Reference

NBS Publications

Medical Physics Data Book

NBS Handbook 138

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities — Radiation Research — Thermodynamics and Molecular Science — Analytical Chemistry — Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical services to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to earry out this research and technical service; develops engineering data and measurement capabilities, provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

Applied Mathematics — Electronies and Electrical Engineering — Mechanical Engineering and Process Technology — Building Technology — Fire Research — Consumer Product Technology — Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve ellectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers:

Programming Science and Technology --- Computer Systems Engineering.

Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Washington, DC 20234.

Some divisions within the center are located at Boulder, CO 80303.

Medical Physics Data Book	MATIONAL BURNAU OF STANDARDS LIBRARY MAY 1 4 1982
Thomas N. Padikal, Editor	1.=
	1121
Radiation Oncology Branch National Cancer Institute Bethesda, MD 20205	21 D 2

and

Sherman P. Fivozinsky, Associate Editor

Office of Standard Reference Data National Bureau of Standards Washington, DC 20234

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued March 1982

Library of Congress Catalog Card Number: 81-600102

National Bureau of Standards Handbook 138 Nat. Bur. Stand. (U.S.), Handb. 138, 127 pages (Mar. 1982) CODEN: NBSHAP

> U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1981

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Price \$5.50 (Add 25 percent for other than U.S. mailing)

Contributing Editors

Gary T. Barnes Diagnostic Radiology University of Alabama in Birmingham Birmingham, Alabama 35294

Gerald Cohen Diagnostic Radiology University of Texas Medical School Houston, Texas 77030

James A. Deye Radiological Physics Fairfax Hospital Falls Church, Virginia 22046 Michael J. Flynn Radiology Department University of Michigan Ann Arbor, Michigan 48109

James G. Kereiakes Department of Radiology University of Cincinnati Cincinnati, Ohio 45267

Thomas N. Padikal Radiation Oncology Branch National Cancer Institute Bethesda, Maryland 20205

Contributors

Avtar S. Ahuja Case Western Reserve University School of Medicine Cleveland, Ohio 44106

Robert T. Anger Radiology Department Methodist Hospital Indianapolis, Indiana 46202

Andrew G. Bukovitz Radiology Department University of Pittsburgh Medical School Pittsburgh, Pennsylvania 15261

Richard C. Granke Consultant 1311 Downs Drive Silver Spring, Maryland 20904 Leland R. Kirkland Radiology Department Riverside Hospital Newport News, Virginia 23601

Robert Loevinger Center for Radiation Research National Bureau of Standards Washington, DC 20234

Guy H. Simmons Veterans Administration Medical Center University of Kentucky Lexington, Kentucky 40511

Stephen R. Thomas Department of Radiology University of Cincinnati Cincinnati, Ohio 45267

PREFACE

For the past 3 years the Medical Physics Data Group of the American Association of Physicists in Medicine has worked with the Publications Committee to produce a source of reliable and readily accessible data for the practicing medical physicist. The Medical Physics Data Book is the result of that effort.

The contents are divided into five main chapters: General Physics, Nuclear Medicine, Diagnostic Radiology, Radiation Therapy, and Non-Ionizing Radiation. The editors have tried to selectively assemble the most useful information for each chapter while maintaining a text of manageable size. Each entry is referenced so the user can determine the original sources of data and the conditions under which they were assembled. An effort has also been made to present the material using consistent units and unit symbols throughout.

The editors wish to express their appreciation to all those who reviewed the manuscript and made useful comments. We are also grateful to Ms. Cynthia A. Goldman, Librarian, Office of Standard Reference Data, NBS, who coordinated the collection and production of photographs from the literature and verified the references. Appreciation is also extended to the NBS Electronic Typesetting staff for preparing the text for computerized photocomposition.

The user is cautioned to confirm the applicability of these data to specific needs as the American Association of Physicists in Medicine and the National Bureau of Standards assume no liability in the use of these data.

Corrections and suggestions for future editions of the Medical Physics Data Book should be brought to the attention of Dr. S. P. Fivozinsky at the National Bureau of Standards.

Some aspects of the work were made possible by a grant from the Office of Standard Reference Data, National Bureau of Standards.

Thomas N. Padikal, Ph. D. Editor-in-Chief

CONTENTS

		Page
PREFA	ACE	iv
CHAP	TER ONE: GENERAL PHYSICS	1
I.	The Metric System of Measurement	1
	A. SI base units	1
	B. SI derived units	1
	C. Multiplier prefixes for SI units	2
II.	Conversion Tables	2
	A. Length	2
	B. Mass	3
	C. Energy	3
	D. Power	3
	E. Time	3
	F. Force	4
	G. Pressure	4
III.	Physical Constants	4
IV.	Periodic Table of the Elements	5
V.	Properties of Some of the Elementary Particles	6
VI.	Binding Energies of Electronic Shells of Selected Elements	7
VII.	Photon Fluence, Energy Fluence, and Mass Energy-Absorption Coefficient as a	
	Function of Photon Energy	8
VIII	Energy of K-edge and Eluorescent Yield as a Function of Atomic Number	9
IX.	Mass Electron Density, Mass Density, Electron Density, and Effective Atomic	
	Numbers for Selected Materials	10
Χ.	Mass Attenuation Coefficients of Selected Materials at Selected Energies	11
XI.	Mass Energy-Absorption Coefficients and f-Factors of Selected Materials	12
XIL	Elemental Composition. Atomic Number, and Atomic Mass of Significant Components	
	of Selected Human Tissue Organs	13
XIII	Selected Rules of Thumb	14
XIV	Some Characteristics of the Standard Man	15
	A Mass of organs of the standard adult human body	15
	B Chemical composition adult human body	17
	<i>D.</i> Chemieur composition, adurt human body	1 /
CHAP	TER TWO: NUCLEAR MEDICINE	21
I.	Physical Characteristics of Clinically Used Radionuclides	21
II.	Radiopharmaceutical Dosimetry	24
	A. Formula	24
	B. Schedule for calculation of pediatric-administered activities	24
	C. Whole body dose from selected radiopharmaceuticals	25
	D. Critical organ doses from selected radiopharmaceuticals	26
	E. Thyroid dose	27
	F. Gonadal doses from selected radiopharmaceuticals	27
	G. Dose estimates to embryo	28
	H. Thyroidal radioiodine exposure of fetus	28
III.	Radiation Safety	20
	A. License-exempt levels of activity	20
	B. Levels to be used as a guide in the establishment of contamination zones	20

	C.	Maximum permissible contamination guide for skin surfaces
	D.	Maximum permissible contamination on clothing
	E.	Permissible contamination for items given radiation clearance
	F.	Permissible concentrations and pertinent radiologic data of selected radionuclides
	G.	Decontamination of personnel and equipment
	H.	Emergency procedures
	I.	United States Nuclear Regulatory Commission inspection and enforcement
		regional offices
IV.	Nu	clear Counting Statistics
	A.	Definition of symbols
	B.	Working formula for computing standard deviation
	C.	Nomogram for determining uncertainty in nuclear counting measurements.
	D.	Optimum distribution of sample and background counting times
	E.	Uncertainty in count rate meter reading
	E.	Chi square test of goodness of fit
N	- 1°. - 1 3	Chi-square test of goodness of int
v .	III- '	
	A. D	Characteristics of detectors
	В.	Unaracteristics of detectors
		1. Comparison of typical properties of semiconductor, gas-filled, and
		Nal (11) detectors
		2. Basic properties of solid scintillators
		3. Mass attenuation coefficients for Nal
		4. Calculated intrinsic detector efficiencies for NaI (TI) crystals
		5. Total linear attenuation coefficients for Ge, Si, CdTe, NaI (Tl), and
		CsI detectors
	C.	Deadtime considerations
		1. Nonparalyzing system
		2. Paralyzing system
		3. Survey of measured deadtime performance
	D.	Instrumentation
		1. Rectilinear scanners
		a. Characteristics of focusing collimators
		2. Gamma cameras
		a. Characteristics of parallel hole collimators
		b. Characteristics of pinhole collimators
		c Characteristics of converging collimators
		d Characteristics of diverging collimators
		e Some characteristics of typical focusing collimators
		f Geometry for the various collimators
		a Examples of experimental EWHM values of the line spread function for
		g. Examples of experimental 1 with values of the line spread function for
		various physical phinoic diameters
		n. Unaracteristics of a gamma camera with small field of view
		1. I ypical characteristics of various commercially available gamma camera collimators
		j. Effect of distance on system spatial resolution performance for various
		collimator types
		k. Effect of collimator-planar source distance on geometrical efficiency for various collimator types in comparison with all-purpose collimator
		tor various commutor types in comparison with an-purpose commutor
HAI	PTE	THREE: DIAGNOSTIC RADIOLOGY
I.	Ph	ysical Characteristics of Screens and Films
	Α.	Explanation of sections B1-B3

Page

 B. Tables of film-screen data	
 Relative speeds of Kodak A-Omatic and Du Pont screens and onde-sensitive film	•
 Kelative speeds of Kodak and SM fare-earth screens and green-sensitive film	•
 i. Relative species of 0.5. Radium and G.E. rare-earth screens and blue-sensitive film	•
 III. Machine Output Data	
 Machine Output Data A. Average exposure rates	•
 A. Average exposure rates	•
 Average exposure rates as a function of peak tube potential and distance	•
 Calculated exposure rates as a function of peak tube potential and total infration Exposure rates as a function of peak tube potential Beam quality measurement Half-value layers as a function of filtration and tube potential for diagnostic units Half-value layers as a function of tube potential for three-phase generators	•
 Exposure rates as a function of peak tube potential Beam quality measurement Half-value layers as a function of filtration and tube potential for diagnostic units	•
 B. Beam quality measurement	
 Half-value layers as a function of filtration and tube potential for diagnostic units	•••
 diagnostic units	
 Half-value layers as a function of tube potential for three-phase generators	••
 Unique-value layers in aluminum as a function of peak tube potential and waveform III. Patient Dose Calculation 	
Waveform	
III. Patient Dose Calculation	
	••
A. Tissue-Air Ratios (TAR)	••
1. Dose/exposure ratios $(TAR \cdot f)$ as a function of peak potential and depth	••
2. Effect of field size on TAR	
B. Backscatter Factors	••
1. Variation of backscatter factors with field diameter and half-value layer	
in mammography	••
2. Backscatter factors as a function of peak tube potential	
C. Central axis depth doses in water	
D. Estimated patient doses	••
1. Estimated mean dose indexes and technique factors by type of exam/projection	••
2. Exposures from mammographic units at Breast Cancer Detection	
Demonstration Projects	
3. Dosimetric estimates for routine examinations of the newborn	
4. Embryo (uterine) doses for selected x-ray projections	•••
IV. Scatter	
A. Definitions	••
B. Scatter Fractions in general radiography	
1. Dependence on field size and phantom thickness	
2. Dependence on field size, phantom thickness, and air gap	
3. Dependence on beam quality	
C. Scatter Fractions in mammography	
1. Dependence on field size and phantom thickness	
V. Grids	
A. Definitions	
B. Minimum performance data for fibre and aluminum interspace grids	
VI. X-Ray Tubes	
A. Radiation field coverage for selected target angles and source-image distances	
B. Typical focal spot combinations and applications.	
C. Focal spot measurement	
1 Blurring frequency of star resolution nattern	••
 Burning nequency of star resolution pattern	••
3 NFMA recommended test procedures and tolerances	••
VII Image Intensifiers	••
Δ Definitions	••
D Tunical image intensifier performance data	••
A. Definitions B. Typical image intensifier performance data	••

VIII	Co	mnute	d Tomography	Pa
v 111.	A	Mass	densities electron densities effective atomic numbers and measured	
		Hom	isfield numbers for several plastics and water	
	в	Mass	densities electron densities effective atomic numbers and measured	
	D.	Hou	asfield numbers for selected human tissues	-
				,
CHAP	TEF	۲ FOU	R: RADIATION THERAPY	7
т	Tel	ethera	ny	_
	Δ	Phot	ρy	-
	<u>.</u>	1	Relationship between tube voltage filtration, and half value laver	
		2	Exposure rate for different voltages and filtrations	
		3	Absorbed dose at a point	
		J. 1	Absorbed dose to exposure retion	
		4 . 2	Rosonomended alegation denties for a basis of deep astitutions	2
		5. I	Overestional definitions and relational for absorbed dose calibrations	2
		0. 0	Operational definitions and relationships of TAR, TMR, PDD, and BSF	8
		/	measurement of teletherapy unit timer errors	8
		8. 0	Comparison of representative central axis depth doses	8
		9. '	Iransmission and specifications of Lipowitz's metal	8
		10.	Side lengths of square fields equivalent to rectangular fields	8
		11.	Attenuation processes of x-rays in a 10-cm layer of water	8
		12.	The f factor as a function of photon energy for water, muscle, and bone	1
	В.	Elect	trons	
		1	Absorbed dose at a point in water	
		2.	Values of $C_{\rm F}$ for electron beams in water	
		3.	Comparison of representative central axis depth doses	
		4	Thickness of Lipowitz's metal (mm) required to provide 90%, 93%, 95%, and 97%	(
			attenuation to the electron dose for various energies and field sizes	9
П	Bra		erany	
	Δ	Prop	erties of selected radionuclides used in brachytherany	
	д. р	Lina	ar source tables for radium	
	D.	Dasa		i
	C.	Dose	exposure curves in water	
111.	Pro	tectio	n and Miscellaneous Data	
	A.	Aver	age half-value and tenth-value layers of shielding materials	(
	В.	Phot	on transmission factors through lead and concrete	(
	C.	Sum	mary of measured fast-neutron fluences from electron accelerators	(
	D.	Linea	ar energy transfer (LET) and specific ionization density (ID) for	
		diffe	rent radiations in water	
	E.	Prop	erties of selected thermoluminescent materials	
СНАР	TEF	۲ FIV	E: NON-IONIZING RADIATION	
т	T 114	r000-	Dressure Wayas	
1.			er ressure waves	
	А.	Acou	istic properties of non-biologic materials	(
		1.	Table of density, acoustic velocity, and acoustic attenuation for non-	
		1	biologic materials	9
		2.	Acoustic velocity vs temperature for water, ethanol, and sodium chloride	
		:	solutions	10
		3.	Acoustic velocity vs concentration for solutions of sodium chloride,	
		1	sucrose, and ethanol	10
	В.	Acou	ustic properties of biologic materials	10
		1. '	Table of acoustic velocity and attenuation for human tissues	1
		2.	Dispersion of the velocity of sound in solutions of human hemoglobin	14

				Page
		3.	Volumetric scattering coefficient versus hematocrit (HMTC) for human	
			blood at 5 MHz	104
		4.	Scattering intensity vs angle for human blood	104
		5.	The magnitude of ultrasonic pulse-echo reflections from biologic interfaces	105
	C.	Ac	oustic field data	106
		1.	Field parameters for a typical ultrasonic wave in biologic tissue	106
		2.	Acoustic power and intensity for diagnostic ultrasound instruments	107
		3.	The spatial distribution of acoustic intensity for a narrow-band	
			focused transducer	108
		4.	Acoustic field focal zone widths for 5 MHz focused transducers as a	
			function of focal length and diameter	109
		5.	Acoustic field focal zone width after penetration through varying thicknesses of	
			human tissue	110
II.	Vis	ible	Electromagnetic Radiation (4-8×10 ¹⁴ Hz)	110
	Α.	Hu	man visual modulation transfer function	110
	В.	Ab	sorption spectra of the three color-systems in a human eye with normal color	
		visi	on	111
	C.	The	e CIE chromaticity diagram	112
	D.	Em	ission spectra of NaI and CsI scintillation crystals and spectral sensitivities	
		of S	S-11 and bialkali photomultiplier tubes	113
III.	Ele	ctro	magnetic Radiation: Radiofrequency (10 ⁴ -10 ¹⁰ Hz); Microwave (10 ⁹ -10 ¹² Hz)	113
	А.	Pro	operties of electromagnetic waves in muscle, skin, and tissues with high water	
		cor	itent, from 1 MHz to 10 GHz	113
	В.	Pro	operties of electromagnetic waves in fat, bone, and tissues with low water	
		cor	ntent, from 1 MHz to 10 GHz	114

CHAPTER ONE: GENERAL PHYSICS

I. The Metric System of Measurement [1]

A. SI base units

The SI is constructed from seven base units for independent quantities plus two supplementary units for plane angle and solid angle.

Quantity	Name	Symbol
SI base units:		
length	meter	m
mass	kilogram	kg
time	second	s
electric current	ampere	А
thermodynamic temperature	kelvin	K
amount of substance	mole	mol
luminous intensity	candela	cd
SI supplementary units:		
plane angle	radian	rad^{a}
solid angle	steradian	sr

^a See footnote, section IB.

B. SI derived units

	SI Unit				
Quantity	Name	Symbol	Expression in terms of other units		
frequency	hertz	Hz	1/s		
force	newton	Ν	kg·m/s ²		
pressure, stress	pascal	Pa	N/m^2		
energy, work, quantity of heat	joule	J	N·m		
power, radiant flux	watt	W	J/s		
quantity of electricity, electric charge	coulomb	С	A·s		
electric potential, potential difference,					
electromotive force	volt	V	W/A		
capacitance	farad	F	C/V		
electric resistance	ohm	Ω	V/A		
conductance	siemens	S	A/V		
magnetic flux	weber	Wb	V·s		
magnetic flux density	tesla	Т	Wb/m^2		
inductance	henry	н	Wb/A		
luminous flux	lumen	lm	cd·sr		
illuminance	lux	łx	lm/m^2		
activity (of ionizing radiation source)	becquerel	Bq	l/s		
absorbed dose ^a	gray	Gy	J/kg		

^a Absorbed dose in rads (symbol, rd) is the most often utilized quantity. In this handbook rad is also used as the unit symbol, following common usage (10^{-1} Gy=1 rad). Note that rad is the accepted SI unit symbol for plane angle.

C. Multiplier prefixes for SI units

For use with the SI units there is a set of 16 prefixes to form multiples and submultiples of the units. It is important to note that the kilogram is the only SI base unit with a prefix. Because double prefixes are not to be used, the prefixes, in the case of mass, are to be used with gram (symbol g) and not with kilogram (symbol kg).

	of prefixes	
Factor	Prefix	Symbol
10 ¹⁸	exa	E
1015	peta	Р
10 ¹²	tera	Т
10 ⁹	giga	G
106	mega	Μ
10 ³	kilo	k
10 ²	hecto	h
10'	deka	da
10-1	deci	d
10 ⁻²	centi	с
10 ⁻³	milli	m
10-6	micro	μ
10-9	nano	n
10 ⁻¹²	pico	р
10-15	femto	f
10 ⁻¹⁸	atto	а

II. Conversion Tables [1]

A. Length

	cm	m	km	in	ft	mi
1 centimeter =	1	10 ⁻²	10 ⁻⁵	0.3937	3.281×10 ⁻²	6.214×10 ⁻⁶
1 METER =	100	1	10 ⁻³	39.3	3.281	6.214×10 ⁻⁴
1 kilometer =	10 ⁵	1000	1	$3.937\!\times\!10^4$	3281	0.6214
1 inch=	2.540	2.540×10 ⁻²	$2.540 imes 10^{-5}$	1	8.333×10 ⁻²	1.578×10^{-5}
1 foot =	30.48	0.3048	$3.048 imes 10^{-4}$	12	1	$1.894 imes 10^{-4}$
1 mile=	$1.609 imes 10^{5}$	1609	1.609	6.336×10^{4}	5280	1

$1 \text{ angstrom} = 10^{-10} \text{ m}$
1 nautical mile=1852 m
= 1.151 miles $= 6076$ ft

1 light year = 9.4600×10^{12} km

1 parsec = 3.084×10^{13} km 1 fathom = 6 ft 1 yard = 3 ft 1 rod = 16.5 ft 1 mil = 10^{-3} in

B. Mass

	g	kg	OZ	lb	ton
l gram=	1	0.001	3.527×10 ⁻²	2.205×10^{-3}	1.102×10 ⁻⁶
1 KILOGRAM	= 1000	1	35.27	2.205	1.102×10^{-3}
1 ounce=	28.35	$2.835 imes 10^{-2}$	1	6.250×10 ⁻²	3.125×10 ⁻⁵
1 pound =	453.6	0.4536	16	1	0.0005
1 ton =	9.072×10^{5}	907.2	3.2×10^{4}	2000	1

C. Energy

	Btu	érg	ft-lb	hp∙h	J	cal	kW·h	eV	MeV
1 British									
Thermal Unit =	1	1.055×10^{10}	777.9	3.929×10^{-4}	1055	252.0	2.930×10^{-4}	$6.585 imes 10^{21}$	6.585×10^{15}
1 erg =	$9.481 imes 10^{-11}$	1	7.376×10^{-8}	3.725×10^{-14}	10-7	2.389×10^{-8}	$2.778 imes 10^{-14}$	6.242×10^{11}	-6.242×10^5
1 foot-pound =	$1.285\!\times\!10^{\text{-3}}$	1.356×10^7	1	5.051×10^{-7}	1.356	.3239	$3.766 imes 10^{-7}$	8.464×10^{18}	-8.464×10^{12}
1 horsepower-hour =	2545	$2.685 imes 10^{13}$	1.980×10^6	1	$2.685\!\times\!10^{\circ}$	$6.414\!\times\!10^5$.7457	$1.676 imes 10^{25}$	-1.676×10^{19}
1 JOULE=	$9.481 imes 10^{-4}$	10^{7}	.7376	3.725×10^{-7}	1	.2389	2.778×10^{-7}	$6.242\!\times\!10^{18}$	6.242×10^{12}
1 calorie =	$3.968 imes 10^{-3}$	$4.186\!\times\!10^7$	3.087	1.559×10^{-6}	4.186	1	$1.163 \times 10^{\text{-b}}$	$-2.613\!\times\!10^{19}$	$-2.613 imes 10^{13}$
1 kilowatt-hour =	3413	$3.6\!\times10^{13}$	2.655×10^6	1.341	3.6×10^6	$8.601\!\times\!10^5$	1	$-2.247\!\times\!10^{25}$	-2.247×10^{19}
1 electron volt =	$1.519 imes 10^{-22}$	1.602×10^{-12}	$1.182\!\times\!10^{-19}$	$5.967 imes 10^{-26}$	$1.602 imes 10^{-19}$	3.827×10^{-20}	4.450×10^{-26}	1	10-6
1 Mega electron volt=	$1.519 imes 10^{-16}$	$1.602 imes 10^{-6}$	$1.182 imes 10^{-13}$	$5.967 imes 10^{-20}$	1.602×10^{-13}	$3.827 imes 10^{-14}$	$4.450 imes 10^{-20}$	10 ⁶	1

D. Power

	Btu∕h	ft·lb/s	hp	cal/s	kW	W
1 British thermal unit/h=	1	0.2161	$3.929 imes 10^{-4}$	7.000×10 ⁻²	2.930×10 ⁻⁴	0.2930
1 foot-pound/s=	4.628	1	1.818×10^{-3}	0.3239	1.356×10^{-3}	1.356
1 horsepower =	2545	550	1	178.2	0.7457	745.7
1 calorie/s=	14.29	3.087	5.613×10 ⁻³	1	$4.186 imes 10^{-3}$	4.186
1 kilowatt =	3413	737.6	1.341	238.9	1	1000
1 WATT=	3.413	0.7376	1.341×10^{-3}	0.2389	0.001	1

E. Time

	у	d	h	min	s
1 year=	1	365.2	8.766×10^{3}	5.259×10 ⁵	3.156×10^{7}
1 day=	$2.738 imes 10^{-3}$	1	24	1440	8.640×10^{4}
1 hour =	1.141×10^{-4}	4.167×10 ⁻²	1	60	3600
1 minute =	1.901×10^{-6}	$6.944 imes 10^{-4}$	$1.667 imes 10^{-2}$	1	60
1 SECOND	$= 3.169 \times 10^{-8}$	1.157×10^{-5}	$2.778 imes 10^{-4}$	1.667×10^{-2}	1

F. Force

		dyne	N	lb
1	dyne =	1	10 ⁻⁵	2.248×10 ⁻⁶
1	NEWTON =	10 ⁵	1	0.2248
1	pound =	4.448×10^{5}	4.448	1

G. Pressure

	atm	dyne/cm ²	inch of water	cm Hg	Ра	lb/in ²	lb/ft ²
1 atmosphere =	1	1.013×10 ⁶	406.8	76	1.013×10 ⁵	14.70	2116
$1 \text{ dyne/cm}^2 =$	9.869×10 ⁻⁷	1	$4.015 imes 10^{-4}$	$7.501 imes 10^{-5}$	0.1	$1.450 imes 10^{-5}$	2.089×10^{-3}
1 inch of water ^a at 4 °C=	2.458×10 ⁻³	2491	1	0.1868	249.1	3.613×10 ⁻²	5.202
1 centimeter of mercury ^a at 0 °C=	1.316×10 ⁻²	1.333×10^{4}	5.353	1	1333	0.1934	27.85
1 PASCAL=	9.869×10 ⁻⁶	10	$4.015 imes 10^{-3}$	7.501×10^{-4}	1	1.450×10^{-4}	2.089×10 ⁻²
1 pound/in ² =	$6.805 imes 10^{-2}$	$6.895\!\times\!10^4$	27.68	5.171	6.895×10^{3}	1	144
$1 \text{ pound/ft}^2 =$	$4.725 imes 10^{-4}$	478.8	0.1922	3.591×10 ⁻²	47.88	6.944×10 ⁻³	1

 $^{\rm a}$ Where the acceleration of gravity has the standard value 9.80665 m/s².

III. Physical Constants [2,3]

		Uncertainty (ppm)
Avogadro Number, N	$=6.022045 \times 10^{23}$ /mol	5.1
Velocity of light in vacuum, c	$= 2.99792458 \times 10^8$ m/s	0.004
Elementary Charge, e	$= 1.6021892 \times 10^{-19} \text{ C}$	2.9
Planck Constant	$= 6.626176 \times 10^{-34} \text{ J} \cdot \text{s}$	2.6
Boltzmann Constant, k	$= 8.61735 \times 10^{-11} \text{ MeV/K}$	31.0
Molar Gas Constant, R	= 8.31441 J/(mol·K)	31.0
Density of dry air (at 20 °C,		
760 mm Hg)	$=1.205\times10^{-3}$ g/cm ³	
Velocity of sound in air	0	
(10 °C, 760 mm Hg)	=331.4 m/s	

IV. Periodic Table of the Elements

The number above the symbol is the atomic weight, the numbers below are the atomic number and the density in g/cm³ at room temperature $(20 \degree C)$.

I	11	Ш	IV	V	VI	VII		VIII	<u></u>
1.01 H 1 0.0001									4.00 He 2 0.0002
6.94 Li 3 0.5	9.01 B e 4 1.8	10.81 B 5 2.5	12.01 C 6 2.3/3.5	14.01 N 7 0.0013	16.00 0 8 0.0014	19.00 F 9 0.0017			20.18 Ne 10 0.0009
22.99 Na 11 1.0	24.31 Mg 12 1.7	26.98 Al 13 2.7	28.09 Si 14 2.4	30.97 P 15 1.8/2.3	32.06 S 16 2.0/2.1	35.45 CI 17 0.0032			39.95 Ar 18 0.0018
39.10 K 19 0.9	40.08 C a 20 1.6	44.96 S c 21 2.5	47.88 Ti 22 4.5	50.94 V 23 6.0	52.00 Cr 24 7.1	54.94 Mn 25 7.4	55.85 Fe 26 7.9	58.93 Co 27 8.9	58.69 Ni 28 8.9
63.55 Cu 29 8.9	65.38 Zn 30 7.1	69.72 Ga 31 5.9	72.59 Ge 32 5.9	74.92 As 33 5.7	78.96 Se 34 4.5/4.8	79.90 Br 35 3.1			83.80 Kr 36 0.0037*
85.47 Rb 37 1.5	87.62 Sr 38 2.6	88.91 Y 39 5.5	91.22 Zr 40 6.5	92.91 Nb 41 8.5	95.94 Mo 42 10.2	(98) Tc 43 11.5	101.1 Ru 44 12.3	102.9 Rh 45 12.5	106.4 Pd 46 12.0
107.9 Ag 47 10.5	112.4 Cd 48 8.6	114.8 in 49 7.3	118.7 Sn 50 5.8/7.3	121.8 Sb 51 6.7	127.6 Te 52 6.2	126.9 53 4.9			131.3 Xe 54 0.0059
132.9 Cs 55 1.9	137.3 Ba 56 3.5	1)	178.5 Hf 72 13.3	180.9 Ta 73 16.6	183.9 W 74 19.3	186.2 Re 75 20.5	190.2 0 s 76 22.5	192.2 ir 77 22.4	195.1 Pt 78 21.4
197.0 Au 79 19.3	200.6 Hg 80 13.5	204.4 TI 81 11.8	207.2 Pb 82 11.3	209.0 Bi 83 9.8	(209) Po 84 9.2	(210) At 85			(222) Rn 86 0.0099
(223) Fr 87	226.0 R a 88 5.0	2)	(261) Unq 104	(262) Unp 105	(263) Unh 106				
			138.9 La 57 6.2	140.1 Ce 58 6.8	140.9 Pr 59 6.5	144.2 Nd 60 6.9	(145) Pm 61	150.4 Sm 62 7.7	152.0 Eu 63 5.2
I) Lantnar	ndes:	157.3 Gd 64 7.9	158.9 Tb 65 8.3	162.5 Dy 66 8.6	164.9 Ho 67 10.1	167.3 Er 68 9.1	168.9 Tm 69 9.3	173.0 Yb 70 7.0	175.0 Lu 71 9.7
			227.0 Ac 89	232.0 Th 90 11.6	231.0 Pa 91 15.4	238.0 U 92 18.7	237.0 Np 93	(244) Pu 94	(243) Am 95
2) Actinid	es:	(247) Cm 96	(247) Bk 97	(251) Cf 98	(252) Es 99	(257) Fm 100	(258) Mid 101	(258) No 102	(260) Lr 103

V. Properties of Some of the Elementary Particles [3]

Family name	Particle name	Rest mass (MeV)	Mean life (seconds)	Charge (electron)	Typical decay mode
	Photon (y)	0	Stable	0	
L	Electron (e)	0.511	Stable	± 1	
E P T	Muon (µ)	105.7	2.197×10 ⁻⁶	±1	$e + v + \overline{v}$
O N S	Electron's neutrino (ν_e)	0	Stable	0	
	Muon's neutrino (ν_{μ})	0	Stable	0	
	Pion (π)	139.6	2.603×10^{-8}	±1	$\mu + \nu$
M	(π^0)	135.0	8.28×10^{-17}	0	$\gamma + \gamma$
S	K-meson (K)	493.7	1.237×10 ⁻⁸	±1	$\mu + \nu$
N S	(K ⁰)	497.7	$8.930 imes 10^{-11}$ $5.181 imes 10^{-8}$	0 0	$egin{array}{lll} \pi^+ + \pi^- \ \pi^0 + \pi^0 + \pi^0 \end{array}$
н	Eta-meson (η^0)	548.8	?	0	$\gamma + \gamma$
A D	N U Proton (p) C	938.3	Stable	±1	
B R	L E Neutron (n)	939.6	918	0	$\mathbf{p} + \mathbf{e}^{-} + \mathbf{v}$
A O	O N				r
R	.				
N Y	Lambda particle (Λ^0)	1116	2.578×10 ⁻¹⁰	0	$p + \pi^-$
s 0	Sigma				
N	particle (Σ^+)	1189	8.00×10 ⁻¹¹	±ı	$\mathbf{p} + \boldsymbol{\pi}^{\scriptscriptstyle 0}$
S	(Σ^0)	1192	$<\!1.0\! imes\!10^{-14}$	0	$\Lambda^{_0} + \gamma$
3	(Σ ⁻)	1197	$1.482 imes 10^{-10}$	1	$n + \pi^-$
	Xi particle (Ξ ⁰)	1315	2.96×10 ⁻¹⁰	0	$\Lambda^{_0}+\pi^{_0}$
	(Ξ-)	1321	1.652×10^{-10}	∓1	$\Lambda^{_0}$ + π^{-}
	Omega particle (Ω⁻)	1672	1.3×10^{-10}	∓ 1	$\Xi^0 + \pi^-$

VI. Binding Energies of Electronic Shells of Selected Elements [4]

		Bind			
Atomic number	Element	K	L_{t}	L_{11}	L_{111}
1	Hydrogen	0.0136			
6	Carbon	0.283			
8	Oxygen	0.531			
11	Sodium	1.08	0.055	0.034	0.034
13	Aluminum	1.559	0.087	0.073	0.072
14	Silicon	1.838	0.118	0.099	0.098
19	Potassium	3.607	0.341	0.297	0.294
20	Calcium	4.038	0.399	0.352	0.349
26	Iron	7.111	0.849	0.721	0.708
29	Copper	8.980	1.100	0.953	0.933
31	Gallium	10.368	1.30	1.134	1.117
32	Germanium	11.103	1.42	1.248	1.217
39	Yttrium	17.037	2.369	2.154	2.079
42	Molybdenum	20,002	2.884	2.627	2.523
47	Silver	25.517	3.810	3.528	3.352
53	Iodine	33.164	5.190	4.856	4.559
54	Xenon	34.570	5.452	5.104	4.782
56	Barium	37.410	5.995	5.623	5.24
57	Lanthanum	38.931	6.283	5.894	5.489
58	Cerium	40.449	6.561	6.165	5.729
74	Tungsten	69.508	12.090	11.535	10.198
79	Gold	80.713	14.353	13.733	11.919
82	Lead	88.001	15.870	15.207	13.044
92	Uranium	115.591	21.753	20.943	17.163

VII. Photon Fluence, Energy Fluence, and Mass Energy-Absorption Coefficient as a Function of Photon Energy **[5]**

Photon energy (MeV)	Photon fluence Φ/X (photons/(m ² ·R))	Energy fluence Ψ/X $(J/(m^2 \cdot R))$	Mass energy absorption coefficient $(\mu_{en}/\rho)_{air}$ (cm^2/g)
0.010	11.7.1012	18.7·10 ⁻³	4.66
0.015	28.1.10 ¹²	67.4.1 0 ⁻³	1.29
0.020	52.6·10 ¹²	169·10 ⁻³	0.516
0.030	123-10 ¹²	591-10 ⁻³	0.147
0.040	212·10 ¹²	1360-10 ⁻³	0.0640
0.050	283·10 ¹²	2270-10 ⁻³	0.0384
0.060	310-1012	2980-10 ⁻³	0.0292
0.080	288-10 ¹²	3690·10 ⁻³	0.0236
0.100	235-10 ¹²	3770·10 ⁻³	0.0231
0.15	144·10 ¹²	3470·10 ⁻³	0.0251
0.20	101·10 ¹²	3250·10 ⁻³	0.0268
0.30	62.8·10 ¹²	3020-10 ⁻³	0.0288
0.40	45.9·10 ¹²	2940-10 ⁻³	0.0296
0.50	36.6·10 ¹²	2930-10 ⁻³	0.0297
0.60	30.6-1012	2940-10 ⁻³	0.0296
0.80	23.5·10 ¹²	3010-10 ⁻³	0.0289
1.00	19.4·10 ¹²	3110-10-3	0.0280
1.50	$14.2 \cdot 10^{12}$	3410-10 ⁻³	0.0255
2.00	11.6·10 ¹²	3720-10 ⁻³	0.0234
5.00	6.28·10 ¹²	5030-10 ⁻³	0.0173
10.00	3.77·10 ¹²	6040·10 ⁻³	0.0144

$$\Phi = 5.43 \cdot 10^{14}$$

= photons/(m²·R), $h\nu$ is in keV.

$$X = (\mu_{en}/\rho)_{air} (hv)$$

$$\frac{1}{2} = \frac{1}{1} J/(m^2 \cdot R).$$

 $X = (\mu_{en}/\rho)_{arr}$

VIII. Energy of K-edge and Fluorescent Yield as a Function of Atomic Number [6]

Energy E_K , of K x-rays, and ω_K the fluorescent yield is presented as a function of atomic number Z. The fluorescent yield is the number of K x-rays per hole in the K shell; $1-\omega_K$ is the number of Auger electrons emitted per K shell vacancy.

Z	E_{κ} (MeV) ω _κ	Ζ	E_{κ} (MeV)	ω _κ
10	0.0009		50	0.025	0.85
15	0.002	All energy is locally absorbed	55	0.031	0.87
20	0.004	0.15			
2,5	0.006	0.27			
30	0.009	0.43	70	0.052	0.94
35	0.012	0.63			
40	0.016	0.70	80	0.071	0.95
45	0.020	0.80	92		0.97

General equation governing fluorescent yield:

 $\frac{\omega_{\kappa}}{----} = ((-6.4 \cdot 10^{-2}) + (3.4 \cdot 10^{-2} \cdot Z) - (1.03 \cdot 10^{-6} \cdot Z^{3}))^{4},$ $1-\omega_{\kappa}$

1

where Z is the atomic number.

IX. Mass Electron Density, Mass Density, Electron Density, and Effective Atomic Numbers for Selected Materials **[7]**

Material	$N_{\rm g}/N_{\rm A}$	ρ. (g/cm ³)	$\rho \cdot (N_g/N_A)$	$Z^{\rm a}_{ m R}$	$Z_{ ext{PE}}^{ ext{a}}$
Water (H ₂ O)	0.556	1.00	0.556 ^b	7.16	7.54
Polyethylene (C ₂ H ₄)	0.571	0.92	0.526	5.22	5.56
Polystyrene (C ₈ H ₈)	0.538	1.05	0.565	5.57	5.76
Nylon ($C_6H_{11}NO$)	0.549	1.15	0.631	5.91	6.25
Lexan $(C_{16}H_{14}O_3)$	0.528	1.20	0.633	6.11	6.36
Plexiglas (C ₅ H ₈ O ₂)	0.540	1.19	0.643	6.25	6.60
Bakelite $(C_{43}H_{38}O_7)$	0.529	1.34	0.708	6.06	6.31
Teflon (C_2F_4)	0.480	2.20	1.056	8.35	8.50
Brain	0.551 ^b	1.03 ^c	0.567 ^b	7.01 ^b	7.60 ^t
Muscle	0.551	1.04	0.573	7.12	7.72
Kidney	0.540	1.05	0.567	7.19	7.76
Liver	0.555	1.05	0.583	7.24	7.81

^a Based on exponents of 2.0 and 3.8 for coherent (R) and photoelectric (PE) interactions, respectively, e.g.: Z_{PE} for water=((8/10) 8³⁸+(2/10)1³⁸)^{1/38}.

^b Values for biological materials based on weight fractions given in section XII of this chapter.

^c Values given are from work of Rao and Gregg [8] and should be taken as "representative."

 $N_{\rm A}$ is the Avogadro number, $N_{\rm g}$ is the mass electron density $(N_{\rm g}=N_{\rm A}\cdot(\overline{Z/A})=$ electrons per gram) and $\rho N_{\rm g}$ is the electron density in electrons/cm³. The effective Z/A, is computed from $\overline{Z/A}=\Sigma W_i(Z_i/A_i)$ where W_i is the weight fraction of the *i*-th constituent. ρ is the mass density.

æ

X. Mass Attenuation Coefficients of Selected Materials at Selected Energies [9]

PHOTON ENERGY	ALUMINUM $Z = 13$	$\frac{\text{SILICON}}{Z = 14}$	PHOS- PHORUS Z = 15	$\frac{\text{SULFUR}}{Z = 16}$	ARGON Z = 18	POTASSIUM $Z = 19$	CALCIUM Z = 20	$\frac{1 \text{RON}}{Z = 26}$
Mei				$\epsilon m^2/\mu$				
1.00 - 02 1.50 - 02 2.00 - 02 3.00 - 02	$\begin{array}{c} 2.58\pm01\\ \overline{7.66}\pm00\\ 3.24\pm00\\ 1.03\pm00 \end{array}$	3.36 ± 01 9.97 ± 00 4.19 ± 00 1.31 ± 00	$\begin{array}{c} 4.02 \pm 01 \\ 1.20 \pm 01 \\ 5.10 \pm 00 \\ 1.55 \pm 00 \end{array}$	$5.03 + 01 \\ 1.52 + 01 \\ 6.42 + 00 \\ 1.94 + 00$	$\begin{array}{c} 6.38\pm01\\ 1.95\pm01\\ 8.27\pm00\\ 2.48\pm00\end{array}$	$\begin{array}{c} 8.01 \pm 01 \\ 2.46 \pm 01 \\ 1.05 \pm 01 \\ 3.14 \pm 00 \end{array}$	$9.56 \pm 01 2.96 \pm 01 1.26 \pm 01 3.82 \pm 00$	$ \begin{array}{r} 1.72 + 02 \\ 5.57 + 01 \\ 2.51 + 01 \\ 7.88 + 00 \end{array} $
$\begin{array}{c} 4.00-02\\ 5.00-02\\ 6.00-02\\ 8.00-02\end{array}$	5.14 - 01 3.34 - 01 2.55 - 01 1.89 - 01	$\begin{array}{c} 6.35 - 01 \\ 3.96 - 01 \\ 2.92 - 01 \\ 2.07 - 01 \end{array}$	7.31 - 01 4.44 - 01 3.18 - 01 2.15 - 01	$\begin{array}{c} 8.91 - 01 \\ 5.27 - 01 \\ 3.67 - 01 \\ 2.38 - 01 \end{array}$	$\begin{array}{c} 1.11\pm 00\\ 6.30\pm 01\\ 4.20\pm 01\\ 2.52\pm 01\end{array}$	$\begin{array}{c} 1.39 \pm 00 \\ 7.77 \pm 01 \\ 5.12 \pm 01 \\ 2.96 \pm 01 \end{array}$	$\begin{array}{c} 1.67\pm 00\\ 9.25=01\\ 5.95=01\\ 3.34=01 \end{array}$	$\begin{array}{c} 3.46 \pm 00 \\ 1.84 \pm 00 \\ 1.13 \pm 00 \\ 5.50 \pm 01 \end{array}$
$\begin{array}{c} 1.00 - 01 \\ 1.50 - 01 \\ 2.00 - 01 \\ 3.00 - 01 \end{array}$	$\begin{array}{c} 1.62 - 01 \\ 1.34 - 01 \\ 1.20 - 01 \\ 1.03 - 01 \end{array}$	$\begin{array}{c} 1.73 - 01 \\ 1.40 - 01 \\ 1.25 - 01 \\ 1.07 - 01 \end{array}$	$\begin{array}{c} 1.75 - 01 \\ 1.38 - 01 \\ 1.22 - 01 \\ 1.04 - 01 \end{array}$	$\begin{array}{c} 1.89-01 \\ 1.45-01 \\ 1.27-01 \\ 1.08-01 \end{array}$	$\begin{array}{c} 1.89 - 01 \\ 1.36 - 01 \\ 1.17 - 01 \\ 9.79 - 02 \end{array}$	$2.16 - 01 \\ 1.50 - 01 \\ 1.28 - 01 \\ 1.06 - 01$	$2.37 - 01 \\ 1.59 - 01 \\ 1.33 - 01 \\ 1.09 - 01$	$\begin{array}{r} 3.42-01 \\ 1.84-01 \\ 1.39-01 \\ 1.07-0 \end{array}$
$\begin{array}{c} 4.00 - 01 \\ 5.00 - 01 \\ 6.00 - 01 \\ 8.00 - 01 \end{array}$	$9.22 - 02 \\ 8.41 - 02 \\ 7.77 - 02 \\ 6.83 - 02$	$9.54 - 02 \\8.70 - 02 \\8.05 - 02 \\7.06 - 02$	$9.28 - 02 \\ 8.46 - 02 \\ 7.82 - 02 \\ 6.86 - 02$	$9.58 - 02 \\8.72 - 02 \\8.06 - 02 \\7.08 - 02$	$\begin{array}{r} 8.68-02\\ 7.90-02\\ 7.29-02\\ 6.40-02 \end{array}$	$9.38 - 02 \\ 8.52 - 02 \\ 7.87 - 02 \\ 6.90 - 02$	$9.66 - 02 \\ 8.78 - 02 \\ 8.09 - 02 \\ 7.09 - 02$	$9.21 - 02 \\ 8.29 - 02 \\ 7.62 - 02 \\ 6.65 - 02$
$\begin{array}{c} 1.00\pm00\\ 1.50\pm00\\ 2.00\pm00\\ 3.00\pm00\end{array}$	6.14 - 02 5.00 - 02 4.32 - 02 3.54 - 02	$\begin{array}{c} 6.35-02\\ 5.18-02\\ 4.48-02\\ 3.68-02 \end{array}$	$\begin{array}{c} 6.17 - 02 \\ 5.03 - 02 \\ 4.36 - 02 \\ 3.59 - 02 \end{array}$	$\begin{array}{c} 6.36-02\\ 5.19-02\\ 4.49-02\\ 3.71-02 \end{array}$	5.75 - 024.69 - 024.07 - 023.38 - 02	6.20 - 02 5.06 - 02 4.39 - 02 3.66 - 02	$\begin{array}{c} 6.37 - 02 \\ 5.20 - 02 \\ 4.52 - 02 \\ 3.78 - 02 \end{array}$	5.96 - 02 4.87 - 02 4.25 - 02 3.62 - 02
$\begin{array}{l} 4.00\pm00\\ 5.00\pm00\\ 6.00\pm00\\ 8.00\pm00\end{array}$	$\begin{array}{r} 3.11 - 02 \\ 2.84 - 02 \\ 2.66 - 02 \\ 2.44 - 02 \end{array}$	$\begin{array}{r} 3 \ 24 - 02 \\ 2 \ 97 - 02 \\ 2 \ 79 - 02 \\ 2 \ 57 - 02 \end{array}$	$\begin{array}{r} 3.17-02\\ 2.92-02\\ 2.75-02\\ 2.55-02\end{array}$	$\begin{array}{r} 3.29-02\\ 3.04-02\\ 2.87-02\\ 2.68-02 \end{array}$	$\begin{array}{r} 3.02-02\\ 2.80-02\\ 2.67-02\\ 2.51-02 \end{array}$	$\begin{array}{r} 3.28 - 02 \\ 3.06 - 02 \\ 2.91 - 02 \\ 2.76 - 02 \end{array}$	3.40 - 02 3.17 - 02 3.03 - 02 2.89 - 02	$\begin{array}{r} 3.31 - 02 \\ 3.14 - 02 \\ 3.05 - 02 \\ 2.98 - 02 \end{array}$
$\begin{array}{c} 1.00\pm01\\ 1.50\pm01\\ 2.00\pm01\\ 3.00\pm01 \end{array}$	$\begin{array}{c} 2.31 - 02 \\ 2.19 - 02 \\ 2.16 - 02 \\ 2.49 - 02 \end{array}$	$\begin{array}{c} 2.46 - 02 \\ 2.34 - 02 \\ 2.33 - 02 \\ 2.38 - 02 \end{array}$	$\begin{array}{c} 2.45 - 02 \\ 2.36 - 02 \\ 2.35 - 02 \\ 2.42 - 02 \end{array}$	$\begin{array}{c} 2.58 - 02 \\ 2.51 - 02 \\ 2.52 - 02 \\ 2.61 - 02 \end{array}$	$\begin{array}{c} 2.44 - 02 \\ 2.41 - 02 \\ 2.44 - 02 \\ 2.55 - 02 \end{array}$	2.70 - 02 2.68 - 02 2.73 - 02 2.86 - 02 - 02 2.86 - 02 - 02 - 02 - 02 2.86 - 02 - 02 - 02 - 02 - 02 - 02 - 02 - 0	$\begin{array}{c} 2.83 - 02 \\ 2.83 - 02 \\ 2.89 - 02 \\ 3.05 - 02 \end{array}$	$\begin{array}{r} 2.98-02\\ 3.07-02\\ 3.21-02\\ 3.45-02 \end{array}$
PHOTON ENERGY	$\begin{array}{c} \text{COPPER} \\ Z = 29 \end{array}$	$\begin{array}{c} \text{MOLYB-}\\ \text{DENUM}\\ Z = 42 \end{array}$	TIN Z = 50	$\begin{array}{c} \text{IODINE} \\ Z = 53 \end{array}$	TUNGSTEN $Z = 74$	$\begin{array}{c} \text{LEAD} \\ Z = 82 \end{array}$	URANIUM $Z = 92$	ABSORPTION EDGES
Mev				cm^2/g				
1.00 - 02	2.23 ± 02	8.40 ± 01	1.39 ± 0.02	1.58 ± 02	9.12 ± 01	1.28 + 02	1.73 + 02	
1.50 - 02	7.33 ± 01	2.68 ± 01	4.53 ± 01	5.34 ± 01	1.39 + 02	1.12 + 02	6.03 + 01	
2.00 - 02	3.30 ± 01	1.17+01	2.02 + 01	2.47 ± 01	6.51 ± 01	8.34+01	6.85 ± 01	L _{BI} EDGE
3.00 - 02	1.06 + 01	2.83 ± 01	4.07 ± 01	7.98 ± 00	2.18 + 01	2.84 + 01	3.96 ± 01	L_0 , L_1 EDGES
$\begin{array}{c} 4.00 - 02 \\ 5.00 - 02 \\ 6.00 - 02 \end{array}$	$\begin{array}{c} 4.71 \pm 00 \\ 2.50 \pm 00 \\ 1.52 \pm 00 \end{array}$	$\begin{array}{c} 1.30\pm01\\ 6.97\pm00\\ 4.25\pm00\end{array}$	$\begin{array}{c} 1.89 \pm 01 \\ 1.04 \pm 01 \\ 6.32 \pm 00 \end{array}$	2.23 ± 01 1.23 ± 01 7.55 ± 00	9.97 + 00 5.40 + 00 3.28 + 00	$\begin{array}{c} 1.31 \pm 01 \\ 7.22 \pm 00 \\ 4.43 \pm 00 \end{array}$	$\begin{array}{c} 1.87\pm01\\ 1.04\pm01\\ 6.45\pm00\end{array}$	
8.00 - 02	7.18-01	11.92+)0	2.90 + 00	3.52 ± 00	7.66 ± 00	2.07 ± 00	3.04 + 00	
1.00 - 01	4.27-01	1.05 + 00	1.60 ± 00	1.91 + 00	4.29 ± 00	5.23 ± 00	1.71 ± 00	K EDCE
$\begin{array}{c} 1.50 - 01 \\ 2.00 - 01 \\ 3.00 - 01 \end{array}$	$\begin{array}{c} 2.08 - 01 \\ 1.48 - 01 \\ 1.08 - 01 \end{array}$	3.99 - 01 2.28 - 01 1.31 - 01	$5.77 - 01 \\ 3.07 - 01 \\ 1.55 - 01$	$\begin{array}{c} 6.74 - 01 \\ 3.49 - 01 \\ 1.68 - 01 \end{array}$	$\begin{array}{c} 1.50 + 00 \\ 7.38 - 01 \\ 3.02 - 01 \end{array}$	$\begin{array}{r} 1.89 + 00 \\ 9.45 - 01 \\ 3.83 - 01 \end{array}$	$\begin{array}{r} 2.47\pm 00 \\ 1.23\pm 00 \\ 4.85\pm 01 \end{array}$	K EDGE
$\begin{array}{c} 4.00 - 01 \\ 5.00 - 01 \\ 6.00 - 01 \\ 8.00 - 01 \end{array}$	$9.19 - 02 \\8.22 - 02 \\7.52 - 02 \\6.55 - 02$	$\begin{array}{c} 1.01 - 01 \\ 8.59 - 02 \\ 7.67 - 02 \\ 6.52 - 02 \end{array}$	$\begin{array}{c} 1.10 - 01 \\ 9.11 - 02 \\ 7.91 - 02 \\ 6.55 - 02 \end{array}$	$\begin{array}{c} 1.16 - 01 \\ 9.36 - 02 \\ 8.07 - 02 \\ 6.61 - 02 \end{array}$	$1.80 - 01 \\ 1.29 - 01 \\ 1.03 - 01 \\ 7.73 - 02$	$\begin{array}{c} 2.20 - 01 \\ 1.54 - 01 \\ 1.20 - 01 \\ 8.56 - 02 \end{array}$	$\begin{array}{c} 2.73-01\\ 1.85-01\\ 1.40-01\\ 9.64-02 \end{array}$	
1.00 + 00 1.50 + 00 2.60 + 00 3.00 + 00	5.86 - 02 $4.79 - 02$ $4.19 - 02$ $3.59 - 02$	$\begin{array}{c} 5.77-02\\ 4.68-02\\ 4.14-02\\ 3.66-02 \end{array}$	5.71 - 02 4.59 - 02 4.08 - 02 3.67 - 02	5.75 - 02 4.60 - 02 4.09 - 02 3.69 - 02	$\begin{array}{r} 6.39 - 02 \\ 4.88 - 02 \\ 4.34 - 02 \\ 4.01 - 02 \end{array}$	$\begin{array}{r} 6.90 - 02 \\ 5.10 - 02 \\ 4.50 - 02 \\ 4.16 - 02 \end{array}$	7.54 - 02 5.39 - 02 4.70 - 02 4.35 - 02	
$\begin{array}{c} 4.00 + 00 \\ 5.00 + 00 \\ 6.00 + 60 \\ 8.00 + 00 \end{array}$	$\begin{array}{r} 3.32-02\\ 3.18-02\\ 3.10-02\\ 3.06-02 \end{array}$	$\begin{array}{r} 3.48 - 02 \\ 3.43 - 02 \\ 3.43 - 02 \\ 3.50 - 02 \end{array}$	$\begin{array}{r} 3.54 - 02 \\ 3.53 - 02 \\ 3.57 - 02 \\ 3.69 - 02 \end{array}$	3.59 - 023.59 - 023.63 - 023.78 - 02	$\begin{array}{c} 3.98 - 02 \\ 4.06 - 02 \\ 4.16 - 02 \\ 4.39 - 02 \end{array}$	$\begin{array}{r} 4.14 - 02 \\ 4.24 - 02 \\ 4.34 - 02 \\ 4.59 - 02 \end{array}$	$\begin{array}{r} 4.34 - 02 \\ 4.44 - 02 \\ 4.54 - 02 \\ 4.79 - 02 \end{array}$	
1.00 ± 01 1.50 ± 01 2.00 ± 01 2.00 ± 01	$\begin{array}{r} 3.08 - 02 \\ 3.23 - 02 \\ 3.39 - 02 \\ 2.68 - 02 \end{array}$	3.62 - 02 3.93 - 02 4.23 - 02 4.70 - 02	3.85 - 02 4.25 - 02 4.61 - 02 5.17 - 02	3.95 - 02 4.38 - 02 4.76 - 02 5.36 - 02	$ \begin{array}{c} 4.63 - 02 \\ 5.24 - 02 \\ 5.77 - 02 \\ 6.59 - 02 \end{array} $	$ \begin{array}{r} 4.84 - 02 \\ 5.48 - 02 \\ 6.06 - 02 \\ 6.96 - 02 \end{array} $	5.06 - 02 5.73 - 02 6.36 - 02 7.33 - 02	

5,10	
Materials	
of Selected	
f-Factors	
s and	
Coefficients	
ass Energy-Absorption	
XI. M	

	M	Worene 336	shearation of	afficient (n	/0) in m ² /	ر م			(0 869)	$(\mu_{\rm en}/\rho)_{ m mec}$	հստ — (rad/ <i>R</i>)
	TAT	ימסט כוורו באי	(multiply by	$10 \text{ for } \text{cm}^2/$	en/ p/ m m / (g) *	ЪБ Ч			((00.0) - ($(\mu_{ m en}/ ho)_{ m arr}$	
Photon		Water	Poly- stvrene	Lucite	Poly- ethylene	Bakelite	Compact			Compact	
(eV)	Air	$(O_1 H)$	(C_8H_8)	(C ₅ H ₈ O ₂)	(CH ₂)	$(C_{43}H_{38}O_7)$	bone	Muscle	Water	bone	Muscle
1.0000 + 04	4.648-01	4.839-01	1.849-01	2.943-01	1.717-01	2.467–01	1.900 ± 00	0.496 ± 00	0.912	3.54	0.925
1.5000 ± 04	1.304-01	1.340-01	5.014-02	8.081-02	4.662-02	6.741-02	0.589 ± 00	0.136 ± 00	888.	3.97	.916
2.0000 ± 04	5.266-02	5.364-02	2.002-02	3.231-02	1.868-02	2.692-02	0.251 + 00	0.544-01	881	4.23	.916
3.0000 ± 04	1.504-02	1.519-02	6.056-03	9.385-03	5.754-03	7.904-03	0.743-01	0.154-01	869.	4.39	.910
4.0000 ± 04	6.706-03	6.800-03	3.190-03	4.498-03	3.128-03	3.898-03	0.305-01	0.677-02	.878	4.14	.919
5.0000 ± 04	4.038-03	4.153-03	2.387-03	3.019-03	2.410-03	2.711-03	0.158-01	0.409-02	.892	3.58	.926
6.0000 ± 04	3.008-03	3.151-03	2.153-03	2.503-03	2.218-03	2.316-03	0.979-02	0.312-02	.905	2.91	.929
8.0000 ± 04	2.394-03	2.582-03	2.152-03	2.292-03	2.258-03	2.191-03	0.520-02	0.255-02	.932	1.91	.930
1.0000 ± 05	2.319-03	2.539-03	2.292-03	2.363-03	2.419.03	2.288-03	0.386-02	0.252-02	.948	1.45	.918
1.5000 ± 05	2.494-03	2.762-03	2.631-03	2.656-03	2.788-03	2.593-03	0.304-02	0.276-02	.962	1.05	.956
2.0000 + 05	2.672-03	2.967-03	2.856-03	2.872-03	3.029-03	2.808-03	0.302-02	0.297-02	.973	0.979	.983
3.0000 ± 05	2.872-03	3.192-03	3.088-03	3.099-03	3.275-03	3.032-03	0.311-02	0.317-02	.966	.938	.957
4.0000 ± 05	2.949-03	3.279-03	3.174-03	3.185-03	3.367-03	3.117-03	0.316-02	0.325-02	.966	.928	.954
5.0000 ± 05	2.966-03	3.298-03	3.195-03	3.205-03	3.389-03	3.137-03	0.316-02	0.327-02	.966	.925	.957
6.0000 ± 05	2.952-03	3.284-03	3.181-03	3.191-03	3.375-03	3.123-03	0.315-02	0.326-02	.966	.925	.957
8.0000 ± 05	2.882-03	3.205-03	3.106-03	3.115-03	3.295-03	3.049-03	0.306-02	0.318-02	.965	.920	.956
1.0000 ± 06	2.787-03	3.100-03	3.005-03	3.014-03	3.188-03	2.950-03	0.297-02	0.308-02	.965	.922	.956
1.5000 ± 06	2.545-03	2.831-03	2.744-03	2.752-03	2.911-03	2.693-03	0.270-02	0.281-02	.964	.920	.958
2.0000 ± 06	2.342-03	2.604 - 03	2.522-03	2.530-03	2.675-03	2.476–03	0.248-02	0.257-02	.968	.921	.954
3.0000 ± 06	2.055-03	2.279-03	2.196-03	2.208-03	2.325-03	2.160-03	0.219-02	0.225-02	.962	.928	.954
4.0000 ± 06	1.868-03	2.064-03	1.978-03	1.993-03	2.089-03	1.950-03	0.19902	0.203-02	.958	.930	.948
5.0000 ± 06	1.739-03	1.914-03	1.822-03	1.842-03	1.919-03	1.801-03	0.186 - 02	0.188-02	.954	.934	.944
6.0000 ± 06	1.646 - 03	1.805-03	1.707-03	1.730-03	1.793-03	1.691-03	0.178-02	0.178-02	.960	.940	.949
8.0000 ± 06	1.522-03	1.658-03	1.548-03	1.578-03	1.618-03	1.541 - 03	0.165-02	0.163-02	.958	.950	.944
1.0000 ± 07	1.445-03	1.565-03	1.445 - 03	1.480-03	1.503-03	1.445-03	0.159-02	0.154-02	.935	096.	.929
1.5000 ± 07	1.347-03	1.440-03	1.302-03	1.346 - 03	1.341-03	1.313-03					
2.0000 ± 07	1.306 - 03	1.384-03	1.233-03	1.284-03	1.206-03	1.251-03					

XII. Elemental Composition, Atomic Number, and Atomic Mass of Significant Components of Selected Human Tissue Organs (Water Is Included for Reference Purposes) [7,11]

							Org	an mass ((g)		
Element	Atomic Number	Atomic Mass	Adipose 15055 g	Blood 5394 g	Brain 1400 g	Heart 330 g	Kidney 310 g	Liver 1800 g	Muscle 28,000 g	Pancreas 100 g	Water 1 g
Calcium	20	40.08	3.4-01	3.1-01	1.2-01	1.2-02	2.9-02	9.0-02	8.7-01	9.1-03	
Carbon	6	12.01	9.6+03	5.4 + 02	1.7 + 02	5.4 + 01	4.0 + 01	2.6 + 02	3.0 + 03	1.3 + 01	
Chlorine	17	35.453	1.8 + 01	1.5 + 01	3.2 + 00	5.4-01	7.4-01	3.6 + 00	2.2 + 01	1.6-01	
Hydrogen	1	1.00797	1.8 + 03	5.5 + 02	1.5 + 02	3.4 + 01	3.2 + 01	1.8 + 02	2.8 + 03	9.7 + 00	0.111901
Iron	26	55.847	3.6-01	2.5 + 00	7.4-02	1.5-02	2.3-02	3.2-01	1.1 + 00	3.9-03	
Magnesium	12	24.305	3.0-01	2.1~01	2.1-01	5.4-02	4.0-02	3.1-01	5.3 + 00	1.6-02	
Nitrogen	7	14.0067	1.2 + 02	1.6 + 02	1.8 + 01	8.8 + 00	8.5 + 00	5.1 + 01	7.7 + 02	2.1 + 00	
Oxygen	8	15.9994	3.5 + 03	4.1 + 03	1.0 + 03	2.3 + 02	2.3 + 02	1.2 + 03	2.1 + 04	6.7 + 01	0.888099
Phosphorus	15	30.9738	2.2 + 00	1.9 + 00	4.8 + 00	4.8-01	5.0-01	4.7 + 00	5.0 + 01	2.3-01	
Potassium	19	39.102	4.8 + 00	8.8 + 00	4.2 + 00	7.2-01	5.9-01	4.5 + 00	8.4 + 01	2.3-01	
Sodium	11	22.9899	7.6 + 00	1.0 + 01	2.5 + 00	4.0 + 00	6.2-01	1.8 + 00	2.1 + 01	1.4-01	
Sulfur	16	32.064	1.1 + 00	5.5 + 00	2.4 + 00	5.4-01	0.0 + 0.0	5.2 + 00	6.7+01		
Zinc	30	65.37	2.7-02	3.4-02	1.7–02	8.4-03	1.5-02	8.5-02	1.5 + 00	2.5-03	

XIII. Selected Rules of Thumb [12]

The following rules of thumb are only approximate, and should be treated as such!

Alpha Particles

Alpha particles of at least 7.5 MeV are required to penetrate the epidermis, the protective layer of skin, 0.07 mm thick.

Electrons

Electrons of at least 70 keV are required to penetrate the epidermis, the protective layer of skin, 0.07 mm thick.

The range (R) of electrons in g/cm^2 is approximately equal to the maximum energy (E) in MeV divided by 2 (i.e., $R \cong E/2$).

The range of electrons in air is about 3.65 m per MeV; for example, a 3 MeV electron has a range of about 11 m in air.

A chamber wall thickness of 30 mg/cm² will transmit 0.7 of the initial fluence of 1 MeV electrons and 0.2 of 0.4-MeV electrons.

When electrons of 1 to 2 MeV pass through light materials such as water, aluminum, or glass, less than 1% of their energy is dissipated as bremsstrahlung.

The bremsstrahlung from 1 Ci of ³²P aqueous solution in a glass bottle is about 1 mR/h at 1 meter.

When electrons from a 1 Ci source of 90 Sr- 90 Y are absorbed, the bremsstrahlung hazard is approximately equal to that presented by the gamma radiation from 12 mg of radium. The average energy of the bremsstrahlung is about 300 keV.

Gamma Rays

The air-scattered radiation (sky-shine) from a 100-Ci 60 Co source placed 1 ft behind a 4-ft-high shield is about 100 mrad/h at 6 ft from the outside of the shield.

Within $\pm 20\%$ for point source gamma emitters with energies between 0.07 and 4 MeV, the exposure rate (R/h) at 1 ft is $6 \cdot C \cdot E \cdot n$ where C is the activity in curies, E the energy in MeV, and n is the number of gammas per disintegration.

Neutrons

An approximate HVL for 1-MeV neutrons is 3.2 cm of paraffin; that for 5-MeV neutrons is 6.93 cm.

Miscellaneous

The activity of any radionuclide is reduced to less than 1% after 7 half-lives (i.e., $2^{-7} = 0.8\%$).

For material with a half-life greater than 6 days, the change in activity in 24 hours will be less than 10%. There is 0.64 mm³ of radon gas in transient equilibrium with 1 Ci of radium.

1 year $\simeq \pi \times 10^7$ s.

10 HVL attenuates approximately by 10⁻³.

XIV. Some Characteristics of the Standard Man [13]

A. Mass of organs of the standard adult human body

Tissue or organ	Mass	s ^a (g)	% of total	body
Adipose tissue	15000		21	
Subcutaneous		7500		11
Other separable		5000		7.1
Interstitial	1000		1.4	
Yellow marrow (included with				
skeleton)	1500		2.1	
Adrenals (2)		14		0.02
Aorta		100		0.14
Contents (blood)		190		0.27
		(180 ml)		
Blood-total	5500 g		7.8	
	(5200 ml)		
Plasma	3100 g		4.4	
	(3000 ml)		
Erythrocytes	2400 g		3.4	
	(2200 ml)		
Blood vessels (not including				
aorta and pulmonary)		200		0.29
Contents (blood)		3000		4.3
		(2900 ml)		
Cartilage (included with skeleton)	1100		1.6	
Connective tissue	3400		4.8	
Tendons and fascia	1400		2.0	
Periarticular tissue	1500		2.1	
Other connective tissue	500		0.7	
Separable connective tissue		1600		2.3
Central Nervous System		1430		2.04
Brain	1400		2.0	
Spinal cord	30		0.04	
Contents-cerebrospinal fluid		120		0.17
		(120 ml)		
Eyes		15		0.02
Lenses (2)	0.4			
Gall bladder		10		0.01
Contents (bile)		62		0.09
		(60 ml)		
GI tract		1200		1.7
Esophagus	40		0.06	
Stomach	150		0.21	
Intestine	1000		1.4	
Small	640		0.91	
Upper large	210		0.30	
Lower large	160		0.23	
Contents of GI tract		1005		1.4
(food plus digestive fluids)				
Hair		20		0.0
Heart		330		0.4
Contents (blood)		500		0.7
		(470 ml)		
Kidneys		310		0.4
Larynx		28		0.0
Liver		1800		2.6

Tissue or organ	Mass	s ^a (g)	% of tota	al body
Lungs		1000		1.4
Parenchyma (includes bronchial				
tree, capillary blood, and				
associated lymph nodes)	570		0.81	
Pulmonary blood	430		0.61	
	(400 m	D		
Lymphocytes	1500	, ,	2.1	
Lymphatic tissue	700		1.0	
Lymph nodes (dissectible)		250		0.36
Miscellaneous (by difference)		2953.1		4.2
Soft tissue (nasopharynx, etc.)	300		0.43	
Fluids (synovial, pleural, etc.)	350		0.50	
Muscle (skeletal)		28.000		40.0
Nails		3		
Pancreas		100		0.14
Parathyroids		0.12		
Pineal		0.18		
Pituitary		0.6		
Prostate		16		0.023
Salivary glands		85		0.12
Skeleton		10.000		14
Bone	5000	,	7.2	• •
Cortical	4000		5 7	
Trabecular	1000		14	
Red Marrow	1500		2.1	
Yellow Marrow	1500		2.1	
Cartilage	1100		1.6	
Periarticular tissue (skeletal)	900		1.3	
Skin	,	2600	1.5	3.7
Epidermis	100		0.14	
Dermis	2500		3.6	
Hypodermis	7500		11	
Spieen		180		0.26
Teeth		46		0.066
Testes		35		0.05
Thymus		20		0.029
Thyroid		20		0.029
Tongue		70		0.10
Tonsils		4		0.006
Trachea		10		0.014
Ureters		16		0.023
Urethra		10		0.014
Urinary bladder		45		0.064
Contents (urine)		102		0.15
,		(100 ml)		0.10
Total body		70,000		100

^a Values for organs and tissues listed in the right hand column under "Mass" make up the totality of Reference Man (70,000 g).

B. Chemical composition, adult human body

	Amount	Percent of total
Element	(g)	body weight
Oxygen	43,000	61
Carbon	16,000	23
Hydrogen	7000	10
Nitrogen	1800	2.6
Calcium	1000	1.4
Phosphorus	780	1.1
Sulfur	140	0.20
Potassium	140	0.20
Sodium	100	0.14
Chlorine	95	0.12
Magnesium	19	0.027
Silicon	18	0.026
Iron	4.2	0.006
Fluorine	2.6	0.0037
Zinc	2.3	0.0033
Rubidium	0.32	0.00046
Strontium	0.32	0.00046
Bromine	0.20	0.00029
Lead	0.12	0.00017
Copper	0.072	0.00010
Aluminum	0.061	0.00009
Cadmium	0.050	0.00007
Boron	< 0.048	0.00007
Barium	0.022	0.00003
Tin	< 0.017	0.00002
Manganese	0.012	0.00002
Iodine	0.013	0.00002
Nickel	0.010	0.00001
Gold	< 0.010	0.00001
Molvbdenum	< 0.0093	0.00001
Chromium	< 0.0018	0.000003
Cesium	0.0015	0.000002
Cobalt	0.0015	0.000002
Uranium	0.00009	0.0000001
Beryllium	0.000036	
Radium	3.1×10^{-11}	

References to Chapter One

- [1] NBS Guidelines for Use of the Metric System, U.S. Department of Commerce, National Bureau of Standards (1977).
- [2] Cohen, E. R., and Taylor, B. N., The Least-Squares Adjustment of the Fundamental Constants, J. Phys. Chem. Ref. Data 2, 663 (1973).
- [3] Review of Particle Properties, Rev. Mod. Phys. 48, 2, Part II (1976).
- [4] Fine, S., and Hendee, W. R., X-Ray Critical Absorption and Emission Energies in keV, Nucleonics 13, 36 (1955).
- [5] Physical Aspects of Irradiation ICRU Report 10b, International Commission on Radiation Units and Measurements (1964) and NBS Handbook 85, U.S. Government Printing Office, Washington, DC (1964).
- [6] Hagedoorn, H. L., and Wapstra, A. H., Measurements of the Fluorescent Yield of the K Shell with a Proportional Counter, Nucl. Phys. 15, (1960).
- [7] McCullough, E., Photon Attenuation in Computed Tomography, Med. Phys. 2, 307 (1975).
- [8] Rao, P. S., and Gregg, E. C., Attenuation of Monoenergetic Gamma Rays in Tissues, Am. J. Roentgenol. 123, 631 (1975).
- [9] Hubbell, J. H., Photon Cross Sections, Attenuation Coefficients and Energy Absorption Coefficients from 10 keV to 100 GeV, NSRDS-NBS 29, U.S. Government Printing Office, Washington, DC (1969).
- [10] Hubbell, J. H., Photon Mass Attenuation and Mass Energy Absorption Coefficients for H, C, N, O, Ar and Seven Mixtures from 0.1 keV to 20 MeV, Radiat. Res. 70, 58 (1977).
- [11] Kim, Y. S., Human Tissues: Chemical Composition and Photon Dosimetry Data, Radiat. Res. 57, 38 (1974) and Human Tissues: Chemical Composition and Photon Dosimetry Data. A Correction, Radiat. Res. 60, 361 (1974).
- [12] Radiological Health Handbook, Bureau of Radiological Health, U.S. Public Health Service, Consumer Protection and Environmental Health Service, U.S. Government Printing Office, Washington, DC (1970).
- [13] Snyde W. S., et al., Reference Man: Anatomical, Physiological, and Metabolic Characteristics, Pergamon, New York (1975).

Notes

Notes

CHAPTER TWO: NUCLEAR MEDICINE

I. Physical Characteristics of Clinically Used Radionuclides [1-3]

Radio- nuclide	Principal means of production	Half-life	Major radiations (MeV)-abunc Beta	-energies lance (%) Gamma	Γ, specific γ-ray constant (R·cm ² /h·mCi)	Half-value layer in Pb (cm)
³ H	$^{6}\text{Li}(n,\alpha)^{3}\text{H}$	12.3 y	0.018(100)			
¹¹ C	¹¹ B(p,n) ¹¹ C	20.3 m	β ⁺ 0.97(100)	0.511(200)	5.91	0.4
¹⁴ C	$^{14}N(n,p)^{14}C$	5.73×10^3 y	0.16(100)			
¹³ N	$^{13}C(p,n)^{13}N$	10.0 m	β^+ 1.20(100)	0.511(200)	5.91	0.4
¹⁵ O	¹⁴ N(d,n) ¹⁵ O	2.07 m	β^+ 1.74(100)	0.511(200)	5.91	0.4
$^{18}\mathbf{F}$	¹⁹ F(p,pn) ¹⁸ F	1.8 h	β ⁺ 0.65(97)	0.511(194)	5.73	0.4
²⁴ Na	23 Na(n, γ) ²⁴ Na	15.0 h	1.4(100)	1.369(100) 2.754(100)	18.40	1.5
³² P	${}^{31}S(n,p){}^{32}P$	14.3 d	1.7(100)			
	$^{31}\mathbf{P}(\mathbf{n},\boldsymbol{\gamma})^{32}\mathbf{P}$					
³⁵ S	³⁵ Cl(n,p) ³⁵ S	88.0 d	0.17(100)			
	14 S(n, γ) 15 S					
⁴² K	41 K(n, γ) 42 K	12.4 h	2.00(18)	1.524(18)	1.35	
⁴³ K	40 Ar(α ,p) 43 K	22.4 h	3.52(82) 0.83(87)	0.371(85) 0.338(07) 0.394(11) 0.590(13) 0.619(81)	5.60	
⁴⁵ Ca	$^{44}Ca(n,\gamma)^{45}Ca$	165 d	0.25(100)			
⁴⁷ Ca	$^{46}Ca(n,\gamma)^{47}Ca$	4.56 d	0.67(82) 1.98(18)	0.490(5) 0.815(5) 1.308(74)	5.70	
⁵¹ Cr	⁵⁰ Cr(n,γ) ⁵¹ Cr	27.8 d	0.3e ⁻ (trace)	0.320(9)	0.164	0.2
⁵² Fe	50 Cr(α ,2n) 52 Fe	8.3 h	β ⁺ 0.80(56)	0.165(100) 0.511(112)	17.20	1.2
⁵⁵ Fe	54 Fe(n, γ) 55 Fe	2.7 у		0.006(13) Mn x-rays		
⁵⁹ Fe	58 Fe(n, γ) 59 Fe	45 d	0.48(99)	1.095(56) 1.292(44)	6.20	1.1
⁵⁷ Co	⁶⁰ Ni(p,α) ⁵⁷ Co	267 d		0.014(9) 0.122(87) 0.136(10)	0.93	0.03
⁵⁸ Co	⁵⁵ Mn(α,n) ⁵⁸ Co	71.3 d	β ⁺ 0.47(15)	0.511(30) 0.811(99)	5.50	
⁶⁰ Co	⁵⁹ Co(n,γ) ⁶⁰ Co	5.26 y	0.31(99+)	1.173(100) 1.332(100)	13.20	1.2

Radio-	Principal means		Major radiations-e (MeV)-abunda	nergies nce (%)	Γ, specific γ-ray constant	Half-value laver in Pb
nuclide	of production	Half-life	Beta	Gamma	(R·cm ² /h·mCi)	(cm)
⁶⁴ Cu	⁶³ Cu(n,γ) ⁶⁴ Cu	12.9 h	0.57(39) β ⁺ 0.64(19)	0.511(38)	1.16	0.4
⁶⁵ Zn	64 Zn(n, γ) 65 Zn	245 d	1.1e ⁻ (trace) β^+ 0.33(2)	1.150(49)	2.70	1.0
⁶⁷ Ga	⁶⁷ Zn(p,n) ⁶⁷ Ga	78 h	0.09e ⁻ (15)	0.093(40) 0.185(24) 0.296(22) 0.388(7)	~ 1.1	
68Ga	⁶⁸ Zn(p,n) ⁶⁸ Ga	1.13 h	β^+ 1.90(87)	0.511(176)	5.37	0.4
⁷⁵ Se	⁷⁴ Se(n,γ) ⁷⁵ Se	120 d	e⁻ 0.08–0.25	0.121(16) 0.136(57) 0.265(60) 0.280(25) 0.401(13)	2.00	0.2
^{85m} Kr	84 Kr(n, γ) 85m Kr	4.4 h	0.82(77)	0.150(74) 0.305(16)	1.29	
⁸⁵ Sr	84 Sr(n, γ) 85 Sr	64 d	0.5(1)	0.514(100)	3.00	0.4
^{87m} Sr	⁸⁷ Y daughter	2.8 h	0.4e ⁻ (22)	0.388(80)	1.74	
90Sr	Fission	28 y	0.55(100) ⁹⁰ Y- <u>2.30(100)</u>			
⁸⁶ Rb	85 Rb(n, γ) 86 Rb	18.7 d	0.70(9) 1.78(9)	1.078(9)	0.49	1.0
99 M o	⁹⁸ Mo(n,γ) ⁹⁹ Mo	66.7 h	1.23(82) 0.45(17)	0.181(7) 0.740(14) 0.778(5)	~1.80	
"" ^m Tc	⁹⁹ Mo daughter	6.04 h	0.12e ⁻ (trace)	0.140(90)	0.70	0.03
¹¹¹ In	¹¹¹ Cd(p,n) ¹¹¹ In	2.8 d	0.15-0.24e ⁻ (15)	0.173(89) 0.247(94)		
113m In	Daughter ¹¹³ Sn	1.67 h		0.393(65)	0.32(x) 1.57(γ) ~1.7	0.03
¹²³ I	¹²³ Te(p,n) ¹²³ I	13.0 h	0.13e ⁻ (trace)	0.159(97)	0.97(x) 0.66(γ)	0.04
¹²⁵ I	$^{124}Xe(\mathbf{n},\boldsymbol{\gamma}) \rightarrow$	60.2 d	0.03e ⁻ (90)	0.036(7) 0.027 x-rays (90)	~ 0.70	
¹²⁹ I	Fission	$1.7 \times 10^7 \text{ y}$	0.150(100)	0.04(9) Xe x-rays		
¹³¹ I	Fission	8.05 d	0.61(90)	0.284(5) 0.365(83) 0.637(7)	2.23	0.3

Radio- nuclide	Principal means of production	Half-life	Major radiatio: (MeV)-abu Beta	ns-energies ndance (%) Gamma	Γ, specific γ-ray constant (R·cm ² /h·mCi)	Half-value layer m Pb (cm)
¹²⁷ Xe	$^{127}I(p,n)^{127}Xe$	36.4 d		0.172(22) 0.203(65) 0.375(20)		
¹³³ Xe	Fission	5.3 d	0.35(100)	0.08(35) Cs x-rays	0.10	
¹²⁹ Cs	127 I(α ,2n) 129 Cs	32.1 h		0.375(48) 0.416(25) 0.550(5)		
¹³⁷ Cs	Fission	30 y	0.51(95) 1.18(7)	0.662(84)	3.32	0.6
¹⁹⁸ Au	$^{197}\mathrm{Au}(n,\gamma)^{198}\mathrm{Au}$	2.7 d	0.97(99)	0.412(96)	2.34	0.3
¹⁹⁷ Hg	196 Hg(n, γ) 197 Hg	2.7 d		0.077(19)	~0.40	
203 Hg	202 Hg(n, γ) 203 Hg	47 d	0.214(100)	0.279(82)	1.33	
¹⁶⁹ Yb	168 Yb(n, γ) 169 Yb	31.8 d		0.063(45) 0.177(22) 0.110(18) 0.197(35) 0.131(11) 0.308(10)		
²⁰¹ Tl	Daughter ²⁰¹ Pb	73 h		0.167(8) Hg x-rays	0.08	

II. Radiopharmaceutical Dosimetry

A. Formula

The average absorbed doses to total body and to specific organs for administered radionuclides can be calculated from [4,5]:

$$D(r_{k} \leftarrow r_{h}) = \widetilde{A}_{h} \left[\frac{\Sigma_{n} \Delta_{n} \cdot \phi_{n}(r_{k} \leftarrow r_{h}) + \Sigma_{p} \Delta_{p} \cdot \phi_{p}(r_{k} \leftarrow r_{h})}{m_{k}} \right]$$
$$= \widetilde{A}_{h} \left[\Sigma_{n} \Delta_{n} \cdot \Phi_{n}(r_{k} \leftarrow r_{h}) + \Sigma_{p} \Delta_{p} \cdot \Phi_{p}(r_{k} \leftarrow r_{h}) \right]$$
$$= \widetilde{A}_{h} \cdot S$$

where

- $D(r_k \leftarrow r_h) = \text{average dose (rad) to target volume } r_k \text{ from radioactivity located in source volume } r_h$ $\widetilde{A}_h = \text{cumulated activity in source volume } r_h (\mu \text{Ci-h})$ $m_k = \text{mass of the target volume } r_k (g)$ n = nonpenetrating radiation p = penetrating radiation
- $\Delta = \text{equilibrium dose constant } (g \cdot rad/\mu Ci \cdot h)$
- $\phi(r_k \leftarrow r_h)$ = the fraction of energy emitted by activity in source volume r_h which is absorbed in target volume r_k

$$\Phi(r_k \leftarrow r_h)$$
 = specific absorbed fraction (g⁻¹)

S = mean dose per unit cumulated activity $(rad/\mu Ci \cdot h)$

B. Schedule for calculation of pediatric-administered activities (based on body weight) [6]

Mass (kg)	Fraction of adult activity	Mass (kg)	Fraction of adult activity
2	0.09	25	0.50
3	0.12	30	0.57
4	0.14	35	0.63
5	0.17	40	0.69
6	0.19	45	0.74
7	0.21	50	0.80
8	0.23	55	0.85
9	0.25	60	0.90
10	0.27	65	0.95
15	0.36	70	1.00
20	0.43		
C. Whole body dose from selected radiopharmaceuticals [7-9]

Radio-	Radio-	Whole body doses (mrad/ μ Ci administered))
nuclide	pharmaceutical	Newborn	1	5	10	15	Adult
				years	of age		
⁵¹ Cr	Red Blood Cells	7.00	2.50	1.50	1.00	0.60	0.50
⁵⁷ Co	Vitamin B12						10.00
67Ga	Citrate	1.40	0.57	0.38	0.28	0.20	0.16
⁷⁵ Se	Selenomethionine						8.00
^{99m} Tc	DTPA	0.170	0.062	0.043	0.029	0.021	0.016
	HSA	0.180	0.062	0.040	0.026	0.017	0.015
	Iron Complex	0.086	0.033	0.022	0.015	0.010	0.009
	MAA	0.177	0.064	0.042	0.028	0.019	0.015
	Pertechnetate	0.151	0.055	0.037	0.024	0.016	0.013
	Polyphosphate	0.131	0.049	0.034	0.021	0.013	0.011
	EHDP	0.173	0.065	0.045	0.028	0.017	0.015
	Red Blood Cells	0.200	0.070	0.040	0.030	0.020	0.016
	Sulfur Colloid	0.140	0.056	0.038	0.027	0.020	0.016
¹¹¹ In	DTPA	1.80	0.52	0.32	0.20	0.12	0.10
113mIn	Colloid	0.077	0.031	0.023	0.015	0.011	0.009
	DTPA	0.130	0.039	0.024	0.015	0.0094	0.0074
	Iron Hydroxide	0.250	0.080	0.052	0.032	0.021	0.017
¹²³ I	Iodide	0.35	0.13	0.08	0.05	0.045	0.030
¹²⁵ I	Iodide	9.40	1.60	1.00	0.67	0.44	0.34
	Fibrinogen						0.20
¹³¹ I	HSA	24.00	7.60	4.80	3.00	1.90	1.60
	MAA	5.20	1.90	1.00	0.65	0.42	0.35
	Iodide	10.00	2.00	1.30	0.81	0.52	0.45
	Rose Bengal	5.10	1.80	0.89	0.53	0.36	0.29
¹²⁹ Cs	Chloride	3.00	1.00	0.70	0.45	0.30	0.25
²⁰¹ Tl						_	0.24

D. Critical organ doses from selected radiopharmaceuticals [7-9]

Radio- nuclide	- Radio- Critical de pharmaceutical organ		Critic Newborn	cal organ d n 1	lose (mrad/ 5 yea:	μCi admin 10 rs of age	istered) 15	Adult	
¹⁸ F	Fluoride	bone	2.40	0.65	0.45	0.29	0.19	0.18	
⁵¹ Cr	Red Blood Cells (heat treated)	spleen	336.0	90.1	56.2	30.5	24.1	22.5	
⁵⁷ Co	Vitamin B12	liver	1088.0	433.0	260.0	183.4	144.0	114.0	
⁵⁹ Fe	Citrate, Chloride	spleen						130.0	
⁶⁷ Ga	Citrate	spleen	8.02	2.60	1.64	1.00	0.71	0.60	
⁷⁵ Se	Selenomethionine	liver	187.0	83.2	52.9	38.5	30.8	25.0	
99mTc	DTPA	bladder ^a kidney	5.00 0.39	1.70 0.15	1.10 0.10	0.80 0.07	0.56 0.05	0.45 0.04	
	HSA	blood	0.81	0.24	0.15	0.09	0.06	0.05	
	Iron Complex	renal cortex	5.20	1.80	1.20	0.77	0.61	0.55	
	MAA	lung	3.09	1.00	0.59	0.35	0.26	0.20	
	Pertechnetate	LLI ^b	1.91	0.67	0.46	0.33	0.23	0.20	
	Polyphosphate	bone	1.10	0.32	0.23	0.15	0.10	0.08	
	Red Blood Cells (heat treated)	spleen	26.0	9.23	5.21	3.07	2.70	2.60	
	Sulfur Colloid	liver	2.90	1.34	0.92	0.56	0.40	0.33	
¹¹¹ In	Colloid	liver	20.3	9.0	5.2	3.3	2.4	2.0	
	DTPA	brain (max)	47.0	20.0	17.0	16.0	15.0	14.0	
		bladder	24.6	7.5	4.4	2.8	1.9	1.5	
	Iron Hydroxide	lung	14.7	4.5	2.5	1.5	1.1	0.8	
^{113m} In	Iron Hydroxide	lung	9.52	2.89	1.62	0.95	0.72	0.50	
	Colloid	liver	4.76	2.11	1.23	0.78	0.56	0.47	
	DTPA	bladder ^a	7.15	2.16	1.28	0.82	0.55	0.43	
123	Hippuran	kidnev	0.69	0.23	0 18	0.13	0.10	0.07	
	Rose Bengal	liver	1.89	0.75	0.46	0.32	0.24	0.20	
¹³¹ I	Hippuran	kidnev	9.52	4.44	3.08	2.22	1.20	1.00	
-	HSA	blood	309.5	92.2	55.4	32.7	20.8	16.0	
	MAA	lung	73.8	22.2	13.1	7.80	5.60	4.00	
	Rose Bengal	liver	8.10	3.00	1.77	1.22	0.84	0.67	
¹²⁷ Xe	Gas	lung						0.0047 ^c	
¹³³ Xe	Gas	lung						0.0098 ^c	
¹⁶⁹ Yb	DTPA (i.v.)	kidney	106.0	33.8	23.3	17.4	14.9	8.5	
	DTPA (i.v.)	brain (max)	10.8	4.6	3.9	3.7	3.4	3.2	
	DTPA (intrathecal)	brain	236.0	93.0	76.5	73.5	72.0	70.0	
²⁰¹ Tl		kidneys heart						0.39 0.17	

^a Assumes 6-hour bladder residence time.

^b Perchlorate blocking dose (i.v. administration).

^c Consists of an initial 30-second breath-hold after normal inspiration, followed by a 4-minute rebreathing period and subsequent washout.

E. Thyroid dose (rad/ μ Ci administered) [7]

Radio- pharmaceutical	Newborn (1.5) ^a	1 y (2.2)	5 y (4.7)	10 y (8.0)	15 y (11.2)	Adult (16.0)
¹²³ I (Iodide) ^b	0.119	0.081	0.038	0.022	0.016	0.011
¹²⁵ I (Iodide) ^b	8.23	5.63	2.62	1.55	1.11	0.77
¹³¹ I (Iodide) ^b ^{99m} Tc (Per-	11.80	8.09	3.78	2.22	1.55	1.11
technetate) ^c	0.0034	0.0013	0.0008	0.0005	0.0004	0.0002

^a Numbers in parentheses indicated thyroid gland weight in grams.

^b Assumed uptake-20 percent.

^c Assumed uptake-5 percent.

F. Gonadal doses from selected radiopharmaceuticals [10]

Dediastas		Car						
macentical	Gonade	Newborn		e (mrad/	μCi admi	nisterea)	A dult	
maccuncar	Conaus	Newborn	1	years o	of age	15	Addin	
^{99m} Tc (phos-	М	0.289	0.224	0.207	0.187	0.041	0.034	
phate)	F	0.561	0.193	0.115	0.083	0.055	0.046	
^{99m} Tc (per-	М	0.102	0.079	0.073	0.066	0.014	0.012	
technetate)	F	0.219	0.076	0.045	0.032	0.022	0.018	
^{99m} Tc	М	0.340	0.264	0.244	0.220	0.048	0.040	
(albumin)	F	0.658	0.227	0.135	0.097	0.065	0.054	
^{99m} Tc (DTPA)	М	0.170	0.132	0.122	0.110	0.024	0.020	
	F	0.329	0.113	0.068	0.049	0.032	0.027	
^{99m} Tc (sulfur	М	0.161	0.125	0.116	0.104	0.023	0.019	
colloid)	F	0.280	0.097	0.058	0.041	0.028	0.023	
^{99m} Tc (MAA)	М	0.060	0.046	0.043	0.038	0.008	0.007	
	F	0.110	0.038	0.022	0.016	0.010	0.009	
¹²³ I (sodium	М	0.085	0.066	0.061	0.055	0.012	0.010	
iodide)	F	0.244	0.084	0.050	0.036	0.024	0.020	
	Radiophar- maceutical ^{99m} Tc (phos- phate) ^{99m} Tc (per- technetate) ^{99m} Tc (albumin) ^{99m} Tc (DTPA) ^{99m} Tc (sulfur colloid) ^{99m} Tc (MAA) ¹²³ I (sodium iodide)	Radiophar- maceuticalGonads99mTc (phos- phate)M F99mTc (per- technetate)M F99mTc (albumin)F99mTc (DTPA)M F99mTc (sulfur colloid)M F99mTc (MAA)M F123I (sodium iodide)M F	Radiophar- maceutical Gonads Gon Newborn 99mTc (phos- phate) M 0.289 0.561 99mTc (per- technetate) M 0.102 0.219 99mTc (per- technetate) M 0.340 0.658 99mTc (DTPA) M 0.170 F 99mTc (sulfur colloid) M 0.161 F 99mTc (MAA) M 0.060 F 99mTc (MAA) M 0.060 F	Radiophar- maceutical Gonads Gonadal dos Newborn dos 1 99mTc (phos- phate) M 0.289 0.224 99mTc (per- technetate) M 0.102 0.079 99mTc (per- technetate) M 0.340 0.264 99mTc (DTPA) M 0.170 0.132 99mTc (sulfur colloid) M 0.161 0.125 99mTc (MAA) M 0.060 0.046 0.110 0.085 0.066 0.046 99mTc (MAA) M 0.085 0.066 1 M 0.060 0.046 0.110 0.038 123 123 1 (sodium)	Radiophar- maceutical Gonads Gonadal dose (mrad/ Newborn Image: Constraint of the system of the	Radiophar- maceutical Gonads Gonads lose Newborn Gonadal dose 1 5 10 years of age 99m Tc (phos- phate) M 0.289 0.224 0.207 0.187 99m Tc (per- technetate) M 0.102 0.079 0.073 0.066 99m Tc (per- technetate) M 0.340 0.264 0.244 0.220 99m Tc (DTPA) M 0.170 0.132 0.122 0.110 99m Tc (DTPA) M 0.170 0.132 0.122 0.110 99m Tc (sulfur colloid) M 0.161 0.125 0.116 0.104 99m Tc (MAA) M 0.060 0.046 0.043 0.038 99m Tc (sulfur colloid) M 0.161 0.125 0.116 0.104 99m Tc (MAA) M 0.060 0.046 0.043 0.038 99m Tc (sulfur colloid) M 0.085 0.066 0.061 0.055 123 I (sodium iodide) M 0.085 0.066	Radiophar- maceuticalGonadsGonadal dose Newborn(mrad/ μ Ci administered) years of age 99m Tc (phos- phate)M0.2890.2240.2070.1870.041 99m Tc (per- technetate)M0.1020.0790.0730.0660.014 99m Tc (per- technetate)M0.1020.0790.0730.0660.014 99m Tc (per- technetate)M0.3400.2640.2440.2200.048 99m Tc (DTPA)M0.1700.1320.1220.1100.024 99m Tc (sulfur colloid)M0.1610.1250.1160.1040.023 99m Tc (MAA)M0.1610.1250.1160.0410.023 99m Tc (sodium FM0.0600.0460.0430.0380.008 99m Tc (MAA)M0.0600.0460.0430.0380.008 123 I (sodiumM0.02850.0660.0610.055	

G. Dose estimates to embryo [11]

Radiopharmaceutical administered	Embryo dose (rad/mCi)		
^{99m} Tc-human serum albumin	0.018°		
^{99m} Tc-lung	0.035 ^a		
^{99m} Tc-polyphosphate	0.036 ^a		
^{99m} Tc-sodium pertechnetate	0.037		
^{99m} Tc-stannous glucoheptonate	0.040^{a}		
^{99m} Tc-sulfur colloid	0.032 ^a		
¹²³ I-sodium iodide (15% uptake)	0.032		
¹³¹ I-sodium iodide (15% uptake)	0.100		
¹²³ I-rose bengal	0.130		
¹³¹ I-rose bengal	0.680		
-			

^a These values were calculated using cumulated activity (\widetilde{A}) values from company product data and absorbed dose per cumulated activity (S) values from reference [11].

H. Thyroidal radioiodine exposure of fetus [12]

Gestation period	Fetal/maternal ratio (thyroid gland)	Thyroid dose (fetus) rad/(µCi) ^a	
10-12 weeks		.001 (precursors)	
12–13 weeks	1.2	0.7	
2nd trimester	1.8	6.0	
3rd trimester	7.5		
birth imminent		8.0	

^a rad/ μ Ci of ¹³¹I ingested by mother.

III. Radiation Safety

A. License-exempt levels of activity [13]

Radionuclide	Microcuries	Radionuclide	Microcuries	
Calcium-45	10	Krypton-85	100	
Calcium-47	10	Mercury-197	100	
Carbon-14	100	Mercury-203	10	
Cesium-137	10	Molybdenum-99	100	
Chromium-51	1,000	Phosphorus-32	10	
Cobalt-58	10	Potassium-42	10	
Cobalt-60	1	Rubidium-86	10	
Copper-64	100	Selenium-75	10	
Fluorine-18	1,000	Sodium-24	10	
Gold-198	100	Strontium-85	10	
Hydrogen-3	1,000	Strontium-90	0.1	
Indium-113m	100	Sulfur-35	100	
Iodine-125	1	Technetium-99m	100	
Iodine-129	0.1	Thallium-201	100	
Iodine-131	1	Xenon-133	100	
Iron-55	100	Zinc-65	10	
Iron-59	10			

Any alpha emitting radionuclide not listed above or mixtures of alpha emitters of unknown composition, $0.01 \,\mu$ Ci.

Any radionuclide other than alpha emitting radionuclides not listed above or mixtures of beta emitters of unknown composition, 0.1 µCi.

B. Levels to be used as a guide in the establishment of contamination zones [14]

Type of radiation	Airborne contamination	Direct reading surface	Transferable surface
	(μCi/cm ³ in air)	contamination	contamination (dpm/100 cm ²)
α	$ \begin{array}{c} 2 \times 10^{-12} \\ 3 \times 10^{-10} \end{array} $	300 dpm/100 cm ²	30
β,γ		0.25 mrad/h	1,000

C. Maximum permissible contamination guide for skin surfaces [14]

	Direct	Transferable (smear)	
Surface	α (dpm/100 cm ²)	β,γ (mrad/h)	α,β,γ
General body	150	< 0.06	None detectable
Hands	150	< 0.3	

D. Maximum permissible contamination on clothing [14]

	Direct survey	Transferable (smear)		
Item	α (dpm/100 cm ²)	β,γ (mrad/h)	α (dpm	β,γ 1/100 cm ²)
Shoes, contamination zone:				
Inside	300	1.0	30	1,000
Outside	300	2.5	30	1,000
Shoes, personal:				
Inside	300	0.3	30	1,000
Outside	300	.6	30	1,000
Clothing, contamination zone Clothing, other company	150	.75		
issued, and personal	150	.25		

E. Permissible contamination for items given radiation clearance [14]

Direct sur	vey	Transferable (smear)		
α (dpm/100 cm ²)	β,γ (mrad/h)	α (dpm/	β,γ 100 cm ²)	
< 300	<0.05	< 30	<200	

F. Permissible concentrations and pertinent radiologic data of selected radionuclides [13,15]

Isotope	MPBB (µCi)	Critical organ ^a	MPC (air) workers (μCi/cm³)	MPC (air) public (μCi/cm³)	MPC (water) workers (μCi/cm ³)	MPC (water) public (µCi/cm ³)
Ca-47	5	Bone	2×10^{-7}	6×10 ⁻⁹	1×10 ⁻³	3×10 ⁻⁵
C-14	300	Fat	4×10^{-6}	1×10^{-7}	2×10^{-2}	8×10^{-4}
Cs-137	30	Т.В.	$1 imes 10^{-8}$	5×10^{-10}	4×10^{-4}	2×10^{-5}
Cr-51	800	T.B.	2×10^{-6}	8×10^{-8}	5×10^{-2}	2×10^{-3}
Co-57	200	T.B.	2×10^{-7}	6×10 ⁻⁹	$1 imes 10^{-2}$	4×10^{-4}
Co-58	30	T.B.	$5 imes 10^{-8}$	2×10^{-9}	3×10^{-3}	9×10^{-5}
Co-60	10	T.B.	9×10 ⁻⁹	3×10^{-10}	1×10^{-3}	3×10^{-5}
Cu-64	10	Spl.	1×10^{-6}	4×10^{-8}	6×10 ⁻³	$2 imes 10^{-4}$
F-18	20	Т.В.	3×10^{-6}	9×10^{-8}	1×10^{-2}	5×10^{-4}
Au-198	20	Kid.	2×10^{-7}	8×10^{-9}	1×10^{-3}	5×10^{-5}
H-3	1000	B.T.	$5 imes 10^{-6}$	2×10^{-7}	1×10^{-1}	3×10^{-3}
In-113m	30	Kid.	$7 imes10^{-6}$	2×10^{-7}	4×10^{-2}	1×10^{-3}
I-125			5×10^{-9}	8×10 ⁻¹¹	4×10^{-5}	2×10^{-7}
I-129	3	Thy.	2×10^{-9}	2×10^{-11}	1×10^{-5}	6×10 ⁻⁸
I-131	0.7	Thy.	9×10 ⁻⁹	1×10^{-10}	6×10 ⁻⁵	3×10^{-7}
Fe-55	1000	Spl.	9×10^{-7}	3×10^{-8}	2×10^{-2}	8×10^{-4}
Fe-59	20	Spl.	5×10^{-9}	2×10^{-9}	2×10^{-3}	5×10^{-5}
Kr-85		-	1×10^{-5}	3×10^{-7}		
Hg-197	20	Kid.	1×10^{-6}	4×10^{-8}	9×10 ⁻³	3×10^{-4}
Hg-203	4	Kid.	7×10^{-8}	2×10^{-9}	5×10^{-4}	2×10^{-5}
Mo-99	8	Kid.	2×10^{-7}	7×10^{-9}	1×10^{-3}	4×10^{-5}
P-32	6	Bone	7×10^{-8}	2×10^{-9}	5×10^{-4}	2×10^{-5}
K-42	10	Т.В.	1×10^{-7}	4×10^{-9}	6×10^{-4}	2×10^{-5}
Rb-86	30	Т.В.	7×10^{-8}	2×10^{-9}	7×10^{-4}	2×10^{-5}
Se-75	90	Kid.	1×10^{-7}	4×10 ⁻⁹	8×10 ⁻³	3×10^{-4}
Na-24	7	T.B.	1×10^{-7}	5×10^{-9}	8×10^{-4}	3×10^{-5}
Sr-85	60	T.B .	1×10^{-7}	4×10 ⁻⁹	3×10 ⁻³	1×10^{-4}
Sr-90	2	Bone	1×10^{-9}	3×10^{-11}	1×10^{-5}	3×10^{-7}
S-35	90	Test.	3×10^{-7}	9×10 ⁻⁹	2×10^{-3}	6×10 ⁻⁵
Tc-99m	200	Т.В.	1×10^{-5}	5×10^{-7}	8×10^{-2}	3×10^{-3}
T1-201	40	Kid.	9×10 ⁻⁷	3×10^{-8}	5×10^{-3}	2×10^{-4}
Xe-133			1×10^{-5}	3×10^{-7}		
Zn-65	60	Т.В.	6×10^{-8}	2×10^{-9}	3×10^{-3}	1×10^{-4}

^a T.B.—total body; Spl—spleen; B.T.—body tissue; Kid.—kidney; Thy.—Thyroid; Test.—testes. MPC—maximum permissible concentration.

MPBB-maximum permissible body burden.

G. Decontamination of personnel and equipment [14]

Contaminated area	Decontaminating agent	Remarks	Maximum suggested levels of contamination
			ALPHA
Skin and hands	Mild soap and water or detergent and water.	Wash 2-3 min and moni- tor. Do not wash over	150 d/min/100 cm²
	If neccssary, follow by soft brush, heavy lather, and tepid water.	3-4 times. Use light pressure with heavy lather. Wash for 2 min, 3 times. Rinse and monitor. Use care not to scratch or erode	This is approximately one- half the inhalation level in terms of total dis/min/ day. This assumes not more than one-fifth of
	Lava soap and water.	skin, Apply lanolin or hand cream to prevent chapping.	this material will be in- haled. Additional pos- sible exposure by inges- tion is also considered.
	Other Procedures		Вета-Самма
	A mixture of 50 percent Tide and 50 percent corn meal.	Make into a paste. Use with additional water with a mild scrubbing action. Use care not to scratch or erode the skin	Average less than 0.3 mR/hr for each hand surface or 100 cm ² of skin surface, using Geiger-Mueller instrument calibrated with Ba226
	A 5 percent water solution of a mixture of 30 per- cent Tide, 65 percent Calgon, and 5 percent Carbose (Carboxy- methyl Colluso)	Use with water. Rub for a minute and rinse.	
	A preparation of 8 percent Carbose, 3 percent Tide, 1 percent Versene and 88 percent water homog- enlzed into a cream.	Use without any addi- tional water. Rub for 1 min and wipe off. Fol- low with lanolin or hand cream.	
	CHEMICAL PROCEDURES	(As a last resort)	
	Titanium dioxide paste. Preparc paste by mixing precipitated titanium	Work the pastc into af- fected area for 2 min. Rinse and wash with	
	dioxide (a very thick slurry never permitted to dry) with a small amount of lanolln.	soap, brush, and warm water. Monitor.	

(Where possible, the preferred decontaminating agent is listed first)

Contaminated area	Decontaminating agent	Remarks	Maximum suggested levels of contamination
Skin and hands— Continued	CHEMICAL PROCEDURES— Continued		BETA-GAMMA—Continued
	Mix equal volumes of a saturated solution of potassium permanga- nate and 0.2 N sulfurie aeid. Continue with the next step also. (Saturated solution KMnO4 is 6.4 gms per 100 ml of water.) Apply a freshly prepared 5 percent solution of sodium aeid sulfite (NallSO3).	 Pour over wet hands, rubbing the surface and using hand brush for not more than 2 min. (Note: will remove a layer of skin if in contact with the skin for more than 2 min.) Rinse with water. Apply in the same manner as above. Apply for not more than 2 min. The above procedure may 	
Wounds (cuts and breaks in the skin).	Running tap water, Re- port to Medical Officer and RSO as s oon as pos- sible.	be repeated. Apply lan- olin or hand eream when completed. Wash the wound with large volumes of running water immediately (within 15 see). Spread the edges of wound to permit flushing action by the water.	Keep wound containina- tion as low as possible.
Ingestion by swallowing.	Immediately induce vom- iting, Drink large quan- tities of liquids to dilute the activity,	Urine and feeal analysis will be necessary to de- termine amount of radio- nuclides in the body.	А срна
Clothing	Wash—if levels permits	Use standard laundering	150 d/m/100 em²
		procedures, 3 percent versene or eitrie aeid may be added to wash water.	Вета-Олмма
		Wash water must be be- low the MPL for sewer disposal. See NCRP Report 22	No area to average more than 0.1 mR/hr. G-M meter Ra ²²⁶ calibrated.
See rubber and leather under specific materials.	Store	To allow for decay if con- tamination is short lived.	(If elothing is worn 100 hr/wk, this will give 1/10 of maximum external dose.)
	Disposal	Treat as solid waste if necessary.	
Glassware	Soap or detergent and water.	Monitor wash water and plan disposal of it,	The maximum permissible levels for glassware that is handled with the bare hands is the same as for the hands and skin.
	Chromie acid eleaning solution or concentrated nitric acid.	Monitor wash water and plan disposal of lt.	

Contaminated area	Decontaininating agent	Remarks	Maximum suggested levels of contamination
Glassware—Con.	SUGGESTED AGENTS	ELEMENTS REMOVED	BETA-GAMMA—Continued
	Oxalie acld 5 percent (Caution Poison)	Zr, Nb, IIf.	
	Versene (EDTA) 5 per- cent conc, NII4OII 3 percent, IICI 10 percent by volume.	Alkaline Earth Metals: Be, Mg, Ca, Sr, Ba, Ra, P as PO4. Alkali Metals: Na, K, Rb, Cs, and strongly absorbed metals like Po	
	To make, dissolve in	absorbed metals like 1.0,	
	(1) Versene (EDTA) 5 percent,	Trivalent Metals: Al, Sc, Y, La Ce, Ρτ, Nd, Pm, Sa, Fu	
	 (2) Conc. NH4OH, 3 percent by volume. (3) Glacial acetic acid 5 percent by volume. 	Rare Earths: Ac, Ga, In, Ti, B. Transition Metals: Cu, Zn, Fe, Co, Ni, Cd, Sn, Hg Pb, Th, U, Ag.	
Laboratory tools	Detergents and water	(Always consider the ra- dio-activity of the clean- ing solution when dis- posing of it.)	The maximum permissible
Laboratory cools	steam cleaning.	action.	he having permissible levels for tools that are handled with the bare hands is the same as for the hands and skin.
Metal tools	Dilute nitrie acid, 10 per- cent solution of sodium citrate or ammonium bifluoride.	As a last resort, use HCl on stainless steel.	
	Metal polish, sandblasting, other abrasives,	Such as brass polish on brass. Use caution as these procedures may spread contamination.	
Plastic tools	Ammonium citrates, di- lute acids, organic sol-		
Glass tools	The same as above section		
Walls, floors, and benches.	Detergents and water with mechanical action.		
	Vacuum cleaning	The exhaust of the cleaner must be filtered to pre- vent escape of contami- nation	
	Water from high pressure sources. Steam clean- ing.	This may spread contami- nation.	
Specific Materials			1
Rubber	Washing or dilute HNO3	(Short lived contamina- tion may be covered up to await decay.)	
Glass, plastic	See the above section,		

Contaminated area	Decontaminating agent	Remarks	Maximum suggested levels of contamination
Leather	Very diffieult to decon- taminate.		
Linoleum	CCl4, kerosere, ammoni- um eitrate, dilute min- eral aeids.		
Ceramic tile	Mineral acids, ammonium citrate, trisodium phos- phate.	Serub hot 10 percent solu- tion into surface and flush thoroughly with hot water.	
Paint	CCl4, 10 percent HCl acid.	Usually best to remove the paint and repaint.	
Briek and concrete	32 percent HCl acid	If this is not successful eonerete must be re- moved.	
Wood	Hot eitrie aeid, remove the wood with a plane or floor ehippers and grinders.		
Traps and drains	 (1) Flush with water (2) Seour with rust remover. (3) Soak in a solution of citrie aeid. (4) Flush again 	Follow all 4 steps	

H. Emergency procedures [15]

1. Minor spills involving no radiation hazards to personnel

- 1. Notify all other persons in the room at once
- 2. Permit only the minimum number of persons necessary to deal with the spill into the area
- 3. Confine the spill immediately
 - Liquid Spills:

Don protective gloves

Drop absorbent paper on spill

Dry Spills:

Don protective gloves

Dampen thoroughly, taking care not to spread the contamination

- 4. Notify the Radiological Safety Officer (RSO) as soon as possible
- 5. Decontaminate
- 6. Monitor all persons involved in the spill and cleaning
- 7. Permit no person to resume work in the area until a survey is made, and approval of the RSO is secured
- 8. Prepare a complete history of the accident and subsequent activity related thereto for the laboratory records
- 2. Major spills involving radiation hazards to personnel
 - 1. Notify all persons not involved in the spill to vacate the room at once
 - 2. If the spill is liquid and the hands are protected, right the container
 - 3. If the spill is on the skin, flush thoroughly
 - 4. If the spill is on clothing, discard outer or protective clothing at once
 - 5. Switch off all fans
 - 6. Vacate the room
 - 7. Notify the Radiological Safety Officer (RSO) as soon as possible
 - 8. Take immediate steps to decontaminate personnel involved
 - 9. Decontaminate the area under the supervision of the RSO. (Personnel involved in the decontamination must be adequately protected)
 - 10. Monitor all persons involved in the spill and cleaning to determine adequacy of decontamination
 - 11. Permit no person to resume work in the area until a survey is made and approval of the RSO is secured
 - 12. Prepare a complete history of the accident and subsequent activity related thereto for the laboratory records
- 3. Accidents involving radioactive dusts, mists, fumes, organic vapors, and gases
 - 1. Notify all other persons to vacate the room immediately
 - 2. Hold breath and close escape valves, switch off air-conditioning devices, etc., if time permits
 - 3. Vacate room
 - 4. Notify the RSO at once
 - 5. Ascertain that all doors giving access to the room are closed
 - 6. Report at once all known or suspected inhalations of radioactive materials
 - 7. Evaluate the hazard and the necessary safety devices for safe reentry.
 - 8. Determine the cause of contamination and rectify the condition
 - 9. Decontaminate the area
 - 10. Perform air survey of the area before permitting work to be resumed
 - 11. Monitor all persons suspected of contamination
 - 12. Prepare a complete history of the accident and subsequent activity related thereto for the laboratory records.

4. Injuries to personnel involving radiation hazard

- 1. Wash minor wounds immediately, under running water, while spreading the edges of the gash
- 2. Report all radiation accidents involving personnel (wounds, overexposure, ingestion, inhalation) to the Radiological Safety Officer as soon as possible
- 3. Call a physician qualified to treat radiation injuries at once
- 4. The person involved in the radiation injury should return to work unless the RSO or the attending physician do not permit it
- 5. Prepare a complete history of the accident and the subsequent activity related thereto for the laboratory records

5. Fires or other major emergencies

- 1. Notify all other persons in the room and building at once, and alert the fire department
- 2. Attempt to put out fires if radiation hazard is not immediately present
- 3. Notify Safety Division
- 4. Notify the Radiological Safety Officer
- 5. Govern fire-fighting or other emergency activities by the restrictions of the RSO
- 6. Following the emergency, monitor the area and determine the protective devices necessary for safe decontamination
- 7. Decontaminate
- 8. Permit no person to resume work without approval of the RSO
- 9. Monitor all persons involved in combating the emergency
- 10. Prepare a complete history of the emergency and subsequent activity related thereto for the laboratory records

I. United States Nuclear Regulatory Commission inspection and enforcement regional offices [16]

Pagion	0 d dross	Telephone		
Region	Address	Daytime	Nights and Holidays	
I Connecticut, Delaware, District of Co- lumbia, Maine, Maryland, Massachu- setts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Is- land, and Vermont	Region I, USNRC Office of Inspection and Enforcement 631 Park Avenue King of Prussia, Pa. 19406	(2 15) 3 3 7 -115 0	(215) 337-1150	
II Alabama, Florida, Georgia, Kentucky, Mississippi', North Carolina, Panama Canal Zone, Puerto Rico, South Carolina, Tennessee, Virginia, Virgin Islands, and West Virginia	Region II, USNRC Office of Inspection and Enforcement 230 Peachtree St., N.W. Suite 1217 Atlanta, Ga. 30303	(404) 221-4503	(404) 221-4503	
III Illinois, Indiana, Iowa, Michigan, Minne- sota, Missouri, Ohio, and Wisconsin	Region III, USNRC Office of Inspection and Enforcement 799 Roosevelt Road Glen Ellyn, III. 60137	(312) 858-2660	(312)858-2660	
IV Arkansas, Colorado, Idaho, Kansas, Louisiana, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, Utah, and Wyoming	Region IV, USNRC Office of Inspection and Enforcement 611 Ryan Plaza Drive Suite 1000 Arlington, Texas 76012	(817) 334-2841	(817) 334-2841	
V Alaska, Arizona, California, Hawaii, Nevada, Oregon, Washington, and U.S. territories and possessions in the Pacific	Region V, USNRC Office of Inspection and Enforcement 1990 N. California Blvd. Suite 202 Walnut Creek, Calif. 94596	(4 15) 4 8 6 - 3 14 1	(415) 486-3141	
L				

IV. Nuclear Counting Statistics [17]

A. Definition of symbols

N = total count	subscript $g = gross counts$
R = count rate	subscript b = background counts
t = counting time	subscript $n = net count$

B. Working formula for computing standard deviation

- 1. Total count (gross and background): $S_N = \sqrt{N}$
- 2. Count rate (gross and background): $s_R = \sqrt{\frac{R}{t}}$

3. Net count rate:
$$s_{Rn}^2 = s_{Rg}^2 + s_{Rb}^2$$

or

$$s_{Rn} = \sqrt{\frac{R_g}{\frac{R_g}{t_g} + \frac{R_b}{t_b}}}$$

C. Nomogram for determining uncertainty in nuclear counting measurements

A useful chart which allows rapid estimation of the Poisson counting error, taking background into consideration, is given below. In the chart, R_g and R_b are the counting rates of the sample (including background) and the background, respectively; and t_g and t_b are the corresponding counting times. Draw a straight line from a point on Scale A corresponding to R_g/t_g to a point on Scale B corresponding to R_b/t_b . The intersection of this line with Reference Line C is noted; call it the Reference Point. A second straight line is drawn from the Reference Point through the point on the diagonal line (Scale D) that represents the desired confidence level and extended to intersect with Scale E. The magnitude of the error is read from the intersection of this second line with Scale E. For example, if 20,000 counts were collected in 10 minutes with a sample in place and 19 counts were observed in 1 minute of background counting, $R_g/t_g = (20,000/10)/10 = 200$ and $R_b/t_b = (19/1)/1 = 19$. A straight line is drawn through 200 on Scale A and 19 on Scale B. The Reference Point on line C is noted. A second line is drawn from the Reference Point through the point 0.99 on Scale D. The error is found to be 38 counts per minute on Scale E.

D. Optimum distribution of sample and background counting times

Under the constraint of a specified total counting time, the distribution of the time to yield the minimum uncertainty in the net count rate is given by

$$t_{\rm g}/t_{\rm b} = \sqrt{R_{\rm g}/R_{\rm b}}$$
.

E. Uncertainty in count rate meter reading

The Poisson standard deviation of a single instantaneous reading of a count rate meter responding to a constant average disintegration rate is given by

$$S = \sqrt{\frac{r}{2T}}$$
 counts/s

where r is the count rate in counts per second and T is the rate-meter time constant in seconds.

F. Chi-square test of goodness of fit

Pearson's chi-square test is useful for determining the likelihood that a set of observed data are random, e.g., successive counts of a constant radioactive source using the same instrument. The chi-square test determines the probability, P, that repitition of observations would show greater deviations from the assumed distribution than those observed. The statistic chi-square is defined as follows:

$$\chi^{2} = \sum_{i} \frac{\left[(\text{observed value})_{i} - (\text{expected value})_{i}\right]^{2}}{(\text{expected value})_{i}}$$

For nuclear counting data, the expected value is the average count.

P values versus chi-squares are shown in the accompanying table for different degrees of freedom *F*. The number of degrees of freedom is the number of ways the observed distribution can differ from the assumed. For the Poisson distribution, F=n-1 where *n* is the number of observations.

The steps performing Pearson's chi-square test on nuclear counting data that follows a Poisson distribution are as follows:

a. Compute χ^2 from the observed data

b. Read the P value for the observed χ^2 and degrees of freedom. The closer P is to 0.5 the better the observed data fit the assumed distribution, because greater deviations than those observed would be expected 50% of the time due to chance alone. P values between 0.1 and 0.9 are usually taken as sufficient evidence that the observed distribution corresponds to the assumed one. A P value <0.02 means too much dispersion and P>0.98 means the data are too consistent for the observed data to be random.

Table of Chi-Square Values^a [18]

Number of determinations (n)	0.99	0.95	0.90	P 0.50	0.10	0.05	0.01
3	0.020	0.103	0.211	1.386	4.605	5.991	9.210
4	0.115	0.352	0.584	2.366	6.251	7.815	11.345
5	0.297	0.711	1.064	3.357	7.779	9.488	13.277
6	0.554	1.145	1.610	4.351	9.236	11.070	15.086
7	0.872	1.635	2.204	5.348	10.645	12.592	16.812
8	1.239	2.167	2.833	6.346	12.017	14.067	18.475
9	1.646	2.733	3.490	7.344	13.362	15.507	20.090
10	2.088	3.325	4.168	8.343	14.684	16.919	21.666
11	2.558	3.940	4.865	9.342	15.987	18.307	23.209
12	3.053	4.575	5.578	10.341	17.275	19.675	24.725
13	3.571	5.226	6.304	11.340	18.549	21.026	26.217
14	4.107	5.892	7.042	12.340	19.812	22.362	27.688
15	4.660	6.571	7.790	13.339	21.064	23.685	29.141
16	5.229	7.261	8.547	14.339	22.307	24.996	30.578
17	5.812	7.962	9.312	15.338	23.542	26.296	32.000
18	6.408	8.672	10.085	16.338	24.769	27.587	33.409
19	7.015	9.390	10.865	17.338	25.989	28.869	34.805
20	7.633	10.177	11.651	18.338	27.204	30.144	36.191
21	8.260	10.851	12.443	19.337	28.412	31.410	37.566
22	8.897	11.591	13.240	20.337	29.615	32.671	38.932
23	9.542	12.338	14.041	21.337	30.813	33.924	40.289
24	10.196	13.091	14.848	22.337	32.007	35.172	41.638
25	10.856	13.848	15.659	23.337	33.196	36.415	42.980
26	11.524	14.611	16.473	24.337	34.382	37.382	44.314
27	12.198	15.379	17.292	25.336	35.563	38.885	45.642
28	12.879	16.151	18.114	26.336	36.741	40.113	46.963
29	13.565	16.928	18.939	27.336	37.916	41.337	48.278
30	14.256	17.708	19.768	28.336	39.087	42.557	49.588

^a Usually tables in statistical texts give the probability of obtaining a value of χ^2 as a function of F, the number of degrees of freedom, rather than of n, the number of replicate determinations. In using such texts, the value of F should be taken as n-1.

V. In-Vivo Detector Systems

A. Terminology [19-22]

- 1. Response of a detector system is characterized by two parameters, efficiency (also commonly called sensitivity) and resolution.
- 2. Efficiency, E, for any system component is the ratio of the output events to the input events.
 - a. Collimator efficiency, E_c : The ratio of the rate of primary photons passing through the total open collimator area which is exposing the detector to the rate of photons emitted by the source. E_c is dependent only on collimator construction geometry and does not include scatter effects.
 - b. Geometric efficiency (planar source), E_g (cm²): The ratio of the rate of photons passing through the collimator open area to the rate of photons emitted per unit area from a planar source placed on the collimator face.
 - c. Intrinsic efficiency, E_i : The ratio of the counting rate output of the detector system to the photon rate incident on the detector (energy dependent).

- d. Intrinsic detector efficiency, E_d : The ratio of the rate of useful ionizing events in the detector to the incident photon rate on the detector ($E_d = 1 e^{-\mu x}$ where μ is the linear attenuation coefficient for the energy of interest and x is the detector thickness).
- e. Data transfer efficiency, E_{Tr} : The ratio of the counting rate output to the rate of useful ionizing events in the detector. $E_{i} = E_{d} \cdot E_{\text{Tr}}$.
- f. Photopeak efficiency, E_p : The ratio of the count rate output in a defined energy window around the primary photon energy to the incident photon rate on the detector.
- 3. Sensitivity, S, for any system is the ratio of measured count rate to the photons emitted per second for a particular source.
 - a. Point sensitivity, S_p : The ratio of the measured count rate to the photons emitted per second from a point source.
 - b. Line sensitivity, S_1 (cm): The ratio of the measured count rate to the photons emitted per second per unit length of a long line source of uniform radioactivity.
 - c. Plane (area) sensitivity, S_A (cm²): The ratio of the measured count rate to the photons emitted per sec per unit area from a large, thin plane source of uniform radioactivity.
- 4. Field of view (cm²): The area of distribution of a radioactive source which may be seen by the detector (includes the umbra and penumbra).
 - a. Geometric field of view (cm²): The area of distribution of radioactivity as seen by the detector neglecting penetration and scatter and is determined by the collimation geometry.
 - b. Radius of resolution (radius of field of view), R(cm): The radius of the circle in a plane at a given distance from the collimator from which photons must originate (in air) if they are to be incident on the detector (defined for focussing collimators only).
 - c. Geometric depth of focus λ (cm): The distance (total) inside and outside of the focal plane in which the diameter of the collimator umbral region is equal to the radius of resolution, R (focusing collimators only).
- 5. Line spread function, L(x,z): The line spread function describes the variation of the line sensitivity, S_1 , as a function of transverse position x in a plane perpendicular to the collimator axis at a distance z from the collimator. This function (generally bell-shaped) is a measure of the spatial resolution of the detector system.
- 6. Modulation transfer function, MTF (ν): Modulation transfer function is defined as the modulus of the Fourier transform of the line spread function:

MTF (v) =
$$\left| \int_{-\infty}^{\infty} L(x,z) e^{-t v \cdot x} dx \right| / \left| \int_{-\infty}^{\infty} L(x,z) dx \right|$$

The MTF characterizes the spatial frequency (ν) response of the system.

7. Figure of merit, Q(v):

$$Q(v) \equiv \text{Efficiency } X \{ \text{MTF}(v) \}^2$$

8. Spatial resolution (overall), R_0 (cm): The minimum distance between two point sources containing equal amounts of radioactivity which will allow each of the points to be simultaneously distinguished by the imaging system:

$$R_0 = \sqrt{R_g^2 + R_s^2 + R_1^2}$$

- a. Geometric component, R_g (cm): Determined by the geometric configuration of the holes in the collimator. Each collimator hole will define an individual radius of view for a given distance from the collimator.
- b. Scatter component, R_s (cm): Scattered radiation produces an apparent increase in the radius of view which degrades the overall resolution. This scatter effect is a function of the source configuration, depth of the scattering medium, and pulse height analyzer setting.

- c. Intrinsic component, R_1 (cm): Reflects how accurately a given imaging system can localize an event which is recorded by the detector.
- 9. Minimum detectable activity, MDA (μ Ci): MDA $\equiv (3/C) \sqrt{(r_b/t_b)}$ where C is the calibration factor (counts/(min· μ Ci)), r_b is the background counting rate (counts/min), and t_b is the background counting time (min).
- Count information density, CID (cm⁻²): The number of counts recorded per unit object area.
- 11. Nonparalyzing deadtime, T(s): It is the time following any input event during which a system is insensitive. Recovery is not affected by additional input events which occur within time T after the initial event.
- 12. Paralyzing deadtime, $\tau(s)$: It is the time during which a system is unable to provide a second output pulse unless there is a time interval of at least τ between two successive events. Each input event prolongs the full recovery by an additional time τ .

B. Characteristics of detectors

1. Comparison of typical properties of semiconductor, gas filled, and NaI (Tl) detectors [23-25]

		Detec	ctor Type
Parameter	Semiconductor	Gas filled	NaI(Tl)
Energy required to form an electron-hole or ion pair (eV)	3.5 (Si) 2.9 (Ge)	25.40	50 (\sim 1000 to obtain a photoelectron at the photocathode of the PM tube)
Examples of FWHM (and % energy reso- lution) at 140 keV	~0.6 keV (0.4%)	5 keV (3.6%)	18 keV (13%)
Response time (s)	$\sim 10^{-9}$	10 ⁻³	10 ⁻⁷ -10 ⁻⁶

2. Basic properties of solid scintillators [26]

Material	Wavelength of Maximum Emisslon (nm)	Decay Constant (µs)*	Scintillation Cutoff Wavelength (nm)	Index of Refraction**	Density (g/cm³)	Hygro- scopic	γScintillation Conversion Efficiency (%)***
Nal(TI)	410	.23	320	1.85	3.67	Yes	100
CaF ₂ (Eu)	435	.94	405	1.44	3.18	No	50
CsI(Na)	420	63	300	1.84	4.51	Yes	85
CsI(TI)	565	1.0	330	1.80	4.51	No	45
⁶ Lil(Eu)	470-4851	1.4	450	1.96	4.08	Yes	35
TICI(Be,I)	465	0 2	390	2.4	7 00	No	2.5
CsF	390	.005	220	1.48	4.11	Y' s	5
BaF ₂	325	63	134	1.49	4.88	No	10
BI4Ge3O12	480	.30	350	2.15	7 13	No	8
KI(TI)	426	24/2.5²	325	1.71	3.13	Yes	24
CaWO₄	430	9-20 ³	300	1.92	6.12	No	14-18
CdWO₄	530	9-20 ³	450	. 2.2	7.90	No	17-20

Room temperature, best single exponential decay constant, l₀e-λt

** At wavelength of maximum emission *** Referred to Nal(TI) with S-11 photocathode response

1 Primarily used for neutron detection 2 KI (TI) has two scintillation decay components for γ excitation 3 Several decay components have been reported for the tungstates

3. Mass attenuation coefficients for NaI (density = 3.67 g/cm^3) [27]

Photon	Scatt	ering	10	Pair proc	hn tear	Lor	al
mergy	With coherent	Without coherent	electro electro	Nuclear held	Electron field	Wath coherent	Without coherent
$\begin{array}{c} & Me^{4} \\ 1.00 - 02 \\ 1.50 - 02 \\ 2.00 - 02 \\ 3.00 - 02 \end{array}$	$\begin{array}{c} cm^{2}/\mu \\ 2.53+00 \\ 1.69+00 \\ 1.23+00 \\ 7.48-01 \end{array}$	$\begin{array}{c} \epsilon_{m^{t}/\mu} \\ 1.65 - 01 \\ 1.62 - 01 \\ 1.59 - 01 \\ 1.54 - 01 \end{array}$	$\begin{array}{c} & & \\ & 1.36{+}02 \\ & 4.57{+}01 \\ & 2.11{+}01 \\ & 6.70{+}00 \end{array}$	r m*(µ	∙ m²/µ	$r_{m^2/\mu}$ 1.39+02 4.74+01 2.23+01 7.45+00	$\begin{array}{c} cm^2/\mu \\ 1.36{+}02 \\ 4.59{+}01 \\ 2.12{+}01 \\ 6.86{+}00 \end{array}$
$\begin{array}{c} 3.32 - 02 \\ *3.32 - 02 \\ 4.00 - 02 \\ 5.00 - 02 \\ 6.00 - 02 \\ 8.00 - 02 \end{array}$	$\begin{array}{c} 6.60 - 01 \\ 6.60 - 01 \\ 5.28 - 01 \\ 4.10 - 01 \\ 3.36 - 01 \\ 2.49 - 01 \end{array}$	$\begin{array}{c} 1.52 - 01 \\ 1.52 - 01 \\ 1.49 - 01 \\ 1.44 - 01 \\ 1.40 - 01 \\ 1.33 - 01 \end{array}$	$\begin{array}{c} 5.03{+}00\\ 3.03{+}01\\ 1.88{+}01\\ 1.03{+}01\\ 6.28{+}00\\ 2.87{+}00\\ \end{array}$			$\begin{array}{c} 5.69 {+}00\\ 3.09 {+}01\\ 1.93 {+}01\\ 1.07 {+}01\\ 6.62 {+}00\\ 3.12 {+}00 \end{array}$	$5.19+00 \\ 3.04+01 \\ 1.89+01 \\ 1.05+01 \\ 6.42+00 \\ 3.00+00$
$\begin{array}{c} 1.00 - 01 \\ 1.50 - 01 \\ 2.00 - 01 \\ 3.00 - 01 \end{array}$	$\begin{array}{c} 2.02 - 01 \\ 1.49 - 01 \\ 1.24 - 01 \\ 9.99 - 02 \end{array}$	$\begin{array}{c} 1.27 - 01 \\ 1.14 - 01 \\ 1.05 - 01 \\ 9.09 - 02 \end{array}$	$\begin{array}{c} 1.52 \pm 00 \\ 4.76 \pm 01 \\ 2.09 \pm 01 \\ 6.68 \pm 02 \end{array}$			$\begin{array}{c} 1.72 + 00 \\ 6.25 - 01 \\ 3.34 - 01 \\ 1.67 - 01 \end{array}$	$\begin{array}{c} 1.64 + 00 \\ 5.90 - 01 \\ 3.14 - 01 \\ 1.58 - 01 \end{array}$
4.00-01 5.00-01 6.00-01 8.00-01	8.64-02 7.78-02 7.12-02 6.17-02	$\begin{array}{c} 8.15 - 02 \\ 7.44 - 02 \\ 6.88 - 02 \\ 6.05 - 02 \end{array}$	3.10-02 1.77-02 1.14-02 5.88-03			$\begin{array}{c} 1.17 - 01 \\ 9.55 - 02 \\ 8.26 - 02 \\ 6.76 - 02 \end{array}$	1.12-01 9.21-02 8.02-02 6.63-02
$\begin{array}{c} 1.00 + 00 \\ 1.50 + 00 \\ 2.00 + 00 \\ 3.00 + 00 \end{array}$	5.49-02 4.45-02 3.78-02 2.97-02	$5.43 - 02 \\ 4.42 - 02 \\ 3.77 - 02 \\ 2.97 - 02 $	3.66-03 1.66-03 1.02-03 5.46-04	$7.36-04 \\ 2.49-03 \\ 6.40-03$	1.03-05	5.86-02 4.69-02 4.13-02 3.66-02	5.80-02 4.66-02 4.12-02 3.66-02
$\begin{array}{r} 4.00+00\\ 5.00+00\\ 6.00+00\\ 8.00+00\end{array}$	2.48-02	$\begin{array}{c} 2.47 - 02 \\ 2.14 - 02 \\ 1.89 - 02 \\ 1.54 - 02 \end{array}$	3.61-04 2.70-04 2.11-04 1.47-04	9.89-03 1.29-02 1.55-02 1.97-02	$\begin{array}{c} 4.25 - 05 \\ 8.35 - 05 \\ 1.28 - 04 \\ 2.20 - 04 \end{array}$	3.51-02	3.50-02 3.46-02 3.47-02 3.55-02
1.00+01		1.32-02	1.13-04	2.32-02	3.00-04		3.68-02

energy	Thic	kness of th	e NaI (TI) cry	stal
(MeV)	1/2 inch	1 inch	2 inches	4 inches
0.122	0.99	1.00	1.00	1.00
0.140	0.95	1.00	1.00	1.00
0.279	0.55	0.79	0.96	1.00
0.364	0.44	0.68	0.90	1.00
0.412	0.40	0.64	0.87	0.98
0.511	0.34	0.57	0.81	0.96
0.662	0.29	0.50	0.75	0.94
0.840	0.26	0.45	0.70	0.91
1.17	0.22	0.40	0.63	0.86
1.33	0.21	0.37	0.60	0.84
2.62	0.16	0.30	0.51	0.75
2.75	0.16	0.29	0.50	0.69

5. Total linear attenuation coefficients for Ge, Si, CdTe, NaI (Tl), and CsI detectors [28,29] (total attenuation is defined here without coherent scattering or other minor effects)

C. Deadtime considerations [30-31]

1. Nonparalyzing system

 $n = \frac{R}{1-RT}$, with the two source method,

$$T \simeq \frac{2(R_1 + R_2 - R_{12} - R_b)}{(R_1 + R_2 - R_b) (R_{12} - R_b)}, \quad \text{for } R_1 \simeq R_2.$$

2. Paralyzing system

 $n = Re^{n\tau}$, with the two source method.

$$T \simeq \frac{2R_{12}}{(R_1 + R_2)^2} \ln \frac{(R_1 + R_2)}{R_{12}}, \text{ for } R_1 \simeq R_2.$$

n is the true counting rate, R is the observed counting rate, and subscripts 1,2,12,b refer to source 1, source 2, combined source 1 and 2, and the background, respectively.

Measured deadtime performance of scintillation cameras was found to more closely approximate the paralyzable model than the nonparalyzable. 39 cameras yielded a range of 4.3 to 10 μ s with a 20% window centered on ^{99m}Tc.

3. Survey of measured deadtime performance [30]

			Deadtime (µs)			
No. of cameras	Manufacturer	Models	min.	max.	avg.	
1	General Electric	Maxicamera			6.2	
15	Ohio Nuclear	100, 110, 120				
		400, 410	5.7	10.1ª	7.7	
13	Picker	4-11, 4-12	4.3	7.6	5.3	
		4–15, Dyna-Mo				
10	Searle	pho/gamma V	4.5 ^b	5.4	4.9	
		LFOV, LEM	5.2	7.2	6.0	
9	Older-generation cameras					
	Nuclear-Chicago	Various types	6.5	29.0	15.6	
	Nuclear-Data					
	Picker					

^a With tape-recording system.

^b High-rate switch on.

^c Normal rate.

D. Instrumentation

1. Rectilinear Scanners

a. Characteristics of focusing collimators [32-33] (see sec. 2f)

(i) Radius of resolution: R = 2rf/a where r is the collimator hole radius (near the detector), f is the focal length, a is the collimator length.

(ii) Geometric efficiency (planar source):
$$E_{g} = \frac{N\pi r^{2}R^{2}}{16(f+a)^{2}}$$

where N is the number of circular holes in a hexagonal array.

(iii) Plane sensitivity:
$$S_A \simeq \frac{\pi r^2 R^2}{16 (f+a)^2} \cdot \frac{3D^3}{4(2r+t)^2} E_p$$

where D is the detector diameter, t is the septa thickness, and E_p is the photopeak efficiency.

(iv) Geometric depth of focus: $\lambda = 2R(a+f)/D_0$

where D_0 is the maximum separation (between outer hole edges) of the collimator hole array of the face near the detector.

(v) Count information density:
$$CID = \frac{(CR)}{(SS)} \cdot \frac{1}{(LS)}$$

where CR is the count rate (min⁻¹), SS is the scan speed (cm/min), and LS is the line spacing (cm). Optimal count rate densities are on the order of 800 to 1000 counts per cm².

2. Gamma cameras

a. Characteristics of parallel hole collimators [20,33,34,35] (see sec. 2f)

(i) Geometric spatial resolution:
$$R_g = 2r \cdot \frac{(a_e + b + c)}{a_e}$$

where r is the radius of the collimator holes, b is the distance from the collimator face to the object, c is distance between the collimator upper surface and the center of the detector (crystal) and a_e is the effective collimator length. $a_e \cong a - 2\mu^{-1}$ where a is the actual collimator length and μ is the total linear attenuation coefficient for the given material and energy ($\mu^{-1} \equiv$ mean free path).

(ii) Septal thickness considerations: The shortest distance that a photon may travel through the septa (w) should be equal to or greater than 3 times the mean free path. With w known, the septal thickness may be calculated: t = 4rw/(a-w)

(iii) Collimator efficiency:
$$E_c = K^2 \cdot \frac{16 r^4}{a_e^2 (2r+t)^2}$$

where t is the septum thickness and K is a constant which depends on the shape and distribution of the holes. Experimentally, $K \approx 0.28$ for square holes in a rectangular array and $K \approx 0.24$ for circular holes in a hexagonal array.

(iv) Geometric efficiency:
$$E_{\rm g} = \frac{NA_0\pi r^4}{4A_{\rm d} a_{\rm e}^2}$$

where N is the number of holes, A_0 is the object area, and A_d is the area of the field of view of the detector.

(v) Plane sensitivity:
$$S_A \simeq \frac{\pi r^4}{4a^2} \cdot \frac{3D^2}{4(2r+t)^2} E_p$$

where D is the detector diameter and E_p is the photopeak efficiency.

b. Characteristics of pinhole collimators [35] (see sec. 2f)

(i) Geometric spatial resolution: $R_g = \frac{(a+b)d_e}{a}$

where a is the aperture (pinhole) to crystal central plane distance and d_e is the effective aperture diameter.

(ii) Overall resolution: $R_0 = \sqrt{R_g^2 + (\frac{b}{a}R_s)^2 + R_s^2}$

(iii) Effective diameter: $d_e = \{d(d+2\mu^{-1} \tan \alpha/2)\}^{\frac{1}{2}}$ where d is the aperture physical diameter and α is the angle defined by the collimator walls.

(iv) Collimator efficiency: $E_c = \frac{d_c^2 \sin^3 \theta}{16 b^2}$

c. Characteristics of converging collimators [34] (see sec. 2f)

(i) Geometrical spatial resolution:

$$R = \left[\frac{2r(a'_{e}+b+c)}{a'_{e}}\right] \left[\frac{1}{\cos\theta}\right] \left[1 - \frac{c+a'_{e}/2}{f+a'_{e}+c}\right]$$

where f is the focal length and $a'_e = (a - 2\mu^{-1})/\cos\theta$

(ii) Collimator efficiency:
$$E_c = \frac{K^2 \ 16r^4}{a_e^{\prime 2} \ (2r+t)^2} \cdot \frac{f^2}{(f-b)^2}$$

d. Characteristics of diverging collimators [36] (see sec. 2f)

(i) Geometric spatial resolution:

$$R_{g} = \left[\frac{2r(a'_{e}+b+c)}{a'_{e}}\right] \left[\frac{1}{\cos\theta}\right] \left[1 + \frac{a'_{e}+2c}{2f}\right]$$

where $a'_{e} = (a - 2\mu^{-1})/\cos\theta$.

(ii) Collimator efficiency:

$$E_{\rm c} = \left[\frac{{\rm K4r}^2}{a'_{\rm e}(2r+t)}\right]^2 \quad \left[\frac{f+a+c}{f+a+b+c}\right]^2$$

e. Some characteristics of typical focusing collimators [37]

Collimator type and measurement conditions (analyzer window settings)	Focal length (cm)	Plane sensitivity $ \begin{pmatrix} cpm \cdot cm^{2} \\ \mu Ci \end{pmatrix} $ (in focal plane)	FWHM (cm) (in focal plane)	MTF in the focal plane for 0.4 cycles per cm	Depth of field (cm) ^a
A. Low energy					
$^{141}Ce~(130-150 \text{ keV})$	8.8	33,400	1.45	0.324	4.8
	8.8	4,600	0.59	0.834	4.9
	11.9	21,600	1.30	0.399	5.4
B. Aedium energy					
1 (344–384 keV)	10.5	36,000	2.08	0.081	4.4
	10.9	9,020	1.26	0.382	5.8
	8.7	28,000	1.02	0.443	3.8
C. High energy					
~Sr (494–534 keV)	12.1	15,400	1.46	0.323	5.9
	12.6	7,530	0.86	0.319	6.2
	7.2	18,700	1.66	0.194	4.2

^a The "Depth of field" is defined as the distance (axial) between points where the MTF is 60.7% of the peak MTF as given in the focal plane.

Focusing and Converging [32, 34]

g. Examples of experimental FWHM values of the line spread function for various physical pinhole diameters (^{99m}Tc at 20% window) [38]

Pinhole diameter and insert material	Approxim alo:	Relative sensitivity		
	6 cm	9 cm	13 cm	
3 mm (Lead)	0.30	0.36	0.46	1
5 mm (Lead + Tungsten)	0.41	0.50	0.60	2.4
9 mm (Lead + Tungsten)	0.63	0.82	0.95	6.9

h. Characteristics of a gamma camera with small field of view [39]

FWTM

Parameter	5,000 cps ^a	50,000 cps ^a
Energy resolution		
(140 keV)	12.3%	12.4%
Intrinsic line sprea	ad function	
FWHM FWTM	3.8±0.1 mm 8.0±0.2 mm	3.8±0.2 mm 8.5±0.3 mm
Linearity		
range ^b	+0.9%, -1.1%	
Uniformity		
range max slope	+5.1%,-4.3% 0.7%/pixel	+ 5.6%,-4.4% 1.0%/pixel
Extrinsic line spre	ad function ^c	
FWHM	9.5±0.2 mm	

^a As measured on the camera console scaler.

^b Error in position in terms of % of the field of view.

 $17.1 \pm 0.4 \text{ mm}$

^c Data includes 48 samples of the line spread function within the field of view.

Collimator type	Length (cm)	Nominal number of holes	Suggested maximum energy (keV)	Sensitivity (counts/(min·mCi))	Collimator ^a FWHM (mm)	Diameter of field of view (cm)
Parallel hole	3.6	15,600	140	175,000 (^{99m} Tc)	9.1	38
Parallel hole	3.6	8,700	140	350,000 (^{99m} Tc)	13.0	38
Parallel hole	6.4	2,600	400	175,000 (¹³¹ I)	14.3	38
Converging	3.8	39,000	200	70,000 (^{99m} Tc) at 10 cm	3.2	26 at 9 cm
Converging	3.8	8,500	200	560,000 (^{99m} Tc) at 10 cm	8.1	26 at 9 cm
Parallel hole	2.5	40,000	140	$108,500 (^{99m}Tc)$	7.4	38

^a For a source 10 cm from the collimator face for the isotope noted in the sensitivity column.

j. Effect of distance on system spatial resolution performance for various collimator types (A. High-sensitivity; B. diverging; C. all-purpose; D. converging; E. high-resolution; F. pinhole) [20]

k. Effect of collimator-planar source distance on geometrical efficiency for various collimator types in comparison with all-purpose (AP) collimator (A. High-sensitivity; B. converging; C. all-purpose; D. diverging; E. high-resolution; F. pinhole) [20]

References to Chapter Two

- [1] Johns, H. E., and Cunningham, J. R., The Physics of Radiology, C. Thomas, Springfield, IL (1977).
- [2] Radiological Health Handbook, Bureau of Radiological Health, U.S. Public Health Service, Consumer Protection and Environmental Health Service, U.S. Government Printing Office, Washington, DC (1970).
- [3] Lederer, C. M., Hollander, J. M., and Perlman, I., Table of Isotopes, (Sixth Ed.), Wiley, New York (1967).
- [4] Loevinger, R., and Berman, M., A Revised Schema for Calculating the Absorbed Dose from Biologically Distributed Radionuclides, MIRD Pamphlet No. 1, Revised, Society of Nuclear Medicine, New York, NY (1976).
- [5] Snyder, W. S., et al., A Tabulation of Dose Equivalent per Microcurie-Day for Source and Target Organs of an Adult for Various Radionuclides, ORNL-5000, Oak Ridge, TN (1974).
- [6] Webster, W. E., Alpert, N. M., and Brownell, G. L., Radiation Doses in Pediatric Nuclear Medicine and Diagnostic X-ray Procedures, p. 34, in *Pediatric Nuclear Medicine*, James, A. E., Wagner, H. N., and Cook, R. E., (Eds.), W. B. Saunders Co., Philadelphia, PA (1974).
- [7] Kereiakes, J. G., et al., Pediatric Radiopharmaceutical Dosimetry, in *Radiopharmaceutical Dosimetry Symposium*. U.S. HEW 76-8044, Bureau of Radiological Health, U.S. Government Printing Office, Washington, DC (1976).
- [8] Kereiakes, J. G., and Feller, P. A., In vivo Dosimetry of Beta and Gamma-Emitting Radiopharmaceuticals, in Handbook of Medical Physics, CRC Press, Cleveland, OH (1978).
- [9] Kaul, A., Roedler, H. D., and Hine, G. L., p. 423, in *Medical Radionuclide Imaging*, Vol. 2, International Atomic Energy Agency, Vienna, Austria (1977).
- [10] Appendix, p. 269, in Nuclear Medicine in Clinical Pediatrics, Handmaker, H., and Lowenstein, J. M., (Eds.), Society of Nuclear Medicine, New York (1975).
- [11] Smith, E. M., and Warner, G. G., Estimates of Radiation Dose to the Embryo from Nuclear Medicine Procedures, J. Nucl. Med. 17, 836 (1976).
- [12] Book, S., and Goldman, M., Thyroidal Radioiodine Exposure of the Fetus, Health Phys. 29, 874 (1975).
- [13] Conditions and Limitations on the General License Provision of 10 CFR 150.20, U.S. Nuclear Regulatory Commission, Washington, DC (1971).
- [14] Saenger, E. L., (Ed.), Medical Aspects of Radiation Accidents, U.S. Atomic Energy Commission, Washington, DC (1963).
- [15] Evaluation of Radiation Emergencies and Accidents, IAEA Report 152, International Atomic Energy Agency, Vienna, Austria (1974).
- [16] Notice to Employees, Form NRC-3, U.S. Nuclear Regulatory Commission, Washington, DC (1976).

- [17] Technical Bulletin No. 14, Nuclear Chicago Corporation, Illinois (1962).
- [18] Simmons, G. H., A Training Manual for Nuclear Medicine Technologists, BRH/DMRE 70-3, Bureau of Radiological Health, U.S. Public Health Service, U.S. Government Printing Office, Washington, DC (1970).
- [19] MacIntyre, W. J., et al., Sensitivity and Resolution in Radioisotope Scanning: A Report to the ICRU, p. 391, in Medical Radioisotope Scintigraph—Proceedings, IAEA, Vienna, Austria (1969).
- [20] Rollo, F. D., and Harris, C. C., Factors Affecting Image Formation, p. 387, in Nuclear Medicine Physics, Instrumentation, and Agents, Rollo, F. D. (Ed.), Mosby Co., St. Louis, MO (1977).
- [21] Hine, G. J., Sodium Iodine Scintillators, p. 95, in Instrumentation in Nuclear Medicine, Volume I, Hine, C. G., (Ed.), Academic, New York (1967).
- [22] Beck, R. N., and Harper, P. V., Criteria for Comparing Radioisotope Imaging Systems, p. 348, in Fundamental Problems in Scanning, Gottschalk, A. and Beck, R. N., (Eds.), C. Thomas, Springfield, IL (1968).
- [23] Johns, H. E., and Cunningham, J. R., The Physics of Radiology, C. Thomas, Springfield, IL (1974).
- [24] Ter-Pogossian, M. M., and Phelps, M. E., Semiconductor Detector Systems, Sem. Nuc. Med. 3, 343 (1973).
- [25] Rollo, F. D., Detection and Measurement of Nuclear Radiations, p. 192, in Nuclear Medicine Physics, Instrumentation, and Agents, Rollo, F. D., op. cit.
- [26] Harshaw Scintillation Phosphors, 3rd edition, Harshaw Chemical Co., Solon, OH (1975).
- [27] Hubbell, J. H., Photon Cross Sections, Attenuation Coefficients, and Energy Absorption Coefficients from 10 keV to 100 GeV, NSRDS-NBS 29, U.S. Government Printing Office, Washington, DC (1969).
- [28] Hoffer, P. B., Beck, R. N., and Gottschalk, A., (Eds.), Semiconductor Detectors in the Future of Nuclear Medicine. Society of Nuclear Medicine (1971).
- [29] Scintillation Phosphors, The Harshaw Chemical Company, Cleveland, OH (1962).
- [30] Adams, R., Hine, G. J., and Zimmerman, C. C., Deadtime Measurements in Scintillation Cameras Under Scatter Conditions Simulating Quantitative Nuclear Cardiography, J. Nucl. Med. 19, 538 (1978).
- [31] Adams, R., Jansen, C., Grames, G. M., and Zimmerman, C. C., Deadtime of Scintillation Camera Systems-Definitions, Measurements and Applications, Med. Phys. 1, 198 (1974).
- [32] Johnson, R. F., Operation and Quality Control of the Rectilinear Scanner, p. 361, in Nuclear Medicine Physics, Instrumentation, and Agents, Rollo, F. D., op. cit.
- [33] Chandra, R., Introductory Physics of Nuclear Medicine, Lea and Febiger (1976).
- [34] Moyer, R. A., A Low Energy Multihole Converging Collimator Compared with a Pinhole Collimator, J. Nucl. Med. 15, 59 (1974).
- [35] Anger, H. O., Radioisotope Cameras, p. 485, in Instrumentation in Nuclear Medicine, Volume 1, Hine, C. G., op. cit.
- [36] Muehllehner, G., A Diverging Collimator for Gamma Ray Imaging Cameras, J. Nucl. Med. 10, 197 (1969).
- [37] Ehrhardt, J. C., Oberly, L. W., and Lensink, S. C., Imaging Characteristics of Gamma-Ray Collimators, Radiology 117, 433 (1975).
- [38] Nishiyama, H., et al., Functional Parameters of the Pinhole Collimator, Abstract, presented at Annual Meeting of the Radiological Society of North America (1977).
- [39] Lewellen, T. K., et al., A Field Procedure for the Quantitative Assessment of Nuclear Imaging Cameras, J. Nucl. Med. 19, 954 (1978).
- [40] Hendee, W. R., Scintillation Camera, p. 57, in The Physics of Clinical Nuclear Medicine, AAPM Summer School (1977).

Notes

CHAPTER THREE: DIAGNOSTIC RADIOLOGY

I. Physical Characteristics of Screens and Films [1,27]

A. Explanation of sections B1-B3

- The numbers in the body of the tables give the relative speeds of the various film—screen combinations, normalized to a value of 0.8 (mR)⁻¹ for par-speed screens used with XRP film, for peak potential of 80 kV (three phase), ~35 mm aluminum filtration, "standard processing," and narrow beam geometry.
- The average gradient represents the slope of the portion of the characteristic curve (optical density vs log exposure) between net densities of 0.25 and 2.0 above base fog density.
- f_{50} and f_{10} represent those values of the spatial frequency (cycles/mm) at which the modulation transfer function is 0.5 and 0.1, respectively.

B. Tables of film-screen data

1. Relative speeds of Kodak X-Omatic and Du Pont screens and blue-sensitive film

	Film		Kodak XG	Du Pont Cronex 7	Kodak XRP	Du Pont Cronex 4	Du Pont Cronex 6	Du Pont Cronex 6+	3M Type R	Kodak XS	Kodal XR
Screens	avera gradi	ent	3.0	3.0	2.8	3.0	2.2	2.6	2.4	2.6	2.4
	\mathbf{f}_{50}	\mathbf{f}_{10}									
X-Omatic fine (BaPbSO ₄) Yellow Dye	3.1	9.7	0.1	5		0	.3			0.45	0.6
X-Omatic regular (BaSrSO ₄ :Eu)	1.5	4.8	0.8			1	.6	1		2.4	3.2
Detail (CaWO₄) Yellow Dye	2.5	10.5	0.1			0.	.2			0.3	0.4
Fast Detail (CaWO ₄)	1.8	6.5	0.2			0.	.4			0.6	0.8
Par (CaWO ₄)	1.4	5.0	0.4			0.	.8			1.2	1.6
Hi-speed (BaPbSO₄)	1.0	3.2	0.6			1.	.2			1.8	2.4
Hi-plus (CaWO₄)	1.1	3.3	0.8			1.	.6			2.4	3.2
Lightning Plus (CaWO ₄)	0.9	3.2	1.2			2.	.4			3.6	4.8
Quanta II (BaFCl)	1.1	3.3	1.6			3.	.2			4.8	6.4
Quanta III (La_2O_2Br)	0.9	3.0	3.2			6.	.4			9.6	12.8

2. Relative speeds of Kodak and 3M rare-earth screens and green-sensitive film

	Film		Kodak Ortho G (SO-225)	3M XD	3М ХМ
	avera gradi	ent	2.4	2.9	2.2
Screens	f ₅₀	\mathbf{f}_{10}			
Kodak Lanex Fine (La ₂ O ₂ S:Tb Gd ₂ O ₂ S:Tb)	2.1	7.8	1.0	1.3	3.3
3M Alpha 4 (La ₂ O ₂ S:Tb Gd ₂ O ₂ S:Tb) Pink Dye	1.7	5.8	1.5	2.0	5.0
3M Alpha 8 (La ₂ O ₂ S:Tb Gd ₂ O ₂ S:Tb)	1.2	3.3	3.0	4.0	10.0
Kodak Lanex Regular (SO-359) (La ₂ O ₂ S:Tb Gd ₂ O ₂ S:Tb)	1.1	.3.3	3.5	4.7	11.7

3. Relative speeds of U.S. Radium and G.E. rare-earth screens and blue-sensitive film

	Filr aver:	n age	Kodak XG	Du Pont Cronex 7	Kodak XRP	Du Pont Cronex 4	Du Pont Cronex 6	Du Pont Cronex 6+	3M Type R	Kodak XS	Kodak XR
Screens	grau	ient	<u> </u>	<u></u>	<u> </u>	5.0		2.0		2.0	2.4
	f _{so}	f ₁₀									
U.S.R. Rarex BG Detail (75% Gd ₂ O ₂ S:Tb 25% Y ₂ O ₂ S:Tb)	1.4	3.9	0	.5			1.0			1.5	2.0
U.S.R. Rarex BG Mid-speed (75% Gd ₂ O ₂ S:Tb 25% Y ₂ O ₂ S:Tb)	1.1	3.5	1	.0			2.0			3.0	4.0
U.S.R. Rarex BG Hi-speed (75% Gd ₂ O ₂ S:Tb 25% Y ₂ O ₂ S:Tb)	0.8	2.3	2	.0			4.0			6.0	8.0
G.E. Blue Max 1 (La ₂ O ₂ Br)	1.5	4.3	1	.0			2.0			3.0	4.0
G.E. Blue Max 2 (La ₂ O ₂ Br)	1.2	3.2	2	.0			4.0			6.0	8.0

II. Machine Output Data

A. Average exposure rates

1.	Average exposure	rates as a fui	ction of peak	tube potential	and distance ^a	[2]
----	------------------	----------------	---------------	----------------	---------------------------	-----

Distance fr	om source to)					
point of me	asurement	40	60	70	80	90	100	125
in	cm	Roe	entgens	per 10	0 millia	атреге	second	ls
12	30	1.8	2.8	4.2	5.8	8.0	9.8	15.2
18	46	0.8	1.3	1.8	2.5	3.4	4.2	6.7
24	61	0.4	0.7	1.1	1.4	1.9	2.3	3.8
39	100	0.2	0.3	0.4	0.5	0.7	0.9	1.4
54	137	0.1	0.1	0.2	0.3	0.4	0.5	0.7
72	183	0.1	0.1	0.1	0.2	0.2	0.3	0.4

^a Measured in air with total filtration equivalent to 2.5 mm aluminum; single phase, full wave rectification.

2. Calculated exposure rates as a function of peak tube potential and total filtration (full wave rectification) [3]

3. Exposure rates as a function of peak tube potential [2,3,4]

Curves 1 were obtained [4] with an x-ray source that showed intensity fluctuations of $\pm 15\%$ about the mean (three phase). Curves 2 were calculated [3] for full-wave rectification (single phase). Curve 3 is a graphic representation of data tabulated in [2] (single phase).

B. Beam quality measurement

1. Half-value layers as a function of filtration and tube potential for diagnostic units^a [5]

	Peak Potential (kV)										
Total Filtration mm Al	30	40	50	60	70	80	90	100	110	120	
	Typical half-value layers in millimeters of aluminum										
0.5	0.36	0.47	0.58	0.67	0.76	0.84	0.92	1.00	1.08	1.16	
1.0	0.55	0.78	0.95	1.08	1.21	1.33	1.46	1.58	1.70	1.82	
1.5	0.78	1.04	1.25	1.42	1.59	1.75	1.90	2.08	2.25	2.42	
2.0	0.92	1.22	1.49	1.70	1.90	2.10	2.28	2.48	2.70	2.90	
2.5	1.02	1.38	1.69	1.95	2.16	2.37	2.58	2.82	3.06	3.30	
3.0		1.49	1.87	2.16	2.40	2.62	2.86	3.12	3.38	3.65	
3.5	-	1.58	2.00	2.34	2.60	2.86	3.12	3.40	3.68	3.95	

^a For full-wave rectified, single phase, potential. Derived from [6] by interpolation and extrapolation.
2. Half-value layers as a function of tube potential for three-phase generators

Titl				Peak P	otential ((kV)			
Filtration mm Al	60	70	80	90	100	110	120	130	140
		H	alf-value	layers in	ı millime	ters of a	luminum		
2.5 ^a	2.2	2.4	2.7	3.1	3.3	3.6	4.0		
3.0	2.3	2.6	3.0	3.3	3.6	4.0	4.3	4.6	5.0
3.5"	2.6	2.9	3.2	3.6	3.9	4.3	4.6		

^aEstimated from [2] and [7] ^bFrom [7]

3. Unique value layers in aluminum as a function of peak tube potential and waveform [7]

III. Patient Dose Calculation

A. Tissue-Air Ratios (TAR)

1. Dose/exposure ratios^a (TAR•f) as a function of peak potential and depth. (40×40 cm field; 80 cm SID; three phase, $\pm 15\%$ ripple) [4]

kv kv Depth (cm) 70 80 90 100 120 0 1.02 1.09 1.12 1.14 1.15 2 1.00 1.07 1.10 1.13 1.15 4 0.709 0.794 0.834 0.878 1.00 6 0.501 0.580 0.621 0.665 0.744 8 0.354 0.423 0.463 0.504 0.57 10 0.250 0.309 0.345 0.382 0.444 12 0.177 0.226 0.257 0.289 0.34 14 0.125 0.165 0.192 0.219 0.26 16 0.088 0.120 0.143 0.166 0.20 18 0.062 0.088 0.107 0.126 0.15 20 0.044 0.064 0.080 0.095 0.12						
$ \begin{smallmatrix} 0 & 1.02 & 1.09 & 1.12 & 1.14 & 1.15 \\ 2 & 1.00 & 1.07 & 1.10 & 1.13 & 1.15 \\ 4 & 0.709 & 0.794 & 0.834 & 0.878 & 1.00 \\ 6 & 0.501 & 0.580 & 0.621 & 0.665 & 0.74 \\ 8 & 0.354 & 0.423 & 0.463 & 0.504 & 0.57 \\ 10 & 0.250 & 0.309 & 0.345 & 0.382 & 0.444 \\ 12 & 0.177 & 0.226 & 0.257 & 0.289 & 0.34 \\ 14 & 0.125 & 0.165 & 0.192 & 0.219 & 0.26 \\ 16 & 0.088 & 0.120 & 0.143 & 0.166 & 0.20 \\ 18 & 0.062 & 0.088 & 0.107 & 0.126 & 0.15 \\ 20 & 0.044 & 0.064 & 0.080 & 0.095 & 0.12 \\ 10 & 0.250 & 0.041 & 0.064 & 0.080 & 0.095 & 0.12 \\ 10 & 0.041 & 0.064 & 0.080 & 0.095 & 0.12 \\ 10 & 0.041 & 0.064 & 0.080 & 0.095 & 0.12 \\ 10 & 0.041 & 0.064 & 0.080 & 0.095 & 0.12 \\ 10 & 0.041 & 0.064 & 0.080 & 0.095 & 0.12 \\ 10 & 0.041 & 0.064 & 0.080 & 0.095 & 0.12 \\ 10 & 0.041 & 0.064 & 0.080 & 0.095 & 0.12 \\ 10 & 0.041 & 0.064 & 0.080 & 0.095 & 0.12 \\ 10 & 0.041 & 0.064 & 0.080 & 0.095 & 0.12 \\ 10 & 0.041 & 0.064 & 0.080 & 0.095 & 0.12 \\ 10 & 0.041 & 0.064 & 0.080 & 0.095 & 0.12 \\ 10 & 0.041 & 0.064 & 0.080 & 0.095 & 0.12 \\ 10 & 0.041 & 0.064 & 0.080 & 0.095 & 0.12 \\ 10 & 0.041 & 0.064 & 0.080 & 0.095 & 0.12 \\ 10 & 0.041 & 0.061 & 0.080 & 0.095 & 0.12 \\ 10 & 0.041 & 0.064 & 0.080 & 0.095 & 0.12 \\ 10 & 0.041 & 0.061 & $	Depth (cm) 70	80	- kV 90	100	120
20 0.044 0.064 0.080 0.095 0.12	0 2 4 6 8 10 12 14 16 18	1.02 1.00 0.709 0.501 0.354 0.250 0.177 0.125 0.088 0.062	1.09 1.07 0.794 0.580 0.423 0.309 0.226 0.165 0.120 0.088	1.12 1.10 0.834 0.621 0.463 0.345 0.257 0.192 0.143 0.107	1.14 1.13 0.878 0.665 0.504 0.382 0.289 0.219 0.166 0.126	1.15 1.15 1.00 0.742 0.573 0.443 0.342 0.264 0.204 0.158
	20	0.044	0.064	0.080	0.095	0.122

Total Filtration = 2.5 mm Al

Fotal	Filtration	=	3 5	mm	A
Ula	1 11 11 11 11 11 11		J.J	111111	

			kV		
Depth (cm) 70	80	90	100	120
0 2 4 6 8 10 12 14 16 18	1.07 1.06 0.791 0.566 0.406 0.291 0.208 0.149 0.107 0.077	$\begin{array}{c} 1.10\\ 1.09\\ 0.845\\ 0.625\\ 0.461\\ 0.340\\ 0.250\\ 0.185\\ 0.136\\ 0.100\end{array}$	1.12 1.11 0.904 0.679 0.510 0.383 0.288 0.217 0.163 0.122	1.14 1.15 0.955 0.726 0.552 0.420 0.320 0.243 0.185 0.141	1.15 1.20 1.09 0.813 0.630 0.489 0.379 0.294 0.228 0.177
20	0.055	0.074	0.092	0.107	0.137

^a Absorbed dose to a given point in water (rad) per unit of exposure (R) at the same point in the absence of water. The *f*-factor is taken to be 0.875.

2. Effect of field size on TAR [4]

Tissue-air ratios for 10×10 and 20×20 cm fields expressed as fractions of the TAR's for a 40×40 cm field. The effect of field size on TAR's is independent of peak potential from 70 to 120 kV, and filtration from 2.5 to 3.5 mm Al.

B. Backscatter Factors

1. Variation of backscatter factors with field diameter and half-value layer in mammography. (Each entry is subject to an estimated error of 0.25.) [8]

Field diameter	Half	-value la	ver (mm)	41)
(cm)	0.40	0.55	0.89	1.29
2	1.06	1.09	1.11	1.14
5	1.07	1.12	1.14	1.19
10	1.07	1.13	1.17	1.24
15	1.08	1.14	1.19	1.26
25	1.08	1.15	1.20	1.27

2. Backscatter factors as a function of peak tube potential. (Single phase, full wave rectification) [9]

	Backscatt	er Factor
	Field s	ize (cm)
kV	20×25	35×43
40	1.16	1.16
60	1.27	1.27
80	1.34	1.35
100	1.38	1.40
130	1.41	1.45
150	1.42	1.46

C. Central axis depth doses in water [7]

Central axis depth dose in water: single-phase system, 30-inch source-to-skin distance, 14×17-inch field at 40 inches.

Central axis depth dose in water: three-phase system, 30-inch source-to-skin distance, 14×17-inch field at 40 inches.

D. Estimated patient doses

1. Estimated mean dose indexes and technique factors by type of exam/projection^{*} [10]

	Exposure at skin entrance	Gonad	al dose	Red Bone	Thyroid	Exposure conditions		
	without backscatter (mR)	M (mrad)	F (mrad)	marrow dose (mrad)	dose (mrad)	kV (peak) Mean (range)	mAs Mean (range)	
Chest (P/A)	22 ± 0.9	< 0.5	< 0.5	1.9 ± 0.1	0.5	80 (40-150)	12 (1-100)	
Skull (lateral)	241 ± 23	< 0.5	< 0.5	6.9 ± 0.7	45±8	72 (48–94)	50 (5-150)	
Abdomen (KUB) (A	$A/P)644 \pm 24$	13.7 ± 1.8	146 ± 6.7	23.4 ± 1.2	< 0.5	78 (45-125)	601 (4-2471)	
Retrograde								
Pyelogram (A/P)	722 ± 74	17.2 ± 2.9	161 ± 17.7	26.4 ± 3.1	< 0.5	77 (55-106)	91 (6-300)	
Thoracic spine								
(A/P)	724 ± 271	< 0.5	0.7 ± 0.8	18.8 ± 3.2	65.7±55.7	75 (57–90)	82 (12-200)	
Cervical spine								
(A/P)	238 ± 22	< 0.5	< 0.5	3.2 ± 1.3	157±9.1	69 (40-100)	48 (2-200)	
Lumbo-sacral								
spine (A/P)	808 ± 44	13.2 ± 1.3	145 ± 6.7	19.7 ± 0.9	< 0.5	77 (55–106)	112 (15-450)	
Full spine (A/P)	315 ± 46	23.9 ± 15.1	40.7 ± 8.4	18.5 ± 2.0	136 ± 30	79 (64–96)	173 (20-400)	
Foot (D/P)	263 ± 43					61 (45-90)	18 (1-80)	
Dental bitewing	462 ± 20					71 (40-110)	7 (1-54)	
Dental periapical	513 ± 67					71 (40-110)	7 (1-75)	
Dental cephalometr	ic					. ,		
(Lateral)	356 ± 44	< 0.5	< 0.5	1.5 ± 0.2	15.9 ± 1.8	81 (60-98)	18 (3-60)	

^a Determined by the Nationwide Evaluation of X-Ray Trends program, from 1/1/73—12/31/76 for all states, for a patient having the following body part/thickness: head/15 cm; neck/13 cm; thorax/23 cm; abdomen/23 cm; and foot/8 cm.

2. Exposures from mammographic units at Breast Cancer Detection Demonstration Projects^a [11]

Detector	Target-filter	No. of units	Average exposure ^b (R)
Film-screen			
(Lo-dose; min R)	Мо-Мо	10	0.88 ± 0.3
	Other than Mo	2°	0.5
Xerox	W-None	5	1.27 ± 0.5
	W-AI	29	1.23 ± 0.44
	Mo-Al	5	1.26 ± 0.6
	Other than above	2	1.44
Xerox (neg. mode)		4 ^c	2.2 ^c
Non-screen film	Any	4 ^c	4.6 ^c

^a 7/1/76-6/30/77.

^b Average exposure (Roentgens) per image to the surface of a 6 cm breast.

° 7/1/73-6/30/76.

3. Dosimetric estimates for routine examinations of the newborn [12]

Examination	AP chest	AP abdomen	Lateral chest	Lateral abdomer
Screen/film ^a	Par/RP	Par/RP	Par/XD	Par/RP
Peak potential (kV)	62	62	68	68
Current (mA)	100	100	100	100
Time (s)	1/30	1/30	1/30	1/30
Generator output at				
61 cm from focal				
spot (mR)	13	13	16	16
Exposure at anatomic	cal site per r	adiograph (mR)	
Entrance chest	5.9	0.23	7.8	0.2
Exit chest	2.1	0.20	3.7	0.16
Entrance abdomen	1.8	6.5	0.19	8.7
Midline abdomen	0.3	3.9	0.36	4.5
Exit abdomen	0.14	1.5	0.14	1.3
Gonads	0.08	3.5	0.08	3.9
Thyroid	3.5	0.09	4.3	0.13

^a Exposures may be estimated for other screen film combinations by using the relative speed values in section I of chapter three.

4. Embryo (uterine) doses for selected x-ray projections $(mrad/R)^{a,b,e}$ [5]

Projection	View	SID I (inches)	mage Receptor Size (inches) ^c	Bear 1.5	m Qu 2.0	ality 2.5	(HVI 3 ()	mm 3.5	n A1) 4.0
Pelvis, lumbopelvic	AP LAT	40 40	$\begin{array}{c} 17 \times 14 \\ 14 \times 17 \end{array}$	142 13	212 25	283 39	353 56	421 75	486 97
Abdominal [#]	AP PA LAT	40 40 40	$14 \times 17 \\ 14 \times 17 \\ 14 \times 17 \\ 14 \times 17 $	133 56 13	199 90 23	265 130 37	330 174 53	392 222 71	451 273 91
Lumbar Spine	AP LAT	40 40	$\begin{array}{c} 14 \times 17 \\ 14 \times 17 \end{array}$	128 9	189 17	250 27	309 39	366 53	419 68
Hip	AP (one) AP (both)	40 40	$\begin{array}{c} 10 \times 12 \\ 17 \times 14 \end{array}$	105 136	153 203	200 269	244 333	285 395	324 454
Full Spine (Chiropractic)	AP	40	14 × 36	154	231	308	384	457	527
Urethrogram Cystography	AP	40	10×12	135	200	265	327	386	441
Upper G.I.	AP	40	14×17	9.5	16	25	34	45	56
Femur (one side)	AP	40	7×17	1.6	3.0	4.8	6.9	9.4	12
Cholecystography	PA	40	10 × 12	0.7	1.5	2.6	4.1	6.0	8.3
Chest	AP PA LAT	72 72 72	$\begin{array}{ccc} 14 & \times & 17 \\ 14 & \times & 17 \\ 14 & \times & 17 \end{array}$	0.3 0.3 0.1	0.7 0.6 0.3	1.3 1.2 0.5	2.0 2.0 0.8	3.1 3.0 1.2	4.3 4.5 1.8
Ribs, Barium Swallow	AP PA LAT	40 40 40	$\begin{array}{ccc} 14 & \times & 17 \\ 14 & \times & 17 \\ 14 & \times & 17 \end{array}$	0.1 0.1 0.03	0.3 0.3 0.08	0.5 0.5 0.2	0.9 0.9 0.3	1.4 1.5 0.4	2.0 2.2 0.6
Thoracic Spine	AP LAT	40 40	$\begin{array}{ccc} 14 & \times & 17 \\ 14 & \times & 17 \end{array}$	0.2 0.04	0.4 0.1	0.8 0.2	1.4 0.4	4.1 0.5	3.0 0.8
Skull, Cervical Spine, Scapula, Shoulder, Humerus		40		<.01	<.01	<.01	<.01	<.01	<.01

^a Average dose to the uterus (mrad) for 1 roentgen entrance skin exposure without backscatter.

^b From [13].

^c Field size is collimated to the image receptor size.

^d Includes: Retrograde Pyelogram, KUB, Barium Enema, Lumbosacral Spine, IVP, Renal Arteriogram.

^e This table is suggested only for average-sized women in the first two months of pregnancy.

IV. Scatter

A. Definitions

1. Scatter Fraction = s/(s+p), where s and p are the intensities of scattered and primary radiation, respectively.

2. Thickness (g/cm^2) = Thickness $(cm) \times Density (g/cm^3)$.

3. Air Gap = Distance between phantom and radiation receptor.

B. Scatter Fractions in general radiography

1. Dependence on field size and phantom thickness [14]

Field size		Phantom	thic kness	$s (g/cm^2)$		
$(cm \times cm)$	5.5	9	13	18.5	22	27.5
5×5	0.36	0.42	0.48	0.52	0.54	0.57
10×10	0.44	0.54	0.61	0.68	0.72	0.76
20×20	0.49	0.62	0.71	0.78	0.82	0.86
30×30	0.50	0.63	0.74	0.80	0.83	0.88

Scatter Fraction^a

^a At a peak potential of 78 kV (single phase), 2.1 mm of Al HVL, measured directly beneath the center of the phantom (no air gap).

2. Dependence on field size, phantom thickness, and air gap [14]

Field size	Phantom thickness			Air	gap (cm)		
$(cm \times cm)$	(g/cm^2)	5	10	20	30	40	50
5×5	9	0.22	0.17	0.11	0.08	0.08	0.07
	18.5	0.34	0.24	0.13	0.12	0.12	0.12
10×10	9	0.41	0.32	0.20	0.16	0.13	0.12
	18.5	0.56	0.46	0.31	0.25	0.19	0.18
20×20	13	0.65	0.58	0.45	0.37	0.31	0.27
	22	0.77	0.69	0.60	0.51	0.45	0.38
30×30	18.5	0.79	0.75	0.65	0.56	0.50	0.44
	27.5	0.86	0.84	0.78	0.71	0.63	0.59

^a At a peak potential of 78 kV (single phase), 2.1 mm of A1 HVL, fixed 400 cm source-to-phantom (rear surface) distance.

3. Dependence on beam quality

Typically, a 4-10% increase in the scatter fraction was observed as the peak potential was changed from 60 to 105 kV for polychromatic beams [14], or as the photon energy was changed from 32 to 69 keV for mono-energetic x-rays [15].

C. Scatter Fractions in mammography

1. Dependence on field size and phantom thickness [16]

Scatter Fraction ^a						
Field size ^b	Phantom thickness (g/cm ²)					
(cm)	3.6	4.8	6.0	7.1		
4	0.24			0.35		
6	0.27			0.39		
10	0.28			0.44		
14	0.29	0.35	0.42	0.46		

^a Measured at a peak potential of 32 kV for a Lucite phantom. Little or no dependence was observed as the peak potential was varied from 27 kV to 42 kV.

^b Diameter of circular radiation field.

V. Grids

A. Definitions

1. Transmission (T)

transmission of primary radiation, $T_{\rho} = p'/p$ transmission of scattered radiation, $T_s = s'/s$

transmission of total radiation, $T_t = (p'+s')/(p+s)$

where p' and s' and p and s are the intensities of primary and scattered radiation with and without the grid, respectively.

2. Bucky Factor (B)

the total incident radiation divided by the total transmitted radiation, $B = 1/T_r$

3. Selectivity(Σ)

ed V the transmission of primary radiation divided by the transmission of scattered radiation, $\Sigma = T_{p}/T_{s}$.

4. Contrast Improvement Factor (K)

the ratio of x-ray contrast with grid, divided by the x-ray contrast without grid, $K = (1+s/p)/(1+s'/p') = T_p \cdot B$.

B. Minimum performance data for fibre and aluminum interspace grids [17] (measured with 20 cm thick, 30 cm \times 30 cm polystyrene phantom)

Maximum Bucl 60 kV ^a		ky factors 100 k	b V ^a	Minimum selectivities ^c 60 kV ^a 100 kV		Minimum ties ^c Improvem 0 kV ^a 60 kV ^a		contrast ent factors ^d 100 kV ^a				
Ratio	Fibre	Al	Fibre	Al	Fibre	Aļ	Fibre	Al	Fibre	Al	Fibre	Al
4:1	3.90		3.10		3.60		2.50		2.10		1.80	
5:1	4.70	5.10	3.70	3.70	5.00	5.00	3.10	2.90	2.50	2.50	2.00	2.00
6:1	5.20	5.50	4.00	4.00	5.90	5.70	3.60	3.30	2.90	2.60	2.30	2.20
8:1	6.40	7.40	5.20	5.20	8.80	8.30	5.10	4.70	3.20	3.10	2.70	2.60
10:1		8.50		6.00		11.70		6.00		3.60		3.00
12:1	7.60	9.80	6.40	7.00	13.50	14.80	8.10	7.80	3.70	3.80	3.40	3.30
16:1	8.70		7.80		19.50		12.50		4.20		3.90	
5:1 Crossed	9.50		7.00		19.90		7.00		3.90		3.10	
6:1 Crossed		13.10		8.30		26.90		8.30		4.20		3.30
8:1 Crossed	13.30		10.60		65.50		15.60		4.90		4.20	

^a Peak potential.

^b Typical Bucky factors are from 5 to 13% less [18].

^c Typical selectivities are from 5 to 18% greater [18].

^d Typical contrast improvement factors are from 7 to 20% greater [18].

VI. X-Ray Tubes [19]

A. Radiation field coverage^a for selected target angles and source-image distances (SID)

	Target angle							
SID	7°	10°	11°	12°	15°			
91.4 cm	192.2 cm	29.0 cm	32.2 cm	35.5 cm	45.6 cm			
101.6 cm	21.4 cm	32.3 cm	35.8 cm	39.5 cm	50.7 cm			
121.9 cm	25.6 cm	38.6 cm	43.0 cm	47.4 cm	60.8 cm			
182.9 cm	38.4 cm	57.9 cm	64.5 cm	71.1 cm	91.2 cm			
36 in	7.6 in	11.4 in	12.7 in	14.0 in	18.0 in			
40 in	8.4 in	12.7 in	14.1 in	15.6 in	19.9 in			
48 in	10.0 in	15.2 in	16.9 in	18.7 in	23.9 in			
72 in	15.1 in	22.8 in	25.4 in	28.0 in	25.9 in			

^a Coverage = 2.SID tan θ , θ = radiation angle = target angle -1° .

B. Typical focal spot combinations and applications

Application	Target Angle	Disk diameter (mm)	Focal combination (mm)
High power, general			
radiography	15°	75-100	1.0-2.0
Angiography and general			
radiography	12°	100-125	0.6-1.2
Under-table fluoroscopy			
and screen spot film	10°	100	0.3-1.0,0.6-1.2
Under-table fluoroscopy			
and image intensifier			
spot film camera			
9 in image intensifier	10°	100	0.3-1.0
6 in image intensifier	7°	100	0.3-0.6
Chest, 6 ft-10 ft SID	10°-12°	100	0.6-1.2
Mammography (Mo or W targets, low			
absorption window)	12°	75	0.6-1.2

C. Focal spot measurement

1. Blurring frequency of star resolution pattern

$$f = \left(\frac{\pi}{180^\circ}\right) \left(\frac{\theta \cdot \mathrm{D}}{\mathrm{M-l}}\right),$$

where f= focal spot size, θ = angle of spoke (wedge angle) in degrees, D= imaged diameter of blurring frequency perpendicular to the focal spot dimension measured and M= magnification factor of the resolution pattern. It is recommended that a nominal magnification factor of $M=1+1/\xi$ be employed where ξ is the focal spot size (mm) specified by the x-ray tube manufacturer.

2. Recommended geometry of pinhole cameras

Nominal dimensions of focal spot, $f(mm)$	Nominal diameter of pinhole diaphragm (mm)	Magnification factor
$0.3 < f \le 1.2$	0.030	2
1.2 <i><f< i="">≤2.5</f<></i>	0.075	2
2.5< <i>f</i>	0.100	1

3. NEMA^a-recommended test procedures and tolerances

A pinhole camera is recommended for measuring x-ray focal spots having a nominal size greater than 0.3 mm. A star resolution pattern is recommended for focal spots having a size equal to or less than 0.3 mm.

Maximum rated tube voltage, U(kV)	Test voltage	Test current
<i>U</i> ≼75	Maximum rated voltage	50% of maximum permissible current at test voltage
75 <i>≼U</i> ≤150	75 kV	for 0.1 s at the highest rotational speed for which
U>150	50% of maximum rated voltage	the tube is rated

Test voltage and current

Tolerances					
Nominal size of % Tolerance					
focal spot (mm)	Minus	Plus			
<0.8	0	50			
0.8 through 1.5	0	40			
>1.5	0	30			

^a National Electrical Manufacturers Association.

^b In addition, for line focal spots only, a multiplication factor of 0.7 shall be applied to the dimension along the tube axis.

VII. Image Intensifiers

A. Definitions

1. Conversion factor (Gx) = ratio of the luminance of the output screen to the input exposure rate of applied x-radiation. The luminance is expressed in units of candela per square meter (cd/m^2) and the input exposure rate in milliroentgens per second (mR/s). Gx is expressed in units of cd·s/(mR·m²). Gx is measured with 70±1 cm SID, an x-ray beam of 7±0.2 mm Al HVL, and an input screen exposure rate of 1±0.1 mR/s [20].

2. Contrast ratio=ratio between the luminance in the center of the output screen when the total entrance field is irradiated and the luminance of the output screen when a concentric circular area of 10% of the entrance field is completely shielded by a lead mask. The measurement is made at a peak potential of 50 kV and an input screen exposure rate of 1 mR/s.

3. Resolution=the greatest number of line pairs/mm visually resolved under optimal measuring conditions.

B. Typical image intensifier performance data^a

nput screen Gx		Contrast	Resolution
diameter (cd·s/(mR·m ²))		ratio	(line pairs/mm)
23 cm (9 in)	70—200	10:1—20:1	2.5—5.4
15 cm (6 in)	40—200	10:1—20:1	3.0—6.0

^a Based on information supplied by Philips, Picker, and Siemens Companies.

VIII. Computed Tomography

A. Mass densities, electron densities, effective atomic numbers, and measured Hounsfield numbers for several plastics and water^a [21-23,25]

Materials	Density		Effective ato	Effective atomic number		
	(g/cm ³)	(electrons/cm ³)	Photoelectric	Coherent	Compton	Numbers ^b
Water (H_2O) (22 °C)	0.998	3.33×10^{23}	7.52	7.04	5.21	(-0.4)
Polyethylene (C_2H_4) (low density)	0.92	3.16×10^{23}	5.54	5.11	3.79	(-103.6) -104.6
Polystyrene (C ₈ H ₈)	1.05	3.40×10 ²³	5.75	5.50	4.61	(-28.2) -28.4
Nylon ($C_6H_{11}NO$)	1.15	3.79×10^{23}	6.22	5.80	4.57	(89.4) 88.6
Lexan ($C_{16}H_{14}O_3$)	1.20	3.81×10^{23}	6.41	6.05	5.21	(104.8) 102.8
Plexiglas ($C_5H_8O_2$)	1.19	3.87×10^{23}	6.57	6.16	4.97	(125.8) 121.2
Bakelite ($C_{43}H_{38}O_7$)	1.34	$4.26 imes 10^{23}$	6.28	5.99	5.14	(263.6) 263.8
Teflon (C_2F_4) Delrin (CH ₂ O)	2.20 1.42	$6.36 \times 10^{23} \\ 4.55 \times 10^{23}$	8.48 7.04	8.32 6.66	8.13 5.50	(882) (367.8)

^a See also section IX of chapter one.

^b Measured on an EMI scanner operating at a peak potential of 120 kV. Numbers in parentheses are from [23].

B. Mass densities, electron densities, effective atomic numbers, and measured Hounsfield numbers for selected human tissues^a [21,24-26]

Materials		Density		mic number	Measured Hounsfield	
	(g/cm^3)	(electrons/cm ³)	Photoelectric	Coherent	Compton	Numbers ^b
Adipose	0.916	3.08×10^{23}	6.37	5.78	4.33	-92
Blood	1.06	3.51×10^{23}	7.66	7.00	5.27	42 ± 18
Brain	1.03	3.44×10^{23}	7.68	6.95	5.11	35(30-40), gray matte
Heart	1.03	3.41×10^{23}	7.59	6.92	5.11	
Kidney	1.05	3.48×10^{23}	7.57	6.94	5.23	32 ± 10
Liver	1.08	3.59×10^{23}	7.66	6.92	5.16	60 ± 14
Muscle	1.06	3.51×10^{23}	7.67	7.01	5.29	44 ± 14
Pancreas	1.05	3.49×10^{23}	7.56	6.91	5.17	40 ± 14
Water (37 °C)	.99336	3.32×10^{23}	7.51	7.04	5.22	
Water (4 °C)	1.0000	3.34×10^{23}	7.51	7.04	5.22	

^a See also section IX of chapter one.

^b Measured on an EMI scanner operating at a peak potential of 120 kV.

References to Chapter Three

- [1] Rao, G. U. V., et al., Physical Characteristics of Modern Radiographic Screen-Film Systems, Invest. Radiol. 13, 460 (1978).
- [2] Medical X-ray and Gamma-Ray Protection for Energies up to 10 MeV, NCRP Report 33, National Council on Radiation Protection and Measurements, Washington, DC (1968).
- [3] McCullough, E. C., and Cameron, J. R., Exposure Rates from Diagnostic X-ray Units, BJR 43, 448 (1970).
- [4] Schulz, R. J., and Gignac, C. E., Application of Tissue-air Ratio for Patient Dosage in Diagnostic Radiology, Radiology 120, 687 (1976).
- [5] Medical Radiation Exposure of Pregnant and Potentially Pregnant Women, NCRP 54, National Council on Radiation Protection and Measurements, Washington, DC (1977).
- [6] Hale, J., The Homogeneity Factor for Pulsating X-Ray Beams in the Diagnostic Energy Region, Radiology 86, 147 (1966).
- [7] Kelley, J. P., and Trout, E. D., Physical Characteristics of the Radiation from 2-Pulse, 12-Pulse and 1000-Pulse X-ray Equipment, Radiology 100, 653 (1971).
- [8] DuBuque, G. L., Cacak, R. K., and Hendee, W. R., Backscatter Factors in the Mammographic Energy Range, Med. Phys. 4, 397 (1977).
- [9] Trout, E. D., Kelley, J. P., and Lucas, A. C., The Effect of Kilovoltage and Filtration on Depth Dose, in *Technological Needs for Reduction of Patient Dosage from Diagnostic Radiology*. Janower, M. L., (Ed.), C. Thomas, Springfield, IL (1963).
- [10] Nationwide Evaluation of X-ray Trends, private communication (1977).
- [11] Report to the Division of Cancer Control and Rehabilitation, National Cancer Institute from Centers for Radiological Physics, unpublished data.
- [12] Wesenberg, R. L., Rossi, R. P., and Hendee, W. R., Radiation Exposure in Radiographic Examinations of the Newborn, Radiology 122, 499 (1977).
- [13] Rosenstein, M., Organ Doses in Diagnostic Radiology, U.S. HEW 76-8030, U.S. Government Printing Office, Washington, DC (1976), summarized in Handbook of Selected Organ Doses for Projections Common in Diagnostic Radiology, U.S. HEW 76-8031, U.S. Government Printing Office, Washington, DC (1976).
- [14] Stargardt, A., and Angerstein, W., Über die Streustrahlenverminderung bei der Röntgenvergrosserungstechnik, Fortschr. Rontgenstr. 123, 364 (1975).
- [15] Dick, C. E., Soares, C. G., and Motz, J. W., X-ray Scatter Data for Diagnostic Radiology, Phys. Med. Biol. 23, 1076 (1978).
- [16] Barnes, G. T., and Brezovich, I. A., The Intensity of Scattered Radiation in Mammography, Radiology 126, 243 (1978).
- [17] Test Methods for X-Ray Equipment, Standards Publication No. XR3-1970, National Electrical Manufacturers Association, New York (1970).
- [18] Wagner, James C., private communication.
- [19] Measurements of Dimensions of Focal Spots of Diagnostic X-ray Tubes, Standards Publication No. XR5-1974, National Electrical Manufacturers Association, New York (1974).
- [20] Methods of Evaluating Radiological Equipment and Materials, NBS Handbook 89, U.S. Government Printing Office, Washington, DC (1963).
- [21] Fullerton, G. D., private communication.
- [22] McCullough, E. C., Photon Attenuation in Computed Tomography, Med. Phys. 2, 307 (1975).
- [23] Phelps, M. E., Gado, M. H., and Hoffman, E. J., Correlation of Effective Atomic Number and Electron Density with Attenuation Coefficients Measured with Polychromatic X-rays, Radiology 117, 585 (1975).
- [24] Weinstein, M. A., Duchesneau, P. M., and MacIntyre, W. J., White and Gray Matter of the Brain Differentiated by Computed Tomography, Radiology 122, 699 (1977).
- [25] Fullerton, G. D., Fundamentals of CT Characterization, in *The Medical Physics of CT and Ultrasound: Tissue Imaging and Characterization*, Fullerton, G. D. and Zagzebski, J. A., (Eds.), American Institute of Physics, New York, NY (1980).
- [26] Mategrano, V. C., et al., Attenuation Values in Computed Tomography of the Abdomen, Radiology 125, 135 (1977).
- [27] Eastman Kodak Co., private communication.

Notes

.

CHAPTER FOUR: RADIATION THERAPY

I. Teletherapy

A. Photons

1. Relationship between tube voltage, filtration, and half-value layer (HVL) [1]

2. Exposure rate for different voltages and filtrations [1]

60-500 kV

78

In half wave and fully rectified operation, the exposure rates on the same peak voltages are approximately half of the values given above. The average values given are for dc voltage and for an anode angle of 45° (therapy tubes). For voltages with greater fluctuation and for smaller anode angles (diagnostic tubes), the exposure rates are 20 to 40 percent lower.

Equiv	Equivalent tube vonages					
kV	kV 1	kV 3				
10	12	10.5				
15	18	16				
20	24	21				
25	30	26				
30	37	32				
40	49	42				
50	61	53				
60	73	63				
70	85	74				
80	98	84				
90	110	95				
100	122	105				
150	183	157				
200	244	210				
250	305	262				
300	365	315				
400	490	420				
500	610	525				
700	850	735				
1000	1220	1050				

^a kV, constant dc voltage; kV 1, single phase; kV 3, three phase.

3. Absorbed dose at a point [2]

For x-rays generated at potentials above 150 kV and high energy γ rays, when a dosimeter is placed in a water phantom at a point such as D4 (see sec. A6), the *absorbed dose* is given by

$$D = R \cdot k_1 \cdot k_2 \cdot N \cdot F$$

where D is the absorbed dose at a point in the undisturbed water phantom (with the dosimeter absent) and R is the reading on the instrument. The meanings of the other symbols are as follows:

 k_1 is a factor to correct for any difference in absolute temperature (T) and pressure (P) at the time of measurement, from those prevailing when the instrument was calibrated; (T_0, P_0) .

$$k_{1} = \left(\frac{P_{0}}{P}\right) \left(\frac{T}{T_{0}}\right)$$

 k_2 is a factor to correct for differences, such as *quality*, between the radiation beam used for calibration and that prevailing at the point of measurement. An example would be to allow for the difference in both radiation quality and direction between exposure calibration in air and a measurement made at a point within an extended medium. For energies corresponding to ¹³⁷Cs gamma rays and above, k_2 is considered to be included in *F*. N is the calibration factor, determined by the standardizing laboratory at a *stated quality* of radiation, and under stated conditions of temperature and pressure, for the conversion of the instrument reading into a statement of exposure, expressed in roentgens. In the low energy ranges N is obtained for each quality of radiation. For measurement of ¹³⁷Cs and ⁶⁰Co gamma rays and x-rays of higher energy, the calibration factor N is obtained with either ⁶⁰Co gamma rays or with x-rays generated at a potential of 2 MV.

F is a composite coefficient relating the exposure in roentgens to the absorbed dose in water expressed in rads. It is discussed in some detail in [16]. In the low energy range it is essentially the "f-factor" discussed in [17]. For measurement of ¹³⁷Cs and ⁶⁰Co gamma rays and x-rays of higher energy, it is identical with the factor known as C_{λ} discussed in [18]. Values for *F* are given in the following section. For measurements made directly within a patient, where this is possible, a slightly adjusted value of *F* should be used so that it refers to absorbed dose in the relevant tissue rather than water. Values of *F* applicable to muscle tissue are shown in the following section. They are obtained by multiplying *F* for water by a ratio of mass energy absorption coefficients $(\mu_{en}/\rho)_{tissue}/(\mu_{en}/\rho)_{water}$, averaged over the energy spectrum of the beam.

Radiation quality ^a	F(rad/R) for water	F(rad/R) for tissue	Radiation quality ^a	F(rad/R) for water	F(rad/R) for tissue
0.5 mm Al	0.89	.91	2 MV	0.95	.94
1 ""	0.88	.90	4 MV	0.94	.93
2 ""	0.87	.90	6 MV	0.94	.93
4 ""	0.87	.90	8 MV	0.93	.92
6 ""	0.88	.91	10 MV	0.93	.91
8 ""	0.89	.92	12 MV	0.92	.91
0.5 mm Cu	0.89	.92	14 MV	0.92	.91
1.0 ""	0.91	.93	16 MV	0.91	.90
1.5 ""	0.93	.95	18 MV	0.91	.90
2.0 ""	0.94	.95	20 MV	0.90	.89
3.0 ""	0.95	.95	25 MV	0.90	.89
4.0 ""	0.96	.96	30 MV	0.89	.87
¹³⁷ Cs. ⁶⁰ Co	0.95	.94	35 MV	0.88	.86

4. Absorbed dose to exposure ratios [2]

^aHalf-value layer, nuclide or generating potential in MV corresponding to maximum photon energy are stated to characterize the radiation quality.

5. Recommended phantom depths for absorbed dose calibrations [2]

Type of radiation	Depth (cm)
150 kV-10 MV x-rays	5
137 Cs and 60 Co γ rays	5
11 MV-25 MV x-rays	7
26 MV-50 MV x-rays	10

6. Operational definitions and relationships of Tissue-Air Ratio (TAR), Tissue-Maximum Ratio (TMR), Percentage Depth Dose (PDD), and the Backscatter Factor (BSF) [3]

The dosimeter with its equilibrium cap is positioned in air in the center of a field of size A. The dose is D1 (a). The tank is then filled to x, a level above the chamber just sufficient to obtain the maximum dose D2. x is the equilibrium depth (b). The tank is then filled to a depth d above the center of the chamber to obtain the dose D3 (c). In all three cases, (a)-(c), the source-chamber distance, S+x, has not been changed. In (d), the water level is again set at S and the dosimeter is lowered to a depth d below the water surface to obtain the dose D4. The water is then removed and a final dose D5 is obtained (e). In all five cases, the field size A has not been changed.

The ratios of these doses define the following quantities:

D2 / D1 = BSF (A) = TAR (x, A) D3 / D1 = TAR (d, A) D3 / D2 = TMR (d, A) D4 / D2 = PDD (d, A, S)/100D4 / D5 = TAR (d, B)

where

TAR (x, A) is the tissue-air ratio at equilibrium depth x for a field of size A.

BSF (A) is the backscatter factor for a field of size A.

TAR (d, A) and TAR (d, B) are the tissue-air ratios at the depth d for fields of size A and B, respectively.

TMR (d, A) is the tissue-maximum ratio at depth d for a field of size A.

PDD (d, A, S) is the percentage depth dose at depth d for a field of size A at a source-surface distance of S.

The following relationships now follow:

TMR (d, A) = TAR (d, A) / BSF (A)

TAR $(d, B) = (S + d / S + x)^2 \cdot (1/100) \cdot [BSF(A)] \cdot [PDD(d, A, S)]$

TMR $(d, B) = (S + d / S + x)^2 \cdot (1/100) \cdot [PDD (d, A, S)] \cdot [BSF (A)/BSF (B)].$

The above equations define the relationship between the four basic depth dose quantities. Because of the scattering characteristic of high energy radiation, all four quantities depend upon the field size. Also, since radiation is rapidly attenuated in water, the TAR, TMR, and PDD decrease with increasing depth beyond x. Finally, since the PDD measurement involves moving the dosimeter, this quantity suffers the further restriction of being dependent upon the source-surface distance.

7. Measurement of teletherapy unit timer errors [4]

The single/multiple exposure method

This method was devised to give results of good statistical accuracy, unaffected by dosimeter linearity. *n* exposures of duration t/n are made, giving an integrated meter reading $R_{n(t/n)}$. The exposure rate *E* is then given by

$$E = \frac{R_{t}}{t+e} = \frac{R_{n(t/n)}}{t+ne}$$

Hence

$$e = \left(\frac{R_{n(1/n)} - R_{t}}{nR_{t} - R_{n(1/n)}}\right) t,$$

where R_t is the integrated meter reading for a single exposure of duration t.

8. Comparison of representative central axis depth doses (in water) [5]

A) 22 MV radiation with copper compensating filter, 10×10 cm field, SSD 70 cm. B) 8 MV radiation from linear accelerator, 10×10 cm field, SSD 100 cm. C) 4 MV radiation from linear accelerator, 10×10 cm field, SSD 100 cm. D) Cobalt 60, 10×10 cm field, SSD 80 cm. E) 2 MV Van de Graaf, 10×10 cm field, SSD 100 cm. F) Cesium 137, 10×10 cm field, SSD 35 cm. G) 200 kV, 10×10 cm field, HVL 1.5 mm Cu, SSD 50 cm. H) Cesium 137, 10 cm circle, SSD 15 cm. I) 120 kV, HVL 2.0 mm Al, Area 100 cm², SSD 15 cm. J) 1 g radium unit, 5 cm circle, SSD 5 cm.

Specifications	
Melting temperature, °F	158
Weight, lb/in ³	0.339
Specific heat, liquid	0.040
Specific heat, solid	0.040
Latent heat of fusion, BTU/lb	14
Brinell hardness no.	9.2
Tensile strength, lb/in ²	5990
% elongation in slow loading	200
Composition, %:	
Bismuth	50.0
Lead	26.7
Tin	13.3
Cadmium	10.0

83

10. Side lengths of square fields equivalent to rectangular fields^a (All dimensions are in centimeters) [2]

												She	ort axi	s (cm)											
Long axis (cm)	1	2	3	- 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	22	24	26	28	30
1	1.0			ſ								[[
2	1.4	2.0										1													
3	16	2.4	3.0							•		1		Į			ì]				1		
4	17	27	34	4.0						i i				1		i.		-							
5	1.3	3.0	3.8	4.5	5.0	ĺ.				ļ															
0	• •	0.0	0.0	1.0	0.0									1											
6	19	3.1	4 1	4.8	5.5	6.0							t i				1		1						
7	2.0	3 3	4 3	5 1	5.8	6.5	7.0					{				1									
8	2.0	3.4	4.5	5 4	6.2	6.9	7.5	8.0						1			1				1				
0 0	2.1	3.5	1.0	5.6	6.5	7.9	7.0	8.5	9.0				-						1		1				
10	2.1	3.0	4.0	5.0	6.7	7 5	0.9	0.0	0.5	10.0															
10	4.4	3 0	4.0	0.0	0.1	1.5	0.2	0.5	5.5	10.0		-													
11	22	37	49	59	69	7.8	86	93	99	10.5	11.0														
12	22	37	5.0	6 1	7 1	8.0	8.8	9.6	10.3	10.0	11 5	12.0								1					
12	2.4	2.0	5 1	6.9	7.9	0.0	0.0	0.0	10.5	111 2	11.0	12.0	12.0							0	1				
13	2.2	3.0	5 1	6.2	7.4	0.4	7 .1	9.5	10.0	11.0	19.2	12.0	13.0	14.0							1				
14	2.3	2.0	5.0	0.3	1.4	0.4	9.3	10.1	10.9	11.0	12.3	12.9	13.0	14.0	15.0						1				
10	4.3	3.9	0.4	0.4	1.5	0.0	9.5	10.3	11.2	11.9	12.0	13.3	13.9	14.5	15.0						1				
16	22	20	5.9	6.5	76	00	0.6	10 5	11.4	19.9	12.0	12.7	14.2	14.0	15.5	16.0					1				
17	2.0	3.0	5.2	6.5	7.7	0.0	5.0	10.3	11.9	12.2	12.0	14.0	14.0	14.5	15.0	16.5	17.0			1	1				
19	2.0	3.5	5.2	6.0	7.0	0.0	5.0	10.7	11.0	12.4	10.4	14.0	14.7	15.0	16.2	16.0	17.5	10.0		6					
10	2.0	4.0	5.4	0.0	1.0	0.5	9.9	10.8	11.0	12.1	13.0	14.0	15.0	15.7	10.3	10.9	17.0	10.0	10.0						
15	2.0	4.0	5.4	0.0	1.0	0.9	10.0	11.0	11.9	12.8	13.7	14.0	15.3	10.0	17.0	17.3	17.9	18.5	19.0	00.0	1				
20	2.3	4.0	0.4	0.1	1.9	9.0	10.1	11.1	12.1	13.0	13.9	14.1	19.9	10.3	17.0	14.4	18.3	18.9	19.5	20.0					
99	92	1.0	5.5	60	00	0.1	10.9	11.2	10.2	12.2	14.9	15 1	10.0	10.0	17.6	10.9	10.0	10.7	00.0	000	00.0				
24	2.0	4.0	5.5	0.0	0.0	5.1	10.3	11.0	12.3	10.0	14.2	15.1	10.0	10.0	14.0	10.0	19.0	19.1	20.3	20.9	22.0	0.0			
26	2.4	7.1	5.5	6.0	0.1	5.4	10.4	11.0	12.0	10.0	14.0	15.1	10.3	17.2	18.0	10.0	19.0	20.3	21.0	21.7	22.9	24.0	00.0		
20	2.4	4.1	0.0	0.9	0.1	9.3	10.5	11.0	12.6	13.7	14.7	15.7	10.6	17.5	18.4	19.2	20.1	20.9	21.6	22.4	23.7	24.9	23.0		
20	24	4.1	0.0	0.9	0.Z	9.4	10.5	11.7	12.8	13.8	14.8	15.9	16.8	17.8	18.7	19.6	20.5	21.3	22.1	22.9	24.4	25.7	27.0	28.0	
30	24	4.1	5.6	0.9	8.Z	9.4	10.6	11.7	12.8	13.9	15.0	16.0	17.0	18.0	18.9	19.9	20.8	21.7	22.5	23.3	24.9	26.4	27.7	29.0	30.0
											-										-	-			

^a An approximation to the side length L of an equivalent square can be obtained by the formula,

$$L = 2 \cdot W \cdot H / (W + H) ,$$

where W and H are the side lengths of the rectangular field.

11. Attenuation processes of x-rays in a 10-cm layer of water (100 cm² field size) [1]

1) Photoelectric absorption. 2) Compton absorption. 3) Pair production. 4) Scattering. 5) Transmitted primary radiation. For example: at 1 MeV, 18% of the photons undergo type 2 interaction, 25% undergo type 4, 57% are transmitted, and none undergo type 1 and 3.

B. Electrons

1. Absorbed dose at a point in water [7]

For absorbed dose calibration, an ionization chamber calibrated for 60 Co γ -rays (or 2 MV x-rays) may be used.

$$D_w = RNC_E P_{we}$$

where D_w is the dose in rads, R is the chamber reading (corrected for temperature, pressure, and saturation), N is the ⁶⁰Co calibration factor, and C_E is the dose conversion factor for electrons of energy E_z (MeV) at the depth z (cm) of the chamber. E_z is given by

$$E_z = E_0 \left[1 - \frac{z}{R_{\rho}} \right]$$

where E_0 (MeV) is the incident electron beam energy and R_p (cm) is the extrapolated practical range in water.

$$R_P = 0.521 E_0 - 0.376$$

A good approximation to C_E is given by the empirical equation (2 MeV $\leq E_z \leq$ 50 MeV)

$$C_E = 0.97 E_z^{-0.048}$$

The position of measurement will be displaced $0.75 \cdot r$ (r is the internal radius of the chamber in cm) toward the source of electrons from the center of a cylindrical ion chamber.

 P_{*g} is the perturbation correction given by

$$P_{wg} = \frac{1}{1 + \frac{2}{5} \frac{br^{\dot{a}}}{\pi}}$$

for a thimble ion chamber where

$$b = \frac{1.096(E_z + 0.511)}{E_z(E_z + 1.022)}$$

2. Values of C_E for electron beams in water [13]

Depth in			I	nitial F	Electron	Energy	<i>E</i> ₀ (M	eV)		
s(cm)	5	10	15	20	25	30	35	40	45	50
1	0.922	0.87	0.843	0.823	3 0.808	0.795	0.784	0.775	50.768	0.762
2		0.89:	80.858	0.83	50.819	0.806	0.795	0.780	0.778	0.771
3		0.91	50.871	0.844	30.830	0.816	0.801	0.791	0.786	0.778
4		0.94	0.886	0.85	0.840	0.824	0.812	0.801	0.792	0.785
5		0.963	30.901	0.871	10.847	0.831	0.819	0.809	0.799	0.791
6			0.933	0.885	50.856	0.839	0.825	0.815	0.806	0.798
7			0.965	0.902	20.867	0.846	0.832	0.821	0.812	0.803
8				0.941	0.882	0.854	0.839	0.827	0.816	0.808
9				0.959	0.898	0.865	0.847	0.832	0.820	0.814
10				0.926	0.917	0.878	0.856	0.840	0.827	0.819
11					0.946	0.890	0.866	0.848	0.834	0.823
12					0.939	0.906	0.879	0.857	0.841	0.829
13						0.926	0.890	0.867	0.848	0.835
14				1		0.959	0.907	0.877	0.857	0.842
15						0.933	0.924	0.890	0.866	0.849
16							0.954	0.903	0.876	0.857
17					1		0.929	0.919	0.887	0.864
18								0.940	0.900	0.874
19								0.936	0.915	0.883
20					1				.0.935	0.895
21									0.943	0.908
22									0.921	0.924
23								1		0.945
24										0 018
- •			1							

4. Thickness of Lipowitz's metal (mm) required to provide 90%, 93%, 95%, and 97% attenuation to the electron dose for various energies and field sizes [14]

			Elec	tron energy	(MeV) ^a	
Attenuation	Field size (cm×cm)	6 (6.5)	9 (9.4)	12 (12.8)	16 (16.5)	20 (20.5)
· · · · · ·	4×4	1.8	3.2	4.9	6.8	9.5
90%	10×10	1.9	3.3	4.9	7.0	10.2
	25×25	1.9	3.4	5.0	7.7	12.5
	4×4	2.0	3.7	5.7	9.7	15.7
93%	10×10	2.1	3.8	5.8	10.2	18.0
	25×25	2.1	3.9	6.0	11.3	20.6
	4×4	2.2	4.3	7.3	16.0	23.5 ^b
95%	10×10	2.3	4.4	8.5	18.0	25.0 ^b
	25×25	2.3	4.7	10.0	20.0	
	4 × 4	2.5	5.5	17.0		
97%	10×10	2.8	7.5	19.0		
	25×25	2.8	8.0	20.0		

^a The most probable energy of the incident electron beam as determined by range-energy measurements in a water phantom are given in parentheses directly below the nominal accelerator energies.

^b Values obtained by linear extrapolation of the bremsstrahlung region.

II. Brachytherapy

A. Properties of selected radionuclides used in brachytherapy [10]

Property	²²² Rn (both in eq with deca	²²⁶ Ra juilibrium ay products)	""Co	¹² 1	¹ Cs	¹⁸² Ta	¹⁹² lr	¹⁹⁸ Au
Half-life	3.823 days	1604 years	5.26 years	60.25 days	30.0 years	115.0 days	74.2 days	2.698 days
Gamma-ray energies (MeV)	Principal: 1.12, 1.24,	0.047–2.44 0.61, 0.77, 0.94 1.42, 1.77, 2.09	1.173, 1.332	0.0355	0.662	0.043-1.453 Principal: 0.100, 0.152, 0.156, 0.179, 0.222, 0.264, 1.12, 1.19, 1.22	0.136-1.062 Principal: 0.30, 0.31, 0.32, 0.47, 0.61	0.412-1.088 Principal: 0.412
Average γ-ray energy (MeV)		0.83	1.25	0.0284 (incl. x-rays)	0.662	0.67	0.38	0.416
Beta-ray spectra $E_{\rm max}$ (MeV)	1	0.017-3.26	0.313	None	0.514, 1.17	0.18-0.514	0.24-0.67	0.96
Other primary radiation	alpha	alpha		X-rays, 0.0272 0.0275, 0.0310 0.0318, MeV				
Specific γ-ray constant (R·cm ² ·h ⁻¹ ·mCi ⁻¹)	9.178° 8.35°	9.068 ^h 8.25 ^c	13.07	0.0423 0.052	3.226	7.692 6.8	4.89 4.57	2.327
Exposure rate constant (R·cm ² ·h ⁻¹ ·mC1 ⁻¹)	10.27	10.15 ^h	13.07	1.089 ^d	3.275	7.815	472	2.376
Rads/roentgen (muscle)		0.957	0.957	0.905	0.957	0.96	0.96	0.957
Rads/roentgen (compact bone)		0.921	0.923	4.2	0.924	0.92	0.93	0.929
HVL in water (cm) (narrow beam)		10.6	10.8	2.0	8.2	10	6.3	7.0
TVL in lead (cm) (broad beam)		4.2	4.6	~0.01	2.2	3.9	1.2	1.0

* No filtration; this value is obtained from the corresponding value for ²²⁶Ra, since 0.988 mCi of ²²²Rn is in equilibrium with 1 mg of ²²⁶Ra.

^b No filtration.

° 0.5 mm Pt filtration.

^d From [19].

B. Linear source tables for radium

Rads per milligram-hour in tissue delivered at various distances by linear radium sources [8].

Perpen- dicular Distance			Dista	nce Along	g Source A	Axis (cm	from ce	nter)			
Source (cm)	0	0.5	Ι.Ο	1.5	2.0	2.5	3.0	3 - 5	4.0	4 · 5	5.0
				A	ctive Leng	th 1.5 cm					
0.25	50.67	43.75	II.04	3.34	I.48	.81	.50	_	_		
0.5	20.26	16.05	8.18	3.38	I.70	1.00	.64	. 14	. 31	.23	.18
0.75	10.84	9.29	5.67	2.99	1.67	1.03	.69	. 48	.35	.27	.21
1.0	6.67	5.80	4.10	2.52	1.55	1.01	.69	. 50	.37	. 28	.22
1.5	3.20	2.96	2.38	I.74	1.24	.89	.65	.48	•37	.29	.23
2.0	1.85	1.76	1.52	1.23	. 96	.74	.57	.45	.35	. 28	.23
2.5	1.20	1.15	1.04	.80	.74	.60	.49	.40	. 32	. 26	. 22
3.0	.83	.81	.75	.67	. 58	.49	.41	-34	.29	.24	.21
3.5	.61	.60	.57	.52	.46	.40	-35	.30	. 26	. 22	.19
4.0	.47	. 16	.44	.41	.37	.33	.29	. 26	.23	. 20	.17
4.5	. 37	. 36	.35	. 33	. 30	. 28	.25	.22	. 20	.18	.16
5.0	.30	. 29	. 28	. 27	.25	.23	. 21	.19	.17	. 16	.14
				1	Active Len	gth 2.0 c.	m				
0.25	39-99	37-99	21.38	4.57	1.75	.90	.54				
0.5	17.01	15.59	9.97	4.15	I.94	1.09	.68	.46	-33	.24	.18
0.75	9.56	8.71	6.14	3.38	1.85	1.11	.72	.50	•37	. 27	.21
1.0	6.09	5.59	4.23	2.71	1.67	1.07	.72	.5I	.38	.29	. 23
1.5	3.04	2.85	2.37	1.79	1.29	.92	.67	.50	.38	.30	.24
2.0	1.79	1.71	1.51	1.24	·97	.75	.58	• 45	. 36	. 29	. 23
2.5	1.17	1.13	1.03	.89	.75	.61	•49	.40	•33	. 27	. 22
3.0	.82	.80	.75	.67	.58	·49	.42	.35	.29	.25	.21
3-5	.60	. 59	. 56	. 51	.46	.40	.35	.30	.26	. 22	.19
4.0	.46	.46	• 44	• 4 I	•37	•33	.29	. 26	.23	.20	.17
4.5	.36	.36	.35	.33	.30	. 28	.25	.22	.20	.18	. 16
5.0	.29	. 29	.28	.27	. 25	. 23	. 2 I	.19	.17	.16	.14
				2	Active Len	gth 5.0 c	m				
0.25	17.29	17.25						_		_	
0.5	8.21	8.17	8.02	7.66	6.73	4.31	1.88	•93	- 5 5	_	_
0.75	5.15	5.11	4.97	4.66	4.00	2.80	1.59	.92	.58	•40	.29
1.0	3.62	3.58	3.45	3.20	2.74	2.04	1.33	.86	• 57	• 40	.30
1.5	2.10	2.07	1.98	1.82	1.58	1.27	.96	.70	.52	•39	. 30
2.0	1.37	1.35	1.29	1.19	1.06	.89	.72	•57	· 45	-35	. 28
2.5	.96	•94	•91	.84	.76	.66	.56	· 47	.38	•31	. 26
3.0	.70	.69	.67	.63	.58	. 5 1	· 45	.38	•33	.27	- 23
3.5	.54	• 53	• 5 I	• 49	• 45	•4I	.36	.32	.28	.24	. 21
4.0	.42	.42	.40	.38	.36	·33	.30	. 27	.24	.21	.18
4.5	-34	.33	.32	.31	.29	.27	.25	.23	.21	. 18	.16
5.0	.27	. 27	.27	. 26	.24	.23	. 21	. 20	.18	.16	.15

FILTRATION = 0.5 mm PLATINUM

(Dose rates are omitted where γ rays traverse more than 7 mm Pt)

C. Dose/exposure curves in water [9]

Dose per unit exposure vs distance for a point source of gamma radiation in water. The ordinates give the ratio of the absorbed dose to water at a given point, to the exposure in air at the same point in the absence of the water. The broken curve is calculated for exponential absorption with buildup, using the narrow-beam attenuation coefficient 0.028 cm^{-1} .

III. Protection and Miscellaneous Data

A. Average half-value and tenth-value layers of shielding materials (broad beams) [1]

91

B. Photon transmission factors through lead and concrete (¹³¹I, ¹³⁷Cs, ⁶⁰Co, 5-100 MV) [1]

^a hc—heavy concrete ($\rho = 3.2 \text{ g/cm}^3$), nc—concrete ($\rho = 2.2 \text{ g/cm}^3$).

C. Summary of measured fast-neutron fluences from electron accelerators [11]

							Ne rad o (104 cm ⁻	utron fluence pe f x rays or electi ⁻² rad ⁻¹) (uncer	er rons rtainty)
Accelerator	Type of rad.	Energy (MeV)	Field (cm²)	SSD (cm)	Target	Beam filter	Inside field	Outside (distanc side field	e field ce out- d edge)
B.B.C. Betatron	x	32	10 × 10	80		•••	0.51	0.18	(0 7 cm)
Betatron		11	25 × 25(2)	100			18 (30%-40%)	5.0 (+35%)	(27.5 cm)
Detation	â	35	$22 \times 25(2)$	100			0.66(30%-40%)	0.29(+35%)	(27.5 cm)
M.E.L. Linac	x	16	$25 \times 25(?)$ $25 \times 25(?)$	100	•••	•••	15 (30%-40%)	7.1 (±35%)	(27.5 cm) (27.5 cm)
B.B.C. Betatron	x	32	10 × 10	100	•••	•••	130 (-)	85 (-)	(5 cm)
Siemens Betatron	x	19	7.6 × 11.4	50		•••	73 (±15%)	17	(5 cm)
Sagittaire Linac	x	25	10 × 10	100	•••		180 (±10%)	28	(5 cm)
/arian Clinac-18 Linac	x	10	10 × 10	100	6.3 mm Cu	w	1.06 (±20%)	1.52 (±20%)	(5 cm)
Allis Chalmers Betatron	x	25	10 × 10	100	1.6 mm Pt	Al	13.6 (±20%)	101(±20%)	(5 cm)
B.B.C. Betatron	x	45	10 × 10	110	2.0 mm Pt	Pb	14.4 (±20%)	100(±20%)	(5 cm)
Varian Clinac-18 Linac	x	10	25 × 25	100	Cu	w		0 4 (factor of ~2)	(100 cm)
Shimadzu	х	18	20×20	100	2 mm Pt	413 g Pb	4.8 (±50%)		
Betatron	X	23	20 × 20	100	2 mm Pt	413 g Pb	6.2 (±50%)	2 9 (±50%) 1.0 (±50%)	(5 cm) (20 cm)
	х	23	10×10	100	2 mm Pt	413 g Pb	6.0 (±50%)		
	e	25	14 × 14	105		0.3 mm Ta	0.05 (factor of ∼2)		

D. Linear energy transfer (LET) and specific ionization density (ID) for different radiations in water (soft tissue) [1]

LET: energy transferred by an ionizing particle to matter along its path (expressed in keV/ μ m). ID: specific ionization density of ionizing particles in matter expressed in ion pairs/ μ m.

- 1. LET and ID of primary electrons of specified energy.
- 2. LET and ID of electrons, including ionization due to secondary electrons.
- 3. LET and mean ID of electrons, integrated over the entire path length.
- 4. LET and mean ID of electrons released by x-rays of specified energy.
- 5. LET and ID of protons of specified energy.
- 6. LET and ID of deuterons of specified energy.
- 7. LET and ID of alpha particles of specified energy.
- 8. Mean energy of electrons released by monoenergetic x-rays in water (\overline{E}) .

E. Properties of selected thermoluminescent materials [15]

Property/Type	LiF	Li ₂ B ₄ O ₇ : Mn	CaF ₂ :Mn ^b	CaF ₂ (TLD-200) ^b	CaSO ₄ :Mn ^b	caSO4 : DY ^b
Density (g/cm ³) (Powder \sim ½ of Solid)	2.64	~2.4	3.18	3.18	2.61	2.61
Effective Atomic No (Z) for photoelectric absorption	8.2	7.4	16.3	16.3	15.3	15.5
TI Emission Spectra	3500-6000Å (4000 max)	5300-6300Å (6050 max)	4400-6000Å (5000 max)	Peaks at 4835Å at 5765Å	4500-6000 Å (5000 max)	4800Å; 5700Å
Temperature of main TL glow peak	195°C	200°C	260°C	180°C	110°C	220°C
Efficiency at ⁶⁰ Co relative to LiF	1.0	0.15	10	30	70	20
Energy Response 30 Kev/ ⁶⁰ Co	1.25	0.0	~13	~12.5	∿ 10	∿12.5
Useful Range	mR-3x10 ⁵ R	50mR-10 ⁶ + R	100μR-3×10 ⁵ R	10μR-10 ⁶ R	μR - 10 ⁴ R	100μR - ∿10 ⁵ R
Fading	Negligible ^a 5%/yr at 20°C	<5% in 3 months	10% in first 24 hours 15% total in 2 weeks	10% in first 24 hours 16% total in 2 weeks	50% in first 24 hours	2% in 1 month 8% in 6 months
Physical Forms	TLD-100, 600, 700 Powder Ribbons Rods Bulbs Cards Cleaved Crystals	T L D-800 Powder Chips/Ribbons Bulbs Cards	TLD-400 on, Powder Chips/Ribbons Rods Bulbs	T L D-200 Powder Crystals Bulbs Cards	Powder	Powder

^a Post-irradiation, pre-evaluation anneal for 10 minutes with LiF and 20 minutes with CaF₂ (TLD-200) at 100°C normalizes these materials and eliminates fading. ^b The high sensitivity materials such as CaF₂ and CaSO₄ are extremely light (UV) sensitive, and fading is enhanced considerably. All of the high sensitivity

materials should be handled, used and stored in opaque containers to prevent fading from light exposure.

Other TLD Materials include BeO:Mn, CaSO₄ (rare earth), A $1_2O_3(Mn)$, CaSO₄ (Tm), and Mg₂ SiO₄ (Tb)

References to Chapter Four

- [1] Wachsmann, F., and Drexler, G., Graphs and Tables for Use in Radiology, Springer-Verlag, New York (1975).
- [2] Determination of Absorbed Dose in a Patient Irradiated by Beams of X or Gamma Rays in Radiotherapy Procedures, ICRU Report 24, International Commission on Radiation Units and Measurements, Washington, DC (1976).
- [3] Saylor, W. S., and Ames, T. C., *Dosage Calculations in Radiation Therapy*, manual from University of North Carolina, Department of Radiology, Chapel Hill, NC.
- [4] Orton, C. G., and Seibert, J. B., The Measurement of Teletherapy Unit Timer Errors, Phys. Med. Biol. 17, 202 (1972).
- [5] Johns, H. E., and Cunningham, J. R., The Physics of Radiology, (Third Ed.), C. Thomas, Springfield, IL (1971).
- [6] Cerro Metal Products, Bellefonte, PA.
- [7] Almond, P. R., Radiation Physics of Electron Beams, in *Clinical Applications of the Electron Beam*, Tapley, N. du V., (Ed.), Wiley, New York (1976).
- [8] Shalek, R., and Stovall, M., Method for Computation of Isodose Curves, Am. J. Roentgol. 102, 662 (1968).
- [9] Loevinger, R., Absorbed Dose from Interstitial and Intracavitary Sources, p. 199, in Proceedings of Afterloading in Radiotherapy, Simon, N., (Ed.,), U.S. HEW 72-8024, Bureau of Radiological Health (1971).
- [10] Cohen, M., The Properties and Dosimetry of Radium Substitutes, p. 94, AAPM Summer School on Radiation Dosimetry, Burlington, VT (1976).
- [11] Fox, J. G., and McAllister, J. D., Fast Neutrons from a 25 MV Betatron, Med. Phys. 4, 387 (1979).
- [12] Huen, A., Findley, D. O., and Skov, D. D., Attenuation in Lipowitz's Metal of X-rays Produced at 2, 4, 10, and 18 MV and Gamma Rays from Cobalt-60, Med. Phys. 6, 147 (1979).
- [13] Radiation Dosimetry: Electrons with Initial Energies Between 1 and 50 MeV, ICRU Report 21, International Commission on Radiation Units and Measurements, Washington, DC (1972).
- [14] Purdy, J. A., and Choi, M. C., Lipowitz Metal Shielding Thickness for Dose Reduction of 6-20 MeV Electrons, Med. Phys. 7, 251 (1980).
- [15] Harshaw Chemical Co., Solon, OH.
- [16] Measurement of Absorbed Dose in a Phantom Irradiated by a Single Beam of X or Gamma Rays, ICRU Report 23, International Commission on Radiation Units and Measurements, Washington, DC (1973).
- [17] Physical Aspects of Irradiation, ICRU Report 10b, International Commission on Radiation Units and Measurements, Washington, DC (1964).
- [18] Radiation Dosimetry: X-Rays and Gamma Rays with Maximum Photon Energies Between 0.6 and 50 MeV, ICRU Report 14, International Commission on Radiation Units and Measurements, Washington, DC (1969).
- [19] Schulz, R. J., Chandra, P., and Nath, R., Determination of the Exposure Rate Constant for ¹²⁵I Using a Scintillation Detector, Med. Phys. 7, 355 (1980).

CHAPTER FIVE: NON-IONIZING RADIATION

I. Ultrasonic Pressure Waves

A. Acoustic properties of non-biologic materials

1. Table of density, acoustic velocity, and acoustic attenuation for non-biologic materials (All values are for 20 °C and 1 atmosphere unless noted.)

Material	Chemical formula	Density g/cm ³	Velocity ^a m - s	Temperature coefficient of velocity <u>m/s</u> °C	Attenuation coefficient at 1 MHz a, dB/cm	Approximate ^b frequency dependence of α	Reference den., vel., att.
Pure water ^c	н.о	0.9982	1482 343(5)	+ 3 071	0.0022	f ²	1 2 3
Carbon	1120	0.0002	1 (0210 (0(0))	1 51071	0.0022)	1, 2, 0
tetrachloride	CCl₄	1.5896	939(10)	-2.7	.047 at 25 °C	f^{2}	1, 4, 3
Acetone	C ₃ H ₆ O	.7899	1196(10)	-4.5	.0047 at 30 °C	f^{2}	1, 4, 3
Ethanol, 95%	$C_2H_6O_1H_2O_2$.7998	1227(10)	-4.0			1, 4
Ethanol	C_2H_6O	.7893	1161.8	-3.5	.0042 at 30 °C	f^2	1, 3, 3
Methanol	CH₄O	.7914	1121.2	-3.3	.0026 at 30 °C	f^2	1, 3, 3
Glycerol	$C_3H_8O_3$	1.2613	1997	-2.2	.16 at 26 °C	f^{2}	1, 4, 5
Ethylene glycol	$C_2H_6O_2$	1.1088	1667	-2.2			1, 4
Castor oil	C ₁₁ H ₁₀ O ₁₀	.969	1495	-3.6	.95 at ?	f^2	1, 1, 6
Aluminum	Al	2.695	6420		.018	f	3, 3, 6
Brass	.7Cu,.3Zn	8.6	4700		.02	f	3, 3
347 Stain- less steel		7.91	5790				3, 3
Pyrex glass		2.32	5640				3, 3
Rubber gum		.95	1550				1, 1
Lucite		1.182	2680		2.0	f	3, 3, 6
Polyethylene		.90	1950	-8	4.7	$f^{-1.1}$	3, 3 & 7, 6
Lexan poly- carbonate		1.19	2280(.5)	-3.58			7, 7
Nylon		1.11	2620				3, 3

^a The velocity is measured at the frequency noted in parentheses (MHz), however, for most materials little velocity dispersion is observed.

^b Classical attenuation due to the effects of viscosity and heat conduction is observed in most liquids with a square dependence on frequency over a broad frequency range. Attenuation in solids is more complex. The frequency dependence noted is observed in the frequency range from 1 to 10 MHz.

^c Doubly distilled water. The measured velocity is unaffected by dissolved gas.

3. Acoustic velocity vs concentration for solutions of sodium chloride, sucrose, and ethanol [8,9]

B. Acoustic properties of biologic materials

1.	Table of acoustic velocit	y and attenuation for l	human tissues (all	l values are for fresh	tissues, 37 °C) [10]	1
----	---------------------------	-------------------------	--------------------	------------------------	----------------------	---

Tissue	Velocity (m/s)	Attenuation coefficient (α) at 1MHz (dB/cm)	Approximate frequency dependence of α
Amniotic fluid	1510±3	5.1×10 ⁻³	1.6
Blood	1581 at 40% HMTC ^a	0.13	1.33
Brain, fetus	1520-1540	.63	1.27
Breast	1465±5 postmenopause 1529±5 premenopause		
Eye, lens	1638.4±3	.8	1.0
Eye, vitreous	1531.7±.9		
Fat	1479	.6	1.0
Liver	1540	.9	1.0
Muscle	1500-1610	1.3 for gastronemius muscle perpendicular to fibers	1.0

^a Velocity in blood for a specified hematocrit (HMTC)=1541.8+(.98) (HMTC), (m/s).

4. Scattering intensity vs angle for human blood (normalized to 0 dB at 90 °F) [13,14]

* The basic principle of grey scale echography is illustrated by the diagonal lines, showing the compression of the internal echos into the major portion of the grey scale of the display unit.

C. Acoustic field data

1. Field parameters for a typical ultrasonic wave in biologic tissue [6]

Intensity, I	100 W/m^2
Frequency, f	3.5 MHz
Velocity, c	1540 m/s
Wavelength, λ	· 0.44 mm
Peak particle displacement, u_0	5.18 Angstroms
Peak particle velocity, v_0	1.13 cm/s
Peak particle pressure, p_0	0.17 atmosphere
Acoustic impedence, z	$1.5 \times 10^{6} \text{ kg/(m^{2}s)}$
Radiation pressure (absorption)	0.66 mg/cm^2

Wavelength (λ): $\lambda = c/f$

c = propagation velocity, f = frequency

Particle displacement (u): $u = u_0 \sin (wt)$

$$w = 2\pi f, u_0 = \left[\frac{2I}{\rho c w^2}\right]^{\frac{1}{2}}, \rho = \text{density}$$

Particle velocity (v): $v = v_0 \cos(wt) v_0 = u_0 w$

Intensity (I): $i = \rho c v_0^2/2$

Intensity level (dB): $dB = 10 \log_{10} I/I_0$, $dB = 20 \log_{10} A/A_0$

 I_0 =reference intensity A_0 =reference wave amplitude $A_0 \propto$ pressure or transducer voltage

Particle pressure (p): $p = \rho c v$

Acoustic impedence (Z): $Z = \rho c = p/\nu$

Radiation pressure force (F):

F = W/c for a plane perfect absorber F = 2W/c for a plane perfect reflector W = ultrasonic power, Watts

2. Acoustic power and intensity for diagnostic ultrasound instruments [16]

<u>Transducer</u> Code #, Nominal Frequency (MHz), Oiameter (mm) Focal Length (cm) ²¹	Ultrasound Unit and Pulse Repetition Rate (Hz)	Total Ultra- sonic Power Output (mW)	Average Intensity at Trans- ducer Face (W/m ²)	Average Intensity at Focal Plane (W/m ²)	Temporal Average, Spatial Peak In- tensity (W/m ²)	Spatial Peak Intensity During the Pulse (W/m ²)	Temporal and Spatial Peak Intensity (W/m ²)
#1, 1, 13, 3.5 #1, 1, 13, 3.5	#1, 1538 #2, 1538	4.6		46	68		2.6×10^4
#2, 1.6, 19, 8.8 F	#3, 806	9.1	32	280	360	3.9×10^{5}	2.7×10^{6}
∦3, 1.6, 32, 10 F	∥1, 1538	3.6	4.5				
#4, 2.0, 13, 5.5 #5, 2.0, 13, 5.5 #6, 2.0, 13, 5.5 #7, 2.2, 13, 6.3 #8, 2.2, 13, 6.3	#1, 1538 #4, 520 #4, 520 #5, 676 #5, 676	0.5 4.2 2.8 5.8 9.4	3.6 32 21 44 71	8.3	11.9	4.9 × 10 ³	1.9 × 10 ⁴
#9, 2.25, 13, 6.2 #9, 2.25, 13, 6.2 #9, 2.25, 13, 6.2 #10, 2.25, 13, 6.7 #11, 2.25, 13, 6 #12, 2.25, 13, 6, F	<pre>#6, (Power 1) #6, (Power 2) #6, (Power 2) #1, 1538 #2, 1538 #7, 1000 #7, 1000</pre>	1.04 5.1 6.4 4.4 5.3 1.52 2.9	7.8 38 48 33 40 11.4 22	(88) (110) 58	(126) (159) 96 34	(8.0×10^{4}) (1.0×10^{5})	(3.1×10^{5}) (3.9×10^{5}) 8.6×10^{10} 1.2×10^{5}
#13, 2.25, 13, 7, F #14, 2.25, 19, 8.5, F #15, 2.25, 19, 9, F #15, 2.25, 19, 9, F #15, 2.25, 19, 9, F #16, 2.25, 19, 8.4, F	#3, 806 #6, (Power 1) #6, (Power 2) #6, (Power 3) #8, 1000	6.8 0.83 6.3 11.4 14.4	24 2.9 22 40 51	470 (57) (430) (780)	660 (80) (610) (1100) 1690	$5.0 \times 10\frac{5}{4} \\ (5.2 \times 105) \\ (4.0 \times 105) \\ (7.1 \times 105) \\ 1.6 \times 10^{6} \\ \end{cases}$	$\begin{array}{c} 4.8 \times 10^{6} \\ (5.0 \times 10^{5}) \\ (3.8 \times 10^{6}) \\ (6.9 \times 10^{6}) \\ 1.7 \times 10^{7} \end{array}$
#17, 2.3, 25, 10, F	#1, 1538	2.9	5.7				
#18, 3.5, 13, 10 #19, 3.5, 13, 7.4, F #19, 3.5, 13, 7.4, F #20, 3.5, 13, 5, F	#7, 1000 #1, 1538 #2, 1538 #7, 1000	2.2 1.12 1.87 1.57	17 8,4 14 11,8	8 I 5 9	110 62		2.5×10^{5} 3.4 × 10 ⁵
#21, 3.5, 19, 8.4, F #21, 3.5, 19, 8.4, F #22, 3.5, 19, 7.5, F	#8, 1000 #1, 1538 #3, 806	10.1 2.4 2.7	36 8.5 9.5	920 280 390	1220 380 580	2.0 x 10 ⁶ 1.5 x 105 5.9 x 10 ⁵	1.5×10^{7} 1.1×10^{6} 3.7×10^{6}
#23, 5.0, 6, 5, F	#8, 1000	1.9	60				
#24, 5, 10, 8.3 #24, 5, 10, 8.1	#1, 1538 #2, 1538	1.4 2.6	18 20				
#25, 5.0, 13, 7 #26, 5.0, 13, 7	#3, 806 #3, 806	1.48 1.62	11.1				
#27, 5, 19, 6, F	#1, 1538	0.50	1.7	250	350		1.4×10^{6}
#28, 2.0, 10 × 10,	#9, 2600				0.58		8.9×10^{3}
#29, 2.0, 10 × 10, 6.0	#10, 2600				0.14		4.0×10^{3}

'When F appears to the right of the local length value, the transducer is locused. Otherwise the transducer is unlocused (flat) and the local length is interpreted as the near held length.

3. The spatial distribution of acoustic intensity for a narrow-band focused transducer (experimental) [17]

Diameter = 15 mm.Focal length = 100 mm.Frequency = 2.25 MHz, CW.

4. Acoustic field focal zone widths for 5 MHz focused transducers as a function of focal length and diameter [18]

'Calculated using the Fraunhofer approximation and for continuous waves (narrow-band).

5. Acoustic field focal zone width after penetration through varying thicknesses of human tissue [18]

Frequency=5 MHz. Focal length=100 mm. Diameter=50 mm.

II. Visible Electromagnetic Radiation $(4-8 \times 10^{14} \text{ Hz})$

A. Human visual modulation transfer function [19]

The data points are the results of a contrast matching experiment. The region without data points is an estimate of the high frequency portion of the curve based upon threshold measurements.

B. Absorption spectra of the three color-systems in a human eye with normal color vision. (A, B, and C refer, respectively, to the three image receptors usually associated with red, green, and blue response) [19]

The CIE (Comité International d'Eclairage) diagram is the worldwide standard method of representing color. The x and y coordinates are transformations of three color primaries defined by CIE. The chromaticity diagram displays the hue and saturation of colors. The hue varies on the diagram with the angle measured with the white point (illuminant C) as the vertex. Saturation is measured by the radial distance from the white point at the center of the chart.

D. Emission spectra of NaI and CsI scintillation crystals and spectral sensitivities of S-11 and bialkali photomultiplier tubes [21]

III. Electromagnetic Radiation: Radiofrequency (10⁴—10¹⁰ Hz); Microwave (10⁹—10¹² Hz)

A. Properties of electromagnetic waves in muscle, skin, and tissues with high water content, from 1 MHz to 10 GHz [22]

	Muscle, Skin, and Tissues with High Water Content									
							Reflection Coefficient			
	Wavelength	Dielectric	Conductivity	Wavelength	Depth of	Air-Muscle	Interface	Muscle-Fa	t Interface	
Frequency (MHz)	in Air (cm)	Constant	(mho/m)	(cm)	Penetration (cm)	magnitude	phase shift	magnitude	phase shift	
1	30000	2000	0.400	436	91.3	0,982	+179			
10	3000	160	0.625	118	21.6	0.956	+178			
27.12	1106	113	0.612	68.1	14.3	0.925	+177	0.651	-11.13	
40.68	738	97.3	0.693	51.3	11.2	0.913	+176	0.652	-10.21	
100	300	71.7	0.889	27	6.66	0.881	+175	0.650	-7.96	
200	150	56.5	1.28	16.6	4.79	0.844	+175	0.612	• -8.06	
300	100	54	1.37	11.9	3.89	0.825	+175	0.592	-8.14	
433	69.3	53	1.43	8.76	3.57	0.803	+175	0.562	-7.06	
750	40	52	1.54	5.34	3.18	0.779	+176	0.532	-5.69	
915	32.8	51	1.60	4.46	3.04	0.772	+177	0.519	-4.32	
1500	20	49	1.77	2.81	2.42	0.761	+177	0.506	-3.66	
2450	12.2	47	2.21	1.76	1.70	0.754	+177	0.500	-3.88	
3000	10	46	2.26	1.45	1.61	0.751	+178	0.495	-3.20	
5000	6	44	3.92	0.89	0.788	0.749	+177	0.502	-4.95	
5800	5.17	43.3	4.73	0.775	0,720	0.746	+177	0.502	-4.29	
8000	3.75	40	7.65	0.578	0.413	0.744	+176	0.513	-6.65	
10000	3	39.9	10.3	0.464	0.343	0.743	+176	0.518	-5.95	

^a Depth for attenuation by 1/e.

B. Properties of electromagnetic waves in fat, bone, and tissues with low water content, from 1 MHz to 10 GHz [22]

		Fat, Bone, and Tissues with Low Water Content									
					Depth of Penetration a (cm)		Reflection Coefficient				
	Wavelength	Dielectric	Conductivity (mmho/m)	Wavelength		Air-Fat I	nterface	Fat-Muscle Inte			
Frequency (MHz)	in Air (cm)	Constant		(cm)		magnitude	phase shift	magnitude	phase shift		
1	30000										
10	3000										
27.12	1106	20	10.9-43.2	241	159	0.660	+174	0.651	+169		
40.68	738	14.6	12.6-52.8	187	118	0.617	+173	0.652	+170		
100	300	7.45	19.1-75.9	106	60.4	0.511	+168	0.650	+172		
200	150	5.95	25.8-94.2	59.7	39.2	0.458	+168	0.612	+172		
30.0	100	5.7	31.6-107	41	32.1	0.438	+169	0.592	+172		
43.3	69.3	5.6	37.9-118	28.8	26.2	0.427	+170	0,562	+173		
750	40	5.6	49.8 - 138	16.8	23	0.415	+173	0.532	+174		
915	32.8	5.6	55.6-147	13.7	17.7	0.417	+173	0.519	+176		
1500	20	5.6	70.8-171	8.41	13.9	0.412	+174	0.506	+176		
2450	12.2	5.5	96.4-213	5.21	11.2	0.406	+176	0.500	+176		
30 10	10	5.5	110 - 234	4.25	9.74	0.406	+176	0.495	+177		
50)	6	5.5	162-309	2.63	6.67	0.393	+176	0.502	+175		
59-0	5.17	5.05	186 - 338	2.29	5.24	0.388	+176	0.502	+176		
8000	3.75	4.7	255-431	1.73	4.61	0.371	+176	0.513	+173		
10000	3	4.5	324-549	1 41	3 39	0.363	+175	0.518	+174		

^a Depth for attenuation by l/e.

References to Chapter Five

- [1] Weast, R. C., Handbook of Chemistry and Physics, (53d Ed.), Chemical Rubber Co., West Palm Beach, FL (1972).
- [2] Del Gross, V. A., and Mader, C. W., Speed of Sound in Pure Water, J. Acoust. Soc. Am. 52, 1442 (1972).
- [3] Gray, D. E., (Ed.), American Institute of Physics Handbook, McGraw-Hill, New York (1972).
- [4] Williard, G. W., Temperature Coefficient of Ultrasonic Velocity in Solutions, J. Acoust. Soc. Am. 19, 235 (1947).
- [5] Willis, F. M., Measurements of Ultrasonic, Absorption, and Velocity in Liquid Mixtures, J. Acoust. Soc. Am. 19, 242 (1947).
- [6] Wells, P. N.T., Biomedical Ultrasonics, Academic, New York (1977).
- [7] Folds, D. L., Experimental Determination of Ultrasonic Wave Velocities in Plastics, Elastomers, and Syntactic Foam as a Function of Temperature, J. Acoust. Soc. Am. 52, 425 (1972).
- [8] Barthel, R., Sound Velocity in Some Aqueous Solutions as a Function of Concentration and Temperature, J. Acoust. Soc. Am. 26, 227 (1954).
- [9] Robinson, National Acoustics Laboratory, Sydney, Australia (in AIUM 100 mm test object standard).
- [10] Goss, S. A., Johnston, R. L., and Dunn, F., Comprehensive Compilation of Empirical Ultrasonic Properties of Mammalian Tissues, J. Acoust. Soc. Am. 64, 423 (1978).
- [11] Carstensen, E. L., and Schwan, H. P., Acoustic Properties of Hemoglobin Solutions, J. Acoust. Soc. Am. 31, 305 (1959).
- [12] Shung, K. K., Sigelmann, R. A., and Reid, J. M., The Scattering of Ultrasound by Red Blood Cells, Ultrasonic Tissue Characterization, M. Linzer, (Ed.), NBS-SP 453 U.S. Government Printing Office, Washington, DC (1976).
- [13] Morse, P. M., and Ingard, K. U., Theoretical Acoustics, McGraw-Hill, New York (1968).
- [14] Ahuja, A. S., Effect of Particle Viscosity on Propagation of Sound in Suspensions and Emulsions, J. Acoust. Soc. Am. 51, 182 (1972).
- [15] Kossoff, G., et al., Principles and Classification of Soft Tissues by Grey Scale Echography, Ultrasound Med. Biol. 2, 889 (1976).
- [16] Carson, P. L., Ultrasonic Power and Intensities Produced by Diagnostic Ultrasound Equipment, Ultrasound Med. Biol. 3, 341 (1978).
- [17] Kikuchi, Y., Transducers for Ultrasonic Systems, in Ultrasound: Its Application in Medicine and Biology, F. J. Fry, (Ed.), Elsevier Scientific, New York (1978).
- [18] Foster, F. S., and Hunt, J. W., The Focusing of Ultrasound Beams Through Human Tissue, in Program and Abstracts for International Symposium on Ultrasonic Imaging and Tissue Characterization, National Bureau of Standards, Gaithersburg, MD (1978).
- [19] Cornsweet, T. N., Visual Perception, Academic Press, New York (1970).
- [20] Fink, D. G., (Ed.), Electronic Engineers Handbook, McGraw-Hill, New York (1975).
- [21] Harshaw Scintillation Phosphors, Third Ed., Harshaw Chemical Co. (1978).
- [22] Johnson, C. C., and Guy, A. W., Non-ionizing Electromagnetic Wave Effects in Biological Materials and Systems, Proc. IEEE 60, 692 (1972).

r)

E

.

NBS-114A (REV. 2-80)			
U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET (See instructions)	1. PUBLICATION OR REPORT NO. NBS HB 138	2. Performing Organ. Report No. 3. P	Jblication Date March 1982
4. TITLE AND SUBTITLE		<u></u>	
Medical Physic	s Data Book		
5. Thomas N	N. Padikal, Editor, an	d Sherman P. Fivozinsky, A	ssociate Editor
6. PERFORMING ORGANIZA	TION (If joint or other than NBS	, see instructions) 7. Con	ntract/Grant No.
NATIONAL BUREAU OF DEPARTMENT OF COMM WASHINGTON, D.C. 2023	STANDARDS ERCE 4	8. Typ	e of Report & Period Covered N/A
9. SPONSORING ORGANIZA	TION NAME AND COMPLETE A	DDRESS (Street, City, State, ZIP)	
American Associa 111 East Wacker	tion of Physicists in Drive, Chicago, IL 60	Medicine 0601	
10. SUPPLEMENTARY NOTE	ES		
	Library of Congres	s Catalog Card Number: 81-	600102
Document describes a	a computer program; SF-185, FIP	S Software Summary, is attached.	
11. ABSTRACT (A 200-word o	or less factual summary of most :	Significant information. If document inc	ludes a significant
bibliography or literature	survey, mention it here)		
in medical Phys in medical physi sources. The ha Medicine, Diagno Carried out by t Physicists in Me to the numerical	cs. The information h ndbook is divided into stic Radiology, Radiat he Medical Physics Dat dicine, this compilat: data needed by the pr	the five sections: General Add to five sections: General H tion Therapy, and Non-ioniz ta Group of the American As ion is meant to serve as a racticing medical physicist	emical data userul er published Physics, Nuclear ing Radiation. sociation of handy reference
Data handbook; d radiation; nucle	e entries; alphabetical order; ca liagnostic radiology; ; ear medicine; radiation	pitalize only proper names; and separat general physics; medical ph n therapy	e key words by semicolons) Nysics; non-ionizing
13. AVAILABILITY			14. NO. OF
X Unlimited			PRINTED PAGES
For Official Distribut	ion。 Do Not Release to NTIS		/
X Order From Superinter	ndent of Documents, U.S. Govern	ment Printing Office, Washington, D.C.	15. Price
• Order From National	Technical Information Service (N	TIS), Springfield, VA. 22161	\$5.50
L			

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH — The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and eng neering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. As a special service to subscribers each issue contains complete citations to all recent Bureau publications in both NBS and non-NBS media. Issued six times a year. Annual subscription, domestic \$18, foreign \$22.50. Single copy, \$4.25 domestic \$5.35 foreign

NONPERIODICALS

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396)

NOTE: The principal publication outlet for the foregoing data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP) Subscriptions, reprints, and supplements available from ACS_1155 Sixteenth St., NW, Washington, DC 20056. Building Science Series Disseminates technical information developed at the Bureau on building materials, components, systems and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace

Order the **above** NBS publications from. Superintendent of Documents, Government Printing Office, Washington, DC 20402

Order the following NBS publications—FIPS and NBSIR's—from the National Technical Information Services, Springfield, VA 22161

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively constitute the Federal Information Processing Standards Register. The Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 LR 12315, dated May 11, 1973) and Part 6 of Title 15 CER (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Services, Springfield, VA 22161, in paper copy or microfiche form

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards

Washington, DC 20234

OFFICIAL BUSINESS

Penalty for Private Use, \$300

POSTAGE AND FEES PAID U S DEPARTMENT OF COMMERCE COM-215

THIRO CLASS