1.\ 2500\\ 1.\ 2500\end{array}$	

Yozinal threads

1.4

1,

					W tru	neated setting	plugs			Basie-erest s	etting plugs
			Plug for	GO thread	gage ª	P	lug for LO	thread gage ª		Major diameter	
Nominal size and threads per inch	Series des- ignation	Class	Major dia	nmeter	Pitch diameter	Major dia	ameter	Piteh di	ameter	Plug for GO thread gage a,b	Plug for LO thread gage a,c
			Truncated	Full		Truncated	Full	Plus toler- ance gage	Minus tolerance gage	W and X toleranees	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
1.250-20	UN	2A 3A	<i>in</i> 1, 2396 1, 2391 1, 2410 1, 2405	in 1. 2486 1. 2491 1. 2500 1. 2505	in 1. 21610 1. 21595 1. 21750 1. 21735	$in \\ 1.2331 \\ 1.2326 \\ 1.2357 \\ 1.2352$	in 1. 2486 1. 2491 1. 2500 1. 2505	in 1. 21140 1. 21155 1. 21400 1. 21415	in 1. 21140 1. 21125 1. 21400 1. 21385	$ \begin{smallmatrix} in \\ 1,2486 \\ 1,2491 \\ 1,2500 \\ 1,2505 \end{smallmatrix} $	<i>in</i> 1.2486 1.2491 1.2500 1.2505
1.250-28	UN	2A 3A	$\begin{array}{c} 1.\ 2417\\ 1.\ 2412\\ 1.\ 2429\\ 1.\ 2424\end{array}$	$\begin{array}{c} 1.\ 2488\\ 1.\ 2493\\ 1.\ 2500\\ 1.\ 2505 \end{array}$	$\begin{array}{c} 1.\ 22560\\ 1.\ 22545\\ 1.\ 22680\\ 1.\ 22665 \end{array}$	$\begin{array}{c} 1.2370 \\ 1.2365 \\ 1.2332 \\ 1.2387 \end{array}$	$\begin{array}{c} 1.\ 2483\\ 1.\ 2488\\ 1.\ 2500\\ 1.\ 2505 \end{array}$	$\begin{array}{c} 1.\ 22150\\ 1.\ 22165\\ 1.\ 22370\\ 1.\ 22385 \end{array}$	$\begin{array}{c} 1.\ 22150\\ 1.\ 22135\\ 1.\ 22370\\ 1.\ 22355\end{array}$	$\begin{array}{c} 1.\ 2488\\ 1.\ 2493\\ 1.\ 2500\\ 1.\ 2505\end{array}$	$\begin{array}{c} 1.\ 2483\\ 1.\ 2488\\ 1.\ 2500\\ 1.\ 2505 \end{array}$
1.3125-8	UN	2A 3A	$\begin{array}{c} 1.2933\\ 1.2926\\ 1.2954\\ 1.2954\\ 1.2947 \end{array}$	$\begin{array}{c} 1.3104 \\ 1.3111 \\ 1.3125 \\ 1.3132 \end{array}$	$\begin{array}{c} 1,2292\\ 1,2290\\ 1,2313\\ 1,2311 \end{array}$	$\begin{array}{c} 1.\ 2762\\ 1.\ 2755\\ 1.\ 2801\\ 1.\ 2794 \end{array}$	$\begin{array}{c} 1.\ 3104 \\ 1.\ 3111 \\ 1.\ 3125 \\ 1.\ 3132 \end{array}$	$\begin{array}{c} 1.\ 2221 \\ 1.\ 2223 \\ 1.\ 2260 \\ 1.\ 2262 \end{array}$	$\begin{array}{c} 1.\ 2221\\ 1.\ 2219\\ 1.\ 2260\\ 1.\ 2258 \end{array}$	$\begin{array}{c} 1.\ 3104\\ 1.\ 3111\\ 1.\ 3125\\ 1.\ 3132\end{array}$	$\begin{array}{c} 1.\ 3104\\ 1.\ 3111\\ 1.\ 3125\\ 1.\ 3132 \end{array}$
1. 3125-12	UN	2A 3A	$\begin{array}{c} 1.\ 2979 \\ 1.\ 2973 \\ 1.\ 2996 \\ 1.\ 2990 \end{array}$	$\begin{array}{c} 1.\ 3108\\ 1.\ 3114\\ 1.\ 3125\\ 1.\ 3131 \end{array}$	$\begin{array}{c} 1.\ 2567 \\ 1.\ 2565 \\ 1.\ 2584 \\ 1.\ 2582 \end{array}$	$1.2870 \\ 1.2864 \\ 1.2902 \\ 1.2896$	$\begin{array}{c} 1.\ 3108\\ 1.\ 3114\\ 1.\ 3125\\ 1.\ 3131 \end{array}$	$1.2509 \\ 1.2511 \\ 1.2541 \\ 1.2543$	$1.2509 \\ 1.2507 \\ 1.2541 \\ 1.2539$	$\begin{array}{c} 1.3108 \\ 1.3114 \\ 1.3125 \\ 1.3131 \end{array}$	$\begin{array}{c} 1.\ 3108\\ 1.\ 3114\\ 1.\ 3125\\ 1.\ 3131 \end{array}$
1.3125-16	UN	2A 3A	$     \begin{array}{r}       1.3005 \\       1.2999 \\       1.3020 \\       1.3014     \end{array}   $	$\begin{array}{c} 1.\ 3110\\ 1.\ 3116\\ 1.\ 3125\\ 1.\ 3131 \end{array}$	$\begin{array}{c} 1.\ 2704 \\ 1.\ 2702 \\ 1.\ 2719 \\ 1.\ 2717 \end{array}$	$\begin{array}{c} 1.\ 2924 \\ 1.\ 2918 \\ 1.\ 2952 \\ 1.\ 2946 \end{array}$	$\begin{array}{c} 1.3110\\ 1.3116\\ 1.3125\\ 1.3131 \end{array}$	$\begin{array}{c} 1.2653\\ 1.2655\\ 1.2681\\ 1.2683\end{array}$	$1.2653 \\ 1.2651 \\ 1.2681 \\ 1.2679$	1. 3110 1. 3116 1. 3125 1. 3131	$1.3110 \\ 1.3116 \\ 1.3125 \\ 1.3131$
1.3125-18	UNEF	2.A 3.A	$1.3013 \\ 1 3008 \\ 1.3028 \\ 1.3023$	$1.3110 \\ 1.3115 \\ 1.3125 \\ 1.3120$	$\begin{array}{c} 1.\ 27490\\ 1.\ 27475\\ 1.\ 27640\\ 1.\ 27625 \end{array}$	$\begin{array}{c} 1,2941 \\ 1,2936 \\ 1,2969 \\ 1,2964 \end{array}$	$1.3110 \\ 1.3115 \\ 1.3125 \\ 1.3130$	$\begin{array}{c} 1.\ 27000\\ 1.\ 27015\\ 1.\ 27280\\ 1.\ 27295 \end{array}$	$\begin{array}{c} 1.\ 27000\\ 1.\ 26985\\ 1.\ 27280\\ 1.\ 27265 \end{array}$	$\begin{array}{c} 1.3110 \\ 1.3115 \\ 1.3125 \\ 1.3130 \end{array}$	1.3110 1.3115 1.3125 1.3130
1. 3125-20	UN	2A 3A	$     \begin{array}{r}       1.3021 \\       1.3016 \\       1.3035 \\       1.3030 \\       \end{array}   $	${\begin{array}{c}1.3111\\1.3116\\1.3125\\1.3125\\1.3130\end{array}}$	$\begin{array}{c} 1,27860\\ 1,27845\\ 1,28000\\ 1,27985 \end{array}$	$\begin{array}{c} 1.\ 2956 \\ 1.\ 2951 \\ 1.\ 2982 \\ 1.\ 2977 \end{array}$	$\begin{array}{c} 1.3111\\ 1.3116\\ 1.3125\\ 1.3130 \end{array}$	$1.27390 \\1.27405 \\1.27650 \\1.27665$	$\begin{array}{c} 1.\ 27390 \\ 1.\ 27375 \\ 1.\ 27650 \\ 1.\ 27635 \end{array}$	$\begin{array}{c} 1.3111 \\ 1.3116 \\ 1.3125 \\ 1.3130 \end{array}$	1. 3111 1. 3116 1. 3125 1. 3130
1. 3125–28	UN	2A 3A	1.30421.30371.30541.3054	$\begin{array}{c} 1.3113 \\ 1.3118 \\ 1.3125 \\ 1.3120 \end{array}$	$\begin{array}{c} 1.\ 28810\\ 1.\ 28795\\ 1.\ 28930\\ 1.\ 28915 \end{array}$	$\begin{array}{c} 1.2995 \\ 1.2990 \\ 1.3017 \\ 1.3012 \end{array}$	1.31081.31131.31251.3130	$1.28400 \\ 1.28415 \\ 1.28620 \\ 1.28635$	1.28400 1.28385 1.28620 1.28605	1. 3113 1. 3118 1. 3125 1. 3130	1. 3108 1. 3113 1. 3125 1. 3130
1.375-6	UNC	1A 2A 3A	$\begin{array}{c} 1.3516\\ 1.3508\\ 1.3516\\ 1.3508\\ 1.3508\\ 1.3540\\ 1.3532 \end{array}$	$\begin{array}{c} 1.\ 3726\\ 1.\ 3734\\ 1.\ 3726\\ 1.\ 3734\\ 1.\ 3750\\ 1.\ 3758\\ \end{array}$	$\begin{array}{c} 1.\ 2643\\ 1.\ 2641\\ 1.\ 2643\\ 1.\ 2641\\ 1.\ 2667\\ 1.\ 2665\end{array}$	$\begin{array}{c} 1.\ 3245\\ 1.\ 3237\\ 1.\ 3285\\ 1.\ 3277\\ 1.\ 3229\\ 1.\ 3329\\ 1.\ 3321 \end{array}$	$\begin{array}{c} 1.\ 3726\\ 1.\ 3734\\ 1.\ 3726\\ 1.\ 3734\\ 1.\ 3750\\ 1.\ 3758\end{array}$	$\begin{array}{c} 1.\ 2523\\ 1.\ 2525\\ 1.\ 2563\\ 1.\ 2565\\ 1.\ 2607\\ 1.\ 2609 \end{array}$	$\begin{array}{c} 1.\ 2523\\ 1.\ 2521\\ 1.\ 2563\\ 1.\ 2561\\ 1.\ 2607\\ 1.\ 2605 \end{array}$	1. 3726 1. 3734 1. 3726 1. 3734 1. 3734 1. 3750 1. 3758	$\begin{array}{c} 1.\ 3726\\ 1.\ 3734\\ 1.\ 3726\\ 1.\ 3734\\ 1.\ 3750\\ 1.\ 3758\end{array}$
1.375-8	UN	2A 3A	$\begin{array}{c} 1.3557\\ 1.3550\\ 1.3579\\ 1.3579\\ 1.3572\end{array}$	$\begin{array}{c} 1.\ 3728\\ 1.\ 3735\\ 1.\ 3750\\ 1.\ 3757\end{array}$	1. 2916 1. 2914 1. 2938 1. 2936	$\begin{array}{c} 1.\ 3385\\ 1.\ 3378\\ 1.\ 3425\\ 1.\ 3418 \end{array}$	$\begin{array}{c} 1.\ 3728\\ 1.\ 3735\\ 1.\ 3750\\ 1.\ 3757\end{array}$	1.2844 1.2846 1.2884 1.2886	$\begin{array}{c} 1.\ 2844 \\ 1.\ 2842 \\ 1.\ 2884 \\ 1.\ 2882 \end{array}$	$\begin{array}{c} 1.3728 \\ 1.3735 \\ 1.3750 \\ 1.3757 \end{array}$	1. 3728 1. 3735 1. 3750 1. 3757
1. 375–12	UNF	1A 2A 3A	$\begin{array}{c} 1.3602\\ 1.3596\\ 1.3602\\ 1.3596\\ 1.3596\\ 1.3621\\ 1.3615 \end{array}$	$\begin{array}{c} 1.\ 3731\\ 1.\ 3737\\ 1.\ 3731\\ 1.\ 3737\\ 1.\ 3750\\ 1.\ 3756\end{array}$	$\begin{array}{c} 1.3190 \\ 1.3188 \\ 1.3190 \\ 1.3188 \\ 1.3209 \\ 1.3209 \\ 1.3207 \end{array}$	$\begin{array}{c} 1.\ 3457\\ 1.\ 3451\\ 1.\ 3488\\ 1.\ 3482\\ 1.\ 3523\\ 1.\ 3517\end{array}$	$\begin{array}{c} 1.3721\\ 1.3727\\ 1.3731\\ 1.3737\\ 1.3737\\ 1.3750\\ 1.3756\end{array}$	$\begin{array}{c} 1.\ 3096\\ 1.\ 3098\\ 1.\ 3127\\ 1.\ 3129\\ 1.\ 3162\\ 1.\ 3164 \end{array}$	$\begin{array}{c} 1,3096\\ 1,3094\\ 1,3127\\ 1,3125\\ 1,3162\\ 1,3160 \end{array}$	$\begin{array}{c} 1.3731\\ 1.3737\\ 1.3731\\ 1.3731\\ 1.3737\\ 1.3750\\ 1.3756\end{array}$	$\begin{array}{c} 1.3721\\ 1.3727\\ 1.3731\\ 1.3731\\ 1.3737\\ 1.3750\\ 1.3756 \end{array}$
1. 375–16	UN	2A 3A	$\begin{array}{c} 1.3630 \\ 1.3624 \\ 1.3645 \\ 1.3639 \end{array}$	$\begin{array}{c} 1.\ 3735\\ 1.\ 3741\\ 1.\ 3750\\ 1.\ 3756 \end{array}$	$\begin{array}{c} 1.3329 \\ 1.3327 \\ 1.3344 \\ 1.3342 \end{array}$	$1.3549 \\ 1.3543 \\ 1.3577 \\ 1.3577 \\ 1.3571$	$\begin{array}{c} 1.\ 3735\\ 1.\ 3741\\ 1.\ 3750\\ 1.\ 3756 \end{array}$	1. 3278 1. 3280 1. 3306 1. 3308	$1.3278 \\ 1.3276 \\ 1.3306 \\ 1.3304$	1.3735 1.3741 1.3750 1.3756	1.3735 1.3741 1.3750 1.3756
1.375-18	UNEF	2A 3A	$\begin{array}{c} 1.3638 \\ 1.3633 \\ 1.3653 \\ 1.3653 \\ 1.3648 \end{array}$	1.37351.37401.37501.3755	$\begin{array}{c} 1.\ 33740\\ 1.\ 33725\\ 1.\ 33890\\ 1.\ 33875 \end{array}$	$\begin{array}{c} 1.3566\\ 1.3561\\ 1.3594\\ 1.3594\\ 1.3589\end{array}$	$\begin{array}{c} 1.3735 \\ 1.3740 \\ 1.3750 \\ 1.3755 \end{array}$	$\begin{array}{c} 1.33250\\ 1.33265\\ 1.33530\\ 1.33545 \end{array}$	$\begin{array}{c} 1,33250\\ 1,33235\\ 1,33530\\ 1,33515 \end{array}$	1. 3735 1. 3740 1. 3750 1. 3755	$1.3735 \\ 1.3740 \\ 1.3750 \\ 1.3755$
1.375-20	UN	2A 3A	$1.3646 \\1.3641 \\1.3660 \\1.3655$	$\begin{array}{c} 1.\ 3736\\ 1.\ 3741\\ 1.\ 3750\\ 1.\ 3755 \end{array}$	$\begin{array}{c} 1.\ 34110\\ 1.\ 34095\\ 1.\ 34250\\ 1.\ 34235 \end{array}$	$\begin{array}{c} 1.\ 3581\\ 1.\ 3576\\ 1.\ 3607\\ 1.\ 3602 \end{array}$	$\begin{array}{c} 1.\ 3736\\ 1.\ 3741\\ 1.\ 3750\\ 1.\ 3755 \end{array}$	1. 33640 1. 33655 1. 33900 1. 33915	$\begin{array}{c} 1.33640\\ 1.33625\\ 1.33900\\ 1.33885 \end{array}$	1.3736 1.3741 1.3750 1.3755	1. 3736 1. 3741 1. 3750 1. 3755
1.375-28	UN	2A 3A	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1. 3738 1. 3743 1. 3750 1. 3755	$\begin{array}{c} 1,35060\\ 1,35045\\ 1,35180\\ 1,35165\end{array}$	$\begin{array}{c} 1.3620\\ 1.3615\\ 1.3642\\ 1.3637\end{array}$	$\begin{array}{c} 1.\ 3733\\ 1.\ 3738\\ 1.\ 3750\\ 1.\ 3755 \end{array}$	$\begin{array}{c} 1.\ 34650\\ 1.\ 34665\\ 1.\ 34870\\ 1.\ 34885 \end{array}$	$\begin{array}{c} 1.34650 \\ 1.34635 \\ 1.34870 \\ 1.34855 \end{array}$	$\begin{array}{c} 1.3738 \\ 1.3743 \\ 1.3750 \\ 1.3755 \end{array}$	1. 3733 1. 3738 1. 3750 1. 3755
1. 4375-6	UN	2A 3A	$1.4141 \\ 1.4133 \\ 1.4165 \\ 1.4157$	$\begin{array}{c} 1.\ 4351 \\ 1.\ 4359 \\ 1.\ 4375 \\ 1.\ 4383 \end{array}$	$\begin{array}{c} 1.3268 \\ 1.3266 \\ 1.3292 \\ 1.3290 \end{array}$	$\begin{array}{c} 1.\ 3910 \\ 1.\ 3902 \\ 1.\ 3954 \\ 1.\ 3946 \end{array}$	$\begin{array}{c} 1.\ 4351\\ 1.\ 4359\\ 1.\ 4375\\ 1.\ 4383 \end{array}$	1. 3188 1. 3190 1. 3232 1. 3234	1. 3188 1. 3186 1. 3232 1. 3230	$\begin{array}{c} 1.\ 4351 \\ 1.\ 4359 \\ 1.\ 4375 \\ 1.\ 4383 \end{array}$	1. 4351 1. 4359 1. 4375 1. 4383
See footnotes at c	nd of table.		11 1			1				0	

			Ĩ		W tru	ncated setting	plugs			Basic-erest setting plugs		
			Plug for	GO thread	l gage ª	F	lug for LO	thread gage ^a		Major e	liameter	
Nominal size and threads per inch	Series des- ignation	Class	Major di	ameter	Piteh diameter	Major di	ameter	Piteh di	ameter	Plug for GO thread gage ^{a,b}	Plug for LO thread gage a,c	
			Truneated	Full		Truneated	Full	Plus toler- anee gage	Minus toleranee gage	W and X tolerances	W and X tolerances	
1	2	3	4	5	6	7	8	9	10	11	12	
1. 4375-8	UN	2A 3A	$in \\ 1.4182 \\ 1.4175 \\ 1.4204 \\ 1.4197$	in 1. 4353 1. 4360 1. 4375 1. 4382	<i>in</i> 1.3541 1.3539 1.3563 1.3561	<i>in</i> 1. 4010 1. 4003 1. 4050 1. 4043	in 1. 4353 1. 4360 1. 4375 1. 4382	$in \ 1.3469 \ 1.3471 \ 1.3509 \ 1.3511$	<i>in</i> 1. 3469 1. 3467 1. 3509 1. 3507	<i>in</i> 1. 4353 1. 4360 1. 4375 1. 4382	<i>in</i> 1. 4353 1. 4360 1. 4375 1. 4382	
1.4375-12	UN	2A 3A	$\begin{array}{c} 1.\ 4228\\ 1.\ 4222\\ 1.\ 4246\\ 1.\ 4240\end{array}$	$\begin{array}{c} 1.\ 4357\\ 1.\ 4363\\ 1.\ 4375\\ 1.\ 4381 \end{array}$	$1.\ 3816 \\ 1.\ 3814 \\ 1.\ 3834 \\ 1.\ 3832$	$\begin{array}{c} 1.\ 4118\\ 1.\ 4112\\ 1.\ 4151\\ 1.\ 4145 \end{array}$	$\begin{array}{c} 1.\ 4357\\ 1.\ 4363\\ 1.\ 4375\\ 1.\ 4381 \end{array}$	$\begin{array}{c} 1.3757\\ 1.3759\\ 1.3790\\ 1.3792\end{array}$	$\begin{array}{c} 1.\ 3757\\ 1.\ 3755\\ 1.\ 3790\\ 1.\ 3788 \end{array}$	$\begin{array}{c} 1.\ 4357\\ 1.\ 4363\\ 1.\ 4375\\ 1.\ 4381 \end{array}$	1. 4357 1. 4363 1. 4375 1. 4381	
1. 4375–16	UN	2A 3A	$\begin{array}{c c} 1.4254\\ 1.4248\\ 1.4270\\ 1.4264\end{array}$	$\begin{array}{c} 1.\ 4359\\ 1.\ 4365\\ 1.\ 4375\\ 1.\ 4381 \end{array}$	$\begin{array}{c} 1.\ 3953\\ 1.\ 3951\\ 1.\ 3969\\ 1.\ 3967\end{array}$	$\begin{array}{c} 1.\ 4172 \\ 1.\ 4166 \\ 1.\ 4201 \\ 1.\ 4195 \end{array}$	$\begin{array}{c} 1.\ 4359\\ 1.\ 4365\\ 1.\ 4375\\ 1.\ 4381 \end{array}$	$\begin{array}{c} 1.3901 \\ 1.3903 \\ 1.3930 \\ 1.3932 \end{array}$	$\begin{array}{c} 1.\ 3901 \\ 1.\ 3899 \\ 1.\ 3930 \\ 1.\ 3928 \end{array}$	$\begin{array}{c} 1.\ 4359\\ 1.\ 4365\\ 1.\ 4375\\ 1.\ 4381 \end{array}$	1.4359 1.4365 1.4375 1.4381	
1. 4375–18	UNEF	2A 3A	$1.4263 \\ 1.4258 \\ 1.4278 \\ 1.4273 \\ 1.4273$	$\begin{array}{c} 1.4360\\ 1.4365\\ 1.4375\\ 1.4375\\ 1.4380 \end{array}$	$\begin{array}{c} 1.\ 39990\\ 1.\ 39975\\ 1.\ 40140\\ 1.\ 40125 \end{array}$	$\begin{array}{c} 1.4190\\ 1.4185\\ 1.4218\\ 1.4213\end{array}$	$\begin{array}{c} 1.\ 4360\\ 1.\ 4365\\ 1.\ 4375\\ 1.\ 4380 \end{array}$	$\begin{array}{c} 1.\ 39490\\ 1.\ 39505\\ 1.\ 39770\\ 1.\ 39785 \end{array}$	$\begin{array}{c} 1.\ 39490\\ 1.\ 39475\\ 1.\ 39770\\ 1.\ 39755 \end{array}$	$\begin{array}{c} 1.\ 4360 \\ 1.\ 4365 \\ 1.\ 4375 \\ 1.\ 4380 \end{array}$	1.4360 1.4365 1.4375 1.4380	
1.4375-20	UN	2A 3A	$1.4271 \\ 1.4266 \\ 1.4285 \\ 1.4280$	$\begin{array}{c} 1.\ 4361 \\ 1.\ 4366 \\ 1.\ 4375 \\ 1.\ 4380 \end{array}$	$1.40360 \\ 1.40345 \\ 1.40500 \\ 1.40485$	$\begin{array}{c} 1.\ 4205\\ 1.\ 4200\\ 1.\ 4231\\ 1.\ 4226 \end{array}$	$\begin{array}{c} 1.\ 4361 \\ 1.\ 4366 \\ 1.\ 4375 \\ 1.\ 4380 \end{array}$	$\begin{array}{c} 1.39880 \\ 1.39895 \\ 1.40140 \\ 1.40155 \end{array}$	$\begin{array}{c} 1.39880\\ 1.39865\\ 1.40140\\ 1.40125 \end{array}$	$1. 4361 \\ 1. 4366 \\ 1. 4375 \\ 1. 4380$	1.4361 1.4366 1.4375 1.4380	
1. 4375–28	UN	2A 3A	1.4291     1.4286     1.4304     1.4299	$1.4362 \\ 1.4367 \\ 1.4375 \\ 1.4380$	$\begin{array}{c} 1.\ 41300\\ 1.\ 41285\\ 1.\ 41430\\ 1.\ 41415 \end{array}$	$\begin{array}{c} 1.\ 4243\\ 1.\ 4238\\ 1.\ 4267\\ 1.\ 4262\end{array}$	1.43561.43611.43751.4380	$\begin{array}{c} 1.\ 40880\\ 1.\ 40895\\ 1.\ 41120\\ 1.\ 41135 \end{array}$	$\begin{array}{c} 1.\ 40880\\ 1.\ 40865\\ 1.\ 41120\\ 1.\ 41105 \end{array}$	$1. 4362 \\ 1. 4367 \\ 1. 4375 \\ 1. 4380$	$1. 4356 \\ 1. 4361 \\ 1. 4375 \\ 1. 4380$	
1. 500-6	UNC	1A 2A 3A	$1.4766 \\ 1.4758 \\ 1.4766 \\ 1.4758 \\ 1.4790 \\ 1.4782$	$\begin{array}{c} 1.\ 4976\\ 1.\ 4984\\ 1.\ 4976\\ 1.\ 4984\\ 1.\ 5000\\ 1.\ 5008 \end{array}$	$\begin{array}{c} 1.3893 \\ 1.3891 \\ 1.3893 \\ 1.3891 \\ 1.3891 \\ 1.3917 \\ 1.3915 \end{array}$	$1.4494 \\ 1.4486 \\ 1.4534 \\ 1.4526 \\ 1.4578 \\ 1.4570$	$\begin{array}{c} 1.4976\\ 1.4984\\ 1.4976\\ 1.4984\\ 1.5000\\ 1.5008\end{array}$	$\begin{array}{c} 1.\ 3772\\ 1.\ 3774\\ 1.\ 3812\\ 1.\ 3814\\ 1.\ 3856\\ 1.\ 3858 \end{array}$	$\begin{array}{c} 1.\ 3772\\ 1.\ 3770\\ 1.\ 3812\\ 1.\ 3810\\ 1.\ 3856\\ 1.\ 3854 \end{array}$	$1.4976 \\ 1.4984 \\ 1.4976 \\ 1.4984 \\ 1.5000 \\ 1.5008 $	$ \begin{array}{c} 1. 4976 \\ 1. 4984 \\ 1. 4976 \\ 1. 4984 \\ 1. 5000 \\ 1. 5008 \end{array} $	
1. 500-8	UN	2A 3A	$ \begin{array}{c} 1.4807\\ 1.4800\\ 1.4829\\ 1.4822 \end{array} $	$     1.4978 \\     1.4985 \\     1.5000 \\     1.5007 $	1. 4166 1. 4164 1. 4188 1. 4186	$1.4634 \\ 1.4627 \\ 1.4674 \\ 1.4667$	$     1.4978 \\     1.4985 \\     1.5000 \\     1.5007     $	$1.4093 \\ 1.4095 \\ 1.4133 \\ 1.4135$	$1.4093 \\ 1.4091 \\ 1.4133 \\ 1.4131$	$1.4978 \\ 1.4985 \\ 1.5000 \\ 1.5007$	$1. 4978 \\1. 4985 \\1. 5000 \\1. 5007$	
1. 500-12	UNF	1A 2A 3A	$\begin{array}{c} 1.\ 4852\\ 1.\ 4846\\ 1.\ 4852\\ 1.\ 4846\\ 1.\ 4871\\ 1.\ 4865\end{array}$	1. 4981 1. 4987 1. 4981 1. 4987 1. 5000 1. 5006	$\begin{array}{c} 1.4440\\ 1.4438\\ 1.4440\\ 1.4438\\ 1.4459\\ 1.4459\\ 1.4457\end{array}$	$\begin{array}{c} 1.\ 4705\\ 1.\ 4699\\ 1.\ 4737\\ 1.\ 4731\\ 1.\ 4772\\ 1.\ 4766\end{array}$	1. 4969 1. 4975 1. 4981 1. 4987 1. 5000 1. 5006	$1. 4344 \\ 1. 4346 \\ 1. 4376 \\ 1. 4378 \\ 1. 4411 \\ 1. 4413$	$\begin{array}{c} 1.4344\\ 1.4342\\ 1.4376\\ 1.4376\\ 1.4374\\ 1.4411\\ 1.4409 \end{array}$	$\begin{array}{c} 1.\ 4981\\ 1.\ 4987\\ 1.\ 4981\\ 1.\ 4981\\ 1.\ 4987\\ 1.\ 5000\\ 1.\ 5006\end{array}$	$\begin{array}{c} 1.\ 4969\\ 1.\ 4975\\ 1.\ 4981\\ 1.\ 4987\\ 1.\ 5000\\ 1.\ 5000\end{array}$	
1. 500-16	UN	2A 3A	$1. 4879 \\ 1. 4873 \\ 1. 4895 \\ 1. 4889 $	$\begin{array}{c} 1.\ 4984 \\ 1.\ 4990 \\ 1.\ 5000 \\ 1.\ 5006 \end{array}$	$1.\ 4578\\1.\ 4576\\1.\ 4594\\1.\ 4592$	$1.4797 \\1.4791 \\1.4826 \\1.4820$	$\begin{array}{c} 1.\ 4984\\ 1.\ 4990\\ 1.\ 5000\\ 1.\ 5006 \end{array}$	$1.4526 \\ 1.4528 \\ 1.4555 \\ 1.4557 $	$1.4526 \\ 1.4524 \\ 1.4555 \\ 1.4553$	1. 4984 1. 4990 1. 5000 1. 5006	$ \begin{array}{c} 1.4984\\ 1.4990\\ 1.5000\\ 1.5000\\ 1.5006 \end{array} $	
1. 500–18	UNEF	2A 3A	$ \begin{array}{c} 1.4888\\ 1.4883\\ 1.4903\\ 1.4898 \end{array} $	$\begin{array}{c} 1.4985\\ 1.4990\\ 1.5000\\ 1.5005\end{array}$	$\begin{array}{c} 1.\ 46240\\ 1.\ 46225\\ 1.\ 46390\\ 1.\ 46375 \end{array}$	$ \begin{array}{r} 1.4815\\ 1.4810\\ 1.4843\\ 1.4838 \end{array} $	$\begin{array}{c} 1.\ 4984 \\ 1.\ 4990 \\ 1.\ 5000 \\ 1.\ 5005 \end{array}$	$1.45740 \\ 1.45755 \\ 1.46020 \\ 1.46035$	$\begin{array}{c} 1.\ 45740 \\ 1.\ 45725 \\ 1.\ 46020 \\ 1.\ 46005 \end{array}$	1. 4985 1. 4990 1. 5000 1. 5005	1.49851.49901.50001.5005	
1. 500-20	UN	2A 3A	$ \begin{array}{c} 1. 4896 \\ 1. 4891 \\ 1. 4910 \\ 1. 4905 \end{array} $	$\begin{array}{c} 1.\ 4986\\ 1.\ 4991\\ 1.\ 5000\\ 1.\ 5005 \end{array}$	$\begin{array}{c} 1.\ 46610\\ 1.\ 46595\\ 1.\ 46750\\ 1.\ 46735 \end{array}$	$1.4830 \\ 1.4825 \\ 1.4856 \\ 1.4851$	$\begin{array}{c} 1.\ 4986 \\ 1.\ 4991 \\ 1.\ 5000 \\ 1.\ 5005 \end{array}$	$1.46130 \\ 1.46145 \\ 1.46390 \\ 1.46405$	$\begin{array}{c} 1.\ 46130\\ 1.\ 46115\\ 1.\ 46390\\ 1.\ 46375 \end{array}$	1. 4986 1. 4991 1. 5000 1. 5005	1. 4986 1. 4991 1. 5000 1. 5005	
1. 500-28	UN	2A 3A	1.49161.49111.49291.4924	$\begin{array}{c} 1.\ 4987\\ 1.\ 4992\\ 1.\ 5000\\ 1.\ 5005\end{array}$	$1.47550 \\ 1.47535 \\ 1.47680 \\ 1.47665$	$1.\ 4868 \\ 1.\ 4863 \\ 1.\ 4892 \\ 1.\ 4887$	$\begin{array}{c} 1.\ 4981\\ 1.\ 4986\\ 1.\ 5000\\ 1.\ 5005 \end{array}$	$1.47130 \\1.47145 \\1.47370 \\1.47385$	$\begin{array}{c} 1.\ 47130\\ 1.\ 47115\\ 1.\ 47370\\ 1.\ 47355 \end{array}$	1. 4987 1. 4992 1. 5000 1. 5005	1. 4981 1. 4986 1. 5000 1. 5005	
1. 5625-6	UN	2A 3A	$1.5391 \\ 1.5383 \\ 1.5415 \\ 1.5407$	$\begin{array}{c} 1.\ 5601 \\ 1.\ 5609 \\ 1.\ 5625 \\ 1.\ 5633 \end{array}$	$\begin{array}{c} 1.\ 45180\\ 1.\ 45155\\ 1.\ 45420\\ 1.\ 45395 \end{array}$	$\begin{array}{c} 1.\ 5158\\ 1.\ 5150\\ 1.\ 5203\\ 1.\ 5195\end{array}$	$\begin{array}{c} 1.\ 5601 \\ 1.\ 5609 \\ 1.\ 5625 \\ 1.\ 5633 \end{array}$	$\begin{array}{c} 1.\ 44360\\ 1.\ 44385\\ 1.\ 44810\\ 1.\ 44835 \end{array}$	$\begin{array}{c} 1.\ 44360\\ 1.\ 44335\\ 1.\ 44810\\ 1.\ 44785 \end{array}$	$\begin{array}{c} 1.\ 5601 \\ 1.\ 5609 \\ 1.\ 5625 \\ 1.\ 5633 \end{array}$	$1.5601 \\ 1.5609 \\ 1.5628 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1.5633 \\ 1$	
1. 5625-8	UN	2A 3A	$1.5432 \\ 1.5425 \\ 1.5454 \\ 1.5447$	$\begin{array}{c} 1.\ 5603\\ 1.\ 5610\\ 1.\ 5625\\ 1.\ 5632 \end{array}$	$\begin{array}{c} 1.47910\\ 1.47885\\ 1.48130\\ 1.48105\end{array}$	$\begin{array}{c} 1.\ 5258\\ 1.\ 5251\\ 1.\ 5299\\ 1.\ 5292\end{array}$	$\begin{array}{c} 1.\ 5603 \\ 1.\ 5610 \\ 1.\ 5625 \\ 1.\ 5632 \end{array}$	$1.47170 \\ 1.47195 \\ 1.47580 \\ 1.47605$	$\begin{array}{c} 1.47170\\ 1.47145\\ 1.47580\\ 1.47555\end{array}$	$1.5603 \\ 1.5610 \\ 1.5625 \\ 1.5632$	$\begin{array}{c} 1.\ 5603\\ 1.\ 5610\\ 1.\ 5625\\ 1.\ 5632\end{array}$	

See footnotes at end of table.

2

			W truncated setting plugs						Basic-crest setting plugs		
			Plug for	GO thread	gage a	Plug for LØ thread gage *				Major o	liameter
Nominal size and threads per inch	Series des- ignation	ries des- mation Class	Major di	ameter	meter Pitch diameter		Major diameter		ameter	Plug for GO thread gage ^{a,b}	Plug for LO thread gage a.c
			Truncated	Full		Truncated	Full	Plus toler- ance gage	Minus tolcrance gage	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
1.5625-12	UN	2A 3A	$in \\ 1.5478 \\ 1.5472 \\ 1.5496 \\ 1.5490$	in 1.5607 1.5613 1.5625 1.5631	<i>in</i> 1. 50660 1. 50635 1. 50840 1. 50815	$in\\1.5368\\1.5362\\1.5401\\1.5395$	<i>in</i> 1. 5607 1. 5613 1. 5625 1. 5631	$in \\ 1.50070 \\ 1.50095 \\ 1.50400 \\ 1.50425$	<i>in</i> 1. 50070 1. 50045 1. 50400 1. 50375	<i>in</i> 1.5607 1.5613 1.5625 1.5631	<i>in</i> 1.5607 1.5612 1.5622 1.5633
1. 5625-16	UN	2A 3A	$1.5504 \\ 1.5498 \\ 1.5520 \\ 1.5514$	$\begin{array}{c} 1.\ 5609 \\ 1.\ 5615 \\ 1.\ 5625 \\ 1.\ 5631 \end{array}$	$\begin{array}{c} 1.\ 52030\\ 1.\ 52005\\ 1.\ 52190\\ 1.\ 52165 \end{array}$	$\begin{array}{c} 1.\ 5422 \\ 1.\ 5416 \\ 1.\ 5451 \\ 1.\ 5445 \end{array}$	$\begin{array}{c} 1.\ 5609 \\ 1.\ 5615 \\ 1.\ 5625 \\ 1.\ 5631 \end{array}$	$\begin{array}{c} 1.\ 51510\\ 1.\ 51535\\ 1.\ 51800\\ 1.\ 51825 \end{array}$	$\begin{array}{c} 1.\ 51510\\ 1.\ 51485\\ 1.\ 51800\\ 1.\ 51775 \end{array}$	$\begin{array}{c} 1.\ 5609\\ 1.\ 5615\\ 1.\ 5625\\ 1.\ 5631\end{array}$	$1.5609 \\ 1.5619 \\ 1.5625 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1.5631 \\ 1$
1. 5625-18	UNEF	2A 3A	$\begin{array}{c} 1.\ 5513\\ 1.\ 5508\\ 1.\ 5528\\ 1.\ 5523\\ \end{array}$	$\begin{array}{c} 1.5610 \\ 1.5615 \\ 1.5625 \\ 1.5630 \end{array}$	$\begin{array}{c} 1.\ 5249\\ 1.\ 5247\\ 1.\ 5264\\ 1.\ 5262\end{array}$	$\begin{array}{c} 1.\ 5440 \\ 1.\ 5435 \\ 1.\ 5468 \\ 1.\ 5463 \end{array}$	$\begin{array}{c} 1.\ 5610 \\ 1.\ 5615 \\ 1.\ 5625 \\ 1.\ 5630 \end{array}$	$\begin{array}{c} 1.5199 \\ 1.5201 \\ 1.5227 \\ 1.5229 \end{array}$	$\begin{array}{c} 1.\ 5199\\ 1.\ 5197\\ 1.\ 5227\\ 1.\ 5225 \end{array}$	$\begin{array}{c} 1.\ 5610\\ 1.\ 5615\\ 1.\ 5625\\ 1.\ 5630\end{array}$	1.561(1.561)1.562(1.563)
1.5625-20	UN	2A 3A	$\begin{array}{c} 1.\ 5521 \\ 1.\ 5516 \\ 1.\ 5535 \\ 1.\ 5530 \end{array}$	$\begin{array}{c} 1.\ 5611 \\ 1.\ 5616 \\ 1.\ 5625 \\ 1.\ 5630 \end{array}$	$\begin{array}{c} 1.\ 5286 \\ 1.\ 5284 \\ 1.\ 5300 \\ 1.\ 5298 \end{array}$	$\begin{array}{c} 1.\ 5455\\ 1.\ 5450\\ 1.\ 5481\\ 1.\ 5476\end{array}$	$\begin{array}{c} 1.\ 5611 \\ 1.\ 5616 \\ 1.\ 5625 \\ 1.\ 5630 \end{array}$	$\begin{array}{c} 1.\ 5238\\ 1.\ 5240\\ 1.\ 5264\\ 1.\ 5266\end{array}$	$\begin{array}{c} 1.\ 5238\\ 1.\ 5236\\ 1.\ 5264\\ 1.\ 5262 \end{array}$	$\begin{array}{c} 1.\ 5611\\ 1.\ 5616\\ 1.\ 5625\\ 1.\ 5630\end{array}$	1.5611 1.561( 1.562( 1.563(
1.625-6	UN	2A 3A	$1,6015 \\ 1,6007 \\ 1,6040 \\ 1,6032$	$\begin{array}{c} 1.\ 6225\\ 1.\ 6233\\ 1.\ 6250\\ 1.\ 6258\end{array}$	$\begin{array}{c} 1.\ 51420\\ 1.\ 51395\\ 1.\ 51670\\ 1.\ 51645 \end{array}$	$\begin{array}{c} 1.\ 5782\\ 1.\ 5774\\ 1.\ 5827\\ 1.\ 5819 \end{array}$	$\begin{array}{c} 1.\ 6225\\ 1.\ 6233\\ 1.\ 6250\\ 1.\ 6258\end{array}$	$\begin{array}{c} 1.\ 50600\\ 1.\ 50625\\ 1.\ 51050\\ 1.\ 51075 \end{array}$	$\begin{array}{c} 1.\ 50600\\ 1.\ 50575\\ 1.\ 51050\\ 1.\ 51025 \end{array}$	$\begin{array}{c} 1.\ 6225\\ 1.\ 6233\\ 1.\ 6250\\ 1.\ 6258\end{array}$	1.622(1.623)1.62501.6250
1.625-8	UN	2A 3A	$1.6057 \\ 1.6050 \\ 1.6079 \\ 1.6072$	$\begin{array}{c} 1.\ 6228\\ 1.\ 6235\\ 1.\ 6250\\ 1.\ 6257\end{array}$	$\begin{array}{c} 1.\ 54160\\ 1.\ 54135\\ 1.\ 54380\\ 1.\ 54355\end{array}$	$\begin{array}{c} 1.\ 5883\\ 1.\ 5876\\ 1.\ 5923\\ 1.\ 5916 \end{array}$	$\begin{array}{c} 1.\ 6228\\ 1.\ 6235\\ 1.\ 6250\\ 1.\ 6257\end{array}$	$\begin{array}{c} 1.\ 53420\\ 1.\ 53445\\ 1.\ 53820\\ 1.\ 53845 \end{array}$	$\begin{array}{c} 1.\ 53420\\ 1.\ 53395\\ 1.\ 53820\\ 1.\ 53795 \end{array}$	$\begin{array}{c} 1.\ 6228\\ 1.\ 6235\\ 1.\ 6250\\ 1.\ 6257\end{array}$	$\begin{array}{c} 1.\ 6228\\ 1.\ 6233\\ 1.\ 6250\\ 1.\ 6257\end{array}$
1.625-12	UN	2A 5A	$1.6103 \\ 1.6097 \\ 1.6121 \\ 1.6115$	$\begin{array}{c} 1.\ 6232\\ 1.\ 6238\\ 1.\ 6250\\ 1.\ 6256\end{array}$	$\begin{array}{c} 1.56910 \\ 1.56885 \\ 1.57090 \\ 1.57065 \end{array}$	$\begin{array}{c} 1.\ 5993 \\ 1.\ 5987 \\ 1.\ 6026 \\ 1.\ 6020 \end{array}$	$\begin{array}{c} 1.\ 6232\\ 1.\ 6238\\ 1.\ 6250\\ 1.\ 6256\end{array}$	$\begin{array}{c} 1.56320 \\ 1.56345 \\ 1.56650 \\ 1.56675 \end{array}$	$\begin{array}{c} 1.\ 56320\\ 1.\ 56295\\ 1.\ 56650\\ 1.\ 56625 \end{array}$	$\begin{array}{c} 1.\ 6232\\ 1.\ 6238\\ 1.\ 6250\\ 1.\ 6256\end{array}$	$ \begin{array}{c} 1. 6232 \\ 1. 6238 \\ 1. 6250 \\ 1. 6250 \\ 1. 6256 \\ \end{array} $
1.625-16	UN	2A 3A	$1.6129 \\ 1.6123 \\ 1.6145 \\ 1.6139$	$\begin{array}{c} 1.\ 6234\\ 1.\ 6240\\ 1.\ 6250\\ 1.\ 6256\end{array}$	$\begin{array}{c} 1.\ 58280\\ 1.\ 58255\\ 1.\ 58440\\ 1.\ 58415 \end{array}$	$\begin{array}{c} 1.\ 6047 \\ 1.\ 6041 \\ 1.\ 6076 \\ 1.\ 6070 \end{array}$	$\begin{array}{c} 1.\ 6234\\ 1.\ 6240\\ 1.\ 6250\\ 1.\ 6256\end{array}$	$\begin{array}{c} 1.\ 57760\\ 1.\ 57785\\ 1.\ 58050\\ 1.\ 58075 \end{array}$	$\begin{array}{c} 1.\ 57760\\ 1.\ 57735\\ 1.\ 58050\\ 1.\ 58025 \end{array}$	$\begin{array}{c} 1.\ 6234\\ 1.\ 6240\\ 1.\ 6250\\ 1.\ 6256\end{array}$	$\begin{array}{c} 1.\ 623 \\ 1.\ 624 \\ 1.\ 625 \\ 1.\ 625 \end{array}$
1.625-18	UNEF	2A 3A	$\begin{array}{c} 1.\ 6138\\ 1.\ 6133\\ 1.\ 6153\\ 1.\ 6148 \end{array}$	$\begin{array}{c} 1.\ 6235\\ 1.\ 6240\\ 1.\ 6250\\ 1.\ 6255\end{array}$	$\begin{array}{c} 1.\ 5874 \\ 1.\ 5872 \\ 1.\ 5889 \\ 1.\ 5887 \end{array}$	$\begin{array}{c} 1.\ 6065\\ 1.\ 6060\\ 1.\ 6093\\ 1.\ 6088\end{array}$	$\begin{array}{c} 1.\ 6235\\ 1.\ 6240\\ 1.\ 6250\\ 1.\ 6255 \end{array}$	$\begin{array}{c} 1.\ 5824 \\ 1.\ 5826 \\ 1.\ 5852 \\ 1.\ 5854 \end{array}$	$\begin{array}{c} 1.\ 5824 \\ 1.\ 5822 \\ 1.\ 5852 \\ 1.\ 5850 \end{array}$	$\begin{array}{c} 1.\ 6235\\ 1.\ 6240\\ 1.\ 6250\\ 1.\ 6255\end{array}$	$\begin{array}{c} 1.\ 623;\\ 1.\ 6240\\ 1.\ 6250\\ 1.\ 6255\end{array}$
1.625-20	UN	2A 3A	$1.6146 \\ 1.6141 \\ 1.6160 \\ 1.6155$	$\begin{array}{c} 1.\ 6236\\ 1.\ 6241\\ 1.\ 6250\\ 1.\ 6255 \end{array}$	$\begin{array}{c} 1.\ 5911 \\ 1.\ 5909 \\ 1.\ 5925 \\ 1.\ 5923 \end{array}$	$\begin{array}{c} 1.\ 6080\\ 1.\ 6075\\ 1.\ 6106\\ 1.\ 6101 \end{array}$	$\begin{array}{c} 1.\ 6236\\ 1.\ 6241\\ 1.\ 6250\\ 1.\ 6255 \end{array}$	$\begin{array}{c} 1.\ 5863 \\ 1.\ 5865 \\ 1.\ 5889 \\ 1.\ 5891 \end{array}$	$1.5863 \\ 1.5861 \\ 1.5889 \\ 1.5887$	$\begin{array}{c} 1.\ 6236\\ 1.\ 6241\\ 1.\ 6250\\ 1.\ 6255\end{array}$	$\begin{array}{c} 1.6236 \\ 1.6241 \\ 1.6250 \\ 1.6250 \\ 1.6253 \end{array}$
1.6875-6	UN	2A 3A	$\begin{array}{c} 1.\ 6640\\ 1.\ 6632\\ 1.\ 6665\\ 1.\ 6657\end{array}$	$\begin{array}{c} 1.\ 6850\\ 1.\ 6858\\ 1.\ 6875\\ 1.\ 6883 \end{array}$	$\begin{array}{c} 1.57670 \\ 1.57645 \\ 1.57920 \\ 1.57895 \end{array}$	$\begin{array}{c} 1.\ 6406\\ 1.\ 6398\\ 1.\ 6452\\ 1.\ 6444 \end{array}$	$\begin{array}{c} 1.\ 6850\\ 1.\ 6858\\ 1.\ 6875\\ 1.\ 6883 \end{array}$	$\begin{array}{c} 1.\ 56840\\ 1.\ 56865\\ 1.\ 57300\\ 1.\ 57325 \end{array}$	$\begin{array}{c} 1.\ 56840 \\ 1.\ 56815 \\ 1.\ 57300 \\ 1.\ 57275 \end{array}$	$\begin{array}{c} 1.\ 6850\\ 1.\ 6858\\ 1.\ 6875\\ 1.\ 6883\end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1.6875-8	UN	2A 3A	$\begin{array}{c} 1.\ 6682\\ 1.\ 6675\\ 1.\ 6704\\ 1.\ 6697\end{array}$	$\begin{array}{c} 1.\ 6853\\ 1.\ 6860\\ 1.\ 6875\\ 1.\ 6882 \end{array}$	$\begin{array}{c} 1.\ 60410\\ 1.\ 60385\\ 1.\ 60630\\ 1.\ 60605 \end{array}$	$\begin{array}{c} 1.\ 6507\\ 1.\ 6500\\ 1.\ 6548\\ 1.\ 6541 \end{array}$	$\begin{array}{c} 1.\ 6853\\ 1.\ 6860\\ 1.\ 6875\\ 1.\ 6882 \end{array}$	$\begin{array}{c} 1.\ 59660\\ 1.\ 59685\\ 1.\ 60070\\ 1.\ 60095 \end{array}$	$\begin{array}{c} 1.\ 59660\\ 1.\ 59635\\ 1.\ 60070\\ 1.\ 60045 \end{array}$	$\begin{array}{c} 1.6853\\ 1.6860\\ 1.6875\\ 1.6882 \end{array}$	$\begin{array}{c} 1.\ 685;\\ 1.\ 686;\\ 1.\ 687;\\ 1.\ 688;\end{array}$
1.6875-12	UN	2A 3A	$\begin{array}{c} 1.\ 6728\\ 1.\ 6722\\ 1.\ 6746\\ 1.\ 6740 \end{array}$	$\begin{array}{c} 1.6857\\ 1.6863\\ 1.6875\\ 1.6881 \end{array}$	$\begin{array}{c} 1.63160\\ 1.63135\\ 1.63340\\ 1.63315 \end{array}$	$\begin{array}{c} 1.\ 6617\\ 1.\ 6611\\ 1.\ 6650\\ 1.\ 6644 \end{array}$	$\begin{array}{c} 1.\ 6857\\ 1.\ 6863\\ 1.\ 6875\\ 1.\ 6881 \end{array}$	$\begin{array}{c} 1.\ 62560\\ 1.\ 62585\\ 1.\ 62890\\ 1.\ 62915 \end{array}$	$\begin{array}{c} 1.\ 62560\\ 1.\ 62535\\ 1.\ 62890\\ 1.\ 62865 \end{array}$	$\begin{array}{c} 1.\ 6857\\ 1.\ 6863\\ 1.\ 6875\\ 1.\ 6881 \end{array}$	1.68571.68671.68771.6877
1.6875-16	UN	2A 3A	$1.6754 \\ 1.6748 \\ 1.6770 \\ 1.6764$	$\begin{array}{c} 1.\ 6859\\ 1.\ 6865\\ 1.\ 6875\\ 1.\ 6831 \end{array}$	$\begin{array}{c} 1.\ 64530\\ 1.\ 64505\\ 1.\ 64690\\ 1.\ 64665\end{array}$	$1.6671 \\ 1.6665 \\ 1.6700 \\ 1.6694$	$\begin{array}{c} 1.\ 6859\\ 1.\ 6865\\ 1.\ 6875\\ 1.\ 6881 \end{array}$	$\begin{array}{c} 1.64000\\ 1.64025\\ 1.64290\\ 1.64315\end{array}$	$\begin{array}{c} 1.64000\\ 1.63975\\ 1.64290\\ 1.64265\end{array}$	$\begin{array}{c} 1.6859\\ 1.6865\\ 1.6875\\ 1.6881\end{array}$	1.68591.68641.68731.6873
1.6875-18	UNEF	2A 3A	$\begin{array}{c} 1,6763\\ 1,6758\\ 1,6778\\ 1,6773\\ \end{array}$	$\begin{array}{c} 1.\ 6860\\ 1.\ 6865\\ 1.\ 6875\\ 1.\ 6880 \end{array}$	$\begin{array}{c} 1.\ 6499\\ 1.\ 6497\\ 1.\ 6514\\ 1.\ 6512 \end{array}$	$1.6689 \\ 1.6684 \\ 1.6717 \\ 1.6712$	$\begin{array}{c} 1.\ 6860\\ 1.\ 6865\\ 1.\ 6875\\ 1.\ 6880 \end{array}$	$\begin{array}{c} 1.\ 6448 \\ 1.\ 6450 \\ 1.\ 6476 \\ 1.\ 6478 \end{array}$	$\begin{array}{c} 1.\ 6448 \\ 1.\ 6446 \\ 1.\ 6476 \\ 1.\ 6474 \end{array}$	$\begin{array}{c} 1.\ 6860\\ 1.\ 6865\\ 1.\ 6875\\ 1.\ 6880 \end{array}$	$\begin{array}{c} 1.\ 6860\\ 1.\ 6862\\ 1.\ 6873\\ 1.\ 6880\end{array}$
1.6875-20	UN	2A 3A	$1.6770 \\ 1.6765 \\ 1.6785 \\ 1.6780$	${\begin{array}{c}1.\ 6860\\1.\ 6865\\1.\ 6875\\1.\ 6880\end{array}}$	$\begin{array}{c} 1.\ 6535\\ 1.\ 6533\\ 1.\ 6550\\ 1.\ 6548 \end{array}$	$1.6704 \\ 1.6699 \\ 1.6731 \\ 1.6726$	$\begin{array}{c} 1.6860\\ 1.6865\\ 1.6875\\ 1.6880 \end{array}$	$1.6487 \\ 1.6489 \\ 1.6514 \\ 1.6516$	$1.6487 \\ 1.6485 \\ 1.6514 \\ 1.6512$	$1.6860 \\ 1.6865 \\ 1.6875 \\ 1.6880$	$ \begin{array}{c} 1.6860\\ 1.6863\\ 1.6873\\ 1.6880 \end{array} $

-

					W tru	neated setting	plugs			Basie-erestsettingplugs		
			Plug for	GO thread	gage a	Р	lug for LO	thread gage ª		Major d	liameter	
Nominal size and threads per inch	Series des- ignation	Class	Major dia	ameter	Piteh diameter	Major di	ameter	Piteh di	ameter	Plug for GO thread gage ^{a,b}	Plug for LO thread gage a,c	
			Truneated	Full		Truneated	Full	Plus toler- anee gage	Minus toleranee gage	W and X tolerances	W and X toleranees	
1	2	3	4	5	6	7	8	9	10	11	12	
1.750-5	UNC	1A 2A 3A	$in \\ 1,7234 \\ 1,7226 \\ 1,7234 \\ 1,7226 \\ 1,7261 \\ 1,7261 \\ 1,7253$	in 1. 7473 1. 7481 1. 7473 1. 7481 1. 7500 1. 7508	in 1. 61740 1. 61715 1. 61740 1. 61740 1. 61715 1. 62010 1. 61985	$in\\1,6906\\1,6998\\1,6951\\1,6943\\1,7000\\1,6992$	in 1. 7473 1. 7481 1. 7473 1. 7473 1. 7481 1. 7500 1. 7508	$in \\ 1.60400 \\ 1.60425 \\ 1.60850 \\ 1.60875 \\ 1.61340 \\ 1.61365$	in 1. 60400 1. 60375 1. 60850 1. 60825 1. 61340 1. 61315	$in \\ 1.7473 \\ 1.7481 \\ 1.7473 \\ 1.7473 \\ 1.7481 \\ 1.7500 \\ 1.7508$	<i>in</i> 1. 7473 1. 7481 1. 7473 1. 7481 1. 7500 1. 7508	
1. 750–6	UN	2A 3A	$\begin{array}{c} 1.7265 \\ 1.7257 \\ 1.7290 \\ 1.7282 \end{array}$	$\begin{array}{c} 1.7475\\ 1.7483\\ 1.7500\\ 1.7508 \end{array}$	$\begin{array}{c} 1.\ 63920\\ 1.\ 63895\\ 1.\ 64170\\ 1.\ 64145 \end{array}$	1. 7031 1. 7023 1. 7076 1. 7068	$\begin{array}{c} 1.\ 7475\\ 1.\ 7483\\ 1.\ 7500\\ 1.\ 7508 \end{array}$	$\begin{array}{c} 1.\ 63090\\ 1.\ 63115\\ 1.\ 63540\\ 1.\ 63565\end{array}$	$\begin{array}{c} 1.\ 63090\\ 1.\ 63065\\ 1.\ 63540\\ 1.\ 63515 \end{array}$	$1.7475 \\ 1.7483 \\ 1.7500 \\ 1.7508$	1.7475 1.7483 1.7500 1.7508	
1.750-8	UN	2A 3A	$\begin{array}{c} 1.\ 7306\\ 1.\ 7299\\ 1.\ 7329\\ 1.\ 7322 \end{array}$	$1.7477 \\ 1.7484 \\ 1.7500 \\ 1.7507$	$\begin{array}{c} 1.66650 \\ 1.66625 \\ 1.66880 \\ 1.66855 \end{array}$	$\begin{array}{c} 1.\ 7131 \\ 1.\ 7124 \\ 1.\ 7172 \\ 1.\ 7165 \end{array}$	$\begin{array}{c} 1.\ 7477\\ 1.\ 7484\\ 1.\ 7500\\ 1.\ 7507\end{array}$	$\begin{array}{c} 1.65900\\ 1.65925\\ 1.66310\\ 1.66335 \end{array}$	$\begin{array}{c} 1,65900\\ 1,65875\\ 1,66310\\ 1,66285 \end{array}$	$\begin{array}{c} 1.\ 7477\\ 1.\ 7484\\ 1.\ 7500\\ 1.\ 7507\end{array}$	1.7477 1.7484 1.7500 1.7507	
1.750–12	UN	2A 3A	$\begin{array}{c} 1.7353\\ 1.7347\\ 1.7371\\ 1.7371\\ 1.7365\end{array}$	$\begin{array}{c} 1.\ 7482 \\ 1.\ 7488 \\ 1.\ 7500 \\ 1.\ 7506 \end{array}$	$\begin{array}{c} 1.\ 69410\\ 1.\ 69385\\ 1.\ 69500\\ 1.\ 69565 \end{array}$	$\begin{array}{c} 1.\ 7242\\ 1.\ 7236\\ 1.\ 7275\\ 1.\ 7269 \end{array}$	$\begin{array}{c} 1.\ 7482 \\ 1.\ 7488 \\ 1.\ 7500 \\ 1.\ 7506 \end{array}$	$\begin{array}{c} 1.\ 68810\\ 1.\ 68835\\ 1.\ 69140\\ 1.\ 69165\end{array}$	$\begin{array}{c} 1.\ 68810\\ 1.\ 68785\\ 1.\ 69140\\ 1.\ 69115 \end{array}$	$\begin{array}{c} 1.7482 \\ 1.7488 \\ 1.7500 \\ 1.7506 \end{array}$	1. 7482 1. 7488 1. 7509 1. 7500	
1.750-16	UN	2A 3A	$ \begin{array}{c} 1.7379\\ 1.7373\\ 1.7395\\ 1.7395\\ 1.7389 \end{array} $	1. 7484 1. 7490 1. 7500 1. 7506	$\begin{array}{c} 1.\ 70780\\ 1.\ 70755\\ 1.\ 70940\\ 1.\ 70915 \end{array}$	$ \begin{array}{r} 1.7296\\ 1.7290\\ 1.7325\\ 1.7319 \end{array} $	1. 7484 1. 7490 1. 7500 1. 7506	$\begin{array}{c} 1.\ 70250\\ 1.\ 70275\\ 1.\ 70540\\ 1.\ 70565 \end{array}$	$\begin{array}{c} 1.\ 70250\\ 1.\ 70225\\ 1.\ 70540\\ 1.\ 70515 \end{array}$	1. 7484 1. 7490 1. 7500 1. 7506	1. 7484 1. 7490 1. 7500 1. 7506	
1. 750–20	UN	2A 3A	$ \begin{array}{r} 1.7395\\ 1.7390\\ 1.7410\\ 1.7405 \end{array} $	$1.7485 \\ 1.7490 \\ 1.7500 \\ 1.7505$	1.7160 1.7158 1.7175 1.7173	$\begin{array}{c} 1.\ 7329\\ 1.\ 7324\\ 1.\ 7356\\ 1.\ 7351\end{array}$	1. 7485 1. 7490 1. 7500 1. 7505	$1.7112 \\ 1.7114 \\ 1.7139 \\ 1.7141$	$\begin{array}{c} 1.\ 7112\\ 1.\ 7110\\ 1.\ 7139\\ 1.\ 7137\end{array}$	1.7485 1.7490 1.7500 1.7505	1, 7485 1, 7490 1, 7500 1, 7505	
1. 8125–6	UN	2A 3A	$ \begin{array}{c} 1.7890\\ 1.7882\\ 1.7915\\ 1.7907 \end{array} $	$\begin{array}{c} 1.\ 8100\\ 1.\ 8108\\ 1.\ 8125\\ 1.\ 8133 \end{array}$	$\begin{array}{c} 1.\ 70170\\ 1.\ 70145\\ 1.\ 70420\\ 1.\ 70395 \end{array}$	$1.7655 \\ 1.7647 \\ 1.7701 \\ 1.7693$	$\begin{array}{c} 1.\ 8100 \\ 1.\ 8108 \\ 1.\ 8125 \\ 1.\ 8133 \end{array}$	$\begin{array}{c} 1.\ 69330\\ 1.\ 69355\\ 1.\ 69790\\ 1.\ 69815 \end{array}$	$\begin{array}{c} 1.\ 69330\\ 1.\ 69305\\ 1.\ 69790\\ 1.\ 69765 \end{array}$	1, 8100 1, 8108 1, 8125 1, 8133	$\begin{array}{c} 1.8100 \\ 1.8108 \\ 1.8125 \\ 1.8133 \end{array}$	
1.8125-8	UN	2A 3A	$\begin{array}{c} 1.7931\\ 1.7924\\ 1.7954\\ 1.7954\\ 1.7947\end{array}$	$\begin{array}{c} 1.8102 \\ 1.8109 \\ 1.8125 \\ 1.8132 \end{array}$	1. 72900 1. 72875 1. 73130 1. 73105	$\begin{array}{c} 1.\ 7755\\ 1.\ 7748\\ 1.\ 7797\\ 1.\ 7790 \end{array}$	$\begin{array}{c} 1.8102\\ 1.8109\\ 1.8125\\ 1.8132 \end{array}$	$\begin{array}{c} 1.\ 72140 \\ 1.\ 72165 \\ 1.\ 72560 \\ 1.\ 72585 \end{array}$	$\begin{array}{c} 1.\ 72140 \\ 1.\ 72115 \\ 1.\ 72560 \\ 1.\ 72535 \end{array}$	$\begin{array}{c} 1.8102 \\ 1.8109 \\ 1.8125 \\ 1.8132 \end{array}$	$\begin{array}{c} 1.8102 \\ 1.8109 \\ 1.8125 \\ 1.8132 \end{array}$	
1. 8125–12	UN	2A 3A	$\begin{array}{c} 1.7978 \\ 1.7972 \\ 1.7996 \\ 1.7990 \end{array}$	$\begin{array}{c} 1.\ 8107\\ 1.\ 8113\\ 1.\ 8125\\ 1.\ 8131 \end{array}$	$\begin{array}{c} 1.\ 75660\\ 1.\ 75635\\ 1.\ 75840\\ 1.\ 75815 \end{array}$	$1.7867 \\ 1.7861 \\ 1.7900 \\ 1.7894$	$\begin{array}{c} 1.\ 8107\\ 1.\ 8113\\ 1.\ 8125\\ 1.\ 8131 \end{array}$	$\begin{array}{c} 1.\ 75060\\ 1.\ 75085\\ 1.\ 75390\\ 1.\ 75415 \end{array}$	$\begin{array}{c} 1.\ 75060\\ 1.\ 75035\\ 1.\ 75390\\ 1.\ 75365 \end{array}$	$\begin{array}{c} 1.8107 \\ 1.8113 \\ 1.8125 \\ 1.8131 \end{array}$	1. 8107 1. 8113 1. 8125 1. 8131	
1. 8125–16	UN	2A 3A	$1.8004 \\ 1.7998 \\ 1.8020 \\ 1.8014$	$1.8109 \\ 1.8115 \\ 1.8125 \\ 1.8131$	1. 77030 1. 77005 1. 77190 1. 77165	$\begin{array}{c} 1.\ 7921 \\ 1.\ 7915 \\ 1.\ 7950 \\ 1.\ 7944 \end{array}$	$\begin{array}{c} 1,8109 \\ 1,8115 \\ 1,8125 \\ 1,8131 \end{array}$	$\begin{array}{c} 1.\ 76500\\ 1.\ 76525\\ 1.\ 76790\\ 1.\ 76815 \end{array}$	1.76500 1.76475 1.76790 1.76765	$1.8109 \\ 1.8115 \\ 1.8125 \\ 1.8131$	$\begin{array}{c} 1.8109 \\ 1.8115 \\ 1.8125 \\ 1.8125 \\ 1.8131 \end{array}$	
1, 8125–20	UN	2A 3A	$\begin{array}{c} 1,8020 \\ 1,8015 \\ 1,8035 \\ 1,8030 \end{array}$	1. 8110 1. 8115 1. 8125 1. 8130	$1.7785 \\ 1.7783 \\ 1.7800 \\ 1.7798$	$\begin{array}{c} 1.\ 7954\\ 1.\ 7949\\ 1.\ 7981\\ 1.\ 7976\end{array}$	1, 8110 1, 8115 1, 8125 1, 8130	$1.7737 \\ 1.7739 \\ 1.7764 \\ 1.7766$	$1.7737 \\ 1.7735 \\ 1.7764 \\ 1.7762$	$\begin{array}{c} 1.8110 \\ 1.8115 \\ 1.8125 \\ 1.8130 \end{array}$	$\begin{array}{c} 1.8110 \\ 1.8115 \\ 1.8125 \\ 1.8130 \end{array}$	
1.875-6	UN	2A 3A	$     1.8515 \\     1.8507 \\     1.8540 \\     1.8532   $	$\begin{array}{c} 1.\ 8725\\ 1.\ 8733\\ 1.\ 8750\\ 1.\ 8758 \end{array}$	$\begin{array}{c} 1.\ 76420\\ 1.\ 76395\\ 1.\ 76670\\ 1.\ 76645 \end{array}$	$1.8280 \\ 1.8272 \\ 1.8326 \\ 1.8318$	$\begin{array}{c} 1.8725 \\ 1.8733 \\ 1.8750 \\ 1.8758 \end{array}$	$1.75580 \\ 1.75605 \\ 1.76040 \\ 1.76065$	1. 75580 1. 75555 1. 76040 1. 76015	1, 8725 1, 8733 1, 8750 1, 8758	$\begin{array}{c} 1.\ 8725\\ 1.\ 8733\\ 1.\ 8750\\ 1.\ 8758\end{array}$	
1.875-8	UN	2A 3A	$     1.8556 \\     1.8549 \\     1.8579 \\     1.8579 \\     1.8572   $	$\begin{array}{c} 1.\ 8727\\ 1.\ 8734\\ 1.\ 8750\\ 1.\ 8757\end{array}$	1. 79150 1. 79125 1. 79380 1. 79355	$1.8379 \\ 1.8372 \\ 1.8422 \\ 1.8415$	1. 8727 1. 8734 1. 8750 1. 8757	$\begin{array}{c} 1.78380\\ 1.78405\\ 1.78810\\ 1.78835 \end{array}$	1. 78380 1. 78355 1. 78810 1. 78785	1. 8727 1. 8734 1. 8750 1. 8757	$\begin{array}{c} 1.8727\\ 1.8734\\ 1.8750\\ 1.8757\end{array}$	
1.875-12	UN	2A 3A	$1.8603 \\ 1.8597 \\ 1.8621 \\ 1.8615$	$\begin{array}{c} 1.\ 8732\\ 1.\ 8738\\ 1.\ 8750\\ 1.\ 8756 \end{array}$	1. 81910 1. 81885 1. 82090 1. 82065	$1.8492 \\1.8486 \\1.8525 \\1.8519$	1. 8732 1. 8738 1. 8750 1. 8756	$\begin{array}{c} 1.\ 81310\\ 1.\ 81335\\ 1.\ 81640\\ 1.\ 81665\end{array}$	$\begin{array}{c} 1.\ 81310\\ 1.\ 81285\\ 1.\ 81640\\ 1.\ 81615 \end{array}$	1. 8732 1. 8738 1. 8750 1. 8756	$\begin{array}{c} 1.8732 \\ 1.8738 \\ 1.8750 \\ 1.8756 \end{array}$	
1.875-16	UN	2A 3A	$\begin{array}{c} 1.8629\\ 1.8623\\ 1.8645\\ 1.8639\end{array}$	$1.8734 \\ 1.8740 \\ 1.8750 \\ 1.8756$	$\begin{array}{c} 1.83280 \\ 1.83255 \\ 1.83440 \\ 1.83415 \end{array}$	$\begin{array}{c} 1.8546 \\ 1.8540 \\ 1.8575 \\ 1.8569 \end{array}$	$\begin{array}{c} 1.8734 \\ 1.8740 \\ 1.8750 \\ 1.8756 \end{array}$	$\begin{array}{c} 1,82750\\ 1,82775\\ 1,83040\\ 1,83065 \end{array}$	$\begin{array}{c} 1.\ 82750\\ 1.\ 82725\\ 1.\ 83040\\ 1.\ 83015 \end{array}$	1. 8734 1. 8740 1. 8750 1. 8756	$1.8734 \\ 1.8740 \\ 1.8750 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1.8756 \\ 1$	
1.875-20	UN	2A 3A	$1.8645 \\ 1.8640 \\ 1.8660 \\ 1.8655$	1. 8735 1. 8740 1. 8750 1. 8755	$1.8410 \\ 1.8408 \\ 1.8425 \\ 1.8423$	$1.8579 \\ 1.8574 \\ 1.8606 \\ 1.8601$	1.8735 1.8740 1.8750 1.8755	$1.8362 \\ 1.8364 \\ 1.8389 \\ 1.8391$	$1.8362 \\ 1.8360 \\ 1.8389 \\ 1.8387$	$\begin{array}{c} 1.8735 \\ 1.8740 \\ 1.8750 \\ 1.8755 \end{array}$	$\begin{array}{c} 1.8735\\ 1.8740\\ 1.8750\\ 1.8755\end{array}$	
1. 9375-6	UN	2A 3A	$\begin{array}{c} 1.\ 9139\\ 1.\ 9131\\ 1.\ 9165\\ 1.\ 9157\end{array}$	$\begin{array}{c} 1.\ 9349 \\ 1.\ 9357 \\ 1.\ 9375 \\ 1.\ 9383 \end{array}$	$\begin{array}{c} 1.\ 82660\\ 1.\ 82635\\ 1.\ 82920\\ 1.\ 82895 \end{array}$	$\begin{array}{c} 1.8903\\ 1.8895\\ 1.8950\\ 1.8942 \end{array}$	$\begin{array}{c} 1.\ 9349 \\ 1.\ 9357 \\ 1.\ 9375 \\ 1.\ 9383 \end{array}$	$\begin{array}{c} 1,81810\\ 1,81835\\ 1,82280\\ 1,82305 \end{array}$	$\begin{array}{c} 1.81810 \\ 1.81785 \\ 1.82280 \\ 1.82255 \end{array}$	$\begin{array}{c} 1.9349 \\ 1.9357 \\ 1.9375 \\ 1.9383 \end{array}$	1. 9349 1. 9357 1. 9375 1. 9383	

			W truncated setting plugs							Basic-crest setting plugs		
			Plug for	GO thread	l gage ª	Plug for LO thread gage a				Major d	liameter	
Nominal size and threads per inch	Series dcs- ignation	Class	Major di	Major diameter		Major di	ameter	Pitch diameter		Plug for GO thread gage a,b	Plug for LO thread gage ^{a,c}	
			Truneated	Full		Truncated	Full	Plus toler- ancc gage	Minus tolcrancc gage	W and X tolcrances	W and X tolcrances	
1	2	3	4	5	6	7	8	9	10	11	12	
1.9375-8	UN	2A 3A	in 1. 9181 1. 9174 1. 9204 1. 9197	in 1. 9352 1. 9359 1. 9375 1. 9382	in 1.85400 1.85375 1.85630 1.85605	in 1. 9004 1. 8997 1. 9046 1. 9039	in 1. 9352 1. 9359 1. 9375 1. 9382	in 1. 84630 1. 84655 1. 85050 1. 85075	$in \\ 1.84630 \\ 1.84605 \\ 1.85050 \\ 1.85025$	in 1, 9352 1, 9359 1, 9375 1, 9382	in 1, 9355 1, 9355 1, 9373 1, 9385	
1.9375-12	UN	2A 3A	$\begin{array}{c} 1.9228 \\ 1.9222 \\ 1.9246 \\ 1.9240 \end{array}$	$\begin{array}{c} 1.\ 9357\\ 1.\ 9363\\ 1.\ 9375\\ 1.\ 9381 \end{array}$	$\begin{array}{c} 1.88160\\ 1.88135\\ 1.88340\\ 1.88315 \end{array}$	$\begin{array}{c} 1.\ 9116\\ 1.\ 9110\\ 1.\ 9150\\ 1.\ 9144 \end{array}$	$\begin{array}{c} 1.\ 9357\\ 1.\ 9363\\ 1.\ 9375\\ 1.\ 9381 \end{array}$	$\begin{array}{c} 1.87550 \\ 1.87575 \\ 1.87890 \\ 1.87915 \end{array}$	$\begin{array}{c} 1.87550 \\ 1.87525 \\ 1.87890 \\ 1.87865 \end{array}$	$\begin{array}{c} 1.9357\\ 1.9363\\ 1.9375\\ 1.9381 \end{array}$	1, 935 1, 936 1, 937 1, 937 1, 938	
1. 9375–16	UN	2A 3A	$\begin{array}{c c} 1.9254 \\ 1.9248 \\ 1.9270 \\ 1.9264 \end{array}$	$\begin{array}{c} 1,9359\\ 1,9365\\ 1,9375\\ 1,9381 \end{array}$	$\begin{array}{c} 1.89530 \\ 1.89505 \\ 1.89690 \\ 1.89665 \end{array}$	$\begin{array}{c} 1.9170\\ 1.9164\\ 1.9200\\ 1.9194 \end{array}$	$\begin{array}{c} 1.9359 \\ 1.9365 \\ 1.9375 \\ 1.9381 \end{array}$	$\begin{array}{c} 1.88990 \\ 1.89015 \\ 1.89290 \\ 1.89315 \end{array}$	$\begin{array}{c} 1.88990 \\ 1.88965 \\ 1.89290 \\ 1.89265 \end{array}$	$\begin{array}{c} 1.\ 9359 \\ 1.\ 9365 \\ 1.\ 9375 \\ 1.\ 9381 \end{array}$	$\begin{array}{c} 1.9359 \\ 1.9363 \\ 1.9373 \\ 1.9373 \\ 1.9383 \end{array}$	
1.9375-20	UN	2A 3A	$\begin{array}{c} 1.9270 \\ 1.9265 \\ 1.9285 \\ 1.9280 \end{array}$	$\begin{array}{c} 1.\ 9360\\ 1.\ 9365\\ 1.\ 9375\\ 1.\ 9380 \end{array}$	$\begin{array}{c} 1.\ 9035\\ 1.\ 9033\\ 1.\ 9050\\ 1.\ 9048 \end{array}$	$\begin{array}{c} 1.\ 9203 \\ 1.\ 9198 \\ 1.\ 9230 \\ 1.\ 9225 \end{array}$	$\begin{array}{c} 1.\ 9360 \\ 1.\ 9365 \\ 1.\ 9375 \\ 1.\ 9380 \end{array}$	1, 8986 1, 8988 1, 9013 1, 9015	1. 8986 1. 8984 1. 9013 1. 9011	$\begin{array}{c} 1.9360\\ 1.9365\\ 1.9375\\ 1.9375\\ 1.9380 \end{array}$	1, 9360 1, 9365 1, 9377 1, 9380	
2.000-4.5	UNC	1A 2A 3A	$\begin{array}{c} 1.\ 9713\\ 1.\ 9705\\ 1.\ 9713\\ 1.\ 9705\\ 1.\ 9742\\ 1.\ 9734 \end{array}$	$\begin{array}{c} 1,9971\\ 1,9979\\ 1,9971\\ 1,9979\\ 2,0000\\ 2,0008 \end{array}$	$\begin{array}{c} 1.\ 85280\\ 1.\ 85255\\ 1.\ 85280\\ 1.\ 85255\\ 1.\ 85255\\ 1.\ 85570\\ 1.\ 85545\end{array}$	$\begin{array}{c} 1.\ 9347\\ 1.\ 9339\\ 1.\ 9395\\ 1.\ 9387\\ 1.\ 9448\\ 1.\ 9440 \end{array}$	$\begin{array}{c} 1.9971\\ 1.9979\\ 1.9971\\ 1.9979\\ 2.0000\\ 2.0008\end{array}$	$\begin{array}{c} 1.83850\\ 1.83875\\ 1.84330\\ 1.84355\\ 1.84860\\ 1.84885\end{array}$	$\begin{array}{c} 1.83850\\ 1.83825\\ 1.84330\\ 1.84305\\ 1.84305\\ 1.84860\\ 1.84835 \end{array}$	$\begin{array}{c} 1.\ 9971\\ 1.\ 9979\\ 1.\ 9971\\ 1.\ 9979\\ 2.\ 0000\\ 2.\ 0008 \end{array}$	1, 997) 1, 9979 1, 9979 1, 9979 2, 0000 2, 0000	
2.000-6	UN	2A 3A	$1.9764 \\ 1.9756 \\ 1.9790 \\ 1.9782$	$\begin{array}{c} 1.\ 9974 \\ 1.\ 9982 \\ 2.\ 0000 \\ 2.\ 0008 \end{array}$	$\begin{array}{c} 1.88910 \\ 1.88885 \\ 1.89170 \\ 1.89145 \end{array}$	$\begin{array}{c} 1.9527\\ 1.9519\\ 1.9575\\ 1.9567\end{array}$	$\begin{array}{c} 1.\ 9974 \\ 1.\ 9982 \\ 2.\ 0000 \\ 2.\ 0008 \end{array}$	$\begin{array}{c} 1.\ 88050\\ 1.\ 88075\\ 1.\ 88530\\ 1.\ 88555 \end{array}$	$\begin{array}{c} 1.\ 88050\\ 1.\ 88025\\ 1.\ 88530\\ 1.\ 88505 \end{array}$	$\begin{array}{c} 1.9974\\ 1.9982\\ 2.0000\\ 2.0008\end{array}$	1. 9974 1. 9982 2. 0000 2. 0008	
2.000-8	UN	2A 3A	$\begin{array}{c} 1.9806 \\ 1.9799 \\ 1.9829 \\ 1.9822 \end{array}$	$\begin{array}{c} 1.\ 9977\\ 1.\ 9984\\ 2.\ 0000\\ 2.\ 0007\end{array}$	$\begin{array}{c} 1.91650 \\ 1.91625 \\ 1.91880 \\ 1.91855 \end{array}$	$\begin{array}{c} 1.9628\\ 1.9621\\ 1.9671\\ 1.9664 \end{array}$	$\begin{array}{c} 1.\ 9977\\ 1.\ 9984\\ 2.\ 0000\\ 2.\ 0007 \end{array}$	$\begin{array}{c} 1.\ 90870\\ 1.\ 90895\\ 1.\ 91300\\ 1.\ 91325 \end{array}$	$\begin{array}{c} 1.\ 90870\\ 1.\ 90845\\ 1.\ 91300\\ 1.\ 91275 \end{array}$	$\begin{array}{c} 1.\ 9977\\ 1.\ 9984\\ 2.\ 0000\\ 2.\ 0007\end{array}$	$1.997 \\1.998 \\2.000 \\2.000 \\2.000 \\$	
2.000-12	UN	2A 3A	$1.9853 \\ 1.9847 \\ 1.9871 \\ 1.9865$	$\begin{array}{c} 1.9982\\ 1.9988\\ 2.0000\\ 2.0006 \end{array}$	$\begin{array}{c} 1.94410 \\ 1.94385 \\ 1.94500 \\ 1.94565 \end{array}$	$1.9741 \\ 1.9735 \\ 1.9775 \\ 1.9769$	$\begin{array}{c} 1.\ 9982 \\ 1.\ 9988 \\ 2.\ 0000 \\ 2.\ 0006 \end{array}$	$\begin{array}{c} 1.93800\\ 1.93825\\ 1.94140\\ 1.94165 \end{array}$	$\begin{array}{c} 1.93800\\ 1.93775\\ 1.94140\\ 1.94115 \end{array}$	$\begin{array}{c} 1.9982\\ 1.9988\\ 2.0000\\ 2.0006\end{array}$	1, 998 1, 998 2, 0000 2, 0000	
2.000-16	UN	2A 3A	$1.9879 \\ 1.9873 \\ 1.9895 \\ 1.9889$	$\begin{array}{c} 1.9984 \\ 1.9990 \\ 2.0000 \\ 2.0006 \end{array}$	$\begin{array}{c} 1.\ 95780\\ 1.\ 95755\\ 1.\ 95940\\ 1.\ 95915 \end{array}$	$\begin{array}{c} 1.\ 9795\\ 1.\ 9789\\ 1.\ 9825\\ 1.\ 9819 \end{array}$	$\begin{array}{c} 1.\ 9984 \\ 1.\ 9990 \\ 2.\ 0000 \\ 2.\ 0006 \end{array}$	$\begin{array}{c} 1.\ 95240\\ 1.\ 95265\\ 1.\ 95540\\ 1.\ 95565 \end{array}$	$\begin{array}{c} 1.\ 95240 \\ 1.\ 95215 \\ 1.\ 95540 \\ 1.\ 95515 \end{array}$	$\begin{array}{c} 1.9984\\ 1.9990\\ 2.0000\\ 2.0006\end{array}$	1. 998 1. 9990 2. 0000 2. 0000	
2.000-20	UN	2A 3A	$\begin{array}{c} 1.9895\\ 1.9890\\ 1.9910\\ 1.9905 \end{array}$	$\begin{array}{c} 1.\ 9985\\ 1.\ 9990\\ 2.\ 0000\\ 2.\ 0005 \end{array}$	$1.9660 \\ 1.9658 \\ 1.9675 \\ 1.9673$	$\begin{array}{c} 1.9828 \\ 1.9823 \\ 1.9855 \\ 1.9850 \end{array}$	$\begin{array}{c} 1.\ 9985\\ 1.\ 9900\\ 2.\ 0000\\ 2.\ 0005 \end{array}$	$1.9611 \\ 1.9613 \\ 1.9638 \\ 1.9640$	$\begin{array}{c} 1.\ 9611\\ 1.\ 9609\\ 1.\ 9638\\ 1.\ 9636\end{array}$	$\begin{array}{c} 1.9985\\ 1.9990\\ 2.0000\\ 2.0005\end{array}$	1, 998 1, 9990 2, 0000 2, 0000	
2.125-6	UN	2A 3A	$\begin{array}{c} 2.\ 1014 \\ 2.\ 1006 \\ 2.\ 1040 \\ 2.\ 1032 \end{array}$	$\begin{array}{c} 2.\ 1224\\ 2.\ 1232\\ 2.\ 1250\\ 2.\ 1258\end{array}$	$\begin{array}{c} 2.01410 \\ 2.01385 \\ 2.01670 \\ 2.01645 \end{array}$	$\begin{array}{c} 2.0776\\ 2.0768\\ 2.0824\\ 2.0816\end{array}$	$\begin{array}{c} 2.\ 1224\\ 2.\ 1232\\ 2.\ 1250\\ 2.\ 1258\end{array}$	$\begin{array}{c} 2.\ 00540\\ 2.\ 00565\\ 2.\ 01020\\ 2.\ 01045 \end{array}$	$\begin{array}{c} 2.00540\\ 2.00515\\ 2.01020\\ 2.00995 \end{array}$	$\begin{array}{c} 2.1224 \\ 2.1232 \\ 2.1250 \\ 2.1258 \end{array}$	2, 1224 2, 1235 2, 1250 2, 1258	
2.125-8	UN	2A 3A	$\begin{array}{c} 2.\ 1055\\ 2.\ 1048\\ 2.\ 1079\\ 2.\ 1072\end{array}$	2. 1226 2. 1233 2. 1250 2. 1257	$\begin{array}{c} 2.\ 04140\\ 2.\ 04115\\ 2.\ 04380\\ 2.\ 04355\end{array}$	$\begin{array}{c} 2.0876\\ 2.0869\\ 2.0920\\ 2.0913 \end{array}$	$\begin{array}{c} 2.\ 1226\\ 2.\ 1233\\ 2.\ 1250\\ 2.\ 1257\end{array}$	$\begin{array}{c} 2.\ 03350\\ 2.\ 03375\\ 2.\ 03790\\ 2.\ 03815 \end{array}$	$\begin{array}{c} 2.\ 03350\\ 2.\ 03325\\ 2.\ 03790\\ 2.\ 03765 \end{array}$	$\begin{array}{c} 2.1226 \\ 2.1233 \\ 2.1250 \\ 2.1257 \end{array}$	2, 1220 2, 1233 2, 1250 2, 1250	
2.125-12	UN	2A 3A	$\begin{array}{c} 2.\ 1103\\ 2.\ 1097\\ 2.\ 1121\\ 2.\ 1115 \end{array}$	$\begin{array}{c} 2.\ 1232\\ 2.\ 1238\\ 2.\ 1250\\ 2.\ 1256\end{array}$	$\begin{array}{c} 2.\ 06910\\ 2.\ 06885\\ 2.\ 07090\\ 2.\ 07065 \end{array}$	2.0991 2.0985 2.1025 2.1019	$\begin{array}{c} 2.\ 1232\\ 2.\ 1238\\ 2.\ 1250\\ 2.\ 1256\end{array}$	$\begin{array}{c} 2.\ 06300\\ 2.\ 06325\\ 2.\ 06640\\ 2.\ 06665\end{array}$	$\begin{array}{c} 2.\ 06300\\ 2.\ 06275\\ 2.\ 06640\\ 2.\ 06615 \end{array}$	$\begin{array}{c} 2.1232 \\ 2.1238 \\ 2.1250 \\ 2.1256 \end{array}$	2, 123 2, 123 2, 125 2, 125 2, 125	
2.125–16	UN	2A 3A	$\begin{array}{c} 2.\ 1129\\ 2.\ 1123\\ 2.\ 1145\\ 2.\ 1139\end{array}$	$\begin{array}{c} 2.\ 1234 \\ 2.\ 1240 \\ 2.\ 1250 \\ 2.\ 1256 \end{array}$	$\begin{array}{c} 2.08280 \\ 2.08255 \\ 2.08440 \\ 2.08415 \end{array}$	$\begin{array}{c} 2.\ 1045\\ 2.\ 1039\\ 2.\ 1075\\ 2.\ 1069\end{array}$	$\begin{array}{c} 2.\ 1234\\ 2.\ 1240\\ 2.\ 1250\\ 2.\ 1256\end{array}$	$\begin{array}{c} 2.\ 07740\\ 2.\ 07765\\ 2.\ 08040\\ 2.\ 08065 \end{array}$	$\begin{array}{c} 2.\ 07740\\ 2.\ 07715\\ 2.\ 08040\\ 2.\ 08015 \end{array}$	2. 1234 2. 1240 2. 1250 2. 1256	2, 1234 2, 1240 2, 1250 2, 1250	
2. 125-20	UN	2A 3A	$\begin{array}{c} 2.1145\\ 2.1140\\ 2.1160\\ 2.1155\end{array}$	$\begin{array}{c} 2.\ 1235\\ 2.\ 1240\\ 2.\ 1250\\ 2.\ 1255\end{array}$	$\begin{array}{c} 2.\ 0910\\ 2.\ 0908\\ 2.\ 0925\\ 2.\ 0923 \end{array}$	$\begin{array}{c} 2.\ 1078\\ 2.\ 1073\\ 2.\ 1105\\ 2.\ 1100 \end{array}$	$\begin{array}{c} 2.\ 1235\\ 2.\ 1240\\ 2.\ 1250\\ 2.\ 1255\end{array}$	$\begin{array}{c} 2.0861\\ 2.0863\\ 2.0888\\ 2.0890 \end{array}$	$\begin{array}{c} 2.0861\\ 2.0859\\ 2.0888\\ 2.0886\end{array}$	2. 1235 2. 1240 2. 1250 2. 1255	$\begin{array}{c} 2.1235 \\ 2.1240 \\ 2.1250 \\ 2.1255 \end{array}$	

No: the

TABLE $6.20$ .	Setting plug gages	Unified screw	threads-Continued
----------------	--------------------	---------------	-------------------

					W trui	ncated setting	plugs			Basie-erest s	setting plags
			Plug for	GO thread	gage a	Р	lug for LO	thread gage ^a		Major diameter	
Nominal size and threads per ineh	Series des- ignation	Class	Major dia	umeter	Piteh diameter	Major dia	ameter	Piteh di	ameter	Plug for GO thread gage ^{a,b}	Plug for LO thread gage a.c
			Truncated	Full		Truncated	Full	Plus toler- ance gage	Minus toleranee gage	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
2. 250-4. 5	UNC	1A 2A 3A	in 2. 2213 2. 2205 2. 2213 2. 2205 2. 2242 2. 2234	$in \\ 2, 2471 \\ 2, 2479 \\ 2, 2479 \\ 2, 2471 \\ 2, 2479 \\ 2, 2500 \\ 2, 2508 \end{cases}$	in 2, 10280 2, 10255 2, 10280 2, 10280 2, 10255 2, 10255 2, 10570 2, 10545	in 2. 1844 2. 1836 2. 1893 2. 1885 2. 1946 2. 1938	in 2. 2471 2. 2479 2. 2479 2. 2471 2. 2479 2. 2500 2. 2508	$\begin{array}{c} in\\ 2.08820\\ 2.08845\\ 2.09310\\ 2.09330\\ 2.09380\\ 2.09840\\ 2.09865\end{array}$	$in \\ 2.08820 \\ 2.08795 \\ 2.09310 \\ 2.09285 \\ 2.09840 \\ 2.09815$	in 2. 2471 2. 2479 2. 2479 2. 2471 2. 2479 2. 2500 2. 2508	in 2. 2471 2. 2479 2. 2479 2. 2479 2. 2479 2. 2500 2. 2500 2. 2508
2. 250-6	UN	2A 3A	$\begin{array}{c} 2.\ 2264\\ 2.\ 2256\\ 2.\ 2290\\ 2.\ 2282 \end{array}$	$\begin{array}{c} 2.\ 2474 \\ 2.\ 2482 \\ 2.\ 2500 \\ 2.\ 2508 \end{array}$	$\begin{array}{c} 2.\ 13910\\ 2.\ 13885\\ 2.\ 14170\\ 2.\ 14145 \end{array}$	$\begin{array}{c} 2.\ 2025\\ 2.\ 2017\\ 2.\ 2073\\ 2.\ 2065 \end{array}$	$\begin{array}{c} 2.\ 2474\\ 2.\ 2482\\ 2.\ 2500\\ 2.\ 2508\end{array}$	2. 13030 2. 13055 2. 13510 2. 13535	2. 13030 2. 13005 2. 13510 2. 13485	$\begin{array}{c} 2.\ 2474\\ 2.\ 2482\\ 2.\ 2500\\ 2.\ 2508\end{array}$	2, 2474 2, 2482 2, 2500 2, 2508
2. 250-8	UN	2A 3A	2. 2305 2. 2298 2. 2329 2. 2322	$\begin{array}{c} 2.\ 2476 \\ 2.\ 2483 \\ 2.\ 2500 \\ 2.\ 2507 \end{array}$	2. 16640 2. 16615 2. 16880 2. 16855	$\begin{array}{c} 2,2125\\ 2,2118\\ 2,2169\\ 2,2169\\ 2,2162 \end{array}$	$\begin{array}{c} 2.\ 2476\\ 2.\ 2483\\ 2.\ 2500\\ 2.\ 2507 \end{array}$	2. 15840 2. 15865 2. 16280 2. 16305	2. 15840 2. 15815 2. 16280 2. 16255	2.2476 2.2483 2.2500 2.2507	2.2476 2.2483 2.2500 2.2507
2.250-12	UN	2A 3A	2. 2353 2. 2347 2. 2371 2. 2365	$\begin{array}{c} 2.\ 2482\\ 2.\ 2488\\ 2.\ 2500\\ 2.\ 2506 \end{array}$	2. 19410 2. 19385 2. 19590 2. 19565	$\begin{array}{c} 2,2241 \\ 2,2235 \\ 2,2275 \\ 2,2269 \end{array}$	$\begin{array}{c} 2,2482\\ 2,2488\\ 2,2500\\ 2,2506 \end{array}$	$\begin{array}{c} 2.\ 18800\\ 2.\ 18825\\ 2.\ 19140\\ 2.\ 19165 \end{array}$	2, 18800 2, 18775 2, 19140 2, 19115	2. 2482 2. 2488 2. 2500 2. 2506	$\begin{array}{c} 2.\ 2482\\ 2.\ 2488\\ 2.\ 2500\\ 2.\ 2500\end{array}$
2.250-16	UN	2A 3A	$\begin{array}{c} 2.\ 2379\\ 2.\ 2373\\ 2.\ 2395\\ 2.\ 2389\end{array}$	$\begin{array}{c} 2.\ 2484\\ 2.\ 2490\\ 2.\ 2500\\ 2.\ 2506 \end{array}$	$\begin{array}{c} 2.\ 20780\ 2.\ 20755\ 2.\ 20940\ 2.\ 20915 \end{array}$	2. 2295 2. 2289 2. 2325 2. 2319	2. 2484 2. 2490 2. 2500 2. 2506	$\begin{array}{c} 2.\ 20240\\ 2.\ 20265\\ 2.\ 20540\\ 2.\ 20565 \end{array}$	2. 20240 2. 20215 2. 20540 2. 20515	$\begin{array}{c} 2.\ 2484\\ 2.\ 2490\\ 2.\ 2500\\ 2.\ 2506\end{array}$	2. 2484 2. 2490 2. 2500 2. 2500
2. 250-20	UN	2A 3A	2. 2395 2. 2390 2. 2410 2. 2405	$\begin{array}{c} 2.\ 2485\\ 2.\ 2490\\ 2.\ 2500\\ 2.\ 2505 \end{array}$	$\begin{array}{c} 2.\ 2160\\ 2.\ 2158\\ 2.\ 2175\\ 2.\ 2173\end{array}$	$\begin{array}{c} 2.\ 2328\\ 2.\ 2323\\ 2.\ 2355\\ 2.\ 2350 \end{array}$	2.2485 2.2490 2.2500 2.2505	2. 2111 2. 2113 2. 2138 2. 2140	2. 2111 2. 2109 2. 2138 2. 2136	2.2485 2.2490 2.2500 2.2505	2. 2485 2. 2490 2. 2500 2. 2505
2. 375–6	UN	2A 3A	$\begin{array}{c} 2.\ 3513\\ 2.\ 3505\\ 2.\ 3540\\ 2.\ 3532\end{array}$	$\begin{array}{c} 2.\ 3723\\ 2.\ 3731\\ 2.\ 3750\\ 2.\ 3758\end{array}$	$\begin{array}{c} 2.\ 26400\\ 2.\ 26375\\ 2.\ 26670\\ 2.\ 26645 \end{array}$	$\begin{array}{c} 2.3273 \\ 2.3265 \\ 2.3323 \\ 2.3315 \end{array}$	$\begin{array}{c} 2.\ 3723\\ 2.\ 3731\\ 2.\ 3750\\ 2.\ 3758\end{array}$	$\begin{array}{c} 2.\ 25510\\ 2.\ 25535\\ 2.\ 26010\\ 2.\ 26035 \end{array}$	$\begin{array}{c} 2.\ 25510\\ 2.\ 25485\\ 2.\ 26010\\ 2.\ 25985 \end{array}$	2, 3723 2, 3731 2, 3750 2, 3758	2, 3723 2, 3731 2, 3750 2, 3758
2. 375-8	UN	2A 3A	$\begin{array}{c} 2.3555 \\ 2.3548 \\ 2.3579 \\ 2.3579 \\ 2.3572 \end{array}$	$\begin{array}{c} 2.\ 3726\\ 2.\ 3733\\ 2.\ 3750\\ 2.\ 3757\end{array}$	$\begin{array}{c} 2.\ 29140 \\ 2.\ 29115 \\ 2.\ 29380 \\ 2.\ 29355 \end{array}$	$\begin{array}{c} 2.\ 3374\\ 2.\ 3367\\ 2.\ 3419\\ 2.\ 3412 \end{array}$	2. 3726 2. 3733 2. 3750 2. 3757	2. 28330 2. 28355 2. 28780 2. 28805	$\begin{array}{c} 2.\ 28330\\ 2.\ 28305\\ 2.\ 28780\\ 2.\ 28755\end{array}$	2. 3726 2. 3733 2. 3750 2. 3757	2, 3720 2, 3733 2, 3750 2, 3757
2. 375-12	UN	2A 3A	$\begin{array}{c} 2.3602 \\ 2.3596 \\ 2.3621 \\ 2.3615 \end{array}$	$\begin{array}{c} 2.\ 3731\\ 2.\ 3737\\ 2.\ 3750\\ 2.\ 3756\end{array}$	$\begin{array}{c} 2.\ 31900\\ 2.\ 31875\\ 2.\ 32090\\ 2.\ 32065 \end{array}$	2, 3489 2, 3483 2, 3524 2, 3518	2, 3731 2, 3737 2, 3750 2, 3756	2. 31280 2. 31305 2. 31630 2. 31655	2. 31280 2. 31255 2. 31630 2. 31605	2, 3731 2, 3737 2, 3750 2, 3756	2, 3731 2, 3735 2, 3750 2, 3750
2. 375-16	UN	2A 3A	$\begin{array}{c} 2.3628 \\ 2.3622 \\ 2.3645 \\ 2.3639 \end{array}$	2, 3733 2, 3739 2, 3750 2, 3756	$\begin{array}{c} 2.\ 33270\\ 2.\ 33245\\ 2.\ 33440\\ 2.\ 33415 \end{array}$	$\begin{array}{c} 2.\ 3543\\ 2.\ 3537\\ 2.\ 3574\\ 2.\ 3568\end{array}$	2, 3733 2, 3739 2, 3750 2, 3756	$\begin{array}{c} 2.\ 32720\\ 2.\ 32745\\ 2.\ 33030\\ 2.\ 33055 \end{array}$	2, 32720 2, 32695 2, 33030 2, 33005	2, 3733 2, 3739 2, 3750 2, 3756	2, 3733 2, 3739 2, 3750 2, 3750
2.375-20	UN	2A 3A	$\begin{array}{c} 2.3645 \\ 2.3640 \\ 2.3660 \\ 2.3655 \end{array}$	$\begin{array}{c} 2.\ 3735\\ 2.\ 3740\\ 2.\ 3750\\ 2.\ 3755\end{array}$	$\begin{array}{c} 2.\ 3410\\ 2.\ 3408\\ 2.\ 3425\\ 2.\ 3423\end{array}$	$\begin{array}{c} 2.\ 3576\\ 2.\ 3571\\ 2.\ 3604\\ 2.\ 3599 \end{array}$	2, 3734 2, 3739 2, 3750 2, 3755	2, 3359 2, 3361 2, 3387 2, 3389	2, 3359 2, 3357 2, 3387 2, 3385	2. 3735 2. 3740 2. 3750 2. 3755	2, 3734 2, 3739 2, 3750 2, 3750
2. 500-4	UNC	1A 2A 3A	2. 4688 2. 4679 2. 4688 2. 4679 2. 4719 2. 4710	$\begin{array}{c} 2.4969 \\ 2.4978 \\ 2.4969 \\ 2.4969 \\ 2.4978 \\ 2.5000 \\ 2.5009 \end{array}$	2.33450 2.33425 2.33450 2.33425 2.33425 2.33760 2.33735	$\begin{array}{c} 2.\ 4273\\ 2.\ 4264\\ 2.\ 4324\\ 2.\ 4315\\ 2.\ 4381\\ 2.\ 4372 \end{array}$	$\begin{array}{c} 2.\ 4969\\ 2.\ 4978\\ 2.\ 4969\\ 2.\ 4978\\ 2.\ 5000\\ 2.\ 5009\end{array}$	2, 31900 2, 31925 2, 32410 2, 32435 2, 32980 2, 33005	2. 31900 2. 31875 2. 32410 2. 32385 2. 32980 2. 32955	2. 4969 2. 4978 2. 4969 2. 4978 2. 4978 2. 5000 2. 5009	2. 496 2. 497 2. 496 2. 496 2. 497 2. 500 2. 500
2.500-6	UN	2A 3A	2. 4763 2. 4755 2. 4790 2. 4782	2. 4973 2. 4981 2. 5000 2. 5008	2. 38900 2. 38875 2. 39170 2. 39145	$\begin{array}{c} 2.\ 4522\\ 2.\ 4514\\ 2.\ 4572\\ 2.\ 4564\end{array}$	2. 4973 2. 4981 2. 5000 2. 5008	2. 38000 2. 38025 2. 38500 2. 38525	2. 38000 2. 37975 2. 38500 2. 38475	2, 4973 2, 4981 2, 5000 2, 5008	2. 497 2. 498 2. 500 2. 500
2. 500-8	UN	2A 3A	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. 4976 2. 4983 2. 5000 2. 5007	2. 41640 2. 41615 2. 41880 2. 41855	$\begin{array}{c} 2.\ 4623\\ 2.\ 4616\\ 2.\ 4668\\ 2.\ 4661\end{array}$	2. 4976 2. 4983 2. 5000 2. 5007	$\begin{array}{c} 2.\ 40820\\ 2.\ 40845\\ 2.\ 41270\\ 2.\ 41295 \end{array}$	$\begin{array}{c} 2.\ 40820\\ 2.\ 40795\\ 2.\ 41270\\ 2.\ 41245\end{array}$	2. 4976 2. 4983 2. 5000 2. 5007	2. 497 2. 498 2. 500 2. 500
2. 500-12	UN	2A 3A	2. 4852 2. 4846 2. 4871 2. 4865	$\begin{array}{c} 2.4981 \\ 2.4987 \\ 2.5000 \\ 2.5006 \end{array}$	2. 44400 2. 44375 2. 44590 2. 44565	$\begin{array}{c} 2.\ 4739\\ 2.\ 4733\\ 2.\ 4774\\ 2.\ 4768\end{array}$	$\begin{array}{c} 2.\ 4981 \\ 2.\ 4987 \\ 2.\ 5000 \\ 2.\ 5006 \end{array}$	$\begin{array}{c} 2.\ 43780\\ 2.\ 43805\\ 2.\ 44130\\ 2.\ 44155\end{array}$	$\begin{array}{c} 2.\ 43780\\ 2.\ 43755\\ 2.\ 44130\\ 2.\ 44105\end{array}$	2. 4981 2. 4987 2. 5000 2. 5006	2, 498 2, 498 2, 500 2, 500

			W truncated setting plugs								Basic-crest setting plugs		
			Plug for	GO thread	gage ^a	Р	lug for LO	thread gage ^a		Major diameter			
Nominal size and threads per inch	Series des- ignation	Class	Major dia	meter	Piteh diameter	Major di	ameter	Piteh di	ameter	Plug for GO thread gage ^{a,b}	Plug for LO thread gage a.e		
			Truncated	Full		Truncated	Full	Plus toler- ance gage	Minus tolerance gage	W and X tolerances	W and X tolerances		
1	2	3	4	5	6	7	8	9	10	11	12		
2.500-16	UN	2A 3A	in 2. 4878 2. 4872 2. 4895 2. 4895 2. 4889	in 2. 4983 2. 4989 2. 5000 2. 5006	in 2. 45770 2. 45745 2. 45940 2. 45915	$in \\ 2.4793 \\ 2.4787 \\ 2.4824 \\ 2.4818$	in 2, 4983 2, 4989 2, 5000 2, 5006	<i>in</i> 2. 45220 2. 45245 2. 45530 2. 45555	in 2. 45220 2. 45195 2. 45530 2. 45505	in 2. 4983 2. 4989 2. 5000 2. 5006	in 2. 4983 2. 4989 2. 5000 2. 5006		
2. 500-20	UN	2A 3A	$\begin{array}{c} 2.4895\\ 2.4890\\ 2.4910\\ 2.4905\end{array}$	$\begin{array}{c} 2.\ 4985\\ 2.\ 4990\\ 2.\ 5000\\ 2.\ 5005 \end{array}$	$\begin{array}{c} 2.\ 4660\\ 2.\ 4658\\ 2.\ 4675\\ 2.\ 4673\end{array}$	$\begin{array}{c} 2.\ 4826\\ 2.\ 4821\\ 2.\ 4854\\ 2.\ 4849 \end{array}$	$\begin{array}{c} 2.\ 4984\\ 2.\ 4989\\ 2.\ 5000\\ 2.\ 5005 \end{array}$	$\begin{array}{c} 2.\ 4609\\ 2.\ 4611\\ 2.\ 4637\\ 2.\ 4639\end{array}$	$\begin{array}{c} 2.\ 4609\\ 2.\ 4607\\ 2.\ 4637\\ 2.\ 4635\end{array}$	$\begin{array}{c} 2.\ 4985\\ 2.\ 4990\\ 2.\ 5000\\ 2.\ 5005\end{array}$	$\begin{array}{c} 2.\ 4984\\ 2.\ 4989\\ 2.\ 5000\\ 2.\ 5005\end{array}$		
2.625-6	UN	2A 3A	$\begin{array}{c} 2.\ 6013\\ 2.\ 6005\\ 2.\ 6040\\ 2.\ 6032 \end{array}$	$\begin{array}{c} 2.\ 6223\\ 2.\ 6231\\ 2.\ 6250\\ 2.\ 6258\end{array}$	$\begin{array}{c} 2.\ 51400\\ 2.\ 51375\\ 2.\ 51670\\ 2.\ 51645 \end{array}$	$\begin{array}{c} 2.\ 5772\\ 2.\ 5764\\ 2.\ 5821\\ 2.\ 5813 \end{array}$	$\begin{array}{c} 2.\ 6223\\ 2.\ 6231\\ 2.\ 6250\\ 2.\ 6258\end{array}$	$\begin{array}{c} 2.\ 50500\\ 2.\ 50525\\ 2.\ 50990\\ 2.\ 51015 \end{array}$	$\begin{array}{c} 2.\ 50500\\ 2.\ 50475\\ 2.\ 50990\\ 2.\ 50965 \end{array}$	$\begin{array}{c} 2.6223\\ 2.6231\\ 2.6250\\ 2.6258\end{array}$	$\begin{array}{c} 2.\ 6223\\ 2.\ 6231\\ 2.\ 6250\\ 2.\ 6258\end{array}$		
2.625-8	UN	2A 3A	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 2.\ 6225\\ 2.\ 6232\\ 2.\ 6250\\ 2.\ 6257\end{array}$	$\begin{array}{c} 2.54130 \\ 2.54105 \\ 2.54380 \\ 2.54355 \end{array}$	$\begin{array}{c} 2.\ 5872 \\ 2.\ 5865 \\ 2.\ 5917 \\ 2.\ 5910 \end{array}$	$\begin{array}{c} 2.\ 6225\\ 2.\ 6232\\ 2.\ 6250\\ 2.\ 6257\end{array}$	$\begin{array}{c} 2.53310 \\ 2.53335 \\ 2.53760 \\ 2.53785 \end{array}$	$\begin{array}{c} 2.\ 53310\\ 2.\ 53285\\ 2.\ 53760\\ 2.\ 53735 \end{array}$	$\begin{array}{c} 2.\ 6225\\ 2.\ 6232\\ 2.\ 6250\\ 2.\ 6257\end{array}$	$\begin{array}{c} 2.\ 6225\\ 2.\ 6232\\ 2.\ 6250\\ 2.\ 6257\end{array}$		
2.625–12	UN	2A 3A	$\begin{array}{c} 2.\ 6102\\ 2.\ 6096\\ 2.\ 6121\\ 2.\ 6115\end{array}$	$\begin{array}{c} 2.\ 6231\\ 2.\ 6237\\ 2.\ 6250\\ 2.\ 6256\end{array}$	$\begin{array}{c} 2.56900 \\ 2.56875 \\ 2.57090 \\ 2.57065 \end{array}$	$\begin{array}{c} 2.\ 5989\\ 2.\ 5983\\ 2.\ 6024\\ 2.\ 6018 \end{array}$	$\begin{array}{c} 2.\ 6231\\ 2.\ 6237\\ 2.\ 6250\\ 2.\ 6256\end{array}$	$\begin{array}{c} 2.\ 56280\\ 2.\ 56305\\ 2.\ 56630\\ 2.\ 56655\end{array}$	$\begin{array}{c} 2.56280 \\ 2.56255 \\ 2.56630 \\ 2.56605 \end{array}$	$\begin{array}{c} 2.\ 6231\\ 2.\ 6237\\ 2.\ 6250\\ 2.\ 6256\end{array}$	$\begin{array}{c} 2.\ 6231\\ 2.\ 6237\\ 2.\ 6250\\ 2.\ 6256\end{array}$		
2.625–16	UN	2A 3A	$\begin{array}{c} 2.\ 6128\\ 2.\ 6122\\ 2.\ 6145\\ 2.\ 6139\end{array}$	$\begin{array}{c} 2.\ 6233\\ 2.\ 6239\\ 2.\ 6250\\ 2.\ 6256\end{array}$	$\begin{array}{c} 2.\ 58270\\ 2.\ 58245\\ 2.\ 58440\\ 2.\ 58415 \end{array}$	$\begin{array}{c} 2.\ 6043\\ 2.\ 6037\\ 2.\ 6074\\ 2.\ 6068\end{array}$	$\begin{array}{c} 2,6233\\ 2,6239\\ 2,6250\\ 2,6256\end{array}$	$\begin{array}{c} 2.\ 57720\\ 2.\ 57745\\ 2.\ 58030\\ 2.\ 58055 \end{array}$	$\begin{array}{c} 2.\ 57720\\ 2.\ 57695\\ 2.\ 58030\\ 2.\ 58005 \end{array}$	$\begin{array}{c} 2.\ 6233\\ 2.\ 6239\\ 2.\ 6250\\ 2.\ 6256\end{array}$	$\begin{array}{c} 2.\ 6233\\ 2.\ 6239\\ 2.\ 6250\\ 2.\ 6256\end{array}$		
2,625-20	UN	2 A 3A	$\begin{array}{c} 2.\ 6145\\ 2.\ 6140\\ 2.\ 6160\\ 2.\ 6155\end{array}$	$\begin{array}{c} 2.\ 6235\\ 2.\ 6240\\ 2.\ 6250\\ 2.\ 6255\end{array}$	$\begin{array}{c} 2.5910 \\ 2.5008 \\ 2.5925 \\ 2.5923 \end{array}$	$\begin{array}{c} 2.\ 6076\\ 2.\ 6071\\ 2.\ 6104\\ 2.\ 6099 \end{array}$	$\begin{array}{c} 2.\ 6234\\ 2.\ 6239\\ 2.\ 6250\\ 2.\ 6255\end{array}$	$\begin{array}{c} 2.5859 \\ 2.5861 \\ 2.5887 \\ 2.5887 \\ 2.5889 \end{array}$	$\begin{array}{c} 2.5859 \\ 2.5857 \\ 2.5887 \\ 2.5887 \\ 2.5885 \end{array}$	$\begin{array}{c} 2.\ 6235\\ 2.\ 6240\\ 2.\ 6250\\ 2.\ 6255\end{array}$	$\begin{array}{c} 2.\ 6234\\ 2.\ 6239\\ 2.\ 6250\\ 2.\ 6255\end{array}$		
2. 750-4	UNC	1A 2A 3A	$\begin{array}{c} 2.\ 7187\\ 2.\ 7178\\ 2.\ 7187\\ 2.\ 7187\\ 2.\ 7187\\ 2.\ 7219\\ 2.\ 7210\\ \end{array}$	$\begin{array}{c} 2.\ 7468\\ 2.\ 7477\\ 2.\ 7468\\ 2.\ 7477\\ 2.\ 7500\\ 2.\ 7509\end{array}$	$\begin{array}{c} 2.\ 58440\\ 2.\ 58415\\ 2.\ 58440\\ 2.\ 58440\\ 2.\ 58415\\ 2.\ 58760\\ 2.\ 58735\end{array}$	$\begin{array}{c} 2.\ 6769\\ 2.\ 6760\\ 2.\ 6822\\ 2.\ 6813\\ 2.\ 6880\\ 2.\ 6881\\ \end{array}$	$\begin{array}{c} 2.\ 7468\\ 2.\ 7477\\ 2.\ 7468\\ 2.\ 7477\\ 2.\ 7500\\ 2.\ 7509\end{array}$	$\begin{array}{c} 2,56860\\ 2,56885\\ 2,57390\\ 2,57415\\ 2,57970\\ 2,57995 \end{array}$	$\begin{array}{c} 2.\ 56860\\ 2.\ 56835\\ 2.\ 57390\\ 2.\ 57365\\ 2.\ 57970\\ 2.\ 57945\end{array}$	$\begin{array}{c} 2.7468\\ 2.7477\\ 2.7468\\ 2.7477\\ 2.7468\\ 2.7477\\ 2.7500\\ 2.7509\end{array}$	$\begin{array}{c} 2.\ 7468\\ 2.\ 7477\\ 2.\ 7468\\ 2.\ 4777\\ 2.\ 7500\\ 2.\ 7509\end{array}$		
2.750-6	UN	2A 3A	$\begin{array}{c} 2,7263\\ 2,7255\\ 2,7290\\ 2,7282 \end{array}$	$\begin{array}{c} 2.\ 7473\\ 2.\ 7481\\ 2.\ 7500\\ 2.\ 7508 \end{array}$	$\begin{array}{c} 2.\ 63900\\ 2.\ 63875\\ 2.\ 64170\\ 2.\ 64145 \end{array}$	$\begin{array}{c} 2.\ 7021\\ 2.\ 7013\\ 2.\ 7071\\ 2.\ 7063 \end{array}$	$\begin{array}{c} 2.\ 7473\\ 2.\ 7481\\ 2.\ 7500\\ 2.\ 7508\end{array}$	$\begin{array}{c} 2, 62990 \\ 2, 63015 \\ 2, 63490 \\ 2, 63515 \end{array}$	$\begin{array}{c} 2.\ 62990\\ 2.\ 62965\\ 2.\ 63490\\ 2.\ 63465\end{array}$	$\begin{array}{c} 2.\ 7473\\ 2.\ 7481\\ 2.\ 7500\\ 2.\ 7508\end{array}$	2. 7473 2. 7481 2. 7500 2. 7508		
2.750-8	UN	2A 3A	$\begin{array}{c} 2.\ 7304 \\ 2.\ 7297 \\ 2.\ 7329 \\ 2.\ 7322 \end{array}$	$\begin{array}{c} 2.\ 7475\\ 2.\ 7482\\ 2.\ 7500\\ 2.\ 7507\end{array}$	$\begin{array}{c} 2.\ 66630\\ 2.\ 66605\\ 2.\ 66880\\ 2.\ 66855\end{array}$	$\begin{array}{c} 2.\ 7121\\ 2.\ 7114\\ 2.\ 7167\\ 2.\ 7160\end{array}$	$\begin{array}{c} 2.\ 7475 \\ 2.\ 7482 \\ 2.\ 7500 \\ 2.\ 7507 \end{array}$	$\begin{array}{c} 2.\ 65800\\ 2.\ 65825\\ 2.\ 66250\\ 2.\ 66275\end{array}$	$\begin{array}{c} 2.\ 65800\\ 2.\ 65775\\ 2.\ 66250\\ 2.\ 66225 \end{array}$	2.7475 2.7482 2.7500 2.7507	2. 7475 2. 7482 2. 7500 2. 7507		
2.750-12	UN	2A 3A	$\begin{array}{c} 2.7352\\ 2.7346\\ 2.7371\\ 2.7365\end{array}$	$\begin{array}{c} 2.\ 7481 \\ 2.\ 7487 \\ 2.\ 7500 \\ 2.\ 7506 \end{array}$	$\begin{array}{c} 2.\ 69400\\ 2.\ 69375\\ 2.\ 69590\\ 2.\ 69565\end{array}$	$\begin{array}{c} 2.\ 7239\\ 2.\ 7233\\ 2.\ 7274\\ 2.\ 7268\end{array}$	$\begin{array}{c} 2.\ 7481 \\ 2.\ 7487 \\ 2.\ 7500 \\ 2.\ 7506 \end{array}$	$\begin{array}{c} 2.\ 68780\\ 2.\ 68805\\ 2.\ 69130\\ 2.\ 69155\end{array}$	$\begin{array}{c} 2.\ 68780\\ 2.\ 68755\\ 2.\ 69130\\ 2.\ 69105 \end{array}$	$\begin{array}{c} 2.\ 7481 \\ 2.\ 7487 \\ 2.\ 7500 \\ 2.\ 7506 \end{array}$	$\begin{array}{c} 2.7481 \\ 2.7487 \\ 2.7500 \\ 2.7506 \end{array}$		
2.750-16	UN	2A 3A	$\begin{array}{c} 2.7378\\ 2.7372\\ 2.7395\\ 2.7395\\ 2.7389\end{array}$	$\begin{array}{c} 2.7483\\ 2.7489\\ 2.7500\\ 2.7506\end{array}$	$\begin{array}{c} 2.\ 70770\\ 2.\ 70745\\ 2.\ 70940\\ 2.\ 70915 \end{array}$	$\begin{array}{c} 2.\ 7293\\ 2.\ 7287\\ 2.\ 7324\\ 2.\ 7318 \end{array}$	2,7483 2,7489 2,7500 2,7506	$\begin{array}{c} 2.\ 70220\\ 2.\ 70245\\ 2.\ 70530\\ 2.\ 70555 \end{array}$	$\begin{array}{c} 2.\ 70220\\ 2.\ 70195\\ 2.\ 70530\\ 2.\ 70505 \end{array}$	$\begin{array}{c} 2.7483\\ 2.7489\\ 2.7500\\ 2.7506\end{array}$	$\begin{array}{c} 2.7483\\ 2.7489\\ 2.7500\\ 2.7506\end{array}$		
2.750-20	UN	2A 3A	$\begin{array}{c} 2.7395\\ 2.7390\\ 2.7410\\ 2.7405\end{array}$	2.7485 2.7490 2.7500 2.7505	$\begin{array}{c} 2.\ 7160\\ 2.\ 7158\\ 2.\ 7175\\ 2.\ 7175\\ 2.\ 7173\end{array}$	$\begin{array}{c} 2.\ 7326\\ 2.\ 7321\\ 2.\ 7354\\ 2.\ 7349 \end{array}$	$\begin{array}{c} 2.\ 7484\\ 2.\ 7489\\ 2.\ 7500\\ 2.\ 7505 \end{array}$	$\begin{array}{c} 2.\ 7109\\ 2.\ 7111\\ 2.\ 7137\\ 2.\ 7139\end{array}$	$\begin{array}{c} 2.\ 7109\\ 2.\ 7107\\ 2.\ 7137\\ 2.\ 7135\end{array}$	$\begin{array}{c} 2.\ 7485\\ 2.\ 7490\\ 2.\ 7500\\ 2.\ 7505\end{array}$	$\begin{array}{c} 2.7484 \\ 2.7489 \\ 2.7500 \\ 2.7505 \end{array}$		
2.875-6	UN	2A 3A	$\begin{array}{c} 2.8512 \\ 2.8504 \\ 2.8540 \\ 2.8532 \end{array}$	$\begin{array}{c} 2.\ 8722\\ 2.\ 8730\\ 2.\ 8750\\ 2.\ 8758\end{array}$	$\begin{array}{c} 2.\ 76390\\ 2.\ 76365\\ 2.\ 76670\\ 2.\ 76645 \end{array}$	$\begin{array}{c} 2.8269 \\ 2.8261 \\ 2.8320 \\ 2.8312 \end{array}$	$\begin{array}{c} 2,8722\\ 2,8730\\ 2,8750\\ 2,8758\end{array}$	$\begin{array}{c} 2.75470 \\ 2.75495 \\ 2.75980 \\ 2.76005 \end{array}$	$\begin{array}{c} 2.\ 75470\\ 2.\ 75445\\ 2.\ 75980\\ 2.\ 75955\end{array}$	2.8722 2.8730 2.8750 2.8758	$\begin{array}{c} 2.8722 \\ 2.8730 \\ 2.8750 \\ 2.8758 \end{array}$		
2.875-8	UN	2A 3A	$\begin{array}{c} 2.8554 \\ 2.8547 \\ 2.8579 \\ 2.8579 \\ 2.8572 \end{array}$	$\begin{array}{c} 2.8725 \\ 2.8732 \\ 2.8750 \\ 2.8750 \\ 2.8757 \end{array}$	$\begin{array}{c} 2.\ 79130\\ 2.\ 79105\\ 2.\ 79380\\ 2.\ 79355 \end{array}$	$\begin{array}{c} 2.8370 \\ 2.8363 \\ 2.8416 \\ 2.8409 \end{array}$	$\begin{array}{c} 2.\ 8725\\ 2.\ 8732\\ 2.\ 8750\\ 2.\ 8757\end{array}$	2. 78290 2. 78315 2. 78750 2. 78775	2. 78290 2. 78265 2. 78750 2. 78725	2. 8725 2. 8732 2. 8750 2. 8757	2. 8725 2. 8732 2. 8750 2. 8757		
2.875-12	UN	2A 3A	$\begin{array}{c} 2.\ 8602\\ 2.\ 8596\\ 2.\ 8621\\ 2.\ 8615 \end{array}$	$\begin{array}{c} 2.8731 \\ 2.8737 \\ 2.8750 \\ 2.8756 \end{array}$	$\begin{array}{c} 2.\ 81900\\ 2.\ 81875\\ 2.\ 82090\\ 2.\ 82065 \end{array}$	$\begin{array}{c} 2.8488 \\ 2.8482 \\ 2.8523 \\ 2.8517 \end{array}$	$\begin{array}{c} 2.8731 \\ 2.8737 \\ 2.8750 \\ 2.8756 \end{array}$	$\begin{array}{c} 2.81270 \\ 2.81295 \\ 2.81620 \\ 2.81645 \end{array}$	$\begin{array}{c} 2.81270 \\ 2.81245 \\ 2.81620 \\ 2.81595 \end{array}$	$\begin{array}{c} 2.8731 \\ 2.8737 \\ 2.8750 \\ 2.8750 \\ 2.8756 \end{array}$	$\begin{array}{c} 2.8731 \\ 2.8737 \\ 2.8750 \\ 2.8756 \end{array}$		

			W truncated setting plugs								setting plugs	
			Plug for	GO thread	gage a	Р	lug for LO	thread gage ^a		Major diameter		
Nominal size and threads per inch	Series des- ignation	Class	Major di	ameter	Pitch	Major di	ameter	Piteh di	ameter	Plug for GO thread gage ^{a,b}	Plug for LO thread gage a,o	
			Truncated	Full		Truncated	Full	Plus toler- ance gage	Minus toleranee gage	W and X tolerances	W and X tolerances	
1	2	3	4	5	6	7	8	9	10	11	12	
2. 875-16	UN	2A 3A	$in \\ 2,8628 \\ 2,8622 \\ 2,8645 \\ 2,8639$	in 2. 8733 2. 8739 2. 8750 2. 8756	<i>in</i> 2. 83270 2. 83245 2. 83440 2. 83415	$in \\ 2.8542 \\ 2.8536 \\ 2.8573 \\ 2.8567 \\$	in 2. 8733 2. 8739 2. 8750 2. 8750 2. 8756	<i>in</i> 2. 82710 2. 82735 2. 83020 2. 83045	in 2. 82710 2. 82685 2. 83020 2. 82995	in 2. 8733 2. 8739 2. 8750 2. 8756	in 2. 8733 2. 8739 2. 8750 2. 8756	
2.875-20	UN	2A 3A	$\begin{array}{c} 2.8644 \\ 2.8639 \\ 2.8660 \\ 2.8655 \end{array}$	$\begin{array}{c} 2.\ 8734\\ 2.\ 8739\\ 2.\ 8750\\ 2.\ 8755 \end{array}$	$\begin{array}{c} 2.8409 \\ 2.8407 \\ 2.8425 \\ 2.8423 \end{array}$	$\begin{array}{c} 2.8574 \\ 2.8569 \\ 2.8603 \\ 2.8598 \end{array}$	2.8732 2.8737 2.8750 2.8755	2, 8357 2, 8359 2, 8386 2, 8388	$\begin{array}{c} 2.8357 \\ 2.8355 \\ 2.8386 \\ 2.8384 \end{array}$	2. 8734 2. 8739 2. 8750 2. 8755	2. 8732 2. 8737 2. 8750 2. 8755	
3.000-4	UNC	1A 2A 3A	2. 9687 2. 9678 2. 9687 2. 9678 2. 9719 2. 9710	2. 9968 2. 9977 2. 9968 2. 9977 3. 0000 3. 0009	2, 83440 2, 83415 2, 83440 2, 83415 2, 83760 2, 83735	2. 9266 2. 9257 2. 9320 2. 9311 2. 9379 2. 9370	$\begin{array}{c} 2. \ 9968 \\ 2. \ 9977 \\ 2. \ 9968 \\ 2. \ 9977 \\ 3. \ 0000 \\ 3. \ 0009 \end{array}$	2. 81830 2. 81855 2. 82370 2. 82395 2. 82960 2. 82985	$\begin{array}{c} 2.81830 \\ 2.81805 \\ 2.82370 \\ 2.82345 \\ 2.82960 \\ 2.82935 \end{array}$	2, 9968 2, 9977 2, 9968 2, 9977 3, 0000 3, 0009	2. 9968 2. 9977 2. 9968 2. 9977 3. 0000 3. 0009	
3.000-6	UN	2A 3A	$\begin{array}{c} 2.\ 9762\\ 2.\ 9754\\ 2.\ 9790\\ 2.\ 9782\end{array}$	2. 9972 2. 9980 3. 0000 3. 0008	$\begin{array}{c} 2.88890 \\ 2.88865 \\ 2.89170 \\ 2.89145 \end{array}$	2. 9518 2. 9510 2. 9569 2. 9561	2, 9972 2, 9980 3, 0000 3, 0008	$\begin{array}{c} 2.87960 \\ 2.87985 \\ 2.88470 \\ 2.88495 \end{array}$	$\begin{array}{c} 2.87960 \\ 2.87935 \\ 2.88470 \\ 2.88445 \end{array}$	2. 9972 2. 9980 3. 0000 3. 0008	2, 9972 2, 9980 3, 0000 3, 0008	
3. 000-8	UN	2A 3A	$\begin{array}{c} 2.9803 \\ 2.9796 \\ 2.9829 \\ 2.9822 \end{array}$	2. 9974 2. 9981 3. 0000 3. 0007	2, 91620 2, 91595 2, 91880 2, 91855	$\begin{array}{c} 2,9618\\ 2,9611\\ 2,9665\\ 2,9658\end{array}$	2, 9974 2, 9981 3, 0000 3, 0007	$\begin{array}{c} 2.\ 90770\\ 2.\ 90795\\ 2.\ 91240\\ 2.\ 91265 \end{array}$	$\begin{array}{c} 2.\ 90770\\ 2.\ 90745\\ 2.\ 91240\\ 2.\ 91215 \end{array}$	$\begin{array}{c} 2,9974 \\ 2,9981 \\ 3,0000 \\ 3,0007 \end{array}$	2. 9974 2. 9981 3. 0000 3. 0007	
3. 000–12	UN	2A 3A	$\begin{array}{c} 2.9852 \\ 2.9846 \\ 2.9871 \\ 2.9865 \end{array}$	2. 9981 2. 9987 3. 0000 3. 0006	$\begin{array}{c} 2.94400 \\ 2.94375 \\ 2.94590 \\ 2.94565 \end{array}$	$\begin{array}{c} 2.9738\\ 2.9732\\ 2.9732\\ 2.9773\\ 2.9767\end{array}$	2.9981 2.9987 3.0000 3.0006	$\begin{array}{c} 2.93770 \\ 2.93795 \\ 2.94120 \\ 2.94145 \end{array}$	$\begin{array}{c} 2.93770 \\ 2.93745 \\ 2.94120 \\ 2.94095 \end{array}$	2,9981 2,9987 3,0000 3,0006	2. 9981 2. 9987 3. 0000 3. 0006	
3. 000–16	UN	2A 3A	2.9878 2.9872 2.9895 2.9889	2. 9983 2. 9989 3. 0000 3. 0006	$\begin{array}{c} 2.95770 \\ 2.95745 \\ 2.95940 \\ 2.95915 \end{array}$	$\begin{array}{c} 2.\ 9792\\ 2.\ 9786\\ 2.\ 9823\\ 2.\ 9817 \end{array}$	2. 9983 2. 9989 3. 0000 3. 0006	$\begin{array}{c} 2.95210 \\ 2.95235 \\ 2.95520 \\ 2.95545 \end{array}$	$\begin{array}{c} 2.95210 \\ 2.95185 \\ 2.95520 \\ 2.95495 \end{array}$	2. 9983 2. 9989 3. 0000 3. 0006	2, 9983 2, 9989 3, 0000 3, 0006	
3. 000–20	UN	2A 3A	2. 9894 2. 9889 2. 9910 2. 9905	2.9984 2.9989 3.0000 3.0005	2, 9659 2, 9657 2, 9675 2, 9673	$\begin{array}{c} 2,9824 \\ 2,9819 \\ 2,9853 \\ 2,9848 \end{array}$	2. 9982 2. 9987 3. 0000 3. 0005	2, 9607 2, 9609 2, 9636 2, 9638	$\begin{array}{c} 2.9607 \\ 2.9605 \\ 2.9636 \\ 2.9634 \end{array}$	2. 9984 2. 9989 3. 0000 3. 0005	2, 9982 2, 9987 3, 0000 3, 0005	
3. 125–6	UN	2A 3A	$\begin{array}{c} 3.\ 1012\\ 3.\ 1004\\ 3.\ 1040\\ 3.\ 1032 \end{array}$	$\begin{array}{c} 3.\ 1222\\ 3.\ 1230\\ 3.\ 1250\\ 3.\ 1258\end{array}$	3. 01390 3. 01365 3. 01670 3. 01645	$\begin{array}{c} 3.\ 0767\\ 3.\ 0759\\ 3.\ 0819\\ 3.\ 0811 \end{array}$	3. 1222 3. 1230 3. 1250 3. 1258	3. 00450 3. 00475 3. 00970 3. 00995	3. 00450 3. 00425 3. 00970 3. 00945	3. 1222 3. 1230 3. 1250 3. 1258	$\begin{array}{c} 3.\ 1222\\ 3.\ 1230\\ 3.\ 1250\\ 3.\ 1258\end{array}$	
3. 125–8	UN	2A 3A	$\begin{array}{c} 3.\ 1053\\ 3.\ 1046\\ 3.\ 1079\\ 3.\ 1072\end{array}$	3. 1224 3. 1231 3. 1250 3. 1257	$\begin{array}{c} 3.\ 04120\\ 3.\ 04095\\ 3.\ 04380\\ 3.\ 04355\end{array}$	$\begin{array}{c} 3.\ 0867\\ 3.\ 0860\\ 3.\ 0915\\ 3.\ 0908 \end{array}$	3. 1224 3. 1231 3. 1250 3. 1257	$\begin{array}{c} 3.\ 03260\\ 3.\ 03285\\ 3.\ 03740\\ 3.\ 03765 \end{array}$	3. 03260 3. 03235 3. 03740 3. 03715	3, 1224 3, 1231 3, 1250 3, 1257	3. 1224 3. 1231 3. 1250 3. 1257	
3. 125–12	UN	2A 3A	$\begin{array}{c} 3.\ 1102\\ 3.\ 1096\\ 3.\ 1121\\ 3.\ 1115\end{array}$	3. 1231 3. 1237 3. 1250 3. 1256	3. 06900 3. 06875 3. 07090 3. 07065	$\begin{array}{c} 3.\ 0988\\ 3.\ 0982\\ 3.\ 1023\\ 3.\ 1017 \end{array}$	3. 1231 3. 1237 3. 1250 3. 1256	$\begin{array}{c} 3.\ 06270\\ 3.\ 06295\\ 3.\ 06620\\ 3.\ 06645\end{array}$	$\begin{array}{c} 3.\ 06270\\ 3.\ 06245\\ 3.\ 06620\\ 3.\ 06595 \end{array}$	3, 1231 3, 1237 3, 1250 3, 1256	3. 1231 3. 1237 3. 1250 3. 1256	
3. 125–16	UN	2A 3A	$\begin{array}{c} 3.\ 1128\\ 3.\ 1122\\ 3.\ 1145\\ 3.\ 1139\end{array}$	3. 1233 3. 1239 3. 1250 3. 1256	$\begin{array}{c} 3.\ 08270\\ 3.\ 08245\\ 3.\ 08440\\ 3.\ 08415 \end{array}$	$\begin{array}{c} 3.\ 1042\\ 3.\ 1036\\ 3.\ 1073\\ 3.\ 1067\end{array}$	3. 1233 3. 1239 3. 1250 3. 1256	$\begin{array}{c} 3.\ 07710\\ 3.\ 07735\\ 3.\ 08020\\ 3.\ 08045 \end{array}$	3. 07710 3. 07685 3. 08020 3. 07995	3. 1233 3. 1239 3. 1250 3. 1256	3. 1233 3. 1239 3. 1250 3. 1256	
3. 250–4	UNC	1A 2A 3A	$\begin{array}{c} 3.\ 2186\\ 3.\ 2177\\ 3.\ 2186\\ 3.\ 2177\\ 3.\ 2219\\ 3.\ 2210\\ \end{array}$	$\begin{array}{c} 3,2467\\ 3,2476\\ 3,2467\\ 3,2467\\ 3,2476\\ 3,2500\\ 3,2509\end{array}$	3. 08340 3. 08405 3. 08430 3. 08430 3. 08405 3. 08760 3. 08735	$\begin{array}{c} 3.\ 1763\\ 3.\ 1754\\ 3.\ 1817\\ 3.\ 1808\\ 3.\ 1877\\ 3.\ 1868 \end{array}$	$\begin{array}{c} 3.\ 2467\\ 3.\ 2476\\ 3.\ 2467\\ 3.\ 2476\\ 3.\ 2476\\ 3.\ 2500\\ 3.\ 2509\end{array}$	$\begin{array}{c} 3.\ 06800\\ 3.\ 06825\\ 3.\ 07340\\ 3.\ 07365\\ 3.\ 07940\\ 3.\ 07965 \end{array}$	$\begin{array}{c} 3.\ 06800\\ 3.\ 06775\\ 3.\ 07340\\ 3.\ 07315\\ 3.\ 07940\\ 3.\ 07915 \end{array}$	$\begin{array}{c} 3.2467\\ 3.2476\\ 3.2467\\ 3.2467\\ 3.2476\\ 3.2500\\ 3.2509\\ \end{array}$	$\begin{array}{c} 3.\ 2467\\ 3.\ 2476\\ 3.\ 2467\\ 3.\ 2467\\ 3.\ 2500\\ 3.\ 2509\end{array}$	
3. 250-6	UN	2A 3A	$\begin{array}{c} 3.\ 2262\\ 3.\ 2254\\ 3.\ 2290\\ 3.\ 2282 \end{array}$	3. 2472 3. 2480 3. 2500 3. 2508	3. 13890 3. 13865 3. 14170 3. 14145	3. 2016 3. 2008 3. 2068 3. 2060	$\begin{array}{c} 3.\ 2472\\ 3.\ 2480\\ 3.\ 2500\\ 3.\ 2508 \end{array}$	3. 12940 3. 12965 3. 13460 3. 13485	3. 12940 3. 12915 3. 13460 3. 13435	$\begin{array}{c} 3.2472 \\ 3.2480 \\ 3.2500 \\ 3.2508 \end{array}$	$\begin{array}{c} 3.\ 2472\\ 3.\ 2480\\ 3.\ 2500\\ 3.\ 2508\end{array}$	
3. 250-8	UN	2A 3A	$\begin{array}{c} 3.\ 2303\\ 3.\ 2296\\ 3.\ 2329\\ 3.\ 2322 \end{array}$	$\begin{array}{c} 3.\ 2474\\ 3.\ 2481\\ 3.\ 2500\\ 3.\ 2507 \end{array}$	$\begin{array}{c} 3.\ 16620\\ 3.\ 16595\\ 3.\ 16880\\ 3.\ 16855\end{array}$	$\begin{array}{c} 3.\ 2116\\ 3.\ 2109\\ 3.\ 2164\\ 3.\ 2157\end{array}$	$\begin{array}{c} 3.\ 2474\\ 3.\ 2481\\ 3.\ 2500\\ 3.\ 2507\end{array}$	3. 15750 3. 15775 3. 16230 3. 16255	3. 15750 3. 15725 3. 16230 3. 16205	3. 2474 3. 2481 3. 2500 3. 2507	$\begin{array}{c} 3.\ 2474\\ 3.\ 2481\\ 3.\ 2500\\ 3.\ 2507\end{array}$	
3. 250–12	UN	2A 3A	$\begin{array}{c} 3.\ 2352\\ 3.\ 2346\\ 3.\ 2371\\ 3.\ 2365 \end{array}$	$\begin{array}{c} 3.\ 2481\\ 3.\ 2487\\ 3.\ 2500\\ 3.\ 2506 \end{array}$	3. 19400 3. 19375 3. 19590 3. 19565	$\begin{array}{c} 3.\ 2238\\ 3.\ 2232\\ 3.\ 2273\\ 3.\ 2267\end{array}$	3. 2481 3. 2487 3. 2500 3. 2506	3. 18770 3. 18795 3. 19120 3. 19145	3. 18770 3. 18745 3. 19120 3. 19095	$\begin{array}{c} 3.2481 \\ 3.2487 \\ 3.2500 \\ 3.2506 \end{array}$	3. 2481 3. 2487 3. 2500 3. 2500	

			W truncated setting plugs						Basie-erest setting plugs		
			Plug for	GO thread	gage a	Р	lug for LO	Major diameter			
Nominal size and threads per inch	Series des- ignation	Class	Major dia	ameter	Pitch diameter	Major di	ameter	Pitch di	ameter	Plug for GO thread gage ^{a,b}	Plug for LO thread gage a.c
			Truncated	Full		Truncated	Full	Plus toler- ánce gage	Minus toleranec gage	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
3. 250–16	UN	2A 3A	<i>in</i> 3, 2378 3, 2372 3, 2395 3, 2389	<i>in</i> 3. 2483 3. 2489 3. 2500 3. 2506	<i>in</i> 3. 20770 3. 20745 3. 20940 3. 20915	$in \\ 3. 2292 \\ 3. 2286 \\ 3. 2323 \\ 3. 2317$	in 3. 2483 3. 2489 3. 2500 3. 2506	<i>in</i> 3, 20210 3, 20235 3, 20520 3, 20545	<i>in</i> 3. 20210 3. 20185 3. 20520 3. 20495	<i>in</i> 3. 2483 3. 2489 3. 2500 3. 2506	in 3. 2483 3. 2489 3. 2500 3. 2506
3. 375–6	UN	2A 3A	$\begin{array}{c} 3.\ 3511\ 3.\ 3503\ 3.\ 3540\ 3.\ 3532 \end{array}$	$\begin{array}{c} 3.\ 3721\\ 3.\ 3729\\ 3.\ 3750\\ 3.\ 3758 \end{array}$	$\begin{array}{c} 3.\ 26380\\ 3.\ 26355\\ 3.\ 26670\\ 3.\ 26645 \end{array}$	$\begin{array}{c} 3, 3265 \\ 3, 3257 \\ 3, 3317 \\ 3, 3309 \end{array}$	$\begin{array}{c} 3.\ 3721\ 3.\ 3729\ 3.\ 3750\ 3.\ 3758 \end{array}$	$\begin{array}{c} 3.\ 25430\\ 3.\ 25455\\ 3.\ 25950\\ 3.\ 25975\end{array}$	$\begin{array}{c} 3.\ 25430\\ 3.\ 25405\\ 3.\ 25950\\ 3.\ 25925 \end{array}$	3. 3721 3. 3729 3. 3750 3. 3758	$\begin{array}{c} 3.\ 3721\\ 3.\ 3729\\ 3.\ 3750\\ 3.\ 3758\end{array}$
3. 375–8	UN	2A 3A	3, 3553 3, 3546 3, 3579 3, 3572	$3, 3724 \\ 3, 3731 \\ 3, 3750 \\ 3, 3757$	$\begin{array}{c} 3.\ 29120\\ 3.\ 29095\\ 3.\ 29380\\ 3.\ 29355 \end{array}$	$\begin{array}{c} 3.\ 3365\ 3.\ 3358\ 3.\ 3413\ 3.\ 3406 \end{array}$	3. 3724 3. 3731 3. 3750 3. 3757	$\begin{array}{c} 3.\ 28240\\ 3.\ 28265\\ 3.\ 28720\\ 3.\ 28745 \end{array}$	$\begin{array}{c} 3.\ 28240\\ 3.\ 28215\\ 3.\ 28720\\ 3.\ 28695 \end{array}$	3, 3724 3, 3731 3, 3750 3, 3757	$\begin{array}{c} 3.\ 3724\\ 3.\ 3731\\ 3.\ 3750\\ 3.\ 3757\end{array}$
3. 375-12	UN	2A 3A	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3. 3731 3. 3737 3. 3750 3. 3756	$\begin{array}{c} 3.\ 31900\\ 3.\ 31875\\ 3.\ 32090\\ 3.\ 32065 \end{array}$	3.3487 3.3481 3.3522 3.3516	3, 3731 3, 3737 3, 3750 3, 3756	3. 31260 3. 31285 3. 31610 3. 31635	$\begin{array}{c} 3.\ 31260\\ 3.\ 31235\\ 3.\ 31610\\ 3.\ 31585 \end{array}$	3. 3731 3. 3737 3. 3750 3. 3756	3. 3731 3. 3737 3. 3750 3. 3756
3. 375–16	UN	2A 3A	3. 3628 3. 3622 3. 3645 3. 3639	3. 3733 3. 3739 3. 3750 3. 3756	3. 33270 3. 33245 3. 33440 3. 33415	$\begin{array}{c} 3.\ 3540\\ 3.\ 3534\\ 3.\ 3572\\ 3.\ 3566\end{array}$	3, 3733 3, 3739 3, 3750 3, 3756	3.32690 3.32715 3.33010 3.33035	$\begin{array}{c} 3.\ 32690\\ 3.\ 32665\\ 3.\ 33010\\ 3.\ 32985 \end{array}$	3. 3733 3. 3739 3. 3750 3. 3756	3. 3733 3. 3739 3. 3750 3. 3756
3. 500-4	UNC	1A 2A 3A	$\begin{array}{c c} 3.4686\\ 3.4677\\ 3.4686\\ 3.4677\\ 3.4719\\ 3.4719\\ 3.4710\end{array}$	$\begin{array}{c} 3.\ 4967\\ 3.\ 4976\\ 3.\ 4967\\ 3.\ 4976\\ 3.\ 5000\\ 3.\ 5009\end{array}$	3. 33430 3. 33405 3. 33430 3. 33405 3. 33405 3. 33760 3. 33735	$\begin{array}{c} 3.\ 4260\\ 3.\ 4251\\ 3.\ 4316\\ 3.\ 4307\\ 3.\ 4376\\ 3.\ 4367\end{array}$	3.4967 3.4976 3.4967 3.4967 3.5000 3.5009	3.31770 3.31795 3.32330 3.32355 3.32930 3.32955	$\begin{array}{c} 3,31770\\ 3,31745\\ 3,32330\\ 3,32305\\ 3,32930\\ 3,32905\\ \end{array}$	$\begin{array}{c} 3.4967 \\ 3.4976 \\ 3.4976 \\ 3.4967 \\ 3.4976 \\ 3.5000 \\ 3.5009 \end{array}$	$\begin{array}{c} 3.\ 4967\\ 3.\ 4976\\ 3.\ 4967\\ 3.\ 4967\\ 3.\ 4976\\ 3.\ 5000\\ 3.\ 5009\end{array}$
3. 500-6	UN	2A 3A	$\begin{array}{c} 3.4761\\ 3.4753\\ 3.4790\\ 3.4782\end{array}$	3.4971 3.4979 3.5000 3.5008	$\begin{array}{c} 3.\ 38880\\ 3.\ 38855\\ 3.\ 39170\\ 3.\ 39145 \end{array}$	$\begin{array}{c} 3.\ 4514\\ 3.\ 4506\\ 3.\ 4567\\ 3.\ 4559\end{array}$	$\begin{array}{c} 3.\ 4971\\ 3.\ 4979\\ 3.\ 5000\\ 3.\ 5008 \end{array}$	$\begin{array}{c} 3.\ 37920\\ 3.\ 37945\\ 3.\ 38450\\ 3.\ 38475 \end{array}$	$\begin{array}{c} 3.\ 37920\\ 3.\ 37895\\ 3.\ 38450\\ 3.\ 38425 \end{array}$	$\begin{array}{c} 3.4971\\ 3.4979\\ 3.5000\\ 3.5008\end{array}$	3. 4971 3. 4979 3. 5000 3. 5008
3. 500-8	UN	2A 3A	$\begin{array}{c c} 3.4803\\ 3.4796\\ 3.4829\\ 3.4822 \end{array}$	$\begin{array}{c} 3.\ 4974\\ 3.\ 4981\\ 3.\ 5000\\ 3.\ 5007\end{array}$	$\begin{array}{c} 3.\ 41620\\ 3.\ 41595\\ 3.\ 41880\\ 3.\ 41855\end{array}$	$\begin{array}{c} 3.\ 4615\\ 3.\ 4608\\ 3.\ 4663\\ 3.\ 4656\end{array}$	3.4974 3.4981 3.5000 3.5007	$\begin{array}{c} 3.\ 40740\\ 3.\ 40765\\ 3.\ 41220\\ 3.\ 41245\end{array}$	$\begin{array}{c} 3.\ 40740\\ 3.\ 40715\\ 3.\ 41220\\ 3.\ 41195 \end{array}$	$\begin{array}{c} 3.4974\\ 3.4981\\ 3.5000\\ 3.5007\end{array}$	3. 4974 3. 4981 3. 5000 3. 5007
3. 500–12	UN	2A 3A	$\begin{array}{c} 3.\ 4852\\ 3.\ 4846\\ 3.\ 4871\\ 3.\ 4865\end{array}$	$\begin{array}{c} 3.\ 4981\\ 3.\ 4987\\ 3.\ 5000\\ 3.\ 5006 \end{array}$	3.44400 3.44375 3.44590 3.44565	$\begin{array}{c} 3.4737\\ 3.4731\\ 3.4772\\ 3.4766\end{array}$	$\begin{array}{c} 3.4981\\ 3.4987\\ 3.5000\\ 3.5006 \end{array}$	$\begin{array}{c} 3.\ 43760\\ 3.\ 43785\\ 3.\ 44110\\ 3.\ 44135\end{array}$	$\begin{array}{c} 3.43760\\ 3.43735\\ 3.44110\\ 3.44085\end{array}$	$\begin{array}{c} 3.\ 4981\\ 3.\ 4987\\ 3.\ 5000\\ 3.\ 5006\end{array}$	3. 4981 3. 4987 3. 5000 3. 5000
3. 500-16	UN	2A 3A	$\begin{array}{c} 3.\ 4878\\ 3.\ 4872\\ 3.\ 4895\\ 3.\ 4889\end{array}$	$\begin{array}{c} 3.\ 4983\\ 3.\ 4989\\ 3.\ 5000\\ 3.\ 5006 \end{array}$	$\begin{array}{c} 3.\ 45770\\ 3.\ 45745\\ 3.\ 45940\\ 3.\ 45915 \end{array}$	$\begin{array}{c} 3.4790\\ 3.4784\\ 3.4822\\ 3.4816\end{array}$	3, 4983 3, 4989 3, 5000 3, 5006	$\begin{array}{c} 3.\ 45190\\ 3.\ 45215\\ 3.\ 45510\\ 3.\ 45535\end{array}$	$\begin{array}{c} 3.\ 45190\\ 3.\ 45165\\ 3.\ 45510\\ 3.\ 45485\end{array}$	$\begin{array}{c} 3.4983 \\ 3.4989 \\ 3.5000 \\ 3.5006 \end{array}$	3. 4983 3. 4989 3. 5000 3. 5000
3. 625-6	UN	2A 3A	$\begin{array}{c} 3.\ 6011\\ 3.\ 6003\\ 3.\ 6040\\ 3.\ 6032\end{array}$	$\begin{array}{c} 3.\ 6221\\ 3.\ 6229\\ 3.\ 6250\\ 3.\ 6258\end{array}$	3.51380 3.51355 3.51670 3.51645	$\begin{array}{c} 3.5763 \\ 3.5755 \\ 3.5816 \\ 3.5808 \end{array}$	$\begin{array}{c} 3.\ 6221\\ 3.\ 6229\\ 3.\ 6250\\ 3.\ 6258\end{array}$	$\begin{array}{c} 3.\ 50410\\ 3.\ 50435\\ 3.\ 50940\\ 3.\ 50965\end{array}$	$\begin{array}{c} 3.\ 50410\\ 3.\ 50385\\ 3.\ 50940\\ 3.\ 50915 \end{array}$	$\begin{array}{c} 3.\ 6221\\ 3.\ 6229\\ 3.\ 6250\\ 3.\ 6258\end{array}$	3. 6221 3. 6229 3. 6250 3. 6258
3. 625-8	UN	2A 3A	$\begin{array}{c} 3.\ 6052\\ 3.\ 6045\\ 3.\ 6079\\ 3.\ 6072\end{array}$	$\begin{array}{c} 3.\ 6223\\ 3.\ 6230\\ 3.\ 6250\\ 3.\ 6257\end{array}$	3.54110 3.54085 3.54380 3.54355	$\begin{array}{c} 3.5863 \\ 3.5856 \\ 3.5912 \\ 3.5905 \end{array}$	$\begin{array}{c} 3.\ 6223\\ 3.\ 6230\\ 3.\ 6250\\ 3.\ 6257\end{array}$	$\begin{array}{c} 3.\ 53220\\ 3.\ 53245\\ 3.\ 53710\\ 3.\ 53735\end{array}$	3, 53220 3, 53195 3, 53710 3, 53685	$\begin{array}{c} 3.\ 6223\\ 3.\ 6230\\ 3.\ 6250\\ 3.\ 6257\end{array}$	3, 6223 3, 6230 3, 6250 3, 6257
3.625-12	UN	2A 3A	$\begin{array}{c} 3.\ 6102\\ 3.\ 6096\\ 3.\ 6121\\ 3.\ 6115\end{array}$	$\begin{array}{c} 3.\ 6231\\ 3.\ 6237\\ 3.\ 6250\\ 3.\ 6256\end{array}$	3. 56900 3. 56875 3. 57090 3. 57065	$\begin{array}{c} 3.5987 \\ 3.5981 \\ 3.6022 \\ 3.6016 \end{array}$	$\begin{array}{c} 3.\ 6231\\ 3.\ 6237\\ 3.\ 6250\\ 3.\ 6256\end{array}$	$\begin{array}{c} \textbf{3.56260}\\ \textbf{3.56285}\\ \textbf{3.56610}\\ \textbf{3.56635} \end{array}$	$\begin{array}{c} 3.\ 56260\\ 3.\ 56235\\ 3.\ 56610\\ 3.\ 56585 \end{array}$	$\begin{array}{c} 3.\ 6231\\ 3.\ 6237\\ 3.\ 6250\\ 3.\ 6256\end{array}$	3, 6231 3, 6237 3, 6250 3, 6250
3.625-16	UN	2A 3A	$\begin{array}{c} 3.\ 6128\\ 3.\ 6122\\ 3.\ 6145\\ 3.\ 6139\end{array}$	$\begin{array}{c} 3.\ 6233\\ 3.\ 6239\\ 3.\ 6250\\ 3.\ 6256\end{array}$	$\begin{array}{c} 3.\ 58270\\ 3.\ 58245\\ 3.\ 58440\\ 3.\ 58415 \end{array}$	$\begin{array}{c} 3.\ 6040\\ 3.\ 6034\\ 3.\ 6072\\ 3.\ 6066\end{array}$	3, 6233 3, 6239 3, 6250 3, 6256	3. 57690 3. 57715 3. 58010 3. 58035	$\begin{array}{c} 3.\ 57690\\ 3.\ 57665\\ 3.\ 58010\\ 3.\ 57985 \end{array}$	3, 6233 3, 6239 3, 6250 3, 6256	$\begin{array}{c} 3, 6233 \\ 3, 6239 \\ 3, 6250 \\ 3, 6250 \end{array}$
3. 750-4	UNC	1A 2A 3A	3. 7185 3. 7176 3. 7185 3. 7176 3. 7176 3. 7219 3. 7210	3. 7466 3. 7475 3. 7466 3. 7475 3. 7500 3. 7509	3, 58420 3, 58395 3, 58420 3, 58395 3, 58760 3, 58735	3. 6757 3. 6748 3. 6813 3. 6804 3. 6875 3. 6866	3. 7466 3. 7475 3. 7466 3. 7475 3. 7500 3. 7509	$\begin{array}{c} 3.\ 56740\\ 3.\ 56765\\ 3.\ 57300\\ 3.\ 57325\\ 3.\ 57920\\ 3.\ 57945 \end{array}$	$\begin{array}{c} 3,56740\\ 3,56715\\ 3,57300\\ 3,57275\\ 3,57920\\ 3,57895 \end{array}$	$\begin{array}{c} 3.\ 7466\\ 3.\ 7475\\ 3.\ 7466\\ 3.\ 7475\\ 3.\ 7500\\ 3.\ 7509\end{array}$	3. 7466 3. 7475 3. 7466 3. 7475 3. 7466 3. 7475 3. 7500 3. 7509

11

					W tru	ncated setting	plugs			Basic-crests	setting plugs
			Plug for	r GO thread	l gage ª	P	Plug for LO	thread gage ^a		Major o	liameter
Nominal size and threads per inch	Scries des- ignation	Class	Major di	ameter	Piteh diameter	Major di	iameter	Piteh di	ameter	Plug for GO thread gage ^{a,b}	Plug for LO thread gage a,c
			Truncated	Full		Truncated	Full	Plus toler- ance gage	Minus toleranee gage	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
3.750-6	UN	2A 3A	in 3. 7261 3. 7253 3. 7290 3. 7282	<i>in</i> 3. 7471 3. 7479 3. 7500 3. 7508	<i>in</i> 3. 63880 3. 63855 3. 64170 3. 64145	$in \\ 3.7012 \\ 3.7004 \\ 3.7066 \\ 3.7058$	in 3. 7471 3. 7479 3. 7500 3. 7508	<i>in</i> 3. 62900 3. 62925 3. 63440 3. 63465	in 3. 62900 3. 62875 3. 63440 3. 63415	<i>in</i> 3. 7471 3. 7479 3. 7500 3. 7508	in 3.7471 3.7475 3.7500 3.7508
3.750-8	UN	2A 3A	$\begin{array}{c} 3.\ 7302\\ 3.\ 7295\\ 3.\ 7329\\ 3.\ 7329\\ 3.\ 7322 \end{array}$	$\begin{array}{c} 3.7473\\ 3.7480\\ 3.7500\\ 3.7507\end{array}$	$\begin{array}{c} 3.\ 66610\\ 3.\ 66585\\ 3.\ 66880\\ 3.\ 66855\end{array}$	$3.7112 \\ 3.7105 \\ 3.7162 \\ 3.7155$	$\begin{array}{c} 3.\ 7473\\ 3.\ 7480\\ 3.\ 7500\\ 3.\ 7507\end{array}$	$\begin{array}{c} 3.\ 65710\\ 3.\ 65735\\ 3.\ 66210\\ 3.\ 66235 \end{array}$	$\begin{array}{c} 3.\ 65710\\ 3.\ 65685\\ 3.\ 66210\\ 3.\ 66185\end{array}$	3.7473 3.7480 3.7500 3.7507	$\begin{array}{c} 3.\ 7473\\ 3.\ 7480\\ 3.\ 7500\\ 3.\ 7500\end{array}$
3. 750-12	UN	2A 3A	$\begin{array}{c} 3.\ 7352\\ 3.\ 7346\\ 3.\ 7371\\ 3.\ 7365\end{array}$	3.7481 3.7487 3.7500 3.7506	$\begin{array}{c} 3.\ 69400\\ 3.\ 69375\\ 3.\ 69590\\ 3.\ 69565\end{array}$	$\begin{array}{c} 3.\ 7237\\ 3.\ 7231\\ 3.\ 7272\\ 3.\ 7266\end{array}$	$\begin{array}{c} 3.\ 7481\\ 3.\ 7487\\ 3.\ 7500\\ 3.\ 7506 \end{array}$	$\begin{array}{c} 3.\ 68760\ 3.\ 68785\ 3.\ 69110\ 3.\ 69135 \end{array}$	3.68760 3.68735 3.69110 3.69085	3.7481 3.7487 3.7500 3.7506	3. 748 3. 748 3. 750 3. 750
3.750-16	UN	2A 3A	3.7378 3.7372 3.7395 3.7389	3.7483 3.7489 3.7500 3.7506	3. 70770 3. 70745 3. 70940 3. 70915	$\begin{array}{c} 3.\ 7290\\ 3.\ 7284\\ 3.\ 7322\\ 3.\ 7316\end{array}$	$\begin{array}{c} 3.\ 7483\\ 3.\ 7489\\ 3.\ 7500\\ 3.\ 7506 \end{array}$	3.70190 3.70215 3.70510 3.70535	$\begin{array}{c} 3.\ 70190\\ 3.\ 70165\\ 3.\ 70510\\ 3.\ 70485 \end{array}$	3.7483 3.7489 3.7500 3.7506	3. 748 3. 748 3. 750 3. 750
3. 875-6	UN	2A 3A	3.8510 3.8502 3.8540 3.8532	3. 8720 3. 8728 3. 8750 3. 8758	$\begin{array}{c} 3.\ 76370\\ 3.\ 76345\\ 3.\ 76670\\ 3.\ 76645 \end{array}$	3.8260 3.8252 3.8315 3.8307	3. 8720 3. 8728 3. 8750 3. 8758	3.75380 3.75405 3.75930 3.75955	3.75380 3.75355 3.75930 3.75905	3.8720 3.8728 3.8750 3.8758	3.872 3.872 3.875 3.875 3.875
3. 875-8	UN	2A 3A	$\begin{array}{c} 3.8552 \\ 3.8545 \\ 3.8579 \\ 3.8572 \end{array}$	3. 8723 3. 8730 3. 8750 3. 8757	3,79110 3,79085 3,79380 3,79355	3.8361 3.8354 3.8411 3.8404	3. 8723 3. 8730 3. 8750 3. 8757	$\begin{array}{c} 3.78200 \\ 3.78225 \\ 3.78700 \\ 3.78725 \end{array}$	3.78200 3.78175 3.78700 3.78675	3.8723 3.8730 3.8750 3.8757	3. 872 3. 873 3. 875 3. 875 3. 875
3.875-12	UN	2A 3A	3.8601 3.8595 3.8621 3.8615	3.8730 3.8736 3.8750 3.8756	3.81890 3.81865 3.82090 3.82065	3.8485 3.8479 3.8521 3.8515	3, 8730 3, 8736 3, 8750 3, 8756	3.81240 3.81265 3.81600 3.81625	3.81240 3.81215 3.81600 3.81575	3.8730 3.8736 3.8750 3.8750	3. 873 3. 873 3. 875 3. 875 3. 875
3. 875-16	UN	2A 3A	3.8627 3.8621 3.8645 3.8639	3.8732 3.8738 3.8750 3.8756	3.83260 3.83235 3.83440 3.83415	3.8538 3.8532 3.8571 3.8565	3, 8732 3, 8738 3, 8750 3, 8756	3.82670 3.82695 3.83000 3.83025	3.82670 3.82645 3.83000 3.82975	3.8732 3.8738 3.8750 3.8756	3.873 3.873 3.875 3.875 3.875
4.000-4	UNC	1A 2A 3A	3. 9685 3. 9676 3. 9685 3. 9676 3. 9719 3. 9710	$\begin{array}{c} 3. \ 9966 \\ 3. \ 9975 \\ 3. \ 9966 \\ 3. \ 9975 \\ 4. \ 0000 \\ 4. \ 0009 \end{array}$	3. 83420 3. 83395 3. 83420 3. 83395 3. 83395 3. 83760 3. 83735	$\begin{array}{c} 3. \ 9255\\ 3. \ 9246\\ 3. \ 9312\\ 3. \ 9303\\ 3. \ 9374\\ 3. \ 9365\end{array}$	$\begin{array}{c} 3. \ 9966 \\ 3. \ 9975 \\ 3. \ 9966 \\ 3. \ 9975 \\ 4. \ 0000 \\ 4. \ 0009 \end{array}$	$\begin{array}{c} 3.\ 81720\\ 3.\ 81745\\ 3.\ 82290\\ 3.\ 82315\\ 3.\ 82910\\ 3.\ 82935 \end{array}$	$\begin{array}{c} 3.\ 81720\\ 3.\ 81695\\ 3.\ 82290\\ 3.\ 82265\\ 3.\ 82910\\ 3.\ 82885 \end{array}$	$\begin{array}{c} 3. \ 9966 \\ 3. \ 9975 \\ 3. \ 9966 \\ 3. \ 9975 \\ 4. \ 0000 \\ 4. \ 0009 \end{array}$	$\begin{array}{c} 3.996\\ 3.997\\ 3.996\\ 3.997\\ 4.000\\ 4.000\end{array}$
4.000-6	UN	2A 3A	3, 9760 3, 9752 3, 9790 3, 9782	$\begin{array}{c} 3.\ 9970\\ 3.\ 9978\\ 4.\ 0000\\ 4.\ 0008 \end{array}$	3. 88870 3. 88845 3. 89170 3. 89145	3.9510 3.9502 3.9565 3.9557	$\begin{array}{c} 3.\ 9970\\ 3.\ 9978\\ 4.\ 0000\\ 4.\ 0008 \end{array}$	$\begin{array}{c} 3.87880 \\ 3.87905 \\ 3.88430 \\ 3.88455 \end{array}$	$\begin{array}{c} 3.\ 87880\\ 3.\ 87855\\ 3.\ 88430\\ 3.\ 88405 \end{array}$	3.9970 3.9978 4.0000 4.0008	$\begin{array}{c} 3.997 \\ 3.997 \\ 4.000 \\ 4.000 \end{array}$
4.000-8	UN	2A 3A	$\begin{array}{c} 3.9802 \\ 3.9795 \\ 3.9829 \\ 3.9822 \end{array}$	3. 9973 3. 9980 4. 0000 4. 0007	3.91610 3.91585 3.91880 3.91855	$\begin{array}{c} 3.\ 9611\\ 3.\ 9604\\ 3.\ 9661\\ 3.\ 9654 \end{array}$	3.9973 3.9980 4.0000 4.0007	$\begin{array}{c} 3.\ 90700\\ 3.\ 90725\\ 3.\ 91200\\ 3.\ 91225 \end{array}$	$\begin{array}{c} 3.\ 90700\\ 3.\ 90675\\ 3.\ 91200\\ 3.\ 91175 \end{array}$	3.9973 3.9980 4.0000 4.0007	3.997 3.998 4.000 4.000
4.000-12	UN	2A 3A	3.9851 3.9845 3.9871 3.9865	$\begin{array}{c} 3.\ 9980\\ 3.\ 9986\\ 4.\ 0000\\ 4.\ 0006 \end{array}$	3.94390 3.94365 3.94590 3.94565	3.9735 3.9729 3.9771 3.9765	$\begin{array}{c} 3.9980 \\ 3.9986 \\ 4.0000 \\ 4.0006 \end{array}$	3.93740 3.93765 3.94100 3.94125	3.93740 3.93715 3.94100 3.94075	$\begin{array}{c} 3.9980 \\ 3.9986 \\ 4.0000 \\ 4.0006 \end{array}$	3.998 3.998 4.000 4.000
4. 000–16	UN	2A 3A	3.9877 3.9871 3.9895 3.9889	3. 9982 3. 9988 4. 0000 4. 0006	3. 95760 3. 95735 3. 95940 3. 95915	$\begin{array}{c} 3.9788\\ 3.9782\\ 3.9821\\ 3.9815 \end{array}$	$\begin{array}{c} 3.\ 9982\\ 3.\ 9988\\ 4.\ 0000\\ 4.\ 0006\end{array}$	$\begin{array}{c} 3.95170 \\ 3.95195 \\ 3.95500 \\ 3.95525 \end{array}$	$\begin{array}{c} 3.\ 95170\\ 3.\ 95145\\ 3.\ 95500\\ 3.\ 95475 \end{array}$	$\begin{array}{c} 3, 9982 \\ 3, 9988 \\ 4, 0000 \\ 4, 0006 \end{array}$	$ \begin{array}{c c} 3.998\\ 3.998\\ 4.000\\ 4.000 \end{array} $
4. 125-6	UN	2A 3A	$\begin{array}{c} 4.1010 \\ 4.0997 \\ 4.1040 \\ 4.1027 \end{array}$	$\begin{array}{c} 4.\ 1220\\ 4.\ 1233\\ 4.\ 1250\\ 4.\ 1263\end{array}$	$\begin{array}{r} 4.0137 \\ 4.0134 \\ 4.0167 \\ 4.0164 \end{array}$	$\begin{array}{c} 4.\ 0759\\ 4.\ 0746\\ 4.\ 0814\\ 4.\ 0801 \end{array}$	$\begin{array}{c} 4.1220 \\ 4.1233 \\ 4.1250 \\ 4.1263 \end{array}$	$\begin{array}{r} 4.0037\\ 4.0040\\ 4.0092\\ 4.0095\end{array}$	$\begin{array}{r} 4.0037\\ 4.0034\\ 4.0092\\ 4.0089\end{array}$	$\begin{array}{r} 4.1220\\ 4.1233\\ 4.1250\\ 4.1263\end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
4.125–12	UN	2A 3A	$\begin{array}{c} 4.1101 \\ 4.1092 \\ 4.1121 \\ 4.1112 \end{array}$	$\begin{array}{c} 4.\ 1230\\ 4.\ 1239\\ 4.\ 1250\\ 4.\ 1259\end{array}$	$\begin{array}{r} 4.0689 \\ 4.0686 \\ 4.0709 \\ 4.0706 \end{array}$	4. 0985 4. 0976 4. 1021 4. 1012	$\begin{array}{c} 4.\ 1230\\ 4.\ 1239\\ 4.\ 1250\\ 4.\ 1259\end{array}$	$\begin{array}{r} 4.0624 \\ 4.0627 \\ 4.0660 \\ 4.0663 \end{array}$	$\begin{array}{c} 4.\ 0624\\ 4.\ 0621\\ 4.\ 0660\\ 4.\ 0657\end{array}$	$\begin{array}{r} 4.1230 \\ 4.1239 \\ 4.1250 \\ 4.1259 \end{array}$	$\begin{array}{c c} 4, 123 \\ 4, 123 \\ 4, 125 \\ 4, 125 \\ 4, 125 \end{array}$
4.125-16	UN	2A 3A	$\begin{array}{c} 4.\ 1127\\ 4.\ 1118\\ 4.\ 1145\\ 4.\ 1136\end{array}$	$\begin{array}{c} 4.\ 1232\\ 4.\ 1241\\ 4.\ 1250\\ 4.\ 1259\end{array}$	$\begin{array}{r} 4.\ 0826\\ 4.\ 0823\\ 4.\ 0844\\ 4.\ 0841 \end{array}$	$\begin{array}{r} 4.\ 1038\\ 4.\ 1029\\ 4.\ 1071\\ 4.\ 1062\end{array}$	$\begin{array}{c} 4.\ 1232\\ 4.\ 1241\\ 4.\ 1250\\ 4.\ 1259\end{array}$	$\begin{array}{c} 4.\ 0767\\ 4.\ 0770\\ 4.\ 0800\\ 4.\ 0803\end{array}$	$\begin{array}{c} 4.0767 \\ 4.0764 \\ 4.0800 \\ 4.0797 \end{array}$	$\begin{array}{r} 4.\ 1232\\ 4.\ 1241\\ 4.\ 1250\\ 4.\ 1259\end{array}$	$\begin{array}{c c} 4.123 \\ 4.124 \\ 4.125 \\ 4.125 \\ 4.125 \end{array}$

TABLE 6.20. Setting plug gages, Unified screw threads—Continued	
-----------------------------------------------------------------	--

				W truncated setting plugs								
			Plug for	GO thread	gage ª	Р	lug for LO	thread gage a		Major ć	liameter	
Nominal size and threads per inch	Series des- ignation	Class	Major di	ameter	Pitch diameter	Major di	ameter	Piteh di	ameter	Plug for GO thread gage a,b	Plug for LO thread gage a.c	
			Truncated	Full		Truncated	Full	Plus toler- ance gage	Minus toleranee gage	W and X tolerances	W and X tolerances	
1	2	3	4	5	6	7	8	9	10	11	12	
4. 250–4	UN	2A 3A	$ \begin{vmatrix} in \\ 4.2185 \\ 4.2170 \\ 4.2219 \\ 4.2204 \end{vmatrix} $	in 4. 2466 4. 2481 4. 2500 4. 2515	in 4. 0842 4. 0839 4. 0876 4. 0873	<i>in</i> 4. 1810 4. 1795 4. 1873 4. 1858	in 4. 2466 4. 2481 4. 2500 4. 2515	in 4. 0727 4. 0730 4. 0790 4. 0793	in 4.0727 4.0724 4.0790 4.0787	in4. 24664. 24814. 25004. 2515	in 4. 2466 4. 2481 4. 2500 4. 2515	
4.250-6	UN	2A 3A	$\begin{array}{c} 4.\ 2260\\ 4.\ 2247\\ 4.\ 2290\\ 4.\ 2277\end{array}$	$\begin{array}{r} 4.\ 2470\\ 4.\ 2483\\ 4.\ 2500\\ 4.\ 2513\end{array}$	$\begin{array}{c} 4.\ 1387\\ 4.\ 1384\\ 4.\ 1417\\ 4.\ 1414 \end{array}$	$\begin{array}{r} 4.\ 2008\\ 4.\ 1995\\ 4.\ 2064\\ 4.\ 2051 \end{array}$	$\begin{array}{r} 4.\ 2470\\ 4.\ 2483\\ 4.\ 2500\\ 4.\ 2513\end{array}$	$\begin{array}{r} 4.\ 1286\\ 4.\ 1289\\ 4.\ 1342\\ 4.\ 1345\end{array}$	4. 1286 4. 1283 4. 1342 4. 1339	$\begin{array}{c} 4.2470 \\ 4.2483 \\ 4.2500 \\ 4.2513 \end{array}$	$\begin{array}{r} 4.\ 2470\\ 4.\ 2483\\ 4.\ 2500\\ 4.\ 2513\end{array}$	
4. 250-12	UN	2A 3A	$\begin{array}{c} 4.\ 2351\\ 4.\ 2342\\ 4.\ 2371\\ 4.\ 2362\end{array}$	$\begin{array}{r} 4.\ 2480\\ 4.\ 2489\\ 4.\ 2500\\ 4.\ 2509\end{array}$	$\begin{array}{c} 4.\ 1939\\ 4.\ 1936\\ 4.\ 1959\\ 4.\ 1956\end{array}$	$\begin{array}{c} 4.\ 2235\\ 4.\ 2226\\ 4.\ 2271\\ 4.\ 2262\end{array}$	$\begin{array}{c} 4.\ 2480\\ 4.\ 2489\\ 4.\ 2500\\ 4.\ 2509\end{array}$	4. 1874 4. 1877 4. 1910 4. 1913	4. 1874 4. 1871 4. 1910 4. 1907	$\begin{array}{r} 4.2480 \\ 4.2489 \\ 4.2500 \\ 4.2509 \end{array}$	$\begin{array}{r} 4.\ 2480\\ 4.\ 2489\\ 4.\ 2500\\ 4.\ 2509\end{array}$	
4. 250–16	UN	2A 3A	$\begin{array}{c} 4.\ 2377\\ 4.\ 2368\\ 4.\ 2395\\ 4.\ 2386\end{array}$	$\begin{array}{c} 4.\ 2482\\ 4.\ 2491\\ 4.\ 2500\\ 4.\ 2509\end{array}$	$\begin{array}{c} 4.\ 2076\\ 4.\ 2073\\ 4.\ 2094\\ 4.\ 2091 \end{array}$	$\begin{array}{c} 4.\ 2288\\ 3.\ 2279\\ 4.\ 2321\\ 4.\ 2312\end{array}$	$\begin{array}{c} 4.\ 2482\\ 4.\ 2491\\ 4.\ 2500\\ 4.\ 2509 \end{array}$	$\begin{array}{c} 4.\ 2017\\ 4.\ 2020\\ 4.\ 2050\\ 4.\ 2053\end{array}$	$\begin{array}{c} 4.\ 2017\\ 4.\ 2014\\ 4.\ 2050\\ 4.\ 2047\end{array}$	$\begin{array}{r} 4.\ 2482\\ 4.\ 2491\\ 4.\ 2500\\ 4.\ 2509\end{array}$	$\begin{array}{r} 4.2482 \\ 4.2491 \\ 4.2500 \\ 4.2509 \end{array}$	
4.375-6	UN	2A 3A	$\begin{array}{r} 4.3510 \\ 4.3497 \\ 4.3540 \\ 4.3527 \end{array}$	4. 3720 4. 3733 4. 3750 4. 3763	$\begin{array}{c} 4.\ 2637\\ 4.\ 2634\\ 4.\ 2667\\ 4.\ 2664\end{array}$	$\begin{array}{r} 4.\ 3258\\ 4.\ 3245\\ 4.\ 3313\\ 4.\ 3300 \end{array}$	$\begin{array}{r} 4.\ 3720\\ 4.\ 3733\\ 4.\ 3750\\ 4.\ 3763\end{array}$	$\begin{array}{r} 4.\ 2536\\ 4.\ 2539\\ 4.\ 2591\\ 4.\ 2594 \end{array}$	$\begin{array}{c} 4.\ 2536\\ 4.\ 2533\\ 4.\ 2591\\ 4.\ 2588\end{array}$	4. 3720 4. 3733 4. 3750 4. 3763	4. 3720 4. 3733 4. 3750 4. 3763	
4.375-12	UN	2A 3A	$\begin{array}{r} 4.3601 \\ 4.3592 \\ 4.3621 \\ 4.3612 \end{array}$	$\begin{array}{r} 4.\ 3730\\ 4.\ 3739\\ 4.\ 3750\\ 4.\ 3759\end{array}$	$\begin{array}{r} 4.3189\\ 4.3186\\ 4.3209\\ 4.3206\end{array}$	$\begin{array}{c} 4.\ 3485\\ 4.\ 3476\\ 4.\ 3521\\ 4.\ 3512\end{array}$	$\begin{array}{r} 4.\ 3730\\ 4.\ 3739\\ 4.\ 3750\\ 4.\ 3759\end{array}$	$\begin{array}{r} 4.3124 \\ 4.3127 \\ 4.3160 \\ 4.3163 \end{array}$	$\begin{array}{r} 4.\ 3124 \\ 4.\ 3121 \\ 4.\ 3160 \\ 4.\ 3157 \end{array}$	4. 3730 4. 3739 4. 3750 4. 3759	4. 3730 4. 3739 4. 3750 4. 3759	
4.375-16	UN	2A 3A	$\begin{array}{r} 4.3627 \\ 4.3618 \\ 4.3645 \\ 4.3636 \end{array}$	$\begin{array}{r} 4.\ 3732\\ 4.\ 3741\\ 4.\ 3750\\ 4.\ 3759\end{array}$	$\begin{array}{r} 4.3326\\ 4.3323\\ 4.3344\\ 4.3341\end{array}$	$\begin{array}{r} 4.3538 \\ 4.3529 \\ 4.3571 \\ 4.3562 \end{array}$	$\begin{array}{r} 4.\ 3732\\ 4.\ 3741\\ 4.\ 3750\\ 4.\ 3759\end{array}$	$\begin{array}{r} 4.3267 \\ 4.3270 \\ 4.3300 \\ 4.3303 \end{array}$	$\begin{array}{c} 4.\ 3267\\ 4.\ 3264\\ 4.\ 3300\\ 4.\ 3297\end{array}$	4. 3732 4. 3741 4. 3750 4. 3759	4. 3732 4. 3741 4. 3750 4. 3759	
4. 500-4	UN	2A 3A	$\begin{array}{r} 4.\ 4684\\ 4.\ 4669\\ 4.\ 4719\\ 4.\ 4704\end{array}$	4. 4965 4. 4980 4. 5000 4. 5015	$\begin{array}{r} 4.\ 3341\\ 4.\ 3338\\ 4.\ 3376\\ 4.\ 3373\end{array}$	$\begin{array}{r} 4.\ 4308\\ 4.\ 4293\\ 4.\ 4372\\ 4.\ 4357\end{array}$	$\begin{array}{r} 4.\ 4965\\ 4.\ 4980\\ 4.\ 5000\\ 4.\ 5015 \end{array}$	$\begin{array}{r} 4.\ 3225\\ 4.\ 3228\\ 4.\ 3289\\ 4.\ 3292\end{array}$	$\begin{array}{r} 4.\ 3225\\ 4.\ 3222\\ 4.\ 3289\\ 4.\ 3286\end{array}$	4. 4965 4. 4980 4. 5000 4. 5015	4. 4965 4. 4980 4. 5000 4. 5015	
4. 500-6	UN	2A 3A	$\begin{array}{r} 4.\ 4759\\ 4.\ 4746\\ 4.\ 4790\\ 4.\ 4777\end{array}$	$\begin{array}{c} 4.\ 4969\\ 4.\ 4982\\ 4.\ 5000\\ 4.\ 5013 \end{array}$	$\begin{array}{r} 4.3886\\ 4.3883\\ 4.3917\\ 4.3914 \end{array}$	$\begin{array}{r} 4.\ 4506\\ 4.\ 4493\\ 4.\ 4562\\ 4.\ 4549\end{array}$	4. 4969 4. 4982 4. 5000 4. 5013	$\begin{array}{r} 4.3784 \\ 4.3787 \\ 4.3840 \\ 4.3843 \end{array}$	$\begin{array}{r} 4.3784 \\ 4.3781 \\ 4.3840 \\ 4.3837 \end{array}$	4. 4969 4. 4982 4. 5000 4. 5013	4. 4969 4. 4982 4. 5000 4. 5013	
4. 500-12	UN	2A 3A	$\begin{array}{c} 4.\ 4851\\ 4.\ 4842\\ 4.\ 4871\\ 4.\ 4862\end{array}$	$\begin{array}{c} 4.\ 4980\\ 4.\ 4989\\ 4.\ 5000\\ 4.\ 5009\end{array}$	$\begin{array}{r} 4.\ 4439\\ 4.\ 4436\\ 4.\ 4459\\ 4.\ 4456\end{array}$	$\begin{array}{r} 4.\ 4735\\ 4.\ 4726\\ 4.\ 4771\\ 4.\ 4762\end{array}$	4. 4980 4. 4989 4. 5000 4. 5009	$\begin{array}{r} 4.\ 4374\\ 4.\ 4377\\ 4.\ 4410\\ 4.\ 4413\end{array}$	$\begin{array}{r} 4.4374\\ 4.4371\\ 4.4410\\ 4.4407\end{array}$	4. 4980 4. 4989 4. 5000 4. 5009	4. 4980 4. 4989 4. 5000 4. 5009	
4.500-16	UN	2A 3A	$\begin{array}{c} 4.\ 4877\\ 4.\ 4868\\ 4.\ 4895\\ 4.\ 4886\end{array}$	4. 4982 4. 4991 4. 5000 4. 5009	$\begin{array}{c} 4.\ 4576\\ 4.\ 4573\\ 4.\ 4594\\ 4.\ 4591 \end{array}$	$\begin{array}{r} 4.4788\\ 4.4779\\ 4.4821\\ 4.4812\end{array}$	4.4982 4.4991 4.5000 4.5009	$\begin{array}{r} 4.\ 4517\\ 4.\ 4520\\ 4.\ 4550\\ 4.\ 4553\end{array}$	$\begin{array}{r} 4.\ 4517\\ 4.\ 4514\\ 4.\ 4550\\ 4.\ 4547\end{array}$	4. 4982 4. 4991 4. 5000 4. 5009	4. 4982 4. 4991 4. 5000 4. 5009	
4.625-6	UN	2A 3A	$\begin{array}{r} 4.\ 6009\\ 4.\ 5996\\ 4.\ 6040\\ 4.\ 6027\end{array}$	$\begin{array}{c} 4.\ 6219\\ 4.\ 6232\\ 4.\ 6250\\ 4.\ 6263\end{array}$	$\begin{array}{r} 4.5136 \\ 4.5133 \\ 4.5167 \\ 4.5164 \end{array}$	$\begin{array}{r} 4.5755\\ 4.5742\\ 4.5812\\ 4.5799\end{array}$	$\begin{array}{c} 4.\ 6219\\ 4.\ 6232\\ 4.\ 6250\\ 4.\ 6263\end{array}$	$\begin{array}{r} 4.\ 5033\\ 4.\ 5036\\ 4.\ 5090\\ 4.\ 5093\end{array}$	$\begin{array}{r} 4.5033 \\ 4.5030 \\ 4.5090 \\ 4.5087 \end{array}$	$\begin{array}{c} 4.\ 6219\\ 4.\ 6232\\ 4.\ 6250\\ 4.\ 6263\end{array}$	4. 6219 4. 6232 4. 6250 4. 6263	
4.625-12	UN	2A 3A	$\begin{array}{c} 4.\ 6101\\ 4.\ 6092\\ 4.\ 6121\\ 4.\ 6112\end{array}$	$\begin{array}{c} 4.\ 6230\\ 4.\ 6239\\ 4.\ 6250\\ 4.\ 6259\end{array}$	$\begin{array}{r} 4.5689 \\ 4.5686 \\ 4.5709 \\ 4.5706 \end{array}$	$\begin{array}{r} 4.5983 \\ 4.5974 \\ 4.6020 \\ 4.6011 \end{array}$	$\begin{array}{r} 4.\ 6230\\ 4.\ 6239\\ 4.\ 6250\\ 4.\ 6259\end{array}$	$\begin{array}{r} 4.\ 5622\\ 4.\ 5625\\ 4.\ 5659\\ 4.\ 5662\end{array}$	$\begin{array}{r} 4.5622 \\ 4.5619 \\ 4.5659 \\ 4.5656 \end{array}$	$\begin{array}{c} 4.\ 6230\\ 4.\ 6239\\ 4.\ 6250\\ 4.\ 6259\end{array}$	$\begin{array}{r} 4.\ 6230\\ 4.\ 6239\\ 4.\ 6250\\ 4.\ 6250\end{array}$	
4. 625-16	UN	2A 3A	$\begin{array}{c} 4.\ 6127\\ 4.\ 6118\\ 4.\ 6145\\ 4.\ 6136\end{array}$	$\begin{array}{c} 4.\ 6232\\ 4.\ 6241\\ 4.\ 6250\\ 4.\ 6259\end{array}$	$\begin{array}{r} 4.\ 5826\\ 4.\ 5823\\ 4.\ 5844\\ 4.\ 5841 \end{array}$	$\begin{array}{r} 4.6036\\ 4.6027\\ 4.6070\\ 4.6061\end{array}$	$\begin{array}{c} 4.\ 6232\\ 4.\ 6241\\ 4.\ 6250\\ 4.\ 6259\end{array}$	$\begin{array}{r} 4.\ 5765\\ 4.\ 5768\\ 4.\ 5799\\ 4.\ 5802 \end{array}$	$\begin{array}{r} 4.5765 \\ 4.5762 \\ 4.5799 \\ 4.5796 \end{array}$	$\begin{array}{c} 4.6232 \\ 4.6241 \\ 4.6250 \\ 4.6259 \end{array}$	$\begin{array}{c} 4.6232 \\ 4.6241 \\ 4.6250 \\ 4.6259 \end{array}$	
4.750-4	UN	2A 3A	$\begin{array}{r} 4.\ 7184\\ 4.\ 7169\\ 4.\ 7219\\ 4.\ 7204 \end{array}$	$\begin{array}{r} 4.\ 7465\\ 4.\ 7480\\ 4.\ 7500\\ 4.\ 7515\end{array}$	$\begin{array}{r} 4.5841 \\ 4.5838 \\ 4.5876 \\ 4.5873 \end{array}$	$\begin{array}{r} 4.\ 6807\\ 4.\ 6792\\ 4.\ 6871\\ 4.\ 6856\end{array}$	$\begin{array}{r} 4.\ 7465\\ 4.\ 7480\\ 4.\ 7500\\ 4.\ 7515\end{array}$	$\begin{array}{c} 4.\ 5724\\ 4.\ 5727\\ 4.\ 5788\\ 4.\ 5791 \end{array}$	$\begin{array}{r} 4.5724 \\ 4.5721 \\ 4.5788 \\ 4.5785 \end{array}$	4. 7465 4. 7480 4. 7500 4. 7515	4. 7465 4. 7480 4. 7500 4. 7515	

			W truncated setting plugs							Basic-crest s	setting plugs	
			Plug for	GO thread	l gage ª	F	lug for LO	thread gage ª		Major diameter		
Nominal size and threads per inch	Series des- ignation	Class	Major di	ameter	Pitch diameter	Major di	iameter	Piteh di	ameter	Plug for GO thread gage ^{a,b}	Plug for LO thread gage a.c	
			Truncated	Full		Truncated	Full	Plus toler- ance gage	Minus toleranee gage	W and X tolerances	W and X toleranees	
1	2	3	4	5	6	7	8	9	10	11	12	
4. 750–6	UN	2A 3A	in 4. 7259 4. 7246 4. 7290 4. 7277	<i>in</i> 4. 7469 4. 7482 4. 7500 4. 7513	in 4. 6386 4. 6383 4. 6417 4. 6414	<i>in</i> 4, 7005 4, 6992 4, 7062 4, 7049	<i>in</i> 4. 7469 4. 7482 4. 7500 4. 7513	$in \\ 4.6283 \\ 4.6286 \\ 4.6340 \\ 4.6343$	<i>in</i> 4. 6283 4. 6280 4. 6340 4. 6337	<i>in</i> 4. 7469 4. 7482 4. 7500 4. 7513	<i>in</i> 4. 7469 4. 7482 4. 7500 4. 7513	
4.750-12	UN	2A 3A	$\begin{array}{c} 4.\ 7351\\ 4.\ 7342\\ 4.\ 7371\\ 4.\ 7362 \end{array}$	$\begin{array}{r} 4.\ 7480\\ 4.\ 7489\\ 4.\ 7500\\ 4.\ 7509\end{array}$	$\begin{array}{c} 4.\ 6939\\ 4.\ 6936\\ 4.\ 6959\\ 4.\ 6956\end{array}$	$\begin{array}{r} 4.\ 7233\\ 4.\ 7224\\ 4.\ 7270\\ 4.\ 7261 \end{array}$	$\begin{array}{r} 4.\ 7480\\ 4.\ 7489\\ 4.\ 7500\\ 4.\ 7509\end{array}$	$\begin{array}{r} 4.6872\\ 4.6875\\ 4.6909\\ 4.6912\end{array}$	$\begin{array}{c} 4.\ 6872 \\ 4.\ 6869 \\ 4.\ 6909 \\ 4.\ 6906 \end{array}$	$\begin{array}{r} 4.7480 \\ 4.7489 \\ 4.7500 \\ 4.7509 \end{array}$	$\begin{array}{c} 4.7480 \\ 4.7489 \\ 4.7500 \\ 4.7509 \end{array}$	
4.750-16	UN	2A 3A	$\begin{array}{c} 4.7377 \\ 4.7368 \\ 4.7395 \\ 4.7386 \end{array}$	$\begin{array}{c} 4.\ 7482\\ 4.\ 7491\\ 4.\ 7500\\ 4.\ 7509\end{array}$	$\begin{array}{r} 4.\ 7076\\ 4.\ 7073\\ 4.\ 7094\\ 4.\ 7091 \end{array}$	$\begin{array}{r} 4.7286\\ 4.7277\\ 4.7320\\ 4.7311 \end{array}$	$\begin{array}{r} 4.\ 7482\\ 4.\ 7491\\ 4.\ 7500\\ 4.\ 7509\end{array}$	$\begin{array}{r} 4.\ 7015\\ 4.\ 7018\\ 4.\ 7049\\ 4.\ 7052\end{array}$	$\begin{array}{r} 4.\ 7015\\ 4.\ 7012\\ 4.\ 7049\\ 4.\ 7046\end{array}$	$\begin{array}{r} 4.7482\\ 4.7491\\ 4.7500\\ 4.7509\end{array}$	$\begin{array}{c c} 4.7482 \\ 4.7491 \\ 4.7500 \\ 4.7509 \end{array}$	
4.875-6	UN	2A 3A	$\begin{array}{r} 4.8509 \\ 4.8496 \\ 4.8540 \\ 4.8527 \end{array}$	$\begin{array}{c} 4.8719\\ 4.8732\\ 4.8750\\ 4.8763\end{array}$	$\begin{array}{r} 4.\ 7636\\ 4.\ 7633\\ 4.\ 7667\\ 4.\ 7664\end{array}$	$\begin{array}{c} 4.8254 \\ 4.8241 \\ 4.8311 \\ 4.8298 \end{array}$	$\begin{array}{r} 4.8719 \\ 4.8732 \\ 4.8750 \\ 4.8763 \end{array}$	$\begin{array}{c} 4.\ 7532\\ 4.\ 7535\\ 4.\ 7589\\ 4.\ 7592\end{array}$	$\begin{array}{r} 4.7532\\ 4.7529\\ 4.7589\\ 4.7586\end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 4.\ 8719\\ 4.\ 8732\\ 4.\ 8750\\ 4.\ 8763\end{array}$	
4.875-12	UN	2A 3A	$\begin{array}{r} 4.8601 \\ 4.8592 \\ 4.8621 \\ 4.8612 \end{array}$	$\begin{array}{c} 4.8730 \\ 4.8739 \\ 4.8750 \\ 4.8759 \end{array}$	$\begin{array}{c} 4.8189 \\ 4.8186 \\ 4.8209 \\ 4.8206 \end{array}$	$\begin{array}{r} 4.8483 \\ 4.8474 \\ 4.8520 \\ 4.8511 \end{array}$	$\begin{array}{r} 4.8730 \\ 4.8739 \\ 4.8750 \\ 4.8759 \end{array}$	$\begin{array}{r} 4.8122 \\ 4.8125 \\ 4.8159 \\ 4.8159 \\ 4.8162 \end{array}$	$\begin{array}{r} 4.8122 \\ 4.8119 \\ 4.8159 \\ 4.8156 \end{array}$	4.8730 4.8739 4.8750 4.8759	$\begin{array}{c} 4.\ 8730\\ 4.\ 8739\\ 4.\ 8750\\ 4.\ 8759\end{array}$	
4.875-16	UN	2A 3A	$\begin{array}{c} 4.8627 \\ 4.8618 \\ 4.8645 \\ 4.8636 \end{array}$	$\begin{array}{c} 4.8732 \\ 4.8741 \\ 4.8750 \\ 4.8759 \end{array}$	$\begin{array}{c} 4.8326 \\ 4.8323 \\ 4.8344 \\ 4.8341 \end{array}$	$\begin{array}{r} 4.8536 \\ 4.8527 \\ 4.8570 \\ 4.8570 \\ 4.8561 \end{array}$	$\begin{array}{c} 4.8732 \\ 4.8741 \\ 4.8750 \\ 4.8759 \end{array}$	$\begin{array}{c} 4.8265 \\ 4.8268 \\ 4.8299 \\ 4.8302 \end{array}$	$\begin{array}{c} 4.8265 \\ 4.8262 \\ 4.8299 \\ 4.8296 \end{array}$	$\begin{array}{c c} 4,8732\\ 4,8741\\ 4,8750\\ 4,8759\end{array}$	$\begin{array}{c} 4.8732 \\ 4.8741 \\ 4.8750 \\ 4.8759 \end{array}$	
5. 000-4	UN	2A 3A	$\begin{array}{c} 4.9683 \\ 4.9668 \\ 4.9719 \\ 4.9704 \end{array}$	$\begin{array}{c} 4.\ 9964 \\ 4.\ 9979 \\ 5.\ 0000 \\ 5.\ 0015 \end{array}$	$\begin{array}{r} 4.8340 \\ 4.8337 \\ 4.8376 \\ 4.8376 \\ 4.8373 \end{array}$	$\begin{array}{c} 4.9304 \\ 4.9289 \\ 4.9370 \\ 4.9355 \end{array}$	$\begin{array}{c} 4.\ 9964\\ 4.\ 9979\\ 5.\ 0000\\ 5.\ 0015 \end{array}$	$\begin{array}{c} 4.8221 \\ 4.8224 \\ 4.8287 \\ 4.8290 \end{array}$	$\begin{array}{c} 4.8221 \\ 4.8218 \\ 4.8287 \\ 4.8287 \\ 4.8284 \end{array}$	$\begin{array}{c} 4.9964 \\ 4.9979 \\ 5.0000 \\ 5.0015 \end{array}$	4. 9964 4. 9979 5. 0000 5. 0015	
5. 000-6	UN	2A 3A	$\begin{array}{c} 4.9759 \\ 4.9746 \\ 4.9790 \\ 4.9777 \end{array}$	$\begin{array}{c} 4.\ 9969\\ 4.\ 9982\\ 5.\ 0000\\ 5.\ 0013 \end{array}$	$\begin{array}{r} 4.8886 \\ 4.8883 \\ 4.8917 \\ 4.8914 \end{array}$	$\begin{array}{c} 4.9503 \\ 4.9490 \\ 4.9561 \\ 4.9548 \end{array}$	$\begin{array}{c} 4.9969 \\ 4.9982 \\ 5.0000 \\ 5.0013 \end{array}$	$\begin{array}{r} 4.8781 \\ 4.8784 \\ 4.8839 \\ 4.8842 \end{array}$	$\begin{array}{r} 4.8781 \\ 4.8778 \\ 4.8839 \\ 4.8836 \end{array}$	4.9969 4.9982 5.0000 5.0013	4. 9969 4. 9982 5. 0000 5. 0013	
5.000-12	UN	2A 3A	$\begin{array}{c} 4.9851 \\ 4.9842 \\ 4.9871 \\ 4.9862 \end{array}$	4. 9980 4. 9989 5. 0000 5. 0009	$\begin{array}{c} 4.9439 \\ 4.9436 \\ 4.9459 \\ 4.9456 \end{array}$	$\begin{array}{r} 4.9733 \\ 4.9724 \\ 4.9770 \\ 4.9761 \end{array}$	$\begin{array}{c} 4.9980 \\ 4.9989 \\ 5.0000 \\ 5.0009 \end{array}$	$\begin{array}{c} 4.9372\\ 4.9375\\ 4.9409\\ 4.9412 \end{array}$	$\begin{array}{c} 4.9372 \\ 4.9369 \\ 4.9409 \\ 4.9406 \end{array}$	$\begin{array}{c} 4.9980 \\ 4.9989 \\ 5.0000 \\ 5.0009 \end{array}$	4. 9980 4. 9989 5. 0000 5. 0009	
5. 000–16	UN	2A 3A	$\begin{array}{c} 4.9877 \\ 4.9868 \\ 4.9895 \\ 4.9886 \end{array}$	4. 9982 4. 9991 5. 0000 5. 0009	$\begin{array}{c} 4.9576 \\ 4.9573 \\ 4.9594 \\ 4.9591 \end{array}$	$\begin{array}{r} 4.9786 \\ 4.9777 \\ 4.9820 \\ 4.9811 \end{array}$	$\begin{array}{c} 4.\ 9982\\ 4.\ 9991\\ 5.\ 0000\\ 5.\ 0009\end{array}$	$\begin{array}{c} 4.9515 \\ 4.9518 \\ 4.9549 \\ 4.9552 \end{array}$	$\begin{array}{r} 4.\ 9515 \\ 4.\ 9512 \\ 4.\ 9549 \\ 4.\ 9546 \end{array}$	$\begin{array}{c} 4.9982\\ 4.9991\\ 5.0000\\ 5.0009\end{array}$	4. 9982 4. 9991 5. 0000 5. 0009	
5. 125-12	UN	2A 3A	$5.1101 \\ 5.1092 \\ 5.1121 \\ 5.1112$	5.1230 5.1239 5.1250 5.1259	5.0689 5.0686 5.0709 5.0706	$5.0983 \\ 5.0974 \\ 5.1020 \\ 5.1011$	5.1230 5.1239 5.1250 5.1259	$\begin{array}{c} 5.\ 0622\\ 5.\ 0625\\ 5.\ 0659\\ 5.\ 0662\end{array}$	$\begin{array}{c} 5.\ 0622 \\ 5.\ 0619 \\ 5.\ 0659 \\ 5.\ 0656 \end{array}$	5.1230 5.1239 5.1250 5.1259	5.1230 5.1239 5.1250 5.1259	
5.125-16	UN	2A 3A	$5.1127 \\ 5.1118 \\ 5.1145 \\ 5.1136$	5.1232 5.1241 5.1250 5.1259	5.0826 5.0823 5.0844 5.0841	5.1036 5.1027 5.1070 5.1061	$\begin{array}{c} 5.\ 1232\\ 5.\ 1241\\ 5.\ 1250\\ 5.\ 1259\end{array}$	$5.0765 \\ 5.0768 \\ 5.0799 \\ 5.0802$	5. 0765 5. 0762 5. 0799 5. 0796	$5.1232 \\ 5.1241 \\ 5.1250 \\ 5.1259$	5.1232 5.1241 5.1250 5.1259	
5. 250-4	UN	2A 3A	5,21835,21685,22195,2204	5.2464 5.2479 5.2500 5.2515	5.0840 5.0837 5.0876 5.0873	$5.1803 \\ 5.1788 \\ 5.1869 \\ 5.1854$	5.2464 5.2479 5.2500 5.2515	5. 0720 5. 0723 5. 0786 5. 0789	5.0720 5.0717 5.0786 5.0783	5.2464 5.2479 5.2500 5.2515	5, 2464 5, 2479 5, 2500 5, 2515	
5.250-12	UN	2A 3A	$5.2351 \\ 5.2342 \\ 5.2371 \\ 5.2362$	5.2480 5.2489 5.2500 5.2509	5, 1939 5, 1936 5, 1959 5, 1956	$\begin{array}{c} 5.\ 2233\\ 5.\ 2224\\ 5.\ 2270\\ 5.\ 2261 \end{array}$	5.2480 5.2489 5.2500 5.2509	$5.1872 \\ 5.1875 \\ 5.1909 \\ 5.1912$	$\begin{array}{c} 5.\ 1872 \\ 5.\ 1869 \\ 5.\ 1909 \\ 5.\ 1906 \end{array}$	5.2480 5.2489 5.2500 5.2509	5, 2480 5, 2489 5, 2500 5, 2509	
5. 250-16	UN	2A 3A	5.2377 5.2368 5.2395 5.2386	5.2482 5.2491 5.2500 5.2509	5.2076 5.2073 5.2094 5.2091	$5.2286 \\ 5.2277 \\ 5.2320 \\ 5.2311$	5.2482 5.2491 5.2500 5.2509	$\begin{array}{c} 5.\ 2015\\ 5.\ 2018\\ 5.\ 2049\\ 5.\ 2052\end{array}$	5, 2015 5, 2012 5, 2049 5, 2046	$5.2482 \\ 5.2491 \\ 5.2500 \\ 5.2509$	5.2482 5.2491 5.2500 5.2509	
5. 375-12	UN	2A 3A	$5,3601 \\ 5,3592 \\ 5,3621 \\ 5,3612$	5,3730 5,3739 5,3750 5,3759	5.3189 5.3186 5.3209 5.3206	$\begin{array}{c} 5.\ 3483\\ 5.\ 3474\\ 5.\ 3520\\ 5.\ 3511 \end{array}$	5. 3730 5. 3739 5. 3750 5. 3759	$\begin{array}{c} 5.\ 3122\\ 5.\ 3125\\ 5.\ 3159\\ 5.\ 3162\end{array}$	5.3122 5.3119 5.3159 5.3156	5. 3730 5. 3739 5. 3750 5. 3759	5, 3730 5, 3739 5, 3750 5, 3759	

			W truncated setting plugs							Basie-erest	setting plugs	
			Plug for	GO thread	gage a	F	lug for LO	thread gage a	•	Major diameter		
Nominal size and threads per ineh	Series des- ignation	Class	.ss Major diamet		Piteh diameter	Major di	Major diameter		ameter	Plug for GO thread gage ^{a,b}	Plug for LO thread gage ^{a,c}	
			Truneated	Full		Truncated	Full	Plus toler- anee gage	Minus toleranee gage	W and X toleranees	W and X toleranees	
1	2	3	4	5	6	7	8	9	10	11	12	
5. 375-16	UN	2A 3A	$in \\ 5,3627 \\ 5,3618 \\ 5,3645 \\ 5,3636$	in 5. 3732 5. 3741 5. 3750 5. 3759	$in \\ 5, 3326 \\ 5, 3323 \\ 5, 3344 \\ 5, 3341$	in 5. 3536 5. 3527 5. 3570 5. 3561	in 5. 3732 5. 3741 5. 3750 5. 3759	$in \\ 5.3265 \\ 5.3268 \\ 5.3299 \\ 5.3302$	in 5, 3265 5, 3262 5, 3299 5, 3296	in 5. 3732 5. 3741 5. 3750 5. 3759	in 5. 3732 5. 3741 5. 3750 5. 3759	
5. 500–4	UN	2A 3A	5.4683 5.4668 5.4719 5.4704	5.4964 5.4979 5.5000 5.5015	5. 3340 5. 3337 5. 3376 5. 3373	$\begin{array}{c} 5.\ 4302\\ 5.\ 4287\\ 5.\ 4368\\ 5.\ 4353\end{array}$	5.4964 5.4979 5.5000 5.5015	5.3219 5.3222 5.3285 5.3288	5.3219 5.3216 5.3285 5.3282	$\begin{array}{c} 5.\ 4964 \\ 5.\ 4979 \\ 5.\ 5000 \\ 5.\ 5015 \end{array}$	5. 4964 5. 4979 5. 5000 5. 5009	
5. 500–12	UN	2A 3A	$\begin{array}{c} 5.\ 4851\\ 5.\ 4842\\ 5.\ 4871\\ 5.\ 4862\end{array}$	5.4980 5.4989 5.5000 5.5009	5.4439 5.4436 5.4459 5.4456	5.4733 5.4724 5.4770 5.4761	$\begin{array}{c} 5.\ 4980\\ 5.\ 4989\\ 5.\ 5000\\ 5.\ 5009\end{array}$	$5.\ 4372 \\ 5.\ 4375 \\ 5.\ 4409 \\ 5.\ 4412$	5.4372 5.4369 5.4409 5.4406	$\begin{array}{c} 5.4980\\ 5.4989\\ 5.5000\\ 5.5009\end{array}$	5. 4980 5. 4989 5. 5000 5. 5009	
5. 500-16	UN	2A 3A	$5.4877 \\ 5.4868 \\ 5.4895 \\ 5.4886$	5.4982 5.4991 5.5000 5.5009	$5.\ 4576\ 5.\ 4573\ 5.\ 4594\ 5.\ 4591$	5.4786 5.4777 5.4820 5.4811	5.4982 5.4991 5.5000 5.5009	$\begin{array}{c} 5.\ 4515\\ 5.\ 4518\\ 5.\ 4549\\ 5.\ 4552\end{array}$	5.4515 5.4512 5.4549 5.4546	5, 4982 5, 4991 5, 5000 5, 5009	5, 4982 5, 4991 5, 5000 5, 5009	
5. 625-12	UN	2A 3A	$\begin{array}{c} 5.\ 6100\\ 5.\ 6091\\ 5.\ 6121\\ 5.\ 6112\end{array}$	5.6229 5.6238 5.6250 5.6259	5, 5688 5, 5685 5, 5709 5, 5706	$\begin{array}{c} 5.\ 5980\\ 5.\ 5971\\ 5.\ 6018\\ 5.\ 6009 \end{array}$	$\begin{array}{c} 5.\ 6229\\ 5.\ 6238\\ 5.\ 6250\\ 5.\ 6259\end{array}$	5.5619 5.5622 5.5657 5.5660	$\begin{array}{c} 5.\ 5619\\ 5.\ 5616\\ 5.\ 5657\\ 5.\ 5654 \end{array}$	$\begin{array}{c} 5.\ 6229\\ 5.\ 6238\\ 5.\ 6250\\ 5.\ 6259\end{array}$	5. 6229 5. 6238 5. 6250 5. 6259	
5.625-16	UN	2A 3A	$5.6126 \\ 5.6117 \\ 5.6145 \\ 5.6136$	5.6231 5.6240 5.6250 5.6259	5.5825 5.5822 5.5844 5.5841	5.6034 5.6025 5.6068 5.6059	5.6231 5.6240 5.6250 5.6259	$\begin{array}{c} 5.\ 5763\\ 5.\ 5766\\ 5.\ 5797\\ 5.\ 5800 \end{array}$	5. 5763 5. 5760 5. 5797 5. 5794	$\begin{array}{c} 5.\ 6231 \\ 5.\ 6240 \\ 5.\ 6250 \\ 5.\ 6259 \end{array}$	5.6231 5.6240 5.6250 5.6259	
5. 750-4	UN	2A 3A	$\begin{array}{c} 5.\ 7182 \\ 5.\ 7167 \\ 5.\ 7219 \\ 5.\ 7204 \end{array}$	5, 7463 5, 7478 5, 7500 5, 7515	5, 5839 5, 5836 5, 5876 5, 5873	5.6800 5.6785 5.6867 5.6852	5, 7463 5, 7478 5, 7500 5, 7515	5. 5717 5. 5720 5. 5784 5. 5787	$\begin{array}{c} 5.\ 5717\\ 5.\ 5714\\ 5.\ 5784\\ 5.\ 5781\end{array}$	5, 7463 5, 7478 5, 7500 5, 7515	5. 7463 5. 7478 5. 7500 5. 7515	
5.750-12	UN	2A 3A	$5.7350 \\ 5.7341 \\ 5.7371 \\ 5.7362$	5, 7479 5, 7488 5, 7500 5, 7509	5.6938 5.6935 5.6959 5.6956	$\begin{array}{c} 5.\ 7230\\ 5.\ 7221\\ 5.\ 7268\\ 5.\ 7259\end{array}$	5, 7479 5, 7488 5, 7500 5, 7509	5.6869 5.6872 5.6907 5.6910	5.6869 5.6866 5.6907 5.6904	5, 7479 5, 7488 5, 7500 5, 7509	5. 7479 5. 7488 5. 7500 5. 7509	
5.750-16	UN	2A 3A	5, 7376 5, 7367 5, 7395 5, 7386	5, 7481 5, 7490 5, 7500 5, 7509	$5.\ 7075 \\ 5.\ 7072 \\ 5.\ 7094 \\ 5.\ 7091 $	5. 7284 5. 7275 5. 7318 5. 7309	5, 7481 5, 7490 5, 7500 5, 7509	5. 7013 5. 7016 5. 7047 5. 7050	$\begin{array}{c} 5.\ 7013\\ 5.\ 7010\\ 5.\ 7047\\ 5.\ 7044 \end{array}$	5, 7481 5, 7490 5, 7500 5, 7509	5. 7481 5. 7490 5. 7500 5. 7509	
5.875-12	UN	2A 3A	$5.8600 \\ 4.8591 \\ 5.8621 \\ 5.8612$	5, 8729 5, 8738 5, 8750 5, 8759	5,8188 5,8185 5,8209 5,8206	$5.8480 \\ 5.8471 \\ 5.8518 \\ 5.8509$	5, 8729 5, 8738 5, 8750 5, 8759	$\begin{array}{c} 5.\ 8119\\ 5.\ 8122\\ 5.\ 8157\\ 5.\ 8160\end{array}$	$5.8119 \\ 5.8116 \\ 5.8157 \\ 5.8154$	5. 8729 5. 8738 5. 8750 5. 8759	5. 8729 5. 8738 5. 8750 5. 8759	
5.875-16	UN	2A 3A	$5.8626 \\ 5.8617 \\ 5.8645 \\ 5.8636$	5.8731 5.8740 5.8750 5.8759	5.8325 5.8322 5.8344 5.8341	5. 8534 5. 8525 5. 8568 5. 8559	$\begin{array}{c} 5.\ 8731 \\ 5.\ 8740 \\ 5.\ 8750 \\ 5.\ 8759 \end{array}$	5, 8263 5, 8266 5, 8297 5, 8300	5. 8263 5. 8260 5. 8297 5. 8294	5. 8731 5. 8740 5. 8750 5. 8759	5. 8731 5. 8740 5. 8750 5. 8759	
6.000-4	UN	2A 3A	$\begin{array}{c} 5.\ 9682 \\ 5.\ 9667 \\ 5.\ 9719 \\ 5.\ 9704 \end{array}$	$\begin{array}{c} 5.\ 9963\\ 5.\ 9978\\ 6.\ 0000\\ 6.\ 0015 \end{array}$	5, 8339 5, 8336 5, 8376 5, 8373	5, 9298 5, 9283 5, 9366 5, 9351	$\begin{array}{c} 5.\ 9963\\ 5.\ 9978\\ 6.\ 0000\\ 6.\ 0015 \end{array}$	$\begin{array}{c} 5.\ 8215\\ 5.\ 8218\\ 5.\ 8283\\ 5.\ 8286\end{array}$	5,8215 5,8212 5,8283 5,8280	$\begin{array}{c} 5.\ 9963\\ 5.\ 9978\\ 6.\ 0000\\ 6.\ 0015\end{array}$	5, 9963 5, 9978 6, 0000 6, 0015	
6.000-12	UN	2A 3A	$5.9850 \\ 5.9841 \\ 5.9871 \\ 5.9862$	5.9979 5.9988 6.0000 6.0009	$\begin{array}{c} 5.\ 9438\\ 5.\ 9435\\ 5.\ 9459\\ 5.\ 9456\end{array}$	5. 9730 5. 9721 5. 9768 5. 9759	$\begin{array}{c} 5.\ 9979 \\ 5.\ 9988 \\ 6.\ 0000 \\ 6.\ 0009 \end{array}$	5. 9369 5. 9372 5. 9407 5. 9410	$\begin{array}{c} 5.\ 9369\\ 5.\ 9366\\ 5.\ 9407\\ 5.\ 9404 \end{array}$	5, 9979 5, 9988 6, 0000 6, 0009	5. 9979 5. 9988 6. 0000 6. 0009	
6.000–16	UN	2A 3A	5.9876 5.9867 5.9895 5.9886	$\begin{array}{c} 5.\ 9981\\ 5.\ 9990\\ 6.\ 0000\\ 6.\ 0009 \end{array}$	5.9575 5.9572 5.9594 5.9591	5, 9784 5, 9775 5, 9818 5, 9809	$\begin{array}{c} 5.\ 9981 \\ 5.\ 9990 \\ 6.\ 0000 \\ 6.\ 0009 \end{array}$	5. 9513 5. 9516 5. 9547 5. 9550	$\begin{array}{c} 5.\ 9513\\ 5.\ 9510\\ 5.\ 9547\\ 5.\ 9544 \end{array}$	$\begin{array}{c} 5.\ 9981 \\ 5.\ 9990 \\ 6.\ 0000 \\ 6.\ 0009 \end{array}$	5, 9981 5, 9990 6, 0000 6, 0009	

Acce Anal Ang App Attr

Bas Bas Cas Cas Chi Chi Chi

^a These setting plugs are applieable to thread snap and indicating gages as well as to thread ring gages.
 ^b Pitch diameter limits of W basic-erest setting plug gages are given in column 6 of this table. Pitch diameter limits of X basic-erest setting plug gages are given in columns 9 and 10 of this table. Pitch diameter limits of X basic-erest setting plug gages are given in columns 9 and 10 of this table. Pitch diameter limits of X basic-erest setting plug gages are given in columns 9 and 10 of this table. Pitch diameter limits of X basic-erest setting plug gages are given in columns 6 and 7 of table 6.19.

# INDEX

Acceptance check gages	Paragraph
Analysis of deviations in product threads	5.5.3
Angle, tolerance on	4.3.3.4
Attributes, inspection by	2.4
Basia great softing plug	0.0
Basic design	$\frac{2.2}{4.4.1.2}$
Basic principles	2.0
Casts, plaster-of-Paris, making of	5.2.1.1 5 2 1 1
Check gages	2.2
Check gages, acceptance	2.2
thread	3.1.5
Chip grooves	4.4.1.6
Classification of gages	2.1 5 5 3 5
Conformance gaging, final	2.4
Conformance, screw thread	2.5
Cumulative differential reading	$\frac{4.3.2}{5.4.4}$
Design, dasic	4.4.1.2 4 1
Design of gage blanks	4.2
Design requirements, specific	4.3
compensate for lead deviation in product threads	
with long length of engagement	5.5.4
ring gages	5.2.1.1
Determination of limits of size of gages	5.7
Deviations, analysis of	5.5.3
Deviations, direct measurement of	$3.1.4 \\ 3.1.4$
Deviations in lead and half-angle	4.4.1.4
Differential gaging procedures	$\frac{5.4}{5.5.2}$
Dimensional acceptability of threads	5.1
Direct measurement of deviations	$\frac{3.1.4}{2.5}$
Direction of tolerance on gages	4.3.3.2
Fag shaped condition	5 5 9 5
Elliptical condition	5.5.3.5
End threads	4.4.1.5
Final conformance gaging	2.4
Flank angle differential reading	5.4.6
Force for wire measurement	2.8.3 4.4.1.3
Functional diameter gaging practice	5.1
Functional differential reading	$5.4.3 \\ 5.6$
and the second second minites, Buging of	
Gage blanks	4.4.1.2
Gaging elements	4.5.4.3
Gaging of product threads	$\frac{3.0}{5.0}$
GO gages	2.3
GO plain plug gages	3.0
GO thread plug gages	$\frac{3.0}{4.4.1}$
GO thread ring gages	4.5.1

	Paragraph
Half-angle differential reading	5.4.6
Half-angle tolerances	4.3.3.4
Helix variation	5.5.3.5
HI gages	2.3
HI thread gages	3.0
HI thread plug gages	4.4.2
the throad prog gagessessessessessessessesses	11112
Identification of gages	434
rachemeanon of gages	(4 5 3)
Indicating thread gages	15.9.2
Indicating thread gages	16.6.0
Indianting thread gages for differential maging	15.0
Indicating inicial gages for unreferitial gaging	9.4
Inspection by attributes	2.4
Inspection by variables	2.4
Inspection gages	4 9 9 5
Interpretation of tolerances	4.3.3.5
Lood differential modium	E 4 E
Lead differential reading	0.4.0
Lead tolerance	4.3.3.3
Limit gages	2.3
Limit gages for use in manufacturing	0.3
Limits of size of gages	4.3.2
Limitations of gaging	2.6, 3.2
LO gages	2.3
LO thread gages	3.0
LO thread ring gages	4.5.2
Lobed condition	5.5.3.5
Master gages	2.2
Maximum-material limit gages	2.3
Measurement of gages	2.8
Measurement force for wire measurements	2.8.3
	0 0
Minimum-material limit gages	2.3
Minimum-material limit gages	2.3
Minimum-material limit gages	$\frac{2.3}{3.0}$
Nor GO plain plug gages	2.3
Minimum-material limit gages NOT GO plain plug gages Out-of-round condition	2.3 3.0 5.5.3.5
Minimum-material limit gages NOT GO plain plug gages Out-of-round condition Oval condition	2.3 3.0 5.5.3.5 5.5.3.5
Minimum-material limit gages NOT GO plain plug gages Out-of-round condition Oval condition	2.3 3.0 5.5.3.5 5.5.3.5
Minimum-material limit gages NOT GO plain plug gages Out-of-round condition Oval condition Plain gage tolerances	$2.3 \\ 3.0 \\ 5.5.3.5 \\ 5.5.3.5 \\ 4.3.3.6 $
Minimum-material limit gages NOT GO plain plug gages Out-of-round condition Oval condition Plain gage tolerances Plain gages for major diameter	$2.3 \\ 3.0 \\ 5.5.3.5 \\ 5.5.3.5 \\ 4.3.3.6 \\ 4.5.5 $
Minimum-material limit gages NOT GO plain plug gages Out-of-round condition Oval condition Plain gage tolerances Plain gages for major diameter Plain plug acceptance check gages	$2.3 \\ 3.0 \\ 5.5.3.5 \\ 5.5.3.5 \\ 4.3.3.6 \\ 4.5.5 \\ 4.7 \\ 4.7 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 10$
Minimum-material limit gages NOT GO plain plug gages Out-of-round condition Oval condition Plain gage tolerances Plain gages for major diameter Plain plug acceptance check gages Plain plug gages	$\begin{array}{c} 2.3\\ 3.0\\ 5.5.3.5\\ 5.5.3.5\\ 4.3.3.6\\ 4.5.5\\ 4.7\\ 4.4.3\end{array}$
Minimum-material limit gages NOT GO plain plug gages Out-of-round condition Oval condition Plain gage tolerances Plain gages for major diameter Plain plug acceptance check gages Plain plug gages Plain plug gages Principles, basic	$\begin{array}{c} 2.3\\ 3.0\\ 5.5.3.5\\ 5.5.3.5\\ 4.3.3.6\\ 4.5.5\\ 4.7\\ 4.4.3\\ 2.0\end{array}$
Minimum-material limit gages NOT GO plain plug gages Out-of-round condition Oval condition Plain gage tolerances Plain gages for major diameter Plain plug acceptance check gages Plain plug gages Plain plug gages Principles, basic Procedure for determining the clearance in thread	$\begin{array}{c} 2.3\\ 3.0\\ 5.5.3.5\\ 5.5.3.5\\ 4.3.3.6\\ 4.5.5\\ 4.7\\ 4.4.3\\ 2.0\\ \end{array}$
Minimum-material limit gages NOT GO plain plug gages Out-of-round condition Oval condition Plain gage tolerances Plain gages for major diameter Plain plug acceptance check gages Plain plug gages Plain plug gages Principles, basic Procedure for determining the clearance in thread ring gages	$\begin{array}{c} 2.3\\ 3.0\\ 5.5.3.5\\ 5.5.3.5\\ 4.3.3.6\\ 4.5.5\\ 4.7\\ 4.4.3\\ 2.0\\ 5.2.1.1\end{array}$
Minimum-material limit gages NOT GO plain plug gages Out-of-round condition Oval condition Plain gage tolerances Plain gages for major diameter Plain plug acceptance check gages Plain plug gages Principles, basic Procedure for determining the clearance in thread ring gages Procedures in differential gaging	$\begin{array}{c} 2.3\\ 3.0\\ 5.5.3.5\\ 5.5.3.5\\ 4.3.3.6\\ 4.5.5\\ 4.7\\ 4.4.3\\ 2.0\\ 5.2.1.1\\ 5.5.2\end{array}$
Minimum-material limit gages NOT GO plain plug gages Out-of-round condition Oval condition Plain gage tolerances Plain gages for major diameter Plain plug acceptance check gages Plain plug gages Principles, basic Principles, basic Procedure for determining the clearance in thread ring gages Procedures in differential gaging Procedure in setting adjustable limit and indicat-	$\begin{array}{c} 2.3\\ 3.0\\ 5.5.3.5\\ 5.5.3.5\\ 4.3.3.6\\ 4.5.5\\ 4.7\\ 4.4.3\\ 2.0\\ 5.2.1.1\\ 5.5.2\end{array}$
Minimum-material limit gages NOT GO plain plug gages Out-of-round condition Oval condition Plain gage tolerances Plain plug acceptance check gages Plain plug gages Principles, basic Procedure for determining the clearance in thread ring gages Procedures in differential gaging Procedure in setting adjustable limit and indicat- ing thread gages	$\begin{array}{c} 2.3\\ 3.0\\ 5.5.3.5\\ 5.5.3.5\\ 4.3.3.6\\ 4.5.5\\ 4.7\\ 4.4.3\\ 2.0\\ 5.2.1.1\\ 5.5.2\\ 5.2\\ 5.2\end{array}$
Minimum-material limit gages NOT GO plain plug gages Out-of-round condition Oval condition Plain gage tolerances Plain gages for major diameter Plain plug gages Plain plug gages Principles, basic Procedure for determining the clearance in thread ring gages Procedure in setting adjustable limit and indicat- ing thread gages Product threads, gaging and verification	$\begin{array}{c} 2.3\\ 3.0\\ 5.5.3.5\\ 5.5.3.5\\ 4.3.3.6\\ 4.5.5\\ 4.7\\ 4.4.3\\ 2.0\\ 5.2.1.1\\ 5.5.2\\ 5.2\\ 3.0\end{array}$
Minimum-material limit gages NOT GO plain plug gages Out-of-round condition Oval condition Plain gage tolerances Plain plug acceptance check gages Plain plug agces Plain plug gages Principles, basic Procedure for determining the clearance in thread ring gages Procedures in differential gaging Procedure in setting adjustable limit and indicat- ing thread gages Product threads, gaging and verification	$\begin{array}{c} 2.3\\ 3.0\\ 5.5.3.5\\ 5.5.3.5\\ 4.3.3.6\\ 4.5.5\\ 4.7\\ 4.4.3\\ 2.0\\ 5.2.1.1\\ 5.5.2\\ 5.2\\ 3.0\\ \end{array}$
Minimum-material limit gages NOT GO plain plug gages Out-of-round condition Oval condition Plain gage tolerances Plain plug acceptance check gages Plain plug gages Principles, basic Procedure for determining the clearance in thread ring gages Procedures in differential gaging Procedure in setting adjustable limit and indicat- ing thread gages Product threads, gaging and verification Recommended gaging practice	$\begin{array}{c} 2.3\\ 3.0\\ 5.5.3.5\\ 5.5.3.5\\ 4.3.3.6\\ 4.5.5\\ 4.7\\ 4.4.3\\ 2.0\\ 5.2.1.1\\ 5.5.2\\ 5.2\\ 3.0\\ 5.0\\ \end{array}$
Minimum-material limit gages	$\begin{array}{c} 2.3\\ 3.0\\ 5.5.3.5\\ 5.5.3.5\\ 4.3.3.6\\ 4.5.5\\ 4.7\\ 4.4.3\\ 2.0\\ 5.2.1.1\\ 5.5.2\\ 5.2\\ 3.0\\ 5.2\\ 3.0\\ 5.2\\ 2.2\end{array}$
Minimum-material limit gages NOT GO plain plug gages Out-of-round condition Oval condition Plain gage tolerances Plain gages for major diameter Plain plug gages Plain plug gages Principles, basic Procedure for determining the clearance in thread ring gages Procedures in differential gaging Procedure in setting adjustable limit and indicat- ing thread gages Product threads, gaging and verification Reference gages Representative gaging elements	$\begin{array}{c} 2.3\\ 3.0\\ 5.5.3.5\\ 5.5.3.5\\ 4.3.3.6\\ 4.5.5\\ 4.7\\ 4.4.3\\ 2.0\\ 5.2.1.1\\ 5.5.2\\ 5.2\\ 3.0\\ 5.0\\ 2.2\\ 6.5\end{array}$
Minimum-material limit gages	$\begin{array}{c} 2.3\\ 3.0\\ 5.5.3.5\\ 5.5.3.5\\ 4.3.3.6\\ 4.5.5\\ 4.7\\ 4.4.3\\ 2.0\\ 5.2.1.1\\ 5.5.2\\ 5.2\\ 3.0\\ 5.0\\ 2.2\\ 6.5\\ \end{array}$
Minimum-material limit gages	$\begin{array}{c} 2.3\\ 3.0\\ 5.5.3.5\\ 5.5.3.5\\ 4.3.3.6\\ 4.5.5\\ 4.7\\ 4.4.3\\ 2.0\\ 5.2.1.1\\ 5.5.2\\ 5.2\\ 3.0\\ 5.0\\ 2.2\\ 6.5\\ 2.2\end{array}$
Minimum-material limit gages	$\begin{array}{c} 2.3\\ 3.0\\ 5.5.3.5\\ 5.5.3.5\\ 4.3.3.6\\ 4.5.5\\ 4.7\\ 4.4.3\\ 2.0\\ 5.2.1.1\\ 5.5.2\\ 5.2\\ 3.0\\ 5.0\\ 2.2\\ 6.5\\ 2.2\\ 2.2\end{array}$
Minimum-material limit gages	$\begin{array}{c} 2.3\\ 3.0\\ 5.5.3.5\\ 5.5.3.5\\ 4.3.3.6\\ 4.5.5\\ 4.7\\ 4.4.3\\ 2.0\\ 5.2.1.1\\ 5.5.2\\ 5.2\\ 3.0\\ 5.0\\ 2.2\\ 6.5\\ 2.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5$
Minimum-material limit gages	$\begin{array}{c} 2.3\\ 3.0\\ 5.5.3.5\\ 5.5.3.5\\ 4.3.3.6\\ 4.5.5\\ 4.7\\ 4.4.3\\ 2.0\\ 5.2.1.1\\ 5.5.2\\ 5.2\\ 3.0\\ 5.0\\ 2.2\\ 6.5\\ 2.2\\ 5.2\\ 5.1\end{array}$
Minimum-material limit gages	$\begin{array}{c} 2.3\\ 3.0\\ 5.5.3.5\\ 5.5.3.5\\ 4.3.3.6\\ 4.5.5\\ 4.7\\ 4.4.3\\ 2.0\\ 5.2.1.1\\ 5.5.2\\ 5.2\\ 3.0\\ 5.0\\ 2.2\\ 6.5\\ 2.2\\ 2.2\\ 5.1\\ 5.2.2\\ 5.1\\ 5.2.2\end{array}$
Minimum-material limit gages	$\begin{array}{c} 2.3\\ 3.0\\ 5.5.3.5\\ 5.5.3.5\\ 4.3.3.6\\ 4.5.5\\ 4.7\\ 4.4.3\\ 2.0\\ 5.2.1.1\\ 5.5.2\\ 5.2\\ 3.0\\ 5.0\\ 2.2\\ 6.5\\ 2.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5$
Minimum-material limit gages	$\begin{array}{c} 2.3\\ 3.0\\ 5.5.3.5\\ 5.5.3.5\\ 4.3.3.6\\ 4.5.5\\ 4.7\\ 4.4.3\\ 2.0\\ 5.2.1.1\\ 5.5.2\\ 5.2\\ 3.0\\ 5.2\\ 2.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2$
Minimum-material limit gages	$\begin{array}{c} 2.3\\ 3.0\\ 5.5.3.5\\ 5.5.3.5\\ 4.3.3.6\\ 4.5.5\\ 4.7\\ 4.4.3\\ 2.0\\ 5.2.1.1\\ 5.5.2\\ 5.2\\ 3.0\\ 5.0\\ 2.2\\ 3.0\\ 5.0\\ 2.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2$
Minimum-material limit gages	$\begin{array}{c} 2.3\\ 3.0\\ 5.5.3.5\\ 5.5.3.5\\ 4.3.3.6\\ 4.5.5\\ 4.7\\ 4.4.3\\ 2.0\\ 5.2.1.1\\ 5.5.2\\ 5.2\\ 3.0\\ 5.0\\ 2.2\\ 6.5\\ 2.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5$
Minimum-material limit gages	$\begin{array}{c} 2.3\\ 3.0\\ 5.5.3.5\\ 5.5.3.5\\ 4.3.3.6\\ 4.5.5\\ 4.7\\ 4.4.3\\ 2.0\\ 5.2.1.1\\ 5.5.2\\ 5.2\\ 3.0\\ 5.0\\ 2.2\\ 6.5\\ 2.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5$
Minimum-material limit gages	$\begin{array}{c} 2.3\\ 3.0\\ 5.5.3.5\\ 5.5.3.5\\ 4.3.3.6\\ 4.5.5\\ 4.7\\ 4.4.3\\ 2.0\\ 5.2.1.1\\ 5.5.2\\ 5.2\\ 3.0\\ 5.2\\ 2.2\\ 6.5\\ 2.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5$

# **INDEX**—Continued

#### Paragraph

Thread setting gages	2.2
Thread setting plug gages	3.1.2
0.000	4.6
Thread snap gages	5.2.2
Thread snap limit gages	4.5.3
Tolerance on lead	4.3.3.3
Tolerances, application of	4.3.3.1
Tolerances, interpretation of	4.3.3.5
Tolerances, plain gage	4.3.3.6
Tolerances, standard gage	4.3.3
Tolerances, thread gage	3.1.1

Tolerances on gages, direction of Tolerances on half-angle Truncated setting plug	$\begin{array}{c} 4.3.3.2 \\ 4.3.3.4 \\ 2.2 \end{array}$
Use of gages	3.1
Variables, inspection by Verification of product threads	$\begin{array}{c} 2.4 \\ 3.0 \end{array}$
Wire measurements, measuring force for Working gages	$\substack{2.8.3\\2.1}$

Paragraph

6.78

UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

# HANDBOOK H28

# SCREW-THREAD STANDARDS

# FOR FEDERAL SERVICES

# APPENDIX A1

# 1969

## AMERICAN NATIONAL FORM OF THREAD AND THREAD SERIES FOR BOLTS, MACHINE SCREWS, NUTS, TAPPED HOLES, AND GENERAL APPLICATIONS



Since the American National threads have been superseded by the Unified threads, most of appendix 1, as shown in the previous (1957) issue of Part I, has been deleted. Shown herein is data on the class 3 internal threads in the Coarse Thread Series in nominal sizes from 0.25 to one inch as there is still a need for this information. Data shown is from tables 1.2, 1.8, 1.16, and 1.17 of the 1957 issue. (Appendix number and table numbers now preceded by an A.)

TABLE A1.2. American National coarse-thread series, NC

Identification		В	asic diamete	rs	Thread data								
Sizes	Threads per inch, n	Major diameter, D	Pitch diameter, E	Minor diameter, K	Metric equivalent of major diameter	Pitch, p	Depth of thread, h	Basic width of flat, p/8	Minimum width of flat at major diameter of nut, p/24	L ang b pitch	ead gle at asic diameter, λ	Sectional area at minor diameter at D - 2h, $= \frac{\pi K^2}{4}$	Tensile stress area, $\pi \left(\frac{E}{2} - \frac{3H}{16}\right)^2$
1	2	3	4	5	6	7	8	9	10	11		12	13
in		in	in	in	mm	in	in	in	in	deg	min	in ²	in ²
1/4 5/16 3/8 7/16 1/2	20 18 16 14 13	$\begin{array}{c} 0.2500 \\ .3125 \\ .3750 \\ .4375 \\ .5000 \end{array}$	$\begin{array}{r} 0.2175 \\ .2764 \\ .3344 \\ .3911 \\ .4500 \end{array}$	$\begin{array}{r} 0.1850 \\ .2403 \\ .2938 \\ .3447 \\ .4001 \end{array}$	$\begin{array}{c} 6.350 \\ 7.938 \\ 9.525 \\ 11.113 \\ 12.700 \end{array}$	$\begin{array}{r} 0.05000 \\ .05556 \\ .06250 \\ .07143 \\ .07692 \end{array}$	$\begin{array}{r} 0.03248 \\ .03608 \\ .04059 \\ .04639 \\ .04996 \end{array}$	$\begin{array}{r} 0.00625 \\ .00694 \\ .00781 \\ .00893 \\ .00962 \end{array}$	$\begin{array}{r} 0.00208\\ .00231\\ .00260\\ .00298\\ .00321\end{array}$	4 3 3 3 3	$11 \\ 40 \\ 24 \\ 20 \\ 7$	$\begin{array}{r} 0.0269 \\ .0454 \\ .0678 \\ .0933 \\ .1257 \end{array}$	0.0318 .0524 .0775 .1063 .1419
9/16 5/8 3/4 7/8 1	$     \begin{array}{c}             12 \\             11 \\           $	$\begin{array}{c} .5625\\ .6250\\ .7500\\ .8750\\ 1.0000\end{array}$	.5084 .5660 .6850 .8028 .9188	.4542 .5069 .6201 .7307 .8376	$14.288 \\ 15.875 \\ 19.050 \\ 22.225 \\ 25.400$	.08333 .09091 .10000 .11111 .12500	.05413 .05905 .06495 .07217 .08119	$\begin{array}{c} .01042\\ .01136\\ .01250\\ .01389\\ .01562\end{array}$	$\begin{array}{r} .00347\\ .00379\\ .00417\\ .00463\\ .00521\end{array}$	2 2 2 2 2 2	59 56 40 31 29	$\begin{array}{r} .162 \\ .202 \\ .302 \\ .419 \\ .551 \end{array}$	.182 .226 .334 .462 .606

	Nominal size											
Limits of size and tolerances	1⁄4	5/16	3 / 8	7⁄16	$\frac{1}{2}$	9⁄16	5/8	3⁄4	7/8	1		
		Threads per inch										
		20	18	16	14	13	12	11	10	9	8	
EXTERNAL THREAOS		in	in	in	in	in	in	in	in	in	in	
Class 1, major diameter $\begin{cases} N \\ T \end{cases}$	fax fin 'ol	$\substack{0.2485\\.2383\\.0102}$	$\begin{array}{c} 0.3109 \\ .2995 \\ .0114 \end{array}$	$0.3732 \\ .3606 \\ .0126$	$0.4354 \\ .4214 \\ .0140$	${0.4978 \atop .4830 \\ .0148}$	$0.5601 \\ .5443 \\ .0158$	$0.6224 \\ .6054 \\ .0170$	$0.7472 \\ .7288 \\ .0184$	$0.8719 \\ .8519 \\ .0200$	$0.9966 \\ .9744 \\ .0222$	
Classes 2, 3, and 4, major diameter $\begin{bmatrix} N \\ M \\ T \end{bmatrix}$	fax fin 'ol	$.2500 \\ .2428 \\ .0072$	$.3125 \\ .3043 \\ .0082$	$.3750 \\ .3660 \\ .0090$	.4375 .4277 .0098	$.5000 \\ .4896 \\ .0104$	$.5625 \\ .5513 \\ .0112$	$.6250 \\ .6132 \\ .0118$	$.7500 \\ .7372 \\ .0128$	$.8750 \\ .8610 \\ .0140$	$1.0000 \\ .9848 \\ .0152$	
Class 2, major diameter (threaded parts of un- finished, hot-rolled material){T}	fax fin 'ol	$.2500 \\ .2398 \\ .0102$	$.3125 \\ .3011 \\ .0114$	$.3750 \\ .3624 \\ .0126$	$.4375 \\ .4235 \\ .0140$	.5000 .4852 .0148	$.5625 \\ .5467 \\ .0158$	.6250 .6080 .0170	$.7500 \\ .7316 \\ .0184$	.8750 .8550 .0200	$1.0000 \\ .9778 \\ .0222$	
Class 1, minor diameter N	1ax1	.1872	.2427	.2965	.3478	.4034	.4579	.5109	.6245	.7356	.8432	
Classes 2, 3, and 4, minor diameter N	fax ¹	.1887	.2443	.2983	.3499	.4056	.4603	.5135	.6273	.7387	.8466	
Class 1, pitch diameter $\begin{cases} N \\ N \\ T \end{cases}$	fax³ fin 'ol	$.2160 \\ .2109 \\ .0051$	$.2748 \\ .2691 \\ .0057$	$.3326 \\ .3263 \\ .0063$	$.3890 \\ .3820 \\ .0070$	$.4478 \\ .4404 \\ .0074$	$.5060 \\ .4981 \\ .0079$	$.5634 \\ .5549 \\ .0085$	$.6822 \\ .6730 \\ .0092$	.7997 .7897 .0100	$.9154 \\ .9043 \\ .0111$	
Class 2, pitch diameter $\begin{bmatrix} M \\ M \\ T \end{bmatrix}$	lax ³ lin `ol	$.2175 \\ .2139 \\ .0036$	$.2764 \\ .2723 \\ .0041$	$.3344 \\ .3299 \\ .0045$	$.3911 \\ .3862 \\ .0049$	$.4500 \\ .4448 \\ .0052$	$.5084 \\ .5028 \\ .0056$	$.5660 \\ .5601 \\ .0059$	$.6850 \\ .6786 \\ .0064$	$.8028 \\ .7958 \\ .0070$	.9188 .9112 .0076	
Class 3, pitch diameter $\begin{bmatrix} M \\ N \\ T \end{bmatrix}$	1ax ³ 1in `ol	$.2175 \\ .2149 \\ .0026$	$.2764 \\ .2734 \\ .0030$	$.3344 \\ .3312 \\ .0032$	$.3911 \\ .3875 \\ .0036$	$.4500 \\ .4463 \\ .0037$	$.5084 \\ .5044 \\ .0040$	$.5660 \\ .5618 \\ .0042$	$.6850 \\ .6805 \\ .0045$	$.8028 \\ .7979 \\ .0049$	.9188 .9134 .0054	
Class 4, pitch diameter $\begin{cases} M \\ N \\ T \end{cases}$	fax ³ fin `ol	$.2178 \\ .2165 \\ .0013$	$.2767 \\ .2752 \\ .0015$	$.3348 \\ .3332 \\ .0016$	$.3915 \\ .3897 \\ .0018$	$.4504 \\ .4485 \\ .0019$	.5089 .5069 .0020	$.5665 \\ .5644 \\ .0021$	.6856 .6833 .0023	$.8034 \\ .8010 \\ .0024$	.9195 .9168 .0027	
INTERNAL THREAOS												
Classes 1, 2, 3, and 4, major diameter M	fin²	.2500	.3125	.3750	,4375	.5000	.5625	.6250	.7500	. 8750	1.0000	
Classes 1, 2, 3, and 4, minor diameter $\begin{bmatrix} M \\ M \\ T \end{bmatrix}$	1in 1ax `ol	$.1959 \\ .2060 \\ .0101$	$.2524 \\ .2630 \\ .0106$	$.3073 \\ .3184 \\ .0111$	$.3602 \\ .3721 \\ .0119$	$.4167 \\ .4290 \\ .0123$	$.4723 \\ .4850 \\ .0127$	$.5266 \\ .5397 \\ .0131$	$.6417 \\ .6553 \\ .0136$	$.7547 \\ .7689 \\ .0142$	.8647 .8795 .0148	
Classes 1, 2, 3, and 4, pitch diameter M	fin ³	.2175	.2764	.3344	.3911	.4500	.5084	.5660	.6860	. 8028	.9188	
Class 1, pitch diameter ${T}^{N}$	fax `ol	$\substack{.2226\\.0051}$	$.2821 \\ .0057$	$.3407 \\ .0063$	$.3981 \\ .0070$	$.4574 \\ .0074$	$.5163 \\ .0079$	.5745 .0085	$\substack{.\ 6942\\.\ 0092}$	.8128 .0100	.9299.0111	
Class 2, pitch diameter{T	1ax 'ol	$.2211 \\ .0036$	$\substack{.2805\\.0041}$	$.3389 \\ .0045$	.3960 .0049	$.4552 \\ .0052$	$\begin{smallmatrix}&.5140\\.0056\end{smallmatrix}$	.5719 .0059	$.6914 \\ .0064$	$.8098 \\ .0070$	.9264 .0076	
Class 3, pitch diameter{T}	fax `ol	$.2201 \\ .0026$	$.2794 \\ .0030$	$.3376 \\ .0032$	.3947 .0036	.4537 .0037	$\begin{smallmatrix} .5124 \\ .0040 \end{smallmatrix}$	$\begin{array}{c} .5702\\ .0042\end{array}$	$.6895 \\ .0045$	$.8077 \\ .0049$	.9242 .0054	
Class 4, pitch diameter {T	fax `ol	. 2188 . 0013	$.2779 \\ .0015$	.3360 .0016	$.3929 \\ .0018$	. 4519 .0019	$\begin{array}{c} .5104\\ .0020\end{array}$	$.5681 \\ .0021$	.6873 .0023	$.8052 \\ .0024$	.9215 .0027	

¹ Dimensions given for the maximum minor diameter of the external thread are figured to the intersection of the worn tool are with a center line through crest and root. The minimum minor diameter of the external thread shall be that corresponding to a flat at the minor diameter of the minimum external thread equal to  $\frac{1}{16} \times p$ , and may be determined by subtracting the basic thread depth, h (or 0.6495p), from the minimum pitch diameter of the external thread thread equal to  $\frac{1}{16} \times p$ , and may be determined  2 . Dimensions for the minimum major diameter of the internal thread correspond to the basic flat ( $\frac{1}{16} \times p$ ) and the profile at the major diameter produced by a worn tool must not fall below the basic outline. The maximum major diameter of the internal thread shall be that corresponding to a flat at the major diameter of the maximum internal thread shall be that corresponding to a flat at the major diameter of the maximum internal thread shall be that corresponding to a flat at the major diameter of the maximum internal thread shall be that corresponding to a flat at the major diameter of the maximum internal thread shall be that corresponding to a flat at the major diameter of the maximum internal thread shall be that corresponding to a flat at the major diameter of the maximum internal thread shall be that corresponding to a flat at the major diameter of the maximum internal thread shall be that corresponding to a flat at the major diameter of the maximum internal thread shall be that corresponding to a flat at the major diameter of the maximum internal thread shall be that corresponding to a flat at the major diameter of the maximum internal thread shall be that corresponding to a flat at the major diameter of the maximum internal thread shall be that corresponding to a flat at the major diameter of the maximum internal thread shall be that corresponding to a flat at the major diameter of the maximum internal thread shall be that corresponding to a flat at the major diameter of the ma

threads
screw
National
American
series, .
thread
standard
ges for
6. Ga
5 A1.1
TABLE

		ages for iameter		Not go	18	0.2060 2059 2059 2059 2059 2050 2050 2050	.2630 .2630 .2630 .2630 .2630 .2630 .2630 .2629		.3721 .3720 .3720 .3721 .3721 .3722 .3720 .3720	. 4290 . 4289 . 4289 . 4289 . 4289 . 4289 . 4290		
		Z plain minor				0.1959 1960 1960 1969 1959 1959 1959 1959	.2524 .2525 .2524 .2524 .2525 .2524 .2525 .2524 .2525		.3602 .3603 .3603 .3603 .3603 .3603 .3603 .3603 .3603 .3602 .3603	. 4167 4168 4168 4168 4167 4167 4168 4168 4168		
eads			umeter	Plus tol. gage	16	0.2226 0.2229 .2211 .2211 .2211 .2211 .2201 .2189 .2189	.2821 .2824 .2805 .2808 .2794 .2797 .2779			. 4574 . 4577 . 4552 . 4552 . 4555 . 4555 . 4540 . 45190 . 45205		
or internal th		Not go	Pitch di	Minus tol. gage	15	in 0.2226 2221 2211 2208 2208 2128 2188 2187	.2821 .2818 .2805 .2805 .2794 .2779	.3407 3404 3389 3386 3376 3376 3376 3376 3376	.3981 .3978 .3957 .3957 .3947 .3944 .3944	. 4574 . 4571 . 4571 . 4572 . 4549 . 45190 . 45194 . 45175		
Gages f	hread gages		Major diameter		14	in 0.2443 0.2438 2438 2428 2418 2413 2405 2405	.3062 .3057 .3041 .3041 .3045 .3045 .3050 .3035 .3035 .3020 .3020	.3678 .3672 .3664 .3654 .3654 .3641 .3641 .3631 .3631	.4290 4284 4263 4263 4263 4256 4256 4250	901 1001 1004 1852 1885 1885 1885 1885 1885 1885 1885		
	L	0	Pitch diameter		13	11 2175 2175 2175 2175 2175 2175 2175 21	2764 2767 2767 2767 2764 2764 2764 2764		.3911 .3914 .3914 .3914 .3914 .3914 .3914 .3914 .39125	. 4500 . 4503 . 4503 . 4503 . 4503 . 4500 . 4500 . 45000 . 45000 . 45015		
ages for major diameter		5	Major	diameter	12	11 2505 2505 2505 2505 2505 2505 2505 25	3125 3125 3125 3125 3125 3125 3125 3125	. 3750 . 3756 . 3756 . 3756 . 3756 . 3756 . 3756 . 3756 . 3756 . 3756	+375 +381 +375 +381 +381 +381 +381 +381 +381	5000 5000 5000 5000 5000 5000 5000 500		
	or diameter	lot go	Unfinished hot-rolled	material	11	in 0.23988 0.23999	.3011	.3624	. 4235	. 1852		
	gages for majo	A	Semi- finished 10		10	tn 0.2383 .2384 .2428 .2428 .2428 .2428 .2428 .2428	2995 2996 3043 3044 3044 3044 3044		4214 4215 4277 4277 4277 4278 4278	. 1830 . 1831 . 1897 . 1897 . 1897 . 1897 . 1897		
hreads	Z plain	3			6	in 2485 2484 2484 2500 2500 2499 2500 2500 2500 2500 2500			4354 4375 4375 4375 4375 4375 4375 4374 4374	. 4978 . 6000 . 5000 . 50000 . 50000 . 50000 . 50000 . 50000 . 50000 . 50000 . 50000 . 50000000000		
s for external t			Minor	diameter	8	in 0.2006 2006 2036 2036 2041 2041 2041 2057 2057	.2571 .2576 .2576 .2608 .2608 .2614 .2614 .2619 .2632	.3128 .3134 .3170 .3177 .3177 .3177 .3183 .3197		. 4238 . 4244 . 4288 . 4288 . 4303 . 4303 . 4319 . 4325		
Gages		Not go	iameter	Minus tol. gage	7	0.2109 2106 2130 2130 2136 2149 2146 2146	2720 2723 2723 2723 2731 2731 2751 2751			+104 +1401 +1415 +1445 +1445 +14463 +14463 +14463 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +14850 +148500 +148500 +148500 +148500 +148500 +148500 +148500 +148500 +148500 +148500 +148500 +148500 +148500 +148500 +148500 +148500 +148500 +148500 +148500 +148500 +148500 +148500 +1485000 +1485000 +1485000 +1485000 +1485000 +1485000 +1485000 +1485000 +1485000 +1485000 +1485000000000000000000000000000000000000		
	zages		Pitch di Plus tol. gage		9	in 0.2109 2112 2139 2142 2149 2152 2155 2155	.2691 .2723 .2723 .2734 .2734 .2737 .2752	.3263 .3296 .3299 .3312 .3315 .3315				
	Thread 1	o Minor		o Minor diameter		Minor diameter		in 0.1944 1.1959 1.1959 1.1954 1.1952 1.1952 1.1952	.2507 .2523 .2523 .2518 .2518 .2518 .2526		.3581 .375 .375 .3575 .3596 .3596 .3596 .3596 .3506	2917 1217 1917 1917 1917 2917 8017 8017
		Go Pitch diameter			Ţ	in 0.2160 .2157 .2175 .2175 .2177 .2177 .2177	2748 2745 2764 2764 2764 2764 2764 2764	.3326 .3323 .3314 .3341 .3341 .3341 .3341 .3347	.3890 .3887 .3811 .3918 .3918 .3918 .39185 .39135	.1178 .1175 .1175 .1197 .1197 .1197 .1500 .1197 .15010		
Class					3	- 0 6 4	- 0 0 7	- 0 0 4	- 0 0 4	+ 0 0 +		
		Series desig- nation			2	NC	NC	NC	NC	NC		
Nominal size and threads per inch					-1	₩-20	şí6-18	3,6-16	7/6-14	1⁄2-13		

TABLE A1.16. Gages for standard thread series, American National screw threads-Continued

		zages for lameter		Not go	18	² n 4850 4849 4849 4849 4849 4850 4850 4850 4850 4850	5397 5396 5396 5396 5397 5396 5396	.6553 .6553 .6553 .6553 .6553 .6553 .6553 .6553 .6553	76890 76878 76878 76890 76890 76890 76890 76890 76878	. 87950 . 87950 . 87950 . 87950 . 87950 . 87958 . 87958 . 87958
		Z plain g minor di		G0	17	in 4723 4724 4724 4724 4724 4723 4724 4723	.5266 .5266 .5266 .5266 .5266 .5266 .5266	7148 7148 7148 7148 7148 7148 7148 7148	.75470 .75482 .75482 .75482 .75482 .75482 .75482 .75482 .75482 .75482 .75482	
eads			ameter	Plus tol. gage	16	in 5163 5140 5144 5124 5124 5104 5104	.5745 .5719 .5719 .5702 .5702 .5881	.6942 .6945 .6917 .6917 .6895 .6895 .6898 .6873	.8128 .8131 .8098 .8091 .8077 .8077 .8052 .8052	.9299 9264 9264 9268 9245 9245 9215
or internal th		Not go	Pitch di	Minus tol. gage	15	21 21 21 21 21 21 21 21 21 21 21 21 21 2	.5745 .5742 .5719 .5716 .5716 .5702 .5699 .5681		.8128 .8125 .8095 .8095 .8077 .8077 .8052	.9299 .9295 .9264 .9260 .9238 .9238 .9238
Gages fo	Chread gages		Major diameter		14	in 5524 5501 5518 55195 5479 54785 54785 54785 54785	.6139 .6133 .6107 .6107 .6096 .6090 .6090	7375 7369 7347 7341 7341 7328 7328 7328 7328 7328	. 8609 . 8602 . 8579 . 8572 . 8572 . 8558 . 8551 . 8551 . 8551 . 8551 . 8551 . 8551 . 8551 . 8551	.9749 .9738 .9798 .9788 .9756 .9756
	F	0	Pitch	diameter	13	2081 2087 2087 2087 2087 2087 2087 2087 2087	.5660 .5660 .5663 .5663 .5663 .5663 .5663 .5663		.8028 .8031 .8031 .8031 .8031 .8028 .8031 .8028	.9188 .9192 .9188 .9188 .9188 .9188 .9188
		9	Major	diameter	12	in 5625 5631 5631 5631 5631 5631 5631 5631	.6250 .6256 .6256 .6256 .6256 .6256 .6256 .6250	7500 7500 7500 7500 7500 7500 7500	.8750 .8750 .8757 .8757 .8757 .8757 .8757 .8757 .8757	$\begin{array}{c} 1.0000\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\$
	r diameter	lot go	Unñuished hot-rolled	material	11	in .5467 .5408	.6080	. 7316	. 85500	0.97780
	sages for majo	4	Scmi-	finished	10	in 51443 5514 5514 5514 5514 5513 5513 551	.6054 .6055 .6132 .6133 .6133 .6133 .6133 .6133 .6133	.7288 .7289 .7372 .7372 .7372 .7372 .7372 .7372	.85190 .85202 .86100 .86112 .86112 .86100 .86112 .86100 .86112	.97440 .97452 .98480 .98492 .98480 .98492 .98492 .98492 .98492
hreads	Z plain		ç			in 5601 5600 5624 5624 5625 5624 5625 5624	. 6224 . 6223 . 6223 . 6223 . 6223 . 6249 . 6249 . 6249 . 6249 . 6249	7472 7471 7471 7500 7499 7500 7499 7500	.87190 .87500 .87500 .87500 .87500 .87488 .87488 .87488 .87488	.99660 .99648 1.00000 1.00000 1.00000 1.00000 1.00000 1.09988
s for external t			Minor	diametor	œ	in 4801 4807 4848 4854 4854 4864 4876 4876 4876 4876 4876 4876 487	.5352 .5358 .5404 .5410 .5421 .5421 .5427 .5427 .5427	.6514 .6520 .6576 .6576 .6589 .6589 .6617	7656 7717 77124 77124 77124 77124 77724 77756 77769	.8772 .8779 .8841 .8848 .8863 .8863 .8863 .8863 .8897
Gage		Not go	liameter	Minus tol. gage	2	in 4981 4981 5028 5044 5044 5041 5069	5549 55549 55516 55598 5618 5614 5644	.6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .6727 .7777 .7777 .7777 .77777 .77777 .777777	7897 7958 7958 7979 8010 8010	.9043 .9112 .9112 .9108 .9134 .9130 .9168
	gages		Pitch d	Plus tol. gage	9	in 4981 1984 5028 5031 5047 5047 5069	.5519 .5552 .5601 .5601 .5601 .5618 .5614 .5614	. 6730 . 6733 . 6786 . 6789 . 6805 . 6805 . 6833 . 6833	.7897 .7900 .7958 .7959 .7979 .7979 .8010	.9043 .9047 .9112 .9116 .9116 .9138 .9138
	Thread	30	Minor diameter		5	in . 1693 . 1693 . 1717 . 1717 . 1723 . 1728 . 1728 . 1728	.5260 .5240 .5266 .5266 .5266 .5266 .5266 .5266 .5265 .5265	.6389 .6417 .6388 .6417 .6417 .6417 .6417 .6417 .6417	.7546 .7547 .7547 .7547 .7547 .7547 .7553 .7547 .7547 .7547 .7547 .7547 .7547 .7546 .7547 .7546 .7547 .7546 .7546 .7546 .7546 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7556 .7566 .7556 .7556 .7556 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .75566 .755666 .75566 .75566 .75566 .755666 .755666 .75566 .755666 .7556666 .7556666666666	2498. 8613 8614 8614 8613 8613 8613 8614 8613 8613 8613 8613 8613 8613 8613 8613
		Pitch diameter				5081 5081 5081 5081 5081 5081 5081 5081	.5651 .5660 .5667 .5667 .5667 .5667 .5665 .5665	.6822 .6819 .6819 .6847 .6856 .6856 .6856 .6856 .6856 .6856 .6856	.7997 .7994 .8028 .8028 .8028 .8028 .8028	.9154 .9150 .9188 .9188 .9188 .9188 .9195
Class			~	+ % % +		- 01 00 77	- 0 0 4	+ 0 0 H		
Series desig- nation			2	NC	NC	NC	NC	NC		
Nominal size and threads per inch										

					W trunes	ated setting p	Basic-crest setting plugs							
Nominal size and	Series		P	lug for "Go	,,	Plug for "Not go"				Major diameter				
threads per inch	designa- tion	Class	Major d	iameter	Pitch	Major diameter		Pitch diameter		Goı		Not go ²		
				Truncated	Full	diameter	Truncated	Full	Plus tol. gage	Minus tol. gage	W tolerance	X tolerance	W tolerance	X tolerance
1	2	3	4	5	6	7	8	9	10	11A	11B	12A	12B	
			in	in	in	in	in	in	in	in	in	in	in	
1⁄4-20	NC		$\begin{array}{r} 0.2395 \\ .2390 \\ .2410 \\ .2405 \\ .2410 \\ .2405 \\ .2405 \\ .2413 \\ .2408 \end{array}$	$\begin{array}{r} 0.2485 \\ .2490 \\ .2500 \\ .2505 \\ .2500 \\ .2505 \\ .2503 \\ .2508 \end{array}$	0.2160 .2159 .2175 .2174 .2175 .2174 .2175 .2174 .2178 .2177	$\begin{array}{r} 0.2326\\ .2321\\ .2356\\ .2351\\ .2366\\ .2361\\ .2361\\ .2382\\ .2377\end{array}$	$\begin{array}{r} 0.2484 \\ .2489 \\ .2500 \\ .2505 \\ .2500 \\ .2505 \\ .2503 \\ .2508 \end{array}$	$\begin{array}{c} 0.2109 \\ .2110 \\ .2139 \\ .2140 \\ .2149 \\ .2150 \\ .2165 \\ .2166 \end{array}$	$\begin{array}{r} 0.2109 \\ .2108 \\ .2139 \\ .2138 \\ .2149 \\ .2148 \\ .2165 \\ .2164 \end{array}$	$\begin{array}{c} 0.2485 \\ .2490 \\ .2500 \\ .2505 \\ .2500 \\ .2505 \\ .2505 \\ .2500 \\ .2505 \\ .2500 \end{array}$	$\begin{array}{c} 0.2485 \\ .2490 \\ .2500 \\ .2505 \\ .2500 \\ .2505 \\ .2500 \\ .2500 \\ .2500 \\ .2505 \end{array}$	$\begin{array}{r} 0.2484 \\ .2489 \\ .2500 \\ .2505 \\ .2500 \\ .2505 \\ .2500 \\ .2500 \\ .2505 \end{array}$	$\begin{array}{c} 0.2484 \\ .2489 \\ .2500 \\ .2505 \\ .2505 \\ .2500 \\ .2505 \\ .2500 \\ .2505 \\ .2500 \\ .2505 \end{array}$	
∛16-18	NC		.3012 .3007 .3028 .3023 .3028 .3023 .3023 .3031 .3026	$\begin{array}{r} .3109\\ .3114\\ .3125\\ .3130\\ .3125\\ .3130\\ .3128\\ .3130\\ .3128\\ .3133\end{array}$	.2748 .2747 .2764 .2763 .2764 .2763 .2764 .2763 .2767 .2766	$\begin{array}{r} .2932\\ .2927\\ .2964\\ .2959\\ .2959\\ .2975\\ .2970\\ .2993\\ .2988\end{array}$	$\begin{array}{r} .3108\\ .3113\\ .3125\\ .3130\\ .3125\\ .3130\\ .3128\\ .3130\\ .3128\\ .3133\end{array}$	$\begin{array}{r} .2691\\ .2692\\ .2723\\ .2724\\ .2734\\ .2734\\ .2735\\ .2752\\ .2752\\ .2753\end{array}$	$\begin{array}{r} .2691\\ .2690\\ .2723\\ .2722\\ .2734\\ .2733\\ .2752\\ .2751\\ \end{array}$	.3109 .3114 .3125 .3130 .3125 .3130 .3125 .3130 .3125 .3130	.3109 .3114 .3125 .3130 .3125 .3130 .3125 .3130 .3125 .3130	$\begin{array}{c} .3108\\ .3113\\ .3125\\ .3130\\ .3125\\ .3130\\ .3125\\ .3130\\ .3125\\ .3130\end{array}$	.3108 .3113 .3125 .3130 .3125 .3130 .3125 .3130	
3∕s−16	NC	\ 1 2 3 4	.3627 .3621 .3645 .3639 .3645 .3639 .3649 .3649 .3643	.3732 .3738 .3750 .3756 .3750 .3750 .3756 .3754 .3760	$\begin{array}{c c} .3326\\ .3325\\ .3344\\ .3343\\ .3344\\ .3343\\ .3348\\ .3348\\ .3347\end{array}$	$\begin{array}{r} .3534\\ .3528\\ .3570\\ .3564\\ .3583\\ .3577\\ .3603\\ .3597\end{array}$	.3732 .3738 .3750 .3756 .3750 .3756 .3756 .3754 .3760	.3263 .3264 .3299 .3300 .3312 .3313 .3332 .3333	$\begin{array}{c} .3263\\ .3262\\ .3299\\ .3298\\ .3312\\ .3311\\ .3332\\ .3331\end{array}$	.3732 .3738 .3750 .3756 .3750 .3756 .3756 .3750 .3756	.3732 .3738 .3750 .3756 .3750 .3750 .3750 .3750 .3756	.3732 .3738 .3750 .3756 .3750 .3750 .3750 .3750 .3750	.3732 .3738 .3750 .3756 .3756 .3756 .3756 .3756	

# TABLE A1.17. Setting plug gages, American National screw threads

				Basic-crest setting plugs							
Nominal size and	Series		Plu	g for "Go"			Plug for "N		Major diameter		
threads per inch	designation	Class	Major d	iameter	Pitch	Major d	liameter	Pitch diamteter		Goı	Not go ²
			Truncated	Full	diameter	Truncated	Full	Plus tol. gage	Minus tol. gage	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
7/16-14	NC		in 0.4239 .4233 .4260 .4254 .4260 .4354	in 0.4354 .4360 .4375 .4381 .4375 .4381 .4375 .4381	in 0.38900 .38885 .39110 .39095 .39110 .39095	in 0.4129 .4123 .4171 .4165 .4184 .4178	in 0.4354 .4360 .4375 .4381 .4375 .4381	in 0.38200 .38215 .38620 .38635 .38750 .38765	in 0.38200 .38185 .38620 .38605 .38750 .38750 .38735	in 0.4354 .4360 .4375 .4381 .4375 .4381	in 0.4354 .4360 .4375 .4381 .4375 .4381 .4375
½−13	NC		$ \begin{array}{r} .4264\\ .4258\\ .4856\\ .4850\\ .4878\\ .4878\\ .4872\\ .4872\\ .4872\\ .4872\\ .4882\\ .4872\\ .4882\\ .4876 \end{array} $	$ \begin{array}{r} .4379\\.4385\\.4978\\.4984\\.5000\\.5006\\.5006\\.5006\\.5006\\.5004\\.5010\end{array} $	39150 39135 .44780 .44785 .45000 .44985 .45000 .44985 .45040 .45040 .45025	. 4206 . 4200 . 4737 . 4731 . 4781 . 4775 . 4796 . 4790 . 4818 . 4812	$ \begin{array}{r}     .4379 \\     .4385 \\     .4978 \\     .5000 \\     .5006 \\     .5006 \\     .5006 \\     .5006 \\     .5004 \\     .5010 \\   \end{array} $	.38970 .38985 .44040 .44055 .44405 .44495 .44495 .44630 .44645 .44850 .44850	.389/0 .38955 .44040 .44025 .44480 .44465 .44630 .44615 .44850 .44850	.4375     .4381     .4978     .4984     .5000     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006     .5006	. 4375 . 4381 . 4978 . 4984 . 4984 . 5000 . 5006 . 5000 . 5006 . 5000 . 5006
9í6-12	NC	{ 1 2 3 4	5472 5466 5496 5490 5490 5490 5490 5501 5495	$\begin{array}{r} .5601 \\ .5607 \\ .5625 \\ .5631 \\ .5625 \\ .5631 \\ .5631 \\ .5630 \\ .5630 \\ .5636 \end{array}$	$\begin{array}{r} .5060\\ .5058\\ .5084\\ .5082\\ .5084\\ .5082\\ .5084\\ .5082\\ .5089\\ .5089\\ .5087\end{array}$	$\begin{array}{r} .5342 \\ .5336 \\ .5389 \\ .5383 \\ .5405 \\ .5399 \\ .5430 \\ .5424 \end{array}$	$\begin{array}{r} .5601\\ .5607\\ .5625\\ .5631\\ .5631\\ .5631\\ .5631\\ .5630\\ .5636\end{array}$	$\begin{array}{r} .4981\\ .4983\\ .5028\\ .5030\\ .5044\\ .5046\\ .5069\\ .5071\end{array}$	$\begin{array}{r} .4981\\ .4979\\ .5028\\ .5026\\ .5044\\ .5042\\ .5069\\ .5067\end{array}$	$\begin{array}{r} .5601\\ .5607\\ .5625\\ .5631\\ .5625\\ .5631\\ .5625\\ .5631\\ .5625\\ .5631\end{array}$	.5601 .5607 .5625 .5631 .5625 .5631 .5625 .5631
5∕s−11	NC	1   2   3   4	.6087 .6081 .6113 .6107 .6113 .6107 .6113 .6107 .6118 .6112	$\begin{array}{r} .6224\\ .6230\\ .6250\\ .6256\\ .6256\\ .6256\\ .6256\\ .6255\\ .6261\end{array}$	5634 5632 5660 5658 5660 5658 5660 5658 5658 5665 5665	$\begin{array}{r} .5943\\ .5937\\ .5995\\ .6989\\ .6012\\ .6006\\ .6038\\ .6032\\ \end{array}$	.6224 .6230 .6250 .6556 .6250 .6250 .6256 .6255 .6261	$\begin{array}{r} .5549\\ .5551\\ .5601\\ .5603\\ .5618\\ .5620\\ .5644\\ .5646\end{array}$	$\begin{array}{r} .5549 \\ .5547 \\ .5601 \\ .5599 \\ .5618 \\ .5616 \\ .5644 \\ .5642 \end{array}$	$\begin{array}{r} .6224\\ .6230\\ .6250\\ .6256\\ .6256\\ .6256\\ .6250\\ .6250\\ .6250\\ .6256\end{array}$	$\begin{array}{r} .6224\\ .6230\\ .6250\\ .6256\\ .6250\\ .6250\\ .6256\\ .6250\\ .6250\\ .6256\end{array}$
3⁄4-10	NC	1 2 3 4	$     \begin{array}{r}         .7326 \\         .7320 \\         .7354 \\         .7348 \\         .7354 \\         .7348 \\         .7348 \\         .7360 \\         .7354 \\     \end{array} $	.7472 .7478 .7500 .7506 .7506 .7506 .7506 .7506 .7512	.6822 .6820 .6850 .6848 .6850 .6848 .6856 .6854	.7163 .7157 .7219 .7213 .7238 .7238 .7232 .7266 .7266	.7472 .7478 .7500 .7506 .7506 .7506 .7506 .7506 .7512	.6730 .6732 .6786 .6788 .6805 .6807 .6833 .6835	.6730 .6728 .6786 .6784 .6805 .6803 .6833 .6831	.7472 .7478 .7500 .7506 .7506 .7506 .7500 .7506	.7472 .7478 .7500 .7506 .7500 .7506 .7500 .7506
7⁄8-9	NC	1 2 3 4	$\begin{array}{r} .8561 \\ .8554 \\ .8592 \\ .8585 \\ .8592 \\ .8585 \\ .8592 \\ .8585 \\ .8598 \\ .8591 \end{array}$	. 8719 . 8726 . 8750 . 8757 . 8750 . 8757 . 8756 . 8766 . 8763	$\begin{array}{r} .7997\\ .7995\\ .8028\\ .8026\\ .8026\\ .8026\\ .8026\\ .8034\\ .8034\\ .8032\end{array}$	.8378 .8371 .8439 .8432 .8460 .8453 .8491 .8484	.8719 .8726 .8750 .8757 .8750 .8757 .8757 .8756 .8763	.7897 .7899 .7958 .7960 .7979 .7981 .8010 .8012	.7897 .7895 .7958 .7956 .7979 .7977 .8010 .8008	.8719 .8726 .8750 .8757 .8750 .8757 .8750 .8757 .8750 .8757	. 8719 . 8726 . 8750 . 8757 . 8757 . 8750 . 8757 . 8750 . 8757
1-8	NC		$\begin{array}{r} .9795\\ .9788\\ .9829\\ .9822\\ .9829\\ .9822\\ .9822\\ .9836\\ .9829\end{array}$	.9966 .9973 1.0000 1.0007 1.0007 1.0007 1.0007 1.0007	$\begin{array}{c} .9154\\ .9152\\ .9188\\ .9186\\ .9186\\ .9186\\ .9195\\ .9193\\ \end{array}$	$\begin{array}{r} .9584\\ .9577\\ .9653\\ .9646\\ .975\\ .9668\\ .9709\\ .9709\\ .9702\end{array}$	$\begin{array}{r} .9966\\ .9973\\ 1.0000\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0007\\ 1.0014\end{array}$	.9043 .9045 .9112 .9114 .9134 .9136 .9168 .9170	.9043 .9041 .9112 .9110 .9134 .9132 .9168 .9166	$\begin{array}{r} .9966\\ .9973\\ 1.0000\\ 1.0007\\ 1.0000\\ 1.0007\\ 1.0000\\ 1.0000\\ 1.0007\end{array}$	$\begin{array}{r} .9966\\ .9973\\ 1.0000\\ 1.0007\\ 1.0000\\ 1.0007\\ 1.0000\\ 1.0007\\ 1.0007\end{array}$

#### TABLE A1.17. Setting plug gages, American National screw threads-Continued

¹ Pitch diameter limits of W basic-crest setting plug gages are given in column 6 of this table. Pitch diameter limits of X basic-crest setting plug gages are given in column 4 of table A1.16. ² Pitch diameter limits of W basic-crest setting plug gages are given in columns 9 and 10 of this table. Pitch diameter limits of X basic-crest setting plug gages are given in columns 6 and 7 of table A1.16.
UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

# HANDBOOK H28

SCREW-THREAD STANDARDS

FOR FEDERAL SERVICES

APPENDIX 2

# 1957

AMERICAN NATIONAL SCREW THREADS OF SPECIAL DIAMETERS, PITCHES, AND LENGTHS OF ENGAGEMENT

APPENDIX 2 IS BEING DELETED FROM THE 1969 Issue of Handbook H28



UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

# HANDBOOK H28

SCREW-THREAD STANDARDS

### FOR FEDERAL SERVICES

Appendix A3

### 1969

TAP DRILL SIZES FOR UNIFIED SCREW THREADS AND RECOMMENDED HOLE SIZE LIMITS BEFORE THREADING



#### 1. TAP DRILL SIZES FOR UNIFIED SCREW THREADS

When it is important that the minor diameter of an internal thread conform to specified limits it may be necessary to use a reamer to finish the hole. However, a drill often can be made to cut with a sufficient accuracy for this requirement. A variety of factors enter into the production of a clean, round, straight hole of the correct diameter. For a discussion of these and other data on drilling and tapping, reference should be made to "Drilled Holes for Tapping," published by the Drill and Reamer Division and the Tap and Die Division of the Metal Cutting Tool Institute, 405 Lexington Avenue, New York, N.Y. 10017.

Table A3.1. gives minor diameter limits and corresponding percentages of basic thread height, 0.75H, for all standard series threads up to and including 3.75 inch diameter for classes 1B and 2B. Table A3.2 is a similar table for class 3B. These tables also list sizes of drills that may be expected to drill holes within or near the specified minor diameter limits. The diameter of the drill, the probable hole size, and the corresponding percentages of basic thread height are tabulated.

As a drill may normally be expected to cut oversize, probable hole sizes are tabulated that are derived from probable mean oversizes, also tabulated. The following is quoted from the above-mentioned report: "These oversizes were determined from a series of tests conducted by a number of drill manufacturers. Using six sizes of drills ranging from 1/16to 1 in. a total of 2,808 holes were drilled in cast iron and steel. Commercial high speed drills were used and the drilling equipment was of the same type and condition that is normally encountered in metal working shops. The average depth of hole drilled was equal to 1.5 times the drill diameter and the measurement of the hole was made at the midpoint of the depth drilled.... With good drilling practices and with reasonable care in the resharpening of drills the average user may expect to drill oversize in the same manner."

#### 2. RECOMMENDED HOLE SIZE LIMITS BEFORE THREADING

Recommended hole size limits before threading and the corresponding tolerances are derived from the minimum and maximum minor diameters of the internal thread to provide for optimum strength of fastenings and tapping conditions. The following rules as illustrated in figure A3.3 are used.

For the range to and including 0.33D, the minimum hole size is equal to the minimum minor diameter of the internal thread and the maximum hole size is larger by half the minor diameter tolerance. For the range from 0.33D to 0.67D, the minimum and maximum hole sizes are each one quarter of the minor diameter tolerance larger than the corresponding limits for the length of engagement to and including 0.33D.

For the range from 0.67D to 1.5D, the minimum hole size is larger than the minimum minor diameter of the internal thread by half the minor diameter tolerance and the maximum hole size is equal to the maximum minor diameter.

For the range from 1.5D to 3D, the minimum and maximum hole sizes are each one quarter of the minor diameter tolerance of the internal thread larger than the corresponding limits for the 0.67D to 1.5D length of engagement.

From the foregoing it will be seen that the difference between limits in each range is the same and equal to half of the minor diameter tolerance. This is a general rule. However, the minimum differences for sizes below 0.25 in are equal to the minor diameter tolerances given in tables 3.9 and 3.10 for lengths of engagement to and including 0.33D. For lengths of engagement greater than 0.33D for sizes 0.25 in and larger, the values are adjusted so that the difference between limits is never less than 0.0040 in.

2.1. RECOMMENDED HOLE SIZE LIMITS FOR STAND-ARD UNIFIED THREADS AND SOME UNS THREADS ARE GIVEN IN TABLES A3.5 AND A3.6.—For diameter-pitch combinations other than those given in these tables, the tolerances given in table 2.21 or the tolerance derived from the formula, should be similarly applied to determine the hole size limits.

Internal threads requiring modified minor diameters for lengths of engagement less than 0.67D to develop the optimum strength of the fastening, or longer than 1.5D to reduce tapping difficulties, should be designated as specified in section 2. (See under "Designating threads having modified crests" in that section.)

2.2. FOR UNIFIED Miniature threads, the distribution of hole size limits differs from the above, to accord with conditions peculiar to miniature threads and is shown in figure A3.4. The maximum limits are based on providing a functionally adequate fastening for the most common applications, where the material of the externally threaded member is of a strength essentially equal to or greater than that of its mating part. In applications where, because of considerations other than the fastening, the screw is made of an appreciably weaker material, the use of smaller hole sizes is usually necessary to extend thread engagement to a greater depth on the external thread. However, hole sizes down to the minimum limit of the minor diameters must be avoided to allow for the spin-up developed as the result of the negative rake with which these small taps are ground.

Recommended hole size limits for these threads are tabulated in table A3.7.

Thread size pe	Threade	Desig	Classes	1B and 2B mi thre	inor diamete eads	er, internal		Tap drills and percent basic thread height				
in .060	per inch	nation	Minimum	Percent ^a basic thread height	Maximum	Percent ^a basic thread height	Dril	l size	Percent of thread	Probable oversize, mean	Probable hole size	Percent of thread
in .060	80	UNF	in 0.0465	83.1	in 0.0514	53.0	$\left\{\begin{smallmatrix} in\\ \#56_{3_{64}}\end{smallmatrix} ight\}$	$in \\ 0.0465 \\ .0469$	83 81	in 0.0015 .0015	in 0.0480 .0484	74 71
.073	64	UNC	.0561	83.3	.0623	52.7	{ #54   #53	$.0550 \\ .0595$	89 67	$.0015 \\ .0015$	$.0565 \\ .0610$	81 59
.073	72	UNF	.0580	83.1	.0635	52.7		.0595 .0625	75 58	.0015 .0015	.0610 .0640	67 50
.086	56	UNC	.0667	83.2	.0737	53.0	{#51 #50 #49	.0670 .0700 .0730	82 69 56	.0017 .0017 .0017	.0687 .0717 .0747	75 62 49
.086	64	UNF	.0691	83.3	.0753	52.7	<i>#</i> <b>50</b> <i>#</i> 49	.0700	79 64	.0017 .0017	.0717 .0747	70 56
. 099 . 099	48 56	UNC UNF	.0764 .0797	83.5 83.2	.0845	53.6 53.9	$ \begin{cases}     # 48 \\     5 \\     4 \\     # 47 \\     # 46 \\     # 45 \\     # 46 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     4 \\     5 \\     4 \\     4 \\     4 \\     5 \\     4 \\     4 \\     5 \\     4 \\     4 \\     5 \\     4 \\     4 \\     5 \\     4 \\     4 \\     5 \\     4 \\     4 \\     5 \\     4 \\     4 \\     5 \\     4 \\     4 \\     5 \\     4 \\     4 \\     5 \\     4 \\     4 \\     5 \\     4 \\     4 \\     5 \\     4 \\     4 \\     5 \\     4 \\     4 \\     5 \\     5 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\     6 \\      6 \\     6 \\     6 \\     6 \\     6 \\     6 \\         $	$\begin{array}{c} .0760\\ .0781\\ .0785\\ .0810\\ .0820\\ .0810\\ .0820\\ .0820\\ .0820\\ \end{array}$	85 77 67 63 78 73	.0019 .0019 .0019 .0019 .0019 .0019 .0019	000000000000000000000000000000000000	78 70 69 60 56 69 65
							(#44	.0860	36 80	.0019	.0879	48
.112	40	UNC	.0849	83.4	.0939	55.7	# 43 # 42 ³ \$2 # 43	.0890 .0935 .0938 .0890	71 57 56 85	.0020 .0020 .0020 .0020	.0910 .0955 .0958 .0910	65 51 50 78
.112	48	UNF	.0894	83.5	.0968	56.2	$\binom{3}{3}{32}$ $\binom{4}{4}{41}$	.0935 .0938 .0960	68 67 59	.0020 .0020 .0020	.0955 .0958 .0980	61 60 52
.125	40	UNC	.0979	83.4	.1062	57.9	<pre>{ #40 #39 #38 #37 { #38 #37</pre>	$\begin{array}{r} .0980\\ .0995\\ .1015\\ .1040\\ .1015\\ .1040\end{array}$	83 79 72 65 80 71	.0023 .0023 .0023 .0023 .0023 .0023 .0023	.1003 .1018 .1038 .1063 .1038 .1063	76 71 65 58 72
.120	11			00.0	.1010		#36	. 1065	63	.0023	.1088	55
.138	32	UNC	.104	83.8	.114	59.1	# 37 # 36 <i>%</i> 4 # 35 # 34 # 33 { # 34	.1040 .1065 .1094 .1100 .1110 .1130 .1110	84 78 70 69 67 62 83	.0023 .0023 .0026 .0026 .0026 .0026 .0026	$.1063 \\ .1088 \\ .1120 \\ .1126 \\ .1136 \\ .1156 \\ .1136$	78 72 64 63 60 55 75
.138	40	UNF	.111	83.1	.119	58.5	{ #33 { #32	$.1130 \\ .1160$	77 68	.0026 .0026	$.1156 \\ .1186$	69 60
.164	32	UNC	. 130	83.8	.139	61.6	#29 (#29	$.1360 \\ .1360$	69 78	.0029 .0029	$.1389 \\ .1389$	62 70
.164	36	UNF	.134	83.1	.142	61.0	{ #28  %4	$.1405 \\ .1406$	$\begin{array}{c} 65 \\ 65 \end{array}$	$.0029 \\ .0029$	$\begin{array}{r} .1434 \\ .1435 \end{array}$	57 57
.190	24	UNC	.145	83.1	.156	62.8	<pre>#27 #26 #25 #24 #23</pre>	.1440 .1470 .1495 .1520 .1540	85 79 75 70 66	.0032 .0032 .0032 .0032 .0032 .0032	.1472 .1502 .1527 .1552 .1572	79 74 69 64 61
.190	32	UNF	.156	83.8	.164	64.0	\$ #22 #21 #20	.1562 .1570 .1590 .1610	83 81 76 71	.0032 .0032 .0032 .0032	$.1594 \\ .1602 \\ .1622 \\ .1642$	75 73 68 64
.216	24	UNC	. 171	83.1	.181	64.7	$ \begin{cases} 11_{64} \\ #17 \\ #16 \\ #15 \\ #12 \end{cases} $	.1719 .1730 .1770 .1800	82 79 72 67	.0035 .0035 .0035 .0035	.1754 .1765 .1805 .1835	75 73 66 60
.216	28	UNF	. 177	84.1	.186	64.7	# 16 # 15 # 14 # 13	.1770 .1800 .1820 .1850	84 78 73 67	.0035 .0035 .0035 .0035	.1805 .1835 .1855 .1885	77 70 66 59
.216	32	UNEF	.182	83.8	. 190	64.0	$ \begin{cases} \#  14 \\ \#  13 \\ {}^{3}_{16} \\ \#  12 \end{cases} $	.1820 .1850 .1875 .1890	84 76 70 67	.0035 .0035 .0035 .0035	.1855 .1885 .1910 .1925	75 68 62 58

TABLE A3.1. Tap drill sizes, Unified screw threads, classes 1B and 2B

Thread size per	Threads	Desig-	Classes	1B and 2B m thr	inor diamete eads	er, internal	a Tap drills an		and percent basic thread height			
	per inch	nation	Minimum	Percent ^a basic thread height	Maximum	Percent ^a basic thread height	Drill	size	Percent of thread	Probable oversize, mean	Probable hole size	Percent of thread
in 250	20	UNC	in	82.1	in 207		in (#9 #8 #7	in .1960 .1990 .2010	83 79 75	in .0038 .0038 .0038	in .1998 .2028 2048	77 73 70
.250	20	UNC	.190	83.1	.207	66.2	1 ³ / ₆₄ #6 #5	.2031 .2040 .2055	72 71 69	.0038 .0038 .0038	.2040 .2069 .2078 .2093	66 65 63
.250 250	28	UNF	.211	84.1	.220	64.7	(#3 ⁷ /2 ( ⁷ /2)	$ \begin{array}{c} .2130 \\ .2188 \\ .2188 \end{array} $	80 67 77	.0038 .0038 .0038	.2168 .2226 .2226	72 59 67
.250	36	UNS	.220	83.1	.224	66.5	(#2 #2	.2210 .2210	71 80	.0038	$\substack{.2248\\.2248}$	62 70
.3125	18	UNC	.252	83.8	. 265	65.8	F F F	.2570 .2610 .2570	77 71 85	$.0038 \\ .0041 \\ .0038$	$.2608 \\ .2651 \\ .2608$	72 66 80
.5125	20	UN	.238	83.9	.270	65.4	(H H	.2610	$\begin{array}{c} 79 \\ 72 \end{array}$	.0041 .0041	$.2651 \\ .2701$	73 65
.3125	24	UNF	.267	84.1	.277	65.6	$ \begin{cases} H \\ I \\ J \\ J \\ J \\ J \end{cases} $	.2660 .2720 .2770 .2770 .2770	86 75 66 77	.0041 .0041 .0041 .0041	.2701 .2761 .2811 .2811	78 67 58 68
.0125	20	0 N	.274	83.0	. 282	60.7	1 9/32	.2810	$\begin{array}{c} 68\\67\end{array}$	$.0042 \\ .0042$	$.2852 \\ .2854$	59 58
.3125 .3125	32 36	UNEF UNS	.279 .282	$82.5 \\ 84.5$	.286 .289	$\begin{array}{c} 65.3 \\ 65.1 \end{array}$	${\rm K}_{\frac{9}{22}}$ 7.25 mm	.2810 .2812 .2854	78 77 75	$.0042 \\ .0042 \\ .0042 \\ .0042$	$.2852 \\ .2854 \\ .2896$	67 67 63
.375	16	UNC	.307	83.8	.321	66.5	{ 0 0	$.3125 \\ .3160$	77 73	.0044 .0044	$.3169 \\ .3204$	72 67
.375	20	UN	.321	83.1	.332	66.2	Q	.3230 .3320	80 66 70	.0044 .0044 .0044	.3274 .3364	73
.375	24	UNF	.330	83.1	.340	64.7	R	.3390	67 78	.0044	.3304	
.375	28	UN	.336	84.1	.345	64.7	11/22	.3438	67 77	.0045	.3483	58
.375 .375	32 36	UNEF UNS	.341 .345	83.8 83.1	.349 .352	64.0 63.7	S S	.3480	67 75	.0045 .0045 .0045	.3525 .3525	55 62
.4375	14	UNC	.360	83.5	.376	66.3	T	.3580	86 84	.0046	$.3626 \\ .3640$	81 79
.4375	16	UN	.370	83.1	.384	65.9	3%8 V	.3750	77 75	.0046 .0046	.3796	71
.4375	20	UNF	.383	83.9	.395	65.4	W 25.64	.3860	79     72	.0046	$.3906 \\ .3952$	72
.4375	28	UNEF	.399	83.0	.407	65.7	Y	.4040	72 83	.0046	.4086	62 71
.4375	32	UN	.404	82.5	.411	65.3	{13/32	.4062	77	.0046	.4108	66
. 500	12 13	UNS	.410	83.1 83.1	.428	66.5 66.0	27 64	.4130	72 78	.0047 .0047	.4177	68
.500	16	UN	.432	83.8	.446	66.5	7 16	.4375	77	.0047	.4200	71
.500	$\frac{20}{28}$	UNEF UN	.440 .461 .466	$     84.1 \\     83.8 $	.437	$     \begin{array}{r}       60.2 \\       64.7 \\       64.0     \end{array} $	15 32 15	.4688	67 67 77	.0047 .0048	.4578 .4736 .4736	57 65
.5625	12	UNC	.472	83.6	.490	67.0	{15 31 31	.4688	87 79	.0048	.4736	82
.5625	16	UN	.495	83.1	.509	65.9	1/2 10 5062	.5000	77	.0048	.5048	71
. 5625	18	UNF	. 502	83.8	.515	65.8	1/2	.5000	87 78	.0048	$.5048 \\ 5110$	80
.5625	20	UN	.508	83.9	.520	65.4	33/64	.5156	72	.0048	.5204	65
.5625	24	UNEF	.517	84.1	.527	65.6	0.5203	.5203	78	.0048	.5251	69 57
.5625 .5625	28 32	UN UN	.524 .529	$\begin{array}{c} 83.0\\ 82.5\end{array}$	.532 .536	65.7 65.3	0.5263	.5312 .5263 .5312	78 77	.0049 .0049 .0049	.5312	67 65
$.625 \\ .625$	$\begin{array}{c} 11 \\ 12 \end{array}$	UNC UN	$.527 \\ .535$	$\substack{83.0\\83.1}$	$.546 \\ .553$	$\begin{array}{c} 66.9 \\ 66.5 \end{array}$	17,52 35,64	$.5312 \\ .5469$	79 72	$.0049 \\ .0049$	$.5361 \\ .5518$	75 68
.625	16	UN	.557	83.8	.571	66.5	0.5687	.5625	77 69	$.0049 \\ .0049$	$.5674 \\ .5736$	71 63
.625	18	UNF	. 565	83.1	.578	65.1	0.5687	.5625	87 78	$.0049 \\ .0049$	$.5674 \\ .5736$	80
.625	20	UN	. 571	83.1	.582	66.2	37 64 ( 37 64	.5781	72 87	$.0049 \\ .0049$	.5830 .5830	65 78
.625	24 28	UNEF	.580	83.1 84 1	.590	64.7 64.7	0.5828	.5828	78 67	.0049	.5877	69 57
.625	32	ŬŇ	.591	83.8	.599	64.0	19/82	.5938	77	.0049	.5987	65

### TABLE A3.1. Tap drill sizes, Unified screw threads, classes 1B and 2B-Continued

	Threads	Desig-	Classes	1B and 2B mi thre	nor diamete eads	er, internal		Tap drills	and percent	basic three	ld height	
Thread size	per inch	nation	Minimum	Percent a basic thread height	Maximum	Percent ^a basic thread height	Dril	l size	Percent of thread	Probable oversize, mean	Probable hole size	Percent of thread
in .6875 .6875 .6875 .6875 .6875 .6875	$12 \\ 16 \\ 20 \\ 24 \\ 28 \\ 32$	UN UN UNEF UN UN	in .597 .620 .633 .642 .649 .654	83.6 83.1 83.9 84.1 83.0 82.5	in .615 .634 .645 .652 .657 .661	67.0 65.9 65.4 65.6 65.7 65.3		$ \begin{array}{c} in \\ .5938 \\ .6094 \\ .6250 \\ .6406 \\ .6406 \\ .6562 \\ .6562 \\ .6562 \end{array} $	87 72 77 72 87 67 77	in .0049 .0059 .0050 .0050 .0050 .0050 .0050	$in \\ .5987 \\ .6143 \\ .6300 \\ .6456 \\ .6456 \\ .6612 \\ .6612 \\ .6612$	82 68 71 65 77 57 65
.750 .750 .750 .750 .750 .750 .750	10 12 16 20 28 32	UNC UN UNF UNEF UN UN	.642 .660 .682 .696 .711 .716	$\begin{array}{c} 83.1 \\ 83.1 \\ 83.8 \\ 83.1 \\ 84.1 \\ 83.8 \end{array}$	.663 .678 .696 .707 .720 .724	67.0 66.5 66.5 66.2 64.7 64.0	$\begin{cases} 41_{64} \\ 21_{52} \\ 21_{52} \\ 43_{64} \\ 11_{16} \\ 45_{64} \\ 23_{52} \\ 23_{52} \\ 23_{52} \end{cases}$	$\begin{array}{r} .6406\\ .6562\\ .6562\\ .6719\\ .6875\\ .7031\\ .7188\\ .7188\\ .7188\end{array}$	84 72 87 72 77 72 67 77	$\begin{array}{c} .0050\\ .0050\\ .0050\\ .0050\\ .0050\\ .0050\\ .0051\\ .0051\\ .0051\\ .0051\end{array}$	.6456 .6612 .6612 .6769 .6925 .7082 .7239 .7239	80 68 82 68 71 64 56 64
.8125 .8125 .8125 .8125 .8125 .8125	$     \begin{array}{r}       12 \\       16 \\       20 \\       28 \\       32     \end{array} $	UN UN UNEF UN UN	.722 .745 .758 .774 .779	$\begin{array}{r} 83.6 \\ 83.1 \\ 83.9 \\ 83.0 \\ 82.5 \end{array}$	.740 .759 .770 .782 .786	$67.0 \\ 65.9 \\ 65.4 \\ 65.7 \\ 65.3$	$47_{64}$ 3/4 $49_{64}$ $25_{52}$ $25_{52}$	.7344 .7500 .7656 .7812 .7812	72 77 72 67 77	.0051 .0052 .0052 .0052 .0052 .0052	.7395 .7552 .7708 .7864 .7864	
.875 .875 .875 .875 .875 .875 .875 .875	9 12 14 16 20 28 32	UNC UN UNF UN UNEF UN UN	.755 .785 .798 .807 .821 .836 .841	83.1 83.1 83.0 83.8 83.1 84.1 83.8	.778 .803 .814 .821 .832 .845 .849	$\begin{array}{c} 67.2 \\ 66.5 \\ 65.7 \\ 66.5 \\ 66.2 \\ 64.7 \\ 64.0 \end{array}$	$\begin{array}{c} 49_{64}\\ 49_{54}\\ 25_{52}\\ 51_{64}\\ 31_{64}\\ 0.8024\\ 113_{76}\\ 53_{64}\\ 13_{76}\\ 53_{64}\\ 27_{52}\\ 27_{52}\\ 27_{52}\\ 27_{52}\\ \end{array}$	$\begin{array}{r} .7656\\ .7812\\ .7969\\ .7969\\ .8024\\ .8125\\ .8125\\ .8281\\ .8438\\ .8438\end{array}$	76 87 72 84 78 67 77 72 67 77	$\begin{array}{r} .0052\\ .0052\\ .0052\\ .0052\\ .0052\\ .0052\\ .0053\\ .0053\\ .0055\\ .0055\\ .0055\end{array}$	.7708 .7864 .8021 .8021 .8076 .8177 .8178 .8335 .8493 .8493	72 82 67 79 73 62 70 64 55 63
.9375 .9375 .9375 .9375 .9375 .9375	12 16 20 28 32	UN UN UNEF UN UN	.847 .870 .883 .899 .904	83.6 83.1 83.9 83.0 82.5	.865 .884 .895 .907 .911	$\begin{array}{c} 67.0\\ 65.9\\ 65.4\\ 65.7\\ 65.3 \end{array}$	{27,32 55,64 7/8 57,64 29,32 29,32	.8438 .8594 .8750 .8906 .9062 .9062	87 72 77 72 67 77	.0055 .0056 .0057 .0059 .0060 .0060	.8493 .8650 .8807 .8965 .9122 .9122	81 67 70 63 55 62
1.000 1.000 1.000 1.000 1.000 1.000 1.000	8 12 14 16 20 28 32	UNC UNF UNS UN UNEF UN UN	.865 .910 .923 .932 .946 .961 .966	83.1 83.0 83.8 83.1 84.1 84.1 83.8	.890 .928 .938 .946 .957 .970 .974	67.7 66.5 66.8 66.5 66.2 64.7 64.0	$\begin{cases} 55_{64} \\ 7_8 \\ 29_{52} \\ 59_{54} \\ 59_{54} \\ 59_{64} \\ 0.9274 \\ 15_{16} \\ 61_{64} \\ 31_{52} \\ 31_{52} \\ 31_{52} \end{cases}$	$\begin{array}{c} .8594\\ .8750\\ .9062\\ .9219\\ .9219\\ .9274\\ .9375\\ .9531\\ .9688\\ .9688\end{array}$	87 77 87 72 84 78 78 77 72 67 77	$\begin{array}{c} .0059\\ .0059\\ .0060\\ .0060\\ .0061\\ .0062\\ .0063\\ .0063\\ .0065\\ .0065\end{array}$	$\begin{array}{r} .8653\\ .8809\\ .9122\\ .9279\\ .9279\\ .9335\\ .9437\\ .9594\\ .9753\\ .9753\end{array}$	83 73 81 67 78 72 69 63 53 53 61
$\begin{array}{c} 1.0625\\ 1.0625\\ 1.0625\\ 1.0625\\ 1.0625\\ 1.0625\\ 1.0625\\ 1.0625\end{array}$	8 16 18 20 28	UN UN UNEF UN UN	.927 $.972$ $.995$ $1.002$ $1.008$ $1.024$	83.4 83.6 83.1 83.8 83.9 83.0	.952 .990 1.009 1.015 1.020 1.032	68.0 67.0 65.9 65.8 65.4 65.7	$ \begin{smallmatrix} 59_{64} \\ 0.9274 \\ 15_{16} \\ 31_{32} \\ 63_{64} \\ 1 \\ 1 \\ 1_{1_{64}} \\ 1_{1_{52}} \end{smallmatrix} $	$\begin{array}{r} .9219\\ .9274\\ .9375\\ .9688\\ .9844\\ 1.0000\\ 1.0000\\ 1.0156\\ 1.0312\end{array}$	87 83 77 87 72 77 87 72 67	$\begin{array}{r} .0060\\ .0061\\ .0062\\ .0065\\ .0067\\ .0069\\ .0069\\ .0070\\ .0071\\ \end{array}$	$\begin{array}{r} .9279\\ .9335\\ .9437\\ .9753\\ .9911\\ 1.0069\\ 1.0069\\ 1.0226\\ 1.0383\end{array}$	$\begin{array}{c} 83\\ 79\\ 73\\ 81\\ 66\\ 68\\ 77\\ 61\\ 52\end{array}$
$1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 $	7 8 12 16 18 20 28	UNC UN UNF UN UNEF UN UN	.970 .990 1.035 1.057 1.065 1.071 1.086	83.5 83.1 83.8 83.1 83.1 83.1 83.1 84.1	$.998 \\ 1.015 \\ 1.053 \\ 1.071 \\ 1.078 \\ 1.082 \\ 1.095$	$\begin{array}{c} 68.4 \\ 67.7 \\ 66.5 \\ 66.5 \\ 65.1 \\ 66.2 \\ 64.7 \end{array}$	${                                    $	$\begin{array}{r} .9688\\ .9844\\ 1.0000\\ 1.0312\\ 1.0469\\ 1.0625\\ 1.0625\\ 1.0781\\ 1.0781\\ 1.0938\end{array}$	84 76 77 87 72 77 87 65 72 67	.0062 .0067 .0069 .0071 .0072 .0074	.9750 .9911 1.0069 1.0383 1.0541 1.0699	81 72 73 80 65 68
$1.1875 \\ 1.1875 \\ 1.1875 \\ 1.1875 \\ 1.1875 \\ 1.1875 \\ 1.1875 \\ 1.1875 \\ 1.1875 $	8 12 16 18 20 28	UN UN UN UNEF UN UN	$1.052 \\ 1.097 \\ 1.120 \\ 1.127 \\ 1.133 \\ 1.149$	83.4 83.6 83.1 83.8 83.9 83.0	$1.077 \\ 1.115 \\ 1.134 \\ 1.140 \\ 1.145 \\ 1.157$	$68.0 \\ 67.0 \\ 65.9 \\ 65.8 \\ 65.4 \\ 65.7$	$1^{1}_{-16}$ $1^{3}_{-52}$ $1^{1}_{-8}$ $1^{1}_{-8}$ $1^{9}_{-64}$ $1^{9}_{-64}$ $1^{9}_{-64}$ $1^{5}_{-52}$	$\begin{array}{c} 1.0625\\ 1.0938\\ 1.1250\\ 1.1250\\ 1.1250\\ 1.1406\\ 1.1406\\ 1.1562\end{array}$	77 87 77 87 65 72 67			
$1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.25$	7 8 12 16 18 20 28	UNC UN UNF UN UNEF UN UN	$1.095 \\ 1.115 \\ 1.160 \\ 1.182 \\ 1.190 \\ 1.196 \\ 1.211$	$\begin{array}{c} 83.5\\ 83.1\\ 83.1\\ 83.8\\ 83.8\\ 83.1\\ 83.1\\ 83.1\\ 84.1\end{array}$	$1.123 \\ 1.140 \\ 1.178 \\ 1.196 \\ 1.203 \\ 1.207 \\ 1.220$		$1^{3}_{52}$ $1^{1}_{28}$ $\{1^{5}_{52}$ $1^{11}_{64}$ $1^{3}_{16}$ $\{1^{3}_{16}$ $\{1^{3}_{64}$ $1^{13}_{64}$ $1^{7}_{52}$	$\begin{array}{c} 1.0938\\ 1.1250\\ 1.1562\\ 1.1719\\ 1.1875\\ 1.1875\\ 1.2031\\ 1.2031\\ 1.2188\end{array}$	84 77 87 72 77 87 65 72 65 72 67			

Thread size p	Threada	Classes 1B and 2B minor diameter, internal threads					Tap drills and percent basic thread height					
Thread size p	per inch	nation	Minimum	Percent ^a basic thread height	Maximum	Percent ^a basic thread height	Dr	ill size	Percent of thread	Probable oversize, mean	Probable hole size	Percent of thread
in			in		in		in	in		in	in	
1.3125	8	UN	1.177	83.4	1.202	68.0	$\begin{cases} 1^{11} & 64 \\ 1^{3} & 64 \end{cases}$	$1.1719 \\ 1.1875$	$\frac{87}{77}$			
1.3125	12	UN	1.222	83.6	1.240	67.0	17/32	1.2188	87			
1.3125	16	UN	1.245	83.1	1.259	65.9	11.64	$1.2344 \\ 1.2500$	$\frac{72}{77}$			
1.3125	18	UNEF	1.252	83.8	1.265	65.8	$\{114$	1.2500	87			
1.3125	20	UN	1.258	83.9	1.270	65.4	117/64	1.2656 1.2656	65 72			
1.3125	28	UN	1.274	83.0	1.282	65.7	1%2	1.2812	67			
1.375	6	UNC	1.195	83.1	1.225	69.3	$     \begin{bmatrix}       1 & 0 & 0 \\       1 & 1 & 3 & 64 \\       1 & 1 & 5 & 64     \end{bmatrix}   $	1.1875 1.2031 1.2188	87 79 72			
1.375	8	UN	1.240	83.1	1.265	67.7	$     \begin{cases}       115 & 64 \\       11 & 64       \end{cases} $	1.2344 1.2500	87			
1.375	12	UNF	1.285	83.1	1.303	66.5	19/32	1.2812	87			
1.375	16	UN	1.307	83.8	1.321	66.5	119 15/16	1.2969 1.3125	$\frac{72}{77}$			
1.375	18	UNEF	1.315	83.1	1.328	65.1	15 16	1.3125	87			
1.375	20	UN	1.321	83.1	1.332	66.2	1 21 64	1.3281 1.3281	$\frac{65}{72}$			
1.375	28	ŪN	1.336	84.1	1.345	64.7	111/32	1.3438	67			
1.4375	6	UN	1.257	83.4	1.288	69.1	117,64	$1.2656 \\ 1.2812$	$\frac{79}{72}$			
1.4375	8	UN	1.302	83.4	1.327	68.0	11964	1.2969	87			
1 4375	19	UN	1 947	02.0	1 965	0010	111/32	1.3125	87			
1 4375	14	UN	1.347	80.0 92.1	1.303	67.0	1 23 64	1.3594 1.2750	$\frac{72}{77}$			
1.4375	18	UNEF	1.370	83.8	$1.384 \\ 1.390$	65.8	13/8	1.3750	87			
$1.4375 \\ 1.4375$	20 28	UN UN	$\begin{smallmatrix}1.383\\1.399\end{smallmatrix}$	$\substack{83.9\\83.0}$	$\begin{array}{c} 1.395 \\ 1.407 \end{array}$	$\substack{65.4\\65.7}$	$1^{25}_{64}$ $1^{13}_{32}$	$1.3906 \\ 1.4062$	$\begin{smallmatrix} 72\\67\end{smallmatrix}$			
1.500	6	UNC	1.320	83.1	1.350	69.3	{15/16 1 21	$1.3125 \\ 1.3281$	87 79			
1.500	8	UN	1.365	83.1	1.390	67.7	1 23 64	1.3594	87			
1 500	10	TINE	1 410	00.1	1 400		113/2	1.3750	87			
1.500	12	UNE	1.410	83.1	1.448	66.5	127 64	1.4219	$\frac{72}{77}$			
$1.500 \\ 1.500$	10	UNEF	1.432	83.8 83.1	$1.440 \\ 1.452$	66.5	$1^{1/16}$ $1^{7/16}$	1.4375	87			
$\substack{1.500\\1.500}$	$\begin{array}{c} 20\\ 28\end{array}$	UN UN	$\begin{smallmatrix}1.446\\1.461\end{smallmatrix}$		$\substack{1.457\\1.470}$	$\substack{66.2\\64.7}$	$1^{29}_{64}_{1^{15}32}$	$1.4531 \\ 1.4688$	$\begin{array}{c} 72 \\ 67 \end{array}$			
1,5625	6	UN	1.382	83.4	1.413	69.1	${125}_{64} {113}_{32}$	$1.3906 \\ 1.4062$	$\begin{array}{c} 79 \\ 72 \end{array}$			
1.5625	8	UN	1.427	83.4	1.452	68.0	1 27 64	1.4219	87			
1 5005	1 10	TIN	1 170	00.0	1.400	00.0	115/32	1.4688	87			
1.0020	12	UN	1.472	80.0	1.490	67.0	1 31 64	1.4844 1.5000	$\frac{72}{77}$			
1.5695	10	UN	1.495	80.1	1.509	65.9	$\int \frac{1}{1} \frac{1}{2}$	1.5000	87			
1.5625	20	UNEF	1.502	83.9	1.515 1.520	65.4	$1^{33}_{64}$ $1^{33}_{64}$	$egin{array}{c} 1.5156 \ 1.5156 \end{array}$	$\begin{array}{c} 65\\72\end{array}$			
1.625	6	UN	1.445	83.1	1.475	69.3	${1^{29}_{64} \atop 1^{15}_{52}}$	$1.4531 \\ 1.4688$	$\frac{79}{72}$			
1.625	8	UN	1.490	83.1	1.515	67.7	131 64	1.4844	87			
1 695	19	TINI	1 525	02.1	1 552	60 E	$1^{17}_{117}$	1.5312	87		2	
1.625	16	UN	1.557	80.1 92 9	1.505	66.5	135 64	1.5469 1.5625	$\frac{72}{77}$			
1.625	10	UNER	1.565	82 1	1.579	65.1	$\int 1^{9}_{16}$	1.5625	87			
1.625	20	UN	1.505	83.1	1.578	66.2	$1^{37}_{64}$ $1^{37}_{64}$	$1.5781 \\ 1.5781$	$\begin{array}{c} 65\\72\end{array}$			
1.6875	6	UN	1.507	83.4	1.538	69.1	$\begin{bmatrix} 1 \frac{1}{2} \\ 1 \frac{33}{4} \end{bmatrix}$	$1.5000 \\ 1.5156$	87 79			
1 6975		7737	1 770	00.4	1 577	00.1	117/32	1.5312	$\frac{72}{77}$			
1.6875	12	UN	1.552	83.4	1.877	68.0 67.0	1 % 16 1 19/32	1.5938	87			
1.6875	12	UN	1.690	00.0 92.1	1 634	65.0	13964	1.6094 1.6250	$\frac{72}{77}$			
1.6875	18	UNEF	1.627	60.1 62.6	1.640	65.8	15/8	1.6250	87			
1.6875	20	UN	1.633	83.9	1.645	65.4	$1^{41}_{64}$ $1^{41}_{64}$	$1.6406 \\ 1.6406$	$\begin{array}{c} 65\\72\end{array}$			
1.750	5	UNC	1.534	83.1	1.568	70.1	$\begin{cases} 1^{17} \\ 1^{35} \\ 1^{35} \\ 4^{35} \end{cases}$	$1.5312 \\ 1.5469$	84 78			
1.750	6	UN	1.570	83.1	1.600	69.3	$1^{9}_{16}$ $1^{37}_{64}$	$1.5625 \\ 1.5781$	87 79			
1 770		7-3-7	1	00	1 0/0		$1^{19}_{32}$ $1^{39}_{64}$	$1.5938 \\ 1.6094 \\ 1.0094$	72 87			
1.750	8	UN	1.615	83.1	1.640	67.7	$1\frac{1}{141}$	1.6250 1.6406 1.6562	67 87			
1.750	12	UN	1.660	83.1	1.678	66.5	143 64	1.6719	72			
1.750 1.750	$\frac{16}{20}$	UN UN	$1.682 \\ 1.696$	83.8 83.1	$1.696 \\ 1.707$	$\begin{array}{c} 66.5 \\ 66.2 \end{array}$	1 11/16 1 45/64	$1.6875 \\ 1.7031$	$\begin{array}{c} 77 \\ 72 \end{array}$			

### TABLE A3.1. Tap drill sizes, Unified screw threads, classes 1B and 2B-Continued

	Threads	Threads Desig- per inch nation	Classes 1B and 2B minor diameter, internal threads				Tap drills and percent basic thread height					
Thread size	per inch	nation	Minimum	Percent ^a basic thread height	Maximum	Percent ^a basic thread height	Dril	ll size	Percent of thread	Probable oversize, mean	Probable hole size	Percent of thread
			in		in		in	in				
1 9195	6	UN	1 639	83.4	1 663	60.1	15/8 141	1.6250 1.6406	87 70			
1.8125	0	UN	1.052	83.4	1.005	09.1	1 21/32	1.6406	79			
1.8125	8	UN	1.677	83.4	1.702	68.0	$\begin{cases} 1 & 43 & 64 \\ 1 & 11 & 64 \end{cases}$	1.6719 1.6875	87			
1.8125	12	UN	1.722	83.6	1.740	67.0	1 23 32	1.7188	87			
1.8125	16	UN	1.745	83.1	1.759	65.9	13/4	1.7344	72			
1.8125	20	ÚN	1.758	83.9	1.770	65.4	1 49 64	1.7656	72			
1.875	6	UN	1.695	83.1	1.725	69.3	145 64	1.7031	79			
1.875	8	UN	1.740	83.1	1.765	67.7	$1^{23}_{32}$ $1^{3}_{4}$	1.7188	72			
1.875	12	UN	1.785	83.1	1.803	66.5	1 25/32	1.7812	87			
1.875	16	UN	1.807	83.8	1.821	66.5	113 16	1.8125	77			
1.875	20	UN	1.821	83.1	1.832	66.2	1 53 64	1.8281	72			
1.9375	6	UN	1.757	83.4	1.788	69.1	1 49 64	1.7656	79			
1 0975	0	TIN	1 809	00.4	1.007	CP 0	1 51 64	1.7812	87			
1.9375	8	UN	1.802	83.4	1.847	68.0	$1^{13}_{127}$	1.8125	77			
1.9375	12	UN	1.847	83.6	1.865	67.0	155 64	1.8438	72			
1.9375 1.0375	$\frac{16}{20}$	UN	1.870 1.883	83.1	1.884 1.895	65.9	17/8	1.8750	77			
1.3373	20	UN	1.000	00.0	1.000	05.4	× /64	1.5000				
2.000	4.5	UNC	1.759	83.5	1.795	71.0	$1^{25}$	$1.7812 \\ 1.8281$	$\begin{vmatrix} 76\\79 \end{vmatrix}$			
2.000	6	UN	1.820	83.1	1.850	69.3	1 27 32	1.8438	72			
2.000	8	UN	1.800	83.1	1.890	67.7	1 1/8	1.8750	87			
2.000	12	UN	1.910	83.1	1.928	66.5	1 59 64	1.9219	72			
$2.000 \\ 2.000$	$\frac{16}{20}$	UN	1.932	83.1	$1.946 \\ 1.957$	66.2	1 61 64	1.9575	72			
2 0625	16	UNS	1 995	83.1	2 009	65.9	9	2 0000	77			
2.0020	10	0110	1.000	00.1	2.000	00.5	(16) (	2.0000				
2.125	6	UN	1.945	83.1	1.975	69.3	131/29	$1.9531 \\ 1.9688$	$\frac{79}{72}$			
2.125	8	UN	1.990	83.1	2.015	67.7	2	2.0000	77			
$2.125 \\ 2.125$	$12 \\ 16$	UN	2.035	83.1	$2.053 \\ 2.071$	66.5	$2^{1/32}$ $2^{1/16}$	2.0312 2.0625	87			
2.125	20	UN	2.071	83.1	2.082	66.2	$2^{1}_{16}$	2.0625	96			
2.1875	16	UNS	2.120	83.1	2.134	65.9	$\frac{21}{8}$	2.1250	77			
2.250	4.5	UNC	2.090	83.5	2.045	71.0		2.0000 2.0312	87			
2.250	6	UN	2.070	83.1	2.100	69.3	21/16	2.0625	87			
$2.250 \\ 2.250$	$\frac{8}{12}$	UN	$2.115 \\ 2.160$	83.1	$2.140 \\ 2.178$	67.7 66.5	$2\frac{1}{8}$ $2\frac{5}{32}$	2.1250 2.1562	87			
2.250	16 20	ŪN UN	2.182	83.8	2.196	66.5	$\frac{2^{3}}{16}$	2.1875 2.1875	77			
2.230	20	UN	2.190	03.1	2.207	66.2	2 716	2.1013	50			
2.3125	16	UNS	2.245	83.1	2.259	65.9	$2\frac{1}{4}$	2.2500	77			
2.375	6	UN	2.195	83.1	2.226	68.8	$2^{3}_{16}$	2.1875	87			
$2.375 \\ 2.375$	12	UN	$2.240 \\ 2.285$	83.1	$2.265 \\ 2.303$	67.7 66.5	$\frac{2}{54}$ mm	2.2500 2.2835	85			
2.375 2.375	$\frac{16}{20}$	UN	2.307	83.8	2.321	66.5	25/16 25 /	2.3125 2.3125	77			
2,075	20	UN	2.021	03.1	2.002	00.2	2 716	2,0120				
2.4375	16	UNS	2.370	83.1	2.384	65.9	2%	2.3750				
2.500	4	UNC	2.229	83.4	2.267	71.7		2.2188 2.2500	$\frac{87}{77}$			
2.500	6	UN	2.320	83.1	2.350	69.3	25 16	2.3125	87			
2.500 2.500	12		2.365 2.410	83.1 83.1	2.390	67.7	$\frac{2^{3}}{8}$	$2.3750 \\ 2.4062$	77 87			
$2.500 \\ 2.500$	$16^{12}$	UN	2.432	83.8	$2.426 \\ 2.446$	66.5	27/16	2.4375	77			
2.500	20	UN	2.446	83.1	2.457	66.2	2'/16	2.4375	96			
2.625	4	UN	2.354	83.4	2.392	71.7	211/32 236	2.3438 2.3750	87			
2.625	6	UN	2.445	83.1	2.475	69.3	27/16	2.3750 2.4375	87			
$2.625 \\ 2.625$	8 12		2.490 2.535	83.1 83.1	2.515 2.553	67.7	$\frac{21}{2}$	2.5000 2.5319	77 87			
2.625	16	ŬN	2.557	83.8	2.571	66.5	29/16	2.5625	77			
2.625	20	UN	2.571	83.1	2.582	66.2	29/16	2.5625	96			
2.750	4	UNC	2.479	83.4	2.517	71.7	$\frac{21}{2}$	2.5000	77			
2.750	8	UN	$2.570 \\ 2.615$	83.1	$2.600 \\ 2.640$	67.7	$2\frac{5}{8}$	2.3025 2.6250	87 77			
$2.750 \\ 2.750$	$\frac{12}{16}$	UN UN	$2.660 \\ 2.682$	83.1 83.8	2.678 2.696	66.5 66.5	$\frac{2^{21}}{32}$	$2.6562 \\ 2.6875$	87 77			
2.750	20	ŬŇ	2.696	83.1	2.707	66.2	211/16	2.6875	96			
								1				

TABLE A3.1. Tap drill sizes, Unified screw threads, classes 1B and 2B-Continued

Phread size	Threads	Desig-	Classes :	B and 2B mi thre	nor diamete ads	r, internal		Tap drills a	and percent	basic thread	d height	
l'hread size	per inch	nation	Minimum	Percent a basic thread height	Maximum	Percent ^a basic thread height	Drill	size	Percent of thread	Probable oversize, mean	Ad height Probable hole size	Percent of thread
in 2.875 2.875 2.875 2.875 2.875 2.875 2.875	$4 \\ 6 \\ 8 \\ 12 \\ 16 \\ 20$	UN UN UN UN UN	$in \\ 2.604 \\ 2.695 \\ 2.740 \\ 2.785 \\ 2.807 \\ 2.821$	83.4 83.1 83.1 83.1 83.8 83.8 83.1	in 2.642 2.725 2.765 2.803 2.821 2.832	71.769.367.766.566.566.2	in $25_8$ $211_{16}$ $23_4$ $225_{32}$ $213_{16}$ $213_{16}$ $213_{16}$	$\begin{array}{c} in\\ 2.6250\\ 2.6875\\ 2.7500\\ 2.7812\\ 2.8125\\ 2.8125\end{array}$	77 87 77 87 77 96			
3.000 3.000 3.000 3.000 3.000 3.000 3.000		UNC UN UN UN UN UN	2.729 2.820 2.865 2.910 2.932 2.946	$\begin{array}{c} 83.4 \\ 83.1 \\ 83.1 \\ 83.1 \\ 83.1 \\ 83.8 \\ 83.8 \\ 83.1 \end{array}$	$2.767 \\ 2.850 \\ 2.890 \\ 2.928 \\ 2.946 \\ 2.957$	71.769.367.766.566.566.2	$\begin{array}{c} 2\frac{3}{4}\\ 2^{13},_{16}\\ 2\frac{7}{8}\\ 74 \text{ mm}\\ 2^{15},_{16}\\ 2^{15},_{16}\\ 2^{15},_{16}\end{array}$	$\begin{array}{c} 2.7500\\ 2.8125\\ 2.8750\\ 2.9134\\ 2.9375\\ 2.9375\end{array}$	77 87 77 80 77 96			
3.250	4	UNC	2.979	83.4	3.017	71.7	3	3.0000	77			
$\substack{3.500\\3.750}$	$\frac{4}{4}$	UNC UNC	$\substack{3.229\\3.479}$	$\substack{83.4\\83.4}$	$\substack{3.267\\3.517}$	$71.7 \\ 71.7$	$3\frac{1}{4}$ $3\frac{1}{2}$	$3.2500 \\ 3.5000$	77 77			

TABLE A3.1. Tap drill sizes, Unified screw threads, classes 1B and 2B-Continued

* 100% basic thread height = 0.75H (values of 0.75H are shown in col. 14, table 2.1).

Thread size	Threads	Desig-	Class 3	B minor diam	eter, intern	al threads		Tap drills a	and percent	basic threa	d height	
Thread size	per inch	nation	Minimum	Percent a basic thread height	Maximum	Percent ^a basic thread height	Dril	l size	Percent of thread	Probable oversize, mean	Probable hole size	Percent of thread
in .060	80	UNF	in 0.0465	83.1	in 0.0514	52.9	${{\#56}\atop{{}^{3}\!\!\!\!{}^{3}\!\!\!{}^{4}\!\!\!{}^{4}}}^{in}$	$\stackrel{in}{\stackrel{0.0465}{.0469}}$	83 81	$in \\ 0.0015 \\ .0015$	$\overset{in}{\substack{0.0480\\.0484}}$	74 71
.073	64	UNC	.0561	83.3	.0623	52.7	$\begin{cases} #54 \\ #53 \end{cases}$	$.0550 \\ .0595$	89 67	$.0015 \\ .0015$	$.0565 \\ .0610$	81 59
.073	72	UNF	.0580	83.1	.0635	52.7	{#53 1, ₁₆	$.0595 \\ .0625$	75 58	$.0015 \\ .0015$	$.0610 \\ .0640$	67 50
.086	56	UNC	.0667	83.2	.0737	53.0	$\left\{ \begin{array}{l} \# 51 \\ \# 50 \\ \# 49 \end{array} \right.$	.0670 .0700 .0730	$\begin{array}{c} 82\\69\\56\end{array}$	.0017 .0017 .0017	.0687 .0717 .0747	75 62 49
.086	64	UNF	.0691	83.3	.0753	52.7	$\left\{egin{array}{c} \#50\\ \#49 \end{array} ight.$	.0700 .0730	79 64	.0017 .0017	.0717 .0747	70 56
.099	48	UNC	.0764	83.5	.0845	53.6	$ \begin{cases} \# 48 \\ \frac{5}{64} \\ \# 47 \\ \# 46 \\ \# 45 \\ \# 46 \\ \# 46 \end{cases} $	.0760 .0781 .0785 .0810 .0820 .0810	85 77 76 67 63 78	$\begin{array}{r} .0019\\ .0019\\ .0019\\ .0019\\ .0019\\ .0019\\ .0019\\ .0019\\ .0019\end{array}$	0.0779 0.0800 0.0804 0.0829 0.0839 0.0829	78 70 69 60 56 69
.099	56	UNF	.0797	83.2	.0865	53.9	$     45 \\     \#44 $	.0820 .0860	73 56	$.0019 \\ .0019$	.0839 .0879	65 48
.112 .112	40	UNC	.0849	83.4	.0939	55.7	$ \begin{cases} \# 44 \\ \# 43 \\ \# 42 \\ \frac{3}{22} \\ \# 43 \\ \# 42 \end{cases} $	.0860 .0890 .0935 .0938 .0890 .0935	80 71 57 56 85 68	$\begin{array}{r} .0019\\ .0020\\ .0020\\ .0020\\ .0020\\ .0020\\ .0020\\ .0020\\ .0020\end{array}$	.0879 .0910 .0955 .0958 .0910 .0955	74 65 51 50 78 61
		UNF	.0334	00.0			$\binom{3}{32}{#41}$	.0938	67 59	.0020	.0958	52
.125	40	UNC	.0979	83.4	.1062	57.9	(#40 #39 #38 #37 #28	.0980 .0995 .1015 .1040	83 79 72 65	.0023 .0023 .0023 .0023 .0023	.1003 .1018 .1038 .1063 .1028	76 71 65 58
.125	44	UNF	. 1004	83.3	. 1079	57.9	# 38 { # 37   # 36	.1015 .1049 .1065	71 63	.0023	.1063	63 55
.138	32	UNC	. 1040	83.8	.1140	59.1	(#37 #36 %4 #35 #34 #33	.1040 .1065 .1094 .1100 .1110 .1130	84 78 70 69 67 62	0.0023 0.0023 0.0026 0.0026 0.0026 0.0026	$\begin{array}{c} .1063 \\ .1088 \\ .1120 \\ .1126 \\ .1136 \\ .1156 \end{array}$	78 72 64 63 60 53
.138	40	UNF	.1110	83.1	.1186	59.7	$\left\{ \begin{array}{c} \#  34 \\ \#  33 \\ \#  32 \end{array} \right.$	.1110 .1130 .1160	83 77 68	.0026 .0026 .0026	$.1136 \\ .1156 \\ .1186$	75 69 60

TABLE A3.2. Tap drill sizes, Unified screw threads, class 3B

	Threads	Desig-	Class 3	B minor diam	eter, intern	al threads		Tap drills a	and percent	basic threa	d height	
in .164	per inch	nation	Minimum	Percent ^a basic thread height	Maximum	Percent ^a basic thread height	Drill	size	Percent of thread	Probable oversize, mean	Probable hole size	Percent of thread
in 164	39	UNC	in 1300	83.8	in 1389	61.8	in #20	in 1360	60	in 0020	in 1280	
. 164	36	UNF	.1340	83.1	.1416	62.1	$\begin{cases} \# 29 \\ \# 29 \\ \# 28 \\ 9 \checkmark \end{cases}$	.1360 .1360 .1405 1406	78 65 65	.0029	.1389 .1389 .1434 1425	70 57
							(#27	.1400	85	.0029	.1435	79
.190	24	UNC UNF	. 1450	83.1	.1555	63.7 63.8		$ \begin{array}{r}     .1470 \\     .1495 \\     .1520 \\     .1540 \\     .1562 \\     .1570 \\     .1570 \\   \end{array} $	79 75 70 66 83 81 76	$\begin{array}{c} .0032\\ .0032\\ .0032\\ .0032\\ .0032\\ .0032\\ .0032\\ .0032\end{array}$	.1502 .1527 .1552 .1572 .1594 .1602	$74 \\ 69 \\ 64 \\ 61 \\ 75 \\ 73 \\ 73 \\ 73 \\ 73 \\ 73 \\ 73 \\ 73$
							#21 #20	.1610	70	.0032	.1642	68 64
.216	24	UNC	.1710	83.1	.1807	65.2		.1719 .1730 .1770 .1800	82 79 72 67	.0035 .0035 .0035 .0035 .0035	.1754 .1765 .1805 .1835 .1835	75 73 66 60
.216	28	UNF	. 1770	84.1	.1857	65.3	# 10 # 15 # 14 # 13 # 14		$     \begin{array}{r}       84 \\       78 \\       73 \\       67 \\       84     \end{array} $	.0035 .0035 .0035 .0035 .0035	.1805 .1835 .1855 .1885 .1885 .1855	70 66 59 75
.216	32	UNEF	.1820	83.8	.1895	65.3	#13 $^{3}_{16}$ #12	.1850 .1875 .1890	76 70 67	$.0035 \\ .0035 \\ .0035 \\ .0035$	$.1885 \\ .1910 \\ .1925$	68 62 58
.250	20	UNC	. 1960	83.1	.2067	66.7	$ \begin{pmatrix} \# 9 \\ \# 8 \\ \# 7 \\ {}^{13}_{64} \\ \# 6 \end{pmatrix} $	$\begin{array}{c} .1960\\ .1990\\ .2010\\ .2031\\ .2040\end{array}$	83 79 75 72 71	.0038 .0038 .0038 .0038 .0038 .0038	.1998 .2028 .2048 .2069 .2078	77 73 70 66 65
.250	28	UNF	.2110	84.1	.2190	66.8	#5 }#3 1/2	2055 .2130 .2188	69 80 67	.0038	.2093 .2168 .2226	63 72 59
.250	32	UNEF	.2160	83.8	. 2229	66.8	${i_{32} \\ \#2}$	.2188 .2210	77 71	.0038	$.2226 \\ .2248$	67 62
.3125	18	UNC	.2520	83.8	.2630	68.6	${\mathbf{F}}_{\mathbf{G}}$	$.2570 \\ .2610$	77 71	$.0038 \\ .0041$	$.2608 \\ .2651$	72 66
.3125	20	UN	. 2580	83.9	. 2680	68.5	<b>F</b> G H	$     \begin{array}{r}       .2570 \\       .2610 \\       .2660     \end{array} $	85 79 72	.0038 .0041 .0041	$.2608 \\ .2651 \\ .2701$	80 73 65
.3125	24	UNF	.2670	84.1	.2754	68.5	${\mathbf{I} \mathbf{I} \\ \mathbf{I}}$	$.2660 \\ .2720$	86 75	.0041 .0041	$.2701 \\ .2761$	78 67
.3125 .3125	28 32	UNUNEF	.2740 .2790	83.0 82.5	.2807	68.5 68.5	$\begin{cases} J \\ \{ K \\ 9 \\ 32 \end{cases}$	$\begin{array}{c} .2770 \\ .2810 \\ .2812 \end{array}$	77 78 77	.0041 .0042 .0042	.2811 .2852 .2854	68 67 67
.375	16	UNC	.3070	83.8	.3182	70.0	{5,16	.3125	77 73	.0044	$.3169 \\ .3204$	72 67
.375 .375 .375 .375 .375	$20 \\ 24 \\ 28 \\ 32$	UN UNF UN UNEF	.3210 .3300 .3360 .3410	$\begin{array}{c} 83.1 \\ 83.1 \\ 84.1 \\ 83.8 \end{array}$	.3297 .3372 .3426 .3469	$     \begin{array}{r}       69.7 \\       69.8 \\       69.8 \\       69.2     \end{array} $	P Q R n	$     \begin{array}{r}         3.3230 \\         .3320 \\         .3390 \\         .3438     \end{array} $	80 79 78 77	.0044 .0044 .0044 .0045	.3274 .3364 .3434 .3483	73 71 68 66
.4375	14	UNC	.3600	83.5	.3717	70.9	{T 23	.3580 .3594	86 84	$.0046 \\ .0046$	$.3626 \\ .3640$	81 79
.4375	16	UN	.3700	83.1	.3800	70.8		.3750 .3770	77 75	.0046 .0046	.3796 .3816	71
.4375	20	UNF	.3830	83.9	. 3916	70.7	W 25 64	.3860	79 72	.0046	.3906	65
.4375 .4375	28 32	UNEF UN	.3990 .4040	83.0 82.5	.4051 .4094	69.8 69.2	$\{ \begin{matrix} \mathbf{Y} \\ \mathbf{Y} \\ 1_{3_{\widetilde{32}}} \end{matrix}$	$.4040 \\ .4040 \\ .4062$	72 83 77	$.0046 \\ .0046 \\ .0046$	$.4086 \\ .4086 \\ .4108$	62 71 66
. 500	12	UNS	.4100	83.1	. 4223	71.8	$Z_{27 \swarrow}$	$.4130 \\ 4219$	80 72	.0047	.4177 .4266	76
$.500 \\ .500$	13 16	UNC UN	$.4170 \\ .4320$	$\begin{array}{c} 83.1\\ 83.8\end{array}$	$.4284 \\ .4419$	$\begin{array}{c} 71.7 \\ 71.6 \end{array}$	27/64 7/16	$.4219 \\ .4375$	78 77	$.0047 \\ .0047$	$.4266 \\ .4422$	73
$.500 \\ .500 \\ .500$	$     \begin{array}{c}       20 \\       28 \\       32     \end{array} $	UNF UNEF UN	$.4460 \\ .4610 \\ .4660$	$83.1 \\ 84.1 \\ 83.8$	.4537 .4676 .4719	$71.3 \\ 69.8 \\ 69.2$	$^{29}_{64}_{11.8}$ mm	$.4531 \\ .4646 \\ .4688$	$\begin{bmatrix} 72\\76\\77 \end{bmatrix}$	$.0047 \\ .0047 \\ .0048$	$.4578 \\ .4693 \\ .4736$	65 66 65
.5625	12	UNC	.4720	83.6	.4843	72.2	{15/32 31/4	.4688	87 72	.0048	$.4736 \\ .4892$	82 68
.5625	16	UN UNF	.4950	83.1 83.8	.5040	72.1	1/2 1/2 1/2	.5000 .5000	77 87	$.0048 \\ .0048$	$.5048 \\ .5048$	71
.5625	20	UN	.5080	83.9	.5162	71.3	0.5062	$.5062 \\ .5156$	78 72	.0048	.5110 .5204	71 65 79
.5625	24	UNEF	.5170	84.1	. 5244	70.4	0.5203	.5156 .5203 .5262	87 78 78	.0048	.5204 .5251 .5312	69 67
.5625	32	UN	.5290	82.5	.5344	69.2	17/32	.5312	77	.0049	.5361	65

TABLE A3.2. Tap drill sizes, Unified screw threads, class 3B-Continued

	Threads	Desig-	Class 3	B minor diam	eter, interna	al threads		Tap drills a	and percent	basic thread	l height	
in .625 .625 .625	per inch	nation	Minimum	Percent ^a basic thread height	Maximum	Percent ^a basic thread height	Drill	size	Percent of thread	Probable oversize, mean	Probable hole size	Percent of thread
in .625 .625 .625 .625 .625 .625 .625 .625	$ \begin{array}{c} 11\\ 12\\ 16\\ 18\\ 20\\ 24\\ 28\\ 32\\ \end{array} $	UNC UN UNF UNF UNEF UN UNEF UN	in .5270 .5350 .5570 .5650 .5710 .5800 .5860 .5910	83.0 83.1 83.8 83.1 83.1 83.1 83.1 84.1 83.8	in .5391 .5463 .5662 .5730 .5787 .5869 .5926 .5926 .5969	$\begin{array}{c} 72.7\\72.7\\72.4\\72.1\\71.3\\70.4\\69.8\\69.2\end{array}$	$\begin{array}{c} & in \\ 17_{22} \\ 35_{64} \\ 9_{16} \\ 9_{16} \\ 0.5587 \\ 37_{64} \\ 37_{64} \\ 37_{64} \\ 0.5828 \\ 0.5828 \\ 0.5828 \\ 19_{22} \end{array}$	in .5312 .5469 .5625 .5625 .5687 .5781 .5781 .5781 .5828 .5828 .5828 .5938	79 72 77 87 78 72 87 78 87 78 91 77	$\begin{array}{c} in\\ .0049\\ .0049\\ .0049\\ .0049\\ .0049\\ .0049\\ .0049\\ .0049\\ .0049\\ .0049\\ .0049\\ .0049\\ .0049\end{array}$	in .5361 .5518 .5674 .5674 .5736 .5830 .5830 .5830 .5877 .5877 .5987	75 68 71 80 71 65 78 69 80 80 80 80 80
.6875 .6875 .6875 .6875 .6875 .6875 .6875	$12 \\ 16 \\ 20 \\ 24 \\ 28 \\ 32$	UN UN UNEF UN UN	.5970 .6200 .6330 .6420 .6490 .6540	$\begin{array}{c} 83.6\\ 83.1\\ 83.9\\ 84.1\\ 83.0\\ 82.5\end{array}$	.6085 .6284 .6412 .6494 .6551 .6594	$\begin{array}{c} 73.0 \\ 72.8 \\ 71.3 \\ 70.4 \\ 69.8 \\ 69.2 \end{array}$	$^{19}_{52}$ $^{5}_{58}$ $^{41}_{64}$ $^{41}_{64}$ $^{41}_{64}$ $^{16}_{55}$ min $^{21}_{32}$	5938 .6250 .6406 .6406 .6496 .6562	87 77 72 87 82 77	.0049 .0050 .0050 .0050 .0050 .0050	.5987 .6300 .6456 .6456 .6546 .6546 .6612	82 71 65 77 71 65
.750 .750 .750 .750 .750 .750 .750	$10 \\ 12 \\ 16 \\ 20 \\ 28 \\ 32$	UNC UN UNF UNEF UN UN	.6420 .6600 .6820 .6960 .7110 .7160	$\begin{array}{c} 83.1 \\ 83.1 \\ 83.8 \\ 83.1 \\ 84.1 \\ 83.8 \end{array}$	.6545 .6707 .6908 .7037 .7176 .7219	$\begin{array}{c} 73.5 \\ 73.3 \\ 72.9 \\ 71.3 \\ 69.8 \\ 69.2 \end{array}$	41,64 21,52 11,16 45,64 18 mm 23,52	.6406 .6562 .6875 .7031 .7087 .7188	84 87 77 72 89 77	$\begin{array}{c} .0050\\ .0050\\ .0050\\ .0051\\ .0051\\ .0051\\ .0051\end{array}$	$\begin{array}{r} .6456\\ .6612\\ .6925\\ .7082\\ .7138\\ .7239\end{array}$	80 82 71 64 78 64
$\begin{array}{r} .8125 \\ .8125 \\ .8125 \\ .8125 \\ .8125 \\ .8125 \\ .8125 \end{array}$	$12 \\ 16 \\ 20 \\ 28 \\ 32$	UN UN UNEF UN UN	.7220 .7450 .7580 .7740 .7790	$\begin{array}{r} 83.6\\ 83.1\\ 83.9\\ 83.0\\ 82.5\end{array}$	.7329 .7533 .7662 .7801 .7844	$\begin{array}{c} 73.5 \\ 72.9 \\ 71.3 \\ 69.8 \\ 69.2 \end{array}$	$18.5 \text{ mm} \\ {}^{34}_{4} \\ {}^{49}_{64} \\ 19.75 \text{ mm} \\ {}^{25}_{32} \\ \end{array}$	.7283 .7500 .7656 .7776 .7812	78 77 72 75 77	.0051 .0052 .0052 .0052 .0052 .0052	.7334 .7552 .7708 .7828 .7864	73 71 64 64 64
.875 .875 .875 .875 .875 .875 .875 .875	$9 \\ 12 \\ 14 \\ 16 \\ 20 \\ 28 \\ 32$	UNC UN UNF UN UNEF UN UN	.7550 .7850 .7980 .8070 .8210 .8360 .8410	$\begin{array}{c} 83.1 \\ 83.1 \\ 83.0 \\ 83.8 \\ 83.1 \\ 84.1 \\ 83.8 \end{array}$	.7681 .7952 .8068 .8158 .8287 .8426 .8469	$74.1 \\73.7 \\73.5 \\72.9 \\71.3 \\69.8 \\69.2$	$\substack{{}^{49}_{54}\\{}^{25}_{52}\\{}^{51}_{64}\\0.8024\\13_{16}\\53_{64}\\21.25\text{ mm}\\21.25\text{ mm}\\27_{52}$	.7656 .7812 .7969 .8024 .8125 .8281 .8366 .8438	76 87 84 78 77 72 83 77	$\begin{array}{c} .0052\\ .0052\\ .0052\\ .0052\\ .0053\\ .0053\\ .0054\\ .0054\\ .0054\\ .0055\end{array}$	.7708 .7864 .8021 .8076 .8178 .8335 .8420 .8493	72 82 79 73 70 70 64 71 63
.9375 .9375 .9375 .9375 .9375 .9375	$     \begin{array}{r}       12 \\       16 \\       20 \\       28 \\       32     \end{array} $	UN UN UNEF UN UN	.8470 .8700 .8830 .8990 .9040	$\begin{array}{c} 83.6 \\ 83.1 \\ 83.9 \\ 83.0 \\ 82.5 \end{array}$	.8575 .8783 .8912 .9051 .9094	$\begin{array}{r} 73.9 \\ 72.9 \\ 71.3 \\ 69.8 \\ 69.2 \end{array}$	²⁷ / ₃₂ 7/8 57/64 22.75 mm ²⁹ / ₃₂	.8438 .8750 .8906 .8957 .9062	87 77 72 90 77	.0055 .0057 .0059 .0060 .0060	.8493 .8807 .8965 .9017 .9122	81 70 63 77 62
1.000 1.000 1.000 1.000 1.000 1.000 1.000	8 12 14 16 20 28 32	UNC UNF UNS UN UNEF UN UN	.8650 .9100 .9230 .9320 .9460 .9610 .9660	$83.1 \\ 83.1 \\ 83.0 \\ 83.8 \\ 83.1 \\ 84.1 \\ 83.8 \\ 83.8 \\ $	.8797 .9198 .9315 .9408 .9537 .9676 .9719	$74.1 \\74.1 \\73.8 \\72.9 \\71.3 \\69.8 \\69.2$	$\begin{cases} 55 & 64 \\ 7 & 8 \\ 29 & 52 \\ 59 & 64 \\ 0.9274 \\ 15 & 61 \\ 61 & 64 \\ 24 & .5 \text{ mm} \\ 31 & 22 \end{cases}$	$\begin{array}{r} .8594\\ .8750\\ .9062\\ .9219\\ .9274\\ .9375\\ .9531\\ .9645\\ .9688\end{array}$	87 77 87 84 78 77 77 77 77	$\begin{array}{c} .0059\\ .0059\\ .0060\\ .0060\\ .0061\\ .0062\\ .0063\\ .0064\\ .0065\end{array}$	$\begin{array}{r} .8653\\ .8809\\ .9122\\ .9279\\ .9335\\ .9437\\ .9594\\ .9709\\ .9753\end{array}$	83 73 81 78 72 69 63 63 63 61
$\begin{array}{c} 1.0625\\ 1.0625\\ 1.0625\\ 1.0625\\ 1.0625\\ 1.0625\\ 1.0625\\ 1.0625\end{array}$	8 16 18 20 28	UN UN UNEF UN UN	.9270 .9720 .9950 1.0020 1.0080 1.0240	83.4 83.6 83.1 83.8 83.9 83.0	$\begin{array}{c} .9422\\ .9823\\ 1.0033\\ 1.0105\\ 1.0162\\ 1.0301\end{array}$	$74.1 \\72.9 \\72.1 \\71.3 \\69.8$	$\begin{cases} {}^{59}_{64}\\ 0.9274\\ {}^{15}_{76}\\ {}^{31}_{32}\\ 1\\ 1\\ 1\\ 1{}^{1}_{64}\\ 1{}^{1}_{32}\\ \end{cases}$	$\begin{array}{c} .9219\\ .9274\\ .9375\\ .9688\\ 1.0000\\ 1.0000\\ 1.0156\\ 1.0312\end{array}$	87 83 77 87 77 87 72 67	$\begin{array}{c} .\ 0060\\ .\ 0061\\ .\ 0062\\ .\ 0065\\ .\ 0069\\ .\ 0069\\ .\ 0070\\ .\ 0071\end{array}$	$\begin{array}{r} .9279\\ .9335\\ .9437\\ .9753\\ 1.0069\\ 1.0069\\ 1.0226\\ 1.0383\end{array}$	83 79 73 81 68 77 61 52
$1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.125 \\ 1.12$	7 8 12 16 18	UNC UN UNF UN UNEF	.9700 .9900 1.0350 1.0570 1.0650	83.5 83.1 83.1 83.8 83.8 83.1	$\begin{array}{r} .9875\\ 1.0047\\ 1.0448\\ 1.0658\\ 1.0730\end{array}$	$74.1 \\74.1 \\74.1 \\72.9 \\72.1$	$\begin{cases} {}^{31}_{52} \\ {}^{63}_{64} \\ 1 \\ 1^{1}_{32} \\ 1^{1}_{16} \\ 1^{1}_{16} \end{cases}$	$\begin{array}{c} .9688\\ .9844\\ 1.0000\\ 1.0312\\ 1.0625\\ 1.0625\\ 1.0625\end{array}$	84 76 77 87 77 87	.0062 .0067 .0069 .0071 .0074	.9750 .9911 1.0069 1.0383 1.0699	81 72 73 80 68
$\substack{\textbf{1.125}\\\textbf{1.125}}$	20 28	UN UN	$1.0710 \\ 1.0860$	$\substack{83.1\\84.1}$	$1.0787 \\ 1.0926$	$71.3 \\ 69.8$	$15_{64}$ $13_{32}$	$1.0781 \\ 1.0938$	72 67			
$\begin{array}{c} 1.1875\\ 1.1875\\ 1.1875\\ 1.1875\\ 1.1875\\ 1.1875\\ 1.1875\\ 1.1875\\ 1.1875\end{array}$	8 12 16 18 20 28	UN UN UNEF UN UN	$\begin{array}{c} 1.0520 \\ 1.0970 \\ 1.1200 \\ 1.1270 \\ 1.1330 \\ 1.1490 \end{array}$	$\begin{array}{c} 83.4 \\ 83.6 \\ 83.1 \\ 83.8 \\ 83.9 \\ 83.0 \end{array}$	$\begin{array}{c} 1.0672 \\ 1.1073 \\ 1.1283 \\ 1.1355 \\ 1.1412 \\ 1.1551 \end{array}$	$\begin{array}{c c} 74.1 \\ 74.1 \\ 72.9 \\ 72.1 \\ 71.3 \\ 69.8 \end{array}$	1 ¹ / ₁₆ 1 ³ / ₅₂ 1 ¹ / ₈ 1 ¹ / ₈ 1 ⁹ / ₆₄ 29.25 mm	$\begin{array}{c} 1.0625\\ 1.0938\\ 1.1250\\ 1.1250\\ 1.1250\\ 1.1406\\ 1.1516\end{array}$	77 87 77 87 72 77			
$1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.250 \\ 1.25$	7 8 12 16 18 20 28	UNC UN UNF UN UNEF UN UN	$\begin{array}{c} 1.0950\\ 1.1150\\ 1.1600\\ 1.1820\\ 1.1900\\ 1.1960\\ 1.2110\end{array}$	$\begin{array}{c} 83.5\\ 83.1\\ 83.1\\ 83.8\\ 83.1\\ 83.1\\ 83.1\\ 83.1\\ 83.1\\ 84.1\end{array}$	$\begin{array}{c} 1.1125\\ 1.1297\\ 1.1698\\ 1.1908\\ 1.1980\\ 1.2037\\ 1.2176\end{array}$	$\begin{array}{c} 74.1 \\ 74.1 \\ 74.1 \\ 72.9 \\ 72.1 \\ 71.3 \\ 69.8 \end{array}$	$1\frac{3}{42}$ $1\frac{1}{8}$ $1\frac{5}{42}$ $1\frac{5}{46}$ $1\frac{3}{16}$ $1\frac{3}{16}$ $1\frac{3}{64}$ $30.75 \text{ mm}$	$\begin{array}{c} 1.0938\\ 1.1250\\ 1.1562\\ 1.1875\\ 1.1875\\ 1.2031\\ 1.2106\end{array}$	84 77 87 77 87 72 85			

## TABLE A3.2. Tap drill sizes, Unified screw threads, class 3B-Continued

See footnotes at end of table.

ED

	Threads	Desig-	Class 3	B minor diam	eter, intern	al threads		Tap drills a	and percent	basic threa	d height	
in	per inch	nation	Minimum	Percent ^a basic thread height	Maximum	Percent ^a basic thread height	Drill	size	Percent of thread	Probable oversize, mean	Probable hole size	Percent of thread
in 1.3125 1.3125 1.3125 1.3125 1.3125 1.3125 1.3125	8 12 16 18 20 28	UN UN UNEF UN UN	$in \\1.1770 \\1.2220 \\1.2450 \\1.2520 \\1.2580 \\1.2740$	83.4 83.6 83.1 83.8 83.9 83.0	in 1.1922 1.2323 1.2533 1.2605 1.2662 1.2801	$74.1 \\74.1 \\72.9 \\72.1 \\71.3 \\69.8$	$\begin{array}{c} in \\ \{1^{11}_{44} \\ 1^{3}_{16} \\ 1^{7}_{52} \\ 1^{1}_{4} \\ 1^{1}_{4} \\ 1^{1}_{4} \\ 3^{2}_{5} \\ 5 \\ \mathrm{mm} \end{array}$	$in \\ 1.1719 \\ 1.1875 \\ 1.2188 \\ 1.2500 \\ 1.2500 \\ 1.2656 \\ 1.2795$	87 77 87 77 87 72 71	in	in	
$1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.37$	6 8 12 16 18 20 28	UNC UN UNF UN UNEF UN UN	$\begin{array}{c} 1.1950 \\ 1.2400 \\ 1.2850 \\ 1.3070 \\ 1.3150 \\ 1.3210 \\ 1.3360 \end{array}$	83.1 83.1 83.1 83.8 83.1 83.1 83.1 84.1	$1.2146 \\ 1.2547 \\ 1.2948 \\ 1.3158 \\ 1.3230 \\ 1.3287 \\ 1.3426 \\$	$74.1 \\ 74.1 \\ 72.9 \\ 72.1 \\ 71.3 \\ 69.8 \\ 98$	$\begin{cases} 1^{3}/_{16} \\ 1^{13}/_{64} \\ 1^{15}/_{64} \\ 1^{1/_4} \\ 1^{9}/_{22} \\ 1^{5}/_{16} \\ 1^{5}/_{16} \\ 1^{21}/_{64} \\ 34 \text{ mm} \end{cases}$	$\begin{array}{c} 1.1875\\ 1.2031\\ 1.2344\\ 1.2500\\ 1.2812\\ 1.3125\\ 1.3125\\ 1.3281\\ 1.3386\\ \end{array}$	87 79 87 77 87 77 87 72 78			
$1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1.4375 \\ 1$	6 8 12 16 18 20 28	UN UN UN UNEF UN UN	$\begin{array}{c} 1.2570\\ 1.3020\\ 1.3470\\ 1.3700\\ 1.3770\\ 1.3830\\ 1.3990 \end{array}$	83.4 83.4 83.6 83.1 83.8 83.9 83.0	$\begin{array}{c} 1.2771\\ 1.3172\\ 1.3573\\ 1.3783\\ 1.3855\\ 1.3912\\ 1.4051\end{array}$	$\begin{array}{c} 74.1 \\ 74.1 \\ 74.1 \\ 72.9 \\ 72.1 \\ 71.3 \\ 69.8 \end{array}$	$\begin{array}{c} 1^{17}_{64} \\ \left(1^{19}_{546} \\ 1^{19}_{546} \\ 1^{11}_{522} \\ 1^{3}_{8} \\ 1^{3}_{8} \\ 1^{25}_{64} \\ 35.5 \text{ mm} \end{array}\right)$	$ \begin{array}{c} 1.2656 \\ 1.2969 \\ 1.3125 \\ 1.3438 \\ 1.3750 \\ 1.3750 \\ 1.3906 \\ 1.3976 \end{array} $	79 87 77 87 77 87 72 86			
1.500 1.500 1.500 1.500 1.500 1.500 1.500	6 8 12 16 18 20 28	UNC UN UNF UNEF UN UN	$1.3200\\1.3650\\1.4100\\1.4320\\1.4400\\1.4460\\1.4610$	$\begin{array}{c} 83.1 \\ 83.1 \\ 83.1 \\ 83.8 \\ 83.1 \\ 83.1 \\ 83.1 \\ 84.1 \end{array}$	$\begin{array}{c} 1.3396 \\ 1.3797 \\ 1.4198 \\ 1.4408 \\ 1.4480 \\ 1.4537 \\ 1.4676 \end{array}$	74.1 $74.1$ $74.1$ $72.9$ $72.1$ $71.3$ $69.8$		$\begin{array}{c} 1.3125\\ 1.3281\\ 1.3594\\ 1.3750\\ 1.4062\\ 1.4375\\ 1.4375\\ 1.4375\\ 1.4531\\ 1.4567\end{array}$	87 79 87 77 87 77 87 72 93			
$\begin{array}{c} 1.5625 \\ 1.5625 \\ 1.5625 \\ 1.5625 \\ 1.5625 \\ 1.5625 \\ 1.5625 \\ 1.5625 \end{array}$	6 8 12 16 18 20	UN UN UN UNEF UN	$\begin{array}{c} 1.3820 \\ 1.4270 \\ 1.4720 \\ 1.4950 \\ 1.5020 \\ 1.5080 \end{array}$	83.4 83.4 83.6 83.1 83.8 83.9	$\begin{array}{c} 1.4021 \\ 1.4422 \\ 1.4823 \\ 1.5033 \\ 1.5105 \\ 1.5162 \end{array}$	$74.1 \\74.1 \\74.1 \\72.9 \\72.1 \\71.3$	$\begin{array}{c}1^{25}_{64}\\1^{27}_{64}\\1^{7}_{66}\\1^{15}_{32}\\1^{12}_{42}\\1^{12}_{42}\\1^{12}_{42}\\1^{12}_{42}\\1^{12}_{42}\\1^{12}_{33}_{64}\end{array}$	$\begin{array}{c} 1.3906 \\ 1.4219 \\ 1.4375 \\ 1.4688 \\ 1.5000 \\ 1.5000 \\ 1.5156 \end{array}$	79 87 77 87 77 87 72			
$1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.625 \\ 1.62$	$ \begin{array}{c} 6\\ 8\\ 12\\ 16\\ 18\\ 20\\ \end{array} $	UN UN UN UNEF UN	$\begin{array}{c} 1.4450 \\ 1.4900 \\ 1.5350 \\ 1.5570 \\ 1.5650 \\ 1.5710 \end{array}$	83.1 83.1 83.1 83.8 83.1 83.1 83.1	$\begin{array}{c} 1.4646 \\ 1.5047 \\ 1.5448 \\ 1.5658 \\ 1.5730 \\ 1.5787 \end{array}$	74.1 74.1 72.9 72.1 71.3	$129_{64} \\ \{131_{64} \\ 11_{2} \\ 11_{2} \\ 11_{22} \\ 19_{16} \\ 19_{16} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{764} \\ 18_{$	$\begin{array}{c} 1.4531 \\ 1.4844 \\ 1.5000 \\ 1.5312 \\ 1.5625 \\ 1.5625 \\ 1.5781 \end{array}$	79 87 77 87 77 87 72			
$\begin{array}{c} 1.6875\\ 1.6875\\ 1.6875\\ 1.6875\\ 1.6875\\ 1.6875\\ 1.6875\\ 1.6875\end{array}$	$ \begin{array}{c} 6 \\ 8 \\ 12 \\ 16 \\ 18 \\ 20 \end{array} $	UN UN UN UNEF UN	$\begin{array}{c} 1.5070 \\ 1.5520 \\ 1.5970 \\ 1.6200 \\ 1.6270 \\ 1.6330 \end{array}$	$\begin{array}{c} 83.4\\ 83.4\\ 83.6\\ 83.1\\ 83.8\\ 83.9\end{array}$	$\begin{array}{c} 1.5271 \\ 1.5672 \\ 1.6073 \\ 1.6283 \\ 1.6355 \\ 1.6412 \end{array}$	$74.1 \\74.1 \\74.1 \\72.9 \\72.1 \\71.3$	$\begin{cases} 1\frac{1}{2} \\ 1\frac{3}{3}\frac{6}{64} \\ 1\frac{9}{6} \\ 1\frac{9}{52} \\ 1\frac{5}{8} \\ 1\frac{5}{8} \\ 1\frac{4}{64} \end{cases}$	$\begin{array}{c} 1.5000 \\ 1.5156 \\ 1.5625 \\ 1.5938 \\ 1.6250 \\ 1.6250 \\ 1.6406 \end{array}$	87 79 77 87 77 87 72			
1.750 1.750 1.750 1.750 1.750 1.750 1.750	5     6     8     12     16     20	UNC UN UN UN UN UN	$1.5340 \\ 1.5700 \\ 1.6150 \\ 1.6600 \\ 1.6820 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1.6960 \\ 1$	83.1 83.1 83.1 83.1 83.8 83.8 83.1	$1.5575 \\ 1.5896 \\ 1.6297 \\ 1.6698 \\ 1.6908 \\ 1.7037 \\ 1.6937 \\ 1.6908 \\ 1.7037 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1.5575 \\ 1$	74.1 74.1 74.1 74.1 72.9 71.3	$\begin{cases} 1^{17}_{52} \\ 1^{35}_{64} \\ 1^{9}_{16} \\ 1^{37}_{64} \\ 1^{39}_{64} \\ 1^{5}_{8} \\ 1^{21}_{52} \\ 1^{21}_{52} \\ 1^{11}_{16} \\ 1^{45}_{64} \end{cases}$	$\begin{array}{c} 1.5312\\ 1.5469\\ 1.5625\\ 1.5781\\ 1.6094\\ 1.6250\\ 1.6562\\ 1.6875\\ 1.7031 \end{array}$	84 78 87 79 87 77 87 77 72			
$1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1.8125 \\ 1$	6 8 12 16 20	UN UN UN UN	$1.6320 \\ 1.6770 \\ 1.7220 \\ 1.7450 \\ 1.7580$	83.4 83.4 83.6 83.1 83.9	$\begin{array}{c c} 1.6521 \\ 1.6922 \\ 1.7323 \\ 1.7533 \\ 1.7662 \end{array}$	74.1 74.1 74.1 72.9 71.3	$\begin{cases} 15_{\%} \\ 1^{41}_{64} \\ 1^{43}_{64} \\ 1^{11}_{16} \\ 1^{23}_{52} \\ 1^{3}_{54} \\ 1^{49}_{64} \end{cases}$	$\begin{array}{c} 1.6250\\ 1.6406\\ 1.6719\\ 1.6875\\ 1.7188\\ 1.7500\\ 1.7656\end{array}$	87 79 87 77 87 77 72			
$1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.875 \\ 1.87$		UN UN UN UN UN	$\begin{array}{c} 1.6950 \\ 1.7400 \\ 1.7850 \\ 1.8070 \\ 1.8210 \end{array}$	83.1 83.1 83.1 83.8 83.8 83.1	$\begin{array}{c c} 1.7146 \\ 1.7547 \\ 1.7948 \\ 1.8158 \\ 1.8287 \end{array}$	74.174.174.172.971.3	$1^{45}_{44}$ $1^{3}_{44}$ $1^{25}_{32}$ $1^{13}_{16}$ $1^{53}_{64}$	$\begin{array}{c c}1.7031\\1.7500\\1.7812\\1.8125\\1.8281\end{array}$	79 77 87 77 72			
1.9375 1.9375 1.9375 1.9375 1.9375 1.9375		UN UN UN UN UN	1.7570 1.8020 1.8470 1.8700 1.8830	83.4 83.4 83.6 83.1 83.9	$\begin{array}{c cccc} 1.7771 \\ 1.8172 \\ 1.8573 \\ 1.8783 \\ 1.8912 \end{array}$	74.1 74.1 74.1 72.9 71.3	$\begin{cases} 1 & {}^{49} \\ 64 \\ 1 & {}^{51} \\ 64 \\ 1 & {}^{13} \\ 1 & {}^{27} \\ 32 \\ 1 & {}^{7} \\ 8 \\ 1 & {}^{57} \\ 64 \end{cases}$	$\begin{array}{c} 1.7656\\ 1.7969\\ 1.8125\\ 1.8438\\ 1.8750\\ 1.8906\end{array}$	79 87 77 87 77 72			

TABLE A3.2. Tap drill sizes, Unified screw threads, class 3B-Continued

1

-

T

Thread size Thread	Threads	Desig-	Class 31	B minor diam	eter, interna	l threads	reads Tap drills and percent basic thread height					
	per inch	nation	Minimum	Percent a basic thread height	Maximum	Percent ^a basic thread height	Drill s	ize	Percent of thread	Probable oversize, mean	Probable hole size	Percent of thread
$\begin{array}{c} in \\ 2.000 \\ 2.000 \\ 2.000 \\ 2.000 \\ 2.000 \\ 2.000 \\ 2.000 \\ 2.0625 \end{array}$	$ \begin{array}{r} 4.5 \\ 6 \\ 8 \\ 12 \\ 16 \\ 20 \\ 16 \end{array} $	UNC UN UN UN UN UNS	$in \\ 1.7590 \\ 1.8200 \\ 1.8650 \\ 1.9100 \\ 1.9320 \\ 1.9460 \\ 1.9950$	83.5 83.1 83.1 83.1 83.8 83.8 83.1 83.1	in 1.7861 1.8396 1.8797 1.9198 1.9408 1.9537 2.0033	$74.1 \\ 74.1 \\ 74.1 \\ 74.1 \\ 72.9 \\ 71.3 \\ 72.9$	$\begin{array}{c} in \\ 1^{25} 52 \\ 1^{53} 54 \\ 1^{7} 58 \\ 1^{29} 52 \\ 1^{15} 56 \\ 1^{61} 54 \\ 2 \end{array}$	in 1.7812 1.8281 1.8750 1.9062 1.9375 1.9531 2.0000	76 79 77 87 77 77 72 77	in	in 	
2.125 2.125 2.125 2.125 2.125 2.125 2.125		UN UN UN UN UN	$\begin{array}{c} 1.9450 \\ 1.9900 \\ 2.0350 \\ 2.0570 \\ 2.0710 \end{array}$	$\begin{array}{c} 83.1 \\ 83.1 \\ 83.1 \\ 83.8 \\ 83.8 \\ 83.1 \end{array}$	$\begin{array}{c} 1.9646 \\ 2.0047 \\ 2.0448 \\ 2.0658 \\ 2.0787 \end{array}$	$74.1 \\ 74.1 \\ 74.1 \\ 72.9 \\ 71.3$	$\begin{array}{c}1^{61}_{64}\\2\\2^{1}_{32}\\2^{1}_{32}\\2^{1}_{16}\\2^{1}_{16}\end{array}$	$\begin{array}{c} 1.9531 \\ 2.0000 \\ 2.0312 \\ 2 0625 \\ 2.0625 \end{array}$	79 77 87 77 96			
2.1875	16	UNS	2.1200	83.1	2.1283	72.9	$2\frac{1}{8}$	2.1250	77			•
2.250 2.250 2.250 2.250 2.250 2.250 2.250	4.5 6 8 12 16 20	UNC UN UN UN UN	$\begin{array}{c} 2.0090 \\ 2.0700 \\ 2.1150 \\ 2.1600 \\ 2.1820 \\ 2.1960 \end{array}$	$\begin{array}{c} 83.5\\ 83.1\\ 83.1\\ 83.1\\ 83.1\\ 83.8\\ 83.8\\ 83.1\end{array}$	$\begin{array}{c} 2.0361 \\ 2.0896 \\ 2.1297 \\ 2.1698 \\ 2.1908 \\ 2.2037 \end{array}$	$74.1 \\74.1 \\74.1 \\74.1 \\72.9 \\71.3$	$\begin{cases} 2 \\ 2^{1}_{32} \\ 2^{1}_{16} \\ 2^{1}_{8} \\ 2^{5}_{32} \\ 2^{3}_{16} \\ 2^{3}_{16} \end{cases}$	2.0000 2.0312 2.0625 2.1250 2.1562 2.1875 2.1875	87 76 87 77 87 77 96			
2.3125	16	UNS	2.2450	83.1	2.2533	72.9	$2\frac{1}{4}$	2.2500	77			
$2.375 \\ 2.375 \\ 2.375 \\ 2.375 \\ 2.375 \\ 2.375 \\ 2.375 \\ 2.375 \end{cases}$		UN UN UN UN UN	$\begin{array}{c} 2.1950 \\ 2.2400 \\ 2.2850 \\ 2.3070 \\ 2.3210 \end{array}$	83.1 83.1 83.1 83.8 83.8 83.1	$\begin{array}{c} 2.2146 \\ 2.2547 \\ 2.2948 \\ 2.3158 \\ 2.3287 \end{array}$	$\begin{array}{c} 74.1 \\ 74.1 \\ 74.1 \\ 72.9 \\ 71.3 \end{array}$	$\begin{array}{c} 2^{3}_{16} \\ 2^{1}_{4} \\ 58 \text{ mm} \\ 2^{5}_{16} \\ 2^{5}_{16} \end{array}$	2.1875 2.2500 2.2835 2.3125 2.3125	87 77 85 77 96			
2.4375	16	UNS	2.3700	83.1	2.3783	72.9	$2\frac{3}{8}$	2,3750	77			
2.500 2.500 2.500 2.500 2.500 2.500 2.500	$ \begin{array}{c c}     4 \\     6 \\     8 \\     12 \\     16 \\     20 \\ \end{array} $	UNC UN UN UN UN UN	$\begin{array}{c} 2.2290 \\ 2.3200 \\ 2.3650 \\ 2.4100 \\ 2.4320 \\ 2.4460 \end{array}$	83.4 83.1 83.1 83.1 83.8 83.8 83.1	$\begin{array}{c} 2.2594 \\ 2.3396 \\ 2.3797 \\ 2.4198 \\ 2.4408 \\ 2.4537 \end{array}$	$74.1 \\74.1 \\74.1 \\74.1 \\72.9 \\71.3$	$\begin{cases} 2^{1} \sqrt{2} \\ 2^{1} \sqrt{2} \\ 2^{5} \sqrt{6} \\ 2^{3} \sqrt{8} \\ 2^{13} \sqrt{2} \\ 2^{1} \sqrt{16} \\ 2^{1} \sqrt{16} \end{cases}$	$\begin{array}{r} 2.2188\\ 2.2500\\ 2.3125\\ 2.3750\\ 2.4062\\ 2.4375\\ 2.4375\\ 2.4375\end{array}$	87 77 87 77 87 77 96			
2.625 2.625 2.625 2.625 2.625 2.625 2.625	$egin{array}{c} 4 \\ 6 \\ 8 \\ 12 \\ 16 \\ 20 \end{array}$	UN UN UN UN UN	$\begin{array}{c} 2.3540 \\ 2.4450 \\ 2.4900 \\ 2.5350 \\ 2.5570 \\ 2.5710 \end{array}$	83.4 83.1 83.1 83.1 83.8 83.8 83.1	$\begin{array}{c} 2.3844 \\ 2.4646 \\ 2.5047 \\ 2.5448 \\ 2.5658 \\ 2.5787 \end{array}$	$\begin{array}{c c} 74.1 \\ 74.1 \\ 74.1 \\ 74.1 \\ 74.1 \\ 72.9 \\ 71.3 \end{array}$	$\begin{cases} 2^{11}_{32} \\ 2^{3}_{38} \\ 2^{1}_{16} \\ 2^{1}_{22} \\ 2^{17}_{32} \\ 2^{9}_{16} \\ 2^{9}_{16} \end{cases}$	$\begin{array}{r} 2.3438\\ 2.3750\\ 2.4375\\ 2.5000\\ 2.5312\\ 2.5625\\ 2.5625\\ 2.5625\end{array}$	87 77 87 77 87 77 96			
2.750 2.750 2.750 2.750 2.750 2.750 2.750	$     \begin{array}{r}       4 \\       6 \\       8 \\       12 \\       16 \\       20 \\     \end{array} $	UNC UN UN UN UN UN	$\begin{array}{c} 2.4790 \\ 2.5700 \\ 2.6150 \\ 2.6600 \\ 2.6820 \\ 2.6960 \end{array}$	$\begin{array}{c} 83.4\\ 83.1\\ 83.1\\ 83.1\\ 83.1\\ 83.8\\ 83.1\end{array}$	$\begin{array}{c} 2.5094 \\ 2.5896 \\ 2.6297 \\ 2.6698 \\ 2.6908 \\ 2.6908 \\ 2.7037 \end{array}$	$\begin{array}{c} 74.1 \\ 74.1 \\ 74.1 \\ 74.1 \\ 72.9 \\ 71.3 \end{array}$	$\begin{array}{c} 2\frac{1}{2}\\ 2^{9}\frac{1}{16}\\ 2^{5}8\\ 2^{21}\frac{3}{32}\\ 2^{11}\frac{1}{16}\\ 2^{11}\frac{1}{16}\end{array}$	2.5000 2.5625 2.6250 2.6562 2.6875 2.6875	77 87 77 87 77 96			
2.875 2.875 2.875 2.875 2.875 2.875 2.875	$     \begin{array}{r}       4 \\       6 \\       8 \\       12 \\       16 \\       20 \\     \end{array} $	UN UN UN UN UN	$\begin{array}{c} 2.6040 \\ 2.6950 \\ 2.7400 \\ 2.7850 \\ 2.8070 \\ 2.8210 \end{array}$	$\begin{array}{r} 83.4 \\ 83.1 \\ 83.1 \\ 83.1 \\ 83.1 \\ 83.8 \\ 83.8 \\ 83.1 \end{array}$	$\begin{array}{c} 2.6344 \\ 2.7146 \\ 2.7547 \\ 2.7948 \\ 2.8158 \\ 2.8287 \end{array}$	$\begin{array}{c} 74.1 \\ 74.1 \\ 74.1 \\ 74.1 \\ 74.1 \\ 72.9 \\ 71.3 \end{array}$	$\begin{array}{c} 25\%\\ 211,{}_{16}\\ 234\\ 2^{25}x_{2}\\ 213,{}_{16}\\ 2^{13},{}_{16}\\ 2^{13},{}_{16}\end{array}$	2.6250 2.6875 2.7500 2.7812 2.8125 2.8125 2.8125	77 87 77 87 77 96			
$3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000$	$egin{array}{c} 4 \\ 6 \\ 8 \\ 12 \\ 16 \\ 20 \end{array}$	UNC UN UN UN UN UN	$\begin{array}{c} 2.7290 \\ 2.8200 \\ 2.8650 \\ 2.9100 \\ 2.9320 \\ 2.9460 \end{array}$	$\begin{array}{c} 83.4 \\ 83.1 \\ 83.1 \\ 83.1 \\ 83.1 \\ 83.8 \\ 83.1 \end{array}$	$\begin{array}{c} 2.7594 \\ 2.8396 \\ 2.8797 \\ 2.9198 \\ 2.9408 \\ 2.9537 \end{array}$	$\begin{array}{c} 74.1 \\ 74.1 \\ 74.1 \\ 74.1 \\ 72.9 \\ 71.3 \end{array}$	$\begin{array}{c} 2\frac{3}{4} \\ 2^{13},\!_{16} \\ 27.8 \\ 74 \text{ mm} \\ 2^{15},\!_{16} \\ 2^{15},\!_{16} \end{array}$	2.7500 2.8125 2.8750 2.9134 2.9375 2.9375	77 87 77 80 77 96			
3.250	4	UNC	2.9790	83.4	3.0094	74.1	3	3.0000	77			
3.500	4	UNC	3.2290	83.4	3.2594	74.1	31/4	3.2500	77			
3.750	4	UNC	3.4790	83.4	3.5094	74.1	31/2	3.5000	77			

#### TABLE A3.2. Tap drill sizes, Unified screw threads, class 3B-Continued

 $^{a}100\%$  basic thread height = 0.75H (values of 0.75H are shown in col. 14, table 2.1).



FIGURE A3.3. Distribution of hole size limits before tapping, Unified threads.



FIGURE A3.4. Distribution of hole size limits before tapping, Unified Miniature threads.

		thru $3D$	Max	14	$\overset{in}{0.0514}$	.0623	.0737	.0846.0867	00947.0976	.1077. $1094$	.117	.141	.158	.183 .188 .192	210 222 225 228	268 273 284 284 284 288 291	.325 .335 .347 .350 .353	.380 .387 .398 .409 .413	$\begin{array}{r} 432\\ 450\\ 450\\ 472\\ 475\\ 475\end{array}$	
ads,	ment	Above 1.5L	Min	13	0.0479	.0585 .0602	.0720	.0806	.0902	.1036 .1057	.111	.137	.153	.178 .183 .188	.204 .218 .221	.262 .262 .275 .280 .284	.318 .330 .337 .337 .343 .346 .346	.372 .392 .405	. 423 . 430 . 443 . 443 . 454 . 468	
e UNS three	ths of engage	) thru $1.5D$	Max	12	$_{0.0514}^{in}$	.0623	.0737	.0845	.0939	.1062 .1079	.114	.139	.156. $.164$	.181 .186 .190	.207 .220 .224 .226	. 265 271 282 286 286 288 289	321 322 340 345 345 345 352	.376 .384 .395 .407	.428 .434 .434 .446 .457 .470	
ied and som	different leng	Above 0.67L	Min	11	$in \\ 0.0479$	.0585.0602	.0720	.0805.0831	.0894.0931	.1021. $1042$	.109	.134	.150160	.176 .181 .186	202 216 222 222	.259 264 2728 2728 282 285	.314 .335 .335 .335 .340 .345 .345	.368 .377 .389 .403	.419 .425 .439 .452 .456 .470	
ndard Unif	size limits for	thru $0.67D$	Max	10	$_{0.0514}^{in}$	.0618 .0629	.0740	.0825 .0848	.0916.0949	.1041.	.112	.137 .140	.153	.178 .184 .188	$^{204}_{222}$	.262 .267 .275 .284 .284		.372 .380 .405	.423 .430 .443 .454 .454 .458	
igement, sta	mended hole	Above 0.33D	Min	6	$\overset{in}{0.0479}$	.0580	.0707	.0785.0814	.0871.0912	.1023	.113	.132	.147	.173 .179 .184	.199 .213 .218 .218 .221	256 256 270 280 283 283		364 373 386 401 405	$\begin{array}{c} 414\\ 422\\ 428\\ 449\\ 468\\ 468\\ 468\end{array}$	
gths of engc 1 table 3.9 ^a )	Recom	ding 0.33D	Max	×	in 0.0500	.0599	.0705.0724	.0804 .0831	.0894 .0931	.1020	.109	.135	.150	$^{-176}_{-182}$	202 216 220 223	.259 .272 .272 .278 .286		.368 .377 .389 .403 .407	.419 .425 .439 .452 .450	
different len 2B (based or		To and inclu	Min	2	$_{0.0465}^{in}$	.0561	.0667	.0764	.0849.0894	.0979	.104	.130	.145	.171 .177 .182	$^{-196}_{-211}$	255 258 279 279 279 282 282		.360 .370 .383 .383 .399 .404	.410 .417 .432 .446 .466 .461	
reading for es 1B and 2	ads	Percent basic	thread height ^b	9	53.0	52.7 52.7	53.0 52.7	53.6 53.9	55.7 56.2	57.9 57.9	59.1 58.5	61.6 61.0	$62.8 \\ 64.0$	64.7 64.7 64.0	66.2 64.7 66.5 66.5	69.99.99 69.99 69.99 1.39 1.39 1.39 1.39 1.39 1.39 1.39	66.5 66.5 64.7 64.7 64.0 63.7	66.3 657.4 657.4 657.4 657.4	66.5 66.5 66.5 66.2 66.2 64.7 64.7	
its before th class	f internal thre	Max °		5	$\overset{in}{0.0514}$	.0623	.0737	.0845	.0939	.1062. $1079$	.114	.139	.156	.181 .186 .190	207.220.2224.2226.226	. 265 . 277 . 282 . 286 . 286 . 286	.321 332 340 345 345 .349 .349	.376 .384 .395 .407	$\begin{array}{c} 428\\ 434\\ 457\\ 457\\ 470\\ 474\end{array}$	
hole size lim	or diameter o	Percent basic	thread height ^b	4	83.1	83.3 83.1	83.2 83.3	83.5 83.2	83.4 83.5	83.4 83.3	83.8 83.1	83.8 83.1	83.1 83.8	83.1 84.1 83.8	83.1 84.1 83.8 83.8 83.8	88888888888888888888888888888888888888	883.1 883.1 883.1 883.8 833.8 833.8 833.8 833.8	833.01 833.01 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 823.02 82	83.1 83.1 83.1 83.1 83.1 83.8 83.8	
ommended	Min	Min		3	$\overset{in}{0.0465}$	.0561.0580	.0667	.0764 .0797	.0849	.0979.1004	.104.111	.130	.145 .156	.171 .177 .182	.196 .211 .216 .220	.252 258 267 274 279 279	.307 .321 .330 .336 .336 .336 .336 .345	.360 .370 .383 .399	.410 .417 .432 .446 .446 .461	
A3.5. Rec		Series designation		2	UNF	UNC	UNC UNF UNEF	UNC UNF UNEF UNS	UNC 20UN UNF 28UN UNEF UNS	UNC 20UN UNF 28UN UNEF UNS	UNC 16UN UNF 32UN	UNS UNC UNF UNF 32UN								
TABLE		Nominal size in inches and threads per inch		1	.060-80 or No. 0-80	.073-54 or No. 1-64 .073-72 or No. 1-72	.086-56 or No. 2-56 .086-64 or No. 2-64	.099-48 or No. 3-48 .099-56 or No. 3-56	.112-40 or No. 4-40 .112-48 or No. 4-48	.125-40 or No. 5-40 .125-44 or No. 5-44	.138-32 or No. 6-32 .138-40 or No. 6-40	.164-32 or No. 8-32 .164-36 or No. 8-36	.190-24 or No. 10-24 .190-32 or No. 10-32	.216-24 or No. 12-24 .216-28 or No. 12-28 .216-32 or No. 12-32	250-20  or  1/4-20 250-28  or  1/4-28 250-32  or  1/4-32 250-36  or  1/4-36	.3125 $-18$ or 5/16 $-18$ .3125 $-20$ or 5/16 $-20$ .3125 $-24$ or 5/16 $-24$ .3125 $-24$ or 5/16 $-24$ .3125 $-28$ or 5/16 $-28$ .3125 $-32$ or 5/16 $-32$ .3125 $-32$ or 5/16 $-32$	.375-16 or 3/8-16 .375-20 or 3/8-20 .375-24 or 3/8-20 .375-24 or 3/8-24 .375-28 or 3/8-32 .375-32 or 3/8-32 .375-32 or 3/8-32	$\begin{array}{c} .4375-14 \text{ or } 7/16-14 \\ .4375-16 \text{ or } 7/16-16 \\ .4375-20 \text{ or } 7/16-20 \\ .4375-28 \text{ or } 7/16-28 \\ .4375-28 \text{ or } 7/16-28 \\ .4375-32 \text{ or } 7/16-32 \end{array}$	500-12 or $1/2-12500-13$ or $1/2/13500-16$ or $1/2-16500-20$ or $1/2-20500-28$ or $1/2-28500-32$ or $1/2-28$	See footnotes at end of table.

ement	Above $1.5D$ thru $3D$	Min Max	13 14	in in	. 496 . 505 . 512 . 513 . 513 . 513 . 513 . 513 . 513 . 523 . 533 . 534 . 534 . 538 . 538	-486         -495           -512         -512           -513         -512           -514         -533           -534         -534           -544         -534           -548         -534           -548         -534           -548         -534           -548         -534           -548         -534           -548         -534           -548         -534           -548         -534           -548         -534           -548         -534           -548         -534           -548         -534           -548         -534           -548         -534           -548         -534           -548         -534           -546         -534           -546         -534           -546         -546	-486         -495           -517         -512           -517         -512           -517         -512           -517         -512           -517         -512           -517         -523           -523         -533           -534         -533           -541         -533           -543         -534           -544         -533           -543         -534           -544         -533           -544         -534           -544         -534           -544         -534           -544         -534           -544         -534           -548         -537           -538         -531           -548         -531           -533         -532           -533         -532           -533         -532           -533         -532           -533         -532           -533         -532           -533         -532           -533         -532           -534         -532           -534         -532           -534 <th>5486         5485           517         512           517         512           517         512           517         512           517         512           517         534           533         533           534         533           534         533           534         533           534         533           534         533           534         533           534         535           536         535           536         535           536         535           536         535           536         536           537         535           538         536           538         536           538         538           538         538           538         538           538         538           538         538           538         538           538         538           538         538           538         538           538         548           653</th> <th>5486         5495           5425         5495           517         517           517         517           517         534           533         533           534         533           534         533           534         533           534         533           534         533           534         533           534         533           534         537           534         537           535         537           536         537           537         537           538         537           538         537           538         537           538         537           538         537           538         538           538         538           538         538           538         538           538         538           538         538           538         538           538         538           538         538           538         563           538<th>5486         5486           512         5486           512         512           514         512           515         512           516         512           517         534           534         533           534         533           534         533           534         533           535         548           534         533           534         533           534         533           535         548           536         548           537         533           536         548           537         533           538         537           538         537           538         537           538         537           538         537           538         557           538         557           548         557           558         557           558         557           558         557           558         557           558         557           583</th></th>	5486         5485           517         512           517         512           517         512           517         512           517         512           517         534           533         533           534         533           534         533           534         533           534         533           534         533           534         533           534         535           536         535           536         535           536         535           536         535           536         536           537         535           538         536           538         536           538         538           538         538           538         538           538         538           538         538           538         538           538         538           538         538           538         538           538         548           653	5486         5495           5425         5495           517         517           517         517           517         534           533         533           534         533           534         533           534         533           534         533           534         533           534         533           534         533           534         537           534         537           535         537           536         537           537         537           538         537           538         537           538         537           538         537           538         537           538         538           538         538           538         538           538         538           538         538           538         538           538         538           538         538           538         538           538         563           538 <th>5486         5486           512         5486           512         512           514         512           515         512           516         512           517         534           534         533           534         533           534         533           534         533           535         548           534         533           534         533           534         533           535         548           536         548           537         533           536         548           537         533           538         537           538         537           538         537           538         537           538         537           538         557           538         557           548         557           558         557           558         557           558         557           558         557           558         557           583</th>	5486         5486           512         5486           512         512           514         512           515         512           516         512           517         534           534         533           534         533           534         533           534         533           535         548           534         533           534         533           534         533           535         548           536         548           537         533           536         548           537         533           538         537           538         537           538         537           538         537           538         537           538         557           538         557           548         557           558         557           558         557           558         557           558         557           558         557           583
ingths of engagen	$7D  ext{ thru } 1.5D$	Max	12	in . 490 . 509 . 516	.520 .527 .536	5990 5990 5990 5990 5990 5990 5990 5990	5222 5222 5222 5222 5222 5222 5222 522	532 532 532 532 532 532 532 532 532 532	532 532 532 532 532 532 532 532 532 532	532 532 532 532 532 532 532 532 532 532
	Above 0.67	Min	11	in	.532	532 5544 5555 5554 595 595 595 595 595 595	. 532 . 534 . 544 . 554 . 554 . 554 . 554 . 554 . 554 . 553 . 554 . 553 . 553 . 553 . 657 . 657 . 657 . 657	. 532 . 554 . 554 . 554 . 554 . 554 . 557 . 557 . 557 . 557 . 557 . 657 . 657 . 657 . 657 . 657 . 657 . 657 . 657 . 657 . 658 . 658 . 658 . 658 . 658 . 658 . 658 . 658 . 658 . 702 . 658 . 658 . 658 . 658 . 658 . 702 . 658 . 6588 . 6588 . 6588 . 65888 . 65888 . 65888888888888888888888888888888888888	. 532 . 554 . 554 . 554 . 554 . 554 . 554 . 557 . 556 . 657 . 702 . 658 . 657 . 778 . 658 . 778 . 7788 . 77888 . 77888 . 77888 . 7788888 . 778888888888	532 544 554 554 554 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 557 558 558
	thru $0.67D$	Max	10	in .486 .512 .512 .530 .530	.534	534 548 568 568 574 580 593 593	534 5393 5393 5393 5393 5393 5393 5393 5	5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	534 544 556 550 6550 6550 6550 6550 6550 6	8430 8430 8430 8430 8430 8430 8430 8430
	Above 0.33L	Min	6	in .477 .477 .506 .511 .520 .526	.530	530 561 5768 5768 5768 5788 593			. 200 . 200	83888888888888888888888888888888888888
	ling 0.33D	Max	æ	in .502 .514 .528 .528 .528 .528	.532	532 544 564 571 585 590 595	532 534 554 557 557 557 555 555 555 555 653 653 653 653 653 653	532 534 551 551 551 552 553 553 653 653 653 653 653 653 653 653	532 532 551 551 551 555 555 555 555 555 555 55	533 532 533 551 551 552 552 553 552 553 553 555 553 555 553 555 555
	To and includ	Min	7	in .472 .595 .508 .508 .517 .524	676.	- 529 - 535 - 535 - 555 - 555 - 555 - 586 - 586 - 586 - 586	523 5325 5325 5325 5325 5325 532 632 632 632 634 634 634 654 654 654 654	523 5327 5555 5555 5555 5555 5555 5555 5	222 223 2327 2527 2527 2527 2527 2528 2527 2528 2527 2528 2527 2528 2527 2528 2527 2528 2527 2528 2527 2528 2527 2528 2527 2528 2527 2527	8332125222 833212522 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83321252 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83521 83
	Percent	thread height ^b	9	655.6 655.8 655.6 655.6 657.0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	00.0	66.9 66.5 66.5 66.1 66.1 66.1 66.1 64.7 64.7 64.7	6555556 667, 667,668666 655,556 655,556 655,556 655,556 655,556 655,556 655,556 655,556 655,556 655,556 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,7777 7,7777 7,7777 7,7777 7,7777 7,7777 7,77777 7,77777 7,77777 7,777777	00 00 00 00 00 00 00 00 00 00	0.000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8
	Max c		r.	in - 490 - 520 - 522 - 532 - 532 - 532	0.00.	599 599 599 599 599 599 599 599 599 599	661 661 661 661 661 661 661 661 661 661	661 661 661 661 663 661 664 664 664 664 664 664 664 664 664		
	Percent	thread height ^b	- <u>+</u> +	88833.16 833.16 833.16 834.11 834.11 834.11 834.11 834.11 834.11 834.11 834.11 834.11 834.11 834.11 834.11 834.11 834.11 835.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.10 837.100	6.20	833.10 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 833.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 835.11 83	88888888888888888888888888888888888888	8.888888888888888888888888888888888888	82838383838383838888888888888888888888	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
-	Min		rr .	in .495 .508 .508 .517 .524 .524	-	.527 .535 .557 .555 .565 .580 .580 .586	654 654 654 654 654 654 654 654 654 654	522 527 527 527 527 527 527 527 527 527	527 557 557 557 557 557 557 557 558 558 55	527 557 557 557 557 557 557 557 557 557
	Series designation		5	UNC 16UN 20UN 20UN 23UN 32UN		UNC 12UN 12UN 16UN 16UN 20UN 28UN 32UN	2000 1200 1600N 1600N 200N 200N 200N 200N 200N 200N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 220N 200N 220N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 200N 2000	200NN 200NN 200NN 200NN 200NN 200NN 200NS 200NN 200NS 200NS 200NS 200NS 200NS 200NS 200NS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200NNS 200	2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 2	2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 200 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2
	Noninal size in inches and threads per inch		Π	.5625-12 or 9/16-12 .5625-16 or 9/16-16 .6625-18 or 9/16-18 .6625-20 or 9/16-28 .5625-28 or 9/16-24 .6625-28 or 9/16-28		$\begin{array}{c} \textbf{0} \textbf{0} \textbf{0} \textbf{0} \textbf{0} \textbf{0} \textbf{0} 0$	$\begin{array}{c} 625-11 \ {\rm or}\ 5/8-11 \\ 625-12 \ {\rm or}\ 5/8-11 \\ 625-18 \ {\rm or}\ 5/8-18 \\ 625-29 \ {\rm or}\ 5/8-18 \\ 625-29 \ {\rm or}\ 5/8-28 \\ 625-29 \ {\rm or}\ 5/8-28 \\ 625-29 \ {\rm or}\ 5/8-28 \\ 625-28 \ {\rm or}\ 5/8-28 \\ 625-28 \ {\rm or}\ 5/8-28 \\ 6875-12 \ {\rm or}\ 11/16-18 \\ 6875-28 \ {\rm or}\ 11/16-18 \\ 6875-28 \ {\rm or}\ 11/16-28 \\ 6875-28 \ {\rm or}\ 11/16-18 \\ 8875-28 \ {\rm or}\ 11/16-18 \\ 8875-28 \ {\rm or}\ 11/16-18 \\ 8875-28$	$\begin{array}{c} (655-11 \ {\rm or} \ 5/8-11 \ {\rm or} \ 5/8-12 \ {\rm or} \ 5/8-16 \ {\rm or} \ 5/8-20 \ {\rm or} \ 5/8-22 \ {\rm or} \ 1/1/6-12 \ {\rm or} \ 5/8-22 \ {\rm or} \ 1/1/6-12 \ {\rm or} \ 5/8-22 \ {\rm or} \ 5/8-22 \ {\rm or} \ 1/1/6-22 \ {\rm or} \ 5/8-22 \ {\rm or} \ 1/1/6-22 \ {\rm or} \ 5/8-22 \ {\rm or} \ 1/1/6-22 \ {\rm or} \ 5/8-22 \ {\rm or} \ 1/1/6-22 \ {\rm or} \ 5/8-22 \ {\rm or} \ 1/1/6-22 \ {\rm or} \ 5/8-22 \ {\rm or} \ 1/1/6-22 \ {\rm or} \ 3/4-16 \ {\rm or} \ 3/4-16$	$\begin{array}{c} (625-11 \mbox{ or } 5/8-11 \mbox{ or } 5/8-12 \mbox{ or } 5/8-16 \mbox{ or } 5/8-20 \mbox{ or } 5/8-28 \mbox{ or } 1/16-12 \mbox{ or } 8875-28 \mbox{ or } 1/16-28 \mbox{ or } 8875-28 \mbox{ or } 1/16-28 \mbox{ or } 3/4+16 \mbox{ or } 3/16-28 \mbox{ or } 3/16-2$	$\begin{array}{c} (655-11 \ {\rm or} \ 5/8-10 \ {\rm or} \ 5/8-20 \ {\rm or} \ 11/16-12 \ {\rm or} \ 5/8-20 \ {\rm or} \ 11/16-22 \ {\rm or} \ 5/8-20 \ {\rm or} \ 11/16-22 \ {\rm or} \ 5/8-20 \ {\rm or} \ 11/16-22 \ {\rm or} \ 5/8-20 \ {\rm or} \ 11/16-22 \ {\rm or} \ 5/8-20 \ {\rm or} \ 11/16-22 \ {\rm or} \ 5/8-20 \ {\rm or} \ 11/16-22 \ {\rm or} \ 5/8-20 \ {\rm or} \ 11/16-22 \ {\rm or} \ 5/8-20 \ {\rm or} \ 11/16-22 \ {\rm or} \ 5/8-20 \ {\rm or} \ 11/16-22 \ {\rm or} \ 5/8-20 \ {\rm or} \ 3/4-10 \ {\rm or} \ 3/$

19058

TABLE A3.5. Recommended hole size limits before threading for different lengths of engagement, standard Unified and some UNS threads, classes 1B and 2B (based on table 3.9*)—Continued

.896 932 950 956 956 956 972 972	$\begin{array}{c} .958\\ .995\\ 1.005\\ 1.012\\ 1.018\\ 1.023\\ 1.034\end{array}$	$\begin{array}{c} 1.005\\ 1.021\\ 1.057\\ 1.075\\ 1.085\\ 1.085\\ 1.097\end{array}$	$\begin{array}{c} 1.083\\ 1.120\\ 1.137\\ 1.143\\ 1.148\\ 1.148\\ 1.159\end{array}$	$\begin{array}{c} 1.130\\ 1.146\\ 1.182\\ 1.200\\ 1.206\\ 1.210\\ 1.222\end{array}$	$\begin{array}{c} 1.208 \\ 1.245 \\ 1.262 \\ 1.268 \\ 1.268 \\ 1.284 \end{array}$	$\begin{array}{c} 1.233\\ 1.271\\ 1.307\\ 1.325\\ 1.335\\ 1.335\\ 1.347\end{array}$	$\begin{array}{c} 1.295\\ 1.333\\ 1.370\\ 1.387\\ 1.393\\ 1.398\\ 1.409\\ 1.409\end{array}$	$\begin{array}{c} 1.358\\ 1.356\\ 1.432\\ 1.450\\ 1.456\\ 1.456\\ 1.472\\ \end{array}$	$\begin{array}{c} 1.420\\ 1.458\\ 1.495\\ 1.512\\ 1.518\\ 1.523\\ 1.523\end{array}$
	$^{946}_{-997}$ $^{986}_{-997}$ $^{1.005}_{-017}$ $^{1.017}_{-030}$	$\begin{array}{c} 0.991\\ 1.008\\ 1.048\\ 1.048\\ 1.068\\ 1.074\\ 1.080\\ 1.093 \end{array}$	$1.071 \\ 1.130 \\ 1.130 \\ 1.137 \\ 1.142 \\ 1.155$	$\begin{array}{c} 1.116\\ 1.133\\ 1.173\\ 1.193\\ 1.204\\ 1.218\\ 1.218\end{array}$	$\begin{array}{c} 1.196\\ 1.255\\ 1.255\\ 1.262\\ 1.267\\ 1.280\end{array}$	$\begin{array}{c} 1.218\\ 1.258\\ 1.258\\ 1.318\\ 1.324\\ 1.330\\ 1.343\end{array}$	$\begin{array}{c} 1.280\\ 1.321\\ 1.321\\ 1.380\\ 1.387\\ 1.392\\ 1.405\end{array}$	$\begin{array}{c} 1.342\\ 1.383\\ 1.423\\ 1.449\\ 1.449\\ 1.454\\ 1.468\end{array}$	1.405 1.446 1.486 1.505 1.512 1.512
	$\begin{array}{c} .952\\ .990\\ 1.001\\ 1.009\\ 1.015\\ 1.020\\ 1.032\end{array}$	$\begin{array}{c} 0.998\\ 1.015\\ 1.053\\ 1.071\\ 1.078\\ 1.082\\ 1.095\end{array}$	$\begin{array}{c} 1.077\\1.115\\1.134\\1.134\\1.140\\1.145\\1.157\end{array}$	$1.123 \\ 1.140 \\ 1.178 \\ 1.178 \\ 1.196 \\ 1.203 \\ 1.207 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.220 \\ 1.20$	$\begin{array}{c} 1.202 \\ 1.240 \\ 1.259 \\ 1.265 \\ 1.282 \\ 1.282 \end{array}$	$\begin{array}{c} 1.225\\ 1.265\\ 1.303\\ 1.321\\ 1.328\\ 1.332\\ 1.332\\ 1.345\end{array}$	$\begin{array}{c} 1.288 \\ 1.327 \\ 1.365 \\ 1.384 \\ 1.396 \\ 1.395 \\ 1.407 \end{array}$	$\begin{array}{c} 1.350\\ 1.350\\ 1.428\\ 1.446\\ 1.453\\ 1.457\\ 1.457\end{array}$	$\begin{array}{c} 1.413\\ 1.452\\ 1.452\\ 1.509\\ 1.515\\ 1.520\end{array}$
	$\begin{array}{c} .940\\ .981\\ .993\\ 1.002\\ 1.009\\ 1.028\\ 1.028 \end{array}$	$\begin{array}{c} 0.984 \\ 1.002 \\ 1.044 \\ 1.064 \\ 1.071 \\ 1.077 \\ 1.090 \end{array}$	1.065 1.106 1.127 1.134 1.139 1.153	$\begin{array}{c} 1.109\\ 1.127\\ 1.169\\ 1.189\\ 1.196\\ 1.202\\ 1.216\\ \end{array}$	$\begin{array}{c} 1.190\\ 1.231\\ 1.252\\ 1.259\\ 1.264\\ 1.278\end{array}$	$\begin{array}{c} 1.210\\ 1.252\\ 1.252\\ 1.314\\ 1.321\\ 1.321\\ 1.327\\ 1.340\end{array}$	$\begin{array}{c} 1.272\\ 1.315\\ 1.356\\ 1.377\\ 1.384\\ 1.389\\ 1.403\end{array}$	$\begin{array}{c} 1.335\\ 1.377\\ 1.419\\ 1.439\\ 1.446\\ 1.452\\ 1.466\end{array}$	$\begin{array}{c} 1.397\\ 1.440\\ 1.502\\ 1.502\\ 1.514\\ 1.514\end{array}$
884 923 943 943 954 958 958 972	$\begin{array}{c} .946 \\ .986 \\ .997 \\ 1.005 \\ 1.012 \\ 1.012 \\ 1.030 \end{array}$	$\begin{array}{c} 0.991\\ 1.008\\ 1.048\\ 1.048\\ 1.068\\ 1.074\\ 1.093\\ 1.093 \end{array}$	1.071 1.111 1.130 1.137 1.142 1.155	$\begin{array}{c} 1.116\\ 1.134\\ 1.173\\ 1.193\\ 1.199\\ 1.204\\ 1.218\end{array}$	$\begin{array}{c} 1.196 \\ 1.236 \\ 1.255 \\ 1.255 \\ 1.267 \\ 1.280 \end{array}$	$\begin{array}{c} 1.218 \\ 1.258 \\ 1.258 \\ 1.318 \\ 1.324 \\ 1.330 \\ 1.343 \end{array}$	$\begin{array}{c} 1.280\\ 1.321\\ 1.321\\ 1.380\\ 1.387\\ 1.387\\ 1.405\\ \end{array}$	$\begin{array}{c} 1.343\\ 1.384\\ 1.384\\ 1.423\\ 1.443\\ 1.449\\ 1.454\\ 1.468\\ \end{array}$	$\begin{array}{c} 1.405\\ 1.446\\ 1.486\\ 1.505\\ 1.512\\ 1.512\end{array}$
.871 .914 .927 .936 .949 .949 .968	$\begin{array}{c} .934 \\ .977 \\ .989 \\ .998 \\ .998 \\ 1.006 \\ 1.011 \\ 1.026 \end{array}$	$\begin{array}{c} 0.977\\996\\ 1.039\\ 1.061\\ 1.068\\ 1.074\\ 1.088\end{array}$	$\begin{array}{c} 1.058\\ 1.102\\ 1.123\\ 1.130\\ 1.136\\ 1.151\\ 1.151 \end{array}$	$\begin{array}{c}1.102\\1.121\\1.164\\1.164\\1.193\\1.193\\1.199\\1.213\end{array}$	$\begin{array}{c} 1.184 \\ 1.227 \\ 1.248 \\ 1.256 \\ 1.256 \\ 1.261 \\ 1.276 \end{array}$	$\begin{array}{c} 1.202\\ 1.246\\ 1.289\\ 1.311\\ 1.318\\ 1.324\\ 1.338\\ 1.338\end{array}$	$\begin{array}{c} 1.265\\ 1.308\\ 1.352\\ 1.373\\ 1.373\\ 1.386\\ 1.386\\ 1.401 \end{array}$	$\begin{array}{c} 1.327\\ 1.371\\ 1.414\\ 1.436\\ 1.443\\ 1.449\\ 1.463\end{array}$	$\begin{array}{c} 1.390\\ 1.434\\ 1.477\\ 1.498\\ 1.506\\ 1.511\end{array}$
	$\begin{array}{c} .940 \\ .981 \\ .993 \\ 1.002 \\ 1.014 \\ 1.028 \end{array}$	$\begin{array}{c} 0.984 \\ 1.002 \\ 1.044 \\ 1.064 \\ 1.071 \\ 1.077 \\ 1.090 \end{array}$	$\begin{array}{c} 1.065\\ 1.106\\ 1.127\\ 1.134\\ 1.139\\ 1.153\end{array}$	$\begin{array}{c} 1.109\\ 1.127\\ 1.169\\ 1.189\\ 1.202\\ 1.216\\ \end{array}$	$\begin{array}{c} 1.190 \\ 1.231 \\ 1.252 \\ 1.259 \\ 1.264 \\ 1.278 \end{array}$	$\begin{array}{c} 1.210\\ 1.252\\ 1.254\\ 1.314\\ 1.321\\ 1.327\\ 1.340\end{array}$	$\begin{array}{c} 1.272\\ 1.315\\ 1.356\\ 1.377\\ 1.384\\ 1.389\\ 1.403\end{array}$	$\begin{array}{c} 1.335\\ 1.377\\ 1.419\\ 1.439\\ 1.452\\ 1.452\\ 1.466\end{array}$	$\begin{array}{c} 1.397\\ 1.440\\ 1.481\\ 1.502\\ 1.509\\ 1.514\end{array}$
865 910 923 946 946 961 961	$\begin{array}{c} .927\\ .972\\ .985\\ .995\\ 1.002\\ 1.008\\ 1.024 \end{array}$	$\begin{array}{c} 0.970\\ -990\\ 1.035\\ 1.057\\ 1.057\\ 1.071\\ 1.071\\ 1.086\end{array}$	1.052 1.097 1.120 1.127 1.133 1.149	$\begin{array}{c} 1.095\\ 1.115\\ 1.160\\ 1.182\\ 1.190\\ 1.196\\ 1.211\\ 1.211 \end{array}$	$\begin{array}{c} 1.177\\ 1.222\\ 1.245\\ 1.258\\ 1.258\\ 1.274 \end{array}$	$\begin{array}{c} 1.195\\ 1.240\\ 1.285\\ 1.307\\ 1.315\\ 1.321\\ 1.336\\ 1.336\end{array}$	$\begin{array}{c} 1.257 \\ 1.347 \\ 1.347 \\ 1.377 \\ 1.377 \\ 1.383 \\ 1.383 \\ 1.399 \end{array}$	$\begin{array}{c} 1.320\\ 1.365\\ 1.410\\ 1.432\\ 1.440\\ 1.446\\ 1.446\\ 1.446\end{array}$	$\begin{array}{c} 1.382\\ 1.472\\ 1.495\\ 1.502\\ 1.508\end{array}$
67.7 665.5 665.8 665.1 665.1 64.7 7 21.0 64.7 7 21.0	66666666 655.9 555.9 744 744 744 744 744 744 744 744 744 74	68 66 65 65 65 65 65 65 65 64 65 65 65 65 65 65 65 65 65 65 65 72 86 65 72 86 65 72 86 65 72 74 74 74 74 74 74 74 74 74 74 74 74 74	655.0 657.0 657.0 657.0 657.0 657.0	$\begin{array}{c} 68\\ 66.5\\ 66.5\\ 65.1\\ 65.1\\ 66.5\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 64.2\\ 6$	657.0 657.9 657.9 657.8 657.4	69 667.73 665.5773 665.5773 665.5773	69.1 67.0 65.9 65.8 65.8 65.4 65.4	69 667.73 665.57 665.57 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.27 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28 64.28	69.1 67.0 65.9 65.8 65.8
	$\begin{array}{c} .952\\ .990\\ 1.001\\ 1.015\\ 1.020\\ 1.032\end{array}$	$\begin{array}{c} 0.998\\ 1.015\\ 1.053\\ 1.071\\ 1.078\\ 1.078\\ 1.082\\ 1.095\end{array}$	$\begin{array}{c} 1.077\\ 1.115\\ 1.134\\ 1.140\\ 1.145\\ 1.157\end{array}$	$\begin{array}{c} 1.123\\ 1.140\\ 1.178\\ 1.196\\ 1.203\\ 1.207\\ 1.220\end{array}$	$\begin{array}{c} 1.202 \\ 1.240 \\ 1.259 \\ 1.265 \\ 1.282 \\ 1.282 \end{array}$	$\begin{array}{c} 1.225\\ 1.265\\ 1.303\\ 1.321\\ 1.328\\ 1.332\\ 1.332\\ 1.345\end{array}$	$\begin{array}{c} 1.288 \\ 1.327 \\ 1.365 \\ 1.384 \\ 1.396 \\ 1.395 \\ 1.407 \end{array}$	$\begin{array}{c} 1.350\\ 1.350\\ 1.428\\ 1.446\\ 1.453\\ 1.457\\ 1.457\end{array}$	$\begin{array}{c} 1.413\\ 1.452\\ 1.490\\ 1.509\\ 1.515\\ 1.520\end{array}$
88888888888888888888888888888888888888	88888888888888888888888888888888888888	8888883.5 883.1 883.1 883.1 888.8 888.8 888.8 888.8 888.8 888.8 888.8 888.8 888.8 888.8 888.8 888.8 888.8 888.8 888.8 888.8 888.8 888.8 888.8 888.8 888.8 888.8 887.1 1 5 7	888888 50.00 4.00 1.00 2.00 2.00 2.00 2.00 2.00 2.00 2	888883311 5211 88888888 88888888 888888888 88888888	888888888 4.0.1.8.0.0	8888833.1.1 488888833.1.1 49888888888888888888888888888888888888	888888888 440188888888888888888888888888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	888888 44.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 54.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00
	$\begin{array}{c} .927\\ .972\\ .985\\ .985\\ 1.002\\ 1.008\\ 1.024\end{array}$	$\begin{array}{c} 0.970\\990\\ 1.035\\ 1.057\\ 1.057\\ 1.071\\ 1.086\end{array}$	$\begin{array}{c} 1.052\\ 1.097\\ 1.120\\ 1.127\\ 1.133\\ 1.149\end{array}$	$\begin{array}{c} 1.095\\ 1.115\\ 1.160\\ 1.182\\ 1.190\\ 1.196\\ 1.211\\ 1.211 \end{array}$	$\begin{array}{c} 1.177\\ 1.222\\ 1.245\\ 1.258\\ 1.258\\ 1.274\end{array}$	$\begin{array}{c} 1.195\\ 1.240\\ 1.285\\ 1.307\\ 1.315\\ 1.321\\ 1.336\\ \end{array}$	$\begin{array}{c} 1.257\\ 1.362\\ 1.347\\ 1.370\\ 1.377\\ 1.383\\ 1.399\end{array}$	$\begin{array}{c} 1.320\\ 1.365\\ 1.410\\ 1.432\\ 1.440\\ 1.446\\ 1.446\\ 1.446\end{array}$	$\begin{array}{c} 1.382\\ 1.427\\ 1.472\\ 1.502\\ 1.508\end{array}$
UNC UNF UNS UNS UNS UNEF 28UN 32UN	8UN 12UN UNS 16UN 20UN 28UN	UNC 8UN 8UN 16UN 20UN 28UN	8UN 12UN 16UN 20UN 28UN	UNC 8UN 8UN 16UN 20UN 28UN	8UN 12UN 16UN 20UN 28UN	UNC 8UN UNF 16UN 20UN 28UN	6UN 8UN 12UN 16UN 20UN 28UN	UNC 8UN 8UN 16UN 20UN 28UN	6UN 8UN 12UN 16UN UNEF 20UN
$\begin{array}{c} 1.000-8\\ 1.000-12\\ 1.000-14\\ 1.000-16\\ 1.000-18\\ 1.000-20\\ 1.000-28\\ 1.000-28\end{array}$	1.0625-8 1.0625-12 1.0625-14 1.0625-16 1.0625-16 1.0625-28 1.0625-28	$\begin{array}{c} 1.125-7\\ 1.125-18\\ 1.125-18\\ 1.125-16\\ 1.125-16\\ 1.125-28\\ 1.125-28\\ 1.125-28\end{array}$	$\begin{array}{c} 1.1875-8\\ 1.1875-12\\ 1.1875-16\\ 1.1877-16\\ 1.1875-18\\ 1.1875-20\\ 1.1875-28\end{array}$	1,250-7 1,250-8 1,250-18 1,250-16 1,250-20 1,250-28 1,250-28	$\begin{array}{c} 1.3125-8\\ 1.3125-12\\ 1.3125-16\\ 1.3125-16\\ 1.3125-20\\ 1.3125-28\\ 1.3125-28\end{array}$	$\begin{array}{c} 1.375-6\\ 1.375-8\\ 1.375-18\\ 1.375-16\\ 1.375-16\\ 1.375-28\\ 1.375-28\\ 1.375-28\end{array}$	1.4375-6 1.4375-8 1.4375-18 1.4375-15 1.4375-16 1.4375-20 1.4375-28	$\begin{array}{c} 1.500-6\\ 1.500-8\\ 1.500-18\\ 1.500-16\\ 1.500-18\\ 1.500-28\\ 1.500-28\\ 1.500-28\end{array}$	$\begin{array}{c} 1.5625-6\\ 1.5625-8\\ 1.5625-12\\ 1.5625-12\\ 1.5625-16\\ 1.5625-18\\ 1.5625-20\\ \end{array}$

See footnotes at end of table.

Unified and some UNS threads,	
gagement, standard ontinued	
- different lengths of en based on table 3.9 [*] )—C	•
limits before threading for classes 1B and 2B (l	
Recommended hole size	
TABLE A3.5.	

	ove $1.5D$ thru $3D$	Jin Max	13 14	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.559         1.576           1.592         1.576           1.633         1.646           1.673         1.646           1.673         1.646           1.673         1.700           1.704         1.710	1.655         1.670           1.696         1.708           1.736         1.745           1.755         1.762	1.767 1.773	1.767         1.773           1.718         1.773           1.758         1.773           1.758         1.773           1.798         1.771           1.835         1.835           1.830         1.835	1.767         1.773           1.718         1.773           1.758         1.771           1.758         1.771           1.758         1.773           1.778         1.805           1.835         1.870           1.836         1.835           1.836         1.835           1.836         1.835           1.831         1.835           1.831         1.835           1.831         1.835           1.831         1.835           1.831         1.835           1.831         1.837           1.832         1.838           1.832         1.838           1.832         1.838
hs of engagement	thru $1.5D$ Abc	Max M	12 1	in 1.475 1.515 1.553 1.553 1.553 1.577 1.578 1.582	1.538 1.577 1.615 1.615 1.634 1.640 1.645	1.568 1.600 1.640 1.678 1.678 1.707	1.663 1.720 1.740 1.759 1	1.770 1	1.770 1 1.725 1 1.765 1 1.803 1 1.821 1 1.832 1 1.832 1	1.770 1.775 1.725 1.725 1.832 1.832 1.832 1.832 1.832 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885
different lengt	Above 0.67D	Min	11	in 1.460 1.502 1.544 1.564 1.571 1.577	1.522 1.565 1.606 1.627 1.634 1.639	$\begin{array}{c} 1.550\\ 1.550\\ 1.627\\ 1.669\\ 1.689\\ 1.702 \end{array}$	$\begin{array}{c} 1.647\\ 1.690\\ 1.731\\ 1.752\\ 1.764\end{array}$		1.710 1.752 1.794 1.814 1.827	1.710 1.752 1.752 1.752 1.752 1.752 1.827 1.827 1.827 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.835 1.8355 1.8355 1.8355 1.8355 1.83555 1.835555 1.83555555555555555555555555555555555555
size limits for	) thru 0.67D	Max	10	in 1.568 1.568 1.548 1.548 1.568 1.574 1.580	$\begin{array}{c} 1.530\\ 1.571\\ 1.611\\ 1.630\\ 1.637\\ 1.637\\ 1.642\end{array}$	$\begin{array}{c} 1.559\\ 1.593\\ 1.634\\ 1.673\\ 1.693\\ 1.704\end{array}$	$\begin{array}{c} 1.655\\ 1.656\\ 1.736\\ 1.755\\ 1.767\end{array}$		$\begin{array}{c} 1.718\\ 1.758\\ 1.758\\ 1.818\\ 1.818\\ 1.830\end{array}$	1.718 1.758 1.758 1.798 1.830 1.830 1.831 1.821 1.821 1.880 1.892
amended hole	Above 0.33D	Min	6	in 1.452 1.452 1.436 1.561 1.561 1.568 1.574	$\begin{array}{c} 1.515\\ 1.558\\ 1.558\\ 1.602\\ 1.623\\ 1.630\\ 1.636\\ 1.636\end{array}$	$\begin{array}{c} 1.542\\ 1.577\\ 1.577\\ 1.621\\ 1.664\\ 1.686\\ 1.699\end{array}$	$\begin{array}{c} 1.640\\ 1.684\\ 1.727\\ 1.748\\ 1.748\\ 1.761\end{array}$		$1.702 \\ 1.746 \\ 1.789 \\ 1.811 \\ 1.824 \\ 1.824$	$\begin{array}{c} 1.702\\ 1.746\\ 1.789\\ 1.81\\ 1.81\\ 1.824\\ 1.808\\ 1.858\\ 1.886\\ 1.886\\ 1.886\end{array}$
Recon	uding $0.33D$	Max	œ	in 1.460 1.544 1.544 1.564 1.571	$\begin{array}{c} 1.522\\ 1.565\\ 1.606\\ 1.627\\ 1.634\\ 1.639\end{array}$	$\begin{array}{c} 1.550\\ 1.550\\ 1.627\\ 1.669\\ 1.689\\ 1.702 \end{array}$	$\begin{array}{c} 1.647\\ 1.690\\ 1.731\\ 1.731\\ 1.752\\ 1.764\end{array}$		1.710 1.752 1.794 1.814 1.827	$\begin{array}{c} 1.710\\ 1.752\\ 1.752\\ 1.814\\ 1.827\\ 1.827\\ 1.815\\ 1.856\\ 1.856\\ 1.889\\ 1.889\end{array}$
	To and inclu	Min	7	in 1.445 1.445 1.449 1.557 1.557 1.565 1.571	$\begin{array}{c} 1.507\\ 1.552\\ 1.552\\ 1.620\\ 1.620\\ 1.633\\ 1.633\end{array}$	$\begin{array}{c} 1.534 \\ 1.570 \\ 1.615 \\ 1.660 \\ 1.682 \\ 1.682 \\ 1.696 \end{array}$	$\begin{array}{c} 1.632\\ 1.677\\ 1.722\\ 1.745\\ 1.758\\ 1.758\end{array}$		1.695 1.740 1.785 1.821 1.821	1.757 1.757 1.807 1.807 1.821 1.821 1.821 1.870 1.870 1.883
eads	Percent hasic	thread height b	9	667.7 667.5 667.5 667.5 667.5 667.5	69.1 65.9 65.8 65.8 65.8	70.1 69.3 66.5 66.5 66.5 7 66.5 7	69.1 68.1 67.0 65.9 65.4	60.3	665.5 666.5 666.5 666.5	66666666666666666666666666666666666666
of internal three	May c		G	in 1.475 1.515 1.553 1.553 1.578 1.578 1.582	$\begin{array}{c} 1.538\\ 1.577\\ 1.577\\ 1.615\\ 1.634\\ 1.640\\ 1.645\end{array}$	$\begin{array}{c} 1.568\\ 1.600\\ 1.640\\ 1.678\\ 1.678\\ 1.696\\ 1.707\end{array}$	$1.663 \\ 1.702 \\ 1.740 \\ 1.759 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.770 \\ 1.77$	1.725	1.765 1.803 1.821 1.832	$\begin{array}{c} 1.765\\ 1.803\\ 1.832\\ 1.832\\ 1.832\\ 1.888\\ 1.865\\ 1.865\\ 1.884\\ 1.895\end{array}$
nor diameter o	Percent	thread height ^b	+	83.1 83.1 83.1 83.8 83.8 83.1 83.1 83.1	888888 833.1 5.5888888 5.59 7 5.58 5.59 5.59 5.59 5.59 5.59 5.59 5.59	833.1 833.1 833.1 833.1 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.1 833.8 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.1 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2 833.2	833.4 833.4 833.1 833.1	83.1 83.1	83.1 83.8 83.1	8.82 
Mir	Min		en l	in 1.445 1.445 1.535 1.557 1.565 1.565 1.571	1.507 1.552 1.552 1.627 1.627 1.633	1.534 1.570 1.650 1.660 1.682 1.696	$\begin{array}{c} 1.632\\ 1.677\\ 1.722\\ 1.745\\ 1.758\\ 1.758\end{array}$	1.695 1.740	1.807	1.807 1.821 1.821 1.821 1.827 1.837 1.883
	Series designation		5	6UN 8UN 12UN 16UN 16UN 20UN	6UN 8UN 12UN 16UN UNEF 20UN	UNC 6UN 8UN 12UN 16UN 20UN	6UN 8UN 12UN 16UN 20UN	6UN 8UN 12UN	16UN 20UN	16UN 20UN 8UN 12UN 16UN 20UN
	ominal size in inches nd threads per inch		1	1.625-6 1.625-8 1.625-8 1.625-16 1.625-16 1.625-18 1.625-20	$\begin{array}{c} 1.6875-6\\ 1.6875-8\\ 1.6875-12\\ 1.6875-12\\ 1.6875-12\\ 1.6875-18\\ 1.6875-20\\ 1.6875-20\\ \end{array}$	$\begin{array}{c} 1.750-5\\ 1.750-6\\ 1.750-8\\ 1.750-12\\ 1.750-12\\ 1.750-16\\ 1.750-20\end{array}$	$\begin{array}{c} 1.8125-6\\ 1.8125-8\\ 1.8125-12\\ 1.8125-12\\ 1.8125-16\\ 1.8125-20\\ \end{array}$	$\begin{array}{c} 1.875-6\\ 1.875-8\\ 1.875-12\\ 1.875-12\\ 1.875-12\end{array}$	1.875-20	1.875-20 1.9375-6 1.9375-8 1.9375-12 1.9375-16 1.9375-20

210.5

2.012	$\begin{array}{c} 1.983 \\ 2.021 \\ 2.057 \\ 2.075 \\ 2.085 \end{array}$	2.137	$2.054 \\ 2.108$	2.276 2.526 2.776 3.026
2.005	$\begin{array}{c} 1.968 \\ 2.008 \\ 2.048 \\ 2.080 \end{array}$	2.130	2.036 2.092	2.258 2.758 3.008
2.009	$\begin{array}{c} 1.975\\ 2.053\\ 2.053\\ 2.082\\ 2.082\end{array}$	2.134	2.045 2.100	2.267 2.517 2.767 3.017
2.002	$\begin{array}{c} 1.960\\ 2.002\\ 2.044\\ 2.077 \end{array}$	2.127	$2.027 \\ 2.085$	$2.248 \\ 2.498 \\ 2.748 \\ 2.998 \\ 2.998 \\ 2.998 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.000 \\ 3.00$
2.005	$\begin{array}{c} 1.968 \\ 2.008 \\ 2.068 \\ 2.068 \\ 2.080 \end{array}$	2.130	$\begin{array}{c} 2.036 \\ 2.093 \end{array}$	2.258 2.758 3.008 3.008
1.998	$\begin{array}{c} 1.952 \\ 1.952 \\ 2.039 \\ 2.074 \end{array}$	2.123	2.018 $2.077$	2.239 2.489 2.739 2.989
2.002	$\begin{array}{c} 1.960\\ 2.002\\ 2.044\\ 2.064\\ 2.077\end{array}$	2.127	$2.027 \\ 2.085$	2.248 2.7498 2.998
1.995	$\begin{array}{c} 1.945\\ 1.990\\ 2.035\\ 2.057\\ 2.071 \end{array}$	2.120	$2.009 \\ 2.070$	2.229 2.479 2.979 2.979
65.9	69.3 67.7 66.5 66.5 66.2	65.9	71.0 69.3	71:7 71:7 71:7
2.009	$\begin{array}{c} 1.975\\ 2.015\\ 2.053\\ 2.071\\ 2.082\end{array}$	2.134	2.045 2.100	2.267 2.517 2.767 3.017
83.1	888888 .1 83.1 83.8 83.8 83.1	83.1	83.5 83.1	888883.14 833.14 833.64 83
1.995	$\begin{array}{c} 1.945\\ 1.990\\ 2.035\\ 2.057\\ 2.071 \end{array}$	2.120	2.009 2.070	2.229 2.479 2.729 2.979
NNS	6UN 8UN 12UN 16UN 20UN	UNS	UNC 6UN	UNC UNC UNC
2.0625-16	2.125-6 2.125-8 2.125-12 2.125-12 2.125-10	2.1875-16	2.250-4.5 2.250-6	2.500-4 2.750-4 3.250-4 3.250-4

^a The differences between limits are equal to the minor diameter tolerances given in table 3.9 for lengths of engagement to and including 0.33D. However, the minimum values for lengths of engagement greater than 0.33D in sizes 0.25 in, and larger are adjusted so that the difference between limits.
For an one of the similarly applied to determine hole size limits.
For an intable 3.9 should be similarly applied to determine hole size limits.
(1) With the same pitch and (2) meter-pitch combinations which do not appear in this table may be obtained by use of values in this table provided there is a diameter-pitch combination in the table:
(1) with the same pitch and (2) meter table anount than the diameter of the diameter-pitch combination in the table:
(2) with a diameter tap is lessy to an integral amount than the diameter of the diameter-pitch combination for which hole size values are desired. (NOTE: Yalues in the table for nominal sizes less than 0.25 in cannot be used for this purpose.)
0.25 in Cannot be used for this purpose.)
8.77, 3.840, 3.883, 3.860. The precutages of basic thread height will remain unchanged.
8.877, 3.881, 3.883, 3.880. The precutages of basic thread height will remain unchanged.
b Based on values so the rable of the nominal diameter.
9.75. How in the table. The precutage of basic thread height will remain unchanged.
b Based on a length of engagement equal to the nominal diameter.
10.61.41, table 2.01.41, table 2.0

Series Doctor	Minor diamete	r diamete	r of	internal three	ads	To and indui	Recom	Above 0 33.D	size limits for	different leng	ths of engage	ment Above 1.57	thru 3D
r inch	designation	Min	Percent basic	Max e	Percent	To and inclu	ding 0.33 <i>U</i>	Above 0.33D	thru 0.6/D	Above 0.010	Gert nin	ADOVE 1.31	urru 3D
			thread height ^b .		thread height b	Min	Max	Min	Max	Min	Max	Min	Max
	6	ŝ	4	5	6	7	æ	6	10	11	12	13	14
8	UNF	$_{0.0465}^{in}$	83.1	$\overset{in}{0.0514}$	53.0	in 0.0465	$_{0.0500}^{in}$	$\overset{in}{0.0479}$	$in \\ 0.0514$	$\overset{in}{0.0479}$	in 0.0514	in 0.0479	$\overset{in}{0.0514}$
64 72	UNC	.0561.0580	83.3 83.1	.0623	52.7 52.7	.0561	.0599	.0580.0596	.0618	.0585.0602	.0623	0.585.0602	.0623.0635
56 64	UNC	.0667	83.2 83.3	.0737	53.0 52.7	.0667	.0705	.0707	.0724.0740	.0699	.0737	.0699	.0737.0753
48 56	UNC	.0764	83.5 83.2	.0845	53.6 53.9	.0764.0797	.0804 .0831	.0785.0814	.0825 .0848	.0805	.0845	.0806	.0846.0867
40	UNC	.0849.0894	83.4 83.5	.0939	55.7	.0849.0894	.0894.0931	.0871.0912	.0916.0949	.0894	.0939	.0902.0939	.0947.0976
-40	UNC UNF	.0979	83.4 83.3	.1062	57.9 57.9	.0979	.1020. $.1041$	.1000	.1041. $1060$	.1021. $1042$	.1062. $1079$	.1036.1057	.1077. $1094$
-32 -40	UNC	.1040	83.8 83.1	.1140. $.1186$	59.1 59.7	.1040	.1091	.1128	.1115	.1091	.1140	.1115. $.1166$	.1164. $1205$
-32 -36	UNC	.1300	83.8 83.1	.1389	61.8 62.1	.1300. $1340$	.1345. $1377$	.1324	.1367	.1346	.1389	.1367	.1410.1435
0-24 0-32	UNC UNF	.1450. $.1560$	83.1 83.8	.1555	63.7 63.8	.1450	.1502	.1475.1582	.1528. $1621$	.1502	.1555. $.1641$	.1528. $1622$	.1581
2-24 2-28 2-32	UNC UNF UNEF	.1710 .1770 .1820	83.1 84.1 83.8	.1807 .1857 .1895	65.2 65.3 65.3	.1710 .1770 .1820	.1758 .1815 .1858	.1733 .1794 .1841	.1782 .1836 .1877	.1758 .1815 .1859	.1807 .1857 .1895	.1782 .1836 .1877	.1831 .1878 .1913
	UNC UNF UNEF UNS	.1960 .2110 .2160 .2200	83.1 84.1 83.8 83.1	.2067 .2190 .2229 .2258	66.7 66.8 66.8 67.1	.1960 .2110 .2160 .2200	2013 2152 2196 2229	.1986 .2131 .2172 .2203	2040 2171 2212 2243	2013 2150 2189 2218	.2067 .2190 .2229 .2258	.2040 .2169 .2206	2094 2209 2246 2273
	UNC 20UN UNF 28UN UNEF UNS	.2520 .2580 .2670 .2740 .2790	888883.08 845.0 845.0 825.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 845.5 85	.2630 .2680 .2754 .2807 .2847	6889 6889 6889 6889 6889 6889 6889 6889	2520 2580 2570 2740 2790 2820	2577 2632 2714 2772 2817 2817	2551 2694 2749 2749 2749 2792	2604 2656 2734 2739 2739 2833 2863	.2577 .2632 .2714 .2714 .2767 .2807	2630 2680 2754 2847 2847	2604 2656 2734 2784 2784 2784 2822 2850	2657 2704 2774 2824 2824 2862 2890
	UNC 20UN UNF 28UN UNEF UNS	.3070 .3210 .3300 .3360 .3360 .3410 .3450	833.18 833.1 833.1 833.1 833.8 833.1 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8 833.8	.3182 .3297 .3372 .3426 .3469	70.0 69.7 69.8 69.8 69.2 69.2	.3070 .3210 .3300 .3360 .3360 .3410 .3450	.3127 .3253 .3336 .3395 .3395 .3441	$\begin{array}{c} 3101\\ 3231\\ 3314\\ 3370\\ 3370\\ 3450\\ 3450\end{array}$	.3155 .3275 .3354 .3455 .3455 .3455	.3128 .3253 .3253 .3386 .3386 .3429 .3461	.3182 .3297 .3372 .3372 .3426 .3426	$\begin{array}{c} 3155\\ 3275\\ 3375\\ 3362\\ 3444\\ 3474\\ 3474\end{array}$	3209 3319 3391 3442 3484 3484 3514
	UNC 16UN UNF 32UN	.3600 .3700 .3830 .3990	8833.0 833.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 820.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0 823.0	.3717 .3800 .3916 .4051	70.9 70.8 69.2 69.2	.3600 .3700 .3830 .3990 .4040	.3660 .3749 .3875 .4020	.3630 .3723 .3855 .3995 .4040	.3688 .3774 .38774 .3896 .4080	.3659 .3749 .3875 .4011	.3717 .3800 .3916 .4051 .4094	.3688 .3774 .3896 .4027	.3746 .3825 .3937 .4067 .4109

.4255 .4313 .4443 .4556 .4556 .4692	$ \begin{array}{c} .4873\\.5063\\.5127\\.5127\\.5127\\.5317\\.5317\\.5359\end{array} $	5422 5684 5684 5751 5751 5806 5942 5942	.6113 .6306 .6376 .6371 .6431 .6511 .6567	6577 6734 6929 7001 7056 7192 7234	7356 7554 7626 7681 7817 7817	7714 7978 8090 8179 83251 83251 8442 8484	.8601 .8804 .9331 .9067 .9109	.8835 .9223 .9223 .9237 .9501 .9556 .9556 .9556
$ \begin{array}{r} 4192 \\ 4255 \\ 4395 \\ 4516 \\ 4652 \\ 4694 \\ \end{array} $	.4813 .5017 .5086 .5141 .5221 .5219 .5319	5360 5434 5710 5710 5766 5846 5846 5902	.6057 .6263 .6335 .6331 .6391 .6391 .6471 .6527	.6513 .6680 .6886 .6886 .6960 .7152 .7152	7303 7511 7585 7641 7777 719	7647 7926 8045 8136 8266 8266 8402 8444	.8550 .8761 .8891 .9027	.8760 .9173 .9293 .9460 .9516 .9516 .9694
.4223 .4284 .4419 .4537 .4537 .4719	.4843 .5040 .5106 .5162 .5244 .5301	5391 5463 5662 5662 5730 5787 5787 5926	.6085 .6284 .6355 .6412 .6494 .6551 .6551	.6545 .6707 .6908 .6980 .6980 .7037 .7176 .7219	.7329 .7533 .7605 .7862 .7801	.7681 .7952 .8068 .8158 .8287 .8287 .8287 .8426	.8575 .8783 .8912 .9051	.8797 .9315 .9315 .9408 .9408 .9537 .9537 .9537
.4160 .4226 .4371 .4497 .4679	.4783 .4994 .5065 .5122 .5204 .5204	5329 5618 5618 5618 5648 5747 5829 5829 5829 5929	.6029 .6241 .6314 .6372 .6454 .6511	.6481 .6653 .6653 .6939 .6937 .7136 .7179	.7276 .7490 .7564 .7564 .7761	$\begin{array}{c} 7614\\ -7900\\ 8023\\ -8115\\ -8115\\ -815\\ -8247\\ -8386\\ -8386\\ -847\\ -847\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ -8429\\ $	.8524 .8740 .8872 .9011 .9054	.8722 .9148 .9271 .9365 .9439 .9437 .9636
.4192 .4254 .4395 .4517 .4517 .4660	$\begin{array}{c} 4813 \\ 5017 \\ 5086 \\ 5142 \\ 5226 \\ 5330 \\ 5330 \end{array}$	5360 55360 5640 5710 5710 5851 5851 5910	.6057 6262 6335 6335 6476 6535 6535	.6513 .6680 .6680 .6887 .6960 .7017 .7160 .7205	.7303 .7512 .7585 .7642 .785	7647 7926 8137 8137 8267 8267 8267 8410 8455	.8550 .8762 .8892 .9035	.8759 .9173 .9293 .9460 .9517 .9517
$\begin{array}{c} .4129\\ .4196\\ .4347\\ .4477\\ .4620\\ .4650\end{array}$	.4753 .4971 .5045 .5102 .5186 .5245 .5290	.5298 .5377 .5596 .5596 .5727 .5727 .5871	.6001 .6219 .6294 .6352 .6336 .6495 .6540	.6449 .6626 .6844 .6919 .6977 .7120 .7120	.7250 .7469 .7544 .7602 .7745	7580 7874 8000 8094 8094 8094 8094 815 8227 8370	.8199 .8719 .8852 .8852 .8995	
$\begin{array}{c} 4161 \\ 4225 \\ 4371 \\ 4498 \\ 4691 \end{array}$	$\begin{array}{c} 4783\\ 6494\\ 5065\\ 5123\\ 5209\\ 5270\\ 5316\end{array}$	5328 5617 5617 5630 5630 5834 5834 5951	6029 6241 6315 6373 6459 6520 6520	.6481 .6652 .6866 .6940 .6998 .7145	.7276 .7491 .7565 .7565 .7723 .7770	7614 7900 .7900 .8022 .8116 .8248 .8395 .8395	.8524 .8741 .8873 .9020	.8722 .9148 .9271 .9366 .9440 .9498 .9498
.4100 .4170 .4320 .4460 .4660	.4720 .4950 .5020 .5080 .5170 .5240	5270 5570 5570 5650 5650 5710 5710 5860 5910	.5970 .6270 .6330 .6420 .6420 .6540	.6420 .6600 .6820 .6900 .6900 .7110 .7110	. 7220 . 7450 . 7520 . 7780 . 7790	. 7550 . 7980 . 7980 . 8070 . 8150 . 8150 . 8150 . 8110 . 8410	.8470 .8700 .8830 .9990	
71.7 71.7 71.6 71.3 69.8 69.2	72.2 71.9 70.4 69.8 69.2 69.2	72277 72277 72277 71227 7017 72277 72277 72277 72277 72277 72277 72277 72277 72277 72277 72277 72277 72277 72277 72277 72277 72277 72277 72277 72277 722777 722777 722777 722777 722777 722777 722777 722777 722777 722777 722777 722777 7227777 7227777 7227777 7227777 722777777	73.0 72.1 70.4 69.8 69.8	73.5 72.9 72.1 69.8 69.8 69.2	73.5 72.1 72.1 69.8 69.2	74 733.7 722.9 669.8 89.8 89.8	73.9 72.9 69.8 69.2	744.1 744.1 722.9 692.8 692.8
.4223 .4284 .4419 .4537 .4537 .4576	. 4843 5040 5106 5162 5244 5301 5344	53391 5662 5662 5730 5730 5787 5786 5786 5786 5926	.6085 .6284 .6355 .6355 .6412 .6494 .6551	.6545 .6707 .6707 .6908 .6908 .6980 .7037 .7176	7329 7562 7605 7862 7844	7681 7952 8068 8158 8158 8158 8230 8287 8287 8426	.8575 .8783 .8912 .9051	.8797 .9198 .9315 .9408 .9480 .9537 .9537 .9576
833.1 833.1 838.8 837.1 838.8 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.1 837.10	88888888888888888888888888888888888888	88888888888888888888888888888888888888	8888883.6 831.0 821.1 888888888888888888888888888888888	88888888888888888888888888888888888888	88888888 5008	88888888888888888888888888888888888888	83.6 83.1 83.0 82.5 82.5	88888888888 11081118
.4100 .4170 .4320 .4460 .4660	.4720 .4950 .5020 .5080 .5170 .5240	5270 5570 5570 5550 5550 5550 5550 5510 5860 5860 5910	.5970 .6200 .6270 .6330 .6420 .6540	.6420 .6600 .6820 .6900 .6900 .6960 .7110	. 7220 . 7450 . 7520 . 7780 . 7740	7550 7850 7980 8070 8150 8150 8150 8150 8150 8150 8150 815	.8470 .8700 .8830 .8830 .9040	8650 9100 9320 9460 9460 9460 9460
UNS UNC UNF UNF 32UN	UNC 16UN 20UF 20UN 32UN	UNC 12UN 16UN 16UN 20UN 28UN 28UN 32UN	12UN 16UN 20US 20UN 32UN	UNC 12UN UNF UNE 28UN 32UN	12UN 16UN UNS UNEF 28UN 32UN	UNC 12UN UNF 16UN UNS 28UN 32UN	12UN 16UN 28UN 32UN	UNC UNF UNS UNS 28UN 32UN
.560-12 .500-13 .500-26 .500-28 .500-28	5625-12 5625-16 5625-16 5625-20 5625-24 5625-24 5625-28 5625-28	$\begin{array}{c} 625-11\\ 625-12\\ 625-16\\ 625-16\\ 625-20\\ 625-20\\ 625-23\\ 625-23\\ 625-32\end{array}$	.6875-12 .6875-16 .6875-16 .6875-20 .6875-24 .6875-24 .6875-24 .6875-22	750-10 750-12 750-16 750-16 750-18 750-20 750-28 750-28	.8125-12 .8125-16 .8125-18 .8125-28 .8125-28 .8125-28	875-9 875-12 875-14 875-14 875-18 875-20 875-20 875-20	.9375-12 .9375-16 .9375-20 .9375-28 .9375-28	1.000-8 1.000-14 1.000-14 1.000-16 1.000-18 1.000-20 1.000-28

TABLE A3.6. Recommended hole size limits before threading for different lengths of engagement, standard Unified and some UNS threads, class 3B (based on table 3.10^a)—Continued

		Mino	or diameter of	internal threa	ads		Recom	mended hole.	size limits for	different leng	ths of engage	ment	
inches r inch	Series designation	Min	Percent basic	Max °	Percent basic	To and inclu	ding 0.33 <i>D</i>	Above $0.33D$	thru 0.67D	Above 0,67 <i>L</i>	thru 1.5D	Above 1.51	O thru $3D$
			thread height ^b		thread height ^b	Min	Max	Min	Max	Min	Max	Min	Max
	5	m		2	9	7	œ	6	10	11	12	13	14
	8UN 12UN UNS 16UN 16UN 20UN 28UN	$\frac{in}{9270}$ $\frac{9270}{9250}$ $\frac{9850}{9950}$ 1.0020 1.0020 1.0240	83.838.83 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.09 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 83.000 83.000 83.000 83.000 80 80 80 80 80 80 80 80 80 80 80 80	in .9422 .99420 .99400 1.0033 1.0105 1.0105 1.0105	744 733.8 722.9 69.8 80.8 80.8	$in {}^{in}_{-9720} {}^{-9720}_{-9720} {}^{-9850}_{-9950} {}^{-9850}_{-1.0020} {}^{-1.0020}_{-1.0020} {}^{-1.0020}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220}_{-1.0220} {}^{-1.0220$	in .9347 .9773 .9896 .9896 .9991 1.0065 1.0065 1.0233	$in \begin{array}{c} 3309\\ .9748\\ .9748\\ .9874\\ .9969\\ 1.0044\\ 1.00245\\ 1.0245\end{array}$	$^{in}_{-9798}$ .9798 .9918 1.0012 1.0025 1.0142 1.0142	${}^{in}_{-9773}$ ${}^{9773}_{-9773}$ ${}^{9896}_{-9990}$ ${}^{1.0064}_{-1.0064}$ ${}^{1.0122}_{-1.0261}$	in .9823 .9840 .9940 1.0033 1.0162 1.0162 1.0301	${}^{in}_{-97985}$ ${}^{.9798}_{-979885}$ ${}^{.9918}_{-9918}$ 1.0011 1.0011 1.00135 1.0141	$in \begin{array}{c} 0.460\\ 0.9460\\ 0.9848\\ 0.9962\\ 1.0054\\ 1.0126\\ 1.0126\\ 1.0317\end{array}$
	UNC 8UN 8UN 16UN 20UN 28UN	$\begin{array}{c} 0.9700\\9900\\ 1.0350\\ 1.0570\\ 1.0570\\ 1.0710\\ 1.0760\\ 1.0860\\ \end{array}$	\$\$\$\$\$\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	$\begin{array}{c} 0.9875\\ 1.0047\\ 1.0448\\ 1.0448\\ 1.0658\\ 1.0787\\ 1.0787\\ 1.0787\\ 1.0926\end{array}$	744.1 744.1 722.1 69.3 88.3 89.8	$\begin{array}{c} 0.9700\\ 0.9700\\ 1.0350\\ 1.0570\\ 1.0710\\ 1.0710\\ 1.0860 \end{array}$	$\begin{array}{c} 0.9790\\ 0.9792\\ 1.0398\\ 1.0398\\ 1.0690\\ 1.0748\\ 1.0748\\ 1.0895 \end{array}$	$\begin{array}{c} 0.9747\\ 0.934\\ 1.0373\\ 1.0594\\ 1.0569\\ 1.0727\\ 1.0727\\ 1.0870\end{array}$	$\begin{array}{c} 0.9833\\ 1.0009\\ 1.0423\\ 1.0637\\ 1.0710\\ 1.0710\\ 1.0710\\ 1.0910\\ \end{array}$	$\begin{array}{c} 0.9789\\ 0.972\\ 1.0398\\ 1.0615\\ 1.0689\\ 1.0747\\ 1.0886\end{array}$	$\begin{array}{c} 0.9875\\ 1.0047\\ 1.0447\\ 1.0448\\ 1.0448\\ 1.0538\\ 1.0730\\ 1.0787\\ 1.0726\end{array}$	$\begin{array}{c} 0.9832\\ 1.0010\\ 1.0423\\ 1.0423\\ 1.0736\\ 1.0710\\ 1.0766\\ 1.0902 \end{array}$	$\begin{array}{c} 0.9918\\ 1.0085\\ 1.0473\\ 1.0473\\ 1.0679\\ 1.0751\\ 1.0806\\ 1.0942 \end{array}$
	8UN 15UN 16UN UNEF 20UN	$\begin{array}{c} 1.0520\\ 1.0520\\ 1.1200\\ 1.1270\\ 1.1330\\ 1.1490\end{array}$	8888888 88888888 899999999999999999999	$\begin{array}{c} 1.0672\\ 1.1073\\ 1.1283\\ 1.1355\\ 1.1355\\ 1.1412\\ 1.1551\end{array}$	744.1 724.1 722.9 69.8	$\begin{array}{c} 1.0520\\ 1.0970\\ 1.1200\\ 1.1270\\ 1.1490\\ 1.1490 \end{array}$	$\begin{array}{c} 1.0597\\ 1.1023\\ 1.1241\\ 1.1315\\ 1.1373\\ 1.1520\\ 1.1520 \end{array}$	$\begin{array}{c} 1.0559\\ 1.0958\\ 1.1294\\ 1.1294\\ 1.1352\\ 1.1495\\ 1.1495\end{array}$	$\begin{array}{c} 1.0634\\ 1.1048\\ 1.1262\\ 1.1335\\ 1.1332\\ 1.1535\end{array}$	$\begin{array}{c} 1.0597\\ 1.1023\\ 1.1240\\ 1.1314\\ 1.1372\\ 1.1372\\ 1.1511\end{array}$	$\begin{array}{c} 1.0672\\ 1.1073\\ 1.1283\\ 1.1355\\ 1.1412\\ 1.1551\end{array}$	$\begin{array}{c} 1.0635\\ 1.1048\\ 1.1261\\ 1.1335\\ 1.1335\\ 1.1391\\ 1.1527\end{array}$	$\begin{array}{c} 1.0710\\ 1.1098\\ 1.1304\\ 1.1376\\ 1.1376\\ 1.1431\\ 1.1567\end{array}$
	UNC 8UN 0NF 16UN 10NEF 20UN	$\begin{array}{c} 1.0950\\ 1.1150\\ 1.1800\\ 1.1820\\ 1.1900\\ 1.1900\\ 1.1900\\ 1.2110\end{array}$	83.5 83.1 83.1 83.1 83.1 83.1 84.1	$\begin{array}{c} 1.1125\\ 1.1297\\ 1.1698\\ 1.1908\\ 1.1980\\ 1.2037\\ 1.2176\end{array}$	74.1 74.1 722.9 722.9 69.8	$\begin{array}{c} 1.0950\\ 1.1150\\ 1.1150\\ 1.1820\\ 1.1820\\ 1.1900\\ 1.1960\\ 1.2110\end{array}$	$\begin{array}{c} 1.1040\\ 1.1222\\ 1.1648\\ 1.1866\\ 1.1946\\ 1.1998\\ 1.2145\end{array}$	$\begin{array}{c} 1.0997\\ 1.1184\\ 1.1623\\ 1.1623\\ 1.1844\\ 1.1919\\ 1.1977\\ 1.2120\end{array}$	$\begin{array}{c} 1.1083\\ 1.1259\\ 1.1673\\ 1.1887\\ 1.1887\\ 1.1960\\ 1.2017\\ 1.2017\end{array}$	$\begin{array}{c}1.1039\\1.1222\\1.1648\\1.1865\\1.1939\\1.1939\\1.1997\\1.2136\end{array}$	$\begin{array}{c} 1.1125\\ 1.1297\\ 1.1698\\ 1.1908\\ 1.1980\\ 1.2037\\ 1.2176\end{array}$	$\begin{array}{c} 1.1082\\ 1.1260\\ 1.1673\\ 1.1886\\ 1.1886\\ 1.1960\\ 1.2016\\ 1.2152\end{array}$	$\begin{array}{c} 1.1168\\ 1.1723\\ 1.1723\\ 1.1729\\ 1.1929\\ 1.2001\\ 1.2056\\ 1.2192\end{array}$
	8UN 12UN 16UN 20UN 28UN	$\begin{array}{c} 1.1770\\ 1.2220\\ 1.2450\\ 1.2520\\ 1.2580\\ 1.2740\\ 1.2740\end{array}$	8888888 8888888 89999 99999 99999 99999 99999 99999 99999	$\begin{array}{c} 1.1922\\ 1.2323\\ 1.2533\\ 1.2605\\ 1.2662\\ 1.2801\end{array}$	74.1 72.9 722.9 71.3 69.8	$\begin{array}{c} 1.1770\\ 1.2220\\ 1.2520\\ 1.2520\\ 1.2580\\ 1.2580\\ 1.2740\end{array}$	$\begin{array}{c} 1.1847\\ 1.2273\\ 1.2491\\ 1.2565\\ 1.2565\\ 1.2623\\ 1.2770 \end{array}$	$\begin{array}{c} 1.1809\\ 1.2248\\ 1.2546\\ 1.2544\\ 1.2544\\ 1.2602\\ 1.2745\end{array}$	$\begin{array}{c} 1.1884 \\ 1.2298 \\ 1.2512 \\ 1.2585 \\ 1.2642 \\ 1.2785 \end{array}$	$\begin{array}{c} 1.1847\\ 1.2273\\ 1.22490\\ 1.2564\\ 1.2564\\ 1.2622\\ 1.2761 \end{array}$	$\begin{array}{c} 1.1922\\ 1.2323\\ 1.2533\\ 1.2605\\ 1.2662\\ 1.2801 \end{array}$	$\begin{array}{c} 1.1885\\ 1.2298\\ 1.2511\\ 1.2585\\ 1.2585\\ 1.2641\\ 1.2641\end{array}$	$\begin{array}{c} 1.1960\\ 1.2348\\ 1.2554\\ 1.2554\\ 1.2626\\ 1.2681\\ 1.2817\end{array}$
	UNC 8UN UNF 16UN 20UN 28UN	$\begin{array}{c} 1.1950\\ 1.2400\\ 1.2850\\ 1.3850\\ 1.3150\\ 1.3210\\ 1.3360\\ 1.3360\\ \end{array}$	8888888 1.188888 1.18888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.1888 1.18888 1.18888 1.18888 1.1888 1.1888 1.1888 1.	$\begin{array}{c} 1.2146\\ 1.2547\\ 1.2548\\ 1.3158\\ 1.3230\\ 1.3287\\ 1.3287\\ 1.3426\end{array}$	74.1 74.1 722.9 722.9 69.8	$\begin{array}{c} 1.1950\\ 1.2400\\ 1.2850\\ 1.3070\\ 1.3150\\ 1.3210\\ 1.3360\end{array}$	$\begin{array}{c} 1.2046\\ 1.2472\\ 1.2898\\ 1.3196\\ 1.3196\\ 1.3248\\ 1.3395 \end{array}$	$\begin{array}{c} 1.1996\\ 1.2434\\ 1.2873\\ 1.3094\\ 1.3169\\ 1.3169\\ 1.327\\ 1.370\end{array}$	$\begin{array}{c} 1.2096\\ 1.2509\\ 1.2509\\ 1.3137\\ 1.3137\\ 1.3210\\ 1.3267\\ 1.3410\end{array}$	$\begin{array}{c} 1.2046\\ 1.2472\\ 1.2898\\ 1.3115\\ 1.3189\\ 1.3247\\ 1.3386\end{array}$	$\begin{array}{c} 1.2146\\ 1.2547\\ 1.2547\\ 1.3158\\ 1.3230\\ 1.3287\\ 1.3287\\ 1.3426\end{array}$	$\begin{array}{c} 1.2096\\ 1.2510\\ 1.2923\\ 1.3136\\ 1.3210\\ 1.3266\\ 1.3266\\ 1.3266\end{array}$	$\begin{array}{c} 1.2196\\ 1.2585\\ 1.2585\\ 1.2973\\ 1.3179\\ 1.3251\\ 1.3306\\ 1.3306\\ 1.3442 \end{array}$
	6UN 8UN 12UN 16UN UNEF 20UN 28UN	$\begin{array}{c} 1.2570\\ 1.3020\\ 1.3720\\ 1.3770\\ 1.3770\\ 1.3830\\ 1.3990\end{array}$	88888888888888888888888888888888888888	$\begin{array}{c} 1.2771\\ 1.3172\\ 1.3573\\ 1.3573\\ 1.3783\\ 1.3855\\ 1.3855\\ 1.4051\\ 1.4051\end{array}$	744.1 744.1 722.1 69.8 69.8	$\begin{array}{c} 1.2570\\ 1.3020\\ 1.3470\\ 1.3700\\ 1.3770\\ 1.3830\\ 1.3830\\ 1.3990\end{array}$	$\begin{array}{c} 1.2671\\ 1.3097\\ 1.3523\\ 1.3523\\ 1.3815\\ 1.3815\\ 1.3873\\ 1.4020\\ \end{array}$	$\begin{array}{c} 1.2621\\ 1.3059\\ 1.3498\\ 1.3794\\ 1.3794\\ 1.3852\\ 1.3852\\ 1.3995\end{array}$	$\begin{array}{c} 1.2721\\ 1.3134\\ 1.3548\\ 1.3548\\ 1.3762\\ 1.3835\\ 1.3892\\ 1.4035\end{array}$	$\begin{array}{c} 1.2671\\ 1.3097\\ 1.3523\\ 1.3740\\ 1.3814\\ 1.3872\\ 1.4011\\ 1.4011\end{array}$	$\begin{array}{c} 1.2771\\ 1.3172\\ 1.3573\\ 1.3783\\ 1.3783\\ 1.3855\\ 1.3912\\ 1.4051\\ \end{array}$	$\begin{array}{c} 1.2721\\ 1.3135\\ 1.3548\\ 1.3761\\ 1.3835\\ 1.3835\\ 1.3891\\ 1.4027\end{array}$	$\begin{array}{c} 1.2821 \\ 1.3210 \\ 1.3598 \\ 1.3804 \\ 1.3876 \\ 1.3876 \\ 1.3931 \\ 1.4067 \end{array}$
	UNC 8UN 16UN 20UN 28UN	$\begin{array}{c} 1.3200\\ 1.3650\\ 1.4100\\ 1.4400\\ 1.4400\\ 1.4460\\ 1.4460\\ 1.4610\end{array}$	81.1.1.8888888 81.1.1.88888888888888888	$\begin{array}{c} 1.3396\\ 1.3797\\ 1.4198\\ 1.4408\\ 1.4480\\ 1.4537\\ 1.4537\\ 1.4676\end{array}$	744.1 744.1 722.9 722.9 69.8	$\begin{array}{c} 1.3200\\ 1.3650\\ 1.4100\\ 1.4320\\ 1.4400\\ 1.4460\\ 1.4460\\ 1.4610\end{array}$	$\begin{array}{c} 1.3296\\ 1.3722\\ 1.4148\\ 1.43466\\ 1.44490\\ 1.4498\\ 1.4645\\ \end{array}$	$\begin{array}{c} 1.3246\\ 1.3684\\ 1.4123\\ 1.4123\\ 1.4419\\ 1.4479\\ 1.4470\\ 1.4620\end{array}$	$\begin{array}{c} 1.3346\\ 1.3759\\ 1.4173\\ 1.4173\\ 1.4387\\ 1.4460\\ 1.4517\\ 1.4517\\ 1.4660\end{array}$	$\begin{array}{c} 1.3296\\ 1.3722\\ 1.4148\\ 1.4365\\ 1.44365\\ 1.4437\\ 1.4497\\ 1.4636\end{array}$	1.3396 1.3797 1.4198 1.4408 1.4480 1.4480 1.4537	$\begin{array}{c} 1.3346\\ 1.3760\\ 1.4173\\ 1.4173\\ 1.4386\\ 1.4460\\ 1.4516\\ 1.4516\end{array}$	$\begin{array}{c} 1.3446\\ 1.3835\\ 1.3835\\ 1.4223\\ 1.4429\\ 1.4501\\ 1.4556\\ 1.4692\end{array}$

1.5054

110911

1.42276 1 1.4226 1 1.4266 1 1.4268 1.1.4266 1.1.4266 1.1.4060

11 2 . 1.2

1.4516

1 2201-1

^a The differences between limits are equal to the minor diameter tolerances given in table 3.10 for lengths of engagement to and including 0.33D. However, the minimum values for lengths of engagement table 3.10 should be similarly applied to determine hole size 0.051 in and large are adjuardy applied to determine hole size 0.051 mices.
⁽¹⁾ With the 3.10 pixel of alianeter-pitch combinations which do not appear in this table may be obtained by use of values in this table provided there is a diameter-pitch combination in the table:
⁽¹⁾ With the same pitch and are pitch and are are diameter of the diameter-pitch combination in the table:
⁽¹⁾ with the same pitch and for this propes.
⁽²⁾ with a diameter that is less by an integral amount than the diameter-pitch combination for which hole size values are desired. (NOTE: Values in the table for the 4.000-8UN-3B thread, add 2.000 to the values for the 2.000-8UN thread shown in the table. These values would then become: 3.8650, 3.8722, 3.8684, 3.8759, 3.8773, 3.8770, 2.8835, The percentinge obtained neight = 0.75H (values of 0.75H are shown in col. 14, table 2.1).
⁽²⁾ Based on a length of engagement equal to the nominal diameter.

TABLE A3.7. Recommended hole size limits before threading for different lengths of engagement, Unified National Miniature, UNM, thread series

Thread d	signation		M	finor diameter o.	f internal thread	S	Re	commended hole	e size limits for d	lifferent lengths	of engagement "	
Preferred	Secondary		Min	Percent basic	Max	Percent basic	To and inclu	iding 0.67D	Above 0.671	0 to 1.5D	Above 1.51	) to $3D$
				thread height		thread height	Min	Max	Min	Max	Min	Max
.30UNM 40UNM	.35UNM 45UNM	$\begin{array}{c} {\rm Pitch} \\ {}^{mm} \\ 0.080 \\ 0.090 \\ .100 \\ .100 \end{array}$	nm 0.223 0.264 .304 .354	8888	mm 0.260 .305 .348	51.9 52.3 54.2 54.2	mm 0.232 .315 .365	mm 0.246 0.290 .332 .382	mm 0.241 .284 .326 .376	^{mm} 0.260 .305 .348 .398	mm 0.251 .337 .387	^{mm} 0.269 .315 .359
MNN09.	.70UNM	.125 .125 .150	.380 .430 .532	1000	.432 .516 .600	56.7 56.7 58.3 59.5	. 393 . 443 . 471 . 549	.412 .462 .574	.406 .456 .566	.432 .482 .516	.419 .501 .583	.445 .495 .531 .617
.80UNM 1.00UNM	INNU06.		.608 .684 .760 .860	1000 1000 1000	.684 .768 .852 .952	60.4 61.1 61.7 61.7	.627 .705 .783 .883	.656 .736 .818 .918	.646 .726 .906	.684 .768 .852 .952	.665 .747 .829 .929	.703 .789 .875 .975
1.20UNM	1.40UNM	.250	$.960 \\ 1.112$	100	1.052 1.220	61.7 62.5	.9831.139	1.018 1.180	1.106	1.052 1.220	1.029 1.193	$1.075 \\ 1.247$
.30UNM	.45UNM	Thds per inch 282 254 254	in 0.0088 0.104 0.120 0139	001100 100000	$in \\ 0.0102 \\ .0137 \\ .0137 \\ .0157 \\ .0157$	51.9 54.2 54.2	$in \\ 0.0092 \\ 0.0108 \\ 0.0124 \\ 0.0143 \\ 0.0143$	in 0.0097 0.0097 0.0114 0.0131 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	in 0.0095 0.0095 .0112 .0128 .0148	$in \\ 0.0102 \\ 0.0120 \\ 0.0137 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0157 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.0057 \\ 0.005$	in 0.0098 0116 0133 0153	in 0.0106 0.0106.0124 0.0141 0.0161
INNN09.	.70UNM	203 203 145	.0150 .0169 .0209	00001	.0170 .0190 .0203 .0236	56.7 58.7 58.3 59.5	.0155 .0174 .0186 .0216	.0162 .0182 .0194	.0160 .0179 .0192 .0223	.0170 .0190 .0203	.0165 .0185 .0197 .0229	.0175 .0195 .0209 .0243
NNN00.1	MNU06.	127 113 102 102	.0239 .0269 .0339	00011000	.0269 .0302 .0335 .0375	60.4 61.1 61.7 61.7	.0247 .0277 .0308 .0348	.0258 .0290 .0321	.0254 .0285 .0317 .0357	.0269 .0302 .0335 .0335	.0261 .0294 .0326	.0277 .0310 .0344 .0384
1.20UNM	1.40UNNI	102 85	.0378	100 100	.0414.0480	61.7 62.5	.0387.0448	.0400.0464	.0396	.0414	.0405	.0423.0490
<ul> <li>Limited estudies</li> <li>suggested. In it</li> <li>these small taps</li> </ul>	tperience indicate nstances where h must be ground.	es these sizes to t ole sizes in excess	be suitable for ease of the maximu	asily machineabl m minor diamet	e materials (bra er are necessary	ss, nickel-silver, , the excess is us	etc.). For mat ually recovered	erials more diffic in the thread for	ult to machine, m by the spin-ur	hole size limits i p resulting from	in the next large the negative rah	category are te with which

Thread desic

UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

# HANDBOOK H28

SCREW-THREAD STANDARDS

FOR FEDERAL SERVICES

APPENDIX A4

1969

Methods of wire measurement of pitch diameter of  $60^{\circ}$  threads



On a straight thread, the pitch diameter is the diameter of the cylinder whose surface passes through the thread profiles at such points as to make the widths of thread groove and thread ridge equal.

On a taper thread, the pitch diameter at a given position on the thread axis is the diameter of the pitch cone at that position.

The degree of accuracy to which the pitch diameter can be measured will depend on the accuracy of lead, helix, and form of thread. As thread plug gages and thread setting plug gages have highly accurate threads, their pitch diameters may be measured to a correspondingly high degree of accuracy by applying the methods described in this appendix. In turn, the *virtual diameters* (or effective sizes) of thread ring, most snap, and most indicating gages may be determined by fitting or comparison with such setting plug gages. Those snap and indicating gages which utilize elements with curved contacts have a pitch (simple effective) diameter determined by comparison to the applicable setting plug gages.

As most threads of mechanical fasteners and components are made to a lesser degree of accuracy than gage threads, their pitch diameters are not susceptible to accurate determination by direct measuring methods. Therefore, it is not recommended that such threads be measured by the use of wires. On such threads, the pitch diameter is to be regarded as the pitch cylinder or cone which would bound, on the maximum-material side, the approximately cylindrical or conical surface which would pass through the thread profiles at all points such that the widths of the thread and groove are equal. Accordingly, the conformity of such threads with specified pitch diameter limits is determined by gaging-means and methods specified in section 6.

The accurate measurement of pitch diameter of a thread, which may be perfect as to form and lead, presents certain difficulties which result in some uncertainty as to its true value. The adoption of a standard uniform practice in making such measurements is, therefore, desirable in order to reduce such uncertainty of measurement to a minimum. The so-called "three-wire method" of measuring pitch diameter of straight thread plug gages, as outlined herein, has been found to be the most generally satisfactory method when properly carried out, and is recommended for universal use in the direct measurement of thread plug and thread setting plug gages. (See fig. A4.1.)

#### **1. SIZE OF WIRES**

In the three-wire method of measuring pitch diameter, small hardened steel cylinders or wires of



FIGURE A4.1. Three-wire method of measuring pitch diameter of straight thread plug gages.

correct size are placed in the thread groove, two on one side of the screw and one on the opposite side, as shown in figure A4.1. The contact face of the comparator, measuring machine, or micrometer anvil or spindle over the two wires must be sufficiently large in diameter to touch both wires; that is, the diameter must be greater than the pitch of the thread. It is best to select wires of such size that they touch the flanks of the thread at the midslope since the measurement of pitch diameter is least affected by any deviation in thread angle that may be present when such size is used. The size of wire that touches exactly at the midslope of a perfect thread of a given pitch is termed the "best-size" wire for that pitch. Any size, however, may be used that will permit the wires to rest on the flanks of the thread and also project above the crest of the thread.

The depth at which a wire of given diameter will rest in a thread groove depends primarily on the pitch and included angle of the thread and, secondarily, on the angle made by the helix at the point of contact of the wire and the thread, with a plane perpendicular to the axis of the screw. Inasmuch as variation in the lead angle has a very small effect in determining the diameter of the wire that touches at the midslope of the thread, and as it is desirable to use one size of wire to measure all threads of a given pitch and included angle, the best-size wire is taken as that size which will touch at the midslope of a groove cut around a cylinder perpendicular to the axis of the cylinder, and of the same angle and depth as the thread of the given pitch. This is equivalent to a thread of zero lead angle. The size of wire touching at the midslope, or "best-size" wire, is given by the formula:

$$W = \frac{p}{2} \sec \alpha$$

in which

W = diameter of wire

p = pitch

 $\alpha =$  half included angle of thread.

This formula reduces to-

W = 0.57735p, for 60° threads.

Table	A4.	2. W	ire si	izes	and	constants.	for	all $U$	SA
Standard	$60^{\circ}$	threa	ds (U	Inif	ied, i	hose-coupl	ing	, and	pipe)

		Ditab	Depth of	Wire sizes ^a						
Threads per inch, n	Pitch, $p = \frac{1}{n}$	$\frac{\frac{p}{2}}{\frac{p}{2}} = \frac{1}{2n}$	V thread, $\frac{\cot 30^{\circ}}{2n}$	Best, 0.577350 <i>p</i>	Maximum, 1.010363 <i>p</i>	Minimum, 0.505182 <i>p</i>				
1	2	3	4	5	6	7				
80 72 64 56 50	in 0.012500 .013889 .015625 .017857 .020000	in 0.00625 .00694 .00781 .00893 .01000	$in \\ 0.010825 \\ .012028 \\ .013532 \\ .015465 \\ .017321 \end{cases}$	in 0.00722 .00802 .00902 .01031 .01155	in 0.01263 .01403 .01579 .01804 .02021	in 0.00631 .00702 .00789 .00902 .01010				
$     \begin{array}{r}       48 \\       44 \\       40 \\       36 \\       32     \end{array} $	$\begin{array}{r} .020833\\ .022727\\ .025000\\ .027778\\ .031250\end{array}$	$\begin{array}{c} .01042\\ .01136\\ .01250\\ .01389\\ .01562\end{array}$	$.018042 \\ .019682 \\ .021651 \\ .024056 \\ .027063$	.01203 .01312 .01443 .01604 .01804	$\begin{array}{c} .02105\\ .02296\\ .02526\\ .02807\\ .03157\end{array}$	$.01052 \\ .01148 \\ .01263 \\ .01403 \\ .01579$				
30 28 27 26 24	.033333 .035714 .037037 .038462 .041667	.01667 .01786 .01852 .01923 .02083	$\begin{array}{r} .028868\\ .030929\\ .032075\\ .033309\\ .036084 \end{array}$	.01925 .02062 .02138 .02221 .02406	$\begin{array}{r} .03368\\ .03608\\ .03742\\ .03886\\ .04210\end{array}$	$.01684 \\ .01804 \\ .01871 \\ .01943 \\ .02105$				
22 20 18 16 14	$\begin{array}{r} .045445 \\ .050000 \\ .055556 \\ .062500 \\ .071429 \end{array}$	.02273 .02500 .02778 .03125 .03571	$\begin{array}{r} .039365\\ .043301\\ .048113\\ .054127\\ .061859\end{array}$	$\begin{array}{r} .02624\\ .02887\\ .03208\\ .03608\\ .04124\end{array}$	.04592 .05052 .05613 .06315 .07217	$.02296 \\ .02526 \\ .02807 \\ .03157 \\ .03608$				
13 12 11.5 11 10	.076923 .083333 .086957 .090909 .100000	.03846 .04167 .04348 .04545 .05000	.066617 .072169 .075307 .078730 .086603	.04441 .04811 .05020 .05249 .05774	$\begin{array}{r} .07772 \\ .08420 \\ .08786 \\ .09185 \\ .10104 \end{array}$	$.03886 \\ .04210 \\ .04393 \\ .04593 \\ .05052$				
9 8 7.5 7 6	$\begin{array}{r} .111111\\ .125000\\ .133333\\ .142857\\ .166667\end{array}$	05556 06250 06667 07143 08333	$\begin{array}{r} .096225\\ .108253\\ .115470\\ .123718\\ .144338\end{array}$	$.06415 \\ .07217 \\ .07698 \\ .08248 \\ .09623$	$.11226 \\ .12630 \\ .13472 \\ .14434 \\ .16839$	.05613 .06315 .06736 .07217 .08420				
5.5 5 4.5 4	$.181818\\.200000\\.222222\\.250000$	.09091 .10000 .11111 .12500	.157459 .173205 .192450 .216506	.10497 .11547 .12830 .14434	.18370 .20207 .22453 .25259	.09185 .10104 .11226 .12630				

^a These wire sizes are based on zero lead angle. Also maximum and minimum sizes are based on a width of flat at the crest equal to 0.125*p*. The width of flat of USA Standard pipe thread gages is slightly less than this, so that the minimum size listed is slightly too small for such gages. In any case the use of wires of either extreme size is

B

When using wires of other than the best-size, precautions must be observed in the calculation of pitch diameter. Actual measured values for halfangles and the angle between the axis of the wire and a plane perpendicular to the axis of the thread must be used for the calculation of pitch diameter when using wires other than best-size. The uncertainties of the values used and the different wire contact conditions will increase the uncertainty of the pitch diameter measurement.

#### 2. METHODS OF MEASURING AND **USING WIRES**

The computed value for the pitch diameter of a screw thread gage obtained from readings over wires will depend upon the accuracy of the measuring instrument used, the contact force, and the value of the diameter of the wires used in the computations. In order to measure the pitch diameter of a 60° screw-thread gage to an accuracy within 0.0001 in by means of wires, it is necessary to know the wire diameters to within 0.00002 in. Accordingly, it is neccessary to use a measuring instrument that reads accurately to 0.00001 in.

Variations in diameter around the wire should be determined by rotating the wire between a flat measuring contact and an anvil having the form of a 60° V-groove. Variations in diameter along the wire should be determined by measuring between a flat contact and a cylindrical anvil.

A wire presses on the flanks of a 60° thread with the force that is applied to the wire by the measuring instrument. Inasmuch as the wire and thread deform at the contact areas, it is desirable to determine the size of the wire under conditions which will compensate for this deformation. It is recommended for standard practice that diameters of wires be measured between a flat contact and a hardened and accurately ground and lapped steel cylinder having a diameter of 0.125 in. for wires used on threads having more than 40 up to and including 80 tpi and 0.750 in for wires used on threads having 40 and fewer tpi with the force used in measuring the pitch diameter of the gage. The plane of the

Best wire sizes														TI	hread	s per	inch (	(tpi)																
(in inches)	80	72	64	56	50	48	44	40	36	32	30	28	27	26	24	22	20	18	16	14	13	12	11.5	11	10	9	8	7.5	7	6	5.5	5	4.5	4
0.00722 .00802 .00902 .01031 .01155	⊗××××	×⊗×××	× × × × × × ×	× ×	×	×	  ×																											
.01203 .01312 .01443 .01604 .01804	×	× ×	× × ····	××××	×××××	⊗××××	×××××	××⊗××	× × × × × ×	 × ⊗	 							 																
.01925 .02062 .02138 .02221 .02406					× 	× ×	× × × ×	****	****	*****	⊗××××	×××××	××⊗××	×××××	×× ×	  ×									 									
$\begin{array}{r} .02624\\ .02887\\ .03208\\ .03608\\ .03608\\ .04124\end{array}$									× 	× ×	××× ×	×× ××	××××	××××	XXXXX	××××	X	× × × × × ×	× × × ×	 ⊗	  ×													
.04441 .04811 .05020 .05249 .05774						 				 						×	× × ×	××××	*****	*****	⊗××××	××××	××⊗××	×××××	× × ⊗	  ×					 		  	
$.06415 \\ .07217 \\ .07698 \\ .08248 \\ .09623$																				×	× × ×	××××	××××	××××	XXXXX	⊗×××××	XXXXXX	××⊗××	×⊗×		  ×			
.10497 .11547 .12830 .14434	 																							 	 	×	××	×××	×××	XXXX	⊗××××	X×⊗XX	×⊗×	×

• The crosses (X) indicate those wire diameters which can be used for each pitch. An encircled cross (8) indicates the "best wire" diameter for that tpi which heads the column.

flat contact should be parallel to the contact element of the cylinder within 0.000005 in.

To avoid a permanent deformation of the material of the wires or gages, it is necessary to limit the contact force and, for consistent results, a uniform practice as to contact force in making wire measurements of hardened screw threads gages is necessary. The practice recommended is to use the following forces:

Threads per inch	Measuring force ( $\pm 10\%$ )
20 or less	2.5 pounds
Above 20 thru 40	1 pound
Above 40 thru 80	8 ounces
Above 80 thru 140	4 ounces
Above 140	2 ounces

The use of other contact forces will cause a difference in the reading over the wires and to completely compensate for such errors is impractical.

The practice of using holding means, such as rubber bands, which has a tendency to prevent the wires from adjusting themselves to the proper position in the thread grooves, will result in false measurements. In some cases it has also been the practice to support the gage being measured on two wires, which are in turn supported on a horizontal surface, and measuring from this surface to the top of a wire placed over and between the other wires. If the gage is of large diameter, its weight causes an increase in the elastic deformation at the contact points and an inaccurate reading is obtained. Tests on a 1–12 UNF setting plug gage showed a 0.00001 in. error when measured in this manner. This practice should therefore be avoided for gages of such size and larger. Wires from different sets of the same nominal diameter should not be mixed unless calibrated because thread wires in different sets may not have the same diameter. (See par. 3.2.)

In order to minimize the deviation of the measured pitch diameter from the true pitch diameter (neglecting the effect of lead angle) and reduce the chance of permanently deforming the gages and wires, this revision contains a change in the recommended measuring practice for threads and wires for threads having more than 40 up to and including 80 tpi. The new recommended practice reduces the force for measuring gages and wires from one to 0.5 lb and the size of the cylinder over which the wires are measured from 0.750 to 0.125 in. As a result of this change, the measured pitch diameters of threads in this range will be approximately 0.00005 in. larger than they were under the previous recommended practice.

The measured value will be much closer to the true pitch diameter, however. Plug gages manu-

factured prior to this revision and within tolerance when measured under the previous recommended practice but not within tolerance when measured under the new recommended practice should be considered as within tolerance for a transition period. With the new recommended practice, it can be shown that for all sizes of threads up to 1.500 in. in the fine thread scries (UNF) and all sizes up to 2.000 in. in the coarse thread series (UNC), the measured pitch diameter will not differ from the true pitch diameter (neglecting the effect of lead angle) in excess of 0.000035 in. Slightly larger discrepancies in the 2 to 4 in size range are relatively unimportant because

these sizes have larger tolerances. The measured diameter of the thread wires for threads having more than 40 up to and including 80 tpi under the new recommended practice differ by less than two microinches from the measured diameter under the previous recommended practice. Therefore, neither wire diameters nor corrections for computing pitch diameter need be changed.

has

of

thr

1

sin

me

in

0]

Measurements of a thread plug gage made in accordance with these instructions, with wires that conform to the following specifications, should be accurate to within 0.0001 in.

#### 3. STANDARD SPECIFICATION FOR WIRES AND STANDARD PRACTICE IN MEASUREMENT OF WIRES

The following specifications represent present practice relative to thread measuring wires:

3.1. COMPOSITION.—The wires shall be accurately finished, hardened steel cylinders of the maximum possible hardness without being brittle. The hardness shall not be less than that corresponding to a Knoop indentation number of 630. A wire of this hardness can be cut with a file only with difficulty. The surface shall not be rougher than the equivalent of one having a surface roughness rating of 2 microinches arithmetical average.

3.2. DIAMETER OF WIRES.—One set of wires shall consist of three wires that shall have the same diameter within 0.00001 in., and this common diameter shall be within 0.00002 in of that corresponding to the best size for the tpi for which the wire is to be used. Wires shall be measured between a flat contact and a hardened and accurately finished cylinder having a surface roughness rating not in excess of 2 microinches arithmetical average. The measuring forces and cylinder diameters shall be as follows:

Threads per inch	$\begin{array}{c} \text{Measuring} \\ \text{force} \\ (\pm 10\%) \end{array}$	Cylinder diameter
20 or less	2.5 pounds	0.750 inch
Above 20 thru 40	1 pound	0.750 inch
Above 40 thru 80	8 ounces	0.125 inch
Above 80 thru 140	4 ounces	0.050 inch
Above 140	2 ounces	0.020 inch

Using these conditions, the uncertainties of the wire diameter measurement due to other metrological considerations should be limited and not exceed 0.000010 in.

An acceptable technique for the measurement of the diameter of each set of thread measuring wires is to compare them to a reference master wire with a suitable comparison measuring instrument having any anvil shape or measuring force consistent with good metrological practice. The diameter of each reference master wire, however, must be calibrated by the specified technique with an uncertainty not in excess of 0.000005 in.

Wircs which are to be used where the contact of the wire is a line contact, such as in gear wires, should not be used for measuring thread gages. The recommended practice for measuring such wires is between flat parallel contacts with a one pound force.

3.3. VARIATIONS IN DIAMETER.—Variations in diameter along a wire (taper) over the 1 in.interval at the center of its length shall not exceed 0.000010 in as determined by measuring between a flat contact and a cylindrical contact. Variations from true cylindrical contour of a wire (out-of-roundness or non-circular cross section) over its 1 in. central interval shall not exceed 0.000010 in as determined by measuring between a flat measuring contact and a well finished 60° V-groove.

Tests for compliance of thread measuring wires with the above specifications are made by the National Bureau of Standards for a stated fee.

#### 4. GENERAL FORMULA FOR MEASUREMENT OF PITCH DIAMETER

The general formula for determining the pitch diameter of any thread whose flanks are symmetrical with respect to a line drawn through the vertex and perpendicular to the axis of the thread, in which the slight effect of lead angle is taken into account, is

$$E = M_w + \frac{\cot \alpha}{2n} - w [1 + (\operatorname{cosec}^2 \alpha + \cot^2 \alpha \tan^2 \lambda')^{1/2}],$$
(1)

E = pitch diameter

- $M_w =$  measurement over wires
- $\alpha = \text{half angle of thread}$
- n = number of threads per inch = 1/p
- w = mean diameter of wires
- $\lambda'$  = angle between axis of wire and plane perpendicular to axis of thread.

This formula is a very close approximation, being based on certain assumptions regarding the positions of the points of contact between the wire and the thread.

Formula (1) can be converted to the following simplified form, which is particularly useful when measuring threads of large lead angle:

$$E = M_w + \frac{\cot \alpha}{2n} - w \left(1 + \operatorname{cosec} \alpha'\right), \qquad (2)$$

in which  $\alpha'$  = the angle whose tangent = tan  $\alpha \cos \lambda'$ .

When formula (1) is used, the usual practice is to expand the square root term as a series, retaining only the first and second terms, which gives the following:

$$E = M_w + \frac{\cot \alpha}{2n} - w \left( 1 + \operatorname{cosec} \alpha + \frac{\tan^2 \lambda' \cos \alpha \cot \alpha}{2} \right).$$
(3)

For large lead angles it is necessary to measure  
the wire angle, 
$$\lambda'$$
, but for lead angles of 5° or less,  
if the "best-size" wire is used, this angle may be  
assumed to be equal to the lead angle of the thread  
at the pitch line,  $\lambda$ . The value of tan  $\lambda$ , the tangent  
of the lead angle, is given by the formula

$$\tan \lambda = \frac{L}{3.1416E} = \frac{1}{3.1416NE}$$

in which

L = lead

N = number of turns per inch

E = nominal pitch diameter, or an approximation of the measured pitch diameter.

#### 5. MEASUREMENT OF PITCH DIAMETER OF ALL USA STANDARD 60° STRAIGHT THREADS (UNIFIED, HOSE-COUPLING, AND PIPE)

For threads of the Unified standard series, the term

$$\frac{w\tan^2\lambda'\cos\alpha\cot\alpha}{2}$$

is neglected, as its value is small, being in all cases less than 0.00015 in for standard fastening screws when the best-size wire is used, and the above formula (3) takes the simplified form

$$E = M_w + \frac{\cot \alpha}{2n} - w(1 + \operatorname{cosec} \alpha).$$
(4)

This practice is permissible provided that it is uniformly followed, and in order to maintain uniformity of practice, and thus avoid confusion, the National Burcau of Standards uses formula (4) for such threads. The Bureau also uses formula (4) for special 60° threads, except when the value of the term

$$\frac{w\tan^2\lambda'\cos\alpha\cot\alpha}{2}$$

exceeds 0.00015 in., as in the case of multiple threads, or other threads having exceptionally large lead angles. For 60° threads this term exceeds 0.00015 when  $NE \sqrt{n}$  is less than 17.1.

For a  $60^{\circ}$  thread of correct angle and thread form formula (4) simplifies to

$$E = M_w + \frac{0.86603}{n} - 3w. \tag{5}$$

For a given set of best-size wires

$$E = M_w - C$$

when

$$C = w \left(1 + \operatorname{cosec} \alpha\right) - \frac{\cot \alpha}{2n}$$

The quantity C is a constant for a given thread angle, and, when the wircs are used for measuring threads of the pitch and angle for which they are the best size, the pitch diameter is obtained by the simple operation of subtracting this constant from the measurement taken over the wires. In fact, when best-size wires are used, this constant is changed very little by a moderate deviation in the angle of the thread. Consequently, the constants for the various sets of wires in use may be tabulated, thus saving a considerable amount of time in the inspection of gages. However, when wires of other than the best size are used, this constant changes appreciably with a deviation in the angle of the thread.

It has been shown that, with the exception of coarse pitch screws, variation in angle from the basic size causes no appreciable change in the quantity C for the best-size wires. On the other hand, when a wire near the maximum or minimum allowable size is used, a considerable change occurs, and the values of the cotangent and cosecant of the actual measured half angle are to be used. It is apparent, therefore, that there is a great advantage in using wires very closely approximating the best size. For convenience in carrying out computations,

the values of  $\cot \alpha/2n$  for standard pitches are given in table A4.2.

When the value of the term

$$\left(\frac{w\,\tan^2\lambda'\,\cos\alpha\,\cot\alpha}{2}\right)$$

exceeds 0.00015 in., the following pitch diameter formula should be used:

 $E = M_w - (C + c)$ 

Tabular values for  $(C+c)_1$  for a 1-in axial pitch screw for 60° threads are given in table A4.4 which values should be divided by the threads per inch for a given case. (See appendix in Part III, titled "Three-wire method of measurement of pitch diameter of 29° Acme, 29° Stub Acme, and Buttress threads," for further details.)

1-sta		reads	2-start th	reads	Lead	2-start th	reads	3-start threads		
angle, $\lambda$	w1	$(C + c)_1$	w1	$(C + c)_1$	angle, $\lambda$	w_1	$(C+c)_1$	w1	$(C + c)_1$	
1	2	3	4	5	1	4	5	6	7	
deg 5.0 5.1 5.2 5.3 5.4	$in \\ 0.57493 \\ .57483 \\ .57474 \\ .57474 \\ .57465 \\ .57456$	in 0.86181 .86165 .86149 .86133 .86117	in 0.57477 .57467 .57456 .57446 .57435	$in \\ 0.86145 \\ .86127 \\ .86109 \\ .86091 \\ .86072$	$\begin{array}{c} deg \\ 10.0 \\ 10.1 \\ 10.2 \\ 10.3 \\ 10.4 \end{array}$	$in \\ 0.56767 \\ .56749 \\ .56730 \\ .56711 \\ .56693$	$in \\ 0.84918 \\ .84887 \\ .84856 \\ .84824 \\ .84793$	$in \\ 0.56728 \\ .56709 \\ .56689 \\ .56669 \\ .56649 \\ .56649 \\ .$	in 0.84830 .84797 .84763 .84729 .84695	
$5.5 \\ 5.6 \\ 5.7 \\ 5.8 \\ 5.9$	.57446 .57436 .57426 .57416 .57406	$\begin{array}{r} .86100\\ .86083\\ .86066\\ .86049\\ .86032\end{array}$	$\begin{array}{r} .57425\\ .57414\\ .57403\\ .57392\\ .57381 \end{array}$	$\begin{array}{c} .\ 86053\\ .\ 86034\\ .\ 86015\\ .\ 85995\\ .\ 85976\end{array}$	$10.5 \\ 10.6 \\ 10.7 \\ 10.8 \\ 10.9$	56674 56656 56637 56617 56598	$\begin{array}{r} .84761 \\ .84729 \\ .84697 \\ .84664 \\ .84631 \end{array}$	.56629 .56609 .56589 .56568 .56547	.84660 .84625 .84589 .84553 .84517	
$     \begin{array}{c}       6.0 \\       6.1 \\       6.2 \\       6.3 \\       6.4     \end{array} $	.57395 .57385 .57374 .57363 .57352	$\begin{array}{r} .86014 \\ .85996 \\ .85978 \\ .85960 \\ .85942 \end{array}$	$\begin{array}{r} .57369 \\ .57358 \\ .57346 \\ .57333 \\ .57320 \end{array}$	. 85956 . 85936 . 85915 . 85893 . 85893 . 85871	11.0 11.1 11.2 11.3 11.4	.56578 .56558 .56538 .56518 .56498	$\begin{array}{r} .84598\\ .84564\\ .84530\\ .84497\\ .84463\end{array}$	$egin{array}{c} .56526 \\ .56506 \\ .56485 \\ .56463 \\ .56441 \end{array}$	. 84481 . 84445 . 84409 . 84372 . 84335	
$     \begin{array}{c}       6.5 \\       6.6 \\       6.7 \\       6.8 \\       6.9 \\     \end{array} $	.57341 .57330 .57318 .57307 .57295	. 85923     . 85904     . 85885     . 85866     . 85847	.57308 .57295 .57282 .57269 .57256	. 85850 . 85828 . 85805 . 85782 . 85760	$11.5 \\ 11.6 \\ 11.7 \\ 11.8 \\ 11.9$	56478 56457 56437 56416 56396	$\begin{array}{r} .84429\\ .84394\\ .84360\\ .84325\\ .84290\end{array}$	.56420 .56398 .56375 .56353 .56331	$     . 84298 \\     . 84260 \\     . 84221 \\     . 84185 \\     . 84145 $	
7.0 7.1 7.2 7.3 7.4	57284 57272 57260 57248 57236	.85828 .85808 .85788 .85768 .85768 .85747	.57242 .57228 .57215 .57201 .57187	. 85737     . 85713     . 85689     . 85664     . 85640     .	$12.0 \\ 12.1 \\ 12.2 \\ 12.3 \\ 12.4$	$ \begin{array}{r}     .56375 \\     .56353 \\     .56332 \\     .56311 \\     .56289 \\ \end{array} $	. 84255     . 84219     . 84183     . 84147     . 84111	$\begin{array}{r} .56308 \\ .56285 \\ .56263 \\ .56240 \\ .56217 \end{array}$	. 84100 . 8406 . 8402 . 83989 . 83989	
7.5 7.6 7.7 7.8 7.9	.57223 .57211 .57198 .57185 .57171		.57173 .57159 .57144 .57129 .57114	.85616 .85591 .85566 .85540 .85515	$12.5 \\ 12.6 \\ 12.7 \\ 12.8 \\ 12.9$	.56267 .56245 .56223 .56201 .56179	. 84075     . 84038     . 84001     . 83964     . 83927	.56193 .56170 .56147 .56123 .56099	. 8390 . 8386 . 8382 . 8378 . 8378 . 8374	
8.0 8.1 8.2 8.3 8.4	.57158 .57144 .57131 .57117 .57104	$     . 85620 \\     . 85598 \\     . 85576 \\     . 85554 \\     . 85533   $	.57100 .57085 .57070 .57054 .57038	. 85490 . 85464 . 85438 . 85411 . 85383	$13.0 \\ 13.1 \\ 13.2 \\ 13.3 \\ 13.4$	.56157 .56135 .56113 .56090 .56067	. 83890 . 83853 . 83815 . 83777 . 83739	.56075 .56051 .56027 .56002 .55977	. 83704 . 83664 . 83622 . 83579 . 8353	
8.5 8.6 8.7 8.8 8.9	57090 57076 57063 57049 57035	$\begin{array}{c} .85511\\ .85489\\ .85466\\ .85444\\ .85421\end{array}$	.57022 .57007 .56991 .56974 .56958	. 85356     . 85329     . 85301     . 85273     . 85245	$13.5 \\ 13.6 \\ 13.7 \\ 13.8 \\ 13.9$	56044 56021 55997 55974 55950	$\begin{array}{r} .83701 \\ .83662 \\ .83623 \\ .83584 \\ .83545 \end{array}$	.55952 .55927 .55902 .55877 .55852	.83495 .8345 .8340 .83366 .8336	
9.0 9.1 9.2 9.3 9.4	.57021 .57007 .56993 .56978 .56964	. 85398     . 85375     . 85352     . 85329     . 85305     .	$\begin{array}{r} .56941 \\ .56924 \\ .56907 \\ .56890 \\ .56873 \end{array}$	$\begin{array}{r} .85217\\ .85188\\ .85189\\ .85159\\ .85130\\ .85100\end{array}$	$14.0 \\ 14.1 \\ 14.2 \\ 14.3 \\ 14.4$	55926 55903 55880 55856 55831	$\begin{array}{r} .83506\\ .83467\\ .83428\\ .83388\\ .83388\\ .83347\end{array}$	55827 55802 55776 55750 55724	. 83280 . 83237 . 83193 . 83149 . 83149 . 83103	
9.59.69.79.89.910.0	.56949 .56935 .56920 .56905 .56890 .56875	. 85282 . 85258 . 85235 . 85211 . 85187 . 85163	.56856 .56838 .56820 .56803 .56785 .56767	$\begin{array}{c} .85070 \\ .85040 \\ .85040 \\ .84980 \\ .84949 \\ .84918 \end{array}$	$14.5 \\ 14.6 \\ 14.7 \\ 14.8 \\ 14.9 \\ 15.0$	.55807 .55782 .55757 .55733 .55709 .55684	$\begin{array}{c} .83307\\ .83266\\ .83225\\ .83185\\ .83145\\ .83104\end{array}$	.55698 .55671 .55645 .55618 .55590 .55563	. 83060 . 83014 . 82965 . 82922 . 82871 . 82831	

Lead angle, $\lambda$	3-start t	hreads	4-start t	hreads	Lead angle, $\lambda$	3-start i	hreads	4-start threads				
	wı	$(C + c)_1$	w1	$(C + c)_1$		w1	$(C + c)_1$	w1	$(C + c)_1$			
1	6	7	8	9	1	6	7	8	9			
deg 13.0 13.1 13.2 13.3 13.4	in .56075 .56051 .56027 .56002 .55977	in . 83705 . 83664 . 83622 . 83579 . 83537	in .56033 .56008 .55982 .55956 .55931	in . 83609 . 83566 . 83522 . 83477 . 83433	deg 18.0 18.1 18.2 18.3 18.4	in .54682 .54651 .54619 .54588 .54556	in . 81344 . 81291 . 81238 . 81185 . 81132	in .54579 .54546 .54513 .54480 .54447	in . 81109 . 81053 . 80997 . 80940 . 80883			
$13.5 \\ 13.6 \\ 13.7 \\ 13.8 \\ 13.9$	.55952 .55927 .55902 .55877 .55852	. 83495 . 83452 . 83409 . 83366 . 83323	.55905 .55879 .55853 .55827 .55800	. 83388 . 83342 . 83297 . 83252 . 83207	18.5 18.6 18.7 18.8 18.9	.54524 .54492 .54459 .54427 .54394	$\begin{array}{c} .81078 \\ .81024 \\ .80970 \\ .80916 \\ .80861 \end{array}$	.54414 .54380 .54345 .54311 .54277	. 80826 . 80768 . 80710 . 80652 . 80594			
$14.0 \\ 14.1 \\ 14.2 \\ 14.3 \\ 14.4$	.55827 .55802 .55776 .55750 .55724	. 83280 . 83237 . 83193 . 83149 . 83105	.55774 .55747 .55720 .55693 .55666	. 83161     . 83115     . 83068     . 83022     . 82975	$19.0 \\ 19.1 \\ 19.2 \\ 19.3 \\ 19.4$	$\begin{array}{r} .54361 \\ .54328 \\ .54295 \\ .54261 \\ .54227 \end{array}$	$\begin{array}{r} .\ 80805\\ .\ 80749\\ .\ 80694\\ .\ 80638\\ .\ 80582\end{array}$	$\begin{array}{r} .54242 \\ .54208 \\ .54173 \\ .54138 \\ .54103 \end{array}$	. 80535     . 80477     . 80418     . 80358     . 80298			
$14.5 \\ 14.6 \\ 14.7 \\ 14.8 \\ 14.9$	.55698 .55671 .55645 .55618 .55590	$\begin{array}{c} .83060\\ .83014\\ .82969\\ .82923\\ .82877\end{array}$	.55639 .55611 .55583 .55555 .55527	$     . 82928 \\     . 82880 \\     . 82831 \\     . 82783 \\     . 82735   $	19.5 19.6 19.7 19.8 19.9	.54193 .54160 .54126 .54092 .54058	$     . 80526 \\     . 80470 \\     . 80414 \\     . 80358 \\     . 80301 $	.54067     .54032     .53997     .53961     .53925	. 80238 . 80178 . 80118 . 80057 .79997			
$15.0 \\ 15.1 \\ 15.2 \\ 15.3 \\ 15.4$	.55563 .55536 .55509 .55481 .55453	$\begin{array}{c} .82831 \\ .82784 \\ .82737 \\ .82690 \\ .82643 \end{array}$	.55499 .55471 .55442 .55414 .55385	$\begin{array}{r} .82687 \\ .82638 \\ .82589 \\ .82540 \\ .82490 \end{array}$	20.0 20.1 20.2 20.3 20.4	.54025	. 80245	53889 53852 53816 53779 53743	.79936 .79874 .79812 .79750 .79689			
$15.5 \\ 15.6 \\ 15.7 \\ 15.8 \\ 15.9$	.55425 .55397 .55369 .55340 .55312	$\begin{array}{c} .\ 82596\\ .\ 82549\\ .\ 82501\\ .\ 82453\\ .\ 82405\end{array}$	.55356 .55327 .55297 .55268 .55239	$\begin{array}{c} .82440\\ .82390\\ .82339\\ .82289\\ .82238\end{array}$	$20.5 \\ 20.6 \\ 20.7 \\ 20.8 \\ 20.9$			53706 53669 53632 53595 53558	. 79627 . 79564 . 79502 . 79440 . 79377			
$16.0 \\ 16.1 \\ 16.2 \\ 16.3 \\ 16.4$	55283 55254 55225 55196 55167	$\begin{array}{c} .82356\\ .82307\\ .82258\\ .82209\\ .82160\end{array}$	.55209 .55179 .55148 .55117 .55087	. 82187     . 82135     . 82083     . 82031     . 81979	$\begin{array}{c} 21.0 \\ 21.1 \\ 21.2 \\ 21.3 \\ 21.4 \end{array}$			53521 53484 53446 53408 53370	. 79314 . 79251 . 79187 . 79123 . 79059			
16.5 16.6 16.7 16.8 16.9	.55138 .55109 .55079 .55050 .55020	. 82110 . 82061 . 82011 . 81962 . 81912	.55057     .55026     .54995     .54964     .54933	.81926 .81873 .81821 .81768 .81715	21.5 21.6 21.7 21.8 21.9			.53332 .53294 .53255 .53217 .53178	.78994 .78930 .78865 .78801 .78736			
17.0 17.1 17.2 17.3 17.4	.54990 .54960 .54929 .54898 .54867	.81862 .81811 .81759 .81707 .81655	.54902     .54870     .54839     .54807     .54774	. 81661 . 81607 . 81552 . 81497 . 81442	$\begin{array}{c} 22.0 \\ 22.1 \\ 22.2 \\ 22.3 \\ 22.4 \end{array}$			$\begin{array}{r} .53139 \\ .53100 \\ .53061 \\ .53022 \\ .52983 \end{array}$	.78670 .78604 .78539 .78473 .78406			
$17.5 \\ 17.6 \\ 17.7 \\ 17.8 \\ 17.9 \\ 18.0$	54837 54806 54775 54744 54713 54682	$\begin{array}{r} .81604\\ .81552\\ .81500\\ .81448\\ .81396\\ .81344\end{array}$	54742 54710 54677 54645 54612 54579	.81387 .81333 .81277 .81222 .81166 .81109	22.5 22.6 22.7 22.8 22.9 23.0			52943 52903 52863 52823 52783 52743	.78339 .78272 .78205 .78138 .78071 .78004			

### TABLE A4.4. Best wire diameters and constants for large lead angles, 1-in axial pitch 60° threads-Continued

Nore .--- This table courtesy of the Van Keuren Co.



FIGURE A4.5. Measurement of pitch diameter of taper thread gages by the 2-wire method.

#### 6. MEASUREMENT OF PITCH DIAMETER OF USA STANDARD TAPER THREADS

The pitch diameter of a taper thread plug gage is measured in much the same manner as that of a straight thread gage, except that a definite position at which the measurement is to be made must be located. A point at a known distance, L, from the reference end of the gage is located by means of a combination of precision gage blocks and the cone point furnished as an accessory with these blocks, as shown in the inset in figure A4.5. The gage is set vertically on a surface plate, the cone point is placed with its axis horizontal at the desired height, and the plug is turned until the point fits accurately into the thread. The position of this point is marked carefully with a pencil or a bit of prussian blue.

6.1. Two-WIRE METHOD.—Assuming that the measurement is to be made with a horizontal comparator, the gage is set in the comparator with its axis vertical, that is, the line of measurement and the thread axis are perpendicular to each other. The measurement is made with two wires, as shown in figure A4.5, one of which is placed in the thread to make contact at the same axial section of the thread as was touched by the cone point. This wire is designated the fixed wire. The second wire is placed in the thread groove, on the opposite side of the gage, which is next above the fixed wire, and the measurement over the wires is made. The second wire is then placed in the thread groove next below the fixed wire, and a second measurement is made. The average of these two measurements is  $M_w$ , the measurement over the wires at the position of the fixed wire.

The general formula for a taper thread, corresponding to formula (3) is

$$E = M_w + \frac{\cot \alpha - \tan^2 \beta \tan \alpha}{2n} - w \left( 1 + \operatorname{cosec} \alpha + \frac{\tan^2 \lambda' \cos \alpha \cot \alpha}{2} \right) \quad (6)$$

in which

E = pitch diameter

- $M_w =$  measurement over wires
- $\beta = \text{half angle of taper of thread}$
- n =number of threads per inch = 1/p
- $\alpha = \text{half angle of thread}$
- w = mean diameter of wires
- $\lambda' =$  wire angle.
The term

$$\frac{\cot\alpha - \tan^2\beta\,\tan\alpha}{2n}$$

is the exact value of the depth of the fundamental triangle of a taper thread, which is less than that of the same-pitch thread cut on a cylinder. For steep-tapered thread gages, having an included taper larger than 0.75 in/ft this more accurate term should be applied. For such a thread, which has a small lead angle, formula (6) takes the form

$$E = M_w + \frac{\cot \alpha - \tan^2 \beta \tan \alpha}{2n} - w (1 + \operatorname{cosec} \alpha) \quad (7)$$

Otherwise, as for USA Standard taper pipe threads having an included taper of 0.75 in/ft, the simplified formula (5)

$$E = M_w + \frac{0.86603}{n} - 3w$$

for 60° threads may be used. This simplified formula gives a value of E that is 0.00005 in larger than

that given by the above general formula (6) for the 2.5–8 USA Standard taper pipe thread, the worst case in this thread series.

The pitch diameter at any other point along the thread, as at the gaging notch, is obtained by multiplying the distance parallel to the axis of the thread, between this point and the point at which the measurement was taken, by the taper per inch, then adding the product to or subtracting it from the measured pitch diameter according to the direction in which the second point is located with respect to the first.

6.2. THREE-WIRE METHOD.—Depending on the measuring facilities available or other circumstances, it is sometimes more convenient to use three wires. In such cases measurement is made in the usual manner, but care must be taken that the measuring contacts touch all three wires, as the line of measurement is not perpendicular to the axis of the screw when there is proper contact. (See fig. A4.6.)

On account of this inclination, the measured distance between the axes of the wires must be multiplied by the secant of the half angle of the taper of



FIGURE A4.6. Measurement of pitch diameter of taper thread gages by the 3-wire method.

the thread. The formula for the pitch diameter of any taper thread plug gage, the threads of which are symmetrical with respect to a line perpendicular to the axis, then has the form corresponding to formula (4):

$$E = (M_w - w) \sec \beta + \frac{\cot \alpha}{2n} - w \operatorname{cosec} \alpha \qquad (8)$$

in which  $\beta = \text{half-angle}$  of taper of thread. Thus the pitch diameter of a USA Standard pipe-thread gage having correct angle (60°) and taper (0.75 in/ft) is then given by the formula

$$E = 1.000\ 49(M_w - w) + 0.866\ 03p - 2w \tag{9}$$

An adaption of the three-wire method is frequently used to reduce the time required when the pitch diameter of a number of gages of the same size is to be measured. Only light gages, up to about 1 in nominal size, can be measured accurately by this method. The gage is supported on two wires placed several threads apart, which are in turn supported on a taper thread testing fixture. The third wire is placed in the threads at the top of the gage and measurement is made from the top of this wrie to the bottom of the fixture with a vertical comparator having a flat anvil, using a gage block combination as the standard. The fixture consists of a block, the upper surface of which is at an angle to the base plane equal to the nominal angle of taper of the thread,  $\hat{2}\beta$ . Thus the element of the cone at the top of the thread gage is made parallel to the base of the instrument. The direction of measurement is not perpendicular to the axis of the gage but at an angle,  $\beta$ , from perpendicularity. A stop is provided at the thick end of the block with respect to which the gage is positioned on the fixture. As the plane of the end of the gage may not be perpendicular to the axis, a roll approximately equal to the diameter of the gage should be inserted between the stop and the gage to assure contact at the axis of the gage. For a given fixture and roll, a constant is computed which, when subtracted from the measured distance from the top of the upper wire to the base plane, gives M corresponding to the pitch diameter,  $E_0$ , at the small end of the gage.  $E_0$  is then determined by applying formula (8) or (9).

6.3. FOUR-WIRE METHOD.—A four-wire method of measurement that yields measurements of the pitch diameter,  $E_0$ , at the small end of the gage, and the half-angle of taper,  $\beta$ , is also sometimes used. This method is illustrated in figure A4.7 and requires four thread wires of equal diameter, a pair of gage



FIGURE A4.7. Measurement of pitch diameter of taper thread gages by the 4-wire method.

blocks of equal thickness, and two pairs of rolls of different diameters, the rolls of each pair being equal in diameter. Two measurements,  $M_1$  and  $M_2$ , are made over the rolls and formulas are applied as follows:

$$\cot\frac{90-\beta}{2} = \frac{M_2 - M_1 + d_1 - d_2}{d_2 - d_1} \tag{10}$$

$$M_w = M_2 - d_2 \left( 1 + \cot \frac{90^\circ - \beta}{2} \right) - 2g \sec \beta \quad (11)$$

in which

 $M_2 =$ measurement over larger rolls

- $M_1 =$  measurement over smaller rolls
- $d_2 = \text{diameter of larger rolls}$
- $d_1 = \text{diameter of smaller rolls}$
- $\beta =$ actual half-angle of taper of thread

g = thickness of each gage block.

To determine  $E_0$ , the pitch diameter at the small end of the gage,  $M_w$ , as determined from formula (11), is substituted in formula (6) or (7).

The errors of measurement by this method may be slightly but not significantly larger than by the other methods described, on account of elastic deformations of the rolls and gage blocks under the measuring force, and differing conditions of loading of the thread wires.

#### 7. MEASUREMENT OF PITCH DIAMETER OF THREAD RING GAGES

The application of direct methods of measurement to determine the pitch diameter of thread ring gages presents serious difficulties, particularly in securing proper contact load when a high degree of precision is required. The usual practice is to fit the ring gage to a threaded setting plug. When the thread ring gage is of correct lead, angle, and thread form, within close limits, this method is satisfactory and represents standard practice in the United States. It is the only method available for small sizes of threads. For the larger sizes, various more or less satisfactory methods have been devised, but none of these have found wide application. UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

# HANDBOOK H28

## SCREW-THREAD STANDARDS

## FOR FEDERAL SERVICES

## APPENDIX A5

# 1969

### DESIGN OF SPECIAL THREADS



In general, any given problem in thread design may be susceptible to several more or less satisfactory solutions based on the preliminary selection of eertain elements of the design and the proper adjustment of the other elements. In other words, thread design is to a large extent empirical and is partially based on previous experience with similar designs and the judgment of the designer. Accordingly, it is not practicable to present a definite system of approach to the design of a threaded assembly but merely to present a discussion of various design factors.

The interrelation of length of engagement, minimum major diameter of the external thread, maximum minor diameter of the internal thread, and the strength of the assembled thread needs to be understood and carefully eonsidered in order to produce the optimum design of a special thread. It is not economical to use either a length of thread engagement which is longer than required or shorter than that which will develop the full strength of the externally threaded member. Other factors, such as eontrol of tap breakage, proper seating of a threaded part on a shoulder, the prevention of eross threading, eonditions of loading when the assembled parts are not eoneentric, and possible eollapse of a hollow externally threaded member, require eareful analysis and adjustment of the design with respect to selection of the diameter-pitch combination, the class of thread, length of engagement, and major and minor diameter tolerances.

In redesigning threads from American National to Unified standards, it should be remembered that exact correspondence between the old and new elass numbers does not exist. For most, but not all, diameter-pitch combinations, the combined tolerances and allowances of the Unified classes are somewhat larger than American National classes of corresponding number. Recommended procedure is to convert the thread to the corresponding class of Unified thread, compare the new major, pitch, and minor diameter tolerances with the old tolerances, and then give careful consideration to the desirability of the new limits of size.

Taking, for example, the conversion of a class 1 thread to elasses 1A and 1B: Under ordinary eonditions where the thread is being used only as a simple fastener and the length of engagement is normal, such substitution may be made. If, for any reason, the previously specified toleranees may not be exceeded, it may be necessary to specify elass 2A or 2B or both. Also, if the thread must carry a high axial stress or if concentricity of the two mating parts is a factor, the conversion should be from elass 1 to elasses 2A and 2B.

A close fitting thread assembly under some conditions may fail, whereas the cause of failure may be eliminated by providing a looser fit. A cap serew that seats only on one side of the bearing surface under the head may break off when the serew is tightened. When a screw has a large bearing surface under the head or when the head must be square with a projecting pin, sufficient pitch diameter clearance must be provided to allow for any out-ofsquareness of the screw axis with the bearing surface under the head. Thus, as large a pitch diameter tolerance as possible, together with providing proper tolerances on squareness of face with the thread axis where scating is required, may avoid the necessity for specifying a heat treated bolt.

#### 2. ECCENTRICITY OF ASSEMBLY AND CROSS THREADING

In assembly and use, the combined tolerances and allowances on both mating parts should not allow threads to disengage on one side when assembly is eccentric. The axis of the internal thread can be displaced radially from eoineidence with the axis of the external thread by an amount equal to the sum of the pitch diameter tolerances and the allowance. This radial displacement may be sufficient so that the flank contact is entirely on one side and on the opposite side the crest of the external thread will be in line with the erest of the internal thread with the following results when the serew is constrained in such a position in a tapped hole: (1) There will be danger of erossing the threads in starting, and (2) the serew may pull out of the hole when tension is exerted in this constrained position. The minimum amount of overlap is arbitrary and controversial, but the following general rule can be used in lieu of more specific data:

As the first step to assure the minimum safe overlap on both sides when the assembly is eoncentric, the difference between the minimum major diameter of the external thread and the maximum minor diameter of the internal thread should not be less than twice the addendum of the external thread (0.75H, table 2.1). Otherwise stated, the sum of the major-diameter tolerance and allowance, if any, of the external thread and the minor-diameter toleranee of the internal thread should not be greater than 4/3 the addendum of the external thread, 0.5H, table 2.1. This provides for a minimum of 50 percent thread engagement. As the second step, to assure the minimum safe overlap on one side when the assembly is eccentric, the difference between the maximum pitch diameter of the internal thread and the minimum pitch diameter of the external thread should not be greater than twice the addendum of the external thread (0.75H, table 2.1). Otherwise stated, the sum of the pitch-diameter tolerances of both threads and the allowance, if any, should not be greater than twice the addendum of the external thread, (0.75H, table 2.1). This provides for an eccentric assembly condition equal to the addendum of external thread (0.375H, table 2.1) and zero minimum overlap on one side. If the results from the limits of size selected violate the above rules, the tolerances should be reduced by using a closer class of tolerance, assuming tolerances consistent with manufacturing possibility, or a coarser pitch should be used to increase the amount of overlap. The major-diameter tolerance of the external thread or minor-diameter tolerance of the internal thread should not be less than the pitch-diameter tolerance of the respective thread to maintain thread form.

It should be noted that, if the tolerance on the minor diameter of the internal thread must necessarily be large, the major diameter of the external thread must be held close to the maximum major diameter and vice versa.

#### **3. STRENGTH FACTORS**

CRITICAL AREAS—The critical areas of mating threads, as related to the tensile strength of the thread assembly, are: The effective cross-sectional area, or stress area, of the external thread, (2) the shear area of the external thread that depends principally on the minor diameter of the tapped hole, and (3) the shear area of the internal thread that depends principally on the major diameter of the external thread. The formulas for tensile stress area and thread shear area are shown below. These areas are indicated in figure A5.1.

Tensile Stress Area.—The tensile stress area is the assumed area of an external threaded part that is used for the purpose of computing the tensile strength.

Direct Tensile Stress.—When parts are subjected only to a direct tensile stress the assumed area applicable to steel parts up to 180,000 psi used in calculating the ultimate strength is computed from the following formula:

$$A_s = 3.1416 \left(\frac{E}{2} - \frac{3H}{16}\right)^2$$

or

$$A_s = 0.7854 (D - 0.9743/n)^2$$

where

E = basic pitch diameter D = basic major diameter n = threads per inch

For 3H/16, see table 2.1. Tabulated stress areas are listed in tables 2.8 through 2.18.



FIGURE A5.1. Critical sections in a thread assembly. See table A5.2 for formulas corresponding to item numbers.

#### TABLE A5.2. Data for determining strength factors in special thread design

NOTATION

 $\begin{array}{ll} D &= \text{basic major diameter.} \\ D_s &= \text{major diameter of external thread.} \\ K_n &= \text{minor diameter of internal thread.} \\ K_n &= \text{tolerance on minor diameter of internal thread.} \\ E_s &= \text{tolerance on pitch diameter of external thread.} \end{array}$ 

- G = allowance on all diameters of external thread.  $L_e$  = length of thread engagement.  $A_s$  = stress area of external thread.  $S_s$  = area in shear on external thread in line with  $K_n$ .

- = area in shear in internal thread in line with  $D_{n}$ .

CONSTANTS

$C_1 = \frac{3}{7}\pi = 2.356$	Threads per inch, n														
4	40	36	32	28	27	24	20	18	16	14	12	10	8	6	-4
$C_2 = \frac{5}{8} \frac{\cot 30^{\circ}}{n} = \frac{1.08253}{n} = \dots$	0.0271	0.0301	0.0338	0.0387	0.0401	0.0451	0.0541	0.0601	0.0677	0.0773	0.0902	0.1083	0.1353	0.1804	0.02706
$C_3 = \frac{9}{16} \frac{\cot 30^\circ}{n} = \frac{0.974279}{n} = -$	.0244	.0271	.0304	.0348	.0361	.0406	.0487	.0541	.0609	.0696	.0812	.0974	.1218	.1624	.2436
$C_4 = n \tan 30^\circ = 0.57735n =$	23.09	20.78	18.48	16.17	15.59	13.86	11.55	10.39	9.328	8.083	6.928	5.774	4.619	3.464	2.309
$C_5 = \pi n \tan 30^\circ = 1.8138n_{}$	72.55	65.30	58.04	50.79	48.97	43.53	36.25	32.65	29.02	25.39	21.76	18.14	14.51	10.88	7.255

#### FORMULAS

MAXIMUM MATERIAL FOR BOTH EXTERNAL AND INTERNAL THREADS

1 tem

1.  $K_n \min = D - C_2$ . 2. Max area in shear of external thread per inch =  $S_s \max$  per inch =  $C_1 K_n \min$ .

3. Min length of thread engagement,  $L_e \min = \frac{L_e}{D} \times D_s \max$ , with  $\frac{L_e}{D}$  taken from graph, figure A5.3.

4. Area in shear of external thread in length  $L_e \min = S_s \max \text{ per inch } \times L_e \min (= \text{ item } 2 \times \text{ item } 3)$ .

5. Max stress area of external thread = 
$$A_s \max = \frac{S_s \max \operatorname{per inch} \times L_e \min}{2} \left( = \frac{1}{2} \operatorname{item} 4 \right) = \frac{C_1 K_n \min \times \frac{L_e}{D} \times D_s \max}{2}$$
.

MAXIMUM MATERIAL EXTERNAL THREAD. K., MAXIMUM

6.  $K_n \max = K_n \min + T_{K_n}$ . 7. Min area in shear of external thread per inch =  $S_3 \min$  per inch =  $K_n \max (C_1 - C_3 T_{K_n})$ .

8.  $L_e$  required to develop full strength of external thread for  $T_{Kn}$  selected  $=\frac{2 A_s \max}{S_s \min \text{ per inch}} = \left(\frac{2 \times \text{item 5}}{\text{item 7}}\right)$  or  $=\left(\frac{\text{item 4}}{\text{item 7}}\right)$ .

#### MINIMUM MATERIAL FOR BOTH EXTERNAL AND INTERNAL THREADS

9. Min stress area of external thread =  $A_s \min = 0.7854 [D - C_a - (T_{E_s} + G)]^2$ . 10. Min area in shear of external thread in length  $L_e = S_s \min = K_n \max [C_1 - C_5(T_{Kn} + T_{E_s} + G)]L_e$ , or  $= \pi K_n \max [0.75 - C_4(T_{Kn} + T_{E_s} + G)]L_e$ . 11. Min area in shear of internal thread in length  $L_e = S_n \min = \pi D_s \min [0.875 - C_4(T_{D_s} + T_{E_n} + G)]L_e$ .

MINIMUM TAPPED HOLE,  $D_{\rm s}$  minimum, when tapped material is weaker than screw material

12. 
$$R_1 = \frac{\text{area in shear of screw in length } L_e}{\text{area in shear of tapped hole in length } L_e} = \left(\frac{\text{item } 4}{\text{item } 11}\right) = \frac{0.75 K_n \min}{D_s \min \left[0.875 - C_4 \left(T_{Ds} + T_{En} + G\right)\right]}$$

trength of tapped mate 13.  $R_2 = \frac{1}{\text{ultimate tensile strength of screw material}}$ 

14. If  $R_2 < R_1$ , then  $L_e$  required  $= L_e$  for  $T_{Kn}$  selected  $\times \frac{R_1}{R_2} = \left(\frac{\text{item } 8 \times \text{item } 12}{\text{item } 13}\right)$ .

Combined Tensile Stress.—When parts are subject to a direct tensile stress plus a torsional stress due to tightening the nut or bolt head, it is necessary to consider the combined shear and tensile stresses when calculating the strength of the externally threaded part. It is recommended that the combined stresses be computed on the basis of the section at the minimum minor diameter of the external thread. The direct tensile stress is given by the formulas:

where

 $A_r =$ area in sq in at the minimum minor diameter. F = axial load on externally threaded parts in lb.

 $S_t = F/A$  $A_r = 0.7854 [(K_s \min)^2 - d^2]$ 

The direct torsional stress is given by the formulas:

$$S_s = T_1/Z_p$$
  
 $Z_p = 0.1963 \frac{[(K_s \min)^4 - d^4]}{K_s \min}$ 

where

- $T_1$  = wrench torque transmitted through the threaded section, approximately equal to half of the total wrench torque in lb-in.
- $Z_p = \text{polar section modulus in in}^3$
- thread in in.
  - d =inside diameter of externally threaded part in in; if part is solid, d = zero.

The combined shear stress in psi is given by the formula:

$$S_s' = \sqrt{\left(\frac{S_t}{2}\right)^2 + (S_s)^2}$$

The combined tensile stress in psi is given by the formula:

$$S_{t}' = S_{s}' + S_{t}/2$$

Having once determined the combined stresses due to a given set of conditions for wrench torque and coefficient of friction, other combined stresses will be directly proportional to the wrench torque.

Thread Shear Area.—The diameter corresponding to the effective thread shear area will vary with the relative unit tensile strengths of the materials of the internal and external threads. When the external and internal threads are manufactured from materials of equal unit tensile strength, failure will usually take place simultaneously in both threads at or near a diameter equal to the basic pitch diameter. The shear area (AS) for external and internal threads made of such materials can be computed from the following formula:

 $AS = 3.1416E \frac{L_e}{2}$ 

where

E = basic pitch diameter

 $L_e = \text{length of engagement at basic pitch diameter.}$ 

When the unit tensile strength of the external thread material greatly exceeds that of the internal thread material, as in the case of a threaded hole in a cast aluminum block mated with a 100,000 psi ultimate strength material bolt, the shear area of the internal thread  $(AS_n)$  can be computed from the following formulas:

(1) For simplified calculations that will provide shear areas within about 5 percent of those given by the precise formula shown below, the shear area of the internal thread may be computed as follows:

$$AS_n = 3.1416E \, \frac{3L_e}{4}$$

where  $L_e$  = length of engagement at the basic pitch diameter.

(2) The precise equation for shear area of the internal thread at a diameter equal to the minimum major diameter of the external thread is as follows:

$$= 3.1416 n L_e D_s \min \left[ \frac{1}{2n} + 0.57735 (D_s \min - E_n \max) \right]$$

where

 $\Delta S$ 

n = number of threads per inch

- $E_n \max = \max \min pitch diameter of internal thread$ 
  - $L_e$  = length of engagement at minimum major diameter of external thread. (Use  $L_e$  at basic pitch diameter for simplicity; this is conservative.)

When the unit tensile strength of the internal thread material greatly exceeds that of the external thread material, the shear area of the external thread  $(AS_s)$  can be computed from the following formulas:

(1) For simplified calculations for diameters 0.250

in and larger, that will provide shear areas within about 5 percent of those given by the precise formula shown below, the shear area of the external thread may be computed as follows:

$$AS_s = 3.1416E \frac{5L_e}{5}$$

where  $L_e = \text{length}$  of engagement at the basic pitch diameter.

(2) The precise equation for shear area of the external thread at a diameter equal to the maximum minor diameter of the internal thread is as follows:

$$AS_s$$

$$= 3.1416nL_{e}K_{n}\max\left[\frac{1}{2n} + 0.57735(E_{s}\min-K_{n}\max)\right]$$

where

- $K_n \max = \max \min \min$  diameter of internal thread.
- $E_s \min = \min \min$  pitch diameter of external thread.

If failure of a thread assembly should occur it is desirable that the external thread (screw) will break rather than that either the external or internal thread will strip. In other words, the length of thread engagement shall be sufficient to develop the full strength of the screw. Thus, the length of internal thread and the dimensions of this thread, particularly its minor diameter, should be such that, taking into account a possible difference in strength of material of the internal and external threads, the threaded portion of the external thread will break before either the external or internal threads strip.

LENGTH OF THREAD ENGAGEMENT—The length of engagement of a threaded unit that will develop maximum strength of an assembly threaded with external and internal threads manufactured from materials of near or equal unit tensile strength may be computed from the following formula, which incorporates the factor "half" relation of unit shearing strength to unit tensile strength:

$$L_e = 4A_s/3.1416E$$

where

$$A_s \!=\! 3.1416 \left(\!\frac{E}{2} \!-\! \frac{3H}{16}\!\right)^{\!\!2}$$

When the unit tensile strength of the external thread materially exceeds that of the internal thread, the required length of engagement to develop maximum strength may be computed from the following formula, which is also based on the shear area being twice the tensile stress area:

$$L_{e} = \frac{2A_{s}}{3.1416nD_{s}\min\left[\frac{1}{2n} + 0.57735(D_{s}\min - E_{n}\max)\right]}$$

Likewise, when the unit tensile strength of the internal thread materially exceeds that of the external thread, the following formula should be used:

$$L_{e} = \frac{2A_{s}}{3.1416nK_{n}\max\left[\frac{1}{2n} + 0.57735(E_{s}\min - K_{n}\max)\right]}$$

The factor 2 used in the numerator of this formula means that it is assumed that the area in shear must be twice the tensile stress area to develop the full strength of the serew. This assumption is based on experiments made by the National Bureau of Standards in 1929, in which it was found that for hot-rolled and cold-rolled steel, and brass serews and nuts, this factor varied from 1.7 to 2.0. Taking the factor as 2 provides in general a small factor of safety against stripping of the threads.

To facilitate the application of this formula various notations, constants, and formulas applicable to the determination of the relation of critical areas to thread dimensions are given in table A5.2 and are discussed below.

(a) Length of engagement determined by shear area of external thread.—Formula 8, table A5.2, gives the length of engagement required to develop the full strength of the serew when the strength of the material in which the hole is tapped is the same as, or slightly less than, the strength of the material of the serew. The value of  $L_e$  thus obtained is sufficient for a permanently-fastened connection. If, however, the serew is an adjusting or lead serew, or if the connection will be frequently unserewed,  $L_e$  should be increased to allow for the expected wear on the flanks of the threads during the useful life of the components.

For tapped holes in sheet metal, the maximum size of the serew to be specified should be such that the thickness of sheet equals the  $L_e$  required to develop full strength. In order to use the largest possible serew, it is necessary that the toleranee,  $T_{Kn}$ , on the minor diameter of the hole should be the practical minimum. If it should prove to be impracticable to reduce the minor diameter tolerance to such a value, it may be necessary to decrease the minimum minor diameter of the internal thread and to increase the minor diameter tolerance by the same amount. If this is done, the maximum minor diameter of the serew must be reduced by the same amount to prevent interference, and the minor diameter of the "go" thread ring gage must likewise be decreased, as this is the only control of the minor diameter of the serew. In all such eases, where dimensions are altered from those ealeulated according to the standard, the threads should be designated as speeified in section 2. (See under "Designating threads having modified erests" in that section.)

(b) Length of engagement determined by shear area of internal thread.—The ratio of the area in shear in the serew and the area in shear in the tapped hole is given by formula 12, table A5.2. This ratio,  $R_1$ , will usually be less than 1 and the strength of the material of the tapped hole can be less than the strength of the material of the serew by this ratio with no indicated increase in  $L_e$  by formula 8. If, however, the ratio

# $R_2 = \frac{\text{ultimate tensile strength of tapped material}}{\text{ultimate tensile strength of serew material}}$

is less than  $R_1$ , then  $L_c$  should be multiplied by  $R_1/R_2$  to provide sufficient length of thread to prevent stripping of the threads in the tapped hole.

For retaining eollars on shafts where the expected axial force resisted by the collar is appreciably less than the tensile force that the shaft itself is eapable of resisting,  $L_e$  need only be long enough to withstand the expected axial force on the collar. If  $F_c$  is the axial force to be earried by the collar and uts is the tensile strength of the material of the shaft in pounds per square inch, then the length of thread engagement required on the shaft is equal to  $2F_c/(uts \times S_s \min)$ , where  $S_s \min$  is given by formula 7, when the strength of material of the collar is the same or slightly less than the strength of material of the shaft. Ratios  $R_1$  and  $R_2$  should be computed as previously explained to determine whether or not a greater length is required to prevent stripping of the threads in the collar.

(c) Hollow externally threaded parts.—For serves with through axial holes, the length of engagement required is of eourse less than if the serve is solid. For this condition, formula b becomes

$$L_c \max = \frac{2(A_s \max - A_n \max)}{S_s \min \text{ per ineh}}$$

where  $A_n$  is the eross-sectional area of the hole.

However, as the wall thickness of either or both the internal and external members becomes thin, the tendency of the external member to enlarge and the internal member to neek down in the thread means that an  $L_e$  greater than given by the above formula must be used, also that the toleranees on minor diameter of the internal thread and major diameter of the external thread,  $T_{Kn}$  and  $T_{Ds}$ , must be small to obtain the maximum practicable depth of thread engagement. For components having threads on thin-wall tubing, tests under actual working conditions should be made to determine proper selection of wall thicknesses, length of engagement, and pitch of thread.

#### 4. THREAD PROPORTIONS IN RELATION TO TAPPING

In the production of threads it is considered impractical to tap a thread unless its diameter is greater than six times the basic thread height; therefore, when the ratio of D to H is less than 4.5, the use of a larger diameter, a finer pitch of thread, or both, should be considered.

The size of  $K_n$  is a factor in controlling tap

#### 5. EXAMPLES OF THREAD DESIGN

The design of special threads for particular purposes is illustrated by the following examples:

*Example*: A gun barrel is subjected to an internal explosive pressure that produces a tensile stress in the threaded end. The length of engagement of the threads should be sufficient to produce a minimum area in shear on the threads of the screw in line with the minor diameter of the tapped hole threads equal to twice the maximum stress area of the threaded portion of the barrel.

Assume that the thread on the barrel is 1.500– 8UN–2A and the minimum internal diameter of the barrel at the threaded end is 0.792 in.

In table 2.21 will be found the following maximum dimensions of the external thread:

$$D_s \max = 1.4978$$
 in  
 $E_s \max = 1.4166$  in  
 $K_s \max = 1.3444$  in.

From table 2.21,  $K_n \min = 1.365$  in. If we select the tolerance for minor diameter of hole  $T_{Kn} = 0.0250$ in,  $K_n \max$  will equal  $1.365 \pm 0.025 = 1.390$ , which will permit the use of a 1.375 in tap drill.

The minimum area in shear per inch can be computed, using formula 7, table A5.2:

$$S_s \min = K_n \max(C_1 - C_5 T_{Kn})$$
  
= 1.390(2.356 - 14.51 × 0.025)  
= 2.7706 in.²

The maximum stress area of the external thread, if solid, using formula 5, table A5.2, is

$$A_{s} \max = 0.5(C_{1}K_{n} \min \times \frac{L_{e}}{D} \times D_{s} \max)$$
$$\frac{L_{e}}{D} \text{ from chart, fig. A5.3 = 0.6185,}$$
$$= 0.5(2.356 \times 1.365 \times 0.6185 \times 1.4978)$$
$$= 1.4896$$

_

Area of minimum center hole

$$(\pi/4) \times 0.792^2 = 0.4926$$

breakage. Tap breakage is infrequent if the diameter of the tap is over 0.5 in or if the length of thread to be tapped is less than 0.5D. For sizes less than 0.5 in and length of thread over 0.5D, tap breakage can be minimized by use of a large  $K_n$ , that is  $T_{Kn}$ maximum. However, this means that  $L_e$  may have to be increased to develop the full strength of the screw.

Max stress area of external threaded member

1.4896 - 0.4926 = 0.9970

Length of thread engagement required

$$=L_e = \frac{2 \times \max A_s}{S_s \min}$$
$$= \frac{2 \times 0.997}{2.7706}$$
$$= 0.7197 \text{ in.}$$

If a length of engagement of 0.72 in cannot be obtained, the tolerance on minor diameter,  $T_{Kn}$ , of the internal thread should be reduced. If a space for a longer length of engagement is available,  $T_{Kn}$  can be increased.

Example: The dimension is required of the largest steel cap screw that can be used to hold a bracket on a cast iron body. The tensile strength of the steel is 60,000 psi, the tensile strength of the cast iron 20,000 psi, and the thickness of the cast iron is such that the length of thread engagement cannot exceed 1.750 in. The screws on the top side of the bracket will be in tension. From the ratio of the tensile strengths of the two materials,  $R_2 =$ 20,000/60,000 = 0.333, it is evident that the length of the tapped hole thread must be considerably longer than the length of thread engagement required to develop the full strength of the screw.  $R_1$  will be of the order of 0.85 and the length of thread in the tapped hole will be approximately  $R_1/R_2 = 0.85/0.333 = 2.55$  times as long as the length required to develop the full strength of the screw.  $L_e$  required to develop the full strength of the screw must be of the order of 1.750/2.55 = 0.686 in.

Inasmuch as the hole is tapped in cast iron, a relatively coarse thread would be required, that is UNC or coarser. For such threads  $L_e/D$ , as shown on the chart, figure A5.3, varies between 0.57 and 0.61. Taking  $L_e/D=0.59$ , the approximate diameter required is 0.686/0.59=1.163. Try  $D=1\frac{1}{16}=1.0625$  in. The selected pitch could be either 10 or 8 threads per inch with 8 threads per inch preferred. For a bracket screw, class 2A would be the preferred class.





Thus, the screw is 1.0625-8UN-2A and the hole 1.0625-8UN-2B.

Next, read the dimensions of the screw and hole from table 2.21 to determine whether or not the above selection is correct.

Max major diameter of screw,  $D_s \max = 1.0605$ Min major diameter of screw,  $D_s \min = 1.0455$ Min minor diameter of tapped hole,  $K_n \min = 0.927$ 

The number of 1.0625–8 screws required will depend on the torque that may develop on the bracket that will produce tension in the screws. It should be possible to tighten these screws to the yield strength of the steel without stripping the cast iron threads.

The complete table of dimensions of the tapped hole and screw is (From table 2.21)

Internal thread, 1.0625–8UN–2B

Min major diameter = 1.0625Min pitch diameter = 0.9813Max pitch diameter = 0.9902Min minor diameter = 0.927Max minor diameter = 0.952 External thread, 1.0625–8UN–2A

Max major diameter = 1.0605Min major diameter = 1.0455Max pitch diameter = 0.9793Min pitch diameter = 0.9725Max minor diameter = 0.9071

 $L_e/D$  from chart, figure A5.3 = 0.5990

 $L_e \min = L_e/D \times D_s \max = 0.5990 \times 1.0605 = 0.6352$ 

$$T_{E_n}$$
 (table 2.21) = 0.0089

 $R_1$ , table A5.2, formula 12

$$= \frac{0.75K_n \min}{D_s \min[0.875 - C_4(T_{E_n} + T_{D_s} + G)]}$$
$$= \frac{0.75 \times 0.927}{1.0455[0.875 - 4.619(0.0089 + 0.0150 + 0.0020)]}$$

= 0.8803

 $L_e$  required in hole

$$=L_e \min \times \frac{R_1}{R_2} = 0.6352 \times 0.8803 / 0.3333 = 1.6777 \text{ in},$$

which is less than the  $L_e$  (1.750 in.) permitted.

UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

## HANDBOOK H28

SCREW-THREAD STANDARDS

FOR FEDERAL SERVICES

APPENDIX 6

# 1957

## REFERENCES

APPENDIX 6 IS BEING DELETED FROM THE 1969 issue of handbook H28

☆ U.S. GOVERNMENT PRINTING OFFICE: 1970 0-338-775







#### PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.

Published in three sections, available separately:

#### • Physics and Chemistry

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$9.50; foreign, \$11.75*.

#### • Mathematical Sciences

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$5.00; foreign, \$6.25*.

#### • Engineering and Instrumentation

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, \$5.00; foreign, \$6.25*.

#### **TECHNICAL NEWS BULLETIN**

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \$3.00; foreign, \$4.00*.

* Difference in price is due to extra cost of foreign mailing.

Order NBS publications from:

Superintendent of Documents Government Printing Office Washington, D.C. 20402

#### NONPERIODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.

**Monographs.** Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitive data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

**Product Standards.** Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

**Technical Notes.** This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89–306, and Bureau of the Budget Circular A–86 entitled, Standardization of Data Elements and Codes in Data Systems.

#### CLEARINGHOUSE

The Clearinghouse for Federal Scientific and Technical Information, operated by NBS, supplies unclassified information related to Government-generated science and technology in defense, space, atomic energy, and other national programs. For further information on Clearinghouse services, write:

> Clearinghouse U.S. Department of Commerce Springfield, Virginia 22151

U.S. DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20230

OFFICIAL BUSINESS



POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE