

## NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientitic and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientilic community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

$$
\begin{aligned}
& \text { Absolute Physical Quantities }{ }^{2} \text { - Radiation Research - Chemical Physics - } \\
& \text { Analytical Chemistry - Materials Science }
\end{aligned}
$$

THE NATIONAL ENGINEERING LABORATORY provides technology and technicai services to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

Applied Mathematics - Electronics and Electrical Engineering2 - Manufacturing Engineering - Building Technology - Fire Research - Chemical Engineering ${ }^{2}$

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.Ś.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers:

Programming Science and Technology - Computer Systems Engineering.
'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Washington, DC 20234.
${ }^{2}$ Some divisions within the center are located at Boulder, CO 80303.

NBS Handbook 141
JOHN H. KLOTE
Center for Fire Research
National Engineering Laboratory
National Bureau of Standards
Washington, DC 20234

JOHN W. FOTHERGILL, JR.
Integrated Systems, Inc.
318 West Potomac Street
Brunswick, MD 21716

Sponsored in part by:
U.S. Veterans Administration

Office of Construction 08H
Washington, DC 20420
American Society of Heating, Refrigerating, and
Air-Conditioning Engineers, Inc. Atlanta, GA 30329

Issued July 1983

U.S. DEPARTMENT OF COMMERCE

Malcolm Baldrige, Secretary
NATIONAL BUREAU OF STANDARDS
Ernest Ambler, Director

# Library of Congress Catalog Card Number: 83-600558 

## National Bureau of Standards Handbook 141

NatI. Bur. Stand. (U.S.), Handb. 141, 284 pages (July 1983) CODEN: NBSHAP

## ABSTRACT

This book consolidates and systematically presents data and calculational procedures necessary to smoke control systems designers and discusses design criteria. The book was originally intended for use by mechanical engineers. However, it also may be useful to fire protection engineers and code officials. Included are discussions of the driving forces of smoke movement, the principles of smoke control, calculation of effective flow areas, concept of symmetry, and design parameters. A computer program for analysis of smoke control systems is presented. Concepts of stairwell pressurization and zoned smoke control are presented. Nunerous hand calculated examples and computer calculated examples are included.

Key words: air flow; bibliographies; computer programs; fire protection; fire safety; smoke control; smoke movement; stairwells.

## TABLE OF CONTENTS

Page
LIST OF FIGURES ..... vii
LIST OF TABLES ..... ix
PREFACE ..... x
ACKNOWL EDGMENTS ..... xi

1. INTRODUCTION ..... 1
1.1 Scope ..... 4
1.2 Smoke Control System Performance ..... 5
1.3 Preliminary Design Considerations ..... 6
1.4 System Flexibility ..... 7
1.5 Fire Suppression Systems ..... 7
1.6 Energy Conservation ..... 8
1.7 Control ..... 9
l.8 References ..... 10
2. FUNDAMENTALS OF SMOKE CONTROL ..... 11
2.1 Smoke Movement ..... 11
2.1.1 Stack Effect ..... 11
2.1.2 Buoyancy ..... 16
2.1.3 Expansion ..... 17
2.1.4 Wind ..... 18
2.1.5 HVAC System ..... 19
2.2 Smoke Management ..... 20
2.3 Principles of Smoke Control ..... 21
2.3.1 Airflow ..... 24
2.3.2 Pressurization ..... 26
2.3.3 Purging ..... 27
2.4 Door Opening Forces ..... 29
2.5 Building Air Flow Analysis ..... 30
2.6 Effective Flow Areas ..... 30
2.6.1 Parallel Paths ..... 31
2.6.2 Series Paths ..... 32
2.6.3 Combination of Paths in Parallel and Series ..... 35
2.7 Symmetry ..... 36
2.8 Flow Areas ..... 37

## Table of Contents [continued]

Page
2.9 Design Parameters ..... 38
2.9.1 Weather Data ..... 39
2.9.2 Pressure Differences ..... 40
2.9.3 Airflow ..... 42
2.9.4 Number of Open Doors ..... 43
2.10 References ..... 44
3. COMPUTER ANALYSIS ..... 46
3.1 Program Concept ..... 47
3.2 Assumptions and Limitations ..... 48
3.3 Equations ..... 48
3.4 Program Description ..... 53
3.4.1 Main Program ..... 53
3.4.2 INPUT Subroutine ..... 53
3.4.3 CORR Subroutine ..... 55
3.4.4 INIT Subroutine ..... 55
3.4.5 BLDGP Subroutine ..... 55
3.4.6 SHAFTP Subroutine ..... 55
3.4.7 PZAD Subroutine ..... 56
3.4.8 OUT Subroutine ..... 56
3.5 References ..... 56
4. FUNDAMENTALS OF STAIRWELL PRESSURIZATION ..... 59
4.l Pressurization Systems ..... 59
4.l.l Single and Multiple Injection ..... 59
4.l.2 Compartmentation ..... 62
4.1.3 Vestibules ..... 63
4.1.4 Supply Air Source ..... 63
4.2 Pressure Profiles ..... 64
4.3 Stairwe11 Analysis ..... 66
4.3.1 Pressures ..... 67
4.3.2 Pressurization Air ..... 68
4.3.3 Average Pressure Difference ..... 71
4.4 Height Limit ..... 72
4.5 Calculation Method for a Simple System ..... 74
4.5.1 Calculation Steps ..... 75
4.5.2 Simple System Example ..... 76
5. STAIRWELL PRESSURIZATION AND OPEN DOORS ..... 79
5.1 Systems ..... 79
5.1.1 Overpressure Relief ..... 80
5.1.2 Supply Fan Bypass ..... 81
5.1.3 Stairwell Pressurization and Smoke Venting ..... 82

## Table of Contents [continued]

Page
5.2 Analysis Approach ..... 83
5.3 Example Analysis ..... 84
5.4 References ..... 88
6. ZONED SMOKE CONTROL ..... 89
6.1 Smoke Control Zones ..... 89
6.2 Smoke Zone Venting ..... 91
6.2.1 Exterior Wall Vents ..... 91
6.2.2 Smoke Shafts ..... 94
6.2.3 Mechanical Exhaust ..... 95
6.3 Refuge Areas ..... 96
6.4 Smoke Dampers ..... 96
6.5 System Considerations ..... 97
6.6 Example Analysis ..... 98
6.7 References ..... 102
7. ACCEPTANCE TESTING ..... 104
7.1 Initial Checkout ..... 105
7.2 Pressure and Velocity Tests ..... 105
7.3 Real Fires ..... 106
7.4 Chemical Smoke ..... 106
7.5 Tracer Gas Tests ..... 107
APPENDIX A. NOTATION ..... 109
APPENDIX B. GRAPHS ..... 112
APPENDIX C. TYPICAL LEAKAGE AREAS FOR WALLS AND FLOORS OF COMMERCIAL BUILDINGS ..... 122
APPENDIX D. DATA INPUT DESCRIPTION FOR COMPUTER PROGRAM ..... 124
APPENDIX E. DATA AND COMPUTER OUTPUT FOR STAIRWELL EXAMPLE OF CHAPTER 5 ..... 132
APPENDIX F. DATA AND COMPUTER OUTPUT FOR ZONE SMOKE CONTROL EXAMPLE OF CHAPTER 6 ..... 182
APPENDIX G. LISTING OF COMPUTER PROGRAM ..... 219
APPENDIX H. SELECTED BIBLIOGRAPHY ..... 256
APPENDIX I. UNITS OF MEASUREMENT ..... 265
INDEX ..... 270

## LIST OF FIGURES

## Page

Figure l.l Floor plan of the Health Care Test Facility at the NBS Annex ..... 2
Figure 1.2 Example of rapid fire growth and smoke production from test N-54 at the Health Care Test Facility at the NBS Annex ..... 3
Figure 2.l Pressure difference between a building shaft and the outside due to normal stack effect ..... 15
Figure 2.2 Air movement due to normal and reverse stack effect ..... 15
Figure 2.3 Pressure difference across a barrier of a smoke control system ..... 22
Figure 2.4 Smoke backflow against low air velocity through an open doorway ..... 22
Figure 2.5 No smoke backflow with high air velocity through an open doorway ..... 22
Figure 2.6 Leakage paths in parallel ..... 31
Figure 2.7 Leakage paths in series ..... 33
Figure 2.8 Combination of leakage paths in parallel and series ..... 36
Figure 2.9 Building floor plan illustrating symmetry concept ..... 37
Figure 3.1 Flow chart for main program logic ..... 54
Figure 4.1 Stairwell pressurization by top injection ..... 60
Figure 4.2 Stairwell pressurization by multiple injection with the fan located at ground level ..... 61
Figure 4.3 Stairwell pressurization by multiple injection with roof mounted fan ..... 61

## List of Figures [continued]

Page
Figure 4.4 Compartmentation of a pressurized stairwell ..... 63
Figure 4.5 Stairwell pressurization by roof mounted propeller fan ..... 64
Figure 4.6 Pressure profile for pressurized stairwells in three buildings with different leakage characteristics ..... 65
Figure 5.1 Stairwell pressurization with vents to the building at each floor ..... 80
Figure 5.2 Stairwell pressurization with bypass around supply fan ..... 82
Figure 6.1 Some arrangements of smoke control zones ..... 90
Figure 6.2 Flow pattern with venting of smoke zone ..... 92
Figure 6.3 Variation of pressure differences with vent size ..... 93
Figure 6.4 Building with example smoke control zone system where 6th floor is fire floor ..... 101

## LIST OF TABLES

Page
Table 5.1 Computer calculated pressure differences and average velocities ..... 86
Table 6.1 Computer calculated pressure difference across closed fire floor door with all stairwell doors to the building closed ..... 100
Table 6.2 Computer calculated average velocities through open stairwell doorways on the fire floor ..... 102

## PREFACE

This book provides a consolidation and systematic presentation of data and calculational procedures necessary for smoke control systern design. It also includes discussion of selection and appropriateness of various design criteria. Although initially envisioned for use by mechanical design engineers, this book should also serve as a useful tool for fire protection engineers and code of ficials.

Research and development of smoke control methods have been conducted worldwide, with the majority having been performed in Japan, England, Canada, United States, France, and West Germany. This research has consisted of field tests, full-scale tests, and computer simulation of smoke movement and smoke control in buildings. The calculational procedures presented for the design of pressurized stairwells and zoned smoke control systems are based on test data and fundamental principles of engineering. Since this book is intended for practical use by design engineers, the test data upon which these procedures are based are not detailed herein. However, the data are available in published form and are cited in the bibliography presented in appendix $H$.

Smoke control systems for pressurized elevators, pressurized corridors, and atriums are only briefly mentioned in chapter l. Currently there are insufficient test data to ensure the validity of system concepts or of specific calculational procedures for their design. It is hoped that this book will encourage future development in these areas and that some future edition will include procedures for designing these systems.

This book represents the first attempt to consolidate and present practical procedures for smoke control system design. It is hoped that the readers and users of this book will provide comments on its content and suggestions for additional material to be included in future editions. To facilitate recording and processing of such information, all comments and questions must be written. Please mail comments or questions to:

John H. Klote<br>National Bureau of Standards<br>Center for Fire Research<br>Washington, DC 20234

## ACKNOWLEDGMENTS

Acknowledgment is made to the members of the ASHRAE Research Project Monitoring Committee, R.P. 206, which is a subcommittee of T.C. 5.6, Technical Committee on the Control of Fire and Smoke, for their generous and constructive criticism. The members of this subcommittee are:

```
Richard E. Masters, Chairman (Jaros, Baum \& Bolles, New York, NY)
Rudolph J. Adams (Air Balance, Inc., Westfield, MA)
Chief Leonard J. Billings (Beachwood OH, Fire Department)
David O. Bruce (Smith, Hinchman \& Grylls, Detroit, MI)
Jack B. Buckley (I. A. Naman Assoc., Houston, TX)
Deputy Chief Elmer F. Chapman (New York City Fire Department)
John G. Degenkolb (Fire Protection Engineer--Code Consultant,
                                    Glendale, CA)
Michael E. Dillon (Southland Heating and Air Conditioning, Inc.,
                Long Beach, CA)
Edward A. Donoghue (National Elevator Industry, Inc., New York, NY)
Bayliss J. Erdelyi (Consulting Engineer, Bothel, WA)
Hans Gold (City of Toronto, ON)
Vincent J. Hession (AT\&T Co., Basking Ridge, NJ)
Sharon M. Istvan (Rolf Jensen \& Associates, Springfield, VA)
James M. Keen (Keen Engineering Co., Ltd., W. Vancouver, BC)
Robert Menacker (General Engineering Associates, Washington, DC)
William A. Schmidt (Veterans Administration, Washington, DC)
Brooks J. Semple (Smoke/Fire Risk Management, Inc., Warrenton, VA)
George T. Tamura (National Research Council, Ottawa, ON)
Robert E. Taylor (Republic Steel Corp., Cleveland, OH)
Alvin S. Vener (Vener Consulting Engineers, Houston, TX)
```

The effort of the staff at Integrated Systems, Inc. was a significant contribution to this project. Acknowledgment is made particularly to Patricia A. Fothergill for her rapid response in the development of graphs and computer generated data and to Margaret $A$. Johnson for her aid in editing many of the earlier drafts of this document and for her literature research.

In addition, this work could not have been accomplished without the support, advice, and constructive criticism of the staff of the Center for Fire Research (CFR) at the National Bureau of Standards (NBS). Particular appreciation is expressed to Edward K. Budnick, Richard W. Bukowski, Warren D. Hayes, Jr., Nora H. Jason, Harold E. Nelson, and Richard H. Zile.

Fundamental to this work was the need for valid data, as indicated in the preface. As a result, the content of this manual is heavily dependent upon the work of many years performed by George Tamura and his associates of the National Research Council of Canada. Without their work, a great deal of this book would not have been possible and a mere acknowledgment is truly inadequate to express the value of their contribution.

## CHAPTER 1. <br> INTRODUCTION

Smoke is recognized as the major killer in fire situations [1]*. Smoke often migrates to building locations remote from the fire space, threatening life and damaging property. Stairwells and elevator shafts frequently become smoke-logged, thereby blocking evacuation and inhibiting fire fighting.

There is a general unawareness of how fast a fire can grow and of the quantities of smoke that can be produced by a fire. Because such an awareness is necessary to the evaluation of design parameters for smoke control systems, the following example is provided.

This example is fire test $N-54$ performed at the Health Care Test Facility at the National Bureau of Standards Annex in Gaithersburg, MD. For technical details of this unsprinklered fire test the reader is referred to a report by O'Neill, Hayes, and Zile [2]. The floor plan of the test facility is shown in figure l.l.

In this test, various fabrics representing materials found in clothing today were hung on wire coat hangers and arranged loosely in a wooden wardrobe. A cardboard box containing crumpled newspaper was placed on the floor of the wardrobe. The test started when the crumpled newspaper was ignited by a match. Following ignition, the left hand door was closed tightly while the right hand door was left partially open resulting in a 3 in ( 76 mm ) opening along the vertical edge of the door.

The photographs shown in figure 1.2 were taken from the observation port (see figure $1 . l$ ) across the corridor from the burn room and $2.21 \mathrm{ft}(0.67 \mathrm{~m}$ ) above the floor. At one second after ignition, the technician is closing the left hand wardrobe door and no flame or smoke is visible. At 80 seconds,

[^0]flames are visible flowing from the top of the wardrobe, a layer of smoke is covering the ceiling of the burn room, and smoke has flowed into the corridor and formed a one foot thick layer at the corridor ceiling. At 110 seconds, flames are flowing from the top two-thirds of the opening of the wardrobe door, and the smoke flowing out of the burn room doorway has increased significantly. At 120 seconds after ignition, flames are flowing from the entire opening of the wardrobe door, and the layer of smoke in the corridor and lobby has increased to approximately $4 \mathrm{ft}(1.2 \mathrm{~m})$ above the floor.

Such very rapid fire growth and accompanying smoke production represent a real possibility in actual wardrobe fires and perhaps even in closet fires. Many other fire scenarios are possible. For a latex or a polyurethane filled mattress fire started by an adjacent wastebasket fire, approximately six minutes are required for the fire to reach a stage of development equivalent to the wardrobe test $N-54$ at two minutes.

As a solution to the smoke problem, the concept of smoke control has developed. Smoke control makes use of fans to produce airflows and pressure differences that can control smoke movement. The use of airflows and pressure differences to control the flow of undesired airborne matter has been


Figure l.l. Floor plan of the Health Care Test Facility at the NBS Annex


1 second


110 seconds


80 seconds


120 seconds

Figure 1.2. Example of rapid fire growth and smoke production from test N-54 at the Health Care Test Facility at the NBS Annex
practiced for at least 40 years. For example, they have been used in buildings, such as experimental laboratories, where there is a danger of poison gas or bacteriological material migrating from one area to another; they have been used to control the entrance of contaminants where a dust-free environment is necessary; they have been used where radiation migration and contamination could occur; and they have been used in hospitals to prevent the migration of bacteria to sterile areas. However, the use of airflow and pressurization to control the migration of smoke from building fires is a fairly recent adaptation.

In this book, the term "smoke" is used in accordance with the ASTM and NFPA definition which states that smoke consists of the airborne solid and liquid particulates and gases evolved when a material undergoes pyrolysis or combustion $[3,4]$.

### 1.1 SCOPE

The intent of this book is to provide practical state-of-the-art design information to mechanical engineers who have been charged with the design of smoke control systems. This chapter contains general background information. Chapter 2 contains the fundamental concepts upon which smoke control is based. These concepts are included because it is believed that an understanding of them is essential for intelligent smoke control design. These concepts include a discussion of the driving forces of smoke movement, the principles of smoke control, and the parameters necessary for the design of smoke control systems. These design parameters are:

- The leakage areas of flow paths throughout the building.
- The design weather data.
- Pressure differences across boundaries of smoke control systems.
- Airflows through openings in boundaries of smoke control systems.
- The number of doors likely to be open in the boundary of a smoke control system.

Chapter 3 contains a description of the NBS computer program for analysis of smoke control systems. Chapters 4 and 5 pertain to stairwell pressurization and chapter 6 to zoned smoke control, and the important topic of acceptance testing is treated at the end of the book in chapter 7.

It may be noticed that pressurized corridors, pressurized elevators and the smoke control of atriums have been omitted. This is because there is insufficient test data to ensure the validity of system concepts or of specific calculational procedures for their design. However, some comments about atriums are in order. Generally a fan powered exhaust is located at the top of the atrium. Ideally this exhausts smoke that has risen by virtue of its buoyancy to the atrium top. Obviously, water spray from sprinklers cools smoke and reduces it buoyancy. It is unknown how such a system will perform when smoke has been cooled by sprinklers. However, it can be recommended that an atrium building have pressurized stairwells and, if possible, zoned smoke control in nonatrium spaces.

Even though insufficient test data exist to discuss smoke control systems for elevators, corridors, and atriums, the fundamentals of smoke control presented in chapter 2 still apply. In addition, the methods of computer airflow analysis by network modeling presented in chapter 3 are appropriate for pressurized elevators and pressurized corridors but not for analysis of atrium smoke control systems.

### 1.2 SMOKE CONTROL SYSTEM PERFORMANCE

The primary objective of a smoke control system is to reduce fire deaths and injuries from smoke. However, another important objective is to reduce property loss from smoke damage.

Theoretically, a smoke control system can be designed to provide either a safe escape route or a safe refuge area (see section 6.3) or both. It is obvious that a smoke control system can meet its objectives, even if a small
amount of smoke infiltrates protected areas. However, for most of this work, smoke control systems are designed on the basis that no smoke infiltration will occur.

### 1.3 PRELIMINARY DESIGN CONSIDERATIONS

Many factors will affect the design of a smoke control system. Before the actual mechanical design of the system can proceed, the potential constraints on the system should be determined and the design criteria established. This section introduces some considerations peculiar to smoke control system design, some of which are merely listed below, since a detailed discussion is beyond the scope of this book. However, published works on some of these subjects are cited in the bibliography in appendix H. Those considerations listed below that are within the scope of this book are followed by a notation indicating where they are discussed.

- Occupancy type and characteristics.
- Evacuation plan.
- Refuge areas.
- Distribution of occupant density.
- Human life support requirements.
- Form of detection and alarm.
- Fire service response-to-alarm characteristics.
- Fire suppression system characteristics (section 1.5).
- Type of building heating, ventilation and air-conditioning (HVAC) system.
- Energy management system (section 1.6).
- Building security provisions
- Controls (section 1.8).
- Status of doors during potential fire condition (section 2.9.4).
- Potential fire threats.
- Internal compartmentation and architectural characteristics.
- Building characteristics.
- Building leakage paths (section 2.8).
- Exterior temperatures (section 2.9.1).
- Wind velocity (section 2.9.1).


### 1.4 SYSTEM FLEXIBILITY

The concept of system flexibility consists of using design features that allow for easy adjustment of a smoke control system in order to achieve acceptable performance.

During the design of a new building the leakage paths throughout the building can only be estimated. Therefore, the smoke control design calculations constitute only an approximate representation of the pressures and airflows that will occur as a result of the smoke control system in the actual building. The introduction of flexibility into a smoke control system allows for variations in leakage from the originally estimated values. Because it is difficult to measure leakage paths in existing buildings, the concept of flexibility is also useful for retrofit of smoke control systems in existing buildings.

In many systems, flexibility can be achieved by the use of fans with sheaves to allow several flow rates or by dampers that can be manually adjusted to obtain desired pressure differences. The concept of flexibility is discussed in greater detail where it applies to specific types of smoke control systems.

### 1.5 FIRE SUPPRESSION SYSTEMS

Automatic suppression systems are an integral part of many fire protection designs, and the efficacy of such systems in controlling building fires is well documented. However, it is important to recognize that while the functions of fire suppression and smoke control systems are both desirable fire safety features, they should not be readily substituted for each other. Automatic suppression systems limit the growth rate and the maximum size of a fire but do not necessarily reduce or eliminate the movement of smoke. On the other hand, well designed smoke control systems can maintain tolerable conditions along critical egress routes but will have little effect on the fire.

In addition to the fact that the systems perform different functions, it is important that the designer consider the interaction between the smoke control and fire suppression systems. For example, in the case of a fully sprinklered building, pressure differences and airflows needed to control smoke movement may be less than in an unsprinklered building due to the likelihood that the maximum fire size will be significantly smaller than in an unsprinklered building.

Similarly, there are situations where the effects of one of the systems on the other will be adverse. It is well established that water sprays will create resistance to airflow. Therefore, while the phenomenon is not well documented for the conditions relevant to smoke control design, it is conceivable that a water spray curtain resulting from activation of a sprinkler or water deluge system might interfere with the flow of air to a smoke exhaust or an outside air pressurization system.

Conversely, a smoke control system can adversely affect performance of a gaseous agent (such as Halon, $\mathrm{CO}_{2}$ or $\mathrm{N}_{2}$ ) suppression system when the systems are located in a common space. In the event that both systems are activated concurrently, the smoke exhaust system may exhaust the suppressant gas from the room, replacing it with outside air. Since gas suppression systems commonly provide only a single application of the agent, the potential arises for renewed growth of the fire.

A general guideline would be that the gaseous agent suppression system should take precedence over the smoke control system. An extremely desirable feature in such spaces would be the ability to purge the residual smoke and the suppressant gas after the fire was completely extinguished and to replace them with fresh air. This ability to replace the atmosphere in these spaces in the post-fire period is very important from a life-safety viewpoint, since some gas suppressants are asphyxiants at normal design concentrations.

### 1.6 ENERGY CONSERVATION

Situations can occur where energy conservation methods can defeat a smoke control system. The smoke control system must be designed to override the
local controls in a variable air volume HVAC system so that the air supply necessary to pressurize nonfire spaces is supplied. Also, if there is an energy management system or a 24 -hour clock system, the designer must ensure that the smoke control system will take precedence over the local control system, so that the necessary air is supplied for pressurization in a fire situation.

As with conflicts described between suppression systems and smoke control systems, there are probably additional cases not yet identified where conflicts between energy conservation systems and smoke control systems can occur.

### 1.7 CONTROL

Automatic activation of a smoke control system should be considered, with the primary means of activation being an alarm from a smoke detector system located in a building space. Such an activation scheme has the advantage that the smoke control system will in all probability be activated in the early stages of a fire. Because of the problem of Ealse alarms from smoke detectors, smoke control system activation upon alarm from two or more smoke detectors in a smoke zone (see chapter 6 for discussion of smoke zones) should be considered.

Because of the long response time and the maintenance problem of clogging with airborne particles, smoke detectors located in HVAC ducts are not recommended as the primary means of smoke control system activation. However, an alarm from a duct-located smoke detector or a sprinkler system can be used in addition to a building-space-located smoke detector for smoke control system activation. If only pressurized stairwells are used, the system can also be activated from a pull box. However, activation of zoned smoke control should not be by a pull box because a pull box, can be pulled in a zone other than the zone in which the fire exists.

Smoke control systems should be equipped with a remote control center from which the smoke control system can be manually overridden and to which there is easy access by the fire department.

The lack of feedback on the status of equipment is a problem. The indicator light on a control panel can indicate that a piece of equipment is operational when, in fact, it has failed. Positive feedback, such as a flowmeter, differential pressure transducer, or damper position indicator, can eliminate this problem.

### 1.8 REFERENCES

[1] Berl, W. G. and Halpin, B. M., Human Fatalities from Unwanted Fires, Johns Hopkins APL Technical Digest, Vol. 1, No. 2, p. 129-134, 1980.
[2] O'Neill, J. G., Hayes, W. D., and Zile, R. H., Full-Scale Tests with Automatic Sprinklers in a Patient Room Phase II, Nat. Bur. Stand. (U.S.), NBSIR 80-2097, July 1980.
[3] Annual Book of ASTM Standards, Part 18, ASTM El76-80, American Society for Testing and Materials, Philadelphia, PA, 1980.
[4] Standard for the Installation of Air Conditioning and Ventilating Systems, NFPA 90A-1981, National Fire Protection Association, Inc., Quincy, MA, 1981.

## CHAPTER 2. <br> FUNDAMENTALS OF SMOKE CONTROL

A smoke control system must be designed so that it is not overpowered by the driving forces that cause smoke movement. For this reason, an understanding of the fundamental concepts of smoke movement and of smoke control is a prerequisite to intelligent smoke control design. While general concepts of smoke movement and smoke control have evolved in the last few years, there is no single source document. Therefore, this chapter briefly discusses the fundamental concepts of smoke movement and smoke control.

### 2.1 SMOKE MOVEMENT

The major driving forces causing smoke movement are stack effect, buoyancy, expansion, wind and the HVAC system. Generally, in a fire situation, smoke movement will be caused by a combination of these driving forces. The following is a discussion of each driving force as it would act without the presence of any other driving force.

### 2.1.1 Stack Effect

When it is cold outside, there often is an upward movement of air within building shafts, such as stairwells, elevator shafts, dumbwaiter shafts, mechanical shafts, or mail chutes. This phenomenon is referred to as normal stack effect. The air in the building has a buoyant force because it is warmer and less dense than the outside air. This buoyant force causes air to rise within the shafts of buildings. The significance of normal stack effect is greater for low outside temperatures and for tall shafts. However, normal stack effect can exist in a one story building.

When the outside air is warmer than the building air, a downward airflow frequently exists in shafts. This downward airflow is called reverse stack effect. The pressure difference due to either normal or reverse stack effect is expressed as:

$$
\Delta P=\left(\rho_{0}-\rho_{\mathrm{I}}\right) \mathrm{gh}
$$

where:

$$
\begin{aligned}
\rho_{\mathrm{O}} & =\text { air density outside the shaft } \\
\rho_{\mathrm{I}} & =\text { air density inside the shaft } \\
\mathrm{g} & =\text { gravitational constant } \\
\mathrm{h} & =\text { distance from the neutral plane }
\end{aligned}
$$

The neutral plane is an elevation where the hydrostatic pressure inside the shaft equals the hydrostatic pressure outside the shaft. Using the ideal gas law ( $\mathrm{P}=\mathrm{pRT}$ ), the above relation can be expressed as:

$$
\Delta P=\frac{g P}{R}\left(\frac{1}{T_{0}}-\frac{1}{T_{I}}\right) h
$$

where:

$$
\begin{aligned}
\mathrm{P} & =\text { absolute atmospheric pressure } \\
\mathrm{R} & =\text { gas constant of air } \\
\mathrm{T}_{\mathrm{O}} & =\text { absolute temperature of outside air } \\
\mathrm{T}_{\mathrm{I}} & =\text { absolute temperature of air inside the shaft }
\end{aligned}
$$

This equation is valid for the engineering system or the SI system of units as listed in tables I.l and I.2 (appendix I). Unless otherwise noted, this is true of other equations in this book. For standard atmospheric pressure of air the above relation becomes:

$$
\begin{equation*}
\Delta P=K_{S}\left(\frac{1}{T_{O}}-\frac{1}{T_{I}}\right) h \tag{2.1}
\end{equation*}
$$

where:

$$
\begin{aligned}
\Delta \mathrm{P} & =\text { pressure difference, in } \mathrm{H}_{2} \mathrm{O} \text { (Pa) } \\
\mathrm{T}_{\mathrm{O}} & =\text { absolute temperature of outside air, }{ }^{\mathrm{o}} \mathrm{R}(\mathrm{~K}) \\
\mathrm{T}_{\mathrm{I}} & =\text { absolute temperature of air inside shaft, }{ }^{\circ} \mathrm{R}(\mathrm{~K}) \\
\mathrm{h} & =\text { distance above neutral plane, ft (m) } \\
\mathrm{K}_{\mathrm{S}} & =\text { coefficient, } 7.64(3460)
\end{aligned}
$$

Because the Fahrenheit and Celsius temperature scales are so commonly used by design engineers, these scales are used exclusively in the discussions in the text and in figures. However, the reader is cautioned to use absolute
temperatures in calculations where such temperatures are stipulated. Table I. 6 lists relations that can be used to convert from one temperature scale to another.

For a building $200 \mathrm{ft}(60 \mathrm{~m})$ tall, with a neutral plane at the mid-height, an outside temperature of $0^{\circ} \mathrm{F}\left(-18^{\circ} \mathrm{C}\right)$ and an inside temperature of $70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)$, the maximum pressure difference due to stack effect would be 0.22 in $\mathrm{H}_{2} \mathrm{O}$ ( 55 Pa ). This means that at the top of the building, a shaft would have a pressure of 0.22 in $\mathrm{H}_{2} \mathrm{O}(55 \mathrm{~Pa})$ greater than the outside pressure. At the bottom of the shaft, the shaft would have a pressure of 0.22 in $\mathrm{H}_{2} \mathrm{O}$ ( 55 Pa ) less than the outside pressure. Figure 2.1 is a diagram of the pressure difference between a building shaft and the outside. In the diagram, a positive pressure difference indicates that the shaft pressure is higher than the outside pressure and a negative pressure difference indicates the opposite.

Stack effect is usually thought of as existing between a building and the outside. The air movement in buildings caused by both normal and reverse stack effect is illustrated in figure 2.2. In this case, the pressure difference expressed in equation (2.1) would actually refer to the pressure difference between the shaft and the outside of the building.

Figure B.l (appendix B) can be used to determine the pressure difference due to stack effect. For normal stack effect, the term, $\Delta \mathrm{P} / \mathrm{h}$, is positive, and the pressure difference is positive above the neutral plane and negative below it. For reverse stack effect, the term, $\Delta P / h$, is negative, and the pressure difference is negative above the neutral plane and positive below it.

In unusually tight buildings with exterior stairwells, reverse stack effect has been observed even with low outside air temperatures [1]. In this situation, the exterior stairwell temperature was considerably lower than the building temperature. The stairwell was the cold column of air and other shafts within the building were the warm columns of air.

When considering stack effect between a building and the outside, if the leakage paths are fairly uniform with height, the neutral plane will be
located near the mid-height of the building. However, when the leakage paths are not uniform, the location of the neutral plane can vary considerably, as in the case of vented shafts. McGuire and Tamura [2] provide methods for calculating the location of the neutral plane for some vented conditions.

Smoke movement from a building fire can be dominated by stack effect, as evidenced in the following descriptions of different types of smoke movement resulting from normal and reverse stack effect.

In a building with normal stack effect, the existing air currents (as shown in figure 2.2) can move smoke considerable distances from the fire origin. If the fire is below the neutral plane, smoke moves with the building air into and up the shafts. This upward smoke flow is enhanced by any buoyancy forces on the smoke existing due to its temperature. Once above the neutral plane, the smoke flows out of the shafts into the upper floors of the building. If the leakage between floors is negligible, the floors below the neutral plane, except the fire floor, will be smoke-free.

Smoke from a fire located above the neutral plane is carried by the building airflow to the outside through openings in the exterior of the building. If the leakage between floors is negligible, all floors other than the fire floor will remain smoke-free. When the leakage between floors is considerable, there is an upward smoke movement to the floor above the fire floor.

The air currents caused by reverse stack effect are also shown in figure 2.2. These forces tend to affect the movement of relatively cool smoke in the reverse of normal stack effect. In the case of hot smoke, buoyancy forces can be so great that smoke can flow upward even during reverse stack effect conditions.


Figure 2.1. Pressure difference between a building shaft and the outside due to normal stack effect


Figure 2.2. Air movement due to normal and reverse stack effect

### 2.1.2 Buoyancy

High temperature smoke from a fire has a buoyancy force due to its reduced density. The pressure difference between a fire compartment and its surroundings can be expressed by an equation of the same form as equation (2.1):

$$
\begin{equation*}
\Delta P=K_{S}\left(\frac{1}{T_{O}}-\frac{1}{T_{F}}\right) h \tag{2.2}
\end{equation*}
$$

where:

$$
\begin{aligned}
\Delta \mathrm{P} & =\text { pressure difference, in } \mathrm{H}_{2} \mathrm{O} \text { (Pa) } \\
\mathrm{T}_{\mathrm{O}} & =\text { absolute temperature of the surroundings, }{ }^{\mathrm{o}} \mathrm{R}(\mathrm{~K}) \\
\mathrm{T}_{\mathrm{F}} & =\text { absolute temperature of the fire compartment, }{ }^{\mathrm{o}} \mathrm{R}(\mathrm{~K}) \\
\mathrm{h} & =\text { distance above the neutral plane, } \mathrm{ft}(\mathrm{~m}) \\
\mathrm{K}_{\mathrm{S}} & =\text { coefficient, } 7.64(3460)
\end{aligned}
$$

The pressure difference due to buoyancy can be obtained from figure B. 2 for the surroundings at $68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$. The neutral plane is the plane of equal hydrostatic pressure between the fire compartment and its surroundings. For a fire with a fire compartment temperature of $1470^{\circ} \mathrm{F}\left(800^{\circ} \mathrm{C}\right)$, the pressure difference $5 \mathrm{ft}(1.52 \mathrm{~m})$ above the neutral plane is 0.052 in $\mathrm{H}_{2} \mathrm{O}$ ( 13 Pa ). Fang [3] has studied pressures caused by room fires during a series of fullscale fire tests. During these tests, the maximum pressure difference reached was 0.064 in $\mathrm{H}_{2} \mathrm{O}(16 \mathrm{~Pa})$ across the burn room wall at the ceiling.

Much larger pressure differences are possible for tall fire compartments where the distance, $h$, from the neutral plane can be larger. If the fire compartment temperature is $1290^{\circ} \mathrm{F}\left(700^{\circ} \mathrm{C}\right)$, the pressure difference 35 ft ( 10.7 m ) above the neutral plane is 0.35 in $\mathrm{H}_{2} \mathrm{O}(88 \mathrm{~Pa})$. This amounts to an extremely large fire and the pressures produced by it are beyond the state-of-the-art of smoke control. However, the example is included here to illustrate the extent to which equation (2.2) can be applied.

In a building with leakage paths in the ceiling of the fire room, this buoyancy induced pressure causes smoke movement to the floor above the fire floor. In addition, this pressure causes smoke to move through any leakage
paths in the walls or around the doors of the fire compartment. As smoke travels away from the fire, its temperature drops due to heat transfer and dilution. Therefore, the effect of buoyancy generally decreases with distance from the fire.

### 2.1.3 Expansion

In addition to buoyancy, the energy released by a fire can cause smoke movement due to expansion. In a fire compartment with only one opening to the building, building air will flow into the fire compartment and hot smoke will flow out of the fire compartment. Neglecting the added mass of the fuel which is small compared to the airflow, the ratio of volumetric flows can simply be expressed as a ratio of absolute temperatures.

$$
\frac{Q_{\text {out }}}{Q_{\text {in }}}=\frac{T_{\text {out }}}{T_{\text {in }}}
$$

where:

$$
\begin{aligned}
Q_{\text {out }}= & \text { volumetric flow rate of smoke out of the fire compartment, } \\
& \text { cfm }\left(\mathrm{m}^{3} / \mathrm{s}\right) \\
Q_{\text {in }}= & \text { volumetric flow rate of air into the fire compartment, } \\
& \text { cfm }\left(\mathrm{m}^{3} / \mathrm{s}\right)
\end{aligned} \mathrm{T}_{\text {out }}=\begin{aligned}
& \text { absolute temperature of smoke leaving fire compartment, } \\
& \\
& \mathrm{T}_{\mathrm{R}}(\mathrm{~K})
\end{aligned}
$$

For a smoke temperature of $1290^{\circ} \mathrm{F}\left(700^{\circ} \mathrm{C}\right)$ the ratio of volumetric flows would be 3.32. The reader is reminded to use absolute temperatures for calculation. In such a case, if the air flowing into the fire compartment is $3180 \mathrm{cfm}\left(1.5 \mathrm{~m}^{3} / \mathrm{s}\right)$, then the smoke flowing out of the fire compartment would be $10,600 \mathrm{cfm}\left(4.98 \mathrm{~m}^{3} / \mathrm{s}\right)$. In this case, the gas has expanded to more than three times its original volume.

For a fire compartment with open doors or windows, the pressure difference across these openings is negligible because of the large flow areas involved. The relationship between flow area and pressure difference is discussed in section 2.3 .2 . However, for a tightly sealed fire compartment the pressure differences due to expansion may be important.
2.1.4 Wind

In many instances, wind can have a pronounced effect on smoke movement within a building. The pressure, $P_{W}$, that the wind exerts on a surface can be expressed as:

$$
\begin{equation*}
P_{W}=\frac{1}{2} C_{W} \rho_{0} V^{2} \tag{2.3}
\end{equation*}
$$

where:

$$
\begin{aligned}
C_{W} & =\text { dimensionless pressure coefficient } \\
\rho_{O} & =\text { outside air density } \\
V & =\text { wind velocity }
\end{aligned}
$$

For an air density of $0.0751 \mathrm{~b} / \mathrm{ft}^{3}\left(1.20 \mathrm{~kg} / \mathrm{m}^{3}\right)$ this relation becomes

$$
\begin{equation*}
P_{w}=C_{w} K_{w} V^{2} \tag{2.3a}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{W}}=\text { wind pressure, in } \mathrm{H}_{2} \mathrm{O}(\mathrm{~Pa}) \\
& \mathrm{V}=\text { wind velocity, mph }(\mathrm{m} / \mathrm{s}) \\
& \mathrm{K}_{\mathrm{W}}=\text { coefficient, } 4.82 \times 10^{-4}(0.600) \\
& \text { Wind pressure can also be obtained from figure } \mathrm{B} .3 .
\end{aligned}
$$

The pressure coefficients, $C_{W}$, are in the range of -0.8 to 0.8 , with positive values for windward walls and negative values for leeward walls. The pressure coefficient depends on building geometry and varies locally over the wall surface. In general, wind velocity increases with height in the boundary layer near the surface of the earth. Detailed information concerning wind velocity variations and pressure coefficients is available from a number of sources [4-7]. Specific information about wind data with respect to air infiltration in buildings has been generated by Shaw and Tamura [8].

A $35 \mathrm{mph}(15.6 \mathrm{~m} / \mathrm{s})$ wind produces a pressure on a structure of 0.47 in $\mathrm{H}_{2} \mathrm{O}(117 \mathrm{~Pa})$ with a pressure coefficient of 0.8 . The effect of wind on air movement within tightly constructed buildings with all doors and windows closed is slight. However, the effects of wind can become important for loosely constructed buildings or for buildings with open doors or windows. Usually, the resulting airflows are complicated, and, for practical purposes, computer analysis is required.

Frequently in fire situations, a window breaks in the fire compartment. If the window is on the leeward side of the building, the negative pressure caused by the wind vents the smoke from the fire compartment. This can greatly reduce smoke movement throughout the building. However, if the broken window is on the windward side, the wind forces the smoke throughout the fire floor and even to other floors. This both endangers the lives of building occupants and hampers fire fighting. Pressures induced by the wind in this type of situation can be relatively large and can easily dominate air movement throughout the building.

### 2.1.5 HVAC System

Before the development of the concept of smoke control, HVAC systems were shut down when fires were discovered.

The HVAC system frequently transports smoke during building fires. In the early stages of a fire, the HVAC system can serve as an aid to fire detection. When a fire starts in an unoccupied portion of a building, the HVAC system can transport the smoke to a space where people can smell the smoke and be alerted to the fire. However, as the fire progresses, the HVAC system will transport smoke to every area that it serves, thus endangering life in all those spaces. The HVAC system also supplies air to the fire space, which aids combustion. These are the reasons HVAC systems traditionally have been shut down when fires have been discovered. Although shutting down the HVAC system prevents it from supplying air to the fire, shutting down the HVAC system does not prevent smoke movement through the supply and return air ducts, air shafts, and other building openings due to stack effect, buoyancy, or wind.

The term "smoke management", as used in this book, includes all methods that can be used singly or in combination to modify smoke movement for the benefit of occupants and fire fighters and for the reduction of property damage. The use of barriers, smoke vents, and smoke shafts are traditional methods of smoke management.

The effectiveness of a barrier in limiting smoke movement depends on the leakage paths in the barrier and on the pressure difference across the harrier. Holes where pipes penetrate walls or floors, cracks where walls meet floors, and cracks around doors are a few possible leakage paths. The pressure difference across these barriers depends on stack effect, buoyancy, wind and the HVAC system, as discussed in section 2.1 .

The effectiveness of smoke vents and smoke shafts depends on their proximity to the fire, the buoyancy of the smoke, and the presence of other driving forces. In addition, when smoke is cooled due to sprinklers the effectiveness of smoke vents and smoke shafts is greatly reduced.

Elevator shafts in buildings have been used as smoke shafts. Unfortunately, this prevents their use for fire evacuation and these shafts frequently distribute smoke to floors far from the fire. Specially designed smoke shafts, which have essentially no leakage on floors other than the fire floor, can be used to prevent the smoke shaft from distributing smoke to nonfire floors.

The effectiveness of barriers in a traditional smoke management system are limited to the extent to which the barriers are free of leakage paths. Smoke vents and smoke shafts are limited to the extent that the smoke must be sufficiently buoyant to overcome any other driving forces that might be present.

In the last few decades, fans have been employed with the intent of overcoming the limitations of the traditional systems. The systems with fans are called smoke control systems and they rely on pressure differences and airflows to limit smoke movement as discussed in the next section.

### 2.3 PRINCIPLES OF SMOKE CONTROL

Smoke control uses the barriers (walls, floors, doors, etc.) used in traditional smoke management in conjunction with airflows and pressure differences generated by mechanical fans.

Figure 2.3 illustrates a pressure difference across a barrier acting to control smoke movement. Within the barrier is a door. The high pressure side of the door can be either a refuge area or an escape route. The low pressure side is exposed to smoke from a fire. Airflow through the cracks around the door and through other construction cracks prevents smoke infiltration to the high pressure side.

When the door in the barrier is opened, airflow through the open door results. When the air velocity is low, smoke can flow against the airflow into the refuge area or escape route, as shown in figure 2.4. This smoke backflow can be prevented if the air velocity is sufficiently large, as shown in figure 2.5. The magnitude of the velocity necessary to prevent backflow depends on the energy release rate of the fire, as discussed in section 2.3.1.

The two basic principles of smoke control can be stated as follows:

- Airflow by itself can control smoke movement if the average air velocity is of sufficient magnitude.
- Air pressure differences across barriers can act to control smoke movement.

The use of air pressure differences across barriers to control smoke is frequently referred to as pressurization. Pressurization results in airflows of high velocity in the small gaps around closed doors and in construction cracks, thereby preventing smoke backflows through these openings. Therefore, in a strict physical sense, the second principle is a special case of the first principle. However, considering the two principles as separate is advantageous for smoke control design. For a barrier with one or more large openings, air velocity is the appropriate physical quantity for both design


Figure 2.3. Pressure difference across a barrier of a smoke control system preventing smoke infiltration to the high pressure side of the barrier


Figure 2.4. Smoke backflow against low air velocity through an open doorway


Figure 2.5. No smoke backflow with high air velocity through an open doorway
considerations and for acceptance testing. However, when there are only small cracks, such as around closed doors, designing to and measuring air velocities is impractical. In this case, the appropriate physical quantity is pressure difference. Consideration of the two principles as separate has the added advantage that it emphasizes the different considerations that need to be given for open and closed doors.

Because smoke control relies on air velocities and pressure differences produced by fans, it has the following three advantages in comparison to the traditional methods of smoke management:

- Smoke control is less dependent on tight barriers. Allowance can be made in the design for reasonable leakage through barriers.
- Stack effect, buoyancy, and wind are less likely to overcome smoke control than passive smoke management. In the absence of smoke control, these driving forces cause smoke movement to the extent that leakage paths allow. However, pressure differences and airflows of a smoke control system act to oppose these driving forces.
- Smoke control can be designed to prevent smoke flow through an open doorway in a barrier by the use of airflow. Doors in barriers are opened during evacuation and are sometimes accidentally left open or propped open throughout fires. In the absence of smoke control, smoke flow through these doors is common.

Smoke control systems should be designed so that a path exists for smoke movement to the outside; such a path can allow smoke to escape.

The smoke control designer should be cautioned that dilution of smoke in the fire space is not a means of achieving smoke control, i.e., smoke movement cannot be controlled by simply supplying and exhausting large quantities of air from the space or zone in which the fire is located. This supplying and exhausting of air is sometimes referred to as purging the smoke. Because of the large quantities of smoke produced in a fire, purging cannot assure
breathable air in the fire space. In addition, purging in itself cannot control smoke movement because it does not provide the needed airflows at open doors and the pressure differences across barriers. However, for spaces separated from the fire space by smoke barriers, purging can significantly limit the level of smoke.

The following sections discuss the basic principles of smoke control.

### 2.3.1 Airflow

Theoretically, airflow can be used to stop smoke movement through any space. However, the two places where air velocity is most commonly used to control smoke movement are open doorways and corridors. The problem of preventing smoke movement through doorways is currently being researched. Thomas [9] has developed an empirical relation for the critical velocity to prevent smoke from flowing upstream in a corridor:

$$
\begin{equation*}
V_{k}=K\left(\frac{g E}{W \rho c T}\right)^{1 / 3} \tag{2.4}
\end{equation*}
$$

where:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{k}} & =\text { critical air velocity to prevent smoke backflow } \\
\mathrm{E} & =\text { energy release rate into corridor } \\
\mathrm{W} & =\text { corridor width } \\
\rho & =\text { density of upstream air } \\
\mathrm{c} & =\text { specific heat of downstream gases } \\
\mathrm{T} & =\text { absolute temperature of downstream mixture of air and smoke } \\
\mathrm{K} & =\text { constant of the order of } \\
\mathrm{g} & =\text { gravitational constant }
\end{aligned}
$$

The downstream properties are considered to be taken at a point sufficiently far downstream of the fire for the properties to be uniform across the cross section. The critical air velocity can be evaluated at $\rho=0.081 \mathrm{lb} / \mathrm{ft}^{3}\left(1.3 \mathrm{~kg} / \mathrm{m}^{3}\right), \quad c=0.24 \mathrm{Btu} / 1 \mathrm{~b}^{\circ} \mathrm{F} \quad\left(1.005 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}\right) \quad \mathrm{T}=81^{\circ} \mathrm{F}$ $\left(27^{\circ} \mathrm{C}\right)$, and $\mathrm{K}=1$ 。

$$
\begin{equation*}
V_{k}=K_{v}\left(\frac{E}{W}\right)^{l / 3} \tag{2.4a}
\end{equation*}
$$

where:

```
V
    E = energy release rate into corridor, Btu/hr (W)
    W = corridor width, ft (m)
    K
```

This relation can be used when the fire is located in the corridor or when the smoke enters the corridor through an open door, air transfer grille, or other opening. The critical velocities calculated from the above relation are approximate because only an approximate value of $K$ was used. However, critical velocities calculated from this relation are indicative of the kind of air velocities required to prevent smoke backflow from fires of different sizes.

Equation (2.4) can be evaluated from figure B.4. For an energy release rate of $0.512 \times 10^{6} \mathrm{Btu} / \mathrm{hr}(150 \mathrm{~kW})$ into a corridor $4.00 \mathrm{ft}(1.22 \mathrm{~m})$ wide, the above relation yields a critical velocity of $286 \mathrm{fpm}(1.45 \mathrm{~m} / \mathrm{s}$ ). However, for a larger energy release rate of $7.2 \times 10^{6} \mathrm{Btu} / \mathrm{hr}(2.1 \mathrm{MW})$, the relation yields a critical velocity of $690 \mathrm{fpm}(3.50 \mathrm{~m} / \mathrm{s})$ for a corridor of the same width.

In general, a requirement for a high air velocity results in a smoke control system that is expensive and difficult to design. The use of airflow is most important in preventing smoke backflow through an open doorway that serves as a boundary of a smoke control system. Thomas [9] indicated that equation (2.4) can be used to obtain a rough estimate of the airflow needed to prevent smoke backflow through a door. Many designers feel that it is prohibitively expensive to design systems to maintain air velocities in doorways greater than $300 \mathrm{fpm}(1.5 \mathrm{~m} / \mathrm{s})$. Section 2.9 .2 provides a discussion of what constitutes an appropriate design air velocity in a smoke control system.

Equation (2.4) is not appropriate for sprinklered fires having small temperature differences between the upstream air and downstream gases. Shaw and Whyte [10] provide an analysis with experimental verification of a method to determine the velocity needed through an open doorway to prevent backflow of contaminated air. This analysis is specifically for small temperature
differences and includes the effects of natural convection. If this method is used for a sprinklered fire where the temperature difference is only $3.6^{\circ} \mathrm{F}$ $\left(2^{\circ} \mathrm{C}\right)$, then an average velocity of $50 \mathrm{fpm}(0.25 \mathrm{~m} / \mathrm{s})$ would be the minimum velocity needed through a doorway to prevent smoke backflow. This temperature difference is small, and it is possible that larger values may be appropriate in many situations. Further research is needed in this area.

Even though airflow can be used to control smoke movement, it is not the primary method because the quantities of air required are so large. The primary means is by air pressure differences across partitions, doors, and other building components.

### 2.3.2 Pressurization

The airflow rate through a construction crack, door gap, or other flow path is proportional to the pressure difference across that path raised to the power n. For a flow path of fixed geometry, $n$ is theoretically in the range of 0.5 to 1 . However, for all flow paths, except extremely narrow cracks, using $n=0.5$ is reasonable and the flow can be expressed as:

$$
\begin{equation*}
\mathrm{Q}=\mathrm{CA} \sqrt{\frac{2 \Delta \mathrm{P}}{\rho}} \tag{2.5}
\end{equation*}
$$

where:

$$
\begin{aligned}
\mathrm{Q} & =\text { volumetric airflow rate } \\
\mathrm{C} & =\text { flow coefficient } \\
\mathrm{A} & =\text { flow area (also called leakage area) } \\
\Delta \mathrm{P} & =\text { pressure difference across the flow path } \\
\rho & =\text { density of air entering the flow path }
\end{aligned}
$$

The flow coefficient depends on the geometry of the flow path as well as on turbulence and friction. In the present context, the flow coefficient is generally in the range of 0.6 to 0.7 . For $\rho=0.0751 \mathrm{~b} / \mathrm{ft}^{3}\left(1.2 \mathrm{~kg} / \mathrm{m}^{3}\right)$ and $C=0.65$, the flow equation above can be expressed as:

$$
\begin{equation*}
Q=K_{f} A \sqrt{\Delta P} \tag{2.5a}
\end{equation*}
$$

where:

$$
\begin{aligned}
\mathrm{Q} & =\text { volumetric flow rate, cfm }\left(\mathrm{m}^{3} / \mathrm{s}\right) \\
\mathrm{A} & =\text { flow area, ft }{ }^{2}\left(\mathrm{~m}^{2}\right) \\
\Delta \mathrm{P} & =\text { pressure difference across flow path, in } \mathrm{H}_{2} \mathrm{O}(\mathrm{~Pa}) \\
\mathrm{K}_{\mathrm{f}} & =\text { coefficient, } 2610(0.839)
\end{aligned}
$$

Airflow rate can also be determined from figure B.5. The flow area is frequently the same as the cross sectional area of the flow path; an exception being the flow area of an open stairwell doorway as discussed in section 2.8 . A closed door with a crack area of $0.11 \mathrm{ft}^{2}\left(0.01 \mathrm{~m}^{2}\right)$ and with a pressure difference of 0.01 in $\mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{~Pa})$ would have an air leakage rate of approximately $29 \mathrm{cfm}\left(0.013 \mathrm{~m}^{3} / \mathrm{s}\right)$. If the pressure difference across the door were increased to 0.30 in $\mathrm{H}_{2} \mathrm{O}(75 \mathrm{~Pa})$, then the flow would be $157 \mathrm{cfm}(0.073 \mathrm{~m} / \mathrm{s})$.

Frequently in field tests of smoke control systems, pressure differences across partitions or closed doors have fluctuated by as much as 0.02 in $\mathrm{H}_{2} \mathrm{O}$ ( 5 Pa ). These fluctuations have generally been attributed to the wind, although they could have been due to the HVAC system or some other source. Pressure fluctuations and the resulting smoke movement are a current topic of research. To control smoke movement, the pressure differences produced by $a$ smoke control system must be sufficiently large that they are not overcome by pressure fluctuations, stack effect, smoke buoyancy, and the forces of the wind. However, the pressure difference produced by a smoke control system should not be so large that door opening problems result (see sections 2.4 and 2.9.2).

### 2.3.3 Purging

In general the systems discussed in this book are based on the two basic principles of smoke control. However, it is not always possible to maintain sufficiently large airflows through open doors to prevent smoke from infiltrating a space that is intended to be protected. Ideally such occurrences of open doors will only happen for short periods of time during evacuation. Smoke that has entered such a space can be purged, i.e. diluted by supplying outside air to the space.

Consider the case where a compartment is isolated from a fire by smoke barriers and self closing doors, so that no smoke enters the compartment when the doors are closed. However, when one or more of the doors is open, there is insufficient airflow to prevent smoke backflow into the compartment from the fire space. In order to facilitate analysis, it is considered that smoke is of uniform concentration throughout the compartment. When all the doors are closed, the concentration of contaminant in the compartment can be expressed as:

$$
\begin{equation*}
\frac{C}{C_{o}}=e^{-a t} \tag{2.6}
\end{equation*}
$$

where:

$$
\begin{aligned}
& C_{0}=\text { initial concentration of contaminant } \\
& C=\text { concentration of contaminant at time, } t \\
& a=\text { purging rate in number of air changes per minute } \\
& t=\text { time after doors closed in minutes } \\
& e=\text { constant approximately } 2.718
\end{aligned}
$$

The concentrations $C_{o}$ and $C$ must both be in the same units, and they can be any units appropriate for the particular contaminant being considered. McGuire, Tamura, and Wilson [11] evaluated the maximum levels of smoke obscuration from a number of tests and a number of proposed criteria for tolerable levels of smoke obscuration. Based on this evaluation, they state that the maximum levels of smoke obscuration are greater by a factor of 100 than those relating to the limit of tolerance. Thus, they indicate that an area can be considered "reasonably safe" with respect to smoke obscuration if its atmosphere will not be contaminated to an extent greater than $1 \%$ by the atmosphere prevailing in the immediate fire area. It is obvious that such dilution would also reduce the concentrations of toxic smoke components. Toxicity is a more complicated problem, and no parallel statement has been made regarding the dilution needed to obtain a safe atmosphere with respect to toxic gases.

Equation (2.6) can be solved for the purging rate.

$$
\begin{equation*}
a=\frac{1}{t} \log _{e}\left(\frac{C_{o}}{C}\right) \tag{2.7}
\end{equation*}
$$

If when doors are open, the contaminant in a compartment is $20 \%$ of the burn room, and at six minutes after the door is closed, the contaminant concentration is $1 \%$ of the burn room, then equation (2.7) indicates the compartment must be purged at a rate of one air change every two minutes.

In reality, it is impossible to assure that the concentration of the contaminant is uniform throughout the compartment. Because of buoyancy, it is likely that higher concentrations of contaminant would tend to be near the ceiling. Therefore, an exhaust inlet located near the ceiling and a supply outlet located near the floor would probably purge the smoke even faster than the above calculations indicate. Caution should be exercised in the location of the supply and exhaust points to prevent the supply air from blowing into the exhaust inlet and thus short circuiting the purging operation.

### 2.4 DOOR OPENING FORCES

As mentioned in section 2.3 .2 , the door opening forces resulting from the pressure differences produced by a smoke control system must be considered in any design. Unreasonably high door opening forces can result in occupants having difficulty or being unable to open doors to refuge areas or escape routes. This problem is discussed in more detail in section 2.9.2.

The force required to open a door is the sum of the forces to overcome the pressure difference across the door and to overcome the door closer. This can be expressed as:

$$
\begin{equation*}
\mathrm{F}=\mathrm{F}_{\mathrm{dc}}+\frac{\mathrm{K}_{\mathrm{d}} W A \Delta P}{2(\mathrm{~W}-\mathrm{d})} \tag{2.8}
\end{equation*}
$$

where:

$$
\begin{aligned}
\mathrm{F} & =\text { the total door opening force, } 1 \mathrm{~b}(\mathrm{~N}) \\
\mathrm{F}_{\mathrm{dc}} & =\text { the force to overcome the door closer, } 1 \mathrm{~b}(\mathrm{~N}) \\
\mathrm{W} & =\text { door width, } \mathrm{ft}(\mathrm{~m}) \\
\mathrm{A} & =\text { door area, } \mathrm{ft}^{2}\left(\mathrm{~m}^{2}\right) \\
\Delta \mathrm{P} & =\text { pressure difference across the door, in } \mathrm{H}_{2} \mathrm{O}(\mathrm{~Pa})
\end{aligned}
$$

```
    d = distance from the doorknob to the knob side of the door, ft (m)
K
```

This relation assumes that the door-opening force is applied at the knob. Door-opening forces due to pressure difference can be determined from figure B.6. The force to overcome the door closer is usually greater than $31 \mathrm{~b}(13 \mathrm{~N})$ and, in some cases, can be as large as $20 \mathrm{lb}(90 \mathrm{~N})$. For a door that is $7 \mathrm{ft}(2.13 \mathrm{~m})$ high and $36 \mathrm{in}(0.91 \mathrm{~m})$ wide, subject to a pressure difference of 0.25 in $\mathrm{H}_{2} \mathrm{O}(62 \mathrm{~Pa})$, the total door opening force is 251 b $(110 \mathrm{~N})$, if the force to overcome the door closer is $101 \mathrm{~b}(44 \mathrm{~N})$.

### 2.5 BUILDING AIR FLOW ANALYSIS

The performance of a smoke control system depends on the total airflow in the building in which the system is located. Therefore, analysis of a smoke control system includes a total building airflow analysis.

The methods of hand calculation presented in the following chapters are based on the principle of conservation of mass, the hydrostatic equation, and the flow equation (section 2.3.2). There are many situations where the building is complicated or where there are several driving forces, so that hand calculation is not practical. These cases can be more readily analyzed with the aid of a digital computer.

Several general purpose computer programs have been developed to simulate smoke movement in buildings. A specialized computer program to perform steady state analysis of smoke control systems has been developed by NBS and is discussed in detail in chapter 3.

### 2.6 EFFECTIVE FLOW AREAS

The concept of effective flow areas is quite useful for analysis of smoke control systems. The paths in the system can be in parallel with one another, in series, or a combination of parallel and series paths. The effective area of a system of flow areas is the area that results in the same flow as the system when it is subjected to the same pressure difference over the total
system of flow paths. This is analogous to the flow of electric current through a system of electrical resistances.

### 2.6.1 Parallel Paths

Three parallel leakage areas from a pressurized space are illustrated in figure 2.6. The pressure difference, $\Delta P$, is the same across each of the leakage areas. The total flow, $Q_{T}$, from the space is the sum of the flows through the leakage paths:

$$
\begin{equation*}
Q_{T}=Q_{1}+Q_{2}+Q_{3} \tag{2.9}
\end{equation*}
$$



Figure 2.6. Leakage paths in parallel

The effective area, $A_{e}$, for this situation is that which results in the total flow, $\mathrm{Q}_{\mathrm{T}}$. Therefore, the total flow can be expressed as:

$$
Q_{T}=C A_{e} \sqrt{\frac{2 \Delta \mathrm{P}}{\rho}}(2.10)
$$

The flow through area $A_{1}$ can be expressed as:

$$
Q_{1}=C A_{1} \sqrt{\frac{2 \Delta P}{\rho}}
$$

The flows for $Q_{2}$ and $Q_{3}$ can be expressed in a similar manner. Substituting the expressions for $Q_{1}, Q_{2}$, and $Q_{3}$ into equation (2.9) and collecting like terms yields:

$$
Q_{T}=C\left(A_{1}+A_{2}+A_{3}\right) \sqrt{\frac{2 \Delta P}{\rho}}
$$

Comparing this with equation (2.10), yields:

$$
A_{e}=A_{1}+A_{2}+A_{3}
$$

In figure 2.6 , if $A_{1}$ is $1.08 \mathrm{ft}^{2}\left(0.10 \mathrm{~m}^{2}\right)$ and $A_{2}$ and $A_{3}$ are $0.54 \mathrm{ft}^{2}$ $\left(0.05 \mathrm{~m}^{2}\right)$ each, then the effective flow area, $A_{e}$, is $2.16 \mathrm{ft}^{2}\left(0.20 \mathrm{~m}^{2}\right)$.

The above logic can be extended to any number of flow paths in parallel; i.e., it can be stated that the effective area is the sum of the individual leakage paths.

$$
\begin{equation*}
A_{e}=\sum_{i=1}^{n} A_{i} \tag{2.11}
\end{equation*}
$$

where $n$ is the number of $f l o w$ areas, $A_{i}$, in parallel.

### 2.6.2 Series Paths

Three leakage areas in series from a pressurized space are illustrated in figure 2.7. The flow rate, $Q$, is the same through each of the leakage areas. The total pressure difference, $\Delta P_{T}$, from the pressurized space to the outside is the sum of pressure differences $\Delta \mathrm{P}_{1}, \Delta \mathrm{P}_{2}$, and $\Delta \mathrm{P}_{3}$ across each of the respective flow areas, $A_{1}, A_{2}$, and $A_{3}$ :

$$
\Delta \mathrm{P}_{\mathrm{T}}=\Delta \mathrm{P}_{1}+\Delta \mathrm{P}_{2}+\Delta \mathrm{P}_{3}(2.12)
$$

The effective area for flow paths in series is the flow area that results in the flow, $Q$, for a total pressure difference of $\Delta P_{T}$. Therefore, the flow, Q, can be expressed as:

$$
\mathrm{Q}=\mathrm{CA}_{\mathrm{e}} \sqrt{\frac{2 \Delta \mathrm{P}_{\mathrm{T}}}{\rho}} \text { (2.13) }
$$

Solving for $\Delta \mathrm{P}_{\mathrm{T}}$ yields:

$$
\Delta \mathrm{P}_{\mathrm{T}}=\frac{\rho}{2}\left(\frac{\mathrm{Q}}{\mathrm{CA}}\right)^{2}(2.14)
$$

The pressure difference across $A_{1}$ can be expressed as:

$$
\Delta \mathrm{P}_{1}=\frac{\rho}{2}\left(\frac{\mathrm{Q}}{\mathrm{CA}_{1}}\right)^{2}
$$



Figure 2.7. Leakage paths in series

The pressure differences, $\Delta \mathrm{P}_{2}$ and $\Delta \mathrm{P}_{3}$, can also be expressed in a similar manner. Substituting equation (2.14) and the expressions for $\Delta P_{1}, \Delta P_{2}$, and $\Delta P_{3}$ into equation (2.12) and cancelling like terms yields the following:

$$
\frac{1}{A_{e}^{2}}=\frac{1}{A_{1}^{2}}+\frac{1}{A_{2}^{2}}+\frac{1}{A_{3}^{2}}
$$

That is:

$$
A_{e}=\left(\frac{1}{A_{1}^{2}}+\frac{1}{A_{2}^{2}}+\frac{1}{A_{3}^{2}}\right)^{-1 / 2}
$$

This same reasoning can be extended to any number of leakage areas in series to yield:

$$
A_{e}=\left[\begin{array}{cc}
n & 1  \tag{2.15}\\
i=1 & A_{i}^{2}
\end{array}\right]^{-1 / 2}
$$

where $n$ is the number of leakage areas, $A_{i}$, in series. In smoke control analysis, there are frequently only two paths in series. For this case, the effective leakage area is:

$$
\begin{equation*}
A_{e}=\frac{A_{1} A_{2}}{\sqrt{A_{1}^{2}+A_{2}^{2}}} \tag{2.16}
\end{equation*}
$$

Example 2.1

Calculate the effective leakage area of two equal flow paths of $0.2 \mathrm{ft}^{2}$ in series.

Let $A=A_{1}=A_{2}=0.22 \mathrm{ft}^{2}\left(0.02 \mathrm{~m}^{2}\right)$

$$
A_{e}=\frac{A^{2}}{\sqrt{2 A^{2}}}=\frac{A}{\sqrt{2}}=0.15 \mathrm{ft}^{2}\left(0.014 \mathrm{~m}^{2}\right)
$$

Example 2.2

Calculate the effective area of two flow paths in series, where $A_{1}=0.22 \mathrm{ft}^{2}\left(0.02 \mathrm{~m}^{2}\right)$ and $\mathrm{A}_{2}=2.2 \mathrm{ft}^{2}\left(0.2 \mathrm{~m}^{2}\right)$.

$$
A_{e}=\frac{A_{1} A_{2}}{\sqrt{A_{1}+A_{2}}}=0.214 \mathrm{ft}^{2}\left(0.0199 \mathrm{~m}^{2}\right)
$$

This example illustrates that, when two areas are in series and one is much larger than the other, the effective area is approximately equal to the smaller area.

### 2.6.3 Combination of Paths in Parallel and Series

The method of developing an effective area for a system of both parallel and series paths is to systematically combine groups of parallel paths and series paths. The system illustrated in figure 2.8 is analyzed as an example.

The figure shows that $A_{2}$ and $A_{3}$ are in parallel; therefore, their effective area is:

$$
A_{23} e=A_{2}+A_{3}
$$

Areas $A_{4}, A_{5}$, and $A_{6}$ are also in parallel, so their effective area is:

$$
A_{456} e=A_{4}+A_{5}+A_{6}
$$

These two effective areas are in series with $A_{1}$. Therefore, the effective flow area of the system is given by:

$$
A_{e}=\left[\frac{1}{A_{1}{ }^{2}}+\frac{1}{A_{23} e^{2}}+\frac{1}{A_{456} e^{2}}\right]^{-1 / 2}
$$

Example 2.3

Calculate the effective area of the system in figure 2.8, if the leakage areas are $A_{1}=A_{2}=A_{3}=0.22 \mathrm{ft}^{2}\left(0.02 \mathrm{~m}^{2}\right)$ and $A_{4}=A_{5}=A_{6}=0.11 \mathrm{ft}^{2}$ (0.01 m${ }^{2}$ ).

$$
\begin{aligned}
\mathrm{A}_{23} \mathrm{e} & =0.44 \mathrm{ft}^{2}\left(0.04 \mathrm{~m}^{2}\right) \\
\mathrm{A}_{456} \mathrm{e} & =0.33 \mathrm{ft}^{2}\left(0.03 \mathrm{~m}^{2}\right) \\
\mathrm{A}_{\mathrm{e}} & =0.16 \mathrm{ft}^{2}\left(0.015 \mathrm{~m}^{2}\right)
\end{aligned}
$$



Figure 2.8. Combination of leakage paths in parallel and series

### 2.7 SYMMETRY

The concept of symmetry is useful in simplifying problems and thereby easing solutions. Figure 2.9 illustrates the floor plan of a multistory building that can be divided in half by a plane of symmetry. Flow areas on one side of the plane of symmetry are equal to corresponding flow areas on the other side. For a building to be so treated, every floor of the building must be such that it can be divided in the same manner by the plane of symmetry. If wind effects are not considered in the analysis or if the wind direction is parallel to the plane of symmetry, then the airflow in only one half of the building need be analyzed. It is not necessary that the building be geometrically symmetric, as shown in figure 2.9 ; it must be symmetric only with respect to flow.

In the design of smoke control systems, airflow paths must be identified and evaluated. Some leakage paths are obvious, such as cracks around closed doors, open doors, elevator doors, windows, and air transfer grilles. Construction cracks in building walls are less obvious but no less important.

The flow area of most large openings, such as open windows, can be calculated easily. However, flow areas of cracks are more difficult to evaluate. The area of these leakage paths is dependent on workmanship, i.e., how well a door is fitted or how well weather stripping is installed. A door that is 36 in by $7 \mathrm{ft}(0.9 \mathrm{x} 2.1 \mathrm{~m})$ with an average crack width of $1 / 8$ in (3.2 mm) has a leakage area of $0.21 \mathrm{ft}^{2}\left(0.020 \mathrm{~m}^{2}\right)$. However, if, by accident, this door is installed with a $3 / 4$ in ( 19 mm ) undercut, the leakage area is $0.32 \mathrm{ft}^{2}\left(0.030 \mathrm{~m}^{2}\right)$. This is a significant difference. The leakage area of elevator doors has been measured in the range of 0.55 to $0.70 \mathrm{ft}^{2}$ ( 0.051 to $0.065 \mathrm{~m}^{2}$ ) per door.


Figure 2.9. Building floor plan illustrating symmetry concept

For open stairwell doorways, Cresci [12] found that complex flow patterns exist and that the resulting flow through open doorways was considerably below the flow calculated by using the geometric area of the doorway as the flow area in equation (2.5a). Based on this research, it is recommended that the flow area of an open stairwell doorway be half that of the geometric area (door height times width) of the doorway. An alternate approach for open stairwell doorways is to use the geometric area as the flow area and use a reduced flow coefficient. Because it does not allow the direct use of equation (2.5a), this alternate approach is not used in this book.

Typical leakage areas for walls and floors of commercial buildings are tabulated in appendix $C$. These data are based on a relatively small number of tests performed by the National Research Council of Canada, as referenced in appendix $C$. It is believed that actual leakage areas are primarily dependent on workmanship rather than construction materials, and, in some cases, the flow areas in particular buildings may vary from the values listed. Considerable data concerning air leakage through building components is also provided in ASHRAE Handbook-1981 Fundamentals, chapter 22 [13].

The determination of the flow area of a vent is not always straightforward, because the vent surface is usually covered by a louver and screen. Thus the flow area is less than the vent area (vent height times width). Because the slats in louvers are frequently slanted, calculation of the flow area is further complicated. Manufacturers' data should be sought for specific information.

### 2.9 DESIGN PARAMETERS

Ideally, codes should contain design parameters leading to the design of safe and economical smoke control systems. Unfortunately, because smoke control is a new field, consensus has not yet been reached as to what constitutes reasonable design parameters. Clearly, the designer has an obligation to adhere to any smoke control design criteria existing in appropriate codes or standards. However, such criteria should be scrutinized to determine whether or not they will result in an effective system. If
necessary, the designer should seek a waiver of the local codes, to ensure an effective smoke control system.

Five areas for which design parameters must be established are (1) leakage areas, (2) weather data, (3) pressure differences, (4) airflow, and (5) number of open doors in the smoke control system.

Leakage areas have already been discussed. An additional consideration affecting pressure differences and airflow is whether or not a window in the fire compartment is broken. This factor is included in the following discussion of these parameters.

In the absence of code requirements for specific parameters, the following discussion may be helpful to the designer.

### 2.9.1 Weather Data

The state-of-the-art of smoke control is such that little consideration has been given to the selection of weather data specifically for the design of smoke control systems. However, design temperatures for heating and cooling during winter and summer are recommended in the ASHRAE Handbook-1981 Fundamentals chapter 24 [14]. For example, this source provides 99 percent and 97.5 percent winter design temperatures. These values represent the temperatures that are equaled or exceeded in these portions of the heating season*。

A designer may wish to consider using these design temperatures for the design of smoke control systems. It should be remembered that in a normal winter, there would be approximately 22 hours at or below the 99 percent design value and approximately 54 hours at or below the 97.5 percent design value. Furthermore, extreme temperatures can be considerably lower than the winter design temperatures. For example, the ASHRAE 99 percent design temperature for Tallahasse, Florida is $27^{\circ} \mathrm{F}\left(-3^{\circ} \mathrm{C}\right)$, but the lowest temperature

[^1]observed there by the National Climatic Center [14] was $-2^{\circ} \mathrm{F}\left(-19^{\circ} \mathrm{C}\right)$ on February 13, 1899.

Temperatures are generally below the design values for short periods of time, and because of the thermal lag of building materials, these short intervals of low temperature usually do not result in problems with respect to heating systems. However, the same cannot necessarily be said of a smoke control system. There is no time lag for a smoke control system, i.e., a smoke control system is subjected to all the forces of stack effect that exist at the moment it is being operated. If the outside temperature is below the winter design temperature for which a smoke control system was designed, then problems from stack effect may result. A similar situation can result with respect to summer design temperatures and reverse stack effect.

Wind data is needed for a wind analysis of a smoke control system. At present, no formal method of such an analysis exists, and the approach most generally taken is to design the smoke control system so as to minimize any effects of wind. This approach is followed in this book.

The development of temperature and wind data for design of smoke control systems is an area for future effort.

### 2.9.2 Pressure Differences

It is appropriate to consider both the maximum and minimum allowable pressure differences across the boundaries of smoke control zones. The maximum allowable pressure difference should be a value that does not result in excessive door-opening forces, but, it is difficult to determine what constitutes excessive door opening forces. Clearly, a person's physical condition is a major factor in determining a reasonable door opening force for that person. Section 5-2.1.1.4.3 of the National Fire Protection Association (NFPA) Life Safety Code [15] states that the force required to open any door in a means of egress shall not exceed 501 b (222 N). NFPA is currently evaluating proposals to reduce its maximum door opening force to $301 b$ (133 N). Many smoke control designers feel that a value lower than 50 lb (222 N) should be used, especially in occupancies involving the elderly,
children, or the handicapped. Also, exposure to smoke during a fire can adversely affect a person's physical capabilities, further complicating the determination. In section 2.4 , a method of determination of the door opening force is provided. If, for a particular application, a maximum door opening force of $40 \mathrm{lb}(178 \mathrm{~N})$ is considered appropriate, and the force to overcome the door closer is $11 \mathrm{lb}(49 \mathrm{~N})$, then a door $36 \mathrm{x} 84 \mathrm{in}(0.91 \times 2.13 \mathrm{~m})$ would have a maximum allowable pressure difference of 0.49 in $\mathrm{H}_{2} \mathrm{O}$ ( 122 Pa ).

The criterion used in this book for selecting a minimum allowable pressure difference across a boundary of a smoke control system is that no smoke leakage shall occur during building evacuation*. In this case, the smoke control system must produce sufficient pressure differences so that it is not overcome by the forces of wind, stack effect, or buoyancy of hot smoke. The pressure differences due to wind and stack effect can become very large in the event of a broken window in the fire compartment. Evaluation of these pressure differences depends on evacuation time, rate of fire growth, building configuration, and the presence of a fire suppression system. In the absence of a formal method of analysis, such evaluations must, of necessity, be based on experience and engineering judgment.

A method for determining the pressure difference across a smoke barrier resulting from the buoyancy of hot gases is provided in section 2.l.2. For a particular application, it may be considered necessary to design a smoke control system to withstand an intense fire next to a door in a boundary of a smoke control zone. It was stated in section 2.1 .2 that, in a series of fullscale fire tests, the maximum pressure difference reached was 0.064 in $\mathrm{H}_{2} \mathrm{O}$ ( 16 Pa ) across the burn room wall at the ceiling. In order to prevent smoke infiltration, the smoke control system should be designed to maintain a slightly higher pressure in nonfire conditions. A minimum pressure difference in the range of 0.08 to 0.10 in $\mathrm{H}_{2} \mathrm{O}$ ( 20 to 25 Pa ) is suggested.

If a boundary is exposed to hot smoke from a remote fire, a lower pressure difference due to buoyancy will result. For a smoke temperature of

[^2]$750^{\circ} \mathrm{F}\left(400^{\circ} \mathrm{C}\right)$, the pressure difference caused by the smoke $5.0 \mathrm{ft}(1.53 \mathrm{~m})$ above the neutral plane would be 0.04 in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~Pa})$. In this situation, it is suggested that the smoke control system be designed to maintain a minimum pressure in the range of 0.06 to 0.08 in $\mathrm{H}_{2} \mathrm{O}$ ( 15 to 20 Pa ).

Water spray from fire sprinklers cools smoke from a building fire and reduces the pressure differences due to buoyancy. In such a case it is probably wise to allow for pressure fluctuations (section 2.3.2). Accordingly a minimum pressure difference in the range of 0.02 to 0.04 in $\mathrm{H}_{2} \mathrm{O}$ ( 5 to 10 Pa ) is suggested.

Windows in the fire compartment can break due to exposure to high temperature gases. In such cases, the pressure due to the wind on the building exterior can be determined from equation (2.3). If this window is the only opening to the outside on the fire floor and the window faces into the wind, the boundary of the smoke control system could be subjected to higher pressures. One possible solution is to vent the fire floor on all sides to relieve such pressures. For a building that is much longer than it is wide, it may be necessary to vent only on the two longer sides.

In addition to wind effects, stack effect can be increased in the event of a broken fire compartment window. With a fire on a lower floor during cold weather, stack effect will increase pressures of the fire floor above surrounding spaces. Even though little research has been done on the subject, the chances of a window breaking in the fire compartment are reduced by the operation of fire sprinklers.

### 2.9.3 Airflow

When the doors in the boundaries of smoke control systems are open, smoke can flow into refuge areas or escape routes unless there is sufficient airflow through the open door to prevent smoke backflow, as discussed in section 2.3 . One criterion for selecting a design velocity through an open
door is that no smoke backflow shall occur during building evacuation.* Selection of this velocity depends on evacuation time, rate of fire growth, building configuration, and the presence of a fire suppression system. In the absence of a formal method of analysis, such an evaluation must be based on experience and engineering judgment.

At present, there is still much to be learned about the critical velocity needed to stop smoke backflow through an open door. In the absence of a specific relationship for doorways, the method of analysis presented for corridors in section 2.3 .1 can be used to yield approximate results. The width of the doorway may be used in place of the width of the corridor. The technique used in 2.3 .1 is based on the assumption that smoke properties are uniform across the cross section. As an example, for a particular application, it may be considered necessary to design for an intensive fire, such as one with an energy release rate of $8 \times 10^{6} \mathrm{Btu} / \mathrm{hr}$ (2.4 MW). A critical velocity of approximately $800 \mathrm{fpm}(4 \mathrm{~m} / \mathrm{s})$ would be required to stop smoke.

In another application, it may be estimated that the building would be subjected to a much less intense fire with an energy release rate of $427,000 \mathrm{Btu} / \mathrm{hr}(125 \mathrm{~kW})$. To protect against smoke backflow during evacuation, the critical velocity would be $300 \mathrm{fpm}(1.5 \mathrm{~m} / \mathrm{s})$.

In a sprinklered building, it might be considered that the smoke away from the immediate fire area would be cooled to near ambient temperature by the water spray from the sprinklers. In such a case a design velocity in the range of 50 to $250 \mathrm{fpm}(0.25$ to $1.25 \mathrm{~m} / \mathrm{s})$ may be used. Research is needed to fully evaluate the effect of sprinklers on smoke control design parameters.

### 2.9.4 Number of Open Doors

The need for air velocity through open doors in the perimeter of a smoke control system was discussed in section 2.9.2. Another design consideration is the number of doors that could be opened simultaneously when the smoke

[^3]control system is operational. A design that allows for all doors to be opened simultaneously may ensure that the system will always work, but it will probably add to the cost of the system.

Deciding how many doors will be opened simultaneously depends largely on the building occupancy. For example, in a densely populated building, it is very likely that all the doors will be opened simultaneously during evacuation. However, if a staged evacuation plan or refuge area concept is incorporated in the building fire emergency plan or if the building is sparsely occupied, only a few of the doors may be opened simultaneously during a fire.

### 2.10 REFERENCES

[1] Klote, J. H., Stairwe11 Pressurization. ASHRAE Transactions 1980, Vol. 86, Part I, pp. 604-673, 1980.
[2] McGuire, J. H. and Tamura, G. T., Simple Analysis of Smoke Flow Problems in High Buildings, Fire Technology, Vol. l], No. 1, pp. 15-22, February 1975.
[3] Fang, J. B., Static Pressures Produced by Room Fires, Nat. Bur. Stand. (U.S.), NBSIR 80-1984, February 1980.
[4] Sachs, P., Wind Forces in Engineering, New York, Pergamon Press, 1972.
[5] Houghton, E. L. and Carruther, N. B., Wind Forces on Buildings and Structures, New York, John Wiley \& Sons, 1976.
[6] Simiu, E. and Scanlan, R. H., Wind Effects on Structures: An Introduction to Wind Engineering, New York, John Wiley \& Sons, 1978.
[7] MacDonald, A. J., Wind Loading on Buildings, New York, John Wiley \& Sons, 1975.
[8] Shaw, C. Y. and Tamura, G. T., The Calculation of Air Infiltration Rates Caused by Wind and Stack Action for Tall Buildings, ASHRAE Transactions 1977, Vol. 83, Part 2, pp. 145-158, 1977.
[9] Thomas, P. H., Movement of Smoke in Horizontal Corridors Against an Air Flow, Institution of Fire Engineers, Quarterly, 30 (77), pp. 45-53, 1970.
[10] Shaw, B. H. and Whyte, W., Air Movement through Doorways--The Influence of Temperature and its Control by Forced Air Flow, Building Services Engineer, Vol. 42, pp. 210-218, December 1974.
[11] McGuire, J. H., Tamura, G. T. and Wilson, A. G., Factors in Controlling Smoke in High Buildings, Symposium on Fire Hazards in Buildings, ASHRAE Semiannual Meeting, January 1970, (San Francisco, CA).
[12] Cresci, R. J., Smoke and Fire Control in High-Rise Office Buildings-Part II, Analysis of Stair Pressurization Systems, Symposium on Experience and Applications on Smoke and Fire Control, ASHRAE Annual Meeting, June $24-28$, 1973, Atlanta, GA.
[13] ASHRAE Handbook-1981 Fundamentals, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA, 1981.
[14] Temperature Extremes in the United States, National Oceanic and Atmospheric Administration, (U.S.) National Climatic Center, Ashville, NC, 1979 .
[15] Code for Safety to Life from Fire in Buildings and Structures, NFPA 101-1981, Quincy, MA, National Fire Protection Assn., 1981.

## CHAPTER 3. COMPUTER ANALYSIS

The computer program described in this chapter provides a means to calculate the airflows and pressure differences throughout a building in which a smoke control system is operating. This computer program has been previously published ${ }^{\star}$ [1]. The following description is presented here as a convenience to the reader, the appendices contain a program listing and examples.

A number of computer programs applicable to smoke control have been developed. Some calculate steady state airflow and pressures throughout a building $[2,3]$. Other programs go beyond this to calculate the smoke concentrations that would be produced throughout a building in the event of a fire [4-8].

In general, most of these programs are capable of analyzing smoke control systems. However, the program described in this chapter has been specifically written for analysis of smoke control systems and is an extension of a program specifically written for analysis of pressurized stairwells and elevators [9]. While the basic theory of this program is the same as that of the stairwell and elevator program, it has been extended to include analysis of (1) stairwells with vestibules, (2) elevators with elevator lobbies, (3) zoned smoke control systems, and (4) pressurized corridors. The data input has been designed to minimize the quantity of required data and still maintain a high level of generality in the model. The output consists of the pressure differences across all of the building shafts, as well as the flows and pressures throughout the building.

[^4]This program was originally intended as a research tool to investigate the feasibility of specific smoke control systems and to determine the interaction between these systems and the rest of the building. The predecessor [9] of this program has already been used to analyze pressurized stairwells without vestibules and to evaluate factors affecting the performance of these systems [10]. This program has been used to analyze example problems in subsequent chapters.

In time, other computer programs will be developed to meet the specific needs of designers of smoke control systems. Such programs will have assumptions and capabilities specifically suited for design analysis and undoubtedly will have improved numerical techniques. Until such a time, it is believed that the computer program discussed in this chapter may be useful for smoke control design.

### 3.1 PROGRAM CONCEPT

In this computer program, a building is represented by a network of spaces or nodes, each at a specific pressure and temperature. The stairwells and other shafts are modeled by a vertical series of spaces, one for each floor. Air flows through leakage paths from regions of high pressure to regions of low pressure. These leakage paths are doors and windows that may be opened or closed. Leakage can also occur through partitions, floors, and exterior walls and roofs. The airflow through a leakage path is a function of the pressure difference across the leakage path.

In this model, air from outside the building can be introduced by a pressurization system into any level of a shaft or even into other building spaces. This allows simulation of stairwell pressurization, elevator shaft pressurization, stairwell vestibule pressurization, and pressurization of any other building space. In addition, any building space can be exhausted. This allows analysis of zoned smoke control systems where the fire zone is exhausted and other zones are pressurized. The pressures throughout the building and flow rates through all the flow paths are obtained by solving the airflow network, including the driving forces such as wind, the pressurization system, or an inside-to-outside temperature difference.

### 3.2 ASSUMPTIONS AND LIMITATIONS

1. Each space is considered to be at one specific pressure and one specific temperature.
2. The flows and leakage paths are assumed to occur at mid-height of each level.
3. The net air supplied by the air handling system or by the pressurization system is assumed to be constant and independent of building pressure.
4. The outside air temperature is assumed to be constant.
5. The barometric pressure at ground level is assumed to be standard atmospheric pressure ( 101325 Pa$)^{\star}$.
3.3 EQUATIONS
A. Flow equation

$$
\begin{equation*}
\dot{m}=C A \sqrt{2 p \Delta P} \tag{3.1}
\end{equation*}
$$

where:

$$
\begin{aligned}
\dot{m} & =\text { mass flow rate } \\
\mathrm{C} & =\text { flow coefficient } \\
\mathrm{A} & =\text { flow area } \\
\rho & =\text { density of air in flow path } \\
\Delta \mathrm{P} & =\text { pressure difference across flow path }
\end{aligned}
$$

The flow coefficient is dimensionless, and for smoke control analysis it is generally taken to be in the range of 0.6 to 0.7 . Because of the large number of flow calculations performed during the computer analysis, the flow

[^5]equation is rewritten in the program as $\dot{m}=C^{\prime} \sqrt{\Delta \mathrm{P}}$. Using the ideal gas law, the adjusted flow coefficient, $C^{\prime}$, can be expressed as
\[

$$
\begin{equation*}
C^{\prime}=C A \sqrt{\frac{2 P_{\mathrm{atm}}}{R T}} \tag{3.2}
\end{equation*}
$$

\]

where:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{atm}} & =\text { absolute barometric pressure at ground level } \\
\mathrm{R} & =\text { gas constant of air } \\
\mathrm{T} & =\text { absolute temperature of air in flow path }
\end{aligned}
$$

## B. Mass balance equations

For building compartment ${ }^{*}$ i

$$
\begin{equation*}
\sum_{j=1}^{N_{c}} \dot{m}_{(i, j)}+\sum_{k=1}^{N_{o}} \dot{m}_{o(i, k)}+\dot{m}_{f(i)}=0 \tag{3.3}
\end{equation*}
$$

and for shafts

$$
\begin{equation*}
\sum_{i=N_{1}}^{N_{2}}\left[\sum_{j=1}^{N_{c}} \dot{m}_{(i, j)}+\sum_{k=1}^{N_{o}} \dot{m}_{o(i, k)}+\dot{m}_{f(i)}\right]=0 \tag{3.4}
\end{equation*}
$$

where:

$$
\dot{m}_{(i, j)}=\text { mass flow rate from space } j \text { to space } i \text {. For building }
$$ compartments this flow can be either horizontal or vertical; however, for shafts this flow can only be horizontal.

$\dot{\mathrm{m}}_{\mathrm{o}}(\mathrm{i}, \mathrm{k})=$ mass flow rate from direction $k$ outside of the building to space $i$.
$\dot{m}_{f(i)}=$ net mass flow rate of air due to the air handing system or due to a pressurization system.

[^6]\[

$$
\begin{aligned}
& N_{c}=\text { number of building spaces connected to space } i . \\
& N_{o}=\text { number of connections to the outside from space } i .
\end{aligned}
$$
\]

$N_{1}$ is the space number at the bottom level of the shaft and the spaces in the shaft are numbered consecutively up to $N_{2}$, which is the space number at the top of the shaft.
C. Shaft pressures

The following relationship is used to calculate the gauge pressure, $P_{(i)}$, at floor $i$ of $a$ shaft in terms of $P_{(i-1)}$ at floor $i-1$.

$$
\begin{equation*}
P_{(i)}=P_{(i-1)}-P_{z}-P_{f} \tag{3.5}
\end{equation*}
$$

where:

$$
\begin{aligned}
& P_{z}=\text { hydrostatic pressure difference } \\
& P_{f}=\text { pressure loss due to friction }
\end{aligned}
$$

The following equation is used to calculate the hydrostatic pressure difference.

$$
\begin{equation*}
P_{z}=\frac{g \bar{P}}{R \bar{T}}\left(h_{(i)}-h_{(i-1)}\right) \tag{3.6}
\end{equation*}
$$

where:

$$
\begin{aligned}
h_{(i)} & =\text { height of point } i \\
h_{(i-1)} & =\text { height of point } i-1 \\
g & =\text { gravitational constant } \\
R & =\text { gas constant } \\
\bar{T} & =\frac{T(i)+T(i-1)}{2} \\
\bar{P} & =\frac{P(i)+P_{(i-1)}}{2}+P_{b}
\end{aligned}
$$

$P_{b}$ is a constant used to convert an average gauge pressure to the average absolute pressure, $\overline{\mathrm{P}}$.

The following equation is used to calculate the pressure loss due to friction.

$$
\begin{equation*}
\mathrm{P}_{\mathrm{f}}=\mathrm{S}\left(\frac{\dot{\mathrm{~m}}_{\mathrm{u}}}{\mathrm{C}_{\mathrm{s}}}\right)^{2} \tag{3.7}
\end{equation*}
$$

where:

$$
\begin{aligned}
\dot{\mathrm{m}}_{\mathrm{u}} & =\text { upward mass flow from } i-1 \text { to } i \text { in shaft } \\
\mathrm{C}_{\mathrm{S}} & =\text { shaft flow coefficient } \\
\mathrm{S} & =\text { sign of } \dot{m}_{\mathrm{u}}
\end{aligned}
$$

D. Outside pressures

Outside pressures can be entered by the user or can be calculated by the following method.

$$
\begin{equation*}
P_{o(i)}=P_{h(i)}+C_{W} P_{w(i)} \tag{3.8}
\end{equation*}
$$

where:

$$
\begin{aligned}
P_{o(i)}= & \text { outside gauge pressure at height } h(i) \text { above absolute pressure } \\
& \text { at ground level }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{h}(i)} & =\text { hydrostatic pressure difference between } h(i) \text { and ground level } \\
\mathrm{P}_{\mathrm{W}(i)} & =\text { dynamic pressure due to the wind at height } h(i) \\
\mathrm{C}_{\mathrm{W}} & =\text { pressure coefficient }
\end{aligned}
$$

Because the outside temperature is constant

$$
\begin{equation*}
P_{h(i)}=P_{a t m} \exp \left(-\frac{g h(i)}{R T_{\text {out }}}\right)-P_{b} \tag{3.9}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \mathrm{P}_{\text {atm }}=\text { absolute barometric pressure at ground level } \\
& \mathrm{T}_{\text {out }}=\text { outside absolute temperature }
\end{aligned}
$$

When the outside pressures are calculated by the computer the wind velocities are assumed to be described by the power law.

$$
\mathrm{V}=\mathrm{v}_{\mathrm{o}}\left(\frac{\mathrm{~h}}{\mathrm{~h}_{\mathrm{o}}}\right)^{\mathrm{n}}
$$

where:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{o}} & =\text { wind velocity at height } \mathrm{h}_{\mathrm{o}} \\
\mathrm{n} & =\text { wind exponent }
\end{aligned}
$$

This relationship has been extensively used to describe the boundary layer velocity profile of the wind near the surface of the earth. It assumes that there are no large obstructions near the building that could produce local wind effects. A value of 0.16 for the wind exponent should be used for flat terrain. The wind exponent increases with rougher terrain, and for very rough terrain, such as urban areas, a value of 0.40 should be used.

The equation for the dynamic pressure at height $h(i)$ is obtained by substituting the velocity from the power law into the usual relation for wind dynamic pressure, equation (2.3).

$$
\begin{equation*}
P_{W}=\frac{\rho V_{o}^{2}}{2}\left(\frac{h_{(i)}}{h_{o}}\right)^{2 n} \tag{3.10}
\end{equation*}
$$

where $\rho$ is the outside air density.

The pressure coefficients are in the range of -0.8 to 0.8 , where positive values are for windward walls and negative values are for leeward walls. The pressure coefficient depends upon building geometry and varies locally over the wall surface. Numerical values for $C_{W}$ and $n$, as well as practical engineering information, are available from a number of sources [11-14].

### 3.4 PROGRAM DESCRIPTION

This program is written in ANSI-1977 FORTRAN and a program listing is provided in appendix $G$. The following is a detailed description of the main program and the major subroutines.

### 3.4.1 Main Program

The main program calls the subprograms that read the data, calculate the adjusted flow coefficients, calculate the initial values of pressures and iteratively solve for the pressures according to the logic illustrated in the flow chart of figure 3.1 .

### 3.4.2 INPUT Subroutine

This routine reads the data that are necessary for a flow analysis of the smoke control system, including an analysis of the rest of the building. These data consist of the following:

1. Outside temperature.
2. Temperature throughout the building.
3. Outside pressures. These can be entered or calculated as described earlier.
4. Description of the flow network including flow coefficients and flow areas for all connections and the net airflows to each space due to the air conditioning system or due to a pressurization system.

The data above can be entered in either SI units or in engineering units. Appendix $D$ contains a detailed description of the data input method.

In addition to reading data, this subroutine provides temperature and pressure data, as well as, a complete description of the flow network. The routine also calculates initial estimates of the hydrostatic pressure


Figure 3.1. Flow chart for main program logic
differences. When data are entered in engineering units, the subroutine UNITS is called which converts all units to the SI system.

### 3.4.3 CORR Subroutine

This routine calculates adjusted flow coefficients for all flow paths using equation (3.2). Two sets of these coefficients are calculated for each flow path to allow for flow in either direction.

### 3.4.4 INIT Subroutine

This routine calculates initial estimates of the building pressures by a technique used by Sander [2]. In this technique, mass flows are considered linear functions of pressure difference; therefore, the flow equations can be expressed and solved in matrix form. In this estimate, shaft pressures are considered hydrostatic, and the resulting pressures form a starting point for the iterative solution that follows.

### 3.4.5 BLDGP Subroutine

The iterative solution for the building pressures and flows consists of the three subroutines, BLDGP, SHAFTP, and PZAD. The subroutine BLDGP operates on the building compartments sequentially. The sum of all the mass flows into compartment i is calculated. If the absolute value of this sum is less than a convergence limit, then equation (3.3) is considered satisfied and the computer proceeds to the next compartment or returns to the main program. However, if the absolute value of the sum is greater than the convergence limit, then an improved estimate of the pressure at compartment is obtained by the regula falsi method [15]. When none of the pressures need to be modified, this routine passes a convergence signal to the main program.

### 3.4.6 SHAFTP Subroutine

The structure of this routine is very similar to that of BLDGP, except that it operates on shafts sequentially. The sum of all the mass flows into shaft i is calculated. If the absolute value of this sum is less than the
convergence limit, then equation (3.4) is also considered satisfied and the computer proceeds to the next shaft or returns to the main program. However, if the absolute value of the sum is greater than the convergence limit, then improved estimates of the shaft pressure are calculated. This is done by changing the pressures at the bottom of the shaft and then recalculating the shaft pressure by equation (3.5). Again, the regula falsi method is used, and if none of the shaft pressures requires modification, a convergence signal is passed to the main program. It can be seen from figure 3.1 that if convergence is achieved in both BLDGP and SHAFTP, then the subroutine OUT will print the solution. Otherwise, the hydrostatic pressure differences are adjusted in the subroutine PZAD.

### 3.4.7 PZAD Subroutine

This routine calculates hydrostatic pressure differences by equation (3.6) using the most recent pressure estimates.
3.4.8 OUT Subroutine

This routine prints mass flows and pressures for the flow network, as well as the pressure differences across each shaft. If the data input was in engineering units, then appropriate variables are converted to the engineering system before output.

### 3.5 REFERENCES

[l] Klote, J. H., A Computer Program for Analysis of Smoke Control Systems, Nat. Bur. Stand. (U.S.), NBSIR 82-2512, June 1982.
[2] Sander, D. M., FORTRAN IV Program to Calculate Air Infiltration in Buildings, National Research Council Canada, DBR Computer Program No. 37, May 1974.
[3] Sander, D. M. and Tamura, G. T., FORTRAN IV Program to Simulate Air Movement in Multi-Story Buildings, National Research Council Canada, DBR Computer Program No. 35, March 1973.
[4] Yoshida, H., Shaw, C. Y. and Tamura, G. T., A FORTRAN IV Program to Calculate Smoke Concentrations in a Multi-Story Building, National Research Council Canada, DBR Computer Program No. 45, June 1979.
[5] Butcher, E. G., Fardell, P. J. and Jackman, P. J., Prediction of the Behaviour of Smoke in a Building using a Computer, Symposium on Movement of Smoke on Escape Routes in Buildings, Watford College of Technology, Watford, Herts, England, 1969, pp. 70-75.
[6] Barrett, R. E. and Locklin, D. W., A Computer Technique for Predicting Smoke Movement in Tall Buildings, Symposium on Movement of Smoke on Escape Routes in Buildings, Watford College of Technology, Watford, Herts, England, 1969, pp. 78-87.
[7] Evers, E. and Waterhouse, A., A Computer Model for Analyzing Smoke Movement in Buildings, Building Research Est., Fire Research Station, Borehamwood, Herts, England, November 1978.
[8] Wakamatsu, T., Calculation Methods for Predicting Smoke Movement in Building Fires and Designing Smoke Control Systems, Fire Standards and Safety, ASTM STP 614, A. F. Robertson, Ed., Philadelphia, PA, American Society for Testing and Materials, 1977, pp. 168-193.
[9] Klote, J. H., A Computer Program for Analysis of Pressurized Stairwells and Pressurized Elevator Shafts, Nat. Bur. Stand. (U.S.), NBSIR 80-2157, January 1981.
[10] Klote, J. H., Smoke Control by Stairwell Pressurization, Engineering Applications of Fire Technology Workshop, Society of Fire Protection Engineers, Boston, MA, to be published.
[11] Sachs, P., Wind Forces in Engineering, New York, Pergamon Press, 1972.
[12] Houghton, E. L. and Carruther, N. B., Wind Forces on Buildings and Structures, New York, John Wiley \& Sons, 1976.
[13] Simiu, E. and Scanlan, R. H., Wind Effects on Structures: An Introduction to Wind Engineering, New York, John Wiley \& Sons, 1978.
[14] MacDonald, A. J., Wind Loading on Buildings, New York, John Wiley \& Sons, 1975.
[15] Carnahan, B., Luther, H. A. and Wilkes, J. O., Applied Numerical Methods, New York, John Wiley \& Sons, Inc., 1969.

# CHAPTER 4. <br> FUNDAMENTALS OF STAIRWELL PRESSURIZATION 

Many pressurized stairwells are designed and built with the goal of providing a smoke-free escape route in the event of a building fire. A secondary objective is to provide a smoke-free staging area for fire fighters. On the fire floor, a pressurized stairwell must maintain a pressure difference across a closed stairwell door so that smoke infiltration is prevented. This chapter discusses the fundamental concepts of stairwell pressurization and provides a method of calculation for a simple system.

### 4.1 PRESSURIZATION SYSTEMS

It is impossible to provide detailed design methods for the almost infinite number of possible stairwell pressurization systems. The intent of this book is to discuss, in general, some systemic considerations and alternatives and to provide detailed analyses of a few systems. For the analysis of other systems, designers can, in many cases, use the same principles employed in this book to perform their own analyses.

### 4.1.1 Single and Multiple Injection

A single injection system is one that has pressurization air supplied to the stairwell at one location. The most common injection point is at the top as illustrated in figure 4.1. With this system, there is the potential for smoke feedback into the pressurized stairwell; which is smoke entering the stairwell through the pressurization fan intake. Therefore, the capability of automatic shutdown in such an event should be considered.

For tall stairwells, single injection systems can fail when a few doors are open near the air supply injection point. All of the pressurization air can be lost through these open doors, and the system will then fail to maintain positive pressures across doors further from the injection point.


Caution:
This system should not be used for tall stairwells (see section 4.1.1)

Figure 4.l. Stairwell pressurization by top injection

Such a failure mode is especially likely with bottom injection systems when a ground level stairwell door is open. To prevent this, some smoke control designers limit the height of top injection stairwells to eight stories; however, other designers feel this limit can be extended to twelve stories. Careful design is recommended for top injection stairwells in excess of eight stories and for all bottom injection stairwells.

Figures 4.2 and 4.3 are two examples of many possible multiple injection systems that can be used to overcome the limitations of single injection systems. The pressurization fans can be located at ground level, roof level or at any location in between. Obviously, the supply air intake should be separated from exhausts, outlets from smoke shafts and roof smoke and heat vents, or open vents from elevator shafts or other building openings that might expel smoke from the building in a fire situation. Ideally, this separation should be as great as is practically possible. Because hot smoke rises, consideration should be given to locating supply air intakes below such critical openings. However, outdoor smoke movement that might result in smoke feedback depends on location of fire, location of points of smoke leakage from the building, wind speed and direction, and on the temperature difference between the smoke and the outside air. At present, too little information is available about such outdoor smoke movement to warrant general recommendations favoring ground level fans over roof mounted fans.


Figure 4.2. Stairwell pressurization by multiple injection with the fan located at ground level


Figure 4.3. Stairwell pressurization by multiple injection with roof mounted fan

In figures 4.2 and 4.3 , the supply duct is shown in a separate shaft. However, systems have been built that have eliminated the expense of a separate duct shaft by locating the supply duct in the stairwell itself. If the duct is located inside the stairwell, care must be taken that the duct does not become an obstruction to orderly building evacuation.

Many multiple injection systems have been built with supply air injection points on each floor. These represent the ultimate in preventing loss of pressurization air through a few open doors; however, that many injection points may not be necessary. There is some difference of opinion as to how far apart injection points can be safely located. Some designers feel that injection points should not be more than three floors apart, while others feel that a distance of eight stories is acceptable. For designs with injection points more than three stories apart, the designer probably should determine by computer analysis that loss of pressurization air through a few open doors does not lead to loss of stairwell pressurization.

### 4.1.2 Compartmentation

An alternative to multiple injection is compartmentation of the stairwell into a number of sections, as illustrated in figure 4.4. Each compartment has at least one supply air injection point. Compartmentation can also allow pressurization of stairwells that would be too tall to be otherwise satisfactorily pressurized. Unfortunately, when the doors between compartments are open, the effect of compartmentation is lost. For this reason, compartmentation is inappropriate for densely populated buildings, where total building evacuation by the stairwell is planned in the event of a fire. Compartmentation can be an effective means of providing stairwell pressurization for very tall buildings, when a staged evacuation plan is used and when the system is designed to successfully operate when the maximum number of doors between compartments are open. This maximum number of doors open between compartments would need to be determined by an evacuation analysis. Compartmentation does have a disadvantage from an architectural standpoint in that it probably cannot be achieved without increased stairwell landing space at some or all floors.

Note:
Each four floor compartment has at least one supply air injection point


Figure 4.4. Compartmentation of a pressurized stairwell

### 4.1.3 Vestibules

A number of pressurized stairwells have been built with vestibules, which can be either pressurized or not pressurized. Vestibules provide an additional barrier around a stairwell and, to some extent, a vestibule can reduce the possibility of an open-door connection existing between the stairwell and the building. An evacuation analysis can be performed to determine the extent to which both vestibule doors are likely to be opened simultaneously.

Analysis of a pressurized stairwell with an unpressurized vestibule can be performed using the same methods employed for analyzing a system without a vestibule, except that the effective leakage areas from the stairwell to the building would be used. These effective areas can be determined by methods presented in section 2.6 .
4.1.4 Supply Air Source

In the pressurization systems illustrated, in figures 4.1, 4.2, and 4.3, centrifugal fans supply pressurization air to the stairwell. Figure 4.5 shows a system with a roof mounted propeller fan. Such a fan should have a wind

## Propeller <br> Fan



Caution:
This system should not be used for tall stairwells (see section 4.l.l).

Figure 4.5. Stairwell pressurization by roof mounted propeller fan
shield to reduce the effect of wind on the system. The use of wall-mounted propeller fans without wind shields is not generally recommended, because of the extreme effect wind can have on the performance of such propeller fans.

All of the fans discussed above are specifically dedicated to stairwell pressurization. However, a fan normally used for some other purpose can be used to pressurize a stairwell in a fire situation. HVAC system fans have been so used with modulating dampers controlled by differential pressure sensors. However, some smoke control designers feel that HVAC fans should not be used for stairwell pressurization, because the controls for the pressurization system may be damaged during HVAC system maintenance or modification.

### 4.2 PRESSURE PROFILES

At first it might appear that the pressure differences across a stairwell would be essentially the same over the height of the stairwell. Unfortunately, this is often not the case.

To facilitate analysis, the following discussion is limited to buildings that have the same leakage areas on each floor. Figure 4.6 shows pressure profiles for pressurized stairwells located in three buildings with different leakage characteristics, all of which have the same stairwell and outside temperatures. These profiles represent winter conditions; that is, an outside temperature less than the inside temperature.

In a building without vertical leakage between floors or through shafts other than the stairwell, the pressure profile of a pressurized stairwell is a straight line. The slope of that straight line depends on the temperature difference between the stairwell and the outside, and on the building leakage areas. This relation is discussed in section 4.3.1.

Figure 4.6 shows the pressure profiles of pressurized stairwells in a building with leakage between the floors and in a building without leakage between floors which are similar, except at the top and the bottom of the buildings. The extent of the deviation depends on the magnitude of the leakage area between floors.


Figure 4.6. Pressure profile for pressurized stairwells in three buildings with different leakage characteristics

In a building with leakage through an elevator shaft, the pressure profile is considerably different. The curve shown in figure 4.6 is only one of many possible curve shapes for this type of building. The pressure profiles depend on the leakage areas of the stairwell, the elevator shaft, and the exterior walls, as well as the temperatures of the building, the stairwell, and the outside air. Analysis of such a building is complicated and is generally feasible only with the aid of a digital computer.

It is obvious that the pressure difference across a stairwell at one height can be much larger than at another height. Therefore, in addition to being concerned with the average pressure difference across a stairwell, a designer should also be concerned with both the minimum and maximum pressure differences. These are analyzed in section 4.3 .

Another problem with pressurized stairwells is that when stairwell doors are open, the pressure difference across closed doors can drop to as low as 0.01 in $\mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{~Pa})$. Problems of open doors in pressurized stairwells are discussed in chapter 5 .

### 4.3 STAIRWELL ANALYSIS

In this section, a method of analysis is presented for a pressurized stairwell in a building without vertical leakage. The performance of pressurized stairwells in buildings without elevators may be closely approximated by this method of analysis which is also useful for buildings with vertical leakage in that it yields conservative results. This analysis considers only one pressurized stairwell in a building, however, it can be extended to any number of stairwells by use of the concept of symmetry (section 2.7). The analysis does not include consideration of open stairwell doors.

This analysis is for buildings where the leakage areas are the same for each floor of the building and where the only significant driving forces are the stairwell pressurization system and the temperature difference between the indoors and outdoors.

### 4.3.1 Pressures

In this analysis, the absolute pressure in the stairwell is considered hydrostatic. This means that the pressure loss in the stairwell due to friction of the moving air is neglected. For many applications of pressurized stairwells, the vertical flows within the stair shaft are low enough so that these friction losses can be neglected. This is particularly true of the simple stairwell system discussed in section 4.5.

The absolute air pressure, $\mathrm{P}_{\mathrm{S}}$, in a stairwell can be written as:

$$
\begin{equation*}
P_{S}=P_{S b}-\rho_{S} g y \tag{4.1}
\end{equation*}
$$

where:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{Sb}} & =\text { air pressure at stairwell bottom } \\
\rho_{\mathrm{S}} & =\text { air density within the stairwell } \\
\mathrm{y} & =\text { distance above stairwell bottom }
\end{aligned}
$$

For the case where the wind velocity is essentially zero, the outside air pressure, $\mathrm{P}_{0}$, is also hydrostatic and can be expressed in the same manner.

$$
\begin{equation*}
P_{0}=P_{0 b}-\rho_{0} g y \tag{4.2}
\end{equation*}
$$

The pressure difference, ${ }^{\Delta P_{S O}}$, from the stairwell to the outside can be expressed as:

$$
\begin{equation*}
\Delta P_{S O}=P_{S}-P_{0}=\Delta P_{S O b}+g y\left(\rho_{0}-\rho_{S}\right) \tag{4.3}
\end{equation*}
$$

where $\Delta \mathrm{P}_{\text {SOb }}$ is the pressure difference at the bottom of the stairwell. The above analysis assumes constant densities, $\rho_{S}$ and $\rho_{0}$. This introduces a negligible error into the above equation for short buildings, and even for a 100 story building the resulting error would be less than 4 percent. This error is conservative in that the pressure difference predicted by equation (4.3) is high. By substituting the ideal gas law into equation (4.3), $\Delta \mathrm{P}_{\text {SO }}$ can be expressed as a function of temperature.

$$
\begin{equation*}
\Delta \mathrm{P}_{\mathrm{SO}}=\Delta \mathrm{P}_{\mathrm{SOb}}+\mathrm{by} \tag{4.4}
\end{equation*}
$$

where $b$ is the temperature factor and is expressed as:

$$
\begin{equation*}
\mathrm{b}=\frac{\mathrm{gP}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{0}}-\frac{1}{\mathrm{~T}_{\mathrm{S}}}\right) \tag{4.5}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \mathrm{T}_{0}=\text { absolute temperature of outside air } \\
& \mathrm{T}_{\mathrm{S}}=\text { absolute temperature of stairwell air }
\end{aligned}
$$

The effective leakage area from the stairwell through the building to the outside (per floor) can be expressed as

$$
\begin{equation*}
A_{S B O e}=\frac{A_{S B} A_{B O}}{\sqrt{A_{S B}^{2}+A_{B O}^{2}}} \tag{4.6}
\end{equation*}
$$

where:
$A_{S B}=$ flow area between the stairwell and the building (per floor)
$A_{B O}=$ flow area between the building and the outside (per floor)

In such a case, the pressure difference, $\Delta P_{S B}$, between the stairwell and the building can be expressed as:

$$
\begin{equation*}
\Delta \mathrm{P}_{\mathrm{SB}}=\Delta \mathrm{P}_{\mathrm{SBb}}+\frac{b y}{1+\left(\frac{\mathrm{A}_{\mathrm{SB}}}{\mathrm{~A}_{\mathrm{BO}}}\right)^{2}} \tag{4.7}
\end{equation*}
$$

The pressure differences $\Delta \mathrm{P}_{\mathrm{SO}}$ and $\Delta \mathrm{P}_{\mathrm{SB}}$ are related as follows:

$$
\begin{equation*}
\Delta \mathrm{P}_{\mathrm{SB}}=\frac{\Delta \mathrm{P}_{\mathrm{SO}}}{1+\left(\frac{\mathrm{A}_{\mathrm{SB}}}{\mathrm{~A}_{\mathrm{BO}}}\right)^{2}} \tag{4.8}
\end{equation*}
$$

### 4.3.2 Pressurization Air

For the case where a stairwell is positively pressurized throughout (i.e., the direction of air flow is from the stairwell to the outside over the
entire stairwell height), the flow from the stairwell to the outside can be written in differential form as:

$$
\begin{equation*}
\mathrm{dQ}=\mathrm{CA}_{\mathrm{he}} \sqrt{\frac{2 \Delta \mathrm{P} S O}{\rho}} \mathrm{dy} \tag{4.9}
\end{equation*}
$$

The term $A_{h e}$ is the distributed effective flow area per unit height which is uniform vertically. This distributed flow area can be related to the effective leakage area, $A_{S B O E}$, by means of the stairwell height, $H$, and the number of floors, $N$.

$$
A_{h e}=\frac{\mathrm{NA}_{\text {SBOe }}}{\mathrm{H}}
$$

Substituting this and equation (4.4) into equation (4.9) gives:

$$
\begin{equation*}
d Q=\frac{N^{A} A_{S B O e}}{H} \sqrt{2\left(\Delta P_{S O b}+b y\right) / \rho} d y \tag{4.9a}
\end{equation*}
$$

This can be integrated from $y=0$ to $y=H$ to give the total flow, $Q_{S B O}$, from the stairwell to the building and to the outside.

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{SBO}}=\frac{2}{3} N \text { C A }_{\text {SBOe }} \sqrt{\frac{2}{\rho}}\left(\frac{\Delta \mathrm{P}_{\mathrm{SOt}}^{3 / 2}-\Delta \mathrm{P}_{\mathrm{SOb}}^{3 / 2}}{\Delta \mathrm{P}_{\mathrm{SOL}}-\Delta \mathrm{P}_{\mathrm{SOb}}}\right) \tag{4.10}
\end{equation*}
$$

Where $\Delta \mathrm{P}_{\text {SOt }}$ is the pressure difference between the stairwell and the outside at the stairwell top $(y=H)$.

Because the $\Delta P_{S B}$ is a linear function of $\Delta P_{S O}$ as expressed in equation (4.8), equation (4.10) can be written in terms of the pressure from the stairwell to the building.

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{SB}}=\frac{2}{3} N C A_{\mathrm{SB}} \sqrt{\frac{2}{\rho}}\left(\frac{\Delta \mathrm{P}_{\mathrm{SBt}}^{3 / 2}-\Delta \mathrm{P}_{\mathrm{SBb}}^{3 / 2}}{\Delta \mathrm{P}_{\mathrm{SBL}}-\Delta \mathrm{P}_{\mathrm{SBb}}}\right) \tag{4.11}
\end{equation*}
$$

Because there is no vertical flow in the building, $Q_{S B}=Q_{S B O}$. This is the flow rate of supply air to the stairwell necessary to maintain the pressure differences, $\Delta \mathrm{P}_{\mathrm{SBb}}$ at the stairwell bottom and $\Delta \mathrm{P}_{\mathrm{SB}}$ at the top.

In a building with vertical air leakage, the exact evaluation of the system would require that the effect of three or more columns of air at
different temperatures be included. Such an analysis is cumbersome and for practical purposes a digital computer is needed. For this reason the method of analysis presented in this chapter for hand calculation is based on a building without vertical leakage. In order to make this analysis conservative when applied to buildings with vertical leakage, the stairwell temperature is replaced by the building temperature. Thus equation (4.5) becumes:

$$
\begin{equation*}
\mathrm{b}=\frac{\mathrm{gP}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{0}}-\frac{1}{\mathrm{~T}_{\mathrm{B}}}\right) \tag{4.12}
\end{equation*}
$$

For a building temperature of $70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)$ and for winter conditions, the temperature factor, $b$, can be obtained from figure B.7.

The flow from a pressurized stairwell can be expressed by equations (4.10) and (4.11). These equations can be written for $C=0.65$ and $\rho=0.075 \mathrm{lb} / \mathrm{ft}^{3}\left(1.20 \mathrm{~km} / \mathrm{m}^{3}\right)$.

$$
\begin{equation*}
\mathrm{Q}=\mathrm{GN} \mathrm{~A}_{\mathrm{e}} \tag{4.13}
\end{equation*}
$$

where:

$$
\begin{gather*}
Q=\text { volumetric flow rate from stairwell to building, cfm }\left(\mathrm{m}^{3} / \mathrm{s}\right) \\
A_{e}=\text { effective flow area per floor, } f \mathrm{f}^{2}\left(\mathrm{~m}^{2}\right) \\
G=\text { the flow factor, } \mathrm{fpm}(\mathrm{~m} / \mathrm{s}) \\
\qquad G=\mathrm{K}_{\mathrm{g}}\left(\frac{\Delta \mathrm{P}_{\mathrm{t}}^{3 / 2}-\Delta \mathrm{P}_{\mathrm{b}}^{3 / 2}}{\Delta \mathrm{P}_{\mathrm{t}}-\Delta \mathrm{P}_{\mathrm{b}}}\right) \tag{4.14}
\end{gather*}
$$

where:

$$
\begin{aligned}
\Delta \mathrm{P}_{\mathrm{t}}= & \text { pressure difference across flow path at stairwell top, } \\
& \text { in } \mathrm{H}_{2} \mathrm{O}(\mathrm{~Pa}) \\
\Delta \mathrm{P}_{\mathrm{b}}= & \text { pressure difference across flow path at stairwell bottom, } \\
& \text { in } \mathrm{H}_{2} \mathrm{O}(\mathrm{~Pa}) \\
\mathrm{K}_{\mathrm{g}}= & \text { coefficient, } 1740(0.559)
\end{aligned}
$$

This equation can be applied either to the flow, $Q_{S B O}$, from the stairwell through the building to the outside or to the flow, $\mathrm{Q}_{\mathrm{SB}}$, from the stairwell to the building. The flow factor, $G$, can be obtained from figure B. 8 .

Equations (4.13) and (4.14) apply when the effective flow area, $A_{e}$, is the same for each floor. In many cases, Ae varies from floor to floor. These equations can be applied piecewise to vertical stairwell sections where the values of $A_{e}$ are the same at each floor. To apply equations (4.13) and (4.14) in this manner, the following terms must be redefined:

```
\DeltaP
                analyzed, in H2O (Pa)
\DeltaP
                analyzed, in H2O (Pa)
    A
        ft
            N = number of floors in section being analyzed
```


### 4.3.3 Average Pressure Difference

The average pressure difference, $\overline{\Delta \mathrm{P}}$, can be defined as a pressure difference uniform over the stairwell height that would result in the same total flow as a nonuniform pressure profile. The flow from the stairwell can be expressed as:

$$
\begin{equation*}
Q=N A_{e} C \sqrt{\frac{2 \overline{\Delta P}}{\rho}} \tag{4.15}
\end{equation*}
$$

where $\overline{\Delta \mathrm{P}}$ is the average pressure difference across the flow path. Equations (4.11), (4.13) and (4.14) can be combined and solved for $\overline{\Delta \mathrm{P}}$ to give:

$$
\begin{equation*}
\overline{\Delta \mathrm{P}}=\frac{4}{9}\left(\frac{\Delta \mathrm{P}_{\mathrm{t}}^{3 / 2}-\Delta \mathrm{P}_{\mathrm{b}}^{3 / 2}}{\Delta \mathrm{P}_{\mathrm{t}}-\Delta \mathrm{P}_{\mathrm{b}}}\right)^{2} \tag{4.16}
\end{equation*}
$$

This relation can be approximated by:

$$
\begin{equation*}
\overline{\Delta \mathrm{P}}=\frac{1}{2}\left(\Delta \mathrm{P}_{\mathrm{t}}+\Delta \mathrm{P}_{\mathrm{b}}\right) \tag{4.17}
\end{equation*}
$$

The maximum error in this relation is approximately 6 percent and occurs when $\Delta \mathrm{P}_{\mathrm{b}}=0$.

Equations (4.15) and (4.16) can be applied piecewise to stairwell sections in the same manner as equations (4.13) and (4.14).

### 4.4 HEIGHT LIMIT

As stated in section 4.2 , two problems with pressurized stairwells are that the minimum pressure difference may be unacceptably low and that the maximum pressure difference may be unacceptably high. These problems are most likely to exist in tall buildings during periods of extreme outside temperature.

In some cases, satisfactory pressurization of a stairwell can be impossible when all the stairwell doors are closed. By satisfactory pressurization it is meant that nowhere over the stairwell height is the pressure difference greater than the maximum allowable pressure difference or less than the minimum allowable pressure difference.

For a building without vertical leakage, equation (4.5) can be substituted into equation (4.7) and solved for the height limit, Hm, below which satisfactory pressurization is possible.

$$
\begin{equation*}
H m=\frac{R}{g P} \frac{\left(\Delta P_{\max }-\Delta P_{\min }\right)}{\left|\frac{1}{T_{0}}-\frac{1}{T_{B}}\right|}\left[1+\left(\frac{A_{S B}}{A_{B O}}\right)^{2}\right] \tag{4.18}
\end{equation*}
$$

where:

$$
\begin{aligned}
\Delta P_{\text {max }}= & \text { maximum allowable pressure difference between the stairwell } \\
& \text { and the building } \\
\Delta P_{\min }= & \text { minimum allowable pressure difference between the stairwell } \\
& \text { and the building }
\end{aligned}
$$

```
T
T}\mp@subsup{\textrm{B}}{\textrm{B}}{= building temperature (absolute)
```

It can be observed that $T_{S}$ was replaced by $T_{B}$ in equation (4.18), this was done so that the equation would yield conservative values of Hm for buildings with vertical leakage. In such buildings, the actual pressure profiles depend on three or more columns of air at different temperatures. If the stairwell temperature is between the outside temperature and the building temperature, then equation (4.18) will yield conservative results.

The absolute value of the temperature term is used in equation (4.18) so that the equation will apply to both winter conditions ( $T_{B}>T_{0}$ ) and summer conditions $\left(T_{O}>T_{B}\right)$. In many cases, $A_{S B}$ is much smaller than $A_{B O}$, and, in such cases, equation (4.18) can be simplified to

$$
\begin{equation*}
H m=\frac{\mathrm{R}}{\mathrm{gP}} \frac{\left(\Delta \mathrm{P}_{\max }-\Delta \mathrm{P}_{\min }\right)}{\left|\frac{1}{\mathrm{~T}_{0}}-\frac{1}{\mathrm{~T}_{\mathrm{B}}}\right|} \tag{4.19}
\end{equation*}
$$

For a building temperature of $70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)$ and for winter conditions, the height limit, Hm, can be obtained from figure B.9.

Example

Is it possible to pressurize a $217 \mathrm{ft}(66 \mathrm{~m})$ stairwell if the outside design temperature is $0^{\circ} \mathrm{F}\left(-18^{\circ} \mathrm{C}\right)$ ? The maximum allowable force to open the 36 in ( 0.91 m ) wide door has been determined to be $50 \mathrm{lb}(222 \mathrm{~N})$ for this particular building. The force to overcome the door closer is $14 \mathrm{lb}(62 \mathrm{~N}$ ). The minimum allowable pressure difference across the closed stairwell door is 0.10 in $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~Pa})$.

The maximum allowable force due to pressure difference is $50-14=36 \mathrm{lb}$ (160 N) 。

From figure B.6, for a 36 in ( 0.91 m ) wide door, $\Delta \mathrm{P}_{\max }=0.60$ in $\mathrm{H}_{2} \mathrm{O}$ (149 Pa).

$$
\Delta P_{\max }-\Delta P_{\min }=0.60-0.10=0.50 \text { in } \mathrm{H}_{2} \mathrm{O}(124 \mathrm{~Pa}) .
$$

From figure B. 9 for $T_{0}=0^{\circ} \mathrm{F}\left(-18^{\circ} \mathrm{C}\right), \mathrm{Hm}=223 \mathrm{ft}(69 \mathrm{~m})$.

Because $H m$ is greater than the height of the stairwell, satisfactory pressurization of the stairwell is possible.

If Hm had been less than the stairwell height, it would not necessarily mean that satisfactory pressurization is impossible, because the estimate of Hm from equation (4.19) (Fig. B.9) is conservative. In such a case, a more exact analysis considering vertical leakage may be appropriate. If such an analysis indicated that satisfactory pressurization was not possible at extreme outside temperatures, stairwell compartmentation may be used (see section 4.1.2).

### 4.5 CALCULATION METHOD FOR A SIMPLE SYSTEM

A simple stairwell pressurization system has a supply air system that supplies air continuously to the stairwell in the event of a building fire. The single and multiple injection systems discussed in section 3.l.l are all simple systems. The supply fan can be a centrifugal type (Figs. 4.l to 4.3) or a propeller fan (Fig. 4.5). When a propeller fan is used it should be roof mounted in the horizontal plane with a wind shield. Wall mounted propeller fans without wind shields are not recommended because the flow rates of these fans are highly dependent on the wind.

When all the stairwell doors are closed, the system must maintain satisfactory pressurization. Simple pressurization systems have two limitations:

1. They generally are not capable of producing the airflows through open stairwell doorways necessary to prevent smoke backflow when an outside stairwell door is also open.
2. When stairwell doors are open, the pressure difference across closed stairwell doors can drop to low levels.

These limitations obviously restrict applications which are appropriate for simple stairwell pressurization systems. However, no consensus currently exists as to what are appropriate applications.

### 4.5.1 Calculation Steps

The following analysis applies to simple stairwell pressurization. It is for a stairwell with a door to the building at each floor. The stairwell must also have negligible leakage from the stairwell directly to the outside other than through the ground floor exterior door when it opens. If this is not the case, the analysis should be modified accordingly.

Step I. Establish design values.

The following areas are per floor and per stairwell.

```
\(A_{B O W}=\) wall area between the building and the outside
\(A_{S B W}=\) wall area between the stairwell and the building
    \(A_{B O}=\) flow area between the building and the outside
    \(A_{S B}=f l o w\) area between the stairwell and the building when
        stairwell doors are closed
        \(\mathrm{N}=\) number of floors of stairwell
        \(H=\) height to top of highest floor served by the stairwell
    \(T_{O}=\) outside design temperature
    \(T_{B}=\) building temperature
\(\Delta P_{\text {max }}=\) maximum allowable pressure difference between the stairwell
        and the building
```

$$
\begin{aligned}
\Delta P_{\text {min }}= & \text { minimum allowable pressure difference between the stairwell } \\
& \text { and the building }
\end{aligned}
$$

Step 2. Calculate the temperature factor.
$b=\frac{g P}{R}\left(\frac{1}{T_{0}}-\frac{1}{T_{B}}\right)$
Step 3. Choose a value for the pressure difference, ${ }^{\Delta P}{ }_{S B b}$, between the stairwell and the building at the stairwell bottom when all the stairwell doors are closed. The ${ }^{\Delta P_{S B b}}$ should not be less than $\Delta \mathrm{P}_{\text {min }}$.

Step 4. Calculate the pressure difference, $\Delta P_{\text {SBt }}$, between the stairwell and the building at the stairwell top when all the stairwell doors are closed.
$\Delta \mathrm{P}_{\mathrm{SBt}}=\Delta \mathrm{P}_{\mathrm{SBb}}+\frac{\mathrm{bH}}{1+\left(\frac{\mathrm{A}_{\mathrm{SB}}}{\mathrm{A}_{\mathrm{BO}}}\right)^{2}}$

It should be checked that $\Delta P_{S B t}$ does not exceed $\Delta P_{\text {max }}$. If this is not the case, then a smaller value of $\Delta \mathrm{P}_{\mathrm{SBb}}$ can be chosen in step 3 , provided it is not less than $\Delta \mathrm{P}_{\min }$. If this is not possible see section 4.4 .

Step 5. Calculate the flow, $Q_{S B}$, from the stairwell to the building when the stairwell doors are closed.
$Q_{S B}=\frac{2}{3} C A_{S B} \sqrt{\frac{2}{\rho}}\left(\frac{\Delta \mathrm{P}_{\mathrm{SBt}}^{3 / 2}-\Delta \mathrm{P}_{\mathrm{SBb}}^{3 / 2}}{\Delta \mathrm{P}_{\mathrm{SBt}}-\Delta \mathrm{P}_{\mathrm{SBb}}}\right)$
The flow rate is the total air flow rate needed to pressurize the stairwell.

### 4.5.2 Simple System Example

This example is an analysis of a 20 story stairwell. Each story is $10.8 \mathrm{ft}(3.3 \mathrm{~m})$ in height. The stairwell has a single-leaf door at each floor
leading to the occupant space and one ground-level door to the outside. The exterior of the building has a wall area of $6030 \mathrm{ft}^{2}\left(560 \mathrm{~m}^{2}\right)$ per stairwell per floor. The exterior building walls and stairwell walls are of average leakiness. The stairwell wall area is $560 \mathrm{ft}^{2}\left(52 \mathrm{~m}^{2}\right)$ per floor. The area of the crack around each stairwell door to the building is $0.26 \mathrm{ft}^{2}\left(0.024 \mathrm{~m}^{2}\right)$. The exterior door to the stairwell is well gasketed, and its leakage can be neglected when it is closed.

For this example, the following design parameters are used: outside design temperature of $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, minimum allowable pressure when all doors are closed of 0.052 in $\mathrm{H}_{2} \mathrm{O}(13 \mathrm{~Pa})$, maximum allowable pressure when all the doors are closed of 0.551 in $\mathrm{H}_{2} \mathrm{O}(137 \mathrm{~Pa})$.

Step 1. Establish design values.

$$
\begin{aligned}
& A_{B O w}=6030 \mathrm{ft}^{2}\left(560 \mathrm{~m}^{2}\right) \\
& A_{S B w}=560 \mathrm{ft}^{2}\left(52 \mathrm{~m}^{2}\right)
\end{aligned}
$$

Using the leakage ratio for an exterior building wall of average tightness from table C.l, $A_{B O}=6030\left(0.21 \times 10^{-3}\right)=1.27 \mathrm{ft}^{2}\left(0.118 \mathrm{~m}^{2}\right)$. Using leakage ratio for a stairwell wall of average tightness from table C.l, the leakage area of the stairwell walls is $560\left(0.11 \times 10^{-3}\right)=0.06 \mathrm{ft}^{2}$ ( $0.006 \mathrm{~m}^{2}$ ). $\mathrm{A}_{\mathrm{SB}}$ equals the leakage area of the stairwell wall plus the cracks around the closed doors.

$$
\begin{aligned}
\mathrm{A}_{\mathrm{SB}} & =0.06+0.26=0.32 \mathrm{ft}^{2}\left(0.030 \mathrm{~m}^{2}\right) \\
\mathrm{N} & =20 \\
\mathrm{H} & =217 \mathrm{ft}(66 \mathrm{~m}) \\
\mathrm{T}_{\mathrm{O}} & =14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right) \\
\mathrm{T}_{\mathrm{B}} & =70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right) \\
\Delta \mathrm{P}_{\max } & =0.551 \text { in } \mathrm{H}_{2} \mathrm{O}(137 \mathrm{~Pa}) \\
\Delta \mathrm{P}_{\min } & =0.052 \text { in } \mathrm{H}_{2} \mathrm{O}(13 \mathrm{~Pa})
\end{aligned}
$$

Step 2. Calculate b.

From figure B .7 , for $\mathrm{T}_{\mathrm{O}}=14^{\circ} \mathrm{F}\left(10^{\circ} \mathrm{C}\right)$
$b=0.00170$ in $H_{2} \mathrm{O} / \mathrm{ft}(1.39 \mathrm{~Pa} / \mathrm{m})$

Step 3. Choose $\Delta \mathrm{P}_{\mathrm{SBb}}=0.080$ in $\mathrm{H}_{2} \mathrm{O}$ (20 Pa)

This was chosen larger than $\Delta P_{m i n}$ to provide an extra degree of protection.

Step 4. Calculated $\Delta \mathrm{P}_{\mathrm{SBt}}$

$$
\Delta \mathrm{P}_{\mathrm{SBt}}=0.08+\frac{0.0017(217)}{1+\left(\frac{0.32}{1.27}\right)^{2}}=0.426 \text { in } \mathrm{H}_{2} \mathrm{O}(106 \mathrm{~Pa})
$$

This is less than $\Delta \mathrm{P}_{\text {max }}$, so proceed to the next step.

Step 5. Calculate $Q_{S B c}$ using figure B.8.

For $\Delta P_{t}-\Delta P_{b}=0.426-0.08=0.346$ in $H_{2} O(86 \mathrm{~Pa})$ and
$\Delta P_{b}=0.080$ in $H_{2} 0(20 \mathrm{~Pa}), G=1280 \mathrm{fpm}(6.50 \mathrm{~m} / \mathrm{s})$
$\mathrm{Q}_{\mathrm{SB}}=\mathrm{GNA}_{\mathrm{SB}}$
$=1280(20)(0.32)=8200 \mathrm{cfm}\left(3.9 \mathrm{~m}^{3} / \mathrm{s}\right)$

This flow rate is highly dependent on the leakage area of cracks around the closed doors and upon the leakage area that exists in the stairwell walls. In practice, these leakage areas are difficult to determine and even more difficult to control. If the value of the flow area, $A_{S B}$, were $0.54 \mathrm{ft}^{2}\left(0.050 \mathrm{~m}^{2}\right)$ rather than $0.32 \mathrm{ft}^{2}\left(0.030 \mathrm{~m}^{2}\right)$, then a flow rate, $\mathrm{Q}_{\mathrm{SB}}$, of $13,800 \mathrm{cfm}\left(6.5 \mathrm{~m}^{3} / \mathrm{s}\right)$ would have been calculated in step 5. A fan with a sheave can be used to allow adjustment of supply air to offset for variations in actual leakage areas from the values used in the design calculations.

This analysis has the advantage that it lends itself to hand calculation. A limitation is that this technique does not allow for consideration of open stairwell doors. Chapter 5 presents an approach to overcome this limitation.

## CHAPTER 5. STAIRWELL PRESSURIZATION AND OPEN DOORS

The fundamental concepts of stairwell pressurization and a method of calculation for simple stairwell pressurization were presented in chapter 4. The simple pressurization system has two limitations regarding open doors. First, when a stairwell door to the outside and doors to the building are open, the simple system is not capable of providing sufficient air flows through doorways to the building to prevent smoke backflow. Second, when stairwell doors are open, the pressure difference across the closed doors can drop to low levels.

### 5.1 SYSTEMS

In this chapter, more complex systems are discussed. They can be grouped into three categories:

- Overpressure relief systems which vent or relieve part of the supply air when all the stairwell doors are closed.
- Supply fan bypass systems which bypass excess supply air back to the fan inlet.
- Combination stairwell pressurization and fire floor smoke venting systems.

The discussion of single and multiple injection, compartmentation, vestibules, and supply air source appearing in chapter 4 applies to the above systems.

### 5.1.1 Overpressure Relief

The total airflow rate is selected to provide at least the minimum air velocity when a specific number of doors are open. When all the doors are closed, part of this air is relieved through a vent in order to prevent excessive pressure buildup, which could otherwise result in excessive dooropening forces. This excess air can be vented either to the building or to the outside. Exterior vents can be subject to adverse effects of the wind, so wind shields are recommended.

Barometric dampers that close when the pressure drops below a specified value can be used to minimize the air losses through the vent when doors are open. Figure 5.1 illustrates a pressurized stairwell with overpressure relief vents to the building at each floor. In systems built with vents between the stairwell and the building, the vents typically have one or more fire dampers in series with the barometric damper. As an energy conservation feature, these fire dampers are normally closed and open when the pressurization system

## Notes:

1. Vents to the building have a barometric damper and one or two fire dampers in series.
2. A roof mounted supply fan is shown, however the fan may be located at any level.
3. A manually operated damper may be located at the stairwell top for smoke purging by the fire department.


Figure 5.l. Stairwell pressurization with vents to the building at each floor
is activated. This arrangement also can reduce the possibility of annoying damper chatter that frequently occurs with barometric dampers.

An exhaust duct can be used in a pressurized stairwell as a means of overpressure relief. The intent of this system is that the normal resistance of a nonpowered exhaust duct acts to maintain pressure differences that are within the design limits.

Exhaust fans also can be used to prevent excessive pressures when all stairwell doors are closed. The fan should be controlled by a differential pressure sensor, so that it will not operate when the pressure difference between the stairwell and the building falls below a specific level. This should prevent the fan from pulling smoke into the stairwell when a number of open doors have reduced stairwell pressurization. Such an exhaust fan should be specifically sized so that the pressurization system will perform within design limits. Because an exhaust fan can be adversely affected by the wind, a wind shield is recommended.

An alternate method of venting a stairwell is through an automatically opening stairwell door to the outside at ground level. Under normal conditions this door would be closed and in most cases locked for security reasons. Provisions need to be made so that this lock does not conflict with the automatic operation of the system.

Possible adverse wind effects are also a concern with a system that uses an open outside door as a vent. Occasionally, high local wind velocities develop near the exterior stairwell door, and such local winds are difficult to estimate in the vicinity of new buildings without expensive modeling. Local objects on a wall can act as wind breaks (or wind shields). An example of this method of overpressure relief is provided in section 6.6.

### 5.1.2 Supply Fan Bypass

In this system the capacity of the supply fan is sized to provide at least the minimum air velocity when the design number of doors are open. Figure 5.2 illustrates such a system. The flow rate of air into the stairwell
is varied by modulating bypass dampers, which are controlled by one or more static pressure sensors that sense the pressure difference between the stairwell and the building. When all the stairwell doors are closed, the pressure difference increases and the bypass damper opens to increase the bypass air and decrease the flow of supply air to the stairwell. In this manner, excessive stairwell pressures and excessive pressure differences between the stairwell and the building are prevented.

### 5.1.3 Stairwell Pressurization and Smoke Venting

Smoke venting of the fire floor can be used to improve the performance of the stairwell pressurization. This smoke removal may or may not be part of a zoned smoke control system (see chapter 6). Three different types of smoke removal can be considered: (1) exterior wall vents, (2) smoke shafts, and (3) fan powered exhaust.

Besides providing a path for smoke removal, exterior wall vents allow an increased pressure difference across a closed fire floor stairwell door and allow increased air velocity through an open fire floor stairwell door.

## Notes:



Figure 5.2. Stairwell pressurization with bypass around supply fan

Venting the fire floor is also a way to reduce the potential hazards resulting from a broken fire floor window (see section 2.9.2).

Smoke shafts are similar to external wall vents, except that smoke from the fire floor is vented through a shaft. The venting is aided by the buoyancy forces of hot smoke, as discussed in section 2.2 . Smoke shafts should be constructed in accordance with local codes; specific engineering data regarding sizing of smoke shafts is available from Tamura and Shaw [l].

The effect of a fan powered smoke exhaust system on the performance of a pressurized stairwell is similar to that of exterior wall vents. The exhaust fans can be individually located on each floor or can be used in combination with a smoke exhaust shaft.

### 5.2 ANALYSIS APPROACH

The analysis of a pressurized stairwell designed to accommodate open doors is more complicated than the analysis of a simple stairwell system, as presented in chapter 4. This is because the vertical airflow in the stairwell is much larger with open doors; therefore, the pressure loss due to friction must be included in the analysis. In addition, it is more difficult to determine whether summer or winter design conditions dominate. For these reasons it is recommended that the design of such a system be based on a computer analysis using a program of the type described in chapter 3. This analysis should include both summer and winter design conditions, with all doors closed and with various combinations of the design number of doors open.

The shaft flow coefficient, $C_{S}$, for a stairwell is defined by equation (3.7). $C_{S}$ is dependent on the horizontal cross sectional area, $A, o f$ the stairwe 11 and may be expressed,

$$
\begin{equation*}
C_{S}=C_{S}^{\prime} A \tag{5.1}
\end{equation*}
$$

based on the research of Tamura and Shaw [2]. An average value of $C_{S}^{\prime}=650(210)$ is recommended for area in $\mathrm{ft}^{2}\left(\mathrm{~m}^{2}\right)$, with pressure loss due to friction in inches of water ( Pa ), mass flow expressed as standard volumetric flow in $\operatorname{cfm}(\mathrm{L} / \mathrm{s})$ at $70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)$, and one atmosphere.

### 5.3 EXAMPLE ANALYSIS

This is an example of a building with two stairwells and an elevator shaft with two cabs. The building and both stairwells are 15 stories each. Each stairwell is pressurized by a centrifugal fan with bypass duct, as discussed in section 5.l.2. The stairwells are the same and can be analyzed on a per stairwell basis. The system is to be designed to maintain at least an average velocity of $49.2 \mathrm{fpm}(0.25 \mathrm{~m} / \mathrm{s})$ through an open stairwell door when four stairwell doors are open. The stairwell doors are all 3 x 7 ft ( 0.914 x 2.13 m ) in size. The building has an open floor plan on each floor, so there are no interior partitions to complicate airflow on each floor.

The other design values are:

- $12.0 \mathrm{ft}(3.66 \mathrm{~m})$ height between stories
- $14^{\mathrm{O}} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$ outside winter design temperature
- $93^{\circ} \mathrm{F}\left(34^{\circ} \mathrm{C}\right)$ outside summer design temperature
- $70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)$ building design temperature
- $45^{\circ} \mathrm{F}\left(7^{\circ} \mathrm{C}\right)$ winter stairwell temperatures, which reflects a preheat coil in the stairwell pressurization system to prevent standpipe freezing
- $82^{\circ} \mathrm{F}\left(28^{\circ} \mathrm{C}\right)$ summer stairwell temperature. In summer the stairwell is pressurized with unconditioned outside air, accordingly this temperature was selected, based on engineering judgment, to be between the building design temperature and the outside summer design temperature
- $1.13 \mathrm{ft}^{2}\left(0.105 \mathrm{~m}^{2}\right)$ flow area per stairwell between the building and the outside
- $0.850 \mathrm{ft}^{2}\left(0.0790 \mathrm{~m}^{2}\right) \mathrm{flow}$ area between floors of the building
- $0.323 \mathrm{ft}^{2}\left(0.030 \mathrm{~m}^{2}\right)$ flow area between the stairwell and the building on each floor with stairwell doors closed
- $10.5 \mathrm{ft}^{2}\left(0.975 \mathrm{~m}^{2}\right)$ flow area of open stairwell doors (half the geometric area of the open door, see section 2.8)
- $0.670 \mathrm{ft}^{2}\left(0.0622 \mathrm{~m}^{2}\right)$ flow area between the building and the elevator shaft per stairwell per floor
- $1.50 \mathrm{ft}^{2}\left(0.139 \mathrm{~m}^{2}\right)$ flow area of the vent from the top of the elevator shaft to the outside at the penthouse level, per stairwell (for the difference between vent area and flow area of a vent see section 2.8)
- 0.10 in $\mathrm{H}_{2} \mathrm{O}(24.9 \mathrm{~Pa})$ minimum allowable pressure difference between stairwell and building when all doors are closed
- 0.40 in $\mathrm{H}_{2} \mathrm{O}(99.5 \mathrm{~Pa})$ maximum allowable pressure difference between stairwell and building when all doors are closed
- $7.0 \times 10^{4}(2100), C_{S}$ for stairwell
- $2.4 \times 10^{5}$ (7200), $\mathrm{C}_{\mathrm{S}}$ for elevator shaft
- $1030 \mathrm{cfm}\left(0.487 \mathrm{~m}^{3} / \mathrm{s}\right)$ minimum flow through stairwell door which corresponds to the average velocity of $49.2 \mathrm{fpm}(0.25 \mathrm{~m} / \mathrm{s})$, based on the geometric area of the door

The computer program described in chapter 3 was used for this analysis. A number of different runs of the program were made to determine which four doors open would be the worst case and during which season of the year. Pressure differences and average velocities from eight runs are listed in table 5.1.

$$
\begin{aligned}
& \text { Floor on wnicn } \\
& \text { doors are open }
\end{aligned}
$$

| （ $\angle 5$ サ・0） | $6^{*} 68$ | SI | （ $\mathrm{I} \cdot L Z$ ） | $60{ }^{\circ} 0$ | I |
| :---: | :---: | :---: | :---: | :---: | :---: |
| （S6カ゚ロ） | $5^{\circ} \mathrm{L6}$ | 8 | （ $\mathrm{I} \cdot \mathrm{SZ}$ ） | I0I ${ }^{\circ} 0$ | I |
| （19E＊） | $0^{*} \mathrm{~T}$ L | I | （9＊07） | ¢9 $\left[口^{\circ} 0\right.$ | 7 |
| －－ | －－ | －－ | （ $6^{\circ} \mathrm{I} L$ ） | $687^{\circ} 0$ | I |
| （サらカ゚0） | $7{ }^{\circ} 68$ | ST | （7＊0て） | $280^{\circ} 0$ | I |
| （ $\angle$ てワ＊0） | ［・ワ8 | 8 | $\left(6^{\circ} \angle \mathrm{I}\right)$ | て $20^{\circ} 0$ | I |
| （ $¢ \varsigma Z^{\bullet} 0$ ） | $6^{\circ} 67$ | I |  | £ T ${ }^{\circ} 0$ | 7 |
| －－ | －－ | －－ | （ $8^{\bullet}$ ¢8） | $\angle \varepsilon \varepsilon^{\bullet} 0$ | I |
| （ $\mathrm{s} / \mathrm{w}$ ） | ud $\ddagger$ | Ioot | （ $\mathrm{ed}_{\mathrm{d}}$ ） | $\mathrm{O}^{Z_{\mathrm{H}}}$ ut | dootf |
| Sutptinq of Kemaoop |  |  | doop pasot？ |  |  |
| uado［tamatejs ysinoxyz |  |  | ssoxวe əวuəxวfitp |  |  |
|  |  |  | əanssaxd unuṭụh |  |  |

$$
\begin{aligned}
& \text { Outside } \\
& \text { stairwell } \\
& \text { door } \\
& \\
& \text { closed } \\
& \text { open } \\
& \text { open } \\
& \text { open } \\
& \text { closed } \\
& \text { open } \\
& \text { open } \\
& \text { open }
\end{aligned}
$$

|  | \％ |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

The system can be designed with static sensors located at one floor or a number of floors. For the following discussion the system is considered to have only one static pressure sensor located at the seventh floor. The two runs with no doors open (table 5.1) and a total supply rate of 7350 cfm ( $3.47 \mathrm{~m}^{3} / \mathrm{s}$ ) results in acceptable pressure differences for both summer and winter.

The worst case of doors open was the exterior door and the three lowest stairwell doors to the building during the summer. This case is presented as run 2 in appendix $E$. In this case, a supply rate of approximately $19,500 \mathrm{cfm}$ $\left(9.20 \mathrm{~m}^{3} / \mathrm{s}\right)$ is needed to provide the minimum flow rate of 1030 cfm ( $0.487 \mathrm{~m}^{3} / \mathrm{s}$ ) through the first floor stairwell door to the building. The pressure difference across the stairwell at the seventh floor is 0.186 in $\mathrm{H}_{2} \mathrm{O}(46.0 \mathrm{~Pa})$. Therefore, to operate successfully under this condition, the system must be able to supply $19,500 \mathrm{cfm}\left(9.20 \mathrm{~m}^{3} / \mathrm{s}\right)$ at $0.186 \mathrm{in} \mathrm{H}_{2} \mathrm{O}$ (46.0 Pa).

In this example, the minimum average design velocity through an open doorway is the low value of $49.2 \mathrm{fpm}(0.25 \mathrm{~m} / \mathrm{s})$. If a larger design velocity is required, design problems can result with this system. Increased flow through open doorways is accompanied by increased pressure difference across those doors that remain closed. For run 2 (Appendix E) the pressure difference across the closed doors ranged from 0.11 to 0.23 in $H_{2} \mathrm{O}$ (27 to 57 Pa ). If, for the conditions of run 2, the supply air to the stairwell were increased to provide a minimum $100 \mathrm{pfm}(0.51 \mathrm{~m} / \mathrm{s})$ through open stairwell doors, then the pressure difference across the closed doors would range from approximately 0.40 to 0.90 in $\mathrm{H}_{2} \mathrm{O}$ ( 100 to 220 Pa ). Obviously this is greater than the maximum allowable pressure difference for this example, because the resulting door opening forces would be unacceptable. Venting of the fire floor (Section 5.1 .3 ) can be used to reduce this problem.

It should be noted that the unique determination of the worst case for open doors in this example is not valid for all pressurized stairwells in general, i.e., a different pressurization system or a different outside design temperature could result in a different combination of doors constituting the worst case.

An air supply injection point was located at each floor in the computer analysis; however, injection points can be located further apart, as discussed in chapter 4 .

For winter design conditions with the stairwell doors closed, the stairwell has a relatively uniform pressure profile, as can be seen from run 5 in Appendix E. The difference between the maximum and minimum pressure difference is only 0.049 in $\mathrm{H}_{2} \mathrm{O}$ ( 12.2 Pa ). This computer analysis included vertical leakage between floors and through the elevator shaft. However, for a similar building without vertical leakage, the difference between the maximum and minimum pressure difference is approximately 0.28 in $\mathrm{H}_{2} \mathrm{O}$ (70 Pa), as calculated by equation (4.7). This stairwell performance is dependent on the flow throughout the entire building. Factors such as a closed elevator vent, an enclosed elevator lobby, or variation in the leakage characteristics of the building walls can greatly affect such an analysis.

### 5.4 REFERENCES

[1] Tamura, G. T. and Shaw, C. Y., Basis for the Design of Smoke Shafts, Fire Technology, Vol. 9, No. 3, pp. 209-222, August 1973.
[2] Tamura, G. T. and Shaw, C. Y., Air Leakage Data for the Design of Elevator and Stair Shaft Pressurization Systems, ASHRAE Transactions 1976, Vol. 82, Part 2, pp. 179-190.

# CHAPTER 6. <br> ZONED SMOKE CONTROL 

The pressurized stairwells discussed in chapters 4 and 5 are intended to control smoke to the extent that they inhibit smoke infiltration to the stairwell. However, in a building with just a pressurized stairwell, smoke can flow through cracks in floors and partitions and through shafts to damage property and threaten life at locations remote from the fire. The concept of zone smoke control discussed in this chapter is intended to limit this type of smoke movement within a building.

### 6.1 SMOKE CONTROL ZONES

A building is divided into a number of smoke control zones, each zone separated from the others by partitions, floors, and doors that can be closed to inhibit the movement of smoke. In the event of a fire, pressure differences and airflows produced by mechanical fans are used to limit the smoke spread to the zone in which the fire initiated. The concentration of smoke in this smoke zone goes unchecked and accordingly, in zoned smoke control systems, it is intended that building occupants evacuate the smoke zone as soon as possible after fire detection.

Frequently, each floor of a building is chosen to be a separate smoke control zone. However, a smoke control zone can consist of more than one floor, or a floor can consist of more than one smoke control zone. Some arrangements of smoke control zones are illustrated in figure 6.1. When a fire occurs, all of the nonsmoke zones in the building, or only zones adjacent to the smoke zone, may be pressurized, as in figure 6.1 (b) and (d). The latter system is frequently called a pressure sandwich, and this concept design has the drawback that it is dependent upon proper construction of shafts. It is possible to have smoke flow through shafts past the pressurized zone and into unpressurized spaces, but pressurizing all nonsmoke zones reduces this possibility. The comments concerning location of supply air inlets of pressurized stairwells (Section 4.1 .1 ) also apply to the supply air inlets for nonsmoke zones.


## Note:

In the above figures, the smoke zone is indicated by a minus sign and pressurized spaces are indicated by a plus sign. Each floor can be a smoke control zone as in (a) and (b) or a smoke zone can consist of more than one floor as in (c) and (d). All the nonsmoke zones in a building may be pressurized as in (a) and (c) or only nonsmoke zones adjacent to the smoke zone may be pressurized as in (b) and (d). A smoke zone can also be limited to a part of a floor as in (e).

Figure 6.1. Some arrangements of smoke control zones

### 6.2 SMOKE ZONE VENTING

Venting of smoke from a smoke zone is important because it prevents significant overpressures due to thermal expansion of gases as a result of the fire. In addition, venting results in some reduction of smoke concentration in the smoke zone. Venting can be accomplished in three ways*:

- Exterior wall vents.
- Smoke shafts.
- Mechanical venting (or exhaust).

These concepts are discussed in detail later. Smoke purging, consisting of equal air supply and exhaust rates, is not considered here for smoke control, because it does not produce pressure differences or air flows that can control smoke movement. It is generally believed that such purging at the airflows available with HVAC systems cannot significantly reduce smoke concentrations in the smoke zone resulting from a large fire.

### 6.2.1 Exterior Wall Vents

Exterior wall vents can consist of windows or wall panels that open automatically when the smoke control system is activated. In order to minimize adverse effects of wind, the area of wall vents should be evenly distributed among all the exterior walls. For buildings that are much longer than wide, the vents can be evenly divided between the two long sides. Exterior wall venting is most appropriate for buildings with open floor plans and least suitable when the floor plan is divided into many compartments. Because the flow of hot gases through a wall vent can be substantial, precautions should be taken in the design of exterior walls to minimize the possibility of exterior fire spread to floors above the vent.

The following is a method for determining the size of exterior wall vents presented in essentially the same form as originally by Tamura [1]. In this analysis, each floor consists of a smoke control zone.

[^7]When a building is pressurized, opening an exterior wall vent causes air to flow from adjacent floors to the vented floor (smoke zone) and through the vent to the outside, as illustrated in figure 6.2. If the supply and exhaust are shut down on the fire floor, the total air flow rate through the wall vents equals the total air flow rate into the vented floor from the surrounding smoke control zones:

$$
\begin{equation*}
A_{v} \sqrt{P_{F}-P_{0}}=A_{e} \sqrt{P_{B}-P_{F}} \tag{6.1}
\end{equation*}
$$

where:

$$
\begin{aligned}
& A_{v}=\text { flow area of the exterior wall vent, } f t^{2}\left(\mathrm{~m}^{2}\right) \\
& A_{e}=\text { effective flow area of the enclosure of the smoke zone, } \mathrm{ft}^{2}\left(\mathrm{~m}^{2}\right) \\
& \mathrm{P}_{\mathrm{F}}=\text { smoke zone pressure, in } \mathrm{H}_{2} \mathrm{O}(\mathrm{~Pa}) \\
& \mathrm{P}_{\mathrm{O}}=\text { outside pressure, in } \mathrm{H}_{2} \mathrm{O}(\mathrm{~Pa}) \\
& \mathrm{P}_{\mathrm{B}}=\text { building pressure on nonsmoke zones, in } \mathrm{H}_{2} \mathrm{O}(\mathrm{~Pa})
\end{aligned}
$$

The effective flow area, $A_{e}$, includes the flow areas of the walls of vertical shafts, floor constructions, and duct openings (return and exhaust) of the smoke zone. Rearranging equation (6.1) yields

$$
\begin{equation*}
\frac{P_{B}-P_{F}}{P_{F}-P_{0}}=\left(\frac{A_{v}}{A_{e}}\right)^{2} \tag{6.2}
\end{equation*}
$$



Figure 6.2. Flow pattern with venting of smoke zone

But: $\quad P_{B}-P_{O}=\left(P_{B}-P_{F}\right)+\left(P_{F}-P_{0}\right)$

Let:

$$
\begin{aligned}
& \Delta \mathrm{P}_{\mathrm{BO}}=\mathrm{P}_{\mathrm{B}}-\mathrm{P}_{\mathrm{O}} \\
& \Delta \mathrm{P}_{\mathrm{BF}}=\mathrm{P}_{\mathrm{E}}-\mathrm{P}_{\mathrm{F}} \\
& \Delta \mathrm{P}_{\mathrm{FO}}=\mathrm{P}_{\mathrm{F}}-\mathrm{P}_{0}
\end{aligned}
$$

Then: $\quad \Delta P_{B O}=\Delta P_{B F}+\Delta P_{F O}$

$$
\Delta \mathrm{P}_{\mathrm{FO}}=\Delta \mathrm{P}_{\mathrm{BO}}-\Delta \mathrm{P}_{\mathrm{BF}}
$$

Substituting the above into equation (6.2) and rearranging yields

$$
\begin{equation*}
\frac{\Delta P_{B F}}{\Delta P_{B O}}=\frac{\left(A_{v} / A_{e}\right)^{2}}{1+\left(A_{v} / A_{e}\right)^{2}} \tag{6.3}
\end{equation*}
$$

A plot of this equation is shown in figure 6.3. This shows that for particular values of $\Delta P_{B O}$ and $A_{e}$, the pressure difference, $\Delta P_{B F}$, across the boundary of the smoke zone increases as the vent area, $A_{v}$, increases. For large values of $A_{V}, \triangle \mathrm{P}_{\mathrm{BF}}$ approaches $\triangle \mathrm{P}_{\mathrm{BO}}$.


Figure 6.3. Variation of pressure differences with vent size

When the vent area is equal to the effective flow area of the enclosure of the smoke zone $\left(A_{v} / A_{e}=1\right)$, then the pressure difference across the boundary of the smoke zone is one-half of the building pressurization $\left(\Delta \mathrm{P}_{\mathrm{BF}} / \Delta \mathrm{P}_{\mathrm{BO}}=0.50\right)$. Also, when $\mathrm{A}_{\mathrm{V}} / \mathrm{A}_{\mathrm{e}}=3.0, \Delta \mathrm{P}_{\mathrm{BF}} / \Delta \mathrm{P}_{\mathrm{BO}}=0.90$. Increasing the vent area further will not significantly increase the pressure difference across the boundary of the smoke zone.

Opening a stairwell door on a floor of a nonsmoke zone increases the pressure difference across the closed stairwell door on the smoke zone. This can be explained by the use of the concept of the effective flow area (see section 2.6 ), and is left to the reader as an exercise. Opening doors in a stairwell on both a nonsmoke zone and the smoke zone results in considerable airflow from the stairwell to the smoke zone, which is accompanied by reduced pressure difference across the boundary of the smoke zone.

Opening only a stairwell door in the smoke zone will result in some air flow from the stairwell to the smoke zone. This flow rate depends on the level of pressurization of the nonsmoke zones and the leakage characteristics of the stairwell. It is possible that this flow rate may not be sufficient to prevent smoke backflow into the stairwell. For this reason, stairwell pressurization should be considered to provide an additional level of protection.

### 6.2.2. Smoke Shafts

A smoke shaft is a vertical shaft extending from the bottom to the top of a building, with openings at the top to the outside and openings to building spaces at each floor. These openings are fitted with normally closed dampers. In a fire situation, only the damper on the fire floor and the top outside damper open to vent smoke to the outside. Smoke shafts should be constructed in accordance with local codes. Tamura and Shaw [2]. provide information concerning sizing smoke shafts. Smoke shafts are not a means of smoke control and by themselves cannot prevent smoke spread throughout the fire floor and to other floors. However, smoke shafts in conjunction with pressurization of nonsmoke zones can provide pressure differences to control smoke movement. In order to assure air flow through open stairwell doors
sufficient to prevent smoke backflow, it may be necessary to pressurize stairwells as well.

Smoke shafts lend themselves to use in buildings with open floor plans. The air movement caused by smoke shafts operating under normal stack effect conditions tends to pull smoke toward the smoke shaft inlet on the fire floor. It is recommended that smoke shafts be located as far as possible from exit stairwells, so that smoke in the vicinity of the shaft inlet does not pose an increased hazard during evacuation or fire fighting. Because hot smoke frequently stratifies near the ceiling, it is recommended that smoke shaft inlets be located in or near the ceiling.

### 6.2.3 Mechanical Exhaust

A specially dedicated exhaust system or the exhaust fans of the HVAC system can be used to provide mechanical exhaust for the smoke zone. Mechanical exhaust of the smoke zone is generally used in conjunction with pressurization of nonsmoke zones. In such a system, stairwell pressurization can greatly reduce the chance of smoke backflow into stairwells.

Mechanical exhaust by itself can result in sufficient pressure differences for smoke control. However, in the event of window breakage or a large opening to the outside from the smoke zone, mechanical exhaust can no longer maintain favorable pressure differences. For this reason, mechanical exhaust alone does not constitute an adequate smoke control system when there is a significant probability of window breakage or an opening from the smoke zone to the outside.

Exhaust gases can be at high temperatures that have the potential to cause fan failure. The temperature of the smoke as it goes through the exhaust system decreases due to heat transfer and dilution. When the HVAC system is being used for smoke exhaust, the recommended approach is to choose a large enough smoke control zone so that dilution alone will lower the temperature of the gases at the fan to the point where an ordinary fan can be used safely. This approach depends on the fire being limited to only a fraction (such as one room) of the smoke zone. Then, even for a fire in the
compartment nearest the fan, the temperature of the gases reaching the fan will be sufficiently diluted by cooler air being drawn into the fan from other compartments. In cases where this cannot be done, heat-rated fans can be used. Obviously, the ductwork in such a system should be such that it can withstand the temperatures to which it would be subjected. Low temperature smoke from a sprinklered fire will not pose such problems for the ductwork or the fans. However, even in the case of a sprinklered fire, it is believed that single-room smoke zones are beyond the state of present technology.

In the smoke zone, the location of the inlets of the mechanical exhaust is an important consideration. These inlets should be located away from exit stairs, so that smoke in the vicinity of the inlet does not pose an increased hazard during evacuation or fire fighting. Because hot smoke frequently stratifies near the ceiling, it is recommended that exhaust inlets be located in or near the ceiling.

### 6.3 REFUGE AREAS

A refuge area is a place within a building where building occupants are protected for a period of time from the heat and smoke produced by a building fire. In a limited sense, any nonsmoke zone of a zoned smoke control system is a refuge area intended to protect occupants for the period of time needed for evacuation. Theoretically, a refuge area could be designed to provide protection for any period of time. Consideration has been given to the concept of refuge areas in which building occupants could wait out large fires. However, the current state of smoke control technology is such that it is doubtful that long-term refuge areas can be successfully designed and built. For this reason, it is recommended that all refuge areas be connected to escape routes.

### 6.4 SMOKE DAMPERS

A smoke damper is a device, installed in an air distribution system, designed to resist the movement of air or smoke in the event of a building fire. At present, there is no published test standard for smoke dampers, although, a proposed standard (UL 555S) has been developed by Underwriters

Laboratories, Incorporated. A smoke damper can be used for either traditional smoke management or smoke control. In traditional smoke management, a smoke damper is intended to inhibit the passage of smoke under the forces of buoyancy, stack effect, and wind, as discussed in chapter 2. It is obvious that a smoke damper with low leakage characteristics is advantageous for such an application.

In a smoke control system, a smoke damper is used to inhibit the passage of air that may or may not contain smoke. Low leakage characteristics of a smoke damper are not necessary when outside (fresh) air is on the high pressure side of the smoke damper, as is the case for dampers that shut off supply air from a smoke zone or which shut off exhaust air from a nonsmoke zone. In these cases, moderate leakage of smoke free air through the damper will not adversely affect the control of smoke movement. It is best to design smoke control systems so that only smoke free air is on the high pressure side of a smoke damper.

### 6.5 SYSTEM CONSIDERATIONS

Most zoned smoke control systems use the fans of the HVAC system to control smoke movement as follows:

- Smoke Zone - In the smoke zone, 100 percent of the return air is exhausted to the outside and supply air to the smoke zone is shut off. Alternately exterior wall vents or smoke shafts may be used.
- Non-Smoke Zone - In the nonsmoke zones, supply air is 100 percent outside air and the exhaust air is shut off.
- Stairwells - To further protect escape routes, zoned smoke control systems may include stairwell pressurization.

The pressure differences across the boundary of the smoke control zone depend on the supply and exhaust rates and the leakage characteristics of the building. The supply and exhaust rates of zoned smoke control systems have, in the past, been determined by the capacity of the HVAC system, which is
usually four to six air changes per hour. Based on tests by Tamura [1,3], these capacities can produce significant pressure differences across the boundary of the smoke control zone when all doors are closed. However, when stairwell doors are open both to the smoke zone and to nonsmoke zones, the pressure difference across the boundary of the smoke zone can drop as low as 0.01 in $\mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{~Pa})$. Such a low level of pressurization may be sufficient to control smoke from a sprinklered fire or a smoldering fire, but it would not control the movement of hot, buoyant smoke from an unsprinklered fire.

By proper selection of the smoke zone, hot buoyant smoke can be controlled even when stairwell doors are open. If the smoke zone consists of the fire floor and the adjacent floors, then the smoke that migrates to the adjacent floors will be cooled due to dilution and heat transfer. Design of a system to control such cooled smoke is much less difficult than for hot smoke. Obviously, the adjacent floors as well as the fire floor should be evacuated as soon as possible after fire detection.

### 6.6 EXAMPLE ANALYSIS

This is an example of a twelve-story building with two stairwells and two elevator shafts with two cabs in each shaft. Each floor of the building is $126 \times 146 \mathrm{ft}(38.4 \times 44.5 \mathrm{~m})$ with a height between floors of 10.6 ft $(3.23 \mathrm{~m})$. The smoke zone consists of the fire floor and the floors directly above and below, and all other floors are nonsmoke zones. In the smoke control mode, the HVAC system supplies $4080 \mathrm{cfm}\left(1.93 \mathrm{~m}^{3} / \mathrm{s}\right)$ per floor of 100 percent outside air to all nonsmoke zones and exhausts 4080 cfm ( $1.93 \mathrm{~m}^{3} / \mathrm{s}$ ) per floor to the outside from the smoke zone. The building has an open floor plan on each floor, so there are no partitions to complicate air flow on each floor.

The stairwells are to be pressurized with an automatically opened ground floor door for overpressure relief. The project is a retrofit, and it has been determined that there are no unusually high local wind velocities near the exterior stairwell doors so that wind effects will not be significant. Stairwell pressurization air is supplied at a rate of $1200 \mathrm{cfm}\left(0.566 \mathrm{~m}^{3} / \mathrm{s}\right)$ at the 5 th, 8th and 11 th floors and $9200 \mathrm{cfm}\left(4.34 \mathrm{~m}^{3} / \mathrm{s}\right)$ at the 2 nd floor.

The design temperatures are:
$14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$ outside winter design temperature
$93^{\circ} \mathrm{F}\left(34^{\circ} \mathrm{C}\right)$ outside summer design temperature
$70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)$ building design temperature

Because of symmetry, the building can be analyzed on a basis of one stairwell and one elevator shaft. The following design values are for half the floor area, one stairwell, and one elevator shaft.

- $\quad 1.22 \mathrm{ft}^{2}\left(0.113 \mathrm{~m}^{2}\right)$ flow area between building and the outside (based on a leaky building as listed in appendix C)
- $0.490 \mathrm{ft}^{2}\left(0.0455 \mathrm{~m}^{2}\right) \mathrm{flow}$ area between floors of the building
- $0.323 \mathrm{ft}^{2}\left(0.030 \mathrm{~m}^{2}\right)$ flow area between the stairwell and the building on each floor with stairwell doors closed
- $10.5 \mathrm{ft}^{2}\left(0.075 \mathrm{~m}^{2}\right)$ flow area of open stairwell door (half the geometric area of the open stairwell door, see section 2.8)
- $\quad 1.75 \mathrm{ft}^{2}\left(0.163 \mathrm{~m}^{2}\right)$ flow area between the building and the elevator shaft, per floor
- $3.00 \mathrm{ft}^{2}\left(0.279 \mathrm{~m}^{2}\right)$ flow area of the vent from the top of the elevator shaft to the outside at the penthouse level (for the difference between vent area and flow area of a vent see section 2.8)
$80 \mathrm{fpm}(0.38 \mathrm{~m} / \mathrm{s})$ minimum velocity through an open stairwell doorway into the smoke zone
- $1680 \mathrm{cfm}\left(0.793 \mathrm{~m}^{3} / \mathrm{s}\right)$ minimum flow through an open stairwell doorway into the smoke zone, based on stairwell door area of $21 \mathrm{ft}^{2}\left(1.95 \mathrm{~m}^{2}\right)$
- 0.08 in $\mathrm{H}_{2} \mathrm{O}$ ( 20.0 Pa ) minimum pressure difference across closed stairwell door to smoke zone
- 0.40 in $\mathrm{H}_{2} \mathrm{O}(125 \mathrm{~Pa})$ maximum pressure difference across closed stairwell door to smoke zone
- $7.0 \times 10^{4}(2100) \mathrm{C}_{\mathrm{S}}$ for stairwell
- $2.4 \times 10^{5}$ (7200) $C_{S}$ for elevator shaft

The computer program described in chapter 3 was used for this analysis. Figure 6.4 shows the air flow directions when the 6 th floor is the fire floor and all stairwell doors to the building are closed. Table 6.1 shows the pressure differences calculated by computer analysis across the closed stairwell fire floor door with all stairwell doors closed except the ground floor exterior door. These pressures are within the limits listed above.

Table 6.1 Computer calculated pressure difference across closed fire floor door with all stairwell doors to the building closed

| Fire Floor | Smoke Zone <br> Floors | Season | Pressure Difference <br> in $\mathrm{H}_{2} \mathrm{O}$ |
| :---: | :---: | :--- | :---: |
| 1 | 1,2 | Summer | $0.170^{*}$ |

[^8]Elevator
Shaft

## Pressurized

Stairwell
Floor
12
11
10
9
8
7
6
5
4
3
2
1

Notes:
Arrows indicate the direction of air flow as determined by computer analysis.

+ Indicates supply air which is $100 \%$ outside air; in building spaces so noted the return is shut off
- Indicates $100 \%$ return to the outside and supply shut off

Figure 6.4. Building with example zoned smoke control system where 6th flour is fire floor

The average air velocity through the open fire floor stairwell door is listed in table 6.2 for a number of conditions. It is obvious that these velocities are always greater than the minimum allowable design velocity.

Table 6.2 Computer calculated average velocities through open stairwell doorways on the fire floor

| Fire <br> Floor | Smoke Zone Floors | Floors on which Doors are Open | Velocities |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Summer |  | Winter |  |
|  |  |  | f pm | (m/s) | f pm | (m/s) |
| 1 | 1, 2 | 1 | 121 | (0.615) | 145 | (0.737) |
| 1 | 1, 2 | 1,2 | 84 | (0.427) | 102 | (0.518) |
| 6 | 5, 6, 7 | 6 | 154* | (0.782) | $217^{*}$ | (1.10) |
| 6 | 5,6,7 | 5, 6, 7 | $91^{*}$ | (0.462) | 128 | (0.650) |
| 6 | 5, 6, 7 | $3,4,6,8,9$ | 165* | (0.838) | 205 | (1.04) |
| 12 | 11, 12 | 12 | 129 | (0.655) | 189 | (0.960) |
| 12 | 11,12 | 11, 12 | 95 | (0.483) | 143 | (0.726) |

In all the cases, the smoke zone was at a lower pressure than the surrounding zones so that smoke would not infiltrate non-smoke zones. This system has the advantage that the pressure across closed smoke zone stairwell doors does not fall to very low levels when other stairwell doors are open. This can be observed from the selected computer output listed in appendix $F$.

### 6.7 REFERENCES

[1] Tamura, G. T., Exterior Wall Venting for Smoke Control in Tall Office Buildings, ASHRAE Journal, Vol. 20, No. 8, pp. 43-48, August 1978.
[2] Tamura, G. T. and Shaw, C. Y., Basis for the Design of Smoke Shafts, Fire Technology, Vol. 9, No. 3, pp. 209-222, August 1973.
[3] Tamura, G. T., Experimental Studies of Mechanical Venting for Smoke Control in Tall Office Buildings, ASHRAE Transactions 1978, Vol. 86, Part 1, pp. 54-71, 1978.

## CHAPTER 7. ACCEPTANCE TESTING

Acceptance tests can be considered from the viewpoint of the building owner or from the viewpoint of the local code official or even from both viewpoints. The building owner wants to be assured that the building has been constructed in accordance with the construction contract. The code official wants to be assured that the building has been constructed in accordance with the appropriate codes. Acceptance tests of smoke control systems should be designed to satisfy both requirements. In this chapter, procedures used for acceptance testing of smoke control systems are discussed.

Balancing of the smoke control system is a subject that should be considered before acceptance testing. It should be noted that many smoke control systems require balancing, particularly multiple-injection pressurized stairwells, relief vents (if provided) in pressurized stairwells, and supply air to pressurization systems.

An adequate acceptance test is composed of two levels of testing. The first level is of a functional nature to determine if everything in the system works as it is supposed to work; this is an initial checkout of the system components. The second level of testing is of a performance nature to determine if the system, as a system, performs under all required modes of operation. This part of the acceptance test may be performed by pressure and velocity testing, real fire testing, chemical smoke testing, tracer gas testing, or various combinations of these methods.

The minimum essential performance test is the pressure and velocity test, and any additional performance tests should be performed after that. An acceptance test is needed to assure the owner and the code official that the system, as built, will operate as intended.

### 7.1 INITIAL CHECKOUT

The initial checkout should be the first phase of any acceptance test. This consists of activating the smoke control system and determining that the fans, dampers, and other components are functioning properly. The importance of the initial checkout has become apparent because of many problems encountered during tests of smoke control systems. These problems include fans operating backward, fans to which no electrical power is supplied, and controls that do not operate. Depending on the type of smoke control system, it may be necessary to test several times for changes caused by differing fire locations and the corresponding modes of system operation.

Once any such problems are corrected, pressure and velocity tests should be performed under all required modes of operation.

### 7.2 PRESSURE AND VELOCITY TESTS

These tests consist of activating the smoke control system in its various operating modes and measuring the pressure differences and velocities at the boundary points in the system. Comprehensive testing at the system boundary under all operating modes should be conducted. The actual pressures and velocities are likely to be somewhat different from the design values because of differences in flow areas and the outside temperature. Acceptance of $a$ smoke control system should be based on its ability to perform within the minimum and maximum pressure differences and the minimum and maximum velocities that were the design parameters of the system. In order to obtain such performance, it may be necessary to adjust the smoke control system. For this reason, the concept of system flexibility has been included in preceding chapters.

In many instances, this level of testing may be considered sufficient. However, in cases of complicated buildings or untried smoke control concepts, the application of one or more of the other forms of testing may be warranted.

Pressure and velocity testing can be performed only at a relatively small number of discrete points in the system boundary. These points generally are
on the more obvious migration or infiltration routes. Therefore, during the pressure and velocity test, it is possible to miss a potential path of smoke movement. The intent of using real smoke, chemical smoke or a tracer gas is to uncover such a flow in a smoke control system.

### 7.3 REAL FIRES

A real fire is the most realistic method of testing the ability of a smoke control system to control smoke movement. However, this test has inherent danger to life and property because of the heat generated and the toxicity of the smoke. Therefore, remote instruments are used so that observers are not subjected to danger. The fire compartment and other areas must be fire-hardened to prevent property damage, but smoke damage can still occur at locations remote from the fire. In addition, construction and any other activities must be suspended in the building during a fire test.

### 7.4 CHEMICAL SMOKE

The most common source of chemical smoke is the commercially available "smoke candle" (sometimes called a smoke bomb). In this test, the smoke candle is usually placed in a metal container and ignited. The metal container is for protection from heat damage after ignition - it does not inhibit observation of the movement of the chemical smoke. Care must be exercised during observations, because inhalation of chemical smoke can cause nausea.

This type of testing is less realistic than real fire testing because chemical smoke is cold and lacks the buoyancy of smoke from a flaming fire. Such buoyancy forces can be sufficiently large to overpower a smoke control system that was not designed to withstand them. Chemical smoke tests have been conducted where the chemical smoke has been heated by a gas burner in order to overcome the drawback of little or no heat-induced buoyancy. Unfortunately, such a test has many of the drawbacks of a real fire test.

Smoke from a sprinklered fire has little buoyancy, and so it may be expected that such smoke movement is similar to the movement of unheated chemical smoke. This has not yet been confirmed by test data. Chemical smoke testing can identify leakage paths, and such tests are simple and inexpensive to perform.

### 7.5 TRACER GAS TESTS

In these tests, a constant flow rate of a tracer gas is released in a building. Samples are collected throughout the building and are analyzed to determine possible paths of smoke movement in the event of a real fire. The tracer gas most commonly used is sulfur hexaflouride ( $\mathrm{SF}_{6}$ ) because it is nonflammable, colorless, odorless, virtually nontoxic*, and chemically stable. These attributes result in tests that do not interfere with the normal operation of the facility being tested. In addition, $\mathrm{SF}_{6}$ is virtually unused industrially, which essentially eliminates the chance of interference from another source.
$\mathrm{SF}_{6}$ is commercially available and is stored as a liquid at 320 psi (2.2 MPa) at $70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)$. A constant flow rate of gaseous $\mathrm{SF}_{6}$ can be maintained by using a pressure regulator and a flowmeter such as a rotameter. The flowmeter should be specifically calibrated for $\mathrm{SF}_{6}$. Flow rates in the ranges of 2 to $10 \mathrm{~mL} / \mathrm{min}$ have been used.

Traditionally, air samples have been collected in hypodermic syringes and analyzed in a batch mode on a gas chromatograph fitted with an electron capture cell and an appropriate column for separation of $\mathrm{SF}_{6}$ from other gases. Continuous sampling using a gas chromatograph is also possible. Gases of standard concentrations of $\mathrm{SF}_{6}$ are commercially available for calibration of the gas chromatograph. Gas chromatographs can analyze $\mathrm{SF}_{6}$ in the range of 0 to 180 ppb , and samples of higher concentration should be diluted for analysis. Caution should be exercised because, at high concentrations, $\mathrm{SF}_{6}$ can permeate some materials and thus contaminate any air samples that might

[^9]contact these materials. Because of the many possibilities of error, the tester must adhere rigorously to good testing methods.

Tracer gas testing has the advantage of identifying leakage paths and determining if a smoke control system can control the movement of a nonbuoyant gas. Because gaseous $\mathrm{SF}_{6}$ is invisible, careful selection of the locations to be sampled is important.

A major drawback to the use of tracer gas testing is, again, the lack of buoyancy in the gas, i.e., the gas is typically at an ambient temperature when released. To overcome this deficiency, the air and $\mathrm{SF}_{6}$ mixture can be heated, but caution should be exercised, because at high temperatures $\mathrm{SF}_{6}$ can degenerate into toxic components. As with chemical smoke, unheated $\mathrm{SF}_{6}$ movement is likely to be similar to that of smoke from a sprinklered fire, but, this has not yet been confirmed by test data.

Because of the many possibilities of error and the limitations discussed above, tracer gas tests should be conducted and evaluated with a high level of professional competance. It is not believed that tracer gas testing will become a routine method of acceptance testing smoke control systems.

## APPENDIX A. NOTATION

```
A area
a purging rate
b temperature factor
C flow coefficient, general coefficient, or contaminant concentration
Co initial contaminant concentration
C
c specific heat
d distance from doorknob to knob side of door
E energy release rate
F force
G flow factor
gg gravitational constant
H. height of stairwell
Hm height limit
h height
K
    coefficient from wind pressure equation
    coefficient from the Thomas equation for critical air velocity
    coefficient from the flow equation
    coefficient from the door opening force equation
    coefficient from equation for flow factor, G
    mass flow rate
```



```
0 outside
S stairwell
T total
t top of stairwell or stairwell section
w wind
```

APPENDIX B. GRAPHS


Figure B.1. Pressure difference due to stack effect (see Section 2.1.1).


Fire Compartment Temperature, $\mathrm{T}_{\mathrm{F}}$ (Deg F)
100200300400500600700800900 Fire Compartment Temperature, $\mathrm{T}_{\mathrm{F}}$ (Deg C)

Figure B.2. Pressure difference due to buoyancy (see Section 2.1.2).



Figure B.3. Pressure due to wind
(see Section 2.1.4).


Figure B.4. Critical velocity to
prevent smoke backflow




Figure B.6. Door opening force due to a pressure difference (see Section 2.4).

(30-25-20-15-10 $-5 \quad 0 \quad 5 \quad 10$
Outside Design Temperature, $\mathrm{T}_{0}$ (Deg C)

Figure B.7. Temperature factor (see
Section 4.3.2).


Figure B.8. Flow factor (see Section 4.3.2).



Figure B.9. Height limit for a pressurized stairwell in a building without vertical leakage (see Section 4.4.)

## APPENDIX C. typical leakage areas for walls and FLOORS OF COMMERCIAL BUILDINGS

Construction
Element
Exterior Building Walls (includes construction cracks, cracks around windows and doors)

Stairwell Walls
(includes construction cracks but not cracks around windows or doors)

Elevator Shaft Walls (includes construction cracks but not cracks around doors)

Floors
(includes construction cracks and cracks around penetrations)

$$
\begin{aligned}
\mathrm{A} & =\text { leakage area } \\
\mathrm{Aw} & =\text { wall area } \\
\mathrm{A}_{\mathrm{F}} & =\text { floor area }
\end{aligned}
$$

Area

Wa11
Tightness
Tight [1]
Average [1]
Loose [1]
Very Loose [2]

Tight [3]
Average [3]
Loose [3]

Tight [3]
Average [3]
Loose [3]

Average [4]
$0.52 \times 10^{-4}$

All of the above area ratios are based on a relatively small number of tests and actual values may vary considerably from the range indicated. Leakage areas are highly dependent upon the quality of construction. Area ratios are evaluated at typical air flows at 0.30 in $\mathrm{H}_{2} \mathrm{O}(75 \mathrm{~Pa})$ for walls, and 0.10 in $\mathrm{H}_{2} \mathrm{O}$ ( 25 Pa ) for floors based on field tests of buildings described in references below.
[1] Tamura, G. T. and Shaw, C. Y., Studies on Exterior Wall Air Tightness and Air Infiltration of Tall Buildings, ASHRAE Transactions 1976, Vol. 82, Part I, pp. 122-134, 1976.
[2] Tamura, G. T. and Wilson, A. G., Pressure Differences for a 9-Story Building as a Result of Chimney Effect and Ventilation System Operation, ASHRAE Transaction 1966, Vol. 72, Part I, pp. 180-189, 1966.
[3] Tamura, G. T. and Shaw, C. Y., Air Leakage Data for the Design of Elevator and Stair Shaft Pressurization Systems, ASHRAE Transaction 1976, Vol. 83, Part 2, pp. 179-190, 1976.
[4] Tamura, G. T. and Shaw, C. Y., Experimental Studies of Mechanical Venting for Smoke Control in Tall Office Buildings, ASHRAE Transaction 1978, Part l, Vol. 86, pp. 54-71, 1978.

# APPENDIX D. <br> DATA INPUT DESCRIPTION FOR <br> COMPUTER PROGRAM 

Data input consists of the following elements:
l. Initial data;
2. building heights;
3. temperature profiles;
4. outside pressure profiles;
5. building data;
6. shaft data.

In the following sections, the input required for each of the six data elements is described in detail. Each block or group of blocks below represents an input card. Unless otherwise stated, these cards are unformatted, that is, the numbers do not have to be placed in specific columns and integers can be written with or without decimal points. However, separate pieces of numerical data must be separated by one or more spaces. Examples of input data are provided in Appendices $E$ and $F$.

## 1. Initial data

$\square$
project title (col. 1-72)

outside
temperature $\left({ }^{\circ} \mathrm{F},{ }^{\circ} \mathrm{C}\right) \quad(2$ for Eng, l for SI$) \quad$ (o formary output
(ondication or file number) *
$\qquad$
$\square$
$\square$

[^10]2. Building heights
$N_{h}$, no. of building levels
input parameter (either 0 or 1)

If input parameter $=0$, then heights for each building level are to be individually entered as follows:
${ }^{h}$ (1)
$h^{h}$ (2)
$h^{h}$ (3)
$h^{h}$ (i)
${ }^{H}\left(N_{h}\right)$

$\square$
$\square$ -• $\square$ -• $\square$
where $h_{(i)}$ is the height of the center of level 1 above the ground (ft, m). If input parameter $=1$, then the following card must be entered.

3. Temperature profiles
no. of temperature profiles
$\square$

For each temperature profile the following data must be supplied.
no. of temp. level temperature level temperature level temperature points no. ( ${ }^{\circ} \mathrm{F},{ }^{\mathrm{O}} \mathrm{C}$ ) no. ( ${ }^{\mathrm{O}} \mathrm{F},{ }^{\mathrm{O}} \mathrm{C}$ ) no. ( ${ }^{\mathrm{O}} \mathrm{F},{ }^{\circ} \mathrm{C}$ )

4. Outside pressure profiles

input parameter
(either 0 or 1)


If the input parameter $=0$, each outside pressure profile is entered as follows:
$\mathrm{P}_{\mathrm{o}}(1) \quad \mathrm{P}_{\mathrm{O}}(2) \quad \mathrm{P}_{\mathrm{o}}(3)$
$P_{o}(i)$
$\mathrm{P}_{\mathrm{o}}\left(\mathrm{N}_{\mathrm{h}}\right)$

$\square$
where $P_{o}(i)$ is the outside pressure at the center of level i.

If the input parameter $=1$, the outside pressures are calculated and the following data are required.
$\mathrm{V}_{\mathrm{o}}$
wind velocity (mph)
$h_{o}$
height at which velocity is measured

$\square$
pressure coefficients for each pressure profile
$C_{W(1)}$
$\mathrm{C}_{\mathrm{W}(2)}$
$\mathrm{C}_{\mathrm{W}(\mathrm{Npo})}$


5. Building data
$\mathrm{N}_{\mathrm{f}}$
no. of levels
(or floors)
$\square$

All the following data in this input element are supplied for each level or consecutive groups of similar levels.
$I_{i}$
starting floor
$\mathrm{I}_{2}$
ending floor
no. of compartments per floor

(Floor data is entered in ascending order of levels or floors. When data are for only one level, then $I_{1}=I_{2}$, and the same number is supplied for both.)

For each compartment on a level the following data are supplied.
$\mathrm{N}_{\text {CS }} \quad \mathrm{N}_{\mathrm{CA}} \quad \mathrm{N}_{\mathrm{CO}} \quad \mathrm{N}_{\mathrm{f}}$
no. of connections to other compartments on the same level
$\square$

$\square$

$\square$

[^11]For each connection between this compartment and another on the same floor the following data are required.

```
other compartment
number on the same
    level
```


## C

flow coefficient


A
flow area (ft $\mathrm{t}^{2}, \mathrm{~m}^{2}$ )
$\square$


For each connection between this compartment and one on the level above the following data are required.
other compartment number on floor above

C
flow coefficient


A flow area (ft ${ }^{2}, \mathrm{~m}^{2}$ )
$\square$

$\square$

For each connection to the outside the following data are required.
outside pressure profile number

C
flow coefficient

flow area (ft $t^{2}, m^{2}$ )
$\square$
6. Shaft data
no. of shafts


All of the following data in this input element are required for each shaft.

```
shaft title (col. l-20)
```

| $C_{S}$ | bottom level |  |
| :---: | :---: | :---: |
| shaft flow |  |  |
| coefficient | of shaft | of shaft |

$\square$

$\square$
$\square$

Enter the following typical data, which applies to each level of the shaft. Exceptions can be entered later.
no. of connections between typical
level of shaft and outside

$$
\begin{gathered}
\mathrm{F}_{\mathrm{f}} \\
\text { net } \mathrm{flow} \text { into } \\
\text { typical level } \\
\text { of shaft } \\
(\mathrm{cfm}, \mathrm{~L} / \mathrm{s})
\end{gathered}
$$

The connection data to the building for a typical level are required.

```
compartment no.
to which shaft is
connected connected
```

flow coefficient
$\square$
$\square$

A
flow area $\left(f t^{2}, m^{2}\right)$

For each connection to the outside, the connection data for a typical floor are required.

A

```
outside pressure profile
```

$C$
flow coefficient
flow area (ft ${ }^{2}, m^{2}$ )
$\square$
$\square$


The number of exceptions to the typical data is required.
no. of exceptions


All the following data in this input element are required for each exception. exception type
(1, 2, or 3) level of shaft


The next card depends on the exception type. For exception type $=1$, an exception to the net flow into the floor of the shaft is defined.

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{f}} \\
& \text { net } \mathrm{flow} \\
& (\mathrm{cfm}, \mathrm{~L} / \mathrm{s})
\end{aligned}
$$



For exception type $=2$, an exception to an outside connection for this shaft is defined.
outside pressure profile number

C
flow coefficient
flow area (ft ${ }^{2}, m^{2}$ )
$\square$
$\square$
$\square$

For exception type $=3$, an exception to the connection between the shaft and the building is defined.
compartment no.
to which shaft
is connected

## C

flow coefficient

A
flow area
(ft2 $\mathrm{m}^{2}$ )
$\square$
$\square$
$\square$

# APPENDIX E. <br> DATA AND COMPUTER OUTPUT FOR STAIRWELL EXAMPLE OF CHAPTER 5 

## TABLE OF CONTENTS

Page
Summary Table ..... 133
Run 1 ..... 134
Run 2 ..... 140
Run 3 ..... 146
Run 4 ..... 152
Run 5 ..... 158
Run 6 ..... 164
Run 7 ..... 170
Run 8 ..... 176

|  | Exterior <br> Stairwe11 <br> Door | Floors on Which <br> Doors Are Open | Season |
| :---: | :---: | :---: | :---: |
| 1 | Closed | None | Summer |
| 2 | Open | $1,2,3$ | Summer |
| 3 | Open | $7,8,9$ | Summer |
| 4 | Open | $13,14,15$ | Summer |
| 5 | Closed | $1,2,3$ | Winter |
| 7 | Open | $7,8,9$ | Winter |
| 8 | Open | $13,14,15$ | Winter |

Note: See chapter 6 for discussion of this example computer analysis of a pressurized stairwell system.

```
APDENUIXE - RUN 1 JATA
```

```
SLNNER - ALL DRCR'j CLESED
くこ ? 0
1E1
& 1\hat{c}
2
1 1 70
1 1 &2
1}
O 1 1
1
1:
1 1=1
0
1 -tE 0.acj
1.tES 1.13
2
STAIFHELL
T.CE4 1 1:% 2
C 450
1.と! 0.323
O
elevatcr
2.4EE 1 16 1
OC
1.f: 0.S.7
1
2 1\epsilon
1.65 1.5
```



| 13 N | $\square$ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 9＊69て． | Oと1．1 | －Sb6z | 800\％－ |  | $\downarrow$ NOILJэyIa эaisino |  |  |  |  |  |
|  | 9＊とOz－ | 0：9＊ | －9ヤく1 | －10\％ |  | ¢01จヘヨาヨ |  |  |  |  |  |
|  | －－${ }^{\text {b }}$ | £てを． | －$\varepsilon$ ¢ | てSع． |  | าาヨM\＆IV1S |  |  |  |  |  |
|  | 8＊とこし． | OS8＊ | －91てて | －00＊． | 1 |  |  |  |  |  |  |
|  | $\varepsilon \cdot 801$ | OS8＊ | －91てて | 200＊ | 1 | 1NJW1甘VdWOJ St yoold | － 0 | $\downarrow$ | $6 \varepsilon L^{\circ}$ | 1 | －1 |
| 13 N | $\varepsilon \cdot$ |  |  |  |  |  |  |  |  |  |  |
|  | 0．618． | OE．1 | －Sb6て | $210 \%$ |  | 1 NOI」Jヨy |  |  |  |  |  |
|  | －¢ ¢－ | 0 29 － | －9ヤくし | 010\％ |  | ช01จヘヨา |  |  |  |  |  |
|  | － － $60 ~_{\text {b }}$ | £ を． | －$\varepsilon$ ¢ | 乙SE． |  | ר7ヨMyIV1S |  |  |  |  |  |
|  | いかとい | OS8＊ | －91てて | －00\％． | $\downarrow$ | 1NヨW1甘VdWOJ てl yooly |  |  |  |  |  |
|  | 8＇とを | OS8＊ | －91てて | －00＊ | 1 |  | － 0 | $\downarrow$ | $806{ }^{\circ}$ | $\downarrow$ | $\varepsilon 1$ |
| 13N | $\varepsilon$ |  |  |  |  |  |  |  |  |  |  |
|  | 1． 598. | OE1． | －Sb6て | S10． |  | 1 NOIIJヨyIO ヨaISIno |  |  |  |  |  |
|  | 0．6とし． | 0 29. | －9bく1 | 900＇． |  | ช01จヘヨาヨ |  |  |  |  |  |
|  | －－\％ | £．乙を | －$\varepsilon$ ¢8 | て¢ع． |  |  |  |  |  |  |  |
|  | 6．とてい． | OS8 ${ }^{\text {．}}$ | －91てて | ع00．－ | 1 | INJW1甘VdWOJ if yooly |  |  |  |  |  |
|  | 1．จとし | OS8＊ | －9ıで． | $\bigcirc 00{ }^{\circ}$ | ， | 1NJW1甘षd＊＊OJ El yoold | － 0 | $\downarrow$ | 9 $20 \cdot 1$ | $\downarrow$ | 21 |
| 13 N | $1^{\circ}$ |  |  |  |  |  |  |  |  |  |  |
|  | 8．110－ | Oとし・ | －sb6て | OZO＊ |  | 1 NOİJヨyia gaisino |  |  |  |  |  |
|  | －66． | 0＜9 ${ }^{\circ}$ | －9bくl | ع00＊． |  | ソ01ロヘヨา |  |  |  |  |  |
|  | L． 860 | とてを | －عと8 | てSE． |  | า7ヨMyIV！S |  |  |  |  |  |
|  | ع＇901． | 0， $8^{\text {．}}$ | －91てて | 200． | $\downarrow$ | INJWL甘＊dWOO 01 yooly |  |  |  |  |  |
|  | 6．とて！ | OS8． | －91てて | $\varepsilon 00^{\circ}$ | ， | 1NヨW1甘VdWOJ て！צOOT」 | － 0 | $\downarrow$ | Sbて・• | 1 | 11 |
| 13 N | $0^{\circ}$ |  |  |  |  |  |  |  |  |  |  |
|  | s．19b－ | Oع $1 \cdot 1$ | －Sb6z | šo＊． |  | 1 NOI」JヨyIo gaisino |  |  |  |  |  |
|  | b．bs－ | OL9． | －9bく1 | 100＇－ |  | ¢01จヘヨาヨ |  |  |  |  |  |
|  | $L \cdot 260$ | とてを． | －$\varepsilon$ ¢ | OsE． |  | ר7ヨMyIV1S |  |  |  |  |  |
|  | 8．28－ | OS8． | －91てて | 100\％． | $\downarrow$ | INJWIYVdWOS 6 y007」 |  |  |  |  |  |
|  | $\varepsilon \cdot 901$ | 0 S8． | －91てて | $200{ }^{\circ}$ | ， | LNヨWLY | － 0 | b | $516^{\circ}$ | $\downarrow$ | 01 |
| LヨN | て |  |  |  |  |  |  |  |  |  |  |
|  | て．01s | Oعし・1 | －Sb6て | OعO＊． |  | 1 NOILJヨyIO zaislno |  |  |  |  |  |
|  | 9．$\downarrow$ | 0＜9 | －9Vくし | 000 |  | タ01ロヘヨาヨ |  |  |  |  |  |
|  | －160 | とてを． | －$\varepsilon$ ¢ | $8 \triangleright \varepsilon^{\circ}$ |  | า7ヨMyIV1S |  |  |  |  |  |
|  | $0.06$ | OS8． | －91てて | 200． | $\downarrow$ | INJWLYVdWOJ 8 yooly |  |  |  |  |  |
|  | 8＊28 | OS8． | －91てて | $100^{\circ}$ | ， | LNJWLY甘dWOJ Ob צOOld | － 0 | $\downarrow$ | $985 \%$ | 1 | 6 |
| 13N | ${ }^{\circ}$ |  |  |  |  |  |  |  |  |  |  |
|  | 8．85s－ | OE1．1 | －Sb6て | 980． |  | 1 NOILJヨyia goisino |  |  |  |  |  |
|  | て・18 | 0＜9 ${ }^{\circ}$ | －9bく1 | 200＊ |  | ¢01＊ヘヨา |  |  |  |  |  |
|  | 8．680 | とて® | －$\varepsilon$ ¢ | 9 t ¢． |  | 77ヨM4I＊1S |  |  |  |  |  |
|  | 0．901． | OS8． | －91てて | 200．． | $\downarrow$ | LNヨWI\＆VdWOJ L צOOר」 |  |  |  |  |  |
|  | $0 \cdot 66$ | OS8． | －91てて | $200^{\circ}$ | 1 | INJWLYVdWOS 6 yooly | － 0 | $\downarrow$ | LSL． | 1 | 8 |
|  | MO7f | $\begin{aligned} & \nabla \exists \forall \nabla \\ & \text { MOT」 } \end{aligned}$ | INGIOI」」ヨOつ MO7」 0ヨ1Sก「の丈 | ヨynSSヨyd 7VIINヨタヨコ」IO |  | 01 NGILJヨNNOJ | $\begin{gathered} \text { MO7」 } \\ 0 \exists \times I f \end{gathered}$ | $\begin{gathered} 37 \text { If foyd } \\ \text { dWق } \end{gathered}$ |  | 1N3เข14 ${ }^{\text {d }}$ | 80071 |
|  |  |  |  |  |  |  |  | 1）sy000 | า7－－צヨv！ |  |  |
|  |  |  |  |  |  | Indino | dヨındm | 1 Nny | $\exists \mathrm{XION3}$ |  |  |


| 3 | ツ○ト |
| :---: | :---: |
| O |  |
| ， | めぃ○ 0 |
| $u$ | OON＠ |
|  | ，！ |


ADJUSTED
FLOW
COEFFICIENT

2216. 
2217. 
2218. 
2219. 

100
0
0
0


૩ష

FLOW
COEFFICIENT



CONNECTION

490. FLOOR 15 COMPARTMENT

## THE FOLLOWING UNITS ARE USED FOR OUTPUT


ELEVATOR


[^12]

 $\stackrel{\leftarrow}{\sim}$$\circ$
$\stackrel{\circ}{\circ}$
-
-
IFFERENTIAL
PRESSURE  ..... 옹 ..... D


| FIXED FLOW | CONNECTION |  | N 10 |  |
| :---: | :---: | :---: | :---: | :---: |
| 0. | FLOOR | 1 C | COMPARTM |  |
| 0. | FLOOR | 2 | COMPARTIM |  |
| 0. | FLOOR | 3 | COMPARTM |  |
| 0. | FLOOR | 4 | COMPARTM |  |
| 0. | FLOOR | 5 | COMPARTM |  |
| 0. | FLCOR | 6 | COMPARTM |  |
| 0. | FLOCR | 7 | COMPARTM |  |
| 0. | FLOOR | 8 | COMPARTM |  |
| 0. | FLOOR | 9 | COMPARTM |  |
| 0. | FLOOR | 10 | COMPARTM |  |
| 0. | FLOOR | 11 | COMPARTM |  |
| 0. | FLOOR | 12 | COMPARTM |  |
| 0. | FLOOR | 13 | COMPARTM |  |
| 0. | FLOOP | 14 | COMPARTM |  |
| 0. | FLOOR | 15 | COMPARTM |  |
| 0. |  |  |  |  |
|  | OUTSID | E DI | IRECTION | 1 |

THE FOLLOWING UNITS ARE USED FOR OUTPUT

FLOW IN CFM AT 70 DEG F AND 1 ATM
PRESSURE IN INCHS H2O
AREA IN FEET SQUARED

```
SUNNEF - OUTSIDE,1ST.2ND,3RD FLOOR DOORS OPEN
¢き 人 0
16 1
& 12
2
1 170
11 &2
1}
O 1 1
1
15
1 1E 1
0
1.&E 0. 95
1 .f5 1.13
2
STA IFMELL
7.CEA 1 15 2
O 13CO
1 -f 0.323
4
2. }
1.ES 10.5
3 1
1.C5 10.5
3 z
1 .tE 10.5
3 2
1 -EE 10.5
ELEVATCF
2.4E5 1 16 1
O C
1.ES 0.67
1
2 1\epsilon
1 -t5 1.5
```



| $1 \exists \mathrm{~N}$ | ${ }^{\prime} \cdot$ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1＊ててを・ | O\＆1•1 | －Sb6て | て10＊ |  | 1 NOILJヨyIo goisino |  |  |  |  |  |
|  | 9＊89－ | 0＜9＊ | －9bくb | て00＊－ |  | ช01マヘヨาヨ |  |  |  |  |  |
|  | 8． $26 \varepsilon$ | とて®． | －$\varepsilon$ ¢8 | ४Сて＇ |  | 77 ¢MUIV1S |  |  |  |  |  |
|  | て＇L8－ | 0． $8^{\text {．}}$ | －91てて | 200＊． | $\downarrow$ | LNヨW1甘VdWOJ El yools |  |  |  |  |  |
|  | 6．62 | Oง8． | －91て乙 | $100^{\circ}$ | $\downarrow$ | INJW1甘\％dwO Sl yoold | － 0 | 1 | EャL＊ | $\downarrow$ | ¢1 |
| $1 \exists \mathrm{~N}$ | $\square^{\circ}$－ |  |  |  |  |  |  |  |  |  |  |
|  | O＇ 26 ¢ | Oと1．1 | －9b6z | 810．－ |  |  |  |  |  |  |  |
|  | $8^{\prime}$ 乙 | 0 $23^{\circ}$ | －9bく1 | 000 － |  | ソ01ロヘヨาヨ |  |  |  |  |  |
|  | $\varepsilon \cdot \varsigma ธ \varepsilon$ | とても． | －$\varepsilon$ ¢8 | 9てて＊ |  | 7าэMyIV1S |  |  |  |  |  |
|  | L＇ 66 － | O¢8． | －91てて | て00＊ | 1 | INJWLYVdWOJ टЬ 女007」 |  |  |  |  |  |
|  | て． 28 | OS8． | －91てを | てO0＊ | $\downarrow$ | 1N3WL甘マdWOJ ヤレ yoold | － 0 | $\downarrow$ | $616^{\circ}$ | $\downarrow$ | $\varepsilon \downarrow$ |
| 13 N | $\varepsilon \cdot$ |  |  |  |  |  |  |  |  |  |  |
|  | 6．800－ | OE1．$\downarrow$ | －sb6て | عて○＊ |  | 1 NOIIJヨyIo ヨoisino |  |  |  |  |  |
|  | 8．£ 2. | 0＜9＊ | －9bくb | て00＊ |  | ＊01ロヘヨาヨ |  |  |  |  |  |
|  | $\varepsilon \cdot$ 乙6¢ | £て£ | －ع． | ててで |  | 77ヨMyIV1S |  |  |  |  |  |
|  | でいい。 | OS8． | －91てて | ع00＊． | 1 | 1Nヨเ上เ甘ชdwo ll yooly |  |  |  |  |  |
|  | L＇$\varepsilon 6$ | $0 \underbrace{\circ}$ | －91てて | 200＊ | 1 | 1NヨW1४マdwo el yoold | － 0 | $\downarrow$ | －80＊ | 1 | て1 |
| 13N | $\varepsilon \cdot$ |  |  |  |  |  |  |  |  |  |  |
|  | 0． $86 \square^{\circ}$ | Oع•• | －SD6z | 8て0＊－ |  | 1 NOILJヨyIa ヨaisino |  |  |  |  |  |
|  | 9＊＊ | 0＜9． | －9ロく1 | ¢00＊ |  | ช01ロヘヨาヨ |  |  |  |  |  |
|  | 6．88を | £とを． | －$\varepsilon$ ¢ | 8 ¢ ${ }^{\text {c }}$ |  | $77 \exists \mathrm{myI}$－1S |  |  |  |  |  |
|  | －でで， | 0s8． | －91てて | ع00＊． | b | 1NGW1甘VdWOS O1 צCOld |  |  |  |  |  |
|  | でいい | OS8． | －9してて | ع00＊ | b | 1NヨW1甘षdWOJ て！yools | － 0 | $\downarrow$ | ャ¢て・ | 1 | 11 |
| 13 N | $\varepsilon \cdot$ ． |  |  |  |  |  |  |  |  |  |  |
|  | －625－ | Oと ${ }^{\prime \prime \prime}$ | －Sロ6z | てع०．． |  | 1 NOILכヨyIo ヨaisino |  |  |  |  |  |
|  | 9＊601 | 0＜9＊ | －9ロく | LO0＊ |  | ช01『ヘヨาヨ |  |  |  |  |  |
|  | S．$\downarrow 8 \varepsilon$ | £ ¢®． | －$\varepsilon$ ¢ | とって |  | 77ヨMyIV1S |  |  |  |  |  |
|  | －くで－ | 0S8． | －91て乙 | ع00＊ | $\downarrow$ | 1NヨWI\＆甘diNO） 6 dOOT」 |  |  |  |  |  |
|  | 0・で！ | OS8＊ | －91てて | ع00＊ | ， | 1NヨW」甘VdWOJ ト！ycold | － 0 | $\downarrow$ | とてか・ | $\downarrow$ | 01 |
| $1 \exists \mathrm{~N}$ | $0^{\circ}$ ． |  |  |  |  |  |  |  |  |  |  |
|  | $\text { s. } 19 \mathrm{~s} .$ | O\&•• | －Sb6て | 980＊－ |  | b NOILJヨyIa ヨaisino |  |  |  |  |  |
|  | 0.081 | 0＜9 ${ }^{\circ}$ | －9ロく1 | $110{ }^{\circ}$ |  | と01ロヘヨ7ヨ |  |  |  |  |  |
|  | 9＊8LE | £ 乙®． | －$\varepsilon$ ¢8 | LOZ． |  | $77 \exists M y I \nabla 15$ |  |  |  |  |  |
|  | S．かで． | 0S8． | －91て乙 | ع00＊． | $\downarrow$ | 」NヨW」甘VdWOJ 8 צ007」 |  |  |  |  |  |
|  | 0．2てし | OS8． | －9ıで | ع00＊ | ， | 1NヨW」甘षdWOS O1 צoold | $\cdot 0$ | $\downarrow$ | 26S．1 | $\downarrow$ | 6 |
| 13 N | $0^{\circ} \cdot$ |  |  |  |  |  |  |  |  |  |  |
|  | $8 \cdot 265-$ | Oع•• |  |  |  | 1 NOILJヨyIO Эaisino |  |  |  |  |  |
|  | 1－¢0て | 0＜9 ${ }^{\circ}$ | －9ヤく1 | ＋10． |  | ソ01ロヘヨาヨ |  |  |  |  |  |
|  | s．OLE | £ ¢ | －$\varepsilon$ ¢ 8 | 861. |  | 773 MrIV1S |  |  |  |  |  |
|  | 9． LOL － | 0¢8． | －91てて | 200＊． | 1 | 1NGWLYVdWOS L yoc）$\ddagger$ |  |  |  |  |  |
|  | cioてb | OS8． | －91てて | ع00 ${ }^{\circ}$ |  | LNヨWLYVdWOS 6 yoold | － 0 | 1 | 291．1 | $\downarrow$ | 8 |
|  | － 10 | $\nabla \exists \forall \nabla$ MOTA | INヨIOI』」ヨOつ MO7」 aヨ1sncaォ |  |  | O1 NOILJJNNOS | $\begin{gathered} \text { MO7』 } \\ \text { OヨXIf } \end{gathered}$ | 37110 yd dWヨ 1 | ョyกssョyd | INJWLYマ | y007 |
|  |  |  |  |  |  | Nヨdo syooo yoo | 7f वчع． | 1S！＇ヨロI |  |  |  |
|  |  |  |  |  |  | 1ndino | y $\exists$ Indw | $\tau$ Nกy | $3 \mathrm{XION3}$ |  |  |




| 「 |  |
| :---: | :---: |
| －س | $\dot{\square} \dot{0}$ |
|  | ¢M以 |
| $\vdash 30$ | －MJす |
| へ○い | ～ロパ |
| つ－ | $\cdots-\infty$ |
| つルи |  |
| －ш |  |
| 40 |  |




-
FLOW
COEFFICIENT

 $\because \because \because \because \because \because \because \because \because$
70000.
TEMPERATURE PROFILE ${ }^{2}$
SHIAFT FLOW COEFFICIENT
TO

the following units are used for output


| 岸 | 읏ㅇㅇㅇㅇㅅㅇㅅㅇㅇㅇㅇㅇㅇㅅㅇㅅㅇ |
| :---: | :---: |
| - |  |

ADJUSTED
FLOW
COEFFICIENT
$\infty$
ल
ल DIFFERENTIAL
PRESSURE
 004

## ELEVATOR

 FIXED
FLOW


SUMMER - OUTSIDE.1ST,2ND,GRD FLOOR DOORS OPEN

```
APDENGIE - FJN S JATA
```



```
二a 20
l₹ 1
\& 12
11 : 0
1192
11
011
1
13
1 1
\(\begin{array}{lllll}0 & 1 & 1 & 0 & 1\end{array}\)
1 of 0.0 .3
1 •\& = 1.13
\(\because\)
SIAIfatis
?.CEA 1 lり?
? \(1=00\)
\(1 \cdot t 50.3 \geq 3\)
21
1 •化 1 ).
    7
1 •泉 \(10 \cdot j\)
? \(=\)
1 •t: 10 .
5
\(1 \cdot t=10 \cdot 5\)
FLEVSTO'子
2.4E5 11ヶ1
() \(C\)
    - \(6: 0.07\)
1
\(21+\)
1 ・ヒ5 1.j
```

|  |
| :---: |
|  |  |





은
SUMMER－OUTSIDE． $7 \mathrm{TH} .8 T H .9 T H$ FLOOR DOORS OPEN

## CONNECTION

## FIXED

0. 

## OUTSIDE DIRECTION

O．FLOOR 3 COMPARTMENT FLOOR 1 COMPARTMENT STAIRWELL

ELEVATOR
OUTSIDE DIRECTION 1
0．FLOOR 4 COMPARTMENT
－－
－－－－

FLOOP． 6 COMPARTMENT
 STAIRWELL

OUTSIDE DIRECTION
$\qquad$
$\circ$



OUTSIDE DIRECTION
FLOOR 5 COMPARTMENT SiAIRWELL
ELEVATOR
 $\dot{\circ}$






## $\stackrel{\leftarrow}{2}$

点
－

$\stackrel{\text { 늘 }}{ }$
OーNゥのッ


＇

으N옹․

』．



N



N

| 1ヨN で－ |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | S＇80ع－ | OE1．1 | －sb6z | $110 \%$ |  | 1 NOILJヨyIO goisino |  |  |  |  |  |
|  | ع＇6． | 0＜9＊ | －9bくし | COO＊ |  | ช01マイヨาヨ |  |  |  |  |  |
|  | く＇81を | £てを． | －عยs | くロ1． |  | フ7アMyIロ1S |  |  |  |  |  |
|  | 6．89－ | 0¢8． | －sıてర | 100． | 1 | IN3W1Y＊dWOJ El とoota |  |  |  |  |  |
|  | 8． 49 | O¢8． | －9してZ | $100{ }^{\circ}$ | 1 | 1N3W1女8dWOJ ¢1 yoold | － 0 | $\downarrow$ | そうく＊ | $\downarrow$ | －1 |
| 13 N | $\varepsilon \cdot$ |  |  |  |  |  |  |  |  |  |  |
|  | S＇$\angle 8 \varepsilon$－ | Oとし1 | －Sb6z | L10＇． |  | 1 NOILכヨyIo zoisino |  |  |  |  |  |
|  | S＇$\varepsilon$ S | 0＜9． | －9bく1 | $100{ }^{\circ}$ |  | 8018ヘヨ73 |  |  |  |  |  |
|  | 8＊レヒ | を乙を． | －$\varepsilon$ ¢ | とャ1． |  | าาコMyI＊」S |  |  |  |  |  |
|  | bos－ | 0 ¢8． | －91てz | 100．－ | 1 | 1N3W上YロdiNO 21 yooly |  |  |  |  |  |
|  | 6． 99 | OG8＊ | －91てを | $100{ }^{\circ}$ | 1 |  | － 0 | 1 | $\varepsilon 16^{\circ}$ | $\downarrow$ | $\varepsilon \downarrow$ |
| 13 N | 1． |  |  |  |  |  |  |  |  |  |  |
|  | でくSt• | ロとし・ | －Sb6z | ロてO＊ |  | 1 NOİフヨとlO эoisino |  |  |  |  |  |
|  | S． 99 | 029＊ | －90く1 | 100 |  | ช01ロヘヨาコ |  |  |  |  |  |
|  | て＇60¢ | とてદ． | －$\varepsilon$ ¢ | $81^{\circ}$ |  | ר7コMyIV1S |  |  |  |  |  |
|  | －1¢ | 0¢8． | －9してて | 000 | $\downarrow$ | IN3W14VdWOJ ll yoold |  |  |  |  |  |
|  | $b^{\text {．OS }}$ | OS8． | －91てを | 100 | 1 | 1N3WL： | － 0 | 1 | S80＊ | $\downarrow$ | て1 |
| 13 N | $\varepsilon \cdot$ |  |  |  |  |  |  |  |  |  |  |
|  | くとてS－ | Oとし・ | －sp6z | てع0• |  | 1 NOİJヨyIo goisino |  |  |  |  |  |
|  | く．19 | 0＜9＊ | －9bく1 | $100^{\circ}$ |  | ช01マヘヨาヨ |  |  |  |  |  |
|  | －10¢ | £てを． | －عદ8 | 1 ¢． |  | 77 ¢MyIv1s |  |  |  |  |  |
|  | 6．161 | OG8＊ | －91てを | 800 ＊ | 1 | INJWLYषdWOJ OL yoold |  |  |  |  |  |
|  | －1E． | OS8＊ | －91てを | $000{ }^{\circ}$ | $\downarrow$ | 1N3W上甘षdWOJ てl yoold | － 0 | $\downarrow$ | 8¢て・！ | 1 | 11 |
| 13 N | ${ }^{\text {• }}$ |  |  |  |  |  |  |  |  |  |  |
|  |  | 0 O $1 \cdot 1$ | －Stot | 960＊－ |  | 1 NOI」כヨyIo ヨoisıno |  |  |  |  |  |
|  | －8\＆！ | 0＜9＊ | －9ヤく1 | 900＊－ |  | ช01จヘヨา3 |  |  |  |  |  |
|  | 8．182 | ๕ટદ． | －عє8 | Sil． |  | רフコMyIv1s |  |  |  |  |  |
|  | L．289 | $08^{\circ}$ | －9してて | 560. | 1 | 1N3W上甘षdw！03 6 y007」 |  |  |  |  |  |
|  | 6．161． | 0¢8＊ | －91で | 800＊－ | 1 | INJW上甘VdWOS い yoold | － 0 | 1 | $\angle E 0^{\circ}$ | 1 | 01 |
| $1 \exists \mathrm{~N}$ | $\square^{\circ}$ ． |  |  |  |  |  |  |  |  |  |  |
|  | 8．9どっ． | Oと．1 | －Sb6z | 6ヵ1．－ |  | 1 NOILכヨyIO эロISIno |  |  |  |  |  |
|  | 9＇SSS－ | OL9． | －9bくb | $101 \cdot$ |  | ช01＊ヘヨาヨ |  |  |  |  |  |
|  | －カレc | OOS•01 | －¢90くて | $60{ }^{\circ}$ |  | $77 \exists M y I \nabla 15$ |  |  |  |  |  |
|  | くObl． | $09^{\circ}$ | －91てを | to ${ }^{\circ}$ | 1 |  |  |  |  |  |  |
|  | く＇289－ | OS8． | －91てと | S60＊－ | 1 | IN3W上甘VdWOJ Ol yoold | － 0 | $\downarrow$ | SOL＇ | b | 6 |
| $1 \exists \mathrm{~N}$ | $\varepsilon \cdot-$ |  |  |  |  |  |  |  |  |  |  |
|  | S「8かした。 | OE！！ | －sp6て | て51．－ |  | 1 NOIIJэyIO כoisino |  |  |  |  |  |
|  | 9＊カロS－ | $0<9$. | －9bく1 | L60＊－ |  | ソ01จヘヨาヨ |  |  |  |  |  |
|  | 1．49く1 | 009． 01 | －¢90んて | －00＊ |  | 77コMyIV1S |  |  |  |  |  |
|  | －S！て． | OS8． | －9ıで | 600． | 1 | 1N3W14＊dwo＜yooly |  |  |  |  |  |
|  | く－Oカ1 | OG8＊ | －91で | ＋00＊ | 1 | 1N3W1女母dwo 6 yooly | － 0 | 1 | ع＜8．। | $\downarrow$ | 8 |
|  | M07 ${ }^{\text {a }}$ | $\begin{aligned} & \nabla \exists y \nabla \\ & \text { MOר } \end{aligned}$ |  | 3ynSs ヨud <br> 7ロI」Nヨyヨコ」IO |  | 01 NOILJJNNOJ | $\begin{gathered} \text { MOTJ } \\ 03 \times I J \end{gathered}$ | $\begin{gathered} 37 \text { I } f 0 \text { O d } \\ \text { dWヨ } \end{gathered}$ | Эy＠SS3yd | LN3W14＊dW0．2 | ل8007 |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | indino | yヨ1nd | c Nny | 3 XIONE |  |  |




ADJUSTED
FLOW
COEFFICIENT

2216. 
2217. 
2218. 
2219. 

응ㅇㅇ
$0 \div 00$





[^13]ADJUSTED
FLO'N
COEFFICIENT

$$
\begin{aligned}
& \infty \quad \text { d } \\
& 0 \\
& 0 \\
& \text { M }
\end{aligned}
$$

$\infty$
0
0
$\sim$
$\sim$ ..... ClO
$\stackrel{\circ}{?}$
-
$\infty$
$\underset{\sim}{\infty}$
$\infty$
$m$

$$
\stackrel{\infty}{\infty} \underset{\sim}{\infty}
$$

DIFFERENTIAL$\stackrel{8}{8}$
FIXED
FLOW
CONNECTION ..... FIXED
FLOW
$\dot{0} 0 \dot{0} 0 \dot{0} 0 \dot{0} 0 \dot{0} 0 \dot{0} 0.0$.
FLOOR PRESSURE  


THE FOLLOWING UNITS ARE USED FOR OUTPUT

```
SUNNER - OUTSIDE.13TH.14TH.15TH FLOOR DOORS OPEN
93 20
16 1
6 12
2
1170
11 &2
11
1 1
1
15
1 15 1
0}1111100
1.EE 0.85
1.t5 1.13
2
STAIFWELL
7.CEA 1 15 2
O 1コCO
.tE 0.323
4
2 1
1.E\subseteq 10.5
3 =
1.ES 10.5
3 14
1 .ES 10.5
3 15
1.*5 10.5
elevatch
2.4F51151
O C
1.もE 0.57
1
2. 1\epsilon
1.tS 1.5
```

FIXED CONNECTION TO
FLOW
FLOOR 2 COMPARTMENT 1
STAIRWELL
ELEVATOR
OUTSIDE DIRECTION 1

| OLOOR 3 COMPARTMENT | 1 |
| :--- | :--- | :--- |
| FLOOR 1 COMPARTMENT | 1 |
| STAIRWELL |  |
| ELEVATOR |  |
| OUTSIDE DIRECTION 1 |  |




 으우웅












$\stackrel{1}{2}$


$0 \varepsilon 1^{\circ}{ }^{\circ}$
$0 \angle 9^{\circ}$
$\varepsilon \varepsilon \varepsilon^{\circ}$
$0 G 8^{\circ}$
$0 \varsigma 8^{\circ}$

$0 \varepsilon 1^{\circ}{ }^{\circ}$
$0 \angle 9^{\circ}$
$\varepsilon 2 \varepsilon^{\circ}$
$098^{\circ}$





 －



ADUUSTED
FLOW
CCEFFICIENT

2216. 
2217. 
2218. 
2219. 


응․․․․․
THE FOLLOWING UNITS ARE USED FOR OUTPUT AREA IN FEET SOUARED

$$
\text { APPENDIXE - RUN } 4 \text { COMPUTER OUTPUT }
$$

$$
\text { SUMMER - OUTSIDE. } 13 \mathrm{TH}, 14 \mathrm{TH}, 15 \mathrm{TH} \text { FLOOR DOORS OPEN }
$$

FLOW IN CFM AT 70 DEG F AND I ATM
PRESSURE IN INCHS H2O
ARE IN FEET SOUARED

## 



APPENDIX E - RUN 4 COMPUTER OUTPUT
SUMMER - OUTSIDE, $13 \mathrm{TH}, 14 \mathrm{TH}, 15 \mathrm{TH}$ FLOOR DOORS OPEN

|  |  | TEMPERATURE PROFIle 2 SHAFT FLOW COEFFICIENT 70000 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLOOR | PRESSURE | $\begin{aligned} & \text { FIXED } \\ & \text { FLOW } \end{aligned}$ | CONNEC | TION | N TO |  | DIFFERENTIAL PRESSURE |
| 1 | 3.015 | 1300. | FLOOR | 1 | COMPARTMENT | 1 | -. 082 |
|  |  |  | OUTSID | DE $D$ | DIRECTION 1 |  | -. 136 |
| 2 | 2.863 | 1300. | FLOOR | 2 | COMFARTMENT | 1 | -. 101 |
| 3 | 2.706 | 1300. | FLOOR | 3 | COMPARTMENT | 1 | -. 113 |
| 4 | 2.547 | 1300. | FLOOR | 4 | COMPARTMENT | 1 | -. 122 |
| 5 | 2.385 | 1300. | FLOOR | 5 | COMPARTMENT | 1 | -. 129 |
| 6 | 2.221 | 1300. | FLOOR | 6 | COMPARTMENT | 1 | -. 133 |
| 7 | 2.055 | 1300. | F1.00R | 7 | COMPARTMENT | 1 | -. 135 |
| 8 | 1.888 | 1300. | FLOOR | 8 | COMPARTMENT | 1 | -. 137 |
| $\bigcirc$ | 1.720 | 1300. | FLOOR | 9 | compartment | 1 | -. 137 |
| 10 | 1.551 | 1300. | FLOOR | 10 | compartment | 1 | -. 135 |
| 11 | 1.383 | 1300. | FLOOR |  | COMPARTMEN: | 1 | -. 135 |
| 12 | 1.214 | 1300. | FLOOR | 12 | COMPARTMENT | 1 | . 121 |
| 13 | 1.045 | 1300. | FLOOR | 13 | COMPARTMENT | 1 | -. 007 |
| 14 | . 876 | 1300. | FLOOR | 14 | COMPARTMENT | 1 | -. 004 |
| 15 | . 708 | 1300. | FLOOR | 15 | COMPARTMENT | 1 | -. 005 |

THE FOLLOWING UNITS ARE USED FOR OUTPUT



| 4 | 응ㅇㅅㅇㅇㅇㅇㅇㅇㅇㅇㅇㅅㅇㅇㅇㅇㅇㅇㅇ |
| :---: | :---: |
| 을 |  |




 $\stackrel{\square}{\circ}$


$$
\begin{aligned}
& \text { FIXED } \\
& \text { FLOW }
\end{aligned}
$$



$$
\begin{aligned}
& \text { FLOOR }
\end{aligned}
$$

$$
\begin{aligned}
& \text { FLOOR PRESSURE }
\end{aligned}
$$

THE FOLLOWING UNITS ARE USED FOR OUTPUT

[^14]```
* atef - all dccrs cl.csed
14 2 0
16 1
\epsilon 12
?
1 1 70
1 1 45
l 1
O 1 1
1
15
1 1E 1
0}111100
1 .tE 0.0.5
1.tE 1.13
2
STAIFMELL
7.CE4 1 15 2
C 4EO
1.\epsilonS 0.323
O
flevatcr
2.\ES 1 15 1
O C
1.0.0.0.57
l
2 1f
1.t5 1.5
```

| 13 N | て＇ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0．16て | Oと1．1 | －sb6z | 010． |  | 1．NOILJヨyIO Foisino |  |  |  |  |  |
|  | て＇6とて・ | 0 $29{ }^{\circ}$ | －9かく1 | $610^{\circ}$－ |  | 801＊ヘヨาヨ |  |  |  |  |  |
|  | て＇66 | とてを． | －$\varepsilon 98$ | ¢ع£ |  | 77ヨMyIVJS |  |  |  |  |  |
|  | 0＊OLて | 0¢8＊ | －91てて | Sto． | 1 | LN3NLYV |  |  |  |  |  |
|  | 8＊8とて | 0¢8． | －9ıてて | て10＊ | ， | 1NGWLY甘 | － 0 | 1 | ても1・て | $\downarrow$ | $\iota$ |
| 13 N | $\tau^{*}$ |  |  |  |  |  |  |  |  |  |  |
|  | －561． | OE1．1 | －Sb6て | －00＊． |  | 1 NOILJこyIO goisino |  |  |  |  |  |
|  | ¢．6iع． | 0 29 ． | －90く1 | عと0＇． |  | ช01ロヘヨาヨ |  |  |  |  |  |
|  | 9＊＊60 | ๕ટ® | －ع98 | 6てع． |  | าาヨMษIV1S |  |  |  |  |  |
|  | 9．062 | 0¢8． | －9してて | $\angle 10^{\circ}$ | 1 | 1N3WLY母dWOJ ¢ צ001」 |  |  |  |  |  |
|  | $0 \cdot 0 \angle 乙$－ | OS8＊ | －91てて | S10． | 1 | 1NGW1甘VdWOS L צ007」 | － 0 | $\downarrow$ | $0 \varepsilon \varepsilon^{\prime} \tau$ | $\downarrow$ | 9 |
| 13 N | $\varepsilon$ |  |  |  |  |  |  |  |  |  |  |
|  | －601． | OE1．1 | －Sb6て | $100 \cdot$ |  | 1 NOILJヨyIO Goislno |  |  |  |  |  |
|  | 8． 26 E | 0 29. | －9ヤく1 | 150. |  | ソ01ロヘヨา |  |  |  |  |  |
|  | て＇88b | £ ¢． | －ع98 | oてを． |  | רา $\exists$ M IVIS |  |  |  |  |  |
|  | 8－$๐$ ¢ | 0¢8＊ | －91てて | $610^{\circ}$ | 1 |  |  |  |  |  |  |
|  | 9．06て－ | OS8． | －91てて | L10＇． | $\stackrel{1}{1}$ | 1N3W1甘母dWOS 9 צ007 | － 0 | 1 | $615 \cdot \tau$ | $\downarrow$ | S |
| 13 N | $\square^{\circ}$ |  |  |  |  |  |  |  |  |  |  |
|  | 8＊Sて－ | OE1．1 | －Su6z | $000{ }^{\text {－}}$ |  | 1 NOILJヨyIO ヨoisino |  |  |  |  |  |
|  | て＇09ロ－ | 0＜9 | －9ヤくb | 690 － |  | ४01ロヘヨา |  |  |  |  |  |
|  | $\varepsilon \cdot 08 \mathrm{t}$ | とてを． | －ع98 | OLE． |  | רาコM ¢ IVIS |  |  |  |  |  |
|  | 0．11E | OS8． | －9してて | OZO． | b | 1NGW |  |  |  |  |  |
|  | 8－$\square$ ¢－ | OS8＊ | －91て乙 | $610^{\circ}$ | 1 | 1N3WLYषdWOJ ¢ | － 0 | $\downarrow$ | Hんて | 1 | $\dagger$ |
| 13 N | $\tau$ |  |  |  |  |  |  |  |  |  |  |
|  | － 29 | Oと1．1 | －SIIE | 000 |  | 1 NOILJヨyIO Joisino |  |  |  |  |  |
|  | －1てS． | 0 $29^{\circ}$ | －90く1 | $680^{\circ}$ |  | ช01ロヘヨา |  |  |  |  |  |
|  | L．1くb | ๕てを． | － $\mathrm{c}^{\text {98 }}$ | $66{ }^{\circ}$ |  | $77 \exists \mathrm{myIV1S}$ |  |  |  |  |  |
|  | s．e6\％ | OS8． | －91てて | 810. | b | INヨW1甘甘dWOJ 乙 yooly |  |  |  |  |  |
|  | 0．118． | OS8． | －9ıてて | OZO＊－ | 1 | INヨWI甘サdWOJ b yoold | － 0 | $\downarrow$ | $\varepsilon 06^{\prime} \tau$ | 1 | $\varepsilon$ |
| 13 N | ${ }^{\circ}$ |  |  |  |  |  |  |  |  |  |  |
|  | G．SLI | ○¢์．1 | －S！レE | ع00＊ |  | 1 NOI」Jヨyia goisino |  |  |  |  |  |
|  | S．OLS． | 0＜9＊ | －9016 | L0：＇ |  | ช01マヘヨาヨ |  |  |  |  |  |
|  | L． 096 | £てع | － 998 ． | 062． |  | רาコMyIV1S |  |  |  |  |  |
|  | 0．ロで | OS8． | －91てで | 010. | 1 | 1NGW1甘母dwo $\downarrow$ צ007」 |  |  |  |  |  |
|  | S＇E6z． | OS8． | －91てを | 810． | $\downarrow$ | INヨWI甘甘dWOJ E צOOT」 | － 0 | $\downarrow$ | $\checkmark 60^{\circ} \varepsilon$ | $\downarrow$ | $\tau$ |
| 13 N | $\tau^{\prime}$ |  |  |  |  |  |  |  |  |  |  |
|  | 0．8sع | Oع •• | －SIIE | ع10＊ |  | 1 NOILJヨyIo Эoisino |  |  |  |  |  |
|  | $\varepsilon \cdot L 6 S$. | 0＜9 | －9016 | くいし． |  | ソ01ロヘヨ7ヨ |  |  |  |  |  |
|  | S＇E9b | どてを． | － 998 | $68{ }^{\circ}$ |  | ר7ヨMyIV1S |  |  |  |  |  |
|  | 0・ロてて． | O¢8＊ | －9ıてZ | 010\％． | 1 |  | － 0 | $\downarrow$ | $\angle L \chi^{\circ} \varepsilon$ | $\downarrow$ | b |
|  | M07 |  |  | $\begin{gathered} \text { 3ynSS } \\ \text { TVIINヨydyda } \end{gathered}$ |  | O1 NOI 103 NNOS |  | 37IJOYd dW31 | 38nSS3yd | 1N3N14VdWOJ | 80074 |
|  |  |  |  |  |  |  |  | ）58000 | 17＊－צヨコN |  |  |


$\stackrel{\leftarrow}{\text { 世 }}$



MNNO

WINTER - ALL DOORS CLOSED
DIFFERENTIAL
PRESSURE
$\square$

CONNECTION

$\circ$
FIXED
FLOW

FLOOR COMPARTMENT PRESSURE PROFILE
$\cong$
THE FOLLOWING UNITS ARE USED FOR OUTPUT

FLOW IN CFM AT 70 DEG F AND 1 ATM
PRESSURE IN INCHS H2O
AREA IN FEET SQUARED
首
 ૩৭

$$
\begin{gathered}
\text { DIFFERENTIAL } \\
\text { PRESSURE }
\end{gathered}
$$

> STAIRWELL
70000.


[^15]| 3 |  |  |
| :---: | :---: | :---: |
| － | $\wedge$ ヘ－oNのののヘーonom | $\bigcirc$ |
| 4 |  | － |
|  |  | $\omega$ |
|  |  |  |

 응 $\stackrel{\square}{\square}$
ADUUSTED
FLCW
COEFFICIENT
 3910.

|  <br>  |
| :---: |
|  |  |
|  |  | $\dot{\circ}$

$\stackrel{\circ}{\sigma}$
$m$

## ELEVATOR



THE FOLLOWING UNITS ARE USED FOR OUTPUT

[^16]```
WINTER - OUTSIDE,IST.2ND,3RD FLOOR DOORS OPEN
1420
161
6 12
2
1170
1 145
1}
O 1 1
1
15
1 15 1
0}11100
1.ES 0.85
1.tES 1.13
2
STAIFWELL
7.CEA 1 15 2
O 1こCO
1.t5 0.323
4
2 1
1.ES 10.5
3 1
1.t5 10.5
3 2
1 - &5 10.5
3 コ
1 .ES 10.5
ELEVATCR
2.4ES 1 16 1
OC
1.EE 0.67
l
2 1\epsilon
1.&E 1.5
```





ADJUSTED
FLOW
COEFFICIENT

กั๗ホ
DIFFERENTIAL
Mon
060
000
0
APPENDIXE - RUN 6 COMPUTER OUTPUT
WINTER - OUTSIDE, 1ST, 2ND. 3RD FLOOR DOORS OPEN
안
FIXED CONNECTION
FLOW


FLOOR COMPARTMENT PRESSURE PROFILE
THE FOLLOWING UNITS ARE USED FOR OUTPUT
FLOW IN CFM AT 70 DEG F AND 1 ATM PRESSURE IN INCHS H2O

| . 3 |  |
| :---: | :---: |
| - |  |
| $\underline{L}$ |  |
|  |  |
|  | - ¢ - ¢ |



| $\begin{aligned} & 3 \\ & \hline \\ & \hline \end{aligned}$ |  |
| :---: | :---: |
|  |  |
|  |  |


DIFFERENTIAL
PRESSURE

.204
.209
.211
.072
.041
.023
.010
.001
. .006
. .014
-.023
. .032
. .041
-.048
. .051
.

| FLOOR | PRESSURE | TEMPERATURE PROFILE 1 SHAFT FLOW COEFFICIENT <br> FIXED <br> FLOW CONNECTION |  |  |  | 24000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| 1 | 3.170 | 0. | FLOOR | 1 COM | OMP | ARTMEN |
| 2 | 2.997 | 0. | FLOOR | 2 COM | OMP | ARTMEN |
| 3 | 2.824 | 0. | FLOOR | 3 COM | OMP | ARTMEN |
| 4 | 2.651 | 0. | FLOOR | 4 COM | OMP | ARTMEN |
| 5 | 2.478 | 0. | FLOOR | 5 COM | OMP | ARTMEN |
| 6 | 2.306 | 0. | FLOOR | 6 COM | OMP | ARTMEN |
| 7 | 2.133 | 0. | FLOOR | 7 COM | OMP | ARTMEN |
| 8 | 1.960 | 0. | FLOOR | 8 COM | OMP | ARTMEN |
| 9 | 1.788 | 0. | FLOOR | 9 COM | OMP | ARTMEN |
| 10 | 1.615 | 0. | FLOOR | 10 COM | OMP | ARTMEN |
| 11 | 1.443 | 0. | FLOOR | 11 Com | OM | ARTMEN |
| 12 | 1.270 | 0. | FLOOR | 12 Com | OMP | ARTMEN |
| 13 | 1.098 | 0. | FLOOR | 13 COM | OMP | ARTMEN |
| 14 | . 926 | 0. | FLOOR | 14 COM | OMP | ARTMEN |
| 15 | . 754 | 0. | FLOOR | 15 COM | OMP | ARTMEN |
| 16 | . 582 | 0. |  |  |  |  |

```
WINTER - UUTSIDE,7TH.GTH,9TH FLOOR DOORS ODEN
1420
16. 1
< 12
2
1170
1 145
1}
0}11
1
15
1 15 1
0}111100
1.E& 0.85
1.EE 1.13
2
STA1FGELL
7.CE4 1 15 2
O 1こCO
1.EE 0.323
4
2 1
1 .6E 10.5
37
1 .ES 10.5
3 8
1.\epsilonE 10.5
3 S
1.ES 10.5
FLEVATCR
2.4ES 1 161
OC
    1.tE 0.67
1
2 16
1.tS 1.5
```






ヘッタース





NiNo
○トのヘトの
FLOW


$\stackrel{\leftarrow}{\underset{Z}{2}}$

| $13 N$ | で・ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | でして6• | OE1．1 | －Sb6z | 860＊－ |  | （ NOILJヨyIO Joisino |  |  |  |  |  |
|  | s＊LLb | 0 $29{ }^{\circ}$ | －9bくb | SLO |  | yo1＊A37 |  |  |  |  |  |
|  | b＇SLE | とてを． | －$¢ 98$ | 681． |  | าาヨMyIV1s |  |  |  |  |  |
|  | b－yoz | 0¢8． | －9してて | $80{ }^{\circ}$ | 1 | INJW1YVdNOJ El yoold |  |  |  |  |  |
|  | L＇s¢ ${ }^{\text {－}}$ | OS8． | －9してて | ＋00\％－ | 1 | IN3W1YVdWOS St 8007」 | － 0 | 1 | ¢88 ${ }^{\circ}$ | b | 6b |
| 13N | $て \cdot$ |  |  |  |  |  |  |  |  |  |  |
|  | 8．698－ | Oع $\square^{\circ} \cdot 1$ | －Sb6て | 980＊－ |  | ¢ NOİJэyIa эoisino |  |  |  |  |  |
|  | て＇0s | 0＜9＊ | －9b」b | $990^{\circ}$ |  | ソ01『＾ヨาヨ |  |  |  |  |  |
|  | s．$\square$ ¢ | とてを． | －$¢ 98$ | $681^{\circ}$ |  | $77 \exists \mathrm{MyI} \mathrm{I}^{\text {c }}$ |  |  |  |  |  |
|  | 6．とbて | OS8＊ | －91てて | 210＊ | 1 | 1N3W1甘VdWOJ てl yooly |  |  |  |  |  |
|  | b－boz－ | OS8． | －9してて | $800^{\circ}$－ | 1 | 1N3W1甘VdwOT 力1 yoold | $\cdot 0$ | 1 | ¢90． | 1 | $\varepsilon \downarrow$ |
| 13 N | て＇－ |  |  |  |  |  |  |  |  |  |  |
|  | 9・とて8． | Oعレ・1 | －St6て | 810＊． |  | 1 NOILJヨyIo 30ISIno |  |  |  |  |  |
|  | 6 \％ 200 | 0＜9＊ | －9bくb | SSO． |  | ソ01ロヘヨาヨ |  |  |  |  |  |
|  | －698 | £てを． | －$¢ 98$ | ع81． |  | ר1ヨMyIV1S |  |  |  |  |  |
|  | b－06て | $0 \mathrm{OS}^{\text {－}}$ | －9してて | $410^{\circ}$ | 1 | 1N3W1YVdWOJ bl yoold |  |  |  |  |  |
|  | 6．$๕$ ¢ - | OS8． | －91てを | 210． | 1 | INヨW1甘VdWOS E！yoold | － 0 | 1 | $8 \downarrow て ゙ \downarrow$ | 1 | て！ |
| 13N | $\varepsilon \cdot$ |  |  |  |  |  |  |  |  |  |  |
|  | L． 208 － | Oと1．1 | －Sb6て | SLO． |  | b NOILJヨyIO ヨoisino |  |  |  |  |  |
|  | 6．8Eย | OL9 | －9bくb | 880． |  | y01ロヘヨาヨ |  |  |  |  |  |
|  | 8．$\angle 5 \varepsilon$ | とても． | －$¢ 98$ | ごに |  | רาヨMyIV1S |  |  |  |  |  |
|  | 8.000 | OS8． | －91て己 | ع®O． | 1 | 1N3W1४षdWOS O1 yooly |  |  |  |  |  |
|  | 1－06て | os8． | －91てて | L10＇． | 1 | 1NヨW1甘マ | － 0 | 1 | 8 8＊ | $\downarrow$ | 16 |
| 13N | 1． |  |  |  |  |  |  |  |  |  |  |
|  | く． 218 － | OEレ． 1 | －Sb6て | 880＊－ |  | b NOILJヨyio goisino |  |  |  |  |  |
|  | b－9て！ | O＜9 | －9bくb | S00． |  | ソロ1ロヘヨาヨ |  |  |  |  |  |
|  | 8＊9てを | とて£ | －¢98 | 加じ |  | า7ヨMyIV1S |  |  |  |  |  |
|  | s．0て8 | 0s8． | －91てて | LE1． | 1 | 1N3W1甘षdWOJ 6 y007y |  |  |  |  |  |
|  | $8.000 \cdot$ | OS8． | －9トてて | عとO＊． | 1 | IN3WIYVdWOS い1 צOOT」 | － 0 | b |  | $\downarrow$ | Ob |
| 13N | $\square^{\circ} \cdot$ |  |  |  |  |  |  |  |  |  |  |
|  | －$\varepsilon$ ¢ع | Oとし・ | －sb6て | Soz． |  |  |  |  |  |  |  |
|  | －ع¢9－ | 0 $29^{\circ}$ | －9bくb | てとし． |  | ソ01هヘヨาヨ |  |  |  |  |  |
|  | 8．6852 | OOS．${ }^{\circ}$ | －8と08て | $600^{\circ}$ |  | าาэмуIロ1s |  |  |  |  |  |
|  | b． 266 | OS8． | －91てて | 800. | $b$ | 1N3WLYषawos 8 dOO1」 |  |  |  |  |  |
|  | s．028－ | 0s8． | －91てて | LEし． | $b$ | INヨWIYVdWOS Of yooly | － 0 | $\downarrow$ | 256．1 | $\downarrow$ | 6 |
| 13N | て＇－ |  |  |  |  |  |  |  |  |  |  |
|  | くて6て1． | Oع1．$\downarrow$ | －st6て | ع61． |  | 1 NOILJヨyIO ヨoisino |  |  |  |  |  |
|  | b－ 2 S9－ | 0 $019^{\circ}$ | －9bくb | $61^{\prime} \cdot$ |  | 401ロヘヨ7ヨ |  |  |  |  |  |
|  | b． LbOZ | OOS．${ }^{\circ}$ | －8808て | S00． |  | า7ヨMyIVIS |  |  |  |  |  |
|  | $9 \cdot 66$ | OS8． | －91てて | $200{ }^{\circ}$ | $\downarrow$ | 1NヨWI甘V |  |  |  |  |  |
|  | $\text { b } \angle 6 b-$ | os8． | －91てて | 800\％． | 1 | LNヨWIYVdWOS 6 צOO1」 | － 0 | 1 | ことし「て | $\downarrow$ | 8 |
|  | M071 | $\begin{aligned} & \nabla \exists y \nabla \\ & \text { MOר } \end{aligned}$ | 1NGIOI」」ヨOO MO7s 031 Snrov | 3ynSs 3yd 7ロI1Nヨyヨコ」IO |  | O1 NOI IJJnnos | $\begin{gathered} \text { MO7I } \\ 0 \exists X I 4 \end{gathered}$ | $\begin{gathered} 37 \text { I } y \text { OYd } \\ \text { dW } \exists \perp \end{gathered}$ | 34nSs3yd | 1NヨWI甘VINOJ | 4007 |
|  |  |  |  |  |  | Nヨdo syoco yoo | $1 \pm H 16{ }^{\circ}$ | H14． 3015 |  |  |  |
|  |  |  |  |  |  | 1ndino | yヨ1ndw | $\angle$ \％ 4 | 3 XIONJd |  |  |




|  | $\stackrel{r}{2}$ |  |
| :---: | :---: | :---: |
| $\bigcirc$ | 世 | － |
| 山 | $\cdots$ | ーヅ』 |
| 13 | 0 | －¢\％ |
| 00 | － | ヘ0ヶ0 |
| $\bigcirc$ | 4 | ก -N |
| Ји | L |  |
| 0 | ${ }^{\sim}$ |  |
| 4 | O |  |



APPENDIX E－RUN 7 COMPUTER OUTPUT
WINTER－OUTSIDE， 7 TH， $8 T H, 9 T H$ FLOOR DOORS OPEN
THE FOLLOWING UNITS ARE USED FOR OUTPUT
$\begin{array}{llllll}\text { FLOW IN } & C F M & \text { AT } 70 & \text { DEG F AND } 1 \text { ATM } \\ \text { PRESSURE IN INCHS H2O }\end{array}$
AREA IN FEET SQUARED

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |


STAIRWELL

$$
\begin{aligned}
& \text { TEMPERATURE PROFILE } 2 \\
& \text { SHAFT FLOW COEFFICIENT }
\end{aligned}
$$

THE FOLLOWING UNITS ARE USED FOR CUTPUT


$$
70000
$$

$$
\begin{aligned}
& \text { DIFFERENTIAL } \\
& \text { PRFSSURF }
\end{aligned}
$$

ADUUSTED
FLOW



ELEVATOR

1746. 1746
1746

1746 | $\circ$ |
| :--- |
| $\stackrel{0}{\sigma}$ |
|  |


 DIFFERENTIAL . 213


THE FOLLOWING UNITS ARE USED FOR OUTPUT
FLOS IN CFM AT 70 DEG F AISD 1 ATM
PRESSURE IN INCHS H2O
AREA IN FEET SQUARED

```
WINTER - OUTSIDE,13TH.14TH,15TH FLOOR DOORS OPEN
14 2 0
16 1
6\quad12
2
1 170
1 145
1}
| 1
1
15
1 15 1
0}1111100
1.\epsilonE 0.85
1.EE 1.13
2
STAIFKELL
7.CE4 1 15 2
O 1300
1 .ES 0.323
4
2 1
1 - ES 10.5
3 12
1.EE 10.5
3 14
1.EE 10.5
3 15
1 .tE 10.5
elevatof
2.4EE 1 1G1
OC
1 - EE C.ET
1
2 1f
1.ES 1.5
```


응

©


| － | － | － | － |
| :---: | :---: | :---: | :---: |
| トー | － | －1 | ート－ |
| z | $z_{1}$ | 兄 | ¢ |
| W | 山 |  |  |
| $\sum_{\sim}^{2}$ z | $\sum_{1} \sum_{1} \quad$ z | ご， | $\sum_{1} \sum_{i} \quad 2$ |
| ロロ－ | ๙ロ－ | ロロ | ロ ロ |
| 46 | 4 | ¢く | 4 |
| $\bigcirc \square$ | －a | －a | a ${ }^{\text {a }}$ |
| $\Sigma \Sigma$ 山 | $\Sigma \Sigma$ س | $\Sigma$ 玉 w | $\Sigma \Sigma$ س |
| $\bigcirc 0$ | $\bigcirc \bigcirc$ | $\bigcirc 0 \times$ | $\bigcirc 0 \times$ |
| OU， | OU，- | ט○， | $\bigcirc \bigcirc$ |
| にのコロ | くすコロ | へぃコロ | $\infty$－」 |
| ш๐ | سо | ш | س ¢ |
| ふトロ | マーロ | 3トロ | トロ |
| ロロロ4円 | ๙凹ロ4ッ | ロロ ¢ぐ | ๙ロロ4ロ |
| ○○ッフ心 | ○○ッフ心 | ○○ッフい | －Oッフに |
| ○○はルに | ○○はルに | ○○』山上 | ○○はルに |
|  | いいたい号 | 山吅䛔 | いиに山す。 |

$\circ$
0


OUTSIDF DIRECTION


0
FLOOR 2 COMPARTMENT 1
STAIRWELL
ELEVATOR
OUTSIDE DIRECTION 1
FLOOR 2 COMPARTMENT 1
STAIRWELL
ELEVATOR
OUTSIDE DIRECTION 1


EL．EVATOR
OUTSIDE DIRECTION
0

$$
-
$$

FLCOR COMPARTMENT
.
3.275
3.093
$\qquad$
$\cdots$

$$
2.904
$$

$$
\begin{aligned}
& \sim \\
& \underset{\sim}{\sim}
\end{aligned}
$$

$-$
－

N
$m$
$\sigma$
$\Omega$
$\omega$
N
$\stackrel{+}{\sim}$
$\stackrel{1}{2}$
N
N゙
N

$\dot{\sim}$
$\dot{N}$
$\dot{N}$
都


都

のよへルN



$\stackrel{-}{\sim}$



－



## 

|  |
| :---: |


| OMOO | ○○ツ○○ |
| :---: | :---: |
| ¢0¢ | － |
|  |  |
|  |  |


－••




都






WINTER - OUTSIUE, $13 \mathrm{TH}, 14 \mathrm{TH} .15 \mathrm{TH}$ FLOOR DOORS OPEN
FLOOR

| FLOOR | COMPARTMENT | PRESSURE | $\begin{aligned} & \text { TEMP } \\ & \text { PROFILE } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 15 | 1 | . 877 | 1 |
| THE FOLLOWING UNITS ARE USED FOR OUTPUT |  |  |  |
| FLOW IN CFM AT 70 DEG F AND 1 ATMPRESSURE IN INCHS H2O |  |  |  |
|  |  |  |  |
| AREA | $N$ FEET SQUA |  |  |

APPENDIX E
HINTER - OUTSIDE. $13 \mathrm{TH} .14 \mathrm{TH}, 15 \mathrm{TH}$ FLOOR DOORS OPEN

$$
\begin{aligned}
& \text { DIFFERENTIAL }
\end{aligned}
$$

$$
\begin{aligned}
& \because \because \because \because \because \because \because \because \because \because \because O 丶
\end{aligned}
$$

THE FOLLOWING UNITS ARE USED FOR OUTPUT

DIFFERENTIAL

## 


 $\circ$
$\stackrel{8}{0}$
-
 ADUUSTED
FLOW
COEFFICIENT

1746. 
1747. 
1748. 
1749. 
1750. 
1751. 
1752. 
1753. 
1754. 
1755. 
1756. 
1757. 
1758. 
1759. 
1760. 
1761. 



THE FOLLOWING UNITS ARE USED FOR OUTPUT

[^17]
# APPENDIX F. <br> DATA AND COMPUTER OUTPUT FOR ZONE SMOKE CONTROL EXAMPLE OF CHAPTER 6 

## TABLE OF CONTENTS

Page
Summary Table ..... 183
Run 1 ..... 184
Run 2 ..... 189
Run 3 ..... 194
Run 4 ..... 199
Run 5 ..... 204
Run 6 ..... 209
Run 7 ..... 214

| Run | Fire <br> Floor | Smoke Zone Floors | Season | Floors on Which Stairwell Doors to Building Are Open |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1,2 | Summer | None |
| 2 | 1 | 1,2 | Winter | None |
| 3 | 12 | 11,12 | Winter | None |
| 4 | 6 | 5,6,7 | Summer | 6 |
| 5 | 6 | 5,6,7 | Summer | 5,6,7 |
| 6 | 6 | 5,6,7 | Summer | $3,4,6,8,9$ |
| 7 | 6 | 5,6,7 | Winter | 6 |

Note: See chapter 7 for discussion of this example computer analysis of a zoned smoke control system.

```
SUNNER - FIRE FLCOR IS IST FL - NC DOORS OPEN
G3 20
13 1
6 12
1
1 1 7C
1 1
0}11
1
12
< < 1
O 1 1 -2040 1
1.ES.43
1.E\subseteq 1.22
3 12 1
0 1 1 2040 1
1.ES.49
1.t5 1.22
2
STAIFMELL
?.CE4 1 12 1
C C
1.tE.323
2 1
1.EE 10.5
12
S2CC
1E
12CC
1\varepsilon
12CC
111
12CC
ELEVATOF
2.4ES 1 13 1
O C
1.<< 1.%5
1
c 1こ
1.&53
```





$\circ O M O O$
$\sigma \sigma M 心 N$
$\square M N$

荘
ウल $0: 0 \times m$



| ○ツ○○ | OOroo |
| :---: | :---: |
| のヘレN | の日Nin |
| 『ツNN | ササツへN |
|  |  |




$\infty \in 0$
$0 \rightarrow \infty$
0 $\therefore \omega m \pi$
$-0 \rightarrow 0$
$\div 0$
$\pi-1$
$0-00$
0
MNNN
$0.0-0$
000
NMEON
000
000
0
$\begin{array}{cc}-N-\pi \\ 0000 \\ 000 & 0\end{array}$


|  | $\begin{aligned} & \text { APPENUIX F } \\ & \text { SUMMER }- \text { FIRE } \end{aligned}$ |  | RUN 1 | COMPUTER | OUTPUT |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | FLOOR | 1ST FL－ | NO DOORS OPEN |  |  |
| FLOOR | COMPA | PRESSURE | $\begin{aligned} & \text { TEMP } \\ & \text { PROFILE } \end{aligned}$ | $\begin{aligned} & \text { FIXED } \\ & \text { FLOW } \end{aligned}$ | CONNECTION | TO |  |
| 1 | 1 | 2.405 | 1 | －2040． | FLOOR 2 C STAIRWELL <br> ELEVATOR <br> OUTSIDE DI | ARTM <br> IION |  |
| 2 | 1 | 2． 250 | 1 | － 2040. | $\begin{aligned} & \text { FLOOR } 3 \mathrm{C} \\ & \text { FLOOR } 1 \text { C } \\ & \text { STAIRWELL } \\ & \text { ELEVATOR } \\ & \text { OUTSIDE DI } \end{aligned}$ | ARTM ARTM <br> TION | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |
| 3 | 1 | 2． 251 | 1 | 2040. | $\begin{aligned} & \text { FLOOR } 4 \mathrm{C} \\ & \text { FLOOR } 2 \mathrm{C} \\ & \text { STAIRWELL } \\ & \text { ELEVATOR } \\ & \text { OUTSIDE DII } \end{aligned}$ | ARTM ARTM <br> IION | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |
| 4 | 8 | 2.090 | 1 | 2040 | $\begin{aligned} & \text { FLOOR } 5 \mathrm{C} \\ & \text { FLOOR } 3 \mathrm{C} \\ & \text { STAIRWELL } \\ & \text { ELEVATOR } \\ & \text { OUTSIDE DII } \end{aligned}$ | ARTM ARTM <br> TION | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |
| 5 | 9 | 1.920 | 1 | 2040. | $\begin{aligned} & \text { FLOOR } 6 \text { C } \\ & \text { FLOOR } 4 \text { C } \\ & \text { STAIRWELL } \\ & \text { ELEVATOR } \\ & \text { OUTSIDE DII } \end{aligned}$ | ARTM ARTM <br> TION | 1 |
| 6 | 1 | 1.749 | 1 | 2040. | $\begin{aligned} & \text { FLOOR } 7 \mathrm{C} \\ & \text { FLOOR } 5 \\ & \text { STAIRWELL } \\ & \text { ELEVATOR } \\ & \text { OUTSIDE DI } \end{aligned}$ | ARTM ARTM <br> TION | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |
| 7 | 1 | 1.578 | 1 | 2040 | $\begin{aligned} & \text { FLOOR } 8 \mathrm{C} \\ & \text { FLOOR } 6 \mathrm{C} \\ & \text { STAIRWELL } \\ & \text { ELEVATCR } \\ & \text { OUTSIDE DI } \end{aligned}$ | ARTM ARTM <br> TION | 1 |

$\stackrel{\leftarrow}{\underset{\sim}{\sim}}$

$\stackrel{\leftarrow}{\text { セ }}$



$$
\text { กのOサォッ } \infty \text { กTかっO }
$$

$$
0 \approx \omega \infty 0 m
$$

manono
FLOW
AREA

.490
.490
.323
1.750
1.220




ADJUSTED
FLOW
COEFFICIENT

N $\underset{\sim}{\circ} \dot{O}_{0}$
$\sim$
$\sim$




-50
008
000
00
0
.000
. .001
. .001
. .026
. .160


THE FOLLOWING UNITS ARE USED FOR OUTPUT
FLOW IN CFM AT 70 DEG F AND 1 ATM
PRESSURE IN INCHS H2O
AREA IN FEET SOUARED

ELEVATOR
SUMNER - FIRE FLOOR IS $1 S T$ FL - NO DOORS OPEN

ooooooooocooc
THE FOLLOWING UNITS ARE USED FOR OUTPUT

[^18]```
WIATER - FIRE FLCOR IS IST FL - NO DCORS UPEN
1420
131
c 12
1
1170
11
011
1
12
121
\(011-20401\)
1 - ЄE.49
\(1 . \in 51.22\)
\(3 \quad 121\)
\(\begin{array}{lllll}0 & 1 & 1 & 2040 & 1\end{array}\)
1 - ヒE.49
\(1 . \epsilon 51.22\)
2
STAIFHELL
7. CE4 1121
0 C
1 ・ヒと. 323
5
21
1 - ES 10.5
12
s2cc
1 E
\(12 C C\)
1 !
120 C
111
\(12 C C\)
ELEVATCR
2.4EE 1131
0 C
    1 - \(\in 51.75\)
1
    21 1
    1 -653
```

| WINTER - FIRE FLOOR IS 1ST FL - NO DOORS OPEN |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLOOR | COMPARTMENT | PRESSURE | TEMP PROFILE | $\begin{aligned} & \text { FIXED } \\ & \text { FLOW } \end{aligned}$ | CONNECTION TO |  | DIFFERENTIAL PRESSURE | $\begin{gathered} \text { ADUUSTED } \\ \text { FLOW } \\ \text { COEFFICIENT } \end{gathered}$ | FLOW AREA | F LOW |  |
| 1 | 1 | 2.698 | 1 | -2040. | FLOOR 2 COMPARTMEN1 | 1 | -. 002 | 1277. | . 490 | -54.7 |  |
|  |  |  |  |  | STAIRNELL |  | . 150 | 842. | . 323 | 326.2 |  |
|  |  |  |  |  | ELEVATOR |  | . 087 | 4561. | 1.750 | 1342.0 |  |
|  |  |  |  |  | OUTSIDE DIRECTION 1 |  | . 016 | 3363. | 1.220 | 426.3 |  |
|  |  |  |  |  |  |  |  |  |  | -. 2 | NET |
| 2 | 1 | 2.523 | 1 | -2040. | FLOOR 3 COMPARTMENT | 1 | . 115 | 1277. | . 490 | 432.6 |  |
|  |  |  |  |  | FLOOR 1 COMPARTMENTSTAIRWELL |  | . 002 | 1277. | . 490 | 54.7 |  |
|  |  |  |  |  |  |  | . 174 | 842. | . 323 | 350.9 |  |
|  |  |  |  |  | STAIRWELL <br> ELEVATOR |  | . 088 | 4561. | 1.750 | 1356.0 |  |
|  |  |  |  |  | OUTSIDE DIRECTION 1 |  | -. 002 | 3180. | 1.220 | -154.4 |  |
|  |  |  |  |  |  |  |  |  |  | -. 2 | NET |
| 3 | 1 | 2.465 | 1 | 2040. | FLOOR 4 COMPARTMENT | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | .007 . .115 | 1277. | $\begin{aligned} & .490 \\ & .490 \end{aligned}$ | $\begin{array}{r} 104.7 \\ -432.6 \end{array}$ |  |
|  |  |  |  |  | FLOOR 2 COMPARTMENT STAIRWELL |  | . .115 .059 | 1277. 842. | .490 .323 | -432.6 205.1 |  |
|  |  |  |  |  | ELEVATOR |  | -. 026 | 4561. | 1.. 750 | -738.9 |  |
|  |  |  |  |  | OUTSIDE DIRECTION 1 |  | -. 137 | 3180. | 1.220 | -1178.3 |  |
|  |  |  |  |  |  |  |  |  |  | . 0 | NET |
| 4 | 1 | 2.299 | 1 | 2040. | FLOOR 5 COMPARTMENT | 1 | . 000 | 1277. | . 490 | -13.9 |  |
|  |  |  |  |  | FLOOR 3 COMPARTMENTSTAIRWELL |  | -. 007 | 1277. | . 490 | -104.7 |  |
|  |  |  |  |  |  |  | . 053 | 842. | . 32.3 | 194.2 |  |
|  |  |  |  |  | ELEVATOROUTSIDE DIRECTION 1 |  | -. 033 | 4561. | 1.750 | -827.2 |  |
|  |  |  |  |  |  |  | $\therefore 164$ | 3180. | 1.220 |  |  |
|  |  |  |  |  |  |  |  |  |  | . 4 | NET |
| 5 | 1 | 2.126 | 1 | 2040. | FLOOR 6FLOOR4 | 1 | -. 002 | 1277. | . 490 | -59.3 |  |
|  |  |  |  |  |  |  | . 000 | 1277. | . 490 | 13.9 |  |
|  |  |  |  |  | STAIRWELLELEVATOR |  | . 054 | 842. | . 323 | 195.7 |  |
|  |  |  |  |  |  |  | -. 033 | 4561. | 1.750 | -825.3 |  |
|  |  |  |  |  | ELEVATOR <br> OUTSIDE DIRECTION 1 |  | -. 184 | 3180. | 1.220 | $.1365 .0$ |  |
|  |  |  |  |  |  |  |  |  |  | $.1$ | NET |
| 6 | 1 | 1.951 | 1 | 2040. | FLOOR 7 COMPARTMENT | 1 | -. 003 | 1277. | . 490 | -71.6 |  |
|  |  |  |  |  | FLOOR 5 COMPARTMENTSTAIRWELL |  | . 002 | 1277. | . 490 | 59.3 |  |
|  |  |  |  |  |  |  | . 056 | 842. | . 323 | 199.8 |  |
|  |  |  |  |  | ELEVATOROUTSIDE DIRECTION 1 |  | -. 031 | 4561. | 1.750 | -797.5 |  |
|  |  |  |  |  |  |  | -. 202 | 3180. | 1.220 | $-1430.1$ |  |
|  |  |  |  |  |  |  |  |  |  | $-.1$ | NET |
| 7 | 1 | 1.776 | 1 | 2040. | $\begin{array}{ll}\text { FLOOR } & 8 \\ \text { FLOMPARTMENT }\end{array}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | -. 003 | 1277. | . 490 | -73.4 |  |
|  |  |  |  |  |  |  | . 003 | 1277. | . 490 | 71.6 |  |
|  |  |  |  |  | STAIRWELL |  | . 060 | 842. | . 323 | 205.6 |  |
|  |  |  |  |  | ELEVATOR |  | -. 027 | 4561. | 1.750 | -755.3 |  |
|  |  |  |  |  | OUTSIDE DIRECTION 1 |  | -. 219 | 3180. | 1.220 | -1488.9 |  |

FLOW
$\stackrel{-}{\sim}$

| ○寸 0 のツ | のOOFMM | Oのm』にす。 | ODONN | ？¢ \％¢ |
| :---: | :---: | :---: | :---: | :---: |
| Nツ－mせ | めNヘーの | の | へ mぃい | n |
| へヘ－OG |  | ¢0N－0 | 寸 $0 \sim \sim 0$ | 寸Nぺ |
| －v์ | N 0 ¢ | $\sim \omega$ | －Nir | Nに |
| －- | －－ | $1-$ |  |  |

$3<4$
0
4

| $\begin{aligned} & 0 \text { o } \quad \text { m } \\ & \text { बo } \\ & \text { o } \\ & \hline \end{aligned}$ |
| :---: |
|  |  |
|  |  |




ADJUSTED
FLOW
COEFFICIENT




$\therefore \dot{\sim}-\dot{\circ}$
N
－
$\sim$


Mn $0-m$
000000
0000
$\vdots$

| NMOMO |
| :--- |
| 0000 |
| 0000 |
| 0 |




THE FOLLOWING UNITS ARE USED FOR OUTPUT

$$
\begin{aligned}
& \text { FLOW IN CFM AT } 70 \text { DEG F AND } 1 \text { ATM } \\
& \text { PRESSURE IN INCHS H2O } \\
& \text { AREA IN FEET SQUARED }
\end{aligned}
$$




WINTER - FIRE FLOCR IS 1 ST FL - NO DOORS OPEN

## STAIRWELL

TEMPERATURE PROFILE
SHAFT FLO'N COEFFICIENT
70000. DIFFERENTIAL

TO

THE FOLLOWING LUNITS ARE USED FOR OUTPUT



ADJUSTED
FLOW
COEFFICIENT
4561.
4561.
4561.
4561.
4561.
4561.
4561.
4561.
4561.
4561.
4561.
4561.
7820.

 .311

## ELEVATOR

TEMPERATURE PROFILE
SHAFT FLOW COEFFICIENT 240000. FIXED
FLOW
FLOOR PFESSURE


the following units are used for output

$$
\begin{aligned}
& \text { FLOW IN CFM AT } 70 \text { DEG F AND } 1 \text { ATM } \\
& \text { PRESSURE IN INCHS H2O } \\
& \text { AREA IN FEET SQUARED }
\end{aligned}
$$

```
APPENSIXFF - FUN 3 DATA
```

```
WIATEF - FIFE FLCOR IS 12TH FL - NC DOORS ONEN
14 e O
13 1
6 12
1
1 170
1 1
0}11
1
1 2
1 1C 1
01112040 1
1.\epsilonE.43
1.ES 1.22
11 1z 1
0 1 1 -2040 1
1.f5.49
1 セtE 1.22
2
STAIfAELL
7.CEA 1 12 1
O C
1 &E . こ23
5
2 1
1.ES 10.5
12
S2CC
15
12CC
1 E
12CC
111
12CC
ELEVATCR
2.4ES 1 131
O
1.tE 1.75
1
21\Xi
1. }\in\leq
```

| 13N | $\varepsilon \cdot$ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | －60カレ． | Oてて・ | －081E | 80て＇• |  | 1 NOILJヨyIO 3OISINO |  |  |  |  |  |
|  | S＇ 208. | OSL• | －195b | 180＊． |  | 801＊ヘ373 |  |  |  |  |  |
|  | ع＇ロレて | モてを． | －でЯ | S90． |  | フาヨMyIV1S |  |  |  |  |  |
|  | S＇98 | 066＊ | －LLで | S00． | $b$ | 1N3W上甘षdWOO 9 8007」 |  |  |  |  |  |
|  | て 68 － | 060 | －Lくてb | S00＊－ | 1 | 1N3W1YEdWO－yooly | －0カOZ | $\downarrow$ | 591＊ | 1 | $L$ |
| 13 N | $\varepsilon$ ． |  |  |  |  |  |  |  |  |  |  |
|  | し－ヤ6とし－ | 0てて・ | －081E | 261． |  | 1 NOI」つヨyIo эaisino |  |  |  |  |  |
|  | 0＇E¢8． | OSL＇」 | －195 | Sco． |  | 401ロヘヨา3 |  |  |  |  |  |
|  | s．902 | とてく． | －で8 | 090． |  | רาコM甘IV1S |  |  |  |  |  |
|  | L．98 | 066． | －LLてし | s00＊ | 1 | INJWLY＊dWO s צooly |  |  |  |  |  |
|  | S．98－ | 060 | －LLてし | 500\％． | 1 | INJWI甘甘dWO L Yooly | －0002 | 1 | $166^{\circ} 1$ | 1 | 9 |
| 13 N | $\varepsilon \cdot$ ． |  |  |  |  |  |  |  |  |  |  |
|  | 9•9とを। | oてて・ | －08เE | Lくし＇． |  |  |  |  |  |  |  |
|  | 8＇206－ | OsL．1 | －195b | 680． |  | ソ01षへヨาヨ |  |  |  |  |  |
|  | S． 861 | とてく． | －で8 | 950. |  | רาヨMyIV1S |  |  |  |  |  |
|  | $\varepsilon \cdot<8$ | 066． | －LLで | s00＊ | 1 | INJWLYVANOS צ007」 |  |  |  |  |  |
|  | L．98． | 060 | －LLてい | ¢00＇－ | 1 | INヨWI甘甘dWOJ 9 צOOר」 | －0toz | $\downarrow$ | 611． | 1 | s |
| 13 N | $\varepsilon \cdot$ |  |  |  |  |  |  |  |  |  |  |
|  | く9くてい。 | Oてて・• | －081E | 191． |  | 1 NOILכヨyIO כoisino |  |  |  |  |  |
|  | て＇てら6• | OSL• | －195b | －0\％＊ |  | ช01マヘヨาヨ |  |  |  |  |  |
|  | $\varepsilon \cdot 681$ | £てを． | －てヤ8 | $150 \cdot$ |  | ר7ヨMせIV1S |  |  |  |  |  |
|  | 9．98 | 060． | －Lくで | S00． | 1 | INJWL甘षオWOJ \＆צ007 |  |  |  |  |  |
|  | $\varepsilon \cdot<8$－ | 066． | －Lくで | S00． | $\downarrow$ | IN3W1甘VdWOJ S yooly | － P － | 1 | $96 \chi^{\prime}$ 乙 | 1 | $\checkmark$ |
| LコN | $\square^{\circ} \cdot$ |  |  |  |  |  |  |  |  |  |  |
|  | かとしとい。 | Oてて・1 | －081E | 961. |  | 1 NOI」JヨyIa эaisino |  |  |  |  |  |
|  | 9．666． | OSL•1 | －1998 | 850＇． |  | 801ロヘヨาヨ |  |  |  |  |  |
|  | 0.081 | とてを． | －てロ8 | 960. |  | רาコMyIvis |  |  |  |  |  |
|  | て．6L | 060＇ | －Lくで | $\bigcirc 00^{\circ}$ | $b$ | 1N3W1甘＊dWOS く y007」 |  |  |  |  |  |
|  | 9＊98－ | 066 | －L L－ | S00＊． | $b$ |  | －0002 | $\downarrow$ | ロくも「て | $\downarrow$ | $\varepsilon$ |
| 13 N | $1 \cdot$ |  |  |  |  |  |  |  |  |  |  |
|  | をとかった | Oてて・1 | －08レع | 6てい． |  | 1 NOILJヨyIO эaisino |  |  |  |  |  |
|  | －BEOL． | O\＆く，！ | －195b | 250． |  | ช01ロヘヨาヨ |  |  |  |  |  |
|  | 6．1く1 | モてを． | －てヤ8 | 200 |  | ר7コMUIV1S |  |  |  |  |  |
|  | 8．80 | O6\％ | －L L て | $100{ }^{\circ}$ | $b$ | 1N3WLYVdWO \ yOOר」 |  |  |  |  |  |
|  | て＇6L－ | 060 | －LLてb． | ＋00\％－ | $\downarrow$ | 1N3W14『dWOJ E yOOר | －0ャOZ | 1 | OS9＇z | 1 | $\tau$ |
| 13 N | $\varepsilon \cdot$ ． |  |  |  |  |  |  |  |  |  |  |
|  | $\iota^{\prime}$ LSOL． | Oてて・ | －081E | いい。 |  | ¢ NOI |  |  |  |  |  |
|  | 6 ＇乙ら01． | OSL．1 | －1956 | ESO． |  | ช01จヘヨาヨ |  |  |  |  |  |
|  | 9＊8！ | £てを． | －ても8 | O20＊ |  | רาコMyIV」S |  |  |  |  |  |
|  | 8．80． | 060 | －LLてb | 100＇． | 1 | IN3WLYVdWOJ 乙 צ00ר」 | －0ヤOz | 1 | se8＊て | 1 | 1 |
|  | 1907 | $\begin{aligned} & \nabla \exists \pm \nabla \\ & \text { MO7t } \end{aligned}$ |  | $\begin{gathered} \text { 3ynSS3yd } \\ \text { TVINNヨyyJIa } \end{gathered}$ |  | 01 NOIIJJNNOS | $\begin{array}{r} \text { MO7」 } \\ \text { aヨXIJ } \end{array}$ | 371s0yd dWヨ1 | 38nSs $34 d$ |  | 80071 |
|  |  |  |  |  |  | NJdO S8OOO ON | 7」 HIてい | I 8007y | 1」－431 |  |  |
|  |  |  |  |  |  | indino | צヨ1ndwo | $\varepsilon$ Nחy | 」 XICN |  |  |

$\stackrel{1}{2}$
4
2
$\stackrel{\leftarrow}{\sim}$
1
2

THE FOLLOWING UNITS ARE USED FOR OUTPUT
FLOW IN CFM AT 70 DEG F AND 1 ATM
PRESSURE IN INCHS H2O
AREA IN FEET SQUARED



[^19]the following units are used for output

FLOW
AREA
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
ADUUSTED
FLOW
COEFFICIENT
$\overline{0_{0}} \dot{0}$ ©

-028l

EEVATOR
SHAFT FLOW COEFFICIENT 240000.
ENT

FIXED
FLOW

the following units are used for output


```
SUNNEK - FIHE FLCOK IS :TH FR - ITHFLL JF OMEN
๑こ & C
1? 1
* 12
1
1 170
1 1
0}11
1
12
14 1
C 1 1 2040 1
1.ts.49
1 & & 1.?2
5}7
O 1 1 -20%O 1
1.\epsilon5 4.4
1.<E 1.22
& 12 1
0 1 1 2040 1
1 0t5 -4%
1.05 1.22
2
STAIF&ELL
7.CE4 1 121
O C
1.65.323
3 E
1.CE 10.5
2 1
1.t=10.3
1 2
¢ 2CC
15
12CC
1E
12CC
111
12CC
elevatcfi
2.4EE 1 131
O
1.ts 1.75
l
2 1ミ
1.E5 3
```

|  | 1． 2 カカー | ozて・！ | －08เع | оzo＇－ |  | 1 NoItJ3yIO 30IS1no |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | か・とをか | OGL． | －1956 | $660^{\circ}$ |  | －¢01＊ヘヨา3 |  |  |  |  |  |
|  | 8－192 | عてを． | －てヤ8 | L60 ${ }^{\circ}$ |  | רาコM IV1S |  |  |  |  |  |
|  | O－$\square 9 \varepsilon$ | 066． | －LLてい | $180^{\circ}$ | $\downarrow$ | IN3W1甘甘dWOO 9 8001」 |  |  |  |  |  |
|  | 9＊しても | 066 | －LLて | てい。 | $b$ | INJWIBV | －080\％－ | $\downarrow$ | て10＊ | 1 | 4 |
| 13 N | $\tau \cdot$ |  |  |  |  |  |  |  |  |  |  |
|  | 9．9001－ | Oてて・• | －08レع | 801. |  | •NOI」つヨษIO 30IS」no |  |  |  |  |  |
|  | 9－ヤ09 | OSL．$\downarrow$ | －195b | $810^{\circ}$ |  | 8018ヘ313 |  |  |  |  |  |
|  | －${ }^{\text {－}}$ | OOS． 01 | －89をLて | $610^{\circ}$ |  | า7MMEIV15 |  |  |  |  |  |
|  | く6LE－ | 066． | －LLてb | 880－ | 1 | INJWIY甘diNO S YOO1」 |  |  |  |  |  |
|  | 0＊ 59 － | 066 | －L८てb | $180^{\circ}-$ | $\downarrow$ | IN3W18母dWOJ L 8007」 | － | $\downarrow$ | $999^{\circ}$ | $\downarrow$ | 9 |
| 13 N | $\varepsilon \cdot$ |  |  |  |  |  |  |  |  |  |  |
|  | て．sてs－ | Oてて・ | －081E | くてO＊－ |  | 1 NOILJヨyIO JoISino |  |  |  |  |  |
|  | －${ }^{\text {S8bl }}$ | OSL． 1 | －195b | 901. |  | ช01マヘヨาヨ |  |  |  |  |  |
|  | $\varepsilon \cdot 69 \%$ | とてを． | －で8 | 201． |  | רาวMyIV1S |  |  |  |  |  |
|  | 6 － 0 ¢ | 0660 | －LLてい | かい。 | 1 | IN3WLYVdWOS $\square$ y007」 |  |  |  |  |  |
|  | く6くを | 060 | －LLてb | $880^{\circ}$ | 1 | 1N3W14VdWOJ 9 צ007」 | －0ャ0て－ | $\downarrow$ | OSL＇b | $\downarrow$ | S |
| 13 N | $\tau^{\text {．}}$ |  |  |  |  |  |  |  |  |  |  |
|  | ع「らこてレ・ | Oてて＇1 | －081E | 601．－ |  | ¢ NOILכヨyIO zoISino |  |  |  |  |  |
|  | く，10ヶ＊ | OSL．$\downarrow$ | －195b | 800＇－ |  | ช01マヘヨาヨ |  |  |  |  |  |
|  | ＋ 06 － | £ટを | －てロ8 | て10． |  | า7アMyIV1S |  |  |  |  |  |
|  | $1 \cdot 801$ | 066． | －LLで | L00＊ | $\downarrow$ | 1N3W18VdWOJ \＆8007」 |  |  |  |  |  |
|  | 6．0とb－ | 066＊ | －L८で | かじ， | 1 | IN3W18VdWOO S 800\％」 | －0ヤOZ | 1 | LEO＊て | $\downarrow$ | $\checkmark$ |
| 13 N | $0 \cdot$ |  |  |  |  |  |  |  |  |  |  |
|  | 6＊ع8て！－ | Oてて・• | －08レE | ع91． |  | 1 NOILJヨyIO 30ISIno |  |  |  |  |  |
|  | て＇9Ss－ | OS\％．1 | －195b | S10． |  | ช01マヘヨาヨ |  |  |  |  |  |
|  | を＇sıl． | とくを | －てゅ8 | 610＇． |  | רาアMyIV1S |  |  |  |  |  |
|  | G＇とて | 066 | －LLてし | $000{ }^{\circ}$ | 1 | IN3W1YVdWOS 2 8007」 |  |  |  |  |  |
|  | 1．801． | 066． | －L L て | 100＇－ | 1 | LN3W18VdWOJ b 8001」 | －ObOz | b | んして「て | $\downarrow$ | $\varepsilon$ |
| 13 N |  |  |  |  |  |  |  |  |  |  |  |
|  | 1－ロレEト－ | 0てで， | －081E | しくし． |  | 1 NOILJヨyIa 30ISIno |  |  |  |  |  |
|  | ع．29S． | OSL．${ }^{\text {a }}$ | －！99b | S10．－ |  | y01＊ヘ3า |  |  |  |  |  |
|  | く911． | とても． | －てヤ8 | 610． |  | רアゴM1＊15 |  |  |  |  |  |
|  | 8＇とご | 066＊ | －L ا て | 000 | $b$ | 1N3W18VdWOJ |  |  |  |  |  |
|  | 9・とて－ | 066＊ | －L८で | $00{ }^{\circ}$ | 1 | IN3W1४Vdwo e yoold | －0ヤOz | $\checkmark$ | $06 \varepsilon^{\prime}$ 乙 | $\downarrow$ | $\tau$ |
| 13 N | 1. |  |  |  |  |  |  |  |  |  |  |
|  | 6．OロE1－ | 0てて・ | －081E | 8L1．－ |  | 1 NOILJ3yIO 30ISIno |  |  |  |  |  |
|  | 6 ＇sss－ | OSL．$\downarrow$ | －195t | S10\％ |  | ソ01ロヘヨาコ |  |  |  |  |  |
|  | O． 291 － | とてを＇ | －でロ | 680． |  | ר73MyIV1S |  |  |  |  |  |
|  | 8＊とて | 066＊ | －LLて・ | 000 | 1 | 1N3W1YマdWOJ を צ007」 | －OヤOZ | 1 | ESG＇乙 | 1 | $\downarrow$ |
|  | －907 | $\begin{aligned} & \forall 38 \vee \\ & M 07 d \end{aligned}$ | 1N3IOI」」300 MOTy a31sncav | $\begin{gathered} 3 \text { BnSs } 38 d \\ 7 \nabla I \perp N \exists y \exists y \pm 10 \end{gathered}$ |  | O1 NOI 1 O3NNOJ | $\begin{array}{r} \text { MOTA } \\ 0 \exists x I 5 \end{array}$ | $\begin{gathered} 3711080 \\ \text { dN31 } \end{gathered}$ | כ 3 SSS 3 dd | LNヨW14VdU＇OJ | 8007 |
|  |  |  |  |  | N3dO |  |  |  |  |  |  |
|  |  |  |  |  |  | 1ndino | y3 | －NกY | 」 XIONヨ |  |  |


|  | $\stackrel{\sim}{w}$ | $\stackrel{\leftarrow}{\underset{z}{\mathbf{Z}}}$ | $\stackrel{\leftarrow}{\underset{z}{\mathbf{z}}}$ | $\underset{\sim}{w}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $3$ |  | OMロONT | 90010－5 | กツษ゚ー | ก บ． |
| － | 寸N 0 N | い寸O～か | － 1 ¢ 0 － | ம்－寸 |  |
| u | のヘのヘヘ | トツल－ | にト心0N | のいけめか | のサのも |
|  | －－， | －N－ | －－－ | －－ | －－ |
|  | 1－ | ＇＇－ | －${ }^{-}$ | － | － |


| 38 | ○Omo | －OMOO |  | $\bigcirc \bigcirc$ | $\bigcirc \bigcirc^{\circ} \mathrm{O}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| O w |  | の日N以N | のお～げ | ののペN | のヘณ\％ |
| ¢ $\square_{4}^{4}$ | ササッペ |  | ササットヘ | ササットヘ | サツN\％ |
|  |  |  |  |  |  |



APPENDIX F DIFFERENTIAL


[^20]| ADUUSTED |  |
| :--- | :--- |
| FLOW | FLOW |
| COEFFICIENT |  |



THE FOLLOWING UNITS ARE USED FOR CUTPUT

[^21]$\stackrel{\leftarrow}{\omega}$

| 3 |  | $\omega 0$ |
| :---: | :---: | :---: |
| $\bigcirc$ | ம்மードゥ |  |
|  |  | $\stackrel{N}{N}$ |
|  |  | － |
|  | －－－ | v |



## APPENDIX F－RUN \＆COMPUTER OUTPUT SUMAGE－FIRE FLOOR IS 6TH FL－ $6 T H F L$



ELEVATOR
TEMPERATURE PROFILE 1
SHAFT FLOW COEFFICIENT 240000.
ADJUSTED
FLOW
COEFFICIENT
 7820.

```
APPENDIXF - RUN 5 DATA
```

```
SUNNER - FIRE FLCOR IS 6TH FL - 5.6.7TH FL DR OPEN
93 = 0
13 1
c 12
1
1.70
1 1
0 1 1
l
12
14
0}1112040
1.65.45
1 -tE 1.22
5 7 1
0 1 1-2040 1
1.ES.49
1.ES 1.22
& 12 1
0 1 1 2040 1
1 - E . 49
1.tS 1.22
2
STAIFWELL
7.CE4 1 12 1
O
1.ES.323
8
3 
1.ES 10.5
37
1.tc 10.5
3\epsilon
1 0tS 10.5
2 1
1.ES 10.5
12
s2CC
15
12CC
1E
12CC
111
12CC
ELEVATOR
?.4EE 1 131
O C
1.f:1.75
1
2 12
1.<` コ
```



|  | $\stackrel{\leftarrow}{\underset{Z}{\mathrm{Z}}}$ | $\stackrel{\leftarrow}{\mathrm{L}}$ | $\stackrel{\leftarrow}{\underset{z}{2}}$ | $\stackrel{\leftarrow}{\mathrm{z}}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 3 \\ & \hdashline 3 \\ & \hline 1 \end{aligned}$ |  |  |  |  |  |
|  |  | $\begin{aligned} & \text { OOMOO } \\ & \text { サু NM } \end{aligned}$ |  |  | $\begin{aligned} & \text { 오오우N } \\ & \text { NNN } \end{aligned}$ |
|  |  |  |  |  |  |

$$
\begin{aligned}
& \text { PRESSURE }
\end{aligned}
$$

$$
\begin{aligned}
& \text { OIFFERENTIAL } \\
& \text { PRESSURE }
\end{aligned}
$$


NMom M
옹Nㅇ


$$
\text { APPENDIX F - RUN } 5 \text { COMPUTER OUTPUT }
$$

| APPENDIX F－RUN 5 COMPUTER OUTPUT |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLOOR | COMPARTMENT | PRESSURE | TEMP PROFILE | FIXED FLOW | CONNECTION TO |  |
| 8 | 1 | 1.357 | 1 | 2040. | ```FLOOR 9 COMPARTMENT FLOOR 7 COMPARTMENT STAIFWELL ELEVATOR OUTSIDE DIRECTION 1``` | 1 1 |
| 9 | 1 | 1.192 | 1 | 2040. | ```FLOOR 10 CONPARTMENT FLOOR 8 COMPARTMENT STAIRWELL ELEVATOR OUTSIDE DIRECTION 1``` | 1 |
| 10 | 1 | 1.023 | 1 | 2040. | ```FLOOR 11 COMPARTMENT FLOOR 9 COMPARTMENT STAIRWELL ELEVATOR OUTSIDE DIRECTION 1``` | 1 1 |
| 11 | 1 | ． 852 | 1 | 2040. | ```FLOOR 12 COMPARTMENT FLOOR 10 COMPARTMENT STAIRWELL ELEVATOR OUTSIDE DIRECTION 1``` | 1 1 |
| 12 | 1 | ． 681 | 1 | 2040. | ```FLOOR 11 COMPARTMENT STAIRWELL ELEVATOR OUTSIDE DIRECTION 1``` | 1 |

[^22]| $1 \exists \begin{aligned} & \text { ¢ }\end{aligned}$ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| て．80て | とてE | －ても8 | $190^{\circ}$ | b | 1N3W14VdWOJ | $て い$ | 80075 | － 0 | $619^{\circ}$ | て1 |
| 0．LOZ | とても | －てb8 | $090^{\circ}$ | $\downarrow$ | 1N3W1YVdWOJ | $\downarrow$ | 8007」 | －0021 | 261． | 1. |
| て＇soz | とてを＇ | －てぃ8 | 650 | 1 | 1N3W1 Y－${ }^{\text {dWOJ }}$ | 01 | 8007 | － 0 | \＆G6． | 01 |
| S．102 | とてを＊ | －てぃ8 | $\angle 50{ }^{\circ}$ | b | 1N3W1YVdWOJ | G | 4007 | － 0 | SE！！ | 6 |
| ع＇ G8 | とてE＇ | －てぃ8 | $15^{\circ}$ | $b$ | 1N3W1甘サdWOJ | 8 | 4007」 | －OOZ1 | LOE．1 | 8 |
| －Lてんし－ | OOS 01 | －89をLて | $\bigcirc 00^{\circ}$ ． | $\downarrow$ | 1N3W1\＆ロ ${ }^{\text {NWWOJ }}$ | $L$ | ソ007」 | － 0 | $\angle \angle V^{\circ}$ | $L$ |
| 1．9161－ | 005 ${ }^{\circ} \mathrm{O}$ | －89をLて | S00． | b | 1NJWI\＆ロ | 9 | 4007 | － 0 | 6ヤ9＊ | 9 |
| L．98Lレ－ | OOS ${ }^{\circ} \mathrm{O}$ | －89ELて | －00＊． | 1 |  | $G$ | 8007」 | －002 | こて8＊ | S |
| $1^{\circ} \mathrm{S81}$ | とても． | －てぃ8 | 8ヤ0＊ | 1 | 1N3W1 ${ }^{\text {d }}$ | $\downarrow$ | 4007」 | － 0 | S66．1 | $t$ |
| 9＊261 | とても・ | －ても8 | 乙SO． | b | 1N3W1甘V | $\varepsilon$ | 4007 | － 0 | 891． 2 | $\varepsilon$ |
| 8＊261 | とてE | ＊てヵ8 | こSO＊ | $\downarrow$ | 1N3W1甘ロawo | 乙 | 4007」 | －0026 | ObE＇乙 | $\tau$ |
| 9＊てく16• | OOS ${ }^{\circ} \mathrm{O}$ | －89をLて | ていし． |  | －NOI 1Jヨy | 3 | IS100 |  |  |  |
| S＊O己て | とてを． | －てヤロ | 690 ． | b | 1N3W1Y＊TNOS | $\downarrow$ | 8007t | － 0 | L6ガて | b |
| MO7」 | 『ヨyロ <br> MOT」 | ```INGIOI」」ヨOO MO7f 0э1Sก「ロロ``` | $\begin{gathered} \text { 3ynSS } \\ \text { רVI } 1 \text { Nヨy } \end{gathered}$ |  | 01 N | OI」つ3NNOJ |  | $\begin{gathered} \text { MO71 } \\ \text { OXI } \end{gathered}$ | 3 \％OSS 3 yd | 8007 |
|  |  |  |  |  | OOOL $\quad 1 \mathrm{~N}$ | 10 | $\begin{aligned} & \text { y } 1300 \\ & \text { foyd } \end{aligned}$ | $\begin{array}{lll} 07111 \\ 7 \vee \forall \exists d ~ \end{array}$ |  |  |
|  |  | 1 |  |  |  |  |  | $17 \exists \mathrm{MyI}$ |  |  |



| $1 \exists \mathrm{~N}$ ． |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| て．80て | とてを | －ても8 | $190^{\circ}$ | b | 1N3W1 ${ }^{\text {d }}$（NWOO | てい | 80075 | － 0 | $619^{\circ}$ | て1 |
| 0．LOZ | とても． | －てb8 | $090^{\circ}$ | 1 | 1N3W1甘VdWOJ | 11 | 8007 | $\cdot \mathrm{OOZ}$ | 261． | $1 \cdot$ |
| て＇soz | とても． | －てカ8 | 650 | $\downarrow$ | LN3W1YVdWOJ | O1 | 1007 | － 0 | \＆G6． | O1 |
| S． 102 | とてを． |  | $\angle 50^{\circ}$ | $\downarrow$ | 1N3W1甘VdWOJ | G | 8007」 | － 0 | SE1． | 6 |
| ع＇ G8 $^{\prime}$ | とても | －てぃ8 | 150 － | b | 1N3W1甘サdWOJ | 8 | ＋007」 | －OOCl | LOE．1 | 8 |
| －LてLし－ | OOS 01 | －89ELて | $\bigcirc 00^{\circ}$ ． | $\downarrow$ | 1N3W1 ${ }^{\text {dedwO }}$ | $L$ | 2007d | － 0 | $\angle \angle V^{\circ} 1$ | $L$ |
| 1.9161. | 009 ${ }^{\circ} \mathrm{OL}$ | －89をLて | SOO． | $\downarrow$ | 1NJW1YR¢WOJ | 9 | 4007 | － 0 | 6ヤ9．1 | 9 |
| く．98Lレ－ | OOS ${ }^{\circ} \mathrm{O}$ | －89ELて | －00＊． | $\downarrow$ | 1N3W1 \＆－WWOJ | 5 | 8007」 | －OOZ 1 | こて8．1 | S |
| $1 \cdot 581$ | とても． | －てぃ8 | 860． | b | 1N3W1 ${ }^{\text {L }}$（NWOJ | b | 4007 | － 0 | S66．1 | 5 |
| 9＊261 | とてを・ | －ても8 | 乙SO． | b |  | $\varepsilon$ | 8007 | － 0 | 891． 2 | $\varepsilon$ |
| 8＊261 | とてE＊ | －てヵ8 | こSO＊ | b | 1N3W1甘TIWOJ | 乙 | 4007 | －0026 | OヤE＇乙 | $\tau$ |
| 9＊てく16• | OOS ${ }^{\circ} \mathrm{O}$ | －89ELて | こし1＊ |  | 1 NOILJヨy | 3 | IS100 |  |  |  |
| S＊O己て | $\varepsilon 乙$ ． | －てヵ8 | $690^{\circ}$ | $\downarrow$ | 1N3W1Y＊ | $\downarrow$ | ¢007」 | － 0 | L60＇て | $\downarrow$ |
| MO7」 | 『ヨヌロ MO7」 |  |  |  | 01 | I 1 | 3NNOJ | $\begin{aligned} & \text { MO71 } \\ & 03 \times I \ddagger \end{aligned}$ | JyOSS 3 yd | 80071 |
|  |  |  |  |  | OOOOL $\quad 1 \mathrm{~N}$ | 19 | $\begin{aligned} & 7 \mathrm{~J} \text { Jo } \\ & \text { foyd } \end{aligned}$ | $07111$ $\cap \perp \forall \cup \exists d$ |  |  |
|  |  | 4 |  |  |  |  |  | 17ヨMツI |  |  |

[^23][^24]SUMMER－FIRE FLOOR IS 6TH FL－5．6．7TH FL．DR OPEN


elevator
SKAFT FLOW COEFFICI

| CONNECTION TO |  |  |
| :--- | :--- | :--- | :--- |
| LOOR | 1 | COMPARTMENT | FLOOR 2 COMPARTMENT FLOOR 3 COMPARTMENT

IN 3 WIYロホWOS b 8007I
FLOOR 5 COMPARTMENT
FLOOR 7 COMPARTMENT
FLOOR 9 COMPARTMENT
FLOOR 10 COMPARTMENT
FLOOR 11 COMPARTMENT

OUTSIDE DIRECTION 1
FIXED
FLOW
OOOOOOOOOOOO
THE FOLLOWING UNITS ARE USED FOR OUTPUT
FLOW IN CFM AT 70 DEG F AND 1 ATM
AREA IN FEET SQUARED

$$
\begin{aligned}
& 4561 . \\
& 4561 . \\
& 4561 . \\
& 4561 . \\
& 4561 . \\
& 4561 . \\
& 4561 . \\
& 4561 . \\
& 4561 . \\
& 4561 . \\
& 4561 . \\
& 4561 .
\end{aligned}
$$

```
SUNNER - FIRE FLOOR IS 6TH FL - 3.4.6.8.9 FL DR OPEN
Sコ 2 0
13 1
C 12
1
170
1
0}1
l
1 2
14 1
C 1 1 2040 1
1.ES.49
1 - EE 1.22
5 7 1
1 1 -2040 1
1.tE=.49
1.も5 1.22
121
1 1 2040 1
1 -ES .43
-C5 1.22
2
STAIFWELL
7.CE4 1 12 1
C C
1.\epsilonE.323
1C
3 コ
1.65 10.5
34
1 .t5 10.5
3 E
1.tE 10.5
}
1 .€E 10.5
3\epsilon
1.\epsilon=10.5
2 1
1 0.E 10.5
12
920c
1 5
12CC
1\varepsilon
12CC
111
12CC
ELEVATCR
2.4EE 1 131
OC
1 .EE 1.75
1
2 1\Xi
1.CE 2
```


$\stackrel{\leftarrow}{\sim} \stackrel{\leftarrow}{\omega}$
～皆


| $\leftarrow$ |
| :--- |
|  |
|  |

3
0
4
4




$\begin{array}{ll}3 \\ 0 \\ 1 \\ 4 & 4 \\ 4\end{array}$
$\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & n \\ j & 0 & n & n \\ 0 & 0 & -\end{array}$
$\begin{array}{rrrr}0 & 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & n \\ 0 & 0 & N \\ 0 & \cdots & -\end{array}$


| $\circ$ | 0 |
| :--- | :--- |
| $C H$ |  |
| $\sigma$ |  |
| 1 |  |

 ADUUSTED
FLOW
CCEFFICIENT





$-\omega 0 N O$
$000-0$
$0-0$.
®OOM
0000
000




## APPENDIX F－RUN 6 COMFUTER OUTPUT

SUMMER－FIRE FLOCR IS 6TH FL－3，4，6，8．9 FL DR OPEN
то
$\begin{array}{ll}\text { FLOOR } & 9 \\ \text { COMPARTMENT } \\ \text { FLOOR } & 7 \text { COMPARTMENT }\end{array}$
STAIRWELL
OUTSIDE DIRECTION 1
FLOOR 10 COMPARTMENT

OUTSIDE DIRECTION 1
FLOOR 11 COMPARTMENT
FLOOR 9 COMPARTMENT
STAIRWELL
ELEVATOR
OUTSIDE DIRECTION 1
2040．FLOOR 12 COMPARTMENT FLOOR 10 COMPARTMENT
STAIRWELL
ELEVATOR
OUTSIDE DIRECTION 1
OUTSIDE DIRECTION

2040.
2040.
$\circ$
$\stackrel{\circ}{\circ}$
$\stackrel{N}{N}$
$\circ$
$\stackrel{\circ}{\circ}$
N TEMP
PROFILE
PRESSURE
1.347
1.175
1.017
$\stackrel{\square}{\stackrel{-}{\infty}}$
$\underset{\substack{2 \\ 0 \\ \hline \\ \hline}}{ }$
THE FOLLOWING UNITS ARE USED FOR OUTPUT
FLOW IN CFM AT 70 DEG F AND 1 ATM PRESSURE IN INCHS H2O

[^25]STAIRWELL

[^26]70000.




[^27]| FLOOR |  | temperature profile 1 SHAFT FLOW COEFFICIENT |  |  |  | 240000. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Presssure | FIXED FLOW | CONNEC | TION |  | TO |
| 1 | 2.54 .1 | 0. | FLOOR | 1 CO | COMP | ARTMENT |
| 2 | 2.371 | 0. | FLOOR | 2 CO | COMP | ARTMENT |
| 3 | 2.198 | 0. | FLOOR | 3 CO | COMI | ARTMENT |
| 4 | 2.025 | 0. | FLOOR | 4 CO | COMP | ARTMENT |
| 5 | 1.852 | 0. | FLOCR | 5 CO | COMP | ARTMENT |
| 6 | 1.680 | 0. | FLOOR | 6 CO | COMP | ARTMENT |
| 7 | 1.507 | 0. | FLOOR | 7 co | COMP | ARTMENT |
| 8 | 1.334 | 0. | FLOOR | 8 CO | COMP | ARTMENT |
| 9 | 1.162 | 0. | FLOOR | 9 Co | COMP | ARTMENT |
| 10 | . 989 | 0. | FLOOR | 10 co | COMP | ARTIMENT |
| 11 | . 817 | 0. | FLOOR | 11 co | COMP | ARTMENT |
| 12 | . 645 | 0. | FLOOR | 12 co | COMP | ARTMENT |
| 13 | . 473 | 0. |  |  |  |  |

THE FOLLOWING UNITS ARE USED FOR OUTPUT


```
APNENCIX F - RUN 7 JATA
```

```
WINTEF - FIRE FLGOR IS STH FL - ETH FL OR OPEN
14 2 O
12 1
6 12
1
1 170
1}
0}11
l
12
} % 1
C 1 1 2040 1
1.6s.49
1.\ell\subseteq1.22
5 7 1
0}1111-20401
1.t5.49
1.fE 1.22
e lर 1
0 1 1 2040 1
1.et.47
1.t5 1.22
2
STAIFKELL
7.CEA 1 12 1
C C
1.EE . 323
e
ze
1.EE 10.5
2 1
1.tE 10.5
12
S2CC
15
12CC
1 E
12CC
111
12CC
elevatch
2.4EE 1 13 1
OC
1.f5 1.75
1
2 1=
1.ES3
```



 ADJUSTED
FLOW
COEFFICIENT






.006
-.119
.028
-.011
-.184

응NN․
0 ON





[^28]

| $3{ }^{3}$ |  |
| :---: | :---: |
| $\underset{\sim}{\text { a }}$ |  |
| 4 |  |

ELEVATOR

| 0. | FLOOR | 1 | COMPARTMENT |
| :---: | :---: | :---: | :---: |
| 0. | FLOOR | 2 | COMPARTMENT |
| 0. | FLOOR | 3 | COMPARTMENT |
| 0. | FLOOR | 4 | COMPARTMENT |
| 0. | FLOOR | 5 | COMPARTMENT |
| 0. | FLOOR | 6 | COMPARTMENT |
| 0. | FLOOR | 7 | COMPARTMENT |
| 0. | FLOOR | 8 | COMPARTMENT |
| 0. | FLOOR | 9 | COMPARTMENT |
| 0. | FLOOR | 10 | COMPARTMENT |
| 0. | FLOOR | 11 | COMPARTMENT |
| 0. | FLOOR | 12 | COMPARTMENT |
| 0 |  |  |  |

OUTSIDE DIRECTION

$$
\begin{aligned}
& \text { DIFFERENTIAL } \\
& \text { PRESGUDE }
\end{aligned}
$$

$$
\cdot .272
$$

FIXED
FLOW
0000000000000

## APPENDIX G.

LISTING OF COMPUTER PROGRAM

PARAMETER (MM=140,MS=8,MC=9,MPO=2,MTP=2,MFL=25,ME=50)
CCMMON NT, $P(N M), C(M M, M C), N C(M M), J C(M M, M C), I T S(M S)$,
$1 F C(M M, M C), P Z(M M, M C), P O(M, M, M P C), C O(M M, M P O), F(M M), F F O(M F L, M P O)$.
$2 F F(M M), F C(N M, M P O), C S(M S), P S(N F L), N S 1(M S), N S 2(M S)$,
3 FSS (MS), N,NS,NPC,ICONV,E,IEUG,AI(MM,MC), AO(MM,MPO), TITSH(MS,5),
$4 \mathrm{NH}, \mathrm{H}(M F L), I F L O G R(M M), T(M T P, M F L), N F S 1(M S), N F S 2(M S), I T(M B), N T P$

MFL MAX NO. OF FLOORS
$5, N C O(N M), J O C(N M, M P O)$, TOUT
DOUBLE PRECISICN P.PO,PS
COMMCN /FUN/IRUN
CIMENSION E1(MM,MC), B2(NM,MPC)
NITER $=5000$
$\operatorname{IRUN}=1$


## 


$E=0.2$
$1 C S=1$
SAVE AI(I,J) IN BI(I,J) AND FIND
NAX VALUE OF AI $(I, J)$
SAVE AI (I,J) IN BI(I,J) AND FIND
NAX VALUE OF AI $(I, J)$
$A Z Z=0$
$A N A X=0$
CO $10 \quad 1=1 \cdot \Lambda T$
CC $3 \quad J=1$.NC
EI(I, J)=AI(I, J)
$I F(A I(I, J) \cdot G T \cdot A M A X) A M A X=A I(I, J)$
CCNTINLE
DO $9 J=1$,NPC
$E 2(I, J)=A C(I, J)$
$\operatorname{IF}(A O(I, J) \cdot G T \cdot A M A X) A M A X=A C(I, J)$
CCNTINLE
CCNTINUE

IF(AMAX •LT• 0.3)GOTO 25
$A Z Z=1$
$A M=0.2 /(A N A X-0.1)$
$E E=0 \cdot 1 *(1 \cdot 0-A M)$
CC $151=1, N T$
CO $12 \mathrm{~J}=1$,NC
IF(AI(I.J) •LT. O.1)GU TO 12
$A I(I, J)=A N \neq A I(I, J)+B P$
CCNTINUE
CC $14 \mathrm{~J}=1$,NPO
IF(AD(I, J) LLT O.1)GOTO 14
$A O(I, J)=A N \neq A C(I, J)+B B$
CONTINUE
CALL INFUT TC FEAD OATA

CALL INPLT

ADJUST FOF LARGE VALLES GF FLCW AREA

```
c
C TEAPEPATURE CCRRECTIFN
C
25 CALL CCRR
C
* CALL INIT TE INITIALIZE PRESSURE ARRAY, P
C
22 CALL INIT
<
C
C JJ LCOP TO 3O IS ITERATIVE SOLUTION TO PRESSURE ARRAY
24 CC 30 ITEG=1.NITER
C
C CMLL BLEGP TC SGLVE FOP RUILDING PRESSURES
c
C CALL SHAFTP TC SCLVE FOK SHAFT PHESGURES
C
    CALL SFAFTF
    ICS=ICCNV
    IF(ICB.FG.O .AND.ICS.EO. O)GOTO 40
C
C GALL PZAC TC CALCJLATE PZ TEFAS
C
    CALL FZAD
30 CENTINUE
C
C IF RCUTINE FAILS TC CCNVERGE IN NITER
C ITERATICNS PRINT ERROR MESSAGE
C
    HRITE(E,ECO)
40 CONTINUE
    WRITE(E,BC1)ITEF
    IF(AZZ -EG. O.)GC TO 42
    AZZ = 0.
    CC ó 1=1,NT
    C0 50 J=1.NC
50 AI(I,J)=BI(I,J)
    CC 55 J=1,NFC
55 AD(I,J)= 日2(I!J)
60 cCNTINLE
    CALL CRRR
    EC TO 24
C
C
C
C
    CALE OLT TO OLTPUT SOLUTICN
C
42 CALE CLT
C
    WRITE(E,805)
```


## STOP

C
c
C FORMAT STATEMENTS
C
800
FORMAT(/////5X,35(1H1)//5X. +35HFAILURE GF MAIN PROGRAM TO CONVERGE //5X.35(1H1)//) EC1 FCRMAT $10 X, I 5,5 X, 11 H I T E R A T I O N S$,
805 FORMAT(1H1)
END

```
THIS ROUTINE READS AND PRINTS DATA
AND INITIALIZES PZ ARRAY
```

PARAMETER (MN=140,MS=8,MC=9,MPO=2,MTP=2,MFL=25,ME=50)
COMMON /PZZ/ PGZ
COMMON /IO/TITLE(18), IOUT,IUNIT,NCOMP(MFL).SNCCMF(MFL)
COMMON NT, $P(N M), C(M M, M C), N C(M N), J C(M M, M C), I T S(M S)$,
$1 F C(M M, M C), P Z(M M, M C), P O(M M, M P O), C O(M M, M P O), F(M M), P F O(M F L, M P O)$.
$2 F F(M M), F C(N M, N F O), C S(M S), P S(N F L), N S 1(M S), N S 2(M S)$,
3 FSS (MS), $\Lambda, N S, N P C, I C O N V, E, I B U G, A I(M M, M C), A O(M M, M P O), T I T S H(M S, 5)$,
$4 \mathrm{NH}, \mathrm{H}(M F L), I F L O O R(M M), T(M T P, M F L), N F S I(M S), N F S 2(N S), I T(M B), N T P$
5 , NCO (NM), JCC(NM,MPC), TOUT
DOUBLE PRECISION P,PO,PS
CHARACTER FAR*6
DIMENSION II(NFL), TT(MFL), PAR(7), CW(NPO), PH(MFL), NZZ(MM)

IEUG = 0
READ AND WRITE PROJECT TITLE
READ (5.60C)(TITLE(I), I=1.18)
WRITE(6.601)(TITLE(I).I=1,1ع)
READ GENERAL DATA
TOUT = CUTSIDE TEMFERATURE
IUNIT $=1$ FCR SI UNITS
$=2$ FCR ENG UNITS
IOUT $=0$ FCR NC SUMNARY OUTOUT
OTHEFWISE ICUT IS FILE ND. TO
WHICH SUNMAFY OUTPLT IS WRITTEN
READ (5.700)TOUT, IUNIT, ICUT
WRITE ( $\epsilon, 411$ )TCUT, IUNIT,IOUT
IF (IUAIT •GT. 2 •OR. IUNIT •LT. I)GOTO 105
REAC HEICHTS
NN=O FOF INFUT OF ALL HEIGHTS
NN = 1 FOR CALCULATICN OF HEIGHTS
REAO (E.7OC)NH,NN
WRITE(E,412)NH,NN
IF(NH •LE MFL)GC TO AG
IPAR=6
GOTO 110
IF(NN EGG. 1)GO TO 97
FEA) (5, 7CC) (H(I), I=1,NH)
HRITE(6,413)(H(I), I=1,NH)
©C TO SG
FEAD(5.70C)H(1), CH
WRITE(E.414)H(1), DH

```
    LO 98 I =2,NH
    IM=I-1
    F(I)=F(IM)+DH
se
c
C
C
GS
REAO (5.7CC)NPC.NN
WFITE (E, 417 )NFC.AN
    IF(NPC -LE. MPO)GO TO כ1
    IPAR=4
    GC TO 110
cl
C
C
r
CO \(6 \quad I=1, N P O\)
e1 READ(5,70C)VW,HW,XN,(CW(I),I=1,NPO)
    WFITE(E,41S)VA,HW,XW,(CW(I),I=1,NPO)
    IF(IUNIT .EQ. 1)Vn=V**0.2778
    IF(IUNIT, EG. 2)VH=V**0.4470
```

FATAOS＝101こ25．
$T C C=T C L T+273$ 。


Z $=-0.0 こ 417 / T C O$

C WN＝CA（1）
IF（NPC •EC．1）GC TC 212
CO $211 \mathrm{I}=1$ ，NFC
IF（CH（I）LT•CHN）CWM＝CH（I）
こ11 CCNTINLE

CC $2101=1, \mathrm{NH}$
FH（I）＝FATNCS＊EXP（H（I）＊2）
ミ1C CCNTIVLE
CO $321=1 \cdot \mathrm{NPG}$
C0 $\exists_{2} \mathrm{~J}=1 . \mathrm{NH}$

E2 cCNTINLE
$c$
$c$
C B！JILDING JATA INOUT
$c$
C
$c$
C
c
$c$
as．$\quad I=0$
$\operatorname{SNCUMF}(1)=0$ ．
REA）（E，7CO）NFLS
HRITE（E．420）NFLS
IF（NFLS •GT．NH）GO TR 106
READ（5．70C）IF1，IFC．NDC
ARITE（ $5,4 C O$ ）IF1，IF2，NCC
IF（IF1，GT，IFE）GD TC 107
NCOMP（IF1）＝NCC
$I F P=I F 1+1$
SNCJMP（IFF）$=$ SNCCNP $(I F 1)+N O C$
CO 10 IZ $=1$ ，NDC
$\mathrm{I}=\mathrm{I}+1$
READ（S．POC）NZ，NA，NNJ，FF（I），IT（I）
HRITE（E，GCI）NZ，NA，NNG，FF（I），IT（I）
NZZ（I）＝NZ
$N N=N Z+N A$
IFLDOR（I）＝IFI
IF（NN •LE．NC）GC TO 111
IPAR＝3
CC TO 110
111 IF（NNC ．LE．MPC）GO TO 112
I $P A R=4$
GC TO 110
112 IF（IT（I）•GT．NTF．OF•IT（I）•LT．1）GOTO 102
NC（I）$=A N$

C
C INPUT CCNNECTIONS TO COMPARTNENTS CN SAME FLCOR
$\operatorname{READ}(5,70 C)(J C(I, J), C(I, J), A I(I, J), J=1, N Z)$
WRITE (E,4C2)
WRITE(E, 4C3) (JC(I,J),C(I,J),AI(I,J),J=1,NZ)
CO $62 \mathrm{~J}=1, \wedge Z$
E2 JC(I, J) =JC(I, J) +SNCCMP(IF1)
E3 IF(NA •EG.O)GO TO \&
C
C
C
$N P=N Z+1$
$\operatorname{READ}(5,70 C)(J C(I, J), C(I, J), A I(I, J), J=N P, N N)$
WRITE ( $6,4 \mathrm{C} 4)$
HRITE (E, $4 C 3)(J C(I, J), C(I, J), A I(I, J), J=N P, N N)$
CC 6 б J=NF, NA
€6 JC(I, J)=JC(I,J)+NCOMP(IF1)+SNCOMP(IF1)
\& $\quad \operatorname{CO}(\mathrm{I})=\mathrm{NAC}$
IF (NNO - EG. O)GC TC 10
C
C INPUT CCNNECTICN TO DUTSIDE
C
FEAD (E, TOC) (JCC(I,JJ), CC(I,JJ), A己(I,JJ),JJ=1, NNO)
WFITE(6,4C5)
WRITE(E,4C3)(JПC(I,JJ),CC(I,JJ), AC(I,JJ),JJ=1, NNO)
CC 9 JJ=1,NNC
$J=J \square C(I, J J)$
FO(I, JJ) $=$ FFO $(I F 1, J)$
CCNTINLE
IF (IF1 , NE. IF2)GO TO 11
IF (IF1 •EG•NFLS)GC TC 23
COTO 19
ASIGN CATA FOF FLOORS SIVILAR TO FLOGR IFI
$c$
C
11

```
IFP=IFI+1
    CC 17 IFF=IFP:IF2
    ACCMP(IFF)=NCC
    IFFP=IFF+1
    SNCOMF(IFFF)=SNCCNF(IFF)+VMC
    CO 1% IR=1,NCC
    I= I + 1
    I1=IZ+SNC[MF(IF1)
    IFLCOF(I)=IFF
    FF(I)=FF(I1)
    IT(I)=IT(IL)
    NN=NC(I1)
    ANC=NCC(I|)
    NC(I)=AN
    NCO(I)=NNC
    IF(IFF •NE,NFLSIGC 10 23
    NN=NZZ(I1)
    NC(I)=NN
```

```
23
12
14 IF(NNO .EG. O)GO TO 16
    CO 15 JJ=1.NNO
    JOC(I,JJ)=JCC(II,JJ)
    J= JDC(I, JJ)
    CO(I, JJ)=CC(II,JJ)
    AO(1,JJ)=AC(I1,JJ)
    FO(I,JJ)=FFO(IFF,J)
15
le CONTINUE
17 CCNTINUE
1& IF(IF2 .EG. NFLSIGO TO 20
19 CCNTINLE
    GC TO 7
2C N=I
    N2=N
    IF(N OLE.NH)GO TJ 114
    IPAR=7
    CC TO 110
c
C SHAFT CATA INPUT
C
114 READ(5.30C)NS
    IF(NS .LE.NS)GC TC 113
    IPAR=2
    GO TO 110
113 CO 100 IS=1,NS
    READ(S,EOB)(TITSH(IS,I).I=1,5)
    WFITE(E.4CE)(TITSH(IS,I), I = 1, S)
    FEAD(5.7OC)CS(IS),NFSI(IS),NFSC(IS),ITS(IS)
    HFITE(6,4CJ)CS(IS),NFSI(IS),NFS2(IS),ITS(IS)
    N1=N2+1
    N2=N1+NFS2(IS)-NFSI(IS)
    NSI(IS)=人1
    NS2(IS)=N2
    IFF=NFS1(IS)-1
    FEAD(S,7CC)NAC,FFF,JCP,CC,AA
    #RITE(E,4OQ)ANC,FFF,JCP,CC,AA
    IF(NNC -EG. O)GC TC 21
    FEA)(E,TOC)(JCC(N1,J),CC(V1,J), AO(N1,J),J=1,NNO)
    HFITE(E,4C3)(JOC(N1,J),CO(N1,J), AC(N1,J),J=1,NNO)
21 CC 2q I=N1,N2
    NC(I)=1
    NCD(I)=NNC
    IFF=IFF+1
    IFLOOR(I)=IFF
    IF(IFF •GT. NFLS)GC TO 25
    FF(I)=FFF
    IF(JCF -GT, NCCNF(IFF))GO TO 2S
    JC(I.1)=JCP+SNCCNP(IFF)
    C(I,1)=CC
```

```
    AI(I, I)=AA
42 FEAD(E,PCC)J,CCL,AAC
    HRITE(E,4C5)
    yRITE(t,4C3)J,CCC,AAC
    NNこ=NCC(I)
    IF(NNC.EC. O)GC TD 4*
    CO43 K=1.NNC
    IF(JOC(I,K) .EQ. J)GC TC 40
    CCNTINLE
    AJO=NNC+1
    NCO(I)=NJC.
47 FO(I,NJO)=PFO(IFF,J)
    JCC(I,NJO)=J
    CC(I,NJO)=CCO
    AO(I,NJO)=AAC
    CC TO 69
4\epsilon AJO=K
    KK=K+1
    IF(CCO NE, O)GC TC 47
    NJO=NNC-1
    NCO(I)=NJC
    IF(NJC EGG O)GC TO 69
    CC 49 K=KK,NNC
    KM=K-1
```

```
    FC(I,KN)=FC(I,K)
    JOC(I,KN)= JCC(I ,K)
    CC(I,KN)=CC(I,K)
4CG AC(I,KN)={C(I,K)
    CC TS F;
51FL゙&(5.70C)JEF.C(.N:
```



```
    **ITF(F,4C3)JEF,Cご我
    J=JCO+SNC[VN(I+F)
    NN=idC(I)
    IF(NN •FR.O)GUTC S%
    CO 52 K=1,NN
    IF(JC(I,K) \bullettQ. J)Jこ TO S.
ヶぇ ECNTINLF
    IF(CC •NE U.)GC TO 53
    WRITE(\epsilon,5こ0)I S,KE,IFF
    CC TO A=.
~, NJ=NN+1
    NC(I)=^J
5a JC(I,Nj)=J
    C(I,NJ)=CC
    AI(I,^J)=A!
    CT THE
FE NJ=人
        kK=人+1
        IF(\thereforeA •VE• O•)GC TO 54
        NJ=NN-1
        NC(I)=NJ
        IF(ivJ err. ))Gr.TG oc,
        C! ..l K=kK.NN
        KV=K-1
        JC(I,KN)=JC(I, K)
        C(I,KN)=C(I,K)
:1 AI(I,KN)=AI(I,K)
FC CCNTINUE
ICC CEVTINUE
        NT=V2
        IF(NT •LE. NN)SC TO 1FO
        IPAR=I
        CO TO 110
c
c
1&C nRITE(F,FCI)(TITLE(I),I=1,12)
        IF(IUNIT .EQ. 1)NRITE(-.BOO)TCUT
        IF(IUNIT •EO. 2)WRITE(E.500)TCUT
        IF(IUNIT •EC. 2)TOUT=(TOUT-32.)/1.&
        TOUT=TCUT+273.
    r
C
MRINT HEIGHT AND TEWPHRATLRE P-EFILES
IF(IUNIT •EQ. 1)N2ITE(E,311)(ID,I J=1,NTP)
IF(IUNIT •EO. 2)NRITE(5,511)(IP,IP=1, NTP)
ARITE(e.S13)
CO 30 IFF=1,NF
```

WFITE（ $\mathcal{H}, 812) H(I F F)$ ，（T（IP，IFF），IO＝1，NTP）
CONVERT TEMFERATURES TO DEG $K$ ：

CO 33 IFF $=1$ ，NH
DO 33 IP $=1$ ．NTP
IF（IUNIT •EQ• 2）T（IP，IFF）＝（T（IP，IFF）－32•）／1．日
T（IP，IFF）$=T(I F, I F F)+273$ ．
PRINT CLTSIDE FRESSUFE PROFILES
IF（IUNIT •EG• 1）GC TU TG
HRITE（E，「゙14）（ID，IP＝1，NPC）
hRITE（E，ع13）
CO 76 IFF $=1, N H$
CO 7 ？J＝1，NFC
PFO（IFF，J）＝PFC（IFF，J）／24 1.
WFITE（E，515）H（IFF），（PFC（IFC，J），J＝1，NP（j）
CO $78 \mathrm{~J}=1$ ，NPC
FFO（IFF，J）＝FFC（IFF，J）＊24う．う
CCNTIAUE
CC TO 93
WRITE（E，214）（IP，IP＝1，NOC）
WRITE（E，ヨ1 コ）
CO 31 IFF $=1$ ，NH
HFITE（6，E15）H（IFF），（PFC（IFF，J），J＝1，NPO）
CCNTINUE

```
    COFKECT FOF CCNNECTICNS CNLY INDUTEU UNCE
```

CO $50 \quad \mathrm{I}=1, \mathrm{NT}$
N $N=N C(I)$
IF（NN－FQ．O）GE TC EO
CD 59 jJ＝1．NA
$J=J C(I, J J)$
IF（J．EQ．O）GC TC 5月
NVJ＝NC（J）
IF（VNJ •EG．0）GC Tח 57
Dח56 I $A=1, \wedge \wedge J$
IF（JC（J．IA）•EG•I）GUTC j？
CONTINLE
NNJ＝NNJ＋1
IF（NNJ－LE．NCC）GC TO 5C
$1 P A R=3$
CO ro 110
nc（J）＝NRJ
Jこ（J．ヘAJ）＝I
$C(J, N \cap J)=C(I, J J)$
$A I(J, \wedge \wedge J)=\Delta I(I, J J)$

$F Z(J, N \cap J)=-F Z(I, J J)$
CCNTINLE
C CCNTINLE

C こOFAECT LNITS

C
IFIIUNIT EGG• 2）CALL UNITS
C
C
C
$\varepsilon 7$
INITIALIZE PZ FOR EUILD CCNPARTMENTS

CC $40 \quad \mathrm{I}=1, \mathrm{~N}$
NN＝NC（I）
IF（NN •EG．O）GO TO 40
$I A=I T(I)$
IFI＝IFLOCF（I）
CO $38 \mathrm{JJ=1,NN}$
J＝JC（I．JJ）
IFJ＝IFLOCF（J）
IF（IFI EGG•IFJ）GO TO 38
$I E=I T(J)$
TEMPA＝0．5＊（T（IA，IFI）＋T（IB，IFJ））
$P Z(I, J J)=3462$＊＊$H(I F J)-H(I F I)) / T E M P A$
cCNTINUE
continue

INITIALIZE PZ FGR SHAFTう
CO 50 IS $=1, N S$
N1＝NS1（IS）
N2＝NS2（IS）－1
$I T T=I T \subseteq(I \subseteq)$
CO $45 \mathrm{I}=\mathrm{N} 1 \cdot \mathrm{~N} 2$
IFI＝IFLOCF（I）
$I F J=I F I+1$
TEMPA $=0.5 *(T(I T T, I F I)+T(I T T, I F J))$
$F Z(I, 1)=34 \in 2 \cdot *(H(I F J)-H(I F I)) / T E N P A$
CCNTINUE
CCNTINUE

CHECK SFAFT CCNNECTICNS
CO 240 IS $=1, N S$
＾1 $=$ NS1（IS）
N2＝NS2（IS）
CG23才 $1=\mathrm{N} 1 . \mathrm{N} 2$
AN＝NC（I）
IF（NN •EG．O）GC TC $23 G$
$\operatorname{co} 23 E J=1 \cdot N A$
$J J=J C(I, J)$
IF（IFLCDR（I）•NE．IFLDOR（JJ））GO TO 103
235 CCNTINLE
23E CONTINLE
2．4C CCNTINUE
fetura
$C$
$c$
$c$
DIAGNOSIIC CLTPUT
$c$
102 ARITE（E，シC2）I，IT（I）
60 TU $10 ;$

```
ICE HFITE(E.`C3)
    EC TO 10%
1C4 HRITE(6,OC4)
    CO TO 10%
105 HRITE(E,GCE)
    CO TO 10S
ICE MRITE(E,FDE)
    GC TD 10G
107 *RITE(E.907)
    COTO 10G
11C HFITE(t,01J)PAK(IDAR)
C
C PRINT CRRRECTEこ PUILJING DATA
C
1CG ARITE(E,S&O)
    CO 70 I=1,N
    NN=NC(I)
    IF(NN .GT. O)GC TO 1&O
    AKITE(E,`a1)I,IFLCCM(I),IT(I),FF(I)
    @0 TO 132
    WRITE(E,G72)I,IFLCOF(I),IT(I),FF(I),JC(I,1),C(I,1),AI(I,1)
    IF(NN •EG. 1)GC TC IRZ
    HRITE(6,!43)(JC(I,J),C(I,J),AI(I,J),J=2,N*J)
182 NNC=NCC(I)
    IF(NNC.EG. O)GC TO 70
    &RITE{E,Q&4)(JOC(I,J),C(C(I,J),AC(I,J),J=1,NNC)
    cCNTINLE
    DRINT CRFFECTED SHAFT IVOUT DATA
    CO 30 I S=1,NS
    WRITE(\epsilon,马|E)(TITSH(IS,I),I=1,S)
    WFITE(E,SOE)IS,CS(IS), ITS(IS)
    N1=VS1(IS)
    N2=vS2(IS)
    ARITE(E,807)
    C075 I=\1,N2
    NN=VC(I)
    IF(NN.GT. O)GO T'J 72
    WRITE(E,PO1)IFLCCR(I),FF(I)
    CO TO 74
72 h{ITE(\epsilon,BCE)IFLCSR(I),FF(I),JC(I,1),Z(I,1),AI(I,1)
    IF(NN , EG. 1)GC TC 74
    WFITE(E,JCS)(JC(I,J),C(I,J),AI(I,J),J=2,NN)
    NNC=NCC(I)
    IF(NNC -EG. O)GC TG 1E
    HRITE(E,P1O)(JCC(I,J),CC(I,J),AD(I,J), J=1,NNO)
    CCNTINLE
EO CCNTINLE
    STOD
C
C FORMAT STATEMENTS
C
ACC FORMAI(5X,5HIFI=,I3,7H, IF2 =, I 3,7H, NOC =, 13)
401
    FGRMAT(5X,4HNL=,I3,&H NA = II3,7H, NNO=,I3.5H,FF=,F3.1,
```

```
＋7ト，IT＝，I 3）
```

4 C 2
$\therefore 0=$ 404


$+7 \times, 2 f F T, \exists x, 1$, IG)
FORAAT (////SX, FHHEIGHT, FX, 2'HMIUTSIUE DRESSUFF PHOFILES
$111 H$ (INト2C) /7X,2HFT, 3x, 民11」)


+ 2x, 5rflecf, 13//)
FOFAAT (1: A4)
Cl FORAAT(1H1///10X.13A+///)
FCこ FOFAAT(544)
TCC FOK'AAT (
?CC FURAAT (//LCX. 2OHOUTSIDE TEAPEFATUKE ,FN. 1.24 C)
CC1 FORMAT(II コ,F11.1)
FERAAT $10 \times, 12 H S H A F T$ NUASEN $14 / 10 \times 17 H S H A F T$ CCEFFICIENT •F1O. $1 /$
1 IJX, 2OHTENFEFATUFE OFIFI, E , I*)


2 /)
ำコ

aCc FOマMAT(30X,5トPUINT,IS.F10.1.F15.4)



-1モ FORAAT(F11.2. ミX, 1うFE.1)
マ1玉 FORYAT(/)
E14 FOR'AAT (////5x, "hHEIGHT , 5X, 2GHJUTSITE RFESSUKE PFCFIA.ES
$111 H$ (FASCALS) /7X,2HN, 3X, 5110)
と 15
FCRMAT (F11.2. 3X, QF10.1)
F. $1 \in$ FCFMAT(///10X.5A4)
\& 17 FCRMAT (10X,45HFLCN COEFFICIENTS COFRECTE!) FUK TENFREATURE
SCE FCRMAT(1O(/).1OX.11HCCMPARTNENT ,I4/
1 10X. 2OHTENPEFATURE PROFILE I I4.17H OOES NOT EXIST

```
    * 10X, 1EHPFCGFAM STOPPED . 10(/))

```

2 EX,4HFLOK,5X,1 3HCONNECTION TO, 4X,1 1HCCEFFICIENT , 4X,
3 BH AFEEA )
FORMAT(/4X,3I12,F14.1)
G4\hat{c}FORMAT(/AX,3I12,F14.1.4X,jHPCINT,I7,F11.2.F15.4)
ct3 FCKMAT(S.]X.5FPCINT,I7,F11.2.F15.4)
74 FORMAT(5BX,SHOUTSIDE ,I 3.F11.2.F15.4)
END

```

SUBROUTINE CCRR

\section*{THIS RCLTINE CALCULATES ADJUSTED FLOW CUEFFICIENTS （C1，C2，CO1，CO2）}

FARAMETER（MN＝140，MS＝2，MC＝9，MPO＝2，MTP＝2，MFL＝25，ME＝50）
COMMON／CCFR／C1（MH，MC），C2（NN，MC），CO1（MM，MPO），CO2（MM，MPO）
COMMON NT，\(F(N N), C(N M, M C), N C(M N), J C(M M, M C), I T S(M S)\) ，
\(1 F C(M M, M E), P Z(M M, M C), P C(N M, N P C), C O(M M, M P O), F(M M), F F O(M F L, M P O)\),
\(2 F F(M N), F C(N N, N P O), C S(N S), P S(N F L), N S 1(M S), N S 2(M S)\),
3 FSS（NS），N，NS，NFC，ICONV，E，IEUG，AI（MM，MC），AO（NM，MFC），TITSH（MS，5），
\(4 \mathrm{NH}, \mathrm{H}(M F L), I F L C C R(M M), T(M T P, N F L), N F S I(M S), N F S 2(M S), I T(M B), N T P\)
E，NCO（NM），JCC（NM，MPC），TCUT
CCUBLE FRECISICN P，PG，OS
CO \(121=1\) ，NT

CORRECT C

FATMCS \(=101325\).
EE＝1000．＊SGRT（2．＊PATMOS／287．）／1．2
\(A N=N C(I)\)
IF（I •CT．N）GC TC 1
\(I P=I T(I)\)
GC TO 4
CC \(2 \quad[S=1, N S\)
IF（I •LE．NSZ（IS）•ANO．I •GE．NSI（IS））GO TO 3
CCNTINLE
WRITE（6，7CO）
STOP
\(I P=I T \leq(I S)\)
\(I F F=I F L O C F(I)\)
\(T 1=T(I F, I F F)\)
IFINN •EG•OIGC TO 10
CO \(J=1, N A\)
JJ＝こ（I，J）

IF（JJ•GT•N）GCTO 5
\(I P=I T(J J)\)
GOTOE
CC \(5 \quad I S=1, \wedge \subseteq\)
IF（JJ •LE．NS2（IS）•AND．JJ •GF•NSI（IS））GUTO 7
CCNTINLE
WRITE（ \(\epsilon, 7 \mathrm{CO})\)
STCD
\(I P=I T \subseteq(I S)\)

T2＝T（IF，IFF）
C2（I，J）＝E巴＊C（I，J）＊AI（I．J）／SQRT（T2）
CCNTINLE
CORFEET CO
ANE＝NCC（I）
IF（NNG．EG．C）GC TO 12
CC \(11 \mathrm{~J}=1\) •Nへ
\(\operatorname{CO1}(I, J)=E 巴 \neq C(I, J)\)＊AC（I，J）／5GFT（T1）
\(C O 2(I, J)=E \exists * C C(I, J) * \& O(I, J) / S\) の中T（TOJT）

11
12
\(70 C\) CCNTINLE CCNIINL FETURN
FORAAT（／／／10X，コGHFROGGAM STOPNEU IN ふUBROUTINE CDRスス／／） END

\(S U N=0\) ．
（D） 1 i）\(J=1, N \square C\)
［\％ \(10 \quad I=1\) ，NH
SUN＝SUN＋PFC（I，J）
\(F A=S U N /(N F C \leadsto N H)\)
```

THE EOQ LEFF TE STATEMENT ZJ GSTNAT:Z

```
        SHAFT ERESSLHES

LE 30 IS \(=1 . N 5\)
```

C CALCUR,AT: SFAFT TRFSSLKG EIFFF\&FNCRO.JF

```
\(c\)
    \(S U I A=J\) 。
    SUNN=0.
    \(\wedge 1=v ミ 1(I S)\)
    \(N 2=-j 2(I S)\)
    CC. \(131=N 1 \cdot N 2\)
    \(\subseteq U A=S L N+F F(I)\)
    \(N: N=N C(I)\)
    IF(IVA •EC•O•)GC rE 16
    CC 1 J \(J=1, N N\)
    \(\subseteq U M V=\subseteq U M N+E 1(I \cdot J)\)
15 CCNTINじに
    SG(IS) = SLNA
\(16 \quad\) RNC=NCC(I)
    IF(NNC •ES•O)SCTD 1*
    C() \(17 \quad j=1\), N
    SUIAV = SLMN+CCI (I,J)
17 CCNTINLF
    \(S C D(I S)=\subseteq L N N-S C(1 S)\)
```

18 CONTINLE
CP2=SLN/SLNN
SIGN=1.
IF(DPZ -LT. O.)SIGN=-1.
DP=SIGN*(SIGN*DP2)**2
NP1=N+1
CC SO I=1.N
NN=NC(I)
SUMII=C.
SUNNP=C.
IF(NN .FQ. O.)GC TC \&2
CS 40 \checkmarkJ=1.NN
J=JC(I,JJ)
IF(J •CT, N)GC TE 34
A(I,J)=C1(I,JJ)
SUNII=SUNII-C 1(I,JJ)
SUमND= SUNNP-C1(I,JJ)*PZ(II,JJ)
CCTO 40
SunII= SU\becauseII-CI(I,JJ)
SURNP=SUVNF-ご1(I|JJ)*F(J)
4O CCNTINUE
4% NNC=NCE(I)
IF(NN= .FG. O)GC TO + %
CO 45 K=1,NNC
S.JAII=S:JNII-CCI(I,K)
4E SUVVF=SUNAF-CC1(I,K)*F.J(I,K)

```
```

4\epsilon A(I.I)=SUNII
A(I,NP1)=SUMAP-FF(I)
SC CCNTINUE
C
C WRITE NATRIX
C
IF(IBUC EG. O)GO TO 94
WRITE(6.802)
CC 52 I=1.N
\#RITE(\epsilon,8C3)(A(I,J),J=1,ND1)
32
C
C
C
C
84
c
C
c
IF(IGUG,EG. O)GC TO RG
\#RITE(E,\&CO)
HRITE(\epsilon, घCI)(I,XX(I),I=1,V)
NN=NSI(1)
ARITE(E,SCI)(I.P(I),I=NN,NT)
c
C
C ASSIGN ELILDING FRESSUREJ
C
RS EC 30 I=1,N
c0 P(I)=xx(I)
FETURA
ECC FORMAT(///E( sx,1HI,4x.3HO )/)
EC1 FCRMAT(3(I7,F7.1))
ECz FORMAT(///10X.2OHNATRIX CUEFFICIENTS /)
OCE FORMAT(10X.11F11.1)
END

```
sUargutane ElDGF
C CHECK NAGNITLDE CF FI
    IF (4月S(FI) •LT•EJGOTS1う
    ICCNV=ICCNV+1
C
E.NCD(NV), JCC(NN, MOC), TCJT

    IF (IGUC •CT•O) A\&ITE (f, ロOう)
    ITN=100
    ICR:NV=0
    CU \(151=1, \lambda\)
    BALCULATE NET FLCA, FI, INTC PCINT I
    FI=PFLCV(I,D(I))
    SET JF PARANETEFS FOK ITERATICN
    CO=1.0
    IPHASE=1
    cr \(\mathrm{r}=0\) 。
    EE=0.2*ABS(FI)
    IF(EE •LT•E)EE=E
    SIGN=1
    IF(FI •LT•O.) SIGN=-1
    I \(K=0\)
    IF (IBU心. GT. O) ARITE (*.g02)
    ITERATICA TG EEELICE MAGNITUSE JF FN
    \(I K=I K+1\)
    NEW ESTINATE CF PHESSJRE, DI. AT FOINT I
    \(p I=D(I)+S I \in N \neq D P\)
    \(F N=P F L C W(1, P I)\)
    CHECK NAGAITUDE CF FA
    IF(ABS(FN) •LT•EE)GOTC 10
    CHECK AUNEER CF ITERATICNS
    IF(IK •GT. ITN)GE TC 25
```

THIS FOLTINE こAL_UUL ITES STEAEY STATE PHEBSUREj
FCR ELILDING CCVPAFTAENTS

```

    CENYCN NT, \(\quad C(N N), C(N N, N C), N C(N N), J C(N M, 1 C), I T S(N S)\) 。



4 NH,H(NFL) , IFLC(H(NM), T (NTH, MHL),NFSI (MS),NFS? (VS), IT(Mj), VTP
    CALCJLATE NET FLOB ,FN, INTC UCINT I JSINS DI
    IF (IRUG.GT.O) WRITE (F, AO4)I,IK,FI,FN,F, DFI, DD, DPP, DI, IDHAJF
```

C CFSOK PHASE
IF(IOHASE •EO. 2) iCTG (
C
CHECK FIMR TRANSITIUN FHUN H{{ASE 1 TO OMASL ?
IH(FI*FN .LT. O.)GC TC \&
c
C EHASE 1
CFI=DF
Cリ=j.0*つい
FI=FN
CC TO 2
FHAME E
IPHASE=?
CO TO G
IF(FI*FN |GT. O.IGOTO\&
NEM DP fRETMEEN DFI INE EP
CFO=CF
FD-FN
ED=)PI+(OFF-JFI)*FI/(FI-riN)
CO TO ?
NEN こ口 PETMEEN DH ANOM UFO
TI=FN
CFI=DN
EF= )FI+([FF-DFI)*FN/(FN-FP)
GC TG ?
1C F(I)=EI
1E CONTINCE
r
FETJINA
AFITE(E.ACO)
STOD
6
C FGNMAT STATENENTS
c

```

```

        * 10x,stIN elEcp///10x,20(1H*)//////)
    \#02 FM{MAT(//11X,1HI, 2X,2HIT,12x,2HFI,13x,2HFN,13X,2HFO,12X,3HODI,
+13X,2FCO,12X,3HCFF,13X,2HJI,?X,SHPHAつ: /1
O04 FCRAAT(3X,2I4.3E15.4,4F15.*,I5)
ECE FCM1AT( ///10X.EHPLJJP)
END

```
```

THIS ROUTINE CALCULATES STEADY STATE PRESSURES
FCR SMAFTS

```
```

PARAMETEF (MM=140,MS=9,MC=9,VDO=2,MTO=2,MFL=25,ME=50)
CCMMCN NT, F(NN),C(NM,MC),NC(MM),JC(MM,MC),ITS(MS),
1 FC(MM,NC),PZ(MM,NC),PO(MM,MDC), CO(MM,MPO),F(MM),PFO(MFL,MPO).
2 \mp@code { F F ( M M ) , F C ( N M , M P C ) , C S ( N S ) , P S ( N F L ) , N S I ( M S ) , N S 2 ( M S ) , }
3 FSS(NS),N,NS,NFC,ICONV,E,IPUG,AI(MM,MC), AC(MM,MPC),TITSH(MS,5),
4 \mp@code { N H , H ( N F L ) , I F L C C F ( M M ) , T ( M T P , V F L ) , N F S I ( N S ) , N F S 2 ( N S ) , I T ( M B ) , N T P }
E ,NCO(NM),JCC(NN,MPC),TOUT
CCUGLE PRECISICN P,PR,PS,PI
IF(ISUG.GT. O)WRITE(S.806)
ITM=100
ICr,NV=0
CO 15 I=1,NS

```
    caléulate net flew ofi, intc pCint i
    N1=NS1 (I)
    FI=SFLCW(I,F(N1))
    CHECK NAGNITUEE CFF FI
    IF (ABS(FI) LLT•E) GU TO 15
    ICCNV = ICCNV+1
    CD=1.0
    IPHASE=1
    CPI=0.
    \(E E=0 \cdot 2 * A E \subseteq(F I)\)
    IF(ER •LT•E)EE゙=E
    SIG.V=1
    IF(FI •LT•O.)SIGN=-1
    IK \(=0\)

    ITERATICN TG FFEUTEE NAGNITUEE DF FN
    \(I K=I K+1\)
    NEW ESTINATE CF PRESSURE. PI AT BETTDV SF SHAFT I
    \(F I=\square(N 1)+\subseteq I G N * C P\)
    CALCULATE NET FLEN ,FN, INTU JHAFT I JSING PI
    \(F A=S F L C H(I, D I)\)

    CHECK NAGAITLUE LF FA
    IF(AQS(FN) •LT•EE)GCTC10
    CFECK AUNFFR CF ITERATIC』う
    IF(IK•GT•ITN)CC TO 25
```

C CHECK FHASE
IF(IPHASE EG. 2)GO TC E
C
C CHECK FOR TRANSITICN FFCM PHASE 1 TO PHASE 2
IF(FI\#FN \&LT. O.)GO TC 4
C
C FHASE 1
CPI=DP
CF=5.0*DP
Fl=FN
GOTO2
C
C FHASE 2
4 IPHASE=2
CG TO S
IF(FI*FN \&GT. O.IGCTC E
C
G NEW DF EETGEEN CFI ANC CP
s
CPP=DP
FP=FN
CP=OPI+(DFP-DFI)*FI/(FI-FN)
GC TO <
C
C NEW CP EETAEEN EF AND DPP
E FI=FN
CFI=CP
CP=DPI+(CFP-DDI)\#FN/(FN-FO)
GC TC 2
N2=NS2(I)
CO11 IF=N1,N2
II=IF+I-NI
F(IF)=FS(II)
CCNTINLEE
15
C
FETURA
zた *FITE(E,gCO)
STOP
C
C
C
\&CC FCRMAT(///10X,2O(1H*)///1UX, 22HEXCFSSIVE ITFHATIGNS
+ 10X,5FIN SHAFTF////10x.20(1H*)//////)
202
FORMAT(//11X,1HI,2X,2HIT,12X,2HFI,13X,2HFN,13X,2HFP,12X,3H JPI,
+13X,2HCP,12X,3HCFF,13X,2HOI,3X,5トOH\&JE /)
=04 FCRMAT(QX,EI4.3E15.4.4F15.0.15)
FCF FOR:MAT( ///10X.EHSHAFTO)
END

```

SUE．ROUTINE FZA＇

```

    FAKAMETEF, (NB=140,MS=9,M==C,V口O=2,WTノ=2,NFL=?5,ME=23)
    CCMMCN NT, F(NV),C(NM,NC),NC(VV),JC(QU,NC),ITS(NS),
    ```

```

    2 FF(NV),FC(NN,MFC),CS(NS),PS(NFLS),NSI(MS),NS2(NS),
    ```

```

    & NH,H(NFL), IFLOCK(M!),T(MTH,WFL),VFSI(WS),NFS?(NS),IT(A}),VT!2
    E.NOO(NV),JCE(NN,YFC),TCUT
    COA:MEN /PZZ/ PGZ
    COUBLE FRECISICN F,FU,PS
    IF(ISUG.GT. - Z)GOTC 1
    WRITE\E, בCOI
    OC2II=1,N
    NN=NC(I)
    IF(NN •E:Q. J)GC TC 2
    #RITE(\epsilon, ZC1)(I,J,FZ(I,J),J=1,NN)
    CCNTINUE
    NP1=N+1
    WRITE(6,OCZ)(IL.OZ(IL,1),IL=NP1,NT)
    CO 10 I=1,N
    NN=NC(I)
    IF(NN.ES.O)GE TL 10
    IA=IT(I)
    IFI=IFLCCF(I)
    CO 巳 JJ=1,NN
    J=JC(I,JJ)
    IFJ=IFLCC&(J)
    IF(IFI EEG. IFJ)GE TO a
    IQ=IT(J)
    TE*SA=0.F*(T(IA,IFI)+T(IG,IFJ))
    FAVE= ). 5* (F(I)+F(J))+FGZ
    FL(I,JJ)=(0.03415*口AVE/TEMPA)#(H(IFJ)-H(IFI))
    CCNTINLE
    CCNTINLE
    CC 20 IS =1,NS
    N1=NS1(IS)
    N2=NS2(IS)-1
    ITT=ITS(J\subseteq)
    CC 15 I=N1,N2
    IFI=IFLDCF(I)
    IFJ=IFI +1
    TEMDA=C.E&(T(ITT,IFI)+T(ITT,IFJ))
    J=1+1
    PA=0.S&(\rho(I)+P(J))+DGL
    FZ(I,1)=(C.OE41&FA/TEMPA)*(H(IFJ)-H(IFI))
    CONTINLE
    FETJFIN
    FCRUAT(/1CX,IOHINITIALPZ/)
    FCRM4T(10X, 3HFZ(,I с,1H,I2.4H)=,F12.4)
    FGRMAT(10x,3FFZ(,I2,r,H,1), F12.4)
    FOFMAT(/1CX,11HAこJUSTED OZ /)
    END
    ```
```

THIS FOLTINE EUTDLTS FETBS ANJ OIFF,UENTIAL DRESSURES
FOR ALL SFAFTS MNO EUILDING LOMPRRTVENTS

```

```

    CCNMCN/ECFF/L1(NN,N2),Cこ(NM,NE), CO1(NM,MOC), COZ(NM,MOS)
    CDNACN /IC/TITLE(IJ),ICUT,IUNIT,NCONH(MFL),SVCONE(MFL)
    ```


```

    2 FF(NN),FC(NM,VFC),CS(NS),OS(NFL),N分1(NS),NS2(NS).
    ```

```

    4NH,H(NFL),IFLECH(NM),T(NTO,NFIS),NFSI(NS),NFSO(NS),IT(NS),NTP
    g, NCO(N*A),JCC(NN,V口C),TCUT
    EDUZLE FFELCISITA F,PR.OS
    INTIGEF CEN
    ```
        IJNIT \(=1\) FCIT SI UNITS
        I'VIT \(=2\) FLF ENG UNITS
        NHEN IUAIT \(=2\) GCTO 190
    IF (IU\IT •EQ• 2) GUTO ICO
        TJILEING CCNOARTMENT LJTFUT
    \(\mathrm{I}=0\)
    \(I L=0\)
    ARITE (t •QCO)TITL
    \([C\) i) IFF \(=1\), NF
    \(A N N=N C C M P(I F F)\)
    IF (NNN •EG•O)GC TD コO
    DO 2HIC=1•ANA
    \(I=I+1\)
    NN=NC(I)
    A \(\wedge C=N C C(1)\)
    \(I L=I L+N A+N A O+2\)
    IF (IL - LT. 51)GC TE 2
    ARITE (E, BCOJTITLE
    \(I L=N N+A N C+2\)
    \(I F(N N \cdot G T \cdot O) \in C T C \quad 3\)
    MRITE(E, ПCI)IFF,I \(\because, F(I), I T(I), F F(I)\)
    EC TO 21
    CO \(20 J=1, N N\)
    \(J J=J C(I, J)\)
    \(C 口=D(J J)-F(I)+P Z(I, J)\)
    \(C C=C 2(I, J)\)
    IF(DP •LT•O•)CC=CI(I,J)
    IF (JJ •LE•N)GC TO 10
    CO 5 IS=1,NS
    IF (JJ•GE. NSI(IS) AND. JJ•LE.NS2 (IS))GGTTG
    CCNTINLF
    IF (J •GT•1)GC TC 7
    nRITE(E, ヨC2) IFF, IC, F(I), IT(I), FF(I), (TITSH(IS,K), K=1, , , \()\)
\(+, O P, C C, A I(I, 1), F C(I, 1)\)

GC TO 20
WRITE(E, 8C3) (TITSH(IS,K),K=1, 5) , DP,CC,AI (I, J), FC(I, J)
GC TO 20
\(10 \quad I F J=I F L C O R(J J)\)
CCN=JJーSNCCMF (IFJ)
IF (J •CT•1)GC TC 12
WRITE( \(\mathcal{C}, 8 C 4) I F F, I C, P(I), I T(I), F F(I), I F J, C O M, D P, C C, A I(I, 1), F C(I, 1)\)
GC TO 20
12 WRITE(E, OCS)IFJ,CCM,OF,CC,AI(I,J),FC(I,J)
20 CCNTINUE
21 IF(NNC.EG.O)GC TO 25
    CO \(23 \mathrm{~J}=1\),NNC
    JJ=JCC(1, J)
    \(C P=P O(I, J)-P(I)\)
    CC=CO2 (I.J)
    IF(DO LT. O.) CC=CDI (I, J)
    WFITE(E, QC6) JJ, CF,CC.AO(I,J):FC(I,J)
2¢ WRITE(E, ワC7)F(I)
    CCNTINUE
    *RITE( \(\epsilon\), GCO)
\(c\)
C
C
    DG 60 IS \(=1, N S\)
    \(\mathrm{N} 1=\mathrm{N} \subseteq 1(\mathrm{I} \subseteq)\)
    N2=NS2(IS)
    WRITE(E.R14)TITLE
    WRITE(E, BC员) (TITSH(IS,K),K=1,S), ITS(IS), CS(IS)
    CC \(50 \quad I=N 1 . N 2\)
    \(A N=N C(I)\)
    IF (NN•GT. O)GOTO 35
    WRITE( \(\epsilon\), Q(S) IFLCGR(I), P(I), FF(I)
    GC TC 41
    CO 40 = \(1, N N\)
    JJ=JC(I.J)
    \(C P=\supset(J J)-F(I)\)
    CC=C2(I.J)
    IF(UP •LT. O.) CC=CI (I.J)
    IFJ=IFLCOR(JJ)
    CON=JJ-SNCCNF(IFJ)
    IF ( \(J\) •GT, 1)GC TC \(3 \in\)

    CCTO 40

\&C CONTINUE
41 NNC=NCC(I)
    IF(NHE •EG O)GC TD SO
    [D \(46 \quad j=1\), NND
    JJ=JOC(I.J)
    \(C F=P!(I, J)-F(1)\)
    CC=CO2 (I, J)
    IF(DP•LT• O•)CC=CU1 (I, J)
aE औRITE(E, Q12)JJ,DF,CC.AC(I,J),Fこ(I,J)
Sc CCNTINLE
    HRITE(K, A13)FSS(IS)
```

    WRITE(6.900)
    EC CCNTINLE
GC TO 165
C
100
10E IF(J .ET. 1)GC TO 107
WFITE(\epsilon,大02)IFF,IC,PIII,IT(I),FFF , (TITSHA(IS,K),K=1,5)
+ ט, CC.AAI,FCCC
CC TO 120
107 WRITE(E, (O3)(TITSH(IS.K),K=1,先),DD.CC,AAI,FCCC
GC TC 120
11C IFJ=IFLDCF(JJ)
CON=JJ-SNCCMF(IFJ)
IF(J .CT. 1)GC TC 112
NRITE(E,GC4)IFF,IS,PIII,IT(I),FFF ,IFJ,COM,DP,CC,AAI,FCSE
GC TO 120
11\hat{CNRITE(E,GC5)IFJ,CCN,DF.CC.AAI,FOCC}
12C CCVTINLE
1二1 IF(NNC.EG.O)GG TO 12G
CO 122 J=1,NNC
FCO=FC(I,J)/0.471G
jJ=JCC(I,J)

```
```

12こ
125
1 こC

```
6
\(c\)
C
FCCC=FC(I.J)/0.471G
JJ=」こ (I, J)
\(C O=(P(J J)-P(I)) / 24 E .3\)
AAI=AI (I, J)/O.OS2.
(C=C2 (I, J)
IF (JP •LT• O•) CC=C1 (I, J)
CC=CCゅころ. く 3
IFJ=IFLOCF(JJ)
CCN=JJ-SNCONP (IFJ)
IF (J •CT. 1) GC TO \(13 \notin\)
WFITE (S, ©10)IFLCCP(I),DIII,FFF IFJ,CON.OP,CC, AAI,FCCC
EC TC 140
IJE WRITE(E,E11)IFJ,CEN.JP,CC, AAI,FCCC
14 C CCNTINLE
141 NNC=NCC(I)
    IF(NNC EEG. O)GC TC 150
    CC \(14 \leqslant \mathrm{~J}=1\), NNC
    FCO=FC(I.J)/0.4719
    JJ=JOC(I, J)
    \(C P=(P C(I, J)-F(I)) / 24 月\).
    \(\Delta A D=A C(I, J) / 0.0 ; 29\)
    \(C C=502(I, J)\)
    IF (DP •-T. O.) CC=CCl (I,J)
    CC=Cく*ころ.43
\(14 \epsilon\) WRITE(Є, Є12)JJ.OF,CC.AAC.FOO
15c CCNTINUE
    WRITE(E, З1ヨ)FFI
    凶RITE(E,GO1)

501

\section*{CCNTIAUE}

SUVNADY CLTFUT
USER INSERTS ARITE STATEAENTS TO FILE ICUT

CしNTINしE
FETJRA

\section*{FOKNAT STATENFATS}

FCBMAT（／AX，I3，I10，F13．3，13，F12．0）

FGRMAT（53x，5A4，F14，，F150），F10，3，F11．1）
 1 F11．ב．F1F。O，F10． \(1, F 11\) •1）


FSRMAT（ \(4 \times, 13, F 10 \cdot 3, F 11,0)\)
 1 F15．C．F1C．3，F11．1）

FOFMAT（31X，17HULTSIDF DIFECTIUN，I3，F1：3．F15．3．F10．3．F11．1）


2 ，？X，ヨRPFESSUFE， \(2 X, 7 H F H C F I L E, 5 X, 4 H F L J H, 3 X, 1\) GHCCNNECTIUN TO，
こ12X，3HFRESSUFE，4X，11トCCEFFIEIENT，2X，3H AREA ，EX，4HEK日，／）
FCHMAT（／4X，I3，I10，F13．1，I 3，F12．0）


 1 F11•1，F1
FORMAT（53X，JFFLCCH，I3．12H（CMPARTMENT，13．F11•1，F1上•1，F10．6．F11．1）
FCRMAT（53X，17RCLTSIDE DIRECTICN，13，F14．1，F15，1，F10．4，F11．1）
FORサAT（115x．FE． \(1,4 \mathrm{H}\) NET）
FOFMAT（／／／／20X，EA\＆／／20X，2JHTGVFERATURE PROFILE ，I3／20X，
1 23HSHAFT FLCH CCEFFICIENT ，F10．0／／7ZX，BHADJUSTE［／24X．5HFIXEO，

З \(5 x, 4\) FFLOA， \(3 x, 16 H C O N N E C T I O N\) TC， \(12 x, 3 H P R E S S U K E, ~ 4 x, 11 H C O E F F I E I E N T\)
4， \(2 x, 3 H\) AFEA ，5x，椾（CK／）
FCFMAT（4X，I3，F10．1，F11．0）
 1 F15．1，F1C．4，F11•1）


FOP＊AT（ \(33 x, F=.1, q H\) NET）
FCRMAT（1F1，20x，19A4）
FBRMAT（／／15X，＇THE FOLLOWING UNITS ARE USES FCR CUTPUT＇ \(1 / / 5 X\) ，\({ }^{\circ}\) FLCK IN L．ITERS PER SECCND AT 21 DEG C AND 1 AT： 2／5x，＂FFESSURE IA PASCALS＂／5X．AREA IN METERJ SQUARFD＂）

FORMAT（／／／．5X，＂THE FCLLCWING UNITS ARE USEO FCF CUTDJT＇ \(1 / / 5 X\) ．＇FLCM IN CFM AT 70 CEG F AND 1 ATV＇
\(2 / 5 X\) ．＇FRESSURE IN INCHS H2C＇／5X，＇AOEA IN FEET SGUAREO＇）
END

SUEROUTINE SINEG

CHOLESKY＇S METHOD CF SOLUTION OF
 Simul tanecus linear algebric eouaticivs

FARAMETER（MM＝140，MS＝3，MC＝5，MPO＝2，MTP＝2，MFL＝25，ME＝50）
PARAMETER（NED＝MB＋1）
CCUBLE PQECISICA A．X
CCMMCN／NAT／A（MB，NBP），X（ME），N
NFI \(=N+1\)
ZERO＝1．OE－3S
\(K=0\)

IF SO ACC ANCTHEF FOW TC ROW 1
IF（ABS（A（1，1））．GT• 7ERC）SO TC 40
CC \(311=1, \wedge\)
IF（A（I，1），NE O．）GO TO 32
こ1 CCNTINLE
12 WFITE（E，304）K
STOP
\(\equiv 2 \operatorname{CC} 33 \mathrm{~J}=1\) ．NP1
ミミA（1，J）＝A（1，J）＋A（I，J）

CaLCULATE LFPER AND LCNER
TRIANGLLAR NATRICES CVER ORIG
NATRIX A
\(A C \quad A A=A(1,1)\)
\(C C 2 J=2 . N F_{1}\)
\(\approx A(1, J)=A(1, J) / A A\)
EC \(1 \cup I=2, N\)
\(K=0\)

STORE A（I．1）．．．A（I．I）INX ARRAY
IN こASE NEW A（I，I）IS ZERO
FFC I CAN EE RECALCULATED
4 ［C \(5 \mathrm{~J}=1\) ．I
\(\approx x(J)=A(I, J)\)
\(K=K+1\)
CO 10 J＝2．NP1
IF（J．（T，I）GC TC ？
jN1＝J－1
\(A A=0\) ．
CC 3 IF \(=1 . J M 1\)
ヨ \(A A=A A+A(I \cdot I F) \neq A(I R, J)\)
\(A(I, J)=A(I, J)--A A\)
（FECK IF A（I，I）IS ZFRO
IF SO NULTIPLY CLD FCK I 3y 2.
IF（I •NE，J）GE TR 10
IF（ABS（A（I，I））•GT• ZERC）すU TC 10
CC 今 JJ＝1．I
\(\in A(I, J J)=x(\downarrow J)\)
```

            CO 7 JJ=1, NP1
            \(7 A(I, J)=2 \cdot * A(I, J)\)
            IF (K •CT• З)GC TO 12
            GC TO 4
            - \(\quad\left[M_{1}=I-1\right.\)
            \(A A=0\).
            CO 9 IR=1,INI
            G \(A A=A A \not A(I, I R) \notin A(I R, J)\)
            \(A(I, J)=(A(I, J)-A A) / A(I, I)\)
            1 C CONTIMLE
            END OF CALCULATICN CF TFIANGJLAR MATRICES
    C
C
C
C
$X(N)=A(N, N P 1)$
CO 20 II=
$A A=0$.
$I=N P 1-I$
$1 P 1=I+1$
CC $15 \mathrm{~J}=1 \mathrm{~F} 1, \mathrm{~N}$
$15 A A=A A+A(I \cdot J) * \times(J)$
$2 C X(I)=A(I, N P 1)-A A$
C

```

```

        ENO
    ```

FUNCTICN FLCN(DI.HJ.OZ.C)
COUPEE PRECISICA PI.PJ

THIS FLNCTICN CALCULATES FI.C.S WETAFEN TMC PCINTS
IF(C.LT. O.OO1)GO TO 10
CP=PJ-FI+FL
SIGV=1.0
IF(OP.LT. . O)SICN=-1.
FECW=SIGN*C*SG₹T (SIGN*DP)
FETURA
10
FLOd=0.0

FETJRN
END
```

    FUNCTICN FFLCW(I,PI)
    ```
```

THIS FLVCTION CALCULATES NET FLOAS INTC PCINT I
FAFAMETER．（NN＝140，MS＝5，WC＝3，MPO＝2，MT 2＝2，MFL $2=25, M Z=50)$
CCNMCA／CCRR／C1（MM，AC），C2（NN，NC），CC1（MA，MPC），CO2（NA，MPO）
CCNMCN NT，F（NN），C（NM，M二），NC（NN），J C（NM，Mこ），ITS（NJ），
1 FC（NM，NC），DZ（MM，NC），PQ（NA，NPC），CO（MM，MPQ）， $\mathrm{F}(M N), P F O(M F L, M D O)$,
$2 F F(N M), F C(N M, N F C), C S(N S), F S(N F L), N S 1(N S), N S 2(M S)$ ，
ב FSS（MS），N，NS，NFC，ICCNV，E，IRUG，AI（SM，MC），AC（MM，MFC），TITSH（MS，5），
$4 \mathrm{VH}, H(V F L)$ ，IFLCCR（MM），T（MTD，VFL），NFSI（VS），NFS？（NS），IT（MY），NTO
き，NCG（NV），JCC（NN，NFC），TCJT
COJHEE PLECISICN P，DO，PS，DI
N $N=N C(I)$
SUM＝0．
IF（NN •EG．O）GO TO 3
CO 1 JJ＝1，AN
J＝Jこ（ $1, J J)$
C C＝C I（I，JJ）
IF（ -1 •LT•P（J））CC＝C？（I，JJ）
$P Z Z=P Z(I, J J)$
IF（I •GT• N）PZZ＝0．
FC（I，JJ）＝FLO＊（PI，P（J），PLL，CC）
$\subseteq U N=S L N+F C(I, J J)$
NNC＝NCC（I）
IF（NNC •EC．O）GC TU A
CO $2 k=1$ ，NMO
CC＝CO1（I，K）
IF（DI •LT• PD（I，K））CC＝CC2（I，K）
FO（I，K）＝FLCH（FI，FC（I，K），O，C（）
$\subseteq \cup M=S U N+F C(I, K)$
：FLOW＝SUN＋FF（I）
IF（I •LE．N）F（I）＝SUM＋FF（I）
FETJFN
END

```

FUNCTICN SFLOW(IS.PI)
C
C
c
C C C
```

    FARAMETER (MM=140,MS=3,MC=9,MPO=2,MTP=2,MFL=25,ME=50)
    CCNMON NT, F(NM),C(NN,MC),NC(MN),JC(MM,MC),ITS(MS),
    1 FC(MM,MC), PZ{MM,MC), FO(MM,MPO), CO(MM, MPO),F(NM), PFO(MFL,MPO),
    2 FF(NM),FC(NM,NPC),CS(NS),PS(NFL),NS1(MS),NS2(MS),
    3 FSS(MS), N,NS,NFC,ICONV,E,IEUG,AI(MM,MC), AO(NM,MPC),TITSH(MS,5),
    4 NH,H(NFL), IFLCCR(MM),T(MTP,MFL),NFSI(MS),NFS2(MS),IT(MB),NTP
    E .NCO(NM),JOC(NM,MPC),TCUT
    COUBLE PRECISION P,FD,PS,PI
    IF(IBUC.GT.1)WFITE(E.900)IS
    SUM=0.
    N1=NS1(IS)
    N2=NS2(IS)
    FS(1)=FI
    FUP=0.
    CSS=CS(IS)
    OC 10 I=N1,N2
    II=I +I-N I
    FLC=PFLOW(I,PS(II))
    FUP=FLC+FLF
    SUN=SUN+FLC
    IF(I EEG.N2)GCTO 5
    IMI= II I I
    SIGN=1
    IF(FUP.GT, O.)SIGN=-1.
    FS(IIFI)=FS(II)-FL(I,1)+SIGN*FUP*FUP/(CSS*こSS)
    IF(IBUC.GT. 1)WRITE(E.8OI)I,II,PS(II),FLO,FUO,SUN
    CCNTINLE
        FSS(IS)=SLN
        SFLJW=SUN
        FETURN
    C
c
c
ECC FOFSMAT(///5X.17HFLOW - SHAFT ND .15/)
OC1 FGFMAT(5X.3HI=,I 3.5X.4HII =, I3.5X.4HPS =,
+E15.7.5X.5HFLC =.E10.4.5X,5HFJP =.L10.4.jX.5HSUM=.E10.4/)
ENO

```

\title{
APPENDIX H. SELECTED BIBLIOGRAPHY
}

Appleton, I. C., A Model of Smoke Movement in Buildings, CIB Symposium on Control of Smoke Movement in Building Fires, Vol. l, Fire Research Station, Garston Watford, U.K., pp. 127-138, 1976.

Barrett, R. E. and Locklin, D. W., A Computer Technique for Predicting Smoke Movement in Tall Buildings, Symposium on Movement of Smoke on Escape Routes in Buildings, Watford College of Technology, Watford, Herts, U.K., pp. 78-87, 1969 .

Billings, L., Mt. Sinai Medical Center: A New Concept in Smoke Control, ASHRAE Journal, Vol. 23 , No. 2, pp. 34-37, February 1981.

Butcher, E. G., Cottle, T. H. and Baily, T. A., Smoke Tests in the Pressurized Stairs and Lobbies of a 26 -Story Office Building, Building Service Engineer, Vol. 39, pp. 206-210, December 1971.

Butcher, E. G., Pardell, P. J. and Jackman, P. J., Prediction of the Behaviour of Smoke in a Building Using a Computer, Symposium on Movement of Smoke on Escape Routes in Buildings, Watford College of Technology, Watford, Herts, U.K., pp. 70-75, 1969.

Butcher, E. G. and Parnell, A. C., Smoke Control in Fire Safety Design, William Clowes \& Sons, Ltd., London, U.K., 1979.

DeCicco, P. R., Smoke and Fire Control in High-Rise Office Buildings Part I: Full-Scale Tests for Establishing Standards, Symposium on Experience and Applications on Smoke and Fire Control at the ASHRAE Annual Meeting, June 1973, Louisville, KY, Atlanta, GA, pp. 9-15, 1973.

Cresci, R. J., Smoke and Fire Control in High-Rise Office Buildings Part II: Analysis of Stair Pressurization Systems, Symposium on Experience and Applications on Smoke and Fire Control at the ASHRAE Annual Meeting, June 1973, Louisville, KY, Atlanta, GA, pp. 16-23, 1973.

DeCicco, P. R. and Cresci, R. J., Smoke and Fire Control in Large Atrium Spaces, ASHRAE Transactions 1975, Vol. 81, Part 2, pp. 319-335, 1975.

Dias, C., Stairwell Pressurization in a High-Rise Commercial Building, ASHRAE Journal, Vol. 20, No. 7, pp. 24-26, July 1978.

Evers, E. and Waterhouse, A., A Computer Model for Analyzing Smoke Movement in Buildings, Building Research Est., Borehamwood Herts, U.K., November 1978.

Fothergill, J. W., The Atrium as a Fresh Air Channel - A Different Concept in Smoke Control, ASHRAE Transactions 1980, Vol. 86, Part 1, pp. 624-635, 1980.

Fothergill, J. W., Smoke Movement Studies at the NIH Clinical Center, Nat. Bur. Stand., (U.S.), NBS-GCR-79-183, 1978.

Fothergill, J. W., Smoke Control Systems Design Tools, ASHRAE Journal, Vol. 20, No. 7, pp. 22-23, July 1978.

Fothergill, J. W., Computer-Aided Design Technology for Smoke Control and Removal Systems, Fire Technology, Vol. 14, No. 2, pp. 110-125, May 1978.

Fothergill, J. W. and Hedsten, G. C., Testing of the IDS Tower Smoke Control System, ASHRAE Transactions 1980, Vo1. 86, Part I, pp. 576-592, 1980.

Fung, F. C. W., Evaluation of a Pressurized Stairwell Smoke Control System for a 12-Story Apartment Building, Nat. Bur. Stand. (U.S.), NBSIR 73-277, June 1973.

Fung, F. C. W., Smoke Control by Systematic Pressurization, CIB Symposium on Control of Smoke Movement in Building Fires, Vol. l, Fire Research Station, Garston Watford, U.K., pp. 219-238, 1976.

Fung, F. C. W. and Ferguson, J. B., Test and Evaluation of the Smoke Control Features of the Seattle Federal Building, Proceedings of the Public Buildings Service International Conference on Fire Safety in High-Rise Buildings, General Services Administration, Washington, D.C., 1974.

Fung, F. C. W. and Zile, R. H., Test and Evaluation of the Smoke Control Capabilities of the San Diego Veterans Administration Hospital, Nat. Bur. Stand. (U.S.), NBSIR 77-1225, April 1977.

Fung, F. C. W. and Zile, R. H., Evaluation of Smokeproof Stair Towers and Smoke Detector Performance, Nat. Bur. Stand. (U.S.), NBSIR 75-701, September 1975.

Fung, F. C. W. and Zile, R. H., San Antonio Veterans Administration Hospital Smoke Movement Study, Nat. Bur. Stand. (U.S.), NBSIR 75-903, November 1975.

Gross, D., A Review of Measurements, Calculations and Specifications of Air Leakage through Interior Door Assemblies, Nat. Bur. Stand. (U.S.), NBSIR 812214 , February 1981.

Heselden, A. J. M., Studies of Smoke Movement and Control at the Fire Research Station, CIB Symposium on Control of Smoke Movement in Building Fires, Vol. 1, Fire Research Station, Garston Watford, U.K., pp. 185-198, 1976.

Heselden, A. J. M., Studies of Fire and Smoke Behaviour Relevant to Tunnels, BRECP, Building Research Establishment, Borehamwood, Herts, U.K., November 1978.

Heselden, A. J. M. and Baldwin, R., The Movement and Control of Smoke and Escape Routes in Buildings, BRECP, Building Research Establishment, Borehamwood, Hertfordshire, U.K., January 1976.

Hinkley, P. L., A Preliminary Note on the Movement of Smoke in an Enclosed Shopping Mall, Fire Research Note 806, Fire Research Station, Borehamwood, U.K., March 1970.

Hobson, P. J. and Stewart, L. J., Pressurization of Escape Routes in Buildings, Heating and Ventilating Research Association, Brachnell, Berkshire, U.K., January 1973.

John, R., Fire and Extinction Tests with Gaseous Extinguishing Agents in FullScale Rooms. Part 2. Determination of Volume Flow through Doors for Smoke Control on Escape Routes, University of Karlsruhe, Research Report No. 35, Karlsruhe, Germany, October 1978.

Klote, J. H., Smoke Movement through a Suspended Ceiling System, Nat. Bur. Stand. (U.S.), NBSIR 81-2444, February 1982.

Klote, J. H., A Computer Program for Analysis of Pressurized Stairwells and Pressurized Elevator Shafts, Nat. Bur. Stand. (U.S.), NBSIR 80-2157, January 1981 。

Klote, J. H., A Computer Program for Analysis of Smoke Control Systems, Nat. Bur. Stand. (U.S.), NBSIR 82-2512, June 1982.

Klote, J. H., Stairwell Pressurization, ASHRAE Transactions 1980, Vol. 86, Part I, pp. 604-623, 1980 .

Klote, J. H., Smoke Control by Stairwell Pressurization, Engineering Applications of Fire Technology Workshop, Society of Fire Protection Engineers, Boston, MA, to be published.

Klote, J. H. and Zile, R. H., Smoke Movement and Smoke Control on Merchant Ships, Nat. Bur. Stand. (U.S.), NBSIR 81-2433, December 1981.

Klote, J. H., Elevators as a Means of Fire Escape, Nat. Bur. Stand. (U.S.), NBSIR 82-2507, May 1982.

Kohno, M. and Kaschara, I., Smoke Movement Calculation for Several Control Systems in a High Building, CIB Symposium on Control of Smoke Movement in Building Fires, Vol. 1, Fire Research Station, Garston Watford, U.K., pp. 281298, 1976.

Koplon, N. A., Report of the Henry Grady Fire Tests, City of Atlanta Building Department, Atlanta, GA, January 1973.

Masters, R. E., Bankers Trust Plaza - New York City: A High-Rise Office Building with a Systems Approach to Smoke and Fire Control, Symposium on Experience and Applications on Smoke and Fire Control at the ASHRAE Annual Meeting, June 1973, Louisville, KY, Atlanta, GA, pp. 24-26, 1973.

McGuire, J. H., Control of Smoke in Buildings, Fire Technology, Vol. 3, No. 4, pp. 281-290, November 1967.

McGuire, J. H., Tamura, G. T. and Wilson, A. G., Factors in Controlling Smoke in High Buildings, Symposium on Fire Hazards in Buildings, ASHRAE Semiannual Meeting in San Francisco, CA, January 1970, pp. 8-13, 1971.

McGuire, J. H. and Tamura, G. T., Simple Analysis of Smoke Flow Problems in High Buildings, Fire Technology, Vol. 11, No. 1, pp. 15-27, February 1975.

Minne, R., Smoke Infiltration into the Fire Escape Routes of Tall Buildings, CIB Symposium on Control of Smoke Movement in Building Fires, Vol. 1, Fire Research Station, Garston Watford, U.K., pp. 245-266, 1976.

Morgan, H. P. and Marshall, N. R., Smoke Hazards in Covered, Multi-Level Shopping Malls: An Experimentally-Based Theory for Smoke Production, Building Research Establishment, Borehamwood, U.K., May 1975.

Morgan, H. P. and Marshall, N. R., Smoke Hazards in Covered, Multi-Level Shopping Malls: A Method of Extracting Smoke from Each Level Separately, Building Research Establishment, Borehamwood, U.K., January 1978.

Morgan, H. P., Marshall, N. R. and Gladstone, B. M., Smoke Hazards in Covered Multi-Level Shopping Malls: Smoke Studies using a Model 2-Story Mall, Building Research Establishment, Borehamwood, U.K., June 1976.

Moulen, A. W. and Grubits, S. G., Stairwell Pressurization in a Twenty-Six Story Building, Experimental Building Station, North Ryde, N.S.W. Australia, July 1975.

Rilling, J., Mechanism and Conditions of Smoke Control through a Door Opening, Centre Scientifique et Technique du Batiment (CSTB), Champs Sur Marne, France, October 1980.

Rilling, J., Etude Sur Le Desenfumage - Methode De Calcul Du Mouvement Des Fumees Entre Volumes d'un Batiment, CSTB, Champs Sur Marne, France, 1978.

Robertson, A. F., Estimating Smoke Production from Rooms and Furnishings, CIB Symposium on Control of Smoke Movement in Building Fires, Vol. l, Fire Research Station, Garston Watford, U.K., pp. 127-138, 1976.

Sander, D. M. and Tamura, G. T., FORTRAN IV Program to Simulate Air Movement in Multi-Story Buildings, National Research Council Canada, DBR Computer Program No. 35, March 1973.

Sander, D. M., FORTRAN IV Program to Calculate Air Infiltration in Buildings, National Research Council Canada, DBR Computer Program No. 37, May 1974.

Schmidt, W. A., Smoke Control System Testing, Heating/Piping/Air Conditioning, Vol. 54, No. 4, pp. 77-80, April 1982.

Seeger, P. G. and John, R., Fire and Ventilation Tests in a High-Rise Dwelling House with Internal Staircase, CIB Symposium on Control of Smoke Movement in Building Fires, Vol. 2, Fire Research Station, Garston Watford, U.K., pp. 7691, 1976.

Semple, J. B., Smoke Control: The Retrofit Option, Heating/Piping/Air Conditioning, Vol. 54, No. 4, pp. 69-73, April 1982.

Shannon, J. M. A., Computer Analysis of the Movement and Control of Smoke in Buildings with Mechanical and Natural Ventilation, CIB Symposium on Control of Smoke Movement in Building Fires, Vol. l, Fire Research Station, Garston Watford, U.K., pp. 99-126, 1976.

Shaw, C. T. and Tamura, G. T., The Calculation of Air Infiltration Rates Caused by Wind and Stack Action for Tall Buildings, ASHRAE Transactions 1977, Vol. 83, Part 2, pp. 145-158, 1977.

Silcock, A., Some Practical Problems of Smoke Movement in Buildings, CIB Symposium on Control of Smoke Movement in Building Fires, Vol. l, Fire Research Station, Garston Watford, U.K., pp. 307-316, 1976.

Tamura, G. T., Exterior Wall Venting for Smoke Control in Tall Office Building, ASHRAE Journal, Vol. 20, No. 8, pp. 43-48, August 1978.

Tamura, G. T., A Smoke Control System for High-Rise Office Buildings, ASHRAE Journal, Vol. 24, No. 5, pp. 29-32, May 1982.

Tamura, G. T., Experimental Studies on Exterior Wall Venting for Smoke Control in Tall Buildings, ASHRAE Transactions 1978, Vol. 84, Part 2, pp. 204-215, 1978.

Tamura, G. T., Experimental Studies on Pressurized Escape Routes, ASHRAE Transactions 1974, Vo1. 80, Part 2, pp. 224-237, 1974.

Tamura, G. T., The Performance of a Vestibule Pressurization System for the Protection of Escape Routes of a 17-Story Hotel, ASHRAE Transactions 1980, Vol. 86, Part 1, pp. 593-603, 1980.

Tamura, G. T., Pressure Differences for a Nine-Story Building as a Result of Chimney Effect and Ventilation System Operation, ASHRAE Transactions 1966, Vol. 72, Part 1, pp. 180-189, 1972.

Tamura, G. T. and McGuire, J. H., The Pressurized Building Method of Controlling Smoke in High-Rise Buildings, National Research Coutıcil of Canada, NRCC-13365, Ottawa, Canada, 1973.

Tamura, G. T., McGuire, J. H. and Wilson, A. G., Air-Handing Systems for Control of Smoke Movement, Symposium on Fire Hazards in Buildings, at ASHRAE Semiannual Meeting, January 1970, San Francisco, CA, Atlanta, GA, pp. 14-19, 1971 。

Tamura, G. T. and Shaw, C. Y., Basis for the Design of Smoke Shafts, Fire Technology, Vol. 9, No. 3, pp. 209-222, August 1973.

Tamura, G. T. and Shaw, C. Y., Air Leakage Data for the Design of Elevator and Stair Shaft Pressurization Systems, ASHRAE Transactions 1976, Vol. 82, Part 2, pp. 179-190, 1976.

Tamura, G. T. and Shaw, C. Y., Studies on Exterior Wall Air Tightness and Air Infiltration of Tall Buildings, ASHRAE Transactions 1976, Vol. 86, Part 1, pp. 122-134, 1976.

Tamura, G. T. and Shaw, C. Y., Experimental Studies of Mechanical Venting for Smoke Control in Tall Office Buildings, ASHRAE Transactions 1978, Vol. 86, Part 1, pp. 54-71, 1978.

Tamura, G. T. and Wilson, A. G., Building Pressures Caused by Chimney Action and Mechanical Ventilation, ASHRAE Transactions 1967, Vol. 73, Part 2, pp. 2.1-2.8, 1967.

Taylor, R. E., Air for Smoke Control; Atlanta: Loew's Grand Theater Fire, ASHRAE Journal, Vol. 20, No. 7, pp. 27-31, July 1978.

Taylor, R. E., The Carlyle Apartment Fire: Study of a Pressurized Corridor, ASHRAE Journal, Vol. 17, No. 4, pp. 52-55, April 1975.

Thomas, P. H., Movement of Smoke in Horizontal Corridors Against an Air Flow, Institute of Fire Engineers Quarterly, \(30(77\) ), pp. 45-53, 1970.

Wakamatsu, T., Calculation Methods for Predicting Smoke Movement in Buildings and Designing Smoke Control Systems, Fire Standards and Safety, ASTM STP-614, A. F. Robertson, Ed., Philadelphia, PA, American Society for Testing and Materials, pp. 168-193, 1977.

Wakamatsu, T., Calculation of Smoke Movement in Buildings - lst Report, Building Research Institute, Japan, August 1968.

Wakamatsu, T., Calculation of Smoke Movement in Buildings - 2nd Report, Building Research Institute, Japan, March 1971.

Wakamatsu, T., Unsteady-State Calculation of Smoke Movement in an Actually Fired Building, CIB Symposium on Control of Smoke Movement in Building Fires, Vol. 1, Fire Research Station, Garston Watford, U.K., pp. 81-98, 1976.

Wakamatsu, T., Smoke Movement in Building Fires - Field Experiment in Welfare Ministry Building and Analysis of Sennichi Building Fire, BRI Paper No. 61, Building Research Institute, Japan, February 1975.

Wilson, A. G. and Shorter, G. W., Fire and High Buildings, Fire Technology, Vol. 6, No. 4, pp. 292-304, November 1970.

Yoshida, H., Shaw, C. Y. and Tamura, G. T., A FORTRAN IV Program to Calculate Smoke Concentrations in a Multi-Story Building, National Research Council, Canada, DBR Computer Program No. 45, June 1979.

\title{
APPENDIX 1. \\ UNITS OF MEASUREMENT
}

Physical quantities such as length, weight, and time are expressed in terms of standard units of measurement. In this book, two systems are used: the engineering system and the international system (SI).

In both systems, there are base units in terms of which all other units are defined. For purposes of smoke control, the base units are listed in table I.l.

Newton's second law of motion is the relationship used to define force in terms of basic units.
\[
F=m a
\]
where:
```

F = force, 1b (N)
m = mass, slug (kg)
a = acceleration, ft/sec}\mp@subsup{}{}{2}(\textrm{m}/\mp@subsup{\textrm{s}}{}{2}

```

In the SI system, the unit of force is the newton, \(N\), which is the force required to accelerate a mass of one kilogram at a rate of one meter per second squared. In the engineering system, the unit of force is the pound, 1 b , which is the force required to accelerate a mass of one slug at a rate of one foot per second squared. Frequently, mass is expressed in terms of the pound mass, lbm, which is the mass of a body that weighs one pound at sea level. One slug equals 32.174 lbm.

Units that are defined in terms of the basic units are called derived units. Table I. 2 lists the derived units which are used in this book.

In the \(S I\) system, prefixes are used to form decimal multiples and submultiples of the \(S I\) units. The \(S I\) prefixes are listed in Table I.3. The conversion factors listed in Tables I. 4 and I. 5 have been rounded off to three or four significant figures, which is sufficient for most smoke control calculations.

Absolute temperature is measured in the Kelvin scale in the SI system and the Ramkine scale in the engineering system. In addition, temperature is frequently measured in the Celsius or the Fahrenheit scale. Because the Celsius and Fahrenheit scales are so commonly used by design engineers, these scales are used exclusively in the discussions in the text and in figures. However, caution should be exercised to assure that absolute temperatures are used in calculations where necessary. Table I. 6 lists relations which can be used to convert from one temperature scale to another.

For further information concerning the SI system the reader is referred to the references below.

ASHRAE Metric Guide, 2nd ed., American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA, 1977.

American National Standard - Metric Practice, ANSI 2210.1-1976, Institute of Electrical and Electronics Engineers, Inc., New York, NY, 1976.

Table I.1. Base units
\begin{tabular}{|c|c|cc|}
\hline \multirow{2}{*}{ Quantity } & \multicolumn{2}{|c|}{ SI System } & Engineering System \\
\cline { 2 - 5 } & Unit & Symbol & Unit
\end{tabular}

Table I.2. Derived units
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Quantity} & \multicolumn{3}{|c|}{SI System} & \multicolumn{3}{|c|}{Engineering System} \\
\hline & Unit & Symbol & Formula & Unit & Symbol & Formula \\
\hline force & newton & N & \(\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}\) & pound & 1 b & slug \(\mathrm{ft} / \mathrm{sec}^{2}\) \\
\hline pressure & pascal & Pa & \(\mathrm{N} / \mathrm{m}^{2}\) & -- & -- & \(1 \mathrm{~b} / \mathrm{ft}^{2}\) \\
\hline energy, work or heat & joule & J & \[
\mathrm{N} \cdot \mathrm{~m}
\] & -- & _- & \[
1 \mathrm{~b} \cdot \mathrm{ft}
\] \\
\hline power, energy release rate & wat & W & J/s & -- & -- & \(1 \mathrm{~b} \cdot \mathrm{ft} / \mathrm{sec}\) \\
\hline
\end{tabular}

Table I.3. SI prefixes

Prefix Symbo1 Multiplication Factor
\begin{tabular}{rlrl} 
giga & \(G\) & \(10^{9}\) & \(=1000000000\) \\
mega & \(M\) & \(10^{6}\) & \(=1000000\) \\
kilo & k & \(10^{3}\) & \(=1000\) \\
centi \(^{*}\) & c & \(10^{-2}\) & \(=0.01\) \\
milli & m & \(10^{-3}\) & \(=0.001\) \\
micro & \(\mu\) & \(10^{-6}\) & \(=0.000001\) \\
nano & n & \(10^{-9}=0.000000001\)
\end{tabular}
*The prefix centi is to be avoided where possible.

Table I.4. Conversion factors from engineering units to SI units
Multiply
By
To Obtain
\begin{tabular}{llc}
\hline Btu & 1055 & J \\
Btu/hr & 0.293 & W \\
ft & 0.3048 & m \\
\(\mathrm{ft}^{2}\) & 0.0929 & \(\mathrm{~m}^{2}\) \\
\(\mathrm{ft} / \mathrm{min}(\mathrm{fpm})\) & 0.00508 & \(\mathrm{~m} / \mathrm{s}\) \\
\(\mathrm{ft}^{3} / \mathrm{min}(\mathrm{cfm})\) & \(4.72 \mathrm{xl}^{-4}\) & \(\mathrm{~m}^{3} / \mathrm{s}\) \\
\(\mathrm{ft}^{3} / \mathrm{min}(\mathrm{cfm})\) & 0.472 & \(\mathrm{~L}^{*} / \mathrm{s}\) \\
inch of water (in \(\left.\mathrm{H}_{2} 0\right)\) & Pa \\
mile per hour (mph) & 248.8 & \(\mathrm{~m} / \mathrm{s}\) \\
pound mass (lbm) & 0.447 & kg \\
pound (1b) & 0.454 & N \\
pound per square inch (psi) & 4.448 & Pa \\
lbm/ft \({ }^{3}\) & 6895. & \(\mathrm{~kg} / \mathrm{m}^{3}\)
\end{tabular}

\footnotetext{
* L is the symbol for liter which is a cubic decimeter, i.e., \(1000 \mathrm{~L}=1 \mathrm{~m}^{3}\).
}

Table I.5. Conversion factors within the engineering system
Multiply By To Obtain
\begin{tabular}{|c|c|c|}
\hline Btu & \(1.285 \times 10^{-3}\) & \(\mathrm{ft}-1 \mathrm{~b}\) \\
\hline Btu/hr & 0.2152 & \(\mathrm{ft}-1 \mathrm{~b} / \mathrm{sec}\) \\
\hline Horsepower & 550 & \(\mathrm{ft}-1 \mathrm{~b} / \mathrm{sec}\) \\
\hline in & \(8.333 \times 10^{-2}\) & ft \\
\hline in \({ }^{2}\) & \(6.944 \times 10^{-3}\) & \(f t^{2}\) \\
\hline in \({ }^{3}\) & \(5.78 \times 10^{-4}\) & \(f t^{3}\) \\
\hline in \(\mathrm{H}_{2} \mathrm{O}\) & 5.20 & \(1 \mathrm{~b} / \mathrm{ft}^{2}\) \\
\hline mile & \(1.89 \times 10^{-4}\) & \(f \mathrm{t}\) \\
\hline mile per hour (mph) & 1.467 & \(\mathrm{ft} / \mathrm{sec}\) \\
\hline pound mass ( 1 bm ) & \(3.108 \times 10^{-2}\) & slug \\
\hline \(1 \mathrm{~b} / \mathrm{in}^{2}\) (psi) & 144 & \(1 \mathrm{~b} / \mathrm{ft}^{2}\) \\
\hline \(1 \mathrm{bm} / \mathrm{ft}^{3}\) & \(3.108 \times 10^{-2}\) & slug/ft \({ }^{3}\) \\
\hline
\end{tabular}

Table I.6. Temperature conversion
\[
\begin{aligned}
\mathrm{K} & ={ }^{\circ} \mathrm{C}+273 \\
{ }^{\mathrm{o}} \mathrm{R} & ={ }^{\mathrm{o}} \mathrm{~F}+460 \\
{ }^{\mathrm{O}} \mathrm{C} & =\left({ }^{\mathrm{O}} \mathrm{~F}-32\right) / 1.8 \\
{ }^{\mathrm{o}} \mathrm{~F} & =1.8{ }^{\circ} \mathrm{C}+32
\end{aligned}
\]

Table I. 7 Some useful constants
\[
\begin{aligned}
\mathrm{g} & =\text { gravitational constant at sealevel } 32.174 \mathrm{ft} / \mathrm{sec}^{2}\left(9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \\
\mathrm{R} & =\text { gas constant of air } 53.3 \mathrm{ft}-1 \mathrm{~b} / 1 \mathrm{bm}{ }^{\circ} \mathrm{R}(287 \mathrm{~J} / \mathrm{kg} \mathrm{~K}) \\
\mathrm{P}_{\mathrm{atm}} & =\text { standard atmospheric pressure } 14.696 \mathrm{psi}(101325 \mathrm{~Pa})
\end{aligned}
\]

\section*{INDEX}

A
Absolute temperature ...................12,266
Acceleration due to gravity
See: Gravitational constant
Air balancing ................................ 104
Airborne particles.......................... 4,9
Airflow ...............................24,25,42
Atrium ........................................... 5
Automatic control ............................. 9
(Also see: Static pressure sensor)
B
Barometric damper ............................ 80
Barrier .......................20-24,28,41,63
Buoyancy .........................11,16-17,114
C
Computer
example input-output ..............132-218
example problem ..............84-88,98-102
flow chart .............................53,54
input instructions .........53-55,124-131
program ......................5,30,46-56,85
Conservation of mass ................ \(30,49,69\)
Contaminant ............................. \(4,28,29\)
Critical air velocity .............24,43,116

\section*{D}

Design parameters .................4,5,38-44
Differential pressure
See: Pressure difference
Differential pressure sensor
See: Static pressure sensor
Door
open ......................21, \(38,43,44,78,83\)
opening force ......... \(29,30,40,41,73,118\)
stairwe11 ........................... \(38,78,83\)

E

Egress .................................... 7,40 Elevator ....... \(5,11,20,37,46,47,57,60,66\), 84,85,88,98-100
Energy conservation ........................ 8,9
Escape route ........5,21,29,42,57,59,96,97 (Also see: Egress)
Evacuation analysis ................44,62,63
Expansion ..............................11,17,18
Exterior stairwell
13

\section*{F}

Fan 20
bypass ................................... ... 79,84
centrifugal .........................63,64,84
exhaust ............................ . . 82-84,95
propeller ............................63,64,74
Fire growth ...................................... 1
Fire suppression ..................6,7,8,41,43
Flow
coefficient .........................26,48,49
equation .......................26,48,49,117
factor .............................. \(70,78,120\)
network ....................................5,53
Flow area ............................. \(30,37,38\)
effective .................................30-32
parallel paths .............................. 31
series paths ................................. 32
Friction
See: Shaft friction
G
Gas law
See: Ideal gas law
Gas constant of air ....................... 269
Gravitational constant ................... 269
Heating ventilating and airconditioning (HVAC) system ........ll,19
Height limit ..... \(.72-74,121\)
Hydrostatic equation 30,50,51,67
I
Ideal gas law ..... \(12,49,67\)
L
Leakage area ..... 122
(See also: Flow area)
Leakage path ..... 13
M
Manual control .....  9
Mass balance equationSee: Conservation of mass
Mass flow equationSee: Flow equation
Mechanical exhaust ..... 82,91,95
Model
See: Computer program
N
Neutral plane ..... 12-16
0
Overpressure relief ..... \(.79-81\)
P
Perfect gas law
See: Ideal gas law
Power law ..... 52
Pressure
coefficient ..... 18
gauge ..... 50,51
profile ..... 64-66,88
Pressure difference average ..... \(.71,72\)
Pressurization
corridor .....  5,46
elevator ..... \(.5,46,57\)
principle ..... 26
(Also see: Stairwell pressurization)
Purging ..... 23,27

R


S

Shaft
friction ............................. 51,67,83
flow coefficient .................... 51,83
Smoke
barrier ..................................... 41
bomb (See: candle)

control principles ..................21-26
control zone ...........................89-102
definition ................................ 4
detector .................................. 9
damper .................................... 95

movement ................................... 11
obscuration ............................... 28
shaft .................... \(20,82,83,91,94,95\)
vents ........................ \(20,82,83,91-94\)

Sprinkler ....5, \(8,9,20,42,43,96,97,107,108\)
Stack effect ........................11-15,112
St airwe 11
exterior ................................. 13
Stairwell pressurization
analysis ...........................66-71,83
compartmentation ........................ 62
multiple injection ...................59-62
single injection ..................... \(59-62\)
with open doors .....................79-88
with vestibules ......................... 63
Standard atmospheric pressure .......... 269
Static pressure sensor ............... 82,87
Sulfur hexaflouride .................107,108
Symmet ry ......................... \(36,37,66,99\)
System flexibility ................7,78,105

\section*{T}

Temperature conversion ................... 269
Temperature factor ............68,70,76,119
Testing
acceptance ................................ \(04-108\)
chemical smoke ......................... 106
pressure and velocity ............ 105,106
real fire .............................. 106
tracer gas .............................. 107
Toxicity ...................................28,43

Units of measurements ...........12,265-269
Vestibule ............................................ 63

W

Water spray curtain ........................... 8 Weather data ............................. 39,40 Wind .....6, 11, 18-20,23,27,36,40-42,44,45, \(47,51,52,57,58,60,63,64,67,74,81\), 91,97,98,115
Windows . .... \(18,19,37,39,41,42,47,83,91,95\)
Z
Zoned smoke control ......5,9,46,47,89-103

\section*{NBS TECHNICAL PUBLICATIONS}

\section*{PERIODICALS}

JOURNAL OF RESEARCH-The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs As a special service to subscribers each issue contains complete citations to all recent Bureau publications in both NBS and nonNBS media. Issued six times a year. Annual subscription domestic \(\$ 18\); forcign \(\$ 22.50\). Single copy, \(\$ 5.50\) domestic; \(\$ 6.90\) foreign.

\section*{NONPERIODICALS}

Monographs-Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities

Handbooks-Recommended codes of engineering and industrial practice (including safety codes) developed in couperation with interested industries, professional organizations, and regulatory bodies.
Special Publications-Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and biblıographies
Applied Mathematics Series-Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work
National Standard Reference Data Series- Provides quantutave data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396)

NOTE: The principal publication ouklet for the foregoing data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (A|P). Suhscriptions, reprints, and supplements avallable from ACS, 1155 Sixteenth St. NW. Washington, DC 20056

Building Science Series-Disseminates technical ir.formation developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of hulding elements and systems.

Technical Notes-Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards-Developed under procedures published by the Department of Commerce in Part 10. Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations

Consumer Information Series-Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace
Order the above NBS publications from Superintendent of Documems. Government Printing Office. Washington. DC 20402.
Order the following NBS publications-FIPS and NBSIR's-from the National Technical Information Service. Springfield. VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)-Publications in this series collectively constitute the Federal Information Processing Standards Register. The Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended. Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR) - A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor: public distribution is by the National Technical Information Service. Springfield, VA 22161 in paper copy or microfiche form.
mem U.S. DEPARTMENT OF COMMERCE COM-215```


[^0]:    ${ }^{*}$ Figures in brackets refer to references at the end of each chapter.

[^1]:    * The heating season usually consists of three winter months. A more exact definition of these temperatures is available in ASHRAE Handbook-1981 Fundamentals, chapter 24 [14].

[^2]:    * Other criteria might involve maintaining a number of smoke free egress routes or preventing smoke infiltration to a refuge area. Discussion of all possible alternatives is beyond the scope of this book.

[^3]:    * Other criteria might include the allowance of limited smoke leakage into areas to be protected. Under such criteria, the toxicity of the smoke is a factor that must be considered.

[^4]:    *A computer tape of this program is available from the National Technical Information Service (NTIS), Springfield, VA 22161. Request "Tape of the computer program for analysis of smoke control systems, NTIS Accession No. PB82-254822."

[^5]:    ${ }^{*}$ The results of the program are not very sensitive to changes in atmospheric pressure. For altitudes considerably different from sealevel, a more accurate value of barometric pressure can be substituted by changing an assign statement in the subroutine INPUT and one in the subroutine CORR.

[^6]:    *In this book the term "building compartment" refers to a space in a building other than in a shaft.

[^7]:    * These three methods of smoke venting can be used outside the context of zoned smoke control, i.e., in passive smoke management (section 2.2) or in conjunction with stairwell pressurization (section 5.1.3).

[^8]:    *Data and computer output for these cases are provided in appendix $F$.

[^9]:    *OSHA concentration 1 imit of $\mathrm{SF}_{6}$ is $1,000 \mathrm{ppm}$ as set forth in the Federal Register, Vol. 36, No. 157, August 13, 1971. However, in smoke control testing, concentrations generally do not exceed 2 ppm .

[^10]:    * The user must assign this file before progran execution.

[^11]:    ${ }^{*}$ All net flows are at standard conditions of $70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)$ and one atmosphere.

[^12]:    
    
    
    

[^13]:    THE FOLLOWING UNITS ARE USED FOR OUTPUT
    $\begin{array}{lllllll}\text { FLOW IN CFM AT } 70 & \text { DEG F AND } 1 \text { ATM } \\ \text { PRESSURE IN INCHS H2O }\end{array}$ PRESSURE IN INCHS H2O
    AREA IN FEET SQUARED

[^14]:    FLOW IN CFM AT 70 DEG F AND 1 ATM PRESSURE IPJ INCHS H2O
    AREA IN FEET SOUARED

[^15]:    THE FOLLOWING UNITS ARE USED FOR OUTPUT
    

[^16]:    FLOW IN CFM AT 70 DEG F AND 1 ATM AREA IN FEET SQUARED

[^17]:    F AND 1 ATM
    FLOW IN CFM AT 70 DEG PRESSURE IN INCHS H2O
    LREA IN FEET SQUARED

[^18]:    LON IN CFM AT 70 DEG F AND 1 ATM PRESSURE IN INCHS H2O
    AREA IN FEET SQUARED

[^19]:    70000. 

    TO

    | 0. | FLOOR OUTSIDE |  | compartment <br> DIRECTICN 1 |
    | :---: | :---: | :---: | :---: |
    | 9200. | FLOCR | 2 | COMPARTMENT |
    | 0. | FLOOR | 3 | COMPARTMENT |
    | 0. | FLOOR | 4 | COMPARTMENT |
    | 1200. | FLOOR | 5 | COMPARTMENT |
    | 0. | FLOOR | 6 | COMPARTMENT |
    | 0. | FLOOR | 7 | COMPARTMENT |
    | 1200. | FLOOR | 8 | compartment |
    | 0. | FLOOR | 9 | compartment |
    | 0. | FLOOR | 10 | compartment |
    | 1200. | FLOOR | 11 | COMPARTMENT |
    | 0. | FLOOR | 12 | COMPARTME |


    | $w$ |
    | :--- |
    |  |
    |  |

    
    

[^20]:    STAIRWELL
    TEMPERATURE PROFILE
    SHAFT FLOW COEFFICIENT
    SHAFT FLOW COEFFICIENT 70000
    FIXED
    FLOW
    $\begin{array}{lll}\text { FLOOR } & 1 \text { COMPARTMENT } \\ \text { OUTSIDE } & \text { DIRECTION } \\ \text { FLOOR } & 2 & \text { COMPARTMENT } \\ \text { FLLOOR } & 3 & \text { COMPARTMENT } \\ \text { FLOOR } & 4 & \text { COMPARTMENT } \\ \text { FLOOR } & 5 & \text { COMPARTMENT } \\ \text { FLOOR } & 6 & \text { COMPARTMENT } \\ \text { FLOOR } & 7 & \text { COMPARTMENT } \\ \text { FLOOR } & 8 & \text { COMPARTMENT } \\ \text { FLOOR } & 9 & \text { COMPARTMENT } \\ \text { FLOOR } & 10 & \text { COMPARTMENT } \\ \text { FLOOR } & 11 & \text { COMPARTMENT } \\ \text { FLOOR } & 12 & \text { COMPARTMENT }\end{array}$

    0
    
    $\begin{array}{cc}\text { FLOOR } & \text { PRESSURE } \\ 1 & 2.523 \\ 2 & 2.371 \\ 3 & 2.198 \\ 4 & 2.025 \\ 5 & 1.852 \\ 6 & 1.680 \\ 7 & 1.509 \\ 8 & 1.338 \\ 9 & 1.166 \\ 10 & .994 \\ 11 & .822 \\ 12 & .650\end{array}$

[^21]:    F AND 1 ATM

[^22]:    THE FOLLOWING UNITS ARE USED FOR OUTPUT

    ## FLOW IN CFM AT 70 DEG F AND 1 ATM

    PRESSURE IN INCHS REET SQUARED[^23]:    THE FOLLOWING UNITS ARE USED FOR OUTPUT

[^24]:    FLOW IN CFM AT 70 DEG F AND 1 ATM PRESSURE IN INCHS H2O
    AREA IN FEET SQUARED

[^25]:    AREA IN FEET SQUARED

[^26]:    TEMPERATURE PROFILE
    SHAFT FLOW COEFFICIENT

[^27]:    AND 1 ATM
    FLOW IN CFiM AT 7O DEG
    PRESSURE IN INCHS H2O
    AREA IN FEET SQUARED

[^28]:    the following units are used for outfut
    FLOW IN CFM AT 7O DEG F AND 1 ATM
    PRESSURE IN INCHS H2O
    AREA IN FEET SQUARED

