
REFERENCE
A UNITED STATES
DEPARTMENT OF
COMMERCE
PUBLICATION

r4TtS O ^

TECH R.l.U

A111 □ 4 3 b □ b 5 b

NBS HANDBOOK 113

CODASYL
Data Description Language

Journal of Development
June 1973

u.s.
DEPARTMENT

OF
COMMERCE

-QcC—!
I ;

Vffl
No. M3

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress March 3, 1901.
The Bureau's overall goal is to strengthen and advance the Nation’s science and technology
and facilitate their effective application for public benefit. To this end, the Bureau conducts
research and provides: (1) a basis for the Nation’s physical measurement system, (2) scientific
and technological services for industry and government, (3) a technical basis for equity in trade,
and (4) technical services to promote public safety. The Bureau consists of the Institute for
Basic Standards, the Institute for Materials Research, the Institute for Applied Technology,
the Institute for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United
States of a complete and consistent system of physical measurement; coordinates that system
with measurement systems of other nations; and furnishes essential services leading to accurate
and uniform physical measurements throughout the Nation’s scientific community, industry,
and commerce. The Institute consists of a Center for Radiation Research, an Office of Meas¬
urement Services and the following divisions:

Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Nuclear
Sciences 1 2 — Applied Radiation 2 — Quantum Electronics 3 — Electromagnetics3 — Time
and Frequency 3 — Laboratory Astrophysics3 — Cryogenics n.

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to
improved methods of measurement, standards, and data on the properties of well-characterized
materials needed by industry, commerce, educational institutions, and Government; provides
advisory and research services to other Government agencies; and develops, produces, and
distributes standard reference materials. The Institute consists of the Office of Standard
Reference Materials and the following divisions:

Analytical Chemistry — Polymers —- Metallurgy — Inorganic Materials — Reactor
Radiation — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote
the use of available technology and to facilitate technological innovation in industry and
Government; cooperates with public and private organizations leading to the development of
technological standards (including mandatory safety standards), codes and methods of test;
and provides technical advice and services to Government agencies upon request. The Institute
consists of a Center for Building Technology and the following divisions and offices:

Engineering and Product Standards — Weights and Measures — Invention and Innova¬
tion — Product Evaluation Technology — Electronic Technology — Technical Analysis
— Measurement Engineering — Structures, Materials, and Life Safety4 — Building
Environment4 — Technical Evaluation and Application 4 — Fire Technology.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research
and provides technical services designed to aid Government agencies in improving cost effec¬
tiveness in the conduct of their programs through the selection, acquisition, and effective
utilization of automatic data processing equipment; and serves as the principal focus within
the executive branch for the development of Federal standards for automatic data processing
equipment, techniques, and computer languages. The Institute consists of the following
divisions:

Computer Services — Systems and Software — Computer Systems Engineering — Informa¬
tion Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and
accessibility of scientific information generated within NBS and other agencies of the Federal
Government; promotes the development of the National Standard Reference Data System and
a system of information analysis centers dealing with the broader aspects of the National
Measurement System; provides appropriate services to ensure that the NBS staff has optimum
accessibility to the scientific information of the world. The Office consists of the following
organizational units:

Office of Standard Reference Data — Office of Information Activities — Office of Technical
Publications — Library — Office of International Relations.

1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address
Washington, D.C. 20234.

3 Part of the Center for Radiation Research.
J Located at Boulder, Colorado 80302.
4 Part of the Center for Building Technology.

;S

OCT 1 4 1974 ;
M'b OCC-fiM-

CODASYL Data Description Language
•U91

Journal of Development, June 1973

\
v

i
Xi

-4

> \ \3

Systems and Software Division

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D.C. 20234

Y

1

(j.S

% ^ ^ ^

7^6-l9lfe

U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary

NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

Issued January 1974

Library of Congress Catalog Number: 73-600347

National Bureau of Standards Handbook 113

Nat. Bur. Stand. (U.S.), Handb. 113, 155 pages (Jan. 1974)

CODEN: NBSHA

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1974

For sale by tbe Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402
(Order by SD Catalog No. C13.6/2:113). Price SI.70

FOREWORD

Under Public Law 89-306 (Brooks Bill) the Secretary of Commerce was

given important responsibilities for improving the procurement, utili¬

zation, and management of computers and related information systems in

the Federal Government. To carry out the Secretary’s responsibilities

under the Brooks Bill, the NBS Institute for Computer Sciences and

Technology provides leadership and coordination for Government efforts

in the development of voluntary commercial information processing

standards.

A major problem in the use of electronic data processing equipment lies

in the inability to state the data processing application in such a way

that computer programs and data are developed and maintained with a min¬

imum of time and programming effort. A common Data Description Lan¬

guage (DDL), independent of any make or model of computer, would do

much to solve this problem. NBS believes that a common DDL could have

a significant impact on the future development of functionally compat¬

ible data base management systems and should increase the portability

of programs and data among different computer systems.

Since 1969, the Conference of Data Systems Languages (CODASYL) has been

active in the development of a common DDL. The current activity within

CODASYL on the development of a DDL is being conducted by the Data

Description Language Committee (DDLC) composed of voluntary represen¬

tatives from computer manufacturers and users in industry and the

Federal Government.

The present publication represents a report to the DDL community from

the CODASYL DDLC on the development of a common DDL through June 1973.

The National Bureau of Standards is pleased to have the opportunity

to make this information available through publication as an NBS

Handbook.

R. M. Davis, Director

Institute for Computer

Sciences and Technology

ABSTRACT

This Journal of Development reports the work of the CODASYL Data Descrip¬

tion Language Committee. The Committee was assigned the tasks of estab¬

lishing "ways to aid the functions of data administration and systems

administration". The Committee's charter included, "the provision of

specifications for the declarations required to establish and maintain

data base structures". As a step towards this purpose, the Journal con¬

tains three sections which treat the Background and History of the Data

Description Language Committee, Major Concepts, and the specifications

of the Data Description Language. The Committee based its work, in

part, on the 1971 report of the Data Base Task Group Report.

The approved Data Description Language specifications contain the syntax

and semantic rules that permit the description of the structure and con¬

tents of a data base in a language independent of, but common to, many

other high level programming languages. The language specifications

will have a significant impact on the development of functionally com¬

patible data base management systems and will increase the portability

of programs between different computer systems.

Though not part of the approved language specifications, the presen¬

tation of the major concepts will help in the understanding of the

specifications. Similarly, the background and history information will

help explain the evolutionary growth of the Data Description Language.

Key words: COBOL; CODASYL; Data Base Administration; Data Base Manage¬

ment; Data Base Task Group; Data Description Language.

IV

TABLE OF CONTENTS

SECTION 1.

SECTION 2.

SECTION 3.

INDEX

Page

PREFACE, BACKGROUND AND HISTORY.1.1

MAJOR CONCEPTS.2.1

THE DATA DESCRIPTION LANGUAGE.3.1

Note: Each of the above sections is prefaced by its
respective table of contents.

v

TABLE OF CONTENTS

SECTION 1. PREFACE, BACKGROUND AND HISTORY Page

1.1 PREFACE.1.2

1.2 BACKGROUND AND HISTORY.1.4

1.1

1.1 PREFACE

It is the pleasure of the Conference on Data Systems Languages

(CODASYL) to present this, the first Journal of Development of

its Data Description Language Committee. It is important to

note that these language specifications are the result of a

truly international effort on the parts of many dedicated people

and of their respective companies.

We must also point out that this report constitutes but a first

step in the development of a common data description language,

independent of, but common to, many other high-level programming

languages. The CODASYL organization and its Data Description

Language Committee is fully committed to sustained improvement

of these specifications through maintenance and extension as user

and implementor alike learn more about the field of integrated

data structures and their impact upon the information processing

industry. Because of this commitment, we invite your comments

and participation in this endeavor, while we pledge our support

and cooperation to you in defining viable interfaces with other

languages.

As you apply these specifications, remember that only Chapter III

of the Journal contains "language specifications" and that any

constraints implied or stated in Chapter II (Concepts) are not

to be interpreted as "CODASYL approved” unless also stated or

implied in Chapter III.

Release of this Journal of Development as a Type A release re¬

quires inclusion of the following disclaimer.

The reader is hereby notified that the following

language specification has been approved by the

Data Description Language Committee but may be a

partial specification which relies on information

appearing in many parts of the total specification.

These specifications are dynamic in nature, and the

changes reflected by this approved change may not

correspond with the latest specification available.

Because of the evolutionary nature of these specifi¬

cations, the reader is further reminded that changes

are likely to occur in the specifications released

herein prior to a complete republication of the Data

Description Language Journal.

1.2 June 1, 1973

Anyone reproducing this release is requested to re¬

produce this preface and to include on each sub¬

sequent page a reference to the preface.

Please address any comment, proposal, or working paper on the

subject to:

Chairman, D.D.L.C.

CODASYL

Box 124

Monroeville, Pa. 15146

J. L. Jones, Chairman

Executive Committee

Conference on Bata Systems Languages

June 1, 1973 1.3

1.2 BACKGROUND AND HISTORY

THE BACKGROUND TO AND HISTORY OF THE

CODASYL DATA DESCRIPTION LANGUAGE COMMITTEE

On April 8, 1959, a small group of computer users and
manufacturers, meeting at the University of Pennsylvania to
review recent language developments in the area of business
applications, concluded that the development of specifications
for a machine independent common language for business problems
might be feasible. The group asked the Department of Defense
to host a meeting at which both the feasibility and desirability
of a common business oriented language could be considered.

On May 28 and 29, 1959, over 40 representatives from users in
private industry and in government, computer manufacturers, and
other interested parties, met at the Pentagon. The group agreed
that a major problem in the efficient utilization of electronic
data processing equipment was the inability to state the data
processing application in such a way that computer programs
could be developed and maintained with a minimum of time and
programming effort. With the goal of solving this problem in
mind, the group agreed that the development of specifications
for a common business oriented language was both desirable and
feasible. At this meeting the concept of the Conference on Data
Systems Languages (CODASYL) was agreed upon. CODASYL was
established as (and is currently) an informal and voluntary
organization of interested individuals, supported by their
institutions, who contribute their efforts and expenses towards
the ends of designing and developing techniques and languages
to assist in data systems analysis, design, and implementation.

Three CODASYL committees were agreed upon at the May, 1959,
meeting, and an executive committee was established to coordinate
the work of the three. The formation of three committees was
the result of differing points of view regarding the objectives
of CODASYL. The group of representatives which became the Short
Range Committee felt that the immediate need for a common
language necessitated working within the state of the art as it
then existed to develop the specifications for the language. A
second view, which formed the basis for an Intermediate Range
Committee and a Long Range Committee, was that a better
understanding of the problems of data processing programming
was necessary before a common language could be proposed.

The Short Range Committee, although initially assigned the task
of studying existing business compilers and the experience of
users of these compilers, developed the initial specifications

1. 4 June 1, 1973

for a Common Business Oriented Language (COBOL). In I960, a
COBOL Maintenance Committee was organized to make additions,
clarifications, and changes to the language specifications, and
to guide users and implementors of the language. The Maintenance
Committee consisted of users’ and manufacturers' groups which
met both separately and jointly. In 1961 portions of the
Intermediate and Long Range committees were combined by the
Executive Committee to form the Development Committee comprised
of a Systems Group and a Language Structures Group. These groups
worked on the development of both languages and data processing
techniques. "Decision Table Structured Language" produced by
the Systems Group, and "Information Algebra", produced by the
Language Structures Group, are examples of the type of work done
by the Development Committee.

In January, 1964, the COBOL Maintenance Committee was reorganized
to broaden its scope of activities. The separate user and
manufacturer groups were combined into the COBOL Committee of
three subcommittees: Language, Evaluation, and Publication.
The work of the former COBOL Maintenance Committee was assumed
by the Language Subcommittee. Additionally, the COBOL Language
Subcommittee maintained liaison with the United States of America
Standards Institute (USASI) and the International Organization
for Standardization (ISO) in their development of COBOL
Standards. The Publication Subcommittee was responsible for
the production of official COBOL publications and liaison with
USASI regarding the COBOL Information Bulletin (CIB). The
Evaluation Subcommittee analyzed and evaluated implementations
and user activities. In April, 1965, the Development Committee
was reorganized as the Systems Committee and the Language
Structures Committee. These two committees continued the work
of developing languages and techniques.

In July, 1968, the Executive Committee reorganized the entire
structure of CODASYL committees. The reorganization produced
three standing committees: the Programming Language Committee
(PLC), the Planning Committee, and the Systems Committee. These
three committees exist currently. The purpose and objective of
the Systems Committee is to build an expertise in, and to develop
advanced languages and techniques for, data processing, with
the aim of automating the processes of system analysis, design
and implementation. The purpose and objective of the Planning
Committee is to aid in CODASYL planning by gathering,
assimilating and disseminating information from implementors
and users pertaining to the goal of CODASYL. The purpose and
objective of the Programming Language Committee is to develop
programming language specifications which facilitate compatible
and uniform source programs and object results, with continued
reduction in the number of changes necessary for conversion or
interchange of source programs and data. The PLC concentrates
its efforts in the area of tools, techniques and ideas aimed at
the programmer. The purpose and objectives of the COBOL Language

June 1, 1973 1.5

Subcommittee were assumed and extended by the PLC, which is
responsible for the COBOL Journal of Development. The Executive
Committee coordinates the activities of all standing committees
and directs them in accomplishing the purpose of CODASYL.

At the June, 1965, meeting of th
W. G. Simmons of the United Stat
that "list processing" be added
future developmental work, and v
force for the work. The first m
Task Force was held in October,
assumed the responsibility for t
paper on the topic. In November
to the subcommittee the proposal
Mass Storage" (USS-011165.00).
justification for the use of lis
management, and suggested the ch
language specifications to accom
for defined chain relationships.

e COBOL Language Subcommittee,
es Steel Corporation suggested
to the agenda as a topic for
olunteered to organize a task
eeting of the List Processing
1965; at this meeting Mr. Simmons
he preparation of a working
, 1965, Mr. Simmons presented
"List Processing Extension to

The proposal detailed
t processing techniques in file
anges and additions to the COBOL
modate processing techniques

In March, 1966, the second meeting of the List Processing Task
Force was held, and in May, 1966, Mr. Simmons was appointed
chairman of the task force. The List Processing Task Force met
regularly to solicit the opinions of interested parties, to
examine many data base and file systems, and to produce working
papers at all levels of detail from functional requirements to
draft language specifications. In May, 1967, the List Processing
Task Force voted to change its name to the Data Base Task Group
(DBTG). Because the membership of the group changed constantly,
a major amount of the DBTG's efforts was directed toward
listening to and studying the views of as many persons as
possible. Although the latter direction of effort affected the
progress rate of the group, the direction was deemed a necessary
aspect of the group's undertaking. The Integrated Data Store
work by C. W. Bachman of General Electric Company and the
Associative Programming Language work by G. G. Dodd of General
Motors Research Laboratories were inspirational to much of the
early work done by the DBTG.

In an effort to solicit endorsement of the DBTG objectives, and
to solicit recommendations and/or guidance for future work, the
DBTG presented to the COBOL Language Subcommittee, in January,
1968, an interim report entitled "COBOL Extensions to Handle
Data Bases". At this joint meeting the DBTG presented a program
which included an introduction to data base by Mr. Simmons, a
history of Integrated Data Store by Mr. Bachman, and an
introduction to data structures by Mr. Dodd. Discussion
following the program revealed a consensus that the structure
of a data base should be included in COBOL. The COBOL Language
Subcommittee was directed to review the DBTG interim report in
preparation for a joint meeting February 28, 1968.

1.6 June 1, 1973

During the February meeting the COBOL Langauge Subcommittee
approved, for public distribution, the interim report by the
DBTG. The report was subsequently published as a joint
newsletter by the Special Interest Groups for Business Data
Processing and for Programming Languages of the Association for
Computing Machinery (ACM). The subcommittee requested that the
DBTG produce functional and language specifications, and
incorporate its specifications into the COBOL specifications.
Following the joint session, a straw vote taken by the
subcommittee showed the majority of members agreed to the
statement, "COBOL needs the Data Base concept." Shortly after
the February, 1968, meeting, G. Durand of Southern Railway System
replaced Mr. Simmons as Chairman of the DBTG, and remained
Chairman until his resignation at the end of 1968. In January,
1969, A. Metaxides of Bell Telephone Laboratories was appointed
Chairman. In the interests of continuity, membership on the
DBTG became stabilized and the group capitalized on its earlier
research as it worked under the direction of Mr. Metaxides toward
producing the functional and language specifications for the
incorporation into COBOL of a data base structure.

At the Tenth Anniversary Conference of CODASYL held in May,
1969, CODASYL reaffirmed its role in bringing about the design,
development and specification of common data systems languages
appropriate to user needs and feasibility. At the meeting
CODASYL specified the following items as its policy and
objectives in areas needing immediate attention.

1. The development, design, and specification of common
languages should be separated from the establishment of
standards. In addition to continuing its work on COBOL,
CODASYL will do development, design and specification of
other common user languages.

2. Information on CODASYL activities will be disseminated
much more broadly. The anniversary meetings of CODASYL
will be continued on an annual basis in Washington, D.C.
in May.

3. CODASYL will continue to work on improving and extending
COBOL to further enhance its greater utility.

4. CODASYL recognizes that COBOL should be extended to permit
procedural interaction with environmental subjects such
as dynamic scheduling and other job control features.

5. It was pointed out at the Tenth Anniversary meeting that
the achievement of commonality is conditioned by the
variation in implementation of compilers and that some
level of uniformity must be established. CODASYL
recognizes this need and feels that it is within the

June 1, 1973 1.7

established national service responsibilities of the
National Bureau of Standards.

6. A common data definition
independence from data is
This language must have t

a. Specify the physical
been stored,

b. Specify the logical o
complex structures,

language to achieve program
needed and will be developed

he ability t o:

descript ion of data as it has

rganization of data for more

c. Modify the stored representation of the physical and
logical data description without unnecessarily
affecting the programs processing the original data.

The COBOL Data Division will be investigated as a base
for the development of a common data definition language.
Representatives interested in FORTRAN, PL/T, ALGOL,
JOVIAL, etc., are to be invited to participate in the
design and constructive review of this common data
definition language.

7. CODASYL will pursue the development, design and
specification of a generalized and independent common
data base management language. This language is conceived
to be one which allows maintenance of and retrieval from
a data base with the user specifying only what is wanted
and not how it is to be accomplished.

8. The work of the Data Base Task Group will be reviewed
and the elements that are of a data manipulative
(procedural) nature will be used to extend COBOL
capabilities in handling of data bases. Those elements
of this work that relate to data definition will be used
with the COBOL Data Division to provide a basis for the
common data definition language.

9. Due to the favorable response to the ’’Survey of
Generalized Data Base Management Systems” published by
the Systems Committee, CODASYL will continue to prepare
and publish reports on areas of professional interest.

At the Tenth Anniversary Meeting, consideration was given the
idea of separating the data description and data manipulation
languages. Proponents of the idea suggested that a separation
would allow data bases described by a data description language
to be independent of the host languages used for processing the
data. The idea received wide endorsement at the meeting and
was the basis of the direction of efforts by the DBTG from May,
1969, to October, 1969, at which time the group presented to

1.8 June 1, 1973

the CODASYL Programming Language Committee the October 1969 DBTG
Report.

The October 1969 DBTG Report presented the recommendations of
the Data Base Task Group to its parent committee. The
recommendataions detailed the semantics and syntax of a Data
Description Language and a Data Manipulation Language. The Data
Description Language specified in the report is a language for
describing a data base. The Data Manipulation Language is a
language which, when associated with the facilities of a host
language such as COBOL, PL/I, ALGOL, JOVIAL, FORTRAN ..., allows
manipulation of data bases descr^ bed by the Data Description
Language. It was the hope of the DBTG, when submitting the
October 1969 DBTG Report, that the Data Description Language
ultimately would form the basis of an industry standard and that
individual host languages would interface with it. The Report
recommended that CODASYL form a standing committee to maintain
and further develop the Data Description Language.

The semantics and syntax of the Data Manipulation Language
detailed in the October 1969 DBTG Report were proposed not only
as an extension to COBOL, but also as a prototype of the
manipulative capabilities required in a host language. The Data
Base Task Group held that the proposals contained in the October
1969 DBTG Report were applicable not only to COBOL, but to a
number of other host languages. Thus the DBTG recommended
immediate distribution of the report to the computing community.

The following organizations, as members of the Data Base Task
Group, contributed to the preparation of the October 1969 DBTG
Report:

Allstate
Bell Telephone Laboratories
B urroughs
General Electric
General Motors Research Laboratories
Honeywell
International Business Machines Corporation
National Bureau of Standards
The NCR Co.
RCA
Southern Railway System
Travelers Insurance
United States Steel
UNIVAC
URS Systems Corporation

(Inclusion in the above list does not necessarily imply that
the organization endorsed the Report.)

June 1, 1973 1.9

The October 1969 DBTG Report was reviewed at the December, 1969,
meeting of the Programming Language Committee. Mr. Metaxides
presented and discussed various documents of comments on the
DBTG Report and the IBM Minority Report. The Programming
Language Committee approved the DBTG Report for publication and
included in the Report a request for proposals for
clarifications, change, etc. The Report was published as a Type
B release. (A Type B release is a document which does not
represent language specifications and is made available with
the permission/approval/support of the committee of CODASYL for
consideration and study by the computing community. The views
presented do not necessarily reflect those of the members of
CODASYL, the committee, or the sponsors of committee members.)
The October 1969 DBTG Report was published on behalf of CODASYL
by the Association for Computing Machinery, and over 3000 copies
were distributed in the United States. The Report was published
in Europe by the British Computer Society and by the
International Federation for Information Processing (IFIP)
Administrative Data Processing Group (IAG).

From the time of publication of the October 1969 DBTG Report to
April, 1971, 179 proposals for changes and extensions to the
report were acted upon by the Data Base Task Group. 130 of
these proposals were accepted and incorporated in the next DBTG
report, the April 1971 DBTG Report. The member organizations
of the Data Base Task Group at the time the April 1971 DBTG
Report was presented to the Programming Language Committee were:

Bell Telephone Laboratories
B. F. Goodrich Chemical Company
Computer Sciences Corporation
Control Data Corporation
Equitable Life Assurance Society
General Motors Research Laboratories
Honeywell Information Systems
International Business Machines Corporation
International Computers Limited
Montgomery Ward
The NCR Co.
RCA Corporation
United States Navy
UNIVAC

(Inclusion in the above list does not necessarily imply that
the organization endorsed the Report.)

The April 1971 DBTG Report was reviewed at the May, 1971, meeting
of the CODASYL Programming Language Committee. IBM and RCA
presented qualifying statements opposing endorsement of the
Report. The following series of motions, which were passed by
the PLC during the discussion of the Report, reflect the action
taken at the meeting.

1. 10 June 1, 1973

"Moved that PLC should review the Schema portion of the DBTG
Report for the purpose of possible recommendation to the
CODASYL Executive Committee for publication as a stand alone
document separate from COBOL.”

"Moved that PLC recommend that the CODASYL Executive
Committee establish an organization separate from PLC to
prepare, review and maintain the document describing the
Schema for separate publication.”

"Moved that the PLC finds the report of the DBTG meets PLC's
requirements for a data base facility and directs that the
description of the functions (Subschema and DML) described
in the DBTG Report be converted to a form conforming to that
specified in the Publications Guidelines regarding proposals
to the CODASYL COBOL Journal of Development.”

"Moved that the Subschema and DML portion of the DBTG Report
(PLC item 7102, DBTG - 71001) be referred to the DBTG for
modification in accordance with the previous motion."

The April 1971 Report was published on behalf of CODASYL in the
United States by the Association for Computing Machinery. The
Report was published in Europe by the British Computer Society
and by the International Federation for Information Processing
Administrative Data Processing Group.

The Executive Committee accepted the recommendation of the PLC
to establish an organization separate from the Programming
Language Committee to prepare, review, and maintain the document
describing the Schema for separate publication. In a press
release dated June, 1971, CODASYL announced its intention to
form the Data Description Language Committee (DDLC), a standing
committee independent of, and egual in status to the Programming
Language Committee. In the press release, the Executive
Committee announced the following objective of the DDLC:

"The new committee (i.e., DDLC) is charged with finalizing
the specifications for a common DDL independent of any high
level programming language. The committee's work, which
will be based on the April, 1971 DBTG Report (in particular
sections 1, 2, and 3) is seen as an evolutionary process
much like the development of COBOL."

In July, 1971, the Data Base Task Group established subgroup,
the DBTG Publication Group, held its first meeting to begin
working toward the goal of converting the Subschema and DML
specifications in the April 1971 DBTG Report to a proposal for
change to the CODASYL COBOL Journal of Development (JOD). In
December, 1971, the DBTG Publication Group became the Data
Manipulation Language Task Group (DMLTG) of the PLC. The DMLTG
was given responsiblity for completion of the PLC proposal which

June 1, 1973 1.11

would add a data base facility to the COBOL JODf and for liaison
with the Data Description Language Committee. The D3TG retained
its responsiblity for reviewing the work of the DMLTG, and
developing long-range extensions to the COBOL Data Base Facility.
The names of the task groups were subseguently changed, the
DMLTG to the Data Base Language Task Group, and the DBTG to the
Data Rase Concepts Task Group.

The inaugural meeting of the CODASYL Data Description Language
Committee (DDLC) was held November 30, 1971. Under the
chairmanship of a former PLC Chairman, R. Kurz of NCR, currently
of Southern Railway System, the committee prepared the proposed
charges to the CODASYL Constitution to accommodate the
organization of the Data Description Language Committee, and
the Data Description Language Committee Bylaws. Among the
changes recommended by the DDLC to the CODASYL Constitution was
inclusion of the following purpose of the DDLC:

"The CODASYL DDLC strives to establish ways to aid the
functions of data administration and systems administration.
This includes the provision of specifications for the
decxarations required to establish and maintain data base
structures."

At the second meeting of the DDLC January 26-27, 1972, the
committee amended and approved the changes to the CODASYL
Constitution and the DDLC Bylaws, and proposed short and long
range goals of the DDLC. Section 3 of the April 1971 DBTG Report
was accepted by the DDLC as its "base document". In February,
1972, the CODASYL Executive Committee approved the changes to
the CODASYL Constitution and the DDLC Bylaws.

At the third meeting of the DDLC March 14-15, 1972, the committee
identified and agreed to the following objectives which are
listed in order of importance.

1. The DDLC shall publish its language specification in a
Journal of DDL Development akin to the Journal of COBOL
Development published by PLC.

2. The DDLC shall maintain and extend its language
specifications, i.e., the DDL. In this work the DDLC is
applying to the base document its formal procedures for
considering proposals to change its own language
specifications.

3. In order to develop, maintain and extend the formal
language specifications, the DDLC will investigate certain
related areas. These investigations may lead to published
documents separate from the Journal of DDL Development.
Currently the following areas are being investigated.

1.12 June 1, 1973

a. The purpose of the DDL in terms of its environment
and possible methodologies for its use.

b. Coordination with existing high level languages to
determine, in particular, what special constraints
on the DDL arise (i* any).

4. The following areas have been classified as longer-term
objectives.

a. The definition of generic functional terms for DDLs.

b. Establishing guide lines for those wishing to
establish a subset of the DDL.

c. The definition of restructuring facilitie
DDL for application to a data base.

d. Further development of the concept of a s
and the necessary DDLs.

e. The relation between the DDL and self-con
manipulative capabilities.

f. Investigation of possible changes to the
documents meta-language and syntax.

Since the fourth meeting of the DDLC in May, 1972, t
worked toward accomplishment of its first objective,
preparation of this Data Description Language Journa
Development. To produce this document within a deci
frame, the DDLC limited its efforts primarily to cla
of, rather than extension to, the base document. Th
operation of the DDLC during the preparation of the
Development was, and currently is, based upon the su
and consideration of working papers, and change prop
directed toward the base document.

s in the

ubschema

tained data

base

he committee
the

1 of
ded time
rification
e mode of
Journal of
bmission
osals

This Data Description Language
currently the base document of
Committee. Working papers and
to the DDLC by individuals who
activity including that of the
proposal format is mandatory,
applied to proposal context:

Journal of Development is
the Data Description Language
change proposals may be submitted
do not participate in any CODASYL
DDLC. Although no specific

the following guidelines are

1. Proposals made to specific points must cite all specific
references.

2. Proposals of general nature should cite at least some
specific instances.

June 1 1973 1.13

?. Sufficient justification and motivation should be
contained in the proposal to point out what the problem
appears to be and why this proposal is a solution.

4. The proposal should include recommended specification
changes with specific references where necessary.

Data Description Language Committee formal meetings are held
every two months for a minimum of three days. Membership on
the Data Description Language Committee is institutional in
nature and resides in an organization rather than an individual.
Membership is based upon the sponsoring institution's expressed
support of CODASYL objectives and upon the availability of a
suitable vacancy within the established membership limitation
of 25. Any institution committed to using or implementing any
language with an element of data description may apply to the
Chairman of the Data Description Language Committee for
membership. The structure of the committee is such that neither
those members representing institutions considered to be
primarily in the category of implementor nor those members
representing institutions considered to be primarily in the
category of user shall comprise two-thirds or more of the
membership, and an institution may not have more than one
membership.

Current member organizations of the Data Description Language
Committee are:

Air Force Data Systems Design Center
Bell Telephone Laboratories
B. F. Goodrich Chemical Co.
Burroughs Corporation
Cincom Systems, Inc.
Control Data Corporation
Defense Communications Agency
Department of the Navy
Fireman's Fund American Insurance Co.
General Electric Company
General Motors Research Laboratories
Honeywell Information Systems Incorporated
International Business Machines Corporation
International Computers Limited
The MITRE Corporation
National Bureau of Standards
The NCR Co.
The Ohio State University
Philips-Electrologica, B.V.
Scientific Control Systems Limited
Southern Railway System
Sperry Univac Corporation
The University of Michigan
Xerox Corporation

June 1, 1. 14 1973

Table of Contents

SECTION 2. MAJOR CONCEPTS Page

2.1 SCOPE AND PURPOSE.2.3

2.2 TERMINOLOGY2.5
2.2.1 Schema DDL2.5
2.2.2 Subschema DDL...2.6
2.2.3 The Data Manipulation Languages (DML) 2.6

2.3 CONCEPTUAL FRAMEWORK.. ..2.7
2.3.1 Example ..2.7
2.3.2 The Schema and Device Independence. . 2.9
2.3.3 The Schema and the Subschema 2.9
2. 3.3.1 Schema vs. Subschema 2.9
2.3.3.2 Variations Between the Schema and Subschemas . . 2.10
2.3.4 The Schema and the DML. 2.11
2.3.5 System Support Functions. 2.12
2.3.6 Facilities for Data Administration 2.13
2.3.7 Data Base Procedures. 2.14
2.3.8 Representation of Data Structures . . . 2.15
2.3.8.1 Introduction . 2.15
2.3.8.2 Sequential Data Structures 2.16
2.3.8.3 Trees. 2.16
2.3.8.4 Cycles 2.19
2.3.8.5 Networks 2.21

2.4 DDL FACILITIES. 2.23
2.4.1 Areas. 2.23
2.4.2 Records. 2.23
2.4.2.1 Record Description Facilities of the Schema DDL 2.23
2.4.2.2 Placement Control 2.26
2.4.2.2.1 Data Base Keys. . 2.27
2.4.2.2.2 Within.2.27
2.4.2.2.3 Location. 2.28
2.4.3 Sets.2.28
2.4.3.1 Characteristics of Sets .. 2.28
2.4.3.2 Ordering of Sets. 2.29
2.4. 3.3 Indexed Sets and Search Keys.2.30
2.4.3.4 Set Membership ..2.30
2.4.3.5 Maintenance of Set Relationships 2.31
2.4.3.6 Set Selection . 2.32
2.4.4 Protection of Data. 2.32
2.4.4.1 Privacy of Data.2.33
2.4.4.2 Integrity of Data. . 2.34

June 1 1973

2. 0 MAJOR CONCEPTS

2. 1 SCOPE AND PURPOSE

This Journal of Development contains a specification of a
language to describe the structure and contents of a data base.
This description is called a schema. The schema language
represents one of several languages which data base designers,
implementors and users will employ. Other languages include
current procedural programming languages, for example, COBOL
and FORTRAN, data manipulation languages, device media control
languages, and languages to control the execution of work (data
processing) on a computer system. The current procedural
programming languages must contain the following elements to be
used with a schema language controlled data base:

• A subschema language to describe a subset of the schema
which is of interest to a particular application program.
A subschema enables an application program to deal with a
subset of the data in the data base. The subschema may also
vary in certain respects from the schema with respect to
particular elements in the data base.

• A data manipulation language (DML) used at execution time
to handle all program interfaces to the data base.

The subschema language specifications and the DML specifications
are outside the scope of this Journal. Where they are treated
as extensions of a procedural programming language, they reflect
the syntax and other characteristics of their ’’host”.

In order to create and process data it is necessary to describe
to the computer system the mapping of the data onto physical
storage media. This is accomplished through a device media
control language (DMCL). Specifications for a DMCL are not
included in this Journal.

In order to execute work on a computer, including processing a
data base, it is ne- essary to have a language to specify control
of the work to be done. Such a language is commonly called a
job control language. Specifications for a job control language
are not included in this Journal.

These are a minimum set of languages for a data base system as
envisaged in this Journal, and for which this schema language
is intended. Other languages (for example, those of the
functional, end user oriented type known as self contained
languages) could also interface with a data base described by
this schema language.

’’’he schema language is a specification of a common data
description language (DDL) which is independent of, but common

2. 3 June 1, 1973

to the other languages required for a data base system. It is
expected that the schema DDL will have a significant impact on
the development of functionally compatible data base management
systems and will increase the portability of programs between
different computer systems. While the widespread adoption of
the schema DDL will not of itself fully achieve this objective,
it does lay the foundation for the development and adoption of
common subschema and data manipulation languages. The net result
would be an increase in the portability of source programs. The
portability of physical data base representations is not dealt
with in this Journal.

2. 4 June 1 1973

2. 2 TERMINOLOGY

2.2.1 SCHEMA DDL

The schema DDL is used for describing a DATA BASE, which may be
shared by many programs written in many languages. This
description is in terms of the names and characteristics of the
DATA ITEMS, DATA AGGREGATES, RECORDS, AREAS, and SETS included
in the data base, and the relationships that exist and must be
maintained between occurrences of those elements in the data
base.

A DATA ITEM is an occurrence of the smallest unit of named data.
It is represented in a data base by a value.

A DATA AGGREGATE is an occurrence of a named collection of data
items within a record. There are two kinds: vectors and
repeating groups. A vector is a one dimensional sequence of
data items, all of which have identical characteristics. A
repeating group is a collection of data that occurs a number of
times within a record occurrence. The collection may consist
of data items, vectors, and repeating groups.

A RECORD is an occurrence of a named collection of zero, one,
or more data items or data aggregates. This collection is
specified in the schema DDL by means of a Record Entry. Each
Record Entry in the schema for a data base determines a record
type, of which there may be an arbitrary number of record
occurrences (records) in the data base. For example, there
would be one occurrence of a record of type PAYROLL-RECORD for
each employee.

A SET is an occurrence of a named collection of records. The
collection is specified in the schema DDL by means of a Set
Entry. Each Set Entry in the schema for a data base determines
a set type, of which there may be an arbitrary number of set
occurrences (sets) in the data base. Each set type specified
in the schema may have one record type declared as its owner
record type, and one or more other record types declared as its
member record types. Each set must contain one occurrence of
its defined owner record type and may contain an arbitrary number
of occurrences of each of its defined member record types. For
example, if a set type QUALIFICATIONS was defined as having
owner record type EMPLOYEE and member record types JOB and SKILL,
each occurrence of set type QUALIFICATIONS must contain one
occurrence of record type EMPLOYEE, and may contain an arbitrary
number of occurrences of record types JOB and SKILL.

An AREA is a named collection of records which need not preserve
owner/member relationships. An area may contain occurrences of
one or more record types, and a record type may have occurrences
in more than one area. A particular record is assigned to a

June 1, 1973 2. 5

single area and may not migrate between areas. An area may
optionally be declared to be temporary. Temporary areas are
local to a run unit, that is, they are created for that run
unit, cannot be accessed by other run units, and disappear when
the run unit terminates.

A SCHEMA
of a dat
of the a
and data
to the d
developi

consists of DDL entries and is a complete description
a base. It includes the names and descriptions of all
reas, set types, record types and associated data items
aggregates as they exist in the data base and are known

ata base management system (DBMS). The DDL for
ng a schema appears in Section 3.

A DATA BASE consists of all the records, set
are controlled by a specific schema. If an
multiple data bases, there must be a separat
data base. Furthermore, the content of diff
assumed to be disjoint.

s and areas which
installation has
e schema for each
erent data bases is

2.2.2 SUBSCHEMA DDL

In addition to the schema declarations, it is expected that each
program will have access to a description of those areas, set
types, record types, data items, and data aggregates of interest
to it. Such a description is termed a subschema, and is not
specified in this Journal.

2.2.3 THE DATA MANIPULATION LANGUAGES (DML)

A PROGRAM is a set or group of instructions.

A RUN UNIT is an execution of one or more programs.

A DATA MANIPULATION LANGUAGE (DML) is a language which the
programmer uses to cause data to be transferred between his run
unit and the data base. It is the intent of this DDL to provide
a data structure suitable for multiple DML's. To date, the DML
of the April ’71 DBTG Report is the only specific DML specified
by CODASYL. The DBTG DML is not a complete language by itself.
It relies on a host language to provide a framework for it and
to provide the procedural capabilities required to manipulate
data.

^he USER WORKING AREA (UWA) is conceptually a loading and
unloading zone where all data provided by the DBMS in response
to a caJ1 for data is delivered and where all data to be picked
up by the DBMS must be placed. Each data item included in the
subschema will be assigned a location in the UWA and may be
referenced by the programs by its name as declared in the
subschema.

2.6 June 1, 1973

I CONCEPTUAL FRAMEWORK 2. 1

2.3.1 EXAMPLE

This Journal is not a complete specification for a DBMS.
However, it may be helpful to an understanding of the DDL to
conceptualize a complete system. The system presented is for
pedagogic purposes only and is illustrated by Diagram 1.

The numbered arrows in Diagram 1 trace a call for data by
run-unit-1 and are explained in the following. Calls for data
by other run units may be handled concurrently by the DBMS, but
this is not shown in the diagram.

' 1' using the DML statements, the run unit makes a call for
data to the DBMS.

'2' the DBMS analyzes the call and supplements the arguments
provided in the call itself with information provided by
the schema for the data base, and the subschema referenced
by the run unit originating the call.

3 on the basis of the call for its services and information
obtained from the schema and subschema, the DBMS reguests
physical I/O operations, as required to execute the call,
from the Operating System.

'4' the Operating System interacts with the storage media
containing the data base.

•51 data is transferred between the data base and the system
buffers.

6 the DBMS transfers data, as required to fulfill the call,
between the system buffers and the UWA of the run unit
originating the call. Any required data transformations
between the representation of the data as it appears in
the data base (as declared in the schema) and the
representation of the data as it appears in a run unit's
UWA (as declared by the subschema) are handled by the
DBMS.

'7' the DBMS provides status information to the run unit on
the outcome of its call, for example, error indications.

'8' data in a run unit's UWA may be manipulated as required,
using the facilities in the host language.

'9' the DBMS administers the system buffers. The system
buffers are shared by all run units serviced by the DBMS.
Run units interact with the system buffers entirely
through the DBMS.

June 1, 1973 2.7

CONCEPTUAL DATA BASE MANAGEMENT SYSTEM

DIAGRAM 1

2.8 June 1, 1973

I

2.3.2 THE SCHEMA AND DEVICE INDEPENDENCE
I

No schema DDL entry includes references to the physical devices
or media space. Thus, a schema written using the schema DDL is
a description of the data base which is not affected by the
devices and media used to store the data. The data base may,
therefore, be stored on any combination of storage media which
are supported in a particular DBMS. Some devices, such as
magnetic tape, because of their seguential nature, may not allow
full advantage to be taken of the facilities included in the
DDL. Such devices are not precluded, however, and may be
perfectly adequate for some of the data.

2.3.3 THE SCHEMA AND THE SUBSCHEMA

2.3.3.1 SCHEMA VS. SUBSCHEMA

The concept of separate schema and subschema allows the
separation of the description of the entire data base from the
description of portions of the data base known to individual
programs. The concept is significant from several points of
view:

• An individual programmer need not be concerned with the
universe of the entire data base, but only with those
portions of the data base which are relevant to the program
he is writing. Since the data base may contain data which
is relevant to, and shared by, multiple applications, this
may ease the writing, debugging, and maintaining of programs.

• A run unit is limited to that portion of the data base that
is known to it via its subschema. Therefore, the rest of
the data base is insulated to a large extent from that run
unit.

• A measure of data independence is provided for programs in
that certain changes may be made to the schema for the data
base, and the data base adjusted accordingly, without
affecting existing programs using that data. This is
possible because the subschema may vary in certain important
aspects from the schema on which it is based and because
programs are only dependent on the subschema. The degree
of data independence achieved is entirely dependent on the
capabilities of the DBMS for mapping between the schema and
subschema data descriptions.

• A common language may be specified for defining a data base
while allowing that part of the data base known to a program
to be described in a manner which is oriented towards the
conventions of the language in which that program is written.
This permits the use of several languages, chosen on the

June 1, 1973 2.9

basis of their suitability to a problem to be solved, to
process the same data base.

2.3.3.2 VARIATIONS BETWEEN THE SCHEMA AND SUBSCHEMAS

While it is not the intent of this Journal to specify the details
of a subschema DDL, either explicitly or implicitly, some
possible variations are worth noting. For example in a
subschema:

• At the data item level:

a. Descriptions of specific data items may be omitted.

b. Privacy locks may be changed.

c. The characteristics of data items may be different.

d. The ordering of data items may be changed.

• At the data aggregate level:

a. Descriptions of specific data aggregates may be
omitted.

b. Privacy locks may be changed.

c. The ordering of data aggregates may be changed.

d. Vectors may be redefined as multi-dimensional arrays.

e. Data items or data aggregates may be selected and
given a group name.

f. Additional structure mapping may be provided by the
facilities of a particular subschema DDL.

• At the record level:

a. Descriptions of specific record types may be omitted.

b. Privacy locks may be changed.

c. Descriptions of new record types composed of data
items from other record types may be introduced.

• At the set level:

a. Descriptions of specific set types may be omitted.

2. 10 June 1, 1973

b. Privacy locks may be changed.

c. Different set selection criteria may be specified.

d. Descriptions of specific member record types may be

omitted.

• At the area level:

a. Descriptions of specific areas and the included
records may be omitted, while other occurrences of
the same record type are included.

b. Privacy locks may be changed.

^he following additional points are important to an understanding
of the concepts of schema and subschema.

• An arbitrary number of subschemas may be declared on the
basis of any given schema.

• The declaration of a subschema has no effect on the
declaration of any other subschema and subschemas may overlap
one another.

• A user program references a subschema.

• The same subschema may be referenced by an arbitrary number
of programs.

• Only the areas, records, data items, and sets described in
the subschema referenced by a program may be used by that
program.

• A program references a subschema that is consistent with
its source language.

2.3.4 THE SCHEMA AND THE DML

The relationship between the DDL and a DML is the relationship
between declarations and procedure. The declarations impose a
discipline over the executable code and are to some extent
substitutes for procedures written in the DML and the host
language.

In order to specify the relationship between DDL declarations
and DML functions a set of basic data manipulation functions
must be defined which is DML and host language independent.
Specific commands provided by a particular DML must be resolved
into those basic functions. The resolution is defined by the
implementor of the DML.

June 1 1973 2. 11

The basic data manipulation functions assumed in these
specifications include the functions required to:

• Select records.

• Present records to the run unit.

• Add new records and relationships.

• Change existing records and relationships.

• Remove existing records and relationships.

2.3.5 SYSTEM SUPPORT FUNCTIONS

In addition to the conceptual framework described above, the
specifications for a complete DBMS should include descriptions
and language specification for:

• The utility or service routines which are required to support
a data base in day to day operations. Examples of such
routines are:

a. Dump, edit, and print routines

b. Load routines

c. Preconditioning routines

d. Garbage collection routines

e. Statistical gathering and analysis routines

f. Compare routines

• The data base recovery routines including activity logging,
checkpoint and rollback.

• A language which permits modification of a schema or
subschema and causes the changes to be reflected in the data
base itself. Without such a language, changes to the schema
can only be made by developing an entirely new schema and
restructuring the data base in accordance with the new
schema.

• The assignment of data to devices and media space, and
specifying and controlling buffering, paging, and overflow.
The term device media control language (DMCL) is used for
these aspects of a DBMS.

2. 12 June 1, 1973

This Journal does not include language specifications for any
of these functions.

2.3.6 FACILITIES FOR DATA ADMINISTRATION

In an environment where a data base includes data which is
shared by many user programs, it becomes necessary for the schema
and perhaps the subschemas to be developed centrally. In such
an environment a data base is, in a sense, a compromise between
the needs of the various user programs. The data base will
therefore require a means of mediating conflicting needs. This
mediation is the prime responsibility of the Data Aministrator.
’’’he term Data Administrator is used to emphasize the human
ac+ivity involved in the performance of this function.

The Data Administrator’s function is to create and maintain both
the data base and its schema in such a way that the data base
may satisfy efficiently the data requirements of its user
programs. This function may include the following tasks.

• Organizing, that is designing and assembling the data base.

• Monitoring the use and performance of the data base.

• Reorganizing and restructuring the data base so as to improve
its performance.

• Recovering the data base after system malfunctions.

Organizing

While designing and building the data base a Data Administrator
will:

• Write a schema describing the data base and input it to the
DBMS.

• Load the data base.

• Assign privacy locks and issue privacy keys to users who
need to use portions of this data base.

• Assign data to devices and media using a DMCL.

Monitoring

Effective use of the DBMS requires monitoring the activity of
its users for usage, response, privacy breach, and potential

June 1, 1973 2. 13

reorganization. These activities require the Data Adminstrator

to:

• Gather statistics on the usage of portions of the data base.

• Record an audit trail of changes to the data base to aid in
recovering from system and user failures.

Reorganizing and Restructuring

As a result of information gained through monitoring or because
of new information required in the data base, changes may be
required. This requires the Data Administrator to:

• Modify the schema and compile the changes into the object
version of the schema.

• Modify the data base to reflect changes in the schema.

• Remove inaccessible records and compact reusable storage
space (garbage collecting).

• Reassign data to different devices and media (using a DMCL)
based on time/space requirements.

• Edit portions of the data base.

Recovering

Various system failures will occasionally require that portions
of the data base be restored to some previous condition. This
requires the Data Administrator to:

• Dump portions of a data base onto alternate storage media.

• Restore portions of a data base using previously dumped
versions or using audit trails gathered by DBMS monitoring
facilities.

The individual tasks noted under the above headings are not
intended to be an exhaustive list but merely to indicate the
scope of the Data Administrator's functions.

2.3.7 DATA BASE PROCEDURES

At various points in the accessing of a data base, computations
are required which are specific to that particular data base.
Some examples of these computations are:

2. 14 June 1, 197^

• Checking of privacy keys for validity.

• Computation of data item values as functions of other data
item values.

• Searching algorithms.

• Compression and expansion of values of data items.

• Validation of values of data items.

• Systems instrumentation.

The routines which perform these computations are called data
base procedures. They are stored in the system where they can
be invoked by the DBMS when they are needed. The rules for
writing data base procedures (that is, linkage conventions,
allowable side effects, programming languages in which they are
written, etc.) are implementor defined. There must be provision
however for data base procedures to have access to the following
information:

• Identity of the run unit from which control was transferred
to the data base procedure.

• Identity of the declarative clause involved.

• Type of DML function from which control was transferred to
the data base procedure.

• Type of entry or subentry that is the operand of the DML
function from which control was transferred.

• All of the information available to the run unit from which
control was transferred to the data base procedure. This
includes access to the run unit's user working area, currency
indicators, special registers and all data in the data base.

Data base procedures must also have the capability of returning
values to the run unit from which control was transferred, to
other run units and to other data base procedures.

2.3.8 REPRESENTATION OF DATA STRUCTURES

2.3.8.1 INTRODUCTION

One of the objectives of the DDL is to
structured In the manner most suitable
without requiring data redundancy. To
possible to represent relationships by
juxtaposition of records.

allow data to be
to each application
achieve this, it must
methods other than

be

June 1, 1973 2. 1 5

The schema DDL as described in Section 3 provides facilities to
declare data structures among records in the data base. The
set concept provides a structure representing a one to many
relationship, and order within sets provides a sequential
relationship. A wide variety of data structures including
sequential, tree, and network relationships can be represented
conveniently by these facilities. Sections 2.3.8.2, 2.3.8.3,
and 2.3.8.5 show how the following types of data structures may
be represented in the DDL:

• Sequential

• Trees

• Networks

In addition, the absence of structure may be represented by
declaring records in the schema which do not participate in
sets.

2.3.8.2 SEQUENTIAL DATA STRUCTURES

A sequential data structure is an ordered collection of records.
Such a structure may be represented in the DDL by a single set
whose member records are ordered in the specified manner. The
SYSTEM option of the OWNER clause of the Set Subentry obviates
the necessity of declaring an unnecessary owner record type for
a sequential structure. For efficiency in retrieving the records
of a sequential data structure, the DDL provides a facility to
indicate that the records are to be retrievable either in the
forward or in the reverse order or both.

2.3.8.3 TREES

A tree structure is a hierarchical structure in which each record
(except one called the root) is related to zero or more different
records below it in the hierarchy and to exactly one record
above it in the hierarchy. The root of the tree is the highest
level record and is not related to any record above itself.

Diagram 2 is a representation of a tree data structure involving
four record types and two set types. The records contain data
about contracts whose completion requires products and materials
and about the plants where products may be inventoried. There
are two one to many relationships which give these records a
hierarchical tree structure. The CONTRACT-ITEMS set type relates
products and materials to contracts. The MADE-AT set type
relates parts to the plants where that product is made.

2. 16 June 1, 1973

1 These sets and records are shown diagramatically by:

• Each record type is shown as a box.

« Each set type is shown as a fork pointing from one box
representing the owner record type of the set type to one
or more boxes representing the member record types of the
set type.

Since every set may have an arbitrary number of records as
members and since an arbitrary number of set types is permitted,
a tree of any breadth and depth may be represented.

June 1, 1973 2. 17

SET REPRESENTATION OF TREE DATA

DIAGRAM 2

2.18 June 1, 1973

2.3.8.4 CYCLES

Structures which represent cycles are permitted. A cyclic
structure occurs when a series of different set types is declared
such that each set type's owner is a member of the previous set
type in the series. The membership of at least one of the member
record types in a cyclic structure must be declared to be manual.
(See Section 2.4.3.4, set membership).

Diagram 3 shows a data structure containing a cycle of set types.
It shows the record types and set types of diagram 2 together
with a new set type. The SUB-CONTRACTS sets specify which
contracts have been let by each plant. Thus SUB-CONTRACTS,
CONTRACT-ITEMS, and MADE-AT form a cycle of set types.

June 1 1973 2.19

set type SUB-CONTRACTS

SET REPRESENTATION CONTAINING CYCLE

DIAGRAM 3

2.20 June 1, 1973

2.3.8.5 NETWORKS

A more general data structure than the tree or cycle is the
network. Whereas in a tree structure each record type
participates in only a single set type as a member, in a network
each record type may be a member of more than one set type.
Thus, unlike tree structures, a network allows the representation
of many to many relationships between records, and multiple
classifications of records, without data redundancy. Diagram
4 illustrates these two situations.

An example of multiple classification is provided by the MATERIAL
record type and the SUPPLIES and LOCATION set types. Each
MATERIAL record may participate as a member of a SUPPLIES set
and a LOCATION set. The SUPPLIES sets specify which materials
are available from each vendor. The LOCATION sets specify the
warehouse aisles where materials are stored. Thus materials
are classified by vendor and by storage location (aisle) without
repetition of the materials.records.

Diagram 4 also contains several examples of many to many
relationships between records. Such relationships exist between
contracts and materials, contracts and plants, and plants and
products. In using set types to represent many to many
relationships, it must be remembered that each set represents
a one to many relationship from owner to member but a one to
one relationship from member to owner. Thus the representation
of a many to many relationship requires two set types and three
record types.

For example in the relationship between contracts and materials,
the CONTRACT record type and the MATERIAL record type are the
respective owners of the MATS-NEEDED set type and the MATS-USED
set type. The MAT-V-CON record type is a member of both set
types. The MATS-NEEDED set type represents which materials are
needed for which contract; the MATS-USED set type represents
which contracts are being supplied with a particular material.
The MAT-V-CON record type in effect establishes the many to many
relationship between contracts and materials. Each MAT-V-CON
record is unique to a CONTFACT/MATERIAL pair and can thus be
used to carry such data as the estimated and actual quantities
of material required for a specific contract.

The other examples of many to many relationships in Diagram 4
are similar. In the case of the relationship between contracts
and plants, the WHERE-MADE set type, the CONTRACTOR set type,
and the PL-V- CON record type provide information about which
plants are supplying a contract and the contracts on which a
plant is working. The relationship between plants and products
provides information about which plants are making a product,
and the products made by a plant. Thus the set capability may
be used to represent a complex network relationship.

June 1, 1973 2.21

SET REPRESENTATION 0 F N E T W 0 R K DATA

DIAGRAM 4

2.22 June 1, 1973

DDL FACILITIES 2. 4

2.4.1 AREAS

The following are relevant to an understanding of the concept
of an area:

• An area is a named subdivision of a data base.

• An arbitrary number of areas may be declared in a schema.

• Each area must be named.

• An area may be either permanent, or temporary and local to
a run unit.

• Records may be assigned to areas independently of their set
associations. A given record type or set type may have
occurrences in multiple areas and a set may span areas.

• Each record must be associated with one and only one area.
This association is permanent, in that a record may not
change areas.

The concept of area allows the Data Administrator to subdivide
a data base rather than considering the data base as a single
unit. The use of areas allows the Data Administrator or the
DBMS to control placement of an entire area to provide efficient
storage and retrieval. The opening of areas by run units also
gives implementors an opportunity to optimize access to the data
base, since the run unit has narrowed the range of interest in
the data base to a relatively small number of subdivisions of
the entire data base. Areas are a convenient unit for recovery,
as duplication or backup can be carried out selectively. Areas
also provide a convenient natural subdivision for allowing
certain unused portions of the data base to be saved in archival
storage while the remainder of the data base is actively
accessed. Mechanisms for mapping areas to media space are not
specified in this Journal.

2.4.2 RECORDS

2.4.2.1 RECORD DESCRIPTION FACILITIES OF THE SCHEMA DDL

To describe data bases that can be manipulated through many host
languages, the schema DDL must provide data formats and
representations that can be mapped into the data formats and
representations of the various host languages. Record
description in the schema is, therefore, independent of any host

June 1, 1973 2.23

language. The record description facilities of the subschema
provide the link between the schema record description (the
Record Entry) and the data formats and representations of a
particular host language. The record description concepts of
the schema DDL are as follows:

5

• Data Items: The smallest unit of named data is the data
item. An occurrence of a data item is a representation of
a value. The set of values that a data item can represent
is called its range. The range of a data item is always
restricted to one data type (and, if the type is arithmetic,
to one base, scale, mode, and precision). The types of data
are arithmetic, string, data base key, and implementor type.

a. Arithmetic Data: An arithmetic data item is one
that has a numeric value with characteristics of
base, scale, mode, and precision. The value may be
represented either in a numeric pictured form or in
a coded form, that is, in an internal representation
that is implementation dependent. A numeric pictured
data item is a string of characters or bits that is
given a numeric interpretation by means of the PICTURE
clause of the Data Subentry. A data item in encoded
form is described in terms of its base, scale, mode,
and precision by means of the TYPE clause of the Data
Subentry. Arithmetic data has either a decimal or
binary base, a fixed point or floating point scale,
and a real or complex mode. Fixed point data items
are numbers for which the number of decimal or binary
digits and the position of the decimal or binary
point is specified. Floating point data items are
numbers in the form of a mantissa and an exponent
part. A complex data item consists of a pair of
values. The first value is the real part of the
complex number, and the second value is the imaginary
part.

b. String Data: String data is classified as either
character string or bit string. The length of a
string data item is equivalent to the number of
characters (for a character string) or the number of
binary digits (for a bit string) in the item.
Character string data consists of a string of one or
more characters of the data character set defined by
the implementor. Bit string data consists of a string
of one or more binary digits (0 and 1). The length
of a string data item is fixed. However, the schema
DDL provides for vectors whose elements can be string
data. String data may be described by a PICTURE
clause or a TYPE clause.

2. 24 June 1, 1973

c. Data Base Keys: Each record in the data base is
uniquely identified by a data base key. Items whose
values are data base keys may be declared using the
TYPE clause. The format and representation of data
base keys is implementor defined.

d. Implementor Types: An implementor may provide for
additional types of data items which can be declared
by means of a TYPE clause.

• Data Aggregates: A named collection of data items within
a record is known as a data aggregate. There are two kinds:

a. Vectors: A vector is a one dimensional sequence of
data items, all of which have identical
characteristics. For example, all of the data items
of the vector must have the same base, scale, mode,
and precision. A vector is described in one Data
Subentry by specifying the number of data items in
the vector using the OCCURS clause of the Data
Subentry. If the vector is not part of a repeating
group the number of data items may be specified by
the value of a data item in the same record.

b. Repeating Groups: A repeating group is a collection
of data that occurs a number of times within a record.
The collection may consist of data items, vectors,
and repeating groups; thus, repeating groups may be
nested. A repeating group is described by a series
of Data Subentries. Grouping is specified by means
of level numbers and the number of occurrences is
specified by use of an OCCURS clause. If a repeating
group is not part of another repeating group, the
number of occurrences of the group may be specified
by the value of a data item in the same record.

• Data Subentry: A Data Subentry is the component of a schema
which names and describes a data item, vector, component of
a repeating group, or a repeating group. A Data Subentry
consists of an optional level number, and a name for the
component being defined followed by one or more clauses
describing the characteristics of the component. Level
numbers are specified in Data Subentries in order to define
hierarchical relationships among the Data Subentries.

• Record: A record is a collection of data described by a
Record Entry; the data content of a record is described by
a series of Data Subentries. While both records and
repeating groups are considered here as being collections
of data that may occur a number of times, the concept of
record in the schema differs from that of repeating group
in several important ways:

June 1, 1973 2.25

a. Records, whether of one type or of several types,
are related to one another by means of the set
definitions in the schema, rather than by level
numbers used for repeating groups. Since records
are related to one another by sets instead of level
numbers, complex network relationships may be defined
among records which cannot be defined among repeating
groups.

b. The record is the basic unit of access in the data
base. Records in the data base are assigned data
base keys which enable them to be directly accessed
at any time if the data base keys are known.
Repeating groups may only be accessed once the record
occurrence within which the repeating group occurs
is available to the run unit.

c. The number of occurrences of a particular record type
need not be explicitly stated, either in the schema
or as the value of a particular data item, as they
must be for repeating groups. Rather, the number of
occurrences depends on the DML functions which have
been applied to the data base.

• Data-Base-Data-Name and Data-Base-Identifier: A
data-base-data-name is a user defined name for a data item
or data aggregate. The named data item or data aggregate
need not be the subject of a Data Subentry. A data base
identifier is a reference to a data item or a data aggregate
declared in the schema, and is a reference to a data base
data name.

2.4.2.2 PLACEMENT CONTROL

The objective of providing for control of relative placement of
records is to increase efficiency by advising the DBMS of
anticipated usage patterns of records. Thus, the schema DDL
permits specification of the area or areas to which occurrences
of a particular record type are to be assigned by the DBMS. The
schema DDL also includes a clause which causes records being
added to the data base to be stored near some other record in
the data base. Conceputally, the effect of such clauses is to
request the clustering of records which are required as a group
to perform some procedure, thereby improving that procedure’s
performance. The declarations for controlling placement are
the WITHIN clause and the LOCATION clause of the Record Subentry.
Both affect the manner in which the DBMS assigns data base keys
to records.

The fact that the schema DDL permits control over the relative

June 1 2.26
9 1973

placement of records does not necessarily have any physical
connotations.

2.4.2.2.1 DATA BASE KEYS

In all data base management systems, it must be possible for
the DBMS to distinguish each occurrence of a record from every
other occurrence of a record in the data base. For this to be
possible, a unique identifier must exist for each and every
record in the data base.

%

This DDL assumes that such a unique identifier known as a data
base key is assigned by the DBMS to a record when it is stored
for the first time in the data base. It is assigned in
accordance with the declarations for that record in the schema.

The data base keys may be:

• Supplied to the DBMS by a run unit or data base procedure.

• Generated by the DBMS from the data contents of the record.

• Assigned by a DBMS implementor algorithm.

A data base key once assigned to a record remains as the
permanent identifier of that record until the record is deleted
from the data base.

The permanence of data base keys must be guaranteed because data
base keys may be made available to and be saved by run units
and may be:

• Used for direct accessing.

• Referenced later in the execution of the same run unit.

• Re-input to a subsequent run unit in which they are
referenced.

The mapping of data base keys onto media space is not specified
in this Journal.

2.4.2.2.2 WITHIN

The WITHIN clause determines the areas into which occurrences
of that record type may be stored. It also permits the precise
area to be determined by a nominated data base procedure or by
a run unit which stores the record. Once the area is determined
the LOCATION clause will determine where in the area the record
is to be placed.

June 1, 1973 2.27

2.4.2.2.3 LOCATION

The LOCATION clause allows control over the relative placement
of records and over the algorithm used by the DBMS in assigning
data base keys to records. Since data base keys uniquely
identify records and are permanently assigned, the LOCATION
clause can also control the retrieval process. There are various
forms of the LOCATION clause. For example, a LOCATION clause
may specify the record placement directly by providing the DBMS
with the record’s data base key, or may define the data base
key from the data contents of the record.

2.4.3 SETS

2.4.3.1 CHARACTERISTICS OF SETS

The following is relevant to an understanding of the concept of
a set:

• A set type is a named relationship between record types.

• An arbitrary number of set types may be declared in a schema.

• Each set type must be named and must have one owner record
type. However, a special type of set which has exactly one
occurrence and for which the DBMS is the owner may be
declared. For convenience, this is known as a singular set.

• Each set type must have one or more member record types
declared for it in the schema. This does not apply to set
types specified to be dynamic - See Section 2.4.3.4.

• Each set type must have an order specified for it in the
schema.

• Any record type may be declared in the schema as the owner
of one or more set types.

• Any record type may be declared in the schema as a member
of one or more set types.

• Any record type may be specified as both an owner of one or
more set types and a member in one or more different set
types.

• The capability for a record type to participate as both
owner and member in the same set type is not supported by
the DDL defined in this Journal.

• A set consists of an owner record and its member records if
any.

2.28 June 1, 1973

• A record cannot be in more than one occurrence of the same
set type.

• A set includes exactly one occurrence of its owner. In
fact, the existence of the owner record in the data base
establishes the set.

• A set which contains only an occurrence of its owner record
is known as an empty set.

• A set may have an arbitrary number of occurrences of each
of the member record types declared for it in the schema.

2.4.3.2 ORDERING OF SETS

Each set type declared in the schema must have an order specified
for it. The effect of specifying an order for a set type is to
cause the DBMS to insert member records into a set in such a
way that the logical order defined for that set type is
maintained. The logical order of the member records of a set
is completely independent of the physical placement of the
records. Thus, the same member records could participate in
occurrences of two different sets and be ordered differently in
each of those sets. Records which own sets may only be ordered
in their capacity as members of other sets.

The member records of each occurrence of a given set type may
be ordered in one of several ways:

• In ascending or descending sequence based on the values of
specified keys. The keys specified may be data items in
each of the member records, the member records* names or
their data base keys, or some combinations of these.

• In the order resulting from inserting new member records
into the set:

a. First in the sequence of member records.

b. Last in the sequence of member records.

c. After or before another record which is selected by the
run unit storing or inserting the record in the set.

• In the order most convenient to the DBMS.

June 1, 1973 2.29

2. 4.3.3 INDEXED SETS AND SEARCH KEYS

Any set type declared to be sorted may also be declared to be
indexed. This causes the DBMS to build an index, on the basis
of the sort control keys specified, for each occurrence of that
set type. No control is provided in the schema DDL over the
development of an index; however, the index may be named. It
is assumed that implementors of the DBMS will provide for such
control.

An arbitrary number of search keys may also be declared for a
set type regardless of whether it is sorted or not. The
arguments for such search keys must be data items included in
the member records of the set. The declaration of a search key
causes the DBMS to develop some form of indexing of the member
records for each set in which member records participate. The
term indexing as used in this Journal means any technique which
does not involve a complete scan of the member records involved.
It is not restricted to an index in the usual sense. Some
control over the type of indexing developed is provided in the
schema DDL.

Where a set type has been declared to be indexed, or search keys
have been specified for its members, functions or procedures
which require a search to be performed on the basis of any
argument for which indexing exists will automatically employ
the available indexing.

2.4.3.4 SET MEMBERSHIP

A record type may have different kinds of membership in different
set types.

Automatic or manual membership refers to the insertion of a
member record into a set. Automatic means that membership in
a set is established by the DBMS when a record is stored. That
is, whenever an occurrence of a record type declared to be an
automatic member of a set type is added to the data base, it
will be inserted into (made a member of) the appropriate
occurrences of all the set types in which it has been declared
as an automatic member.

The addition to the data base of an occurrence of a record type
declared to be a manual member of a set type will not cause it
to be made a member of any occurrence of the set types in which
it has been declared as a manual member. Manual means that
membership in a set is established by a run unit by means of a
DHL function which causes the record, already stored in the data
base, to become a member of a set.

2. 30 June 1, 1973

Mandatory or optional membership refers to the removal of a
member record from a set. Mandatory means that once a record
becomes a member of any occurrence of a set type it will always
be a member of one or another occurrence of that set type. The
set of which the record is a member may be changed by using an
appropriate DML function.

Optional means that membership of a record in a set is not
necessarily permanent. A record may be removed, by using an
appropriate DML function, from a set in which it is defined as
an optional member.

It is not possible to access a record through a set from which
it has been removed even though the record is still in the data
base and is accessible via other sets.

Alternatively, any record may become a member of a dynamic set.
A dynamic set differs from an ordinary set in the following
respects.

• A dynamic set type must not have any member record types
declared for it in the schema.

• Any record may be made a member of a dynamic set or removed
from that set by executing an appropriate DML function.

2.4.3.5 MAINTENANCE OF SET RELATIONSHIPS

The housekeeping associated with the establishment and
maintenance of sets is a responsibility of the DBMS.

Such action is required whenever:

• A record is added to or deleted from the data base.

• A record is inserted into or removed from a set.

• A record is modified in a way which changes its logical
position within a set.

• A record is oodified in a way which changes the set in which
it participates.

Programmers are not involved in the mechanics of this process
but may need to initialize with appropriate values those data
items which are required by the DBMS to perform its functions.
Such data items -are named in the schema.

June 1, 1973 2. 31

2.4.3.6 SET SELECTION

In general, there will be more than one set in the data base
for each set type specified in the schema. It is therefore
necessary to provide a means for identifying the proper set when
member records of that set type are stored into or retrieved
from the data base. ,
The SELECTION clause of the Member Subentry controls the strategy
to be followed by the DBMS in selecting a specific set from the
universe of sets in the data base. The DBMS automatically
invokes the prespecified strategy whenever a DML function
requires a specific set to be selected.

A separate SELECTION clause is required for each member record
type/set type pair. The SELECTION clause provides for naming
a series of sets which form a continous path through the data
structure of. the data base to the desired set. For each set on
this path, the SELECTION clause names data items whose values
are used by the DBMS to control the selection of specific sets.

For all sets along the path, other than the first named set,
the DBMS limits its search to the member records of the
previously selected set. Thus, it selects each set by selecting
its owner record in its capacity as a member record of the
previous set in the path. The occurrence of the first named
set must be uniquely identifiable by the DBMS.

The SELECTION clause also provides for naming a data base
procedure which performs the required selection.

2.4.4 PROTECTION OF DATA

The schema includes provision for the protection of data in the
"social environment" of a shared data base. A shared data base
is one which contains data relevant to many aspects of an
organization's operations or one in which for any other reason
the data is shared by multiple programs or applications. In
this type of environment, two kinds of protection are required:

• Protection against unauthorized access of data for which
the term privacy is used.

• Protection against inconsistent and unreasonable data for
which the term integrity is used.

To some extent the mechanisms for providing privacy and ensuring
the integrity of data overlap, but for the most part they are
quite separate.

2.32 June 1, 1973

Of course, such protection cannot guard against unsocial behavior
on the part of individual run units. If, for example, a run
unit is authorized to access and delete a particular record and
does so without regard for the fact that it is the owner of a
set which has members required by other programs, the DBMS can
offer little protection. Such action is really a logical error,
and though intelligent design of the data base can minimize the
effect, it can only be avoided by creating an awareness among
programmers of their social responsibilities to other users of
the data base.

2.4.4.1 PRIVACY OF DATA

Protection of the data in the data base is furnished through a
mechanism of privacy locks which are specified in the schema
and privacy keys which must be provided by a run unit seeking
to access or alter data which is protected by means of privacy
locks.

The schema DDL provides for declaring privacy locks at the
schema, area, record, data item, data aggregate, set and member
levels. At each of these levels, the schema DDL provides for
locks for specific DML functions at that level.

A privacy key is a single value of implementor defined size and
type, and may be a constant, the value of a variable, or the
result of a procedure. A privacy lock is either a value
(constant or variable), which is simply matched against a privacy
key value, or a procedure, which is called and given access to
the pertinent privacy key (see section 2.3.7, DATA BASE
PROCEDURES). If the procedure returns, it gives a result of
yes or no. Beyond that, the action of such a procedure is
dependent on the implementor and the Data Administrator and is
not specified in this Journal. Some possibilities are:

• Perform a calculation on the privacy key to check its
validity.

« Open a conversation with a person at a terminal, to ask a
number of questions before granting access.

• Write a new privacy key value in the run unit.

• In case of a violation, log the pertinent information and
possibly send an alarm to a security console.

• In case of a repeated violation, abort the run unit.

• Suspend the run unit until access could be granted.

June 1, 1973 2.33

• Disconnect a user terminal, and call back before granting
access.

Note that for many of these possibilities, the procedure must
have knowledge of the identity of the run unit. The way in
which this knowledge is passed to the procedure is not specified
in this Journal.

While protection of privacy is probably the chief use of privacy
keys and locks, it is by no means the only one. The mechanism
can also be used, for example, to help ensure the consistency
of inter related data and to prevent errors, by locking out
clearly inconsistent, meaningless, or incorrect actions.

2.4.4.2 INTEGRITY OF DATA

The DDL provides for the specification of the data structure
relationships which are to be maintained by and for all programs
in such aspects as, for example, set membership. Provision is
also made for checking the validity of a data item whenever a
value is changed or a new value is stored in the data base. In
addition there is provision for the naming of data base
procedures and for causing the DBMS to invoke those procedures
whenever a run unit attempts to update nominated records or
sets. This, for example, enables the Data Administrator to
check any update or series of updates applied to the data base.

June 1, 2. 34 1973

f
l

C
O

Table of Contents

SECTION 3. THE DATA DESCRIPTION LANGUAGE Page

3.0 SYNTAX AND ENVIRONMENT ..3.3
3.0.1 Introduction.3.3
3.0.2 Character Set.3.5
3.0.3 Words.. 3.5
3.0.4 Literals3.7
3.0.5 Comments3.9
3.0.6 Punctuation...3.9
3.0.7 Data-Base-Data-* Names3.9
3.0.8 Dat a-Base-Ident if iers.3.9
3.0.9 System Environment . 3.10
3.0.10 DDL References to DML Functions..3.11

3.1.0 SCHEMA ENTRY 3.13
3. 1. 1 On. 3.14
3.1.2 Privacy. .. 3.15
3.1.3 Schema .. 3.17

3.2.0 AREA ENTRY.3.18
3.2.1 Area .. 3.20
3.2.2 On. 3.21
3.2.3 Privacy. 3.23
3.2.4 Temporary.... . 3.25

i

3.3.0 RECORD ENTRY 3.26
3.3.1 Check. 3.30
3.3.2 Data-Base-Dat a-Name.3.32
3.3.3 Encoding/Decoding. . 3.34
3.3.4 Location. 3.35
3.3.5 Occurs. 3.37
3. 3.6 On (Data).3.39
3.3.7 On (Record).... . 3.40
3.3.8 Picture. 3.41
3.3.9 Privacy (Data) ..3.46
3.3.10 Privacy (Record). 3.48
3.3.11 Record . 3.50
3. 3. 12 Result. 3.51
3.3.13 Source . 3.53
3. 3.14 Type.. . 3.55
3.3.15 Within 3.60

3.4.0 SET ENTRY. 3.62
3.4.1 Dynamic /Prior.3.66
3.4.2 Key. .. 3.67
3.4.3 Member .. 3.70
3.4.4 On (Member).3.73
3.4.5 On (Set). 3.74
.4.6 Order. 3.75
.4.7 Owner.3.78

June 1, 1973 3.1

3.4.8 Privacy (Member). 3.79
3.4.9 Privacy (Set). 3.81
3.4.10 Search. 3.83
3.4.11 Selection.3.85
3.4.12 Set. 3.89

3. 2 June 1, 1973

3.0 SYNTAX AND ENVIRONMENT

3.0.1 INTRODUCTION

This section contains the complete specifications of the data
description language for writing the schema.

The schema written in the DDL consists of four entry types which
serve to:

• Identify the schema (Schema Entry).

• Define areas (Area Entry).

• Define records (Record Entry).

• Define sets (Set Entry).

For each area, record type, and set type in the schema, a
separate entry is required. There must be only one Schema Entry
in the schema. The following rules apply to the sequence of
the various entry types in the schema:

• The Schema Entry must be the first entry.

• An Area Entry must precede the Record Entry for each
record type in that area.

• A Record Entry must precede the Set Entry for each record
type in that set type.

An entry consists of one or more clauses which describe its
attributes. In an entry describing a record or a set, clauses
are grouped into subentries. Subentries may be repeated within
an entry. Both entries and subentries are terminated by a
period.

The specifications for an entry consist of the following:

• A narrative description of the function of the entry.

• An Entry Skeleton representing the organization of the
entry into clauses, or into subentries as applicable.
Where the Entry Skeleton consists of subentries a Subentry
Skeleton is shown representing the organization of the
subentry into clauses.

• The general formats of the entry, that is the general
format of each of the clauses which may be specified in
the entry.

June 1, 1973 3.3

A separate description of each clause.

^he description of each clause consists of the followina:

• A narrative description of its function.

• Its general format.

• The syntax rules which apply.

• The general rules which apply.

A general format is the arrangement of the elements which make
ud a clause. Clauses in an entry or subentry may be written in
anv sequence provided the first clause names the entry or
subentry. A syntax rule amplifies or restricts the usage of
the elements within a general format. A general rule amplifies
or restricts functions attributed to a general format or to its
constituent elements.

The notation used in all formats and the rules which apply to
all formats are:

• The elements which make up a clause consist of upper case
words, lower case words, special symbols and special
characters.

• All underlined upper case words are required when the
format is used.

• Upper case words which are not underlined are optional
words and need not be used.

• Lower case words are generic terms which must be replaced
by appropriate names or values.

• The meaning of enclosing a portion of a general format
in special symbols as follows is:

a at least no occurrences
b
c_ at most one occurrence

a at least cne occurrence
b
c at most one occurrence

a at least one occurrence
b
c at most one occurrence of

3.4 June 1 1973

An ellipsis (that is, '...•) indicates repetition is allowed.
The portion of the format which may be repeated is determined
by the '[' or • (' which logically matches the ']* or *} * to the
immediate left of the

3.0.2 CHARACTER SET

The character set for the DDL consists of 51 characters which
include letters of the alphabet, digits and symbols. Five of
these symbols have been reserved for future ilse. The
specification of this character set defines those characters
which may be used in writing a schema (but see paragraphs 3.0.3
and 3.0.4). It is in no way intended to restrict the use within
the data base of any allowable characters in the character set
defined by the implementor. The character set for the DDL
includes:

Character Name

0, 1,
A, B,

9

If

(
)
$

9 digits
Z letters

space or blank
plus sign
minus sign or hyphen
comma
semicolon
period or decimal point
quotation mark
left parenthesis
right parenthesis
dollar sign

The reserved symbols are:

>
<
/
*

equals sign
greater than symbol
less than symbol
stroke
asterisk

3.0.3 WORDS

A word is a sequence of not more than 30 characters. Each
character is selected from the set 'A' ... 'Z', 'O' ... '9',

except that the may not appear as the first or last
character of a word.

Reserved Words

Reserved words are a list of words that may be used, but must
not appear as user defined names. The types of reserved words
are described below.

June 1, 1973 3.5

« A key word is a word that is required when the format in
which the word appears is used. Within each format* such
words are upper case and underlined.

• Within each format* upper case words that are not
underlined are called optional words and may appear at
the user's option. The presence or absence of each
optional word does not alter the translation. Misspelling
of an optional word* or its replacement by another word
of any kind* is not allowed.

• The following is a list of reserved words with their
abbreviations enclosed in parentheses:

ACTUAL FIND ORDER
ALL FIRST OWNER
ALLOWED FIXED PERMANENT
ALTER FLOAT PICTURE (PIC)
ALWAYS FOR PRIOR
AND GET PRIVACY
ARE IDENTIFIED PROCEDURE (PROC)
AREA IMMATERIAL PROCESSABLE
AREA-ID IN PROTECTED (PROT)
ASCENDING (ASC) INDEX RANGE
AUTOMATIC (AUTO) INDEXED REAL
BINARY (BIN) INSERT RECORD
BIT INSERTION RECORD-NAME
BY IS REMOVE
CALC KEY RESULT
CALC-KEY KEYS RETRIEVAL (RETR)
CALL LAST SCHEMA
CHARACTER (CHAR) LINKED SEARCH
CHECK LOCATION (LOC) SELECTION
CLOSE LOCK SET
COMMENT LOCKS SORTED
COMPLEX MANDATORY (MAND) SOURCE
COPY MANUAL STORE
CURRENT MEMBER SYSTEM
DATA-EASE-KEY (DBKEY) MEMBERS TEMPORARY (TEMP)
DECIMAL (DEC) MODE THEN
DECODING MODIFY THIS
DEFINED NAME THRU
DELETE NEXT TIMES
DESCENDING (DESC) NONEXCLUSIVE (NEXCL) TO
DIRECT NOT TYPE
DISPLAY NULL UPDATE
DUPLICATES (DUP) OCCURS USING
DURING OF VALUE
DYNAMIC ON VIA
ENCODING OPEN VIRTUAL
EQUAL

3. 6

OPTIONAL (OPT) WHERE

June 1* 1973

ERROR
EXCLUSIVE (EXCL)

OR WITHIN

Names

A name may be in either of two forms. In the normal form, a
name is a word beginning with a letter. In the alternate, or
escape form, a name is a string of any allowable characters in
the computer's character set, delimited by the dollar sign. The
string may include the dollar sign symbol itself if the symbol
is written twice consecutively for each of its occurrences.

Types of names include:

• Data-base-data-name
• Record-name
• Area-name
• Set-name
• Lock-name
• Index-name
• Data-base-procedure
• Support-function
• Implementor-name
• Schema-name

3.0.4 LITERALS

A literal is a string of characters whose value is implied by
the ordered set of characters of which the literal is composed.
Every literal belongs to one of two types, numeric and
nonnumeric.

Nonnumeric Literals

A nonnumeric literal is defined as a string of any allowable
characters in the computer's character set, of any length,
delimited by quotation marks. This includes the quotation mark
itself which, however, must be written twice consecutively for
each of its occurrences within the string. The value of a
nonnumeric literal is the string of characters itself, excluding
the delimiting quotation marks. Any spaces enclosed in the
quotation marks are characters rather than separators; each such
space is part of the nonnumeric literal and is part of its value.

June 1, 1973 3.7

Numeric Literals

A numeric literal is defined as a string of characters chosen
from the digits *0* through *9*, the plus sign, the minus sign,
the decimal point, and the character * E*. Numeric literals may
be expressed in two forms, fixed point and floating point
decimal. The rules for formation of numeric literals are as
follows:

• A literal must contain at least one digit.

• A fixed point literal must not contain more than one sign
character. If a sign is used, it must appear as the
leftmost character of the literal. If the literal is
unsigned, the literal is positive.

• A fixed point literal must not contain more than one
decimal point. The decimal point may appear anywhere
within the literal except as the rightmost character.
If the literal contains no decimal point, the literal is
an integer.

• The word ‘integer* appearing in a general format
represents a numeric literal containing neither the
decimal point nor the character *E*.

• The character *E* may only be be used with floating point
decimal literals.

• A floating point literal consists of two fixed point
numeric literals separated by the character *E*. The
first literal (mantissa) may contain a decimal point;
the second literal (exponent) must be an integer.

• If a literal conforms to the rules for the formation of
numeric literals, but is enclosed in quotation marks, it
is a nonnumeric literal.

• The value of a numeric literal is the algebraic decimal
quantity represented by the characters in the numeric
literal.

Literal Constant: NULL.

A data item may have a value of null, meaning that either its
value has never been otherwise specified, or that its value is
irrelevant. The representation of the NULL value is not defined
in this Journal.

3. 8 June 1, 1973

3,0.5 COMMENTS

Comments may be included for documentation purposes. They must
be introduced by the reserved word COMMENT and the comment is
delimited by the quotation mark character. Comments may appear
wherever the blank character may be used as a separator. No
blank character may appear between the word COMMENT and the
first quotation mark. The quotation mark character must be
written twice consecutively if it is to be included in a comment.

3.0.6 PUNCTUATION

The followinq punctuation characters are used.

• One or more consecutive spaces, when not contained in a
comment or delimited string, is a separator.

• The comma is used as a separator.

• The period is a delimiter for an entry or subentry and
is required.

• A semicolon may be used to separate clauses.

3.0.7 DATA-BASE-DATA-NA MES

A data-base-data-name is a user defined word that names a data
item or data aggregate. When used in a general format
'data-base-iata-name* may not be subscripted or qualified unless
specifically permitted by the rules for that format. The named
data item or data aggregate need not be the subject of a Data
Subentry.

3.0.8 DATA-BASE-IDENTIFIERS

A data-base-identifier is a reference to a data item or data
aggregate declared in the schema. It consists of a
data-base-data-name followed, as required, by the syntactically
correct combination of subscripts and qualifiers necessary to
achieve uniqueness of reference.

Qualification

Where the same data-base-data-name is declared in more than one
Record Entry, its use as a data-base-identifier may have to be
qualified to achieve uniqueness. Syntax rules will specify when
qualification is necessary. A name can be qualified even though
it does not need qualification.

June 1, 1973 3.9

Subscripting

Subscripts can be used only when reference is made to a data
item within a data aggregate. The subscript must be an integer.

The lowest possible subscript value is 1. This value refers to
the first occurrence of the data-base-data-name referenced,
when more than one subscript is required they are written left
to right in the order of increasing data aggregate level numbers.

Format

The format of a data-base-identifier in the DDL for the schema
is:

data-base-data-name[integer-1[,integer-2]...] record-name

3.0.9 SYSTEM ENVIRONMENT

As mentioned previously in the Concepts Section, a DBMS based
upon the concepts and language specified herein should include
various capabilities to permit the Data Administrator to
organize, monitor, reorganize and restructure the data base as
it evolves with changing requirements. In addition the Data
Administrator requires certain facilities to enable him to use,
maintain and develop each schema under his control. These
specifications presume the existence of the following generic
schema operations for this purpose:

a. ALTER

This operation permits the alteration of all the schema with
the exception of the privacy lock clauses.

b. COPY

This operation permits the extraction of information from
the schema for the purpose of constructing a subschema.

c. DISPLAY

This operation permits viewing of the schema with the
exception of the privacy locks.

d. LOCKS

This operation allows the viewing, creating, or changing of
privacy locks.

June 1, 3. 10 1973

3.0.10 DDL REFERENCES TO DML FUNCTIONS

In the specification of the DDL it is assumed that certain basic
functions may be performed on the described data. This results
in various interactions between data descriptions and data
manipulation functions. Where relevant, these interactions are
indicated. The basic DML functions assumed are of the following
generic types:

Update Functions

a. STORE, DELETE:

a record into (from) the data base.

b. INSERT, REMOVE:

a record into (from) a set.

c. MODIFY:

that is, change data in a record.

d. ORDER:

that is, logically reorder the records in a set.

Retrieval Functions

a. FIND:

that is, locate a specific record in the data base.

b. GET:

that is, fetch data from a record.

Control Functions

a. OPEN, CLOSE:

areas of the data base for (from) user processing in
retrieval or update modes.

The DDL specifications also assume that the open function can
be qualified so as to restrict the availability of areas to
concurrent run units. Thus an exclusive open dedicates an area
to a run unit and a protected open permits concurrent run units
to acquire only retrieval privileges. A nonexclusive open places
no restrictions on concurrent run units.

June 1, 1973 3.1 1

The basic DML functions listed above may in any specific DML be
combined to form more complex functions. For example FIND and
GET could be combined to form a READ or FETCH function, INSERT
and REMOVE could be combined to form a SWITCH sets function and
FIND could be combined with any of the update functions. Other
variations are also possible.

3. 12 June 1 1973

3.1.0 SCHEMA ENTRY

Function

To name and associate certain facilities with the schema which
describes the data base.

Schema Entry Skeleton

SCHEMA clause

ON clause

PRIVACY clause

General Format of Entry

SCHEMA NAME IS schema-name-1

ALTER

;ON [ERROR DURING]
COPY

CALL data-base-procedure-1
DISPLAY
LOCKS

_

LOCKS
fliteral-1
(lock-name
(procedure

;PRIVACY LOCK FOR
DISPLAY

IS -1 I
data-base-procedure-2|

COPY
ALTER

[literal-2
OR <lock-name-2

(PROCEDURE data-base-procedure-3,

June 1 # 1973 3.13

■*.1.1 ON

Function

To specify the procedure to be executed whenever a schema
operation is performed.

General Format

ON rERROR DURING]

ALTER
COPY
DISPLAY
LOCKS

CALL data-base-procedure-1

Syntax Rules

1. A separate ON clause may be written for each schema
operation.

2. The same data-base-procedure may be specified in different
ON clauses.

General Rules

1. The procedure named by data-base-procedure-1 is invoked as
soon as the specified schema operation is performed. If
more than one procedure is applicable they are invoked in
the order in which they are specified in the Schema Entry,
but a procedure named in an ON clause containing the optional
word ERROR will be invoked prior to a procedure named in an
ON clause which does not contain the word ERROR. A procedure
named in an ON ERROR clause will be entered only if, during
the performance of the schema operation, the DBMS detects
an error that it intends to reoort.

2. If no schema operations are specified the procedure is
invoked whenever any of the listed schema operations is
performed.

3. 14 June 1, 1973

3.1.2 PRIVACY

Function

To specify the privacy lock(s) for certain operations which
apply to the schema.

General Format

(literal-1
IS I lock-name-1

1 PROCEDURE data-base-procedure-1
PRIVACY LOCK FOR

LOCKS
DISPLAY
COPY
ALTER

Jliteral-2
OR, lock-name-

[PROCEDURE
2
data-base-procedure-

Syntax Rules

1. A separate PRIVACY clause may be stated for each restricted
schema operation (LOCKS, DISPLAY, COPY, ALTER). However,
the same operation must not be specified in more than one
PRIVACY clause.

2. The same literal, lock-name, or data-base-procedure may be
specified for one or more operations.

3. All literals must conform to the implementor defined data
characteristics of privacy locks.

General Rules

1. The literals and the content of the lock-names are privacy
locks, to be matched with the pertinent privacy key. The
procedures named are privacy lock procedures which, when
given access to a privacy key, either return a yes or no
result, or do not return at all.

2. By their appearance in a PRIVACY clause, lock-names are
treated as data items with implementor defined data
characteristics.

3. If the optional FOR clause is omitted all literals,
lock-names, or procedures apply to all operations.

4. A value of null for any literal or lock-name is equivalent
to the omission of the entire clause in which it occurs.

June 1, 1973 3. 15

5. Multiple privacy locks connected by OR phrases are considered
satisfied if any one is satisfied. The privacy locks are
processed in the order listed until the outcome of the PRIVACY
clause is known.

6. If no PRIVACY clause has been specified for an operation,
then the use of that operation is without restriction.

7. The privacy locks associated with each restricted operation
(ALTER, COPY, ...) must be satisfied in order to perform that
restricted operation on the schema.

3. 16 June 1 1973

3.1.3 SCHEMA

Function

To name the schema.

General Format

SCHEMA NAME IS schema-name-1

Syntax Rules

1. Schema-name-1 must be unique among the schema-names known to
the DBMS.

General Rules

1. The schema named by schema-name-1 consists of the DDL entries
that appear after the SCHEMA clause and before an implementor
defined 'END SCHEMA' indicator.

June 1 1973 3.17

3.2.0 AREA ENTRY

Function

To name and give certain characteristics of an area within the
data base.

Area Entry Skeleton

AREA clause

TEMPORARY clause

ON clause

PRIVACY clause

General Format of Entry

See next page

3. 18 June 1 1973

General Format of Area Entry

AREA NAME IS area-name-1

[;AREA IS TEMPORARY]

;ON[ERROR DURING] OPEN

EXCLUSIVE 1 UPDATE \

PROTECTED \ RETRIEVAL 1'
. . .

NONEXCLUSIVE
FOR'

EXCLUSIVE
PROTECTED
NONEXCLUSIVE

CLOSE

CALL data-base-procedure-1 ...

EXCLUSIVE"
PROTECTED

RETRIEVAL

;PRIVACY LOCK FOR EXCLUSIVE
PROTECTED

UPDATE

support-function-l[, support-function-2].

IS

fliteral-1 | literal-2
"

(lock-name-1 / OR lock-name-2

(PROCEDURE data-base-procedure-2j PROCEDURE data-base-procedure-3

June 1 1973 3

3.2.1 AREA

Function

To name an area within the data base.

General Format

AREA NAME IS area-name-1

Syntax Rules

1. Area-name-1 must be unique amonq area-names within the schema.

2. At least one area-name must be specified in a schema.

General Rules

1. If only one area-name is specified in the schema, then the
area named by that area-name and the data base are equivalent.

3.20 June 1 1973

3.2.2 ON

Function

To specify the procedure to be executed when an area is opened
or closed.

General Format

ON fERROR DURING]

EXCLUSIVE 1UPDATE)
PROTECTED (RETRIEVAL/

• • •

NONEXCLUSIVE
OPEN FOR

EXCLUSIVE
PROTECTED
NONEXCLUSIVE

.

CLOSE

CALL data-base-procedure-1

Syntax Rules

1. A separate ON clause may be written for each type of OPEN
and for the CLOSE function.

2. The same data-base-procedure may be specified in different
ON clauses.

3. In the optional FOR phrase, each of the words UPDATE and
RETRIEVAL may appear at most cnce.

4. The FOR phrase must not be used in an entry for a temporary
area.

June 1, 1973 3.21

General Rules

1. The procedure named by data-base-procedure-1 is invoked
whenever the specified function is executed on the area in
which this clause appears.

2. If OPEN or CLOSE is not specified, the procedure is invoked
whenever any OPEN or CLOSE function is executed for the area.

3. If OPEN is specified and the FOE option is not stated, the
procedure is invoked whenever any type of OPEN function is
executed for the area.

4. If the FOR option is stated, but UPDATE or RETRIEVAL is not
specified, the procedure is invoked whenever the specified
type of OPEN function is executed regardless of whether the
open is for update or retrieval.

5. If the FOR option is stated and UPDATE or RETRIEVAL or both
are also specified, then any included qualifier words (that
is, EXCLUSIVE, PROTECTED or NONEXCLUSIVE) apply only to the
first following use of the words UPDATE or RETRIEVAL.

6. The procedure is invoked immediately before control is
returned to the run unit. If more than one procedure applies
to the execution of a function, the procedures are invoked
in the order in which they are stated in the schema, but a
procedure named in an ON clause containing the optional word
ERROR will be invoked prior to a procedure named in an ON
clause which does not contain the word ERROR. A procedure
named in an ON ERROR clause will be entered only if, during
the performance of the specified function, the DBMS detects
an error that it intends to report.

3. 22 June 1 1973

3.2.3 PRIVACY

Function

To specify the privacy locks which apply to the use of an area.

General Format

['exclusive-'
[protected

RETRIEVAL

PRIVACY LOCK FOR [exclusive"
[protected

UPDATE

support-function-l[support-function-2j. . .
-

literal-1

lock-name-1

PROCEDURE data-base-procedure-1

{literal-2

lock-name-2

PROCEDURE data-base-procedure-2

Syntax Rules

1. A separate PRIVACY clause may be stated for each usage mode
(EXCLUSIVE or PROTECTED RETRIEVAL or UPDATE, or nonrestricted
RETRIEVAL or UPDATE) and/or for the various support-functions.
However, the same usage mode or support-function must not be
specified in more than one PRIVACY clause.

2. The same literal, lock-name, or data-base-procedure may be
specified for one or more options included in this clause.

3. All literals must conform to the implementor defined data
characteristics of privacy locks.

4. Support-functions are implementor defined names for the
utility functions of, for example, loading, copying, patching,
or dumping a data base.

General Rules

1. The literals and the content of the lock-names are privacy
locks, to be matched with the pertinent privacy key. The
procedures named are privacy lock procedures which, when
given access to a privacy key, either return a yes or no
result, or do not return at all.

June 1, 1973 3.23

2. By their appearance in a PRIVACY clause, lock-names are
treated as data items with implementor defined data
characteristics.

3. If the optional FOR phrase is omitted all literals,
lock-names, or procedures apply to any use of the area.

4. A value of null for any literal or lock-name is equivalent
to the omission of the entire clause in which it occurs.

5. Multiple privacy locks connected by OR phrases are considered
satisfied if any one is satisfied. The privacy locks are
processed in the order listed until the outcome of the PRIVACY
clause is known.

6. If a PRIVACY clause has not been specified for a given usage
mode or support-function, then the use of that usage mode or
support-function on the area being described, is without
res-triction.

7. The privacy locks associated with the EXCLUSIVE RETRIEVAL,
PROTECTED RETRIEVAL, RETRIEVAL, EXCLUSIVE UPDATE, PROTECTED
UPDATE, and UPDATE clauses must be satisfied by a run unit
to enable it to open the area with the corresponding usage
mode.

8. The privacy locks associated with the support-function names
must be satisfied in order to execute the specified
support-function on the area being described.

3. 24 June 1, 1973

3.2.4 TEMPORARY

Function

To specify that the area is temporary.

General Format

AREA IS TEMPORARY

Syntax Rules

None

General Rules

1. A temporary area is not shared among concurrent run units.
Any run unit which makes reference to an area defined as
temporary is allocated a private, unique occurrence of that
area. This is true even when multiple run units refer to
the same area-name.

2. When a CLOSE function is executed on a temporary area or
the run unit terminates, records and sets in the area are
no longer accessible and the soace occupied by the temporary
area may be made available for re-use by the DBMS.

3. Records in a temporary area cannot participate, either as
owner or member records, in sets which contain records that
are not in temporary areas.

June 1, 1973 3.25

3.3.0 RECORD ENTRY

Function

To name and give certain characteristics of records and their
subordinate data items within a data base.

Record Entry Skeleton

Record Subentry

("Data Subentry] ...

Record Subentry Skeleton

RECORD clause

LOCATION clause

WITHIN clause

ON clause

PRIVACY clause

Data Subentry Skeleton

data-base-data-name clause

PICTURE clause

TYPE clause

OCCURS clause

RESULT clause

SOURCE clause

CHECK clause

ENCODING/DECODING clause

ON clause

PRIVACY clause

3. 26 June 1, 1973

General Format of Record Subentry

RECORD NAME IS record-name-1

.•LOCATION MODE IS

DIRECTjdata-base-data-name-1 |
[data-base-identifier-lj

CALC data-base-procedure-l]USING data-base-identifier-2

", data-base-identifier-3]. . .DUPLICATES ARE [not] ALLOWED

VIA set-name-1 SET

SYSTEM

;WITHIN

f area-name-1

|AREA OF OWNER

j,area-name-2j * * * AREA-ID IS data-base-data-name-2j

[using PROCEDURE data-base-procedure-2] 1

;ON [ERROR DURING]

INSERT
REMOVE
STORE
DELETE
MODIFY
FIND
GET

CALL data-base-procedure-3

;PRIVACY LOCK FOR

INSERT
REMOVE
STORE
DELETE IS I

literal-1
lock-name-1)

- MODIFY
FIND

1 PROCEDURE data-base-procedure-4)

GET

(literal-2
(lock-name-2
(PROCEDURE data-base-procedure-

June ^ 9 1973 3.27

General Format of Data Subentry

[leve1-number-1] data-base-data-name-1

.•PICTURE IS
"(character-string-picture-spec if i cation-11"
(numeric-picture-specification-1 J _

;TYPE IS

(BINARY I
(DECIMAL)
(FIXED 1
(FLOAT I
I REAL)
(COMPLEX)

[integer-1 [, integer-2]j

IcHARACTErI[inte9er 3]

DATA-BASE-KEY

implementor-name

;OCCURS
(integer-4
(data-base-identifier-1

TIMES

ACTUAL I
iVIRTUAL)

RESULT OF data-base-procedure-1

ON THIS RECORD

ON ALL MEMBERS OF set-name-1
[,set-name-2]...

USING data-base-identifier-2

[data-base-identifier-5] ...
ON record-name-1

[,record-name-2]...

OF set-name-3

; IS {^—;^l|and SOURCE IS data-base-identifier-4 OF OWNER OF set-name-

3.28 June 1, 1973

General Format of Data Subentrv (continued)

“
PICTURE

;CHECK IS
data-base-procedure-2

VALUE[NOT]literal-1[THRU literal-2]
[, literal-3 [THRU literal-4]]. . .

; FOr| DECODING I 1[CALL data-base-procedure-3

;ONfERROR DURING]
STORE
GET
MODIFY

CALL data-base-procedure
‘

4

;PRIVACY LOCK
STORE

FOR GET IS
MODIFY 1

literal-5
lock-name-1
PROCEDURE data-base-procedure-5

(literal-6
lock-name-2
PROCEDURE data-base-procedure-6

June 1, 1973 3.29

3.3.1 CHECK

Function

To inhibit data conversion or to specify a validity-checkinq
procedure to be executed whenever a value is changed or added
to the data base.

General Format

data-base-procedure-1 CHECK IS

VALUE[NOT1 literal-1TTHRU literal-21

Syntax Rules

1. Literals specified in the VALUE option must appear in
ascending order according to the implementor's collating
sequence.

2. The subiect of the CHECK clause must be described with a
PICTURE, TYPE, or SOURCE clause.

General Rules

1. If PICTURE is specified, data conversion will not occur.
Therefore, the characteristics of the data item as described
in the subschema must match the characteristics of the data
item as described in the schema.

2. If VALUE is specified, the value of the data item in the
user workinq area is checked against the individual values
or ranges specified. An individual value is specified by
a literal. A range is specified by two literals separated
by THRU. The value of the data item satisfies the VALUE
option if it is equal to a specified literal, or if it is
qreater than or equal to the literal on the low end of a
range and less than or equal to the literal on the high end
of a ranqe. The value is valid if it satisfies the VALUE
option and NOT is omitted or if it does not satisfy the
VALUE option and NOT is included.

3. If data-base-procedure-1 is specified, validity checking is
performed by the named procedure.

4. If a CHECK clause is used with the VALUE or
data-base-procedure-1 options, and the data item which is
the subject of the CHECK clause is neither an actual or
virtual result data item nor an actual or virtual source
data item, the specified validity checking occurs whenever

3. 30 June 1, 1973

a new value of the data item is placed in the data base as
a result of a STORE function or whenever a value of the data
item is changed as a result of a MODIFY function.

5. If a CHECK clause is used with the VALUE or
data-base-procedure-1 options, and the data item which is
the subject of the CHECK clause is a virtual result or source
data item, the specified validity checking occurs whenever
a GET function involving the data item is performed. If
the data item is an actual result or source data item, the
specified validity checking occurs whenever the data item
is updated. The rules describing the conditions under which
an actual result or source data item is updated are included
in the general rules of the RESULT or SOURCE clauses.

6. If the CHECK clause is used with both the VALUE and
data-base-procedure-1 options, the VALUE check is performed
first. If the value of the data item is not valid, the
procedure is not invoked.

7. If the data item is also the subject of other procedures,
such as a DBMS conversion routine or the data base procedure
specified in a RESULT clause, these procedures are invoked
before validity checking occurs. A data base procedure
specified in an ON clause for the data item is invoked after
validity checking.

8. If an invalid value is detected the DBMS will report an
error.

June 1, 1973 3.31

3.3.2 DATA-BASE-DATA-NAME

Function

To name a data item or data aqqregate and indicate its structural
level within the record.

General Format

JjLevel-number-l] data-base-data-name-1

Syntax Rules

1. Data-base-data-name-1 must be unique among the
data-base-data-names declared for this record type.

2. Level-number-1 is an unsigned decimal integer greater than
0 and less than 100.

3. A Data Subentry must include exactly one of the following:

a. A PICTURE clause.
b. A TYPE clause.
c. A SOURCE clause.
d. An OCCURS clause.
e. An OCCURS clause and a PICTURE clause.
f. An OCCURS clause and a TYPE clause.

In addition it may include any other clauses appearing in
the General Format for a Data Subentry unless such use is
explicitly prohibited in the rules of those clauses.

4. If and only if a Data Subentry includes an OCCURS clause,
but neither a PICTURE nor a TYPE clause, the subentry must
be followed by one or more subentries with higher valued
level-numbers.

General Rules

1. A data-base-data-name followed by one or more clauses
constitutes a Data Subentry. The content of a record is
defined by a series of zero or more Data Subentries.

2. A Data Subentry names and describes a data item, vector or
repeating group. Additional subentries are required to name
and describe the components of a repeating group.

3. If level-number-1 is not specified, level 1 is assumed.

4. A data item is described by a Data Subentry that includes
a PICTURE, TYPE, or SOURCE clause, but no OCCURS clause.

3.32 June 1, 1973

5. A vector is described by a Data Subentry that includes an
OCCURS clause and either a PICTURE or TYPE clause.

6. A repeating group is described by a Data Subentry that
includes an OCCURS clause, but no PICTURE or TYPE clause.
The components of the repeating group, which may, in turn,
be repeating groups, are described by subsequent subentries.

June 1, 1973 3.33

3.3.3 ENCODING/DECODING

Function

To specify the procedure to be executed whenever a data item
requiring special conversion is retrieved or updated.

General Format

FOR [ALWAYS] CALL data-base-procedure-1

Syntax Rules

1. An ENCODING and a DECODING clause may be used for the same
data item.

2. The subject of the ENCODING/DECODING clause must be described
with a PICTURE or TYPE clause.

3. The subject of an ENCODING clause must not be described with
a VIRTUAL RESULT clause.

General Rules

1. The procedure named by data-base-procedure-1 is invoked in
lieu of a standard conversion. Therefore, the procedure is
invoked at the point in the execution of a DML function that
the standard conversion would be invoked. If the optional
word ALWAYS is not used, the procedure is invoked only if
the characteristics of the data item vary between the schema
and subschema.

2. If ENCODING is specified, the procedure is invoked when a
new value of the data item is placed in the data base as a
result of a STORE function or when a value of the data item
is chanqed as a result of a MODIFY function. The procedure
is passed the data item in the form in which it appears in
the user workinq area. The result of the procedure is the
data item in the form in which it is stored in the data
base.

3. If DECODING is specified, the procedure is invoked when a
GET function is executed for the data item. The procedure
is passed the data item in the form in which it is stored
in the data base. The result of the procedure is the data
item in the form in which it appears in the user workinq
area.

3. 34 June 1, 1973

3.3.4 LOCATION

Function

control the assignment by the DBMS of data base keys to
records.

General Format

DIRECT
data-base-data-name-1

data-base-identifier- J

LOCATION MODE IS

CALC [data-base-procedure-l] USING data-base-identifier-2

[",data-base-identifier-3] . . .DUPLICATES ARE [not] ALLOWED

VIA set-name-1 SET

SYSTEM

Syntax Rules

1. Data-base-identifier-1 must be qualified with a record-name
and must refer to a data item defined as a data base key.

2. Data-base-identifier-2, data-base-identifier-3,... must
refer to data items included in the record type being
described.

3. Set-name-1 must be a set type in which the record type is
defined as being a member.

General Rules

1. By its appearance in a LOCATION clause data-base-data-name-1
is treated as a data base key and is not part of a record.

2. The DBMS assigns a data base key to a record when a DML
function which stores the record in the data base is
executed.

3. The assignment of data base keys is subject to the overall
constraint of the WITHIN clause for the same Record Subentry.
The same data base key is not assigned to more than one
record in the data base.

4. If SYSTEM is specified the DBMS uses an implementor defined
method of assigning a data base key.

June 1, 1973 3.

5. If DIRECT is specified the contents at execution time of
the data item associated with the DIRECT phrase is used by
the DBMS in assigning a data base key. The contents must
be a data base key or a null value.

6. If CALC is specified the contents at execution time of the
data item (s) associated with the CALC phrase are used by
the DBMS in assigning a data base key. If
data-base-procedure-1 is not specified the DBMS develops a
data base key using its standard key transformation
algorithm. If data-base-procedure-1 is specified the DBMS
develops a data base key using the named procedure.

7. If the DUPLICATES ARE ALLOWED phrase is specified the DBMS
will permit more than one record with identical values for
the data items associated with the CALC phrase to be stored
in the data base.

8. If the DUPLICATES ARE NOT ALLOWED phrase is specified the
DBMS will not permit more than one record with identical
values for the data items associated with the CALC phrase
to be stored in the data base.

9. If VIA set-name-1 SET is specified the DBMS assigns a data
base key to the object record as though it were to become
a member of an occurrence of the set type named in the VIA
phrase. The set selection and set ordering criteria defined
for the set type named are consulted by the DBMS when
assigning a data base key.

June 1, 3.36 1973

3.3.5 OCCURS

Function

To define a vector or repeating qroup by specifyinq the number
of times the data item or qroup occurs within a record.

General Format

OCCURS
jinteger-l
fdata-base-identifier-1

TIMES

Syntax Rules

1. The OCCURS clause cannot be used in the same subentry as a
RESULT or SOURCE clause.

2. The value of integer-1 must be qreater than 0.

3. The data item referred to by data-base-identifier-1 must be
previously defined as an inteqer in the same record type as
the subject data aggregate.

4. Data-base-identifier-1 can be used only if the subject data
aqgreqate is not a component of a repeating qroup.

5. Data-base-identifier-1 cannot refer to a data item which is
part of a data aqgreqate defined with an OCCURS
data-base-identifier-1 clause.

General Rules

1. The OCCURS clause is used to describe a data aggregate. The
component elements of a vector are described by a PICTURE
clause or a TYPE clause in the same subentry at the OCCURS
clause. The components of a repeating qroup are described
by subsequent subentries.

2. Inteqer-1 or the value of data-base-identifier-1 specifies
the number of occurrences of the data item or group of data
items. The use of integer-1 indicates that the number of
occurrences is the same for all records. The use of
data-base-identifier-1 defines a data item or group of data
items of a variable number of occurrences. For a given
record, the number of occurrences of the data item or qroup
of data items is given by the value of data-base-identifier-1

June 1, 1973 3.37

in that record. The value must be a positive integer or
zero.

3. The components of a repeating group are specified by means
of subsequent subentries which have a level number which is
greater than the level number of the subentry for the
repeating group. Components of the same level must have
the same level number.

3. 38 June 1 1973

3.3.6 ON (DATA)

Function

To specify the procedure to be executed when specified DML
functions are performed on a data aggregate or data item.

General Format

ON[ERROR DURING]
STORE
GET
MODIFY

CALL data-base-procedure-1

Syntax Rules

1. A separate ON clause may be written for each DML function
or group of functions.

2. The procedure named by data-base-procedure-1 may be specified
in different ON clauses.

General Rules

1. If STORE is specified, the procedure is invoked whenever a
new value of the data item is placed in the data base as a
result of a STORE function. If MODIFY is specified, the
procedure is invoked whenever a value of the data item is
changed as a result of a MODIFY function. If GET is
specified, the procedure is invoked whenever a value of the
data item is placed in the user working area as a result of
a GET function. If no DML functions are specified, the
procedure is invoked whenever a value of the data item is
the object of any of the functions listed.

2. The procedure is invoked immediately before control is
returned to the run unit. If more than one procedure applies
to the execution of a DML function, the procedures are
invoked in the order in which they are stated in the schema,
but a procedure named in an CN clause containing the optional
word ERROR will be invoked prior to a procedure named in an
ON clause which does not contain the word ERROR. A procedure
named in an CN ERROR clause will be entered only if, during
the performance of the specified function, the DBMS detects
an error that it intends to report.

June 1, 1973 3.39

3.3.7 ON (RECORD)

Function

To specify the procedure to be executed when specified DML
functions are performed on a record.

General Format

ON TERROR DURING]

INSERT
REMOVE
STORE
DELETE
MODIFY
FIND
GET

CALL data-base-procedure-1

Syntax Rules

1. A separate ON clause may be written for each DML function
or qroup of functions.

2. The procedure named by data-base-procedure-1 may be specified
in different ON clauses.

General Rules

1. The procedure is invoked whenever a run unit issues one of
the specified functions for an occurrence of the record.
If no functions are specified, the procedure is invoked
whenever the record is the object of any of the functions
listed.

2. The procedure is invoked immediately before control is
returned to the run unit. If more than one procedure applies
to the execution of a DML function, the procedures are
invoked in the order in which they are stated in the schema,
but a procedure named in an ON clause containing the optional
word ERROR will be invoked prior to a procedure named in an
ON clause which does not contain the word ERROR. A procedure
named in an ON ERROR clause will be entered only if, during
the performance of the specified function, the DBMS detects
an error that it intends to report.

June 1 3. 40 0 1973

3.3.8 PICTURE

Function

To describe the characteristics of a data item.

General Format

"(character-string-picture-specification-l)"
PICTURE IS (

(numeric-picture-specification-l

Syntax Rules

1. A picture specification, either character string or numeric,
is composed of one or more characters enclosed in quotation
marks. The characters that may be used in a picture
specification are the character specifiers A and X; the
digit specifiers 1, 2, 3, and 9; the point specifiers V, .
(period), and P; the sign specifiers S and T; the exponent
specifiers K and E; and a repetition factor, which is an
unsigned decimal integer enclosed in parentheses.

2. Character-string-picture-specification-1 must include at
least one A or X. Numeric-picture-specification-1 cannot
contain the characters A or X.

3. The allowable combinations of picture characters and the
parts of a numeric picture specification are described in
the general rules.

General Rules

1. The picture characters A, X, P, 1, 2, 3, and 9 may be
followed by a repetition factor, which is an unsigned decimal
integer constant, n, enclosed in parentheses, to indicate
repetition of the character n times. (If n is zero, the
character is ignored.) For example, PICTURE "9 (4)V9 (5)" is
equivalent to PICTURE "9999V99999".

2. Character-string-picture-specification-1 is used to describe
a character strinq data item. A character string data item
consists of a string of one cr more characters of the data
character set defined bv the implementor.

3. Each character in character-string-picture-specification-1
describes the corresponding character in the data item. The
picture characters that may be used are as follows:

June 1, 1973 3.41

A specifies that the associated position may contain any
alphabetic character or a blank character.

X specifies that the associated position may contain any
character of the data character set defined by the
impleme ntor.

9 specifies that the associated position may contain any
decimal digit.

4. Numeric-picture-specification-1 is used to describe an
arithmetic data item that is represented in numeric pictured
form. (The TYPE clause is used to describe an arithmetic
data item that is represented in an implementor defined
coded form.) There are four types of numeric pictured
arithmetic data and four corresponding numeric picture
specifications: fixed point decimal, fixed point binary,
floating point decimal, and floating point binary.

5. Numeric-picture-specification-1 may consist of one, two, or
three parts. The description of a fixed point number or
the mantissa of a floating point number has a whole part
and, optionally, a fractional part. For floating point
numbers, an additional part is required to describe the
exponent. Each part of numeric-picture-specification-1 must
contain at least one picture character that specifies a
digit position, and each part of the same numeric picture
specification must contain the same digit specifier; that
is, either 1, 2, 3, or 9.

6. Decimal numeric pictured data is a string of characters that
represents an arithmetic value or a character string value
depending on its use. The data item consists of decimal
digits. A fixed point decimal numeric pictured data item
may contain a decimal point and an overpunched digit or a
separate sign. A floating point decimal numeric pictured
data item may contain a decimal point, two signs and the
character E.

7. Binary numeric pictured data is a string of bits that
represents an arithmetic value or a bit string value,
depending on its use. The data item consists only of binary
digits, either signed or in 1's or 2’s complement form, with
an assumed binary point.

8. Digit Specifiers:

The picture characters 1, 2, 3, and 9 are used in numeric
picture specifications to describe digits.

1 specifies that the associated position in the data item
contains a binary digit.

3. 42 June 1, 1973

2 specifies that the associated position in the 2*s
complement data item contains a binary digit.

3 specifies that the associated position in the I's
complement data item contains a binary digit.

9 specifies that the associated position in the data item
contains a decimal digit.

9. Point Specifiers:

The picture characters V, Pr and . (period) are used in
numeric picture specifications to describe the position of
the radix point.

V specifies that a decimal or binary point is assumed at
this position in the associated data item.

. specifies that the associated position in the data item
actually contains a decimal point. This picture character
may only be used for decimal numeric pictured data.

P specifies an assumed scaling position and is used only
when the assumed decimal or binary point is either more
than one position to the left of the first actual position
in the data item or more than one position to the right
of the last actual position in the data item.

Numeric-picture-specification-1 may contain either no point
specifier, one V, one decimal point, or one group of P's.
A V may be used in combination with P's, but since the use
of P's implies an assumed point (to the left of P's on the
left or to the right of P's on the right) the V is redundant.
If no point specifiers are used (in a fixed point numeric
picture specification or in the mantissa part of a floating
point numeric picture specification) a V is assumed on the
right. A point specifier cannot be used in the exponent
part of a floating point numeric picture specification.

10. Sign Specifiers:

The picture characters S and T are used to specify signs in
numeric pictured data.

S specifies that a separate sign always appears in the
associated position of the data item.

T specifies that the associated position of the data item
will contain a digit overpunched with the sign of the
number.

June 1, 1973 3.43

Only one sign specifier can be used in a fixed point numeric
picture specification. A floating point numeric picture
specification may contain two sign specifiers, one for the
mantissa part and one for the exponent. The sign specifier
T can only be used in a decimal numeric picture
specification. The sign specifier S can be used in a binary
numeric picture specification, but only in combination with
the digit specifier 1. If the sign specifier S is used, it
must appear to the left of all digits in the mantissa part
and to the left of all digits in the exponent part of a
floating point numeric picture specification, and either to
the right or left of all digit positions of a fixed point
numeric picture specification. The sign specifier T can be
used in any digit position and it also serves as a decimal
digit specifier.

Use of the sign specifier S in a decimal numeric picture
specification means that the associated position of the data
item contains a plus sign character if the value of the
number is greater than or equal to zero; otherwise, it
contains a minus sign character. Ose of the sign specifier
S in a binary numeric picture specification means that the
associated position of the data item contains the binary
digit 0 if the value of the number is greater than or equal
to zero; otherwise, it contains the binary digit 1. The
representation of overpunched signs is implementor defined.
If a data item contains an overpunched sign, the overpunch
is part of the character string value of the data item. If
no sign specifiers are used, the data item is assumed to be
positive.

11. Exponent Specifiers:

The picture characters K and E delimit the exponent part of
a numeric picture specification that describes a floating
point number. The exponent is always the last part of a
floating point numeric picture specification. The picture
characters K and E cannot appear in the same specification.

K specifies that the exponent part appears to the right of
the associated position. It does not specify a character
in the numeric pictured data item.

E specifies that the associated position contains the letter
E, which indicates the start of the exponent. It cannot
appear in a binary numeric picture specification.

The value of the exponent is always adjusted in the character
string or bit string value so that the first significant
digit of the mantissa appears in the position associated
with the first digit specifier of the specification. The

3.44 June 1, 1973

value zero is represented by zero exponent and zero mantissa,
with positive signs if required.

12. Unless explicitly prohibited by the CHECK clause, the
characteristics of a data item as defined in the schema may
differ from the characteristics of the data item as defined
in a subschema. When the characteristics differ, a
conversion occurs from the schema defined characteristics
to the subschema defined characteristics whenever a GET
function is issued for the data item; and a conversion occurs
from the subschema defined characteristics to the schema
defined characteristics whenever the data item is involved
in a STORE or MODIFY function. A data item described by
character-string-picture-specification-1 is subject to the
conversion rules defined for character strings by the general
rules of the TYPE clause. Rules for conversion of numeric
pictured arithmetic data to coded arithmetic data are also
defined by the general rules of the TYPE clause. Except
for the situation defined by the General Rule 13 below,
whenever a numeric pictured arithmetic data item is involved
in a conversion, it is first converted to a coded arithmetic
form. Conversion then proceeds in accordance with the
general rules of the TYPE clause.

13. If both the schema and subschema define a fixed point
arithmetic data item in numeric pictured form and the source
and target description differ only in regard to the number
of digits and/or the position of the radix point, then, in
accordance with the numeric picture specification of the
target, insignificant zero digits will be appended or removed
and rounding will occur if necessary. If the precision of
the target is not adequate to account for all significant
digits in the whole part of the number, the conversion does
not occur, and an error is reported. Whenever a conversion
does not occur, the value in the data base and the user
working area remains unchanged.

June 1, 1973 3.45

3.3.9 PRIVACY (DATA)

Function

To specify the Drivacy locks which apply to the use of a data
item or data aqqreqate.

General Format

PRIVACY LOCK FOR
STORE
GET

IS
MODIFY 1

literal-1
lock-name-1
PROCEDURE data-base-procedure-1

1 literal-2
OR | lock-name-2

| PROCEDURE data-base-procRdnrp-?

Syntax Rules

1. A separate PRIVACY clause may be stated for each DML
function. However, the same DML function must not be stated
in more than one PRIVACY clause.

2. The same literal, lock-name, or data-base-procedure may be
specified for one or more of the DML functions included in
this clause.

3. All literals must conform to the implementor defined data
characteristics for privacy locks.

General Rules

1. The literals and the content of the lock-names are privacy
locks, to be matched with the pertinent privacy key. The
procedures named are privacy lock orocedures which, when
qiven access to a privacy key, either return a yes or no
result, or do not return at all.

2. By their appearance in a PRIVACY clause, the lock-names are
treated as data items with implementor defined data
characteristics.

3. If the optional FOR phrase is omitted all literals,
lock-names, or procedures apply to all DML functions included
in the relevant format.

4. A value of null for any literal or lock-name is equivalent
to the omission of the entire clause in which it occurs.

5. Multiple privacy locks connected by OR phrases are considered
satisfied if any one is satisfied. The privacy locks are

3.46 June 1, 1973

processed in the order listed until the outcome of the
PRIVACY clause is known.

6. If a PRIVACY clause has not been specified for a DHL
function, then unless other PRIVACY clauses apply, the use
of that function on occurrences of the data item or data
aggregate being described is without restriction.

7. The privacy locks associated with the various DML functions
(STORE, GET,...) must be satisfied in order to execute the
respective DML function on the data item or data aggregate
(or any of its components) to which the privacy lock applies.

June 1, 1973 3.47

3.3.10 PRIVACY (RECORD)

Function

To specify the privacy locks which apply to the use of a record
type.

General Format

PRIVACY LOCK FOR

INSERT
REMOVE
STORE
DELETE
GET
MODIFY
FIND

IS
Jliteral-1
|lock-name-1
1 PROCEDURE data-base-procedure-1

1 literal-2 J '
OR I lock-name -2

1 PROCEDURE data-base-procedure-2 J _
Syntax Rules

1. A separate PRIVACY clause may be stated for each DML
function. However, the same DML function must not be stated
in more than one PRIVACY clause.

2. The same literal, lock-name, or data-base-procedure may be
specified for one or more of the DML functions included in
this clause.

3. All literals must conform to the implementor defined data
characteristics for privacy locks.

General Rules

1. The literals and the content of the lock-names are orivacy
locks, to be matched with the pertinent privacy key. The
procedures named are privacy lock procedures which, when
given access to a privacv key, either return a yes or no
result, or do not return at all.

2. By their appearance in a PRIVACY clause, the lock-names are
treated as data items with irrplementor defined data
characteristics.

3. If the optional FOR phrase is omitted all literals,
lock-names, or procedures apply to all DML functions included
in the relevant format.

3.48 June 1, 1973

4. A value of null for any literal or lock-name is equivalent
to the omission of the entire clause in which it occurs.

5. Multiple privacy locks connected by OR phrases are considered
satisfied if any one is satisfied. The privacy locks are
processed in the order listed until the outcome of the
PRIVACY clause is known.

6. If a PRIVACY clause has not been satisfied for a DML
function, then unless other PRIVACY clauses apply, the use
of that function on occurrences of the record being described
is without restriction.

7. The privacy locks associated with the various DML functions
(INSERT, REMOVE,...) must be satisfied in order to execute
the respective DML function on the record (or any of its
components) to which the privacy lock applies.

June 1, 1973 3.49

3.3.11 RECORD

Function

To name a record type in the schema; that is, to specify a
generic name for all occurrences of the record type in the data
tase.

General Format

RECORD NAME IS record-name-1

Syntax Rules

1. Record-name-1 must be unique among the record-name of the
schema.

2. At least one record-name must be specified in the schema.

General Rules

None.

3.50 June 1, 1973

3.3.12 'RESULT

Function

To specify that the value of a data item is established by the
execution of a procedure and to control the times at which that
procedure is invoked to materialize the value.

General Format

IS (VIRTUAL 1 RESULT 0F data-base-procedure-1

ON THIS RECORD

ON ALL MEMBERS OF set -name-1
T, set-name-2] ... USING data-base-identifier-1

data-base-identifier-2J

ON record-name-1
[,record-name-2]... • « •

OF set-name-3

Syntax Rules

1. The data item which is the subject of this clause is the
target data item, and must not be a data aggregate or a
component of a data aggregate.

2. The data-base-identifiers must be the names of Data
Subentries in the Record Entries for the record type
explicitly or implicitly specified in the ON phrase of this
entry.

3. The record-names must be defined as member record types of
set-name-3.

4. All set names specified must be the names of set types, each
of whose owner is the record type which contains the target
data item.

5. All set-names must be the names of different set types.

6. If VIRTUAL RESULT is specified none of the ON phrases in
the general format is allowed.

General Rules

1. The value of the target data item is established by the
execution of the procedure named by data-base-procedure-1
and cannot be altered except by that procedure.

June 1, 1973 3.51

2. All data-base-identifiers are parameters to the procedure.
They are the names of Data Subentries of the object record
types.

3. If RECORD is specified the object record is the occurrence
of the record type in which the target data item is defined.

4. If set-name-1, set-name-2,... is specified, the object
records are all member records of those sets of the named
set types whose owner record is the occurrence of the record
type in which the target data item is defined.

5. If set-name-3 is specified, the object records are the member
records whose types are named and whose owner record is the
occurrence of the record type in which the target data item
is defined.

6. If the target data item is the subject of a VIRTUAL RESULT
clause, its value is established by the procedure at the
time a GET function, which involves that data item, is
executed, or whenever a value for that data item is required
by the DBMS.

7. If the target data item is the subject of an ACTUAL RESULT
clause, its value is maintained by the DBMS in its
materialized form at all times.

8. In the absence of a USING phrase the procedure establishes
the value of an ACTUAL RESULT item as follows:

• If RECORD is specified, the value is established when
the object record is stored in the data base and whenever
it is modified.

• If any set-names are specified the value is established
whenever any of the object records are inserted into, or
removed from occurrences of the set types named, or when
they are stored, deleted, or modified.

9. When a USING phrase is specified the procedure establishes
the value of an ACTUAL RESULT item as in General Rule 8
except that when any object record is stored or modified
the value of the ACTUAL RESULT item is not established unless
one of the items specified in the USING phrase is stored or
modified, or unless any object record is switched to a new
set.

3.52 June 1, 1973

3.3.13 SOURCE

Function

To specify that the value of a data item is to be the same as

the value of another data item and to control the times at which

the DBMS materializes the value.

General Format

is
ACTUAL

VIRTUAL
AND1 SOURCE IS data-base-identifier-1 OF OWNER OF set-name-1

Syntax Rules

1. If this clause is used, the only other clauses permitted in
the Data Subentry are the PRIVACY clause, CHECK clause and
the ON clause.

2. If data-base-identifier-1 is defined with a VIRTUAL SOURCE
or VIRTUAL RESULT clause, then the optional word ACTUAL is
illegal.

3. The record type in which this data item is being described
must be a member of set-name-1 and data-base-identifier-1
must refer to a data item included in the owner record type
of set-name-1.

4. This clause must not be applied to data aggregates or their
components.

General Rules

1. The characteristics of the data item being described are
the same as those ascribed to data-base-identifier-1.

2. If the record which includes the data item being described
is a member of an occurrence of set-name-1, the DBMS is
responsible for ensuring that the value of that data item
is equal to the value of data-base-identifier-1 in the owner
record of that set.

3. If the record which includes the data item being described
is not currently a member of an occurrence of set-name-1,
then the value of the data item is null.

June 1, 1973 3.53

4 The value of a data item defined with a VIRTUAL SOURCE clause
is established by the DBMS whenever a GET function which
involves that data item is executed and whenever a value
for that data item is required by the DBMS.

5. The value of a data item defined with an ACTUAL SOURCE clause
is maintained by the DBMS in its materialized form at all
times.

6. The value of the SOURCE data item may be directly modified
if this data item is used in a SELECTION clause to govern
set selection. The SELECTION clause will be used to
determine the correct set when this data item is stored, or
a possibly different set when this data item is modified.

3.54 June 1, 1973

3.3.14 TYPE

Function

To describe the characteristics of a data item.

General Format

TYPE IS

(BINARY]
1 DECIMAL I
(FIXED J
1 FLOAT J
|REAL I
I COMPLEX I

[BIT

[integer-1 [, integer-2]]

CHARACTER 1 [integer 3]

DATA-BASE-KEY

implementor-name

Syntax Rules

1. Inteqer-1 and integer-3 must be unsigned decimal constants
with value qreater than zero. The maximum value is
implementor defined.

2. If FLOAT is specified, integer-2 must not be specified.

general Rules

1. The TYPE clause is used to define an arithmetic data item,
a string data item, or a data base key. Implementor-name
means that the implementor may provide for one or more
additional types of data items. For arithmetic data, the
TYPE clause is used to specify a coded arithmetic data item
as opposed to a data item in numeric pictured form. The
representation of a coded arithmetic data item is
implementation defined. A coded arithmetic data item is
described in terms of its base, scale, mode, and precision.

2. BINARY and DECIMAL are used to specify the base of a coded
arithmetic data item as either binary or decimal. If the
base is not specified, DECIMAL is assumed.

3. FIXED and FLOAT are used to specify the scale of a coded
arithmetic data item as either fixed point or floatinq point.
Floating point data items have a mantissa and an exponent
part. Integer-1 is used to specify the number of binary or

June 1, 1973 3.55

i

decimal digits in the mantissa of the number. The precision
of fixed point data is given by integer-1 and integer-2
where integer-1 specifies the total number of binary or
decimal digits and integer-2 is the scale factor. If the
scale is not specified, FIXED is assumed.

4. REAL and COMPLEX are used to specify the mode of a coded
arithmetic data item as either real or complex. A complex
data item is a pair of values. The first value is the real
part of the complex number and the second value is the
imaginary part. Integer-1 and integer-2 specify the
precision of both the real part and the imaginary part. If
the mode is not specified, REAL is assumed.

5. Integer-1 and integer-2 are used to specify the precision
and scale respectively of a coded arithmetic data item.
Integer-1 is used to specify the minimum number of
significant binary or decimal digits to 'be maintained for
all values of a fixed point data item or for the mantissa
of a floating point data item. Integer-2 is used to specify
the scale factor of fixed point data items (the assumed
position of the binary or decimal point). A negative scale
factor, -n, describes an integer, with the point assumed to
be located n places to the right of the rightmost actual
digit. A positive scale factor, n, describes an arithmetic
data item with the point assumed to be located n places to
the left of the rightmost actual digit. A zero scale factor
describes an arithmetic data item with the point assumed to
be located immediately to the right of the rightmost actual
digit. If FIXED is specified and integer-2 is omitted, it
is assumed to be zero. If both integer-1 and integer-2 are
omitted, integer-2 is assumed to be zero and the assumed
value of integer-1 is implementor defined.

6. BIT and CHARACTER are used to specify a string data item.
BIT specifies a bit string, that is, one or more binary
digits. CHARACTER specifies a character string, that is,
one or more characters of the data character set defined by
the implementor.

7. Integer-3 is used to specify the length of a string data
item; that is, the number of bits or characters in the
string. If integer-3 is omitted, its value is assumed to
be 1.

8. DATA-BASE-KEY defines a data item designed to hold a data
base key. A data base key is a unique identifier of a
record. The representation of data base keys is implementor
defined.

9. Unless explicitly prohibited by the CHECK clause, the
characteristics of a data item as defined in the schema may

3. 56 June 1, 1973

differ from the characteristics of the data item as defined
in a subschema. Where the characteristics differ, a
conversion occurs from the schema defined characteristics
to the subschema defined characteristics whenever a GET
function is issued for the data item; and a conversion occurs
from the subschema defined characteristics to the schema
defined characteristics whenever the data item is involved
in a STORE or MODIFY function. The following general rules
specify the conversion rules in terms of the language used
to describe data items in the schema.

10. If the source form of a data item is a bit string and the
target form is a character string, the bit 1 becomes the
character 1, and the bit 0, the character 0.

11. If the source form of a data item is a character string and
the target form is a bit string, the characters 1 and 0
become the bits 1 and 0. If the character string contains
characters other than 0 and 1, the conversion does not occur
and an error is reported.

12. If the source form of a data item is string and the target
form is a string of greater length, the value is extended
on the right with blanks for character strings, zeros for
bit strings. If the target is a string of shorter length,
the value is truncated on the right. If truncation removes
only blank characters or zero bits, the operation is
completed. On a STORE or MODIFY function, if truncation
removes any nonblank characters or nonzero bits, the
conversion does not occur and an error is reported. On a
GET function, if truncation removes any nonblank characters
or nonzero bits, conversion does occur and a warning is
reported.

13. If the source form of a data item is a bit string and the
target form is coded arithmetic, the bit string is
interpreted as an unsigned binary integer and is converted
to the base, scale, node, and precision of the target.
Insignificant zero digits will be appended or removed in
accordance with the precision of the target. If the
precision of a fixed point target is not large enough to
account for all significant digits, the conversion does not
occur and an error is reported.

14. If the source form of a data item is coded arithmetic and
the target form is a bit string, the absolute arithmetic
value is converted, if necessary, to real and then to fixed
point binary. Zero bits will be appended to or removed from
the left of the value in accordance with the length of the
bit string. If the length of the string is not adequate to
account for all significant digits, the conversion does not
occur and an error ii reported.

June 1, 1973 3.57

15. Since there is no standard for the character representation
of numbers, conversion from coded arithmetic to character
string and conversion from character string to coded
arithmetic are implementor defined. If the precision or
length of the target does not conform to the implementor
defined rules, the conversion does not occur and an error
is reported. If the source is a character string which does
not conform to the implementor defined rules for the
character string representation of numbers, the conversion
does not occur and an error is reported.

16. If the target is arithmetic data described with a numeric
picture specification, the source must be either in coded
arithmetic form or in a form that can be converted to coded
arithmetic. If the source is a character string which does
not conform to the implementor defined rules for the
character string representation of numbers, the conversion
does not occur and an error is reported. If the source is
also numeric pictured data, it is converted, if necessary,
to coded arithmetic form as stated in the general rules of
the PICTURE clause. If the target is described as decimal
numeric pictured data, the coded arithmetic value is
converted to character representation. If the target is
described as a binary numeric pictured data, the coded
arithmetic value is converted to bit representaion.
Insignificant zero digits will be appended or removed from
either end of the value in accordance with the precision
and scaling factor of the target. If the scaling factor of
the target is less than the scaling factor of the source,
rounding occurs in the least significant digit. If the
precision of the target is not adequate to account for all
significant digits in the whole part of the number, the
conversion does not occur, and an error is reported.

17. If the target is coded arithmetic and the source is in
numeric pictured form, the value is converted to the
appropriate internal representation. Insignificant zero
digits may be appended or removed and rounding will occur,
if necessary, in the least significant digit. If the
precision of the target is not adequate to account for all
significant digits in the whole part of the number, the
conversion does not occur, and an error is reported.

18. If both the target form and the source form of the data item
are coded arithmetic, the value is converted, if necessary,
to the base, scale, mode, and precision of the target. If
a complex value is converted to a real value, the result is
the real part of the complex value. If a real value is
converted to a complex value, the result is a complex value
that has the real value as the real part and zero as the
imaginary part. Insignificant zero digits may be appended
or removed and rounding will occur, if necessary, in the

3.58 June 1, 1973

least significant digit. If the precision of the target is
not adeguate to account for all significant digits in the
whole part of the number, the conversion does not occur,
and an error is reported.

19. Whenever a conversion does not occur, the value in the data
base and the user working area remains unchanged.

June 1, 1973 3.59

3.3.15 WITHIN

Function

To define to the DBMS the areas in which occurrences of a record
type may be stored and to provide a means of differentiating
between such areas.

General Format

area-name
WITHIN

AREA OF OWNER

-1 R, area-name-2} * * * AREA-ID IS data-base-dafa-name-1
[USING PROCEDURE data-base-procedure-ljl

Syntax Rules

1. The area-names must be the names of areas for which an Area
Entry for each is included in the schema prior to this entry.

2. If OWNER is specified, the LOCATION clause in the Record
Subentry must specify VIA set-name, where the owner of the
referenced set type is not SYSTEM.

General Rules

1. By its appearance in a WITHIN clause, data-base-data-name-1
is implicitly defined to be a data item that contains a
character string that conforms to the rules for the formation
of area-names.

2. When only one area-name is specified, all records of the
type being described will be stored in the named area
(area-name-1).

3. When more than one area-name is specified, the contents of
data-base-data-name-1 determine the area into which a record
is stored.

4. The content of data-base-data-name-1, which must be either
one of the area-names specified in the WITHIN clause or a
null value, must be set before the object record can be
stored. If the content is an area-name the record is stored
in the named area. If the content is a null value the DBMS
selects, using an implementor defined method, one of the
areas named in the WITHIN clause; this selection is subject
to the constraints, if any, of the LOCATION clause.

3. 60 June 1, 1973

5. The procedure named by data-base-procedure-1 will be invoked
by the DBMS and must return a valid area name or a null
value in data-base*data-name-1 as defined in General Rule
4 above.

6. If OWNER is specified, the record will be stored in the same
area as the owner of the selected occurrence of the set type
named in the LOCATION clause.

7. The record's area assignment remains constant regardless of
changes in its set membership.

June 1, 1973 3.61

3.4.0 SET ENTRY

Function ~ — —— ^ —

To name and give certain characteristics of the sets within a
data base.

Set Entry Skeleton

Set Subentry

fMember Subentry] ...

Set Subentrv Skeleton

SET clause

OWNER clause

DYNAMIC/PRIOR clause

ORDER clause

ON clause

PRIVACY clause

Member Subentrv Skeleton

MEMBER clause

KEY clause

SEARCH clause

SELECTION clause

ON clause

PRIVACY clause

3.62 June 1, 1973

General Format of Set Subentry

SET NAME IS set-name-1

;OWNER IS
record-name-1
SYSTEM

;SET IS
DYNAMIC
PRIOR PROCESSABLE

;ORDER IS
PERMANENT
TEMPORARY

INSERTION IS

FIRST
LAST
NEXT
PRIOR
IMMATERIAL

SORTED [INDEXED [NAME IS index-name-1]]

(BY DATA-BASE-KEY
) BY RECORD-NAME

WITHIN RECORD-NAME
BY DEFINED KEYS [DUPLICATES ARE

FIRST
LAST
NOT

ALLOWED]

[;ON [ERROR DURING]
ORDER
INSERT
REMOVE

CALL data-base-procedure-1].

;PRIVACY LOCK FOR

ORDER
INSERT
REMOVE
FIND

IS
literal-1
lock-name-1
PROCEDURE data-base-procedure-2

-

literal-2
OR lock-name-2 • • •

-
PROCEDURE data-base-procedure-3

June 1, 1973 3.63

General Format of Member Subentry

MEMBER IS record-name-1
(MANDATORY1(AUTOMATIC
1OPTIONAL J1MANUAL

[LINKED TO OWNER]

DUPLICATES ARE [NOT] ALLOWED FOR data-base-identifier-1
*- TTdata-base-identif ier-2] . . .J . . .

;[RANGE] KEY IS
ASCENDING
DESCENDING

data-base-identifier-3

r - -|

/
ASCENDING
DESCENDING

data-base-identifier-4

[DUPLICATES ARE
"first"

LAST ALLOWED] NULL IS [NOT] ALLOWED
NOT

;SEARCH KEY IS data-base-identifier-5[,data-base-identifier-6]...

CALC
USING INDEX[NAME IS index-name-1]

- .PROCEDURE data-base-procedure-1
-

DUPLICATES ARE [NOT] ALLOWED

3.64 June 1, 1973

Format 1

?SET SELECTION [FOR set-name-1] IS
THRU set-name-2^OWNER IDENTIFIED BY

SYSTEM
CURRENT OF SET
DATA-BASE-KEY

CALC-KEY

MEMBER record-name-2

C- . (data-base-identi'fier-711
[EQUAL TO ldata-base-data-name-1 J-*

TnIdata-base-identifier-8
w idata-base-data-name-2

,data-base-identifier-9
,data-base-data-name-3

SELECTION
THEN THRU set-name-3 ■

WHERE OWNER IDENTIFIED BY data-base-identifier-10
data-base-identifier-11

EQUAL TO data-base-data-name-4

_ PROCEDURE data-base-procedure-2

Format 2

;SET SELECTION IS BY PROCEDURE data-base-procedure-3

;ON [ERROR DURING]
INSERT
REMOVE
FIND

CALL data-base-procedure-4

INSERT
;PRIVACY LOCK FOR REMOVE

FIND

literal-1
lock-name-1
PROCEDURE data-base-procedure-5

“
literal-2

OR lock-name-2 • • •

- PROCEDURE data-base-procedure-6

June 1, 1973 3.65

3.4.1 DYNAMIC/PRIOR

Function

To specify that any record type, defined in the schema, may be
a member of the set type and/or to specifv that occurrences of
the set type are to be processed in the PRIOR direction.

General Format

SET IS
DYNAMIC
PRIOR PROCESSABLE

Syntax Rules

1. If DYNAMIC is used then the Set Entry may not contain any
Member Subentries. That is, nc member record types may be
declared for the set type.

General Rules

1. If DYNAMIC is used then any record except for a record of
the type declared to be the owner record type of this set
type, may be made a member of a single occurrence of this
set type. A record may only appear once in a given set.
All membership is implicitly OPTIONAL MANUAL. The SET
SELECTION for all members is implicitly THRU CURRENT.

2. The PRIOR option causes the DBMS to select preferentially
for this set type an implementation method which allows a
set to be processed as efficiently in the backward direction
as in the forward direction.

June 1, 3.66 1973

3.4.2 KEY

Function

To specify the sort control kev for a member record of a sorted
set. To control the insertion into a set of those member records
that contain duplicate values for the specified sort control
key. To control the insertion into any set of those member
records that contain a null value for the SDecified sort control
key.

General Format

[RANGE] KEY IS
ASCENDING
DESCENDING

data-base-identifier-1

1
ASCENDING
DESCENDING

data-base-identifier-2

*

[DUPLICATES ARE
FIRST *
LAST
NOT

ALLOWED] NULL IS [NOT] ALLOWED

Syntax Rules

1. The KEY clause must be specified in all Member Subentries
of any Set Entry which includes the ORDER IS SORTED clause
with the DEFINED option. The KEY clause must not be
specified if the Set Entry does not include the ORDE1? IS
SORTED clause; nor may it be specified if the Set Entry
includes the ORDER IS SOPPED clause with the DATA-BASE-KEY
option. The KEY clause is optional if the Set Entry includes
the ORDER IS SORTED clause in any other form.

2. The data-base-identifiers must refer to data items declared
in the Record Entry for the record type named in the MEMBER
clause of this Subentry.

3. If the Set Entry includes the ORDER IS SORTED clause with
the DEFINED option, corresponding data items must be
specified in the KEY clauses of all member record types;
the corresponding data items must have identical data
characteristics and must also match in terms of whether
ASCENDING or DESCENDING is specified for them. Two .data
items to which identical myPE or PICTURE clauses apply have
identical data characteristics.

June 1, 1973 3.67

4. The DUPLICATES phrase must be specified if the ORDER IS
SORTED clause in the Set Entry does not include any
DUPLICATES phrase. The DUPLICATES phrase is optional if
the ORDER IS SORTED clause in the Set Entry includes the
optional DUPLICATES ARE ALLOWED phrase. In all other cases
the DUPLICATES phrase roust not be specified.

General Rules

1. The data-base-identifiers are the key items which together
constitute the sort control key for the member record type
named in the MEMBER clause of this Subentry. The key items
are stated in the KEY clause in order of decreasing
significance, that is, data-base-identifier-1 is the major
key item and data-base-identifier-2,... are minor key items.
The value of the key is considered to be the juxtaposition
of all key item values in major to minor sequence.

2. The ASCENDING option applies to a key item, if in the KEY
clause the data-base-identifier that identifies the key item
is preceded by the keyword ASCENDING and the keyword
DESCENDING does not appear between that instance of the
keyword ASCENDING and the data-base-identifier; otherwise
the DESCENDING option applies to the key item. The sorted
sequence of the member records within a set is from the
lowest (highest) value of the key item to the highest
(lowest) value, if the ASCENDING (DESCENDING) option applies
to that key item.

3. If the ORDER IS SORTED clause is specified in the Set Entry
and no KEY clause is specified, the data base key of the
member record is considered to be the ascending key item.

4. The collating sequence is implementor defined.

5. The RANGE option controls the effect of the use of the sort
control key as an argument for set selection. If RANGE is
specified and if all data items specified in the KEY clause
are also specified in a SELECTION clause, an equality match
between the key item value (s) (which are in the record to
be selected) and the input argument value (s) is not required
for a record to be selected as being the owner of the sought
set; in such a case a match will occur as described in
General Rule 6. In all other cases an equality match between
the key item value (s) in the record and the input argument
value(s) is required for that record to be selected.

6. Under the circumstances described in General Rule 5 and
regardless of whether the key is composed of only ascending
key items or only descending key items or a mixture of both,
a match between the key value and the input, value, which is
considered to be the juxtaposition of the input argument

3. 68 June 1, 1973

values for the key items in major to minor sequence, will
occur in accordance with the following:

a. If the input value equals the value of any range key
occurrence, then a match occurs on that specific range
key occurrence.

b. If the input value is less than the lowest value of any
range key occurrence, then a match occurs on the range
key occurrence with the lowest value.

c. If the input value is greater than the largest value of
any range key occurrence, then no match occurs.

d. If the input value lies between two adjacent range key
values, then a match occurs on the range key occurrence
with the larger value.

7. If the optional DUPLICATES ARE NOT ALLOWED phrase is
specified, the DBMS rejects the insertion into any given
set of those member records that are of the same type and
have the same nonnull values for the specified key items as
a record that is already a member of that set. This may
occur during an attempt to store a new member record in the
data base or to insert an existing record into a set, or to
modify the value of a key item.

8. If the optional DUPLICATES ARE FIRST or DUPLICATES ARE LAST
phrase is specified, member records will be inserted into
the set sequence before or after, depending on the option
specified, any existing member records in the set that are
of the same type and have the same values for the specified
key items.

9. If the optional DUPLICATES ARE ALLOWED phrase is specified,
the insertion point in the set sequence of member records
relative to any existing member records in the same set,
that are of the same type and have the same values for the
specified key items, is unpredictable.

10. If the DUPLICATES phrase is not specified, the action to be
taken is controlled by the DUPLICATES phrase that is included
in the ORDER IS SORTED clause in the Set Entry.

11. If the NULL IS NOT ALLOWED phrase is specified, the DBMS
rejects the insertion into any set of those member records
having a null value for one or more of the specified key
items.

12. If the NULL IS ALLOWED phrase is specified, the DBMS allows
the insertion into any set of those member records having
a null value for one or more of the specified key items.

June 1, 1973 3.69

3.4.3 MEMBER

Function

To specify the name of a record type, the occurrences of which
may be members in occurrences of the set type named in this Set
Entry.

To specify the type of membership in that set type and optionally
to check and reject the insertion within the same set of those
member records that have duplicate values for specified data
items.

General Format

MANDATORY AUTOMATIC [LINKED TO OWNER] MEMBER IS record-name-1
OPTIONAL MANUAL

f DUPLICATES ARE I^NOtJ ALLOWED FOR data-base-identifier-1

[,data-base-identifier-2]

Syntax Rules

1. Record-name-1 must be previously defined in a Record Entry.

2. This clause must not be used if the DYNAMIC clause is
specified in the Set Entry.

3. The data-base-identifiers must refer to data items included
in the record type named by record-name-1.

4. Record-name-1 cannot be the name of the record type specified
in the OWNER clause of this Set Entry.

If the record types named in a series of Set Entries are
such that the resulting structure forms a cycle, then at
least one of the MEMBER clauses involved must specify MANUAL.
Further the Record Entry for one such member record type
must have a LOCATION clause which is not via a set type
included in the cycle.

3.70 June 1, 1973

General Rules

1. If AUTOMATIC is used, then an occurrence of the record type
named by record-name-1 is inserted into (made a current
member of) the selected occurrence of the set type named in
this Set Entry, when the record is added to the data base.
If MANUAL is used, adding an occurrence of the record type
named by record-name-1 to the data base will not cause that
record to become a current member of any occurrence of the
set type named in this Set Entry. Membership in the set is
established by a run unit by means of an INSERT function.

2. If MANDATORY is used, then once an occurrence of the record
type referenced by record-name-1 is made a member of any
occurrence of the set type named in this Set Entry, it will
always be a member of one or another set of that set type.
Such a record cannot be the object of a REMOVE function; it
may however be switched between sets of the same set type
by a MODIFY function. If OPTIONAL is used, the membership
is not permanent in the above sense and can be cancelled by
means of a REMOVE function.

3. If the DUPLICATES NOT ALLOWED phrase is used the DBMS will
reject the insertion into any given set of those member
records with duplicate values for the data items specified
in this clause. This may occur during an attempt to store
a new record in the data base, or to insert an existing
record into a set or to modify the value of such a data
item.

4. The optional LINKED TO OWNER phrase causes the DBMS to select
preferentially for the set type, whose declaration contains
this Member Subentry, an implementation method which allows
the OWNER record of the set containing an occurrence of this
member record to be accessed directly from that member
record. The LINKED TO OWNER phrase may not be applied to
member record types of singular set types.

5. A MEMBER clause must be specified for each record type that
can participate as a member in the set type being described.

6. More than one record type can be declared as a member of
any given set type.

7. A record type can be defined as a member in more than one
set type. It may also be defined as an owner in one or more
set types.

8. The DUPLICATES NOT ALLOWED phrase must be repeated for each
data item or concatenation of data items for which duplicate
values are not allowed. The data-base-identifiers included

June 1, 1973 3.71

in any single DUPLICATES NOT ALLOWED phrase will be
concatenated.

9. Each member record participates in at most one occurrence
of each set type for which it is declared a member record
type. That is, it may be associated with no more than one
owner record for each set type for which it may be a member.
A record may only appear once in a given set.

June 1 3.72 9 1973

3.4.4 ON (MEMBER)

Function

to specify the procedure to be executed when specified DML
functions are performed on the record as a member of an
occurrence of the set type named in the Set Subentry.

General Format

FIND
ON [ERROR DURING] INSERT

REMOVE
CALL data-base-procedure-1

Syntax Rules

1. A separate ON clause may be written for each DML function
cr qroup of functions.

2. The procedure named by data-base-procedure-1 may be specified
in different ON clauses.

General Rules

1. The procedure is invoked whenever a run unit issues one of
the soecified functions for the record as a member of an
occurrence of the set type named in the Set Subentry. If
no DML functions are specified, the procedure is invoked
whenever a run unit issues a FIND, INSERT, or REMOVE function
for the record as a member of an occurrence of the set type
named in -the Set Subentrv.

2. The procedure is invoked immediately before control is
returned to the run unit. If more than one procedure aoplies
to the execution of a DML function, the procedures are
invoked in the order in which they are stated in the schema,
but a procedure named in an ON clause containinq the optional
word ERROR will be invoked prior to a procedure named in an
ON clause which does not contain the word ERROR. A procedure
named in an ON ERROR clause will be entered only if, durinq
the performance of the specified function, the DBMS detects
an error that it intends to report. Procedures referenced
in a Set Subentry are invoked prior to those in the Member
Subentry.

June 1, 1973 3.73

3.4.5 ON (SET)

Function

To specify the procedure to be executed when specified DML
functions are performed on a set.

General Format

ORDER '
ON [ERROR DURING) INSERT CALL data-base-procedure-1

3, REMOVE

Syntax Rules

1. A separate ON clause may be written for each DML function
or group of functions.

2. The procedure named by data-base-procedure-1 may be specified
in different ON clauses.

General Rules

1. The procedure is invoked whenever a run unit issues one of
the specified functions for an occurrence of the set type
named in the Set Subentry. If no DML functions are
specified, the procedure is invoked whenever a run unit
issues an ORDER, INSERT, or REMOVE function for such a set.

2. The procedure is invoked immediately before control is
returned to the run unit. If more than one procedure applies
to the execution of a DML function, the procedures are
invoked in the order in which they are stated in the schema,
but a procedure named in an ON clause containing the optional
word ERROR will be invoked prior to a procedure named in an
ON clause which does not contain the word ERROR. A procedure
named in an CN ERROR clause will be entered only if, during
the oerformance of the specified function, the DBMS detects
an error that it intends to report.

June 1, 3.74 1973

3.4.6 ORDER

Function

Either to specify the insertion point of a member record within
a set and thereby define the order of sequential progression or
to declare to the DBMS that it may maintain occurrences of this
set type in any order.

General Format

ORDER IS 1 INSERTION IS
- I TEMPORARYJ

FIRST
LAST
NEXT
PRIOR
IMMATERIAL

SORTED INDEXED [NAME IS index-name-1]

BY DATA-BASE-KEY
BY RECORD-NAME
WITHIN RECORD-NAME FIRST
BY DEFINED KEYS ^DUPLICATES ARE LAST

NOT
ALLOWEDJ

Syntax Rules

1. If the SORTED phrase is specified with the DEFINED option,
then a KEY clause must be stated for each Member Subentry
lor this set type.

2. The SORTED phrase must not be used if the DYNAMIC clause is
used for this Set Entry.

3. If the declaration includes the phrase NAME IS index-name-1,
then index-name-1 must not be referenced in any other
declarations within the schema.

4. If the SORTED phrase is present the ORDER clause must specify
PERMANENT.

June 1, 1973 3.75

Ge Rules

1. ORDER FIRST refers to the position within the set that
immediately follows the owner record; this is a reversed
chronological sequencing; the last member record inserted
into the set becomes the first member of the set.

2. ORDER LAST refers to the position within the set that
immediately precedes the owner record. This is a
chronological sequencing; the newest member record becomes
the last member in the set.

3. ORDER PRIOR and ORDER NEXT refer to insertion points relative
to the member record of the set most recently selected by
the run unit. If this record is the owner record, ORDER
PRIOR is equivalent to ORDER LAST and ORDER NEXT is
equivalent to ORDER FIRST.

4. The SORTED phrase allows specification of a set order based
on the record names or the data base keys of the member
records of the set, or on the values of the key items
specified in the KEY clauses for the member records of the
set. The collating sequence is implementor defined.

5. The optional INDEXED phrase, if used, causes the implementor
to determine and generate the necessary index or indexes.
The index will be controlled by the key items specified in
the KEY clauses appearing in the Member Subentries for this
Set Entry. A name can be given to the index to enable it
to be referenced in the device media control language.

6. The optional WITHIN RECORD-NAME phrase allows records to be
sorted without regard to the order of other record types in
the set. This does not mean that there is an implied major
sort by record type. It means only that when a given type
of record is considered independently of any other member
record type, it is in sequence by its own sort control key.
The sort control keys are specified by the KEY clause for
each of the member record types. If the KEY clause is not
used for any member record type, the data base keys of the
occurrences of that record type are used as ascending key
items.

7. The optional DATA-BASE-KEY phrase specifies that the member
records of a set are kept in ascending sequence by their
data base key.

8. The optional DEFINED phrase specifies that the member records
in a set are to be maintained in a single sequence regardless
of the number of different member record types specified in
the Set Entry. The corresponding sort control keys are
specified in the KEY clauses for each member record type.

3.76 June 1, 1973

9. The optional RECORD-NAME phrase specifies that the record
names of the member records are used as the major key items.
Minor key items are specified by the KEY clauses for each
member record type. If the KEY clause is not used for any
member record type, the data base keys of the occurrences
of that record type are used as ascending key items.

10. In the ORDER clause the words TEMPORARY and PERMANENT control
the effect on the set of the ORDER function. If the word
TEMPORARY is specified, the effect of the ORDER function
may or may not be local to the run unit at the run units
option. If the word PERMANENT is specified the effect of
the ORDER function can only be local to the run unit. Use
of the ORDER function has no effect on the ORDER clause and
new records will be added to the set as specified in the
ORDER clause, that is, FIRST, LAST , NEXT, PRIOR, IMMATERIAL.

11. If the optional DUPLICATES ARE NOT ALLOWED phrase is
specified, the DBMS rejects the insertion into any given
set of those member records that have the same nonnull values
for the specified key items as a record that is already a
member of that set. This may occur during an attempt to
store a new member record in the data base or to insert an
existing record into a set, or to modify the value of a key
item.

12. If the optional DUPLICATES ARE FIRST or DUPLICATES ARE LAST
phrase is specified, member records will be inserted into
the set sequence before or after, depending on the option
specified, any existing member records in the set that have
the same values for the specified key items.

13. If the optional DUPLICATES ARE ALLOWED phrase is specified,
the insertion point in the set sequence of member records
relative to any existing member records in the same set,
that have the same values for the specified key items, is
unpredictable, unless the action to be taken is controlled
by a specified DUPLICATES phrase that is included in a KEY
clause of the pertaining Member Subentry.

14. Use of the form ORDER IS IMMATERIAL informs the DBMS that
member records participating in an occurrrence of this set
type are to be maintained in the order most convenient to
the DBMS.

June 1, 1973 3.77

3.4.7 OWNER

Function

To specify the name of a record type, each occurrence of which
establishes the existence of an occurrence of the set type named
in this Set Subentry.

General Format

nWMPn TC /record-name-ll
IS I system I

Syntax Rules

1. Record-name-1 must be previously declared in a Record Entry.

General Rules

1. A record type may be specified as an owner in more than one
Set Entry. It may also be defined as a member in one or
more Set Entries.

2. The OWNER IS SYSTEM clarise defines a singular set. A
sinqular set has exactly one occurrence and no user specified
owner record type.

June 1, 3.78 1973

3.4.8 PRIVACY (MEMBER)

Function

To specify the privacy locks which apply to a member record type
of a set type.

General Format

FIND literal-1
PRIVACY LOCK FOR INSERT IS lock-name-1

REMOVE [PROCEDURE data-base-procedure-1

literal-2
OR lock-name-2

PROCEDURE data-base-procedure-2 _

Syntax Rules

1. A separate PRIVACY clause may be stated for each DML
function. However, the same function must not be specified
in more than one PRIVACY clause.

2. The same literal, lock-name, or data-base-procedure may be
specified for one or more DML functions.

3. All literals must conform to the implementor defined data
characteristics for privacy locks.

General Rules

1. The literals and the content of the lock-names are privacy
locks to be matched with the pertinent privacy key. The
procedures named are privacy lock procedures which, when
given access to a privacy key, either return a yes or no
result, or do not return at all.

2. By their appearance in a PRIVACY clause, lock-names are
treated as data items with iirplementor defined data
characteristics.

June 1, 1973 3.79

3. If the optional FOR clause is omitted, all literals,
lock-names, or procedures apply to all functions included
in the format.

U. A value of null for any literal or lock-name is equivalent
to the omission of the entite clause in which it occurs.

5. Multiple privacy locks connected by OR phrases are considered
satisfied if any one is satisfied. The privacy locks are
processed in the order listed until the outcome of the
PRIVACY clause is known.

6. If a PRIVACY clause has not been specified for a DML
function, then unless other PRIVACY clauses apply, the use
of that function on an occurrence of this record type as a
member of the set type named in the Set Subentry is without
restriction.

7. The privacy locks associated with the various DML functions
(INSERT, REMOVE and FIND) must be satisfied in order to
execute the respective function on an occurrence of this
record type as a member of the set type named in the Set
Subentry.

June 1, 3.80 1973

3.4.9 PRIVACY (SET)

Function

To specify the privacy locks which apply to the use of a set
type.

General Format

PRIVACY LOCK FOR

FIND
ORDER
INSERT
REMOVE

literal-1
lock-name-1
PROCEDURE data-base-procedure-1

literal-2
OR lock-name-2

PROCEDURE data-base-procedure-2

Syntax Rules

1. A separate PRIVACY clause may be stated for each DML function
However, the same function must not be specified in more
than one PRIVACY clause.

2. The same literal, lock-name, or data-base-procedure may be
specified for one or more DML functions.

3. All literals must conform to the implementor defined data
characteristics for privacy locks.

General Rules

1. The literals and the content of the lock-names are privacy
locks to be matched with the pertinent privacy key. The
procedures named are privacy lock procedures which when
given access to a privacy kev, either return a yes or no
result, or do not return at all.

2. By their appearance in a PRIVACY clause, lock-names are
treated as data items with irrplementor defined data
characteristics.

June 1, 1973 3.81

3. If the optional FOR phrase is omitted, all literals,
lock-names, or procedures apply to all functions included
in the format.

4. A value of null for any literal or lock-name is equivalent
to the omission of the entire clause in which it occurs.

5. Multiple privacy locks connected by OR phrases are considered
satisfied if any one is satisfied. The privacy locks are
processed in the order listed until the outcome of the
PRIVACY clause is known.

6. If a PRIVACY clause has not been specified for a DML
function, then unless other PRIVACY clauses apply, the use
of that function on occurrences of the set type being
described is without restriction.

7. The privacy locks associated with the various DML functions
(ORDER, INSERT...) must be satisfied in order to execute
the respective function on any occurrence of the set type
being described.

June 1 3. 82 9 1973

3.4.10 SEARCH

Function

To declare to the DBMS that for each occurrence of a specific
set type, an index is required of all of its member records of
a qiven type.

To specify the type of indexinq and the data items for which
indexinq is required.

To optionally check and reject the insertion within the same
set of those member records that contain duplicate values for
the specified search keys.

General Format

SEARCH KEY IS data-base-identifier-1 [,data-base-identif ier-2 . .

(CALC
USINGI INDEX[NAME IS index-name-1]

1PROCEDURE data-base-procedure-1
DUPLICATES ARE [NOT] ALLOWED

Syntax Rules

1. The data-base-identifiers must refer to data items included
in the record type named in the Member Subentry of this Set
Entry.

2. If the declaration includes the optional NAME phrase then
index-name-1 must not be referenced in any other declarations
within the schema.

General Rules

1. A search key may aopear as an arqument in a SELECTION clause
or FIND function. Where such arquments have been declared
with a SEARCH clause, the indexinq provided will be used to
speed the required search.

2. The data items specified in one SEARCH clause will be
concatenated to form a sinqle search arqument. The SFARCH
clause must be repeated for each search arqument for which
indexinq is to be provided.

June 1/ 1973 3.83

3. If the optional word CALC is specified in the USING option
of the SEARCH clause, the DBMS’s standard key transformation
algorithm is used in the selection of the sought record.

4. If the USING phrase is not specified or if the optional word
INDEX is specified, the DBMS's standard indexing mechanism
is used in the selection of the sought record. The NAME
phrase is provided to simplify references to specific indexes
in the device media control language.

5. If the optional word PROCEDURE is specified, the procedure
named by data-base-procedure-1 is used in the selection of
the sought record.

6. If the DUPLICATES ARE NOT ALLOWED phrase is used, the DBMS
will reject the insertion into any given set of those member
records with duplicate values for the specified search keys.
This may occur during an attempt to store a new record in
the data base, or to insert an existing record into a set
or to modify the value of a data item declared to be a search
key.

7. If the DUPLICATES ARE ALLOWED phrase is used, the record
selected on the basis of an argument specified as a search
key will be the first record encountered which satisfies
the argument.

June 1, 3.84 1973

3.4.11 SELECTION

Function

To define the rules governing the selection of the appropriate
occurrence of a set type for the purpose of inserting or
accessing a member record.

General Format

Format 1
SET SELECTION [FOR set-name-1] IS

THRU set-name-2 OWNER IDENTIFIED BY

SYSTEM

CURRENT OF SET

DATA-BASE -KEyIequAL TO ^ase identifier-
L Idata-base-data-name

CALC-KEY EQUAL TO

ier-if]
ne-1 0

Jdata-base-identifier-2l
[data-base-data-name-2 J

T,data-base-identifier-3
l /' data-base-data-name-3

MEMBER record-name-1 SELECTION

THEN THRU set-name-3

WHERE OWNER IDENTIFIED BY data-base-identifier-4 ! data-base-identifier-5 '
data-base-data-name-4
PROCEDURE data-base-procedure-1,

Format 2

SET SELECTION IS BY PROCEDURE data-base-procedure-2

Syntax Rules

1. Set-name-1 is the name of the set type of whose Set Entry
this clause is a part.

2. Data-base-identifier-1 must be declared as a data base key.

3. If the CALC-KEY option is specified, the owner record type
of the set type referenced by set-name-2 must have a location
mode of CALC. The LOCATION clause must specify the
DUPLICATES NOT ALLOWED phrase. Data-base-identifier-2,
data-base-identifier-3,... must have identical data
characteristics to those of the calc keys as specified in
the LOCATION clause.

June 1, 1973 3.85

4. Data-base-identifier-4 is a declared data item in the owner
record of set-name-3.

5. Data-base-identifier-5 or the result of the procedure named
by data-base-procedure-1 must have identical data
characteristics to those of data-base-identifier-4.

6. Set-name-2, set-narae-3,. .. must form a continuous path in
the sense that the owner of set-name-3 is a member of
set-name-2..., with set-name-2 as a start point, or root.
In that path the same set name must not appear more than
once, nor may it appear in any SELECTION clause referenced
as a result of the use of the MEMBER option except as the
subject of the referenced SELECTION clause. The last set
type named must be the subject of the Set Entry of which
this clause is a part.

7. The data items referenced by data-base-identifier-4 must
together uniquely identify the owner of set-name-3. A
DUPLICATES NOT ALLOWED phrase must be declared for those
data items considered as a group in the KEY clause, in the
MEMBER clause, or in a SEARCH clause for the owner of
set-name-3 as a member of set-name-2.

8. If the EQUAL TO phrase of the DATA-BASE-KEY or the CALC-KEY
phrase is not stated, a location mode of DIRECT or CALC
respectively must be specified for the owner record type of
set-name-2.

9. If the SYSTEM option is stated, set-name-2 must have an
OWNER IS SYSTEM clause specified in its Set Subentry.

10. Record-name-1 must be declared as a member of set-name-2.

11. If the MEMBER option is used then the SELECTION clause
declared for record-name-1 as a member of set-name-2 must
either itself not use the MEMBER option or by use of the
MEMBER option must refer, possibly through several other
SELECTION clauses, to a separate SELECTION clause which does
not use the MEMBER option.

General Rules

1. Data-base-data-name-1 is treated as a data base key.

2. Data-base-data-name-2, data-base-data-name-3,... are treated
as data items having identical data characteristics to those
of the CALC keys as specified in the LOCATION clause in the
Record Entry for the owner record type of the set type
referenced by set-name-2.

3.86 June 1, 1973

3. Data-base-data-name-4 is treated as a data item having
identical data characteristics to those of
data-base-identifier-4.

4. The SELECTION clause for the appropriate member record type
and set type combinations will govern the selection of a
specific set for the purpose of inserting or accessing a
member record.

5. Prior to the execution of any function involving selection,
nonnull values must be supplied for the data items specified
in the EQUAL TO phrase (s), or in the LOCATION clause if one
is implied.

6. The SYSTEM option causes the DBMS to select from set-naie-2
within the data base the singular occurrence that exists
for this set type.

7. The CURRENT option causes the DBMS to select from set-name-2
within the data base that occurrence most recently selected
by the run unit.

8. The DATA-BASE-KEY option causes the DBMS to select from
set-name-2 within the data base that occurrence whose owner
record has a data base key equal to the data base key
contained in data-base-identifier-1, data-base-data-name-1,
or in the absence of the EQUAL TO specification, the
parameter specified in the LOCATION MODE IS DIRECT clause
for the owner record type.

9. The CALC-KEY option causes the DBMS to select from set-name-2
within the data base that occurrence whose owner record has
a CALC key equal to the CALC key contained in
data-base-identifier-2, data-base-identifier-3,... or
data-base-data-name-2, data-base-data-name-3,... or in the
absence of the EQUAL TO specification, the parameters as
specified in the LOCATION MODE IS CALC clause for the owner
record type.

10. The MEMBER option causes the DBMS to select from set-name-2
within the data base that occurrence as specified by the
SELECTION clause for record-name-1 as a member of set-name-2.

11. When only the THRU set-name-2 phrase is specified, the
occurrence of set-name-1 is selected as described in General
Rules 6 through 10.

12. When both the THRU set-name-2 phrase and one or more THEN
THRU phrases are specified the occurrence of set-natae-2 is
selected as described in General Rules 6 through 10. For
each subsequent set in the path, the THEN THRU phrase causes
the DBMS to select the owner record of set-name-3... in its

June 1, 1973 3.87

capacity as a member of the selected occurrence of the
previously named set type such that the owner record has a
value for data-base-identifier-4 equal to the value contained
in data-base-identifier-5, data-base-data-name-4, or the
value which is the result of the procedure named by
data-base-procedure-1.

13. Format 2 applies when the set to be selected is identified
by the procedure named by data-base-procedure-2. The
procedure must uniquely identify an occurrence of the set
type defined by the Set Entry of which this Member Subentry
is a part.

June 1 3.88 9 1973

3.4.12 SET

Function

To name a set type in the schema, that is to specify a qeneric
name for all occurrences of the set type in the data base.

General Format

SET NAME IS set-name-1

Syntax Rules

1. Set-name-1 must be unique among the set-names of the schema.

General Rules

None.

June 1, 1973 3.89

INDEX

ACCESS 2.6, 2.15, 2.23, 2.31, 2.33, 3.15, 3.23, 3.46, 3.48,
3.79, 3.81

ACTUAL 3.6, 3.30, 3.53
ACTUAL RESULT 3.31, 3.52
ACTUAL SOURCE 3.54
ALLOWED 3.6 , 3.71 , 3. . 85 -86
ALTER 3 .6, 3.15-1 6
ALWAYS 3.6, 3.34
AREA 1 . 7-8, 2.5-6 , 2. . 1 1 , 2 . 1 5 , 2 .23 , 2 . 26

3. 6, 3 .11, 3 . 20- -22 , 3 . 24 -25 , 3 .60 -61
AREA ENTRY 3.3, 3 . 60
AREA ENTRY SKELETON 3. 1 8
AREA NAME 3 .19-20 , 3. ,60 -61
AREA-ID 3.6 , 3.60
AREA-NAME 3 .7, 3. 20 , 3. 25, 3. 60
ARITHMETIC DATA 2 .24 , 3 .45 , 3 . 55 , 3 . 58
ARITHMETIC DATA ITEM 2. 24, 3. 42, 3. 55- 56
ASCENDING 2 .29, 3 . 6 , 3. 67- 68, 3. 76- 77
AUTOMATIC 2 .30, 3 . 6 , 3. 70- 71

BINARY 3.6 , 3.55- 56
BINARY DIGITS 2.24, 3.42-43, 3.56
BINARY POINT 2.24, 3.43
BIT 2.24, 3.6, 3.56-57
BIT STRING 2.24, 3.42, 3.57
BLANK CHARACTERS 3.9, 3.42, 3.57

CALC 3.6, 3.36, 3.83, 3.85-87
CALC KEYS 3.85-86
CALC PHRASE 3.36
CALC-KEY OPTION 3.85-87
CHARACTER SET 3.5
CHARACTER STRING 2.24, 3.7-8, 3.41-42, 3.44-45, 3.56-58,

3.60
CHARACTERS 3.4-5, 3.7-8, 3.41, 3.44, 3.56
CHECK CLAUSE 3.30-31, 3.45, 3.53, 3.56
CLOSE 3.6, 3.11, 3.22
CLOSE FUNCTION 3.22, 3.25
CODED ARITHMETIC DATA ITEM 3.55-56, 3.58
CODED ARITHMETIC FORM 3.45, 3.58
CODED ARITHMETIC VALUE 3.58
COMMENT 3.6, 3.9
COMPLEX NUMBER 2.24, 3.56
COMPLEX VALUE 3.58
COMPUTER CHARACTER SET 3.7
CONSTANT 2.33
CONVERSION 1.5, 3.34, 3.45, 3.57-59
COPY 3.6, 3.15-16
CYCLE 2.19, 2.21, 3.70

DATA ADMINISTRATION 2.13

June 1, 1973 INDEX 1

DATA ADMINISTRATOR 2.13-14, 2.23, 2.33, 3.10
DATA AGGREGATES 2.5-6, 2.10, 2.25-26, 2.33, 3.9-10, 3.32,

3.37, 3.39, 3.46-47, 3.51, 3.53
DATABASE 1.6, 1.8-9, 1.13, 2.3, 2.5-7, 2.9-10, 2.12-16,

2.23, 2.25-27, 2.29-33, 3.5, 3.10-11, 3.13, 3.18,
3.20, 3.23, 3.26, 3.30-31, 3.34-36, 3.39, 3.45,
3.50, 3.52, 3.59, 3.62, 3.69, 3.71, 3.77, 3.84,
3.87, 3.89

DATABASE KEY 2.24-29, 3.35-36, 3.55-56, 3.76-77, 3.85-86
DATABASE PROCEDURE 2.15, 2.33, 3.31
DATA CHARACTERISTICS 3.15, 3.24, 3.46, 3.48, 3.67, 3.79,

3.81, 3.85-86
DATA FORMATS 2.23-24
DATA ITEM

CHARACTERISTICS OF THE

VALUE OF A

DATA ITEMS

3.51-57 ,
3.86-87

DATA STRUCTURE 1.6,
REPRESENTATION OF
SEQUENTIAL 2.16
TREE 2.17
CYCLE 2.19
NETWORK

DATA SUBENTRIES
NAMES OF

DATA SUBENTRY
GENERAL FORMAT

DATA BASE DATA NAME
DATA BASE IDENTIFIER
DATA BASE KEY 2.25,

3. 86
DATA-BASE-KEY OPTION
DATA BASE PROCEDURES
DBMS 2.6-7, 2.9,

3.22, 3.25,
3.66, 3.69,

2.5, 2.10, 3.30,
3.45, 3.55-57

2.15, 2.25, 3.30-31, 3.34, 3.39,
3.53-54, 3.84

2.5-6, 2.10-11, 2.24-26, 2.29-31, 2
3.15, 3.24, 3.30-32, 3.34-37, 3.39,

60

3.34, 3.41

3.51

6,
2

, 3.67-68, 3.71,

2.16, 2.19
.15

3.79,

33, 3.8-9,
3.41-48,
3.81, 3.83,

2.21

3. 32 ,
2.25,

OF

3. 51
3.26 , 3.32-33, 3.51, 3.53

3.28-29
2.26, 2.9
2.26, 3.9

2.27, 2.29

3.67, 3.87
2.14-15

2.12-15. 2.23,
3.31, 3.35-36,
3.71, 3.73-75,

3.35-36, 3.56, 3.68, 3.76

26-33 ,
39-40,

3.10, 3.14, 3.17,
3.52-54, 3.60-61,

3.77, 3.83-84, 3.87
DBMS MONITORING FACILITIES 2.14
DBMS STATUS INFORMATION 2.7
DBMS REQUESTS PHYSICAL I/O OPERATIONS 2.7
DBMS STANDARD INDEXING MECHANISM 3.84
DBTG 1.6-12
DBTG DML 2.6
DDL 1.12-13, 2.3, 2.6, 2.9, 2.11, 2.16, 2.27-28, 3.3, 3.5,

3.1 0
OBJECTIVES OF THE 2.15
PURPOSE OF THE 1.13

INDEX 2 June 1, 1973

DDL DECLARATIONS 2.11
DDL ENTRIES 2.6, 3.17
DDL FACILITIES 2.23
DDL SPECIFICATIONS 3.11
DDLC 1.11-13
DECIMAL 2.24, 3.6, 3.43, 3.55
DECIxMAL DIGITS 3.42-43 , 3.56
DECIMAL POINT 3.5, 3.8, 3.42-43, 3.56
DECODING 3.6, 3.34
DECODING CLAUSE 3.34
DEFINE 3.37, 3.55, 3.60, 3.75, 3.85
DEFINED OPTION 3.67, 3.75
DELETE 2.33, 3.6, 3.11
DESCENDING 3.6, 3.67-68
DEVICE INDEPENDENCE 2.9
DEVICE MEDIA CONTROL LANGUAGE 2.3 , 3. 76 , 3.84 , see DM CL
DIGIT SPECIFIERS 3.42
DIGITS 3.5, 3.8, 3.42-44
DIRECT 3.6, 3.35-36, 3.86-87

LOCATION MODE OF 3.86
DIRECT PHRASE 3.36
DMCL 2.3, 2.12-14
DML 1.11, 2.3, 2.6-7, 2.11
DML FUNCTION

EXECUTION OF A 3.34 , 3.39-40, 3.73-74
OPERAND OF THE 2.15
TYPE OF 2.15

FUNCTIONS 2.11, 2.26, 2.32, 3. 11, 3.35
3.39-40, 3.46-49, 3.73-74, 3.79-82

BASIC 3.11-12
DUPLICATE VALUES 3.70-71, 3.84
DUPLICATES 3.6, 3.36, 3.69-70, 3.77, 3.83-84
DUPLICATES NOT ALLOWED PHRASE 3.71-72, 3.85-86
DUPLICATES PHRASE 3.68-69
DYNAMIC 1.7, 2.28, 3.6, 3.66
DYNAMIC CLAUSE 3.70, 3.75
DYNAMIC SET 2.31

ELEMENTS 1.8, 2.5, 2.24, 3.4
ENCODING 3.6, 3.34
ENCODING CLAUSE

SUBJECT OF AN 3.34
ENTRY 2.25, 3.3-4, 3.9, 3.21, 3.51, 3.60, 3.68-69, 3.86
ENTRY SKELETON 3.3
ENTRY TYPES 3.3, 2.15
ENVIRONMENT 1.13, 2.13, 2.32, 3.3
EQUAL 3.6, 3.30, 3.44, 3.86-87
ERROR 2.33, 3.7, 3.14, 3.22, 3.31, 3.39-40, 3.45, 3.57-59,

3.73-74
ERROR CLAUSE 3.14, 3.22, 3.39-40, 3.73-74
EXCLUSIVE 3.7, 3.22-23

June 1, 1973 INDEX 3

EXCLUSIVE UPDATE
EXPONENT PART

3.24
2.24, 3.44, 3.55

FIND 3.6, 3.11-12, 3.73, 3.79-PI
FIND FUNCTION 3.83
pIRST 2.32, 3.5-6, 3.31, 3.77
FIXED POINT LITERAL 3.8
FIXED POINT NUMERIC PICTURE SPECIFICATION 3.43-44
FLOAT 3.6, 3.55
FRAMEWORK

CONCEPTUAL 2.7
FUNCTION 2.12-13, 2.15, 2.30-31, 3.4, 3.13-15, 3.17-18,

3.20-21, 3.23, 3.25-26, 3.30-32, 3.34-35, 3.37,
3.39-41, 3.46-55, 3.60, 3.62, 3.66-67, 3.70,
3.73-75, 3.78-83, 3.85, 3.89

GET (see DML FUNCTIONS)
GROUP 3.5, 2.25-26, 3.32-33, 3.37, 3.86

HOST LANGUAGE 1.9, 2.6-7, 2.11 , 2.23

riMATEFIAL 3.6, 3.77
IMPLEMENTATION 1.4-5, 3.55
IMPLEMENTOR 1.5, 2.3, 2.15, 2.23-25, 2.33, 3.5, 3.15, 3.17,

3.24, 3.41-42, 3.44, 3.46, 3.48, 3.55-56, 3.58,
3.60, 3.68, 3.76, 3.79, 3.81

IMPLEMENTOR DEFINED DATA CHARACTERISTICS 3.46, 3.48, 3.79,
3.81

IMPLEMENTOR DEFINED RULES 3.58
IMPLEMENTOR TYPES 2.24-25
INDEX 2.30, 3.6, 3.76, 3.83
INDEXED SETS 2.30
INDEXING 2.30, 3.83
INSERT 3.6, 3.11-12, 3.49, 3.69, 3.71, 3.73-74, 3.77, 3.79,

3.80, 3.82, 3.84
INSERTION 3.6, 3.67, 3.69, 3.71, 3.77, 3.84
INTEGER 3.8, 3.10, 3.37-38, 3.56
ITEMS 2.24-25, 3.52, 3.68-69, 3.76-77

JOB CONTROL LANGUAGE 2.3

KEY 2.25-29, 3.6, 3.35-36, 3.68, 3.76
KEY CLAUSE 3.67-68, 3.75-77, 3.86

3.87

LAST 3.6, 3.77
LEAST 2.19, 3.4, 3.20, 3.70
LEAST SIGNIFICANT DIGIT 3.58-59
LENGTH 3.7, 3.57
LEVEL 2.10, 2.33, 3.38
LINKED 3.6, 3.71
LIST 2.14

INDEX 4 June 1, 1973

LITERAL 3.7-8, 3.15, 3.23-20, 3.30, 3.46, 3.48-49, 3.80-82
LITERAL CONSTANT 3.8
LOCATION 2.6, 2.21, 3.6
LOCATION CLAUSE 2.27-28, 3.26, 3.60-61, 3.70, 3.85-87
LOCATION MODE 3.87
LOCK-NAME 3.7, 3.15, 3.23-24, 3.46, 3.48-49, 3.79-82
LOCKS 2.33, 3.6, 3.15, 3.23

MAJOR KEY 3.68-69, 3.77
MANDATORY 2.31, 3.6, 3.70-71
MANTISSA PART 3.44
MANUAL 2.19, 3.6, 3.70-71
MANUAL MEMBER 2.30
MARKS

QUOTATION 3.5, 3.7-9, 3.41
MATCH 3.5, 3.30, 3.68
MEDIA SPACE 2.9, 2.12, 2.23, 2.27
MEMBER 2.5, 2.17, 2.19, 2.21, 2.28-33, 3.6, 3.35, 3.68-73,

3.79-79
MEMBER CLAUSE 3.67-68, 3.70-71, 3.86
MEMBER OPTION 3.86
MEMBER RECORD 2.16, 2.28-30, 2.32, 3.25, 3.52, 3.67, 3.69-72,

3.76-77, 3.83-85, 3.87
MEM3ER RECORD TYPE 2.5, 2.19, 2.31, 3.70, 3.72
MEMBER RECORDS

SEQUENCE OF 2.29
MEMBER SUBENTRY 3.62, 3.66-67, 3.71, 3.73, 3.75-76, 3.83,

3.88
GENERAL FORMAT OF 3.64

MEMBERSHIP 2.19, 2.30, 3.66, 3.71
MINOR KEY 3.68-69
MODIFY (see DML FUNCTIONS)

NAME 2.6, 2.25, 3.5-7, 3.9, 3.13, 3.17-18, 3.20, 3.26, 3.32,
3.50-51, 3.62, 3.76, 3.85, 3.89

NAME PHRASE 3.84
NAMES

TYPES OF 3.7
NETWORK 2.21
NEXT 3.6, 3.77
NONEXCLUSIVE 3.6, 3.22
NONUMERIC LITERAL 3.7-8
NULL 3.6, 3.8, 3.53, 3.69

VALUE OF 3.8, 3.15, 3.24, 3.36, 3.46, 3.49, 3.60-61,
3.67, 3.69, 3.80, 3.82

REPRESENTATION OF 3.8
NUMBER 2.5, 2.24-26, 3.10, 3.38, 3.76
NUMBERS

CHARACTER STRING REPRESENTATION OF 3.58
NUMERIC 2.24, 3.7, 3.41, 3.45
NUMERIC LITERAL 3.8

June 1, 1973 INDEX 5

NUMERIC PICTURE SPECIFICATION 3.42-43, 3.85
EXPONENT PART OF A 3.43-44

NUMERIC PICTURED ARITHMETIC DATA ITEM 3.45
NUMERIC PICTURED DATA 3.43, 3.58
NUMERIC PICTURED FORM 3.42, 3.55, 3.58

OCCURRENCES 2.5, 2.23, 2.27-32, 3.4, 3.7, 3.50, 3.52, 3.66,
3.70-72, 3.74-75, 3.78, 3.80, 3.82, 3.87-89

OCCURS 2.5, 2.25, 3.6, 3.15, 3.24, 3.31, 3.46, 3.49,
3.58-59, 3.80, 3.82

OCCURS CLAUSE 3.32-33, 3.37
USE OF AN 2.25

OPEN 2.33, 3.6, 3.11, 3.22, 3.24
OPERATING SYSTEM 2.7
OPTIONAL 2.25, 3.6, 3.15, 3.21, 3.24, 3.46, 3.48, 3.67-68,

3.70-71, 3.80, 3.82
ORDER 2.3, 2.11, 2.16, 2.25, 2.28-29, 3.6, 3.11 , 3.14, 3.16,

3.22 , 3.24, 3.39-40, 3.47, 3.49, 3.67-69, 3.73-77 ,
3.80 -82

ORDER CLAUSE 3.75, 3.77
ORDER FIRST 3.76
ORDER LAST 3.76
ORDER NEXT 3.76
ORDER PRIOR 3.76
OWNER 2.5, 2.21, 2.28-29, 2.33, 3.6, 3.25, 3.51 , 3.53,

3.60 -61, 3.66, 3.68, 3.70-71, 3.76, 3.78, 3.86-88
OWNER CLAUSE 2.16, 3.70
OWNER RECORD 2.28-29, 2.32, 3.52-53, 3.72, 3.76 , 3.87-88
OWNER RECORD TYPE 2.5, 2.28, 3.66

PARAMETERS 3.52, 3.87
PATH 2.32, 3.86-87
PERFORM 2.15, 2.26, 2.31, 2.33, 3.16
PERFORMANCE 2.13
PERIOD 3.3, 3.5, 3.9, 3.41, 3.43
PERMANENT 2.23, 2.31, 3.6, 3.71, 3.75
PICTURE 3.6, 3.30, 3.32-34, 3.41
PICTURE CHARACTERS 3.41-43
PICTURE CLAUSES 2.24, 3.32, 3.37, 3.67
PICTURE SPECIFICATION 3.41
POINT 2.14, 3.8, 3.34, 3.55-56
POINT BINARY 3.42
POINT DECIMAL 3.8, 3.42
POINT SPECIFIERS 3.41
POSITION 3.43-44
POSITION WITHIN 2.31, 3.76
PRECISION 2.24-25, 3.55-56, 3.58
PRIOR 3.6, 3.14, 3.22, 3.39-40, 3.66, 3.73-74, 3.77, 3.87
PRIVACY 2.33, 3.6
PRIVACY CLAUSE

OUTCOME OF THE 3.16, 3.24, 3.47, 3.49, 3.80, 3.82

INDEX 6 June 1, 1973

PRIVACY CLAUSE DATA SUBENTRY SKELETON 3.62
PRIVACY CLAUSE MEMBER SUBENTRY SKELETON 3.62
PRIVACY CLAUSES 3.15-16, 3.23-24, 3.46-49, 3.53, 3.79-«2
PRIVACY KEY 2.15, 2.33, 3.15, 3.23, 3.46, 3.48, 3.79, 3.81
PRIVACY LOCK PROCEDURES 3.15, 3.23, 3.46, 3.48, 3.79, 3.81
PRIVACY LOCKS 2.10-11, 2.33, 3.10, 3.15-16, 3.23-24, 3.46-4

3.79-82
PROCEDURE 2.11, 2.15, 2.26-27, 2.30, 2.33, 3.6, 3.14-15,

3.21-24, 3.31, 3.34, 3.39-40, 3.46, 3.48, 3.51-52
3.61, 3.73-74, 3.79-82, 3.84, 3.88

PROGRAMS 2.5-6, 2.9, 2.11, 2.33
PROTECTED 3.6, 3.11, 3.22
PROTECTED UPDATE 3.24
PROTECTION 2.32-33
PUNCTUATION 3.9

QUALIFICATION 3.9

RANGE 2.24, 3.6, 3.30, 3.60
RANGE KEY OCCURRENCE 3.69
RANGE OPTION CONTROLS 3.68
REAL 2.24, 3.6, 3.55-57
RECORD 2.5-6, 2.11-12, 2.14, 2.16-17, 2.21, 2.23, 2.25-31,

2.33, 3.3, 3.6, 3.11, 3.25, 3.32, 3.35-38, 3.40,
3.48-49, 3.52-53, 3.60-61,
3.76-77, 3.84

3.66, 3.68-69, 3.71-73,

RECORD CLAUSE 3.26
RECORD ENTRY 2.5, 2.24, 3.3, 3.9, 3.51 , 3.67, 3.70, 3.78

MEANS OF A 2.5
RECORD ENTRY SKELETON 3.26
RECORD NAME 3.50
RECORD SUBENTRY 3.26, 3.35, 3.60
RECORD SUBENTRY SKELETON 3.26
RECORD TYPE 2.5-6, 2.10-11, 2.16-17, 2.19, 2.21,

2.27-28, 2.30, 3.3, 3.32, 3.37, 3.50
3.66, 3.70-71, 3.76-77, 3.78, 3.80

RELATIONSHIP 2.5, 2.11-12, 2.15-16, 2.21
REMOVE 2.12, 2.14, 3.6, 3.11-12, 3.49, 3.80
REMOVE FUNCTION

MEANS OF A
OBJECT OF A

REPEATING GROUP
COMPONENTS OF A

3.73-74
3.71

3.71
2.5, 2.25-26,

2.25, 3.
3.33,

32-33,
3.38
3.37-38

2.23,
3.53

REPRESENTATIONS 2.21, 2.23
RESERVED SYMBOLS 3.5
RESERVED WORDS 3.6
RESULT 2.33, 3.6, 3.11, 3.15, 3.23, 3.37, 3.39, 3.46,

3.58, 3.79, 3.81
RESULT CLAUSE 3.31
RETRIEVAL 2.23, 3.6, 3.11, 3.21-24
RETRIEVAL FUNCTIONS 3.11

9

3.48,

June 1, 1973 INDEX 7

RUN UNIT 2.6-9, 2.14-15, 3.11, 3.22, 3.24-25, 3.39-40,
3.73-74, 3.76-77

SCALE 2.24-25, 3.55-58
SCHEMA 2.3, 2.5-7, 2.9-14 , 2.16, 2.23, 2.2C-29, 2.31- 33 ,

3.3, 3.5-6, 3.9-10, 3.13, 3.15-17, 3.20, ■> -> ->
® «£- f 3.30,

3.34, 3.39-40, 3.50, 3.66, 3.73-75, 3.83 , 3.98
SCHEMA CLAUSE 3.13, 3.17
SCHEMA DDL 2.4-5, 2.9, 2.16 , 2.23 , 2.26, 2.30
SCHEMA ENTRY 3.3, 3.14
SCHEMA ENTRY SKELETON 3.13
SCHEMA LANGUAGE 2.3
SCHEMA NAME 3.13, 3.17
SCHEMA OPERATIONS 3.14
SCHEMA VS. SUBSCHEMA 2.9
SEARCH CLAUSE 3.83, 3.86
SEARCH KEY 2.30, 3.83-84
SELECT 2.32, 3.66, 3.71, 3. 87
SELECTION 3.6, 3.54, 3.60, 3.84, 3.87
SELECTION CLAUSE 2.32, 3.54, 3.68, 3.83, 3.86-87
SEQUENCE 3.3-5, 3.69, 3.76-77
SERIES 2.19
SET 2.5-6, 2.11, 2.16-17, 2.21, 2.23, 2.26, 2.28-29, 2.30-34,

3.3, 3.6, 3.11, 3.25, 3.52-54, 3.66-72, 3.74-77, 3.81,
3.83-84, 3.87-88

SET ENTRY 2.5, 3.3, 3.66-68, 3.70-71, 3.75-76, 3.78, 3.83,
3.85, 3.88

SET ENTRY SKELETON 3.62
SET MEMBERSHIP 2.19, 2.30, 2.34, 3.61
SET NAME 3.51, 3.86, 3.89
SET RELATIONSHIPS

MAINTENANCE OF ^.31
SPECIFICATION OF 2.34

SET SELECTION 2.32, 3.36, 3.66, 3.68
SET SUBENTRY 3.62, 3.73-74, 3.78, 3.80
SET TYPE 2.5-6, 2.16-17, 2.19, 2.21, 2.23, 2.28-29, 2.30-32,

3.3, 3.51, 3.66, 3.70-72, 3.75, 3.77, 3.87, 3.89
SIGN SPECIFIERS 3.41, 3.44
SIGNIFICANT DIGITS 3.45, 3.57-59
SINGULAR SET 2.28, 3.78
SORT CONTROL KEYS 3.67-68, 3.76
SORTED PHRASE 3.75-76
SOURCE 3.6, 3.45, 3.53, 3.58
SOURCE CLAUSE 3.30-32, 3.37
SOURCE DATA ITEM 3.31, 3.54
SPACE 3.7, 3.25
STORAGE 2.23
STORE 2.9, 2.27, 3.6, 3.11, 3.35, 3.39, 3.45, 3.47, 3.57,

3.69, 3.71, 3.77, 3.84
STORE FUNCTION 3.31, 3.34, 3.39
STRING 2.24, 3.7, 3.41, 3.56-57

INDEX 8 June 1, 1973

STRING DATA 2.24
STRING DATA ITEM 3.55-5G

LENGTH OF A 2.24 , 3.5 6
SUBSCHEMA 2.3-4, 2.6-7, 2.9-13, 3.10, 3.30, 3.34, 3.45, 3.57
SUBSCRIPT 3.10
SUPPORT FUNCTION 3.23-24
SYSTEM BUFFERS 2.7
SYSTEM OPTION 3.86

TEMPORARY 2.6, 2.23, 3.6, 3.25
TEMPORARY AREAS 2.6, 3.21, 3.25
THRU 3.6, 3.30, 3.87
THRU CURRENT 3.66
TREE DATA STRUCTURE 2.16
TYPE 2.3, 2.5, 2.10, 2.16, 2.21, 2.24, 2.26, 2.28-33, 3.3,

3.6-7, 3.30, 3.32, 3.35-36, 3.48, 3.50-52, 3.55,
3.66-72,3.74, 3.76-79, 3.81, 3.83, 3.85-89

TYPE CLAUSE 2.24-25, 3.32-34, 3.37, 3.42, 3.55
TYPES OF DATA ITEMS

ADDITIONAL 2.25, 3.55

UNIQUE 2.21, 3.17, 3.20, 3.32, 3.50, 3.89
UPDATE 3.6, 3.22-23, 3.34
UPDATE CLAUSES 3.24
UPDATE FUNCTIONS 3.11-12
USAGE MODE 3.23-24
USER 2.3, 2.13, 3.5, 3.11
USER PROGRAMS 2.13
USER WORKING AREA 2.6, 3.30, 3.34, 3.39
USING 2.21, 2.31, 3.6, 3.83
USING PHRASE 3.52, 3.84
UWA 2.6

VALUE 2.5, 2.24-25, 2.32-34, 3.4, 3.6-8, 3.30-31, 3.36, 3.38,
3.45, 3.51, 3.52-54, 3.56-59, 3.68-69, 3.71, 3.76-77,
3. 88

VALUE OPTION 3.30
VECTOR 2.5, 2.10, 2.24-25, 3.32-33, 3.37
VIRTUAL RESULT 3.31, 3.51
VIRTUAL RESULT CLAUSE 3.34, 3.53

SUBJECT OF A 3.52
VIRTUAL SOURCE 3.53
VIRTUAL SOURCE CLAUSE 3.54

WITHIN CLAUSE 2.26-27, 3.60

ZERO 2.16, 3.38, 3.41, 3.44, 3.55-56, 3.58
ZERO DIGITS

INSIGNIFICANT 3.45, 3.57-58

June 1, 1973
* U. S. GOVERNMENT PRINTING OFFICE :I 974 — 542-653/1 1 ^ INDEX 9

FORM NBS-114A (1-71)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET

1. PUBLICATION OR REPORT NO.

NBS HB-113

2, Gov’t Accession
No.

3. Recipient’s Accession No.

4. TITLE AND SUBTITLE

CODASYL Data Description Language Journal of Development

June 1973

5. Publication Date

January 1974

6. Performing Organization Code

7. AUTHOR!S) CODASYL Data Description Committee

-LocaJ Contact-:-John Berg—x3485-

8. Performing Organization

10. Pro ject/Task/Work Unit No.

640-1113
9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS

DEPARTMENT OF COMMERCE

WASHINGTON, D.C. 20234

11. Contract/Grant No.

12. Sponsoring Organization Name and Addr

Same as No. 9.

13. Type of Report & Period
Covered

Interim

14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here.)

This Journal of Development reports the work of the CODASYL Data Description Language

Committee. The Committee was assigned the tasks of establishing "ways to aid the

functions of data administration and systems administration". The Committee's charter

included, "the provision of specifications for the declarations required to establish

and maintain data base structures". As a step towards this purpose, the Journal con¬

tains three sections which treat the Background and History of the Data Description

Language Committee, Major Concepts, and the specifications of the Data Description

Language. The Committee based its work, in part, on the 1971 report of the Data Base

Task Group Report.

The approved Data Description Language specifications contain the syntax and semantic

rules that permit the description of the structure and contents of a data base in a

language independent of, but common to, many other high level programming languages. The

language specifications will have a significant impact on the development of functionally

compatible data base management systems and will increase the portability of programs

between different computer systems.

Though not part of the approved language specifications, the presentation of the major

concepts will help in the understanding of the specifications. Similarly, the back¬

ground and history information will help explain the evolutionary growth of the Data

Description Language.

17. KEY WORDS (Alphabetical order, separated by semicolons)

COBOL; CODASYL; Data Base Administration; Data Base Management; Data Base Task Group;

Data Description Language.

18. AVAILABILITY STATEMENT

m UNLIMITED.

I I FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE
TO NT IS.

19. SECURITY CLASS
(THIS REPORT)

UNCL ASSIFIED

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

21. NO. OF PAGES

155

22. Price

LI

USCOMM-DC 66244-P71

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National

Bureau of Standards research and development in
physics, mathematics, and chemistry. Comprehensive
scientific papers give complete details of the work,
including laboratory data, experimental procedures,
and theoretical and mathematical analyses. Illustrated
with photographs, drawings, and charts. Includes
listings of other NBS papers as issued.

Published in two sections, available separately:

• Physics and Chemistry (Section A)

Papers of interest primarily to scientists working in
these fields. This section covers a broad range of
physical and chemical research, with major emphasis
on standards of physical measurement, fundamental
constants, and properties of matter. Issued six times
a year. Annual subscription: Domestic, $17.00; For¬
eign, $21.25.

• Mathematical Sciences (Section B)

Studies and compilations designed mainly for the
mathematician and theoretical physicist. Topics in
mathematical statistics, theory of experiment design,
numerical analysis, theoretical physics and chemistry,

logical design and programming of computers and
computer systems. Short numerical tables. Issued quar¬
terly. Annual subscription: Domestic, $9.00; Foreign,

$11.25.

DIMENSIONS, NBS

The best single source of information concerning the
Bureau’s measurement, research, developmental, co¬

operative, and publication activities, this monthly
publication is designed for the layman and also for
the industry-oriented individual whose daily work
involves intimate contact with science and technology
—for engineers, chemists, physicists, research man¬
agers, product-development managers, and company
executives. Annual subscription: Domestic, $6.50; For¬
eign, $8.25.

NONPERIODICALS

Applied Mathematics Series. Mathematical tables,

manuals, and studies.

Building Science Series. Research results, test
methods, and performance criteria of building ma¬

terials, components, systems, and structures.

Handbooks. Recommended codes of engineering
and industrial practice (including safety codes) de¬
veloped in cooperation with interested industries,
professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS confer¬
ences, bibliographies, annual reports, wall charts,

pamphlets, etc.

Monographs. Major contributions to the technical

literature on various subjects related to the Bureau’s

scientific and technical activities.

National Standard Reference Data Series.
NSRDS provides quantitative data on the physical
and chemical properties of materials, compiled from

the world’s literature and critically evaluated.

Product Standards. Provide requirements for sizes,
types, quality, and methods for testing various indus¬

trial products. ,These standards are developed co¬
operatively with interested Government and industry

groups and provide the basis for common understand¬
ing of product characteristics for both buyers and

sellers. Their use is voluntary.

Technical Notes. This series consists of communi¬

cations and reports (covering both other-agency and

NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards
Publications. This series is the official publication
within the Federal Government for information on
standards adopted and promulgated under the Public
Law 89—306, and Bureau of the Budget Circular A—86

entitled, Standardization of Data Elements and Codes

in Data Systems.

Consumer Information Series. Practical informa¬

tion, based on NBS research and experience, cover¬

ing areas of interest to the consumer. Easily under¬
standable language and illustrations provide useful
background knowledge for shopping in today’s tech¬

nological marketplace.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES
The following current-awareness and literature-survey bibliographies are issued periodically by the
Bureau:

Cryogenic Data Center Current Awareness Service (Publications and Reports of Interest in Cryogenics).

A literature survey issued weekly. Annual subscription : Domestic, $20.00; foreign, $25.00.

Liquefied Natural Gas. A literature survey issued quarterly. Annual subscription: $20.00.

Superconducting Devices and Materials. A literature survey issued quarterly. Annual subscription: $20.00.

Send subscription orders and remittances for the preceding bibliographic services to the U.S. Department

of Commerce, National Technical Information Service, Springfield, Va. 22151.

Electromagnetic Metrology Current Awareness Service (Abstracts of Selected Articles on Measurement

Techniques and Standards of Electromagnetic Quantities from D-C to Millimeter-Wave Frequencies). Issued

monthly. Annual subscription: $100.00 (Special rates for multi-subscriptions). Send subscription order and

remittance to the Electromagnetic Metrology Information Center, Electromagnetics Division, National Bureau

of Standards, Boulder, Colo. 80302.

Order NBS publications (except Bibliographic Subscription Services)

from: Superintendent of Documents, Government Printing Office, Wash¬

ington, D.C. 20402.

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington, D.C. 20234

OFFICIAL BUSINESS

POSTAGE AND FEES PAID
U.S, DEPARTMENT OF COMMERCE

COM-21 5

Penalty for Private Use, $300

