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THE BASIS OF THE APPLICATION OF NETWORK 

EQUATIONS TO WAVEGUIDE PROBLEMS 

ABSTRACT 

A systematic and general formulation of the concepts and the conditions 

which underlie the technique of the application of network equations to wave¬ 

guide problems is presented. The discussion is guided by a formulation of 

what may be called the transducer concept, according to which, essentially, 

a transducer is a power-transfer device which is to be described only in 

terms of external characteristics. Waveguide and circuit devices are con¬ 

sidered as transducers whose terminal phenomena are electromagnetic fields 

varying harmonically with time. The basic task is then the definition of 

suitable terminal variables characterizing the terminal fields. The con¬ 

struction of variables of this kind for waveguide transducers is discussed in 

considerable detail; for circuits, for which suitable variables are voltage 

and current, the construction is sketched. Transducer theory is defined, 

discussed, and illustrated by the development of selected relations of the 

theory, and is shown to coincide with much of what is generally connoted by 

"theory of four-terminal networks". 

As a matter of interest and importance in applications of the technique, 

derivations of a rather general reciprocity theorem and of a version of 

Foster’s reactance theorem are included. Both theorems apply to both wave¬ 

guide and circuit structures. 
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1. INTRODUCTION 

The usefulness of the application of network equations to waveguide 

problems is rather well-known. So-called equivalent circuits have been 

used since the beginning of intensive work in the microwave field, and they 

are employed in an increasing number of published papers. This employment 

of network equations, however, often unnecessarily appears to rest to a 

considerable degree upon intuition, or upon assumed, rather than proved, 

analogy with behavior of low-frequency circuit devices. It is, of course, 

readily accepted that the procedure can be logically formulated and that 

analogies can be proved. Valuable discussions have in fact been given by 

Saxon1, Altar2, and others. References (1) and (2) both contain, in 

particular, proofs of reciprocity theorems applying to waveguide struc¬ 

tures, and thus establish an analogy of the kind mentioned above. But 

neither of these references is primarily concerned with a general and 

basic study of the application of network equations to waveguide problems. 

Indeed, no general and basic study has appeared, and yet there is an 

evident need for such a study. The primary purpose of the present paper 

is to provide a systematic and basic formulation of the technique in 

question. 

The discussion begins with a brief formalization of what may be 

called the transducer concept, according to which, essentially, a trans¬ 

ducer is a power-transfer device which is to be described only in terms of 

external characteristics. Although the ideas here involved are familiar, 

1Radiation Laboratory, M.I.T., memorandum, consisting of an introductory 
section for "Notes on lectures by Julian Schwinger: Discontinuities in 
Waveguides", prepared by David S. Saxon; February 1945. 

2William Altar, "Q-circles — a means of analysis of resonant microwave 
systems" (Part II), Proc. I.R.E., Vol. 35, pp. 478-484; May, 1947. 
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t 

it is important that thej' be specified with reasonable precision and 

completeness, since the whole discussion may be regarded as a development 

of the application of the transducer concept to a particular class of trans- ,, 

ducers. t 

The basic task is thus reduced to the formulation of a method of quanti- it! 

tative description of the external behavior of a class of transducers whose i 

terminal phenomena are electromagnetic fields varying harmonically with If 

time. This class includes both waveguide and conventional circuit devices. r 

In many cases (and only such are considered) the terminal electromagnetic 

fields can be adequately characterized for purposes of transducer theory in 

terms of a finite number of pairs of variables. The construction of vari¬ 

ables of this kind (terminal variables) for waveguide transducers is dis- 7 

cussed in considerable detail; for circuits, for which suitable variables 

are voltage and current, the construction is sketched. Once terminal vari¬ 

ables are defined, the characteristics of a given transducer can be quanti¬ 

tatively described in terms of the relationships imposed by the transducer 

upon its terminal variables. 

Transducer theory may be said to be the study of properties of classes 

of transducers defined by the specification of the mathematical form of the 

relations connecting the terminal variables. In the present instance trans¬ 

ducer theory so-defined coincides with much of what is generally connoted 

by "theory of four-terminal networks". The method and the meaning of trans¬ 

ducer theory from the standpoint of this paper are illustrated by the develop¬ 

ment of a number of selected relations. 

Finally, as a matter of interest and importance in connection with the 

application of the technique (but not as something fundamental to the tech*- 

nique itself), two theorems are proved: namely, a very general reciprocity 
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theorem similar to one given by Dallenbach5, and a version of Foster's 

reactance theorem which is somewhat more general than that given by MacLean4. 

These theorems are given for transducers of either waveguide or circuit type 

as deductions from Maxwell's equations. In order to prove theorems of this 

kind it is, of course, necessary to impose suitable hypotheses concerning 

the interior of the transducers considered. Transducer theory proper, which 

is exclusively concerned with terminal phenomena, provides an extremely use¬ 

ful framework in which to state results, which may indeed be of either theo¬ 

retical or experimental origin. 

The treatment given here was developed as a part of the material for a 

course of lectures given at the National Bureau of Standards by the author. 

This paper retains some of the pedagogical aspects of the lecture material. 

The topic was suggested by Dr. Harold Lyons, ard the author is indebted to 

him for suggestions and encouragement in the preparation of the paper. 

2. THE TRANSDUCER CONCEPT 

Since much use will be made of certain general ideas involved in the 

concept of a transducer, it is desirable to include definitions and a brief 

discussion of these ideas. A suitable basic definition is that a transducer 

is "a device actuated by power from one system and supplying power in the 

same or any other form to a second system"5. The surfaces (or points) 

through (or at) which power enters or leaves a transducer will be called 

terminal surfaces. This term will serve for general purposes, and it antic¬ 

ipates the more specific meaning to be Imparted later. The generalization 

of the basic concept to include transducers with n terminal surfaces is 

5W. Dallenbach, "Der reziproziatatssatz des electromagnetischen feldes", 
Archiv fur Elektrotechnik, Bd. 3G, Heft 3, pp. 153-165; Marc!., 1942. 

4W. ft. MacLean, "The reactance theorem for a resonator", Proc. I.ft.E., 
Vol. 33, pp. 539-541; August, 1945. 

5Webster's New International Dictionary, 2nd ed., unabridged, G. and C. 
Merriam Co., Springfield, Massachusetts; 1934. 
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useful and is made here; except perhaps for n = 1, this generalization is 

quite acceptable. For n = 1, the term transducer is not apt, but it is con¬ 

venient to have this case formally included. The use of the term usually 

implies a concentration of attention on external characteristics of a device. 

This aspect of the concept is taken as fundamental, and is developed in the 

following paragraphs. 

The description of a transducer, as such, is to be accomplished solely 

in terms of phenomena occurring at the terminal surfaces; that is, only such 

quantities come into consideration as are accessible to external measurement. 

For a given transducer let the variables quantitatively specifying the ter¬ 

minal phenomena, the terminal variables, be denoted by Xx, X2, X^,. 

The characteristics of the transducer are then mathematically expressible as 

the aggregate of the relationships imposed by the transducer upon its terminal 

variables: 

fi (xx, x2, x3......) - 0, 
f2(X^, x2, x3,.) = 0, (1.1) 

Sets of equations of this kind, describing the characteristics of a transducer, 

will be called the equations of the transducer. 

One is ordinarily interested not only in the properties of individual 

transducers but also in the properties of transducers formed by combination 

of other transducers. The characteristics of a composite transducer can be 

calculated from the characteristics of its individual members if the relations 

connecting variables of one transducer to variables of another (when the two 

transducers are joined) are provided. Equations expressing the relations 

imposed by the joining of two transducers will be called joining equations. 
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Transducer theory may be defined as the theory of properties of classes 

of transducers, the classes beirtg defined by the imposition of hypotheses on 

the mathematical nature of the transducer equations considered, and the 

joining equations being given. Transducer theory thus yields properties 

possessed in common by all members of a given class, and is distinguished 

from any theory dealing with particular properties of any individual member 

of any class, or, more generally, from any theory depending upon hypotheses 

concerning the inner nature of a transducer. 

These ideas have served as a general guide in the organization of the 

subsequent discussion, and they are more specifically employed (and thus 

illustrated) in section 6. 

3. WAVEGUIDE TRANSDUCERS 

The term waveguide, as used throughout this paper, denotes those types 

(and only those types) consisting of either one hollow conductor or two 

conductors, one of which is hollow and encloses the other. The term there¬ 

fore includes types of waveguides, such as hollow rectangular pipes, which 

do not support a principal mode, as well as types, such as coaxial line, 

which do support a principal mode. A waveguide transducer is formally 

defined as a transducer which has waveguide leads for its input and output 

connections. The number of waveguide leads is arbitrary, and the waveguides 

may individually be of arbitrary cross-section. The leads of a waveguide 

transducer are, by hypothesis, ideal waveguides} that is, waveguides of per¬ 

fectly cylindrical geometry, made of perfectly conducting metal, and filled with 

a medium which is homogeneous, isotropic, non-dissipative, and linear. The ter¬ 

minal surfaces of a waveguide transducer are cross-sectional mathematical 

surfaces within the waveguide leads (or within the waveguide leads projected). 



The interior of a waveguide out to a terminal surface is an integral part 

of the interior of a waveguide transducer. There is, however, no criterion, 

except that of convenience, for the location of a terminal surface along a 

waveguide lead. It will be convenient for purposes of visualization to 

regard the terminal surfaces as being located within the waveguide leads 

at some distance from any discontinuity, as indicated in Fig. 1. A shift 

in the position of a terminal surface from one given position to another 

is equivalent to connecting a transducer consisting of the appropriate 

length of ideal waveguide at the original terminal surface in the waveguide 

in question; this is a mathematical process, and the details are given at a 

later point in the discussion (section 6). 

Fig. i. Waveguide transducer with two terminal surfacesj 

sXJ s2. 

Practical examples of waveguide transducers may be found among devices 

employed in practice in the entire audio-radio spectrum. Such devices may 

be, for example, 

attenuators 

cavity resonators 

transformers 
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crystal mixers 

transmission sjstems consisting of sending 

and receiving antennas and intervening 

space and objects 

sections of uniform waveguide 

junctions and transitions between two or 

more waveguides of one or more t^pes 

amplifiers 

1 

Provided merely that they possess waveguide leads, such devices are directly 

admissible to the class of waveguide transducers, regardless of the fre¬ 

quencies for which they may be designed. For practical reasons, the wave¬ 

guide leads of a low-frequency device must, of course, be of a type which 

supports a principal mode. The concept of a waveguide transducer is effec¬ 

tively a generalization of the usual concept of a 2n-pole (or a 2n-terminal 

network). 

The specification of ideal waveguide leads facilitates the mathematical 

definition of terminal variables which precisely describe the electromagnetic 

field on a terminal surface; the corresponding physical situation is well- 

defined, since unshielded leads are excluded. As far as the mathematics is 

concerned, the subsequent treatment applies unchanged to ideal waveguide 

consisting of open parallel conductors. But at very high (microwave) 

frequencies the hypothesis of an ideal waveguide of this type is practically 

untenable. On the other hand, the fact that at sufficiently low frequencies 

the exact geometry of leads becomes unimportant is familiar, though perhaps 

not obvious from the standpoint of field theory. An indication of the 

nature of the approximations involved in the consideration of parallel- 

conductor and ordinary wire leads is given in the latter part of section 5. 
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4. A CLASS OF PROBLEMS OF SPECIAL INTEREST 

It is assumed that the field within a waveguide lead varies harmonically 

with time, with frequency a. This case 4s in itself very important in prac¬ 

tical problems, but the assumption actually involves no real loss of gener¬ 

ality, since an arbitrary time variation may be resolved into sinusoidal 

components. The time dependence will be represented by the implicit factor 

exp(jwt), and the treatment will thus involve complex amplitudes, rather 

than instantaneous real quantities. Within a waveguide lead, then, the 

electric field E and the magnetic field H satisfy Maxwell's equations in the 

form6 

curl E = -jcufj. H, 

curl H = +jo>e E, 
(4.1) 

where the parameters n,e (representing respectively permeability and die¬ 

lectric constant) are positive real scalars independent of E, _H, position, 

and time (g, e may depend upon £>) . The field is moreover subject to the 

boundary condition that the tangential component of E vanish on the surface 

of the waveguide. 

The most general field satisfying the above differential equations 

and the boundary condition can be expressed as a sum of an infinite number 

of elementary particular solutions (modes) characteristic of the cross- 

section of the waveguide. (The fact that the waveguide modes can not 

easily be calculated in detail except for a very few simple shapes of cross- 

section is here immaterial. For the purpose of this paper, only general 

results of the theory of waveguides, holding for waveguides of arbitrary 

Nationalized MKS or Giorgi units are employed throughout. 



cross-section, are needed.) For a given waveguide, and at any given fre¬ 

quency, the number of non-attenuated modes is finite or zero, and the 

number of attenuated modes is infinite. 

The class of problems primarily to be considered in the text of this 

paper is now limited as follows: It is assumed that one transducer inter¬ 

acts with another (when they are connected) through the agency of only one 

waveguide-mode. It is further assumed that this one-mode condition is ful¬ 

filled as a consequence of the following more detailed conditions, which 

correspond to the usual case in practice: (a) the operating frequency is 

such that one and only one mode can be propagated without attenuation in a 

waveguide (the propagated mode is then obviously the lowest mode), and (b) 

the length of waveguide lead is great enough to provide very high attenuation 

of higher modes7. These conditions insure that the waveguide lead inter¬ 

connecting two waveguide transducers will act as an effective mode-filter. 

Regardless of the complexity of the field which may exist at either end of 

the section of ideal waveguide, the transducers can interact only through 

the agency of the one non-attenuated mode. 

It may happen that the one-mode hypothesis is still applicable, even 

if a waveguide supports no non-attenuated modes, or more than one non- 

attenuated mode. But such cases are relatively rare in practice, and will 

not be considered explictly. It is, however, of some interest to drop the 

one-mode hypothesis and to consider any finite number of non-attenuated 

modes contributing to the interaction of two waveguide transducers, even 

though this case is also one seldom encountered. The extension of the sub¬ 

sequent theory to cover this more general case is not difficult; it is given 

7 It may be said that for any frequency below and not close to a higher-mode 

cutoff frequency, and for any kind of waveguide, the higher-mode atten¬ 

uation in a distance of a few times some mean linear measure of the cross- 

section is of the order of 10“^ or 10“4 in amplitude. 
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in Appendix A. 

A given system can be resolved into simpler systems — consisting of 

waveguide transducers satisfying the one-mode hypothesis in the form adopted— 

insofar as the given system consists of parts connected (or separatedl) by 

sufficiently long sections of waveguide in which only one mode is propagated 

without attenuation. The essential point to be observed is that an inter¬ 

connecting lead by hypothesis is a section of ideal waveguide. This is not 

to say that an imperfect physical junction between waveguides can not be involved; 

an imperfect junction, like any other discontinuity, belongs in the interior of 

a waveguide transducer. 

It may be noted that the conditions that have been imposed (viz., harmonic 

time-dependence, and the one-mode hypothesis) are directly concerned only with 

the situation within a waveguide lead; no condition is directly imposed on the 

nature of the interior of a waveguide transducer. 

5. DEFINITIONS OF TERMINAL VARIABLES 

The task now is, first, to set up suitable definitions of terminal vari¬ 

ables, and then to consider the most important properties of these variables 

as defined. In accordance with the one-mode assumption Introduced in section 4, 

it will be sufficient to consider only one mode — a non-attenuated mode — 

in specifying the field on a waveguide terminal surface. 

It is desirable at this point to set forth briefly results of waveguide 

theory in sufficient completeness to meet later, as well as immediate, needs. 

From waveguide theory, it is known that the transverse components Em, ^ of 

the most general one-mode waveguide field with harmonic time-dependence may 

be written in the following form: 
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(5.1) 

where 

(5.2) 

In these expressions, the subscript m denotes the waveguide considered; the 

coordinate zm and the unit vector km are parallel to the cylindrical surface 

of the waveguide, with positive sense directed into the transducer. /3m, Ym, 

Fom are respectively phase constant, wave-admittance, and electric-fiela 

function characteristic of the mode involved. Cm, Dm are arbitrary complex 

amplitudes (at zm = 0) of the travelling-wave components of the field 

travelling in the positive and negative zm-directions, respectively. The 

phase constant /3m and the wave-admittance Ym in general depend upon the 

frequency (com) , the constants of the medium (gm, em) , the geometry of the 

cross-section, and the mode involved; for principal modes, however, 

B = co vZ e , Y. = /e /a . For all non-attenuated modes, B and Y are 
^ m m 'm m-7 m m ^ m m 

real and positive. The vector function FQm lies in a transverse plane and 

is a function of position in the transyerse plane, but not of zm; the form 

of FQm depends upon the geometry and upon the mode involved. The field 

equations leave F undetermined to the extent of a constant multiplier. 

FQm is then uniquely determined (apart from sign) by the convenient normal¬ 

ization 

(5.3) 

the integral being taken over the cross-sectiOn Sm of the waveguide; eq. (5.3) 

requires in particular that Fom be real. FQm is one member of the set of 

mutually orthogonal functions for the different modes in the mth waveguide. 
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It is now a simple matter to define the terminal variables. It will be 

worthwhile to consider definitions of two alternative pairs of variables. 

The terminal surface is for convenience specifically taken as a plane cross- 

sectional surface; the tangential components of the field on this surface an 

then Em, Hm as given by eqs. (5.1) for the particular zm-plane in which the 

terminal surface lies. The possible values of E , H on the mth terminal 

surface may be expressed in terms of quantities Vm, I by means of the 

equations 

E = V -y- i E , 
— m ra 'on -on' 

H = I y* H . m 7o m — o m $ 

(5.4) 

or alternatively, in terms of quantities Am, Bm by means of the equations 

E = (A + B ) E , 
— m 7 o m v m nr —o m y 

II = y-i (A - B ) • H , — m 7om xm nr — o m * 

(5.5) 

where denotes the positive root of a positive real number to be choserj 

at convenience8. These equations formally define the terminal variables 

Vm, Im and Am, Bm. Vm and Im are complex amplitudes respectively measuring 

the total tangential electric and magnetic components of the physically- 

determined field on the terminal surface. Am and Bm are complex amplitudes 

respectively measuring the incident and emergent travelling-wave components of 

3The factor y inserted in eqs. (5.4) will appear as a characteristic im- 

pedance (see pp. 16-17). Greater generality with respect to choice of mul¬ 

tiplicative factors is permissible (but not useful); for example, arbitrary . 

and independent complex constants could be inserted in the definitions of 

V and I . The form adopted for the definition of A . Bm is merely one of 

several equally convenient possibilities, lor example, a factor instead 

of could be inserted. 
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the ply sically-determined field on the terminal surface. The dependence of V , Im and 

Am, Bm on zffl, which is apparent upon comparison of the defining equations (5.4), (5.5) 

with eqs. (5.1), is not indicated explicitly, since the terminal surface is 

ordinarily considered to be in a fixed position. The pair Vm, Im and the 

pair Am, Bm are obviously related to each other by the equations 

V = A + B , 
m m m7 

y I = A - 3 , 
' o m m m m 7 

2A = v + v mI. m m ' o m rn7 

2B = V - r I . 
m m o m m 

(5.6) 

Either one of the pairs could be defined in terms of the other by means of 

these equations. The expressions for power and the equations for the inter¬ 

connection of two waveguide transducers in terms of these variables are of 

essential interest, and are easily obtained. 

Consider the complex power Wm supplied to the transducer at the mth 

terminal surface. This power is given by the integral of the inward normal 

component of the complex Poynting's vector over the terminal surface: 

w. * |J(E„ x s;>. k„ ds, (5.7) 

where H* is the complex conjugate of Hm. The real part of Wm is the time- 

average of the instantaneous input power, and the imaginary part of Wm 

is the amplitude of the reactive power exchange across the terminal surface. 

Employing the defining equations (5.4) for Vm, Im, the definitions (5.2) 

of , H , and the normalizing condition (5.3) one finds 
-om; -OH>; 0 

W = i V I 
m 2mm (5.8) 

For A , B one finds via either eqs. (5.5) or (5.6), 
m' rr. A 

w 
27 

—— [ ( IA |2-|b I2) - (A B* ~ A*B )]. 
LVlm' 'm1 ^mm mm' J (5.9) 
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\ 

In this form the real and the imaginary parts are exhibited separately. The 

presence of the factor £ on the right-hand sides of eqs. (5.8), (5.9) means 

that Vm, Im and Am, Bm as defined are to be interpreted as peak (rather than 

as root-mean-square) amplitudes. 

The mathematics of the interconnection of waveguide transducers is 

handled by considering that a terminal surface (No. 1, say) of one trans¬ 

ducer coincides with a terminal surface (No. 2, say) of another. For the 

time being, it is assumed that the terminal surfaces coincide at a point with¬ 

in the interconnecting lead at some distance from any discontinuity, as 

indicated in Fig. 2. With the common terminal surface so located, the actual 

field on the surface may be assumed to be very nearly the field of the one 

non-attenuated mode. The transverse components of the field on the surface may 

then be described by the alternative pairs of equations, 

Ii - vi 

Hi ' ri rJiioi, 

-2 = V2 >o2-o2> 

H2 = I2 >02002, 

(5.10) 

(5.11) 

which apply respectively to the two sides of the surface. In order that the 

whole field (normal and tangential components) be continuous across the 

mathematical surface, it is sufficient (as well as necessary) that the tran¬ 

sition of the tangential components of E, H be continuous at all points of the 

surface. Thus (5.10) and (5.11) must represent identically the same field: 

= E2, 

Hi * B2- 
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Using eq. (5.2), these equations become 

Waveguide No. 1 and waveguide No.2 are electrically identical; hence, Y = Y2 

and Fq1 = ±Fo 2. Asstiming that F and Fo2 are chosen to have the same sign, 

the equations expressing the fact that the two transducers are joined become 

where N 
1 2 

The expression of the same fact in terms of A2, B2 is 

^12 ®2 = ^1 

Since the value of yom is arbitrary and since waveguide No. 1 and No. 2 are 

electrically identical, it is clearly convenient and sensible to have 

y0l = 7o2> otherwise an apparent discontinuity appears at a place where there 

is no physical discontinuity at all. If y = yo2> then N12 = 1, and the 

above equations reduce to 

(5.12) 

(5.13) 

It will be assumed that the yom are so chosen that joining equations are 

always of the form (5.12), (5.13). 
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The following definitions are useful, and serve to bring out further 

significance of the terminal variables Vm, Im and Am, Q . The quantity 

V 
= y m m (5. 14) 

is called the impedance of the field on the mth terminal surface. y mav 

be further characterized as a looking-m impedance, since, if the real part 

of -ymm is positive, the average power input at the mth terminal surface is 

also positive (eq. 5.8). The ratio 

(5.15) 

is of the nature of a reflection factor. (The term reflection coefficient 

is ordinarily applied only when all \'s other than Am are zero and the trans¬ 

ducer itself does not act as a source.) If the absolute value of p is less 

than unity, the average power input at the mth terminal surface is positive 

(eq. 5.9). From eqs. (5.6), the relation between ymm and pmm is given by 

= y. 
1 - P, 

Fmm 

y mm + ^ ©m 

(5.16) 

Both quantities, and pmm> depend not only on the characteristics of the 

waveguide transducer involved but also upon the excitation and termination at 

terminal surfaces other than the mth. Definitions of more general quantities 

of both types 

(5.17) 

should also be recorded. The first is a transfer impedance, the second a 

transmission factor (cf parenthetical remark above), from the mth to the 

kth terminal surface. These quantities are of course no more characteristic 

of a waveguide transducer than ymm and pmm are. 



-17- 

That particular value of ymm which corresponds to a field consisting solely 

of an incident wave (pmm = 0) is called the characteristic impedance of the 

field in the mth waveguide. This characteristic impedance has the arbitrary 

value y . The most convenient specific value to use is y =1 (ohm) 
o m x o iti 

(m = 1,2,3, ...,n), irrespective of the characteristics of the waveguide with 

which it is associated. Since this makes yom disappear in the formulas, however 

it is slightly more informative to leave yom arbitrary, and it will be left 

arbitrary in the subsequent general arguments. A set of V’s and I’s or a set of 

A’s and B's may be said to represent the fields with which they are associated. 

It will be convenient to designate the two schemes as V,l-representations and 

A,B-representations, respectively. A particular representation of either kind 

is defined by specifying a particular set of characteristic impedances yom. 

The quantities Vm, Im, Am, Bm are not ordinarily regarded as directly 

measurable (except possibly Vm, I at low frequencies), although their values 

in a given case in any chosen representation can be calculated from experimental 

data if desired. But the actual values of the terminal variables themselves are 

seldom of interest. The terminal variables serve as extremely useful auxiliary 

quantities for the calculation of quantities of more direct interest, such as 

power, power ratio, impedance, etc., which involve only products and ratios of 

the terminal variables. 

It may be noted that the commonly-used values of characteristic impedance, 

such as, for example, 

^ (for all types of waveguide; Y = wave-admittance) 

T_ % 

— (for rectangular waveguide of dimensions w x h; h < w) 
W Y 

(2-n-Y) _1 log(r2 /rx) (for coaxial waveguide, radii r2, r1j r2>r1) 

(5.18) 
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have no special significance in the theory of waveguide transducers. The 

actual usefulness of the quantities (5.18) as characteristic impedances is 

largely in the calculation by conventional transmission-line equations of 

reflection at a plane junction of two waveguides of similar geometry but of 

differing dimensions or media9. Such calculations, however, are not in the 

domain of transducer theory. 

for principal modes, Vm, Im differ in no essential respect from voltage 

and current as defined in the treatment of transmission lines as circuits 

with distributed constants. Transmission-line voltage and current may be 

defined by the line integrals 

0 

v m= -/Em-ds, im= (5.19) 
p c „ 

where, as shown in Fig. 3, Cp(J is any path from a point on conductor P to a 

point on conductor Q, Cn is any path encircling the conductor Q, and both 

paths of integration are restricted to 

lie in a transverse surface — the 

terminal surface S , say. Since the 

components of curl E and curl H normal 

to the terminal surface are zero for a 

principal mode, the line integrals 

are independent of the particular paths 

Fig. 3. Paths of integration for vmJ im. 

9It happens that the expressions so obtained are valid if the discontinuity 

is in the medium only. If a discontinuity in dimensions is involved, only 

the second and third expressions in (5.18) are applicable, and they yield 

only a partial or approximate result. 



-19- 

CpQ, CQ, and the definitions (5.19) then have meaning. The quantities vm, 

im are therefore linear measures of Em, Hm, respectively. Just as are 

Vm, Im in eqs. (5.4)10. This is enough to insure that vm, im and Vm, Im 

have essentially the same physical meaning whenever eqs. (5.19) do have 

meaning. Numerical agreement between vm, im and Vm, Im can be obtained by 

suitable choice of y 
O Iti 

A calculation for the special case of coaxial waveguide will illustrate 

the above statements. If the radii are r2, rx (r2>r1), the field-function 

F0 for the principal mode is Fq = N grad (log r), where r1<r<r2, and the 

normalizing factor N = [2-n log (r? /rx) ] ~i makes Fq satisfy eq. (5.3). Using 

eqs. (5.2), and writing out eqs. (5.4) one obtains 

E = VN (v Y)-igrad (log r), 
0 (5.20) 

H = IN (^Y^k x grad (log r) . 

It is expedient to choose yo = (2mY)-1log(r2/r• If n°w voltage and current 

as given by eqs. (5.19) are calculated from the field given by (5.20) one 

finds 

, r2 
v = VN (y0Y) Jgrad (log r).ds = V, 

ri 

i = IN(y0Y)x grad (log r)*ds = I, 

where the sense of- the integration for i corresponds to the positive sense 

of k. Thus the identity of the two definitions is established in a partic- 

ular case. 

10Linear measures of E , gm for modes other than principal modes may be 
constructed by means of line integrals. It is then necessary to specify the 
paths in detail, and the product &VmI* of variables so constructed is pro¬ 
portional to power (rather than automatically equal to power). 
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The power equation (5.8) and the joining equations (5.12) for waveguide 

transducers are formally the same as the corresponding equations for ac 

circuits, in which conventional voltage and current appear as terminal vari¬ 

ables. It is instructive to examine the role of current and voltage from the 

present point of view. Voltage and current associated with any pair of con¬ 

ductors P,Q may be defined by the line integrals 

vpq = "Jl'ds, i = (fH-ds, (5.21) 
Con CA 

where CpQ is any path from a point on conductor P to a point on conductor Q, 

and CQ is any path encircling the conductor Q, not also encircling conductor P11. 

These definitions may be applied, for example, to the conductor geometry 

illustrated in Fig. 4, as well as to that of Fig. 3, which may now be taken as 

a particular cross-section of a pair of conductors which are not necessarily 

cylindrical. The definitions (5.21) can have exact meaning for wholly arbi¬ 

trary paths CpQ, CQ only for static fields, for which Maxwell’s equations imply 

Inside conductors, 

E = - grad <t>, at all points, 

(5.22) 

curl H s o, at all points outside conductors. 

curl H = J (and therefore div = 0), where jJ is the density 

of conduction current. The concepts of voltage and current, however, are 

applied not only to static (dc) problems but also to certain non-static (ac) 

problems. 

A necessary condition for the applicability of circuit theory, as such, to 

ac problems is that the dimensions of the system be small enough, and that the 

frequency be low enough so that, roughly, «//xe d«l, where d Is a represent- 

i:LIt will be assumed that ip, defined by an integral similar to that for i^, 

is equal and opposite to iQ. 
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ative linear dimension of the apparatus. When this condition is fulfilled, 

retardation may be neglected, and the field is said to be quasi-stationary. 

The assumption of a quasi-stationary field does not imply that curl E 

(everywhere) and curl H (outside conductors) are negligibly different from 

zero: an inductor is characterized by a non-negligible value of Jw/xH, and 

a capacitor is characterized by a non-negligible value of joicE. Thus in the 

strictest sense of (5.21), voltage does not exist in an ac problem if in¬ 

ductance is present, and current does not exist if capacitance is present. 

Circuit problems are characterized by the fact that regions in which the con¬ 

ditions (5.22) seriously fail are localized, and can be isolated by means of 

suitably drawn terminal surfaces on and near which eqs. (5.22) may be assumed 

to be satisfied. For present purposes this may be taken as the qualitative 

definition of a circuit problem; it leads directly to the existence of voltage 

and current as terminal variables. 

To see more fully what the foregoing statements mean, consider a trans¬ 

ducer having Just one pair of perfectly conducting wire leads, as illustrated 

in Fig. 4a. 
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The power output from the transducer is 

W = h fE x H»*kd<r, 
a 

where a is a surface enclosing the transducer, and k is the outward normal 

unit vector on cr. The output power is delivered to whatever system may be 

outside cr. Since E = 0 in the conductors, the areas cut out of a- by the 

conductors may be omitted from the surface integration. Let S denote the 

part of a remaining. S is bounded by the two curves Cp and C , and may be 

made simply-connected (if desired) by a cut joining Cp and CQ (Fig. 4b). If 

it is now assumed that the conditions (5.22) hold on S, the expression for 

power may be transformed as follows. 

The vector identity 

curl ((j)H*) = (grad ^)) x H* + ^) curl H* 

reduces to 

curl (<J)H*) = -E x H* 

at points on S. Hence, employing Stokes' theorem (with due regard to signs), 

W = -4 /curl (<|)H*) *k dS = & / <j> H**ds + h / <J) g**ds. 
s c p c o 

With the choice of signs indicated in Fig. 4, and for paths lying in S, 

0 

v = -/ E*d§ = - 4>P, 
p 

i = / H-d£ = -/ H*ds, 

C Q C P 

and the last expression for power becomes 

W = &vi (5.23) 
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as expected. It may be noted that it was not necessary to make assumptions 

directly concerning either the region inside S or the region outside S. If 

now S is regarded as a common terminal surface of two transducers (No. 1 

inside, No. 2 outside, say) the joining equation for voltage must be 
v • N 

v1 = v2, (5.24a) 

since the surfaces of conductors are equipotential surfaces of a potential 

function in the neighborhood of a terminal surface. In equating and v2, 

the positive senses of the two quantities are assumed to be the same. If 

the positive directions of ix and i2 are directed into the respective trans¬ 

ducers at the positive terminal, the joining equations for current are 

-i^ig, (5.24b) 

since div J s o in the neighborhood of a terminal surface, so that current 

must be continuous. 

Voltage and current may be said to represent the terminal fields in a 

v,i-representation (cf p. ). No arbitrary constants appear in a v,i-rep- 

resentation (because none was inserted in the definition of v or of i). An 

a,b-representation may be formally defined by 

2a. 

2b. = v. - y i , 
'cm m 

(5.25) 

While these equations are formally the same as the corresponding eqs. (5.6), 

the constants y which may here be usefully employed are characteristic 

impedances of the transducers of which vm, im are terminal variables, rather 

than characteristic impedances of leads. In fact, quantities with same 
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physical meaning as the yom previously used do not exist in the circuit 

picture. The field is quasi-stationary, and any resolution into incident 

and emergent waves is purely formal. But the procedure is useful in network 

theory as applied to both circuit and waveguide problems; when applied to 

waveguide transducers it leads to a formal resolution into incident and 

emergent waves each of which is a linear combination of the physically- 

defined incident and emergent waves. 

For completeness, joining equations in an a,b-representation should be 

written down. If, as is assumed, ycl - yc2, the formal analog of eqs. (5.14) 

is 

(5.26) 

These, of course, follow directly from the definitions (5.25) and the eqs. 

(5.24). The generalization of (5.26) with ycl ^ yc2 is not of the same 

form as the generalization of (5.14) with yo2 jt ro2* 

6. TRANSDUCER THEORY 

The power equation (5.8) and the joining equations (5.12), 

- *v t':, V„: 

provide a basis for the development of transducer theory for the class of 

waveguide transducers considered. These equations are- formally the same as 

the corresponding equations for circuits. Quite apart from the inherently 

similar physical meaning of the quantities entering the equations in the 

waveguide and in the circuit case, the formal identity guarantees that trans¬ 

ducer theory developed for the one case is also valid for the other. Those 
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parts of network theory which are truly transducer theory are in fact imme¬ 

diately available for waveguide transducers. Thus, the letter of the pur¬ 

pose implied by the title of this paper was virtually accomplished when 

eqs. (5.8), (5.1ki) were set up. The purpose of this section is to indicate 

more fully the methods and the meaning of transducer theory, mostly by 

presenting selected examples of the theory. 

It will be convenient to use the term 2n-pole to denote any transducer 

whose terminal phenomena are harmonically varying electromagnetic fields 

which can be specified in terms of n pairs of variables Vm, Im such that 

eqs. (5.8) and (5.12) apply. The variables Vm, Im may be of the kind defined 

for either waveguide or circuit transducers; variables of both kinds may 

indeed appear in one set of variables for a given transducer. By the above 

definition, a circuit or a network with n pairs of conventional terminals 

(or wire leads) is a 2n-pole. A waveguide transducer which has n leads and 

which satisfies a one-mode hypothesis (whether or not in the form specified 

in section 4) is a 2n-pole. A waveguide transducer which has n waveguide 

leads and which satisfies a\m-raode generalization of the one-mode hypothesis 
n 

isa2y~\ -pole, where \ is the number of non-attenuated modes admitted in the 
m = l 

mth waveguide (Appendix A). A transducer which has both waveguide leads and 

wire leads may also be a 2n-pole. 

Although the term 2n-pole is here used in a fairly general sense, the 

limitation to transducers with electromagnetic terminal phenomena is Irrelevant 

so far as transducer theory is concerned. Vm could be interpreted as the 

amplitude of a harmonically varying force applied at a point of an oscillatory 



mechanical system, and Im could be interpreted as a corresponding velocity- 

amplitude. With suitable conventions, the power equations and the joining 

equations could be set up in the form (5.8), (5.12), and transducer theory 

for such systems would then not differ from the theory for 2n-poles. These 

remarks partly suggest the possible generality of transducer theory. Trans¬ 

ducer theory can be very general because it only describes or relates ex¬ 

ternal phenomena; it does not attempt to explain or interpret. 

A number of topics in the transducer-theory of 2n-poles are to be 

treated in the following paragraphs. In order to be able to proceed it is 

necessary to make a basic assumption concerning the number of independent 

equations that make up the set of equations for a 2n-pole (cf eq. 1.1): It 

is assumed that the number of such equations is equal to one-half the number 

of variables in every case. This provides a working rule for the number of 

equations, but it does not define any particular class of 2n-poles. For the 

purposes of transducer theory a class of 2n-poles is defined by specifying 

the mathematical form of the transducer equations. In the present instance, 

consideration will be given only to 2n-poles which are linear in accordance 

with the following general definition: a transducer is said to be a linear 

transducer if the equations of the transducer are linear equations. Addi¬ 

tional specializing conditions (for example, reciprocity, losslessness) will 

be considered in the course of the following discussion. The usefulness of 

the wealth of mathematical relations that transducer theory can give (of 

which only a few are given here) is obviously dependent upon the existence 

of 2n-poles which satisfy the various assumed conditions. Needless to say, 

the hypotheses mentioned above and others to be employed are not unrealistic 
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a. Linear gn-poles with terminal variables Vm, Im. The equations of a 

2n-pole in terms of terminal variables V_, I may be written 
m * m 9 

<V1>V 2> 1 ’ In) 0, 

where, in accordance with the basic assumption, there are n functions fk 

(k = 1,2, •••*,n). The 2n-poles to be considered are linear; hence, the 

functions fk may be written 

CklVl + + CknVn + dkiri -- + dknVn + Sk E °> (6.1) 

where k = l,2,*«**,n, and the ck(B, dkm, gk are constants independent of 

Vm, I*2. Since there are n independent equations, at least one of the 

(2n)!/(n!)z n-rowed determinants of the n-by-2n matrix of the coefficients of 

the Vm and the 1^ must be different from zero. This means that the system 

of equations (6.1) can be solved for at least one set of the (2n)!/(n!)2 dif¬ 

ferent sets of n variables that can be chosen out of the 2n variables V1}...., 

Vn, I1,,***j In* This much,is known from the general hypotheses. For the 

purpose of discussion it is assumed that eqs. (6.1) can, in particular, be 

solved for the set of V’s or for the set of I's1^. The determinants of the 

corresponding matrices 

C 

c, , C . * » • C . 
11 12 In 

C 2 1 ‘■'22 u2n 

C n 1 C „ • • • C 
n 2 n n 

D = 

dll d12 

d21 d2 2 

•d In 

2 n 

dn1 dn 2 * * 

(6.2a) 

12Equations of the form (6.1), representing the constant and the linear 
terms of a Taylor's expansion of a general fk, can serve as a basis for the 
first-order theory of a non-linear 2n-pole. 

13This assumption is usually, but not always, satisfied in practice. This 
point comes up again; see p. 54 , section 7. 



-28- 

must accordingly be non-zero. With the aid of the matrices C, D, and the 

one-column matrices 

>
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111 
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the system of equations (6.1) may be rewritten as the matrix equation 

CV + DI + G * 0. (6.3) 

To solve for V, this equation is multiplied through from the left by C_1, 

the inverse of C: 

V = ZI + Vg, (6.3a) 

where Z Vg=-C“1G. Similarly, by multiplying (6.3) through by IT1, 

l - YV + lg J 

where Y s -D_1 C, Ig s -D_1G. The matrix identity (D~1C)~1 = C-1D may be 

used to obtain the relations 

z = Y-1, Vg = —ZIg (or Ig =-YVg) . (6.4) 

The significance of the matrices of constants, Z, Y, Vg, Ig, is readily 

elicited. If the magnetic fields are reduced to zero at all terminal sur¬ 

faces (I =0), then, from (6.3a), V = Vg. Hence the one-column matrix Vg is 

the matrix of open-circuit14 electric-field amplitudes. If the electric 

fields are reduced to zero at all terminal surfaces (V - 0), then, from (6.3b), 

1=1. Hence, the one-column matrix I is the matrix of the short-circuit 
9 9 

14 It is natural and convenient to adopt certain terms from circuit theory. 
The use of the terms voltage and current for general V's and I's, which may 
or may not be ordinary voltages and currents, is, however, avoided in'this paper. 
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magnetic-field amplitudes. The relation between Vg and Ig, given explicitly 

in (6.4), shows that T = 0 if V =0 and conversely. If V and I are zero, 
9 9 '99 

the 2n-pole is said to be source-free1^. 

The matrices Z, Y are called the impedance and the admittance matrices, 

respectively, of the 2n-pole. If, for simplicity, the 2n-pole is assumed 

source-free, and if all the elements of I except Ip are zero, 

V = Z I , 
q q p p ’ 

(6.5) 

where Z „ is the element in the qth row and pxn column of Z. Thus the value 

of Zq p is that value of the impedance yqp = Vq/lp (cf> e(l* 5.17) which is 

obtained under the conditions Just stated. The elements Zq p are accordingly 

called open-circuit transfer (p / q) or input (p = q) impedances. It is 

easily verified that the elements Yqp of Y are appropriately called short- 

circuit transfer or input admittances. The algebraic relation between Z 

and Y is given in (6.4). 

. t h 

The most general linear 2n-pole can be completely characterized by 

n(n + 1) constants (which are in general complex). In equation (6.3a), for 

example, there are the n2 elements of Z, plus the n elements of Vg. The 

original equations (6.1) contain 2n2 + n constants, but the nature of the 

relations connecting the V's and I's is determined by n(n + 1) linear com¬ 

binations of the original constants. 

b. Linear 2n-poles with terminal variables Am, Bm. Terminal variables 

Am, Bm may be defined in terms of Vm, Im by means of the matrix equations 

V = A + B, 2A = V + roI, 

70I = A - B, 2B = V - yQI. 
(6.6) 

15This is not the same as passive in the standard meaning of the term; the term source-free 

is here used merely to denote that a 2n-pole is such that its equations are homogeneous. 
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Iii these equations, V and I are as defined in (f.2); A and 3 are one-column 

matrices with elements Am and Bm (m = 1,2, •••,n), respectively. yr is th 

diagonal matrix 

lie 

>ol 0 • • • • 0 

0 y o 2 
. . . . o 

0 0 * * •yon 

lowi ng, as we The discussion immediately following, as well as others in which wave 

amplitudes Am, 3m are explicitly involved, will be understood to refer to 

waveguide transducers. further, the diagonal elements of yo are precisely 

the yom appearing in the definitions of Vm, Im (eqs. 5.1), as indeed the 

notation indicates. The resolution into wave-amplitudes given by the right- 

hand pair of eqs. (C.f) is then what may be called physical rather than 

formal, and the complication of a superposed formal resolution into wave- 

amplitudes (mentioned on p. 24) will not come into the picture. 

Instead of using the relations connecting A,B with V,I to convert 

the results of the preceding paragraph (a), it is instructive to start afresh 

with the new variables, and to reapply the reasoning of the previous para¬ 

graph. Thus, the equations of a 2n-pole in terms of terminal variables Am, 

Bm may be written 

fJ (B ,B , -, Bn, Ax, A2, -, An) s 0, 
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where, in accordance with the basic assumption, k = l,2,**»*,n. The 2n-poles 

to be considered are to be linear with respect to Am, 8m; hence, the functions 

fjJ may be written 

k 1 
C' k n 

B + d 
k 1 dL k n >'k s 0, (6.7) 

where k = 1,2, • • • •, n, and the cjm, 

Continuing exactly as with eqs. 

analogs of eqs. (6.3a), (6.3b), 

S * R"1 , B 

d*m, g^ are constants independent of Bm, Am. 

(6.1) previously, one is led to the mathematical 

and (6.4), viz., 

= SA + B , 
9 

(6.8a) 

= RB + A , 
9 ’ 

(6.8b) 

= -S A (or A = RB ) , 
9 9 g * 

(6.9) 

where it is assumed that the matrices R and S are both non-singjular. 

It is clear that in the absence of incident waves (A = 0), the emergent- 

wave amplitudes are given by B = Bg; if the incident amplitudes are adjusted 

so that A = Ag, the outgoing waves are thereby reduced to zero (B = 0). If 

the 2n-pole is such that Ag (* Bg) = 0, it is said to be source-free. 

The matrix S is very aptly called the scattering matrix of the 2n-pole. 

If, for simplicity, the 2n-pole is assumed source-free, and if all the 

elements of A except Ap are reduced to zero, then the emergent-wave amplitude 

B is 
q 

B = S A , (6.10) q q p py ' 7 

where S„ „ is the element in the q* h row and the pth column of S. Thus the q p i r 
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value of S is that value of p = B /A (cf eq. 3.17) which is obtained 
qp rq p q q ' 1 

under the conditions lust stated. The elements S of S are called scat- 
q p 

tering coefficients. The S are also called reflection coefficients: the 
q q 7 

spq (q / p) are sometimes called transmission coefficients. Mathematically, 

the interpretation of R is, of course, similar to that of S. The matrix R 

has received little explicit use, and no special terminology for R and its 

elements is suggested here. 

c. Relationship between Z-and S-matnces. Since A,3 are related to 

V,I by homogeneous linear equations, it follows that a kJn-pole which is 

linear and source-free in an A,B-representation is also linear and source- 

free in a V,I-representation (and vice versa). Quantitative relations be¬ 

tween the results of the preceding two paragraphs are easily found. For 

' 

example, the elimination of V and I from the equation 

V = ZI + Vn (6.3a) 
9 

for a given 2n-pole by means of eqs. (6.6) gives 

A + B = Zy;X(A - B) + V . 

Upon solving this last equation for B, and comparing with the equation 

B = SA + Bg (6.Sa) 

for the same 2n-pole, one obtains 

S = (Zy;1 ♦ l)"1(Zy;1 - 1), (6.11a) 

Bg = (Z^1 ♦ l)_1Vg . (6.11b) 

It is easily verified that the two factors in parentheses on the right of 

* 
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(6.11a) commute, So that 

S = (Zy;1 - 1) (Zy”1 ♦ 1) -1. 

For computations, the form 

S = 1 - 2 (Zy ~1 ♦ l)’1 

is convenient. Eq. (6.11a) solved for Z yields 

Z = (1 - S)-1 (1 ♦ S)y0* (6.12) 

There are, of course, corresponding relations connecting other pairs of the 

four matrices Z,Y and S,R. 

d. Change of representation. The values of the parameters which describe 

the characteristics of a given linear wavegid.de transducer are obviously af¬ 

fected by the choice of the y in the definitions of the terminal variables 

(eqs. 5.4, 5.5). Thus, for example, the transformation of the impedance matrix 

from a representation defined by yom (m = 1,2, • •* • ,n) to a representation defined 

by yom (® = 1,2,•*•,n) may be found as follows. For convenience let r7, rf respec¬ 

tively denote the diagonal matrices whose elements are /y^m , /yom , and let 

V,I and V,T denote the corresponding sets of terminal variables. In order that 

V,I and V,T represent the same fields,, it is necessary that 

77"1 V = 77-1 y, 

77 I = 77 I 

(6.13) 

(from eqs. 5.4). If Z and Z are the impedance matrices of a given source-free 

waveguide 2n-pole in the two representations, 

V = Z I, V = Z I. (6.14) 

Eliminating V,I from the second of eqs. (6.14) by means of (6.13), solving 

for V, 

? = (-T7 77“1 Z 77"1 77) I, 
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and comparing with the first of eqs. (6.14), one finds 

Z = 7) 7)'1 Z 77"1 rj, (6.15) 

which is the desired formula. If in particular 77 = 1 (characteristic im¬ 

pedances = 1), eq. (6.15) normalizes Z, and the resulting 7, is the 

normalized, impedance matrix of z of the Sin-pole: 

z = 77-1 Z 77"1. (6.16a) 

In terms of the elements of the matrices involved (6.16a) is 

Zk«i = Zk« (?ok (6.16b) 

A similar type of calculation yields for the scattering matrices 

and S, 

5 = 77”1 77 S rj'1 77. (6.17) 

The normalized scattering matrix is thus 

s = 77'1 S 77, (6.18a) 

or, in terms of elements, 

(6.18b) 

It may be noted that the transformation (6.15) does not affect the 

symmetry properties of an impedance matrix. If an impedance matrix is 

symmetric in one ^-representation, it is symmetric in any yQ-representation. 

on the other hand, the transformation (6.17) does affect symmetry properties. 

A scattering matrix may be symmetric in one representation and unsymmetric 

in another. This difference in the behavior of impedance matrices and scat¬ 

tering matrices with respect to change of representation can be regarded as a 

consequence merely of the particular way in which the basic definitions 
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(5.4), (5.5) were set up. 

If the impedance matrix of a kin-pole is symmetric, then the normalized 

scattering matrix is also symmetric. This may be shown by using the relation 

(6‘.lla), which, for the normalized matrices s and z, becomes 

s = (z + 1) _1 (z - 1) . 

Using the tilde (^) to denote the transpose of a matrix, 

s’ = (z +1)-i (z -1) = (z -1) (r^iy* 
= (z - 1) (z + 1) -1 = (z - 1) (z + 1) _1 = s. 

Thus s' = s, and the symmetry is proved. 

e. Linear two-poles; joining. For a two-pole, all matrices involved in 

the foregoing reduce to single numbers. Eqs. (6.3a) and (f.3b) reduce to 

Vzn Ii * v » (6.19a) 

V1 + Igl » (6.19b) 

respectively. If Z11 = 0, then (6.19b) has no meaning; if YX1 = 0, then 

(6.19a) has no meaning. Z11 and Y11 cannot both be zero, on account of the 

assumed existence of one relation of the form (6.1). If both YX1 and ZX1 

are finite, both (6.19a) and (6.19b) apply and they have the same meaning. 

Moreover, 

Y11 = Z11 1» Vgl =-ZllIgl’ 

as in (6.4). The content of Thevenin’s theorem and of Norton's theorem is 

included in the meaning of eqs. (6.19). 

Consider the connection of a two-pole source (whose equation is (6.19a)) 

with a source-free two-pole whose equation is V' = Z|x I'. The system of 

equations to be solved is then 

(6.20) 
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where the last two equations are the joining equations. Since the two two-poles 

when connected form a closed system, the number of equations should be suffi¬ 

cient to determine a unique solution for the V’s and I's. The fact that there 

are four equations to determine the four variables is a consequence of the basic 

assumption concerning the number of independent equations for a 2n-pole. If 

Zn + zii / 0, the solution of (6.20) for V^, 1^ is obviously 

V' = V Zji- 
Vl 

f = —aJL__. 
Xl zii+zii 

The appropriate specialization of eqs. (6.8a), (6.8b) yields the equations 

of a linear two-pole in an A,B-representation: 

B, SH + (6.2la) 

A1 = R11 B1 + Ag1 * 
(6.21b) 

Remarks similar to those following eqs. (6.19) apply here also. The cal¬ 

culations with matrices which led to eqs. (6.11) may be performed for two- 

poles with numbers. The results are, of course, as in (6.11), 

B 
9 1 

9 1 . 

Z11 ^ol"1+ l’ 

'll >ol 1- 1 
’ll 

(6.22) 
'll ’o 1 

1 + S11 

'll ” 1 _ s 7(31 
1 bll 

Consider the connection of a two-pole source (whose equation is (6.21a)) 

with a source-free two-pole whose equation is B^ = S^x A^. The system of 
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equations is then 

^1 = 1 + ^g1> 

B; = S'x a; , 

b; = ax, 

a; = b,. 

If S11 / 1, the solution of these equations for B^, A^ is 

B, B . S' 
B' = —SLi——— 

1 1 - ’ a; - 
9 1 

1 - s^si,- 

(6.23) 

(6.24) 

f. Reciprocity. Suppose that the equations of a 2n-pole can be expressed 

in the form 

VK = fk (Ij.,12.-,In) (k = 1,2,••••,n). (6.25) 

Let 

K (k = 1,2, • • • •,n) , (6.25a) 

= fk(I", I'',...*,I') (k = 1,2,••••,n), (6.25b) 

where 1^, I'2, • • • •,!„ is one set of independent variables 

and I", II" is another set of independent variables. 

Consider the condition 

H(v: i; - v; id . o: 
m = 1 

(6.26) 

this is the reciprocity condition, and it serves to define an important class 

of 2n-poles. The reciprocity condition greatly limits the generality of eqs. 

(6.25). To find the form of these equations, first differentiate (6.26) with 

with respect to I", obtaining 

m = 1 

(6.27) 
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But Vk does not depend upon I", I",so that the differential co¬ 

efficients in (6.27) must be constants independent of I", I",*••*,!". These 

constants may be denoted by zkm, say, and eq. (6.27) then states 

n - ' k m 
m = 1 

that is, the functions fk are linear and homogeneous. Let V, I, respectively 

denote the one column matrices with elements Vm, I and letzdenote the square 

matrix with elements zk(n. In this notation eqs. (6.25a), (6.25b) become 

V' = zl', 

V" = zl", 

and (6.26) may be rewritten as 

¥"V' - i'v' 0, (6.26a) 

where (~) denotes the matrix transposed. Eliminating V',V" from the last 

equation gives 

I" zl' - I' zl" ■ 0. (6.28) 

But (I" zl') is a number, or a matrix of one element, and is therefore 

symmetric; hence, 

I"zl' = (I"zl') - I* z I* 

Eq. (6.28) can thus be written 

I' (z - z) I" = 0. 

Since I' and I" are arbitrary, 

z - z = 0; 

the impedance matrix is symmetric. Thus the equations of a 2n-pole which 

satisfies the reciprocity condition are linear and homogeneous and can be 

written in the form 

V = zl, (6.29) 

where z is symmetric. The converse is easily verified: if eq. (6.29) holds. 

i 
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then the reciprocity condition (6.26) holds. Eq. (6.29) is therefore equiv¬ 

alent to (6.26). 

If z is symmetric, its inverse, y = z-1, is also symmetric. It was shown 

on p. 35 , that if z is symmetric, then the normalized scattering matrix is 

also symmetric. 

g. Lossless 2n-poles. A 2n-pole is said to be lossless if the total 

time-average power input is zero for all values of the terminal variables. 

Mathematically expressed in terms of V,I, this condition is 

Re (I+V) s 0, (6.30) 

where 1+is the transposed complex-conjugate of I, and Re(l"^V) is the real part 

of I*V. If a lossless 2n-pole satisfies the reciprocity condition, the follow¬ 

ing conclusions concerning the form of the equations of the 2n-pole can be 

drawn. Eq. (6.30) directly implies 

I+V + I V* = 0. 

Replacing V by zl (eq. 6.29), 

I+zI + I z* I* e 0. 

3ut I z* I* is a single number and is therefore equal to its transpose 

I+z+I. The last equation becomes 

I + (z + zt) Is o. 

Since I is arbitrary, 

z = -zt. (6.31) 

This equation states that the imaginary part of z is symmetric and that the 

real part is anti-symmetric. This much holds for any linear, lossless 2n-pole. 

But since reciprocity was assumed, z is symmetric, and its real part must 
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vanish. Therefore, 

z = jx, (6.32) 

where x is real and symmetric; z is pure imaginary. 

The corresponding properties of the normalized scattering matrix may be 

derived from (6.32) via (6.11a), or directly from the counterpart of (6.30) 

in an &,B-representation. Choosing the latter method, the needed power 

equation is, in matrix notation, 

A+A - B+B a 0 (6.33) 

(eq. 5.9 with yom = 1). Inserting B = sA, 

A*A - Afsfs A * 0. 

Since A is arbitrary, 

sts = 1. (6.34) 

Eq. (6.34) states that the inverse of s is the transposed complex-conjugate 

of s; a matrix having this property is known as a unitary matrix. This much 

holds for any linear, lossless 2n-pole. But since s is symmetric, st= s*, 

and eq. (6.34) becomes 

s*s * 1; (6.35) 

the inverse of s is simply the complex conjugate of s. 

h. Four-poles. Four-poles are of particular importance because more 

complicated transducers are often built up of a number of four-poles connected 

in tandem. If a four-pole satisfies the reciprocity condition its equations 

may be written in either of the two forms 

V1 = Z11 11 + Z12 h> 

V2 *■ Z12 *1 + Z 2 2 ^ 2 * 

B1 = si;L Ax + s12 A2, 

B 2 = S12 A1 + S 2 2 A2’ 

(6* 36) 

_
 
_
 

. 
"
_
 

_
 

. 
_
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where the matrices z and s are symmetric, as written. It is often convenient 

to have these relations expressed in the so-called transmission-line form, 

defined by 

V1 " tll V2 + t12 *2* 

*1 = ^21 V2 + ^22 ^ 2• 

B = r B + r A , 
1 112 12 2 * 

Ai = r g i + **2 2 ^25 

(6.37) 

where V2 = V2, I2 = -I2; and where. B2 s A2, A2 * B2. The reason for making 

the definition with respect to the quantities distinguished by bars will be- 
$ 

come apparent. The new coefficients are given in terms of the coefficients 

in (6.36) by 

tll=Zll/zi2» t12=(ZllZ22“Z12)/zi2» 

^21~l/Z12’ ^ 2 2 ~ Z22^Z12' 

**11 ” 11 ® 2 2~ ® 12 ^ /®12* ** 1 2 ^ix/^12* 

/Sijj **2 2 ”1 2 * 

(6.38) 

r21=~S2 2 

It is important to note that reciprocity is now manifested in the relations 

^11 fc22 “ ^12 fc21 i; n = 1 • 
11 * 22 * 12 2 1 ’ 

- r. (6.39) 

i.e., the determinant of the matrices of coefficients in eqs. (6.37) has the 

value unity. One may easily verify that this is both a necessary and a suf¬ 

ficient condition that the matrices of coefficients in the original eqs. 

(6.36) be symmetric. 

V2 = zr *2 

If a two-pole whose equations are 

B2 = sr A2 (6.40) 

is connected to the above four-pole at terminal surface No. 2, then equations 

(6.37) yield 

.= y 
111Z r + *12 

11 " t21Zr + t22 

B, 

■“ P ll 
rilS r +r!2 

r21Sr +1*22 

(6.41) 
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Tl\us the input impedance y 11 (or reflection coefficient /3i;l) is exhibited as a 

linear fractional function of the load impedance zr (or reflection factor sr). 

Transformations of the form (6.41) have many interesting and useful mathematical 

properties. (Equations of this form hold for any linear source-free four-pole, 

whether or not the reciprocity condition is satisfied). two 

Suppose that a second four-pole is given, whose equations in the trans- 

iso 

i 
anc 

mission-line form are 

n 
- t' V' + 

L11 V2 ^2 K * rii Bh* 
r' a ' 
r 1 2 a2 

S t ' V ' + 
^21 ' 2 t 2 2 I'2, a; - r21 H * r' A' r 2 2 2 

where the notation is in all respects similar to that of eqs 

(6.42) 

thf 

be required to find the characteristics of the four-pole formed by joining the 
, 

given four-poles, say with terminal surface No. 2 of the first coinciding with 

terminal surface No. 1 of the second. The notation has been chosen so that the 

corresponding mathematical process is merely a linear substitution. The result, 

in matrix notation, is 

V, Vi B, 3i 
l 

= (T T') 

2 

9 

l 

= (R R') 

2 

_K_ 

(6.43) 

where T and R are the matrices of eqs. (6.37), T' and R' are the matrices of 

eqs. (6.42). Thus the matrix of the parameters of the combination of the two 

four-poles is the matrix product of the matrices of the separate four-poles 

taken in the proper order. If the four-pole described by (6.42) satisfies 

the reciprocity condition, the determinants |T'| and |R'| are each equal to 

unity. .In this case, from the general rule for the multiplication of 

determinants, 

|T T'| = 1 |R R'| = 1 
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and the composite four-pole also satisfies the reciprocity condition. (Rec¬ 

iprocity was assumed for the first four-pole, eq. (6.39)). 

i. Linear symmetric four-poles. A four-pole is said to be symmetric if 

it exhibits the same electrical characteristics when viewed from either of its 

two terminal surfaces. Thus the normalized z- or s-matrix of a linear symmetric 

(source-free) four-pole must be unaltered by the interchange of subscripts 1 

and 2. That is, it is necessary that 

Z11 = Z2 2> Z12 3 Z21* S11 = S22> S12 = S 21 * 
(6.44) 

/ 
A linear symmetric four-pole therefore satisfies the reciprocity condition and 

the additional condition zix = z22 (or slx = s22). If a four-pole is lossless, 

as well as linear, symmetric, and source-free, then z must be pure imaginary 

and s must be unitary. The equations of a four-pole satisfying these special 

conditions are obtained in a familiar form as follows: z can be written 

J X11 JX12 

J X1 2 JX11 

where x11? x12 are real. Defining x11/x12 = a, -l/x12 = b, the coefficients 

of the transmission-line form of the equations of the four-pole become 

(eq. 6.38) 

tii = a» ti2 = J “ a2)A, 

t21 * J*3, ^22 = a* 

A characteristic impedance yc of a four-pole is one which is transformed into 

itself by the transformation (6.41). For the four-pole in question, yc is 

given by 

ar, + j (1 - a2)/b 

7c" jbyc+ a 
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which reduces to b2y2 + a2 = 1. Since the constants byc and a satisfy 

b2y2 + a2 = 1, they can be written 

a = cos 8, 

byc = sin 8, 

as a mere matter of notation. yc is real if |a|<1; 8 is then also real. yc 

is pure imaginary if |a|>1; 8 is then also pure imaginary. The four-pole may 

be characterized in terms of 8, yc by eliminating a,b from the expressions for 

tix, t12, etc. The resulting matrix is 

cos e j yc sin e 

T = ! 
j sin 8 cos 6 

'C 

For any fixed value of yc, the matrix is defined by the value of 8, T = T (e). 

If four-poles represented by T(^x)and T(e2) are joined, the matrix of the com¬ 

posite four-pole is T(^1)T(d2). Upon writing out the matrix product it is 

found that 

T(ex) T(02) = T(*x + e2). (6.46) 

Eq. (6.45) shows that T (o) = 1; eq. (6.46) thus yields 

T (0) T (- #) = 1, 

or, T~1 (d) = T(-&). It is apparent from (6.46) that the matrices T(01), T(&2) 

commute with each other. 

j. Translation of terminal surfaces. As a further and final special¬ 

ization, consider four-poles of the type represented by eq. (6.45) with 

yc = 1 prescribed. The corresponding T-matrix is 

(6.45) 

T(fl) = 

cos & 

j sin 0, 

j sin 6 

cos 8 

(6.47) 
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The R-matrix (eq. 6.37) corresponding to this T-matrix is particularly simple. 

From the definitions (6.6).(with yQm = 1, since a normalized representation was 

assumed in par. (i)) and from the definitions following eq. (6.37) one finds: 

V1 B1 * A1 A B 2 + A2 B 2 

= = n * s = n 
-B1 ♦ Al_ _Ai A "B2 + A2 _ A2_ 

where 

n = 
1 1 

-1 1 

_ , 

» X1 and V2, J2 

— — - - 

V1 
= T(«) 

V2 

A_ 

Using (6.48) to eliminate the V's and I’s, 

n 

A, 
= T(e)n 

B, 

from which one obtains 

B, 

=n_1T(^)n 

(6.48) 

Therefore the matrix R(e) relating B1, A± and B2, A2 is 

R(d) = fT1 T(fl)n . 

For the particular T (6) considered, R(0) is readily found to be 

e~j 9 0 

R (0) = 
0 

(6.49) 



R(0) ob\iously shares the properties (6.46) of T (d). The transformation of the 

reflection factor (eq. 6.41) defined by ft(0) is very simple, viz., 

(6.50) 

Among the four-poles which can be characterized by matrices of the form 

of R(0) (or T(0)) are included all those consisting of a section of ideal wave¬ 

guide. This is seen by employing (6.49) to write 

Bx = B2 e~>6 ♦ 0 , 

(6.51) 

Ax = 0 

and comparing these equations with eqs. (5.1). It is evident that 6 is to be 

identified as j3L, where L is the length of the section of ideal waveguide con¬ 

sidered, and /3 is the appropriate phase constant. (R(0) and T(e) were set up 

for 6 real, corresponding to the real values of /3 for any non-attenuated mode.) 

The determination of /3 for a given mode in a given waveguide is a matter of ex¬ 

periment or of electromagnetic theory; /3 cannot be determined in transducer 

theory. It is thus logical to continue to use the electrical length 6, in 

preference to writing /3L for the same quantity. 

It was remarked on p. 6 that a -translation of a terminal surface of a 

waveguide transducer is equivalent to joining a transducer consisting of a 

section of ideal waveguide at the terminal surface in question. The corre¬ 

sponding mathematical process is given by eqs. (6.43) for four-poles. Thus, if 

a four-pole has a matrix T defined with respect to given terminal surfaces, and 

if terminal surface No. 1 is shifted an electrical distance 0lf the corresponding 

new matrix is given by 

T' = T(01)T. 

If, also, ttrroinal surface No. 2 is shifted by the electrical distance 02, the 

result is 

T" = T'T (6 ) = T (6>X)TT {6 2) - . (6.52) 
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Consider next the joining of any two given four-poles with matrices T , T2, where 

the matrices are defined with respect to terminal surfaces which do not necessar¬ 

ily coincide when the physical junction is made (Fig. 5). The matrix of the phys¬ 

ically-defined composite four-pole is then given mathematically as a composite of 

three four-poles, 

(6.53) 

where d is the electrical distance between the terminal surfaces involved (8 may 

be positive or negative). 

The results (6.52), (6.53) when expressed in terms of R-matrices, are, of 

course, of exactly the same form as eqs. (6.52), (6.53) themselves. The implied 

algebraic details, while simple for the T-matrices, are exceedingly simple for 

the R-matrices. The simplicity of many calculations for four-poles in an A, 

B-representation in fact recommends the use of this representation of the terminal 

fields in many problems. For example, the transformation of the characteristics 

of a waveguide 2n-pole corresponding to translation of the n terminal surfaces is 

readily obtained by working directly with the scattering matrix of the 2n-pole 

and applying the basic properties of the R-transformation as expressed by (6.51). 

7. THE RECIPROCITY THEOREM 

The determination of the characteristics of a given 2n-pole is fundamentally 

a matter of experiment. If the details of the structure of a 2n-pole are given, 

it is sometimes possible to replace direct experimental measurement by theoretical 

calculations based more or less directly upon Maxwell 's equations. A circuit prob- 



lem is usually regarded as specified in detail when the component capacitances, 

inductances, etc., and their interconnections are given. With such data given, 

the calculation of the characteristics of a 2n-pole is set up in accordance with 

Kirchhoff's laws for electric circuits, and the calculation is a relatively sim¬ 

ple algebraic problem. If, however, instead of capacitances, inductances, etc., 

the geometry and the electrical constants of the media making up the capacitors, 

inductors, etc., are given, the problem in general becomes more difficult, and 

the solution must be based more directly on the field equations. Microwave 

problems are characterized by the specification of geometry and electrical con¬ 

stants, and by the necessity of employing the field equations. The solution of 

microwave problems in detail is in general extremely difficult. Much of the 

difficulty arises because of the vector nature of the field, and because retar¬ 

dation can not be neglected. 

The difficulty of detailed calculation of the behavior of microwave com¬ 

ponents emphasizes the importance of transducer theory in calculations and 

measurements in microwave work. Conditions of the type employed in section 6 

lead at once to certain necessary characteristics of the equations of any 2n- 

pole satisifying the various conditions. Moreover, the applicability of one or 

more of those conditions (such as linearity, reciprocity, losslessness, sym¬ 

metry) is in many cases evident without explicit experimental verification. 

Reciprocity, in particular,is avery general and very important property, and is 

perhaps the least obvious of those mentioned. The purpose of this section is 

to give a proof of a rather general reciprocity theorem for 2n-poles. 

The reciprocity theorem is to be proved for a class of 2n-poles satisfying 

the following condition: The media involved must be such that Maxwell’s equa¬ 

tions become linear equations at all interior points of the 2n-pole16. No re- 

■6A more complete statement of the hypotheses is given below, p. 51. 
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striction is imposed upon the geometry of the structure admitted, other than that 

indirectly imposed by the requirement that the structure shall be actually a2n-poie. 

The geometry may, for example, be that of coils, capacitors, and wires or that of 

cavity resonators and waveguides. It should be noted that the hypothesis of 

of linearity here employed is of a very different type from that employed in 

section 6. The important difference is that here the hypothesis applies directly 

to all points of the interior of a 2n-pole, whereas there it applied only to ex¬ 

ternally observable behavior at the terminals. Reciprocity for a 2n-pole com¬ 

posed of circuit elements is usually regarded as a consequence of Kirchhoff's 

laws. Under the assumption of passive, linear, bilateral circuit-elements, 

Kirchhoff’s laws yield the reciprocity theorem almost at once. The basic as¬ 

sumption employed in this section (viz., linear media) differs very much in 

form and slightly in content, from the circuit-hypotheses just-mentioned. Under 

the present hypothesis of linearity, Maxwell's equations are employed to deduce 

a reciprocity theorem holding for any kind of 2n-pole satisfying the hypothesis. 

The theorem will therefore apply to waveguide transducers, circuits, and to the 

mixed type involving both circuit and waveguide leads. Some further prelimin¬ 

aries are needed in preparation for the proof of the theorem. 

It is necessary to define precisely what is meant by the interior of a 

2n-pole. The region occupied by the electromagnetic field of a 2n-pole is de¬ 

noted by R, and the boundary of R is denoted by S. R and S are illustrated for 

a waveguide transducer with two waveguide leads in Fig. 6. If the number of 

leads is n, the surface S may be thought of as consisting of n ♦ 1 separate 

parts, viz., a large spherical surface S' (with center at some mean position in 

the region), plus n separate closed surfaces (m = l,2,»««*,n). The surface 

extends transversely across the m* h waveguide (coinciding with the terminal 

surface Sm within the waveguide), and encloses the two-pole source terminating 

the m*h lead. The region R, the interior of the 2n-pole, is thus bounded ex¬ 

ternally by the surface S' and internally by the surfaces S^. The surfaces 



enclose and thereby exclude the fields and currents belonging to the two-pole 

sources. 

Fig. 6. The surface S for a waveguide transducer. 

The two-pole sources may be any which produce fields of some specified frequency 

Cl) • 

A 2n-pole of the type suggested in Fig. 6 is by no means completely shielded 

its field extends to infinity. The radius of the spherical surface S' must be 

allowed to become infinite for any incompletely shielded 2n-pole. Furthermore, 
» 

in order that all of the field of such a 2n-pole be included in R, the surfaces 

must fit closely over the surfaces of the two-pole sources, and these must 

be assumed to be perfectly shielded. A region K and surface S of the type just 

described serve for any waveguide transducer. If a waveguide transducer is com¬ 

pletely shielded, as illustrated in Fig. 7, an alternative R and S may be drawn 

as shown in the figure. The subsequent argument will employ the notation of the 

preceding Fig. 6, but no essential changes are required to adapt the argument to 

the simpler but less general case illustrated in Fig. 7. 

> 
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Fig. 7. The surface S for an enclosed waveguide-transducer. 

The following proof will also apply to 2n-poles having one or more circuit 

terminals of the type discussed in section 5 and illustrated in Fig. 4. Thus 

any or all of the two-pole sources of the type illustrated in Fig. 6 could be 

replaced by those of the type illustrated in Fig? 4. If this replacement is 

made for the mth lead, say, the surface (of Fig. 6) becomes the terminal sur¬ 

face of the m*h two-pole source. No important changes in the argument are in¬ 

volved. 

The complete statement of the hypothesis imposed on the media in R is made 

a.p follows. Maxwell's equations in a very general form are 

curl E = - —^ B (H) , 

3t ' " (7.1) 

curl H = + ~D(E) + J (E) . 
at ~ — 

The vectors B, D, J are respectively the magnetic induction, the electric dis¬ 

placement, and the induced current density. The functions B(g), D(E), J (E) 

describe the media involved. It is required that the media be such that these 

functions are linear and homogeneous. The most general homogeneous linear vector 
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functions may be written 

B(H) = 

D (E) = e. • E , 

J (E) = g.E, 

where the tensors g, e, a, (which may have both real and imaginary parts) rep- b) 

resent respectively permeability, dielectric constant, and conductivity. These 

tensors depend upon the position coordinates; they may depend upon the frequency tl 

«, but not upon E, g, and the time. If, as is assumed, all sources of the field r 

vary harmonically with time at frequency <a, the solution of (7.1) subject to j 

(7.2) may be obtained in the form E = EoeJ wt, H = HQe-i, where Eq, H0 are func¬ 

tions only of position. Inserting E,H of this form in (7.1), the governing 

equations become 

curl E = -j cojj.* H, , v t 
" ~ (7.3) 

curl g - + j • E + g*E* 

The differentiation with respect to time in (7.1) has the result given in (7.3), 

because by hypothesis g, c are independent of t, and E,H contain t only in the 

factor exp(jo)t). Eqs. (7.3) determine the position-dependence of the complex 

amplitudes of a field which varies harmonically with frequency « at every point 

of R. Eqs. (7.3) are linear, since the coefficients do not depend upon E,H. 
\ 

This means that if E',H' and E", H" are fields which individually satisfy (7.3), 

their sum E' + E", II' + H" is also a solution. The equations are also homo¬ 

geneous (or source-free), since E s g s 0 is a possible solution. This corre¬ 

sponds to the homogeneity of eqs. (7.2). In accordance with the hypotheses in¬ 

troduced in section 4, eqs. (7.3) must reduce to (4.1) in the neighborhood of 

terminal surfaces. 

The tensors g, e, a of course reduce to scalars for isotropic media. If 

tensors are required to express the properties of the media, it is essential 

of 

ar 
(7.2) 

st 
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for the proof of reciprocity that the tensors be symmetric tensors. Symmetry 

of L sometimes deduced from energy considerations, at least when e 

are real. The conductivity tensor <? is symmetric for most, if not all, crystal 

structures. It is here assumed that £, e, a are in fact symmetric. 

Particular solutions of the eqs. (7.3) for a given 2n-pole are determined 

by the boundary conditions, which may be expressed in terms of the values of 

k x E and k x H on S, where k is the inward unit normal vector on S. It is a 

theorem of electromagnetic theory that the solution of Maxwell's equations in 

R is uniquely determined for all times t>0 by the values of E,H throughout 

R at t = 0 and the values of k x E or k x H on S17. (The values of k x E 

may be specified over part of S, and the values of k x H, over the remaining 

part of S.) If, as is assumed, the 2n-pole under consideration is such that 

power is dissipated (however slightly), the effects of the initial values of 

the field throughout R at t = 0 will be transient and the steady-state field 

(the solution of 7.3) will be determined solely by the values of Ij x E and 

j£ x H on S. 

The terminal surfaces Sm form a part of S. On the terminal surfaces, 

k x E and k x H are given by and (section 5). On the remaining parts 

of the surfaces S'm the field satisfies the homogeneous boundary condition 

k x E = 0. On S' the field is to satisfy the so-called outward-radiating con¬ 

dition, which insures that there are no sources outside S' (i.e., at infinity) 

and matters only for non-shielded 2n-poles. It follows from the uniqueness 

theorem and from these boundary conditions that the solution of eqs. (7.3) 

is uniquely determined by a set of n terminal fields such that either k x E 

or k x H is specified on each of the n terminal surfaces. A set of such 

fields is illustrated in table I. 

17J. A. Stratton, "Electromagnetic Theory", McGraw-Hill Book Co., New York 

1941,pp. 486-488. 



Table I. A set of terminal fields 

1 2 3 4 5 n 

«xE Si - - - - 

KxH - S2 — 3 
- S5 Sn 

No condition is placed upon the two-pole sources responsible for the terminal 

fields, other than that they produce fields of frequency The nature of the 

ultimate sources which generate the fields is of no importance. So far as the 

2n-pole under consideration is concerned, it matters only that certain fields 

do appear at its terminals. 

It has been tacitly assumed that a solution exists for arbitrary values 

of the terminal fields in sets of the type shown in table I. The uniqueness 

theorem insures merely that if a solution exists, it is unique. In order to 

carry through the proof of the reciprocity theorem, it is assumed that the set 

Hi, H2,•••, Hn may be arbitrarily prescribed18. 

The proof of the reciprocity theorem is made to rest on two lemmas. The first 

of these is a very general reciprocity relation first given by H.A. Lorentz. 

Let E', H' and E"., H" be twp fields arising from independent and arbitrary sets 

of sources with frequency «. The fields satisfy eqs. (7.3) in R, 

curl E' = H', 

curl H' = +j oie_' E ' + a• E' , 
(7.4) 

18The existence of a solution is of course to be expected in any problem with 

a genuine physical pedigree. But in practice certain idealizations are useful, 

and the assumption made in the text is not always valid. For example, if the 

equations of a four-pole are those of an ideal 1:1 transformer, 

neither the pair V1, V2 nor the pair Ix, I2 can be chosen arbitrarily. But either 

of the pairs V1? I1 or V2, I2 can be chosen arbitrarily, and corresponding solu¬ 

tions for the fields exist and are unique. 



curl E" = -j<wu»H" j 
(7.4) 

curl H" = + j a>£ • E" + a- • E“ . 

Define the vector L = E' x H"-E" x H', and form the vector identity 

div L = H"*curl E' -E'.curl H" 

-H' .curl E" + E"..curl H'. 

Substituting the expressions (7.4) for the curls, and making use of the sym¬ 

metry of the tensor parameters, one obtains 

div L = 0 (in R) , (7.5) 

which relation is the first lemma. 

The second lemma asserts that the integral of the normal component of L, 

taken over the spherical surface S', vanishes: 

f n. (E' x H" - E" x H') dS = 0. (7.6) 

This is most easily shown by considering the asymptotic form of the fields on 

S' for large values of radius r (but the fact to be proved is independent of 

the size and shape of S'). For sufficiently large r, the field approaches 

that of a concentrated source at r = 0, viz., 

(7.7) 

H" = Y0 n x E", 

where r is a transverse vector function (t»q = 0) of the direction of the 

vector r, /30 = « /, and Yo = /e/n. (It is assumed that for large r the medium 

is simply free space.) The fields described by (7.7) are in general ellip- 

tically polarized spherical waves. Upon substituting (7.7) into (7.6) one 

r = 0, viz. 

= r' r 

II
 

O
 n x E' 

= X" 
e‘j/V 
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finds that the integrand of (7.6) vanishes identically, since 

r' x (r" x n) s r" x (r* x n) . 

Hence one may infer that 

lim f n*L dS = 0, 
s '- r = cd 

(7.8) 

which is the statement of the second lemma. 

After the foregoing preliminaries, the proof of the reciprocity theorem 

is very direct. By the divergence theorem, 

Jdiv L dr =-Jk*L dS. 
R S 

(The minus sign appears because k was chosen as the inward normal.) By the 

first lemma, div L s 0 in R, so that 

fk'L dS = 0. 
s 

Hence, by the definition of S, 

n 

0 = > J k.k dS + f k‘L dS. 
^1 r “ r / 

(7.9) 

l s, 

And by the second lemma, the integral over S' vanishes, at least in the limit 

as r - oo. But the terms of the summation in this equation do not depend upon 

r, so that 

H /. ^ 
m = 1 m 

dS = 0 

(and the integral over S' must in fact be independent of r). Replacing L by 

the quantity for which it is an abbreviation, 
n 

f k • (E' x H" - E" x H') dS = 0. 

m = 1 S , 

(7.10) 
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Ihe integral over reduces in all cases to the integral over the terminal 

surface Sm. (For waveguide terminal surfaces, the integrand vanishes on those 

parts of which do not coincide with Sm.) Hence 

n 

f k • (E' x H" - E" x H') dS = 0. 
/ ^ — m — m — m — m — m 

m = 1 m 

The individual terms of this expression are of the same form as the power 

relation (5.8) (or 5.23). Therefore 

n 

H <v: i; - k ip - o. (7.H) 
m = 1 

Since this relation holds for arbitrary values of the independent variables, 

it is precisely equivalent to the reciprocity condition (6.26). This completes 

the proof of the reciprocity theorem. 

The algebraic consequences of the reciprocity condition were examined in 

section 6f. It was there shown that the equations of a 2n-pole satisfying the 

reciprocity condition are expressible by means of the homogeneous linear 

equations 

n 

Vk=X>k„I„ <k - 1,2,••”,«), (7.12) 
m = 1 

where the matrix of coefficients Zkm is symmetric. The symmetry of the Z- 

matrix is the essential content of the reciprocity theorem; the linearity and 

homogeneity of the equations of the 2n-pole can be inferred directly from the 

same properties of Maxwell's equations in R. 

8. A REACTANCE THEOREM 

By an application of Poynting's theorem, one can obtain a fundamental 

formula relating the impedance matrix of a 2n-pole to the fields in the in¬ 

terior of the 2n-pole. Consider a 2n-pole which satisfies the hypotheses 

used in section 7, assuming now for simplicity that the media involved are 
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isotropic. Assume also that /x and e are real) dielectric losses, if present, 

are to be represented by an equivalent conductivity included in a. Poynting's 

theorem (for the complex Poynting's vector) applied to the region R bounded by 

the surface S states that 

if Ex H*.k.dS = / i a E.E*dr + j a f --§-E*E») dr (8.1) 
s R R 

where the notation is carried over from section 7. As in section 7, the sur¬ 

face integral may be split into the sum of integrals over the terminal surfaces 

plus an integral over the spherical surface S'. The sum of the integrals over 

the terminal surfaces reduces to the matrix product i I^"V, or to i I^ZI, where 

ZI replaces V. Eq. (8.1) becomes 

i I+ZI = i f E X H*• n dS + f i a E.E’dr + ja> f (-^H*H* --§- E.E*)dr, (8.2) 

where Q denotes the outward normal on S'. For a shielded 2n-pole, the S'- 

integral contributes nothing, since the integrand vanishes. If the 2n-pole 

is not shielded, the radius r of the surface S' must be made to become in¬ 

finite, and R becomes a region of infinite extent. The contribution of the 

S'-integral to the right-hand side of (8.2) is real (as may be seen by ref¬ 

erence to the form of the field for large r, eqs. 7.7), and represents the 

time-average of the power lost by radiation. (For many circuit 2n-poles, even 

if unshielded, the radiation loss is negligible.) The second term on the right Sl 

of (8.2) gives the Joulean and the dielectric power losses in the 2n-pole. 

The last term, which is pure imaginary, is 2jo> times the difference of the 

time-average magnetic and electric energies of the field of the 2n-pole. Writ¬ 

ing Q for the total power dissipation, and UH, UE for the magnetic and the elec- si 

trie energies, eq. (8.2) becomes for the special case of a two-pole, 

Zn = Rn + Jxn = ff-p [Q + 2>(uH - UE)]. (8.3) 
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This equation throws some light on the physical meaning of impedance: R1± 

is determined by the losses; X11? by the reactive energy unbalance. 

It has already been remarked that the calculation of the field, partic¬ 

ularly in microwave problems, is in general very difficult. On the other hand, 

it is not difficult to derive a general property of the reactance matrix of a 

lossless 2n-pole. The property in question is a generalization of an essential 

part of the content of Foster's reactance theorem for circuits, viz., the fre¬ 

quency-derivative of the reactance of a lossless linear two-pole is positive, 

dX 
11 

da> 0. 

For 2n-poles, the corresponding statement is that the frequency-derivative of 

the reactance matrix is positive definite. A proof of this statement will now 

be given for the generalized type of 2n-poles considered in this paper. 

The field of a lossless 2n-pole which satisfies the hypotheses of the 

reciprocity theorem (section 7) is subject to Maxwell's equations in the form 

curl £ - -j 

curl H - +joeE. 
(8.4a) 

The parameters e must be real; for simplicity it is assumed that e are 

scalars and that they are independent of frequency in the frequency-range 

considered. (It is sufficient that de/dco and be positive definite or 

zero.) Moreover, the 2n-pole must be completely shielded so that radiation 

loss can not occur. The domain of the field E,H is a region R bounded by the 

surface S" with inward normal k. Since the physical boundaries of the field 

must be perfectly conducting, the boundary condition k x E = 0 must be sat¬ 

isfied everywhere on S" except on the terminal surfaces S (which form a part 

of S"). Let the fields on the terminal surfaces be specified in terms of a 

set of magnetic field amplitudes ("currents" in the circuit case) I ,1 ,• • • *,!„• 
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A solution of (8.4a) is thereby determined, and the corresponding electric 

field amplitudes Vm are related to the Im by the matrix equation 

V = Z(a>) I, 

where Z (o>) is the impedance matrix (at frequency a) of the 2n-pole, and V, I 

are one-column matrices with elements Vm and Im, respectively. Since the rec¬ 

iprocity theorem applies, Z(w) is symmetric; and since the 2n-pole is by hy¬ 

pothesis lossless, Z (co) is pure imaginary (section 6g) . Hence in place of 

V = Z(w)l, one may write 

V - jX(&>) I, (8.5a) 

where X (w) is real and symmetric. 

Let E', H' denote the 2n~pole field satisfying the boundary conditions 

determined by 115 12, • • • , Im at a new frequency &>'=&> + S«. The field equa¬ 

tions corresponding to (8.4a) are 

curl E' - 
(8.4b) 

curl H' = 4-jcj'eE', 

and the matrix equation corresponding to (8.5a) is 

V' = jXU') I. (8.5b) 

The matrix I is arbitrary, but by hypothesis it is the same for both eq.(8.5a) 

and eq. (8.5b). 

It should be noted that in a waveguide, the terminal fields determined 

by I are not necessarily the same for the two frequencies o' and &>. For, go¬ 

ing back to eqs. (5.4), (5.2), one finds that Hm and are given by 

S„ -1„<*„.!.>*!£. * £<,.» 

a: - * £..> 
where the primes denote quantities associated with the frequency &>' . The wave 

admittance Ym depends* on frequency for modes other than principal modes; FQm, 

however, is a function of geometry and does not depend upon frequency. The 
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sub sequent calculation is appreciably simplified by choosing yom(o>) = [Ym(«)]-1. 

The V,I-representation to be used thus depends upon frequency in a particular 

way, and this necessarily affects the frequency-dependence of X (&). With this 

choice of representation, the last two equations above are replaced by the 

single equation 

H = I — m m k x F , 
— ra — o m 7 

(8.6) 

which holds for both a> and a>' . The corresponding equations for Em and are 

E — m v m F 
-01 J 

E' = V' F , 
—m m -on' 

(8.7) 

as obtained from eqs. (5.4), (5.2) with y s'Y’1. The discussion leading to 

eqs. (8.6) and (8.7) pertains only to waveguide terminal fields. For terminals 

of circuit type the question of representation does not arise. The special 

choice made above permits the calculation to be carried through in one formal 

manner for any kind of 2n-pole - waveguide, circuit, or mixed. 

By forming the quantity E' x H* - E x H'*, integrating its inward normal 

component over S"-, and applying the divergence theorem, one obtains 

n 

h ) / (E' x H* - E x H' *) \k dS = if div(£ x H'‘-E' x H*)dr, (8.8) 
L- S m R 
m = 1 * 

since E' xk=Exk=Oon the conducting surfaces. Using eqs. (8.6), (8.7), 

and the normalizing condition (5.3), the left-hand side of (8.8) is reduced 

to 

h d+v' - i+v) , 

where I^- is the transposed complex-conjugate of I. From eqs. (8.5), this 

quantity may be written 

4 jif [x(«')-x(«)]i 

which is, to the first order in 8o>, equal to 
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ij (I+^I)8*,. (8.9) 

Since X(a>) is real and symmetric, dX/dw is also real and symmetric, and the 

quantity (8.9) is therefore pure imaginary. 

The right-hand side of eq. (8.8) is transformed as follows. The inte¬ 

grand is, by a vector identity, 

div (E x H'* - E' x H*) = H'**curl E - E*curl H'* 

-H* *curl E'+ E'.curl II*. 

Maxwell’s equations (8.4) serve to eliminate the curls: 

div (E x H'* - E' x H*) = - j a> (^H* H' * + eE'*E*) 

+jw' (mH'.H*+ cE*E' *) . 

Letting H' s H + SH, E' s E + 8E, <u' = o> + 8cu, and expanding the right-hand 

side of the last equation, one obtains the quantity 

-2<oImag (eE* SE* + ,uH**SH) + j8<o(eE*E* + all'll*), 

correct to the first order. Hence, the right-hand side of (8.8) may be written 

as 

-ojlmag/ (eE* SE* + /*H* * SH) dr + j 8a> f (|-E*E* +-^H*H*) dr. (8.10) 
R R 

is zero to the first order. This information, however, is incidental; the de¬ 

sired result is obtained from the equality of the imaginary terms of (8.8). 

From (8.9) and (8.10), then. 

s* = jS* / (fE-E* + -f- H*H*) dr. 

Therefore 

(8.11) 
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where UH, UE represent magnetic and. electric energies, as in eq. (8.3). Since 

the quantity UH + UE is positive for every non-zero I, eq. (8.11) states that 

the frequency derivative of the reactance matrix is positive definite, as was 

to he shown. (For a> approaching a resonance frequency, UH + UE tends to in¬ 

finity, so that dx/dco is not defined at such exceptional frequencies.) 

It is perhaps worthwhile to write down the generalization of (8.11) 

holding for arbitrary choice of the yQm> Let an arbitrary representation of 

the fields at waveguide terminal surfaces be defined by the diagonal matrix yo 

with diagonal elements yol> y02,* *•y0m, and let Y0 denote the diagonal matrix 

of wave-admittances with diagonal elements Yl5 Y2,**«, Ym# (If some of the 

terminals of the 2n-pole are circuit terminals, the corresponding yom and Ym 

are to be understood to be equal to unity.) Then the reactance matrix X as¬ 

sociated with the representation yo is such that19 

Ityo 1 - 4<u„ * »E>- <8-12> 

In a normalized representation, y = 1, and (8.12) simplifies to 

*> I ■ 4<u» ♦ uE>> 

where x is the normalized reactance matrix. The equation is of the same form 

for any set of frequency-independent y0's. If the yom are chosen so that the 

■product y0Yo is independent of frequency (as was done in the derivation of 

(8.11)), eq. (8.12) reduces to eq. (8.11), as it should. 

19The X in eq. (8.12) is related to the X in eq. (8.11) by a transformation 

of the type discussed in section 6d. 



APPENDIX A 

MULTI-MODE INTERACTION 

. 

The extension of the discussion of the text to include multi-mode inter¬ 

action, as defined in section 4, is straightforward. An outline of this general¬ 

ization will suffice. 

Equations of the form (5.1), (5.2), (5.3) hold for each mode r in waveguide 

m. The amplitude coefficients Vjjj, ijjj of mode ?? in waveguide m are defined by 

E7? = V^E17 , 
— m m— o m 7 

H2 = i^h77 . — m m-om 

(5.4*) 

(A multiplier which could be inserted, as in eqs. (5.4), is here omitted for 

simplicity.) The tangential components of E and II on the mth terminal surface 

are 
A. A. 

E ’E77 = ' V^E77 , 
— m J_^ —m / m —om 7 

V = 1 V = 1 

A A m m 

n = S ’= S ’ i^h77 , —m / —m / m-om 7 

(A.l) 

V = 1 -V = 1 

where A denotes the number of non-attenuated modes admitted in waveguide m. 

The complex power input at the mth terminal surface is given by 

Wm = h f (E x II*) *k dS. 
m — m — m —m 

Because of the orthogonality property of the waveguide modes, 

as the sum of contributions from the individual modes, 

W m 

W can be written m 

V = 1 
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where 

w2 - 4 / <i; ■ i VJ i;: (5.s') 
5 m 

This is the basic power expression. Turning to the joining equations, and re¬ 

ferring to the notation and the discussion on pp. 14-15, it is clear that 

Ei * E2 , 

Si ■ S2 

express the joining condition. From the orthogonality (or from the linear in¬ 

dependence) of the waveguide modes, it follows that the amplitudes must satisfy 

V7? = V7? 
1 2 ’ 

(5.12’) 

I77 =-I17, 
X1 x2 7 

where 77 = 1,2y • • •, \1 (and \1 = X.2, of course). 

Equations (5.8'), (5.12') are formally identical to the corresponding 

equations previously obtained. Thus a multi-mode waveguide transducer can be 
n 

treated as a 2M-pole, where M = ^ ' \m. The transducer theory of section 6 

m = 1 

can be adapted to the multi-mode case without formal change in that theory by 

the expedient of numbering the variables V^j, 1% serially in some order and 

denoting them by V , Im, where m = 1,2,****,M. With this notation the rec¬ 

iprocity theorem of section 7 and the reactance theorem of section 8 apply 

formally unchanged. 

For some purposes, however, it is convenient to retain the superscript 

identification of mode and the subscript identification of waveguide. The 

equations of a linear source-free waveguide transducer, having m = 2, k± = 2, 

X.2 = 3, for example, may be written 
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n z11 
^11 

Z12 
^11 

z11 
^12 

z12 
^12 

71 3 
“l 2 1; 

n 7 2 1 ?22 721 
**12 

z22 
**12 

Z2 3 
12 

Vl = Z11 
L2 1 

712 z2i 
7n 
^22 

Z12 z22 z13 
22 *2 

n 7 2 1 
A2 1 

z22 
L21 

7 2 1 
^22 

z22 
**2 2 

Z23 
L2 2 1; 

1 
>

 
| 

73 1 LZ 1 
Z32 

21 
731 
^22 

Z3 2 
2 2 

Z33 
2 2 IJ2 

The coefficient may appropriately be called the open-circuit transfer 

impedance from mode /i in waveguide k to mode tj in waveguide m. If the reci¬ 

procity condition is satisfied, the above impedance matrix is symmetric, i.e., 






