
NATL INST OF STAND 4 TECH R.I.C.

A111D4

i{i f
•’ • L

iv: t »r

i f 3 0

■ ;: = ;"Hr.u i?.-:?I:rI LH'ttt,

. H»*iu» : • • > ^/i^vhii1 Analysis,
xid

& >&

/■'i 3 o’ ; n 'U.

■

-

’ ■
,'. • 's . ?>• '* ,‘*k ;

'■ j* I *;
•• • l r i

i 5 •?

'« v#.** »y

: • .<• : ■»«£:> l\. ; i I f

■■:»;! r fir;-., t- . >*■■: ? .?h?

SimdfcWfc -3 VI

national Bureau of StamlefdJ

jch 2 rera ;'-

79®70 M N I D A T A
QGl

An Interactive System for Data Retrieval,
Statistical and Graphical Analysis,

and
Data-Base Management

★ ★ ★

A User’s Manual

★ ★ ★

by

Joseph Hilsenrath

and

Bettijoyce Breen

Office of Standard Reference Data
National Bureau of Standards

Washington, D.C. 20234

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary
Dr. Sidney Harman, Under Secretary

Jordan J. Baruch, Assistant Secretary for Science and Technology
! NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued September 1978

Library of Congress Catalog Card Number: 78-600076

National Bureau of Standards Handbook 125
Nat. Bur. Stand. (U.S.), Handb. 125, 294 pages (Sept. 1978)

CODEN: NBSHAP

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1978

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402
Stock No. 003-003-01972-1

Preface

This handbook describes the characteristics, operation, and
application of a general-purpose system for data retrieval, data analysis,
and data file maintenance. The system has been designed so that persons
with little or no knowledge of computers are able to search computerized
data files and prepare ad hoc or periodic reports. Although designed with
the novice in view, the system is of use to the computer professional as
well. Numerous utility modules provide the data-base administrator with
tools for maintaining the integrity of the data bases under his control. For
the management staff, the system can provide answers—sometimes within
minutes, often within the hour—to questions requiring computer
processing of stored data.

The system consists of 45 unique modules and a main supervisory
program. These carry on a dialogue with the user at a teletypewriter or
video terminal to achieve a highly interactive system which operates as
well in the batch mode as in demand mode on the NBS computer
(UNIVAC 1108) under EXEC 8.

The programs were designed and written by the authors, members of
the Data Systems Design Group in the Office of Standard Reference Data,
to meet the data handling and analysis needs of the diverse data analysis
centers at NBS. Prior experience in the design of general-purpose
programs pointed to the feasibility of a system which could handle not
only the diverse scientific data files such as crystal data, thermochemical
data, chemical kinetics data, and physical properties of substances and
mixtures, but also bibliographic and administrative data bases as well. In
the last category the system has been applied with equal success to the:
personnel file; staff training file; equipment inventory file; carpool
information file; project control file; foreign visitors file; foreign travel file;
etc.

During the five or so years over which this program was developed
and tested, the authors have received advice and encouragement from a
number of colleagues at NBS and elsewhere. Among those who provided
technical advice are Alfred Beam and Thomas Hall of Language and
Systems Development, and Robert Thompson and Robert McClenon of the
NBS Office of Standard Reference Data. Among those early users who
coped cheerfully with Omnidata’s growing pains are Betty Conrad of the
NBS Personnel Division, Robert L. Getis of Auerbach Associates, and Roy
Mullinax of the Department of Housing and Urban Development.

In the editorial sphere, special thanks are due: Constance L.
Seymour, first for her patience in carrying out revision after revision of
the manuscript and in the end for serving as the resident typist—
typographer; Anne H. Meininger and Donald D. Wagman, for their
painstaking reading of the manuscript for both technical content and
editorial details; and finally to Carla Messina, whose innovative software
allowed these words to flow from a teletypewriter terminal to a magnetic
tape capable of driving a computerized typesetter.

iii

■

'

.

CONTENTS
1.0 Introduction. 1

1.1 A Few Words on Words. 4
1.2 Typical Files Handled Routinely by Omnidata. 6
1.3 Typical Retrieval and Analysis Applications of Omnidata 7
1.4 Summaries of Modules of Interest to File Users. 9
1.5 Summaries of Modules for File Building and Maintenance. 13
1.6 Access to the Omnidata System. 14

1.6.1 The Supervisory Program Omnidata. 16
1.6.2 Global Instructions. 16
1.6.3 System and File Security. 21
1.6.4 Error Recovery. 24

1.7 References. 25

2.0 Conversion of Conventional Files into Omnidata Format. 27
2.1 The DEFINE Program. 27
2.2 File Definition when the Original Data is in File

Format on Mass Storage. 31
2.3 File Definition when the Original Data is on Cards or

Card Images on Mass Storage. 38

3.0 Searching, Reporting and Updating of Omnidata Files. 42
3.1 The SEARCH Module. 45

3.1.1 The EXIT and PRINT Options in the SEARCH Module. 52
3.2 The DISPLAY Module. 57
3.3 The REPORT Module. 62
3.4 The UPDATE Module. 72
3.5 Operating Omnidata in the Batch Mode and Remote Batch. 77

4.0 An In-Depth Application of Omnidata to the NBS Crystal Data
File. 81

5.0 Descriptions of the Data Manipulation and Analysis Modules 103

5.01 ABRIDGE.104
5.02 AGGREGATE.107
5.03 ANALYSIS.113
5.04 ARRAY.117
5.05 BROWSE.121
5.06 COMPUTE.125
5.07 CONCAT.127
5.08 CROSSTAB.129
5.09 DESCRIBE.138
5.10 DISPLAY.140
5.11 DISTRIBUTE.143
5.12 ENCODE.147
5.13 EXTRACT.153

5.14 FETCH.155
5.15 FIT.156
5.16 GRAPH.166
5.17 KWOC.171

5.18 PLAN.183
5.19 PLOT.187
5.20 RANDOM.199
5.21 REGRESS.201
5.22 RENAME.210
5.23 REPORT.213
5.24 SAVE.216
5.25 SEARCH.218
5.26 SEGMENT.223
5.27 SEQUENCE.225
5.28 SORT.226
5.29 STACK.229
5.30 STATIS.231

5.31 STATPLOTS.236
5.32 SUMMARY.244
5.33 SURVEY.246
5.34 TALLY.256
5.35 TRIM 265

v

6.0 Descriptions of the Utility Modules 269

6.1 ANNEX.270
6.2 ATTACH.274
6.3 BLANKS.276
6.4 CHECKSUM.277

6.5 DICTIONARY.278
6.6 MOVE.279
6.7 SCREEN.281
6.8 USERS.285

vi

1. Introduction

Judging from past experience, it is a rare manager, indeed, who is
fortunate enough to obtain quickly or inexpensively answers to
nonstandard questions on one or more aspects of the status of his
organization. Computer programs designed to produce periodic reports are
almost always inflexible, and the writing of ad hoc programs to answer
specific questions entails expense and delays out of all proportion to the
urgency of the problem that motivated the question in the first place.
Efforts to simplify retrieval from computerized data files have produced, in
recent years, numerous general-purpose programs. A number of the more
successful commercial systems have already exceeded a few million dollars
in sales. Surveys of commercial data base management systems appear
from time to time in such magazines as Datamation, Computer Decisions,
Infosystems, etc.

Most of the existing systems have adequate and roughly comparable
search and arithmetic capability, file definition features, and more or less
flexible report generators. None of these has nearly enough data analysis
and data manipulation facilities for handling the numerical and
alphanumeric data files in an active scientific data analysis center or in
any large commercial endeavor.

We have drawn upon NBS experience in the design of general-
purpose mathematical and statistical analysis programs [1-7]* and
experience over the years with a large variety of time-shared computer
systems to design and program a modular interactive data analysis and
retrieval system to operate on the UNIVAC ® 1108 under EXEC 8. The
system operates either from a terminal in DEMAND mode, from a deck of
cards in the BATCH mode, or in the REMOTE BATCH mode.

Program modularity has long been a hallmark of truly efficient
computer programming and systems design. Indeed, in most systems the
modularity is not necessarily seen by the user. Our system is quite
different in this respect. The Omnidata system is as modular to the user as
it is to the computer. As an example, if we wished to carry out a physical
inventory on a .25% random sample of equipment costing between
$20,000 and $50,000 and have the results of the random selection
arranged by building and room number, we would require the following
specific and distinct operations:

*Numbers in brackets denote references listed in section 1.7.

® UNIVAC is a registered trademark of the Sperry Rand Corporation.

a) A SEARCH through the entire inventory file for items costing
between $20,000 and $50,000;

b) Selection on a RANDOM basis of 25% of the records satisfying
the above criterion;

c) A SORT of the resulting file on building and room location; and,
d) A printed REPORT containing the desired information.

In the above, the words SEARCH, RANDOM, SORT, and REPORT are
names of modules which the Omnidata user must call in sequence to
achieve the desired solution. In each module the user is asked to supply
the requisite particulars to achieve the result required. After each module
has done its work, the user has an opportunity to check the results before
going on to the next operation. Such interaction with the data file is
facilitated by requiring the user to perform each operation separately, and
Omnidata has a number of interesting and useful ways of assisting the
user in looking at the data in the file.

A brief description of the function of each of the modules that
comprise the Omnidata system is given in sections 1.4 and 1.5, while a
detailed description can be found in sections 5 and 6.

The 35 modules which are discussed in section 5 provide facilities
for: searching and reporting; plotting and other graphical data analysis;
arithmetic operations in general, and statistical analysis in particular; file
partitioning and subsequent sequential analysis on subfiles; keyword
indexing of bibliographic files; flagging, coding, and decoding of data
items; analysis of questionnaires and surveys, and a large variety of data
management and validation routines of use to both the user of the data
and the data base administrator (the file builder).

The system is designed for quick response to complicated searches
and analysis. The following is an example of a moderately complex
operation that was performed easily by the system. Management wished to
have, as soon as possible, a breakdown of the average age and average
grade within each of approximately 30 occupational series in each major
organizational unit separated into supervisory and nonsupervisory staff.
How this problem is solved via the SORT module is explained later.

The following are examples of less complicated chores that can be
performed by Omnidata within the hour—provided, of course, that the
requisite data have been collected and are available either on punched
cards, magnetic tape, or mass storage devices.

a) A cross tabulation of age group versus salary levels.
b) A frequency distribution of staff by levels of education.
c) The geographic distribution by ZIP codes of subscribers.
d) A complete statistical analysis of purchases in excess of $5000 for

a specified period of time.
e) A classification of respondents into ten age groups (deciles).
f) A tally of universities attended by senior staff.
g) A list of references of papers treating alloys of zinc and copper.
h) A report of missing data items in a file.
i) A cross tabulation of age groups (20, 25, 30, 35, 40) versus

professions of all blood donors of age 40 years or less.

2

j) A random 10% sample from the inventory file of equipment costing
between $5,000 and $20,000 ordered by building and room
location, and showing the date of purchase.

k) A list of book titles indexed under tables and thermodynamics, but
excluding steam tables.

l) A listing of report numbers of classified reports carrying
unclassified titles, listed by corporate author in chronological
order of report date.

m) A distribution of active research grants in excess of $50,000/year
by states in decreasing order of total expenditures since
initiation, or of total expenditures in excess of $200,000
regardless of current level of support.

n) A listing of inorganic cubic crystals containing phosphorous
arranged by name in alphabetic order.

o) A complete statistical analysis of staff salaries for each major
organizational unit.

An important feature of the Omnidata system is its ability to generate
data arrays so as to be accessible to other programs (written in
FORTRAN, COBOL, XBASIC, etc.) which do not have the retrieval
facilities of Omnidata.

Another important feature of Omnidata is its ability to interface with
the OMNITAB II program [7] which is used extensively at NBS and
elsewhere. This interface gives OMNITAB II users an easy to use, yet
sophisticated, search facility while providing the Omnidata user with a
repertory of well-tested and highly accurate statistical programs [8-11].

The Omnidata system has been designed to serve as a facile tool for
nontechnical users (clerks, secretaries, administrators, etc.) as well as for
the data-base manager (computer programmer, analyst, file builder).
While the former group is concerned mainly with framing questions (file
searching) and getting answers in the form of reports, the latter group is,
in addition, concerned with file definition, file updating, data editing and
other manipulative facilities.

The seven modules of interest to the latter type of user have been
grouped together under the heading of “Utility Modules.” These are
described briefly in section 1.5 and in more detail in section 6. For the
general user, the system provides 35 distinct modules for a wide variety of
data manipulations and analysis in addition to the searching and reporting
facilities found in other management information systems. These modules
are described briefly in section 1.4 and more fully in section 5.

In section 2 we describe DEFINE, an independent XBASIC program,
which takes conventional data files and converts them to Omnidata format.
In section 3 we discuss in detail four of the Omnidata modules. Three of
these (SEARCH, DISPLAY, REPORT) allow one to address questions to
data files, look at final or intermediate results, and obtain plain or fancy
reports. The fourth is the UPDATE module which allows the data file
administrator to make corrections to individual records or to all records in
a systematic fashion. These together with the DEFINE module represent a
minimum of modules with which the user must be familiar in order to be
able to retrieve information from a computerized data file.

3

1.1 A Few Words on Words

Aside from the vocabulary of normal discourse, this manual makes
use of words having quite specific connotations. These words can be
divided into four main classes. The first of these contains words which are
names of Omnidata modules. Among these are DEFINE, ABRIDGE,
STACK, SUMMARY, ANALYSIS, COMPUTE, RENAME, etc. Each of
these modules performs a number of quite specific operations which are
discussed briefly in sections 1.4 and 1.5 and more fully in sections 3, 4,
and 5.

The second class of words contain general global Omnidata
instructions like TERSE, TIME, WIDTH, MONITOR, etc., which control
how the system as a whole operates. These are discussed in section 1.6
and again when necessary in the detailed description of the modules in
sections 3, 4, and 5.

The third class consists of words such as current, previous, exit,
restart, select, reject, end, etc. These have meanings specific to certain of
the Omnidata modules and are discussed as needed in sections 3, 4, and
5.

In the fourth class are a few general words needed to discuss data
storage, retrieval, and analysis, such as data items, data vectors, physical
records, logical records, data files, etc. It seems important to clarify some
of these here.

a) A data item or a data entry is an individual datum, such as a
person’s age or salary, or year of birth, which is numeric; part
numbers which may be a mixture of letters and numbers; or a
name, a country, a city, a job title, etc., which is usually
alphabetic.

b) A logical record is made up of all of the data items pertaining to a
particular person or incident or case. Thus, all of the data
values associated with the attributes name, social security
number, date of birth, grade, salary, job title, etc., make up a
logical record in a personnel file.

The use of the modifier logical serves to distinguish this
collection of information from a physical record which refers to
the data portion of a magnetic tape as in tape record or to a
machine record, which need not concern the normal user of the
Omnidata system. As the Omnidata user will normally not be
concerned with tape records or machine records, we have
sometimes used the word record without its modifier to signify a
logical record.

c) A data vector as used here is a list of numbers or character strings
made up of all of the data entries (one from each logical record)
for a single attribute. If all of the data items for a single person
are called a logical record, then all of the ages (one from each
record) constitute the age vector in the file. In a data file
consisting of the information shown in tabular form, the rows
would be logical records and the columns would be data vectors.

4

In a data file of short logical records, a tape record or a
computer record would consist of many logical records.
Conversely, a long logical record may extend over two or more
physical records (either on tape or in mass storage).

d) A data field is the space (number of characters) allotted in each
record for a particular data item.

e) An Omnidata data file consists of the totality of logical records,
where each record consists of the same number of data items
arranged in the same order (with due allowance for missing data
items). This file can be resident either on mass storage (disc) or
on magnetic tape from which it can be “rolled in” to disc as
required.

There are other words (like blocked records) which have general
technical meaning and even some (like Fieldata) which have a special
meaning—being peculiar to UNIVAC® computers. We consider it a
service to the nonspecialist reader of this manual not to define these
words. Computer specialists who know what these words mean will
normally be involved in advising on or in generating the conventional files
on which the Omnidata system will work. Their help will be useful or
essential, as the case may be, but only up to the point of defining the file.
After a file has been defined into the Omnidata format, no specialized
training is required to search it or to analyze it.

♦♦♦NOTES***

5

1.2 Typical Files Handled Routinely by Omnidata

The system has been applied to files of quite varied format and data
content. Some files that have been handled successfully are listed below.

a) A personnel file containing 108 data items comprising 720
characters for each of approximately 4000 people.

b) A chemical kinetics data file containing 17 data items for each of
500 chemical reactions of 484 interest in atmospheric chemistry
and air pollution.

c) A carpooling data file containing 35 data items for 3546 persons.
d) A data file containing 17 data items for each of 83 foreign

research projects.
e) A file of selected values of chemical thermodynamic properties

containing 18 data items for each of the 9563 records.
f) An index of state building codes.
g) Design characteristics and sales data for minicomputers.
h) A file of cost data on computer runs containing 10 data items for

each of approximately 4000 runs.
i) A file of data on 1126 fires containing 110 data items extending

over 1962 characters per fire.
j) A project summary file containing 108 data items for

approximately 100 projects.
k) A file of records of committee and subcommittee memberships

containing 26 data items for each of 1500 persons.
l) Twelve thousand card images, each of which contains responses to

46 questions in a survey of users of stations WWV and WWVH.
m) A series of 12 coordinated and consonant files (having the same

record length and data layout) comprising a total of 24,000
records containing the NBS Crystal Data System (300 characters
per record).

n) An historical file of personnel actions (accessions, promotions,
reassignments, and separations) over a 10-year period.

o) A cumulative record of training courses taken by individual staff
members.

The above enumerated files were originally in fixed-field form or
have been converted to fixed field by a utility program.

A few words are in order concerning the seemingly large number of
data items in certain of these files, as well as the smallness of others. If
Omnidata were simply a data retrieval system, we would discourage its use
on files as small as some in the above list. It is the numerous data analysis
and display features which make it profitable to automate files as small as
some on the list.

Most of the available management information systems (that use
inverted file structures) limit the number of data items that can be
searched. To avoid the problems inherent in building and updating an
inverted file system [16], the Omnidata system operates on its files in a
sequential manner. Besides, an inverted file system would speed up the
operation of only 2 or 3 of the 40 odd modules in Omnidata. Consequently
every data item in a file can be searched in Omnidata—even down to the
character level if desired.

6

1.3 Typical Retrieval and Analysis Applications of Omnidata

In the previous section, we listed a variety of files which are handled
more or less routinely by Omnidata. We shall now describe a variety of
problems these files are able to solve via the Omnidata modules.

Problem: Select from a file persons whose: educational level is 17 or
greater; academic discipline is in the range 0501 through
0517; and whose duty station is any one of four locations
(designated by nine digit numbers). Sort results on
organizational unit, then by educational level, then by
discipline, then by duty station. Finally, list names in
alphabetic order, and add age to the above items in the
report.

Remarks: The solution of this problem involved the modules
SEARCH, SORT, COMPUTE, and REPORT.

Problem: Extract from a chemical kinetics data file those records in which
the reactants are H and H2O, and the products include H2O2.
Print the reactions, the reference, the coefficients (A, B, C),
and their uncertainties.

Remarks: The solution to this problem involved the modules
SEARCH and DISPLAY.

Problem: Extract from the main carpool file all persons who wish to utilize
bus transportation, and prepare a report showing the
population density as a function of grid coordinates.

Remarks: The solution to this problem involved SEARCH,
followed by the use of the EXTRACT module (to get the two
high-order digits from the five digit X and Y coordinates).
Next, the CONCAT operation generates a four-digit field
equivalent to a two mile by two mile square. The population
in each of these squares was produced by using the TALLY
module on the concatenated field.

Problem: Prepare a series of summary tables and frequency distributions
showing country by country the following: total number of
projects; total funding to date (by intervals of $10,000);
distribution among scientific disciplines; and a set of cross
tabulations showing sponsoring division against project,
country, and discipline.

Remarks: The solution of this problem involved the modules
SORT, TALLY, ENCODE, DISTRIBUTE, SUMMARIZE,
and CROSSTAB.

Problem: Search the chemical thermodynamics data file for boron—
containing molecules in the gaseous state whose entropy is
between 80 and 90, and whose specific heat is less than 25,
cal/deg mol.

Remarks: This problem required only the SEARCH and
DISPLAY modules.

7

Problem: List by states in alphabetic order all existing codes (building,
electrical, and plumbing) covering public buildings, but
excluding schools and colleges.

Remarks: This problem involved use of the SEARCH (in the
SELECT and REJECT modes), SORT, and REPORT
modules.

Problem: Total and display computer costs for 10 publications in spite of
the fact that different project designations were used on the
individual runs for the same publications.

Remarks: This problem required the use of the modules
AGGREGATE, SEARCH, SUMMARIZE, and DISPLAY.

Problem: Prepare a monthly summary listing all foreign visitors and
showing their distribution among countries, host
organizational units, sponsoring agencies, length of stay, and
scientific disciplines.

Remarks: This periodic report makes use of the PLAN
module which calls the modules SORT, DISTRIBUTE,
TALLY, and REPORT.

Problem: Prepare a semiannual summary showing the involvement of staff
members in committees, subcommittees, and working groups
of professional societies. Show distribution by societies and
divisions of societies, and by organizational unit, by type of
appointment, and by length of service.

Remarks: This report involves the modules AGGREGATE
and TALLY.

NOTES

8

1.4 Summaries of Modules of Interest to File Users

A brief summary is now in order outlining the important
implemented features of the Omnidata system for: information retrieval;
numerical, statistical, and graphical data analysis; data display and report
generation; data screening and correction; file definition and updating; and
file manipulation. Where examples are given below, they are only for
illustrative purposes and not necessarily the most important use of the
module.

Module Name Description

ABRIDGE Permits the extraction or exclusion of certain data vectors
to produce a smaller file of the more active data items.
(See also SEGMENT.)

AGGREGATE
Allows for classifying records into broader classes on the
basis of specific entries in any of the data vectors. Thus,
persons with a dozen or more varied job titles can be
classified as engineers. In the degenerate case, this
module can be used to translate entries in the file on a
one-to-one basis.

ANALYSIS Displays the total, minimum value, maximum value, the
average, and the standard deviation of the mean for
numeric data in specified data fields. (See also
SUMMARY.)

ARRAY Extracts all of the numeric data vectors from a file and
stores them on disc in a two-dimensional array suitably
dimensioned and formatted to be accessible to programs
outside of the Omnidata system.

BROWSE Allows one to browse through the file on any one data
field at a time to see how the information is stored. (See
also DISPLAY.)

COMPUTE Permits arithmetic operation on numerical data vectors
with the view of augmenting the original file with data
vectors resulting from such operations on existing vectors.
The new data vectors can be used in subsequent
operations by other modules during the run. They can
also be retained permanently by saving the augmented
file.

CONCAT Provides for concatenation of two or more data items into
a single vector; to provide, for example, a sort key or
shorthand for a complex search performed periodically.

CROSSTAB Generates a cross tabulation of data vectors, two at a time
(e.g., pay vs. age).

9

DESCRIBE

DISPLAY

DISTRIBUTE

ENCODE

EXTRACT

FETCH

FIT

GRAPH

KWOC

PLAN

PLOT

RANDOM

REGRESS

RENAME

Provides the user with an on-line description of each of
the data items in the current file (provided that the file
manager has generated such a description via the
DICTIONARY module.)

Provides a quick look at any or all of the data items in
specified records in the current file. Each data item is
suitably labeled. (See also BROWSE.)

Breaks a file into catalogued subfiles on the basis of the
entries in a particular data vector for subsequent
independent or tandem analysis, or other operations.

Groups numerical data in a designated vector into
specified class intervals for subsequent analysis, display,
or cross tabulation.

Extracts from a defined data field certain contiguous
characters and assigns a label to them so that the
fragment itself becomes a new data element. The year,
month, and day can be extracted from a data field to be
concatenated later in the order suitable for sorting.

Brings into the ambit of Omnidata a previously
catalogued Omnidata file not otherwise available in the
current run.

Interfaces with the OMNITAB II system to perform a
least-squares fit of a polynomial of specified degree to
one data vector as a function of another.

Produces bar graphs with considerable variation in
format.

Prepares a keyword (out of context) index of the words or
fragments in a designated data vector.

Permits Omnidata to get its instructions from a
catalogued file, instead of the keyboard to facilitate
preparation of frequent or periodic reports.

Interfaces with the OMNITAB II program to produce a
plot of up to five data vectors as ordinate against one data
vector as abscissa.

Generates a set of random numbers and randomly selects
a designated portion of a file for auditing or other
purposes.

Interfaces with the OMNITAB II program to perform a
multiple linear regression on as many as 10 data vectors
as a function of a specified data vector.

Allows the user to change the names (labels) of the data
vectors in an Omnidata file. These changes can be either
ad hoc for reporting purposes or permanent.

10

REPORT

SAVE

SEARCH

SEGMENT

SEQUENCE

SORT

STACK

STATIS

STATPLOT

SUMMARY

SURVEY

Provides for either ad hoc or periodic report generation
with considerable flexibility for titles, footnotes, columnar
spacing, and multilevel column headings.

Allows for storing and cataloguing of files produced by
certain of the Omnidata modules.

Allows for sophisticated data retrieval from Omnidata
files, including: boolean logic, anchored or unanchored
partial string searches (prefixes, suffixes, roots, stems,
etc.), exact or relational matches, matches within
numerical ranges, ignoring of specific intermediate
characters, etc.

Breaks a large file into segments containing specified
numbers of records (either a fixed number or a variable
number of records per segment).

Adds to an existing file a set of sequence numbers in
ascending order with specified initial values and
increment. It can also insert a specified character string
to serve as a flag.

Provides options for sorting a file on the basis of
information in as many as 10 data vectors. Options are
available to strike totals and subtotals or local and global
averages at as many as ten hierarchical levels.

Combines the designated consonant (having the same
record length and the same data layout) Omnidata
subfiles into a single composite file wherever it is
advantageous or necessary for subsequent operations
(sorting, searching, analysis, etc.).

Does a statistical analysis, one vector at a time, giving a
decile distribution and 34 measures of location,
dispersion, randomness, and other statistical parameters.

Provides four plots useful in exploratory data analysis as
an adjunct to the numerical results obtained from the
STATIS module. Like STATIS it operates on a single
vector of data. This module interfaces with the
OMNITAB II.

Computes for each of the numeric data vectors in a file
the total, minimum value, maximum value, the average,
and the standard deviation of the mean. Prints out the
above information in tabular form, adds the information
to the data file, and sets a flag to document the operation.
(See also ANALYSIS.)

Analyzes a file of coded information representing answers
to multiple choice questions or results of extensive
surveys. All of the responses are tallied separately for
each question or item in the survey, reported in an array,
and displayed in histogram form, if desired.

11

TALLY

TRIM

Produces a histogram showing the frequency of
occurrence in a particular data vector (either numeric or
alphabetic) of each unique entry. Cumulative frequency,
percentage, and cumulative percentages are also printed
when the format allows it.

Searches in each record of a file for trailing blanks in a
designated data vector, and reports a census of character
lengths found in that data vector. On the basis of this
analysis the pointers can be modified in the label table to
achieve operational economy and space compression in
DISPLAY and REPORT.

♦♦♦NOTES***

12

1.5 Summaries of Modules for File Building and Maintenance

ANNEX Permits on-line file building in either prompting or direct
mode.

ATTACH Combines the corresponding records of two or more
Omnidata files into a single file. The files must be in the
same sorted order and contain an equal number of records,
in one-to-one correspondence.

BLANKS Counts and reports, for each data field in the file, the
number of records in which that data field is completely
blank.

CHECK SUM
Calculates two check sums at the time the file is generated.
These are used to check the integrity of the file prior to and
after periodic or ad hoc updates.

DICTIONARY
This module builds a file of information required by the
DESCRIBE and the SURVEY modules. That file will
describe the content and format of the data vectors
associated with a particular data base. When the data file
contains encoded information the file will contain
information decoding it.

Provides for moving records or blocks of records from one
place in a file to another.

Searches in a designated data field (through all of the
records in the file) and reports the number of occurrences of
each unique character in each character position allotted to
that data field.

Allows the file builder or manager to enter into an
Omnidata file (or delete from the file) the names and
passwords for accredited users of that file, thereby giving
him control of the security of the system, file by file.

MOVE

SCREEN

USERS

13

1.6 Access to the Omnidata System

Omnidata is a self-contained package of programs written entirely
in the XBASIC language as defined in the manual titled “XBASIC for
UNI VAC® 1100 Series Computers” by Language and Systems
Development, Inc. of Silver Spring, Maryland. The system consists of a
main program, Omnidata, and the above enumerated modules which it
supervises.

After the computer has accepted the normal UNIVAC ® RUN
control statement, as is evidenced by the date and time printout, the
Omnidata system is called for in either of two ways depending upon the
manner in which the system has been implemented. The most efficient
manner in which to operate the Omnidata system is as a set of compiled
absolute programs (modules). In this case it is necessary to call for it by
typing

@NBS*OMNIDATA.OMNIDATA

For those agencies that do not have a compiler which can operate
absolute code, the Omnidata system is run from XBASIC source programs
which are compiled as needed. Under such circumstances the system
would be called for by typing

@SBASIC,P OMNIDATA

if the run is in the DEMAND mode, or by typing

@SBASIC,PO OMNIDATA

if the run is to be made in BATCH.

An Omnidata run can be terminated by typing the word STOP at
any time the program asks for an input. On receipt of such an input, the
current run is terminated by the XBASIC compiler or by the absolute
code, as the case may be. This action is accompanied by the printout:

PROGRAM STOPPED
TIME: X.XXXX

At this point Omnidata is no longer in control, but the BASIC
compiler still is.

In order to stop the entire run properly it is necessary to exit from
both the XBASIC compiler and the system. Typing @EOF releases the
XBASIC compiler and @FIN instructs the Executive operating system to
close out the run and report the run charges, etc., as shown in figure 1.6a.

14

* * ****************
*

*

*

*

*

> @xbasic
XBASIC R5.1 15:29:07 8 MAR 77
>old:omnidata*

READY
>run
OMNIDATA 15:29:17 8 MAR 77

* PLEASE ENTER ACCOUNT NUMBER - >? >abc
*TYPE PASSWORD -->? >xyz
* WHICH DATA BASE DO YOU WANT -->? >fpr75

*

*

* GOOD AFTERNOON, WELCOME TO OMNIDATA.
* * * NOTE — OMNIDATA KEEPS A RECORD OF WHO USED WHICH *
* MODULE(S) ON WHICH FILE(S) AT WHAT TIME OF THE DAY *
* FILE FPR75 CONTAINS 111 DATA ITEMS FOR 75 RECORDS. *
* *TYPE A MODULE NAME AND/OR INSTRUCTIONS *

* — >? >stop —-
* PROGRAM STOPPED.

* TIME : 2.629 _ _
* > @eof --
* LSD XBASIC 15:30:26 8MAR 77
* >@fin

*

*

* RUNID: BREENB ACCT: 12345-ABCDEF PROJECT: BASICEXT
* TIME: TOTAL: 00:00:21.768 CBS: 00001195.877

CPU: 00:00:02.849
CC/ER: 00:00:18.332

* CPU:$ 0.17 CBS:$ 2.15
* TAPES: $ 0.00
* PRIORITY: DEMAND
* SURCHARGES: RUN: $0.25
* DEMAND ELAPSED: $ 0.09
* ^TERMINAL INACTIVE* „
* >@@term---

I/O: 00:00:00.586
WAIT: 00:00:47.421

I/0:$ ~ ~ 0.04

* * * *

cc/

* *

♦

*

Figure 1.6a. Shown here is a record of the start and the proper
termination of an Omnidata run. The asterisk (*) at [A] indicates that the
program has been made public to be available to all users. At [B] we exit
from Omnidata. At [C] an input of @EOF releases the XBASIC compiler,
and at [D] the input of @FIN terminates the run and produces the
Executive accounting information. The input at [E] is required to free the
communication port.

15

The UNIVAC® operating system allows for interrupting the
program during a printout. The requirement to interrupt a printout will
arise, if at all, in generating a lengthy report. The REPORT module has
been programmed to permit such interrupts. How this is achieved is shown
in section 3.3.

1.6.1 The Supervisory Program—Omnidata. The following are the major
functions of the main program Omnidata:

a) It obtains the user’s identification and password and the name of
the desired data file.

b) It finds the designated file on main storage or, on failing to do
so, prints out an appropriate diagnostic message. See appendix
A for a list of possible diagnostics produced by the main
Omnidata program.

c) It reads the appropriate portion of the data file, and checks the
user’s name and password against the list of accredited users
as stored in the particular file selected.

d) It reads from the header records and stores a label table in core,
consisting of the names and locations of each of the defined
data elements in the record, while taking proper regard for the
user’s status on restricted data items.

e) It obtains information on the length of the file and reports to the
user the number of records and the number of data items per
record.

f) It calls the desired modules in turn and records information on
the USELOG as follows:

name of user, name of file, date, clock time (in seconds) when
each module is entered, and the elapsed CPU time (in
seconds) since the start of the current run.

1.6.2 Global Instructions. Finally, the main program Omnidata sets and
resets global switches and global parameters required for the selection and
control of various modes of operation enumerated below. Global here
means that the switches and parameters are available to all of the
modules.

In the normal (or default) operating mode, the system:

. prints lines up to a maximum of 68 characters in width;

. reads or otherwise operates on files in the forward direction;

. prints, after each module has finished its work, the CPU seconds
in the module and the elapsed time since the initiation of the
run; and

. converses with the user in the TERSE mode (omits a listing of
modules in the system and of the data items in the file).

16

* >@xbasic

* XBASIC R5.1 16:05:07 8 MAR 77

* >old:omnidata*

* READY

* >run

* OMNIDATA 16:05:24 8 MAR 77
*

* * PLEASE ENTER ACCOUNT NUMBER ->? >bjbm

* *TYPE PASSWORD — >? >xyz

* * WHICH DATA BASE DO YOU WANT - >? >fpr75

* GOOD AFTERNOON, WELCOME TO OMNIDATA.
* * * NOTE — OMNIDATA KEEPS A RECORD OF WHO USED
* MODULE(S) ON WHICH FILE(S) AT WHAT TIME OF T]
* FILE FPR75 CONTAINS 111 DATA ITEMS FOR 75 RECORDS.
* *TYPE A MODULE NAME AND/OR INSTRUCTIONS

* — >? > modules
*

* THE FOLLOWING MODULES ARE AVAILABLE:
* ABRIDGE AGGREGATE ANALYSIS ANNEX *

* ARRAY ATTACH BLANKS BROWSE *

* CHECKSUM COMPUTE CONCAT CROSSTAB *
DESCRIBE DICTIONARY DISPLAY DISTRIBUTE

*
ENCODE EXTRACT FETCH FIT

*
GRAPH KWOC MOVE PLAN *

* PLOT RANDOM REGRESS RENAME *
* REPORT SAVE SCREEN SEARCH *

* SEGMENT SEQUENCE SORT STACK

* ST ATI S STATPLOTS SUMMARY SURVEY *
TALLY TRIM UPDATE UPDATESEQ
USERS

* *

* *TYPE A MODULE NAME AND/OR INSTRUCTIONS

* — >? >stop

* PROGRAM STOPPED.
*

* TIME : 3.030

Figure 1.6b. This run was initiated primarily to show how the program

prints out the list of modules in response to the request at |B], If the input

at [A] had been BJBM,VERBOSE the module names and labels of the 111

data items would have been printed out automatically.

17

The normal modes of operation can be changed or reinstated by
responding with one or more appropriate instructions when requested to
TYPE A MODULE NAME AND/OR INSTRUCTIONS.

The following is a list of global instructions which modify the
normal operating modes until restored by subsequent instructions, or
otherwise altered.

BACKWARD
Instructs the system to read or otherwise operate on the data
file from the end of the file instead of the beginning.

COST Instructs the main OMNIDATA program to print out an
approximate cost for work performed by each module used
after the COST has been requested. This instruction can be
counteracted by typing NO COST in the response to:

*TYPE A MODULE NAME AND/OR INSTRUCTION - >? >

Since the cost is system dependent, each installation has the
option of inserting the appropriate parameters to compute
the cost. If that option is not exercised, the program
responds with

COST = $ SYSTEM DEPENDENT

DATE,YYMMDD
Provides a means of dating the output when desired.

FORWARD
Restores the system to operation from the front of the file.

INTERRUPT,n
Forces the operation to stop each time it has performed its
operation on n records; prints out an appropriate message;
and gives the user the choice to CONTINUE the operation,
or to RESTART in the module, or to EXIT back to
Omnidata in order to call a different module or enter one of
the global instructions.

Prints, in alphabetic order, the current names (labels)
associated with the data items in the file in use.

Prints out the number of logical records in the current file.

Limits the operation of the system to a portion of the file,

from record a to record b.

Prints, in alphabetic order, the names of all of the Omnidata

modules.

LABELS

LENGTH

LIMIT,a,b

MODULES

MONITOR,n
Prints out an appropriate message each time it has carried

out its operations on n records of the file, but does not stop

each time as does the INTERRUPT instruction.

18

NO COST

NO DATE

NO TIME

STORE

TIME

WIDTH,n

suppresses the printing of the cost of the operation of a

module.

Suppresses the printing of the date if it has previously been

invoked by the DATE instruction.

Suppresses the printout of the CPU seconds elapsed in the

run, etc., if it had been invoked by the TIME instruction.

Allows for the automatic storage of results from certain of

the modules (REPORT, SURVEY, KWOC, etc.). Each

module which has a provision to store results on a file

automatically generates a name for the stored file and

informs the user accordingly. The STORE instruction does

not carry over from module to module. It must be set each

time a module is called (i.e., SURVEY, STORE, WIDTH,

100).

Restores the system to print the elapsed CPU seconds in the

run, etc., if that feature had previously been disabled by the

NO TIME instruction.

Instructs the system to allow for line widths of n characters.

In demand mode, if the line length is to be set longer than

72 characters it is necessary to alert the Executive system as

well as Omnidata. This is achieved by typing the Executive

command @@TTY W,n any time after the run sequence.

The above EXEC instruction is not necessary when running

in the batch mode. The system allows for a maximum width

of 132 characters.

♦ ♦♦NOTES***

19

CD
a
os
o
u
UJ
CS

in
r~

ec
O
U-

* UJ

@

<
C

CD
Z

<

o
u
lo
m
OS
C_
U.

UJ

< _S
Z JS
UJ in
_J co
3 -C
Q —

<
UJ

<
E-

A

a
<
cl
<

O' _
> CD Cl
— 0-3
Q Q U.

a- E-
Q Z

. , UJ < O CL
u t- j m u cl
S Z a. OS CD CD

CM
O CO

O'

CO
O N MO H
h CO vO vO CM

CO
CO

o©

^ a
< CD
u u

E— E-
UJ CL CJ
Q O U.

<
CD
On
o

ss
_J

Q 2

Z cl

Q Un
UJ Cl
CD CD

t-

ei
Q
UJ
<
CS

TfNwoO''OC'Ococ>wHC'0'tr' SONCM'OS-U^'^^CMCOCOLOO'COCO

§ £
Ed w

UUQ

CL >.

ca © u H q <u^fl-uWcja-
feUZUBicDCD

o co

C/7

£

o
_J

as
O O
UJ O
a a

z as © ^0- cj <
■gffiuO
S =c j z

«= ^ a.
< Q Z UJ
UJ U O E-
cc cd in cn

fD-HPHomcoMinO'O^oC'Coa'ji^

r* CjJ

^ t < cd Q Q
me-Qiujsjq<
ecQuzQOoos
<<<UQCJUJO

<
CD

U 3C
_J z

CD Q
U; 5: H U>
O Q S < Q
CC U J E- U t
a. cd cd cd E- £>

<
f— CO
< CO

Q

CD
Z

H 0 c“ ffl
Z
c

© CO
LO LO
M
CO
Cl
Un

r- O'
LO CO

< o
O —‘®COOO<
— VOCO"CM'-H'OCOCO

LO vO
O' o o

> 2 u “

qS^S^<<On
QQUJU — za-o.

u <
_ u

U JZ CD Q
CD CD CD f— t>

Q
Q

O —i
< O'

VO
O ^ O' o

lo cm —1 r- —1
CO CM LO

^ O'

UJ
<
£

UJ

_ <
u.

< a. u
< u

CO
CO CO

O Q C O I 2

<£ J
< D-

% CO _ UJ
u cd _j x :« © <
cd o < uj cd o u:
O 0- CD CD CD E- S>

A £ i CO 10 CM
E— O' 10 vO

M LO O'
O'—iCOOOlOCMO
cO'CrNrv^'HcO'^cocj

CO
CO

Q
00
H
CD
z

CO
o

<
UJ

<
z

UJ

5 d
Q O-UJ
O £ 0.

» Bl

*! AO
< E—

UJ
0.
X
E-

cv. ©

Ag
: Q-

20

F
ig

u
re

1
.6

c.

A

p
ri

n
to

u
t

o
f

th
e

la
b
e
ls

(i
n

a
lp

h
a
b

e
ti

c

o
rd

e
r)

a
ss

o
c
ia

te
d

w
it

h

th
e

fi
le

F
P

R
7
5
,

p
ro

d
u
c
e
d

in

re
sp

o
n

se
 t

o
 t

h
e
 (

L
A

B
E

L
S
 r

e
q
u
e
st
 a

t
[A

].

A
 s

ig
n
-o

n

in
 t

h
e
 V

E
R

B
O

S
E
 m

o
d
e

w
o

u
ld
 p

ro
d
u
c
e
 a

u
to

m
a
ti

c
a
ll

y
 a

li

st

o
f

la
b

el
s

in

n
u
m

e
ri

c

o

rd
e
r.

T

h
e

fo

rm
a
t

o
f

th
is

o

u
tp

u
t

v
a
ri

e
s

w
it

h

th
e

c
u

rr
e
n

t
O

m
n
id

a
ta

w

id
th

se

tt
in

g

an
d
 t

h
e
 l

e
n
g
th
 o

f
th

e
 l

o
n

g
e
st
 l

ab
el

.

1.6.3 System and File Security. It is a feature of virtually all viable

computer systems that provision is made for system and file security by

means of passwords for account numbers, lock words for programs, and tape

labels for access to magnetic tapes. Once access is gained to the computer

via a proper sign-on procedure, and to the Omnidata programs, the user

must identify himself to the main program, Omnidata, by typing his name

and a password. Both of these are checked against a list of authorized users

and passwords resident in the particular file requested. Unless there is a

specific match, the user is not allowed to operate on that file. This

arrangement puts the responsibility for protecting the file upon those with

responsibility to maintain the file.

In figure 1.6d we show how Omnidata refuses to allow a file to be

used until the data file administrator has built into it at least one

authorized user and an associated password. Figure 1.6e shows how the

program responds to an improper account number, or password, or both.

The Omnidata system allows for an additional level of security since

it is often necessary to allow access to many people for most, but not all,

of the data items in the file. In particular, such items as grade, pay,

volume of business, or margin of profit may be considered more restricted

than other data items.

The Omnidata system handles this problem in an interesting way.

At the time a user is accredited to a particular file by the file manager, a

flag is set to indicate whether that user is a restricted or unrestricted user.

Corresponding flags are attached to the sensitive data items in the file

which should be denied to the restricted users.

When Omnidata recognizes a fully accredited user, it types out the

labels for all of the vectors in the file and gives the user access to all of

them. When a restricted user is encountered, the names of the restricted

vectors are not mentioned in the printout, nor are they stored in memory,

hence the user supposedly does not know that the restricted items are in

the file. If he should know from other sources the names (labels) of the

restricted items and asks for them, the system would not be able to

comply, because it would not find those names in the label table stored in
memory.

21

The security provided by the Omnidata system is in addition to the
normal file security provided by the UNIVAC® The Executive operating

system. The latter makes use of read/write keys. These keys are normally

appended to the file name as follows: FNDEMO/RRR/WWW, where

RRR represents the password for reading a file and WWW stands for the

password to write on a file. Since Omnidata never (see ANNEX for the

single exception) writes directly on the files it can access, the file request

in response to the question:

* WHICH DATA BASE DO YOU WANT --->?>

will contain only one slash (/) when the file has been protected with a read

key. Once Omnidata has obtained access to the file, it deletes the read key

and prints out only the name of the file. For this reason, read keys do not

appear in any of the illustrations in this manual.

* >old:omnidata* *

* READY *

* >run *

* OMNIDATA 16:30:43 8 MAR 77 *
* *

* * PLEASE ENTER ACCOUNT NUMBER ->? >abc

* *TYPE PASSWORD->? >xyz *

* *WHICH DATA BASE DO YOU WANT -->? >fndemo
* *

* !NO ACCREDITED USERS IN YOUR FILE — IF THIS FILE

* BELONGS TO YOU, CALL PROGRAM USERS, OTHERWISE CALL

* THE DATA FILE ADMINISTRATOR. *

* TIME: 1.985 *

Figure 1.6d. Here we see how Omnidata refuses to allow a file to be used

until the data file administrator has built into it at least one authorized

user and an associated password.

22

* PLEASE ENTER ACCOUNT NUMBER -->? >abc

TYPE PASSWORD -->? >123

* WHICH DATA BASE DO YOU WANT -->? >fpr75

WRONG PASSWORD - RETYPE->? >xyz

GOOD AFTERNOON, WELCOME TO OMNIDATA.

* * NOTE - OMNIDATA KEEPS A RECORD OF WHO USED WHICH

MODULE(S) ON WHICH FILE(S) AT WHAT TIME OF THE DAY

FILE FPR75 CONTAINS 111 DATA ITEMS FOR 75 RECORDS.

TYPE A MODULE NAME AND/OR INSTRUCTIONS

— >? >stop

PROGRAM STOPPED.

* PLEASE ENTER ACCOUNT NUMBER - >? >bbc

TYPE PASSWORD -->? >xyz

* WHICH DATA BASE DO YOU WANT - >? >fpr75

WRONG ACCOUNT NUMBER - RETYPE -->? >abc

<D GOOD AFTERNOON, WELCOME TO OMNIDATA.

* * NOTE - OMNIDATA KEEPS A RECORD OF WHO USED WHICH

MODULE(S) ON WHICH FILE(S) AT WHAT TIME OF THE DAY

FILE FPR75 CONTAINS 111 DATA ITEMS FOR 75 RECORDS.

TYPE A MODULE NAME AND/OR INSTRUCTIONS

— >? >stop

PROGRAM STOPPED.

*PLEASE ENTER ACCOUNT NUMBER -->? >aaa

*TYPE PASSWORD - >? >zzz__

* WHICH DATA BASE DO YOU WANT - >? >fpr75 C§)

!YOU HAVE NOT BEEN ACCREDITED TO USE FPR75

PLEASE CALL THE DATA FILE ADMINISTRATOR

TIME : 2.123

Figure 1.6e. In the upper portions it is shown how the main Omnidata

program allows the user to correct improper inputs of passwords [A] or

account numbers [B]. If both are in error, the Omnidata run is terminated

as shown in the bottom third of this figure.

23

1.6.4 Error Recovery. Any good interactive computer system, depending as

it does on dialogue, must have ample provisions for coping with typing

errors or other improper responses to input requests. Such errors can

result from poor typing, unfamiliarity with the keyboard, or a

misunderstanding of the request. Even experienced typists and otherwise

knowledgeable users sometimes give the right answer to the wrong

question. It is therefore important to explain to what extent the Omnidata

system tolerates errors at various stages in the solution of a problem.

We consider first the case where an error is discovered in a line

before the carriage return key is depressed. We have two options here:

a) we can backspace and type over the errors. The location of the

backspace key varies from terminal

to terminal.

On the UNIVAC ® 1108 the CNTL Z is equivalent to the backspace.

b) we can cancel the entire line of input by typing X with the control

key depressed and then retyping the entire line.

If the error is not discovered until after the carriage return key is

depressed, we must rely on how Omnidata treats the error. The

consequences of a typing error depend upon its nature, in which module it

occurs, and where in the dialogue it occurs. For example, in the main

module Omnidata

a) a misspelled or improper file name results in the message:

FILE CAN NOT BE ASSIGNED

FILENAME NOT IN MASTER FILE DIRECTORY; and

b) an improper account number or password results in the message:

? WRONG ACCOUNT NUMBER - RETYPE- > ?

or

? WRONG PASSWORD - RETYPE- > ?

If both the account number and the password are incorrect, the run is

terminated after printing the message

! YOU HAVE NOT BEEN ACCREDITED TO USE FILENAME

PLEASE CALL THE DATA FILE ADMINISTRATOR

If the typo is in one of the global commands discussed in section

1.6.2, such as DATE, LENGTH, TIME, BACKWARD, etc., it is ignored.

The desired action is not taken and the rest of the response is carried out,

if proper, after the following message:

XYZ IS NOT A LEGITIMATE OPTION!

If such a typing error would invalidate the results, the user can resort to

the interrupt option discussed in section 3.3.

The consequences of input errors in other modules vary from module

to module and are illustrated in appropriate sections to follow.

24

1.7 References

1. Davis, P.J., and Rabinowitz, P., Advances in orthonormalizing

computation, in Advances in Computers, Vol. 2, pp. 55-133,

Academic Press, New York, NY (1961).

2. Walsh, P., Ortho, Communications ACM, Vol. 5, pp. 511-513 (1962).

3. Hilsenrath, J., and Galler, G.M., OMNIFORM I: A general-purpose

machine program for the calculation of functions given explicitly in

terms of one variable, National Bureau of Standards Technical Note

125 (May 1962).

4. Cameron, J.M., and Hilsenrath, J., Use of general-purpose coding

systems for statistical analysis, in Proceedings of the I.B.M. Scientific

Computing Symposium (October 21-23, 1963), pp. 281-299,

published by I.B.M., White Plains, NY (1965).

5. Hilsenrath, J., Ziegler, G.G., Messina, C.G., Walsh, P., and Herbold,

R.J., OMNITAB: A computer program for statistical and numerical

analysis, National Bureau of Standards Handbook 101 (March 4,

1966; reissued January 1968 with corrections).

6. Beam, A.E., and Hilsenrath, J., PRECISE: A multiple precision version

of OMNITAB, National Bureau of Standards Technical Note 556

(June 1968).

7. Hogben, D., Peavy, S.T., and Varner, R.N., OMNITAB II: User’s

Reference Manual, National Bureau of Standards Technical Note 552

(October 1971).

8. Longley, J.W., An appraisal of least-squares programs for the electronic

computer from the point of view of the user. Journal of the American

Statistical Association, Vol. 62, pp. 819-841 (1967).

9 Wampler, R.H., An evaluation of linear least-squares computer

programs, Journal of Research of the National Bureau of Standards,

Vol. 73B, pp. 59-90 (1969).

10. Wampler, R.H., A report on the accuracy of some widely used least-

squares computer programs, Journal of the American Statistical

Association, Vol. 65, pp. 549-565 (1970).

11. Wampler, R.H., Some recent developments in linear least-squares

computations, in Proceedings of the Computer Science and Statistics

Sixth Annual Symposium on the Interface, (October 16-17, 1972),

pp. 94-109, University of California at Berkeley.

12. Hogben, D., and Peavy, S.T., OMNITAB II: User’s Reference Manual

1977 Supplement, NBSIR 77-1276.

25

13. Jowett, D., Chamberlain, R.L., and Mexas, A.G., OMNITAB: A simple

language for statistical computations, J. Statis. Comput. Simul., Vol.

1, pp. 129-147 (1972).

14. Donnay, J.D.H., and Ondik, H.M. Eds., Crystal Data Determinative

Tables, Third Edition in two volumes, The Joint Committee on

Powder Diffraction Standards, Philadelphia, PA (1972).

15. Mighell, A.D., Ondik, H.M., and Molino, B.B., Crystal Data Space-

Group Tables, Journal of Physical and Chemical Reference Data,

Vol. 6, No. 3 (1977).

16. Cardenas, A.F., Evaluation and selection of file organization—A

model and system, Communications of the ACM, Vol. 16, pp. 540-

548 (1973).

17. Ku, H. H., A Users' Guide to the OMNITAB Command "STATISTICAL

ANALYSIS", National Bureau of Standards Technical Note 756

(March 1973).

♦ ♦♦NOTES***

26

2. Conversion of Conventional Files into Omnidata Format

The Omnidata system can handle fixed-field data files that have

been placed in sectors on mass storage (magnetic discs or drums) in such a

way as to allow the user to access a particular data item not by its location

on the disc, but by asking for it by name. In order to do this, it is

necessary for the file to carry information (pointers) in header sectors

which direct the system to the location of the desired data items on the

mass storage device.

The conversion of an existing fixed-field data file to Omnidata

format is carried out by an independent XBASIC program called DEFINE.

This program gets its information about the record layout from a small

XBASIC file in which the location of the data items in the records is

shown together with the labels (names) by which they will be identified in

subsequent use of that data file. Some typical label files are shown in

figure 2a. If it is more convenient for the user, this information can be

entered on-line during the running of the DEFINE program rather than

having it previously stored on an XBASIC file.

2.1 The DEFINE Program

This is a separate XBASIC program which takes a conventional

unblocked fixed-field file of Fieldata characters and converts it to

Omnidata format using instructions given in an XBASIC file as shown in

figure 2.1a.

Thus, the first operation to be performed in the defining process is to

establish the fields, or data items, one will want the Omnidata system to

be able to identify. For each data element, six pieces of information are

needed as is shown in figure 2.1a. These are:

1) the name of the data item (as short and mnemonic as possible);

2) the physical record in the original file in which the data item

appears (e.g.,—if original data is on cards, is this element on

card 1, card 2, or card 3,...?;

3) the character position in the original record in which the data item

begins;

4) the character position in the original record in which the data item

ends;

5) ‘1’ if the item is numeric, ‘O’ if it is alphabetic or alphanumeric;

6) ‘1’ if restrictions are to be placed on the use of this data item, ‘O’

if everyone accessing the data base as a whole can also access

this data item.

27

*
*

NLABELDATE 10:1

10
20
30
40
50
60
65
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230

1040
1050
1060
1070
1080
1090
1100
1102

* INST, 1,278,278,1,0
*SS ,1,1,9,0,0
* SEX,1,11,11,0,0
* CIT, 1,12,12,0,0
* NAME.l,13,48,0,0
* DOB, 1,49,54,0,0
* MOB, 1,49,50,0,0
* YCB, 1,53,54,1,0
* SCD, 1,60,65,0,0
* STAT, 1,72,72,0,0
* TOA, 1,73,73,0,0
* TOD, 1,74,74,0,0
* TOLA, 1,75,78,0,0
* NTE, 1,79,84,0,0
* PP,1,120,121,0,0
* CSC,1,122,126,0,0
* PC, 1,127,128,1,0
* TITLE, 1,129,260,0,0
* GRADE,1,1261,262,
* STEP, 1,263,264,1,1
*
*
*
*

PAY,1,265,269,1,1
DIV,1,278,280,!,0
SEC,1,278,282,1,0
LC, 1,283,291,0,0

* il 1 ?

DDED, 1,658,663,0,0/
MR, 1,664,664,0,0
SK, 1,565,635,0,0
HMMAE, 1,867,86,
SCD Y, 1,64,65,1,0,
SALBAS, 1,270,
C, 1,493,494,0,0
EDLEV, 1,687,388,1,0

20
30

40

SO

60

70 *

90

100 * &**&■«**

* ^y\V^0’43g

P°1 ■336fM0
*Ao

\o

no
900 ?«oZ°XVA°

'9.a,

999 *£#£> 0tp Tl£s 0
’°’0Ao0 ,I’64o,63’u’°

Figure 2a. Some examples of XBASIC files used to instruct the DEFINE

program to convert conventional data files to Omnidata format. The

numbers to the left of the asterisk (*) are arbitrary XBASIC line numbers.

The numbers following the mnemonics (labels) assigned to the data items

tell in which record the data item is to be found. The next two numbers

locate the data item in the record. The fourth number indicates if the data

item is alphabetic or numeric, and the last number is a security flag.

28

The above information should be entered as a program under the

XBASIC compiler. Each data item should be a separate line consisting of a

line number followed by an (indicating data rather than an instruction),

after which the six pieces of information are entered separated by commas.

After each element has been entered on a separate line, the following 2

lines

998*END, 0,0,0,0,0

999END

are needed to conclude the procedure. Finally, by giving the command

FSAVE:LABELS the above information is stored in a temporary file called

‘LABELS’, which can be accessed during the defining process.

To illustrate the above, let us consider a file of names and phone

numbers. Each record is on a punched card which contains the name in

the first 20 columns (positions) and the extension, which is in positions

21-24. The following procedures would serve as the field definitions:

@RUN

@XBASIC

10*NAME, 1,1,20,0,0

20* EXT, 1,21,24,1,0

998*END,0,0,0,0,0

999END

FSAVE:LABELS

Several additional points need to be made at this time. To begin, the

above line numbers (10,20,...) are arbitrary and could just as well have

been 1,2, or 100,200, or 2,4, etc. The labels will be listed in Omnidata in

the order of ascending line numbers, but they do not necessarily have to

be input in the order the fields occur in the file. EXT could have been

entered before NAME. Another point to be made is that a field can be

multiply defined. For example, at the same time the entire name field is

defined as characters 1-20, there could be a subfield LASTNAME of, say,

characters 1-10 and a subfield FIRSTNAME consisting of positions 11-

20. Figure 2.1a shows the information required to define the elements of

an annotated bibliographic file and the subsequent information required

by the DEFINE module.

Storing the record layout information on a file as described and

illustrated above has the advantage that the user need only type it once,

and it will be available for all subsequent DEFINE runs when needed.

This is useful if, say, the list of labels is lengthy and one will be defining

identical files periodically. However, if the list of labels is short and if the

user would prefer, the DEFINE program allows the user to enter the

29

record layout information on-line while the program is running. During

the DEFINE run, for both cases (when the data is on cards or in a file) as

described below, the user will be asked to:

*TYPE F(ILE) FOR STORED LABELS, OR I(NPUT) TO ENTER->? >

If the record layout is stored as above, the user should answer F or FILE.

An answer of I or INPUT will prompt the program to start asking for

information for

*LABEL1—>? >

*LABEL2—>? >

*LABEL3—>? >

etc.

The data required is the same as above, excluding the XBASIC line

number and the asterisk (*). Thus, ‘NAME,1,1,20,0,0’ would be an

appropriate answer to the above request for LABEL1, LABEL2, etc. The

response ‘END,0,0,0,0,0’ is required to end the operation.

Upon encountering the END,0,0,0,0,0 response the DEFINE

program prints out the labels as it had received them, with sequential line

numbers, and asks

*DO YOU WISH TO CHANGE ANYTHING->? >

If the user answers ‘NO’, the DEFINE program continues. A response of

‘YES’ evokes the request:

*TYPE LINE NUMBER, NEW OR CORRECTED LINE->? >

One can delete lines, add lines, or correct lines in the following manner:

a) DELETE 1,5,12 will delete lines 1, 5, and 12.

b) 12,‘YOB,1,5,6,1,0’ will replace whatever was line 12 with the

sequence ‘YOB,1,5,6,1,0’.

c) 13.5,‘MOB, 1,3,4,1,0’ will insert the line ‘MOB,1,3,4,1,0’

between lines 13 and 14.

When all corrections have been entered (signalled by ‘END’ as a response

to the above question), the user is asked if he would like a new listing of

the labels. When he answers ‘NO’ the DEFINE program continues.

30

Once the field specification is accomplished, as explained above, the

actual defining program, DEFINE, can be run. This program is designed

to be interactive and prompts the user as shown in figure 2.1a to input the

various parameters which are required. The program is invoked, while still

under the XBASIC system, by typing

OLD:DEFINE*

then, when the computer responds with a ‘READY’, the user types ‘RUN’.

The first question which this program asks the user is:

*IS YOUR DATA ON C(ARDS) OR F(ILE) ->? >

This determines which of the two modes of operation will be followed, and

they are different enough to warrant separate discussions. Please note that

a response of ‘CARDS’, or ‘C’, does not necessarily have to refer to the

physical medium of punched cards. It could just as easily be card images

stored on mass storage.

2.2 File Definitions When the Original Data Is in File Format on

Mass Storage

If the answer to the above question was ‘FILE’, or ‘F’, the defining

program assumes that the data are presently in UNIVAC file format and

asks for the name of this file through the question

*TYPE ORIGINAL FILE NAME ->? >

The program attempts to assign the file named, and if the assign fails, the

define operation stops.

The next two questions which are asked are interrelated:

*TYPE NUMBER OF PHYSICAL RECORDS PER LOGICAL RECORD->? >

*TYPE LENGTH OF EACH PHYSICAL RECORD->? >

Say, for example, each record occupies one sector of the original file. Then

the answer to the first question above would be ‘1’, and the answer to the

second would be ‘168’. If, on the other hand, each record occupies two

sectors, your answers could be ‘1’ and ‘336’, or ‘2’ and ‘168’, depending

on how you defined your fields above. In an unblocked file, the length of

each physical record should be a multiple of 168 (the length of one

sector).

Next the user is prompted to

*TYPE NAME FOR NEW FILE->? >

31

♦ ********
*

********** *

*

* >old:labjpcrd *

* READY

* > list *

* LABJPCRD 09:35:37 21 MAR 77
* *

* 10 * NUM,1,1,3,1,0

* 20 * JOURNAL,1,4,13,0,0

* 30 * YR, 1,14,17,1,0

* 40 * VOL,1,18,25,0,0

* 50 * NO,l,26,32,0,0

* 60 * PG,1,33,39,0,0

* 70 * ID,1,18,39,0,0

* 80 * AUTHORS,1,40,239,0,0

* 90 * TITLE,1,240,439,0,0

* 100 * KEYWORDS, 1,440,639,0,0

* 110 * PROPERTIES,1,640,839,0,0

* 120 * FLAG,

* 900 * END,0

* 999 END
*

* >fsave:labels

* READY

1,840,840,0,0

,0,0,0,0

*

*

*

*

>old:define

READY

>run

*

*

*

*

* DEFINE 09:36:31 21 MAR 77

Figure 2.1a. Here we see an XBASIC file called LABJPCRD containing

the labels and record layout for an annotated bibliographic file called

JOURNALS. In order to use that file in the DEFINE module, it is

necessary to SAVE it temporarily under the name LABELS as at [A]. Now

we call and RUN the DEFINE module at [B]. The dialogue that follows is

explained in the text. The response at [C] notifies this module to get its

information from the saved file shown above. If the response at [D] is

YES, the module is prepared to carry on an extensive arithmetic operation

which we choose to by-pass here. The request at [E] is not made by the

DEFINE module; it is made by the module called USERS to which the

program has switched (chained) automatically to allow the data file

administrator to accredit one or more users to this newly defined file. See

subsequent figures and section 6.8 for a discussion of the USERS module.

32

* >fsave:labels

* READY

* >old:define *

* READY

* >run *
* *

* DEFINE 09:36:31 21 MAR 77
* *

* *IS YOUR DATA ON C(ARDS) OR F(ILE) -->? >file

* *TYPE ORIGINAL FILE NAME

* ? >journals

* *TYPE NUMBER OF PHYSICAL RECORD

* ? >1
* *TYPE LENGTH OF EACH PHYSICAL RECORD

* ? >840

* *type name for new file
* ? >ftjournals

* *HOW MANY TRACKS

* ? >128

* *TYPE F(ILE) FOR STORED LABELS, OR I(NPUT)

* LABELS DONE 1.0038

* *DO YOU WANT CHECKSUMS?

* ? >no---

* *TYPE # RECORDS

* ? >48

* *TYPE NUMBER OF HEADER SECTORS, OR 0 FOR NONE - >? >0

* *TYPE NUMBER OF HEADER WORDS IN RECORD, OR 0 FOR NONE ->? >C

*

*

* WHICH DATA BASE DO YOU WANT -->? >ftjournals

*TYPE ADD, DELETE, CHANGE, OR LIST -->? >add

*TYPE NAME OR ACCOUNT NUMBER - >? >abcd

*TYPE PASSWORD ->? >xyz

*TYPE 1 FOR RESTRICTED, 0 FOR NORMAL -->? >0

*TYPE NAME OR ACCOUNT NUMBER ->? >end

* *TYPE ADD, DELETE, CHANGE, OR LIST -->? >stop

* PROGRAM STOPPED.
*

*

jjc

*

Figure 2.1a (concluded). An illustration of file definition when both the

original data base and the record layout are in file format on mass storage

as indicated at [C].

33

This filename should consist of from 1 to 12 characters and may be taken

from the set A-Z, 0-9, and $, which is consistent with UNIVAC

requirements. If one is intentionally writing over an already existing file,

the file name should be followed by \A\ signifying that it is an Already

assigned file. If there is no ‘,A\ the program assumes it is to assign a new

file and asks the user

*HOW MANY TRACKS -->? >

For an appropriate answer to this question, it is usually sufficient merely

to add 10 or 20 tracks to the number of tracks which the original file

occupied. These additional tracks allow the DEFINE program to store the

labels and other header information necessary for normal operation of the

Omnidata system. If, however, the number of tracks in the original file is

not known, the answer to the above question can be computed by

multiplying the number of words in a record (in multiples of 28) by the

number of records, dividing this by 64, and finally adding 10 or 20

tracks, as above.

Assuming the file cataloguing operation was successful, the program

now reads through the label information stored previously through the

FSAVE:LABELS command or asks for the labels as input. It then stores

this in the header section of the newly catalogued file.

The next question the user is asked is

*DO YOU WANT CHECKSUMS->? >

This is one method of providing internal file security, but we must caution

the user that to compute these checksums is a rather costly operation. In

essence, what is done is that the numeric equivalent of each character in

the record is obtained. Those in the odd positions are summed, and then

those in the even positions are summed. These two sums are stored in

each record. At a later time these checksums may be recomputed, and

should the results not be identical to the originally computed sums, the

file manager can be alerted that the data has been altered. If, during the

defining process, the user asks for these checksums, one further question

is asked:

*TYPE: SECTOR, BEGINNING, ENDING OF CHECKSUMS->? >

The user must designate blank positions in the original record where these

sums can be stored. For example, perhaps the original record has

purposely been defined as 2 strings of 168 characters each, but the second

string really has information only through position 100. Then the answer

to the above question could be to store these checksums in sector 2 in

positions 101-168.

34

The answer to the question

*TYPE# RECORDS—>? >

is simply the number of records in the original file which the user desires

to define into Omnidata format.

Two more inputs are requested from the user before the actual

definition is done. These questions relating to the structure of the original

file are:

*TYPE NUMBER OF HEADER SECTORS, OR 0 FOR NONE->? >

and

*TYPE NUMBER OF HEADER WORDS IN RECORD, OR 0 FOR NONE->?

Ordinarily the answers to both of these questions will be ‘O’, and the

DEFINE program will start reading the data at the very beginning of the

file. It will assume that valid information begins in the first word of each

record. An example which would prove to be an exception to this is, say, a

file created by a COBOL program, in which there are both header sectors

at the beginning of the entire file, and header words at the beginning of

each record. The DEFINE program must be told how much information to

skip in order to get at the actual data in the file.

Following this, the actual defining is accomplished. The records are

read from the original file, and after certain operations are performed on

them (such as stripping out header words or calculating checksums if

desired), they are written out to the new file in Omnidata format. During

this operation, a statement is printed every time 100 records are read to

give an indication of the progress of the procedure.

When all records have been satisfactorily read, the DEFINE program

chains to the program USERS to allow the file manager to input account

numbers and passwords for those individuals he wishes to validate as

legitimate users of that particular data file. Since the program USERS is

also a valid Omnidata module, the detailed discussion of its operation is

handled under the section in this manual describing the various modules.

At the conclusion of this run, the user should have a file in Omnidata

format on which he can perform all of the available Omnidata operations.

Figure 2.2a shows how this module permits corrections when the

record definition is supplied from the keyboard.

35

* >old:define

* READY

* > run *
* *

* DEFINE 09:39:48 21 MAR 77 *

* *IS YOUR DATA ON C(ARDS) OR F(ILE) -->? >file

* *TYPE ORIGINAL FILE NAME

* ? > journals

* *TYPE NUMBER OF PHYSICAL RECORD

* ? >1
* *TYPE LENGTH OF EACH PHYSICAL RECORD

* ? >840

* *TYPE NAME FOR NEW FILE

*

*

*

*

*

*

*

*

* ? >ftjournals

* *HOW MANY TRACKS *

* ? >128

* *TYPE F(ILE) FOR STORED LABELS, OR I(NPUT) TO ENTER --> ?

* *LABEL 1->? >num,l,l,3,l,0

* *LABEL 2 — >? >journal,1,4,13,0,0

* * LABEL 3 ->? >yr,1,14,17,1,0

* * LABEL 4 — >? >vol,l,19,25,0,0

* * LABEL 5 — >? >no,l,26,32,0,0

* *LABEL6—>? >pg,1,33,39,0,0

* * LABEL 7 — >? > authors, 1,40,239,0,0

* * LABEL 8 — >? > title,1,240,439,0,0

* * LABEL 9 — >? > keywords,1,440,639,0,0

* *LABEL 10 — >? >properties, 1,640,839,0,0 /

* * LABEL 11 —>? > flag, 1,840,840,0,0

* * LABEL 12 — >? > end,0,0,0,0,0

* FOLLOWING ARE THE LABEL LINES YOU HAVE ENTERED:

* 1 NUM,1,1,3,1,0

* 2 JOURNAL,1,4,13,0,0

*

*

>1

Figure 2.2a. Here we have a record of a file definition operation when the

original data base is in file format on mass storage as indicated at [A] and

the information for the record layout is supplied from the keyboard as

indicated at [B]. Because on-line data entry entails the risk of error, the

module provides a clean listing at [C] and an opportunity at [D] to make

corrections, additions, or deletions.

36

************************************* * *

♦

3
4
5
6
7
8
9
10
11

YR, 1,14,17,1,0
VOL, 1,19,25,0,0
NO, 1,26,32,0,0
PG, 1,33,39,0,0
AUTHORS, 1,40,239,0,0
TITLE, 1,240,439,0,0
KEYWORDS, 1,440,639,0,0
PROPERTIES, 1,640,839,0,0
FLAG, 1,840,840,0

♦DO YOU WISH TO CHANGE ANYTHING - - ->? >yes
♦TYPE LINE NUMBER, NEW OR CORRECTED LINE - - ->

? >4,'vol, 1,18,25,0,0'
? >6.5,'id, 1,18,39,0,0'E)
? >end ^^ '

♦DO YOU WANT A CLEAN LISTING OF YOUR LABELS - - ->?

D

>yes
V/ FOLLOWING ARE THE LABEL LINES YOU HAVE ENTERED:

NUM, 1,1,3,1,0 1
2
3
4
5
6
7
8
9
10
11
12

*

JOURNAL, 1,4,13,0,0 ♦
YR,1,14,17,1,0 ♦
VOL, 1,18,25,0,0 *
NO, 1,26,32,0,0 *
PG, 1,33,39,0,0 ^») *
ID,1,18,39,0,0 " *
AUTHORS, 1,40,239,0,0 *
TITLE, 1,240,439,0,0 ♦
KEYWORDS, 1,440,639,0,0 (H) *
PROPERTIES, 1,640,839,0,0 *

FLAG, 1,840,840,0,0 y' *
♦DO YOU WISH TO CHANGE ANYTHING - - ->? >no *

LABLES DONE 1.0512 ♦
♦DO YOU WANT CHECKSUMS? *

? >no *
♦TYPE RECORDS *

? >48 ♦
♦TYPE NUMBER OF HEADER SECTORS, OR 0 FOR NONE - - ->? >0 *
♦TYPE NUMBER OF HEADER WORDS IN RECORD, OR 0 FOR NONE - - - >? X

♦WHICH DATA BASE DO YOU WANT - - ->? >fti journals

Figure 2.2a (concluded). Here we see at [E] how to insert a line and that

in order to correct a mistake in a line it is necessary to retype it. After the

usual way of terminating an open-ended input at [F], we see from the

second clean listing at [G] that line four has indeed been corrected and

that a line has been inserted following line six. The response at [H] causes

the module to proceed with the defining operation as shown in the

previous figure.

37

2.3 File Definition When the Original Data Is on Cards or Card

Images on Mass Storage

In figure 2.3a we see how this module operates when the user has

responded at [A] that his original data is on cards. The DEFINE program

asks for the number of cards per logical record, and then request:

*TYPE LOCATION OF SEQUENCE NUMBER OR 0 IF NONE -->? >

The answer to this question should be pairs of numbers, each pair

indicating the starting position and ending position of the record number

for each card type in turn. For example, if there are 3 cards in a record,

and the sequence number on cards 1 and 3 appears in columns 1-5, and

those on card 2 appear in columns 76-80, the answer to the above would

be:

1.5.76.80.1.5

It should be noted that if the record number appeared in the same location

on all 3 cards (say, in columns 1-5), the question could be answered either

by

1.5.1.5.1.5

or by

1.5

In the latter case the program assumes that the one pair of numbers refers

to all of the cards.

If the locations of the record numbers are given, the cards for each

record are read and are checked to make sure the numbers agree. If not,

an error message is printed and that record is skipped.

Next the user is asked to

*TYPE COLUMNS ON EACH CARD TO BE INCLUDED - >? >

Once again, pairs of numbers are required giving the starting position and

ending position on each card in turn. The same convention as above holds.

That is, if there are three cards per record and only one pair of numbers is

given in response to the last question, that pair is considered to be

applicable to all cards in the record. In response to either of the above

questions, if an odd number of entries are given an error message is

printed, and the user is asked to reenter the answer.

38

>OLD:LABJPCRD
> READY
>FSAVE:LABELS
> READY
>OLD:DEFINE
> READY
>RUN

DEFINE 14:14:33 21 MAR 77

♦IS YOUR DATA ON C(ARDS) OR F(ILE) - - ->? >CARDS
♦TYPE NUMBER OF CARDS PER RECORD - - ->? >11
♦TYPE LOCATION OF SEQUENCE NUMBER OR 0 IF NONE - - ->

? >0
* *TYPE COLUMNS ON EACH CARD TO BE INCLUDED - - ->
* ?>>1,80

*TYPE F(ILE) FOR STORED LABELS, OR I(NPUT) TO ENTER - - ->
(C) *TYPE NAME FOR NEW FILE

? >FTJOURNALS

>F

♦HOW MANY TRACKS
? >128
LABELS DONE 1,0944

♦DO YOU WANT CHECKSUMS?
? >NO

♦TYPE RECORDS
? >48
? > @ADD

<v>
JOURNALS.INDEX

♦WHICH DATA BASE DO YOU WANT - - ->? >FTJOURNALS

♦TYPE ADD, DELETE, CHANGE, OR LIST - - ->? >ADD
♦TYPE NAME OR ACCOUNT NUMBER - - ->? >BJBM
♦TYPE PASSWORD - - ->? >OK
♦TYPE 1 FOR RESTRICTED, 0 FOR NORMAL - - ->? >0
♦TYPE NAME OR ACCOUNT NUMBER - - ->? >END
♦TYPE ADDE, DELETE, CHANGE, OR LIST - - ->? >LIST

NAME OR ACCOUNT NO. PASSWORD FLAG

BJBM ok O

Figure 2.3a. Here we have a record of the dialogue required to define a

card-image data base on mass storage using a catalogued XBASIC file

containing the labels and record layout. Since we indicated at [A] that each

logical record contained 11 card types, we are given the opportunity at [B]

and [C] to supply as many as 11 number pairs. See the text for responses

other than that at [D]. The dialogue at [E] with the USERS module

accredits a user BJBM with password OK, and the LIST request at [F]

shows that the information has indeed been entered in the original file.

39

OLD:DEFINE
READY

>RUN

DEFINE 14:19:01 21MAR 77

V

♦IS YOUR DATA ON C(ARDS) OR F(ILE) - - ->? >CARDS
♦TYPE NUMBER OF CARDS PER RECORD - - ->? >11
♦TYPE LOCATION OF SEQUENCE NUMBER OR 0 IF NONE- - -> *

>0 *

♦TYPE COLUMNS ON EACH CARD TO BE INCLUDED - - -> *
>1,80 *

/ *TYPE F(ILE) FOR STORED LABELS, OR I(NPUT) TO ENTER - - ->? >i
♦LABLE 1 --->? >num, 1,1,3,1,0
♦LABEL 2 - -->? >journal, 1,4,13,0,0
♦LABEL 3 - - ->? >yr, 1,14,17,1,0
♦LABEL 4 - - ->? > vol,1,18,25,0,0
♦LABEL 5 - - ->? >end,0,0,0,0,0

FOLLOWING ARE THE LABEL LINES YOU HAVE ENTERED:
1 NUM,1,1,3,1,0
2 JOURNAL,1,4,13,0,0
3 YR,1,14,17,1,0
4 VOL, 1,18,25,0,0

♦DO YOU WISH TO CHANGE ANYTHING - - ->? >no
♦TYPE NAME FOR NEW FILE

? >ftijournals
♦HOW MANY TRACKS

? >128
LABELS DONE .9814

♦DO YOU WANT CHECKSUMS?
? >NO

♦TYPE RECORDS
? >48
? > @ ADD JOURNALSJNDEX

♦WHICH DATA BASE DO YOU WANT - - ->? >ftijoumals

♦TYPE ADD, DELETE, CHANGE, OR LIST - - ->? >add
♦TYPE NAME OR ACCOUNT NUMBER - - ->? >bjbm
♦TYPE PASSWORD - - ->? >ok
♦TYPE 1 FOR RESTRICTED, 0 FOR NORMAL - - ->? >0
♦TYPE NAME OR ACCOUNT NUMBER - - ->? >stop

PROGRAM STOPPED.
* *

Figure 2.3b. Here we see the dialogue required to define a data base in

card-image format on mass storage via on-line input of the labels and
their location in the record. The comments in the previous figure apply
here as well.

40

Following this, the labels are either read in from the stored file, or

the user is asked to input them as described earlier.

After this, the dialogue for the DEFINE program resumes with

*TYPE NAME FOR NEW FILE - >? >

and continues along the same lines as described earlier when the original

data was in file format. The only subsequent difference is that answers to

the two questions

*TYPE NUMBER OF HEADER SECTORS, OR 0 for NONE -->? >

and

*TYPE NUMBER OF HEADER WORDS IN RECORD, OR 0 FOR NONE -->? >

are not needed; therefore, the questions are not asked.

When the file assignment has been successfully accomplished, and

the header sectors determined from the appropriate record layout

information and number of records, the DEFINE program is ready for the

card input. The user is prompted, may enter card images on-line, may do

an @ADD of an element in which card images have previously been

stored, or may actually have a box of cards, if running in the batch mode.

After receiving enough card images to satisfy the given number of

records, the program chains to USERS, as described earlier.

♦♦♦NOTES***

41

3. Searching, Reporting, and Updating

of Omnidata Files

Four of the Omnidata modules have been selected for discussion here

since they represent a minimum set to be understood and mastered in

order to carry out the routine data retrieval and data file maintenance

normally required of computerized data systems.

DISPLAY

REPORT

SEARCH

UPDATE

Provides a quick look at any or all of the data items in

specified records in the current file. Each data item is

suitably labeled. (See also BROWSE.)

Provides for either ad hoc or periodic report generation with

considerable flexibility for titles, footnotes, columnar

spacing, and multilevel column headings.

Allows for sophisticated data retrieval from Omnidata files,

including: Boolean logic, anchored or unanchored partial

string searches (prefixes, suffixes, roots, stems, etc.), exact

or relational matches, matches within numerical ranges,

ignoring of specific intermediate characters, etc.

Provides a facile way to correct or otherwise modify

individual data items either record by record or in a global

manner over all records satisfying a specified criterion.

Other modules to perform arithmetic operations; numerical, statistical

and graphical data analysis; and a variety of numerical and logical data

classifications are treated in sections 5 and 6. Those sections also include

a discussion of more advanced features of the modules described here.

In figure 3a we illustrate the start of a series of Omnidata runs

which will explain the features of the above modules. This figure illustrates

how the system reacts when the input at [A] contains the word VERBOSE.

In this talkative mode, the main Omnidata program automatically prints

out the labels f°r all of the data elements in the requested file, as well as

the names of all of the Omnidata modules.

42

* OMNIDATA 14:08:55 19 SEP 77
*

*

*

♦PLEASE ENTER ACCOUNT NUMBER
♦TYPE PASSWORD - - ->? >ok
♦WHICH DATA BASE DO YOU WANT

->? >bjbm, verbose

- ->? >fndemo

♦ GOOD AFTERNOON, WELCOME TO OMNIDATA ♦
♦ ♦ ♦ *NOTE - OMNIDATA KEEPS A RECORD OF WHO USED WHICH ♦ * ♦
♦ MODULE(S) ON WHICH FILE(S) AT WHAT TIME OF THE DAY ♦
* *

♦ FILE FNDEMO CONTAINS 112 DATA ITEMS FOR 500 RECORDS. *
* *

* *

* THE FILE FNDEMO CONTAINS DATA LABELLED AS FOLLOWS:
* 1 DIV 2 SS 3 SFX 4 CIT 4t

♦ 5 NAME 6 DOB 7 YOB 8 SCD 4t

♦ 9 STAT 10 TCA 11 TOD 12 TOLA 4c

* 13 NTEDA 14 PP 15 OSC 16 FC 4c

* 17 TITLE 18 GRADE 19 STEP ^ ̂ no p a u/m
4c

* 21 PLANT 22 DEPT_-- — yZ LAWUL 4c

* rcnm 95 WDD 96 WDUD

Zj

''98 AA 99 NP 100 NHSA 4c

4c

Z7 rinru
102 APAD 103 FUD 104 DDED 4c

4c
105 MR 106 SK 107 HWWAE 178 SCDY 4c

4c

109 SALBAS 110 C 111 AGE 112 CAGE 4c

4c THE FOLLOWING MODULES ARE AVAILABLE: 4c

4c SEARCH REPORT SORT DISTRIBUTE 4c

4c COMPUTE SUMMARY CROSSTAB ENCODE 4c

4c FETCH SAVE RANDOM RENAME 4c

4c ATTACH BROWSE EXTRACT UPDATE 4c

4c ANALYSIS MOVE ABRIDGE TALLY 4c

4c STATIS PLAN CONCAT SEQUENCE 4c

4c AGGREGATE DESCRIBE ARRAY DISPLAY 4c

4c SEGMENT PLOT GRAPH REGRESS 4c

* SCREEN FIT CHECKSUM UPDATESEQ 4c

4c STACK TRIM KWOC SURVEY 4c

4c USERS DICTIONARY ANNEX ST\TPLOTS 4c

4c

4c

BLANKS 4t

*

4c 4c 4c 4c 4c * * * * * 4c ********* ******** ***:*•***** * * * *

Figure 3a. Here we see that the labels for all of the data elements in the

file FNDEMO, as well as the names of the available modules, are printed

out automatically because we entered in the VERBOSE mode at [A]. The

labels are printed in the numerical order in which they were entered in the

DEFINE operation or as they may have subsequently been modified by

the RENAME. See fig. 3b for an alphabetical listing of those labels and of
the modules.

43

**

* FILE FN75 CONTAINS 112 DATA ITEMS FOR 75 RECORDS. *
* *

* TYPE A MODULE NAME AND/OR INSTRUCTIONS _ *
* >? >labels,modules,display-— __ / \ *

* THE FILE FN75 CONTAINS DATE LABELLED AS FOLLOWS: ^—' *
* 98 AA 53 AC 33 ADTIT 111 AGE 68 ALC
♦ 64 ANU 102 APAD 55 APPCR 40 ATD 57 AUDAT
* 51 AUTH 110 C 112 CAGE 92 CAWOL 4 CIT
♦ 62 CL 91 CLWOP 89 CNHS 36 COLDEG 24 CSDF
* 25 CSDTO 93 CSI 71 DAA 27 DDAY 104 DDED
* 35 DEG 22 DEPT 66 DET 1 DIV 80 DLABR
♦ 48 DLIM 6 DOB 28 DOGR 30 DOPP 39 DPG
* 76 DPSQ 61 DRPB 50 EDA 31 EOD 32 EODY
* 94 FAB 16 FC 103 FUD 78 GDF 70 GLOC
* 18 GRADE 75 HBPN 44 HC 49 HLIM 82 HWD
* 107 HWWAE 43 INS 23 LC 26 LEGR 88 LWOP
♦ 101 LWOPSA 67 MC 105 MR 5 NAME 100 NHSA
* 46 NOAC 99 NP 13 NTEDA 63 NTEDP 15 OSC
* 20 PAY 60 PD 74 PF 54 PFC 29 PINFO
♦ 21 PLANT 52 POS 14 PP 34 PROFS 56 REM
* 45 RET 85 RHWSW 72 RS 109 SALBAS 79 SC
* 8 SCD 69 SCD 108 SCDY 81 SED 41 SEQ
♦ 3 SFX 106 SK 47 SLIM 58 SON 77 SP
* 59 SPF 38 SPP 2 ss 73 SSNC 9 STAT
* 19 STEP 17 TITLE 90 TLWOP 10 TOA 11 TOD
* 12 TOLA 65 TP 42 VP 86 WAEDWP 84 WAEDWS
* 87 WAEDWT 83 WAEPL 95 WDD 96 WDUD 97 WED
* *

* THE FOLLOWING MODULES ARE AVAILABLE:
* ABRIDGE AGGREGATE ANALYSIS ANNEX *
* ARRAY ATTACH BLANKS BROWSE *
* CHECKSUM COMPUTE CONCAT CROSSTAB *
* DESCRIBE DICTIONARY DISPLAY DISTRIBUTE *
* ENCODE EXTRACT FETCH FIT *
* GRAPH KWOC MOVE PLAN *

* PLOT RANDOM REGRESS RENAME *
* REPORT SAVE SCREEN SEARCH *
* SEGMENT SEQUENCE SORT STACK *
* STATIS STATPLOTS SUMMARY SURVEY *

* TALLY TRIM UPDATE UPDATESEQ
* USERS *
* *

**

Figure 3b. Here we see that when the labels and modules are specifically

requested at [A], both are listed in alphabetic order. Note that the order of

the input is not fixed for this type of input.

44

3.1 The SEARCH Module

The main retrieval module of the Omnidata system is the SEARCH

module. In this module, a data base may be reduced to include only those

entries which meet specific criteria. There are many options available to

the user in this module.

When the SEARCH module is called in response to the request:

TYPE A MODULE NAME AND/OR INSTRUCTIONS - >? >

it responds with

TYPE S(ELECT) OR R(EJECT) -->? >

If the response to this questions is:

a) SELECT or S, the resulting file contains only those records which

match the criteria to be specified subsequently; or,

b) REJECT or R, the resulting file contains those records which do

not match the criteria to be specified subsequently. In either of

the above cases, the criteria are specified in the same way.

Regardless of which response was given above, the system

requests further information:

TYPE LABEL AND VALUE(S) - >? >

1 ->?

If we responded to the above with:

GRADE = 12 (OR GRADE EQ 12)

the SEARCH module responds with

AND

2 -->?

If we now respond by typing END, the system will generate a new file

containing only grade 12’s, or a file containing everyone but grade 12’s,

depending upon whether we chose the SELECT or the REJECT mode.

Although this module asks the user to:

TYPE S(ELECT) OR R(EJECT) - >? >

there are actually four modes of operation, each of which can be

designated in two (or three) ways, as shown below:

SELECT or S or AND

REJECT or R or NAND

SELECT OR or OR

REJECT OR or NOR

45

The SEARCH module accepts more complex criteria. Thus, if we

carry on the dialogue shown in figure 3.1a, the module will look for

physicists grade 14 and above who were born in 1925.

Since we did not follow the account number at [A] with the word

VERBOSE, we do not get the labels or modules printed. We did, however,

follow the account number with MONITOR 100. The result is to be seen

at [B], where we are notified (each time 100 records are read) how many

hits were found, and how long (in seconds) it took to reach that point.

Here we see at [C] that the 3 hits occurred in the first 100 records. This is

reasonable since the file is arranged in increasing order of social security

numbers. The information supplied by the monitor has many uses which

will be pointed out later where appropriate.

In the foregoing, we chose the SELECT mode so the module assumed

that we wished to combine a number of characteristics in different data

vectors, and it supplied the word AND between each request. If we had

responded to the request for the search mode with

SELECT OR (or simply OR)

the module would have assumed that we wanted records in which either

one of a number of different data elements were satisfied. Thus, the

dialogue shown at the top of figure 3.1b would allow us to have selected

from a personnel file all noncitizens (cit = 3), plus all nonstatus (TOA GT

2), plus all part-time (TOD = 2 OR 3) employees.

The SEARCH module also accepts the response REJECT OR (or

simply NOR) in which case the foregoing dialogue would appear as shown

in the center of figure 3.1b. Here we would end up with a file which

contained none of the above. The file would contain only full-time status

employees who are citizens. Other examples of the utility of the OR and

NOR options are found in section 5.25.

The module accepts even more complicated criteria. If we typed

TITLE,PHYS OR CHEM OR MATH

we would get not only physicists, chemists, and mathematicians, but also

physical chemists, physicians, mathematical statisticians, etc. In short, any

job title containing the fragments PHYS or CHEM or MATH would satisfy

the search.

Alternatively, if we had typed

TITLE,PHYS AND CHEM

we would get chemical physicists and physical chemists, while

TITLE,PHYS AND ADMIN

would retrieve physical science administrators, administrative physicists,

physician administrators, administrative astrophysicists, etc.

46

* *

* OMNIDATA 12:42:18 17 MAR 77 *

* *PLEASE ENTER ACCOUNT NUMBER - - ->? >a534, monitor 100 *
* TYPE PASSWORD
* *WHICH DATA BASE DO YOU WANT - - ->? >fndemo
*
*

* GOOD AFTERNOON, WELCOME TO OMIDATA
* * * *NOTE - OMNIDATA KEEPS A RECORD OF WHO USED WHICH * * *
* MODULES(S) ON WHICH FILE(S) AT WHAT TIME OF THE DAY*
* *

* FILE FNDEMO CONTAINS 110 DATA ITEMS FOR 500 RECORDS. *

* TYPE A MODULE NAME AND/OR INSTRUCTIONS
* >? >search

*

*
*
*

*

♦

♦TYPE S(ELECT) OR R(EJECT)
♦TYPE LABEL AND VALUE(S)

->? >select

--->?

AND
--->?

AND
--->?

AND
--->?

>TITLE, physicist

>GRADE > 13

>YOB = 25

B

>end
100 RECORDS READ 3 HITS 5.984
200 RECORDS READ 3 HITS 6.5122
300 RECORDS READ 3 HITS 7.1074
400 RECORDS READ 3 HITS 7.7266
500 RECORDS READ 3 HITS 8.2722
3 HIT(S) WHEN:

TITLE IS PHYSICIST
AND

GRADE IS > 13
AND

YOB IS 25
♦TYPE P(RINT), S(EARCH) OR E(XIT) - - ->? >print
♦PRINT C(URRENT), P(REVIOUS), OR O(RIGINAL) - - ->?
♦TYPE LABELS OF ITEMS TO BE PRINTED OR ALL
>? >toa, yob, grade, title

*
*

*
*
*
*

*
*
*
*
*
*
*
*

*
♦

*
*
*
*
*

>current
*

*

♦ *

Figure 3.1a. A record of a search through a sample personnel file for

persons born in 1925 in grades 14 and above whose job title contains the

word PHYSICIST. The printout at [C] results from the MONITOR 100

instructions at [A]. The monitor could also have been turned on at [B], but

here a comma would be required between the word and the number

(SEARCH, MONITOR, 100). In order to turn off the monitor, it is

necessary to reset it at a big number (larger than the number of records in

the file).

47

>original

1

>TOD = 2 OR 3

>TOA GT 2

4
92

♦TYPE P(RINT), S(EARCH) OR E(XIT) - - ->? >search
♦TYPE C(URRENT), P(REVIOUS), OR O(RIGINAL) - - ->?
♦TYPE S(ELECT) OR R(EJECT) - - ->? >select or
♦TYPE LABEL AND VALUE(S)
--->? >CIT = 3
OR
- - ->?
OR
- - ->?
OR
--->? >END

HIT(S) WHEN:
\ CIT IS 3

♦ OR
♦ (E jTOD IS 2 OR 3
♦ or

TOA IS GT 2
♦TYPE P(RINT), S(EARCH) OR E(XIT) - - ->? >search
♦TYPE C(URRENT), P(REVIOUS), OR O(RIGINAL) - - ->? >original
♦TYPE S(ELECT) OR R(EJECT) - - ->? >reject or
- - ->? >CIT = 3
- - ->? >TOA GT 2

2

3

4
498

- - ->? >TOD = 2 OR 3-
--->? >END

HIT(S) AFTER REJECTING:
CIT IS 3

NOR
TOA IS GT 2

NOR
TOD IS 2 OR 3

♦TYPE P(RINT), S(EARCH) OR E(XIT)
♦TYPE LABEL AND VALUE(S)
--->? >CIT = 3
NAND
- - ->?

NAND
- - ->?
NAND
- - ->?

-->? > >search,o,r

>TOD = 2 OR 3

>TOA > 2

>END
HIT(S) AFTER REJECTING:

* CIT IS 3 ♦

Figure 3.1b. Here we have an example of three types of Boolean search in

which the criteria are specified in a uniform fashion. At [A] we ask for an

OR search to meet the specifications indicated at [B]; at [C] we ask for a

NOR search with identical specifications; and at [D] we ask for a NAND

search. As there were 500 records in the entire file, the hits shown at [E]

and [F] indicate that the first two searches are really complementary.

48

In the above instructions, the comma which separates the label from

its value or values is used to indicate that the characters to the right need

only be contained in the TITLE field. They need not constitute the entire

field. In technical idiom, the comma in this position in the above

instructions denotes an unanchored partial string search in the TITLE

field. The comma has the same effect even when applied to numeric data

fields. Thus, if we had typed CIT,3 in figure 3.1b instead of CIT = 3, any

number containing a 3 would have satisfied the search.

In what follows later, the comma is used also to separate input

parameters. The discussion of still other uses of the comma in the

SEARCH module is deferred until section 5.25.

The SEARCH module is also able to search for exact matches and

partial searches anchored to the front or back of words (prefixes and

suffixes) or to the front or back end of an arbitrary stream of characters. If

an exact match is desired, it is necessary to insert the characters *E*

between the LABEL and its VALUE. Thus:

DEPARTMENT, * E * ,M ATH

will not match MATHEMATICS or MATHEMATICAL PHYSICS; it will

only match MATH. It should be noted, however, that the user need not be

concerned where the characters MATH occur in the data field assigned,

provided, of course, that the other positions contain blanks. In technical

terms, when the SEARCH module is asked for an exact search, (*E*), it

ignores leading and trailing blanks that may exist in the stored file; it

retains interior blanks. When the desired value is a character string

containing commas, it is necessary to enclose it between quotes:

ITEM,‘CALCULATOR,ROTARY’

In order to select items on the basis of prefixes or suffixes, we

employ the asterisk (*) as follows.

INDEX,ION*

would match items containing IONIC, IONIZATION, ION, etc., provided

the letter I is the first nonblank character in the allotted field.

INDEX,*ION

would match items containing the words MOTION, NOTION, ION, etc.,

while

INDEX/ ION ’

would match only a data item containing the word ION—the letters ION

with a space before the I and after the N. Thus if we were to search a list

of titles for those containing the word ION, the above request would not

be satisfied if the word ION was followed by a comma or a period as

might well be the case in a list of titles. This problem can be solved by

49

looking for ‘ ION ’, or ‘ ION,’ or ‘ ION.’. The search instructions for this

operation in the OR mode would be:

TITLE/ ION ’

TITLE/ ION/

TITLE/ ION.’

When this module carries out a search, it creates a subfile (a hit file)

containing the copies of all of the records that satisfied the search

parameters (criteria). The original file is still intact. The user now has

three options:

a) to continue to search either the hit file, which is called the current

file, or the original file;

b) to display all or portions of the data in the original file or in the

current file; and,

c) to exit from the module with either file.

In figure 3.1c we see an example of how it is possible to carry out a search

of a file in steps. At [B] we select all records where the job title contains

the letters PHYS. The resulting file contains 113 records, including among

others physical chemists. If we wish to exclude these, we instruct the

module at [B] that we wish to search the current (hit file) in the reject

mode. When we specify at [C] that the title should not contain the letters

CHEM, the system discards two records leaving us with a new current file

containing 111 records. At this point in the search operation the user has

access to three files: the original one on which the search was started; the

previous cut containing 113 records and the current cut containing 111

records. If we were now to search the current file (111 records) again, it

would become the previous file; the file with 113 records, would disappear

and there would be a new current file. Each time after the first search in a

run, the current file becomes the previous file. While the Omnidata system

retains only one cut of the file previous to the current one, it is possible to

save away, via the SAVE module, as many earlier cuts as one might need.

Another use of the reject mode occurs when it is desired to extract

data on all compounds containing H, D, N, and 0 except those containing

both H and C. The instructions for the select mode would be

ATOM,H AND D AND N AND 0

followed by another search on the current file in the reject mode for

ATOM,H AND C

Whether we select first or reject first is immaterial as far as the result is

concerned. The order may influence the cost of the search depending upon

the relative proportions of hydrocarbons in the file.

50

* ‘PLEASE ENTER ACCOUNT NUMBER- - ->? >a534, monitor 100 *
* ‘TYPE PASSWORD -- ->? >1112 \ / *
* ‘WHICH DATA BASE DO YOU WANT - - ->? >fndemo f *

* GOOD MORNING, WELCOME TO OMIDATA V_J *
* * * ‘NOTE -OMNIDATA KEEPS A RECORD OF WHO USED WHICH“ *
* MODULES(S) ON WHICH FILE(S) AT WHAT TIME OF THE DAY*
* *

* FILE FNDEMO CONTAINS 110 DATA ITEMS FOR 500 RECORDS. ‘
* *

‘ ‘TYPE A MODULE NAME AND/OR INSTRUCTIONS ‘
* ->? >search *

*

*

‘TYPE S(ELECT) OR R(EJECT) - - ->? >select
‘TYPE LABEL AND VALUE(S)

1 ->? >title, phys
AND

2 - - ->? >end
100 RECORDS READ 33 HITS 6.0688
200 RECORDS READ 44 HITS 6.6204
300 RECORDS READ 70 HITS 7.1818
400 RECORDS READ 95 HITS 7.7494
500 RECORDS READ 113 HITS 8.28
113 HIT(S) WHEN:

TITLE IS PHYS
‘TYPE P(RINT), S(EARCH) OR E(XIT) - - ->? >search
‘TYPE C(URRENT), P(REVIOUS), OR O(RIGINAL) - - ->?
‘TYPE S(ELECT) OR R(EJECT) - - ->? >reject
‘TYPE LABEL AND VALUE(S)

1 - - ->? >TITLE, CHEM
NAND

2 - - ->? >end
100 RECORDS READ 99HITS 9.0936
111 HIT(S) AFTER REJECTING:

TITLE IS CHEM
‘TYPE P(RINT), S(EARCH) OR E(XIT) - - ->? >stop

PROGRAM STOPPED.

*

*

*

*

*

*

*

*

♦
*
*
*
*

> current
*
*

*
*
*
*

*
*
*

*
*

Figure 3.1c. Here we see how the use of the SELECT search mode (for

TITLE, PHYS) at [B], followed by the REJECT search mode (for TITLE,

CHEM) at [D], deletes two physical chemists or chemical physicists (or one

of each) from a file of persons whose job title contains the fragment

PHYS. The file may still contain physicians, physical therapists, etc.

These could also be eliminated in a similar fashion. The report at [C]

results from the monitor instruction at [A]. The distribution of hits among

the records in a file is useful information in certain well-structured files.

In any case it tells the user that the program is processing the data.

51

In the case of searching numeric data vectors, the search module

accepts the symbols < or LT for less than, > or GT for greater than, and =

or EQ for equal to. The search can also be instructed to look for a range of

values. Thus:

YOB, >,1939

AND

YOB,<,1951

would result in records in which the years of birth (YOB) would fall in the

range 1940 to 1950 inclusive. An alternate way of achieving the same

result is via the instruction:

YOB,CIRCA,1940-1950

Other features of the SEARCH module are discussed in section 5.25.

The more important of these provide for:

a) ignoring specific characters in the file during the searching

operation;

b) locating only the first record or the first block of records that

satisfies a given criterion;

c) limiting the search to a specific block of records;

d) selecting records in which the entry (value) for one vector

(attribute) equals that for another vector;

e) locating records having missing (blank) data entries in certain data

vectors; and

f) taking into account the order and distance between string

fragments or words in a data item.

3.1.1 The EXIT and PRINT Options in the SEARCH Module. Each time

the SEARCH module finishes its operation, it types:

*TYPE P(RINT, S(EARCH), OR E(XIT)->? >

Regardless of the reply, it is necessary to inform the module which version

of the file one wishes to be available for the next operation. That

information is suppplied in reply to the question

TYPE C(URRENT), P(REVIOUS) OR 0(RIGINAL)->? >

If this question is to be answered after the first pass through the SEARCH

module there is no previous file—there is only the original and current

file. If we EXIT with this file and SAVE it, perform another search on it,

and save that (current) file, we would now have the original and two

partial files saved away for future use.

52

The PRINT provides the user with an opportunity to print out

information from a file while still under the control of the SEARCH

module. The facilities under the PRINT option are similar to, but are not

as extensive as, those available in the DISPLAY module which is

discussed in the next section.

Each time the SEARCH module finishes its search, it types:

*TYPE P(RINT), S(EARCH), OR E(XIT)->? >

On a response of PRINT or P the SEARCH module requests:

*TYPE LABELS OF ITEMS TO BE PRINTED OR ALL

>? >
ALL, in this case, means all data items (not all records) and even then for

only a single record at a time. Thus, in figure 3.Id there are displayed the

data items for the first record in an inventory file. Each data item is

labeled in accord with the way the file was defined. If the resulting file

contains only a handful of records, a response of ALL each time the

module asks *MORE— >? > is an efficient way of getting at the

information. This is especially true when there are a large number of data

items per record. A printout such as is shown in figure 3.Id is useful as a

reminder of how the data items are labeled. It is often informative as

regard to the way the information is entered in the file (alphabetic,

numeric, or mixed).

At this point, we can also answer the question *MORE— >? > with

a number, or the words YES or NO. If we answer YES, we get the same

information (all data items) for the next record. If we answer with a

number, n, we get the same information in the same format for the next n

records. Until we answer NO to the question (MORE—>? > we are

locked into the ALL option.

Whenever we answer this question with NO, we are given an

opportunity to specify again which data items are to be displayed. Figure

3.1e shows how the PRINT feature responds when instructed to print out

the NOMENCLATURE data item in the inventory file. It starts with the

second record because the first had already been printed in the previous

instruction. There is no provision in the PRINT option to back up in the

file. Such a provision is, however, built into the DISPLAY module.

When we answer NO to the question *MORE— >? >, we break the

format cycle but not the PRINT cycle, as is clear from figure 3.1e. In

order to get out of the PRINT cycle we must type END and the computer

response at [D] shows that we are still in the SEARCH module from which

we now wish to EXIT.

53

*

*

♦TYPE LABELS OF ITEMS TO BE PRINTED OR ALL
--->? >all

NBS -- 005202
T/C -- X06
DIV -- 122
SEC -- 00
ORG -- 12200
PROJ -- 000
DOLLAR -- 0000441
SCH -- 3
LIFE -- 12
ACQ -- 0660
ITEM --
MFR -- R429
MODEL -- ELECTRIC
SERIAL -- E2338496
VOUCHER --
PURCHASE -- 34238
ACCUM -- 000000000
MONTHCH -- 000000024
CLASS -- 3
NOMENCLATURE -- TYPEWRITER ELECTRIC
MANUFACTURER - - REMINGTON RAND INC.
AVAILIBILITY --
SPECS --
LASTACT -- 0171
LASTVOUCHER -- 8276771279
SEG --
FLAG --
LASTT/C --
FLAG2 --
ITEMSEQCODE -- 000000
BLDG-RM -- B35 101
OFF-SITE --

♦MORE->? >no

*

*

* * **************************** ***********

Figure 3.Id. Here we see a display of the data in the first record of an

equipment inventory file produced by the PRINT option in SEARCH. The

ALL response at [A] mean all data items. An answer of YES at [B] will

produce the same information for the next record. A response of NO

allows the user to specify particular data items to be displayed as seen in

figure 3.1e et seq.

54

♦TYPE LABELS OF ITEMS TO BE PRINTED OR ALL

-> ? Nomenclature

REC

2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24

lo
31

♦MORE->? >no
♦TYPE LABELS OF ITEMS TO BE PRINTED OR ALL

-> ? >end ——----

♦TYPE P(RINT), S(EARCH) OR E(XIT) - - ->? >EXIT

NOMENCLATURE

TYPEWRITER ELECTRIC, IBM STANDARD
CALCULATOR ROTARY
TYPEWRITER MANUAL
CALCULATOR ROTARY
TYPEWRITER MANUAL
TYPEWRITER MANUAL
CALCULATOR ROTARY
TYPEWRITER MANUAL
TYPEWRITER MANUAL

MORE->? >20
ADDING MACHINE
TYPEWRITER MANUAL
CALCULATOR ROTARY
TYPEWRITER MANUAL
CALCULATOR ROTARY
TYPEWRITER MANUAL
CALCULATOR ROTARY
TYPEWRITER MANUAL
ADDING MACHINE
CALCULATOR ROTARY
TYPEWRITER MANUAL
TYPEWRITER MANUAL
CALCULATOR ROTARY
CALCULATOR ROTARY

CALCULATOR MILLIONAIRE
CALCULATOR ROTARY

* * * * * * * * _*. ************************
Figure 3.1e. When specific data items are requested as at [A] under the

PRINT option of SEARCH, the module displays the requested item(s) for

the next 10 records. A response of YES at [B] would result in output for

10 more records, while a number produces that many records. A response

of NO at [C] allows us to specify a different set of data items, but starting

with the next record. As the PRINT option in SEARCH does not have a

back-up provision, it is necessary to return to the SEARCH module by

typing END as at [D] if we wished to start another printout with the first

record.
55

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

113 HIT(S) WHEN:
TITLE IS PHYS

♦TYPE P(RINT), S(EARCH) OR E(XIT) - - ->? > search
♦TYPE C(URRENT), P(REVIOUS), OR O(RIGINAL) - - ->? >current

♦TYPE S(ELECT) OR R(EJECT) - - ->? >reject
♦TYPE LABEL AND VALUE(S)

1 >? >title, chem
NAND
2 ->? >end
111 HIT(S) AFTER REJECTING:

TITLE IS CHEM
♦TYPE P(RINT), S(EARCH) OR E(XIT) - - ->? | >print
♦TYPE C(URRENT), P(REVIOUS), OR O(RIGINAL) - - ->? >current
♦TYPE LABELS OF ITEMS TO BE PRINTED OR ALL

- -> ? >div, yob, title--- (A

B D YO TITLE-- .
2 15 SUPERVISORY PHYSICIST
2 22 PHYSICAL SCIENCE
3 37 PHYSICIST (SOLID)
2 25 SUPERVISORY PHYSICIST
3 29 PHYSICIST (GENERAL)
2 25 PHYSICIST (PHYSICS)
2 19 PHYSICAL SCIENCE
2 38 PHYSICIST (NUCLEAR)
4 21 PHYSICIST (SOLID)
2 25 PHYSICAL SCIENCE

♦MORE->? >yes
4 20 PHYSICAL SCIENCEA
2 52 PHYSICAL SCIENCE
2 22 PHYSICIST (NUCLEAR) _

4 44 "PHYSICIST (HIEAT)
2 29 PHYSICIST (GENERAL)
3 28 RESEARCH PHYSICIST

♦MORE->? >no
♦TYPE P(RINT), S(EARCH) OR E(XIT - - ->? >exit
♦TYPE C(URRENT), P(REVIOUS), OR O(RIGINAL) - - ->? >current

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Figure 3.If. A printout of the first 20 records of the file resulting from the

search strategy illustrated in figure 3.1c. At [A] we ask to see three data

items (DIV, YOB, TITLE). These are shown, 10 at a time, under the

column headings at [B] where the DIV appears as D and YOB appears as

YO. These column headings have been truncated because the formatting is

controlled by the width of the data field rather than the width of the labels

associated with them. The title field has been truncated to extend over two

words for demonstration purposes.

56

3.2 The DISPLAY Module

This module provides a quick way of looking at information stored in

a file. While it is intended primarily for just looking at the information, it

can also be used for reporting data when the formatting is not crucial. This

module displays data in two major modes. In the first mode (see figs. 3.2a

and 3.2b), all data items are displayed; each of the data points is labeled

(tagged). In the second mode, where only selected data items are

displayed, they are not tagged since the labels are displayed at the top of

the page.

♦TYPE LABELS OF ITEMS TO BE DISPLAYED OR ALL

->? >ALL

ID - 66-IN-DE-A5

CCODE - IN

CINST - DE

PROGC - A5

TITLE - COMPILATION OF CRITICAL TABLES OF SRD

OF DEFECT PROPERTIES ON-METALLIC CRYSTALS

OF DEFECT PROPERTIES ON-METALLIC CRYSTALS

NAME - S.C. JAIN

ADD - DEPT. OF PHYSICS, INDIAN INSTITUTE

OF TECHNOLOGY NEW DELHI

COUNTRY - INDIA

NBSNAME -mmn
DIV - 151

AMOUNT Mm

YB - 68

DB - 680313

YE - 72

DE - 720729

AM72 - 0

REM - SUPPLEMENT #1 and #2

♦MORE -->? >NO

Figure 3.2a. A display of one record of data in a project file showing how

the data are labeled when ALL data items are requested.

57

In figures 3.2a and 3.2b, the response ALL refers not to all of the

records but to all of the defined data items. In this mode, information is

printed for only the first record. After the first record, the user can specify

how many records should be displayed in the next cycle.

When the user responds with specific labels instead of ALL, this

module prints out information for five records as shown in figure 3.2c.

After this initial information, the user can specify how many records

should be displayed in the next cycle. Two features of this printout should

be noted. First, the data are displayed in the order in which the labels are

entered and, secondly, the column headings are truncated to the defined

width of the data field rather than the length of the label. The latter

shortcoming can be overcome by using the REPORT module.

When the DISPLAY module asks for *MORE —>? >, the system

ordinarily expects either YES, NO, or a number. If the response is YES,

data is displayed for five more records. The consequences of the other

responses should be self-evident.

Since it is often useful to be able to look at a specific record in a file

or look for a specific record, this module will also respond to such

commands as

SKIP TO 100 or BACK TO 50.

Thus, after seeing the first record, the user can look at the 100th record

and then back up to the 50th. This facility allows one to zero in on a

particular record in a systematically organized file much faster and at

much less cost than if one were to search through the file. It is worth

remembering at this point that if the global command BACKWARD had

been given earlier this module would display or otherwise operate from

the end of the file instead of the beginning.

Other examples of the use of the DISPLAY module are shown in

section 5.10.

58

* ♦TYPE LABELS OF ITEMS TO BE DISPLAYED OR ALL ♦
♦
*

---> ? >all *
*

RECORD NUMBER 1 r w --- , r—

* DIV -- 3 SEQ -- 5207550261 *

* SS -- VP -- 12 *
♦ SEX -- 2 INS -- 1 *
* CIT -- HC -- 00 *

* NAME -- RET -- 1 *
* DOB -- 121737 NOAC -- 89400 *
* YOB -- 37 SLIM -- 00000 *
♦ SCD -- 042568 DLIM -- 000 *
* STAT -- 1 HLIM -- 0000 *
* TOA -- 1 EDA -- 062473 *
* TOD -- 2 AUTH -- *
♦ TOLA -- 2222 POS -- 30246000 *
* NTEDA -- 000000 AC -- CW13 *
* PP -- GS PFC -- 0 *

* OSC -- 03120 APPOR -- 00 *
* FC -- REM -- 111153 *
* TITLE -- CLERK STENOGRAPHER AUDAT -- 062473 *
* GRADE -- 04 SON -- 1703 ♦
* STEP -- 06 SPF -- 22222 *
* PAY -- 08027 PD -- *
* PLANT -- DRPB -- *
* DEPT -- 31402 CL -- 105 *
* LC -- 240630031 NTEDP -- 000000 *
* CSDF -- 040757 ANU -- 2 *
* CSDTO -- 040660 TP - - 2 *
* LEGR -- 24 DET -- 2 ♦
* DDAY -- 12217 MC - - 7 *
* DOGR -- 112972 ALC -- *
♦ PINFO -- 121001 SCD -- *
* DOPP -- 040573 GLOC -- 0010 *
* EOD -- 112972 DAA -- ♦
* EDDY -- RS - - 0 _-- _*
* ADTIT -- ' KlR' - - 6 ~ *
* PROFS -- 5 SK - - 8 *
* DEG -- HWWAE -- 0000 *
* COLDEG -- SCDY -- 68 *
* YR -- SALBAS -- PA *
♦ SPP -- C - - 00 *

DPG -- 112972
♦
*

ATP —___ *
*

* * * * ******************** ************* ♦ * * *

Figure 3.2b. A display of part of the information in the first record of a

personnel file showing how the data items are identified when ALL data

items are requested. This feature is also available under the PRINT option

in the SEARCH module.

59

*

* *TYPE LABELS OF ITEMS TO BE DISPLAYED OR ALL
* -> ? >rec, nbspart
* REC REC N •
* -- - . *
* 1 5001 O •
* 2 5002 T *
* 3 5003 T •
* 4 5004 T *
* 5 5005 T *
* ♦MORE - - ->? >skip to 100 *
* ♦MORE - - ->? >yes *
* 100 5337 A *
* 101 5350 O *
* 102 5351 T *
* 103 5352 A *
* 104 5353 T *
* 105 5364 O *
* 106 5365 A *
* 107 5366 T *
* 108 5367 A *
* 109 5368 T *
* ♦MORE - - ->? >back to 20 *
* ♦MORE - - ->? >3 *
* 20 5032 T *
* 21 5033 T *
* 22 5034 T *
* ♦MORE - - ->? >skip to 150 *
* ♦MORE - - ->? >yes *
* 150 7027 A *
* 151 7028 A *
* 152 7029 A *
* 153 7030 A *
* 154 7031 A *
* 155 7032 A *
* 156 7033 A *
* 157 7034 T *
* 158 7035 A *
* 159 7036 A *
* ♦MORE - - ->? >stop *

PROGRAM STOPPED.

Figure 3.2c. Here we see that when specific data items are requested for

display the module produces the information for five records. After these

are printed, the user has options for skipping around in the file as shown.

60

•TYPE LABELS OF ITEMS TO BE DISPLAYED OR ALL
---> ? x-crd, y-crd, xl-crd, yl-crd, x2-crd, y2-crd, &
7 rip, ext, bldg

X-C Y-C Xl-C Yl-C X2-CR Y2-CR ZIP EXT BLDG

3 36 32 361 326 3610 21760 3697 TECH
0 29 60 293 609 2933 21793 3101 S&P

999 999 9999 9999 99999 99999 19809 2153 CHEM
7 16 77 165 773 1650 20767 3405 ADMIN

11 14 113 146 1138 1468 20850 5677 POLY
15 13 155 132 1557 1320 20902 2752 POLY

999 999 9999 9999 99999 99999 94087 3461 TECH
17 12 178 129 1781 1298 20705 2625 RADP
9 16 94 163 942 1633 20760 2634 REACT

999 999 9999 9999 99999 99999 20784 2121 MET
•MORE - - ->? no
•TYPE LABELS OF ITEMS TO BE DISPLAYED OR ALL

---> ? x-crd, y-crd, xl-crd, yl-crd, x2-crd, y2-crd, &
rip, ext, bldg.?
rip, ext, room, bldg

X-C Y-C Xl-C Yl-C X2-CR Y2-CR ZIP EXT ROOM

BLDG
3 36 32 361 326 3610 21760 3697 A 109

TECH
6 29 60 293 609 2933 21793 3101 B 141

S&P
999 999 9999 9999 99999 99999 19809 2153 A 110
CHEM

7 16 77 165 773 1650 20767 3405 E 120
ADMIN

11 14 113 146 1138 1468 20850 5677 A 155
POLY

15 13 155 132 1557 1320 20902 2752 A 125
POLY
999 999 9999 9999 99999 99999 94087 3461 B 47
TECH

17 12 178 129 1781 1298 20705 2625 C 107
RADP

9 16 94 163 942 1633 20760 3634 A 159
REACT
999 999 9999 9999 OOOOQ 77777 99999 20784 2121 A 47
MET

•MORE - - ->? no

Figure 3.2d. Here we see how the DISPLAY module format varies when

the requested data items fit on a single line and when they do not.

61

3.3 The REPORT Module

As the object of operating on a computerized data file is to obtain

information in a useful and convenient format, a versatile report generator

is a very important component of a data management system. Thus, the

REPORT module has been designed to provide the user with considerable

flexibility in arranging the output to meet varied requirements.

The REPORT module operates in a number of modes and various

modifications thereof as follows:

1) A labeled mode in which each data point in the report is preceded

by its name taken from the labels associated with the data file,

or as modified in the RENAME module. See fig. 3.3a.

2) An unlabeled mode where each data item is printed without any

identification except for optional column headings as shown in

figure 3.3b.

3) A mixed mode in which certain items are exceptions to the above

rule. Thus, in figure 3.3b, where we chose to print out the name

of the project leader, there was no need to precede it with

NAME = , as it would be obvious that the information printed

was a person’s name.

An examination of figure 3.2a will show a number of features. The

user can specify the number of characters per line, the number of lines per

“page”, and any number of lines of title or footnotes to be printed on each

page. Since this report consists of single line entries, the program asks for

column headings. At this stage there are three options:

a) no column headings as shown in figure 3.3a;

b) column headings taken from the labels and truncated if necessary

(see fig. 3.3b); and

c) ad hoc column headings supplied from the keyboard.

In figure 3.3b we show the conversation between the system and the

user which allows one to modify certain aspects of the column headings for

a report prepared in the unlabeled mode. In section 5.23 we show how the

report module allows the user to space out his data columns and provide

column headings of a more complex structure.

62

♦TYPE A MODULE NAME OR INSTRUCTIONS
-> ? > report

♦TYPE MODE—L(ABELLED) OR UNL(ABELLED)- - ->? uni

♦TYPE CHARACTERS PER LINE - - ->? 80
♦TYPE LINES FOR OUTPUT _^

LINE 1 ? restart

•TYPE MODE-L(ABELLED) OR UNL(ABELLED)- - ->? 1

♦TYPE CHARACTERS PER LINE - - ->? 80
♦TYPE LINES FOR OUTPUT ^

LINE 1 ? ss , dob, eod,scd^__—» (4J
LINE 2 ? end-

♦TYPE TITLE LINES OR N(ONE) - - ->
? 1, test of labelled mode
? end

(D-? n
♦ANY COL HEADS- -TYPE L(ABELS), N(ONE) OR 4 HEADINGS

♦TYPE FOOTNOTE LINES OR N(ONE) - - ->
? 1, these data are ficticious
? end ■<z)

dxc TYPE YES OR NO - -->? yes
.H PAGE- -

TEST OF LABELLED MODE

SS = 797049629 DOB= 11062f EOD= 063065 SCD= 110663
ss = 168596476 DOB= 1021 ih EOD= 102171 SCD= 100672
ss = 777303254 DOB= 110927 EOD= 092462 SCD= 041061
ss = 894247697 DOB= 123108 EOD= 145763 SCD= 820735
ss = 507003098 DOB= 555852 EOD= 111075 SCD= 070171^.

ss = 123098571 DOB= 145280 EOD= 23067fL—- rj^s r **
^ ™ aTCtu

ss = 444202763 DOB= 06ffi452__ . / Z. SCD= 061668
ss = 628358478 DQBs- f'' » X fcOD= 028600 SCD= 031443
ss = -^ l»OB= 101144 EOD= 090170 SCD= 090170

=5ff593322 DOB= 051935 EOD= 030265 SCD= 031752

ss = 596987064 DOB= 082319 EOD= 120351 SCD= 082342

ss = 541782606 DOB= D30926 EOD= 022745 SCD= 022745

• * * *
♦NOTE: THESE DATA ARE FICTICIOUS
*************** *******************

Figure 3.3a. A record of the use of the REPORT module to produce a

labeled report. See the text for a discussion of the numbered features

shown here and on the continuation following. The title is shifted to the

right because we specified a width of 80 characters.

63

The characteristics of the REPORT module illustrated in figure 3.3a

are as follows:

1) Here we asked for an unlabeled report and then changed our mind

by responding with the word RESTART instead of supplying

the information desired on the first line of the report.

RESTART can be used in response to any input request from

this module.

2) Print lines can be as long as 132 characters provided that the

system was set to that figure previously as discussed in section

1.6.2.
3) The module types the line numbers automatically until the word

END appears.

4) The other responses that are accepted at this point are RETURN

and DUPLICATE. These are discussed below.

5) Here the user supplies the line numbers so that a repetition of a

line previously defined updates that instruction. Furthermore,

the omission of a line in the sequences produces a blank line.

6) Since we specified only one line of output, the module allows for

column headings which are not really required in the labeled

mode. Hence the answer is N for none.

7) Any number of footnote lines can be entered. They appear on each

page of the report. The word NOTE is supplied by the module

on the first line only. Subsequent lines are indented seven

spaces.

8) If the response is YES, the printout stops after each page to allow

for positioning of the paper. The printing is resumed after the

user types any character and returns the carriage. When

operating in the batch mode, the response to this question must

be NO.

Other features of this module are shown in figure 3.3b as follows:

1) Here we ask for a report in the unlabeled (uni) mode.

2) When the instructions are ended with RETURN instead of END,

the module allows for generating another type of report from

the same file without recalling the REPORT module. Copies of

a report can be ordered at this point by responding with the

word DUPLICATE, n. Here n is the number of copies desired.

If a number does not follow the word DUPLICATE, the module

prepares two copies.

64

*
*

*

*

*

*

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

AAAAAAAAAAAAAAAAAA

•WHICH MODULE DO YOU WANT- - ->? report

A A

•CD
•TYPE MODE-L(ABELLED) OR UNL(ABELLED>- - ->? uni

♦TYPE CHARACTERS PER LINE - - ->? 80
•TYPE LINES FOR OUTPUT

LINE 1 ? ss, dob, name
LINE 2 ? repeat

•TYPE TITLE LINES OR N(ONE) - - ->?
? 1 , test of unlabelled mode after sorting
? END

•ANY COL HEADS- -TYPE L(ABLES), N(ONE) OR 3 HEADINGS - - ->
? ss, dob, name

©
? end
SS DOB NAME
218161650 011009 GIGABO, SIEOQ K.

•OK- -TYPE YES OR NO - - ->? NO
•TYPE LINE NO., OLD HEAD, NEW HEAD - - ->

1,'ss ',' ss '
1,'dob 7 dob'
1,'name ',' name'
end

SS DOB NAME
218161650 011009 GIGABO, SIEOQ X.

•OK- -TYPE YES OR NO - - ->? yes
♦TYPE FOOTNOTE LINES OR N(ONE) - - ->

? 1,these data are ficticious
? end
•DO YOU WANT TO POSITION PAPER AFTER EACH PAGE-

TYPE YES OR NO - - ->? yes

[MR.]

[MR.]

TEST OF UNLABELLED MODE AFTER SORTING

A SS DOB NAME
A

11 II II II II II 1! II ======= II II II II II 1! II II II 11 II II II II II II II II II II II II — —> —— —— — »

A 218161650 011009 GIGABO, SIEOQ X. [MR.]
A 805151288 122713 OOAIF, OEET Q [MR.]
A 970309286 063014 EAAILIIA, JOKEVO EIOLI [MRS.]
A 507003098 011114 XIQIB, EJUZUKE EZEUA [MR.]
A 506987064 082319 UUPAFU, TIWEKEAI A., JR. [MR.]
A 168596476 102119 OEUUBONEW, AJE [MR.]
A 007655595 070721 VUHOGATO, YIBOXA E. [MR.]
A A A A A A A A A A A A AAAAAAAAAAAAA A A A A A

A A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

Figure 3.3b. A record of conversation with the REPORT module to
produce an unlabeled report. See the text for a discussion of the numbered
features shown here.

65

* * * *

671444920 020655 BEHUSIIU, DAFOOIO K.

♦NOTE: THESE DATE ARE FICTICIOUS

[MISS]

♦TYPE MODE-L(ABELLED) OR UNL(ABELLED)- - ->? 1
60 "(Z) ♦TYPE CHARACTERS PER LINE - - ->?

♦TYPE LINES FOR OUTPUT
LINE 1 ? ss ,dob, name, uni
LINE 2 ? repeat

♦TYPE TITLE LINES OR N(ONE) - - ->
1, test of mixed mode
1, report number"er one
3, mixed mode
END

♦ANY COL HEADS- -TYPE L(ABLES), N(ONE) OR 3 HEADINGS - - ->
? n

♦TYPE FOOTNOTE LINES OR NONE) - - ->
? 1, these data are ficticious
? end
♦DO YOU WANT TO POSITION PAPER AFTER EACH PAtfE-

TYPE YES OR NO - - ->? yes

REPORT NUMBER ONE

MIXED MODE

♦NOTE: THESE DATA ARE FICTICIOUS

A SS — 218161630 DOB= 011009 GIGABO, SIEOQ X. [MR.] A

A ss = 805151288 DOB= 122713 OOAIF, OEET Q. [MR.] A

A ss = 970309286 DOB= 063014 EAAILITA, JOKEVO E [MRS.] A

A ss = 507003098 DOB= 011114 XIQB, EJUZUKE EZEUA[MR.] A

A ss - 506987064 DOB= 082319 UUPAFU, TINEKEAI [MR.] A

A ss — 168596476 DOB= 102119 DEPUCT JJKLE E [MIS] A

A ss = 007655895 DOB= 013121 FIVTRA SEK Q. [MRS.] A

A ss = 123788999 DOB= 060452 WOCOOAL, IOWUX [MR.] A

A ss = 666175624 DOB= 012553 RUBUAAA, EBOBINI [MR.] A

A ss = 455227492 DOB= 010555 ZEBEPIM, ESIRAJA E. [MIS] A

A ss = 671444920 DOB= 020655 BEHUSIIU, DAFOUIO [MIS] A

Figure 3.3b (concluded). Here we ask for a second report to illustrate the

use of the mixed mode of presentation (some data labeled and others not).

66

3) Here we tell the module to use SS$ DOB, NAME as column

headings instead of the labels associated with the data base.

These are printed out in their normal position relative to a line

of the required report to make sure that the positioning is

satisfactory. Had we formatted the report to cover more than a

single line, the option to provide labels would be bypassed.

4) The NO response allows the user to shift the positions of the

labels or to change one or more of them completely. Here we

chose to shift them a little to the right and change SS to SS#.

5) Here we indicate satisfaction with the format and the module

carries on in the normal manner.

6) When this report runs to more than one page, the pages are

numbered starting on page 2.

7) Since we ended the instructions for the first report with RETURN

instead of END, the module now asks for instructions for a

second report. This time we ask for a report in the labeled (L)

mode with the exception noted below.

8) Here we ask that the NAME field be printed without a label (uni

for unlabeled).

In figure 3.3c, we show features provided to space out headings and

to modify them. Provisions for inserting spaces between the columns in

the report proper are illustrated in section 5.24.

1) Here we give instructions to prepare the report with 20 lines per

page. Had we omitted the second number (20) this module

would supply as many lines per page as needed to make the

output proportional to a 6x9 print area. Due allowance is made

for lines in the title, footnotes, and column headings in

formatting the page.

2) Since seven data items were requested in the report this module

asks for seven column headings, which we supply at [3].

4) Here we would prefer to have ID centered over the data and wish

to have the last column headed by AMT instead of AMOUNT.

The instructions to achieve these changes are shown in item

four.

5) The user supplies the line number followed by the changes

desired. Note that each change is indicated separately and

especially the spaces following the ID label. Complications

resulting from omitting these spaces are shown in the next

figure.

67

6) Here we are shown how the revised heading will look relative to

the data columns. The module allows us to make changes until

it receives the response YES, after which the user can specify

footnotes and instructions on positioning of the paper between

pages.

Had we responded at [3] with the word LABELS, this module would

have used the labels indicated at input [2] and centered them

automatically over the columns (suitably truncated, if necessary).

There are other features in this module. Examples of their use and

operation has been deferred until section 5.23. Among the more important

of these are provisions for:

a) interrupting the printing of a report;

b) indicating labels to be excepted from a report when the list of

labels is much longer than the list of exceptions;

c) suppressing the paging of a report;

d) inserting spaces or literal expressions between columns of a report;

and

e) writing the

terminal.

*

report on a file in addition to or instead of the

♦♦NOTES***

68

* *
*
*
*
*

*
*
*

*

*

*

*

*
*
*

*

*
*
*
*
*
*
*

*
It

*
*
*
*

It

* it

♦WHICH MODULE DO YOU WANT - - -> ? REPORT

♦TYPE MODE-L(ABELLED) OR UNL(ABELLED)- - ->?

♦TYPE DIMENSIONS OF LINE AND PAGE - - ->? 80,20
♦TYPE LINES FOR OUTPUT

LINE 1 ? id, div, yb, ye, ccode, cinst, amount
LINE 2 ? end

♦TYPE TITLE LINES OR N(ONE) - - ->

* *

uni

none

"XD

ANY COL HEADS- -TYPE L(ABLES), N(ONE) OR 7 HEADINGS - - ->
? id, div, yb, year, ccode, cinst, amount---
? end ~ (3)
ID DIV YB YE CCO CIN AMOUNT
18-IN-PA-A5 240 63 73 IN PA 71.5

♦OK- -TYPE YES OR NO - - ->? NO ----
♦TYPE LINE NO., OLD HEAD, NEW HEAD - - ->

? 1, amount, amt

id no.' ? 1, 'id
? end

ID NO. DIV
18-IN-PA-A5 240

♦DO- -TYPE YES OR NO

YB
63
->?

YE
73

yes

CCO
IN

CIN
PA

AMT
71.6

♦TYPE FOOTNOTE LINES OR N(ONE) - - ->
none

♦DO YOU WANT TO POSITION PAPER AFTER EACH PAGE- -

* *
*
*
*
*
*
*
*
*
★
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it

*
*
*
it

*
* TYPE YES OR NO - - ->? yes *

* 3206 — — - - - - *
* *
* ID. NO. DIV YB YE CCO CIN AMT *
*
it 18-IN-PA-A5 240 63 73 IN PA 71.6

*
*

4 50-IN-KA-A8 313 65 72 IN KA 21.5 if

* 66-IN-DE-A5 151 68 72 IN DE 37.6
*

it" *
* * * * A h it it *

Figure 3.3c. An example of the provision in the REPORT module to

modify the column headings. See the text for a discussion of the numbered

items. Note that the headings YEAR, CCODE, and CINST were

truncated in the column headings to fit the defined column width of these

data items. Had we responded at [3] with the word LABELS, this module

would have centered the normal labels shown on line two over the

columns (suitably truncated, if necessary).

69

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
->? report
♦TYPE MODE—L(ABELLED) OR UNL(ABELLED)- - ->? uni
♦TYPE DIMENSIONS OF LINE AND PAGE- - ->? 80
♦TYPE LINES FOR OUTPUT

LINE 1 ? id,div,yb,ye,ccode,cinst,amount
LINE 2 ? end

♦TYPE TITLE LINES OR N(ONE) - - ->
? none

♦ANY COL HEADS- - TYPE L(ABELS),N(ONE) OR 7 HEADINGS
? labels
? end
ID DIV YB YE CCO CIN AMOUNT
18-IN-PA-A5 240 63 73 IN PA 71.5

♦OK- -TYPE YES OR NO- - ->? NO
♦TYPE LINE NO., OLD HEAD, NEW HEAD- - ->

? l,amo,amt —
? l,id,' • id no.' —
? end T

4 DIV YB YE CCO CIN AMOUNT
18-IN-PA-A5 240 63 73 IN PA 71.5

♦OK - -TYPE YES OR NO- - ->? RESTART
♦TYPE MODE- -LABELLED OR UNLABELLED- - ->? ul
♦TYPE DIMENSIONS OF LINE AND PAGE- - ->? 80
♦TYPE LINES FOR OUTPUT

LINE 1 ? id,div,yb,ye,ccude,cinst,amount
LINE 2 ? end

♦TYPE TITLE LINES OR N(ONE)- - ->
? none

♦ANY COL HEADS- -TYPE L(ABELS), N(ONE) OR 7 HEADINGS
? labels
? end
ID DIV YB YE CCO CIN
18-IN-PA-A5 240 63 73 IN PA

♦OK- -TYPE YES OR NO- - ->? NO
♦TYPE LINE NO., OLD HEAD, NEW HEAD- - ->

? 1,amount,amt
? l,id,' • id no.'
? end f

4 DIV YB YE CCO CIN
18-IN-PA-A5 240 63 73 IN PA

♦OK- -TYPE YES OR NO->? restart

AMOUNT
71.5

->

->

AMT
71.5

Figure 3.3d. A record of two unsuccessful attempts to modify and shift

column headings. The correct instructions for this operation are shown in

item 4 of the previous figure.

70

* *TYPE MODE--L(ABELED) OR UNL(ABELED) --->? >unl
* *TYPE CHARACTERS PER LINE --->? >60
* *TYPE LINES FOR OUTPUT
* LINE 1 ? ss#,dob,eod,scd
* LINE 2 ? end
* *TYPE TITLE LINES OR N(ONE) --->
* ? l,we will put in col heads
* ? end
* *ANY COL HEADS--TYPE L(ABELS),N(ONE) OR 4 HEADINGS---> *
* ? social,date,entered,service *
* ? security,of,on,comp *
* ? num,bi rth,duty,date ——'—' *
* ? end *
* SOCIAL DATE ENTERED SERVICE
* SECURITY OF ON COMP
* NUM BIRTH DUTY DATE
* 410064386 101928 061266 061662 *
* *QK--TYPE YES OR NO—>? >yes *
* *TYPE FOOTNOTE LINES OR N(ONE)--->
* ? n

* PLEASE POSITION PAPER *
* ? ok

WE WILL PUT IN COL HEADS

SOCIAL
SECURITY
NUM

DATE
OF
BIRTH

ENTERED
ON
DUTY

SERVICE —/
COMP
DATE -

§>

. /n\,_

*
*
*
*
*
*
*
*
*
*

410064386
562639893
748893016

101928
010722
120742

061266
062765
071369

061662
102558
071369

-AS/.... *
*

-2- ^
WE WILL PUT IN COL HEADS (C0NT)

*
*
*

SOCIAL DATE ENTERED SERVICE *
SECURITY OF ON COMP *
NUM BIRTH DUTY DATE *

*

Figure 3.3e. Here we see how this module accepts instructions at [B] for

multiple line column headings, how it places these over the appropriate

columns in the report at [C], and how it handles heading lines and page

numbers on the second and succeeding pages. The title is centered over an

80 character line as was requested at [A].

71

3.4 The UPDATE Module

This module provides for correcting or modifying the individual data

items in an existing Omnidata file. It does not delete or insert or move

entire records. Those operations are available in other modules. Many files

contain a unique identifier for each record — such as social security

number, part number, reference number, etc. — which in principle is

sufficient to locate the record to be modified. Because it is so easy to

transpose digits in such numbers. Omnidata makes provision for

identifying records by as many as 10 different data items. In addition,

when the update is performed on-line, the system can type out one or

more data items for more positive verification before the update is

accepted.

Whether in batch or demand mode, this module accumulates all of

the update instructions and writes them on a scratch file before carrying

them out. The following are some typical instructions typed in response to

the request:

*TYPE IDENTIFICATION AND UPDATE INSTRUCTIONS - >? >

? FIND NAME = SMITH, YOB = 36, VERIFY SS#,

LET SCD = 64, GRADE = 9, STEP = 2

? FIND SS# = 1273548, LET DEG = 3, VERIFY NAME

? FIND GRADE = 7, STEP = 1, LET PAY = 10598, REPEAT 100

? FIND PART = X3513, VERIFY NAME, LET COST = 1.73,

SOURCE = A.B. COOK

? FIND A/B = 0.1263, VERIFY FORMULA, LET A = 0.981

? FIND MOL = HCN, LET CSUBP = 1.5983, VERIFY ENTROPY, ID#

Our experience with other people’s files has led us to choose a partial

string search rather than an exact match in this module in order to avoid

the trouble caused by inconsistent uses of blanks, parentheses, and

punctuation in name and title fields. Thus, if this module were asked to

FIND NAME = SMITH, the names SMITHSON, GOLDSMITH, etc.,

would also be accepted. This situation can be avoided easily in this module

by specifying one or two additional items for more unique location, such

as date of birth, employee number, etc., as indicated above.

72

When updates are more systematic, the instructions can be

streamlined as follows:

? FIND GRADE - 12, STEP = 1, LET PAY = 12174, REPEAT 500

? 12, 2, 12580

? 12, 3, 12986

? etc.

? 12, 10, 15828

? 13, 1, 14409

? etc.

9 END

If the above pattern is broken in any one regard, that instruction

must be written out in detail. The purpose of the REPEAT instruction is

to ensure that changes are made in all records meeting the FIND

specifications. Thus, the number following the word REPEAT must be as

large as or larger than the number of anticipated occurrences of the

specified records. An asterisk used instead of a number is equivalent to an

infinite number of changes.

It is possible to streamline the above input still further by a

rearrangement of the input as follows:

? FIND STEP = 1, LET PAY = 12174, FIND GRADE = 12, REPEAT 500

? 2, 12580

? 3, 12986

? etc.

? 10, 15828

? 1, 14409, 13

? 2, 14909

? 3, 15400

? etc.

This module has a provision for entering new data items to agree

with the original conditions of the file as to left or right adjusted or

centered values. It does not, however, prevent one from replacing a

number by a string of characters or vice versa, nor do we think it should.

If the new data item is longer than the width of the field allotted to it, the

data is entered truncated and a diagnostic is printed.

If the global STORE switch has been set as described in section

1.6.2 the updated records are copied on a scratch file until the update is

completed or until 50 records have been updated. In the latter case, the

user is asked if he wished to continue to build a separate file of updated

records. If the response is NO, the module writes no more records. If the

answer is YES, at the end of the update the user has the option of fetching

in the file of updated records and then displaying them.

73

* *WHICH DATA BASE DO YOU WANT --->? >ftactmtg
* FILE FTACTMTG CONTAINS 17 DATA ITEMS FOR 1235 RECORDS. *
* *TYPE A MODULE NAME AND/OR INSTRUCTIONS *
* --->? >updateseq *

*TYPE IDENTIFICATION AND UPDATE
5032,let nbspart =
5033,let nbspart =
5038,let nbspart =
5039,let nbspart =
5040,let nbspart =
5041,let nbspart =
5042,let nbspart =
5047,let nbspart =
5076,let nbspart =

= 5088,let nbspart

INSTRUCTIONS -
t
t

1 ? >find rec
2 ? >find rec
3 ? >find rec
4 ? >find rec
5 ? >find rec
6 ? >find rec
7 ? >find rec
8 ? >find rec
9 ? >find rec
10 ? >find rec
11 ? >end

* UF31791030
* END OF FILE REACHED-NOT ALL DESIRED UPDATES MADE
* 2 UPDATES MADE. RECORD FOR UPDATE
* *SHALL WE SKIP NUMBER 3 AND READ THROUGH
* THE FILE AGAIN, BEGINNING WITH 4 --->? >ye
* END OF FILE REACHED-NOT ALL DESIRED UPDATES MADE
* 4 UPDATES MADE. RECORD FOR UPDATE 6 NOT FOUND
* *SHALL WE SKIP NUMBER 6 AND READ THROUGH
* THE FILE AGAIN, BEGINNING WITH 7 --->? >yes
* END OF FILE REACHED-NOT ALL DESIRED UPDATES MADE
* 5 UPDATES MADE. RECORD FOR UPDATE 8 NOT FOUND
* *SHALL WE SKIP NUMBER 8 AND READ THROUGH
* THE FILE AGAIN, BEGINNING WITH 9 --->? >yes
* ALL 7 UPDATES MADE AFTER 38 RECORDS READ
*

-->

3 NOT FOUND

Figure 3.4a. Here we see the dialogue with the UPDATSEQ module while

attempting to update 10 records when three of those, indicated at [A], are

missing from the file. At [B] we see how the file of updated records is

named automatically. The conversation at points marked [C] shows how

the module is instructed to skip over the missing records. The next figure

shows that the records reported missing are indeed not in the file.

74

♦ ♦ * * * * ***** ******* * * *
* ♦TYPE A MODULE NAME AND/OR INSTRUCTIONS *
♦ >? >display *
♦ ♦TYPE LABELS OF ITEMS TO BE DISPLAYED OR ALL *
*
*
*
*

--->? >rec,nbspart-^^

REC# REC N-^^A)

*
*
*
*

* 1 5001 0 *
* 2 5002 A *
* 3 5003 A *
* 4 5004 A *
* 5 5005 A *
* *M0RE --->? >skip to 20 *
* ♦MORE --->? >yes *
* 20 5032 T *
* 21 5033 T *
* 22 5034 A *
* 23 5035 A *
* 24 5036 A *
* 25 5037 A *
* 26 5039 T *
* 27 5040 T *
* 28 5042 T *
*

29 5043 A *
* ♦MORE --->? >yes *
* 30 5044 A *
* 31 5059 0 *
* 32 5060 A *
* 33 5073 0 *
* 34 5074 A *
* 35 5075 A *
* 36 5076 T *
* 37 5087 0 *
* 38 5088 T *
* 39 5089 A *
* ♦MORE --->? >stop *
*
*

PROGRAM STOPPED.
********** *******

*
* * *

Figure 3.4b. Here we display the record numbers and the NBSPART

vector to show that corrections had indeed been made as desired and that

records 5038, 5041, and 5047 are indeed missing from this File. Note how

the label NBSPART had been truncated to N since only one character was

assigned to that data vector.

75

When there are a large number of updates to be made to a file,

especially when they are systematic, like posting current salaries after an

across-the-board pay raise, there is a more efficient way of updating using

the module UPDATESEQ. That module expects the update instructions to

be ordered to agree with the order that the offending records appear in the

file. This permits all the updates to be carried out in a single pass through

the main file as well as the update instructions. Items out of order in the

update file are skipped. They are, however, reported at the end of the

operation and the user is given an opportunity to make another pass

through the file.

Even when the updates are not as systematic as those shown above, it

is reasonable to expect that the data base manager will know enough about

the location of the offending records to arrange the update accordingly.

If the file being updated contains checksums, the UPDATE module

recomputes the two checksums, and replaces the existing information with

the new numbers, as well as the current date, time, and run-id. The

information provides an important audit trail — telling when and by

whom the record was updated.

Figures 3.4a and 3.4b show how this module handles an update

operation when some of the records referenced are not in the file.

••NOTES**

76

3.S Operating Omnidata in the

Batch Mode and Remote Batch Mode

The discussion and illustrations of the workings of the Omnidata

system have, thus far, involved the use of the Omnidata system from a

terminal on-line in the so-called demand mode. When the computer is not

burdened, the response is fast and often dramatic. This is especially so

when the results appear on a scope as well as on a hard copy device (a

teleprinter). It should now be obvious to the reader that we have gone to

considerable length to make the system highly conversational—perhaps

even uniquely so—and truly interactive. The conversational facility is

especially valuable to the non-computer-oriented user, while the

interactive features are of value to both the novice and the expert. The

importance of the interactive characteristics of this system will become

more apparent when applied to the statistical and graphical analysis and

the manipulative facilities in the various utility modules.

It is nevertheless an inescapable fact that on-line use of any

computer is more expensive than the batch mode of operation; even in the

latter mode deferred batch (after normal business hours or overnight

service) is cheaper yet.

Fortunately it is possible to operate the Omnidata system in any of

the following modes:

a) in demand mode with all input from the terminal — including,

even, on-line file building;

b) in demand mode from lengthy instruction sequences (keyboard

inputs) that are used often or periodically, stored on a file (see

5.18, the PLAN module);

c) in batch mode with inputs on punched cards;

d) in the remote batch mode where the inputs are from the

terminal but execution is deferred.

The Omnidata system has taken advantage of those features of the

EXEC 8 system and of the XBASIC compiler that permit the above listed

flexibility of operation.

Aside from cost, the first two modes of operation are most convenient

and require no information concerning the operation of the EXEC 8

system beyond the normal log-on procedure. To run Omnidata

successfully in the batch mode the user must know how to use certain

EXEC 8 commands and must be very familiar with the step-by-step

operation of the Omnidata modules he will use in the run.

77

In figure 3.5a we see a portion of the preamble to a batch mode run

as it came off the line printer. Batch mode Omnidata runs are

characterized by the fact that the users’ responses do not appear on the

same line with the question.

This run was initiated via 11 punched cards which contained the

following:

@RUN,M/RBREENM,30305-BREENB,BASICEXT,20,200

@XBASIC,0

OLDrOMNIDATA

RUN

XXXXXX (account #)

XX (password)

MONO-INORQa file)

STACK (a module name)

MONO-ORG(a second file)

TMONO (a name for the new file)

SAVE (a module name)

etc.

The first thing of interest here is that we called @XBASIC,0 instead of

@XBASIC. The 0 option causes the above user inputs to be printed out

on the line following the Omnidata request. Without the 0 option these

user inputs would not be seen at all.

The fourth mode of operation mentioned above is remote batch,

which entails the user storing the commands for the Omnidata run in an

element of a file while on line, starting that run from his terminal via an

EXEC 8 command, and then receiving the output at the computer site, as

in the ordinary batch mode just described. This is useful if, for example,

while running in demand mode the user thinks of an Omnidata run he’d

like which will produce voluminous output. By starting a remote batch run

the results will be produced on a high speed printer, and the user will not

have to sit at his terminal waiting for the lengthy printout. Nor will it cost

as much.

The same results as appear in figure 3.5a would be achieved by the

following sequence typed in on-line as a remote batch run:

@ELT,D1 BATCH.STACK (assuming ‘BATCH’ is the name of a

previously assigned file)

@XBASIC,0

OLD:OMNIDATA

RUN

XXXXXX

XX

MONO-INORG

STACK

78

MONO-ORG

TMONO

SAVE

etc.

@END

@START BATCH.STACK

An advantage of such a remote batch run is that the file element is

permanently stored. Minor changes can be made (using the EXEC 8 @ED

processor) after which the run can be restarted to produce different

results.

* @run,m/r breenm,30305-breenb,basicext,20,200 *
* @xbasic,0 *
* XBASIC R5.1 16:21:05 15 APR 76 *
* old:omnidata *
* READY
* run *
* OMNI DATA 16:21:06 15 APR 76 *
* *PLEASE ENTER ACCOUNT NUMBER --->?
* >XXXXXXXXXXX
* *TYPE PASSWORD --->?
* >xxxx *
* GOOD MORNING, WELCOME TO OMNI DATA *
* * * ♦NOTE-OMNIDATA KEEPS A RECORD OF WHO USED WHICH *
* MODULE(S) ON WHICH FILE(S) AT WHAT TIME OF THE DAY * *
* *WHICH DATA BASE DO YOU WANT --->?
* >mono-inorg *
* FILE M0N0-IN0RG CONTAINS 18 DATA ITEMS FOR 2278 RECORDS.*
* ♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
* --->? >stack *
* *TYPE FILES TO BE STACKED. *
* (NOTE:ONE IN CORE ASSUMED FIRST.) --->?
* >mono-org *
* ♦TYPE NAME FOR NEW COMBINED FILE --->? ♦
* >tmono *
* *

♦ CPU SEC IN STACK = 7.6116 *
♦ CPU SEC = 14.6702 TIM = 16:25:29
♦ *TYPE A MODULE NAME AND/OR INSTRUCTIONS
♦ --->? >save *
♦ *

Figure 3.5a. This is a record of an Omnidata run made in the batch mode

from a deck of cards shown on the facing page. Note that the user must

anticipate all of the questions that the system and the various modules

ask.

79

• ••NOTES***

-

'

80

4. An In-Depth Application of Omnidata to the

NBS Crystal Data File

In what follows we shall see how the Omnidata system has been

applied in a real working environment to a data file containing 18 data

items for each of 24,000 crystal compounds comprising the NBS Crystal

Data Determinative Tables [14]. That publication consists of two volumes:

one for organic compounds and one for inorganic compounds. This logical

division is carried over to the magnetic tape version and to the on-line

data file on which we shall operate.

Each of the above mentioned volumes is further subdivided into six

chapters in which the compounds are grouped into the standard

crystallographic systems: monoclinic, cubic, tetragonal, hexagonal,

orthorhombic, and anorthic. The on-line data file has been divided

similarly so that the entire crystal data file is made up of 12 separate files

suitably named and catalogued and identically formatted. They are called:

ANOR-ORG MONO-ORG ORTHO-ORG TETRA-ORG

HEX-ORG CUBIC-ORG ANOR-INORG MONO-INORG

ORTHO-INORG TETRA-INORG HEX-INORG CUBIC-INORG

Dividing a large file into smaller subfiles makes for more efficient

computer operations when searches can be restricted logically to certain

portions of the file. It is our view that many existing monolithic files could

be broken down logically into smaller mutually exclusive segments. The

Omnidata system provides a number of modules to assist in file division as

well as a tandem mode of operation when it is necessary to search through

all of the subfiles or when an analysis is required for the file as a whole.

There are a number of other features in Omnidata to speed up

operations when no logical way of breaking up a file exists but the file can

be kept in some fixed logical order. These features will be discussed later.

Computerized data systems require the user to bring to them more or

less knowledge about the stored data. The more user-oriented the system

is the less does the user need to know about the data file to use it

effectively. The Omnidata system requires a minimum of such information.

The user of Omnidata need not be concerned at all with any of the

following:

a) programming languages (high level or low);

b) the way the information is stored internally in the computer;

c) the order in which the data items are stored for each of the records

in the file; or

d) how the logical records are related to the physical record or to the

disc sectors.

81

>old:omnidata*
READY
>run

OMNIDATA 15:32:54 17 MAY 77
♦PLEASE ENTER ACCOUNT NUMBER - - ->?
♦TYPE PASSWORD - - ->? > XXX
♦WHICH DATA BASE DO YOU WANT - - ->? >anor-inorg

GOOD AFTERNOON, WELCOME TO OMNIDATA
* ♦ *NOTE - OMNIDATA KEEP A RECORD OF WHO USED WHICH* ♦ *

MODULE(S) ON WHICH FILE(S) AT WHAT TIME OF THE DAY \

FILE ANOR-INORG CONTAINS 18 DATA ITEMS FOR 358 RECORDS.

♦TYPE A MOULE NAME AND/OR INSTRUCTIONS
--->? >labels

*

*

*

*

THE FILE ANOR-INORG CONTAIN a DATA LABELLED AS FOLLOWS:
4 A 7 ALPHA 5 B 8 BETA 6 C
11 DM 12 DX 14 FORMULA 9 GAMMA 2 I OR 0
15 IDNUM 16 M OR N 18 NAME 3 R 1 17 R2
13 SG 1 SYSTEM 10 Z

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
->? >modules

THE FOLLOWING
ABRIDGE AGGREGATE ANALYSIS ANNEX
ARRAY ATTACH BLANKS BROWSE
CHECKSUM COMPUTE CONCAT CROSSTAB
DESCRIBE DICTIONARY DISPLAY DISTRIBUTE
ENCODE EXTRACT FETCH FIT
GRAPH KWOC MOVE PLAN
PLOT RANDOM REGRESS RENAME
REPORT SAVE SCREEN SEARCH
SEGMENT SEQUENCE SORT STACK
ST ATI S STATPLOTS SUMMARY SURVEY
TALLY
USERS

TRIM UPDATE UPDATESEQ

******** ********* ******** ********4

MODULES ARE AVAILABLE:

Figure 4 a. See the text for a discussion of the marked items in this

Figure.

82

The file builder or manager, on the other hand, does need to know

the information in items c and d above in order to define the file into the

Omnidata format. How this is done is explained in section 2.1.

Returning to the file user again, the reader is reminded that in order

to make use of the Omnidata system a user must know the name of the

file he wishes to use and must, furthermore, be accredited as a user of that

file. In figure 4a we see an introductory dialogue between Omnidata and

the user of one of the crystal data files (ANOR-INORG).

At [A] we see how the user starts the cycle by asking for the main

program Omnidata under the SBASIC compiler. The compiler responds at

[B] with the date and time the run was started. The subsequent responses

are from the main Omnidata program which requests the user's account

number at [C], a password at [D], and a file name at [E]. These responses

are checked against the designated file to see if the user is accredited to

that file. If so, he is allowed to proceed. If not, a suitable diagnostic is

printed and what happens next depends upon which of the responses

cannot be reconciled with the accreditation data in the requested file.

These options, which are discussed in section 1.6.3, allow for efficient

recovery from inadvertant typing errors, while precluding access to

unauthorized persons.

Having passed the security checks built into the data file, the user is

greeted at [F] and informed at [G] that Omnidata keeps detailed records of

file and system users; he is further informed at [H] that the requested file

contains 18 data items for each crystal (record) and that there are data for

358 crystals in that file.

At this stage the Omnidata program is ready to respond to a request

for a particular module or to carry out one or more of the global

instructions discussed earlier. The response at [I] provides the user with

the labels associated with the crystal data file. These are the names of the

data items to which the system will respond for searching or other

operations. The numbers associated with the labels can be used

interchangeably with the names. The labels are numbered in the order in

which they were defined when the file was set up. At [J] we see again the

request for a module name or instructions and the response MODULES,

which produces the list of active Omnidata modules of concern to file

users.

As illustrated thus far the system has supplied the user with general

information about the system and the general content of the ANOR-

INORG data file. To be able to search that file and others in the crystal

data file system, the user needs to know how the detailed information is

entered in the file. The user will need to know:

83

*

*

*

*

*
*

*

*

*

*

*

*
*

*
*

*

*

*
*

*

*
*

*

*

*
*
*
*
*
*

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
- - ->? >display

♦TYPE LABELS OF ITEMS TO BE DISPLAYED OR ALL
--->? >all

RECORD NUMBER 1
SYSTEM - - A
I OR 0--I
R1-- 0.0221 ^._ _
A--5.3 ~ —(g)
B-- 240.0
C - - 5.3
ALPHA - - 90.00000
BETA - - 120.00000
GAMMA - - 90.00000
Z - - 24.
DM - -
DX - -
SG - - P-1.
FORMULA - - KR3(0 H, F)2(AL, SI)4 O10
IDNUM - - 000001 ^
M OR N - - MI —-\GJ
R2 - - 0.0221
NAME - - POTASSIUM HYDROXIDE-FLUORIDE ALUMINATE-SILICATE (1+2+4+10)

♦MORE >? >no _—(0)
♦TYPE LABELS OF ITEMS TO BE DISPLAYED OR ALL

->? >system,i or o,dm,sg,m or n

* REC# S I DM SG M

I -(R) p-1- MI 2 A ’-
* 3 A I NM
* 4 A I p-i. MI
* 5 A I 2.147 J£) MI
* 6 A I 2.92 MI
♦ ♦MORE --->? >5
♦ 7 A I 5.329 p-i. MI
* 8 A I 6.01 p-i. MI
♦ 9 A I 2.702 p-i. MI
* 10 A I 2.699 pi. MI
* 11 A I 2.71 pi. MI
* ♦MORE - - ->? V

't

Vi

 I

* '*""* * 'T"* "* * * * > ****** ********** *******

Figure 4 b. See the text for a discussion of the marked items

"S3)

figure.

84

a) how are space groups indicated?

b) how are the chemical formulas written?

c) how are angles entered?

d) how are chemical names written?

e) etc.

Omnidata provides a considerable variety of ways to obtain that

information via modules which have their major utility quite apart from

providing answers to the above questions. The first of these is the

DISPLAY module, whose operation is illustrated briefly in figure 4 b, et

seq., and more fully in section 3.2.

The DISPLAY module allows one to see easily all of the data items

and their labels for the first record in the file and for as many succeeding

records as desired. At point [A] in figure 4b, this module asks for either

the word ALL or a list of labels (names of data items) to be displayed.

Since the response at [B] is ALL, we are shown the 18 pieces of

information stored in the first record of this file. From this printout we

see: at [C] that the determinative ratio R1 is entered to four decimals; at

[D] that the angles (alpha, beta, and gamma) are in degrees to five

decimals; at [E] that entries for the densities DM and DX are blank in this

record; at [F] how the chemical formula is entered in the record; and at

[G] that the crystal is a mineral (MI).

Although this form of the DISPLAY module provides useful

information to one unfamiliar with the detailed way in which the data is

recorded in the file, it does not answer all questions on this subject. While

we see at [G] that minerals are tagged as MI, we do not yet know how

non-minerals are indicated, nor can we be sure that the formula given in

this record is representative of the entire file.

To get a look at a larger sample of the data in this file, we respond at

[H] with the word NO. This changes the operation of this module from the

ALL mode to the alternate mode in which we can ask for specific data

items to be displayed. At [I] we request a display of the data items

SYSTEM, I OR 0, DM, SG, M OR N, and the result is a table displaying

the above data items for the next five records in the file. On careful

examination we see at [J] the entry NM which we can safely assume to be

the way in which nonminerals are tagged in the data vector labeled M OR

N. The reason why only the letter M is printed as the heading of this

column is explained in section 3.2. At [K] we see missing data items in the

DM and SG columns. At [L] we have an opportunity to see some more of

the data in this file and note from the next five records some

representative space group (SG) entries and the variation in number of

decimal in the vector DM. The response at [L] yields five more records.

85

12 A I 3.0 P-1. NM
13 A I PI. MI
14 A I 3.46 P*. MI
15 A I 2.154 MI
16 A I 2.181 P-1. MI
17 A I NM
18 A I 2.18 PI. MI
19 A I 4.15 P-1. MI
20 A I MI
21 A I 2.33 MI

•MORE - - ->? --
•TYPE LABELS OF ITEMS TO BE DISPLAYED OR ALL

->? >formula

REC FORMULA

(FE, MN, CA, MG) SI 03
(MN, FE) SI 03

25 BA2 MN2 (TI, FE) 0(SI2 07) (P, S) 04 O H
26 (BA, SR, NA) 2 (MN, FE, CA, MG) 2 (TI, FE, AL) 0(04](0 H)

•MORE->? >back to I
•MORE->? >yes

K R3(O H, F) 2 (AL, SI)4 010

2 K R3(0 H, F) 2 (AL, SI)4 OlO
3 YB6TIOH
4 PB3AS4 S9

5 FE2(S 04)3+10 H2 O
6 CA SI 03
7 PB3 AS4 S9
8 PB5SN3SB2S14
9 MG5(FE, CR, AL) (SI, AL)4 018 H8
10 (MG, FE, AL) 6 (O H) 8 (SI, AL)4 OilO

•MORE - - ->? >skip to 24
•MORE->? >yes

24 (MN, FE) SI 03
25 BA2 MN2(TI, FE) O (SI2 07) (P, S) 04 O H

Figure 4 b (concluded). Note how the DISPLAY module allows one to

skip back and forth in a file. This feature is useful to locate on a

particular record as shown in figure 5.10a.

86

Finally, a response of NO at [M] allows us to display some other data

vectors, and we elect at [N] to see how the formulas are entered. We are

quickly reminded at [0] that the DISPLAY module works its way down

the file. As we wish to see the formulas for the earlier records in the file,

we instruct the module at [P] to back up (BACK TO 1) and get as many

records listed as we wish.

Another way to get a look at how data are entered in the file is via

the BROWSE module. In figure 4 c we see the result of browsing on the

space group vector SG. This module displays each unique entry once as it

finds it in the space group field while it searches through the file. Each

time a new item is found the record number in which it occurred is

printed. Thus, we can see at [B] that the first two records belong to space

group P21, that there is a blank in the SG field in record three, etc. This

operation proceeds until 10 unique space groups are reported, at which

time we have an opportunity to continue or not, as we do at point [C]. At

[D] we forego a report of how many records contained each of the listed

space groups. This feature is illustrated and discussed further in section

5.05.

*TYPE A MODULE NAME AND/OR INSTRUCTIONS

->? >browse
--®

WHICH LABEL DO YOU WANT TO BROWSE ON - - ->? >*g

LINE REC NO. SG

1. 1 P21.

2. 3 ♦BLANK*

3. 4 PC.

4. 5 P21/N.

5. 9 C*/C.

6. 12 P21/C.

7. 14 P21/M.

8. 22 P2/M.

9. 26 P21 /*.

10. 30 P21/A.

11. 31 AA.

12. 36 I*/A.

13. 41 CC.

14. 42 A2/M.

15. 45 A*/A.

♦MORE - - ->?

* * *

♦MORE->? >nc
♦DO YOU WANT A TALLY PRINTED OUT->? >no
♦WHICH LABEL DO YOU WANT TO BROWSE ON - - ->?

>stop

Figure 4 c. In this output from the BROWSE module the record numbers

show the first record in which the particular space group appears.

87

From the question at [E], we see that we now have an opportunity to

BROWSE on a different data vector. We STOP the run, instead, in order

to choose a different subfile so as to illustrate another feature of the

BROWSE module. In figure 4 d we see that each time the BROWSE

module has read 100 records without finding a new entry to post, it tells

how far through the file it has progressed and asks if it should continue.

Since the response at [B] is negative, we are afforded an opportunity at [C]

to see how many of each of the entries were found in the records read up

to that point. In this table the numbers 1 to 15 refer to line numbers in

the results above and are to be interpreted as follows: 2 records contained

a Z value of 24; 35 records were blank; 41 records contained a value of 1

for Z; etc.

•WHICH LABEL DO YOU WANT TO BROWSE ON - - ->? >z
LINE Z

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

13.
14.
15.
WE HAVE REAb 180 RECORDS

NO NEW ENTRIES IN LAST 1
. *MORE - -/->? >no

^ *DO YOU/WANT A TALLY PRINTED OUT

•MORE->?/ >yes

50 % OF FILE)
RECORDS

- ->? >yes
1. 2 5. 61 9. 1 13. 1

2. 2 6. 1 10. 1 14. 1

3. 23 J 7. 5 1 11. 1 15. 3
4. 35 • 8. 41 • 12. 2
FOR HISTOGRAMS, CALL TALLY

<§>

•WHICH LABEL DO YOU WANT TO BROWSE ON - - ->? >end

Figure 4 d. Here we see how the BROWSE module keeps and reports a

tally of how many of each of the values there are in the designated data

vector. While the first blank occurred in record 4, there are actually 35

blank entries in the space group (SG) column in the 180 records read thus

far. See the text for additional comments on this figure.

88

The reminder at [D] tells us of still another way to look at the totality

of unique entries in a data vector, namely, via the module TALLY

illustrated in figure 4e. An explanation of the dialogue shown at [A] is

deferred until section 5.34. The TALLY module is of great utility to the

data file manager because it provides an easy way of checking on missing

data items, on typographic errors, or inconsistencies in the data entries.

Prior to the utilization of the AGGREGATE module on the crystal data

file (discussed later in this section), a run through the TALLY module

showed that 4 of the 184 different entries in the SG vector in the

orthorhombic system were to nonexistent space groups. These errors were

subsequently traced back to typographic errors in the original sources of

the data.

Early in the development of this module, attempts at providing a

TALLY on job titles revealed such a host of variations (legitimate and

otherwise) as to make such a listing almost useless. This state of affairs

did, however, motivate us to build a number of interesting ‘and highly

useful features into this module. In section 5.34 we show how tallying on

the first word (or character) or the first n words (or n characters) from the

front of a data field (or from the back) can yield interesting results when

applied to hierarchically structured character strings within individual

entries in a data field.

Now that we know how space groups and chemical formulas are

handled in the crystal data file we can proceed to a discussion of how the

SEARCH module is used. In figure 4g we see a record of the dialogue

between Omnidata and a user who wishes to see certain data on all

inorganic compounds in the anorthic system containing sodium and either

nickel or copper or iron. After calling the proper disk file at [A] and

instructing the SEARCH module to operate in the SELECT mode at [B],

the search criteria are supplied at [C]. Upon completion of the search we

learn at [D] that 10 records satisfy the criteria. At [E] we select the PRINT

option on the resulting current file and ask to see the five data items

indicated at [F]. As we wish to use the REPORT module for the rest of the

data items, we exit at [G] with the current file.

While the DISPLAY module is intended for a quick look at data, the

REPORT module is intended for preparing finished reports. Thus, ample

provision has been made in this module for fancy formatting. Among these

are provisions for page headings and footings, column headings for tabular

arrangement, and selective labeling of data. This module works in two

major modes — labeled and unlabeled, but in each mode it is possible to

exempt certain data items. In figure 4 h we have an example of how a

small report is designed using the interactive feature of this module to

position the column heading precisely where desired.

89

**
♦WHICH DATA BASE DO YOU WANT - - ->? >anorthic

GOOD AFTERNOON, WELCOME TO OMNIDATA
* * *NOTE - OMNIDATA KEEPS A RECORD OF WHO USED WHICH* * *

* MODULE(S) ON WHICH FILE(S) AT WHAT TIME OF THE DAY

FILE ANORTHIC CONTAINS 18 DATA ITEMS FOR 1026 RECORDS.

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
->? >tally

END ♦TYPE LABELS (UP TO 3) TO BE TALLIED; FOLLOWED BY
->? >sg,sg,end
♦TYPE ANY SEPARATORS YOU W1SH RECOGNIZED, OR N(ONE) -

>n°ne "-—(g)
♦DO YOU WANT THE TALLY OF SG SORTED
(ALPHA)BETICALLY, OR ON FREQUENCY IN (ASCEND)ING
OR (DESCEND)ING ORDER - - ->? >alpha

♦SHALL WE NORMALIZE - - ->? >yes
TALLY OF SG

->

♦ SG CUM % % CUM FREQ

♦ 31.2 31.2 320
* P-1. 88.2 57 905
* P*. J& 92.80 4.6 952
* pl- , s' 100 7.2 1026
* ? > ^

FREQ

i <

320 XXXXXXXXX *

<

585 XXXXXXXXXXXXXXXXX
47 X
74 XX

♦DO YOU WANT THE TALLY OF SG SORTED
(ALPHA)BETICALLY, OR ON FREQUENCY IN (ASCEND)ING
OR (DESCEND)ING ORDER - - ->? >descend

♦SHALL WE NORMALIZE - - ->? >yes
TALLY OF SG

* SG CUM % % CUM FREQ FREQ *

♦ P-1. 57 57 585 585 XXXXXXXXXXXXXXXXX
♦ 88.2 31.2 905 320 XXXXXXXXX *
♦ PI. 95.4 7.2 979 74 XX *
♦ P*. 100 4.6 1026 47 X *
♦ ****** ************ * * * * ****** ********** *

Figure 4 e. Here we TALLY the space group field twice to illustrate two
arrangements — alphabetically at [B] and according to frequency at [D].

The input request at [C] provides a pause to allow for positioning of the
paper after which a carriage return will signal the module to produce the

next tally. See section 5.34 for an explanation of the request at [A] and to

learn how the histograms look when not normalized.

90

♦DO YOU WANT THE TALLY OF SG SORTED *
(ALPHA)BETICALLY, OR ON FREQUENCY IN (ASCEND)ING *
OR (DESCEND)ING ORDER - - ->? >descend *

♦SHALL WE NORMALIZE - - -> ? >yes *
♦HOW MANY OF THE 47 ENTRIES DO YOU WANT PRINTED—>? >all ♦

/ TALLY OF SG ♦
SG /CUM % % CUM FREQ FREQ *

/ 26.2 26.2 1238 1238 XXXXXXXXXXXXXXXXXXX
FM3M. (A) 472 21 2229 991 xxxxxxxxxxxxxxx
FD3M. ^ 60.9 13.8 2880 651 xxxxxxxxxx

PM3M. 73.10 12.1 3454 574 xxxxxxxxx *

F-43M. 76.30 3.2 3604 150 XX *

PA3. 79.30 3.1 3750 146 XX *

IA3D. 82.10 2.8 3882 132 XX *

I-43D. 83.9 1.7 3964 82 X *

IM3M. 85.60 1.7 4045 81 X *

P213. 87.30 1.7 4125 80 X *

PM3N. 88.80 1.5 4196 71 X *

IA3. 90 1.2 4253 57 X *

1-43M. 91.10 1.1 4305 52 X *

FM3C. 92 .9 4349 44 X *

PN3M. 92.9 .8 4389 40 X *

P-43M. 93.7 .8 4429 40 X *

F*3*. 94.60 .8 4469 40 X *

FM3. 95.2 .6 4497 28 *

PN3. 95.7 .6 4523 26 *

IM3. 96.2 .5 4548 25 *
p*** 96.7 .5 4571 23 *

F-43C. 97.2 .5 4594 23 *

P41,332. 97.7 .4 4615 21 *

P-43N. 97.9 .2 4626 11 *

I*** 98.10 .2 4636 10 *

F23. 98.30 .2 4646 10 *

1213. 98.5 .2 4655 9 *

PN**. 98.7 .2 4663 8 *

P4232. 98.80 .2 4671 8 *

P*3*. 99 .1 4678 7 *

123. 99.10 .1 4685 7 *

1*3*. 99.2 .1 4690 5 *

14132. 99.30 .1 4695 5 *

P23. 99.4 .1 4700 5 *

FD3. 99.60 .1 4705 5 *
****** ************* ► * * * * : * * * * * * * * * * * * * * *

Figure 4 f. Here we have results of a tally of space groups in a larger

file. Note that when the number of unique items found in the designated

data vector exceeds 10, the user is informed at [A] what that number is

and asked how many are to be printed.

91

*************************t*t4IItt4I4l'lf
♦WHICH DATA BASE DO YOU WANT - - ->? >anor-inorg

* GOOD AFTERNOON, WELCOME TO OMNIDATA
* * * *NOTE - OMNIDATA KEEPS A RECORD OF WHO USED WHICH* * *

MODULE(S) ON WHICH FILE(S) AT WHAT TIME OF THE DAY

FILE ANOR-INORG CONTAINS 15 DATA ITEMS FOR 358 RECORDS.

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
- ->? >search ----—

>formula,ni or cu or fe

♦TYPE S(ELECT) OR R(EJECT) - - ->? >select
♦TYPE LABEL AND VALUE(S)

1 ->? >formula,na
AND

2 - - ->?

AND
3 - - ->? >end
10 HIT(S) WHEN:-

FORMULA IS NA
AND

FORMULA IS NI OR CU OR F
♦TYPE P(RINT),S(EARCH) OR E(XIT) - - ->? >print
♦TYPE C(URRENT),P(REVIOUS), OR O(RIGINAL) - - ->? Current
♦TYPE LABELS OF ITEMS TO BE PRINTED OR ALL

-->? > rl, a, b, c, dm

* R1 a B C DM
* 0.4775 7.01 14.68 5.38 4.19
* 0.8225 8.20 9.97 6.97 2.74
* 0.8690 10.55 12.14 8.00 3.66
* 0.8885 10.12 11.39 7.27
* 0.9372 9.752 10.406 8.926 3.81
* 0.9558 9.72 10.17 9.56 3.378
* 0.9687 9.3 9.6 9.2 1.64
* 0.9756 12.82 13.14 5.42 3.498
* 0.9815 11.660 11.880 5.391 3.42
*
*

0.9841
♦MORE --

11.75
->? >no

11.94 5.35

* ♦TYPE P(RINT),S(EARCH) OR E(XIT) - - ->? >exit -—^ T
* ♦TYPE C(URRENT),P(REVIOUS), OR O(RIGINAL) - - ->? >currei
* * ******* ******** ****** ********* * * * i

* *

*
*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*
*
*

*

*
*
*
*

*

*
*

*

*
*

*
*

*

*

Figure 4 g. Here we see the result of searching for crystals containing

sodium (NA) plus either nickel (NI), copper (CU), or iron (FE) in the

chemical formula. The PRINT option is not a separate module; it provides

a quick way of looking at data while in the SEARCH module.

92

In this example, we request at [A] an unlabeled report with 20 lines

56 characters wide. Had we omitted the number of lines in the above

instruction, the page depth would be formatted automatically to be

proportional to a 6x9 inch print area. At [B] we indicate the data items to

be printed and the title of the report, while at [C] we are content to use the

assigned labels as column headings. At [D] we are shown how the column

headings would appear over the tabulated data and are given an

opportunity at [E] to make changes in the position or even the wording. At

[F] we choose simply to shift the headings to center them over the

columns, while at [G] we are shown again how the modified headings look.

We accept this modification, and after answering two more questions in

the negative at [H], the report is printed as instructed.

In figure 4i we see another application of the REPORT module to

print a short table in which the formula field and the name field are

presented for the first 19 records in the cubic-organic file. Here we show

a feature of REPORT which allows us to specify at [A] that only the first

20 characters of the formula field and only the first 35 characters of the

name field should be printed in the report. The use of the SHORT option

allows us to print both the formula and name on the same line even

though 80 characters are reserved for formulas and 90 characters are

reserved for names in the actual file. We chose to display these 19 lines

because we knew that the data in them was short enough to fit in the

designated space. Had the names been longer, the instruction at [A] would

have caused them to be truncated in the report.

In this report we supplied the column headings at B in such a way as

to place them more nearly centered on their respective columns. Had we

chosen to do so we might have used the words COMPOUND or

COMPOSITION instead of the headings FORMULA or NAME. It should

be noted that in both title lines and column headings we are not restricted

to single line entries. Since each line is preceded by a line number, it is

possible to change one's mind in the process simply by repeating a line

number used previously and following it by the revised text. Other

features of the REPORT module are discussed in section 5.23.

One of the advantages of having a large data file in computerized

form is that it can be sorted in various ways on one or more key data

elements. This is especially true in the case of the Crystal Data File where

the data are arranged in 12 separate chapters and by chapter in increasing

value of the first determinative ratio (Rl). This logical organization is

carried over to the computer files to reduce search time when information

is desired from one or more specific crystal systems. When certain

information is desired from all systems, it is not necessary to handle each

file separately because the STACK module will put the desired files in a

specified order so that Omnidata can treat them as a single file.

93

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

♦TYPE MODE- -LABELLED OR UNLABELLED - - ->? unlabeled
♦TYPE DIMENSIONS OF LINE AND PAGE - - ->? 56,20
♦TYPE LINES FOR OUTPUT

LINE 1 ? rl» alpha, beta, gamma —_j(B]

LINE 2 ? end
♦TYPE TITLE LINE OR N(ONE) - - ->,

1,crystals containing na and ni or cu or fe (part 2)
end
♦ANY COL HEADS- -TYPE L(ABELS),N(ONE) OR 4 HEADINGS

rl,alpha,beta,gamma
end -

ALPHA BETA GAMMA-

?

?

?
?
Rl

0.4775 93.50000 90.20000
♦OK- -TYPE YES OR NO - - ->? no
♦TYPE LINE NO., OLD HEAD, NEW HEAD - - ->

l.‘rl V rl‘
1,‘alpha Y alpha*
1,‘beta y beta*
1,‘gamma ‘,‘ gamma
end

Rl ALPHA BETA
0.4775 93.50000 90.20000

♦OK- -TYPE YES OR NO - - ->? yes
♦TYPE FOOTNOTE LINES OR N(ONE) -

? none-...

-->

GAMMA
95.30000---==*\S)

->

♦DO YOU WANT TO POSITION
TYPE YES OR NO - - ->? no

PER AFTER EACH PAGE - -

* CRYSTALS CONTAINING NA AND NI OR CU OR FE (PART 2)

*
*

Rl ALPHA BETA GAMMA

* 0.4775 93.50000 90.20000 95.30000
* 0.8225 98.96667 114.78333 105.03333
* 0.8690 105.06667 96.38333 107.35000
* 0.8885 91.35000 99.05625 111.08958
♦ 0.9372 96.86667 114.41667 64.78333
* 0.9558 109.30000 91.30000 71.00000

Figure 4 h. In this application of the REPORT module we show how it

allows the user to supply column headings and to edit them. Since the

headings happen also to be the assigned labels, a response of LABELS at

[C]would cause them to be centered automatically. See the text for a

further discussion of this figure.

94

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS

->?• report

♦TYPE MODE- -LABELLED OR UNLABELLED - - ->? unlabeled
♦TYPE DIMENSIONS OF LINE AND PAGE - - ->? 56, 25
♦TYPE LINES FOR OUTPUT

LINE 1 ? formula,short,20,name,short,35 —^
LINE 2 ? end (A)

♦TYPE TITLE LINES OR N(ONE) - - ->
? 1,first 19 records in the cubic-inorg file
? end

♦ANY COL HEADS- -TYPE L(ABELS),N(ONE) OR 2 HEADINGS- - ->
? 4 formula4,4 name4
? end

FORMULA

P PHOSPHORUS
♦OK- -TYPE YES OR NO - - ->? yes
♦TYPE FOOTNOTE LINES OR N(ONE) - - ->

? none
♦DO YOU WANT TO POSITION PAPER AFTER EACH PAGE - -

TYPE YES OR NO - - ->? no

*

FIRST 19 RECORDS IN THE CUBIC-INORG FILE *
-—- #

*

FORMULA NAME *

=========== II *

P PHOSPHORUS *

BE BERYLLIUM *

BE CO BERYLLIUM COBALT (1+1) *

BE CU BERYLLIUM COPPER (1+1) *

C06 SI2.5 VI.5 COBALT SILICON VANADIUM 16+2.5+1.5) *

BE PD BERYLLIUM PALLADIUM (1+1) *

FE3 SI IRON SILICON (3+1) *

AL NI ALUMINUM NICKEL (1+1) *

CO(MN0.5 SI0.5) COBALT MANGANESE-SILICON (1+1) *

AL CO CU2 ALUMINUM COBALT COPPER (1+1+2) *

CO FE COBALT IRON (1+1) *

(FE, B) IRON-BORON *

AL CO ALUMINUM COBALT (1 + 1) *

MN3 SI MANGANESE SILICON (3+1) *

(FE, NI, CO) IRON-NICKEL-COBALT *

FE IRON *

Figure 4 i. Here we illustrate the use of the SHORT instruction when

formatting a report. See the text for a further discussion of this figure.

95

While the STACK module is a convenience in searching, it is a

necessity in sorting when one wishes, for example, to sort the data on

space groups regardless of whether the crystals are organic or inorganic.

In figure 4j we see at [B] how the STACK module is told to add the

anorthic-organic file to the anorthic-inorganic file which was called up

first at [A], while at [C] we provide a name for the composite file. At [D]

we type the global command LENGTH to see how long the composite file

is, to double check, and follow by calling the SORT module at [E]. The

instructions at [F] are to sort alphabetically on space group and then on

R1 within each space group. A discussion of the uses of two options

indicated at [G] is to be found in section 5.28. At [H] we use the

DISPLAY feature of the SEARCH module to see that the file has indeed

been sorted as desired.

We have seen earlier how the TALLY module tells us a good deal

about the distribution of unique data entries in a given data field. Another

item of interest is the distribution of values in one data field among those

in another. In particular, how are the values of Z in the file distributed

among the space groups (SG)? Such information is provided by Omnidata

via the CROSSTAB module illustrated in figure 4 k. This module

produces a two-way analysis, in this case, of Z values against space groups

(SG). From this table we see that of the 78 records in which Z = l, 50 are

in space groups P-1, 6 are space group P*., 15 are in records where the

space group is blank, and 7 are in space group PI. While from a

crystallographic point of view such a cross tabulation is not very

important, it can serve to identify typographic errors. Other applications of

this module are illustrated in section 5.8.

At a certain stage in working with the crystal data file of all organics

it became necessary to divide it into separate files for each of the

crystallographic systems — cubic, hexagonal, orthorhombic, etc. That

operation was performed by the DISTRIBUTE module as shown in figure

4 1. We see there at [A] a request to monitor the operation each time

2000 records are processed and the result of that monitoring at [C]. When

the operation is completed, we get a report at [D] giving the names by

which the subfiles have been saved and how many records they contain.

The names are composed of three items: F for file; SYSTEM for the

label of the data vector on which the file was split; and the letters A, M,

0, T, H, and C which were the actual file entries for the crystal systems—

anorthic, monoclinic, orthorhombic, tetragonal, hexagonal, and cubic,

respectively.

96

♦WHICH DATA BASE DO YOU WANT - - ->? >anor-inorg ^

FILE ANOR-INORG CONTAINS 18 DATA ITEMS FOR 358 RECORDS.

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
->? >stack

♦TYPE FILES TO BE STACKED.
(NOTE:ONE IN CORE ASSUMED FIRSTV)
? >anor-org —

♦TYPE NAME FOR NEW COMBINED FILE - - ->? >anorthic

CPU SEC IN STACK = 1.2686
CPU SEC = 1.5274 TIME = 16:01:06

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
->? >length-

PRESENTLY, YOUR FILE HAS 1026 RECORDS.
♦TYPE A MODULE NAME AND/OR INSTRUCTIONS

->? ---
♦TYPE ALPHA(BETIC) OR VAL(UE) SORT - - ->? >alpha
♦TYPE SORT KEYS IN ORDER --->?■ > sg, rl
♦TYPE CHARACTERS TO BE IGNORED IN SORT KEY, OR NONE - - ->? >none
♦TYPE LABELS TO BE TOTALLED AND AVERAGED - - ->? >none *

CURRENT FILE IS SORTED- -CALL SAVE TO SAVE.

CPU SEC IN SORT = 76.854
CPU SEC = 83.639 TIME = 16:06:33

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
->? >display

♦TYPE LABELS OF ITEMS TO BE DISPLAYED OR ALL
->? > sg, rl

SG Rl

P-1.
P-1.
P-1.
P-1.
P-1.
P-1.
P-1.
P-1.

* * * *

Figure 4 j. Here we see an application of the STACK module followed by

a SORT on the composite file. See the text for a discussion of the marked

places in this figure.

97

Subsequent to the publication of the NBS Crystal Data Determinative

Tables [14] it was decided to prepare a supplementary publication [15] to

serve as an index to well-characterized and properly classified crystals

reported in the published table. Here it was important to arrange the index

first by crystal system (cubic, monoclinic, tetragonal, etc.) and then by

space group. This would have been a trivial problem for Omnidata, not

worth mentioning, were it not for the following complications:

a) records in which space group entries were blank were to be

deleted from the index;

b) records in which the space groups were uncertain (those in

which an asterisk appeared) were also to be deleted; and,

c) the remaining space groups were to be reclassified into

broader numeric classes.

It is this last requirement that affords us the opportunity to illustrate

the use of the AGGREGATE module. Before doing so it seems worthwhile

to review briefly the steps in solving this production problem for the

monoclinic system via Omnidata.

Step 1*. Here we combine the two monoclinic files (MONO-ORG and

MONO-INORG) by using the STACK module.

Step 2. Next we call the SEARCH module and reject records from

the file in which the space group is either blank or contains on

asterisk (*).

Step 3. The AGGREGATE module is used next to achieve

reclassifications of the space groups.

Step 4. The resulting file is sorted on the new space group

designations.

Step 5. The file is then printed, listing: the space group, the first

determinative ratio Rl, and the chemical formula.

The operation of the AGGREGATE module is shown in figure 4.1

where at [A] we instructed the main Omnidata to set the monitor switch to

500 so that the module will report each time it has read 500 records (as it

indeed does at [E]). At [B] we designated by SG that it is the space group

data entries which are to be aggregated, while at [C] we supply the name

of the new data vector which the module will generate called SGNUM. The

detailed instructions are supplied at [D] In the first 2 lines, we see how the

module is instructed to enter the number 14 in the new data vector

(SGNUM) for each record in which the SG is either P21/A., P21/A,

P21/N., P21/N, P21/C., or P21/C. The spaces which follow these space

group designations in the input stream are to allow for the blanks that

follow these designations in the 10-character field reserved for the SG

vector in each record. Other interesting features of the AGGREGATE

module are discussed in section 5.2.

98

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS

->? >crosstab

♦TYPE LABELS TO BE CROSSTABBED - - ->? >z,sg
CAUTION, SG IS NO A NUMBER IN THIS FILE

♦RESPOND WITH AN OPTION NUMBER.
1 ACTUAL VALUE
2 % OF TOTAL IN FILE
3 % OF TOTAL IN Z
4 % OF TOTAL IN SG
0 TO STOP

->? >1
♦ANY HEADING - - ->? distribution of z values among space groups
♦ANY FOOTNOTE- - ->? > NO

DISTRIBUTION OF Z VALUES AMONG SPACE GROUPS

* * * SG * * *

z P-1. P*. PL TOTAL

1 50 6 15 7 78
2 112 4 30 5 151
3 2 0 3 0 5
4 25 2 17 0 44
6 4 0 3 1 8
8 7 1 3 1 12
9 0 0 1 0 1
10 0 0 1 0 1
12 0 0 1 0 1
14 1 0 0 0 1
16 0 0 0 1 1
18 0 0 1 0 1
24 1 0 1 0 2
32 1 0 0 0 1
36 0 0 2 0 2

TOTALS 203 13 78 15 309

THIS TABLE SHOWS ACTUAL VALUES
* * * * * ********* ******** * * * * ********* * * *

Figure 4 k. In this application of the DISTRIBUTE module we have

chosen to tabulate the actual values for the distribution of space groups

among the Z values. Note that 78 records contain blanks in the space

group field. If blanks had been encountered in the Z field they would have

shown up on the first line before Z = l.

99

FILE ALLORGANIC CONTAINS 18 DATA ITEMS FOR 7496 RECORDS. *

•TYPE A MODULE NAME AND/OR INSTRUCTIONS
->? >monitor,2000 ---—-----

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
->? >distribute —-----

•DISTRIBUTE ON WHICH LABEL--->? >system

-®
<D

*

*

2000 ENTRIES DISTRIBUTED TO 2 FILES
4000 ENTRIES DISTRIBUTED TO 2 FILES
6000 ENTRIES DISTRIBUTED TO 3 FILES

4.6904
9.051

13.6178

105818
110009
110213

*

*

YOU HAVE CREATED 6 FILES
NAME # ENTRIES
FYSTEMA
FYSTEMM
FYSTEMO
FYSTEMT
FYSTEMH
FYSTEMC

*

*

• CPU SEC IN DISTRIBUTE = 17.416 •
• CPU SEC = 17.6856 TIME = 11:04:39 *
• *

* *TYPE A MODULE NAME AND/OR INSTRUCTIONS *
* ->? >stop •
* TIME 017.688 •
**

Figure 4 1. Here we see how the DISTRIBUTE module divides a file into

six subfiles, suitably named and saved for further processing. See the text

for an explanation of how the files are named by the DISTRIBUTE

module. The numbers at [C] are the cpu seconds elapsed since the start of

the operation and the wall-clock time.

100

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
->? >monitor,500, aggregate__ B,

♦TYPE LABEL TO BE AGGREGATED - - ->? > sg
♦TYPE NEW ENTRY, OLD ENTRIES TO BE AGGREGATED -->

? >‘14Vp21/a. 7p21/a 7p21/n. 7p21/
? >‘14\‘p21/c. 7p21/c 4

? >‘ 47p21. 7p21 4

7 >‘ 9‘,‘aa. ‘,‘cc. ‘,‘ia. ‘,‘ic.
? >‘ 8‘,‘am. 7cm. ‘,‘im. 4

? >T5\‘a2/a. 7c2/c. 7i21/a. ‘,‘i2/a.
? >T2‘,‘a2/m ‘,‘c2/m. ‘,‘i2/m. 4

? >‘ 5‘,‘a2. ‘,‘c2. ‘,‘i2. 4
? >‘15‘,‘i2/c.
7 >‘ 7‘,‘pa. 7pc. ‘,‘pn.

4

? >‘ 6‘,‘pm. «

? >‘117p21/m. t

7 >‘13‘,‘p2/a. ‘,‘P2/c. 7p2/n 7p2/n
7 >T0*,‘p2/m.
7 >‘ 3‘,‘p2.

t

? >end
♦TYPE NAME OF NEW VECTOR OR R(EPLACE) TO OVERWRITE - - ->

? > sgnum
********* **************************

Figure 4m. See the text for a discussion of this application of the

AGGREGATE module. In the degenerate case this module serves to

translate data items (one-for-one). See section 5.2 for a fuller account of

the features of this module.

101

* * ♦♦♦NOTES

.

5. Descriptions of the Data Manipulation and Analysis Modules

In the previous section we have tried to convey a general view of
the modular character of Omnidata and illustrate the nature of the
dialogue between the user and the system. In this and the following
sections we take up, in alphabetic order, the features of each of the
modules. This we have done to reduce to a hopeful minimum the time
spent in searching for an explanation of a particular module.

The following modules are discussed in this section:

ABRIDGE
BROWSE
DESCRIBE
EXTRACT
KWOC
REGRESS
SEARCH
STACK
SURVEY

AGGREGATE
COMPUTE
DISPLAY
FETCH
PLAN
RENAME
SEGMENT
STATIS
TALLY

ANALYSIS
CONCAT
DISTRIBUTE
FIT
PLOT
REPORT
SEQUENCE
STATPLOTS
TRIM

ARRAY
CROSSTAB
ENCODE
GRAPH
RANDOM
SAVE
SORT
SUMMARY

The Omnidata system contains eight more modules which are of
primary interest to the file builder or the data file administrator. These
utility modules are described briefly in section 1.5 and more fully in
section 6.

103

5.1 ABRIDGE

In a typical personnel file there may be more than 100 data items
per person (see fig. 3.1e). Our experience with such a file over the last few
years confirms the fact that it is sometimes necessary and often desirable
to be able to search the file on any of the data items. It is, indeed, a
feature of the Omnidata system that all of the data items in an Omnidata
file are searchable. We recognize, nevertheless, that seldom used
information in the file represents an overhead which may be burdensome
in repeated uses of large files. The ABRIDGE module was designed to
assist in excluding seldom used data from the working copy of the file or
even in partitioning the file into two or more segments in which the data
vectors are grouped for more efficient operation.

This module requests as input from the user the names of those
vectors which will (or will not) be included in the abridged file. The user
has the option of selecting certain data or of rejecting certain data,
whichever is easier to specify. If only a few vectors are to be retained in
the abridged file, the user may input ‘SELECT’ or ‘S’ followed by a list of
the labels for those data vectors to be extracted. If, on the other hand, the
majority of the data vectors are to be retained, it may be easier for the
user to type ‘REJECT’ or ‘R’ followed by labels for data vectors to be
excluded from the final file. In either case, the ABRIDGE module creates
a smaller file consisting of the same number of entries, but fewer data
points per entry. When typing labels for vectors to be selected or rejected,
continuation of the instruction to the next line can be achieved by ending
the line with the sequence: comma, ampersand, carriage return.

Vectors to be selected (or rejected) may be specified either by label
or vector number and in any order. The order of vectors in the abridged
file is in the order of the original file. Regardless of how specified, the
labels carry their original numbers. A provision has been made in the
RENAME module to resequence the label numbers. If the original file
contained check sums, ABRIDGE will inquire if they are desired in the
new file also, since computation of check sums is time consuming. When
the abridged file is completed, the module switches back to Omnidata
which prints out the cost statement and asks for the next module. At this
stage, the abridged file is available for any of the Omnidata operations or
can be catalogued permanently via the SAVE module. If a specified label
is not in the file, this module ignores it, proceeds with the abridgement,
and prints out “XYZ WAS IGNORED. IT IS NOT A LABEL.”

104

♦WHICH DATA BASE DO YOU WANT - - ->? flndemo —

FILE FLNDEMO CONTAINS 110 DATA ITEMS FOR 50 RECORDS.

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
->? no cost, abridge-

TYPE S(ELECT) OR R(EJECT) - - ->? select
♦TYPE LABELS TO BE SELECTED - - ->

? ss , name, grade, step, yob, coldeg, &
? yr, yod, xyz---
YOD WAS IGNORED. IT IS NOT A LABEL.
XYZ WAS IGNORED. IT IS NOT A LABEL.

=-©

♦TYPE A MODEUL NAME AND/OR INSTRUCTIONS
->? labels
THE FILE FLENDEMO CONTAINS DATA LABELLED AS-FOLLOWS:
35 COLDEG 18 GRADE 5 NAME 2
7 YOB 37 YR

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
->? save

♦TYPE NAME UNDER WHICH FILE IS TO BE SAVED - - ->?
DUPLICATE FILE NAME

♦TYPE NEW NAME OR REPLACE - - ->? replace
DEMOAB IS CATALOGUED- 64 TRACKS 50 RECORDS 10.0958

♦TYPE NAME UNDER WHICH FILE IS TO BE SAVED - - ->? end *
*

TYPE A MODULE NAME AND/OR INSTRUCTIONS *
->? cost, fetch--- _ ♦

® *
♦WHICH DATA BASE DO YOU WANT? - - ->? demoab *

FILE DEMOAB CONTAINS 7 DATA ITEMS FOR 50 RECORDS. *
THE FOLLOWING LABELS ARE IN THE FILE: *
SS , NAME, YOB, GRADE, STEP, COLDEG, YR *

CPU SEC IN FETCH = 1.8462 *
CPU SEC = 14.9138 TIM = 17:07:47 ♦

Figure 5.1a. A record of the use of the ABRIDGE module in the SELECT
mode, followed by other typical module sequences. 1) This file is a small
version of FNDEMO. 2) Here we suppress the cost statement which is
reinstated in item 8 below. 3) Here we select only a few of the data
vectors. 4) Note the ampersand for continuing on the next line. 5) The
result of typing a non-existing label. 6) The labels retain their existing
numbers except if resequenced by the RENAME module. 7) Here we save
the abridged file to illustrate how the SAVE module handles duplicate file
names. 8) Here we reinstate the cost printout and FETCH the file to
confirm that the file has been abridged properly.

105

*

*
*

*

*
*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*
*

*
*

*
*
*

♦WHICH DATA BASE DO YOU WANT- - -? fsfcp
FILE FSFCP CONTAINS 17 DATA ITEMS FOR 83 RECORDS.

TYPE A MODULE NAME AND/OR INSTRUCTIONS
->? labels,no cost, abridge---- -<D
THE FILE FSFCP CONTAINS DATA LABELLED AS FOLLOWS:
7 ADD 11 AMOUNT 16 AM72 2 CCODE
8 COUNTRY 13 DB 15 DE 10 DIV
6 NAME 9 NBSNAME 4 PROGC 17 REM
12 YB 14 YE

♦TYPE S(ELECT) OR R(EJECT) - - ->? reject

♦TYPE LABELS TO BE REJECTED - - ->?
? title,name,add,nbsname,rem

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
- - ->? labels

THE FILE FSFCP CONTAINS DATA LABELLED AS FOLLOWS
11 AMOUNT 16AM72 2 CCODE 3 CINST
13 DB 15 DE 10 DIV 1 ID
12 YB 14 YE

A

3 CINST
1 NO
5 TITLE

*

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
->? rename-----

8 COUNTRY
4 PROGC

*
*

♦
*

—<D *

PRESENTLY, THE LABELS IN THE FILE ARE: ♦
ID, CCODE, CINST, PROGC, COUNTRY, DIV, AMOUNT, YB, DB, YE, DE, ♦
AM72 ♦

*

♦TYPE OLD LABEL, NEW LABEL-TYPE END TO STOP - - -> *
? amount,cost
? resequence

♦ENTER INTIAL VALUE AND STEP - - ->?
♦ ? end
********** *****************************

Figure 5.1b. A record of the use of the ABRIDGE module in the REJECT
mode, followed by the resequencing operation of the RENAME module. 1)
Note that Omnidata is still in control at this point and recognizes the
instructions LABELS, NO COST, etc. 2) Here we abridge the file by
rejecting certain data vectors. 3) Note that the labels retain their original
numerical designations until modified in the RENAME module (item 5
below). 4) See section 5.22 for a discussion of RENAME.

106

5.2 AGGREGATE

The main purpose of this module is to allow the user of a file to
classify together any of the attributes in a particular data vector into a
more general category. Thus we may wish to flag as physical scientists, all
chemists, physicists, metallurgists; as life scientists, all biologists,
botanists, physiologists, surgeons, etc.; as engineers, all EE’s, ME’s, CE’s,
etc. A data file on repair records of automobiles provides another example
where the AGGREGATE module can be put to good use. Thus, the
following input:

GM, BUICK, CHEVY, PONTIAC, OLDS, CADILLAC
FORD, FORD, LINCOLN, MERCURY
CHRYSLER, DODGE, PLYMOUTH, CHRYSLER

allows one to analyze the data by manufacturer as well as by model name.

The aggregation operation can be performed in two ways. A new
data vector can be added to the file or the changes can be made in situ by
writing over the existing data vector. A typical dialogue follows:

* WHICH MODULE DO YOU WANT->? > aggregate
*TYPE LABEL TO BE AGGREGATED- > ? > title
*TYPE NEW ENTRY, OLD ENTRIES TO BE AGGREGATED->? >
?physical, phys, chem, spect, spekt, eng
?life, md, biol, hot, ent
?misc, other
?end
*TYPE NAME OF NEW VECTOR, OR R(EPLACE) TO OVERWRITE->? >
?replace

A word of caution is in order here. Unlike the SEARCH module—in
which PHYS will match anything containing the letters PHYS—this
module takes its instructions more literally. The data item in the file must
match PHYS, CHEM, or ENT exactly (except for leading and trailing
blanks) for the action to be taken. Provision for aggregating on the basis
of string fragments in the file has been provided via the use of asterisks as
discussed below.

In the above illustration, all entries with titles other than those
enumerated are classified as miscellaneous. Had we left out instruction
MISC, OTHER, all other titles would remain unchanged in the new vector.
If a new data vector is generated, the original detailed information is still
available and can be used for aggregation again at a lower or higher
hierarchical level. Obviously the user must supply labels for the new
vectors thus created.

As can be seen from the following figures, aggregations are
performed on one data vector at a time. Figures 5.2a and 5.2b show the
use of this module not to aggregate, but simply to translate the data items.
Thus if a code is used for sex (1 for male and 2 for female), the
instructions M,1 and F,2 will replace all of the l’s by M’s and all of the

107

2’s by F’s in the SEX field. In the above instance, since one letter replaces
one number, the changes are made without rearranging the file on disc. If,
however, we wish to replace the 1 by the word MALE and the 2 by
FEMALE, the module recognizes that the new data elements cannot be
written over the old; it finds empty spaces in the assigned sectors to
accommodate the longer information, rewrites the file, and resets the
pointers in the LABEL FILE accordingly.

When AGGREGATE is used to generate a new data vector, the
original vector is unchanged and the space allotted to the new vector is
equal to the longest new entry. This poses no problem for the data that are
replaced, but may present a problem with longer data items that are not
modified. Items not specifically mentioned in the instructions can either be
left alone (but truncated if necessary) or may be replaced by a single string
such as MISC in the above example.

In the example shown earlier the instruction PHYSICAL, PHYS,
CHEM, SPECT, etc. would put into the title vector the designation
PHYSICAL wherever the string PHYS, CHEM, etc. appears. If we wish to
make the replacement for data containing these string fragments at the
beginning of the data field, we must type PHYS*, CHEM*, etc., to replace
either PHYSICIST, or CHEMIST, etc. On the other hand, if we wish to
replace ASTROPHYSICS by PHYSICAL, we need to type *PHYS*. To
complete the picture, an asterisk in front or in back of a character string
will replace all data items ending or starting with that character string,
respectively.

In figure 5.2c, we show how the AGGREGATE module is used to
generate a new data vector called STATE by recognizing the state
abbreviation at the end of the field CITY/ST. In the process, we take into
account a number of possible ways of indicating states (DC or D.C. or
“ ,D C”, etc.).

* * * N O T E S * * *

108

♦WHICH DATA BASE DO YOU WANT - - ->? fndemo

FILE FNDEMO CONTAINS 110 DATA ITEMS FOR 500 RECORDS.

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
- - ->? aggregate ------

♦TYPE LABEL TO BE AGGREGATED - - ->? sex
♦TYPE NEW ENTRY, OLD ENTRIES TO BE AGGREGATED - - ->

? m,l
? f,2
? end

♦TYPE NAME OF NEW VECTOR, OR R(EPLACE) TO OVERWRITE - - ->
? nsex

CPU SEC IN AGGREGATE = 18.363
CPU SEC = 22.972 TIM = 10:28:45

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
- - ->? display

♦TYPE LABELS OF ITEMS TO BE DISPLAYED OR ALL
- - ->? SEX, NSEX

S N
2 F
1 M
1 M
1 M
1 M
1 M
1 M
1 M
1 M
1 M

♦MORE - - ->? no
♦TYPE LABELS OF ITEMS TO BE DISPLAYED OR ALL

->? end

Figure 5.2a. Example of the use of the AGGREGATE module to: 1) simply
translate the codes 1 and 2 in the SEX field to read M and F; 2) store the
results in a new vector called NSEX; 3) in order to show that the change
had actually been made. Note that the DISPLAY module truncates the
column heading to agree with the defined width of the field, but adds the
new label NSEX to the label file. The next figure shows what happens
when we replace the entries by longer ones.

**********'•'************** + *****♦**** «

♦TYPE LABEL TO BE AGGREGATED - - ->? sex *
♦TYPE NEW ENTRY, OLD ENTRIES TO BE AGGREGATED - - -> *

*

*

*

*

male,!
? female,2
? end

♦TYPE NAME OF NEW VECTOR, OR R(EPLACE) TO OVERWRITE - - -> *
nisex *

* ♦TYPE A MODULE NAME AND/OR INSTRUCTIONS

*
*

*
*

- - ->? display *

* ♦TYPE LABELS OF ITEMS TO BE DISPLAYED OR ALL *
*
*

- - ->? sex,nsex,nisex *

* S N NISEX *
* 2 F FEMALE *
* 1 M MALE *
* 1 M MALE *
* 1 M MALE *
* 1 M MALE *
* 1 M MALE *
* 1 M MALE *
* 1 M MALE *
* 1 M MALE *
* 1 M MALE *
* ♦MORE - - ->? yes *
* 1 M MALE *
* 2 F FEMALE *

* I M MALE *
* 1 M MALE *
* 1 M MALE *
* 1 M MALE ♦
* 1 M MALE *
* 1 M MALE *
* 1 M MALE *
* 1 M MALE *
* ♦MORE - - - •>? no *

* ♦TYPE LABELS OF ITEMS TO BE DISPLAYED OR ALL *

* - - ->? end *
* * * * * * * * * * * **************************** *

Figure 5.2b. Here we generate still another data vector in which the words
MALE and FEMALE are written in place of 1 and 2. Note in the
DISPLAY of the vectors SEX, NSEX, and NISEX how the column
headings are handled.

110

*************************************** *
♦WHICH DATA BASE DO YOU WANT - - ->? fcarpool

FILE FCARPOOL CONTAINS 35 DATA ITEMS FOR 500 RECORDS.

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
->? no cost,aggregate

♦TYPE LABEL TO BE AGGREGATED - - ->? city/st
♦TYPE NEW ENTRY, OLD ENTRIES TO BE AGGREGATED - - ->

maryland,* md*,*mary*
Virginia,* va*,*virg*
dc,* dc*,*d c*,*d.c.*,*d. c.*
illinois,*ill*,*il*
massachusetts,* mass*,*ma*
Colorado, *colo*,*co *
florida,*fa*,fla*,*flor*
indiana,*ind&,*in *
California, *ca*,*calif*
delaware,*del*
other,other
end
♦TYPE NAME OF NEW VECTOR, OR R(EPLACE) TO OVERWRITE - - -> *

state *

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
- ->? display

♦TYPE LABELS OF ITEMS TO BE DISPLAYED OR ALL
- ->? city/st,state

CITY/ST
LANTZ MD
WALKERVILLE MD
WILMINGTON DEL
GERMANTOWN MD
ROCKVILLE MD
SILVER SPRING MD
SUNNYVALE CA
BELTSVILLE MD
HOUSTON TX

STATE
MARYLAND
MARYLAND
DELAWARE
MARYLAND
MARYLAND
MARYLAND
CALIFORNIA
MARYLAND
OTHER

********************* S 3T* ************

Figure 5.2c. Here we use the main facility of the AGGREGATE module to
generate a data vector called STATE on the basis of information in the
vector CITY/ST. Note: 1) we can allow for misspellings or other
variations; 2) how the state designation was extracted from the city field;
and 3) how states not mentioned specifically are labeled as OTHER.

Ill

* * * *************************************
* TYPE A MODULE NAME AND/OR INSTRUCTIONS *
* ->? aggregate *
* *

* TYPE LABEL TO BE AGGREGATED - - ->? state *
♦TYPE NEW ENTRY, OLD ENTRIES TO BE AGGREGATED - - ->? *

? east,mary*,virg*,mass*,dc*,del* *
? south,flor* *
? west,cal* *
? central,col* *
? midwest, ill*, ind* *
? other,other *
? end *

TYPE NAME OF NEW VECTOR, OR R(EPLACE) TO OVERWRITE - - -> *
♦ ? region *
* TYPE A MODULE NAME AND/OR INSTRUCTIONS *
*
*

->? display *
*

* TYPE LABELS OF ITEMS TO BE DISPLAYED OR ALL *
*
*

- - ->? city/st,state,region *
*

* CITY/_ST STATE REGION *
* LANTZ MD MARYLAND EAST *
* WALKERVILL MD MARYLAND EAST *
* WILMINGTON DEL DELAWARE EAST *
* GERMANTOWN MD MARYLAND EAST *
* ROCKVILLE MD MARYLAND EAST ♦
* SILVER SPRING MD MARYLAND EAST *
* SUNNYVALE CA CALIFORNIA WEST ♦
* BELTSVILLE MD MARYLAND EAST *
♦ GAITHERSBURG MD MARYLAND EAST ♦

* ***********ij|t** *******"* * * * * * ********* ♦

Figure 5.2d. Here we operate on the STATE vector to AGGREGATE
states into geographic regions.

112

5.3 ANALYSIS

This module operates on the designated numerical data vectors to
compute and print out the maximum value, minimum value, total value,
and average value for each of the specified data vectors. Also printed are
the labels for the vectors and the number of items encountered in each
vector. This latter figure serves to indicate how many items have been
used in the total and average computations and serves also to alert the
user to the fact that data items are missing in certain vectors. Zeros are
considered valid data items; blanks are not, nor are alphabetics or
graphics. A question mark is printed in the verify column to draw
attention to missing data items. A number of utility modules are available
to assist in screening and updating of the missing items.

Where it is possible to update or otherwise correct for the missing
data items, Omnidata provides a SCREEN module to assist in that
operation and an UPDATE module to correct the file.

The ANALYSIS module operates also in the tandem mode, wherein
the desired analysis is performed in sequence on more than one file. In
the TANDEM mode, the module looks first for the scratch file FFILES
which contains the names of subfiles created by a DISTRIBUTE operation
during the current run. If such a file exists, the module prints the names
of the files before it carries out the analysis to make sure that these are
indeed wanted. If FFILES does not exist (meaning that no files have been
distributed in the current run), the module asks the user to supply names
of these cataloged files he wishes to analyze in tandem. Missing files in
the list supplied will be ignored as will data vectors which may be missing
in one or more of the designated files. Thus, the files need not all be
identical in content. All that is required is that they be in Omnidata
format. Figures 5.3a, 5.3b, and 5.3c show representative
operations in ANALYSIS and ANALYSIS, TANDEM.

If an analysis is desired for all of the numeric data vectors, it can be
obtained more expeditiously by calling the SUMMARY module. There the
analysis is the same; there is no need to specify the data vectors. They are
all summarized automatically as shown in figure 5.32a.

We now illustrate the use of the ANALYSIS module on a sample
personnel file called FDEMO containing information for 350 persons
distributed among 5 regions. We have used the same file to illustrate the
applications of other modules (CROSSTAB, STATIS, SUMMARY, and
TALLY) in order to emphasize the various levels of data analysis available
in the Omnidata package.

In figure 5.3a we see the result of the analysis of 5 numeric data
vectors in a file of 500 persons. The numbers in the total column are
meaningful only for the PAY item. The question mark in the VERIFY
column alerts us that the total and average values are based on less than
500 records. In this case only 394 records have numerics in the degree
field. The remainder probably contain blanks.

113

If we wish to perform a similar analysis separately on each of the
five regional offices represented in this file, the ANALYSIS module
facilitates this by allowing a TANDEM mode as mentioned earlier. Figure
5.3b shows how this is achieved. There we did an analysis on only three

data items so as to compress the printout.

* ♦TYPE a module name and/or instructions
* >? >analysis
*

♦

♦

♦

♦
♦
♦

♦ *

* *TYPE LABELS TO BE ANALYZED - - -> >yob,level,pay,eody,deg *
♦ ♦

♦ *
♦ LABEL ITEMS MAX MIN TOTAL AVERAGE VERIFY

♦ YOB 500 57 4 16332 32.664
♦ LEVEL 500 17 0 4621 9.242
♦ PAY 500 36000 0 7.499638E+6 14999.3
♦ EODY 500 73 35 32100 64.2
♦
♦

DEG 394 4 0 520 1.31980 ?
♦

♦
♦ TYPE LABELS TO BE ANALYZED - - -> >end

♦
♦

♦ * ******* ****** ♦ * * * ♦ * ♦ * ********* ******* ♦

Figure 5.3a. These results from the ANALYSIS module agree with those
from the SUMMARY module (see fig. 5.32a). If the file carried a current
summary, this module would get its information there instead of
computing it again.

114

*** + *********************************0**
* TYPE LABELS TO BE ANALYZED - - ->? end *
* *

♦ TYPE A MODULE NAME AND/OR INSTRUCTIONS *
* ->? distribute *

♦DISTRIBUTE ON WHICH LABEL - - ->?
YOU HAVE CREATED 5 FILES
NAME # ENTRIES
FIREGION3 72
FIREGI0N2 175
FIREGION6 26
FIREGI0N1 132
FIREGI0N4 95

region

TYPE A MODULE NAME AND/OR INSTRUCTIONS
->? analysis,tandem

THE FOLLOWING LABELS ARE IN THE FILE:
REGION,SS #,SEX,CIT,NAME,DOB,YOB,SCD,STAT,TOA,TOD,TOLA,NTE,PP,
OSC,FC,TITLE,GRADE,STEP,SCALE,DIV,SEC,LC,CSDFROM,CSDDDAY,
DDGR,PlNFO,DOPP,EOD,EODY,ADTIT,PROFSTAT,DEG,UNIV,YR,SPP,DPG,ATD,
SEQ,VP,INS,HC,RET,NOAC,SLIM,DLIM,HLIM,EDA,AUT,POS #,AC,PFC,APPOR,
REM,AUDAT,SON,SPF,PD,DRPB,CL,NTE,ANU,TP,DET,MC,ALC,SCD,GLOC,DAA,
RS,SSNC,PF,HBPN,DPSQ,SP,GDF,SC,DLABR,SED,HWD,WAEPL,WAEDWS,RHWSW,
WAEDWP,WAEDWT,LWOP,CNHS,TLWOP,CLWOP,CAWOL,CSL,FAB,WOD,WDUD,WED,
AA,NP,WHSA,LWOPSA,APAD,FUD,DDED,MR,SK,HWWAE,SCDY,SALBAS,C,LEVEL,
IDN,AGE,ID *

*

♦TYPE LABELS TO BE ANALYZED - -j>? age,level,eod)
"** * * * * I * ***********

Figure 5.3b. After the operation shown in figure 5.3a the file was
distributed on region so as to carry on an analysis on each region
separately. See section 5.11 for an explanation of the material at [A]. In
the TANDEM mode, we are reminded at [B] which data items are in the
file. The result of the request at [C] is shown in the next figure.

115

* *
*

♦

*

*

*

*

*

*

*

*

*

*

*

* * * * ************** *******************

THE FOLLOWING LABELS ARE IN THE FILE: *
REGION,SS#,SEX,CIT,NAME,DOB,YOB,SCD,STAT,TOA,TOD,TOLA,NTE,PP,
OSC,FC,TITLE,GRADE,STEP,SCALE,DIV,SEC,LC,CSDFROM,CSDDDAY,
DDGR,PINFO,DOPP,EOD,EODY,ADTIT,PROFSTAT,DEG,UNIV,YR,SPP,DPG,ATD,
SEQ,VP,INS,HC,RET,NOAC,SLIM,DLIM,HLIM,EDA,AUT,POS#'AC,PFC,APPOR,
REM,AUDAT,SON,SPF,PD,DRPB,CL,NTE,ANU,TP,DET,MC,ALC,SCD,GLOC,DAA,
RS,SSNC,PF,HBPN,DPSQ,SP,GDF,SC,DLABR,SED,HWD,WAEPL,WAEDWS,RHWSW,
WAEDWP,WAEDWT,LWOP,CNHS,TLWOP,CLWOP,CAWOL,CSL,FAB,WOD,WDUD,WED,
AA,NP,WHSA,LWOPSA,APAD,FUD,DDED,MR,SK,HWWAE,SCDY,SALBAS,C,LEVEL,
IDN,AGE,ID *

*

♦TYPE LABELS TO BE ANALYZED - - ->? age,level,eody *

* LABEL ITEMS MAX MIN TOTAL AVERAGE VERIFY

* 1 AGE 132 72 21 5918 44.8333 *
* 1 LEVEL 132 16 0 944 7.15152 *
*
*

1 EODY 132 73 40 8754 66.3182 *
*

* 2 AGE 175 73 22 7817 44.6686 *
* 2 LEVEL 175 17 0 1726 9.86286 *
*
*

2 EODY 175 73 35 10994 62.8229 *
*

* 3 AGE 72 66 20 3177 44.125 *
* 3 LEVEL 72 17 0 736 10.2222 *
*
*

3 EODY 72 73 40 4482 62.25 *
*

* 4 AGE 95 68 20 4061 42.7474 *
* 4 LEVEL 95 16 0 938 9.87368 *
*
*

4 EODY 95 73 41 6199 65.2526 *
*

* 5 AGE 26 71 23 1195 45.9615 *
* 5 LEVEL 26 16 0 277 10.6538 *
* 5 EODY 26 73 40 1671 64.2692 *

TRANSLATION TABLE FOR FILES
1 = FIREGION1
2 = FIREGION2
3 = FIREGION3
4 = FIREGION4
5 = FIREGION6

*************************************** *

Figure 5.3c. Here we see how the tandem option formats the analysis. The

files are numbered in the table to conserve space, but the names of the
files are listed below.

116

5.4 ARRAY

The utility of a comprehensive data retrieval or analysis package is
often enhanced when it can accept data from or deliver data to other
programs or systems. This module was designed to write all the numeric
data vectors from an Omnidata file into a separate cataloged file in proper
format for the OMNITAB II system to handle it.

The OMNITAB II system is limited to 12,500 data points and has a
worksheet normally dimensioned for 201 rows by 62 columns. The
ARRAY module instructs the users that the array it has created fits into
the normal OMNITAB work sheet (see fig. 5.4a) or how to change the
dimension of the OMNITAB II work sheet to accommodate the array (see
fig. 5.4b). If the array exceeds the 12,500 limit, this module instructs
users how to segment the file. Figure 5.4c shows a record of the
instructions supplied in this instance. Since this module stores all numeric
vectors, we called the ABRIDGE module first to select only those data
vectors we wished to transfer to another program or system.

*************************************** *
♦TYPE A MODULE NAME AND/OR INSTRUCTIONS

- - ->? array

YOU HAVE CREATED THE FILE ARRAYNDEMO WITH 50 ROWS
THE 4 COLUMNS ARE:

1 . YOB (7)
2 . GRADE (18)
3 . PAY (20)
4 . EODY (32)

THE ARRAY IS 50 BY 4 - ♦
A TOTAL OF 200 ENTRIES ♦

WHEN READING ARRAYNDEMO INTO OMNITAB OR ANY OTHER PROGRAM.
SKIP THE FIRST 5 HEADER RECORDS. j ♦

YOUR FORMAT FOR READING IN THE DATA IS AS FOLLOWS: / *
4F12.0 / ♦

THE OMNITAB WORKSHEET IS AUTOMATICALLY DEFINED AS / *
201 ROWS BY 62 COLUMNS / ♦

YIELDING ROOM FOR A MAXIMUM OF 12500 ENTRIES. , ./oN *
YOUR WORKSHEET CAN STAY DEFINED AS IS. - *

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS ♦
****** * T t ' * * * T *******

Figure 5.4a. Having selected 50 records at RANDOM from a larger file
FNDEMO and then used ABRIDGE, we entered the ARRAY module with
a file containing seven data vectors, of which only four were numeric. This
output shows: 1) how the resulting file is named and described in terms of
the labels and their numbers in the original file; and 2) the output when
the array of data fits into the normally dimensioned worksheet of
OMNITAB II. The next figure shows the output when the array exceeds
201 records.

117

**

*
*

*
*
*
*
*
*

*
*

*

*

*

*

*
*
*
*
*
*
*
*
*
*
*
★
*
*
*
*
*
*

*
*
*
*
*

♦WHICH DATA BASE DO YOU WANT - - ->? fndemo

FILE FNDEMO CONTAINS 110 DATA ITEMS FOR 500 RECORDS.

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
->? no cost,abridge

♦TYPE S(ELECT) OR R(EJECT) - - ->? s
♦TYPE LABELS TO BE SELECTED - - ->

? ss#,name,pay,grade,step,eody,youb,scdy,deg,yr,title

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
->? array

YOU HAVE CREATED THE FILE ARRAYNDEMO WITH 500 ROWS
THE 8 COLUMNS ARE:

1 . YOB (7)
GRADE
STEP (9)
PAY (20)
EODY (32)
DEG (35)
YR (37)
SCDY (108)

THE ARRAY IS 500 BY 8 -
A TOTAL OF 4000 ENTRIES

WHEN READING ARRAYNDEMO INTO OMNITAB OR ANY OTHER PROGRAM.
SKIP THE FIRST 9 HEADER RECORDS.

YOUR FORMAT FOR READING IN THE DATA IS AS FOLLOWS:
6FI2.0/2F12.0

THE OMNITAB WORKSHEET IS AUTOMATICALLY DEFINED AS
201 ROWS BY 62 COLUMNS

YIELDING ROOM FOR A MAXIMUM OF 12500 ENTRIES.
YOUR WORKSHEET MUST BE REDEFINED TO HAVE AT LEAST

500 ROWS. THEREFORE ALLOWING FOR A MAXIMUM OF (D<r 25 COLUMNS.

♦ ♦TYPE A MODULE NAME AND/OR INSTRUCTIONS *
* ->? stop ♦
**

Figure 5.4b. Here we ABRIDGE 1) a file to contain 11 data vectors of
which 8 are numeric. Note: 2) the names of the numeric vectors and their
numbers in the original file; 3) format instructions; and 4) advice to
redimension the OMNITAB II worksheet. The next figure shows the
nature of the instructions for partitioning the file when it exceeds 12,500
data points. See fig. 5.4d for the array produced by this operation and
how an OMNITAB II run would make use of it.

118

**
* YOU HAVE CREATED THE FILE ARRANYNDEMO WITH 500 ROWS *
* THE 36 COLUMNS ARE: *
* 1 . DIV(l) *
* 2 . YOB (7) ♦
* 3 . FC (16) *
* 4 . GRADE (18) *
* 5 . STEP (19) *
* 6 . PAY (20) *
* 7 . PLANT (21) *
* 8 . DEPT (22) *
* 9 . EODY (32) *
* 10 . DEG (35) *
* 11 . YR (37) *
* 12 . VP (42) *
* 13 . INS (43) *
* 14 . HC (44) *
* 15 . RET (45) *
* 16 . NOAC (46) *
* 17 . PFC (54) ♦

*

*

29 . NP (99) *
30 . NHSA (100) *
31 . LWOPSA (101) *
32 . MR (105) *
33 . SK (106) *
34 . HWWAE (107) *
35 . SCDY (108) *
36 . C (110) *

THE ARRAY IS 500 BY 36 - *
A TOTAL OF 18000 ENTRIES *

WHEN READING ARRAYNDEMO INTO OMNITAB OR ANY OTHER PROGRAM.
SKIP THE FIRST 37 HEADER RECORDS. *

YOUR FORMAT FOR READING IN THE DATA IS AS FOLLOWS: *
6F12.0/6F12.0/6F12.0/6F12.0/6F12.0/6F12.0 *

THE OMNITAB WORKSHEET IS AUTOMATICALLY DEFINED AS *
201 ROWS BY 62 COLUMNS *

YIELDING ROOM FOR A MAXIMUM OF 12500 ENTRIES. *
YOUR FILE IS TOO LARGE FOR OMNITAB TO HANDLE. *

YOU NEED 36 COLUMNS-PLEASE CALL SEGMENT *
TO SEPARATE ARRAYNDEMO INTO SUBFILES OF NOT MORE THAN

347 ROWS EACH. *
************************************ *

Figure 5.4c. In this run ARRAY assumes that the tile must contain all of
the 36 data vectors and instructs the user how to SEGMENT the file to a
maximum of 347 records in order to fit into a suitably defined OMNITAB
II worksheet.

119

* ************* ******
* ARRAYNDEMO RTEMP
* 3 7
* 5 18
* 6 20
* 7 22
* 8 32
* 15 15
* 37 13
* 38 15
* 19 00
* 30 05
* 32 15
* 22 07
* 32 09
* 27 07
* 45 11
* 26 13
* 26 10
• ********* * * * * *

* (5) USE 7.,ARRAYNDEMO
* READY
* @ NBS*OMNITAB.
* OMNITAB

* * * * *********** * * * *

500 8 5 *

YOB *

GRADE *

PAY *

SEC *

EODY *
32280 24102 46
21671 31203 63
29589 31403 62
12500 60000 71
09750 12204 69
29589 60000 69
10471 20000 65
11614 31600 72
10788 31107 66
13990 31008 72
22328 46102 61
00491 12205 72
* * *

*

*

*

*

FORMAT A (5F12.0)
SKIP TAPE A FORWARD 6 RECORDS
READ TAPE A FORMAT A INTO COLUMNS 1***5
PRINT COLUMNS 12 3 4

* OMNITAB *
* PAGE 1 *
* *

* COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 4 *
* *

15.000000
37.000000
36.000000
19.000000
30.000000

15.000000 *
13.000000 *
15.000000 *
0. *
5.0000000 *

3.2280000+04 *
2.1671000+04 *
2.9589000+04 *
1.2500000+04 *
9 7500000+03 *

2.4102000+04
3.1203000+04
3.1403000+4
6.0000000+04
1.2204000+04

*

*

*

*

*

*

Figure 5.4d. In the upper portion we see the condition of the array

produced by the operation shown in figure 5.4b. The lower portion shows
how an OMNITAB II user would access this file. In this instance we
simply read the data from the file and printed it to confirm that the
operation was successful.

120

5.5 BROWSE

The BROWSE module is designed to familiarize a user with the
information in the data file. When the user specifies a label on which he
wishes to browse, this module reads through the file and prints the unique
entries in the specified vector. Thus, if the user wished to browse on
‘TITLE,’ entries such as ‘CHEMISTS,’ ‘PHYSICIST,’
‘MATHEMATICIAN,’ etc., would be printed. After 10 unique titles have
been printed, the user is asked if he wishes to see more. If he doesn’t
need to browse any longer on that label, he may select another label to
browse on, or he may enter ‘END’ or ‘NONE’ and be transferred back to
Omnidata. See figure 5.5a for a typical use of this module.

The response to the question MORE? can be either YES or NO or a
number. BROWSE prints out only unique entries. When 100 records are
read without finding a new item to be printed, this module prints:

XX% OF THE FILE READ. NO NEW HITS IN THE LAST 100 RECORDS

* MORE —>? >

Thus, the user has the option to continue or END.

BROWSE keeps a running tally of the frequency of occurrence of
each of the unique items it finds. Before returning to Omnidata, the user
is asked whether a frequency distribution of the displayed items is desired.

When the monitor switch is on, the module prints also the number of
the first record in the file in which the particular entry appeared.

As described above, the BROWSE module performs its function by
reading the actual file. The cost in computer time to do this depends in
large measure upon the variety of entries in the vector in question. If a
vector listing the handicap code contains simply the entries 1, 2, 3, 4, it
will take much less time to browse through the file on that vector than
upon the vector containing occupations that may run to 200 or 300 titles.
The BROWSE module will have its primary utility just in exploring the
way information is entered in the file. It can quickly answer the question
whether citizenship is designated by a number code or by listing the
country, or whether sex is indicated by M and F or by 1 and 2, etc.

When Omnidata is in productive use, BROWSE can also be used to
screen the file for inadvertent errors that are not easily picked up by the
SCREEN module to be described later. When one browses on job titles,
for example, it is easy to pick up inconsistencies in the use of punctuation,
brackets where parentheses are required, or extra spaces, etc.

Where the use of the BROWSE module on the same file is frequent,
and especially if it is performed on a data vector with many variants, it
would be more economical to write the results out on a scratch file.

121

**

* ♦TYPE A MODULE NAME AND/OR INSTRUCTIONS *
A

A

— ->? browse,monitor, 250 *

A ♦WHICH LABEL DO YOU WANT TO BROWSE ON - - ->? grade *
A

A

LINE REC NO. GRADE A

A 1. 1 A

A 2. / 2 12 ^ A

A 3. / 3 11
XD

A

A 4.

© 6

13 A

A 5. 04 A A

A 6. \ 9 05 \ A

A 7. 1 11 14 \ A

A 8. 1 15 10 \ A

A 9. 1 16 09 \ A

A 10. 1 27 07 ♦MORE->? yes A

A 11. 1 30 00 A

A 12. \ 46 06 A

A 13. 1 78 16 A

A 14. 1 111 18 (3) A

A 15. \ 158 17 A

A 16. \ 194 03 / ' \ A

A 17. \216 08 / \ A

A 250 RECORDS READ IN 4.4462 CPU SECONDS A

A 100 ENTRIES READ WITH NO NEW HITS 8 % OF THE FILE READ A

A ♦MORE - - ->? yes

N»

A

A 18. 367 01 A

)F THE FILE READ

456 02
RECORDS READ IN 5.477 CPU SECONDS
ENTRIES READ WITH NO NEW HITS 14 %

♦MORE - - ->? yes
TRIES READ WITH NO NEW HITS 17 % OF THE FILE READ
♦MORE->? no
♦DO YOU WANT A TALLY PRINTED OUT - - ->? no
♦TYPE YES OR NO - - ->? no

♦WHICH LABEL DO YOU WANT TO BROWSE ON ->? none

Figure 5.5a. A typical use of BROWSE with the MONITOR set at 250.

Note: 1) that initially we get 10 different values printed out and another
10 each time we respond with YES; 2) the record number where the
particular entry first appears; 3) that the monitor interrupts the printout
each time 250 records have been read; 4) the information supplied each
time 100 records are read without yielding a new value in the vector; 5)
the option provided to quit or continue; and 6) the option for seeing a
table of frequency of occurrence.

122

LINE
♦WHICH LABEL DO YOU WANT TO BROWSE ON - - ->? yob

REC NO. YOB

1.
2.

3.
4.
5.
6.

7.
8.
9.

1
2
3
6
8
9
11
12
13

37
15
22
28
25
29
42
19
38

52. 450 11
53. 495 57
END OF FILE REACHED 500 RECORDS READ

* ♦DO YOU WANT A TALLY PRINTED OUT - - ->? yes
* 1. 20 15. 13 29. 10 43.
* 2. 7 16. 10 \ / 30. 9 44.
* 3. 18 17. 9 \ / 31. 11 45.
* 4. 18 18.

22 \ / 32. 12 46.
* 5. 18 19. 2 \ / 33. 9 47.
* 6. 16 20. 14 34. 4 48.
* 7. 4 21. 9 © 35. 9 49.
* 8. 13 22. 13 /\ 36. 13 50.
* 9. 8 23. 14 / \ 37. 7 51.
* 10. 13 24.

6 / \ 38. 11 52.
♦ 11. 10 25. 12 / \ 39. 11 53.
* 12. 9 26. 13 / \ 40. 11
* 13. 10 27. 5 / \4L 7
* 14. 9 28. 11 42. 13
* FOR HISTOGRAMS, CALL TALLY

* *

♦WHICH LABEL DO YOU WANT TO BROWSE ON - - ->? stop
PROGRAM STOPPED.
I***********************************

Figure 5.5b. A typical use of BROWSE with the MONITOR set very high
showing: 1) 25 entries printed at a time; and 2) the table showing
frequency of occurrence of each of the displayed data.

* * * * * * * *************** *************4 ‘444 *

* ■WHICH LABEL DO YOU WANT TO BROWSE ON - - ->? city/st 4

* LINE CIIY/SJ *

* 1. LANTZ MD ♦
♦ 2. WALKERVILL MD 4

* 3. WILMINGTON DEL 4

* 4. GERMANTOWN MD 4

* 5. ROCKVILLE MD 4

* 6. SILVER SPRING MD 4

* 7. SUNNYVALE CA 4

* 8. BELTSVILLE MD 4

* 9. GAITHERSBURG MD 4

4 10. NEW CARROLLTON MD ♦MORE - - ->? 25 4

4 11. WASHINGTON DC 4

* 12. CHEVERLY MD 4

4 34. WASH GROVE MD 4

4 35. CABIN JOHN MD ♦MORE - - ->? yes 4

4 36. WASHINGTON DC 4

* 37. MANASSAS VA 4

* 38. FAIRFAX VA 4

* 39. HYATTSVILLE MD 4

* 40. JEFFERSON MD *
* 41. MONORIVA MD 4

* 42. IJAMSVILE MD 4

4 43. BROOKEVILLE MD 4

4 44. ASHTON MD 4

4 45. ALEXANDRIA VA ♦MORE - - ->? no *

♦DO YOU WANT A TALLY PRINTED OUT - - ->? yes
4 1. 1 13. 1 25. 1 37.
4 2. 1 14. 1 26. 1 38.
4 3. 1 15. 1 27. 8 39.
4 4. 2 16. 2 28. 1 40.
4 5. 13 17. 3 29. 1 41.
4 6. 13 18. 1 30. 1 42.
4 7. 1 19. 3 31. 1 43.
4 8. 1 20. 2 32. 2 44.
4 9. 35 21. 3 33. 1 45.
4 10. 2 22. 1 34. 1
4 11. 13 23. 2 35. 1
4 12. 1 24. 1 36. 1
4 FOR HISTOGRAMS, CALL TALLY *

* *

* WHICH LABEL DO YOU WANT TO BROWSE ON - - ->? end *
**

Figure 5.5c. A use of the BROWSE module showing the variation in
output produced when the MONITOR is turned off.

124

5.6 COMPUTE

In the COMPUTE module, the user has the option of creating new
data vectors for each entry (record) in the file by performing simple
arithmetic operations on existing numeric vectors.

When this module is selected it requests the user to:

‘INPUT NEW LABEL AND DEFINITION’

The user responds with a simple equation such as

OR

AGE = 77

% = FY76 /

ICOST = .5

YOB

TOTALFY76 * 100.

L2 + L3

ICOST equals .5 TIMES L2 PLUS

TOTAL = FY1 + FY2 + FY3

NEWCOST = ICOST * 1.37

L3

If the expression is acceptable, the module asks for another expression.
On any such pass through the COMPUTE module the user may continue
to input such equations until he finishes with ‘END’. The first item in the
equation becomes the name (label) for the new vector. If the first character
is an exclamation point (!), the new vector defined by the expression on
the right will not be added permanently to the file. If the exclamation
point appears, the new vector is temporary and will only be available while
the COMPUTE module is in control for use in subsequent calculations as
is shown in the expression

NEWCOST = ICOST * 1.37.

The left-to-right scan of the equations requires the use of at least
two spaces between labels and symbols. After finding the new label and
the ‘ = ’ or the word ‘EQUALS’, the arithmetic is performed by a simple
left-to-right scan of the equation. The arithmetic operators may be
entered in various ways: ‘PLUS’, ‘MINUS’, ‘TIMES’, ‘OVER’, ‘EXP’, or
as * + ’, ‘-’, **’, 7’, The operations are performed on values in the
permanent vectors, temporary vectors created by previous arithmetic
expressions, or constants supplied on the right side of the equation.

If the file contains a current summary, the values such as TOTAL
XYZ, AVERAGE ABC, MAXIMUM XYZ, MINIMUM XYZ, and ITEMS
are available for use in the arithmetic expression. If the file has not been
summarized, this module rejects the use of these expressions. ABC, XYZ,
etc. in the above are the proper labels for the file in question. Typical
items would be AVERAGE AGE, MAXIMUM SALARY, TOTAL
EARNINGS, etc. Numbers may be used instead of labels if they are
preceded by the letter L. Thus L6 can be used instead of DOB in an
arithmetic statement in the COMPUTE module.

125

Complicated arithmetic evaluations which cannot be handled by a
single equation due to the limited scan, can usually be handled by making
use of temporary labels and dividing the operation into several smaller
tasks. When the file and the list of labels have been suitably updated with
the new computed information, control is returned to OMNIDATA.

If a personnel file were to contain starting salary as well as present
salary, it would be possible to compute a growth factor as follows:

! SERVICE = 77 MINUS EODY
GFACTOR = SALARY MINUS INITIAL OVER 1SERVICE

and a projection factor depending upon years to retirement thus:

!MORE YRS = 35 MINUS ISERVICE
PROSPECTS = GFACTOR TIMES IMOREYRS

As the above instructions are written, this module will create new
data vectors which can accommodate up to 13 characters. These are
entered right adjusted. If the number exceeds 8 digits, it is written in E
notation (2.469282E+18, -2.829640E-10, etc.). When one is sure that
the result of an arithmetic operation will be a small number it is possible
to instruct this module to shorten the width of the new data field. Thus if
we wished to allocate only two characters to the field in which we compute
and store the length of service in years, we would type

SERVICE = 77 EODY, 2

Allowing the user to specify the width of the computed fields
produces a number of benefits:

a) it often removes the need for adding new sectors to the file;
b) it makes the output from DISPLAY and REPORT more

compact; and,
c) it speeds up the SEARCH operation.

Nevertheless, this feature should be used with caution as this module will
truncate results from the right hand side if the field has been made too
narrow. The effect of the resulting truncation is not too serious in certain
instances if the number 45.3743 is written as 45.37, but it is disasterous
if the number 1.25E + 5 is entered as 1.25E + .

In data vectors computed by this module, it is likely that the
decimal points will not line up. A provision has therefore been included in
this module to perform an alignment operation.
Thus

ALIGN, ABC

would cause the module to request:

TYPE NEW LABEL, PICTURE --> ?

126

If the user responds with

ABCD, xx.xxx

the module will take data from the original field ABC and rewrite it in a
new field ABCD which is six characters wide—with two digits on the left
of the decimal point and three on the right. If an entry in the original
vector ABC were 105.3, it would get entered as *5.3. This state of affairs
should obviously be avoided and can indeed be avoided by allowing more
room to the left in the above picture. It should be clear from the above
that if the ALIGN operation is to be foolproof, it is important to know how
large the numbers are in the original vector in order to allow enough room
in the new one. This information can be gotten either from the summary if
it exists, or from the SCREEN module. If, after all of these precautions,
the ALIGN operation is still frustrated, it places an asterisk in the
offending item, keeps a count of the number of such items and notifies the
user how many such instances were encountered.

5.7 CONCAT

In CONCAT the user may create new vectors of data by
concatenation of two or more existing data vectors. The instructions for
this operation consist of a series of labels separated by commas. The first
is the label (name) of the new vector to be generated by a juxtaposition of
the specified vectors that follow.

There are several options in this module which need to be
described. First of all, along with the concatenation of existing data points
one may insert a constant string by entering this constant preceded and
followed by a #. For example

ADD, #ADDRESS,NUM,STREET,CITY,STATE,ZIP

would create a new data vector of information for each entry in the file.
This vector would be labeled ADD and would consist of first the word
‘ADDRESS’ followed by the information in each of the subsequent labels.

An interesting application of this module arises when it becomes
necessary to rearrange a date field to make it amenable for sorting. If, for
example, we listed a date as day month year (220973) and we wished to
generate a new vector to read 730922, the operation could be
accomplished in two steps. The EXTRACT module (see sec. 5.13) can be
used to generate the vectors called DAY, MONTH, YEAR and then the
CONCAT module can be used to generate a new vector called DATE, as
follows

DATE, YEAR, MONTH, DAY

In figure 5.7a, we see an application of the CONCAT module to
combine, into a single grid location, the 2 high order digits from each of
two 5-digit numbers representing X and Y map coordinates.

127

- - ->

♦TYPE LABELS OF ITEMS TO BE DISPLAYED OR ALL
? x-crd,y-crd,x 1 -crd ,y I -crd, x2-crd,y2-crd

X-C Y-C Xl-C Yl-C X2-CR Y2-CR *

10 16 105 164 1056 1648 ♦

4 24 40 240 409 2402 ♦

12 9 105 __*

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
->? monitor,250,concat

♦INPUT NEW LABEL AND LABELS TO BE CONCATENATED -
xy,x-crd,y-crd ♦
end ♦

250 RECORDS COMPLETED 11.0022 *
500 RECORDS COMPLETED 12.824 *
750 RECORDS COMPLETED 14.6268 *
1000 RECORDS COMPLETED 16.482 *
1250 RECORDS COMPLETED 18.3874, *

->

NO.
♦WHICH LABEL DO YOU WANT TO BROWSE ON -

REC NO. XY
->? xy

* 1. 1 10 16 *

* 2. 3 4 24 *

* 3. 4 12 9 *

4. 5 14 10 *

5. 6 11 26 *
*

6. 7 13 13 *
♦ 7. 8 13 9 *

♦ 8. 9 11 16 *

* 9. 10 15 12 *

* 10 11 12 13 *MORE->? 30 *

17. 21 8 7 *

18. 22 6 10 *
*

19. 23 999999 *
* 20. ..._ 24^__ 9 16^ ———=—-—- _.
* * * * * ******** '"****' ****************** *

Figure 5.7a. In the top section, we use the DISPLAY module to show, in
the first two columns, the two leading digits from the last two columns. In
the middle section, we show the instructions to concatenate X-C and Y-C
into a single vector called XY. In the lower portion, we see via the
BROWSE module that the concatenation has indeed been achieved. The
reason for the space between the figures is the fact that the original fields
were defined as containing 3 digits, as is made clear in line 19. Section
5.13 shows how the vectors X-C and Y-C were extracted from the vectors
X2-CR and Y2-CR.

128

5.8 CROSSTAB

The CROSSTAB module accepts two labels and produces a two-
dimensional array of the frequencies of occurrence of entries under the
first label as a function of the entries under the second. It is a detailed
breakdown of the contributions to the total frequency distribution for the
first label produced by the TALLY module. This is a very useful tool when
operating on coded files or when used in conjunction with the ENCODE
module for handling survey data. Thus, the instruction to cross-tabulate
GRADE by SEX gives a frequency distribution of pay grades by sex and
by total staff.

After the cross-tabulation has been completed, but before it is
printed, the user is asked to indicate how he wants his output. He may
input a ‘1’ for the actual values of the cross-tabulation, a ‘2’ for the
percentage of the total in the file, a ‘3’ for the percentage of the total in
the column, or a ‘4’ for the percentage of the total in the row. There is
also an option for supplying heading and footnote lines. If these are not
desired, respond with a simple ‘NO’. The output is then printed allowing
at least seven columns to a page. On the last page of output, totals are
given.

At this point, the user may respond with another option number in
order to receive another form of output—again, either the actual values or
one of the three types of percentages are possible. If none of these are
desired, a ‘O’ (zero) response is in order.

A cross-tabulation of AGE by GRADE will contain many columns
of numbers and necessitate formatting the output on two or more pages.
Alternatively, a cross-tabulation of GRADE by AGE would contain even
more columns. The CROSSTAB module also produces a frequency
distribution for the totals, which it prints automatically.

If, after seeing the cross-tabulation, the user wishes to generate
histograms for any one or all of the vectors, he can do so. He also has the
option of storing the table away on a scratch file for later use.

After a frequency distribution table is presented, the module asks if
histograms are desired for any of the columns in the table. If the answer is
yes, the column headings are again displayed and the user is asked to
indicate for which columns he wishes histograms. The histograms that are
printed in response to the instructions are individually normalized (scaled
up or down) to fit the page. If the user wants histograms for all of the
columns in the array, he responds with ‘ALL’, in which case the program
asks whether they should be normalized individually or uniformly.
Uniform normalization is obviously advantageous if comparisons are to be
made between the histograms.

129

After each frequency table has been processed in the above manner,
the module inquires whether a transposed table is desired. If the original
table was GRADE VS AGE, the transpose would display AGE VS

GRADE. In the former case, each row represents a grade while each
column represents an age group. In the latter case, the rows and columns
are interchanged. If the answer is ‘YES’, the transposed array is printed
and the earlier dialogue is repeated. It should be noted that the second
array is achieved by a matrix transposition and not from another
CROSSTAB operation on the file. Figures 5.8a et seq. show typical
features of this module.

•♦♦NOTES***

130

**
* *TYPE A MODULE NAME AND/OR INSTRUCTIONS *
* ->crosstab *
* *

* TYPE LABELS TO BE CROSSTABBED - - ->szip,firm *
* *RESPOND WITH AN OPTION NUMBER. *
* 1 ACTUAL VALUE *
* 2 % OF TOTAL IN FILE *
* 3 % OF TOTAL IN SZIP *
* 4 % OF TOTAL IN FIRM *
* 0 TO STOP *
* - - ->1 *

* *ANY HEADING->company staff distribution by zip *
* * ANY FOOTNOTE->szip are three leading digits only *

* COMPANY STAFF DISTRIBUTION BY ZIP *
♦ * * * * FIRM * * * *
* SZIP MISC BENDER ADMINI CHESTE DART A FACILI EASY M

* 100 0 0 0 1 0 0 0
* 172 0 0 1 0 0 0 0
* 198 0 1 0 0 0 0 0
* 200 21 3 35 13 14 5 5
* 204 0 1 0 0 0 0 0
* 207 40 14 27 18 45 9 7
* 208 22 8 11 12 19 3 4
* 209 9 4 6 9 6 1 1
* 210 2 0 1 0 1 1 0
* 217 18 7 19 7 9 11 7
* 220 3 3 2 1 3 1 1
* 221 3 0 0 1 1 1 0
*
I_,_

222 1 0 1 0 2 0 0

* 606 0 1 0 0 1 0 0
* 612 0 0 1 0 0 0 0
* 803 0 0 0 0 1 0 0
* 940 1 0 0 0 0 0 0
* "
* TOTALS 121 43 107 63 105 32 25
* SZIP ARE THREE LEADING DIGITS ONLY *
* THIS TABLE SHOWS ACTUAL VALUES *
* * * * * * * 4c * * * * * * * * * * * * ***** ***** ****** * * * *

Figure 5.8a. This and the succeeding figures were run from a PLAN (see
sec. 5.18) rather than from the keyboard so that the question mark
following the arrow (--->) is missing. See the next figure for a
continuation of this cross—tabulation and for a translation of the truncated
column headings.

131

* * * * * * * * ***************************** * * *

* ♦NOTE: 4 DATA POINTS WERE IGNORED. *

* ALPHA DATA IN NUMERIC FIELDS: SZIP *

* *

* * * ♦ FIRM * * * *

* SZIP TOTAL *
*

* 100 1 *

* 172 1 *

* 198 1 *

* 200 96 ♦
* 204 1 *

* 207 160 *

* 208 76 ♦
* 209 36 *

* 210 5 *

* 217 78 *

* 220 14
*

* 466 1 *
* 606 2 *
* 612 1 ♦
* 803 1 ♦
*
*

940 1 *

TOTALS 496
SZIP ARE THREE LEADING DIGITS ONLY
THIS TABLE SHOWS ACTUAL VALUES

♦NOTE: 4 DATA POINTS WERE IGNORED.'-
ALPHA DATA IN NUMERIC FIELDS: SZIP

TRANSLATION TABLE FOR FIRM
BENDER BENDER BROTHERS
ADMINI ADMINISTRATIVE SERVICES
CHESTE CHESTERFIELDS
DART A DART AND GRIFFIN
FACILI FACILITIES MANAGEMENT
EASY M EASY METHOD j(3

♦RESPOND WITH AN OPTION NUMBER.

77®

Figure 5.8b. This shows the concluding portion of the CROSSTAB
operations where the actual values are tabulated. Note: 1) the cautionary
remark concerning missing data items; 2) the translation table; and 3) the
option of obtaining a cross-tabulation in terms of percentages rather than
actual values.

132

***** ****** ****** ***** * * * * 4 It ***** * * * * * * *

COMPANY STAFF DISTRIBUTION BY ZIP ^

♦ * * FIRM * * *

SZIP M1SC BENDER ADMINI CHESTE DART A FACIL1

*
*
*

EA

100 0 0 0 1.58 0 0 0
172 0 0 .93 0 0 0 0
198 0 2.32 0 0 0 0 0
200 17.35 6.97 32.71 20.63 13.33 15.62 20
204 0 2.32 0 0 0 0 0
207 33.05 32.55 25.23 28.57 42.85 28.12 28
208 18.18 18.6 10.28 19.04 18.09 9.37 16
209 7.43 9.3 5.6 14.28 5.71 3.12 4
210 1.65 0 .93 0 .95 3.12 0
217 14.87 16.27 17.75 11.11 8.57 34.37 28
220 2.47 6.97 1.66 1.58 2.85 3.12 4
221 2.47 0 0 1.58 .95 3.12 0
222 .82 0 .93 0 1.9 0 0
223 .82 2.32 .93 0 0 0 0
229 0 0 0 0 .95 0 0

803
940

0
.82

0
0

0
0

0
0

.95
0

0
0

0
0

TOTALS 100 100 100 100 100 100 100

SZIP ARE THREE LEADING DIGITS ONLY
THIS TABLE SHOWS % OF TOTAL IN FIRM

NOTE: 4 DATA POINTS WERE IGNORED.
ALPHA DATA IN NUMERIC FIELDS: SZIP

TRANSLATION TABLE FOR FIRM

♦RESPOND WITH AN OPTION NUMBER.
--->0

(T) *DO YOU WANT HISTOGRAMS FOR ANY VECTOR - -
W *RESPOND WITH AN OPTION NUMBER

1 ACTUAL VALUE
2 % OF TOTAL IN FILE

_% OF TOTAL IN SZIP
****** ***********

■> yes

Figure 5.8c. These numbers show a distribution among ZIP codes by
percentage of the total in each FIRM. Here the column showing total in
each row has no meaning and is, therefore, not presented. Note that: 1) a
zero here ends the tabulations in the present row—column orientation
(transposition of rows and columns can be requested later as in fig. 5.8e);
and 2) we can now get a more graphic output as shown in the next figure.

133

*~^>7 ' — " — '—

* THERE ARE 7 FIRMS--MISC, BENDER BROTHERS, ADMINISTRATIVE SERVICES
* CHESTERFIELDS, DART AND GRIFFIN, FACILITIES MANAGEMENT, EASY METHOD
* - - -AND TOTAL 4c

‘SZIP VS FIRM -> total *
4c HISTOGRAM OF SZIP FOR TOTAL *
4> SZIP % CUM % FREQ *
* 100 .2 .2 1 *
* 172 .2 .4 1 4c

4c 198 .2 .6 1 4C

4c 200 19.4 20.0 96 xxxxxxxxxxxxxxxxxx 4c

4c 204 .2 20.2 1 4c

4c 207 32.3 52.50 160 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
4c 208 15.9 68.40 79 xxxxxxxxxxxxxxx *
4c 209 7.3 76.70 36 xxxxxxx *
4c 210 1 76.70 5 X 4c

4c 217 15.7 92.40 78 xxxxxxxxxxxxxxx 4c

4c 220 2.8 95.20 14 XXX 4c

4: 221 1.2 96.40 6 X 4C

4c 222 .8 97.20 4 X 4C

4t 803 .2 99.80 1 *
4c 940 .2 100.00 1 *
4c ‘TYPE ANOTHER FIRM OR ALL FOR MORE HISTOGRAMS OF 4C

4c OPTION 1 TYPE END TO CHANGE OPTIONS - - -> bender brothers 4C

4c HISTOGRAM OF SZIP FOR FIRM BENDER BROTHERS *
4c SZIP % CUM % FREQ 4C

4c 10 0 0 0 4c

4c 172 0 0 0 *
4c 198 2.3 2.3 1 XX 4c

4c 200 7 9.3 3 xxxxxx 4t

4c 204 2.3 11.6 1 XX *
4c 207 32.6 44.2 14 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
4c 208 18.6 62.8 8 xxxxxxxxxxxxxxxxx *
* ’940'" <T~ 100.00 0 " *
4c ‘TYPE ANOTHER FIRM OR ALL FOR MORE HISTOGRAMS OF *

* OPTION 1 TYPE END TO CHANGE OPTIONS - - -> end *
* ‘RESPOND WITH AN OPTION NUMBER *
* - - -> 0_____-—-__ ___

************************************** *

Figure 5.8d. Now we exercise the option of obtaining frequency
distributions for any or all of the columns presented earlier. Note that
each of the histograms is normalized separately since they are requested
separately. Had we asked for histograms for ALL the columns shown in
earlier figures, we would be given an option of normalizing either
uniformly over the set or individually as was done here.

134

************ ***********************^*
*DO^YDU=WANT^THE~ASoVE~MA;T:RI>rTRANSPOSED^^”^yes
♦RESPOND WITH AN OPTION NUMBER. ♦

- - ->1 *

♦AN HEADING->employee distribution among zip codes *
♦ANY FOOTNOTE->szip are three leading digits only *

*

EMPLOYEE DISTRIBUTION AMONG ZIP CODES *

♦ * * SZIP ♦ ♦ * *

FIRM 100 172 198 200 204 207 208

MISC 0 0 0 21 0 40 22

BENDER BR 0 0 1 3 1 14 8

ADMINISTR 0 1 0 35 0 27 11

CHESTERFI 1 0 0 13 0 18 12

DART AND 0 0 0 14 0 45 19

FACILITIE 0 0 0 5 0 9 3

EASY METH 0 0 0 5 0 7 4

TOTALS 1 1 1 96 1 160 79

♦ * * SZIP ♦ * * '

FIRM 209 210 217 220 221 222 223

MISC 9 2 18 3 3 1 1

BENDER BR 4 0 7 3 0 0 1

ADMINISTR 6 1 19 2 0 1 1

CHESTERFI 9 0 7 1 1 0 0

DART AND 6 1 9 3 1 2 0

FACILITIE 1 1 11 1 1 0 0

EASY METH 1 0 7 1 0 0 0

TOTALS 36 5 78 14 6 4 3

* ♦ * SZIP ♦ * * *

FIRM 803 940 TOTAL *
__ *

MISC 0 1 121 *

BENDER BR 0 0 43 *

FACILITIE 0 0 32 *

EASY METH 0 0 25 *

TOTALS 1 1 496 *
******** * * * ****** ****** * * * * ****** * * * *

Figure 5.8e. Here we see a transposition of the array shown in figure 5.8a
where the rows and columns have been interchanged. Had we selected this
format originally, we probably would want to transpose it to look like
figure 5.8a.

135

************************************ ******
♦TYPE LABELS TO BE CROSSTABBED - - ->? szip,firm
♦RESPOND WITH AN OPTION NUMBER.

1 ACTUAL VALUE
2 % OF TOTAL IN FILE
3 % OF TOTAL IN SZIP
4 % OF TOTAL IN FIRM
0 TO STOP

- - ->? 2
♦ANY HEADING - - ->? no
♦ANY FOOTNOTE - - ->? crosstab after rejecting the column misc

SZIP
* ♦ * FIRM ♦ ♦

BENDER ADMINI

♦

CHESTE DART A FACILI

*

EASY M TOTAL

10 0 0 .26 0 0 0 .26
172 0 .26 0 0 0 0 .26
198 .26 0 0 0 0 0 .26
200 .8 9.33 3.46 3.73 1.33 1.33 19.98
204 .26 0 0 0 0 0 .26
207 3.73 7.2 4.8 12 2.4 1.86 31.99
208 2.13 2.93 3.2 5.06 .8 1.06 15.18
209 1.06 1.6 2.4 1.6 .26 .26 7.18
210 0 .26 0 .26 .26 0 .78
217 1.86 5.06 1.86 2.4 2.93 1.86 15.97

220 .8 .53 .26 .8 .26 .26 2.91
221 0 0 .26 .26 .26 0 .78
222 0 .26 0 .53 .0 0 .79

223 .26 .26 0 0 0 0 .52

229 0 0 0 .26 0 0 .26

244 0 0 0 .26 0 0 .26

254 0 .26 0 .26 0 0 .52

326 0 .26 0 0 0 0 .26

466 0 0 .26 0 0 0 .26

606 .26 0 0 .26 0 0 .52

612 0 .26 0 0 0 0 .26

803 0 0 0 .26 0 0 .26

TOTALS 11.42 28.470 16.76 27.940 8.5 6.63 99.720

CROSSTAB AFTER REJECTING THE COLUMN MISC
THIS TABLE SHOWS % OF TOTAL IN FILE

♦NOTE: 3 DATA POINTS WERE IGNORED.
ALPHA DATA IN NUMERIC FIELDS:SZIP

************************************ * * * * * *

Figure 5.8f. Here we see the format of the CROSSTAB output when the
data presented are percentages of the total in the file. Now we get both
column and row totals since they have meaning.

136

*************************************** *
♦RESPOND WITH AN OPTION NUMBER.

-->? 3
♦ANY HEADING - - ->? no
♦ANY FOOTNOTE - - ->? no

* * * ♦ FIRM ♦ ♦ * *
* SZIP BENDER ADMINI CHESTE DART A FACILI EASY M TOTAL

* 100 0 0 100 0 0 0 100
* 172 0 100 0 0 0 0 100
* 198 100 0 0 0 0 0 100
* 200 4 46.66 17.33 18.66 6.66 6.66 99.970
* 204 100 0 0 0 0 0 100
* 207 11.66 22.5 15 37.5 7.5 5.83 99.99
* 208 14.03 19.29 21.05 33.33 5.26 7.01 99.970
* 209 14.81 22.22 33.33 22.22 3.7 3.7 99.980
* 210 0 33.33 0 33.33 33.33 0 99.99
* 217 11.66 31.66 11.66 15 18.33 11.66 99.970
* 220 27.27 18.18 9.09 27.27 9.09 9.09 99.990
* 221 0 0 33.33 33.33 33.33 0 99.99
* 222 0 33.33 0 66.66 0 0 99.99
* 223 50 50 0 0 0 0 100
* 229 0 0 0 100 0 0 100
* 244 0 0 0 100 0 0 100

♦ 606 50 0 ~0 50 0 0 100
* 612 0 100 0 0 0 0 100
♦ 803 0 0 0 100 0 0 100

THIS TABLE SHOWS % OF TOTAL IN SZIP
*

♦NOTE: 3 DATA POINTS WERE IGNORED.
ALPHA DATA IN NUMERIC FIELDS: SZIP

? ok
TRANSLATION TABLE FOR FIRM
BENDER BENDER BROTHERS
ADMINI_ADMINISTRATIVE SERVICES

*RESPOND~WnTI~AN^PTION_NUMBER”
->? 0

♦DO YOU WANT HISTOGRAMS FOR ANY VECTOR - - ->? no
♦DO YOU WANT THE ABOVE MATRIX TRANSPOSED - - ->? no

Figure 5.8g. A run of the CROSSTAB module to produce a table showing
percentage distribution among companies of persons whose ZIP codes
begin with the three digits listed in the first column. Here column totals
have no meaning and are not printed.

137

5.9 DESCRIBE

This module is designed to give a brief narrative description of the
file in current use and to explain to the user the nature of the information
contained in each of the data vectors in that data file. Upon entering the
DESCRIBE module, the narrative description is automatically given, if one
exists. Then, if the file in use is FNDEMO, and if the response to the
instruction:

TYPE A LABEL(S) OR ‘ALL’-> ?

is SCD, the module responds with the following

SCD, VECTOR #8, CONTAINS THE SERVICE COMPUTATION
DATE WRITTEN AS 6 DIGITS IN THE ORDER MMDDYY

If a description is desired for the label TOA, this module will
respond with:

TOA, VECTOR #10, CONTAINS A SINGLE NUMERIC
(1-9) CODE DESCRIBING THE TYPE OF APPOINTMENT.

*DO YOU WISH TO SEE THE CODE-> ?

A response of ‘YES’ results in printout as follows:

CODES FOR DATA VECTOR TOA ARE:
1 = COMPETITIVE CAREER
2 = COMPETITIVE CAREER-CONDITIONAL
3 - TAPER
4 = TERM, INDEFINITE
5 = COMPETITIVE TEMPORARY
6 = EXCEPTED PERMANENT
7 = EXCEPTED CONDITIONAL
8 = EXCEPTED INDEFINITE
9 = EXCEPTED TEMPORARY

A response of NO to the above question produces:

TYPE ANOTHER LABEL OR ‘END’->

The availability of this information at the terminal is a boon to the
person unfamiliar with the way the information is coded in the data base.
It should prove useful as a handy reminder to the data base manager as
well.

The response to the request for LABEL(S) can contain more than
one label. In this case, the question “Do you wish to see the codes?” is
asked for each label in turn after the comment is printed. If the answer to
the above requests for labels is ‘ALL’, this module will describe as many
of the data elements as have been documented in the file including
comments and codes where applicable.

If the file-description (dictionary) is not found in the main file, this
module prints:

“SORRY, THIS FILE HAS NOT YET BEEN DESCRIBED”

138

01*Radio
02=Television
03-Nursing Journals
04=Magazines
05=High school teachers
06=High school advisors
07=College counselors

01 St

■ -

East Coast
02 — South East
03 S Mid-West
04 = West Coast
05 s: Alaska
06 sr Hawaii
07 = Vietnam
08 as Korea
09 = Japan
10 = Okinawa
11 2SS Thailand
12 = Germany
13 = Italy
14 S2 Belgium
15 S Ethiopia
16 s Iran
17 = Canal Zone
99

*_

■ No preference

1=1 strongly agree with the statement.
2-1 tend to agree with the statement.
3=1 have no opinion or am uncertain.
4=1 tend to disagree with the statement.
5=1 strongly disagree with the statement.

6=1 don't care.
9 = Does not apply.

Essential
Very important
Important
Of little importance
No importance whatsoever

80 Anatomy
81 Bacteriology
82 Biochemistry
83 Biology
84 Biophysics
85 Chemistry
86 Physics
87 Physiology
88 Mathematics
89 Microbiology
90 Statistics
91 Other

1 = First Army Area
2 = Third Army Area
3 = Fifth Army Area
4 = Sixth Army Area
5 * Military District of Washington
6 = Asia/Pacific
7 = Europe
8 = Middle East/Africa
9 = Does not apply

Figure 5.9a. Examples of typical displays of the meanings of encoded data
vectors.

139

When this module exhausts the information on the description file without
finding the desired information, it prints:

“INFO ON XYZ IS NOT AVAILABLE”

where XYZ is the name of the data vector in question.

The information for this module is written in dictionary records
contained in the particular data base and produced by the DICTIONARY
module discussed in section 6. The dictionary file is used also by the
SURVEY module. Figure 5.33f shows the utility of such explicit
information on otherwise implicit information in a coded file.

5.10 DISPLAY

Most of the features of the DISPLAY module have been described
in section 3.2. Here we supplement that information with a number of
applications to a variety of data bases.

In figure 5.10a we show how chemical names are entered in one of
the crystal data files containing both organic and inorganic compounds. At
[A] we ask for the name to be displayed and find blanks in the first five
records. This serves to remind us that the file does not contain the names
for the organic compounds which are at the beginning of the file. Now we
wish to locate where the inorganic crystals start in the file so we skip to
record 500 and learn at [B] that we have not yet reached the inorganic
portion. On skipping to record 700 we see at [C] that we are indeed now
in the inorganic section. The remainder of the operation shows how we
were able to locate record 669, which is the start of the inorganic section
of this file.

140

* * WHICH DATA BASE DO YOU WANT - >? >crysanor
* *

* GOOD MORNING, WELCOME TO OMNIDATA
* * * ♦NOTE - OMNIDATA KEEPS A RECORD OF WHO USED WHICH
* MODULE(S) ON WHICH FILE(S) AT WHAT TIME OF THE DAY

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
— >? > display

♦TYPE LABELS OF ITEMS TO BE DISPLAYED OR ALL

*

*

♦MORE —>? >skip to 500
♦MORE ->? >1

500
♦MORE - >? >skip to 700

*

*

*

*

♦MORE —> ? > 1 /
700 SODIUM MANGANENE TITANTUM SILICATE PHOSPHATE*
♦MORE -->? >back to 650
♦MORE ->? >1

650
♦MORE --->? >skip to 675
♦MORE -->? >1

675 ARSENIC LEAD SULFIDE (4 + 3 + 9)
♦MORE — >? >back to 660
♦MORE ->? >1

660
* *MORE —>? >yes
* 661
* 662
* 663

Figure 5.10a. A record of the use of the DISPLAY module to locate the
heginning of the inorganic section of a portion of the crystal data file. See
the text for comments on the marked sections.

141

* 665 *
* 666
* 667 *
* 668 *

* 669 POTASSIUM HYDROXIDE-FLUORIDE ALUMINATE-SILICATE (1+2 + 4+10)*
* 670 POTASSIUM HYDROXIDE-FLUORIDE ALUMINATE-SILICATE (1 + 2 + 4+10)*
* *MORE—>? >yes *
* 671 YTTERIUM TITANIUM OXIDE (6 +1 +11) *
* 672 ARSENIC LEAD SULFIDE (4+3 + 9)
* 673 IRON SULFATE (2 + 3 + 12) 10-HYDRATE
* 674 CALCIUM SILICATE (1 + 1+3) *
* 675 ARSENIC LEAD SULFIDE (4 + 3 + 9)
* 676 LEAD TIN ANTIMONY SULFIDE (5 + 3 + 2 + 14) *
* 677
* 678 *
* 679 ALUMINUM MAGNESIUM HYDROXIDE SILICATE (1 + 5 + 8 + 4+10)*
* 680 PHOSPHORUM THIO IODIDE (4 + 3 + 2) *
* *MORE —>? >end
* *

* CPU SEC IN DISPLAY = .2102 COST = < INSTALLATION DEPENDENT*
* CPU SEC = .5196 TIME = 7:20:42 *
* *

* *TYPE A MODULE NAME AND/OR INSTRUCTIONS
* — > ? > stop *
* *

* NORMAL EXIT BY LSD RBASIC. *
* > @fin *

Figure 5.10a (concluded).

142

5.11 DISTRIBUTE

The DISTRIBUTE module can divide a file into as many as 50
subfiles on the basis of information it finds in any one of the data vectors
in the file. If a file contains a data vector called STATE giving the states
of the union (as a two-letter abbreviation) and the file is distributed on
STATE, this module separates out all the records belonging to the same
state and stores them on separate files, one for each state encountered.

When the entire file has been distributed, this module catalogues
the subfiles under names automatically generated as follows. The name of
the file becomes a concatenation of ‘F’ for file, the label, and value of the
label. For example, if the first record carried PA as the entry for STATE,
the name of the first subfile would become ‘FSTATEPA’. All records from
the state PA would be written on this file. The next file would carry the
name of the next state that is encountered as the file is read. Had the
name of the state been entered as PENN or PENNSYLVANIA, the subfile
for that state would have been named FSTATEPENN or
FSTATEPENNSY. The truncation in the second case results from a 12
character limit established for file names. Before exiting from this module,
there is printed out the list of names of the files generated and the number
of logical records in each of the files. Then this module returns the user to
the main Omnidata program which asks again

*TYPE A MODULE NAME AND/OR INSTRUCTIONS - >? >

On exiting from the DISTRIBUTE module, the user has access to
the same file with which he entered the module. If it is necessary to
perform operations on one of the subfiles distributed in the current run or
catalogued in a previous run, they can be activated in Omnidata by means
of the FETCH module.

When the distribution is completed, this module generates a
temporary scratch file (FFILES) available during the life of the current
run which contains the names of the files that were last distributed. This
scratch file supplies information to certain of the modules which allows
them to perform their operations in sequence on each of the distributed
files in turn. While DISTRIBUTE lists the file names in the order
generated, it alphabetizes them before writing them in the scratch file
(FFILES). Those modules that operate in the TANDEM mode make use of
this scratch file to enable them to perform their operations on each of the
files in alphabetic order.

The files resulting from the DISTRIBUTE operation are all
identical in format to the files from which they originated, including labels
and pointers.

An application of this module to distribute the records in a file by
division (DIV) in an organization is shown in figure 5.11a. As the file
contains information for DIV = 1,2,3,4,6, we get 5 files suitably named
as shown at [4]. If we had typed DIV,2,3, instead of just DIV, we would

143

OMNIDATA 15:22:06 28 MAR 77 *

*

* PLEASE ENTER ACCOUNT NUMBER -->? >XXXXX
TYPE PASSWORD ~ > ? > XXX
* WHICH DATA BASE DO YOU WANT --> ? >fndemo

*

GOOD AFTERNOON, WELCOME TO OMNIDATA
* * *NOTE—pMNIDATA KEEPS A RECORD OF WHO USED WHICH* * *

MODULE(S) ON WHICH FILE(S) AT WHAT TIME OF THE DAY*

FILE FNDEMO CONTAINS 110 DATA ITEMS FOR 500 RECORDS.
TYPE A MODULE NAME AND/OR INSTRUCTIONS

— > ? > monitor,50,distribute „

•DISTRIBUTE ON WHICH LABEL ->? >div
50
100
150
200
250
300
350
400
450
500

ENTRIES DISTRIBUTED TO 5 FILES 4.4272 152340
ENTRIES DISTRIBUTED TO 5 FILES 4.6032 152348
ENTRIES DISTRIBUTED TO 5
ENTRIES DISTRIBUTED TO 5
ENTRIES DISTRIBUTED TO 5
ENTRIES DISTRIBUTED TO 5
ENTRIES DISTRIBUTED TO 5
ENTRIES DISTRIBUTED TO 5
ENTRIES DISTRIBUTED TO 5
ENTRIES DISTRIBUTED TO 5

* YOU HAVE CREATED 5 FILES
* NAME # ENTRIES
* FDIV3\^ —72
* FDIV2 171
* FDIV6 26
* FDIV4 95

FILES 4.7836 152354
FILES 4.9564 152359
FILES 5.1346 152406
FILES 5.3064 152417
FILES 5.4726 152428
FILES 5.6362 152438
FILES 5.8174 152444
FILES 5.9934 152457

d

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Figure 5.11a. A record of the operation of the DISTRIBUTE module on a
file of 500 logical records. Note: 1) the request to monitor the operation
each time 50 records are read; 2) the time in cpu seconds; 3) the elapsed
clock time; and, 4) the way the subfiles are named and the number of
records in each.

144

end up with 3 files. Records for divisions 1 and 2 would be in the first
file, those for division 3 in the second file and the remainder in the third.
The files would be named FDIV2, FDIV3, and FDIVREM. The
instructions DIV,2,3,6 would result in the same subfiles but the name of
the last file would then be FDIV6.

As the normal objective in distributing records to subfiles is to use
these at a later time, the situation can easily arise that a subsequent
distribute operation would result in file names that duplicate ones assigned
earlier. This module, therefore, checks the list of catalogued files and
appends a number 1,2,3, etc. to the file name to avoid the duplication.

In figure 5.11b we see how a bibliographic data file is distributed
into 5 files, according to year of publication so that papers published
before 1960 are in the first file called FYR60, those between 1961 and
1970 in the second, etc., and those later than 1976 in a file named
FYRREM.

* *TYPE A MODULE NAME AND/OR INSTRUCTIONS
* ... >? > distribute,monitor,200
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

♦DISTRIBUTE ON WHICH LABEL -->? > YR,60,70,75,76
200 ENTRIES DISTRIBUTED TO 6
400 ENTRIES DISTRIBUTED TO 6
600 ENTRIES DISTRIBUTED TO 6
800 ENTRIES DISTRIBUTED TO 6
YOU HAVE CREATED 5 FILES
NAME # ENTRIES
FYR60 28
FYR70 245
FYR75 498
FYR76 97
FYRREM 8

FILES
FILES
FILES
FILES

18.5554
19.1478
19.7576
20.377

141300
141322
141355
141428

*

*

*
*
*
*
*
★
*
*

*

*

*

Figure 5.11b. Here we see how the DISTRIBUTE module allows for
creation of subfiles containing specific desired groupings of records rather
than a single record type. See the text for further discussion of this figure.

145

If one wished to distribute a data file into subfiles containing states
in the New England region, the mid-Atlantic region, etc., it can be
accomplished by using two modules. AGGREGATE can be used first, as
shown in figure 5.02d, to generate a new data vector called region. Next, if
the DISTRIBUTE module is instructed to operate on the region vector, the
subfiles would contain the desired groupings of states. A similar operation
on a data file containing names of countries would allow for aggregating
and then distributing to subfiles by continent.

On the other hand, if we wished to DISTRIBUTE records to subfiles
containing specified numbers of countries per record, this module will do
so, provided we are satisfied to have them appear in groups in alphabetic
order. Thus, if we respond to the question

^DISTRIBUTE ON WHICH LABEL?
by typing

COUNTRY,BOTSWANA,C,GAMBIA,KUWAIT,SWA,ZANZIBAR,

the result will be 7 files. The first would contain records for countries
whose names fall between Afghanastan and Botswana. The second file
would contain words for the countries Brazil to Czechoslovakia, etc. The
seventh file will contain countries beyond ZANZIBAR. If there are none,
the file is empty.

It should be noted that in none of the above cited applications is
there a requirement that the original file be in sorted order. Nor will the
resulting subfiles necessarily be in sorted order. The records will be
written in the order in which they appear in the original file.

This feature of building subfiles containing clusters of records on the
basis of alphabetic (or numeric)order of a particular data vector is useful
when it is necessary to SORT a large file. Since shorter files can be sorted
much more efficiently than larger ones, the sorted subfiles can then be
combined via the STACK module to produce a sorted file.

♦♦♦NOTES***

146

5.12 ENCODE

Effective analysis of information in detailed data files requires
facilities for encoding the information. Preparation of summaries,
frequency distributions, and cross-tabulations are facilitated by being able
to replace the wide variety of numeric values by relatively few classes: age
groups, salary groups, or any other grouping that will make the display
and analysis more manageable. The ENCODE module is useful for this
purpose. It works in two modes which are selected by typing either
A(UGMENT) or R(EPLACE) in response to the first input request. In the
former case, the module adds a new data vector to the file. In the latter
case, the original data items are replaced by the appropriate code.

If we wish to encode the PAY vector in the augmenting mode, the
module asks for the name of the new vector. The advantage of using the
augment mode is that the original data are still available for other
purposes or for encoding into narrower classes. Obviously, encoding again
to broader classes can be achieved by recoding the encoded vector, but
with less control over the class intervals. After the mode has been
selected, this module asks for an input

INPUT LABEL TO BE ENCODED AND INTERVALS

> ?
If the response is

PAY, 5000, 10000, 12000, 14000, 16000, 18000, 20000
25000, 30000

the actual salary figure would be replaced by a number indicating the
group to which that figure belongs. If the salary in a particular record was
7530, it would fall into group 2. Entries between 10,000 and 11,999
would fall into group 3, etc. Salaries above and below the designated
range are also counted and reported. Thus, salaries below 5000 would be
put into group 1, while those above 30,000 would be put into group 10.
See figure 5.12a for the results of this encoding operation and the
dialogue required to achieve them.

In the above example, we specified the precise boundaries of the
class intervals we wished to establish for encoding. This operation
becomes tedious when the precise boundaries are really not crucial to the
subsequent analysis. In many instances classification into 10 classes would
be sufficient. Such encoding is indeed available and can be exercised by
responding with a label and the number 10. In order to achieve this, it is
necessary for the module to know what is the minimum and maximum
data entry in the particular vector. The OMNIDATA file format allows for
storing such information in a summary table. If a summary table exists in
the file in question, ENCODE reads it and uses it to set up class intervals.

147

If users prefer to ignore these actual extreme data points, they may
supply their own upper and lower bounds by typing, for example, PAY,

10, 6000-36000. This instruction would generate 10 uniformly spaced
intervals between 6000 and 36,000 and enter into a new vector a number
for each record indicating into which interval the pay value falls. Since
there are likely to be pay values falling outside of these limits, the
intervals are numbered 2 to 11 instead of 1 to 10. This module performs
similarly for intervals other than 10, except that there is a limit of 50
intervals.

If the file to be encoded has not been summarized previously, this
module requests the user to supply lower and upper bounds. In figure
5.12a we see how this module responds in such a case. Here we did not
specify the number of intervals, so the ENCODE module assumed that 10
intervals would be satisfactory and asked for the lower and upper bounds
since it did not find a file summary. When a large number of uniform
intervals are required, the information can be supplied more economically
by indicating the lower bound, the interval size, and the upper bound.
Thus, the input AGE, 10(10)50 will set up 6 class intervals as follows:
<10, 10-20, 20-30, 30-40, 40-50, 50 >.

After each of the designated vectors have been encoded, the user is
offered the opportunity to obtain histograms. At this stage it is possible to
have each of the class intervals identified either by their mid-range or by
the class interval. Figures 5.12a et seq. show the variety of input and
output options available in this module.

♦♦♦NOTES***

148

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS

■>? >encode *
♦WHICH MODE? TYPE R(EPLACE) OR A(UGMENT) --->? >augment
♦INPUT LABEL TO BE ENCODED AND INTERVALS *

■>? >pay,5000,10000,12000,14000,18000,20000,25000,30000
^->? >age

♦TYPE LOWER,UPPER BOUNDS TO BE DIVIDED INTO 10 CLASSES
--->? >20,70

>._->? >vos,5(5)40
--->? >backup,l
--->? >yos,5(5)45
--->? >end

♦TYPE THE NEW LABEL FOR THE ENCODED PAY
♦TYPE THE NEW LABEL FOR THE ENCODED AGE

DOB IS ALREADY A LABEL-PLEASE SELECT ANOTHER WORD
♦TYPE THE NEW LABEL FOR THE ENCODED AGE --->? >cage *
♦TYPE THE NEW LABEL FOR THE ENCODED YOS --->? >ayos

•>? >cpay
•>? >dob

FREQUENCY DISTRIBUTION OF PAY
74 : 96 43 37 60 26 77 40 : 47

FREQUENCY DISTRI BUT IONOF YOS
120 : 100 71 67 62 36 34 3 1

♦INPUT LABELS FOR HISTOGRAMS DESIRED --->? >a11

HISTOGRAM OF PAY DISTRIBUTION
CLASS I NT. VALUE

* 1 <5000 74 : XXXXXXXXXXXXXXXXXXXXXXX
* 2 5000-10000 96 : xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
* 3 >10000-12000 43 : xxxxxxxxxxxxx
* 4 >12000-14000 37 : xxxxxxxxxxxx
* 5 >14000-18000 60 : xxxxxxxxxxxxxxxxxxx
♦ 6 >18000-20000 26 : xxxxxxxx
* 7 >20000-25000 77 : xxxxxxxxxxxxxxxxxxxxxxxx
* 8 >25000-30000 40 : xxxxxxxxxxxxx
: W^22Vr- ♦ * " sf"'**—r^**^r~-Ts—^ * *

Figure 5.12a. Here we have a record of the use of the ENCODE module to
augment a data file with three new vectors containing classification into
designated class intervals of the data on AGE, PAY and YOS (years of
service). Note: 1) alternate ways of specifying the class intervals; 2) the use
of the BACKUP command to correct a previous entry; 3) the way in which
names are assigned to the new data vectors; 4) the frequency distributions
for each of the encoded data vectors; and 5) the appearance of the
histograms. As many as 10 data vectors can be encoded by this module in
one pass through the file.

149

* HISTOGRAM OF AGE DISTRIBUTION
* CLASS I NT. VALUE
* 1 <20 x 25 : : xxxxxxxxxx *
* 2 20—25\ 48 : : xxxxxxxxxxxxxxxxxxx *

* 3 >25-30 \ 42 : : xxxxxxxxxxxxxxxxx *
* 4 >30-35 \ 49 : : xxxxxxxxxxxxxxxxxxxx *
* 5 >35-40 \ 59 : : xxxxxxxxxxxxxxxxxxxxxxxx *
* 6 >40-45

©
73 : : xxxxxxxxxxxxxxxxxxxxxxxxxxxx *

* 7 >45-50 75 : : xxxxxxxxxxxxxxxxxxxxxxxxxxxxx *
* 8 >50-55 63 : : xxxxxxxxxxxxxxxxxxxxxxxx *
* 9 >55-60 45 : : xxxxxxxxxxxxxxxxxx *
* 10 >60-65 / 15 : : xxxxxx *
* n >65-70/ 6 : : XX *
* 12 >70/ 0 : *

* HISTOGRAM OF YOS DISTRIBUTION
* CLASS I NT. VALUE * 1 <5\ 120 : xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ♦ 2 5-10\ 100 : xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx *
* 3 >10-15\ 71 : xxxxxxxxxxxxxxxxxxxxx *
* 4 >15-20 \ 67 : xxxxxxxxxxxxxxxxxxxx *
* 5 >20-25 © 62 :

36 :
xxxxxxxxxxxxxxxxxxx *

* 6 >25-30 xxxxxxxxxxx *
* 7 >30-35 / 34 : xxxxxxxxxx *
♦ 8 >35-40 / 3 : X *
* 9 >40-45/ 1 : *
* 10 > 45 / 0 : XX *
* *MORE --->? >yes *
* * INPUT LABELS FOR HISTOGRAMS DESIRED --->? >age,mid
* *

* HISTOGRAM OF AGE DISTRIBUTION * MIDRANGE VALUE *
* 1 < 20 25 : XXXXXXXXXX *
* 2 22.5 \ 48 : XXXXXXXXXXXXXXXXXXX *
* 3 27.5 \ 42 : xxxxxxxxxxxxxxxxx *
* 4 32.5 \ 49 : XXXXXXXXXXXXXXXXXXXX *
* 5 37.5 \

42.5 X2)
59 : xxxxxxxxxxxxxxxxxxxxxxxx *

* 6 73 : xxxxxxxxxxxxxxxxxxxxxxxxxxxxx *
* 7 47.5 r* 75 : xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx *
* 8 52.5 / 63 : xxxxxxxxxxxxxxxxxxxxxxxxx *
* 9 57.5 / 45 : xxxxxxxxxxxxxxxxxx *
* 10 62.5 / 15 : xxxxxx *
* 11 67.5 / 6 : XX *
* 12 > 70 0 : *
*
* * *M0RE --->? >no ****** * ***********

*
*

Figure 5.12b. A continuation of the output from the run started in the
previous figure showing: 1) normal output in terms of class intervals, and
2) output in terms of the mid-points of the interval. The next figure shows
a cross-tabulation of two of the encoded data vectors.

150

♦TYPE A MODULE NAVE AND/OR INSTRUCTIONS

--->? >crosstab

♦

*

♦

*_

* --->? >1
* *ANY HEADING --->? >no
* *ANY FOOTNOTE --->? >no
*

*
*

*

*

* ? OK
*

CPAY

CPAY

* CAGE
*

1 2 3 4 5 6 7 *
*

* j 14 11 0 0 0 0 0 *
* 2 5 41 2 0 0 0 0 *

* 3 5 16 7 6 6 2 0 *
* 4 4 6 4 5 9 6 14 *

* 5 6 3 2 3 12 6 17 *

* 6 11 3 3 6 5 5 19 *
* 7 12 6 7 7 5 5 12 *
* g 8 7 7 7 10 0 9 *
* 9 4 2 7 2 11 2 4 *

* 10 4 0 4 1 0 0 1 *
* n 1 1 0 0 2 0 1 *
* *

* TOTALS 74 96 43 37 60 26 77 *

*
*

CAGE 8 9 TOTAL *
*

* 1 0 0 25 *
* 2 0 0 48 *
* 3 0 0 42 *
* 4 1 0 49 *
* 5 6 4 59 *
* 6 11 10 73 *
* 7 11 10 75 *
* 8 4 11 63 *
* 9 5 8 45 *
* 10 1 4 15 *
* 11 1 0 6 *
* *
*
*

TOTALS
* * *

40
* *

47
* *

500
* * * *

*

Figure 5.12c. Here we see an application of the encoded age and pay data
to provide a concise summarization of the relationship between these two
data items. In productive use, the class numbers on the left and across the
top would be replaced by the intervals shown in the previous figures.

151

******************* *

*
v*_

*

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
--->? >dispI ay

♦TYPE LABELS OF ITEMS TO BE DISPLAYED OR ALL
- - ->? >pay,cpay,age, cage,yos,cyos

PAY CPAY AGE CAGE

08027 2 37 5
32280 9 59 9
15860 5 52 8
21671 7 37 5
26938 8 52 8
19462 6 46 7
13162 4 52 8
30486 9 49 7
31383 9 45 6
34323 9 49 7

♦MORE
20357

--->? >30
7 32 4

08943 2 55 8
18350 6 36 5
22328 7 53 8
22985 7 40 5

YOS CYOS

6 2
33 7
25 5
11 3
31 7
12 3
16 4
24 5
11 3
14 3

5 1
29 6

8 2
10 2
13 3

* 13627 4 53 8 5 1
* 10471 3 52 8 10 2
* 13996 4 37 5 5 1
* 35363 9 62 10 32 7
* 21671 7 60 9 19 4
* 21671 7 34 4 8 2
♦ 36000 9 52 8 23 5
♦ *MORE --->? >no
♦ *TYPE LABELS OF ITEMS TO BE DISPLAYED OR ALL
♦ --->? >end
♦ *TYPE A MODULE NAME AND/OR INSTRUCTIONS
♦ --->? >stop
♦ PROGRAM STOPPED.

*

*

Figure 5.12d. A display of the data items PAY, AGE, and YOS and their
equivalent class designations (codes) CPAY, CAGE, and CYOS produced
by the instructions shown in figure 5.12a.

152

5.13 EXTRACT

The EXTRACT module allows the user to specify positions in a
given data vector which are to be extracted to form a new vector of
information. This new vector may be defined to be either string data or
numeric data. Its primary application is in elevating information contained
in one of the miscellaneous data vectors generated in the DEFINE module
to a major Omnidata data vector. It gives the user the added capability of
duplicating a vector in order to redefine it as either numeric or alphabetic
data. It is sometimes convenient to be able to treat a numeric data vector
either as a number or a string of characters.

If in response to the instruction:

♦TYPE NEW LABEL, OLD LABEL, AND POSITIONS ~>

the user responds with ZIP3, ZIP, 1,3, this module extracts the first three
digits of the ZIP code field and enters it as a new data vector called ZIP3.
In the next two exchanges with this module the user designates whether
the new item is to be treated as numeric or alphabetic and whether the
data is restricted or not. Figure 5.13a shows a typical use of this feature.

There are two other ways to specify the location of the data items to
be extracted and relabeled. One of these is in relation to its position in the
logical record of the file. The other is in relation to the location of the data
item in each of the sectors on the disc into which the original logical
record is read. As an example, it is informative to consider an item of
information called PLANT located in positions 278-282 of the original
file and hence in sector 2 on the disc where it is located in positions 110-
114. Now, if we wished to extract from these five characters the leading
digit which represents the REGION, there are the following alternatives:

REGION, PLANT, 1, 1 or REGION, LOGICAL, 1, 278, 278

or REGION, SECTOR, 2, 110, 110.

Each of these gives the same results.

EXTRACT operates in two modes. According to the response to the
first input request, the new vectors are generated temporarily for the run
or are added to the file permanently.

153

* * WHICH DATA BASE DO YOU WANT -->? >fcarpool
* FILE FCARPOOL CONTAINS 36 DATA ITEMS FOR 500 RECORDS. *
* TYPE A MODULE NAME AND/OR INSTRUCTIONS
*--->? > no cost,extract *
* TYPE MODE-T(EMP) OR P(ERM)->? >p
* *TYPE NEW LABEL, OLD LABEL, AND POSITIONS ->? >zipl,zip,l,l
* TYPE S(TRING) OR N(UMBER) — >? >number
* TYPE R(ESTRICTED) OR N(ORMAL) — >? >normal
* *TYPE NEW LABEL, OLD LABEL, AND POSITIONS ->? >zip2,zip,l,2
* *TYPE S(TRING) OR N(UMBER) ->? >number
* TYPE R(ESTRICTED) OR N(ORMAL) --->?>normal
* *TYPE NEW LABEL, OLD LABEL, AND POSITIONS - >? >zip3,zip,l,3
* TYPE S(TRING) OR N(UMBER)->?>number
* TYPE R(ESTRICTED) OR N(ORMAL) — >? >normal
* *TYPE NEW LABEL, OLD LABEL, AND POSITIONS ->? >y-crd,y2-crd, 1,3
* *TYPE S(TRING) OR N(UMBER) - >? > number
* TYPE R(ESTRICTED) OR N(ORMAL)->?>normal
* TYPE NEW LABEL, OLD LABEL, AND POSITIONS - >? >end *
* TYPE A MODULE NAME AND/OR INSTRUCTIONS *
* --->? >save *
* *

* *TYPE NAME UNDER WHICH FILE IS TO BE SAVED ->? >fcarpool
* FCARPOOL IS CATALOGUED— 64 TRACKS 500 RECORDS 9.7778 *
* *TYPE NAME UNDER WHICH FILE IS TO BE SAVED - >? >end*
* *

* TYPE A MODULE NAME AND/OR INSTRUCTIONS
* — >? >stop *
* PROGRAM STOPPED.
* TIME : 11.052

Figure 5.13a. Instructions for generating five new data vectors by
extracting certain digits from existing data vectors in an experimental
carpool file. The new vectors X-CRD and Y-CRD are shown in figure
5.7a together with the original data vectors from which they were
extracted.

154

5.14 FETCH

When a user originally enters the Omnidata system he selects one of
the catalogued data bases on which to work. It is quite possible that
sometime later during the Omnidata run he may wish to change files to be
able to operate on another original file, a file created during a previous
run (as explained in SAVE), or a file created by some module in the
present run (for example, a subfile created by DISTRIBUTE). This switch
of files is accomplished by the module FETCH.

The response to the question “WHICH FILE?” must be the name of
a catalogued file in Omnidata format. If the file is indeed available, this
module opens the file, reads the labels into memory (into the label file
FLABELS), and prints the labels on the terminal except when the user
follows the file name with the word TERSE.

**

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
->? >fe,ch--___-x

♦WHICH DATA BASE DO YOU WANT? —>? >fprl00
FILE FPR100 CONTAINS 112 DATA ITEMS FOR 99 RECORDS.
THE FOLLOWING LABELS ARE IN THE FILE:
DIV,SS#,SEX,CIT,NAME,DOB,YOB,SCD,STAT,TOA,TOD,TOLA,
NTEDA,PP,OSC,FC,TITLE,GRADE,STEP,PAY,PLANT,DEPT,LC,
CSDF,CSDTO,LEGR,DDAY,DDGR,PINFO,DOPP,EOD,EUDY,
ADTIT,PROFS,DEG,COLDEG,YR,SPP,DPG,ATD,SEQ,VP,INS,
HC,RET,NOAC,SLIM,DLIM,RLIP,EDA,AUTH,POSW,AC,PFC,
APPOR,REM,AUDAT,SON,SPF,PD,DRPB,CL,NTEDP,ANU,TP,

HWRAE,SCDY,SALBAS,C,AGE,CAGE

CPU SEC IN FETCH = 2.8118
CPU SEC = 19.3666 TIM = 12:00:34

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
—■>? >users

Figure 5.14a. Here we see how the FETCH Module responds at [B] to the
request, at [A], to get the file FPR100 from mass storage. The labels of
the data items are printed out as a reminder for the user. At point [C]
control is returned to the main Omnidata program.

155

5.15 FIT

This module fits a least-squares polynomial of degree m (m<T0) of
the form

Y = A0 + A1X + A2X2 +AmXm

where X and Y are two numeric data vectors. This is accomplished by
interfacing with the OMNITAB (1978) system, which has one of the more
accurate algorithms for least-squares calculations. As our first example,
we show the result of fitting a fifth degree polynomial to 17 data points
representing the thermal conductivity of a copper-nickel alloy as a
function of temperature.

The results of this operation are presented on four pages (see figs.
5.15a et seq.) and contain the following:

On the first page we have a tabulation of:
a) the independent variable (TEMP),
b) the response (the thermal conductivity for an alloy containing

95% nickel),
c) the predicted response computed from the fitted polynomial,
d) the standard deviation of each predicted response,
e) the residuals (the difference between the observed and

predicted values),
f) the standardized residuals, and
g) the weights used in the fitting operation.

It should be noted that the weights in the last column of fig. 5.15a
are unity for the first 17 rows devoted to the actual data fitted. The
remainder of the rows carry zero weights so the data in rows 18-37 of the
second and third columns did not enter into the least-squares calculations.
Their presence in the printout is for the purpose of computing a table at
uniform or at specific values of the temperature. How this is accomplished
is discussed later.

On the second page (fig. 5.15b) we have four plots showing:
a) the standardized residuals versus row number,
b) the standardized residuals versus predicted response,
c) the standardized residuals versus the temperature, and
d) a normal probability plot of the standardized residuals.
On the third page (fig. 5.15c), we have two types of information of

interest to the statistical analyst:
a) the variance-covariance matrix to assess the collinearity of

the data vectors fitted, and
b) the analysis of variance from which it is possible to assess

the adequacy of the model (in this case a fifth degree
polynomial).

156

© e c
g e e
G © O

GQGGGGGGGGGGGG GGGGGGCGGG&GGG ©©©©©©eoooc©©©
„B*,-t,-4.-t'.»4*-*,H»-i«M*«(;)M«a4wN«i-4,-lsM*N©©©e©©©©©©©.©©©©©©©0©

c tn
H UJ If tX

l•-:.lOece^**etf:^*•0<»O\£fOlreC©CC©©e©©e©eeeeceeC
> cm —• — o*cw^wvfiiowincirio©ocec©ooo©oooococo©©

ro dr

ro to
fO If) cm ce
o* ro
ro cm
-i ©
© ©
© ©
© ©

43
r- (7>
If* 43
in n if) if
to *h

IO
«-4 <L
© *H
© ©
© ©
© ©

O' -4
ID If)
3* if if if
© cr-
45 CM

ro
*H O'
© ©
© c
© ©

<£ U*3
cm to n <o « f N o N
if © in
^ lO
CM CM -if
CC © *-«
O ©
© © ©
© o ©

O'
O' «-* r* if n ao
f- 4) 43
N if 43
a cm ro
a n if
O' ro ^
OH H
©• © ©
© © ©

if
O O'®
fO CO m

h-Hh
a:, r~ -h
CM *-4 »H
ro cm ro
© **4 «-4
© © ©
© © ©

8

©
O' CO
co in
if) ro
CM 43 CM ©
CM M3 cf if? M3 if P" © O' h* h* cm ro h- © AJ df' © O' If) 9—<

43 If) ao 0* © if © O' If) CO cm yf> M3 P*- CM x© CM 4D
CM ® M3 4) ro N if if U3 O' © h* ro QC N CC CM O' © 43
a © CM €C 43 CM C\J *h ^ © CM ^ CM ^ CC 4D —t ro 4)
© © « x© CE © <C © f* m* N © X© «H ro cm 43 <43 x£ CVJ ro
© © If) IN CM © N If) © if if cm in if CO © CM CM CM 3" ro
© © ro N CM r- ^ tf) O' ro O* ■sp N © ^ CM IO If) h*
© © © © *■•< H CM CM fO ro »o if ;*■ in If) xG 43 M3 x© xf) x©

I I I I I I 1 1 I I I I I I

Ll t/i N N & If) N N 43 00 in 4) 43 © IO xO O' m 43 in in f- vO CO ^4 un CM xC 43 © ro xf O' in « 43
z o z 00 CM 43 if) 43 ao h- in ro 4) CM CM 03 n in O' in 43 n in if ro in 43 CM -4 ao CM CD fO if © O' in

o O' © © O' 43 © CM CM if) © m o in N CM N m cr- to 43 © CM in CM 43 in © m © in N IN N 0 m f**
in « a. m f* © CM O U3 If) O' N* N N if CM ro -4 O' IrH CM O' in in N O' in t- N N if CM IO O' CM x0 CM O'

-J > U3 ro If) © O' GO 43 CM •H 3- IO 03 CO © ip 4) if if O' CO x0 CM ^4 •H 4) & ro go ® © if © © ro co
© UJ UJ O' w-i N to ro 43 ro cc N if cr •M CO »H G cv. ro ro ro 43 IO GO & N IN if O' H ct 43 CM CM IN CM

UJ u a or ro O H CO If) 43 & ro CO «H IN If) ro CM 43 43 43 ® •M in xD & fO ro m GO -M N un ro CM N N H 4)
_J © If) K) 5P O dP if if if If) cf if in N O' O' if) ro & if & & if if if if in dp if in N O' ro O' O'

»-* CE z •. • o © 9-4 ©
z < Q Q © © © © © © © © © © © © © G a © © © © © © © © o © © © © © © © © © © © © ©

»=# H* UJ o © O © O © © © o © © © © © © o © © © © © o © © © o © © © © © © © O o © ©
Q, C3t tf) 1/) CL
If. < L- a
O' > X

©
N. h »-*

Ui Uj Z UJ
LD UJ
z a

►4 © z o
Z a Ul K ro ro 5* CM CM ©

U3 CL UJ O' ro If) in 4) © N CM ro 43 O' *-{ in CM lO if in 43 if N o O' N N CM ro |N © CM if © O' m v-4 ro
u. UJ UJ INJ UJ UJ <M 00 03 O © O © if) CM If) 43 43 *H CM N ro in CO O' © if © O' in CO CM in xD H CM 43 CM 4) rO
© cl C H If cr ro cc 43 ro r* o If C3 h- ro CC N CM 43 43 ro N * ip IT O © N ro N CL CM o G xC «H

z © u z ro CM cc •H ® 43 CM CM if © CM & CM C O' O' CM ««4 43 CM CM «~4 if <-4 © CM if CM «-4 CC 43 «-• ro 43 cr
h- u »~l CM O © CO ro 4) 03 © CD © *H © 43 tH ro CM 43 © O' CO 4 ® © c0 © N *H N © 43 -h ro CM 43 xD 43 CM fO O'
z a o a. ro © N CM © N If) if CM in dr ® © CM CM 43 in N CM © N m o if iP CM in if ao © CM CM CM if ro 4)
UJ • UJ if) CM CM N <H 43 If) ro O' dr N © eH if ro ro N CM N »-* 43 •H in O' ro O' f h» © *-t CM ro in h* •O
u i- in CL UJ © © CT © *-4 CM CM ro ct & m in 43 4) 43 4) G C *«* •H CM CM ro ro ro if if if) if. 43 xf 43 4) 43 4: 43
g: a a. tr
Ui u. z
a. UJ <c

k
If) UJ
UJ £E tn CD

X CL © H*
© < UJ X
»-» !D C ©
UJ © *“4
x in u. Ui

o 3E © © O O'
0) h- © © © O' © © © © o © Q © O' © O' © O'
IMI 03 ™l o M © © © O' © © © O © o © © O' © O' © O'

< < £L UJ z © © © O' © © © © © © © o O' © O' o O'
K UJ »-4 UJ C/) © o © o o © © O © © © © O' O O' © O' l
3t J s rsi Z £L O' CO N © © © o o © © © O' © O' © O' ;

o I © in N rO © N ro J- if ro N ro N O' ro CM 4)
'■“* z Z Q. O' CM 43 N CM h* •H 43 in rO O' if N O' 4- fO i

>» o tn © © © © v~4 CM CM ro if if lO if) m 43 43 4) 1
.4 z UJ

T o cc; © o © o O © o c © © o © G O o C c G o
UJ CL h»
P-
1/I <

H i
r< =C i

o! to i
!

< ©
z I

Ui
*: to
o 3 O © © ©
►“# © © © © O o O © © 0-0 o o o © © © o o © o o © © © © O ©
z cc © o © © © © O © © © O © © o © © © © © O o © © © © © © © O © o © o o © © O

< a. o o O © o o © o © © © o o © o o © © o o o © O o o o o o o o o O © o o o o
g: > s o © © O © © © o © o © © o © © o © © © © o © o © o © o o © © © © © © © © o
Ui UJ © © O O o © © © o © © © © o © © © © o © o © o o © © © © © o © o © o © © ©
CL CL H* o o © © © © © o © © o o o © © © © © © © o o o o o o o o o © © o o © o o o
a* UJ.
o Q; ^ X0 CO © If) o in © o o © o o o o © © m © in o in © in © in o o © © © o © © © o o
o Z •H CM CM lO if If) 43 N CO O' © in © H *“4 CM CM ro ro dp in 4) N <X) O' o CM 43 © o

H CM •H H *H CM

*-»<Mi0^,if)'0r-a30'o»-«c\j*0^ur)'0r***<00s©^cMr0^if)N0f^<00N©»HCMK)^,inv0i
HHHHHHf\J(\JOJC\JC\J(\!(M(MC\JOjrOfOfOOlOOllO'

Figure 5.15a. This is the first of four pages produced by the FIT module
in the process of fitting a fifth degree polynomial to 17 data pairs at [A]
and [B]. See the text for an explanation of the numbers in rows 18-37.

157

OMNI TAB - COPPER NICKEL SYSTEM < WT IS WEIGHT PERCENT OF NICKEL. PAGE 2

STANDARDIZED RESIDUALS VS ROW NUMBER
3.75 --—------X-4—-4-

STaNDARDlZED RESIDUALS VS PREDICTED RESPONSE
-♦ 3.75 4-—---4----4---

2.254 4 2.254

.754 4 .754

-*•

.754

- * * •
-*♦

4 -.754

-2.254 4 -2.254

-3.75 4—
1.0

—X—'—

19.0000
-- -3.75 ---
37.0 2.8039-02

-—X——4—
3.3507-01

STANDARDIZED RESIDUALS VS TEMP
3.75 ♦———————4——————4—»—x -4————4-

NORMAL PROBABILITY PLOT OF STANDARDIZED RESIDUALS'
-4 3.75 4-—————4—«•----X——4-----♦

.754

- • *

4 2.254

4 -.754

4 -2.254

-3.75 4-
9.0000400

--X---
1.0200402

-4 -3.75 ♦—
2.0000402 -2.5

--X--
0.0

Figure 5.15b. This second page provides a variety of graphical
presentations of the residuals (observed values—calculated values).

158

O
M

N
IT

A
B

-

C
O

P
P

E
R

N
IC

K
E

L

S
Y

S
T

E
M

(
W

T
IS

W
E

IG
H

T

P
E

R
C

E
N

T

O
F

N
IC

K
E

L
.

P
A

G
E

j
j

o c c c c e
1

1 I i 3 c o c c o o 1
«■» o o o o o c 1

i

X •

l o -4 ^ O j-
1 o o PD 3 O o j- :

II c XXX x j
in
3 o •-e O O' PD X

cr | 3 o 3 r- pd X —1
• CM 3 o ID — — IT c —«
i | < u O O PD H H

O' 2 w CM o x X ©
ID CM

X
O
O

3 ID I

"3 s j c c
1 cr

&
o

X
3
X

C u
a c

• o — «
o o o o O O

2 « 0- 3 3 o o o o O O
2: in X w o o o o o o
UJ CD 3 < X ir
3 2. O' CM cfi CL

Ldi «-» CM in •*3 o
1 1 X

ea ^ o a- o
2 cr x >- cc CL

D tS
2 3 X o & «H o cm r-

if) 3 3 ID X 3 o J* O O O' X
3 3 X CD > II X cr fD x r-
C O. J- PD 3 • • • • • • *3 0J>

UJ o o PD O' in 3 9-4 ID PD —1 *H X _c
•* 3 • • in O X r- o O' X 4-»

»-« 02 2 o CM d- 3 O X —1 o o ^ Cu
2 < 3 1 3 W X O O X *4 *4 — -© -—-

i—• 3 2 3 O' •H PD a? S «
o. cr x < 3 «-* r- cm
X < 3 2 ID ^ O CM CS aj
O > I

X 3
^ H (NJ

1 1 1 O -g <*> U
- K in PD ID CC 3 3 9 L (J)

L Z lU 3 pd fD fD X o x
-c 2 j= l/l LlI 3 •h MD 2 3

2 a 3 PD O ID < >- • X ID ^ PD CM -H *■4 r**
C 2 O X — O' CM ►- 2 3 9-4 «—1 ^4 9-4 n-f 9-4
a L- x 3 cr id X 3 • g > 2
x a. uj PD CO O <L O

.2 TO —
uj uj rsi 3 • • • > 3
cr c C X I*' X X

2 o 1 3 < cs ra ■ —
li. H OJ X O r- C
o in in o c 5

• X H ID IT C in 3 2 o 3 O
h- x 3 •— «-■ ►« 3

a C | 1 1 1 in ao 3 cr 3— >^,
3 2 2 CO CM O' O' >- < < ^4 X O' C ^ -3

Uj < CM cr cm a- 3 »- D o O' cm r- X X • H . , ©
in uj 3 PD CD cm r** < X O cr 3-xo X CM

© O ^4 uj x in U O pd h- h 2 < »-« O' O' cr cr O' O'
x o 3 2 x -4 PD < > in 3 D PD CM X o 1

w
e

h
av

le

ar
it

y

d
eg

re
e < 3 X < ^ pd 3 ID X o ID X o

3 0 0 •»* O' id m id 3 X O x -i c o
O *-• X • • • • 2 ID j- o o o o
m ll u < CM 4

2

5

3 • ID -H O O o o
o i > 1 1 O 2 O o o o o o

h o 2 O
in 3 o o 3 o C
< < X i CO o ~4 cT X X V LC -C
UJHUJ 3 o ~4 ~4 *-4 3 3 —i .+->
3 2 M U 1 1 1 1 1 O DO'4-

O 1 2 ID PO x cr x 2
x 0<*- 2 2 < **4 O' CM CM ID *-4

> O »-• pd cr If) O N
. v 2 3 2 X PD O' o r- o X

O < ID ID r id o 3 2 -5 ■£
x r» > o «-4 CO j- o O • LO 'LL

•-4 *-4 O PD PD X 3

L©
< • o 3 •3-

cm l

6

l

O *4 Xi
in I 1 2 O —t X X X
< o o X PD X OI m c 6

2 O o x pd O' 3 G
>—< x r- O' HDvO 3 l- X x r- ^ cr x X

3 j)
bC «

3 "5

in o o o ^4 w4 *4 2 CM r** o rw pd O O'
3 1 i 1 1 1 1 3 3 O PD ^ x PD PD -4 CM

O' x X O' X CM O 3 H O' ~4 X O' o o o
O X O' O' O' ^ 2 O ID SPDS O o X

CM •H <M -4 & ~4 3 PD D -h O o o O »-4
CM & O X X X X • O X CM O o o O O'
•H O •S' fD CD 3 Q • • • • • • • •

o O CM PD O 3 CM CM
H J- cc id r*~ id 1 X |
• II

4 ■3 ■6

3

■7

in i
III X

2
(X O «h cm pD cf X 3 O ^ CM PD ^ ID

3i < 3
Q -I
*-• <
X 3
Ld O
X V-

159

On the fourth page (fig. 5.15d) we have the coefficients and related
data as follows;

a) for the fifth degree polynomial requested, and
b) for a polynomial one degree lower (a fourth degree).

Least-squares fitting of data is usually performed at nonuniformly
spaced values of the independent variable (X) with the objective of
producing a smooth table of Y’s at uniformly spaced values of X. Normally
the coefficients from the fitting operation are used to produce such a table
in a subsequent calculation. This module provides for the computation of a
“smooth” table as a by-product of the least-squares fitting operation.

To produce a computed table at the desired temperatures, it is only
necessary to augment the X and Y vectors and the vector of weights as
shown in fig. 5.15a. There we see that lines 18 through 37 contain the list
of temperatures, while the response column has been set to zero. More
importantly, since the weights for rows 18-37 have been set to zero, these
numbers are omitted from the least-squares fit. The module does,
however, compute a predicted response for each of the 37 rows of the
independent variable (TEM). Those values are shown in the printout at [C]
in figure 5.15a.

The OMNITAB system has a built-in worksheet that can
accommodate 12,500 numbers. It is normally dimensioned to consist of
201 rows by 62 columns. If the records in the Omnidata file exceed 201,
this module and others which interface with OMNITAB adjust the
dimensions of the worksheet accordingly. In figure 5.15e we have the
dialogue which produced the earlier figures. The text in the response at
[A] is placed on the OMNITAB card (instruction 4) so that it can be
carried on each page of the OMNITAB output. At [B] see how the module
is instructed to transfer two data vectors TEMP and KAT95N to
OMNITAB.

The augmentation of the data vectors to produce a table of values at
rounded temperatures shown in figure 5.15a is achieved as follows. At [C]
we generate the desired list of temperatures at which we wish the module
to compute the thermal conductivity from the fitted coefficients. The
instruction at [D] provides a column of l’s to be used as weights for the
17 measured points. At [E] we use the DEMOTE instruction to place the
20 rounded temperatures underneath the 17 measured ones in column 1.
The DEMOTE operation not only moves the data as instructed, but also
alerts OMNITAB to operate on 37 rows instead of 17. Note that as we
produced 17 unit weights in column 4 before using the DEMOTE
instruction, the values in rows 18-37 of that column are still zero as can
be seen in the last column of figure 5.15a.

The positive response at [F] alerts this module to make provision in
the OMNITAB POLYFIT instruction (via the last two numbers in line 12)
to store the residuals and coefficients in the worksheet as indicated at [G]
for subsequent plotting as in line 13.

160

c CC CM >D IT CO UJ
i lO *h ® O (\J <r
i k • • • 1 • • I UJ
i < K) \D —♦ C\J ki i

! cr 1 k 1 1
z

J 1 UJ
i >

1
i 1 ©

i
X! cr

' a1
u

NO UJ
• o CC

k u k CM X
u O' 0 o 3
UJ CClT o CO Z

i-' o rH fO 0 (\J H
i Ul o ^ ID k CM 1 UJ

CV CC IO H o X
3 u v0 ID ID C CC CM k <u

o a]k-HOifi i ■k

Ol 3* >D C O >C X cd
z • k c c c: c O' o
H . Q O O O O K) k II cr
1- • O O O O <D u
k' Ul k ID

K1
X CM 1

"5 o k Kl k z
k O' < -C

k c ^ c X k
►Hi k m k o k

111 u Z lOkk • •■rt
o CL Ul k J- CM Ul
< X H K) CCO Ul
CL UJ CO o iDk ® hh UJ W UJ

k M O' D CM ID O -1 k
u k ID >D CM O CD hp
u <£ ID CC C C >-

c ®
S ts

Ui K) O' CM O O CD
Z o Kl CO O O O
X (J iD e> o c o Ul * »

Ul 3 CM O O O cr
.2 a> »-* _J o o o o o UJ

O • • • • • u
UJ o 1 1 1 u OJ o

* _J
H 12 o k1
z < »-• O •k

k o
Q. cr in -J

-C S
IT < k * J
O' > X >- < ^3 C

• o o 3 o
_1 ^ k k <1 o vc ira id Ul
Ul UJ Z UJ CL O Kl O O O' O 3

i/i ui i 3 • •••••
S3 C
rt ca

O Z Q <-> N0 k k k vO k k
M o z o U z
z cl uj cr <x UJ C -T-l

Ul 0. LJ M
u. LU UJ Nl u
o a c k k

z o u
1- il m ai u (U V
z o O ID OH Klin o H UJ > 3
UJ • *-* 'O Ck H ^ ^ CM o cd O-1
o k ID k k • • • • • • sO o J3 V cr *-« Q ►H < i in >o -c in to o
LU U Z u cr & CM Kl Kl K) —t II X

<V k CL Uj < 1 1 ID Ul
LD Ul Ul CM nD: <

^ Cm k uj cr in UJ vD UJ
X cr o k cr O' 1 0)
o c UJ X < O k z
►H DO0 3 o —*
Ui a a CO o <U
2 I/Ul LJ

O 3:
Ul o

CO ID
• Ul

k
in k k u o M o
M ID _l o Ul u CO O CM o

-6 -a < < o: <■ UJ CD CC Kl CD O CM »-*
k UJ t— LU Ul o HklDO'HH a lO m 2 JIN -J o CC O' ID k 1 |

O 1 CM O ^ O O O a
W z z X u <c in in o in i UJ

LO ^ k o o o ^ ^ O O (M O' k
-1 z cr O o O -« k 3

X c u • •H O O O & II X a. <u ca
LJ cl a O O O O Ci- CM o X
k H Ul • O O O O CO o Z Q o

S 3
bJj «

Ul < LU Ul O UJ
*-» Ui

u>
k k ^ «-*
l/l Lf) < nr i k

< O X o <t U -1 tin C8
_J z ►H 1 CM M k
Ui ►H k ■ k * > u O
* Ul Ul k- ID CM Ul o Ul
o 3 Ul z cm ^ ink Q cr
M UJ in id O' c\j h h Ul cr
z ►H ^ in j ^ k *h Q Ul o

o ^ k (D k 1 cr uj u»
cr ►H HlDk CO O Kl < cr
UJ u -3- ID ID OJ O k o o u
0- u O' ^ cj- O O k Z LJ o
cr UJ s0 «D *h O O O < Q
o o O vD O O O fO k- cr
u o ©OOOO-I U) Z UJ

O O O O O 3* o CD
i • • • • • • -J X

CD
1 1 fO < Q 3

g 3 Ul Z
< 3 Ul
k X «t Ul
►H cr o -i oj j- m Ul CD X
z ^j Ui k
x k- cr
o *

161

The PRINT response at [H] causes all of the results to be printed
out via the POLYFIT instruction. A response of ‘STORE’ would cause the
OMNITAB command in line 12 to start with SPOLYFIT, which carries out

the least squares fitting, stores the coefficients and residuals but does not
produce the printed output shown in figures 5.15a through 5.15d. The
feature to suppress the printout is useful when we want to perform a series
of systematic fits and wish only to compare the final coefficients or
residuals. It is important to note that the STORE command refers to
storing results in the OMNITAB worksheet and not on a computer file.

As we choose to perform only one fit, the negative response at [I]
produces a listing of the OMNITAB commands which this module has
written in response to the above instructions. Finally, a negative response
at [J] results in the printout at [K] which is the normal response when the
XBASIC compiler is released and the run stream starting at line 1
(@ASG,A FITTESTD) is initiated. At [L], we see the first line of the
output from OMNITAB which has taken over from Omnidata. This line
appears on each page of the output.

Figure 5.15f shows how the coefficients and their associated
accuracies are presented. The graphical analyses of the residuals are
presented on two pages, one of which is shown in figure 5.15g.

‘♦♦NOTES***

162

* ♦TYPE NAME FOR OMNITAB FILE --->? fittest _ *
* *TYPE P(ERMANENT) OR T(EMPORARY) FOR FILE --->? >t (A) *
* *TYPE A TITLE FOR THIS RUN OR N(ONE) ^ *
* ? >copper nickel system (wt is weight percent of nickel) *
(^) *TYPE LABELS TO BE TRANSFERRED TO OMNI TAB FILE
'^XfSEQ IS A LEGITIMATE ENTRY) ---> *
* ? >temp,kat95n *
* ♦YOUR WORKSHEET IS DIMENSIONED FOR 201 ROWS BY 62 COLUMNS
* *THE DATA ARE STORED IN THE OMNITAB WORKSHEET AS FOLLOWS:
* COLUMN LABEL
* 1 TEMP *
* 2 KAT95N

* INPUT ANY OMNI TAB COMMANDS YOU WANT PERFORMED
BEFORE FIT - TYPE END TO END -

generate 5. (5.)50. (10.) 100. (20L)200JnJ_^_(D)

<

>add 1. to col 4 store in 4
>demote by 17 rows col 3 into col 1 -—_*
>end *
♦TYPE LABEL OR COL NUMBER OF DEPENDENT Y VARIABLE --->? >kat95n
♦TYPE LABEL OR COL NUMBER TO BE USED AS WEIGHTS, OR N(ONE) --->?4
♦TYPE POLYNOMIAL DEGREE --->? >5 *
♦TYPE LABEL OR COL NUMBER FOR INDEPENDENT X VARIABLE --->? >temp
♦DO YOU WANT RESIDUALS PLOTTED --->? >yes-__ ^ *

COEFFICIENTS ARE IN COLUMN 62 ^
RESIDUALS ARE IN COLUMN 61-

♦TYPE P(RINT) OR S(TORE) FOR RESULTS --->? >print
♦DO YOU WANT ANY MORE FITS --->? ----

FOLLOWING IS A LIST OF YOUR OMNI TAB FIT INSTRUCTIONS: w
1 @ASG,A FITTESTD
2 @USE 7.,FITTESTD
3 @NBS*OMNITAB
4 OMNITAB-copper nickel system (wt is wei
5 DIMENSION THE WORKSHEET TO HAVE 201 ROW:
6 FORMAT A (2F12.0) *
7 READ TAPE A A INTO COLUMNS 1*** 2 *
8 LABEL TEMP, KAT95N *
9 GENERATE 5.(5.)50.(10.)100.(20.)200.IN 3 *
10 ADD 1. TO COL 4 STORE IN 4 *
11 DEMOTE BY 17 ROWS COL 3 INTO COL 1
12 POLYFIT Y IN COL 2, WTS 4, DEG 5, X IN 1 PUT IN 62 AND 61
13 PAGE PLOT COLS 61 VS 1
14 STOP

♦DO YOU WISH TO CHANGE ANYTHING --->? >no
TIME: 6.940
LSD XBASIC 12:38:48 2NOV77
READY

ht percent of nickel)
AND 62 COLUMNS

♦ OMNITAB-COPPER NICKEL SYSTEM (WT IS WEIGHT PERCENT OF NICKEL)

Figure 5.15e. Here we see the dialogue between the FIT module to
produce a least-squares fit for the thermal conductivity of a nickel alloy
from 17 measured values shown in figure 5.15a. See the text for a
discussion of the marked items and the PLOT module for facilities for
editing (deleting, correcting, or inserting) OMNITAB commands.

163

OMNITAB - COPPER NICKEL SYSTEM l WT IS WEIGHT PERCENT OF NICKEL.

-Xt AST “SQUARES “FIT DFT?E5P0NSE»“95P TJI.---
AS A POLYNOMIAL OF DEGREE 5. INDEPENDENT VARIABLE IS TEMP
USING 17 NON-ZERO WEIGHTS AND 20 ZERO WEIGHTS IN COLUMN R

ESTIMATES FROM LEAST SQUARESFIT_

TERM COEFFICIENT S.D. OF COEFF. RATIO ACCURACY*

0 -.00069414452 .0010682818 -.65 6.00
1 .0066455455 .00014509788 45.80 7.36
2 .00014571494 .0000054553018 26.71 7.06
3 -.0000028842557 .000000079820508 -36.13 7.05
4 .000000017172420 4.8441250-10 35.45 6.99
5 -3.4130773-11 1.0217940-12 -33.40 7.05

RESIDUAL STANDARD DEVIATION = .00096251962
BASED ON DEGREES OF FREEDOM 17- 6 = 11

* THE NUMBER OF CORRECTLY COMPUTED DIGITS IN EACH COEFFICIENT
USUALLY DIFFERS BY LESS THAN 1 FROM THE NUMBER GIVEN HERE.

FIT OMITTING LAST TERM

TERM COEFFICIENT S.D. OF COEFF. RATIO

0 -.025338795 .0074862418 -3.38
1 ' .010895537 .00067585359 16.12
2 -.000028628373 .000015376067 -1.86
3 -.00000025184730 .00000012280206 -2.05
4 .0000000010277177 3.1306580-10 3.28

RESIDUAL STANDARD DEVIATION = .0093267879
BASED ON DEGREES OF FREEDOM . 17- 5 = 12

Figure 5.15f. Here we see how this module formats the output when it is
directed to a narrow terminal.

164

OMNITAB - • COPPER NICKEL SYSTEM (WT IS WEIGHT PERCENT OF NICKEL

3.75 + —
STANDARDIZED residuals VS TEMP

2.25+ +
*

* -
* *-

*
.75+ +

- **'

-* *

-.75+
* -

+
** -

*
* * -

-2.25+ +

-3.75 --+----X---'+--♦
4.0000+00 1.0200+02 2.0000+02

NORMAL PROBABILITY PLOT OF STANDARDIZED RESIDUALS
3.75 +—

2.25+ +
*

* -
* * -

*
.75+ ♦

-.75+

** *
‘ ***

* -
♦

* *

* *

-2.25+ +

-3.75 +—
-2.5

i i i i « i i + i i i i i i i i i ♦ i l i
O

1
•

X

O

1 1 i 1 + 1 1 1 1 1 1 1 1 1 + 1 1 • 1 1 1 1 1
■O

1
.

+

O
l

Figure 5.15g. Here we see the format of the graphical output when it is
directed to a narrow terminal.

165

5.16 GRAPH

This module generates bar graphs (histograms) corresponding to the
numeric values of each record of the designated vectors. For each graph
desired, the user must specify: the LABEL of the vector to be graphed; the
symbols to be used in the graph; and which vector is to supply the
information for the stub of the graph. As many as 10 different graphs can
be generated in one pass through the file and each graph can consist of
different symbols. When no stub is necessary or desired, the third item in
response to any of the requests:

*TYPE LABEL, SYMBOL(S), STUB --> ?

must be the word NONE.

Figure 5.16a shows the instructions for producing three graphs of
data stored in a small test file and a portion of the first graph. Subsequent
figures show the appearance of the other two graphs. Note that when stubs
are specified, the user can specify how many characters of the stub field
should be printed. If this number exceeds the defined width of the data
vector used for the stub, the values found are padded out with blanks. If
no instruction is given regarding the length of the stub field, the module
assigns 12 characters to it. When more than one graph is requested, it may
be useful to have them scaled uniformly. This module allows for such
uniform scaling and formats the histograms to facilitate comparisons by
starting them all in the same position on the print line. This feature is
especially useful when the graphs depict the same items of information for
different fiscal years.

Additional features of this module are the options it provides for
combining the graphs into a composite picture in which the adjacent bars
may have different symbols. Figures 5.16c and 5.16d show the utility of
this feature of the GRAPH module. Other graphical facilities are provided
in the PLOT module.

166

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
->? GRAPH

♦TYPE LABEL, SYMBOL(S), STUB ->? EMP4,'*** DEPT,10
★TYPE LABEL, SYMBOL(S), STUB ->1 EMP5,'+++ DEPT,10
★TYPE LABEL, SYMBOL(S), STUB ->? TOTAL,'TOTAL ',NQNE
★TYPE LABEL, SYMBOL(S), STUB ->? END
★TYPE SEP FOR THE GRAPHS TO BE SCALED SEPARATELY,

OR ONE FOR A COMMON SCALE ->? SEP

REC DEPT EMP4
©

1

2

3

4

5

6

7

RESEARCH 34

PHYSICAL 20

ELECTRICAL 30

** ****** ****** ****** *********
•■★★★■** *******

**** 'k'k'k'k'k'k.'k ****** ****** ******

*★** ****** *******
********** *******
******** ****** ************
**************** **********

MECHANICAL 52

*************** ************* ****** ****** *****
************************ ****** ****** *********
******* ****** ****** ************* ****** *******

PRODUCTION 55

******* ************ ************ ****** ****** *****
*************** ************ ****** ***************
***************** ****** ************ *************

TESTING 22

*********** ********

****** ****** *******

MANAGEMENT 08

**** **

Figure 5.16a. Instructions for the generation ot three graphs of data
vectors EMP4 and EMP5 containing staffing levels for two fiscal years
showing: 1) how the user specifies the symbols to be used in each
histogram; 2) which data vector supplies the stub; 3) the number of
characters to use for the stub; and finally 4) the instructions for the type
of normalization. Note that the blank line between bars (5) comes from the
space embedded in the symbols supplied in instruction (1) above. The
second plot differs from this one only in the symbols used and that the
values are taken from the vector EMP5 instead of EMP4.

167

TOTAL ftEC

TTTTTTTTTTTTTTT TTTTTTT TTTTTT TTTTTTTT
OOOOGOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOQ

1 69 TTTTTT TTTTTT TTTTTT TTTTTT TTTnT TTTTTT
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

TTTITTT TTTTTT TTTTTT TT
OOOQOOOOOOOOOOOOOOOOQ

2 41 TTTTTTT TT TTTTTT TTTTTT
AAAAAAAAAAAAAAAAAAAAA
LLLLLLLLLLLLLLLLLLLLL

TTTTT TTTTTT TTTTTT TTTTTTT TTTTTT TT
00000000000000000000000000000000

3 61 TTTTTTT TTTTTT TTTTTT TTTTTT TTTTTTT
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
LL LLLLLLL LLLLLLLLLLL LLLLLLLLLLLL

TTTTTTT TTTnT TTTTTT TTTTTT TTTTTT TTTTTTT TTTTTT TTTTTrTTTTT
000 OOOOOO OOOOOO 000000000000 000000000000 OOOOOO 0000000000

4 1 06 TTTTT TTTTTT TTTTTT TTTTTT TTTTTT TTTTTTT TTTTTT TTTTTT TTTTTTT
AAA
LLL

TTT TTTTTT TTTTTT TTTT1T TTTTTT TTTTTT TTTTTT TTTTTT TTT T TTT TTTTTT
00

5 112 T TTTTTT TT TTTT TT TTTT IT TTTT TTTTTT TTTnT TTTTTTT TTTTTT T TTT TT TT
AA
LL

TTTTTT TTTTTT TTTTTT TTTTT
00000000000000000000000

6 45 TTTTTTT TTTTTT TTTTTT TTTT
AAAAAAAAAAAAAAAAAAAAAAA
LLLLLLLLLLLLLLLLLLLLLLL

TTTTT TTTTTT TTTTTT TTTTTT TTTTT
00000000000OOOOOO OOOOOO 00000

7 55 TTTTTT TTTTTT TTTTTT TTTTTT TTTT
AAAAAAA AAAA AAAAAAAAAAAAAAAAA
LLLLLLLLLLLLLLLLLLLLLLLLLLLL

Figure 5.16b. In this second graph we see how the symbols used to
produce the bars can also convey information. Here we have graphed the
total of vectors EMP4 and EMP5. The number sequence on the left serves
to identify the record for which the data are shown and can be used to
correlate graphs of other data items in the same record. Had we asked for
the graphs to be printed on a common scale, the bars would be shifted to
the right to agree with the other graphs. Since we did not ask for a STUB,

the graph is shifted to the left.

168

♦SHALL HE COMBINE - TYPE YES OR NO ->? YES
♦TYPE GRAPH NUMBERS TO BE COMBINED (IN DESIRED ORDER)

1

->? 1,2,3——

RESEARCH 34
******* *******

******** ******

1 RESEARCH 35
♦++++++++++++♦+
++++++++++++♦++
+++++++++++++++

1 69

TTTTTTTTTTTTTTTTTTTTTTTTTTTTT
000000000000U0000000000000000
TTTT TT TTTT TTTTTTTTTTTTT TTTTTT
AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
LLLLLLLLLLLLLLLLLLLLLLLLLLLLL

2 PHYSICAL 20
.irk'kirklrkic

irkicirkirk^

2 PHYSICAL 21
+.++++++++
+++++++++
+++++++++

2 41

Tttttt TTTTIT TTTTT
00 QQOO00000000000
TTTTTTIIiITIT TTTT
AAAAAAAAAAAAAAAAA
LLLLLLLLLLLLLLLLL

3 ELECTRICAL 30
******* *****
******* *****

3 ELECTRICAL 31
+++++++++++++
+++++++++++++
+*+++++++++++

3 6.1

TTTTTTTTTTTTT TTTTTTTTTTTTT
00000000000000000000000000
TTT TTTTTTTTTTTTT TTTTTTTTTI
AAAAAAAAAAAAAAAAAAAAAAAAAA
LLLLLLLL1 11 Li I.LLLLLLLLLLLL

Figure 5.16c. Here we see how easy it is to prepare a composite graph of
the individual histograms shown earlier. The order in which the bars are
presented is determined by the answer supplied at (1) above. The next
figure shows still another arrangement produced in the same run. It
should be remembered that inclusion of totals in a composite plot
compresses the scale and thereby deemphasizes the differences between
the individual bars.

169

1
*SHALL ME COMBINE - TYPE YES OR NO ->? YES
*TYPE GRAPH NUMBERS TO BE COMBINED (IN DESIRED ORDER) ->? 3,I,2,3

TT TT TTTT TTTTTT7ITTTTT TTTTTT TT
OOOOOOOOOOOOOOO 00000000000000

69 TTTTT TTTTTT TTTTTT TTTTTT TTTTTT
AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
LLLLLLLLLLLLLLLLLLLLLLLLLLLLL

I RESEARCH C 34

1 RESEARCH C 35

I 69

2 4)

2 PHYSICAL S 20

2 PHYSICAL S 21

**** ****** ****

+++++++++++++++
+++++++++++++++
+++++++++++++++

Tin- mnr mm mm nmn
00000000000 000000 000000 000000
TT mr TTTTTT TTTTrr T nTTTT TTTT
AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
LLLLLLLLLLLLLLLLLLLLLLLLLLLLL

TTm tttttt tttttt
00000000000000000
TTTTTT TTTTTT TTTTT
AAAAAAAAAAAAAAAAA
LLLLLLLLLLLLLLLLL

+++++++++
+++++++++
+*++*++++

2 41

TTTTT TTTTTT TTTTTT
00000000000000000
TTTTTT TT Tm TITTT
AAAAAAAAAAAAAAAAA
LLLLLLLLLLLLLLLLL

Figure 5.16d. Until the user answers NO to the first question, the module
will continue to provide other variants. Here we chose to repeat the total
column. Such repetition would be more useful if eight or more graphs

were combined.

170

5.17 KWOC

One of the early (circa 1960) applications of computers to
bibliographic work involved a so-called Key Word in Context (KWIC)
index suggested and developed by the late H. P. Luhn. In this form of the
permuted title index, each important word in all of the titles in a list is
displayed in alphabetic order and arranged as shown in figure 5.17a, so
that the word in the center column appears in context in its proper position
in the title. In this format, the titles span the indexed word and space
considerations often dictate the truncation of the titles either at the
beginning or the end. That information is, however, not lost since the
missing segment can be picked up again on the basis of another word
which is closer to the beginning or end of the title.

An alternate approach to such a permuted title index is to place each
important (indexable) word in front of the title and follow it after a
suitable number of spaces or on the next line with the entire title in its
original order. In this form the indexed word is alphabetized out of
context, hence Key JFord Out of Context (KWOC).

If, however, the indexed word in each line is accented within the title
either by being printed in italics, in bold face or set off by asterisks or
plus signs, one can have the advantages of both the KWIC and the KWOC
without the drawbacks of the former. Figure 5.17b shows the appearance
of the on-line output of an index produced by this module. The dialogue
between the module and the user is shown in figure 5.17e, et seq.

It will help the user to understand the reasons for the questions that
are asked by the module if we digress to explain that many of the
anticipated applications of this module have as their final objective the
production of a phototypeset printed volume. For that purpose, the system
must be able to insert into the text stream arbitrary character strings to
identify which portions of the text are to be set in bold face or italics, etc.
Since Omnidata handles only upper case characters at present, this module
will recognize case shift symbols and transmit them along with the text,
but ignore them when required as in figure 5.17b. Other features of this
module will emerge as we go through the dialogue step by step for
applications of the KWOC module to generate indexes for various
publication series produced by the Office of Standard Reference Data
(OSRD).

Figure 5.17c shows how the bibliographic information was
keypunched for articles in the Journal of Physical and Chemical Reference
Data (JPCRD). A short XBASIC program was written to convert this card-
image file to fixed-field format required by the DEFINE module. The
equal signs were inserted in the text so that the file could be used later to
produce indexes in upper and lower case. Figure 5.17d shows such an
index produced by a text-formatting program which read the file produced
by this module.

171

P
R

O
B

L
E

M
S

A

R
E

V
IE

W

O
F

T
H

E

L
IT

E
R

A
T

U
R

E

O
N

A

C
L

A
S

S

O
F

C
O

V
E

R
A

C
E

A
M

S
6

4

2
3
2

B
O

O
K

R
E

V
IE

W
S

.
1
0

Y
E

A
R

IN
D

E
X

(1
9
5
9
-1

9
6
8
)

T
E

C
H

6
9

2
2

3

A

A

A

A

A

A

A

A A

cvoicnoiowtvioajfflaiai

'T CM CM A (ONNUl CM

3< 35!
-5 -3 CQ E- * E- CO

-1 O b. O Cd J O O 2
O M < *-*
O O CO E- KU) Jh(0
a. o < 2 <

Z H o
E- O O O Cd
Z H H o. a
UHh O
S < < Cd fa. H as 2 o
W Cd < o
D h V) E^ h
^ w u z a
Q >< h Id O
< w < o z

HKO
_i a: to cd o
< o a. cd 2 b. a
O td K Q
CO H E- Cd 2
< CO h Q. <
Cd Id 2 O.
CO E* D D W

2
Q Q Q Q O
Cd Cd Cd Cd H
CO CO CO CO CO
H W H H H
> > > > >
Cd Cd Cd Cd Cd
a a cc ct a:

a a o
Cd Ill H
E—• 6—• E-«
H H D I
CO CO -J I
w w O
> > > i
Cd Cd Cd !
a: a: a: i

a S2«§
< J Cd o
Q tt. Ct CJ

a o cd
< a co

o o

I s

I > CO
: o -

Cd ^
E- E- -J
< => <
.J ca a
td h ec
Od 0d O

CO '

555
Cd 2 (
O O
c*. t-t :

o Cd - :
co ad co i

id ad *
• c«. Cd i

CO Cd E- 1 2 od 3 I 0 0-0-1
1 —1 ►—» I
' < E-
2 < :
M J
E- => I
a. a. :
o o i

_ . m a
t-t *-• o H i o co : _
E- Cd X Cd

o. u. e- ad
Cd CO O H O
X ^ Cd
H < CO

Od O E-
U.IOH
o e- ad a

H Qd Cd
CO ^ Cd Q 2

0 2 0 0-
Od O H Cd Cd
od *h :
Cd E- E- 2 O O W < "

Cd Id
2 E- l*.
2 I O
O U.
O CO

Id M
X X CO
H h ><

Q CO
2 CO J
< Cd < 2 O
CO E- H
H CO E- U O <
cd co a
Cl. O Id
u. ad X
Cd

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

172

F
ig

u
re

5
.1

7
a
.

H
e
re

w

e
se

e
th

e

c
h

a
ra

c
te

ri
st

ic
s

o
f

a
K

W
O

C

in

d
ex

sh

o
w

in
g

th

e

u
su

a
l

fo
rm

a
t.

N
o
te

th

a
t

th
e

p

o
rt

io
n

o
f

th
e

ti

tl
e

th

a
t

is

m

is
si

n
g

a
t

[A
]

ca
n
 b

e
p

ic
k

e
d
 u

p
 l

a
te

r
in

 a
 n

u
m

b
e
r

o
f

p
la

ce
s

as
 a

t
[B

].

©
-a

_Q
-o
© o
3

T3
© L,
CL

X
©

”3
• S
s
3

3
CL,

3
©
©
3

I
s
o
©

JC

3
©

■■s
O
Q-

f-H O
• S

LO C

©<J
L O
bD^
£ ^

173

u
le

♦ * * 4c 4c 4* 4c 4c 4* ♦ 4t * i 4c 4 c 4c 1 * *
Ul 2 z

♦ in X a *
UJ < X •M

♦ in X & *
•• c. X b- •<

* in in 1 X u ♦
*- UJ CL Qd •• <33

* 2 -j 0 in U X in *

UJ 3 • «» u H- M X
♦ »»• u u 2 2 X X z *

u UJ 0 O in Ul a z <
* fr-t -I »- •—I 0-4. X X 4c

u. 0 2 b- 2 Ul X a in
U- 2 0 <- Ul ^4 O •-< 2 *

UJ •— UJ X 2 0
0 O b- _J Ul X O •4 UJ
u 2 <. UJ X 2 in

« Ul 3 u 0 II z X
2 -1 2 u u a <
O in Ul Ul 2 *—« 2

♦ 2 3 in 0 2 O X O *
in 0 2 3 Ul O CD

♦ 3 H- N 0 H X in •— *
Ll < UJ 1- < z <

* II Qd 2 2 < Ul < X ♦
•—• QC O UJ O X It X CD

4c O O U 13 0 X *-4 *
U O X X >

4c • • 2 2 < < 0 Ul *
c m O O in > *-4 O

* b- UJ ►—1 X 2 X 2 z r? *
c > 1— UJ 3 0 <

♦ 0 CL <t •- 0 •- X X 4c
3 Qd in 2 2 K- H X

♦ 0 U 3 2 0 O in Ul ul < *
UJ ►- 0 UJ •— h* X X 2

* »“ >- < •— II b- 2 X X O *
13 in b- < X in X

* 3 CL CL C 0 3 e—1 u X 4c

_J UJ UJ O' 2 in _l u> • <
* c 2 0- _J <t fO < •— 2 G 3- X X 4c

• m > UJ 3 — < -• > X 0 H —• Q 0
* in < • Ul in • > 2 • X X e=-> • X4 X 4c

* *- n CL _J it 0- UJ O X X j— • X X

* 2 H >- II •-« 11 «r 0 X 3 n 0 •- 4c

* w
• _l •-< _i < 0 1- h- u» X If z in

UJ _J 1- b- •— C <. 0 0 X
4c

* ^ n —* < 2 u — < K Qd •— c 2 in — 2 >
• U5 in UJ •— • C C ♦ c cc in • X

* La. •* O UJ b- 1- 0 CL X 0 • • *—• <c 2 0 2 3
Ll. 2 2 1- •—• O •— 2 • «* < 2 in 1- II 0 2 0 UJ

* UJ c II •— K- CL CL CL II 2 Z! > n b- < 2 H m £
0 in Od Od Ul O O 0 UJ 2 in Q 2 X X

* u» •« L5 UJ • • II CL *—• H X 2 X 2 *—• < 13 4c
II 2 — Ql K < 1- 1- — »-• X > 0 in •4 u» X

* 11 • •• O 2 U > • < < u. • U 0 X X H • X 4c
2 _l in Qd UJ O II _J CL CL 0 in 3 ►— 2 X 1- X • m 2

* O • - O Ul CL *-« O 3 3 UJ 0 X 0 in in • - O «C X 4c
tt—J • > o: u» in UJ > 1- 1- in UJ > X X CD 13 • > X

* in ct II 3 1- •— UJ I II c UJ 2 11 X 0 21 13 II X X 4c
15 11 »- Qd u 3 1- • in in 3 c • 0 0 H <t II X <1

* U- fvj X O u -j 2 CM CL CL _i 1- 2 u» 2 CM X • *
ll- • •« 0- UJ < 2 H Ul Ul C in 11 < X 0 • X X

♦ _ 1- 0- 2 in 0 > O 0- CL 0- > cc X n X 0 in X in 2 4c

O N — 2 Ul H CL • —• 3 3 H ID • —• 0 2 K X 11 — X
* II 0 in < U 13 0 in in in 13 0 •-» O — O 2 H- *

•k 11 < CL 2 O II 11 O 11 II n b- X m II 0 0
* in O Q£ 13 1— O UJ in CL 3 _j UJ X < H- 0 0 0 X •-4 X 4c

X n b- 0 II <c c 1- UJ •k 11 in < 2 X II X
* O UJ 0 >- •• in Ul Q UJ Ul UJ u» Ul -_1 C UJ 2 X X in <t 0 Ul X • « 4c

* W €C 11 Q: in z> U' 2 II fc—• 13 •— UJ a 2 11 X 13 O c X II X in
* in or 0. < UJ u _J 0 3 0- K 2 1- _J 2 3 X 0 2 X -J O X X 0 < 4e

* < «< II 2 in u UJ •— O II ►H < •— Llj C II 2 <C < H -O H in X
* ir 2 “5 •— < •— in _j 0. —> or X CL in in X 3 0 X > < O H- 3 CO X 4c

* " 11 II CD 13 0 11 11 II N Ul Ul UJ 11 11 II II u UJ X n -4 II n «c <
fsi rn 3“ a- in — CM n 5- 3“ in CM c*5 3" 3- in — CM r-5 3- 3“

* 0 O 0 0 c- 0 0 0 O 0 O 0 0 0 0 O G 0 0 0 D O O C 0 0
IS! CM CM CM CM CM CM <n n m n 0 m m 3- X 3" 3- 3” 3“

* 0 O 0 0 0 0 O O O O O O G 0 O 0 0 0 0 0 O O O O 0 0
0 O 0 0 0 0 O O O O O O O 0 D 0 G 0 0 0 CD O O O 0 0

4c * • * * * 4t ♦ 4c * * * * * • * ♦ 4 E

CD
CD
c
ID
L,

,85 Uh 05

T)

u no 05 -73

g § “ g-f .
5 e*^ -.s ® nn n^ ^ c/5 ^ 7Z-

Vo g £ V ‘~
•s 2-f 2^J
. es •-, D3 —i -5

JT-£ ,c P- u “
° u .O

-O
05
c/5
C/5
0>
o
o

»^
V

D3

£
o

a? J-:
« j?
05 > Jj
c0>O--

JJ 4) O
Oh-2-^ c w

B- S
«

Cm
o

05
05
bD
e«

33
J-H
«
o

bD
C

45

2 o

43 g
•3-0

-a 0

ca
o

to W
o

45 .5 05 th
O M •« op
a « _ o
£ .ts -S
3 «
en 5 d
45 - in : r* c£ 05 05

5 2 o 45 45
^ P~ g 2 05 J-

bC_C -S 45 T3 05 * »—< 4-* ^ c*
— <*5 s *5 «
c-m fH C cd ^

«
«$ Cf10., 05 -c ™ ***

3 0 ^ t3 2 hciS
2 ^ «Th CO xT” tj
£ *8 co - w £ -3

« ^4 & 2 ^ 2 3~.£ g s|
4) (C C J5 S w

3 ** bp 45

s o
45

_C

o
D-

1/3

45
Ll
3
bC

:Z

J3 .1,
-g ~ -2Pg *££
.2 45 -73 5 45 ^

bcu e jg-5
f—! c •" 3 -a

g .3 3 o^-a ®
o _g 3 ~ 0
£ 3 £ 05
~ -T3 -o
85 © 05 Li
73 C DC «
h C*i O

w ° 3
45 £ X<
CD, 45
O .»T3
£ DC 05 Mn 4-> • p-H

I

I

I

174

*
*
*
*
*
*
*
*
*
*
*
*

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

Book 1 Page 1

iAAAAAAAAAAAAAAAA

.30...35. ••4 0« « «4 5• • • 5 0•t#55*•«60

AfcS9£Dii9D
Atlas of the Observed Absorption Spectrum of Carbon

Monoxide Between 1060 and 1900 3Vol.l No.l P.147

Atlas of the Absorcti on Spectrum of Nitric Oxide (NG)
between 1420 and 1250 3Vol.5 No.2 P.309

A££i«l£j.gl3¥dS
Microwave Spectra of Molecules of Astrophysical Interest

IX. Ac^talxlebyde Vol.5 No.l P.53

Microwave Spectra of Molecules of Astrophysical Interest
X. Isocjanic Acid Vol.5 No.l P.79

AfiiAOislS
Ground Levels and Ionization Potentials for Lanthanide

and Act inide Atoms and Ions Vol.3 No.3 P.771
Activity
v w w w»

Osmotic Coefficients and Mean Activitv Coefficients of
Uni-univalent - Electrolytes in Water at 25 deg C
Vol.l No.4 F.1C47

ADJusiffsci
The 1973 Least-Squares Adjustment of the Fundamental

Constants Vol.2 No,4 P.663

Ai&sAi.
Befractive Index of Alk ali Halides and Its Wavelength

and Temperature Derivatives Vol.5 No.2 P.329

A Critical Review of H-Atom Transler in the Liquid
Phase: Chlorine Atom, Alkyl, Tr ichlo roroe t hy 1,
Alkoxv, and Alkylperoxy Radicals Vol.3 No.4 P.937

A Critical Review of H-Atora Transfer in the Liquid
Phase: Chlorine Atom, Alkyl. Trlchlorome thyl, Alkoxy,
and Alkylperoxy Radicals Vol.3 No.4 P.937

A Critical Review of H-Atom Transfer in the Liquid
Fhase: Chlorine Atom, Alkyl, Trichloromethyl,
Alkoxy, and A1kvlpe roxv Radicals Vol.3 No,4 P.937

AJl^wed

Atomic Transition Probabilities for Scandium and
Titanium - (A Critical Data Compilation of A1lowed
Lines) Vol.4 No.2 P.263

Allays
Elastic Properties of Metals and Allovs. I. Iron, Nickel,

and Iron-Nickel Alloys Vol.2 No,3 P.531
Diffusion in Copper and Copper Alloys - Part 1. Volume *

and Surface Se1f-Diffus i on in Copper Vol.2 No.3 *

P.643
Diffusion in Copper and Copper Allovs - Part II.

Copper-Si1ver and Copper-Gold Systems Vol.3 No.2 _*

P.52 7 __----—-*

Figure 5.17d. A portion of an index produced by a text formatting
program from a file generated by the KW0C module. When this file is
processed further for phototypesetting, the word out-of-context on the left
will appear in bold face and the word in-context will appear in italics.

175

An examination of figure 5.17c shows that the file contains a list of
keywords as well as a list of properties under which the paper can be
indexed. These data fields, as well as the title and author fields, are
candidates for permutation. The module allows for mixing the result of
permutations on words (or phrases) on two data fields at a time. The
consequences and options pertaining to such mixed applications are
illustrated later in this section.

The dialogue which produced the KWOC index shown in figure
5.17b is illustrated in figure 5.17e, where we call the KWOC module at
[A] while setting the line width to 80 characters via the global WIDTH
command. At [B] and [C] we specify that it is the words in the TITLE field
on which this module should operate (permute). If we had chosen to
prepare a permuted keyword (actually key phrase) index, we would have
supplied a semicolon as a word separator instead of a space in response to
the question at [C].

Since we wish to permute only the words in the TITLE field, we
respond at [D] with NONE. Had we specified one or two secondary fields
as we do later (see fig. 5.17h), the module would have requested
additional “word” separators.

The CITATION field is specified at [E] as the field in the file labeled
ID. As this index is to papers in a single journal, only volume, number,
and page are given in the citation. The journal designation (JPCRD) is
contained in the file as can be seen from figure 5.17d. If this file were
combined with references in other journals, the journal designations would
be included in the ID field when the file was defined originally.
Alternatively, the journal field can be concatenated with the rest of the
citation via the CONCAT module, prior to entering the KWOC module.

Next we must supply the module with information to insert certain
characters or character strings to highlight the word out of context, as at
[F], and the word in context, as at [G]. If we refer back to figure 5.17b we
see that the word in context has indeed been bracketted by asterisks, while
the word out of context has not been embedded between the designated
plus signs. This is as it should be since the plus signs or other symbols
indicated at [F] are needed only by the typesetting program (when the
word is to appear in bold face type). Thus the file which this module
creates does indeed contain the designated plus signs, but the program
suppresses them in the printout.

Two other pieces of information are required before the module
addresses itself to the question of which trivial words are to be excluded
from the index. These inputs are requested at [H] for the symbol (or
string) to separate the citation field from the title field, and at [I], for the
shift symbol. The former is inserted into the output stream, while the latter
is ignored in the output but retained in the file to be used in subsequent
processing for computerized typesetting.

176

* FILE FTJPCRD CONTAINS 11 DATA ITEMS FOR 84 RECORDS.
* *TYPE A MODULE NAME AND/OR INSTRUCTIONS
*

♦
--->?

KWOC
* INPUT LABEL FOR WHICH KWOC INDEX IS DESIRED --->?

TITLE
♦TYPE WORD SEPARATOR --->?

♦TYPE ANY SECONDARY FIELD ■
N0NE (T)

♦TYPE CITATION FIELD ^
ID \

♦TYPE SYMBOLS TO HIGHLIGHT KEYWORD OUT OF CONTEXT --->?♦

* *

*

*
*

*

*

*

♦
♦
♦
♦
♦
*

+ ,+
♦TYPE SYMBOLS TO HIGHLIGHT KEYWORD IN CONTEXT --->?

♦TYPE TITLE TERMINATOR
r

♦TYPE SHIFT SYMBOL

-->? —-®
-->?•-®

PRESENTLY, THE STOP LIST INCLUDES:
♦ A AN AND AS AT *
♦ BUT BY FOR FROM IN *
♦ INTO OF ON OR THE *
♦ TO WITH - BETWEEN ITS *
♦ PART SELECTED THEIR THROUGH ONE ♦
♦ TWO THREE FOUR FIVE SIX ♦
♦ SEVEN EIGHT NINE TEN 1 *
♦ II III IV V VI ♦
♦ VII VIII IX X TWENTY-EIGHT

♦TYPE ANY WORDS YOU WISH TO DELETE FROM THIS LIST --->?♦
NONE i ♦

♦TYPE ANY WORDS YOU WISH TO ADD TO THIS LIST ---> / *
NONE / / ♦

♦TYPE NAME FOR KWOC INDEX --->? / (K) *
♦YES (t) *
♦ *HOW WIDE --->? ^ *
* 72 *

sfcsk:*::*::*::*::*::*::*:**:*:*::*::*::*::*:***:*:

Figure 5.17e. Here we see the dialogue with the KWOC module that
produced the index shown in figure 5.17b. See the text for comments on
the marked places.

177

* * * * * X * * * * * * * * 4 * * * *

* 1

si in *

* in z 1 a H-

z CL! r«» O' in z Z CL n *

* o h- j a :ri o _i < < >- i O o

151 z Q o < h- ►— Id _j Zi *

* UJ < •j Z • in in 1 _J H 15 o <:

UJ CL! CLi li- < CL t— X z >- > in > O' *
* > in! o O z o o in UJ X H 1 15 CL in CM

~c o UJ J- 15 z in o X- Id UJ 11 UJ! Id m *

* J- z o X CM CM K- <: a «£ CL 15 *— O *- Oi CL •

o — • z 5T • O UJ X O in < Z UJ Z' z 0. *
JO a>
.10 -C

* 15

Id

*—l

1- z

o

2

CL

1—
C

z

CL Id

Q

t-

«c

H

U
CL

1

>-

X

m

in Z

uj n
_l CM

X

«c
o -J h-

<: <
*

♦ Z CL: UJ *5 z Z •—• —< CL < in • < <C CL <5 X CL CM . ^ O
CL Ll' Id UJ o z fx Id « UJ 0. Id > t- Id UJ •

-a ^ * 15 Ci s — CL UJ in •— •— N 15 CL¬ 15 X X < CL CL •— CL O , o cn
►—« in t- • in g • »- »- » ►—t

UJ

t- z _i X z cS g *
X cc ld _ji (- _j < 15 CL t- Ld CMi O 3 CL id _J < UJ *

•*H O
O •

o CL CO o z Id o M < Ld in X lL • Z 1 Id *- «S V ►— O o ♦

A 5

m

in Q Ld

> c CO >

z a <*>

z «r H- c
O

N

<

z

K

< 3-

<C

*-
15

< z

IT *
•

CO 3

s 1
• UJ Q t t- H. i o z * CL n U. in in z- S c in »- z _J « c«

cn c
D .0 £ z a > •-H CL o •“» <r O i CVJ o 15 x- — Id < O

•— CL X X CL z X z _J Vi • •— z Ll Z •< u_ CL o > * eft
CO O
»H _C * Id o c O — o o UJ C <c CL 1- • UJ c CL o 15 X

in m in z CL in CL z O 15 15 Id UJ —J •— i X t- 1 * .C *-

♦ UJ • cc c l— cc id t- < •— —i i r c 15 in in i z U.' td 15 o- Ih

c c X IT C CJ m z • X in — > •— > t- Ld 3" o X c z in *

* 15 z 15 15 in < _J UJ z • U.' Ll z (- ♦ ■— (— z UJ UJ Ih

cl

Ld

UJ

15

O

z i

oc

UJ Z
X o

cc
1 CL

Ld1 c
O 15

in U.
<£ O

UJ
X

3- h-

in
z
o

z
15

«r
15

<t

Ll

o o

c
o in

— <

_j

»-
; <

c <

15 <t

-J X
UJ t-

> z

UJ <

cl o
k; in c Q:
- (\J 2 o

Z ~ Z II

o

0:

15

<
a:

15

UJ
CL

in

* —* : —

CL
CL
C
in
cc
<

CC

I
i
; X
j Z

CL

!t
UJ

CL
in

c

CL
a;
c

in

cc
<£

O X
> 15

I c

UJ

in i—
z <

o Z

— _i
c
>

Id

_J O

O O CL
— z

cc

<; «i ■
> N U h

j • —. (5
CL _I ►— <t
C O " ll!

UJ > CL CL

i <5

! —

in

UJ
x.

UJ

UJ
a

15
<t

in

UJ

15

CL

UJ
z

UJ

<
>

15
<

L UJ* >- O
UJ —, 5 Z
C 15 O
15 — CL

II!

15 U- 15 •

»—1 Ll lx, _J

I- O ' _l O

O U' Id >

X

in

o

— — _j >

>-

15

CL

UJ

Z

UJ

<
>

15

<

in

j-

z

15

Ll

II

UJ

o

15

C Z •

Z — CL
c?
uj in

uj —

c in
UJ < c

_J (5 Z

<

15
in.

i Id
Id >

>: <C

t
in o

< K-
CL ->

Ll

Id

CL

i

15

<

in

UJ

in

o

15

CL

c

‘"i
Id1

o

<r

X

<£

v:

£ r-

qj

X
<u

-T3
C

lO

<u
Ih
o
bD

LC
4>
<u

c/5
C
CO .

*3 S’
Jji
t: ~
o o
Oh *->

^ "O
0)
4H

c*; .22
t> —'
rH cft

• in
LO <D

Oh
CD CO

s °-
bD <D

rT. -C

178

K
W

O
C
 m

o
d
u
le

 t
o
 p

ro
d
u
c
e
 t

h
is
 i

n
d
e
x
.

An effective KWOC indexing system must have built into it
instructions for ignoring trivial words (articles, prepositions, connectives,

conjunctions, etc., and possibly even the cardinal and ordinal numbers).
As it is important, for reasons of economy in processing, to keep this list
to a minimum, we have programmed this module to print out the built-in
“stop list” at [J] and allow the user to delete words at [K] or to add words
at [L] as required in the application at hand.

In normal uses of KWIC and KWOC indexes the technique is applied
to the words in a single data field (such as the title). This module has been
designed to handle more complex indexing. It can index authors, keyword
phrases, subject index terms, etc. It even has provision to mix in the
alphabetized list to the left, words from the title, keywords (or phrases), or
index terms. In such a mixed index a decision must be made on what to
list to the right of a keyword. One could, for example, list all of the
keywords associated with the document as is done in a permuted keyword
index. With this module, the user has complete freedom to format the
index. Thus in figure 5.17f, we see an index of keyword phrases in which
the title and the ID field are listed.

Before we take up the KWOC instructions required to prepare this
index, it will be useful to examine figure 5.17g. There we see how the file
is defined and the labels assigned to the information in the record. It
should be noted that the authors, keywords, and property index terms are
separated by semicolons. Note also that the ID field at [B] is defined to
include the three pieces of information at [A]. In other applications it
would be logical to include the journal and the year in the ID field as well.
In any case, such a concatenation can be achieved later, if needed, by
using the CONCAT module.

In figure 5.17h we see a variation from the dialogue shown in figure
5.l7e. First we indicate at [A] that the title field should only be listed,
hence we are not asked to supply a word separator. At [B] we nominate
the keywords as the secondary field to be indexed and supply at [C] the
semicolon as the “word” separator. The rest of the dialogue continues in
the usual fashion.

179

♦WHICH DATA BASE DO YOU WANT --->? >ftjpcrd
FILE FTJPCRD CONTAINS 11 DATA ITEMS FOR 84 RECORDS.

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
--->? >IabeIs
THE FILE FTJPCRD CONTAINS DATA LABELED AS FOLLOWS:

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
--->? >dispI ay

♦TYPE LABELS OF ITEMS TO BE DISPLAYED OR ALL
--->? >alI

RECORD NUMBER 1
NUM - 001
JOURNAL - =J =P=C=R=D
YR - 1972
VOL - =VOL.l \ _
NO - NO. 1 —>><A)
PG - =P.3—
ID - =VOL.l =N0.1 =P.3-^
AUTHORS - =MARRERO,=T.=T.;=MASON,=E.=A.
TITLE - =GASEOUS =DIFFUSION ^COEFFICIENTS

* 8 AUTHORS 7 ID 2 JOURNAL 10 KEYWORDS
* 5 NO 1 NUM 6 PG 11 PROPERTIES
* 9 TITLE 4 VOL 3 YR *

* KEYWORDS - BINARY GAS MIXTURES; CRITICALLY EVALUATED DATA;*
* COEFFICIENTS; GASES; TRANSPOR *
* T PROPERTIES *
* PROPERTIES - DIFFUSION COEFFICIENT; POTENTIAL ENERGY CURVES
* ND MOLECULES *
* *MORE -->? >no *
* *TYPE LABELS OF ITEMS TO BE DISPLAYED OR ALL *
* --->? >end * *********************

Figure 5.17g. A display of the first record of the Omnidata file FTJPCRD
showing how the data items in the record were defined. In this file four
fields are logical candidates for a permuted index: authors, title, keywords,
and properties.

180

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

♦WHICH DATA BASE DO YOU WANT --->?
FTJPCRD
FILE FTJPCRD CONTAINS 11 DATA ITEMS FOR 84 RECORDS.

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
--->?

KWOC,WIDTH,132
♦INPUT LABEL, ETC. FOR PRIMARY FIELD --->?

TITLE,LIST
♦TYPE ANY SECONDARY FIELD(S) TO BE INDEXED

KEYWORDS
♦TYPE SEPARATOR(S) --->? .

’' ’

' *TYPE CITATION FIELD --->? ^
ID

♦TYPE SYMBOLS TO HIGHLIGHT KEYWORD OUT OF CONTEXT --->?*
+ »+

♦TYPE SYMBOLS TO HIGHLIGHT KEYWORD IN CONTEXT --->? *
* * *

♦TYPE TITLE TERMINATOR --->?

♦TYPE SHIFT SYMBOL --->?
*

PRESENTLY, THE STOP LIST INCLUDES:
A AN AND AS AT

♦TYPE ANY WORDS YOU WISH TO DELETE FROM THIS LIST --->?♦
NONE

♦TYPE NAME FOR KWOC INDEX --->? *
TESTKWZ ♦

♦DO YOU WISH TO PRINT KWOC INDEX --->? *
YES *

♦HOW WIDE --->?
72 *

Figure 5.17h. Here we see the dialogue required to produce the keyword
phrase index shown in figure 5.17f. See the text for comments on the
marked portions. As this run was made in batch, the users responses are
printed on a line below the question. As this run was made in batch, the
users responses are printed on a line below the question.

181

*

*

*

*

*

*

*

$

*

*

*

*

*

*

4c

4c

4=

4:

*

*

4c 4c

4:

*

4c

4c

4c

Alberti, F.
Atlas of the Absorption Spectrum of Nitric Oxide (NO) between

1420 and 1250 A—E. Miescher and F. Alberti. 5, 309 (1976).

Allen, C. B.
Molten Salts: Volume 4, Part 2, Chlorides and Mixtures. Electri¬

cal Conductance, Density, Viscosity, and Surface Tension Data—

G. J. Janz, R. P. T. Tomkins, C. B. Allen, J. R. Downey, Jr.,

G. L. Gardner, U. Krebs, and S. K. Singer. 4, 871 (1975).

Allen, G. F.
An Analysis of Coexistence Curve Data for Several Binary Liquid

Mixtures Near Their Critical Points—A. Stein and G. F. Allen. 2,
443 (1973).

Barnett, J. D.
High-Pressure Calibration. A Critical Review—D. L. Decker, W.

A. Bassett, L. Merrill, H. T. Hall, and J. D. Barnett. 1, 773 (1972).

Bassett, W. A.
High-Pressure Calibration. A Critical Review—D. L. Decker, W.

A. Bassett, L. Merrill, H. T. Hall, and J. D. Barnett. 1, 773 (1972).

Bauder, A.
Microwave Spectra of Molecules of Astrophysical Interest. IX.

Acetaldehyde—A. Bauder, F. J. Lovas, and D. R. Johnson. 5, 53

(1976).

Consulate point *

An Analysis of Coexistence Curve Data for Several Binary *

Liquid Mixtures Near Their Critical Points—A. Stein and G. F.

Allen. 2, 443 (1973).
*

Critical micelle concentration

* (Abstract) Critical Micelle Concentrations of Aqueous Surfactant *

* Systems (NSRDS—NBS—36)—Pasupati Mukerjee and Karol J.

^ Mysels. 1, 219 (1972). *

* Critical supersaturation ratio

* Selected Values of Critical Supersaturation for Nucleation of ^

^ Liquids from the Vajor—G. M. Pound. 1, 119 (1972).

* Critical temperature, pressure (see also Equation of *
* state)

* Analysis of Specific Heat Data in the Critical Region of Magnetic ^

m Solids—F. J. Cook. 2, 11 (1973).
An Analysis of Coexistence Curve Data for Several Binary Liquid *

* Mixtures Near Their Critical Points—A. Stein and G. F. Allen. *

* 2, 443 (1973). „

Figure 5.17x. Examples of published indexes for which this module is able

to prepare either a manuscript or a computer file for subsequent
processing for computer-assisted typesetting.

182

5.18 PLAN

The Omnidata system was designed primarily to provide on-line
interactive (conversational) data retrieval, data analysis and reporting
facilities. As important as this mode of operation is, there are
circumstances where the file operations or reports will be required
routinely on a daily, weekly, or monthly basis. In such cases, it is
advantageous to be able to run the search, the analysis, and the report
generation from a previously formulated set of instructions. The PLAN
module provides such a facility.

We will discuss the features of this module by illustrating first the
building of a new plan. This is done by calling for the PLAN module
which responds in the manner shown in figure 5.18a. The user’s response
to the first question contains the name of the plan, QUARTERLY in this
instance, and the fact that it is a new one.

The writing of a proper plan depends upon the user being familiar
with the exact order in which the modules ask for input. Thus, after giving
the name of the file on line 1 and calling for the TALLY module on line 2,
he must know that the TALLY module will require the names of the
vectors to be tallied. These we supply on line 3. On line 4 we call the
DISTRIBUTE module and give instructions to it on line 5 to distribute the
file on the REGION vector. In line 7 we give the instructions for the
ANALYSIS, TANDEM operation requested in the line above.

This example should serve to emphasize that use of the PLAN
module requires a detailed knowledge of the operations of the modules it
calls upon. Novices should defer the use of this module until they have
had some considerable experience with Omnidata.

Line 8 in figure 5.18a contains the instructions to run the plan
immediately. At this stage, the module has already stored the instructions
in lines 1 through 7 in the file QUARTERLY. It now replaces the word
RUN by the word FINI before proceeding with the outlined operations.
Had we added the letter P (for permanent) as one of the inputs when we
responded to the first question, the file QUARTERLY would be
catalogued permanently.

Let us now see how an earlier plan can be modified by calling up
PLAN and responding with QUARTERLY, MODIFY. The module
responds by printing out the existing plan as shown in figure 5.18b. Note
that line 8 now reads FINI instead of RUN or CURRENT.

In the MODIFY mode, existing lines of the plan can be deleted or
replaced and new instructions can be inserted. How this is done is shown
and explained in figure 5.18b which also shows the modified plan which is
printed out at the end of the operation.

183

There are actually three responses that can end a plan. They are:
RUN, FINI, or CURRENT. RUN is used only to get an immediate output
from the plan just generated. When the plan is ended with FINI it is not

executed. It is simply stored away and catalogued permanently if the P
option is used. If the P option is not used, there is little point in writing a
plan that is not followed by a RUN instruction. When the plan is ended
with CURRENT, this module ends the plan with FINI as before on the
permanent file and executes the plan except that it uses the current file
rather than the file named in the plan. The purpose of this feature is to
allow the testing of the plan on a short test file rather than the larger file
upon which it will normally operate.

Thus far we have shown how to write plans or modify plans and run
them in the process. When plans already exist in catalogued files they can
be utilized without calling the PLAN module. The instruction to use a
particular plan can be supplied with the SIGN ON to the Omnidata system
by following the account with PLAN XYZ, where XYZ is the plan name.

♦•♦NOTES***

184

♦WHICH DATA BASE DO YOU WANT --->? >fsdemo __
FILE FSDEMO CONTAINS 110 DATA ITEMS FOR 500 RECORDS CD

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
--->? >dI an

♦TYPE PLAN NAME AND EITHER M(ODIFY) OR N(EW) --->
? quarterly,new

♦TYPE COMMANDS --->

*
*

*

*

♦

*

♦
♦
*
*
♦
*
*
*

*

*
*

*
*

*

*

*

*

*
*
*
*

* T
* 2
* 3

(FILE NAME) fndemo
tal ly
profs,pp,title,1 word,end
distribute
region
analysis,tandem
yob, eody, I eve I_(2)
current —- w

PLAN QUARTERLY IS ASSIGNED TEMPORARILY
CPU SEC IN PLAN = 2.5074 COST =
CPU SEC = 7.5484 COST = TIME = 15:37:33

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
—>taI ly

♦TYPE LABELS (UP TO 3) TO BE TALLIED; FOLLOWED BY 'end
—>profs,pp,titIe,1 word,end

TALLY OF PROFS

PROFS CUM % % CUM FREQ FREQ

*
*
*
*

*

*

*

*

*
*
*
*

*
*

*
*
*
*
*
*
*

9 *

*

*
*

*

*

44.6 44.6 223 223 XXXXXXXXXXXXXXXXXXX*
61.2 16.6 306 83 XXXXXXX
75.4 14.2 377 71 XXXXXX *

Figure 5.18a. Here we see how a sequence of Omnidata operations is
carried out from instructions supplied to the PLAN module as indicated on
the opposite page. Note that since we selected the file FSDEMO (1) and
ended the plan at line 8 with the word CURRENT (2), the plan is tested
immediately on the file FSDEMO. Had we typed the word RUN instead of
CURRENT in line 8, the plan would operate immediately on the file
FNDEMO specified in line 1 of the plan. Note that beyond the point
where costs are printed (3), the plan supplies all the instructions to the
subsequent operations.

185

*

*

*

*

*

*

*

*
* 2
* 3
* 4
* 5
* 6
*

*
*

*

*

*

*

*
*
*
*
*
*
*

♦WHICH DATA BASE DO YOU WANT --->? fndemo
FILE FNDEMO CONTAINS 110 DATA ITEMS FOR 500 RECORDS.

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
--->? plan

♦TYPE PLAN NAME AND EITHER M(ODIFY) OR N(EW) --->
? quarter Iy rmodify
PRESENTLY, YOUR PLAN IS AS FOLLOWS

FNDEMO
TALLY
PROFS,PP,TITLE,1 WORD,END
DISTRIBUTE ©REGION
ANALYSIS,TANDEM

\ YOB,EODY,LEVEL
x FINI

♦TYPE # AND NEW COMMAND
3,profs,pp,end
3.1,display
3.3,all
3.5, no _____^<4
3.7,end

7
8

?

?
?
?

?
YOUR MODIFIED PLAN IS AS FOLLOWS:
1
2
3
4
5

* 6
♦ 7
* 8
* 9
*

*

*

*
*
*

10
11
12

♦TYPE A
--->? plan

FNDEMO
TALLY
PROFS,PP,END
DISPLAY
ALL
NO
END
DISTRIBUTE
REGION
ANALYSIS,TANDEM
YOB,EODY,LEVEL
FINI

MODULE NAME AND/OR INSTRUCTIONS

Figure 5.18b. Here we illustrate how an existing plan can be modified.
Note: 1) the current version of the plan with the word FINI substituted (2)
for CURRENT in line 8; 3) how we change a line in the plan; 4) how we
interlineate instruction; and 5) how the modified plan looks.

186

5.19 PLOT

We think it not inappropriate to introduce this module by
paraphrasing an old cliche—namely one picture is worth a thousand
numbers. In figure 5.19a we see a table of numbers and in figure 5.19b
we see the result of plotting that data in OMNITAB II. This is obviously
an extreme example of the relative information content between the
numerical and graphical displays. While the subsequent applications are
less dramatic, they do illustrate the utility of a graphical analysis as an
adjunct to the various numerical analysis facilities in the Omnidata system.

This module interfaces with the OMNITAB II system to provide a
convenient and versatile facility for graphic displays of data. It puts all of
the power of the OMNITAB II plotting facilities at the finger tips of the
Omnidata users without burdening them to learn to write OMNITAB
instructions. In this regard the Omnidata PLOT module represents a
conversational front end to the OMNITAB II PLOT instructions, as it
writes the appropriate OMNITAB instructions from information solicited
from the Omnidata user.

The coupling between the two systems is made possible by the fact
that the UNIVAC EXEC 8 system permits both Omnidata and OMNITAB
II to operate on data files from instruction files on mass storage.
Furthermore, the OMNITAB II instructions are systematic enough to
permit Omnidata to generate them from information solicited from the
user.

Plots produced by this module come in two sizes. One, produced by
the OMNITAB II PAGE PLOT instruction, fits on an 8^x11 inch sheet.
The other, produced by the OMNITAB II PLOT instruction, fits on an
11x12 inch sheet. Figure 5.19c is an example of a PAGE PLOT. On either
plot it is possible to plot as many as five dependent variables (as ordinates)
against one common independent variable (as abscissa). Figure 5.19d is a
reduction of a full-size plot showing that it is possible to label both the
horizontal and vertical axes. When two or more data points coincide, the
number of such coincident points is printed instead of the symbols (., *, +
, comma, or -).

In order to achieve an interface with the OMNITAB II system, this
module must do the following:

a) transfer a number of designated numeric data vectors to either
a permanent or temporary file;

b) write a number of OMNITAB instructions to carry out the
varied plotting operations;

c) allow users to supply their own OMNITAB instruction both
before and after the plot instructions;

d) display the OMNITAB instructions it writes and give the user
an opportunity to modify them or add to them; and,

e) initiate an OMNITAB II run.

187

Figure 5.19a. The figure on this page shows some of the x,y coordinates of
points which convey a timely message shown on the next figure.

188

♦ -

50.000*
♦

♦

10.000 . 2
~•___».??2».2.»___•

30.000*

2 7 2

j- .
2

» . . »_... .. 3 3 . .2

2.
♦

... 2

2

2
2

20.000*

2 2
. #■ •_

2 . « . .
1 2 • 2 , . » .* . . . _»

10.000* ♦

X

♦------ --- 7 - ♦--— - - + - - --- ♦
33.333 56.667 80.000

Figure 5.19b. A portion of a Christmas greeting produced by the
OMNITAB plotting facilities from data points, some of which are shown in
the previous figure.

o.x

t 3.000

189

-OMnTTRB COPPER-NICKEL SY5TEM 1 WT IS WEIGHT PERCENT OT NlCKEL7~ ^P»9fT—2

ABS- COLUMN 1
ORD— lulUmn Id (•)* COLUMN 3 T*71 Column (♦) t column 5 CTTf COlu1

^ t--
^ 1 • b*+UU4 -

- -

1.31bB*--

2
♦ *

" ♦

"799T52+
-

4

” 9 ♦ — -

- 9 9 “ :
- - 44
- 9 + 4

9 •
f ° :

- 4
- 4

4 4 9

4 4 ?
2-

2 2-
*“56T?84

• 9

+ 2
* * ♦ 2 »

?
4

"4
4

4 4

• *
- 4 **
- *

4 * * 2 4
* 4 4 *

*

•
• ”

= $

- 4*
* 4 *

*
•

-

— 9

-* •
• • • • • • •

-

- "* .
** • •

•
-

• 343"T4~+_>*7

-2

4

*» • -
„2

- f 2 -

-32 -

-2.
-5 -

rcrrsstro*^ ~4

4. UUUU *^0Z»fcT 801*33 lZCO.D

Figure 5.19c. An example of a typical OMNITAB II page plot showing
how the five curves are presented and identified.

190

OMNITAB PAGE 6

SALARY VERSUS AGE
ABS- CAGE
ORD- PAY(.) .
POINTS PLOTTED 414 POINTS NOT PLOTTED

+ -- -----
- OUT OP BOUND 15

36000.+ . . 2. . • • • ♦
- 2. P - -

.22
~_•_t_r?«i_2_«_

30000.+

2 2

24000.+

2 ...2.

.2. 2

,.2222 2.

3 ...
,. 3..-.

18000.+
tj.t CJ

2. 2 .3

.2. 3. .2

12000.+
...a. .

2.
* ■ *■.., 2^.

2 2.
2.. 3

2« ■£•
2 ...2.

2 . •
264222

• •

6000.0+ 2 24.. .
- ---

20.000 40.000 60.000
AGE

80.000

Figure 5.19d. A reduction of a plot produced by this module when the
WIDTH is set to 80 characters. Note the numbers that replace the symbols
when two or more points coincide and the facility for labeling the
horizontal and vertical axes.

191

In figure 5.19e, we see how the user interacts with this module to

plot certain data vectors from the file FPR75.
* The responses at [A], [B], and [C] transfer the 7 data vectors

indicated at [C] to a permanently catalogued file PLOTTESTD.
The name PLOTTESTD is derived by concatenating a ‘D’ (for
data) to whatever the user elected to call the file—in this case
PLOTTEST.

* At [D] the user is informed by the module as to how the
OMNITAB worksheet has been dimensioned.

* At [E] the module reminds us where the data vectors are stored
in the OMNITAB worksheet.

* The OMNITAB instructions at [F] are inserted here for
illustrative purposes only. They do not affect the PLOT.

* At [G] we indicate the four data vectors which are to be plotted
as ordinates on the scale specified at [H].

* At [I] we specify that the SEQ vector be used as the abscissa
on the scale specified at [J].

* At [K] we supply a variety of legends for the title and for the
horizontal and vertical axes.

* At [L] we have an opportunity to request more plots. Had we
answered YES, the module would repeat the requests starting at
position [F] to allow for further arithmetic manipulation before
the next plotting operation.

* At [M] we are shown a finished list of OMNITAB II
instructions produced by this module from the information
supplied earlier.

* As we now see some errors, we respond affirmatively at [N].
* At [0] we replace instruction 12.
* At [P] we insert a line after line 18.
* At [Q] we retype line 10 to correct a misspelling of the word

AND. This correction is really not necessary because OMNITAB
ignores all but the first word in a command. After the first
word, OMNITAB reads only the numbers in the instruction.

* The above comments apply also to the change made in
instruction 11 at [R]. It, too, was really not necessary and was
done to illustrate the correction procedure.

* At [S] we delete instruction 13.
* Finally, we request at [T] a new clean listing of the OMNITAB

commands which are displayed at [U].
* At [V] we delete line 12 and do not ask for a new listing at

[W].

At this point the Omnidata PLOT module initiates an OMNITAB II
run. The plot in figure 5.19f, which is printed immediately on the
terminal, is produced by the OMNITAB II system to which Omnidata has
relinquished control.

192

* *

* ?

* FILE FPR75 CONTAINS 111 DATA ITEMS FOR 75 RECORDS.
* TYPE A MODULE NAME AND/OR INSTRUCTIONS
* --->? >plot
* TYPE NAME FOR OMNITAB FILE --> ? >plottest
* TYPE P(ERMANENT) OR T(EMPORARY) FOR FILE ->? >p
* TYPE A TITLE FOR THIS RUN OR N(ONE) ^ /

>none
TYPE LABELS TO BE TRANSFERRED TO OMNITAB
(SEQ IS A LEGITIMATE ENTRY) ->

? > seq,age,pay,grade,div,deg,profs
TOUR WORKSHEET IS DIMENSIONED FOR 201 ROWS BY 62 COLUMNS
THE DATA ARE STORED IN THE WORKSHEET AS FOLLOWS: *

LABEL
SEQ
AGE
PAY
GRADE
DIV *
DEG
PROFS

* INPUT ANY OMNITAB COMMANDS YOU WANT PERFORMED *
BEFORE PLOT—TYPE END TO END->

? >add 1. to 1 and put results in column 8 *
? > multiply 2. by 8 and put results in column 9
? >add 8 to 9 and put results in column 10
? > print column 1
? >‘print columns 1,2,3,4,8’
9 >‘print columns 1,2,3,4,8’.

>end
TYPE UP TO 5 COLUMNS TO BE PLOTTED ON ORDINATE -> *

* ?

* ?

©c.
> grade,div,deg,profs

TYPE SCALE FOR VERTICAL AXIS (E.G. 0.0 to 60.0 OR D(EFAULT) -->
9 >0.0 to 18.0

* ^ TYPE COLUMN TO BE PLOTTED ON ABSCISSA -->? >seq
TYPE SCALE FOR HORIZONTAL AXIS OR D(EFAULT) ->

*? >1.0 to 75.0---
* TYPE TITLE LINE ONE ~> ~

<D

Figure 5.19e. Here we see the user’s dialogue with the PLOT module to
transfer certain data vectors from an Omnidata file and to set up an
OMNITAB II run to produce the plot shown in figure 5.19f. See the text
for comments on the marked portions.

193

★

♦TYPE TITLE LINE ONE ->
? >‘ test of the plot module’ _ *

♦TYPE TITLE LINE TWO OR N(ONE) -> ♦
? >none ♦

♦TYPE NONE OR UP TO 60 CHARACTERS TO BE PRINTED HORIZONTALLY -->
?>sequence numbers *

♦TYPE NONE OR UP TO 51 CHARACTERS TO BE PRINTED VERTICALLY -->
? > various vectors *

♦DO YOU WANT ANY MORE PLOTS - >? >no
FOLLOWING IS A LIST OF YOUR OMNITAB PLOT INSTRUCTIONS: ♦

1 @ASG,A PLOTTESTD
2 @USE 7.,PLOTTESTD *
3 @NBS*OMNITAB. *
4 OMNITAB ♦
5 DIMENSION THE WORKSHEET TO HAVE 201 ROWS AND 62 COLUMNS
6 FORMAT A (6F12.0/1F12.0) *
7 READ TAPE A A INTO COLUMNS 1***7 *
8 LABEL SEQ, AGE, PAY, GRADE, DIV, DEG, PROFS *
9 ADD 1. TO 1 AND PUT RESULTS IN COLUMN 8
10 MULTIPLY 2. BY 8 ANC PUT RESULTS IN COLUMN 9 *
11 ADD 8 TO 9 AND RESULTS IN COLUMN 10 *
12 PRINT COLUMN 1
13 NPRINT COLUMNS 1
14 PRINT COLUMNS 1,2,3,4,8
15 TITLE 1 TEST OF THE PLOT MODULE *
16 TITLES *
17 TITLEX SEQUENCE NUMBERS
18 TITLEY VARIOUS VECTORS *
19 PAGE PLOT 4 5 6 7 VERTICAL 0.0 TO 18.0,VS COL 1 HORIZONTAL
1.0 TO 75.0 ^ ♦
20 STOP ^CN) ♦

♦DO YOU WISH TO CHANGE ANYTHING -->? >yes ^
♦TYPE LINE NUMBER, NEW OR CORRECTED LINE --> *

> 12,print columns 1 2 3 4 8 -/q\ *
> 18.5,print columns 1 4 5 6 7—-—__
> 10,multiply 2. by 8 and put results in column 9
> 11,add 8 to 9 and put results in column 10

>de>e,e Yg) ®
♦DO YOU WANT A CLEAN LISTING OF YOUR OMNITAB COMMANDS -->?

FOLLOWING IS A LIST OF YOUR OMNITAB PLOT INSTRUCTIONS: *
1 @ASG,A PLOTTESTD

****** "

>yes

Figure 5.19e (continued). The D at the end of the first two instructions is
appended to the file name supplied by the user to indicate that the file
contains the data. This module also writes a file of instructions which, in
this case, is called PLOTTESTI. See the text for a discussion of the other
items.

194

©;

FOLLOWING IS A LIST OF YOUR OMNITAB PLOT INSTRUCTIONS: *
^1 @ASG,A PLOTTESTD

2 @USE 7.,PLOTTESTD
3 @NBS*OMNITAB.
4 OMNITAB *
5 DIMENSION THE WORKSHEET TO HAVE 201 ROWS BY 62 COLUMNS
6 FORMAT A (6F12.0/1F12.0)
7 READ TAPE A A INTO COLUMNS 1***7
8 LABEL SEQ, AGE, PAY, GRADE, DIV, DEG, PROFS
9 ADD 1. TO 1 AND PUT RESULTS IN COLUMN 8
10 MULTIPLY 2. BY 8 AND PUT RESULTS IN COLUMN 9
11 ADD 8 TO 9 AND PUT RESULTS IN COLUMN 10 *
12 PRINT COLUMNS 1 2 3 4 8
13 PRINT COLUMNS 1,2,3,4,8
14 TITLE 1 TEST OF THE PLOT MODULE
15 TITLE3 *
16 TITLEX SEQUENCE NUMBERS
17 TITLEY VARIOUS VECTORS
18 PRINT COLUMNS 1 4 5 6 7
19 PAGE PLOT 4 5 6 7 VERTICAL 0.0 TO 18.0,VS COL 1 HORIZONTAL
1.0 TO 75.0

v 20 STOP
*DO YOU WISH TO CHANGE ANYTHING --> ? >yes
TYPE LINE NUMBER, NEW OR CORRECTED LINE -->

? > delete 12 /w\ *
? >end

*DO YOU WANT A CLEAN LISTING OF YOUR OMNITAB COMMANDS -->
* * * (©(©PROCESSING COMPLETE. * * * *

>no

TIME : 6.422

* LSD XBASIC 15:37:01 15 MAR 77
* *

* OMNITAB

* SEQ AGE
* 1.0000000 46.000000
* 2.0000000 41.000000
* 3.0000000 43.000000
'■ # * * f f'H

PAY
30486.000
30486.000
25398.000

T* *- *

GRADE
15.000000
15.000000
15.0QflflQ^ ^

*

*

Figure 5.19e (concluded). At point [X] the OMNITAB II system has taken
over and provides the subsequent output.

195

A few words are in order concerning the final OMNITAB
instructions. In the first two lines are EXEC 8 instructions which assign
the file containing the data transferred from the Omnidata file. It is this

file which is read by OMNITAB II when it executes the READ TAPE A
command in line 7. The second A in this command specifies the format
indicated in the format statement in line 6.

The third line calls the OMNITAB program which executes the
instructions in lines 3-20. The LABEL instruction in line 8 tells
OMNITAB II to assign these names to data stored in columns 1, 2...7,
respectively. Thus, although the PRINT and the PAGE PLOT instructions
in lines 18 and 19 use column numbers, the results in figures 5.19e and
5.19f refer to the data by name rather than numbers. The labeling feature
is available only in version 5.13 of the OMNITAB II system. Because it is
not available in earlier versions, this module writes the plot instruction (as
in line 19) in terms of column numbers. Thus this module will work
equally well in earlier versions of OMNITAB after the LABEL instruction
has been deleted as was done with instruction 13 at position [S].

The above illustrated OMNITAB II instructions contain only a single
page plot because we had neglected to set the WIDTH command to 120.
Had we done so, this module would have written two plotting
instructions—one for a full-size plot via the PLOT command and another
via the PAGE PLOT command.

In figure 5.19g we have a plot of years of government service versus
years at NBS for 200 professionals chosen at random from a larger file. If
all of these persons started their government career at NBS, the points
would all fall on a straight line. The name PLOTTESTD is derived by
concatenating a ‘ Points falling above the line represent a person with 1 or
more years of federal service prior to joining NBS.

Our experience in data analysis has shown that in most applications
one would wish to produce a number of plots. In that case there is strong
reason to do it in the batch mode as it is both faster and cheaper. In such
a case it is often wise to include one or more extra plots in which the
ranges of the horizontal and vertical axes are not specified. This has often
provided good insurance against poor judgment in selecting axes under
pressure of the on-line tempo. In addition, if we had not allowed the
system to choose its own axes in figure 5.19g we would not be alerted to
the three data points which are in error.

The plotting facilities in OMNITAB II are much more extensive than
we have shown here. The later versions of OMNITAB II have provision
for:

a) user control of plotting symbols including letters and numbers
via the CPLOT instruction;

b) user control of the over-all dimensions of the plots by
specification of LENGTH and WIDTH; and

c) producing smaller plots, either two per page via the
TWOPLOTS instruction or four per page via the FOURPLOTS

The characteristics of and means for obtaining these varied plot
formats are given in Hogben and Peavy [12].

196

OMNITAB
TEST OF THE PLOT MODUlE

ABS- ' SEO
ORD- GRADE (.), DIV (*), DEG (+), PROFS
POINTS PLOTTED 300 POINTS NOT PLOTTED - OUT OF BOUND 0

18.000+

14.400+

V
A
R
I
0
U
s

V
E
c
T
0
R
5

10.800+

7.2000 +

— * ★ ★ 22 * irk irk

3.6000+

t kirk m k kr kirk 2 +-

+

— 2 * * « 2.. +.22 ,, . 2 . 2+ *+2 +.+ ,, ,2-

— 2+2 2, ,3 .*2. 22 + **, 22,+ *3+ *22*2***+22.. . -

-2,,, 23*. ** * , *2,**3 23,222*2 2+,,.2. .3 ,23 ,2,2 **3* -

0. X + + ++ + + 2 +++2 ++2 ♦++ ♦ + ++ ++ ♦ ♦
♦-+-♦-♦-♦-

1.0000 28.667 50.333
SEQUENCE NUMBERS

+ ♦♦++++.X
- +-+

75.000

Figure 5.19f. Here we see a plot produced on-line by this module from
the instructions shown in the previous figure. Note how the horizontal and
vertical axes are labeled. This plot is more illustrative than informative.

197

A
0

S
-

N
B

S
Y

R
S

*
O

R
D

-
T

R
S

O
F

S

O

>-iu<3:in O J. 00>ujJcsuJ2h ui Ui I > — O ui

Figure 5.19g. This plot of years of government service versus years at
NBS for 200 professionals chosen at random shows that recent hires had
more prior government service than those in earlier years. The three
circled points result from errors in the file.

198

4
 •

 0
0
0
0

 *
-2

5.20 RANDOM

In a variety of auditing operations it is important to be able to
select, in a random manner, a sampling of records (logical or physical)
from a larger data file. This module provides such a random sampling tool
by writing a new file containing the desired number of randomly chosen
records. The records are chosen via a list of random numbers generated
and normalized to the number of entries in the file in question. Thus, if
the file contained 1000 logical records and we wanted a sampling of 20%,
the RANDOM module will be instructed to generate 200 unique random
integers between 1 and 1000 and select from the large file logical records
located in positions consonant with the generated list of integers. The
module gets its information about the size of the sample from an input by
the user. Information about the size (number of records) of the entire file
is gotten automatically from the file itself. The records are written in the
order in which they appeared on the original file. See figure 5.20a for a
typical use of this module.

The further tasks in an auditing operation are also facilitated by
OMNIDATA in that it has provisions for sorting the sample by
organizational groups for possible interview or by building and room
number for purposes of inventory. In the case of a physical inventory, the
use of the features of the SEARCH module will allow 100% checking for
high priced items; 50% checking for medium priced objects; etc.

* *WHICH DATA BASE DO YOU WANT --->? fndemo *
* FILE FNDEMO CONTAINS 110 DATA ITEMS FOR 500 RECORDS. *
* *TYPE A MODULE NAME AND/OR INSTRUCTIONS *
* --->? random *
* *

* PRESENTLY, THERE ARE 500 RECORDS IN THE FILE. *
* *H0W MANY RECORDS DO YOU WANT SELECTED AT RANDOM --->? 50
* *D0 YOU WANT A LIST OF THE NUMBERS OF THE RECORDS SELECTED
* --->? yes *
* THE 50 RECORDS SELECTED AT RANDOM ARE: * * 5 23 37 35 79 81 97 104 106 *
* 114 115 127 137 145 148 164 176 *
* 184 191 242 252 259 268 277 281 *
* 282 288 311 334 339 347 351 359 *

* 371 372 379 386 390 400 427 429 *
* 430 434 452 455 459 472 486 489 *
* 495 *
* *
* CPU SEC IN 1 RANDOM = 2.0806 *
* CPU SEC = 4 .7286 TIM = 15:03:52 *
* *

* *TYPE AM0DULE NAME AND/OR INSTRUCTIONS *
* --->? stop *
* PROGRAM STOPPED.
* TIME : 4.738 *********************

Figure 5.20a. A typical use of the RANDOM module to generate a 10%
random sample of records from a larger file.

199

* PRESENTLY, THERE ARE 500 RECORDS IN THE FILE. *
* *HOW MANY RECORDS DO YOU WANT SELECTED AT RANDOM --->? 50
* *D0 YOU WANT A LIST OF THE NUMBERS OF THE RECORDS SELECTED
* --->? yes *
* *

* THE 50 RECORDS SELECTED AT RANDOM ARE: *
* 17 19 31 47 51 75 79 100 112 *
* 124 142 151 162 187 213 219 223 *
* 224 238 247 274 278 286 287 312 *
* 319 326 338 354 364 366 383 384 *
* 385 392 398 400 405 414 416 425 *
* 440 443 457 466 468 477 490 495 *
* 496 *

* 10 ENTRIES COPIED 3.479
* 20 ENTRIES COPIED 3.4912
* 30 ENTRIES COPIED 3.506
* 40 ENTRIES COPIED 3.5186
* 50 ENTRIES COPIED 3.5324

* *WHICH DATA BASE DO YOU WANT --->? fndemo
* FILE FNDEMO CONTAINS 110 DATA ITEMS FOR 500 RECORDS.
* ♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
* --->? random

* PRESENTLY, THERE ARE 500 RECORDS IN THE FILE.
* *HOW MANY RECORDS DO YOU WANT SELECTED AT RANDOM --->? 50
* *DO YOU WANT A LIST OF THE NUMBERS OF THE RECORDS SELECTED

* © --->? no

* CPU SEC IN RANDOM = 2.0462
♦ CPU SEC = 4.9346 TIM= 15:06:58

* *TYPE A MODULE NAME AND/OR INSTRUCTIONS *
* --->? stop *
* PROGRAM STOPPED. *********************

Figure 5.20b. A record of two more uses of RANDOM showing 1) the
output with the MONITOR switch set at 10 records and 2) how this
module finishes up when a printing of record numbers is not required.

200

5.21 REGRESS

This module performs a least-squares linear regression to determine
the best estimates for the coefficients a0, a}, a2, an for the
representation

Y = a„ + a, X, + a2 X2 + a3 X3 ,...an Xn 2<n<9

The independent variables (Xl9 X2, etc.) are designated Omnidata data
vectors to be considered as the regressor variables. The dependent variable
Y is the designated Omnidata vector considered as the regressand. This
operation is performed by interfacing with the OMNITAB II system via its
FIT command.

As our first example we perform a regression on an econometric data
set used by James W. Longley {Journal of the American Statistical
Association, September, 1967, pp. 819-841) to test the accuracy of various
least-squares computer programs. The data set consists of seven major
economic indicators. These independent regressor variables, shown in
columns 1-7 in figure 5.21a, represent: the GNP Implicit Price Deflator,
Gross National Product (GNP), Unemployment, Size of the Armed Forces,
Noninstitutional Population (14 years and over), and the Time. The
regressand (dependent) variable shown in the last column is the Total
Employment for the years covered by these data.

**************************** *

* 83.0 234289.
* 86.5 259426.
* 68.2 258C54.
* 89.5 284599.
* 96.2 328975.
* 98.1 346999.
* 99.0 365385.
* 100.0 363112.
* 101.2 397469.
* 104.6 419180.
* 106.4 442769.
* 110.8 444546.
* 112.6 482704.
* 114.2 502601.
* 115.7 518173.
* 116.9 554094.

2356.
2325.
3682.
3351.
2099.
1932.
1870.
3578.
2904.
2822.
2936.
4681.
3813.
3931.
4806.
4007.

1590. 107608
1456. 108632
1616. 109773
1650. 110929
3G9Q. 112075
3594. 113270
3547. 115094
3350. 116219
3048. 117388
2857. J18734
2793. 120445
2637. 121950
2552. 123366
2514. 125368
2572. 127852,
2627. 130081,

*

1947. 60323. *
1948. 61122. *
1949. 60171. *
1950. 61187. *
1951. 63221. *
1952. 63639. *
1953. 64989. *
1954. 63761. *
1955. 66019. *
1956. 67857. *
1957. 68169. *
1958. 66513. *
1959. 68655• *
1960, 69564. *
1961. 69331. *
1962. 70551. *

* *************************** «

Figure 5.21a. The above econometric data were used to illustrate the
output from the REGRESS module. The last column representing the total
derived employment considered as the dependent variable was regressed
against the first six. See the text for an explanation of these six regressor
(independent) data vectors.

201

The results of this operation are presented on four pages (see fig.
5.21b, et seq.) which contain the following.

On the first page we have a tabulation of:
a) up to three of the independent variables (regressors) Xl9 X2,

X3, etc.,
b) the dependent variable, Y, labeled as the response;
c) the predicted response computed from this fitting operation;
d) the standard deviation of each of the predicted responses;
e) the residuals—the differences between the observed and the

computed responses;
f) the standardized residuals; and,
g) the weights used in the fitting operation.

On the second page (fig. 5.21c) we have four plots showing:
a) the standardized residuals versus row number;
b) the standardized residuals versus predicted response;
c) the standardized residuals versus the first column (the GNP

Implicite Price Deflator); and,
d) a normal probability plot of the standardized residuals.

On the third page (fig. 5.2Id) we have two types of information of interest
to the statistical analyst:

a) the variance-covariance matrix, useful in assessing the
collinearity of the data vectors fitted; and,

b) the analysis of variance from which it is possible to assess the
adequacy of the model.

On the fourth page (fig. 5.2le) we have the seven coefficients and
their standard deviations, the ratio of each of the coefficients to its
standard deviation, the number of digits in the coefficients that can be
assumed to be correct, and finally, the standard deviation of the residuals.
The above results are repeated for a second fit in which the last regressor
variable has been eliminated.

♦♦♦NOTES***

202

o
m

n
it

a
b

t
e
s
t

o
f

th
e

r
e
g
r
e
s
s
io

n

m
o

d
u

le

o
n

th
e

lo
n

g
le

y

d
a
ta

p
a
g
e

CO ccocccoeooccoo
CCCCC CCCCCCCCCOO
OCOCC ccoococoooo

C in
»- U-
in ct

xr^aoctF'~irxx^f^a:ir<\j<\j<vj
-•a-—tf^xof^ocxo^xpo^/vj

I I

Z o
z O
2: o
3(^0
-J lu. o
c _j o
u m •

uj cr 11
in <
z > in
o 1-
cl k 1
in z o
UJ uj *-•
a: c u_

Z i
li_ UJ
O Q. O

uj cr
KCLl
•-» Z M
LL ►-« I

< U. X
Z) C —
O
in z

o
►— *-* o
in 1- z
< u »-«
uj z in
JDD

u_

UJ
u. m
o z

c
• Q_

> in
u. u.
C- CL

Q
Uj UJ
k in
U Z
*-• o
C CL
uj in
CL UJ
CL OL

UJ
IT
z z
o 2:
CL 3
in _)
uj o
cr o

D

in o
UJ o

z
1- 2:
Z 3
UJ -J
a o
z o
UJ Q-
UJ H
Q
Z

c O' x m —t x x

>fl ftjCDO'^ff'HCO'O' CC PO ^ CC
o rr ^ ^ occC'ircj-a:i*a'-« —
^ • x —• —1—t^r-oa'xin.^f^foin
mocM-^roo—.fomc\joirxosr-

r- d-<ccaa'jir)^irM^irin-vD
'£0'^-c^^HHirH(rir®^c
cm l ^ n (\jh 1 ^ 1 1 «- 1 ro c\j

III II

>c w cc n ®cj-K)0'o^®a'r-vom
cvj'Dh' ®r^mor-oir)K)c\jO'ir)roct
(\jfODcoHccHi/iincD(\iinH\DnvO
K' & rr a a k*x—<cccra«-4ecinrs'
x—^-O'—<c\jxxirx—-cr
• •••••••••••••••

xo''foir)a'inK5xxx<\i—ixmxcvj
O' <\J X X ro COhh ONffiH CD^ fflT

lOJCNJOJ —i ^ C\J —l ^ -p CvJ

oncvjjir^ccirvCO'ircHO'c
x — .-a:-43-«acxirinr*xin
® or- *-»(\jfOo—ixxcvjoxx or>

IT. '£^f^«-'CCPr)^^*Hv£C^CCrO'^
in—<c\jO'—«xir>rs-oo®m*H4j-xin
ocvj-Hincj' x —< r- o^j-^xxxo'r-
CHCHOjniniO'Ch®y£)e(y'CDc
x >n x x x x x >£ \C x x 'X >x <x ^

0000000000000000
0000000000000000
0000000000000000

ciKNjhcwiocx^irx^inxnir io*-HH(\;xc'r< om^irxifinm
o^o«—fnpocrpnxr^xxxQ'G'o
X X X X X X X X X X X X X X X N

XlT)WHO'AJOCO^f\JXHK)HXN
incNjxina'for^r-ofvjiox—»fOoo
JOfOXrOOO'XinO'XO'XXCT'XO
cuc\j»npo<\j«-t—imcjcNjosj^-mpOd-^

0000000000000000
0000000000000000 lo^^xoo^-^incvjxxr^xojcj' ^■O'x^-a'r^xrof^a'cu^-csjcsjx^
fllTlfi ®AJ^ X'flff'H^ j XO-MT)
c\jojf\jcj»nmrOroro^4j-J-^-inxx

0000000 omcNjxcvj-toocvjx^xxc^r^a'
K)XCDO'XX(J'OHJCDO(\J^I/)X
X XX XCT'U'O'OOOO—

«
"9
— 3

"O
o

C/5
C/5

L

cl

3!
<d

w S :5
cd - >
O
w «
CC C/5

O
L

Oh

D eft
JS JS
^ XI
e 3

3 3
CL V

3 _o
’■l
CL
O

3

<

3
O

t>
X

-o 3
3 CL
CD -3
CL =
CD ©

-o «
3

X

° CD ^

®
3 «h—1 £■<
CL O «

D e
<D
!c 1 X

cn
L

eft
X CD

E-1
s-

X <V <
i—H
<N

lO

©
Li

"c
0

3 C/5
0£> -m

• —< cn ,

3
s
©
L

©

Uh X 33

^ajro.^inxr^xo'o—icjm^inx

203

al
l

o
f

th
e
 d

a
ta

 v
ec

to
rs
 e

n
te

ri
n

g
 i

n
to

 t
h
is
 l

e
a
st

-s
q

u
a
re

s
fi

t.

omnitab test Of THE ReORESSION MOOULE ON THE LON8LFY OATA MK t

STANDARDIZED RESIDUALS VS ROW NUmrER_ ^STANDARDIZED residuals vs P»E0ICTED PfS°ONSr

- -

- - • -

• • - -

♦ 2.25* ♦
- * - - • -

• • - - • •
- * - • •

-• - -* •

,75* ♦ .754 ♦

- • • • -• • -

- • * • - • 0 • 0 -

- • • - - • 0 •

,75* ♦ • ♦ -.754 • 0 ♦

• • - - 0 •

• *- - •-

• * “ 0 -

>254 ♦ -2.254 ♦

“ -

1.0 ft.5000 1ft. 0 6.0056+04 6.5407*04 7. 0755*04

STANDARDIZED RESIDUALS VS COLUMN 1 normal proraBIlIty plot oe standardized residuals

,25* ♦ 2.254 ♦
- • - - • -

- * • - 0 -

- • - • • . • • •

,754
•.- • - •• - -—

♦ .75* *

_ « * . • • • •

- • * t - - 0 0 -

• • • • 00 -

,7b* 0 * ♦ *•75+ 0 0 ♦

- • • - 0 -

• *- — 0 •

- • - - 0 -

254 ♦ -2.254 *

" - - -

- - -

8.3000401 9.0930401 1.1690402
-5.75

-2.5 0.0 2.3

Figure 5.21c. This second page provides a variety of graphical analysis of
the residuals (observed values - predicted values).

204

L
E

A
S

T

S
Q

U
A

R
E

S

F
IT

O
F

R
E

S
P

O
N

S
E

.
C

O
L

U
M

N

1
1

.
L

IN
E

A
R

F
U

N
C

T
IO

N

O
F

7

IN
D

E
P

E
N

D
E

N
T

V
A

R
IA

B
L

E
S

IN

C
O

L
U

M
N

S

U
S

IN
G

1
6

N
O

N
-Z

F
R

O

W
E

IG
H

T
S

=

1
.0

0
0
0
0
0
0

to

UJ
©
<c
CL

cr
0
UJ
cr

UJ I

u_
o

CD
<

2 X O

©

<

l/)
<

i
r 1

i
© © © o o

i u. © © © © © o ©
{ © o © © © © ©

H CL •
♦
in
c

i ©

CD O' to CM h* «■* ©
i CM O COb O' ® O'

O' 11 © © © ^ r- CM
• © • • • •

u © © © © ©
i Ul 4J* © © © *»« *4

© CM IO
o ©

in © i o
© © .j u. ^4

i 4 4 <
© CM 2

© in CM O
© ©
© o

X
in t- A © O © © o CM *

c o a. Ll c O © © © © o
• • o o © © © © © ©

CM T UJ
a.

in a;
K <
2
UJ © o ©
H © 4 cr © © IT to «

O O' o o © © © O'
»-* • © O' © m 4* II ^ -d* to © © CM CM
u. O © CM O u • • • • • • •
u. ^ tO H UJ Ul O' H M CM © ©
UJ ■H O' > o © © © © M H

o in © © IO
u © O' CM © w H

• • • © u to
Q O' © UJ
UJ to 1 -J
►- 2
< 3

CM ~ in
*-« o in o © »

K o CM 4 4 Q
10 & to cm to UJ UJ • © Cf to CM —• © O' O' ©
UJ to ^4 *4 © o a: u v-i •H •H

«H in m to 2 UJ •
UJ 0s © © C J- o
X in O' © *- 2
K & c © cr uj

© © (O © <
LL. • • • • > UJ
c i in w4 cr ©

i u «t x
X o O'
M © 3 © 1^
cr CM © © UJ © © © © CM O'

a to © © •- -1 • * • • • • •
< O' to to 4 4 © tn Q to ^ © to © CM © 3: o r- O' r*- >- < •—i CM © * © CM © to

IO ^ to cm m © -j»- © w— o O r- © O'
UJ to to cm in < cr Ul © © to ^ O' © CM
o in r- f*» CM © 2 < cr © © CM © © CM O'
2 © ^ to to © < > O' tvj o © to CM
< tO © CD to to • CM CM CM

CM © o © © t- X
CD 2 3
< 1 H to UJ U
> | o
O 2
u UJ
1 O' O' ~4 X

UJ r- •H CO m © © UJ V 3 O' CM 4 4 Q
2 © CM ® in in © 2
< CM r- cm <o © O' H •

CM © © © ^ u
cr ^ to K) O' cr UJ
< m to © CM to Ul o •-4
> O ^ o O CM to a u to © © M ©

o © © © CM cr
o o © o © © © © © o

1 H CM t- O MO M fO O' O' CM ©
• 2 © cr r- ^ © to 3 O

O UJ O' to to © tO H © M
3 O' M © © © O' CM tn m

tO *4 to t- a CM © © ® O'
o o o o 2 CM © © © H H ©
4- 4 4 4 UJ • © © H
^ in CM CM in O' a a CM *

H CM ^ m h- CM O' © 2 UJ © ©
^ m -4 O to O' O' UJ CD © ©
in co r- m CM © 0. II
O © ^ © O' UJ ©
-H ^ © j- in o a ©
CM CO to to © CM © i

m -h CM ©
i I 1

2

7

1 # CM tO ^ © © r-

X
< 3
> <

2 2 2 2 2 2 2 2 3
x X r X Z X Z Z X a 3 3 -h CM to ^ 5

6

UJ 3 3 3 3 3 3 3 »-• <
3 a J _J _J -1 -J -1 3 © »-
o 2 O O O O O O O UJ o
o •—t © © © u u o u CD ►—

c

S O-
3 a>

Um .£

205

5
.2

Id
.

T
h
e
se

d
a
ta

a
ss

is
t

th
e

st
a
ti

st
ic

a
l

a
n

a
ly

st

e
v
a
lu

a
te

th
e

d

en
ce

 o
f

th
e
 i

n
d
e
p
e
n
d
e
n
t

v
a
ri

a
b
le

s
a
n

d
 t

h
e
 a

d
e
q
u
a
c
y
 o

f
th

e
 m

o
d

el
.

omnitab test of the regression MODULE on the longley data

- - LEAST SQUARES FIT OE RESPONSE* COLUMN 11►-
AS A LINEAR FUNCTION OF 7 INDEPENDENT VARIABLES IN COLUMNS 1# 2*

3» 41 5» 6» 7
USING 16 NON-ZERO WEIGHTS = 1.0000000

ESTIMATES FROM LEAST SQUARES FIT

INDEP VAR • " COEFFICIENT S.D. OF C0EFF. RATIO ACCURACY*

COLUMN 1 15.061821 84.914911 .14 ~ 4.90
COLUMN 2 -.035819202 .033491005 -1.07 5.64
COLUMN 3 -2.0202296 .48839953 -4.14 6 • 37
COLUMN 4 -1.0332269 .21427412 -4.82 7.24
COLUMN 5 -.051104037 .22607315 -.23 5.07
COLUMN 6 1829.1514 455.47839 4.02 6.29
COLUMN 7 -3482258.4 890420.16 -3.91 6.28

RESIDUAL
BASED

STANDARD DEVIATION =
ON DEGREES OF FREEDOM

304.85403
16- 7 = 9

* THE NUMBER OF CORRECTLY COMPUTED DIGITS IN EACH COEFFICIENT
USUALLY DIFFERS BY LESS THAN 1 FROM THE NUMBER GIVEN HERE.

FIT OMITTING LAST INDEP ENDENT VARIABLE

INDEP VAR # COEFFICIENT S.D. OF COEFF. RATIO

COLUMN 1 -52.993536 129.54487 -.41
COLUMN 2 .071073197 .030166398 2.36
COLUMN 3 -.42346594 .41773652 -1.01
COLUMN 4 -.57256874 .27899088 -2.05
COLUMN 5 -.41420357 •3212R493 -1 .29
COLUMN 6 48.417864 17.689486 2.74

RESIDUAL STANDARD DEVIATION r 475.16552
BASED ON DEGREES OF FREEDOM 16- 6 = 10

Figure 5.2le. Here we have the computed coefficients and their related
accuracies, followed by similar data for a fit in which the last term was
omitted. This format of the output was produced at the terminal rather
than the line printer on which the other figures were produced.

206

Figure 5.2If shows how the user interacts with the REGRESS
module to produce the results shown in the previous figures. The
responses at [A], [B], [C], and [D] transfer to a temporary file, FREGD, the
seven data vectors shown in figure 5.21a plus a unit vector (C in column
7). This module next indicates at [E] where the data are stored in the
OMNITAB worksheet and provides an opportunity to perform any desired
OMNITAB operations. At [F] we choose simply to move the regressand
into column 11. At [G] we tell this module which are the independent
(regressor) variable, which is the dependent (regressand) variable and the
location, if any, of the weights to be assigned to these data.

As we wish to see a plot of the residuals (the observed-calculated
values), a positive response at [H] tells us where this module will store the
residuals and coefficients.

A response of ‘print’ at [I] means that we wish all of the output
printed. After the negative response at [J], this module prints out the
OMNITAB instructions it has generated from the information supplied
earlier. As we indicate at [K] that no changes are desired, this module
instructs the Exec to carry out the instructions from a file FREGI which
contains the above instructions (1-12). The system response at [L] is
normal to this type of transfer from Omnidata to OMNITAB.

An examination of figure 5.2le will show that this module produces
the coefficients and their standard deviations for a second fit in which the
last independent variable is omitted. Since the last named independent
variable in column seven was a unit vector, its presence supplies the
constant term A0 in the equation shown above. When this ‘variable’ is
excluded from the fit the resulting equation has no constant term. This
feature is parallel to the one in the FIT module where the results are given
for a polynomial of degree n-1 in addition to the one of degree n that was
specified.

207

GOOD AFTERNOON, WELCOME TO OMNIDATA
* * * NOTE—OMNIDATA KEEPS A RECORD OF WHO USED WHICH *

MODULE(S) ON WHICH FILE(S) AT WHAT TIME OF THE DAY *
FILE FTESTREG CONTAINS 8 DATA ITEMS FOR 16 RECORDS

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
--->? > labels,regress

THE FILE FTESTREG CONTAINS DATA LABELED AS FOLLOWS:
4 ARMEDF 7 C 2 GNP 1 GNPIPD
5 POP 8 TOTALEMP 3 UNEMP 6 YEAR

♦TYPE NAME FOR OMNITAB FILE - > ^

>*TYPE P(ERMANENT) OR T(EMPORARY) FOR FILE -->? >t
♦TYPE A TITLE FOR THIS RUN OR N(ONE)

? > test of the regression module on Longley’s data
♦TYPE LABELS TO BE TRANSFERRED TO OMNITAB FILE
(SEQ IS A LEGITIMATE ENTRY) ->

? > gnpipd,gnp,unemp,armedf,pop,year,c,totalemp
♦YOUR WORKSHEET IS DIMENSIONED FOR 201 ROWS BY 62 COLUMNS
♦THE DATA ARE STORED IN THE WORKSHEET AS FOLLOWS *

COLUMN LABEL
1 GNPIPD-

GNP
UNEMP
ARMEDF
POP
YEAR
C
TOTALEMP

INPUT ANY OMNITAB COMMANDS YOU WANT PERFORMED
BEFOJRE REGRESS—TYPE END TO END - >

Figure 5.2 If. Here we see the dialogue between the user and the
REGRESS module to carry out a multiple linear regression on some
econometric data. See the text for a discussion of the marked section
portions.

208

— — —~~

* ? >add 0. to col 8 and store in vector 11
* ? >end -0

* *TYPE LABEL OR COL NUMBER OF DEPENDENT Y VARIABLE (REGRESSAND) -->?
* >11 *

♦TYPE LABEL OR COL NUMBER TO BE USED AS WEIGHTS, OR N(ONE) ->? >none
♦TYPE LABELS OR COL NUMBERS FOR INDEPENDENT

X(I) VARIABLES (REGRESSORS) -->
? >1,2,3,4,5,6,7

♦DO YOU WANT RESIDUALS PLOTTED - >? >yes
COEFFICIENTS ARE IN COLUMN 72
RESIDUALS ARE IN COLUMN 61

♦TYPE P(RINT) OR S(TORE) FOR RESULTS - >? > print >
? ^ nn

a>

♦DO YOU WANT ANY MORE REGRESSIONS ->? >no
FOLLOWING IS A LIST OF YOUR OMNITAB REGRESS INSTRUCTIONS:

@ASG,A FREGD
@USE 7.,FREGD
@NBS*OMNITAB.
OMNITAB
DIMENSION THE WORKSHEET TO HAVE 16 ROWS AND 781 COLUMNS
FORMAT A (6F12.0/2F12.0) *
READ TAPE A A INTO COLUMNS 1*** 8
LABEL GNPIPD, GNP, UNEMP, ARMEDF, POP, YEAR, C, TOTALEMP
ADD 0. TO COL8 AND STORE IN VECTOR 11

10 FIT Y IN 11, WTS 1.0 7 IN 1 2 3 4 5 6 7 62 61
11 PAGE PLOT COLS 61 vs 1 J$) *
12 STOP / ♦

> ? > no * ♦DO YOU WANT TO CHANGE ANYTHING

♦ TIME : 6.847
♦ LSD XBASIC 13:53:42 28 SEP 77
♦ FACILITY WARNING 100000000000

READY

* OMNITAB TEST OF THE REGRESSION MODULE ON THE LONGLEY DATA

Figure 5.21 f (concluded).

209

5.22 RENAME

The primary purpose of this module is to change the labels on the
data vectors. Thus it is possible to change YOB to YR. OF BIRTH; SS#
to SOC.SEC.NO.; PAY to SALARY, etc. This facility is useful for
preparing final reports that are easier to read.

If DIV is the name of vector 1, the instruction 1, REGION does the
same thing as DIV, REGION, i.e., changes the label DIV to read
REGION. If, however, we had entered 1, 500, the label for DIV would
remain DIV but its vector number would be changed to 500.

A word of caution: RENAME does not check whether the new name
duplicates an existing one. This chore is left to the user. If duplicate
names are assigned to data vectors, the system will accept the first one it
finds in the label table. Figure 5.22a shows the use of this module to
rename a number of data vectors as well as to correct for an inadvertent
duplication in labeling the vectors in the DEFINE module.

Normally RENAME retains the orginal vector numbers unless a
request is made to RESEQUENCE. Figure 5.22b shows the result of a
resequencing operation on a small data file obtained in the ABRIDGE
operation in figure 5.1b. Note that the user must specify the initial value
and the interval for the resequencing operation.

* • * NOTES***

210

* FILE FNDEMO CONTAINS 110 DATA ITEMS FOR 500 RECORDS.
* ’TYPE A MODULE NAME AND/OR INSTRUCTIONS
* —>? rename

* PRESENTLY. THE LABELS IN THE FILE ARE:
* DIV,SS,SEX,CIT,NAME,DOB,YOB,SCD.STAT.TOA,TOD,TOLA,
* pNTE.PP.OSC.FC.TITLE.GRADE.STEP.PA Y.PLANT.DEPT.LC.CSOFROM.
* CSDTD,LEGR,DDAY,DDGR,PINFO,DDPP,EUD,EDDY,ADTITjPROFSTAT}
* DEG,COLDEG,YR,SPP,DPG,ATD,SEQ,VP,INS,HC,RET,NOAC,
* SLIM,DLIM,HLIM,EDA/AUTH,POS,AC,PFC,APPOR,REM,AUDAT,
* SUN,SPF,PD,DRPB,CLKIHANU,TP,DET,MC,ALC,SCO,GLUC,

daa,rs,ssnc,pf,hbbnt5psq,sp,gdf,sc,dlabr,sfd,hmd,
WAEPL,WAEDWS,RflWSW,WAEDWP,WAEDWT,LWOP,CNHS,TLWOP,
CLWOP,CAWOL,G5L,FAbInDD,WDUD,WED,AA,WP,WHSA,LWUPSA,APAD
FUD,DDED,MR<SK,HWWAE,SCDY,SALHAS,C

EW LABEL-TYPE END TO STOP—>

NOW THE LAB
* DIV,SS,SEX,CIT,
* LNTEDA,PP,OSC,FC,TI

*

ARE:
,SCD,STAT,TOA,TOD,TOLA,

GRADE,STEP,PAY,PLANT,DEPT,LC,
CSDO,CSDTO,LEGR,DDAY.DDGR,PINFO.DUPP.EUD.EDDY.ADTIT.
fPROFSlDEG,COLDEG,YR,SPKDPG,ATD,SEQ,VPJNS.HC.RET.

* NOAC, SLIM,DLIM.HLIM,EDA A^TH,PLS,AC,PFC,APPOR,REM,
* AUDTA,SUN,SPF,PD,DRPB,CLFrEDPlANU,TP,DET,MC,ALC,
* SCD,GLOC,DAA,RS,SSNC,PF,HBPN,DPSQ,SP,GDF,SC,DLABR,
* SED,HND,WAEPL,WAEDWS,RHWSW,WAEDWP,WAEDWT,LWOP,CNHS,TLWOP,
* CLWOP,CAWOL,CSL,FAB,WDD,AUDD,NED,AA,NP,NHSA,LWCPSA,
* APAD,FOD,DDED,MR,SK,RNAME,SCDY,SALBAS, C

•TYPE A MODULE NAME AND/OR INSTRUCTIONS-
—>? save

• *TYPE NAME UNDER WHICH FILE IS TO BE SAVED —>? fndemo
• FNDEMO IS CATALOGGUED— 64 TRACKS 500 RECORDS 9.1394
************************************* ***

Figure 5.22a. A record of the use of the RENAME module to correct for
duplicate labels and to rename two data vectors. Note: 1) the use of the
vector numbers to get at the second NTE name, and 2) response of the
operation to SAVE the file with the revised label table. RENAME always
displays the list of current labels before and after the operations are
performed.

211

*TYPE A MODULE NAME AND/OR INSTRUCTIONS
--->? labels

THE FILE FSFCP CONTAINS DATA LABELED AS FOLLOWS
11 AMOUNT 16 AM72 2 CCODE 3 CIST 8 COUNTRY
13 DB 15 DE 10 DIV 1 ID 4 PROGC
12 YB 14 YE

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
--->? rename

* PRESENTLY, THE LABELS IN THE FILE ARE:
* ID, CCODE, CINST, PROGC, COUNTRY, DIV, AMOUNT, YB, DB, YE, DE,

NEW LABEL -TYPE END TO STOP --->

-©

AM72
♦TYPE OLD LABEL

? amount,cost___
? resequence

♦ENTER INITIAL VALUE AND STEP --->? 1.1 _
? end
NOW THE LABELS IN THE FILE ARE: ^
ID, CCODE, CINST, PROGC, COUNTRY, DIV, COST, YB, DB, YE, DE,
AM72

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS y®
--->? labels X
THE FILE FSFCP CONTAINS DATA LABELED AS FOLLOWS:
12 AM72 2 CCODE 3 CINST 7 CUST 5 COUNTRY
9 DB 11 DE 6 DIV 1 ID 4 PROGC
8 YB 10 YE

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
--->? stop
PROGRAM

* * *

top
STOPPED.

Figure 5.22b. An application of the RENAME module to change certain
labels and to resequence the labels, showing: 1) the condition of the file
after abridging, especially the non-sequential vector numbers; 2) the
renaming of one data vector; 3) the instruction to resequence; and 4) the
resequenced labels.

212

5.23 The REPORT Module (Concluded)

In this section we continue the discussion started in section 3.3 by
explaining additional features which are activated via responses alternate
to those given earlier. The more important of these provide for:

a) inserting literal expressions between columns of a report;
b) indicating labels to be excluded from a report when the list of

labels is much longer than the list of exceptions;
c) suppressing the paging of a report;
d) options to write the report on a file in addition to or instead of

the terminal; and,
e) interrupting the printing.

In the examples shown in section 3.3 we have seen how it is possible
to shift column headings around. Similarly it is useful to be able to insert
blanks or other arbitrary character strings between the columns in a
report. If we wished to insert a colon between the data fields shown in
figure 3.3b, it is simply necessary to type as follows:

SS#,*:*,DOB,*:*,NAME
instead of simply

SS#,DOB,NAME.

In some data bases, fields are defined wider than is necessary and
the report module allows space in accord with the defined field width
rather than the space taken up by the actual entries. This situation can be
seen in the name field in figures 3.3a and 3.3b as well as in the ID NO.
field in figure 3.3c. It is possible to take out the extra spaces following
any item of data by following the label with SHORT, n. Here n is the
number of characters to be allocated to that column in the report. If we
wished to reduce the space between the first two columns in the report
shown in figure 3.3c, the instructions for LINE 1? would be
ID,SHORT,11,DIV,YB,YE,CCODE,CINST,AMOUNT.

When the report module asks the user to:

TYPE LINES FOR OUTPUT,

the response can be:
a) a list of labels;
b) a mixture of labels and interspersed arbitrary character strings

(embedded between asterisks);
c) ALL (meaning all data items); and,
d) ALL,EXCEPT,A,B,C where A,B, and C are proper labels.

213

The REPORT module has been programmed to respond to the
normal UNIVAC interrupt feature without returning control back to the
operating system (EXEC). If it becomes necessary to interrupt a report
while it is printing on-line, the user should type @@X TIOC and return
the carriage. On the next line, if we type STOP the Omnidata run is
stopped. In order to stay in the REPORT module it is necessary to type

RUN and return the carriage. At this stage the REPORT module has been
alerted by the EXEC that an interrupt has occurred and allows the user to
restart the report again, just as if he had used the RESTART option
earlier.

*TYPE MODE--L(ABELED) OR UNL(ABELED) --->? >1
*TYPE CHARACTERS PER LINE --->? >80
*TYPE LINES FOR OUTPUT

LINE 1 ? >a11
LINE 26 ? >end

*TYPE TITLE LINES OR N(ONE) --->
? >n

*TYPE FOOTNOTE LINES OR N(ONE) --->
? >n
PLEASE POSITION PAPER
? >

* *

*

*

*

* INST= 3 SS#= 410064386 SEX- 1 CIT- 1
* NAME= JUJIGUQE, MILA A. [MR.] DOB- 101928 Y0B= 28 *
* SCD= 061662 STAT- 1 T0A= 1 TOD- 1 T0LA= 2222 NTE= *
* PP= GS USC- 08020 FC- *
* TITLE= ENGINEERING TECHNICIAN

* GRADE- 12 STEP= 06 PAY- 19462 DIV= 314 SEC- 31402
* LC= 240630031 CSDFROM- 061266 CSDTC= 061269 LEGR- 51 *
* DDAY- 06117 D0GR- 061266 PINFO- 121001 D0PP- 061668 E0D- 061266
* E0DY- 66 ADFIT= 00 PR0FSTAT= 2 DEG- 0 C0LDEG= 000000 YR- 00
* SPP- DPG= ATD- SEQ= 4100643866 VP= 22 INS= 1
* HC- RET- 1 NOAC- 89400 SLIM- DLIM= HLIM= *
* APPOR- 00 REM= 081153 AUDAT- 061172 S0N-
* SPF- 22222 PD= DRPB- CL- 145 NTE-
* ANU- 2 TP- 2 DET- 2 *
* MC- 7 ALC- 5 SCD- GLOC- DAA- RS- 00 *
* SSNC- 019205318 PF- 1 HBPN- 102 DPSO- SP-
* GDF- SC- DLABR- SED- 000000 HWD- 0000 *
* WAEPL- 0000 WAEDWS- 000 RHWSW- 0000 WAEDWP- 000 WAEWT = 0000
* LW0P- 0000 CNHS- 0000 TLWOP- 00 CLWOP- 0000 CAWOL- 0000
* CSL- 0038 FAB- 222122222222200000000010 WDD- 000000 WDUD- 060974
* WED- 000000 AA- 000 NP- 00000 NHSA- 0000 LW0PSA- 000 *
* APAD- 00000000 FUD- 000000 DDED- 000000 WH- 0 SK- 0 *
* HWWAE- 0000 SCDY- 62 SALBAS- PA C= 00 *

Figure 5.23a. Here we see a more compact printout (of all of the data
items for one record) than is provided by the DISPLAY module (see fig.
5.10). Note at [A] that this module determines that 25 lines will be
required to display all of the requested information and then asks what is
desired on line 26.

214

* *TYPE MODE--LUBELED) OR UNL(ABELED) ->? >unl | *
* *TYPE DIMENSIONS OF LINE AND PAGE - >? >80
* *TYPE LINES FOR OUTPUT
* LINE 1 ? > rl,dm,formula,short,30 *
* LINE 2 ? >end
* *TYPE TITLE LINES OR N(ONE) ->
* ? >none *
* * ANY COL HEADS-TYPE L(ABELS) < N(ONE) OR 3 HEADINGS - >
* ? > labels
* ? >end
* R1 DM FORMULA *

* 0.0903 1.403 C17.H35 C 0 0 AG ♦
* *OK- -TYPE YES OR NO - ->? >yes *

* *TYPE FOOTNOTE LINES OR N(ONE)-> *

* ? >n *

* *DO YOU WANT TO POSITION PAPER AFTER EACH PAGE- *

* TYPE YES OR NO->?
*

>no *

*

* R1
*

DM FORMULA

*
*

* 0.0963 1.403 C17 H35 C 0 0 AG *

* 0.1065 1.452 C15 H31 C 0 0 AG *

* 0.1090 0.95 C H3(C H2)7 C H= C H(C H2) *

* 0.1168 0.95 C H3(C H2)7 C H= C H(C H2) *

* 0.1192 1.506 C13 H27 C 0 0 AG *

* 0.1263 0.97 C19 H36 02 *
* *

Figure 5.23b. In this report from a file containing crystal data, we see the
utility of the SHORT, 30 modifications in the formula field.

215

5.24 SAVE

This module allows the user to store away on mass storage and
catalogue the current file for use in a later run. The name under which the
file is to be saved is typed in response to the request:

TYPE NAME UNDER WHICH FILE IS TO BE SAVED -->?

If the file name duplicates an existing file in the user’s catalogue, the
module responds with:

DUPLICATE FILE NAME. TYPE A NEW NAME OR R(EPLACE)->

Figures 5.24a and 5.24b show typical uses of this module.

One might well wonder why this module asks for another input at
[B]. There are two reasons. If instead of END we had typed any other
string of characters exluding AUTO (the use of which is described in the
next paragraph), this module would have saved away another copy of the
file under that name. Second, and more important, it is possible to delete
files by responding with the word DELETE instead of END. The name of
the file to be deleted is supplied subsequently in response to:

TYPE FILE TO BE DELETED->?

This feature allows one to delete catalogued files without becoming
proficient in using the EXEC 8 commands.

If the user responds with the word AUTO instead of a file name,
this module names the file automatically as seen at [B] in figure 5.24b to
consist of the letters PF followed by 9 or 10 digits. The digits represent in
order: the month, the day of the month, the hour, the minute, and the
second at which the file was saved. This feature is useful in keeping track
of files that are updated or otherwise modified frequently.

•♦♦NOTES***

216

* TYPE A MODULE NAME AND/OR INSTRUCTIONS
* --->? >save \
* TYPE NAME UNDER WHICH FILE IS TO BE SAVED -->? >fndemo
* FNDEMO IS CATALOGUED—64 TRACKS 500 RECORDS 16.4226 *
* TYPE NAME UNDER WHICH FILE IS TO BE SAVED -->? >end*
* CPU SEC IN SAVE = 2.0888 *
* CPU SEC = 17.8322 TIM = 16:22:53 \&) *

Figure 5.24a. Here is a dialogue with the SAVE module to save a current
file under the name FNDEMO as at [A]. The user has an opportunity at
[B] to save the file again under another name or to delete an earlier file as
is indicated in the text.

TYPE A MODULE NAME AND/OR INSTRUCTIONS

®v
TYPE NAME UNDER WHICH FILE IS TO BE SAVED -->? auto

* PF6100163952 IS CATALOGUED—64 TRACKS 500 RECORDS 16.6406*
* \ TYPE NAME UNDER WHICH FILE IS TO BE SAVED->? end *

<§>
* CPU SEC IN SAVE = 1.8668
* CPU SEC = 17.7914 TIM = 16:43:55

Figure 5.24b. Results from the use of the automatic naming feature at [A]
of the SAVE module. See the text for an explanation of the numbers in
the file name at [B].

217

5.25 The SEARCH Module (Continued)

In this section we continue the discussion started in section 3.1 by
explaining the more specialized features of this module. The more
important of these provide for:

a) ignoring specific characters in the file during the searching
operation;

b) locating only the first record or first contiguous block of
records that satisfies a given criterion;

c) limiting the search to a specific block of records in the file;
d) selecting records in which the entry (value) for one vector

(attribute) equals that for another vector;
e) locating records having missing (blank) data entries in certain

data vectors; and,
f) taking into account the order and distance between string

fragments or words in a data item.

We now take up these features in turn.

When the SEARCH module is called it requires the user to respond
to the following:

*TYPE S(ELECT) OR R(EJECT) - >?

If instead of the normal response discussed in section 3.1, the user types
the word IGNORE, the module is prepared to accept a sequence of
characters which it will ignore in making its comparison in subsequent
searches. This feature was implemented to facilitate searching fields which
contain such extraneous characters as shift symbols for upper and lower
case or control character sequences. It has more general utility for
ignoring hyphens or punctuation marks, parentheses, etc.

If we respond to the request:

*TYPE LABEL AND VALUE ->?
with

FIRST, REACTANT, COH OR CN

the search module will extract from the file only the first record or the
first block of records in which COH or CN appear in the reactant vector.
Other special responses to the above question are also accepted. Thus:

LIMIT,1,1000

restricts the search to the first 1000 records in the file, while LIMIT,n,m
confines the search to the block of records from the nth to the mth
inclusive.

A response of

LABEL,L!LABEL

will select from a file all records in which the value found in the first
named label is equal to that found in the second. When applied to a

218

federal personnel file, the request EOD,L!SCD finds all persons whose
service computation data (SCD) coincides with the date they entered on
duty (EOD); thereby locating persons who had no government employment
prior to joining their present agency.

The exclamation point following the L in the above instruction serves
to make it clear that the characters SCD refer to a legitimate label and not
to the value of the label EOD. The exclamation point has another use as
follows.

MOLECULE,C!N

will locate C2, C12, C4F8 but not C, CH, CN, etc. If the exclamation point
is followed by the letter A as in MOLECULE, CO!A, the SEARCH will
locate CON, COB, COC, etc. but not C02. Additionally

MOLECULE,CO!G

will locate CO., CO + , CO-, CO:, etc. It should be clear from the above
that the letters !N, !A, and !G are general representations for any numeric,
any alphabetic, or any graphic respectively. This feature is important in
handling chemical formulas to be able to select carbon (C) or (C2) without
getting calcium (CA), cobalt (CO), etc.

It is often useful and sometimes necessary to determine which
records in a file have missing data items (blank entries). The SEARCH
module facilitates this by accepting the word BLANK in a search
instruction (GRADE,BLANK) to mean that the entire entry in the GRADE
field should be blank.

In the search options discussed thus far nothing was said concerning
the ordering of the strings in the file. Thus if we responded to the search
module by typing

TITLE, PHYS AND CHEM,

persons whose job titles were PHYSICAL CHEMIST or CHEMICAL
PHYSICIST would satisfy the search equally. If we wished the SEARCH
module to take the word order into account we would type:

TITLE, *SEQ*, PHYS AND CHEM

in which case chemical physicists would not be selected.

A more meaningful example is afforded by a file containing chemical
reactions such as are shown in figure 5.25a where the entire reaction is
contained in a single data vector called REACTION. In searching this file
it is necessary to differentiate between reactants to the left of the arrow
and products to the right of it. If we wished to retrieve all reactions in
which H2 is a reactant and 02 is a product, the instruction

REACTION,*SEQ*,H2,-> ‘ 02 ’

would retrieve reaction 112 but not reaction 11. In contrast sequence
REACTION, H2 AND 02 would yield both reactions 11 and 112 plus all

others where the reactants are H202.

219

It should be observed that when we ask for a sequential search such
as:

TITLE, * SEQ *, A,B,C

where A, B, and C are arbitrary character strings we imply variable length
open-ended ellipses. Thus, any character string such as
would satisfy the search. In many practical instances it is important to
restrict the distance between the strings A, B, and C. A provision has been
made for this proximity feature by allowing the user to specify a maximum
distance (either in characters or words) between the specified strings. This
is done as follows:

TEXT,*SEQ*,A,..nC,B,..nC,C etc.
or

TEXT,*SEQ*,A,..5W,B,..3W,C

where A, B, and C are specific strings; ..nC denotes that the strings should
be at most n characters apart. If instead of ..nC we had written ..nW we
would require the specified strings to be at most n words apart. It is also
possible to mix character distances and word distances in a single
instruction.

This feature would enable one to greatly streamline the search
instructions when searching in a data file on organic compounds for
molecules having less than 10 hydrogen (H) or 10 carbon (C). atoms.
Thus:

F0RMULA,*SEQ*,C,..1C,H,..1C,!A

would locate C6H6,CH4,C4H9N30, etc. but not C8H140 or C12H9BR.

The ability to specify that the two designated character strings in a
search instruction be closely coupled is useful when searching a lengthy
abstract. Thus

ABSTRACT,*SEQ*,AGRICULTURAL,..1W,PRICE

would serve to retrieve abstracts containing the words: agricultural prices,
agricultural price index, agricultural commodity prices. Text in which
these words were farther apart would not be retrieved.

Finally, there is another variant of the search instruction which is
useful in coping with files in which the dates are entered in nonstandard
format (062575 for June 25, 1975) instead of the standard form (750625).
Thus the command in SEARCH:

DOB,*SDF*,400123

will locate all persons born on Jan. 23, 1940 even though the date is
entered in the file as 012340. In the above, *SDF* alerts the search
module that the date entered in the file is not in the standard format
specified in the search request, but rather must be converted to the
standard data format of year, month, day (YYMMDD).

220

* NO. REACTION AUTHOR YEAR REMARK
*
*
*

* 11 H + 02 + H2 --> H02 + H2 BASCOMBE 1965 EVAL *
*

* 18 H02 + H2 --> HO + H20 JENSEN 1967 REC *
*

* 20 H2 + 0 --> H + HO SCHOFIELD 1967 EVAL *
*

* 21 HO + H2 --> H + H20 SCHOFIELD 1967 EVAL *
*

* 47 H2 + 0 --> H + HO BAULCH 1968 EVAL *
*

* 49 HO + H2 --> H + H20 BAULCH 1968 EVAL *
*

* 61 H02 + H2 --> H + H202 BAULCH 1969 EVAL *
£

* 70 CH3 + H2 --> CH4 + H WALKER 1968 EVAL *
*

* 107 HO + H2 --> H + H20 WILSON 1972 EVAL *
*

* 111 H02 + H2 --> H + H202 LLOYD 1970 EVAL *
*

* 112 H02 + H2 --> H + 02 + H2 LLOYD 1970 REV *
*

* 165 H2 + 0 --> H + HO K0NDRAT1FV 1970 REV *
*

* 166 H2 + 0 --> H + HO BAULCH 1968 'EVAL *
*

* * *********** ******* *

5.25a. Here we see five data elements in a chemical reaction file

where the sequential feature of the SEARCH module has an important
application as discussed above.

221

FILE FPR75 CONTAINS 111 DATA ITEMS FOR 75 RECORDS.

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
--->? >search

♦TYPE S(ELECT) OR R(EJECT)--->? >s
♦TYPE CHARACTERS TO BE IGNORED, OR NONE--->? >none
♦TYPE LABEL AND VALUE(S)

1 --->? >eod,05,09
AND (A)

2 --->? >end /
2 HIT(S) WHEN: /

EOD IS 05 AND /
09 '

♦TYPE D(I SPLAY),S(EARCH) OR E(XIT)--->? >p,c
♦TYPE LABELS OF ITEMS TO BE DISPLAYED OR ALL

--->? >eod

EOD
090568
050996

♦TYPE D(I SPLAY),S(EARCH) OR E(XIT) --->? >s,o,s
♦TYPE CHARACTERS TO BE IGNORED, OR NONE--->? >none
♦TYPE LABEL AND VALUE(S)

--->? >eod,*seq*,05,09
AND (a)
--->? >end Y
HIT(S) WHEN: /

EOD IS IN SEQUENCE 05 AND /
09 /

♦TYPE D(I SPLAY),S(EARCH) OR E(XIT) --->? >p,c
♦TYPE LABELS OF ITEMS TO BE DISPLAYED OR ALL (B)

--->? >eod

EOD
050966

♦TYPE D(I SPLAY),S(EARCH) OR E(XIT) --->? >s,o,s
♦TYPE CHARACTERS TO BE IGNORED, OR NONE --->? >none

*

*

*

Figure 5.25b. A record of a run to test the sequential search feature of
this module. Note how the response P,C at [A] prints out the information
from the current file. The response S,0,S at [B] indicates that we want to
SEARCH on the ORIGINAL file in the SELECT mode. The system
recognizes this multiple answer and skips over the corresponding
questions.

222

5.26 SEGMENT

The practical implementation of computer subroutines in general,
and Omnidata modules in particular, often requires the establishment of
upper limits on the sizes of data arrays that can be handled. When the size
of an Omnidata file exceeds these limits, it is often possible to carry out
the desired operations on portions of the file. Facilities for partitioning
files exist in the ABRIDGE, SEARCH, and DISTRIBUTE modules
discussed earlier.

The SEGMENT module allows for partitioning of Omnidata files in
a number of ways—all different from the ways available in ABRIDGE,
SEARCH, and DISTRIBUTE. This module can segment a file into blocks
of contiguous records in the following ways:

a) in multiples of N logical records;
b) at record numbers a, b, c, etc.

The facility for segmenting a file into uniform blocks of records is
useful in streamlining subsequent operations, and requires no detailed
knowledge of the distribution of the records. A segmentation of the file at
specific discrete records (a, b, c, etc.), on the other hand, does imply a
knowledge of the unique character of the records a, b, c, etc. Such
information would normally result from an examination of a complete or
partial listing of the file—a condition which is not at all unusual.

A listing of any bibliographic data file arranged alphabetically by the
first author will show a nonuniform distribution of authors among the
letters A-Z. In that case it may be useful to break the file so that names
starting with the letter A-D, E-J, K-P, are grouped together while names
starting with the letter S comprise a separate file. If a listing exists from
which one can learn the record numbers associated with the starting
positions of the names beginning with A, E, K, S, etc., it will be much
more efficient to use this module than it would be to use the
DISTRIBUTE module which has to read each record to determine to
which file it should be sent.

In figure 5.26a we see how this module accepts instructions and
reports the result of segmenting a bibliographic data file into five files
covering the years: prior to 1960, 1961-1970, 1971-1975, 1976, 1977.
A previous listing of the file in chronological order yielded the following
record numbers: 28, 273, 771, and 868, representing the ending points of
each block except the last.

If the response at [A] had been a single number, say 500, the file
would be divided into two pieces. The first piece would contain the first
500 records, and the second would contain the remainder of the file. If the
response had been 500*, this module would have segmented the file into
blocks of 500 records each.

223

* TYPE A MODULE NAME AND/OR INSTRUCTIONS *
* — >? >segment *
* *TYPE one or more record numbers *
* *AT WHICH THE FILE IS TO BE SEGMENTED *
...>? >28,273,771,868—

YOU HAVE CREATED 5 FILES \A/ *

NAME # OF RECORDS *

FSEG1 28 *

FSEG2 245 *

FSEG3 498 *

FSEG4 97 *

FSEG5
* * *

8 *

Figure 5.26a. A record of the dialogue with the SEGMENT module to
break a file at the record numbers indicated at [A]. See fig. 5.11b for an
alternate way of breaking the file via DISTRIBUTE when the information
required at [A] is not available. See the text for an explanation of how this
module interprets a response of 500* at [A],

•♦•NOTES***

224

5.27 SEQUENCE

This module can perform two functions. The first is to add a
sequence number to an existing file for each logical record starting with
any designated integer and proceeding by a designated interval. It can also
tag each record with a fixed character string, either numeric or alphabetic.
The vector or vectors added are named SEQ #1 and FLAG 1 and are
added to the label table and to the label file. When called, this module
reads the label table to see if the file had already been sequenced or
flagged. If it has, the module offers the option of writing over the existing
flags or sequence numbers or of generating a new vector of flags or
sequence numbers or both. Figure 5.27a shows a typical operation of this
module. The REPORT module has a provision for outputting sequence
numbers, but those are not made part of the file.

The provision for resequencing or reflagging a flagged or sequenced
file is useful when the current version of the file represents a portion or a
modification of the file that was originally sequenced or flagged. Different
cuts can thus be flagged for future reference. In order that these different
cuts remain consonant for future stacking of the files, we have allotted 5
characters for each new sequence field or flag field created. If the user
requests an initial value or a step which results in a sequence number
greater than 99999 he is given an appropriate diagnostic and asked to
reenter values for the starting number and the step. If the user enters
more than five characters for the flag, it is truncated and an appropriate
diagnostic is given.

*

*

*

*

♦

♦

*

*

*

*

♦WHICH DATA BASE DO YOU WANT --->? >fpr75
FILE FPR75 CONTAINS 111 DATA ITEMS FOR 75 RECORDS.

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
--->? >sequence Cf)

♦TYPE INITIAL VALUE AND STEP --->? >1,1 /
♦TYPE FLAG IF ANY, OR N(ONE) --->? >nbs ^

THE SEQUENCING IS IN VECTOR SEQ#1-
THE FLAG IS IN VECTOR FLAG1

2

♦

♦

*

*
*

*
*

*
*
*

♦ CPU SEC IN SEQUENCE = 4.2282
♦ CPU SEC = 6.8116 TIM = 0:54:12
♦ *TYPE A MODULE NAME AND/OR INSTRUCTIONS
♦ --->? >sequence

♦TYPE INITIAL VALUE AND STEP --->? >100,10
♦TYPE FLAG IF ANY, OR N(ONE) --->? >none

♦ SEQ#1 ALREADY EXIST(S)
♦ ♦TYPE “new”, OR LABEL TO BE REPLACED --->? >new
♦ THE SEQUENCING IS IN VECTOR SEQ#2^^
***********:* * * * * * *

*

*

*
*

*

*

*

♦
*
*

*

Figure 5.27. Two consecutive uses of the SEQUENCE module on the same
file showing: 1) the instruction to sequence the records starting from 1; 2)
the manner of inserting a constant flag vector; 3) the names that are
automatically assigned to the sequence vector and to the flag vector. On
the second or subsequent attempts to sequence or flag this file, we are told
at 4) that a vector SEQ #1 already exists; provided an opportunity at 5) to
write over or generate a new vector; and told at 6) that a new vector SEQ
#2 contains the new sequence numbers.

225

5.28 SORT

This module allows the user to sort a file on as many as 10 data
vectors in any desired order, as long as the total length of the resulting
sort key is 60 characters or less.

The user is first asked to

-TYPE ALPHA(BETIC) OR VAL(UE) SORT ~>

An answer of ALPHA or ALPHABETIC will sort the file based on the
fieldata equivalents of the characters in the data vectors being sorted. The
response VAL or VALUE instructs the module to use numeric values, and
is necessary to prevent such sequences as 1., 10, 2., etc. which would
occur if the number were left adjusted in the designated field. If the
numbers are entered with the decimal points aligned, the alphabetic sort
will be proper and more efficient.

After this, the order in which the file is to be sorted is determined
based on the order of the labels supplied in response to the request:

*TYPE SORT KEYS IN ORDER->? >

Since sorting is often a prerequisite for preparing summarizations for
budgetary and other administrative purposes, the SORT module performs
certain arithmetic operations during the building of the sorted file. Figure
5.28a shows a typical use of the arithmetic facility in the SORT module,
where we compute and display the number of items and certain averages,
subtotals, totals, and grand totals of the data found in the three data
vectors: YOB, EODY, and PAY. Note that averages, totals and grand
totals, and grand averages are struck at each of the designated levels
indicated in the third instruction. Here we have struck totals on the same
vectors as were sorted. The response to the third question must be one or
more of the vectors on which the file was sorted.

At present the SORT module can handle only 3550 records. If the
file to be sorted exceeds this number, the user is instructed to break the
file into two or more manageable portions via the DISTRIBUTE module
operating on the data vector which serves as the leading portion of the sort
key. These files can then be sorted in turn and then stacked using the
STACK module.

If the response to the second question were N(ONE), this module
would simply have sorted the file in accord with the first instruction and
reminded the user to SAVE it. Since sorting is a relatively expensive
operation on a large file, it is advisable to keep the file in sorted order
until such time as it may be necessary to resort to a different order.

226

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS ^
—>? sort *TYPE SORT KEYS IN ORDER —>?region,plant,sex / \

♦TYPE LABELS TO BE TOTALLED AND AVERAGED —>? yob,eody,pay
♦TYPE LABELS AT WHICH TO STRIKE GRAND TOTALS AND AVERAGES- - ->

? region,plant,sex
FLAGS OBTAINED-TIM = 22.278

REGION
1

PLANT
00

AVERAGE
31

65.25
28793

48.3333
70.6667
8234
38.4286
67.5714
19982

TOTAL

CURRENT FILE IS SORTED-CALL SAVE TO SAVE. —•
***************************** * '—' ********

Figure 5.28a. Instructions for and output from a SORT operation on a
personnel file showing: 1) the sort keys in order desired (REGION,

PLANT, and SEX); 2) the data vectors upon which the built in arithmetic
is to be performed; 3) the hierarchical levels at which the subtotals and
subgroup averages should be struck and printed; and finally, 4) a reminder
to SAVE the file if necessary.

227

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
- - ->? sort

♦TYPE SORT KEYS IN ORDER - - ->? region,plant.sex
(3) *TYPE LABELS TO BE TOTALLED AND AVERAGED - - ->?

*TYPE LABELS AT WHICH TO STRIKE GRAND TOTALS
? region,plant
FLAGS OBTAINED-TIM = 43.279 CLK = 144127

A yob,eody,pay
AND AVERAGES

REGION PLANT LABEL TOTAL AVERAGE
1 00 YOB 7 • 269 38.4286

EODY 7 • 473 67.5714
PAY 7 • 139874 19982

1 10 YOB 2 53 26.5
EODY 2 106 53
PAY 2 57671 28835.5

1 15 YOB 1 27 27
EODY 1 69 69
PAY 1 31383 31383

1 21 YOB 8 256 32
1 ~'2<$ “ -- rcr~ “ mr~-

EODY 10 661 66.10
PAY 10 34415 3441.5

1 TOTAL YOB 119 3879 32.5966
EODY 119 7959 66.8824
PAY 119 859800 7225.21

2 00 YOB 3 78 26
EODY 3 170 56.6667
PAY 3 48130 16043.3

2 05 YOB 5 153 30.6
EODY 5 294 58.8
PAY 5 122288 24457.6

6 40~ YOB 2 ”79 39.5"
EODY 2 140 70
PAY 2 22742 11371

6 TOTAL YOB 22 666 30.2727

\ EODY 22 1437 65.3181

\ PAY 22 426930 19405.9
TOTAL \ YOB 336 10931 32.5327

AD EODY 336 21549 64.1339
PAY 336 4.796171E+6 ^ 14274.3

CURRENT FILE IS SORTED - - CALL SAVE TO SAVE. 1
****** ******* * * * * ****** ******** *******

Figure 5.28b. Here we see a less detailed summary file than was shown in
the previous figure. Note that the totals tabulated here correspond to the
TOTALS struck in the earlier figure.

228

5.29 STACK

The STACK module combines consonant files into a single composite
file whenever the user feels it would be advantageous or necessary to have
the larger file for subsequent Omnidata operations. For example, if one
had 50 separate files, each containing data for a single state, and wished
to analyze the data for a particular area of the country, he could STACK
the files for the states in that area into a single file, and then perform the
analysis once on the larger file. Please note that by consonant files we
mean that the files should have the same record length and same record
layout for the data elements. The names (labels) for the data elements
need not be identical. Thus the label in one file can be YR, and in another
it can be YEAR. The labels for the composite file are taken from the first
of the stacked files.

The user is first asked to

♦TYPE files to be stacked
(NOTE: ONE IN CORE ASSUMED FIRST.)->

This indicates that the first file to be copied to the composite file is the
one in core, the one the user entered the Omnidata system with, or a
derivative of it, if operations (searching, sorting, etc.) have been performed
on it. After this, the files are stacked in the order in which they are named
in response to the above question.

If any named file cannot be assigned, the user is given an error
message as to why, and asked to

♦TYPE CORRECT FILE NAME, SKIP, OR END ->

Appropriate action is taken depending on the response. Similarly, if the
record length of any file is found to be different from that of the first file,
an error message is printed and the user is asked whether he wants to skip
the file at fault, or end the stacking operation.

After all files have been successfully assigned and have been found
to have consonant formats, the user is requested to

♦TYPE NAME FOR NEW COMBINED FILE -->

The actual stacking is then accomplished, and the user then has a
permanently catalogued file with the name given above. It is important to
note that after the STACK, when control is returned to Omnidata, the user
has in core the same file he, entered STACK with, not the newly saved
composite file. Should he writ this composite file, he can get it via the
FETCH module.

229

♦PLEASE ENTER ACCOUNT NUMBER
♦TYPE PASSWORD --->? >xxx
♦WHICH DATA BASE DO YOU WANT

-->? >xxxxx

-->? >anor-org
z® ♦

*

*

*

* GOOD MORNING, WELCOME TO OMNI DATA
♦ ♦ * ♦NOTE-OMNIDATA KEEPS A RECORD OF WHO USED WHICH * * *

MODULE(S) ON WHICH FILE(S) AT WHAT TIME OF THE DAY

©<
■>? >

--->? >anorthic

FILE ANOR-ORG CONTAINS 18 DATA ITEMS FOR 668 RECORDS
♦TYPE A MODULE NAME AND/OR INSTRUCTIONS

--->? >stack,monitor,250
♦TYPE FILES TO BE STACKED

(NOTE:ONE IN CORE ASSUMED FIRST.) -
7 >anor-inorg

♦TYPE NAME FOR NEW COMBINED FILE
250 RECORDS COPIED - 2.5116
500 RECORDS COPIED - 2.782
FILE ANOR-ORG COPIED 2.9548
750 RECORDS COPIED - 3.0378
1000 RECORDS COPIED - 3.2966
FILE ANOR-INORG COPIED 3.3246

CPU SEC IN STACK = 2.9642
CPU SEC = 4.6354 TIM = 10:26:25

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS
-->>? >Iength

♦ PRESENTLY, YOUR FILE HAS 1026 RECORDS.
♦ *TYPE A MODULE NAME AND/OR INSTRUCTIONS
♦ --->? >stop
* PROGRAM STOPPED.

*

*

*

*

*

*

*

*

Figure 5.29a. Here we have a dialogue with the STACK module. As we

entered Omnidata at [A] with the file ANOR-ORG, this module reminds
us of this fact at [B] when requesting a list of files to be stacked. At [C] we
ask that the inorganic file (ANOR-INORG) be stacked under the organic
file. The name for the composite file is entered at [D] and at [E] we see
how the MONITOR reports progress in the operation. If the MONITOR
has not been set, the exact length of the file can be obtained by typing
LENGTH when the system asks for a module or an instruction at [F].

230

5.30 STATIS

Omnidata is unique among data management systems in regard to
the depth and the ease of performing statistical analysis. In particular, the
STATIS module, which is patterned after the STATIS command of the
original OMNITAB system developed by Hilsenrath et. al., prints out for
any single numeric data vector in the file the following:

a. a histogram and frequency distribution in deciles of the data
entries including cumulative frequency and percent and
cumulative percent;

b. three measures of location: the weighted and unweighted mean
and the median;

c. six measures of dispersion;

d. six tests for nonrandomness;

e. nine computations on the deviations; and,

f. nine other statistics including Student’s T, measures of kurtosis,
etc.

After the above items are printed, an option is provided for printing
out an extensive auxiliary table consisting of: the entire data vector in its
natural order; the deviations from the mean; the rank of each data point;
the data rearranged in increasing order; and the difference between
successive values of the ordered data items.

Figure 5.30a shows the result of a statistical analysis of the ages of
429 persons in the test file FNDEM0429. It is beyond the scope of this
handbook to discuss the meaning of the statistical parameters produced by
this module. The reader is referred to NBS Technical Note 756 by H.H.
Ku entitled A Users’ Guide to the OMNITAB Command “STATISTICAL
ANALYSIS” (March 1973) for an explanation of these results.

At [A] in figure 5.30a we see a frequency distribution of the data in
deciles. If such an analysis is desired showing midranges in the decile
column, it can be achieved by suitably encoding in the ENCODE module
(see sec. 5.12). Had we responded at [B] with YES we would get 429 lines
of output of the type shown in figure 5.30b.

The statistical analysis carried out by this module can be performed
only on numeric data vectors. It becomes important, therefore, to decide
what action this module will take when it encounters a nonnumeric data
point (a mistake)—a situation which, unhappily, occurs too often. STATIS
does not come to a screeching halt when it encounters a few mistakes. It
discards the data points in error and prints out the diagnostic:

THE NONNUMERIC (XYZ) FOUND IN RECORD N

each time such an error occurs; only after 10 such errors does STATIS
give up and ask the user what to do next (see fig. 5.30c).

231

FILE FNDEM0429 CONTAINS 112 DATA ITEMS FOR 429 RECORDS

. *TYPE A MODULE NAME AND/OR INSTRUCTIONS
* >?
, ST AT IS

I *TYPE LABEL FOR WHICH STATIS DESIRED —>? AGE

*

* statistical analysis of age

* NO. OF POINTS 429

* DECILE % CUM % FREQ CUM FREQ
1 \ 11.7 11.7 50 50

* 2 \ / 9.3 21.0 40 90

* 3 \ V / 8.6 29.6 37 127

* 4 W 12.8 42.4 55 182
« 5 (A) 14 56.4 60 242

* 6 A 14,5 70.9 62 304
* 7 / \ 13.8 84.70 59 363
* 8 / ' \ 9.1 93.80 39 402
* \ 4.7 98.50 20 422
* 10/ ' 1.6 100.10 7 429

XXXXXXXXXXXXXXXXXXXXXXXY
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXYXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXYXXXXX
XXXXXXXXXXXXXXXXXXX
xxxxxxxxxx
XXX

, MEASURES OF LOCATION
UNWEIGHTED MEAN 44.5618
, WEIGHTED MEAN 44.5618
. MEDIAN 46

. MEASURES OF DISPERSION
, STANDARD DEVIATION 12.1538
. STANDARD DEVIATION OF MEAN .586789 *
* RANGE 51
. MEAN DEVIATION 10.2193

VARIANCE 147.714
* COEFF. OF VARIANCE 27.2740
* *

Figure 5.30a. Results of a statistical analysis of ages produced by the
STATIS module. The results are continued on the next page.

* TESTS FOR NON-RANDOMNESS
* NO. OF RUNS UP AND DOWN 254
* EXPECTED NO. OF RUNS 285.667
* S.D. OF NO. OF RUNS 8.71461
* MEAN SQ. SUCCESSIVE DXFF. 182.862
* MEAN SQ. SUCC DIFF/VAR 1.23795
* DIFF.S.D. OF RUNS 3.63374

* COMPUTATIONS ON DEVIATIONS
* NO. OF + SIGNS IN DEVIATIONS 226
* NO. OF - SIGNS IN DEVIATIONS 203
* NO. OF SIGN CHANGES IN DEVIATIONS + 1 159

* EXPECTED NO. OF RUNS 214.883
* S.D. OF NO. OF RUNS 10.3143
* DIFF./S.D. OF RUNS 5.41808

* TREND .013126
* S.D. OF TREND 2.275001E-4
* TREND/S.D. OF TREND 57.6976

*

OTHER STATISTICS
MINIMUM VALUE 22
MAXIMUM VALUE 73
BETA ONE 7.634486E-3
BETA TWO 2.11016
SUM OF VALUES 19117
WEIGHTED SUM OF SQUARES 915109
STUDENT’S T 75.9417
NO. OF NONZERO WEIGHTS 429
SUM OF WEIGHTS 429

♦DO YOU WANT ORDERED AGE AND RANKS ->? NO

*

*

*

*

*

*

*

*

*

*

*

*

Figure 5.30a (concluded). The next figure shows the results that would
follow if the response at [B] had been YES. See figure 5.3le for additional
statistical parameter for these data as produced by the STATIS command
in OMNITAB II.

233

O
R

D
E

R
E

D

O
B

S
E

R
V

A
T

IO
N

S

R
A

N
K

E
D

O
B

S
E

R
V

A
T

IO
N

S

¥
¥

A

A

A

A

A

A

A

A

A
A

A

¥ ¥ ¥ ¥ ¥ 1 * ¥ ¥ ¥ ¥ l 1 ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

Is- CM CM r- CM to CM to to to Is- CM Is- CM Is Is- to CM cc co Is- to CM CM J
Z Is- CC CO i^ CC CM CO CM CM CM r- CO Is- CO Is- Is- CM CO »—i Is- CM CO cc CM
<r «—t to to r~l to cO to CO CO CO H to to wi H CO to vO vO CO to to co
UJ vO d d vO d IO d to to to \0 d vC d vO vC to d in m vO to d d to

If) • • LO • d • d d d to • in • IT in d • • • in d • • d
1 • Is- o • o • c • • • • to • • • • CM vD O' • • in o •

zt «H 4 d d *—i Is- to Is- cr in «—t **■(to Is- i—t H rt d d *—4 •H
t-l i 1 1 i 1 I 1 1 1

X
If) in IT If) in in in in in in in

• • • • • • • • • • •
X vC O' CM vO CM «—1 CM Is CC Is- Is CO to Is- i^ O' Is CC M3 O CM cc
z If) O' to If) to vO to O' d 0' o vO d d co vO O' in d T-t in vO co to *—4
<
Ct

H to to H to CM to CM CM CM H to «—t to H CM to in to CM to to CM

i-«ocMinoinc'incMcocMinco
— dvoindindmindinroin
X

O H CM
#HCMrod-inM)r'CO(J'HriH

O' vc to «-< cm Is-
to in d d in in

tO d IT) vD h- oo
T-t v-4 *—* 4 «—f

CO If) O O' o
CM CM d d v£>

O' O «-t CM K)
*-l CM CM CM CM

X
I

^00000^000000
X

*-< CM CM CM CMCMCMfOfOtOfOrOrO
— CMCMCMCMCMCMCMCMCMCMCMCM
X

H O d- d- to M3 O H if) \D (\l
• h M) M) MU ^ H r-1 K) JS

OhhhhhiOiOhhhhh
Z

rotOd-d-ct^-
CM CM CM CM CM CM

r- <-t o
aO in vO O
H lO O' H

CM O'
CM CM

d d d d d
OJ CM CM CM CM

O 3 lO H CM
rO d d O' ro
H H W H lO

O^HOOOOOOOOOO —I

d d
CM CM

r- o
to CM
to d

If) vO
If) d

d if)
CM CM

AAAAAAAAAAAAAAAAAAAAAAAA

234

F
ig

u
re

5
.3

0
b

.
T

h
is

ta
b

le

sh
o
w

s
th

e

o
p
ti

o
n
a
l

p
ri

n
to

u
t

fr
o

m

th
e

S
T

A
T

IS

m
o

d
u

le
.

S
u
ch

a
ta

b
u
la

ti
o
n

is

u
se

fu
l

fo
r

d
e
te

c
ti

n
g

sy

st
e
m

a
ti

c

v
a
ri

a
ti

o
n
s

in

th
e

m
e
a
su

re
m

e
n

ts

a
n
d

o
th

e
rw

is
e

a
ss

e
ss

in
g

th
e

in
d
e
p
e
n
d
e
n
c
e

o
f

th
e

m

e
a
su

re
m

e
n

ts
.

The idea of allowing the statistical analysis to proceed after
detecting one or more file errors is predicated on the notion that in
general the omission of a few data points from a large file would not
invalidate many of the results of the analysis produced by this module.
The decision to allow 10 mistakes before asking the user for guidance is
quite arbitrary, but since the record number in which the mistake occurs is
printed, the user knows how far through the file the module has
progressed and can presumably make an intelligent judgment whether to
continue the analysis or stop it.

The statistical analysis produced by this module can be augmented
with a graphical analysis via the STATPLOTS module. That module
interfaces with OMNITAB II and has provision for generating an updated
and improved statistical analysis (see fig. 5.3 le).

* TYPE A MODULE NAME AND/OR INSTRUCTIONS
* --->? >statis

* TYPE LABEL FOR WHICH STATIS DESIRED - > ? > dage
* !THE NON-NUMERIC // WAS FOUND IN RECORD 569
* !THE NON-NUMERIC // WAS FOUND IN RECORD 570
* !THE NON-NUMERIC @@ WAS FOUND IN RECORD 571
* !THE NON-NUMERIC @N WAS FOUND IN RECORD 572
* !THE NON-NUMERIC // WAS FOUND IN RECORD 573
* !THE NON-NUMERIC // WAS FOUND IN RECORD 574
* !THE NON-NUMERIC // WAS FOUND IN RECORD 575
* !THE NON-NUMERIC // WAS FOUND IN RECORD 576
* !THE NON-NUMERIC @@ WAS FOUND IN RECORD 577
* !THE NON-NUMERIC // WAS FOUND IN RECORD 578
* * SHALL WE CONTINUE - > ? > no

Figure 5.30c. This is how the STATIS module notifies the user that it
ignored certain data items in carrying out a statistical analysis.

235

5.31 STATPLOTS

This module interfaces with OMNITAB II to produce four plots,
developed by James J. Filliben, useful in an exploratory analysis of a
column of data. There is also an option to perform a statistical analysis.
The latter is an improved version of the analysis performed by the
STATIS module. The following descriptions of the four plots are taken
from Hogben and Peavy in reference 12.

Plot 1, in the upper left-hand corner, is a simple plot of the
measurements X(i) versus the row number i in the order the measurements
are entered into the worksheet. This plot may be used to detect many
different patterns of nonrandomness such as trends, outliers, etc.

Plot 2, in the upper right-hand corner, is an autoregressive plot of
X(i) versus X(i-l). The plot is particularly useful for assessing lack of
independence in the data. If the measurements are well behaved, the plot
should not show any recognizable pattern.

Plot 3, in the lower left-hand corner, is a histogram. The histogram,
designed by J. J. Filliben, is somewhat different from a conventional
histogram. The interval for the horizontal axis is 0.2 standard deviations
so that the horizontal axis goes from -5 to +5 standard deviations. Two
scales are shown: one for the values of the measurements and one below it
for multiples of standard deviations from the mean. Frequency is shown
on the vertical axis. Information is printed below the histogram which
gives the number of measurements, the value of the 0.2 standard deviation
class width, the number of observations in excess of the mean ±5
standard deviations, and the number of measurements represented by a
plotted X in the histogram.

Plot 4, in the lower right-hand corner, is a normal probability plot.
An assumption of a normal distribution of measurements is not satisfied if
the points do not lie approximately on a straight line. Any marked
curvature indicated by the points in the plot is a sign of nonnormality.

Values of the probability plot correlation coefficient, the scrawl, the
mean, and the standard deviation are printed on the bottom of the plot in
figures 5.31a and b. Detailed interpretation of these values and of
probability plots in general is to be found in Hogben and Peavy (reference
12).

The vertical and horizontal scales for all four plots are determined by
the minimum and maximum values plotted. The plotting symbol for plots
1, 2, and 4 is a period (.). The plotting symbol for plot 3 (histogram) is an
X. Any X may represent 1 or more measurements depending upon the
frequency indicated on the vertical axis. The maximum number of
measurements represented by an X is given in the last line of information
at the bottom of the histogram.

236

P
L

O
T

O
F

X
II

)
V

E
R

S
U

S

I
_

_
P

L
O

T

O
F

X
C

I)

V
E

R
S

U
S

X

(
I
-
l)

♦ I I I I

4* I I I I

• •

* •

• »

• »
• •

J*

* *

* : 1
* * •

*i j
•»

« j
l J

«'

3 * *i. *J

»!. *1 *

* j * ;

I t • •
i • •

* •
i ;• •

• «i •
«!••••

♦ ii i: i ♦

• *

! O IT <
C* ® I

► •(•
'MCI

i i i i + i
4*

t • 1

* *1 * I
* ! I
. 4 i * i i

•• *
i ,

4 *

i *

4 *

j’

•i *

t i i i,♦ i

▼ w

r

I
•
I a
4

•I*

> a it

I
I I
I
l
I

• 4

1M
*! I
*: I

; I • I
•i l

4 4 <>
4 CV

• • •
• *

H •

• ' ' in © in ©
'OHino

♦

V

H I I

m ©■ m o
oj h* -w4 «n

I 14 11 I

I
I X

X XI X X X X
X X

X XX X X X

n O' J B f

H * *
IT & :

III

i

4 I J I I I

m © m e in Mv^Hino

4 11 I 14

2 r*
4 * ■ h-

X X X X XXX XX
X X X X X

X X X X X X
x x x x x x; x
X X X X X XI X
X X X X X X X
X X X X X X X
X X X X X X X
X X X X X X X

X X|X X X X X X X
X X X X X Xl X
X X X X X X

X X X X
X X X X X

XXX
X XX X XX

. *x

I I 4 I I I 14-11 II

XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX

X X
X X] I
X X) I
X x
X X
X X
X X
X X
x xi |

i in

Ii P m
13-1

4 I I I I 41

O CC © 3 CM O

II <

V ©
z ©
UJ
»- in
o m

Li. II
L- X
o

Z c ©
c c ©
X- © ©
,K C ©

©I©
_J ••©
UJ CM •
cr cm 9
a in

,r^

o -
;_j a
0. CM

z
II ^ o
IhH

r- 4-

IO >Ch
’ C IT >

>► I© • LiJ
I- III© ^ c
•1 z © ^ -i H© c
*-• cr.
CD_r|>£> II < - - • o
cal < <
CE 0,11 Ld ►—
o. in z i cn

4 cir
I m
i in

i in

a
c

in c
.1 4-
I© 1/1

^ K I
m <
in cr»

> 4-

1 <VJ
* >1 I c
X xl I •
XXII H
X X I CC
X X I
X X I
X x| | ^ XX| + IflH
x xj i m
X X | «-<
XXII N
x xi i •
X Xi©

m c. z tu
j- ■- s • o
c. a c. _

< L- X
UJ

II
• 1/1 2 <■

i/4 irJ
Z 1/1 Q.

- O C
a >i iu z
cm uj in cr <
3- © 1/1 U.

Id 3 **
c.o
cr x c z

II < UJ Z UJ
C. c UJ

cr z!z x
4 C M 7 h
Z H-I < UJ
Ld 1/1 U. Ll. C
z cr z
U_ (\ Ld 1/1
a •;* Id 4-
X I -I z
1/1 CD CL UJ
< II Z 21 1/1
UJ O < UJ 2 Im uia

4- 4- Q_
U. O 4 UJ UJ
o > x cr

3X4-
X UJ X
dJL0l/)4-
I / Z D I < o o o
x _i x <
Z O O < uJ

Figure 5.31a. These plots, produced by the STATPLOTS module, serve to
explore the characteristics of 426 data points representing ages. The next
figure shows how different the two plots at the top look when the ages are
presented in sorted order.

237

+ 11
•i

I .

♦ I I 11 +

11+ I I

•i
♦|
* *

4 *

I I

O ID I

t I I l + l

I I I I + I I I I
t> •z ©• tr o jo
■s O' -o cc-, c\j r- -• o

i * csj I fVj CJ

1 6

I I ♦

I 14-11 I

I I + ll I

1 + 1 I I I

I +1 I I I I

X X X :
x x x x :
x x x x :

x x x x x :
x x x x x x :

xxxxxxixxxxx:
x X3 X x x X X :

xxxxxxjxxxxx
x x x x x ;

xxxlxxxxx:
x x) x x x x x :

x x x x x :
xq x x x x x :

x x x :
x x x x :

x x :
X1 X X X X,x X X •

♦ I i I I I +

+ II II +

m + *
O'

i m
i •
1 IT.

: x x x
: X x X
: x x x
■ XXX
XXX

: x x x
: x x x
: x x x
:xxx
xxx

: x x x
: x x x
XXX
XXX

: x x x
: x x x
.XXX
: x x x

i

X X I
x X l
X X I
X X I
X X I
X X I
X X I
X X +

X X I
X X c
X X I
X X I
X X I
X X I
X X ♦
X X I
X X I
X x I
X X I

O 23 vO -3“ f\J ©

Z e G
LU • © ifs • lu IO *0

z
II o
x r- »-

r- »-

. .J © a- c •“« z\c> a
-J - © c
►“> • £T
cl_a no ii <
<r O

z z _< < CU II UJh
Q. I/H2 2 l/>

l/N« to rv > k
cl. r r>c. z uj

— 2
-C L

c>. a c a
!< L Z>
■2K /

in ~ r <

h- c
Cli z
•— o o

(T >) LJ Z
cv Ljltr cr <
J Clflb

Ll S
CO
tt.x c z

ii <;lj Z id
C <• LI

to Hr »
r

ZH < LJ
LJ tO|L Id X
2 as
Li (MIL I/)
a •** l k
D I J Z
to i/i a l
< IliZ 2 l/l
LJ O < Ld
2 x:~ i/ tr

»- >- Q.
L, C < LI Ld
O “•;> X X

x a h*
(T LX
Ld tO uO H-
X tO . X D I
2 «,0 O O
X -j| T <
Z Ol© < LI

Figure 5.31b. The two plots in the upper portion of this figure
demonstrate clearly that the data were not presented in random order.

238

It is beyond the scope of this publication to discuss the statistical

foundations for these plots. We can, however, illustrate how different
these plots look when the data are presented in random order and when
they are arranged more systematically. To do this we have performed
STATPLOTS on the ages of 429 persons arranged in fairly random order
as is apparent from the plots in figure 5.31a. In figure 5.31b we show
STATPLOTS of the age vector after it has been sorted. The difference in
the top plots of these two figures is obvious even to the untrained eye.

In figure 5.31c, taken from reference 12, we see a still more
interesting data pattern when STATPLOTS was used to analyze 200
measurements on the deflection of a steel beam. In figure 5.3Id, we see
how the user instructs this module to produce the STATPLOTS in the
previous figures and to produce the alternate statistical analysis shown in
figure 5.3le and 5.3If.

The STATPLOTS module also provides the user with the option of
performing a statistical analysis via the OMNITAB II system. This
produces a number of statistical parameters (see fig. 5.3le) not generated
in the Omnidata STATIS module (5.30). The statistical analysis produced
by the STATPLOTS module also has provision for listing, ordering, and
ranking the observed data as is shown in figure 5.3If.

* * N O T E S * *

239

PLOT OF XU) VERSUS X(I-l)

300.00 ♦ ♦
256.05 -
212.10 - AAA * .

168.15 -
124.20 - . *. AA .

80.25 + **. ** ♦
36.30 - * _

-7.65 -* A

-51.60 -*.
-95.55 -*. A

-139.50 +.* A 4>
-183.45 - * A _

-227.40 - .* A

-271.35 - * A .
-315.30 - * -
-359.25 + . * * ■* * ♦
-403.20 - A A -
-447.15 - *' ' AA .
-491.10 - A

-53S.05 - AAA AAA -
-579.00 + 4-

-579. -403.2 -227.4 -51.6 124.2 300.

NORMAL PROBABILITY PLOT

300.00 +
256.05 - -
212.10 - **** *

168.15 - **** -
124.20 - AAA -
80.25 + AA ♦
36.30 - AA -
-7.65 - AA -

-51.60 - AA -
-95.55 - AA -

-139.50 + AA ♦
-183.45 - A -
-227.40 - AA -
-271.35 - A -
-315.30 - 4' A -
-359.25 + f AA ♦
-403.20 - AA -
-447.15 - ** -
-491.10 - AAA 1 -
-535.05 - AAA -
-579.00 ♦. .. A AAAAA *>. 4-

-2.701 -1.621 -.5402 .5402 1.621 2.701

PROBABILITY PLOT CORRELATION COEFFICIENT = .9540
SCRAWL (N= 200, *• -579.00000, H= -453.00000,
M= -162.00000, H= ' 94'.000000, *=> 300.00000)
MEAN = -177.43500
STANDARD DEVIATION - 277.33216

Figure 5.31c. This portion of a STATPLOTS output, taken from reference
12, shows the relationship of successive measurements of the deflection of
a steel beam. Note how different this plot looks from the corresponding
plot in the previous figures. An explanation of the statistical significance
of this plot is beyond the scope of this handbook.

240

♦TYPE NAME FOR OMNITAB FILE -->? > stplf *
TYPE P(ERMANENT) OR T(EMPORARY) FOR FILE -->? >t
♦TYPE A TITLE FOR THIS RUN OR N(ONE) ~> *

? >n
TYPE LABELS TO BE TRANSFERRED TO OMNITAB FILE
(SEQ IS A LEGITIMATE ENTRY) -->

? > yob,grade *
YOUR WORKSHEET IS DIMENSIONED FOR 500 ROWS BY 25 COLUMNS
THE DATA ARE STORED IN THE WORKSHEET AS FOLLOWS
COLUMN LABEL

1 YOB *
2 GRADE
♦INPUT ANY OMNITAB COMMANDS YOU WANT PERFORMED *
BEFORE STATPLOTS—TYPE END TO END -->

? >end *
TYPE LABELS OR COL NUMBERS FOR WHICH STATPLOTS DESIRED ->

? > yob,grade *
TYPE LABELS OR COL NUMBERS FOR WHICH STATIS IS DESIRED -->

? > yob,grade *
♦DO YOU WANT ANY MORE STATPLOTS -> ? >no

FOLLOWING IS A LIST OF YOUR OMNITAB STATPLOTS INSTRUCTIONS:
1 @ASG,A STPLFD
2 @USE 7.,STPLFD
3 @NBS*OMNITAB. *
4 OMNITAB *
5 DIMENSION THE WORKSHEET TO HAVE 500 ROWS AND 25 COLUMNS
6 FORMAT A (2F12.0)
7 READ TAPE A A INTO COLUMNS 1*** 2
8 LABEL YOB, GRADE
9 STATPLOTS OF COLUMN 1
10 STATPLOTS OF COLUMN 2
11 STATISTICAL ANALYSIS OF COUMN 1
12 STATISTICAL ANALYSIS OF COLUMN 2
13 STOP

♦DO YOU WISH TO CHANGE ANYTHING -->? >no

Figure 5.31d. Here we have the di^gue between the user and the
STATPLOTS module to produce the preceeding and following figures.

*

*
OMNITAB

«

*
STATISTICAL ANALYSIS OF CAGE

page 2 «

*
NUMBER OF MEASUREMENTS = 429» NO. OF DISTINCT MEASUREMENTS = SI

»

*

* FREQUENCY DISTRIBUTION WITH 10 CLASSES DF LENGTH 5.1000000 *

*
50 40 37 55 60 62 59 39 20

FREQUENCY DISTRIBUTION OF LEAST SIGNIFICANT DIGIT (0.1*.
7

,.»9) «

* 0 0 0 0 0 0 0 0 0 0 *

* MEASURES OF LOCATION
ARITHMETIC MEAN . * . 44.561771

*

*
MEDIAN .
MID-RANGE .

46.000000
47.500000 *

«
MID-MEAN (25 PERCENT TRIMMED MEAN) . . 45.120930

*

* MEASURES OF DISPERSION
STANDARD DEVIATION . 12.153767

*

• AS PERCENT OF MEAN (COEF. OF VAR.) .
RANGE .

27.273976
51.000000 *

*
MEAN DEVIATION
INTER-QUARTILE RANGE .

10•21Q299
19.000000 *

* VARIANCE - . 147.71405 *

* STANDARD DEVIATION OF MEAN. .58676939 «

*
TREND STATISTICS

SLOPE. SIGNIFICANCE LEVEL . .013126215 .005 *

*
QUADRATIC COEFF.. SIGNIFICANCE LEVEL .

OTHER TESTS FOR NON-RANDOMNESS
1.7407352-04 .000 *

* NUMBER OF RUNS UP AND DOWN. Z VALUE .
MEAN SGUARE SUCCESSIVE DIFFERENCE . .

254
182.86215

-3.634 *

* MS SUCC DIFF/2(VARIANCE). Z VALUE .
DEVIATIONS FROM ARITHMETIC MEAN

.61897345 -7.906
*

*

*
NUM6EP OF - SIGNS. ♦ SIGNS
NUMBER OF RUNS. Z VALUE .

203
158

226
-5.515 *

* AUTOCORRELATION COEFFICIENT . .38082922 *

* A TWO-SIDED 95 PERCENT CONFIDENCE INTERVAL
MEAN IS 43.406424 TO 45.715119

FOR THE *

♦

*
MEDIAN IS 44.000000 TO 47.000000
S.D. IS 11.396942 TO 13.034571

(DISTRIBUTION -FREE)
*

* STATISTICAL TOLERANCE INTERVAL WITH 95 PERCENT CONFIDENCE FOR
•

* 50 PCT NORMAL COVEPAGE IS 35.863441 TO

95 PCT NORMAL COVERAGE IS 19.285748 TO
53.260101
69.837794

*

* 99 PCT NORMAL COVEPAGE IS 11.344409 TO
INTERVAL FROM MIN TO MAX HAS DIST.-FREE

77.779133
COVERAGE 98.90

*

*

* OTHER STATISTICS *

*
MINIMUM .

SECOND MINIMUM .
22.000000
22.000000

*

* MAXIMUM .
SECOND MAXIMUM .

73.000000
72.000000

*

*

*

(MEAN-MINIMUM)/STANDARD DEVIATION . ."
(MAXIMUM-MEAN)/STANDARD DEVIATION . .

1.8563604
2.3398695 *

*
S^qrtibi). Skewness coefficient
B2. KURTOSIS COEFFICIENT .

-.087^75473
2.1101557 *

* LOWER GUARTILE
upper quartile .

35.000000
54.000000

*

* *

* * *********************** ********* ***** *

Figure 5.3le. Here we see the result from a statistical analysis of the 429
ages performed by the STATPFOTS module via the STATIS command in
OMNITAB II. It contains a number of statistical parameters that are not
produced by the STATIS module discussed in section 5.30.

242

*

OMNITAB
— — ... — —

PAGE 3
*

* * » *

*

*

*

*

* OBSERVATIONS oRHFppn observation*; *

* I X<I) RANK XUJ-BEAM MO. X< J) X(J+1)-*(J) *

* 1 40.000000 156.0 -4.561771 Ill 22.000000 .000000 *

* 2 62.UOOOOO 3Q9 • 0 17.438229 163 22.000000 .000000 *
3 .55.300000 . 332.5__ 10.438229 16.4 22.000000 .ooooco

* 4 40.000000 156.0 -4.561771 174 22.O000C0 .000000
it

* ... 5 55.000000 332.5 10.438229 183 22.000000 .090000 *
* 6 49.000000 261.0 4.438229 346 22.000000 1.onoooo *

7 55.000000 332.5 10.438229 31 23.000000 .090000
8 52.000000 297.0 7.438229 110 23.800000 .090000

* 9 48.000000 248.5 3.438229 131 23.000000 .000000 *

it 10 52.000000 297.0 7.438229 145 23.000000 .000000 it

if

11 35.000000 107.5 -9.561771 146 23.000000 .000000
*

12 56.000000 368.0 13.438229 172 23.000000 . .000000
it

* 13 39.C0C000 143.5 -5.561771 187 23.000000 .000000 *
it 14 56.000000 347.5 11.438229 351 __ 23,000000 _ 1.090000 *

15 43.000000 187.5 -1.561771 96 .24.300000 .oooooo
A

16 41.000000 _ 169.0. . -3,561771 _ 100. 24.009000 . .ooooco
* 17 52.000000 297.0 7.438229 122 24.000000 . oooooo *

* 18 57.000000 358.5 12.438229 129 24.000000 .oooooo *

A 19 28.000000 54.0 -16.561771 130 24.000000 .oonono if

20 25.000000 31.0 -19.561771 140 24.000000 j> OOOQQO.
*

* 21 40.000000 156.0 -4.561771 .143 24.000000 ,090000

if

★
* 22 49.000000 261.0 4.438229 191 24.900009 .oooooo *

23 60.000000 380.0 15.438229 332 24.000000 .OOOOOO
it 24 55.000000 332.5 1 '.438229 337 24.000000 .000000

it

* 25 46.000000 218.5 i.438229 426 24.C9O00O .1.090000 *
it 26 58.000000 368.0 13.438229 20 25.000009 .oooooo *
it _27_ t>C. 000000 360.0 15.438229 _ 98 25.000000 _ .oooooo if

28 47.000000 232.5 2.438229 99 25.cnnooo .oooooo
it _29 67.000000 422.0 22.438229 . 108 25.000000 .oooooo it

it

if

30 D3.000000 311.0 8.430229 . 123 25.000000 .oooooo *
if

31 23.000000 10.5 -21.561771 138 25.009009 .090000
_ 32 44.000000 198.0 -.561771 152 25.000000 .oooooo * 33 50.000000 274.0 5.438229 212 25.090000 .090090 *

* 34 33.000000 92.5 -11.561771 331 25.C9Q009 .oooooo *
35 48.000000 248.5 3.438229 334 25.809009 .090000

* w
36 49.0000Q0 261.0 4.438299 338 25.000000 1.090000

* 37 50.000000 274.0 8.438229 142 26.090009 .oooooo *

* 38 _ 42.000000 178.0 -2.561771 144 26.000009 .oooooo *

if 39 45.000000 2 c °. 0 .438229 173 •26.090009 .000090 if

*
40 55.000000 ... 332.5 10.438229 18C 26.000000 ,000000

*

* 41 55.000000 332.5 1 .438229 226 26.900009 .090000 *

* 42 40.000000 246.5 3.438229 335 26.C00009 1.oooooo *

43 46.000000 218.5 1.438229 53 27.090009 .oooooo
44 56.000000 347.5 11.438229 77 27.cnnooo .900000

*

*^
45

'--
55.000000
un onoorM|

332.5
——-

10.438229
-SA177J

109
. 119

27.000000
27.C000Q0

.090000

.nonnnn
*

*

* * * * * * * * * * * * ****** * * ***** ***** *

Figure 5.3If. Here we see the format of the optional printout of the
observations in their normal order and their ranks when ordered.

243

5.32 SUMMARY

This module produces a report giving for each of the numeric data
vectors in a particular file:

a. the number of data entries (exclusive of blanks);
b. the maximum value found;
c. the minimum value found;
d. the total; and,
e. the average.

When a data file is defined into Omnidata format, spaC&Ys reserved
for keeping an up-to-date summary of the type discussed above and
illustrated in figure 5.32a. Upon opening a file. Omnidata searches the
appropriate sectors of the file and determines whether the summary exists.
If it does exist, a switch is set so that when the SUMMARY module is
called it need not regenerate the information, but simply print out the
report as shown in figure 5.32a.

If the summary is not a part of the existing file, this module so
informs the user and asks whether it should be generated. If the response
to the question:

SUMMARY DOES NOT EXIST.TYPE ‘YES’ TO GENERATE IT->?

is YES, the entire file is read, the summary is computed and printed as
shown, and the summary is inserted into the working copy of the file.

Since the summarization is a relatively expensive operation, it can
be avoided by answering ‘NO’ to the above question. This module has
been programmed in the above manner on the assumption that a user
might wish to see a summary of a file if it already exists, but may not wish
to incur the cost if it does not. This is especially true when it is known
that the file will be updated soon, thus rendering the summary obsolete.

When an existing file in Omnidata format is modified via SEARCH,
ABRIDGE, COMPUTE, etc., during an active run, Omnidata does not
update the summary until such time as the SUMMARY module is called.
If SUMMARY is not called on the current file before it is saved, the
SAVE module blanks out the sectors containing the summary information.
Thus the summarization is deferred until such time as it is called for
rather than prior to saving the file. This is done on the assumption that
the file may be further modified before a summary is requested, and in
any event, it costs no more to defer the summary until it is really needed.

244

♦TYPE A MODULE NANE AND/OR INSTRUCTIONS *

->? summary •
*

♦TYPE GENERATE.PRINT.OR END - - ->? >print ♦
*

LABEL ITEMS MAX MIN TOTAL AVERAGE VERIFY

DIV 500 6 1 1234 2.468 •

YOB 500 57 4 16332 32.664 *

FC 216 99 0 6451 29.8657 ? *
GRADE 500 17 0 4621 9.242 *

STEP 500 10 0 2198 4.396 *

PAY 500 36000 0 7.499638E+6 14999.3 *

PLANT 500 650 100 145087 281.174 *

DEPT 500 65002 10000 1.406133E+7 28122.7 •

EODY 500 73 35 32100 64.2 *

DEG 394 4 0 520 1.31980 *

YR 376 73 0 13164 35.0106 ? ♦
VP 500 52 12 8290 16.58 *

INS 500 4 1 931 1.862 *

HC 232 55 0 349 1.50431 ? *
RET 500 4 1 563 1.126 •

NO AC 500 91800 10111 4.093189E+7 81863.8 *

TLWOP 500 40 0 184 .368 *

CLWOP 500 3810 0 19567 39.134 •

CAWOL 500 112 0 259 .518 *

CSL 500 500 0 15276 30.552 •

NP 428 0 0 0 0 7 *
NHSA 352 7772 0 152644 433.648 7 •
LWOPSA 297 0 0 0 0 7 *
MR 496 9 0 849 1.71169 7 •
SK 459 9 0 682 1.48584 7 *
HAWAE 482 120 0 1077 2.23444 7 *
SCDY 500 73 0 29640 59.28 *

C 500 63 0 1936 3.872 •

AGE 500 73 20 22168 44.336 *
0

-♦TYPE GENERATE.PRINT.OR END - - ->? >stop *

PROGRAM STOPPED. •

Figure 5.32a. Here we see a summarization of all of the numeric data
vectors in the file FNDEMO. The question mark in the Verify column
alerts us that the numbers in that row are based on a count different than
500. The lesser count results either from missing data or from alphabetic

characters which may or may not be legitimate.

245

5.33 SURVEY

In many files derived from answers to questionnaires or other types
of surveys, the data are represented by one- or two-digit numbers or by
the letters A-Z. The proper analysis of such data requires, among other
things, facilities for bivariate and univariate analysis. Facilities for
bivariate analysis are provided in the CROSSTAB module.

This module permits a complete univariate analysis of all of the data
vectors in a single pass through the file when the data entries consist of
one-or two-digit numerics or single alphabetic characters. Figure 5.33a
shows typical data records of files amenable to analysis by the SURVEY
mode. In figure 5.33b we show the primary report produced by the
SURVEY module when applied to a file containing information on motor
vehicle accidents. The numbers in the body of the table in figure 5.33b
show for each data vector (represented by a row and identified by its label)
how many records contained the specific value (entry) indicted at the top
of the column. Thus 57 records contained a 1 in the data vector labeled
TSEQ. Similarly, 42 records contained a 2, 1 record contained a 3, etc.
The last page of the automatic output from this module is shown in figure
5.33c. There we see that the table extends to 99 in 3 of the data fields.
Had all of the data fields been defined as single numeric characters, the
main table would contain 10 columns for the digits 0-9, 1 column for
blanks, and 1 column for errors. In this instance an error is recorded
when an alphabetic or graphic character appears in a normally numeric
position.

If the SURVEY is performed on alphabetic entries in a file such as is
shown in figure 5.33a, it is valid only for single character data fields. In
that case the main table consists of 26 columns (A-Z), plus 1 column to
record blanks and 1 column for errors. In this instance the presence of
any numeric or graphic character is considered an error.

While the restriction of one character for alphabetic data and two for
numerics may seem unduly limiting, this is, in fact, a very powerful
analysis tool for many diverse files as the analysis is performed on dozens
of data vectors in a single pass through the file. Furthermore, the user is
reminded that data vectors can be analyzed via the TALLY module
discussed later. While that module has no limitation on character length, it
is possible to perform the TALLY operation on only three data vectors on
a single pass through the file. It is beyond the scope of this publication to
explain the reasons for the restraints in the TALLY module as opposed to
these in the SURVEY module.

In the course of preparing the analysis shown in figure 5.33b, the
SURVEY module keeps totals and computes averages which are printed
(see fig. 5.33c) at the end of the main survey table. This module also
produces a version of the main table in the form of percentages if desired
(see fig. 5.33d). This format is at least as useful and is often a more
desirable presentation of the data. In figure 5.33e we see how this module
reports the incidence of alphabetic characters in the file.

246

OBS 12633035934!
OBS 97310332318
OBS 121232317269
IBS 125292322300
0 53327352342
ABA 95353370360
OBS 96323375341
HBS 140310280301
C

0 0 0 0 0

525555-7562 5545
5264546567 5585

0 0 0 0 0
0 0 0 0 0

52645605565545
51575675625595
52595715495545

^835665535595

1 0738497372F22 W
2 1 2585088 M2OH
21648316 771M26W
40268023973M22H

w sdd dbbcff
NB-^CC DOCCDD 8 AE BErr^S*

nnBdDD ^DE B a° B£C8ECBB CFn D0DC CEC 0 DDBCnn nl-5 8 Ab 8Fern

579763982
215647033
4 I 2640345
2 I 3483329
215626747
214503036

CEV0 0D8C00 REP a Ab SSCCECra ~80 BCCC CR

0DEE CBB
rB cc BC

B

88
AD

FI9BY
r 20H
M 20 W
M26W
F20W
M22H
“ "JAW

BC AA
AA AA
BH AA
BB AA

AB AG

MD

MD
MD
KY
M
MD
MD

MD
MD
MD
CA

AA
aa
aa

AC AF
AC AD

44 AS AA AA AC
BC AC

88 B E8EEEE
BB

8°B ObbCDF
BB

C

B£D8££dd CC AB Ar AO

<a «s ««. g s S " » s
“ 11«/fl? 11«11 *?

8B3EcCCE CFRcn?^8 88 B£ A4 ^A AA AA

rf??0f rc.ftJS !1J‘ 2
1 ■> “ 1 „ _J3—„ n 0

0 ? " u. i \7

\ ■) J _ •» u_i—^ ^ ^"2 n 27

002o4 1700 1 1 90^0 7 /00000'37433o2o0o I u 1 02 1 30o2000uuG 7
00 1 /OO I 1 °d2;",ocoOOOJ I 7Q330?u0o i o 1 02^2 792 000000 J
0046 1 1700 I9QOUOOUOOOOO1720407000 I 0 I02o4J/2 OOOuCOO
00Jo^4700104^06^707000274o4jOu001u102127220 20000)
o020217001oouoOO00000017433u?OOo» 01 ■ jlJ1 J/2OOGouOG
j 1 06 I 1 VUO 1 0054R 1 1 u-70002 / 1 430°0C0 1 O.io 1 ^3 J2^00000o0
0046 1 1 7UU 1 J2 000 0000000 1 7 J 1 I jOuOO 1 0 I I 20 / J / 1 OOOCoo 7

Figure 5.33a. Examples of data records, representing the answers to
questionaires, which are amenable to analysis by the SURVEY module.
For numeric data vectors, this module analyzes either one or two columns
at a time. For alphabetic data vectors, this module analyzes only one
column at a time.

247

C/5
W
D
p
<
>
p
<
p

O
O r-~
M

>
P
tu
Q so
w
j
E

55 «o
M

Q
£
P
O
U*

<
H

cS"
Un
O
C/5 o,

in
>
p
<
z ~
<

>
u,

w

—< <N O O Ov

<N
-H Pt O O <N

<N O

O —

VO ©

m o —>

VO
-* VO

<N O O VO

•O
(N O O (’I

«o
o o —

T* o o «o

m o -^r o o <-<-i

o o

)*
*

o <n*

[*

f*
VO
Ov O O ,*

© Tf m -h o —*
(i

ro—iTl-TtO —• © ©
/*
/*

<N

© —-> vO ro —■ r^» O O m1*

/*

(*
<s -*©<5\CNOO'«0©r^©'-'Ov-H©tN—«© ~ © © <N o ■

\:

© ~

CS © Ov
't M <C vt «

ov in
m ^ oo —i ©

© © <N © <N <n

© <nr-
<N O VO © —■ VO

© <N L
tNr'OTtor- — ©o©oo:*

f*

\: © — oo tj- r~ 00 , i

©©©©©©©©'^■©TfTj' —

r-'-t^-O'vtOfNOOOOCTv — * (
■ *
\ *

Ov

*

W O
S S

5 1/3 o<
a< < ^ w
w > £ < >
W^O Jw
H h U U M

—> <n m vo r- oo ov

a.
o* P
o 5 x w u
o £ w o y q
06 O w < O O
hhQQQU
O — (N n vj- m

C/5
m Ut/lC/lOL, S

xgavW>-<gv5 0
O^XQKP§wu5
e;LWWO(OCiih<<
AvjQQQQQQtaffi
vOOOOv©<Nr^Tj-vovOr'
^~-_(N(NrS(N(N(N(N

J*

O'*

t*
CL,!*
oo'.*

248

F
ig

u
re

5
.3

3
b
.

A

p
o

rt
io

n

o
f

th
e

fi
rs

t
p

ag
e

o
f

o
u

tp
u

t
fr

o
m

th
e

S
U

R
V

E
Y

m

o
d
u
le

w

h
en

a
p
p
li

e
d

to

1
0

0

re

c
o
rd

s
o
f

a
fi

le

c
o
n
ta

in
in

g

in

fo
rm

a
ti

o
n

o
n

a
u
to

m
o
b
il

e
 a

c
c
id

e
n
ts

.

ANALYSIS OF DATA FOUND IN FILE

ENTRY = 16 17 18 19 20 21 22

’ 1 YEAR
2 MONTH
5 TSEQ
6 INV-AG
7 COFA
8 CLASS
9 SEVER
10 TROOP
11 TOWN
12 DSEX
13 DAGE
14 DOCCUP
15 COD

(16 PROX
18LTYPE
19 DEXP

> 20 DEDEC
22 DPHYS
23 DGLASS
24 DRINK
25 DTEST
26 BAC
27 HANDR
28 PIVOL
30 NOPIV
31 VYEAR
32 MAKE
33 BODY
34 VSPEC

40 DAMLOC
41 SPEED

ENTRY =

0

0

2

0
2
0

32 33

0

0

11

0
2
0

0 0 0

ANALYSIS OF DATA FOUND IN FILE
34 35 36 37 38 39'

1 YEAR
2 MONTH

Figure 5.33b (continued). Here we see portions of the second and third
pages of the summary. The number of columns displayed per page
depends on the width setting (100 in this case). Note that data items 3, 4,
17, 21, 29, 42, and 43 are missing. Item 4 is alphabetic and is recorded
in figure 5.33e. The other data fields are longer than two characters and
are therefore not tallied.

249

ANALYSIS OF DATA FOUND IN FILE DELVIOO (ACTUAL VALUES)
ENTRY = % 97 98 99
I'year'.
2 MONTH
5 TSEQ
6 INV-AG

7 COFA
8 CLASS
9 SEVER
10 TROOP
11 TOWN
12 DSEX
13 DAGE 0 0 0 7
DDCCUP
15 COD
16 PROX
18 LTYPE
19 DEXP
20 DEDEC
22 DPHYS
23 DGLASS
24 DRINK
25 DTEST
25 BAC
27 HANDR
28 PVIOL 0 0 0 51
30 NOPIV
31 VYEAR 0 0 0 3
32 MAKE
33 BODY
34 VSPEC
35 VVOBS
36 VDEF
37 DACTION
38 MACTION
39 DAMAGE
40 DAMLOC
41 SPEED

Figure 5.33b (concluded). Here we see the final page of the primary
survey table. Note that zeros are suppressed in each data item after the
highest entry has been tabulated. An entry of 99 probably denotes missing
information.

As illustrated thus far, the output of the SURVEY module is a great
boon to the file manager as it provides him with a comprehensive and
more or less readily comprehendible picture of the anatomy of his data
base. Aside from the information contained in the body of the main tables
it provides totals and averages where they are meaningful. In the data
used in the figures 5.33b. et seq. the averages shown have meaning in the
data vectors showing age (DAGE), continuous driving time immediately
prior to the accident (DTIME), the age of the vehicle (VYEAR), etc. Totals
would be meaningful if the file contained data on repair costs, etc.

The results shown in figure 5.33b are immediately comprehendible
only if one knows what the entries 1, 2, 3, or 4 mean in the TSEQ vector
or what the values of 1, 2, or 3, etc., mean when applied to the
classification (CLASS) of an accident. Lacking that knowledge, the
tabulated results leave more to be desired. The SURVEY module is,
indeed, able to supply the analysis in more explicate form if the file
builder has taken the trouble to build into the file a data dictionary giving
the meaning of the digits found in each of the data vectors. A discussion
of the structure of the data dictionary is to be found in the discussion of
the utility module DICTIONARY (sec. 6.4).

After completing the tables shown in the figures thus far, the
SURVEY module checks to see if a dictionary is contained in the main
file. If a dictionary is found, an affirmative response to the question:

*DO YOU WISH TO HAVE A DECODED REPORT->?

produces a report in the form shown in figure 5.33f. In this format the
report is immediately intelligible without recourse to other documents.

At this stage, or earlier if there is no dictionary file, the user is given
the opportunity to write the data on a file to be used by OMNITAB II or
other processors.

We return now to the initiation of a SURVEY run to explain the
options provided for when the user is asked to:

*TYPE LABELS FOR WHICH SURVEY IS DESIRED->?

At this point the user can type:

a) a list of labels (TSEQ, INV-AG, COFA, CLASS, etc.);

b) a list of numbers synonymous with the labels,
1, 2, 3, 4, 12, 37, etc.;

c) a number pair indicating a range of labels (5-24);

d) combinations of the above; or

e) ALL

Regardless of the above response, the system separates the numeric from

251

the alphabetic data vectors and produces two sets of tables if required. If
the above instructions contain data vectors which are defined as extending
over more than two numeric positions (or more than one alphabetic) they
are ignored in the survey.

Since the computation involved in generating a survey report is
extensive, provision has been made to store the results on a file when
desired. Storage is achieved if the word STORE appears in the SURVEY
request as follows.

*TYPE A MODULE NAME AND/OR INSTRUCTIONS
— >? >width, 100,store,survey

When this is the case, the user is immediately told the name of the output
file upon entering SURVEY.

•***************«,*****,**,,******

LABEL MEAN TOTAL

1 YEAR 75 7500
2 MONTH 1 100
5 TSEQ 1.44 144
6 INV-AG 3.21 321
7 COFA 1.24 124
8 CLASS 4.69 469
9 SEVER 2.81 281
10 TROOP 5.86 586
11 TOWN 30.14 3014
12 DSEX 1.54 154

JL3 DAGE 35.94 3594

31 WEAR 70.77 7077
32 MAKE 18.69 1869
33 BODY 4.77 477
34 VSPEC 0 0
35 WOBS 0 0
36 VDEF 1 100
37 DACTION 2.98 298
38 MACTION .5 50
39 DAMAGE 1.87 187
40 DAMLOC 8.3 830
41 SPEED 4.56 456 ***************************************

Figure 5.33c. The totals and averages produced by this module have less
validity in this file than in those where more of the data items represent
quantitative rather than qualitative information.

252

C/3
W
>•

A

c-

A

C/3
W

o
<
H
Z
w

u
oi
w
Oh

Z
W

>
O

C/3
W
J
CQ
<
H
W
a
H
H
z
<

£
D
o
><

o
Q

p2
s
u
c* _
in ^
0-

O 00

O
M

>
J
W r-
Q
w

nJ

U, SO

Z

Q

§ ^

O
tu
<
H ^

<
Q
u-
O Ol

22 53
>-

<N z
<

ii
><

c*

H

Z
w

o

— <N ©
©

o ©

— Tl- O © <N

o ^ q °
(N O (N O O w>

o
o —

o
s©

©

oS © —>

SO
sO

o
<N O

SO m ©

so
O 0-1

o
O —<■

©

Tt

o
o-i

© <o
Os O

o *

© _•

© -St os

©
O o q o

tJ-O ©so oi —. tJ- o

SO © ©
OO'tOOOO-'OOO-

© © ©
q oo„o © h®<n ® ®

© — ©os<Nooso©r-© — os —• © <N — ©

© © ©
cso'-i'-iON o6 9 9 9 9 © oi

O Tj-oisO-^- — OOfNOM^MhO'tOr-

© © © © ©

© © *

c*"> *—<i O *

— o o

© #
ro O O *

*

*

q *
- © ©.

*

© *

—! © © *

S©S © © o § 8 § © ©
os so © — so os — oo

SOTtOO — ©(NOsOO —^sOr-t^O-sTOOl
r-
oo © ©

©©©©©OO© 5
© © © *

©©sdqqqq99qq©*
OTfTt — TfTj-^Tj-Tl-rtTf-tOS

*

o
a<
"z H K

o4
< w
>*
—■ fS so so O' oo

. C/3
< C/1
tt, <
O J

0Lh

fiU >-»■ ^ f T1

WO^wOUQo^
>0iOX <OOa!hSS UhhDQQUfcjQQ

a, w
X D

C/3
U C/3 C/3

— ^© — fNo-lTj-sosOooas

H
C/3 w <j
Q CQ

© <N 0-1 Tj- SO so
<N rs| CN <N (N <N

253

F
ig

u
re

5
.3

3
d
.

H
e
re

w
e

se
e

a
ta

b
le

th
a
t

sh
o

w
s,

fo
r

ea
ch

d
a
ta

it
em

,
th

e

p
e
rc

e
n
ta

g
e
s

o
f

th
e

re
c
o
rd

s
w

h
ic

h

c
o
n
ta

in
e
d

th
e

n
u
m

b
e
r

in
d
ic

a
te

d

a
t

th
e

to

p

o
f

th
e

co

lu
m

n
.

T
h
e
se

n
u
m

b
e
rs

ca
m

e
o

u
t

as

in
te

g
e
rs

b
ec

au
se

th

e

fi
le

c
o

n
ta

in
e
d
 e

x
ac

tl
y

1
0
0
 r

e
c
o
rd

s.

S3
p
p
<
>
p
<
D

d
<

>
p
w
Q
W
P
E
z

Q
Z
D
O

<
H

2°
u,
O
CO CJ

C/5
>*
P

£•

O

Pu

w

° S

05
uu
Q
H

2H
Pu
O

CO
>*
p

Z ^
<

a

t! 1 1 W il 8 1 W
>< 1 >* 1 0*
qS 8 1 F as y . 1 H 1 1 ai f? i a:
w 1 xt w 1 xt

s
A

A

_ CO

i g
<
Z
w

o U
etf
w
PU

_ Z O
z

ss
o o

co
to
P
«

o <
H
W
ffi

o •"'
H

<
is
P
O
J*

.3 8

I fi'S

- •- © a
*3 HZ g

#> Si •»

254

_

INVESTIGATING AGENCY *

STATE POLICE 49 xxxxxxxxxxxxxxxxxxxxxxxxx
COUNTY POLICE 20 xxxxxxxxxx *

BRIDGE POLICE 0 •

TOWN POLICE (LESS THAN 2500) 1 *

TOWN POLICE (2501-10000) 0 *

TOWN POLICE (10001-25000) 6 XXX *

TOWN POLICE (25001-50000) 0 *

TOWN POLICE (OVER 50000) 24 xxxxxxxxxxxx *

COUNTY *

NEWCASTLE 85 xxxxxxxxxxxxxxxxxxxxxxxxx
MERCER 6 XXX *

SUSSEX 9 xxxx *

ACCIDENT CLASSIFICATION *

OVERTURN NON-COLLISION 1 *

M.V. ON OTHER ROADWAY 4 XX
*

PEDISTRIAN 2 X *
M.V. IN TRANSPORT 66 XXXXXXXXXXXXXXXXXXXXXXXX

PARKED VEHICLE 13 xxxxxx *
RR TRAIN 0 *

PEDACYCLIST 1 *

ANIMAL 0 •
FIXED OBJECT 12 xxxxxx •

OTHER OBJECT 1 *

Figure 5.33f. A portion ui an optional output from the SURVEY module
which shows explicitly the meanings of the column heading in figure
5.33b. The numbers in the central column are those which appear in rows
6, 7, and 8 of the figure 5.33b. The order in which the information is
displayed is determined by the file builder when he prepares the
dictionary file (see sec. 6.4) from which the above text is obtained.

255

5.34 TALLY

This module produces a frequency distribution and associated
histograms for data entries in up to three data vectors at a time (in a single
pass through the file). Actual frequency of occurrence and percentage of
occurrence are always tabulated, while cumulative frequencies and
cumulative percentages are tabulated when the format allows (when the
vectors contain numeric data or when they contain less than 16 alphabetic
characters).

The operation of TALLY upon numeric data vectors, shown in
figure 5.34a, is achieved simply by naming the data vectors we wish to
have tallied. Here we see a complete printout including percentage and
cumulative percentage distribution of the entries in each of the designated
data items. The cumulative percentages are meaningful in the case of YOB
(year of birth) and are of doubtful value in the cases of PROFS and TOA
unless the order of the numbers has some special significance. In any case,
it is the underlying philosophy of Omnidata not to burden the user with
questions and decisions in order to save a trivial amount of computation.
Where these numbers are useful, they are available; where they have no
important meaning, they can be ignored.

When we wish to perform a tally on an alphabetic data vector,
TALLY provides a number of interesting alternatives. In figure 5.34b, we
see a number of variants in which the module is instructed to perform the
tally upon the first 20 characters of the data in the TITLE field, upon the
first word of the field, and then on the first character of the TITLE field.
In a suitably structured data file this simple feature allows for a
summarization at a variety of levels difficult to achieve otherwise. Note
that when the number of characters is small and there is room for it, the
module prints out the cumulative frequency and cumulative percentage.

The truncation in terms of characters or words proceeded from the
left in the examples shown. TALLY can also perform these truncations
from the right. This feature is useful when a field contains both the city
and state as it makes it possible to perform a TALLY operation on states.
When applied to a vector of words this module can tally the occurrences of
word endings. If this module were asked to tally an Italian word list one
character from the right, we would have a statistical analysis of the
terminal letters.

In figure 5.34e we see how this module formats the output when
the data being tallied is longer than the 29 characters allotted by this
module.

The feature of specifying the number of characters to be used in
building up the frequency was incorporated originally for handling
alphabetic data items. It can also be applied to numeric data with
interesting and even important consequences. For example, if we perform
a tally upon the PAY vector and specify a single character, we get an
automatic coding of salaries in steps of $10,000. If we use two characters,

256

we get a finer breakdown into $1,000 intervals, etc. An example of such a
run is shown in figure 5.34c.

Another variant in how the TALLY module is instructed concerns
where in the data field to begin the tally. If one is tallying an entire field
or a specific number of characters in that field, START AT X instructs the
module to begin the tally with the character in position X. If the user has
indicated a specific number of words to be tallied, on the other hand, the
inclusion of START AT X refers to which word to start with.

The TALLY module also asks the user to

♦TYPE ANY SEPARATORS YOU WISH RECOGNIZED, OR N(ONE)->? >

This feature is useful, for example, in a file in which one of the data
vectors is keywords. If the keywords in the field are separated by
semicolons and that is entered in response to the above question, then
each keyword will be tallied individually.

♦♦•NOTES***

257

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS

->? >tally

♦TYPE LABELS (UP TO 3) TO BE TALLIED: FOLLOWED BY ‘END’
- >toa,dept,eody

♦TYPE ANY SEPARATORS YOU WISH RECOGNIZED. ORNfONE)-~>
> none

Nd ♦DO YOU WANT THE TALLY OF TOA SORTED
(ALPHA)BETICALLY, OR ON FREQUENCY IN (ASCEND)ING
OR (DESCEND)ING ORDER - - ->? >alpha

♦SHALL WE NORMALIZE--->? >yes
♦HOW MANY OF THE 8 ENTRIES DO YOU WANT PRINTED - - ->? >all

TOA CUM %

TALLY OF TOA

% CUM FREQ FREQ

1 74.60 74.60 320 320
2 87.2 12.6 374 54
4 87.9 .7 377 3
5 92.80 4.9 398 21
6 94.2 1.4 404 6
7 94.60 .5 406 2
8 96.80 1.2 411 5
9 100 4.2 429 18

xxxxxxxxxxxxxxxxx
XXX

? >

♦DO YOU WANT THE TALLY OF DEPT SORTED
(ALPHA)BETICALLY, OR ON FREQUENCY IN (ASCEND)ING
OR (DESCEND)ING ORDER - - ->? >alpha

♦SHALL WE NORMALIZE - - ->? >yes
♦HOW MANY OF THE 185 ENTRIES DO YOU WANT PRINTED—>? >1

TALLY OF DEPT _
* * * * * *"V!* ****** ******** * * **

Figure 5.34a. This module can perform a tally of information found in as
many as three data vectors in one pass through the file, as we see at [A].
The response at [B] becomes necessary if the field being tallied contains
more than one item and if each item is separated by a given symbol. For
example, a field of Keywords may have multiple entries separable on
semicolons. After each tally, as at [C], the program pauses to allow for
positioning of the paper after which a response (any character or carriage
return) will be required to signal the program to produce the next tally. At
[D] we see the utility of informing the user how many lines there are in
tally. In this case it turns out that DEPT was the wrong item so we list
only one line.

258

* * * * * * J*-*~~* * » *_♦ trn*******.************ * *
♦DO YOU WANT THE TALLY OF EODY SORTED
(ALPHA)BETICALLY, OR ON FREQUENCY IN (ASCEND)ING
OR (DESCEND)ING ORDER - - ->? >alpha

♦SHALL WE NORMALIZE - - ->? >yes
♦HOW MANY OF THE 33 ENTRIES DO YOU WANT PRINTED - - ->? >aU

TALLY OF EODY

EODY CUM % % CUM FREQ FREQ *

35 .2 .2 1 1 *

36 .5 .2 2 1 ♦

40 1.2 .7 5 3 X *
41 1.9 .7 8 3 X ♦
42 2.3 .5 10 2 X ♦
43 3.3 .9 14 4 XX ♦
44 3.7 .5 16 2 X *
45 4.2 .5 18 2 X *
46 5.1 .9 22 4 XX *
47 5.8 .7 26 3 X *
48 7.2 1.4 31 6 XX *
49 8.2 .9 35 4 XX *
50 8.6 .5 37 2 X *
51 11.9 3.3 51 14 xxxxxx ♦
52 14 2.1 60 9 xxxx *
53 14.2 .2 61 1 *

54 15.9 1.6 68 7 XXX *
55 17.5 1.3 76 7 XXX *
56 19.1 1.6 82 7 XXX *
57 21.2 2.1 91 9 xxxx *
58 22.8 1.6 98 7 XXX *
59 24 1.2 103 5 XX *
60 27.7 3.7 119 16 xxxxxx *
61 31.2 3.6 134 15 xxxxxx *
62 33.1 1.9 142 6 XXX *
63 37.5 4.4 161 19 xxxxxxxx
64 41.3 3.7 177 16 xxxxxx
65 46.2 4.9 198 21 xxxxxxxxx
66 51.3 5.1 220 22 xxxxxxxxx
67 56.2 4.9 241 21 xxxxxxxxx
68 61.8 5.6 265 24 xxxxxxxxxx
69 71.30 9.6 306 41 xxxxxxxxxxxxxxxxx
70 77.4 6.1 332 26 xxxxxxxxxxx
71 84.10 6.8 361 29 xxxxxxxxxxxx
72 93.9 9.8 403 42 xxxxxxxxxxxxxxxxx
73 100 6.1 429 26 xxxxxxxxxxx

Figure 5.34a (concluded).

259

♦TYPE A MODULE NAME AND/OR INSTRUCTIONS

- - ->? >tally

♦TYPE LABLES (UP TO 3) TO BE TALLIED: FOLLOWED BY ‘END’
->? >title,20 char-----

MORE OR END - - ->? >title,l word
♦MORE OR END - - ->? >title,I char
♦TYPE ANY SEPARATORS YOU WISH RECOGNIZED, OR N(ONE) - - ->

? >none

♦DO YOU WANT THE TALLY OF TITLE SORTED
(ALPHA)BETICALLY, OR ON FREQUENCY IN (ASCEND)ING
OR (DESCEND)ING ORDER - - ->? >alpha

♦SHALL WE NORMALIZE - - ->? >no
♦HOW MANY OF THE 62 ENTRIES DO YOU WANT PRINTED - - ->? >10

TALLY OF TITLE

ITEM % FREQ

MATHEMATICIAN
RESEARCH CHEMIST
ADMINISTRATIVE AID
ADMINISTRATIVE ASSIS
ADMINISTRATIVE OFFIC
ARCHITECT
AREA PROGRAM
BUILDING TECHNOLOGIS
CHEMICAL ENGINEERING
CHEMIST

♦MORE->? >yes
CHIEF RESEARCH
CHIEF, PHOTOCHEMISTR
CHIEF, PHYSICAL
CHIEF, SURFACE
CLERK STENOGRAPHER
COMPUTER PROGRAMMER

X
XX
XX
XX
X
X
X
X
X
XX

X
X
X
X
X
X

* * * * * * * #“'* * *■"** * * ~*J

Figure 5.34b. In this application, we ask at [A] for three tallies on the
same data vector to illustrate the facility to tally on one or more words or
one or more characters. Had we instructed the module at [B] to recognize
commas, the presence of the comma in certain lines at [C] would not have
produced the situation at [A] in the next figure.

260

********** **_* * * ♦ ♦_ ♦ * * ♦ ♦- ♦_ * * ***
♦DO YOU WANT THE TALLY OF TItLe SORTED
(ALPHA)BETICALLY, OR ON FREQUENCY IN (ASCEND)ING
OR (DESCEND)ING ORDER - - ->? >alpha

♦SHALL WE NORMALIZE - - ->? >no
♦HOW MANY OF THE 40 ENTRIES DO YOU WANT PRINTED - - ->? >20

TALLY OF TITLE

ITEM % FREQ

ADMINISTRATIVE
ARCHITECT
AREA
BUILDING
CHEMICAL
CHEMIST

CHIEF—-^(g)
CHIEF,w
CLERK
COMPUTER
CONFERENCE
CONSULTANT

3.1
5.1
1
1
1
1
2
1
3.1
1
3.1
1
1

XXX
xxxxx
X
X
X
X
XX
X
X
X
XXX
X
X

♦SHALL WE NORMALIZE - - ->? >no
♦HOW MANY OF THE 15 ENTRIES DO YOU WANT PRINTED - - ->?

TALLY OF TITLE

TITLE CUM % % CUM FREQ FREQ

3.1 3.1 3 3 XXX
A 10.2 7.1 10 7 XXXXXXX
B 11.2 1 11 1 X
C 24.8 13.3 24 13 xxxxxxxxxx
D 25.3 1 25 1 X
E 35.7 10.2 35 10 xxxxxxxxxx
F 38.8 3.1 38 3 XXX
G 40.8 2 40 2 XX
I 41.8 1 41 1 X
M 49 7.1 48 7 XXXXXXX
O 51 2 50 2 XX
P 80.60 29.6 79 29 1 11 1 1 1 1 1++44
R 89.80 9.2 88 9 xxxxxxxxx
S 99 9.2 97 9 xxxxxxxxx
T 100 1 98 1 x

all

XXX

+-H-H-

Figure 5.34b (concluded). The listings at [A] would have been combined
had we instructed the module to recognize (really ignore) the comma.

261

♦TYPE LABELS (UP TO 3) TO BE TALLIED: FOLLOWED BY ‘END’
->? >pay,l char

•MORE OR END
•MORE OR END - - ->? >pay,3 char
•TYPE ANY SEPARATORS YOU WISH RECOGNIZED, OR N(ONE)—>

? >n

•DO YOU WANT THE TALLY OF PAY SORTED
(ALPHA)BETICALLY, OR ON FREQUENCY IN (ASCEND)ING
OR (DESCEND)ING ORDER - - ->? >alpha

♦SHALL WE NORMALIZE - - ->? >yes
•HOW MANY OF THE 4 ENTRIES DO YOU WANT PRINTED - - ->? >all

TALLY OF PAY

PAY CUM % % CUM FREQ FREQ

0 23.1 23.1 99 99 xxxxxxxxxx
1 61.8 38.7 265 166 xxxxxxxxxxxxxxxxx
2 89 27.3 382 117 xxxxxxxxxxxx
3 100 11 429 47 xxxxx

? >

♦DO YOU WANT THE TALLY OF PAY SORTED
(ALPHA)BETICALLY, OR ON FREQUENCY IN (ASCEND)ING
OR (DESCEND)ING ORDER - - ->? >alpha

•SHALL WE NORMALIZE - - ->? >yes
•HOW MAY OF THE 33 ENTRIES DO YOU WANT PRINTED - - ->? >all

TALLY OF PAY

PAY CUM % % CUM FREQ FREQ

04 .7 .7 3 3 XX
05 3.5 2.8 15 12 XXXXXXX
06 10.7 7.2 46 31 XXXXXXXXXXXXXXXX
07 13.3 2.3 57 11 xxxxxx
08 19.1 5.8 82 25 xxxxxxxxxxxxxx
09 23.1 4 99 17 xxxxxxxxx
10 28.4 5.4 122 23 xxxxxxxxxxxxx
11 33.1 4.7 142 20 xxxxxxxxxx
12 35 1.9 150 8 xxxx
13 41.7 6.8 179 29 XXXXXXXXXXXXXXXX
11 _ 45.0 __ ̂ -^4.2^-v. 197 ^XXXXXXXXXX ^ —

Figure 5.34c. Here we see at [A] how tallying on first one character, then
two characters, etc., provides a useful summarization of salary distribution.
At [B] we have the distribution in steps of $10,000, at [C] in steps of
$1,000.

262

* * * ********** * * * * * * » » ******

29 89 “ .9 382 ' 4 XX
30 91.60 2.3 393 11 xxxxxx
31 93 1.4 399 6 XXX
32 94.2 1.2 404 5 XXX
33 95.60 1.4 410 6 XXX
34 96.7 1.2 415 5 XXX
35 97.7 .9 419 4 XX
36 100 2.3 429 10 xxxxx

? >

♦DO YOU WANT THE TALLY OF PAY SORTED
(ALPHA)BETICALLY, OR ON FREQUENCY IN (ASCEND)ING
OR (DESCEND)ING ORDER - - ->? >descend

♦SHALL WE NORMALIZE - - ->? >yes
♦HOW MANY OF THE 95 ENTRIE DO YOU WANT PRINTED - - ->? >15

TALLY OF PAY

PAY CUM % % CUM FREQ FREQ *
*

216 5.6 5.6 24 24 xxxxxxxxxxxxxxxxx
189 8.9 3.3 38 14 xxxxxxxxxx *

229 11.9 3 51 13 xxxxxxxxx *

068 14.9 3 34 13 xxxxxxxxx *

268 17.9 3 77 13 xxxxxxxxx *

304 20.5 2.6 88 11 xxxxxxxx *

168 23.1 2.6 99 11 xxxxxxxx *

261
061

25.6 -__
28.2 "(§)

2.3
2.3

110
121

11
11

xxxxxxxx
xxxxxxxx

*
*

223 30.5 2.3 131 10 xxxxxxx *

360 32.9 2.3 141 10 xxxxxxx *

054 35.2 2.3 151 10 xxxxxxx *

172 37.3 2.1 160 9 xxxxxx ♦
153 39.4 2.1 169 9 xxxxxx *

044 41.9 1.9 177 9 xxxxxx *
♦ MORE - - ->? >no ♦

* * * ********** * * * * * * * * * ***** ********** ♦ *

Figure 5.34c (concluded). Here we tell this module at [D] to arrange this
tally not on the salary but in decreasing order by frequency. Thus we see
clearly that most of the people in this file earned $21,600 per year. In this
instance the cummulative frequencies and cummulative percentages tell a
different story than those above. Thus we see at [E] that slightly over 25%

of the staff salaries fall into only 8 of the 95 salary levels.

263

♦DO YOU WANT THE TALLY OF DOCCUP SORTED
(ALPHA)BETICALLY, OR ON FREQUENCY IN (ASCEND)ING
OR (DESCEND)ING ORDER - - ->? >descend

♦SHALL WE NORMALIZE - - ->? >yes
♦HOW MANY OF THE 13 ENTRIES DO YOU WANT PRINTED --->? >aU

TALLOF OF DOCCUP

DOCCUP CUM' % % CUM FREQ FREQ *

10 35.3 35.3 200 200 xxxxxxxxxxxxxxxxx
07 55.7 20.5 316 116 xxxxxxxxxx
00 74.30 18.5 421 105 xxxxxxxxx
03 82.7 8.5 469 48 xxxx
08 88.5 5.8 502 33 XXX *
11 92.4 3.9 524 22 XX
06 94.7 2.3 537 13 X *
05 96.30 1/3 546 9 X *
12 97.4 1.1 552 6 X *
09 98.2 .9 557 5 *

♦DO YOU WANT THE TALLY OF DOCCUP SORTED
((ALPHA)BETICALLY, OR ON FREQUENCY IN (ASCEND)ING
OR (DESCEND)ING ORDER - - ->? descending

!TYPE ALPHA,ASCEND,OR DESCEND - - ->? descend
♦SHALL WE NORMALIZE - - ->? do
♦HOW MAN OF THE 13 ENTRIES DO YOU WANT PRINTED --->? >all

TALLY OF DOCCUP

DOCCUP CUM % % CUM FREQ FREQ
»

10 35.3 35.3 200 200 1 1 1 H Itl 1 11 1 1 1 1 1 +
07 55.7 20.5 316 116 1 1 11 II 1 1 1 1 1 1 1 1 1 1 t

00 74.30 18.5 421 105 1 1 1 1 1 H 1 1 1 1 1 1 1 H f
03 817 8.5 469 48 1 1 1 + H-H 1 1 H-H-H-+
08 88.5 5.8 502 33 H-H-+-H-HH H-H-+++
11 914 3.9 524 22 + 1 1 1 1 1 1 1 1 11 1 1 M H
06 94.7 2.3 537 13 XXXXXXXXXXXXX
05 96.30 1.6 546 9 xxxxxxxxx
12 97.4 1.1 552 6 xxxxxx
09 98.2 .9 557 5 xxxxx
01 98.9 .7 561 4 xxxx .
02 99.60 .7 565 4 xxxx •
04 100 .4 567 2 XX *

Figure 5.34d. Here we see how the TALLY module handles large numbers
when instructed not to normalize. In this form the small scale variations
become more graphic and the large are easily identified.

264

5.35 TRIM

Often a data field is defined to allow a certain number of characters
to accommodate a few lengthy entries even though the majority of the data
items in that field are much shorter in length. The TRIM module reads
through the entries in the data vectors named in response to

TYPE LABEL(S) TO BE TRIMMED - >? >

and then gives a table presenting a count of character lengths in that
vector.

If the longest entry does not have as many characters as the defined
field the following message is printed

VECTOR XYZ
DEFINED LENGTH = NNN
CHARACTERS USED = MMM

The user is then asked

*SHALL WE CHANGE THE POINTERS -->? >

We may respond by saying NO in which case the defined length of the
field will remain as is. A YES redefines the field length to be equal to the
maximum number of characters used or a number between I and the
maxiumum used and redefines the length to be that specified number.

At the conclusion of this operation for each of the designated vectors,
control is returned to the main Omnidata module with the pointers in the
label table modified according to the above instructions. Hopefully, this
will achieve operational economy and space compression useful in such
modules as DISPLAY, REPORT, and in the PRINT option in the
SEARCH module.

In figure 5.35a, we see the dialogue with and the output from this
module when it examined the entries in the author field (actually, multiple
authors) of a bibliographic file. We see there that this field was defined to
include 133 characters, and that we actually made use of 129 of them—
though only in 2 cases. In this circumstance, there is nothing to be gained
by resetting the pointers.

The table of frequencies does show, however, that all but 14 of the
records contain only 65 characters. If we were dealing with data items in a
parts list instead of authors of journal articles, it would not be difficult to
abbreviate the information in 14 records and achieve a 50% reduction in
the space allowed for this data item.

Information from this module is useful even when dealing with this
data vector of authors. A little mental arithmetic on the frequencies would
show that if we allotted only 39 characters to the author field, 50 out of
the 84 would fit. We have seen bibliographic listings in which the space
limitations were such as to preclude listing more than the first author and
even then truncating some of them in a few instances.

265

* *WHICH DATA BASE DO YOU WANT --->? >ftjpcrd *
* *

* GOOD MORNING, WELCOME TO OMNI DATA *
* * * *NOTE-OMNIDATA KEEPS A RECORD OF WHO USED WHICH* * * *
* MODULE(S) ON WHICH FILE(S) AT WHAT TIME OF THE DAY *
* *

* FILE FTJPCRD CONTAINS 11 DATA ITEMS FOR 84 RECORDS.
* *TVPF A MOnill F AMMF AWn/ DR IWQTPIIPTIOMQ * * TYPE A MODULE ANME AND/ OR INSTRUCTIONS *
* ---> ? >trim *
* *
* TYPE LABEL(S) TO BE TRIMMED -- ->? >authors *
* VECTOR AUTHORS DEFINED AS 133 CHARACTERS *
* LENGTH FREQUENCY *
* Ov *
*

2 43 1 *
* 13 (Jy 2 52 2 *
* 14 1 55 1 *
* 16 3 56 1 *
* 17 5 62 1 *
* 18 2 63 1 *
* 19 2 64 1 *
* 20 1 65 8 *
* 21 2 66 3 *
* 22 1 67 1 *
* 23 2 68 1 *
* 27 1 70 1 *
* 28 1 73 2 *
* 29 1 81 1 *
* 30 3 86 1 *
* 31 2 105 1 *
* 32 5 122 1 *
* 33 1 129 2 *
* 34 1 *
* 35 2 *
* 36 2 VECTOR AUTHORS *
* 37 2 DEFINED LENGTH = 133 *
* 38 3 CHARACTERS USED =129 *
* 39 2 *SHALL WE CHANGE THE POINTER
* 41 1 *
* 45 1 *
* 46 2 *

Figure 5.35a. Here we see the dialogue with and output from the TRIM module. At [A]
we see that the author field was blank in one record, and that 129 of the positions
assigned to that data item are filled—albeit in only 2 records. See the text for a further
discussion of the utiltity of this frequency distribution.

>no

266

If we wish to play such games, Omnidata facilitates them even after
the file has been defined. If we wished such a compact printout we have at
least two alternatives. We could EXTRACT from the defined author field
the first 30 characters, call it SAUTHOR, and display that field instead of
the original author field. Alternatively, we can use the SHORT
instructions in the REPORT module and achieve the same result.

This module simply resets pointers in the file; it does not rewrite the
file to compress it. In order to achieve more efficient storage of the data, it
is necessary to use the ABRIDGE module.

••♦NOTES***

267

NOTES**

6. Descriptions of the Utility Modules

In this section we describe the modules necessary for efficient

management of data files as distinct from modules that select information

from the files or perform data analysis. Some of these modules will be of

interest only to the originator or builder of the file or the person whose

job it is to correct, update, or otherwise maintain the file. Others will be of

interest to the user as well.

The following comprise the utility modules:

ANNEX ATTACH BLANKS CHECKSUM

DICTIONARY MOVE SCREEN USERS

A few words are in order here concerning the absence of modules for

deleting and inserting records and for a merge module. These are not

needed because modules already exist to perform these functions. The

SEARCH module will delete records from a file if they satisfy the search

criteria based on information in the file. If records are to be deleted on the

basis of their position in the file rather than their content, use can be

made of the MOVE module.

The insertion of new records in an existing file can be achieved in

two ways. Both require the use of two modules. If the new records are in a

file or can be placed on a file from tape or cards, the STACK module will

append one of the files to the other. After this the files can be sorted to

put the new records in their proper place. If it is more convenient to

supply the new records from the keyboard, the ANNEX module will place

the new records at the end of the designated file. A subsequent SORT

operation will put them in their proper order.

In our view, the requirement for moving records from their current

location in a file arises largely when errors are found in one or more of the

sort keys after the file has been sorted. If these errors are corrected via

UPDATE, the file is no longer in proper sequence. When many records

have to be moved, the easiest way is to sort the file again. If the file is

large and the number of records to be moved is small, it is inefficient to

sort the file again since sorting is expensive. For this reason we have

included a module called MOVE.

269

6.1 ANNEX

ANNEX permits the user to add records to an existing Omnidata file

on-line. If the user has already performed some operations on his file

using other modules, the file in core is a temporary scratch file (resident in

either TEMP, RTEMP, or SCRATCH). In such instances, the ANNEX

operation may proceed directly. If, however, the user calls ANNEX

immediately after entering Omnidata, he is given the message

YOU PRESENTLY HAVE YOUR ORIGINAL FILE . DO YOU

WISH TO ANNEX RECORDS TO IT, OR TO A COPY?

*TYPE O(RIGINAL) OR C(OPY)->? >

This is in keeping with the authors’ belief that the original file should

never be tampered with in Omnidata except in rare instances and then

only on specific instructions from the user. A file manager who wants the

ability to himself ANNEX his file directly but keep others from doing so

may make use of a write key.

The program next asks

*DO YOU WANT PROMPTING MODE->?

If the response to this question is YES, the program supplies each

label in turn and waits for the user to input the data. At the completion of

all the pieces of information the user may decide to make corrections by

answering YES to the question

*ANY CORRECTIONS->? >

If he does answer YES, the program responds

*TYPE LABEL, INFORMATION ->? >

and continues to accept corrections until a response of END is

encountered. At this time the record is entered in the file and the user is

asked again

*DO YOU WANT PROMPTING MODE ->? >

for the possible input of another record, either using prompting or not.

If the user has elected not to use the prompting capability, he is

asked to

*TYPE LABEL, INFORMATION ->? >

and he can enter one or more data items. He ends the operation with a

response of END and control switches to the question about the prompting

mode. Any data item which he does not input remains blank for that

record in the file. Typing errors can be corrected by repeating a label,

followed by the correct information.

270

In either the prompting mode or the non-prompting mode, certain

diagnostics are given for inappropriately entered information. For

example, if alphabetic data is supplied for a field which has been defined

as numeric, the user is asked to reenter the information. Also, if the user’s

input exceeds the defined length of a field, that input is truncated and the

user is shown exactly how much of the input was entered in the given

vector. Here the user has the option of allowing the truncated information

to stand or supplying a shortened version.

**********41*********

* FILE FTTRAVEL CONTAINS 66 DATA ITEMS FOR 306 RECORDS.*
* *

* *TYPE A MODULE NAME AND/OR INSTRUCTIONS *

* — >? annex *
* *

* YOU PRESENTLY HAVE YOUR ORIGINAL FILE. DO YOU

* WISH TO ANNEX RECORDS TO IT, OR TO A COPY?

* *TYPE O(RIGINAL) OR C(OPY)—>? >0

* * DO YOU WANT PROMPTING MODE->? >ves *

* *REC ->? >79158 ' *

* *NAME — >? >bertocci ugo *

* ‘AGENCY ->? >nbs *

* *DIVSEC->? >312.04 *

* ‘FROMYR->? >77 *

* ‘FROMMO->? >03

* ‘FROMDA — >? >30-

* 30 MUST BE NUMERIC — RETYPE *

* ‘FROMDA — >? >30 *

* *TOMO — >? >05 *

* *TODA — >? >10 *

* ‘TRAVELCODE->? >20.3 *

* *UNIT1-->? >3120042 *

* *C0ST1 — >? >0

* *UNIT2 — >? >0 *

* *S1CITY — >? >sofia *

* *S1C0UN -->? >bg

* *S1P0A —>? >n *

* *S10UA —>? >n

* *S1PURP0SE —>? >to visit the central inst. of,& *

* ? >electrochem power and inst. of phys. chem. of,& *

* ? >bulgaria *

* *S2FYR — >? >end

* *ANY CORRECTIONS->? >no

* *DO YOU WANT PROMPTING MODE->? >yes *

Figure 6.1a. Here we see the initiation of an operation to add new records directly to an

existing file, FTTRAVEL, via the ANNEX module. Note at [A] how this module alerts

the user when an alphabetic character is entered in a strictly numeric field. The reverse

error—a number in place of a letter—is not caught because numerals are allowed in

alphanumeric fields.

271

In a well-designed data base this problem should arise, if at all, only

in data fields containing textual material. There the input can often be

shortened by judicious editing or by using abbreviations or contractions.

When the user types END in response to the question

*DO YOU WANT PROMPTING MODE ->? >

the module tells the user how many records have been added and how to

get a listing of them as follows:

YOU HAVE ADDED RECORDS XXX-YYY

TO LIST, CALL DISPLAY AND SKIP TO XXX.

Control is then switched back to Omnidata.

Please recall that unless the original file was present when ANNEX

was called, a temporary file is in core and the SAVE module must be

called to permanently catalog the file with the annexed records.

* ?
* ?
* ?
* ?
* ?
* 9

♦FYR4 — >? >77

*FM04 — >? >09

*FDA4 — >? >01

♦TM04 — >? >09

*FDA4 - >? >

*CITY4 — >? > paris

*COUN4 — >? >be

*P0A4— >? >eec

*0UA4 —>? >b
*PURPOSE4 —>? >visit central bureau of refer.,&

? > of eec re joint cooperative work program

*FYR — >? >end “

♦ANY CORRECTIONS->? >yes

♦TYPE LABEL, INFORMATION ->? >

>fmo4, 08

>tfda4, 31

>tmo4, 08

>tda4, 31

>city4, brussels

. >end
*/*DO YOU WANT PROMPTING MODE ->? >yes

©—*REC->? >79162

*

*

♦

*

*

*

*

*

♦

*

*

*

*
*

*
♦
*

*
*
*
*

*

*

♦

Figure 6.1b. Here we see how the five input mistakes at [A] are corrected at [C] after the

input for this record is ended at [B]. When the corrections are terminated at [D], the

system is ready for the next record.

272

In the figures that follow we see how records are entered into a travel

file which can accommodate detailed information on as many as five cities

per trip. In figure 6.1a we see data entered for the main portion of a

record and for the data associated with the first stop on the itinerary. The

request for input at [B] starts the entry for data relevant to the second

stop. As there is no second stop on this trip, the input is terminated by

typing END.

In figures 6.1b and 6.1c, we see how this module allows the user to

correct the input for typing errors or when the length of the input exceeds

the allotted space.

* COUNI -->? >de

*POAl — >? >icru

*OUAl -->? >n

*PURPOSEl —>? > attend meetings of icru report,&

? >com. of microdosimetry, and 3rd intl.,&

? > symposium on neutron dosimetry

NOTE: TRUNCATED TO ATTEND MEETINGS OF ICRU REPORT COM. *

OF MICRODOSIMETRY AND 3RD INTL. SYMPOSIUM ON NEUTRON

DOSI. *

*FYR2 ->? >end

•ANY CORRECTIONS ->? >yes

•TYPE LABEL, INFORMATION ->

>purposel, attend mtg. of icru report com. of,&

> microdoseimetry and 3rd inti. symp. on neutron dosi

>end

•DO YOU WANT PROMPTING MODE -->? >end^

•YOU HAVE ADDED RECORDS 307-323

•TO LIST, CALL DISPLAY AND SKIP TO 307

•DON’T FORGET TO CALL SAVE-

Figure 6.1c. Here we see how the system alerts the user at [A] that his input has been

truncated, how judicious abbreviations at [B] solve the problem, and how the update

operation is terminated at [C]. At [D] the module tells the user how to get a listing of the

new records and at [E] we have a reminder to save the file. The reminder at [E] is not

printed when records are annexed to the original file.

273

6.2 ATTACH

This module concatenates the corresponding records from two

Omnidata files having a common record identifier. An interesting

application for this module is the generation of a training incidence file

where it is desirable to save look-up, keyboarding, and subsequent

proofing by pulling the desired information from the main personnel file

and combining it with the data for the specific training action.

If we had training actions for 100 persons punched up in file A and

the social security (SS) number was used to identify the records, we would

first SEARCH the main file for the list of 100 numbers. Next we would

ABRIDGE the file to contain the SS number and the pertinent data items

we wish to transfer to the training file. At the conclusion of the abridge

operation we would have a file B with 100 records corresponding to those

in file A.

The ATTACH module can combine these two files by concatenating

the records having the same SS number if we tell it that the SS number is

the key. Since files A and B are both in Omnidata form each has its own

labels and pointers. The labels and their pointers from the first file will be

carried over to the composite file. These will be augmented by labels from

the second file with an adjustment of pointers to show their location in the

longer composite record.

In figure 6.2a we see the dialogue for a successful operation to

ATTACH the files FTR and FPERS100. This operation succeeded because

both files were in proper sequence and the identification fields matched

record for record.

In figure 6.2b we see how this module copes with discrepancies in

the files. In the first instance if the number of records does not agree, the

user has the option to terminate the operation at [A] by typing NO or

STOP or of continuing by typing YES. If the choice is to continue, the

module will check the files to see if they contain the required labels. If

they do not, the operation is stopped with the following comment.

♦FILE XYZ DOES NOT CONTAIN THE LABEL ABC

If the labels agree, the operation progresses until there is a

discrepancy in the identifier fields in corresponding records. At that point

the operation is halted, the offending record number is printed, and the

user has the option of saving the partial composite file.

In order to resolve the discrepancy, it will be necessary for the user

to DISPLAY the offending records. What action is taken subsequently

depends on the nature of the discrepancy in the files.

274

* FILE FTR CONTAINS 25 DATA ITEMS FOR 100 RECORDS

* --->? > attach *

* *TYPE the name of the file to be attached *

* TYPE A MODULE NAME AND/OR INSTRUCTIONS *

* — >? >fpersl00 *

* TYPE LABELS FOR THE COMMON FIELD (ft)
* --->? >ss#,ssnum- *

* TYPE NEW FILE NAME->? >ftrainl00

* THE SAVED FILE FTRAIN100 CONTAINS 30 DATA ITEMS *

* ?FOR 100 RECORDS *

* TYPE A MODULE NAME AND/OR INSTRUCTIONS *

Figure 6.2a. Here we see the dialogue for a successful operation to attach

two consonant files. The labels at [A] are those in files FTR and

FPERS100 respectively. The combined file will carry the label SS#.

* FILE FTR CONTAINS 25 DATA ITEMS FOR 100 RECORDS

* TYPE A MODULE NAME AND/OR INSTRUCTIONS \

* --->? > attach \ *

* *type the name of the file to be attached V *

* .„>? >fpab *

* TILE FPAB CONTAINS 98 RECORDS --

* SHALL WE PROCEED ->? >yes

* TYPE LABELS FOR THE COMMON FIELD_ /g\ *

* TYPE NEW FILE NAME->? >ftrain *

* TOTE SS#8125793 DOES NOT AGREE WITH

* SSNUM 8125739 IN RECORD 75

* SHALL WE SAVE THE PARTIAL FILE? ->? >yes

* THE SAVED FILE TTRAIN CONTAINS 30 ITEMS FOR 74 RECORDS *

* TYPE A MODULE NAME AND/OR INSTRUCTIONS *

* — >? >display *

Figure 6.2b. Here we see at [A] how the ATTACH module responds when

the number of records in the two files does not agree. If the labels

supplied at [B] are not proper, this module types out an appropriate

message and terminates the operation. The subsequent dialogue shows

how the module handles a discrepancy in the file and identifies the

offending records.

275

6.3 BLANKS

When the user requests the module BLANKS, one pass through the

data file is made and the number of totally blank entries is tallied for each

defined label. A report is printed, giving only the labels where blank

entries occur, and the number of such vectors. If no field has any blanks,

the user receives the message that ‘NO TOTALLY BLANK FIELDS

OCCUR IN ANY VECTOR’ Figure 3a shows a sample run of this module.

* * * * * * • *•******••**••#«• • •***•**#»**• * * *
*
* FILE FTBNM CONTAINS 34 DATA ITEMS FOR 1252 RECORDS.

*

* •TYPE A MODULE NAME AND/OR INSTRUCTIONS •
* ->? >b1anks *

*
*

LABEL ENTRIES *
*

* 2 TITLE 3
*

3 JOURNAL 4
*

* 6 A2 669 *
* 7 A3 1002 *
* 8 A4 1151 *
* 9 A5 1221 *
* 10 A6 1242 *
*

11 A7 1234
*

* 13 A5-7 1209 *
* 18 TM2 629 #
* 19 Tl 67 *
*

31 ATNUM1 1043
«

* 32 ATNUM2 1174 *
* 33 AT 1136 *
* 34 LAB 305 *
*
* CPU SEC IN BLANKS = 82.6252 *
*
• CPU SEC = 84.7024 TIM = 12:10:33 #

*
*

•TYPE A MODULE NAME AND/OR INSTRUCTIONS
*

* — >? >stop *
PROGRAM STOPPED.

Figure 6.3a. Here we see how the BLANKS module reports the number of

missing entries in certain of the data fields in this annotated bibliography.

Since items 1, 4, 5, 12, and 14-17 are missing from this list, we can

assume that all records in the file are complete in regard to those data

fields.

276

6.4 CHECKSUM

Where file integrity is an important consideration, Omnidata provides

a tool to determine if each record of the file is in the same condition as it

was when generated or last validated. This is achieved by adding up the

fieldata equivalent of the odd characters in each record and of the even

characters in the record. These two sums are stored at the end of each of

the data records.

When an Omnidata file is generated via the DEFINE module, the file

manager is asked whether checksums should be generated. If the response

is YES, the appropriate checksums are computed and appended to the end

of each record. In addition, a checksum switch is set in the header portion

of the file. Whenever the file is updated that switch alerts the UPDATE

module to recompute and update the checksums for each of the changed

records.

For files containing checksums, the file manager will need to keep a

printed list of the checksums keyed to a unique record identifier. Such a

list can be prepared via the REPORT module shortly after the data file is

generated. New checksums resulting from updated records should be

entered in this list by hand until such time as a new complete listing

becomes necessary.

If checksums were always computed at the time the file is defined,

there would be no need for a CHECKSUM module. This module is needed

only when it is necessary to generate checksums for an existing Omnidata

file which does not contain them. As the calculation of checksums is a

relatively lengthy operation it should be performed in batch mode rather

than on-line. If circumstances dictate performing this operation on-line,

we suggest turning on the MONITOR.

When the checksums are computed, either during the DEFINE

operation or via the module CHECKSUM, each logical record carries three

pieces of information in addition to the two checksum numbers. These are:

the date, the time of day, and the first six characters of the users RUN ID.

The last of these identifies who performed the checksum operation. The

above three pieces of information play an even more important role when

the file is updated via the UPDATE module as they provide an important

audit trail — telling when and by whom the record was updated.

6.5 DICTIONARY

This module adds to an Omnidata file of information required by the

DESCRIBE and the SURVEY modules to describe the content and format

of the data vectors associated with a particular data base in addition to

giving a brief description of the file as a whole. When the data file

contains encoded information this module will build a dictionary of codes

for any or all of the data elements in the file. In the figure which follows

we see how this module is used to supply information for generating a

dictionary for a personnel file. Unless instructed to skip over some of the

data items, this module asks for information for data elements in turn in

the order in which they were defined.

* *TYPE A MODULE NAME AND/OR INSTRUCTIONS

* — >? >dictionary

* ’TYPE COMMENT ON FILE OR N(ONE) ->

* ?>THIS IS A SAMPLE OF A PERSONNELS

* ? > FILE CONTAINING 75 RECORDS
*

* 1. DIV

* COMMENT --->?>none

* CODE—>? >none

* 2. SS(#

* COMMENT — >? >social security number

* CODE — >? >n

* 3. SEX

* COMMENT ->? >n

* CODE->? >l,male

* > 2,female

* 4. CIT

* COMMENT — >? >citizenship

* CODE—>? >l,u.s..
* > 2,territorial

* >3,foreign

* 5. NAME

* COMMENT — >? >iast,first,mi,title’

* CODE — >? >n

* 6. DOB

* COMMENT - > ? > date of birth

* CODE — > ? > n

* 7. YOB

* COMMENT - > ? > year of birth,&

* >(20 for 1920 etc.)

* 'CODE —>? >n

*
*
♦
*

*

*

*

*

*

*
*

*

*
*

*
*
*

*
*
*
*
*
*
*

*
*
*

*

*

*

*

*

Figure 6.5a. Here we see how the DICTIONARY module asks for information to build up

a dictionary file for use by the DESCRIBE and SURVEY modules. If information is not

at hand for a group of labels, a response of SKIP TO 25 will cause this module to skip

over the intervening labels.

278

6.6 MOVE

This module allows for moving data records in an Omnidata file. The

need for this facility arises in two main instances: (1) if one wishes to

order a file in a way that is not possible using the sorting sequence and (2)

when typographical errors are found in the keys upon which a file had

been sorted and the correction of these errors puts the file out of sort. If

the file is large and the errors are few, it is more efficient to MOVE the

offending records than it is to SORT the entire file again.

Instructions to the MOVE module are given in terms of record

numbers in the original file. If the user supplies three record numbers (a,

b, c) this module will move records a through b to follow record c. For

each record or block of records to be moved the user must supply three

numbers. The user may supply the move instructions in any order since

this module sorts the instructions in order to rewrite the file from top to

bottom.

If the user does not already know the record numbers associated with

the data in the file on which this module is to operate, use can be made of

the SEQUENCE module to provide this information in' a systematic

manner. When the file is large and the number of records to be moved is

small, it may be possible to locate the required record number more easily

by using the SKIP TO and BACK TO features of the DISPLAY module

shown in figures 3.2c and 4b.

As the MOVE module must rewrite the entire file to accomplish its

objective, it can and indeed does allow for duplicating records and even

deleting records. A record or a block of records can be deleted simply by

omitting the third number in the instruction triplet.

Figure 6.6a shows how information is supplied to this module in

order to move, duplicate, and delete records from a file. Since all of the

instructions are given in terms of the positions of the records in the

original file, the user need not be concerned with any complications

resulting from these moves, nor is it necessary to supply the instructions

in any specified order. In the figure below we see in instructions [B], [C],

and [D] how we are able to replace record 125 by record 20 and then

move the modified block (120-135) to follow record 500. This operation

will be performed properly regardless of the order in which the

instructions are supplied.

279

* TYPE A MODULE NAME AND/OR INSTRUCTIONS

* — >? >move *

* *IF YOU TYPE A,B,C

* RECORDS A THROUGH B WILL BE MOVED AFTER RECORD C

* — >TYPE A,B,C

* >12’16 ~~-(A)
* ? >25,25,10

* ? >87,87,12^^(B)
* ? >125,125

* ? >20,20,125
* 9

*

-©

* 9

>120,135,500-^

>end

THIS FILE NOW CONTAINS XYZ RECORDS

CALL SAVE TO SAVE

TYPE A MODULE NAME AND/OR INSTRUCTIONS

*

★

$$$$$$$$$$$$$$$$$$$$

Figure 6.6a. Here we see the dialogue with the MOVE module where at

[A] the absence of the third number causes records 12 to 16 to be deleted

from the file. A careful examination of the above instructions will reveal

that the module allows nesting of instructions .

280

6.7 SCREEN

The SCREEN module examines a designated data vector in each

record in the file and reports the number of occurrences of each unique

character in each character position specified. The output is given in the

form of a two-dimensional table with the characters listed in rows, sorted

on their fieldata numeric equivalents and with each column representing a

different position in the data vector. The last column gives the total for the

characters in all the columns screened thus far.

The user provides the name of the data vector to be screened in response

to the question:

TYPE LABEL TO BE SCREENED, OR END -->? >

Assuming, then, that an appropriate label is input, the user is asked to

TYPE STARTING CHARACTER, NUMBER OF CHARACTERS

TO SCREEN, OR END ->? >

Needless to say, the starting character must be a number less than or

equal to the length of the vector. Also, a maximum of 10 characters can be

screened in one pass. Diagnostics are given if the user has input a

response to the above question which is impossible to fulfill.

After the designated columns are screened, the above question is

repeated giving the user the opportunity to screen additional character

positions in the same data vector. When the input to the question is END,

indicating that no more screening for that vector is desired, the user is

asked

*DO YOU WANT A HISTOGRAM OF THE TOTAL —

YES OR NO -->? >

Following this, the question asking for a label to be screened is repeated

giving the opportunity to perform the screening operation on a different

data vector. If the response is END, control is returned to the supervisory

module. Figures 6.7a et seq. illustrate the results of screening certain data

fields in a crystal data file.

281

* GOOD AFTERNOON, WELCOME TO OMNIDATA

* *NOTE - OMNIDATA KEEPS A RECORD OF WHO USED WHICH

* MODULE(S) ON WHICH FILE(S) AT WHAT TIME OF THE DAY

* FILE ANOR-ORG CONTAINS 18 DATA ITEMS FOR 668 RECORDS.
*

* TYPE A MODULE NAME AND/OR INSTRUCTIONS

* --->? > labels,screen

* THE FILE ANOR-ORG CONTAINS DATA LABELED AS FOLLOWS:
* 4 A 7 ALPHA 5 B 8 BETA 6 C
* 11 DM 12 DX 14 FORMULA 9 GAMMA 2 I OR 0
* 15 IDNUM 16 M OR N 18 NAME 3 R1 17 R2
* 13 SG 1 SYSTEM 10 Z

TYPE LABEL TO BE SCREENED, OR END --> ? >rl *

TYPE STARTING CHARACTER, NUMBER OF CHARACTERS TO SCREEN,

OR END-->? >1,8

DISTRIBUTION OF CHARACTERS IN R1

* * *poSITION* * * *

* CHAR
*

1 2 3 4 5 6 7 8 TOTAL *
♦

* ^668 0 0 0 0 0 0 668 1336 *

* 0 0 664 0 5 50 65 59 0 843 *

* 1 4 0 30 60 60 69 0 223 ★
* 2 o(T 0 0 21 47 69 61 0 198 *

* 3 0 0 0 20 62 70 75 0 227 *
* 4 0 0 0 33 85 63 62 0 243 *

* 5 0 0 0 49 65 71 54 0 239 *
* 6 0 0 0 69 83 69 68 0 289 *
* 7 0 0 0 110 73 69 66 0 318 *
* 8 0 0 0 144 66 62 84 0 356 *
* 9 0 0 0 187 77 70 70 0 404 *
* 0 0 0 668 0 0 0 0 668 *

* TYPE STARTING CHARACTER, NUMBER OF CHARACTERS TO SCREEN,

* OR END -->? >end *

Figure 6.7a. In this use of the SCREEN module as the R1 data vector we

see at [A] that the first position is blank in all records, at [B] that all but

four records are blank in the second position and that the others contain

ones. The information at [C] tells us that the decimal point is present in

the third position in each record. Thus, we know that except for the four

records noted above, the values of R1 are less than unity.

282

* LABEL TO BE SCREENED, OR END ---->? formula *
* *TYPE STARTING CHARACTER, NUMBER OF CHARACTERS TO SCREEN,*
* OR END --->? >1,12 *
* [MAXIMUM OF 10 CHARACTERS SCREENED AT ONCE- RETYPE LINE *
* *TYPE STARTING CHARACTER, NUMBER OF CHARACTERS TO SCREEN,*
* np Fwn ..a? si in * *
♦
*
*
*

OR END -- ->? >1,10

DISTRIBUTION OF CHARACTERS IN

* * * POSITION * * *

FORMULA

*
♦
*
*
*

* CHAR
*

1 2 3 4 5 6 7 8 9 10 TOTAL*
*

* [0 32 3 1 34 1 1 0 1 0 73 *
* 3 0 0 0 0 0 0 0 0 0 1 1 *
* 666 547 99 72 205 380 91 179 166 289 2594*
* A 0 0 9 17 0 1 1 0 0 0 28 *
* B 0 0 12 10 0 4 1 1 2 5 35 *
* C 1 0 385 73 27 43 79 32 69 33 742 *
* | 0 0 0 15 2 0 0 2 0 0 19 *
* E 2 0 0 27 0 0 2 1 0 1 31 *
* F 0 0 5 0 0 2 2 1 1 0 11 *
* G
*

0 0 1 0 0 0 0 0 0 0 11 *
*

* Z 0 0 9 1 0 0 2 0 0 0 10 *
* } 0 0 0 0 0 0 3 18 20 19 60 *
* _ 0 0 0 0 0 0 1 1 0 1 3 *
* + 0 0 0 0 0 3 6 8 25 21 69 *
* „ 0 0 0 0 0 0 0 0 1 1 2 *
* (1 83 19 7 80 17 19 16 11 37 290 *
* . 0 0 0 0 0 0 1 0 0 0 1 *
* 0 0 0 0 0 35 2 1 18 39 1 96 *
* 1 0 1 0 130 28 2 35 71 14 4 285 *
* 2
*

0 4 0 56 47 15 15 91 58 43 329 *
*

* g 0 0 0 11 21 5 11 5 4 5 62 *
* 0 0 0 0 1 0 0 0 0 1 2 *

* *TYPE STARTING CHARACTER, NUMBER OF CHARACTERS TO SCREEN,*
* OR END --->? >11.8 -——---- ..~.^*

Figure 6.7b. In this illustration of the operation of the SCREEN module,

we see at [A] how the user is reminded that at most 10 character positions

can be screened in one pass through the file. At [B] we see that all but two

records have a blank in the first position of the data field. If the statistics

at [C] and [D] are thought to reflect errors in these two records, they can

easily be isolated using the SEARCH module.

283

* * * * * *_ ********* * * * * * *
* *TYPE STARTING CHARACTER, NUMBER OF CHARACTERS TO SCREEN,*
* OR END --->? >11,8 *
* *

* DISTRIBUTION OF CHARACTERS IN FORMULA *
*
* CHAR
*

11 12

* *
13

* POSITION
14 15

* *

16

*

17 18 TOTAL
*
*
*

* 1 3 1 0 0 1 3 3 0 84 *

* 1 0 0 2 2 11 2 6 4 28 *
♦ 207 233 309 258 317 288 356 343 5005 *
* A 3 2 2 1 5 3 9 2 55 *
* B 10 1 1 2 1 6 4 0 60 *
* C 61 59 44 35 27 52 32 32 1024 *
* D 1 0 0 0 0 1 2 0 23 *
* E
*

2 2 2 1 3 2 2 0 43 *
*

* z 0 0 0 1 0 0 1 1 13 *
*) 15 25 21 15 27 46 22 21 252 *
* - 0 0 1 6 1 0 1 0 12 *
* + 21 18 12 19 15 25 14 19 218 *
* _ 0 0 1 0 2 0 0 1 6 *
* (9 15 7 18 4 3 11 5 362 *
* . 1 2 2 1 1 1 2 0 11 *
* 6 2 1 1 4 1 3 2 1 111 *
* ! 10 7 7 4 8 1 4 2 328 *
* 2 45 67 43 55 57 48 47 31 722 *

* 3 14 23 13 18 20 18 12 10 304 *
* 4 24 26 15 14 19 11 12 18 306 *

* 5 9 15 3 12 10 12 11 5 191 *

* 6 7 22 21 7 12 14 7 8 249 *
* 7 11 3 3 5 1 1 0 1 77 *
* 8 8 2 1 5 7 4 2 8 119 *
* 9 1 4 0 1 1 1 0 0 70 *
*
*

0 0 0 0 5 1 1 2 11 *
*

* *TYPE STARTING CHARACTER, NUMBER OF CHARACTERS TO SCREEN, *

* OR
*

END --->? >end *
*

* * 4 ft * * * * * * * * * * * * 5|C * * Hi *

Figure 6.7c. Here we continue to screen the next 8 character positions.

Note that the totals are for all of the 18 characters screened thus far.

284

6.8 USERS

Access to Omnidata files is controlled by requiring the data-base

administrator to build into each file a list of accredited users and

associated passwords. At the time an Omnidata file is generated, the

DEFINE program calls the program USERS and allows the data-base

administrator to supply the list of accredited users at that time.

It usually becomes necessary at a later time to add to or delete names

from this list. This module has been written to achieve this important

housekeeping operation. USERS operates as a stand-alone XBASIC

program as well as an Omnidata module. In the figures which follow we

illustrate the features of the independent XBASIC program. When called

as a module in an Omnidata run, it operates in the same fashion, except

that the first question at [A] is bypassed since the module already knows

the name of the file on which it is to write.

* >old:users*

* READY

* >run
*

* USERS 11:41:13 2 MAY 77
*

* * WHICH DATA BASE DO YOU WANT -->? >fpersl00

* *TYPE ADD, DELETE, CHANGE, OR LIST - >? > list

* NO USERS TO LIST

* *TYPE ADD, DELETE, CHANGE, OR LIST - >? >add

* *TYPE NAME OR ACCOUNT NUMBER -->? >jh

* *TYpe PASSWORD - > ? >1112

* *TYPE 1 FOR RESTRICTED, 0 FOR NORMAL -->? >0

* *TYPE NAME OR ACCOUNT NUMBER ->? >end

* *TYPE ADD, DELETE, CHANGE, OR LIST --->? > list
*

* NAME OR ACCOUNT NO. PASSWORD FLAG
* __ ____

* JH 1112 0
*

*

*

★
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *TYPE ADD, DELETE, CHANGE, OR LIST ->? >stop

* PROGRAM STOPPED.
He****************

Figure 6.8a. Here we see how a user is accredited to a file via the program

USERS. In actual operation the file name at [A] would be followed by

read and write keys that are required to preserve the file security.

285

* >old:users* *

* READY *

* > run *
* *

* USERS 09:11:09 3 MAY 77 *
* *

* * WHICH DATA BASE DO YOU WANT - >? >fpersl00 *

* -TYPE ADD, DELETE, CHANGE, OR LIST->?>add

* -TYPE NAME OR ACCOUNT NUMBER ->? >jh

* -TYPE PASSWORD->? >1112

* *TYPE 1 FOR RESTRICTED, 0 FOR NORMAL - >? >0

* -TYPE NAME OR ACCOUNT NUMBER ->? >end *

* TYPE ADD, DELETE, CHANGE, OR LIST - >? > list *
* *

* NAME OR ACCOUNT NO. PASSWORD FLAG
* ___________ *

JH JH 0

* JH 1112 0 *
* *

* TYPE ADD, DELETE, CHANGE, OR LIST -->? > delete

* -TYPE NAME OR ACCOUNT NO. TO BE DELETED --->? >jh *

* -TYPE NAME OR ACCOUNT NO. TO BE DELETED ->? >encP

* TYPE ADD, DELETE, CHANGE, OR LIST -->? >list
* *

* NAME OR ACCOUNT NO. PASSWORD FLAG
* ______________ *

*JH 1112 0
* *

* TYPE ADD, DELETE, CHANGE, OR LIST - >? >stop

* PROGRAM STOPPED.

Figure 6.8b. Here we see how to add accredited users to a file and how to

delete them. Note that when duplicate names appear the delete operation

removes the first one.

286

* >old:users*

* READY

* >run
*

* USERS 13:52:09 9 AUG 77
*

* * WHICH DATA BASE DO YOU WANT -->? >ftjpcrd

* *TYPE ADD, DELETE, CHANGE, OR LIST - >? > list
*

* NAME OR ACCOUNT NO. PASSWORD FLAG

*

*

* BJBM

* A

* B

* C

* JH
*

* TYPE ADD, DELETE, CHANGE, OR LIST -->? > change / *

* TYPE NAME OR ACCOUNT NO. FOR WHICH CHANGE DESIRED -->? >jh

* TYPE NAME OR ACCOUNT NUMBER->? >jh /

* TYPE PASSWORD ->? >1112 / *

* *TYPE 1 FOR RESTRICTED, 0 FOR NORMAL - >? >0 *

* TYPE NAME OR ACCOUNT NO. FOR WHICH CHANGE DESIRED -->? >end

* TYPE ADD, DELETE, CHANGE,OR LIST - >? >stop

* PROGRAM STOPPED.
* *

* TIME : 1.026

Figure 6.8c. Here we see how the USERS module is used to modify an

entry in the list of accredited users.

OK

X

Y

Z

1112

287

* ill******************

* >old:users* *

* READY *

* >run *
id ik

* WHICH DATA BASE DO YOU WANT - >? >anor-inorg

TYPE ADD, DELETE, CHANGE, OR LIST -->? >add

TYPE NAME OR ACCOUNT NUMBER ->? >b

TYPE PASSWORD -->? >ok

TYPE 1 FOR RESTRICTED, 0 FOR NORMAL --->?>

TYPE ADD, DELETE, CHANGE, OR LIST - >? >add

TYPE NAME OR ACCOUNT NUMBER -->? >bj

TYPE PASSWORD ->? >ok

TYPE 1 FOR RESTRICTED, 0 FOR NORMAL - >? >0

TYPE NAME OR ACCOUNT NUMBER -->? >end

TYPE ADD, DELETE, CHANGE, OR LIST - >? >list

■k

*

NAME OR ACCOUNT NO. PASSWORD FLAG *
*

BJ OK 0
*

TYPE ADD, DELETE, CHANGE, OR LIST - >? >end *
*

TIME : 1.032 *
Jk*ikik*ik*ikikikikik=kiksk

Figure 6.8d. Here we see at [B] how to end the input when an error is

discovered before all of the data items are entered. Had we noticed the

error at [A] after supplying the required answer at [B], the only way to

correct it would be via the CHANGE option.

288

NBS-1 14A IREV. 7-73)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET

1. PUBLICATION OR REPORT NO.

NBS Handbook 125

2. Gov't Accession
No.

3. Recipient's Accession No.

4. TITLE AND SUBTITLE

OMNIDATA: An Interactive System for Data Retrieval,
Statistical and Graphical Analysis, and Data-Base
Management -- A User’s Manual

5. Publication Date

September 1 978
6. Performing Organization Code

7. AUTHOR(S)

Joseph Hilsenrath and Bettijoyce Breen
8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

10. Project/Task/Work Unit No.

11. Contract/Grant No.

12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)

Same as item 9.

13. Type of Report & Period
Covered

14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number; 78-600076
16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant

bibliography or literature survey, mention it here.)

The Omnidata system, consisting of 45 individual programs written in
XBASIC, provides an interactive user - oriented facility for: data
retrieval and report generation; plotting and other graphical analysis;
arithmetic and statistical analysis; curve fitting and multiple linear
regression; data coding and decoding; survey and questionnaire analysis;
author, title, and keyword indexing of bibliographic files; a variety
of univariate analyses and two-way crosstabulations; and numerous utility
modules for file definition, file updating, and file maintenance.

The SEARCH module which performs a serial search through a file allows
for: the usual Boolean operations; string searching on text fragments,
stems, or roots in either the anchored or unanchored mode; specification
of syntatical order and proximity of words or phrases, as well as variabl
length ellipsis; and ignoring one or more of a specified list of char¬
acters in its matching operation.

Four of the modules interface with the OMNITAB II system for versatile
plotting, very accurate least-squares fitting, and a comprehensive
statistical analysis.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper

name; separated by semicolons) Boolean search system; computer programs; curve fitting
data analysis; data base management; data retrieval; file handling; graphic
analysis; IMS information retrieval; KWOC indexing; least-squares; linear
regression; MIS; plotting; statistical analysis.

18. AVAILABILITY I y 1 Unlimited

| | For Official Distribution. Do Not Release to NTIS

1^.] Order From Sup. of Docs., U.S. Government Printing Office
Washington. D.C. 20402, Stock No. 003-003-01972-1

I I Order From National Technical Information Service (NTIS)
Springfield, Virginia 22151

19. SECURITY CLASS
(THIS REPORT)

UNCL ASSIFIED

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

21. NO. OF PAGES

294

22. Price

ft U.S. GOVERNMENT PRINTING OFFICE : 1978 0—272-414

"

