PART B
 SOLAR - GEOPHYSICAL DATA

ISSUED
MAY 1960
U. S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS
CENTRAL RADIO PROPAGATION LABORATORY BOULDER, COLORADO

SOLAR-GEOPHYSICAL DATA

CONTENTS

INTRODUCTION

I DAILY SOLAR INDICES
(a) Relative Sunspot Numbers and 2800 Mc Solar Flux
(b) Graph of Sunspot Cycle

II SOLAR CENTERS OF ACTIVITY
(a) Calcium Plage and Sunspot Regions
(b) Coronal Line Emission Indices - April 1960
(c-e) Coronal Line Emission Indices - Jan., Feb., Nar. 1960

III SOLAR FLARES

(a-e) Optical Observations - April 1960
(f) Flare Patrol Observations - April 1960
(g-h) Subflares - March 1960
(i-j) Optical Observations - January 1960
(k) Flare Patrol Observations - January 1960
(1) Errata to Optical Observations - December 1959
(m) Ionospheric Effects (SWF) - March 1960
($n-0$) Ionospheric Effects (SEA-SCNA-Bursts) Feb., Mar. 1960
IV SOLAR RADIO WAVES
(a) 2800 Mc -- Outstanding Occurrences (Ottawa) April 1960
(b) 169 Mc -- Outstanding Occurrences (Nançay) April 1960
(c-d) 167 ic -- Outstanding Occurrences (Boulder) April 1960

V GEOMAGNETIC ACTIVITY INDICES

(a) C, Kp, Ap, and Selected Quiet and Disturbed Days
(b) Charts of Kp by Solar Rotations

VI RADIO PROPAGATION QUALITY INDICES

North Atlantic:
(a) CRPL Quality Figures and Forecasts
(b) Graphs Comparing Forecast and Observed Quality

Note: The "Graphs of Useful Frequency Ranges" for March 1960 will be published later.
North Pacific:
(c) CRPL Quality Figures and Forecasts
(d) Graphs Comparing Forecast and Observed Quality

VII ALERT PERIODS AND SPECIAL WORLD INTERVALS
(a) Aleris and SWI

SOLAR - GEOPHYSICAL DATA

INTRODUCTION

This monthly report series is intended to keep research workers abreast of the major particulars of solar activity and the associated ionospheric, radio propagation and other geophysical effects. It is made possible through the cooperation of many observatories, laboratories and agencies as recorded in the detailed description of the tables and graphs which follows. The report is prepared in the Radio Warning Services Section, edited by Miss J. V, Lincoln.

I DAILY SOLAR INDICES

Relative Sunspot Numbers -- The table includes (1) the daily American relative sunspot numbers, R_{A} ' as compiled by the Solar Division of the American Association of Variable Star Observers, and (2) the provisional daily Zurich relative sunspot numbers, R_{Z}, as communicated by the Swiss Federal Observatory. Because of the time required to collect and reduce the observations, $R_{A}{ }^{\prime}$ will normally appear one month later than RZ.

The relative sunspot number is an index of the activity of the entire visible disk. It is determined each day without reference to preceding days. Each isolated cluster of sunspots is termed a sunspot group and it may consist of one or a large number of distinct spots whose size can range from 10 or more square degrees of the solar surface down to the limit of resolution (e.g. l/3 square degrees). The relative sunspot number is defined as $\mathrm{R}=\mathrm{K}(10 \mathrm{~g}+\mathrm{s})$, where. g is the number of sunspot groups and s is the total number of distinct spots. The scale factor K (usually less than unity) depends on the observer and is intended to effect the conversion to the scale originated by Wolf. The observations for sunspot numbers are made by a rather small group of extraordinarily faithful observers, many of them amateurs, each with many years of experience. The counts are made visually with small, suitably protected telescopes.

Final values of R_{Z} appear in the LAU Quarterly Bulletin on Solar Activity, the Journal of Geophysical Research, these reports, and elsewhere. They usually differ slightly from the provisional values. The American numbers, R_{A}, are not revised.

Solar Flux Values, 2800 Mc -- The table also lists the daily values of solar flux at 2800 Mc recorded in watts/ $M^{2} / c y c l e / s e c o n d ~ b a n d w i d t h$ ($x 10^{-22}$) in two polarizations by the National Research Council at Ottawa, Canada. These solar radio noise indices are being published in accordance with CCIR Report 25 that a basic solar index for ionospheric propagation should be measured objectively and "preferably refer to a property of the sun such as radiation flux which has direct physical relationship to the ionosphere."

Graph of Sunspot Cycle -- The graph illustrates the recent trend of Cycle 19 of the ll-year sunspot cycle and some predictions of the future level of activity. The customary " 12 -month" smoothed index, R, is used throughout, the data being final R_{Z} numbers except for the current year. Predictions shown are those made for one year after the latest available datum by the method of A. G. McNish and J. V. Lincoln (Trans. Am, Geophys. Union, 30, 673-685, 1949) modified by the use of regression coefficients and mean cycle values recomputed for Cycles 8 through 18. Cycle 19 began April 1954, when the minimum R of 3.4 was reached.

II SOLAR CENTERS OF ACTIVITY

Calcium Plage and Sunspot Regions -- The table gives particulars of the centers of activity visible on the solar disk during the preceding month. These are based on estimates made and reported on the day of observation and are therefore of limited reliability.

The table gives the heliographic coordinates of each center (taken as the calcium plage unless two or more significantly and individually active sunspot groups are included in an extended plage) in terms of the Greenwich date of passage of the sun's central meridian (CMP) and the latitude; the serial number of the plage as assigned by McMathHulbert Observatory; the serial number of the center in the previous solar rotation, if it is a persisting region; particulars of the plage at CMP: area, central intensity: a summary of the development of the plage during the current transit of the disk, where $b=$ born on disk, $\ell=$ passed to or from invisible hemisphere, $d=$ died on disk, and $/=$ increasing, - = stable, $1=$ decreasing; and age in solar rotations; particulars of the associated sunspot group, if any, at CMP: area and spot count and the summary of development during the current disk transit, similar to the above. The unit of area is a millionth of the area of a solar hemisphere; the central intensity of calcium plages is roughly estimated on a scale of $1=$ faint to $5=$ very bright.

Calcium plage data are available through the cooperation of the McMath-Hulbert Observatory of the University of Michigan. The sunspot data are compiled from reports from the U. S. Naval Observatory, and from reports from Europe and Japan received through the daily Ursigram messages.

Coronal Line Emission Indices -- In the table entitled Provisional Coronal Line Emission Indices are summarized solar coronal emission intensity indicies for the green (Fe XIV at λ 5303) and red (Fe X at λ 6374) coronal lines. The indices are based on measurements made at 5° intervals around the periphery of the solar disk by the High Altitude Observatory at Climax, Colorado, and by llarvard University observers at Sacranento Peak (The USAF Upper Air Research Observatory at Sunspot,

New Mexico, under contract AF 19(604)-146). The measurements are expressed as the number of millionths of an Angstrom of the continum of the center of the solar disk (at the same wavelength as the line) that would contain the same energy as the observed coronal line. The indices have the following meanings:

$$
\begin{aligned}
\mathrm{G}_{6}= & \text { mean of six highest line intensities in } \\
& \text { quadrant for } \lambda 5303 . \\
\mathrm{R}_{6}= & \text { same for } \lambda 6374 . \\
\mathrm{G}_{1}= & \text { highest value of intensity in quadrant, } \\
& \text { for } \lambda 5303 . \\
\mathrm{R}_{1}= & \text { same for } \lambda 6374 .
\end{aligned}
$$

The dates given in the table correspond to the approximate time of CMP of the longitude zone represented by the indices. The actual observations were made for the North East and South East quadrants 7 days before; for the South Vest and North West quadrants 7 days after the CMP date given.

Once every three months Final Coronal Line Emission Indices are printed. These tables contain data from Pic du Midi and Kislovodsk as well as Sacramento Peak and Climax. The indices are computed in the same manner as for the provisional table.

To obtain rough measures of the integrated emission of the entire solar disk in either of the lines, assuming the coronal changes to be small in a half solar rotation, it is satisfactory to perform the following type of summation given in example for 15 October:

where N is the number of indices entering the summation.
Such integrated disk indices as well as integrated whole-sun indices are computed for each day and are published quarterly in the "Solar Activity Summary" issued by the High Altitude Observatory at Boulder, Colorado. In the same reports are given maps of the intensity distribution of coronal emission derived from all available Climax and Sacramento Peak observations, as well as other information on solar activity, such as maps made from daily limb prominence surveys in $\mathrm{H} \alpha$ and notes regarding the history of active regions on the solar disk.

Preliminary summaries of solar activity, prepared on a fast schedule, are issued Friday of each week from lligh Altitude Observa-
tory in conjunction with CRPL and include solar activity through the preceding day. These are useful to groups needing information on the current status of activity on the visible solar disk, but are not recommended for research uses unless such a prompt schedule of reporting is essential. The same information is included in the subsequent quarterly reports, with extensive additions, corrections and evaluations.

Note: From calibrations in February - March 1960 it was determined that all intensities from the Climax and Sacramento Peak Observatories during the years 1956-1959, inclusive, if multiplied by the factor 0.60 , will be expressed in millionths of equivalent Angstroms to a somewhat lower precision. Intensities prior to 1956 cannot be compared precisely with those obtained later because of changes in observing and reduction techniques. They may be converted roughly to millionths of equivalent Angstroms by the use of the table given by Billings and Varsavsky, 1955, Z s.f. Ap. 38, 160.

III SOLAR FLARES

Optical Observations -- The table presents the preliminary record of solar flares as reported to the CRPL on a rapid schedule at the sacrifice of detailed accuracy. Definitive and complete data are published later in the quarterly Bulletin on Solar Activity, I.A.U., in various observatory publications and elsewhere. The present listing serves to identify and roughly describe the phenomena observed.

Reporting directly to the CRPL are the following observatories: McMath-llulbert, Wendelstein, Sacramento Peak, Mitaka and Swedish Astrophysical Station on Capri. The remainder report through the URSIgram centers or are available through the IGY World Data Center for Solar Activity in Boulder. Observations are in the light of the center of the H-alpha line unless noted otherwise. The reports from Sacramento Peak, New Mexico (communicated to CRPL by the High Altitude Observatory at Boulder) are from observations at the USAF Upper Air Research Observatory at Sunspot, New Mexico, by Harvard University observers, under contract AF 19(604)-4961.

For each flare are listed the reporting observatory, the date, beginning and ending times, time of maximum phase, the heliographic coordinates in degrees, McMath serial number of the region, duration, the flare importance on the TAU scale of l- to $3+$, observing conditions where 1 means poor, 2 fair and 3 good, time of measurement for tabulated width of H_{α} or tabulated area, measured (i.e. projected) maximum area in square degrees, corrected maximum area in square degrees which equals measured area times secant h where h is the heliocentric angle, maximum effective line-width in $H \alpha$ expressed in Angstroms, and maximum intensity of $\mathrm{H} \alpha$ expressed in per cent of the continuous spectrum. The following symbols are used in the table:

$$
\begin{array}{ll}
D=\text { Greater than } & F=\text { Approximately } \\
E=\text { Less than } & \delta=\text { Flus }
\end{array}
$$

A final column lists provisionally the occurrence of simultaneous ionospheric effects as observed on selected field-strength recordings of distant high-frequency radio transmissions; a more nearly definitive list of these ionospherice effects, including particulars, appear in these reports after the lapse of a month (see below). All times are Universal Time (UT or GCT). Subflares (importance l-) are listed by date, time of beginning and their heliographic coordinates. A graph presents intervals for which there were no patrols for flare observations from the observatories whose complete data are published in the table.

Ionospheric Effects -- SID, sudden ionospheric disturbances (and GID--gradual ionospheric disturbances) may be detected in a number of ways: short wave fadeouts (SWF), enhancement of low frequency atmospherics (SEA), increases in cosmic absorption (SCNA), and so forth.

A table lists SWF events that have been recognized on fieldstrength recordings of distant high-frequency radio transmissions. Under a coordinated program, the staffs at the following ionospheric sounding stations contribute reports that are screened and synthesized at CRPL-Boulder: Puerto Rico, Ft. Belvoir, Va, Boulder, Colo., and Anchorage, Alaska (CRPL Stations: PR, BE, BO, AN); Huancayo, Peru (CRPL-Associated Laboratory: HU): and Ft. Monmouth, N. J., White Sands, N. Mex., Adak, Alaska, and Okinawa (U.S. Signal Corps Stations: FM, WS, AD, OK). HcMath-Hulbert Observatory (MC) also contributes such reports. In addition, reports are volunteered by RCA Communications Inc., Marconi Wireless, Netherlands Postal and Telecommunications Services, Swedish Telecommunications, and others; these usually specify times of SHF and the radio paths involved. Through the URS Igrams, reports are available from still other stations as given monthly in the footnotes.

In the coordinated program, the abnormal fades of field strength not obviously ascribable to other causes, are described as short wave fadeouts with the following further classification:

S-SNF: sudden drop-out and gradual recovery
Slow S-SHF: drop-out taking 5 to 15 minutes and gradual recovery
G-SWF: Gradual disturbance; fade irregular in either drop-out or recovery or both.

When there is agreement among the various reporting stations on the time (UT) of an event, it is accepted as a widespread phenomenon and listed in the table.

The degree of confidence in identifying the event, a subjective estimate, is reported by the stations and this is summarized in an index of certainty that the event is widespread, ranging from 1 (poss-
ible) to 5 (definite). The times given in the table for the event are from the report of a station (underlined in table) that identified it with high confidence. The criteria for the subjective importance rating assigned by each station on a scale of l- to $3+$ include amplitude of the fade, duration and confidence; greater consideration is given to reforts on paths near the subsolar point in arriving at the summary importance rating given in the table.
Note: The tables of SID observed at Washington include in CRPL Freports prior to $\mathrm{F}-135$ were restricted to events classed here as $\mathrm{S}-\mathrm{SWF}$.

A second table lists sudden ionospheric disturbances which have been recognized on recorders for detecting cosmic absorption at about 18 Mc (SCNA) or on recorders for detecting enhancements of low frequency atmospherics at about 27 kc (SEA) together with solar radio bursts at 18 Mc as identified on the SCNA records.

Reports are received either directly or through the IGY World Data Center for Solar Activity at the High Altitude Observatory, Boulder, Colo. The following observatories report SCNA: Rensselaer Polytechnic Institute Observatory, Grafton, N.Y. (RE); Millath-Hulbert Observatory (MC): Sacramento Peak, N. Mex. (SP); lligh Altitude Observatory, Boulder, Colo. (BO): University of Hawaii, Makapuu Pt., Hawaii (HA). All of these also report solar noise bursts observed at 18 Mc. The SEA reports come from the following: Dunsink Observatory, Ireland (DU): three stations operated by the Netherlands PTT at Hollandia, Dutch West Indies (HO), Nederhorst den Berg, Netherland (NE), and Paramaribo, New Guinea (PA); Panska Ves Observatory near Prague, Czech. (PU); High Altitude Observatory, Boulder, Colo. (BO); Sacramento reak, N. Mex. (SP); McMath-Hulbert Observatory (MC); University of Hawaii (HA); Neustrelitz (NU): Kuhlungsborn (KU); and a group of American Association of Variable Star Observers located at Brooklyn, N.Y. (Al), Pittsburgh, Pa. (A2), Paterson, N.J. (A3), Powell, Ohio (A4), Ramsey, N.J. (A5), Oshkosh, Wis. (A6), China Lake, Calif. (A7), Manhattan,Kansas (A8), Oakland, Calif, (A9), and Blauvelt, N. Y. (Al0).

These reports are coordinated at CnPL-Boulder. When there is agreement among the various reporting stations on the time (UT) of an event, it is accepted as a widespread phenomenon and listed in the table. Some phenomena are listed, if noted at only one location, if there has been a flare or another type of flare-associated effect reported for that time.

In the table under the type of event the importance of the event is given on a scale of 1 minus to 3 plus. Next there is the index of widespread certainty ranging from 1 (possible) to 5 (definite). The time of beginning, maximum and end of the event in $U T$ is given as reported by the station underlined in the group of observing stations. If the event is an SCNA, a percent absorption figure is given. This absorption is calculated by

$$
\text { SCNA } \%=\frac{I_{n}-I_{f}}{I_{n}} \times 100
$$

where $I_{n}=$ noise diode current required to give a recorder deflection equal to that which would have occurred in the absence of a flare, i,e, a value extrapolated from cosmic noise level trend before and after a flare. The previous day's record may be considered if necessary.
and $I_{f}=$ noise diode current required to give a recorder deflection equal to the level at the time of maximum absorption.

IV SOLAR RADIO WAVES

2000 Mc Observations

The data on solar radio wave events made in Ottawa, Canada by the Radio and Electrical Engineering Division of the National Research Council (A. E. Covington) at $2800 \mathrm{Mc}(10-\mathrm{cm}$ emission) are presented. Near, local noon (about 1700 UT) the sensitivity of the radiometer is determined and a mean flux for the whole day calculated. These values are given in a tabular form (see table I-1) in units of $10-22$ watts/ $\mathrm{m}^{2} / \mathrm{c} / \mathrm{s}$. Burst phenomena are measured above this level and are given in terms especially suitable for the variations observed on this frequency. The basis for the classifications is described by CovingtonJ.R. Astro. Soc. Can. 45, 49, 1951 and Dodson, Hedeman and Covington, Ap. J. 119, 541, 1954. A modification in terminology with a view to simplification has been introduced and consists essentially of the omission of the descriptive word "Single" from the "Single-Simple" and "Single-Complex" classes; in designating the "Single", "Single-Simple" and "Rise and Fall" bursts into a single classification designated as "Simple Bursts" with an appropriate type number; in the addition of the letter " f " to indicate that the burst deviates from the basic pattern by the presence of one or more small fluctuations in intensity; and by the addition of the letter " A " to indicate that the event has another smaller duration event superimposed upon it.

Simple Burst

Any single burst which rises to one maximum and then decreases to the pre-burst level.

1 - Simple 1 -- Simple burst, type 1 (formerly "single"). Bursts of intensity less than $7 / 2$ flux units and duration less than $7 \mathrm{l} / 2$ minutes.

2 - Simple 2 -- Simple burst, type 2 (formerly "singlesimple"). Bursts of impulsive nature with intensity greater than 7 1/2 flux units.

3 - Simple 3 -- Simple burst, type 3 (formerly "rise and fall"). Bursts of moderate intensity with duration greater than 7 1/2 minutes.

4 - Post-burst increase -- Postburst level is greater than the preburst level. The gradual return to normal flux may require as long as several hours.

5 - Absorption following burst (negative post).
6 - Complex -- (formerly "single-complex"). A single burst which shows two or more comparable maxima before the activity has declined to zero.

7 - Period of irregular activity of fluctuations -- Series of overlapping bursts of moderate intensity and duration.

8 - Group -- Series of single isolated bursts occurring in succession with intensity between the events equal to the level before and after the group.

9 - Precursor -- A small increase of intensity occurring before a larger increase.

Great Burst

Infrequently occurring bursts of great intensity, often of complicated structure.

Letter "A"

Indicates that this event has another event superimposed upon it.

Letter " f "

Indicates that the basic form of the event is modified by secondary fluctuations.

CLASS TYPE

200 Mc Observations

Data on solar radio emission on 200 Mc recorded by the University of Hawaii (I. Miyake) at Makapuu Pt., Hawaii, are presented. The outstanding occurrences are reported as described under 170 Mc Observations with the exception that no intensity measurements are given.

Data on solar radio emission at the nominal frequency of 170 Nc recorded at the Gunbarrel Hill (Boulder) station of the National Bureau of Standards (C.G. Little) are presented. The half width of the antenna lobe is appreciably greater than the solar disk. Polarization is not determined, but the dipole is oriented E-W. All times are in Universal Time (U'T or GCT). Observations are interrupted during the period from 26 to 29 minutes after each hour for calibrations.

Beginning January 1,1959 the method of reducing the records has been changed. The 3-hourly and daily flux density and variability are no longer determined. The outstanding occurrences are reported. llowever, instead of giving the intensity to the nearest unit of 10^{-22} watts meter-2 (c/s)-1, a scale of 1 to 3 is now used where for the estimate of smoothed maximum flux:

$$
\begin{aligned}
& 1 \quad \text { signifies }<100 \times 10^{-22} \mathrm{wm}^{-2}(\mathrm{c} / \mathrm{s})^{-1} \\
& 2 \\
& \text { signifies }>100<1000 \times 10^{-22} \mathrm{wm}^{-2}(\mathrm{c} / \mathrm{s})^{-1} \\
& 3
\end{aligned} \text { signifies }>1000 \times 10^{-22} \mathrm{wm}^{-2}(\mathrm{c} / \mathrm{s})^{-1} .
$$

Starting and maximum times are read to the nearest $1 / 10$ minute if they are very definite and otherwise to the nearest minute. If the duration is less than five minutes, it is given to the nearest l/l0 minute; otherwise to the nearest minute. The following qualifying symbols are used:

$$
\begin{aligned}
E= & \text { Event in progress before observations began. } \\
D= & \text { Event continues after observations cease. } \\
I= & \text { Event apparently continued during an interruption of } \\
& \text { the observations. The period of the interruption } \\
& \text { may be given in the remarks. } \\
& =\begin{array}{l}
\text { atmospherics. be influenced by interference or }
\end{array}
\end{aligned}
$$

The types of the outstanding occurrences follow the classification described by Dodson, Hedeman and Owren (Ap J. 118, 169, 1953), in which the types are identified by numbers which describe the character of the trace, but not the magnitude of the event, as follows:

0 - Rise in base level -- A temporary increase in the continuum with duration of the order of tens of minutes to an hour.

1 - Series of bursts -- Bursts or groups of bursts, occurring intermittently over an interval of time of the order of minutes or hours. Such series of bursts are assigned as distinctive events only when they occur on a smooth record or show as a distinct change in the activity.

2 - Groups of bursts -- A cluster of bursts occurring in an interval of time of the order of minutes.

3 - Minor burst -- A burst of moderate or small amplitude, and duration of the order of one or two minutes.

4 - Minor burst and second part -- A double rise in flux in which the early rise is a minor burst.

6 - Noise storm -- A temporary increase in radiation characterized by numerous closely spaced bursts, by an increase in the continuum, or by both. Duration is of the order of hours or days.

7 - Noise storm begins -- The onset of a noise storm occurs at some time during the observing period.

8 - Major burst -- An outburst, or other burst of large amplitude and more than average duration. A major burst is usually complex, with a duration of the order of one to ten minutes.
$9 \mathrm{~A}, 9 \mathrm{~B}$, or 9 -- Major burst and second part or large event without distinct first and second parts -- If there is a double rise in flux, the first part, a major burst, is listed as 9A and the second part as 9B. The second part may consist of a rise in base level, a group or series of bursts, a noise storm. A major increase in flux with duration greater than ten minutes but without distinct first and second parts, is listed simply as 9.

O-RISE IN BASE LEVEL

2-GROUP

4 - MINOR +

I-SERIES

3 - MINOR

7-ONSET OF NOISE STORM

Note: In the present table, the type classifications 0 and 1 are not used; they have been included above only for information.

169 Mc Interferometric Observations

The 169 Mc interferometric observations are recorded around local noon at Nançay (Cher), France, ($\left.\mathrm{N} 47^{\circ} 23^{\prime}, E 8^{\mathrm{m}_{47}} \mathrm{~S}^{\mathrm{S}}\right)$ the field station of the Meudon Observatory.

The main lobes are parallel to the meridian plane: the half-power width is 3.8 minutes in the East-West direction and much larger than the solar diameter in the North-South direction. The main lobes are about 2° apart (Ann. Astrophys. 20, 155, 1957). The records give the strip intensity distribution from the center of the disk to 30^{\prime} to the West and East.

These daily distributions are plotted on the same chart giving diagrams of evolution (C.R. 244, 1460, 1957). Points of intensity $0.5-0.75-1.0-1.5$ and 2.0 times 10^{-22} watts $/ \mathrm{m}^{2} / \mathrm{c} / \mathrm{s}$ are joined day after day in the form of isophotes. Black dots give the position of the center of the radio spots for each day; a line indicates the width of the recorded lobe pattern when it can be measured with certainty. For each radio spot the smoothed intensity around noon is given in 10^{-22} watts $/ \mathrm{m}^{2} / \mathrm{c} / \mathrm{s}$.

Note that the isophotes cannot be measured when a radio spot of large intensity is on the disk.

Spectrum Observations

Data on solar radio emission in the spectral range $25-580 \mathrm{Mc} / \mathrm{s}$ recorded at the Radio Astronomy Station of Harvard College Observatory, Fort Davis, Texas, are presented. The research program is supported by financial assistance from the Air Force Cambridge Research Center, through the offices of Sacramento Peak Observatory.

The receiving equipment consists of five separate sweep frequency receivers covering the bands $25-50,50-100,100-180,170-320,300-$ $580 \mathrm{Mc} / \mathrm{s}$. The $25-50$ and $50-100 \mathrm{Mc} / \mathrm{s}$ receivers are each connected to broad band dipoles which are cross polarized and mounted over a reflecting screen. The other three receivers are attached to separate broad band feeds mounted coaxially at the primary focus of an 8.55 meter diameter paraboloid, the $170-320 \mathrm{Mc} / \mathrm{s}$ feed being cross polarised with the other two feeds. The effective collecting area of the antenna is 40 sq . meters at $100 \mathrm{Mc} / \mathrm{s}$ and 45 sq . meters at $500 \mathrm{Mc} / \mathrm{s}$.

The four types of recognized spectral activity are idealized be low:

The large scale examples of continum, sometimes called Type IV, are listed as "Cont. IV" in the tables. Photographic examples of the bursts have been published by Maxwell, Swarup, and Thompson (Proc. IRE 46, 142, 1958), and Maxwe 11 (Sky and Te lescope 17, 388, 1950; 18, 544, and 556, 1959). A few remaining solar radio bursts are tabulated as unclassified.

The symbols used in the tables are:

$$
\begin{aligned}
b= & \text { single burst } \\
! & =\text { small group }(<10) \text { of bursts } \\
G= & \text { large group }(\geq 10) \text { of bursts } \\
\rightarrow= & \text { hrrows indicate continuity of solar activity } \\
& \text { betiveen two Greenwich days. }
\end{aligned}
$$

The minimum detectable level g_{f} solar activity is a function of frequency: approximately 5×10^{-22} watts meter ${ }^{-2}$ (c/s) ${ }^{-1}$ at 500 Mc / s. The equipment records signals over an intensity range of approximately $10,000: 1$. There are three classes of intensity given in the tables. For $100 \mathrm{Nc} / \mathrm{s}$ they are:

$$
\begin{aligned}
& 1=\text { Faint, } 5 \text { to } 40 \times 10^{-22} \text { watts meter }-2(\mathrm{c} / \mathrm{s})^{-1} \\
& 2=\text { Moderate, } 30 \text { to } 200 \times 10^{-22} \\
& 3=\text { Strong },>200 \times 10^{-22}
\end{aligned}
$$

The times are liniversal Time (U. T.). The accuracy is to the nearest half minute, except in the case of major outbursts which are specified to the nearest 0.1 minute.

Details of the frequency ranges of activity may be obtained on request to the Radio Astronomy Station, Ft. Davis, Texas.

V GEOMAGNETIC ACTIVITY INDICES

C, Kp, Ap, and Selected Quiet and insturbed Days -- The data in the table are: (l) preliminary international character figures, C : (2) geomagnetic planetary three-hour range indices, Kp; (3) daily "equivalent amplitude," Ap; (4) magnetically selected quiet and disturbed days.

This table is made available by the Comittee on Characterization of Magnetic Disturbances of IAGA, IUGG. The Meteorological Office, De Bilt, llolland collects the data from magnetic observatories distributed throughout the world, and complies C and selected days. The Chairman of the Committee computes the planetary and equivalent amplitude indices. The same data are also published in the Journal of Geophysical Research along with data on suden commencements (sc) and solar flare effects (sfe), and principal magnetic storms.

The C-figure is the arithmetic mean of the subjective classification by all observatories of each day's magnetic activity on a scale of 0 (quiet) to 2 (storm).

Kp is the mean standardized K-index from 12 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 (very quiet) to 9 (extremely disturbed), expressed in thirds of a unit, e.g. 5- is $42 / 3,5$ is $t 0 / 3$, and $5+$ is $t 1 / 3$. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the ionospheric field. A complete description of Kp has appeared in Bulletin 12b, "Geomagnetic Indices C and K, $1948^{\prime \prime}$ of the Association of Terrestrial Magnetism and Electricity (IATAE), International Union of Geodesy and Geophysics.

Ap is a daily index of magnetic activity on a linear scale rather than on the quasi-logarithmic scale of the K -indices. It is the average of the eight values of an intermediate 3 -hourly index "ap," defined as one-half the average gamma range of the most disturbed of the three force components, in the three-hour interval at standard stations: in practice, ap is computed from the Kp for the 3-hour interval. The extreme range of the scale of Ap is 0 to 400 . The method is described in IATME Bulletin No. 12h (for 1953) p. viii f. Values of Ap (like Kp and Cp) have been published for the Polar Year 1932/33 and for the years 1937 onwards.

The magnetically quiet and disturbed days are selected in accordance with the general outline in Terr. Mag. (predecessor to J. Geophys. Res.) 48, pp 219-227, December 1943. The method in current use calls for ranking the days of a month by their geomagnetic activity as determined from the following three criteria with equal weight: (1) the sum of the eight Kp's; (2) the sum of the squares of the eight Kp's; and (3) the greatest Kp .

Chart of Kp by Solar Rotations -- The graph of Kp by solar rotations is furnished through the courtesy of Dr. J. Bartels, Geophysikalisches Institute, Gottingen.

VI RADIO PROPAGATION QUALITY INDICES

One can take as the definition of a radio propagation quality index: the measure of the efficiency of a medium-powered radio circuit operated under ideal conditions in all respects, except for the variable effect of the ionosphere on the propagation of the transmitted signal. The indices given here are derived from monitoring and circuit performance reports, and are the nearest practical approximation to the ideal index of propagation quality.

Quality indices are usually expressed on a scale that ranges from one to nine. Indices of four or less are generally taken to represent significant disturbance. (Note that for geomagnetic K-indices, disturbance is represented by higher numbers.) The adjectival equivalents of the integral quality indices are as follows:

$1=$ useless	$4=$ poor-to-fair	$7=$ good
$2=$ very poor	$5=$ fair	$8=$ very good
$3=$ poor	$6=$ fair-to-good	$9=$ excellent

CRPL, forecasts are expressed on the same scale. The tables summarizing the outcome of forecasts include categories P-Perfect: S-Satisfactory: ll-llnsatisfactory; F-Failure. The following conventions apply:

P - forecast quality equal to observed

S - forecast quality one grade different from observed

U - forecast quality two or more grades different from observed when both forecast and observed were >5, or both <5

F - other times when forecast quality two or more grades different from observed

Full discussion of the reliability of forecasts requires consideration of many factors besides the over-simplified summary given.

The quality figures represent a consensus of experience with radio propagation conditions. Since they are based entirely on monitoring or traffic reports, the reasons for low quality are not necessarily known and may not be limited to ionospheric storminess. For instance, low quality may result from improper frequency usage for the path and time of day. Although, wherever it is reported, frequency usage is included in the rating of reports, it must of ten be an assumption that the reports refer to optimum working frequencies. It is more difficult to eliminate from the indices conditions of low quality for reasons such as multipath or interference. These considerations should be taken into account in interpreting research correlations between the Qfigures and solar, auroral, geomagnetic or similar indices.

North Atlantic Radio Path -- The CRPL quality figures, Qa, are compiled by the North Atlantic Radio Warning Service (NARWS), the CRPL forecasting center at Ft. Belvoir, Virginia, from radio traffic data for North Atlantic transmission paths closely approximating New York-to-London. These are reported to CRPL by the Canadian Defense Research Board, Canadian Broadcasting Corporation, and the following agencies of the IJ.S. Government:--Coast Guard, Navy, Army Signal Corps, U.S. Information Agency. Supplementing these data are CRPL monitoring, direction-finding observations and field-strength measurements of North Atlantic transmissions made at Belvoir.

The original reports are submitted on various scales and for various time intervals. The observations for each 6 -hour interval are averaged on the original scale. These 6 -hour indices are then adjusted to the 1 to 9 quality-figure scale by a conversion table prepared by comparing the distribution of these indices for at least four months, usually a year, with a master distribution determined from analysis of the reports originally made on the 1 to 9 quality-figure scale. A report whose distribution is the same as the master is thereby converted linearly to the Q-figure scale. The 6-hourly quality figure is the mean of the reports available for that period.

The b-hourly quality figures are given in this lable to the nearest one-third of a unit, e.g. So is 5 and $0 / 3$: $5-$ is 4 and $2 / 3$: $5+$ is 5 and $1 / 3$. Other data included are:
(a) Whole-day radio quality indices, which are weighted averages of the four 6-hourly indices, with half weight given to quality grades 5 and 6 . This procedure tends to give whole-day indices suitable for comparison with whole-day advance forecasts which seek to designate the days of significant disturbance or unusually quiet conditions.
(b) Short-term forecasts, issued every six hours by the North Atlantic Radio Warning Service. These are issued one hour before $00^{\mathrm{h}}, 06^{\mathrm{h}}, 12^{\mathrm{h}}, 18^{\mathrm{h}}$, IJT and are applicable to the period 1 to 7 hours ahead.
(c) Advance forecasts (CRPL-J) are issued once a week and are applicable 1 to 7 days ahead. They are modified as necessary by the Special Disturbance Warning (CRPL-SDW) applicable lo 3 days ahead, which may be followed by a supplementary forecast (CRPL-Js) applicable to days remaining until next CRPL-J forecast. The forecast entitled "final" consists of the most recent of the above forms and is scored against the whole-day quality index.
(d) Half-day averages of the geomagnetic K indices measured by the Fredericksburg Magnetic Observatory of the U.S. Coast and Geodetic Survey.

A chart compares the short-term forecasts with Qa-figures. A second chart compares the outcome of the final advance forecasts with a type of "blind" forecast. For the latter, the frequency for each quality grade, as determined from the distribution of quality grades in the four most recent months of the current season, is partitioned among the grades observed in the current month in proportion to the frequencies observed in the current month.

Ranges of useful frequencies on the North Atlantic radio path are shown in a series of diagrams, one for each day. The shaded area indicates the range of frequencies for which transmissions of quality 5 or greater were observed. The blacker the diagram, the quieter the day has been; a narrow strip indicates either high LUlW, low MF, or both. These diagrams are based on data reported to CRPL by the German Post Office through the Fermeldetechnischen Zentralamtes, Darmstadt, Germany, being observations every one and a half hours of selected transmitters located in the eastern fortion of North America. Since January 6, 1958 the transmitters monjtored are restricted to those located north of 39° latitude. The magnetic activity index, AFr, from Fredericksburg, Va., is also given for each day.

Note: Beginning with data for September 1955, Qa has been determined from reports that are available within a few hours or at most within a few days, including for the first time, the CRPL observations. Therefore these are the indices by which the forecasters assess every day the conditions in the recent past. Over a period of several years, they have closely paralleled the former Qa indices which excluded CRPL observations and included three additional reports received after a considerable lag. Qa was first published to the nearest one-third of a unit at the same time.

North Pacific Radio Path -- The CRPL quality figures, Qp, are compiled by the North Pacific Radio Warning Service (NPRWS), the CRPL forecasting center at Anchorage, Alaska, from radio traffic data for moderately long transmission paths in the North Pacific equivalent to Seattle-to-Anchorage or Anchorage-to-Tokyo. These include reports to CRPL by the Army Command and Administrative Network, U. S. Air Force and Federal Aeronautical Administration. In addition, there are CRPL monitoring, direction finder observations and field strength measurements of suitable transmissions.

The original reports are on various scales and for various time intervals. The observations for each \cap hours or 24 hour period are averaged on the original scale. This average is compared with reports for the same period in the preceding two months and expressed as a deviation from the 3 -month mean. The deviations are put on the 1 to 9 scale of quality which is assumed to have a standard deviation of 1.25 and a mean for the various periods as follows:

| $07-18$ |
| :--- | :--- | :--- | :--- |
| $19-06$ |$\quad 5.33 \quad 00-24$ hours ITT $\quad 6.67$

The 12 -hour and 24 -hour indices $Q p$ are determined separately. Each index is a weighted mean where the CRPL observations have unit weight and the others are weighted by the correlation coefficient with the CRPL observations.

The table, analogous to that for Qa, includes the 12 -hourly quality figures; whole day quality figures; short-term forecasts issued by NPRWS twice daily at 06^{h} and $18^{\text {h }} \mathrm{UT}$, applicable to the stated 12 -hour periods; advance forecasts issued weekly by NPRWS (CRPL-Jp report) modified as necessary by Special Disturbance Warnings (CRPL-SDW) and supplementary forecasts (CRPL-Jps); and half-day averages of geomagnetic K indices from Sitka.

The chart compares the outcome of the final advance forecasts, on the same basis as the similar chart for the North Atlantic Radio Path.

Note: Beginning with March 15,1959 the short-term forecast schedule was changed from three times daily to twice daily. The North Pacific quality figures used for evaluation are now 12 -hourly rather than 8 -hourly.

VII ALERT PERIODS AND SPECIAL WORLD INTERVALS

This table gives the Advance Geophysical Alerts as initiated by the Western Hemisphere Regional Warning Center at Ft. Belvoir, Va., and also the Worldwide Geophysical Alerts and Special World Intervals as designated by the World Warning Agency, Ft. Belvoir, Va.

Advance Alerts are of four types, defined as follows:
1 - Solar Flare Alert -- this warning is issued whenever a solar flare of median importance 2 plus or greater has been reported. There will be only one alert issued per flare and only one a day at most.

2 - Magnetic Storm Alert -- this warning is issued whenever a significant magnetic storm, K figure 5 or greater at middle latitude station has begun.

3 - Cosimic, Ray Alert -- this warning is issued whenever a very outstanding change in cosmic ray flux has been observed -- increase or decrease.

4 - Aurora Alert -- this warning is issued whenever a magnetic storm in middle latitudes has reached K figure 7 intensity or whenever selected auroral stations report the presence of outstanding aurora.

- Worldwide Alerts are of the same tyres as the Advance Alerts, except that the Solar Flare Alert and Cosmic May Decrease Alert are omitted. Alert announcements include the event and time of event upon which the alert is based, and, in the case of the Advance Alerts, the station reporting the event.

The World Alerts and Special World Intervals are issued by the World Warning Açency on decisions based on Advance Alerts, advice received from Regional Warning Centers and overall policy.

$\begin{aligned} & \text { Mar. } \\ & 1960 \end{aligned}$	American Relative Sunspot Numbers $\mathrm{R}_{\mathrm{A}}{ }^{\prime}$
1	66
2	63
3	57
4	81
5	87
6	83
7	103
8	119
9	107
10	92
11	94
12	65
13	57
14	66
15	82
16	88
17	92
18	94
19	93
20	103
21	100
22	133
23	121
24	119
25	128
26	53
27	88
28	118
29	115
30	121
31	97
Mean:	93.1

Apr. 1960	ZÜrich Provisional Relative Sunspot Numbers R_{Z}	Daily Values Solar Flux at 2800 Mc , Ottawa, Canada Flux
1	140	201
2	143	184
3	152	179
4	162	188
5	156	182
6	143	169
7	123	165
8	112	147
9	98	148
10	103	156
11	107	159
12	136	168
13	128	179
14	133	183
15	162	190
16	159	183
17	110	178
18	116	176
19	128	170
20	116	175
21	123	163
22	108	160
23	99	166
24	96	165
25	95	147
26	96	143
27	86	140
28	99	142
29	82	153
30	100	161
Mean:	120.4	167.3

commeace - standards - bouloer

APRIL 1960

[^0]| $\begin{aligned} & \mathrm{CMP} \\ & \text { Apr } \\ & 1960 \end{aligned}$ | North East Quadrant (observed 7 days earlier) | | | | South East quadrant (observed 7 days earlier) | | | | South West Guadrant (observed 7 days later) | | | | North West Guadrant (observed 7 days later) | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | G_{6} | ${ }^{G}$ | ${ }_{6}$ | R_{1} | ${ }_{6} 6$ | G_{1} | R_{6} | R_{2} | ${ }^{6} 6$ | ${ }^{G} 1$ | R_{6} | R_{1} | G_{6} | G_{1} | R_{6} | ${ }^{\mathrm{R}} 1$ |
| 1 | 65 | 95 | x | x | 55 | 68 | x | x | x | x | 17a | 18a | x | x | 17a | 38a |
| 2 | 65 | 100 | x | x | 37 | 47 | x | x | 70 | 95 | x | x | 48 | 79 | 18 | 24 |
| 3 | x | x | x | x | x | x | x | x | 86 | 130 | 29 | 102 | 56 | 74 | 30 | 54 |
| 4 | x | x | x | x | x | x | x | x | 56a | 95a | 10a | 27a | 50a | 69a | 9a | 12a |
| 5 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
| 6 | 75 | 114 | x | x | 68 | 96 | x | x | 59 | 104 | 12 | 24 | 69 | 92 | 12 | 22 |
| 7 | x | x | x | x | x | x | x | x | 70a | 108a | 11a | 18a | 74 a | 119a | 12a | 19a |
| 8 | x | x | x | x | \times | x | x | x | 46a | 74a | x | x | 47a | 56a | x | x |
| 9 | x | x | x | x | \times | x | x | x | \times | x | x | x | x | \times | x | x |
| 10 | x | x | x | x | x | x | x | x | 38 | 80 | 16 | 27 | 44 | 62 | 16 | 19 |
| 11 | 27a | 38a | 5a | 8 a | 11 a | 248 | 9 a | 20a | 31a | 46a | 18a | 48a | 6la | 92a | 11a | 15a |
| 12 | 48 | 65 | 11 | 15 | 27 | 52 | 12 | 18 | 42 a | 64a | 14 a | 31a | 71a | 105a | 15a | 47a |
| 13 | 105 | 147 | x | x | 52 | 66 | x | x | 43a | 62a | 11a | 15a | 44 a | 63a | 18a | 32a |
| 14 | x | \times | \times | ${ }^{x}$ | \times | x | ${ }^{\text {x }}$ | ${ }^{\text {x }}$ | 60a | 94 a | 10a | 13a | 95a | 150a | 10a | 17a |
| 15 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
| 16 | 50 | 54 | x | x | 49 | 69 | x | x | x | x | x | x | x | x | x | x |
| 17 | 71 | 97 | 15 | 28 | 49 | 61 | 17 | 44 | 47 | 62 | 10a | 18a | 56 | 79 | 14a | 29a |
| 18 | 91a | 151a | 12a | 22a | 48a | 60a | 10a | 24a | x | x | x | x | x | x | x | x |
| 19 | x | x | \times | x | x | x | \times | \times | x | x | x | x | x | x | x | x |
| 20 | 105 | 132 | 12 | 18 | 52 | 80 | 5 | 12 | x | x | x | x | x | x | x | x |
| 21 | x | x | 18a | 30a | x | x | 11a | 17a | x | x | x | x | x | x | x | x |
| 22 | x | x | x | x | 20a | 28a | x | x | x | x | x | x | x | x | x | x |
| 23 | x | x | x | x | x | x | x | x | 148a | 244a | x | x | 102a | 126a | x | x |
| 24 | 4. | 66 | \times | x | 46 | 56 | x | x | x | - | x | x | | | x | x |
| 25 | 64a | 109a | 12a | 18a | 67a | 134a | 12a | 24a | x | x | x | x | x | x | x | x |
| 26 | 50a | 65a | 13a | 23a | 67a | 132a | 17a | 349 | x | x | x | x | x | x | x | x |
| 27 | 61a | 84 a | 11a | 29a | 65a | 88a | 9a | 12a | x | x | x | x | x | x | x | x |
| 28 | 58 a | 90a | 16a | 248 | 43a | 55a | 10a | 17a | x | x | x | x | x | x | x | x |
| 29 30 | x x | x x | x x | x | x
 \times | x | x | x | $\stackrel{\mathrm{x}}{\text { ¢ }}$ | 205 | ${ }^{\text {x }}$ | ${ }^{\text {x }}$ | x | ${ }^{\mathrm{x}}$ | x | x |
| 30 | x | x | x | x | x | x | x | x | 137a | 205a | x | x | 66a | 120a | x | x |

These coronal line intensities, expressed in millionths of equivalent angstroms are believed to be correct to ± 10 per cent, probable error, according to the calibrations of February-March 1960. All intensities from the Climax and Sacramento Peak Observatories during the years 1956-1959, inclusive, if multiplied by the factor 0.60 , will be expressed in the same
Intensities prior to 1956 cannot be compared precisely with those obtained later because of changes in observing and reducand Varsavsky, $1955, \mathrm{Zs}$. f. Ap. 38,160 .
FINAL CORONAL LINE EMISSION INDICES

$\begin{aligned} & \text { CMP } \\ & \text { Jan } \\ & 1960 \end{aligned}$	North East Quadrant (observed 7 days ex:lier)				South East Quadrant (observed 7 days earlier)				South West quadrant (observed 7 days later)				North West Quadrant (observed 7 days later)			
	G_{6}	${ }_{1}$	R_{6}	R_{1}	${ }_{6} 6$	${ }_{1}$	R_{6}	${ }^{R} 1$	6_{6}	G_{1}	R_{6}	R_{2}	${ }_{6} 6$	${ }_{1}$	R_{6}	R_{1}
1	89	111	9	11	62	121	5	7	45	74	11	29	96	120	18	32
2	126	177	10	14	59	81	8	15	31	51	4	5	55	65	8	10
3	x	x	\times	x	x	\times	x	x	76	87	8	15	72	95	6	34
4	56	72	12	22	55	69	14	34	x	x	x	x	x	x	x	x
5	84	100	9	14	89	222	16	31	x	x	x	x	x	x	x	x
6	97	117	17	22	88	109	20	45	x	x	x	x	x	x	\times	x
7	x	x	x	x	x	x	x	x	${ }^{\mathrm{x}}$	x	x	x	x	x	x	x
8	x	x	x	x	x	x	x	x	76	109	25	39	79	100	19	25
9	85	116	x	x	62	98	x	x	x	x	x	x	x	x	x	x
10	53	61	x	x	59	75	x	x	x	x	x	x	x	x	x	\times
11	70	79	14	20	x	x	11	14	112	141	31	51	112	488	7	16
12	130	171	x	x	49	86	x	x	52	81	13	22	68	82	25	41
13	108	153	17	24	78	146	10	14	x	x	x	x	x	x	x	x
14	60	68	x	x	33	48	x	${ }^{\text {x }}$	35	59	14	23	50	64	15	23
15	66	77	15	24	4.	62	9	12	46	59	7	12	49	59	8	14
16	48	64	11	19	34	47	5	6	x	x	x	x	x	x	x	x
17	85	105	3	9	81	91	0	0	31	68	x	x	64	104	x	x
18	x	\times	x	x	\times		x	x	x	x	\times	x	\times	x	x	x
19	x	x	x	x	x	x	x	x	18	28	8	10	82	125	28	38
20	x	x	x	x	x	x	x	x	54	94	20	46	152	210	27	42
21	x	${ }^{x}$	x	x	x	${ }^{\text {x }}$	${ }^{x}$	x	39	93	3	13	138	173	49	71
22	74	94	31	41	28	32	9	10	x	x	x	x	x	x	x	x
23	x	x	x	x	x	x	x	x	31	44	11	15	110	131	26	38
24	x	x	${ }_{7}$	x	${ }^{x}$	x	${ }^{x}$	${ }^{\mathbf{x}}$	36	54	10a	13a	95	114	119	14a
25	118	182	7	11	x	x	8	12	64	95	x	x	87	93	x	x
26	74	83	13	22	56	81	8	14	x	x	*	x	x	x	x	x
27	x	x	x	x	x	${ }^{\text {x }}$	x	${ }^{\mathrm{x}}$	x	x	x	\times	x	x	x	x
28	79	91	24	50	37	62	14	23	96	152	3	7	179	208	16	49
29	86	107	18	32	31	70	6	12	x	x	${ }^{\mathbf{x}}$	x	${ }^{x}$	${ }^{\mathbf{x}}$	x	x
30	\times	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
31	131	160	x	x	94	156	x	x	x	x	x	x	x	x	x	x

$a=$ index computed from low weight data. $\quad s=$ yellow line observed. $\quad x=$ no observations.
FINAL CORONAL LINE EMISSION INDICES

	$x \times 0^{\text {ch }}$（ $\times x \times x$	$x \times x \times x$			$x \times x *$
		$x \star \ldots \times$＊	$\times \infty 0 \times$＊	ベュべメぎ	$x \times x$＊
		$8^{x} \times x \times$			
야	× ત્નૈ	$\underset{6}{ } \times \times x \times$	$\times \text { "氖 } \times \underset{\infty}{ }$	ベさが\％	$\operatorname{Com}_{\infty} \times \times$
		$x \times x \times *$	$\times \underset{\sim}{\text { m }}$ O \times		$\star \times \ldots \times$
	$\times \times \underset{\sim}{\text { a }} \times \times \times \times \times$	$x \times x \times$	x－ $0 \times$	がさやす	$\star \times \ldots \times$
		$\underset{寸}{*} \times x \times x$	※		$n_{0}^{8} \times \times$
			\times－${ }_{\text {com }} \times$		윧＊＊
		$\underset{\sim}{\sim} \times x \times$＊	＊ ®－̇ $^{\text {a }}$	$\star \times$＊＊	\star＊\times
		$\overrightarrow{-1} \times \times \times$	メロナメ	$x \times x \times$＊	× \times＊
		－$\times x \times x$	으누才N＊	$\overrightarrow{7} \neq \times \sim$	＊\times＊${ }^{\text {c }}$
		$\underset{0}{ } \times x \times x$	N（1）	ベべ＊＊	$x \times \ldots$
		$\underset{-1}{ } \times \times \times$	＊～が我	$\star \star$＊	
	※昂	$\bigcirc \times \times$＊	${ }^{*} \mathrm{NH}^{(1)} \times$	$\times \times$＊${ }^{\text {＊}}$	＊\times＊
	×	$\underset{\sim}{ \pm} \times x \times x$	Ag A゚	$\underset{\rightrightarrows}{\infty} \AA^{\circ \times \times \infty}$	
		$\frac{a}{7} \times x \times x$			$\star \times \times$
		ニベデギべ	두구구N	NヘNへざN	

$a=$ index computed from low weight data．$\quad z=$ yellow line observed．$\quad x=$ no observations．
FINAL CORONAL LINE EMISSION INDICES

$a=$ index computed from low weight data. $\quad *=y e l l o w ~ l i n e ~ o b s e r v e d . \quad x=$ no observations.
SOLAR FLARES

SOLAR FLARES

	$\begin{aligned} & \text { 俭 } \\ & \text { 合 } \end{aligned}$								
文定完か	－a，	$\stackrel{n}{n} \circ{ }_{\sim}^{\circ} \underset{\sim}{\infty}$							
	$\begin{aligned} & \circ \circ \\ & \stackrel{\circ}{\sim} \\ & \dot{\sim} \dot{0} \end{aligned}$	$\begin{array}{lll}\circ & \circ & \circ \\ \stackrel{y}{*} & \stackrel{0}{*} & 0 \\ \sim & \sim\end{array}$	\circ ＋ N		¢ ＋	\circ $\stackrel{\circ}{\text { a }}$ $\stackrel{1}{2}$			$\circ \circ \circ$ ¢ N
	$\begin{aligned} & \text { 응 } \\ & \text { ㅇ } \\ & \dot{4} \dot{0} \end{aligned}$	$\begin{array}{ccc} \circ & 0 & 0 \\ \underset{\sim}{1} & 0 & 0 \\ \dot{N} & \dot{j} & \dot{N} \end{array}$						$\begin{aligned} & \circ \circ \\ & \text { 응 } \\ & \dot{j} \dot{~ m} \end{aligned}$	－
$2{ }^{\text {coser }}$	$\begin{array}{llll} 0 & \therefore 0 & N \\ i & 0 & n \\ \dot{N} \\ \dot{N} & \text { min } & \dot{m} \dot{N} \end{array}$		$\begin{aligned} & 0 \\ & \text { I } \end{aligned}$	$\begin{array}{ll} 0 & 0 \\ \stackrel{0}{\sim} & \dot{N} \\ \text { in } \end{array}$		$\begin{aligned} & \circ \\ & \text { m } \\ & \text { m. } \end{aligned}$	$\begin{array}{ll} \circ & 0 \\ \dot{m} & \text { in } \end{array}$	$\begin{aligned} & \circ \circ \\ & \text { a } \\ & \text { m ले } \end{aligned}$	\circ \sim \vdots
	$\left\lvert\, \begin{array}{llll} 0 & m & 0 & N \\ m \\ m & 0 & 0 & 0 \\ 0 & 0 & N \\ 0 & 0 & 0 & 0 \\ 0 & 0 & = \end{array}\right.$		$\begin{array}{ll} n & \alpha \\ \infty & N \\ 0 & \alpha \\ 0 & 0 \end{array}$	$\begin{array}{ll} n & n \\ m \\ \cdots & N \\ \cdots & = \\ = & =1 \end{array}$		$$	$\begin{array}{ll} 0 & \stackrel{y}{2} \\ \underset{\sim}{1} & \stackrel{1}{J} \\ 0 & \end{array}$	$\begin{aligned} & \sim 0 \\ & \sim 0 \\ & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	
	－mmmrmmm	m．mmmmmm	mm	mmm		m J	N	mm	mmmm
它宫皆							\rightarrow－r	$\rightarrow-$	$\rightarrow-\mathrm{N} \stackrel{+}{+}$
		COOOCOOOOO 						$\begin{aligned} & 00 \\ & \sim N \\ & \sim G \end{aligned}$	$\begin{array}{r} C O O \\ \sim N \sim \end{array}$
		$\infty \infty \infty$ in in in in in ma in	in in in in in ing in in in in in in in in in un n in				in in in in $\begin{array}{ccc}N & N \\ 0 & N \\ 0 & 0 & 0\end{array}$ in in in in	$\begin{aligned} & \text { no } \\ & \sim \\ & N \\ & \text { on } \\ & \text { in in } \end{aligned}$	
		$3 \cong 333333333$	M～ロの 					$\begin{array}{ll} \infty \\ \underset{\sim}{n} \\ \end{array}$	$\begin{aligned} & n \infty-\infty \\ & n \\ & n \\ & 3 \\ & 3 \end{aligned}$
㐍妥空								$\begin{array}{ll} \infty & 0 \\ 0 & 0 \\ \text { in } \end{array}$	
		0000000 No○みoomomoon 	OCODO OOO OOOO 				$\begin{aligned} & 00 \\ & 0 \\ & 0 \\ & N J \\ & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{ll} 00 \\ \mathrm{~N} & \mathrm{~m} \\ 0 \mathrm{n} \\ \text { oin } \\ 0 \end{array}$	
		 へ か Jo． intinmmoómmm 	 $\rightarrow \infty$ $\bigcirc 00000$	шшш －の～N m』 かった				$\begin{aligned} & N \\ & N \\ & \infty \\ & 0 \end{aligned}$	
		nn nn n n n nn nn nnn n 000000000000	 COOOOOOOOOOOOOOCOO				NAON	$\begin{array}{r} \infty \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \text { agag } \\ & \text { ogo } \end{aligned}$
资									

SOLAR FLARES

		$\begin{aligned} & \frac{1}{3} \\ & \frac{3}{3} \\ & \dot{6} \end{aligned}$								
准贸号品	N	Mo		ㅇOO O		－		$\stackrel{\sim}{\sim}$	$\begin{aligned} & \infty \circ \circ \\ & \rightarrow \mathrm{m} \end{aligned}$	$\stackrel{\circ}{\sim}$
	$\begin{array}{ll}\circ 0 & 0 \\ \sim \text { N } \\ \text { N }\end{array}$									
		$\begin{aligned} & 80 \\ & 80 \\ & \infty \\ & \text { io } \end{aligned}$		$\begin{aligned} & \text { } \\ & \text { in } \end{aligned}$		$\begin{aligned} & \circ \circ \\ & 00 \\ & \text { mi } \end{aligned}$	$\begin{aligned} & \circ \circ \\ & \circ \mathrm{O} \\ & \dot{j} \dot{m} \end{aligned}$	$\begin{aligned} & \circ 0 \\ & 0 \infty \\ & \dot{j} \text { i } \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{O}{\infty} \\ & \dot{m} \dot{N} \end{aligned}$	
			$\begin{aligned} & \circ 8 \% \\ & \text { \& O } \\ & \text { m- } \end{aligned}$	c00000000 nommooonn 		$\begin{aligned} & 0 \\ & \text { C } \\ & \text { i } \end{aligned}$	$\begin{aligned} & \text { i } \\ & \text { i } \\ & \dot{N} \end{aligned}$			\circ $\stackrel{-}{\sim}$ \sim
炭1＊			$\begin{aligned} & 00 \\ & \text { O } 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	ONのはN～Nの下 さ～のざささざいべ －N～NNNNNNN	$\begin{aligned} & m \subset \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	O N N	$\begin{aligned} & \vec{N} \\ & \alpha \\ & 0 \end{aligned}$	$\begin{aligned} & \text { J } \\ & \text { f } \\ & \text { in } \\ & 0 \\ & 0 \end{aligned}$		0 0 8
	MMTHMMNMN	$\sim N \sim$	m	M－NMNNNMN	mmm		m	$m \mathrm{~m}-$	\rightarrow MNNN	\sim
홀 产	＋	$\rightarrow ー N \stackrel{+}{\sim}$			\rightarrow いい	いーい	\rightarrow－	$\rightarrow \sim$－	ー－＋－	\cdots
	○ロロニロ C O	$\begin{gathered} n c \\ m m \sim n \\ m \times \sim \end{gathered}$	$\begin{aligned} & \text { OOC } \\ & \text { on } n \end{aligned}$		$\begin{aligned} & 0 \\ & \sim \approx 0 \end{aligned}$	$$	$\begin{aligned} & 00 \\ & \pm \sim \\ & m \sim \end{aligned}$	$\begin{aligned} & 00 \\ & \sim \stackrel{t}{N} \end{aligned}$		$\stackrel{\circ}{\circ}$
	in in in in on in	へNのにに NNNーNN inninin		NNNNNNNNN NNNNNNNNN 			$\begin{aligned} & \sim \sim \\ & \sim \\ & \sim \\ & i n \\ & i n \\ & \sim \end{aligned}$	$m \pm 0$ $\begin{array}{ccc} m & m \\ 0 & 0 \end{array}$ is in	mmoooc in in in in in	n n in
					$\begin{aligned} & \infty \\ & x_{0}^{\infty} \text { in } \\ & \underset{\sim}{\omega} \\ & \hline \end{aligned}$	$\begin{aligned} & 000 \\ & 3 \mathrm{~m} \circ \\ & 3 \mathrm{w} \end{aligned}$	$\begin{aligned} & 0 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{array}{lcc} \infty \\ \sim \\ 0 & \infty \\ \hline \end{array}$ 山ゅ 山		$\begin{aligned} & 0 \\ & 0 \\ & 3 \end{aligned}$
药							$\begin{aligned} & \Rightarrow 0 \\ & \text { Fo } \\ & \text { si } \end{aligned}$	$\begin{aligned} & \pm N \sim \\ & \underset{z}{\sim} \underset{\sim}{N} \end{aligned}$		$\overrightarrow{-1}$ \vec{v}
$\frac{\dot{x}}{\stackrel{y}{x}} \frac{4}{2}$	N \sim \sim \sim \sim \sim				∞ \sim \sim	$\stackrel{\sim}{\sim}$	¢$\vdots$$\sim$$\sim$			0 0
	0000000 の○さすNのいかの smCOUNNOO 		$\begin{aligned} & 0 \times 0 \\ & m \\ & \text { m } \\ & \text { co } \\ & c \\ & c \\ & c \end{aligned}$	NoNOMn NOO tmyonnnma「ごNNNNNO：		$\begin{gathered} 00 \\ m \times N \\ =N \sim \\ N \sim N \\ \sim N \end{gathered}$	$\begin{aligned} & 00 \\ & -0 \\ & \text { in } \\ & 00 \\ & 00 \end{aligned}$	$$	00 ざきmもには ぺほべさ のNのロのの	0 0 0 0
$\begin{aligned} & \stackrel{y}{5} \\ & \stackrel{5}{6} \end{aligned}$	 		$\stackrel{\sim}{1} \stackrel{n}{于}$ が号 $00=$	ш ш －かっのののが －MnNMNNさ －～NNNNNNN					－ $0 \infty \infty \infty$ coninin $\stackrel{\circ}{\circ} \boldsymbol{\sim}$	앙 $\stackrel{-}{\circ}$ \bigcirc
	ajajagaga	은옵웅윽	ヨココ	NヘNNNNNNN いーローッーコーロ	$\underset{\sim}{m} m m_{n}^{m} \underset{\sim}{m}$		むむ	$\underset{\sim}{\sim} \sim \sim$	$\begin{array}{llll} 0 & 0 & 0 & 0 \\ \sim \sim & 0 \\ \sim & \sim \end{array}$	$\stackrel{\sim}{\square}$
							$\begin{aligned} & n \\ & -1 \\ & \alpha \\ & \frac{1}{a} 0 \\ & \frac{1}{2} \\ & \vdots 3 \\ & \underbrace{3} \end{aligned}$			$\begin{aligned} & 0 \\ & \stackrel{Q}{u} \\ & \frac{1}{T} \\ & \stackrel{y}{u} \\ & 0 \\ & \hline \end{aligned}$

SOLAR FLARES

observatory	DATE	$\begin{gathered} \text { OBSERVED } \\ \text { UNIVEASAL TIME } \end{gathered}$					LOCATION				IM. por- tance	$\begin{gathered} \text { Ons. } \\ \text { cons. } \end{gathered}$	MEASUREMENTS					PROVISIONAL IONOSPHERIC EFFRCT
	APR						APPROX.		MeMATH PLAGE REGION				$\begin{gathered} \text { TME } \\ \overline{\mathrm{U}} \mathrm{~T} \end{gathered}$	$\begin{aligned} & \text { MEAS. } \\ & \text { AREA } \end{aligned}$Sq. Deg.	$\begin{aligned} & \text { CORA. } \\ & \text { AREA } \\ & \text { Sq. Dog. } \end{aligned}$	max WIDTH Ha	$\begin{gathered} \mathrm{MnX} . \\ \text { INT. } \\ \% \end{gathered}$	
	1960	3tart		END		MAX. PHABE	Lat.	$\begin{aligned} & \text { MER. } \\ & \text { DIST. } \end{aligned}$										
\rightarrow ARCETRI	23	0938		1009			N22	W35	5634	31	$1+$	3	0943	3.70	5.00			
\{ CAPRIS	23	1031		1043	D		N26	W32	5634	12 D	1	3	1035	3.00	3.90			
\{ ARCETR!	23	1035 E	E	1039			N24	W35	5634	4 D	1	3	1035	3.30	4.50			
C CAPRI S	23	1232		1314			S 15	E 22	5641	42 D	1	2	1246	2.50	2.80			S-SWF
\{ MCMATH	23	1324		1410		1342.	N12	W50	5633	45	1	2	1342		2.00			
\{ SAC PEAK	23	1336		1356		1342	N12	W53	5633	20	1	1		$2 \cdot 28$			14	
SAC PEAK	23	1514		1640		1524	S18	E22	5641	86	1	1		3.01			22	
\{ CAPRI S	23	1516		1554	D		515	E20	5641	38 D	1	2	1526	3.00	3.30			Slow S-SWF
LOCKHEED	23	1527 E	E	1632		1530 U	517	E23	5641	65 D	$1+$	1	1530	3.50			20	
\{ SAC PEAK	23	1914		1958		1926	S17	E20	5641	44	1	1		2.60			17	S low S-SWF
\{ LOCKHEED	23	19201		2000		1925 U	S17	E20	5641	40 D	1	1	1925	2.00			10	
MCMATH	23	1920		1950	D		N08	W28	5636	30 D	1	1	1925		2.00			
HAWAII	23	2338 ह		0036		2354	S15	E19	5641	58 D	1	2	2354	1.60				
MCMATH	24	1142	E	1210	0		N10	W35	-5636	28 D	1	1	1150		2.00			
MCMATH	24	1550 E	E	1700	D		N08	W39	5636	70 D	1	1	1550		2.50			
LOCKHEED	24	2332		0030		2345	N15	E. 35	5642	58	1	1	2345	2.00			10	
LOCKHEED	25	0025 F	F	0105		0030 U	507	E79	5645	40 D	1	1	0030	3.00			10	
\{ LOCKHEED	25	0040		0200		0110	N06	E35	5642	80	$1+$	1	0110	3.50			30	
\{ HAWAII	25	0058 E	E	0200	0	0129	N18	E32	5642	62 D	$1+$	2	0129	2.20				
\{ ONDREJOV	25	1319		1330	O		N13	W82	5633	11 D	1	1	1325			2.40		
\{ CAPRI S	25	1320		1334	D		N13	W80	5633	14 D	1	2	1323	. 50	2.60			
HAWAI!	25	2116		2134		2.122	N14	E54	5644	18	1	3	2122	1.00				S-SWF
HAWAI!	25	2240		2250		2246	N13	E54	5644	10	1	3	2246	1.10				
MCMATH	27	1805		1850		1813	N04	W90	5636	45	$1+$	1						
HAWAII	27	2008		2022		2008	N10	W04	5642	14	1	3	2008	1.10				
HAWA!!	27	2028		2036		2030	N04	W10	5642	8	1	3	2030	1.00				
HAWAI!	28	0130	E	$\bigcirc 145$	D	0137	505	E34	5645	15 D	3	1	0137	10.80				Slow S-SWF
LOCKHEED	29	01070	D	0230	D	0205	N12	W20	5642	830	$2+$	1	0205	7.90			30	G-SWF
ONDREJOV	29	0533 E	E	0549	D		N14	W20	5642	16 D	1	1	0542			2.90		G-SWF
$\{$ CAPRI S	29	0612 E		0822	D		N15	W20	5642	130 D	$2+$	1	0617	10.00	11.00			G-SWF
\{ ARCETRI	29	0816	E	0828	D		N15	W21	5642	12 D	1	3	0823	2.90	3.20			
\{ CAPRI S	29	1136		1149	D		N15	W23	5642	13 D	1	3	1143	3.00	3.30			
\{ STOCKHOLM	29	1138		1145	D		N13	W23	5642	7 7	1	3	1140	2.90	3.30			
\{ CAPRI S	29	1333		1350	D		N15	W2,5	5642	17 D	1	2	1341	3.00	3.30			
\{ STOCKHOLM	29	1335 E	E	1345			N13	W2'4	5642	10 D	1	3	1339	2.50	3.00			
\{ LOCKHEED	29	1620		1700		1625	N17	W28	5642	40	1	2	1625	3.00			30	
\{ CAPR! S	29	1621		1641	0		N15	W27	5642	20 D	1	1	1625	1.50	1.70			
\{ LOCKHEFD	29	1957		2140		2010	N15	423	5642	103	1	2	2010	2.40			20	
\{ LOCKHEED	29	1957		2140		2033	N15	W23	5542	103	1	2	2010	2.40			20	
SAC PEAK	29	2018		2114		2030	N14	W21	5642	56	1	1		4.15			16	
f LOCKHEED	29	2153		2230		2200	513	E90	5653	37	1	2	2200	3.80			20	
\{ SAC PEAK	29	2154		2228		2200	S15	E90	5653	34	1	1		2.70			19	
[HAWAII	29	2156		2220		2208	508	E90	5653	24	1	3	2208	. 40				
CAPRI S	30	1108	E	1213	D		N13	W28	5642	65 D	1	1	1021	3.00	3.40			
LOCKHEED	30	1438		1507		1441	S08	E85	5653	29	1	2	1441	$2 \cdot 10$			20	S-SWF

[^1]LOCKHEED OBSERVATIONS: ALL VALUES IN THE MAXISOONNILNOD GHL IO LNGDצGd LON - Oゅ OL OI gO TIVDS SPECTRUM.

woumth sac pear sac peak LOCKHEED LOCXHEED hawali
hawall CAPRIS ＊SAC PEAK sac peak LOCKHEED LосқнеєD ＊Lockheed hawall LOckhee：
MAWA1I nENDEL ＊ncmath wENOEL WENDEL wENOEL hUANCAYO memath SAC PEAK sac deak mCMath ＊Lockheeo －LOCKHEEO Lockheed Lockheed LOCKHEEO LOCkMESD
Haw ITI MCMATH WCMATH MCッATH MCMATH LOCKHEED MCMATH vCN2TH LOCKHEEO LOCKHEED LOCKMEEO MCMATH LOCKHEED MCVATH LOCKHFED MAsAII LOCKHEEO venath SAC PEAK
HCMATH vemath MCMATH MCVATH SAC PEAK SAC DEAK vevath ＊LOCKHEED ＊MCMATH －sac pear －mCMATH
－arcetri ARCETR： WENOEL MENOEL MCMATH uCMATH Sac peak MCMATH SAC DEAK LOCKHEED LOCKHEED MCNATH LOCRHEED LOCKHEED LOCKHEEO LOCKMEED
HAnATI WENOEL MCHATH WENDEL ＊sac peak －mCMATH SAC PEAK SAC PEAK LOCKHEED MA＇VAII MCNATH MCMATH LOCKHEEO SAC OEAK LOCKHEED LOCKHEED LOCKHEED
LOCKHEED LOCKHEED LOCKHEED ＊cuath mcmath vcmath huancayo ＊wevath ＊sac deak mCMATH mくuath vevath wemath LOCKH5EO LOCKHEFO LOCKHEFO LOCKHEED 4CMATH MCMATH McVATH mсиath Lockneeo hawail sac peak
ARCETD 1 LOCKHEES LOCKHEEO
SAC PEAK lockhefd Lockheed

[^2]

SOLAR FLARES

SOLAR FLARES

observatory	$\begin{aligned} & \text { DATE } \\ & \text { JAN } \\ & 1960 \end{aligned}$	$\begin{gathered} \text { OBGERVED } \\ \text { JNIVERSAL TiME } \end{gathered}$			${ }^{\text {LOCATION }}$			$\begin{gathered} \text { DURA. } \\ \text { TITN } \\ - \\ \text { Minutes } \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \text { IM. } \\ \text { Pos. } \\ \text { TANCE } \end{array}$	$\begin{gathered} \text { ors. } \\ \text { ons. } \end{gathered}$	MEASUREMENTS					PROVISIONAL fonospheatc EFFECT
					Approx.		McMATH plage region				time	meas.	cors.	max.	max.	
		start	END	$\underset{\text { MhX }}{\text { phase }}$	Lat.						\square_{0}		$\begin{gathered} \text { AREA } \\ \text { Sq. }{ }_{\text {deg. }} \end{gathered}$	$\underset{\text { Hadi }}{\text { Ha }}$	$\stackrel{\text { inc. }}{\%}$	
GOOD HOPE	25	1129	1158	1134	N11	W90	5538	29	1		1134	. 50				
GOOR HOPF	25	1240	1205	1244	N07	E55	5550	25	1		1244	1.50	2.80			
huancayo	25	1549	1600	1552	N06	E54	5550	11	1	2	1552	1.80	3.00	2.90		
MITAKA	27	0323 E	3327 D	0324	515	E62	5551		1	1	0324	1.28	2.28	4.61	134	
NIZAMIAH	27	0457 E	0505		N08	E18	5550	8 D	1	2	0457	2.43	2.56	1.50		
\{ GOOD HOPE	27	0836	0900	0840	N08	W02	5549	24	1		0840	3.30	3.40			
\{ ATHENS	27	0838	0857		N06	W02	5549	19	1	3		2.70	2.70			
huancayo	27	1448	1500	1449	NO3	E16	5550	12	1	2	1449	1.80	1.90	4.20		
huancayo	27	1520	1540	1524	N03	E16	5550	20	1	2	1524	4.90	5.10	2.90		
GORD HOPE	28	0705 E	0740		N05	El2	5550	35 D	!		0707	2.20	2.30			
GOOD HOPF.	28	0826 F	08590		N05	F12	5550	330	1		0934	4.50	4.70			
hUANCAYO	28	1417	1444	147.4	N07	E10	5550	27	1	2	14.2	2.80	2.90	2.80		
mitaka	29	0546	0559	0553	515	E30	5551	13	1	1	0551	2.76	3.28	3.06	120	
ATHENS	29	0841	0850		517	E34	5551	9	$1+$	2		2.30	3.70			
MITAKA	30	0023 E	0029		N03	W21	5550		1	1	0029	. 98	1.07	1.38	100	
MITAKA	30	0107	0113		N09	W12	5550	6	1	1	0109	3.93	4.17	3.29	100	
MITAKA	30	0217 E	0233		514	E20	5551	16 D	1	1	0217	2.95	3.16	2.16	125	
GOOD HOPE	30	1306	1337	1311	N05	W27	5550	31	1		1211	2.50	2.80			
mitaka	31	0158	0236	0158	516	E03	5551	38	$1+$	1	0158	7.86	8.02	1.68	102	
GOOD HOPF	31	1229	1244 D	1232	N23	W50	5548	15 D	1		12.32	2.70	4.80			

These flare reports are addenda to the January 1960 flares published in CRPL-F 186 Part B, February 1960.

ERRATA TO SOLAR FLARES

observatoay	$\begin{array}{\|l} \hline \text { DATE } \\ \text { DFC } \\ 1050 \\ \hline \end{array}$	$\begin{aligned} & \text { OBSERVED } \\ & \text { UNIVERSAL TIME } \end{aligned}$			Location			$\begin{gathered} \text { DURA. } \\ \text { TION } \\ \text { MINOTES } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { m. } \\ \text { por. } \\ \text { pance } \end{array}$	$\xrightarrow{\text { OPs. }}$	MEASUREMENTS					PROVISIONAL IONOSPHERIC EFFECT
		stant	END	$\underset{\text { Phase }}{\text { M }}$	Lat.		PLAGE REGION				$\stackrel{\mathrm{TIME}}{\overline{\mathrm{TI}}}$	$\begin{gathered} \text { MEAS. } \\ \text { AREA } \\ \text { Sq. Dog. } \end{gathered}$	$\begin{gathered} \text { CORR. } \\ \text { AREA. } \\ \text { Sq. Doq. } \end{gathered}$	$\begin{gathered} \text { MAX. } \\ \text { WIDTH } \\ \text { Ha } \end{gathered}$	$\begin{gathered} \text { MAX. } \\ \text { INT. } \\ \% \end{gathered}$	
climax	01	1522 E	1616		N09	W07	5476	54 D	2		1531	5.50				Slow S-SWF
Climax	01	1641	2035	1709	N09	W04	5476	234	$1+$		1709	5.00				S-SWF
Climax	03	1757	1803 D		N08	W35	5476	6 D	2		1802	6.90				S-SwF
CLIMAX	06	1905	1919	1910	N11	W19	5478	14	1		1910	2.40				
CLIMAX	07	1636			N12	1197	5478		1		1645	4.90				
climax	07	1902	2002	1912	N09	W37	5478	60	1		1912	3.50				
CLIMAX	07	2135	27400		N06	W39	5478	65 D	2		2143	5.50				
Climax	08	1532 F	1549	1540 U	N06	W 50	5478	170	1		1540	2.40				
CLIMAX	19	2146	27020	2158	N>2	E47	5502	17 D	1		2158	2.30				
CLIMAX	20	1605			N04	W46	5493		1		1615	2.60				
Climax	29	1746	1806	1751	N09	W50	5505	20	1		1751	2.60				

[^3](SHORT.WAVE RADIO FADEOUTS)
MARCH 1960

$\begin{aligned} & \text { Mar. } \\ & 1960 \end{aligned}$	$\begin{aligned} & \text { SEart } \\ & \text { UT } \end{aligned}$	$\begin{aligned} & \text { End } \\ & \text { UT } \end{aligned}$	Type	Wide Spread Index	Importance	Observation Stations	Known Flare, UT CRPL-F 188B
1	1240	1300	Slow S-SWF	5	$1+$	BE, DA, HU, NE, PR	1240E
1	1800	1830	S-SWF	5	$1+$	AN, BE, FM, HU, MC, PR	1750
1	1918	1944	S-SWF	5	2	AD, BE, FM, HU, LA, MC, NE, PR, WS	1915
2	1105	1120	S-SWF	5	1	KU, NE, PR, PU	1111 E
7	1817	1857	Slow S-SWF	4	1	BE, MC, PR	1810
10	1719	1740	S-SWF	5	2-	BE, FM, HU, LA, MC, NE, PR, PU, WS	1716
11	1100	1118	S-SWF	5	1	BE, PR, PU	*
14	0110	0220	S-SWF	5	2	AD, $\underline{O K}$	
17	1618	1635	S-SWF	5	1-	FM, HU, MC, PR, WS	1616
17	2010	2028	S-SWF	5	$1-$	AD, AN, FM, HU, MC, PR, WS	
21	1532	1545	S-SWF	5	1	BE, FM, HU, MC, PR, WS	1527
27	0144	0230	Slow S-SWF	5	2	$\mathrm{AD}, \mathrm{OK}, \mathrm{TO}$	0150E
27	0530	0600	S-SWF	1	1-	OK	
27	0600	0617	S-SWF	1	1-	OK	*
27	0638	0657	Slow S-SWF	1	1-	OK	0634E
27	0745	0800	Slow S-SWF	1	1-	OK	0736E
28	0120	0200	S-SWF	5	$1+$	AD, OK	
28	1738	1800	Slow S-SWF	5	1	FM, MC, PR, WS	
28	2050	2140	S-SWF	5	$2+$	$A D, \widehat{B E}, B O, F M, H U, M C, P R, T O, W S, * *$	2042
29	0652	0853	S-SWF	5	3+	BR, $\overline{J U}, \mathrm{KU}, \mathrm{NE}, \underline{\mathrm{OK}}, \mathrm{SW}, \mathrm{TO}, \mathrm{CW} \ddagger+, \mathrm{CW}^{*} * *$	0705E
29	2040	2145	S-SWF	5	$2+$	$\mathrm{AD}, \mathrm{BE}, \mathrm{BO}, \mathrm{FM}, \mathrm{HU}, \mathrm{MC}, \mathrm{PR}, \mathrm{TO}, \mathrm{WS}$	
30	0220	0249	S-SWF	4	1	AD, OK	*
30	0718	0740	S-SWF	5	1	$\overline{O K}, ~ N E, ~ P U$	
30	1520	1800	Slow S-SWF	5	3	$\overline{B E}, \mathrm{BO}, \mathrm{BR}, \mathrm{FM}, \mathrm{HU}, \mathrm{MC}, \mathrm{NE}, \mathrm{PR}, \mathrm{SW}, \mathrm{WS}, \mathrm{CW***}$	1455
30	2010	2030	S-SWF	5	1	BO, HU, PR, WS	1947
31	1640	1745	Slow S-SWF	5	2	BE, BO, FM, HU, LA, MC, PR, WS	1620
				-			

[^4]$\mathrm{PU}=$ Prague, Czechoslovakia
TO = Hiraiso Radio Wave Observatory, Japan
CW+ = Cable and Wireless, Hong Kong
CWH = Cable and Wireless, Singapore
CW* = Cable and Wireless, Barbadoes
CW** $=$ Cable and Wireless, Somerton, England
CW*** $=$ Cable and Wireless, Brentwood, England

FEBRUARY 1960

$\left(\begin{array}{l}\text { Sudden Cosmic Noise Absorption } \\ \text { Sudden Enhancements Of Atmospherics } \\ \text { Solar Noise Bursts At } 18 \text { Mc. }\end{array}\right)$
MARCH 1960

OUTSTANDING OCCURRENCES

Ottawa			APRIL		1960		2800 Mc	
Apr. 1960	Type*		Start UT	Duration Hrs:Mins	Moximas		Pemarks	
			Tlue $\sqrt{1}$		$\begin{aligned} & \text { Peak } \\ & \text { Flux } \\ & \hline \end{aligned}$			
2	6	Complex f		1240	8	1244	32	
2	1	Simple 1	1620	4	1622	3		
2	2	Stmple 2 f	2035	5	2037	8		
3	2		1155	5	1156.5	35	In sunrise osc.	
	4	Post 1ncrease		15				
3	3	Simple 3 A	1745	$>5 \quad 15$	2145	40		
	6	Complex f	2119	23	2122	35		
4	2	Simple 2	2132	10	2133	43		
5	2	Simple 2	1600	- 4	1601.3	48		
	4	Post Increase A		105		13		
	1	Simple 1	1609	1	1609.3	7		
	2	Simple 2	1622.5	6	1623.7	10		
5	6	Complex	1936	7	1940	17		
58	3	Simple 3	2205	20	2209	5		
	1	Simple 1	1655	2	1656	7		
9	2	Simple 2	1217	3	1218	8		
9	2	Simple 2	1518.5	2.5	1519	18		
9	2	Simple 2	1645	2	1646	8		
12	1	Simple 1	2121	2	2121.3	7		
12	3	Simple 3	2238	30	2241	7		
16	2	Stuple 2 f	1526.5	2	1526.8	48		
16	8	Group (3)	1858	41				
	2	Simple 2	1858	12	1900	12		
	2	Simple 2	1925	8	1927	12		
	1	Simple 1	1933	6	1935.5	4		
21	2	Simple 2	1808.7	1	1809	11		
22	3	Simple 3	1717	40	1719.5	5		
22	3	Simple 3 f	1845	105	1855	10		
23	3	Stuple 3	1232	30	1233.5	6		
23	3	Simple 3 f A	1910	400	2053	12		
	2	Simple 2	2137	1.5	2137.7	9		
27	2	Simple 2	2006	6	2007.5	57		
30	1	Simple 1	1418	1	1418.6	6		

SOLAR RADIO EMISSION

APRIL 1960
BOULDER

Apr. 1960	Type	$\begin{aligned} & \text { Start } \\ & \text { UT } \end{aligned}$	Time of Maximum UT	Duration Minutes	Intensity	Apr. 1960	Type	$\begin{gathered} \text { Start } \\ \text { UT } \end{gathered}$	Time of Maximum UT	Duration Minutes	Intensity
1	6	1242 E		747 D	3	16	3	1938.2	1938.2	0.3	2
1	3	1704.0	1704.5	1.1	3	16	3	2355.6	2355.6	0.4	2
1	3	1839.8	1839.8	1.0	3	17	3	0006.6	0006.6	0.6	3
1	3	2114.3	2115.0	0.7	3	17	3	0008.0	0008.5	1.0	2
2	3	0016.0	0017.4	1.8	3	17	3	1613.2	1613.2	0.1	1
2	6	1241 E		750 D	3	17	3	1622.0	1622.0	0.1	1
2	8	1457.6	1459.2	14	3	18	3	1237.0	1237.0	0.2	1*
2	8	1629.0	1636.0	8	3	18	3	1242.9	1242.9	0.1	2*
2	8	2031.0	2032.1	7	3	18	3	1349.5	1349.5	0.1	1
2	8	2356.1	2357.8	7	3	18	3	1447.8	1447.8	0.1	1
3	6	1240 E		752 D	2	18	3	1546.0	1546.0	0.3	1
3	8	1558.0	1559.0	2.0	3	18	3	1652.2	1652.2	0.2	2
4	6	1240 E		205 D	2	18	3	2012.3	2012.3	0.4	2
4	2	1803	1803.8	2	2	20	2	1303.2	1303.2	1.6	2**
4	3	1857.0	1857.0	0.3	2	20	3	1316.1	1316.8	1.0	2*
4	3	1900.5	1900.5	0.5	2	20	3	1616.5	1617.0	1.2	2
4	3	1916.0	1916.2	1.0	2	20	2	1900.0	1900.0	2.0	2
4	3	1956.5	1956.5	0.2	2	21	3	0033.5	0033.5	0.2	2**
4	3	2115.9	2115.9	0.1	2	21	3	0034.6	0034.6	0.1	1**
4	8	0015.0	0017.9	4.0	3**	21	3	0040.5	0040.5	0.3	1**
4	3	0055.4	0055.4	0.2	2**.	21	6	1213 E		797 D	1
5	3	1922.9	1922.9	0.1	2	22	3	2017.0	2017.0	0.3	1
5	3	1959.0	1959.0	0.9	2	22	3	2141.6	2141.8	1.0	1
5	3	2129.9	2129.9	0.3	2	23	3	0025.0	0025.0	1.0	1
5	3	2138.0	2138.0	0.5	2	23	3	0033.5	0033.5	0.3	2**
6	3	1651.0	1651.0	0.1	2	23	3	0128.2	0128.2	0.2	2**
6	3	1829.0	1829.0	0.1	1	23	3	1402.3	1403.1	1.8	3
6	3	1847.5	1847.5	0.2	1	23	3	1448.5	1448.5	0.3	2
6	3	1855.0	1855.0	0.3	1	23	3	1524.2	1524.2	0.6	2
6	8	1956.5	1958.3	5	1	23	3	1637.0	1637.0	0.1	2
6	3	2155.6	2155.6	0.1	1	23	7	1758		454 D	2
7	3	1251.2	1251.2	0.2	2*	23	3	2009.0	2009.0	1.0	3
7	3	1755.8	1756.1	2.0	3	24	6	1208	2327	805 D	3
7	3	2102.0	2102.0	0.2	2	25	3	1350.6	1350.6	0.1	2
7	3	2152.5	2152.5	0.2	1	25	3	1456.8	1456.8	0.1	1
8	3	1248.5	1248.8	0.8	2*	25	3	1637.0	1637.0	0.3	2
8	3	1249.9	1249.9	0.1	3*	25	2	1734	1735	7	2
8	3	1809.2	1809.2	0.1	1	25	3	1804.0	1805.0	1.5	2
8	3	1837.9	1837.9	0.2	1	26	3	1231.2	1231.2	0.1	2*
8	3	1844.0	1844.0	0.1	1	26	3	1236.8	1237.0	0.7	2*
8	3	2005.0	2005.0	0.3	1	26	3	1326.0	1326.0	0.2	1
8	7	2018	2037	47	1	26	3	1343.0	1343.0	0.3	1
8	3	2130.0	2130.0	0.2	1	26	3	1607.5	1608.2	1.4	1
9	3	1351.0	1351.0	0.3	1	26	3	1718.6	1718.6	0.2	1
9	3	1451.3	1451.3	0.2	2	26	3	1742.0	1742.0	0.1	2
9	3	1518.5	1519.0	1.5	3	27	3	0058.8	0058.8	0.5	2**
9	3	1844.5	1844.5	0.5	3	27	3	0121.6	0121.6	0.1	2**
9	3	1850.5	1851.0	1.7	3	27	3	1357.5	1357.5	0.2	1
10	3	2022.6	2022.6	0.3	1	27	3	1423.5	1423.5	0.2	1
10	3	2024.8	2025.0	1.2	2	27	3	1538.5	1538.5	0.3	2
10	3	2158.9	2158.9	1.1	1	27	3	1623.5	1623.5	0.4	2
10	3	2204.3	2204.3	0.1	2	27	3	1625.5	1625.5	0.2	2
10	3	2211.9	2211.9	0.2	2	27	3	1659.3	1659.3	0.3	2
10	3	2216.0	2217.0	1.5	2	27	3	1706.9	1706.9	0.4	2
10	8	2323.0	2326.5	9	2	27	3	1731.6	1731.9	0.5	2
11	3	0000.5	0000.5	0.8	3	27	3	1759.2	1759.2	0.1	2
11	8	1336.5	1338.8	3.5	2	27	3	1830.0	1830.0	0.1	2
11	3	1349.3	1349.3	0.1	2	28	9A	0115.9	0117.1	1.9	2**
11	2	1430.0	1431.5	3.0	2	28	9 B	0117.8	0123.5	17	2**
11	3	1836.0	1836.0	2.0	2	28	3	2323.1	2323.1	0.2	2
11	3	1854.5	1854.5	1.5	3	28	3	2334.5	2334.5	0.3	3
11	8	2022.0	2023.4	3.0	2	28	3	2347.9	2347.9	0.2	2
12	3	0110.6	0110.6	0.1	1*	29	3	1425.8	1425.8	0.1	2
13	3	1839.5	1839.5	0.1	1	29	3	1503.5	1503.5	0.2	1
15	3	1235.0	1235.0	0.2	1*	29	3	1655.0	1655.0	0.1	1
						29	3	1759.0	1759.0	0.2	2
						29	7	2136		244 D	2
						29	3	2151.0	2151.0	0.2	3
						30	6	1241 =	1330	779 D	3

[^5]** On sunset pattern

Errata: In CRPL-F 188 Part B in the March 1960 table for Roulder 167 Mc outstanding events the event listed March 22 at 0047.4 should be March 23 at 0047.4 and the event listed March 26 at 0025.4 should be March 27 at 0025.4.

TIMES OF OBSERVATION

Apr. 1960	U.T.	Apr. 1960	U.T.
1	$1242-0109$	17	$1218-0126$
2	$1241-1933$	18	$1217-0127$
	$1942-0111$	19	$1215-0127$
3	$1240-0112$	20	$1215-0130$
4	$1240-0113$	21	$1213-0130$
5	$1239-0115$	22	$1213-0130$
6	$1236-0115$	23	$1211-0132$
7	$1235-0115$	24	$1208-0133$
8	$1233-0117$	25	$1207-0134$
9	$1231-0118$	26	$1206-0135$
10	$1230-0119$	27	$1204-0139$
11	$1227-0120$	28	$1203-0139$
12	$1228-0121$		$1730-1925$
	I $1742-0030$	29	$1203-1527$
13	$1225-0123$		$1535-1629$
14	$1223-1702$		$1635-1827$
15	$1739-0123$		$1929-0140$
16	$1222-0124$	30	$1241-0140$

$\begin{gathered} \text { Mar. } \\ 1960 \end{gathered}$	C	Values Kp		Sum	Ap	Final Selected Days
		$\begin{aligned} & \text { Three hour } \\ & 1 \quad 2 \quad 34 \end{aligned}$	$\begin{gathered} \text { interval } \\ 5678 \end{gathered}$			
1	1.1	3-3+3+3+	3+ 3o 5- 3o	27-	19	Five
2	1.1	4+ 3+ 5- 4-	40 3-30 4-	29+	23	Quiet
3	1.1	30404040	4-4-30 30	28+	21	
4	1.1	2+ 2+ 2o 2+	40 4+ 3+ 3+	240	16	7
5	0.9	2+ 3-4- 2-	$3+303030$	23-	14	$\begin{aligned} & 13 \\ & 20 \end{aligned}$
6	0.8	$3+402+3+$	2-2o 3-2o	21+	13	22
7	0.1	1- 1+ 1o 2-	1o 1-1o 0o	7+	4	23
8	0.8	1- 3- 4- 3+	3o 3-2o 3-	21-	13	
9	0.7	2o 2o 3-3+	3- 3o 2o 2+	20o	11	
10	1.1	2- 2+ 5-50	3-40 4- 2+	26+	22	
11	1.3	$3+4+406-$	5-5-4+30	340	34	Five
12	0.3	2+ 2o 2+ $2+$	3-2+ 1o 2-	17-	8	Disturbed
13	0.1	2o 1o 2o 1-	1-2o 2-2-	12-	5	
14	0.4	1+ 2+ 2-3-	2- 3o 1-1+	15-	8	2
15	1.2	2+ 0o 1+ 1+	30 40 5-6-	22+	21	$\begin{array}{r} 3 \\ 11 \end{array}$
16	1.6	6+ 7-6-4-	3o 40 50 4+	39-	52	16
17	1.1	3+ 4-4+40	3-3+40 3-	280	21	31
18	0.6	3-4-40 3-	2+ 1o 0+ 3-	19+	12	
19	0.5	3- 2- 2o 3+	3+ 3-10 1-	17+	10	
20	0.0	10 20 1+ 10	1o 1+ Oo 1-	$8+$	4	
21	0.4	$0+1+2+20$	4- 20 0+ 0+	12+	7	Ten
22	0.2	1-1+ 1+ 1+	3- 1o 1- 2-	11-	5	Quiet
23	0.2	20 2- 1- 2-	1-1-0+20	10-	5	
24	0.9	40 3o 2+ 2+	2- 4+ 3+ 3-	24-	16	7
25	0.3	1-1+2-2-	2-1-20 30	13-	6	$\begin{aligned} & 13 \\ & 14 \end{aligned}$
26	0.3	3o 1+ 2+ 2+	2- 1+ 1-1-	13+	7	20
27	0.2	1+ 3o 2o 3-	$1+0+0+0+$	11+	6	21
28	1.0	0o 1+ 3-4-	3-40 4+ 40	23-	17	22
29	1.0	4+ 40 4+ 3+	1o 2- 2- 30	23+	18	23
30	1.1	4- 2+ 20 30	3-4+40 4+	26+	20	25
31	2.0	4+ 5-50 8-	7-80 8-8+	52+	129	$\begin{aligned} & 26 \\ & 27 \end{aligned}$
Mean:	0.76			Mean:	18	

MARCH 1960

$\begin{aligned} & \text { Mar. } \\ & 1960 \end{aligned}$	```North Atlantic 6-hour1y quality figures```			Short-term forecasts issued about one hour in advance of:				Whole day index	Advance forecasts (J-reports) for whole day; issued in advance by:				```Geomag- netic K```	
	$\begin{array}{ll}00 & 06 \\ \text { to } & \text { to } \\ 06 & 12\end{array}$	$\begin{array}{ll}6 & 12 \\ \text { to } \\ 18\end{array}$		00	06	12	18		$\begin{aligned} & 1-7 \\ & \text { days } \\ & \text { Fina } \end{aligned}$	$\begin{gathered} 1-7 \\ \text { days } \\ 1 \mathrm{Js} \end{gathered}$	$\begin{aligned} & 1-7 \\ & \text { days } \\ & \text { SDW } \end{aligned}$	$\begin{gathered} 1-7 \\ \text { days } \\ \mathrm{J} \end{gathered}$	$\begin{array}{r} \text { Hal } \mathbf{f} \\ (1) \end{array}$	Day (2)
1	7-6+	+ 70		6	6	7	7	$7-$	7	7		7	3	
2	$5+60$	-70		5	6	7	6	60	7	7		7	3	3
3	$6+6-$	-70		6	6	7	6	6+	6			6	(4)	3
4	$6+6+$	+ 70		6	6	7	6	7-	6			6	2	3
5	$6+60$	7o		6	6	7	6	7-	7			7	3	
6	$606+$	+ 70		6	4	7	7	$7-$	7			7	3	2
7	7-6+	+ 70		6	6	7	7	$7-$	7			7	1	
8	7o 6+	+7-	70	7	7	7	7	$7-$	7			7	3	2
9	7-6+	+7+		7	6	7	7	7-	7			7	2	3
10	7-50	7-		7	6	6	6	$6+$	7			7	3	3
11	60 5+	- 6+		6	5	6	6	60	7			7	3	(4)
12	$6+6-$	-70		6	5	7	7	$6+$	6			6	2	2
13	7-6+	+ 70	7+	7	6	7	7	7-	6			6	1	1
14	7-6+	+ 70	7+	7	6	7	7	$7-$	6			6	2	2
15	$706+$	+ 70	60	7	6	7	7	$7-$	5			5	1	3
16	$3+30$	6-	6-	6	3	6	5	(40)	5			5	(5)	3
17	40 4+	-6+	60	5	4	6	6	$5-$	5			5	(4)	3
18	5+ 4+	6+	7-	5	5	6	6	5+	6			6	3	1
19	7-6-	-7-	7-	6	6	7	6	$7-$	6			6	2	2
20	7 o 6+	+ 7-	70	7	6	7	7	$7-$	6			6	1	1
21	7-6+	+ 70		7	6	7	6	$7-$	7			7	1	2
22	7-7-	-70	7-	7	6	7	7	$7-$	7			7	2	2
23	70 7-	-70	70	7	6	7	7	70	7			7	2	1
24	$6+6+$	+ 70	7-	7	6	7	6	$7-$	7			7	3	3
25	7-60	7-	70	6	6	7	7	$7-$	7			7	1	2
26	7- 5+	- 70	7-	7	6	7	7	6+	7			7	2	1
27	7-60	70	7-	6	6	7	7	7-	7			7	2	1
28	7-60	70		7	6	7	7	$7-$	6			6	2	3
29	$5+5-$	- 7-	7-	6	5	6	6	6-	6			6	(4)	2
30	6- 50	50	5+	5	4	7	6	5+	4		4	6		3
31	50 4+	-5-		4	4	5	4	(40)	4		4	4		
Score: Quiet Periods				P 20	19	28	16		15			15		
				9	7	2	14		13			13		
				U 0	0	1	0		1			1		
				F 0	1	0	0		0			0		
Disturbed Periods				P 0	3	0	0		1			1		
				S 1	1	0	1		1			0		
				U 0	0	0	0		0			0		
				F 1	0	0	0		0			1		

() represent disturbed values.

- Short-term forecost
| Range of reports
- Quality figure

OUTCOME OF ADVANCED FORECASTS
FINAL ESTIMATE

NORTH PACIFIC
MARCH 1960

() represent disturbed values.

NORTH PACIFIC
MARCH 1960

OUTCOME OF ADVANCED FORECASTS
FINAL ESTIMATE

INTERNATIONAL WORLD DAY SERVICE
APRIL 1960

Issued Day/Time UT Apr. 1960	Advance Geophysical Alert	No.	Worldwide Geophysical Alert	Special World Interval
1/1600		54	Magnetic Storm Aurora Probable 31/08XXZ	Continue Special World Interval
2/1600		55		Continue Special World Interval
3/1600		56		Finish Special World Interval
12/1600		57	Magnetic Storm 10/22 XXZ	
24/0600	Ft. Belvoir Magnetic Storm Aurora Probable 23/21XXZ			
24/1600		58	Magnetic Storm 23/21xXZ	
27/2040	Ft. Belvoir Magnetic Storm 27/2000z			
28/1600		59	Magnetic Storm Aurora Probable 27/2000Z	Start Special World Interval
29/1600		60		Continue Special World Interval
30/1600		61		Continue Special World Interval

[^0]: * 5590 and part of 5591
 ** Part of 5591
 *** 5595 and 5597
 **** 5612 and 5613 or new

[^1]: SAC PEAK: ALL VALUES IN MAX. INT, COLURN ARE

[^2]: Hamall
 LOCkHE
 LOCkHEE
 LOCK
 LOCKHE
 LOCKHE
 SAC PF
 LOCKH
 LOCKH
 LOCKH
 LOCK
 MAXA
 LOCK
 MAHA
 LOC

 ールーニーン

 19
 19
 19
 19
 19
 19
 19
 19

 LOCKHEED
 NENOEL
 ぶ

 09
 3904
 1
 とNDNNROロロロー
 ゴコ
 $\begin{array}{lllll}\text { SAC DEAK } & 20 & 2152 & \text { N22 } & \text { W4 } \\ \text { LOCKHEO } & 20 & 2327 & N 23 & E 44 \\ \text { LOCKHEFD } & 20 & 2357 & \text { N10 } 33\end{array}$

 $*$
 $*$
 $*$
 LOCK
 LOCK
 LOC
 －3
 99
 OU

 ＊＊
 Lo
 Lack
 5×2
 sac
 ＊＊＊＊
 ＊
 $\begin{array}{llll}21 & 1526 & & \text { N2 } \\ 21 & 1705 & \text { E } \\ 21 & 1705 & \text { N } \\ 21 & \text { N2 } \\ 21 & 1800 & & \text { NZ }\end{array}$
 －95

 > 21 21 21

 99
 LOK
 $+\quad$ LOC
 $+5 A C$

[^3]: The Climax flares listed above should replace those published in CRPL-F 188 Part B on pages III g-i. The measured areas have been corrected. Because of this in some instances the importance has also changed.

[^4]: * = No known flare patrol
 $B O=$ Boulder, Colorado
 BR = Breisach, G.F.R.
 $\mathrm{DA}=$ Darmstadt, G.F.R.
 $\mathrm{JU}=\mathrm{Juhlesruh}, ~ G . D . R$.
 $\mathrm{KU}=$ Kuhlungsborn, G.D.R.
 LA $=$ Los Angeles, Calif.
 NE = Nederhorst den Berg, Netherlands

[^5]: * On sunrise pattern

