## PART B

SOLAR - GEOPHYSICAL DATA

ISSUED
DECEMBER 1957

# SOLAR - GEOPHYSICAL DATA 

## CONTENTS

## INTRODUCTION

Description of Tables and Graphs
I DAILY SOLAR INDICES
(a) Relative Sunspot Numbers and 2800 Mc Solar Flux
(b) Graph of Sunspot Cycle

II SOLAR CENTERS OF ACTIVITY
(a) Calcium Plage and Sunspot Regions
(b) Coronal Line Emission Indices

III SOLAR FLARES
(a-e) Optical Observations
(f) Flare Patrol Observations
$(\mathrm{g}, \mathrm{h})$ Subflares
(i,j) Ionospheric Effects
IV SOLAR RADIO WAVES
(a,b) 2800 Mc -- Outstanding Occurrences (Ot tawa)
(c) 200 Mc -- Daily Data (Cornell)
(d) $200 \mathrm{Mc}=-$ Outstanding Occurrences (Cornell)

Note: 170 Mc and 450 Mc (Boulder) observations for November 1957 will appear in next report.

V GEOMAGNETIC ACTIVITY INDICES
(a) C, Kp, Ap, and Selected Quiet and Disturbed Days
(b) Charts of Kp by Solar Rotations

VI RADIO PROPAGATION QUALITY INDICES
North Atlantic:
(a) CRPL Quality Figures and Forecasts
(b) Graphs Comparing Forecast and Observed Quality
(c,d) Graphs of Useful Frequency Ranges
North Pacific
(e) CRPL Quality Figures and Forecasts
(f) Graphs Comparing Forecast and Observed Quality

VII ALERT PERIODS AND SPECIAL WORLD INTERVALS
(a) IGY World Warning Agency Decisions for Alerts and SWI

# SOLAR-GEOPHYSICAL DATA 

## INTRODUCTION

This monthly report series is intended to keep research workers abreast of the major particulars of solar activity and the associated ionospheric, radio propagation and other geophysical effects. It is made possible through the cooperation of many observatories, laboratories and agencies as recorded in the detailed description of the tables and graphs which follows. The report is edited by Miss J. V. Lincoln of the Sun-Earth Relationships Section.

## I DAILY SOLAR INDICES

Relative Sunspot Numbers -- The table includes (l) the daily American relative sunspot numbers, $\mathrm{RA}^{\prime}$, as compiled by the Solar Division of the American Association of Variable Star Observers, and (2) the provisional daily Zürich relative sunspot numbers, $\mathbb{R}_{2}$, as communicated by the Swiss Federal Observatory. Because of the time required to collect and reduce the observations, $\mathbb{R}_{A}{ }^{\prime}$ will normally appear one month later than $\mathrm{R}_{\mathrm{Z}}$.

The relative sunspot number is an index of the activity of the entire visible disk. It is determined each day without reference to preceding days. Each isolated cluster of sunspots is termed a sunsfot group and it may consist of one or a large number of distinct spots whose size can range from 10 or more square degrees of the solar surface down to the limit of resolution (e.g. l/0. square degrees). The relative sunspot number is defined as $\Omega=k(10 g+s)$, where $g$ is the number of sunspot groups and $s$ is the total number of distinct spots. The scale factor $K$ (usually less than unity) depends on the observer and is intended to effect the conversion to the scale originated by Wolf. The observations for sunspot numbers are made by a rather small group of extraordinarily faithful observers, many of them amateurs, each with many years of experience. The counts are made visually with small, suitably protected telescopes.

Final values of $R_{2}$ appear in the IAU Quarterly Bulletin on Solar Activity, the Journal of Geophysical Research and elsewhere. They usually differ slightly from the provisional values. The American numbers, $R_{A}$, are not revised.

Solar Flux Values, 2800 Hc -- The table also lists the daily values of solar flux at 2800 He recorded in watts/m $2 / c y c l e / s e c o n d$ bandwidth (x $10^{-22}$ ) in two polarizations by the National Research Council at. Ottawa, Canada. These solar radio noise indices are being published in accordance with CCIR Report 25 that a basic solar index for ionospheric propagation should be measured objectively and "preferably refer to a property of the sun such as radiation flux which has direct physical relationship to the ionosphere."

Graph of Sunspot Cycle -- The graph illustrates the recent trend of Cycle 19 of the ll-year sunspot cycle and some predictions of the future level of activity. The customary " 12 -month" smoothed index, $R$, is used throughout, the data being final $R_{Z}$ numbers except for the current year. Predictions shown are those made for one year after the latest available datum by the method of A. G. McNish and J. V. Lincoln (Trans. Am. Geophys. Union, 30, 673-635, 1949) modified by the use of regression coefficients and mean cycle values recomputed for Cycles 8 through 18. Cycle 19 began April 1954, when the minimum $\bar{R}$ of 3.4 was reached.

## $\square$ SOLAR CENTERS OF ACTIVITY

Calcium Plage and Sunspot Regions -- The table gives particulars of the centers of activity visible on the solar disk during the preceding month. These are based on estimates made and reported on the day of observation and are therefore of limited reliability.

The table gives the heliographic coordinates of each center (taken as the calcium plage unless two or more significantly and individually active sunspot groups are included in an extended plage) in terms of the Greenwich date of passage of the sun's central meridian (CMP) and the latitude; the serial number of the plage as assigned by McMathliulbert Observatory; the serial number of the center in the previous solar rotation, if it is a persisting region; particulars of the plage at CMP: area, central intensity; a summary of the development of the plage during the current transit of the disk, where $b=$ born on disk, $\ell=$ passed to or from invisible hemisphere, $d=$ died on disk, and $/=$ increasing, - = stable, $\rangle=$ decreasing; and age in solar rotations; particulars of the associated sunspot group, if any, at CMP: area and spot count and the summary of development during the current disk transit, similar to the above. The unit of area is a millionth of the area of a solar hemisphere; the central intensity of calcium plages is roughly estimated on a scale of $1=$ faint to $5=$ very bright.

Calcium plage data are available through the cooperation of the McMath-Hulbert Observatory of the University of Michigan and the Mt. Wilson Observatory. The sunspot data are compiled from reports from the U. S. Naval Observatory, Mt. Wilson Observatory, and from reports from Europe and Japan received through the daily Ursigram messages.

Coronal Line Emission Indices -- In the table are summarized solar coronal emission intensity indices for the green (Fe XIV at $\lambda 5303$ ) and red ( Fe X at $\lambda 6374$ ) coronal lines. The indices are based on measurements made at $5^{\circ}$ intervals around the periphery of the solar disk by the High Altitude Observatory at Climax, Colorado, and by Ilarvard University observers at Sacramento Peak (The USAF Upper Air Research Observatory at Sunspot, New Mexico, under contract AF 19(604)146). The measurements are expressed as the number of millionths of
an Angstrom of the continum of the center of the solar disk (at the same wavelength as the line) that would contain the same energy as the observed coronal line. The indices have the following meanings:

$$
\begin{aligned}
\mathrm{G}_{6}= & \text { mean of six highest line intensities in } \\
& \text { quadrant for } \lambda 5303 . \\
\mathrm{R}_{6}= & \text { same for } \lambda 6374 . \\
\mathrm{G}_{1}= & \text { highest value of intensity in quadrant, } \\
& \text { for } \lambda 5303 . \\
\mathrm{R}_{1}= & \text { same for } \lambda 6374 .
\end{aligned}
$$

The dates given in the table correspond to the approximate time of CMP of the longitude zone represented by the indices. The actual observations were made for the North East and South East quadrants 7 days before; for the South West and North West quadrants 7 days after the CMP date given.

To obtain rough measures of the integrated emission of the entire solar disk in either of the lines, assuming the coronal changes to be small in a half solar rotation, it is satisfactory to perform the following type of summation given in example for 15 October:
$\left(\begin{array}{c}\text { MEAN DISK EMISSION } \\ \text { IN } \\ \lambda_{53 O 3}\end{array}\right)_{15 \text { OCT }}=\frac{1}{N}\left[\sum_{150 C T}^{22 O C T}\left\{\left(G_{6}\right)_{N E}+\left(G_{6}\right)_{S E}\right\}+\sum_{80 C T}^{14 O C T}\left\{\left(G_{6}\right)_{S W}+\left(G_{6}\right)_{N W}\right\}\right]$
where $N$ is the number of indices entering the summation.
Such integrated disk indices as well as integrated wholesun indices are computed for each day and are published quarterly in the "Solar Activity Summary" issued by the High Altitude Observatory at Boulder, Colorado. In the same reports are given maps of the intensity distribution of coronal emission derived from all available Climax and Sacramento Peak observations, as well as other information on solar activity, such as maps made from daily limb prominence surveys in $H \alpha$ and notes regarding the history of active regions on the solar disk.

Preliminary summaries of solar activity, prepared on a fast schedule, are issued Friday of each week from High Altitude Observatory in conjunction with CRPL and include solar activity through the preceding day. These are useful to groups needing information on the current status of activity on the visible solar disk, but are not recommended for research uses unless such a prompt schedule of reporting is essential. The same information is included in the subsequent quarterly reports, with extensive additions, corrections and evaluations.

Untical Onservations -- The iable presents the preliminary record of solar flares as reported to the CRH on a rapid schedule at the sacrifice of detailed accuracy. Definitive and complete data are published later in the Quarterly Bulletin on Solar Activity, I.A.U., in various observatory publications and elsewhere. The present listing serves to identify and roughly describe the phenomena observed.

Reporting directly to the Cill are the following observatories: NoMath-Hulbert, Hendelstein, Sacramento Peak, Mitaka and Swedish Astrophysical Station on Capri. The remainder report through the InSIgram centers or are available through the IGY World bata Center for Solar Activity in Boulder. Uhservations are in the light of the center of the li-alpha line unless noted otherwise. The reports from Sacramento Peak, New Mexico (communicated to KRHL by the Migh Altitude observatory at Eoulder) are from observations at the WSAF Upper Air kesearch Observatory at Sunspot, New Nexico, hy Harvard llniversity observers, under contract AF $19(604)-146$.

For each flare are listed the reporting observatory, the date, beginning and ending times, time of maximum phase, the heliographic coordinates in degrees, Hemath serial number of the region, duration, the flare importance on the TAl! scale of $1-$ to $3+$, observing conditions where 1 means poor, ㄹ fair and $: 3$ good, time of measurement for tabulated width of lla or tahulated area, measured (i.e. projected) maximum area in square degrees, corrected maximum area in square degrees which equals measured area times secant lo where $h$ is the heliocentric angle, maximum effective line-width in lla expressed in Angstroms, and maximum intensity of lia expressed in per cent of the continuous spectrum. The following symbols are used in the table:

$$
\begin{array}{ll}
u=\text { Greater than } & F=\text { mproximately } \\
U=\text { Less than } & Q=\text { L'lus }
\end{array}
$$

A final column lists provisionally the occurrence of simultaneous ionospheric effects as observed on selected field-strength recordings of listant high-frequency radio transmissions; a more nearly definitive list of these ionospheric effects, including particulars, appears in these reports after the lapse of a month (see helow). All times are Universal Time (IUT or GCD). jublares (importance l-) are listed by date, time of bedinning and their heliographic coordinates. dyraph presents intervals for which there were no patrols for flare observations from the observatories whose complete data are published in the table.

Ionospheric Effects -- STi) (and GID--çadual ionospheric disturbances) may be defected in a number of ways: short wave fadcouts, enhancement of low frequency atmospherics, increases in cosmic absorption, and so forth. The table lists events that have been recognized on field-strength recordings of distant high-frequency radio transmissions.

Under a coordinated program, the staffs at the following ionospheric sounding stations contribute reports that are screened and synthesized at CRPL-Boulder: Puerto Rico, Ft. Belvoir, Va., and Anchorage, Alaska (CRPL Stations: PR, BE, AN): Huancayo, Heru, and College, Alaska (CRLLAssociated Laboratories: HJ, CO): and White Sands, N. Dex., Adak, Alaska, and Okinawa (U.S. Signal Corps Stations: WS, Al), Oki). NchathHulbert Ohservatory (MC) also contributes such reports. in addition, reports are volunteered by RCA Communications Inc., Marconi Wireless, Netherlands Kostal and Telecommunications Services, Swedish Telecommunications, and others; these usually specify times of SID and the radio paths involved.

In the coordinated program, the abnormal fades of field strength not obviously ascribable to other causes, are described as short wave fadeouts with the following further classification:

$$
\begin{aligned}
\text { S-SWF: } & \begin{array}{l}
\text { Sudden drop-out and gradual recovery } \\
\text { drop-out taking } 5 \text { to } 15 \text { minutes and }
\end{array} \\
\text { G-SWF: } & \begin{array}{l}
\text { gradual recovery } \\
\text { gradual disturbance; fade irregular in } \\
\text { both drop-out and recovery. }
\end{array}
\end{aligned}
$$

When there is agreement among the various reporting stations on the time (UT) of an event, it is accepted as a widespread phenomenon and listed in the table.

The degree of confidence in identifying the event, a subjective estimate, is reported by the stations and this is summarized in an index of certainty that the event is widespread, ranging from l (possible) to 5 (definite). The times given in the table for the event are from the report of a station (underlined in table) that identified it with high confidence. The criteria for the subjective importance rating assigned by each station on a scale of l- to $3+$ include amplitude of the fade, duration and confidence; greater consideration is given to reports on paths near the subsolar point in arriving at the summary importance rating given in the table.
Note: The tables of SID observed at Washington included in Cirl Freports prior $+\mathrm{n} F-135$ were restricted to events classed here as S-SWF .

## IV SOLAR RADIO WAVES

## 2800 Mc Observations

The data on solar radio wave events made in Ottawa, Canada by the Radio and Electrical Engineering Division of the National Research Council (A. E. Covington) at $2300 \mathrm{Nic}(10-\mathrm{cm}$ emission) are presented. Near local noon (about 1700 UF) the sensitivity of the radiometer is determined and a mean flux for the whole day calculated. These values are given in a tabular form (see table I-l) in units of $10-22$ watts $/ \mathrm{m}^{2} / \mathrm{c} / \mathrm{s}$. Burst phenomena are measured above this level and are given in terms especially suitable for the variations
observed on this frequency. The basis for the classifications is described by Covington - J.K. Astro. Soc. Can. 45, 49, 1951 and Dodson, Hedeman and Covington, Ap. J. $119,541,1954$. A modification in terminology with a view to simplification has been introduced and consists essentially of the omission of the descriptive word "Single" from the "Single-Simple" and "Single-Complex" classes; in designating the "Single", "Single-Simple" and "Rise and Fall" bursts into a single classification designated as "Simple Bursts" with an appropriate type number; in the addition of the letter "f" to indicate that the burst deviates from the basic pattern by the presence of one or more small fluctuations in intensity: and by the addition of the letter "A" to indicate that the event has another smaller duration event superimposed upon it.

## Simple Burst

Any single burst which rises to one maximum and then decreases to the pre-burst level.
l - Simple 1-- Simple burst, type 1 (formerly "single"). Bursts of intensity less than $71 / 2$ flux units and duration less than $71 / 2$ minutes.

2 - Simple 2 -- Simple burst, type 2 (formerly "singlesimple"). Bursts of impulsive nature with intensity greater than 7 l/2 flux units.

3 - Simple 3 -- Simple burst, type 3 (formerly "rise and fall"). Bursts of moderate intensity with duration greater than 7 l/2 minutes.

4 - Post-burst increase -- Postburst level is greater than the preburst level. The gradual return to normal flux may require as long as several hours.

5 - Absorption following burst (negative post).
6 - Complex -- (formerly "single-complex"). A single
burst which shows two or more comparable maxima before the activity has declined to zero.

7 - Period of irreqular activity or fluctuations -- Series of overlapping bursts of moderate intensity and duration.

8 - Group -- Series of single isolated bursts occurring in succession with intensity between the events equal to the level before and after the group.

9 - Precursor -- A small increase of intensity occurring before a larger increase.

## Great Burst

Infrequently occurring bursts of great intensity, of ten of complicated structure.

## Letter "A"

Indicates that this event has another event superimposed upon it.

Letter "f"
Indicates that the basic form of the event is modified by secondary fluctuations.
CLASS TYPE

1 SIMPLE 1


2
SIMPLE 2


3
SIMPLE 3


SIMPLE BA


4
POST


POST A


5


6
COMPLEX


7


9
RE


Data on solar radio waves made at Cornell University, Ithaca, N.Y. (Marshall Cohen) on 201.5 Mc are presented. All times are in Universal Time (UT or GCT). The antenna is linearly polarized and has a pattern appreciably broader than the solar disk. Flux is reported in units of $10^{-22}$ watts $/ \mathrm{m}^{2} / \mathrm{cps}$ and the tabulated numbers are twice the values observed in the one linear component.

Tables of flux and outstanding occurrences are given in general according to the systems used for the NBS 170 Mc and 450 Mc data.

## 170 Mc and 450 Mic Observations

Data on solar radio emission at the nominal frequencies of 170 Mc and 450 Mc recorded at the Gunbarrel Hill (Boulder) station of the National Bureau of Standards (R.S. Lawrence) are presented. The half width of the antenna lobe is appreciably greater than the solar disk. Polarization is not determined, but the dipole is oriented E-W. All times are in Universal Time (UT or GCT).

3-Hourly and Daily Flux Density and Variability -- Flux density is given in power units. These units are approximately $10^{-22}$ watts meter ${ }^{-2}(\mathrm{c} / \mathrm{s})^{-1}$ for both polarizations together. They will be subject to a correction factor when gain measurements of the antenna have been made. The median flux is measured for every one-hour period having at least thirty minutes of usable record and an applicable gain calibration. A three-hour value of flux is obtained by averaging the available one-hour medians (at least two required). A daily value of flux is obtained by averaging all available one-hour medians (at least four required). A dash indicates that insufficient measurements were made to meet the above requirements or that the records were not of usable quality. Flux values may be followed by the qualifying symbols $D, S$, and $X$ defined subsequently.

The variability index, given for each three-hour interval, is on a scale 0 to 3 defined as follows:

0 - The instantaneous flux did not drop below one-half the median level or exceed twice the median level at any time.

1 - The instantaneous flux made from one to ten excursions
outside the range described above.
2 - The instantaneous flux made from ten to one hundred excursions outside the rante descrined above.

3 - The instantaneous flux made more than one hundred excursions outside the rance descrined above.

For the purpose of the variability index, an excursion whose maximum intensity is $h$ times the median level is counted as $M$ excursions. The variability index is umitted if measurements were made for less than one hour during the period. The variability for the day is the mean of the three-hourly values. The letter $S$ follows variability indices which are in doubt because of atmospherics or local interference.

The observing periods are given in U. T. to the nearest $1 / 10$ hour and they usually extend into the next Greenwich day.

Outstandino Occurrences -- A separate table lists the occurrences which are not adequately described by the three-hourly values of flux density and variability. Two classifications are given: (l) A system in general accord with that described and illustrated by bodson, Hedeman, and Owren (Ap. J. 118, 169, 1953) and (2) the system described in the IGY Solar Activity Instruction Manual, prepared by the Radio Emission editor of the I.A.U. Quarterly Bulletin on Solar Activity.

In system (l) the occurrences are identified by numbers which do not necessarily indicate the magnitude of the event, as follows:

0 - Rise in base level -- A temporary increase in the continum with duration of the order of tens of minutes to an hour.
l - Series of bursts -- Bursts or groups of bursts, occurring intermittently over an interval of time of the order of minutes or hours. Such series of bursts are assigned as distinctive events only when they occur on a smooth record or show as a distinct change in the activity.

2 - Groups of bursts -- A cluster of bursts occurring
in an interval of time of the order of minutes.
3 - Minor burst -- A burst of moderate or small amplitude, and duration of the order of one or two minutes.

4 - Minor burst and second part $-\infty$ A double rise in flux in which the early rise is a minor burst.

6 - Noise storm -- A temporary increase in radiation characterized by numerous closely spaced bursts, by an increase in the continuum, or by both. Duration is of the order of hours or days.

7 - Noise storm begins -- The onset of a noise storm occurs at some time during the observing period.

8 - Major burst -- An outburst, or other burst of large amplitude and more than average duration. A major burst is usually complex, with a duration of the order of one to ten minutes.
$9 \mathrm{~A}, 9 \mathrm{~B}$, or 9 - Major burst and second part or large event without distinct first and second parts -- If there is a double rise in flux, the first part, a major burst, is listed as 9A and the second part as 9B. The second part may consist of a rise in base level, a group or series of bursts, a noise storm. A major increase in flux with duration greater than ten minutes but without distinct first and second parts, is listed simply as 9.


In system (2) combinations of the following letters are used to describe some distinctive characteristics of the recorded disturbances:

```
S = simple rise and fall of intensity,
C = complex variation of intensity,
A = appears to be part of general activity,
D = distinct from (i.e. apparently superimposed upon) the
    general background,
M = multiple peaks separated by relatively long periods of
    quietness,
F = multiple peaks separated by relatively short periods of
    quietness,
E = sudden commencement or sise of activity.
```

Starting and maximum times are read to the nearest $1 / 10$ minute if they are very definite and otherwise to the nearest minute. If the duration is less than five minutes, it is given to the nearest $1 / 10$ minute; otherwise to the nearest minute (see also qualifying symbols below).

Maximum flux densities are given in units of $10^{-22}$ watts meter ${ }^{-2}(\mathrm{c} / \mathrm{s})^{-1}$. The instantaneous maximum flux density is the highest peak in the disturbance measured above the sky level. The smoothed maximum flux density is the maximum value of a smooth curve drawn through the outstanding occurrence with a smoothing period of 20 to 50 percent of the total duration; it is measured above the estimated level in the absence of the disturbance. The intention is that (smoothed maximum) $x$ (duration) should give a measure of the energy radiated in the disturbance.

A dash indicates missing or insignificant data. Observations are interrupted during the period from 26 to 29 minutes after each hour for calibrations. Observing periods are given in the Daily Data tables. The following qualifying symbols are used:
$B$ - Event in progress before observations began.
D - Greater than.
I - Event apparently continued during an interruption of the observations. The period of the interruption may be given in the remarks.
N - See footnotes.
X - Measurement is uncertain or doubtful.
$S$ - Measurement may be influenced by interference or atmospherics.

C, Kp, Ap, and Selected Quiet and Disturbed Days -- The data in the table are: (l) preliminary international character figures, $C$; (2) geomagnetic planetary three-hour range indices, Kp; (3) daily "equivalent amplitude," Ap: (4) magnetically selected quiet and disturbed days.

This table is made available by the Committee on Characterization of Magnetic Disturbance of IAGA, IUGG. The Mleteorological Office, De Bilt, Holland collects the data from magnetic observatories distributed throughout the world, and compiles $C$ and selected days. The Chairman of the Committee computes the planetary and equivalent amplitude indices. The same data are also published quarterly in the Journal of Geophysical Research along with data on sudden commencements (sc) and solar flare effects (sfe).

The C-figure is the arithmetic mean of the subjective classification by all observatories of each day's magnetic activity on a scale of 0 (quiet) to 2 (storm).
$K p$ is the mean standardized $K$-index from 12 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 (very quiet) to 9 (extremely disturbed), expressed in thirds of a unit, e.g. 5- is $42 / 3$, 50 is $50 / 3$, and $5^{+}$is $51 / 3$. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the ionospheric field. A complete description of Kp has appeared in Bulletin 12b, "Geomagnetic Indices C and K, $1948^{\prime \prime}$ of the Association of Terrestrial Magnetism and Electricity (IATME), International Union of Geodesy and Geophysics.

Ap is a daily index of magnetic activity on a linear scale rather than on the quasi-logarithmic scale of the K -indices. It is the average of the eight values of an intermediate 3-hourly index "ap," defined as one-half the average gamma range of the most disturbed of the three force components, in the three-hour interval at standard stations; in practice, ap is computed from the $k p$ for the 3 -hour interval. The extreme range of the scale of Ap is 0 to 400. The method is described in IATME Bulletin No. 12h (for 1953) p. viii f. Values of Ap (like Kp and Cp) have been published for the Polar Year 1932/33 and for the years 1937 onwards.

The magnetically quiet and disturbed days are selected in accordance with the general outline in Terr. Mag. (predecessor to J. Geophys. Res.) 48, pp 219-227, December 1943. The method in current use calls for ranking the days of a month by their geomagnetic activity as determined from the following three criteria with equal weight: (l) the sum of the eight $K_{p}{ }^{\prime} s$; (2) the sum of the squares of the eight Kp 's; and (3) ine greatest Kp .

Chart of Kp by Solar Rotations -- The graph of Kp by solar rotations is furnished through the courtesy of Dr. J. Bartels, Geophysikalisches Institute, GÖttingen.

## VI RADIO PROPAGATION QUALITY INDICES

One can take as the definition of a radio propagation quality index: the measure of the efficiency of a medium-powered radio circuit operated under ideal conditions in all respects, except for the variable effect of the ionosphere on the propagation of the transmitted signal. The indices given here are derived from monitoring and circuit performance reports, and are the nearest practical approximation to the ideal index of propagation quality.

Quality indices are usually expressed on a scale that ranges from one to nine. Indices of four or less are generally taken to represent significant disturbance. (Note that for geomagnetic Kindices, disturbance is represented by higher numbers.) The adjectival equivalents of the integral quality indices are as follows:

$$
\begin{array}{lll}
1=\text { useless } & 4=\text { poor-to-fair } & 7=\text { good } \\
2=\text { very poor } & 5=\text { fair } & 8=\text { very good } \\
3=\text { poor } & 6=\text { fair-to-good } & 9=\text { excellent }
\end{array}
$$

CBPL forecasts are expressed on the same scale. The tables summarizing the outcome of forecasts include categories P-Perfect; SSatisfactory: Il-Unsatisfactory: F-Failure. The following conventions apply:
$P$ - forecast quality equal to U - forecast quality two or more observed grades different from observed when both forecast and observed were $>5$, or both < 5

S - forecast quality one grade F - other times when forecast different from observed quality two or more grades different from observed

Full discussion of the reliability of forecasts requires consideration of many factors besides the over-simplified summary given.

The quality figures represent a consensus of experience with radio propagation conditions. Since they are based entirely on monitoring or traffic reports, the reasons for low quality are not necessarily known and may not be limited to ionospheric storminess. For instance, low quality may result from improper frequency usage for the path and time of day. Although, wherever it is reported, frequency usage is included in the rating of reports, it must of ten
be an assumption that the reports refer to optimum working frequencies. It is more difficult to eliminate from the indices conditions of low quality for reasons such as multipath or interference. These considerations should be taken into account in interpreting research correlations between the $\ell$-figures and solar, auroral, geomagnetic or similar indices.

North Atlantic Radio Path - - The CRPL quality figures, Qa, are compiled by the North Atlantic Radio Warning Service (NARWS), the CRPL forecasting center at Ft. Belvoir, Virginia, from radio traffic data for North Atlantic transmission paths closely approximating New York-to-London. These are reported to CRPL by the Canadian Defense Research Board, Canadian Broadcasting Corporation, and the following agencies of the U. S. Government:--Coast Guard, Navy, Army Signal Corps, U. S. Information Agency. Supplementing these data are CRPL monitoring, di-rection-finding observations and field-strength measurements of North Atlantic transmissions made at Belvoir.

The original reports are submitted on various scales and for various time intervals. The observations for each 6-hour interval are averaged on the original scale. These 6 -hour indices are then adjusted to the 1 to 9 quality-figure scale by a conversion table prepared by comparing the distribution of these indices for at least four months, usually a year, with a master distribution determined from analysis of the reports originally made on the 1 to 9 quality-figure scale. A report whose distribution is the same as the master is thereby converted linearly to the 0 -figure scale. The 6-hourly quality figure is the mean of the reports available for that period.

The 6-hourly quality figures are given in this table to the nearest one-third of a unit,e.g. 50 is 5 and $0 / 3$; 5 - is 4 and 2/3: $5+$ is 5 and $1 / 3$. Other data included are:
(a) Whole-day radio quality indices, which are weighted averages of the four 6 -hourly indices, with half weight given to quality grades 5 and 6. This procedure tends to give whole-day indices suitable for comparison with whole-day advance forecasts which seek to designate the days of significant disturbance or unusually quiet conditions.
(b) Short-term forecasts, issued every six hours by the North Atlantic Radio Warning Service. These are issued one hour before $00^{\mathrm{h}}, 06^{\mathrm{h}}, 12^{\mathrm{h}}, 18^{\mathrm{h}}$, UT and are applicable to the period 1 to 7 hours ahead.
(c) Advance forecasts, issued twice weekly by the NARWS (CRPL-J reports) and applicable lo 3 or 4 days ahead, 4 or 5 to 7 days ahead, and 8 to 25 days ahead. These forecasts are scored against the whole-day quality indices.
(d) Half-day averages of the geomagnetic $K$ indices measured by the Fredericksburg Magnetic Ubservatory of the U. S. Coast and Geodetic Survey.

A chart compares the short-term forecasts with Qa-figures. A second chart compares the outcome of advance forecasts (l to 3 or 4 days ahead) with a type of "blind" forecast. For the latter, the frequency for each quality grade, as determined from the distribution of quality grades in the four most recent months of the current season, is partitioned among the grades observed in the current month in proportion to the frequencies observed in the current month.

Ranges of useful frequencies on the North Atlantic radio path are shown in a series of diagrams, one for each day. The shaded area indicates the range of frequencies for which transmissions of quality 5 or greater were observed. The blacker the diagram, the quieter the day has been; a narrow strip indicates either high LUHF, low MUF, or both. These diagrams are based on data reported to CRPL by the German Post Office through the Fernmeldetechnischen Zentralamtes, Darmstadt, Germany, being observations every one and a half hours of selected transmitters located in the eastern portion of North America. The magnetic activity index, $A_{F r}$, from Fredericksburg, Va., is also given for each day.

Note: Beginning with data for September 1955, Qa has been determined from reports that are available within a few hours or at most within a few days, including for the first time, the CRPL observations. Therefore these are the indices by which the forecasters assess every day the conditions in the recent past. Cver a period of several years, they have closely paralleled the former Qa indices which excluded ClPL observations and included three additional reports received after a considerable laç. Qa was first published to the nearest one-third of a unit at the same time.

North Pacific Radio Path - The CRPL quality figures, Qp, are compiled by the North Pacific Radio Warning Service (NPRWS), the CRPL forecasting center at Anchorage, Alaska, from radio traffic data for moderately long transmission paths in the North Pacific equivalent to Seattle-to-Anchorage or Anchorage-to-Tokyo. These include reports to CiPL by the Alaska Commincations System, Aeronautical Radio, Inc., U. S. Air Force and Civil Aeronautical Administration. In addition, there are CRPL monitoring, direction finder observations and field strength measurements of suitable transmissions.

The original reports are on various scales and for various time intervals. The observations for each 8 hours or 24 hour period are averaged on the original scale. This average is compared with reports for the same period in the preceding two months and expressed
as a deviation from the 3 -month mean. The deviations are put on the 1 to 9 scale of quality which is assumed to have a standard deviation of 1.25 and a mean for the various periods as follows:

| $03-10$ hours UT | 5.33 |
| :--- | :--- |
| $11-18$ | 5.33 |
| $19-02$ | 6.00 |
| $00-24$ | 5.67 |

The 8-hour and 24-hour indices Qp are determined separately. Each index is a weighted mean where the CRPL observations have unit weight and the others are weighted by the correlation coefficient with the CRPL observations.

The table, analagous to that for Qa, includes the 8-hourly quality figures; whole day quality figures; short-term forecasts issued by NPRWS three times daily at $02^{h}, 10^{h}$, and $18^{h}$ UT, applicable to the stated 8-hour periods; advance forecasts issued twice weekly by NPRWS (CRPL-Jp report); and half-day averages of geomagnetic K indices from Sitka.

The chart compares the outcome of advance forecasts, on the same basis as the similar chart for the North Atlantic Radio Path.

Note: Beginning with November 1956 the short-term forecast formerly made at 0900 UT was changed to 1000 UT. The North Pacific quality figures used for evaluation are now 8-hourly rather than 9hourly.

VII ALERT PERIODS AND SPECIAL WORLD INTERVALS

A table gives the Alert Periods and Special World Intervals (SWI) as designated by the IGY World Warning Agency at Ft. Belvoir, Va. For each day of the Alert or SWI are given the number of flares of importance two or greater reported promptly to the IGY World Warning Agency and the magnetic activity index $A_{B e}$ observed at the IGY World Warning Agency.

| $\begin{aligned} & \text { Oct. } \\ & 1957 \end{aligned}$ | ```American Relative Sunspot Numbers RA``` |
| :---: | :---: |
| 1 | 219 |
| 2 | 245 |
| 3 | 225 |
| 4 | 223 |
| 5 | 221 |
| 6 | 196 |
| 7 | 226 |
| 8 | 257 |
| 9 | 216 |
| 10 | 201 |
| 11 | 219 |
| 12 | 245 |
| 13 | 245 |
| 14 | 190 |
| 15 | 207 |
| 16 | 212 |
| 17 | 186 |
| 18 | 161 |
| 19 | 191 |
| 20 | 194 |
| 21 | 203 |
| 22 | 228 |
| 23 | 223 |
| 24 | 263 |
| 25 | 259 |
| 26 | 265 |
| 27 | 277 |
| 28 | 276 |
| 29 | 283 |
| 30 | 317 |
| 31 | 234 |
| Mean: | 229.2 |


| $\begin{aligned} & \text { Nov. } \\ & 1957 \end{aligned}$ | Zürich Provisional Relative Sunspot Numbers $\mathrm{R}_{\mathrm{Z}}$ | Daily Values Solar Flux at 2800 Mc, Ottawa, Canada Flux |
| :---: | :---: | :---: |
| 1 | 265 | 300 |
| 2 | 256 | 289 |
| 3 | 230 | 266 |
| 4 | 210 | 236 |
| 5 | 200 | 240 |
| 6 | 180 | 239 |
| 7 | 175 | 243 |
| 8 | 155 | 235 |
| 9 | 190 | 230 |
| 10 | 230 | 232 |
| 11 | 224 | 246 |
| 12 | 220 | 257 |
| 13 | 185 | 250 |
| 14 | 180 | 248 |
| 15 | 177 | 242 |
| 16 | 180 | 242 |
| 17 | 191 | 228 |
| 18 | 225 | 247 |
| 19 | 183 | 251 |
| 20 | 208 | 261 |
| 21 | 235 | 274 |
| 22 | 275 | 294 |
| 23 | 250 | 280 |
| 24 | 236 | 285 |
| 25 | 200 | 271 |
| 26 | 198 | 259 |
| 27 | 171 | 258 |
| 28 | 235 | 255 |
| 29 | 192 | 247 |
| 30 | 162 | 278 |
| Mean: | 207.3 | 256.1 |


| CMP <br> Nov． <br> 1957 | Lat | $\begin{aligned} & \text { McMath } \\ & \text { Plage } \\ & \text { Number } \end{aligned}$ | Return <br> of <br> Region | Calcium Plage Data |  |  |  | Sunspot Data |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \hline \text { CMP } \\ & \text { Area } \end{aligned}$ | $\begin{aligned} & \text { Talues } \\ & \text { Int. } \end{aligned}$ | Histor | Age | $\begin{aligned} & \text { CMP V } \\ & \text { Area } \end{aligned}$ | $\begin{aligned} & \text { ues } \\ & \text { unt } \end{aligned}$ | History |
| 02.0 | N08 | 4217 | New | 900 | 2.5 | b－l | 1 |  |  |  |
| 02.5 | S14 | 4222 | New | 900 | 2 | b－l | 1 |  |  |  |
| 03.8 | N11 | 4211 | 4172 | 1800 | 2 | 121 | 2 | 200 | 2 | l－1 |
| 04.0 | S16 | 4210 | 4176 | 600 | 2 | $\ell ᄂ \mathrm{~d}$ | 5 | 80 | 1 | $b-d$ |
| 05.2 | N41 | 4212 | 4171 | 3800 | 3 | $l \sim l$ | 2 | 20 | 1 | $b-d$ |
| 05.9 | S40 | 4219 | 4173 | 1000 | 1.5 | $\ell-\mathrm{d}$ | 2 |  |  |  |
| 06.1 | S17 | 4218 | 4177 | 3200 | 3.5 | 1－1 | 3 | 600 | 4 | $\ell-\ell$ |
| 07.0 | N16 | 4231 | 4179？ | 500 | 1.5 | $\mathrm{b},-\mathrm{l}$ | 2？ |  |  |  |
| 07.6 | N33 | 4220 | 4179？ | 1500 | 2.5 | l－l | $2 ?$ | 130 | 4 | 1－l |
| 07.9 | N23 | 4229 | 4179？ | 600 | 2 | $\mathrm{b}-1$ | 2？ | 50 | 1 | 1－d |
| 09.0 | S28 | 4224 | 4187 | 1300 | 1.5 | $\ell-1$ | 7 |  |  |  |
| 09.2 | N23 | 4221 | 4182？ | 2400 | 2.5 | $1-1$ | 2？ | 50 | 1 | $1 \backslash \mathrm{~d}$ |
| 09.7 | N14 | 4228 | 4180 | 2600 | 2 | $1-1$ | 7 | 50 | 1 | $1 \backslash \mathrm{~d}$ |
| 10.8 | S33 | 4225 | New | 2100 | 2 | $1-1$ | 1 | 100 | 1 | $\ell \wedge d$ |
| 11.1 | S18 | 4240 | 4185 | 2000 | 2 | $\ell-1$ | 2 |  |  |  |
| 11.4 | S11 | 4227 | 4185 | 800 | 2 | $1 \sim d$ | 2 |  |  |  |
| 11.9 | S24 | 4226 | 4185 | 1000 | 1 | $\ell$－d | 2 | 50 | 1 | $\underline{1}$ d |
| 12.2 | N18 | 4230 | New | 7800 | 4 | lve | 1 | 820 | 11 |  |
| 13.1 | S22 | 4236 | 4189 | 6000 | 3 | $1-1$ | 3 | 740 | 12 | bへ1＊＊ |
| 13.6 | N19 | 4235 | 4188 | 1800 | 3.5 | $\ell \neg \mathrm{d}$ | 7 | 220 | 4 | $\mathrm{b}-\mathrm{l}$ |
| 14.2 | N06 | 4233 | New | 2100 | 2.5 | $1-1$ | 1 | 340 | 13 | $\mathrm{b}-1$ |
| 14.9 | S21 | 4237 | 4189 | 6500 | 3 | l－l | 3 | 70 | 2 | $\boldsymbol{\ell}$ \d |
| 14.9 | N26 | 4234 | 4188 | 1500 | 2.5 | 121 | 7 |  |  |  |
| 16.2 | S15 | 4238 | 4191 | 700 | 2 | $\boldsymbol{l}$ | 4 |  |  |  |
| 17.9 | N16 | 4242 | New | 2800 | 2.5 | $1-1$ | 1 | 390 | 8 | $\mathrm{b}-1$ |
| 18.2 | S10 | 4243 | New | 6300 | 3 | 1－1 | 1 | 160 | 4 | 1－1 |
| 18.6 | S25 | 4245 | 4193 | （900） | （2） | $1-21$ | 2 | （370） | （8） | $\mathrm{b}-1$ |
| 19.5 | N12 | 4252 | 4196 | 1000 | 1.5 | $1-1$ | 6 | 100 | 2 | －${ }^{\text {d }}$ |
| 20.3 | N25 | 4246 | 4196 | 4300 | 3.5 | $1-2$ | 6 | 300 | 7 | $\ell<1$ |
| 20.3 | S16 | 4259 | New | 300 | 1 | b－l | 1 |  |  |  |
| 21.2 | N13 | 4247 | 4197 | 3500 | 5 | L－1 | 6 | 760 | 8 | $\ell \sim 1$ |
| 22.4 | S26 | 4248 | 4201 | 5000 | 2 | $1-\mathrm{l}$ | 3 |  |  |  |
| 23.1 | S09 | 4256 | 4203 | 1400 | 3.5 | $1 \sim l$ | 2 |  |  |  |
| 23.6 | N20 | 4254 | ＊ | 6000 | 3 | $\boldsymbol{1}$ | 4 | （270） | （1） | $\ell-1$ |
| 23.8 | S14 | 4255 | 4203 | 4000 | 3.5 | 1－1 |  | （620） | （7） | $\ell \neg \ell$ |
| 25.4 | S15 | 4257 | 4214 | 5700 | 3 | $1-1$ | 2 | 510 | 6 | $\ell \subset \ell$ |
| 26.2 | N37 | 4266 | 4215？ | 400 | 1 | $\ell-\mathrm{d}$ | 2 |  |  |  |
| 26.2 | S23 | 4264 | 4207 | 1000 | 1.5 | $\ell \neg \mathrm{d}$ | \＃ |  |  |  |
| 26.5 | N22 | 4261 | 4205 | 900 | 1.5 | $\ell-\mathrm{d}$ | 3 |  |  |  |
| 26.8 | N11 | 4262 | 4206 | （400） | （1．5） | $\ell \backslash \mathrm{d}$ |  |  |  |  |
| 27.1 | S16 | 4263 | 4207 | 8800 | 4 | $\ell-1$ | \＃ | 610 | 12 | $\ell \wedge \ell$ |
| 28.2 | S15 | 4267 | 4207 | 800 | 1 | ハーl | 非 | 40 | 3 | $\mathrm{b}-\mathrm{d}$ |
| 28.3 | N27 | 4268 | 4208 | 2800 | 2.5 | 1－1 | 2 | 70 | 4 | b－d |
| 28.5 | S26 | 4265 | 4207 | 3200 | 3 | $1-1$ | 非 | 150 | 1 | $\ell \backslash d$ |
| 29.7 | S18 | 4269 | 4210 | 1200 | 3 |  | 6 | 630 | 7 | b ノ $\ell$＊＊＊ |
| 30.4 | 508 | 4279 | New | 700 | 3 | $\mathrm{b}-1$ | 1 | 50 | 3 | b－l |
| 30.5 | N15 | 4271 | 4211 | 2500 | 3 | $\ell-\ell$ | 5 |  |  |  |

＊4202，4213，and part of 4197.
＊＊Spot group grew in rapidly．
＊＊＊Spot group grew to maximum area of 2280 millionths．
McMath re－identifies region 4209 （CRPL－F159B）as a new region．
非Age 4，5．


[^0]
Sヨy甘T』 y甘TOS
ANACAPRI SWEDISH
KROOAIKAYA PAKHRA
ROYAL OBSERVATORY．EOINBURGH
GREENWICH ROYAL OBSERVATORY，HERSTMONCEUX

UNITEO STATES NAVAL RESEARCH LABORATORY
CAPRI S
KOOAIKNL
KRASNYA
RO EDIN
RO HERST
SAC PEAK
SCHAUINS
USNRL

|  |  |  | $\begin{aligned} & \text { 唇 } \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$ |  |  |  |  |  |  |  | 䓂 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 空空》 |  |  |  | $\stackrel{\circ}{\square}$ |  |  |  |  |  |  |  |
| 管良品 |  |  |  |  |  |  |  | $\stackrel{8}{i}$ |  |  | $\stackrel{\stackrel{1}{0}}{\stackrel{1}{\sim}}$ |
|  |  |  |  | $\begin{aligned} & \text { ma } \\ & \text { jo } \\ & \text { fin } \end{aligned}$ |  |  | $\begin{aligned} & \circ \\ & \stackrel{\circ}{m} \end{aligned}$ |  | $\begin{aligned} & \hline \therefore \\ & \vdots \end{aligned}$ |  |  |
| \％${ }^{\text {a }}$ |  |  | $\stackrel{\stackrel{N}{n}}{\sim}$ | －i | lom |  |  |  |  |  |  |
| 管1吕 |  | $\stackrel{\text { r }}{\text { In }}$ |  | $\underset{\sim}{\circ \stackrel{\infty}{\mathcal{J}}}$ |  |  |  |  |  |  | $$ |
| \％ | ～ | $\rightarrow$ | ＊ | m－ | mmnmnnñ | nnnmmm－nnta |  | $\sim \mathrm{m}$ mन－ |  |  | ～mm |
| 言言㟥 | －－ | $\stackrel{\leftrightarrow}{\rightarrow}$ | $\sim \sim \stackrel{\omega}{+}$ | $\stackrel{\leftrightarrow}{-}$ | $\rightarrow \stackrel{\square}{\square}$ |  | $\rightarrow$ |  | $\stackrel{\sim}{\sim}$ |  |  |
|  | $\begin{aligned} & 00 \\ & m \sim \end{aligned}$ | $\begin{aligned} & \circ \\ & \stackrel{1}{1} \end{aligned}$ | $\begin{aligned} & 000 \\ & \text { iñ } \end{aligned}$ | $\stackrel{\infty}{\sim}$ |  |  | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$ | がコテ～～ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$ |  | $000$ <br>  |
|  | $\begin{aligned} & \stackrel{\circ}{\tilde{y}} \\ & \underset{\sim}{\sim} \underset{\sim}{c} \end{aligned}$ | $\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{\sim} \underset{\sim}{c} \end{aligned}$ | $\begin{aligned} & \tilde{\sim} \sim \sim \\ & \underset{\sim}{\sim} \\ & \mathcal{\sim} \end{aligned}$ | $\begin{aligned} & \hat{\sim} \hat{\sim} \\ & \underset{y}{\sim} \underset{\sim}{c} \end{aligned}$ |  |  | $\begin{aligned} & \hline \stackrel{0}{\sim} \\ & \underset{\sim}{2} \end{aligned}$ |  | $\begin{aligned} & \stackrel{\sim}{\sim} \\ & \underset{\sim}{2} \end{aligned}$ |  |  |
|  | －iN | 冎迵 |  | 出尔 |  | ～0～～ | $\stackrel{5}{3}$ |  | $\bar{\aleph}$ |  |  |
| 苞 | 云云 | 5～1 | ～～～～～～～ | ¢in $\sim_{\sim}^{\sim}$ |  |  | $\stackrel{\stackrel{0}{\sim}}{ }$ |  | $\frac{\mathrm{N}}{2}$ |  |  |
|  | － |  | $\begin{aligned} & \text { n } \\ & \stackrel{0}{\circ} \end{aligned}$ | $\underset{\underset{\sim}{\underset{\sim}{*}}}{ }$ |  | Bi̊ |  | $\begin{aligned} & \text { of } \\ & \text { 合 } \end{aligned}$ |  |  |  |
|  |  | $\begin{aligned} & 0 \\ & i \\ & \stackrel{n}{0} \\ & \hline \end{aligned}$ |  | $\stackrel{\infty}{7}$ |  |  | $\begin{aligned} & \circ \\ & \infty \\ & \stackrel{\sim}{\sim} \end{aligned}$ |  |  |  |  <br>  |
| 気 |  | 옹륵 |  |  |  |  | $\stackrel{\infty}{\stackrel{\infty}{7}}$ |  | $\begin{aligned} & \text { u } \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$ |  | minnino an が○ |
| 晨迨总 | $\stackrel{\infty}{\circ}$ | \％̊잉 | 우윽 | まコ | フัップニップ |  | $\pm$ |  | $\stackrel{\sim}{-}$ |  |  |
|  |  |  |  |  |  |  |  |  | $\stackrel{\text { 山 }}{\stackrel{4}{山}}$ |  |  |


|  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 管耍0 |  |  |  | $\stackrel{\sim}{n} \stackrel{\infty}{\sim}$ | 응ํ․․ | $\stackrel{n}{\sim}_{\sim}^{n}{ }_{-1}^{0}{ }^{\circ}$ | $\stackrel{0}{n}_{\sim}^{\circ}$ |  |  | $\stackrel{\sim}{\sim}$ | m |
| 运管물 |  |  |  |  |  |  | $\stackrel{\sim}{\sim}$ |  | $\stackrel{\sim}{\sim}$ |  | U U a a |
|  |  |  | $\begin{aligned} & \text { O: } \\ & \text { jMi } \end{aligned}$ |  |  |  |  |  <br>  |  |  |  |
|  | ¢ $\stackrel{\sim}{\circ}$ | 응ㅇ |  |  |  |  |  |  | ～\％ | ¢¢ |  |
| 宸 ${ }^{\text {c }}$ | $\stackrel{\text { N }}{\sim}$ |  |  |  | $\begin{array}{ll} \begin{array}{l} \text { Nin } \\ \text { No } \\ \text { tin } \\ \text { in } \\ \text { in } \end{array} \end{array}$ |  | $\begin{aligned} & 0 \sim \sim \\ & n \underset{\sim}{n} \\ & 0 \sim \\ & 0 \sim \sim \\ & \sim \end{aligned}$ |  |  |  |  |
| \％\％ | mm | m～mmms |  | $\rightarrow$－$\rightarrow$－ | $\rightarrow$－ | ーブ | m | ～－T～$\sim$ N |  | N－ |  |
| 安容㟥 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | $\underset{\sim}{N} \underset{\sim}{N}$ |  | $\begin{aligned} & 000 \\ & \mathrm{yj} \mathrm{~min} \end{aligned}$ |  |  |  |  |  |  |
|  |  |  | $\begin{aligned} & \text { Foin } \\ & \underset{\sim}{\mathcal{F}} \underset{\sim}{\sim} \underset{\sim}{\sim} \end{aligned}$ |  |  |  <br>  |  |  チ～～～～～～～～～～～N |  |  |  |
|  |  |  | $\begin{aligned} & \text { Ong } \\ & \text { yó } \\ & \text { wis } \end{aligned}$ |  |  |  |  |  <br>  |  |  |  |
|  |  |  | $\begin{aligned} & \infty 0 n \\ & 2003 \\ & z=0 \end{aligned}$ |  |  |  |  |  |  |  |  |
|  | $\stackrel{\substack{0 \\ \sim \\ \sim \\ \sim \\ N}}{ }$ |  |  |  |  | $\begin{aligned} & \text { o } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$ | $\begin{aligned} & a 0 \sim \\ & n_{i n}^{n} \underset{\sim}{n} \underset{\sim}{n} \end{aligned}$ |  | $\underset{\exists}{\underset{\exists}{J} \underset{-}{J}}$ | BN |  |
|  |  |  |  |  |  | － 0 ○～Nin fino mion <br>  |  |  |  |  |  |
|  |  |  |  |  |  |  <br>  |  |  |  |  |  |
|  |  |  | のコのゴ | ㅇNNNN | ごへべへ | NNN～NN～NN～ ～NN～NNNNN～ |  |  |  |  |  |
|  |  |  |  |  |  | 『『『山」 <br> 上にちて己て己心によ <br>  |  |  |  |  |  |


SOLAR FLARES


INTERVALS OF NO FLARE PATROL OBSERVATIONS
NOVEMBER 1957


| ATHENS | 81 | 0714 |  | N13 | W46 | MC MA TH | 04 | 1426 | E | 525 | E05 | USNRL | 09 | 18：3 |  | N14 | W26 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| uccle | 41 | 0846 |  | 527 | W40 | USNRL | 04 | 1437 |  | S15 | E22 | ＊hawa II | 09 | 1842 |  | 525 | E75 |
| UrCLF | 81 | 0909 |  | N1． 4 | W48 | ＊USNRL | 04 | 1506 |  | N18 | E88 | USNRL | 09 | 1845 |  | N12 | W28 |
| ＊：Apri a | 01 | 0978 | $t$ | N 24 | t17 | uccla | 04 | 1535 |  | 518 | F16 | ＊USNRL | 09 | 1959 |  | 517 | E75 |
| Merla | 01 | 10 nn | ＝ | $\mathrm{C}_{4}$ | F90 | USNRL | 04 | 1627 |  | N26 | W28 | ＊HUANC AYO | 09 | 2007 | E | N13 | W28 |
| ${ }^{16}$ CL．$F$ | 01 | 100\％ |  | 412 | wn 1 | ＊sal pear | 34 | 1645 |  | N26 | W27 | SAC PEAK | 09 | 2131 |  | 518 | E90 |
| Mur Lf | 01 | 1014 |  | N23 | wo 7 | ＊USNRL | 04 | 154 t |  | N26 | W28 | HAWA 11 | 09 | 2206 |  | NOH | E80 |
| 小くif | 01 | 1218 |  | S12 | wus | sac Peak | 04 | 1050 |  | 541 | E44 |  |  |  |  |  |  |
| rrie | 01 | 10.1 |  | M］ | WR6 | sat Pear | 04 | 1730 | E | 541 | E44 | CAPRI 5 | 10 | 0736 | E | 518 | E63 |
| Mele | A！ | 104\％ |  | N 24 | W49 | SAC PEAK | 04 | 1802 |  | N17 | 189 | ATHENS | 10 | $08 \mathrm{C}_{4}$ | E | 524 | WR |
| ： 6 r | 01 | 1110 |  | M23 | W4． | SAC PEAK | 174 | 1917 |  | 542 | セ45 | USNKL | 10 | 1224 |  | 516 | W 25 |
|  | 01 | 112 n |  | N28 | 120 | SAC PEAK | 04 | 2017 |  | 510 | E21 | USNRL | 10 | 1239 |  | N14 | W 39 |
| ＇H．LF | 41 | 1144 |  | S27 | W43 |  |  |  |  |  |  | WENOEL | 10 | 1302 | E | 511 | W27 |
| Sa．Plak | A1 | 14：0 |  | N25 | WS | ＊WFMNRFL | 05 | nans | F | 53. | FO？ | USARL | 10 | 1336 |  | N18 | EOs |
| $R$ HFESt |  | 1424 | ＋ | N2． | W56 | Wradm L | 05 | 0828 | E | 518 | E07 | USNRL | 10 | 154 ${ }^{\text {P }}$ |  | N24 | と19 |
| SML PEAK | ．1． | 15,00 |  | 116 | W41 | ＊yccle | 05 | 0843 |  | 517 | t10 | Climax | 10 | 1630 |  | N24 | F33 |
| كal PEAK | ． 11 | 129 |  | N14 | W（） | licci F | 05 | ก85\％ |  | 515 | F05 | USNRL | 10 | 1659 | E | 526 | E90 |
| SAI PFAR | 11. | 1．65 |  | N17 | w10 | WENJEL | 05 | 0421 | $t$ | N17 | ＋$\quad 4$ | 15 PRL | 10 | 1659 | t | N42 | W 11 |
| SAI PFAK | $\cdots 1$ | 1650 |  | N17 | W11 | ＊w／FMDEL | 05 | 1135 | E | N26 | W33 | USNRL | 10 | 1741 |  | N23 | E19 |
| C． $\operatorname{tinnx}$ | 01 | 1854 | ＋ | N18 | W1i | wemuel | 05 | 1213 | ＋ | 542 | ＋33 | USNRL | 10 | 1748 |  | N2\％ | t 20 |
| －LImax | 01 | 1656 |  | N2： | 1151 | ＊nembel | 05 | 1240 | E | $5: 6$ | wn 1 | USNRL | 10 | 1938 |  | 515 | W29 |
| gac pilak | 121 | 1709 |  | all | 561 | ＊dtawa | 05 | $1 / 44$ | E | 527 | Won | CiImax | 10 | 2027 | 5 | ${ }_{5} 16$ | W5．4 |
| －LTA ${ }^{\text {a }}$ | 01 | 17081 |  | 419 | 564 | iIttawa | 115 | 1250 | F | 939 | $+34$ | sac pear | 10 | 2040 |  | 515 | W65 |
| SAC Prar | 01 | 1727 |  | N30 | E07 | 11TAWA | 05 | 1317 |  | N25 | W40 | CLIMAX | 10 | 2049 | E | N44 | w50 |
| ＇LIMAX | 01 | 174 H |  | 410 | E4． | OTTAWA | 05 | 1604 |  | sid | ＋42 | SAC PEAK | 10 | 2102 |  | \＄17 | เ5．8 |
| 1i．PFAK | 01 | 1750 |  | 428 | c42 | $\because$ LIMAX | 05 | 1603 |  | 514 | ＋42 | SAC PEAK | 10 | 2105 |  | N46 | W 58 |
| 13A．4a！ | Q1 | 1844 |  | 4 | N05 | LIMAX | 05 | 1740 |  | N13 | W70 |  |  |  |  |  |  |
| SAC PFAR | 01 | 1．450 |  | 52. | c． 30 | ＊hawal I | 05 | 1800 | ＝ | 516 | FO1 | CAPRI S | 11 | 0708 | E | 520 | E53 |
| ＊Pic prak | $\rightarrow 1$ | $\therefore 1: 7$ |  | 527 | $=31$ | hawal1 | 05 | 2100 |  | 323 | W19 | ARCETRI | 11 | 0840 | E | S1\％ | E50 |
| ＊Hasal 11 | 01 | $\cdots{ }^{1}$ |  | ¢9， | 下年 | ［IANA I］ | 05 | $23: 6$ |  | 520 | woo | W：nuel | 11 | 1036 | E． | N18 | 843 |
| Car DFAK | 12 | $\cdots 135$ |  | 53． | 140 |  |  |  |  |  |  | usnel | 11 | 120 ？ |  | 529 | W90 |
| CIMAX | 01 | $213 k$ | F | 578 | ＋ 2 | HAWA II | nis | $0 \mathrm{n} 4 \mathrm{H}^{8}$ |  | 523 | W25 | USNRL | 11 | 1304 |  | 526 | E 70 |
| SAC PFAK | 0 | $22.2 n$ |  | 524 | 35 | ＊athens | Ons | n750 | 「 | N41 | FO1 | USNRL | 11 | 1434 |  | 515 | W36 |
| tovist jov | 万， | 0700 | E | N7， | ¢58 | UCCLF | 06 | 1018 |  | \＄25 | W27 | SAC PEAK | 11 | 1505 |  | S12 | t 50 -32 |
| ＊O＇HFRST | （1）． | 0850 | E | N28 | EO） | \％CLt | an | 1056 |  | 425 | w， 8 | SAC PEAK | 11 | 16.27 |  | S22 | w90 |
| TリアリCH | a | 0.5. | F | N 17 | W＞1 | ucrif | On | 1059 |  | S 27 | W＞1 | ＊SAC Peak | 11 | 1630 |  | 516 | E52 |
| ＊juccle | 0. | 1015 |  | 520 | E®2 | CAPFI S | On | 1214 | ＋ | in9 | セ67 | USNKL | 11 | 1632 | E | 523 | W90 |
| ＊＊N（1）L | 3. | 10．0 | E | cik | L． 519 | huanc ayo | 11. | 1631 | F | 513 | ＋30 | USNRL | 11 | 1842 |  | NH 13 | W55 |
| ＊winde L | 11. | 1034 | E | 371 | t 30 | ＊hainali | Oin | 2034 |  | 14 | W31 | USNRL | 11 | 1900 |  | NOY | $\pm 63$ |
| 13．CLE | a | 103： |  | N． 7 | to． | SAC PEAK | 0ヶ | 2225 |  | N15 | ＋1＞ | Climax | 11 | 1921 |  | NO： | E64 |
| Wramfl | $n$ n | 105 c | F | N：7 | 1．0．4 |  |  |  |  |  |  |  |  |  |  |  |  |
| WF wff | $\cdots$ | 1106 | F | M15 | W18 | uccle | 07 | 1151 |  | N34 | won | UCCLE | 12 | 0950 |  | N11 | E57 |
| 115 AlH | \％ | 1？ 34 |  | N：${ }^{\text {c }}$ ？ | $\mathrm{Cl}_{6}$ | USNRL | 07 | 1247 |  | N14 | ＋05 | WEque L | 12 | 1156 | E | N14 | W61 |
| 1SNTL | 6. | $\because 5 n$ |  | N1．${ }^{\text {d }}$ | Wい＇ | W．NITFL | 07 | 1249 | ＋ | N13 | 上05 | OTTAWA | 12 | 1158 | E | N13 | W6 1 |
| ＊gat peak | 0. | 1430 |  | 574 | $1 / 5$ | WETJIEL | 07 | 1315 | F | 141 | 1455 | USNRL | 12 | 1222 |  | N07 | E44 |
| SAL PFAK | $\bigcirc$. | 1494 |  | Sph | Who | ＊WFNDEL | 07 | 1379 | ＋ | N07 | ＋ 77 | uTtAWA | 12 | 1223 |  | NOH | E44 |
| s．ic Prax | $\cdots$ | 15 \％ |  | N14 | 190 | ＊5AC PEAR | 07 | 1420 |  | N15 | 104 | （1TTAWA | 12 | 1226 |  | N13 | Wal |
| GAL PEAR | （i） | 132．： |  | Ni＇b | WU1 | ＊cac Peat | 07 | 1450 |  | N09 | E75 | wenoel | 12 | 1227 | E | NOS | E43 |
| リvat | 0. | 15.4 |  | Nin | 203 | ＊：aranfl | 07 | 1450 | F | 407 | ＋76 | ＊USNRL | 12 | 1254 |  | 515 | W6\％ |
| ＊Sal pfar | $n$ | 1742 |  | 537 | －no | sac pfar | 07 | 1650 |  | N 20 | W04 | －ottawa | 12 | 1352 |  | N11 | W63 |
| ＊：Ar Prak | 0 | 175\％ |  | N． 7 | wa． | cac pmar | 07 | 1915 |  | N175 | 9473 | ＊Ittawa | 12 | 1351 |  | \＄24 | 匕67 |
| －．．．PEA． | ， | 1757 |  | S1） | －4 | SAC DFAK | 07 | 1030 | E | N15 | E01 | USNRL | 12 | 1515 |  | N24 | ［31 |
| ＊｜｜c．ata｜ | n | 1754 |  | NLT | $\mathrm{WO}_{3}$ | SAC pear | 07 | 2112 |  | 538 | W07 | OTTAWA | 12 | 1517 | E | N26 | E 30 |
|  | $n$ | 1R0n |  | 51. | ${ }^{4} 44$ | hawal I | 07 | 2118 |  | 529 | wo4 | OTTAWA | 12 | 1530 |  | 517 | E58 |
| USNV：L | 0. | 183A |  | 521 | E ${ }^{4}$ | ＊sal peak | 07 | 2140 |  | 413 | W70 | USVRL | 12 | 1531 |  | 519 | E58 |
| SAC PEAK | 0. | 1840 |  | 50 | E． 3 | CLIMA＊ | 07 | 2337 |  | N25 | W6： | USNRL | 12 | 1555 |  | 517 | 140 |
| SAC PEAK | 02 | 2100 |  | M27 | 410 |  |  |  |  |  |  |  |  |  |  |  |  |
| －ac peak | 07 | （11） 7 |  | 1． 7 | W04 | athens | 08 | 0700 |  | N34 | W69 | ATHENS | 13 | 0713 |  | 5.13 | $r 32$ |
| SAC PEAK | 0. | ：1111 |  | 512 | t22 | ＊ATHENS | OH | 0721 |  | N4n | W24 | CAPRI S | 13 | 0714 | E | 522 | 50 |
| ，／AC PEA | 0 | －13： |  | $5: 4$ | W47 | ＊athane | 08 | 0778 |  | 538 | w 07 | ATHENS | 13 | 0728 |  | N12 | W55 |
| iar pfak | （1） |  |  | 514 | Eno | ＊athene | กR | $0 \cdot 7 \rightarrow 8$ |  | く3） | Wno | ATHENS | 13 | n73？ | F | 576 | F57 |
| SAC PEAK | $n$ | $\therefore$ ． |  | N13 | W76 | ＊ivf MDFI | OR | 0728 | F | ¢ 37 | Un\％ | ATHENS | 13 | 0808 |  | N06 | E 35 |
|  |  |  |  |  |  | ＊Windel | is． | apa？ | F | N20 | 12 | WENOEL | 13 | 0902 | E | N11 | t41 |
| 1 THENS | n） | mbi |  | N22 | W 34 | WENDEL |  | 1035 | ＋ | 11.7 | E3 | UCCLE | 13 | 0930 |  | N 26 | W17 |
| athens | 03 | 0658 |  | N16 | W35 | W．NDE L | 11 H | 10.75 | － | 527 | W50 | UCCLE | 13 | 1047 |  | N05 | t32 |
| AThen | n． | 0728 |  | N19 | W3． | WHENOEL | 08 | 1049 | F | 1419 | W09 | WENIDEL | 13 | 1100 | E | 524 | E51 |
| ATHE：AS | $1{ }^{1}$ | 0719 |  | 510 | E＜2 | Hectir | 08 | 1156 |  | N14 | w17 | ＊wendel | 13 | 1132 | E | 514 | E25 |
| ＊MTHENS | 17， | 11714 |  | 515 | E 5 7 | SAC PFAK | OH | 1412 |  | N20 | W1to | ＊USNRL | 13 | 1318 |  | 523 | E54 |
| ATHENS | 0. | 0847 |  | 516 | E．30 | sac peak | 08 | 1600 |  | 518 | E90 | ＊ottawa | 13 | 1322 |  | 522 | E53 |
| OMDPr jov | 07 | 9931 | E | 512 | E33 | ＊sac pfak | 08 | 1617 |  | N07 | E60 | ＊CAPRI 5 | 13 | 1322 |  | 523 | E55 |
| UTTAWA | 03 | 1．3．1 |  | 514 | E 35 | ＊limax | 08 | 1620 |  | Nob | E63 | USNRL | 13 | 1359 |  | 532 | E58 |
| MTTAWA | 03 | 13.18 |  | 517 | wio | ＊romentin | $\bigcirc \mathrm{OH}$ | 162？ | E | NOB | E54 | MC MATH | 13 | 1400 | E | 518 523 | E 23 $E 54$ |
| －Mac PATH | 03 | 1347 1400 | F | 5.7 5.76 | W6 3 E18 | ¢ SAC PFAY | п\％ Of | 1640 |  | 542 420 | W08 | USIVRL SAC PEAK | 13 | 1433 1435 | E | 523 S22 | E54 |
| ＊ttama | 03 | 14008 |  | 526 | E18 | ＊SAC PFAK SAC PEAK | 08 08 | 1647 1650 |  | N20 517 | W18 | ＊Climax | 13 | 1455 | ¢ | M26 | E48 |
| －ac prar | is | 141 |  | 514 | E70 | ＊sac peak | ${ }_{118}$ | 1710 |  | N19 | W16 | ＊CAPkI S | 13 | 1532 |  | 523 | E55 |
| ＊sac peak | 03 | 14.27 |  | N 511 | W02 | ＊Climax | Ob | 1712 |  | N19 | W17 | SAC PEAK | 13 | 1611 | E | 527 | E53 |
| ＊attaiva | ¢3 | 14.7 |  | N 2 H | wn 3 | ＊huancayu | 08 | 1712 | t | N17 | W15 | SAC PEAK | 13 | 1716 |  | 527 | E53 |
| ＊USNRL | 03 | 1471 |  | N30 | wos | hijaide ayo | 0 O | 1926 | E | N35 | W67 | SAC PFAK | 13 | 1947 | E | 527 | E51 |
| －sac peas | 02 | 10／2 |  | 574 | ＋13 | SAC DFAK | ก\％ | 2205 |  | N20 | E． 27 | SAC PEAK | 13 | 2055 | E | N28 S18 | \＆54 |
| ＊SAC Pear | 03 | 1532 |  | S20 | E17 | SAC PEAK | 48 | 2220 | t | 518 | E90 | SAC PEAK SAC PFAK | 13 | 2115 | E | 518 N 26 | ¢ 4.21 |
| ＊usmrl | 03 | 1537 |  | 527 | E18 | SAC PEAK | 08 | 2240 |  | N17 | E21 | SAC PFAK | 13 | 2235 | f． | N26 | F46 |
| IISNRL | 04 | 1545 |  | N1b | wan | HAWAII | 08 | 2300 |  | 525 | E90 |  |  |  |  |  |  |
| SAC PEAT | 03 | 1645 |  | 525 | t14 |  |  |  |  |  |  | UCCLE | 14 | 0851 |  | 525 $N \sim 24$ | E38 |
| USNRL | 03 | 1645 |  | 526 | E13 | ATHENS | 09 | 0728 |  | N12 | W19 | UCCLE | 14 | 1009 1025 |  | N24 527 | $W 42$ +47 |
| －LIMAX | 113 | 1547 |  | 525 | E12 | ＊athens | 04 | 0741 |  | N17 | W26 | UCCLE | 14 | 1025 |  | 527 | 6．47 |
| ＊${ }^{\text {gac preak }}$ | 03 03 0 | 1707 1725 |  | 519 $N 18$ | E27 | ＊CAPPI ${ }^{\text {a }}$ W NOEL | 09 09 | 0746 0940 | E | N17 N 17 | $W>4$ $W 19$ | WENDEL | 14 | 1204 | E | 525 516 | E48 E05 |
| U USNPL | 03 | 1728 |  | 527 | E15 | WENDEL | 09 | 1021 | E | N21 | E38 | WENJEL | 14 | 1111 | E | 515 | E05 |
| ＊sac peaz | 03 | 1730 |  | N16 | F 19 | OnGRE JoV | 09 | 1052 | E | N318 | W41 | UCCLE | 14 | 1116 | E | N／4 | E08 |
| CLIMAX | 03 | 18213 |  | 525 | E12 | ＊wf noel | 09 | 1138 | E | N17 | W20 | UCCLE | 14 | 1140 | E | 576 | E46 |
| SAC PEAK | 03 | 18： 0 | F | 524 | E12 | USNRL | 09 | 1223 |  | N26 | E36 | UCCLE | 14 | 1145 | E | 530 | E44 |
| IGNRL | 03 | 1830 |  | $\mathrm{S}_{2} 15$ | E12 | ＊USNRL | 09 | 1313 |  | N27 | E37 | ＊UCCle | 14 | 1155 | E | 528 | E34 |
| usink | ${ }^{1} \cdot$ | 1845 |  | N27 | W18 | USNRL | 09 | 1353 |  | N14 | W22 | ＊WENDEL | 14 | 1155 | E | 527 | E42 |
| SAC PEAK | 03 | 2022 |  | 514 | E25 | USNRL | 09 | 1401 |  | 540 | W20 | WENDEL | 14 | 1240 | E | 527 528 | t42 +42 |
| SAC．PEAK | 03 | $\therefore 25$ |  | N29 | W14 | sac peak | $0 \%$ | 1405 | E | 542 | wio | USNRL | 14 | 1241 |  | 528 | t42 |
| SAC PEAK | 03 | 2257 |  | 537 | ES1 | SAC PEAK | 09 | 1405 | E | N24 | E36 | CAPRI S | 14 | 1255 | E | N40 | W30 |
|  |  |  |  |  |  | USNRL | 09 | 1405 |  | N23 | E90 | USNRL | 14 | 1309 |  | S23 | F32 t 47 |
| ARCFTRI ONDRE JOV | 04 | 0846 | E | 514 515 | E13 | SAC PEAK USNRL | 09 | 1410 1423 |  | N22 | E90 | USNRL $*$ | 14 | 1316 |  | S23 | W90 |
| USNRL | 04 | 13 ¢ 9 |  | ¢ 29 | W25 | USNRL USNRL | 09 | 1423 |  | N25 | E35 | ＊USNRL | 14 | 1323 |  | N12 | W79 |
| ＊USNRL | 04 | 1397 |  | 530 | W／88 | WENDEL | 09 | 1511 | E | N17 | W21 | WENDEL | 14 | 1340 | E | 526 | E38 |
| USNRL | 014 | 1341 |  | N21 | 852 | USNRL | 09 | 1631 | － | N14 | W22 | WENDEL | 14 | 1421 | E | 522 | E36 |
| ＊mr math | 04 | 1344 | E | 525 | E05 | USNRL | 09 | 1645 |  | N23 | E90 | ＊WENDEL | 14 | 1431 | F | \＄15 | E04 |
| ＊USNkL | 04 | 1544 |  | 527 | Eno | USNRL | 09 | 1817 |  | N26 | E 31 | ＊MC MATH | 14 | 1452 | E | 518 | EOR |
| USARL USNRL |  |  |  |  |  | HAWAII | 09 |  |  |  |  | ＊SAC PEAK | 14 | 1452 1453 | E | 520 520 | E12 |



| USNRL | 27 | 1436 |  | N13 | W77 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| * USNRIL | 27 | 1453 | E | N12 | W29 |
| USNRL | 27 | 1517 | E | N 27 | E56 |
| USNRL | 27 | 1520 |  | 516 | E57 |
| CLIMAX | 27 | 1534 | E | 517 | E56 |
| USNRL | 27 | 1552 |  | 509 | W04 |
| CLIMAX | 27 | 1622 |  | 525 | E 56 |
| SAC PEAK | 27 | 2105 |  | 524 | W35 |
| SAC PEAK | 27 | 2152 |  | N2L | W06 |
| SAC PEAK | 27 | 2152 |  | 510 | W05 |
| * capri s | 28 | 1143 |  | S20 | W37 |
| USNRL | 28 | 1224 | $E$ | 523 | W36 |
| USNRL | 28 | 1240 |  | N13 | W90 |
| USNRL | 28 | 1248 |  | N22 | W15 |
| USNRL | 28 | 1254 |  | 522 | W37 |
| USNRL | 28 | 1256 |  | N21 | W15 |
| OtTAWA | 28 | 1320 |  | N22 | W07 |
| ZURICH | 28 | 1347 | $\varepsilon$ | N22 | W04 |
| * USNRL | 28 | 1350 |  | 516 | E11 |
| SAC PEAK | 28 | 1507 |  | 52.2 | W37 |
| USNRL | 28 | 1545 |  | 523 | W36 |
| USNRL | 28 | 1612 |  | N10 | W45 |
| SAC PEAK | 28 | 1625 |  | N12 | W4 4 |
| SAC PEAK | 28 | 1642 |  | 522 | W38 |
| USNRL. | 28 | 1656 |  | N22 | W15 |
| USNRL | 28 | 1658 |  | N12 | W45 |
| SAC PEAK | 28 | 1705 |  | N12 | W45 |
| SAC PEAK | 28 | 1707 |  | S21 | W38 |
| * SAC PEAK | 28 | 1722 |  | S25 | E48 |
| * USNRL | 28 | 1724 |  | 524 | E49 |
| USNRL | 28 | 1820 |  | N21 | W19 |
| USNRL | 28 | 1904 |  | N25 | E21 |
| SAC PEAK | 28 | 1910 |  | 516 | F07 |
| USNRL | 28 | 1912 | E | 516 | E08 |
| SAC PEAK | 28 | 1937 |  | 529 | E45 |
| USNRL | 28 | 1948 |  | N20 | W20 |
| * USNRL | 28 | 2058 |  | N21 | W 11 |
| * SAC PEAK | 28 | 2100 | U | N21 | W10 |
| SAC PEAK | 28 | 2147 | E | \$22 | W04 |
| ONORE JOV | 29 | 0819 |  | 520 | E35 |
| CAPRI 5 | 29 | 0819 |  | 518 | E31 |
| USNRL | 29 | 1229 | $E$ | N18 | W55 |
| USNRL | 29 | 1307 |  | N18 | E69 |
| USNRL | 29 | 1335 |  | N28 | E 32 |
| USNRL | 29 | 1355 |  | 522 | w50 |
| ZURICH | 29 | 1448 | E | 524 | E33 |
| USNRL | 29 | 1511 |  | N20 | W30 |
| * USNRL | 29 | 1535 | E | 519 | E29 |
| * usnrl | 29 | 1535 | E | N21 | W30 |
| USNRL | 29 | 1649 | E | N12 | W12 |
| CLIMAX | 29 | 1729 |  | N2C | W 31 |
| USNRL | 29 | 1731 |  | N 20 | W32 |
| USNRL | 29 | 1820 | E | 510 | W29 |
| CLIMAX | 29 | 1847 |  | $\mathrm{N} ? 7$ | E 31 |
| CLIMAX | 29 | 1848 |  | NCL | W24 |
| USNRL | 29 | 1853 |  | N 20 | W 25 |
| * usnrl | 29 | 1919 |  | C3 3 | WO4 |
| HAWAII | 29 | 1922 |  | 513 | W07 |
| * USNRL | 29 | 2005 |  | N22 | W 31 |
| CLIMAX | 29 | 2007 |  | 571 | E 24 |
| USNRL | 29 | 2007 |  | S21 | E22 |
| USNRL | 29 | 2015 |  | 518 | E28 |
| USNRL | 29 | 2039 |  | 513 | W06 |
| Climax | 29 | 2138 |  | N15 | H 70 |
| Climax | 29 | 2152 |  | N11 | W76 |
| * CAPRI S | 30 | 0815 | E | 512 | W40 |
| ONORE JOV | 30 | 0855 | E | N16 | E59 |
| * CAPRI S | 30 | 0856 | E | 512 | W40 |
| * CAPRI S | 30 | 0956 | F | 512 | W40 |
| UCCLE | 30 | 1032 | 8 | 509 | W44 |
| UCCLE | 30 | 1032 | E | N24 | E12 |
| UCCLE | 30 | 1033 |  | N15 | W87 |
| UCCLE | 30 | 1035 |  | 520 | E19 |
| UCCLE | 30 | 1036 | E | N25 | E21 |
| * ONDRE jov | 30 | 1039 | E | N21 | W35 |
| UCCLE | 30 | 1119 | E | N17 | W86 |
| CAPRI S | 30 | 1310 | E | N33 | E 50 |
| USNRL | 30 | 1327 | E | 522 | E 20 |
| * SAC PEAK | 30 | 1420 |  | S20 | E. 13 |
| * SAC PEAK | 30 | 1450 |  | 511 | W4 1 |
| SAC PEAK | 30 | 1457 |  | 520 | E12 |
| SAC PEAK | 30 | 1532 |  | 510 | W42 |
| SAC PEAK | 30 | 1802 |  | 510 | W43 |
| SAC PEAK | 30 | 1850 |  | N39 | E54 |
| SAC PEAK | 30 | 1915 |  | 511 | W44 |
| * SAC PEAK | 30 | 2100 |  | N07 | E30 |
| Climax | 30 | 2212 |  | N39 | E54 |
| SAC PEAK | 30 | 2215 |  | N38 | E51 |
| ZURICH | 31 | 1437 |  | N26 |  |
| ZURICH | 31 | 1517 |  | N24 |  |

* Rated as flare of importance $\geq 1$ by other observatories (See CRPL-F 159 Part B).

| $\begin{aligned} & \text { Oct. } \\ & 1957 \end{aligned}$ | $\begin{gathered} \text { Start } \\ \text { UT } \end{gathered}$ | End <br> UT | Type | Wide Spread Index | Importance | Observation Stations | Known <br> Flare, UT <br> CRPL-F 159B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 02 | 0235 | 0310 | G-SWF | 3 | 1 | CA, TO |  |
| 02 | 1528 | 1556 | Slow S-SWF | 5 | 1 | BE, HU, MC, PR, WS | 1520E |
| 02 | 2317 | 2340 | Slow S-SWF | 4 | 1- | $A D, A N$, |  |
| 03 | 0040 | 0140 | Slow S-SWF | 5 | $1+$ | $\overline{\mathrm{AD}}, \mathrm{CA}, \mathrm{TO}$ | 0040E |
| 03 | 0625 | 0715 | G-SWF | 1 | 2 | NE | 0625E |
| 03 | 0727 | 0747 | S-SWF | 1 | 2 | NE | 0739E |
| 03 | 1536 | 1604 | Slow S-SWF | 3 | 1 | HU, MC, PR | 1536E |
| 04 | 1505 | 1610 | G-SWE | 3 | 1 | $\mathrm{CO}, \underline{H U}, \overline{\mathrm{PR}}$ | 1508 |
| 05 | 0900 | 0909 | S-SWF | 1 | 1 | NE | 0901 |
| 05 | 2210 | 2254 | Slow S-SWF | 1 | 2 | $\overline{\mathrm{AD}}$ | 2209 |
| 06 | 1232 | 1320 | G-SWF | 4 | 2 | PR, PU | 1228 |
| 06 | 1645 | 1707 | G-SWF | 4 | 1 | HU, MC, PR | 1625 |
| 08 | 0230 | 0254 | Slow S-SWF | 5 | $2-$ | AD, CA, $\underline{O K}$ | 0240E |
| 08 | 1056 | 1126 | S-SWF | 1 | 3 | HH | 1049 |
| 09 | 1905 | 1925 | Slow S-SWF | 4 | 1 | HU, MC, PR, WS | 1902 |
| 09 | 0340 | 0424 | Slow S-SWF | 5 | $1+$ | $\mathrm{AN}, \mathrm{CA}, \mathrm{OK}, \mathrm{TO}$ | 0340 |
| 10 | 0902 | 0914 | S-SWF | 1 | 3 ? | HH | 0855 |
| 10 | 1607 | 1810 | Slow S-SWF | 5 | 3 | $\overline{A N}, \mathrm{BE}, \mathrm{CR}, \mathrm{HU}, \mathrm{MC}, \mathrm{PR}, \mathrm{WS}, \mathrm{CW*}$ | 1659 E |
| 10 | 1810 | 1930 | S-SWF | 3 | 2 | $B E, M C, P R, W S$ |  |
| 11 | 1430 | 1502 | G-SWF | 3 | 1 | $\mathrm{HU}, \underline{M C}, \mathrm{PR}$ | 1420 |
| 11 | 1512 | 1527 | S-SWF | 2 | 1- | HU, MC | 1515E |
| 11 | 1632 | 1712 | Slow S-SWF | 5 | 1 | AN, $\overline{B E}, \mathrm{CR}, \mathrm{HU}, \underline{M C}, \mathrm{PR}, \mathrm{WS}$ |  |
| 12 | 0900 | 0916 | S-SWF | 1 | 3 | HH | 0859E |
| 12 | 1013 | 1022 | S-SWF | 1 | 1 | PU | 1013 |
| 12 | 1358 | 1408 | S-SWF | 2 | 1. | $\overline{\mathrm{HU}}$, MC | 1353 |
| 13 | 0541 | 0606 | S-SWF | 1 | 1 | NE | 0534E |
| 13 | 1530 | 1615 | S-SWF | 5 | 2 | $\overline{B E}, \mathrm{CR}, \mathrm{HU}, \mathrm{MC}, \mathrm{NE}, \mathrm{PR}$, WS | 1523 |
| 13 | 1745 | 1820 | Slow S-SWF | 5 | 1 | BE, CR, HU, MC, PR, WS |  |
| 14 | 0144 | 0223 | S-SWF | 4 | 2 | $A N, T O$ |  |
| 14 | 0412 | 0504 | S-SWF | 4 | 2 | $\overline{\mathrm{AN}}, \underline{\mathrm{TO}}$ |  |
| 14 | 1135 | 1200 | Slow S-SWF | 1 | 2 | NE | 1158 E |
| 14 | 1324 | 1415 | Slow S-SWF | 5 | $1+$ | $\overline{B E}, \mathrm{CR}, \mathrm{HU}, \mathrm{MC}, \mathrm{NE}, \mathrm{PR}$, WS | 1319 |
| 14 | 1712 | 1800 | S-SWF | 5 | $2+$ | AN, BE, CR, DA, HU, MC, PR, WS, RCA* |  |
| 15 | 0242 | 0317 | S-SWF | 5 | 2 | $\mathrm{AD}, \mathrm{CA}, \mathrm{OK}, \mathrm{TO}, \mathrm{CW+}$ | 0241 E |
| 15 | 2013 | 2030 | Slow S-SWF | 3 | 1 | $A N, H U, M C$ |  |
| 15 | 2150 | 2202 | S-SWF | 5 | 1+ | $A D, A N, B E, H U, M C, P R, T O, W S$ |  |
| 16 | 0050 | 0115 | Slow S-SWF | 1 | 2 | CA - | 0045 |
| 16 | 0150 | 0210 | S-SWF | 5 | $2+$ | $\overline{A D}, \mathrm{AN}, \mathrm{CA}, \mathrm{OK}, \mathrm{TO}, \mathrm{CW}+, \mathrm{RCA}+$ | 0152 |
| 16 | 0417 | 0447 | Slow S-SWF | 5 | 2 | $\mathrm{CA}, \mathrm{NE}, \underline{\mathrm{OK}}, \mathrm{TO}, \mathrm{CW}+$ | 0415 E |
| 16 | 0534 | 0624 | S-SWF | 1 | 2 | NE | 0529E |
| 17 | 1420 | 1510 | Slow S-SWF | 5 | 2 | $\underline{B E}, \mathrm{CR}, \mathrm{HH}, \mathrm{HU}, \mathrm{MC}, \mathrm{NE}, \mathrm{PR}, \mathrm{WS}, \mathrm{CW***}$ | 1415 |
| 17 | 1732 | 1753 | Slow S-SWF | 5 | 1 | $\overline{A N}, \mathrm{BE}, \mathrm{HU}, \mathrm{MC}, \mathrm{PR}$ |  |
| 17 | 1830 | 1910 | G-SWF | 2 | 1 | MC, PR |  |
| 18 | 0005 | 0135 | S-SWF | 3 | 2 | $\overline{\mathrm{AD}}, \mathrm{CA}$ |  |
| 18 | 0247 | 0317 | S-SWF | 1 | 2 | T0 |  |
| 18 | 0820 | 0840 | S-SWF | 1 | 3 ? | $\underline{\mathrm{HH}}$ | 0816 |
| 18 | 2200 | 2235 | S-SWF | 5 | 2+ | $\overline{A D}, A N, B E, H U, M C, T O, W S, ~ R C A+$ |  |
| 19 | 0126 | 0146 | Slow S-SWF | 5 | 1+ | $\overline{A D}, \mathrm{CA}, \overline{\mathrm{OK}}, \underline{T O}$ | 0118 |
| 19 | 0406 | 0430 | S-SWF | 3 | 1 | OK, CW+ | 0406E |
| 19 | 0620 | 0715 | Slow S-SWF | 5 | $1+$ | OK, PU, CWt, CW** | 0613E |


| $\begin{aligned} & \text { Oct. } \\ & 1957 \end{aligned}$ | Start <br> UT | End <br> UT | Type | Wide Spread Index | Importance | Observation Stations | Known <br> Flare, UT CRPL-F 159B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 19 | 0807 | 0851 | S-SWF | 1 | 2 | PU | 0757 |
| 19 | 1031 | 1138 | Slow S-SWF | 1 | 2 | PU | 1035 E |
| 19 | 1700 | 1840 | G-SWF | 3 | 1+ | $\overline{M C}, \mathrm{PR}$ |  |
| 19 | 1918 | 1955 | S-SWF | 5 | 2 | AN, $\overline{B E}, \mathrm{CR}, \mathrm{HU}, \mathrm{MC}, \mathrm{PR}, \mathrm{TO}$, WS | 1916 |
| 20 | 0149 | 0350 | G-SWF | 1 | 3 | OK - |  |
| 20 | 0242 | 0320 | S-SWF | 5 | 2+ | AD, AN, TO, $\mathrm{CW}+++$ |  |
| 20 | 0945 | 1000 | S-SWF | 4 | 3 | $\mathrm{HH}, \mathrm{NE}, \overline{\mathrm{PU}}$ | 0939 |
| 20 | 1639 | 1915 | S-SWF | 5 | $3+$ | $\mathrm{BE}, \overline{\mathrm{CR}}, \mathrm{DA}, \mathrm{HU}, \mathrm{MC}, \mathrm{NE}, \mathrm{PR}, \mathrm{TO}, \mathrm{WA}, \mathrm{WS}, \mathrm{CW} \stackrel{\star}{*}, \mathrm{RCA}{ }^{+}$ | 1637 |
| 21 | 1215 | 1250 | S-SWF | 5 | 2 | DA, HU, NE, PU - | 1212 |
| 21 | 1610 | 1635 | Slow S-SWF | 5 | 1 | BE, MC, $\overline{P R}$, WS | 1610 |
| 21 | 1813 | 1852 | G-SWF | 3 | 1 | MC, PR |  |
| 22 | 0400 | 0417 | Slow S-SWF | 1 | 1 | OK | 0406E |
| 22 | 0500 | 0520 | Slow S-SWF | 1 | 1 | OK | 0503E |
| 23 | 0227 | 0255 | S-SWF | 4 | $1+$ | OK, TO | 0240E |
| 23 | 0428 | 0447 | S-SWF | 1 | $1+$ | $\overline{\mathrm{OK}}$ |  |
| 23 | 0620 | 0652 | S-SWF | 5 | 2 | OK, CW+, CW** | 0623E |
| 23 | 2347 | 0007 | S-SWF | 5 | 1 | $\overline{A D}, \mathrm{OK}, \mathrm{TO}$ |  |
| 24 | 0020 | 0033 | S-SWF | 4 | 1 | $\overline{\mathrm{AD}}, \mathrm{TO}$ |  |
| 24 | 0705 | 0732 | S-SWF | 1 | - | $\overline{\mathrm{CW}}+$ | 0703E |
| 24 | 1420 | 1500 | Slow S-SWF | 5 | 1 | $\overline{\mathrm{BE},} \mathrm{CR}, \mathrm{HU}, \mathrm{MC}, \mathrm{PR}$ | (1) |
| 24 | 1520 | 1700 | S low S-SWF | 3 | 1 | BE, MC, PR | 1553E |
| 24 | 2259 | 2308 | S-SWF | 5 | 1 | $\mathrm{AD}, \overline{\mathrm{AN}}, \mathrm{TO}$ |  |
| 25 | 0855 | 0910 | S-SWF | 1 | 3? | HH | 0836 |
| 25 | 0948 | 1018 | S-SWF | 1 | 3 ? | $\underline{\mathrm{HH}}$ | 0943 |
| 25 | 1044 | 1104 | S-SWF | 3 | 2 | $\stackrel{H}{\mathrm{HH}}$, NE | 1043 |
| 25 | 1502 | 1528 | Slow S-SWF | 5 | $2-$ | BE, HH, HU, MC, PR, WS | 1500 |
| 25 | 1658 | 1715 | Slow S-SWF | 5 | 1 | $\overline{B E}, \mathrm{HU}, \mathrm{MC}, \mathrm{PR}$ | 1649 |
| 25 | 1833 | 1940 | Slow S-SWF | 5 | 3- | $\overline{B E}, \mathrm{CR}, \mathrm{HU}, \mathrm{MC}, \mathrm{PR}$, WS | 1855 E |
| 25 | 2325 | 2345 | Slow S-SWF | 1 | 2 | CA |  |
| 26 | 0135 | 0155 | S-SWF | 5 | 2 | $\overline{\mathrm{AN}}, \mathrm{CA}, \mathrm{OK}$ |  |
| 26 | 0758 | 0823 | S-SWF | 1 | 3 ? | HH | 0755E |
| 27 | 0037 | 0101 | S-SWF | 5 | $2-$ | $\overline{\mathrm{AD}}, \mathrm{CA}, \mathrm{OK}, \mathrm{TO}$ |  |
| 27 | 0130 | 0152 | S-SWF | 5 | 2 | $\mathrm{AD}, \mathrm{CA}, \overline{\mathrm{OK}}, \mathrm{TO}, \mathrm{CW}+$ |  |
| 27 | 1207 | 1222 | S-SWF | 3 | 2- | PR, PU | 1207 E |
| 27 | 1228 | 1309 | S-SWF | 3 | 2 - | PR, $\underline{\text { PU }}$ | 1227 |
| 27 | 1933 | 1942 | Slow S-SWF | 3 | 1 | MC, PR |  |
| 29 | 0420 | 0454 | Slow S-SWF | 4 | $1+$ | $\mathrm{AN}, \overline{\mathrm{OK}}$ |  |
| 29 | 0828 | 0843 | S-SWF | 1 | 2 | PU | 0819E |
| 29 | 1047 | 1117 | S-SWF | 5 | 2 | DA, HU, PU | 1050 E |
| 29 | 1514 | 1525 | Slow S-SWF | 5 | 2 | HH, HU, MC, PR | 1515 |
| 29 | 1533 | 1555 | Slow S-SWF | 5 | $1+$ | BE, CR, HU, MC, PR, WS | 1531 |
| 29 | 1730 | 1755 | Slow S-SWF | 3 | 1 | MC, PR |  |
| 30 | 1427 | 1448 | Slow S-SWF | 4 | 1 | HU, MC, PR | 1427E |
| 31 | 1720 | 1745 | Slow S-SWF | 5 | 2 | BE, $C R, \overline{H U}, M C, P R, W S$ | 1735E |

[^1]
## SOLAR RADIO EMISSION

OUTSTANDING OCCURRENCES

NOVEMBER 1957

| Nov.$1957$ | Type* |  | Start UT Hrs:Mins |  | Duration Hrs:Mins | Maximum |  |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Time UT Hrs:Mins | Peak <br> Flux |  |  |
| 1 | 2 | Simple 2 |  |  | 16 | 57.9 | 1.5 | 16 | 58.1 | 9 |  |
| 2 | 3 | Simple 3 | 14 | 01.5 | 12 | 14 | 06 | 13 |  |
| 2 | 3 | Simple 3 | 16 | 23 | 11 | 16 | 25 | 9 |  |
| 2 | 1 | Simple 1 | 17 | 54 | 4 | 17 | 55.5 | 7 |  |
| 5 | 2 | Simple 2 f | 12 | 05 | 8 | 12 | 07.3 | 550 |  |
|  | 4 | Post Increase |  |  | 430 |  |  | 16 |  |
| 7 | 2 | Simple 2 | 17 | 18.7 | 1 | 17 | 19 | 11 |  |
| 7 | 6 | Complex f | 19 | 41.3 | 12 | 19 | 46 | 163 |  |
| 8 | 2 | Simple 2 | 16 | 13.5 | 1.5 | 16 | 14 | 13 |  |
| 8 | 8 | Group (2) | 20 | 01.2 | 5.7 |  |  |  |  |
|  | 2 | Simple 2 f | 20 | 01.2 | 3.5 | 20 | 02.6 | 14 |  |
|  | 2 | Simple 2 f | 20 | 05 | 1.9 | 20 | 05.8 | 31 |  |
| 9 | 1 | Simple 1 | 15 | 09 | 5 | 15 | 11.5 | 5 |  |
| 10 | 7 | Fluctuations | 14 | 46 | 12 | 14 | 47.2 | 10 |  |
| 10 | 6 | Complex | 16 | 10 | 3 | 16 | 10.8 | 9 |  |
| 10 | 8 | Group (4) | 18 | 04.7 | 14.3 |  |  |  |  |
|  | 2 | Simple 2 | 18 | 04.7 | 0.5 | 18 | 04.9 | 15 |  |
|  | 1 | Simple 1 | 18 | 10 | 2 | 18 | 10.8 | 5 |  |
|  | 1 | Simple 1 | 18 | 14.2 | 1 | 18 | 14.5 | 4 |  |
|  | 2 | Simple 2 | 18 | 17 | 2 | 18 | 17.3 | 10 |  |
| 10 | 1 | Simple 1 | 19 | 36 | 4 | 19 | 37.5 | 6 |  |
| 11 | 6 | Complex f | 14 | 12.2 | 17 | 14 | 18.8 | 167 |  |
| 12 | 2 | Simple 2 | 12 | 48 | 4 | 12 | 49.2 | 10 |  |
| 12 | 8 | Group (2) | 13 | 53 | 5.5 |  |  |  |  |
|  | 1 | Simple 1 | 13 | 53 | 2 | 13 | 54 | 6 |  |
|  | 1 | Simple 1 | 13 | 57.5 | 1 | 13 | 57.8 | 5 |  |
| 13 | 3 | Simple 3 A f | 19 | 32.5 | $>150$ | 20 | 04.5 | 18 |  |
|  | 2 | Simple 2 | 19 | 32.5 | 3 | 19 | 33.7 | 18 |  |
| 14 | 1 | Simple 1 | 19 | 07 | 2 | 19 | 08 | 7 |  |
| 14 | 1 | Simple 1 | 19 | 46.3 | 1.5 | 19 | 46.8 | 5 |  |
| 15 | 6 | Complex f | 15 | 30.5 | 9 | 15 | 36.3 | 21 |  |
| 15 | 1 | Simple 1 | 16 | 29.8 | 1.5 | 19 | 30.5 | 5 |  |
| 16 | 3 | Simple 3 | 18 | 08 | 12 | 18 | 14 | 4 |  |
| 17 | 1 | Simple 1 | 13 | 59.5 | 1 | 14 | 00 | 4 |  |
| 17 | 3 | Simple 3 A | 14 | 20 | 7.5 | 14 | 22 | 5 |  |
|  | 2 | Simple 2 | 14 | 23.5 | 1.5 | 14 | 23.9 | 20 |  |
| 17 | 2 | Simple 2 | 14 |  | 6 | 14 | 42 | 10 |  |
| 17 | 1 | Simple 1 | 16 | 29.4 | 2 | 16 | 29.8 | 3 |  |
| 20 | 8 | Group (2) | 14 | 38.4 | 1.8 |  |  |  |  |
|  | 1 | Simple 1 | 14 | 38.4 | 0.5 | 14 | 38.6 | 6 |  |
|  | 1 | Simple 1 | 14 | 39.7 | 0.5 | 14 |  | 4 |  |
| 20 | 2 | Simple 2 | 14 | 52 | 3.5 | 14 | 53 | 8 |  |
| 20 | 3 | Simple 3 A | 17 | 15 | 4 | 19 | 05 | 22 |  |
|  | 1 | Simple 1 | 17 | 30 | 1.5 | 17 | 30.5 | 7 |  |
|  | 2 | Simple 2 | 18 | 19.8 | 2 | 18 | 20.4 | 10 |  |
|  | 2 | Simple 2 | 18 | 58.8 | 2 | 18 | 59.3 | 17 |  |

## SOLAR RADIO EMISSION

## OUTSTANDING OCCURRENCES

NOVEMBER 1957

OTTAWA
2800 MC

| $\begin{aligned} & \text { Nov. } \\ & 1957 \end{aligned}$ | Type* |  | Start UT <br> Hrs:Mins |  | Duration <br> Hrs:Mins |  | Maximum |  |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \mathrm{e} \text { UT } \\ & \text { : Mins } \\ & \hline \end{aligned}$ |  |  | Peak <br> Flux |  |
| 21 | 3 | Simple 3 A |  |  |  |  | $>6$ | 30 | 15 | 12.5 | 22 |  |
|  | 1 | Simple 1 |  |  |  | 2.5 |  | 00 |  |  |
|  | 1 | Simple 1 |  |  |  | 6 |  | 35 | 7 |  |
|  | 3 | Simple 3 |  |  |  | 20 | 16 |  | 7 |  |
|  | 2 | Simple 2 | 18 |  |  | 6 | 18 |  | 35 |  |
| 22 | 1 | Simple 1 | 13 | 17.3 |  | 1 | 13 | 17.8 | 4 |  |
| 22 | 8 | Group (2) | 13 | 24.5 |  | 5.8 |  |  |  |  |
|  | 2 | Simple 2 | 13 | 24.5 |  | 2 | 13 | 25 | 8 |  |
|  | 2 | Simple 2 | 13 | 27.3 |  | 3 | 13 | 28.2 | 32 |  |
| 22 | 2 | Simple 2 | 13 | 46.9 |  | 2 | 13 | 47.2 | 12 |  |
| 22 | 2 | Simple 2 | 18 | 00 |  | 1.5 | 18 | 00.2 | 29 |  |
| 23 | 3 | Simple 3 f A | 15 | 02 | 3 |  | 15 |  | 26 |  |
|  | 1 | Simple 1 | 16 | 10 |  | 2.5 | 16 | 10.8 | 7 |  |
| 24 | 1 | Simple 1 | 14 | 00.8 |  | 1 | 14 | 01 | 7 |  |
| 24 | 3 | Simple 3 ff A | 18 | 11 | >3 |  | 18 | 55 | 38 |  |
|  | 2 | Simple 2 f | 19 | 31 |  | 3.5 | 19 | 32.6 | 27 |  |
| 25 | 1 | Simple 1 | 14 | 32.8 |  | 0.5 | 14 | 32.9 | 7 |  |
| 25 | 3 | Simple 3 | 15 | 50 |  | 20 | 15 | 56 | 7 |  |
| 25 | 2 | Simple 2 | 17 | 11.5 |  | 1 | 17 | 12 | 155 |  |
| 25 | 8 | Group (2) | 18 | 56.8 |  | 2.9 |  |  |  |  |
|  | 1 | Simple 1 | 18 | 56.8 |  | 1 | 18 | 57 | 5 |  |
|  | 2 | Simple 2 | 18 | 58.2 |  | 1.5 | 18 | 58.9 | 8 |  |
| 25 | 8 | Group (3) | 19 | 40.7 |  |  |  |  |  |  |
|  |  | Simple 1 | 19 | 40.7 |  | $1$ | 19 | 41 | 4 |  |
|  |  | Simple 1 | 19 | 42.7 |  | 2.5 | 19 | 43.9 | 7 |  |
|  | 6 | Complex | 19 | 46.3 |  | 1.5 | 19 | 47 | 20 |  |
| 26 | 6 | Complex | 14 | 46.7 |  | 6 | 19 | 47.4 | 10 |  |
| 27 | 2 | Simple 2 | 13 | 06 |  | 5 | 13 | 07.4 | 42 |  |
| 27 | 3 | Simple 3 A | 19 | 03 | 1 |  | 19 | 23 | 10 |  |
|  | 2 | Simple 2 | 19 | 03 |  | 8 | 19 | 06.5 | 17 |  |
| 27 | 2 | Simple 2 | 20 | 34.5 |  | 2 | 20 | 35.5 | 10 |  |
| 28 | 3 | Simple 3 A | 14 | 11 | 6 |  |  |  | 19 |  |
|  | 2 | Simple 2 | 14 | 21.7 |  | 1.5 | 14 | 22.2 | 15 |  |
| 29 | 2 | Simple 2 | 12 | 34.9 |  |  | 12 | 35.2 | 68 | (In sunrise) |
| 29 | 6 | Complex | 17 | 13 |  | 4.5 | 17 | 14.4 | 45 |  |
|  | 4 | Post Increase |  |  | 1 | 10 |  |  | 17 |  |
| 29 | 2 | Simple 2 | 20 | 32.3 |  | 0.5 | 20 | 32.6 | 10 |  |
| 30 | 2 | Simple 2 | 13 | 04.8 |  | 8 | 13 | 07 | 60 |  |

## SOLAR RADIO EMISSION

## DAILY DATA

## NOVEMBER 1957

200 MC
CORNELL

| $\begin{aligned} & \text { Nov. } \\ & 1957 \end{aligned}$ | Flux Density $10^{-22} w \mathrm{~m}^{-2}(\mathrm{c} / \mathrm{s})^{-1}$ <br> Hours UT |  |  | Variability 0 to 3 Hours U'T |  |  | Observing Periods Hours UT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 12 \\ & 15 \end{aligned}$ | $\begin{aligned} & 15 \\ & 18 \end{aligned}$ | $\begin{aligned} & 18 \\ & 21 \end{aligned}$ | $\begin{aligned} & 12 \\ & 15 \end{aligned}$ | $\begin{aligned} & 15 \\ & 18 \end{aligned}$ | $\begin{aligned} & 18 \\ & 21 \end{aligned}$ |  |
| $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \end{aligned}$ | $\begin{aligned} & {[[15} \\ & {[[16} \\ & {[[15} \\ & {[124} \\ & {[[12} \end{aligned}$ | $\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 23 \\ & 13 \end{aligned}$ | $\begin{aligned} & 20 \\ & - \\ & - \\ & 14 \\ & 13 \end{aligned}$ | $\begin{aligned} & {\left[\left[\begin{array}{l} 1 \\ {[[[2} \\ {[[1} \\ {[ } \\ {[ } \end{array}\right]\right.} \\ & {[[0} \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$ | $\begin{aligned} & 1 \\ & - \\ & - \\ & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1340-2100 \\ & 1335-1720 \\ & 1330-1730 \\ & 1330-2130 \\ & 1335-1630, \quad 1650-2100 \end{aligned}$ |
| $\begin{array}{r} 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$ | $\begin{aligned} & {[[21} \\ & {[[12} \\ & {[[12} \\ & {[[12} \\ & {[[11} \end{aligned}$ | $\begin{aligned} & 19 \\ & 12 \\ & 13 \\ & 13] \\ & 11] \end{aligned}$ | $\begin{aligned} & 15] \\ & 12]] \\ & 13 \end{aligned}$ | $\begin{aligned} & {[[2} \\ & {[[1} \\ & {[[0} \\ & {[[0} \\ & {[[0} \\ & {[[1} \end{aligned}$ | $\begin{aligned} & 2 \\ & 1 \\ & 1 \\ & 1] \\ & 0] \end{aligned}$ | $\left.\begin{array}{l} 1] \\ 1] \\ 1 \end{array}\right]$ | $\begin{aligned} & 1350-1940 \\ & 1330-1915 \\ & 1335-1530, \quad 1610-2105 \\ & 1330-1700 \\ & 1340-1700 \end{aligned}$ |
| $\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \end{aligned}$ | $\begin{aligned} & {[[12} \\ & {[[11} \\ & {[13} \\ & {[[14} \\ & {[[15} \end{aligned}$ | $\begin{array}{r} 13 \\ 13 \\ 13 \\ {[[13} \\ 14 \end{array}$ | $\begin{aligned} & 12] \\ & 12 \\ & 13] \\ & 12] \\ & 13] \end{aligned}$ | $\begin{aligned} & {[[1} \\ & {[[0} \\ & {[[1} \\ & C[2 \\ & {[[2} \end{aligned}$ | $\begin{array}{r} 0 \\ 1 \\ 0 \\ {\left[\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right.} \end{array}$ | $\begin{aligned} & 0] \\ & 1 \\ & 1] \\ & 1] \\ & 0] \end{aligned}$ | $\begin{aligned} & 1345-2110 \\ & 1350-2045 \\ & 1350-2005 \\ & 1345-1450, \quad 1645-1925 \\ & 1335-2035 \end{aligned}$ |
| $\begin{aligned} & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \end{aligned}$ | $\begin{aligned} & {[[14} \\ & {[[13} \\ & {[[11} \\ & {[[11} \\ & {[[11} \end{aligned}$ | $\begin{aligned} & 14] \\ & 14] \\ & 11 \\ & 11 \\ & 12 \end{aligned}$ | $11]$ $11]$ $32]$ | $\begin{aligned} & {[[0} \\ & {[[11} \\ & C[0 \\ & {[[1} \\ & {[[0} \end{aligned}$ | $\begin{aligned} & 1] \\ & 1] \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & - \\ & - \\ & 0] \\ & 0] \\ & 1]] \end{aligned}$ | $\begin{aligned} & 1335-1710 \\ & 1340-1705 \\ & 1335-2100 \\ & 1335-1945 \\ & 1340-1915 \end{aligned}$ |
| $\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \end{aligned}$ | $\begin{array}{r} {[[11} \\ {[[13} \\ {[[26} \\ {[[42} \\ {[[117} \end{array}$ | $\begin{gathered} {[12} \\ 13 \\ 25] \\ 60] \\ 104 \end{gathered}$ | $\begin{aligned} & 11] \\ & 13] \\ & - \\ & - \\ & 49] \end{aligned}$ | $\begin{aligned} & {[[1} \\ & {[[0} \\ & C[2 \\ & {[[2} \\ & {[[2} \end{aligned}$ | $\begin{gathered} {[0} \\ 0 \\ 2] \\ 2] \\ 2 \end{gathered}$ | $\begin{aligned} & 1] \\ & 0 \\ & - \\ & - \\ & 2] \end{aligned}$ | $\begin{array}{lr} 1335-1440, & 1600-1940 \\ 1335-1435, & 1450-1515 \\ 1345-1700 & 1525-1925 \\ 1335-1700 & \\ 1355-2110 & \end{array}$ |
| $\begin{aligned} & 26 \\ & 27 \\ & 28 \\ & 29 \\ & 30 \end{aligned}$ | $\begin{gathered} {[[31} \\ {[[28} \\ - \\ - \\ {[[50} \end{gathered}$ | $\begin{gathered} 25 \\ 27 \\ - \\ {[54} \\ 40] \end{gathered}$ | $\left.\begin{array}{r} 26] \\ 22] \\ - \\ 180 \end{array}\right]$ | $\begin{array}{r} {[[2} \\ {[[1} \\ - \\ {\left[\left[\begin{array}{c} 2 \end{array}\right.\right.} \end{array}$ | $\begin{gathered} 1 \\ 1 \\ - \\ {\left[\begin{array}{l} 2 \\ 2 \end{array}\right]} \end{gathered}$ | $\begin{aligned} & 1] \\ & 1] \\ & - \\ & 1] \end{aligned}$ | $\begin{aligned} & 1350-2045 \\ & 1340-2045 \\ & 1340-2115 \\ & 1335-1705 \end{aligned}$ |

[ =first hour missing.
$[E=$ first two hours missing.
] =last hour missing.
$]=$ last two hours missing.

OUTSTANDING OCCURRENCES

NOVEMBER 1957
CORNELL
200 MC

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { Nov, } \\
\& 1957 \\
\& \hline
\end{aligned}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { Type } \\
\& \text { Ap.J }
\end{aligned}
\]} \& \multirow[t]{2}{*}{Start UT} \& \multirow[t]{2}{*}{Time of Maximun} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Duration \\
Minutes
\end{tabular}} \& \multirow[t]{2}{*}{Type I AU} \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& \text { Mas: Flux Density } \\
\& 10^{-2} 2_{\mathrm{w} \mathrm{~m}}{ }^{-2}(\mathrm{c} / \mathrm{s})^{-1}
\end{aligned}
\]} \& \multirow[b]{2}{*}{Remarks} \\
\hline \& \& \& \& \& \& Inst. \& Smooth \& \\
\hline \multirow[t]{5}{*}{1

3
4} \& 0 \& 1441.5 \& \multirow{9}{*}{1343.5} \& 106 \& CD \& 27 \& 10 \& \multirow{5}{*}{off-scale 1652-53.5 UT} <br>
\hline \& 0 \& 1837 \& \& 96 \& SA \& 34 \& 16 \& <br>
\hline \& 0 \& 2021 \& \& >38 \& SA \& \& \& <br>
\hline \& 8 \& 1651.5 \& \& 5 \& ECD \& >45 \& $>23$ \& <br>
\hline \& 9 \& b1330 \& \& $>15$ \& CD \& $>450$ \& 71 \& <br>
\hline \& 9 \& 1346 \& \& 131 \& M \& \& \& <br>
\hline 8 \& 3 \& 1745.5 \& \& 2 \& ECD \& $>45$ \& >26 \& <br>
\hline 9 \& 2 \& 1643 \& \& 1.5 \& ECD \& >45 \& $>27$ \& Off-scale 1643-43.5 UT <br>
\hline 10 \& 2 \& 1453 \& \& 3.5 \& ECD \& $>45$ \& >28 \& <br>
\hline 11 \& 8 \& 1413 \& \& 17 \& ECD \& \multirow[t]{8}{*}{$>45$

$>45$} \& \multirow[t]{8}{*}{>27} \& $$
\begin{aligned}
& \text { off-scale } 1418.5-21 \text {, } \\
& 1421.5-22.5,1424 \text {, } \\
& 1427 \mathrm{UT}
\end{aligned}
$$ <br>

\hline 12 \& 1 \& 1712.5 \& \& 44 \& E \& \& \& <br>
\hline 15 \& 1 \& 1341 \& \& 63 \& E \& \& \& <br>
\hline 16 \& 2 \& 1534.5 \& \& 3 \& ECD \& \& \& <br>
\hline \multirow{5}{*}{17} \& 2 \& 1636 \& \& 1 \& ECD \& \& \& <br>
\hline \& 2 \& 1639.5 \& \& 1 \& ECD \& \& \& <br>
\hline \& 2 \& 1418.5 \& \& 11 \& ECD \& \& \& off-scale 1424:5-25 UT <br>
\hline \& 2 \& 1636 \& \& 7 \& ECD \& \& \& <br>
\hline \& 3 \& 1650 \& \& 1 \& ECD \& $>45$ \& 24 \& <br>
\hline \multirow[t]{2}{*}{18} \& 3 \& 1633 \& \& . 5 \& ECD \& $>45$ \& > 27 \& \multirow[t]{2}{*}{off-scale} <br>
\hline \& 3 \& 2056.5 \& \& 1.5 \& ECD \& >45 \& $>28$ \& <br>
\hline \multirow[t]{2}{*}{19} \& 3 \& 1358 \& \& . 5 \& ECD \& >45 \& $>29$ \& off-scale <br>
\hline \& 3 \& 1422 \& \& . 5 \& ECD \& $>45$ \& >29 \& off-scale <br>
\hline \multirow[t]{2}{*}{20} \& 3 \& 1347 \& \& 1 \& ECD \& $>45$ \& 27 \& <br>

\hline \& 0 \& 1728.5 \& \& 99 \& E \& >45 \& 17 \& \multirow[t]{8}{*}{$$
\begin{aligned}
& \text { off-scale 1746.5, 1747- } \\
& 1752.5,1814.5-15 \text { UT }
\end{aligned}
$$} <br>

\hline 21 \& 3 \& 1416 \& 1416.5 \& 1 \& ECD \& >45 \& >28 \& <br>
\hline 25 \& 3 \& 1711.5 \& 1712 \& 1.5 \& CA \& $>450$ \& 180 \& <br>
\hline \& 3 \& 1858 \& \& 2 \& ECD \& $>250$ \& > 91 \& <br>
\hline \& 3 \& 2009.5 \& \multirow[t]{7}{*}{2010} \& 1 \& CA \& $>250$ \& 110 \& <br>
\hline \multirow[t]{5}{*}{27} \& 1 \& 1342 \& \& 96 \& F \& \& \& <br>
\hline \& 2 \& 1631.5 \& \& 45 \& E \& \& \& <br>
\hline \& 3 \& 1843 \& \& 1.5 \& ECA \& $>45$ \& $>21$ \& <br>
\hline \& 3 \& 1947.5 \& \& 1.5 \& ECA \& $>45$ \& > 22 \& off-scale 1948-48.5 UT <br>
\hline \& 3 \& 2019 \& \& . 5 \& ECA \& $>45$ \& > 22 \& <br>
\hline 29 \& 0 \& 1625 \& \& >288 \& E \& \& \& <br>
\hline
\end{tabular}

GEOMAGNETIC ACTIVITY INDICES
OCTOBER 1957

| $\begin{aligned} & \text { Oct. } \\ & 1957 \end{aligned}$ | C | Values Kp | Sum | Ap | Final <br> Selected Days |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { Three hour Gr. interval } \\ & 123445678 \end{aligned}$ |  |  |  |
| 1 | 1.1 | $4+403020$ 4-2+4+40 | $27+$ | 21 | Five |
| 2 | 0.8 | 4- 4- 2- 2- 3-2+2-30 | $20+$ | 12 | Quiet |
| 3 | 1.0 | 3-20 1+ 3+ 4- 5- 4+ 30 | 250 | 19 |  |
| 4 | 0.8 | $30302+3-2+3-303-$ | 22- | 12 | 6 |
| 5 | 0.7 | $30302-2+203-3-20$ | 19+ | 10 | $\begin{aligned} & 7 \\ & 8 \end{aligned}$ |
| 6 | 0.1 | 2- O+ 1o 1- Oo Oo O+ O+ | $4+$ | 2 | 16 |
| 7 | 0.2 | 10 20 2- 2- 2- 1- 2o 1+ | 120 | 6 | 18 |
| 8 | 0.0 | 2- Oo lo 1- $0+\mathrm{O}+\mathrm{O}+\mathrm{O}+$ | 5- | 3 |  |
| 9 | 0.5 | $0+2-2+2-2+2+202+$ | 150 | 7 |  |
| 10 | 1.0 | $30404030 \quad 2+304-3-$ | 26- | 18 |  |
| 11 | 1.1 | $3+4+3+4+4-302+2+$ | 27- | 19 | Five |
| 12 | 0.9 | $2+30$ 3- 4- 3-3-2-3+ | 220 | 13 | Disturbed |
| 13 | 1.2 | $505+302+3-2+4+40$ | 290 | 26 |  |
| 14 | 1.5 | $4+6+6-50$ 4+5+40 50 | 400 | 50 | 1 |
| 15 | 0.8 | $3+202=2+303-3+20$ | $20+$ | 12 | 11 |
| 16 | 0.1 | $1+0+0+1-\quad 1+1+2-0+$ | $7+$ | 4 | 14 |
| 17 | 0.4 | $1+1+1+30$ 3-20 10 1+ | 140 | 7 | 21 |
| 18 | 0.2 | 2-1+ 2- 1+ 1- 2- 3- 1+ | $12+$ | 6 |  |
| 19 | 0.5 | 1-1+3-3+ 2-2+3-2- | $16+$ | 9 |  |
| 20 | 0.7 | $202+1+2020303-40$ | $19+$ | 11 |  |
| 21 | 1.3 | 3+ 3-3-2-3-40 4-7- | $27+$ | 28 | Ten |
| 22 | 1.1 | $4+304-4-2+3+3-4=$ | $27-$ | 19 | Quiet |
| 23 | 1.1 | 50 3- 4- 30 1+ 20 40 4- | 25+ | 20 |  |
| 24 | 0.5 | 20 2- $202+3$ 3-2- 4- 10 | 170 | 9 | 6 |
| 25 | 0.4 | 20 2-20 30 20 1+20 2+ | $16+$ | 8 | $\begin{aligned} & 7 \\ & 8 \end{aligned}$ |
| 26 | 0.4 | $30201+2+201+2$ - 20 | 16 | 8 | 9 |
| 27 | 0.7 | $2020203-403+202+$ | $20+$ | 12 | 16 |
| 28 | 0.7 | $40203+3+20303-10$ | 21+ | 14 | 17 |
| 29 | 1.0 | 4-30 4-30 3+3-3+4- | $26+$ | 18 | 18 |
| 30 31 | 0.9 | 30 4- 5-30 3-20 3-1+ | 230 | 16 | 25 |
| 31 | 0.5 | 10 1+2-20 4-10 2-2- | 140 | 8 | $\begin{aligned} & 26 \\ & 31 \end{aligned}$ |
| Mean: | 0.72 |  | Mean: | 14 |  |



NORTII ATLANTIC
OCTOBER 1957

represent disturbed values.

CRPL RADIO PROPAGATION QUALITY FIGURES AND FORECASTS
NORTH ATLANTIC

## OCTOBER 1957

- Short-term forecost

1 Ronge of reports

- Quality figure






Adapted from Observations by Deursches Bundespost

VIe
CRPL RADIO PROPAGATION QUALITY FIGURES AND FORECASTS
NORTH PACIFIC
OCTOBER 1957

| $\begin{aligned} & \text { Oct. } \\ & 1957 \end{aligned}$ | ```North Pacific 8-hourly quality figures``` |  |  | Short-term forecasts issued at |  |  |  | Whole day index | Advance forecasts (Jp reports) for whole day; issued in advance by: |  | $\begin{gathered} \text { Geomag- } \\ \text { netic } \\ \mathrm{K}_{\mathrm{Si}} \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 03 to 11 | 11 to 19 | 19 to 03 |  | 02 | 10 | 18 |  | $\begin{aligned} & 1-4 \\ & \text { days } \end{aligned}$ | $\begin{aligned} & 4-7 \\ & \text { days } \end{aligned}$ | Half <br> (I) | Day <br> (2) |
| 1 | 6 | 5 | 6 |  | 5 | 5 | 6 | 6 | 5 | 4 | 3 | 3 |
| 2 | 6 | 6 | 6 |  | 6 | 6 | 6 | 6 | 6 | 6 | 3 | 2 |
| 3 | 6 | 6 |  |  | 6 | 6 | 6 | 6 | 6 | 6 | 2 | (4) |
| 4 | 6 | 7 | 6 |  | 6 | 6 | 6 | 7 | 6 | 6 | 2 | 3 |
| 5 | 7 | 6 |  |  | 6 | 7 | 6 | 7 | 6 | 6 | 3 | 2 |
| 6 | 7 | 6 | 7 |  | 6 | 6 | 6 | 7 | 6 | 6 | 1 | 0 |
| 7 | 7 |  | 7 |  | 6 | 7 | 7 | 7 | 6 | 6 | 1 | 2 |
| 8 | 7 | 6 | 6 |  | 7 | 7 | 7 | 7 | 6 | 6 | 1 | 0 |
| 9 | 7 | 6 | 6 |  | 7 | 7 | 6 | 7 | 7 | 7 | 1 | 2 |
| 10 | 6 | 6 | 6 |  | 7 | 5 | 6 | 6 | 7 | 7 | (4) | 3 |
| 11 | 6 | 4 | 6 |  | 6 | 6 | 6 | 5 | 7 | 7 | (4) | (4) |
| 12 | 6 | 5 | 6 |  | 6 | 4 | 6 | 6 | 6 | 7 | 3 | 3 |
| 13 |  | 6 | 7 |  | 6 | 6 | 6 | 6 | 6 | 7 | (4) | 3 |
| 14 | 4 | 4 | 5 |  | 6 | 4 | 5 | 5 | 6 | 7 | (6) | (5) |
| 15 | 6 | 6 | 6 |  | 5 | 6 | 6 | 6 | 6 | 7 | 2 | 3 |
| 16 | 6 | 6 | 6 |  | 6 | 7 | 7 | 6 | 6 | 6 | 0 | 1 |
| 17 | 7 | 7 | 6 |  | 7 | 7 | 7 | 7 | 6 | 6 | 1 | 2 |
| 18 | 7 | 6 | 6 |  | 7 | 7 | 7 | 7 | 3 | 6 | 1 | 2 |
| 19 |  | 7 | 5 |  | 7 | 6 | 7 | 6 | 7 | 3 | 2 | 2 |
| 20 | 6 | 6 | 6 |  | 7 | 7 | 7 | 6 | 7 | 4 | 1 | 3 |
| 21 |  |  | 7 |  | 6 | 7 | 6 | 7 | 7 | 6 | 2 | 3 |
| 22 |  | 6 | 6 |  | 6 | 6 | 6 | 6 | 6 | 6 | (4) | 3 |
| 23 | 6 | 6 | 6 |  | 6 | 6 | 6 | 6 | 6 | 6 | 3 | 2 |
| 24 | 7 | 7 | 7 |  | 6 | 7 | 7 | 7 | 6 | 6 | 1 | 3 |
| 25 | 7 | 7 | 6 |  | 7 | 7 | 7 | 7 | 6 | 6 | 1 | 2 |
| 26 |  | 7 | 7 |  | 7 | 6 | 7 | 7 | 7 | 6 | 1 | 2 |
| 27 |  | 6 | 6 |  | 6 | 6 | 7 | 7 | 6 | 6 | 2 | 3 |
| 28 |  |  | 7 |  | 7 | 6 | 7 | 7 | 6 | 6 | 3 | 2 |
| 29 |  | 6 | 7 |  | 7 | 6 | 7 | 7 | 6 | 6 | 3 | 3 |
| 30 |  | 7 | 7 |  | 7 | 6 | 6 | 7 | 7 | 7 | 3 | 2 |
| 31 | 7 | 6 | 6 |  | 7 | 7 | 7 | 7 | 7 | 7 | 1 | 3 |
| Score: | Quiet Periods |  |  | P | 18 | 16 | 18 |  | 13 | 8 |  |  |
|  |  |  |  | S | 12 | 13 | 12 |  | 16 | 18 |  |  |
|  |  |  |  | U | 0 | 0 | 1 |  | 1 | 2 |  |  |
|  |  |  |  | F | 0 | 0 | 0 |  | 1 | 3 |  |  |
|  | Disturbed Periods |  |  | P | 0 | 1 | 0 |  | 0 | 0 |  |  |
|  |  |  |  | S | 0 | 0 | 0 |  | 0 | 0 |  |  |
|  |  |  |  | U | 0 | 0 | 0 |  | 0 | 0 |  |  |
|  |  |  |  | F | 1 | 1 | 0 |  | 0 | 0 |  |  |

represent disturbed values.

# CRPL RADIO PROPAGATION QUALITY FIGURES AND FORECASTS NORTH PACIFIC 

OCTOBER 1957


ALERT PERIODS AND SPECIAL WORLD INTERVALS

| Alert | SWI | ABe On Days of Alert Period <br> (SWI Underlined) | Number of Flares of IMP $\geq$ <br> Reported Promptly on Days of <br> Alert Period |
| :---: | :---: | :---: | :---: |
| Nov 12-Nov 15 |  |  |  |
| Nov 24-Nov 27 | Nov 26-Nov 27 | $09-08-14-12$ | $1-1-0-1$ |
| $10-15-\underline{-35-28}$ | $3-0-0-0$ |  |  |


[^0]:    $z=$ yellow line observed.
    $\mathrm{a}=$ index computed from low weight data.
    $\mathrm{x}=$ no observations.

[^1]:    CA $=$ Canberra, Australia.
    CR $=$ Cornell University, N.Y.
    $\mathrm{DA}=$ Darmstadt, G.F.R.
    HH = Heinrich Hertz Institute, Berlin.
    $\mathrm{NE}=$ Nederhorst den Berg, Netherlands.
    $\mathrm{PU}=\mathrm{Pr}$ ague, Czech.
    TO = Hiraiso Radio Wave Observatory, Japan.
    CW* = Cable and Wireless, Barbadoes.
    CW** $=$ Cable and Wireless, Somerton, England.
    $C W^{*-X^{*}}=$ Cable and Wireless, Brentwood, England.
    CW+ = Cable and Wireless, Hongkong.
    CW+++ = Cable and Wireless, Accra.
    RCAt $=$ RCA Communications, Inc., Pt. Reyes, Calif.
    RCA* = RCA Communications, Inc., Riverhead, N.Y.
    $W A=$ Watheroo.

