

orbou of Standards ry, N. W. Bldg. EC 3 1953 taken from the Library.

IONOSPHERIC DATA

ISSUED NOVEMBER 1951

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY WASHINGTON, D. C.

L-10/

CENTRAL RADIO PROPAGATION LABORATORY WASHINGTON,D.C.

26 Nov. 1951

IONOSPHERIC DATA

CONTENTS

				Page	
Symbols, Terminology, Conventions	•	• •	۰	2	
World-Wids Sources of Ionospheric Data .	•		٠	5	
Hourly Konospheric Data at Washington, D.	C.	•	٩	7, 12,	24, 51
Ionospheric Storminess at Washington, D. C	9	• •	٠	7. 36	
Radio Propagation Quality Nigures	0	• •	0	7. 37	
Observations of the Solar Corona	0 (•	Ð	9, 38	
Relative Sunspot Musbers	o (•	9. 44	
Observations of Solar Flares	• •	• •	٠	10, 46	
Indices of Geomagnetic Activity	6 (9	10, 47	
Sudden Ionosphere Disturbances	• •	•	۰	11, 48	
Tables of lonsepheric Data	•	•	0	12	
Graphs of Ionospheric Data	•	•	0	51	
Index of Tables and Graphs of Ionospheric :	Dat				
in CRPL-787	• •		•	87	

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1949, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Fifth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Stockholm, 1948, and given in detail on pages 2 to 10 of the report CRPL-F53, "Ionospheric Data," issued January 1949.

For symbols and terminology used with data prior to January 1949, see report IRPL-C61, "Report of International Radio Propagation Conference, Washington, 17 April to 5 May, 1944," previous issues of the F series, in particular, IRPL-F5, CRPL-F24, F33, F50, and report CRPL-7-1, "Preliminary Instructions for Obtaining and Reducing Manual Ionospheric Records."

Following the recommendations of the Washington (1944) and Stockholm (1948) conferences, beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

In addition to the conventions for the determination of medians given in Appendix 5 of Document No. 293 E of the Stockholm conference, which are listed on pages 9 and 10 of CRPL-F53, the following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given on pages 2-9 of CRPL-F53 (Appendixes 1-4 of Document No. 293 E referred to above).

a. For all ionospheric characteristics:

Values missing because of A, B, C, F, L, M, N, Q, R, S, or T (see terminology referred to above) are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F2 (and h'E near sunrise and sunset) missing for this reason are counted as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

1. For foF2, as equal to or less than foF1.

2. For h'F2, as equal to or greater than the median.

The symbol W is included in the median count only when it replaces a height characteristic. This practice represents a change from that listed in issues previous to CRPL-F78.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of E or G (and B when applied to the E region only) are counted as equal to or less than the median foE, or equal to or less than the lower frequency count of the recorder.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

1. If only four values or less are available, the data are considered insufficient and no median value is computed.

2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and Fl layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.

3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18. The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

a. Differences in scaling records when spread echoes are presen

- b. Omission of values when foF2 is less than or equal to foF1. leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily, a blank space in the fEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h'Fl, foFl, h'E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h'Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessa to allow for the longitude effect within a zone. Thus, in asmuch as the predicted contours are for the center of eac zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.

4

c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zurich sunspot numbers were used in constructing the contour charts:

Month		Pre	dicted	Sunspot	Number		
	1951	1950	1949	1948	1947	1946	1945
December November October September August July June May	52 54 57 60 63 68	1950 86 87 90 91 96 101 103 102	1049 108 112 114 115 111 108 108 108	1948 114 115 116 117 123 125 129 130	1947 126 124 119 121 122 116 112 109	1946 85 83 81 79 77 73 67 67	1945 38 36 23 22 20
April March Jebruary January	74 78 82 85	101 103 103 105	109 111 113 112	133 133 133 130	107 105 90 88	62 51 46 42	

WORLD - WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 72 and figures 1 to 144 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Commonwealth of Australia, Ionospheric Prediction Service of the Commonwealth Observatory: Brisbane, Australia Canberra, Australia Hobart, Tasmania Australian Department of Supply and Shipping, Bureau of Mineral Rescurces, Geology and Geophysics: Watheroo, Western Australia British Department of Scientific and Industrial Research, Badio Research Board: Falkland Is. Fraserburgh, Scotland Singapore, British Malaya

Slough, England

Defence Research Board, Canada: Baker Lake, Canada Fort Chimo, Canada Resolute Bay, Canada St. John's, Newfoundland Radio Wave Research Laboratories, National Taiman University, Taipeh, Formesa China: Formona. China National Laboratory of Radio-Electricity (French Ionospheric Bureau): Domont. France Poitiers, France Terre Adelie Institute for Ionospheric Research, Lindau Uber Northein, Hannover, Gernany: Lindau/Harz, Germany The Royal Netherlands Meteorological Institute: De Bilt, Holland Icolandic Post and Telegraph Administration: Reykjavik, Iceland All India Radio (Government of India), New Delhi, India: Bombay, India Delhi, India Madras, India Tiruchy, India Indian Council of Scientific and Industrial Research, Radio Research Committe Calcutta, India National Institute of Geophysics, City University, Rome, Italy: Rome, Italy Radio Regulatory Commission, Tokyo, Japan: Akita, Japan Tokyo (Kokubunji), Japan Wakkanai, Japan Tamagawa, Japan Christchurch Geophysical Observatory, New Zealand Department of Scientific and Industrial Research: Christchurch, New Zealand Rarotonga, Cook Is. Norwegian Defense Research Establishment, Kjeller per Lillestrom, Norway: Oslo, Norway Tromso, Norway South African Council for Scientific and Industrial Research: Capetown, Union of South Africa Johannesburg, Union of South Africa Research Laboratory of Electronics, Chalmers University of Technology, Gothenburg, Sweden: Kirana, Sweden

Post, Telephone and Telegraph Administration, Berne, Switzerland; Berne, Switzerland Schwarzenburg, Switzerland United States Army Signal Corps: Adak, Alaska Okinawa I. National Bureau of Standards (Central Radio Propagation Laboratory): Anchorage, Alaska Fairbanks, Alaska Guam I. Huancayo, Peru (Instituto Geofisico de Huancayo) Maui, Hawaii Narsarssuak, Greenland Panama Canal Zone Point Barrow, Alaska Puerto Rico, West Indies San Francisco, California (Stanford University) Washington, D. C. White Sands, New Mexico

١.

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 73 to 84 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols, Terminology, Conventions." Beginning with September 1949, the data are taken at Ft. Belvoir, Virginia.

IONOSPHERIC STORMINESS AT WASHINGTON, D.C.

Table 85 presents ionosphere character figures for Washington, D. C., during October 1951, as determined by the criteria given in the report IRPL-R5, "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

RADIO PROPAGATION QUALITY FIGURES

Table 86 gives provisional radio propagation quality figures for the North Atlantic and North Pacific areas, for Ol to 12 and 13 to 24 GCT, September 1951, compared with the CRPL daily radio disturbance warnings, which are primarily for the North Atlantic paths, the CRPL weekly radio propagation forecasts of probable disturbed periods, and the half-day Cheltenham, Maryland, geomagnetic K-figures. The radio propagation quality figures are prepared from radio traffic and ionospheric data reported to the CEPL, in a manner basically the same as that described in IRPL-R31, "North Atlantic Radio Propagation Disturbances, October 1943 through October 1945," issued February 1, 1946. The scale conversions for each report are revised for use with the data beginning January 1948, and statistical weighting replaces what was, in effect, subjective weighting. Separate master distribution curves of the type described in IRPL-R31 were derived for the part of 1946 covered by each report; data received only since 1946 are compared with the master curve for the period of the available data. A report whose distribution is the same as the master is thereby converted linearly to the Q-figure scale. Each report is given a statistical weight which is the reciprocal of the departure from linearity. The half-daily radio propagation quality figure, beginning January 1948, is the weighted mean of the reports received for that period.

These radio propagation quality figures give a consensus of opinion of actual radio propagation conditions as reported by the half day over the two general areas. It should be borne in mind, however, that though the quality may be disturbed according to the CRPL scale, the cause of the disturbance is not necessarily known. There are many variables that must be considered. In addition to ionospheric storminess itself as the cause, conditions may be reported as disturbed because of seasonal characteristics such as are particularly evident in the pronounced day and night contrast over North Pacific paths during the winter months, or because of improper frequency usage for the path and time of day in question. Insofar as possible, frequency usage is included in rating the reports. Where the actual frequency is not shown in the report to the CRPL, it has been assumed that the report is made on the use of optimum working frequencies for the path and time of day in question. Since there is a possibility that all disturbance shown by the quality figures is not due to ionospheric storminess alone, care should be taken in using the quality figures in research correlations with solar, auroral, geomagnetic, or other data. Nevertheless, these quality figures do reflect a consensus of opinion of actual radio propagation conditions as found on any one half day in either of the two general areas.

Note. The North Pacific quality figures have been marked "low weight" beginning with August 1951. This is not because of any discontinuity in the accuracy of the individual reports on which the figures are based nor in the method of derivation of the indexes. However, since the number of suitable reports available for this work has decreased appreciably during 1950 and 1951, it seems appropriate to emphasize now that the North Pacific quality figures do not have as firm a basis as the North Atlantic quality figures.

3

OBSERVATIONS OF THE SOLAR CORONA

Tables 87 through 89 give the observations of the solar corona during October 1951 obtained at Climax, Colorado, by the High Altitude Observatory of Harvard University and the University of Colorado. Tables 90 through 92 list the coronal observations obtained at Sacramento Peak, New Mexico, during October 1951, derived by the High Altitude Observatory from spectrograms taken by Harvard University as a part of its performance of an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories. The data are listed separatedly for east and west limbs at 5-degree intervals of position angle north and south of the Solar Equator at the limb. The time of observation is given to the nearest tenth of a day, GCT.

Table 87 gives the intensities of the green (5303A) line of the emission spectrum of the solar corona; table 88 gives similarly the intensities of the first red (6374A) coronal line; and table 89, the intensities of the second red (6702A) coronal line; all observed at Climax in October 1951.

Table 90 gives the intensities of the green (5303A) coronal line; table 91, the intensities of the first red (6374A) coronal line; and table 92, the intensities of the second red (6702A) coronal line; all observed at Sacramento Peak in October 1951.

The following symbols are used in tables 87 through 92: a, observation of low weight; -, corona not visible; and X, position angle not included in plate estimates.

RELATIVE SUNSPOT NUMBERS

Table 93 lists the daily provisional Zürich relative sunspot number, R_Z , as communicated by the Swiss Federal Observatory. Table 94 gives the new series of American relative sunspot numbers, R_{A^1} , for January through September 1951. Beginning with 1951, the observations collected by the Solar Division. AAVSO, have been reduced according to a new procedure, such that only high quality observations of experienced observers are combined into R_{A^1} . Observatory coefficients for each of the 22 selected observers were recomputed on data for 1948-1950, years when there was a wide range of solar activity. Otherwise, the procedure is that outlined in Publication of the Astronomical Society of the Pacific, <u>61</u>, 13, 1949. The scale of the American numbers in 1951 will differ from that of the reports for earlier years because of these changes, and the new series is designated R_A : rather than R_A . The American relative sunspot number will appear monthly in these pages, as communicated by the Solar Division.

OBSERVATIONS OF SOLAR FLARES

Table 95 gives the preliminary record of solar flares reported to the CRPL. These reports are communicated on a rapid schedule at the sacrifice of detailed accuracy. Definitive and complete records are published later in the Quarterly Bulletin of Solar Activity, I.A.U., in various observatory publications, and elsewhere. The present listing serves to identify and roughly describe the phenomena observed. Details should be sought from the reporting observatory.

Reporting directly to the CRPL are the following observatories: Mt. Wilson, McMath-Hulbert, U. S. Naval, Wendelstein, Kanzel and High Altitude at Sacramento Peak, New Mexico. The remainder report to Meudon (Paris), and the data are taken from the Paris-UESIgram broadcast, monitored fairly regularly by the CRPL. The data on solar flares reported from Sacramento Peak, New Mexico, communicated by the High Altitude Observatory at Boulder, Colorado, are provided by Harvard University as the result of work undertaken on an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories.

The table lists for each flare the reporting observatory, date, times of beginning and ending of observation, duration (when known), total area (corrected for foreshortening), and heliographic coordinates. For the maximum phase of the flare is given the time, intensity, area relative to the total area, and the importance. The column "SID observed" is to indicate when a sudden ionosphere disturbance, noted elsewhere in these reports, occurred at the time of a flare. Times are in Universal Time (GCT).

INDICES OF GEOMAGNETIC ACTIVITY

Table 96 lists various indices of geomagnetic activity based on data from magnetic observatories widely distributed throughout the world. The indices are: (1) preliminary mean 3-hourly K-indices, Kw; (2) preliminary international character-figures, C; (3) geomagnetic planetary three-hourrange indices, Kp; (4) magnetically selected quiet and disturbed days.

Kw is the arithmetic mean of the K-indices from all reporting observatories for each three hours of the Greenwich day, on a scale 0 (very quiet) to 9 (extremely disturbed). The C-figure is the arithmetic mean of the subjective classification by all observatories of each day's magnetic activity on a scale of 0 (quiet) to 2 (storm). The magnetically quiet and disturbed days are selected by the international scheme outlined on pages 219-227 in the December 1943 issue of <u>Terrestrial Magnetism and Atmospheric</u> Electricity. Kp is the mean standardized K-index from 11 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 to 9, expressed in thirds of a unit, e.g., 5- is 4 2/3, 50 is 5 0/3, and 5 + is 5 1/3. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the icnospheric field. A complete description of Kp has appeared in Bulletin 12b, "Geomagnetic Indices C and K, 1948," published in Washington, D. C., 1949, by the Association of Terrestrial Magnetism and Electricity, International Union of Geodesy and Geophysics. Tables of Kp for 1945-48 are in Bulletin 12b; for 1940-44 and 1949, in these CEPL-F reports, F65-67; for 1950, monthly in F68 and following issues. Current tables are also published quarterly in the Journal of Geophysical Research along with data on sudden commencements (sc) and solar flare effects (sfe).

The Committee on Characterization of Magnetic Disturbance, ATME, IUGG, has kindly supplied this table. The Meteorological Office, De Bilt, Holland, collects the data and compiles Kw, C and selected days. The Chairman of the Committee computes the planetary index.

SUDDEN IONOSPHERE DISTURBANCES

Tables 97 through 101 list respectively the sudden ionosphere disturbances observed at Ft. Belvoir, Virginia, October 1951; in England, September 1951; at Lindau/Harz, Germany, September 1951; at Riverhead, New York, October 1951; and at Platanos, Argentina, September 1951. TABLES OF IONOSPHERIC DATA

				Table	1			
Washing	ton, D. () <u>, (</u> 38,7	°N. 77.1	°W)			00	ctober 1951
Time	h'F2	foF2	h!Fl	foFl	h E	foE	fEs	(M3000)F2
00	300	3.9						2.9
01	(280)	3.6						2.9
02	280	3.4						2.9
03	280	3.3						2.9
04	270	3.0						3.0
05	270	2,8					1.5	3.0
06	260	3.2						3.0
07	240	5.6			120	2.1		3.3
08	240	6.6	220	-	110	2.5		3.3
09	260	7.6	210	4.1	110	2.9		3.2
10	260	8.2	200	4.2	110	3.1		3.2
11	270	8.6	200	4.4	110	3.2		3.1
12	270	8.6	210	(4.4)	110	3.3		3.1
13	270	9.0	210	4.4	110	3.2		3.1
34	270	8,8	220	4.2	110	3.1		3.1
15	260	9.0	230	estilizati	110	2.9		3.1
16	250	8.8	240	0000	110	2.5		3.2
17	230	8.4			120	2.1		3.2
18	220	7.6					1.7	3.2
19	230	6.2						3.1
20	250	5.2						3.0
21	260	4.5						3.0
22	270	4.3						2.9
23	280	4.1						2.9

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table	3			
Tromso,	Norway	(69.7°N,	19.0°E)		-		Septe	mber 1951
Time	h'F2	foF2	h'Fl	foFl	h E	foE	fEs	(M3000)F2
00	(360)	(4.7)					5.6	
01	(370)	(4.9)					5.1	
02	(355)	(4.0)					5.6	(2.5)
03	(330)	(4.4)					5.4	(2.8)
04	(290)	3.9					5.1	3.0
05	280	3.8				1.8	4.2	3.0
06	(280)	4.3	240		110	(2.1)	3.2	3.0
07	(320)	4.7	245	3.6	110	2.4	3.2	3.0
08	395	5.0	245	3.8	110	(2.6)	3.2	2.9
09	320	5.2	230	4.0	110	2.7	3.2	3.0
10	320	5.4	230	4.1	110	2.8	3.1	2.9
11	315	5.6	230	4.2	110	2.8		3.0
12	320	5.3	230	4.2	110	2.8	2.4	3.0
13	305	5.4	230	4.0	115	2.7	2.7	3.0
14	270	5.2	230	3.9	110	2.6	3.0	3.1
15	(285)	5.0	230	(3.8)	110	2.5	3.1	3.1
16	260	4.7	240		115	2.4	3.2	3.1
17	280	4.7			115	2.2	3.3	3.2
18	285	4.6					4.6	3.1
19	320	4.4					5.0	3.0
20	325	(4.5)					5.2	2.8
21	345	(4.4)					5.8	2.8
22	345	(4.3)					5.0	2.7
23	(345)	(4.6)					5.3	2.8

Time: 15.0°E. Sweep: 0.6 Mc to 25.0 Mc in 5 minutes, automatic operation.

				Table	2			
Narsar	ssuak, Gr	cenland	(61.2°N,	45.4W)			Septe	mber 1951
Time	h¹F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	(360)	(3.2)					4.4	(2.5)
01	(420)	(3.2)					4.0	(2.5)
02							4.2	
03							4.6	
04							4.4	
05	(340)	(3.6)					3.6	(2.8)
06	(330)	(4.4)			(150)		3.6	(2.8)
07	(330)	4.8						2.9
08	350	5.2	280	4.0				2.8
09.	370	5.4	280	4.0	(140)			2.8
10	420	5-4	260	(4.1)	(140)	(3.0)		2.7
11	400	5.4	260	4.0	(140)	3.1		2.7
12	410	5.6	(270)	4.1	(140)	(3.1)		2.6
13	380	5.6	270	4.2	(140)	(3.1)		2.6
14	420	5.4	280	(4.0)	(140)	(3.0)		2.6
15	400	5.3	(290)	(4.0)	(140)	3.0		2.6
16	380	(5.0)	(320)	Ц.О	(140)	(2.8)		2.6
17	340	(5.0)	290		(140)	2.5	4.0	2.8
18	350	(4.8)					4.4	(2.7)
19	370	(4.4)					5.2	2.8
20	320	(4.1)					6.7	(2.7)
21	(340)	(3.9)					5.0	(2.7)
22	(360)	(4.0)					4.4	(2.6)
23	(340)	(4.0)					4.8	(2.7)

Time: 15.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Point Ra	arrow. 4	laska (7	1 3 ⁰ N. 14	Table	2		Sento	mber 1951
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 11 15 16 17 18 19 20 21 22	310 300 300 320 290 320 320 350 350 350 350 350 350 360 360 360 360 300 300 300 300 300	(3.9) (3.4) (3.4) (3.4) (3.5) (4.0) 4.45 4.4 4.88 4.88 4.88 5.82 4.99 (3.4) (3.4	260 230 250 210 210 250 260 260	3.7 3.8 4.0 4.0 4.0 3.9 3.8 3.7 	 110 110 110 120 120 120 120 	2.h 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.5 2.3 2.0	2.9 4.1 5.0 4.7 3.9 4.4 4.2 3.2 4.0 4.3 4.5 4.0 4.5 4.0 4.2 3.4 2.9 4.1 5.6 5.2	(2.9) (2.7) (2.7) (2.8) (2.8) (2.8) (2.8) (2.8) (2.8) (2.8) (2.8) 3.0 2.9 2.6 2.9 2.6 2.9 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table !	ł			
Ancho	rage, Alas	aka (61.	2 ⁰ N, 149	.9 ⁰ W)	_	S	eptember	195 1
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	300	2.9						2.8
01	310	3.2						2.6
02	<380	2.7						2.5
03	370	2.7						2.6
04	380	2.8						2.6
05	300	3.2						2.8
06	280	3.9						(2.8)
07	300	4.4	230					(3.0)
08	390	4.8	230	4.0	surviva for			2.8
09	380	5.4	240	4.2				2.8
10	360	5.6	220	4.3				2.9
11	380	5.5	250	4.2	-			2.8
12	370	5.8	240	4.2	100	3.0		2.8
13	360	5.9	230	4.4				2.8
14	340	6.0	240	4.2		-		2.8
15	320	6.0	250	4.0	-			2.9
16	300	6.0	260	3.7				3.0
17	300	5.7	250					3.0
18	280	5.1						3.0
19	260	5.0						3.0
20	270	4.7						2.9
21	270	4.4						2.8
22	300	3.5						2.8
23	300	3.0						2.7
	340 004							

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Oslo, Norway $(60.0^{\circ}N, 11.0^{\circ}E)$ September 1951 Time h'F2 foF2 h'F1 foF1 h'E foE fEs $(M3000)F2$ 00 325 (3.0) (2.8) (2.7) 01 325 (2.3) (2.7) 03 325 (2.3) (2.7) 04 315 2.1 2.7 05 300 2.4 2.9 2.7 05 300 2.4 2.9 3.1 07 250 4.0 235 125 1.9 2.1 3.1 07 250 4.0 235 125 1.9 2.1 3.1 09 330 5.0 220 3.8 120 2.4 3.0 10 112 340 5.3 215 4.1 110 2.9 3.0 11 320 5.8 210 4.1 110 2.8 <th></th> <th></th> <th></th> <th></th> <th>Table 6</th> <th></th> <th></th> <th></th> <th></th>					Table 6				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Oslo,	Norway (6	0.0°N, 1	1.0 ⁰ E)				Sept	ember 1951
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00	325	(3.0)						(2.8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01	325	2.9						2.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	02	325	(2.8)						(2.7)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	03	325	(2.3)						(2.7)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	04	315	2.1						2.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	05	300	2.4						2.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06	270	3.2			125	1.6		3.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	07	250	4.0	235		125	1.9	2.1	3.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	68	(315)	4.4	230	3.5	120	2.3	2.5	3.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	09	330	5.0	220	3.8	120	2.6	2.8	3.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	315	5.1	215	4.0	115	2.7	3.0	2.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	315	5.4	210	4.1	115	2.8	3.3	3.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	340	5.3	215	4.1	110	2.9	2.9	3.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	320	5.8	210	4.1	110	2.8		3.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	300	5.6	220	4.0	110	2.8		3.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	320	5.5	220	4.0	110	2.7		3.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	295	5.4	235	3.8	115	2.4		3.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17	260	5.5	245	3.3	125	2.2		3.L
19 255 5.0 260 $$ E 3.0 20 250 4.4 3.0 3.0 21 255 3.2 (3.0) 22 275 3.2 (2.9) 23 300 (3.1) (2.8)	18	250	5.3	250		140	1.7	1.8	3.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	255	5.0	260			E		3.0
21 255 3-2 (3-0) 22 275 3-2 (2-9) 23 300 (3-1) (2-8)	20	250	4.4						3.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	255	3.2						(3.0)
23 300 (3.1) (2.8)	22	275	3.2						(2.9)
	23	300	(3.1)						(2.8)

Time: 15.0°E. Sweep. 1.3 Mc to 14.0 Mc in 8 minutes, automatic operation.

San Fra	ncisco,	Californ	Septe	mber 1951				
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEe	(M3000)F2
00	(290)	(3.8)						(2.7)
01	300	(3.8)						(2.8)
02	290	(3:7)						(2.8)
03	280	(3.7)						(2.8)
04	(280)	(3.5)						(2.8)
05	(280)	(3.3)						(2.8)
06	270	(3.9)						(3.1)
07	310	5.0	240	3.7	110	(2.4)	2.4	3.1
08	350	5.7	230	4.1	120	(2.9)	2.8	3.0
09	350	5.6	210	4.3	110	(3.1)		2.8
10	340	6.0	210	4.6	110	(3.3)		2.9
11	350	6.9	210	4.7	110	3.4		2.9
12	340	7.2	210	4.0	110	3.5		2.9
13	330	7.5	220	4.0	110	3.5		3.0
14	310	1.2	230	4.0	110	3.3		3.0
15	300	0.9	230	4.0	110	3.2		3.0
10	260	0.0	230	4+3	110	2.9	. 1	1.5
10	200	D• (240	3.1	. 120	(2.5)	2.4	3.2
10	240	0.0 4 1						3.2
20	230	C 1.						3.2
20	(260)	2.4 1. e					2 4	0.0
22	(270)	1.0					2.5	2.07
22	(280)	(2.0)					2+4	(2.8)
C)	(200)	(207)						(2.0)

Time: 120.0⁰W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Meni,	Eawaii (20.8°N, 1	.56.5°¥)	Table 9	2		Septe	mber 1951
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	270	5.2					1.7	2.8
01	270	4.8					1.9	2.8
02	240	4.6						3.2
03	230	3.6						3.2
04	240	3.3					1.3	3.0
05	270	2.6					1.4	2.9
06	290	3.4			130	(1.3)	2.2	2.8
07	240	6.1	240		110	2.2	3.7	3.2
08	260	6.9	220		100	2.8	4.6	3.2
09	28 0	7.6	200	4.4	100	3.2	5.5	2.8
10	320	8.5	200	4.9	100	3.4	5.7	2.7
11	340	9.5	210	5.1	110	3.6	4.5	2.6
12	340	10.2	200	5.1	110	3.6	4.6	2.8
13	320	11.4	210	5.1	110	3.7	4.6	2.9
14	310	11.4	220	5.0	100	3.6	4.3	3.0
15	300	12.0	220	4.9	110	3.4	4.4	3.0
16	270	12.4	230	4.5	100	3.1	4.4	3.2
17	250	12.0	230		110	2.5	4.4	3.3
18	230	10.8			120	1.8	4.0	3.4
19	220	8.0					3.8	3.2
20	230	6.8					3.7	2.9
21	260	6.2					3.9	2.7
22	290	6.3					3.6	2.7
23	260	6.2					2.9	2.8

Time: 150.6°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table	11			
Ouam I	. (13.6°N,	144.9°	E)				Septe	mber 195 1
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEe	(M3000)F2
00	250	10.0					2.0	3.1
01	240	8.5						3.2
02	240	7.2						3.2
03	240	6.0						3.1
04	255	5.1						3.1
05	240	4.5						3.3
06	260	4.4						3.1
07	240	7+4			120	2.3		3.2
08	260	9.6	220		110	2.8		3.1
09	(280)	10.2	210		100		1.2	2.9
10	(300)	10.0	200	5.2			4.L	2.7
10	1 310	10.4	200	(5.0)			1. 1.	2.2
12	320	11.2	200	5.0	(110)		1.0	2.02
11.	220	10.0	200	2.0	120	(2, 6)	4.0	2.0
15	310	12.8	220)0	(120)	3.1		2.0
16	300	13.0	220	4	110	3.1	5.1	(3.0)
17	290	(13.2)	240		120	2.6	1.8	(3.0)
18	260	(12.6)					4.5	(2.9)
19	280	12.1					h.h	2.7
20	280	11.6					2.3	(2,7)
21	250	11.2					_ , ,	2.9
22	240	10.6						3.1
23	250	10.4						3.0

Time: 150.0°E. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Tabl	. 8			
White	Sands, New	Mexico	(32.3°N,	106.50	W)		Septe	mber 1951
Time	P113	fol2	h'F1	foF1	h'E	fol	fBa	(N3000)F2
00	290	4.0						2.8
01	290	4.0						2.8
02	270	3.8						2.8
03	280	4.0					2.0	2.9
04	270	3.6					1.9	3.0
05	280	3.3					2.4	2.8
06	260	4.4	270		110	(1.7)	2.6	3.2
07	260	5.9	230	3.7	110	(2.3)	3.2	3.2
08	280	6.6	220	4.3	100	2.8	3.5	3.2
09	290	6.8	21 0	4.6	100	3.1	3.5	3.0
10	320	7.2	200	4.8	100	3.3	3.4	3.0
11	320	8.1	200	4.9	100	3.5		3.0
12	310	8.3	200	4.9	100	3.6		3.0
13	300	8.7	200	4.9	100	3.5		3.0
14	290	8.7	210	4.8	100	3.4		3.0
15	280	8.1	220	4.6	100	3.2		3.1
16	280	7.8	230	4.4	100	2.8		3.2
17	250	7.5	230		110	2.4	3.0	3.3
18	230	7.0				-	2.8	3.3
19	220	6.0					2.2	3.2
20	230	5.2						3.1
21	260	4.6						3.0
22	270	4.2						2.9
_23	300	4.2						2.8
Timer	105.0°W.							

Sweep: 1.0 Mc to 25.0 Mc in 15 esconds.

TRDIG IV									
Puerto	Rico, W.	I. (18.5	°N, 67.2	°w)			Sept	ember 1951	
Time	P123	fol2	h'31	fo F 1	h'E	fol	fBs.	(M3000)358	
00	260	5.4						2.8	
01,	270	5.4						2.9	
02	260	5.4						3.0	
03	240	5.0						3.0	
04	240	4.6						3.0	
05	250	4.1						3.0	
06	250	4.2						3.0	
07	220	5.2	230		110	(2.1)		3.5	
08	230	6.6	210		100	(2.7)	4.0	3.3	
09	280	7.4	200	4.6	100	(3.1)		3.2	
10	290	8.0	200	4.7	100	3.4		3.0	
ш	320	9.0	200	5.1	100	3.6		2.9	
12	320	9.8	210	5.1	100	3.7		.2.8	
13	320	10.8	220	5.1	110	3.7		2.9	
14,	310	11.0	220	5.1	110	3.6		2.9	
15	290	11,4	220	4.8	100	3.4		3.0	
16	280	11.4	220	4.6	110	3.1		3.1	
17	260	10.6	230		110	2.7	3.8	3.2	
18	230	9.8	250				3.4	3.2	
19	220	7.9					2.7	3.2	
20	220	6.2					2.4	2.8	
21	260	6.0						2.8	
22	280	5.6						2.8	
_23	290	5.6						2.8	

Time: 60.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

	Table 12									
Panama	Canal Zo	one (9.40	N, 79.97	W)			Sept	ember 1951		
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEe	(M3000)F2		
00	260	6.8	-					3.0		
01	240	6.6						3.1		
02	230	5.2						3.0		
03	230	4+4						3.1		
04	240	3.8						3.1		
05	260	2.8						3.0		
06	260	3.5					2.1	2.8		
07	240	6.0	220		120	2.2	1.5	3.2		
00	(260)	(+2 P 2	220	~	110	2.9	1.7	3.0		
10	320	ر.0	210	5.0	110	2.2	4.1	2.1		
10	350	10 4	220	2.2	110	2.2	4.1	2.0		
12	360	11.6	210	5.9	110	3.8	1.6	2.7		
13	350	12.6	<230	5.2	110	3.8	1.2	2.8		
ĩí.	320	(13.6)	230	5.1	100	3.7	1.8	(2.9)		
15	300	(13.5)	230	5.0	100	3.4	4.6	(3.0)		
16	280	(13.6)	220	4.6	110	3.2	4.3	(3.0)		
17	250	(12.6)	230		110	2.6	4.5	(3.1)		
18	230	(11.3)					3.4	3.0		
19	230	9.4					3.0	3.0		
20	230	8.6					2.7	2.8		
21	240	(7.5)					2.1	(2.8)		
22	280	(7.1)						(2.7)		
23	280	(6.4)					-	(2.8)		

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table	13					
luane ay	o, Peru	(12.0°S,	75.3°W)				Septem	ber 1951		
lime	h'F2	foF2	h'Fl	foFl	h†E	foE	fEs	(M3000)F2		
00	220	7.4						3.2		
01	240	6.9						3.2		
02	250	6.2						3.1		
03	260	5.3						3.1		
04	280	5.0						3.0		
05	300	4.5						3.1		
06	280	5.0			100	1.9	3.1	3.1		
07	240	8.0			100	2.6	3.2	3.2		
08	240	9.4	220		100	3.0	5.0	2.9		
09	300	10.2	210	4.7	100		5.4	2.7		
10	310	9.9	210	4.9	100		8.0	2.6		
11	320	9.4	200	5.0	100		8.0	2.5		
12	320	9.3	200	5.0	100		8.0	2.5		
13	320	9.4	200	4.9	100		8.0	2.5		
14	300	9.2	200	4.8	100		8.0	2.4		
15	260	9.0	210	4.4	100	3.1	5.5	2.5		
16	210	9.5			110	2.8	4.8	2.4		
17	270	9.1			100	2.3	4.0	2.5		
18	300	8.6			110			2.5		
19	320	8.5						2.5		
20	310	8.6						2.6		
21	260	8.9						2.8		
22	220	8.6						3.0		
23	220	8.2						3.2		
6.1	660	000						102		

Time: 75.0°W. Swcep: 16.0 Kc to 0.5 Mc in 15 minutes, automatic operation.

Fairba	Au	wust 1951						
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
Time 00 01 02 03 04 05 06 07 06 07 08 09 10 11 12 13	h'F2 (420) (420) (430) (480) 520 560 (580) 550 560 560 560 560 570 540	foF2 (3.4) (3.7) (3.9) (4.0) (4.2) (4.4) (4.4) (5.1) (5.1) (5.2) (5.2) (5.2)	h'F1 300 280 280 270 (270) (280) 270 (280)	3.6 (3.6) (3.8) (4.0) 4.1 4.2 (4.3) (4.3) 4.3	h'E	foE	fEs 5.0 5.2 5.2 4.8 4.4	(M3000)F2 (2-3) (2-4) (2-4) (2-4) (2-4) (2-5) (2-4) (2-3) (2-3) (2-3) (2-3) (2-3) (2-4) (2-3) (2-3) (2-3)
14 15 16 17 18 19 20 21 22 23	520 500 480 440 390 360 350 (340) (340) (360)	5.4 (5.1) (5.1) (5.0) (5.0) 4.8 (4.7) (4.5) (4.3)	280 300 310 320	(4.2) (4.1) 4.0 4.0			4.2	(2.4) (2.4) (2.5) (2.6) (2.6) (2.6) (2.6) (2.6) (2.6) (2.6)

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

			0	1801	10 I/			
De Bil	t, Holland	(52.1°N	, 5.2°E)				Au	gust 1951
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	295	4.2					2.4	2.7
01	295	4.0					2.8	2.7
02	300	3.4					2.7	2.7
03	300	3.2				E	3.6	2.7
04	290	3.2				Ε	3.3	2.8
05	280	4.2	260		~	1.8	3.9	3.0
06	340	4.7	220	3.8	100	2.3	4.0	3.0
07	310	5.0	215	4.1	100	2.7	4.2	3.1
80	330	5.6	210	4.3	100	3.0	4.6	3.1
09	320	5.9	205	4.5	100	3.2	4.5	2.9
10	350	6.2	205	4.5	100	3.3	4.8	3.0
11	320	5.9	200	4.6	100	3.4	4.4	3.1
12	350	5.9	200	4.6	100	3.4	4.6	3.0
13	330	5.9	205	4.6	100	3.5	4.5	3.0
14	340	5.9	205	4.5	100	3.3	4.0	3.0
15	310	5.9	210	4.5	100	3.2	4.0	3.0
10	305	6.0	220	4.2	100	2.9	4.0	3.0
17	300	6.1	225	3.8	100	2.5	4.0	3.0
18	(290)	6.2	260		105	2.1	3.6	3.0
19	275	6.6				E	3.8	3.0
20	260	6.0				E	3.0	2.9
21	240	2.0					3.0	2.9
22	275	5.2					2.1	2.8
23	295	4+4						2.7
Times	0 00							

Sweep: 1.4 Mc to 16.0 Mc in 7 minutes, automatic operation.

				Tab	le 14			
Point 1	Barrow, A	laska (7	1.3 ⁰ N, 1	56.8°W)			A	ugust 1951
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	310	(4.3)					5.4	(3.0)
01	270	(4.4)					6.4	(3.1)
02	2 80	(4.5)					7.8	(3.0)
03	300	·(4.0)					5.4	(3.0)
04	<u>10</u>	(4.4)			110		4.3	(2,9)
05	320	(4.4)	270	3.6	110	2.3	4.1	(2.9)
06	360	(4.4)	270	3.7	120	2.4	3.5	(2.8)
07	430	(4.7)	240	3.8	120		4.5	(2.6)
80	460	4.8	230	3.8	110		4.2	2.6
09	470	4.6	210	4.0	110		4.3	2.6
10	510	4.7	220	4.1			4.0	2.6
11	500	4.7	220	4.2	100	3.1	3.1	2.6
12	550	4.7	<230	4.1	110			2.4
13	480	4.8	230	4.1		`		2.6
14	430	5.0	230	4,1	110	3.0		2.7
15	400	5.2	230	4.2	100	2.8		2.8
16	360	5.1	230	4.1	100	2.8		2.8
17	350	5.0	230	4.0	110	2.6		3.0
18	320	5.0	240		110	2.3	3.0	3.0
19	300	4.7	240		T30	2.2	4.0	3.0
20	<300	4.4	260				4.2	3.0
21	310	4.4					6.2	3.0
22	300	(4.6)					7.0	3.0
23	310	(4.5)					6.2	3.0
	2 0							

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Tabl	<u>e 16</u>			
Narsars	suak, Gre	enland	(61.2 [°] N,	45.4°W)			A	ugust 195 1
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	(380)	(4.0)					4.8	(2.6)
01	(420)	(3.4)					4.1	(2.6)
02	(450)	(3.6)					4.6	(2.4)
03	(410)	(3.7)					4.2	(2.4)
04	(360)	(3.6)					4.4	
05	360	4.2					4.3	(2.8)
06	320	4.3					4.4	2.8
07	380	4.8	280	3.8	130	(2.8)		2.7
08	400	5.2	270	4.1	140	(2.8)		2.8
09	400	5.0	260	4.1	130	(3.0)		2.7
10	400	5.2	260	4.2	(130)	(3.2)		2.7
11	430	5.2	260	4.3	(130)	(3.2)		2.6
12	460	5.1	260	4.3	(130)	(3.2)		2.6
13	480	5.4	26.0	4.3	140	(3.2)		2.5
14	490	5.4	(260)	4.2	(130).	3.2		2.5
15	480	5.2	26 O	4.2	(130)	(3.2)		2.6
16	[<u>44</u> 0	(5.1)	290	4.1	(130)	(3.2)		2.6
17	110	5.2	310	4.0	130	(2.9)	3.4	2.7
18	370	5.0	300	3.8	(140)	(2.4)	4.3	2.7
19	340	(4.7)	300		(140)	(2.2)	5.6	(2.7)
20	360	(4.3)					4.1	(2.7)
21	380	(3.9)					4.5	(2.6)
22	(380)	(4.0)					5.5	(2.5)
23	(380)	(3.9)					4.9	(2.6)
md m a a	1.5 0.011							

Time: 45.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Adak,	Alaska	(51.9°N,	176.6 ⁰ W)	18016	10			August 1951
Time	h*F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	280	(3.8)	,				2.3	(2.8)
01	300	(3.6)						(2.7)
02	30 0	(3.3)					1.9	(2.7)
03	310	(2.8)					2.1	(2.7)
04	310	3.0			-		2.2	(2.7)
05	290	3.6	260	2.9	120		2.7	2.8
06	420	4.4	250	3.3	110	2.3	3.4	2.6
07	410	5.0	240	3.7	110	2.6	3.8	2.6
08	420	5.2	220	4.0	110	2.8	4.4	2.7
09	400	5.4	210	4.2	110	3.0	4.3	2.8
10	400	5.5	210	4.3	110	3.4	4.0	2.7
11	420	5.4	210	4.4	110		4.5	2.7
12	400	5.2	210	4.5	110		4.0	2.8
13	430	5.0	210	4.4	110	(3.2)	3.7	2.8
14	440	5.2	210	4.4	110		3.7	2.8
15	420	5.1	220	4.2	110		3.6	2.9
-16	360	5.2	220	4.2	110	2.8	3.0	2.8
17	320	5.4	240	3.8	110	2.4	3.6	3.0
18	280	5.4	250		120	2.0	5.4	3.0
19	270	5.4				100.000	3.6	3.0
20	260	6.0					3.2	2.9
21	260	6.0					3.6	2.9
22	250	5.0					2.9	2.9
23	260	(4.5)					2.3	(2.8)
Minor	100 0	0 ₁₄						

Time: 180.0 W. Sweep: 1.0 Mc to 25.0 Me in 18 seconds.

				Table	19			
Schwar	zenburg,	Switzer	Land (46.	8°N,7.3	e)		Aug	ust 1951
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	300	4.8						
01	300	4.6						
02	300	4.2						
03	300	4.0						•
04	300	3.8						
05	300	3.S						
06	250	4.6			116	2.0		
07	250	S.1			100	2.4	4.0	
08	300	5.5	220	4.0	100	2.7	4.5	
09	300	5.8	220	4.4	100	3.0	4.8	
10	300	6.0	210	4.4	100	3.2	4.4	
11	310	6.2	200	4.6	100	3.4	4.1	
12	330	6.0	200	4.6	100	3.4	4.9	
13	330	6.1	210	4.8	100	3.4	S.1	
14	330	6.4	210	4.8	100	3.3	4.6	
1S	310	6.2	210	4.6	100	3.3		
16	310	6.2	215	4.5	100	3.0		
17	300	6.2	210	4.3	100	2.8	4.2	
18	270	6.1			100	2.5	4.0	
19	260	6.4			105	2.2	4.0	
20	260	7.0					4.2	
21	250	6.8			-		4.2	
22	245	6.0					3.8	
23	290	5.0					2.9	

Time: 15.0°E. Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

				Table	21			
Panama	Canal Zo	ne (9.4°	N, 79.9°	W)			Au	gust 1951
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	280	6.5						2.8
01	250	6.6						3.0
02	250	5.8						3.0
03	250	5.3					2.1	3.0
04	250	(4.9)					2.0	(3.1)
05	250	(4.0)						(3.0)
00	270	2.0	010		100	~ ^	3.2	3.0
07	240	5.5	240	1.	120	2.3	0.6	3.2
00	(200)	0.4	220	(4.0)	110	2.9	د د	3.0
10	370	0.0	210	2.2	110	2.5	≎₊و	2.0
11	1,20	(+) 8 7	220	2.0	110	3.0	1	2.02
10	430	0.6	220	2.1	110	3.6	4.5	2•2
13	300	10.3	220	5.0	110	3.8	1.6	2.02
11	380	11.0	220	1.0	110	37	1.5	2.0
15	350	11.7	220	1.8	110	3.5	1.8	2.0
16	320	11.8	230	1.6	110	3.2	1. 2	2.0
17	290	(11.))	230	1.3	110	2.7	3.0	(3.0)
18	(250)	(10.1)	240	4			3.3	(3.0)
19	230	(8.8)					2.8	(3.0)
20	250	(7.4)					2.1	(2.8)
21	280	(7.1)					2.0	(2.8)
22	280	7.0						2.8
23	280	6.9						2.8
	07 00++							

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 eeconds.

				Tabl	0 23			
Fort Ch	imo, Can	ada (58.	1 [°] N, 68.	3°W)				July 1951
Time	h'F2	foF2	h'F1	foFl	h'E	foE	fEs	(M3000)F2
00	290	3.2					5.5	
01	2.50	3.2					5.0	
02	270	3.2					5.0	
03	300	3.3			100	2.8	5.0	(2.9)
04	280	3.8			100	2.8	5.0	(3.0)
05	270	4.0			100	3.2	5.0	(2.9)
06	370	4.3	240	4.0	100	3.5	4.4	(2.6)
07	370	5.0	2 20	4.2	100	3.6	3.6	2.8
08	400	5.0	210	4.5	90	3.6	3.0	2.8
09	380	5.0	200	4.3	90	3.5		2.9
10	<u>41</u> 0	5.0	200	4.5	90	3.5		2.8
11	410	5.2	200	4.5	90	3.4		2.8
12	410	5.4	200	4.5	90	3.5		2.7
13	400	5.5	200	4.5	90	3.5		2.7
14	390	5.7	200	4.5	90	3.5		2.7
15	400	5.4	210	4.3	100	3.3		2.7
16	400	5.3	210	4.2	90	3.2		2.7
17	340	5.2	200	4.0	100	3.0		2.8
18	300	5.0	220	3.9	100	2.6	5.0	(2.8)
19	290	4.9			100	2.1	6.7	(2.8)
20	280	4.3			100	2.2	5.3	
21	300	3.8					6.4	
22	270	3.2					7.0	
23	280	3.4					5.2	

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table	20			
Okinawa	a I. (26.)	3 [°] N, 127	.8°E)				Au	gust 1951
Time	h'F2	foF2	h'F1	foFl	h'E	foE	fEe	(M3000)F2
00	300	6.8					2.5	2.7
01	290	6.8					3.2	2.8
02	280	6.0					3.2	2.9
03	260	5.7					2.4	3.0
04	270	4.9					2.0	2.9
05	260	4.5						2.9
06	250	5.8			130		3.0	3.2
07	250	6.8	220		110	(2.5)	3.8	3.4
08	(270)	6.4	210		$(110)^{-1}$	3.1	4.4	3.2
09	310	7.0	(230)		110	3.2	6.0	3.0
10	340	7.6	210	4.9	110	3.3	5.6	2.9
11,	350	8.5	220	(5.1)	(110)	(3.5)	4.8	2.8
12	340	9.4	230	(5.0)	110	(3.6)	5.0	2.8
13	330	10.0	230	5.0	(110)	(3.5)	4.5	2.8
14	330	10.4	(230)	(4.9)	110	3.4	5.0	2.8
15	310	10.7	230	(4.7)	110	(3.4)	4.8	3.0
16	300	10.4	230		110	3.2	5.1	3.0
17	280	10.4	230		110	2.6	4.3	3.0
18	260	10.5	260		(120)		3.8	3.1
19	240	9.7					3.6	3.1
20	240	7.4					3.5	2.8
21	270	>6.3					0. ز	2.7
22	310	5.9					3.2	2.6
23	310	0.3					3+2	2.1

Time: 127.5°E. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Tabls	22			
Baker I	lake, Can	ada (64.	3°N, 96.0	0°W)				July 1951
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs .	(M3000)F2
00	300	5.0					3.7	2.8
01	320	5.0					4.0	2.8
02	310	4.8					2.0	2.8
03	320	4.6	310				1.9	2.8
04	330	4.5	300		160	2.0		2.8
05	380	4.8	290	3+4	130	2.4		2.8
06	460	4.7	280	3.8	120	2.8		2.8
07 .	510	4.8	280	3.8	120	2.8		2.7
08	600	4.8	260	4.0	120	3.0		2.4
09	600	5.2	250	4.0	110	3.3		2.4
10	550	5.5	280	4.2	110	3.3		2.5
11	520	5.2	280	4.3	110	3.5		2.6
12	540	5.3	280	4.4	110	3.4		2.6
13	550	5.3	260	4.2	110	3.3		2.6
14	500	5.5	260	4.3	110	3.3		2.6
15	500	5.5	270	4.3	110	3.3		2.6
16	480	5.9	260	4.2	110	3.2		2.8
17	450	5.3	260	4.1	120	3.0	8.0	2.7
18	430	5.6	260	4.0	120	2.9	7.0	2.8
19	380	5.6	280	3.8	140	2.8	6.0	2.8
20	340	5.1	300		160	2.6	7.0	2.8
21	320	5.0				2.1	6.2	2.8
22	340	5.0					7.0	2.8
23	320	4.9					3.2	2.8

Time: 90.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 eeconds.

				3	able 24			
St. Jol	nn'e, New	foundlan	d (47.6°	N, 52.7°	W)			July 1951
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	290	4.4					3.0	2.7
01	300	4.0					3.0	2.8
02	280	3.5					3.1	2.7
03	290	3.4					3.2	2.8
04	270	3.2			110	1.7	2.0	3.0
05	250	3.9	240	3.6	110	2.2	2.9	3.0
06	360	4.4	230	3.9	100	2.6		3.0
07	360	4.6	220	4.2	100	3.0	3.2	2.9
08	390	5.2	200	4.3	100	3.2	3.4	2.9
09	400	5.4	200	4.5	100	3.4	4.0	2.9
10	400	5.4	200	4.5	100	3.4	4.0	2.8
11	400	5.4	200	4.6	100	3.5	3.6	2.8
12	400	5.7	200	4.6	100	3.5	3.8	2.8
13	400	5.6	200	4.6	100	3.5	4.0	2.8
14	400	5.6	210	4.6	100	3.4		2.8
15	370	6.1	210	4.4	100	3.2		2.8
16	360	6.0	220	4.3	100	3.0		2,8
17	330	6.0	230	4.0	100	2.7		2.8
18	290	6.6	240	3.4	110	2.3	2.5	2.9
19	270	6.5			120	2.0	3.0	2.9
20	260	6.3					2.3	2.9
21	250	6.0					2.5	2.8
22	270	5.4					3.1	2.8
23	280	5.0					2.4	2.8

Time: 60.0°W. Sweep: 0.6 Mc to 20.0 Mc, automatic operation.

Wakkanai, Japan (45.4°N, 141.7°E)

Wakkanai	, Japan	(45.4°N,	141.7°E)	10010				July 1951
Time	h'F2	foF2	h'Fl	foFl	h¹ E	foE	fEs	(M3000)F2
00	300	6.1					3.2	2.7
01	300	5.6					3.0	2.7
02	300	5.6					2.8	2.7
03	300	5.4					2.8	2.8
04	300	4.8					2. 8	2.8
05	310	5.4	260	3.7	110	2.2	2.6	2.8
06	330	6.4	280	4.2	110	2.6	4.7	2.8
07	320	6.5		4.1	110	3.0	5.8	2.9
08	380	6.1	270	4.4	110	3.1	6.4	2.8
09	360	6.5	220	<u>4.8</u>	110	3.2	6.7	2.9
10	370	6.3	220	4.7	100	3.3	7.2	2.9
11	420	5.9	250	4.7	120	3.2	6.2	2.8
12	410	6.0	250	4.8	110		5.9	2.7
13	400	5.7	250	4.8	110	3.4	4.8	2.8
14	120	5.9	260	4.7	110	3.2	5.1	2.7
15	410	5.9	260	4.5	110	3.4	4.4	2.7
10	369	6.2	260	4-4	110	3.0	4.7	2.8
17	350	6.3	280	4.2	110	2.8	5.0	2.8
10	300	6.2	570	3.6	110	2.4	5.0	2.9
19	300	6.4					4.9	2.9
20	290	7.1					4.5	2.8
21	300	6.6					4.0	2.7
22	300	6.8					4.1	2.8
23	300	6.3					4.0	2.8

Time: 135.0°E. Sweep: 1.0 Kc to 17.0 Mc in 15 minutes, manual operation.

				Table	27				
Tokyo,	Japan (3	5.7°N, 1	39.5°E)					July 1951	
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2	
00	300	6.5					4.2	2.8	
01	280	6.6					4.1	2.9	
02	260	6.2					4.2	3.0	
03	260	5.2					3.8	2.9	
04	270	5.4					3.5	2.9	
05	270	5.6	250		120	1.7	2.8	3.0	
06	280	6.7	240		100	2.3	4.0	3.0	
07	280	7.2	230		100	2.8	5.4	3.1	
08	300	7.0	220		100	3.1	6.4	3.1	
09	310	6.6			100	3.4	7.0	3.0	
10	(350)	(7.0)			100	3.5	7.2	(2.9)	
11	360	6.4			100	3.5	7.2	(2.8)	
12	360	6.9			100		7.2	2.8	
13	350	7.3			100	3.6	6.9	2.9	
14	340	7.6			100	3.6	5.9	2.9	
15	330	7.6			100	3.3	6.4	3.0	
16	320	7.4	220		100	3.0	5.9	3.0	
17	300	7.4	240		100	2.7	5.8	3.0	
18	290	7.2	250		100	2.2	5.7	3.0	
19	260	6.8					4.6	3.0	
20	270	6.9					4.1	2.9	
21	300	6.7					4.2	2.8	
22	290	6.9					3.8	2.8	
23	280	6.8					5.4	2.9	

Time: 135.0°E. Sweep: 1.0 Mc to 17.2 Mc in 2 minutes.

				20202	V 4.7			
Formosa,	China	(25.0°N,	121.0°E)					July 1951
Time	h'F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	320	7.4					4.4	2.8
01	300	7.6					4.4	3.0
02	280	7.0					4.6	3.0
03	300	6.6					4.4	3.0
04	300	6.0					3.6	3.0
05	300	5.6					3.4	2.9
06	300	6.4	260	4.3	130	2.8	4.0	3-4
07	290	7.2	250	4.3	130	3.0	5.6	3.4
08	290	7.0	240	4.5	120	3.2	6.2	3.2
09	350	7.2	260	5.0	120	3.5	6.6	3.1
10	390	7.8	220	5.1	120	3.8	6.8	3.0
11	370	8.4	220	5.2	120	4.1	8.1	2.9
12	430	9.3		5.2	120	3.7	6.8	2.6
13	370	10.4		5.2	120	3.9	6.2	2.8
14	360	11.3			120	4.3	7.3	3.0
15	340	11.5	220	5.0	120	4.0	5.8	3.0
16	340	11.7	270	4.7	120	3.8	5.6	3.0
17	320	7° רי	270	4.6	110	3.4	6.3	3.1
18	280	ر.10	570	4.6	110	3.0	5.2	3.2
19	270	2.4			110		5.2	3.2
20	280	8.4					5.4	3.1
21	320	7.6					4.4	3.0
25	320	7.3					4.9	2.8
23	320	7.4					5.4	2.8

Table 20

Time: 120.0⁰E. Sweep: 2.3 Mc to 14.5 Mc in 15 minutes, manual operation.

Akita, Japan (39.7°N, 140.1°E)

Akita,	Japan (39	9.7°N, 11	0.1°E)	LACIO LO				July 1951
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	300	ó.4					5.2	2.8
01	290	6.1					4.4	2.8
02	280	5.8					4.4	2.9
03	280	5.7					3.6	3.0
04	280	4.9		_			3.4	2.9
05	280	5.4	260	3.1	120	1.9	3.6	3.0 .
06	300	6.4	230	3.9	110	2.5	4.4	3.0
07	300	6.8	240	4.2	110	2.8	5.6	3.0
50	320	0.8			110	3+2	6.6	3.0
09	320	0.5			110	3.4	8.0	3.0
10	(330)	((•2)			110	3.3	7.7	(2.9)
10	(320)	(0.3)	220	5.0	110		1.0	(3.0)
12	360	67	220	1. 7	110		6.2	2.0
11.	330	6.0	230	4.1	110	2 2	6.0	2.07
15	31.0	6.8	230	1.6	110	2.0	E 6	2.07
16	320	6.7	220	1.1	110	3.0	1.8	2.0
17	310	6.7	260	1.2	110	2.7	6.1	3-0
18	300	6.2	210		110	2.2	5.1	3.0
19	260	6.5		_			1.9	3.0
20	270	6.6					1.6	3.0
21	290	6.5					5.0	2.9
22	300	6.5					4.8	2.8
23	300	6.4					5.0	2.8

Time: 135.0°E. Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, manual operation.

				Table	28			
Yamagan	na, Japan	(31.2°N,	130.6°E))				July 1951
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	300	6.7					4.2	2.8
01 .	300	6.8					4.3	2.9
02	300	6.0					3.8	2.9
03	290	5.2					3.8	3.0
04	290	5.0					3.0	3.0
05	280	4.9					3.0	2.9
06	270	5.7	260		120	1.9	3.1	3.1
07	270	7.0	260		100	2.4	4.9	3.2
08	290	7.3	270		100	3.0	5.8	3.2
09	300	6.7	250		100	3.4	6.7	3.1
10	330	6.2	250	4.7	1)O	3.4	6.4	3.0
11	360	6.8			130	3.6	9.8	2.8
12	380	7•4			100		8.8	2.8
13	370	7.9		4.8	100	3.4	9.4	2.8
14	360	7.8	240	5.0	100	3.7	7.4	2.9
15	350	8.2	240	4.6	100	3.4	6.8	2.9
16	330	8.5	250	4.6	100	3.0	5.3	2.9
17	300	8.5	230	4.6	100	3.0	5.2	3.0
18	300	8.7	250		100	2.5	4.8	3.1
19	280	7.6					4.6	3.1
20	260	7.4					4+4	3.0
21	29.0	7.0					4.5	2.8
22	300	0.0					3.8	2.9
23	300	7.0					4.0	2.8
Time	135 0°E							

Time: 135.0°E. Sweep: 1.0 Mc to 18.5 Mc in 15 minutes, manual operation.

	Table 30									
Johanne	sburg, U	nion of S	S. Africa	a (26.2 [°]	s, 28.1	°E)		July 1951		
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2		
00	250	2.7						3.0		
01	270	2.6					1.5	2.9		
02	270	2.7						3.0		
03	250	2.8						3.1		
04	250	2.6					3.2	3.1		
05	260	2.5					2.6	3.0		
06	260	2.4					3.4	3.1		
Q7	230	4.7				1.7		3.4		
08	230	6.4	230		110	2.4		3.5		
09	240	7.1	220	4.0	110	2.9		3.4		
10	260	7.5	220	4.4	110	3.2		3.3		
11	260	7.6	210	4.6	110	3.4		3.3		
12	270	7.8	210	4.6	110	3.4		3.2		
13	270	8.1	210	4.5	110	3.4	3.8	3.2		
14	260	7.9	21.0	4.5	110	3.2	3.8	3.2		
15	260	7.8	210	4.3	110	3.0	3.7	3.2		
16	240	7.8	230		110	2.7	3.3	3.2		
17	230	7.3	***		110	2.1	2.4	3.4		
18	210	6.0					1.8	3.4		
19	220	3.5					2.2	3.3		
20	240	2.9					1.8	3.1		
21	270	2.9					1.9	3.2		
22	250	3.1						3.2		
23	250	2.9						3.2		
	0 -									

Time: 30.0°E. Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

				Tab	le <u>31</u>			
Wather	oo, W. Aus	tralia	(30.3°S,	115.9°E)			July 1951
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00 01 02 03 05 06 07 08 09 00 11 12 13 14 15 16 17 19 20 21 22 23	260 260 260 250 210 230 230 230 255 260 280 280 280 280 280 280 280 280 280 28	3.4 3.5 3.6 7.6 6.0 8.0 4.2 9.5 3.4 2.5 4.0 6.0 8.0 4.2 9.5 3.4 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	220 230 220 220 220 220 230 230 230	2.8 3.9 4.4 4.5 4.5 4.5 4.5 4.1 3.4		1.7 2.4 2.9 3.0 3.1 3.2 3.2 3.1 2.9 2.5 2.0	2. 99 2. 88 2. 99 2. 88 2. 90 5. 13 2. 33 3. 32 3. 32 3. 33 3. 32 3. 32 3. 32 3. 32 3. 32	2.9 2.9 2.9 3.2 3.1 3.3 3.5 3.4 3.3 3.4 3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2
Time:	120.0°E.							

Sweep: 16.0 Mc to 0.5 Mc in 15 minutes, automatic operation.

				-able	33			
Resolu	te Bay, C	anada (7	4.7°N, 9	4.9°W)			J	une 1951
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEe	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 20 21 22 23	290 290 280 320 320 350 350 (160) (100) (120) 370 380 390 360 350 320 320 320 320 320 320 320 320 320	0108890001234 8331022000	210 230 220 220 220 200 200 200 200 200 20	(3.4) (3.4) 3.6 3.8 3.9 4.0 4.0 4.0 4.0 4.0 4.0 3.9 3.9 3.8 3.9 4.0 4.0 5.9 3.9 3.8 3.9 3.8 3.9 4.0 4.0 5.9 3.8 3.0 4.0 5.9 3.8 5.9 4.0 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9				3.1 3.0 3.1 3.0 3.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Time: 90.0⁰W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table	35*				
Fraser	burgh, Sc	otland (57.6° H.	2.1°W)			June 1951		
Time	P.LS	fo T 2	ከ' ፓ1	foFl	h١z	fol	fBa	(M3000)#2	
00	275	6,6					2.4	2.7	
01	280	6.0			(160)#	(0.9)#	2.6	2.7	
02	295	4.6			160	1.2	2.7	2.7	
03	300	4.6			140	1.4	2.7	2.7	
04	320	4.6	260	(2, 9)	140	1.8	3.0	2.7	
05	335	4.9	245	3.5	120	2.2	3.1	2.7	
06	385	5.0	235	3.8	115	2.6	3.1	2.6	
07	380	6.4	235	4.1	110	2.9	3.2	2.8	
08	370	6.7	230	4.4	110	3.1	3.2	2.8	
09	360	6.0	225	4.4	110	3.2	3.4	2.9	
10	375	6.1	220	4.6	105	3.3	3.8	2.9	
11	390	6.0	220	4.7	105	3.4	3.8	2.8	
12	385	6.1	220	4.7	105	3.5	2.7	2.9	
13	400	6.0	225	4.7	105	3.4	3.3	2.8	
14	400	6.0	220	4.7	105	3.4	2.8	2.8	
15	390	6.0	226	4.6	110	3.3	2,9	2.8	
16	360	6.2	230	4.5	110	3.1	3.0	2.8	
17	340	6.2	236	4.3	110	3.0	3.1	2.9	
18	320	6.3	240	4.1	115	2.7	3.2	2.9	
19	290	6.3	246	3.6	120	2.4	3.2	3.0	
20	270	6.3	280#		140	2.0	3.0	2.9	
21	266	6.2			(170)	1.7		2.9	
22	270	6.2					2.0	2.8	
23	2.75	6.0					2.2	2.7	

Time: 0.0°. Sweep: 0.67 Mc to 15.0 Mc in 4 minutes. *Average values except foF2 and f2s, which are median values.

					TR	010 32
Capetown.	Union	of	s.	Africa	(34.2°s.	18.3°E)

Capeton	wn, Union	of S.	Africa (3	4.2°s, 1	.8.3°E)			July 1951
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	280	2.5						2.9
01	280	2.6						2.9
02	280	2.7						2.9
03	270	2.7						3.0
04	260	2.7						2.9
05	250	2.6					1.5	3.1
06	250	2.4					3.0	3.0
07	240	2.4				Е	1.6	3.1
90	230	4.6				1.9		3.3
09	230	6.2	230		120	2.4		3.4
10	250	6.8	230	3.6	120	2.8		3.3
11	260	7.0	230	4.1	110	3.1		3.2
12	270	7.5	220	4.4	110	3.2		3.2
13	270	8.0	220	4.5	110	3.2		3.2
14	270	7.8	220	4.4	110	3.1	3.4	3.1
15	270	8.2	240	4.2	110	3.0	3.9	3.2
16	250	7.9	230	3.8	120	2.7	3.6	3.2
17	240	7.3			110	2.3	2.7	3.3
18	220	6.3					1.7	3.3
19	230	3.9						3.3
20	240	2.7						3.2
21	240	2.5						3.2
22	250	2.4						3.2
23	250	2+4						3.0
Time:	30.0°E.							

Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

Baker L	June 1051							
Time	h'F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	310	5.0					2.9	2.8
01	320	5.0					2.7	2.8
02	320	4.8					3.0	2.8
03	320	4.9			160		3.0	2.8
04	320	4.8	300	3.2	160	2.0		2.8
05	400	4.8	280	3.6	130	2.2	3.0	2.8
06	440	4.8	270	3.8	120	2.4	3.0	2.8
07	530	4.9	250	4.0	120	2.9		2.7
08	510	4.9	240	4.0	120	3.0	3.0	(2.6)
09	500	5.2	260	4.2	110	3.2	3.1	(2.6)
10	510	5.2	260	4.2	110	3.3	3.4	(2.6)
11	500	5.2	280	4.2	110	3.4		2.7
12	530	5.2	280	4.3	1 1 0	3.5		2.7
13	500	5.2	260	4-3	11 6	3.3		2.6
14	490	5.5	260	4.3	1 1 0	3.4		2.7
15	490	5.6	260	4.2	110	3.3	1.9	2.7
16	490	5.7	260	4.2	110	3.0	1.9	2.7
17	470	5.8	260	4.2	120	3.0	4.0	2.7
18	_430	5.8	280	3.9	120	2.7	6.0	2.7
19	350	5.4	280	3.8	130	2.4	4.5	2.8
20	360	5.4	300		140	2.2	6.8	2.8
21	340	5.2			160		7.5	2.8
22	320	5.2					6.0	2.8
23	310	5.0					3.3	2.8

Time: 90.0°W. Sweep: 1.0 Nc to 25.0 Nc in 15 seconds.

				Table	36			
Lindau,	Harz, Ge	rmany (5	1.6°N, 1	0.1°E)				June 1951
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	270	5.8					2.3	2.7
01	270	5.4					2.4	2.7
02	280	5.0					2.6	2.7
03	270	4.7					2.6	2.7
04	280	4.8	270		100	1.2	2.8	2.8
05	300	5.2	250	3.2	100	2.0	3.2	2.8
06	310	5.8	240	3.8	100	2.5	4.5	2.8
07	320	6.0	230	2.2	100	2.9	5.6	2.9
08	340	6.4	230	4.4	100	3.2	5.6	2.8
09	320	6.6	220	4.5	100	3.4	5.5	2.9
10	320	6.8	220	4.6	100	3.5	5.8	2.9
11	335	6.6	220	4.8	100	3.5	5.5	2.9
12	360	6.6	210	4.8	100	3.4	5.6	2.9
13	370	6.4	200	4.7	100	3.5	5.8	2.8
14	350	6.5	210	4.8	100	3.5	5.6	2.8
15	360	6.4	210	4.7	100	3.3	5.5	2.9
16	320	6.4	220	4.6	100	3.2	5.2	2.9
17	310	6.5	230	4.3	100	3.0	5.0	2.9
18	300	6.5	230	4.0	100	2.7	4.8	2.9
19	280	6.6	250		100	2.3	4.4	3.0
20	260	6.7			110	1.7	4.7	3.0
21	260	7.0					3.6	2.9
22	250	6.6					3.2	2.9
23	260	6.4					2.6	2.7

Time: 15.0°E. Sweep: 1.0 Mc to 16.0 Mc in 8 minutes.

18

Table 37*

Slough,	England	(51.5°N,	0.6°W)	Idole	20			June 1951
Time	Pils	foT2	h'Jl	foFl	h'E	foE	fBs	(M3000)72
00	275	5.8		-			2.6	2.6
01	290	5.5					2.9	2.6
02	290	5.0					3.0	2.6
03	285	4.7					3.3	2.7
04	305	4.6	280	3.1	120	1.4	3.9	2.7
05	330	5.3	255	3.5	120	2.0	4.7	2.8
06	380	5.7	255	4.0	115	2.6	4.8	2.8
07	370	6.2	240	4.3	115	2.9	4.9	2.8
- 30	355	6.5	240	4.5	,115	3.2	4.9	2.9
09	370	6.4	235	4.7	115	3.4	5.0	2,9
10	350	6.6	225	4.8	110	3.5	5.1	3.0
11	370	6.4	230	4.9	110	3.5	5.3	2.8
12	380	6.4	230	4.9	115	3.6	5,8	2.8
13	410	6.6	235	4.9	115	3.6	5.8	2.8
14	380	6.4	225	4.8	115	3.5	4.9	2.8
	365	6.7	235	4.8	115	3.4	4.6	2.8
10	350	6.7	235	4.6	115	3.3	4.9	2.8
17	325	6.7	240	4.3	115	3.0	4.6	2.8
10	300	0.7	255	4.0	120	2.7	4.7	3.0
TA	290	0.0	255	3.5	125	2.2	5.0	2.9
20	275	7.0			145	⊥.7	3.8	2.9
21	270	(•1					3.3	2.8
22	270	0.9					2.6	2.8
- 63	270	C.,2					2.2	2.7

Time: 0.0°. Sweep: 0.5 'c to 16.5 1c in 5 minutes, automatic operation. *Average values except foF2 and fEs, which are median values.

				Table	<u>39</u>			
Raroton	ga I. (2	1.3°S, 1	51.4 ⁹⁰ W)					June 1951
Time	h ¹ F2	foF2	h'Fl	foFl	h¹ E	foE	fEs	(M3000)F2
52	280	3.8						2.8
01	300	3.8						2.7
02	300	4.1						2.7
03	300	4.0						2.7
04	300	3.8						2.8
05	280	3.7						2.8
06	280	3.6				- 0		2.9
07	26.0	6.1			1.00	1.0		L. (
80	250	0.1	230	3.2	120	2.4	د د	3.2
10	250	0.0	240	4.1	110	2.9	0 و	3.2
10	260	201	230	4.5	110	3 1	0•ر	3.0
12	270	8 h	220	4.0	110	3.1	1.2	3.1
13	270	8.7	230	1.8	110	3.)	1.1	3.1
11	280	8.6	230	4.8	110	3.3	4.2	3.1
15	270	8.4	230	4.6	110	3.1	4.0	3.1
16	260	8.0	250	4.4	120	2.8	3.8	3.0
17	250	8.6	250			2.2	3.8	3.1
18	240	8.6					3.9	3.1
19	230	6.7					3.4	3.2
20	240	5.0					3.1	2.8
21	260	4.5					3.0	2.0
22	280	4.0					2.6	2.9
23	300	3.7					2.2	2.9

Time: 157.5°W. Sweep: 2.0 Mc to 16.0 Mc, manual operation.

				Table	41							
Christe	Christchurch, New Zealand (43.6°S, 172.7°E) June 1951											
Time	h†F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2				
00 02 03 05 06 07 08 09 11 12 14 15 17 18 20 21 22 23	2900 300 2800 250 250 250 240 240 250 250 250 250 240 240 240 250 250 250 240 240 240 250 250 250 230 230 230 230 230 230 240 240 240 250 250 250 250 250 250 250 250 250 25	2.2.7.7.2.8.7.2.8.2.3.8.0.1.6.6.2.8.7.0.1.7.1.2.0. 2.2.2.2.2.5.6.6.7.7.7.6.5.5.1.1.7.1.2.0 3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	 5/10 5/10 5/10 5/10 5/10 5/10	3-3 3-7 3-9 4-9 4-0 3-8 3-3 		1.6 2.3 2.7 2.8 2.9 2.8 2.6 2.3 1.6	3333333334444444458544584090800	2.9 2.9 2.9 3.1 3.1 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4				

Time: 172.5°E. Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

<u>Tuble 38</u> * Singapore, Lritish Lalaya (1.3°N, 103.8°E) June 1951										
Time	P:LS	foF2	h'J1	foF1	h'E	fol	fEs	(M3000)#2		
00 01 02 03 04 05 06 07 08 09 11 12 13 14 15 16 17 20 21 22 23	21:0 21:5 25:5 21:5 21:5 21:5 21:5 21:5 21:5	5.6 5.3 3.5 3.5 2.8 4.3 7.6 10.7 10.6 10.1 10.9 10.8 11.1 10.8 10.2 9.4 0.5 10.2 0.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	235# 225 210 210 210 210 205 205 205 225	(18)# (19)# (19) (19) (19) (18)#	125 120# 115# 110₽ 105₽ 125	2.6 3.1 3.2 3.8# 3.1# 2.6	3.7 3.2 2.6 0.5 5.6 6.1 5.6 6.6 4.4 4.4 4.4 4.4 4.4 4.4 4.4 5.4 4.4 4.4	3.0 3.1 3.1 3.0 2.9 3.0 2.8 2.7 2.6 2.7 2.6 2.7 2.8 2.7 2.8 2.9 3.1 2.9 3.2 3.1 3.1 2.9 3.1 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.8 2.7 2.6 2.7 2.8 2.7 2.8 2.7 2.8 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.5 2.1 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.5 2.1 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1		

23. 1 210 ... 6.1 Time: 105.0°E. Sweep: 2.2 Nc to 16.0 Nc in 1 minute. "werage values except foF2 and fEs, which are median values. #One or two observations only.

Table 40

					and the second se			
Wathero	o, W. Aus	tralia	(30.3°s,	115.9°E)		,	June 1951
Time	h'F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	250	3.6					2.8	3.0
01	260	3.6					2.9	3.0
02	250	3.7					2.9	3.0
03	250	3.6					2.9	3.0
04	230	3.6					2.9	3.1
05	240	3.1					2.9	3.0
06	240	2.8					3.0	3.1
07	230	4.4				1.4	2.8	3.4
08	230	6.4				2.2	3.1	3.6
09	240	7.2	230	3.7		2.8	3.2	3.5
10	250	8.1	230	4.2		3.1		3-4
11	250	8.2	230	4.3		3.2	3.3	3+4
12	260	8.2	230	4.5		3.3	3-4	3.3
13	260	8.3	230	4+4		3.2	3.4	3.3
14	260	8.4	230	4.3		3.0	3.8	3.3
15	250	8.4	240	4.0		2.8	3.4	3.3
16	240	8.1	240	3.4		2.3	3.3	3.5
17	220	7.2					3.2	3.4
18	200	5.2					3.1	3.4
19	220	3.7					2.9	3.2
20	240	3.0					2.8	3.1
21	260	3.0					2.4	3.0
22	260	3.2					2.5	2.8
23	260	3.5					2.4	2.9
	3 - 0 - 0 -							

Time: $120.0^{\circ}E$. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes, automatic operation.

				Tabl	.e 42			
Reykjav	ik, Icela	and (64.1	L ^O N, 21.	8°W)				May 1951
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00 02 03 05 06 07 08 09 10 12 13 15 16 17 18 20 21 22 3	360 (360) (375) (390) (310) 325 380 110 370 400 400 390 390 390 385 360 350 310 320 320 330 330 320 330	4.116) (4.16) (3.11-4.669,8,8,4,5,4,5,4,4,4,8,600,4) (3.11-4.669,8,8,4,5,4,5,4,4,4,8,600,4) (3.11-4.669,8,8,4,4,5,4,5,4,4,4,8,600,4) (3.11-6,1),4,6,6,9,8,8,4,4,5,4,5,4,4,4,8,600,4)	250 210 230 230 220 220 220 230 220 230 210 210 210 210 210 210	3.68 3.82 4.2 4.4 4.4 4.4 4.3 4.3 4.3 4.3 4.3 4.3 4.3	100 100 100 100 100 100 100 100 100 100	3.1 3.2 3.1 2.8	4.4 4.3 4.6 4.4 5.8 3.8 4.4 5.0 4.4	(2.5) (2.6) (2.6) (2.6) (2.6) 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.6 2.7 2.7 2.7 2.8 2.8 2.6 2.7 2.7 2.8 2.8 2.6 2.7 2.7 2.8 2.8 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6

Time: 15.0°W. Sweep: 1.0 Mc to 25.0 Mc in 18 seconds.

Ta	7	0	40
10	0.7	Q.	~

Nars ars	suak, Gre	enland	(61.2 ⁰ N,	45.4°W)				May 1951
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
CO	< 360	(3.8)					3.9	(2.6)
01	<360	4.1					3.6	(2.6)
02	360	3.8					4.0	(2.6)
03	(380)	(3.6)					3.7	(2,6)
C4		(4.2)					4.2	~ ~ ~
05	(350)	(4.7)					4.0	(2.8)
06	(350)	4.8	290	3.9			4.3	(2.9)
07	380	4.6	270	(4.1)	120		3+9	2.8
80	360	5.1	240	4.2	110	3•⊥		2.7
09	380	(5.1)	240	4.2	120			(2.7)
10	420	5.4	230	4+3	(120)	3.2		2.1
11	110	2.1	<240	4+4	120			2.0
12	430	2.2	240	(1, 1,)	110			2.0
13	430	5.0	240	$(4 \cdot 4)$ (1, 1, 1)	110	(2.2)		2.0
14	420	2.2 (C C)	-240	1. 2	110	31		2.6
16	1,00	5.5	250	1.1	110	(2.9)		2.7
17	380	(5.3)	250	(0,1)	110	(2.9)		2.7
18	360	(5.2)	260	3.7	120	(2.5)	3.9	(2.7)
19	340	(5.1)	270		120	1.9	3.4	(2.8)
20	320	(4.9)					L.0	(2.8)
21	310	(5.0)					5.8	(2.7)
22	320	(4.5)					5.8	(2.7)
23	(310)	(4.6)					4.0	(2.7)

Time: 45.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

		_		Table	45			
Slough,	England	(51.5 [°] N,	0.6°W)					May 1951
Time	h ¹ F2	foF2	h'Fl	foFl	h E	foE	fEs	(M3000)F2
00	290	5.3					2.4	2,6
01	295	5.0					2.6	2.6
02	300	4.8					2.8	2.6
03	290	4.5					2.9	2.6
04	300	4.2	300洋	2.5/	135	1.4	3.8	2.8
05	310	4.6	260	3.4	125	2.0	4.0	2.9
06	320	4.9	250	3.9	120	2.4	4.3	3.0
07	345	5.5	240	4.3	115	2.8	4.6	2,9
08	365	5.8	240	4.5	115	3.1	4.6	2.9
09	370	6.2	235	4.7	115	3.3	4.6	2.8
10	380	6.5	225	4.8	115	3.4	4.6	2.8
11	390	6.5	230	4.9	115	3.5	4.8	2.8
12	370	6.6	230	4.9	115	3.5	4.8	2.8
13	375	6.5	235	4.9	115	3.6	4.7	2.8
14	355	6.3	230	4.8	115	3.5	4.6	2.8
15	355	6.8	240	4.8	115	3.4	4.5	2.8
16	330	6.8	240	4.6	115	3.1	4.5	2.9
17	305	7.0	245	4.3	120	2.9	3.9	3.0
18	285	7.1	255	3.9	120	2.4	3.5	3.0
19	270	7.1	265	3.4	135	1.9	2.6	2,9
20	260	7.1				1.8#	2.6	2.9
21	260	6.7						2.8
22	280	6.3					2.4	2.7
23	285	5.6					2.2	2.6

Time: 0.6° . Sweep: 0.55 Mc to 16.5 Mc in 5 minutes, automatic operation. "Average values except foF2 and fEs, which are median values. #One or two observations only.

		Table	1.7

				Tapte	91			
Delhi,	India	(28.6°¥,	77.1°E)					May,1951
Time	+	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	320	4.8						
01								
02								
03								
04	290	5.1						3.4
05	290	5.7						
06	280	6.6						
07	280	7.8						
-08	290	8.4						3.4
09	300	9.2						
10	320	9.9						
11	320	10.7						
12	320	11.7						3.0
13	320	12.4						
14	320	12.7						
15	320	12.2						
16	320	11.8						3.4
17	310	10.8						
18	300	10.2						
19	310	9.5						
20	300	0 8.4						3.0
21	320	7.2						
22	320	6.0						
23	320	5.5						

Time: Local. Sweep: 1.8 % to 16.0 % in 5 minutes, manual operation. Height at 0.83 foF2. *verage vilues; other columns, median values.

			Table 44	
hurch.	Scotland	(57.6°N.	2.1°W)	

Fraser	burgh, Sc	otland (57.6°N,	2.1°W)				May 1951
Time	h'F2	foF2	h'Fl	foFl	h ^I E	foE	fEs	(M3COC)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	295 305 305 285 305 305 285 335 100 100 100 100 100 390 380 315 300 380 315 300 205 205 275 285 285	1001 5.001 4.01 5.001 4.001 5.001 5.001 5.001 5.000 6.001 6.000 6.000 6.000 6.000 6.000 5.0000 5.00000 5.00000 5.00000000	295 250 215 230 230 230 230 235 225 235 235 235 2410 250 260	23.70 3.03 1.1.56 1.1.68 1.1.64 1.1.64 1.1.70 1.1.1 1.1.70 1.1.1 1.1.70 1.1.1 1.1.70 1.1.1 1.1.70 1.1.1 1.1.70 1.1.1 1.1.70 1.1.1 1.1.70 1.1.1 1.1.1 1.1.70 1.1.1 1.1.1 1.1.70 1.1.1	(210) 135 120 110 105 105 105 105 105 110 110	(1.3) 1.6 2.1 2.8 3.2 3.3 3.3 3.3 3.4 3.3 3.3 3.4 3.3 3.4 3.3 3.4 3.3 3.4 3.4	2.5 2.4 2.6 2.3 2.6	2.6 2.66 2.66 2.67 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9

19

Time: 0.00. Sweep: 0.67 Me to 15,0 Me in h minutes. * wverage values except foF2 and foE, which are median values. #Cne or two observations only.

				Table	46			
Rome, I	Italy (41	.9°N, 12	.5°E)					May 1951
Time	h'F2	foF2	h'Fl	foFl	h'Ε	foE	fEs	(M3C00)F2
00	290	6.2						
01	290	6.0						
02	300	5.6						
03	260	5.5						
04	280	5.2						
05	270	5.0						
06	250	5.6		3.8				
07	270	6.0		4.5				
08	270	7.0	210	4.5				
09	280	7.2		4.9				
10	280	7.4	200	5.0				
11	320	8.0	200	5.2				
12	300	7.9	200	5.0				
13	300	0.1	200	5.0				
14	290	0.5	210	3.0				
15	200	2.0	230	4.7				
10	200	8.0		1. 3				
19	260	8.2		4+2				
10	200	8 4						
20	250	8.0						
21	245	7.6						
22	250	7.0						
22	280	6.8						
23	200	0.0						

Time: 15.0°E. Sweep: 0.9 Me to 14.0 Me in 40 seconds.

				Table	48				
Calc	utta, Ind	lia (23.6	°N, 88.4	₽°E)			Mag	May 1951	
Time	h'F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2	
00	240	7.8						3.1	
01	240	7.4							
02	(240)	(5.8)							
03	(210)	(5.2)						3.2	
04	(210)	(5.3)							
05									
06		7.4				2.5	2.8		
07	(21.0)	8.7				2.8	4.0		
80	(210)	(9.5)				3.2	4.0		
09	(240)	(9.5)				3.4			
10	(240)	(9.5)				3.4			
11	(240)	(9.5)							
12									
13									
14									
15									
16									
17	(270)	(8.8)				3.0	3.3		
18	240	(9.5)				2.8	3.6	3.0	
19	240	(9.2)				2.5			
20	240	(9.4)							
21	(240)	(9.4)						2.9	
22	240	9.0							
23	240	8.4							
Time:	Local.								

Bombay,	India (10.001, 1	73.0°E)	TACLE	<u>47</u>			May 1951
Time	+	foF2	h'F1	foFl	h'E	foE	fEe	(M3000) \$2
00			•					
01								
02								
03								
04								
66								
07	3:0	7.5						
08	360	9.0						3.0
09	390	9.3						
10	390	10.5						
11	420	11.5						
12	450	12.5						2 + 5
13	100	13.2						
14	450	(11.0)						
16	200	(14.0)						2.7
17	390	(13.9)						C 0
18	390	13.3						
19	320	12.3						
20	360	10.4						2.9
21	360	8.9						
22	360	8.0						3.0
22	35/0	7						

Time: Local. Sweep: 1.8 he to 16.0 He in 5 minutes, manual operation. "Height at 0.83 foF2. *Average values; other columns, median values.

Time *	foF	2 h'Il	foFl	h'E	foE	fBe	(M3000)F2
00 01							
02 03 04 05 06 07 39 08 10 52 10 52 11 54 12 54 12 54 12 54 12 54 13 54 15 54 16 54 17 18 18 18 18 19 48 20 48 20 48 20 48 20 48 48 20 48 48 48 48 48 48 48 48 48 48	0 6. 0 8,9 0 10. 0 10. 0 10. 0 10. 0 10. 0 10. 0 11. 0 11. 0 11. 0 11. 0 11. 0 11. 0 11. 0 11. 0 11. 0 10. 0 10.	457152291220) 44320062					2.7 2.3 2.6 2.6 2.6

Z3 . . Time: Local. Sweep: 1.8 Kc to 16.0 Kc in 5 minutes, manual operation. *Height at 0.83 foF2. **_avorage values; other columns, median values.

				Table 53
Rarotonga	1.	(21.3°S,	159.8°W)	14010 //

Raroton	May 1951							
Time	h'F2	foF2	h'F1	foFl	h'E	foE	2Ea	(M3000)F2
00	280	4.7						2.8
01	280	4.2						2.8
02	300	4.2						2.9
03	270	4.3						3.0
04	280	3.8						2.9
05	300	3.6						2.9
06	300	3.8						2.7
07	250	7.1				2.0	2.9	3.0
08	250	9.5	230		115	2.6	3.5	3.2
09	250	10.4	240	4.3	110	3.0	4.0	3.2
10	250	10.3	230	4.6	110	3.3	4.0	3.2
11	260	9.9	240	4.8	110	3.5	4.0	3.2
12	290	10.5	220	5.0	110	3.5	4.3	3.1
13	270	10.7	240	4.8	110	3.5	4.0	3.1
14	260	10.2	240	4.9	110	3.4	4.3	3.1
15	290	9.9	240	4.8	110	3.1	4.1	3.0
16	260	10.R	250	4.4	110	2.9	3.8	3.0
17	250	10.9				2.3	4.1	3.0
18	250	10.3					4.2	3.2
19	230	8.5					3.8	3.0
20	240	7.0					3.5	2.9
21	250	6.2					3.1	2.8
22	260	5.2					3.0	2,9
23	260	4.9					2.4	2,9

Z5 1 200 4.9 Time: 157.5^OW. Sweep: 2.0 Mc to 16.0 Mc, manual operation.

dras,	India (13.0,		rable	<u>50</u>			May 1951
Time	÷	1072	h'Fl	foFl	h'E	fol	fBs	(M2000)125
70 11 02 03 04 05 06 07 03 09 11 12 13 14 15 16 17 19 20 22 22	360 390 420 450 470 480 480 480 480 480 480 480 480 480 48	7.8 9.0 9.6 10.0 10.0 10.1 10.6 11.2 11.5 11.9 12.2 12.0 11.6 (10.1) (9.8) (9.5)				2		2.9 2.6 2.9 2.3

23		(2*27						
Time:	Local,)						
Swcep	: 1.8 P	ic to ló.C	Mc in !	5 minutes	, manus	1 operat	ion.	
♥Hei	ght at (0.83 foF2.						
*# ive	rage vil	lues; othe	r colum	ns, media	n value	s.		
				Tabl	c <u>52</u>			
Singapor	re. Brit	ish Melav	a (1.3	N. 103.8°	Z)			May 1951
Time	h'F2	foF2	hIET	forl	hIE	foE	fEs	(M3000)F2
00	230	9.2				100	3.4	2 0
01	225	7.6					31	3.2
02	230	5.6					2.5	3.1
03	245	4.8					2.6	3.1
04	240	3.8					3.0	3.1
05	240	3.2						3.1
06	670	4.8					2.8	3.0
07	240	8.5			115	2.5	3.7	3.0
80	230	10.4	230%		115	3.0	4.2	2.9
09	245	10.9	215		105	3.1	4.5	2.6
10	270	(11.1)	205	(4.7)∉	115	3.5	4.4	2.6
11	295	(10.9)	200	4.8	110#	3.5	4.4	2.5#
12	310	(10.5)	200	4.9	110#	(3.6)#	4.4	(2.5)
13	300	(10.6)	200	4.8	125#	3.1#	4.7	2.7
14	285	11.2	200	(4.0)疗	105#	3.3#	4.4	2.4
10	200	(11.1)	205		100#	(3.3)	4.2	2.5
19	200	(11.1)			110	3.0	3.7	2.6
10	250	(11 2)			115	2.0	0.0	2.0
19	250	11 1						0.17 7 12
20	240	11 1						(20)-2
21	225	(10.9)					2.8	3.3
22	225	(10.2)					4.1	51
23	230	(9.5)					4.0	3.0
while an exception of		the Real Property lies in the local sectors where						

Time: 105.0°E. Sweep: 2.2 Mc to 16.0 Mc in 1 minute. * Average values except to F₂ and fEs, which are median values. # One or two observations only. Table Fl.

				Table	24			
Brisban	ic, Austr	alia (27	.5°S, 15	3.0°E)				May 1951
Time	h'F2	foF2	h'Fl	fcFl	h'E	foE	fEs	(M3000)F2
00	260	3.0						2.9
01	270	4.0						2.9
02	270	4.0						2.9
03	270	4.2						3.0
04	240	1.0						3.0
05	250	3.5						3.0
06	250	3.3						3.1
07	225	6.6			130	2.3		3.4
80	230	8.0	230	4.2	110	2.7		3.4
09	250	8.6	230	4.5	110	3.0		3+3
10	250	9.5	221	4.7	105	3+3		3.3
11	250	8	220	4.7	105	3.5		3.3
12	250	9.0	220	4.7	100	3.4	3.0	3.3
13	262		225	4.7	100	3.5		3.1
14	2¢ U		21.	4.5	110	3.3	3.2	3.1
15	240	11 a 1	230	4.3	110	3.0	3.8	3.2
10	230				110	2.6	3.0	3.3
17	550	7.1			180	1.8	2.5	3.2
18	220	6.0					2.0	3.1
19	0.30	5.3					2.0	3.0
20	21:0	7.5						3.0
21	<u>^50</u>	4.5						3.0
22	250	4+3						3.0
23	250	2.						2.9

Time: 150.0°E. Sweep: 1.0 Ke to 1 .0 Ke in 1 minute 55 seconds.

				Table	<u>55</u>			
Canbern	ra, Austr	alia (35	.3°s, 14	9.0°E)				May 1951
Time	h ¹ F2	foF2	h'Fl	foFl	h†E	foE	fEs	(M3000)F2
00 01 02 03 04 05 06 07 07 08 09 10 11 12 13 14 15 16 17 17 19 20 21 22 23	260 260 260 220 (240) 220 240 240 240 240 250 240 250 240 250 240 230 220 210 230 220 210 230 220 210 230 210 250 250	3.800006 4.0006 4.099 67.600005 8.0005 8.0005 8.000 5.30 5.555 5.555 5.500 5.530 5.555 5.555 5.5555 5.5555 5.55555 5.55555 5.555555	220 220 210 210 220 210	(4.0) (4.5) (4.5) (4.4) (4.2) (4.2) (3.8)	(130) 100 100 100 100 100 100 100 1	1.8 2.3 2.9 3.3 3.3 3.1 2.9 4 1.6	2.5 2.5 2.2 2.4 2.0 3.0 2.6 3.0 2.6 3.0 2.6 3.0 2.4 2.5 2.4 2.5 2.4 2.5 2.4 2.5	2.9 2.9 3.0 3.2 3.2 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5

Time: 150.0°E. Swcep: 1.0 Mc to 16.0 Mc in 1 minute 55 seconds.

				Table 9	2			
Christ	church, N	low Zeala	ind (43.6	S, 172.	7°E)			May 1951
Time	PILS	10J2	h'71	foFl	h١Z	foE	fBa	(M3000)12
00	290	3.3					3.0	2.9
01	290	3.4					2.8	2.9
02	300	3.3					3.0	2.8
03	28 0	3.3					3.2	2.9
04	280	3.3					3.2	3.0
05	260	2.8					3.0	3.1
06	250	2.4					3.3	3.0
07	250	3.8				1.3	2.7	3.2
08	240	6.0	2 60	3.1		1.8	3.6	3.4
09	240	7.0	240	3.6		2.5	4.4	3.4
10	250	7.3	240	4.0		2.7	3.5	3.3
11	250	7.6	230	4.2		2.9	4.2	3.3
12	260	8.1	240	4.3		3.0	4.4	3.3
13	260	8.2	240	4.2		3.0	4.4	3.2
14	260	8.0	250	4.0		2.8	4.4	3.3
15	250	8.3	250	36		2.4	3.8	3.3
16	240	7.8	250	3.0		2.0	3.2	3.3
17	240	6.6				1.4	3.2	3.2
18	250	5.7					2.8	3.0
19	250	5.3					2.9	3.0
20	250	4.6					2.7	3.0
21	260	4.2					2.7	2.9
22	270	4.0					3.0	2.8
.23	280	3.5					2,8	2.9

Time: 172.5^{°E}. Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1951	April 3			22	Taore	20.5°E)	(67.8°N,	Sweden	Kiruna,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000) 1 2	(1130	2Be	fol	h'E	foF1	h'71	foT2	P.LS	Time
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			3.4					(4.3)	(340)	00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3.9						(330)	01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3.9					(3.5)	360	02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3.0					(3.7)	(335)	03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2.0					3.9	(330)	04
06 (340) 4.5 255 110 2.2			2.0	1.8	110		240	4.0	(330)	05
				2.2	110		255	4.5	(340)	06
01 345 4.7 240 3.8 105 2.4				2.4	105	3.8	240	4.9	345	07
08 345 5.1 230 4.0 105 2.6				2.6	105	4.0	230	5.1	345	08
09 365 5.2 230 4.0 105 2.8				2.8	105	4.0	230	5.2	365	09
10 350 5.4 220 4.2 105 2.8				2.8	105	4.2	220	5.4	350	10
11 350 5.4 215 4.1 100 2.9				2.9	100	4.1	215	5.4	350	11
12 340 5.6 220 4.2 100 2.9				2.9	100	4.2	220	5.0	340	12
13 340 5.6 225 4.1 105 2.8				2.0	105	4.1	225	5.0	340	13
14 320 5.4 230 4.0 105 2.8				2.8	105	4.0	230	5.4	320	14
15 335 5.6 235 3.7 105 2.5				2.5	105	3.7	235	5.0	335	15
			2.2	2.4	110	3.1	245	5.3	300	10
17 (305) 5.1 250 110 2.1 2.4			2.44	2.01	110		250	2.1	(305)	17
10 (320) 5.1 255 110 1.2 3.2			3.2	1.2	110		255	5.1	(320)	10
19 (200) 5.0 250 110 1.2 2,2			2,2	τ•5	110		250	5.0	(260)	19
20 300 4.0 105 2.9			2+7		105			4.0	300	20
			3.6					4.5	300	21
			1.0					(). ()	(210)	22

Time: 15.0°E. Sweep: 0.8 Mc to 15.0 Mc in 30 seconds.

Hobart,	Tasmania	(42.8~	S, 147.4	ິະ)				May 1951
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	260	3.0					2,1	2.9
01	280	2.8					2.5	2.9
02	275	2.6					2.3	2.8
03	26 0	2.5					2.7	2.8
04	260	2.5					2.6	2.9
05	24C	2.5					2.6	3.0
06	245	2.2					2.7	3.0
07	250	3.5				Έ	2.5	3.0
08	220	5.6			110	2.1	2.7	3.3
09	220	7.0			100	2.6	2.6	3.3
10	230	7.5	200	4.2	100	3.0	2.7	3.2
11	240	8.0	200	4.4	100	3.1	2.6	3.2
12	250	8.3	200	4.4	100	3.3	2.7	3.2
13	240	8.5	200	4.4	100	3.3	2.9	3.1
14	240	8.5	210	4.4	100	3.0	2.5	3.1
15	230	8.0	210	3.5	100	2.8	2.8	3.2
16	220	8.5			110	2.2	2.7	3.2
17	200	7.5				1.5	2.7	3.2
18	210	6.4					2.8	3.0
19	220	5.3					2.5	3.1
20	220	4.3						2.9
21	245	3.7						2.9
22	250	3.5						2.9
23	250	3.2						2.8
Timore	150 0°F							

Time: 150.0°E. Sweep: 1.0 Kc to -3.0 Mc in 1 minute 55 seconds.

Eallslo	nd Ta (E	1 7 ⁰ 5 5	7 801.1)	Table 5	<u>58</u> •			May 1051
Time	ha 19. (5	1082	h'71	foF1	h'E	foE	fBe	(M3000)72
00	380	3.0						2.5
01	370	3.0					2.8	2.6
02	360	3.0					2.8	2.6
03	360	2.9					2.8	2.6
04	340	3.0						2.7
05	300	3.1						2.8
06	270	2.8						3.0
07	270	3.7						2.9
08	230	6.0				2.1		3+3
09	230	7.6			140	2.4		3.3
10	230	7.8	230#	4.6#	130	2.6	3.0	3+3
11	240	8.4	220#	5.5#	130	2.8	3.8	3.3
12	240	8.9			130	2.8		3.4
13	230	8.0			130	2.8	2.8	3.5
14	230	7.4			140	2.5		3.4
15	230	7.0			160#	2.3		3.4
16	230	6.4					2.8	3.4
17	240	4.7						3.3
18	250	4.0					2.7	3.3
19	270	2.9						3.2
20	300	2.6						2.9
21	340	2.8						2.7
22	360	2.8						2.6
23	370	2.9						2.5

Time: 60.0°W. Sweep: 2.2 Mc to 16.0 Mc in 1 minute. *Average values except foF2 and fEs, which are median values. #One or two observations only.

Reykjavik, Leeland (64.1°N, 21.8°M) April 195 Time h'FZ foFZ h'F1 foF1 foFZ foFZ (M3000) 00 (400) (3.4) 4.6 4.7 (2.6) 03 (370) (3.2) 4.6 (2.6) 03 (370) (3.1) 4.8 (2.6) 03 (2.7) 05 (2.8) (2.8) (2.8) (2.8) (2.8) (2.8) (2.8) (2.8) (2.8) (2.8) (2.8) (2.8) (2.8) (2.8) (2.6) 2.7 (2.6) 2.7 (2.6) 2.7 (2.6) 2.7 (2.7) (2.6) 2.7 (2.7) (2.6) 2.7 (2.7) (2.6) 2.7 (2.7) (2.7) (2.7) (2.7) (2.7) (2.7)	Table 60										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Reykjar	vik, Icela	and (64.	1 ⁰ N, 21.	8°W)				April 1951		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Time	PILS	foF2	h'Fl	foF1	h'E	fol	fBa	(M3000) T2		
20 300 4.6 4.0 2.9 21 340 4.0 4.1 2.8 4.1 2.8 22 350 3.6 4.6 4.6 2.6 2.6	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 3	(400) 380 (370) (370) (330) (2°5) 400 380 400 380 410 400 390 370 350 350 350 300 300 300 300 30	(3.4) (3.4) (3.2) (3	260 250 230 230 230 230 230 230 220 250 260 270	3.8 4.0 4.1 4.2 4.2 4.2 4.3 4.1 3.9	100 100 100 100 100 100 100 100 100 100	(2.4) (2.8) (3.0) (3.2) (3.2) (3.0) 2.8 2.6 2.4 2.0	1.6 1.0 1.8 1.3 1.6 1.2 3.2 3.8 3.8 3.8 1.0 1.1 1.4 1.2	(2.6) (2.6) (2.5) (2.7) (2.8) 2.8 2.7 2.8 2.7 2.8 2.7 2.8 2.7 2.8 2.7 2.8 2.7 2.8 2.7 2.8 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5		

Time: 15.0°W. Sweep: 1.0 Mc to 25.0 Mc in 18 scconds.

 Table 61

 Fracerburgh, Scotland (57.6°N.2.1°W)

 Time
 h'F2
 foF2
 h'F1
 foF1
 h'
 h'E foE fEs (M3000)F2

TTUC	11 4 5.	1016	A 8 4 44	1 01 1			the second second second	
00	335	3.9					-	2.5
01	335	(3.6)					1.5	2.5
02	330	(3.4					2.2	2.4
03	325	(3.0)					2.1	2.5
04	310	(3.1)	350#		150#	(1,2)#		(2.5)
05	305	3.5	275#	2.8#	135	1.6		2.8
06	280	4 1	255	(3.4)	1.30	2.1		2.9
07	700	4 5	245	3.6	120	2.4		3.0
08	385	4.8	235	4.0	120	2.7		2.9
00	300	5.2	235	4 2	115	3.0		2.9
10	375	5.6	230	4.4	115	3.2		2.8
11	390	57	235	4.5	115	3.3		2.8
12	365	6.0	230	4.6	115	3.3		2.8
17	360	6 1	230	4 6	115	3.2		2.8
14	340	6.4	235	4.5	115	3.2		2.9
15	720	6.4	235	4 4	120	3.0		2.9
16	310	6.6	240	4 2	120	2.8		2.9
17	705	6.4	250	7 9	120	2.5		2.9
10	375	61	260	(3.5)	130	2.2		2.9
10	260	5 9	200	(0.07	150	2.0		3.0
70	200	6.4			150#	1.7#		2.9
20	200	6.0			1001			2.9
22	200	51						2.8
22	300	0.1						2.6
60	540	2.0						~

April 1951

Time: 0.00°. Sweep: 0.67 Mc to 15.0 Mc in 4 minutes. "Average values except foF2 and fEs, which are median values. #One or two observations only.

Dome T	+n] (41	0° M 12	⊆0, ד	Table 6	3			April 1951
Time	h ⁱ F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	300	>5.0						
01	300	4.8						
02	300	>4.6						
03	280	4.2						
04	300	4.2						(3.2)
05	(290)	4.4						(3.1)
06	2 50	5.0						
07	.235	5.8		3.0				(3.8)
08	(255)	6.1		4.1				
09	(270)	(7.2)		4.1				
10	(255)	(7.4)		4.0				
11	(270)	8.4		4.0				
12	280	8.2		4.1				(3.6)
13	270	8.5		4.0				(3.6)
14	270	> 8.4		4.6				(3.6)
15	2.60	8.4		4.5				(3.6)
16	2.60	8.3		3.5				(3.6)
17	2.50	8.5	230	3.3				(3.7)
18	240	8.5						(3.8)
10	220	8.4						(3.8)
20	220	6.8						().0/
21	245	5 3						
20	280	5.0						(3 1)
07	200	C						(0.1)

Time: 15.0°E. Sweep: 0.9 Mc to 14.0 Mc in 40 eeconds.

				Table	<u>65</u>			
Falklan	d Is. (51.7°S,	57.8°#)				A	pril 1951
Time	h¹F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	360	3.8						2.5
01	360	3.6						2.5
02	3 50	3.7						2.5
03	340	3.7						2.6
04	310	3.8						2.7
05	290	3.6						2.7
06	290	3.4						2.8
07	240	5.9			1 60#	2.2		3.1
08	230	7.6			140	2.4		3.3
09	240	8,5			140	2.6	3.8	3.3
10	240	9.8		4.5件	130	2.8	4.5	3.3
11	240	10.6	220	4.4	130	2.8	4.3	3.3
12	240	10.2	230	4.1	120	2,9	4.6	3.4
13	230	9.2	220	4.0	120	3.0	4.0	3.4
14	240	8.4	230#	3.9#	120	2.9	3.2	3.3
16	240	8.0	220#	3.2#	130	2.6	2.8	3.3
16	240	7.6			160	2.4	2.8	3.3
17	240	7.0					2.8	3.3
18	240	6.6					2.8	3.3
19	250	5.4						3.1
20	270	4.6						3.0
21	300	4.1						2.7
22	340	3.8						2.6
23	360	3.8						2.5

Time; 60.0°W.

Time; 00.0 %. Sweep: 2.2 Mo to 16.0 Mo in 1 minute. *Average values except foF2 and fEs, which are median values. #One or two observations only.

Time	h'F2	foF2	h'Fl	foFl	h [‡] E	foE	fEs.	(M3000)F2
00	31.0	4.0					2 2	2.6
01	315	3.8					2.6	2.0
02	315	3.6					2.6	2.5
03	310	3.4					2.6	2.0
04	300	3.1					3.0	2.6
05	290	3.3	300#	2.7#	150	1.6	3.8	2.8
06	275	4.3	255	3.5	125	2.1	4.0	31
07	315	5.0	245	3.8	120	2.5	4.0	3.1
08	340	5.3	230	4.3	120	2.9	4.1	31
09	365	5.6	225	4.5	115	3.1	4.3	2.9
10	3 50	6.2	225	4.6	115	3.3	4.0	2.8
11	345	6.6	225	4.7	115	3.4	4.1	2.9
12	345	6.7	220	4.8	115	3.4	4.2	2.8
13	335	6.8	2 30	4.8	115	3.4	4.6	2.8
14	320	6.9	230	4.7	120	3.3	4.0	2.9
15 j	310	7.2	235	4.5	120	3.2	4.2	2.9
16	290	7.1	235	4.4	120	2.9	3.8	3.0
17	285	7.3	245	4.0	120	2.6	3.5	3.0
18	265	7.4	255	3.6	130	2.1	2.6	3.0
19	250	7.2			145	1.8	2.3	3.0
20	255	6 .6					2.2	2.9
21	260	5.8						2.8
22	275	4.8						2.6
27 1	300	4.4						2.6

				Tabl	e 64			
Singap	ore, Brit	ish Malay	ya (1.3 ⁰ N	, 103.8	E)			April 1951
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	225	10.7						3.2
01	210	9,5						3.2
02	230	6.4						3.0
03	245	6.0						3.0
04	245	6.5					2.6	3.2
05	260	4.1						3.1
06	265	5.0					2.5	3.0
07	240	8.8			130/#	2.6	3.2	3.0
08	225	10.9			130¥	3.1	4.1	3.0
09	230	(11.5)	200/#		110#	3.54	4.4	3.0#
10	240	(11.0	210				4.4	2.64
11	315	(10, 4)	205		100半	3.1#	4.4	2.4
12	275	10.8	205	4.8			(4.2)	2.3
13	290	(10.9)	200	4.8			(3.9)	2.2#
14	275	(11.0)	200	(4.9)#			4.4	(2.4)#
15	245	(11.4)	(200)#				4.2	(2.5)
16	245	(11.4)	200#		120	3.1	3.8	,
17	250	(11.6)			1207	2.6	3.8	
18	2 56	(11.4)					3.5	
19	265							
20	266	(11.5)						
21	225	(11.6)						(2.9)#
22	200	(11.2)						(3.2)#
23	205	(10.8)						2.9

Time: 105.0°E. Sweep: 2.2 Mc to 16.0 Mc in 1 minute. *Average values except foF2 and fEs, which are median values. #One or two observations only.

				Table	00			
Rome,	Italy (41	.9°N, 12	•5°E)				М	arch 1951
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	(280)	4.2						(3.1)
01	290	4.2						(3.2)
02	280	4.0						(3.2)
03	280	4.0						(3.2)
04	2.70	3.8						(3.3)
05	265	3.8						(3.3)
06	240	4.2						(3.5)
07	230	5.8						3.7
08	230	6.0						(3.8)
09	(245)	(8.0)						(3.7)
10	250	>8.0						(3.6)
11	260	(8.4)		3.7				(3.5)
12	260	>8.4		3.8				(3.5)
13	260	>8.4						(3.6)
14	250	>8.3		3.7				(3.6)
15	240	0.4		3.4				(3.0)
10	570	-0.4		3+3				(3.()
10	230	-0.0						(3.0)
10	220	- (+4						(2.6)
19	220	-0.4						(3.0)
20	232	-5.0						(2.1)
22	(21.0)	5.0						(3.1.)
22	275	1. 1.						(31)
23	215	4+4						()++/

Time: 15.0°E. Sweep: 0.9 Mc to 14.0 Mc in 40 seconds.

Table 67

Falklar	id Is. (5	1.7°S, 51	7.8°W)				March	1951
Time	h'F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	340	5.0						2.6
01	340	4.8						2.6
02	330	4.8						2.6
03	330	4.7						2.6
04	320	4.6						2.6
05	330	4.2						2.6
06	270	4.9	300#	3.4#	150#	2.3		2.9
07	250	ô.2	270#	3.6#	160	2.4		3.1
08	260	6.5	250#	4.1	140	2.6	4.0	3.2
09	270	7.2	239	4.5	120	2.9	4.4	3.0
10	280	8.0	240	4.8	120	3.0	4.8	3.0
11	270	8.8	230	4.5	120	3.1	4.8	3.0
12	270	9.8	230	4.5	120	3.1	4.8	3.1
13	270	9.2	220	4.6	120	3.1	4.0	3.2
14	260	8.0	230	4.4	120	3.1	4.0	3.3
15	250	7.4	230	4.2	120	2.9	3.5	3.3
16	250	7.0	230	3.8	130	2.6	3.0	3.3
17	250	6.8			130#	2.3#	2.9	3.3
18	250	6.4					2.5	3.2
19	260	6.6					2.6	3.0
20	270	6.4					2.7	2.9
21	280	5.8						2.8
22	300	5.4					2.6	2.7
23	320	5.2					2.5	2.6

Time: 60.0°W. Sweep: 2.2 Mc to 16.0 Mc in 1 minute. "Average values except to F2 and fEe, which are median values. #One or two observations only.

				Table	59			
Poitie:	rs, Franc	e (46.6 ⁰	N, 0.3°E	3)	_	F	ebruary	1951
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	<330	3.6						
01	<350	3.4						
02	<380	3.4						
03		3.2						
04		2.9						
05								
06								
07	245	4.0						(3.1)
08	230	5.8	225					(3.5)
09	240	6.6	225					3.4
10	240	7.2	230	3.8				3.5
11	245	7.4	2 20	4.0				3.4
12	250	7.4	220	3.9				3.4
13	250	7.5	225	4.0				3.5
14	250	7.6	225	4.0				3.4
15	240	7.8	230					3.5
16	240	7.2	225					3.5
17	230	6.9	220					(3.4)
18	230	5.8						(3.2)
19	250	5.1						(3.2)
20	275	4.4						
21	280	3.8						
22	< 310	3.6						
23	(320)	3.6						
	0							

Time: 0.0°. Sweep: 3.1 Mc to 11.8 Mc in 1 minute 15 seconds.

				Table	71*			
Terre	Adelie (6	6.8°s, 14	1.4°E)				Febr	uary 1951
Time	h'F2	foF2	h'Fl	foFl	h‡E	foE	fEs	(M3000)F2
00	-	(5.4)	200	4.0	110	2.9	1.5	
01	(350)		245		110	2.8	1.5	
02	(320)		215	4.0	1 10	2.7	1.5	
03	(350)	(5.8)	220		110	3.0	1.5	
04	(350)	(5.8)	220	4.0	110	3.0	1.5	
05	(350)	(5.2)	220	3.6	110	2.7	1.5	
06	340	(5.3)	230	3.7.	110	1.9	1.5	
07	350	5.5	220	3.5	120	1.8	1.5	
08	300	5.5	230	3.4	140	1.5	2.5	
09	300	5.8	250				2.4	
10	300	5.4	250				1.5	
11	325	5.2	250				1.5	
12	270	(5.3)					1.5	
13	270	(4.8)					1.5	
14	275	(4.8)					1.5	
15	270	(3,6)					1.5	
16	300	(3.2)					1.5	
17	300	(2.6)					1.5	
18	300	(3.5)					1.5	
19	330	(3.6)	250				1.5	
20	310	(4.2)	250			1.5	1.5	
21	300	4.6	250	3.4		1.5	1.5	
22	350	(4.8)	250	3.7	125	2,5	1.5	
23	(325)	(5.7)	230	3.9	120	2.6	1.5	

Time: 0.0°. Sweep: 1.5 Mc to 16.3 Mc in 1 minute. • Data observed from 14th through 28th, only.

Table 68

Domont	, France	(49.0°N,	2.3 E)				Februar	y 195 1
Time	h'T2	fo F 2	h'J1	foFl	h'E	foE	fB _B	(N3000)12
00	265	3.0						2.9
01	250	3.0						2.9
02	260	3.0						2.9
03	250	2.7						2.9
04	260	2.3						3.0
05	240	2.1					2.1	3.0
08	245	2.2						3.1
07	220	3.8	200		100	1.7	2.2	3.4
08	220	5.8	200		100	2.0		3.7
09	220	6.3	200		100	2.4		3.6
10	220	7.2	200	3.8	100	2.6		3.5
11	220	7.4	190	3.8	100	2.7		3.5
12	220	7.2	19 0	3.8	100	2.8		3.8
13	230	7.4	200		100	2.8		3.6
14	230	7.4	200		100	2.6		3.5
15	220	7.4	200		100	2.5		3.6
16	220	7.1	200		100	2.1		3.6
17	210	8.0	190		100	1.7		3.6
18	215	5.5	200					3.5
19	220	4.7						3.4
20	230	3.8						3.1
21	240	3.2						3.0
22	255	3.1						3.0
23	270	3.0						3.0
Time:	0.0							

Sweep: 1.5 Mo to 16.0 Mc in 1 minute 30 seconds.

				Table	70			
Rome,	Italy (4)	.9°N, 12	2.5°E)				Febru	ary 1951
Time	h'F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	275	4.0						
01	280	4.0						(3.2)
02	270	3,9						(3.4)
03	270	3.8						3.3
04	2.55	3.8						3.4
05	2.50	3.4						3.4
06	(250)	3.2						
07	2 50	4.3						3.7
08	210	>6.0						
09	220	(8.0)						
10	220	>8.6						
11	230	>8.4						
12	230	>8.3						(3.8)
13	230	8.3	200					3.8
14	230	>8.4	200	3.5				3.8
15	220	8,2	200	3.1				3.9
16	220	8.0						3.8
17	210 .	>6.4	200					
18	(205)	>6.0						
19	(220)	>5.4						
20	(230)	5.3						
21	(230)	(4.4)						
22		(4.2)						
23	(270)	(4.2)						

Time: 15.0°E. Sweep: 0.9 Mc to 14.0 Mc in 40 seconds.

Table 72

Rome,	Ital: (4]	.9°N,12.	5°E)				Janu	ary 1951
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	(285)	3.4						
01	(250)	3.8						(3.4)
02	(270)	3.6						(3.4)
03	2.50	3.8						(3.5)
04	230	3.7						3.5
05	230	3.6						3.7
06		(3.2)						
07	(230)	3.4						(3,7)
08	210	5.8						(4.0)
09	210	6.6						(4.0)
10	200	7.6						(4.0)
11	220	8.0						(3.9)
12	220	7.6						4.0
13	220	7.2						3.9
14	220	7.0						3.8
15	220	6.5						3.8
16	210	6.2						3.9
17	200	6.0						3.8
18	220	4.9						3.8
19		4.6						
20								
21								
22		4.2						
23								
Tite: Sweep:	15.0°E. 0.9 Lc t	0 14.0 M	(c in 40	seconds	•			

24	1																																				
i adapted June 1946	andards J. W.		m 2																								-						•	_			-
Form	of S1 ^{tutian)} E.		23	دەر س	270	300	260	250	02 00	300	280	٥٩٣	080	⁵ (مر نے)	2 70	260	300	2 90	(300)	SUCE)	(04 E)	300 5	(330)	300	ی ۲۵	∢	(060)	(200) ^A	s (م2 ص)	(08C)	(3/0)k	980	د (مع در)	250		280	00
	Ireou (Instit		22	270	280	(موت ہے)	200:	250	(02 C)	² (0% ک	010	(250)	290	(02 C)	260	020	000	00 fy	280	3(05 5)	(020)	(330) ⁵	(06C)	080	250	∢	(06 C)	A	0% 20	(08~) S	×	LarolA	~ 60	960		270	5
	ol Bu	Mc C	21	250	260	52607	250	0 % 0	040	010	280	030	250	(م <i>ع</i> ده)	250	260	(290)	5 60	280	*0%2	(a /o)	(350)	ر م	080	250	(03 C)	080	¢	250	0,00	×	(250)	e 70	030		260	2
	Nation by: Mo	lated by:	20	<i>250</i>	-330	مر <i>د</i>)	040	030	020	210 %	260	OPC	020	(0.00)	0000	250	0.00	080	0000	× 00 20	(08 <i>c</i>)	(00E)	(020)	20 20	040	040	040	¢	0900	[000]	* 4	[5sal	260	090		250	5
	Scaled	Calcul	61	040	055	230	300	000	210	027	<i>230</i>	000	020	0000	000	260	020	040	040	× 070	(09C)	2(092)	010	010	020	050	(200)	A	020	250	(310)F	(250)	<u>ہ 30</u>	(0/2)		000	2
			18	050	230	220	0700	010	0/2	040	220	02.00	0000	(00 C)	000	2 50	220	050	040	× 07 7	030	067	000	000	230	040	(250)	(055)	230	020	(3/0)K	020	a 30	(000)		077	50
			17	250	0300	250	080	000	000	080	0000	040	230	0000	030	2 50	050	00	Om C	× 0% 7	050	0	05 0	مدر	oec	- 30	000	050	050	0 40	250 ×	050	230	000		02.20	
hindton 2	2		16	\$20	250	000	0 %	250	050	200	040	025	050	250	260	260	040	200	050	* 08.0	040	040	040	050	040	030	240	-230	040	010	A(02 C)	محرر	250	040		250	5
orde Was	A		15	060	2.70	ی کم	060	260	250	310	0.50	220	260	260	260	020	260	000	250	* 060	050	090	260	050	250	ي 20	0960	040	260	260	(a 30)k	260	250	0300		0 1	;
of Stond	DAT	ime	4	290	02 20	280	(096)	020	260	(300)	220.	290	270	- 20	090	0%2	280	260	020	X OF M	250	080	260	250	260	260	050	260	260	200	≈ 80 K	260	270	250		02.00	0.25 min
73	SIC	Mean T	13	005	080	300	260	080	090	320	260	020	080	080	02.00	(02 C)	310	270	270	370 %	260	290	ی 50	080	090	260	280	070	080	270	310 ×	260	220	270		0 / 6	O Mc In O
BLE	HER	N°3	12	280.	(05%)	0 80	020	- 80 X	260	310	-260	300	080	2 20	260	220	220	000	020	200 %	200	270	000	υ	08 0	000	090	020	260	000	360	0900	060	260		270	Mc to 25
TA	IOSF	2	=	020	(080)	220	200 م	260	250	330	000	300	020	260	250	290	- 80	260	082	*.50 ×	200	ی <u>8</u> د	080	J	280	270	(09C)	080	~ ~ ~ ~	260	\$ 80 *	260	220	270		270	eep 1.0
	101		0	220	220	0600	280	02 00	250	000	040	260	260	260	250	060	260	260	260	1001	270%	50005	404 C	U	360	090	250	(052)	270	280	x(02C)	270	(010)	020		2000	Swi
odia Pror			60	2 8 C	250	260	260	250	0400	280	050	080	280	260	0200	290%	260	250	0 % 0	×00×	040	250	000	U	260	250	270 %	260	250	-260	260	080	-250	0900		260	2
antrol B			08	(0SC)	020	260	260%	250	070	080	020	020	050	0000	040	300	020	030	0.00	2404	040	N 075	240	010	-250	020	(04e)	230	240	250	040	025	260	030		0%0	5
	, ,		07	210 4	040	050	2404	0000	010	040	0%0	040	0000	000	040	250	040	040	040	~ ~ ~	250	-250	020	20	040	050	0 10	040	040	010	- 30 -	(260)	050	0500		0,2	- 2
			90	050	260	040	250	260	040	080	020	- 20	250	020	250	080	(08 C)	-280	087	* 01 %	300 5	(280)	0200	(300)3	(080)	250	250	(050)	(300)	(260) ⁵	د (مترب)	× V	(300)	260		092	202
	21		05	(03C)	2 90 C	260	250	(02 ح)	250	080	(080)	N	010	0 2 6 0	(معد)	(08°)	(000)	000	080	(350)	(360) K	(340)	3005	260	0% 6	250	(02 2)	(300)	(02C)	∿ 80	0% (*	*	270	020		0200	-
	per le	7. 1°W	04	250	000	260	250	280	020	090	250	ų	040	270	280	220	320 5	260	2 80 S	(300) ^S	(320)R	(380)	² (م <i>ا تي</i>)	040	010	- 20	(0/E)	(06 %)	260	240	02 6	E K	(03%)	270		0/ 10	>
	D. C.	, Long 7	03	250	260	260	220	000	070	260 S	[250]8	(055)	080	-280	Lord	080	s (292)	250	2000	(310)E	(250) K	(03C)	(330) ⁵	250	0 2 6	(300) A	(300)	(08 C)	(08 C)	250	(300) A	E *	(080)	270			;
	Unit) naton	8.7°N	02	04 ~	020	280	020	260	-50	0%0	-50	300	000	260	(290)	080	ک (05 ت)	270	- 20	0000	(350) K	(350)	د (وم ت ک	(000)	220	280	280	280	(01E)	s (08 کے)	0 8 6	*	[290] A	270		0 0	2
	Washi	Lat 3	ю	250	240.	000	080	270	(08C)	060	050	020	000	020	(300) A	(06 CP)	250	290	020	(055)	[390]k	[300]	² (م2 ت	(310)5	280	(08 m)	(-280)	(08-)	(08 m)	(300) ⁵	(000)	A	(067)	(08c)	(000)	108-1	5
	h'F2 Tracteristic)	In Da	00	260	(080)	270	0%	020	-260	080	(300)	090	270	- 60	[08c]	300	~50	300	080	015	(130)4	(300) ^S	(0/E)	330	300	(0200)	(310) A	(310)	(300)	(300) ^S	00 P	E X	(300)	270		000	;
	(Cho	ODServ	Day	-	2	ю	4	5	9	2	60	6	0	Ξ	12	13	14	15	16	17	18	61	20	21	22	23	24	25	26	27	28	29	30	31	Median	Count	

Manual 🔲 Autamatic 🛛

adapted June 1946	rds																																				-
Form	Stando	<u>, n. v. v.</u>	1	23	4SF	42	3 8 2	45	4.2	7.2	5.7	4.1 PS	4.2	4.6	38	425	505	3.e F	4.5F	5.0	3.0 %	(2,7) F	(3.5) F	30	4.2 7	4.7	Ą	(38)5	41 P	3.8	3.E	(2.0)F	e.e	3.65	3.85	1-4	. V C
	au of (Instit			22	× (9.4)	4.4	(t, t)F	4.8	7.3	4.2	5.7	$(+5)_{5}^{T}$	4.7	4.5	4.2	4.5F	5.3 8	3.77	43	5.8	325	3.5 V	(2 K)F	35 F	4.1	4.7	′₹	4.3	405	4.4	3.75	4 7	(39) ^T	405	4.3	6.4	94
	Bure		Mc C.	2	5.6	4.7	49	0:0	4.5	4.5	5.7	4. (o F	5:33	£S	424	(4.6)F	6.19	3.5 F	(43)5	2:5	×4.2 P	3,85	(30) =	3.5 E	3.95	5.6	4.05	4.51	Ą	5.0	4.03	4	₹.S	4.1F	4.6F	5.4	10
	ational	by: IMC	oted by:-	20	5.8	5.5	6.0	5.82	4.9	0:0	7.6 H	5.9	6.0	5.6F	49F	535	4.9	4.1 F	5.2	6.6	+S+	4.8	(3.6)7	3.6 5	8.4	6.05	5.25	4.6	A	5.3	43	E ×	H.7A	4.SF	5.15	2.2	. *
	Z	Scaled	Calcula	61	6.8	70	6.8	2 (9.9)	(0.0	6.3 5	82	(7.2) \$	6.8	11	6.5 F	5 (0L)	6.8	0.6	S.(b ~	7.2	5.3)5	285	(S.I) ?	(S.3) ^P	6.2	7.2	6.5	6.0	5.3	6.2	4:5	3.3 F	5.8	5:2	$(S.7)_{\mathcal{J}}^{P}$	6.2	21
				18	7.8	4.8	8.0	7.6 5	80	80	5 (8.6)	825	8.0	7.85	76	8.6P	L.L	7.4	6.63	7.63	(6.0 3 H	7.25	835	(9.9)	7.2 F	7.6	5 (0 L)	687	5.6 F	7.3	5.8	5.0F	2.9	605	5.83	7.6	21
TABLE 74 Central Radia Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.				17	9.0	84	86	86	9.0	86	102	9.1.8	7.2	85	823	8.5	7.93	88	8.3	93	74 %	7.95	9.95	84	88	80	(3.5) 5	7.3	7.4	82	80	7.0 K	7.5	7.2	7.3 5	 8.4	10
	1			9	88	8.3	82	88	4.2 >	4 8	10.4	9.7	7.8	86	88	8.6	6.1.3	10.01	8.6	9.4	7.2 K	9.0	10.4	0.6	9.2	8.8	9.2	9.2	8.4	88	9.2	12.9 K	8.2	8.1	8.4.8	88	
	4			15	56	8 &	8.0	84	90	82	9.2	10.2	7.6	88	3.4	86	7.7	100	9.0	10.01	6.6 K	103	11.6	9.3	9.3	9.8	10.0	8 8	86	9.2	9.0	12 2 H	90	8.2	84	9.0	. 2.
	DAT/		me	4	8.2	88	86	8.0	8.6	88	₹.⊁	10.0	7.8	90	93	8.7	7.6	101	96	98	63K	6.01	11.0	10.0	98	10.0	9.2	84	8.7	9.0	9.3	12.4K	84	8.4	8.6	8.8	12
	0		Mean Ti	۲ <u>ا</u>	7.6	38	8.2	8.2	88	86	9.0	100	8.4	8.7	10.0	928	2.5	86	8.5	10.0	6.0 F	10.45	[9.5]0	10.0	9.2	10.4	9.3	84	9.2	9.4	9.2	(11 6) %	9.8	63	9.0	 9.0	12
	HER		Nº5	12	7.6	7.7	7.6	8.7	84H	7.8	€.4	10.6	6.5	86	46	86	78	8.7	8.4	10.01	6.0 K	10.8	9.8	90	J	10.3	9.6	84	9.5	9.2	100	10 4K	78	8.6	9.1	 86	-31
	IOSP			=	7.4	76	78	88	8.1	8.2	78	9.8	7.4	85	93	90	7.2	52	9.0	98	5.6×	96	97	88	5	9.6	9.0	82	9.0	924	94	82 ³	84	7.8	88	86	20
	NOI			0	7.2	78	82	+ 8	8 1:	E'S	7.4	85	6 GF	85	90	\$ #	665	44	8.4	85	5:4 *	9.2 H	[8.6]c	$\mathcal{A}(\mathcal{L},\mathcal{L})$	J	83	7.6	7.6	0 8	9.1	9.2	7.0 ×	2 3	7.4	83	7 X	30
adia Prap				60	6.6	7.6	7.6	7.2	8.0	82	6.4F	11.0	6.8	80	84	84	6.6 H	1.8	7.2	7.6	528	7.88	7.4F	8.4	J	7.9	7.2	(& d)H	80	7.9	80	7.4	7.73	7.25	7.6	7.6	30
entral R				08	6.0	6.5	7.0	$H'(+\mathcal{I})$	8.2	76	6.1	8.0	637 6	6.4	7.3	6.7F	570	6.6	4%	6.85	4.2.4	6.6	6.2 H	7.4	66	7.6	4.9	6.9	H 8.9	9.9	6 8	6.5	6.9F	6.25	6.45	6.6	1 2
0				07	5.4 H	5.6	56	H C.9	70	6.2	2:4	605	5.7	5.25	5.63	6.07	4.7	6.3	6.0	5.25	3.8 ×	4:5	5(5.5)	5:8	58	5.8	5.2	S:7	5.7	(5.8)5	56	1:5	5.25	5.2	S:4F	95	31
				90	4.2	35	3.7	385	38F	3.9	3.5 5	(31)F	2.8 F	2.9	3.5 5	3.24	3.0F	3.2	3.25	3.0F	$(2 \ g)_{k}^{F}$	2.6 F	(2.S)F	3.35	$(2.6)_{S}^{F}$	5(6:0)	325	3.4F	3.2	$(3.2)_{F}^{P}$	2.8	2.7	× V	2.5 F	2.65	3.2	30
	21			05	2.5 F	2.75	2.7F	$(3.0)_{F}^{J}$	$(28)_{S}^{F}$	2.9	3.3	(2.5)F	S	2(6.0)	285	2.7 S	2.6 F	(2.1)	(2.7) §	(3.3) 5	(2.8) F	([2 1]5	(2.0) F	$(2.7)_{\rho}^{F}$	2.1	3.05	3.0F	3.1F	3.0F	3.15	2.9 F	3.7	× ×	2.3F	23F	2.8	29
	1 13		M 012	04	3.05	$(28)_{F}^{5}$	2.9	$(3 2)_{F}^{5}$	(29) ^F	3.1	35	3.0 S	H,	(3.4)F	(29)5	295	$(\mathcal{I}_{p})_{p}^{F}$	(2.3)F	3.0	3.7 3	(2 S)F	$(1, b)_{\mathcal{I}}^{F}$	н	(2.6) 5	2.4 5	(38)3	335	3.1 F	3.0F	3.2F	3.S	3.7	× Lu	2.6 F	2.4 F	 30	29
	Octobe (Mont		, Lang Z	63	315	3.3	34	3.5F	(3.0)F	3.3	38	[3 6] F	Ц	3.5 F	3.05	33	$(4,4)_P^F$	2.5 3	$(3.3)_{F}^{J}$	3.8 F	(2.5) ^F	[1.6] F	L	(2.6)5	31	405	3.5	3.2	3.1	3.3 F	4.4	3.7	Ε×	2.6 F	2.5 F	3.3	29
	Mc Jnit)	on, D.(87°N	02	(34)F	3.8 5	3.7	3.5 F	$(3.7)_{F}^{T}$	3.6	3.9	4.2	2.7F	$f(\mathcal{L}\mathcal{C})$	3.4	3.5	445	2.9 P	3.5 F	4.25	(3.0)7	× 1.65	(2.8) 5	(2.8)F	30	3.8 1	3.4	3.1	3.2	(3.4)F	43	3.5	A	2.6	2.8 F	3.4	3.0
		Ishingt	Lot 3	10	(3.6)5	(4.4)5	3.1	$(3.7)_{F}^{S}$	3.8F	3.7	3.8	5.3 P	$(3.5)^{P}$	(3.8)F	3.8	3.5	$(\ddagger \downarrow)_p^F$	4.43	(3.4)F	4.23	(3.2) ^F	F K	[28]F	(3.3)F	2.9	3.9 F	3.5	3.4 V	3.4	$(3.4)_{\rm F}^{-1}$	4.2	3.3	A	2.8	30F	3.6	29
	F 2 racteristic)	ed at WQ		00	3.9 5	4.6 5	4.0	(3.8) ⁵	$(4 2)^{S}_{F}$	393	4.0	5.6	3.8 F	4.2	4.03	3.7	(43)5	4.53	$(3.3)^{F}$	564	+9+	FX	2.75 E	3.3 F	2.9 F	4.25	(4:0)3	3.5	3.5	4.03	3.95	e3.3	E ×	3.0	3.2 F	3.9	30
fo E 2	fol (Cha	Observe		Day	-	2	r)	4	5	9	7	8	6	Ō	Ξ	12	13	14	15	9	17	18	61	20	21	22	23	24	25	26	27	28	29	30	31	Aedian	Count

Sweep 10 Mc to 25.0 Mc in 0.25 min Manual 🗆 Automatic 🛛

	с ^і
	Ö
	25,
	Washingtan
	Standards,
	f
22	Bureau
TABLE	Labaratary, National
	Prapagatian
	Radia
	tral

Central Radia

Mc October (95L fo F 2

IONOSPHERIC DATA

National Bureau of Standards

atr Washington, D.C. Lat. 38.7°N, Lang 77.1°W δ 3.4 3.6.7°N, 200 0530 0530 055 05 3.7	ington, D.C. at 38.7°N, Lang 77.1°W io 0230 0330 0430 05 4 3.7 3.27 3.07 3 0 3.4 3.4 27 2	D.C. N. Long 77.1 ° W 2 0 0330 0430 05 7 3 2 7 3 7 3 3 4 7 3	77.1°W 6 0430 05 7 3.0 7 2.7 2	W 330 05	1.001	30 06	30 07 5 5	30 0830 7 6.0	0930	103C	7.4	78 78 85	Mean 1330 8.1	Time 143C	8.7 8.7	9 1630	1730 4.8	1830 73 7.5	Scaled Calcul 1930 6.4	by: MC ated by: _ 2030 5 c	0. McC. 49 45	2230 44 F 43	E.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 35 3.1 29 2.7 2 2 6 7.7 10 1.0 1.0 1 34 2 (32) 2.1 2 52 1.6 7.7 78 8.0	3.1 29 2.7 48 6.4 72 78 80 3.1 29 2.7 48 6.4 72 78 80 1 34 2 (32) 7.3 1 7 52 66 72 78 80	2 (32) 2' 3' 7' 0' 0' 1'' 0' 1'' 0' 1'' 0' 1'' 0' 1'' 0' 1'' 0' 1'' 0'' 0	7 20 10 10 10 10 10 10 10 10 10 10 10 10 10	7 48 6.4 72 78 8.0 17 52 6.6 72 78 8.0	48 6.4 72 78 8.0 52 1,6 72 79 8.0	4 72 78 8.0 6 72 78 8.0	0.8 8.0 7.8 8.0 7.8 8.0	6.0 8.0		8.0	0 0 0 0	4.8	0 2 6	1.0	+8	86	1.3 6.8 7.0	6.2	5 4	50 C	2 0.4 2 7.14	3.7 5 (4.2) 5
(4,2)3 38 3.2 F 30 F (28)5 (28)5 68 74 80 8.2 80	8 3 2 F 30 F (21) 5 (28) 5 68 74 80 8.2 90	F 30 F (28) 5 (28) 5 68 74 80 82 80	F (28) 5 (28) 5 68 74 80 8.2 80) 5 (28) 5 68 74 80 8.2 80	8) 5 68 74 80 8.1 80	68 74 80 8.2 80	4 80 8.2 80	8.2 80	80		6.4	+8	8.8	9.0	9.0	9.2	82	7.4	57	46	45	4.2	0 # 1
38 37 3.4 3.2 29 29 66 7.2 78 8.4 80	2 3.4 3.2 29 29 66 7.2 78 8.4 80	3.2 29 29 56 7.2 78 8.4 80	29 29 56 7.2 78 8.4 80	9 29 56 7.2 78 8.4 80	9 56 7.2 78 8.4 80	56 7.2 78 8.4 80	2 78 8.4 80	8.4 80	0 0	1	8 0	84	9.0	64	2 2	67	8.4	7.0	5.5	4.1	4.2	42	H /·/
$\frac{4.0}{57} \left(\frac{3}{3} \frac{3}{5} \right)^3 \left(\frac{3}{5} \frac{3}{7} \frac{3}{5} \frac{3}{8} \frac{3}{4} \frac{4}{7} \frac{4}{7} \frac{5}{7} \frac{6}{7} \frac{6}{7} \frac{4}{7} \frac{7}{7} \frac{7}{7} \frac{7}{7} \frac{7}{8} \frac{7}{7} \frac{7}{8} \frac{8}{7} \frac{8}{7$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36 3.2 3.2 3.2 4.5 6.0 64 72 72 72 [3 [3:7] B (4,2) 3 2.4 5 4.5 7.6 9.3 8.6	3.2 3.2 3.4 4.5 6.0 6.4 7.2 7.2 18 F(4.2) 3.2.4 F 4.5 7.6 9.3 8.6 8.9	2 3 2 4.5 6.0 64 72 72 2) 3 2.4 6 4.5 7.6 9.3 8.6 8.9	2 4.5 6.0 6.4 7.2 7.2 4 F 4.5 7.6 93 8.6 8.8	4.5 6.0 6.4 7.2 7.2 4.5 7.6 9.3 8.6 8.9	V 9.3 8.6 8.8	7.2 7.2 8.6 8.8	8.8	- }	8.2	10.2	1.6	8.8	10.2	10.6	9.6	7.3	8.0 (6 5)7	6.2 (5.2)5	5.6 4.6 F	62 (4.4)F	54"
3.6 3.0 F (22) F F 5 F 4.7 6.2 63 6.4 7.4	2 F (22) F F F S F 42 F 6.2 63 6.4 7.4	15 F F 5 F 4.75 6.2 63 6.4 7.4	F S F 4.75 6.2 63 6.4 7.4	5 F 4.75 6.2 63 6.4 7.4	7.4.75 6.2 63 6.4 7.4	4.75 6.2 63 6.4 7.4	2 63 6.4 7.4	4.4 7.4	7.4		2.6	8.6	F 78	2.8	8.0	7.4	7:6	7.2	6.4	5.6	8.4	4.5	3.8 5
4.0 38 37 5 35 34 7 (23) 44 6.0 72 84 8.3 39 3 5 32 3.0 2.9 3.0 49 6.4 78 89 90	2 37 7 35 35 34 5 (23) 5 44 6 6 72 86 83 6 32 3.0 2.9 3.0 49 2.6 78 89 90	7 35 34 (23)7 44 60 72 84 83	- 34 F (2.3) F 44 6.0 7.2 84 8.3 2.9 3.0 4.9 6.6 78 8.9 9 90	4 F (2.3) F 4.4 6.9 7.2 8.6 8.3 9 3.0 4.9 6.6 78 89 9 90	3) F 4.4 6.0 7.2 8.6 8.3 .0 4.9 1.6 28 8.9 9 9	4.4 6.0 7.2 8.6 8.3	2 7.2 8.4 8.3	8.6 8.3	5 8.3 J 9.0		4.8	8.8	9.0	9.0	6.9	2.6	8.6	80	6.20	5.0	4.3 4 2 P	1 + 6	4.4
3.7 3.5 3.4 3.1 3.0 2.4 F 1.7 7.0 5 7.9 8.4 81	5 3.4 3.1 3.0 2.4 F 1.7 P 7.0 5 7.9 8.4 81	3.1 3.0 2.4 F 1.7 P 7.0 5 7.9 P.4 BB	3.0 2.4 F 1.7 F 7.0 F 7.9 P.4 88	0 2.4 F 1.7 P. 7.0 5 7.9 8.4 86	+ 1.7 7.0 5 7.9 8.4 86	4.7 F 7.0 5 7.9 8.4 8.6	5 7.9 8.4 8.6	8.4 8.8	8.8	1 1	3.8	9.0	8.9	8.6	8.6	8.6	8.5 S	7.53	6.0 F	5.23	(5.0)F	(4.5)	5./ 5(5.7)
(4.5)5 (4.5) 7 4.2 1 38 1 2.9 1 (3.5) 7 3.8 5 5.4 6.2 6.2 6.6	5) 7 4.2 F 3.8 F 2.9 F 3.8 F 5.4 6.2 F 6.6	F 38 F 29 F (4.5) F 38 F 5.4 6.2 6.2 6.6	F 29 F (2.5) F 3.8 F 5.4 6.2 6.2 F 6.6	9 F (3.5) F 3.8 F 5.4 6.2 6.2 F 6.6	5) F 3.8 F 5.4 6.2 6.2 6.6 F	3.8 F 5:4 6.2 6:2 F 6.6 F	4 6.2 6.2 F 6.6 F	6.2 F 6.6 F	F 6.6 F	 ↓ 	7.5	2.7	2.2	7.5	2.2	7.9	2.9	7.4	7.7 V	6.03	6.2 S	5.23	5.15
455 3.5 4 295 (22) / 2.2 2 22 0 4.9" 70 6.9 8.0 74	2 2 2 2 2 2 (22) F 2,2 J 2 2 8 + 4,9 " 7.0 6.9 8.0 7.4	5 (22) F 2.2 J 2.2 V + 4.9 T 7.0 6.9 8.0 7.4	3 3 2 2 2 2 4 4 9 4 70 6.9 8.0 7.4	2 2 2 2 8 4.9 7.0 6.9 8.0 7.4 9 2 3 5 7 11 1 4 7 7 70 03	2 1 a 4.9 1 7.0 6.9 8.0 7.4	4.6 7.0 6.9 8.0 7.4	6 6.9 8.0 7.4	8.0 7.4	7.4		8.0	8.4	9.5	9.0	9.9	9.1	2.0	6.9	4.71	3.9	3.75	3.7 5	3.3 F
46 5 41 F 41 F 3.7 5 (2.1) 7 (3.0) 44 7 6.0 8 6.8 8.0 9.0	r = r = r = r = r = r = r = r = r = r =	F 3.7 2 (2.7) 7 (3.0) 5 4.4 2 6.0 5 6.8 8.0 9.0	2 (2) 2 (3.0) 5 4 4 6 6.0 8 6.8 8.0 9.0) 2 (3.0) 5 ++ 7 6.0 8 6.8 8.0 9.0	10)5 445 6.0 5 6.8 8.0 9.0	44 6.0 5 6.8 8.0 9.0	0 5 6.8 7 8.0 9.0	F 8.0 9.0	9.0		1.01	10.0	10.0	10.01	9.4	95	8.6	7.6	+ · 9	6.2	5.6	- 5	50
$\frac{(4.2)^{F}}{(3.1)^{F}} \frac{(3.1)^{F}}{(2)^{F}} \frac{(3.2)^{F}}{(3.2)^{F}} \frac{(3.5)^{F}}{(3.5)^{F}} \frac{(3.5)^{F}}{(3.5)^{F}} \frac{(3.5)^{F}}{(3.2)^{F}} (3.5$	$\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \frac{1}{2} \right)^{\frac{1}{2}} \left(\frac{1}{2} \frac{3}{2} \right)^{\frac{1}{2}} \left(\frac{1}{2} \frac{5}{2} \right)^{\frac{1}{2}} \frac{2}{2} \frac{5}{2} \frac{1}{2} \frac{3}{2} \frac{3}{2} \frac{5}{2} \frac{1}{2} \frac{3}{2} \frac{3}{2} \frac{9}{2} \frac{1}{2} \frac$	E (3.2) 2 (2.5) F (2.5) F 2.5 X 3.3 X 3.9 X 4.7 X 5.4 X 5.4 X) f (25) K 25 1 3.3 K 3.9 X 4.7 5.4 K 5.4 K	5) × 25 3.3 × 3.9 × 4.7 × 5.4 × 5.4 ×	5 3.3 K 3.9 X 4.7 5.4 K 5.4 K	3.3 K 3.9 % 4.7 K 5.4 K 5.4 K	9 X 4.7 X 5.4 M 5.4 K	K 5.4 K 5.4 K	K 5.4 K	× 1	40.7	6.0	K 6.0	K 6.6	× 6.9	× 7.0	Y E.2	6.0 K	4.6 F	* +.+	K(+.+)S	2.9.4	2000
1 - F - (16) × 13 - 0/2 (24) × 12 + 1/3 (43) 6.0 72 - P1 - 9.5"	$ \begin{bmatrix} 0 & (1,0)K & (3,0)K & (3,4)K & [2,4]S & (4,2]S & 6,0 & 72' & 8'I' & 9.5'' \\ 0 & (2,0)E & (2,0)E & (2,0)E & (2,0)E & (4,1)E & 4,4 & 6,9 & [8,2]C & 8,P \\ \end{bmatrix} $	$\frac{1}{2} \frac{1}{12} \frac{1}{12} \frac{1}{2} $	$\frac{1}{7} \frac{(3\cdot 4)}{(2\cdot 0)} \frac{(3\cdot 4)}{(2\cdot 0)} \frac{(4\cdot 1)}{(2\cdot 1)} \frac{(4\cdot 2)}{(2\cdot 4)} \frac{(4\cdot 1)}{(2\cdot 4)} $	2) X [2 4] 5 (4 2) 5 6.0 72 8.1 9.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42)5 6.0 7.2 8.1 9.5 " 4.1)7 6.4 6.9 [8.2] C 8.P	4 6.9 [8.2] C 8.P	[8.2] c 8.8	c 9.5 "		10.0	0.11	10.5	1.01	1.01	F 8.3	8.8	6.2	5.1	4.1 3.0 F	(3.9)5 (2.0)F	(2.2) F	(2, B) m 12 2/ 2/
3+ f (3.4) (2.1) f 2.3 F (2.6) F 3.0 F 4.5 6 6.2 8.0 8.1 8.3	4) (2 1) 2 2 5 (2.1) 2 3.0 F 4.5 3 6.2 8.0 8.1 8.3	15 2.3 F (2.6) F 3.0 F 4.5 5 6.2 8.0 8.1 8.3	F (2.6) F 3.0 F 4.5 7 6.2 8.0 8.1 8.3	() F 3.0 F 4.5 F 6.2 8.0 8.1 8.3	0 F 4.5 5 6.2 8.0 8.1 8.3	4.57 6.2 8.0 8.1 8.3	2 8.0 8.1 8.3	8.1 8.3	<i>P</i> .3	+	9.1	9.6	9.8	6.2	9.0	8.8	2.4	6.4 5	4.3 F	3.5F	E.E	3.1	3.0
3.0 2.93 3.0 3.0 (21) \$ 1.7 5 4.5 6.9 C C C	93 30 3.0 (21) \$ 1.7 F 4.5 6.P C C C	3.0 (21)\$ 1.7 F 4.5 6.P C C C C	(21) 5 1.7 F 4.5 6.9 C C C	1) \$ 1,7 F 4.5 6.P C C C C	7 F 4.5 6.P C C C C	4.5 6.P C C C C	P C C C	C C	J	\vdash	J	J	10.0	9.4	9.4	9.0	08	2.0	5.6	4.83	4.3	10- E	S 1.4
4.2 4.02 3.7 4.05 3.3 3.5 3 4.4 6.7 76 P.1 86	02 3.7 4.05 3.3 3. 2.5 3 4.4 6.7 76 P.1 '8.6	1.8. 7.0 5 3.3 2.5 3 4.4 6.7 7.6 9.1 '8.6	5 3.3 S 2.5 S 4.4 6.7 76 8.1 8.6	3 2 2 5 3 4.4 6.7 76 8.1 8.6	5 4.4 6.7 76 8.1 '8.C	4.4 6.7 7.6 8.1 .8.6	7.8. 1.8 7.2 2	7.8. 1.8	9.8.	+	10.2	11.0	10.0	10.0	9.2	8.6	7.8	7.6	6.8	5.6	5.2	4.13	51.4
40 3.4 3.5 3.5 3.2 3.0 42 6.4 6.1 7.6 8.2 3.5 3.5 3.5 3.1 43 0.1	4 36 3.5 3.5 3.0 42 5 6.8 6.8 76 8.2	(3) 3.2 3.0 42 5 6.2 6.4 76 8.2	1 3.2 3.0 4.2 6.2 6.8 7.6 8.2	2 3.0' 4.2 6.2 6.8 7.6 8.2	1.0' 4.2 5 6.2 6.8 7.6 8.2	435 6.2 6.8 7.6 8.2 43 10 15H 03 0.1	2 6.8 7.6 8.2 1 5 H 2.7 0.1	H 7.6 8.2	8.8	+	0.6	0.6	4 0	4 9.6 4 9.6	9.6	9.0	7.2 5	((, 5) "	5.0,	4 3	4.0 5	13.8%	ي دم ه دم
3.4 3.3 3.2 3.0 3.0 3.0 1.2 7.0 7.3 8.0 V 8.0	3 3.2 3.0 3.0 3.0 1.2 7.0 7.3 8.0 8.0	3.0 3.0 3.0 7.0 7.3 8.0 8.0	3.0 3.0 1.2 7.0 7.3 8.0 8.0	0 3.0 F 14.2 7.0 7.3 8.0 V 8.0	1.0 1.2 7.0 7.3 8.0 8.0	4.2 7.0 7.3 8.0 V 8.0	7.3 8.0 8.0	8.0 V 8.0	8.0		9.0	9.2	6.1	P.S	5 8.4	P.2	1.4 7	56	1 2 7	°, ₹	4 V	4.15	0. X
3.7 × 3.2 × 3.0 × 2. 3.4 × 3.0 × (3.2) × (4.2) × 6.3 5 7.2 8.3 9.2	2 F 3.0 F 3.4 F 3.0 F (3.2) H (4.2) 6.3 5 7.2 8.3 9.2	F 3.4F 3.0F (3.2)7 (4.2)F 6.3 5 7.2 8.3 9.2	(F 3.0 F (3.2) F (4.2) 6.3 5 7.2 8.3 9.2	0 F (3.2) F (4.2) F 6.3 J 7.2 8.3 9.2	(2) 7 (4.2) F 6.3 5 7.2 8.3 9.2	4.2)5 6.3 5 7.2 8.3 9.2	5 7.2 8.3 9.2	8.3 9.2	9.2		9.2	9.4	. 7.6	7.0	9.0	8.5	7.6	7.0	5.8	5.1	4.9	4.0	3.93
4.2 3 4.2 4.5 4.1 2.8 F 2.8 4.2 6.7 8.2 9.2 4	2 4.5 4.1 2.8 2.8 4.2 6.2 6.7 8.2 9.2	- 4.1 2.8 + 2.8 + 2 6.2 6.7 8.2 9.2 H	2.8 F 2.8 4.2 6.2 6.7 8.2 9.2 H	8 2.8 4.2 6.2 6.7 8.2 9.2 H	8 4.2 6.2 6.7 8.2 9.2 H	4.2 6.2 6.7 8.2 9.2	2 6.7 8.2 9.2 H	8.2 9.2 H	9.2	-	10.0	8.6	6.9	0	6.0	8.4	6.6	5.3	4.7	4.2	3:7	3.7	$(3, 4)^A$
3.3 3.4 35 3.7 3.7 3.7 5 3.0 4.0 6.0 6.6 6.6 7.6 K	4 35 3.7 3.7 5 3.0 4.0 6.0 6.9 6.6 7.6 %	× 3.7 3.7 5 3.0 4.0 6.0 6.9 6.6 7.6 K	375 3.0 4.0 6.0 6.9 6.6 7.6 %	7 5 3.0 4.0 6.0 6.9 6.6 7.6 X	10 4.0 6.0 6.8 6.6 7.6 X	4.0 6.0 6.8 6.6 7.6 X	0 6.9 6.5 7.6 %	6.6 7.6 X	7.0 X	2	9.8	11.0	12.6	13.1	1251	1120	N N N N	3.3%	X	с Ц	(3.4) ×	4	××
A A A A B E A E A 3.7 58 6.6 80 8.2	A A T E A E A 3.7 X 5.8 3 6.6 80 8.2	E A E A 3.7 58 6.6 80 8.2	1 E 1 A 3.7 5.8 5.6 80 8.2	7 A 3.7 5.8 5.6 80 8.2	9 × 3.7 × 5.8 3 6.6 80 8.2	3.7 × 5.8 3 6.6 80 8.2	8 6.6 80 8.2	F 80 8.2	8.2		8.8	9.0	8.0	8.9	8.6	8.1	7.2	4.9	5.3	4.5	4.2	3.7 5	3.2
3.0 2.8 2.5 2.6 2.4 2.3 3.7 6.2 6.9 7.3 7.6	· A.5 26 A.4 23 3.7 6.2 6.9 73 7.6	26 24 23 3.7 5 6.2 6.9 7.3 7.6	a.4 2.3 7 3.7 5 6.2 6.9 7.3 7.6	y 2.3 3.7 3.7 6.2 6.9 7.3 7.6	3 7 3.7 5 6.2 6.9 73 7.6	3.7 5 6.2 6.9 7.3 7.6	2 6.9 7.3 7.6	7.3 7.6	7.6		8.4	8.6	6.3	2.5	6.0	2.4	6.6	5.6	4.8	4-3F	4.0 5	3.85	2.3 S
3.0° 2.9° 2.6° 2.5° 2.4° 2.4° 3.8° 6.0 7.2 7.6 8.4	91 2.61 251 241 2.41 3.85 6.0 H 7.2 76 8.4	1 251 241 241 3.85 6.0 7.2 76 8.4	1 24 1 2.4 3.85 6.0 7.2 76 8.4	1 2.4 3.85 6.0 H 7.2 7.6 8.4	3.4 3.85 6.0 4 7.2 7.6 8.4	3.85 6.0 H 7.2 7.6 8.4	PH 7.2 7.6 8.4	7.6 8.4	8.4	8	9.2	9.0	8.8	- J.J.	4.8 -	2.8	6.63	5.87	6.3 3	5.15	4.63	F. 0.4	3.95
																_							
3.8 3.3 3.2 2.2 2.2 2.9 2.8 4.4 6.2 7.1 8.0 8.2	3 3.2 3.2 29 2.8 4.4 6.2 71 80 8.2	3.2 29 2.8 4.4 6.2 71 80 82	2 29 2.8 4.4 6.2 71 80 8.2	9 2.8 4.4 6.2 71 80 8.2	2.8 4.4 6.2 7.1 80 8.2	4.4 6.2 71 80 8.2	2 71 80 8.2	80 8.2	8.2		8.8	8.8	9.1	9.0	9.0	8.6	8.0	7.0	5.4	4.8	4.4.	4.1	4.0
29 29 30 30 30 29 31 31 30 30 30	9 30 30 30 29 29 31 31 30 30 30	1 30 30 30 31 31 31 30 30 30	30 29 31 31 30 30 30	20 30 30 30 30 30	29 31 31 30 30 30	31 31 30 30 30	30 30 30	30 30	30		30	30	31	31	31	34	31	31	30	30	30	90	29

 3e
 3e
 3i
 3i

Form adopted June 1946

rd June 1946	ds			_						_			_																				_					
Form odopte	of Standar	, C . J. W		23				,	1																												_	
	(Instit	ļ.		22	1							-	·																									
	al Bu		ן ר שני	51																																1		
	latione	oy: INC	ted by:	20																																	-	
	2	Scaled t	Calcula	<u>6</u>	t										W Stiller d				-					-						-								
			ł	፼																																		
6				<u>-</u>		-		_																														
90	ugron co.		ŀ	9	230	260	A(020	230	0/0	Ø	020	210	040	0200	040	040	Ø	030	Ø	250 4	Ø	V	0	a	Q	Q	Ø	0	0	2-20	*	0	Ø	Ø		040	101	
ido-W of			ŀ	5	020	040	A A	210 4	210	250	000	010	040	230	230	040	H050	4 2020	040	240 ×	000	260	000	2000	020	230	240	Ø	070	* 022	A 4	040	230	080		230 -	28	
	ATA			4	0000	70%	⊲	200 0	040	0000	- 000	2000	230	230	0000	0000	4000	0000	230	250X	0%0	× 0,40	010	- 000	2 0000	¥ 0000	210	0202	350 0	010	2 6 0 ×	040	000	220 0		220	30	
76			Aean Tim	13	200 H	2002	Ø	, 90 ×	010	510	000	× 000	000	080	0000	0/0	30 0	0	022	24/04	201	30 9	010	× 010	30	× 000	0/0	230 0	0.30	2004	260 ×	220	0	210		070	30 10 00	MC IN AL
ш	HER!	1110	A	2	200 H 000	000	800C	200 4	000	pa78	010	200 %	200	0000	010	2004	4 06 1	010	30	50 K	000	20	1010	0	2000	20 00	ء م	0/2	000	101	30)	- 000	030	, occ		500	600000	10 63.4
TABI	SPF	1		=	000 700		י) סכי	, oo 4	90	00 20	200	× oo	204	00	40	00	60	00	· (00)	3 * 05	0/0	07	20%	0	20 2	80)4		30.	20%	× 00	10× (2	N O	000	00		000	90 -	JINI - NIC
1 - 14-	IONC				000		000	00	000	2,0	- 000	200 4	00	, vo	* 00	0	00	00	90 6	× 0 × 0	× 0'	rez ^c 2	c 0/0	U	1 000	1) ~00		A A	20 1	200 02	30 + 2	A	00	010		000	Current C	DWECH
	a Frapag		+	6			0	000	0	8 0	° Q	0	000	000	00	2	20	010	010	50 ×	05	10 15	202	0	× 00	4 200	50) ,	A	20	20	30	T	50	30		2010	38	
			-	8	00 00	000	000	30 2	3	30 80	20 2	30 05	n N	n N	0/0	040	30	20%	0	2 2 2	20 00	ר מ	~ 0/0	G	40 J	2 201	D D	C	5	30) G	4	40 2	5 401		000	00	
	Cell		+	2	3 3	, s	3	ر. ا		9	J	.9	-				<u> </u>	0	3		و		.,		3	0			_	1			3	-1		2	-	
				9				_																			_	_		_						-	_	
			$\left \right $	5						+	-		-	_									_	_					_	_						+		
,		110	8	4				_				_							_								-	_						_				
	ctober (Month)	ן י ני		ю 10	-			_			-		_			_		_					_		_		_	+	-				_	_		+	-	
	0	01, D.	N N	0				_			-												_				-									-		
	Km (Unit)	shingt	ot 20.1	-	-						•																										_	
	ristic)	-Wa		0	-																								_									
	h' F1 (Characte	bserved at		9 0	- 0	ю	4	5	9	2	80	л О	0	-	5	GI	4	2	9	2	8	6	0		•	5	4	2	9	2	60	0	0	_	-	Ian	tui	
	1	0		9									-	-	-	-	-	-	-	-	-	-	¢1	0	2	01	2	2	2	2	2	2	10	ю		fec	õ	

Manual 🗆 Autamatic 🛛

27

2	8																																					
Form odopted June 1946	lational Bureau of Standards (Institution) ed by: McC.	culated by: McG,	20 21 22 23																																			
	Scol	Cal	61			_																																
			18							_		_																	-							_	_	
25, D.C			17						_											K											¥							
lashington			9	4	7	7	7	7	7	Ø	7	Ý	Y	7	7	Y	Ø	7	Ø	x 2	Ø	7	Ø	Ø	a	Ø	Ø	0	Q	4 2.9	* B	Ø	ø	Ø		1	Ì	
ndards, W	TΔ		15	7	4	7	Y	3.7	7	7	4 (3.8	7	7	7	7	7	7	7	*	(6.2)	~	7	7	7	7	7	2	0	7	[[3.3]	8	2	۲	2		1	7	, u
ou of Sto	DA.	Time	4	7	2	L (4.4)	7	7	2	2	[4.0]	ہ ج	7	7	7	7	7 7	4.1	*	* 23	~	7	7	* *.0	7	7	40	£.¥	Y	(c.)	x x	7	7	2		C 7/2	^	n.0.25.m
277 Dhoi Bure	RIC	Mean	5	7	(4:3)	[2:2]	7	2	7 7	5 4.7	42	× (4.5 ⁻)	4	2	7 	(4.3)	4.9	~	7	× 4.3	2	4.4	۲ ۲	4.4	۲ ۹	*	7	7	7	Y	* 4.5	۲	*	7		4.4	á	25.0 Mc i
ABL E	PHE	W og	12	7	4	245	7	Y	4 (4.6)	(4,4)	Y	v (4.6)	4.6	Y	(4.3	٩ (٧, 6)	1 54.27	7	7	× 4.3	P (4,4)	(4:4)	£ 7	U	4.4	2	7	Y	× ×,0	Y	# (4.8) #	2	~	Ŷ		(4:4)	يو ا	-Mc to 2
n Loborot	SON	7	=	4.5	×	[4.3	2.5	7	(4.3)	4.4	7	1.4	لم (م. 6)	4.6	× 4.0	2.5	(4:4)	7	7	× 4.3	* *3	* *	۷	v	2	۲ ۲	V	7	9.6	7	× 5.4.	2	c.2	۲ 		4.4		or deaw
opogotio	0		0	4.4	4.3	43	7	4.2	7	4.3	7	14.3	3/3	2	00 M	45	4 1	14	200	4.2	7	6241	7	U	Ŷ	4 4.0	7	∢	Y	7	7	7	7	7		4 1	°,	0)
Rodio Pr			60	4.2	7	7	7	7	7	4.0	2	Co.7	Ŷ	Y	*	+ L4.17	7	4 (3.9)	چ. 8	* * /	7	(3.B)	2	U	7	× 53.67	(£%)	V	v	7	~	4.2	7	7		4.1	;	
Centrol			08	2	7	7	Y	7	Ø	7	×	7	Q	Ø	۲	(3.7)	7	(3.3)	7	Ø	5	Ø	7	Ø	×	3	. V	0	Ø	r	0	4	7	7		1	•	
		I	07										_									_													-	_	_	
			90			_	_			_	_											_			_		_				_							
	1 <u>9</u> 61	M	05										_					_				_				-											_	
	ober onth)	77.10	04					_															_		_		_					_		_		+		
	D C S	N, Long	03																			_				_				_						_		
	M c (Unit)	38.7°	02										_										_		_				_			_			-	_	_	
	was hir	to1	10																								_		_	_		_		_		_		
	Characteri	served of	00 1																				_						_	_		_	_		_	u	-	
	đ	5	Doj		64	(1)	4	6.0	9	~	60	σ	2	=	-	10	4	15	16	17	18	-	20	21	22	23	24	25	26	27	28	29	R	ñ		Medi	Cou	

Monuol 🛛 🛛 Automotic 🛛

								Central F	adia Prop	agatian Le	TAI abaratory,	3LE Notional	78 Bureou of	Stondards,	, Washingt	an 25, D.	ú					For	m qdopied June 1946
Characteris	tic)	K m (Unit)	Octo	her,	1 <u>5</u> e					ION	OSP	HERI	C	ATA				Scale	ational. d by: Mc	Bure(au of (Inst)	Stand	ards J.W.
Observed at _	רסו־	38.7°	, Lang. 7	Nº1.77	>		1				75,	M	Mean Timé					Calc	ulated by	McG.			
Day 00	ō	02	03	04	05	90	07	98	60	ō	=	12	13	14	2	21 5	7 18	61	20	21	22	23	
-							100	100	100	100	00/	110	110	11 0%.	2/ 0.	21 0	0						
0							120	120	011	110	1/0	0//	110	11 001	0 11	0 12	0						
£							·(0/1)	110	011	120	120	1/0	10011	11 0/1	11 0	0 13	0						
4							130	120	011	110	011	110 1	100) A (1	01) 4(00	A A (0	A .							
5								110	011	0/1	011	011	110	00 10	20 10	112	e) A						
9							110	001	100	100	100	001	100/	01 00	21 01	0/ 00	H O						
7	_						0/1	001	100	001	100	[100]B	1001	01 01	11 01	11 0	0						
60							1/0	011	001	001	001	001	1001	11 00	P.	A							
6							130%	110	001	011	0/1	0/1	1 011	11 01	0 10	2/ 01	¥ o						
10							(130)	100	100	r	A	A	1 00/	00 10	0 11	11 0	0						
=							A	011	R	4	H(001)	4(0 %)	1) # 00/	11 5 (00	0 11	2/ 0	H O						
12							P	A	011	110	6(11)	0//	100 H	01 00	11 0	61) 0	s (o.						
13							(120)	110	011	H OIT	H 001	H 001	1001	01 00	0 (12	A Plai							
41							120	110	H 011	110	H 011	H 0/1	1 011	11 01	0 12	0 1 13	0						
15							(120)	110	001	001	011	0/1	1 001	11) 00	0)4	4							
16							120	1/0	011	100	100	1001	1) \$ (001)	100/ A 10	0/ 00	0 V							
17							120'	110 ×	110 ×	110 %	× 011	1104	120/3 1	20 1 12	20 × (13	0) X 2	*						
18							(130)	H 0/1	4(081)	6(001)	0/1	011	1 0//	11 4 01	. 13	0	6						
61							(ot1)	HOIL	40%/	[120] C	011) 0//	120) B	11) 01.	2/ 5(0.	4							
20							110	H 011	011	011	. 011	0 //	120 1	20 12	20 12	2/ 0	0 5						
21							٦	4	υ	J	J	C	120) A (1	20) A (10.	11 402	0							
22							A	1001	H 00/	H 00/	A(001)	1 4(007)	A (00)	10 # 14	20 12	0							
23								H 011	[1,0]4	H 011	0//	1 0/1	1/0] 4 (1	11 4 (01	0					'			
24								A	Ą	A	A	4	Ŧ	11) 4 011	11 20.	0							
25						_	1301	A	R	F	7	7	۲	A	0/	H O							
26								(130) ^B	A(011)	011	011	120	130 /	20 4 12	20 14	0							
27							(130)	0110	110	1/0	011	011	1011	11 00	(1) # 0.	0 4							
28							5	H 0//	011	110 4	110 ×	120%	120 × 1	5 × 01,	A X 8	X							
29						_		120	Ą	Ł	A	R	A	10 12	0 1 2	0							
30								120	0/1	011	100)	(100) 4 (1	201 4 (1	A A(00	Y								
31								H 011	4(0×1)	011	100) A (001)	100/	20 11	0/ 01	H 0				,			
Median							120	011	011	0//	0//	0//	1 011	11 01	11 0	0 14	0)						
Count							19	27	26	25	77	26	28	30 21	2	2	~						-

25

Sweep<u>1.0</u> Mc to<u>25.0</u> Mc in <u>0.25</u> min Monual 🗔 Automatic 🕅

	-		1.6							r																													
n adopted June 1946	lards	× 44																										en fra de la		father con			8 10						
Fore	Stand	-		23																								ngalo an									-	٦	
	au of			22																																			
	Bure		McC.	5																																			
	tional	Dy: INLLA	led by:	20											-									,														-	
	NG	Scoled	Catcula	6				_																							,							-	
				8																																		1	
, D.C.				2	1.2	0 7	2.1	4	Þ	(2.1) H	2.1	R	4.0 H	2.1	2.1 H	H 8.1	R	1.8	4	7	* 40	S	7	69													2.1	0/	
ington 25				9	2.6	2.5	2.7	P	2.7	2 6	25	62	2.5	2.5	2.6	2.6 P	d 4.4	2.6 H	₹	2.5	2.3 £	2.4	2.4	ء.ج	2.4	2.4 P.	A	P	A.6)H	5.5	P	₿ K	2.4 P	Ł	2.5 H		2.5	23	
rds, Wash	~			5	30	3.0	2.9	P	3.0	3.0	29	20	2.9	20	3.07	0.D	0.0 0	2.8	3.0	3.0	2.97	3.0 P	3.0	<i>S</i> ² <i>C</i>	8.8	g. 6	A	₹	A	2.7	2.7 H	73 × 62	7.97	R	2.6		2.9	25	
of Stonda	DAT/		ne	4	3./	3 /	7.8.6	Ł	3.2	3.2	3.1	3.1	e n	3.0P	3.2	3.2	3.27	3.1	5.6	3.1	3.1 K	2.9 H	3.3 P	3.1	3.1 P	3.1 H	R	3.0 X	7	2.9 H	3.0	3 al X	3.1	F	3.1		3./	37	20 000
79 Bureou o	C		Mean Ttr	10	4	3 2	(3.3) ^P	Þ	3 3] 19	33	3.2 P	3.2] A	U V	P	3.3 H	3.4 H	3.3	3.3)P	3.2	3.3	3.1 X	(3.2)P	3.3	3.2	3.1	A	7	8	7	3.1	3./	3.2 4	A	3.2	3.23 4		3.2	۲. ۲.	MC ID UL
Notional	HER		N	2	Ł	00	B	٨	33P 1	[3 3] 8	3.2]B	3.3 [B(S.E)	A	3.4 P	3.3	3.4"	3.2 H	Э.Э	e e	XXE	(3 2)P	ε Ω	3.2 P	J	Æ	R	5	4	3.3P	3.2	3.2×	А	Э. Х	(3. 3) ^A [3.3	12	0 0 0 0
TAE	OSP	i i		=	A	3.2	R	P	3.3	33P	3.2	3.27	3.27	A	(3.2) ^H	3.3]4	3.2 H	3.2 H	3.2	6.E	3.1 K	3.3	3.3	3.1 P	J	P	P,	P	Ŧ	3.2	3 «/	3.2 K	A	Э.д	ع. 2		3.2	17	
igation L	ION			⁰	A	3.1	69	B	3./	3.2 P	3.1	3.0	30	A	Ø	3.2	B.1 H	(3.2)P	3.27	3.1	3.0 X	3.1 P	[3.2]	3.1	J	(3 0) H	3.0 #	R	₹	3.1	P[0.E]	3-1 X	А	3,0	3.1		311	77	a a man
dia Prapa				60	R	3.0	3 0	А	3.0	3.0	3.0	2.7	2.9	2 1. X	4	3.0	ک کے	2.9 H	3.0	7.9.2	(2 9) Z	(2.9) A	3.0 # 1	7.9.D	J	2 P H ([2.7] A	P	A.	R	4 6. x	28	4	2.7	2.9 H		2.9	7	
ntral Ro				80	27	2.5	2 6	3 8	27	2.6	ي ح	26	(2.7) ^P	25	25	₹	(2.3) ^A	2.6 P	267	(2 5)	(2.5) A	$(\overline{\lambda} 3)^{\overline{P}}$	264	A S K	P	2 S H	2 4 H	7	P	ħ	24P	2.6 H	(22)	2.4.7	X .4 H		25	56	
Ce				07	2.2	2.0	Ł	2.1		2.2	2.1	2.1	214	Ŕ	A	P	A.1. H	2.1 P	207	4 2	2.0 X	2 / 4	2.1 P	(19)4	Æ	Ą			(J. 0) ^H		1.9 P	S			-		2	5	
				90													_												-								+		
	10			05		_																					_	-						-			+		
	<u>1</u> 61,		M	4			_					_					_						-														+		
	Octobe (Month)		Long.	03		_		-								_	_	_	-				_			_				-		_				_	+		
				02													_									-					-		-				+		
	M _D	shingt	Lat. 31	0										-												-							-	_	-	-			
	E acteristic)	d of Wa		00								_								_				-							-							-	
	(Char	Observe	1	Doy	-	0	01	4	S	9	7	80	0	0	-	12	5	4	15	16	17	8	61	20	21	22	23	24	25	26	27	28	29	ß	31	+	Median	Count	

Manual 🔲 Automatic 🛒

21

	0
	3
	32
	5
	įĝ
	P.
	š
	5
	ğ
	ğ
	ā
	÷
	5
	eo
-	3r
8	-
	^C
ш	atio
1	ž
<u> </u>	2
2	ŧ
£	p
	Ë
	ċ.
	†io
	50
	ğ
	P.
	<u> </u>
	pp
	œ
	ral
	ent
	ō

October , 1951 (MI500) E2

National Bureau of Standards

Sweep <u>10</u> Mc to <u>25,0</u> Mc In <u>0.25</u> min Manual 🗆 Automatic 🕅

Form adapted June 1946

Term Term <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>																																				
Non-colspan="16">Non-colspan="16" (\$0) \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$1 \$1 \$1 \$2 \$1 \$2 \$1 \$2 \$1 \$2 \$1 \$2 \$1 \$2 \$1 \$2 \$2 \$2 \$1 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2	EJW.	23	27F	2.9	285	6.2	3.0	2.9	07.7	2.9 S	2.9	5.9	2.9	$(2.9)_T^F$	2 6.20	2.9 F	39F	2.6	2.8 F	₹(J.E)	(2.6) 7 (2.6)	2.7	$(2.7)_{F}^{T}$	2.8	¥	(30) 5	3.0 F	8.2	2.9	(3.1) F	2.9	3.15	325 525		2.9	30
Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term Term <th< td=""><td></td><td>22</td><td>(2.9) F</td><td>2.8</td><td>3.0)F</td><td>6.5</td><td>2.9</td><td>2.9</td><td>2.6</td><td>2.8.2</td><td>3.0</td><td>2.8</td><td>2.9</td><td>3.12</td><td>3.18</td><td>Z(6.2)</td><td>2.7</td><td>8.00</td><td>29 F</td><td>2.5V</td><td>(2.S)F</td><td>2.85</td><td>8</td><td>3.0</td><td>4</td><td>3.1</td><td>26.2</td><td>30</td><td>305</td><td>AR</td><td>(3.1)^T</td><td>305</td><td>3.0</td><td></td><td>9.5</td><td>29</td></th<>		22	(2.9) F	2.8	3.0)F	6.5	2.9	2.9	2.6	2.8.2	3.0	2.8	2.9	3.12	3.18	Z(6.2)	2.7	8.00	29 F	2.5V	(2.S)F	2.85	8	3.0	4	3.1	26.2	30	305	AR	(3.1) ^T	305	3.0		9.5	29
Term The set of the part of th	Mc C.	21	3.0	3.9	3.1 (3.0	9.5	3.0	2.6	3.05	3.15	3.0	2.9 P	(3.0) F	285	2.8F ((39)5	2.8	305	2.7)4	(2.6) 7	2.95	2.8.2	3.0	3.0)5	3.0	4	3.0	3.1) 3	×	3.0	2.9 F	3.2.F		3.0	5- X
TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL	y: McC	20	3.1	3.1	3.1	3.0.5	3.1	3.2	2.7 #	5.4	3.0	3.0F	5.25	3.25	3.0	2.9F	2.8	2.9	3.0 K A	5.8 (₹(8.5	2.9 S	3.0	3.05	3.1F	3.0	<	3.0	3.0 (Ε×	3.0 A	3.05	3.0 S		3.0	29
Term matrix Term matrix Mathington D.C. total SAPA. Large Mathington D.C. Large Mathingt	Scaled b Calcula	6	3.1	3.2	3.1	3.0)5	3.3	3.2.5	3.0	3.0)S	3.1	3.1	3.4F	3.1)5	2.7	3./	3.15	9.2	3.0) F	3.1)7	2.8) [2]	3. I) B	3.1	0 %	15	3.2	3.2	3.0	3.0	3.0F	3.1	3.1	3.0) 7		3./	 ارد
Term Term Set State Set State <t< td=""><td></td><td>8</td><td>3.2</td><td>3.2</td><td>3.3</td><td>3.35 (</td><td>\$.3</td><td>3.4 ,</td><td>2 6 2</td><td>5.2.5</td><td>3 2</td><td>3.15</td><td>3.3</td><td>3.3) 5 (</td><td>3.0</td><td>3.2</td><td>3.2)5</td><td>16.6.2</td><td>3.1) 3 K(</td><td>) <u></u>[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[</td><td>3.2.5</td><td>3.2)5 (</td><td>3.2)5</td><td>20</td><td>31)3</td><td>2</td><td>3.1 F</td><td>9.0</td><td>3.1</td><td>3.0 F</td><td>1.6</td><td>3.25</td><td>3.2) 7 (</td><td></td><td>3.2</td><td>2</td></t<>		8	3.2	3.2	3.3	3.35 (\$.3	3.4 ,	2 6 2	5.2.5	3 2	3.15	3.3	3.3) 5 (3.0	3.2	3.2)5	16.6.2	3.1) 3 K() <u></u> [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[3.2.5	3.2)5 (3.2)5	20	31)3	2	3.1 F	9.0	3.1	3.0 F	1.6	3.25	3.2) 7 (3.2	2
Term Term Term Term Colspan="6">Colspan="6">Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" <		17	4	3.1	3.2	2.7	3.3	3.4 5	3.0 (225		3.1	3.35	3.2 (3.1) J	3.1	3.3	3.1 (2.9 K K(3.0) F (0.5	3.2)5	3.3 (3.4 (3.1	3.1)5 (3.	3.4	3.4	3./	3.4	3.2K	3.3	3.3	3.3) } (5.5		32	
The matrix is a set of the set		9	31	3.1	3.2	3.0 3.	3.25 0	3.2	30	5	3.4	3.1	2.5	3.1	3.1) 7 (,		3.1	3.0	3.0K	3.2 (30 (3	3.2	3.3	3	3.3 (3.4 3	5.9	3.2	3.3	× 6.3	3.2	2.2	9.35 (.		'n	10
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	15	3.0	\$.0	3.1	3.1	3.1	3.1	7.7	3.1	3.2	3.2	4.5	3.2	3.1	3.0	3.0	3.1	3.1 K	3.2	3.1	3.1	3.2	3.2	1.6	2.2	2.2	2	ς.	., z .	2	a	5.1		~	-
Math Math Math Math Math Math Math Math		4	50	3.1	5.7	. / .	.0	3.2	2.8	50	3. /	51	/:	2	Ŕ	0	0	1.2	XOX	1.5	0		R	. /	0	5.2	3	3.7 3	3 3	x x 8.	3.1 3	5	i) E.S		1	
The matrix mat	lean Time	3	0.0	5.0	50	.) .)	3.1 3	0	0	5	3	5.0 3	50	947.	3.1 3	50	6.	0	95 3	5)7 3	0	5.1.3	3.1 3	3	0	3.1	5.2	5 1.3	.) .)	5) * 2	3	n 1	2		~	0
The matrix is a seried with the properties the matrix for the properties of the properites of the properties of the properties of the prop	M	~	-	5 6.	5 1.	5	E HO.	5 0	5 6	0	5 3.	5 1 .	0	1.	a) a)	1	r 	.)	SK 3	() (3	1	50.	J	-	ĸ	5.2	2.2	5 0	E C	44 (2	0.	3	2		ر ب	30
Mathematication (30) (30) (30) (30) (30) (30) (30) (30) (30) (30) (30) (30) 30 (30) (30)	75°	F	e. E	5 0	1 3	2 3	3	# 3	7 2	0	5	3	1 3	3	er en		1	0	NX XS	0	1 3	ۍ /		./ 3	r r	e.	2	E HI	0	7 7 (-	1	5	3		~	0
A substrate of the production to the product we also for the product of the		-	i n U	<u>ی</u> گ	3	3 3	e e	5 3	2 2	E	0F 3	e	5.	3	H H	6 6	. 1 .	2	7K 2.	1 H 3	<i>m</i>	(0) Y 3.	J	.1 3	2.	5	1.13	S	.2 3.	2 ×0.	3	3	3.3	-	r. M	62
Anothere and the contract of		6	2	و کر	£	.2 3	.4 3	3.2 3	JF 31.	4 3	ى 3:	5.2	1.2 3	14 3	:4H 3	5	5	e v	71 2	35.	3F (.4 (3	.)	<i>w</i>	5	E H(E	6 6	E /.	2 3	5	2)5 3	25 36	4 3		2	0
mutuation from the second method of the second method met		0	<i>.</i>	3 3	4 3	:s)# 3	S 3	5	3	1	6)F 3	3	5	3 5	8 18	5	5	45 3	8K 2	3	SH 3	+ 3	e	4 6	4.3	S. (3	2H 3.	5	6	<i>c</i> , <i>e</i> ,	2F (3	50	SS 3		5	9
Note: Construction, D.C. Note: Long ZTON, Long TZPON, Long ZTON A construction, Long ZTON, Long ZTON Long ZTON, Long ZTON A construction, Long ZTON, Long ZTON Construction, C.C. A construction, C.C. C (20)5 C (20)5 </td <td></td> <td>2</td> <td>4H 3</td> <td>3 3</td> <td>3 3.</td> <td>54 (3</td> <td>£</td> <td>3 3</td> <td>2 3</td> <td>1 s J</td> <td>4 (3.</td> <td>3)5 3.</td> <td>4)7 3</td> <td>3)5 3.</td> <td>1</td> <td>5</td> <td>4 3.</td> <td>35 33</td> <td>OK N</td> <td>4 3</td> <td>2) S 3</td> <td>3</td> <td>3</td> <td>3</td> <td>4 3</td> <td>× 3</td> <td>e S</td> <td>35 3</td> <td>ی ب</td> <td>6)</td> <td>35</td> <td>5</td> <td>5</td> <td></td> <td>3</td> <td>• 7</td>		2	4H 3	3 3	3 3.	54 (3	£	3 3	2 3	1 s J	4 (3.	3)5 3.	4)7 3	3)5 3.	1	5	4 3.	35 33	OK N	4 3	2) S 3	3	3	3	4 3	× 3	e S	35 3	ی ب	6)	35	5	5		3	• 7
Monotonic of the properties of the p		0	ы ы	1 3.	1 3.	1F 3.	95 3.	1 3.	15 3.	2)F 3.	0 F 3.	0 (3.	25 (3.	1) 7 (3.	0F 3.	00	0 20	8F 3.	1)F 3.	IP 3.	0)F (3.	0 = 3.	8/5 3.	8)5 3.	1 F 3.	25	4 4	0) E (3.	/ 3.	0 W	K G.	9 F 3.	0F 3.		0	~ ~
Lot 361 7.0 N. Long 7.1.9 W. Lat 36 N. Lang 7.1.9 N. Lang 7.1.9 N. Lat 36 N. Lang 7.1.9 N. Lang 7.1.9 N. Lat 36 N. Lang 7.1.9 N. Lat 30.5 $3.9.5$ $3.9.9$ (3.1) $\frac{5}{2}$ $\frac{3}{2}$ S. N. Colspan="5" S. S. 9 S. N. Colspan="5" S. S. 9 S. N. Colspan="5" S. 9.9 S. S. S. 9.9 S. 3.9 S. 5.8 S. 5		5	0 F 3	8 s 3.	0F 3.	9)F 3.	9)5 2	0 3.	9 3.	I)F (3.	Э.	0)F 3.	05 3.	98 (3.	R d O	8)P 2.	0)5 3.	0)5 2.	4) 5 (3:	- S K 3.	0)F (3.	9)F 3.	3	2)7 (2.	0 F 3.	0F 3.	0 5 2.	1)7 (3.	1F 3	5	×	8 F 23	05 3.		N N	~ ~
Multiplication of the second method of Mashington, Long ZTON, Long ZT	M	4	35 3.	7) 8 3.	e M	1) 5 (2	9) 5 (2.	0 3.	9 2.	1 4 (3.		.I)F (3.	8)5 3.	8)3 2.	1)F 3.	91 (2	.9 (3.	7)5 (3.	4) F (2.	5) F F	. (3.	S) F (2:	25 3	1) 7 (3.	0F 3.	9F 3.	0F 3.	0F (3.	1 3.	e.	×	0 5 2.	05 3.		6 3	\$
Anoncrements sived at Mashington, D.C. sived at Mashington, D.C. $(230)^2$ $(20)^2$ $(20)^2$ $(2)^2$ $(2,0)^2$ $(20)^2$ $(20)^2$ $(2)^2$ $(2,0)^2$ $(20)^2$ $(20)^2$ $(2)^2$ $(2)^2$ $(2,0)^2$ $(2,0)^2$ $(2,0)^2$ $(2)^2$ $(2)^2$ $(2,0)^2$ $(2,0)^2$ $(2,0)^2$ $(2)^2$ $(2)^2$ $(2,0)^2$ $(2,0)^2$ $(2)^2$ $(2)^2$ $(2)^2$ $(2)^2$ $(2,0)^2$ $(2,0)^2$ $(2)^2$ $(2)^2$ $(2)^2$ $(2)^2$ $(2,0)^2$ $(2)^2$	<mark>1,77.</mark> و1	3 0	9)5 2.º	9 (2.	1 3.	9F (3.	9)F (2.	1 3.	0 2.	3 F 3.		8F (3	5) 2(8.	() 8	0) F (3	8) J (2	3)7 2	7 = (2	7)F (2.	K K(3.	-	5) 5 (2.	1 3.	95 (3.	5 5	5	3	E 3	3	50	×	3 5 3.	0 5 3.		3	*
Allocate at Machington, as year of Machington, Lat 30 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3	D.C.	2 0	3) F (2)	05 2.	9 3.	0F 3.	9) 7 (2	0 3.	9 3.	9 E	8F F	8)F 2.	0 (2.	9 2.	8) 7 (3.	9 (2.	05 (2:	7)5 2:	5) F (2:	1)F F	1)7 F	9) F (2.1	3 3.	3 F 2.	0 2.	9 2.	0 3.4	3)8 3.0	7 3.0	7 2	×	a	5 5 3.		9 2.0	26
Surved at Washing strength at water with a st	ngton, 138.7	ö	35 (25	5 5/0	9 2.	3) 5 3.1	1F (2	3	3 2.	2 9 2	310 2.	8)5 (2.	0	9 2.	1)F (2.	1)5 2.	5)F 3.	5) 5(2	7) 5 (2.	K 12.9	(3.)	75 (3.1	7 2.5	3 F 2.2	0 3.	3V 2.	9	0)F (25	1 2	2	×	3 2.	7F 3.		2	30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Washi	0	90) 7 (26	75 (3.0	2) f (2:)F 3.	13 3.0	3.5	3	7 F (2.5	3 (2.)	5 3	NY IS) 5 (2.9	3)5 (3.1	1) = (3.0	3 5 (2.5	6 8 (2.7	4	7 7	7 F (2.8	7F 2.7	F 2.9)5 3.0	3.5	5 3.0) J (J.	5 3:	2.1	* A	2.2	15 2.6		2.9	28
	s 3rved at	0	(3.6	2.8	2.5	(2.9)	52)	(3.0	3.5	2.6	2.9	2.5	(2.9	2.5	(2.8)	(2.5)	(3.2	2:5	rr	4	58)	2.7	2.5	20.22	(2.9	3.6	. 3.6	63.0	(27	2.2	Ш	2.5	e.		in 2.9	1 27

Form odopted June 1946

TABLE 82

Form adopted June 1946	National Bureau of Standards scaled by: McG. E.J.W.	Calculated by: McC.	19 20 21 22 23																																				
ċ			18																																		_		
tan 25, D.C			6 17		_	_				6	2	3	7			-7	0	2	9	L X	6	7	-			6	5	~		9	3 K	2	0	0			_		
, Washing			5	Y	Y	4	4	0 H A		2	d (b		7	2	-	.,				5)X					2	,	0	2 0	د ا و	2.	3× 1	3	د ا د	ק פ		1	\ -		
Standards	ATA		4	7	7 - 7	P A B	4	4	,		. (3.							7 8	4	4 K (3.	2 2	4	1	6	7	4	8	7 P C		8) 0	(×)			, ,		- 8	v	u min	
3 Ireau of S	D	an Time	3	X	6) ^H 6	. (3.	2	, ,	7	4	8 6	7 H (L	7. 2	7	7	7 2 (0	7 7()	5	7	5 K 3.		7	-	84 3	7	Y	5.	2.	7	, (3.	3 ×	_		4 1		7 3.	-	c In 0.25	IDIC N
	ERIC	W Me	1	~	(3.	7	~	4	7 7 (6	4)B 3.	رج. رجي	() H (3.	8 P 3.		7 7(6	P) (4	G.			2 X 3.	8) P	8)2 3.	48	e) e)	7 04	7	,		4 0	4	1× 3.	7	7 7	1 L		8) 3.	1	a 25.0M	AUTOIL
TABL ratory, No	HdS	75°V	3	2	7	1 3.	6	7 7	8)4 (3.	8 13.	4	8H 13.0	8)H 3.	4 d 8	84 (3.	9 P (3.	4 H (6	~	1	3× 3.	9P (3.	7 (3.	6		ŝ	7	Y	Y	1 4	7	SK B.		8	, <i>L</i>		8 (3.	7 14	10 Mc 1	Unut L
tion Laba	ONO	ſ		2.0	7	(3.8	e) e)	3 2	(3.	3.	7	Э.	8 P (3.	6	1 ^H 3.	803.	8 P (3	4	7 1	3 K 3.	74 3.	3	4	0	7	T HO	4	7	*	7	, K 2.	4	3.	7		8 3.	1	Sweep	-
Propagat			91 6	6	3.8	3.8	7	e.	7	7 3.0	7	8	θ	7	*	3	3	5 7 (0	4 0	3 K 3.	i,	8) P (8	7	0	4	4	7 7(2	7	7	4	Y	9	7	, L		3.	-1		
al Radio			0	3.7	7	7	7	7	7	Ś	7	<i>G</i>	7	7	7	Z) ~ ~	7) H (40	4.	X	7	3.	7	0	7	T C	(3:	4	-	7	7	3	7	7		ŝ	6		
Centre			°	7	4	7	7	7	0	- 2	7	7	0	0	7	3.	7	(4.0	X	0	7	0	7	9	7	4.1	ך י	Q	9	7	9	-1	7	7		1	3		
		1	010		_			_																_				_					_			_			
			00			_	-										 											_								_	_		
	130,	M	4																								_	_	_	_	_			_			_		
	(Month)	°177 e	0		_	_	_	_			_																	_			_		_	_	_	_	4		
	D.O.	N Lan	0			_															_												_	_			_		
	(Unit) a d f on	138.7	0																								_	_	_							_	_		
	<u>O)F1</u> , washin	L	10																									_	_			_				_	_		
	M 300 (Choracter	10 004 100	y 00		01	10	F	-		~				_	-	~					_	_	_				_				_		_			u	ŧ		
	4 8	5	å									01	-	=	12	-	1.6	-	16	-	31	-	20	2	22	23	24	25	26	2	26	26	30	10		Medi	Cou		
TABLE 84 Central Radia Propagatian Laboratory, National Bureau af Standards, Washingtan 25, D.C.	Arc., 19.5L IONOSPHERIC DATA Institution Institutio Institution Institution In	Scoled by Micros	Colculated by: MCC, Colcul	04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	#2 #3 A A A A A A C <thc< th=""> C C <thc< th=""></thc<></thc<>	#*0 #2 #.2 #.0 #.2 #.2 #.0 #.1	$A + 42 + 1 B B B (42)^{P} + 1P + 1 + 2 + 0$		4/ 42 43 4/P B 42 41 42 A	H(1+1) ++3 ++36 ++36 B ++1 ++1 ++1 ++1 ++1 ++1 ++1 ++1 ++1 +	4.1 4.3 4.3 4.1 4.3 B 4.3 P 4.3 P 4.2 4.1 4.2 4.5	4.2 4.1 4.3 4.3 4.2 A 4.2 4.3 B A	$\frac{1}{4} \left(\frac{1}{4}\right)^{p} + \frac{1}{4} + \frac{1}{3} $	A 44 A A (42)M 41P 42 41P 42 42M 42 42M	A A 4.3 4.2 A 4.1 4.1H 4.2 4.2 4.4 4.1H	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	HIP 41P 41P 41 42P 40 40 42 41 41 A A	$4 \rho^{K} \left(\langle \psi_{i} \rangle_{K}^{K} \left(\langle \psi_{i} \rangle_{K}^{K} + \phi^{O} K + \psi^{O} K + g^{O} K + \psi^{I} K + \psi^{I} K + \psi^{I} K + \psi^{I} K + \psi^{O} K + \psi^$	$ \mathcal{A}_{\mu} \mathcal{A}_{\mu$	4.6 ^P 4.6 ^H 3.9 ^H C 3.9 4.1 4.1 4.2 ^P 4.2 4.3 A	(4.1) ^H 3.9 ^H 4.4 ^P 3.9 3.9 ^P 4.1 ^P 4.1 4.0 4.6 4.1 8	A 3.7# 3.7# (H.2)# A A A 4.0# 4.0 4.1P	41H A 39H B A A A A A .	A A A A A A A A A A A A A A A A A A A	$ (3.5)^{H} A A A A A A A (4.2)^{H} $	B A 4.0 4.0 4.0 4.1 4.1" 4.2 4.0	$4 \cdot a^{p} + $	5 3.7H 40 4.1K 4.2K 4.2K 8.2K B.K B.K	(4,4) ^A 4 A A 4 4.2 2.9 P 2.4 P	4.2 P 4.2 4.2 3.9 3.8 4.0 A	H.1H 3.6H 3.9 3.9 (3.9% A 4.2 4.2 3.9H	41 41 41 41 42 40 41 41 42 41 42 41 42 -	1,7 26 22 20 19 20 27 25 23 10						
--------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------	---	---------------------------	--------------------------------------------------------------	---------------------------------------------------	-----------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------	-----------------------------------------	--------------------------------------------------------	---------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------	----------------------------------------	-------------------------	---------------------------------------	-------------------------------------------------------------------------------------------	----------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------	--------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------	------------------------------------------	--------------------------------						
	ır_, ⁹ 51		M^1.	04 05				-																								 							
	Octobe (Month)	0.C	N, Lang. C	03																																			
	(Unit)	shington, D	Lat. 38. 7	01 02																																			
	Cteristic)	of Wa		00																																			

55

Sweep <u>1.0</u> Mc ta <u>25.0</u> Mc in <u>025</u> min Manual 🗌 Automatic 🛛

Ionospheric Storminess at Washington, D. C.

Day	Ionospheric	character*	Principal Beginning	storms End	Geomagnetic	character**
1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1 0 1 1 0 1 3 2 1 1 2 2 1 2 2 1 2 2 3	2 1 2 1 2 2 3 2 1 0 2 3 1 0 2 3 1 1 0 2 3 1 1 0 2 3 1 0 2 3 1 0 2 3 1 0 2 3 1 0 2 3 1 0 2 0 1 0 2 2 1 0 2 2 1 0 2 2 1 0 2 2 1 0 2 2 1 0 2 2 1 1 2 2 2 2	1100		2 3 1 0 1 0 2 5 4 5 4 3 4 3 3 3 5	2 2 2 1 1 0 4 4 3 4 2 2 3 3 2 3 5
18 19 20 21 22 23 24 25 26 27 28 29 30	53231222213#32	2212112222622	1500	1100	5 4 4 3 3 2 1 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	4 2 2 3 2 1 1 3 1 6 2 1

<u>October 1951</u>

*Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

**Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance. ----Dashes indicate continuing storm.

#No I-figure owing to insufficient data; conditions probably severely disturbed.

Provisional Radio Propagation Quality Figures (Including Comparisons with CRPL Warnings and Forecasts) September 1951

	North Atlantic	CRPL* Warning	CRPL Forecasts	North** Pacific	Geo- mag-	
Day	quality figure		(J_reports)	quality figure	netic ^K Ch	
	Half day GCT (1) (2)	Half day GCT (1) (2)		Half day GCT (1) (2)	Half day GCT (1) (2)	Scales: Quality Figures (1) - Useless (2) - Very poor (3) - Poor (4) - Poor to fair
1 2 3 4 5	6 6 7 6 7 6 7 7 7 7			6 6 6 7 7 6 7 5 7 5	2 2 2 2 2 2 2 2 2 2 2 2 3 3	5 - Fair 6 - Fair to good 7 - Good 8 - Very good 9 - Excellent Geomagnetic K _{Ch} - 0 to 9, 9 representing the greatest disturbence Kay A4 indicator
6 7 8 9 10	7 7 6 5 6 7 6 6 (4) 5	ធ ប	X X X	7 6 7 6 7 7 6 5 5 6	3 3 2 2 2 2 2 3 (5) 2	significant disturbance, enclosed in () for emphasis. <u>Symbols:</u> W Disturbed conditions expected
11 12 13 14 15	(4) 5 (3) (4) (3) (4) (3) 5 (3) 5 (3) 5	U U W W W W W W W W	X	6 (4) 5 (4) 5 (4) (2) (4) (3) (3)	3 (4) (4) (4) (4) (5) (4) 3 (5) (4)	 U Unstable conditions expected N No disturbance expected X Probable disturbed date
16 17 18 19 20	$\begin{array}{c} (3) (2) \\ (2) (3) \\ 5 (4) \\ 6 (4) \\ (2) (3) \end{array}$	W W W W W W W U W W	X X X X X	$ \begin{array}{c} (4) & (2) \\ (3) & (3) \\ (4) & 5 \\ 7 & (4) \\ (4) & (2) \end{array} $	(5) (5) (5) (4) (4) 3 3 (5) (6) (5)	Scoring: H Storm (Q < 4) hit (L) Storm severer than predicted M Storm missed G Good day Sereccet
21 22 23 24 25	(2) (3) (2) (3) (2) (3) (2) (3) (3) (2)	い い い い い い い い い い い い い い い い い い い い	X X X X X	(2) (3) (2) (3) (2) (4) (4) (4) (4) (1)	(5) (4) (6) (5) (5) (4) (5) (4) (4) (6)	O Overwarning Scoring by half day according to following table: Quality Figure <3 4 5 > 6
26 27 28 29 30	$\begin{array}{c} (2) \ (4) \\ (3) \ (4) \\ (4) \ 5 \\ 6 \ (4) \\ 6 \ 6 \end{array}$	ば ほ は ほ び ず び	X X	$\begin{array}{c} (2) & (4) \\ 6 & 5 \\ (4) & (4) \\ 5 & 8 \\ 6 & 7 \end{array}$	(5) 2 (5) 3 3 2 3 3 3 1	W H H O O U (M) H H O N M M G G X H H O O
Score: H (M) M G O		Warning N.A. N.P. 32 30 0 0 1 0 20 21 7 9	Forecast N.A. N.F. 23 22 0 0 9 7 19 21 9 10			

*Broadcast on WWV, Washington, D.C. Times of warnings recorded to nearest half day as broadcast. () broadcast for one-quarter day. Blanks signify N. **Low Weight.

.

Table 87a

Coronal observations at Climax, Colorado (5303A), east limb

Date					Deg	ree	s n	ort	h o	ft	he	so	lar	Θqu	ato	or				00				Deg	ree	8 5	out	h o	f t	he	sol	ar	equ	ato	n			
GCT		90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1951																																						
Oct.	7.7	-	***	-	-		- 200	-	0102	-	-		3	3	- 3	5		12	15	12	15	20	20	25	12	10	8	5	3	3		-	-	-			-	
	8.6	-	-	4953	652		_	-	-	(80)	3	3	3	3	- 5	12	10	13	12	12	15	15	17	15	15	12	5	3	2	3	3	3		-	-	-	-	
	9.6	-	-	_	-	-	-			3	5	8	8	5	8	12	12	15	15	15	18	15	14	14	12	8	5	3	2	2	3	3	3	-	-	-	-	-
נ	.0.6	cm	0003		-	-	-	-	2	2	3	3	- 5	8	10	10	12	1^{h}	13	14	12	10	8	- 5	3	3	2	3	3	3	3	-	-	-	-	-	-	-
1	1.9	-	cmin	-	602			emo.	emo	3	- 3	- 3	3	- 8	10	15	15	15	77	112	8	10	8	- 5	3	3	3	-	-	-	-	-	-	-	-	-	-	-
1	.2.6		410	_	4(11)	(85)	-	075	610	- 3	3	2	5	5		12	12	12		110	5	3			63	-	-	-		-	-	-	-	-	-	-	-	-
1	4.0	-	-	_		-	-		6882	- 3	3	3	3	- 5	5	8	12	12	14	8	3	3		-	-	-		-	-	-	-	-	-		-	-	-	-
l	4.9		-	cmp	ore	CING		3	3	3	- 3	3	- 3	3	8	13	12	12	14	8	5	3	3	3	-	-	-	-	-	-	-		-		weath	-	-	-
1	5.7	-		3	3	3	3	3	3	3	- 5	3	3	5	8	13	10	12	12	12	12	5	3	3	3	-	-	-	-		-		-	-	-	-	-	-
2	20.8	X	X	-		-			0003	- 100	-	- 3	- 5	- 3	d	- 8	8	8		5	3	3	000	_	-	-	-	-	_		-	-	pillo	-	_	Х	X	X
2	23.6	-	-	2	3	3	3	3	3	2	6	2	- 4	-5		10	10	10		5	5	8	5	4	3	3	3	3	3	3	3	3	3	3	3	-	-	-
2	24.6		-	-	-	_	-	-	-	- 3	3	3	3	3	3	3	3			2	3	10	8	5	3	2	2	2	3	3	-	-	-	-	-	-	-	-
2	25.7	-	-	-	-	_	-	-	-		3		- 5	3	- 3	5	5	6 8	5	5	5	8	- 8	3	3	3	3	-	-	-	-	-	-+	-	-	-	-	-
2	28.8a	-	-	-						-						5		5	5	3	5	- 5	3	•5	3	3	3	3	3	-	-	-	-		-	-	-	-
2	29.8	-	-	-	-	-		-	_	3	3	- 3		3	3	5	1.	12	- 8	. 3	3	3	3	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
	30.7	-	-	-	-	-		-	_		- 3	3		5			10	12	13	8	5	- 5	4	3	3	3	3	3	2	2	2	2	2	-	-	-	-	-
-	31.7a	-	-	-	-		-							3	5		14	15		15	12	12	8	5	3	3	3	3	3	3	3	3	3	-	-	-	-	-

Table 88a

Coronal observations at Climax, Colorado (6374A), east limb

Date				Deg	ree	s n	ort	h o	f t	he	so]	ar	equ	ato	r				0				Deg	ree	S 3	out	h o	f t	the	sol	ar	equ	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	1	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1951																																					
Oct 7.7	-	-		-	-	-	-	2	3	3	3	3	3	- 5	8	8	20	12	10	13	12	3	10	4	5	3	3	3	10	5	5	3	3	3	3	3	3
8.6	2	2	2	-	-	010	-	-	-	2	2	2	2	2	3	3	12	20	3	15	8	10	3	5	5	3	3	3	3	5	3	3	3	3	3	3	3
9.6	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	15	14	12	8	12	8	4	12	8	12	3	8	8	5	8	5	2	2	2	2	2
10,6	3	3	3	2	3	3	3	2	2	2	2	2	2	3	2	2	8	3	10	3	8	5	3	3	8	5	3	3	3	3	2	2	2	2	2	2	2
11.9	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	15	12	3	3	5	3	3	4	4	3	4	3	3	2	3	2	2	2	2	3
12.6	-2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	2	8	15	12	5	2	2	2	2	2	2	2	2	3	3	2	2	2	2	2	2	2
14.0	-	-	-	-		1010	-		-	-	$\overline{T}^{(0)}$	-	-	2	3	3	-	8	15	3	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
14.9	4983	-	-	-		-	2	2	2	2	2	2	2	2	2	3	3	8	2	-	-	-	-	2	2	2	2	2	2	2	2	2	-	-	-	-	-
15.7	2	2	3	2	2	2	0.3	-		-	-	-	-	-	2	5	2	2	2	3	2	2	2	2	2	3	4	3	3	3	3	3	2	2	2	2	2
20.8	Х	Х	-	-	-	-		-	-	-	-	2	3	3	3	2	2	5	3	-	-	-	-		-	-	-	-	-	-	-	-	-	_	Х	Х	Х
23.6	-		-	-	-	-	-	-	-	-	-	2	3	2	2	2	3	3	2	2	3	8	2	3	2	2	2	3	2	2	2	2	2	2	2	2	2
24.6	-			-	-	_	-	,		_	_	_	_	2	2	2	2	3	3	13	3	10	2		_	2	2	3	3	2	2	2	2	2	2	2	2
25.7	-	-		-	****	-	-		_		_	_	_	-	_		12	14	10	10	10	12	5	3	2	2	2	2	3	2	-	-	-	-		_	
28.8 a	2	2	2	3	3	2	2	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3	3	2	2	2	3	3	5	3	3	3	3	3	3	3
29.8	2	2	2	2	2	2	2	2	2	2	2	2	-	3	3	3	5	3	2	2	3	3	3	3	2	2	2	2	2	2	2	2	-	-	-	-	_
30.7	2	2	2	2	2	3	3	3	2	2	2	2			2	2	4	3	3	3	3	4	3	3	4	2	2	2	2	2	2	2	2	2	2	2	2
31.7	2	2	2	2	2	2	2	2	2	2	2	2		-	-	-	2	3	2	2	2	3	2	3	3	2	2	2	2	2	2	2	2	2	-	-	-

Coronal observations at Climax, Colorado (5303A), west limb

Date					Deg	Tee	8 3	out	h o	f t	he	so]	Ar	equ	ato	r				1				Deg	gree	es r	ort	ch o	f t	he	sol	ar	equ	ato	T			_
GCT	_	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	1	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1951																					†																	
Oct. 7.	7	-	3	3	3	3	3	3	3	3	3	3	3	3	- 5	- 5	- 5	8	8	10	12	20	25	15	15	12	12	10	8	3	3	- 5	8	8	- 5	3	3	-
8.	6	-	3	3	3	3	3	3	3	5	5	5	5	- 5	- 5	8	- 5	13	12	13	13	15	25	15	20	15	15	8	10	- 5	3	- 5	5	- 5	- 5	3		-
9.	6	-	-	-		-	3	3	3	3	3	3	3	3	- 5	- 5	8	10	12	12	12	15	15	12	15	12	15	10	8	8	- 5	3	3	3	3	3	-	-
10.	6	-		2	2	2	3	3	3	3	3	3	- 5	8	10	10	12	14	12	12	12	\mathcal{D}_{\downarrow}	15	12	10	10	12	10	8	- 5	5	3	3	3	3	2	-	-
11.	9	-	-	-	-	-	3	3	3	3	3	3	3	3	5	- 5	5	5	3	3	3	3	- 5	- 5	- 5	3	3	3	3	3	3	3	3	-	-		-	-
12.	6	-	-	-	-		618	3	3	3	3	3	3	- 5	5	8	- 5	5	8	10	8	8	8	8	- 5	3	5	2	3	3	3	3	3	-	-	-	-	-
14.	0	-	-	-	-	-	-	-	-	3	3	3	3	3	- 5	- 5	8	- 5	8	10	5	3	3	3	3	3	3	3	3	2	-	-	-	-	-	-	-	-
14.	9a	-	-	-	-	-	3	3	3	3	3	3	3	3	3	3	3	3	8	12	8	8	8	8	- 5	8	- 5	- 5	3	3	-	-	-	-		emb	-	-
15.	7	-		-	2	2	2	2	2	2	2	3	3	3	3	2	3	5	8	12	12	12	10	12	5	3	3	5	- 5	3	2	-	-	-	-		-	-
20.	8	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
23.	6	-	-	-	-	-	-	-	-	-			-	3	3	5	8	10	12	15	12	15	12	10	8	- 5	4	4	- 3	3	3	-	-	-	-		-	-
24.1	6	-	-	-	-	-	-	-	-	-	-	-	-	-	3	3	3	3	8	5	12	1 4	12	8	- 5	3	3	3	3	2	2	_	-	_	-	-	-	
25.1	7	-	-	-	-	-	-	-	-	-	-		-	-	-	-	3	3	3	5	12	17	12	10	10	5	3	3	3	3	3		-	_	_	-	-	-
20.	8	-	-		-	-		-	-	-	-	-	-	-	-	3	3	3	3	8	8	8	10	10	10	8	5	5	3	3	3	3	3	3	3	-	-	
29.8	Ba	-	-	-	-	-	-	-	-	-	-	-	-	-		-	3	3	3	3	3	5	5	5	5	3	3	3	3	3	3	3	3	ź	2	_	-	
30.1	7		-	-	-	-		-	-		-	-	-	-	-				3	3	3	5	8	8	5	5	3	3	3	5	5	8	8	5	3	-	-	-
31.1	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	2	8	8	10	5	8	8	5	3	3	3	3	3	5	5	5	3	-	-	
																					1.																	

Table 88b

Coronal observations at Climax, Colorado (6374A), west limb

Date				Deg	ree	8 8	out	h o	f t	he	sol	ar	equ	ato	r				00				Deg	ree	s n	ort	h oi	[t]	he	sol	ar	equ	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	ľ	5	10	15	20	25	30	35	40 4	45 !	50	55	60	65	70	75	80	85	90
1951																			1	İ -																	
Oct 7.7	3	2	2	2	2	2	2	2	2	5	3	5	3	3	3	3	8	5	3	3	15	8	-	-	2	3	2	-	-	-	-	-	-	-	-	-	-
8.6	3	3	2	2	2	2	2	2	2	2	3	3	3	3	3	5	8	2	-	-	18	8	2	3	-	-	-	-	-	-	-	-	-	2	2	2	2
9.6	2	2	2	2	-	-		-	-	2	3	3	3	2	3	2	12	3	2	2	3	3	2	3	2	_		-	-	_	-	-	-	2	2	2	2
10.6	2	2	-	-	-	-	-	-	e.a	-	2	3	3	2	2	-	2	8	2	2	2	2	3	2	2	2	-	-	-	-	-	2	2	2	3	3	3
11.9	3	3	3	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
12.6	2	2	2	3	3	3	3	2	2	-						ent	2	3	2	2	3	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
14.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	653	-	-	-	2	2	2	2	2	2	2	-		-	-	-	-	-	-	-	-	-
14.9a	-	-		-	-	-	-	-	-	-	2	2	2	2	2	2	3	3	3	2	-	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-
15.7	2	3	2	3	2	3	2	2	2	2	2	2	3	3	3	3	3	5	3	3	2	2	2	2	2	2	3	3	3	3	3	3	3	2	2	2	2
20.8	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
23.6	2	2	2	2	2	2	2	2	3	3	2	5	5	3	4	3	3	3	3	2	2	• 5	3	3	3	3	3	3	3	2	-	-	-	-	-	-	-
24.6	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	• 3	5	3	8	10	3	2	_		-	-	-	-	-	-	-	-	-		
25.7	-	_		_	_		2	2	2	2	2	2	2	2	2	2	3	3	-	12	10	5	2	2	2	2	2	2	2	2	2	2	-	-	-	-	-
28.8	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3	3	2	2	2	3	3	3	2	2	2	2	2	2	2	2	2
29.8a	_	_	_	_	_	-	2	2	2	2	2	2	2	2	2	2	3	3	2	3	5	3	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2
30.7	2	2	2	2	2	2	2	2	5	5	5	5	5	5	3	3	3	8	5	8	12	8	5	3		-	-	-	-	-	-	3	2	2	3	3	2
31.7	-	-	-	-	-	-	-	-	-	3	3	5	5	3	3	5	5	3	8	12	8	3	3	2	2	2	-	-	-	-	-	-	2	2	2	2	2

Table 89a

Coronal observations at Climax, Colorado (<u>6702A</u>), <u>east limb</u>

Date					Deg	gree	s i	aort	h d	of	the	so.	ar	equ	ato	r				0				Deg	ree	8 3	out	h c	of 1	the	so]	lar	eqι	ato	r			
GCT		90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1951																																						
Oct.	7.7	-		-	-	-	-	-	-	_	-	-	-	-	-	-	-	2	2	3	3	3	5	5	3	2	2	2	2	-	-	-	-	-	-	-	-	-
	8.6	-	-		-	-	-	-	-	-	-	-	-	-	-	2	2	2	2	3	3	3	5	5	5	3	3	2	2	2	2	2	-		-	-	-	-
	9.6	-	-	-	-	-	-	-	-	-		-	-	-	2	2	2	2	3	3	3	3	3	4	4	3	2	2	-	-	-	-	-	-	-	-	-	-
	10.6	-	-		-	-	-		-	-	2	2	2	2	2	2	2	3	3	2	2	2	2	-	-	-	-	-		-	-	-	-	-	-	-	-	-
	11.9	-	-	-	-	-	-	-	2	2	2	2	2	2	2	3	3	3	2	2	2	2	2	2	2	2	2	-	-	-	-	Х	Χ.	Х	Х	Х	Х	Х
	12.6	-	-	-	-	-	-	-	-		-	2	2	2	2	3	3	3	3	2	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-
	14.0	-	-	-	-	-	-	-	-	2	2	2	2	2	3	3	3	3	3	3	2	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-
	14.9	-	-	-	-	-	-	-	-	2	2	2	2	2	2	3	3	3	3	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	15.7	-	-	-	-	439	-	-	-	2	2	2	2	2	2	2	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	20.8	Х	Х	-	-		-	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	Х	Х	Х
•	23.6	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2	2	2	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	24.6	-	_	-	-	_	-	-	-	-	~	_	-	-	-	2	2	2	2	2	2	2	2	2	2	_	-	_	_	_	-	-	_	_	-	_	-	_
	25.7	-	-	-	-	_	_		-	-	_	-	-	-	-	-		-	2	2	2	2	2	2	2	2	2	2	2	_	-	-	-	-	-	-	-	-
	28.8:	a –	-	-	-	-	-	-	-	_	_	-	-	_	-	2	2	2	2	2	2	2	-	_	-		_	_	-	_	_	_	-	-	-	_	-	_
	29.8	-	-	-	-	-	-		-	-	_	-	-	-	-	-	-	2	2	2	2	2	2	2	_	-	-	-	-	-	-	_	~	_	_	-	-	-
	30.7	-	-	-	-	-	-	-	_	-	-			-	2	2	3	. 3	4	2	2	2	2	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-
	31.7a	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	3	3	3	3	2	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-

.

Table 89b

Coronal observations at Climax, Colorado (6702A), west limb

Date)				Deg	ree	9 S	out	h c	ft	he	sol	ar	equ	atc	r				~0				Deg	ree	s n	ort	h o	f t	che	sol	ar	equ	ato	r			
GCI	1	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
195	1																		-																			
Oct.	7.7	-	-	-	-	-	-	-	-	-	_	_	-	-	-	-	~	2	2	2	3	3	3	3	3	3	3	3	2	2	2	-	-	-	-	-	-	-
0	8.6	-	_	-		_	-	-	-	-	-	-	-	-	-	-	2	2	2	3	3	3	3	5	3	3	3	2	2	2	2	-	-	-	-	-	-	-
	9.6	-	_	-	_	-	_	_	_	_	_	-	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	2	2	2	-	-	-	-	-		-
	10.6	-	_	-	_		-	-	_		_	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	-	-	-	-	-	-	-	-
	11.9	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	'X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	-	-	-	-	-	-	-
	12.6	-	-	_	_		_	_	_	-	-	_	-	-		2	2	2	2	2	2	-	-	-	-	-	-		-		-	-		-	-		-	-
	14.0	-	-	-	-	-	-	-	-	2	2	2	2	2	2	2	2	2	2	2	2	2	y	-	-	-	-	-	-	-	-	-	-	-		-	-	-
	14.9a	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2	2	2	2	2	2	2	2	2	-	-	-	-	-	-	-	-	-		-	-	-	-
	15.7	-	-	-	_	-	-	-	_	-	-	-	-	-	2	2	2	2	2	2	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-
	20.3	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	23.6	-	-	-	_	-	_	_	-	-	-	-	-	-	-	-	2	2	2	2	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-
	24.6	-	-	-	-	-	-	-	-	-	-	-	-	-		2	2	2	2	2	3	3	3	2	2	2	2	2	2	-	-	-	-	-	-	-	-	-
	25.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	3	3	3	2	2	2	2	-	-	-	-	-	-	-	-	-
	20.8	-	-	-	-	-	-	-	***	-	-	-	-	-	-	-	-	-	2	2	2	.5	2	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-
	29.8 a	-	-	-	-	-	-	-	-	-		-	-	2	2	2	2	2	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	• -	-
	30.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2	2	2	2	2	-	-	-	-	-	-	-	-
	31.7		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-

Tables 90a, 91a, and 92a

Observations at Sacramento Peak, New Mexico, for October 1951, east limb

0

Data not received in time for publication in this issue.

Tables 90b, 91b, and 92b

oronal Observations at Sacramento Peak, New Nexico, for October 1951, west limb

Data not received in time for publication in this issue.

.

.

Zürich Provisional Relative Sunspot Numbers

Date	R _Z *	Date	R₂*
1	41	1.7	56
2	1,14	18	58
3	43	19	81
4	38	20	78
5	31	21	43
6	19	22	32
7	16	23	20
8	25	24	10
9	54	25	21
10	71	26	41
11	81	27	55
12	95	28	71
13	72	29	73
14	52	30	72
15	63	31	70
16	67	Mean:	51.4

October 1951

*Dependent on observations at Zurich Observatory and its stations at Locarno and Arosa.

American Relative Sunspot Numbers - $R_{\rm A}^{+}*$

(New Series)

January - September 1951

1951	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
1	23	94	62	36	63	38	17	55	43
2	18	70	48	33	55	38	27	51	45
3	38	52	47	14	42	30	38	49	53
4	26	63	43	28	37	28	44	64	57
5	4 3	48	33	58	24	67	42	74	61
6	141	31	56	65	19	92	70	87	78
7	143	34	43	79	27	107	85	95	65
8	39	41	21	81	16	118	89	99	98
9	53	62	22	77	29	135	90	113	1114
10	39	84	27	92	67	111	95	112	113
11	53	80	35	9 1	87	114	87	101	117
12	29	78	41	85	121	123	69	98	109
13	16	52	38	82	13),	120	77	714	121
14	18	63	33	92	137	117	71	70	115
15	11	69	34	98	153	108	71	67	111
16	19	52	33	101	161	125	47	61	102
17	30	40	35	114	179	129	43	45	97
18	42	33	31	120	185	125	34	54	115
19	54	32	37	111	178	124	32	61	116
20	50	3 5	39	114	157	99	31	49	90
21	43	45	43	145	156	109	19	45	107
22	52	41	57	140	139	108	36	47	125
23	72	48	71	130	113	80	72	40	112
24	68	53	105	119	101	68	74	28	95
25	73	56	96	98	95	60	67	8	77
26 27 28 29 30 31	104 129 101 95 119 12 1	53 48 54	83 93 71 59 49 34	103 117 10l4 80 80	95 85 74 36 40 37	54 45 44 29 18	66 67 81 47 56 62	12 0 9 11 16 30	62 62 42 20 30
Mean	53.8	54.0	49.0	89.6	91.7	85.4	58.3	55.6	85.2

*Combination of reports from 23 observers; see page 9.

Solar Flares, September 1951

Observa_	Date	Time	Dura	Area	Post	tion	Time	Int.	Rela_	Import_	SID
tory		Observed	tion	(Mill)	Lati	Long-	of	of Mari	tive	ance	Obser-
	1951	ning ing (GCT) (GCT)) (Min)	(Visible) (Hemisph)	(Deg)	(Deg)	mum (GCT)	mum	Maxi- mum (Tenths)		ved
Sac.Peak McMath Sac.Peak W Schauins.	Sep. 1 " 3 " 3 " 3 " 3	1410 150 1320 1330B 160 2330 240 0650Q 071	0 50 0 App.15 18A " 1 0 20	200 50 349 40 174	N12 N09 N11 N11 N10	E71 E37 E32 E32 E10	1417 1339 24080 0700	14 18 15	2 1 7	1 2 2 1	Yes
McMath Sac.Peak McMath Sac.Peak Wendelst.	* = = = =	1255 1710 171 1715 2255 231 1043B 105	0 30 0 15 1A App. 2	175 93 20 242	N09 N01 N09 N05 N11	E09 E05 E09 W02 W02	1720 2300 1045	15 11	5 4	1 1 1 - 1	Yes N
McMath n Sac.Peak n	"6 "6 "9 "9	2009 2040 1630B 165 1634 165 2002B 205	3 App. 2 4 20 3 App. 5	25 70 35 55 174	N10 N11 N16 N16 N12	W15 W05 E71 E71 E71	1635 1646 2005	9 10 15	4 3 5	1 - 2 1 - 1 - 1	Tes
Sac.Peak Kanzel Sac.Peak McMath "	" 12 " 13 " 14 " 14 " 14	1840 191 0550 061 1330 151 1345 1400	0 60 0 20 0 100	20 197	502 513 514 518 515	E31 E43 E25 E13 E25	1850 1356	8 20	2 7	1 - 1 1 1 + 2	Yes n n
Sac.Peak Schauins. Sac.Peak McMath Sac.Peak	" 14 " 15 " 15 " 15 " 15 " 15	1625B 163 0650 153 1500 153 1720 181	44 5 35 04 App. 5	23 219 55 163	NO3 NIO NO6 NO6 NO7	E14 E70 W03 W10 W15	1634A 1510 1738	8 14 10	1 1 3	1 - 1 2 1	Yes N
Sac • Peak n n n	" 16 " 16 " 16 " 17 " 17	2035 210 2135 223 2315 240 1545 160 2015 205	3 28 0 55 0 15 5 20 0 35	46 116 151 58 52	N09 N05 N06 N06 N06	W32 W22 W22 W32 W32	2045 2155 2326 1550 2029	9 8 13 8 8	6 3 4 3	1 - 1 1 - 1 -	
Sac.Peak McMath Sac.Peak McMath	" 17 " 17 " 18 " 18 " 18	2050 215 2100 1635 180 1810 181 1815	0 60 5 90 9 39	219 23 58	N06 N08 N07 N05 N07	W32 W35 E76 W49 W51	2103 1733 1833	15 11 10	3 8 6	1 2 1 - 1 - 1	Yes n
Sac.Peak n n n	" 18 " 18 " 19 " 19 " 19	2045 211 2305 233 1505 151 1625 165 2155 225	2 27 OA App. 3 O 35 O 25 O 55	20 30 140 40 57 69	N05 N12 N08 N08 N08	W49 E71 W58 E03 E58	2055 2317 1513 1637 2205	9 12 11 8 9	4 5 3 3	1 - 1 - 1 - 1 -	Yes
Sac.Peak m McMath Schauins. m	" 20 " 20 " 20 " 21 " 21	1425 151 1525 160 0630 0640	5 50 5 40	52 69	NIL NO9 NII NIO NIO	E32 W03 W04 E20 W80	1437 1542 	7 9	8 2	1 - 1 - -	Yes n
Sac。Peak n n n	" 21 " 22 " 22 " 22 " 22 " 22	14:55 151 134:0 14:0 14:25 150 1630 171 1955 200	4 19 5 25 5 40 0 40 5 10	15 52 57 34 46	N16 N10 N11 S05 N11	W21 E01 W32 W56 W32	1500 1349 1435 1646 2001	8 8 9 8 7	6 2 6 1	1 - 1 - 1 - 1 - 1 -	
McMath Sac.Peak McMath Sac.Peak	" 23 " 23 " 23 " 23 " 23	1635 1850 191 1852 1930 211 2045 215	0 20 0 130 5 70	140 29 128	NO8 NO8 NO8 SO8 N12	E02 W03 E02 W74 W49	1901 2104 2125	9 8 17	2 3 8	1 1 1 - 1 -	
McMath Sac.Peak "	" 23 " 25 " 27 " 28	2045 1735 175 1805 183 1655 173	9 24 0 25 5 40	46 35 46	N12 N06 N02 N07	W15 W22 W70 W70	1746 1817 1704	8 9 9	4 9 6	2 1 - 1 - 1 -	

Sac.Peak = Sacramento Peak Schauins.= Schauinsland Wendelst = Wendelstein Kanzel. = Kanzelhohe

B Flare started before given time A " ended after " " Q Time reported as questionable

Indices of Geomagnetic Activity for September 1951

Preliminary values of mean K-indices, Kw, from 38 observatories; Preliminary values of international character-figures, C; Geomagnetic planetary three-hour-range indices, Kp; Magnetically selected quiet and disturbed days

Gr. Day 1951	Values Kw	Sum	С	Values Kp	Sum	Final Sel. Days
1 2 3 4 5	2.11.61.31.21.91.40.92.62.21.41.11.11.21.41.01.62.21.61.92.42.51.21.22.82.12.71.41.12.11.92.02.22.41.31.72.31.81.73.73.9	13.0 11.0 15.8 15.5 18.8	0.3 0.1 0.3 0.3 0.8	3-2-l+l+ 20l+l-3- 2+2-lol+ 1+l+lol+ 5-203-3- 3-lol+30 203020l+ 2+2-2-2+ 3-l+203- 2-l+5-4+	14- 11+ 180 16+ 21-	Five Quiet 1 2 3
6 7 8 9 10	3.81.93.73.42.42.03.73.12.71.01.12.42.02.33.32.11.41.92.11.52.63.02.62.22.72.61.63.03.83.22.93.04.13.84.44.24.33.22.91.6	24.0 16.9 17.3 22.8 28.5	1.0 0.8 0.6 0.9 1.2	4+20404- 3-204+30 3-10103- 202+3+20 1+3-3-2- 3-302+20 3+30203+ 4+4-304- 5-4+5+50 504-301+	260 170 18+ 26+ 32+	4 30
11 12 13 14 15	3.42.13.02.63.53.54.75.43.83.53.53.54.13.83.34.84.84.23.62.64.14.24.24.94.34.03.72.93.52.32.82.73.73.44.53.54.64.23.33.3	28.2 30.3 32.6 26.2 30.5	1.4 1.3 1.4 1.1 1.3	4-3-4+3- 404+5070 5-404+40 5-4+3+5+ 60504+3- 4+5-5-6+ 50505-4- 402+303- 4+4+604+ 5+504-4-	34- 35- 380 30+ 37-	Five Dist. 16 20
16 17 18 19 20	3.95.24.55.35.25.25.05.84.83.83.84.14.44.32.85.14.13.82.63.32.34.34.02.82.21.53.23.14.66.65.64.34.04.85.45.65.35.25.65.2	40.1 33.1 27.2 31.1 41.1	1.7 1.5 1.1 1.7 1.7	5-6+6-6+ 6+6+6-7- 6-505050 50503+6- 5-5-304- 2+505-30 302+4-4- 5+8-705- 50607+7+ 6+6+706+	480 40- 310 37+ 52-	21 22 25 Ten
21 22 23 24 25	5.2 5.0 4.9 5.5 4.7 4.5 4.6 4.9 4.8 5.2 4.7 4.9 4.7 4.2 5.6 5.1 4.7 5.0 4.2 3.5 4.0 3.8 4.6 4.2 4.4 4.3 3.8 4.2 4.5 3.1 3.6 3.1 3.1 3.5 3.6 4.5 5.8 6.5 6.9 7.1	39.3 39.2 34.0 31.0 41.0	1.7 1.6 1.5 1.3 1.8	6+6+6+70 606-6-60 6-70606+ 6-507-60 60605+4+ 4+4+5+5- 506-5050 5+4-403+ 4-5-5-5+ 7+8-808+	49+ 48+ 40+ 370 50-	Quiet 1 2 3 4
26 27 28 29 30	6.8 6.2 3.4 3.1 2.3 2.9 2.1 2.5 5.0 5.1 5.3 4.9 4.1 2.8 2.9 3.3 4.6 1.7 1.4 1.0 1.4 1.1 0.7 2.4 3.0 1.6 2.1 1.6 3.9 5.2 4.0 3.2 3.1 2.7 2.6 2.0 1.0 1.0 1.0	29.3 33.4 14.3 24.6 15.4	1.6 1.6 0.6 1.1 0.4	9-8-4+4- 3-3+2+3- 6-6+605+ 4+3+3+3+ 6-2+2-1+ 1+101-3- 4-2+3-1+ 405+403+ 4-3+302+ 2010101-	35+ 38- 17- 27- 170	7 8 9 28 30
Mean	3.65 3.14 3.45 3.38 3.21 3.14 3.33 3.54	3.36	1.12			

Sudden Ionosphere Disturbances Observed at Washington, D. C.

October 1951

1951 Day	GCT Beginning End	Location of transmitters	Relative intensity at minimum*
Uctober 19	1732 1820	Ohio, D. C., Colombia, Mexico	0.0

*Ratio of received field intensity during SID to average field intensity before and after, for station KQ2XAU (formerly W8XAL), 6080 kilocycles, 600 kilometers distant.

Sudden Ionosphere Disturbances Reported by Engineer-in-Chief,

Cable and Wireless, Ltd., as Observed in England

1951 GC Day Beginni		CT ning End	Receiving station	Location of	f transmitters		
September 29 1710 175		0 17 <i>5</i> 0	Somerton	Canada, New York			
Table 99_							
Sudden	Ionosphe	re Dis	turbances H	leported by Insti	tut für Iono	spharenforschung,	
as Observed at Lindau, Harz, Germany							
1951 Day	951 GCT Day Beginning End Location		of transmitters	Relative intensity at minimum*	Other phenomena		
Septer	nber						
3	1224	1400	München** Wiesbader	, Lindau ^{***} ,	0.1		
7	1052	1200	München** Wiesbader	, Lindau ^{***} ,	0.0		
9	0645	0655	München**	, Wiesbaden	0.1		
15	1505	1525	München** Wiesbader	• Lindau ^{\$\$\$\$} ,	0.1	Terr.mag.pulse 1505-1545	

*Ratio of received field intensity during SID to average field intensity before and after, for station München, 6160 kilocycles, 400 kilometers distant. **Station München, 6160 kilocycles.

***Station Lindau, 1850 kilocycles, pulse, transmitter and receiver at Lindau.

#Station Wiesbaden, 2985 kilocycles.

Sudden Ionosphere Disturbances Reported by RCA Communications, Inc.,

1951 Day	GCT Beginning Ind		Location of transmitters			
October 28	1720	1815	Argentina,	England, Tangier	Italy,	Panama,

as Observed at Riverhead, New York

Table 101

Sudden Ionosphere Disturbances Reported by International Telephone

and Telegraph Corporation, as Observed at Platanos, Argentina

1951	GCT	Location of transmitters	Other	
Day	Beginning End		phenomena	
September 15	1510 1545	Bolivia, Brazil, Chile, Cuba, Denmark, France, Germany, New York, Peru, Portugal, Switzerland, Venezuela	Terr.mag.puls 1510-1530 Solar flare** 1500 Solar flare** 1510	

*As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

** Fine of observation at Sacramento Peak, New Mexico.

***Time of observation at McMath-Hulbert Observatory, Pontiac. Michigan.

Note: Observers are invited to send to the CRPL information on times of beginning and end of sudden ionosphere disturbances for publication as above. Address letters to the Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.

GRAPHS OF ONOSPHERIC DATA

C

ND5 49

⁵⁴

30.0

25.0

20.0

150

10.0 90

> 8.0 7.0

6. 50 z

£40

JENCY

00325 1024

TICAL

E 1.5

30.0

25.0

200

150

10.0

90

8.0 7.0

6.0

NC 50 ž (fo)

LAGUENCY

CRITICAL

N 05 4

N 85 41

25.0

200

15 C

100 90

> 8.0 7.0

6.0

2 €40

FREQUENCY

CRITICAL 12 12

1.0L

00 40.0

25.

200

150

9.0

8.0 7 C

6.0

NO z £40

JENCY 0125 2 ICAL

IN IS

1.0L

z

00 40.0

300

25.0

200

15.0

10.0 90

8.0

7.0

6.0 MC 5.0 z

______4.0

F2

FREQUENCY (

CRITICAL 51

1.0L

40.0

30.0

25.0

200

15.0

100

90

8.0 7.0

6.0 MC

50 z £4.0

FREQUENCY (

CRITICAL 51

1.0

Fig. 137.

02

02

in CEPL-F87

	Table page Figur	re page
Adak. Alaska		
August 1951	. 14	59
Akita, Japan	•	
July 1951	. 16	63
Anchorage, Alaska		
September 1951	. 12	52
Baker Lake, Canada		4-
July 1951	. 15	61
June 1951	. 17	67
Bombay, India		
May 1951	• 20	75
Brisbane, Australia	22	
	• 20	77
Calcutta, India	10	n 1.
	• 17	744
Vanderra, Australia	21	72
May 1971	• ~~	10
July 1061	17	66
Christohurch New Zooland	• -1	00
June 1051	18	71
May 1951	. 21	79
De Bilt, Holland	•	1
August 1951	. 14	59
Delhi. India	•	
May 1951	. 19	74
Domont, France		•
February 1951	. 23	84
Fairbanks, Alaska		
August 1951	. 14	58
Falkland Is.		
May 1951	. 21	79
April 1951	. 22	83
March 1951	. 23	84
Formosa, China		
July 1951	. 16	65
Fort Chimo, Canada		
July 1951	. 15	62
Fraserburgh, Scotland		10
June 1951	. 17	68
May 1951	. 19	72
April 1951	• 22	81
Guam 1.	20	-1
September 1951	• 13	50
hodart, Tasmania	01	n 0
May 1951	• 21	70

Index (CRPL-187, continued)

													Table page	Figure page
Whangawa Dam														
Sentember 1051													74	6.61
Jehenneshurg Inten		2	•	•		• • •	•	٠	٠	•	۰	٠	74	- 27
July 1061	17 1	301	UL PI	ы. <u>4</u>	ar 1	L.T.(GCL						16	65
Vily 1771	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	10	05
Ameril 1061													21	00
April 1971	٠	٠	٠	٠	٠	٠	٠	٠	•	•	٠	٠	21	00
Linusu/Harz, Germany													1.63	60
June 1951	٠	0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	17	00
Madras, India													20	01
May 1951	٠	٠	٠	٠		•	٠	•	٠	٠	٠	٠	20	75
Maul, nawall													10	
September 1951 .	•	٠	•	٠	٠	٠	٠	۰	٠	٠	٠	٠	72	>>
Marsarssuak, Greenlan	a												10	C 3
September 1951 .	٠	٠	٠	٠	٠	٠	٠	9	٠	٠	٠	٠	12	53
August 1951	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	14	58
Мау 1951	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	19	72
Okinawa I.														1.5
August 1951		٠	٠	٠	٠	٠	٠	٠	٠	٠	۰	٠	15	60
Oslo, Norway														
September 1951 .	٠	•	٠	٠	٠	٠	٠	•	٠	•		٠	12	53
Panama Canal Zone														
September 1951 .	٠	•	٠	٠	٠	٠	٠	٠		٠	٠		13	56
August 1951	٠	•	•	•	٠	•			•	٠	٠	•	15	61
Point Barrow, Alaska														
September 1951 .	٠	0	•		•	•	•	•	٠	•		•	12	51
August 1951	0		•	•		•	•	•	٠	•	•	•	14	57
Poitiers, France														
February 1951 .		•		•	•	•		•	•	•	•	٠	23	85
Puerto Rico, West Ind	10	8												
September 1951 .		•	•		•	•	•	•	•			•	13	55
Rarotonga I.														
June 1951	•				•	•	•	•	•		•	•	18	70
May 1951		•				•		•	•	•		•	20	77
Resolute Bay, Canada														
June 1951		•						•		•	•	•	17	67
Reykjavik, Iceland														
May 1951													18	71
April 1951				Ĩ									21	80
Rome, Italy		-	•	•	Ť	•				•		•		
May 1951													19	73
Anril 1951										Ĩ			22	82
March 1951	•	•	•	•	•	•	•	•	•	•	•		22	83
Fahrmary 1051	٠	•	•	•	٠	•	•	•	•	•	•	•	23	85
Towns we loci	٠	۰	٠	٠	•	•	٠	•	•	•	•	•	23	86
Ct Johnie Wardannil		•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	ر مە	00
21. AOUT.2' NAMIOUUT	GLU	di .											16	62
JULY LYDL		•	٠	٠	۰	٠	٠	٠	٠	٠	٠	٠	1)	02
San Francisco, Callio	LIT.	19											12	ch.
September 1951 .			٠	٠	٠	٠	٠	٠	٠	٠	٠	۰	<u>ر</u> ـ	27

Index (CRPL-187, concluded)

	Table page	Figure page
Schwarzenburg, Switzerland		
August 1951	15	60
Singapore, British Malaya	-	
June 1951	18	69
May 1951	20	76
April 1951	22	82
Slough, England		
June 1951	18	69
May 1951	19	73
April 1951	22	81
Terre Adelie		
February 1951	23	86
Tiruchy, India	-	
May 1951	20	76
Tokyo, Japan		•
July 1951	16	64
Tronso, Norway		
September 1951	12	52
Wakkanai, Japan		
July 1951	16	63
Washington, D. C.		- 0
October 1951	12	51
Watheroo, Wastern Australia		
July 1951	17	66
June 1951	18	70
White Sends. New Mexico		-
Santamber 1951	13	54
Yamagawa, Japan	an ₆ /	<i>a</i>
July 1951	16	64
waag ajja 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20	÷ .

CRPL and **IRPL** Reports

[A list of CRPL Section Reports is available from the Central Radio Propagation Laboratory upon request] Daily:

Radio disturbance warnings, every half hour from broadcast station WWV of the National Bureau of Standards. Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Weeklu:

CRPL-J. Radio Propagation Forecast (of days most likely to be disturbed during following month).

Semimonthly:

CRPL-Ja. Semimonthly Frequency Revision Factors For CRPL Basic Radio Propagation Prediction Reports. Monthly:

- CRPL-D. Basic Radio Propagation Predictions-Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC 13 () series; Dept. of the Air Force, TO 16-1B-2 series.)
 - CRPL-F. Ionospheric Data.
 - *IRPL-A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific. *IRPL-H. Frequency Guide for Operating Personnel.

Circulars of the National Bureau of Standards: NBS Circular 462. Ionospheric Radio Propagation. NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

- Reports issued in past:

 - IRPL—C61. Report of the International Radio Propagation Conference, 17 April to 5 May 1944.
 IRPL—G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions.
 IRPL—R. Nonscheduled reports: R4. Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies.
 - R5.
 - **R6.
 - Criteria for Ionospheric Storminess. Experimental Studies of Ionospheric Propagation as Applied to the Loran System. Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System. R7. R9. An Automatic Instantaneous Indicator of Skip Distance and MUF.
 R10. A Proposal for the Use of Rockets for the Study of the Ionosphere.
 **R11. A Nomographic Method for both Prediction and Observation Correlation of Ionosphere Characteristics.

 - **R12. Short Time Variations in Ionospheric Characteristics.

 - R14. A Graphical Method for Calculating Ground Reflection Coefficients. **R15. Predicted Limits for F2-Layer Radio Transmission Throughout the Solar Cycle.
 - **R17. Japanese Ionospheric Data-1943.
 - R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures-October
 - 1943 Through May 1945. **R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For distances out to 4000 km.)

 - **R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena. **R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System.
 - **R25. The Prediction of Solar Activity as a Basis for the Prediction of Radio Propagation Phenomena.
 R26. The Ionosphere as a Measure of Solar Activity.
 R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped by Distance From Center of Disc.
 **Distance From Center of Disc.
 - **R30. Disturbance Rating in Values of IRPL Quality-Figure Scale from A. T. & T. Co. Transmission Disturbance Reports to Replace T. D. Figures as Reported.
 R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.

 - **R33. Ionospheric Data on File at IRPL. **R34. The Interpretation of Recorded Values of *fEs.* R35. Comparison of Percentage of Total Time of Second-Multiple *Es* Reflections and That of *fEs* in Excess of 3 Mc.
 - IRPL-T. Reports on tropospheric propagation:
 - T1. Radar operation and weather. (Supersoded by JANP 101.) T2. Radar coverage and weather. (Supersoded by JANP 102.)
 - T2. Radar coverage and weather. (Superseded by JANP 102.)
 - CRPL-T3. Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group WPG-5.)

*Items bearing this symbol are distributed only by U. S. Navy. They are issued under one cover as the DNC 14 *Out of print; information concerning cost of photostat or microfilm copies is available from CRPL upon request. as the DNC 14() Series.

