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ABSTRACT 

The fields generated by an arbitrary current distribution exciting a 

piston-type attenuator are developed, and symmetric distributions exciting 

maximum amplitudes of the dominant mode, and minimum amplitudes of unwanted 

modes are investigated. The relative error in voltage measurement due to 

spurious modes is computed as a function of spacing between exciting and 

receiving coils for certain simple current distributions. The relative 

merits of circular and rectangular attenuator cross-sections are discussed. 

I. Introduction 

The waveguide below cut-off attenuator, also known as a piston or 

mutual inductance type attenuator, was first designed by Wheeler, Harnett 

and Case-*- for use in signal generators, and has since found wide appli¬ 

cation. The method consists in exciting a hollow tube below its cut-off 

frequency and receiving the att enuated field by means of a coil or condenser. 

Since the generated electromagnetic field falls off exponentially with 

distance from the exciting source, and since the attenuation constant may be 

computed from the dimensions of the tube, the ratio of any two voltages is 

reduced to a measurement of length. 

Preparatory to the design and construction of such an attenuator, it 

was thought advisable to investigate the theory to determine the kind of 

excitation required for optimum mode purity, and an evaluation of the 

amplitudes of the unwanted modes, for different types of excitation, A 
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rigorous solution of the problem is impossible, but an approximate so¬ 

lution which is useful consists in determining the field produced by an 

arbitrary current distribution within a waveguide closed at both ends. 

Here the perturbation of the field by the receiving loop is neglected, 

_;o/t 
Thus, given a distribution of current density, J(x', y', z')e 

we seek the field produced within a perfectly conducting cavity. The 

scalar analogue, where J(x', y', z') is replaced by f , the charge 

p 
density, is well known, and has been treated elegantly by Sommerfeld , 

The vector problem is solved analogously, by expansion into orthogonal 

vector wave functions, and has been treated by -Heitler^, Condon^, and 

others. For completeness, the method is outlined below. 

2o Expansion of the Field into Normal Vector Functions. 

We use MKS units, and assume the fields and source vary as e**1* 

Then, according to Maxwell's equations^, we must find a solution of 

V x V x E - fc^E = j OJ/t J (1) 

subject to the boundary condition that n x E = 0, on the surface S, of 

the cavity where n is the normal on S. E is the electric field, and J 

the impressed current density. Since any veator field may be shown to 

consist of two parts, one of zero curl, and the other of zero divergence, 

let J = J-j_ J2, where curl J-^ z 0, and div J2 = 0. 

Then J1 

Let E = E^ •*- E2, where curl = 0, and div ^ = 0 
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Then E^ “V f 

curl2 Eg -k2 E, = jUJ/u. l2 (2) 

e = - j 
-1 k2 -1 

(3) 

If fee is a solution of + k\ = 0, and 'I'at = 0 on 

the interior surface of the cavity, V H'* X n = 0 on S. If the 

are normalized, and orthogonal, then -r-VTa are normalized and orthogo- 
K* 

nal, since 

J'vf.' Vf,aT=/(vCt,Vt«3-rpVZ'IV)dT»kiytpdT 

Here dT is an element, of volume, and the integration is performed 

throughout the volume of the cavity. 

Then if we call the normalized *jj“ V - E & , an arbitrary 

irrotational vector function whose tangential component vanishes on S may 

be developed in terms of the E a . 

Thus, 

h e I a« E «. 

where a a ■-/Ei’gadT 

4 * iyj|-E«dTE« 

Substituting the above values of E^ and in (3). 

EAt) -- - - I/b,(r')-E «(r')dT'E„(r) (4) 
1 k2 * 
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If we had a complete set of orthogonal vector wave functions, Ep , 

and if div Ep - 0, and n x Ep ~ 0, an arbitrary solenoidal vector, whose 

tangential component vanished on 3, in particular E^, could be expanded 

in terms of the E o . Suppose the Ep are solutions of 

curl2 Ep Ep = 0, 

where n x 0, and div Ep = 0. Then it may be shown that the Ep are 

orthogonal to each other, and to the E^. 

Let ^2 =1 e/0 E/J ’ and let l2 ~T$p %p 

; r 
' Then, = yj^.E^dT 

Substituting the above values for E0 and in Eq» (2), 

e« = fj ,Ea 
P kjpk2 J “2 ~fi 

■2 

dT 

_ dT' v / N 
£ s j CaJ M, 5 ■ ^ _/}\^/ 

E* J ^ (k2 -k2) . P 

(5) 

Since the E* are orthogonal to the Ep , and the E^ and Ep are 

assumed complete for expansions of electric fields of zero curl and zero 

divergence, respectively, ./j^.E* dT dT * 0. Accordingly, we may 

drop the subscripts in and in Eq. (4) and (5), and substitute the 

total current density, J. 

Thus, E (r) = r')*E« (r1 )dT'Eoc (r 

g2(r) = 

) (6). 
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3. Attenuators of Circular Cross-Section 

We consider now the normal vector modes for the circular cylinder 

of radiu3 a, and length d, where and k are the unit vectors in the 

directions of increasing r, 9 and z. 

Orthogonal vector wave functions have been treated by Stratton, and 

the normal vector modes ere most easily obtained by following his treatment, 

and satisfying the appropriate boundary conditions. For the interior of a 

circular cylinder, 

Here > i, ' - nm ^r5 , where Jn (unm) = 0. (8) 

and = yZ = . 2 + (3 L IT ^2 
d ' 

(9) A. CC 
nml ^nm 

T V 

The normalizing factor, F i3 

ii 

aij f\ZT- 2 6" \ 1 (10) 
0 

\vT-46n/ a 
o 

v/tTd 
| Jn-1 < ^ nma>| 

The normal vector modes , consist of two independent, mutually 

orthogonal sets, the transverse electric type, which we designate as , 

and the transverse magnetic type, which we designate as N 
P * 
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V LVa “ o 
- |"n (“risn|)Jn (6 nm r) i. - 

o j^r L & nu Jn^ ^ nm 
ccs n© >i ! 
sin n© '-2 

X sin l*i>? 
d 

(11) 

Here, & Ijn = vrjn, JA(vnm) =0 

and , 
nml 

& ^ * (I'rr)' 
° run c[~ (12) 

The normalizing factor is 

™ \/nd(l*6j)y^ -n* Jn(vm) (12a) 

nm O 

^nm\A^m | l2 >r2 \/1^ 6o 

f <"g5 8§> **n r>i2 j ** 

-p sin lip { (sin ne)VJA (X™ r^—! <«) 
d d 

nm cosJuDLS Jn (^nm *0 <S?S n8> 35 

When no ambiguity results, we 3hall omit the subscripts 1, m, n, and 

write X for instance, as X . We also omit the even, odd designations 

(q), and write ra® ar. n, the even, odd designation being implied. 

Sub9titvc. "ng (11) and(l3) in (6), 

—2 
lOJUST '■ - M (r1 )dT* M(r) ♦ j^V/l(r 1) * N(r')dT' N(r) 

<52+(£l)2~k2 L. xM^f-k2 
n,m,l ' d ’ n,m,l + \ d / * 

(14) 

Call the f: .t summation A, the second B, so that 

l2. : A t B 

Let M ’ ‘ = A„... m_sin 1 z 
"nml ■4an —— 

nm 
* l <"S8 38} Jn {6r)^l -("?n SB) <5 J*(^Oi2 where me 

~*o, 
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Then 
sin n 

^ j'tlir') »m(rf) s(r)V" d 

n,m 

w sin 1 Yr z! sin 1 It z 
d dT' 

^ js^vrsF'" o “S~ 

(15) 

1=1 

In Appendix I, it is shown that 

oo 

I 
1=1 

1VTT z1 I Yr z 
sin d sin d : • d sinh *z! (l-e z) 

<52 * (12L); 
d 

2y (l.e-2K« 
.) e -yz 

where = / nm v 
*2 ~k2 vnm A 
7? 

Substituting the above in (lf>), and substituting the value of Anm given 

in (12a). 
CO 00 

-2? (d-z) 

2e “ *2 — A = X” 2e 0Zl (l-e~2a'd_1 j j(r*) «B|(r>)m(r)sinhAZ'dT'(l6) 

^Tq m=] ^ ^ * 6o) (vn2rri~n2”)j2()T 
n 

Let 

e 
Qnm: 

T, /cosn9\. ( sinn0\n T .. 
"^■nm vsin n 9/ ]± +Vcosn9)*• ^A 1* 

(17) 

and 

fnm = (lZl)jn^- (18) 
o 

Substituting (17) and (l#) in the second sum of (14), we get 

i = j j(A').y fsi 

n,m 

sin sin — 
a a \ (y) sir 

(19) 

Jl 
+ X n(/0p(A)) 

— wju 

a Bt sin Bp'cos Up ® arCos!S3'sini^ 
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oo COS COS 

*bmp<a>X {***f){i^')(x2-k2+^-2) 
dT 

E, =- 

Similarly, if we substitute eq. 17, 18, and 7 in eq. 6, 

n(A')Q(A)J 
jw/i 

®- sir,l$^ sin^ 

n,m 1 = 1 

^ iSsin^cos1-^ 
n(A',p(A)^ «■ * * 

1=1 X+“dT- 

- p(a')q(a)^~ -9- 

1=1 

llTcosi^sm^ 

■p(A')p(A)^ 

1=1 

~ - fr-2, COS COS 
d a 

d2 

dr 

(20) 

With a little manipulation, and B may be combined to give 

v— f j,£ %2 sin^2 sin^jp 
ii+§s^yi(/*:)*2.F2)Q(A',)i2(^^” 2. >£-b&. 

n,m 1=! 

S.^IcoslWsin13p MsiniiLZ'C0S!>Z <r— 

■n(rf)pW2- v ,/ *p(a')q(a)I ~T k%iiai 
1=0 X“K +_^2— 1=< ^ K + d2 

,£w2\ COS COS l^p= (21) 



Thus, the contribution to the field from is exactly equal and opposite 

to part of the contribution arising from B, so that the total field may 

now be divided into two part3, a transverse electric field, E , which 
"lE 

corresponds at low frequencies to indxictive coupling, and a transverse 

magnetic field, E , which corresponds at low frequencies to capacitative 

coupling. 

Thus, Etl r A 

-TM = * - 

E = E ♦ E 
“Total ~TE ~TM 

The various infinite sums are evaluated in Appendix I and II. When the 

values of these summations are substituted in eq. 15 and 21, we get 

00 £0 

£Te*&=^I £ xi+ 
2e 

•YnmZ^| _ Q-2V»m(d- 

->(l + 5n)(vn2m-n2)Jn£(Vnm)2Tnm(i-e 
n=0 ms| 

s,-2 ir>d 
) 

yj(A') * CDenm(A') rn® m(A)sin H tfnmZ'dr ’ 
o 

nmx 
(22) 

00 00 j V V {z-hl)e’’[,imZ 
£tm=£o8=-5j2_ 2- ■n,u*mJ^.l(u„m)0-e'z'l",’d) 

n=o m^i 

0-e-rtB"w_‘,) /&&)• Qnm^A'Qnm^Ilnmsin^SnmZ '>inmP„rr,('l')Dnm(/l)cos^11nnnz r cjxi - cm 
dr 
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+(l *e'2l,nmld'21)J^Y kmD„jA')p(A)sinhTlnmz‘-)?nmfomW)p(A)c-2!^' dT‘ 

where 1\rrm ~ \/^ 
(23) 

We notice first that the various modes are either in phase or 180° 

out of phase, which is, of course necessary, since we have neither re¬ 

sistive nor radiation losses. Also, the field does not decrease expon¬ 

entially with z, but contains a factor, (1 t e-2rf(ci'z) ) which is insig¬ 

nificant at small values of attenuation, but becomes appreciable as the 

receiving loop approaches the end of the cavity. If the attenuator were 

used in this way, its calibration in decibels would not be linear with 

variation of z. This non-linearity can be avoided if the attenuator is 

constructed as illustrated in Fig. 1. The exciting loop is fixed relative 

to a fixed end of the cavity, and the receiving loop is fixed to the other 

end which may slide within the cavity, varying its length, so that d - z 

is a constant. Since e~2Vd<< | , the denominator is independent 

of d and the ratio of E for a given mode, for two positions of the 
TE 

receiving loop, and z^, is e Q 1 2 , and the non-linearity is 

eliminated. 

A variable contact between piston and attenuator wall (Fig. l) 
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efJtee lively varies the attenuator length d, which enters in the expression 

for the field in the factor (1 i ). Thus, the effect 

of a variable contact at A can be minimized by choosing a value of d z 

such that e-2tf<d-Z)« | o Accordingly, a preferred design of piston is 

as indicated in Fig. 2, where the contact between piston and wall is made 

behind the receiving loop. 

In general, an infinite number of modes are excited, so that the 

best one can do to insure purity of mode is to use symmetry of excitation 

which will not excite those unwanted modes with the lowest attenuation 

factor, and to use large enough values of z, such that the unwanted modes 

are sufficiently attenuated. 

For low enough frequency, 

Ynm = — ^T* wh8r* Jn(Vnm) = 0 

W'/^'k2 ~ ^ JnWnmUo 
\ qC u 

nm nm 

u 
01 

- 2.405 
vn: 

U11 
= 3.832 V21 * 

u = 5.136 V = 
21 01 

u02 • 5‘520 

u = 7.010 
12 

v12 = 

v02 = 

are as follows: 

1.841 

3.05 

3.832 

5.33 

7.016 
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From the above values of u a»u v it is at once apparent that 
nm ' 

oaxiawm purity of mode can be achieved by exciting the TE^ mode, and 

eliminating the TE^ ? TE^, and TM^ modes through symmetry consider¬ 

ations. 

Consider the exciting current distribution in a plane perpendicular 

to the axis of the cylinder, Fig, 3. Assume that corresponding to every 

current element, J (r 9 ct ) where-AQ is the distance of the 
* *“1 o: ’ 

element from the axis of the cylinder, © is the angular displacement of 

its position vector with respect to the x°axis, and oc is .the angle 

between J, and the x-axis, there exist corresponding current elements, 

ij (a0, y -e, -of), j3 Tr +©,<*), iu Ue, 2V-e,- « ). 

Then, it immediately follows that 

yj9Q®mdT = yj“n3®mdr=0 for n even 
o o 

Further, if corresponding to a positive z-component of current at 

( Ao, 2^-0 ) and (/i0i?© ), there exist equal negative z-components 

of current at ( ju0i tr -0 ) and (/z0j *rr +0 ), then 

JJ * Pnm^^ = <~>f 
— ~o 

for n even 

In general, if the exciting current symmetry is such that the dis¬ 

tribution for x < 0 is the negative mirror image of that for x > 0, 

and if the distribution for y < 0 is the positive mirror image of that 

for y > 0, then only those modes will be excited for which n is odd. 

\ 
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A convenient index of attenuator performance is the percentage error 

made in a measurement of voltage as a function of the distance between 

exciting and receiving coils. The computed value of this error at 500 

megacycles per second is shown by curves a and b in Fig. 4 for an atten¬ 

uator with symmetrical and unsymmetrical receiving and exciting loops, 

(Fig. 5). Fig. 4 shows that a symmetrical exciting source permits a con¬ 

siderable decrease in the insertion loss, for a given accuracy tolerance, 

over that of an unsymmetrically excited attenuator. 

4. Attenuators of Rectangular Cross-Section 

Attenuators of rectangular cross-section may be treated similarly 

to those of circular cross-section. For a rectangular cavity, whose 

x, y, zp dimensions are a, b, c, with the origin of coordinates taken at a 

corner, the normalized vector wave function of zero curl is 

”"lmn 

The two independent normalized vector wave functions of zero diver¬ 

gence are 

"Vabc 
SI (19) 

and N_ 
"lmn 

/ 
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Again, when we solve for the field excited by a distribution of 

current, J(r0, part of the field developed into N functions exactly 
” “lmn 

cancels that part of the field whose curl is zero, so that the resultant 

field, Ey may be expressed as the sum of transverse electric and trans¬ 

verse magnetic components. 

g s-Ste + 

^c^MSjjAlsinhTlz' 
where E 

“TE 

and 

V _ 
-TM UJtab 

l.m 

e-nz . Tlz* , . (, a-zn(c-z)\ 
+ *n,n(* )S(<*)coshV v e / 

+ e-2TUC-Z)) dY 



where Slm-~ IcoslSistn^i + ™.5lB!fceo«BW i a a d-d a o — 

,, . Triv> m *rr y. 
Q r sin - s.n - _ - k 

Slm a 0 “ 

r* and r refer respectively to the position coordinates of J, and the 

point at which the field is evaluated. 

It will be noticed that Em, and E_, have the same value of atten- 
-TE -TM 

uation constant, for the same mode numbers, 1, m. 

Also, we shall assume that the receiving coil is rigidly fixed to 

the movable end of the cavity, so that the factor ( | + g-2H<c-Z) ) 

is cancelled out in the measurement of the ratio of any two voltages. 

The magnitude of the error introduced by the factor (1 - e'2Tlc ) is 

such, that if the smallest value of c used is always greater than 1.5 

times the larger dimension of cross-section, the factor will introduce an 

error of less than 1 part in 10,000 for the TE_^ mode, and less for higher 

modes. 

One advantage of an attenuator tube with rectangular cross-section 

over that with circular cross-section is that for the former, there is no 

need to discriminate between TE and TM type modes, for the same index 

numbers, 1, m, since for given values of 1 and m, the voltage 

induced in the collecting coil will vary as e c 

for TM and TE type modes, alike. Of course, for tubes of circular 

cross-section, this is not true, sxcept for cases of accidental degeneracy. 
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Fur ther, for tubes of rectangular cross-section, it is possible to 

secure greater suppression of unwanted modes by a suitable choice of 

ratio of the two dimensions of cross-section,, The following table 

enumerates the ratio of attenuation constants for various modes to that 

of the lowest mode, for various ratios of rectangular cross-section 

dimensions and for circular cross-section,, 

Table 1 

Rectangular Waveguide_Circular Waveguide 

.H u JL JL_ u 
■ .mmimm 

Mode 
7lTE Ol cot VE 1 cot Vo, HTE ' tll Mode 

a=b a=0„9b a_b 
a“2 as^ 

TE 
01 

1 1 1 1 1 TE 
11 

TE 
02 

2 2 2 2 1.31 
™01 

TE 
03 

3 3 3 3 1.66 TE 
21 

TE 
10 

1 1.1 2 3 2.08 
™01> ™11 

TE 
20 

2 2.2 4 6 2.79 TM 
21 

TEn> TMn 1.41 1-5 2.2 3.1 2,90 TE 
12 

TM21 2.2 2.4 4-1 6.1 3.0 TM 
02 

It becomes apparent that the optimum practical ratio in the above 

table is 2 = 3, and that this choice allows the unwanted modes to decay 

much faster than for circular cross-section. 
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If the exciting current distribution is chosen, so that to each 

element of cir*ent corvespo? ’s ito nega ,:ve mirror image with respect 

to the plane x = *, and its positive mirror image with respect tc the 
A, 

plane y s thei it is easily seen that 

/j(A>aJmdr' ^ 

yiK)-SlmdT' •> 

yjM-aimdY') 

s 0, for 1 odd or m even 

We shall prove the first of the above three equations. Proof of 

the other two may be carried out similarly. 

Consider a current element, J^(x’,y',z‘), situated at (x'j'jZ’Jj 

making an angle © with the x-axis. Then its negative mirror image with 

respect to the plane xs=~, call it J^, is 

situated at (a-x’jy’jZ1), making an angle 

-© with the x-axis. Also positive 

mirror image of with respect to the 

plane y«=£ is situated at (x1 ,t>-y',z') and 

makes an angle -0 with respect to the x-axis. 

Similarly, .^.situated at (a-x'.b-y'«- P-itive mirror taaEe of ^ 

with respect to the plane ys£ makes an angle © with the x-axis. 

■!i_ cos Itfx 'j * 1 sin PftxV cos mVr y; dT' 
a a a -J 

On substituting the positional coordinates corresponding to each 

J, ^ 

x=0,y=0 x=a 

current element, we get 



a<s- 
i 

/jOC dV • / |J| J ~m c°s 9 jsin mVy; ♦ sin mYK'b-y1) I cos Ifrx1 + cos ltr, 
^ J l b[b b J[ a a ' 

sin lvx - sin llr (a-x1) cos mVy! -cos mV (b-y1) 
La a' IL b b ‘ | a 

If we substitute in the above the trigonometric identities, 

cos lVx* + cos IV (a-x') * 2 cos IV cos (IV x * - lV ) 
a a 2 a 2 

sin IV xT - sin IV (a-x1) = 2 cos IV sin(lVx' - IV ) 
a a 2 a 2 

sin mYi* y* * sin mV (b-y*) = 2 sin mV cos (roVy1 - mV ) 
b b 2 ' b 2 

cos m*Tryt - cos mV (b-y *) - -2 sin mV sin (mVy1 - mV ) 
b b 2 ‘ b 2 

■ dY* 

we finally get, 

/j.ocdV = -4 sin mV cos IV (lJl[r 
2 2 J l 

m cos 9 cos (mVy1 - mV)cos(IVx1 - IVj) 
b b " 2 a 2 

+ 1 sin 9 sin(lVx * - IV )sin(mVy< -mV) 
a a 

dY* 

Accordingly, 

fJ.oC dY* = 0, for 1 odd, or m even. 
J lm 



-19- 

The advantages of employing this type of symmetrical source distri- 

bution become apparent when we consult Table 1, and recognize that it 

eliminates four out of the first six spurious modes. 

Another advantage of' rectangular attenuators over those of cir- 

cular cross-section is the ease with which current distributions of 

slightly higher symmetry may be used to eliminate further spurious modes, 

by placing the current elements at the nodal points of the undesired 

modes. The relative voltage error for a rectangular attenuator with a 

simple symmetric loop source, and a double loop source, (Fig. 6) whose 

Y dimension is so chosen that modes for which m & 3 are not excited, 

is graphed in Fig, 4 

Attenuators for use at 20 to 30 megacycles per second with cir¬ 

cular and rectangular cross-sections have been constructed for testing 

the theoretical conclusions given in this report. Fig. 7 illustrates a 

tentative design employing rectangular guide. The application of the 

principles of symmetry discussed above is illustrated in the design of 

the coils, (Fig, 8) used with the circular type attenuator. 

These attenuators can also be used for microwave attenuation mea¬ 

surements by means of the heterodyne substitution method, wherein an 

unknown attenuator in an r-f channel is compared against the standard 

attenuator used in an i-f channel. 

5<. Conclusion 

It may be concluded, in general, then, that attenuators of rec¬ 

tangular cross-section have two advantages over those o? circular cross¬ 

section. 
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1. Greater symmetry with respect to the dominant mode in the rec¬ 

tangular guide permit one to eliminate more spurious modes. 

2. A slight departure from symmetry in the rectangular guide is 

not so serious as in the circular guide, since the spurious modes decay 

more rapidly in the former. 

Opportunity is taken here to thank Dr. Harold Lyons for his 

interest and helpful discussions during the course of this investigation. 
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Appendix I 

<0 sinlWsinmz 

Let r „ y T _n~d~ _ _d_ ST 

A. y2| fir2 “ tr2 Z_ 
1=1 0 +-^5- 1=1 

o » ■ 1W lYi^z £ v - sin sin ^ 

d2 «f2 -.2 
'T?4 

+ r 

2 Let 42 

d2 ^cos^(z-z')-cosi£(z + z') da y 

1" zw2‘ u +12 '4*214« 

OP 
COS (Xl— COS PC 1 

/3z-\? 

. .. Tr(z-r) ^Yi^Z + z') 
where C* - -g- » O- --— 

5 Consider f(z) -- 
»J<*z 

(/+z2)(e2'"'JZ-i) 
let Z = R(cos6 t jslnS) 

Then lim Zf(z) = 0, and lim zf (z) s 0, provided 0 ~ oc ~ 2Vr. 
R-*ao ' R-*ao 

ThenA the line-integral of f(z) around an infinite circle enclos¬ 

ing the complex plane vanishes. 

lim 
R-*eo ,/f( 

z)dz = 0 

7 

8 

Since f(z) has poles at £j/^, 0 , iI, ± 2, . . . , 
1-co 

0*1 
15-00 

CO 

e'i0“ 4 tr e 

P {e'™- 

exe 

e2'rw’-i 

or Zcos oc 1 _ 

T7¥- 
-co 

-lr 
£ 

e«* e ^ 

e2^_i e*2Yl'/J-l 

On substituting (8) in (3)? with a little algebra we get immediately 

, _ d sinhlMt-e-2*1'’-21) .-vi 
S1 - Tv —jipva-e 
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ARBfiftflfo.Jj 

Let S2 * 
k-3L sin l-fr-ft? cos 12LA 

d d d 

1=0 

d 3X 

ff? ♦ ( 1_£ )' 
d 

r 
2 Then S0 * “tar * -2 sinh z' 

,rz a z 

>2ffd -1 -2 yd 

CO 

Let S„ 
■I ^ 

L-J3L coa z-’- Gin 

.=l 2 + (i-TLl2 
d 

Then So s t.Sl = "4 coah *' 
-? dz’ 2 

.az 

*2tfd -1 

Let S> 
■I 

n_H_)2 cog LIT..a,cos _jLELz‘ 
d d d 

-* 2 2 
o + (irr) 

VT~' 

d S' 
Then S. a dz* e 

4 

-tf d 
~2~~ cosh z' 

2yd 

.JL*2 
-2*3“ -1 
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Currant distribution in plana perpendicular to axis of 
cylinder. 



\ 

4 S- 
•• 

1 



R
e
la

ti
v
e
 

E
rr

o
r 

in
 

V
o

lt
a
g

e
 

Voltage Attenuation m decibeis 

Fig. 4. 





b) Symmetric loop. a) Ufcapmctric loop. 

fig. 5. Scharaatie of wcoltlag and roooiviag loops in circular guido. 
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b) Symmetric double loop placed at nodes so that no modes 
are excited for which B * 3. 

Fig. 6. Schematic of exciting and receiving loops in rectangular guide. 
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Cross-Section 

Fig. 7. Assembly^ 



Cv toff Attenuator with 

Rec tangular Cross-Section 

ctabular attenuator • 



Connector* fe) 



Cutoff Attenuator with 

F\ EC TANGULAR Cross-SECTION 

Worm Gear Motor 

rectangular attenuator • 





Exciter Coil Ft. 8a 

Fig. 8. Parapoctire drawing of coil form® for circular attenuator • 








