CRPL-F73

taken from the training /

IONOSPHERIC DATA

ISSUED SEPTEMBER 1950

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY WASHINGTON, D. C.

NATIONAL BUREAU OF STANDARDSIssuedCENTRAL RADIO PROPAGATION LABORATORY26 Sept. 1950WASHINGTON DC20 Sept. 1950 NATIONAL BUREAU OF STANDARDS WASHINGTON, D.C.

IONOSPHERIC DATA

CONTENTS

	Page
Symbols, Terminology, Conventions	2
World-Wide Sources of Ionospheric Data	5
Hourly Ionospheric Data at Washington, D. C.	7, 12, 19, 45
Ionospheric Storminess at Washington, D. C	7. 31
Radio Propagation Quality Figures	7, 32
Relative Sunspot Numbers	8, 33
Observations of the Solar Coroca	9. 34
Observations of Solar Flares	10, 41
Indices of Geomagnetic Activity	10. 42
Sudden Ionosphere Disturbances	11, 43
Tables of Ionospheric Data	12
Graphs of Ionospheric Data	45
Index of Tables and Graphs of Ionospheric Data in CRPL-F72	64

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1949, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Fifth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Stockholm, 1948, and given in detail on pages 2 to 10 of the report CRPL-F53, "Ionospheric Data," issued January 1949.

For symbols and terminology used with data prior to January 1949, see report IRPL-C61, "Report of International Radio Propagation Conference, Washington, 17 April to 5 May, 1944," previous issues of the F series, in particular, IRPL-F5, CRPL-F24, F33, F50, and report CRPL-7-1, "Preliminary Instructions for Obtaining and Reducing Manual Ionospheric Records."

Following the recommendations of the Washington (1944) and Stockholm (1948) conferences, beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

In addition to the conventions for the determination of medians given in Appendix 5 of Document No. 293 E of the Stockholm conference, which are listed on pages 9 and 10 of CRPL-F53, the following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given on pages 2-9 of CRPL-F53 (Appendixes 1-4 of Document No. 293 E referred to above).

a. For all ionospheric characteristics:

Values missing because of A, B, C, F, L, M, N, Q, R, S, or T (see terminology referred to above) are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F2 (and h'E near sunrise and sunset) missing for this reason are counted as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count. See CRPL-F38, page 9.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- 2. For h'F2, as equal to or greater than the median.

Values missing because of W are counted:

- For foF2, as equal to or less than the median when it is apparent that h'F2 is unusually high; otherwise, values missing because of W are omitted from the median count.
- 2. For h'F2, as equal to or greater than the median.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are countéd as equal to or less than the median. .

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of G (no Es reflections observed, the equipment functioning normally otherwise) are counted as equal to or less than the median foE, or equal to or less than the lower frequency count of the recorder.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

1. If only four values or less are available, the data are considered insufficient and no median value is computed.

2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and Fl layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.

3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18. The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when foF2 is less than or equal to foF1, leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily, a blank space in the fEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h'Fl, foFl, h'E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h'Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zons, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.

c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zürich sunspot numbers were used in constructing the contour charts:

Month		Predicted Sunapot Number									
	1950	1949	1948	1947	1946	1945					
			1								
December		108	114	126	85	38					
November		112	115	124	83	36					
October		114	116	119	81	23					
September		115	117	121	79	22					
August	96	111	123	122	77	20					
July	101	108	125	116	73						
June	103	108	129	112	67						
May	102	108	130	109	67						
April	101	109	133	107	62						
March	103	111	133	105	51						
February	103	113	133	90	46						
January	105	112	130	88	42						

WORLD-WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 38 and figures 1 to 76 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Commonwealth of Australia, Ionospheric Prediction Service of the Commonwealth Observatory: Brisbane, Australia Canberra, Australia Hobart, Tasmania

- Australian Department of Supply and Shipping, Bureau of Mineral Resources, Geology and Geophysics: Watheroo, West Australia
- Institute for Ionospheric Research, Lindau Uber Northeim, Hannover, Germany: Lindau/Harz, Germany

- The Royal Netherlands Meteorological Institute: De Bilt, Holland
- National Laboratory of Radio-Electricity (French Ionospheric Bureau): Poitiers, France
- Radio Regulatory Agency, Tokyo, Japan: Akita, Japan Tokyo, Japan Wakkanai, Japan Yanagawa, Japan
- Radio Wave Research Laboratories, National Taiman University, Taipeh, Formosa, China: Formosa, China
- New Zealand Department of Scientific and Industrial Research: Christchurch, New Zealand (Canterbury University College Observatory) Rerotonga I.
- Norwegian Defense Research Establishment, Kjeller per Lillestrom, Norway: Oslo, Norway
- South African Council for Scientific and Industrial Research: Capetown, Union of South Africa Johannesburg, Union of South Africa

National Bureau of Standards (Central Radio Propagation Laboratory): Baton Rouge, Louisiana (Louisiana State University) Boston, Massachusetts (Harvard University) Guam I. Huancayo, Peru (Instituto Geofisico de Huancayo) Maui, Hawaii San Francisco, California (Stanford University) San Juan, Puerto Rico (University of Puerto Rico) Trinidad, British West Indies Washington, D. C. White Sands, New Mexico

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 39 to 50 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols, Terminology, Conventions." Beginning with September 1949, the data are taken at a new location, Ft. Belvoir, Virginia.

IONOSPHERIC STORMINESS AT WASHINGTON, D. C.

Table 51 presents ionosphere character figures for Washington, D. C., during August 1950, as determined by the criteria given in the report IRPL-R5, "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

RADIO PROPAGATION QUALITY FIGURES

Table 52 gives provisional radio propagation quality figures for the North Atlantic and North Pacific areas, for Ol to 12 and 13 to 24 GCT, July 1950, compared with the CRPL daily radio disturbance warnings, which are primarily for the North Atlantic paths, the CRPL weekly radio propagation forecasts of probable disturbed periods, and the half-day Cheltenham, Maryland, geomagnetic K-figures.

The radio propagation quality figures are prepared from radio traffic and ionospheric data reported to the CRPL, in a manner basically the same as that described in IRPL-R31, "North Atlantic Radio Propagation Disturbances, October 1943 through October 1945," issued February 1, 1946. The scale conversions for each report are revised for use with the data beginning January 1948, and statistical weighting replaces what was, in effect, subjective weighting. Separate master distribution curves of the type described in IRPL-R31 were derived for the part of 1946 covered by each report; data received only since 1946 are compared with the master curve for the period of the available data. A report whose distribution is the same as the master is thereby converted linearly to the G-sigur scale. Each report is given a statistical weight which is the reciprocal of the departure from linearity. The half-daily radio propagation quality figure, beginning January 1948, is the weighted mean of the reports received for that period.

These radio propagation quality figures give a consensus of opinion of actual radio propagation conditions as reported by the half day over the two general areas. It should be borne in mind, however, that though the quality may be disturbed according to the CRPL scale, the cause of the disturbance is not necessarily known. There are many variables that must be considered. In addition to ionospheric storminess itself as the cause, conditions may be reported as disturbed because of seasonal characteristics such as are particularly evident in the pronounced day and night contrast over North Pacific paths during the winter months, or because of improper frequency usage for the path and time of day in question. Insofar as possible, frequency usage is included in rating the reports. Where the actual frequency is not shown in the report to the CRPL, it has been assumed that the report is made on the use of optimum working frequencies for the path and time of day in question. Since there is a possibility that all disturbance shown by the quality figures is not due to ionospheric storniness alone, care should be taken in using the quality figures in research correlations with solar, auroral, geomagnetic, or other data. Nevertheless, these quality figures do reflect a consensus of opinion of actual radio propagation conditions as found on any one half day in either of the two general areas.

RELATIVE SUNSPOT NUMBERS

Table 53 presents the daily American relative sunspot number, RA, computed from observations communicated to CRPL by observers in America and abroad. Beginning with the observations for January 1948, a new method of reduction of observations is employed such that each observer is assigned a scale-determining "observatory coefficient," ultimately referred to Zurich observations in a standard period, December 1944 to September 1945, and a statistical weight, the reciprocal of the variance of the observatory coefficient. The daily numbers listed in the table are the weighted means of all observations received for each day. Details of the procedure are given in the Publication of the Astronomical Society of the Pacific, issued February 1949, in an article entitled "Reduction of Sunspot-Number Observations." The American relative sunspot number computed in this way is designated RA. It is noted that a number of observatories abroad, including the Zurich observatory, are included in RA. The scale of RA was referred specifically to that of the Zurich relative sunspot numbers in the standard comparison period; since that time, RA is influenced by the Zurich observations only in that Zurich proves to be a consistent observer and receives a high statistical weight. In addition this table lists the daily provisional Zurich sunspot numbers, R7.

OBSERVATIONS OF THE SOLAR CORONA

Tables 54 through 56 give the observations of the solar corona during August 1950 obtained at Climax, Colorado, by the High Altitude Observatory of Harvard University and the University of Colorado. Tables 57 through 59 list the coronal observations obtained at Sacramento Peak, New Mexico, during July 1950, derived by the High Altitude Observatory from spectrograms taken by Harvard University as a part of its performance of an Air Materiel Command research and development contract administered by the Air Force Cambridge Research Laboratories. The data are listed separately for east and west limbs at 5-degree intervals of position angle north and south of the Solar Equator at the limb. The time of observation is given to the nearest tenth of a day, GCT.

Table 54 gives the intensities of the green (5303A) line of the emission spectrum of the solar corona; table 55 gives similarly the intensities of the first red (6374A) coronal line; and table 56, the intensities of the second red (6702A) coronal line; all observed at Climax in August 1950.

Table 57 gives the intensities of the green (5303A) coronal line; table 58, the intensities of the first red (6374A) coronal line; and table 59, the intensities of the second red (6702A) coronal line; all observed at Sacramento Peak in July 1950.

The following symbols are used in tables 54 through 59: a, observation of low weight; -, corona not visible; and X, position angle not included in plate estimates.

Coronal tables in this series through F69, May 1950, designated the nominal wave length of the far red coronal line as 6704A; however, 6702A appears to be a more reliable value and is used in later issues. The two are found almost interchangeably in the literature.

Table 60 gives details of the Sacramento Peak observations from February 1950 through June 1950. The first column lists the Greenwich date of observations; the next eight columns give the threshold or lowest observable intensity of 5303A for each spectrum plate centered at astronomical position angles 0° , 45° , 90° , 135° , 180° , 225° , 270° , and 315° . respectively; the last two columns indicate the observer and the person responsible for the intensity estimates of the observation. This table is a continuation of table 1 of CRPL-1-4, and appears in the F series regularly at intervals of six months:

OBSERVATIONS OF SOLAR FLARES

Table 61 gives the preliminary record of solar flares reported to the CRPL. These reports are communicated on a rapid schedule at the sacrifice of detailed accuracy. Definitive and complete records are published later in the Quarterly Bulletin of Solar Activity, I.A.U., in various observatory publications, and elsewhere. The present listing serves to identify and roughly describe the phenomena observed. Details should be sought from the reporting observatory.

Reporting directly to the CRPL are the following observatories: Mt. Wilson, McMath-Hulbert, U.S. Naval, Wendelstein, Kanzel, and High Altitude at Boulder, Colorado. The remainder report to Msudon (Paris), and the data are taken from the Paris URSIgram broadcast, monitored fairly regularly by the CRPL. The data on solar flares reported from Boulder, Colorado are provided by Harvard University as the result of work undertaken on an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories.

The table lists for each flare the reporting observatory, date, times of beginning and ending of observation, duration (when known), total projected area, and heliographic coordinates. For the maximum phase of the flare is given the time, intensity, area relative to the total area, and the importance. The column "SID observed" is to indicate when a sudden ionosphere disturbance, noted elsewhere in these reports, occurred at the time of a flare. Times are in Universal Time (GCT).

INDICES OF GEOMAGNETIC ACTIVITY

Table 62 lists various indices of geomagnetic activity based on data from magnetic observatories widely distributed throughout the world. The indices are: (1) preliminary mean 3-hourly K-indices, Kw; (2) preliminary international character-figures, C; (3) geomagnetic planetary three-hour-range indices, Kp; (4) magnetically selected quiet and disturbed days.

Kw is the arithmetic mean of the K-indices from all reporting observatories for each three hours of the Greenwich day, on a scale O (very quiet) to 9 (extremely disturbed). The C-figure is the arithmetic mean of the subjective classification by all observatories of each day's magnetic activity on a scale of O (quiet) to 2 (storm). The magnetically quiet and disturbed days are selected by the international scheme outlined on pages 219-227 in the December 1943 issue of <u>Terrestrial Magnetism and Atmospheric Electricity</u>.

Kp is the mean standardized K-index from 11 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 to 9, expressed in thirds of a unit, e.g., 5- is 4 2/3, 50 is 5 0/3, and 5 + is 5 1/3. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the ionospheric field. A complete description of Kp has appeared in Bulletin 12b, "Geomagnetic Indices C and K, 1948," published in Washington, D. C., 1949, by the Association of Terrestrial Magnetism and Electricity, International Union of Geodesy and Geophysics. Tables of Kp for 1945-48 are in Bulletin 12b; for 1940-44 and 1949, in these CBPL-F reports, F65-67; for 1950, monthly in F68 and following issues. Current tables are also published quarterly in the Journal of Geophysical Research along with data on sudden commencements (sc) and solar flare effects (sfe).

The Committee on Characterization of Magnetic Disturbance, ATME, IUGG, has kindly supplied this table. The Meteorological Office, De Bilt, Holland, collects the data and compiles Kw, C and selected days. The Chairman of the Committee computes the planetary index.

SUDDEN IONOSPHERE DISTURBANCES

Tables 63 through 68 list the sudden ionosphere disturbances observed at Fort Belvoir, Virginia, August 1950; Lindau/Harz, Germany, July 1950; Barbados, B.W.I., July 1950; Point Reyes, California, August 1950; Colombo, Ceylon, July 1950; and Singapore, Malay States, May 1950, respectively.

Washi	agion, D.	c. (38.7	~N. 77.∷	(°W)	<u>le 1</u>		A	ugust 1950
Time	h F2	foF2	h'Fl	foFl	h'E	foE	ſEs	(M3000)F2
00	300	4.6						2.8
01	290	4.3						2.8
02	260	4.0						2.9
03	280	3.6						2.9
04	280	3.2						2.9
05	280	(3.0)						2.9
06	250	4.1	250	-	120	2.0		3.1
07	300	5.0	230	4.0	110	2.5		3.2
08	350	5.6	220	4.3	110	2.9	3.9	3.0
09	330	5.9	200	4.5	110	3.1	5.4	3.0
10	350	6.0	200	4.6	110	3.3	3.9	2.9
11	390	5.9	200	4.7	110	(3.3)	4.9	2.9
12	370	6.1	200	4.8	100	3.4	3.5	2.8
13	380	6.1	200	4.8	100	3.4		2.8
14	360	6.3	210	4.8	100	3.3		2.8
15	350	6.6	210	4.7	110	3.3		2.9
16	3 30	6.8	220	4.5	110	3.0		2.9
17	300	6.6	230	4.1	110	2.8		3.0
18	280	6.7	250		110	2.3		3.0
19	250	(6.8)			-			(3.0)
20	250	(6.6)						(3.0)
21	260	(5.9)						(2.9)
22	280	(5.3)					2.6	(2.9)
23	290	4.8						2.8

Time: 75.0°W. Swoep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table	3			
Boston,	Massacht	isetts	(42,4°N,	71.2°W)				July 1950
Time	h'F2	foF2	h'71	foF1	h'E	foB	120	(M3000) 12
00	280	4.9						2.8
01	290	4.7						2.8
02	S80	4.1						2.8
03	280	3.7					2.4	2.8
04	280	3.3			10-10-54			2.9
05	250	4.3			130	2.0	2,2	3.0
06	280	4.9	230	4.0	120	2.4	3.0	3.0
07	350	5.4	220	4.0	110	2.9	3.4	2.9
08	360	5.6	220	4.4	110	3.1	3.5	3.0
09	380	6.1	210	4.6	120	3.4	3.7	3.0
10	390	6.0	250	4.7	110	3.4	3.6	3.0
11	380	6.3	210	4.8	110	3.4	3.6	2.9
12	390	6.2	550	4.7	120	3.5	4.0	2.9
13	400	6.3	220	4.7	120	3.4	3.8	2.7
14	380	6.3	550	4.7	120	3.4	3.8	2.8
15	360	6.3	220	4.5	120	3.4		2.8
16	350	6.5	550	4.3	120	3.1		2.8
17	320	6.5	230	3.9	120	2.8	3.1	2.9
18	280	6.5	240	3.3	120	2.4	2.9	3.0
19	250	6.8					3.3	3.0
20	260	6.8					2.8	2.9
21	260	6.4					2.7	2.8
22	270	5.8					2.8	2.8
23	290	5.6						2.8

Time: 75.0°W. Sweep: 0.5 Mc to 18.0 Mc in 1 minute.

				19010	2			
White	Sande, New	Mexico	(32.3°N,	106.59	Э¥)			July 1950
Time	h'F2	foF2	h'F1	foFl	h'E	foB	1Es	(M3000)72
00	300	5.2					4.4	2.7
01	300	5.3					3.9	2.7
02	290	5.0					3.8	2.7
03	280	4.9					3.5	2.7
04	280	4.4					3.9	2.7
05	\$90	4.4					3.1	2.7
08	280	5.4	(240)		(110)	(2, 2)	4.9	2.9
07	360	6.2	220	4.2	(110)	(2.7)	5.2	2.9
08	340	7.0	220	4.6	110	(3.0)	5.8	2.8
09	340	7.2	210	4.8	(110)	(3.3)	6.2	2.7
10	380	7.1	200	5.0	110	(3.6)	6.1	2.6
11	400	8.9	210	5.1	110	(3.7)	5.8	2.6
12	400	7.4	200	5.1	(110)	(3.8)	5.4	2.6
13	390	7.7	210	5.1	110	3.9	5.1	2.6
14	350	7.7	210	4.9	(110)	(3.8)	5.2	2.7
15	360	7.4	220	4.8	110	3.6	4.4	2.7
18	340	7.5	220	4.7	110	3.3	4.8	2.7
17	330	7.4	240	4.4	110	2.9	4.8	2.8
18	590	7,5	260		(110)	(2, 3)	4.8	2.9
19	260	7.8				,	4.1	3.0
20	240	7.1					3.3	29
21	280	8.4					2.9	2.8
22	270	5.7					3.3	3.8
_23	290	5.5					3.9	2.7

Time: 105.0°W. Sweep: 0.8 Mc to 14.0 Mc in 2 minutes.

				Table 2					
Oslo.	Norway	(60.0°N,	11.0°E)					July 195	
Time	h'F	2 foF2	h'Fl	foF1	h'E	foB	fEs	(\$3000	152
00	270	(5.9)				2.4	(2.8)	
01	280	(5.6)				2.4	(2.2)	
02	270) 5.3					2.3	2.8	
03	270	4.6					2.7	(2.8)	
04	30 5	5 5.1	250	3.0	1 2 5	1.6	2.8	2.9	
05	340	5.3	240	3.5	110	2.1	3.1	5.9	
06	330	5,6	225	3.9	110	2.5	2.8	2.8	
07	350	5.8	220	4.2	105	2.8	3.2	2.9	
08	355	5 6.0	215	4.4	100	3.0	3.4	2.9	
09	364	5 6.1	210	4.7	100	3.1	3.5	2.9	
10	35	5 6.2	205	4.7	100	3.2	3.6	2.9	
11	360	6.2	205	4.8	100	3.3	3.9	2.9	
12	360	6.3	205	4.9	100	3.3	3.7	2.9	
13	380	0 6,4	205	4.9	100	3.3	3.5	2.9	
14	370	6.2	210	4.8	100	3.3	3.5	2.9	
15	350	0 6.1	205	4.8	100	3.3		2.9	
16	350	0 6.1	205	4.6	105	3.2	3.3	2.9	
17	32	5 6.2	215	4.4	105	2.9	3.3	3.0	
18	310	6.3	2 25	4.2	105	2.7	3.5	3.0	
19	28	5 8.4	230	3.8	110	2.4	3.4	3.0	
20	260	6.5	250	3.4	120	2.0	2.8	3.0	
21	260	6.6			125	1.6	2.2	3.0	
22	25	5 (6.5)				2,1	2.9	
23	25	5 (6.3)					(2, 9)	

Time: 15.0°S. Sweep: 1.3 Mc to 14.0 Mc in 8 minutes, automatic operation.

Table 4										
San Fr	ancieco,	Californ	ia (37.4	°N. 122.	2°¥)			July 1950		
Time	h'F2	foF2	h'F1	foFl	h'E	foB	fEs.	(M3000)72		
00	300	5.2					3.2	2.8		
01	300	5.0					3.0	2.8		
02	300	4.8					3.1	2.8		
03	300	4.4					2.9	2.8		
04	300	4.4					3.8	2.7		
05	300	4.2					2.9	2.8		
06	330	5,2	240	3.7	120	2.2	3.8	2.9		
07	350	6.0	240	4.3	120	2.8	5.0	2.9		
08	340	6.3	250	4.6	120	3.0	5.4	2.8		
09	380	6.8	200	4.8	120		5.6	2.8		
10	370	6.6	200	4.9	120	3.7	5.1	2.3		
11	400	6.7	200	5.0	120		5.5	2.7		
12	390	6.8	200	5.0	120		5.4	2.7		
13	380	7.1	200	5.0	120		5.0	2.7		
14	380	7.4	210	5.0	120		5.3	2.8		
15	360	7.3	220	4.8	120	3.6	4.9	2.8		
18	340	7.4	230	4.7	120	3.1	4.6	2.8		
17	320	7.2	240	4.4	120	2.9	4.5	2.9		
18	300	7.0	240	4.0	150	2.5	4.3	3.0		
19	260	7.0					3.9	3.1		
20	250	6.9					3.1	3.0		
SJ	260	6.4					4.3	3.0		
22	280	5.6					3.6	2.8		
23	300	5.4					3.4	2.8		

23 t 300 5.4 Time: 120.0°W. Sweep: 1.3 Mc to 18.0 Mc in 4 minutes.

				Taole	0			
Baton	Rouge,	Louisiana	(30.5°₩,	91.2°W)				July 1950
Time	h'F2	foF2	h'Fl	foF1	h'E	foE	fEe	(M3000) F2
00	320	5.5						2.8
01	320	5.2						2.8
02	310	5.0						2.8
03	300	4.7						2.8
04	300	4.2						2.8
05	300	4.4						2.9
06	300	5.5	270					3.0
07	340	6.0	260	4.1	120	(2.8)		3.0
08	360	6.6	240	4.6	120	3.2	5.3	2.8
09	380	6.8	240	4.8	120	(3.4)	4.6	2.8
10	410	7.0	230	5.0	120	(3.4)	4.9	2.7
11	410	7.0	250	5.0	(120)	(3.5)	4.4	2.7
12	410	7.6	230	5.1	120	(3.5)	4.1	2.7
13	420	7.5	240	5.0		(3.5)		2.6
14	410	7.6	240	5.0		(3.5)		2.7
15	390	7.9	260	4.8	120	(3.4)		2.7
16	370	7.6	260	4.6	120	3.3		2.8
17	340	7.6	260		120	(3.0)	4.2	2.8
18	310	7.6	270		120		3.6	2.9
19	590	7.6					3.6	2.9
20	280	7.3					4.6	2.9
31	290	6.2					3.6	2.8
22	300	6.0					4.1	2.8
23	320	5.6						2.9

Time: $90.0^{\circ}W$. Sweep: 2.12 Mc to 14.1 Mc in 5 minutes, automatic operation.

				18010 7				
Mani,	Hawaii	(20.8°N,	156.5°₩)					July 1950
Time	L'F2	foF2	h' ₽ 1	foFl	h E	foE	1Es	(M3000) #2
00	320	7.4					2.8	2.7
01	300	7.4					S .3	2.8
02	280	7.1					2.3	2.8
03	300	6.4						2.8
04	290	6,1					2.4	2.8
05	300	5,6					2.1	S.8
06	270	5.5			-		2.1	3.0
07	250	6.3	230	(4.7)	120	(2.5)	3.9	3.0
08	310	6.9	550	4.9	110	(3.0)	5.3	2.7
09	390	7.6	220	4.9	110	(3.3)	5.8	2.4
10	430	9.3	55 0	5.1	110	(3.6)	6.1	2.4
11	450	9.2	210	5.1	110	3.8	5.7	2.4
12	410	9.9	210	5.1	110	3.8	4.8	2.5
13	390	10.4	220	5.1	110	3.8	4.9	2.6
14	380	10.7	220	5.0	110	3.7	4.9	2.6
15	370) 11.0	230	4.9	110	3.6	4,5	2.7
16	340) 11.4	230	4.8	110	3.3	4.7	2.8
17	310) 11,7	240	4.5	120	3.0	4.7	2.9
18	280	11.2	250		120	2.4	4.1	3.0
19	260	10.3					3.9	3.0
20	260	9.6					5.9	2.9
21	260	8.5					2.6	8.8
55	300	8.0					2.3	2.7
53	310	7.6					2.4	2.7

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

					Table	9			
Guaz	I.	(13.6°N.	144.90	E)					Jnly 1950
Time		h'F2	foF2	h'Fl	for	h'Z	foE	fEs	(M3000)F2
00		330	6.8					3.9	2.6
01		320	5.4					3.8	2.6
02		320	6.0					4.0	2.7
03		310	5.5					2.2	2.8
04		270	5.1					3.9	3.0
05		240	4.5					2.4	3.1
06		250	5,1			120		4,1	3.2
07		240	6,8	240		(110)	2.5	5.0	3.1
80		270	8.0	SS 0		110	3.0	7.2	3.1
09		300	8.0	250		110	(3.4)	8.6	2.7
10		350	8.7	200		(110)	(3.6)	9.0	2,5
11		360	9.0	320	5.0	110	3.7	8.2	2.4
12		400	9.5	S10	(5,2)	110	3.8	8,1	2.3
13		410	9.9	250	(5.2)	110	(3, 8)	7.3	2.3
14		390	10.6	210	(5,1)	110	(3.7)	5.0	2.5
15		370	10.9	\$10	5.0	110	3.6	5.7	2.5
16		350	11.7	230		110	3.3	6.6	2.6
17		320	11.7	240		110	2,9	6.0	2.6
18		260	(11.6)					6.2	2.6
19		280	(11.3)					4.0	(2.6)
20		300	10.4					3,9	2.6
21		320	(9.4)					3.6	2.6
22		330	8.7					3.8	2.5
23	1	350	7.3					3.9	2.6

Time: 150.0°Z. Sweep: 1.0 Mo to 25.0 Mo in 15 seconde.

Huanca	yo, Peru	(12.0°S,	75.3°W)	18.016	11			July 1950
Time	h'F2	foF2	h'F1	foFl	h'Z	foB	fEs	(M3000)F2
00	230	6.4					2.2	3,1
01	\$30	5.7					2.3	3.1
02	230	5.8					2.8	3.1
03	240	5.0					2.3	3.2
04	240	4.0					2.6	3.1
05	260	3.7					3.2	3.1
06	300	3.9			100	1.3	3.1	2.9
07	250	6.4			100	2.3	5.9	3.0
80	290	8.3	SS0	4.6	100	2.9	10.2	2.8
09	310	8.8	550	4.9	100		12.0	2.6
10	330	8.4	SS0	4.9	100		12.2	2.4
11	350	8.S	SIO	5.0	100		12.1	2.4
15	360	8.1	S10	5.0	100		12.3	2.4
13	360	8.4	210	4.9	100	-	12.0	2.4
14	360	8.5	210	4.8	100		12.0	2.3
15	320	8.4	210	4.7	100		12.0	2.4
16	320	8.6	5 50	4.6	100	2.8	11.8	2.4
17	260	8.6			100	2.2	6.0	2.4
18	300	8.1			100		2.3	2.4
19	320	7.5						2.4
50	300	7.6						2.5
21	26 0	7.4						2.7
23	\$30	6.8						2.9
23	230	6.5					2.4	3,0

Time: 75.0°. Sweep: 16.0 Mc to 0.5 Mo in 15 minutes, guitomatic operation.

					the second se	
122	Juan.	Puerto	Bico	(18.4°N,	66.1°W)	
_					the second s	

oun	Jua	n, ruerto	A1C0	(18.7.7.	66'1-A)				July 1950
Time	3	h'F2	foF2	h'F1	foF1	h'E	foE	TER	(H2000) F2
00	1	260	8.7						2.8
01		230	(8.2))					3.0
02		230	7.2						3.0
03		240	6.3						3.0
04	- i	240	6.1						2.9
05		240	5,6						2.9
06		240	5,6						3.0
07		240	(6.5)				40.12923	3.7	2.9
08		280	7.4		4.5		3.3	4.7	2.9
09		300	8.0		4.8		3.4	4.6	2.9
10	- 1	330	8.8		4.9		(3, 6)	4.9	2.8
11		340	9.4		(5, 0)		01-00-0	4.9	2.7
12		330	10.2		5.2			4.8	2.8
13		300	(10.5)	F	(5.0)		(3, 8)	4.8	(2.8)
14	[300	10.8		5.0		3.8	5.0	2.8
15		300	10.3		4.8		3.6	4.8	2.8
16		300	10.2		4.7		3.4	4.5	2.9
17		270	(9.8)		4.2		3.1	4.1	(2.9)
18		250	(9.4)						(2,9)
19		230	(9.0)						3.0
20		240	(8.7)						(2.8)
21		260	8.4						2.8
22		270	(8.3)						2.8
23		270	(8,5)						(2.8)

Table 8

Time: 60.0°M. Sweep: 2.8 Mc to 13.0 Mc in 9 minutes, automatic operation; supplemented by manual operation.

				Table	10			
Trinida	ad, Brit,	West Ind	ies (10.0	6°N, 61.	50M)			Jaly 1950
Time	h'F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	240	9.5						3.1
01	230	9.2						8,2
02	330	8.2						3.2
03	230	7.3						3.2
04	220	6.9						3.2
05	230	6.4						8.2
06	240	6.2			100	1,8	2.4	3.3
07	220	6.5		No. 10. 100	100	2.6	3.4	3.3
08	250	7.4	210	4.7	100	3.1	4.2	3.2
09	320	6.1	200	5.1	100	3.5	4.4	S°8
10	340	8.8	200	5.2	100	3.7	4.6	2.7
11	350	10.0	200	5.2	100	3.9	5.0	2.7
12	340	10.7	200	5.2	100	3.9	5.0	5.8
13	320	11.4	210	5.3	100	3.9	5.1	5.9
14	320	11.6	200	5.1	100	3.8	5.1	3.0
15	300	12.0	200	5.0	100	3.6	5.3	3.0
16	280	11.4	200	4.8	100	3.3	5.0	3.0
17	S80	10.8	\$10	4.4	100	S°ð	5.3	3.0
18	250	10.5					4.8	3.0
19	250	10.0					4.1	3.0
20	270	10.4					3.6	2.9
21	270	10.4					3.0	3.0
22	230	10.4					2.6	3.0
23	250	10.1					1.9	3.0

Time: 60.0°W. Sweep: 1.2 Mc to 19.8 Mc, manual operation.

				TROIC	12			
De Bilt.	Holland	(52.1°¥,	5.3°%)		_			June 1950
Time	h'F2	foF2	h'Fl	foF1	h'E	foB	1 Eg	(M2000192
00	290	6.2						2.7
01	290	5.9					2.4	2.7
02	295	5.3					2.8	2.6
03	290	5,4					3.2	2.7
04	300	5.6	270	3.0		1.9	3.4	2.8
05	300	6.0	230	3.8	100	2.3	3.9	2.8
06	320	6,5	220	4.2	100	2.7	4.0	2.9
07	350	7.0	210	4.6	100	3.0	4.6	2.8
08	340	7.0	215	4.8	100	3.2	4,7	3.0
09	340	7.0	200	4.8	100	3.4	4.8	2.9
10	380	7.0	210	4.8	100	3.4	5.0	2.8
11	340	6.7	210	4.9	100	3.5	4.6	(2,9)
12	400	6.7	200	5.0	100	3.6	4.7	2.8
13	385	6.6	205	4.9	100	3,5	4.0	2.7
14	360	7.0	215	4.9	100	3.5	4.8	2.8
15	335	6.9	215	4.8	100	3.4	4.0	2.8
16	-320	6.9	230	4.7	105	3.2	4.8	2.8
17	305	6.9	230	4,2	100	2.8	5.0	2.9
18	300	7.2	245	3.8	105	2.4	5.0	2.9
19	280	7.7		#19 Million and	115	2.0	3.8	3.0
20	270	7.3				-	3.4	2.9
21	270	7.2					2.6	2.8
22	280	7.0					2.4	2.7
23	290	0,7						2.7

Time: 0.0° . Sweep: 1.4 Mc to 16.0 Mo in 7 minutes, automatic operation.

lind su	Harz, Go	rmany (5	1.6°3, 1	0.1°E)				June 1950
lime	h'F2	foF2	h'71	foFl	h'B	fob	fEs	(M3000) F2
00	260	6.4					8.7	
01	270	6.7					3.3	
02	280	6.7					2.6	
03	280	5.6					2.8	
04	280	5.8	280	straight all		E	3.8	
05	290	5.8	320	3.4	100	1.9	3.4	
08	290	6.4	230	3.9	100	2.6	3.8	
07	320	6.5	250	4.3	100	3.9	4.5	
08	320	7.0	250	4.6	100	3.1	6.2	
09	330	7.1	210	4.8	100	3.3	5.0	
10	350	7.0	210	4.9	100	3.4	6.0	
11	360	6.8	210	5.0	100	3.6	5.5	
12	360	6.9	210	5.0	100	3.6	5.4	
13	350	6.8	210	5.0	100	3.6	5.6	
14	360	6.8	210	4.9	100	3.6	5.6	
15	340	6.8	210	4.8	100	3.4	5.2	
16	330	6.7	210	4.8	100	3.3	4.6	
17	320	6.8	220 *	4.5	100	3.0	4.4	
18	300	7.1	230	4.1	100	2.7	4.6	
19	270	7.4	250		100	3.2	4.4	
20	260	7.6		titeer -th	110	1.6	4.2	
21	260	7.4					3.5	
22	250	7,3					3,1	
23	370	6.9					2.8	
Time: Swaan	15.0°E.	to 16.0	He in 8	minutes				

				Table	15			
Boston,	Massach	asetts ((42.4°N,	71.2°W)	_			June 1950
Time	P125	foF2	h'Fl	foFl	h'E	fol	220	(M3000) 72
00	290	6,1						2.8
01	280	5.8						2.8
02	280	5.1						3.8
03	280	4.6						3.9
04	275	4.1						2.8
06	250	5.0			130	2.2		3.0
08	300	6.6	230	4.7.	120	3.8		3.0
07	330	6.2	225	4.4	120	3.0	3.4	3.0
08	335	6.4	225	4.7	120	3.2	3.6	3.0
09	355	6.8	250	4.8	116	3.4	3.8	3.9
10	350	6.8	210	5.0	120	3.6	3.9	8.9
11	370	7.0	215	5.1	120	3.4	4.3	2.8
12	370	7.0	220	6.0	120	3.6		2.8
13	360	7.1	350	5.0	120	3.5		2.9
14	370	7.1	220	4.9	120	3,5	3.2	2.8
15	360	8.9	550	4.7	120	3.4		2.8
18	356	7.0	230	4.5	120	3.2	3.1	2.8
17	320	7.3	230	4.1	120	2.9	3.2	2.9
18	270	7.3	250		120	2.6	3.6	3.0
19	260	7,2						3.0
20	260	6.9						2.9
21	270	7.0						2.8
55	280	8.8						2.7
23	280	6.3						2.8

Time: 75.0°W. Sweep: 0.5 Mc to 18.0 Mc in 1 minute.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1950
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	000)F2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9
06 240 8.6 230 100 2.6 3.7 3. 07 280 8.6 240 100 3.1 5.2 3. 09 290 8.2 230 100 3.4 6.2 3.	5
07 260 8.6 240 100 3.1 5.2 3. 0.3 3.3	i.
08 290 8.2 330 100 3.4 6.2 3.	i
	i
09 300 8.0 240 100 3.8 7.1 3.	i
10 310 7.6 220 5.0 100 3.7 8.6 2.	9
11 350 8.2 330 6.4 100 3.8 9.0 2.	8
12 340 8.6 330 5.5 100 3.8 7.2 2.	8
13 340 9.3 240 5.4 100 3.8 7.6 2.	8
14 320 9.4 220 5.2 100 3.7 7.4 2.	p.
15 300 9.6 230 5.0 100 3.6 7.0 3.	Ď
16 300 9,6 240 4,7 100 3,2 6,3 3,	0
17 280 9.6 240 100 2.8 5.6 3.	Ď.
18 260 9.0 100 2.2 5.5 3.	n n
19 240 8.7 5.6 3.	í
20 260 7.6 4.6 2	9
21 300 7.8 4.4 2	8
22 300 8.1 4.5 2	, R
23 290 (8.0) 4.8 (2.	a)

Time: 135,0°E. Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, manual operation.

					Table 14	
-	Terrora	146	4019	141	70 2)	

June 1950

Warkans	al, √apan	(40.4.3.	141.7	191				antre 1320
Time	h'F2	foF2	h'21	îo Fl	h B	fol	1Es	(M3000) J2
00	300	7.6					3.6	2.6
01	300	7.1					3.4	2.6
02	300	6.8					3.4	2.7
03	300	8.6					3.4	2.6
04	300	6.5	300		100	1.6	2.8	2.6
06	290	7.1	270		110	2.3	3.5	2.7
06	320	7.6	260	4.4	100	2.8	4.6	2.7
07	320	7.8	260	4.7	100	3.1	5.2	2.8
08	320	7.4	270	4.8	100	3.4	5.8	2.8
09	340	7.0	260	6.1	100	3.5	6.5	2.9
10	380	7.2	250	5.1	100	3.6	6.2	2.7
11	400	7.2	240	6.1	100	3.6	6.4	3.7
12	400	7.0	230	6.2	3.00	3.6	5.8	2.7
13	400	7.2	250	5.2	100	3.6	5.6	3.6
14	400	7.3	240	6.1	100	3,5	5.6	2.7
16	370	7.4	240	6.0	100	3.4	4.8	3.7
16	360	7.4	240	4.7	100	3.2	5.0	2.7
17	340	7.6	260	4.4	100	3.0	6.4	2,8
18	300	7.6	260		100	2.4	5.0	5.6
19	\$30	7.8	no me -0		100	1.6	5.0	2.8
20	280	7.8					4.8	2.8
21	300	7.7					4.2	2.7
22	300	7.7					4.1	2.7
23	300	7.6					3,8	2.7

Time: 136.0°E. Sweep: 1.0 Mc to 14.0 Mc in 15 minutee, manual operation.

				Table 1	6			
Arita.	Japan (3	9.7°N, 14	40.1°E) 4	1 0	<u></u>			June 1950
Time	h'F2	foF2	h'#1	foFl	h'E	for	2 Ba	(M3000)F2
00	300	8.0					4.3	2.7
01	290	7.8					4.0	2.7
02	290	7.4					3.6	2.7
03	280	7.0					3.6	2.7
04	290	6.7					3.4	2.7
05	260	7.2	220		120	3.0	3.2	5.8
05	290	8.2	240		110	2.8	4.0	2.9
07	300	8.4	240	(4, 4)	110	3.0	6.3	3.0
80	300	8.4	250		110	3.4	6.6	3.0
09	310	7.8		5.2	110	3.6	7.0	3.0
10	340	7.5		5.1	110	3.7	6.6	2.8
11	370	7.6	250	5.2	110	3.8	6.8	3.8
13	370	8.0		5.4	110		6.2	2.7
13	360	8.6		5.2	110	3.7	7.1	2.7
14	340	8.7	240	6.0	110	3.6	6.0	2.8
16	330	8.8	260	6.0	110	3.5	6.3	2.8
18	330	8.9	340	4.6	110	3.3	6.2	2.9
17	300	8.7	240	4.4	110	3.0	6.1	S°8
18	300	8.7	260		120	8.3	6.4	2.9
19	270	8.4					4.6	2.8
20	290	8.2					5.0	2.8
21	300	8.3					4.9	2.7
22	300	8.3					5.1	2.8
33	300	8.2					5.1	2.7

Time: 135.0°M. Sweep: 1.0 Mc to 17.0 Mc in 15 minutee, manual operation.

				Table	18			
Yanaga	wa, Japan	(31.2°E,	130.8°1	E)				June 1950
Time	P125	foF2	h'F1	foFl	h'E	fol	2Es	(M3000)72
00	310	9.1					4.8	2.7
01	300	8.9					5.4	2.8
02	290	8.7					4.6	3.9
03	300	8.0					4.6	2.8
04	290	7.4					3.8	2.8
05	280	7.2					3.8	2.8
06	270	7.9			120	2.2	3.8	3.0
07	270	8.6	250		110	2.8	4.5	3.1
08	260	8.3	320		110	3.3	5.7	3.0
09	300	7.8	240		110	3.6	7.0	2.9
10	320	7.8	250	5.2	110	3.7	7.1	2.7
11	360	8.4	220	6.6	110	3.8	7.3	3.6
12	380	9.6	240	5.4	110	4.0	6.8	2.6
13	380	10.2	240	6.2	110	4.2	6.4	2.7
14	360	10.9	340	5.1	110	3.8	8.8	2.7
16	330	11.0	240	5.0	110	3.7	6.4	2.6
16	320	11.3	240	5.0	110	3.4	6.0	2.8
17	200	11.1	240		110	3.2	6.6	2.8
18	300	10.6	250		110	2.6	6.6	2.9
19	260	9.5	250	-	110	(2.0)	5.2	2.8
20	280	8.8				()	6.2	2.8
21	300	8.8					6.0	27
22	300	8.8					4.5	27
23	320	9.2					4.7	2.6

Zime: 135.0°M. Sweep: 1.2 Mo to 18.6 Mc in 15 minutes, manual operation.

				TROTO	12			
Formosa.	. China	(25.0°N.	121.0°E)					June 1950
Time	h'F2	foF2	h'F1	foll	h'I	fol	1ZB	(M3000) F2
00	2 80	9.4					4.7	3.0
01	250	9.6					4.6	3.0
02	240	9.4					4.9	3.1
03	260	8.8					3.7	3.1
04	270	8.4						3.0
05	240	8.4						3.4
06	250	8.8	All - (201 - 1-1)	~ ~ ~			4.5	3.2
07	250	7.8		~			4.6	3.3
08	320	8.4	240	5.0	120	3.4	5.1	3.2
09	350	8.4	210	5.0	100	3.4	6.0	3.0
10	400	9.6	210	5.6	100	3.7	5.8	2.7
11	360	11.2	250	5.7	100	3.8	6.4	2.5
12	360	11.8	230	6.4	100	3.9	5.2	2.6
13	400	12.7	550	6.0	100	4.1	5.6	2.7
14	360	14.3	550	5.8	100	4.0	5.0	S.8
15	350	14.4	240	8.6	100	3.9	5.6	2.8
16	320	14.4	240	6.4	100	4.0	4.8	S°ð
17	300	14.3	240	4.8	100	4.0	4.6	3.1
18	280	14.4	240		100	3.8	4,4	3.2
19	280	14.3			100 000 at-		4.6	3.0
50	280	10.5					4.0	2.9
21	300	9.5					4.0	2.8
22	310	9.5					4.3	2.7
23	300	10,5					4.2	2.7

Time: 120,0°E. Sweep: 2.5 Mc to 14.5 Mo in 16 minutee. manual operation.

				Table 2	1			
Johanne	seburg.	Union of	S.Africa	(26,2°S,	28.00	E)		June 1950
Time	h'F2	foF2	h'Fl	foFl	h*E	foE	fEs	(M3000) T2
00	(260)	2.7						3.0
01	(280)	2.7					1.8	2.9
02	(280)	2.7						2,9
03	(260)	S.6						2.9
04	(270)	2.8					1.8	3.0
05	(260)	2,7						2.9
08	(250)	2.7						3.0
07	230	5.3				1.8		3.4
80	230	7.4	550	3.0	120	2.6		3.4
09	240	8.2	S SO	3.7	110	2.9		3.3
10	250	8.8	SS0	4.3	110	(3.2)		3.3
11	S90	9.4	210	4.5	110	3.4		3.2
12	S20	8.8	SJ 0	4.6	110	(3.6)		3.2
13	250	8.7	500	4.4	110	3.4	3.6	3.2
14	S90	8.6	SS0		110	3.3	3.6	3.1
15	250	9.0	230	wite-samilitation	110	3.1	3.6	3.2
16	240	9.0	230		110	2.7	3.0	3.2
17	230	8.0			(120)	5.0	2.4	3,3
18	210	6.3					1.5	3.3
19	S 50	3.7					1.8	3.3
20	240	3.0					1.8	3.2
SJ	(250)	3.0					1.8	3.1
22	250	3.3						3.2
_23	240	5.9						3.1
III and a	70.007							

Time: 30.0°E. Sweep: 1.0 Mc to 15.0 Mo in 7 seconds.

$\frac{T_{\rm g}b}{23}$										
011100	church, a	04 20019	uu (40.0	3, 172.	(#)			00000 1900		
Time	h'F2	1082	h'71	foFl	<u>h</u> E	foB	fEs.	(M3000) P2		
00	280	3.2					3.0	5.8		
01	290	3.3					3.0	8.8		
02	290	3.3					3.2	2.8		
03	260	3.3					1.8	2.9		
04	280	3.2					2.6	2.9		
06	260	3.0					2.8	3.0		
06	250	2.7					3.0	3.0		
07	260	3.3						3.0		
08	230	6.0				1.7	2.9	3.4		
09	230	7.2	230	3.4		2.4	3.2	3.4		
10	230	7.7	230	(3.9)		2.8	3.8	3,4		
11	240	7.9	230	(4.1)		2.9	3.6	3.3		
12	250	8.1	220	4.1		3.0	4.2	3.4		
13	240	6.8	240	(4.1)		2.9	3.5	3.3		
14	240	9,6	240	(3,9)		2.7	3.3	3.3		
16	230	8.0	230	(3.3)		2.4	3.3	3.3		
16	530	7.8				1.7	3.0	3.3		
17	S50	6.6					2.6	3.2		
18	240	5.8					2.6	3.1		
19	240	5.]					5.0	3.1		
S0	250	4.5					2.4	3.0		
21	250	3,9					2.8	3.0		
55	270	3.7					1.4	2.9		
23	260	3.3					2.4	2.8		

Time: 172.6°E. Sweep: 1.0 Mo to 13.0 Mc.

Guam 1,	(13.8 ⁰ W	144.9 ⁰ 1	3)	Table 20				June 1950
Time	P1L5	foF2	h'F1	foFl	h'E	foE	1Eg	(M2000) F2
00	350	(9.4)					3.0	
01	320	(8.4)					4.0	(2.7)
02	300	(8.0)					2.5	(2.9)
03	280	7,2						8.8
04	250	8.7						S°ð
05	550	6.3					4.0	3.2
08	250	6.9			140	2.0	4.3	3.1
07	240	7.8		-	110	(2.6)	6.8	3.1
08	240	8.5	S50		110	-m == \$0	8.6	5.9
09	(270)	8.7	320		110	3.4	8.8	8.7
10	330	9.2	220		110	3.6	8.8	2.6
11	380	9.6	220	(5.3)	110	3.8	8.4	3.4
12	380	10.4	210	5.3	110	(3.9)	8.7	2.3
13	380	10.9	210	6.3	110	3.8	8.3	2.4
14	380	11.2	S SO	(5.2)	110	(3.8)	6.0	2.4
16	370	11.6	210	5.1	110	3.6	6.8	2.4
16	(350)	11.8	230	10-10-10-	110	3.3	7.8	2.4
17	(310)	12.0	230		110	2.9	7.0	2.4
18	280	12.0			-	10-00-0e	7.6	(2.5)
19	290	(11.3)					5.8	(2.5)
S0	320	(10.6)					3.9	(2.5)
21	350	(9.8)					3.9	(2.4)
55	360	9.1					2.8	(2.4)
23	360	(8.2)					3.5	(3.5)

Time: 160.0°E. Sweep: 1.0 Mc to 25.0 Mc in 15 esconde.

				Table	23			
Capato	m, Union	of S.	Africa (;	34.2°S, 1	8.301)			June 1950
Time	p. LS	foF2	h'F1	for	h°E	fol	2En	(M3000)F2
00	(260)	(2.3)						(3.0)
01		(2.6)						(2.8)
02	(280)	2.6						2.9
03	(280)	(2.6)						(2.9)
04	(280)	(2.7)						(2.9)
06	(260)	(2.8)						(3.1)
06	(260)	(2.4)						(2,9)
07	(250)	(2.5)						(3.0)
08	230	5.2			energypeite	(2.0)		3.3
09	230	6,9	2 30		120	(2.6)		3.4
10	(240)	8.0	230		110	(3.0)		3.4
11	250	(8.6)	230		110	(3.2)		(3.4)
12	250	8.4	550		110	(3.4)		3.2
13	260	8.9	230	10.000	110	(3.6)		3.2
14	260	(9.1)	230		110	(3.3)	3.4	(3.1)
16	260	9.2	550		110	3.1	3.2	3.1
16	240	(9.2)	240		110	(2.9)		(3.2)
17	230	8.2	who then then		110	2.3		3.3
18	\$10	6.4			110			3.3
19	(230)	(3.9)						(3.2)
50	240	3.1					1.6	3.2
21	(240)	(3.0)					1.9	(3.3)
55	(240)	2.7						3.3
23	(250)	(2,4)	l					3,1
	ac							

Time: 30.0°E. Sweep: 1.0 Mc to 15.0 Mo in 7 ecconds.

				18010	<u>474</u>			
Wakkan	ai, Japan	(45.4°¥,	141.70	E)				May 1950
Time	P.LS	foF2	hITI	foFl	h B	fol	12s	(M2000) F2
00	320	7.3					2.8	S°6
01	310	7.1					2.6	2.6
02	310	6.9					2.1	2.6
03	300	6.5					2.2	2.6
04	320	6.5			120	1.3		2.6
05	300	7.1			110	5°5	2.4	2.7
06	\$90	7.6	300	4.6	110	2.7	3.6	2.8
07	340	7.3	270	4.8	100	3.2	3.3	2.7
80	330	7.5	270	5.0	100	3.4	4.8	2.8
09	320	7.6	260	5.0	100	3.6	6.2	2.8
10	380	7.6	260	5.2	100	3.6	6.3	2.7
11	370	7.9	250	5.2	100	3.6	6.5	8.7
12	360	8.2	250	5.2	100	3.6	4.8	2.7
13	380	7.9	230	5.0	100	3.6	5.0	2.7
14	360	7.9	250	6.1	100	3.6	6.0	2.7
16	360	8.1	270	5.0	100	3.4	4.4	2.7
18	300	8.1	280	4.8	100	3.2	3.8	2.8
17	290	8.3	280		110	2.7	4.1	5.8
18	290	8.3	280		110	5.5	4.3	2.7
19	300	7.8					3.8	2.8
20	300	7.6					3.6	2.7
21	300	7.7					3.6	2.6
55	300	7.6					3.2	2.6
23	300	7,5					2.4	2.6

Time: 135,0°E. Sweep: 1.0 Mc to 14.0 Mc in 15 minutee. manual operation.

15

Table 25

Akita.	Japan (39	.701,	140.1~5)					MAY 1930
limø.	P125	foF2	h'71	foFl	h'E	TOE	res	(M3000) F2
00	300	7,8					3.0	2.7
01	300	7.8					3.2	2.7
02	300	7.4					3.1	2.7
03	300	7.2					3.2	2.6
04	300	7.0					2.8	2.7
05	260	7.8			150	Q.S	2.8	2.9
06	250	8.8	250	dan.apa 144	110	2.6		3.0
07	270	8.9	240		110	3.1	3.6	3.0
08	290	8.7	240		110	3.5	4.4	3.0
09	300	8.2	220		110	3.6	5.0	2.9
10	300	8.6	230		110	3.6	5.6	2.8
11	340	9.2	240	5.5	110		6.3	2.8
12	340	9.8	240	5.4	110	3.7	5.8	2.8
13	330	9.4	250	5.4	110	3.7	5.6	2.8
14	320	9.7	230	5.2	110	3.6	5.3	2.8
15	310	9.7	240	4.9	110	3.5	4.4	2.9
18	300	9.7	250		110	3.3	5.0	2.9
17	300	9.6	250		110	2.9	4.4	2.9
18	270	9.3	250		120	2.2	3.6	2.9
19	270	9.0					4.3	2.9
20	270	8.3					4.4	2.7
21	300	8.1					4.4	2.7
55	300	8.2					4.2	2.7
23	300	7.8					.4.4	2.6
	· · · · · 0-							

Time: $135.0^{\circ}E$. Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, manual operation.

	Table 27									
Tanagaw	a. Japan	(31.2°N,	130.801	()				May 1950		
Time	p, LS	foF2	h'F1	foFl	h'E	foE	120	(M3000) J2		
00	310	9.0					4.8	2.7		
01	310	8.8					4.6	2.7		
02	300	8.2					4.0	2.8		
03	290	7.7					3.8	2.8		
04	290	7.1					3.4	2.8		
05	280	7.3					3.1	2.8		
06	280	7.8			120	2.1	3.1	3.1		
07	250	8.7	250	-	110	2.8	4.4	3.1		
08	280	8.8	240		110	3.3	5.2	3.0		
09	290	9.1	240		110	3.5	6.4	2.8		
10	300	9.6	230		110	3.8	6.8	2.7		
11	320	10.7	240	5.6	110	3.8	6.2	2.7		
12	350	11.4	240	5.7	110	4.0	6.6	2.7		
13	340	11.8	260	5.6	110	4.1	6.6	2.7		
14	320	12.4	250	5.4	110	3.8	5.8	2.7		
15	330	12.2	250	5.4	110	3.7	6.2	2.8		
18	310	12.6	250		110	3.5	5.6	2.8		
17	300	11.7	260		110	3.2	5.4	2.9		
18	290	11.2	260		110	2.6	5.2	2.9		
19	280	10.5	-		110	1.8	5.0	2.9		
S0	280	9.6					5.0	2.8		
21	290	8.9					5.4	2.7		
22	300	8.8					5,2	2.6		
23	310	8.8					5.0	2.6		
E4-04	375 001						-			

Time: 135.0°E. Sweep: 1.2 Mc to 18.5 Mc in 15 minutee, manual operation.

				Tarle :	2 9			
Brisban	e. Anet	ralia (2	7.5°S, 1	53.0°E)				May 1950
Time	h'F2	foF2	h'71	foF1	h'E	foE	fEs.	(M3000)72
00	260	4.7					2.4	2.9
01	250	4.8						2.8
02	260	4.8						2.8
03	270	4.5					3.0	2.8
04	250	4.3					2.0	2.8
05	250	4.2					2.3	2.8
06	250	4.9			-t-tendro	(<1.5)		3.0
07	230	8.0			130	2.3	3.6	3.3
80	230	9.6			310	2.9	3.5	3.3
09	240	10.6	230	4,5	105	3.3	3.6	3.2
10	250	10.9	250	4.6	105	3,5	- • -	3.2
11	250	10.8	210	5.0	105	3.5		3.3
12	260	10.5	210	5.0	100	3.6	3.8	3.1
13	250	10.2	220	4.8	105	3.6	3.6	3.0
14	250	10.9	SSO	4.5	105	3.3	3.7	3.0
15	240	10.8	220	4.5	110	3.1	3.6	3.0
16	230	10.8	-		110	2.7	3.7	3.1
17	220	9.8				(<1.7)	3.5	3.1
18	210	7.7					3.3	3.0
19	230	8.5					3.0	2.9
20	240	8.0						3.0
21	240	5.3						2.9
22	250	5.3					2.8	2.8
23	260	5.0					3.0	ž.ĕ

Time: 150.0°E. Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 seconde.

	Table 26									
Tokyo.	Japan (3	5.7°N. 13	19.5°E)					May 1950		
Time	P.LS	foF2	h'F1	foFl	h'E	fol	fEs	(M3000) J2		
00	290	7.8					4.5	2.8		
01	230	8.0					3.3	2.8		
02	260	7.4					2.9	2.8		
03	270	7.0					2.8	2,8		
04	260	6.8					2.8	2,8		
05	230	7.6			110	2.0	2.3	3.1		
06	220	8.7			100	2.6		3.3		
07	240	8.8	220		100	3.0	4.2	3.2		
08	250	8.6	230	an 11-12-	100	3.4	5.0	3.1		
09	280	8.4	550		100	3.6	5.4	3.0		
10	300	9.4	210	5,5	100	3.7	5.0	2.9		
11	310	10.0	550	5.4	100	3.8	5.4	2.9		
12	300	10.2	230	5.4	100	dan age and	5.4	5*8		
13	300	10.6	220	5.4	100	3.8	5.8	2.9		
14	300	10.6	220		100	3.7	4.8	2.9		
15	300	10.9	350		100	3.6	5.0	3.0		
16	270	10.5	230		100	3.2	4.8	3.0		
17	250	10.0	240		100	2.8	4.5	3.1		
18	250	9.8	240		100	5.5	3.9	3.1		
19	240	(8,9)					4.6	3.0		
20	250	8.2					4.5	2.9		
21	280	7.7					4.3	2.8		
25	280	8.0					4.4	2.8		
23	300	8.0					4.4	5.8		

Time: 135.0°B. Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, manual operation.

Rarotor	nga I. (2	1.3°S, 15	9.8°₩)					May 1950
Time	h'F2	foF2	h'F1	foFl	P, E	foE	2Es	(M3000) 12
00	280	7.6						2.8
01	270	7.2						2.8
02	280	8.7						2.9
03	270	6.4						2.9
04	260	5.8						2.9
05	280	5.2						2.9
06	270	5.8						2.8
07	250	8.4		-t-tagedre		-	3.2	3.0
08	250	11.3		Ann age	110	3.3	3.9	3.0
09	250	13.0	230	7.6	110	3.4	4.2	3.0
10	250	13.8	220	5.2	110	3.6	4.5	2.9
11	250	13.4	210	6.0	110	3.7	4,5	2.9
12	280	12.5	250	6.1	110	3.7	4.8	2.9
13	290	13.0	250	6.0	110	3.6	4.7	2.8
14	290	13.3	250	6.3	110	3.5	4.6	2.7
15	300	13.0	250	8.0	110	3.5	4.5	2.7
16	280	13.4	250	5.9	110	3.1	4.5	2.7
17	250	13.0		~	310	2.5	3.9	2.8
18	250	10.4					3.4	3.0
19	250	9.0	5.50	4.8			3.2	3.0
50	250	9.7					2.8	2.9
21	250	8.4						3.0
22	250	8.4						3.0
23	250	8.0						3.0

<u>43 1 450 8.0</u> Time: 157.5⁰W. Sweep: 2.0 Mc to 18.0 Mc, manual operation.

				Table	30			
Wathero	o, ¥.	Australia	(30,3°S,	115.9°E)				May 1950
Time	h'F:	e foF2	h'71	foFl	h'E	foE	fEs	(M3000) J2
00	270	4.0					3.0	2.8
01	270	4.0					2.7	2.8
02	270	4.0					2.9	2.7
03	270	4.0					2.9	2.8
04	260	4.1					3.0	2.9
05	240	3.6					2.6	2.9
06	250	3.6					3.0	2.9
07	240	5.6				1.6	2.0	3.4
08	240	8.2				2.5	3.2	3.5
09	250	9.6	230	4.2		3.0	3.2	3.3
10	280) 10.8	230	4.6		3.2		3.3
11	260) 11.3	230	4.7		3.3	3.6	3.2
12	260	10.9	230	4.8		3.4	3.7	3.1
13	270	11.0	240	4.9		3.3	3.7	3.0
14	270	11.4	230	4.7		3.2		3.1
15	260) 11.0	240	4.0		3.1	3.3	3.1
18	240	10.8				2.6	3.2	3.1
17	230	10.0				1.8	3.2	3.1
18	210	8.6					2.8	3.2
19	510	6.3					2.8	3.1
50	230) 5.3					2.4	3.2
21	240	4.3					2.4	3.0
22	250	4.2					2.3	2.2
_23		4.0					8.4	2.8

Time: 120.0°E. Sweep: 18.0 Mo to 0.5 Mc in 15 minutee, sutomatic operation.

				Table	31			
Canbers	ra, Auetra	lia (34	5.3 ⁰ S, 149	.0°E)				May 1950
Time	P125	foF2	h'F1	fol	h'E	fol	120	(M3000) 35
00	250	4.6					2.8	2.9
01	250	4.6					2.8	2,9
02	260	4.3					2.8	2.8
03	270	4.2					3.1	2.9
04	260	4.4					2.6	5.8
05	230	4.1					2.8	3.0
06	240	3.9			-	E	2,5	3.0
07	5.50	6.9			(110)	1.8	3.1	3.3
08	550	8.2			100	2.5	3.5	3.4
09	230	9.4	550	(3.9)	100	3.0	3.8	3.3
10	240	10.0	SJ O	(4.5)	100	3.3	3.6	3.3
11	240	11.0	210	4.5	100	3.4	3.5	3.3
12	835	10.5	200	4.5	100	3.4	3.8	3.1
13	240	11.0	200	4.5	100	3.4	3.9	3.1
14	240	11.3	510	4.3	100	3.2	4.0	3.1
15	240	11.0	210	4.0	100	3.0	3.8	3.1
18	550	10.6			100	2.5	3.6	3.2
17	210	9.6			(110)	1.8	3.4	3.2
18	210	8.2				(1.5)	3.2	3.1
19	230	7.0					2.9	3.1
20	230	5.8					3.0	3.0
SJ	240	5.0					2.8	3.0
SS	250	4.8					3.0	2.9
23	250	4.4					2,6	5.9
Mines	160 00 m							

Time: 150.0° Z, Sweep: 1.0 Mo to 16.0 Mc in 1 minute 55 seconds.

	Table 33									
Raroto	nga I.	(21.3 ⁰ 8,	159.8°W)					Apr 11 1950		
Time	h'F2	foF2	h'F1	foFl	h'E	fol	fEs	(M3000) F2		
00	560	8.3						2.8		
01	270	8.4						2.8		
02	280	7.8						2.8		
03	280	7.8						2.8		
04	290	7.4					2.6	2.8		
06	280	6.6					2.9	2.9		
08	260	6.6			-		3.1	2.9		
07	250	10.3			120	2.6	3.6	3.0		
08	250	12,5			110	2.9	4.6	3.1		
09	250) 13.8	550	5.6	110	3.4	5.0	3.0		
10	250	0 14.0	550	6.7	110	3.6	5.0	2.9		
11	250	0 14.3	230	6.4	110	3.8	5.2	2.8		
12	250) 13.8	\$50	6.1	110	3.8	4.6	2.9		
13	59() 13.8	220	6.2	110	3.8	4.5	2.8		
14	29) 14.1	230	5.9	110	3.7	4.8	2.8		
15	300	0 14.0	250	5.9	110	3.5	4.6	2.8		
16	290) 13.3	250	6.2	110	3.2	4.0	2.8		
17	25	0 14.0	250	6.7			3.9	2.9		
18	25	0 13.4					4.0	2.9		
19	250) 12.6	250	7.0			3.6	2.9		
20	25	0 11.8					3.6	2.8		
21	25	0 11.1					3.1	2.8		
22	25	9.8						2.9		
23	25	0 9,6					2.8	2.8		

Time: 167,5°W. Sweep: 2.0 Mc to 16.0 Mc, manual operation.

_			-0	Table 35				
Canber	ra. Austr	alia (35	.3°\$, 14	9.0°£)				Apr11 1900
Time	P125	foF2	h'F1	foFl	h'E	foE	fEq.	(M3000)72
00	270	5.8					2.7	2.7
01	270	5.7					2.9	2.7
02	270	5.7					2.5	2.8
03	250	5.4					2.8	2.9
04	240	5.2					2.7	2.9
05	240	4.7					2.8	2.9
06	240	4.2				E	2.6	3.0
07	550	6.8			100	2.2	3.0	3.3
08	230	8.5	230		100	2.7	3,6	3.2
09	230	10.0	250	4.1	100	3,1	3.8	3.2
10	240	11.0	210	4.6	100	3.3	3.7	3.1
11	240	11.5	210	4.5	100	3.5	3.6	3.1
12	250	11.4	200	4.6	100	3.6	3.8	3.1
13	250	11.8	210	4.5	100	3.6	3.5	3.0
14	250	11.8	250	4.4	100	3.4	4.0	3.0
16	240	11.5	220	4.4	100	3.2	3.5	3.0
18	230	11.0	230		100	2,7	3.6	3.0
17	230	10.4			110	2.3	3.6	3.1
18	250	9.7				2	3.0	3.0
19	220	8.0					3.2	3.0
20	230	7.3					3.0	3.0
21	240	6.8					3.0	2.9
22	240	6.3					2.9	2.8
23	250	6.0					3.2	2.8

Time: 150.0°E. Sweep: 1.D Mo to 16.0 Mc in 1 minute 65 seconds.

Christeburgh New Zealand (43 5° S 122 7° E) May 1950													
Christe	hurch, Ne	w Zeala	ad (43.5	°\$, 172.'	7°E)			May 1950					
Time	P1255	foF2	h'Fl	foFl	h'E	foB	1Es	SE(0005H)					
00	280	4.5					2.5	2.7					
01	290	4.2					2.8	2.7					
02	280	4.1					2.4	2.7					
03	280	3.8					2.0	2.8					
04	280	3.6					2.0	2.8					
06	260	3.4					2,1	2.9					
06	250	2.9					2.0	2.9					
07	250	4.6				1.4	2.6	3.1					
08	240	7.2	41-01-0.0	straus-		2.0	2.9	3.3					
09	240	8.5	240	3.6		2.6	3.4	3.8					
10	240	9.1	240	4.2		3.0	3.5	3.3					
11	250	9.5	240	4.4		3.1	3.5	3.2					
12	250	10.0	230	(4.4)		3.2	3,8	3.1					
13	250	10.4	240	4.4		3.1	3.7	3.1					
14	250	10.4	240	4.1		5.9	3.7	3.1					
15	240	10.0	240	3,6		2.6	3.3	3.1					
16	230	9.7				1.9	2.8	3.1					
17	230	8.6				1.4	3.0	3.1					
18	240	7.4					2.7	3.0					
19	250	6.6					2.7	3.0					
20	250	6.5					2.4	2,9					
21	260	5.1					1.5	2.8					
22	270	4.8					2.4	2.8					
	\$90	4,5					2.5	2.7					
Titmet:	172 5018												

Time: 172.5°M. Sweep: 1.0 Mc to 13.0 Mc.

				Table	34			
Brisbar	ae, Austr	alia (27	.5°5, 15	3.0°I)				April 1950
Time	P125	foF2	h'Fl	fo Fl	h'Y	foE	fEs	(M3000)F2
00	280	6.0					2.8	2.7
01	270	6.1					2.1	3.8
02	260	6.1					1.4	2,8
03	240	5.8					1.6	3.0
04	240	6.0						2,8
06	240	4.6					1.2	2.9
06	240	5.4				1.7		3.1
07	240	8.6			110	2.5		8.3
08	230	10.1		_ =	110	3.0	3.5	3.2
09	250	11.0	250	4.6	110	3.3	3.6	3.1
10	250	11.4	220	6.0	110	3.6	4.1	3.1
11	250	11.5	210	5.0	110	3.7	4.2	3.0
12	250	11.3	210	6.3	110	3.7	4.0	3,9
13	265	11.8	220	5.4	110	3.7	4.0	2.9
14	260	12.2	220	6.0	110	3.6	3.4	2.9
16	250	11.7	230	5.0	110	3.3		2.9
18	240	11.2			110	3.8		3.0
17	230	10.8			140	2.2	3.4	3.0
18	220	9.6					3.1	3.0
19	230	8.1					2.7	2.8
20	240	7.5					2.4	2.8
21	250	7.2						2.9
- 22	250	7.0					2.6	2.8
23	270	6.5					2.8	2.0

Time: 150.0°E. Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 seconds.

				Table 36	Ś.				
Hobart.	Tasaa ia	(42.808	. 147.4	E)	-		A	pril 1950	
Time	h'F2	1082	h'Fl	foFl	h'E	foE	2Es	(M3000)F	2
00	270	4.9						2.7	
01	280	4.8					2.1	2.7	
02	270	4.4					2.1	2.7	
03	260	4.5					2.1	2.8	
04	250	3.8					2.1	2.9	
05	240	3.6					1.6	3.0	
06	250	3.3						2.9	
07	240	5.0			120	1.8	2.0	3.2	
08	230	7.0			110	2.4		3.2	
09	240	6.5	230	4.1	100	2.9		3.0	
10	250	(7.2)	230	4.5	100	3.0		(2.9)	
11	260	(6.7)	210	4.6	100	3.3		(2.8)	
12	260	(7.5)	220	4.6	100	3.3	2.1	(2.7)	
13	250		250	4.8	100	3.3			
14	240		220	4.3	100	3.2			
16	230		230	4.0	100	3.0	2.1		
16	230				100	2.7	2.1		
17	230				120	2.1	2.0		
18	\$50	(8.0)				B	2.0	(2.9)	
19	550	7.2					1.5	(3.0)	
20	230	6.6					1.6	2.9	
51	230	6.1						2.9	
22	250	5.5						2.8	
23	. 270	5.0						2.7	

Time: 150.0°%. Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

Time	h'F2	foF2	h'F1	foFl	h'E	fol	1 Ka	(M3000)F2
00	270	8.0					2.1	2.7
01	270	5.4					2.7	2.7
02	270	5.2					2.5	2.7
03	270	4.8					2.7	2.8
04	270	4.3					2.5	2.8
05	250	3.8					2.8	2.9
08	260	4.3				E	2.1	3.1
07	240	5.8		-	110	2.2	2.1	3.2
08	250	8.5	230	4.2	100	2,8		3.2
09	270	7.0	220	4.6	100	3,1	2,5	3.0
10	280	(6.8)	200	4.7	100	3,3	3.0	(3.0)
11	\$90	(8.8)	200	4.8	100	3.3	3.0	(2.8)
12	290	(7.2)	210	5.0	100	(3,3)	3.2	(2.9)
13	300	(6.8)	310	4.9	100	3.3	3.4	(2.9)
14	SBO	(6.8)	220	4.7	-	3.3	2.9	(2.8)
15	270	(8.8)	550	4.6	100	3.2	2.7	(2.9)
18	250	7.0	550	4.3	100	3.0	2.5	(2.8)
17	240	(7.0)	230	3.8	100	2.6	5.0	(2.9)
18	240	(6,9)	-		120	2.1	2,1	(2.9)
19	230	7.3					2.1	(2.9)
20	240	7.3					2.1	2.8
SJ	240	6.8					2.1	2.8
22	260	6.4					2.8	2.7
23 1	260	8,2					5.5	2.7

Poitie	rs, Franc	e (48.6 ⁰ 1	1, 0,3°E)	-		វិស	nuary 1950
Time	h'12	foF2	h'F1	fo Fl	h'E	fol	120	(M3000) F2
00		(4.2)						-
01		(4.0)						-
02		(3.9)						
03		(3.9)						-
04		(3.6)						Service .
05		(3.2)						
06		(3,2)						
07		4.0				12		(2.8)
08	230	7.1				E .		3.4
09	550	8.8				-		(3.2)
10	225	9.5						-
11.	230	10.0				-		-
12	230	(9.8)	200	3.6		3.2		-
13	230	9.9	200	3.3				-
14	230	9.9	-					
15	230	9.7			-	~		-
16	225	8.8				2		3.2
17	\$30	7.8			-	E		3.2
18	240	6.6						3.1
19	250	5.4						3.0
20	240	4.6						(2.9)
21	-==	4.1						(2.8)
23		4.2						(2.7)
23		4.0						(2.7)

Sweep: 3.1 Mo to 11.8 Mo in 1 minute 15 seconds.

Form adopted June 1946	bureau of Standards (Institution) B.E.B.	McC.	22 23	0 300 290	× 00 m ×		0 250 (22)	0 (260) ^S (250) ^S	0 (300 A (290) A	× (3-20)× 300 ×	5× 270× 260×	260 × 300 ×	O X X	74 - 20 x (300)S	280 300	(oz z) (300)	0 290 280	0 (aso) 300	0 (280) ⁹ (250)	ن (300) ⁸ (300) - 50	0 × (220) × (320) ×	* & * . & *	2 290 × (300)A	1 280 290) (280) 270	0 280	0 27:0 290	0 230 280) = = = = = = = = = = = = = = = = = = =	0 (260) 220	C 5.00	0 260 (300) ⁸	0 300 300	A 220	1 280 290	38 20
	Vational I	ted hur B.	20 21	36979 28	230 2 22	250 (26	250.024	260) 055	250 25	3004 40	260)× 28	260 27	250 A 22	260× 1270	250 26	240 /261	260 28	230 22	250 0250	230/ 23	230 27	B * B	280 29	240 (270	250 (28	250. 27	230 23	230 22	230. (231	220 23	0	250 22	230 (28	250 A	250 36	20-
	Scoled 1	Colorlo	61	(0× c)	250 ×	080	270	250 (260	× 00 %	×(065)	260 ×	280%	290%	260	Losal	[380]x	250	040	020	2704	£	~ ~ ~ ~	230	0200	250	230	080	040	. 040	U	250.	250	040	250	00
			18	260	× 000 ×	× 320 ×	(085)	280	300	× 0/m	x [580] x	× 0890 40	× 3×0×	× 300 ×	280	A (260) A	x 000 x	000	270	(020)	* (~~)	× ×	× [360] ×	0720	300	08 6	360	950	260	360	υ	270	250	260	280	
n 25, D.C.			17	0 300	10 320	× 330	0 320	20 310	0 330	0 320	0 260	× 380	01 3 70	× 370	× 0 330	30 [590]	× 0330	0 280	0 ~ 80	0 2 90	× 300	C) ×	× 450	0 270	0 300	0 310	0 280	0 290	0. 280	0 280	0 290	0 300	00000	0 280	0 300	,
, Woshingto			5 16	50 31	90 37	50)× 38	00 37	20 33	20 35	80 4 35	7 × 4 7	80 4/1	30 45	×0%	30 35	5000	90 381	30 30	20 30	30 07	50 4 33	CD X	C X C	00 00	40 31	60 35	10 30	00 31	00 30	10.30	00 30	50 34	50 331	00 30	50 33	
Stondords,	ATA		14	330 34	5 012	500 (43	4 00%	.e 088	370 3.	350 31	C × D	470 S	550 6	510 4	160× 2	350 3	410 %	35.0 3	330 3.	340 023	270×	C ×	O × D	350 30	100 3.	36.0 36	310 3	310 30	310 3	0000	340 30	360 33	380 31	310 30	360 3	6
39 Bureou of	D	Mean Time	13	370	1017	590X 2	420	350	380	4404	ۍ ۲	430 4	500 *	U V	+50 +	520	× 20 ×	000	000	08 08 08	410	× O	۲ D	000	1001	390	330	3 50	0/8	3 0 0 5	08.0	08 0	3 70	045	 ") 08 E	
ABLE y, National	HER	5°W	12	330	00%	500 ×	500	320	390	[woolk	× U	3 70 X	× 00%	6 00 x	× 00 ×	3 - 0	7504	0 9 9	320	005	370	× U	× U	360	430	370	300	340	300	0 8 9	320	390	500	340	370	. (
T/ Loborotor	NOSF	2	=	340	[460]	×002	410	350	410	[wao]"	¥ O	500 +	4204	× O	× 00×	340	510 *	340	350	320	450	× D	s G	02 20	01/4	310	3504	350	300	300	300	380	390	340	390	
opogoțion	Ō		0	360	500	× 500 ×	0 80 M	300	350	014	× U	* 500 *	x 510X	× 400 ×	* 3,0 ×	320	1904	290	060	300	120	× O ×	× ن ×	270	200	330	290	[300]	000	290	300	350	370	300	350	
Rodio Pr			60	0/10	390	× 470	N00	300	580	0 370	U ¥	× -780	v v	× 550	N N N N N N N N N N N N N N N N N N N	0600 0	320	280	300	300	360	ڻ *	۲ ۲	000	00%	330	0 3 0 0	00800	000	280	080	0 [360]	Ł	080 0	930	
Centro			08	€	0 37	10/x ×00	0 380	300	0 330	0 35	0 × 0	۲ ک	U ×	U ×	0 \$ 500	0 290	300	300	0 260	0 300	250	ڻ ×	U F	12/ 250	() 0	0 300	0 28	0 26	0 260	0 0 80	0 250	0 360	3	0 280	 00 35	
			6 07	50 0	407 ⁴ 38	50 632	15 0%	20 30	90 36	00 37	20 28	10)× G	ل ۲	O ×	×0 25	×0 31	Q 4	50 02	20 28	60 30	50 33	00 ×	ں *	40 × 104	20 20	70) 28	50 21	20 02	40. 26	×0 023	40 2 5	50 23	50 22	50 23	 50 30	
	0		05 0	C 020	300 13.	200 ×	290 2	350 0	200	300) 3	B K 3	10) × (01	300) × (0	300) % (N ×	280) ~	260	c 060	260. 2	260 0	300) ~	E 20E	x Q	200 × 20	300 2	2607 (2	270 2	270 2	250) ^S 22	040 S.	50) S (020	280)5 2	300) 21	280 0	080 0	
		Mol	04	(02 m)	S (ore)	S 200K	(280) ^S	380) 5	A [06 C	;) (oc ~,	× Q	B 1(3	300 (3	300]8 (N X	260 10	Ø	300	280	280	(300) (3204	¥ Ø	370)X 3	280	250 6	· 060	250 0	270 (.	230 .	290 6	-780 (0	280 (.	0800	 280 0	
	Augus	1 C. 7	E03	(02 m)	080	260 K	06 20	260 (280 1	260	× Ø	× 7	3005	(300)x 1	× 00 ~	080	A	270	060	0800	(300) ⁸	340 ×	Ø ¥	310 ×	250	250	260	270	240	090	020	290	300	220	080	
	Km (Unit)	38.7°N	02	300	290	K 290 x	[290]A	8(02 00)	250	300	× D	5 (350)k	5 280 ×	x (02 00) x	t 250 K	080	4 2 60	300	-290	(050)	(330)	7 10 4	× Ø	300 ×	350	280	250	390	260	S -260	220	320	(310)0	280	0800	
	tic)	IUSDAA	10	(300)	005 0	× 300	300	5 280) ~ RO	0 (2) (7)	N X	× (3/0)	× (290) ×	x (280)	× ~ 80	300	S [570]	300	080	5 0700	∢	1000	R R	× 390	020	0600	260	(080)	280	(280)	0620	8 (320)	06 - 200) 300	 068 0	
	h'F2 (Charocteris	served of	v 00	270	000	3 3/0	300	(270	5 (270	300	3 370	300	300	(310)	300	300	1280	300	290	(250	A	310	0	300	270	280	270	270	280	290	280	(300)	(320	(330)	 on 300	
	I	qo	D				V	0	9		4	01	2	=		-	4	-	9	17		- 3	20	2	22	23	24	25	26	27	28	29	30	10	Medi	

Manual D Automatic B

Form adopted June 1946

		Nationa
TABLE 40	Central Rodia Propagotion Labaratory, National Bureau af Standards, Washington 25, D.C.	IONOSPHERIC DATA

August 1950 Mc foF2

lards	MCC D																																			
Stand	ļ	-	14.5	4.2 K	(3.9)5	5.0 F	(2:6)5	5.2	4(5.6)E	×(1.4)	4.4K	(3.9)5	メレナ	5(++)	(5:0)5	48	(4.1)5	2(4:5)	5.3	(5.2)	B	3.4 F	48F	4.35	5.3F	494	4.8	(23)5	5.3	(3.9) ³	(3.6)3	(3.6) ^F	4.4	8.4	30	
Instit		000	5.4	(4.7)%	(4.8)\$	5.6	6.0	6.0	([6.1] R	(4.7)F	(S.3) F	4.2 K	×(5.0) 2	3(6:H)	(٤:۵)	245	(4.8) ^s	(6:5)	1:57	5.3 ×	Σ Σ	3.9 8	(S:0)5	(4:4)5	5.6	5.2	5(4.5)	5.8 F	5(8.5)	J	(4, 0) ⁵	(4:0)F	5.1	(5:3)	29	
al Bure	BEB	- c	5 b)	S3 X	\$(0:S)	5(2.9)	6.9	6.4	((9.9) >	(4.9) 8	\$ (0.9)	4-7×	(5.3) F	(5:3)2	((+,))	165	(S.8)5	2(1.9)	9(0.9)	7.0 K	N N	4.5 F	5.6 F	5.35	(5:3)5	(1.2)	\$(7.9)	(6.4)F	\$ (0.92	J	5.5	(4,4)F	5.9	(6:5)	39	
Nation	by:		A(47)	\$(9.9)	(6.0) 5	s(E.9)	5(6.8)	6.8	(g.0)K	$(5.3)_{K}^{F}$	(8.9)	x((0.))	(62)5	((7.7)	7.3	6.4.7	7.5	(2:3)5	[(.7]M	7.8 K	B×	4.7F	6.6F	(28)5	5(4.9)	\$(¢.7)	(7.4)5	(6.6)	s(L.L)	J	\$(2.9)	5.3 F	6.4	 (9.9)	39	
	Scaled		2(2.8)	7.9.8	6.3	6.4	(8.4)5	6.6	×(11.0)	(5:0) x	7.0 K	A(2.9)	(5.9)%	5(4.7)	(2.8)5	[6.0] M	s(H:L)	(2.8)5	$(7, 4)^{p}$	(E.3) \$	B	4. 6 F	₹(8.9)	5(5.2)	s(L:7)	7.6	\$(9.6)	7.6	((8.1))	J	\$(4.2)	2(6:5)	5(1.7)	(8.9)	29	
		9	9.9	7.9 K	6.0 ×	5.9	(8.6)5	6.7	7 (9.0)	4.8 K	×(6.4) =	-5-5 K	5:7K	4.9	7.6	5.6 F	g(E.L)	(2.3)5	(1.1)P	8.7K	MK	4.5K	7.6	6.2 F	6.5	7.8	(2.2)5	7.1	7.8	J	((2))5	50	6.1	6.7	29	
		1	7.8	7.2 K	((e.1) ^S	6.0	7.8	6.5	8.8 X	4.6 K	5.8 K	× 5:5	(5:4) ⁵	6.08	7.6	5.6 #	1.7	7%	2.6	8.0K	5(4.0)6	4.5-K	7.7	6:3	6.6	7.4	7.4	7.5	7.8	7.7	4.9	5.9	6.4	6.6	31	
		91	2 8	00.9	5.9 K	5.0	(2.2)5	(-9	8.4×	48 K	5.6 K	S.4K	SUHK	6.0 K	SZ	SSK	2.0	7.8	7.6	7.4K	<3.9 G	<4.0 F	8.05	6.1	6.4	6.7	7.0	7.5	7.7	7.3	5(4.2)	6.2	(J.D)P	6.8	31	
A		E E	7.8	(6.6)5	(5.6)x	5(0.7)	(2.2)5	5.2	7.5K	<43 G	S.8 K	48K	* 5.2	5.6K	7.5	5.6 K	6.8	9.2	7.2	$(7,2)_{\kappa}^{S}$	2(4.1)5	24.2 G	8.0	2.4F	6.3	7.4	7.0	7.6	7.4	7.3	6.7	6.1	7.0	6.6	31	
DAT	4	14	1.00	6.2	5.4×	5.2	7.0	6.3	7.7K	シャナン	5.6 %	4.8 K	(S:0)x	× 9:5	6.9	5.4 K	9.9	7.7	1.7	6.9×	< 4.2 8 ×	<438	7.5	6.05	6.9	2.6	2.2	8.0	7.1	6.7	(2:8)5	5.8	7.5	6.3	31	.25 min
0	T upon	1 2 I	7.4	6.0	(5.1)*	5.8	7.2	6.1	7.1 K	<4.49	XHS	N(5.0)5	5542	S.6 ×	7.0	[5:4]N	6.6	7.5	72	é.9	<(4.0) S	<4.4 G	7.5 F	5.85	5.9	7.8	7.2F	(2.9)5	7.2	6.8	6.1	5.9	7.3	(.)	3/	Mc In O
HER	5°W	2	7.8	6.0	(S:4) B	5.2	7.3	1.7	(6.0) ^B	<43 F	6.0 %	5.48	(5:0) x	[S.6]X	7.0	(5.3)x	1(8.9)	7.6	7.2	6.3	<41914>	メキャン	6.6 F	SUFF	6.1	7.6	7.0	7.8	7.0	69	6.0	¥:S	6.6	6.1	16	Mc to 25.0
JOSF	2	-	7.0	[5.6] 5	5.7K	(S.3) ^M	7.0	594	[6.0]~	ζ(4.3) ⁴	((S.3) S	S.3 K	<45 K	5.5 K	6.8	5.4 K	$(7.2)^{3}_{7}$	7.3	7.2	5.9	< 4.3 G	<4.3 G	6.3	(5:3)5	6.0	(J.4)H	H(5. 9)	7.9	7.0	7.0	5.6	5.4	6.4	5.9	31	ep 1.0
101		9	4.7	2(E:5)	5.4 K	(5.3)#.	7.1	6.3	6.0 V	×448	K (5.0) =	[5.2] ^{\$}	5.2 K	5:3 F	6.8	SSX	7.2	6.8	(8.9)P	9:5	<41 8	<4.1 S	H(C.9)	S:3	2(8.3)	7.3	14.9	7.2	7.4	7.0 H	5.5	5.2	6.64	 6.0	31	Swe
		00	1.1	5.6	5.3 K	(1.5)	7.6	5.9	(6:5)	<4.0 €	(4.9) K	<4.3 F	×(4.7)7	5.48	5(1.7)	6.0	7.4	7.4	6.8	5.6	< (4.0) E	K<(3.9)5	[63]N	(0:0) ⁵	5.7 #	7.1	((2))	6.9	6.2	6.3	[1:5] M	[5:2]M	6.8	5.9	3/	
		aC	5.9	5.2	S.O.K	4(0.5)	6.6	5.6	5.8	<4.7 G	<4.0 F	×4.18	<4.3 5	(4.7)F	6.0	(5.2)	6.7	6.6	6.1	2:5	<3.8 G	<3.7 F	J(2.9)	< 4.36	5.9	6.4F	9.9	6.9	7.0	631	4.7	[4.9] M	6.6	5.6	- 197	
		20	12:2JA	4.8	4.7 K	4.6	5.9	5.1 V	5.4	3.4 K	×4.0 G	<3.6 G	< 40 G	42K	25	A	5.2	8:5	5.0	49	<3.6 F	< 3.2 F	S.3 F	(4,3)8	6.1	5.5 F	5.9	6.4	3.5	5.7	(+;+) ^P	4.7	1(0.2)	0.5	30	
		90	4.6	4.0	4.1 K	4.0	4.5 H	4.2	44	2.9 K	3.8 K	< 3.7 G	< 3.6 G	×(3.7)5	42	¥	4.5	4.6	4.0	(4.1)	3.3 F	<2.69	3.9 F	3.5	(+;S)P	5.0 F	4.7F	475	44	4.4	(3.8) ⁵	(4.0)5	465	1.4	30	
<u>\$50</u>		5	3.7 F	0 0	$(2.8)_{\kappa}^{S}$	3.8 F	3(5.5)	3.8	(3.5)	Bx	S	2.7 F	K(23)P	[28] ^s	(2.7)5	S	$(3.2)^{5}_{P}$	(3.3)5	3.2	3.3 F	$K(2.5)_{F}^{S}$	В ×	$(\mathcal{X},\mathcal{Y})_{\mathcal{K}}^{\mathcal{S}}$	2.4 F	[3.0] ⁸	(3.1)5	3.0 F	3.05	3.2F	3.5	(2.4)P	(2.2) ⁵	2.8F	(30)	27	
th)	7.1°W	40	3.7 F	3.1	2.9 F	$(27)_{F}^{S}$	(3.5)F	3.4	(3:4) ^F	BK	B×	3.3 K	2.5K	x (2.0) 5	2.8	(3.2) ^T	3.1	3.4	3.3	(3.5)5	(2.S) K	B×	1.8 F	(2.5) ⁵	2.8 F	335	3.3F	3.3 F	3.8 F	3.7 ^F	(2.4)5	2.4	2.8F	ά. Έ	28	
Augu	<u>0. C.</u>	E O H	(4.2)5	3.8	3.8 K	315	4.0F	38	4.1	Bĸ	Ч	3.5 K	2.9 K	3.0 K	(3.1) F	375	3.6	3.9	3.8	4.05	(2.S) ^F	B×	2.1 K	325	3.15	3.6 F	38F	3.75	4.35	3.8	$(2.5)_{F}^{5}$	2.4	(2.9)6	3.6	29	
Mc (Unit)	19100, 58.7°N	00	4.75	4.3 F	$(\neq, d)_{K}^{S}$	3.5F	4.1 F	4.2 F	4.4	BK	$^{\kappa}(2,4)_{B}^{T}$	3.9 K	3.1K	4.4.K	345	428	3.8	4.0	4.2	4.3F	$(2.9)_{k}^{F}$	B×	K (2.6)5	3.8 F	3.4 F	4.1	$(3.9)_{F}^{S}$	4.2 F	465	4.1 F	[2.5]	(2.7) B	3.1 F	4.0	29	
	NdShir	2	4.8 F	4.5 F	$(4,0)_{K}^{S}$	3.7 F	455	4.8 F	4.8	8 ×	2.7 K	4.4 K	3.8 K	4.7K	3.9 F	4.8 F	4.0	$(4, 2)_{S}^{7}$	4.7	$(4,2)_{S}^{3}$	40 F	B×	285	4.5 F	3.85	$(4.5)_{F}^{2}$	4.35	4.65	(J. J)F	4.5	(2.5)	3.0	(3.4) F	43	29	
foF2 aracteristic	ved at	00	4.9	5.0 %	4.2 *	$(4.2)_{F}^{3}$	4.7 F	5.2	4.9	K(2.9) 7	3.3 F	$(4,2)_{\chi}^{J}$	3.9 K	4.7 K	3.8 F	4.9 F	4.35	4.5	(2:0)5	(4.C)A	(5.0) ⁵	B ×	3.2 F	4.8F	42F	505	4.65	4.7 ^F	$(5.3)_{F}^{2}$	4.7	2.8 F	3.5	(3.0)F	4.6	30	
(C)	Obser	200	-	10	m	4	5	9	7	8	б	01		12	13	14	15	9	17	81	61	20	21	22	23	24	25	26	27	28	29	30	31	Median	Count	

Sweep<u>I.0</u> Mc to 25.0 Mc in 0.25 Manual 🗆 Autamatic 🛛

June 1946																											Maletan									
Form odopted	Standards	McC	330	2 F	2)5	9) ^S	7 F	+	0	7] F	8) 5 F	o) X	7) S	5) \$	3 (8	2) F	نہ	6	6	1.	×) #	G ×	3 8	9 F	2 F	12	9) 5	7)5	a) 3	0	s (7+	e	4)F	2)5	()	0
	U Of . (Institutio		30 2	.ج ح	+)2 S(E	4] ⁴ (3	+ 5(2	9 5	6 5	. 0)F [4	4) 5 K (3	() × ()	4]X K(3.	o) 5 (4	5)F (4	4)F (5	+ 0	4	5)5 5	5	4 × (5	×	7) F 3	8 F 4	6 F 4	4 5	0) ⁵ (4	2) 5 (4	5) = (5	5)5 5	5	E 2 (9	$(1)^{3}$ (3	4) ² (4	 t) (0	9 3
	Burea McC.	- B.E.B	30 22	5 5	-9) J K (4.	o F [4	9 (5	0) F S	2 ² (0	5) K (4	7 K X(4	0) F (4	2) 3 [4	0) 5 X(5	8) S (4	0) 1 (5	6)5 5.	+ d(0	2) 3 (5:	9 5.	6) X 5.	× 2	3) F × (3.	2) 7 4	9 F 4	0)F 5	7 (5	.0) ⁵ (5.	P) F (5	8) 3 (5		E (3.	P) F (3.	+) +	 .5) (5	9 2
•	tional	d by:	030 21	0) ^S 5	(4) × (4)	4 F 5:	·.4) ^S 5	75 (6	: 9 (6	7.5] F (4	- 0)5 4	3) F K(6	+)× 0 × (+	, 0) F K(r	6 1 14	4 (6	0 F F (5	P)V F(5.	2) 2 (2	5	1) 7 (1	B × 1	+) × L+	2) fr (5	() S +	.0)5 (6	5)5 5	9)5(6	2) 5 (5	8 (5		4 5 (0	(3.	6.4 S	 .2) (5	2 2
:	No Scaled by:	alculate	30 20	د (اه	1) X X (5	2F 5	$_{b})^{S}(\varepsilon$	· / /·	0	7 X(2.	OF X(S	2 × × (6	6) X (1	0) × (0	، او ت	:0)5 7	6 X 6	5 (6	-7) 5 (7	< 	6 X X7	x 1	75 4	· 7) F (6	0) ⁵ (5	5 (6	2) S (1)	6) (6	e) S (8.	1) 5 6		6 (6	+ \$(0.	4) 5 6	(8)	0,
	0,	0	30 19	4 7	$7) \frac{3}{5}$ (7	1) 5 6	2) 5 (6	4)5 8	8	-+) S (10	9) X 5	$9 \begin{pmatrix} 5 \\ x \end{pmatrix} 7$	9) × (6	5× (1) ⁵ (E.	8] 4 (8	1 × 6	3 5 7	3) ⁵ (7	< 6.	8 X 8.	XX	SK 4	4 F (6	2 5 (6	.6 6	(7) (7	5)5 (7	5 (7	0 (8		2 6	1 10	1)5 (6	 .9) (6.	9 2
. C.			30 18	5 8	5 × × (7.	0) X (6	· 8) ⁵ (6.	0 (8	a E.	+ * × (10	6 × (4	2 4 (6	-4 K (5	-6)× 3	4× (6	10 [7	-6 7 7 -6.	2) 2.	13 (7	7 5,	0 % 0	8 ×	+ X +	6 7	1 6	6 6	6 (3	4 (7	3 5	8	2 0	4 6	0	4 (6	6 (6	0
itan 25, C			30 17	5)58	8) 5 7	2 × (6	1. (5	5 8	3 6	9 × 9.	+ ×6	8 × 6	SKS	-4 K (5	2 × X 6	2 22	XXX	2 7	5)5 7	5-)P 7	51 8	8 X 2	+ ×+.	7 7	2 F 6	2 9.0	7 7	2 7	6 8.	6 8.	7 6	1 6	2 6	8 6	 2	
, Washing			30 16	o) ^S (8	9 (6	3 × (6:	o) ⁵ 6	1) 5 7	2)56	5 K 8	+ XL.	7 4 5	: / S	-3 K 5	0 * 0	7.6 7	56 K +	, 9) ^S 7	77 (7	7) (7	54 7	04 7	28 4	.0 7	3 F 6	4 4	73 57	10 7	7 7 7	1 4.1	(1)	2 6	2 1.	8	 8	-
Standards	ATA		30 15	0 (8.	3 6	6) x K (5	g (6	2) 5 (7	2 (6	8 × 7	4 4 4	8 X 5	0) F 5	0) X 5	5) × 6	5	* 2	<i>¹</i>) 0.	2	3	0 × 7	0 4 < 4	2 G (4	9 F 8	0F 6	2) 5 6	4 2	(O) 5	1 0 1	53	2) (2	0 0	0)3 6	1)B 6	3 6	, 3
 ureau af		an Time	30 14	5 2	4 6	4) X (5	9 5	3 (7.	4) 5 (4	4 4 7.	5 K (4	2)F 5.	9]x (5	0 K (5	8) × (5	9 9	4 X 2	8 7	6 7	2 7	6 7	12 K <4	C × <4	6 7	0 5 6	3 (6	7 2	2 (7	0	5	6	2 6	56 (6	5 17	 5	0 3 10 10 35
	ERIC	M	30 13	4 7	9 8	:5) x (5	:7 5	0 7	o) ^S (6	6 X 7	(5) K <4	$7) \frac{S}{F}$ (5	3) F [4	OX S	$[-1) \frac{5}{K} (5)$	0 6	5 4 5	9 6	5]M 7	1.1 7	/	28 <4	46 (2F 7	7 6	8)3 6	5	2	9 6	0	8) 5 6	0	5	9 7	0	1 2 3 V
TAB arotory, N	HdS	1-201	30 12	3 7	8 5	0) X (5	2 H S	9 7	0)5 (4	2 6	3 G < (4	SKK (5	4) F (5	9 K 5	:1 × (5	0 7	+ × 5	1 6	.5 [7	9 7	2 6	11 4 14	3 8 <4	2)F 7	ر ک	o) H (5	0	L L.	8 V 7	9 7	6 (6	5)5 6	3 5	4.	9	10
ntian L <i>o</i> b	ONC	ĺ	30 113	6 8	6] 5	7 × (5	. 4 5	2 (o	7) _S (8:	9 8	-3) R (4	1)5 5	2) X (5	0]B 4	4 K 5	7 7	-2 X 5	9 7	9	7 6	3 6.	18 44	2 G 24	1)F (6	2)5 (5	2) H (S	2 09	8 1 6	5 2	2 2) 5 (2 7	72 6	57 (5	5.3 5	6 4 6	8	31 Cwoon
) Propago	_		30 10	1 7	4] 5 [5	7 X 5	2 5	-7) L.	.1 (5	0 H 5	$(\neq) = \begin{pmatrix} \gamma \\ \chi \end{pmatrix} (\neq)$	· 7) F × (5.	2) 5 (5	0 * [5	0) F 5	5 6	7 5	3 6	5 6	9 V 6	6 5	0 × 14	0 K <4	7)# (6	3 (5	-B) ^S (5	2 7	+ (8 F 7	7 (3	2	-	ر. ر.	6) " ()	5	0
ral Radic			30 09	6 7.	2 [5	× × S	ک 5	2 7	8 6	8 4 6	0 4 (4	8 K K (4	6 5 2 4	GX 5	8] S K(5	.9 6.	7 5	4 7.	4 7.	5 6	9 5	0 6 <4	8 K <4	9) 5 (6	8) 5 5	6 H (5	8 F 7	4 " 6	8 1 6	4 7	9 1 6	2	- 0] M 5	3 (6	5	0
Cent			30 08	6) A 6	2 5	0 + 5	J)S S	o)J 7.	-3 5.	4	6 4 <4.	3 4 4	99 44	2 4 [4	7 14	8	5	4 7.	5 2	6 6	2 5	6 6 54	4 K <3	4 F (5	5) ^B (4	8 F 5	S 6	e 5	2 6	2 7	3 6	4) ^H	-7 [5	3 F	4	0
			30 07	.9 (5	4 5	4 4 5	.5 (4	J) H (E	6) 5 5	8 5	× X 4	7]B 4	4 K 3	0 X 4	9) K 4	7 5	e e	9 5	2)F 6	4 ^V 5	6 5	3 8 < 3	EX XO	·7) F 5.	8] 8 (4	0 F 5.	6 7 6	5 6	6 7	2 0.	7)B 6	4) 6	12 4	22 6	6	30
,	-		30 06	1) ⁵ +	5 4	+ X +	6 4	2 (5	7 (4	8 4	3) F 4	1 K [3	1 × <3	1 8 <4	3) X (3	8) 5 4	2 (2)	9 4	.9 (5	5 4	4	.0) F [3	8 4 23	3) F K (4	15 [3	5) ^B 5	, 5	75 5	8F 5	6 5 3	7 F (4	0)B	0	25	5	~
ì		Mo	130 05	5F (H	5 0 3	6 2 3	4 5 2	τ E.	ы Ы	بر ع	3 × × (3.	5 X 3	.9) × 3	.1)J 3	9) 5 (3	4) F (3	• (3	5 0	2 3	1.1 3	7] A 3	5)F K(3	× 8	8) \$ (3	3)F 3	5 5 (3	.1 F	1 5 3	· 0 F 3	3 F 3	.5 ^F 3	з (3	E 8 (2.	7)7	0	-
•	August (Month)	1.77. Put	30 0.	ء د	4 3	×ei	2 7 0.	4.1 3	5 J/	9 3	×	x = 1	3 1 (2	2) 3 (2	.5 K B//	0) F (2	·6 3	4 3	9	5	E] 8:	7) 7 K(2	¥.	9 × (1	.8 F (2	.0F 30.	4 F	5 F 3	5)53 3	2 5 3	8 F 3	S F 2.	-3) B (2	2 (2	*	1
	D.O.	7°N , Lo	20 02	· () 5 H	2 3	.0, J S	S S S	(, I F 5	2 (3	4 F 3	X	9) J H (6	6 4 3.	0) 7 K(2	58 2	.3 (3	(2) F 3	6 3	9 3	e 6	. с <u> </u>	9 8 [2	3 × 1	1 5(H	5 5 2	2 F 2	8 F 3	75 3.	0) 5 (3	5 F 4	ю.	-1) F 2	.5 F (2	1 5	 2	29
	NIC (Unit	ot 38.	30 05	(1) 5 (1)	1. LF 4	0) K (4	·6 F [3	1 4 F 4	8 F 4	7 F 4	8 4 2	5 × K().	.9 × 9.	6 1 (3	× 8 4	<i>5 F</i> 3	4] F (4	8	(2) 3	5 6	+ B(7-	1) J R	BAZ	7 K K (2	0 5 3.	SF 3	(3) 7 3	5 7 (0.7	+ F (4	.7F 4	4) ^S 4	5) [(2	8 F 2	+ F 3	0	6
-	FZ teristic)		0 020	48 (4	L. 6 F +	4 2) x (4	4.1) 5 3	45F +	5.0 4	50 4	S * 2	3.0) 5 2	43 K 3	404 3	4.6 X 4.	3.8 3	4.7) [4	(0) ⁷ 3	+) 2 (r.1	4 6 4	+) 9.7	45 F K (3	× 8	30 7 2	4.6.F 4	E 7 (0.1	4.8) 5 (4	(3) F (4	16 F +	51) 5 4	+.+ (+	6) ^B (2	3) 78 2	5 7 (1)	 4	59
	(Charac	naviasino.	Day 0(-	2	3 (-	4 (-	5	9	7	8) X (10	-	12	13	14 (-	15 (4	16 (17	18	19 4	20	21	22	23 (4	24. (4	25 (4	26 3	27 (.	28	29 (2	30 (3	31 (3	tedian 4	Caunt

Manual 🗆 Automatic 🛛

55, D. C. Maticard Durrant, of Chard and 1946	National Bureau of Standards Scoled by McC. (Institution) B.E.B.	Calculated by: B.E.B.	17 18 19 20 21 22 23	AA	(2+0)5 2+0K	320 H 270K	8	230 H O	R10 250	230 K 250 K	Q X A X	220 K 240 K	200 × 260 ×	2.30 × 230 ×	220 ^k 250	A	A X A X	240 230	13 A 25 A 25		2.20 × 0.2	A W K	240× 270K	210 0	220 (260)9	340 240	240 S	210 C	A	230 D	230 C	250 250	340 0	(220) 230	230 2250	
IABLE 42 Central Radio Propagatian Laboratory, National Bureau of Standords, Washington 2	IONOSPHERIC DATA	75°W Mean Time	06 07 08 09 10 11 12 13 14 15 16	9 A A 200 (210) 200 200 200 (220) 4 (250) 4 (250) 4	240" 240 210 A A C 200 210 220 220 (230)A	0 × 230 × 200 × 220 × 200 × 190 × 200 × 200 × 200 × A × A ×	0 220 200 200 190 200 190 200 200 200 200	Q 240 200 200 180 (200) 200 190 200 200 230	250 240 [2330] (2201 200 190" 190 200 200 (240) 200	250 220 210 200 200 200 200 200 200 220 × 230 × 230 × 200 × 220 ×	Q K Q K 230 K 220 × 210 × 200 × 210 × 210 × 210 × 210 × 230 ×	0 × 230 × 190 × 200 × 200 × 200 × 1,70 × (230) × 210 × 230 ×	260 250 230 210 × (220) × 210 × 210 × 210 × 200 × 200 × 200 × (250) ×	270 1250 230 200 190 190 190 190 100 100 100 230 1 210 1 230 K	0 K 200 210 K 220 X 200 200 K 190 K 200 K 220 K 210 K 220 K	Q 220 200 190 200 210 (210) 1220 4 (220) (230) 4	A A 240 200 190K 200 4 00 4 00 4 00 4 00 4 0 4 0 4 0 4 0	Q Q 220 230 (200 200 200 190 210 220	0 230 A A 200 100 24 200 2.50	C 250 (250) (250) (220) 200 160 110 200 230	Q 220 230 200 200 200 300 200 210H 210H 210K 230K	0 K 270 × 210 × 170 × 180 × 200 × 210 × 200 × 340 ×	B K B K (260) \$ 250K 170K 240K 210K 200 \$ 200 K 210 K 230K	QK 200H 200 200 190 180 190 200 220 220 210	O (220) 220 200 200 200 200 200 200 200 200	a 240 230 210 (210) 200 1200 420 220 220 220	Q Q 210 (210) 190 190 180 200 230 210 210	Q 230 230 200 210 180 210 1200 220 210 210	0 230 220 200 200 (200) 210 210 210 220 220	Q Q (220) 200 200 200 200 200 200 210 210 210	Q [2440] 220 190 190 1804 200 220 220 2004 220	Q Q 200 1200 400 220 220 200 200 220 (230)5	Q 230 M M 200 200 180# 200 210 220 230	0 0 (210) 210 (200) 200 200 210 210 4 20 220	250 230 220 200 200 200 200 200 210 210 220	
h'FI Km Auduct	(Characteristic) (July Mudus) (Source (Unit) (Month) (Source of Washington, D. C.	Lot 38.7°N , Long 77.1°W	Day 00 01 02 03 04 05		2	Ŋ	4	0	9	7	0	6	01		12	13	41	15	91	17	81	61	20	21	22	23	24	25	26	27	28	29	30	31	Median	

Form adapted June 1946	f Stondords ^{tution)} B.E.B.	McC.	23																																		REMENT PRINTLAG OFFICE 1946 O - 702519
	ILEOU O	60	22			-															_																U. S. GOVER
	Mc Mc	8	5																																		
	Notic d bv:	ulated by	20																																		
	Scale	Calci	61			_																															
			8	Ð	* 7	* 7	0	0	7	3.6 1	P*	* 7	(3.5) ^k	* 7	7	∢	× V	- B	7	8	* 7	* Ø	* 7	0	7	7	7	0	7	Q	U	7	Ø	7	1	η	
	5		17	Ø	× 8.%	*(**)	Ø	**	7	(4.6) x	¢ 8	4.1.4	3.9 x	* 6.8	×(1 %)	∢	2 2 X	d / 7	7	Ø	* 7	X(0:1-)	× 0,¥	7	4. /	d 1) d	7	7	7	7	7	a (E)~)	(3.8)	ア	17	16	
hinatan 5	, ,		16	×8 F	4.6	× 5 ×	4.4	4.6	4.6	X 9.7	* . *	4.5 ×	× 2 ×	* 0 *	£./~	¢	* **	45	A	4.5	*3*	3.9 *	* 0%	(4.5)	**	2.5	(4:5 ⁻)	(4.6)	ア	2.5	0 hit	4.4	1.2	م (جزیم)	4.5	8	
inrde Was	A		15	67	4.7	¥.8 ¥	4.7	2,8	4.6	×8×	¥.3.*	4.5 *	43 K	4.5 4	***	4.7	* 5 *	6%	(4.9)	4.8	×.7 ×	S(1.7)	× ""	80 7	4.6 F	4.7	(4,7) ^P	2.6	(8.8)	4.8 -	4.7	4.5	4.4	2,5	47	18	
of Stand	DAT	me	14	4.8	49	*(2%)	4.7	49	4.7	4.64	* * *	7.6 1	*,5 [*]	4.5 +	4.7K	4.8.4	1.0.1	80.7	5.0	H(6.7)	X(8%)	× 11 ×	×3×	6.0	4 8	4.8	49	5.0	(5:0)	87	d 8%	4.5	4.5	10/2	3.8	3/	um 62.
43	S	. Mean T	13	50	2,9	* 2 *	6.0	40	5.0	(SO)K	4.4 K	× 6 ×	4. O. X	× 5 *	X L K	14,97 9	×.0 ×	8.7	4.7	50	6%	S (0.7)	X X X	4.7 E	5.0	× 8	s.' A	(2:1)	50	50	9 6%	4.7	×,	≁, ح	8.8	è	-Mc In-
BLE	HER	· M•S	12	50	8.4	* 2 *	4.6	5.0	5:0	* 8.4	× 8.4	4 6 X	*6*	*5*	F4.67K	5.0	4.7*	4.9	5.0	49	4.8	* / *	× 1+ 1/2	5.0	80.7	5.0	5:0	5.1	5.0	(6 %)	0.0	4.7	2.7	8	4.8	31	Mc 10 20 1
TA	OSP	75	=	5.0	78]C	7.07	4.7	5,1	5.0	V [3/+]	×(3)×	4.6 4	×.5 ×	7, S K	4.6 ×	4.8.	* 1 *	(5.2)4	5.0	4.7	4.9	×3×	× 8.%	4.7	26	H(6%)	(sT/) ^H	5.3	50	5.0	00 7	47	26	4.6	47)E	Manua M
nantian 1	ION		0	(2)	(4.7) 4	× 9 7	4.5	26	87	4.8	-4. N. K.	¥.5. ¥	7.54	* a %	×.6×	4.9	×.5.	87	~	47	2.7	* 1 *	* ' *	4.7	46	45)"	a (8%)	5-074	(5.2)	3.8	2.6	4,6	7.5	1.5%	4 6	05	Swe
dio Prom			60	d (g.)	4,6	4.5.4	4.4	¥ 00	2.7	27	× 0 ×	* * *	× 9 ×	× 3 ×	* * *	4.8	14	2.7	A	4.4	2.5	×(0)	3(6.5)	4.6	(£.2) ^S	* 7 ((4.5)	2.6	イ	47	4474	MEX-	2	4.50	 4.5	50	
otral Ro			80	V	4.3	×.8.×	¥ 69.7	4 ت	4.3	**	4.7 *	¥ 0	×1.×	*3*	* 50%	4.4	53	7	2,50	d (4.1)	2.3	3. 8 ×	3.7*	(4,3)	(×,3) ^F	オズ	7	7	4	7	×.3 [40 1	8	7	¥.3	ی ن	
3	5		07	Ð	3.95	* 7	a (1.7	7	4.2	> 0. ⁰	8 Å	* 0%	3.6 +	* 0 *	S, 7)×	2.0	∢	Ø	7	4.0	4.19	3.6 ×	* 7.5	7	(3.8) ⁸	7	Ø	7	~	0	7	a	イ	Ø	4.0	×.	
			. 90	a	7	Å Å	Q	ø	7	7	* 0	* 0	3.7 *	3.6 1	Q * 1	Ø	∢	Ø	ø	Ø	Ø	× Ø	2.6 ×	× Ø	Ø	Ø	Ø	Ø	Ø	Ø	8	Ø	0	Ø	1	ر ا س	
	0		05																					_			_										
	102	M _o l	04								_					-								_				-									
	Augus (Month) C.	ang. 77.	03					-		_	_																	-		-	-			-		-	
		7°N	02		_	-	_																				_	-									
)shinat	Lat 38.	io						-				-							-													-				
	DFI steristic)	5	00							_			_					_										_						_			
	fcharat	Opserved	Day	-	2	ю	4	5	9	7	8	6	0	=	12	13	14	15	16	17	18	61	20	21	22	23	24	25	26	27	28	29	30	31	Vedlan	Count	

andards B.E.B.	McC	2																																		
of 51 nstitution	Ì	- 2				_	_														_													_	-	_
Bureau McC.	8	22					_															_							_						-	
Ional		5 2			_		_																			-	_								+	
NDI	orea by .			×	¢	_	_						×	4					_			_		_			_			_			_	+	+	_
Ű	n d	5 6	4	×	DX (120	0		_	×	×	×	×	× 130	1110		×				2)2	_	×				_		8	0					_	1	m
		18	74 (110	× 110	× (120	1/0	/2/	100	× 121	× 110	X 12	×	× 120	× 110	14 03	+ 13	120	A	0	× (120	×	KB		0	8	1/6	_)6 (110	11	0	3	3	Ø	_	0/1	111
		21	100	A 110	× //0	110	110	yA 110	× 120	× //0	× 120	×B	× 110	× 110	(110	K 120	110	120	Ø	* 116	×	4 3	0	0	5 //6	S ///	4 110	1/10	1/1	3 1/1	5//	0	110		011	34
		16	A 100	(110	X 120	110	0//	(100	× // C	× //0	× 110	K 110	100	× 110	110	A (100	120	0 100	120	X 110	5 100 K	× 110	110	120	(01/)	5 (110)	(0/1/	011	011	(100)	5 /20	120	0//0	_	0//	3/
TA		15	A (100)	0//	× (110)	110	0//	100	× 110	5 110	× 110	× 110'	× //0	× 100	110	K (100)	110	4 (110)	110	X (100	× (110)	× 110	110	A 120	100	5 (110)	100	0//	100	100	1/20	120	01110		1/0	3/
A D		14	A (100)	A 110	× 100	00/00	017	11.0	, 0// X	\$ 110'	× 110	× 110	× 110	× 110	A (110	R (100)	011 8	(011)	100	A (100)	× 100	X (00	011	(001) 0	A 100	A (100)	A 100	A 110	00/	100	Ø	120	(100)		100	30
RIC		13 13	(001)	(00/)	× 110	A [100]	00/	011	2/10	× (100)	× 110	× 110	K 100	8 /00	9 (120)	\$ (100)	1110]	110	001	(00/)	R 110	A 110	110	0/11	A (100)	A (100)	A 1100	A (100)	A 100	100	8	110	100		00/	30
PHE	75°W	12	100	C 100	×4	9 (100)	011	110	6/1/6	x 110	× 100	× 110	× 100	K Lool	(011)	A (100)	110	100	A 110	100	(110) X	× (120	A 110	11001	(100)	A (100)	4 (110)	A (100	(100)	A 100	6 (100)	100	011		100	31
SON		=	0// 4	1001	100)	(00)	110	001	(0/1)	10	1104	110	1001	110	110	(001) X	100	011 6	100)	0//	(011)	01/ 2	4 (110)	100	011	4 (100)	(010)	(001)	100	(001)	10017	100	0//		011	9
0		2	+ (100)	\$ (110)	(100)	9 (100)	0/1	011	9/10	* 0//	1104	4017	, 110	(110)	110	(100)	001 6	1011)	[00/]	011	2	(01)	(110)	01/6	0//	(10d	Ø	(100)	(001)	100	(001)	100	(110		0//	29
		60	(011)	(011)	(100)	(100)	00/	011	(0/1)	×011	1104	(110)	100 %	× 0//	011	100	1/00/	(110)	00/	0//	2×	(100)	2(011)	(011)	011	100	Livo7 5	100	100	110	W	W	011		0/1	28
		08	(011)	120	100%	(100)	120	011	(110)A	110 ×	110 K	×011	120×	×011	0/1	A(001)	1010)	110	011	0/1	110×	(110) R	120	120	011	110	110	011	011	(120)	9	W	011		0/1	39
		07	120	011	× 011	(110)4	120	011	011	120 ×	× 011	×011	(110) &	110 ×	011	(120)9	100	011	011	011	(110)3	4	120	Ø	0	Ø	0/1	01/	011	Ø	011	120	0//		110	26
		06	(140)4	011	(120) ^S	110	(120)5		A(011)	120×	BX	(120)A	(110)2	120 %	130	А	S			0//	× 0//	9 ×	120		Ø		120	(120)5	120	Q	(120)0	120	< (0E1)		120	<i>z</i> e
		05																																		
	Mol L	04																																	T	
	2	03																																		
	Nº2 8	02																																		
Machin	E	0																																		
n E rrocteristic)	ed of	00																															1			
(Che	Observ	Dav	-	N	ю	4	5	9	2	8	6	ō	-	2	13	4	5	9	2	0	6	0	_	2	т	4	2	9	~		6	0	_			

								Centrol	andin Proc	vaation	TA	BLE	45 Burson of	Standards	Washingt	100 25 D	c					Fo	m adopted Jun	16 1946
foE		Mc	Aug	ust	9 <u>50</u>					NOI	au C			ν Τ ν	fritten fr		ò	1	Natio	nal Bu	reau o	f Stanc	lards	
(Characterist Observed at	Washin	(Unit) Igton, I	D. C.	11/1				•		5	5		5 2					Scale	ed by:	McC	(Insh	(Iution)	B.E.B.	
	Lat 3	N°7.8	. , Lang. 7	Wº1.7							32	Mos	Mean Time	03				Calc	ulated by:	ы Ю	B	Î	McC.	
Day 00	10	02	03	04	05	90	20	08	60	0	=	12	13	14	5	6 17	18	61	20	21	22	23		
_						2.2	2.6	3.0	3.1	[3.2]A.	4.6	3.5	4	AA	6	2 12.1	() A							
2						2.1	2.6	3.1	(3.2)A	A	υ	3.7 (.	3.6) A	3.6 53.	APA	2.5	9 × 2.4'	× (1.7)						
r0						6.1	4 2.5	× 2.20	[3.0]A	(3.2)A	13 4JX	3.5%	3.4×	3.4× 3.	+ × 3.	2× 2.5	E. 2.3	¥						
4						X	A	A	A	A	A	A	0	3.4 3.	3 3.	2.8	9 2.5							
S						2.0	2.7	3.0	(3.2)P	3.3	A	P	3.7	3.6 3.	5 3.	3 2.5	9 2.3							
9						4	7.2	2.9	$(\mathcal{B}, l)^{\mathcal{P}}$	3.1	3.3	F3.37A	3.4	3.1 2.	4 6.	A	4.2							
7						Ø	2.7	7	Þ	6.6	13:47A	3.4×	3.6×	3.6 × 3	4K 3.	XXXXX	9× 2.3 K	11.20						
Ø						× 0.5	41.8	3.9 %	3.3 ×	3.4×	3.4.E	(3.5)A	3.3 K	3.4× 3.	3× 3.	× 0	5× 2.4×	1						ALTRON
σ						°,	4.8	× 2.9×	[3.1]X	3.2.8	354	3.6 %	3.5K	3.3 × S	4× 3.	2 × 3.8	9× 2.4							
10						4	× 3.6	7.0X	[3.1] A	3.2%	3.374	3.4 x	3.5K	3.3K 3	3× 3.	1 3	X B X							
_						2.2	× (2 2)	×6.6 2	x E	B K	(3.3) 8	(3.4)B	3.4 K	3.5K 3.	5 48.	2 × 3.	9× 2.41	× 2.0 ×	×					
12						(2.1)	K 12.5]	× 2.9×	× 1.5,	3.3 ×	3.14	[3. JR	3.2×	3.1 × 3	2× 3	× 2.5	78 2.3	A	Remoles					
13						2.2	(3.6)	2.8	<i>ц</i> ; 0	(3.4)0	(3.8)0	A	P	A (3.	E 8(E	1.1 (2.9	e) 13							
4						A	(2.4)	1 2. 67h	3.8	A K	AX	A K	XA	1.4 K F	XE	4 × 3.1	8× 2.2	¥					Inducorae	
15						V	(3.5)	173.87A	60	6.6	3.2	3.4 L.	3.470	3.5	<i>w</i> <i>w</i>	.1 2.	8 2.2							
16							2.6	3.0	2./	A	A	3.6	T	4	0	4	6 8							
17							2.5	(3.0)	3.0	0	¢	e e i	3.6	6.6	6	0	Ø							
18						(2.0)	H 2.6	9.1	2 5	(3.3)	A	A	3.6	3.4×	1.3 K 3.	1× (3.6	2/2 (2.2)	জহ					12293	
19				Decre		2.0	× (2.7)	3.0 ×	X E	BX	(3.3)B	(3.4)B	3.3)8	× 8.6	XIX	E × E	×							
20						12	K BY	AK	(3.1X	3.1×1	(3.3)8	AK	A K	3.3× 3	24 3.	0 1 12:7	718 2.4							
21						8.8	\$ 2.5	2.8	Ø	A	A	3.6 (3.5)A	3.3	53	8 1.								
22				-			2	Ø	¢	6.6	9.3	[3.3]0	3.3 L	3.27 8	2 (3.	S A B	Ø							
23						Ø	Q	3.0	3.2	6.6	A(4.E)	P	A	EJ A (E.E	2193	. C S(0.	9							
24							Q	3.0	RE.E	A	8	AC	3.5)F	3.3	(C) (L)	П.О. П.	S							
25						1.9	2.5	(2.9)	L2.275	Ø	Q	A	A .,	3.3 3	E E.	· of (2.8	7(0							
26						(8.1)	4 2.4	2.7	, 1	A	A	(3.6)A	3.5	3.4 3	5	1 2:5	S A					Community (
27						1.9	15.31	(2 C)A	A	4	3.5	3.574	3.5	3.4 3	6.	0 3.5	1(4.1) 4(:	6						
28						Ø	0	2.7	L'a. 07A	6 80	3.3)A	3.6	3.4	3.3 (3.	1)5 [2	.873 2.	C e							
29						(1.1)	B 2.4	12.00	L2.974	3.9	3.370	(3.40	θ	13 (3.	1)5 (2.	9)5 2.	5 3							
30						1-7	4.7	W	14	3.2	3.3)	3.3 (3.2)P	3.3	1.	8 6.	0							
31						1.8	4.00	(2.8)A	.3.7	[3.2]A	(J. 4) A	3.3 (3.4)F (3	3.1) B (3.	1)8 2	9 2	4 3							
	_																							
Median						2.0	a?.5	2.9	3./	3.3	(3.3)	3.4	3.4 3	6	3.	0 2.5	9 2.3	١						
Caunt						17	25	26	23	61	20	22	22	27 2	8 8	6 23	15	જ						
										Swei	80 1.0 N	Ac to 25.0	Mc In 0.2	5. min							U S. COVEI	RIMENT PRINTIN	0 OFFICE 1948 0 -	702519

N at 🗂 Autamatic 🕅

ne 1946																																						0 - 102519
orm adopted Ju	Indards	McC.	B.E.B.														0		0					0		mant	-								0			TING OFFICE 1946 C
u.	of Sto		-	23	5.0 110	3	54 110	Ŀ	6	38120	G	(# 8) S	G	50/10	U	32/10	(52) 5	0	(0 +)	6	27/110	6	80	29100	G	6	6	30/10	9	9	3.0/00	G	U	6	2.6 1/1	*	30	LRNMENT PRIN
	Ireau (Inst		SC.	22	32/10	54/110	70110	5	24110	4 2/20	y	5	U	01/01	υ	9	25/10	32/10	6.8.1	(# 8),5	6	G	B	30/10	C	(5.0),5	9.9 /10	18/10	G	26/110	26100	υ	J	3.2/10	211(1 +1)	2.6	29	U S COV
	nal Bi	ci	Mc	<u>0</u> 1	58110	৬	70/30	U	35110	U	G	U	G	J	01109	28,10	70 110	32120	6	(25),5	b	G	B	55,20	6 0 100	2/109)	G	Ь	9	28,10	28100	υ	6	G	58110	*	29	
	Natio	ď by:	ulated by	20	112110	6	31 /10	U	4.3/20	৬	৬	5	y	4.2110	30 110	33 110	66/10	32110	5	(52),5	6	5	6 9,30	#3/20	(8 3),5	24/10	5	U	16110	G	Ŀ	υ	G	6	9	*	30	
	1 	Scole	Calc	61	8.0100	5	4.3/20	(3.0) 5	(40)50	3.0100	5	1/10	J	20/30	U	34/10	116/10	F	y	(20) 5	U	6	5.2/30	3.0/20	6	ს	G	G	3.3 110	J	(3 8) 5	U	G	U	6	*	29	
				8	86 F	U	5	(6.7),5	4 3/30	U	5	6 4 120	Ŀ	3	U	3.7%	60/20	+5110	6	29100	9	Ŀ	Ę	J	2.9 1/20	৬	G	U	37 /10	2.5 110	50 /10	υ	U	৬	G	*	29	
	ייי ה הי ני			17	1001001	U	5	96/20	U	30/10	Ŀ	4.27	U	6	U	U	01/9%	4 4/00	6	34100	G	0	y	Ŀ	U	6	G	5	6	4 4 110	4.3 F	6	U	U	y	 *	31	
	norgninse			9	96 10	36110	46 /30	3.8 130	U	60/00	IJ	Ċ	J	U	ს	3	6 0/30	4.6100	6	4 2/00	5	0018100	32/30	5	9	30/10	U	6	59/110	৬	G	6	U	5	৬	*	31	
	LA.			<u>1</u> 2	8.2100	3.7110	70/40	741/00	6	(6.0) 5	U	6	39120	S	6	3	U	43100	5	35/10	U	24100	G	6	G	70/00	37110	G	IJ	Ŀ	51/100	6	6	22/00	G	*	31	c
of Char	DAT		Time	4	80,00	U	70/60	Ŀ	O	011 9:4	U	37,110	+0/20	44/110	U	6	50/10	38/00	U	43/10	5	3.2100	6	0110%	J	6 8 110	18.5 %	U	6	G	G	74 /20	U	5	5	*	31	0.25 mil
46	RIC		Mean	13	46100	38100	6	3	5	0 4 7/20	৬	0119.4 0	G	5	0	5	0 71/20	33/00	0	36/10	5	2.8100	G	0 128/10	0 6 6 / 30	G	5 (0 4) 0	3.2100	5.1 700	6.0 700	5.3/110	Ŀ	6	9	G	*	31	Autamati
	PHE		75°W	12	9	U	U O	39 100	35110	0 # 2/10	6	4021	9	0	86 / 30	U	# 7 /10	50/00	54/30	U	J	86/30	U	34/20	58 110	U	54100	11.0100	35/10	64 F	38100	1754	001 5.2 00	U	C	3.5	31	Mc to 2
	SON	1		=	641	U	0/02 0	4.3 %	3.1 110	0 5.0 110	647	5.2110	7.2 150	0/1/ P) C	U	I	G	5.0100	৬	0 (4 7) 0	50/00	36 110	G	9	8.2,70	Ŀ	01109 0	4 8100	36110	5.1100	70/00	3.1100	28100	U	230150	49	30	weep 1.0
				0	8.0 100	88 110	5.8 100	14 0	5	0 + 6/20	5	9	6	8.0100	0	U	5	50/00	6	54116	3.9110	47/10	Ŀ	88 130	011990	5	0 5.0 100	5.8100	6	0/ 14 0	59 F	e G	3.1 100	U	36110	3.9	31	Ň
				60	0.8 0,FC	64 1	01 6.4 0	1.4 /0	90/30	0 50 110	7 4 3 10	52/10	0 82/10	0(/0 +) 0	2.0.7	5	(02)	9.0 %	30//0	0 60/10	54100	+ 511C	6	3	01189	0 72 110	67 13	48/10	(6.0) 5	80/10	3 4 110	40%	8	٤	10.0/30	 54	29	
10.000				08	01/ 4.8 0	G	3.9 110	0 38 10	10.4/20	0 5.2 110	(38) 5	G	36120	0 54/20	0	6.6120	2/1001	70/00	58,10	0118.4 0	0 4.3 110	4.2 /20	G	(8 2),5	G	3.3/20	G	9	U	01104	9 4.2 110	6	G	٤	3.9,70	3.9	90	
		i		07	0 10.01	G	0	3.3 //	8.0 150	0 (4 0) 30	0 54 110	9	0	0 4 4 9 0	6	180,000	100/10	80120	0 (th 0) 2	0 3.8/20	0 3.0/20	Ŀ	3.8110	G	C	G	G	9	Y	3.4.20	4.8720	5	G	৬	9	 *	31	
				90	3.3/4	৬	06613	S	3	0 2.2/3	22/10	G	50%	0 18.5 12	17.0 %	0	6	60/20	0 (2.1),5	3412	32/0	0 0	S	৬	J	06	G	2.014	G	26110	Ŀ	9	G	9	Θ	*	31	OR LESS CORDER
	1950		_	05	C	5 C	66/1	5	U	0 18/3	G	В	G	1612	0	0 7.0/30	(23.5) 1	9	0 18.510	0 5 110	G	(2:0)	G	8	G	20/2	В	G	G	6	G	G	0 6	G	G	 *	27	N foE, (OF RE
	gust lanth)		77.10	04	00	(6 5)	6	0 11910	U	3.1/1	G	В	в	9	5	12.9	0	6	1182 0	2.7 11	U	5	G	Β	G	06	G	G	৬	G	৬	G	23/16	G	G	*	28	Y LIMIT
	PA	D.C.	V , Lang.	03	(5:2)	G	9	0 6.6 /	U	G	B	В	G	ى	9	Ŀ	0 38,0	1104 0	2.6.7	G	G	J	G	8	0 6	0 15 110	G	৬	6	G	G	G	9	G	S	 *	29	S THAN
	Mc, Km	ington	38.7°	02	G	G	10 2.415	118 # 01	G	G	G	B	6	G	G	5	2.9 11	0 18 110	0	J	Q	0	G	82	12,00	5 15/10	C	G	15,70	৬	G	J	3.3 10	Y	G	 *	29	fes Les Wer Fr
	stic)	Wash	Lat	10	G	0 6	0 23/1	10361	6	৬	5 G	8	50 8:0 3	G	0 0	G	9	10 4:210	U	5	C	6 5011	5	8	0 0	0 (28)0	G	G	U	9	৬	0	S	৬	6	*	29	HAN LC
	Es (Characteris	served at _		00 /	G	521	2.5%	3.5 /	5	6	(3 3),	9	3413	6	242	C	9	3.510	6	3.010	6	11 4.9	U	8	1.8.1	1.710	6	6	ს	U	J	5.0 //	G	G	3.0 11	**	30	*
	F	0 0 0		Day	-	2	0	4	120	l °	-	8	6	2	-	12	- 01	4	- 2	16	17	18	61	20	2	22	23	24	25	26	27	28	29	30	3	Media	Count	

Table Additional Propogation Laboratory, Nature 2000 Central Faddia Propogation Laboratory, Nature 2000 Control Matrix Nature 2000 Table 2000 Control Matrix Nature 2000
August Io 50 womth D. C. N, Long 77.10W 603 05 05 06 07 $1, 10n$ 77.10W 03 04 05 06 07 $1, 10n$ $1, 9^{K}$ $1, 9^{K}$ $1, 9^{K}$ $1, 9^{K}$ $1, 9^{K}$ $1, 9^{K}$ $1, 19^{K}$ $1, 9^{K}$ $(20)^{F}$ $2, 1^{K}$ $2, 1^{K}$ $2, 2^{K}$ $1, 19^{K}$ $1, 9^{K}$ $(20)^{F}$ $2, 1^{K}$ $2, 1^{K}$ $2, 2^{K}$ $1, 19^{K}$ $1, 9^{K}$ $(1, 9)^{F}$ $2, 1^{K}$ $2, 1^{K}$ $2, 2^{K}$ $1, 19^{K}$ $1, 9^{K}$ $1, 9^{K}$ $1, 9^{K}$ $2, 1^{K}$ $2, 2^{K}$ $1, 19^{K}$ $1, 9^{K}$ $1, 9^{K}$ $1, 9^{K}$ $2, 2^{K}$ $2, 2^{K}$ $1, 19^{K}$ $1, 9^{K}$ $1, 9^{K}$ $1, 9^{K}$ $2, 2^{K}$ $2, 2^{K}$ $1, 19^{K}$ $1, 9^{K}$ $1, 9^{K}$ $2, 1^{K}$ $2, 2^{K}$ $2, 2^{K}$ $1, 19^{K}$
August N, Lang. 77.1°W N, Lag. 77.1°W N, Lag. 77.1°W N, Lag. 77.1°W N, Lag. 77.1°W N N, Lag. 7.1°K N N N N N N N N N N N N N N N N N N <th< td=""></th<>

Sweep <u>... wu wa wa manana</u> Manual 🗆 Autamatic 🛛

1946	
5 mus	
adopted	
Form	

	Washington 25, D.C.	
	Standards,	1
	đ	ì
48	Bureau	(
BLE	National	
TAE	Labaratary,	
	Prapagatian	
	Radia	
	Central	

-, ¹⁹50 August (Month) (M3000) F2 (Unit) (Unit)

IONOSPHERIC DATA

National Bureau of Standards MrC (Institution) RFP

	(Chard	acrerisitul	Ishingto	on, D.	J	-)))	-					Scaled t	jy:	McC.	(B.E.B.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5	Lot 38.7	1. Nº 7	- 2 . Buo-	Mol.							12	M°5	Mean Tin	ne					Calcula	ted by:	B.E.B.	ĥ	Mc C.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		00	0	32	03	04	05	90	07	98	60	0	=	12	13	14	15	16	17	18	19	20	21 2	2 23	
$ \begin{array}{c} 2 \int \left(2$		2.9 2	5 8 21	8 5 (3.0) ³	285	29 F	3 /	٩	Ł	3 /	28	29	29	27	28	27	<i>3 0</i>	28	30	(31)5 (30) 9	28 2	7 286	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	2952	8 5 3	L.	2 B	28	29	5 2	29	29	29	(2 2)5	J	27	27	2.6	(2 2) 2	28	29 ×	307	3.2 4	(3 4) r	28 × (2	9) × X (6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		264 (2	-7) X (2	2) ×	294	295	(2 9) K	э о <i>Е</i>	282	28 X	274	254	284	(2 5) R ((2 3) K	254	(2 6) X	284	(2 9) x	× 8 ×	30	(30) = (.	3 0) F (2	7) F (29)	24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	(2 P) F 2	.7 8 2	H 8	30 F	(30) 5	32 F	3 /	32	$(2.7)^{H}$	$(\mathcal{Z} \mathcal{L})^H$	(2 8) ^H	(2 8) 4	2.5	28	28	(28)5	2.9	30	29	30	(28)5 (29)5 3.	0 28	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	285 2	95 2	4 00	285	(2 9) F	(3 1) ^S	3 / 4	32	3 2	0 0	31	30	1 8	28	29	(3 0) 5	(2 6 2)	29	(30) 5	(30)5	(3 0) 5	29 2	8 (28)	5
$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	27 2	8 5 2.	10 L	2 7	27	29	18	2.7 V	3.1	29	29	2.7 H	28	29	29	3.0	29	29	28	0 0	29	30 3	0 28	
$ \begin{bmatrix} (2,7)^2 - 5 \\ 2 +$	'	28	28 2.	7	29	(2 9) F	(2 4)F	5	26	3 /	(3 0) P	274	N	(2 4) R	2.5 4	274	274	274	267	(2.7) X 1	(28)S	(25)x K	23)F N	K K (2.7)	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	×	(2.7)F	۲۹ ۲۹	×	* 8	79 ×	κ PQ	× IE	348	6 *	G *	6 1	5 ×	S ×	G *	× S	G *	264	3 / X	A *	(2 8) × ((2.7) F (27)4 (2	P)K (2 9)	54
$ \left[\left(2 \right) \left(\left(2 \right) \left(\left(2 \right) \right) \left(\left(2 \right) \left(\left(1 \right) \left(2 \right) \left(\left(2 \right) \left(2 \right$		2.7 8 2.	6 × K	2(7	E ×	×	N X	29 X	× 5	× 5	(2 6) 7	(25)5	(2.4) F	284	28K	2.7 8	× 8 ×	2.7 8	27 × K	28)5	294 ((2 9) × K	2 9) 5 (2	8) 5 27	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~	26)7 3	0 1 2	× 8	2 6 X	28 K	305	×	4 5	G K	G K	S K	2.7 ×	284	(26)5	2 44	23 4	26 X	2.8 X	28X	(2 9) X K	(2 9) 5	3142	9 × (2)	N 7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		26K Z	7 * 2	9 K 0	XBX	28 X X	7 6 2)	R X	* J	G ×	(25) 7	29 ×	G *	$(2.3)_{f}^{f}$	R R	(2 2)X	× 2.2	264	(2 P) X	3.0 K	(2 9) ^S	(3 0) ^S / _K (2 9) × K(2	8) Y 27	<
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2.8 × 3	0 × 2	7 K	A X BZ	(25)3	S * I	(3 0) J	× 1 E	(2 6) F	3 / X	× 6 ×	294	N X	27 ×	× ° ×	2.7 ×	3 0 +	29 ×	3.1	(3.1)5	(3 0) 5 ()	2.7) 5 (2.	9) F (2 :)	13 4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		265 2	5 5 2	9 F (2	7 (b.	30 ((3.0) ^p	3.1	33	3 /	(3.1) 5	32	30	30	30	29	30	3 0	30	3 2	(3 2)5	32 1	3.0) F (3	1)5 (2.7)	LA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	`	295 2	2 Z d	7 6	29 F	(30)7	S	A	A	(2 9) 5	32	26×	2.4 K	(2 7)X	N ×	3.0 K	29 %	295	204	2.98	* ×	30 F	294 2	8 F 3 9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_`	X C F X	8 21	· ·	8.5	29 (3 0 E	53	34	30	3 4	32	(28)7	(30) V	0 8	9 0	29	000	32	3.1) 5	(30)5	3.0	(1-E	9) 8 (2.9)	100
		28 (2	9) 5 26	8	6	29 (30)5	33	3 3	3 4	30	29	30	30	28	29	30	29	3.7 () ² (1 E	(30)5	(3 /) ⁵ (.	2.9) 5 (3	0)5 (2.9)	2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	~	3.0) 5 2	9 3.		6 2	30	20	3.2	3.2	3.1	3.3	$(3 3)^{P}$	31	31	3 /	2.8	29	0	3.1	7 (6 %	(3.0)P) W	3.0) 7 2	8 2.8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		A	2 6	2	2 8	(30)3	2.9 F	(3.2) V	30	0 m	30	27	25	29	27	284	(28) ×	782	× 8 ×	× 8.2	2915	7 6.2	284 2	(+.2) × 9.	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~	28) × 2	8 K (2	7) F (i	7 (82	(28)XX	q (8.2)	XGX	G *	G ×	GX	y y	×	* 5	* 5	* 5	F * 9	× 5	× 9	X	XR	× fQ	B K	8 × 8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		R × R	44	×	X Q	¥ (7	×R	× 5	6 4	G K	G X	6 ×	S ×	G ×	6 4	6 *	5 4	S ×	26×	298	2.95	285	2.9% 2	95 31	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	28F 2	9 × K(2	9) 5	X 8 X	25K 1	(29)×	31 F	32F	(3 4)F	~	(3 4) ^F	33	275	305	29	3.1	3.1 F	3 2	32 (32)5	295	29F (2	.9) F 2.91	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	305 3	2 5 3.		3.2 F	(2 9) 5	30 F	5 2	$(2 \ g) B$	C	(2 6 7)	28	(2.8) 5	275	76.X	2.7 F	3.0 F) E	er 0	315	3.1)5	(29) 5	3.0 F (2	82 3 6	13
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2962	9 5 3	1	325	325	9	$(3.1)^{P}$	3 2	ی ت	314	(30) 5	3.1	3.0	29	3.0	3.0	0	3 0	3.1 (31)5	(3.0) ⁵ (28)5 2	9 29'	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	30 1 (2	91 5 2	6	2.9 5	3051	2.9) 5	35 F	33 F	3.1 F	32	33	$^{H}(\zeta, \zeta)$	3.0	3.0	0 0	3 O	з.o	3 0	3 /	3.1	(3.1) ⁵ (3.0)5 2	8 29.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		297 2	8 (2	9) 2	297	3.07	3.1 F	335	3 3	3.4	(3.2) ⁵	2.7 4	(2 9) ^V	2.8	3.0 F	3.7	3.0	30	3 ./ (31)5 (1	2 (1 2)	(3 0) 5 (.	3.0) 5 (2.	9) 5 28	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		295 2	9 F 3	20	3.0 F	315	3.1 F	345	34	35	3.1	30	30	3.0	5 (0. 8)	0.E	3.1	3.0	3.1	3.0	3.1	(3.1)5	3.0 5 2	8 F (2.8)	S
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~	2915 (2	9) 5 3.	0	305	3.2 5	3.1	3.1	32	3 2	3.1	3 2	3.1	3 0	3.0	2.9	2.9	30	3./	3.1 1	30)5) (1.E)	3.0) 5 (2	9 x 2 (9	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		28 2	r d	7 6	92	295	305	32	32	34 4	> 2 5	3 2 H	3 2	3.0	3.0	29	Э.0	2.9	3.0	J	J	0	J	: (2.5)	54
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	2.9 (2	8)B F	6	(3.0) F	(29)5 ((3.0)P	$(34)^{\frac{J}{S}}$	$(33)^{P}$	30	X	3 /	29	29	2 8 (2 (6 %	29 6	5 (6.2)	30	3 (o. E.	(3 0) 5	5 (6.2)	33 (2	8) 7 (30)	50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	2.8	3 (3	0) 74	30	29 (5(6.2)	3.0)	3.2	٤	٤	3.1	2.9	26	2.9	29	6 2	0.E	3.1	3.0	S(0.E)	315 (29) 7 (2	.9)F (2.8)	4.0
28 28 28 29 27 37 29 27 27 29 <	1	(3.0) F (2	P) F 2	3 6	2 8)F	2.9 F	28F	E E	V (2 E)	3 2	3.2	294	29	2.8	3.8	30	3.0	(3 1)P	3.1	3.1	5(0.8)	o rò	3.0 2	9 2.9	
28 28 29 29 29 29 29 29 29 29 29 29 29 29 30 <				-																					
29 20 24 29 28 29 29 29 29 29 29 29 20 31 31 31 31 21 28 29 28 29 20 30		282	8	0	2.9	29	29	- · · ·	3 2	3.0	3.0	29	29	2.8	2.8	28	2.9	29	3.0	30	(0.2)	(3.0)	(2.9) (2	9) 2.8	
		29 2	*		67	-28	25	30	56	29	58	30	29	30	30	31	3/	3 /	, M	67	20	58	29 2	8 30	

Manual 🛛 Automatic 🖾

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	338 3. 440 3 398 (4) 41 0 398 (4) 41 3 337 3 337 3 337 3 337 3 337 3 337 3 337 3 350 3 350 3 350 3 35 3 350 5 550 3 350 3 300 300 300 300 300 30000000000	$\begin{array}{c} (3.8) \\$	H H H H H H H H H H H H H H	$ \begin{array}{c} A \\ 3.7 \\ 3.7 \\ 3.7 \\ 3.7 \\ (4 5)^{P} \\ (4 5)^{P} \\ (4 5)^{P} \\ (4 5)^{P} \\ 3.7 \\ 3.7 \\ 3.7 \\ 3.7 \\ 3.5 \\ 3.7 \\ 3.7 \\ 3.5 \\ 3.7 \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Q L M M 3.6 Q Q L 35P 39	9 3.9	10 m m m	9 36	35	3.4 ((3.6) ^P	(36)P ((36)P)		
- 34 36 38 38	8 3.8	38	7 3.7	36	35	34 -		
28 + 12 +1 C = +1 28	8 29	29 30	31	31	28	15	2	

Manual 🖸 Autamatic 🗷

Motion Transmission of the constraint of th	nted June 1946	sp		°.											- 																										
Mittadia Table To any server and server, neurone data of a construction of a constructin of a construction of a constructin of a construction of a const	Farm adap	standar	8	Mc	1																															indire i co					
Micronic model Matter is not more than the network methods of the network		u of S Institution			8						-	-														-										_	_				
$ \begin{array}{c} Interpretation from the product structure from the product struct$		Burea	U		10																					-															
MISTOR: Auget Auget Search (1) Auget Auget <th< td=""><td></td><td>tional</td><td>Mc</td><td>by: B.E</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></th<>		tional	Mc	by: B.E	0																																	-			
Tenta Reade Proposition Laboration, Machineria Rison of Sprokenty, Machineria Rison of Sprokenty, Machineria Rison of Sprokenty, Machineria Rison of Sprokenty, Machineria Rison, O. S.		Na	caled by:-	alculated	6		1)4	-								* 0	-								_										-	-					
MBLE DIAL MALE DIAL DIAL DIAL DIAL MANDAIO 6. D. monon. MANDAIO 6. D. MANDAIO 6. D. MANDAIO 6. D. MANDAIO 6. D. monon. Control fragment frag		1	S	Ŭ	61		K (H.	X	0	6	00	3 8	XX	× ×	×	7 4 4	6		X	-			0) ^E		× °						t	4 (7			-	0		1 6	×		
MISOLE Adjust Adjust<	0	ò			31	A A(S	01 3.8	9 4 4.0	.4 0.	1 3	5	9 1 2.	54 2	+ × 1	X	16 3.	9 × 3.	5)7 7	* * 1	1 4.	0. A	8	r) 7 (4.	×	× 9		FI	2 73	5	2) F	7 +	1)A (4-	2	2 7	4	3 2		5	15		
Carriel frage frages/frage transmer/, Manual Binous of Stonderk, Manual Manual Pinous of Stonderk, Pin	on 25. D	5			5 17	1 (4 .	*	4	4	9 4.	~	7 7	2 4 2	1 × 4.	2 * 2	84 4	44	5 (4.	X	2 4	*	3	1 (3.4	×	× 0	R2 ~	B P(0	0) 5 4.	2 5	F)	5 4.	9 (4.	7)5 4.	E /	7 7		1 4.1	22		
Ideal of Properting Laboration (Laboration, National BL Food (Laboration, Laboration, National BL Food (Laboration, Laboration, Laboration, National BL Food (Laboration, Laboration, National BL Food (Laboration, Laboration, Laboratio, Laboratio, Laboration, Laboration, Laboration, Laboration, L	Washinat	* 5			10	*	4	1 3.9	w.	.6	4	4 4 3.	× 6	3 F 4	XXX	E X	4 X 4.	9 B 4	Y X	2 4	2	*	+ ×0	2t A	24 4.	4	1 (4.	- (4.	3 #.	4 1	4.0	1 3.	B 2 (1	4) 5 (4.3	2 4.	5)B 4.		* *	24		
August August August August Central Reade Propagation to Landom Darkow All Discretion August August August August August August Discretion August August <th co<="" td=""><td>tandards.</td><td>TA</td><td>, , ,</td><td></td><td>15</td><td>A</td><td>4</td><td>1 4.1</td><td>*</td><td>9 3.7</td><td>5.4 8</td><td>6 X 3.4</td><td>68 7 23</td><td>2 K 4.3</td><td>6 R 4.2</td><td>2.E × 0</td><td>× + +</td><td>(+)</td><td>V X I</td><td>+ 1</td><td>99</td><td>4</td><td>1. X 1</td><td>2 K 4</td><td>2 × 4.</td><td>3 4.</td><td>7</td><td>7 P(5</td><td>د ×</td><td>2 4.</td><td>3 4.3</td><td>4.1</td><td>3 (4.3</td><td>(4.5</td><td>2 4</td><td>4) F (4!</td><td></td><td>2 4</td><td>2</td><td>u iu</td></th>	<td>tandards.</td> <td>TA</td> <td>, , ,</td> <td></td> <td>15</td> <td>A</td> <td>4</td> <td>1 4.1</td> <td>*</td> <td>9 3.7</td> <td>5.4 8</td> <td>6 X 3.4</td> <td>68 7 23</td> <td>2 K 4.3</td> <td>6 R 4.2</td> <td>2.E × 0</td> <td>× + +</td> <td>(+)</td> <td>V X I</td> <td>+ 1</td> <td>99</td> <td>4</td> <td>1. X 1</td> <td>2 K 4</td> <td>2 × 4.</td> <td>3 4.</td> <td>7</td> <td>7 P(5</td> <td>د ×</td> <td>2 4.</td> <td>3 4.3</td> <td>4.1</td> <td>3 (4.3</td> <td>(4.5</td> <td>2 4</td> <td>4) F (4!</td> <td></td> <td>2 4</td> <td>2</td> <td>u iu</td>	tandards.	TA	, , ,		15	A	4	1 4.1	*	9 3.7	5.4 8	6 X 3.4	68 7 23	2 K 4.3	6 R 4.2	2.E × 0	× + +	(+)	V X I	+ 1	99	4	1. X 1	2 K 4	2 × 4.	3 4.	7	7 P(5	د ×	2 4.	3 4.3	4.1	3 (4.3	(4.5	2 4	4) F (4!		2 4	2	u iu
Mistorial meaning Journ Loss Journ Loss <thj< td=""><td>O reau af S</td><td>ΔQ</td><td></td><td>an Time</td><td>4</td><td>Þ</td><td>4 4</td><td>K 4.</td><td>*</td><td>Ś</td><td>*</td><td>5</td><td>× 5</td><td>×</td><td>3 4 4.</td><td>+</td><td>+ + +</td><td>4</td><td>4 4</td><td>7</td><td>8</td><td>9.4.6</td><td>3.9</td><td>1) X 4.</td><td>* ×</td><td>.r. 3)A r.</td><td>4</td><td>(4.5</td><td>) F ×.</td><td>*</td><td>+</td><td>+</td><td>*</td><td>62</td><td>)P 4.</td><td>(√ (√</td><td></td><td>4</td><td>21</td><td>in 0.25</td></thj<>	O reau af S	ΔQ		an Time	4	Þ	4 4	K 4.	*	Ś	*	5	× 5	×	3 4 4.	+	+ + +	4	4 4	7	8	9.4.6	3.9	1) X 4.	* ×	.r. 3)A r.	4	(4.5) F ×.	*	+	+	*	62)P 4.	(√ (√		4	21	in 0.25	
Matrix August Sol August August <td>ក tianal Bu</td> <td>ERIC</td> <td></td> <td>/ Me</td> <td>[2]</td> <td>A</td> <td>(F 7</td> <td>4 4.3</td> <td>۴۹</td> <td>3 8</td> <td>4</td> <td>1 3.6</td> <td>3.3</td> <td>× + 3</td> <td>4 4</td> <td>+ 2/1</td> <td>× +</td> <td>7</td> <td>×</td> <td>PQ</td> <td>2</td> <td>ng.</td> <td>4</td> <td>) ^B (4</td> <td>4</td> <td>4)</td> <td>+</td> <td>A</td> <td>(4.5</td> <td>P</td> <td>4 4(1</td> <td>*</td> <td>4.</td> <td>U⁷⁸ 73</td> <td>+ (+.)</td> <td>5 (4.4</td> <td></td> <td>7 4</td> <td>2</td> <td>25.0 MG</td>	ក tianal Bu	ERIC		/ Me	[2]	A	(F 7	4 4.3	۴۹	3 8	4	1 3.6	3.3	× + 3	4 4	+ 2/1	× +	7	×	PQ	2	ng.	4) ^B (4	4	4)	+	A	(4.5	P	4 4(1	*	4.	U ⁷⁸ 73	+ (+.)	5 (4.4		7 4	2	25.0 MG	
Matrix August ia50 Central Redio Propagation Libbo IONO Reveal Washington, D. C. Washington, D. C. Mammin IONO Image: Machined Table Luci 38,7NL, Long 77,19W 2 3 3 4 4 Image: Machined Table Luci 38,7NL, Long 77,19W 3 4 </td <td>I ABL</td> <td>SPH</td> <td></td> <td>75° M</td> <td>12</td> <td>*</td> <td>+.+</td> <td>K 4.3</td> <td>8</td> <td>A</td> <td>A</td> <td>3.4</td> <td>()4 (3.5</td> <td>× + .</td> <td>+ +.</td> <td>+·+) 8(+</td> <td>2 × 2</td> <td>A 8(1</td> <td>×</td> <td>+ +</td> <td>4.2</td> <td>4.2</td> <td>A</td> <td>) B (4.1</td> <td>A B(</td> <td>*</td> <td>2</td> <td>1)9 4</td> <td>4</td> <td>A</td> <td>(4.2</td> <td>4</td> <td>A 4.0</td> <td>(4.</td> <td>()P 4.</td> <td>4 4</td> <td></td> <td>4</td> <td>18</td> <td>.0 Mc to</td>	I ABL	SPH		75° M	12	*	+.+	K 4.3	8	A	A	3.4	()4 (3.5	× + .	+ +.	+·+) 8(+	2 × 2	A 8(1	×	+ +	4.2	4.2	A) B (4.1	A B(*	2	1)9 4	4	A	(4.2	4	A 4.0	(4.	()P 4.	4 4		4	18	.0 Mc to	
(Mi5O)E August Index August Index Index August Index Index August Index Index August Index	ian Laba	ONO		1	=	*	J	A X()	A	4 A	5 4	A	4 (3.4	C + + -	K A	× (4.	2 K H	(+) B()	¥	2 4	8	4	E A	× (4.2	5 K (4.2	7	4 6	5 (4.4	A	A	4	4.3	4.5	2	3 (4.4	1.4)		4 (4.2	1/	Sweep_1	
(MISOO)E August aSO August aSO August aSO August aso August aso August August aso August August aso August August aso August Augus	Prapagat				e 10	A	AA	X (4.4	A	7 4	4 4(1	9	K 3.5	× A.	* 4.	× 29	* *	(+)	4	4 2	4	3 23	4.4.	R X	5.4 ×.5	8	4	2 4	A P(E	R	لم ۲	A	4.	* *	4	R		3 4	17		
MISODE August IoSO conductation Lut August IoS conductation Lut August IoS restrict Lat SR/PNL, Lun T/L restrict Lat SR/PNL, Lang T/L restrict Lat SR/PNL, Lang T/L restrict Lat SR/PNL, Lang SR/PNL, SR/PNL, Lang restrict Lat SR/PNL, Lang SR/PNL,	al Radia				0	4.4	(J. 2	× ×	4	(4.3	(4.5	A	× 3.3	A X	× ×	SX XS	6.4 × 0	6.0	4	4	4	.≯ ^(2 4.	× 23	* (4.1	R	¢	4	X (X	s) ^B S	3 14.	A	A	M H()	٤) A 4.		ы 4	(12		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Centro				06	4.3	4.4	X 4.4	4	1 4.0	1 # 1	P	× 3.9	X	X 3.8)78 4.	× A)F 4-1	A (1)	A A(2 4.3	1 (4.3	*	X 4.	×	1 23	A	*	*	(4.	+)A (4.	4	(4.2	Ł	(4.3		*	24		
(MI5O)E August p5O Genoreteristic) (Juni) Monimi p5O Deserved of Worldligton, D. C. Monimi p5O Deserved of Luni 28.7 oN, Long 77.1 oW A A P P P A A P Oo OI O2 O3 O4 O5 O6 P P A A A A A A A P D <th< td=""><td></td><td></td><td>1</td><td></td><td>5 07</td><td>1 3.0</td><td>8 4 8</td><td>× 43</td><td>\$</td><td>4 0</td><td>3.9</td><td>2.7</td><td>X 3.1</td><td>X 4.2</td><td>X 3.6</td><td>x (4.1</td><td>A 34</td><td>\$ (50</td><td>r. #)</td><td>0 71</td><td>4.</td><td>4</td><td>1 + X</td><td>× (4.0</td><td>X</td><td>4.74 × 2</td><td>69</td><td>99</td><td>R</td><td>1.4 9</td><td>p)A 4.2</td><td>(4.3</td><td>P2</td><td>)B 4.0</td><td>1 4.4</td><td>1.4</td><td></td><td>4</td><td>24</td><td></td></th<>			1		5 07	1 3.0	8 4 8	× 43	\$	4 0	3.9	2.7	X 3.1	X 4.2	X 3.6	x (4.1	A 34	\$ (50	r. #)	0 71	4.	4	1 + X	× (4.0	X	4.74 × 2	69	99	R	1.4 9	p)A 4.2	(4.3	P2)B 4.0	1 4.4	1.4		4	24		
(MI5O)E August no Genoretersite) (Unit) (Month) Served at Washington, D. C. Value 1 Value 0					0	4	С	4.0	<	*	4	A	20	8	A	(-+	(3.9	4	P	4			(3.5	4.4	R	34		P2		e G	·/≁)	4	28	(4.1	4.4	<i>6</i> ,		4	17		
(MI5O)E August (Granestersistic) (Unn) Served of WOSNIngton, D. C. Deserved of Lori 28.70M, Long 77.1P Multiple 0		19 <u>50</u>		M	4 0			_						-									_							_			_						_		
(MI5OO)E (Umi) Generativisite) (Umi) Deserved at Washington, D. C 1 0 0 2 0 0 2 0 0 3 0 0 4 0 0 5 0 0		August (Month)		1.77. pr	3 0			_		-					_			500	_																_	_			_		
(MI500)E (Unit) Gharacteristic) (Unit) sserved at Washingto 22 2 23 3 24 0 25 0 26 0 27 0 28 0 29 0 21 1 22 0 23 0 24 0 25 0 26 0 27 0 28 0 29 0 20 0 21 0 22 0 23 0 24 0 25 0 26 0 27 0 28 0 29 0 20 0 21 0		4	, D. C	°N Lor	2																			-			_	_					_						_		
(MI5OO)E (Characteristic) Seerved at 22 22 23 24 25 26 27 28 29 20		(Unit)	shingtor	ot 38.7	0		_	_																									_				~				
		0)E	Was		0																									_					_	_			_		
		(MI5C (Characte	bserved at	1	ay 0	_	0	n	4	5	9	7	00	6	0		2	10	4	10	(0	2	~	0	_		0			-			~			_		on	1 tu		

Table 51

Ionospheric Storminess at Washington, D. C.

August 1950

Day	Ionospheric 00-12 GCT	character* 12-24 GCT	Principal Beginning GCT	storms End GCT	Geomagnetic 00-12 GCT	character** 12-24 GCT
1 2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 14 5 16 7 8 9 10 11 23 14 5 16 7 8 9 10 11 22 23 24 5 26 7 8 9 10 11 22 22 22 22 22 22 22 22 22 22 22 22	1 2 4 2 1 0 2 5 4 4 4 4 4 4 4 2 1 2 2 0 2 4 4 4 4 4 4 4 4 2 1 2 2 0 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	12-24 GCT 3 2 4 3 2 4 3 2 4 6 4 5 4 5 4 1 4 2 3 2 3 2 4 6 4 5 4 5 4 1 4 2 3 2 3 2 4 6 6 2 3 2 4 6 6 2 3 2 4 6 6 2 3 2 4 6 6 2 3 2 4 6 6 7 7 8 8 7 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	2200 1700 1500 1900 	GCT 2400 2300 0200	3 2 4 3 1 2 4 6 5 4 4 5 3 3 4 5 3 3 4 3 2 2 5 9 3 1 2 1 2 1 2 1 2 1 2	12-24 GUT 3 3 3 2 2 3 5 3 4 4 4 4 4 3 3 4 2 2 1 3 7 3 2 2 1 3 7 3 2 2 1 3 7 3 2 2 1 3 7 3 2 2 2 1 3 5 3 4 4 4 4 4 4 4 4 3 3 5 3 4 4 4 4 4 4 4 4 4 4 4 4 4
29 30 31	3 3 2	3 3 1			3 3 2	332

*Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

**Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance. ----Dashes indicate continuing storm.

#No I-figure owing to insufficient data; conditions probably severaly disturbed.

Provisional Radio Propagation quality Figures (Including Comparisons with CRFL Warnings and Forecasts) \$July, 1950\$

Dav	North Atlantio quality figure	CHPL* Warning	CRPLes Forecasts (J-reports)	North Pacifio quality figure	Geo- mag- newic KGn	
	Ealf day GOT (1) (2)	Half day GOT (1) (2)		Half day GOT (1) (2)	Half day GOT (1) (2)	Scales: Quality Figurea (1) - Useleas (2) - Very poor
1 2 3 4 5	6 5 7 6 7 5 4) 5 5	ប ¥ ¥ ប		7 5 8 6 5 6	3 3 2 2 1 (4) (4) 3 3 3	(3) - Foor (4) - Foor torfair 5 - Fair to goed 7 - Goed 0 - Very goed 9 - Excellant Foorametic Es 0 to 9
6 7 8 9 10	6 6 5 7 6 6 6 5 7 6	υ		7 6 7 6 7 6 7 6 5	3 2 2 3 2 2 2 3 2 3 2 3 2 3	 Prepresentica, the present of the fraction of the set of the set
11 12 13 14 15	6 5 (2) (μ) (3) (μ) 5 5 5 5	ម ម ម ប ប ប ប		6 (4) (4) 5 5 (4) 6 5 7 5	2 (4) (6) 3 (5) 3 3 3 3 2	expected U Unstable conditions expected N No disturbance expected X Probable disturbed date
16 17 18 19 20	5 5 6 6 6 6 7 7		X X	6 5 6 5 6 5 6 6 7 8 6	3 2 3 2 2 2 1 2 2 2	Borring: Storm (Q4-4) hit (M) Storm severer than predicted M Storm missed
21 22 23 24 25	7 6 7 5 6 5 (3) (4)	а а С	Χ	6 6 6 7 8 6 (4) 5	2 2 3 2 1 1 (4) 3 (5) 2	G Good day forecast O Overwarning Scering by half day according to follewing tables Quilty Figure
26 27 28 29 30 31	6 6 7 6 6 7 6 6 6 6 6 6	U (W)	Χ	566557	1 2 2 3 2 2 2 2 3 3 3 3	- 63 4 5 4 7 - 6 2 月 日 - 7 10 月 日 - 7 10 月 日 - 7 10 月 - 7
Score: E (M) M G O		Warning 5.A. 5.P. 12 6 0 0 0 1 45 14 5 11	Forecast 9.4. 5.P. 0 0 0 0 7 4 45 48 10 10			

*Eroadcast on WWV, Washington, D. C. Times of varnings recorded to nearest half day as broadcast. () broadcast for one-quarter day. Blanks signify N. **In addition to dates marked X, the following were designated as probable disturbed days on fore-cast more than eight days in advance of said dates: July 6, 7, 27 and 28.

Thru error the "W" was broadcast by WWV from 2010 July 8 to 2009 July 9.

Table 53

American and Zurich Provisional Relative Sunspot Numbers

Date	R _A =	₽ _Z **	Date	R _A ≉	₽z**
1	104	94	17	135	106
2	128	110	18	134	93
3	113	106	19	148	114
4	104	84	20	129	113
5	97	90	21	119	103
6	103	83	22	128	95
7	104	76	23	142	115
8	90	72	24	118	103
9	99	70	25	117	92
10	100	75	26	91	77
11	93	70	27	66	76
12	151	74	28	67	55
13	106	84	29	85	58
14	92	68	30	72	58
15	100	80	31	81	54
16	124	93	Mean:	106.8	85.2

August 1950

*Combination of reports from 44 observers; see page 8. **Dependent on observations at Zurich Observatory and its stations at Locarno and Arosa.

Coronal observations at Climax, Colorado (5303A), east limb

Date				Dep	ree	es r	ort	h c	of t	he	so]	ar	equ	ato	02°				0				De	төе	8 5	out	h c	f	the	so	lar	equ	ato	or			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	Ľ	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
CCT 1950 Aug. 1.6 3.8 4.7 7.6 8.6 9.6 12.6 13.6 14.7 15.6 16.7 17.6 15.6 19.7a 20.7 21.7 22.6 23.6 24.8 27.8 29.6 30.6 31.7	90 111111111111111111111111111111111111		80 6 1 1 1 1 2 1 1 1 1 1 1 1 M 1 1 1	75 6 7 1 1 2 1 8 1 1 1 1 1 1 1 1 1 1	70 8 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		60 5131112111121112131W111	55 534 3 3 1 2 2 3 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50 536 1 34 33122 13 15 166 1 1 1 1 1	45 657 3534333 4769689 3 43	40 788 - 354 4 55 4 16 91 06 99 - 3 - 4 3 -	35 870-5654975-51271811094-53-	30 972537543074323204106 -643	25 972658851439530511251400 955	20 972105109551164839265500 155116483926500 155116483926500 155116483926500 155116483926500 155116483926500 155116483926500 155116483926500 155116483926500 155116483926500 155116483926500 155116483926500 155116483926500 155116483926500 155116483926500 155116483926500 155116483926500 15511648392600 155116485000000000000000000000000000000000000	15 8496434557739879-06466 1134557739879-06666	10 8 4 6 - 11 14 620 15 12 8 6 6 5 - 7 12 12 10 11 - 5 4 4	5 764 - 812384 1184276116667 - 781099 - 533	664 1699215530560 - 1892 854 33	5 6455544572210874 - 882155434	10 867844461222214970-6-5435	15 101210645 1022315712011-4-0037534	20 2151407455682405969-4 - 001335	25 207150 34 34 512 74 10113 - 3 - 912066	30 1222953-44637469-3-80828	35 888653 - 323243 - 6x - 3 - 1 x 7976	40 736 143 132 I 14X 1 1 1 X5633	45 535 33331 X X X 3	50 5 14 1 1 3 12 1 1 1 M 1 1 1 M 5 3 1 1	55 4 4 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 7 3 1 1	60 43-11-112111.1W1111W5211	65 43				85 3 1 1 1 1 1 1 1 1 1 1 1 M 1 1 1 M 1 1 1	90 3 1 1 1 1 1 1 1 1 1 1 1 1 M 1 1 1 M 1 1 1 1
								-											L	L _																	

Table 55a

Coronal observations at Climax, Colorado (6374A), east limb

Date				Deg	ree	8 1	ort	h (น้ำ	the	50	lar	equ	ato	or				0	1			De	gre	es :	sou	th (of	the	so	lar	equ	ato	or			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	10	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1950																																					
Aug. 1.6		-	-	-	-	-	80	-	-	-	-	2	2	2	1	1	-	_	1	1	3	10	12	6	2	2	1	1	-	-	1	1	2	2	1	1	-
2.6	-	-	-	-	-	-	-	-	-	639	⇒.	-	-	-	-	-	-	-	-	-	ì	1	4	8	1	-	-	-	1	2	2	2	2	1	1	-	-
3.8	- 629	-	-	-	-	-	-	-	-	-		-	-	1	2	3	3	1	-	1	3	1	2	1	1	-	-		-	-	-	-	-	-	-	-	-
4.7		-	-	-	-	-	652	-	-	-	-	-	-	-		2	4	2	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7.6	-	60	-	-	60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	4	1	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-
8.6	-	-	-	-	883	-	-	-	-	-	-	-	-	-	1	2	2	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9.6	-	-	•	-	680	600	-	-	-	1	1	1	-	1	1	3	1	5	1	1	1	1	2	1	1	-	-	-	_	-	-	-	-	-	-	1	2
10.6				-	-	-	-	-	-	-	-	-	-	-	-	i	2	3	4	2	2	2	1	1	1	-	-	-	-	-	-	-	-	2	-	-	-
12.6	2	3	2	1	1	1	1	2	6	2	2	1	2	2	1	1	2	6	5	14	2	4	2	2	1	2	2	1	1	2	2	1	1	1	2	2	2
13.6	3	1	1	1	1	1	2	2	5	ų	1	-	-	-	-	1	2	8	6	1	12	15	4	2	2	2	1	1	2	2	2	1	1	1	1	1	1
14.7	2	2	1	1	1	1	1	1	3	3	1	1	-	1	1	2	ų	g	4	4	11	12	16	12	3	1	1	1	1	3	2	1	1	-	-	-	-
15.6	-	817	-	-	-	-	-	-	-		-	-	-	-	-	-	2	2	-	-	2	12	2	9	4	2	-	-	-	-	-	2	2	-	-	-	-
16.7	-	-	-	-	-	-	-	-	-	-	-	am	-	-	-	-	-	-	1	1	2	9	11	6	2	1	-	-	-	-	-	-	-	-	-	-	-
17.6	400	-	C 10	-	-	-		-	-	-	-	- 3	3	-	-	-	-	-	-	-	- 3	5	- 3	- 3		-	-	-	-	-	-	-	-	-	-	-	-
18.6	-	-62	-	-	-	-	-	683	-	-	1	11	2	1	4	5	2	1		1	9	12	9	6	1	-	-	-	-	-	-	-	-	-	-	-	-
19.7a	I	•	-	-	-639	-	- rate	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	X	X	X	X	I	X	X	X	I	X	X	I
20.7	-	-	8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-		-	-	-
21.7	2	2	1	1	-		-	` —	-	-	-	-	-	-	-	1	2	2	1	8	6	- 3	2	- 3	3	2	2	1	1	-	-	-	-	-	-	-	-
22.6	-		880	-629	-	-	-	-	-	-	655	-	-	-	-	-	-	-	-	-	- 4	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
23.6	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•
24.8	I	X	X	X	X	X	I	-	-	1	1	2	2	1	1	1	Ц	1	1	8	1	2	1	-	-	X	X	I	X	X	X	X	X	X	X	X	X
27.8	-	-	-	-	-		-	-	-	-	89		-	-	-	-	-	-	-	-	1	1	2	- 3	1	-	-	-	-	-	-	-	-	-	•	-	-
29.6	-	-	-	82	-	-	-	-	-	••	1	1	-	-	-	-	-	-	-	-	-	-	1	9	4	1	-	-	-	-	1	1	-	-	-	-	-
30.6	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-
) •۲٤	-	-	-	-	-	-	-	-	-	-	Ξ,	-	-	-		682	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8
	1	_		-						_	_									1																	

Date				Dep	ree	8 5	out	h c	f t	he	sol	ar	eq	uat	or					0			De	gree	98 n	ort	h o	e t	he	sol	ar	equ	ato)T°			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	70	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1950																									_												
Aug. 1.6	3	- 3	-	-	-	-	_	-	-	-	3	3	7	11	13	; 20	15	13	12	17	25	15	12	10	6	9	9	7	4	4	-	-	-	-	-	-	-
2.6	-	-			-	-	-	-	-	-	-	-	- 4	7	8	15	12	8	8	12	15	12	8	7	7	7	6	5	3	3	-		-	-	-	-	-
3.8	-	-	-	-	-	-	-	-	-	-	-	5	6	9	10	10	10	10	9	10	12	12	13	11	9	6	5	4	4	-	-	-	-	-	-	-	-
4.7		-	-	-	-	-	-	-	-	-	6	6	6	7	8	10	10	8	8	8	8	8	8	9	7	6	6	6	-	-		-	-	-	-	-	-
7.6	-	-	-	-	-	-	-	-	-	-	-	4	4	- 4	6	7	7	7	8	9	11	15	13	11	10	6	5	6	4	- 3		-	-	-	620	-	-
8.6	-	-	-	-	-	-	-	-	-	-	-	-	- 3	- 3	- 3	- 3	4	4	8	12	13	15	14	12	9	6	5	5	4	-	-	•	-	-	-	-	
9.6	-	-	-	-	-	-	-	-	-	-	5	5	5	- 5	- 7	8	8	10	9	7	15	18	18	15	11	9	6	5	5	-	-	-	-	-	-	-	-
10.6	-	-	-	-	-	-	-	-	3	4	4	5	6	- 9	15	16	14	18	15	16	17	18	17	13	9	5	4	3	- 3	- 3	-	-	-	-	-	-	-
12,6	-	-	-	-	-	3	3	3	4	- 3	4	4	4	- 7	12	15	13	15	12	10	4	- 9	9	- 5	4	- 3	-	-	-	-	-	-	-	-	-		5
13.6	-	-	-	2	- 3	- 3	4	6	7	9	10	12	13	13	16	- 19	17	13	12	10	6	4	6	- 7	4	3	2	2	2	-	-	-	-	-	-	-	
14.7	-	-		-	-	-	-	2	2	- 3	6	10	15	18	20	15	12	7	5	5	- 5	- 5	- 5	5	5	4	3	2	-	-	-	-	-	-	-	-	-
15.6	-	-		-	-	-	-	-	-	5	6	8	12	13	15	14	9	6	4	4	4	- 4	- 5	5	5	4	-	-	-	-	-	-	-	-	-	-	
16.7	-	-	-	-	-	-	4	4	4	5	6	9	12	16	17	16	12	10	5	5	5	5	5	5	7	7	6	5	4	-	-	-	-	-		6D	
<u>-7.6</u>	-	-	-	-	-	•	-	-	-	-	4	4	5	6	- 7	12	9	6	5	5	5	6	- 7	- 7	7	6	5	4	4	-	-	-	-	-	3	-	-
18.6	-	-	-	-	-	-	-	-	-	- 3	4	6	8	12	13	14	15	- 7]	3	4	6	11	10	9	7	6	5	5	5	5	-	-	000	**		-	400
19.7	x	X	x	x	x	X	х	х	X	X	x	X	х	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	x	x	X	х	X	X	х	х
20.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 5	6	8	_7	5	7	10	10	12	12	15	14	10	6	5	5	5	5	-	-	-	-	7
21.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	4	4	4	6	15	25	25	21	17	15	11	8	7	5	4	4	4	-	-	-	-	-
22.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	9	17	18	18	12	10	-	-	-	-	-	-	-	-	-	-	-	-	-
23.6	-	-	-	-	-	-	-	_	-	-	_	-	1	-	-	-	-	-	-	2	10	12	14	10	2	-		-	-	638	-	_	-	••• ••7	4.7	-	
24.8	x	x	x	x	X	x	x	x	x	X	x	x		X	X	X	Å.	X	Å	A	Å	<u> </u>		Å	·Å.	X.	~	T	Ä	Å.	Å	x	x	¥	¥	¥.	÷.
27.8	-	-	-	-	-	-	-	-	-	-	-	-	2	4	10	13	15	끐	6	2	10	12	12	10	2	2	5	2	-	-	-	-	-	-	-		-
29.6	-	-	-	-	-	-	-	-	-	-	-	-	2	2	ŦŦ	18	20	14	12	12	1(18	10	12	8	6	4	3	-	-	80	etas	-	-	-	8	ς.
30.6	-	-	-	-	-	-	-	-	-	-	-	-	2	2	4	15	6	2	4	2	ð	Б	ð	2	4	2	2	2	-	-	-	-	-	-	-	.	-
) ملز	-	-	-	-	-	-	-	-	-	-	-	-	3	Ь	10	75	±1	8	ь	2	2	2	5	2	2	2	-	-	-	-	-	-	-	-	-	-	-
																				L					-										-	-	

Table 55b

Coronal observations at Climax, Colorado (6374A), west limb

Date			De	gre	es	sou	th	of	the	so	lar	eq	uat	or				0	2			De	gree	98 I	nort	th (of	the	so.	lar	eq	at	or			
GCT 90	85	5 80	75	70	65	_60	55	50	45	40	35	30	25	20	15	10	5	٦٢	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
GCT 90 1950 Aug. 1.6 - 2.6 - 3.8 - 4.7 - 7.6 - 8.6 -	8						- - 1 -	- - 1 -	2 2 1 1	3 1 1 1	2 1 1 1 1	30 4 1 1 1 1	5 3 2 1 3	20 11 6 14 2 2 2	15 14 10 11 10 2 2	10 17 12 1 1 5 4	5 3 - 1 2	3 1 - - 2	531122	8 3 3 3 2 2	15 1 1 1 3 1	- - 1 1 1 1	- - 1 1 1	30		<u>40</u> - - -	45	50	<u>-</u> - - - -	60	65 	70	75	1 1 1	85	90
9.6 -2 10.6 -2 12.6 -2 13.6 -1 14.7 -1 15.6 -1 16.7 -1 18.6 -1 19.7 -2 20.7 -2 21.7 -2 23.6 -2 24.8 -2 24.8 -2 24.8 -2 29.6 -3 30.6 -3 31.7 -2						- 332						22 - 22 - 1 - X - 1 - X - 1	21 1121 X 11 X 11 1	341813421814 - 18152	133283144x - 1 - x 31111	3516331478 1 846 2	326212227X - 2	5482 2 - 4x - 2 x - 1	3571 - 1 - 2X - 25 - X 11	11862 - 1 1x 146 x 13	1323 1 X-456X64	11136x-3x43	1 - 2 - 1 X - 1 - X 12 													

.

Table 56a

Coronal observations at Climax, Colorad (6702A), east limb

Dete				Deg	ree	s n	ort	hc	of 1	he	so]	ar	equ	ato	T				00				Deg	тее	8 S	out	ho	f ·	the	sol	lar	equ	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	10.	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1050															-																						
1990	_	_	-	_	_	-	_	_	_	_	_	_	-	_	_	_	_	_	_	11	1	3	3	3	1	1	_	_	_	-	_		-	_	-	-	_
Aug. 1.0	_	_	_	_	_	_	_	_	_	_	_	_	-	_	-	-		_	_		_	ĩ	ź	ź	ī	1	_	-	-	-	_	-	-	_	_	-	-
78	_	_	_	_	_		_	_	_	_	_	-10	_	-	_	_	_	_	_	-	_	_	_	_	_	_	-	_	-	_		-	_	-	_	-	_
1.7	_	_	_	_	_	_	-		_	_	_	_	_	_	_	_	-	-	-	-	_	-	-	_	-	-	_	_	_	-	-	_	-	-	_	-	-
7.6	-			-	-	_	_	-	_	_	_	1	2	3	3	2	1	-	-	1	2	1	1	_		-	-	-	-	-	-	-	-	-	-	-	-
8.6	-	_	_	_	_	_		-	-	-	_	1	1	ĩ	í	2	2	1	-	-	_		-	-	-	-	-	-	-	-	-	-		-	-	-	4
9.6		_	-	_	-	-	-	-	-	_	-	_	-	1	1	2	2	1	-	- 1	-	479	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10.6	-	-	_	_	-			_	-	-	-	-	-	1	2	2	2	1	1	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
12.6	_	-	-	-	_	_	-	-	-		-	-	-	1	1	1	1	1	1	1	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
13.6	_	-	-	-	-	-	-	-	-	-		-	-	-	-	429	-	-	1	1	3	3	2	1	1	-	-	-	-	-	-	-	-	-	-		-
14.7		-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	2	1	1	2	3	2	1	-	-	-	-	-	-	-	-	-	-	-	-	-
15.6 L		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	630	1	1	٦.	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16.7	-	-	-		-	_	-	-	-	-		-	-	-	-	-	-	-	1	1	1	3	2	1	1	-	-	-	-	-	-	-	-	-	-	-	-
17.6	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
18.6	-	-	-		-	-	-		-	-	-	-	-	-	-	-	-	-	1	1	2	2	1	1	-	-	-	-	-	-	-	-	-	-	-	•	-
19.7a	X	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	х	X,	X	X	x	X	x	X	X	х	X	X
20.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	j —	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	
21.7	-	-	-	-	-	-	-	- 10	-		-020	-	1	1	2	2	1	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7
22.6	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
23.6	-	-	_	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	1	-	1
24.8	х	X	х	x	X	X	X	-	-10	-	-	-	-	1	1	5	2	1	1	3	2	1	1	-	-	х	x	X	x	x	x	X	x	х	х	х	×.
27.8	-	-	-	-	-	-		-	-	_	-	-	-	-	-	-	-	-	1	1	T	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
29.6	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	-	-	-	-	-	-	-	-	-	-	-	Ξ.
30.6	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
31.7	•	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 57a

Coronal observations at Sacramento Peak, New Mexico (5303A), east limb

Date				Deg	ree	s n	ort	h o	ft	he	sol	ar	eq	uat	or								Deg	ree	es s	sout	h c	of t	the	so]	lar	equ	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1950																																					
Jul. 2.8	-	_	-	_	_	-	-		3	4	5	7	9	12	13	15	16	13	ß	8	5	7	5	9	և	7	g	q	g	6	6	5	٦	2	_	_	-
3.7	-	-	-	-	-		-	-	-	4	6	ġ	13	12	13	14	,15	īź	9	5	ıó	10	ıó	12	14	13	9	ś	ŭ	й	3	1		-	_	_	_
8.7	-	-	-	-	-	4	11	13	12	9	11	16	22	- 34	35	37	30	17	14	15	24	37	40	28	18	17	18	12	10	9	ź	7	9	4	-3	-	-
13.9	-	-	-		-	3	3	4	5	-7	8	9	9	11	15	26	39	30	21	16	14	16	15	11	7	-	-	3	4	3	5	5	_	-	-	-	-
14.6	-	-	4	4	4	4	5	6	6	8	9	9	9	13	15	28	36	20	17	15	12	14	14	10	8	4	-	-	-	2	3	4	-	-	_	-	-
15.7	610	-	-	-	-	-	3	3	4	6	6	7	11	13	15	18	25	17	13	13	13	14	13	12	10	4	4	**	-	-	-	-	-	-	-	-	-
10.9	-	-	-		_	_	4	8	5	7	11	12	14	13	18	29	28	24	20	15	12	17	20	16	14	11	8	-	-	-	-	-	-	-	-	-	-
107	-	-	-	-	3	3	5	4	5	9	14	13	13	13	26	30	29	27	22	17	13	15	17	27	13	11	g	-	-	-	-	-	-	-	-	-	-
10.0	-	-	-	-	2	2	Ь	(9	10	13	14	14	12	18	30	33	28	22	18	25	20	25	32	14	13	9	2	-	-	-	-	-	-	-	-	-
20 9	_	_		2	2	7	9	2	2	12	14	14	14	14	12	22	29	28	23	15	18	30	28	18	13	11	10	8	4	X	X	X	X	X	X	X	X
25.8	-	_	-	-	-	2	4 7	0	0	3	10	10	12	12	12			_X	X	Å	X	X	X	X	X	X	X	X	X	х	X	x	X	X	x	x	X
26.9			-	_		6	2		3	14	10	11	14	18	26	36	38	31	26	13	10	9	10	X	x	X	X	X	X	X	x	2	X	x	X	X	X
27.6	_	_	_	_	-			7	ĥ	10	10	10	12	14	12	20	34	25	19	12	4	. 4	3	.5	.9	8	4	4	-	-	-	-	•	-	cao	-	-
29.6	2	2	1	_	2	2	h	Ĩ.	6	6	10	6	12	- 4	16	27	40	24	19	14	12	14	13	11	10	9	3	4	3	2	-	-	-	-	-	-	
			-		-	-	4	-+	0	0	4	0	9	9	70	14	10	14	ΤQ	14	23	22	24	10	TO	9	б	р	6	р	3	2	2	2	2	-	-

Coronal observations at Climar, Colorado (6702A), west limb

Date				De	gree	es:	sou	th (of	the	30	lar	001	uat	or				0	1			Deg	ree	es r	ort	th d	of	the	80	lar	eq	uat	or			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	10	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1950																				Γ																	-
Aug. 1.6	_	-	-	-	-	-	-	-	-	_	-	-	-	-		-		1	1	3	3	2	1	1	-	-	-	-	-	-	-	-	-			-	-
2.6	-	_	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	ĺĺ	í	1	1	1	1	-	-	-	-	-	-	-	-		-	-	-
3.8	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-06
4.7	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	ar.)		-	unda	-	-	-	-	-	-
7.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-
8.6	_	-	-	-	_	-	-	-	-	-	-	-	-	-	-		-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	•
10.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	2	1	1	2	2	2	1	1	1	-	-	-	-	-	-	•	-	-	-	-
12.6	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	60			-	49
13.6	-	-		-	-	-	-	-	-	-	-	-		-	1	1	1	-	-	-	-	-	-	-	-	-	-	-	-	- 100	-	-	-	-	-	-	68
14.7	-	-	-	-	-	-	-	-	-	-	-	1	1	2	2	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	640	80	-		-	-	-	-		-		-
16.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-
17.6	-	-	-	-	-	-	-	-	-	-	-	•		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	639	-	-	-	-	-	-
18.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	etto	-	-	-	-	-	-
19.7	X	X	X	X	х	X	X	х	X	X	X	X	х	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Z
20.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		1	1	2	2	1	-	-	-	-	629	-		-	-
21.7	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	1	-	-	-	-	-	-	-	-	-	-	880	-	-	-	-	-	-	-	-	8
22.6	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	08	-	-	-	-	-	-	-		-	-	-	-	-	-
23.6	-	-	-	-	-	-	-	-	-	-	-	-	080	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	•	4.P	-	-	-	-	-
24.8	X	X	X	X	X	X	X	X	Х	X	х	х	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
27.8	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	2	1	1	1	1	1	-	-	-	-	-	_		-	-	-	-	-	-	-	-	-
29.6	-	-	-	-	-	-	-	-	-	-	-	-	-	907	-	-	60	-	-	-	•	-		-	-	882	•		-	-	-	640	-	-	80	-	80
30.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-180	-	629	-		-	-	-	-	-	-	-	-	~0	-	-	-	60		-	00/	-	-	-
31.7	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	640	-	-	-	-	-	-	-		-	628	-	-	-	-
																											de atatances								-		

Table 57b

Coronal observations at Sacramento Peak, New Mexico (5303A), west limb

ð

Date				Dep	ree	8 8	out	th c	of ·	the	so	lar	eq	uat	75				0				De	ree	88 1	iort	ch d	of t	the	30]	ar	equ	ato	m			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	10	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1950																			ſ	-																	
Jul. 2.8	-	-	-	-	-	-	-	-	-	-	-	-	2	- 7	14	13	18	12	12	13	20	23	20	20	12	12	11	9	9	- 3	3	2	-	-	-	-	-
3•7	-	-	-	-	-	-	-	-	-	-	-	-	- 5	9	15	20	27	15	14	16	20	35	37	23	13	14	13	11	4	- 3	-	-		-	-		- 100
8.7										4	- 5	9	10	11	14	21	38	25	16	25	33	31	35	34	16	17	22	27	26	15	12	12	5	2	-	-	-
13.9	-	-	3	- 3	2	- 3	4	4	4	4	4	- 5	7	6	7	8	10	10	11	22	26	36	39	23	14	15	13	11	11	11	9	4			-		-
14.6	-	-	-	2	3	4	4	5	- 3	4	6	- 7	6	6	6	8	10	11	12	20	33	36	33	27	14	12	14	12	9	9	5	3	2	- 3	-	•	-
15.7	-	-	-	-	-	- 3	-5	-5	- 4	- 7	_7	10	- 9	7	4	6	13	15	12	13	14	30	20	16	14	12	11	2	- 5	4	3	- 3	-	-	-	-	-
16 . 9a	-	-	-	-	-	-	-	- 3	4	_5	- 4	11	11	13	8	8	10	15	12	8	10	14	14	13	11	8	8	5	4	4	3	2	2	-	-	-	40
17.8	-	-	-	-	-	-	4	4	- 5	11	14	14	16	20	18	14	15	14	13	8	10	13	13	13	13	12	10	8	5.	-	-	-	-	-	-	-	-
18.7	-	-	-	-	2	3	5	4	- 3	4	14	14	18	27	33	36	18	12	11	11	11	11	13	14	13	13	13	10	4	÷.		-	-	-		•	
19.8	X	X	X	Ĩ	x	X	x	X	X	X	X	Ĭ	X.	X	X.	X	X	X.	X	X	X	X	X	X		X	X		4	4	3	2	-	-		-	
20.9	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Ă	X	X	_ A	X	Ă	X		_ Å	Å			X		- (2	2	2	1	-	-	-	-
25.8	x	х	х	х	х	х	х	X	X	X	X	X	X	X	X	X	X	X	×.	A.	A	Å	A A	X	. A	X	. X.		-	. 9	2	4	4	2	-	-	-
26.9	-	-	-	-	-	-	-				3	2	- 2	4	5	. 2	11	11	13	14	23	22	24	20	15	12	10	10	11	11	ð	2	?	4	2	-	613
27.6	-	-	-	-	-	-	-	4	3	4	4	- 3	4	-5	. 9	13	14	13	122	17	26	35	42	1/	11	10	8	11	13	11	9	Š	4	2	4	2	
29.6	-	-	-	-	-	-	2	2	2	2	-	-	4	τ0	14	14	14	14	114	TR.	22	1 ز	4ر	4ر	20	10	5	5	5	8	9	2	- ((4	4	2
																												-	_						_		

舶

Table 58a

Coronal observations at Sacramento Peak, New Mexico (6374A), east limb

Date				Deg	ree	s n	ort	h c	of t	he	so]	ar	equ	ato	n				0				Deg	ree	es s	out	h c	f t	he	so.	lar	equ	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1950												_	_	_									-		_	80			_	-	_	1.	3.	-	~	-	
Jul. 2.8	-	-	•	-	-	-	-	-	-	-	-	- 3	- 3	2	-	-	-	8	11	1 =	-	8	2	2	2	2	8	-	3	3	3	4	4	د	2	3	
3.7	-	-	-	-	-	-		-	-		-	-	-	-	-	-		9	10	5	5	4	- 5	ې	- [5	3	-	-	-	-	-	-	-	-	-	-
8.7	2	1	2	4	3	4	3	2		-	-	-	5	15	18	15	14	4	2	2	6	9	8	4	- 3	-	-	-	- 3	2	5	2	- 3	3	2	3	5
13.9	2	4	4	3	4	3	3	9	11	- 3	_	4	6	5	5	10	13	11	12	11	5	- 3	- 3	2	4	5	4	3	-	5	2	T	-	-	-	-	-
14.6	-	4	2	2	1	-	1	- 3	3	-	4	1	2	2	- 3	10	13	16	13	12	- 5	4	- 3	2	- 3	2	2	1	- 3	4	2	-	-	-	-	-	-
15.7	-	-		-	-	-		_	2	1	4	- 3	2	- 3	- 3	11	- 5	13	8	14	- 5	- 7	4	- 3	-	-	-	- 3	2	2	4	2	-	-	-	-	-
16.9	-		4	3	-	2	-	3	2	3	2	4	_		- 4	4	g	15	12	14	5	11	11	- 4	2	ц	4	-	-	-	-	-	-	-	-		-
17.8	_	-	_	_			-	_	_	_	_		_	-	-	-	9	17	11	7	13	12	10	9	7	-	-	-	4	4	- 3		-	-	-	-	-
18.7	_	-	_	_	_	_	_				_	-	-	-	-	-	- 4	9	13	14	10	18	15	17	10	4	4	4	-	4	4	-	-	-	-	-	-
19.8	2	Ц	3	2	3	5	7	3	-	1		_	-	-	4	2	4	5	11	9	14	28	26	22	13	g	5	3	-	X	X	X	X	х	X	X	X
20.9	1	3	ź	3	ž	ź	÷.	1	_	_			_	_	-	X	X	X	X	X	Х	X	Х	X	x	X	x	x	X	Х	X	X	X	X	X	X	X
25 8		2	2	ž	ú	3	_	1	2	_	_	_	_	_	3	4	13	13	9	3	g	5	Х	Х	x	Х	х	х	X	Х	X	X	X	X	х	X	X
26.9	2	2		5	5	ž	2	2	2	3	2	_	_	_	ź	8	15	10	g	Íź	7	5	4	7	g	11	5	3	3	-	424	_	_	-	-	-	-
27 6	7	7	2	h	2	2	2	2	2	í	3	2	2	3			22	15	14	5	ģ	12	ġ	ų	9	9	9	ú	5	3	3	3	2	4	3	3	2
20 6	2	3	2	2	2	3	1	3	2	2	3	3	2		-	1	4	Ĩ.	3	12	9	9	ıó	3	- 5'	ź	ž	2	-	1	-	1	-	_	-	-	-
27.0	6	6	6	-		2	1		-	-						-			Ĺ			. ´.						_									

Table 59a

Coronal observations at Sacramento Peak, New Merico (6702A), east limb

Date				Deg	ree	es :	nor	th	of .	the	80	ar	eq	at	or					2			De	gree	95	sout	th	of	the	so	lar	eq	nte) r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	10	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1950																																					
Jul. 2.8	-	-	-	_	-	_	-	-	_	_		-		-	_	_	-		_	-	-	_	-	_	_	_		_	_		_	_	-	_	_	-	_
3.7	-		-	-	-	-	-	-	-		-	-	-		_		-	_	_	-	_	-	_	-	-	_	-		_	_		_	_	_	_	_	_
8.7	-	-	-	-	-	-	_	-	_	-	1	2	3	3	3	4	2		-	_	2	3	5	4	-	-	-	_	-	_	-	_	_	_	_	_	_
13.9	-	-	-	-		-	-	-	_	-	93	-	-	2	2	3	4	2	11		_	-			-	-		-	_	_	-		_	_	_	-	
14.6	-	-	-	63		-	-	-	-	-	80	-	-	cme	2	ų	4	3	2	-		_		-	-	_	-	_	_	_	_	-	_	_	_	_	_
15.7	-	-	-	63	-	-	-	-	-		-	-	esp.	_	2	3	4	ź	_	_	-	_	_	-	_	-	_	-		-		_		_	_	_	
16.9	-	-		-		-	_	-	-	_	_	-	1	1	2	ź	3	3	2	2	_	_	1000	-	_	_	_	_	_	_		_	_	_	_	_	_
17.8		-	-	-	_	-	-	-	-	-	-	-	-		-	2	ž	3				-	_	_	-	-		-	_			_	_		_	_	_
18.7			629	-	-	-	-	-	-	-	-	-	-	-	_	_	ź	ž	3	3	4	2	2	3		-	_	-	-		-	_		_	_	_	_
19.8	-		-	-		-	-	-	-	-	_	-	•	939	-	ep	2	ź	ź	ź	2	3	3	1	_	-		_	_	Χ	x	X	х	x	x	x	x
20.9	-	-	-	-	-	-	_	- 100	-	-	-	-	_	-	-	х	х	π	x	X	x	ź	Ť	x	x	X	х	x	x	x	x	x	X	x	x	x	X
25.8	-	-		-	-	635	-	-	-	-	-	1	2	3	3	24	5	4	_		-		x	x	x	x	x	x	x	x	x	x	T	x	x	T	T
26.9	-	-	-	-	-	-	-	-		-	_	_	-	-	1	2	ŝ	11	2		60	_	-	_	_	_	_	_	_		-	-		-	_		-
27.6	-	_	-	-	-	-	_	-	_	-	-	-	-	1	3	4	4	2	1			_	-					-	-	_	-		_	_	_	_	_
29.6	-	-	-	-	-	-	-	-	83	-	-	-	-	-	1		-	_	1	1	3	2	2	_	_	-	_	-	_	_	_	_	_	_	_	_	_
																						-	-						_	_	2	_	_			_	-

\$

Coronal observations at Sacramento Peak, New Merico (6374A), west limb

Date				Deg	gree	es :	sout	th	of	the	90	lar	eq	uat	or				0	2			De	gre	es :	nort	h c	of 1	the	so	lar	equ	ato)I.			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	10	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1950																																					
Jul. 2.8	-	-	-	-		-	-	-	2	2	2	2	2	3	6	13	15	13	9	115	1?	15	5 5	5 3	-	-	-	90	-	-	-	-	-mi	810	-	-000	6.2
3.7	-	-	-	-	-	-	-	- 3	3	- 3	-	•	3	- 5	11	17	18	21	2	114	18	13	5 11	L	-40	-		-	-	3	4	5	-	-	620	625	ag.
8.7	3	2	3	3	3	3	4	4	4	5	Ļ	3	4	3	3	6	17	5	14	5	13	; 14	10) _	cre	-	en:	_	-		3	2	2	2	2	2	2
13.9	-	-	-	-	-	-	-	-	-	-850	-14° =	-	3	<u>h</u>	3	-	_	6	7	4	9	14	16	5 4	5	-	679	400	4	3	3	2	2	1	800	4	2
14.6	-	-	-	-	-	2	2	3	3	5	-	3	2	3	3	3	3	4	2	3	12	17	12	-	_	-	-	-	5	4	-	4	24	1	2	æ	-
15.7	-	-	-	-		2	5	- 3	- 3	3	3	3		-	2	3	g	15	-	7	-	14	10)	2	-	4	3	ate:	-	-	-	cm	40.1	640	-	-
16.9a	-	-	-	480	-	-	2	2	2	3	-5	5	3	5	3	6	9	13	14	2	3	5	2		-	-	-	_	-100	-	3990	11	3	2	etär	-	-
17.8	-	-		-	-	- 3	Э.	2	- 3	4	4	3	2	3	g	9	14	5	-		24	. L	3	5 -	- 3	2		-	630	-	-	467	-	-	-	-	-
18.7	-	-	-	3	3	-	3	4	5	4	4	-	4	3	9	15	- 9	4	-	1 -	3	2	-	<u></u> , ц	2	1	3	3	-	620	-	400	1000	080	-	-	60
19.8	X	х	X	х	X	Х	Х	X	X	Х	х	X	X	X	X	X	X	X	X	X	X		2	X X	X	X	X	3	2	2	2		3	2	3	3	2
20.9	х	X	X	X	Х	X	X	X	X	X	X	X	X	X	Х	X	X	X	X	X	X	X	2	X X	X	X	Х	Х	3	-	3	2	3	3	2	2	1
25.8	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X I	ζ 2	X X	X	X	X	X	- 3	2	2	2	3	4	3	- 3	630
26.9	-	-	-	-	-	-	-	-	-	-	-	3	2	2	10	9	8	8	9	10	10	123	5 10) 2	¢m.	4	-	-	-	-	-	-	1	2	2	1	2
27.6	3	1	2	2	3	1	- 3	- 3	- 3	- 3	- 34	4	3	- 5	4	4	- 5	5	-	8	11	. 15	15	5 4	2	3	3	2	3	<u>)</u> t	- 3	3	4	2	2	3	3
29.6	-	-	2	2	-	2	- 3	- 3	3	4	4	4	6	9	4	4	10	- 3	3	5	10	6	5 6	5 4	2	-	- 300	2	3	4	2	2	-	2	1	2	2

Table 59b

Coronal observations at Sacramento Peak, New Mexico (6702A), west limb

Date				Deg	ree	S	out	h	of 1	he	sol	ar	001	ato	pr	-			00				Deg	төе	es r	ort	h c	of t	he	sol	ar	equ	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0~	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1950												_	_	7	1	2	2	,	1	2	2	հ	3	_	_		_	_	_	_	-	-		_	_	_	_
3.7	-	_	-	_	-			~~~		_		-			_	_	-	-	÷	3	3	h	5	3	-	-	_	-	-	-	-		-	-	-	-	-
8.7	_	-	-		-	677	-	- 100			-	-	-	800	-	-	1	2	-	-	3	4	4	3	-	-	-	-	050	•	-	60	-	-	-	-	60
13.9	en.	-	-	æ	-	-	-10	s. 1	080	/80		05	8.79	-	- uph	-	-10	-	-	2	3	3	5	5	-	-	-	-	-	-	-	620	-	-	-	-	-
14.6		-	-	an	0	-	1.000	45	5.4	60	440	-		-	-	-	-	-	-	1	4	3	4	2	-	-	2	2	-		-	_	-		-	-	239
15.7	0.00	-	-	-	627		cap	er.p	_				-	-	_	-	-	-	-	-	2	2	2	2	_	_	-	-	_	-	_		-	-		-	-
17.8	_	-	_				-			800		10	ç	_	-	_	_	_		-	-	_	-	-	-		_	-	G10	-	_	-	-		-	-	-
18.7	-	-	_	-	-	-	90	-2	Cllie	16.7	-	d)	3	3	4	2	2	2	-	-	-	-	-	\overline{a}	-	-	-	-	-	-	-	-	60	-		-000	30
19.8	X	X	X	Х	X	X,	X.	ズ	T_t	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	x	X	X	-	-	-	-	-	-		-	#10
20.9	Х	X	X	X	Å	Χ.	X	A	X	X	X	X	X	X	X	X	Ĩ	Ĩ	X	X	X	X	X	X	X V	Å V	X	<u>х</u>	-	-	_	-	_	_		_	-
25,8	X	X	Х	Х	X	X	Å	X	. A	X	Å	Å.	Å	Å	Y	A	•	*	^	A			~	_	_	_	_	_	_		_	1	_	_	_		
20.9		801		-	60		_	_	-	~	_		-	-		-	_	_		1	2	4	3	2	-	_	_	-	_	_	-	_	-	-	150	cm/ ⁴	63
29.6	-	-	_	-	_	-	-		-	_	-	-	_	-	-	-	-	-	-	-	2	4	ų	1	~		-	-	-	-	-	-	-	-	680	•	82
2.																																					

STC .	
0 20	
1010	
DECT	
it culars of Obser.	
	Paidleulars of Observity-June 1950

Mog.B.	英国政策部署 19 19 19 19 19 19 19 19 19 19 19 19 19 19	
O`be.	CCCCC展の限のの、低くのの、低くの、低い、低い、低い、低い、低い、低い、低い、低い、低い、低い、低い、、低い、、	
3150	202322200047000819282540208055540704040778080898940404	
d. 2700	28943907499588899059739747989797979797979797988889965589995973777977	
1201	28095400540054008001140344082556556666480088800994848893	
1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	29005580840578787879595889545050485489999485	
1-1-12	「いっき」 していた。 していた。 していた。 していた。 していた。 していた。 していた。 した。 した。 した。 した。 した。 した。 した。 し	
dan o	╡ӝӹӬѹѩӹӣӣ <mark>ӣӣҧ҂</mark> ҔѽҍӸ҈ҋӝѻӥ҄ <mark>Ҷѻӥӧҋ҄ӊ҂ӝ҂ѹѻӧӹҫӵҫӴҌӉ</mark> ӸѧҶ	
22	๚๛๛๚๛๛๚๛๚๛๚๛๚๛๚๛๚๛๚๛๛๚๚๛๛๛๛๚๛๛๛๛๚๛๛๛๛	
	ロット して、 して、 して、 して、 して、 して、 して、 して、	0 5,1
Dat. OCC	497.4 19500 1950 1950 1950 1950 1950 1950 1950 1950 1950 1950	C == Cook E == Evans Ra == Ransey Ro mere S = Schnab
Mens.	຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺	
Obs.		
아니다	๚๚๚๚๚๛๛๛๛๚๚๚๚๛๛๛๚๚๚๚๚๛๛๛๛๛๚๛๚๛๚๛๚๛๚๛๚๛	
å 270 ⁰	๚๚฿฿๚๛๛๛฿฿ฅ๚๚๛๛฿๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	
s thol at	๚๚๛๛๛๚๚๚๛๛๚๛๚๚๛๛๛๚๛๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	
6 51 r 01 ty 1 800	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	
enlin inten	ᠳ᠘ᡸᢦᡛᢒᡛᡄᢁᢒ᠊ᡏᢒᢄᡛ ᠉ᡱ᠉ᡄᡶᢅᢤᢋᢙᠵ ᢣᢋᢋᢛᠩᠥ <i>ღ</i> ᠉ ᢦᡢ᠋ᢋᢒᡢᢤ᠉᠋ᢤᠣᢦ ᢦ᠉ᢦᠵᡔᡔᡢ	
Gre	฿๚๚๛๛๛๛๛๛๛๛๛๛๛๛๛๚๛๚๛๛๛๛๛๚๚๚๚๛๚๛๛๛๛๛๛๛๛๛	
140	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	
0	2120180088000120011000100084000120088700190887000490	
Date GCT	1950 1950 1950 19, 7 10, 8 10, 9 10, 9 10, 9 10, 9 10, 9 11, 9 12, 9	

	Table	61		
Outstanding	Soler	Flares,	May	1950

Obeerva- tory	Date	Ti Obse Begin-	me rved End-	Dura- tion	Area (Mill) (of)	Posi Long- itude	tion Lati- tude	Time of Maxi-	Int. of Maxi-	Relam tive Area of	Import- ance	SID Obser- ved
	1950	(GOT)	(GOT)	(Min)	(Disk)	(Deg)	(Deg)	(GCT)	inua	(Tenths)		
Boulder	May 1	1827	1902		910	F2 5	N14	1845	15	5		Yesl
McMath	8 1	185	50			123	N15				2	Yes
Meudon	" 3	095	50			EO5	N15				3	Yes
Stockholm	" 5	1705	1750		1 70	1905 1905	N15	1716	0			I GG J
Boulder	н <u>х</u>	1/05	17		190	1701	N16	1110	0			168
Wendelstein	" 5	0548	0711		1309*	W27	N13	0611			2	Yes
Boulder	# 5	1720	1815		504	1/27	NIS	1744	15	3		Yee
8	۳ 5	1935	2000	25	242	1/32	NL7	1950	9	6		Tes
Wendelstein	" 6	1242	1248		679*	E 79	NO4				2	
McMath	" 6	133	30			#41	N16				2	Iee'
Wendelstein	6	1340	1343		145*	W43	N12	11.07	~	-	1	Ten
Boulder	6	1400	1435		485	W43	N13	1403	8	3	1	ICE
Baulder	- D	1675	1720	hs	176	#40 277	1007	1639	12),	T	108.4
1 Louiser	• 6	1730	1750	4)	172	176	NOS	1740	g	5		
11	# g	2035	2135		508	E46	INO 3	2042	10	ĩ,		Tee
Wendeletein	" 9	0520	0554		242*	W74	NIS	0525			2-	
Boulder	" 9	1520	2124		1480	E43	NOS	2102	20	5		
	" 10	1505	1800	175	478	122	106	1552	15	6		
Meudon	" 11	093	37		(===	E1 5	NO5	11.00		7	1	
Boulder	" 12 # 10	1457	1510	13	632	1900	NO7	1459	10	5		
Wandal at of a	# 12	1050	1752		770m	103	NOS	1/00	6	2	1	
Boulder	4 7 7	1735	1815		398	104	NOL	1711	10	2	-	
ti i	" 13	1815	1900		468	WII	NO5	1816	10	5		
	" 16	1950	2020	30	176	1/64	803	2003	6	7		
9	" 18	1620	1840		176	E30	S1 4	1655	g	5		
	N 18	1900	1 9 55		353	E30	\$14	1912	g	4		
McMath	" 19	121	LO			E36	S14				1 +	Tes
Boulder	19	1430	1443	13	202	123	S14	1435	10	5		
Wendelstein	· 20	0647	0703		436	1084	NOS	0651			1.0	
	· 20	0054	0711	17	291*	1055	318	0720			1_2	
Boulder	· 20	1710	1)100	50	242▼ 1 ຄ	1204	SUM	1 752	11.	F	1	
1	# 20	1510	1535		70.9	126	S1 /	1512	15	6		
McMath	" 20	16	24		100	ESS	10		2)	U	1	
Boulder	" 20	1805	2020	135	1430	124	\$15	1811	20	<u>h</u>	_	Teel
McMath	2 0	181	16	22		126	817		-		2 +	Yes >
5	# 20	181	16			E8 5	N10			-	1	Yes
Boulder	" 20	2040	2140		154	E 79	N12	2001	10	6		
8	" 20	2140	2300	80	198	£79	N12	2210	10	ь		
Wendelstein	" 21	0641	0704	50	291*	E (O)	N09	1650	ø	6	1	
N DOUTGOL	# 21	1715	1037	20	220	121 F	\$20	1758	g	7		Yaa
1	a 21	2105	2150	90 145	203	E65	NOS	2118	15	Li Li		
	* 21	2 340	2400	20	248	1256	109	2345	15	7		
Wendelstein	# 22	0736	0801	25	242	155 E	NO5	0744	.,	,	2	1
	" 22	0933	1018	45	485	155	NO7	0938			1-2	Tee 3
Prague	1 22	09	37			E15	N15			~	3	Yes
Boulder	22	1350	1445	55	662	151	106	1404	25	g	2	Ies }
McMath	" 22	1357	3635	15	177	254	N09	1407	10	6	2 +	I US J
nonrgel.	# 22	1600	1805	15	1/1	KH9	NU P	1706	10	6		Tes
	· 22	2010	2105	25	266	ELIZ	N11	2011	15	5		Yes
	# 22	2200	2 345	105	464	ELIQ	114	2217	35	7		Tes
Wendelstein	# 23	1 352	1409	17	242*	E35	NOS	1357		·	1	Yes
Boulder	* 23	1355	1435	40	243	E43	NOS	1359	15	5		Tes
	# 23	1457	1531	34	221	E33	NO7	1505	10	6		
1	" 23	1525	1535	10	176	E38	NIO	1526	g	4		
1	" 23	1625	1645	20	198	E34	NOS	1630	10	4		
	" 23	2025	2155	90	418	E 37	NOS	20.32	10	3		Yos
1	* 23	2155	2212	17	176	129	NO7	2201	15	б F		IGS
-	- 50	2255	2 340	45	300	12 2	NOU	1815	10	2		
			< 6/115		240	di 1 3			10			

*Area corrected for foreshortening.

Table 62

andices of Geomagnetic Activity for July 1950

Preliminary values of mean K-indices, Kw, from 34 observatories; Preliminary values of international character-figures, C; Geomagnetic planetary three-hour-range indices, Kp; Magnetically selected quiet and disturbed days

Gr. Day 1950	Values Kw	Sum C	Values Kp	Sum Final Sel. Days
1 2 3 4 5 6 7 8 9 10	3.4 17 2.0 2.1 2.9 2.3 1.9 3.1 15 2.4 1.4 1.1 1.4 1.5 1.8 1.7 0.9 1.1 0.8 1.7 2.7 3.0 3.6 4.7 49 4.3 3.2 1.7 2.3 2.9 3.4 3.3 3.6 2.8 1.4 2.4 3.0 2.6 2.6 3.1 28 1.9 2.5 2.8 2.4 2.7 1.7 1.7 2.5 2.1 1.4 2.4 3.0 2.6 2.6 3.1 28 1.9 2.5 2.8 2.4 2.7 1.7 1.7 2.5 2.1 1.4 2.3 2.2 2.3 1.9 3.1 2.1 1.5 2.0 1.7 2.4 1.9 0.6 0.4 2.1 3.3 3.1 1.9 3.0 2.7 2.5 1.6 1.1 0.9 1.7 2.5 2.3 2.5 1.8	19.4 0.6 12.8 0.2 18.5 0.9 26.0 1.3 21.5 0.7 18.5 0.5 17.8 0.5 12.6 0.3 20.2 0.7 14.9 0.5	$\begin{array}{c} 4 \circ 2 - 2 \circ 2 \circ 3 + 2 + 2 = 3 + \\ 2 = 3 = 2 = 1 \\ 0 + 1 = 1 = 1 \\ 3 = 3 + 4 + 5 \circ \\ 6 \circ 5 \circ 3 + 1 + 3 = 3 + 3 + 4 + 5 \circ \\ 4 \circ 3 + 1 + 3 = 3 + 3 = 3 + 3 + \\ 3 \circ 2 = 3 - 3 = 2 + 3 \circ 1 + 2 \\ 3 = 2 + 1 + 2 \\ 2 \circ 2 + 2 \circ 4 = \\ 2 \circ 1 + 2 \circ 2 = 3 + 2 = 0 + 0 + \\ 2 \circ 4 = 4 = 2 \\ 3 = 3 + 3 = 2 + 1 \\ 1 + 1 + 2 = 2 + 2 + 3 + 2 = 2 + \end{array}$	20+ Five 120 Quiet 18+ 29+ 17 240 18 19 18+ 23 19- 26 120 21- 16+
11 12 13 14 15	3.2 1.5 1.3 2.8 4.4 3.2 4.0 4.9 5.7 5.1 5.1 4.6 3.2 3.2 2.9 2.9 3.7 3.5 2.9 4.3 4.2 2.4 2.7 1.8 2.1 1.7 2.8 2.3 1.9 2.0 2.3 2.9 2.9 2.5 2.5 1.8 2.3 2.2 2.5 2.1	25.3 1.3 30.7 1.4 25.5 1.1 18.0 0.6 18.8 0.6	4-2=1030 5+4=5060 706+4=5+ 3+3+303+ 5=403050 5=3=302= 202=3+2+ 202+3=3+ 303=3=2= 2+2+3=2+	29+ Five 35+ Dist. 29- 20- 4 20- 11
16 17 18 19 20	2.2 2.4 2.0 3.2 1.6 1.4 1.3 1.6 2.3 1.1 2.1 1.5 1.3 1.3 1.7 1.0 1.8 1.2 1.4 1.3 1.9 1.8 0.8 1.0 1.6 0.8 0.6 1.0 2.1 2.2 1.3 1.4 1.7 2.4 1.2 1.6 1.5 1.1 2.3 1.5	15.7 0.5 12.3 0.2 11.2 0.2 11.0 0.3 13.3 0.3	203-2+40 1+10102= 3-1-3-2- 1+1+201+ 20101+1+ 202-1-10 2-1=0+1= 20201=1+ 2-2+102= 1+102+2=	12 160 24 14- 25 110 9+ 130
21 22 23 24 25	1.9 1.0 1.2 2.2 2.7 2.1 2.9 2.5 2.7 2.7 2.4 3.1 2.2 1.4 2.0 1.1 1.0 1.1 1.0 0.8 0.6 0.9 0.6 0.8 3.0 4.0 3.4 4.5 2.5 3.1 4.0 4.5 4.8 4.9 4.7 3.3 3.8 2.9 2.6 2.1	16.5 0.6 17.6 0.6 6.8 0.0 29.0 1.4 29.1 1.4	2-1-1-2+ 30203030 30302+3+ 201+2-10 1010100+ 0+0+0+0+ 3050405+ 20305050 606+5+4- 4+303-20	Ten 16+ Quiet 18- 2 5- 2 32+ 8 33+ 10 16
26 27 28 29 30 31	1.2 1.0 0.9 1.1 1.5 1.4 1.9 1.7 0.9 1.6 1.6 2.9 3.6 1.9 1.9 1.9 3.7 3.1 1.2 1.3 1.2 1.3 1.0 2.6 2.4 2.1 1.5 2.3 2.1 2.1 2.8 2.6 2.5 2.3 1.1 3.3 3.0 2.1 2.4 1.7 2.6 3.2 1.4 1.5 1.9 2.9 2.7 3.1	10.7 0.2 16.3 0.6 15.4 0.6 17.9 0.6 18.4 0.6 19.3 0.6	l=l=lolo 2=l+2o2o l=lo2=3= 4o2=2=2= 4o3+l+l= lol+lo3= 3=2o1+2+ 2o2+3o3= 3=3=l=3+ 3+2o3=2= 3=3+l+2= 2o3+3+3+	10+ 17 150 18 15+ 19 18+ 20 190 23 210 26
Mean	2.54 1.93 2.39 2.21 2.30 2.29 2.17 2.27	2.26 0.64		

1	I				I	
Other phenchers	Solar flare** 1545 Solar flare*** 1548 Solar flare***	1520 Solar flare ^{ee} 2205	Solar flare ^{ee} 1625	Solar flare** 2338 Solar flare**	1745 Solar flare ^{ee} 1820 Solar flare ^{ee}	1816
Relative intensity at minimum ^e	0°03	0.1	0.03 0.05	0.05 0.3 0.2	0.2 0.05 0.3	
Location of transmitters	Ohio, D. C., England, New Brunswick	Ohio, D. C., New Brunswick	Chio, D. C., Englend . Ohic, D. C., Yew Erunswick	Ohic, D. C. Ohic, D. C., New Brunswick D. C., Eugland	England Ohio, P. C., England Ohio, P. C., England	
GCT Begiming End	1547 1610	2200 2230	1322 1355 1620 1720	2335 2350 2155 2215 1752 1810	1440 1510 1816 1850 1827 1840	
1950 Day	August 2	2	~ ~	13 4	18 29 30	

*Ratio of received field intensity during SID to average field intensity before and after, for station KQZRAU (formerly WSXAL), 6080 kilocyclos, 600 kilometers distant, for all SID except the following: Station GLH, 13525 kilocycles, received in New York, 5340 kilometers distant, was used for the SID on August 15 and 18.

SID on August 15 and 18. **Time of observation at the High Altitude Observatory, Foulder, Colorado, **Time of August 4, which is the time of maximum brightness.

except on August 4, which is the time of maximum brightness.

****Time of observation at McMath-Hultert Observatory, Pontiac, Michigan.

Table 64

Sudden Ionosphere Disturbances Reported by Institut fur Ionospharenforschung.

Sudden Ionosphere Disturbances Observed at Washington, D. C.

Table 63

August 1950

as Observed at Lindau, Harz, Gernany

	Other phenomena												Terr, mag. pulse###	0950-1000			and a second the
Relative intensity	at minimum*		0.1		0.2		0.1		0.1	r (T°0	0.5	0.1		0•3		e
	Location of transmitters		Lindau##, Munchen**,	Frankfurtess, Norddeich	Lindautt, Munchen**,	Frankfurt***, Norddeich#	Lindauff, München**,	Frankfurt Norddeichr	Lindsu##. Munchen**.	FIGNKIUTT	Lindeurr, Munchen	Lindaut Munchente	Munchen**, Norddeich#		Lindau##, Munchen**,	Frankfurtere, Norddeich#	
FI	ng Ind		1620		1400		1335		OIOI	1000	6261	1125	1010		0725		
09 O	Beginni	950	1612		1331		1316		1660		CTCT	1105	0938		0710		C
	Day	July 1	12		17		18		19	5	17	22	27		29		

*Ratio of received field intensity during SID to average field intensity beforc and after, for station Munchen, 6161 kilocycles, 400 kilometers distant. **Station München, 6161 kilocycles.

***Station Normany out Alloyofles, 190 kilometers distant. ***Station Norddeich, 4760 kilocycles, 275 kilometers distant.

#>tation moradeith, 4/00 Kilocycles, 2/5 Kilometers distant. ##Lindau station, 1780 Kilocycles, pulse, transmitter and receiver at Lindau.

###As observed at Lindau.

4	5	l	
1	DTO		
e	5	ł	

Sudden Ionosphere Disturbances Reported by Engineer-in-Chief

Cable and Wireless, Ltd., as Observed in Barbados, B.W.I.

Other	phenomena	Terrerespulse ^a 1608-1520 Solar flare ^a	0.201
	Location of transmitters	British Guiene, Canada, Florida, Jamaica, Trinidad	Aus tralis England
CT	ing End	1640	2235 1535
3	Beginn	1610	2225 1510
1950	Day	July 12	13 29

*As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

**Time of observation at McMath-Hulbert Observatory, Pontiac, Michigan.

Table 57

Sudden Ionosphere Disturbances Reported by Engineer-in-Chief.

Cable and Wireless, Ltd., as Observed at Colombo, Ceylon

Other phenomena	Terr,mag.pulse 1608-1620	1620 1620
Location of transmitters	Englard	Chine, Jepan, India England
GCT wing End	0 1640	5 0505 0 1925
)50 Begin	15 161	4 045
	1950 GCT Other Day Beginning End Location of transmitters phenomena	1950 GCT Other Day Beginning End Location of transmitters phenomena Fuly 1610 1640 England 168-1620

"As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

** Time of observation at McMath-Hulbert Observatory. Pontise, Michigan.

Table 66

Sudden Ionosphere Disturbances Reported by RCA Communications. Inc.

as Observed at Point Reyes, California

0 ther phenonena	Solar flare [®] 2338
Location of transmitters	Australia, China, Hawaii, Jepan, Java, New York, Philippine Is. Australia, China, Hawaii, Jepan, Java, New York, Philippine Is.
g End	0125 0045
GCT Beginnin	0018 2333
1950 Day	August 1 4=5

"Time of maximum brightness at the High Altitude Observatory, Brilder, Colorado.

Table 68

Sudden Ionosphere Disturbances Reported by Waginesr in-Chief.

Cable and Wirless, Ltd., as Observed in Singapore, Males Lates

And the second s	Other	pheronena	Solar flare [®] Osy8
and a support of a state department of the second s		Location of transmitters?	Chins, Netherlands East Indies
	GCT	Beginning End	0607 0655
	1950	Day	Mey 5

"Time of observation at Wendelstein Observatory, Germany.

Mote: Observers are invited to send to the CRPL information on times of beginning and end of sudden ionosphere disturbances for publication as above. Address letters to the Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.

Ñ

Z

MC

z

40.0

30.0

25.0

200

150

10.0

90

8.0 7.0

60 MC

£40

FREQUENCY

CRITICAL 51

1.0 02

00 40.0L

300

25.0

200

15.0

10.0

90

8.0 7.0

6.0

MO

2^{5.0}

FREQUENCY

CRITICAL 120

1.0

02

És £4.0

02

Index of Tables and Graphs of Ionospheric Data

in CRPL-173

	Table page	Figure page
Akita, Japan		
June 1950	14	52
May 1950	. 16	57
Baton Rouge, Louisiana		
July 1950	. 12	47
Boston, Massachusetts	• •	•
July 1950	. 12	46
June 1950	14	52
Brisbane. Australia	• • •	
May 1050	16	50
Ang 1700	17	61
	• • ±/	01
Vanberra, Australia	10	60
May 1950.	••• 17	60
April 1950	17	62
Capetown, Union of S. Africa		
June 1950	15	55
Christchurch, New Zealand		
June 1950	. 15	56
May 1950	. 17	60
De Bilt, Holland	·	
June 1950	. 13	50
Formosa, China	• • - •	-
June 1950	15	<4
Guam I.	•••->	
July 1050	13	ho
June 1050	•• +	
Hehant Magnapha	• • ±2	54
house, Issmania	3.0	(0
	• • 17	02
March 1950	. 18	63
Huancayo, Peru		
July 1950	13	50
Johannesburg, Union of S. Africa		
June 1950	. 15	55
Lindau/Hars, Germany	-	
June 1950	. 14	51
Maui, Hawaii		-
July 1950	. 13	48
Oslo, Norvey		
July 1950	12	45

Index (CRPL-F73, continued)

Ta	ble page	Figure page
Poitiers, France		
January 1950	18	63
Rarotonga I.		
May 1950	16	58
April 1950	17	61
San Francisco, California		
July 1950	12	46
San Juan, Puerto Rico		
July 1950	13	48
Tokyo, Japan		
June 1950	14	53
May 1950	16	57
Trinidad, British West Indies		
July 1950	13	49
Wakkanai, Japan		
June 1950	14	51
May 1950	15	56
Washington, D. C.		
August 1950	12	45
Watheroo, W. Australia		
May 1950	16	59
White Sands, New Mexico		
July 1950	12	47
Yamagawa, Japan		
June 1950	14	53
May 1950	16	58

Ry

CRPL and **IRPL** Reports

[A list of CRPL Section Reports is available from the Central Radio Propagation Laboratory upon request]

Daily: Radio disturbance warnings, every half hour from broadcast station WWV of the National Bureau of Standards. Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Weekly: CRPL-J. Radio Propagation Forecast (of days most likely to be disturbed during following month).

Semimonthly:

CRPL-Ja. Semimonthly Frequency Revision Factors for CRPL Basic Radio Propagation Prediction Reports.

- Monthly
 - CRPL-D. Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-. monthly supplements to TM 11-499; Dept. of the Navy, DNC-13-1 (), monthly supplements to DNC-13-1.) CRPL-F. Ionospheric Data.
- Quarterly
 - *IRPL-A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific. *IRPL-H. Frequency Guide for Operating Personnel.

Circulars of the National Bureau of Standards:

NBS Circular 462. Ionospheric Radio Propagation. NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

Reports issued in past: IRPL-C61. Report of the International Radio Propagation Conference, 17 April to 5 May 1944. IRPL-G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions.

- IRPL-R. Nonscheduled reports:
 - Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies R4. R5. Criteria for Ionospheric Storminess.
 - R6.
 - Experimental Studies of Ionospheric Propagation as Applied to the Loran System. Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System. An Automatic Instantaneous Indicator of Skip Distance and MUF. R7.
 - R9.

 - R9. An Automatic Instantaneous Indicator of Skip Distance and MUF.
 R10. A Proposal for the Use of Rockets for the Study of the Ionosphere.
 §R11. A Nomographic Method for Both Prediction and Observation Correlation of Ionosphere Characteristics.
 §R12. Short Time Variations in Ionospheric Characteristics.
 R14. A Graphical Method for Calculating Ground Reflection Coefficients.
 §R15. Predicted Limits for F2-Layer Radio Transmission Throughout the Solar Cycle.
 §R17. Japanese Japan

 - R17. Japanese Ionospheric Data—1943. R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures—October 1943 Through May 1945. §R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For
 - distances out to 4000 km.)

 - distances out to 4000 km.)
 §R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena.
 R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System.
 §R25. The Prediction of Solar Activity as a Basis for the Prediction of Radio Propagation Phenomena.
 R26. The Ionosphere as a Measure of Solar Activity.
 R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped by Distance From Center of Disc.
 §R30. Disturbance Rating in Values of IRPL Quality-Figure Scale from A. T. & T. Co. Transmission Disturbance Reports to Replace T. D. Figures as Reported.
 R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.
 §R33. Ionospheric Data on File at IRPL.

 - \$R33. Ionospheric Data on File at IRPL. \$R34. The Interpretation of Recorded Values of fEs. R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess of 3 Mc.
- IRPL-T. Reports on tropospheric propagation: T1. Radar operation and weather. (Superseded by JANP 101.)
 T2. Radar coverage and weather. (Superseded by JANP 102.)
- CRPL-T3. Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group WPG-5.)

Stems bearing this symbol are distributed only by U. S. Navy. They are issued under one cover as the DNC-14 series of your of print; information concerning cost of photostat or microfilm copies is available from CRPL upon request.

