
NatFona! Bureau of Standards
Library, E-01 Admin. Bldg.

MUu £ u low RefereT^C5<>
taken from wh

CODASYL COBOL
Journal of Development 1968

NAT L INST. OF STAND & TECH R.I.C.

A111 □ 4 T 3 2 5 fl 4

NBS HANDBOOK 106

Q U.S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS

«

UNITED STATES DEPARTMENT OF COMMERCE • Maurice H. Stans, Secretary

NATIONAL BUREAU OF STANDARDS • A. V. Astin, Director

CODASYL COBOL

Journal of Development 1968

i,
0'S, National Bureau of Standards, Handbook 106

Nat. Bur. Stand. (U.S.). Handb. 106, 344 pages (July 1969)

CODEN: NBSHA

Issued July 1969

For sale by the Superintendent of Documents, TJ.S. Government Printing Office
Washington, D.C. 20402 - Price $2.75

Abstract

NATIONAL BUREAU OF STANDARDS

JAN 1 2 1970

ac i
,u?i

This document is a report to the COBOL community from the Conference on

Data Systems Languages (CODASYL) Common Business Oriented Language

(COBOL) Programming Language Committee. It is an official report documenting

the development activities of CODASYL through July 1968.

Key words: COBOL; CODASYL; journal.

History of COBOL Specification Documents

COBOL — 60, published 1960

COBOL — 61, published 1961

COBOL — 61 Extended, published 1963

COBOL — 65, published 1965

COBOL — Journal of Development — 1968, published 1968

Library of Congress Catalog Card No.: 73-601243

II

Foreword

Under Public Law 89-306 (Brooks Bill) the Secretary of Commerce was given

important responsibilities for improving the procurement, utilization, and manage¬

ment of computers and related information systems in the Federal Government. To

carry out the Secretary’s responsibilities under the Brooks Bill, the NBS Center for

Computer Sciences and Technology provides leadership and coordination for Govern¬

ment efforts in the development of voluntary commercial information processing

standards.

A major problem in the use of electronic data processing equipment lies in the

inability to state the data processing application in such a way that computer pro¬

grams are developed and maintained with a minimum of time and programming

effort. A common business-oriented computer language, independent of any make or

model of computer, would do much to solve this problem.

Since 1959, the Conference on Data Systems Languages (CODASYL) has been

active in the development, specification, and maintenance of a COmmon Business

Oriented Language (COBOL). The current activity within CODASYL on the de¬

velopment of COBOL is being conducted by the Programming Language Committee,

composed of voluntary representatives from computer manufacturers and users in

industry and the Federal Government.

The present publication represents a report to the COBOL community from the

CODASYL Programming Language Committee on the development of COBOL

through July 1968. The National Bureau of Standards is pleased to have the oppor¬

tunity to make this information available through publication as an NBS Handbook.

A. V. Astin, Director

III

It

PREFACE

This document is a report to the COBOL community from the CODASYL

COBOL Programming Language Committee. It is an official report

documenting the development activities of CODASYL through July, 1968

and is subject to change, extension and further development. Neither

this document nor any of its precursors (i.e. COBOL-60, COBOL-61,

COBOL-61 Extended, COBOL-65) are to be construed as official standards

Standardization of COBOL in the United States is in the purview of

USASI Committee X3 and it rather than CODASYL is responsible for the

preparation and submission for approval of a COBOL standard.

COBOL, Journal of Development, is composed of three sections as follows:

Section I. History of CODASYL COBOL Development

Section II. Philosophy of COBOL Use

Section III. COBOL Language Specifications

It is intended that the Journal of Development be published no more

often than once each year and no less often than every three years.

The objectives for the different sections are as follows:

Section I. As a chronological record, this section

is a brief history of the CODASYL organization

and of the development of the COBOL Language
definition from 1959 through the specification
and publication of the present document. Participating

companies during this period are noted as well as the

official documents that have been published by the

CODASYL Executive Committee.

Section II. In the design and use of the COBOL language specifications,

a philosophy of language use exists from both an implementor

and a user point of view. This Section is included as an,

expression of language guidelines to the user of the

language. To aid the depth understanding of both the

CODASYL-
PROGRAMMING LANGUAGE COMMITTEE
--COBOL

JOURNAL OF DEVELOPMENT

1

implementor and user, guidelines include background

discussion of extended language features whose data

processing concepts are not always evident. Guidelines

also include objectives that the COBOL designers

considered in the need for a common language and discuss

the practical experience that is known today in relation

to the original objectives.

Section III. This self-contained Section is a complete, formal, semantic

description of the COBOL language specification. The need

for a thorough language definition, without philosophical
treatment of design criteria, is the objective in the

presentation of the language.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL

JOURNAL OF DEVELOPMENT
COBOL

ACKNOWLEDGMENT

The COBOL Journal of Development is the product of the CODASYL Programming
Language Committee. This effort has been aided significantly by the contri¬

butions of the European Computer Manufacturer's Association (ECMA), the

International Organization for Standardization (ISO), the Japanese COBOL Standards
Committee, the United States of America Standards Institute (USASI), and by

other interested organizations and individuals. The journal was developed

by the Programming Language Publication Subcommittee and reflects the official

CODASYL COBOL language as of July, 1966.

The maintenance of COBOL is the function of the Programming Language Committee

of CODASYL (conference on DAta SYstems Languages). Proposed changes to the
language specifications are introduced by written proposal. Although no

specific proposal format is mandatory the following guidelines are applied
to proposal content:

1. Proposals made to specific points must cite all specific references.

2. Proposals of a general nature should cite at least specific instances.

3. Sufficient justification and motivation should be contained in the

proposal to point out what the problem appears to be and why this
proposal is a solution.

A. The proposal should include recommended specification changes with

specific references where necessary.

Additional information concerning the procedures for proposing changes or

suggested changes should be directed to the Programming Language Committee:

Chairman, Programming Language Committee

Box 124
Monroeville, Pennsylvania 15146

Any organization interested in reproducing the COBOL report and specifications
in whole or in part, using ideas from this report as the basis for an instruction

manual or for any other purpose 'is free to do so. However, all such organizations

are requested to reproduce the following acknowledgment paragraphs in their

entirety as part of the preface to any such publication. Any organization using

a short passage from this document, such as in a book review, is requested to

mention "COBOL" in acknowledgment of the source, but need not quote the acknowledg¬

ment .

COBOL is an industry language and is not the property of any

company or group of companies, or of any organization or group

of organizations.

No warranty, expressed or implied, is made by any contributor

or by the COBOL Committee as to the accuracy and functioning of
the programming system and language. Moreover, no responsibility

is assumed by any contributor, or by the committee, in connection

therewith.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
iii

CODASYL COBOL

The authors and. copyright holders of the copyrighted material

used herein

FLOW-MATIC (Trademark of Sperry Rand Corporation),
Programming for the Univac (R) I and II, Data

Automation Systems copyrighted 1958, 1959> hy Sperry
Rand Corporation; IBM Commercial Translator Form

No. F 28-8013, copyrighted 1959 hy IBM; FACT, D6I
27A526O-2760, copyrighted i960 hy Minneapolis-Honeywell

have specifically authorized the use of this material in whole

or in part, in the COBOL specifications. Such authorization

extends to the reproduction and use of COBOL specifications in
programming manuals or similar publications.

CODASYL
PROGRAMMING LANGUAGE COMMUTE!

JOURNAL OF DEVELOPMENT
COtOL

t

SECTION I: HISTORY OF CODASYL

COBOL DEVELOPMENT

__ , PROGRAMMING LANGUAGE COMMITTEE
CODASYL------

JOURNAL OF DEVELOPMENT
COBOL

TABLE OF CONTENTS

SECTION I: HISTORY OF CODASYL COBOL DEVELOPMENT

Page

CHAPTER 1. BACKGROUND and INTRODUCTION 1-1-1

1.1 Objectives . I -1 -1

1.2 Establishment of CODASYL . 1-1-2

CHAPTER 2. DEVELOPMENT of COBOL 1-2-1

2.1 Organization of COBOL Effort . 1-2-1

2.2 Evolution of COBOL . 1-2-6

2.3 Standardization . 1-2-9

2.4 Future Developments . 1-2-9

_ PROGRAMMING LANGUAGE COMMITTEE
CODASYL---COBOL

JOURNAL OF DEVELOPMENT
I-i

CHAPTER 1

BACKGROUND and INTRODUCTION

1.1 OBJECTIVES

On May 28 and 29, 1959 a meeting was held in the Pentagon for the purpose

of considering both the desirability and the feasibility of establishing

a common language for the programming of electronic computers for business-

type applications. Representatives from users, both in private industry
and in government, computer manufacturers, and other interested parties

were present. The group agreed that the project should be undertaken.

The following general objective was stated:

The current experience of users of electronic data processing

equipment indicates that a major problem in the efficient

utilization of such equipment lies in the inability to state

the data processing application in such a way that computer

programs are developed and maintained with a minimum of time

and programming effort.

A COmmon Business Oriented Language, independent of any make

or model of computer, open ended, and stated in both an
English notation and a narrative form, would do much to solve

or to ameliorate this problem. Such a language would also

simplify and speed up the solution of the related problem of

training personnel in the design of data processing systems

and in the development of computer programs for such systems.

In general, the development of a common language would serve

to benefit the user in the following situations.

CODASYL

In developing data processing systems for existing

computers, it is important that these systems be capable
of processing on future, more powerful computers of

any manufacturer, with a minimum of conversion costs.

Full documentation of present systems in a form conducive

to making changes and additions with minimum expenditures

of time and cost is necessary in order to effectively
meet the rapidly changing and expanding requirements of

management.

The need to produce a large number of computer programs

in a short period of time often requires the augmentation

of programming staffs by the addition of relatively

inexperienced programmers.

_PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
i-i-i

COBOL

1.2 ESTABLISHMENT OF CODASYL

The concept of the three committees was agreed upon and Short Range,

Intermediate Range, and Long Range committees were established. The

Short Range Committee was given the task of developing an immediate

language and was instructed to take the best of three existing

language-compiler systems, FLOWMATIC, AIMACO, and Commercial Translator

and to produce a language superior to any of these. The Conference on

DAta SYstems Languages (CODASYL) developed out of that meeting. The

Short Range Committee eventually became the official COBOL branch of
CODASYL and the Intermediate and the Long Range Committees evolved into

the Systems and Language Structures Committees.

iODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
1-1-2

COBOL

CHAPTER 2

DEVELOPMENT OF COBOL

2.1 ORGANIZATION OF COBOL EFFORT
The original COBOL organization was the Short Range Committee of CODASYL.

By September, 1959, this committee had specified a language which they
considered superior to existing language-compiler systems. This language

specification was further modified and by December, 1959, COBOL existed as
a language that was not identified with any manufacturer and therefore

presented advantages for both government and private industry users.

2.1.1 INITIAL ORGANIZATION

The product of phase I of COBOL development was a report published in
April of 1960 by the Government Printing Office entitled "C0B0L--A Report

to the Conference on Data Systems Languages, including Initial Specifications

for a Common Business Oriented Language (COBOL) for Programming Electronic

Digital Computers". The language described in this report has since become
known as COBOL-60.

The organizations participating in the original COBOL development were:

Air Materiel Command, United States Air Force

Bureau of Standards, Department of Commerce

David Taylor Model Basin, Bureau of Ships, U.S. Navy

EDP Division, Minneapolis-Honeywell Regulator Co.
Burroughs Corporation

International Business Machines Corporation

Radio Corporation of America
Sylvania Electric Products Incorporated

Univac Division of Sperry Rand Corporation

2.1.2 THE COBOL MAINTENANCE COMMITTEE

The Executive Committee recognized that the task of defining COBOL was a
continuing one and that the language had to be maintained and improved. To

this end, the COBOL Maintenance Committee was created and charged with the

task of answering questions arising from users and implementors of the

language and making definitive modifications, including additions, clarifi¬
cations, and changes to the language.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL----COBOL

JOURNAL OF DEVELOPMENT

1-2-1

The Maintenance Committee was comprised of a Users Group and a Manufacturers

Group. These groups met together but voted on proposals separately.

In order to devote concentrated attention to publishing a revised and

updated "COBOL-60", the Executive Committee created a Special Task Group.

The product of this task group was the COBOL-61 manual, which was published

by the Government Printing Office in mid-1961.

The next official COBOL publication was also the product of the Maintenance

Committee and was called COBOL-61 Extended; released in mid-1963.

Organizations participating in the Maintenance Committee or the Special Task

Group were:

Air Materiel Command, United States Air Force

Allstate Insurance Company

Bendix Corporation, Computer Division

The Boeing Company

Burroughs Corporation

Chase Manhattan Bank

Control Data Corporation

David Taylor Model Basin, Bureau of Ships, U.S. Navy

DuPont Company

General Electric Company
General Motors Corporation

International Business Machines Corporation

Lockheed Aircraft Corporation
Minneapolis-Honeywell Regulator Company

National Cash Register Company
Owens-Illinois} Incorporated

Philco Corporation

Radio Corporation of America
Royal MeBee Corporation
Space Technology Laboratories, Incorporated

Southern Railway Company

Standard Oil Company (N.J.)

Sylvania Electric Products, Incorporated

Univac Division of Sperry Rand Corporation

United States Steel Corporation
Westinghouse Electric Corporation

The membership of the various Subcommittees of the COBOL Maintenance Committee

was composed of members of both the Users and the Manufacturers groups.

2.1.3 THE COBOL COMMITTEE
In January, 1964, the COBOL Maintenance Committee was reorganized to provide
a true industry group and to broaden its scope of activities. This

organization is shown in Figure 1.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
1-2-2

ODASYL COBOL

Task Groups Task Groups Task Groups

Figure 1 Organisation of CODASYL (January 1964 - July 1968)

The Language Subcommittee's function was much the same as was that of the

former COBOL Maintenance Corranittee, namely, the maintenance and further

development of COBOL. In addition it carried on liaison with the United

States of America Standard* Institute (USASI: formerly the American
Standards Association - ASA) and the International Organization for Standard¬

ization (ISO) in their work concerning the development of proposed COBOL
Standards.

The Publication Subcommittee was charged with the production of official
COBOL publications and liaison with USASI as to the content of the COBOL

Information Bulletin (CIB). The CIB is a collection of material relating

to COBOL, distributed to the COBOL community by USASI.

The Evaluation Subcommittee's task was the analysis and evaluation of

compiler implementations and user surveys. This Subcommittee provided

information to the COBOL Committee regarding the use of COBOL.

The product of the COBOL Committee was the manual, "COBOL, Edition 1965".

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
1-2-3

COBOL

Organizations participating in the work of the COBOL Committee were:

Allstate Insurance Company

American Telephone and Telegraph Company

The Boeing Company

Burroughs Corporation

Canadian Federal Government

Commercial Credit Corporation

Collins Radio Company

Control Data Corporation

General Electric Company

General Motors Corporation

Honeywell, Incorporated

International Business Machines Corporation

Lockheed Aircraft Corporation

National Bureau of Standards
National Cash Register Company

Owens-Illinois, Incorporated
Philco Corporation
Radio Corporation of America

Southern Railway Company
Standard Oil Company (N. J.)

Sylvania Electric Products, Incorporated

United States Air Force
United States Bureau of the Budget

United States Department of Army

United States Navy

United States Steel Corporation

Univac Division of Sperry Rand Corporation
Westinghouse Electric Corporation

2.1.4 PROGRAMMING LANGUAGE COMMITTEE
In July, 1968 the CODASYL Executive Committee adopted a revised

constitution which accomplished certain needed organizational changes

in an effort to stablize and improve the methods of achieving CODASYL

objectives. This revised organization is shown in Figure 2.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
1-2-4

COBOL

Ad Hoc
Task Groups

Ad Hoc
Task Groups

Ad Hoc

Task Groups

Figure 2 Organization of CODASYL (Since July 1968)

With the formation of the Programming Language Committee (PLC) the
former COBOL Language Subcommittee has been elevated to full committee

status, and its chairman becomes a member of the Executive Committee.

The purpose and objectives of PLC include and extend those of the

former CLS. The objectives are to make possible: compatible, uniform,

source programs and object results, with continued reduction in the number

of changes necessary for conversion or interchange of source programs and

data. The PLC concentrates its efforts in the area of tools,

techniques and ideas aimed at the programmer.

The Programming Language Committee is responsible for the presentation of
the COBOL Journal of Development.

Member organizations of the COBOL Programming Language Committee are:

American Telephone and Telegraph Company

Burroughs Corporation

Canadian Federal Government

Control Data Corporation

General Electric Company

Honeywell, Incorporated

International Business Machines Corporation

National Bureau of Standards

National Cash Register Company

Radio Corporation of America

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
1-2-5

CODASYL COBOL

Southern Railway Company

United States Air Force

United States Bureau of the Budget

United States Department of Army
United States Navy

United States Steel Corporation
Univac Division of Sperry Rand Corporation

Westinghouse Electric Corporation

2.1.5 OTHER CODASYL ACTIVITIES

In 1961 a portion of the Intermediate Range Committee was combined with

the Long Range Committee to form the Development Committee. This

committee was comprised of a Systems Group and a Language Structures
Group. In April 1965 the Development Committee was reorganized as the

CODASYL Systems Committee (CSC) and CODASYL Language Structures
Committee (CLSC) - as shown in Figure 1.

Before its reorganization, the Development Committee had produced:

a. In 1962, through the Systems Group, a "Decision Table Structured
Language", identified as "Detab X".

b. In 1962, through the Language Structures Group, a "nonprocedural

approach to problem statement", identified as "Information

Algebra".

Under this revised committee structure , work continued on the further

development of these and similar languages and techniques.

In July 1968 the CODASYL Executive Committee reorganized these committees

resulting in the formation of the Planning Committee (replacing CLSC) and

redefinition of the work of the Systems Committee. This structure is

shown in Figure 2. These two committees have the following purposes:

a. The CODASYL Planning Committee is to aid in CODASYL planning by
gathering, assimilating and disseminating information from

implementors and users pertaining to the goals of CODASYL.

b. The CODASYL Systems Committee is to build an expertise in, and to

develop advanced languages and techniques for, data processing,

with the aim of automating as much as possible of the process.es

currently thought of as systems analysis, design and implementation.

2.2 EVOLUTION OF COBOL

2.2.1 COBOL-60

COBOL-60, the first version of the language published, proved that the

concept of a common business oriented language was indeed practical.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
1-2-6

CODASYL COBOL

2.2.2 COBOL-61

COBOL-61, the second official version of COBOL, was not.completely

compatible with COBOL-60. The changes were in areas such as organization

of the Procedure Division rather than the addition of any major functions.

The avowed goal of CODASYL in terms of successive versions of the

language was to make changes of an evolutionary rather than revolutionary

nature. This version was generally implemented and was the basis for many
COBOL compilers.

The terms "Required" and "Elective" COBOL were adopted by the Executive
Committee at this time in order to provide a uniform basis for a

minimum implementation of COBOL. Those elements that were required to
be implemented were designated as "Required" elements. Those elements of

the language, the implementation of which it was permissible for the
manufacturer to delay temporarily, were designated as "Elective" elements.

2.2.3 COBOL-61 EXTENDED

This version of COBOL was generally compatible with COBOL-61. The term

"generally" must be used, not because of any basic changes in the

philosophy or organization of the language, but because certain arithmetic

extensions and general clarifications did make the syntax for certain

statements and entries different from those in COBOL-61

COBOL-61 Extended, then, was generally COBOL-61 with the following major

additions and modifications ;

a. The addition of the Sort feature,

b. The addition of the Report Writer option,

c. The modification of the arithmetics to include multiple receiving

fields and to add the CORRESPONDING option to the ADD and

SUBTRACT statements , and

d. The inclusion of various clarifications.

2.2.4 COBOL, EDm©N 1965

This version of COBOL included COBOL-61 Extended plus certain

additions and modifications.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
1-2-7

COBOL

The major changes incorporated in COBOL, Edition 1965 were:

a. The inclusion of a series of options to provide for the reading,

writing and processing of Mass Storage files,

b.

c .

d.

The addition of the Table Handling feature which includes indexing

and search options,

The modification of the specifications to delete the requirement
for specific error diagnostic messages,

The deletion of the terms "Required" and "Elective", and

The inclusion of various clarifications.

2.2.5 COBOL, 1968

This version of COBOL, published in the Journal of Development, is based

on COBOL, Edition 1965 with certain additions, and deletions.

The major changes incorporated in COBOL, 1968 are:

a. The inclusion of inter-program communication and the concept of a

run unit,

b. The elimination of redundant editing clauses and certain data clauses

more succinctly expressed by the PICTURE clause,

c. An improved COPY specification for all divisions except the identification

division and the elimination of the INCLUDE statement,

d. The inclusion of a hardware independent means of specifying and testing
for page overflow conditions,

e. The elimination of type 4 abbreviations,

f. The elimination of the DEFINE statement,

g. The inclusion of a remainder option for the DIVIDE statement,

h. The deletion of NOTE and REMARKS in favor of a general comment

capability for all divisions,

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
1-2-8

-COBOL

i. The inclusion of the SUSPEND statement as additional means of

controlling graphic display devices,

j. The inclusion of additional abbreviations,

k. A revision to the EXAMINE statement to allow the specification of

dynamic parameter values, and

l. The inclusion of various clarifications.

2.3 STANDARDIZATION
The effort to define an International COBOL standard was begun in October of

1962 by the ISO Technical Committee 97, Computers and Information Processing,

Working-Group E, Programming Languages. Working-Group E is now Subcommittee

5. The effort to define a United States COBOL standard was begun in September

of 1962 by the ASA (now USASI) X3.4.4 Task Group on Processor Specifications

and COBOL. This latter effort resulted in a USA Standard COBOL X3.23 which

was approved in August of 1968. These standardization efforts are based on

the technical content of COBOL as defined by CODASYL.

2.4 FUTURE DEVELOPMENTS
Further development and modification of COBOL are the responsibility of

the Programming Language Committee of CODASYL. The development effort

continues with emphasis on:

extended data base capabilities

input/output editing capabilities
a clarification and extension to asynchronous processing
a clarification and extension to the Report Writer facility

a communications facility

debugging facilities

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
1-2-9

CODASYL COBOL

SECTION II: PHILOSOPHY

OF COBOL USE

PROGRAMMING LANGUAGE COMMITTEE
CODASYL

JOURNAL OF DEVELOPMENT
COBOL

TABLE OF CONTENTS

SECTION II: PHILOSOPHY OF COBOL USE

CHAPTER 1. BACKGROUND

CHAPTER 2. CONCEPTS

2.1 Sort . II-2-1

2.2 Report Writer . II-2-2

2.3 Table Handling . II-2-3

2.4 Mass Storage .. II-2-8

2.5 Rerun . II-2-13

2-6 Same Area . II-2-14
2.7 Inter-Program Communication . II-2-14

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
COBOL

CHAPTER 1

BACKGROUND

1.1 GENERAL

The task of specifying COBOL was undertaken because of the computer users'

need for a problem-oriented, machine-independent language for business

applications. Such a language, in order to be successful, should have certain
characteristics. Programs written ip the language should be capable of easy

conversion from one machine to another, the language should be easily under¬

standable in format and notation, it should provide good program documentation,
and it should be capable of specifying data processing problems in such a way

that an implementation of the language by means of a compiler can produce

efficient object code.

COBOL is a language for programmers. It is not intended to be used by people

unfamiliar with computers. The attributes of the language make it more feasible
for use by applications oriented personnel and make it easier to teach to

novices, but an understanding of programming and data processing concepts is

prerequisite to the writing of efficient COBOL programs.

Although COBOL is a programmer's language, major benefits of the use of COBOL
accrue to management by improving the ovpr-all efficiency of the data processing

function.

In describing a data processing problem, there are two elements involved. One

is the set of procedures which specify how the data is to be manipulated, and

the other is a description of the data involved. Furthermore, it was recognized

that certain information pertaining to the specific computer on which the

problem is to be run and some information identifying the program were also a

necessary part of the description of a problem. The information peitaining to

the computer itself would never carry over from one computer to another.

However, it was felt that the advantages of having a common means of expression

were sufficiently great to warrant the development of a standard form for even

those items which clearly changed from computer to computer.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
n-i-i

COBOL CODASYL

General

i
COBOL SYSTEM ELEMENTS

The COBOL system is composed of two elements, the source program written in

COBOL and the compiler which translates this source program into an object

program capable of running oi> a computer. This report, in general, considers

only the source program and does not consider the compiler directly. However,

the specifications of a language obviously determine, to a large extent, the

boundaries of a compiler. Therefore, the compiler is mentioned in certain

cases to facilitiate the explanation of the langauge.

A source program is used to specify the solution of a business data processing
problem. The four elements of this specification are the:

1. Identification of the program.

2. Description of the equipment being used in the processing.

3. Description of the data being processed.

4. Set of procedures which determine how the data is to be processed.

The COBOL system has a separate division within the source program for each

of these elements. The names of these divisions respectively are:

IDENTIFICATION

ENVIRONMENT

DATA

PROCEDURE

IDENTIFICATION DIVISION

The purpose of the Identification Division is to identify the source program

and the outputs of a compilation. In addition, the user may include the date

that the program was written, the date that the compilation was accomplished,

and any other information which is desired.

ENVIRONMENT DIVISION

The Environment Division is that part of the source program which specifies

the equipment being used. It contains descriptions of the computers to be

used both for compiling the source program and for running the object program.

Problem-oriented names may be assigned to particular equipment. Those aspects

of a file which relate directly to hardware are described here. Because this

division deals entirely with the specifications of the equipment being used,

it is largely computer dependent.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL-----COBOL

JOURNAL OF DEVELOPMENT

II-1-2

Genera 1

DATA DIVISION

The Data Division uses file and record descriptions to describe the files of

data that the object program is to manipulate or create and the individual

logical records which comprise these files. The characteristics or properties

of the data are described in relation to a standard data format rather than

an equipment-oriented format. Therefore, this division is to a large extent

computer independent. While compatibility among computers cannot, in general,
be absolutely assured, careful planning in the data layout will permit the

same data description, with minor modifications, to apply to more than one
computer.

PROCEDURE DIVISION

The Procedure Division specifies the steps that the user wishes the computer
to follow. These steps are expressed in terms of meaningful English words,

statements, sentences, and paragraphs. This aspect of the over-all system is

often referred to as the "program"; in reality it is only part of the total

specification of the problem solution (i.e. the program) and is insufficient,

by itself, to describe the entire problem. This is true because repeated

references must be made, either explicitly or implicitly, to information

appearing in the other divisions. This division, more than any other, allows

the user to express his thoughts in meaningful English. Concepts of verbs to

denote actions and sentences to describe procedures are basic, as is the use

of conditional statements to provide alternative paths of action. The

Procedure Division is essentially computer independent. That is, any user of

COBOL can understand the information appearing in this division without regard

to any particular computer. Furthermore, every COBOL compiler should interpret

this information in the same way if the source program is syntactically correct.

1.1.1 DOCUMENTATION

The completeness of program documentation produced by a COBOL compilation is

dependent upon the particular implementation (compiler) and upon the amount

of thought and effort expended by the programmer. Because of the narrative

nature and English-like syntax of the language, however, a certain amount of

documentation is inherent. If the user establishes programmer guidelines so

that data-names and procedure-names are consistent and meaningful, the listings

produced by a compilation will constitute a good basis for a program documen¬

tation package. Such techniques as the use of the PICTURE clause for all data

description at the elementary item level and the use of the COPY clause to

call standard data descriptions or procedures from a library further enhance

documentation. Generally, the quality and quantity of documentation produced

by the use of COBOL is superior to that of other languages. This superiority

is very important for the maintenance and revision of production programs.

1.1.2 UNDERSTAND ABILITY

This feature of COBOL is in one respect closely allied with the previous

topic of documentation. There is a good deal more to be said, however, for

the relative ease of understanding a COBOL program.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT

II-1-3

CODASYL COBOL

Genera 1

The organization of the language, both as to data hierarchies and procedure

statements, result in COBOL being much easier to teach and understand than

machine-oriented languages or assembly systems. This attribute makes COBOL

very useful for man-to-man as well as man- to-machine coirsnunica tions. However,

it is necessary to keep in mind the importance of comprehensive training,

including basic computer logic and programming fundamentals, as well as COBOL
training itself.

In general, it is wise to keep the Procedure Division as simple as possible,

avoiding the use of complex, nested, or compounded sentences, when possible.

1.1.3 COMPATIBILITY

While COBOL is not a completely machine-independent language, it closely
approaches this goal. The user must exercise some degree of care if he

wishes to produce highly compatible programs. It is appropriate here to

examine, division by division, the degree of machine-independence in a COBOL
program.

The Identification Division is totally machine-independent. However, since

the ID Division does not produce object code, this machine-independence is

not of great consequence to the user.

The Environment Division is almost completely machine-dependent. Those aspects

of the data processing problem that are related to a particular hardware system

are specified here. When a COBOL program is converted from one computer to

another, this division normally would require at least a partial rewrite.

The Environment Division usually consists of only three or four paragraphs,

so that the effort of rewriting it is not large.

The Data Division is compatible across machine lines insofar as the data being

described are compatible. For example, changes will be required in the Data

Division if the user is converting from a BCD, variable word length machine to

a fixed word length machine with more than one internal representation.

The Procedure Division is compatible across machine lines to the extent that

the language can separate the problem from the hardware. If, for instance,

the collating sequence of a new machine is different from that of the machine
currently in use, certain statements in the Procedure Division may have to be
rewritten. Aside from this type of "language independent" circumstance, the

Procedure Division should convert from one machine to another with no change.

The user can create incompatibilities if non-COBOL coding is introduced with

the ENTER statement; if the COMPUTE statement is used to combine arithmetic

operations, when the number of digits in the intermediate results of these

arithmetic operations must be carefully controlled; or if implementor-dependent

techniques are used.

This discussion of compatibility across machine lines assumes that features

used in writing COBOL programs are present in both compilers.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL- ——— ——-COBOL

JOURNAL OF DEVELOPMENT
II-1-4

Genera 1

1.1.4 EFFICIENCY

User experience has shown that there are many ways to achieve highly efficient

COBOL object programs. In discussing the efficiency of COBOL, a distinction

must be made between efficiency of compilation and efficiency of the object

program.

As far as the speed of compilation is concerned, experience has shown that

the most important factor here is the design of the compiler. Though the

complexity and notational form of COBOL have some effect on compilation speed,
examination of current implementations shows that compiling can be quite fast.

Because the diagnostics included in the compiler and the doc unentation produced

by the compiler significantly affect the measurement of compiling efficiency,

they, as well as the factor of compilation speed, must be considered in this

measurement.

In general, the efficiency of the object code produced is not limited by the

structure, notation, or format of COBOL. Object program efficiency is mainly

dependent on the compiler and the source programmer. Again, using current

implementations as a guide, COBOL compilers are capable of producing efficient

object programs, both in terms of running speed and in terms of memory usage.

One point of confusion that has arisen periodically during the history of

COBOL use is language problems versus compiler problems. While it is true

that language notation or structure can contribute to inefficient implementations,

COBOL can, and has been, implemented efficiently.

With the dependence that exists between highly efficient object programs and

programmer understanding of compiler idiosyncrasies, the implementor should

supply his user with a manual containing specific guidelines outlining peculiarities

of the compiler and methods for achieving most efficient programs. The user

must exercise care in establishing the content of training courses and

installation standards which result in compatible and efficient programs.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
H-l-5

COBOL CODASYL

CHAPTER 2

CONCEPTS

COBOL offers many features which allow the user co obtain a necessary function

without programming the function in detail. In this chapter we will discuss

each of these features, considering the reason for its inclusion in the language

and the concept of its use and organization.

2.1 SORT

Sorting has always constituted a large percentage of the workload in a business

data processing shop. Therefore, an efficient sort program has always been a

necessary part of any business software system.

In many sort applications it is necessary to apply some special processing to

the contents of a sort file. The special processing may consist of addition,

deletion, creation, altering, editing, or other modification of the individual

records in the file. It may be necessary to apply the special processing

before or after the records are reordered by the sort, or special processing

may be required in both places. The COBOL Sort feature allows the user to

express these procedures in the COBOL language and to specify at which point,

before or after the sort, they are to be executed. A COBOL program may contain
any number of sorts, and each of them may have its own independent special

procedures. The Sort feature automatically causes execution of these procedures

at the specified point in such a way that extra passes over the sort file are
not required.

A Sort-file Description can be considered to be a particular type of File

Description. That is, a sort-file, like any file, is a set of records.

The normal organization of a COBOL program containing a sort is such that the

input file is read and operated upon by an INPUT PROCEDURE. Within this INPUT

PROCEDURE, the RELEASE statement is used to create the sort-file. That is, at
the conclusion of the INPUT PROCEDURE those records that have been output by

use of the RELEASE statement rather than the WRITE statement comprise the

sort-file, and this file is available only to the SORT statement. Execution

of the SORT statement arranges the entire set of records in the sort file

according to the keys specified in the SORT statement. The sorted records are

made available from the sort-file by use of the RETURN statement during the

OUTPUT PROCEDURE.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL Of DEVELOPMENT
II-2-1

COBOL

Report Writer

The sort-file has no label procedures which the programmer can control and the

rules for blocking and for allocation of internal storage are peculiar to the

SORT statement. The RELEASE and RETURN statements imply nothing with respect

to buffer areas, blocks or reels. A sort-file, then, may be considered as an

internal file which is created (RELEASE) from the input file, processed (SORT),

and then made available (RETURN) to the output file. The sort-file itself is

referred to and accessed only by the SORT statement.

2.2 REPORT WRITER

The production of reports of various types has always placed a large burden in

terms of machine time and programmer time on the business data processing user.

The need for a technique that would enable the programmer to specify and produce

reports quickly and accurately in COBOL has long been felt. To this end the

Report Writer feature has been added to the language.

The Report Writer allows the programmer to describe his report pictorially in

the Data Division, thereby minimizing the amount of Procedure Division coding

necessary.

In discussing the Report Writer, the physical aspects of the report format

must be distinguished from the conceptual characteristics of the data in the

report.

In describing the physical aspects of the report, consideration must be given

to the hardware device on which the report is to be written and to the structure

and format of the individual page. Facilities for specifying this information

are included in the Report Writer entries.

The concept of a hierarchy of levels is used in defining the logical organization

of the report. Each report is divided into report groups which in turn are

divided into sequences of items. The use of a level structure permits the

programmer to refer to an entire report name, major or minor report groups,

elementary items within report groups, etc.

In creating the report the programmer defines the necessary report groups. A

report group may be of any of the following types: heading group, footing

group, control group, or detail print group. Further, a report group may extend

over several actual lines on the page.

2.2.1 STRUCTURE

The report description entry contains information pertinent to the over¬

all format of the named report and uses the level indicator RD. The character¬

istics of the report page are outlined by describing the number of physical

lines per page and specifying the limits for presentation of headings, footings,

and detail lines. Data items that act as format controls for a report are

specified in the RD entry. Each report associated with an output file must be

defined by an RD entry.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
II-2-2

CODASYL COBOL

Table Handling

A report group is a set of data which may be made up of several print lines
consisting of many data items or one print line containing only one data item.

A report group description entry contains, in addition to other information,

a level-number and a TYPE description. The level-number indicates the relative

position in the data hierarchy of the report groups, and the TYPE clause

describes the purpose of the report group in terms of its presentation within

the report. If report groups are nested, that is, exist within groups, all

groups within the assemblage must have the same TYPE description.

Specifically, the report group description entry defines the format and

characteristics for a report group, whether this group is a series of lines, a

line, or an elementary item. The relative placement of items within a report

group, the level of a particular report group within the hierarchy of report

groups, the format of all items, and any control factors associated with the

group are defined in this entry.

Schematically, a report group is a line or a series of lines. The length of

a line is determined by the compiler from environmental specifications.

Initially, their lines consist of all SPACES. Within a report, the order of

the individual report groups is not significant. Within a report group the

programmer describes the elements consecutively from left to right and then from

top to bottom. The description of a report group is analogous to the description

of a data record, except that, in the report group spaces are assumed where no

specific entry is indicated for presentation, while in the data record every

character position must be explicitly defined, regardless of its data content.

2.3 TABLE HANDLING

Tables of data are common components of business data processing problems.

Although the items that make up a table could be described as contiguous data

items, there are two reasons why this approach is not satisfactory. First,

from a documentation standpoint, the underlying homogeneity of the items would

not be readily apparent; and second, the problem of making available an

individual element of such a table would be severe when there is a decision as

to which element is to be made available at object time.

Tables composed of contiguous data items are defined in COBOL by including

the OCCURS clause in their data description entries. This clause specifies

that the item is to be repeated as many times as stated. The item is considered

to be a table-element and its name and description apply to each repetition

or occurrence. Since each occurrence of a table-element does not have assigned to

it a unique data-name, reference to a desired occurrence may be made only by

specifying the data-name of the table element together with the occurrence number of

the desired table element. The occurrence number is known as a subscript,

and this technique of specifying individual table elements is called sub¬

scripting.

In order to facilitate such operations as table searching and manipulating

specific items, a technique called Indexing is also available. Both sub¬

scripting and indexing are discussed below.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL--COBOL

JOURNAL OF DEVELOPMENT

II-2-3

Table Handling

The number of occurrences of a table-element may be specified to be fixed or
variable. If the occurrence number is given in the source program as fixed,

the actual data that is entered into the table at object time may still comprise

a variable number or occurrences of the table elements. Thus, not every
table element need contain valid data.

2.3.1 TABLE DEFINITION

To define a one-dimensional table, the programmer uses an OCCURS clause as

part of the data description of the table-element, but the OCCURS clause must

not appear in the description of group items which contain the table-element.

Example 1 shows a one-dimensional table defined by the item TABLE-ELEMENT.

Example 1.

01 TABLE-1.

02 TABLE-ELEMENT; OCCURS 20 TIMES.

03 DOG; ...

03 FOX; ...

In Example 2, TABLE-ELEMENT defines a one-dimensional table, but DOG does not
since there is an OCCURS clause in the description of the group item (TABLE-

ELEMENT) which contains DOG.

Example 2.

02 TABLE-1.

03 TABLE-ELEMENT; OCCURS 20 TIMES.

04 DOG; OCCURS 5 TIMES

05 EASY; ...

05 FOX; ...

In both examples, the complete set of occurrences of TABLE-ELEMENT has been
assigned the name TABLE-1. However, it is not necessary to give a group name

to the table unless it is desired to refer to the complete table as a group

item.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
II-2-4

COBOL CODASYL

Table Handling

None of the three one-dimensional tables which appear in the following two

examples have a group name.

Example 3.

01 ABLE.

02 BAKER; ...

02 CHARLIE; OCCURS 20 TIMES

02 DOG; ...

Example 4

01 ABLE.

02 BAKER; OCCURS 20 TIMES; ...

02 CHARLIE; ...

02 DOG; OCCURS 5 TIMES; ...

Defining a one-dimensional table within each occurrence of an element of

another one-dimensional table gives rise to a two-dimensional table. To define

a two-dimensional table, then, an OCCURS clause must appear in the data descrip¬

tion of the element of the table, and in the description of only one group item

which contains that element. Thus, in Example 5, DOG is an element of a two-

dimensional table; it occurs 5 times within each element of the item BAKER which

itself occurs 20 times. BAKER is an element of a one-dimensional table.

Example 5.

02 BAKER; OCCURS 20 TIMES; ...

03 CHARLIE; ...

03 DOG; OCCURS 5 TIMES; ...

In the general case, to define an n-dimensiona1 table, the OCCURS clause should

appear in the data description of the element of the table and in the descriptions

of (n-1) group items which contain the element. In COBOL, tables of up to three

dimensions are permitted; n cannot exceed 3 in the foregoing definition.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL---COBOL

JOURNAL OF DEVELOPMENT
II-2-5

Table Handling

2.3.2 REFERENCES TO TABLE-ITEMS

Whenever the user refers to a table-element, or if the taole-elenient is a group

item, to the items within it, or to a conditon-name associated with the element

or with items contained within the element, the reference must indicate which

occurrence of the element is intended. For access to a one-dimensional table
the occurrence number of the desired element provides complete information.

For tables of more than one dimension, an occurrence number must be supplied

for each dimension of the table. In Example 5 then, a reference to the 4th

BAKER or the 4th CHARLIE would be complete, whereas a reference to the 4th DOG

would not. To refer to DOG, which is an element of a two-dimensional table,

the user must refer to, for example, the 4th DOG in the 5th BAKER.

2.3.3 SUBSCRIPTING

One method by which occurrence numbers may be specified is to append one or

more subscripts to the data-name. A subscript is an integer whose value

specifies the occurrence number of an element within the group item that has

the next lower level-number. The subscript can be represented either by a

literal which is an integer or by a data-name which is defined elsewhere as
a numeric elementary item with no character positions to the right of the

assumed decimal point. In either case, the subscript, enclosed in parentheses,

is written immediately following the name of the table element. A table element

must include as many subscripts as there are dimensions in the table whose

element is being referred to. That is, there must be a subscript for each

OCCURS clause in the hierarchy containing the data-name, including the da ta¬

na me itself.

Example 6.

02 BAKER; OCCURS 20 TIMES; ...

03 CHARLIE; ...

03 DOG; OCCURS 5 TIMES

04 EASY; ...

88 MAX; VALUE IS ...

04 FOX; ...

05 GEORGE; OCCURS 10 TIMES; ...

06 HARRY; ...

06 JIM; ...

In Example 6, references to BAKER and CHARLIE require only one subscript,

references to DOG, EASY, MAX and FOX require two, and references to GEORGE,

HARRY, and JIM require three.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT

II-2-6

COBOL CODASYL

Table Handling

When more than one subscript is required, they are written (separated
hy a space) in order corresponding to the occurrence numbers in succes¬
sively less inclusive dimensions of the data organization. If a multi-dimensiona1

table is thought of as a series of nested tables and the most inclusive or

outermost table in the nest is considered to be the major table with the innermost
or least inclusive table being the minor table, then the subscripts are written

from left to right in the order major, intermediate, and minor. Thus, in

Example 6, a reference to HARRY (18, 2, 7) means the HARRY in the 7th GEORGE,

in the 2nd DOG, in the 18th BAKER.

A reference to an item must not be subscripted if the item is not a table-
element or an item or condition-name within a table-element.

The lowest permissible subscript value is 1. The highest permissible subscript
value in any particular case is the maximum number of occurrences of the item

as specified in the OCCURS clause.

When a data-name is used as a subscript, it may be used to refer to items within

many different tables. These tables need not have elements of the same size.

The data-name may also appear as the only subscript with one item and as one

of two or three subscripts with another item. Also, it is permissible to mix

literal and data-name subscripts, for example, HARRY (12, NEWKEY, 2).

2.3.4 INDEXING

Another method of referring to items in a table is indexing. To use this

technique, the programmer assigns one or more index-names to an item whose data

description contains an OCCURS clause. The INDEXED BY clause, by which the
index-name is identified and associated with its table, is an optional part of

the OCCURS clause. There is no separate entry to describe the index-name

since its definition is completely hardware-oriented and it is not considered

data per se. At object time the contents of the index-name will correspond to

an occurrence number for that specific dimension of the table to which the

index-name was assigned; however, the manner of correspondence will be determined

by the implementor. The initial value of an index-name at object time is not
determinable and the index-name must be initialized by the SET statement before

u««.

When a reference is made to a table-element, or to an item within a table-

element, and the name of the item is followed by its related index-name or

names in parentheses, then each occurrence number required to complete the

reference will be obtained from the respective index-name. The index-name thus
acts as a subscript whose value is used in any table reference that specifies

indexing.

When a reference requires more than one occurrence number for completeness,

the programmer must not use a data-name subscript to indicate one occurrence

number and an index-name for another. Therefore, if indexing is to be used,
each OCCURS clause within the hierarchy (each dimension of the table) must

contain an INDEXED BY clause. The programmer may, however, mix literals and
index-names within one reference, just as he may mix literals and data-name
subscripts.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
II-2-7

COBOL

Mas* Storage

An index-name cannot be defined as part of a file, and therefore the index-name

cannot be manipulated by input-output statements. Also, a data item in a file
cannot be described as USAGE IS INDEX and no internal transfer, without

conversion, between these data items and index-names can be accomplished by use

of the SET statement.

At the time of execution of a statement which refers to an indexed table-

element, the value of the index-name associated with the table-element must

not correspond to a value less than 1 nor to a value greater than the highest

permissible subscript value for the table-element.

The use of subscripting in a reference to a table-element, or to an item
within a table-element, will not cause the alteration of any index-names
associated with that table.

Relative indexing is an additional option for making references to a table-

element or to an item within a table-element. When the name of the table-element

is followed by an index in the form (index-name 4- integer-1), the occurrence

number required to complete the reference will be the same as if integer-1 were

added te the occurrence number to which the current setting at object time of

the index-name corresponds. Similarly, when the form (index-name - integer-2)

is used, the occurrence number obtained will be the same as if integer-2 were

subtracted from the occurrence number to which the current setting of index-

name corresponds.

It should be noted that the use of relative indexing will not cause the object

program to alter the value of the index-name.

A reference to an item must not be indexed by an index-name that is not

associated (through the use of the INDEXED BY clause) with the table of which

that item is an element.

Data that has been arranged in the form of a table is very often searched. In

COBOL the SEARCH statement provides facilities, through its two options, for

producing serial and nonserial (for example, binary) searches. In using the

SEARCH statement the programmer may vary an associated index-name or an
associated data-name. This statement also provides facilities for execution of

imperative statements when certain conditions are true and includes an AT END

phrase.

2.4 MASS STORAGE

The operational characteristics and the processing requirements of mass
storage devices differ significantly from those of magnetic tape, punched

paper tape and punched cards. Tape and card files are normally organized

in a sequential manner and the Data and Procedure Division of COBOL, prior

to the inclusion of the mass storage facility, reflected this use.

Mass storage media can be used to store sequentially organized files, and

this technique has been provided, but more significantly, mass storage
devices have been designed to provide nonsequential storage and access
capabilities.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
II-2-8

COBOL CODASYL

Mass Storage

The mass storage facility of COBOL includes specifications to provide for the

effective use of mass storage devices. Mass storage clauses have been added

to the Environment Division for describing the characteristics of mass

storage files. The inclusion of a new Procedure Division statement SEEK,

together with extensions to the specifications for the OPEN, READ, WRITE,

and CLOSE statements provide the necessary facilities for the efficient
processing of mass storage files.

2.4.1 ACCESS AND PROCESSING TECHNIQUES

The usual technique for applications using magnetic tape is sequential

access to the data file and sequential processing of data records. This

"sequential-sequential" technique is available for mass storage applications.

Another technique for mass storage applications is called "random access and
random processing." Either of these techniques, or a permutation of the two

called "random-sequential", is specified by the programmer as the manner in
which a particular mass storage file is to be processed.

A Mass Storage Control System, specified by each implementor, provides the
mechanism for control of these techniques.

2.4.2 SEQUENTIAL ACCESS WITH SEQUENTIAL PROCESSING

Although this technique is similar in concept to the technique commonly

used in processing magnetic tape files, there is a substantial difference
between the physical environment of magnetic tape storage and the physical

environment of mass storage.

In processing magnetic tape files the execution of a READ statement implies
the possibility of physical movement of the tape reel and proper positioning

of the reel for subsequent READ statement executions. This positioning is

done without regard for execution of WRITE statements that reproduce the

updated input record onto a physically different output file. In processing

mass storage files, READ statements may refer to the same physical file as
do the associated WRITE statements. That is, mass storage files are usually

used for input and output at the same time. The usual file maintenance
method is to read a record, process the record and return it to its previous

location by means of a WRITE statement. Thus, once a record is located and
read from a mass storage file, the record location may be retained and,

when the record is returned to the file by the execution of a WRITE statement,

the execution time for the WRITE statement may be greatly reduced.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
II-2-9

COBOL CODASYL

Mass Storage

An ACTUAL KEY clause, which specifies the actual hardware location of a
specific mass storage record, is not required for the sequential-sequential

technique. However, if the ACTUAL KEY clause is specified, varying the

contents of the data item specified in the ACTUAL KEY clause (actual key)
will not result in any variation in processing order. In the sequential-

sequential mode the actual key is updated automatically by the implementor's

Mass Storage Control System to reflect the location of the mass storage

record currently being processed. Between the execution of the READ and

WRITE statements for a particular file the contents of the actual key are
static.

The execution of a READ statement followed logically by the execution of a
WRITE statement for the same file results in an automatic updating of the

actual key immediately after the execution of the WRITE statement. Similarly

the execution of a WRITE statement followed logically by the execution of

another WRITE statement, for the same file, results in an automatic updating

of the actual key after the execution of each WRITE statement. However, the
execution of a READ statement followed logically by the execution of another

READ statement from the same file, without the intervening execution of a

WRITE statement, results in the automatic updating of the actual key only

immediately prior to the execution of the second READ statement. Following

the execution of a WRITE statement the contents of the actual key reflects

the actual location of the next mass storage record capable of being

processed. In terms of COBOL logic^ this is the location of the current

mass storage record. Since the automatic updating of the contents of the
actual key is the function of the implementor's Mass Storage Control System

and since the ACTUAL KEY clause is never referred to or required by the
Mass Storage Control System, any changes the programmer makes to the actual

key do not affect the processing of the mass storage file.

The imperative statement in the AT END phrase associated with the next READ
statement in order of execution is executed when the logical end of the mass

storage file is detected. For WRITE statements the detection of the logical
end of a mass storage file before the execution of the CLOSE statement causes

the contents of the actual key to reflect a location outside the environmental
limits of the file. As this value represents an erroneous location the

file, the INVALID KEY phrase associated with a particular WRITE statement is

executed when that WRITE statement is executed.

2.4.3 RANDOM ACCESS WITH SEQUENTIAL PROCESSING

In the sequential-sequential technique, the data records in a mass storage
file are read, processed and written in an order based on the source program.

The random-sequential technique differs only in that references are made to

records in the file in a random manner. The sequential processing of

randomly accessed records has all of the processing characteristics and

file characteristics of the sequential-sequential method.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL-—-COBOL

JOURNAL OF DEVELOPMENT

II-2-10

Mass Storage

In order to permit direct access to any data record in a file, the programmer
must specify to the Mass Storage Control System a key to the precise identi¬

fication of the particular record desired. This identification must be in a
format specified by the implementor for the particular hardware device being

used. Since, in this technique, the control of an actual key is the respon¬
sibility of the programmer, there are no implicit updating functions for an

actual key.

The introduction of the random access approach to a mass storage file requires

the definition of an input-output statement (SEEK) to operate in conjunc¬
tion with the READ and WRITE statements. In fact, the Mass Storage Control
System must first locate the position of the desired record and then read or

write the record. The function of locating the data record in the file is

accomplished by the SEEK statement. Since, in the random-sequential technique
the locating of records is always necessary, the function of the SEEK state¬

ment is performed implicitly by a READ or WRITE statement when the SEEK
statement is not used by the programmer. The contents of the actual key

are used by the Mass Storage Control System as the desired record's location

identifier at the time of execution of the explicit or implicit SEEK statement.

The SEEK statement, then, locates a record for subsequent reading or writing.
Other procedural statements may be executed during the physical seeking

operation if they have been written between the SEEK statement and the READ

statement for a particular file. The READ or WRITE of a particular record

of a file can not be executed until the seeking operation has been completed.

There is a point concerning the SEEK and READ statements that must be

recognized by the programmer. Until a READ statement is executed, any
references to data items within the record description of the record being

sought will refer to the contents of the last record obtained from the file.

Therefore, if the programmer writes his Procedure Division to take advantage

of the ability to execute statements during the seeking operation, he must
take into account this "internal lag" of one record.

If the user has specified random access for a mass storage file, there is

no logical end to the file. Thus, the AT END phrase of the READ statement

is meaningless and the INVALID KEY phrase must be specified for both the

READ and WRITE statements. If, during execution of either a READ or a

WRITE statement, the contents of the actual key reflect an actual location
outside the environmental limits for a file, the imperative statement in

the INVALID KEY phrase is executed.

2.4.4 RANDOM ACCESS WITH RANDOM PROCESSING

If random processing is specified for

Division references to the file occur

in the Declaratives and the execution

PROCESS statement in the main program

a mass storage file, the Procedure

in a USE FOR RANDOM PROCESSING Section
of this section is initiated by a

„ PROGRAMMING LANGUAGE COMMITTEE
CODASYL----COBOL

JOURNAL OF DEVELOPMENT

II-2-11

i

Maas Storage

The use of the random-random technique requires the presence of the PROCESS

statement with its associated Saved Area and out-of-line procedure. These

functions, in turn, require an Asynchronous Control System (ACS) provided

by the implementor. When a mass storage file is used for Random Processing

and, consequently, is referred to in an out-of-line procedure, this control

system takes on the coordinating functions required to control this technique.

Two levels of asynchronous processing capability may be posited. The first

provides the capability to control the overlapping execution of several

programs while the second, which may be thought of as a subset of the first,

provides the capability to control the overlapping execution of several

out-of-line procedures within the same program. The implementation of either
level requires the specification of an ACS. The scope of the ACS as defined
in this manual encompasses only the second level.

2.4.5 ASYNCHRONOUS PROCESSING

Asynchronous processing is the execution of a sequence of operations which

are not necessarily completed in the order in which they were initiated.

The implementation of this concept requires an ACS as part of the object
program. Various implementor-specified asynchronous control systems may

differ in the manner in which they control the execution of processing

cycles, and in the manner and degree of coordination with input-output or

real-time devices. The specifications for an ACS will be described with

reference to the following language elements; the PROCESS and HOLD state¬

ments; the level indicator SA (Saved Area); and the Declarative Section USE

FOR RANDOM PROCESSING.

The purpose of asynchronous processing is to achieve overlap of operations

at object time and thus to reduce the time required to execute a sequence

of operations asynchronously from that required to execute the same sequence
of operations synchronously. To specify that a particular procedure is to
be processed asynchronously the user must write that procedure within a

USE FOR RANDOM PROCESSING Section. At the point in an in-line procedure

at which the user wishes to initiate processing of the USE Section, he writes

a PROCESS statement which is explicitly linked, in the source program, to

that Section and to a Saved Area name.

Each Saved Area' is identified in the File Section by the level indicator SA.

The SA specification represents a memory area containing a number of records
each of which may be any of the types described following the SA.

At any time during the execution of a procedure within the main line of the

program rather than in a Declarative Section, only one of the record areas
associated with a Saved Area is available for processing. This is the current
record area'and any reference from the in-line procedures to data within a
particular Saved Area are treated as references to the current record area.
Again, this is similar in concept to the manner in which references to data

within a block of records for an input or output file are handled. In the
case of asynchronous processing of mass storage files, however, the ACS is

responsible for keeping track of the current record area.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
II-2-12

CODASYL COBOL

Rerun

2.4.6 CYCLE EXECUTION

The execution of a PROCESS statement initiates the execution of an out-of-line

procedure. Each execution of a set of out-of-line procedures is termed a

cycle. For each cycle a particular record area within the Saved Area becomes

the current record area. When a particular cycle is completed, the current
record area for that cycle is released for reassignment. Every cycle, then,

is initiated by a PROCESS statement and ends when the end of the out-of-line

procedure is reached. The cycle may be thought of as a closed subroutine

that is executed once for each new record within the Saved Area.

There is one limitation on a cycle that does not apply to an ordinary closed

subroutine. All data modified in the PROCESS loop and referred to by proce¬

dures within the cycle, must be in the current record area. Within this

restriction the user may treat the cycle as if it were a closed subroutine

performed in its entirety by the PROCESS statement.

The ACS controls the execution of a number of cycles within certain general

limits. The ACS can suspend a cycle at any time so long as it keeps track

of the point in the procedure at which the suspension took place and of the

location of the current record area for that cycle. The ACS can reinstitute
control in any previously suspended cycle by returning to the point of

suspension in that cycle and re-establishing the location of the current

record area for that cycle. The ACS can also return control to the in-line

procedure providing at least one record area in the Saved Area is available.

The most general case is the one in which the cycles are completed in random

order. Therefore, the user must write his program so that it operates

correctly regardless of the order of completion of the cycle.

2.5 RERUN

The RERUN feature of COBOL provides a facility for check restart. That is,

executing a RERUN takes a snapshot of the program status and stores the

information. It is then possible to restart the program from the point of
the most recent RERUN. The use of the RERUN clause protects the user from

having to start a program over from the beginning in the event of a hardware

failure while the job is running.

There are two basic parts to the RERUN clause. The user must designate a

medium to receive the data and a criterion from which the frequency of

checkpoints may be determined. The receiving medium may be specified by

designating a file name or a separate hardware device. The determination of

frequency of the dump may be made on the basis of a number of records of a
particular file having been processed, of the end of a reel of a particular

file having been reached, of the setting of a hardware switch or of a

specified number of units of an internal clock having been counted.

4 „ PROGRAMMING LANGUAGE COMMUTE!:
CODASYL---COBOL

JOURNAL OF DEVELOPMENT
II-2-13

Inter-Program Communication

2.6 SAME AREA

This feature is basically oriented toward saving memory space in the object
program as it allows more than one file to share the same file area and
alternate areas.

When used with the RECORD or SORT options of the SAME AREA clause, only the
record area is shared and the alternate areas for each file remain independent.

In this case any number of the files sharing the same record area may be

active at one time. In implementations that include the RECORD option, this

factor can give rise to an increase in the speed of the object program.

To illustrate this point, consider file maintenance. If the programmer assigns

the same record area to both the old and new files, he not only saves memory in
the object program, but because this technique eliminates a move of each record

from the input to the output area, significant time savings result. An additional

benefit of this technique is that the programmer need not define the record in

detail as a part of both the old and new files. Rather, he defines the record

completely in one case and simply includes the level 01 entry in the other.

Because these record areas are in fact the same area, one set of names suffices

for all processing requirements without requiring qualification.

When the SAME AREA clause is used without the RECORD or SORT option not only

the file areas but the alternate areas as well, are shared.

As a result, only one of the files sharing the same set of areas is permitted

to be active at one time. This form of the clause is designed for the applica¬
tion in which a series of files are used during different phases of the object

program. In these cases, the SAME AREA clause allows the programmer to save

memory space.

2.7 INTER-PROGRAM COMMUNICATION

It is frequently a convenience to be able to state a data processing problem
as a set of inter-communicating programs. Such a facility allows independent

compilation and debugging of the logical subdivisions of the problem, and it
can reduce the coordination difficulties that arise when several programmers

wor-if on different parts of the problem.

In COBOL terminology, a program is either a source program or an object program
depending on context; a source program is a syntactically correct set of COBOL

statements as specified in Section III of this manual; an object program is the
set of instructions, constants, and other machine-oriented data resulting from

the operation of a compiler on a source program; and a run unit is the total

machine language necessary to solve a data processing problem. It includes
one or more object programs as defined above, and it may include machine

language from sources other than a COBOL compiler.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL-—--COBOL

JOURNAL OF DEVELOPMENT

II-2-14

Inter-Program 'Communication

When the statement of a problem is subdivided into more than one program,

the constituent programs must be able to communicate with each other. This

communication may take two formsr transfer of control and reference to
common data.

27.1 TRANSFER OF CONTROL

The CALL statement provides the means whereby control can be passed from one

program to another within a run unit. A program that is activated by a CALL
statement may itself contain CALL statements. However, results are unpredict¬
able where circularity of control is initiated; i.e., where program A calls

program B, then program B calls program A or another program that calls
program A.

When control is passed to a called program, execution proceeds in the normal

way from procedure statement to procedure statement beginning with the first

nondeclarative statement. If control reaches a STOP RUN statement, this

signals the logical end of the run unit. If control reaches an EXIT PROGRAM
statement, this signals the logical end of the called program only, and control

then reverts to the point immediately following the CALL statement in the

calling program. Stated briefly, the EXIT PROGRAM statement terminates only

the program in which it occurs, and the STOP RUN statement terminates the

entire run unit.

If the called program is not COBOL then the termination of the run unit or

the return to the calling program must be programmed in accordance with the

language of the called program.

27.2 INTER-PROGRAM DATA STORAGE

Program interaction requires that both programs have access to the same data

items. In the calling program the common data items are described along with

all other data items in the File Section, Working-Storage Section, Constant
Section, or Linkage Section. At object time memory is allocated for the
entire Data Division. In the called program, common data items are described

in the Linkage Section. At object time memory space is not allocated for this
section. Communication between the called program and the common data items

stored in the calling program is effected through USING clauses contained in

both programs. The USING clause in the calling program is contained in the
CALL statement and the operands are a list of common data-identifiers described

in its Data Division. The USING clause in the called program follows the
Procedure Division header and the operands are a list of common data identifiers

described in its Linkage Section. The identifiers specified by the USING clause

of the CALL statement indicate those data items available to a calling program

that may be referred to in the called program. The sequence of appearance

PROGRAMMING LANGUAGE COMMITTEE
CODASYL--—-COBOL

JOURNAL OF DEVELOPMENT

II-2-15

Inter-Program Communication

of the identifiers in the USING clause of the CALL statement and the USING
clause in the Procedure Division header is significant. Corresponding
identifiers refer to a single set of data which is available to the calling

program. The correspondance is positional, and not by name. While the

called program is being executed, every reference to an operand whose

identifier appears in the called program's USING clause is treated as if
it were a reference to the corresponding operand in the USING clause of

the active CALL statement.

Once control leaves a called program its state, if it is called again, is

unpredictable. Therefore, initialization of the program in case of repetitive

calls is the responsibility of the called program.

Execution of the CANCEL statement allows the user to indicate that the

memory areas occupied by the called program(s) may be released.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL- -COBOL

JOURNAL OF DEVELOPMENT

II-2-16

SECTION III: COBOL

LANGUAGE SPECIFICATIONS

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
COBOL

TABLE OF CONTENTS

SECTION III. COBOL LANGUAGE SPECIFICATIONS

Page

CHAPTER 1. INTRODUCTION m-i-i

1.1 Objectives of Section III . III-l-l

1.2 History of COBOL Specification Documents . III-l-l

1.3 Organization of Section III . III-1-2

1.4 Notation Used in Formats and Rules . III-1-2

CHAPTER 2. GLOSSARY m-2-1

2.1 Introduction . III-2-1
2.2 Definitions . III-2-1

CHAPTER 3. LANGUAGE CONCEPTS 111-3-1

3.1 Character Set . III-3-1

3.1.1 Categories . III-3-1

3.1.2 Separators . III-3-1

3.2 Character Strings . III-3-2

3.2.1 Words . III-3-2

3.2.1.1 Definition of Words. III-3-2
3.2.1.2 Types of Words. III-3-2
3.2.2 Literal . III-3-6

3.2.3 PICTURE Character-String . III-3-6

3.3 Concept of Computer-Independent Data Description . III-3-7
3.3.1 Logical Record and File Concept . III-3-7

3.3.2 Concept of Levels . III-3-8

3.3.3 Concept of Classes of Data. III-3-9

3.3.4 Selection of Character Representation and Radix . III-3-10

3.3.5 Algebraic Signs . III-3-10
3.3.6 Item Alignment for Increased Object-Code Efficiency III-3-10

3.3.7 Uniqueness of Data Reference . III-3-11

CHAPTER 4. IDENTIFICATION DIVISION 1114 1

4.1 General Description . III-4-1

4.2 Organization . III-4-1

PROGRAMMING LANGUAGE COMMITTEE_-COBOL

JOURNAL OF DEVELOPMENT

Ill-i

CODASYL

TABLE OF CONTENTS

(CONTINUED)

Page

4.2.1 Structure . IiI-4-1

4.3 The PROGRAM-ID Paragraph . III-4-3

4.4 The DATE-COMPILED Paragraph . III-4-4

CHAPTER 5. ENVIRONMENT DIVISION

5.1 General Description . III-5-1

5.2 Organization . III-5-1
5.2.1 Structure . III-5-2

5.3 Configuration Section . IIX-5-3
5.3.1 The SOURCE-COMPUTER Paragraph . III-5-3

5.3.2 The OBJECT-COMPUTER Paragraph Ill-5-5

5.3.3 The SPECIAL-NAMES Paragraph . III-5-7

5.4 Input-Output Section . III-5-9

5.4.1 The FILE-CONTROL Paragraph . III-5-9

5.4.2 The I-O-CONTROL Paragraph . III-5-14

CHAPTER 6. THE DATA DIVISION m-6-i

6.1
6.2
6.3

6.4
6.5
6.6
6.7

6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16

6.17
6.18

6.19
6.20
6.21
6.22
6.23
6.24
6.25

6.26

6.27
6.28

CODASYL

General Description .. .
File Section..

Record Description-Structure ..

Working-Storage Section .
Constant Section .

Linkage Section .
Report Section .

The File Description--Complete Entry Skeleton

The Sort File Description—Complete Entry Skeleton

The Saved Area Description--Complete Entry Skeleton .
The Report Description--Complete Entry Skeleton . . .

The Data Description--Complete Entry Skeleton

The Report Group Description--Complete Entry Skeleton

The AREA CONTAINS Clause .
The BLANK WHEN ZERO Clause .

The BLOCK Clause .

The CODE Clause .

The COLUMN NUMBER Clause .

The CONTROL Clause.. . .

The Data-Name or FILLER Clause .
The DATA RECORDS Clause .

The GROUP INDICATE Clause .

The JUSTIFIED Clause

The LABEL RECORDS Clause .
Level-Number .

The LINAGE Clause .

The LINE NUMBER Clause..

The NEXT GROUP Clause .

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
Ill-ii

III-6-1

III-6-4
III-6-5

III-6-6

III-6-8
III-6-10

III-6-12

III-6-14

III-6-16

III-6-18
III-6-20

III-6-23
III-6-26

III-6-29
III-6-30

III-6-31

III-6-33

III-6-34

III-6-35
III-6-36

III-6-38

III-6-39
III-6-40

III-6-42
III-6-43

III-6-45

III-6-47

III-6-49

—COBOL

TABLE OF CONTENTS
ill

(CONTINUED)

Page

6.29 The OCCURS Clause . 111-6-90

6.30 The PAGE LIMIT Clause. 1II-6-53

6.31 The PICTURE Clause . III-6-56

6.32 The RANGE Clause . III-6-66
6.33 The RECORD CONTAINS Clause . III-6-67

6.34 The RECORDING MODE Clause . Ill-6-68

6.35 The REDEFINES Clause . III-6-69

6.36 The RENAMES Clause. III-6-71

6.37 The REPORT Clause . III-6-73

6.38 The RESET Clause . III-6-74

6.39 The SOURCE, SUM, and VALUE Clauses . III-6-75
6.40 The SYNCHRONIZED Clause . III-6-78

6.41 The TYPE Clause. III-6-80
6.42 The USAGE Clause . III-6-86

6.43 The VALUE Clause . III-6-88

6.44 The VALUE OF Clause .. III-6-91

CHAPTER 7. THE PROCEDURE DIVISION 111-7-1

7.1 General Description . III-7-1

•I 7.1.1 Declaratives . III-7-1

7.1.2 Procedures . III-7-1

7.1.3 Execution . . III-7-2
7.1.4 Procedure Division Structure . III-7-2

7.2 Statements and Sentences . . III-7-4
7.2.1 Conditional Statements and Conditional Sentences III-7-4

7.2.2 Compiler Directing Statements and Compiler Directing

Sentences .. III-7-4

7.2.3 Imperative Statements and Imperative Sentences . III-7-5

7.3 Arithmetic Expressions . . . III-7-6

7.3.1 Definition of an Arithmetic Expression . III-7-6

7.3.2 Arithmetic Operators . III-7-6

7.3.3 Formation and Evaluation Rules . III-7-6

7.4 Conditions . III-7-8

7.4.1 General Description .. III-7-8

7.4.2 Relation Condition . III-7-8

7.4.3 Class Condition . III-7-11

7.4.4 Condition-Name Condition . III-7-12

7.4.5 Switch-Status Condition . III-7-12
7.4.6 Sign Condition.. III-7-12

7.4.7 Compound Conditions . III-7-13

7.4.8 Evaluation Rules . III-7-16

7.5 Categories 6f Statements . III-7-17
7.6 Common Options in Statement Formats . III-7-19
7.6.1 The ROUNDED Option . III-7-19

7.6.2 The SIZE ERROR Option.. III-7-19

. 7.6.3 The CORRESPONDING Option . III-7-20

7 7.6.4 The Arithmetic Statements . . . III-7-21

PROGRAMMING LANGUAGE COMMITTEE_—COBOL

JOURNAL OF DEVELOPMENT
III-iii

CODASYL

TABLE OF CONTENTS

(CONTINUED)

Page

7.6.5 Overlapping Operands . III-7-2L

7.6.6 Multiple Results in Arithmetic Statements . III-7-21

7.7 The ACCEPT Statement... III-7-22

7-8 The ADD Statement. III-7-24

7.9 The ALTER Statement . III-7-26

7.10 The CALL Statement. III-7-27

7.11 The CANCEL Statement . . III-7-29

7.12 The CLOSE Statement . III-7-30

7.13 The COMPUTE Statement . III-7-35
7.14 The COPY Statement. III-7-37

7.15 The DISPLAY Statement . III-7-38

7.16 The DIVIDE Statement . III-7-40

7.17 The ENTER Statement . III-7-42

7.18 The EXAMINE Statement . III-7-43
7.19 The EXIT Statement. III-7-45

7.20 The GENERATE Statement . III-7-46

7.21 The GO TO Statement. III-7-48

7.22 The HOLD Statement. III-7-50

7.23 The IF Statement. III-7-51

7.24 The INITIATE Statement . III-7-53
7.25 The MOVE Statement.. III-7-55
7.26 The MULTIPLY Statement. III-7-58

7.27 The OPEN Statement. III-7-60

7.28 The PERFORM Statement. III-7-62

7.29 The PROCESS Statement . III-7-70

7.30 The READ Statement. III-7-72

7.31 The RELEASE Statement . III-7-75
7.32 The RETURN Statement . III-7-76

7.33 The SEARCH Statement . III-7-78

7.34 The SEEK Statement. III-7-82

7.35 The SET Statement. III-7-83

7.36 The SORT Statement. III-7-85

7.37 The STOP Statement... III-7-90

7.38 The SUBTRACT Statement . III-7-91

7.39 The SUSPEND Statement . III-7-93

7.40 The TERMINATE Statement . III-7-95

7.41 The USE Statement. III-7-97

7.42 The WRITE Statement . III-7-101

CHAPTER 8. SEGMENTATION m-s-i

8.1 General Description . III-8-1

8.1.1 Scope . III-8-1

8.1.2 Organization . III-8-1
8.1.3 Segment Classification . III-8-2

8.1.4 Segmentation Control . III-8-2

8.2 Structure of Program Segments . III-8-3

8.2.1 Priority-Numbers . .'. III-8-3

PROGRAMMING LANGUAGE COMMITTEE
----—---COBOL

JOURNAL OF DEVELOPMENT
III-iv

CODASYL

TABLE OF CONTENTS

(CONTINUED)

Page

8.2.2 Segment-Limit . I1I-8-3

CHAPTER 9. THE COBOL LIBRARY m-9-1

9.1 Introduction .. III-9-1

9.2 The COPY Statement. III-9-2

CHAPTER 10. REFERENCE FORMAT m-io-i

10.1 General Description . III-10-1

10.2 Reference Format Representation . III-10-1

10.3 Division, Section, Paragraph Formats . III-10-3

10.4 Data Division Entries . III-10-4

10.5 Declaratives . III-10-4

10.6 Comment Lines . III-10-5

CHAPTER 11. RESERVED WORDS m-n-i

PROGRAMMING LANGUAGE COMMITTEE
CODASYL -— —- -- - ——COBOL

JOURNAL OF DEVELOPMENT
III-v

CHAPTER 1

INTRODUCTION
1.1 OBJECTIVES OF SECTION Ml

The specifications of a programming language are written for two principal
groups: (1) the implementor of the language for a language processor (compiler)

in a given hardware environment and, (2) the user of the language who will write

source programs that can be translated for operation in a given hardware environ¬

ment by the language processor. These specifications for a programming language

are often two different sets but must reflect the same interpretive result,

which is compatible understanding of the programming language definition.

Section III of this manual attempts to meet the needs of both the compiler¬

writing programmers and the source language programmers in that the rules of the

language are described in a source program environment that is very nearly inde¬

pendent of hardware considerations. Where necessary, however, Section III
describes the additional rules which must be followed by the user to interface

with specific hardware units, or when the user should refer to other software

manuals to determine dependent source program and other related entries.

1.2 HISTORY OF COBOL SPECIFICATION DOCUMENTS

Five official COBOL specification documents have been printed and released by the

CODASYL’ Executive Committee. These are known as;

COBOL - 60, published i960
COBOL - 6l, published 1961
COBOL - 6l Extended, published 1963
COBOL, Edition 1965, published 1965
COBOL, Journal Of Development-1968, published 1968

The initial three documents principally addressed themselves to specifications

for total definition of the language with interspersed paragraphs reflecting

historical development, philosophy of the language, examples of the language

use, etc. Section III of the later documents are a definition of the complete

specifications with by-product paragraphs of philosophy, examples, etc. removed.

The effect of Section III is to gather into one place all of the pertinent

definitive rules separate from comments surrounding the specifications.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
in-i-l

COBOL

Introduction

Whereas the COBOL - 60 specification is incompatible in language design with the
COBOL - 61 specification, all of the subsequent specifications, including the 1968

COBOL edition, are bused on the COBOL - 61 design. These include only extensions,

resolutions of ambiguities, deletion of redundancies, or removal of unused or poor
language specifications.

1.3 ORGANIZATION OF SECTION III

Section III is constructed to be a stand-alone document within the total presenta¬

tion of COBOL. This recognizes that many readers of this document are mainly

concerned with the COBOL language specifications and need not retain or maintain

the other Sections.

Section III contains a specific chapter entitled 'Glossary'. For a complete under¬

standing of terms used within Section III, specific definitions for COBOL usages

are considered a basic part of the language definition. Experience has shown the

developers, implementors, and users of the language that many incorrect interpre¬
tations, ambiguous understandings, and clarification problems resulted in the lack

of a precise definition for the COBOL usage of a data processing term.

It is suggested that every reader become acquainted with the COBOL terminology

expressed in the 'Glossary' to insure common understanding before attempting to

interpret the COBOL specifications in later chapters.

1.4 NOTATION USED IN FORMATS AND RULES

1.4.1 DEFINITION OF A GENERAL FORMAT

A General Format is the specific arrangement of the elements of a clause or a

statement. A clause or a statement consists of elements as defined below. Through¬

out this manual a format is shown adjacent to information defining the clause or

statement. When more than one specific arrangement is permitted, the general for¬

mat is separated into numbered formats. Clauses must be written in the sequence

given in the General Formats. (Clauses that are optional must appear in the sequence

shown if they are used.) In certain cases, stated explicitly in the rules associated

with a given format, clauses may appear in sequences other than that shown.
Applications, requirements or restrictions are shown as rules.

1.4.1.1 Syntax Rule

A syntax rule amplifies or restricts the usage of the elements within a general

format.

1.4.1.2 General Rule

A general rule amplifies or restricts functions attributed to a general format or

to its constituent elements.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-1-2

COBOL CODASYL

Introduc tion
1.4.1.3 Elements

Elements which make up a clause or a statement consist of upper case words, lower

case words, level-numbers, brackets, braces, connectives, and special characters.

1.4.1.4 Words

All underlined upper-case words are called key words and are required when the

functions of which they are a part are used. Upper-case words which are not

underlined are optional to the user and may or may not be present in the source

program. Upper-case words, whether underlined or not, must be spelled correctly.

Lower-case words, in a general format, are generic terms used to represent COBOL

words that must be supplied by the user. Except for the list of words following,

such lower-case words occurring in a general format are replaced, in an actual

program, by COBOL words:

a. statement

b. imperative-statement

c. arithmetic-expression

d. character-string

e. comment-entry

f. condition

g. literal

These exceptions represent combinations of COBOL words constructed in accordance

with the definitions specified in Chapter 7, Procedure Division for statement,

imperative-statement, condition, and arithmetic-expression. Definition for the

term character-string is given in Chapter 6, Data Division. Comment-entry is

defined in Chapter 4, Identification Division. Literal is defined in Chapter 3,

Language Concepts.

Where generic terms are repeated in a general format, a number or letter appendage

to the term serves to identify that term for explanation or discussion

1.4.1.5 Level-Numbers

When specific level-numbers appear in data description entry formats, those

specific level-numbers are required when such entries are used in a COBOL program.

1.4.1.6 Brackets and Braces

When a portion of a general format is enclosed in brackets, [] , that portion may

be included or omitted at the user's choice. Braces, | enclosing a portion of

a general format means a selection of one of the options contained within the

braces must be made. In both cases, a choice is indicated by vertically stacking

the possibilities. When brackets or braces enclose a portion of a format, but

only one possibility is shown, the function of the brackets or braces is to

delimit that portion of the format to which a following ellipsis applies (see

1.4.1.7, The Ellipsis).

PROGRAMMING LANGUAGE COMMITTEE __,
CODASYL-—---COBOL

JOURNAL OF DEVELOPMENT

III-1-3

Introduction

1.4.1.7 The Ellipsis

In text, the ellipsis may show the omission of a portion of a source program. This

meaning becomes apparent in context.

In the general format, the ellipsis represents the position at which repetition may

occur at the user's option. The portion of the format that may be repeated is
determined as follows:

Given... in a clause or statement format, scanning right to left, determine the]

or | delimiter immediately to the left of the ... ; continue scanning right to left

and determine the logically matching [or j delimiter; the ... applies to the words

between the determined pair of delimiters.

1.4.1.8 Format Punctuation

The punctuation characters, comma and semicolon, are shown in some formats. However,

a semicolon must not appear immediately preceding the first clause of an entry or

paragraph. The use of these punctuation characters for each division is as follows:

Identification Division

Although not expressly shown in the formats within this division, the comma and

semicolon may be used within the comment-entries. The paragraph itself must

terminate with a period followed by a space.

Environment Division
Where either a comma or a semicolon is shown in the formats, it is optional and may

be included or omitted by the user. The entry itself must terminate with a period

followed by a space.

Data Division

When either a comma or a semicolon is shown in

be included or omitted by the user. The entry

followed by a space.

Procedure Division

When a comma is shown in the formats, the comma is optional and may be included or

omitted by the user. If desired, a semicolon may be used between statements.

the formats, it is optional and may

itself must terminate with a period

1.4.1.9 Use of Certain Special Characters in Formats

The characters ' + ', 1'<' ,

underlined, are required when

'>', when appearing in formats,

such formats are used.

although not

PROGRAMMING LANGUAGE COMMITTEE _ _
CODASYL---COBOL

JOURNAL OF DEVELOPMENT

III-1-4

CHAPTER 2

GLOSSARY

2.1 INTRODUCTION

The terms in this chapter are defined in accordance with their meaning

in COBOL, and may not have the same meaning for other languages.

These definitions are also intended to be either reference material or

introductory material to be reviewed prior to reading the detailed language

specifications that follow. For this reason, these definitions are, in

most instances, brief and do not include detailed syntactical rules.

Complete specifications for elements defined in this chapter can be located

in other chapters of Section III.

0
2.2 DEFINITIONS

ACCESS, RANDOM

An access mode in which specific logical records are obtained from or

placed in a mass storage file in a non-sequential manner under the control

of an implementor's mass storage filing system.

ACCESS, SEQUENTIAL

An access mode in which a logical record read from or written to a file has

an implicit logical predecessor and an implicit logical successor. The

first access to a file accesses a record that has no implicit logical

predecessor; each successive access refers to the implicit logical successor

of the previously accessed logical record. The predecessor/successor

relationships of a record are established when the record is written to

a file.

ACTUAL DECIMAL POINT

(Sec DECIMAL POINT, ACTUAL)

ACTUAL KEY

(See KEY, ACTUAL)

0

* PU1 PROGRAMMING LANGUAGE COMMITTEE
CODASYL- ----COBOL

JOURNAL OF DEVELOPMENT

III-2-1

Glossary

ALPHABETIC CHARACTER

(See CHARACTER, ALPHABETIC)

ALPHANUMERIC CHARACTER

(See CHARACTER, ALPHANUMERIC)

AREA-NAME

A data-name that names a saved area.

AREA, SAVED

A storage area, specified in the Data Division, that is composed of one

or more data records.

ARITHMETIC EXPRESSION

(See EXPRESSION, ARITHMETIC)

ARITHMETIC EXPRESSION CHARACTER

(See OPERATOR, ARITHMETIC)

ARITHMETIC OPERATOR

(See OPERATOR, ARITHMETIC)

ASCENDING KEY

(See KEY, ASCENDING)

ASSUMED DECIMAL POINT

(See DECIMAL POINT, ASSUMED)

ASYNCHRONOUS CONTROL SYSTEM

(See CONTROL SYSTEM, ASYNCHRONOUS)

ASYNCHRONOUS PROCESSING

(See PROCESSING, ASYNCHRONOUS)

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-2-2

COBOL

Glossary

BLOCK

A physical unit of data that is convenient to a particular computer for

storage on an input or output device. The term is synonymous with Physical

Record. The block is normally composed of one or more logical records, or a

portion of a logical record. The size of a block has no direct relationship

to the size of the file within which the block is contained or to the size of

the logical record(s) that are either contained within the block or that overlap

the block (see 3.3.1.2, Conceptual Characteristics of a File.)

CALLED PROGRAM

(See PROGRAM, CALLED)

CALLING PROGRAM

(See PROGRAM, CALLING)

CHARACTER

The basic indivisible unit of the language.

CHARACTER, ALPHABETIC

A character that belongs to the following set of letters:

and the space.

CHARACTER, ALPHANUMERIC

Any character in the computer's character set.

CHARACTER, ARITHMETIC EXPRESSION

(See OPERATOR, ARITHMETIC)

CHARACTER, EDITING

A single character or a fixed two-character combination belonging to the
following set:

Charac ter Meaning

B space

0 zero

+ plus

CR

DB
Z
*

$

minus

credit

debit
zero suppress

check protect

currency sign
comma (decimal point)
period (decimal point)

PROGRAMMING LANGUAGE COMMITTEE
CODASYL COBOL

JOURNAL OF DEVELOPMENT
III-2-3

Glossary

CHARACTER NUMERIC

A character that belongs to the following :

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

CHARACTER PUNCTUATION

A character that belongs to the following !

Character Meaning

> comma

9 semicolon

. period
tl quotation mark

(left parenthesis

) right parenthesis

space

CHARACTER, RELATION

A character that belongs to the following

Character Meaning

> greater than

< less than

equal to

CHARACTER, SPECIAL

A character that belongs to the following

Charac ter Meaning

+ plus sign

- minus sign
* asterisk

/ stroke (virgule, slash)

= equal sign

$ currency sign

f comma (decimal point)

9 semicolon

• period (decimal point)
If quotation mark

(left parenthesis

) right parenthesis

> greater than symbol

< less than symbol

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-2-4

—COBOL

UlUbftcU y

CHARACTER si-yj'

The complete COBOL character set consists of l lie 01 characters listed

below:

Character Meaning

0,1, ...9
A,B, . . ,Z

H

/

$

(
)

>
<

digit

letter

space (blank)

plus sign

minus sign (hyphen)

asterisk

stroke (virgule, slash)

equal sign

currency sign

comma (decimal point)
semicolon
period (decimal point)

quotation mark

left parenthesis

right parenthesis

greater than symbol

less than symbol

CHARACTER- STRING

Contiguous characters which form a literal, a word or a PICTURE character¬

string. The rules governing the construction of each of the above types of
character-strings differ, and are explained in other chapters of this

section.

CHARACTERS, STANDARD

A character-string that comprises a data item whose size is measured in

accordance with standard data format.

CLASS CONDITION

(See CONDITION, CLASS)

CLAUSE

A clause is an ordered set of consecutive COBOL words whose purpose is to

specify an attribute of an entry.

CLAUSE, DATA

A clause that appears in a data description entry in the Data Division and

provides information describing a particular attribute of a data item.

CLAUSE, ENVIRONMENT

A clause that appears as part of an Environment Division entry.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III -2-5

CODASYL COBOL

Glossary

CLAUSE, FILE

A clause that appears as part of any of the following Data Division entries:

File Description (FD)

Sort File Description (SD)

Report Description (RD)

Saved Area Description (SA)

COLLATING SEQUENCE

(See SEQUENCE, COLLATING)

COLUMN

A specific position within a report line.

COMMENT LINE

(See LINE, COMMENT)

COMPILE TIME

(See TIME, COMPILE)

COMPILER DIRECTING STATEMENT

(Sec STATEMENT, COMPILER DIRECTING)

CONDITION

A simple condition, or a syntactically correct combination of simple

conditions and logical operators, for which a truth value .can be determined.

CONDITION, CLASS

The proposition, for which a truth value can be determined, that the content
of an item is wholly alphabetic or is wholly numeric.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-2-6

CODASYL COBOL

Glossary

CONDITION, CONDITION-NAME

The proposition, for which a truth value can be determined, that the value

of a conditional variable is a member of the set of values attributed to a

condition-name associated with the conditional variable.

CONDITION, INVALID KEY

A condition in which, at object time, a specific value of the actual key

associated with a mass storage file is determined to lie outside the limits

of the file being accessed.

CONDITION, RELATION

The proposition, for which a truth value can be determined, that the value
of an arithmetic expression or data item has a specific relationship tc the

value of another arithmetic expression or data item. (Sec Operator,

Relational.)

CONDITION, SIGN

The proposition, for which a truth value can be determined, that the

algebraic value of a data item or an arithmetic expression is either

less than, greater than, or equal to zero.

CONDITION, SIMPLE

Any single condition chosen from the set:

relation condition

class condition

condition-name condition
switch-status condition

sign condition

(condition)

CONDITION, SWITCH-STATUS

The proposition, for which a truth value can be determined, that an

implementor-defined switch, capable of being set to an ON or OFF status,
has been set to a specific status.

CONDITIONAL STATEMENT

(See STATEMENT, CONDITIONAL)

CONDITIONAL VARIABLE

(See VARIABLE, CONDITIONAL)

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-2-7

COBOL

Glossary

CONDITION-NAME

The data-name assigned to a specific value, set of values, or range, of values,

within the complete set of values that a conditional variable may possess; or

the name assigned to a status of an implementor-defined device.

CONDITION-NAME CONDITION

(See CONDITION, CONDITION-NAME)

CONFIGURATION SECTION

(See SECTION, CONFIGURATION)

CONNECTIVE

A word or a punctuation character that is used to:

1. Associate a data-name or a paragraph-name with its qualifier.

2. Link two or more operands written in a series.

3. Form conditions (logical connectives).

(See OPERATOR, LOGICAL).

CONSTANT

A unit of data whose value is not subject to change.

CONSTANT, FIGURATIVE

A reserved word that represents a numeric value, a character, or a string

of characters.

CONSTANT, LITERAL

(See LITERAL)

CONSTANT, NAMED

A constant to which a data-name has been assigned.

CONSTANT SECTION

(See SECTION, CONSTANT)

CONTIGUOUS ITEMS

(See ITEMS, CONTIGUOUS)

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-2-8

COBOL

CONTROL BREAK

The recognition of a change in the contents of a data item that has been
designated as the data item that controls a hierarchy.

CONTROL DATA ITEM

(See DATA ITEM, CONTROL)

CONTROL FOOTING

(See FOOTING, CONTROL)

CONTROL GROUP

(See GROUP, CONTROL)

CONTROL HEADING

(See HEADING, CONTROL)

CONTROL HIERARCHY

A designated order of specific control data items.

CONTROL SYSTEM, ASYNCHRONOUS

An operating system that directs, or schedules, the execution of
asynchronous processing cycles.

CONTROL SYSTEM, MASS STORAGE

An input-output control system that directs, or schedules, the processing of
mass storage files.

COUNTER

A data item used for storing numbers or number representations in a manner
that permits these numbers to be increased or decreased by the value of
another number, or to be changed or reset to zero or to an arbitrary positive
or negative value.

CURRENCY SIGN

The character '$' of the COBOL character set.

CURRENCY SYMBOL

The character defined by the CURRENCY-SIGN clause in the SPECIAL-NAMES

paragraph. If no CURRENCY-SIGN clause is present in a COBOL source

program, the currency symbol is identical to the currency sign.

DATA CLAUSE

(Sec CLAUSE, DATA)

DATA DESCRIPTION ENTRY

(See ENTRY, DATA DESCRIPTION)

DATA ITEM

Any elementary item, a named group of elementary items within a record, or
a record.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL

JOURNAL OF DEVELOPMENT
111-2-9

COBOL

C1 ossary

DATA ITEM, CONTROL

A data item, described in the File Section or Working-Storage Section of a
COBOL Source Program, that is associated with a control hierarchy and which,
when a change in its contents is detected, causes a control break to be
initiated.

DATA ITEM, INDEX

A data item in which the values associated with an index-name can be stored
in a form specified by the implementor.

DATA-NAME

A word that contains at least one alphabetic character and that names an entry
in the Data Division. When used in the General Formats, 'data-name' represents
a word which can neither be subscripted, indexed, nor qualified unless
specifically permitted by the rules for that format.

DATA-NAME, INDEXED

An identifier that is composed of a data-name, followed by one or more
index-names enclosed in parentheses.

DATA-NAME, QUALIFIED

An identifier that is composed of a data-name followed by one or more sets
of either of the connectives OF and IN followed by a data-name qualifier.

DATA-NAME, SUBSCRIPTED

An identifier that is composed of a data-name followed by one or more
subscripts enclosed in parentheses.

DECIMAL POINT, ACTUAL

The physical representation, using the decimal point characters period (.)
or comma {,), of the decimal point position in a data item.

DECIMAL POINT, ASSUMED

A decimal point position which does not involve the existence of an actual
character in a data item. The assumed decimal point has logical meaning
but no physical representation.

DECLARATIVES

A set of one or more special-purpose sections, written at the beginning of
the Procedure Division, the first of which is preceded by the header
DECLARATIVES and the last of which is followed by the header END DECLARATIVES.
Each declarative operates under the control of either the in-line procedure
or the implementor's input-output system or Report Writer and is composed of
a section header, followed bya COPY or a USE compiler directing sentence,
followed by a set of one or more associated paragraphs.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-2-10

COBOL CODASYL

Glossary

DESCENDING KEY

(See KEY, DESCENDING)

DIVISION

One or more sections or paragraphs that are formed and combined in accordance

with a specific set of rules. Each division consists of the division header

and the related division body. There are four (4) divisions in a COBOL program;

IDENTIFICATION

ENVIRONMENT

DATA

PROCEDURE

DIVISION HEADER

(See HEADER, DIVISION)

EDITING CHARACTER

(See CHARACTER, EDITING)

ELEMENT, TABLE

A data item that belongs to the set of repeated items comprising a table.

ELEMENTARY ITEM

(See ITEM, ELEMENTARY)

END OF PROCEDURE DIVISION

The physical position in a COBOL source program after which no further

procedures appear.

ENTRY

Any descriptive set of consecutive clauses terminated by a period and written

in the Identification Division, Environment Division, or Data Division of a

COBOL source program.

ENTRY, DATA DESCRIPTION

An entry in the Data Division that ’s composed of a level-number followed by a

data-name, if required, and then followed by a set of data clauses, as required.

ENTRY, FILE DESCRIPTION

An entry in the File Section of the Data Division that is composed of the level

indicator FD, followed by a file-name, and then followed by a set of file

clauses as required.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT

III-2-11

COBOL
CODASYL

ENTRY, OBJECT OF

A set of operands and reserved words, within a Data Division entry, that
immediately follows the subject of the entry.

ENTRY. REPORT DESCRIPTION

An entry in the Report Section of the Data Division that is composed of the

level indicator RD, followed by a data-name that is the name assigned to a

particular report, and then followed by a set of file clauses as required.

ENTRY, SAVED AREA DESCRIPTION

An entry in the File Section of the Data Division that is composed of the

level indicator SA, followed by a data-name that is the name assigned to a

particular saved area, and then followed by a set of file clauses as

required.

ENTRY, SORT FILE DESCRIPTION

An entry in the File Section of the Data Division that is composed of the

level indicator SD, followed by a file-name, and then followed by a set of

file clauses as required.

ENTRY, SUBJECT OF

An operand or reserved word that appears immediately following the level

indicator or the level-number in a Data Division entry.

ENVIRONMENT CLAUSE

(See CLAUSE, ENVIRONMENT)

EXECUTION TIME

(See TIME, OBJECT)

EXPRESSION., ARITHMETIC

An identifier of a numeric elementary item, a numeric literal, such identifiers

and literals separated by arithmetic operators, two arithmetic expressions

separated by an arithmetic operator, or an arithmetic expression enclosed in

parentheses.

FIGURATIVE CONSTANT

(See CONSTANT, FIGURATIVE)

FILE

A collection of records.

FILE CLAUSE

(See CLAUSE, FILE)

PROGRAMMING LANGUAGE COMMITTEE
CODASYL--COBOL

JOURNAL OF DEVELOPMENT

III-2 -12

Glossary

FILE DESCRIPTION ENTRY

(See ENTRY, FILE DESCRIPTION)

FILE LIMIT

A set of logical boundary locations for a particular mass storage file that are

within the physical boundary locations of a mass storage medium.

FILE, MASS STORAGE

A collection of records that is assigned to a mass storage medium.

FILE, REPORT

A collection of records, produced by the Report Writer, whose content and

format are such that they can be used for the preparation of a report.

FILE SECTION

(See SECTION, FILE)

FILE, SORT

A collection of records to be sorted by a SORT statement. The sort file is

created and can be used by the soit function only.

FILE-CONTROL

The name of an Environment Division paragraph in which the data files for a

given source program are declared.

FILE-NAME

A data-name that names a file described in the Data Division.

FOOTING, CONTROL

A report group that occurs at the end of the control group of which it is a

member and that is produced each time this control group is produced.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III- 2-13

CODASYL COBOL

Glossary

FOOTING, OVERFLOW

A report group that occurs at the end of a report page and that is produced

before a page break, resulting from detection of a page limit condition
(see 6.41, The TYPE Clause), is executed.

FOOTING, PAGE

A report group that occurs at the end of each report page and that is

produced before a page break, resulting from detection of a page limit

condition (see 6.41, The TYPE Clause), is executed.

FOOTING, REPORT

A report group that occurs at the end of a report and that is produced only

once when the report is terminated.

FORMAT

A specific arrangement of a set of data.

FORMAT, REFERENCE

A format that provides a standard method for describing COBOL source programs.

FORMAT, REPORT

The format of a page in a particular report that is defined in the Report

Section.

FORMAT, STANDARD DATA

The concept used in describing data in a COBOL Data Division under which the

characteristics or properties of the data are expressed in a form oriented

to the appearance of the data on a printed page of infinite length and breadth,

rather than a form oriented to the manner in which the data is stored

internally in the computer, or on a particular external medium.

GROUP, CONTROL

An integral set of related data that is specifically associated with a control

data item in the report control hierarchy. The entire set of control heading

report groups, control footing report groups, and associated detail groups

comprise the control group for a given control data item.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-2-14

CODASYL COBOL

UJ.ut.ba.ry

GROUP ITEM

(See ITEM, GROUP)

GROUP, PRINT

(See GROUP, REPORT)

GROUP, REPORT

An integral set of related data within a report.

HEADER, DIVISION

A combination of reserved words followed by a period and a space that indicates

the beginning of a division. The division headers are:

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

DATA DIVISION.

PROCEDURE DIVISION.

HEADER, PARAGRAPH

A reserved word, followed by a period and a space that indicates the beginning

of a paragraph in the Identification and Environment Divisions. The permissible

paragraph headers are:

In the Identification Division:

PROGRAM-ID.

AUTHOR.

INSTALLATION.

DATE-WRITTEN.

DATE-COMPILED.

SECURITY.

In the Environment Division:

SOURCE-COMPUTER.

OBJECT-COMPUTER.

SPECIAL-NAMES.

FILE-CONTROL.

I-0-CONTROL.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-2-15

COBOL

Glossary

HEADER, SECTION

A combination of words followed by a period and a space that indicates the

beginning of a Section in the Environment, Data, and Procedure Division.

In the Environment and Data Division, a section header is composed of reserved

words followed by a period and a space. The permissible section headers are:

In the Environment Division:

CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.

In the Data Division:

FILE SECTION .
WORKING-STORAGE SECTION.

CONSTANT SECTION.

LINKAGE SECTION.

REPORT SECTION.

In the Procedure Division, a section header is composed of a section-name,

followed by the reserved word SECTION, followed by a priority-number (optional),
followed by a period and a space.

HEADING, CONTROL

A report group that occurs at the beginning of the control group of which it

is a member and which is produced each time its control group is produced.

HEADING, OVERFLOW

A report group that occurs at the beginning of a report page and which is

produced after a page break, resulting from detection of a page limit condition

(see 6.41, The TYPE Clause) is executed.

HEADING, PAGE

A report group that occurs at the beginning of a report page and which is

produced after a page break, resulting from detection of a page limit condition

(see 6.41, The TYPE Clause) is executed.

HEADING, REPORT

A report group that occurs at the beginning of a report and that is produced

only once when the report is initiated.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL-COBOL

JOURNAL OF DEVELOPMENT

III-2-16

Glossary

HIGH ORDER END

The ieftmosc character of a string of characters.

IDENTIFIER

A data-name, followed, as required, by the syntactically correct combination
of qualifiers, subscripts, and indices necessary to make unique reference to
a data item.

IMPERATIVE STATEMENT

(See STATEMENT, IMPERATIVE)

IMPLEMENTOR-NAME

A word, specified by the implementor, that refers to a particular feature
available on that implementor's computing system.

INDEX

A computer storage area or register, the contents of which represent the
identification of a particular element in a table.

INDEX-NAME

A word with at least one alphabetic character that names an index associated
with a specific table.

INDEX DATA ITEM

(See DATA ITEM, INDEX)

INDEXED DATA-NAME

(See DATA-NAME, INDEXED)

IN-LINE PROCEDURE

(See PROCEDURE, IN-LINE)

INPUT PROCEDURE

(See PROCEDURE, INPUT)

INPUT-OUTPUT SECTION

(See SECTION, INPUT-OUTPUT)

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT

III-2-17

COBOL

Glossary

INTEGER

A numeric literal or a numeric data item that does not include any character

positions to the right of the assumed decimal point. Where the term 'integer'

appears in General Formats, integer must not be a numeric data item, and must

be unsigned.

INVALID KEY CONDITION

(See CONDITION, INVALID KEY)

I-O-CONTROL

The name of an Environment Division paragraph in which object program

requirements for specific input-output techniques, rerun points, sharing of

same areas by several data files, and multiple file storage on a single

input-output device, are specified.

ITEMS, CONTIGUOUS

Items that are described by consecutive entries in the Data Division, and

that bear a definite hierarchic relationship to each other.

ITEM, ELEMENTARY

A data item that is described as not being further logically subdivided.

ITEM, GROUP

A named contiguous set of elementary or group items.

ITEM, NONCONTIGUOUS

Data items, in the Working-Storage, Constant, of Linkage Section, that bear

no hierarchic relationship to other noncontiguous items.

ITEM, NONNUMERIC

A data item whose description permits its contents to be composed of any

combination of characters taken from the computer's character set. Certain

categories of nonnumeric items may be formed from more restricted character

sets.

ITEM, NUMERIC

A data item whose description restricts its contents to a value represented
by characters chosen from the digits 'O'through'9', with or without an

operational sign.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL-—--COBOL

JOURNAL OF DEVELOPMENT

III-2-18

Glossary

KEY

One or more data items the contents of which jointly serve to identify the

location of a record or the ordering of data.

KEY. ACTUAL

A key that directly expresses the physical location of a logical record on a

mass storage medium.

KEY, ASCENDING

A key upon the values of which data is ordered starting with the lowest value

of key up to the highest value of key in accordance with a collating sequence.

KEY, DESCENDING

A key upon the values of which data is ordered starting with the highest value

of key down to the lowest value of key, in accordance with a collating

sequence.

KEY WORD

(See WORD, KEY)

LEVEL INDICATOR

Two alphabetic characters that identify a specific type of file or a position

in a hierarchy.

LEVEL-NUMBER

Two characters that in the case of the numbers 01 to 49, indicate the

hierarchical structure of a logical record, or, in the case of the numbers 66,

77 and 88, identify special properties of a data description entry.

LIBRARY-NAME

A word that identifies a library entry which consists of a set of COBOL entries

and/or procedures. The library-name must conform to the rules for formation

of a procedure-name. The portion of the library-name actually used to interact
with the COBOL library is specified by the implementor.

LINE, COMMENT

A source program line represented by an asterisk in the Continuation Area of

the line and any characters from the computer's character set in Area A and

Area B of that line. The Comment Line serves only for documentation in a

program.

LINE, REPORT

A division of a page representing one row of characters.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-2-19

COBOL

Glossary

LINKAGE SECTION

(See SECTION, LINKAGE)

LITERAL

A string of characters whose value is implied by the ordered set of characters
comprising the string.

LITERAL, NONNUMERIC

A string of characters bounded by quotation marks. The string of characters

may include any character in the computer's character set, with the exception
of the quotation mark.

LITERAL, NUMERIC

A literal composed of one or more numeric characters, that also may contain

either a decimal point, that cannot be the rightmost character, or an

algebraic sign that must be the leftmost character, or both.

LITERAL CONSTANT

(See LITERAL)

LOGICAL OPERATOR

(See OPERATOR, LOGICAL)

LOGICAL RECORD

(See RECORD, LOGICAL)

LCM ORDER END

The right most character of a string of characters.

MASS STORAGE

A storage medium in which data may be organized and maintained in both a

sequential and nonsequential manner.

MASS STORAGE CONTROL SYSTEM

(See CONTROL SYSTEM, MASS STORAGE)

MASS STORAGE FILE

(See FILE, MASS STORAGE)

MASS STORAGE FILE SEGMENT

A part of a mass storage file whose beginning and end is defined by the FILE

LIMITS clause in the Environment Division.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-2-20

COBOL

Glossary

MNEMONIC-NAME

A word, supplied by the programmer, that is associated in the Environment

Division with a specific implementor name.

MODE-NAME

A word, specified by the implementor, that refers to a particular method of

data representation on a physical storage medium.

NAMED CONSTANT

(See CONSTANT, NAMED)

NONCONTIGUOUS ITEM

(See ITEM, NONCONTIGUOUS)

NONNUMERIC ITEM

(See ITEM, NONNUMERIC)

NONNUMERIC LITERAL

(See LITERAL, NONNUMERIC)

NUMERIC CHARACTER

(See CHARACTER, NUMERIC)

NUMERIC ITEM

(See ITEM, NUMERIC)

NUMERIC LITERAL

(See LITERAL, NUMERIC)

OBJECT-COMPUTER

The name of an Environment Division paragraph in which the computer

environment, wTithin which the object program is executed, is described.

OBJECT OF ENTRY

(See ENTRY, OBJECT OF)

OBJECT PROGRAM

(See PROGRAM, OBJECT)

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
COBOL

III-2-21

Glossary

OBJECT TIME

(See TIME, OBJECT)

OPERAND

Any lower case word (or words) that appears in a statement or entry format
in this publication.

OPERATIONAL SIGN

(See SIGN, OPERATIONAL)

OPERATOR, ARITHMETIC

A single character, or a fixed two-character combination for the character(s)
that belongs to the following set:

Character Meaning

+ Addition

Subtraction

* Multiplication

/ Division
** Exponentiation

OPERATOR, LOGICAL

One of the reserved words AND, OR, or NOT. In the formation of a condition,

either AND or OR, or both, can be used as logical connectives. NOT can be

used for logical negation.

OPERATOR, RELATIONAL

A reserved word, a relation character, a group of consecutive reserved

words, or a group of consecutive reserved words and relation characters used

in the construction of a relation condition. The permissible operators
and their meaning are:

RELATIONAL OPERATOR MEANING

IS [NOT] GREATER THAN

IS [NOT] >

IS [NOT] LESS THAN

IS [NOT] <

IS [NOT] EQUAL TO

IS [NOT] =

IS UNEQUAL TO

}

}

}
}

Greater than or not greater than

Less than or not less than

Equal to or not equal to

Not equal to

EQUALS Equal to

EXCEEDS Greater than

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-2-22

COBOL CODASYL

Glossary

OPERATOR, UNARY

A plus (+) or a minus (-) sign, which precedes a variable or a left

parenthesis in an arithmetic expression and which has the effect of
multiplying the expression by +1 or -1 respectively.

OPTIONAL WORD

(See WORD, OPTIONAL)

OUT-OF-LINE PROCEDURE

(See PROCEDURE, OUT-OF-LINE)

OUTPUT PROCEDURE

(See PROCEDURE, OUTPUT)

OVERFLOW FOOTING

(See FOOTING, OVERFLOW)

OVERFLOW HEADING

(See HEADING, OVERFLOW)

PAGE

A vertical division of a report representing a physical separation of

report data, the separation being based on internal reporting
requirements and/or external characteristics of the reporting medium.

PAGE FOOTING

(See FOOTING, PAGE)

PAGE HEADING

(See HEADING, PAGE)

PARAGRAPH

A paragraph-name (in the Procedure Division) followed by one or more

sentences, or a paragraph-header (in the Identification Division and

the Environment Division) followed by one or more entries.

PARAGRAPH HEADER
(See HEADER, PARAGRAPH)

PARAGRAPH-NAME

A word that identifies and begins a paragraph in the Procedure Division.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-2-23

COBOL CODASYL

Glossary

PHYSICAL RECORD

(See BLOCK)

PRINT GROUP

(See GROUP, REPORT)

PRIORITY-NUMBER

A number, ranging in value from'O' to'99*, that classifies source program
sections in the Procedure Division in order to guide object program

segmentation.

PROCEDURE

A paragraph or group of logically successive paragraphs, or a section or
group of logically successive sections, within the Procedure Division.

PROCEDURE-NAME

A word used to refer to a paragraph or section in the source program in
which it occurs. It consists of a paragraph-name (which may be qualified),

or a section-name.

PROCEDURE, IN-LINE

The set of statements that constitutes the main or controlling flow of the

program, and which exclude statements under control of the asynchronous

control system.

PROCEDURE, INPUT

A set of statements that is executed each time a record is released to the

sort file.

PROCEDURE, OUT-OF-LINE

A set of statements not included in the main or controlling flow of the

run-unit.

PROCEDURE, OUTPUT

A set of statements that is executed each time a sorted record is returned
from the sort file.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT

III-2-24

COBOL CODASYL

Glossary

PROCESSING, ASYNCHRONOUS

The manner of processing logical records vithin out-of-line procedures that

arc initiated in consecutive relation to one another bui .that are not

necessarily executed or completed in the order in which they are initiated;

in other words, no specific processing cycle is necessarily completed before

a subsequent cycle is initiated.

PROCESSING CYCLE

A single execution of a defined out-of-line procedure.

PROCESSING, RANDOM

(See PROCESSING, ASYNCHRONOUS)

PROCESSING, SEQUENTIAL

(See PROCESSING, SYNCHRONOUS)

PROCESSING, SYNCHRONOUS

The manner of processing logical records within in-line procedures in the

order in which the records are made available.

PROGRAM, CALLED

A program which is the object of a CALL statement combined at object time

with the calling program to produce a run unit.

PROGRAM, CALLING

A program which executes a CALL to another program.

PROGRAM, OBJECT

A set or group of executable machine language instructions and other material

designed to interact with data to provide problem solutions. In this context,

an object program is generally the machine language result of the operation

of a COBOL compiler on a source program. Where there is no danger of

ambiguity, the word 'program' alone may be used in place of the phrase

' ob j cc. t program ' .

PROGRAM, SOURCE

Although it is recognized that a source program may be represented by other

forms and symbols, in this report it always refers to a syntactically correct

set of COBOL statements beginning with an Identification Division and ending

with the end of the Procedure Division. In contexts where there, is no danger

of ambiguity, the word 'program' alone may be used in place of the phrase

1 source program'.

PROGRAM-NAME

A word that identifies a COBOL source program.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL---COBOL

JOURNAL OF DEVELOPMENT

III-2-25

Glossary

PUNCTUATION CHARACTER

(Sec CHARACTER, PUNCTUATION)

QUALIFIE D DATA-NAME

(See DATA-NAME, QUALIFIED)

QUALIFIER

A data-name that names, or a section-name that makes a non-unique data-

name at a lower level in the same hierarchy or a non-unique paragraph-

name, respe.ctively, unique.

RANDOM ACCESS

(See ACCESS, RANDOM)

RANDOM PROCESSING

(Sec PROCESSING, ASYNCHRONOUS)

RECORD

(See RECORD, LOGICAL)

RECORD DESCRIPTION

The total set of data description entries associated with a particular record.

RECORD, LOGICAL

The most inclusive data item.

RECORD, PHYSICAL

(See BLOCK)

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT

III-2-26

COBOL CODASYL

Glossary

RECORD-NAME

A data-name that names a record.

REFERENCE FORMAT

(See FORMAT, REFERENCE)

REGISTERS, SPECIAL

Compiler generated storage areas whose primary use is to store information

produced in conjunction with the use of specific COBOL features.

RELATION

(See OPERATOR, RELATIONAL)

RELATION CHARACTER

(See CHARACTER, RELATION)

RELATION CONDITION

(See CONDITION, RELATION)

RELATIONAL OPERATOR

(See OPERATOR, RELATIONAL)

REPORT

A presentation of a set of data described in a Report File.

RE PORT-NAME

A data-name that names a report.

REPORT DESCRIPTION ENTRY

(See ENTRY, REPORT DESCRIPTION)

REPORT FILE

(See FILE, REPORT)

REPORT FOOTING

(See FOOTING, REPORT)

REPORT FORMAT

(See FORMAT, REPORT)

REPORT GROUP

(See CROUP, REPORT)

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
COBOL

III-2-27

Glossary

REPORT HEADING

(See HEADING, REPORT)

REPORT LINE

(See LINE, REPORT)

REPORT SECTION

(See SECTION, REPORT)

RESERVED WORD

(See WORD, RESERVED)

RUN UNIT

(See UNIT, RUN)

SAVED AREA

(See AREA, SAVED)

SAVED AREA DESCRIPTION ENTRY

(See ENTRY, SAVED AREA DESCRIPTION)

SECTION

A set of one or more paragraphs or entries, called a section body, the first
of which is preceded by a section header. Each section consists of the
section header and the related section body.

SECTION, CONFIGURATION

A section of the Environment Division that describes overall specifications
of source and object computers.

SECTION, CONSTANT

The section of the Data Division that deals with named constants, written as
noncontiguous items, or grouped into constant records.

SECTION, FILE

The section of the Data Division that contains file description entries.

SECTION HEADER

(See HEADER, SECTION)

SECTION, INPUT-OUTPUT

The section of the Environment Division that names the files and the external
media required by an object program and which provides information required
for transmission and handling of data during execution of the object program.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-2-28

COBOL

Glossary

SECTION, LINKAGE

The section in the Data Divisions of the called programs that
describes data items available from the calling program. These data items
may be referred to by both the calling and the called program.

SECTION, REPORT

The section of the Data Division that contains one or more report description
entries.

SECTION, WORKING-STORAGE

The section of the Data Division that describes working storage data items,
composed either of noncontiguous items or of working storage records or of
both.

SECTION-NAME

A word that identifies a section written in the Procedure Division.
(See WORD)

SENTENCE

A sequence of one or more statements, the last of which is terminated by a
period followed by a space.

SEPARATOR

The space and optional punctuation characters used as delimiters to enhance
readability and to eliminate ambiguity.

SEQUENCE, COLLATING

The sequence in which the. characters that are acceptable to a computer are
ordered for purposes of sorting and comparing.

SEQUENTIAL ACCESS

(See ACCESS, SEQUENTIAL)

SEQUENTIAL PROCESSSING

(See PROCESSING, SYNCHRONOUS)

SIGN CONDITION

(See CONDITION, SIGN)

SIGN, OPERATIONAL

An algebraic sign, associated with a numeric data item, to indicate whether
the item is positive or negative.

SIMPLE CONDITION

(See CONDITION, SIMPLE)

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT

III-2-29

COBOL

Glossary

SORT FILE

(See FILE, SORT)

SORT FILE DESCRIPTION ENTRY

(See ENTRY, SORT FILE DESCRIPTION)

SOURCE PROGRAM

(See PROGRAM, SOURCE)

SOURCE-COMPUTER

The name of an Environment Division paragraph in which the computer environment,

Within which the source program is compiled, is described.

SPECIAL CHARACTER

(See CHARACTER, SPECIAL)

SPECIAL REGISTERS

(See REGISTERS, SPECIAL)

SPECIAL-NAMES

The name of an Environment Division paragraph in which implementor-names are

related to user-specified mnemonic-names.

STANDARD CHARACTERS

(See CHARACTERS, STANDARD)

STANDARD DATA FORMAT

(See FORMAT, STANDARD DATA)

STATEMENT

A syntactically valid combination of words and symbols written in the Procedure

Division beginning with a verb.

STATEMENT, COMPILER DIRECTING

A statement, beginning with a compiler directing verb, that causes the compiler

to take a specific action during compilation.

STATEMENT, CONDITIONAL

A conditional statement specifies that the truth value of a condition is to be

determined and that the subsequent action of the object program is dependent

on this truth value.

STATEMKNT, IMPERATIVE

A statement that begins with an imperative verb and specifies an unconditional

action to be taken. An imperative statement may consist of a sequence of
imperative statements (see 7.2.3, Imperative Statements and Imperative Sentences).

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-2-30

-COBOL

Glossary

SUBJECT OF ENTRY

(See ENTRY, SUBJECT OF)

SUBPROGRAM

(See PROGRAM, CALLED)

SUBSCRIPT

An integer whose value identifies a particular element in a table.

SUBSCRIPTED DATA-NAME

(See DATA-NAME, SUBSCRIPTED)

SWITCH-STATUS CONDITION

(See CONDITION, SWITCH-STATUS)

SYNCHRONOUS PROCESSING

(See PROCESSING, SYNCHRONOUS)

TABLE

A set of logically consecutive items of data that are defined in the Data

Division by means of the OCCURS clause.

TABLE ELEMENT

(See ELEMENT, TABLE)

TIME, COMPILE

The time at which a COBOL source program is translated, by a COBOL compiler,

to a COBOL object program.

TIME, EXECUTION

(See TIME, OBJECT)

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-2-3L

COBOL

Glossary

TIME, OBJECT

The time at which an object program is executed.

TRUTH VALUE

The representation of the result of the evaluation of a condition in terms
of one of two values:

true

false

UNARY OPERATOR

(See OPERATOR, UNARY)

UNIT

A module of mass storage the dimensions of which are determined by each

implementor.

UNIT, RUN

A set of one or more object programs which function, at object time, as a

unit to provide problem solutions.

VARIABLE

A data item whose value may be changed by execution of the object program.

A variable used in an arithmetic expression must be a numeric elementary

item.

VARIABLE, CONDITIONAL

A data item one or more values of which has a condition-name assigned to it.

VERB

\ word that expresses an action to be taken by a COBOL compiler or object

urogram.

WORD

A sequence of not more than 30 characters. Each character is selected from

the set 'A', 'B', ,C,,...,Z,, 'O'...'9', '-' except that the '-' may not

appear as the first or last character in a word. A word is delimited by

separators.

CODASYL
PROGRAMMING LANGUAOi COMMITTEE

JOURNAL OF DEVELOPMENT

III-2-32

COBOL

Glossary

WORD, KEY

A reserved word whose presence is required when the format in which the word

appears is used in a source program.

WORD, OPTIONAL

A reserved word that is included in a specific format only to improve cue

readability of the language and whose presence is optional to the user when

the format in which the word appears is used in a source program.

WORD, RESERVED

One of a specified list of words which may be used in a COBOL source program,

but which must not appear in the programs as user-defined words.

WORKING-STORAGE SECTION

(See SECTION, WORKING-STORAGE)

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-2-33

COBOL

CHAPTER 3

LANGUAGE CONCEPTS
3.1 CHARACTER SET

The complete character set for COBOL consists of the 51 characters defined

under CHARACTER SET in Chapter 2, Glossary. In the discussions that follow,

all references are to Chapter 2, Glossary.

3.1.1 CATEGORIES

The character set for words consists of the characters defined under WORD.

The character set for punctuation consists of the characters defined under
C HARAC TER, PUNC TUATION.

The character set for arithmetic operators consists of the characters defined
under OPERATOR, ARITHMETIC.

The special characters for relational operators are defined under CHARACTER,
RELATION.

The character set for editing consists of the characters defined under
CHARACTER, EDITING.

Those characters that are recognized within COBOL include the letters of the
alphabet, digits, and those characters, commonly called symbols, which are used
in expressions, relations and editing. Since the character set of a particular
computer may not have the characters defined above, single character substitution
must be made as required. When such a character set contains fewer than 51

characters, double characters must be substituted for the single characters.

3.1.2 SEPARATORS

The space and the punctuation characters, when not contained within quotation
marks are separators. Where a space is used, more than one may be used, except
for the restrictions set forth in this chapter and in Chapter 10, Reference Format.

A character-string is delimited on the right by a space, period, right parenthesis,
comma, or semicolon. The use of punctuation characters in connection with
character-string is defined as follows:

1. A space must follow a period, comma and semicolon when any of these
punctuation characters are used to delimit character-string,

2. a space may immediately follow a left parenthesis or may

immediately precede a right parenthesis, and

3. When used as punctuation characters, period, comma or semicolon may

be preceded by a space except as required by special insertion editing

in the PICTURE clause (see 6.31.5, Editing Rules).

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-3-1

CODASYL COBOL

Language Concepts

WORDS

3.2 CHARACTER STRINGS

A character-string is a sequence of contiguous characters which form a literal,
a word or a PICTURE character-string.

3.2.1 WORDS

3.2.1.1 Definition of Words

A word is a sequence of not more than 30 characters. Each character is

selected from the set 'A1, 'B’, 'C', ... 'Z', 'O' ... '9', '-' except that the

'-' may not appear as the first or last character in a word.

3.2.1.2 Types of Words

3.2.1.2.1 Data-Name

A data-name is a word that contains at least one alphabetic character and that

names an entry in the Data Division.

3.2.1.2.2 Condition-Name
A condition-name is a word with at least one alphabetic character, which is

assigned to a specific value, set of values or range of values, within the

complete set of values that a data item may assume. The data item itself is

called a conditional variable. Each condition-name must be unique., or be made

unique through qualification. A conditional variable may be used as a qualifier

for any of its condition-names. If references to a conditional variable require

indexing, subscripting or qualification, then references to any of its condition-

names also require the same combination of indexing, subscripting or qualifica¬

tion (see 3.3.7, Uniqueness of Data Reference).

In addition to being described in the Data Division, condition-names may also

be defined in the SPECIAL-NAMES paragraph within the Environment Division,

where a condition-name must be given to the ON status or OFF status, or both,
of implementor-defined switches.

A condition-name is used in conditions as an abbreviation for the relation con¬
dition; this relation condition posits that the associated conditional variable
is equal to one of the set of values to which that condition-name is assigned.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-3-2

COBOL

Language Concepts

WORDS

3.2.1.2.3 Procedure-Name

A procedure-name is a word which is used to name a paragraph or section in the
Procedure Division. Procedure-names composed only of the digits 'O' through
'9' are equivalent if, and only if, they are composed of the same number of
digits and have the same value.

3.2.1.2.4 Figurative Constants

Certain constants, called figurative constants, have been assigned fixed
data-names. These data-nanes must not be bounded by quotation marks when used
as figurative constants. The singular and plural forms of figurative constants
are equivalent and may be used interchangeably.

The fixed data-names and their meanings are as follows:

ZERO
ZEROS
ZEROES

Represents the value 'O', or one or more of the character 'O',

depending on context.

SPACE
SPACES

Represents one or more blanks or spaces.

UPPER-BOUND

UPPER-BOUNDS

Represents one or more of the characters conventionally used as a

high delimiter in processing data. It can be, but it is not
necessarily, the character with the highest value in each computer's

collating sequence.

LOWER-BOUND

LOWER-BOUNDS
Represents one or more of the characters conventionally used as a
low delimiter in processing data. It can be, but it is not

necessarily, the character with the lowest value in each computer's
collating sequence.

HIGH-VALUE

HIGH-VALUES

Represents one or more of the character that has the highest

value in each computer's collating sequence.

LOW-VALUE

LOW-VALUES
Represents one or more of the character that has the lowest

value in each computer's collating sequence.

QUOTE
QUOTES

Represents one or more of the character '"' or the character
that has been substituted for it on computers whose character
set does not contain a quotation mark. The word QUOTE cannot
be used in place of a quotation mark in a source program to
bound a nonnumeric literal. Thus, QUOTE ABD QUOTE is incorrect
as a way of stating the nonnumeric literal "ABD".

ALL literal Represents one or more of the string of characters comprising
the literal. The literal must be either a nonnumeric literal
or a figurative constant other than ALL literal. When a
figurative constant is used, the word ALL is redundant and is
used for readability only.

When a figurative constant represents a string of one or more characters, the
length of the string is determined by the compiler from context according to
the following rules;

CODASYL-
PROGRAMMING LANGUAGE COMMITTEE

---COBOL
JOURNAL OF DEVELOPMENT

III-3-3

J

Language Concepts

[words

1. When a figurative constant is associated with another data item, as when
the figurative constant is moved to or compared with another data item,
the S'tring of characters specified by the figurative constant is repeated
character by character on the right until the size of che resultant string
is equal to the size in characters of the associated data item.

2. When a figurative constant is not associated with another data item, as
when the figurative constant appears in a DISPLAY, EXAMINE or STOP statement,
the length of the string is one character. The figurative constant ALL literal
may not be used with DISPLAY, EXAMINE or STOP.

A figurative constant can be used any place where a literal appears in the
format, except that whenever the literal is restricted to having only numeric
characters in it, the only figurative constant permitted is ZERO (ZEROS,
ZEROES).

3.2.1.2.5 Special Registers

1. TALLY

The word TALLY is the name of a special register whose implicit description

is that of an integer of five digits without an operational sign, and whose

implicit USAGE is COMPUTATIONAL. The primary use of the TALLY register is to

hold information produced by the EXAMINE statement. The word TALLY may also
be used as a data-name wherever an elementary data item of integral value
may appear.

2. LINE-COUNTER

The word LINE-COUNTER is the fixed data-name for a line-counter that is
used by the Report Section in the Data Division to generate automatically
PAGE/OVERFLOW HEADING and PAGE/OVERFLOW FOOTING report groups. One line-
counter is automatically supplied for each report described in the Report
Section if a PAGE LIMIT clause is written in the Report Description entry.

(See 6.11.6, LINE-COUNTER rules.)

3. PAGE-COUNTER

The word PAGE-COUNTER is a fixed data-name for a page-counter generated by
the Report Section for use as a source data item to present page numbers
within a report group. One page-counter is supplied for each report by the
Report Section if the word PAGE-COUNTER is given as a source data item in
a Report Group Description entry. (See 6.11.5, PAGE-COUNTER rules.)

LINAGE-COUNTER

CODASYL

The word LINAGE-COUNTER is a fixed identifier for a line-counter generated by
the presence of a LINAGE clause in a File Description. The implicit description

is that of an integer with size based on the number of lines specified per page

in the LINAGE clause. The value represented in the LINAGE-COUNTER at any given

time is the number of lines advanced within a printed page. One LINAGE-

COUNTER is supplied for each file in the File Section if the LINAGE clause

appears in the FD entry (see 6.26, The LINAGE Clause).

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-3-4

COBOL

Language Concepts

[words
3.2.1.2.6 AAnemonic Names

Mnemonic names are the means of relating implementor-names with problem-

oriented names, and, also, the status of switches with condition-names.

(See 5.3.3, The SPECIAL-NAMES Paragraph.)

3.2.1.2.7 Reserved Words

A specified list of words which may be used in a COBOL source program, but

which must not appear in the programs as user-defined words (see Chapter 11,

Reserved Words).

There are three types of reserved words, as shown below.

1. Key Words

A key word is a word whose presence is required when tlie format in which

the word appears is used in a source program. Within each format, such

words are uppercase and underlined.

Key words are of three types:

a. Verbs such as ADD, READ, and ENTFR.

b. Required words, which appear in statement and entry formats.

c. Words which have a specific functional meaning such as NEGATIVE,

SECTION, TALLY, etc.

2. Optional Words

Within each format, uppercase words that are not underlined are called

optional words and may appear at the user's option. The presence or

absence of each optional word within a format does not alter the compiler's

translation. Misspelling of an optional word, or its replacement by

another word of any kind is not allowed.

3. Connectives

There are three types of connectives:

a. Qualifier connectives that are used to associate a data-name or a

paragraph-name with its qualifier:

OF, IN.

b. A series connective that links two or more consecutive operands:

, (comma).

c. Logical connectives that are used in the formation of conditions:

AND, OR, AND NOT, OR NOT.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-3-5

COBOL

Language Concepts

CHARACTER-STRING

3.2.2 LITERAL

A literal is a string of characters whose value is implied by an ordered set

of characters of which the literal is composed. Every literal belongs to one

of two types, numeric or nonnumeric.

A nonnumeric literal is defined as a string of any allowable characters in the

computer's character set, excluding the character quota tion- mark, of anv

length, bounded by quotation marks. The value of a nonnumeric
literal is the string of characters itself, excluding the quotation marks.

Any spaces enclosed in the quotation marks are part of the nonnumeric literal

and, therefore, are part of the value. All nonnumeric literals are category-

alphanumeric (see 6.31, The PICTURE Clause).

A numeric literal is defined as a string of characters chosen from the digits

'O'thru '91, the plus sign, the minus sign, and the decimal point; the rules for

the formation of numeric literals are as follows:

1. A literal must contain at least one digit.

2. A literal must not contain more than one sign character. If a sign is

used, it must appear as the leftmost character of the literal. If the

literal is unsigned, the literal is positive.

3. A literal must not contain more than one decimal point. The decimal point

is treated as an assumed decimal point, and may appear anywhere within the

literal except as the rightmost character. If the literal contains no

decimal point, the literal is an integer.

The word 'integer' appearing in a general format represents a numeric

literal containing no decimal point.

If a literal conforms to the rLiles for the formation of numeric literals,

but is enclosed in quotation marks, it is a nonnumeric literal and it is
treated as such by the compiler.

A. The value of a numeric literal is the algebraic quantity represented by

the characters in the numeric literal. Every numeric literal is category

numeric (see 6.31, The PICTURE Clause).

3.2.3 PICTURE CHARACTER-STRING

A PICTURE character-string consists of certain combinations of characters in

the C030L character set used as symbols. The allowable combinations are

explained under the PICTURE clause (see 6.31, The PICTURE Clause).

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III -3-6

COBOL

_Language Concepts

DATA DESCRIPTION~[

3.3 CONCEPT OF COMPUTER-INDEPENDENT DATA DESCRIPTION

To make data as computer-independent as possible, the characteristics or

properties of the data are described in relation to a Standard Data Format

rather than an equipment-oriented format. This Standard Data Format is

oriented to general data processing applications and uses the decimal system

to represent numbers (regardless of the radix used by the computer) and the

remaining characters in the COBOL character set to describe nonnumeric data
items.

3.3.1 LOGICAL RECORD AND FILE CONCEPT

The approach taken in defining file information is to uistinguish between the

physical aspects of the file and the conceptual characteristics of the data
contained within the file.

3.3.1.1 Physical Aspects of a File

The physical aspects of a file describe the data as it appears on the input or
output media and include such features as:

1. The mode in which the data file is recorded on the external medium.

2. The grouping of logical records within the physical limitations of the

file medium.

3. The means by which the file can be identified.

3.3.1.2 Conceptual Characteristics of a File

The conceptual characteristics of a file are the explicit definition of each

logical entity within the file itself. In a COBOL program, the input or out¬

put statements refer to one logical record.

It is important to distinguish between a physical record and a logical record.

A COBOL logical record is a group of related information, uniquely identi¬

fiable, and treated as a unit.

A physical record is a physical unit of information whose size and recording

mode is convenient to a particular computer for the storage of data on an

input or output device. The size of a physical record is hardware dependent

and bears no direct relationship to the size of the file of information

contained on a device.

A logical record may be contained within a single physical unit; or several

logical records may be contained within a single physical unit; or a logical

record may require more than one physical unit to contain it. There are

several source language methods available for describing the relationship of

logical records and physical units. Once the relationship has been established,

the control of the accessibility of logical records as related to the physical

unit is the responsibility of the object program. In this manual, references

to records means to logical records, unless the term ‘physical record' is

specifically used.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-3-7

COBOL

Language.Concepts

LEVELS

The concept of a logical record is not restricted to file data but icarried

over into the definition of working storage and constants. Thus, working
storage and constants may be grouped into logical records and defined by a

series of record description entries.

3.3.1.3 Record Concepts

The Record Description consists of a set of data description entries which

describe the characteristics of a particular record. Each data description

entry consists of a level-number followed by a data-name, if required,

followed by a series of independent clauses, as required.

3.3.2 CONCEPT OF LEVELS

A level concept is inherent in the structure of a logical record. This con¬

cept arises from the need to specify subdivisions of a record for the purpose

of data reference. Once a subdivision has been specified, it may be further

subdivided to permit more detailed data referral.

The most basic subdivisions of a record, that is, those not further sub¬

divided, are called elementary items; consequently, a record is said to

consist of a sequence of elementary items, or the record itself may be an

elementary item.

In order to refer to a set of elementary items, the elementary items are

combined into groups. Each group consists of a named sequence of one or more

elementary items. Groups, in turn, may be combined into groups of two or more

groups, etc. Thus, an elementary item may belong to more than one group.

3.3.2.1 Level-Numbers

A system of level-numbers shows the organization of elementary items and group

items. Since records are the most inclusive data items, leve1-numbers for

records start at 01. Less inclusive data items are assigned higher (not

necessarily successive) level-numbers not greater in value than 49. There are

special leve1-numbers, 66, 77 and 88, which are exceptions to this rule (see
below). Separate entries are written in the source program for each level-

number used.

A group includes all group and elementary items following it until a level-

number less than or equal to the level-number of that group is encountered.

The level-number of an item, either an elementary item or a group item,

immediately following the last elementary item of the previous group, must be

that of one of the groups to which the prior elementary item belongs.

Three types of entries exist for which there is no true concept of level.

These are:

1. Entries that specify elementary items or groups introduced by a RENAMES

clause,

2. Entries that specify noncontiguous Constant, Working-Storage/and Linkage

data items,
3. Entries that specify condition-names.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL--COBOL

JOURNAL OF DEVELOPMENT
III-3-8

Language concepts

CLASSES OF DATA

Entries describing items by means of RENAMES clauses for the purpose of re¬

grouping data items, have been assigned the special level-number 66.

Entries that specify noncontiguous data items, which are not subdivisions of other

items, and are not themselves subdivided, have been assigned the special level-

number 77 .

Entries that specify condition-names, to be associated with particular values

of a conditional variable, have been assigned the special level-number 83.

3.3.2.2 Initial Values of Tables

In the Working-Storage and Constant sections, initial values of elements within

tables are specified in one of the following ways:

1. The table may be described as a record by a set of contiguous data

description entries, each of which specifies the VALUE of an element, or

part of an element, of the table. In defining the record and its elements,

any data description clause (USAGE, PICTURE, etc.) may be used to
complete the definition, where required. This form is required when the

elements of the table require separate handling due to synchronization,

USAGE, etc. The hierarchical structure of the table is then shown by use

of the REDEFINES entry and its associated subordinate entries. The sub¬

ordinate entries, following the REDEFINES entry, which are repeated due to

OCCURS clauses, must not contain VALUE clauses.

2. When the elements of the table do not require separate handling, the VALUE

of the entire table may be given in the entry defining the entire table.

The lower level entries will show the hierarchical structure of the table;

lower level entries must not contain VALUE clauses.

3.3.3 CONCEPT OF CLASSES OF DATA

The five categories of data items (see 6.31, The PICTURE Clause) are grouped

into three classes; alphabetic, numeric, and alphanumeric. For alphabetic and

numeric, the classes and categories are synonymous. The alphanumeric class

includes the categories of alphanumeric edited, numeric edited and alphanumeric

(without editing). Every elementary item belongs to one of the classes and

further to one of the categories. The class of a group item is treated at

object time as alphanumeric regardless of the class of elementary items sub¬

ordinate to that group item. The following chart depicts the relationship of

the class and categories of data items.

LEVEL OF ITEM CLASS CATEGORY

Elementary

Alphabetic Alphabetic

Numeric Numeric

Alphanumeric

Numeric Edited

Alphanumeric Edited

Alphanumeric

Nonelementary
(Croup)

Alphanumeric

Alphabetic

Numeric

Numeric Edited

Alphanumeric Edited
A1phanuncr1c

PROGRAMMING LANGUAGE COMMITTEE
CODASYL--—-COBOL

JOURNAL OF DEVELOPMENT

III -3-9

Language Concepts

ITEM ALIGNMENT

3.3.4 SELECTION OF CHARACTER REPRESENTATION AND RADIX

The value of a numeric item may be represented in either binary or decimal form

depending on the equipment. In addition there are several ways of expressing

decimal. Since these representations are actually combinations of bits, they

are commonly called binary-coded decimal forms. The selection of radix is

generally dependent upon the arithmetic capability of the computer. If more

than one arithmetic radix is provided, the selection is dependent upon factors

included in such clauses as USAGE and RECORDING MODE. The binary-coded decimal

form is also used to represent characters and symbols that are alphanumeric items.

The selection of the proper binary-coded alphanumeric or binary-coded decimal

form is dependent upon the capability of the computer and its external media.

When a computer provides more than one means of representing data, the Standard

Data Format must be used if not otherwise specified by the data description.

If both the external medium and the computer are capable of handling more than

one form of data representation, or if there is no external medium associated

with the data, the selection is dependent on factors included in USAGE,

PICTURE, etc., clauses. Each implementor provides a complete explanation of

the possible forms on the computer for which he is implementing COBOL. The

method used in selecting the proper data form is also provided to allow the

programmer to anticipate and/or control the selection.

The size of an elementary data item or a group item is the number of characters

in Standard Data Format of the item. Synchronization and usage may cause a

difference between this size and the actual number of characters required for the

internal representation.

3.3.5 ALGEBRAIC SIGNS

Algebraic signs are used for two purposes; (1) To show whether the value of

an item involved in an operation is positive or negative; and (2) To identify

the value of an item as positive or negative on an edited report tor external
use.

Most forms of representation have a standard or normal manner of representing

an operational sign. Thus, an indication that an operational sign is associated

with an item is usually sufficient.

Since certain forms of representation allow alternative methods for representing

operational signs, it is possible to describe certain types of operational signs
which deviate from the normal method. Editing sign control characters are used

to display the sign of an item and are not operational signs. These editing

characters are only available through the use of the PICTURE clause.

3.3.6 ITEM ALIGNMENT FOR INCREASED OBJECT-CODE EFFICIENCY

Some computer memories are organized in such a way that there are natural

addressing boundaries in the computer memory (e.g., word boundaries, half-word

boundaries, byte boundaries). The way in which data is stored is determined

by the object program, and need not respect these natural boundaries.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-3-10

—COBOL

Language Concepts

QUALIFICATION!

However, certain uses of data (e.g., in arithmetic operations or in subscript¬

ing) may be facilitated if the data is stored so as to be aligned on these

natural boundaries. Specifically, additional machine operations in the object

program may be required for the accessing and storage of data if portions of

two or more data items appear between adjacent natural boundaries, or if certain

natural boundaries bifurcate a single data item.

Data items which are aligned on these natural boundaries in such a way as to

avoid such additional machine operations are defined to be synchronized. A

synchronized item is assumed to be introduced and carried in that form;

conversion to synchronized form occurs only during the execution of a procedure

(other than READ or WRITE) which stores data in the item.

Synchronization can be accomplished in two ways:

a. Cy use of the SYNCHRONIZED clause,

b. By recognizing the appropriate natural boundaries and organizing

the data suitably without the use of the SYNCHRONIZED clause.

Each implementor who provides for special types of alignment will specify the

precise interpretations which are to be made.

3.3.7 UNIQUENESS OF DATA REFERENCE

3.3.7.1 Qualification

Every name used in a COBOL source program must be unique, either because no

other name has the identical spelling, or because the name exists within a

hierarchy of names such that the name can be made unique by mentioning one or

more of the higher levels of the hierarchy. The higher levels are called

qualifiers and this process that specifies uniqueness is called qualification.

Enough qualification must be mentioned to make the name unique; however, it

may not be necessary to mention all levels of the hierarchy. Within the Data

Division, all data-names used for qualification must be associated with a

level indicator or a level-number.

In the hierarchy of qualification, names associated with a level indicator

are the most significant, then those names associated with level-number 01,

then names associated with level-number 02, ... 49. A section-name is the

highest (and the only) qualifier available for a paragraph-name. Thus, the

most significant name in the hierarchy must be unique and cannot be qualified.

Subscripted or indexed data-names and conditional variables, as well as

procedure-names and data-names, may be made unique by qualification. The name

of a conditional variable can be used as a qualifier for any of its condition-

names. Regardless of the available qualification, no name can be both a

data-name and procedure-name.

Qualification is performed by following a data-name or a paragraph-name by

one or more phrases composed of a qualifier preceded by IN or OF. IN and OF
are logically equivalent.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-3-11

CODASYL COBOL

Language Concepts

SUBSCRIPTING

The general formats for qualification are:

Format 1

5data-name-l

condition-name

Format 2

paragraph-name

j ojj! 1
j IN (

data -name-2

n -! J IN (
sec tion-name

Lf —)

The rules for qualification are as follows:

1. Each qualifier must be of a successively higher level and within the same

hierarchy as the name it qualifies.

2. The same name must not appear at t\^o levels in a hierarchy.

3. If a data-name or a condition-name is assigned to more than one data item

in a source program, the data-name or condition-name must be qualified each

time it is referred to in the Procedure, Environment, and Data Divisions

(except REDEFINES where, by definition, qualification is unnecessary).

4. A paragraph-name must not be duplicated within a section. When a

paragraph-name is qualified by a section-name, the word SECTION must not

appear. A paragraph-name need not be qualified when referred to from

within the same section.

5. A data-name cannot be subscripted when it is being used as a qualifier.

6. A name can be qualified even though it does not need qualifications; if

there is more than one combination of qualifiers that ensures uniqueness,

then any such set can be used.

3.3.7.2 Subscripting

Subscripts can be used only when reference is made to an individual element

within a list or table of like elements that have not been assigned individual

data-names (see 6.29, The OCCURS Clause).

The subscript can be represented either by a numeric literal that is an

integer, or by the special register TALLY, or by a data-name. The data-name

must be a numeric elementary item that represents an integer. When the sub¬

script is represented by a data-name, the data-name may be qualified but not

subscripted.

The subscript may contain a plus sign. The lowest possible subscript value is

1. This value points to the first element of the table. The next sequential

elements of the table are pointed to by subscripts whose values are 2, 3,

The highest permissible subscript value, in any particular case, is the maximum

of occurrences of the item as specified in the OCCURS clause.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-3-12

CODASYL COBOL

Language Concepts

INDEXING

The subscript, or set of subscripts, that identifies the table element is

enclosed in parentheses immediately following the terminal space of the table
element data-name. The table element data-name appended with a subscript is

called a subscripted data-name or an identifier. Although net required, a comma

may separate subscripts in a series. A space may appear between the left

parenthesis and the left most subscript, and between the right parenthesis and

the right most subscript.

The Format is:

data-name (subscript [, subscript] ...)

3.3.7.3 Indexing

References can be made to individual elements within a table of like elements

by specifying indexing for that reference. An index is assigned to that level

of the table by using the INDEXED BY clause in the definition of a table. A

name given in the INDEXED BY clause is known as an index-name and is used to

refer to the assigned index. An index-name must be initialized by a SET

statement before it is used as a table reference (see 7.35, The SET Statement).

Direct indexing is specified by using an index-name in the form of a subscript.

Relative indexing is specified when the index-name is followed by the operator

+ or -, followed by an unsigned integral numeric literal all enclosed in the

parentheses immediately after the terminal space of the data-name.

Data Description

The general format for indexing is:

data-name (index-name

, index-name integer

-

integer

. . .)

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-3-13

COBOL

Language Concepts

Indexing

3.3.7.4 Identifier

data-name, if not unique in

correct combination of

insure uniqueness.

An identifier is a term used to reflect that a

a program, must be followed by a syntactically

qualifiers, subscripts or indices accessary to

The general formats for identifiers are:

Format 1

data-name-1 OF

Jin
data-name-2 (subscript-1

, subscript-3
L.

)
_

subscript-2

Format 2

data-name-1 OF data-name-2
IN

-

[■ index-name-2 integer

(index-name-1

index-name-3

integer

integer

]

]]]>]

Restrictions on qualification, subscripting and indexing are:

1. The commas shown in the general formats are not required.

2. A data-name must not itself be subscripted nor indexed when that data-name

is being used as an index, subscript or qualifier.

3. Indexing is not permitted where subscripting is not permitted.

4. An index may be modified only by the SET, SEARCH, and PERFORM statements.

Data items described by the USAGE IS INDEX clause permit storage of the

values associated with index-names as data in a form specified by the

implementor. Such data items are called index data items.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL-—-COBOL

JOURNAL OF DEVELOPMENT
III-3 -14

CHAPTER 4

IDENTIFICATION DIVISION

4.1 GENERAL DESCRIPTION

The Identification Division must be included in every COBOL source program. This

division identifies both the source program and the resultant output listing. In

addition, the user may include the date the program is written, the date the comp¬
ilation of the source program is accomplished and such other information as desired

under the paragraphs in the General Format shown below.

4.2 ORGANIZATION

Fixed paragraph names identify the type of information contained in

The name of the program must be given in the first paragraph, which

PROGRAM-ID paragraph. The other paragraphs are optional and may be

in this division at the user's choice, in the order of presentation
General Format below.

the paragraph,

is the

included

shown by the

4.2.1 STRUCTURE

The following format shows the structure of the Identification Division.

4.2.1.1 General Format

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name .

[AUTHOR, [comment-entry] • • •]

[INSTALLATION, [comment-entry] . . •]

f DATE-WRITTEN. [comment - entry]. . .]

[DATE-COMPILED. [comment - entry]. . .]

[SECURITY. [comment-entry]...]

PROGRAMMING LANGUAGE COMMITTEE
CODASYL-----COBOL

JOURNAL OF DEVELOPMENT
III-4-1

Identification Division

ORGANIZATION

4.2.1.2 Syntax Rules

1. The Identification Division must begin with the reserved words IDENTIFICATION

DIVISION followed by a period and a space.

4.2.1.3 General Rules

1. The comment-entry may be any combination of the characters from the
computer's character set organized to conform to sentence and paragraph

format.

The following pages define the PROGRAM-ID paragraph and the DATE-COMPILED
paragraph. While the other paragraphs are not defined, each General Format

is formed in the same manner.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL—----COBOL

JOURNAL OF DEVELOPMENT
III-4-2

Identification Division

PROGRAM-ID

4.3 THE PROGRAM-ID PARAGRAPH

4.3.1 FUNCTION

The PROGRAM-ID paragraph gives the name by which a program is identified.

4.3.2 GENERAL FORMAT

PROGRAM-ID. program-name.

4.3.3 SYNTAX RULES

1. The program-name must conform to the rules for formation of a procedure-name.
If the program-name is used to interact with the system, that portion of the

name which is actually used is specified by the implementor.

4.3.4 GENERAL RULES

1. The PROGRAM-ID paragraph must contain the name of the program and must be

present in every program.

2. The program-name identifies the source program and all listings pertaining
to a particular program.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL-COBOL

JOURNAL OF DEVELOPMENT

III-4-3

Identification Division

DATE-COMPILED

4.4 THE DATE-COMPILED PARAGRAPH

4.4.1 FUNCTION

The DATE-COMPILED paragraph provides the compilation date in the Identification

Division source program listing.

4.4.2 GENERAL FORMAT

DATE-COMP I LED. [comment-entry] • . .

4.4.3 GENERAL RULES

1. The paragraph-name DATE-COMPILED causes the current date to be inserted

during program compilation. If a DATE-COMPILED paragraph is present,

it is replaced during compilation with a paragraph of the form:

DATE-COMPILED. current date.

2. The comment-entry may be any combination of the characters from the computer's

character set organized to conform to sentence and paragraph format.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL—-—-COBOL

JOURNAL OF DEVELOPMENT

CHAPTER 5

ENVIRONMENT DIVISION

5.1 GENERAL DESCRIPTION

The Environment Division specifies a standard method of expressing those aspects
of a data processing problem that are dependent upon the physical characteristics
pf a specific computer. This division allows specification of the configuration

of the compiling computer and the object computer. In addition, information
relating to input-output control, special hardware characteristics and control

techniques can be given.

The Environment Division must be included in every COBOL source program.

5.2 ORGANIZATION

Two sections make up the Environment Division: the Configuration Section and the

Input-Output Section.

The Configuration Section deals with the characteristics of the source computer

and the object computer. This section is divided into three paragraphs: the

SOURCE-COMPUTER paragraph, which describes the computer configuration on which the

source program is compiled; the OBJECT-COMPUTER paragraph, which describes the

computer configuration on which the object program produced by the compiler is to

be run; and the SPECIAL-NAMES paragraph, which relates the implementor-names used
by the compiler to the mnemonic-names used in the source program.

The Input-Output Section deals with the information needed to control transmission

and handling of data between external media and the object program. This section

is divided into two paragraphs: the FILE-CONTROL paragraph which names and

associates *the files with external media; and the I-O-CONTROL paragraph which

defines special control techniques to be used in the object program.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
COBOL

Environment Division

ORGANIZATION

5.2.1 STRUCTURE

The following is the general outline of the sections and paragraphs in the

Environment Division, and defines the order of pre ;entation in the source program.

5.2.1.1 General Format

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. source-computer-entry

OBJECT-COMPUTER. object-computer-entry
FSPECIAL-NAMES. specia1-names-entry]

fINPUT-OUTPUT SECTION.
FILE-CONTROL . j file-control-entry| ...

fI-O-CONTROL. input-output-control-entry]

5.2.1.2 Syntax Rules

1. The Environment Division must begin with the reserved words ENVIRONMENT DIVISION
followed by a period and a space.

2. The definitions of the entries for the contents of the paragraphs shown above

are given on the following pages.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL

JOURNAL OF DEVELOPMENT
III-5-2

—COBOL

Environment Division

SOURCE-COMPUTER

5.3 CONFIGURATION SECTION

5.3.1 THE SOURCE-COMPUTER PARAGRAPH

5.3.1.1 Function

The SOURCE-COMPUTER paragraph describes the computer upon which the program is to

be compiled, and provides a means of communication with an executive routine.

5.3.1.2 General Format

Format 1

SOURCE-COMPUTER. COPY library-name

T (word-1)
REPLACING < . , . . r. •, }
L- (identifier-1)

BY
(word-2 \

\ identifier-2 /

(word-3 1
BY

(word-4 \
-|

i identifier-3 j \identifier-4 f _
• • •

Format 2

SOURCE-COMPUTER.

, MEMORY SIZE

[, [literal-5]

computer-name [WITH SUPERVISOR CONTROL]

WORDS

integer CHARACTERS

MODULES

ADDRESS literal-1 {
THRU)

THROUGH (
literal-2

[, literal-3 ^ THROUGH (literal-4] ...

implementor-name-1] ..

PROGRAMMING LANGUAGE COMMITTEE
CODASYL

JOURNAL OF DEVELOPMENT

III-5-3

COBOL

Environment Division

SOURCE-COMPUTER

5.3.1.3 Syntax Rules

1. Computer-name is an implementor-name that must conform to the rules for forma¬
tion of a procedure-name.

2. Each literal may be numeric or nonnumeric; when numeric, it must be an unsigned

integer.

3. The words THRU and THROUGH are equivalent.

5.3.1.4 General Rules

1. For a discussion of the COPY function see Chapter 9, The COBOL Library.

2. Fixed computer-names and implementor-names are assigned by the individual

implementor. Implementor-name may include input-output units, floating-point

hardware, indicators such as breakpoints and sensing devices, index registers
and any additional or special machine instructions, etc.

3. The computer-name may provide a means for describing equipment configuration,
in which case the computer-name and its implied configuration are specified by

each implementor. If the configuration implied by computer-name comprises more

or less equipment than is actually needed by the compiler, the descriptive

clauses following computer-name permit the specification of the actual subset

of the configuration. The configuration definition contains specific informa¬

tion concerning the memory size, memory address, and quantity and types of

hardware for a specific computer.

The implementor defines what is to be done if the subset specified by the user

is less than the minimum configuration required for compilation.

4. The SUPERVISOR option is used when the compiler is planned to be run under

control of an operating system. This clause is for documentation purposes

only, since the decision on mode of operating system control must have already

been made prior to reading this entry in the source program. Communication

between the compiler and the executive routine is specified by each implementor.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL

JOURNAL OF DEVELOPMENT
III-5-4

COBOL

Environment Division

OBJECT-COMPUTER

5.3.2 THE OBJECT-COMPUTER PARAGRAPH

5.3.2.1 Function

The OBJECT-COMPUTER paragraph describes the compu er on which the program is to be
executed, permits the specification of the input unit from which the computer

instructions of the object program will be read at object time, and provides a

means of communication with an executive routine.

5.3.2.2 General Format

Format 1

OBJECT-COMPUTER. COPY library-name

REPLACING (W°rd"L }
|_ (identif ier-1J

BY <
word-2 1

identifier-2/

j word-3)
BY

jword-4 i -j

’ \ identifier-3) (identifier-4)

Format 2

OBJECT-COMPUTER. computer-name [WITH SUPERVISOR CONTROL]

WORDS

integer < CHARACTERS

MODULES

, MEMORY SIZE

I ADDRESS literal-1 j THROUGH } literal-2

r (THRU) ,
L> litera1-3 \ THROUGH/ literal-4J •••

[, [literal-5] implementor-name-l] ...

[, SEGMENT-LIMIT IS priority-number] [, ASSIGN OBJECT-PROGRAM TO

input-unit].

PROGRAMMING LANGUAGE COMMITTEE
CODASYL---COBOL

JOURNAL OF DEVELOPMENT
III-5-5

Environment Division

OBJECT-COMPUTER

5.3.2.3 Syntax Rules

1. Computer-name is an implementor-name that must conform to tr.e rules for

formation of a procedure-name.

2. Each literal may be numeric or nonnumeric; when numeric, it must be an unsigned
integer.

3. Priority-number must be an integer ranging in value from 1 through 49.

4. The words THRU and THROUGH are equivalent.

5.3.2.4 General Rules

1. For a discussion of the COPY function see Chapter 9, The COBOL Library.

2. The computer-name may provide a means for describing equipment configuration,
in which case the computer-name and its implied configuration are specified by

each implementor. If the configuration implied by computer-name comprises more

or less equipment than is actually needed by the object program, the descrip¬

tive clauses following computer-name permit the specification of the actual

subset of the configuration. The configuration definition contains specific

information concerning the memory size, memory address, and quantity and types

of hardware for a specific computer.

The implementor defines what is to be done if the subset specified by the user

is less than the minimum configuration required for running the object program.

3. The SUPERVISOR clause is used when the object program is to be executed under
the control of an executive routine. Communication between the object program

and the executive routine is specified by the implementor.

4. Implementor-name may include input-output units, floating-point hardware,

indicators such as breakpoints and sensing devices, index registers and any

additional or special machine instructions, etc.

5. The optional SEGMENT-LIMIT clause gives the limit for segmentation to be varied

by the user depending upon the configuration specified in the OBJECT-COMPUTER

paragraph.

6. If the ASSIGN OBJECT-PROGRAM clause is used, the compiler assigns the specified

input unit as the unit from which the object program computer instructions are

read at object time. The names for the allowable input units are specified by

the implementor. If the clause is omitted, the compiler assigns the
implementor-defined standard input unit for this purpose.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL-

JOURNAL OF DEVELOPMENT
III-5-6

COBOL

Kn v i ronmei11 Division

SPECIAL-NAMES

5.3.3 THE SPECIAL-NAMES PARAGRAPH

5.3.3.1 Function

The SPElIAL-NAMES paragraph provides a means of relating implementor-names to

user-specified mnemonic-names.

5.3.3.2 General Format

Format 1

SPECIAL-NAMES. COPY library-name

word-1
REPLACING

jword-1 1 tword-2

(identif ier-lj — (identif

[■

dentifie

j word-3

ier-2 }

< 3 l RY iword"4 \] 1
(identifier-3 f — (-identif ier-4j J* ''J '

Format 2

SPECIAL-NAMES. £implementor-name

IS mnemonic-name £, ON STATUS

IS mnemonic-name £, OFF STATUS

ON STATUS IE condition-name-1

OFF STATUS IS condition-name-2

IS condition-name-1 £ , OFF STATUS JtS condition-name-2] J

IS condition-name-2 ON STATUS LS condit i on-name - l] J

OFF STATUS JE condition-name-2]

ON STATUS JLS condition-name-l]

[, CURRENCY SIGN IS literal] [, DECIMAL-POINT IS COMMA].

5.3.3.3 Syntax Rules

1. The SPECIAL-NAMES paragraph is required if mnemonic - names, condition-names,

the DECIMAL"POINT clause or the CURRENCY SIGN clause are used.

2. In repetition, a comma may be used before implementor-name.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

COBOL
JOURNAL OF DEVELOPMENT

III-5-7

Environment Division

SPECIAL-NAMES

5.3.3.4 General Rules

1. For a discussion of the COPY function see Chapter 9, The COFOL Library.

2. If the implementor-name is not a switch, the associated mnemonic-name may be

used in the ACCEPT, DISPLAY, SUSPEND and WRITE statements and in the CODE and

LINAGE clauses.

3. If the implementor-name is a switch, at least one condition-name must be

associated with it. The status of the switch is specified by condition-names

and interrogated by testing the condition-names (see 7.4.5, Switch-Status
Condition).

4. The literal which appears in the CURRENCY SIGN IS literal clause is used in

the PICTURE to represent the currency symbol. The literal is limited to a

single character and must not be one of the following characters:

a. digits 'O' thru '9';

b. alphabetic cha racters ' A ' ' B' , ' C ' , ' D ' , ' J ' , 'K\ 1 'L',

'R' , 'S' , 1 'V , 'X', 'Z' or the space;

c. special charac ters ’+' I t 1
5 “

ii ii i .
5 J J • > 1

If this clause is not present, only the currency sign is used

PICTURE clause.

5. The clause DECIMAL-POINT IS COMMA means that the function of comma and period

are exchanged in the PICTURE clause character-string and in numeric literals.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL

JOURNAL OF DEVELOPMENT
III-5-8

COBOL

Knv i ronmcnl])i vii on

FILE-CONTROL

5.4 INPUT-OUTPUT SECTION

5.4.1 THE FILE-CONTROL PARAGRAPH

5.4.1.1 Function

The FILE-CONTROL paragraph names each file, identifies the file medium, and allows
particular hardware assignments.

5.4.1.2 General Format

Format L

FILE-CONTROL. COPY library-name

(word-1 (word-1 ((word-2 (
[REPLACING {identifier-^ M { identifier-2}

|"(word-3 t (word-4]
L’ (identifier-3/ — (identif ier-4 /

Format 2

FILE-CONTROL. J SELECT
{

OPTIONAL file-name

ASSIGN TO £integer-l] implementor-name-1 [, implementor-name-2]

(REEL 1 "I T (integer-2 1 T AREA 1
FOR MULTIPLE \ ^ \ J [, RESERVE {no) ALTERNATE [AREASJ

[, PRIORITY IS implementor-name-3]

(FILE-LIMIT
1S 1 (data-name- ll (THRU) (data-name-2(

’1 FILE-LIMITS ARE ((literal-1 j)THROUGH ((literal-2 J

T (data-name-3) (THRU ((data-name-4(
L’ (literal-3 / 1 THROUGH f (literal-4 / J

, ACCESS MODE IS
(SEQUENTIAL
| RANDOM l]

, PROCESSING MODE IS

, ACTUAL KEY IS data-name

(SEQUENTIAL
(RANDOM FOR integer-3 RECORDS

■>]■ >
I]

PROGRAMMING LANGUAGE COMMITTEE _ _
CODASYL-COBOL

JOURNAL OF DEVELOPMENT
in-5-9

K n v i reunion l D i vi s ion

FILE-CONTROL
_i

Format 3

FILE-CONTROL. |SELECT [OPTIONAL] file-name

ASSIGN TO implementor-name-4

[, implementor-name-5] ... OR implement or-name-6 [, implementor-name-7] ...

(REEL | “I I linteger-4) [AREA] 1
FOR MULTIPLE 7 UNIT> RESERVE |NQ } ALTERNATE

[areas] |

[, PRIORITY IS implementor-name-8] . |

5.4.1.3 Syntax Rules

1. Each file described in the Data Division must be named once and only once as

file-name in the FILE-CONTROL paragraph following the key word SELECT. Each

selected file must have a File Description entry in the Data Division.

2. The OPTIONAL clause is allowed—only for input files accessed in a sequential

manner. It is required for sequential input files that are not necessarily

present each time the object program is executed.

3. Integer-1 indicates the number of input-output units of a given medium assigned

to the file-name. If an integer is not specified, the compiler determines the

number of units to be assigned.

4. In Format 2, if file-name is a sort-file, only the ASSIGN clause and the

PRIORITY clause are permitted to follow the file-name in the FILE-CONTROL
paragraph.

5. The ACCESS MODE and PROCESSING MODE clauses must be given for mass storage
files.

6. Any restrictions on the COBOL description of the operands in the ACTUAL KEY
and FILE-LIMIT clauses are specified by the implementor.

7. The words THRU and THROUGH are equivalent.

8. Format 3 can only be used with the GIVING option of a SORT statement and

specifies the final output file.

9. The FILE-CONTROL paragraph is required when the Input-Output Section header is
present.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL

JOURNAL OF DEVELOPMENT
III-5-10

COBOL

Environment Division

FILE-CONTROL

5.4.1.4 General Rules

1. For a discussion of the COPY function see Chapter 9, The COBOL Library.

Z. All files used in the program must be assigned to an input or output medium
(implementor-name). The implementor-name is specified by the implementor for

the specific hardware unit.

3. The MULTIPLE REEL clause must be included whenever the number of tape units

assigned, explicitly or implicitly, might be less than the number of reels in

the file. The MULTIPLE UNIT clause must be included whenever the number of

mass storage devices assigned might be less than the number of mass storage

units in the file.

4. The RESERVE clause allows the user to modify the number of input-output areas

allocated by the compiler. The option RESERVE integer ALTERNATE AREAS means

that integer additional areas are to be reserved for the file in addition to

the minimum area. The implementor specifies what is the minimum area and what

is the additional area for particular hardware.

5. When specific input or output units are assigned by the user, these units must

be assigned to all files existing on the same reel for reel-oriented storage

media (see 5.4.2, The I-O-CONTROL Paragraph).

6. The PRIORITY clause provides a means of assigning priorities to individual

files for multiprogramming operations. The manner in which the PRIORITY is

specified is defined by the implementor.

7. The FILE-LIMIT clause specifies that:

a. For Sequential Access, logical records are obtained or placed sequentially

in the mass storage file by the implicit progression from segment to segment.

The AT END imperative-statement of a READ statement is executed when the
logical end of the last segment of the file is reached and an attempt is

made to read that file. The INVALID KEY clause of a WRITE statement is

executed when the end of the last segment is reached and an attempt is made

to write on that file.

b. For Random Access, logical records are obtained or placed randomly in the

mass storage file within these file limits. The contents of the ACTUAL KEY

data items that are not within these limits cause the execution of the

INVALID KEY clause on the READ and the WRITE statements.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL---COBOL

JOURNAL OF DEVELOPMENT
III-5-11

Environment Division

FILE-CONTROL

8. In the FILE-LIMIT clause, each pair of operands associated with the key word
THRU represents a logical segment of the file. The logical beginning of a

mass storage file segment is considered to be that address represented by the
first operand of the pair of the FILE-LIMIT clause; the logical end of

a mass storage file segment is considered to be that address as represented by
the last operand of the pair of the FILE-LIMIT clause.

9. File limit information may also be specified in the ASSIGN clause. If this
information is provided in both places, the value of the data item as specified

in the FILE-LIMIT clause must be within the range of the limits specified in

the ASSIGN clause.

10. The value of the data items as specified in the FILE-LIMIT clause is utilized
by the Mass Storage Control System only at the time that the applicable mass

storage file is opened by the execution of the OPEN statement.

11. For the ACCESS MODE SEQUENTIAL clause, the mass storage records are obtained

or placed sequentially. That is, the next logical record is made available

from the file on a READ statement execution or a specific logical record is

placed into the file on a WRITE statement execution. No ACTUAL KEY entries

are necessary for the SEQUENTIAL mode.

12. If the ACCESS MODE RANDOM clause is specified, the ACTUAL KEY entry must also

be specified. In this case, the Mass Storage Control System obtains each

record randomly. That is, the specified logical record (located using ACTUAL

KEY data-name contents) is made available from the file on a READ statement

execution or is placed in a specific location on the file (using ACTUAL KEY
data-name contents) on a WRITE statement execution.

13. For the PROCESSING MODE SEQUENTIAL clause, the mass storage records are
processed in the order in which they are accessed.

14. For the PROCESSING MODE RANDOM clause, the mass storage records are processed
in an asynchronous, random manner, without regard for the order in which they

are accessed. However, the PROCESSING MODE RANDOM clause may be used only in

conjunction with the ACCESS MODE RANDOM clause. The asynchronous, random
processing of the mass storage records requires that the user write the

associated procedural statements in the USE entry in a Declarative Section and
that the user refer to these procedural statements in the Procedure Division

by the PROCESS statement.

15. The FOR integer-3 RECORDS specification indicates the number of mass storage
record areas which are provided to hold mass storage records for asynchronous

processing, and thus indicates the maximum number of asynchronous processing

cycles which are possible for that mass storage file. If integer-3 is specified

as 1, no asynchronous processing is possible for the mass storage file and, in

effect, the specification becomes equivalent to the clause PROCESSING MODE IS

SEQUENTIAL.

_ PROGRAMMING LANGUAGE COMMITTEE
CODASYL-——-COBOL

JOURNAL OF DEVELOPMENT
III-5-12

Environment Division

FILE-CONTROL

16. Although the ACTUAL KEY clause is optional for Sequential Access (the Mass

Storage Control System maintains an internal key), if the ACTUAL KEY clause
is specified, the Mass Storage Control System updates data-name-5 by the

following rules.

a. Following a WRITE statement execution, the contents of the ACTUAL KEY
data-item are always implicitly updated.

b. Prior to a READ statement execution, the contents of the ACTUAL KEY data

item are implicitly updated only if not logically preceded by a WRITE

statement execution.

Since the implicit updating of the ACTUAL KEY data item is a function of the
implementor's Mass Storage Control System and the specification is never

referred to or required by the Mass Storage Control System, any change the

programmer may make to the ACTUAL KEY data item does not affect the mass

storage file processing but may result in unpredictable values if subsequent

reference is made by the programmer to the contents of the ACTUAL KEY data
item.

17. If the access mode for this file is specified as RANDOM, the ACTUAL KEY clause

must be provided; the contents of data-name-5 is used by the SEEK statement

(or, in its absence, the READ and WRITE statements) to locate a specific mass

storage record. Thus, the actual location (address) must have been placed in

data-name-5 prior to the execution of the SEEK statement (or the implicit SEEK

associated with the READ and WRITE statements).

18. The presence of the OR clause means the file referenced by file-name emerges

from the sorting operation either on the assigned hardware units preceding

the key word OR, or on the hardware units following the key word OR. At the

conclusion of the sorting operation, an indication will be given of which

hardware units contain the file. The proper hardware units are addressed

when this file is opened for input.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL---

JOURNAL OF DEVELOPMENT
III-5-13

COBOL

Environment Division

l-O- CONTROL

5.4.2 THE I-O-CONTROL PARAGRAPH

5.4.2.1 Function

The I-O-CONTROL paragraph specifies the input
which rerun is to be established, the memory

different files, and the location of files on

5.4.2.2 General Format

Forma t 1

I-O-CONTROL. COPY library-name

(word-1 \ (word-2 I
[replacing \identifier.1) ' BY • (identifier-2/

r (word-3 \
BY

(word-4)]

(identifier-4/ J [’ (identifier-2/

Forma t 2

1 -Q-CONTROL. j~APPLY input-output-technique ON file-name-1

[, file- name - 2 3 . . . 1 . . .

>] ; RERUN
(file-name-3

(imp1ementor-nameJ

|[M2 of] {§§}
integer-1 RECORDS

OF file-name-4

EVERY

integer-2 CLOCK-UNITS

condition-name

MULTIPLE FILE TAPE CONTAINS file-name-8 [POSITION

integer-3] [, file-name-9 [POSITION integer-4]] J .. .J

r (RECORD / 1 / a ; SAME lSORT (AREA FOR file-name-5 <, file-name 6V * ' *

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
m-5-14

COBOL

Environment Division

l-O-CONTROL

5.4.2.3 Syntax Rules

1. The I-O-CONTROL paragraph is optional.

2. File-names in one APPLY clause must not be used in another APPLY clause.

3. APPLY clauses may be separated by the semicolon.

4. A file-name that represents a sort-file cannot appear in a RERUN or MULTIPLE

FILE option.

5. The END OF UNIT option may only be used if file-name-4 is a sequentially-

accessed mass storage file. The definition of UNIT is determined by each

implementor.

6. When either the integer-1 RECORDS option or the integer-2 CLOCK-UNITS option

is specified, implementor-name must be given in the RERUN option.

7. A file-name that represents a sort-file must not appear in the SAME clause

unless the SORT or RECORD option is used.

8. The three forms of the SAME clause (SAME AREA, SAME RECORD AREA, SAME SORT

AREA) are considered separately in the following:

More than one SAME clause may be included in a program, however:

a. A file-name must not appear in more than one SAME AREA clause.

b. A file-name must not appear in more than one SAME RECORD AREA clause.

c. A file-name that represents a sort-file must not appear in more than one

SAME SORT AREA clause.

d. If one or more file-names of a SAME AREA clause appear in a SAME RECORD
AREA clause, all of the file-names in that SAME AREA clause must appear

in that SAME RECORD AREA clause. However, additional file-names not

appearing in that SAME AREA clause may also appear in that SAME RECORD
AREA clause. The rule that only one of the files mentioned in a SAME

AREA clause can be open at any given time takes precedence over the rule

that all files mentioned in a SAME RECORD AREA clause can be open at any

given time.

e. If a file-name that does not represent a sort-file appears in a SAME AREA

clause and one or more SAME SORT AREA clauses, all of the files named in

that SAME AREA clause must be named in that SAME SORT AREA clause(s).

PROGRAMMING LANGUAGE COMMITTEE
CODASYL

JOURNAL OF DEVELOPMENT
m-5-15

COBOL

Environment Division

l-O-CONTROL

5.4.2.4 General Rules

1. For a discussion of the COPY function see Chapter 9, The COBOL Library.

2. When the implementor furnishes more than one input-output system technique,

the APPLY input-output technique option permits the user to select the

appropriate technique for his object program; Specific names to designate the
individual input-output techniques are specified by the implementor.

The implementor must provide at least one of the specified forms of the RERUN
c lause.

The RERUN clause specifies where the rerun information is recorded and when

the memory dump occurs. Memory dumps are recorded in the following ways;

a. The memory dump is written on each reel or unit of an output file and the

implementor specifies where, on the reel or file, the memory dump is to be
recorded;

b. The memory dump is written on a separate rerun tape or unit, as specified

by the implementor-name given in the RERUN option.

5. Listed below are several conditions under which rerun points can be established:

a. When either the END OF REEL or END OF UNIT option is used and it is also

desired to write the memory dump on an output file, as specified by

file-name-4. In this case, file-name-3 is not required.

b. When file-name-3, which must be an output file, is specified in the RERUN

option, normal reel- or unit-closing functions for file-name-3 are performed

along with the memory dump. In this case, file-name-4 may either be an
input file or an output file.

c. When a number of records, specified by integer-1, of an input or an output
file, file-name-4, have been processed. In this case, implementor-name
must be specified.

d. When an interval of time, specified by the use of the CLOCK-UNITS option,

calculated by an internal clock, has elapsed. In this case, implementor-

name must be specified.

e. When a hardware switch assumes a particular status as specified by
condition-name. In this case, the associated hardware switch must be

defined in the SPECIAL-NAMES paragraph of the Configuration Section of the

Environment Division. The implementor specifies when the switch status is

interrogated.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-5-16

COBOL

Environment Division

l-O-CONTROL

6. The SAME AREA clause' specifies that two or more files that do not represent
sort-files are to use the same memory area during processing. The area being
shared includes all storage areas (including alternate areas) assigned to the

files specified; therefore, it is not valid to have more than one of the files
open at the same time. (See 5.4.2.3, Syntax Rule 8.d.)

7. The SAME RECORD AREA clause specifies that two or more files are to use the
same memory area for processing of the current logical record. All of the

files may be open at the same time. A logical record in the SAME RECORD AREA

is considered as a logical record of each opened output file whose file-name

appears in this SAME RECORD AREA clause and of the most recently read input

file whose file-name appears in this SAME RECORD AREA clause.

8. If the SAME SORT AREA clause is used, at least one of the file-names must

represent a sort-file. Files that do not represent sort-files may also be
named in the clause. This clause specifies that storage is shared as follows:

a. The SAME SORT AREA clause specifies a memory area which will be made

available for use in sorting each sort-file named. Thus any memory area

allocated for the sorting of a sort-file is available for re-use in

sorting any of the other sort-files.

b. In addition, storage areas assigned to files that do not represent sort-

files may be allocated as needed for sorting the sort-files named in the

SAME SORT AREA clause. The extent of such allocation will be specified

by the implementor.

c. Files other than sort-files do not share the same storage area with each

other. If the user wishes these files to share the same storage area with

each other, he must also include in the program a SAME AREA or SAME RECORD

AREA clause naming these files.

d. During the execution of a SORT statement that refers to a sort-file named

in this clause, any non-sort-files named in this clause must not be open.

9. The MULTIPLE FILE option is required when more than one file shares the same
physical reel of tape. Regardless of the number of files on a single reel,

only those files that are used in the object program need be specified. If all

file-names have been listed in consecutive order, the POSITION option need not

be given. If any file in the sequence is not listed, the position relative to

the beginning of the tape must be given. Not more than one file on the same

tape reel may be open at one time.

„ PROGRAMMING LANGUAGE COMMITTEE
CODASYL-—-COBOL

JOURNAL OF DEVELOPMENT
III-5-17

CHAPTER 6

THE DATA DIVISION

6.1 GENERAL DESCRIPTION

6.1.1 OVERALL APPROACH

The Data Division describes the data that the object program is

to accept as input, to manipulate, to create, or to produce as

output. Data to be processed falls into three categories:

a. That which is contained in files and enters or leaves the
internal memory of the computer from a specified area or

areas .

b. That which is developed internally and placed into interme¬
diate or working-storage, or placed into specific format for

output reporting purposes.

c. Constants which are defined by the user.

6.1.2 PHYSICAL AND LOGICAL ASPECTS OP DATA DESCRIPTION

6.1.2.1 Data Division Organization

The Data Division, which is one of the required divisions in a

program, is subdivided into sections. These are the File,
Working-Storage, Constant, Linkage, and Report Sections.

The File Section defines the contents of data files stored on an

external medium. Each file is defined by a file description

followed by a record description or a series of record descriptions.
When the file description specifies a file to be used only as a
Report Writer output file, the record description can be omitted.

The Working-Storage Section describes records and noncontiguous data

items which are not part of external data files but are developed

and processed internally. The Constant Section describes data items
whose values are assigned in the source program and do not change
during the execution of the object program. Like the Working-Storage
Section, the Constant Section may specify both logical records and

COBOL CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT

III-6-1

Data Division

GENERAL DESCRIPTION

noncontiguous items. The Linkage SecLion appears in the caI Led

program and describes data items that are to be referred lo by the

calling program and the called program. Its structure is Lhe same as

the Working-Storage and Constant Sections. The Report Section

describes the content and format of reports that are to be generated.

6.1.2.2 Data Division Structure
The Data Division is prepared according to the reference format
described in Chapter 10. The Data Division is identified by and

must begin with the following header:

DATA DIVISION [PREPARED FOR computer-nameJ.

The optional clause PREPARED FOR computer-name, is used only when

the data descriptions have been written for a computer other than

the object computer. Each of the sections of the Data Division
is optional and may be omitted from the source program if not

needed. The fixed names of these sections in their required

order of appearance as section headers in the Data Division are

as follows:

FILE SECTION.
WORKING-STORAGE SECTION.

CONSTANT SECTION.

LINKAGE SECTION.

REPORT SECTION.

The section headers for the File Section and the Report Section

are followed by one or more sets of entries composed of file

clauses, followed by associated record description entries.

Working-Storage, Constant and Linkage Section headers are

followed by data description entries for noncontiguous items,
followed by record descriptions. This is illustrated in

Figure 6-1, Data Division Structure.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-2

CODASYL COBOL

CODASYL

D«itn Division

GENERAL DESCRIPTION

V_

11*0 section* of the Out* Oi/iMon.
if present, appear in the source

program in the order shown reading

f row top to Pol tom.

If the RfPORI SECTION >'• present,
11:0 Report name euisl appear in an

i U entry in the 11 It SI C TI OH.

A SAVED ARIA (SA) entry and its
associated data description aio
required when the PROCESSING
Mfllif IS RANDOM clause is si>*ci-

fied in the tile Control
paragraph.

Figure 6-1 DATA DIVISION STRUCTURE

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
COBOL

III-6-3

Data Division

FILE SECTION

6.2 FILE SECTION

In a COBOL program the File Description entries (FD, SD) represent the

highest level of organization in the File Section. The Sort File

Description (SD) is a special type of file description. The File Sec¬

tion has a special provision for reserving memory for mass storage
processing via a Saved-Area (SA) entry and subordinate descriptions.

The File Section header is followed by a File Description entry consist¬

ing of a level indicator (FD, or SD), a data-name and a series of

independent clauses. These clauses specify the manner in which the data
is recorded on the file, the size of the logical and physical records,

the names of the label records contained in the file and values of label

items, the names of the data records and reports which comprise the file

and finally, the keys on which the data records are sequenced. The
entry itself is terminated by a period.

An SD File Description gives information about the name, size, and

number of data records in the sort file. The name Sort File designates

a set of records to be sorted by a SORT statement. There are no label
procedures which the user can control, and the rules for blocking and

internal storage are peculiar to the SORT statement.

When the processing mode for a file is random, an SA entry must appear

in the File Section, followed by record description entries for data

referred to by the out-of-line procedures. The SA entry, like the

BLOCK CONTAINS clause in the FD entry, describes a memory area contain¬

ing a number of records, each of which may be of any of the records
described following the SA entry.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
COBOL

III-6-4

RECORD DESCRIPTION - STRUCTURE

6.3 RECORD DESCRIPTION-STRUCTURE

A Record Description consists of a set of data description entries which

describe the characteristics of a particular record. Each data descrip¬

tion entry consists of a level-number followed by a data-name if required

followed by a series of independent clauses as required. A Record

Description has a hierarchical structure and therefore the clauses used

with an entry may vary considerably, depending upon whether or not it is
followed by subordinate entries. The structure of a record description

is defined in 3.3.2, Concepts of Levels while the elements allowed in a

Record Description are shown in 6.12, the Data Description Skeleton.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-5

COBOL

Data Division

WORKING - STORAGE SECTION

6.4 WORKING-STORAGE SECTION

The Working-Storage Section is composed of the section header, followed

by data description entries for noncontiguous Working-Storage items and

record description entries in that order. Each Working-Storage Section

record name and noncontiguous item name must be unique since it cannot

be qualified. Subordinate data-names need not be unique if they can be

made unique by qualification.

6.4,1 NONCONTIGUOUS WORKING-STORAGE

Items in Working-Storage which bear no hierarchic relationship to one

another need not be grouped into records, provided they do not need to
be further subdivided. Instead, they are classified and defined as
noncontiguous elementary items. Each of these items is defined in a

separate data description entry which begins with the special level-

number, 77.

The following data clauses are required in each data description entry:

a. level-number 77

b. data-name

c. the PICTURE clause.

Other data description clauses are optional and can be used to complete

the description of the item if necessary.

6.4.2 WORKING-STORAGE RECORDS

Data elements in Working-Storage which bear a definite hierarchic

relationship to one another must be grouped into records according to

the rules for formation of Record Descriptions. All clauses which are
used in normal input or output Record Descriptions can be used in a

Working-Storage Record Description.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-6

CODASYL COBOL

WORKING - STORAGE SECTION

6.4.3 INITIAL VALUES

The initial value of any item in the Working-Storage Section except an

index data item is specified by using the VALUE clause with the data

item. The initial value of any index data-item is unpredictable.

The skeletal format for the Working-Storage Section is as follows:

WORKING-STORAGE SECTION.

77 data-description entry

88 condition-name-1

77 data-description entry

01 data-description entry

02 data-description entry

66 data-name-n RENAMES data-name-tr

01 data-description entry
02 data-description entry

03 data-description entry

88 condition-name-2

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-7

COBOL

Data Division

CONSTANT SECTION

6.5 CONSTANT SECTION

Constant storage is that part of computer memory set aside to save

named constants for use in a given program. The concept of literals

and figurative constants enables the user to specify the value of a

constant by writing its actual value or a figurative representation

of that value.

The Constant Section is organized in exactly the same way as the

Working-Storage Section, beginning with a section header, followed
by data description entries for noncontiguous constants, and then by

data description entries for contiguous constant records in that order.
Each Constant Section record-name and noncontiguous item name must be

unique since it cannot be qualified. Subordinate data-names need not be
unique if they can be made unique by qualification.

6.5.1 NONCONTIGUOUS CONSTANT STORAGE

Constants that bear no hierarchic relationship to one another need not be

grouped into records and are classified and defined as noncontiguous

elementary items. Each of these constants is defined in a separate

data description entry which begins with the special level-number 77.

The following data clauses are required in each data description

entry:

a. level-number 77
b. data-name

c. the PICTURE clause

d . VALUE.

The clause USAGE IS INDEX must not be used in the entry. Other data

clauses are optional and can be used to complete the description of
the constant when necessary.

6.5.2 CONSTANT RECORDS

Constants that bear a definite hierarchic relationship to one another

must be grouped into records according to the rules for formation of
Record Descriptions.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-8

COBOL

Data Division

CONSTANT SECTION

All data clauses, except USAGE IS INDEX, can be used In a Consianl
Record Description.

6.5.3 VALUE OF CONSTANTS

The value of every item in the Constant Section must be specified by

a VALUE clause, stated in the elementary item entry or in the group

item entry.

The skeletal format for the Constant Section is as follows:

CONSTANT SECTION.

77 data-description entry

77 data-description entry

01 data-description entry

02 data-description entry

01 data-description entry

02 data-description entry
03 data-description entry

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-9

COBOL

Data Division

LINKAGE SECTION

6.6 LINKAGE SECTION

The Linkage Section is used for describing data that is available

through the calling program but is to be referred to in both the

calling and the called program. Procedure Division references to

a data item in the Linkage Section are resolved at object-time by

equating the reference in the called program to the location used

in the calling program. The structure of the Linkage Section is

the same as that previously described for the Working-Storage Section,

beginning with a section header, followed by data description entries

for noncontiguous Linkage items and record description entries in that

order. Each Linkage Section record-name and noncontiguous item name

must be unique since it cannot be qualified. Subordinate data-names

need not be unique if they can be made unique by qualification.

Every data item described in the Linkage Section of the called
program must have been defined in the File, Working-Storage, Constant,

or Linkage Section of the calling program.

6.6.1 NONCONTIGUOUS LINKAGE STORAGE

Items in the Linkage Section that bear no hierarchic relationship
to one another need not be grouped into records and are classified

and defined as noncontiguous elementary items. Each of these data
items is defined in a separate data description entry which begins

with the special level-number 77.

The following data clauses are required in each data description entry:

a. level-number 77
b. data-name
c. the PICTURE clause.

Other data description clauses are optional and can be used to complete
the description of the item if necessary.

6.6.2 LINKAGE RECORDS

Data elements in the Linkage Section which bear a definite hierarchic
relationship to one another must be grouped into records according to

the rules for formation of Record Description. All clauses which are

used in normal input or output Record Descriptions can be used in a
Linkage Record Description.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL—--COBOL

JOURNAL OF DEVELOPMENT
III-6-10

Data Division

LINKAGE SECTION

6.6.3 INITIAL VALUES

The VALUE clause must not be specified in the Linkage Section except
in condition-name entries (level 88).

The skeletal format for the Linkage Section is as follows:

LINKAGE SECTION.

77 data-description entry
88 condition-name-1

77 data-description entry
01 data-description entry

02 data-description entry

66 data - name-n RENAMES data-name-m
01 data-description entry

02 data-description entry
03 data-description entry

88 condition-name-2

PROGRAMMING LANGUAGE COMMITTEE
CODASYL-—————— ■ ----COBOL

JOURNAL OF DEVELOPMENT
III-6-11

Data Division

REPORT SECTION

6.7 REPORT SECTION

The Report Section consists of two types of entries for each report; one

describes the physical aspects of the report format, the other type

describes conceptual characteristics of the items which make up the report

and their relation to the report format. These are:

a. Report Description entry RD;

b. Report Group Description entries.

6.7.1 REPORT DESCRIPTION ENTRY

The Report Description entry contains information pertaining to the over¬

all format of a report named in the File Section and is uniquely identified

in the Report Section by the level indicator RD. The characteristics

of the report page are provided by describing the number of physical lines

per page and the limits for presenting specified headings, footings, and

details within a page structure. Data items which act as control factors
during presentation of the report are specified in the RD entry. Each

report named in an FD entry in the File Section must be defined by an RD
entry.

6.7.2 REPORT GROUP DESCRIPTION ENTRY

A report may be divided into report groups. A report group is a set of

data items that is to be presented as an individual unit, irrespective of

its physical format structure. It may consist of several report lines

containing many data items or of one report line containing a single data

item. Three categories of report group definitions are provided: heading

groups, footing groups and detail groups.

The data items constituting a report group must be identified by the level-

number 01 and a TYPE clause. Report group names are required when reference

is made in the Procedure Division:

a. to a TYPE DETAIL report group by a GENERATE statement

b. to a TYPE HEADING or FOOTING report group by a USE statement.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-12

COBOL

Data Division

REPORT SECTION

The description of the report group, analogous to that of the data record,

consists of a set of entries defining the characteristics of the elements.

The placement of an item in relation to the entire report group and to the

overall report format, the format description of all items, and any

control factors associated with the group are defined by the entry.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-13

COBOL

Data Division

FD SKELETON

6.8 THE FILE DESCRIPTION-COMPLETE ENTRY SKELETON

6.8.1 FUNCTION

The File Description furnishes information concerning the physical
structure, identification, and record names pertaining to a given

file.

6.8.2 GENERAL FORMAT

Format 1

F0 file-name; COPY library-name

(word-1 1 (word-2 1
REPLACING l . , ... A BY J , _ A
- (identifier-1 j— |identifier-2 (

fword-3 11 word-4 1

(identifier-3 j — { identifier-4J

Format 2
F D file-name

[; RECORDING MODE IS mode-name]
"

TO] integer-2 \
RECORDS)

; BLOCK CONTAINS linteger-1
CHARACTERS /

[; RECORD CONTAINS linteger-3 TO] integer-4 CHARACTERS]

LABEL
RECORDS ARE

RECORD IS

STANDARD

OMITTED
data-name-1 [, data-name-2]

data-name-4 1
: VALUE OF data-name-3 IS <

literal-1 J

J data-name-6 1 1
, data-name-5 IS < literal-2 J j * • •

r ; DATAi REC.QRD IS 1 data-name-7 [, data-name-8] ...1
| RECORDS ARE (J

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT

1 l [-6-14

COBOL

Data Division

FD SKELETON

Format 2 (Cont.)

I" f REPORT IS 1
-

*) REPORTS ARE [report-name-1 [, report-name-2]

f identifier-1 LINES |

; LINAGE IS / integer-5 LINES /
1 mnemonic-name)

6.8.3 SYNTAX RULES

1. The level indicator FD identifies the beginning of a File Description

and must precede the file-name.

2. All semicolons are optional in the File Description but the entry

must be terminated by a period.

3. The clauses which follow the name of the file are optional in many

cases, and their order of appearance is immaterial.

6.8.4 GENERAL RULES

1. Format 1 is used when the COBOL library contains the File Description

entry, otherwise Format 2 is used.

2. For a discussion of the COPY function see Chapter 9, The COBOL Library.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-15

COBOL

sp sica

6.9 THE SORT FILE DESCRIPTION-COMPLETE ENTRY SKELETON

6.9.1 FUNCTION

The Sort File Description furnishes information concerning the pliysic.il
structure, identification, and record names of the file to be sorted.

6.9.2 GENERAL FORMAT

Format 1

SD file-name; COPY 1ih r a r y-name

word-1 \

identifier-1

word-2

identifier-2

[
word-3

identifier-3
BY

word-4

identifier-4]

F onna t_2

SD file-name

[; RECORD CONTAINS [integer-1 TO] intege.r-2 CHARACTERS]

[5 DATA
RECORD IS

RECORDS APE data-name-1 [, data-name-2 3

6.9.3 SYNTAX RULES

1. The level indicator SD identifies the beginning of the Sort File
Description and must precede the file-name.

2. All semicolons are optional in the Sort File Description but the entry
must be terminated by a period.

3. The clauses which follow the name of the file are optional in many

cases, and their order of appearance is immaterial.

ACV1 PROGRAMMING LANGUAGE COMMITTEE
CODASYL----COBOL

JOURNAL OF DEVELOPMENT
III-6-16

6.9/. GENERAL RULES

l. Format 1 is used when the COBOL library contains the Sort File
Description entry, otherwise Format 2 is used.

2 . For a discussion of Lhe COPY function see Chapter 9, The COBOL

Library.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-17

COBOL

Data Division

SA SKELETON

6.10 THE SAVED AREA DESCRIPTION-COMPLETE ENTRY SKELETON

6.10.1 FUNCTION

The Saved Area Description furnishes information concerning the physical

structure pertaining to the saved area required for random processing.

6.10.2 GENERAL FORMAT

Format 1

SA area-name; COPY library-name

{word-1) / word-2 i

> BY) [
identifier-1) f identifier-2)

{ word-3) (word-4

identifier-3) I identifier-4

Format 2

SA area-name; AREA CONTAINS integer-1

[; RECORD CONTAINS [integer-2 TO]

j CHARACTERS I

) RECORDS f
integer-3 CHARACTERS] .

6.10.3 SYNTAX RULES

1. An SA entry is required when random processing is specified.

2. A level indicator SA is used to identify the beginning of a Saved
Area Description entry and must precede the unique area-name.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL--COBOL

JOURNAL OF DEVELOPMENT
III-6-18

Data Division

SA SKELETON

3. Semicolons are optional in the SA entry but the entry must be
terminated by a period.

4. The order in which the clauses appear is immaterial.

6.10.4 GENERAL RULES

1. Format 1 is used when the COBOL library contains the Saved Area

Description entry, otherwise Format 2 is used.

2. For a discussion of the COPY function see Chapter 9, The COBOL

Library.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-19

COBOL

1'i v i; i On

6.11 THE REPORT DESCRIPTION- -COMPLETE ENTRY SKELETON

6.11.1 FUNCTION

The Report Description furnishes information concerning the physical

structure and identification for a particular named report.

6.11.2 GENERAL FORMAT

Format 1

RD report-name; COPY library-name

£ REPLACING |

word-1 j / word-2

REPLACING \ | BY)

identifier-1) (identifier-2

word-3

identifier-3

Format 2

word-4

identifier-4]
RD report-name

[j CODE mnemonic-name-1]

CONTROL IS

CONTROLS ARE) I

FINAL

identifier-1 [, identifier-2] ... >]

FINAL, identifier-1 [, identifier-2J ...I H
r , / LIMIT IS I (LINE) r
[; PAGE (LIMITS ARE/ integer-1 (LINES/ HEADING integer-2

[, FIRST DETAIL integer-3] [, LAST DETAIL integer-4]

[, FOOTING integer-5] j .

6.11.3 SYNTAX RULES

1. The level indicator RD identifies the beginning of a Report

Description and must precede the report-name.

2. The report-name must appear in at least one FD entry REPORT clause.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL

JOURNAL OF DEVELOPMENT
III-6-20

COBOL

Data Division

RD SKELETON
3. All semicolons are optional in the Report Description but the entry

must be terminated by a period.

4. The clauses which follow the report-name are optional in many cases,
and, except in Format 1, their order of appearance is immaterial.

6.11.4 GENERAL RULES

1. Format 1 is used when the COBOL library contains the Report Descrip¬

tion entry, otherwise Format 2 is used. If the library-name is r.ot
unique, it may be qualified by indicating trie file-identification

in the OF program-file clause.

2. For a discussion of the COPY function see Chapter 9, The COBOL Library.

3. The fixed data-names, LINE-COUNTER and PAGE-COUNTER, are automatically
generated by the Report Writer based on the presence of specific
entries and are not data clauses. The descriptions of these two

counters are included here in order to explain their resultant effect
on the over-all report format.

6.11.5 PAGE-COUNTER RULES

1. A PAGE-COUNTER is a counter generated by the Report Writer to be

used as a SOURCE data item in order to automatically present
consecutive page numbers.

2. One PAGE-COUNTER is supplied for each report described in the Report

Section. The numeric counter is based on the size specified in the

PICTURE clause associated with the elementary SOURCE data item description.

3. If more than one PAGE-COUNTER, is given as a SOURCE data item within

a given report the number of numeric characters indicated by the

PICTURE clauses must be identical. The size must indicate sufficient
numeric character positions to prevent overflow.

4. If more than one Report Description entry exists in the Report

Section, the user must qualify PA.GE-COUNTER by the report-name.

PAGE-COUNTER may be referred to in Data Division clauses and by

Procedure Division statements.

5. PAGE-COUNTER is automatically set to 1 (one) initially by the Report

Writer; if a starting value for PAGE-COUNTER other than 1 (one) is

desired, the programmer may change the contents of the PAGE-COUNTER

by a Procedure Division statement after an INITIATE statement has

been executed.

6. PACE-COUNTER is automatica1ly incremented by 1 (one) each time a

page break is recognized by the Report Writer, after the production

of any PAGE or OVERFLOW FOOTING report group but before production

of any PAGE or OVERFLOW READING report group.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-21

COBOL

Data Division

RD SICR S-TOM

6.11.6 LINE-COUNTER RULES

1. A LINE-COUNTER is a counter used by the Report: Writer t.o detenai no

when a PAGE/OVERFLOW HEADING and/or a PAGE/OVERFLOW FOOTING report
group is to be: presented. If a PAGE LIMIT(S) clause is written in

the Report Description entry, a LINE-COUNTER is supplied for that

report. The size of the numeric LINE-COUNTER is based on the number

of lines specified per page in the PAGE LIMIT(S) clause.

2. If more than one Pveport Description entry exists in the Report

Section, the user must qualify LINE-COUNTER by the report-name.

LINE-COUNTER may be referred to in Data Division clauses and by
Procedure Division statements.

3. Changing the LINE-COUNTER by Procedure Division statements may cause

page format control to become unpredictable in the Report Writer.

4. LINE-COUNTER is automatically tested and incremented by the Report
Writer based on control specifications in the PAGE LIMIT(S) clause

and values specified in the: LINE NUMBER and NEXT GROUP clauses.

5. LINE-COUNTER is automatically set to zero initially by the Report

Writer; likewise, LINE-COUNTER is automatically reset, to zero when

PAGE LIMIT integer-1 LINES entry is exceeded during execution.

6. If a relative LINE NUMBER indication or relative NEXT GROUP indication

exceeds the LAST DETAIL PAGE LIMIT specification during object time,

that is, a page break, LINE-COUNTER is reset to zero. No additional

setting based on the relative LINE NUMBER indication or NEXT GROUP

indication that forced the page break takes place.

7. If an absolute LINE NUMBER indication or an absolute NEXT GROUP

indication is equal to, or less than, the contents of the LINE-COUNTER

during object time, the LINE-COUNTER is set to the absolute LINE NUMBER

indication or the absolute NEXT GROUP indication following the implicit

generation of any specified report groups.

8. The value of the- LINE-COUNTER during any Procedure Division test
statement represents the number of the last line used by the printing

generated by the previous report group or, represents the number of

the last line skipped by a previous NEXT GROUP specification.

9. The Report Writer LINE-COUNTER control prohibits the printing of

successive report lines or report groups on the same line of the

same page.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-22

CODASYL COBOL

Data Division

DATA DESCRIPTION SKELETON

6.12 THE DATA DESCRIPTION-COMPLETE ENTRY SKELETON

6.12.1 FUNCTION

A data description entry specifies the characteristics of a particular
item of data.

6.12.2 GENERAL FORMAT

format 1

01 data-name-1; COPY library-name

word-2

REPLACING

jword-1 * 1

) (-) \ (identifier-1 J fidentifier-2)

(word-3) (word-4)

BY > • • •

[identifier-3) (identifier-4)

Format 2

level-number
j data-name-1 }

1 FILLER j

; REDEFINES data-name-2]

; j PICTURE (IS character-string [DEPENDING ON data-name-3]

PIC

COMPUTATIONAL
COMP
COMPUTATIONAL-n

, COMP-n
; [USAGE IS] ^ DISPLAY

DISPLAY-n

INDEX
INDEX-n

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-23

COBOL

Data Division

DATA DESCRIPTION SKELETON

Format 2 (Contd.)

; OCCURS integer-1 TIMES

/ ASCENDING]
• KEY IS data-name-4 [, data-name-5] .

) DESCENDING
_

^ INDEXED BY index-name-1 [, index-name-2]...J

; OCCURS integer-2 TO integer-3 TIMES [DEPENDING ON data-name-6]

ASCENDING

{ DESCENDING } KEY IS data-name-4 [, data-name-5] ...

INDEXED BY index-name-1 [, index-name-2] ...

SYNCHRONIZED
SYNC }

ll LEFT

RIGHTjj

• / JUSTIFIED) right
JUST

RANGE IS literal-1
jTHRU / n,

j THROUGH/
literal-2

[; BLANK WHEN ZERO]

[; VALUE IS literal-3] .

F o rma t 3

66 data-name-1; RENAMES data-name-2 [{
THRU

THROUGH

'

data-name-3

Format 4

88 condition-name
. f VALUE IS)

’ \ VALUES ARE j
literal-1

THRU

THROUGH
literal-2

"
, literal-3 '(THRU j,literal.4l]

-
| THROUGH |

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-24

COBOL

Data Division

DATA DESCRIPTION SKELETON

6.12.3 SYNTAX RULES

1. All semicolons and commas are optional in the data description (excepL
as noted in 6.31.5, Editing Rule 5), but the entry must Ik; terminated

by a period.

2. Format 4 cannot be used in the Constant Section.

3. Level-number in Format 2 may be any number from 01-49 or 77.

4. The clauses may be written in any order with two exceptions: the

data-name-1 or FILLER clause must immediately follow the level-number;

the REDEFINES clause, when used, must immediately follow the data-
name-1 clause.

5. The PICTURE clause must be specified for every elementary item except

an index data item, in which case use of this clause is prohibited.

6. The words THRU and THROUGH are equivalent.

6.12.4 GENERAL RULES

1. The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, RANGE and BLANK WHEN ZERO
must not be specified except at the elementary item level.

2. Format 4 is used for each condition-name. Each condition-name requires

a separate entry with level-number 88. Format 4 contains the name of

the condition and the value, values, or range of values associated with

the condition-name. The condition-name entries for a particular

condition-variable must follow the entry describing the item with which
the condition-name is associated. A condition-name can be associated

with any data description entry which contains a level-number except the

following:

a. Another condition-name.

b. A level 66 item.
c. A group containing items with descriptions including JUSTIFIED,

SYNCHRONIZED or USAGE (other than USAGE IS DISPLAY).

d. An index data item.

3. Format 1 is used when the COBOL library contains the 01 Record Description

entry.

4. For a discussion of the COPY function, see Chapter 9, The COBOL Library.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-25

COBOL

Data Division

REPORT GROUP SKELETON

6.13 THE REPORT GROUP DESCRIPTION-COMPLETE ENTRY S

6.13.1 FUNCTION

The Report Group Description entry specifies the characteristics of a

particular report group and of the individual data-name items within a

report group.

6.13.2 GENERAL FORMAT

Forma t 1

01 [date-name]; COPY library-name

r t word-1 i 1 t word-2 j

REPLACING \ by (

l identifier-1 | { identifier-2)

! word-3

identifier-3

BY

word-4

identifier-4

Format 2

01 [data-name-1]

*
(integer-1)

; LI NE NUMBER IS
PLUS integer-2 \

. 1 NEXT PAGE)

finteger-3 1

; NEXT

.

GROUP IS \ PLUS integer-4 ^

(NEXT PAGE

’

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-26

—COBOL

Data Division

Format 2 (Cont.)

REPORT GROUP SKELL'TON

REPORT HEADING

RH
PAGE HEADING

PH
OVERFLOW HEADI NG
Oil

; TYPE IS;

(CONTROL HEADING) J identifier-1|

\ CH J) FINAL f

DETAIL

DE

(CONTROL FOOTING) j identifier-2]

\ CF /
OVERFLOW FOOTING

ov

PAGE FOOTING
PF

REPORT FOOTING

RF

I FINAL /

? TcJ fDISPLAY)
) DISPLAY-n |

Format 3

icve]-number [da ta-name-1]

[; COLUMN NUMBER IS integer-I]

[; BLANK WHEN ZERO]

[; GROUP INDICATE]

r . (JUSTIFIED | 1
r{jysT /

RIGHT ;

[integer-2 ' I
NUMBER IS J PLUS integer-3

NEXT PAGE ! J

f • (PICTURE

[; RESET ON

}

(
IS character-string

identifier-1
FINAL

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-27

COBOL

Ju/C4 *-*

REPORT GROUP SKELETON

Formac 3 (Cont.)

SOIIEGK Is | SKI.ECi l .l)] i deil 1 i f i <■ i - 7

SUM i den l i 1 i e r- 3 [, i ili'ii t i i i ■r-4 J .
VAI .IJI: IS 1 i 1 •r.l 1- 1

1
; [USAGE IS J DISPLAY I

»
i PISPlAY-n j J

6.13 3 SYNTAX RULES

1 • All semicolons are optional in the Report Group Description but the
entry must be terminated by a period. Except for the data-name

clause, which must immediately follow the level-number when present,
the clauses may be written in any order.

2. In order for a report group to be referred to by a Procedure Division

statement it must have a data-name.

3. If the COLUMN NUMBER clause is present in the data description of an

elementary item, the data description must also contain the FfCTURF.

clause, in addition to one of the clauses SOURCE, SUM or VALUE.

4. In format 3, level-number mav be any number from 01-49.

6.13.4 GENERAL RULES

1. Format 1 is used when the COBOL library contains the Report Group
Description entry.

2. For a discussion of the. COPY function see Chapter 9, The COBOL

Library.

3. Format 2 is used to indicate a report group; the report group

extends from this entry to the next report group level 01 entry.

4. Format 3 is used to indicate an elementary item or group item

within a report group. If a report group is an elementary entry,
Format 3 nay include the TYPE and NEXT GROUP clauses in order to

specify the report group and elementary item in the same entry.

5. When LINE NUMBER is specified in Format 2, entries for the first

report line within the report group are presented on the specified

line. When LINE NUMBER is specified in Format 3, sequential entries

the same level-number in the report group are implicit)' presented on
same line. A LINE NUMBER at a subordinate level must not contradict a
LINE NUMBER at a group level.

6. The NEXT GROUP clause, when specified, refers to the spacing, at

object time, between the last line of this report group and the

first line of the next report group.

7. Variable length items must not be defined in the Report Section.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-28

W i t h

t lie

CODASYL COBOL

Data Division

AREA CONTAINS

6.14 THE AREA CONTAINS CLAUSE

6.14.1 FUNCTION

The AREA CONTAINS clause specifies the size of a physical Saved Area.

6.14.2 GENERAL FORMAT

AREA CONTAINS integer-1 <j RECORDS \
(CHARACTERS)

6.14.3 3 SYNTAX RULES

1. Integer-1 must be an unsigned non-zero integer.

6.14.4 GENERAL RULES

1. One Saved Area record is automatically associated at object time with

each out-of-line processing cycle. No more than one processing cycle

has access to a single Saved Area record at any one time. The specific

Saved Area record associated with each out-of-line processing cycle is
released for further storage assignment upon the completion of the

asynchronous processing cycle.

2. The execution of a PROCESS statement makes the associated Saved Area

record unavailable for further reference with the in-line procedures.

3. When the CHARACTERS option is used, integer-1 indicates the number
of characters of saved area that are available for storage of a
variable number of saved records that can be asynchronously processed

by associated PROCESS statements.

4. When the RECORDS option is used, integer-1 indicates the fixed number

of saved records that can be asynchronously processed by associated

PROCESS statements.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-29

COBOL

Data Division

6.15 THE CLANK WHEN ZUlO CLAUSE

6.15.1 FUNCTION

The BLANK WHEN ZERO clause permits the blanking of an item when its

value is zero.

6.15.2 GENERAL FORMAT

BLANK WHEN ZERO

6.15.3 SYNTAX RULES

1. The BLANK WHEN ZERO clause can be used only for an elementary

item whose PICTURE is specified as numeric or numeric edited.

(See 6.31, The PICTURE clause.)

2. This clause cannot be used for variable length items.

6.15.4 GENERAL RULES

1. When the BLANK WHEN ZERO clause is used, the item will contain

nothing but spaces if the value of the item is zero.

2. When the BLANK WHEN ZER.0 clause is used for an item whose PICTURE

is numeric, the category of the item is considered to be numeric

edited.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-30

COBOL

Data Division

BLOCK

6.16 THE BLOCK CLAUSE

6.16.1 FUNCTION

The BLOCK clause specifies the size of a physical record.

6.16.2 GENERAL FORMAT

BLOCK CONTAINS [integer-1 TO] integer-2 RECORDS •
CHARACTERS J

6.16.3 SYNTAX RULES

1. Integer-1 and integer-2 must be unsigned non-zero integers.

6.16.4 GENERAL RULES

1. This clause is required except when:

a. A physical record contains one and only one complete logical record.

b. The hardware device assigned to the file has one and only one

physical record size.

c. The hardware device assigned to the file has more than one physical
record size but the implementor has designated one as standard. In

this case, the absence of this clause denotes the standard physical
record size.

2. For a mass storage file the size may be stated in terms of RECORDS,

unless one of the following situations exists, in which case the

CHARACTERS option should be used:

a. Logical records extend across physical records.

b. The physical record contains padding (area not contained in a

logical record).

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
m-6-31

COBOL

Data Division

BLOCK

c. Logical records are grouped in such a manner that an inaccurate

physical record size would be implied.

3. When the CHARACTERS option is used, the physical record size is

specified in terms of the number of characters in Standard Data
Format contained within the physical record, regardless of the
types of characters used to represent the items within the physical
record.

4. If only integer-2 is shown, it represents the exact size of the

physical record. If integer-1 and integer-2 are both shown, they
refer to the minimum and maximum size of the physical record,

resoectively.

5. If logical records of differing size are grouped into one physical

record, the technique for determining the size of each logical record

is specified by the implementor.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-32

COBOL

Data Division

CODE

6.17 THE CODE CLAUSE

6.17.1 FUNCTION

The CODE clause defines a unique character or characters, which are to be

affixed to each line of this report.

6.17.2 GENERAL FORMAT

CODE mnemonic-name-1

6.17.3 GENERAL RULES

1. CODE mnemonic-name-1 indicates a unique character or characters which
is automatically affixed to and identifies each line of the report.

More than one report may then be produced simultaneously onto one

output device for later individual report selection. The implementor

specifies how the unique character or characters is affixed to the

report line.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL

JOURNAL OF DEVELOPMENT
III-6-33

COBOL

Data Division

COLUMN NUMBER

6.18 THE COLUMN NUMBER CLAUSE

6.18.1 FUNCTION

The COLUMN NUMBER clause indicates the absolute column number on the printed

page of Lire high-order (left-most) character of the elementary item, c. g. ,

first print position of the item on the line.

6.18.2 GENERAL FORMAT

COLUMN NUMBER IS integer-1

6.18.3 SYNTAX RULES

1. Integer-1 must be an unsigned non-zero integer. CThe first position of

the print line is considered to be COLUMN NUMBER 1.)

2. The COLUMN NUMBER clause can only be given at the elementary level

within a report group.

3. Within a report group and a particular LINE NUMBER specification,

COLUMN NUMBER entries must be indicated from left to right.

6.18.4 GENERAL RULES

1. COLUMN NUMBER clause indicates that this elementary

in the output report group; if COLUMN NUMBER is not
elementary item, though included in the description

for control purposes, is suppressed when the report

at object time.

item is presented

indicated, the

of the report group

group is produced

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-34

COBOL

Data Division

CONlT.OL i

6.19 Till: CONTROL CLAUSE

6.19.1 FUNCTION

The CONTROL clause indicates th.c data-names which specify the control

hierarchy for this report, that is, the control breaks.

6.19.2 GENERAL FORMAT

(CONTROL IS

1 CONTROLS ARE

FINAL

identifier-1 [, identifier-?.] ...

FINAL, identifier-1 [, identifier-?] ...

6.19.3 SYNTAX RULES

1. The identifiers specify the control hierarchy for this report and are.

listed in order from major to minor; FINAL is the highest control,

identifier-1 is the major control, identifier-2 is the intermediate

control, etc. The last identifier specified is the minor control.

2. The identifiers must be defined as an elementary item in the File,

Working-Storage or Linkage Section of the Data Division.

6.19.4 GENERAL RULES

1. The CONTROL clause is required when CONTROL HEADINC or CONTROL FOOTING

report groups are specified.

2. The identifiers specified in the CONTROL clause are the only identifiers

referred to by the RESET and TYPE clauses in a Report Group Description

entry for this report. No identifier may be referred to by more than

one TYPE CONTROL HEADING report group and one TYPE CONTROL FOOTING report

group.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-35

COBOL CODASYL

Data Division

DATA-NAME
FILLER

6.20 THE DATA-NAME OR FILLER CLAUSE

6.20.1 FUNCTION

A data-name specifies the name of the data being described. The word FILLER

specifies an elementary item of the logical record that cannot be referred
to directly.

6.20.2 GENERAL FORMAT

| data-name

j FILLER

6.20.3 SYNTAX RULES

1. In the File, Working-Storage} Constant and Linkage Sections, a data-name or the
key word FILLER must be the first word following the level-number in
each data description entry.

2. In the Report Section a data-name need not appear in a data description
entry and FILLER must not be used.

6.20.4 GENERAL RULES

1. The key word FILLER may be used to name an elementary item in a

record. Under no circumstances can a FILLER item be referred to

directly.

2. In the Report Section, data-name must be given in the following cases:

a. When the data-name represents a report group to be referred to by a

GENERATE or a USE statement in the Procedure Division.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-36

COBOL

Data Division

DATA-NAME
FILLER

o

b. When reference is to be made to the SUM counter in the Procedure-

Division or Report Section.

c. When the SELECTED option is included with the SOiJRCE clause at a

higher level to indicate at this lower level the SOURCE data-names

which are to be used as elementary items.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-37

COBOL

Data Divis ion

DATA RECORDS

6.21 THE DATA RECORDS CLAUSE

6.21.1 FUNCTION

The DATA RECORDS clause serves only as documentation for the names of
data records with their associated file.

6.21.2 GENERAL FORMAT

(RECORD IS |
DATA) RECORDS ARE (data-name-1 [, data-name-2] ...

6.21.3 SYNTAX RULES

1. Data-name-1. and data-name-2 are the names of data records and

must have 01 level-number record descriptions, with the same names,
associated with them.

6.21.4 GENERAL RULES

1. The presence of more than one data-name indicates that the file contains

mo,re than one type of data record. These records may be of differing

sizes, different formats, etc. The order in which they are listed is

not significant.

2. Conceptually, all data records within a file share the same area. This

is in no way altered by the presence of more than one type of data record

within the file.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-38

CODASYL COBOL

Data Division

GROUP INDICATE

6.22 THE GROUP INDICATE CLAUSE

6.22.1 FUNCTION

The GROUP INDICATE clause indicates that this elementary item is to be

produced only on the first occurrence of the item after any CONTROL or

PAGE break.

6.22.2 GENERAL FORMAT

GROUP INDICATE

6.22.3 GENERAL RULES

1. The GROUP INDICATE clause must only be given at the elementary item

level within a TYPE DETAIL report group.

2. An elementary item is not only group indicated in the first DETAIL

report group containing the item after a control break, but is also

group indicated in the first DETAIL report group containing the item

on a new page, even though a control break did not occur.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-39

COBOL

Data Division

JUSTIFIED

6.23 THE JUSTIFIED CLAUSE

6.23.1 FUNCTION

The JUSTIFIED clause specifies non-standard positioning of data within a

receiving data item.

6.23.2 GENERAL FORMAT

JUSTIFIED

JUST RIGHT

6.23.3 SYNTAX RULES

1. The JUSTIFIED clause can be specified only at the elementary item level.

2. JUST is an abbreviationNfor JUSTIFIED.

6.23.4 GENERAL RULES

1. The standard rules for positioning data within an elementary item

are:

a. If the receiving data item is described as numeric;

(1) The data is aligned by decimal point and is moved to the

receiving character positions with zero fill or truncation on

either end as required.

(2) When an assumed decimal point is not explicitly specified, the

data item is treated as if it had an assumed decimal point immedi¬

ately following its right-most character and is aligned as in (1) above.

b. If the receiving data item is a numeric edited data item, the data
moved to the edited data item is aligned by decimal point with zero
fill or truncation at either end as required within the receiving

character positions of the data item, except where editing require¬

ments cause replacement of the leading zeroes.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-40

COBOL

Data Division

JUSTIFIED

c. If the receiving data item is alphanumeric (other than a numeric
edited data item) or alphabetic, the sending data is moved to the

receiving character positions and aligned at the left-most

character position in the data item with space fill or truncation

to the right.

2. The JUSTIFIED clause cannot be specified for a numeric edited data

item or for an item described as numeric.

3. The JUSTIFIED clause cannot be specified for art item whose size is
variable.

4. When the receiving data item is described with the JUSTIFIED clause

and the sending data item is larger than the receiving data item, the
left-most characters are truncated. When the receiving data item is

described with the JUSTIFIED clause and it is larger than the sending

data item, the data is aligned at the right-most character position
in the data item with space fill.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-41

COBOL

Data Division

LABEL RECORDS

6.24 THE LABEL RECORDS CLAUSE

6.24.1 FUNCTION

The LABEL RECORDS clause specifies whether labels are present and, if
present, identifies the label.

6.24.2 GENERAL FORMAT

LABEL

6.24.3 GENERAL RULES

1. This clause is required in every File Description entry.

2. OMITTED specifies that no explicit labels exist for the file or the
device to which the file is assigned.

3. STANDARD specifies that labels exist for the file or the device to

which the file is assigned and the labels conform to the implementor's

label snecifications.

4. Data-name-1, data-name-2, etc., are names of label records and must

not appear in the DATA RECORDS clause and must be the subject of a

Record Description associated with the file.

5. All Procedure Division references to the data-names specified in this

clause, or to any items subordinate to these data-names, must appear

within USE Procedures.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

COBOL
JOURNAL OF DEVELOPMENT

III-6-42

Data Division

LEVEL-NUMBER

6.25 LEVEL-NUMBER

6.25.1 FUNCTION

The level-number shows the hierarchy of data within a logical record or

report group. In addition, it is used to identify entries for condition-

names, noncontiguous Constant, Working-Storage and Linkage items and the

RENAMES clause.

6.25.2 GENERAL FORMAT

level-number

6.25.3 SYNTAX RULES

1. A level-number is required as the first element in each data
description entry.

2. Data description entries subordinate to an FD, SD or SA entry may have
level-numbers with the values 01 through 49, 66 and 88.

3. Data description entries subordinate to an RD entry may have level-
numbers with the values 01 thru 49 only.

4. Multiple level 01 entries subordinate to a particular level indicator
in the File Section represent implicit redefinitions of the same area.

5. An entry with a level-number of 88 cannot be used in the Constant
Section.

6.25.4 GENERAL RULES

1. The level-number 01 identifies the first entry in each Record
Description or a report group.

2. Special level-numbers have been assigned to certain entries where
there is no real concept of level:

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-43

COBOL

Data Division

LEVEL-NUMBER

a. Level-number 66 is assigned to identify RENAMES entries and
can be used only as described by Format 3 of the Data Descrip¬

tion Skeleton (see 6.12.2, Data Description Skeleton).

b. Level-number 77 is assigned to identity noncontiguous constants
and noncontiguous Working-Storage and Linkage data items and can

be used only as described by Format 2 of the Data Description

Skeleton (see 6.12.2, Data Description Skeleton).

c. Level-number 88 is assigned to entries which define condition-

names associated with a conditional variable and can be used only

as described by Format 4 of the Data Description Skeleton (see

6.12.2, Data Description Skeleton).

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
I£I-6-44

COBOL

Data Division

LINAGE

6.26 THE LINAGE CLAUSE

6.26.1 FUNCTION

The LINAGE clause specifies the number of lines to be written on

a logical printer page.

6.26.2 GENERAL FORMAT

(identifier-1 LINES

LINAGE IS < integer-1 LINES
(mnemonic-name

6.26.3 SYNTAX RULES

1. When identifier-1 or integer-1 is used, the data description

must be that of a numeric elementary item without any positions

to the right of the assumed decimal point.

2. When the mnemonic-name option is used, the name is identified

with an end-of-page feature specified by the implementor. The

mnemonic-name is defined in the SPECIAL-NAMES paragraph in the

Environment Division.

3. The LINAGE clause and the REPORT clause are not allowed in the

same FD entry.

6.26.4 GENERAL RULES

1. The LINAGE clause provides a means of specifying the depth of
a printed page; the printed page may or may not be equal to

the physical perforated continuous form often associated with

the page length.

2. The value of integer-1, as specified in the LINAGE clause, will

be used, at the time the file is opened by the OPEN statement,
to specify the number of lines (written and/or spaced) on a

printed page.

3. The value of identifier-1, as specified in the LINAGE clause,

will be used, at each end-of-page, to specify the number of

lines (written and/or spaced) for the next printed page.

4. A LINAGE-COUNTER is generated by the presence of the LINAGE

clause. The rules governing the LINAGE-COUNTER are as follows:

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-45

Data Division

LINAGE

a. One LINAGE-COUNTER is supplied for each file described in the
File Section whose FD entry includes the LINAGE clause.

b. LINAGE-COUNTER may be referred to by Procedure Division state¬

ments. Since more than one LINAGE-COUNTER may exist, the user

must qualify LINAGE-COUNTER by the file-name when necessary.

c. The user is responsible for page format control if the value

of the LINAGE-COUNTER is changed by Procedure Division statements.

d. LINAGE-COUNTER is automatically incremented each time a WRITE

statement is executed for the associated file, unless the

mnemonic-name option of the WRITE ADVANCING statement is used.

(1) When the ADVANCING phras_e Qf the WRITE statement is used

with the identifier-2 LINES option, the increment is the
value of identifier-2.

(2) When the ADVANCING phrase of the WRITE statement is used

with integer LINES option, the increment is the value of

integer.

(3) When the ADVANCING phrase of the WRITE statement is absent,

the increment value is one (1). (See 7.42.4.4, The
WRITE Statement.)

e. LINAGE-COUNTER is automatically set to zero initially by the

OPEN statement and likewise is automatically reset to zero

when the value in the LINAGE clause entry is exceeded during

execution.

f. The value of the LINAGE-COUNTER at any given time represents
the last line number printed or spaced on a logical printer

page.

g. If the mnemonic-name option of the WRITE ... ADVANCING
statement is used the contents of the LINAGE-COUNTER may
be unpredictable.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-46

COBOL

Data Division

LINE NUMBER

6.27 THE LINE NUMBER CLAUSE

6.27.1 FUNCTION

The LINE NUMBER clause indicates the absolute or relative line number of

this entry in reference to the page or the previous entry.

6.27.2 GENERAL FORMAT

LINE NUMBER IS
integer-1
PLUS integer-2

NEXT PAGE

6.27.3 SYNTAX RULES

1. Integer-1 and integer-2 must be unsigned non-zero integers. Integer-1

must be within the range specified by the PAGE LIMITS clause in the

Report Description entry.

2. The LINE NUMBER clause must be given for each report line of a report

group. For the first line of a report group it must be given either

at the report group level or prior to or for the first elementary item

in the line. For report lines other than the first in a report group,

it must be given prior to or for the first elementary item in the line.

6.27.4 GENERAL RULES

1. If the LINE NUMBER clause is specified at the report group level,

entries for the first report line within the report group are presented

on the specified line number. If LINE NUMBER is specified for an entry

on other than the report group level, sequential entries following that

entry within the report group with the same level-number are implicitly

presented on the same line number. A LINE NUMBER at a subordinate level

may not contradict a LINE NUMBER at a group level.

2. Within a report group, absolute LINE NUMBER entries must be indicated

in ascending order, and an absolute LINE NUMBER cannot be preceded by
a relative LINE NUMBER.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-47

COBOL

Data Division

LINE NUMBER

3. Tie NEXT PAGE phrase may be used to indicate an automatic skip to the

next page before presenting the first line of the current report group.

Appropriate TYPE PAGE/OVERFLOW FOOTINGS and TYPE PAGE/OVERFLOW HEADINGS

will be produced as specified.

4. Integer-1 indicates an absolute line number which sets the LINE-COUNTER

to this value for printing the item in this entry, and following entries

within the report group, until a different value for the LINE-COUNTER
is specified.

5. Integer-2 indicates a relative line number which increments the LINE-

COUNTER for printing the item in this entry, and following entries

within the report group, until a different value for the LINE-COUNTER

is specified.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-48

COBOL

Data Division

NEXT GROUP

6.28 THE NEXT GROUP CLAUSE

6.28.1 FUNCTION

The NEXT GROUP clause indicates the spacing condition following the last

line of the report group.

6.28.2 GENERAL FORMAT

NEXT GROUP IS
integer-1

PLUS integer-2

NEXT PAGE

6.28.3 SYNTAX RULES

1. Integer-1 and integer-2 must be unsigned non-zero integers. Integer-1

cannot exceed the maximum number of lines specified per report page.

6.28.4 GENERAL RULES

1. Integer-1 indicates an absolute line number which sets the LINE-COUNTER

to this value after producing the last line of the current report
group.

2. Integer-2 indicates a relative line number which increments the LINE-

COUNTER by the integer-2 value. T.nteger-2 represents the number of

lines skipped following the last line of the current report group.

Further spacing is specified by the LINE NUMBER clause of the next

report group produced.

3. The NEXT PAGE clause indicates an automatic skip to the next page
following the generation of the last line of the current report group.
Appropriate page/overflow footings and page/overflow headings will be

produced as specified.

4. The NEXT GROUP clause must appear only at the 01 level which defines

the report group. When specified for a CONTROL FOOTING/HEADING report

group, the NEXT GROUP clause results in automatic line spacing only

when a control break occurs on the level for which that control is

specified.

-/.PW4.W1 PROGRAMMING LANGUAGE COMMITTEE
CODASYL ———————- — ———-COBOL

JOURNAL OF DEVELOPMENT
III-6-49

Data Division

OCCURS

6.29 THE OCCURS CLAUSE

6.29.1 FUNCTION

The OCCURS clause eliminates the need for separate entries for repeated

data and supplies information required for the application of subscripts

or indices.

6.29.2 GENERAL FORMAT

Format 1

[{ OCCURS integer-2 TIMES

[, data-name-3 J . . .J

[, index-name-2]

ASCENDING \
DESCENDING j

INDEXED BY

KEY IS data-name-2

index-name-1

Format 2

OCCURS integer-1 TO integer-2 TIMES [DEPENDING ON data -name-l]

[{ DESCENDING} KEY IS data-name-2 [, data-name-3] ...] ...

[INDEXED BY index-name-1 [, index-name-2] ... ^]

6.29.3 SYNTAX RULES

1. Integer-1 and integer-2 must be positive integers. Where both are

used the value of integer-1 must be less than integer-2. The value

of integer-1 may be zero, but integer-2 cannot be zero.

2. The data description of data-name-1 must describe a positive integer.

3. Data-name-1, data-name-2, data-name-3, ... may be qualified.

4. Data-name-2 must either be the name of the entry containing the OCCURS
clause or the name of an entry subordinate to the entry containing

the OCCURS clause.

5. Data-name-3, etc. must be the name of an entry subordinate to the

group item which is the subject of this entry.

6. An INDEXED BY phrase is required if the subject of this entry, or an

item within it if it is a group item, is to be referred to by index¬

ing. The index-name identified by this clause is not defined else¬

where since its allocation and format are dependent on the hardware

and, not being data, cannot be associated with any data hierarchy.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL---

JOURNAL OF DEVELOPMENT
COBOL

III-6-50

Data Division

OCCURS

7. The DEPENDING option is only required when the end of the

occurrences cannot otherwise be determined.

6.29.4 GENERAL RULES

1. The OCCURS clause cannot be specified in a data description entry
that:

a. Has a 01 or a 77 level-number.

b. Describes an item whose size is variable. The size of an

item is variable if its data description, or if any item

subordinate to it, contains an 'L' in the PICTURE clause, or
if the data description of any subordinate item contains

Format 2 of the OCCURS clause.

2. The OCCURS clause is used in defining tables and other homogeneous

sets of repeated data. Whenever the OCCURS clause is used, the

data-name which is the subject of this entry must be either sub¬

scripted or indexed whenever it is referred to in a statement

other than SEARCH. Further, if the subject of this entry is

the name of a group item, then all data-names belonging to the

group must be subscripted or indexed whenever they are used as

operands.

3. The data description clauses associated with an item whose

description includes an OCCURS clause apply to each occurrence
of the item described.

4. In Format 1, the value of integer-2 represents the exact number

of occurrences. In Format 2, the value of integer-2 represents

the maximum number of occurrences.

5. Format 2 specifies that the subject of this entry has a variable

number of occurrences. Integer-1 represents the minimum number

of occurrences. This does not imply that the length of the sub¬

ject is variable, but that the number of occurrences is variable.

6. The value of data-name-1 is the count of the number of occurrences
of the subject and its value must not exceed integer-2. Reducing
the value of data-name-1 makes the contents of data items, whose
occurrence numbers now exceed the value of data-name-1, unpredictable.

7. If data-name-1 is an entry in the same record as the current data

description entry, the data description entry for data-name-1 must

be prior to a data description entry containing the OCCURS clause

in which data-name-1 appears.

8. Each implementor will specify whether unused character positions

resulting from the DEPENDING option will appear in the external

media.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL-——-———————--— -—--—COBOL

JOURNAL OF DEVELOPMENT

III-6-51

Data Division

OCCURS

9. Any entry which contains or has a subordinate entry which contains

Format 2 cannot be the object of the REDEFINES clause.

10. The KEY IS option is used to indicate that the repeated data is

arranged in ascending or descending order according to the values

contained in data-name-2, data-name-3, etc. The data-names are

listed in their descending order of significance.

11. If data-name-2 is not the subject of this entry, then:

a. All of the items identified by the data-names in the KEY IS

phrase must be within the group item which is the subject of

this entry.

b. None of the items identified by data-names in the KEY IS phrase

can be described by an entry which either contains an OCCURS

clause or is subordinate to an entry which contains an OCCURS

clause.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
COBOL

III-6-52

Data Division

PAGE LIMIT

6.30 THE PAGE LIMIT CLAUSE

6.30.1 FUNCTION

The PAGE LIMIT clause indicates the specific line control to be maintained

within the logical presentation of a page.

6.30.2 GENERAL FORMAT

PAGE
LIMIT IS
LIMITS ARE

[, HEADING integer-2]

[, LAST DETAIL integer-4]

integer-1
j LINE)

1 LINES j

[, FIRST DETAIL integer-3]

[, FOOTING integer-5]

6.30.3 SYNTAX RULES

1. Integer-1 through integer-5 must be unsigned non-zero integers.

2. Integer-2 through integer-5 each must either be less than or equal

to integer-1.

6.30.4 GENERAL RULES

1. The PAGE LIMIT clause is required when page format must be controlled
by the Report Writer. The PAGE LIMIT clause may be omitted when no

association is desired between report groups and the physical format

of an output page.

2. The PAGE LIMIT integer-1 LINES clause is required to specify the depth of

the report page; the depth of the report page may or may not be equal to

the physical perforated continuous for often associated in a report

with the page length.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-53

COBOL

Data Division

PAGE LIMIT

3. LINE-COUNTER must be able to contain the value specified by integer-1.

4. If absolute line spacing is indicated for all the report group(s), none

of the inteeer-2 through integer-5 controls need to be specified.

5. If relative spacing is indicated for individual TYPE DETAIL Report
Group entries, some or all of the above limits must be defined,

dependent on the type of report groups within the report, in order

for the Report Writer to maintain control of page format.

HEADING integer-2: the first line number of the first heading print

group. No print group will start preceding integer-2.

FIRST DETAIL integer-3: the first line number of the first normal print

group, that is, body; no DETAIL or CONTROL print group will start before
integer-3.

LAST DETAIL integer-4: the last line number of the last normal print

group, that is, body; no DETAIL or CONTROL HEADING print group will
extend beyond integer-4.

FOOTING integer-5: the last line number of the last CONTROL FOOTING print

group; no CONTROL FOOTING print group will start before integer-3 nor

extend beyond integer-5. TYPE PAGE FOOTING or TYPE OVERFLOW FOOTING print

groups will follow integer-5.

6. When relative line numbers are specified for report groups, PAGE LIMITS

integer-1 is specified and some or all of the HEADING integer-2, FIRST

DETAIL integer-3, LAST DETAIL integer-4, FOOTING integer-5 clauses are
omitted, the following implicit control is assumed for the omitted

specifications:

a. If HEADING integer-2 is omitted, integer-2 is considered to be

equivalent to the value one (1), that is, LINE NUMBER one.

b. If FIRST DETAIL integer-3 is omitted, integer-3 is considered to be

equivalent to the value of integer-2.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-54

COBOL

Data Division

PAGE LIMIT

c. If LAST DETAIL integer-4 is omitted, integer-4 is considered to be

equivalent to the value of integer-5.

d. If FOOTING integer-5 is emitted, integer-5 is considered to be

equivalent to the value of integer-4.

e. If both LAST DETAIL integer-4 and FOOTING integer-5 are omitted,

integer-4 and integer-5 both are considered to be equivalent to

the value of integer-1.

7. The following chart pictorially represents page format report group

control when the PAGE LIMIT clause is specified:

REPORT

HEADING/

FOOTING

integer-2

integer-3

integer-4

integer-5

integer-1 y

PAGE/

OVERFLOW

HEADING

DETAIL & CONTROL

CONTROL FOOTING

HEADING

PAGE/

OVERFLOW

FOOTING

8. Absolute LINE NUMBER or absolute NEXT GROUP spacing, (see Report Group

Description Entry), must be consistent with controls specified in the

PAGE LIMIT clause.

9. Only one PAGE LIMIT clause may be specified per Report Description entry,

__ „ PROGRAMMING LANGUAGE COMMITTEE
CODASYL-—--COBOL

JOURNAL OF DEVELOPMENT
III-6-55

Data Division

PICTURE

6.31 THE PICTURE CLAUSE

6.31.1 FUNCTION

The PICTURE clause describes the general characteristics and editing
requirements of an elementary item.

6.31.2 GENERAL FORMAT

| IS character-string [DEPENDING ON data-name]

6.31.3 SYNTAX RULES

1. A PICTURE clause can be specified only at the elementary item level.

2. A character-string consists of certain allowable combinations of

characters in the COBOL character set used as symbols. The allowable

combinations determine the category of the elementary item.

3. The maximum number of symbols allowed in the character-string
is 30.

4. The DEPENDING ON clause is used to denote a variable length elementary

item. Variable length items cannot be described in the REPORT SECTION.

5. The data description of data-name must be such that it defines a positive

integer. The value of data-name represents the number of characters in the

item being described and may have a value of zero. If data-name appears in

a record of a file, its least significant character position must always be

the same number of character positions from the beginning of the record.

6. The PICTURE clause must be specified for every elementary item except an

index data item, in which case use of this clause is prohibited.

7. Data-name may be qualified.

8. PIC is an abbreviation for PICTURE.

9. The asterisk when used as the Zero Suppression symbol and the clause

BLANK WHEN ZERO may not appear in the same entry.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-56

COBOL

Data Division

6.31.4 General Rules
PICTURE

1. There are five categories of data that can be described with a PICTURE
clause; ALPHABETIC, NUMERIC, ALPHANUMERIC, Alphanumeric Edited and

Numeric Edited.

2. To define an item as ALPHABETIC:

a. Its PICTURE character-string can only contain the symbols 'A', 'B',

'J', 'K', 'L'; and

b. Its contents when represented in Standard Data Format must be any

combination of the twenty-six (26) letters of the Roman alphabet

and the space from the COBOL character set.

3. To define an item as NUMERIC:

a. Its PICTURE character-string can only contain the symbols 'O', '9', 'J',

'K', 'L', ’P', 'S', and 'V' ; and

b. Its contents when represented in Standard Data Format must be a

combination of the Arabic numerals 'O', '1', '2', '3', '4', '5',
'6', '7', '8', and '9', and the item may include an operational sign.

4. To define an item as ALPHANUMERIC:

a. Its PICTURE character-string is restricted to certain combinations

of the symbols 'A', 'J', 'K', 'L', 'X', '9', and the item is treated as

if the character-string contained all 'X's. A PICTURE character-string

which contains all 'A's or all '9's, with or without the symbols 'J1,

'K', or 'L’, does not define an ALPHANUMERIC item, and;

b. Its contents when represented in Standard Data Format are allowable

characters in the computer's character set.

5. To define an item as Alphanumeric Edited:

a. Its PICTURE character-string is restricted to certain combinations

of the following symbols: 'A', 'J', 'K', 'X', '9', 'B', and 'O'; and

(1) The character-string must contain at least one 'B' and at

least one 'X' or at least one 'O' (zero) and at least one

'X', or;

(2) The character-string must contain at least one 'O' (zero)

and at least one 'A'; and

b. Its contents when represented in Standard Data Format are allowable

characters in the computer's character set.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL——-----——- --—---—COBOL

JOURNAL OF DEVELOPMENT

III-6-57

Data Division

PICTURE

6. To define an item as Numeric Edited:

Its PICTURE character-string is restricted to certain combinations of the

symbols 'B', 'J', 'K', 'P', 'V', 'Z*, 'O', '9',
'CR', 1DB', and the currency symbol. The allowable combinations are

determined from the order of precedence of symbols and the editing

rules. The maximum number of digit positions that may be represented

in the character-string is 18; and

b. The contents of the character positions of these symbols that are

allowed to represent a digit in Standard Data Format, must be one

of the numerals.

7. The size of an elementary item where size means the number of

character positions occupied by the elementary item in Standard Data

Format, is determined by the number of allowable symbols that

represent character positions. An unsigned non-zero integer which

is enclosed in parentheses following the symbols 'A', 'X', '91,

'Z', ‘B’, 'O', '+', '-', or the currency symbol indicates

the number of consecutive occurrences of the symbol. Note that the

following symbols may appear only once in a given PICTURE, 'S', 'V', 'L*,
'.', 'CR', and 'DB1. The number of occurrences within a PICTURE of the

symbols 'J' and 'K' is determined by the implementor.

8. The function of the symbols used to describe an elementary item
are explained as follows:

A Each 'A' in the character-string represents a character position

which can contain only a letter of the alphabet or a space.

B Each 'B' in the character-string represents a character position

into which the space character will be inserted.

J,K Indicates data control symbols the functions of which are specified by

the individual implementor.

L The 'L' must appear as the left-most character in the character-string of

every elementary item whose length is variable. If the implementor's

standard method of determining the end of variable length items is used,

the DEPENDING ON clause is not necessary. The PICTURE designates the

maximum size of the item. The 'L' is not counted in determining the size

of the item.

P The 'P' indicates an assumed decimal scaling position and is used

to specify the location of an assumed decimal point when the point

is not within the number that appears in the data item. The scaling
position character 'P* is not counted in the size of the data item.

Scaling position characters are counted in determining the maximum

number of digit positions (18) in numeric edited items or numeric

items which appear as operands in arithmetic statements. The scaling

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-58

COBOL

Data Division

PICTURE

position character 'P' can appear only to the left or right as a

continuous string of 'P's within a PICTURE description; since the

scaling position character 'P* implies an assumed decimal point (to
the left of 'P's if 'P's are left-most PICTURE characters and to the

right of 'P's if 'P's are right-most PICTURE characters), the assumed

decimal point symbol 'V' is redundant as either the left-most or

right-most character within such a PICTURE description.

S The letter 'S' is used in a character-string to indicate the presence

of an operational sign and must be written as the left-most character

in the PICTURE, exclusive of the symbol 'I/. The 'S' is not counted

in determining the size of the elementary item.

V The 'V' is used in a character-string to indicate the location of

the assumed decimal point and may only appear once in a character¬

string. The 'V' does not represent a character position and therefore

is not counted in the size of the elementary item. When the assumed

decimal point is to the right of the right-most symbol in the string

the 'V' is redundant.

X Each 'X' in the character-string is used to represent a character

position which contains any allowable character from the computer's

character set.

Z Each 'Z' in a character-string may only be used to represent the

left-most leading numeric character positions which will be replaced

by a space character when the contents of that character position is

zero. Each 'Z' is counted in the size of the item.

9 Each '9' in the character-string represents a character position

which contains a numeral and is counted in the size of the item.

0 Each 'O' (zero) in the character-string represents a character

position into which the numeral zero will be inserted. The 'O' is
counted in the size of the item.

, Each (comma) in the character-string represents a character
position into which the character ',' will be inserted. This

character position is counted in the size of the item.

. When the character '.' (period) appears in the character-string it

is an editing symbol which represents the decimal point for alignment

purposes and in addition, represents a character position into which

the character '.' will be inserted. The character '.' is counted in
the size of the item. For a given program the functions of the period and
comma are exchanged if the clause DECIMAL-POINT IS COMMA is stated in the
SPECIAL-NAMES paragraph. In this exchange the rules for the period apply

to the comma and the rules for the comma apply to the period wherever

they appear in a PICTURE clause.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
COBOL

III-6-59

Data Division

PICTURE

+'»">cR,Dt' These symbols are used as editing sign control symbols. When used,

they represent the character position into which the editing sign
control symbol will be placed. The symbols are mutually exclusive in

any one character-string and each character used in the symbol is
counted in determining the size of the data-item.

* Each '*' (asterisk) in the character-string represents a leading
numeric character position into which an asterisk will be placed

when the contents of that position is zero. Each ' is counted in
the size of the item.

cs The currency symbol in the character-string represents a

character position into which a currency symbol is to be placed.
The currency symbol in a character-string is represented by either

the currency sign or by the single character specified in the

CURRENCY SIGN clause in the SPECIAL-NAMES paragraph. The currency

symbol is counted in the -size of the item.

6.31.5 EDITING RULES

1. There are two general methods of performing editing in the PICTURE

clause, either by insertion or by suppression and replacement. There

are four types of insertion editing available. They are:

a. Simple insertion

b. Special insertion

c. Fixed insertion

d. Floating insertion

2.

CODASYL

There are two types of suppression and replacement editing:

a. Zero suppression and replacement with spaces

b. Zero suppression and replacement with asterisks

The type of editing which may be performed upon an item is dependent

upon the category to which the item belongs. The following table

specifies which type of editing may be performed upon a given category:

Category Type of Editing

ALPHABETIC

NUMERIC

ALPHANUMERIC

Alphanumeric Edited

Numeric Edited

Any Variable Length Item

Simple Insertion, 'B'

Simple Insertion, 'O'

None

Simple Insertion, 'O'

All, subject to rules

None

only

only

and 'B1

in rule 3, below.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-60

COBOL

Data Division

PICTURE

3. Floating Insertion editing and editing by Zero Suppression and
Replacement are mutually exclusive in a PICTURE clause. Only one

type of Replacement may be used with Zero Suppression in a PICTURE
clause.

4. Simple Insertion Editing.

The (comma), ’B’ (space) and 'O' (zero) are used as the insertion

characters. The insertion characters are counted in the size of

the item and represent the position in the item into which the
character will be inserted.

5. Special Insertion Editing.

The (period) is used as the insertion character. In addition to

being an insertion character it also represents the decimal point for

alignment purposes. The insertion character used for the actual decimal

point is counted in the size of the item. The use of the assumed

decimal point, represented by the symbol 'V' and the actual decimal

point, represented by the insertion character, in the same PICTURE

character-string is disallowed. If the insertion character is the last

symbol in the character string and additional clauses follow the character¬

string, then the character-string must be immediately followed by the

semicolon punctuation character, followed by a space. If the PICTURE

clause is the last clause of that Data Division entry, and the insertion

character is the last symbol in the character-string, the insertion
character must be immediately followed by a period punctuation character,

followed by a space. This results in two consecutive periods appearing

in the data description entry. The result of Special Insertion editing

is the appearance of the insertion character in the item in the same

position as shown in the character-string.

6.-Fixed Insertion Editing.

The currency symbol and the editing sign control svmbols, ' + '.
’CR', 'DB' are the insertion characters. Only one currency

symbol and only one of the editing sign control symbols can be used

in a given PICTURE character-string. When the symbols 'CR' or 'DB'

are used they represent two character positions in determining the

size of the item and they must represent the right-most character

positions that are counted in the size of the item. The symbol '+'

or when used, must be the left-most or right-most character
position to be counted in the size of the item. The currency symbol

must be the left-most character position to be counted in the size

of the item except that it can be preceded by either a '+' or a '-'

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
COBOl

III-6-61

Data Division

PICTURE

symbol. Fixed insertion editing results in the insertion character

occupying the same character position in the edited item as it
occupied in the PICTURE character-string. Editing sign control
symbols produce the following results depending upon the value of the
data item:

EDITING SYMBOL IN

PICTURE CHARACTER-STRING

RESULT
DATA. ITEM

POSITIVE OR ZERO
DATA ITEM
NEGATIVE

+

CR

DB

+
space

2 spaces CR

2 spaces DB

7. Floating Insertion Editing.

The currency symbol and editing sign control symbols '+' or '-' are

the insertion characters and they are mutually exclusive as floating

insertion characters in a given PICTURE character-string.

Floating insertion editing is indicated in a PICTURE character-string

by using a string of at least two of the allowable insertion characters

to represent the left-most numeric character positions into which the

insertion characters can be floated. Any of the simple insertion

characters embedded in the string of floating insertion characters or

to the immediate right of this string are part of the floating string.

In a PICTURE character-string, there are only two ways of representing

floating insertion editing. One way is to represent any or all of the

leading numeric character positions on the left of the decimal point

by the insertion character. The other way is to represent all of

the numeric character positions in the PICTURE character-string by the

insertion character.

The result of floating insertion editing depends upon the representation

in the PICTURE character-string. If the insertion characters are only

to the left of the decimal point the result is a single insertion
character that will be placed into the character position immediately
preceding the decimal point, or the first non-zero digit in the data

represented by the insertion symbol string, whichever is farther to the

left in the PICTURE character-string.

If all numeric character positions in the PICTURE character-string are

represented by the insertion character, the result depends upon the

value of the data. If the value is zero the entire data item will

contain spaces. If the value is not zero, the result is the same as

when the insertion character is only to the left of the decimal point.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL---COBOL

JOURNAL OF DEVELOPMENT
III-6-62

Data Division

PICTURE

To avoid truncation, the minimum size of the PICTURE character-string

for the receiving data item must be the number of characters in the
sending data item, plus the number of non-floating insertion characters

being edited into the receiving data item, plus one for the floating

insertion character.

8. Zero Suppression Editing.

The suppression of leading zeroes in numeric character positions is
indicated by the use of the alphabetic character 'Z’ or the character

(asterisk) as suppression symbols in a PICTURE character-string.

These symbols are mutually exclusive in a given PICTURE character¬

string. Each suppression symbol is counted in determining the size
of the item. If 'Z' is used the replacement character will be the

space and if the asterisk is used, the replacement character will

be

Zero suppression and replacement is indicated in a PICTURE character¬

string by using a string of one or more of the allowable symbols to

represent leading numeric character positions which are to be replaced

when the associated character position in the data contains a zero.

Any of the simple insertion characters embedded in the string of

symbols or to the immediate right of this string are part of the

string.

In a PICTURE character-string, there are only two ways or representing

zero suppression. One way is to represent any or all of the leading

numeric character positions to the left of the decimal point by

suppression symbols. The other way is to represent all of the numeric
character positions in the PICTURE character-string by suppression

symbols.

If the suppression symbols appear only to the left of the decimal

point, any leading zero in the data which corresponds to a symbol in

the string is replaced by the replacement character. Suppression

terminates at the first non-zero digit in the data represented by the

suppression symbol string or at the decimal point, whichever is

encountered first.

If all numeric character positions in the PICTURE character-string are
represented by suppression symbols and the value of the data is not

zero the result is the same as if the suppression characters were only
to the left of the decimal point. If the value is zero the entire

data item will be spaces if the suppression symbol is 1Z' or all

except for the actual decimal point, if the suppression symbol is’*'.

_ PROGRAMMING LANGUAGE COMMITTEE
CODASYL—-—--COBOL

JOURNAL OF DEVELOPMENT
III-6-63

Data Division

PICTURE

9. The symbols 'Z', and the currency symbol, when used as

floating replacement characters, are mutually exclusive within a

given character-string.

The following chart shows the order of precedence when using characters
as symbols in a character-string. An 'X' at an intersection indicates

that the symbol(s) at the top of the column may precede, in a given

character-string, the symbol(s) at the left of the row. Arguments

appearing in braces j | indicate that the symbols are mutually

exclusive. The currency symbol is indicated by the symbol 'cs'.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
HI-6-64

C O B O L CODASYL

Data Division

NON-FLOATING INSERTION S^ffOLS OTHER SYMBOLS

B 0
•

!-! n

(CR)

DB/
c s

A

X
L p p s V z

*1

(zl

*1
9 V +

c s cs

B X X X X X X X X X X X X X X X X

0 X X X X X X X X X X X X X X X X X

•
X X X X X X X X X X X X X X X

x X X X X X X X X X

{+ -} X

j {+ -} X X X X X X X X X X X X

{CR L'B } X X X X X X X X X X X X

CS X X X

A X X X X X X

p X X X X

p X X X X X X X X X X X X X X

s X

V X X X X X X X X X X X X

(Z *} X X X X X X

{Z *} X X X X X X X X X X

9 X X X X X X X X X X X X X X X

{+ -} X X X X X

{+ -) X X X X X X X . X X

c s X X X X X

cs X X X X X X X X X

At least one of the symbols 'A', 'X', 'Z', '9' or or at least two of
the symbols , '-' or 'cs' must be present in a PICTURE string.

Non-floating insertion symbols ' + ' and and other symbol *P1 appear twice.
The left-most column and upper-most row represents their use to the left of the

PICTURE'S numeric character positions and the second their use to the right

of the PICTURE'S numeric character positions. Non-floating insertion symbols
'+' and and other symbols 'Z', 'cs', ' + ', and 'appear twice. The
left-most column and upper-most row represents the use before the decimaL

position, the second the use after the decimal point position.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-65

COSOL

Data Division

RANGE

6.32 THE RANGE CLAUSE

6.32.1 FUNCTION

The RANGE clause indicates the potential range of the value of an item.

6.32.2 GENERAL FORMAT

RANGE IS
}

literal-2

6.32.3 SYNTAX RULES

1. The RANGE clause can be written only at the elementary item level.

2. Literal-1 and literal-2 may be figurative constants.

3. Literal-1 and literal-2 must not contain more digits than are specified in the

PICTURE clause.

4. The words THRU and THROUGH are equivalent.

6.32.4 GENERAL RULES

1. This clause is used for documentation only.

2. For numeric items, literal-1 and literal-2 represent the respective minimum

and maximum values of the item.

3. For nonnumeric items, each character of literal-1 and literal-2 represents the

respective minimum and maximum values of the corresponding character position

in the item.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL COBOL

JOURNAL OF DEVELOPMENT
III-6-66

Data Division

RECORD CONTAINS

6.33 THE RECORD CONTAINS CLAUSE

6.33.1 FUNCTION

The RECORD CONTAINS clause specifies the size of data records.

6.33.2 GENERAL FORMAT

RECORD CONTAINS l integer-1 TO] integer-2 CHARACTERS

6.33.3 SYNTAX RULES

1. Integer-1 and integer-2 must be unsigned non-zero integers.

6.33.4 GENERAL RULES

1. The size of each data record is completely defined within the Record
Description entry, therefore this clause is never required. When

present, however, the following notes apply:

a. Integer-2 may not be used by itself unless all the data records

in the file have the same size. In this case integer-2 represents
the exact number of characters in the data record. If integer-1

and integer-2 are both shown, they refer to the minimum number of

characters in the smallest size data record and the maximum number

of characters in the largest size data record, respectively.

b. The size is specified in terms of the number of characters in

Standard Data Format contained within the logical record, regardless

of the types of characters used to represent the items within the
logical record. The size of a record is determined by the sum of

the number of characters in all fixed length elementary items plus

the sum of the maximum number of characters in all variable length

items subordinate to the record. This sum may be different from

the actual size of the record; see 3.3.4, Selection of Character
Representation and Radix; 6.40, The SYNCHRONIZED Clause; and 6.47,

The USAGE Clause.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-67

COBOL

Data Division

RECORDING MODE

6.34 THE RECORDING MODE CLAUSE

6.34.1 FUNCTION

The RECORDING MODE clause specifies the format or organization of data on
external media.

6.34.2 GENERAL FORMAT

RECORDING MODE IS mode-name

6.34.3 GENERAL RULES

1. The RECORDING MODE clause is necessary for computers having a data format or

organization which may vary on external media.

2. When a computer has only one mode, this clause is not needed.

3. Each implementor will assign specific names to the alternative modes of data

representation which can be handled. When a standard recording mode exists,

the implementor may choose to assign names only to the nonstandard modes.

In this case, the absence of the RECORDING MODE clause denotes the standard

mode.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-68

COBO

Data Division

REDEFINES

6.35 THE REDEFINES CLAUSE

6.35.1 FUNCTION

The REDEFINES clause allows the same computer storage area to be described
by different data description entries.

6.35.2 GENERAL FORMAT

level-number data-name-1 ; REDEFINES data-name-2

Level-muiber, d«t»-na«e-l »n<3 the semicolon ere shown
in the above format to Improve olarlty. Level-number
and data-naae-1 are not part of the REDEFINES olauae.

6.35.3 SYNTAX RULES

1. The FJEDEFINES clause, when specified, must immediately follow data-name-1.

2. The level-numbers of data-name-1 and data-name-2 must be identical, but
must not be 66 or 88.

3. This clause must not be used in level 01 entries in the File Section.

Implicit redefinition is provided by the DATA RECORDS clause in the
File Description entry.

6.35.4 GENERAL RULES

1. Redefinition starts at data-name-2 and ends when a level-number less

than or equal to that of data-name-2 is encountered.

2. When the level-number of data-name-1 is other than 01, it must specify
a storage area of the same size as data-name-2. It is important to

observe that the REDEFINES clause specifies the redefinition of a

storage area, not of the data items occupying the area.

3. Multiple redefinitions of the same storage area are permitted. The

entries giving the new descriptions of the storage area must follow

the entries defining the area being redefined, without intervening

entries that define new storage areas. Multiple redefinitions of
the same storage area must all use the data-name of the entry that

originally defined the area.

4. The data description entry for data-name-2 cannot contain an OCCURS

clause, nor can data-name-2 be subordinate to an entry which contains
an OCCURS clause. Neither the original definition nor the redefinition

can include an item whose size is variable as defined in the OCCURS

clause (see 6.29.4.1.b, The OCCURS Clause).

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
HI-6-69

COBOL

Data Division

REDEFINES

5. The entries giving the new description of the storage area must not

contain any VALUE clauses, except in condition-name entries.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL-

JOURNAL OF DEVELOPMENT
III-6-70

COBOL

Data Division

RENAMES

6.36 THE RENAMES CLAUSE

6.36.1 FUNCTION

The RENAMES clause permits alternative, possibly overlapping, groupings of

elementary items.

6.36.2 GENERAL FORMAT

66 data-name-1 ; RENAMES data-name-2 [{
THRU

THROUGH
da ta-name-

Level-nuab«r 66, <J«t*-name-l «nd the sonloolon are shown
In the above format to improve clarity. Level-number
and data-name-1 are not part of the RENAMES clause.

6.36.3 SYNTAX RULES

1. All RENAMES entries associated with a given logical record must immediately

follow its last data description entry.

2. Data-name-2 and data-name-3 must be names of elementary items or groups of

elementary items in the associated logical record, and cannot be the same

data-name. A 66 level entry cannot rename another 66 level entry nor can it

rename a 77, 88, or 01 level entry.

3. Data-name-1 cannot be used as a qualifier, and can only be qualified by the

names of the level 01 or FD entries. Neither data-name-2 nor data-name-3 may

have an OCCURS clause in its data description entry nor be subordinate to an

item that has an OCCURS clause in its data description entry.

4. Data-name-2 must precede data-name-3 in the Record Description, and after any

associated redefinition, the beginning point of the area described by data-

name-3 must logically follow the beginning point of the area described by

data-name-2.

5. Data-name-3 cannot be subordinate to data-name-2.

6. Data-name-2 and data-name-3 may be qualified.

7. The words THRU and THROUGH are equivalent.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

COBOL
JOURNAL OF DEVELOPMENT

III-6-71

Data Division

RENAMES

6.36.4 GENERAL RULES

1. One or more RENAMES entries can be written for a logical record.

2. When data-name-3 is specified, data-name-1 is a group item which includes all

elementary items starting with data-name-2 (if data-name-2 is an elementary

item) or the first elementary item in data-name-2 (if data-name-2 is a group

item), and concluding with data-name-3 (if data-name-3 is an elementary item)

or the last elementary item in data-name-3 (if data-name-3 is a group item).

3. When data-name-3 is not specified, data-name-2 can be either a group or an

elementary item; when data-name-2 is a group item, data-name-1 is treated as

a group item, and when data-name-2 is an elementary item, data-name-1 is

treated as an elementary item.

4. When data-name-3 is specified, none of the elementary items within the range,

including data-name-2 and data-name-3, can be of variable length.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

COBOL
JOURNAL OF DEVELOPMENT

III-6-72

Data Division

REPORT

6.37 THE REPORT CLAUSE

6.37.1 FUNCTION

The REPORT clause cross references the Report Description entries with
their associated File Description entry.

6.37.2 GENERAL FORMAT

REPORT IS

REPORTS ARE
report-name-1 [, report-name-2] ...

6.37.3 SYNTAX RULES

1. Each report-name listed in the FD entry must be the subject of a

Report Description (RD) entry in the Report Section.

6.37.4 GENERAL RULES

1. The REPORT clause is required in the File Description entry if the

file is an output report file or is to contain output report records.

2. The presence of more than one report-name indicates that the file

contains more than one report. These reports may be of differing

formats, but must be the same size. The order in which they are

listed is not significant.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-73

COBOL

Data Division

RESET

6.38 THE RESET CLAUSE

6.38.1 FUNCTION

The RESET clause indicates the CONTROL identifier that causes the SUM

counter in the elementary item entry to be reset to zero on a CONTROL

break.

6.38.2 GENERAL FORMAT

RESET ON
j identifier-1
\ FINAL

6.38.3 SYNTAX RULES

1. Identifier-1 must be one of the identifiers described in the CONTROL

clause in the Report Description entry. Identifier-1 must be a
higher level CONTROL identifier than the CONTROL identifier asso¬

ciated with the CONTROL FOOTING report group in which the SUM and
RESET clauses appear.

2. The RESET clause may only be used in conjunction with a SUM clause

at the elementary level.

6.38.4 GENERAL RULES

1. After presentation of the TYPE CONTROL FOOTING report group, the
counters associated with the report group are reset automatically to

zero unless an explicit RESET clause is given specifying reset based
on a higher level control than the associated control for the report

group.

2. The RESET clause may be used for progressive totaling of identifiers

where subtotals of identifiers may be desired without automatic

resetting upon producing the report group.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-74

COBOL

Data Division

SOURCE, SUM, VALUE

6.39 THE SOURCE, SUM, AND VALUE CLAUSES

6.39.1 FUNCTION

The SOURCE, SUM or VALUE clauses define the purpose of this report item

within the report group.

6.39.2 GENERAL FORMAT I SOURCE IS [SELECTED] identifier-1

SUM identifier-2 [, identifier-3] ... [UPON data-name-1]

VALUE IS literal-1

6.39.3 SYNTAX RULES

1. Identifier-1, identifier-2, and identifier-3 must each indicate an item
which appears in the File, Working-Storage, Constant or Linkage

Section or is the name of a SUM counter in the Report Section.

2. SOURCE (without SELECTED), SUM and VALUE clauses can only be given

at the elementary level. The SOURCE IS SELECTED clause can only be «

given at a group level.

3. When the SELECTED phrase is specified, identifier-1 represents a group

item. The identifiers described at the elementary level in the

source record then become SOURCE entries in the associated report

group. The SELECTED elementary level identifiers must be unique

data-names.

4. Literal-1 may be numeric, non-numeric, or a figurative constant.

5. Data-name-1 may be qualified.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-75

COBOL

Data Division

SOURCE, SUM, VALUE

6.39.4 GENERAL RULES

SOURCE

1. The SOURCE clause indicates a data item which is to be used as

the source for this report item. This data item is called a SOURCE

data item or a SOURCE item. The item is presented according to

the PICTURE clause in the associated elementary report group entry.

2. The elementary level items within identifier-1 are matched against

the data-names specified at the elementary level within the report

group. Matching data-names are SELECTED as SOURCE item entries to

be included and presented within the report group, according to the
PICTURE and USAGE specifications given with the data-name in the

report group entry.

SUM

3. A SUM clause may only appear in a TYPE CONTROL FOOTING report group.

4. If a SUM counter is referred to by a Procedure Division statement or
Report Section entry, a data-name must be specified with the SUM

clause entry. The data-name then represents the summation counter

automatically generated by the Report Writer to total the operands

specified immediately following the SUM. If a summation counter is

never referred to, the counter need not be named explicitly by a

data-name entry. A SUM counter is only algebraically incremented

just before presentation of the TYPE DETAIL report group in which

the item being summed appears as a SOURCE item.

5. Whether the SUM clause names the summation counter or not, the

PICTURE clause must be specified for each SUM counter. Editing

characters or the editing clause may be included in the description

of a SUM counter. Editing of a SUM counter only occurs upon the

presentation of that SUM counter. At all other times the SUM counter

is treated as a numeric data-item. The SUM counter must be large
enough to accommodate the summed quantity without truncation of
integral digits.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-76

CCBOL

Data Division

SOURCE, SUM, VALUE

6. Each item being summed, that is, identifier-2, identifier-3, etc.,

must appear as a SOURCE item in a TYPE DETAIL report group or be

names of SUM counters in a TYPE CONTROL FOOTING report group at an equal

or lower position in the control hierarchy. Although the items

must be explicitly written in a TYPE DETAIL report group, they

may be actually suppressed at presentation time. In this manner,

direct association without ambiguity can be made from the current

data available by a GENERATE statement to the data items to be

presented within the Report Section.

7. If higher level report groups are indicated in the control hierarchy,

counter updating, commonly called 'rolling counters forward',

procedures take place prior to the reset operation.

8. The summation of data items defined as SUM counters in TYPE CONTROL

FOOTING report groups is accomplished explicitly or implicitly with
the Report Writer automatically handling the updating function. If

a SUM control of a data item is not desired for presentation at a

lower level but is desired for presentation at a higher level, the

lower level SUM specification may be omitted. In this case, the

same results are obtained as if the lower level SUM counter were

specified.

9. The UPON data-name-1 phrase is required to obtain selective

summation for a particular data item which is named as a SOURCE

item in two or more TYPE DETAIL report groups. Identifier-2 and

identifier-3 must be SOURCE data items in data-name-1. Data-name-1

must be the name of a TYPE DETAIL report group. If the UPON data-name-1

phrase is not used, identifier-2, identifier-3, etc., respectively,

are added to the SUM counter at each execution of a GENERATE statement.
This statement generates a TYPE DETAIL report group that contains the

SUM operands at the elementary level.

For further explanation, see 7.8, The ADD Statement.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-77

COBOL

Data Division

SYNCHRONIZED

6.40 THE SYNCHRONIZED CLAUSE

6.40.1 FUNCTION

The SYNCHRONIZED clause specifies the alignment of an elementary item

on the natural boundaries of the computer memory (See 3.3.6, Item

Alignment for Increased Object-Code Efficiency).

6.40.2 GENERAL FORMAT

I SYNCHRONIZED 1 f LEFT 1 1 SYNC j [RIGHT J

6.40.3 SYNTAX RULES

1. This clause may only appear with an elementary item.

2. SYNC is an abbreviation for SYNCHRONIZED.

6.40.4 GENERAL RULES

1. This clause specifies that the COBOL processor, in creating the
internal format of this item, must arrange the item in contiguous

units of memory in such a way that no other data item appears in

any of the memory units between the left and right natural boundaries

delimiting this data item. If the size of the item is such that it

does not, itself, utilize all of the memory between the delimiting

natural boundaries, the unused memory units (or portions thereof)

may not be used for any other data item. Such unused memory is,

however, included in:

a. The size of any group to which the elementary item belongs; and

b. The computer storage area allocation when the elementary item

appears as the object of a REDEFINES clause.

2. SYNCHRONIZED not followed by either RIGHT or LEFT specifies that the

elementary item is to be positioned between natural boundaries in such

a way as to effect efficient utilization of the elementary data item.

The specific positioning is, however, determined by the implementor.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE
--COBOL

JOURNAL OF DEVELOPMENT
III-6-78

Data Division_

SYNCHRONIZED

3. SYNCHRONIZED LEFT specifies that the elementary item is to be

positioned such that it will begin at the left boundary of the

contiguous memory in which the elementary item is placed.

4. SYNCHRONIZED RIGHT specifies that the elementary item is to be
positioned such that it will terminate on the right boundary of

the contiguous memory in which the elementary item is placed.

5. Whenever a SYNCHRONIZED item is referenced in the source program, the

original size of the item, as shown in the PICTURE clause, is used in

determining any action that depends on size, such as justification,

truncation or overflow.

6. If the data description of an item contains the SYNCHRONIZED clause

and an operational sign, the sign of the item appears in the normal

operational sign position, regardless of whether the item is

SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT.

7. When the SYNCHRONIZED clause is specified for an item within the

scope of an OCCURS clause, each occurrence of the item is SYNCHRONIZED.

8. This clause is hardware dependent and in addition to rules 1 thru 7,

the implementor must specify how elementary items associated with this

clause are handled regarding:

a. The format on the external media of records or groups containing
elementary items whose data description contains the SYNCHRONIZED

clause.

b. Any necessary generation of implicit FILLER, if the elementary
item immediately preceding an item containing the SYNCHRONIZED

clause does not terminate at an appropriate natural boundary.

Such automatically generated FILLER positions are included in:

(1) The size of any group to which the FILLER item belongs; and

(2) The computer storage area allocation when the group item of

which the FILLER item is a part appears as the object of a

REDEFINES clause.

9. An implementor may, at his option, specify automatic alignment for

some internal data formats; hence, implicitly SYNCHRONIZED data elements

are not precluded. If the description of a data item includes the
SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT clause, that clause takes

precedence over any implicit synchronization for that item.

10. Any rules for synchronization of the records of a data file, as this
effects the synchronization of elementary items, will be specified

by the implementor.

PROGRAMMING LANGUAGE COMMITTEE
COBOL CODASYL

JOURNAL OF DEVELOPMENT
IIX-6-79

Data Division

TYPE

6.41 THE TYPE CLAUSE

6.41.1 FUNCTION

The TYPE clause specifies the particular type of report group that is

described by this entry and indicates the time at which the report group
is to be generated.

6.41.2 GENERAL FORMAT

REPORT HEADING
RH

PAGE HEADING
PH

OVERFLOW HEADING

OH

CONTROL HEADING I CO]

l CH

\ / identifier-n)
f \ FINAL |

TYPE IS DETAIL

DE
CONTROL FOOTING

CF } {
identifier-n

FINAL

OVERFLOW FOOTING

OV

PAGE FOOTING

PF

REPORT FOOTING

RF

6.41.3 SYNTAX RULES

l. RH is an abbreviation for REPORT HEADING;
PH' is an abbreviation for PAGE HEADING;
OH is an abbrevia tion for OVERFLOW HEADING;
CH is an abbrevia tion for CONTROL HEADING;
DE is an abbreviation for DETAIL;
CF is an abbreviation for CONTROL FOOTING;
OV is an abbrevia tion for OVERFLOW FOOTING;
PF is an abbreviation for PAGE FOOTING;
RF is an abbreviation for REPORT FOOTING-

6.41.4 GENERAL RULES

The level-number 01 identifies a particular report group to be
generated as output and the TYPE clause in this entry indicates
the time for generation of this report group. If the report
group is described as other than TYPE DETAIL, its generation is
an automatic report writer function. If the report group is

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-80

COBOL

Data Division

TYPE

described with the TYPE DETAIL clause the Procedure Division
statement, GENERATE data-name directs the report writer to produce
the named report group.

2. The REPORT HEADING entry indicates a report group that is produced
only once at the beginning of a report during the execution of the
first GENERATE statement. There can be only one report group of
this type in a report. SOURCE clauses used in TYPE RH report
groups refer to the values of data items at the time the first
GENERATE statement is executed.

3. The PAGE HEADING entry indicates a report group that is produced
at the beginning of each page according to PAGE and OVERFLOW condition

rules as specified in Rule 19. There can be only one report group of

this TYPE in a report.

4. The OVERFLOW HEADING entry indicates a report group that is

produced at the beginning of a page following an OVERFLOW condition

according to PAGE and OVERFLOW rules as specified in Rule 19. There

can be only one report group of this TYPE in a report.

5. The CONTROL HEADING entry indicates a report group that is produced

at the beginning of a control group for a designated identifier or,

in the case of FINAL, is produced once before the first control group

at the initiation of a report during the execution of the first GENERATE

statement. There can be only one report group of this TYPE for each

identifier and for the FINAL specified in a report. In order to produce
any CONTROL HEADING report groups, a control break must occur. SOURCE
clauses used in TYPE CONTROL HEADING FINAL report groups refer to the
values of the items at the time the first GENERATE statement is executed.

6. The DETAIL entry indicates a report group that is produced for

each GENERATE statement in the Procedure Division. Each DETAIL report

group must have a unique data-name at the 01 level in a report.

7. The CONTROL FOOTING entry indicates a report group that is produced

at the end of a control group for a designated identifier or is produced

once at the termination of a report ending a FINAL control group. There

can be only one report group of this TYPE for each identifier and for

the FINAL entry specified in a report. In order to produce any CONTROL

FOOTING report groups, a control break must occur. SOURCE clauses used

in TYPE CONTROL FOOTING FINAL report groups refer to the values of the
items at the time the TERMINATE statement is executed.

8. The OVERFLOW FOOTING indicates a report group that is produced

at the bottom of a page following an OVERFLOW condition according to
PAGE and OVERFLOW rules as specified in Rule 19. There can be only

one report group of this TYPE in a report.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-81

COBOL

Data Division

TYPE

9. The PAGE FOOTING entry indicates a report group that is produced

at the bottom of each page according to PAGE and OVERFLOW condition

rules as specified in Rule 19. There can be only one report group

of this TYPE in a report.

10. The REPORT FOOTING entry indicates a report group that is produced

only once at the termination of a report. There can be only one
report group of this type in a report. SOURCE clauses used in

TYPE REPORT FOOTING report groups refer to the values of the items
at the time the TERMINATE statement is executed.

11. Identifier, as well as FINAL, must be one of the identifiers described

in the CONTROL clause in the Report Description entry.

12. A FINAL type control break may be designated only once for CONTROL

HEADING or CONTROL FOOTING entries within a report.

13. Nothing precedes a REPORT HEADING entry and nothing follows a REPORT

FOOTING entry within a report.

14. The HEADING or FOOTING report groups occur in the following Report
Writer sequence, if all exist for a given report:

REPORT HEADING (one occurrence only-first page)

PAGE HEADING or OVERFLOW HEADING

CONTROL HEADING

DETAIL

CONTROL FOOTING

PAGE FOOTING or OVERFLOW FOOTING

REPORT FOOTING (one occurrence only-last page)

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-82

COBOL

Data Division

TYPE

15. CONTROL HEADING report groups are presented in the following

hierarchical arrangement:

Final Control Heading

Major Control Heading

Minor Control Heading

CONTROL FOOTING report groups are presented in the following

hierarchical arrangement:

Minor Control Footing

Major Control Footing

Final Control Footing

16. CONTROL HEADING report groups appear with the current values of any
indicated SOURCE data items before the DETAIL report groups of the

CONTROL group are produced. CONTROL FOOTING report groups appear with

the previous values of any indicated CONTROL SOURCE data items just

after the DETAIL report groups of that CONTROL group have been produced.

The USE procedures specified for a CONTROL FOOTING report group that

refer to: a) SOURCE data items specified in the CONTROLS clause affect

the previous,value of the items; b) SOURCE data items not specified in

the CONTROLS clause affect the current value of the items. These report

groups appear whenever a control break is noted. LINE NUMBER determines

the absolute or relative position of the CONTROL report groups exclusive

of the other HEADING and FOOTING report groups.

17. The concept of the OVERFLOW condition in a Report Writer is based on

the logical definition of a page format relative to the presentation

of a complete control group. For purposes of the OVERFLOW condition,
a complete control group depends on the change of a data item value

within a designated order of specific data items. If the change is a

minor control group break, the complete control group includes the

HEADING, DETAIL and FOOTING report groups associated with the minor
control specification. If the change is a major control group break,

the complete control group includes the HEADING, DETAIL, and FOOTING
report groups associated with the minor, intermediate, and major control

specifications. Thus, during process time, if a page format does not

allow a complete control group to be presented within the definition

of the page, an OVERFLOW condition is said to exist from the last DETAIL

report group printed in the control group on one page to the first

PROGRAMMING LANGUAGE COMMITTEE
CODASYL-----COBOL

JOURNAL OF DEVELOPMENT
III-6-83

Data Division

TYPE

report group printed in the control group on the next page. Between

the points of from and to described above, OVERFLOW FOOTING and OVERFLOW

HEADING report groups may be produced, if specified. If a complete

control group, as described above, and none of the next control group

can be presented within the definition of the page, a PAGE condition is

said to exist from the last DETAIL report group and therefore, PAGE

FOOTING and PAGE HEADING report groups are produced, if specified.

18. PAGE HEADING and OVERFLOW HEADING, and PAGE FOOTING and OVERFLOW

FOOTING clauses, if specified in a report, are mutually exclusive for

any one page. The absence of a TYPE OVERFLOW HEADING clause indicates

that TYPE PAGE HEADING report groups, if specified, are produced at

the beginning of each page regardless of the condition that prompted

the new page. Likewise, the absence of a TYPE OVERFLOW FOOTING

indicates that TYPE PAGE FOOTING report groups, if specified, are

produced at the bottom of each page regardless of the condition

that ended the current page.

19. In order to recognize the OVERFLOW condition within the Report

Writer and to determine the difference between an OVERFLOW condition
and a PAGE condition, the PAGE LIMITS clause must be given including

an explicit LAST DETAIL clause. If both TYPE PAGE HEADING and
OVERFLOW HEADING or TYPE PAGE FOOTING and OVERFLOW FOOTING report groups

are specified in the same report and if the line counter will exceed the

LAST DETAIL limit for generation of the current report group, the

following rules apply:

a. Without an explicit PAGE LIMITS FOOTING clause, if the current

report group is not the first report group of a new control group,

an OVERFLOW condition exists from this position on the page to the
position on the next page where the FIRST DETAIL report group can

be presented. If the current report group is the first report

group of a new control group, a PAGE condition exists. TYPE CONTROL

FOOTING report groups are considered part of the last control group.

TYPE CONTROL HEADING report groups are considered part of the next
or current control group.

b. With an explicit PAGE LIMITS FOOTING clause, if the current report

group is a TYPE DETAIL report group, an OVERFLOW condition exists

as stated in a. above. If the current report group is a CONTROL

FOOTING report group, an additional test is made to determine if the

LINE-COUNTER will exceed the FOOTING limit for generation of the

complete CONTROL FOOTING report group. If all the report groups

associated with this control break can be produced within the limit

specified, a PAGE condition exists following the CONTROL FOOTING

report group. If all the report groups associated with this control
break cannot be produced within the limit specified, an OVERFLOW

condition exists, which means the TYPE CONTROL FOOTING report groups

are produced on the following page.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-84

CODASYL COBOL

Data Division

TYPE

c. Without an explicit PAGE LIMITS LAST DETAIL clause, an OVERFLOW
condition cannot exist within the Report Writer. Therefore,

with or without the PAGE LIMITS FOOTING clause, TYPE PAGE FOOTING,

as differentiated from TYPE OVERFLOW FOOTING, are the only report

groups that are produced, if specified, after TYPE DETAIL and TYPE

CONTROL report groups on a page.

d. The rules stated in Rule 18 above apply regardless of the conditions

that may be recognized by the Report Writer as described in Rule 19.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-85

COBOL

Data Division

USAGE

6.42 THE USAGE CLAUSE

6.42.1 FUNCTION

The USAGE clause specifies the format of a data item in the computer storage.

6.42.2 GENERAL FORMAT

COMPUTATIONAL

COMP

COMPUTATIONAL-n
COMP-n

DISPLAY
DISPLAY-n

INDEX

INDEX-n

6.42.3 SYNTAX RULES

1. The PICTURE of a COMPUTATIONAL item can contain only '9's, the operational

sign character 'S', the implied decimal point character 'V', one or more

'P's, and the insertion character 'O' (see 6.31, The PICTURE Clause).

2. The USAGE IS DISPLAY clause indicates that the format of the data is a
Standard Data Format.

3. The USAGE clause for a report group item can only specify USAGE IS DISPLAY.

4. COMP is an abbreviation for COMPUTATIONAL;

COMP-n is an abbreviation for COMPUTATIONAL-n.

6.42.4 GENERAL RULES

1. The USAGE clause can be written at any level. If the USAGE clause is written

at a group level, it applies to each elementary item in the group. The USAGE

clause of an elementary item cannot contradict the USAGE clause of a group to

which the item belongs.

2. This clause specifies the manner in which a data item is represented in the
storage of a computer. It does not affect the use of the data item, although

the specifications for some statements in the Procedure Division may restrict

the USAGE clause of the operands referred to. The USAGE clause may affect

the radix or type of character representation of the item.

3. Suffixing a USAGE clause with a hyphen, followed by a single digit number (1-9),
allows for several variations to a general type of USAGE. Any implementor who

provides such variations (binary, decimal, and floating-point computations,

etc.) assigns the variations in the order of their preference (that is,

PROGRAMMING LANGUAGE COMMITTEE

[USAGE IS]

CODASYL
JOURNAL OF DEVELOPMENT

III-6-86

COBOL

Data Division

USAGE

efficiency or frequency of use). If no suffix is written, or if the integer

given in the suffix is unassigned, the recommended (first) variation is used.

4. A COMPUTATIONAL item is capable of representing a value to be used in

computations and must be numeric. If a group item is described as COMPUTATIONAL,

the elementary items in the group are COMPUTATIONAL. The group item itself
is not COMPUTATIONAL (cannot be used in computations). If the USAGE clause
specified at the group level is suffixed, the elementary items are considered

to be the same, and may not have a contradicting form of computational usage

specified.

5. If the USAGE clause is not specified for an elementary item, or for any group

to which the item belongs, the usage is assumed to be DISPLAY.

6. An elementary item described with the USAGE IS INDEX clause is called an index

data item and contains a value which must correspond to an occurrence number of

a table-element. The elementary item cannot be a conditional variable. The

method of representation and the actual value assigned are determined by the

implementor. If a group item is described with the USAGE IS INDEX clause the
elementary items in the group are all index data items. The group itself is

not an index data item and cannot be used in the SEARCH or SET statement or in

a relation condition.

7. An index data item can be referred to directly only in a SEARCH or SET statement

or in a relation condition. A.n index data item can be part of a group which is

referred to in a MOVE or input-output statement, in which case no conversion

will take place.

8. The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE, and BLANK WHEN ZERO clauses cannot

be used to describe group or elementary items described with the USAGE IS INDEX

clause. The external and internal format of an index data item is specified by

the implementor.

9. USAGE IS DISPLAY-n permits the implementor to specify variations of different

character representations for those hardware units having this capability.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-87

CODASYL COBOL

Data Division

VALUE

6.43 THE VALUE CLAUSE

6.43.1 FUNCTION

The VALUE clause defines the value of constants, the initial value of working-

storage items, or the values associated with a condition-name.

6.43.2 GENERAL FORMAT

Format 1

VALUE Is literal

Format 2

VALUE IS

VALUES ARE
literal-1

F, literal-3

! THRU
/ THROUGH

THRU

THROUGH

iteral-2

. literal-4

6.43.3 SYNTAX RULES

1. The words THRU and THROUGH are equivalent.

6.43.4 GENERAL RULES

1. The VALUE clause cannot be stated for any item whose size, explicitly or

implicitly, is variable.

2. The VALUE clause must not conflict with other clauses in the data

description of the item or in the data description within the hierarchy
of the item. The following rules apply:

a. If the category of the item is numeric, all literals in the VALUE clause

must be numeric literals. If the literal defines the value of a working-

storage item, the literal is aligned according to the alignment

rules except that the literal must not have a value which would

require truncation of non-zero digits. A negative numeric literal

must be associated with a signed numeric (S9) PICTURE character¬
string .

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-88

CODASYL COBOL

Data Division

VALUE

b. If the category of the item is alphabetic or alphanumeric, all literals
in the VALUE clause must be nonnumeric literals. The literal is aligned

according to the alignment rules (see 6.23, The JUSTIFIED Clause),

except that the number of characters in the literal must not exceed
the size of the item.

c. All numeric literals in a VALUE clause of an item must have a value

which is within the range of values indicated by the PICTURE

clause, for example, for PICTURE PPP99, the literal must be within

the range .00000 thru .00099.

d. The function of the BLANK WHEN ZERO clause or any editing characters
in a PICTURE clause has no effect on initialization of the item.

The VALUE clause is the only clause that may (depending on its usage)

provide initialization. Editing characters are included however,

in determining the size of the item. Therefore, the VALUE for an

edited item must be presented in an edited form.

3. A figurative constant may be substituted in both Format 1 and Format 2

wherever a literal is specified.

6.43.5 CONDITION-NAME RULES

1. In a condition-name entry, the VALUE clause is required. The VALUE

clause and the condition-name itself are the only two clauses per¬

mitted in the entry. The characteristics of a condition-name are

implicitly those of its conditional variable.

2. Format 2 can be used only in connection with condition-names (see

paragraph 3.2.1.2.2, Condition-Name). Wherever the THRU phrase is
used, literal-1 must be less than literal-2, literal-3 less than

literal-4, etc.

6.43.6 DATA DESCRIPTION ENTRIES OTHER THAN CONDITION-NAMES

1. Rules governing the use of the VALUE clause differ with the respective

sections of the Data Division:

a. In the File Section, the VALUE clause may be used only in condition-

name entries.

b. In the Working-Storage Section, the VALUE clause must be used in

condition-name entries, and it may also be used to specify the

initial value of any data item. It causes the item to assume

the specified value at the start of the object program. If the

VALUE clause is not used in an item's description, the initial

value is undefined.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL-----COBOL

JOURNAL OF DEVELOPMENT
III-6-89

Data Division

VALUE

c. In the Constant Section, the VALUE clause must be used to specify

the value assumed by each constant data item in the object program.

d. In the Linkage Section, the VALUE clause may be used only in

condition-name entries.

e. In the Report Section, the VALUE clause causes the report data
item to assume the specified value each time its report group is
presented. This clause may be used only at the elementary level

in the Report Section.

2. The VALUE clause must not be stated in a data description entry that

contains an OCCURS clause, or in an entry that is subordinate to an

entry containing an OCCURS clause. This rule does not apply to
condition-name entries.

3. The VALUE clause must not be stated in a data description entry that

contains a REDEFINES clause, or in an entry that is subordinate to

an entry containing a REDEFINES clause. This rule does not apply to
condition-name entries.

4. If the VALUE clause is used in an entry at the group level, the literal

must be a figurative constant or a non-numeric literal, and the group

area is initialized without consideration for the individual elementary

or group items contained within this group. The VALUE clause cannot

be stated at the subordinate levels within this group.

5. The VALUE clause must not be written for a group containing items

with descriptions including JUSTIFIED, SYNCHRONIZED OR USAGE (other

than USAGE IS DISPLAY).

6. Within a given record description the VALUE clause must not be stated

in a data description entry that is subsequent to a data description

entry in which an OCCURS clause with a DEPENDING ON phrase appears.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-6-90

COBOL

Data Division

VALUE OF

6.44 THE VALUE OF CLAUSE

6.44.1 FUNCTION

The VALUE OF clause particularizes the description of an item in the label records

associated with a file.

6.44.2 GENERAL FORMAT

VALUE OF data-name-1 IS

, data-name-3 IS

6.44.3 SYNTAX RULES

1. Data-name-1, data-name-2, data-name-3, etc., should be qualified when necessary,

but cannot be subscripted or indexed, nor can they be items described with the

USAGE IS INDEX clause.

literal-1

data-name-2

literal-2

data-name-4

6.44.4 GENERAL RULES

1. Each data-name-1, data-name-3, etc., must be in one of the label records;

data-name-2, data-name-4, etc., must be in the Working-Storage or Constant

Section. For an:

a. Input File: The appropriate label routine checks to see if the

value of data-name-1 is equal to the value of literal-1, or of

data-name-2, whichever has been specified.

b. Output File: At the appropriate time the value of data-name-1 is

made equal to the value of literal-1, or of a data-name-2,

whichever has been specified.

2. A figurative constant may be substituted in the format above wherever a
literal is specified.

3. If label records are standard (see 6.24, The LABEL RECORDS Clause), then

data-name-1, data-name-3, etc., must be fixed names supplied by the individual
implementors.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL-—-—-COBOL

JOURNAL OF DEVELOPMENT
III-6-91

}•

CHAPTER 7

THE PROCEDURE DIVISION

7.1 GENERAL DESCRIPTION

The Procedure Division must be included in every COBOL source program.

This division contains declaratives and procedures.

7.1.1 DECLARATIVES

Declarative sections must be grouped at the beginning of the Procedure

Division preceded by the key word DECLARATIVES and followed by the key

words END DECLARATIVES.

There are two statements that are called declarative statements: USE

and COPY (see 7.41, The USE Statement; 9.2, The COPY Statement).

7.1.2 PROCEDURES

A procedure is composed of a paragraph, or group of successive paragraphs,
or a section, or a group of successive sections within the Procedure

Division. If one paragraph is in a section, then all paragraphs must be

in sections. A procedure-name is a word used to refer to a paragraph or

section in the Source Program in which it occurs. It consists of a

paragraph-name (which may be qualified), or a section-name.

The end of the Procedure Division and the physical end of the program is

that physical position in a COBOL source program after which no further
procedures appear.

A section consists of a section header followed by one or more successive
paragraphs. A section ends immediately before the next section nr at
the end of the Procedure Division or, in the Declaratives portion of the

Procedure Division, at the key words END DECLARATIVES.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-1

COBOL

Procedure Division

GENERAL DESCRIPTION

A paragraph consists of a paragraph-name followed by one or more successive

sentences. A paragraph ends immediately before the next paragraph-name or

section-name or at the end of the Procedure Division or, in the Declaratives

portion of the Procedure Division, at the key words END DECLARATIVES.

A sentence consists of one or more statements and is terminated by a period
followed by a space.

A statement is a syntactica lly valid combination of words and symbols

beginning with a COBOL verb.

The term'identifier' is defined as the word or words necessary to make unique

reference to a data item.

7.1.3 EXECUTION

Execution begins with the first statement of the Procedure Division,

excluding declaratives. Statements are then executed in the order in which

they are presented for compilation, except where the rules in this chapter
indicate some other order.

7.1.4 PROCEDURE DIVISION STRUCTURE

7.1.4.1 Procedure Division Header

The Procedure Division is identified by and must begin with the following

header:

PROCEDURE DIVISION [USING identifier-1

The USING clause is present if and only if the object program is to function
under the control of a CALL statement, and the CALL statement in the calling

program contains a USING clause.

Each of the operands in the USING clause of the Procedure Division header

must be defined as a data item in the Linkage Section of the program in

which this header occurs, and it must have a 01 or 77 1eve 1-number.

Wien the USING clause is present, the object program operates as if each

occurrence of identifier-1, identifier-2, etc., in the Procedure Division

had been replaced by the corresponding identifier from the USING clause in

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

COBOL
JOURNAL OF DEVELOPMENT

III -7-2

Procedure Division

GENERAL DESCRIPTION

the CALL statement of the calling program. That is, the corresponding

identifiers refer to a single set of data which is available to both the

called and calling programs. The correspondence is positional and not by

name. An identifier must not appear more than once in the same USING
clause .

7.1.4.2 Procedure Division Body

The body of the Procedure Division must conform to one of the following

formats:

Format 1

[DECLARATIVES.

/section-name SECTION. dec larative-sentence
(paragraph-name.

END DECLARATIVES

(section-name SECTION [priority-number] .

(paragraph-name . (sentence | | . J. . .

Format 2

(paragraph-name. ^ sentence | ... J. . .

J sentence }...}... }.

_ rwi PROGRAMMING LANGUAGE COMMITTEE
CODASYL-—-COBOL

JOURNAL OF DEVELOPMENT
III-7-3

Procedure Division

STATEMENTS AND SENTENCES

7.2 STATEMENTS AND SENTENCES

There are three types of statements: imperative statements, conditional

statements, and compiler directing statements;

There are three types of sentences: imperative sentences, conditional

sentences, and compiler directing sentences.

7.2.1 CONDITIONAL STATEMENTS AND CONDITIONAL SENTENCES

7.2.1.1 Definition of Conditional Statement

A conditional statement specifies that the truth value of a condition is to

be determined and that the subsequent action of the object program is

dependent on this truth value.

A conditional statement is an IF, READ, SEARCH, or RETURN statement, or a

WRITE statement that specifies an INVALID KEY or END-OF-PAGE phrase, or an

arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY, SUBTRACT) that specifies

the optional phrase SIZE ERROR.

7.2.1.2 Definition of Conditional Sentence

A conditional sentence is a conditional statement optionally preceded by an

imperative statement terminated by a period followed by a space.

7.2.2 COMPILER DIRECTING STATEMENTS AND COMPILER DIRECTING SENTENCES

7.2.2.1 Definition of Compiler Directing Statement

A compiler directing statement consists of a compiler directing verb and its
operands. The compiler directing verbs are COPY and ENTER (see 9.2, The

COPY Statement; 7.17, The ENTER Statement). A compiler directing statement
causes the compiler to take a specific action during compilation.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
IIX-7-4

COBOL

Procedure Division

STATEMENTS AND SENTENCES

7.2.2.2 Definition of Compiler Directing Sentence

A compiler directing sentence is a single compiler directing statement

terminated by a period followed by a space.

7.2.3 IMPERATIVE STATEMENTS AND IMPERATIVE SENTENCES

7.2.3.1 Definition of Imperative Statement

An imperative statement indicates a specific action to be taken by the

object program.

An imperative statement is any statement that is neither a conditional

statement, nor a compiler directing statement, nor a USE state¬

ment. An imperative statement may consist of a sequence of imperative

statements each possibly separated from the next by a separator. The
imperative verbs are:

ACCEPT DISPLAY INITIATE SEEK
ADD* DIVIDE* MOVE SET
ALTER EXAMINE MULTIPLY* SORT
CALL EXIT OPEN STOP
CANCEL GENERATE PERFORM SUBTRACT*
CLOSE GO PROCESS SUSPEND

COMPUTE* HOLD RELEASE TERMINATE
WRITE**

* Without the optional phrase SIZE ERROR.
** Without the optional phrase INVALID KEY or END-OF-PAGE.

Whenever an imperative statement appears in the General Format of statements

described in this chapter, the imperative statement refers to that sequence

of consecutive imperative statements ended by a period or an ELSE associated
with a previous IF verb or a WHEN associated with a previous SEARCH verb.

7.2.3.2 Definition of Imperative Sentence

An imperative sentence is an imperative statement terminated by a period
followed by a space.

„„ 4r%#1 PROGRAMMING LANGUAGE COMMITTEE
CODASYL—-—— - -— —— -COBOL

JOURNAL OF DEVELOPMENT
III-7-5

Procedure Division

ARITHMETIC EXPRESSIONS

7.3 ARITHMETIC EXPRESSIONS

7.3.1 DEFINITION OF AN ARITHMETIC EXPRESSION

An arithmetic expression can be an identifier of a numeric elementary item,

a numeric literal, such identifiers and literals separated by arithmetic

operators two arithmetic expressions separated by an arithmetic operator,
or an arithmetic expression enclosed in parentheses. Any arithmetic

expression may be preceded by a unary operator. The permissible combinations

of variables, (identifiers or numeric literals), arithmetic operators and

parentheses are given in Figure 7-1, Combination of Symbols in Arithmetic
Expressions.

Those identifiers and literals appearing in an arithmetic expression must

represent either numeric elementary items or numeric literals on which

arithmetic may be performed.

7.3.2 ARITHMETIC OPERATORS

There are five binary arithmetic operators and two unary arithmetic operators that

may be used in arithmetic expressions. They are represented by specific characters

that must be preceded by a space and followed by a space.

Binary Arithmetic Operator Meaning

+

*

/
**

Addition

Subtraction

Multiplication

Division

Exponentiation

Unary Arithmetic Operator Meaning

+ The effect of multiplication by the numeric
literal +1

The effect of multiplication by the numeric

literal -1

7.3.3 FORMATION AND EVALUATION RULES

1. Parentheses may be used in arithmetic expressions to specify the order

in which elements are to be evaluated. When parentheses are used, a space

may appear between the left parenthesis and the left-most element and

between the right parenthesis and the right-most element, if desired.

Expressions within parentheses are evaluated first, and, within nested

parentheses, evaluation proceeds from the least inclusive set to the most
inclusive set. When parentheses are not used, or parenthesized expressions

are at the same level of inclusiveness, the following hierarchical order of

execution is implied:

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-6

COBOL CODASYL

Procedure Division

ARITHMETIC EXPRESSIONS

1st - Unary plus and minus

2nd - Exponentiation

3rd - Multiplication and Division

4th - Addition and Subtraction

2. Parentheses are used either to eliminate ambiguities in logic where

consecutive operations of the same hierarchical level appear or to

modify the normal hierarchical sequence of execution in expressions

where it is necessary to have some deviation from the normal precedence.

When the sequence of execution is not specified by parentheses, the

order of execution of consecutive operations of the same hierarchical

level is from left to right.

3. The ways in which operators, variables, and parentheses may be combined

in an arithmetic expression are summarized in the table below (Figure

7-1), where:
a. The letter ' P' indicates a permissible pair of symbols.

b. The character represents an invalid pair.

c. Variable represents an identifier or literal.

FIRST SECOND SYMBOL

SYMBOL

VARIABLE
*/**

+-

Unary

4- or -
()

VARIABLE - P - - P

*/** + - P - P P -

Unary +
or -

P - - P -

(P - P P -

) - P - - P

Figure 7-1. Combination of Symbols in Arithmetic Expressions.

4. An arithmetic expression may only begin with the symbol '(', } or a
variable and may only end with a ')' or a variable. There must be a one-to-

one correspondence between left and right parentheses of an arithmetic

expression such that each left parenthesis is to the left of its corresponding

right parenthesis.

5. Arithmetic expressions allow the user to combine arithmetic operations without
the restrictions on composite of operands and/or receiving data items, See,

for example, 7.8.3.3. Each implementor will indicate the techniques used in

handling arithmetic expressions.

4 PROGRAMMING LANGUAGE COMMITTEE
CODASYL—----COBOL

JOURNAL OF DEVELOPMENT
III-7-7

Procedure Division

CONDITIONS

7.4 CONDITIONS

7.4.1 GENERAL DESCRIPTION

A condition enables the object program to select between alternate paths of

control depending upon the truth value of a test.

A condition is one of the following:

relation condition

class condition

condition-name condition

switch-status condition

sign condition

NOT condition

condition condition
/ AND)
t OR-}

condition

Any condition may be enclosed in parentheses. The truth value of a

parenthesized condition is determined from the evaluation of the truth

values of its constituents. A parenthesized condition is a condition in

the sense of the last two items of the preceding list.

7.4.2 RELATION CONDITION

A relation condition causes a comparison of two operands, each of

which may be an identifier, a literal, or an arithmetic expression

Comparison of two numeric operands is permitted regardless of the

formats specified in their respective USAGE clauses. However, for

all other comparisons the operands must have the same usage. If

either of the operands is a group item, the nonnumeric comparison
rules apply.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-8

CODASYL COBOL

Procedure Division

CONDITIONS

The format for a relation condition is as follows:

/ IS [NOT] GREATER THAN

identifier-1

IF) literal-1

arithmetic-

expression- 1

/ IS [NOT] > \ ,
\ l IS [NOT] LESS THAN 1 (identifier-2

1 \ IS [NOT] < / \

(1 IS [NOT] EQUAL TO \ t ' literal-2 >

() IS [NOT] = (

\ /IS UNEQUAL TO \ j arithmetic-

/ EQUALS] ' (expression-2 /
EXCEEDS

Th« word 'IP' la not part of the condition, but
la shown In the above format to Improve clarity.

The first operand (identifier-1, literal-1, or arithmetic-expression-1)

is called the subject of the condition; the second operand (identifier-2,

literal-2, arithmetic-expression-2)is called the object of the condition.

The subject and the object may not both be literals.

The relational operators specify the type of comparison to be made in a

relation condition. The relational operators must be preceded by a space

and followed by a space. The meaning of the relational operators is as

follows:

Meaning Relational Operator

Greater than or not greater IS [NOT] GREATER THAN

than IS [NOT] >

Less than or not less

than

Equal to or not equal to

Not equal to

Equal to

Greater than

IS [NOT] LESS THAN

IS [NOT] <

IS [NOT] EQUAL TO

IS [NOT] =

IS UNEQUAL TO

EQUALS

EXCEEDS

NOTE: In the formats above, the required relational characters

and 1=' are not underlined to avoid confusion with other symbols

such as > (greater than or equal to).

PROGRAMMING LANGUAGE COMMITTEE
CODASYL--------COBOL

JOURNAL OF DEVELOPMENT
III-7-9

Procedure Division

CONDITIONS

7.4.2.1 Comparison of Numeric Operands

For operands whose class is numeric, a comparison is made with respect to

the algebraic value of the operands. The length of the operands, in terms

of number of digits, is not significant. Zero is considered a unique value
regardless of the sign.

Comparison of these operands is permitted regardless of the manner in which

their usage is described. Unsigned numeric operands are considered positive

for purposes of comparison.

7.4.2.2 Comparison of Nonnumeric Operands

For nonnumeric operands, or one numeric and one nonnumeric operand, a comparison

is made with respect to a specified collating sequence of characters.

The size of an operand is the total number of characters in the operand. Numeric

and nonnumeric operands may be compared only when their usage is the same,

implicitly or explicitly.

There are two cases to consider: operands of equal size and operands of unequal

s ize.

1. Operands of Equal Size

If the operands are of equal size, comparison effectively proceeds by comparing
characters in corresponding character positions starting from the high order

end and continuing until either a pair of unequal characters is encountered

or the low order end of the item is reached, whichever comes first. The items

are determined to be equal if all pairs of characters compare equally through

the last pair, when the low order end is reached.

The first encountered pair of unequal characters is compared to determine

their relative position in the collating sequence. The operand that contains

the character that is positioned higher in the collating sequence is considered
to be the greater operand.

2. Operands of Unequal Size

If the operands are of unequal size, comparison proceeds as though the

shorter operand were extended on the right by sufficient spaces to make

the operands of equal size (see 7.4.2.2.1, Operands of Equal Size).

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-10

COBOL

Procedure Division

CONDITIONS

7.4.2.3 Comparisons Involving Index-Names and/or Index Data Items

Full relation tests may be made between:

1. Two index-names. The result is the same as if the corresponding
occurrence numbers are compared.

2. An index-name and a data item (other than an index data item) or literal.

The occurrence number that corresponds to the value of the index-name is

compared to the data item or literal.

3. An index data item and an index name or another index data item. The

actual values are compared without conversion.

4. The result of the comparison of an index data item with any data item or
literal not specified above is undefined.

7.4.3 CLASS CONDITION

The class condition determines whether the operand is numeric, that is,

consists entirely of the characters 'O', '!*, *2', '3', . . . , *9', with or without

an operational sign, or alphabetic, that is, consists entirely of the

characters'A1, lBl, 'C1, . . . , 'Z\ space. The general format for the class

condition is as follows:

IF identifier IS [NOT]
NUMERIC

ALPHABETIC

The wort 'IP* is not part of the condition, but
is shown In the above fonset to laprova claritjr.

The usage of the operand being tested must be described, implicitly or

explicitly, as display.

The NUMERIC test cannot be used with an item whose data description

describes the item as alphabetic. If the data description of the
item being tested does not indicate the presence of an operational sign,
the item being tested is determined to be numeric only if the contents

are numeric and an operational sign is not present.

The ALPHABETIC test cannot be used with an item whose data description
describes the item as numeric. The item being tested is determined to be

alphabetic only if the contents consist of any combination of the alphabetic

characters'A'through'Z' and the space.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III -7 -11

COBOL

Procedure Division

CONDITIONS

7.4.4 CONDITION-NAME CONDITION (CONDITIONAL VARIABLE)

In a condition-name condition, a conditional variable is tested to determine

whether or not its value is equal to one of the values associated with a

condition-name. The general format for the condition-name condition is as

follows:

IF condition-name

The word 'IP' Is not part of the oondltlon, but
la shown In the above format to Improve clarity.

If the condition-name is associated with a range or ranges of values, then

the conditional variable is tested to determine whether or not its value

falls in this range, including the end values.

The rules for comparing a conditional variable with a condition-name value

are the same as those specified for relation conditions.

The result of the test is true if one of the values corresponding to the

condition-name equals the value of its associated conditional variable.

7.4.5 SWITCH-STATUS CONDITION

A switch-status condition determines the on or off status of an implementor

defined switch. The implementor-name and its associated ON or OFF value

must be named in the SPECIAL-NAMES paragraph of the Environment Division.

The general format for the switch-status condition is as follows:

IF condition-name

The word 'IP' Is not part of the condition, but
Is shown In the above format to Improve clarity.

The result of the test is true if the switch is set to the specified

position corresponding to the condition-name.

7.4.6 SIGN CONDITION

The sign condition determines whether or not the algebraic value of a

numeric operand is less than, greater than, or equal to zero. The general

format for a sign condition is as follows:

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-12

COBOL

Procedure Division

CONDITIONS

IF

identifier

arithmetic-expression

/ POSITIVE

IS [NOT] l NEGATIVE

ZERO

The word 'I?' Is not part of the condition, but
le ehown In the aboye format to laproYe clarity.

An operand is positive if its value is greater than zero, negative if

its value is less than zero, and zero if its value is equal to zero.

7.4.7 COMPOUND CONDITIONS

7.4.7A Combined Conditions

Conditions may be combined by logical operators, according to specified
rules, to form compound conditions. The logical operators, AND, OR, and

NOT, must be preceded by a space and followed by a space. The meaning

of the logical operators is as follows:

Logical Operator Meaning

OR

AND

NOT

Logical Inclusive Or

Logical Conjunction

Logical Negation

Figure 7-2 indicates the relationship between the logical operators where

A and B each represent a condition.

Condition Condition and Value

A B A AND B A OR B NOT A

True True True True Fa lse

False True False True True

True False False True Fa lse

False False False False True

Figure 7-2. Relationship of Conditions, Logical

Operators, and Truth Values

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-13

CODASYL COBO

Procedure Division

CONDITIONS

The general format of a combined condition is:

IF condition
j AND)

condition i in condition
(OR / S OR)

-

The word 'IF' Is not part of the condition, hut
Is shown In the above foraat to loprove clarity.

Figure 7-3 indicates the ways in which conditions and logical operators
may be combined.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-14

COBOL CODASYL

Procedure Division

CONDITIONS

FIRST

SYMBOL

SECOND SYMBOL

Condition OR AND NOT ()

Condit ion - P P - - P

OR P - - P P -

AND P - - P P -

NOT P* - - - P -

(P - - P P -

) - P P - - P

Figure 7-3. Combinations of Conditions and logical operators.

Notes: 'P' indicates that the pair is permissible, and the indicates

a symbol pair that is not permissible. Thus, the pair 'OR NOT' is
permissible, while the pair 'NOT OR' is not permissible.

* Permissible only if the condition is not itself a 'not condition'.

7.4.7.2 Abbreviated Combined Relation Conditions

When relation conditions are written in a consecutive sequence, any

relation condition except the first may be abbreviated by:

(1) The omission of the subject of .the relation condition, or

(2) The omission of the subject and relational operator of the relation

condit ion.

Within a sequence of relation conditions both forms of abbreviation may be

used, the effect of using such abbreviations is as if the omitted subject

was replaced by the last preceding stated subject or the omitted relational

operator was replaced by the last preceding stated relational operator.

Ambiguity may result from using 'NOT' in conjunction with abbreviations. In

this event NOT will be interpreted as a logical operator rather than as part

of a relational operator. Thus:

a > b AND NOT > c OR d

is equivalent to:

a > b AND NOT a > c OR a > d

or a > b AND (NOT a> c) OR a > d.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-15

COBOL

Procedure Division

CONDITIONS

7.4.8 EVALUATION RULES

The evaluation rules for conditions are analogous to those given for

arithmetic expressions (see 7.3.3, Formation and Evaluation Rules) except
that the following hierarchy applies:

arithmetic expression

all relational operators
NOT

AND
OR

The arithmetic expressions are evaluated as described in 7.3.3, Formation and

Evaluation Rules; the relational operators are evaluated as described in 7.4.2,

Relation Condition; and the logical operators are evaluated according to

Figure 7-2, Relationship of Conditions, Logical Operators, and Truth Values.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-16

COBOL

Procedure Division

CATEGORIES OF STATEMENTS

7.5 CATEGORIES OF STATEMENTS

Category

Arithmetic

Asynchronous Processing

Compiler Directing

Compiler Directing Declarative

I

Conditional

Data Movement

Ending

Input-Output

I

Verbs

(ADD
\ COMPUTE

J DIVIDE

\ EXAMINE (TALLYING)

I MULTIPLY

[SUBTRACT

j HOLD
) PROCESS

) COPY

] ENTER

j COPY

j USE

I ADD (SIZE ERROR)

COMPUTE (SIZE ERROR)

DIVIDE (SIZE ERROR)

GO TO (DEPENDING)
IF

MULTIPLY (SIZE ERROR)
READ (END)

RETURN (END)

SEARCH

SUBTRACT (SIZE ERROR)

WRITE INVALID KEY or END-OF-PAGE

j EXAMINE (REPLACING)
1 MOVE

{ STOP

[ACCEPT

CLOSE

DISPLAY
OPEN

READ

SEEK

STOP (literal)
SUSPEND

WRITE

_ PROGRAMMING LANGUAGE COMMITTEE
CODASYL ————- —--- — —COBOL

JOURNAL OF DEVELOPMENT
III-7-17

Procedure Division

CATEGORIES OF STATEMENTS
(■

Category

Inter-Program Communicating

Procedure Branching

Report Writing

Sorting

Table Handling

IF is a verb in the COBOL sense; it

English.

Verbs

j CALL

j CANCEL

f ALTER

\ CALL

< EXIT J GO TO

(PERFORM

GENERATE

INITIATE

TERMINATE

RELEASE

RETURN

SORT

j SEARCH

j SET

recognized that it is not a verb in

7.5.1 SPECIFIC STATEAAENT FORMATS

The specific statement formats, together with a detailed discussion of the
restrictions and limitations associated with each, appear beginning in

paragraph 7.7, in alphabetic sequence.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-18

COBOL

Procedure Division

OPTIONS

7.6 COMMON OPTIONS IN STATEMENT FORMATS

In the statement descriptions that follow, several options appear frequently:

the ROUNDED option, the SIZE ERROR option, and the CORRESPONDING option.

In the discussion below, a resultant-identifier is that identifier asso¬

ciated with a result of an arithmetic operation.

76.1 THE ROUNDED OPTION

If, after decimal point alignment, the number of places in the fraction of

the result of an arithmetic operation is greater than the number of places

provided for the fraction of the resultant-identifier, truncation is relative

to the size provided for the resultant-identifier. When rounding is requested,

the absolute value of the resu1tant-identifier is increased by one (1) when¬

ever the most significant digit of the excess is greater than or equal to

five (5).

When the low-order integer positions in a resultant-identifier are

represented by the character 1P' in the picture for that resultant-
identifier, rounding or truncation occurs relative to the rightmost

integer position for which storage is allocated.

7.6.2 THE SIZE ERROR OPTION

If, after decimal point alignment, the value of a result exceeds the largest

value that can be contained in the associated resultant-identifier, a size

error condition exists. Division by zero always causes a size error condition.

The size error condition applies only to the final results of an arithmetic

operation and does not apply to intermediate results, except in the MULTIPLY
and DIVIDE statements, in which case the size error condition applies to the

intermediate results as well. If the ROUNDED option is specified, rounding

takes place before checking for size error. When such a size error condition
occurs, the subsequent action depends on whether or not the SIZE ERROR option
is specified.

1. If the SIZE ERROR option is not specified and a size error condition

occurs, the value of those resultant-identifier(s) affected is
undefined. Values of resultant-identifier (s) for which no size

error condition occurs are unaffected by size errors that occur for
other resultant-identifier (s) during execution of this operation.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-L9

Procedure Division

OPTIONS

2. If the SIZE ERROR option is specified and a size error condition occurs,

then the values of resultant-identifier(s) affected by the size errors

are not altered. Values of resultant-identifier(s) for which no size

error condition occurs are unaffected by size errors that occur for

other resultant-identifier(s) during execution of this operation. After

completion of the execution of this operation, the imperative statement

in the SIZE ERROR option is executed.

For ADD and SUBTRACT CORRESPONDING, if any of the individual operations

produce a size error condition, the imperative statement in the SIZE

ERROR clause is not executed until all of the individual additions or

subtractions are completed.

7.6.3 THE CORRESPONDING OPTION

For the purpose of this discussion, d^ and d£ must each be identifiers that

refer to group items. A pair of data items, one from d^ and one from d£

correspond if the following conditions exist:

1. A data item in dj^ and a data item in d£ have the same name and the same

qualification up to, but not including, dj^ and d2 .

2. At least one of the data items is an elementary data item in the case of

a MOVE statement with the CORRESPONDING option; and both of the data

items are elementary numeric data items in the case of

CORRESPONDING

3. Neither d^ or d2 may be data items with level-number 66, 77, or 88 nor be

described with the USAGE IS INDEX clause.

4. A data item that is subordinate to d^ or 62 and contains a REDEFINES,
OCCURS or USAGE IS INDEX clause is ignored, as well as these data items

subordinate to the data item that contains the REDEFINES, OCCURS, or

USAGE IS INDEX clause. However, dj^ and d2 may have REDEFINES or
OCCURS clauses or be subordinate to data items with REDEFINES or OCCURS

clauses.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL COBOL

JOURNAL OF DEVELOPMENT
III-7-20

Procedure Division

OPTIONS

7.6.4 THE ARITHMETIC STATEMENTS

The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY, and

SUBTRACT statements. They have several common features.

1. The data descriptions of the operands need not be the same; any

necessary conversion and decimal point alignment is supplied through¬

out the calculation.

2. The maximum size of each operand is eighteen (18) decimal digits.

7.6.5 OVERLAPPING OPERANDS

When a sending and a receiving item in an arithmetic statement or an

EXAMINE, MOVE or SET statement share a part of their storage areas, the

result of the execution of such a statement is undefined.

7.6.6 MULTIPLE RESULTS IN ARITHMETIC STATEMENTS

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements may have multiple

results. Such statements behave as though they had been written in the

following way;

1. A statement which performs ail arithmetic necessary to arrive at the

result to be stored in the receiving items, and stores that result in
a temporary storage location.

2. A sequence of statements transferring or combining the value of this

temporary location with a single result. These statements are

considered to be written in the same left-to-right sequence that the

multiple results are listed.

The result of the statement

ADD a, b, cTOc, d (c), e

is equivalent to

ADD a, b, c GIVING temp

ADD temp TO c
ADD temp TO d (c)

ADD temp TO e

where 'temp' is an intermediate result item provided by the implementor.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL------COBOL

JOURNAL OF DEVELOPMENT
III-7-21

Procedure Division

ACCEPT

7.7 THE ACCEPT STATEAAENT

7.7.1 FUNCTION

The ACCEPT statement causes low volume data to be made available to the

specified data-name.

7.7.2 GENERAL FORMAT

ACCEPT identifier [FROM mnemonic-name]

7.7.3 SYNTAX RULES

1. The hardware device must be associated with the mnemonic-name in the

SPECIAL-NAMES paragraph of the Environment Division.

7.7.4 GENERAL RULES

1. The ACCEPT statement causes the transfer of data from the hardware device.

This data replaces the contents of the data item named by the identifier.

2. The implementor will define, for each hardware device, the size of a data
trans fer.

3. If a hardware device is capable of transferring data of the same size as

the receiving data item, the transferred data is stored in the receiving

data item.

4. If a hardware device is not capable of transferring data of the same size
as the receiving data item, then:

a. If the size of the receiving data item (or of the portion of the

receiving data item not yet currently occupied by transferred data)

exceeds the size of the transferred data, the transferred data is

stored aligned to the left in the receiving data item (or the portion
of the receiving data item not yet occupied), and additional data is

requested.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL-COBOL

JOURNAL OF DEVELOPMENT
III-7-22

Procedure Division

ACCEPT

b. If the size of the transferred data exceeds the size of the

receiving data item (or of the portion of the receiving data

item not yet occupied by transferred data), only the left-most
characters of the transferred data are stored in the receiving

data item (or in the portion remaining).

5. If the FROM option is not given, the device that the implementor specifies

as standard is used.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-23

CODASYL COBOL

Procedure Division

ADD

7J THE ADD STATEMENT

7.8.1 FUNCTION

The ADD statement causes two or more numeric operands to be summed and the

result to be stored.

7.8.2 GENERAL FORMAT

Format 1

ADD
fliteral-1 \ literal-2 1

(identifier-1) [_, identifier-2J
TO identifier-m [ROUNDED]

[, identifier-n [ROUNDED]] ... [; ON SIZE ERROR imperative-statement]

Format 2

<literal-1 ((, literal-2 i I", literal-3 "j
(identifier-lj (, identifier-2j L > identifier-3j

GIVING identifier-m [ROUNDED]

[, identifier-n [ROUNDED]] ... [; ON SIZE ERROR imperative-statement]

Format 3

{corresponding} identifier-1 TO identifier-2 [ROUNDED]

[; ON SIZE ERROR imperative-statement]

7.8.3 SYNTAX RULES

1. In Formats 1 and 2, each identifier must refer to an elementary numeric

item, except that identifiers appearing only to the right of the word

GIVING may refer to data items that contain editing symbols.

2. Each literal must be a numeric literal.

PROGRAMMING LANGUAGE COMMITTEE _ _
CODASYL - - --——-------COBOL

JOURNAL OF DEVELOPMENT
III-7-24

Procedure Division

ADD

3. The maximum size of each operand is eighteen (18) decimal digits.
The composite of operands, which is that data item resulting from

the superimposition of all operands, excluding the data items that

follow the word GIVING, aligned on their decimal points, must not

contain more than eighteen digits.

4. CORR is an abbreviation for CORRESPONDING.

7.8.4 GENERAL RULES

1. See 7.6.1, the ROUNDED Option; 7.6.2, The SIZE ERROR Option; 7.6.3, the

CORRESPONDING option; 7.6.6, Multiple Results in Arithmetic Statements;

and 3.2.1.2.5, Special Registers.

2. If Format 1 is used, the values of the operands preceding the word TO

are added together, then the sum is added to the current value of each

identifier-m, identifier-n, ..., and the result is stored in each

resultant-identifier, identifier-m, ..., respectively.

3. If Format 2 is used, the values of the operands preceding the word

GIVING are added together, then the sum is stored as the new value

of each identifier-m, identifier-n, ..., the resultant-identifiers.

4. • If Format 3 is used, data items in identifier-1 are added to and

stored in corresponding data items in identifier-2.

5. The compiler insures that enough places are carried so as not to lose

any significant digits during execution.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-25

COBO CODASYL

Procedure Division

ALTER

7.9 THE ALTER STATEMENT

7.9.1 FUNCTION

The ALTER statement modifies a predetermined sequence of operations.

7.9.2 GENERAL FORMAT

ALTER procedure-name-1 TO[PROCEED TO]procedure-name-2

, procedure-name-3 TO^PROCEED Toj procedure-name-4

7.9.3 SYNTAX RULES

1. Each procedure-name-1, procedure-name-3, . .., is the name of a paragraph

that contains a single sentence consisting of a GO TO statement without

the DEPENDING option.

2. Each procedure-name-2, procedure-name-4, ..., is the name of a paragraph

or section in the Procedure Division.

7.9.4 GENERAL RULES

1. Execution of the ALTER statement modifies the GO TO statement in the
paragraph named procedure-name-1, procedure-name-3, . .., so that

subsequent executions of the modified GO TO statements causes transfer

of control to procedure-name-2, procedure-name-4, ..., respectively.

Modified GO TO statements in independent segments may, under some
circumstances, be returned to their initial states (see 8.1.2.3, Independent

Segments).

2. A GO TO statement in a section whose priority is greater than or equal
to 50 must not be referred to by an ALTER statement in a section with a

different priority.

All other uses of the ALTER statement are valid and are performed even

if the GO TO to which the ALTER refers is in an overlayable fixed

segment. See Chapter 8, Segmentation.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-26

C030L CODASYL

Procedure Division

CALL

7.10 THE CALL STATEMENT

7.10.1 FUNCTION

The CALL statement causes control to be transferred from one object program to
another, within the run unit.

7.10.2 GENERAL FORMAT

CALL

[USING identifier-2 [, identifier-3] ...]

7.10.3 SYNTAX RULES

1. Literal-1 must be a nonnumeric literal.

2. Identifier-1 must be defined such that its value can be a program-name.

3. The USING clause is included in the CALL statement only if there is a

USING clause in the Procedure Division header of the called program and

the number of operands in each USING clause must be identical.

7.10.4 GENERAL RULES

1. The program whose name is specified by the value of literal-1 oi

identifier-1 is the called program; the program in which the CALL

statement appears is the calling program.

2. The execution or a CALL statement causes control to pass to the called

program.

3. The state of a called program is undefined.

4. Called programs may contain CALL statements. However, a called program

must not contain a CALL statement that directly or indirectly calls the

calling program.

5. Each of the operands in the USING clause must have been defined as a data

item in the File Section, Working-Storage Section, Constant Section, or

Linkage Section, and must have a level-number of 01 or 77.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL COSOL

JOURNAL OF DEVELOPMENT
III-7-27

Procedure Division

CALL

6. The identifiers, specified by the USING clause of the CALL statement,
indicate those data items available to a calling program that may be
referred to in the called program. The order of appearance of the
identifiers in the USING clause of the CALL statement and the USING
clause in the Procedure Division header is critical. Corresponding
identifiers refer to a single set of data which is available to the
called and calling program. The correspondence is positional, not
by name.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
COBOL

III-7-28

Procedure Division

CANCEL

7.11 THE CANCEL STATEMENT

7.11.1 FUNCTION

The CANCEL statement releases the memory areas occupied by the named program.

7.11.2 GENERAL FORMAT

CANCEL

Cliteral-1 I 9 literal-2

/ identifier-1 \ 9 identifier-2

7.11.3 SYNTAX RULES

1. Literal-1, literal-2, ..., .uust be a nonnumeric literal.

2. Identifier-1, identifier-2, ...» must each be defined such that its

value can be a program-name.

7.11.4 GENERAL RULES

1. Subsequent to the execution of a CANCEL statement, the program named

therein ceases to have any logical relationship to the program in

which the CANCEL statement appears.

2. The programs named in the CANCEL statement must be named in CALL

statements within the same program in which the CANCEL statement

appears.

3. A logical relationship to a cancelled subprogram is established only

by execution of a subsequent CALL statement.

4. A called program is cancelled either by being directly named as the

operand of a CANCEL statement or by the termination of the run unit

of which the program is a member.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
-COBOL

III-7-29

Procedure Division

CLOSE

7.12 THE CLOSE STATEMENT

7.12.1 FUNCTION

The CLOSE statement terminates the processing of reels, units, and files with
optional rewind and/or lock where applicable.

7.12.2 GENERAL FORMAT

REEL (NO REWIND)
CLOSE file-name-1 WITH 7

UNIT (LOCK j

, file-name-2 REEL

UNIT

WITH
NO REWIND

LOCK

7.12.3 SYNTAX RULES

1. Each file-name is the name of a file upon which the CLOSE statement is to

operate; it must not be the name of a sort-file.

2. The REEL and WITH NO REWIND options apply only to files stored on tape

devices and other devices to which these terms are applicable. The UNIT

option is only applicable to mass storage files in the sequential access

mode.

7.12.4 GENERAL RULES

In the discussion below, the term 'unit* applies to all input-output devices;
the term 'reel' applies to tape devices. Treatment of mass storage devices in

the sequential access mode is logically equivalent to the treatment of a file
on tape or analogous media.

1. For the purpose of showing the effect of various CLOSE options as applied
to various storage media, all input and output and input-output files are

divided into the following categories.

a. Non-reel. A file whose input or output medium is such that the

concepts of rewinding and reels have no meaning.

b. Sequential single reel/unit. A sequential file that is entirely

contained on one unit.

c. Sequential multi-reel/unit. A sequential file that is contained

on more than one unit.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL--COBOL

JOURNAL OF DEVELOPMENT

III-7-30

Procedure Division

CLOSE

d. Random single-unit. A file in the random access mode that is entirely

contained on a single mass storage unit.

e. Random multi-unit. A file in the random access mode that may be

contained on more than one mass storage unit.

2. The results of executing each CLOSE option for each type of file are

summarized in Figure 7-5. The definitions of the symbols in the Figure

are given below. Where the definition depends on whether the file is

an input or output file, alternate definitions are given; otherwise, a

definition applies to input, output, and i«r*ut-output files.

A. Previous Reels/Units Unaffected

Input files and Input-Output files:

All reels/units in the file prior to the current reel/unit are

processed according to the implementor's standard reel/unit swap

procedure, except those reels/units controlled by a prior CLOSE
REEL/UNIT statement. If the current reel/unit is not the last in

the file, the reels/units in the file following the current one are
not processed in any way.

Output files:

All reels/units in the file prior to the current reel/unit are pro¬

cessed according to the implementor's standard reel/unit swap pro¬
cedure, except those reels/units controlled by a prior CLOSE REEL/

UNIT statement.

B. No Rewind Of Current Reel

The current reel/unit is left in its current position.

C. Standard Close File

Input files and Input-Output files (Sequential Access Mode):

If the file is positioned at its end and a label record is specified

for the file, the label is processed according to the implementor's
standard label convention. The behavior of the CLOSE statement when

a label record is specified but not present, or when a label record

is not specified but is present, is undefined. If specified by the

USE statement, a user's label procedure is executed. The order of
execution of these two processes is specified by the USE statement.
In addition, other closing operations specified by the implementor

are executed. If the file is positioned at its end and label records

are not specified for the file, label processing does not take place

but other closing operations specified by the implementor are executed.

If the file is positioned other than at its end, the closing operations

specified by the implementor are executed, but there is no ending label

processing. An input file, or an input-output file, is considered to be at

the end of the file if the imperative statement in the AT END phrase of the

READ statement has been executed and no CLOSE statement has been executed.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
COBOL

III-7-31

Procedure Division

CLOSE

Input files and Input-Output files (Random Access Mode);

Output files (Random or Sequential Access Mode):

If a label record is specified for the file, the label is processed

according to the implementor's standard label convention. The behavior

of the CLOSE statement when a label record is specified but not present,

or when a label record is not specified but is present, is undefined.

If specified by the USE statement, a user's label procedure is

executed. The order of execution of these two processes is specified
by the USE statement. In addition, other closing operations specified

by the implementor are executed. If label records are not specified

for the file, label processing does not take place but other closing

operations specified by the implementor are executed.

D. Standard Reel/Unit Lock

An appropriate technique is supplied to insure that the current reel

or unit cannot be processed again as a part of this file. (The

current reel is rewound.)

E. Standard File Lock

An appropriate technique is supplied to insure that this file cannot
be opened again during this execution of this object program.

F. Standard Close Reel/Unit

Input Files:

The following operations are executed:

1. A reel/unit swap.

2. The standard beginning reel/unit label procedure and the user's

beginning reel/unit label procedure (if specified by the USE

statement). The order of execution of these two procedures is

specified by the USE statement.

3. Makes available the next data record on the new reel or the next
mass storage record.

Output files and Input-Output files:

The following operations are executed:

1. (For output files only) The standard ending reel/unit label

procedure and the user's ending reel/unit label procedure

(if specified by the USE statement). The order of execution

of these two procedures is specified by the USE statement.

a PROGRAMMING LANGUAGE COMMITTEE
CODASYL----COBOL

JOURNAL OF DEVELOPMENT

III-7-32

Procedure Division

CLOSE

2. A reel/unit swap.

3. The standard beginning reel/unit label procedure and the user's

beginning reel/unit label procedure (if specified by the USE

statement). The order of execution of these two procedures is

specified by the USE statement.

4. (For input-output files only) Makes the next data record on

the next mass storage unit available.

G. Rewind

The current reel or analogous device is positioned at the physical

beginning of its content.

X. Illegal

This is an illegal combination of a CLOSE option and a file type.

The results at object time may be unpredictable.

3. The action taken if a file that has been opened and is not closed prior

to the execution of the STOP RUN statement is specified by the implemen¬
tor.

4. If the file has been specified with the OPTIONAL clause in the FILE-

CONTROL paragraph of the Environment Division and is not present, the

Standard end of file processing is not performed.

5. If a CLOSE statement without the REEL or UNIT option has been executed

for a file, a READ, WRITE, SEEK or SUSPEND statement for that file must

not be executed unless an intervening OPEN statement for that file is

executed.

_ a PROGRAMMING LANGUAGE COMMITTEE
CODASYL-—--COBOL

JOURNAL OF DEVELOPMENT

III-7-33

Procedure Division

CLOSE

File Type

CLOSE

OPTION Non-

Ree 1

Sequential

Single¬

reel/unit

Sequential

Multi¬

reel/unit

Random

Single¬

unit

Random

Multi¬

unit

CLOSE C C,G C,G,A C C

CLOSE

WITH LOCK C, E C,G,E C,G,E,A C, E C, E

CLOSE WITH

NO REWIND X C, B C, B, A X X

CLOSE REEL X X F ,G X X

CLOSE REEL

WITH LOCK X X F,D X X

CLOSE REEL
WITH NO REWIND X X F,B X X

CLOSE UNIT X X F X X

CLOSE UNIT

WITH LOCK X X F,D X X

Figure 7-5. Relationship of Types of Files and the Options of the CLOSE

Statement

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
COBOL

III-7-34

Procedure Division

COMPUTE

7.13 THE COMPUTE STATEMENT

7.13.1 FUNCTION

The COMPUTE statement assigns to one or more data items the value of a

numeric data item, literal or arithmetic expression.

7.13.2 GENERAL FORMAT

COMPUTE identifier-1 f ROUNDED] [, identifier-2 [ROUNDED]] ...

{FROM

EQUALS

identifier-n

literal-1

arithmetic-express ion

[; ON SIZE ERROR imperative-statement]

7.13.3 SYNTAX RULES

1. Literal-1 must be a numeric literal.

2. Each identifier must refer to an elementary numeric item, except that

identifiers that appear only to the left of

may describe data items that contain editing symbols.

3. The arithmetic expression option permits the use of any meaningful

combination of identifiers, numeric literals, and arithmetic operators,
parenthesized as required. (See 7.3, Arithmetic Expressions).

4. The maximum size of each operand is eighteen decimal digits.

7.13.4 GENERAL RULES

1. See 7.6.1, The ROUNDED Option; 7.6.2, The SIZE ERROR Option; 7.6.6, Multiple

Results in Arithmetic Statements; and 3.2.1.2.5, Special Registers.

2. The identifier-n and literal-1 options provide a method for setting the

values of identifier-1, identifier-2, etc., equal to the value of

identifier-n or literal-1.

3. The words FROM and EQUALS are equivalent to each other and to the symbol '='

They may be used interchangeably and the choice is generally made for

readability.

PROGRAMMING LANGUAGE COMMITTEE
COBOL CODASYL

JOURNAL OF DEVELOPMENT
III-7-35

Procedure Division

COMPUTE

4. If more than one identifier is specified for the result of the operation,

that is preceding FROM, =, or EQUALS, the value of the arithmetic

expression is computed, and then this value or the value of literal-1,

or identifier-n is stored as the new value of each of identifier-1,
identifier-2, etc., in turn.

5. The COMPUTE statement allows the user to combine arithmetic operations

without the restrictions on composite of operands and/or receiving data items
imposed by the arithmetic statements ADD, SUBTRACT, MULTIPLY and DIVIDE.

Thus, each implementor will indicate the techniques used in handling

arithmetic expressions.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-36

COBOL CODASYL

Procedure Division

COPY

7.14 THE COPY STATEMENT

7.14.1 FUNCTION

The COPY statement incorporates procedures from a library into the source

program.

7.14.2 GENERAL FORMAT

'paragraph-name.

section-name SECTION [priority-number]
j. COPY library-name

REPLACING
(word-1]

\ identifier-1J \ by
(word-2 1
(identifier-2 J

f (word-3)
1” by

(word-4) 1 1

L’ (identifier-3 J \ identifier-4 f J * *J

7.14.3 GENERAL RULES

1. For a discussion of the COPY function see Chapter 9, The COBOL Library.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-37

COBOL CODASYL

Procedure Division

DISPLAY

7.15 THE DISPLAY STATEMENT

7.15.1 FUNCTION

The DISPLAY statement causes low volume data to be transferred to an
appropriate hardware device.

7.15.2 GENERAL FORMAT

DISPLAY , literal-2

, identifier-2
UPON mnemonic-name

7.15.3 SYNTAX RULES

1. The mnemonic-name is associated with a hardware device in the SPECIAL-

NAMES paragraph in the Environment Division.

2. Each literal may be any figurative constant, except ALL.

7.15.4 GENERAL RULES

1. The DISPLAY statement causes the contents of each operand to be

transferred to the hardware device in the order listed.

2. The implementor will define, for each hardware device, the size
of a data transfer.

3. If a figurative constant is specified as one of the operands, only

a single occurrence of the figurative constant is displayed.

4. If the hardware device is capable of receiving data of the same size

as the data item being transferred, then the data item is transferred.

5. If a hardware device is not capable of receiving data of the same size

as the data item being transferred, then one of the following applies:

a. If the size of the data item being transferred exceeds the size of

the data that the hardware device is capable of receiving in a single

transfer, the data beginning with the left most character is scored

aligned to the left in the receiving hardware device, and additional

data is requested,

b. If the size of the data item that the hardware device is capable of

receiving exceeds the size of the data item being transferred, the

transferred data is stored aligned to the left in the receiving

hardware device.

PROGRAMMING LANGUAGE COMMITTEE
COBOL

CODASYL
JOURNAL OF DEVELOPMENT

III.-7-38

Procedure Division

DISPLAY

6. When a DISPLAY statement contains more than one operand, the size of the

sending item is the sum of the sizes associated with the operands, and

the values of the operands are transferred in the sequence in which the
operands are encountered.

7. If the UPON phrase is not specified, the implementor's standard display

device is used .

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
COBOL'

III-7-39

Procedure Division

DIVIDE

7.16 THE DIVIDE STATEMENT

7.16.1 FUNCTION

The DIVIDE statement divides one numeric data item into others and sets the

values of data items equal to the quotient and remainder.

7.16.2 GENERAL FORMAT

Format 1

DIVIDE | iiteral-ir_1 } 1NT0 identifier-2 [ROUNDED] [, identifier-3 [ROUNDED]] .

[; ON SIZE ERROR imperative-statement]

Format 2

DIVIDE
identifier-1\ T Krrn / identifier-2]
literal-1 / \ literal-2 /

GIVING identifier-3 f ROUNDED]

[, identifier-4 [ROUNDED]] ... [; ON SIZE ERROR imperative-statement]

Forma t 3

DIVIDE
(identifier-1]

\ literal-1 / ^

identifier-2 1 ,

literal-2) -
identifier-3 [ROUNDED]

[, identifier-4 [ROUNDED]] ... [; ON SIZE ERROR imperative-statement]

Format 4

DIVIDE / identifier-].] f identifier-2] GIVINC identifier-3 [ROUNDED]
- (literal-1 j - | literal-2 j - -—

REMAINDER identifier-4 [; ON SIZE ERROR imperative-statement]

Format 5

DIVIDE
(identifier-1 1

\ literal-1 / ^
identifier-2^ GIVINC identifier-3 [ROUNDED]
literal-2 j - ——

REMAINDER identifier-4 [; ON SIZE ERROR imperative-statement]

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-40

-COBOL CODASYL

Procedure Division

DIVIDE

7.16.3 SYNTAX RULES

1. Each identifier must refer to a numeric elementary item, except, in

Formats 2 and 3, where any identifiers that appear only to the right of

the word GIVING may refer to data items that contain editing symbols.

2. Each literal must be a numeric literal.

3. The maximum size of each operand is eighteen (18) decimal digits. The

composite of operands, which is the data item resulting from the super¬

imposition of all receiving data items aligned on their decimal points,

must not contain more than eighteen digits.

7.16.4 GENERAL RULES

1. See 7.6.1, The ROUNDED Option; 7.6.2, The SIZE ERROR Option; 7.6.6,

Multiple Results in Arithmetic Statements; and 3.2.1.2.5, Special

Registers for a description of these functions.

2. When Format 1 is used, the value of identifier-1 or literal-1 is divided

into the value of identifier-2. The value of the dividend (identifier-2)

is replaced by this quotient; similarly for identifier-1 or literal-1

and identifier-3, etc.

3. When Format 2 is used, the value of identifier-1 or literal-1 is

divided into identifier-2 or literal-2 and the result is stored in

identifier-3, identifier-4, etc.

4. When Format 3 is used, the value of identifier-1 or literal-1 is divided

by the value of identifier-2 or literal-2 and the result is stored in

identifier-3, identifier-4, etc.

5. Formats 4 and 5 are used when a remainder from the division operation
is desired, namely identifier-4. A remainder in COBOL is defined as

the result of subtracting the product of the quotient and the divisor

from the dividend. If the ROUNDED option is specified, the quotient

is rounded after the remainder is determined.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL —---————. .—-COBOL

JOURNAL OF DEVELOPMENT

m-7-41

Procedure Division

ENTER

7.17 THE ENTER STATEMENT

7.17.1 FUNCTION

The ENTER statement provides a means of allowing the use of more than one

language in the same program.

7.17.2 GENERAL FORMAT

ENTER language-name ^routine-nameJ

7.17.3 SYNTAX RULES

1. The language-name may refer to any programming language which the

implementor specifies may be entered through COBOL. Language-name

is specified by the implementor.

2. If the statements in the entered language cannot be written in-line,

a routine-name is given to identify the portion of the other-language

coding to be executed at this point in the procedure sequence. A

routine-name is a COBOL word and it may be referred to only in an

ENTER sentence.

3. If the other-language statements can be written in-line, the routine-

name option is not used. The sentence ENTER COBOL must follow the last

other-language statement in order to indicate to the compiler where a
return to COBOL source language takes place.

7.17.4 GENERAL RULES

1. The other-language statements are executed in the object program as if

they had been compiled into the object program following the ENTER

statement.

2. Implementors will specify, for their compilers, all details on how

the other language(s) are to be written.

„_ PROGRAMMING LANGUAGE COMMITTEE
CODASYL—-COBOL

JOURNAL OF DEVELOPMENT

III-7-42

Procedure Division

EXAMINE

7.18 THE EXAMINE STATEMENT

7.18.1 FUNCTION

The EXAMINE statement replaces or counts the number of occurrences of a given

character in a data item.

7.18.2 GENERAL FORMAT

TALLYING

EXAMINE identifier

REPLACING

('UNTIL FIRST i

< ALL >
I LEADING)

(ALL
< LEADING

([UNTIL] FIRST

(literal-1) H

(identifier-lj ^

(literal-3)
(identifier-3J

REPLACING BY

BY

literal-2 ,1 „>
identif ier-z/J

I literal-4 (

(identif ier~4,f

7.18.3 SYNTAX RULES

1. The description of the identifier must be such that usage is display

(explicitly or implicitly).

2. Each identifier-n must name a single character data item belonging to a class

consistent with that of identifier. Each literal must consist of a single
character belonging to a class consistent with that of identifier; in

addition, each literal may be any figurative constant, except ALL.

3. A signed numeric literal is not permitted in the EXAMINE statement.

7.18.4 GENERAL RULES

1. Examination proceeds as follows:

a. For nonnumeric data items, examination starts at the left-most
character and proceeds to the right. Each character in the data

item specified by the identifier is examined in turn.

b. If a data item referred to by the EXAMINE statement is numeric,

it must consist of numeric characters and may possess an operational

sign. Examination starts at the left-most character and proceeds to
the right. Each character is examined in turn. If the letter 'S'

is used in the PICTURE character-string of the data item description

to indicate the presence of an operational sign, the sign is completely
ignored by the EXAMINE statement.

2. The TALLYING option creates an integral count which replaces the value

of a special register called TALLY (see 3.2.1.2.5.1, TALLY). The count
represents the number of:

PROGRAMMING LANGUAGE COMMITTEE
CODASYL----—-COBOL

JOURNAL OF DEVELOPMENT

III-7-43

Procedure Division

EXAMINE

a. Occurrences of literal-1 or identifier-1 when the ALL option is

used.

b. Occurrences of literal-1 or identifier-1 prior to encountering a

character other than literal-1 or identifier-1 when the LEADING

option is used.

c. Characters not equal to literal-1 or identifier-1 encountered
before the first occurrence of literal-1 or identifier-1 when

the UNTIL FIRST option is used.

3. When either of the REPLACING options is used, the replacement rules are
as follows, subject to General Rule 2:

a. When the ALL option is used, then literal-2, identifier-2 or

literal-4, identifier-4 is substituted for each occurrence of

literal-1, identifier-1 or literal-3, identifier-3.

b. When the LEADING option is used, the substitution of literal-2,

identifier-2 or literal-4, identifier-4 terminates as soon as
a character other than literal-1, identifier-1 or literal-3,

identifier-3 or the right-hand boundary of the data item is
encountered.

c. When the UNTIL FIRST option is used, the substitution of literal-2
identifier-2 or literal-4, identifier-4 terminates as soon as

literal-1, identifier-1 or literal-3, identifier-3 or the right-

hand boundary of the data item is encountered.

d. When the FIRST option is used, the first occurrence of literal-1,

identifier-1 or literal-3, identifier-3 is replaced by literal-2,

identifier-2 or literal-4, identifier-4.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
COBOL

III-7-44

Procedure Division

EXIT

7.19 THE EXIT STATEMENT

7.19.1 FUNCTION

The EXIT statement provides a common end point for a series of procedures,
or marks the logical end of a called program.

7.19.2 GENERAL FORMAT

EXIT [PROGRAM].

7.19.3 SYNTAX RULES

1. The EXIT statement must appear in a sentence by itself.

2. ihe EXIT sentence must be preceded by a paragraph-name and be the
only sentence in the paragraph.

7.19.4 GENERAL RULES

1. It is sometimes necessary to transfer control to the end point of a

series of procedures. This is normally done by transferring control

to the next paragraph or section, but in some cases this does not

have the required effect. For instance, the point to which control is

to be transferred may be at the end of a range of procedures governed

by a PERFORM or at the end of a declarative section. The EXIT statement

is provided to enable a procedure-name to be associated with such a
point.

2. If control reaches an EXIT statement without the PROGRAM option

and no associated PERFORM or USE statement is active or if control

reaches an EXIT PROGRAM statement and no CALL statement is active,

control passes through the EXIT point to the first sentence of

the next paragraph.

3. If control reaches an EXIT PROGRAM statement while operating
under the control of a CALL statement, control returns to the

point in the calling program immediately following the CALL
s tatement.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL----—--______-———COBOL

JOURNAL OF DEVELOPMENT

III-7-45

Procedure Division

GENERATE

7.20 THE GENERATE STATEMENT

7.20.1 FUNCTION

The GENERATE statement links the Procedure Division to the Report Writer

(described in the Report Section of the Data Division) at process time.

7.20.2 GENERAL FORMAT

GENERATE identifier

7.20.3 SYNTAX RULES

1. Identifier represents a TYPE DETAIL report group or an RD entry.

7.20.4 GENERAL RULES

1. If identifier represents the name of a TYPE DETAIL report group, the

GENERATE statement does all the automatic operations within a Report
Writer and produces an actual output DETAIL report group, at process

time, on the output medium. This is called detail reporting.

2. If identifier represents the name of a RD entry, the GENERATE statement

does all the automatic operations of the Report Writer and updates the

FOOTING' report group(s) within a particular report description without
producing an actual DETAIL report group associated with the report.

In this case, all SUM counters associated with the report description
are algebraically incremented. This is called summary reporting. If more

than one TYPE DETAIL report group is specified, all SUM counters are

algebraically incremented each time a GENERATE statement is executed.

3. A GENERATE statement, implicitly in both detail and summary reporting,

produces the following automatic operations (if defined):

a. Steps and tests the LINE-COUNTER and/or PAGE-COUNTER to produce

appropriate PAGE or OVERFLOW FOOTING and/or PAGE or OVERFLOW

HEADING report groups.

b. Recognizes any specified CONTROL breaks to produce appropriate

CONTROL FOOTING and/or CONTROL HEADING report groups.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
-COBOL

IH-7-46

Procedure Division

GENERATE

c. Accumulates into the SUM counters all specified identifier(s) .
Resets the SUM counters on an associated control break. Performs

an updating procedure between control break levels for each set

of SUM counters.

d. Executes any specified routines defined by a USE statement before

generation of the associated report group(s).

4. During the execution of the first GENERATE statement, the following

report groups associated with the report, if specified, are produced

in the order:

a. REPORT HEADING report group.

b. PAGE HEADING report group.

c. ALL CONTROL HEADING report groups in the order FINAL, major to minor.

d. The DETAIL report group, if specified in the GENERATE statement.

5. If a control break is recognized at the time of execution of a

GENERATE statement (other than the first that Ls executed for a

report), all CONTROL FOOTING report groups specified for the report

are produced from the minor report group up to and including the

report group specified for the identifier which caused the control

break. Then, the CONTROL HEADING report group(s) specified for the

report, from the report group specified for the identifier that

caused the control break down to the minor report group, are produced

in that order. The DETAIL report group specified in the GENERATE

statement is then produced.

6. Data is moved to the data item in the Report Group Description entry

of the Report Section, and is edited under control of the Report

Writer according to the same rules for movement and editing as
described for the MOVE statement.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL-------- ---COBOL

JOURNAL OF DEVELOPMENT

III-7-47

Procedure Division

GO TO

7.21 THE GO TO STATEMENT

7.21.1 FUNCTION

The GO TO statement causes control to be transferred from one part of the

Procedure Division to another.

7.21.2 GENERAL FORMAT

Format 1

GO TO [procedure-name-1]

Format 2

GO TO procedure-name-1 [, procedure-name-2J . .., procedure-name-n

DEPENDING ON identifier

7.21.3 SYNTAX RULES

1. Each procedure name is the name of a paragraph or section in the

Procedure Division of the program.

2. Identifier is the name of a numeric elementary item described without
any positions to the right of the assumed decimal point.

7.21.4 GENERAL RULES

1. When a GO TO statement represented by Format 1 is executed, control i^

transferred to procedure-name-1 or to another procedure name if the GO

TO statement has been modified by an ALTER statement.

2. If procedure-name-1 is not specified in Format 1, an ALTER statement,

referring to this GO TO statement, must be executed prior to the

execution of this GO TO statement.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
COBOL

III-7-48

Procedure Division

I

3. When, in Format 1, the GO TO statement is referred to by an ALTER

statement, the following rules apply regardless of whether or not

procedure-name-1 is specified.

a. The GO TO statement must have a paragraph-name.

b. The GO TO statement must be the only statement in the paragraph.

4. When a GO TO statement represented by Format 2 is executed, control is

transferred to procedure-name-1, procedure-name-2, etc., depending
on the value of the identifier being 1, 2, ..., n. If the value of

identifier is anything other than the positive or unsigned integers

1, 2, ..., n, then no transfer occurs and control passes to the next

statement in the normal sequence for execution.

5. If a GO TO statement represented by Format 1 appears in an imperative

sentence, it must appear as the only statement or the last statement

in a sequence of imperative statements.

•

GO TO

I

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
COBOL

III-7-49

Procedure Division

HOLD

7.22 THE HOLD STATEMENT

7.22.1 FUNCTION

The HOLD statement provides, in an asynchronous environment, a delay point that

causes synchronous processing to be resumed.

7.22.2 GENERAL FORMAT

HOLD

ALL

section-name-1 £, section-name-zj

7.22.3 SYNTAX RULES

1. The section-names used as operands of the HOLD statement must be names of
sections defined in a USE FOR RANDOM PROCESSING Section in a USE Declarative.

7.22.4 GENERAL RULES

1. A HOLD ALL statement may only be used in in-line procedures. The statement

ensures that all previously initiated asynchronous procedures have been

completed before any statements following the HOLD ALL statement are executed.

2. For in-line procedural statements, when one or more sections are named as

operands of the HOLD statement, the HOLD statement ensures that all previously

initiated asynchronous procedures pertaining to the sections named have been

completed before any statements following the HOLD statements are executed.

3. For out-of-line procedural statements, the operand of the HOLD statement must

name the section in which the HOLD statement appears. The execution of a HOLD
statement forces procedural statements following the HOLD statement, within a

particular processing cycle, to be processed in the order in which the out-of¬

line processing cycles were initiated. Asynchronous processing must not be

reinitiated in the out-of-line set of procedures following the HOLD statement.

When a HOLD statement is not specified in the out-of-line procedures, the
out-of-line processing cycles are processed and completed in an asynchronous

manner regardless of the order in which the cycles were initiated.

4. A HOLD statement is meaningful only when used with asynchronous processing

cycles initiated by a PROCESS statement.

4 PROGRAMMING LANGUAGE COMMITTEE
CODASYL--COBOL

JOURNAL OF DEVELOPMENT

III-7-50

Procedure Division

7.23 THE IF STATEMENT

7.23.1 FUNCTION

The IF statement causes a condition (see 7.4, Conditions) to be evaluated.

The subsequent action of the object program depends on whether the value

of the condition is true or false.

7.23.2 GENERAL FORMAT

IF condition
sta tement-1

NEXT SENTENCE

; ELSE statement-2

; ELSE NEXT SENTENCE

7.23.3 SYNTAX RULES

1. Statement-1 and statement-2 represent either a conditional statement or an

imperative statement, and either may be followed by a conditional statement.

2. The phrase 'ELSE NEXT SENTENCE'may be omitted if it immediately precedes
the terminal period of the sentence.

7.23.4 GENERAL RULES

1. When an IF statement is executed, the following action is taken:

a. If the condition is true, the statements immediately following the

condition (represented by statement-1) are executed and control then
passes implicitly to the next sentence.

b. If the condition is false, either the statements following ELSE

are executed or, if the ELSE clause is omitted, the next sentence
is executed.

2. When in IF statement is executed and the NEXT SENTENCE phrase is present,

control passes explicitly to the next sentence depending on the truth
value of the condition and the placement of the NEXT SENTENCE phrase in
the statement.

3. Statement-1 and statement-2 may contain an IF statement. In this case,

the IF statement is said to be nested.

PROGRAMMING LANGUAGE COMMITTEE
COD ASYL-———..— - -—-——— -COBOL

JOURNAL OF DEVELOPMENT
III-7-51

Procedure Division

IF statements within IF statements may be considered as paired IF and

ELSE combinations, proceeding from left to right. Thus, any ELSE
encountered is considered to apply to the immediately preceding IF that

has not been already paired with an ELSE.

4. When control is transferred to the next sentence, either implicitly or

explicitly, control passes to the next sentence as written or to a

return mechanism of a PERFORM or a USE statement.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-52

COBOL CODASYL

Procedure Division

INITIATE

7.24 THE INITIATE STATEMENT

7.24.1 FUNCTION

The INITIATE statement begins processing of a report.

7.24.2 GENERAL FORMAT

INITIATE
{ ALL

report-name-1 [, report-name-2

1 -I

7.24.3 SYNTAX RULES

2.

3.

4.

5.

Each report-name must be defined by a Report Description entry in

the Report Section of the Data Division.

I 7.24.4 GENERAL RULES

The INITIATE statement resets all data-name entries that contain SUM
clauses associated with this report; the Report Writer controls for
all the TYPE report groups that are associated with this report are

set up in their respective order.

The PAGE-COUNTER register, if specified, is set to one (1) prior to or

during the execution of the INITIATE statement. If a different

starting value for the associated PAGE-COUNTER other than one (1)

is desired, the programmer may reset the counter following the

INITIATE statement.

The LINE-COUNTER register, if specified, is set to zero prior to or

during the execution of the INITIATE statement.

If ALL is specified, all report-name(s) defined by RD entries
are initiated.

The INITIATE statement does not open the file with which the report

is associated, however the associated file must be open at the time

the INITIATE statement is executed. The INITIATE statement performs
Report Writer functions for individually described report programs

analogous to the input-output functions that the OPEN statement

performs for individually described files.

2.

3.

4.

5.

PROGRAMMING LANGUAGE COMMITTEE
-COBOL CODASYL

JOURNAL OF DEVELOPMENT

Procedure Division

INITIATE

6. A second INITIATE for a particular report-name may not be
executed unless a TERMINATE statement has been executed for

that report-name subsequent to the first INITIATE
statement.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
COBOL

III-7-54

Procedure Division

MOVE

7.25 THE MOVE STATEMENT

7.25.1 FUNCTION

The MOVE statement transfers data, in accordance with the rules of editing,

to one or more data areas.

7.25.2 GENERAL FORMAT

MOVE
TO identifier-2 [, identifier-3] ...

7.25.3 SYNTAX RULES

1. Identifier-1 and literal represent the sending area; identifier-2,

identifier-3, represent the receiving area.

2. CORR is an abbreviation for CORRESPONDING.

7.25.4 GENERAL RULES

1. If the CORRESPONDING phrase is used, selected items within identifier-1

are moved to selected items within identifier-2, according to the rules

given in 7.6.3, The CORRESPONDING Option. The results are the same as
if the user had referred to each pair of corresponding identifiers in

separate MOVE statements.

2. The data designated by the literal or identifier-1 is moved first to

identifier-2, then to identifier-3, etc. The rules referring to
identifier-2 also apply to the other receiving areas. Any subscripting

or indexing associated with identifier-2, etc., is evaluated immediately

before the data is moved to the respective data item.

PROGRAMMING LANGUAGE COMMITTEE
COBOL CODASYL

JOURNAL OF DEVELOPMENT
III-7-55

Procedure Division

| MOVE
1_ —-

3. Any MOVE in which the sending a id receiving items are both elementary

items is an elementary move. Every elementary item belongs to one of

the following categories: numeric, alphabetic, alphanumeric, numeric

edited, alphanumeric edited. These categories are described in 6.31,

The PICTL'RE Clause. Numeric literals belong to the category numeric,

and nonnumeric literals belong to the category alphanumeric. The

figurative constant ZERO (ZEROS, ZEROES) belongs to the category

numeric. The figurative constant SPACE (SPACES) belongs to the

category alphabetic. All other figurative constants belong to the

category alphanumeric.

The following rules apply to an elementary move between these

categories:

a. A numeric edited, alphanumeric edited, the figurative constant

SPACE, or an alphabetic data item must not be moved to a numeric

or numeric edited data item.

b. A numeric literal, the figurative constant ZERO, a numeric data
item or a numeric edited data item must not be moved to an
alphabetic data item.

c. A numeric literal, or a numeric data item whose implicit decimal

point is not immediately to the right of the least significant

digit, must not be moved to an alphanumeric or alphanumeric
edited data item.

d. All other elementary moves are legal and are performed according
to the rules given in General Rule 4.

4. Any necessary conversion of data from one form of internal representatioir
to another takes place during legal elementary moves, along with any

editing specified for the receiving data item:

a. When an alphanumeric edited, alphanumeric, or alphabetic item is a

receiving item, justification and any necessary space-fi 11 ing takes

place as defined under the JUSTIFIED clause. If the size of the

sending item is greater than the size of the receiving item, the

excess characters are truncated after the receiving item is filled.

b. When a numeric or numeric edited item is a receiving item, align¬

ment by decimal point and any necessary zero-filling takes place

as defined under the JUSTIFIED clause, except where zeros are
replaced because of editing requirements. If the receiving
item has no operational sign, the absolute value of the sending
item is used. If the sending item has more digits to the left

or right of the decimal point than the receiving item can contain,

the excess digits are truncated. When a data item described as

alphanumeric is the sending item, it is moved as though it was
described as an unsigned numeric integer item. If the sending

item contains any nonnumeric characters, the results are undefined.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-56

CODASYL-
COBOL

Procedure Division

MOVE

c. When a receiving field is described as alphabetic and the sending

data item contains any nona1phabetic characters, the results are

unde fined.

5. An index data item cannot appear as an operand of a MOVE statement.

6. Any move that is not an elementary move is treated exactly as if it

were an alphanumeric to alphanumeric elementary move, except that

there is no conversion of data from one form of internal representation

to another. In such a move, the receiving area will be filled without
consideration for the individual elementary or group items contained

within either the sending or receiving area.

7. Data in the following chart represents the legality of the Move/General
Rule Reference. The general rule reference indicates the rule that

prohibits the move or the behavior of a legal move.

1

Category of Sending

Data Item

!

Category of Receiving Data Item

Alphabetic
Alphanumeric

Edited

Alphanumeric

Numeric Integer

Numeric Non-integer

Numeric Edited

1 ALPHABETIC Yes/4a Yes/4a No/3a

! ALPHANUMERIC Yes/4c Yes/4a Yes/4b

ALPHANUMERIC EDITED Yes/4c Yes/4a No/3a

NUMERIC
INTEGER No/3b Yes/4a Yes/4b

NON-INTEGER No/3b No/3c Yes/4b

NUMERIC EDITED No/3b Yes/4a No/3a

PROGRAMMING LANGUAGE COMMITTEE
CODASYL——-- —.- —.-——————COBOL

JOURNAL OF DEVELOPMENT

III-7-57

Procedure Division

MULTIPLY

7.26 THE MULTIPLY STATEMENT

7.26.1 FUNCTION

The MULTIPLY statement causes numeric data items to be multiplied and sets

the values of data items equal to the results.

7.26.2 GENERAL FORMAT

Format 1

MULTI PLY | literal-^"1 } — identifier-2 [ROUNDED] [, identifier-3 [ROUNDED]]..

[; ON SIZE ERROR imperative-statement]

Fo rma t 2

MULTIPLY
(identifier-1 1 { identifier-2 1 , nmummi

< ... , , > BY l ... , „ > GIVING identifier-3 ROUNDED
[literal-1 f — (literal-2 f - -

[, identifier-4 [ROUNDED]] ...

[; ON SIZE ERROR imperative-statement]

7.26.3 SYNTAX RULES

1. Each identifier must refer to a numeric elementary item, except in

Format 2, where any identifiers that appear only to the right of the

word GIVING may refer to data items that contain editing symbols.

2. Each literal must be a numeric literal.

3. The maximum sir.e of each operand is eighteen (183 decimal digits. The

composite of operands, which is that data item resulting from the super-

imposition of all receiving data items aligned on their decimal points,

must not contain more than eighteen (18) digits.

7.26.4 GENERAL RULES

1. See 7.6.1, The ROFNDED Option 7.6.2, The SIZE ERROR Option; 7.6.6,

Multiple Results in Arithmetic Statements; and 3.2.1.2.5, Special
Registers.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL-—-———-----COBOL

JOURNAL OF DEVELOPMENT

III-7-58

Procedure Division

MULTIPLY

2. When Format.1 is used, the value of identifier-1 or literal-1 is

multiplied by the value of identifier-2. The value of the multiplier

(identifier-2) is replaced by this product; similarly for identifier-1

or literal-1 and identifier-3, etc.

3. When Format 2 is
is multiplied by

in identifier-3,

used, the value of identifier-] or literal-1
identifier-2 or literal-2 and the result is stored
identifier-4, etc.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-59

COBOL CODASYL

Procedure Division

OPEN

7.27 THE OPEN STATEMENT

7.27.1 FUNCTION

The OPEN statement initiates the processing of files. It performs checking

and/or writing of labels and other input-output operations.

7.27.2 GENERAL FORMAT

INPUT file-name-
[* REVERSED

, file-name-2
‘REVERSED

LWITH NO REWIND WITH NO REWIND
L -*

QPEN \ OUTPUT file-name-3 [WITH NO REWIND] [, file-name-4 [WITH NO REWIND]].

1-0 file-name-5 [, file-name-6] ...

7.27.3 SYNTAX RULES

1. The 1-0 phrase pertains only to mass storage files.

2. The REVERSED and WITH NO REWIND phrases do not apply to mass storage
processing.

7.27.4 GENERAL RULES

1. The OPEN statement must not be applied to sort-files, but must be applied to

all other files. The OPEN statement for a file must be executed prior to the

first READ, WRITE, SEEK or SUSPEND statement for ‘"hat file.

2. A second OPEN statement for a file cannot be executed prior to the execution

of a CLOSE statement for that file.

3. The OPEN statement does not obtain or release the first data record. A RFAD

or WRITE statement must be executed to obtain or release, respectively, the

first data record.

4. If a label record is specified for the file, the label is processed according

to the implementor's standard beginning label convention. The behavior of the

OPEN statement when a label record is specified but not present, or when a
label record is not specified but is present, is undefined. If specified by ihe

USE statement, a user's label procedure is executed. The order of execution
of these two processes is specified by the USE statement. If label records
are indicated as present by a LABEL RECORDS clause the user's beginning label

procedure, if specified by a USE statement, is executed before or after

(as indicated) checking but subsequent to writing the first label.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL----COBOL

JOURNAL OF DEVELOPMENT

III-7-6C

Procedure Division

OPEN

5. The REVERSED and the NO REWIND phrases can only be used with sequential
single reel/unit (see 7.12, The CLOSE Statement).

6. If the external medium for the file permits rewinding, the following rules

apply:

a. When neither the REVERSED nor the NO REWIND phrase is specified,
execution of the OPEN statement causes the file to be positioned

at its beginning.

b. When either the REVERSED or the NO REWIND phrase is specified,

execution of the OPEN statement does not cause the file to be
repositioned. When the REVERSED phrase is specified, the file

must be positioned at its end. When the NO REWIND phrase is
specified, the file must be positioned at its beginning.

7. When the REVERSED phrase is specified, the subsequent READ statements
for the file make the data records of the file available in reverse

order; that is, starting with the last record.

8. If an input file is designated with the OPTIONAL clause in the FILE-
CONTROL paragraph of the Environment Division, the object program

causes an interrogation for the presence or absence of this file.

If the file is not present, the first READ statement for this file

causes the imperative statement in the AT END phrase to be executed.

9. The 1-0 option permits the opening of a mass storage file for both

input and output operations. Since this option implies the existence

of the file, it cannot be used if the mass storage file is being
initially created.

10. When 1-0 is specified and the LABEL RECORDS clause indicates label

records are present, the execution of the OPEN statement includes the

following steps:

a. The label is checked in accordance with the implementor's specified

conventions for input-output label checking.

b. The user's beginning label procedure, if one is specified by the USE

statement, is executed according to paragraph 7.41.4, General Rule 1.

c. The new label is written in accordance with the implementor's
specified conventions for input-output label writing.

11. When processing mass storage files for which the access mode is sequential,

the OPEN statement supplies the initial address of the first record to be
accessed.

12. The contents of the data-names specified in the FILE-LIMIT clause of the

FILE-CONTROL paragraph are checked by the Mass Storage Control System only

when the OPEN statement is executed. The FILE-LIMIT clause is dynamic
only to this extent.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-61

-COBOL

Procedure Division

PERFORM
--_J

7.28 THE PERFORM STATEMENT

7.28.1 FUNCTION

The PERFORM statement is used to depart from the normal sequence of proce¬

dures in order to execute one or more procedures either a specified number

of times or until a specified condition is satisfied and to provide a means

of return to the normal sequence.

7.28.2 GENERAL FORMAT

F orma t 1

PERFORM procedure-name-1 [j j procedure-name-2]

Format 2

PERFORM procedure-name-1 [j T~^jGH j procedure-name-2]

i identifier-1) TIMES
(integer-1 f

F o rma t 3

PERFORM procedure-name-1

Format 4

. j THRU)

1 } THROUGH J
procedure-name-2] UNTIL condition-1

(THRU)
PERFORM procedure-name-1 [< -pHROUGH (Procedure-name-2]

(identifier-:
VARYING i identifier-) FROM j index-name-:
•-- \ index-name -1 f (literal-l

BY
identifier-3

literal-2
UNTIL condition-1

T AFTER J identifier-4)
L { index-name-3 /

FROM
identifier-5
index-name-4
literal-3

BY

identifier-6

literal-4
UNTIL condition-2

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-62

COSOL

Procedure Division

PERFORM

Format 4 (Contd.)

[AFTER

FROM

identifier-7

index-name-5 \
identifier-8 j
index-name-6 > _BY

literal-5 >

identifier-9

litera 1-6

UNTIL condition-3]

7.28.3 SYNTAX RULES

1. Each procedure-name is the name of a section or paragraph in the
Procedure Division.

2. Each identifier represents a numeric elementary item described in the

Data Division. In Format 2 and Format 4 with the optional phrase AFTER,
each identifier represents a numeric item with no positions to the right

of the assumed decimal point.

3. Each literal represents a numeric literal.

4. The words THRU and THROUGH are equivalent.

7.28.4 GENERAL RULES

1. When the PERFORM statement is executed, control is transferred to the
first statement of the procedure named procedure-name-1. An automatic

return to the statement following the PERFORM statement is established
as follows:

a. If procedure-name- 1 is a paragraph-name and procedure-name-2 is

not specified, then the return is after the last statement of
procedure-name-1.

b. If procedure-name-1 is a section-name and procedure-name-2 is not

specified, then the return is after the last statement of the last

paragraph in procedure-name-1.

If procedure-name - 2 is specified and it is a paragraph-name, then
the return is after the last statement of the paragraph.

d. If procedure-name-2 is specified and it is a section-name, then th<

return is after the last statement of the last paragraph in the

sec tion.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-63

COBOL

Procedure Division

PERFORM

2. There is no necessary relationship between procedure-name-1 and
procedure-name-2 except that a consecutive sequence of operations is
to be executed beginning at the procedure named procedure-name-1 and

ending with the execution of the procedure named procedure-name-2. In
particular, GO TO and PERFORM statements may occur between procedure-

name-1 and the end of procedure-name-2. If there are two or more

logical paths to the return point, then procedure-name-2 may be the

name of a paragraph consisting of the EXIT statement, to which all of
these paths must lead.

3. If control passes to these procedures by means other than a PERFORM

statement, control will pass through the last statement of the procedure

to the following statement as if no PERFORM statement mentioned these

procedures.

4. The PERFORM statements operate as follows with Rule 3 above applying
to all forma ts:

a. Format 1 is the basic PERFORM statement. A procedure referred to

by this type of PERFORM statement is executed once and then control

passes to the statement following the PERFORM statement.

b. Format 2 is the TIMES option. When the TIMES option is used, the
procedures are performed the number of times specified by the

initial value of identifier-1 or integer-1 for that execution.

When the PERFORM statement is executed, the value of integer-1
must be positive. If the initial value of identifier-1 is negative
or zero, control passes immediately to the statement following the

PERFORM statement. Following the execution of the procedures the
specified number of times, control is transferred to the statement

following the PERFORM statement.

During execution of the PERFORM statement, reference to

identifier-1 cannot alter the number of times the procedures are
to be executed from that which was indicated by the initial value

of identifier-1.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-64

COBOL

Procedure Division

PERFORM

c. Format 3 is the UNTIL option. The specified procedures are performed

until the condition specified by the UNTIL phrase is true. The

condition may be any condition as described in paragraph 7.4, Conditions.

When the condition is true, control is transferred to the next state¬

ment after the PERFORM statement. If the condition is true when the

PERFORM statement is entered, no transfer to procedure-name-1 takes

place, and control is passed to the next statement following the

PERFORM statement.

d. Format 4 is the VARYING option. This option is used to augment the
value of one or more identifiers or index-names in an orderly fashion

during the execution of a PERFORM statement. In the following
discussion, every reference to identifier as the object of the

VARYING and FROM (starting value) phrases also refers to index-names.

When index-names are used, the FROM and BY clauses have the same

effect as in a SET statement.

In Format 4, when one identifier is varied, identifier-1 is set to

its starting value (the value of identifier-2 or literal-1) at the

point of initial execution of the PERFORM statement; then, if the

condition of the UNTIL clause is false, the sequence of procedures,

procedure-name-1 through procedure-name-2, is executed once. The

value of identifier-1 is augmented by the specified increment or

decrement value (the value of identifier-3 or literal-2) and

condition-1 is evaluated again. The cycle continues until this

expression is true; at which point, control passes to the statement

following the PERFORM statement. If condition-1 is true at the

beginning of execution of the PERFORM statement, control passes directly to

the statement following the PERFORM statement.

ENTRANCE

Flow Chart for the Varying Option of a PERFORM statement having one condition.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-65

COBOL CODASYL

Procedure Division

PERFORM

In Forma t 4, when two identifiers are varied, identifier-1 and

identifier-4 are set to their initial values (the values of identifier-2

and identifier-5, respectively). During execution, these initial values

must be positive. After initializing the identifiers, condition-1 is

evaluated; if true, control is passed to the statement following the

PERFORM statement; if false, condition-2 is evaluated. If condition-2
is false, procedure-name-1 through procedure-name-2 is executed once,

then identifier-4 is augmented by identifier-6 or literal-4 and
condition-2 is evaluated again. This cycle of evaluation and augmenta¬

tion continues until this condition is true. When condition-2 is true,

identifier-4 is set to its initial value (the value of identifier-5 or

literal-3), identifier-1 is augmented by identifier-3 and condition-1
is re-evaluated. The PERFORM statement is completed if condition-1 is

true; if not, the cycles continue until condition-1 is true. Identifier-3

and identifier-6 must not be zero. During execution of the PERFORM

statement, reference to index names or identifiers of the FROM clause

has no effect in altering the number of times the procedures are to be

executed. Changing a value of index-names or identifiers of the VARYING

clause or identifiers of the BY clause, however, will change the number

of times procedures are executed.

ENTRANCE

Flow Chart for the Varying Option of a Perform Statement having two

conditions (Format 4).

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-66

CODASYL -COBOL

Procedure Division

PERFORM

At the termination of the PERFORM statement identifier-4 contains its

initial value, while identifier-1 has a value that exceeds the last

used setting by an increment or decrement value, unless condition-1

was true when the PERFORM statement was entered, in which case

identifier-1 and identifier-4 contain their initial values

When two identifiers are varied, identifier-4 goes through a complete

cycle (FROM, BY, UNTIL) each time identifier-1 is varied.

For three identifiers the mechanism is the same as for two identifiers

except that identifier-7 goes through a complete cycle each time that

identifier-4 is augmented by identifier-6 or literal-4, which in turn

goes through a complete cycle each time identifier-1 is varied.

The following flow chart illustrates the logic of the PERFORM statement

when three identifiers are varied.

Having Three Conditions

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-67

COBOL CODASYL

PERFORM

After the completion of a Format 4 PERFORM statement, identifier-4 and

identifier-7 contain their initial values, while identifier-1 has a value

that exceeds its last used setting by one increment or decrement value,

unless condition-1 is true when the PERFORM statement is entered, in

which case identifier-1, identifier-4 and identifier-7 all contain their

initial values.

5. If a sequence of statements referred to by a PERFORM statement includes

another PERFORM statement, the sequence of procedures associated with

the included PERFORM must itself either be totally included in, or

totally excluded from the logical sequence referred to by the first

PERFORM. Thus, an active PERFORM statement, whose execution point

begins within the range of another active PERFORM statement, must

not allow control to pass to the exit of the other active PERFORM

statement; furthermore, two or more such active PERFORM statements may

not have a common exit. See the illustrations below:

x PERFORM a THRU m x PERFORM a THRU m

a --——

d PERFORM f THRU j

f --___-

j--

m ----—

x PERFORM a THRU m

a ___

f --

m --

j-J

d PERFORM f THRU j

a ——---

d PERFORM f THRU j

h

m _—---

f---—

j --—--J

. _ _ * PROGRAMMING LANGUAGE COMMITTEE
CGDASYL--—------_____-COBOL

JOURNAL OF DEVELOPMENT
III-7-68

Procedure Division

PERFORM

6. A PERFORM statement that appears
less than the segment limit, can

a. Sections each of which has a

b. Sections wholly contained in

is greater than 49.

in a section whose priority-number is

have within its range only the following

priority-number less than 50, or

a single segment whose priority-number

7. A PERFORM statement that appears in a section whose priority-number is
equal to or greater than the segment limit, can have within its range

only the following:

a. Sections each of which has the same priority-number as that

containing the PERFORM statement, or

b. Sections with a priority-number that is less than the segment limit.

8. When a procedure-name in a segment with a priority-number greater than

49 is referred to by a PERFORM statement contained in a segment with a

different priority-number, the segment referred to is made available in

its initial state for each execution of the PERFORM statement.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-69

COSOL CODASYL

Procedure Division

PROCESS

7.29 THE PROCESS STATEMENT

7.29.1 FUNCTION

The PROCESS statement initiates a set of out-of-line procedures under the

control of an Asynchronous Control System.

7.29.2 GENERAL FORMAT

PROCESS section-name I" FROM identifier] f USING <f area-name \
J L (record-name j J

7 .29.3 SYNTAX RULES

1. Section-name must be the name of an out-of-line procedure defined in a

USE FOR RANDOM PROCESSING section in the Declarative Section. A PROCESS

statement cannot appear in a USE FOR RANDOM PROCESSING section.

2. Area-name, when used, must be the name of a Saved Area Description entry

(SA) defined in the File Section of the Data Division.

3. Record-name, when used, must be the name of a level-number 01 record

description entry, which is subordinate to an SA entry.

4. The USING phrase must be used when more than one Saved Area Description
entry is specified.

7 .29.4 GENERAL RULES

1. Data that is to be processed by an out-of-line procedure must be

placed in a Saved Area either by in-line procedural statements which

are executed prior to the execution of the PROCESS statement in the

in-line procedural statements, or by using the optional phrase FROM in

the PROCESS statement. In addition, any data working-storage area that

is required for the execution of a cycle of an out-of-line procedure
should be specified as a part of the associated Saved Area Description

entry.

2. One Saved Area record is automatically associated at object time with
each out-of-line processing cycle. No more than one processing cycle

has access to a single Saved Area record at any one time. The
specific Saved Area record associated with an out-of-line processing

cycle is released for further storage assignment by the Asynchronous

Control System upon completion of that processing cycle.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL--————-—-—--COBOL

JOURNAL OF DEVELOPMENT

III-7-70

Procedure Division

PROCESS

3. The PROCESS statement is meaningful only when used in conjunction with

an Asynchronous Control System (ACS).

4. When the optional phrase FROM is used, moving of identifier to area-

name or record-name takes place in accordance with the rules specified

for the MOVE statement without the CORRESPONDING option.

5. The processing of data in the Saved Area by out-of-line procedural

statements may be performed asynchronously. Therefore, in-line

procedures must not refer to any data being processed in the out-of¬

line set of procedures. Conversely, the out-of-line set of procedures

must not refer to any data being processed in the in-line set of

procedures.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-71

COBOL CODASYL

Procedure Division

READ

7.30 THE READ STATEMENT

7.30.1 FUNCTION

1. For sequential file processing, the READ statement makes available

the next logical record from an input file and allows performance of

a specified imperative statement when end of file is detected.

2. For random file processing, the READ statement makes available a

specified record from a mass storage file and allows performance of
a specified imperative statement if the contents of the associated

ACTUAL KEY data item are found to be invalid.

7.30.2 GENERAL FORMAT

Format 1

READ file-name RECORD [INTO identifier] ; AT END imperative-statement

Format 2

READ file-name RECORD [INTO identifier] ; INVALID KEY imperative-statement

7.30.3 SYNTAX RULES

1. The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record description. The

storage area associated with identifier and the storage area which is
the record area associated with the file-name must not be the same storage

area. File-name must not represent a sort-file.

2. Format 1 is used only for non-mass storage files and for mass

storage files in the sequential access mode.

3. Format 2 is used for mass storage files in the random access mode.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL

JOURNAL OF DEVELOPMENT
III-7-72

COBOL

Procedure Division

READ

7.30.4 GENERAL RULES

1. An OPEN statement must be executed for a file prior to the execution

of the first READ statement for that file.

2. If after reading the last logical record of a file another READ state¬

ment is initiated for that file, that last logical record is no longer
available in its record area; the READ statement is then completed by

the execution of the AT END phrase. After the AT END condition has been

recognized for a file, a READ statement for that file must not be given

without prior execution of a CLOSE statement and an OPEN statement for

that file. The logical end of a file is specified in the FILE-LIMIT

clause or the ASSIGN clause of the Environment Division.

3. When the logical records of a file are described with more than one

record description, these records automatically share the same storage

area; this is equivalent to an implicit redefinition of the area.

Only the information that is present in the current record is accessible.

4. If the INTO phrase is specified, the current record is moved from the

input area to the area specified by identifier according to the rules

specified for the MOVE statement without the CORRESPONDING phrase.

Any subscripting or indexing associated with identifier is evaluated

after the record has been read and immediately before it is moved to
the data item.

5. When the INTO phrase is used, the record being read is available in both

the input record area and the data area associated with identifier.

6. If a file described with the OPTIONAL clause is not present, the imperative

statement in the AT END phrase is executed on the first READ. The

standard end-of-file procedures are not performed (see the OPEN and USE

statements, and the FILE-CONTROL paragraph in the Environment Division).

7. If the end of a tape reel or mass storage unit is recognized during

execution of a READ statement the following operations are carried out;

a. The standard ending reel/unit label procedure and the user's ending

reel/unit label procedure, if specified, by the USE statement. The

order of execution of these two procedures is specified by the USE
statement.

b. A tape/unit swap.

c. The standard beginning reel/unit label procedure and the user's

beginning reel/unit label procedure, if specified. The order of

execution is again specified by the USE statement.

CODASYl
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
XXI-7-73

COBOL

Procedure Division

READ

d. The first data record of the new reel/unit is made available.

For a mass storage file, this is only possible where the mass storage
unit is in sequential access mode.

8. Format 2 is used for mass storage files in the random access mode.
The READ statement implicitly performs the function of the SEEK

statement for a specific mass storage file, unless a SEEK statement

is executed for the specified record of this file prior to the execution

of the READ statement for that specified record. A SEEK statement is

related to a subsequent READ statement only if both are in the in-line

procedures or both are in the same processing cycle of an out-of-line

procedure. If such files are accessed for a specified mass storage

record and the contents of the associated ACTUAL KEY data item are

invalid, the INVALID KEY phrase is executed.

9. If a mass storage file (either INPUT or 1-0), in the random access

mode is contained on more than one physical mass storage unit, and

not all of the physical units are simultaneously available, the
procedures for making the physical units available are specified by

the implementor (see 5.4.1, The FILE-CONTROL Paragraph).

10. Regardless of the method used to overlap access time with processing

time, the concept of the READ statement is unchanged in that a record

is available prior to the execution of any statement following the
READ statement.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-74

COBOL CODASYL

Procedure Division

RELEASE

7.31 THE RELEASE STATEMENT

7.31.1 FUNCTION

The RELEASE statement transfers records to the initial phase of a SORT

operation.

7.31.2 GENERAL FORMAT

RELEASE record-name [FROM identifier]

7.31.3 SYNTAX RULES

1. A RELEASE statement may only be used within the range of an input

procedure associated with a SORT statement for a file whose sort-file
description contains a record-name.

2. Record-name must be the name of a logical record in the associated

sort-file description and may be qualified.

3. Record-name and identifier must not refer to the same storage area.

7.31.4 GENERAL RULES

1. The execution of a RELEASE statement causes the record named by record-
name to be released to the initial phase of a sort operation.

2. If the FROM phrase is used, the contents of the identifier data area

are moved to record-name, then the contents of record-name are released

to the sort-file. Moving takes place according to the rules specified

for the MOVE statement without the CORRESPONDING phrase. The information

in the record area is no longer available, but the information in the

data area associated with identifier is available.

3. After the RELEASE is executed, the logical record is no longer available.

When control passes from the INPUT PROCEDURE,the file consists of all chose

records which were placed in it by the execution of RELEASE statements.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-75

—CObO CODASYL

Procedure Division

RETURN

7.32 THE RETURN STATEMENT

7.32.1 FUNCTION

The RETURN statement obtains sorted records from the final phase of a SORT

operation.

7.32.2 GENERAL FORMAT

RETURN file-name RECORD [INTO identifier]; AT END imperative-statement

7.32.3 SYNTAX RULES

1. File-name must be described by a Sort File Description entry in the

Data Division.

2. A RETURN statement may only be used within the range of an output

procedure associated with a SORT statement for file-name.

3. The INTO phrase may only be used when the input file contains just one

type of record. The storage area associated with identifier and the

storage area which is the record area associated with file-name must

not be the same storage area.

7.32.4 GENERAL RULES

1. When a file consists of more than one type of logical record, these
records automatically share the storage area. This is equivalent to

saying that there exists an implicit redefinition of the area, and only

the information that is present in the current record is accessible.

2. The execution of the RETURN statement causes the next record, in the

order specified by the keys listed in the SORT statement, to be made
available for processing in the records area associated with the sort -fi 1 ::.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-76

COBOL. CODASYL

Procedure Division

RETURN

3. If the INTO phrase is specified, the current record is moved from the

input area to the area specified by identifier according to the rule

for the MOVE statement without the CORRESPONDING phrase. Any subscripting

or indexing associated with identifier is evaluated after the record has

been returned and immediately before it is moved to the data item.

When the INTO phrase is used, the data is available in both the input

record area and the data area associated with identifier,

4. After execution of the imperative statement in the AT END phrase, no
RETURN statement may be executed within the current output procedure.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-77

COBO CODASYL

Procedure Division

SEARCH

7.33 THE SEARCH STATEMENT

7.33.1 FUNCTION

The SEARCH statement is used to search a table for a table-element that

satisfies the specified condition and to adjust the associated index-name
to indicate that table-element.

7.33.2 GENERAL FORMAT

Format 1

SEARCH identifier-1 [VARYING l index-name-1
——— ^ identifier-2

[; AT END imperative-statement-1]

; WHEN condition-1

; WHEN condition-2

{

{

imperative-statement-2
NEXT SENTENCE

imperative-statement-3
NEXT SENTENCE

F orma t 2

SEARCH ALL identifier-1 [; AT END imperative-statement-1]

; WHEN condition-1
imperative-s tatement-2

NEXT SENTENCE

7.33.3 SYNTAX RULES

1. In both Formats 1 and 2, identifier-1 must not be subscripted or indexed,

but its description must contain an OCCURS clause and an INDEXED BY
clause. The description of identifier-1 in Format 2 must also contain

the KEY IS option in its OCCURS clause.

2. Identifier-2, when specified, must be described as USAGE IS INDEX or

as a numeric elementary item without any positions to the right of
the assumed decimal point. Identifier-2 is incremented by the same

amount as, and at the same time as, the occurrence number represented

by the index-name associated with identifier-1 is incremented.

PROGRAMMING LANGUAGE COMMITTEE _ _
CODASYL-----------COBOL

JOURNAL OF DEVELOPMENT
III-7-78

Procedure Division

SEARCH

3. In Format 1, condition-1, condition-2, etc., may be any condition as

described in 7.4, Conditions.

4. In Format 2, condition-1 may consist of a relation condition incorporating

the relation EQUALS or EQUAL TO or equal sign, or a condition-name

condition, where the VALUE clause that describes the condition-name

contains only a single literal. Alternatively, condition-1 may be

a compound condition formed from simple conditions of the type just

mentioned, with AND as the only connective. Any data-name that appears

in the KEY clause of identifier-1 may appear as the subject or object

of a test or be the name of the conditional variable with which the

tested condition-name is associated; however, all preceding data-names

in the KEY clause must also be included within condition-1. No other

tests may appear within condition-1.

7.33.4 GENERAL RULES

1. If Format 1 of the SEARCH is used, a serial type of search operation

takes place, starting with the current index setting.

a. If, at the start of execution of the SEARCH statement, the index-

name associated with identifier-1 contains a value that corresponds

to an occurrence number that is greater than the highest permissible

occurrence number for identifier-1, the SEARCH is terminated

immediately. Then, if the AT END phrase is specified, imperative-

statement-1 is executed; if the AT END phrase is not specified,

control passes to the next sentence.

b. If, at the start of execution of the SEARCH statement, the index-
name associated with identifier-1 contains a value that corresponds

to an occurrence number that is not greater than the highest

permissible occurrence number for identifier-1 the SEARCH statement

operates by evaluating the conditions in the order that they are
written, making use of the index settings, wherever specified, to

determine the occurrence of those items to be tested. If none of

the conditions are satisfied, the index-name for identifier-1 is

incremented to obtain reference to the next occurrence. The process

PROGRAMMING LANGUAGE COMMITTEE ,
CODASYL---—-——-—COBOL

JOURNAL OF DEVELOPMENT
III-7-79

Procedure Division

SEARCH

is then repeated using the new index-name settings unless the new
value of the index-name settings for identifier-1 corresponds to

a table element which exceeds the last element of the table by one
or more occurrences, in which case the search terminates as indicated

in la above. If one of the conditions is satisfied upon its evalu¬
ation, the search terminates immediately and the imperative statement

associated with that condition is executed; the index-name remains

set at the occurrence which caused the condition to be satisfied.

2. If Format 2 of the SEARCH is used, a nonserial type of search operation
may take place in which case, the initial setting of the index-name for

identifier-1 is ignored and its setting is varied during the search

operation in a manner specified by the implementor, with the restriction

that at no time is it set to a value that exceeds the value which

corresponds to the last element of the table, or that is less than the

value that corresponds to the first element of the table. If condition-1

cannot be satisfied for any setting of the index within this permitted
range, control is passed to imperative-statement-1 when the AT END

phrase appears, or to the next sentence when this phrase does not appear;

in either case the final setting of the index is not predictable. If

condition-1 can be satisfied, index indicates an occurrence that allows

condition-1 to be satisfied, and control passes to imperative-statement-2.

3. After execution of imperative-statement-1, imperative-statement-2, or
imperative-statement-3, that does not terminate with a GO TO statement,
control passes to the next sentence.

4. In the VARYING index-name-1 phrase, if index-name-1 appears in the

INDEXED BY clause of ident i f ier-1 , that index-name is used for this

search, otherwise the first (or only) index-name given in the INDEXED

BY clause of identifier-1 is used. If index-name-1 appears in the

INDEXED BY clause of another table entry, the occurrence number

represented by index-name-1 is incremented by the same amount as, and at
the same time as, the occurrence number represented by the index-name

associated with identifier-1 is incremented.

5. If identifier-1 is a data item subordinate to a data item that contains

an OCCURS clause (providing for a two or three dimensional table), an
index-name must be associated with each dimension of the table through

the INDEXED BY phrase of the OCCURS clause. Only the setting of the

index-name associated with identifier-1 (and the data item identifier-2
or index-name-1, if present) is modified by the execution of the SEARCH

statement. To search an entire two or three dimensional table it is

necessary to execute a SEARCH statement several times. Prior to each

execution of a SEARCH statement, SET statements must be executed whenever
index-names must be adjusted to appropriate settings.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-80

COBOL CODASYL

Procedure Division

SEARCH

A diagram of the Format 1 SEARCH operation containing two WHEN phrases

follows.

\

•

* These operations are options included only when specified in the SEARCH

statement.

** Each of these control transfers is to the next sentence unless the

imperative-statement ends with a GO TO statement.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
ni-7-81

COBOL CODASYL

Procedure Division

SEEK

7.34 THE SEEK STATEMENT

7.34.1 FUNCTION

The SEEK statement initiates the accessing of a mass storage data record

for subsequent reading or writing.

7.34.2 GENERAL FORMAT

SEEK file-name RECORD

7.34.3 GENERAL RULES

1. Any restrictions in the use or implementation of the SEEK statement must
be specified by the implementor.

2. A SEEK statement pertains only to mass storage files in the random

access mode and may be executed prior to the execution of each READ

and WRITE statement.

3. The SEEK statement uses the contents of the data-name in the ACTUAL KEY
clause (see 5.4.1, The FILE-CONTROL Paragraph) for the location of the
record to be accessed.

4. Two SEEK statements for the same mass storage file may logically

follow each other.

5. A SEEK statement is related to a subsequent READ or WRITE statement
only if they are all in the in-line procedure or are all in the same

processing cycle of an out-of-line procedure.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-82

COSOL CODASYL

Procedure Division
—

SET

7.35 THE SET STATEMENT

7.35.1 FUNCTION

The SET statement establishes reference points for table-handling operations
by setting index-names associated with table elements.

7.35.2 GENERAL FORMAT

Format 1

! index-name-1 [, index-name-2]...

identifier-1 [, identifier-2]...

! index-name-3

identifier-3
litera1-1

Forma t 2

SET index-name-4 [, index-name-5]... UP BY 1 (

DOWN BYJ \

identifier-4

literal-2

7.35.3 SYNTAX RULES

1. All references to index-name-1, identifier-1, and index-name-4 apply
equally to index-name-2, identifier-2 and index-name-5, respectively.

7.35.4 GENERAL RULES

1. All identifiers must name either index data items, or elementary

items described as an integer, except that identifier-4 in Format 2

must not name an index data item. When a literal is used, it must

be a positive integer. Index-names are considered related to a

given table and are defined by being specified in the INDEXED BY
clause.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-83

-COBOL

SET

2. In Format 1, the following action occurs:

a. Index-name-1 is set to a value causing it to refer to the table

element that corresponds in occurrence number to the table

element refered to by index-name-3, identifier-3, or literal-1.

If identifier-3 is an index data item, or if index-name-3 is

related to the same table as index-name-1, no conversion takes

place. If the value contained in an index data item does not

correspond to an occurrence number of an element in the table

indexed by index-name-1, the result is undefined.

b. If identifier-1 is an index data item, it may be set equal to

either the contents of index-name-3 or identifier-3 where

identifier-3 is also an index data item. Literal-1 cannot be

used in this case.

c. If identifier-1 is not an index data item, it may be set only to

an occurrence number that corresponds to the value of index-name-3.

Neither identifier-3 nor literal-1 can be used in this case.

d. The process is repea ted for index-name-2, identifier-2, etc., if

specified. Each time, the value of index-name-3 or identifier-3 is

used as it was at the beginning of the execution of the statement.
Any subscripting or indexing associated with identifier-1, etc.,

is evaluated immediately before the value of the respective data
item is changed.

3. In Format 2, the contents of index-name-4 are incremented (UP BY) or

decremented (DOWN BY) by a value that corresponds to the number of

occurrences represented by the value of literal-2 or identifier-4;

thereafter, the process is repeated for index-name-5, etc. Each time
the value of identifier-4 is used as it was at the beginning of the
execution of the statement.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-84

COBOL CODASYL

Procedure Division

SORT

7.36 THE SORT STATEMENT

7.36.1 FUNCTION

The SORT statement creates a sort-file by executing input procedures or by

transferring records from another file, sorts the records in the sort-file

on a set of specified keys, and in the final phase of the sort operation,

makes available each record from the sort-file, in sorted orde^. to some

output procedures or to an output file.

7.36.2 GENERAL FORMAT

SORT file-name-1 ON
f DESCENDING)

1 ASCENDING (
KEY data-name-1

l ; ON
(DESCENDING)
1 ASCENDING I

KEY data-name-3

data-name-2 J. . .

data-name-4] ...] • • •

INPUT PROCEDURE IS section-name-
[/ THRU |

section-name-2
1) THROUGH (

USING file-name-2

OUTPUT PROCEDURE IS section-name-3

GIVING file-name-3

/ THRU >
\ THROUGH) sect ion-name-4

7.36.3 SYNTAX RULES

1. File-name-1 must be described in a Sort File Description entry in the

Data Division. Each data-name must represent data items described in

records associated with file-name-1.

2. ' Section-name-1 represents the name of an input procedure. Section-name-3

represents the name of an output procedure.

3. File-name-2 and file-name-3 must be described in a File Description entry,

not in a Sort File Description entry, in the Data Division. The actual

size of the logical record(s) described for file-name-2 and file-name-3

must be equal to the actual size of the logical record(s) described for

file-name-1. If the data description of the elementary items that make

up these records are not identical, it is the programmer's responsibility

to describe the corresponding records in such a manner so as to cause

equal amounts of computer storage to be allocated for the corresponding
records.

4. The data-names may be qualified. However, if the same data-name is used

in describing the same key in more than one record description it need not

be qualified when used in the SORT statement.

5. The words THRU and THROUGH are equivalent.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-85

COBOL CODASYL

Procedure Division

SORT

7.36.4 GENERAL RULES

1. Programs that contain SORT statements are divided into two classes:
basic sorting and extended sorting.

a. The Procedure Division of a basic sort program contains one SORT

statement and a STOP RUN statement in the first nondeclarative
portion. Other sections consist only of input and output proce¬
dures associated with the SORT statement.

b. The Procedure Division of an extended sort program may contain

more than one SORT statement appearing anywhere except:

(1) in the Declaratives portion, or

(2) in the input and output procedures associated with a
SORT statement.

2. The data-names following the word KEY are listed from left to right in

the SORT statement in order of decreasing significance without regard

to how they are divided into KEY clauses. In the format data-name-1
is the major key, data-name-2 is the next most significant key, etc.

The direction of the sort depends on the use of the ASCENDING or

DESCENDING clauses as follows:

a. When an ASCENDING clause is used, the sorted sequence will be from

the lowest value of key to the highest value according to the rules
for comparison of operands in a relation condition.

b. When a DESCENDING clause is used, the sorted sequence will be from

the highest value of key to the lowest value according to the rules
for comparison of operands in a relation condition.

3. The record description for every record that is a logical record

associated with the sort-file description must contain the KEY items

data-name-1, data-name-2, etc. These KEY items are subject to the
following rules:

a. They may not be variable length items.

b. Where more than one record description appears, the key items
need only be described in one of the record descriptions. When

the key items are described in more than one record the data

descriptions must be equivalent and their starting position must

always be the same number of character positions from the beginning
of each record.

c. They may not contain an OCCURS clause, nor be subordinate to

entries that contain an OCCURS clause.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-86

COBOL

Procedure Division

SORT

4. The input procedure, if present, must consist of one or more sections
that appear contiguously in a source program and do not form a part

of any output procedure. The input procedure must include at least
one RELEASE statement in order to transfer records to the sort-file.

Control must not be passed to the input procedure except when a

related SORT statement is being executed, because the RELEASE

statements in the input procedure have no meaning unless they are

controlled by a SORT statement. The input procedure can include any

procedures needed to select, create, or modify records. The restric¬

tions on the procedural statements within the input procedure are as

follows:

a. The input procedure must not contain any SORT statements.

b. The input procedure must not contain any explicit transfers of

control to points outside the input procedure; ALTER, GO TO,

and PERFORM statements in the input procedure are not permitted

to refer to procedure-names outside the input procedure. PROCESS

and CALL statements are not permitted in an input procedure.
COBOL statements are allowed that will cause an implied transfer

of control by the compiler to Declaratives for label procedures,
error procedures and reporting procedures.

c. The remainder of the Procedure Division must not contain any
transfers of control to points inside the input procedures;

ALTER, GO TO and PERFORM statements in the remainder of the

Procedure Division must not refer to procedure-names within the

input procedure.

5. If an input procedure is specified, control is passed to the input
procedure before file-name-1 is sequenced by the SORT statement.

The compiler inserts a return mechanism at the end of the last

section in the input procedure and when control passes the last

statement in the input procedure, the records that have been
released to file-name-1 are sorted.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-87

COBOL CODASYL

Procedure Division

SORT

6. The output procedure, if present, must consist of one or more sections
that appear contiguously in a source program and do not form part of

any input procedure. The output procedure must include as least one
RETURN statement in order to make sorted records available for

processing. Control must not be passed to the output procedure except
when a related SORT statement is being executed, because the RETURN

statements in the output procedure have no meaning unless they are

controlled by a SORT statement. The output procedure may consist of
any procedures needed to select, modify or copy the records that are

being returned one at a time in sorted order, from the sort-file.

The restrictions on the procedural statements within the output

procedure are as follows:

a. The output procedure must not contain any SORT statements.

b. The output procedure must not contain any transfers of control to

points outside the output procedure; ALTER, GO TO, and PERFORM

statements in the output procedure are not permitted to refer to

procedure-names outside the output procedure. PROCESS and CALL
statements are not permitted in an output procedure. COBOL

statements are allowed that will cause an implied transfer of

control by the compiler to Declaratives for label procedures and

reporting procedures.

c. The remainder of the Procedure Division must not contain any

transfers of control to points inside the output procedure;
ALTER, GO TO and PERFORM statements in the remainder of the

Procedure Division are not permitted to refer to procedure-names

within the output procedure.

7. If an output procedure is specified, control passes to it after file-

name-1 has been sequenced by the SORT statement. The compiler inserts

a return mechanism at the end of the last section in the output proce¬

dure and when control passes the last statement in the output procedure,

the return mechanism provides for termination of the sort and then

passes control to the next statement after the SORT statement. Before
entering the output procedure, the sort procedure reaches a point at

which it can select the next record in sorted order when requested.

The RETURN statements in the output procedure are the requests for
the next record.

8. Segmentation as defined in Chapter 8 can be applied to the sections

within the input or output procedures.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-88

COBOL CODASYL

Procedure Division

SORT

9. If the USING option is specified, all the records in file-name-2

are transferred automatically to the file-name-1. At the time of

execution of the SORT statement, file-name-2 must not be open.

The SORT statement automatically initiates the processing of,
makes available the logical records for, and terminates the

processing of file-name-2. These implicit functions are performed

such that any associated USE procedures are executed. The termi¬

nating function is performed as if the CLOSE statement had been

explicitly written without optional phrases. The SORT statement

also automatically performs the implicit functions of moving the

records from the file area of file-name-2 to the file area for file¬

name-1 and the release of records to the initial phase of the sort
operation.

10. If the GIVING option is used, all the sorted records in file-name-1

are automatically transferred to file-name-3 as the implied output

procedure for this SORT statement. At the time of execution of the

SORT statement file-name-3 must not be open. The SORT statement

automatically initiates the processing of, releases the logical

records to, and terminates the processing of file name-3. These

implicit functions are performed such that any associated USE

procedures are executed. The terminating function is performed as

if the CLOSE statement had been written without optional phrases.

The SORT statement also automatically performs the implicit functions

of the return of the sorted records from the final phase of the sort

operation and the moving of the records from the file area for

file-name-1 to the file area for file-name-3.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-89

COBOL CODASYL

Procedure Division

STOP

7.37 THE STOP STATEMENT

7.37.1 FUNCTION

The STOP statement causes a permanent or temporary suspension of the

execution of the run unit.

7.37.2 GENERAL FORMAT

STOP

7.37.3 SYNTAX RULES

1. The literal may be numeric or nonnumeric or may be any figurative
constant, except ALL.

7.37.4 GENERAL RULES

1. If the RUN phrase is used, then the ending procedure established by

the installation and/or the compiler is instituted.

2. If the literal option is used, the literal is communicated to the

operator. Continuation of the object program begins with the execution

of the next statement in sequence.

3. If a STOP RUN statement appears in an imperative sentence, then it

must appear as the only or last statement in a sequence of imperative

s tatements.

PROGRAMMING LANGUAGE COMMITTEE
CG&GL

JOURNAL OF DEVELOPMENT
III-7-90

CODASYL

Procedure Division

SUBTRACT

7.38 THE SUBTRACT STATEMENT

7.38.1 FUNCTION

The SUBTRACT statement is used to subtract one. or the sum of two or more,

numeric data items from one or more items, and set the values of one or

more items equal to the results.

7.38.2 GENERAL FORMAT

Format 1

SUBTRACT { literal-1

identifier-1

litera1-2

identifier-2
FROM identifier-m [ROUNDED]

[, identifier-n [ROUNDEDj]... [; ON SIZE ERROR imperative-statement]

Format 2

SUBTRACT { literal- 1

identifier-1
literal-2

identifier-2
.. FROM

{
litera1-m

identifier-m

GIVTNG identifier-n [ROUNDED] [, identifier-o [ROUNDED]]...

[; ON SIZE ERROR imperative-statement]

F o rma t 3

(CORR)
SUBTRACT I c"oRRESPONDING (identifier-1 FROM identifier-2 [ROUNDED]

[; ON SIZE ERROR imperative-statement]

7.38.3 SYNTAX RULES

1. Each identifier must refer to a numeric elementary item except in
Format 2, where any identifiers that appear only to the right of the

word GIVING may refer to data items that contain editing symbols.

PROGRAMMING LANGUAGE COMMITTEE ^
CODASYL--------——---—— --COBOL

JOURNAL OF DEVELOPMENT
III-7-91

Procedure Division

SUBTRACT

2. The maximum size of each operand is eighteen (18) decimal digits. The

composite of operands, which is that data item resulting from the super¬

imposition of all operands, excluding the data items that follow the

word GIVING, aligned on their decimal points, must not contain more than

eighteen digits.

3. CORR is an abbreviation for CORRESPONDING.

7.38.4 GENERAL RULES

1. See 7.6.1, The ROUNDED Option; 7.6.2, The SIZE ERROR Option; 7.6.3,

The CORRESPONDING Option; 7.6.6, Multiple Results in Arithmetic

Statements; and 3.2.1.2.5, Special Registers.

2. In Format 1, all literals or identifiers preceding the word FROM are

added together and this total is subtracted from identifier-m,

identifier-n, etc., and the differences are stored as the new value of

identifier-m, identifier-n, etc.

3. In Format 2, all literals or identifiers preceding the word FROM are

added together, the sum is subtracted from literal-m or identifier-m

and the result of the subtraction is stored as the new value of

identifier-n, identifier-o, etc.

4. If Format 3 is used, data items in identifier-1 are subtracted from

and stored into corresponding data items in identifier-2.

5. The compiler insures enough places are carried so as not to lose

significant digits during execution.

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-92

COBOL CODASYL

Procedure Division

SUSPEND

7.39 THE SUSPEND STATEMENT

7,39.1 FUNCTION

The SUSPEND statement stops the release of subsequent logical records
to a graphic display device until re-initiated by the operator.

7.39.2 GENERAL FORMAT

SUSPEND

file-name-1
literal-1

_identifier-lj /

literal-2 "j i
report-name-1

,
_identifier-2j 1

file-name-2
literal-3 ~1

_identifier-3j

literal-4 1
report-name-2 _identifier-4J |

1

7.39.3 SYNTAX RULES

1. The figurative constant ALL must not be used as literal-1,
literal-2, etc.

7.39.4 GENERAL RULES

1. When file-name-1, or the file-name associated with a report-name,

is assigned to a graphic display device, the SUSPEND statement
releases a logical record to the file named. When this logical

record is transmitted to the graphic display device, the further

transmission of logical records to the graphic display device is

suspended until re-initiated by the graphic display device
operator. When the file-name or the file-name associated with a

report-name, is not assigned to a graphic display device, the

effect of the SUSPEND statement is defined by the implementor.

2. An OPEN statement (with no intervening CLOSE statement for the file)

must be executed for a file prior to executing the SUSPEND statement
for that file.

3. The object program will stop execution only when the release of

logical records to the output device is not possible until
re-initiated by the operator.

___ PROGRAMMING LANGUAGE COMMITTEE
CODASYL-----COBO

JOURNAL OF DEVELOPMENT
III-7-93

Procedure Division

SUSPEND

4. The implementor will specify the means of re-initiating the release

of logical records to the graphic display device.

5. The value of literal-1, literal-2, identifier-1, identifier-2, etc.,

is written on the implementor's standard display device. When more

than one such device is present, the one most logically associated
with the graphic display device will be used.

6. If a figurative constant is specified as one of the operands, only

a single occurrence of the figurative constant is displayed.

7. The implementor will define, for each hardware device,' the size of a data
transfer.

8. If the hardware device is capable of receiving data of the same size

as the data item being transferred, then the data item is transferred.

9. If a hardware device is not capable of receiving data of the same size
as the data item being transferred, then one of the following applies:

a. If the size of the data item being transferred exceeds the size of

the data that the hardware device is capable of receiving in a

single transfer, the data beginning with the left most character
is stored aligned to the left in the receiving hardware device,

and additional data is requested.

b. If the size of the data item that the hardware device is capable

of receiving exceeds the size of the data item being transferred,

the transferred data is stored aligned to the left in the

receiving hardware device.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-94

COBOL

Procedure Division

TERMINATE

7.40 THE TERMINATE STATEMENT

7.40.1 FUNCTION

The TERMINATE statement terminates the processing of a report.

7.40.2 GENERAL FORMAT

TERMINATE
report-name-1 [

ALL

report-name-2]

7.40.3 SYNTAX RULES

1. Each report-name given in a TERMINATE statement must be defined by a

RD entry in the Data Division.

7.40.4 GENERAL RULES

1. The TERMINATE statement produces all the control footings associated
with this report as if a control break had just occurred at the highest

level, and completes the Report Writer functions for the named reports.

The TERMINATE statement also produces the last PAGE FOOTING and the
REPORT FOOTING report groups associated with this report.

2. Appropriate PAGE and OVERFLOW HEADING and/or FOOTING report groups are

prepared in their respective order for the report description

3. If ALL is specified, all report-names defined in the Report Section of

the Data Division which were initiated are terminated.

4. A second TERMINATE for a particular report may not be executed unless
a second INITIATE statement has been executed for the report-name.

If a TERMINATE statement has been executed for a report, a GENERATE

statement for that report must not be executed unless an intervening
INITIATE statement for that report is executed.

5. The TERMINATE statement does not close the file with which the report

is associated; a CLOSE statement for the file must be given by the user.
However, the associated file must be open at the time the TERMINATE

statement is executed. The TERMINATE statement performs Report Writer

functions for individually described report programs analogous to the

input/output functions that the CLOSE statement performs for individually
described files.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL-----—COBOL

JOURNAL OF DEVELOPMENT
III-7-95

Procedure Division

TERMINATE

6. SOURCE clauses used in TYPE CONTROL FOOTING FINAL or TYPE REPORT
FOOTING report groups refer to the values of the items at the

execution time of the TERMINATE statement.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-96

COBO

Procedure Division

USE

7.41 THE USE STATEMENT

7.41.1 FUNCTION

1. The USE statement specifies procedures for input-output label and
error handling that are in addition to the standard procedures pro¬

vided by the input output system. It is also used to specify

Procedure Division statements that are executed just before a report

group named in the Report Section of the Data Division is produced.

2. The USE statement is also necessary in specifying out-of-line

procedural statements for processing mass storage files.

7.41.2 GENERAL FORMAT

Format 1

USE AFTER STANDARD ERROR PROCEDURE ON

Format 2

file-name-1 j , file-name 2] ...

Input

OUTPUT

1-0

USE

{ BEFORE) r BEGINNING 1 I" REEL 1

< > STANDARD FILE

1 AFTER \ ENDING UNIT

LABEL PROCEDURE ON

file-name-1 (, file-name-2)

INPUT

OUTPUT

1-0

Format 3

USE BEFORE REPORTING identifier-1 | , identifier-2]

Format 4

USE FOR RANDOM PROCESSING.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-97

COBOL

Procedure Division

USE

7.41.3 SYNTAX RULES

1. A USE statement, when present, must immediately follow a section header
in the Declarative portion of the Procedure Division and must be

followed by a period followed by a space. The remainder of the

section must consist of one or more procedural paragraphs that define
the procedures to be used.

2. If the file-name phrase is used as a part of Format 2, the File
Description entry for file-name-1 must not specify a LABEL RECORDS ARE
OMITTED clause.

3. In Format 3, identifier-1 represents a report group named in the
Report Section of the Data Division. An identifier must not appear

in more than one USE statement.

No Report Writer statement (GENERATE, INITIATE, or TERMINATE) may be

written in a procedural paragraph or paragraphs following the USE

sentence in the Declarative portion.

4. When using Format 4 (for mass storage only), a PROCESS statement

cannot appear in a USE FOR RANDOM PROCESSING section.

5. The USE statement itself is never executed; rather, it defines the

conditions calling for the execution of the USE procedures.

6. If the words BEGINNING or ENDING are not included in Format 2, the
designated procedures are executed for both beginning and ending

labels.

If neither UNIT, REEL, nor FILE is included, the designated procedures

are executed for both REEL or UNIT, whichever is appropriate, and

FILE labels. The REEL phrase is not applicable to mass storage files.

The UNIT phrase is not applicable to files in the random access mode.

7. The same file-name can appear in a different specific arrangement of

a Format. However, appearance of a file-name in a USE statement must

not cause the simultaneous request for execution of more than one USE

declarative.

8. No file-name may represent a sort-file.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-98

COBOL

Procedure Division

USE

7.41.4 GENERAL RULES

1. The designated procedures are executed by the input-output system at

the appropriate time as follows:

a. In Format 1, after completing the standard input-output error

routine.

b. In Format 2, before or after a beginning or ending input label
check procedure is executed.

Before a beginning or ending output label is created.

After a beginning or ending output label is created, but
before it is written.

Before or after a beginning or ending input-output label check
procedure is executed.

2. In Format 2, within the procedures of a USE declarative in which the
USE statement specifies a phrase other than the file-name-1 phrase

references to common label items need not be qualified by a file-name.

A common label item is an elementary data item that appears in every

label record of the program, but at the same time, does not appear

in any data record of this program. Furthermore, a common label item

must have the same name, description, and relative position in every

label record.

If the INPUT, OUTPUT, or 1-0 option is specified, the USE procedures

do not apply respectively to input, output, or input-output files that

are described with the LABEL RECORDS ARE OMITTED clause.

3. In Format 3, the designated procedures are executed by the Report

Writer just before the named report is produced, regardless of page,

overflow, or control break associations with report groups. The

report group may be any type except DETAIL.

4. Format 4 is used for an out-of-line procedure that can be executed

asynchronously. The execution of a PROCESS statement causes the

processing of a specified out-of-line procedure to be initiated.

5. Within a USE procedure, there must not be any reference to any

nondeclarative procedures. Conversely, in the nondeclarative portion
there must be no reference to procedure-names that appear in the

declarative portion, except that PERFORM statements may refer to

a USE declarative having Formats 1, 2, 3 or to the procedures

associated with such a USE declarative.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-99

COBOl

Procedure Division

USE

6. In the statements of the out-of-line procedures, the execution of

an ALTER or PERFORM statement affects that particular processing

cycle only; that is, any other asynchronous processing cycle in

the out-of-line set of procedural statements is not affected by

another concurrent processing cycle in which an ALTER or PERFORM

statement is executed.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
COBOL

III-7-100

Procedure Division

7.42 THE WRITE STATEMENT

7.42.1 FUNCTION

The WRITE statement releases a logical record for an output file. It can

also be used for vertical positioning of a printer. For mass storage files,

the WRITE statement also allows the performance of a specified imperative

statement if the contents of the associated ACTUAL KEY data item are found

to be invalid.

7.42.2 GENERAL FORMAT

Format 1

WRITE

WRITE record-name [FROM identifier-1]

(before)

(after \
ADVANCING

identifier-2

integer

mnemonic-name
— (END-OF-PAGE]

; AT

t EOP

> imperative-statement

—

Format 2

WRITE record-name [FROM identifier-1]

; INVALID KEY imperative-statement

7.42.3 SYNTAX RULES

LINES

LINES

1. An OPEN statement for a file must be executed prior to executing the first

WRITE statement for that file.

2. Record-name and identifier-1 must not refer to the same storage area.

3. When the mnemonic-name option is used, the name is identified with a

particular feature specified by the implementor. The mnemonic-name is

defined in the SPECIAL-NAMES paragraph of the Environment Division.

4. The record-name is the name of a logical record in the File Section of

the Data Division and may be qualified.

5. When identifier-2 or integer is used in the ADVANCING option, it must be

the name of a numeric elementary item described without any positions to

the right of the assumed decimal point.

6. Record-names must not be part of a sort-file.

7. If the END-OF-PAGE option is used, the LINAGE clause must be present

in the FD entry for the associated file.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-7-101

COBOL

Procedure Division

WRITE

7.42.4 GENERAL RULES

1. Format 2 is used for processing mass storage files.

2. The logical record released by the execution of the WRITE statement is no

longer available unless the associated file is named in a SAME RECORD

AREA clause. The logical record is also available to the program as a

record of other files appearing in the same SAME RECORD AREA clause as
the associated output file.

3. If the FROM phrase is specified the data is moved from the area specified

by identifier to the output area, according to the rules specified for

the MOVE statement without the CORRESPONDING phrase. After execution of

the WRITE statement is completed, the information in identifier-1 is

available, even though that in record-name is not.

4. Both the ADVANCING phrase and the END-OF-PAGE phrase allow control of
the vertical positioning of each record on a representation of a printed

page. If the ADVANCING phrase is not used, automatic advancing will be

provided by the implementor so as to cause single spacing. If the

ADVANCING phrase is used, automatic advancing is overridden:

a. If identifier-2 is specified, the printer page is advanced the number

of lines equal to the current value associated with identifier-2.

b. If integer is specified, the printer page is advanced the number of

lines equal to the value of integer.

c. If mnemonic-name is specified, the printer page is advanced according

to the rules specified by the implementor for that hardware device.

If mnemonic-name is specified with the identifier or integer phrase of

the LINAGE clause in the File Description entry the results may be

unpredictable.

d. If the BEFORE phrase is used, the record is printed before the printer

page is advanced according to rules a, b, and c above.

e. If the AFTER phrase is used, the record is printed after the printer

page is advanced according to rules a, b, and c above.

5. If the logical end of the printer page is reached during the execution of

a Format 1 WRITE statement with the END-OF-PAGE phrase the imperative-

statement specified in the END-OF-PAGE clause is executed. The END-OF-PAGE

limit is specified in the LINAGE clause in the File Section of the Data

Division.

6. If an END-OF-PAGE is reached during the execution of a WRITE statement

with both the ADVANCING and END-OF-PAGE phrase the WRITE and ADVANCING

PROGRAMMING LANGUAGE COMMITTEE
CODASYL--—-----coe

JOURNAL OF DEVELOPMENT
III-7-102

Procedure Division

WRITE

operation is executed prior to executing the imperative-statement in

the END-OF-PAGE clause.

7. For mass storage files in the sequential access mode, the imperative-

statement in the INVALID KEY clause is executed when the end of the last

segment of the file is reached and an attempt is made to execute a WRITE

statement for that file. The last segment of a file is specified in the

FILE LIMITS clause or in the ASSIGN clause of the Environment Division.

8. For files in the random access mode, the WRITE statement implicitly

performs the function of the SEEK statement for a specific mass storage
record, unless a SEEK statement is executed for this record prior to the

execution of the WRITE statement. A SEEK statement is related to a sub¬

sequent WRITE statement only if both are in the in-line procedure or

both are in the same processing cycle of an out-of-line procedure. The
imperative-statement in the INVALID KEY phrase is executed when the

contents of the ACTUAL KEY being used to obtain the mass storage record

is found to be invalid. When an INVALID KEY condition exists, no

writing takes place and the information in the record area is available.

9. After the recognition of an end-of-reel or an end-of-unit of an OUTPUT

or 1-0 mass storage file in the sequential access mode that is contained

on more than one physical mass storage unit, the WRITE statement performs

the following operations:

a. The standard ending reel/unit label procedure and the user's ending

reel/unit label procedure (if specified by the USE statement). The

order of execution of these two procedures is specified by the USE
statement.

b. A reel/unit swap.

c. The standard beginning reel/unit label procedures and the user's
beginning reel/unit label procedure (if specified by the USE state¬

ment). The order of execution of these two procedures is specified

by the USE statement.

10. If a mass storage file (either OUTPUT or 1-0), in the random access

mode is contained on more than one physical mass storage unit, and not

all of the physical units are simultaneously available, the procedures

for making the physical units available are specified by the implementor

See 5.4.1, The FILE-CONTROL Paragraph.

PROGRAMMING LANGUAGE COMMITTEE „
CODASYL-----——-COBOL

JOURNAL OF DEVELOPMENT
III-7-103

••••

CHAPTER 8

SEGMENTATION

8.1 GENERAL DESCRIPTION

COBOL segmentation is a facility that provides a means by which the
user may communicate with the compiler to specify object program
overlay requirements.

8.1.1 SCOPE

COBOL segmentation deals only with segmentation of procedures. As
such, only the Procedure Division and the Environment Division are
considered in determining segmentation requirements for an object
program.

8.1.2 ORGANIZATION

8.1.2.1 Pregram Segments

Although it is not mandatory, the Procedure Division for a source
program is usually written as a consecutive group of sections, each
of which is composed of a series of closely related operations that
are designed to collectively perform a particular function. However,,
when segmentation is used, the entire Procedure Division must be in
sections. In addition, each section must be classified as belonging
either to the fixed portion or to one of the independent segments of
the object program. Segmentation in no way affects the need for
qualification of procedure-names to insure uniqueness.

8.1.2.2 Fixed Portion

The fixed portion is defined as that part of the object program which

is logically treated as if it were always in memory. Xhis portion of

the program is composed of two types of segments: permanent segments
and overlayable fixed segments.

A permanent segment is a segment in the fixed portion which cannct be
overlaid by any other part of the program. An overlayable fixed seg¬

ment is a segment in the fixed portion which, although logically

treated as if it were always in memory, can be overlaid by another
segment to optimize memory utilization. Variation of the number of

permanent segments in the fixed portion can be accomplished by
using a special facility called the SEGMENT-LIMIT clause (see 8.2.2,

SEGMENT-LIMIT). Such a segment, if called for by the program, is

always made available in its last used state.

CODASYL
PROGRAMMING LANGUAGE COMMUTE

JOURNAL OF DEVELOPMENT
III-8-1

CGBOl

Segmentation

8.1.2.3 Independent Segments

An independent segment is defined as part ot the object program which

can overlay, and can be overlaid by, either an overlayable fixed seg¬

ment or another independent segment. An independent segment is

effectively in its initial state each time the segment is made avail¬

able to the program.

8.1.3 SEGMENT CLASSIFICATION

Sections which are to be segmented are classified, using a system of

priority-numbers (see 8.2.1 below) and the following criteria:

1. Logic Requirements - Sections which must be available for refer¬

ence at all times, or which are referred to very frequently, are

normally classified as belonging to one of the permanent segments;
sections which are used less frequently are normally classified

as belonging either to one of the overlayable fixed segments or

to one of the independent segments, depending on logic require¬

ments.

2. Frequency of Use - Generally, the more frequently a section is

referred to, the lower its priority-number; the less frequently

it is referred to, the higher its priority-number.

3. Relationship to Other Sections - Sections which frequently com¬
municate with one another should be given the same priority-

numbers.

8.1.4 SEGMENTATION CONTROL

The logical sequence of the program is the same as the physical

sequence except for specific transfers of control. If any reorder¬
ing of the object program is required to handle the flow from segment
to segment, according to the rules in 8.2.1, the implementor must
provide control transfers to maintain the logical flow specified in

the source program. The implementor must also provide all controls

necessary for a segment to operate whenever the segment is used.

Control may be transferred within a source program to any paragraph

in a section; that is, it is not mandatory to transfer control to

the beginning of a section.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-8-2

COBOL

Segmentation

8.2 STRUCTURE OF PROGRAM SEGMENTS

8.2.1 PRIORITY-NUMBERS

Section classification is accomplished by means of a system of prior¬

ity-numbers. The priority-number is included in the section header.

8.2.1.1 General Format

section-name SECTION ^priority-numberJ.

8.2.1.2 Syntax Rules

1. The priority-number must be an integer ranging in value from 0

through 99.

2. If the priority-number is omitted from the section header, the

priority is assumed to be 0.

8.2.1.3 General Rules

1. All sections which have the same priority-number constitute a

program segment with that priority.

2. Segments with priority-number 0 through 49 belong to the fixed

portion of the object program.

3. Segments with priority-number 50 through 99 are independent segments.

4. Sections in the Declaratives must not contain priority-numbers in

their section headings. These sections are defined to have a

priority of 0.

8.2.2 SEGMENT-LIMIT

Ideally, all program segments having priority-numbers ranging from 0

through 49 should be specified as permanent segments. However, when

insufficient memory is available to contain all permanent segments
plus the largest overlayable segment, it becomes necessary to decrease

the number of permanent segments. The SEGMENT-LIMIT feature provides
the user with a means by which he can reduce the number of permanent

segments in his program, while still retaining the logical properties

of fixed portion segments (priority-numbers 0 through 49).

8.2.2.1 General Format

The SEGMENT-LIMIT clause appears in the OBJECT-COMPUTER paragraph and has
the following format:

J, SEGMENT-LIMIT IS priority-number j

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-8-3

COBOL

Segmentation

8.2.2.2 Syntax Rules

1. Priority-number must be an integer ranging in value
from 1 through 49.

2. When the SEGMENT-LIMIT clause is specified, only those segments

having priority-numbers from 0 up to, but not including, the

priority-number designated as the segment limit, are considered

as permanent segments of the object program.

3. Those segments having priority-numbers from the segment limit

through 49 are considered as overlayable fixed segments.

4. When the SEGMENT-LIMIT clause is omitted, all segments having
priority-numbers from 0 through 49 are considered as permanent
segments of the object program.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
COBOL

m-8-4

CHAPTER 9

THE COBOL LIBRARY
9.1 INTRODUCTION

The COBOL library contains text that is available to a source program at

compile time. The effect of the compilation of library text is the same as

if the text were actually written as part of the source program.

The COBOL library may contain text for the Environment Division., the Data

Division and the Procedure Division available through the use of the COPY
s tatement.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
COBOL

COBOL Library

9.2 THE COPY STATEMENT

9.2.1 GENERAL FORMAT

COPY library-name

| word-1 \ # word”2

REPLACING \ V BY)
(identifier-1) (identifier-2

f word-3) i word-4 -«

’ 1 [by
(identifier-3) identifier-4

9.2.2 SYNTAX RULES

1. A word is any COBOL word in a library routine that is not a reserved

word.

2. Replacement of one identifier by another includes all associated

qualifiers, subscripts, and indexes.

9.2.3 GENERAL RULES

1. The COPY statement may appear as follows:

a. in any of the paragraphs in the Environment Division.

b. in any level indicator entries or an 01 level-number entry in the

Data Division.

c. in a section or a paragraph in the Procedure Division.

2. No other statement or clause may appear in the same entry as the COPY
statement.

3. The library text is copied from the library and the result of the

compilation is the same as if the text were actually a part of the

source program.

4. The copying process is terminated by the end of the library text.

PROGRAMMING LANGUAGE COMMITTEE
CODASYL-------COBOL

JOURNAL OF DEVELOPMENT

III-9-2

COBOL Library

5. Tf REPLACING phrase is used, each occurrence of word-1, word-3,

identifier-1, identifier-3, etc., in the text being copied from

the library is replaced by the word or identifier associated with
it in the REPLACING phrase.

6. Use of the REPLACING option does not alter the material as it appears
on the library.

7. The implementor determines whether the COPY statement itself or the
statements of the library text to which it refers, or both, is to

appear on the output listing. If both, the relationship between the

two must be clearly indicated.

8. The text contained on the library must not contain any COPY state¬

ments .

CODASYL-
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-9-3

—COBOL

CHAPTER 10

REFERENCE FORMAT

10.1 GENERAL DESCRIPTION

The reference format, which provides a standard method for describing
COBOL source programs, is described in terms of character positions

in a line on an input-output medium. Each implementor must define
what is meant by lines and character positions for each input-output

medium used with his compiler. Within these definitions, each COBOL

compiler accepts source programs written in reference format and

produces an output listing in reference format.

The rules for spacing given in the discussion of the reference format

take precedence over all other rules for spacing.

The division of a source program must be ordered as follows: the

Identification Division, then the Environment Division, then the

Data Division, then the Procedure Division. Each division must be

written according to the rules for the reference format.

10.2 REFERENCE FORMAT REPRESENTATION

The reference format for a line is represented as follows:

Margin

f 1 1

Margii Margin
A

Margin
B

Margin
R

| 1 1 2 | 3
1 1
| 4 1 5 6 | 7 | 8 | 9 |10 j 11 |12 13 | ... |

Sequence Number

Margin L designates

Margin C designates

Margin A designates

Margin B designates

Margin L.

Area Area A Area B

Continuation/Comment

Line Indicator Area

the left-most character position of a line,

the seventh character position relative to L.

the eighth character position relative to L,

the twelfth character position relative to

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-lO-l

COBOL

Reference Format

Margin R designates the right-most character position of a line.

The sequence number area occupies the six character positions

beginning at Margin L.

The continuation/comment line indicator area occupies one character

position beginning at Margin C

Area A occupies four character positions beginning at margin A.

Area B occupies a finite number of character positions specified by
the implementor beginning at Margin B.

10.2.1 SEQUENCE NUMBERS

A sequence number, consisting of six digits in the sequence number
area, may be used to label a source program line.

10.2.2 CONTINUATION OF LINES

Any sentence or entry that requires more than one line is continued

by starting subsequent line(s) in Area B. These subsequent lines

are called the continuation line(s). The line being continued is

called the continued line. Any word or literal may be broken in such

a way that part of it appears on a continuation line.

A hyphen in the continuation area of a line indicates that the first

nonblank character in Area B of the current line is the successor

of the last nonblank character of the preceding line without any

intervening space. However, if the continued line contains a non¬

numeric literal without closing quotation mark, the first nonblank

character in Area B of the continuation line must be a quotation mark,

and the continuation starts with the character immediately after that

quotation mark. All spaces at the end of the continued line are con¬

sidered part of the literal. Area A of a continued line must be blank.

If there is no hyphen in the continuation area of a line, it is assumed

that the last character in the preceding line is followed by a space.

10.2.3 BLANK LINES

A blank line is one that is blank from Margin C to Margin R, inclusive.

A blank line can appear anywhere in the source program, except imme¬
diately preceding a continuation line. (See 10.2.2, Continuation of

Lines.)

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-10-2

COBOL

I
Reference Format

I

>

10.3 DIVISION, SECTION, PARAGRAPH FORMATS

10.3.1 DIVISION HEADER

The division header starts in Area A with the division-name, is followed

by a space, then the word DIVISION, then optionally the PREPARED FOR

clause in the case of the Data Division only (see 6.1.2.2, Data Division

Structure), then a period. After the division header, no text may appear

before the following section header or paragraph header or paragraph-

name (that is before the next line without a hyphen or asterisk in the

continuation area and with a nonblank character in Area A), except that

the PREPARED FOR clause may be present after the Data Division header.

10.3.2 SECTION HEADER

The name of a section starts in Area A of any line except the first

line of a division reference format, is followed by a space, then the

word SECTION, then optionally a space followed by a priority-number,

then a period followed by a space. After the section header, no text

may appear before the following paragraph header or paragraph-name

(that is before the next line without a hyphen or asterisk in the con¬
tinuation area and with a nonblank character in Area A), with the exception
of the COPY and USE sentences.

A section consists of paragraphs in the Environment and Procedure

Divisions and Data Division entries in the Data Division.

10.3.3 PARAGRAPH HEADER,
PARAGRAPH-NAME AND PARAGRAPH

A paragraph consists of a paragraph-name followed by one or more

sentences, or a paragraph header followed by one or more entries.

A paragraph header starts in Area A of any line following the first

line of a division or a section.

The name of a paragraph starts in Area A of any line following the

first line of a division or a section and ends with a period followed

by a space.

The first sentence or entry in a paragraph begins in Area B of either

the same line as the paragraph-name or paragraph header or the next
nonblank line that is not a comment line. Successive sentences or

entries either begin in Area B of the same line as the preceding

sentence or entry or in Area B of the next nonblank line that is
not a comment line.

A sentence consists of one or more statements, an entry consists of one

or more clauses; all sentences and entries must be followed by a period
followed by a space.

CODASYL_PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-10-3

COBOL

Reference Format

When the sentences or entries of a paragraph require more than one line

they may be continued as described in 10.2.2, Continuation of Lines.

10.4 DATA DIVISION ENTRIES

Each Data Division entry begins with a level indicator or a level-

number, followed by a space, followed by the name of a data item
(except in the Report Section), followed by a sequence of independent
clauses describing the data item. Each clause, except the last clause
of an entry, may be terminated by a semicolon followed by a space.

The last clause is always terminated by a period followed by a space.

There are two types of Data Division entries: those which begin with
a level indicator and those which begin with a level-number.

A level indicator is any of the following: FD, SD, RD, SA.

In those Data Division entries that begin with a level indicator, the

level indicator begins in Area A followed in Area B by its associated
data-name and appropriate descriptive information.

Those Data Division entries that begin with level-numbers are called

data description entries.

In those data description entries that begin with a level-number 01 or

77, the level-number begins in Area A followed in Area B by its
associated record-name or item-name and appropriate descriptive

information.

A level-number may be one of the following set: 01 through 49, 66, 77,
88. Single digit level-numbers are written either as a single space

followed by a digit or as a zero followed by a digit. At least one

space must separate a level-number from the word following the level-

number .

Successive data description entries may have the same format as the
first or may be indented according to level-number. The entries in

the output listing need be indented only if the input is indented.

Indentation does not affect the magnitude of a level-number.

When level-numbers are to be indented, each new level-number may begin
any number of spaces to the right of Margin A. The extent of

indentation to the right is determined only by the width of the
physical medium.

10.5 DECLARATIVES

The key word DECLARATIVES and the key words END DECLARATIVES that
precede and follow, respectively, the Declaratives portion of the

Procedure Division must each appear on a line by itself. Each must

begin in Area A and be followed by a period and a space.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-10-4

COBOL

Reference Format

10.6 COMMENT LINES

A comment line is any line with an asterisk in the Continuation Area

of the line. A comment line can appear as any line in a source

program excluding the first and last lines. Any combination of the

characters from the computer's character set may be included in

Area A and Area B of that line. The asterisk and the characters

in Area A and Area B will be produced on the listing but serve as
documentation only.

The continuation of comment lines in the sense of 10.2.2 is not

permitted, but successive comment lines are allowed.

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-10-5

-COBOL

CHAPTER 11

RESERVED WORDS

The following

ACCEPT

ACCESS

ACTUAL

ADD
ADDRESS

ADVANCING
AFTER

ALL

ALPHABETIC
ALTER

ALTERNATE
AND

APPLY
ARE

AREA

AREAS

ASCENDING
ASSIGN

AT
AUTHOR

BEFORE

BEGINNING
BLANK

BLOCK

BY

CALL

CANCEL

CF

CH

CHARACTERS

CLOCK-UNITS

CLOSE

COBOL

CODE

COLUMN

COMMA
COMP

COMP-n

COMPUTATIONAL

COMPUTATIONAL-

COMPUTE
CONFIGURATION

CONSTANT
CONTAINS

CONTROL
CONTROLS

COPY
CORR

CODASYL

is a list of reserved words.

n

CORRESPONDING

CURRENCY

DATA

DATE-COMPILED
DATE-WRITTEN

DE

DECIMAL-POINT
DECLARATIVES

DEPENDING
DESCENDING
DETAIL

DISPLAY
DISPLAY-n

DIVIDE

DIVISION
DOWN

ELSE

END
END-OF-PAGE

ENDING

ENTER

ENVIRONMENT

EOP
EQUAL

EQUALS

ERROR

EVERY
EXAMINE

EXCEEDS

EXIT

FD
FILE

FILE-CONTROL

FILE-LIMIT
FILE-LIMITS

FILLER

FINAL

FIRST

FOOTING
FOR

FROM

GENERATE

GIVING
GO
GREATER

GROUP

HEADING

HIGH-VALUE
HIGH-VALUES

HOLD

1-0

I-O-CONTROL
IDENTIFICATION
IF

IN

INDEX

INDEX-n
INDEXED

INDICATE
INITIATE

INPUT

INPUT-OUTPUT
INSTALLATION
INTO

INVALID
IS

JUST

JUSTIFIED

KEY
KEYS

LABEL

LAST

LEADING

LEFT
LESS

LIBRARY

LIMIT
LIMITS

LINAGE

LINAGE-COUNTER

LINE

LINE-COUNTER

LINES

LINKAGE

LOCK

LOW-VALUE

LOW-VALUES

LOWER-BOUND
LOWER-BOUNDS

MEMORY
MODE

MODULES
MOVE

MULTIPLE

MULTIPLY

PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
Ill-ll-l

NEGATIVE

NEXT
NO

NOT

NUMBER

NUMERIC

OBJECT-COMPUTER

OBJECT-PROGRAM
OCCURS

OF

OFF
OH

OMITTED
ON

OPEN

OPTIONAL
OR

OUTPUT
OV

OVERFLOW

PAGE

PAGE-COUNTER
PERFORM

PF

PH

PIC

PICTURE

PLUS

POSITION

POSITIVE

PREPARED

PRIORITY

PROCEDURE

PROCEED

PROCESS

PROCESSING

PROGRAM
PROGRAM-ID

QUOTE
QUOTES

RANDOM
RANGE

RD

READ
RECORD

RECORDING
RECORDS

REDEFINES

COBOL

Reserved Words

REEL SAME STANDARD UNIT

RELEASE SD STATUS UNTIL

REMAINDER SEARCH STOP UP

RENAMES SECTION SUBTRACT UPON

REPLACING SECURITY SUM UPPER-BOUND

REPORT SEEK SUPERVISOR UPPER-BOUNDS

REPORTING SEGMENT-LIMIT SUSPEND USAGE

REPORTS SELECT SYNC USE

RERUN SELECTED SYNCHRONIZED USING

RESERVE SENTENCE TALLY VALUE

RESET SEQUENTIAL TALLYING VALUES

RETURN SET TAPE VARYING

REVERSED SIGN TERMINATE WHEN

REWIND SIZE THAN WITH

RF SORT THROUGH WORDS

RH SOURCE THRU WORKING-STORAGE

RIGHT SOURCE-COMPUTER TIMES WRITE

ROUNDED SPACE TO ZERO

RUN SPACES TYPE ZEROES

SA SPECIAL-NAMES UNEQUAL ZEROS

CODASYL
PROGRAMMING LANGUAGE COMMITTEE

JOURNAL OF DEVELOPMENT
III-11-2

COBOL

Announcement of New NBS Handbook on CODASYL COBOL

Superintendent of Documents,
Government Printing Office,
Washington, D.C. 20402

Dear Sir:

Please add my name to the announcement list for any changes to this document or new addi¬
tions to CODASYL COBOL.

Name .

Company

Address .

City .State.Zip Code

(Notification key N-383)

☆ U. S. GOVERNMENT PRINTING OFFICE : 1969 O - 354-437

- -ti&k

■■

