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Preface 

Unwanted vibrations at even very low levels of acceleration can lead 

to serious problems in monitoring and control of industrial processes as 

well as in the conduct of accurate measurements of many kinds. At higher 

levels of acceleration, vibrations can cause structural damage, degradation of 

product quality, can directly result in human discomfort, and produce airborne 

acoustical noise. When possible, it is often preferable to control vibration 

at the source; however, this may not be practical if to do so would require 

costly redesign or modification of equipment or structures. Modification of 

the transmission path between a source of vibration energy and the equipment 

that must be protected from excessive vibration is frequently the most 

cost-effective means of vibration control. 

In this handbook, Dr. Snowdon has carefully reviewed, evaluated and 

synthesized a large body of literature concerned with the use and the 

characterization of the performance of vibration isolators and has summarized 

analytical and experimental procedures for characterizing the effectiveness of 

antivibration mountings. This state-of-the-art review also provides a basis 

for further research in the development of improved techniques for evaluation 

of vibration isolation. 

We are pleased to make this report available as a resource for designers 

and users of vibration isolation systems and for scientists and engineers who 

are carrying out research on this important topic. 

John A. Simpson, Director 
Center for Mechanical Engineering 

and Process Technology 
National Engineering Laboratory 
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Abstract 

The results of a search and critical evaluation of the literature 

pertinent to both the use and the characterization of the performance of 

antivibration mountings for the control of noise and vibration are described. 

First to be discussed are the static and dynamic properties of rubberlike 

materials that are suited for use in antivibration mountings. This is 

followed by analyses of the simple (one-stage) mounting system and its 

subsequent, impaired performance when second-order resonances occur either 

in the isolator (wave effects) or in the structure of the mounted item 

itself (nonrigid supporting feet). A discussion is then given to the 

performance of the compound or two-stage mounting system which possesses 

superior isolation properties for high frequencies. Next, the four-pole 

parameter technique of analysis is described and applied, in general terms, 

to the characterization of the performance of an antivibration mounting 

with wave effects for both the cases where either the supporting foundation 

or mounted item are nonrigid. The adopted methods for the direct measure¬ 

ment of antivibration-mounting performance are described, followed by an 

explanation of how this same experimental determination of transmissibility 

can also be made using an indirect measurement technique based upon four- 

pole parameter analysis considerations. Finally, recommendations for 

future work in various areas of research on antivibration mountings are 

given. 

Key Words: Antivibration mounting; damping; dynamic properties; industrial 

engineering; isolation; machinery and equipment; mechanical impedance; 

mechanical vibrations; noise control; transmissibility; vibrations; vibration 

isolation. 
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Introduction 

This report is concerned with vibration isolation, with antivibration 

mountings (resilient isolators), and with the static and dynamic properties 

of rubberlike materials that are suited for use in antivibration mountings. 

The design of practical antivibration mounts incorporating rubber or coiled- 

steel springs is described in Refs. 1-27; pneumatic isolators (air mounts, 

etc.) are described in Refs. 5, 28-35.* Throughout the literature, as here, 

attention is focussed predominantly on the translational (vertical) effective¬ 

ness of antivibration mountings. However, the two- and three-dimensional 

vibration of one- or two-stage mounting systems is addressed in Refs. 4, 

10, 12, 36-56. 

Following a description of the static and dynamic properties of 

rubberlike materials, the performance of the simple or one-stage mounting 

system is analyzed, account being taken of the occurrence of second-order 

resonances in the isolator and in the mounted item. In the latter case, 

as likely in practice, the bulk of the mounted item is assumed to remain 

masslike whereas the feet of the item are assumed to be nonrigid (multi¬ 

resonant) . Discussion is then given to the two-stage or compound mounting 

system, which affords superior vibration isolation at high frequencies. 

Subsequently, the powerful four-pole parameter technique (Ref. 57) is 

employed to analyze, in general terms, the performance of an antivibration 

mounting with second-order resonances (wave effects) when both the foundation 

that supports the mounting system and the machine are nonrigid. 

The universally adopted method of measuring mount transmissibility is 

then described, followed by an explanation of how transmissibility can also 

* Occasionally in this report, trade names are given in order to provide 

adequate identification of materials or products. Such identification 
does not constitute endorsement by the National Bureau of Standards. 
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be determined by four-pole parameter techniques based on an apparatus used 

by F. Schloss (Ref. 58). The four-pole measurement approach has not been 

exploited hitherto, but it is apparently feasible and valuable because it 

enables mounts to be tested under compressive loads equal to those 

routinely encountered in service. 

1. Static Properties of Rubberlike Materials 

The strain induced in a purely elastic linear material is proportional 

to the stress that produces the deformation. As explained in Ref. 59, two 

fundamental types of deformation that a rubberlike material may experience 

are described by two independent elastic moduli. Thus, the shear modulus 

G describes a shear deformation for which the material does not change in 

volume [Fig. 1(a)], and the bulk modulus B describes a volume deformation 

for which the material does not change in shape [Fig. 1(b)]. Rubbers that 

do not contain fine particles of carbon black reinforcement (filler) have 

3 6 
shear and bulk moduli of approximately 0.7 and 10 MPa (7 x 10 and 

1 x 1010 dyn/cm^ or 100 and 10~* psi) . 

A sample of material sandwiched between plane, parallel, rigid surfaces 

in the configuration of Fig. 1(c) is frequently said to be in compression, 

but it is not homogeneous compression governed by the bulk modulus B. In 

fact, the mechanical behavior is governed primarily by B only when the 

lateral dimensions of the sample are very large in comparison with the 

sample thickness [Fig. 1(d)]. In this event the material changes in both 

shape and volume, and the ratio of stress to strain in the material is 

described by a modulus M given by 

M = B + (4G/3) * B (1) 
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(a) (b) (c) 

/y////////////////7//7////////////////>/ (e) 

(d) 

Fig. 1 Simple deformations of a rubberlike material. (Ref. 59.) 
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This is to say the resilience that is normally associated with the rubber¬ 

like material is not apparent because B » G. If resilience is required 

in this situation, it is necessary to use spaced strips of material or a 

perforated sheet (Ref. 3), thereby leaving the material free to expand 

laterally when it is compressed vertically. 

Also considered must be the other geometric extreme, in which the 

lateral dimensions of the sample are small in comparison with the sample 

thickness; namely, the sample is a rod or bar and the stress is applied 

along its axis as in Fig. 1(e). In this event the ratio of stress to 

strain in the material is governed by the Young's modulus E (approximately 

7 2 
2 MPa, 2 x 10 dyn/cm , or 300 psi for unfilled rubbers), and the ratio 

of the resulting lateral to axial strain is described by Poisson's ratio 

v. For rubbers, it is well known that 

E = 9 BG/(3B + G) « 3G (2) 

and 

V = [(E/2G) - 1] ~ 0.5 . (3) 

An element of rubberlike material in the configuration of Fig. 1(c) 

possesses an apparent modulus of elasticity E that is intermediate in 

value to the moduli E and M [Figs. 1(e) and (d)]. The rubberlike 

material is usually bonded to the rigid surfaces between which it is 

compressed, in which case (Refs. 21, 23, 60, 61) it is possible to state 

that 

E 
a 

E(1 + BS2) 

[1 + (E/B)(1 + BS2)] 
(4) 
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where the so-called shape factor S (Refs. 3, 5, 11, 13, 15, 21-23, 26, 

39, 59-75) is equal to the ratio of the area of one loaded surface to the 

total force-free area, and 6 is a numerical constant. The shape factor 

of a rubber cylinder of diameter D and height £ is equal to D/4£; the 

shape factor of a rectangular rubber block of sides a and b and height 

£ is equal to ab/2£(a + b). For all samples except those with large lateral 

dimensions (large shape factors), Eq. 4 can be written as 

E = E (1 + BS2) . (5) 
3 

Note that because E ~ 3G, the apparent modulus of elasticity E is some simple 
3 

numerical multiple of the shear modulus G. 

The dependence of the apparent modulus E on shape factor is plotted in 
3 

Fig. 2 for rubbers of various hardness (Refs. 21, 23). The curves of this 

figure have the form predicted by Eq. 4. Measured values of E, G, and B for 

natural rubbers of increasing hardness (increasing volume of carbon black 

filler) are listed in Table I (Ref. 23); the related values of 3 are also 

listed. For rubbers unfilled by carbon black, 3=2. Equation 5 is valid 

for samples that are circular, square, or moderately rectangular in cross 

section. However, for a pronounced rectangular rail-type sample--a so-called 

compression strip for which b » a--a companion equation pertains (Refs. 21, 

23); that is, 

Ea = (2/3) E(2 + BS2) (6) 

where S = a/2£. 

Hardness measurements can provide an estimate of E and G (Refs. 23 

and 3, 5, 11, 13, 17, 39, 76, 77). Hardness is readily measured but is 
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Fig. 2 Dependence of the apparent modulus E on 
cl 

shape factor S for natural rubbers of 

various hardnesses. (Refs. 21, 23.) 
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subject to some uncertainty, hence the tolerance in the hardness 

values quoted in Table I. Rubber hardness is essentially a measure 

of the reversible, elastic deformation produced by a specially 

shaped indentor under a specified load and is therefore related 

to E. Readings in International Rubber Hardness degrees (IRHD) and 

on the Shore Durometer A scale are approximately the same. An 

objection to such hardness measurements is said to be that both 

stress and strain vary throughout the test. Thus, as the indentation 

proceeds, the load is distributed by an increasing area of contact 

between the indentor and the sample, so causing the average contact 

pressure to diminish. 

Creep is the continued deformation (drift) of a rubber under 

static load (Refs. 23 and 11, 12, 15, 39, 62, 78-81). When the 

load is removed, all but a few percent of the original deformation 

is recovered immediately; further recovery takes much longer and 

may never be achieved. The incompletely recovered deformation is 

termed permanent set. Creep varies linearly with the logarithm 

of time; for example, the amount of creep occurring in the decade 

of time from 1 to 10 minutes after loading is the same as the 

amount in the decade from 1 to 10 weeks after loading. Creep 

under load should not exceed 20% (for 70 IRHD) of the initial 

deflection during the first several weeks; only a further 5 - 10% 

increase in deflection should then occur over a period of many 

years. 

Load-deflection and stress-strain curves for statically com¬ 

pressed rubber are referred to throughout the literature (Refs. 3, 
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5, 11, 13, 17, 21, 23, 27, 36, 39, 60, 61, 63, 64, 67, 69, 70, 73, 74, 

76, 77, 82-91). A series of stress-strain curves from Ref. 11 is 

shown in Fig. 3, which refers to various shape factors and deflections 

up to 50% (a value seldom reached in practice) for a rubber hardness 

of 40 Shore Durometer. These data are said not to be limited to one 

type of rubber but they do relate to room temperature and to rubber 

samples bonded to rigid surfaces as in the manner of an antivibration 

mount [Fig. 1 (c)]. 

To conclude, it is appropriate to mention that the natural fre¬ 

quency fQ of a resiliently mounted item (Sec. 3) can be expressed in 

terms of the static deflection d of the resilient element as follows: 

f = 0.4984/fcT Hz (d meters) (7) 

or 

f = 3.1273/Zd Hz (d inches) . (8) 

Values of f can be read from the straight-line plot of Fig. 4. 

2. Dynamic Properties of Rubberlike Materials 

The dynamic properties of rubberlike materials that experience sinu¬ 

soidal vibration are readily accounted for by writing the elastic moduli 
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Fig. 3 Stress-strain curves of 40 durometer rubber in 

compression with various shape factors. (Ref. 11.) 
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Fig. 4 Natural frequency of a simple mounting system versus static 

deflection of the antivibration mount. 
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that govern the vibration as complex quantities (Ref. 59). For example, 

the Young’s modulus and the shear modulus are most generally written 

(9) 

(10) 

Here, the star superscripts denote complex quantities and j = /-I; the so- 

called dynamic moduli E^ ^ and q are the real parts of the complex moduli 

* * 
E Q and G 0 , and S_ _ and n are the so-called damping or loss factors 

associated with the Young's modulus and shear deformations of the material. 

The subscripts oo and 0 indicate that the dynamic moduli and damping 

factors are, in general, functions of both angular frequency oo and tempera¬ 

ture 0. The damping factors are equal to the ratios of the imaginary to the 

real parts of the complex moduli, and are directly equivalent to the reciprocal 

of the quality factor Q that is employed in electrical circuit theory to 

describe the ratio of an inductive reactance to a resistance. The damping 

factors are also equivalent to other commonly employed measures of damping 

such as those listed in Fig. 5. 

There is nothing magical in the concept of a complex modulus--it means 

only that strain lags in phase behind stress in the rubberlike material by 

an angle the tangent of which is the damping factor 6^^ ^ or 6^ q. The 

damping factors % 1.0 for "high-damping" rubbers, and « 0.1 or less for 

"low-damping" rubbers--in which case the dynamic moduli and damping factors 

vary only slowly with frequency through the audio-frequency range at room 

temperature, as will be illustrated subsequently. 

E . = E 0 (1 + .) 
(0,0 (0,0 E(o,0 

and 

G 0 = G Q (1 + j<5_ J 
(0,0 (0,0 G(O,0 
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DAMPING FACTOR 6 = LOSS FACTOR 7? or ^ 

= TAN 6 

= 2 (DAMPING RATIO C/C ) 
c 

= (1/tt) (LOGARITHMIC DECREMENT) 

= (1/2tt) (SPECIFIC DAMPING CAPACITY) 

= l/(QUALITY FACTOR Q) 

= (RESONANT BANDWIDTH)/uQ 

(PROVIDED THAT THE DAMPING FACTOR IS LESS THAN APPROXIMATELY 0.3) 

Fig. 5 Equivalence between the damping factor 6 employed 

in this report and other commonly employed measures 

of damping. 



14 

For rubberlike materials, the complex shear and Young's moduli exhibit 

the same frequency dependence (Ref. 59); that is to say, 

E Q = 3 G „ 
0), 0 CO, 0 

and 

6Eoo,0 = 6Goo,e 

The dynamic moduli of Eq. 11 are found experimentally to increase in value 

when frequency increases or when temperature decreases. This is best 

visualized by reference to Fig. 6, where, for example, the dynamic modulus 

G^ q and damping factor <5^ q are shown diagrammatically as a function of 

angular frequency co (hereafter referred to simply as frequency) and tempera¬ 

ture 0. The transition frequency co and temperature 0 refer to the transi¬ 

tion of rubberlike materials at sufficiently high frequencies or sufficiently 

low temperatures to an "inextensible" or glasslike state, G^ g becoming so 

large that the characteristic resilience of the material is no longer 

apparent. At the so-called rubber-to-glass transition, the damping factor 

passes through a maximum value that lies approximately in the frequency or 

temperature range through which G Q is increasing most rapidly. 
co, 0 

Much effort has been expended over the years to develop test apparatus 

to yield values of the dynamic moduli and their associated damping factors 

(Refs. 13, 17, 21, 66, 75, 92-119). One apparatus has been particularly 

criticized (Refs. 110, 120-127), but for soft rubberlike materials and data 

recorded away from regions of fluctuating response, the results obtained are 

thought to be reliable. 

Any single piece of apparatus is limited in that dynamic measurements 

cannot be made through an extensive frequency range; however, it is generally 

(ID 

(12) 
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(b) 

Fig. 6 Dependence of (a) the dynamic shear modulus q 

and (b) the shear damping factor <5^ q °f a 

rubberlike material on angular frequency w and 

temperature 0. (Ref. 59.) 
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straightforward to make measurements through a wide temperature range. Then, 

with a well-established technique known as the method of reduced variables, 

the dynamic moduli and damping factors can be predicted through a very broad 

frequency range at a single temperature of interest such as room temperature. 

The method of reduced variables (Ref. 59), although originally semiempirical, 

is now well validated both by theory and by successful usage. 

Examples of data established in the foregoing way (Ref. 59) are re¬ 

produced in Figs. 7-9, where the dynamic shear moduli and damping factors of 

unfilled natural rubber, natural rubber filled with 50 parts by weight of 

high-abrasion furnace (HAF) black, and Thiokol RD rubber are plotted versus 

frequency in the audio frequency range 1 Hz - 10 kHz at 5°C, 20°C, and 35°C. 

Other measurements of the dynamic shear and Young's moduli and their 

associated damping factors are reported in Refs. 21, 59, 62, 65, 73, 79, 86, 92, 

94-96, 99, 100, 102, 104, 105, 108, 110, 111, 116-118, 128-142. 

Rubbers are reinforced with carbon black to increase their stiffness, 

tear resistance, and abrasion resistance--to an extent that depends on the 

type of black utilized. Furnace, channel, lamp, and thermal blacks cover a 

wide range of particle sizes; furnace and channel blacks are the most finely 

divided. Note that the presence of carbon black (1) has increased the 

dynamic shear modulus of the natural rubber of Fig. 8 by a factor of 

approximately 10 above that of the unfilled rubber of Fig. 7, and (2) has 

increased the value of the damping factor, particularly at low frequencies. 

It should be recognized, however, that the addition of carbon black may 

reduce the damping factor significantly at frequencies above the range 

considered here. 

Although G Q and Q increase only by a factor of two or three at 
co y y (jgq y y 

room temperature through the four decades in frequency considered in Fig. 8, 

it is well to remember this fact if satisfactory engineering design is to 
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Fig. 7 Frequency dependence of (a) the dynamic shear modulus, and (b) 

the damping factor of unfilled natural rubber at 5, 20, and 35°C 

(41, 68, and 95°F). (Ref. 59.) 
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Fig. 9 Frequency dependence of (a) the dynamic shear modulus, and (b) 

the damping factor of an unfilled rubber Thiokol RD. (Ref. 59.) 
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be achieved when high-frequency vibration is of concern. By contrast, the 

dynamic modulus G of high-damping rubberlike materials increases greatly 
co> 0 

with frequency, and ^ and 6^ ^ are strongly dependent on temperature, 

as the curves of Fig. 9 for Thiokol RD rubber illustrate. Thiokol RD was 

produced some years ago as an experimental copolymer of butadiene-acrylonitrile 

and, most probably, chloroprene. It is referred to here because, in analytical 

studies of antivibration mountings that are described subsequently, its pro¬ 

perties have been considered to typify those of high-damping rubbers. 

The data of Figs. 7-9 relate to small amplitudes of vibration for which 

the rubberlike materials exhibit linear behavior. Whereas unfilled and 

lightly filled rubbers remain linear for increasing strain, up to relatively 

large strains, the dynamic moduli and damping factors of moderately and 

heavily filled rubbers show a strong amplitude dependence (Refs. 15, 73, 81, 

86, 98, 103, 106, 107, 135, 136, 143-154). This fact is exemplified by the 

curves of Figs. 10 and 11, which are drawn from Refs. 144 and 135, respectively. 

The data of Fig. 10, for example, which refer to exciting frequencies in the 

range 20 - 120 Hz, show that the dynamic shear modulus of natural rubber 

containing 40 parts by volume of medium processing channel (MPC) black is 

more than halved when an alternating shear strain of 3% breaks down the 

three-dimensional aggregates or so-called matrix of carbon particles within 

the rubber. The greatly increased damping factor that accompanies this 

strain amplitude is primarily a reflection of the reduction in value of the 

dynamic modulus--rather than an increase per se in the imaginary part of the 

complex modulus, which remains essentially constant. 

In conclusion, it is appropriate to note that the static load experienced 

by a rubber sample can also influence its dynamic properties. This fact is 

addressed in Refs. 62, 82, 88, 95, 96, 109, 112, 115, 119, 142, 155, 156. 

For example, data from Ref. 96 are reproduced in Fig. 12, where the dynamic 
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Fig. 10(b)Dependence on vibration amplitude 

(% shear) of the damping factor 

of natural rubber filled with various 

parts by volume of MPC carbon black 

per 100 volumes rubber. (Ref. 144.) 
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DYNAMIC SHEAR STRAIN AMPLITUDE (m/m) 

Fig. 11 Dependence on dynamic shear strain amplitude of the dynamic shear 

modulus and damping factor of natural rubber filled with 50 parts 

by weight of carbon black per 100 parts rubber. (Ref. 135.) 
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Fig. 12 Dependence on static stress of the dynamic 

stiffness and magnification Q = (damping 

factor) 1 of natural rubber. Excitation 

frequency 60 Hz; rubber hardness approxi¬ 

mately 50 Shore Durometer. (Ref. 96.) 
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stiffness and magnification Q = (damping factor) of a natural rubber sample 

having a hardness of approximately 50 Shore Durometer are plotted versus static 

7 2 
stress in the range 0.35 - 1.05 MPa (0.35 - 1.05 x 10 dyn/cm , or 

50 - 150 psi). Superimposed on the static displacement produced by 

this stress is a small displacement of 60 Hz frequency and rms amplitude 

of 0.5 - 1.8 x 10_5m (0.2 - 0.7 x 10_3in.). 

3. Simple Mounting System 

The simple mounting system (Refs. 4, 9, 11, 13, 20, 24, 59, 68, 81, 

133, 157-178) is shown in Fig. 13, where an element of mass M is supported 

by a linear rubberlike material utilized so that its behavior is governed by 

k 

the complex shear modulus q (Sec. 2). Here, and subsequently, it is 

k 

assumed that the temperature remains constant, so that q may be written 

as 

G = G (1 + j6 ) . (13 

The mounted item M is assumed to be supported at its center of gravity, and 

to vibrate only in the vertical direction; it is excited either by a sinu¬ 

soidally varying ground displacement x , as in Fig. 13(a), or by a sinusoi¬ 

dally varying force F , as in Fig. 13(b). If the transmissibility T across 

system (a) is defined as the magnitude of the displacement ratio |x^/x^|, and 

if the transmissibility across system (b) is defined as the magnitude of the 

force ratio |F^/F |--then, at any one frequency, 

t = iq/xj = liyql (14) 
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(a) 

Fig. 13 Simple mounting system with rubberlike material. 
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where x is the displacement of M in Fig. 13(a) and is the force trans¬ 

mitted to the ideally rigid foundation in Fig. 13(b). Thus, the results of 

a single calculation or measurement of transmissibility have dual signifi¬ 

cance. Further, because sinusoidal motion is of concern, T can equally well 

be expressed as the acceleration ratio [A^/A^l, where A^ = (jto) x^, i = 1, 2. 

The transmissibility across the simple mounting system is given 

(Ref. 59) by 

(1 
T = 

r2 . 
<V Y2 Gw 

{[1 - (u/uiof(Go/GJ]2 ♦ 
(15) 

From this general equation, the transmissibility of any linear rubberlike 

material can be calculated, provided that the dependence of and 6^ upon 

frequency is known. The quantity Gq is the value of G^ at the natural fre¬ 

quency wq of the system, which is defined as the frequency for which, in 

the absence of damping, T becomes infinitely large; that is 

w2 = kG /M , (16) 
oo 

where the constant k has the dimensions of length. For a rubber mount of 

cross-sectional area A and length (height) £ , reference to Eq. 5 shows 

that 

k = 3(A/£) (1 + gS2) (17) 

more simply, if the rubber element is used directly in shear, rather than as 

drawn in Fig. 13, then k = (A/£). 
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The parallel spring and viscous dashpot combination of Fig. 14(a) is 

frequently discussed in the literature concerned with antivibration mountings 

(Refs. 6, 27, 36, 39, 55, 59, 77, 78, 88, 175, 176, 179-190); however, it is 

important to recognize (Ref. 59) that the dynamic properties of the combina¬ 

tion poorly represent those of rubberlike materials. In fact, the damping 

factor of the combination is directly proportional to frequency--in contrast 

to the damping factors of either low or high-damping rubbers (Sec. 2). Again, 

it is important to recognize that the three-element combination of two springs 

and one dashpot shown in Fig. 14(b) (Refs. 39, 59, 98, 159, 170, 175, 176, 

180, 182, 184, 187, 188, 191-193) also fails to provide a satisfactory 

representation of a rubberlike material, even though (1) the combination 

does exhibit creep under constant stress (Sec. 1), and stress relaxation 

under constant strain, and (2) the combination does stiffen by a small 

constant amount as frequency increases and, by association, is said to 

possess a transition frequency. However, the overall stiffness increases 

by a factor that is of the order of units rather than hundreds or thousands 

as observed for rubberlike materials in practice (Sec. 2 and Ref. 59). 

Consequently, analyses based on the spring and damper combinations of 

Fig. 14 can provide misleading conclusions unless the springs and dampers 

are viewed solely as mechanical devices. 

The transmissibility of natural rubber, natural rubber filled with 

carbon black, and the high-damping rubber Thiokol RD is shown in Fig. 15. 

Data have been taken from Figs. 7-9 for these rubbers and inserted numeri¬ 

cally into the expression for transmissibility given by Eq. 15. The natural 

mounting frequency has been chosen as 5 Hz and the ambient temperature is 

20°C. Transmissibility is plotted on a decibel scale; thus, a displacement 

ratio or a force ratio T appears on a decibel scale as 20 log^T decibels 

(dB). Negative values of T(dB) mean that the input displacement or force 



29 

2 

X, 

Fig. 14 Simple mounting system with two- and three-element 

spring- and viscous-dashpot combinations. 
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has been attenuated by the introduction of the rubber mounting; positive 

values of T(dB) mean that undesired magnification has occurred. 

An antivibration mounting is required to provide small values of trans- 

missibility at all frequencies that are contained in the Fourier spectrum of 

the displacement applied to its foundation, as in Fig. 13(a), or in the 

spectrum of the force applied to the item of equipment or machinery that 

it supports, as in Fig. 13(b). Thus, an effective antivibration mount 

should afford 

(1) a low natural mounting frequency co , 

(2) a low transmissibility at resonance, 

and 

(3) a transmissibility that decreases rapidly with frequency at fre¬ 

quencies greater than ooq. 

A low natural frequency can be obtained by employing a mount of suitably low 

stiffness (or by increasing the mass of the mounted item). Because the 

lateral stability of the mounting system must be maintained, the extent 

to which the stiffness of the mounting can be reduced is limited. In 

practice, the natural frequencies of mounting systems are generally 

selected to be equal to or greater than 5 Hz. The use of a high-damping 

rubber can ensure that the resonant transmissibility will take small values. 

The rate at which transmissibility decreases with frequency above co^ 

varies considerably with the type of rubberlike material utilized in the 

mounting. Transmissibility decreases most rapidly with frequency for natural 

2 
and other low-damping rubbers--essentially in proportion to 1/co (12 dB/ 

octave). The transmissibility of Thiokol RD and other high-damping rubbers 

decreases at a much slower rate. This is one of the major drawbacks to the 

use of high-damping rubbers in antivibration mountings; the low resistance 

to creep (Sec. 1) of some high-damping rubbers is another drawback. The 
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poor performance of these rubbers at high frequencies is predominantly caused 

by the significant increase in value of their dynamic moduli with fre¬ 

quency (as in Fig. 9). Contrary to the supposition often made, the inherent 

high damping of the rubbers has relatively small influence upon the values of 

transmissibility above resonance. To explain these facts, it is helpful to 

refer again to the general transmissibility equation (Eq. 15). Thus, at 

frequencies well above ooq, this equation may be approximated as 

T » 
f1 + W 

(C0/U3 ) 
o 

(18) 

The values of possessed by natural and other low-damping rubbers increase 

only slowly with frequency, and 6^remains small; consequently, T decreases 

almost in proportion to the square of the exciting frequency. By contrast, 

the values of G^ possessed by high-damping rubbers increase rapidly with 

frequency--a fact that, as mentioned, is primarily responsible for the large 

values of transmissibility observed for these rubbers at high frequencies 

(Ref. 59). 

Although natural rubber and other low-damping rubbers such as neoprene 

are the rubbers normally utilized in antivibration mountings, high-damping 

rubbers would have greater application if they could be produced such that 

their dynamic moduli G remained constant or increased only slowly with fre- 
O) 

quency. To date, it has proved impossible to satisfy this requirement; how¬ 

ever, the suggestion has been made (Ref. 59) that natural rubber be used 

mechanically in parallel with a high-damping rubber of suitably smaller cross- 

sectional area. In this way, the dynamic modulus of the combination of 

rubbers can be adjusted to increase relatively slowly with frequency, while 
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the associated damping factor takes values of significant magnitude inter¬ 

mediate to those of the constituent rubbers. 

4. Simple Mounting System —Impairment of Performance 

4.1 General Discussion 

It is appropriate now to mention some reasons why larger values of 

transmissibility (reduced isolation) may occur at frequencies above resonance 

than the curves of Fig. 15 predict. These reasons (a) may simply be mechan¬ 

ical or (b) they may be basic. Thus, 

(a) Vibration isolation may be impaired by mechanical links that have 

significant stiffness and hence that bypass, to some extent, the anti¬ 

vibration mounts. For example, vibration from a resiliently mounted diesel 

engine may reach its foundation via an exhaust pipe that is still rigidly 

connected to a surrounding enclosure, or it may reach the foundation via 

a bearing pedestal that supports a rotating shaft extending from the engine. 

(b) Vibration isolation may be inadequately predicted at higher fre¬ 

quencies for the basic reason that the mounting system of Fig. 13 is too 

simplified a model of the practical situation. The mounting system can be 

criticized for three primary reasons, which are outlined in what follows: 

First, values of transmissibility have been derived theoretically 

from knowledge of the mechanical properties of rubbers measured at small 

dynamic strains. It may be thought, therefore--particularly in the case of 

rubbers filled with substantial proportions of carbon black (Sec. 2)--that 

the performance of the rubbers under greater strains would differ from the 

performance predicted by curves such as those of Fig. 15. However, two 

comments may be made. First, although it is possible that the character 

of the transmissibility curves of filled rubbers will be strain dependent 



34 

near resonance (00 ~ w ), well designed mounting systems normally possess 

natural frequencies that fall significantly below the spectrum of fre¬ 

quencies that the mountings are required to isolate. In consequence, 

the exciting frequencies should fall where 10 » a)Q, and where the strain 

is relatively small and is decreasing rapidly as oo increases. Second, 

even should a filled rubber exhibit nonlinear properties at frequencies 

above resonance, the dynamic stiffness of the rubber would decrease in 

magnitude (Figs. 10 and 11), so that the transmissibility of the mounting 

system would also decrease; that is, the effectiveness of the mounting 

would become greater. 

Second, "wave effects" may be observed at high frequencies when the 

mount dimensions become comparable with multiples of the half-wavelengths 

of the elastic waves traveling through the mounting. Alternatively, wave 

effects may be thought of as occuring when the elasticity and the dis¬ 

tributed mass of the rubber mounting interact at high frequencies. Wave 

effects are discussed in Refs. 4, 6, 20, 39, 59, 68, 81, 157, 158, 161, 

162, 164, 165, 170, 171, 182, 189, 194-203 (waves in individual springs 

and rubber mounts are discussed in Refs. 156, 204-206). Wave effects are 

evident, for example, in the measured transmissibility curves of Fig. 16, 

which relates to a small natural-rubber mount containing 40 parts by 

weight of EPC carbon black (Ref. 59), and Fig. 17, which relates to a 

helical-spring and two natural-rubber mounts (Ref. 164). Other measure¬ 

ments of the transmissibility of rubber mounts in the simple system are 

described in Refs. 13, 21, 59, 68, 145, 152, 157, 158, 161, 165-171, 194, 

195, 201, 207-209. Although many pronounced wave resonances occur in the 

transmissibility curves of springs, as in Fig. 17, the resonances in the 

transmissibility curves of practical rubber mounts are not always of 

primary concern. In fact, (a) the resonances are suppressed reasonably 
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well by the internal damping of the rubber mounts, and (b), as will be 

demonstrated, even the first of the wave resonances invariably occurs at 

frequencies in excess of 20 o)o, where significant isolation has already 

been achieved. 

Third, the mounted item M may not behave as an ideally rigid mass. 

For example, the flanges or feet on which M is mounted may fail to 

remain ideally rigid and may resonate because of their poor design, so 

giving rise to other peaks in the transmissibility curve at high frequencies-- 

even though the bulk of the mounted item may continue to behave as a lumped 

mass well into the high-frequency region. The peaks in the transmissibility 

curve may be troublesome because the internal damping of the metal feet will 

be at least 5 or 10 times smaller than the damping of the rubber mounts in 

which the previously discussed wave effects occurred. The feet may protrude 

from the bottom of the mounted item, or from its sides. This will be the 

case if the usually beneficial step is taken to locate the mounts in a 

plane that passes through the center of gravity of the mounted item (so 

minimizing the rocking motion it experiences if subjected to horizontally 

directed vibratory forces). Analyses of a mounted item with self resonances 

will be described subsequently; other discussions of the problem appear in 

Refs. 30, 160, 162, 164, 165, 173, 174, 188, 210. 

4.2 Wave Effects 

The geometry of the rubber components of antivibration mountings is 

frequently complex, which makes precise theoretical calculations of trans¬ 

missibility difficult at high frequencies. A guide to the character of 

wave effects in antivibration mountings has been obtained, however, by 

considering the transmissibility of "mountings" that obey the simple wave 

equation for the longitudinal vibration of a rod of uniform cross section. 
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This approach has been taken by all earlier workers although, on two occasions 

(Refs. 199 and 200), "mountings" have also been considered to obey the wave 

equation for a transversely vibrating uniform beam. A disadvantage of these 

analyses is that they relate to "long" rods and beams with lateral dimensions 

that remain small in comparison with the wavelength. However, wave effects 

in a cylindrical rodlike mount of significant lateral dimensions have been 

analyzed (Ref. 59) using a "corrected" wave equation given by A. E. H. Love. 

In the Love theory, the radial motion of the plane cross section of the 

mount caused by axial compression and extension is, in some measure, accounted 

for. 

The transmissibility T derived from the simple wave equation for a 

"long" rod with internal damping can be written 

•k "k k 

T = |[cos n ft - y(n ft) sin n ft]| (19) 

k 

where n is the complex wavenumber of the rodlike mount. The mass ratio 

M _ M 
Y “ Md pAft 

K 

(20) 

where p and A are the density and cross-sectional area of the mount and 

k 

ft is its length. The dimensionless product (n ft) is conveniently written 

(n ft) = (p + jq) , (21) 

where 

P = 
nft 

3Eco 

r > 

E 
r \ 

n + 1 
o Eoo 

E 2 
l WJ 

(22) 
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and 

q = 

r *s 
E f D - 1 I 

0 E03 

E 2 

l ( J 

(23) 

In these equations, the dynamic Young's modulus 

mounting frequency coq. 

E at the natural 
o 

and 

n = co(p/Eo)' 

Eco = (1 6eJ 

(24) 

(25) 

It can be demonstrated that, if the dimensionless quantity nil takes the 

value N_ when go = oo , 
R o 

n£ = (oo/o)o) Nr -* (o)/(oo) (y) ^ • (26) 

Consequently, as nil is varied, corresponding values of go will be specified 

because N_ and oo will have been designated. In turn, values of E and 6„ 

will be known for each value of oo (e.g.. Figs. 7-9), so that the expressions 

for p and q can be determined. In practice, it appears that the mass 

ratios for the majority of mounting systems take values in the range 

50 < y < 350. The smallest value of y yields the least favorable trans- 

missibility curve. Thus, the wave resonances correspond closely with the 

natural frequencies 

= i 7T o) /y 
o 

03. 
1 

i = 1, 2, 3, .. (27) 
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of the mount when clamped rigidly at each end; consequently, the smaller the 

values of y , the lower the frequency at which the first wave resonance occurs 

(i = 1) and the more apparent the departure of the transmissibility curve 

from the predictions of the simple one-degree-of-freedom theory (e.g., Fig. 15). 

Note that, if y > 50, then oo, > tt go /50 > 20 to . 
1 1 o o 

The transmissibility T determined from the Love theory is identical 

in form to Eq. 19: 

* * *1-1 
T = |[cos N Z - y(N Z) sin N &] (28) 

In this equation, the parameter N Z represents the complex number (P + jQ), 

where P and Q are functions of the foregoing quantities p and q. In 

the case of rubberlike materials for which E = 3G and (Sec. 2), 
0) 03 Eio Gw 

the expressions for P and Q may be written 

? ? I' 

p = % [v + (v + x ) 2l (29) 

and 

2 
Q = ^ [- y + (y + X J J (30) 

where 

2 2 2 2 2 2 
b = [(p - q ) - <P (P + q ) ]/£ (31) 

X = 2pq/5 (32) 

and 

_ ri . . 22 2. A, 2 2. 2 
K = [1 - 2<J) (p - q ) + (J) (p + q ) ] (33) 

4> = (r/2 £) (34) 
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The quantity r is the radius of gyration of an elementary section of the 

mount about its longitudinal axis; for example, if the mount is circular in 

cross section and has a diameter D, then r = D/2 /2. 

Wave effect calculations based on the "long-rod" theory (Eq. 19) are 

plotted in Fig. 18 for values of the mass ratio y = 50, 100, and 250. It 

has been assumed that the dynamic Young's modulus and associated damping 

factor are frequency independent, that = 0.1, and that the first natural 
h 

frequency of the mounting system--for which n£ = N = 0.141 when y = 50--is 

again f = co^/2tt = 5 Hz. The curves of Fig. 18, which may be thought of as 

describing the transmissibility of natural rubber mounts heavily reinforced 

with carbon black, show how the level to which T is increased by the wave 

resonances depends upon the value of y. As mentioned previously, the 

occurrence of wave resonances becomes of less concern as y becomes larger; 

from this point of view, therefore, it is desirable to utilize antivibration 

mounts as near their maximum rated load as possible, thereby making y a 

relatively large quantity. 

Wave effect calculations based on the Love theory (Eq. 28) are plotted 

in Fig. 19 for a representative value of y = 200 and for cylindrical mounts 

having a length-to-diameter ratio £/D = 5. Values of E = 3G and 6- = 
co 0) Eoo Gw 

drawn from Figs. 7-9 for unfilled natural rubber, natural rubber filled 

with 50 parts by weight of carbon black, and the high-damping rubber 

Thiokol RD, have been inserted numerically into Eqs. 22, 23, for p, q, 

and hence into Eqs. 29 and 30 for P and Q. Transmissibility curves 

calculated from the simple one-degree-of-freedom theory (Eq. 15) for 

the same three rubberlike materials are redrawn in Fig. 19 for compari¬ 

son. Although the transmissibility of the natural rubber mountings is 

increased appreciably by the occurrence of wave resonances at high fre¬ 

quencies, the peak values of transmissibility occur at significantly lower 

levels than would be observed if y = 50. Wave effects increase the 
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Fig. 19 Transmissibility calculated from the Love theory of rod vibration 

for simple mounts of unfilled natural rubber, natural rubber filled 

with 50 parts by weight of HAF carbon black, and Thiokol RD rubber. 

Cylindrical mounts have a length-to-diameter ratio of 5; mass ratio 

Y = 200; natural mounting frequency = 5 Hz. (Ref. 59.) 
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transmissibility of Thiokol RD rubber by a relatively small amount; in fact, 

the simple theory provides a remarkably accurate prediction of the trans¬ 

missibility of this and other high-damping rubbers. On the other hand, the 

transmissibility of the heavily filled natural rubber is increased by 

approximately 20 dB at high frequencies as compared with the predictions of 

the simple theory. However, if y were larger and the ratio &/D were 

smaller than considered here, as could well be the case in practice, the 

wave resonances would shift to higher frequencies and lower levels, and the 

transmissibility curve would roll off at frequencies following the first 

wave resonance (> oj^) more rapidly than observed at present. 

4.3 Nonrigid Flanges 

An item supported by nonrigid (multiresonant) flanges or feet is shown 

in Fig. 20(a). This is not a contrived problem; in fact, one does not have 

to look far to find examples of such situations. For instance, a marine 

engine attached to a subframe having significant unsupported length is 

shown in Fig. 20(b); here, the subframe is fashioned so that the mounting 

points lie on the same horizontal as the center of gravity of the engine 

(Ref. 19). 

A guide to the transmissibility T across the simple system of 

Fig. 20(a) has been obtained by visualizing the feet of the mounted item 

as short shear beams; that is, as beams with length-to-depth ratios of 

approximately three or less for which it can realistically be assumed 

that the beam deflection due to bending is much less than the deflection 

due to shear (Ref. 177). The mounts are assumed here, and subsequently, 

to have the complex stiffness 

K* = K (1 + j6K) , (35) 
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Fig. 20 (a) Idealized simple mounting system with a 

rigid mounted item supported via nonrigid 

(multiresonant) flanges or feet.(Ref. 177.) 
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Fig. 20 (b) A practical example of (essentially) the case of 

a simple mounting system with an ideally rigid 

mounted item supported via nonrigid (multiresonant) 

flanges or feet. (Ref. 19.) 
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where the stiffness K and the damping factor <5 are directly analogous 

to the previously utilized quantities kG^ (k is specified by Eq. 17) and 

5„ = <5_ . Because future discussions will be restricted to small values 
E co Goo 

of 6 « 0.05, the quantities K and 6 are taken to be frequency independ- 
K K. 

ent, a justifiable assumption for natural, neoprene, SBR, and other low- 

damping rubbers. 

With the foregoing premises, the transmissibility across the system 

of Fig. 20(a) can be expressed as follows: 

where 

T = 12F2/F11 = I [i - (n*£) r*n*] |_1 

•k k k k 

= [cos n £ - yc(n Z) sin n £] 
r 

(36) 

(37) 

•k k k k 

q = [sin n £ + Yc(n £) cos n £] , (38) 
r 

and 

k 

n £ = (p + jq) 

r = T (1 + j6p)/(l + jfiK) 

(39) 

(40) 

k 

In these equations, n is the complex wavenumber of the shear-beam feet, 

£ is their length. 

YF = M/2Mp 

and 

(41) 

r = kf/k (42) 
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where Mp, Kp, and 6p, are the mass, static stiffness, and damping factor of 

each shear-beam foot. In addition, 

and 

n£ °F + 1 
(43) 

q (44) 

where 

D 
F (1 

2 h. 
+ V (45) 

and 

n£ = (co/w ) N_ = 
O Jr r 

(46) 

Here, the natural frequency of the mounting system is given by the equation 

2K Kr 
O) 

M(K kf) 
2K 
M i + r 

(47) 

and Np is the value of nil for which the first peak value of T would be 

observed (when oo = oo ) if = 0. A close guide to this value of N„ 
O r K r 

can be obtained from the relation 

Np - [(Yp + 1) r + Yp]~h (48) 

or, if both y and T are large, from 
r 
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Np 2 Cypryh . (49) 

Therefore, as the angular frequency to of the impressed force is varied, 

corresponding values of nil are specified by Eq. 46, and the expressions for 

p and q, and hence T, may be evaluated. 

Representative calculations of T are plotted as a function of the 

frequency ratio ft = (jo/coq in Fig. 21, where the shear-beam feet have 1/40 of 

the mass of the mounted item (y = M/2M_ = 40) and stiffnesses 5, 25, and 
r r 

100 times greater than that of the mounts supporting them from below; the 

damping factors 6 = 0.005 and 6 = 0.01. The resonances of the shear- 

beam feet, which are responsible for the pronounced peak values of T at 

high frequencies, are seen to be of the least consequence when the stiffness 

ratio T is largest. In fact, the resonances will advantageously occur at 

the highest possible frequency when the ratio of the static stiffness to 

mass of the feet is made as large as possible; that is, in this simple 

example, when the shear-beam feet are made as short as possible. Their 

first resonance occurs at the approximate frequency 

Uj = C™0/2) /CYFn = (ir/2) /(Kp/Mp) , (50) 

provided that y„ and Y are relatively large (T > 5). 
r 

5. Compound Mounting System 

It is natural to question how it is possible to obtain greater vibration 

isolation than that afforded by the simple mounting system. If added mass can 

be tolerated, the two-stage or compound mounting shown in Fig. 22(a) can pro¬ 

vide especially low values of transmissibility at high frequencies. Antivibra- 

* * 

tion mounts of complex stiffness 2K^ and 2K^ in the upper and lower stages of 
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F. 

(a) (b) 

Fig. 22 Compound mounting system with a mounted item of mass 

and an intermediate mass that is supported (a) 

directly, and (b) via nonrigid (multiresonant) flanges 

or feet. 

&
C

\J 
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the system are separated by an additional or intermediate mass M^- The system 

possesses a secondary as well as a primary resonance, which is a disadvantage, 

but above the secondary resonant frequency w , transmissibility falls off in 

4 
proportion to 1/co (24 dB/octave) provided that the stiffness and damping of 

the mounts remain independent of frequency, as assumed here. This is twice 

the rate of 12 dB/octave at which the transmissibility across the simple system 

diminishes at high frequencies under the same circumstances. 

The compound system is discussed in Refs. 13, 44, 45, 50, 54, 56, 59, 78, 

88, 157, 159, 161, 167, 169, 170, 173, 174, 176-179, 186, 202, 211-218. A 

large-scale application of the system is considered in Ref. 186, which describes 

the compound mounting of 7,700-kg and 36,000-kg diesel generators on one ex¬ 

tensive intermediate mass. An adaption of the arrangement employed is shown 

in Fig. 23(a). Two, much smaller, applications of the compound system are 

described in Refs. 173 and 217, in both of which the system has effectively 

been compacted into an "off-the-shelf" antivibration mount. The design of 

one mount (Ref. 217) is shown in Fig. 23(b), where the secondary mass com¬ 

prises two cylindrical lumped masses 10 and a spacer yoke 12, and the 

resilient elements comprise 16. 

For the compound system to have the greatest effectiveness as an anti¬ 

vibration mounting at high frequencies, it is desirable that the secondary 

resonance co^ occur, for any given value of the primary resonance u^, at the 

lowest possible frequency. This situation can be realized (Ref. 59) when 

the mount stiffness ratio takes the optimum value 

k2/k1 = [l + (m2/mx)] = (1 + 8) , (51) 

where is the mass of the mounted item. This is otherwise an appropriate 

result because the lower mounts support a static load that is greater, by 
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DIESEL GENERATORS 

Fig. 23 (a) Compound mounting of 7,700-kg and 36,000-kg diesel 

generators on one extensive intermediate mass. 

(Ref. 186) 
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Fig. 23(b) Small-scale compound mounting with an intermediate 

mass M? comprising two cylindrical masses 10 and a 

spacer yoke 12 (resilient elements comprise 16). 

(Ref. 217.) 
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the same factor (1 + 6), than the load supported by the upper mounts. For 

this optimum stiffness ratio, the frequency ratio u^/oo^ and the trans- 

missibility T across the compound system can be expressed as 

^2 = [1 * /(I « 8)1 

“l " /g 

and 

(52) 

(1 
T = 

$ 

{[BA(1 - A)fi ~ 2 AST + 
2 2 

1 - V + C2V (1 - 
9 Z > 

AST) }' 

(53) 

where 

A = (1 + 8) / (2 + 6) (54) 

and = oo/aoo is again a frequency ratio against which T is conveniently 

plotted. The reference frequency coo * co is actually the natural frequency 

of the one-degree-of-freedom system obtained when M = 0; thus. 

2 
co 

o 
2K1K2 

<ki ♦ k2) Mi 
(55) 

It is noteworthy that, at high frequencies, Eq. 53 can be written 

HF 

(1 + 6*) (2 + 8)2 

6fi4(l + 6) 

4C1 + v 

6ft4 

(8 = 0.5) (56) 

so that is normally advantageous to employ the largest acceptable value of 

8; that is, the largest possible intermediate mass M . 
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Although the foregoing discussion relates to the force-driven system 

of Fig. 22(a), it is important to recognize that Eq. 53 for T pertains 

equally well to the dual situation where the mounted item experiences 

a displacement as the result of an applied vibratory ground displacement 

; thus. 

T = |2F2/F1| = |x2/x1| . (57) 

An equivalent result for the simple mounting system appears in Sec. 3 

(Eq. 14). 

Transmissibility calculations made from Eq. 53 for three compound 

systems are plotted in Fig. 24. The mass ratio g = N^/M = 0.1, 0.2, and 

1.0, and 6 = 0.05. Note how the position of the secondary resonance 

depends markedly on the value chosen for g. The potential value of the 

compound system as an especially effective antivibration mounting at high 

frequencies is immediately apparent when comparison is made with the dashed 

curve, which shows the transmissibility across the simple mounting system. 

Clearly evident are the benefits that result from the use of large inter¬ 

mediate masses (large g). It will be recognized that the compound system 

can be of particular value in mitigating the increase in transmissibility 

that occurs, for example, when it is necessary to mount machinery on a 

nonrigid foundation such as a system of metal girders in shipboard and 

aerospace applications. The foundation resonances are then superimposed, 

approximately speaking, on one of the lower solid curves rather than on 

the dashed curve. However, if the compound system is to provide the small 

values of transmissibility predicted at high frequencies, it is vital that 

the intermediate mass remains masslike in character. If it does not, 

then the performance of the compound system will be seriously impaired. 
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This situation has been analyzed in Ref. 177, where flanges from which M0 

is supported, as in Fig. 22(b), behave as springs at some high frequencies 

because of their poor design. The inertia of M0 is large at high fre¬ 

quencies and, therefore, to a first approximation, the points of juncture 

of the springs and [Fig. 22(b)] are restrained only by a resilient 

element the other end of which is attached to the "stationary" mass M0. 

6. Four-Pole Parameter Analyses 

6.1 Introduction 

Four-pole parameters will be referred to widely in the remainder of 

this report and, consequently, it is appropriate to review briefly some of 

their relevant properties. Detailed discussions of four-pole parameters 

can be found, for example, in Refs. 57 and 202, where many other pertinent 

articles are listed. Application of four-pole parameter techniques en¬ 

ables a general account to be taken of wave effects in antivibration mounts 

and of lack of rigidity in the foundation and the mounted item. 

A linear mechanical system is shown schematically in Fig. 25(a). The 

system may be comprised of one or more lumped or distributed elements, or be 

constructed from any combination of such elements. The input side of the 

system vibrates sinusoidally with a velocity in response to an applied 

force F^. In turn, the output side of the system exerts a force F0 on the 

input side of some further system, sharing with it a common velocity . Thus, 

the system is said to have input and output terminal pairs, a force F^ and 

velocity at the input terminal pair giving rise to a force F^ and velocity 

V? at the output terminal pair, the reaction of any subsequent mechanical 

system being accounted for. Forces are considered positive when directed to 

the right. 
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MECHANICAL 

SYSTEM 

F2r’V2r 

Fig. 25 (a) General four-terminal mechanical system, 

and (b) system reversed so that input and 

output terminal pairs are interchanged. 
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Consider now the mechanical impedance Z of a mass M and a spring 

of stiffness K (Fig. 26) in the context of the foregoing discussion; thus. 

ZM = jooM = (F1 - F2)/Vx = (Fx - F2)/V2 (58) 

or 

Fx = F2 + jajMV2 , (59) 

Vx = V2 , (60) 

and 

ZK = (K/jw) = iytVj - V2) = F2/(V1 - V2) (61) 

or 

Fj = F2 , (62) 

Vx = F2 (jw/K) + V2 . (63) 

Inspection of these equations makes it possible to understand that the 

vibration response of the general four-terminal system of Fig. 25(a) can be 

represented by the following equations: 

F1 ailF2 + ai2V2 
(64) 

V1 a21F2 + a22V2 
(65) 

where a^, ai2’ a21’ an<* a22 are ^nown as four-pole parameters. It is directly 

apparent that 
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(a) (b) 

Fig. 26 (a) Lumped mass obeying Newton's second law, and (b) a 

massless spring obeying Hooke's Law. 
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a 
11 (66) 

v2 = 0 

a 
12 

(67) 

f2 = 0 

V, 

‘21 
(68) 

v2 = 0 

and 

a 
22 

(69) 

f2 = 0 

where the subscript \^ = 0 indicates that the output terminal pair is blocked 

and the subscript F2 = 0 indicates that the output terminal pair is free (un¬ 

restrained). The parameters and a22 are dimensionless; a^2 has the dimen¬ 

sions of impedance and the dimensions of (impedance) ^. 

In general, the four-pole parameters are frequency-dependent complex 

quantities. Of considerable advantage is the fact that the parameters 

characterize only the system for which they are determined; their value 

is not influenced by the preceding and subsequent mechanical systems. Equa¬ 

tions 64 and 65 enable expressions for the driving-point and transfer impedances 

and for the force and displacement transmissibilities across the system to be 

written down concisely; thus, driving-point impedance. 

h_ a11^2 + a12^2 allZT + a12 

b a21^2 + a22^2 
a21ZT + a22 

(70) 
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transfer impedance. 

TZ12 ~ ^11ZT + ai2^ ’ 
V2 

force transmissibility 

FI 2 

F_ Z 
2 T 

h 
(ai2 + anzT) 

and displacement transmissibility 

D12 
*2 1 

V, ^a22 + a21ZT^ 
1 

(71) 

(72) 

(73) 

In these equations, = ^2^2 driving-point impedance of the mechanical 

system subsequent to the one under consideration. 

It can be demonstrated that, without exception. 

('ailCt22 °‘l2a21') 1 
(74) 

consequently, knowledge of only three of the four-pole parameters is sufficient 

to specify the performance of the system completely (Refs. 57 and 202). Further, 

in the special case of a symmetrical system (when it does not matter which 

terminal pair is input or output), 

a 
11 

a 
22 

(75) 

and knowledge of only two independent four-pole parameters is sufficient to 

determine the system performance completely. 
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Should the mechanical system be reversed, so that the original output 

and input terminal pairs are interchanged, as in Fig. 25(b), then the 

relevant four-pole equations become 

a22F2r + a!2V2r 
(76) 

V 
lr 

a01F0 + a..V0 
21 2r 11 2r 

(77) 

where the input and output forces and velocities are now F^ , 

respectively, and 

and F_ , 
2r 

a 
11 

0 

(78) 

a 
lr 

12 
2r F_ = 0 

2r 

(79) 

and 

a 
21 

0 

a 
22 

0 

(80) 

(81) 

Although the values of the four-pole parameters and a^ remain unchanged, 

their definitions differ here from those of Eqs. 66 and 69; in fact, the 

parameters have dual significance and can be determined in alternate ways--an 
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advantage that will become apparent subsequently. By comparing the companion 

definitions of and o^, ^°^ows that 

and 

11 

2r 

v2 = 0 lr F. = 0 
2r 

V, 

22 V, 

2r 

F2 = ° 
lr V„ = 0 

2r 

(82) 

(83) 

These equations show, as noted previously (Eqs. 14 and 57) that the force and 

displacement (and, therefore, the velocity and acceleration) transmissibilities 

in opposite directions between the two terminal pairs of a mechanical system 

are identical. 

If the output pair of one mechanical system is rigidly connected to the 

input terminal pair of another system (Fig. 27), so that the output from the 

first is exactly the input to the second, the two systems are connected in 

series. Moreover, for n systems in series, the output force and velocity 

F(n+1)’ ^(n+1) Can ke re-^atec^ t0 inPut force and velocity F^, by the 

continued product of n 2x2 matrices (Refs. 57 and 202). Simply, for a 

two-stage system. 

r i i P !» n __ 

rH
 

ftu 

all ai2 ail ai2 F3 

a21 a22 

! ? 

a21 

ft 

a22 b 

(84) 

or 
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Frvi Fn’Vn F(n + l)'V(n + 1) 

Fig. 27 Series connection of n four-terminal systems. 
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rH
 

.1
 

h. 

U11 U12 

U21 1J22 

i-
 

3 

V, 
L 3_ 

(85) 

where 

’Ull 1J12 allall + ai2a21 aHai2 
+ ct12a22 

2! y22_ a2lall + a22a21 a2iai2 + a22a22 

(86) 

To conclude, it is appropriate to list the four-pole parameters for a 

slender rod of uniform cross-sectional area A, length £, and density p, when 

the rod is driven axially by a sinusoidally varying force. For this symmetri¬ 

cal system. 

a = a?9 = cos n £ (87) 

a 
12 

* * 
]i_ sin n £ (88) 

and 

a 
21 

* * 

- sin n £/y (89) 

where 

yR = ^wMR/n (90) 

* 
In these equations, M and n 

K 

rod; that is, NL = pA£ and 

are the mass and the complex wavenumber of the 

* 2 * h 
n = (to p/E ) (91) 
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•k 

where E is the complex Young's modulus. As in Sec. 4.2, it is convenient 

■k 

to visualize the dimensionless product n £ as the complex number (p + jq), 

where p and q are given by Eqs. 22 and 23 in which the frequency 

dependence of E^ and 6 is now assumed to be negligible. 

6.2 Characterization of an Antivibration Mounting 

Consider now the antivibration mounting of Fig. 28 that is comprised of 

a uniform rodlike sample of rubberlike material bonded to metal end plates 

of masses and M^. The mechanical behavior of the rubberlike material is 

assumed to be governed by Eqs. 87-90. An input force and velocity F^, 

produce an output force and velocity F , V? at some termination subsequent 

to the end plate of mass M2. An equation of the form of Eq. 85 remains 

relevant to this three-stage system, but now 

U11 U12 

U21 U22 

jooM c. 
V 

* -1 
(yR) s. c. 

1 jcuM2 

(92) 

where the abbreviations s. and c. represent the complex circular functions 

★ k 

sin n i and cos n £, and the matrices for the masses and M9 follow directly 

from inspection of Eqs. 59 and 60. It is readily shown that 

U11 = [C* ~ Yl^n 1 » (93) 

t>i2 = bR ([s. + YjCn £) c. ] + y2 (n £) [c. - Y1(n*^)s-]> , (94) 

U21 = • 
(95) 
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Fig. 28 Antivibration mount with end plates of masses 

and to which the boundaries of a uniform rod¬ 

like sample of rubberlike material are attached. 
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and 

k 

U22 = fC* " Y2('n 1 (96) 

where y = M,/M and y = M /M . These four-pole parameters relate equally 
1 1 K Z Z K 

k 

well to a rodlike mount of significant lateral dimensions when n is re- 

* 
placed by the complex wavenumber N specified in Sec. 4.2. 

Of considerable interest is the simplicity of the four-pole parameter 

u> the reciprocal of which describes a blocked quasi transfer impedance 

that is independent of the values of and M2; thus 

21 V. 
V2 = 0 

R 

sin n Z 

jwMR 

k k 

n i ,sin n i 
(97) 

Further, at frequencies well below the initial wave-effect frequency in 

k k 

the mount, sin n Z n Z and 

1 _ o)(pA£) 

21 j z‘ 
2 

0) p 

(AE /Z) 
JO) 

(98) 

* 
which is the impedance of a simple spring of complex stiffness K 

k 

If this stiffness is symbolized by K = K(1 + jd ), then 
I\ 

(AE*/£). 

1 _ K 

U21 " W K 
j) (99) 

and measurement of the magnitudes of the imaginary part and of the ratio of 

the imaginary to the real part (tan phase angle) of l/u^ wiH yield K/oo and 
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the reciprocal of the damping factor 6 , respectively. The larger the value 
K. 

of 6 , the greater the accuracy to which the phase angle and, hence, 6 can 
K K 

be measured. This measurement approach, which will be referred to and 

applied subsequently, was proposed and utilized in Refs. 58 and 219, where 

the permissible upper bound of measurement was said to be the frequency 

0.25 co^. 

6.3 Resilient Mounting on Nonrigid Substructures 

Examined now is the vibration response of a nonrigid substructure of 

arbitrary impedance Z that lies beneath the antivibration mounting con¬ 

sidered in the foregoing. The mount and the substructure are characterized 

by the four-pole parameters (Eqs. 93-96) and ^, respectively. Initially, 

the item supported by the mount is assumed to remain masslike at all fre¬ 

quencies. The entire assembly is shown diagrammatically in Fig. 29(a). 

The same item of mass M is shown rigidly mounted in the reference assembly 

of Fig. 29(b), where it generates an untenably large vibration of the sub¬ 

structure. 

The same exciting force F is considered to act upon or to be generated 

within M in both Figs. 29(a) and (b). This force gives rise to a trans¬ 

mitted force F at the point of juncture of the mount and the substructure 

in Fig. 29(a), and to a force F 9 at the same location on the substructure 

in Fig. 29(b). The companion velocities are V^ and V^rj respectively. 

Beneath the substructure, the output forces and velocities are F^, V^, and 

F , ^2R' Pri°r discussions of the vibration of nonrigid substructures 

(Refs. 12, 13, 19, 24, 59, 159, 160, 162, 164-167, 173, 174, 177, 178, 188, 

193, 210, 214, 220-226) attention is devoted either to the mount transmissibility 

T = | F /Fi | , or to the mount response ratio R = °r ^ts reciProcal> 
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Fig. 29 (a) Antivibration mount of Fig. 28 isolating the 

vibration of a mounted item of mass M from a 

nonrigid substructure of arbitrary impedance Z , 

and (b) the rigid attachment of M to the sub¬ 

structure at the same location as in (a). 
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mount effectiveness E = R . Consequently, it is appropriate now to evaluate 

the quantities T and R in general terms using the four-pole parameter 

techniques described in the foregoing. 

The forces and velocities experienced by the mounted item and sub¬ 

structure in Fig. 29(a) are readily understood to be related by the 

equation 

1 
r—

H
 

l
_

 

n 

1 j oM 
U11 U12 F12 

b- 
0 1 

-1J21 U22- -^12- 

(100) 

where the matrix product can be written as the third matrix 

t) 

U 

11 

21 

t) 

u 

12 

22 

in which U^, U21’ an<^ V22 are a&aan defined by Eqs. 93-96, the only 

change being that the mass ratio in Eqs. 93 and 94 for \T and is 

redefined as 

Yl = (M + M1)/Mr * M/Mr (101) 

It is evident from Eq. 100 that 

F1 ('U11F12 + U12V12') 

(UhZt + U12) F12/Zt (unzT + u12) V12 (102) 
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Likewise, from reference to Fig. 29(b), it can be stated that 

h 
l j (jOM F 

12R 

0 1 V 
_ 12R 

and, consequently, that 

~F! = (F12R + =CZT + *12R 

(103) 

(104) 

From Eqs. 102 and 104 it is possible to write down the transmissibility 

and response ratio of the mounting system directly; thus 

T 
F „ z 

12 T 

h (UnZT + U12) 

and 

(105) 

512 
ZT + jojM 

^12R U11ZT + U12 

(106) 

(Note that Eqs. 102, 104, and 105 could equally well have been stated from 

inspection of Eqs. 71 and 72.) Response ratio, the magnitude of the sub¬ 

structure velocity observed when M is resiliently mounted to the velocity 

observed when M is attached rigidly to the foundation, provides a measure 

of the vibration reduction that the mounting affords -- the smaller the 

value of R, the larger the reduction in substructure velocity and the more 

beneficial the mounting. Note that, because 
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Z = F /V = F /V 
T 12x 12 12RX 12R 

(107) 

the response ratio could have been defined equally well as the ratio 

|F /F _ | of the forces exerted on the substructure in the resiliently 

and rigidly mounted cases. Note also that R is not as small as T 

unless » jcoM; that is to say, if jcoM is comparable with, or greater 

than Z , the mount will be less effective than predicted by its trans- 

missibility curve. Physically, this reflects the fact that the benefi¬ 

cial action of the antivibration mount in Fig. 29(a) will be countered, 

to some extent, by the greater freedom of the foundation to respond to 

a given applied force than was possible in Fig. 29(b). Thus, the founda¬ 

tion in Fig. 29(a) is no longer relieved of part of the applied force 

by the inertia of the mass M -- an acute disadvantage if M is large, 

as it may well be. In this circumstance, it has been suggested (Ref. 59) 

that the response of the substructure be restrained by an auxiliary mass 

having a significant fraction of the mass M of the mounted item. 

The relevant expressions for transmissibility and response ratio follow 

immediately from Eqs. 105 and 106 if the mass ratio = M2/MR that appears 

in the four-pole parameter of these equations is redefined as 

y2 = (M + m)/MR m/MR (108) 

One further result follows from consideration of the matrix equation 

for the substructure. 

P12 “ll al2 

1 
C

M
 

i
_

 

.V a21 a22 

) (109) 
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and its constituent equations 

(110) 

(111) 

Thus, the output velocity \ can be eliminated from these equations to 

yield 

and 

12 allF2 + ai2V2 

12 a21F2 + a22V2 

(112) 

(113) 

Consequently, an additional definition can be stated for response ratio, 

which now has the triple significance 

F2 V12 ('a22ZT ‘ ai2-* ’ 

likewise, 

F2R V12R ^a22ZT " al2^ 

V12 ~F2 F12 

^12R F2R F12R 

(114) 

The new definition of R describes the ratio |F /F I of the forces that 

are transmitted to the termination of the substructure in the resiliently 

and rigidly mounted cases. Further, a companion force transmissibility 

across the entire system can logically be defined and determined from 

Eqs. 102 and 112 as 
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T 
overall 

b a22ZT ai2 

h ^11ZT + U12J 
(115) 

This significant quantity differs from both R and T as previously 

specified. 

The results of one independent calculation of T by the present 
r overall r 

author for a rectangular platelike substructure with an aspect ratio of 

0.5 are plotted in Fig. 30 as the dashed curve. The mounted item is driven 

by a vibratory force and is supported by four antivibration mounts 

located symmetrically about the plate center, each at coordinates of one- 

third the length and breadth of the plate from the nearest plate corner. 

The mounting points have the same driving-point impedance and experience 

the same velocity. The output force F^ comprises four discrete forces 

at the plate corners plus distributed forces along the simply supported 

plate boundaries. Transmissibility T = IF_/Fn I has been calculated 

in terms of the previously utilized frequency ratio ft = w/co^, where u)q is 

now the natural frequency of the mounting system calculated as though the 

platelike substructure was ideally rigid. The mounted item is four times 

more massive than the substructure, and the fundamental plate resonance is 

assigned the frequency 4(joq. The mounts and the substructure have the 

damping factors 0.05 and 0.01, respectively. The transmissibility curve 

at high frequencies is characterized by many plate resonances; moreover, 

the number of resonances that are excited can detrimentally increase if the 

mounts are located at other, less favorable positions. 

The overall transmissibility across an identical mounting system to 

which lumped masses have been added to each mount location is shown by the 

solid curve. The total added mass m is equal to that of the mounted 
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Fig. 30 Toveran for an item °f mass M that is resiliently mounted at each corner 
toVaTrectangular platelike substructure with simply supported boundaries and 
an aspect ratio of 0.5; M is four times more massive than the plate. The 
antivibration mounts are symmetrically and favorably located about the plate 
center, and are terminated on the plate by lumped masses of total mass m = M. 
The damping factors of the mounts and the platelike substructure are 0.05 
and 0.01, respectively. The dashed curve shows T e f°r the same mounting 
system without the loading masses (m = 0). 
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item (m = M) . Use of such heavy mass loading is necessary if the level of 

the transmissibility curve is to be reduced significantly. For added mass 

equal to 0.25 M, the resultant transmissibility curve would lie approximately 

halfway between the solid and dashed curves at frequencies above the funda¬ 

mental plate resonance (ft « 3). Such small added mass as 0.05 M would be 

ineffectual in reducing transmissibility much below the level of the dashed 

curve, except at very high frequencies where the impedance of the loading 

masses m would eventually predominate the plate impedance. 

6.4 Nonrigidity of Mounted Item 

To conclude this Section, it is appropriate to demonstrate how readily 

the effects of nonrigidity in the mounted item can be accounted for in the 

preceding four-pole equations. Thus, if the mounted item is characterized 

by the four-pole parameters tp„ , then the forces and velocities experienced 

by the mounted item and the substructure in Fig. 29(a) will be related, not 

by Eq. 100, but as follows: 

q un q2 ^12 

t f 

VJ -U21 U22- 1V12J 
(116) 

where 

U 
11 C(pllUll (p12U21‘) 

(117) 

! 

('CpllU12 + (p12U22') 
(118) 

U21 = ((p21Ull + (p22U21) ’ 
(119) 
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and 

22 = (Cp21U12 + CP22U22^) 
(120) 

In these equations, u^2’ l>21’ an<^ U22 are precisely as before 

by Eqs. 93-96 in which the initial definition of y = M,/M pertains. Because 
1 IK 

Eqs. 100 and 116 are closely similar, the expressions that were derived pre¬ 

viously for transmissibility can be restated, by inspection, as follows: 

and 

F „ Z 
12 T 

b CUhzt + u12) 

T 
overall 

?2 a22ZT " ai2 
1 ! 

F, U, , Zm + U,„ 
1 ( 11 T 12j 

(121) 

(122) 

Response ratio can also be restated simply by noting from Eq. 116 that 

F1 ^U11ZT + U12') V12 
(123) 

and by noting from the relation between the forces and velocities experienced 

by the mounted item and substructure in Fig. 29(b) that 

F1 ('(pllF12R + (p12V12R') 

(tp11ZT + q>12) V12R (124) 

m consequence. 
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R = 

12R 

’<pllZT + ”12' 

U11ZT + V12 

(125) 

7. Experimental Determination of Transmissibility 

7.1 Direct Measurement 

Reported throughout the prior literature are transmissibility measure¬ 

ments that have been obtained in one of two ways based on the simple sketches 

of Fig. 31 (Refs. 7, 13, 21, 68, 78, 117, 118, 135, 150, 152, 157-159, 161, 

170, 194, 198, 208, 227-230). No other methods of transmissibility measure¬ 

ment are known to have been used previously or described elsewhere in the 

literature. Almost exclusively, apparatus has been built to simulate the 

simple mounting system of Fig. 13(a), the foundation and mounted item of 

which vibrate with the amplitudes x^ and x^. Transmissibility has been 

recorded as the readily measurable ratio of the companion accelerations; 

that is, T = I (jco) x^/Cjoo) x^| = \x^/x^\. The design of a representative 

experiment to establish T in this way, and a block diagram of the associated 

electronics, are reproduced from Ref. 158 in Fig. 31. Only three early 

German workers (Refs. 7, 157, and 194) chose to build apparatus to record 

transmissibility as the force ratio T = IF^/F^I, thus simulating the simple 

mounting system of Fig. 13(b). 

Experiments to determine the transmissibility across the compound mount¬ 

ing system are described in Refs. 78, 157, 159, and 161; attention is confined 

to the simple system elsewhere. It is remarkable that Ref. 78, apparently 

overlooked in the many years since its publication in 1931, should have 

introduced the theory of the compound system and have confirmed it by ex¬ 

periment. References that describe the results of transmissibility 
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Fig. 31 (a) Apparatus and (b) electronic equipment used in a direct measure¬ 

ment of mount transmissibility. (Ref. 158.) 
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measurements made primarily on rubber antivibration mounts have been listed 

previously in Sec. 4.1. 

A criticism of virtually all of the foregoing transmissibility measure¬ 

ments is that they were obtained from small-scale or model experiments in 

which the mounts experience a smaller static load than the one for which they 

are rated. Consequently, the natural frequency co^ of the mounting system is 

often appreciably higher, and the strain in the mount appreciably lower, 

than would be the case in practice. The only exception appears to be the 

relatively low-frequency measurement of transmissibility that is described 

in Ref. 150. It is readily apparent that care is necessary in any "vibrating- 

foundation" measurement of transmissibility [as in Figs. 13(a) and 31(a)] to 

design the foundation so that its fundamental resonant frequency lies adequately 

above the frequency range of measurement. 

7.2 Four-Pole Technique (Indirect Measurement) 

It is evident that consideration could well be given to the determina¬ 

tion of transmissibility by a four-pole technique. The proposed measurements 

would utilize an apparatus that has been designed to record the driving- 

point impedance and quasi transfer impedance of antivibration mounts 

subjected to significant static loads. The apparatus, which is described 

in Ref. 58, sandwiches between the top plate and base of a Universal Tension 

and Compression Testing Machine the following sequence of components (Fig. 32): 

a rubber pad, a small vibration generator, an impedance head, the antivibra¬ 

tion mounting under test, an aluminum support block, and a piezoelectric 

force gage. 

The antivibration mount is held by the support block in the manner 

likely to be encountered "in service," preferably contacting the lower end 

plate of the mount over the largest possible area. Mounts of different 
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UNIVERSAL TENSION AND COMPRESSION TESTING MACHINE 

Fig. 32 Proposed apparatus for the indirect measurement of mount trans- 

missibility by a four-pole technique. (Ref. 58.) 
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designs would be mated with other support blocks of appropriate outline. 

The blocks should have the greatest possible rigidity and could well be 

machined from alumina rather than aluminum (Ref. 231). 

It is convenient to designate the forces and velocities at the input 

and output terminal pairs of the mount in Fig. 32 as F^, V and F , 

respectively, and once again to characterize the mount performance by the 

four-pole parameters u^, ^> U215 an<* V22' because t^ie output terminal 

pair of the mount is rigidly blocked (V ^ = 0), Eqs. 66 and 68 show that 

v 
11 

12 

(126) 

and 

(127) 

The quantities F and V are readily measured by the impedance head of 

Fig. 32, with suitable electronic cancellation of the small integral mass 

under the force gage in the head. The quantity F is readily measured by 

the lower force gage at frequencies adequately below the resonant fre¬ 

quency of the gage and aluminum support block (> 5 kHz). Hence, the fre¬ 

quency-dependent values of the parameters and \)^ can be established 

by straight forward measurement. Importantly, the parameters can be 

established when there is significant static strain in the mount--which 

is introduced, to the extent required, by the Universal Tension and 

Compression Testing Machine. 

21 
11 

12 
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If a basic comparison is required between the transmissibility curves 

of various antivibration mounts in the simple system of Fig. 13, for which 

the foundation impedance is extremely large and the mounted item of mass 

M is ideally rigid, then it suffices to have knowledge of the parameters 

t) and 0^ for each mount of interest. Thus, inspection of Eqs. 100 and 

105, which relate to the more general mounting system of Fig. 29(a), shows 

that, in the foregoing circumstances (foundation impedance = °°), the 

force transmissibility 

T = 
1 1 

U11 
(un + jwM u21) 

(128) 

a quantity that involves and °nly- Moreover, knowledge of these 

parameters is adequate to predict transmissibility and response ratio from 

Eqs. 105 and 106 when is finite and has any measured or hypothetical fre¬ 

quency dependence; it is also adequate to predict Tovera^ from Eq. 115 

provided that the four-pole parameters and °f the foundation are 

also known. 

By contrast, if it is wished to compare or predict the performance of 

various antivibration mounts in completely general terms -- as is essential 

when the mounted item is nonrigid and Eqs. 117-122 pertain -- then one of 

the remaining parameters u and t>29 must be determined, the value of the 

other following from the general relation of Eq. 74. An exception would 

be when the mount is symmetrical (when it does not matter which side of the 

mount is input or output as in Fig. 28 when M = M ), in which case 

U22 U11 
(129) 

and 
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U 
12 - ^/U21 

(130) 

Otherwise, it becomes necessary to reserve the mount such that its input 

and output terminals are interchanged, a requirement that may call for the 

use of a new and differently shaped support block (Fig. 32). If the 

forces and velocities at the new (reversed) input and output terminal 

pairs of the mount are F^ir’ an<^ ^I2r’ ^\2r’ resPecti-vely> then 

reference to Eq. 81 shows that 

(131) 

whence 

u 
22 

llr 

12r 

u 
12 ('U11U22 ‘ 1^)/U21 

(132) 

In this reversed situation, a measurement to confirm the previously 

determined value of can be made according to the companion defini¬ 

tion of Eq. 80: 

u 
21 

llr 

12r 0 

(133) 

Note that, although the four-pole parameters an^ ^>22 Can determined 

readily when the output terminals are free (F^ or ^j2r = ^) > it is n0 

longer possible to impose a static strain on the mount, as it is when the 

output terminal pair is blocked, so that a prime advantage of the four- 

pole measurement method is lost. 
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Other relations for the mount that are of interest here can simply be 

deduced from Eqs. 66, 68, 80, and 81 and stated as follows: 

driving-point impedance 
u 

11 

21 
(134) 

reversed driving-point impedance 
Hr 

llr 

u 
22 

21 
(135) 

and quasi transfer impedance 
^12 ^12r 

hi 
*12 * ° 

hlr 

(136) 

Quasi transfer impedance is so named to distinguish it from the quantity 

that is usually referred to as transfer impedance; namely, the quantity 

11 

12 

llr 

F 2 = 0 12r 

= u 
12 

(137) 

= 0 
12r 

The apparatus of Fig. 32 is designed, and is ideally suited, to measure 

the driving-point impedance and quasi transfer impedance of antivibration 

mounts under significant static loads. The results of such measurements 

on a rubber mount (Ref. 58) are shown in Figs. 33 and 34. It is evident 

in the first figure that the magnitude of the mount driving-point impedance 

Z (dashed curve) is springlike at low frequencies, and is masslike at 

higher frequencies where the impedance jcoM, of the upper end plate (refer 

to Fig. 28) predominates that of the rubber in the mount. An impedance 
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Fig. 33 Driving-point impedance of a rubber mount (magnitude and phase) 

as obtained with the apparatus of Fig. 32. (Ref. 58.) 
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TRANSFER IMPEDANCE OF 6E900 
(1780 AND 3560 N COMPRESSION) 

FREQUENCY (Hz) 

Fig. 34 Quasi transfer impedance of a rubber mount subjected to 

static loads of 1780 and 3560 N (180 and 360 kg-force, 

400 and 800 lb-force) as obtained with the apparatus of 

Fig. 32. (Ref. 58.) 
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minimum occurs at intervening frequencies where the end plate and the rubber 

resonate. The foregoing behavior can be predicted through use of Eqs. 93, 

95, and 134, which show that 

Z 
11 

21 

Y1(n £) s. 

s. 
(138) 

where y VMr Consequently, at low frequencies. 

'LF 
-— + jooM, 
J 00 1 

1*2 
-±- (K - w Mj 
3 oo Y 

(139) 

•k 

where K is the complex mount stiffness (Sec. 6.2). Although slight wave 

effects in the rubber occur at approximately 200 and 450 Hz, they are 

masked by the impedance jwM^; however, they are evident in the plot of the 

more sensitive phase measurements shown by the solid curve. 

Figure 34 describes the magnitude of the quasi transfer impedance 

TZ = |^ | 1 when the mount is subjected to static loads of 180 and 360 kg 

(400 and 800 lb). This figure is reproduced from Ref. 58, where it is 

stated that the performance of mounts with rated loads as large as 

4540 kg (10,000 lb) has been evaluated with the apparatus of Fig. 32 at 

frequencies up to 5 kHz. As explained in Refs. 58, 219, and in Sec. 6.2, 

the quasi transfer impedance = K /joo provides a measure of the 

complex mount stiffness, readily enabling the real part of this stiffness 

and, with precision phase measurement (Ref. 110), the mount damping factor 

(Eq. 99) to be determined through a broad frequency range. In Fig. 34, 

the mean levels of transfer impedance essentially decrease in inverse pro¬ 

portion to frequency, even though wave resonances are superimposed on the 
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curves at higher frequencies. Note that the wave resonances are least severe 

when the mount is loaded most heavily. Finally, note that the value of the 

important four-pole parameter of Eq. 128 can be determined, independently 

of its definition in Eq. 126, as the quotient of the mount driving-point and 

quasi-transfer impedances as recorded by the apparatus of Fig. 32; thus. 

_Z_ 
TZ (1/U2P 

V 
11 

(140) 

8. Future Work 

To conclude, it is appropriate to discuss several areas in which addi¬ 

tional research would appear to be timely and beneficial. These areas can 

be listed as follows: 

1. Search for New Antivibration Mount Material. In Sec. 3, the conclusion 

is reached that high-damping materials would have greater application in 

antivibration mountings if they could be produced such that their dynamic 

moduli remained constant, or increased only slowly with frequency. A search 

for such materials could focus either (a) on single materials or (b) on 

suitable mechanical combinations of pairs of materials in individual anti¬ 

vibration mounts -- so-called parallel mountings (Ref. 59). In case (a), 

the "single" materials might well comprise a polymer blend of materials 

such as polyvinyl chloride (PVC) and polybutadiene acrylonitrile that 

prove to be unusually compatible, exhibiting one rather than two transition 

frequencies. 

2. Practical Three-Element Mounting. The so-called three element mounting 

is discussed in Sec. 3. Although this combination of two springs and one 
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dashpot has been widely analyzed and discussed in the literature, the mount¬ 

ing appears never to have been realized in practice. This is unfortunate 

because the heavily damped steady-state and transient responses of the 

mounting are often superior to those of a heavily damped rubber mounting 

(for example, see Ref. 59). 

3. Static Strain Dependence of Antivibration Mount Performance. Information 

on how static strain influences the dynamic properties or rubbers, and rubber 

antivibration mountings, is sparse and, at times, seemingly contradictory. 

Such information should follow readily from the transmissibility experiment 

based on four-pole parameter techniques that is described in Sec. 7.2 (refer 

also to Eq. 99, Sec. 6.2). 

4. Experimental Measurements. Experimental confirmation could well be 

obtained of analyses of the transmissibility across a mounting system in 

which the mounted item had variable and controllable nonrigidity (which 

could be introduced by the use of intentionally nonrigid flanges or feet, 

as discussed in Sec. 4.3). Such a mounting configuration could be extended 

by the introduction of a nonrigid and mathematically tractable substructure, 

so that measurements of response ratio R and T could also be 
r overall 

compared with prediction. 

5. Extension of the Investigation. A limitation to this report, and to 

most of the literature concerned with vibration isolation and antivibration 

mountings, is that attention is focussed on the translational (vertical) 

motion of the systems concerned. In reality, system excitation and response 

can well be multidirectional and rocking motion will occur, giving rise 

to the transmission of bending moments as well as forces between the 

mounted item, the mount, and any nonrigid substructure, and to the need to 

account for bending moments and angular deflections in the foregoing 

analyses. When these more complicated situations are encountered, four-pole 



94 

theory becomes inadequate, and a transmission-matrix theory of wider applica¬ 

bility must be used; in fact, the components of the mounting system must be 

viewed at least as eight terminal systems, in which case reliance would be 

placed on 4 x 4 transmission matrices rather than on the 2x2 that typify 

the simpler four-pole theory. Such analyses, and the experimental con¬ 

firmation of their results and conclusions, present both a challenge and 

an opportunity. 
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