CRPL-F72

National Bureau of Standards Library, N. W. Bidg.

SEP 8 1950

Reference book not to be taken from the Library.

IONOSPHERIC DATA

ISSUED AUGUST 1950

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY WASHINGTON, D. C.

NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY WASHINGTON,D.C.

Issued 24 Aug. 1950

IONOSPHERIC DATA

CONTENTS

				LEFE
Symbols, Terminology, Conventions	• •	э	•	2
World-Wide Sources of Ionospheric Data .	0 0	0	٠	5
Hourly Ionospheric Data at Washington, D.	C.	6	٠	6, 12, 19, 46
lonospheric Storminess at Washington, D. (- e	Ð	•	7. 31
Sudden Ionosphere Disturbances		٠	0	7, 32
Radio Propagation Quality Figures	• •		•	7. 36
Relative Sunspot Numbers		٠	•	8, 37
Observations of the Solar Corona	• •	٠	٠	9, 38
Observations of Solar Flares		0	. 1	0, 44
Indices of Geomagnetic Activity	5 O	0	. 1	0, 45
Tables of Ionospheric Data	0 0	•	. 1	2
Graphs of Ionospheric Data		٠	• 4	6
Index of Tables and Graphs of Ionospheric	Data	8		
in CHPL-F72			. 6	6

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1949, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Fifth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Stockholm, 1948, and given in detail on pages 2 to 10 of the report CRPL-F53, "Ionospheric Data," issued January 1949.

For symbols and terminology used with data prior to January 1949, see report IRPL-C61, "Report of International Radio Propagation Conference, Washington, 17 April to 5 May, 1944," previous issues of the F series, in particular, IRPL-F5, CRPL-F24, F33, F50, and report CRPL-7-1, "Preliminary Instructions for Obtaining and Reducing Manual Ionospheric Records."

Following the recommendations of the Washington (1944) and Stockholm (1948) conferences, beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

In addition to the conventions for the determination of medians given in Appendix 5 of Document No. 293 E of the Stockholm conference, which are listed on pages 9 and 10 of CRPL-F53, the following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given on pages 2-9 of CRPL-F53 (Appendixes 1-4 of Document No. 293 E referred to above).

a. For all ionospheric characteristics:

Values missing because of A, B, C, F, L, M, N, Q, R, S, or T (see terminology referred to above) are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F2 (and h'E near sunrise and sunset) missing for this reason are counted as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count. See CRPL-F38, page 9.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- 2. For h'F2, as equal to or greater than the median.

Values missing because of W are counted:

- For foF2, as equal to or less than the median when it is apparent that h'F2 is unusually high; otherwise, values missing because of W are omitted from the median count.
- 2. For h'F2, as equal to or greater than the median.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of G (no Es reflections observed, the equipment functioning normally otherwise) are counted as equal to or less than the median foE, or equal to or less than the lower frequency count of the recorder.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

1. If only four values or less are available, the data are considered insufficient and no median value is computed.

2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.

3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18. The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when foF2 is less than or equal to foF1, leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily, a blank space in the file column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h'Fl, foFl, h'E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h'Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.

c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zurich sunspot numbers were used in constructing the contour charts:

Month		Predicted Sunspot Number								
	1950	1949	1948	1947	1946	1945				
December		20.9	114	3.26	QE	28				
December.		100	114	120	03	20				
November		112	115	124	83	36				
October		114	116	119	81	23				
September		115	117	121	79	22				
August		111	123	122	77	20				
July	101	108	125	116	73					
June	103	108	129	112	67					
May	102	108	130	109	67					
April	101	109	133	107	62					
March	103	111	133	105	51					
February	103	113	133	90	46					
January	105	112	130	88	42					

WORLD-WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 40 and figures 1 to 80 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Australian Department of Supply and Shipping, Bureau of Mineral Resources, Geology and Geophysics: Watheroo, West Australia

- French Ministry of Naval Armaments (Section for Scientific Research): Dakar, French West Africa Fribourg, Germany
- Institute for Ionospheric Research, Lindau Uber Northeim, Hannover, Germany: Lindau/Harz, Germany

The Royal Metherlands Meteorological Institute: De Bilt. Holland All India Badio (Government of India). New Delhi, India: Bombay, India Delhi. India Madras. India Tiruchy (Tiruchirapalli), India Radio Regulatory Agency, Tokyo, Japan: Akita, Japan Tokyo. Japan Wakkanai, Japan Tanagawa, Japan Radio Wave Research Laboratories. National Taiman University. Taipeh. Formosa, China: Formosa, China New Zealand Department of Scientific and Industrial Research: Christchurch, New Zealand (Canterbury University College Observatory) Rerotones I. Norwegian Defense Research Establishment, Kjeller per Lillestrom, Norway: Oslo. Norway South African Council for Scientific and Industrial Research: Capetown. Union of South Africa Johannesburg, Union of South Africa National Bureau of Standards (Central Badio Propagation Laboratory): Baton Rouge, Louisiana (Louisiana State University) Guan I. Huancayo, Peru (Instituto Geofísico de Huancayo) Maui. Hawaii San Francisco, California (Stanford University) San Juan, Puerto Rico (University of Puerto Rico) Trinidad, British West Indies Washington, D. C. White Sands, New Mexico

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 41 to 52 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols, Terminology, Conventions." Beginning with September 1949, the data are taken at a new location, Ft. Belvoir, Virginia.

IONOSPHERIC STORMINESS AT WASHINGTON, D.C.

Table 53 presents ionosphere character figures for Washington, D. C., during July 1950, as determined by the criteria given in the report IRPL-R5, "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

SUDDEN IONOSPHERE DISTURBANCES

Tables 54 through 59 list the sudden ionosphere disturbances observed at Ft. Belvoir, Virginia, July 1950; Brentwood and Somerton, England, July 1950; Point Reyes, California, July 1950; Colombo, Ceylon, May 1950; Riverhead, New York, July 1950; and Lindau/Harz, Germany, June 1950, respectively.

RADIO PROPAGATION QUALITY FIGURES

Table 60 gives provisional radio propagation quality figures for the North Atlantic and North Pacific areas, for 01 to 12 and 13 to 24 GCT, June 1950, compared with the CRPL daily radio disturbance warnings, which are primarily for the North Atlantic paths, the CRPL weekly radio propagation forecasts of probable disturbed periods, and the half-day Cheltenham, Maryland, geomagnetic K-figures.

The radio propagation quality figures are prepared from radio traffic and ionospheric data reported to the CRPL, in a manner basically the same as that described in IEPL-R31, "North Atlantic Radio Propagation Disturbances, October 1943 through October 1945," issued February 1, 1946. The scale conversions for each report are revised for use with the data baginning January 1948, and statistical weighting replaces what was, in effect, subjective weighting. Separate master distribution curves of the type described in IEPL-R31 were derived for the part of 1946 covered by each report; data received only since 1946 are compared with the master curve for the period of the available data. A report whose distribution is the same as the master is thereby converted linearly to the Q-figure scale. Each report is given a statistical weight which is the reciprocal of the departure from linearity. The half-daily radio propagation quality figure, beginning January 1948, is the weighted mean of the reports received for that period.

These radio propagation quality figures give a consensus of opinion of actual radio propagation conditions as reported by the half day over the two general areas. It should be borne in mind, however, that though the quality may be disturbed according to the CRPL scale, the cause of the disturbance is not necessarily known. There are many variables that must be considered. In addition to ionospheric storminess itself as the cause. conditions may be reported as disturbed because of seasonal characteristics such as are particularly evident in the pronounced day and night contrast over North Pacific paths during the winter months, or because of improper frequency usage for the path and time of day in question. Insofar as possible. frequency usage is included in rating the reports. Where the actual frequency is not shown in the report to the CRPL, it has been assumed that the report is made on the use of optimum working Prequencies for the path and time of day in question. Since there is a possibility that all disturbance shown by the quality figures is not due to ionospheric storminess alone, care should be taken in using the quality figures in research correlations with solar, suroral, geomagnetic, or other data. Nevertheless, these quality figures do reflect a consensus of opinion of actual radio propagation conditions as found on any one half day in either of the two general areas.

RELATIVE SUNSPOT NUMBERS

Table 61 presents the daily American relative sunspot number, RA. computed from observations communicated to CHPL by observers in America and abroad. Beginning with the observations for January 1948, a new method of reduction of observations is employed such that each observer is assigned a scale-determining "observatory coefficient," ultimately referred to Zurich observations in a standard period, December 1944 to September 1945, and a statistical weight, the reciprocal of the variance of the observatory coofficient. The daily numbers listed in the table are the weighted means of all observations received for each day. Details of the procedure are given in the Publication of the Astronomical Society of the Pacific, issued February 1949, in an article entitled "Reduction of Sunspot-Number Observations." The American relative sunspot number computed in this way is designated RA. It is noted that a mumber of observatories abroad, including the Zurich observatory, are included in RA. The scale of RA was referred specifically to that of the Zurich relative sunspot numbers in the standard comparison period; since that time, RA is influenced by the Zurich observations only in that Zurich proves to be a consistent observer and receives a high statistical weight. In addition this table lists the daily provisional Zurich sunspot numbers, R7.

OBSERVATIONS OF THE SOLAR CORONA

Tables 62 through 64 give the observations of the solar corona during July 1950 obtained at Climax, Colorado, by the High Altitude Observatory of Harvard University and the University of Colorado. Tables 65 through 67 list the coronal observations obtained at Sacramento Peak, New Mexico, during June 1950, derived by the High Altitude Observatory from spectrograms taken by Harvard University as a part of its performance of an Air Materiel Command research and development contract administered by the Air Force Cambridge Research Laboratories. The data are listed separately for east and west limbs at 5-degree intervals of position angle north and south of the Solar Equator at the limb. The time of observation is given to the nearest tenth of a day, GCT.

Table 62 gives the intensities of the green (5303A) line of the emission spectrum of the solar corona; table 63 gives similarly the intensities of the first red (6374A) coronal line; and table 64, the intensities of the second red (6702A) coronal line; all observed at Climax in July 1950.

Table 65 gives the intensities of the green (5303A) coronal line; table 66, the intensities of the first red (6374A) coronal line; and table 67, the intensities of the second red (6702A) coronal line; all observed at Sacramento Peak in June 1950.

The following symbols are used in tables 62 through 67: a, observation of low weight; -, corona not visible; and X, position angle not included in plate estimates.

Coronal tables in this series through F69, May 1950, designated the nominal wave length of the far red coronal line as 6704A; however, 6702A appears to be a more reliable value and is used in later issues. The two are found almost interchangeably in the literature.

OBSERVATIONS OF SOLAR FLARES

Table 68 gives the preliminary record of solar flares reported to the CRPL. These reports are communicated on a rapid schedule at the sacrifice of detailed accuracy. Definitive and complete records are published later in the Quarterly Bulletin of Solar Activity, I.A.U., in various observatory publications, and elsewhere. The present listing serves to identify and roughly describe the phenomena observed. Details should be sought from the reporting observatory.

Reporting directly to the CRPL are the following observatories: Mt. Wilson, McMath-Hulbert, U.S. Naval, Wendelstein, Kanzel, and High Altitude at Boulder, Colorado. The remainder report to Meudon (Paris), and the data are taken from the Paris URSIgram broadcast, monitored fairly regularly by the CRPL. The data on solar flares reported from Boulder, Colorado are provided by Harvard University as the result of work undertaken on an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories.

The table lists for each flare the reporting observatory, date, times of beginning and ending of observation, duration (when known), total projected area, and heliographic coordinates. For the maximum phase of the flare is given the time, intensity, area relative to the total area, and the importance. The column "SID observed" is to indicate when a sudden ionosphere disturbance, noted elsewhere in these reports, occurred at the time of a flare. Times are in Universal Time (GCT).

INDICES OF GEOMAGNETIC ACTIVITY

Table 69 lists various indices of geomagnetic activity based on data from magnetic observatories widely distributed throughout the world. The indices are: (1) preliminary mean 3-hourly K-indices, Kw; (2) preliminary international character-figures, C; (3) geomagnetic planetary three-hour-range indices, Kp; (4) magnetically selected quiet and disturbed days.

Kw is the arithmetic mean of the K-indices from all reporting observatories for each three hours of the Greenwich day, on a scale 0 (very quiet) to 9 (extremely disturbed). The C-figure is the arithmetic mean of the subjective classification by all observatories of each day's magnetic activity on a scale of O (quiet) to 2 (storm). The magnetically quiet and disturbed days are selected by the international scheme outlined on pages 219-227 in the December 1943 issue of <u>Terrestrial Magnetism</u> and <u>Atmospheric Electricity</u>.

Kp is the mean standardized K-index from 11 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 to 9, expressed in thirds of a unit, e.g., 5- is 4 2/3, 50 is 5 0/3, and 5 + is 5 1/3. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the ionospheric field. A complete description of Kp has appeared in Bulletin 12b, "Geomagnetic Indices C and K, 1948," published in Washington, D. C., 1949, by the Association of Terrestrial Magnetism and Mlectricity, International Union of Geodesy and Geophysics. Tables of Xp for 1945-48 are in Bulletin 12b; for 1940-44 and 1949, in these CEPL-F reports, F65-67; for 1950, monthly in F68 and following issues. Current tables are also published quarterly in the Journal of Geophysical Research along with data on sudden commencements (sc) and solar flare effects (sfe).

The Committee on Characterization of Magnetic Disturbance, ATME, 1060, has kindly supplied this table. The Meteorological Office, De Bilt, Holland, collects the data and compiles Nw, C and selected days. The Chairman of the Committee computes the planetary index.

Table 1

Washing	ton, D.	C. (38.7	N. 77.1)A)				July 1950
Time	h ¹ F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	290	5.2					3.0	2.8
01	280	4.8						2.9
02	280	4.5					2.5	2.9
03	280	3.9					2.3	2.9
04	280	3.5					2.6	2.9
05	280	3.7			(120)	(1.7)	1.8	3.0
06	300	4.7	230	3.5	(110)	2.3	4.3	3.0
07	380	5.3	230	4.2	110	2.7	4.1	2.9
08	360	5.7	220	4.5	110	3.1	4.8	2.9
09	370	5.9	200	4.6	100	3.3	5.4	2.9
10	380	6.0	200	4.8	(100)	3.4	6.8	5*8
11	400	6.0	200	4.8	(100)	3.5	5.4	5.8
12	420	6.0	200	4.8	(100)	3.6	5.5	2.7
13	400	6.1	200	4.8	(100)	3.5	5.1	2.7
14	380	6.2	200	4.8	(100)	(3.5)	4.2	2.8
15	400	6.4	210	4.7	(110)	3.4	4.6	2.8
16	360	6.4	220	4.6	110	3.2		2,8
17	340	6.6	220	4.3	110	3.0		2.8
18	300	6.8	240	(3.8)	110	2.5	3.8	2.9
19	270	6.9			(120)	1.7	4,2	2.9
20	260	(7.1)					3.5	(2.9)
51	270	(6.6)					3.8	(2.8)
22	280	(6.0)					3.0	(2.8)
_23	290	(5.5)						(2.8)

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

m _	1. 1		2
-18	D 1	Le.	

San Fr	ancisco,	Californ	Juns 1950					
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	290	5.9					4.4	2.8
01	300	5.6					3.0	2.8
02	300	5.4					2.8	2.7
03	290	5.1					2.9	2.8
04	300	4.8					3.1	2.8
QŌ	300	5.0					3.2	2.8
06	340	5.7	250	3.7	120	2.3	3.7	2.9
07	380	6.2	240	4.4	120	2.8	5.0	2.8
08	380	6.6	230	4.6	150	3.9	5.3	2.7
09	400	7.1	210	4.8	120	3.9	5.2	2.7
10	420	7.1	210	5.0	120	4.0	5.5	2.6
11	410	7.3	210	5.0	120	4.0	5.4	2.6
12	410	7.4	220	5.0	120	4.0	5.6	2.6
13	380	7.6	230	5.0	120	4.0	4.8	2.6
14	380	7.5	220	5.0	120	3.8		2.8
15	350	7.4	230	4.9	120	3.9		2.8
16	340	7.2	240	4.7	120	3.6	4.4	2.9
17	340	7.2	240	4.5	120	2.9	4.4	2.9
18	300	7.4	240	4.0	120	2.5	4.1	3.0
19	260	7.2					3.8	3.1
50	240	6.8					3.6	3.0
21	260	6.6					3.8	5.9
22	280	6.0					5.3	2.8
23	300	5.8					4.9	2.8

Tims: 120.0°W. Swsep: 1.3 Mc to 18.0 Mc in 4 minutes.

				Table	5			
Baton	Bouge,	Louisiana	(30,5°N,	91.2°W)				June 1950
Time	h'F	2 foF2	h'Fl	foFl	h⁰E	foE	fEs	(M3000)F2
00	33	0 6.1						2.7
01	31	0 6.0						2.8
02	32	0 5.6						2.8
03	32	0 5.2						2.8
04	32	0 4.8						2.8
05	31	0 4.7						2.9
06	30	0 5.8	270					2.9
07	33	0 6.4	240		130	2.8	4.0	2.8
08	36	0 6.6	240	4.8	120	(3.2)	4.5	2.8
09	39	0 7.7	230	5.0	120	(3, 4)	4.3	2.7
10	39	0 8.0	230	5.1	120	(3.5)	4.2	2.7
11	41	0 8.2	230	5.2	120	(3, 6)	-	2.6
12	42	0 8.2	230	5.2		(3.5)		2.6
13	43	0 8.7	250	5.2		(3.5)		2.6
14	39	0 8.7	260	5.1		(3, 6)		2.7
15	38	0 8.6	270	4.9	120	(3,5)		2.6
16	37	0 8.4	250	4.7	120	3.3		2.7
17	35	0 8.2	260		120	(3.0)		2.7
18	31	0 8.3	270		130		3.9	2.8
19	28	0 8.0					3.2	2.8
20	28	0 7.6					3.7	2.8
21	29	0 7.0					- • •	2.8
22	30	0 6.4						2.7
23	32	0 6.0						2.7
		A						

Time: 90.0°W. Swsep: 2.12 Mc to 14.1 Mc in 5 minutes, automatic operation.

				Table 2				
Oelo, M	lorway (60	.0°N, 1	1.0°E)					June 1950
Time	h ¹ F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	270	6.5					2.4	(2.8)
01	280	6.2					2.7	(2.8)
02	280	5.8					2.9	(2.8)
03	295	5.9	275	2.5	150	1.5	3.3	(2.7)
04	300	5.9	250	3.2	120	1.9	3.5	2.8
05	330	6.1	230	3.8	110	2.3	3.4	2.8
06	360	6.0	230	4.1	105	2.6	3.5	2.8
07	340	6.4	550	4.4	105	2.9	3.6	2.8
80	360	6.4	210	4.7	100	3.1	3.7	2.8
09	350	7.0	205	4.8	100	3.3	3.8	2.8
10	335	6.9	205	4.9	100	3.3	4.8	2.8
11	350	6.7	205	5.0	100	3.4	5.0	2.9
12	380	6.6	200	5.0	100	3.4	3.9	2.8
13	365	6.6	200	5.0	100	3.4	4.0	2.8
14	370	6.7	200	5.0	100	3.4	3,8	2.8
15	350	6.5	210	5.0	100	3.3	3.8	2.8
16	355	6.4	210	4.7	100	3.2	3.8	2.9
17	350	6.5	215	4.5	105	3.0	3.6	2.9
18	310	6.7	230	4.3	105	2.8	3.6	2.9
19	305	6.8	240	3.9	110	2.4	3.6	3.0
20	265	6.8	245	(3.3)	115	2.0	3.9	3.0
21	260	7.0	********		120	1.6	3.4	(3.0)
22	250	6.7					2.4	(2.9)
23	260	6.8					2.1	(2.8)
Time:	15 0°E							

Time: 15.0°E, Sweep: 1.3 Mc to 14.0 Mc in 8 minutes, automatic operation; supplementary recordsr, 1.6 Mc to 10.0 Mc.

Table 4

White	Sands, New	Msπico	(32.3°N,	106.50	W)			June 1950
Time	h¹F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	300	6.0					4.2	2.6
01	290	5.9					3.5	2.7
02	280	5.7					3.8	2.7
03	280	5.4					3.0	2.7
04	280	5.1					3.2	2.7
05	280	5.0				weekstern-	4.3	2.8
06	240	5.9	240		120	(2.3)	5.2	2.8
07	330	6.7	230	4.4	(110)	(2.8)	5.6	2.7
80	330	7.4	250	4.7	110	(3.1)	6.4	2.7
09	340	7.6	210	4.9	110	(3.4)	5.7	2.7
10	380	7.8	210	5.1	110	(3.7)	5.7	2.6
11	400	8.0	210	5.2	110	(3.8)	5.4	2.5
12	400	8.2	2.50	5.2	110	(3.9)	5.5	2.6
13	380	8.7	550	5.2	110	(3, 9)	5.0	2.6
14	360	8.6	220	5.1	110	3.8	5.4	2.6
15	360	8.4	220	5.0	110	3.6	5.4	2.6
16	340	8.3	550	4.8	110	3.3	5.0	2.7
17	320	8.1	240	4.4	110	(3.0)	4.8	2.8
18	300	8.0	240	- on gev	(110)	(2.4)	4.2	2.8
19	260	8.0					3.8	2.9
20	240	7.7					3.0	2.9
21	270	6.8					3.6	2.7
22	280	6.0					3.9	2.7
23	300	6.0					3.6	2.6

Time: 105.0°W. Swesp: 0.8 Mc to 14.0 Mc in 2 minutes.

				Table 6				
Maui, A	Hawaii (2	0.8°N, 156	5.5°₩)					June 1950
Time	h'F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	200	8.6						2.8
01	280	8.4						2.9
02	260	8.0						3.0
03	260	7.0						3.0
04	260	6.2						2.9
05	280	6.0						2.8
06	260	6.3			1.30			2.9
07	240	6.6	230		120	(2,7)	4.0	2.8
08	340	7.8	250	4.9	110	(3.0)	5.2	2.6
09	390	8.6	210	4.9	110	3.4	4.9	2 4
10	420	9.3	210	5.1	110	3.6	5.3	2.4
11	410	10.0	210	5.2	110	3.7	5.6	2.5
12	400	10.6	310	5.2	110	(3.8)	5.4	2.6
13	370	11.2	210	5.2	110	(3.8)	4.6	2.6
14	360	11.6	210	5.1	110	3.8	5.0	2.7
15	350	11.8	220	5.0	110	3.6	5.0	2.8
16	320	11.9	220	4.8	110	3.4	4 9	2.0
17	300	12.0	230	4.4	110	3.0	4 4	2 9
18	270	11.4	240		110	(23)	3 9	3.0
19	260	10.4			110	(0:0)	3.2	3.0
20	260	9.8					3.0	2 0
21	280	9.3					2 7	2.8
22	290	9.2					~. /	2.8
23	300	0.0						2.5

23 300 8.8 Time: 150.0°₩. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Sen Ju	lan, Pueri	to Rico	18.4°N,	66.1°W)				June 1950
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	260	9.4						2.8
01	240	8.9						2.9.
03	250	8.0						2,8
03	250	(7.3)						2.8
04	260	7.2						2.8
05	250	6.4						2.9
06	240	6.2						2.9
07	230	(7.2)						(2.9)
08	280	8.1		4.7		(3,3)	4.2	3.9
09	300	8.8		5.0		3.5	4.4	2,9
10	330	9.5		5.3			4.1	2.8
11	330	10.0		(5,3)			5.0	2.8
12	320	10.5		5.3			4.9	2.9
13	(340)	(11.2)		(5.2)			5.3	(2.7)
14	300	11.5		5.3			5.6	2.8
15	300	11.7		5.1		3.7	5.2	2.9
16	290	11.3		4.9		3.5	4.9	3.0
17	280	(10.2)					4.6	2.8
18	250	10.0					4.2	2.8
19	240	(9.8)						(2.8)
20	260	(9.4)						(2.8)
21	260	(9.2)						(2.8)
22	270	(9.3)						(2.8)
23	270	9.4						2.8

Time: 60.0°M. Sweep: 2.8 Mc to 13.0 Mc in 9 minutes, automatic operation; supplemented by manual operation.

Table 9

Huancay	70, Peru	(13.0°S,	75.3°¥)					June 1950
Time	h'F2	foF2	h'Fl	foFl	h ^r E	foE	ŕEs	(M3000)F2
00	230	7.0						3.0
01	230	6.6						3.0
02	SS0	6.1						3,1
03	240	5.4						3.1
04	230	4.8						3.1
05	240	4.0						3,1
06	290	4.4			100	1.2	3.0	2.9
07	240	7.0			100	2.3	4.3	2.9
08	270	8.6	230	4.9	100	2.9	4.9	2.8
69	300	9.0	210	5.0	100		8.7	2.5
10	310	9.0	210	5.1	100		10.6	2,5
11	320	8.8	200	5.0	100		10.7	2.4
12	320	8.7	200	5.0	100		10.8	2.4
13	320	8.8	200	5.0	100		10.8	2.4
14	310	8.9	200	4.8	100		10.7	2.4
15	300	8.9	210	4.8	100		9.9	2.4
16	240	8.9	230	4.8	100	2.7	6.2	2.4
17	250	9.1			100	2.0	4.2	2.5
18	500	8.8						2.4
19	300	8.4						2.4
20	280	8.4						2.5
21	\$20	8.4						2.7
22	230	7.8						2.8
23	230	7.3						2.9
	0							

Time: $75.0^{\circ}\dot{w}_{\star}$ Sweep: 16.0 Mc to 0.5 Mc in 15 minutes, automatic operation.

Po bl	0	11	
Laur	C	<u>++</u>	

Lindau	/Harz, Ge	rmany (5	1.6 ⁰ N, :	10.1°E)				May 1950
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	280	6.1					2.0	
01	290	5.9					2.2	
02	300	5.5					2.2	
03	290	5,2					2.1	
04	280	5.0				B	2.5	
05	270	5.5	270		110	1.8	3.2	
06	270	5.9	250	3.9	100	2.4	4.2	
07	310	6.2	230	4.2	100	3.8	4.4	
08	330	6.6	550	4.6	100	3,1	4.5	
09	360	7.0	220	4.7	100	3.3	4.7	
10	350	7.4	210	4.9	100	3.4	4.9	
13.	340	7.6	210	5.0	100	3.5	4.6	
12	370	7.7	220	5.1	100	3.6	4.6	
13	360	7.6	210	5.1	100	3.6	5.2	
14	360	7.6	220	5.1	100	3.5	4.6	
15	320	7.6	220	4.9	100	3.4	4.1	
16	310	7.8	220	4.8	100	3.3	4.0	
17	290	7.8	230	4.4	100	3.0	3.5	
18	260	8.0	250		100	2.6	3.6	
19	260	8.3	for the gas		100	2.1	3.7	
20	250	8.1				E	3.0	
21	250	7.7					2.6	
22	260	7.1					2.5	
23	280	6.7					2.2	

Time: 15.0°E. Sweep: 1.0 Mc to 16.0 Mc in 8 minutes.

Table 8 June 1950 West Indias (10 60N at 2001)

Trinida	ad, Brit.	West In	dies (10.	.6~N, 61	.5°W)			June 1950
Time	h'F2	foF2	h'Fl	foFl	h'E	fcE	fEs	(M3000)F2
00	240	10.5						3.2
01	230	9.4						3.1
02	240	8.5						3.1
03	240	8.0						3.2
04	220	7.4						3.2
05	240	6.9						3.2
06	240	6.4			100	1.8	2.6	3.1
07	550	7.4	210		100	2.6	3.4	3.2
08	250	8.0	200	4.7	100	3.2	4.3	3.0
09	300	8.8	200	5.]	100	3.6	4.6	2.8
10	320	9.8	20.0	5.2	100	3.8	4.8	2.7
11	340	10.8	220	5.3	100	3.9	5.0	2.8
12	340	11.4	210	5.3	100	4.0	5.1	2.8
13	320	12.0	200	5.2	100	3.9	5.2	2.9
14	320	12.4	210	5.2	100	3.8	5.5	5.6
15	320	12.2	200	5.1	100	3.6	5.0	2.9
16	300	12.2	350	5.0	100	3.3	5.4	2.9
17	270	11.6	220	4.4	100	2.8	4.4	2.9
18	240	11.2			300	2.3	4.1	2.9
19	260	10.8					4.2	2.9
20	270	10.9					3.0	2.8
21	260	11.4					5.0	2.9
22	260	11.3					2.3	3.0
23	240	11.0					2.0	3.1
manage and the second		- and the second se						

Time: 60.0⁰ W. Sweep: 1.2 Mc to 18.0 Mc, manual operation.

				Table 1	0			
DeBilt,	Holland	(52.1 ³ N,	5.2°E)					May 1950
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	305	5.2					2.3	2.5
01	310	5.7					2.3	2.5
02	300	5.4					2.7	2.6
03	305	5,2					2.7	2.6
04	300	5.4	300	2.9	175	1.8	3.3	2.7
05	300	5.9	250	3.5	120	2.1	3.6	2.8
06	310	6,2	230	4.0	105	2.6	3.9	2.8
07	340	6.9	220	4.5	100	3.0	4.6	2.8
08	3.50	6.9	550	4.7	100	3.2	4.7	2.8
09	350	7.3	SS0	5.0	100	3.4	4.6	2.8
10	385	7.6	210	5.0	100	3,5	4.9	2.7
11	380	7.6	250	5.2	100	3.5	4.7	2.7
12	390	7.3	210	5.2	100	3.5	4.6	2.7
13	350	7.6	250	5.0	100	3.5	4.3	2.7
14	360	7.6	220	4.9	100	3.4	4.2	2.7
15	325	8.0	222	4.8	100	3.3	3.9	2.8
16	310	7.9	235	4.5	105	3,1	4.0	2.8
17	300	8.2	240	4.1	105	2.7	4.0	2.8
18	285	8.4	250	3.5	110	2.3	3.6	5.8
19	280	8.2			the second second	1.8	3.0	2.9
50	270	7.7					2.7	2.8
21	280	7.1					5.3	2.7
22	290	6.9					2.2	2.6
23	300	6.4					2.1	\$.6

Time: 0.0°. Sweep: 1.4 Mc to 16.0 Mc in 7 minutes, automatic operation.

				Table 1	2			
Formosa,	China	(25.0°N,	121.0°E	;)				May 1950
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
1 Jane 00. 00. 01. 01. 02. 03. 04. 05. 05. 06. 07. 08. 09. 10. 11. 12. 13. 14. 16. 17. 18. 19. 20. 21. 21.	280 300 320 320 320 320 320 320 320 220 280 280 260	9.4 9.8 11.8 12.8 14.4 14.4 14.4 14.4 14.4 14.4 14.4	240 240 250 220 210 240 240 240 240	4.9 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.7 4.9 5.7 4.9 5.6	120 120 120 120 120 120 120 120 120 120	3.3 3.5 4.0 3.3 3.8 3.6 3.7 4.0 3.8 3.1 3.1	5.4 5.6 5.4 5.2 4.8 5.2 4.8 5.2 4.7 5.4 4.5	3.0 2.8 2.5 2.6 2.8 2.7 2.8 2.9 2.9 3.2 3.2 3.2 3.2
22								

Time: $120.0^{\circ}E$. Sweep: 2.5 Mc to 14.5 Mc in 15 minutes, manual operation.

Guam I.	(13.6%)	1. 144.9 ⁰	E)					Мау 1950
Time	h'F2	foF2	n'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	300	(10,9)						(2.7)
01	260	(10.7)						(2,9)
02	250	9.8						3.0
03	250	9.3						3.1
04	240	8.3					4.0	3,1
05	230	6.2					4.0	3.1
06	250	6.7			-		5.5	3.0
07	250	8.4			110	2.9	7.3	3.0
08	250	9.5	250		110	(3,2)	8.8	2,9
09	260	10.2	220		110	(3.5)	8.5	2.6
10	300	10.8	220		110	3.8	8.8	2.5
11	320	11.1	220	-	110	(4.0)	8.5	2.4
12	340	12.0	250	5.3	110	(4.0)	8.8	2,5
13	340	(12.6)	210	~~~~	110	(4.0)	8.7	(2.4)
14	340	12,8	250		110	3,9	7.0	2.4
15	340	(13.0)	550	the approxim	110	3.7	4.9	(2.5)
16	340	(13.0)	230		110	3.4	6.0	(2.4)
17	250	(13.0)	240	Print and place	110	2.9	7.0	(2.4)
18	270	(13.0)			120		6.2	(2.4)
19	310	(12.4)					4.6	(2.4)
50	350	(11.6)					1.7	(2.2)
21	360	(11.1)						(2.3)
22	350	(10.8)					3.6	(2.4)
23	350	(10.4)					2.1	(2,5)

Time: 150.0°E. Sweep: 1.0 Me to 25.0 Mc in 15 seconds.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cenator	m Union		Admin 17	Table	15			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Time	hIE2	forz	ALFICE (S	forl	8.3"#J	for	fFe.	May 1950 (M3000)F2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>00</u>	11 2 2	2 6	11 1 2	1011		105	103	(11)000/12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	01	(280)	2.0						2.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SO	(300)	2.0						2.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	03	(280)	(3.0)						(8.8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04	(280)	(3 1)						(2.8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	05	(270)	(3.1)						(2.9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06	(250)	(3.0)						(3.0)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	07	(240)	(3.0)						2.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08	220	6 5			1.50	B		3.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	09	230	0.0	240		130	(2.1)		3.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	240	(10.0)	230		110	(2,7)		3.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	240	(10.0)	230		110	(3.1)		(3.3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	240	(10.0)	620		110	(3,4)		(3.2)
10 240 (11.0) 230 110 (3.1)	13	240	(11.1)	035		110	(3.5)		(3.2)
14 250 (11 C) 200	14	250	(11.0)	230		110			(3.1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	250	(11.0)	230		110	(3, 4)		(3.0)
10 = 200 (12.0) 240 = 110 (3.2) (3.0)	10	200	(12.0)	240		110	(3.2)		(3.0)
10 240 (11.9) 240 110 (3.0) (3.1)	37	240	(11.9)	240		110	(3.0)		(3,1)
$\frac{17}{120} = \frac{230}{10.9} (10.9) = \frac{120}{2.4} (3.1)$	10	230	(10.9)			150	2.4		(3.1)
10 220 (10.0) 110 (1.8) (3.2)	10	220	(10.0)			110	(1.8)		(3.2)
19 210 7.5	19	210	7.5			~~~~	~~~		3.2
20 220 5.4 3.3	20	550	5.4						3.3
21 220 (3.8) 3.4	15	220	(3.8)						3.4
(2,3) $(2,3)$ $(3,3)$	22	(240)	(2.8)						(3,3)
20 (200) (2,6) (3.1)	20	(260)	(2,6)						(3.1)

Time: 30.0°E. Sweep: 1.0 Mc to 15.0 Mc in 7 seconde.

Table 17

Tokyo,	Japan (3	5.7°N, 13	39.5°E)					April 1950
Time	h'F2	foF2	h'Fl	foFl	h E	foE	fEs	(M3000)F2
00	290	7.5					2.4	2,8
01	280	7.4					2.2	2.8
02	260	7.0					2.2	2.9
03	250	6.6					2.0	2.8
04	260	6.2					2.0	2.7
05	260	6.5			120	1.4		2,9
06	230	8.3			100	2.4		3.2
07	230	9.4			100	2,9		3,3
08	230	9.9	220		100	3,4		3.2
09	250	10.5	2.50	-	100	3,5	4.8	3.1
10	260	11.4	210	~	100	3.7	4.5	2.9
11	280	12.2	210	me dar um	100	3.8	4.8	2,9
12	290	12.6	220	-	100	3.8	4.6	2.9
13	290	12.7	220		100	3.8	4.6	2.9
14	280	12.6	550		100	3,6		2,9
15	280	12.6	550		100	3,5		3.0
16	260	12.2	230		100	3.2	3.8	3.0
17	240	11.8			100	2.6	3.5	3.1
18	230	11.2			110	1.9	3.2	3.2
19	550	9.2					3.0	3.2
S0	230	7.9					2.6	3.0
21	270	7.4					2.4	2.7
22	290	7.8					2.0	2.8
23	290	7.8					2,4	2,8

Time: $135_{\pm}0^{9}\Sigma_{\pm}$ Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, manual operation.

Table 14									
Johanne	sburg. Ur	nion of	S. Africa	(26.20	S, 28.0	°E)		May 1950	
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2	
00	(280)	2.9						5.8	
01	(300)	3.0						2.8	
02	(280)	3.0						2.9	
03	(260)	3.1						3.0	
04	(250)	3.0						3.0	
05	(230)	3.0					1.9	2.9	
06	(240)	3.0						2.9	
07	230	6.7				2.1		3.3	
08	230	9.1	ar-th-		110	2.7		3.4	
09	240	10.3	250	~ - ~	110	(3.1)		3.2	
10	250	11.4	220		110	3.4		3.2	
13	250	11.3	SSO	** cz ***	110	(3.6)		3.1	
12	250	11.4	220		110	(3.6)	3.7	3.0	
13	260	11.5	5 5 0		110	3.6	3,8	2.9	
14	260	11.5	230	4.3	310	(3.6)	3.6	2,9	
15	250	11.8	\$30		110	(3.2)	3.7	2.9	
16	240	11.4	230		120	(2.8)	3,0	3.0	
17	230	11.0			100	2.1		3.)	
18	250	9.7						3.2	
19	250	7.3						3.2	
S0	230	5.7						3.2	
21	230	4.4						3.3	
22	230	3.2						3.2	
23	(260)	3.0						2.9	

Time: 30.0°E. Sweep: 1.0 Mc to 15.0 Mc in 7 eeconds.

Table 16

Akita,	Japan (3		Aj	oril 1950				
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	300	7.3					2,2	2,6
01	300	7.2					2.2	2.6
02	280	7.0						2.7
03	270	6.7						2.7
04	270	6.2						2.6
05	280	6,6			150	1.6		2.8
06	240	8.4			120	2.4		3.1
07	230	9.2		-	110	3.0		3,1
08	250	9.6	240		110	3,3		3.0
09	260	10.5	230		110	3,5		3.0
10	260	11.0	230		110	3,6		2.9
11	290	11.6	220	~	110	3.7		2,8
12	290	12.2	550		110			2.8
13	300	12.0	240		110	3.6		2.8
14	290	12.0	240	÷	110	3.6		2.8
15	290	11.7	250		110	3.4		2.9
16	260	11.6	240		110	3.1		3.0
17	250	11.0			110	2.7		3.0
18	250	10.7			120	1.9	2,4	3.0
19	240	9.4					2.8	3.0
S0	250	8.0					2.4	2,8
21	280	7.4					2,6	8.7
22	S80	7.6					2.4	2.6
23	300	7.5					2.3	2.6

Time: 135.0°E. Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, menual operation.

			3	Dable 18				
Yanagawa	. Japan	(31.2°№,	130.6°E)				Apr 11 1950
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	310	8.6					3.0	2.7
01	300	8.4					2.2	2.8
02	280	8.4					2,6	2.8
03	270	7.5					2.4	2.9
04	270	6.4					2.2	5.8
05	280	5.8						2,8
06	280	7.0			150	1.8		3.0
07	250	8.9			120	2.6		3.2
08	250	9.6	230	÷	120	3.2	4.1	3,1
09	260	10.3	240	~ ~ *	110	3.4	4.6	5.9
10	270	11.2	230		110	3.7	4.9	2.8
11	300	12,4	230		110	3.8	4.9	2,8
12	350	13.2	340	de-100.00	110	3.9	4.8	2,8
13	300	13.7	240		110	3.8	5.0	2,8
14	300	14.0	240		120	3.8	4.4	2,6
15	300	13.9	240		110	3.6	4.8	2.8
16	290	13.9	240		110	3.4	4.2	2.8
17	280	13.4	260		120	3.0	4.0	2.9
18	270	12.9		for same with	110	2.3	3.4	3.0
19	250	11.7				1.7	3.4	3.0
20	240	9.8					3.2	2.8
21	270	9.0					2.6	2.7
22	300	8.8					2.4	2.6
23	310	8.6					2.8	2.7

Time: 135.0°E. Sweep: 1.2 Mc to 18.5 Mc in 15 minutes, menual operation.

				Table	19			
Formosa.	China	(26.0°N.	121.0°E)				April 1950	
Time	h'F2	foF2	h'Fl	foFl	h E	foE	fEs	(M3000)F2
00								
01								
02								
03								
04								
05								
06								
07								
08	280	12.4	250	5.8	100	3.3	3.9	2.7
09	280	13.3	230	6.1	300	3.9	4.3	2.8
10	300	14.3	220	6,2	100	3,8	4.6	2.7
11 ,	300	14.4	2 00	6.1	100	3.8	4.4	2.8
12	320	14.4	200	6.4	100	3.9	3.9	2.8
13	320	14.4	200	5,8	100	3.9	4.4	2.9
14	280	14.4	200	6.0	100	4.0	4.5	3.0
15	3 00	14.4	200	6.4	100	3.9	4.4	3.0
16	300	14.4	240	5.6	100	4.0		·3.2
17	260	14.4	200	6.0	100	3.4	3.2	3.3
18	240	14.4			100	and the second	3.0	3,3
19	240	14.3					2.7	3.3
20								
21								
22								
20								

Tims: 120.0°E. Sweep: 2.5 Mc to 14.5 Mc in 15 minutes, manual operation.

Table 21

Christchurch, New Zealand (43.6°S. 172.7°E) April 1950									
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2	
00	280	5.6					2.0	2.6	
01	300	5.5					2.2	2.6	
02	290	5.3					2.2	2.6	
03	290	5.2					1.6	2.7	
04	280	5.2					1.8	2.7	
05	260	4.7					2.7	2.8	
06	260	4.2					1.8	2.9	
07	240	6.2				1.6	2.0	3.2	
08	250	8.2	240	3.8		2.4		3.2	
09	250	9.7	240	4.3		2.8		3.2	
10	250	10.2	230	4.4		3.2	3,5	3.1	
11	250	10.8	230	4.7		3.3		3.0	
12	260	11.0	230	4.8		3.3		3.0	
13	250	11.2	230	4.7		3.3		3.0	
14	250	10.8	240	4.6		3.2	3.4	3.0	
15	250	10.6	240	4.1		3.0	3,1	3.0	
16	250	10.6	250	3.5		2,5	2.8	3.0	
17	240	10.2				1.9	2,0	3.0	
18	240	9.4				1.4	2.0	3.0	
19	250	8.2					1.7	2.9	
20	250	7.4					1.5	2.8	
21	260	6.6					1.8	2.8	
22	270	6.4					1.8	5.8	
23	270	6.0					1.3	2.7	

Time: 172.5°E. Sweep: 1.0 Mc to 13.0 Mc.

Table 23

Delhi,	India (2	8.6°N, 7	7.1°E)				Fe	oruary 1950
Time	*	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	320	5.0						3.0
01	320	4.7						
02								
03								
04								3.0
05	300	4.3						
06	300	5.0						
07	280	6.8						
08	280	8.9						3.2
09	300	10.5						
10	300	11.8						
11	300	12.5						
12	320	13.2						3.0
13	320	13.2						
14	310	13.5						
15	300	13.2						
16	300	12.8						3.0
17	300	12.0						
18	300	11.3						
19	300	10.9						
50	300	9.2						3.0
21	320	7.8						
22	320	6.8						3,1
23	320	5.8						

Time: Local. Sweep: 1.8 Mc to 16.0 Mc in 5 minutes. manual operation. "Height at 0.83 foF2. **Average values; other columne. median values.

				Table 20
	 	(80	-00	and 02m

Wather	0, ¥. MIE	tralia	(30.3°S,	115.9°E)				Apr 11 1950
Time	h'F2	foF2	h'Fl	foFl	h†E	foE	fEs	(M3000)F2
00	270	5.1					2.7	2.8
01	270	5.1					2.9	2.6
20	260	5.1					5.8	2.9
03	250	4.9					3.0	3.0
04	240	4.4					2.8	3.0
05	250	4.2					2.5	2,8
06	250	4.2					2.4	3.9
07	240	7.0				2.0		3.4
08	240	9.5	340			2.7	3,2	3.4
09	250	10.7	230	4.8		3.1	3.4	3.3
10	250	11.2	230	4.9		3.3	3.7	3.2
11	250	11.5	\$50	4.8		3.3	3.8	3.1
12	260	11.6	\$50	4.8		3.4	3.8	3,1
13	270	11.8	230	4.9		3.4	3.6	3.0
14	260	11.8	240	5.0		3.3	3.6	3.0
15	260	11.8	240	4.2		3.3	3.3	3.0
16	240	11.4	240			2.8	3.2	3.0
17	240	10.8				2.1	3,0	3.1
18	550	9.6					2.4	3.1
19	230	8.1					2,9	3,1
S0	240	7.2					2.6	3.0
21	240	6.0					2,9	3.0
22	250	5.5					2,4	2.9
23	250	5.2					5.9	2,8
m 4	100 -07							

Time: 120.0°%. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes, automatic operation.

Table 22

Raroton	ga I.(21	Mai	March 1950					
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	280	7.8						3.0
01	300	8.0						S.9
02	300	7.8						2.9
03	280	7.4						3.0
04	300	7.8						5.9
05	280	6.7					2.9	3.0
06	290	7.6					2.5	3.1
07	250	9.3	250	5.5	110	2.3	3.3	3.1
08	250	10.7	240	ő.O	110	2.9	3.8	3.3
09	250	10.9	240	5.4	110	3.5	3.9	3.2
10	290	11.2	240	6.0	110	3.6	4.4	3.1
11	\$90	11.3	240	6,3	110	3.8	4.3	3.1
12	300	11.6	250	6.1	110	3.9	4.6	3.1
13	300	11.8	250	6.3	110	4.0	4.4	3.1
14	300	11.8	250	5.8	110	3.8	4.3	3.0
15	300	11.8	250	5.8	310	3.7	4,5	3.0
16	290	11.2	250	5.5	110	3.5	4.6	3.0
17	300	11.3	250	5.6	110	3.1	4.4	3.0
18	260	10.3	260				3.8	3.2
19	270	10.2					3.6	3.1
20	270	9.5					3.5	3.1
21	270	9.2					2.9	3.0
22	280	8.2						3.0
23	280	9.0						2.9

Time: 157.5⁰W. Sweep: 2.0 Mc to 16.0 Mc, manual operation.

			T	able 24				
Bombay,	India (19.0°N,	73.0°E)				Febr	uary 1950
Time	4	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00								
01								
02								
03								
04								
05								
06								
07	270	7.4						
08	360	10.6						2.9
09	390	12.4						
10	420	13,2						
11	420	13.9						
12	420	14.2						2.7
13								
14	(420)	(13.9)						
16	420	14.2						
16	420	14.0						2.7
17	420	14.0						
18	420	13.9						
19	390	13,9						
20	390	13.8						2.7
21	390	12.7						
22	(390)	(11.9)						S°3
23								
Time: Sweep: *Heig	Local. 1.8 Mo ht at 0.	c to 16. .83 1952	0 Mc in 5	minutes	manual	operat	tion.	
WAGL	9RA A871	Tas! orU	er column	s, med16	n values	•		

16

Table 25

Madrae,	lndia	(13.0°N,	80.2°E)				Febru	ary 1950
Tima	#	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00								
01								
02								
03								
04								
05								
06								
07	360	9.3						
08	390	10.5						2.0
09	420	11.0						
10	480	11.4						
11	400	11.2						2 5
17	490	11.3						2.0
14	480	11.0						
15	480	11.7						
16	500	12.2						2.5
17	480	12.3						410
18	480	12.2						
19	480	12.1						
20	480	12.0						2.7
21	(480)	(11.7)						
22	(480)	(11.2)						2.6
23								
Time:	Local.							
Sweep:	1.8 M	c to 16.0	0 Mc in 6	minutee	manua	l opera	tion.	
• Heig	ht at O	.83 foF2	•					
ooA∆or	age val	uee; oth	er column	e, media	a value	в.		

Table 27

Weicken.	ai, Japan	(45.4°N,	141.70	E)			Jan	uary 19 50
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	310	3.6					1.6	2,6
01	320	3.6						2.6
02	320	3.6					1.2	2.5
03	320	3.6						2.6
04	300	3.6						2.6
05	290	3.3						2.7
06	280	3.3	-			B		2.9
07	260	5.6			110	1.5	1.8	3.0
05	240	7.8	320		100	2,2	2.4	(3.1)
09	250	9.7	230		110	2.7		3,1
10	250	10.8	240		100	3.0		(3.1)
11	260	10.6	230		100	3.2		(3.1)
12	250	10.2	240		110	3.2		(3.0)
13	260	9.8	250		110	3.1		(3.0)
14	270	9.7	250		110	3.0		(3.0)
16	260	9.0	240		110	2.6		(3.0)
16	230	7.7			100	2.1		3.1
17	240	6.4				1.2	1.6	3.0
18	250	5.5					1.6	3.0
19	250	4.6					1.6	2.9
20	280	3.6					2.0	2.8
21	300	3.6						2.7
55	310	3.6						2,6
23	300	3.7						2,6

Time: 135.0°E. Sweep: 1.0 Mc to 14.0 Mc in 15 minutes, manual operation.

Table 29

Tokyo.	Japan (35.7°N,	139.5°B)				Ja	muary 1950
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	280	3.5					2.2	2.9
01	280	3.6					2.4	29
02	270	3.6					2.4	2.9
03	250	3.4					2.2	2.0
04	250	3.3					2.0	2.8
05	280	3.2					1 7	2.0
06	240	3.4				E	1.6	3 1
07	210	6.4			1.30	1.8	2 4	3 4
08	220	8.6			100	24	3.0	3.6
09	220	10.0	220		100	3.0	3.5	7.4
10	220	11.5	220		100	3.2	3.5	3.4
11	230	12.0	210		100	3.4	0.0	3.3
12	240	11.4	220		100	3.6	76	0.0
13	240	11.1	220		100	3.4	3.6	3.0
14	240	10.1	220		100	3.2	3.4	3.2
15	230	9.8	220		100	2.8	3.3	3.0
16	220	8.8			100	2 7	0.0	0.0
17	210	7.4		-	110	1 0	2.0	0.9
18	210	6.4			110	1.0	2.8	0.0
19	220	5.4					2.0	0.2
20	220	4.4					2.6	3.3
21	240	3.7					5.3	3.8
22	270	3.6						2.9
23	260	3.7						2.8

Time: 135.0°E. Sweep: 1.0 Mc to 17.0 Mc in 15 minutee. manual operation.

Tiruchy.	lndia	(10.8 ⁰ N,	78.8°E)				Febr	uary 1950
Time	+	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00								
01								
02								
03								
04								
05								
06								
07	360	7.0						
08	420	9.8						
09	450	9.9						
10	480	10.7						
11	510	10.9						
12	540	11.0						
13	540	11.4						
14	540	11.2						
15	570	11.3						
16	540	11.4						
17	580	11.6						
18	600	11.2						
19	600	11.0						
20	600	10.0						
21	(600)	(10.4)						
66								
23								

Table 26

Time: Local. Sweep: 1.8 Mc to 16.0 Mc in 6 minutee, manual operation. "Height at 0.83 foF2.

Table 28

Akita,	Japan	(39.7°N,	140.1°E)				Jar	uery 1950	
Time	h'F2	f oF2	h'Fl	foFl	h†E	foE	fEs	(M3000))F2
00	300	3,6						2.7	
01	300	3.7						2.7	
02	290	3.6						2.8	
03	280	3,5						2,8	
04	280) 3,5						2.8	
06	280	3.3						2.7	
06	250	3.3				E		3.0	
07	230	6.0		* ~ 1	120	1.6		3.1	
08	220	8.4	210		120	2.4		3.4	
09	230	9.6	550		110	3.0		3.3	
10	240	10.9	220		110	3.2		3.2	
11	230) 11.2	220		110	3.3		3.2	
12	240	10.7	230		110	3.4		3.2	
13	230	10.3	250		110	3.2		3.2	_
14	230	9.6	230		110	3.1		3.2	
15	230	9.5	220		110	2.8		3,2	
16	220	8.4	250		110	2.3		3.3	
17	220	7.0			110	1.7		3.2	
18	550) 6.2						3.1	
19	230	5.2						3.1	
20	230	4.0						3.0	
21	280	3.5						2.8	
22	290	3.7						2.8	
23	290	3.7						2.8	

Time: 135.0°E. Sweep: 1.0 Mc to 17.0 Mc in 15 minutee, manual operation.

Table	30

Yamagawa	, Japan	(31.2°N,	130.6°E)				Jan	uary 1950
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	3001	3.8					1.8	2.8
01	300	3.7					1.7	2.8
02	300	3.6						2.7
03	300	3.6						2.8
04	280	3.3						2.9
05	300	3.0						2.8
06	300	3.0				E		2.7
07	280	4.4		-	-	1.3	1.9	2.9
08	250	8.2		-	120	2.2	2.6	3.2
09	250	10.2	230		110	2,9	3.7	3.2
10	250	11.1	230		110	3.2	3.8	3.1
11	270	12.1	230		110	3.6	4.5	3.1
12	270	13.0	230		110	3.6	4.2	3.0
13	280	13.0	230		110	3.6	4.2	3.0
14	280	12.3	240		110	3.4	4.3	2.9
16	280	11.7	240		110	3.2	4.2	3.0
16	260	11.2	240		110	2.8	3.6	3.0
17	250	10.4			120	2.1	3.1	3.1
18	230	9.0					3.0	3.1
19	230	7.4					2.4	3,1
20	240	7.0					2.4	3.1
21	240	5.9						3.0
22	260	4.5						2.9
23	290	4.2						2.8

Time: 135.0°E. Sweep: 1.2 Mc to 18.5 Mc in 15 minutes, manual operation. 4

Delhi.	India	(28,6°N.	77.1°E)				Jan	uary_)950
Time	a	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	300	. 4.0						3.0
01	300) 4 .1						
03								
03								
04								3.3
05	280	4.4						
06	280	5.1						
07	270	6.3						
08	260	8.5						3.4
09	280	10.0						
10	280	1).5						
11	580) 12.0						
12	300	12.7						3.0
13	300	12.6						
14	300) 12.8						
15	300	12.2						
16	300	12.2						3.1
17	280	10,6						
18	280	9,8						
19	270	7.8						
20	280	7.5						3.2
21	280	6.0						
22	280	5.6						
23	300	4.8						

Time: Local. Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2. *Average values; other columns, median values. <u>Table 31</u>

Madras,	India	(13.0°N,	80.2°E)				Ja	nuary 1950
Time	4	foF2	h'Fl	fcFl	h [‡] E	foE	fEs	(M3000)F2
00								
01								
0.5								
03								
04								
05								
06								
07	360	9.7						
08	390	10.7						5.8
09	4/20	12.1						
10	480	12.2						
11	480	12.0						
12	480	11.8						2.5
13	510	11.8						
1%	510	11.9						
10	D10	11.9						
10	540	12.0						<.8
10	510	10.0						
10	520	12.0						
20	420	(11 0)						0.1
21	100	(11.5)						4 a U
22		(11.2)						
23		(11.07						

Time: Local, Sweep: 1.6 Mc to 16.0 Mc in 5 minutes, manual operation. "Height at 0.63 foF2. "*.worsee values; other columns, median values.

Table 35

Fribon:	rg. Germa	ny (49.1	°N, 7.8°.	S)			Dace	ander 1949
Time	h'F2	foF2	h'Fl	foFl	h'E	foF	fEs	(M3000)F2
00	290	3.7					2.2	2.7
01	310	3,7					2.1	2.7
02	310	3.8					2.2	2.8
03	290	3.7						2.8
04	275	3.6					3.0	2.9
05	250	3.4					1.9	3.0
06	235	3.2					2.1	2.9
07	240	3.9						2.9
08	\$50	7.8				X.	2.3	3.4
09	350	10.6			126	8.8	2.0	3.4
10	220	11.5			115	2.7	2.7	3.3
32	\$50	11.8			115	2.9		3.3
18	220	11.7			115	3.0	2.0	3.2
13	\$\$2	11.6			115	3.0		3.2
14	225	11.4			115	2.6		3.2
15	220	11.0			120	2.2	2.4	3.3
16	220	9.8				E	2.2	3.3
17	215	8.3					2.0	3.3
18	220	6,1						3.2
19	\$25	5.0					8.8	3.2
20	340	4.3					2.1	3.1
21	260	2.9					2.2	2.9
23	\$90	3.8						2.6
23	290	3,7					1.9	2,8

Time: Local, Sweey: 1.6 Mc to 17.6 Mc in 10 minutes, automatic operation.

Bombay,	India	(19.0°N.	73.0°E)				វិស	uary 1950
Time	ą	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000) F2
00								
01								
02								
03								
04								
05								
06								
07	300	7.5						
08	360	10.6						2.8
09	390	11.9						
10	430	12.9						
11	430	13.4						
1.2	480	14.1						5.6
13								
14	480	14.6						
15	480	14.6						
16	480	14.6						5.6
17	480	14.7						
18	450	14.5						
19	420	13.9						
50	420	13.7						5.6
21	390	12.9						
22	390	11.7						5.8
23	360	11.1						

Time: Local. Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2. ***Avarage volues; other columns, median values. Table 34

			3	able 34				
Tiruchy,	India	(10.8°N.	78.8°E)				Ĵaz	uary 1950
Time	k	foF2	h'Fl	foFi	h'E	foE	fEs	(M3000)F2
00	And a second s							
01								
62								
03								
04								
05								
06								
07	360	6.8						
06	450	9.4						
69	420	10.2						
10	510	10.6						
11	500	10.2						
12	540	10.4						
13	540	10.4						
14	540	10.3						
15	(540)	(11.4)						
16	590	11.2						
17	600	11.2						
18	600	10.8						
19	600	10.1						
20	600	10.2						
21	560	10.0						
22								
23								

Time: Local. Sweep: 1.0 Ms to 16.) Mc in 5 minutes, manual operation. "Height at 0.8% foF2.

Dakar,	Frenca	Kest Afric	De (14.64	08, 17.4	o.A)		Dec	ember 1949
Time	h122	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	265							
01	250							
02	340	(7.0)						
03	255	6.8						
04	.280	6.2						
05	260	4.7					3.3	
06	280	5.6					4.0	
07	265	10.2			140	2.3	4.1	
03	270	13,9	255	**************************************	125	3.0	4.7	
09	280	16.0	245		120	3.4	5.6	
10	310	14.5	235		120	3.7	5.0	
11	350	14.3	235		150	3.9	4.7	
32	395	(>14.7)	250	100 - 10 (pr	120	4.0	4.8	
13	(380)	14.6	235	4.4	120	3.9	4.8	
14	(415)	(>14.3)	240		120	3.7	4.5	
15	(390)	(>14.3)	250	-	120	3.4	4.8	
2.6	315	(>14,3)	270	475 K) 844	1.50	2.9	4.5	
17	260	(>14.3)	-	or through	130	2.3	4.5	
18	320	(>14.3)				E	5.0	
19	360	(>14.0)					4.0	
20	300						3.8	
21	275						3.9	
52	260	~ ******					2.6	
23	260							

Time: Local. Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, sutomatic operation.

18

Table 37

Fribourg	Geraa	ny (48.1	oN, 7.8º	e)			Rave	ember 1949
Time	h†F2	foF2	h†Fl	foFl	h'E	foE	fEs	(M3000)F2
00	300	4.3					2.1	2.7
01	300	4.2					2.3	2.6
SO	315	4.2					2.3	2,6
03	310	3,9					2.3	2.6
04	275	3.8					5.0	2.8
05	260	3.4						2.8
06	270	3.4						5.8
07	240	6.0				尾		2.9
08	230	9,1			125	1.9	3.0	3.3
09	230	31.6			115	2,5	3.7	3,8
10	230	12.5			110	2,9	3.8	3.1
31	225	12.9			110	3.1	3.8	3.1
12	225	12.8			110	3.1	3.3	3.1
13	230	12.6			110	3.1	2,7	3.0
14	235	12.8			110	2.9		3.0
15	230	12.3			120	2,5	2.5	3.1
16	225	11.4			135	1,7	2.4	3.1
17	215	9.7					2.3	3.1
18	225	8.0					2.2	3.0
19	230	6.4					1.7	3.0
50	240	5.4					2.2	2.9
21	270	4.8					2.3	5.8
22	285	4.5					2.1	2.7
23	305	4.2						2.6
Timot 1	0.001							

Time: Local. Sweep: 1.6 Mc to 17.6 Mc in 10 minutes, automatic operation.

				Table	39			
Fribou	rg, Germa	ny (48.1	°E, 7.8°	E)			0	ctober 1949
Time	h'F2	foF2	h'F1	10F1	h'E	for	1Es	(M3000)F2
00	310	5.0					2.0	2.9
01	300	4,9					2.5	2.9
02	320	4,8					2.5	2.9
03	330	4.6					2.3	2.8
04	290	4.3					2.4	3.0
05	270	4.0					2.4	3.1
06	260	5.0					2.3	3.2
07	240	7.2		with some sizes	130	2,0	2.6	3,5
08	230	9.7	~ ~ ~	sterilles -	115	2.6	3,8	3.4
09	236	10.2	230	100 map (***	110	2,9	4.0	3.4
10	240	11.7	226	100.000	110	3,2	4.3	3.2
11	240	12.2	230	01 10.7L	110	3.2	4.4	3.2
12	230	12.0	230		516	3.2	4.2	3.3
13	230	11.8	230	0.0.0111	105	3.3	3.4	3.1
14	240	12.0	due the etc.	10.000	110	3.1	3.8	3.1
15	235	12.0	100pm.07 (100	-	115	2.9	2.6	3.2
16	240	11.8	-	11/2-12-11	115	2.4	3.2	3.4
17	230	10.2			110	1.9	3.1	3.4
18	240	9.6					2.6	3.3
19	230	8.2					2.5	3.3
20	240	6.6					2.6	3.2
S1	260	5,8					2.2	3.0
22	280	5.6					2.3	3.0
	290	5.2					2.7	2.9

Time: Local. Sweep: 1.6 Mc to 17.6 Mc in 10 minutes, automatic operation.

Dekar,	Franch W	est Afri	a (14.6	7, 17.4	W)		Nove	ember 1949
Time	h ¹ F2	foF2	h'Fl	foFl	h ¹ E	foE	fEs	(M3000)F
00	255	ana Kish Lari						
01	250	171- 1-1 (\$P\$					2.4	
50	250							
03	250	6,6						
04	265	5.0						
05	280	4.6						
06	306	7.1			error dass	tere also appo	3.8	
07	280	12.4			135	2.6	4.0	
08	280	14.0	266		130	3,3	4.2	
09	290	15,8	260		125	3.6	4.5	
10	350	16.2	250		130	3.9	4.6	
11	(380)	16.5	250		130	4.1	4.6	
12	(380)	15.4	250		130	4.1		
13	400	(16.6)	250		130	4.0	2	
14	410	(16.2)	250		125	3.7	4.3	
15	406	(17.0)	265		130	3.6	3.7	
16	305	(16.8)	270		130	3.0	4.6	
17	300	-				2.2	4.3	
18	360						4.2	
19	400						4.0	
20	320	-					3.8	
21	295	I-T Galaxies					3.9	
22	270						3.6	
23	250						3.2	

Time: Local. Sweep: 1.25 Mc to 20,0 Mc in 10 minutes, automatic operation.

			1	Table	40			
Dakar,	French W	est Afric	a (14.6	°N, 17,4	~W}		Oct	tober 1949
Time	P125	foF2	h'21	foF1	h 🕱	fol	150	(M3000)F2
00	(270)							
01	(265)	also disely a						
02	(240)	00-00-0-						
03	(256)							
04	(260)	(6.5)						
05	(250)	4,9						
06	(280)	8.0					4.0	
07	(250)	12.6			125	2.6	4.0	
08	(260)	14.9	-		125	das Miles	4.0	
09	(30C)	16.0	240	the attracts	120	3.7		
10	(310)	16.6	1.0 million		125	-		
11	are things	17,0	shan alam www		125	-		
3.6	(360)	(17,0)	230		125	4.1		
13	(380)	17.0	260		125			
14	(350)	16.8			120	-		
16		16.8	270		130		4.)	
16	(325)	16.7	270		120	-	3.8	
17	(280)	(16.4)					4.5	
18	(345)	(15.8)		dus			4.2	
19	(370)	-					4.0	
20	(330)	-					3.0	
21	(300)						3.6	
22	(300)	-						
23	(270)							

Fime: Loca2. Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

une 1946								-										5:4E =			the								_								
Form adopted J	ndards B.E.B.	McC.				×		0			2			×	×	×	v1	,	4		0		8			2	ĸ	2	4				×				and the second se
	of Stat	Î	23	300	290	270	300	290	260	-270	(300	260	200	0000	230	<	(280	50	1 (300	300	[oce]	260	(310)	220	260	(300	290	1310	(300)	300	4 ~290	060	< X	060	_	290	-
	CC. (Ins	E.B.	22	[060]	V	0600	300	(05 %)	240	0500	280	000	000	(0/8)	(300)	¢	1390	000	(280)	[09 6]	200	260	300	220	(080)	(068)	(asc)	300	(3.00)	(080)	[280]	020	260	080		080	ĩ
	M M	8	21	(050)	A	2000	290	(02 00)	0200	(0iece)	0200	-250	0%0	300	.290	× 02 0°	0500	0500	[pse]	0300	000	(0%0)	Ø	(068)	(068)	250	270	06 C	(020)	300	(090)	240	000	250		200	
	Nation by:	ated by:	20	(050)A	A	~20×	360	250	050	050	020	[090]	R (00 C)	250	2 8 C ×	260	0,50	0 60	(29c)A	A(08 C)	250	(08c)	¢	A(036)	(080)A	040	250 +	* 20 ~~	040	A	250	(030)	* 060	0360		-260	2
	Scaled	Calcul	61	320	000	J BOK	280	000	[seal ^A	090	~ 50	020	5001	~ 280 ×	A 0/E	x(02 20)	000	A(06 F)	250	300	000	220	ବ	1000	(04 m)	(03C)	200%	300 *	000	Ø	280	020	A(05C)	4(0bc)		020	7 2
			18	310	(aet)	210 ×	3,0	300	080	020	0600	300	00 E	×0000	* 054	X O/M	0/10	0/ m	300	300	290	310	A(0, E)	290	23007A	060	200E	×20×	U	300	300	0000	× 060	300		300	- 07
0.0			17	370	04 8.	* 065	310	350	320	3~0	360	300	360	× 09E	5.00	*00	340	6 ≯(0	310	400	310	350	330	020	330	310	370 %	\$ 00 S	υ	380	300	310	1350)A	340		340	202
inaton 25			16	360	320 %	390 ×	310	380	370) A	350	0 (1) (1)	320	360	3304	550%	×60×	320	390	10	350	340	380	A (BSE)	(02 C)	350	320	370 %	780%	* 012	400	310	330	700X	360		360	10
rds. Wash	4		15	002	U	210	400	200	360 (360	380	340	390	×00×	x V	× ن	390	400	420	00%	340	360	100%	320	280	370	+2057	6 204	4304	4/00	370	320	4704	3.50		400	R T T
of Stondar	AT/	Je	14	4 80	U	280	380	500	OZE	390	370	350	400	× 90 ×	× O	×40	420	100	3704	370	360	380	380	56074	4.50 H	3 20	4504	* 0	υ	730	J	330	× 20 ×	320	-	380	0,0
41 Bureou c	0	Mean Tin	13	510	υ	580	120	550	220	380	210	370	4007 ^C	400	× ن	* 0	H30 H	190	04.4	390	340	320	200	350 2	450	09	×60 ×	* ن	0	00%	U	370	×60 ×	200		100	100
BLE	HERI	Mo	12	410	U	370	180	100	260	360	430	360	410 L.	150	× O	530	130	450]	loch	320	200	3 70	4/0	360	100	360	460%	r U	* 20 *	260	390	490	70 X	. 012		120	200
TA baratary.	OSPI	75	=	380	200	340	330	130	q	350	100	320	350	390	¥ ن	¥ U	100	410 1	290 L	100	H 04 8	000	390	320	150	000	+ 0,4	+ ن	+ 005	490	330	320	00 H 4	380		100	200
aation La	ION		⁰	380	350	350	×00×	400	∢	400	5,0	3,0	510	N	*	× G	× 20	390	A	310	330	370	360	350	floch	350	380 4	* 0	3906	00%	3 80	360	* Loci	470		000	0
IIa Propa			60	390	350	350	3 3 0	430	000	3-10	7607	080	340		* 0	× (۲	3 70	U	A	300	330	0	1055	000	1007	1 50 *	× 80 ×	× U	+ 001	320	×00×	950	\$ 10 4	380		320	0 0
trol Rad			08	3 20	3 20	360	2/0	00	200	330	×10 ×	220 0	360	3 20	* 0	30×	350	U	/Bo H	OE	330	0/6	3,20	80	380	340 3	500×	۲ ۲	\$ 025	310	300	000	YOOX	360		09	00 1
Cer			07	10%	3/0	150	120	00	390	120	50	. 00	300	00	× U	60 1	50	062	(-	E. 4 (0/	20	0	10	90	90	80	× 08	*	80 2	00	80 1	4974	10 4 3	040		1080	
			06	320 3	907	010	380	350 3	330	\$ 20 3	300 -	30	5 0/1	80 3	Y O	و ۲	200 ×	370	\$ 20	90 L3	80	20 3	540 B	60 3	000	00	2002	* 00	80 +	907 3	20	60 K3	7 00	80	-	00	
	0		05	1 010	20 Lo	0	0	90	00	080	9	50 0	5 (090	080	¥ 0	x(008	× 000	100	: رود ا	20 s	90.00	20	60	08	800) A 3	508	200	4 50 ×	70 × 06	80 12	90	80	80 03	00) ⁵ 3		0 0	
	<u>5</u> 61	M٥	4	160 5	60 09	60 5	5 (050	00	00	80	¢	20 0	000 (0	90	× 00	20074 (S	20 × 0	080	80 5	80	000 a	00	20) ⁶	Co oc	907 (3	80	80 X	200,4 3	200 +	8/0) A	90	90	500 A 2	80 3		RQ 0	
	July (Month)	77. Inc	03	80) Zo	20	20 0	20 (:	50	40	0	90	09	80 080	80	20)x 3	00× []3	e 4 00	00	000	00	(o) (o)	40	50 (2	20	20) A	80 08	00 × 00	20 × (2	E 200	20 13	30	00	20 (0	80)		20	
	D.C	Nov , Lo	02	50 (3	c= (0C	50 00	200	20 00	09	20 0	90 a	20 2	50 2	80 03	60)K (3	90 k 3	20 4	20 00	20 20	9 (1)	60 (2	50) 2)	50 23	80 2	20) 4 (3	20 52	20 1 (30	V0 × 03.	× 0	00 00	00) S 20	20) 4 3	20 02	20) 4 (a	+	208	2
	Km (Unit) shingto	ot 38.7	0	2010	5) 00	80 03	15 OC	20 2	60 e3	ی ۵۵	80 2	30 0	20 20	C 00	S X (3	Solx ~	1 × 1	50 00	20 31	2	50 00	5 (03	50 0	20 02	0 (3)	00 00	OK 30	20/2 3-	× 00	20 02	20 (27	20) (3	0 20	(2)	+	80 8	
	2 aristic) W0		0	0 (3	10) S 30	0) 2	A BL	0	60 03	0) 31	15 [S	20. 2	50 03	60 02	0 + (30	o × (2)	*	0	35.00	20 6	20 4 20	50 (a2	و م	0 20	20 30	10 00	o (3)	o x (3:	0 × 30	25 (0	500	(2) 01	0 30	*		2000	-A Barriero
	h'F (Characte		oy 0	1 29	2 130	3 (2)	4 30	5 23	6	7 (07	8 (26	6	0 1 22	-	2 3,	3 30	4	5 30	6 30	7 0	8 (2:	6 6	0	OE	2 25	3 30	4 30	5 36	e 9	7 (31	8 26	6	0 30	9		nt s	The second secon
	I C		0									ł	-		-	-		-		-	-	-	0	0	2	0	2	2	0	01	2	~	10	10		Col	

Sweep <u>1.0</u> Mc to <u>25.0</u> Mc In <u>0.25 min</u> Manual 🗆 Autamatic 🛛

946	
une l	
b pei	
0000	
Ē	

Central Radia Prapagatian Labaratary, Natianal Bureau af Standords, Washington 25, D C. 42 TABLE

ONOSPHERIC DATA

E B National Bureau of Standards MCC. Ø (55) 7 7.0 % 6.0 F (0.9) (62)5 (5.6) F (5.2) 7 (1.1) 5 (5.4) 5 (0.0) F (0.0) 545 (5.9)3 (5 8) 7 (2.4.)⁵ (7 0) F (5.8) (?: 5) 5.5 (55) 5.6 5.5 2:0 S.3 x (+ 9) [4.8] 5 6 S 54 5.8 FK(5:0) (59) $\begin{pmatrix} 5\\ 4 \end{pmatrix}$ (55) $\begin{pmatrix} 5\\ 4 \end{pmatrix}$ $\begin{pmatrix} 7\\ 4 \end{pmatrix}$ $\begin{pmatrix} 6\\ 4$ ×15.8) \$ (4.5) (6. E) 4 (0.7) 4 (5 + +) $(57)_{5}^{3}(5.2)_{7}^{5}+7$ 54 Institution) 60 CV 5:7 J ŝ $(63)^{2}$ $(\mathcal{S}, \mathcal{L}) \xrightarrow{b} [$ 12(1.9) (5.9)5 (57)5 (5.7) F (5 8) 3 (56)5 (2.2) 7 5 (0.7) S (x. 1) (0) = (1, 0) = (0.9) $((63)^{3})((60)^{2})$ 69 7 (5 G) H (2.8) (())(65) 5 6.3 63 9 22 5 8 B.E.B. McC. (5:9) 3 (58)2 (7.3) 7.7 6.9 × (6 8)2 $(8.9) \frac{5}{5} K(9.5) \frac{5}{2} K(9.5) \frac{5}{2} K(9.4) \frac{5}{5}$ 585 (p.q)(68) (5.9) (0.9) (9.7) 29 (0.9) 66 + 2 20 6.6 2 66 (6.9) 6.0 (P 10) ē 00 66 4 5 7 K (77) 5 6 8 F (6 8) 5 PC(+. 9) H (E.9) 4(27) (22) (2.4) 60% (2.1) (2.6) 3 (1.4) 1034 (7.3)* × 0 6 Calcutated by (54) 6.4 29 (23) (18) 8.9 17.2 7.4 (6 2) 69 6.5 (2.2) 20 5.2 31 Scaled by-(20)3 (67) (8.2) 7 5.8 K (10 8) F (1 6) 2 5.0 KK (51) 5 (59) X (6 6) 3 7.1) 7 27 63 7.2 (1.9) 7.6 2.5 4.9 6 7 66 6.3 4.9 (8.9) 7.5 6 9 7 3 1.3 5.9 5.3 5 <u>6</u> 2.0 2 ñ (1)) X(0 0/) 1004 × (8.7) (· 1 × 72 6.4.7 6.2 6.0 6.4 6.7 2.0 66 6.9 2.1 6.8 6.6 2.5 e e 2.1 7.6 2.8 6.1 2.0 2.7 1.1 6.0 30 6 ß U 7.7 × 4.7 × (10.0) 5 X 6.8 (4.7) x 5.0 2.4 63 73 7.7 7.3 6.4 4.9 ور 6.9 ر. ا 73 5.2 ¢.0 4.2 1.9 65 76 6 6.2 1.9 6.9 7.1 6.6 ŝ 2 6 % 5 J 5 (2.2) (4.5) 5 (s(+ 7) 728 (4.7) F6.47A (6.8) 3 5.8 # 5.2 7 5.8.5 6.0 (2.8) 5 $(7 c)_{\chi}^{\prime}$ 72 6.5 8.0 × 6.4 1.0 6 ·4 0.9 2 7 5.0 2.0 20 60 ر د 7.0 2.0 5.6 4.2 62 91 63 9 (10) 5 (22) 3 e e e 4.8 × < 4.5 K 6(87) (5.7)R (6 6) (4.5) 548 6.0 0.9 (5:7)5 0 * 7. 3 1.7 64 6.9 72 (5.5) 64 77 1.9 *c c* 6.9 2.2 68 6.3 1 9 ŝ 5 00 9 66 17.374 591 6.2 8 (62)5 5.4 X $(l_{\sigma}, \sigma)^{\circ}$ × +.+> 5.4.3 <+5 6 1 4.4 6×45 6 (59) 62 2.0 5 6.7 6.0 5.9 6.5 6.5 6.2 2.0 2.1 4 67 66 6.9 6.1 60× 6.2 Ś 5 6.9 2 C J U Mean Time [6.0] X4.6 K 5.48 (1.1) 7.3 6.0 68 5.8 5.4 4.9 2.0 54 1.9 6.2 6.1 1.1 56 6 3 64 66 50 4.9 (.) (.) 6.0 2 <u>01</u> 14.6 J J υ 4 14 4 6 64 5 8 (14.5) 9 5 2 14 5 6 (4.5 6 (14.5) 9 5 7 14 5 6 (14.5 6 5.8 F $(5.2)^{J}$ (1.1) H (6 3) % [6.6] (0.7) (5.5) \$ $(\mathcal{E},3)_{\mathcal{H}}^{\mu}$ $(57)^{5}$ 6.1 0 0 7.1 5.7 6.5 2.2 (58) 50 66 6.9 6.0 6.5 6.9 MogL 6 % 0) 6.6 6.9 6.1 e. <u>0</u> \bigcirc (5.3)7 (2 2)5 (59)5 $((4.3)^{H})$ 6.31 5.3 K (2:2)# <+ 2 6 K (+. 2) 5 (4. 4) 5 (6.0) × 7.5 6 3 6.0 6.0 0 9 6.3 6.6 6.0 30 64 6.4 6.6 6 + 6.6 64 5.0 6 00 = 5.0 69 1.2 P [5:7]A 2 (0.7) (5.9) H (19) 6.0 X [5.6]X 54.5 (58) 5 5.5 65 65 6.2 60 4.9 6.0 6.0 0 9 62 (0) 68 5.0 66 6.7 64 6.6 Ś Ţ 2 2 T [2.4] 4 H (8 9) X(8.5) (59) 5 1+1 × ++2 6 4.4 × 4.3 8 5.4 % a (7. 7) $((1))^{3}$ 5.8 A (6 3) 56 62 57 6.7 6.5 6.7 5.6 5.8 66 4 1 1.9 6.4 6.2 5.0 5.9 60 Г 3:0 69 57 29 Y [+ 9] 5 [5.2]^N (2:9) # X [7.5] (15) (5.5) 5.0 H 5.2 # 5(17) 651 6.0 6.0 67 2.3 5 8 54 57 6 # 6.0 *6* 9 50 00 5.6 s. S 0.40 5.9 80 60 4.4 6.3 5 59 545 V (1.7) [55] 4.5 (4.7)3 5.4 5 (3.76 29 × 135 5 236 8 (27) × (33 6 (39) × (+5) 3 ((4.2) 3 5.0 0.9 (5.2) * # 8 5.4 6.7 5.3 *ي.* 54 2.4 52 5.0 5.7 3 2 5.9 5:3 07 77 5 5.4 5.0 31 54 5 (50) 5 + 2 4.4 (+ o) + (4.7) 5 $(4.5)^{A}$ 44 325 4 7 4.7 4.5 4.4 6 + 4.7 6 4 4.7 6 * 06 40 4 8 4 7 5 ۳, تر) 4.7 50 45 4.7 5 7.7 5 20 αī, 3.5 7 (0 H) [+ 3]^c K(+1) 3 3.4 4 395 4.2 V (41) 7 341 (3.9.)7 (7 8) 07 0 7 $(3 \pm)^3$ 37 (0 +) (o 7) (2 2) 4.7 02 3.9 3 7 300 3.7 30 0.0 1 + 36 36 7 3 6 ю Ю 1950 3.6 ñ \$(1.4) (3.9)5 (x, t)3.8 4 N(0 ≠) [22]# 33 7 A [9: 5 (x.2)Z 4.8 × (1 E) そうみ (25) (3.9)F 3.4 Wo1.77. Puol. 0 7 12.2] ю m 3.5 4 3 3 ہ ش 3.37 3.3 3/ η Π 3.4 40 3 3.7 0.4 UUIV (Month) (4 9)R 3.9) 7 38 F 3.7 5 E(6 E) K(3.7) J [3 0] K (2.4)K 4 (6.4) 3.5 1 (4.0) 5 36 7 (2.4) 3.5 F (3.9) 7 $(52)F (47)F (42)^{3}$ 481 4.3 5 (3.9) F $(4,7) \frac{5}{4} k(4.4) \frac{5}{5}$ 2.8.2 59 38 4 9 67 39 03 30 2.6 6.4 (2.2) 4.5 4.5 42 5 Э. S Washington, D.C. (1) 5 [2.8] F (2:1) 2 4 3 F 455 (4.1) 5 3.8 % (3.8) 5 5.2 F La! 38.7°N (4 9) F 485 (4.1)5 3.0 % 1 6 × (+.+) 531 202 4.75 r (1. 4) 4.2 4.5 4 5 45 05 50 50 4.6 4.5 e) J 4.3 87 1 9 Mc (Unit) 1 4 6 R (E. H) (56) F 4.8.4 $(4 5)_{K}^{2}$ n t 55 (4.4) -327 24 4.7 52 67 (7 7) (6.7) 5 7 4.9 2:4 67 ō 52 3 62 4.6 8.7 4.9 4:4 8.4 ы Э + 6 5 (Choracteristic) (50) F (5 4) F (3 6)7 × 8 × (57) 5 (2 2) 3 9) 51 6.0% 404 F (E +) (2.1) F (52) } 492 (27) 4.2 50 foF2 Observed of 6.5 50 60 5.3 (3.8) 52 8 56 5.2 50 5 5 5 4.8 45 5 56 31 Median Caunt 01 ю 4 ß 0 61 20 Day ø \sim 60 თ -~ n 4 5 16 21 8 23 51 20 24 25 26 27 28 29 8 ъ

Manual 🔲 Autamatic 🖾

Sweep 1.0 Mc to 25.0 Mc in 0.25 min

June 1946																					pr																		
Form adopted	tandards	MCC.	B.E.B.	30	3(b:	S) 5	0 K	s(h:	:S)5	:S)\$	9.	6	8 F	3 F	7 5	0) 8	3]4	4 5	5(1:	45	(?) ⁵	2)5	1	9 5	26	7.	20	1 × 1	.8) 5	5) 5	25	3	8	00 F	1.		4	31	
	of S	'n	Ì	0 23	5 F (S	6) Å (S	2)r 6.	9) 5(1	4 F (S	4) ⁵ (5	9)5 5)5 S.	5)5 6	0 F S.	H)F +.	;) ⁵ (4.	1-	SF S.	7 (5	3 F S	s) s(g	4)5 (6.	3 5	5) S 3(2) J S.	2)5 5	2)s(f	7 2	9) J K(3) Ş (4.	35.5	6	3)5 4	2) ⁵ 4	ک ۶(8	_	8) 5.		
	Bureau	ц	McC.	0 223	2.9 2-(2] 4 (5.1	3) K (7.	4 (6.2	7)5 5.4	3) 2 (6.4) ⁵ (S:	(9) (9)	6)5 (7.5	0)F 6.4	3)5 × (6.2	+ K (5.4	3)5 4.6	7)5 5.	9)5 S.	3)5 5.3	8)5 (5:	1) 5(0	7 6.	f)s (5:6	3)5 ((.1	(°,)) (°,	S.	5 20	R R (4 0]4 (49	5) ⁵ 5;	5	+ (5;	5) F K (5.	5) (5	-	3) (5.	9	
	ional		by:	0 213	- (6.3	[[6.:	0,5 K (7.8	5.9 0	() ^V (5:	05 (7.	2 (61	6 (6.1	5 (7.	0 (6.1) ⁵ ×(6.	2) ^S 5.4	$R^{S}(5)^{S}_{R}(5)$	8) ⁷ (5:	5 F(S.	1)5 (J	5) ⁵ (S.) ^s (7.	0 6.5	2) ⁵ (6.4)5 (6.)) {(6.(e.	5) R K (6.4	× K 4.	2)> [S.(3) (6.3	2.	2)5 6.4	0 F 1 (5.9)) s ((e		(2)	5	
	Nat	oled by:	Iculated	0 203	5 6.5	3 6.8	2)5 × (8.8	7.0	د (د:	5() 5()	3)5 7.	3 6.1	6 7.	7. 7.	()5 (91	2 1 (5.	3) ⁵ (5:	3 5 (6.	6) <u>5</u> (6;	(61) (C	·(1) (0)	2 7.) <u>5</u> (6.	6.6 (6.	5)5 (7.	1. 7.	K (7.	0)5 H.	.9)	1) 5 (C	7)5 (7.	() 5 6.1	, (1,	_		3	
	1	Sci	Co	0 193(6.5	5 73	K K (10.2	7.1	59 5((7.3	(8.3) = (99	2 2	0) (61)× (8.8	× S	K (5:	1. 7.	2. 6.6	(6.1	s) ^{\$} (6.1	() ^v (7.	3 7.) ⁵ (6.9	(7.6	, (7.6	(1.2	() ^S 8.8) × (5.1	6.6	1 (59	10 7.6	(7.5	() ⁵ × (5.8	7.4		(7.0	3/	
				1830	6.1	(1.1)	K 10.6	6.8	(7.2	6.9	(8.0)	6.6	7.5	6.6	K 69.5	* S.I	1 S 6.0	7.0	9)5 (6.0	(6.6	(6.8	1	IA (6.3	7.6	9.9	7.6	× (9.5) ^S (5.0	J	5.9)5 [7:3]	(°)	F F(5.8)5 6.7		00	30	
1 25, D.C				0 1730	64	6.5	K 10.0	9.9	6.7	6.7	7.8	6.6	7.2	9.9	K 8.0	K 4.7	K (6.0)	6.4	6.3	(59,	6.5	6.9	6.9	[6.7]	13 7.8	6.9	7.4	K (9.6)]s (4.6	ບ	6.0	(6.9)	7.2	(-) S((e·3		6.6	30	
/ashingto:				163	6.2	65	8.3	7.0	5 6.4	L.) (.7	7.2	· 🔋 6.6	7.4	6.3)5 7.0	H 4.7	5.2 S.2	6.3	15 6.2	M 6.0	6.2	2.1	6.6	A 6.6	- (7.7	9	7.4	× 8.5	\$ [4.6	0 #)J 5.8	Je 7.1	7.5	K (5.9	64		6.6	30	
ndords, V	ΤA			1530	6.2	6.3	7.3	9.1	15 (6.1)	(6.3)	7.0	66	7.2)5 6.0	K (6.8)	6 4.7	K K(49)	5 6.2	(0.9))R [59.)5 (2) ^V 6.9	6.9)5 [6.4]	5 7.5	6.6)5 7.3	K (7.4)	6 K (4.6)	5.7)5 (5.8	[2.	67	× 5.6	6.2		6.3	₹	c,
ou of Sta	VD		Time	1430	ک ج. 8	J	6.8	6.6	(5:8)	5 6.5	6.9	6.2	5 7.2	r (6.1	5.9 5	(ひょく) び	1.5 ×	5 (59:	1.9 5	(5.7)	(5:9	(6.6	6.9	5.9) 5(F (7.1	6.2	(7.0.	K 6.1	6 <4.5	J	(5.9	J	6.7	# 5.4	6.4		6.2	28	n <u>0.25 m</u> ic 🕅
nol Bure	RIC		Meon	1330	(5.6	J	6.8	6.6	5.5 5	(6.3) 5	9.9	H 6.2	A (7.6)	F 6.1	F (5.9)	5 <43	0:42	(0.9)	(52)	5.8	6.2	6.6	6.8	((,3)	1.0	5 6.2	6.9	K 6.3	\$ < 7 5	SX	5.7	U	7.0	K 5.4	6.3		62	¥	<u>25.0</u> Mc i Automot
ADL ory, Notic	PHH		75°W	1230	5.7	J	6.3	6.6	1 (5.5)	((2))	6.4	6.8	(8.9)	6.0	5.8	<45	24.69	5.6	5.2	s.S	4.9	6.9	6.7	6.3	7.3	(8:8)	9.9	6.0	545	F (5.6)	6.2	J S	6.6	1.5	s 6.4		6.2	29	uol 🗆
Loborat	NOS			1130	(5:2)	5.9	69	6.1	1 1.5	5.7	6.3 F	5.8	7.0	5.6	59	80	1.4.7 9	60	5.0	[8:8]	v (6.4)	+ (9.9) +	6.6	6.4	7.1	(5.8)	9.9	(6.3)	<4.5 g	<5:0	5.9	((%.2)	6.S	5.3	(9.9)		6.0	30	_{veep} <u>l U</u> Mon
opodotion	0			1030	6.1	(2:8)	6.4	6.4	5.6	A	6.0	6.1	6.9	[6.2] ^F	53	1 < 4.5 9	<4.59	5.6	5.7	5.9	R LC.Y	((2))	6.6	(1.9)	(11)3	5.6	6.5	5.9 K	24.3 9	5.4 4	5.8	6.8	6.5	<479	(2:5)		6.0	30	ũ
Rodio Pro				0590	5.8	(6.0)	6.7	1(2)	58	Ł	6.0	5:7	((°.9))	[5:9]	A	<4.3 g	54:45	5.05	(2:5)	Ł	(27)	6.4	6.8	6.1	6.3	(1.7)	(η, η)	4.51	<4.2 9	[2:6]	6.2	6.7	6.5	5.6 1	5 S V		6.0	28	
Central				0830	6.0	6.2	5.8	58	5.9	5.4	6.0F	5.7	(7.0)3	[8:8]A	A	24.1 G	4.75	5.45	$(5.2)_{p}^{2}$	A	25	S.S	6.6	6.8	6.0	(5.3)	7.9	4.6 K	<4.0 G	[2:8]	6.11	(8.9)	6.6	K(S.8)3	5.8		5.0	29	
				0730	5.4	[S:8]	(S. 8)5	(1:5)	75	4 T.S	5.5 F	S.I	6.3H	5.2 6	(5:3) ^F	< 3.9 G	< 3.8 6	1.5	4.6	16.4)	5.0	[6.0] N	6.6	182	5.8	5.4	5.6	$(\psi, 7)^{H}_{R}$	< 3.8 G	H(4.5)	((,,))	6.2	5.9	5.6 K	56		5.4	18	
				0630	(5.0)5	S. 3	S.4	4.5	4.9	4.7	5.3 F	4.7	5.4 1	4.8 F	4.75	< 3.5 8	< 3.3 8	5.0K	4.5	3(H H)	(2.2)	(L:S)	(S:4)R	6.0	4.9	5.1	5.5	4. 6 K	3.4 %	46H	[5.6]A	4.9	5.2	4.6 V	5.4		4.4	31	
	<u>50</u>			0530	4.2	4.5	4.4	4.1	4.2	4.2	$(4.0)_{F}^{5}$	1.4	4.6 H	4.SF	(4.4)	3.2 F	$(30)_{K}^{5}$	4.3 F	(4.3)3	4.0	4.7	4.S	q(1.7)	4.8	4.0F	4.2	5.4	4.3 K	3.1 F	$(4,3)_{\rm K}^{\rm S}$	(5:0)4	(4.1) ⁵	3.9	$(4.8)_{S}^{T}$	4.2		43	31	
	 ∧≆		7. I°W	0430	2.8	(3.8) 5	(3.5)	3.6	(3.6)	3.3	[2.7]5	3.3 F	3.8	3.7 F	3.3 F	5(2.5)F	(2.2) ⁵	3.2 F	375	3.56	3.75	3.3 F	3.8 F	3.75	(3.S) ⁵	[3.9]A	3.9	$(\# S)_{k}^{S}$	2.7F	2:65	3.45	3.2 F	3.3 F	3,6 F	3.25		3.5	31	
	Jul (Mon	U O	, Long. 7	0330	2.8	(4.2) 5	3.75	4.5 V	(3.7)5	3.3 F	3.4 F	3.8 F	4.35	4.75	3.5F	2.4 F	F(2.2)3	3.7 F	4.0F	4.0	(4.4) ^S	3.7 F	(3.8)5	3.9	3.9 F	(3.6)F	4.2	4.5 K	[2.7] F	2.7 6	3.4 F	3.4 F	3.8 F	4.3	3.6 F		3.7	31	
	Mc Unit)	gton, [8.7°N	0230	(3.3) §	4.8 F	(4.3) ^{\$}	(5.0) ^R	(4.2)5	3.9 F	(4 S)F	(4.1)5	4.95	5.18	3.8 F	2.45	F(Q.S)5	3.5 K	4.7 F	4.0 F	445	q(4.4)	4.6 F	4.4	4.7F	(4.6) ⁵	4.6	4.7 K	(2.7) F	3.0 F	4.0 F	3.9	F(4.0)3	5.0 4	4.2 F		4.3	31	
	<u>د</u> اد ا	Nashin	Lot 3	0130	$(4, 1)^{S}_{Z}$	$(5.5)_{F}^{5}$	(H.7) ⁵	5.04	(2.1)5	4.55	4.75	4.2	5.2	5.85	4.84	$(3.3)_{\kappa}^{R}$	(3.2)	₹ 8.°	5.4	4.SF	(4.7) ^S	4.7F	5:5	4.5	4.95	4.9	5.2 5	4.6 F	$(2.9)_{R}^{F}$	3.1 F	4.3F	4.8 F	4.6	4.9 V	(4.S) ^S		4.7	31	
	foF2 racteristic)	ed of		0030	$(4, 3)_{F}^{5}$	(S.4) 5	P(5.2)5	5.8 F	5.95	5.3 F	5.05	4.65	$F(S.5)_{S}^{T}$	6.65	4.8F	4.0 F	3.8 %	x (4.4) 5	5.75	5.2	5.05	5.05	10.0	5.2	$(5.5)^{5}$	5.0	5.8	534	$(3.7)_{K}^{E}$	3.5 F	4.4 F	5.15	5.2F	4.8	4.8 F		5.1	15	
	(Cho	Observi		Day	-	0	ю	4	ſ	9	2	80	6	01	-	12	13	4	15	16	17	81	6-	20	21	22	23	24	25	26	27	2B	29	30	ц.		Medion	Count	

TARIF 43

Form odopted June 1946	I Bureau of Standards Mr.C. (Institution) BFR	B.E.B. McC.	21 22 23																																		
	Nationo	olculoted by:	20												×																						
	i i	5 Ö		-		0 K	HO	0		0	Q	0		NOK	B	×	0			-		20				0	OK.	10 K			0	0	×	0		0	e
c	9			204 4	4	204 22	10 21	30)5 23	20 A	10 25	20H 23	30 24	4	20K 23	30 K 23	20K A	204 22	8 0 S	00 A	20 4	20 A	30 25	•	₹	30 0	30 24	20 × 24	20× 24	ຍ J	30 A	10 24	20 23	A × F	30 26		20 24	5
ton 25 D			9	10 2:	10 4	20K 23	10 A 21	Z) 5(01	5	10 21	00 22	00	10 4	30K 23	60) A 21.	10K 2:	00 2:	N	10 20	10 2:	10 4 2:	6 H 00	4	P	30 23	00 23	10× 2:	24 33	4	20 2	20 2	0	A XO	10 2.		00 2:	6 2
Washing	n		2	2	- 3	00 23	20 [2:	00 (2	4	20 H 2	00H 20	10) A 2.	10 2	0 × 3.	50)Å (20	20K 2	0		04 2	00 2	30 [2:	0 2		0	10 20	2 00	10 × 2:	20× 20	Ĺ	20 2:	10 2:	06 400	50 X 23	20 2		10 3:	5 3
Standards	9TA		4	4	5	90 20	20JA 2:	90 20	۲ ۲	10 20	00 20	00) (2.	00 2	4 K 20	10] (2:	20× 2:	10) A 21	00 # 00	10 400	00)5 21	10 1 2	00 21	1 H 01	4 2	204 21	00]4 21	10 × 31	00 x 2.	5	20 2	a a	30 20	00 K 20	4		00 2	3 2
34 areau of	a o	ean Time	1	H 00	J	1 00	20 [2	10 1	400	00H 2.	90H 2	A (2	7 J	A	30 / 20	30 K 2.	10) (2)	00 2	4 2,	30 12	2 00	5 V(0)	2 012	A	00 20	00 [2	10 × 21	10K 2	J	204 2	0	202	00× 2	4		2 00	2 2
	JERIO	W	12	00H 2	J	00 H 2	00 H 3.	210)A 2	2 00) (2	80 2	1 00	A	4	8(00	10 8 2	X 10 X 2	4 (2	10 2	Ā	4	00 2	20) 1 (2	E 400	30)A	A A	10 2.	208 2	0 # 2	A K	10 20	00) \$ (00	1071 2.	A × 20	Ā		00 20	2 2
TAE	SPF	75°	=	00H 2	061	00 2	00 2	00 H (2	A (:	1 00	00 2	A V	4002	20 (2	80 # [2	210) 2 2	A	00 2	4	A	10 2	00 (2	10) 4 2	110 (2	A	00 2	108 3	00 K 21	10 K	2 00	00]A (2	00 [3	A ×	20		2 00	24
attan Lat	IONC		0	210 20	100	200 2	00 2	210)A 2	A	A	10 2	00	=) V(0=)	A 2	1 200	00K (2	Ą	00 # 2	A	400	20 2	200 2	210)A (2	A	A	004 2	00× 2	00K 2	4 K 2	00 2	190H [2	202	Λĸ	2 ALOIS		2 002	22
ia Pranaa			60	00	200 2	210) A 2	2 A[015	220)A (5	A	A	4	220) 4 2	A (5	A	30× 20	200 K 2	210)4	\$10 2	۲ ۲	V V	20 2	00 × (00		A	A	00 4 2	200% 2	200 4 2	A K	30 2	4 09 H	200 2	100 K	200 [:		2 00	20
ntral Rad			08	210 2	210 2	220]A C.	120H [;	210 C.	HOON	220	A	210] A (3	ح	130)4	210 X 2	230)4 2	30 # (H 00	A	A	20 2	230)A (2	R	30	A	210H 2	130 K	20 K	A K	220 2	130 2	12014	200% 2	250)4		220 2	34
Cer			20	220	220]4	730 L	: 0%	. 050	00	30	¢	200 L.	A	A [(;	YOK .	70K (130] 4 2	H 017	+013	4	30 2	30 6	07	N(OS)	4	40	10 # 1	210 H	A K	A I	20 3	30 [10 %	50 (30	72
			06	140 0	230 E	0	ج 2	150 2	130 2	30 2	4	0	130	4	60 K 3	50K 2	(0E)	20 2	A	4	220 2	2 4(00)	d u	A (2	A	20 2	305 2	10 # 01	20 K	a	0 2	30 2	2	50 2		302	- 8/
	0		05		-						_				a	4	0	• 8				3	_			n			2			(q	-	Y 1	-	2	_
	361	Mol	40																								_										
	July (Month)	Lang 77	03				_					_				_				term cyano		-			_							_			-	+	-
	E	Nº7.	02											-					_										-	_				_	+		_
	X Shino	Let 38	10		-							_													-	_		-		_					-		-
	acteristic)	d at	00																														_		-	-+	-
	(Char	Observe	Day	-	0	ю	4	5	9	2	80	6	01	-	12	13	41	15	16	17	18	6-	20	21	22	23	24	25	26	27	28	29	30	31		Median	Count

Sweep 1.0 Mc ta 25.0 Mc in 0.25 min Manual 🗆 Autamatic 🛛

|--|

Manual D Automatic 🛛

1950 IONOSPHERIC DATA Notional Bureau of Str Notional Bureau of Str State of Data Magnetication 75°W Mean Time calculated by: McC.	1 1 2 13 14 15 16 17 18 19 20 21 23 23	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20 C C C C 100 100 100 4	200 (100) (200) (200) 8 5 5	$\begin{pmatrix} (200) & (1$	0, 110 110 2110 (000) (100) (100)	2 100 100 110 110 110 (120)	100 110 110 110 110 (1.20)	100, 1 (10) 4 (10) 4 (10) 4 (00) 4 (00)	0 110 110 Livers 110 (110)	(110) 100 × 100 × 110 ×	110) A 110 × 110 × 110 × 110 × 110	100 × 110 × 110 × 120 × 100 ×	A(nev) A(nev) (nev) (nev)		00 1/0 1/00 1/0 (120) 001 0/0 000 000 000 000 000 000 000 000	s //o (//o) (//o) (//o)	0 (11) (20) (20) (20) (20) (20) (20) (20) (20	(110) A (110) A (110) A	6(01) 01/ 01/		110 × 120 × 0 × 10	0	A //0 /// 0// 0// 0// 0// 0// 0// 0// 0/	s //o S	0 110 (100)	3) ^A G ^A	118	
1950 IONOSPHERIC DATA Notional Bureau Readed by: B.E.B. Calculated by: B.E.B. 75°W Mean Time Calculated by: McC.	1 1 12 13 14 15 16 17 18 19 20 21 22	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20 C C C C C / 100 100 100 100 100 100 100 100 100 1	200 (100) (100) (100) 8 S S	$\begin{pmatrix} (200) & (100) & (100) & (110) & (12) & (12) & (12) & (10) & ($	a(021) P(021) Toil oil oil 011 A(0.	2 100 100 110 110 (120) S	100 110 110 110 110 (1.00)	(100) A (110) (100) (100 (100) A (100)	0 110 110 E11075 110 (110)	(110) 100 100 × 120 ×	X01/ ×10 × 1/0 × 1	x (00) x 10 x	A(nei) A(nei) A(nei) A(nei)		0) //0 /00 //0 (120)	s //0 (1/0) 4 (1/0) 4	(1/1) (20 / 20 / 20 / 20 / 20 / 20 / 20 / 20	(110) (110) (110)	H(0) 01/		100 100 S K	C 0	A // (0//) 0// 0	A 1.0 5	0 /10 (1.20)	3)A G *	0 118	
IoSO IONOSPHERIC DATA Notional Scaled by: Scaled by: Colculated by: Colculated by:	1 1 12 13 14 15 16 17 18 19 20 2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20 C C C C / 20 / 20 / 100 A	(200 (100) (100) (100) 8 5 5	9 (100) (120) (100) (110) 110 110 110 (110) (110) 110 110 110 110	a(021) P(021) Toil all all all all 000	100 100 110 110 110 (120)	100 110 110 110 110 (120)	P(00) A (10) P(0) P(0) P(0) P(0)	0 110 110 Lilo75 110 (110)	x (110)x 100 x 100 x 110 x	110) × 110 × 110 × 110 × 110	100 × 110 × 110 × 100 ×	A(ne) A(ne) (ne) (ne) (ne)	8(05) 01/ 01/ 8(05) 05	0 110 100 110 (120)	s //0 (//0) (//0) (//0)	110 110 120 1000	(110) (110) (110) A	P(011) 02= 011	(110) (110)	110 × 120 × 5 ×	c c s	13 //0 (//0)A	A 110 S	(001) 011 0	2)× B ×	110	
1950 IONOSPHERIC DATA Scaled by: 25°W Mean Time coloulote		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20 C C C C 100 100 100 100	(200 (100) (100) (100) 8 5 5	(1/10) (1/00) (1/10) (1	\$ (02) \$ (02) \$ 7017 011 011 011 \$ (0.	8 100 100 110 110 100 001 0	8 (001) 01/ 01/ 01/ 01/ 01/ 00/	P(00) A (10) P(01) P(01) P(01) P(00)	0 110 110 LILOTS 110 (110)	x (110) 100 x 100 x 110 x	X 01/ X 01/ X 01/ X 01/	100 110 110 110 100 X	A(nei) P(nei) P(nei) O(n) O(i)	8 (0 c 1) 0 1 / 0 / 8 (0 c 1) 0 (0 c	0) 1/0 100 110 (120)	2 /10 (110) (110) (110)	110 110 120 120 1001	(110) A (110) A (110) A	4(01) 020 011	(110) (110) x x x x	110 × 120 × 5 K	0 0 0	A (1/0)	A 110 S	ROG1) 011 0	2)A B *	011 01	
1950 IONOSPHERIC DATA	1 12 13 14 15 16 17 18	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20 C C C C C C / 20 / 20 / 10 K	(20) (100) (100) (100) (2 S S	(110) (110) (100)) ⁶ (aci) 70112 air air air (0.	100 100 110 110 110	100 110 110 110 110 (1	(100) 4 (110) 4 (110) 4 110 (1	0 110 110 LILOTS 110 1	+ (110)x 100 × 100 × 110×	X 110 X 110 X 110 X 110 X	100× 110× 110× 110× 110× 11	000/ (00/) (00/) 0//	1) 011 011 8 (001) 1000	0) 1/0 100 110 (2 10 (110 4 (110) 4	(00) 011 011	1 (110) 4 (110) 4	1) 020 011	x (0/1) (0/1)	10 × 120 ×	U J	110 (1	A //0	0 110 (1	3)K B K	011 01	
1950 IONOSPHERIC DATA	11 12 13 14 15 16 17	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20 C C C C C C / 00 / 00 /	(100) (100) (100) (100) (100) (100)	(100) (100) (100) (100) (110) (100)	(0) 110 110 110 LIIO7 (1	1 011 011 001 001	100 110 110 110	(100) (110) 4 (110) (110) 1	0 110 110 Luggs	+ (110)A 100 × 100 ×	(110)K 1/0 × 1/0 × 1	100 110 110 10	(00) (0C) 011	1 0/1 8 (0C,1) A (05	0) 1/0 100	5 110 (110 ^A (1	1100 110	1 (110) 4	110	+ (1)	×01/	J	0	4	0	3 4	0	
IONOSPHERIC DATA	11 12 13 14 15 16	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20 C C C C C / 00 /	(20) (100) (100) (100) 8	4 (100) (100) (100) (100) 4 (110) 4 (10) 2,10) 4	A 110 110 110 100	011 001 001	100 110 110	(100) A (110) A (110)	0 110 110 L	+ (110)A 100 +	× 1/0 × (11)	100 110 %	1) (021) 011	8 (001) A (05	0) 10 1	5 110 (1	1001		1	4	יר		0	0	3	0		
IONOSPHERIC DATA	1 12 13 14 15	11 12 13 14 15 190 (100) ^A (100) ^A (100) ^A (1	20 C C C	A (100) (100) (100) (100)	9 (100) (100) (100) 4 (110) 4 (110) 7 (10) 7	0) 110 110 VIO	00/ 00/	100 110	(100) A (110) A	0// 0	x (110)K	(110) A	100 ×	10 () (oc	8 ()	2 4	N ~		10	100	401	A(0/1	00	1) (00,	0/	1 4 00	0//	
IONOSPHERIC DATA	11 12 13 14	11 12 13 14 190 [100] 100] 100] 1	20 C C C	(100) (100) (100) (100)	9 (100) (100) 4 (110) 4 (110) 4	01/ 4(0	00/ 0	00/	1 (00)	0	-		- 1		- L	10	(00)	6000	10)4	A (00)	(0/1 ×	+ 0/	10/1	P(00)	100)4 (10	4 (00)	. 0	
	11 12 13 13	11 12 13 100) ^A (100) ^A (20 C	A (100) A (100)	4 (100) 4 (1/0) 4	A(0		_	<u> </u>	0	00	A 00)	2007	H (0/)	· /0] E (,) (001)	100)	1001	110) 4 (1007	000	× 00/		8(00)	0	110	100 \$ (A (0)	
1000SPHER		11 12 190 [100] A [.	20 C	00/	4	10	100	(00)	A(00/	100)	4(01)	100 %	100 +) (0//	1 4 (001	017	100/4	6(01)	110) 4 (011	(00) (00	× 007	 U	100)	U	4 (01)	100 +	A (0)	
	=	= 0	0 4	10	(0)	1001	110	4 (001)	6 (0/1)	(00)	1.078	X(011)	100) #	6(01)	(00)	A(00)	(1/0)	100/	110) A	(0/7)	100	10/2	1001) (0/1)	× (011)	100) 4 (A (00)	11014	
NO	15		1.	100)	4 (00)	4(0/1)	100	+ (00)	00/	4 (001)	4(0/1)	* 00/	(100)x ((00)	(011) (011)	1001	(<i>1</i> (0)	011	011	4(01)	100	4(001)	* 001	0//	011	100	100) + (4 (017)	
000	01	0 0	(100) A	4001	4(00/)	5011	6(0))	00/	100	4(001)	A(011)	110 4	100/	4 4	P(011)	4 (00)	4(0)	100	4(0))	00/	700	110) 4	× 001	(, r o) A	4 (011)	100	A (00)	4 (011)	
000	60	60 °	00/	A 1001	(110) (110)	110	(011) A	100	100	100	(110)	100 ×	100 4	100)	[rog]A	100	4 (0/1)	(01) (10)	A(0)1	100	1001	(1,10)A	A (001)	(110)A	0/1	007	(100) A	110	+
00	OR	08 / 00/	100	011	100	110	(0E1)	100	001	110	A (011)	4 00/	2001	00)	100	6(01)	110	011	110	0))	100	A(011)	100 ×	110	1:0	A(011)	* 00/	(011)	
000	07	00/	(100) ^A	011	A (11)	(0/1)	0/1	110	110	110	100	4 001	* 0/ /	(0/1)	0//	(011) 4	1/0 A	1011	120	011	4.01	2 0/1	* 00/	8(001)	0,1	(01)	2011	110	
	06	06 (//o) ⁴	(00) A	(0/1)	(1/0) A	4(011)	1000	(110)4	(110)	011	110	A(0/1)	x(00 /)	(1,1) A	(021)	4(0/1)	120	(01)	130	2000/	1001	+ 011	K (011)	000/	0//	A(011)	01/	4 (011)	
- I. I	05	A 05		₽	(00/)		∢	∢	0//	(001)	∢	× ,	2 ×	∢	U		(0C1)	(051)			130	× S							
1y 77.1°W	04	04																											
D.C.	- , Lang	03						_																					
Km (Umt) ington, 38.7°N		05																											
tic) Wosh Lats	51,-	ō			1 1												_												
h E Chorocteris erved at				_				_		- P.	1																		

Monual 🗆 Automatic 🛛

The factor of the properties of the properis of the properties of the properies of the properies								Central	Radia Pro	pagation [- aboratary	Notional	Bureou o	of Standard	ds, Washin	aton 25. C	. C.					Fo	rm adopted Jur	une 1946
Term Term <th< th=""><th>foE</th><th>Mc</th><th></th><th>uly</th><th>19<u>50</u></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>V T V</th><th></th><th></th><th></th><th>1</th><th>Natio</th><th>nai Bu</th><th>reau of</th><th>F Stan</th><th>dards</th><th></th></th<>	foE	Mc		uly	19 <u>50</u>									V T V				1	Natio	nai Bu	reau of	F Stan	dards	
Interest and the second of the secon	Observed at	Washingto	n, D.C.	QUILU						2	5		2	1-1	-			Sco	iled by:	2	AcC.	(Intian)	B. E. B.	
1 1		Lot 38.7	N, Lang	77.1°W							75	Mos	Mean Tim	he				CO	Icutated by	Ш	Е.B.		McC.	
$ \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	Day 00	0 10	2 03	04	05	õ	6 07	08	60	0	11	12	13	14	15	16	7 11	81 8	20	21	22	23		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-				A	X	379 2.8	3.2	33	3.5	305	34	R	4	Ý	X 4	4	P						
3 1 1 2 2 3 1 1 4 2 3 1 1 4 2 3 1 1 3 1 3 1 3 1 3 1 3 1	2		_		P	(2. 4 (2. 4	() 28	(33)	A (3.4)	[34]4	3.5	J	U	J	., J	32 3	8 1.	6 A	_					
9 1 1 22 27 31 <td>3</td> <td></td> <td></td> <td></td> <td>A</td> <td>8</td> <td>4 28</td> <td>3 /</td> <td>1.E .</td> <td>Ą</td> <td>Ą</td> <td>Ą</td> <td>S</td> <td>3.5 [-</td> <td>3 4]4</td> <td>3.2 ×</td> <td>S K S</td> <td>¥</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	3				A	8	4 28	3 /	1.E .	Ą	Ą	Ą	S	3.5 [-	3 4]4	3.2 ×	S K S	¥						
6 1 1 $\left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4					8	2 2.7	2.9	F	A	A	¥	Ł	P	A	A (2.	9) A 2.	4						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5				18	(2)	3) 4 28	32	(3 3)	A	A	(3.3) A	3.4 [[3 3] ^A	3.3 (.	3.2) ⁵ (3.	0) ⁵ A	S						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9					2 2	12.2] 2 (:	1A 3 X	5 6	33	5 S	3.6	35	(3.4) A (.	3.3) A (5	2 4 (2 1	8	5 1.8						
$ \begin{array}{ $	7				Ł	R	8.8	3.2	1 1	(3.3)	3.5	E(9.E)	(3 4) ^P	3 4 (3.3) F	.3	0 2	5 (1.6,) 5					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	00				Ł	3	3.6	j.j	s.s	3.4	A	A	(35)8	3.7	3.5	3.2 3	0	6 1 7						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6				(110))F (2.3) A (2.9)	A (3.2)	4 3.4	5	35	4.	A	A	Ŧ	4	1 2.	7 1.7						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10				A	a a	F 3.0	3.2	3.4	3.4	P	A	J	36	35 13	(+)F 3.	0.0	4						
$ \begin{bmatrix} 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$	=		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4	~	2 2.7	2.9	[3 1]A	 	(3.4)A	62	े र	(3.7) A (3	5 4)X 5	1.3 4 (2.	P) \$ (2.	5)5						
$ \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 &$	12				7	X	X 2.6	× 3.0	7 7 7	35 ×	(3 5) R.	[3.4]B	33 4 1	73.374	3.3 X	1 2 6 2	140	2 4						
14 1 \vec{A} <	13				(7.7)	2	5 F 2.6	K 3.0'	1 (3 2)2	(3.4)	A A	X K	36 1	357	3.3 K	3.2 4 2	843	SA A	*					
16 1 1 2 2 3	4-				7	X	1 2.8	0.0	F3.27	13.57	P I	P .	A A	A	3.4	32 2	5 7	5						
16 1 C A A A A A A A A A B	15				-	7	3.7	3.2	[3.3]A	(34)	R	Ŧ	5	. V	4	3.2	. 6	S S						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16		_		J	7	2.6	0.0	[3:2] A	3.4	[3 +]A	G. 5	3.3 /	3.3) ^B [.	3.214	к к м	1 F (2.	5) 5 1.7						
16 1 1 1 3	17					4	26	(2.9)	A 3.3	(33)A	7	Ŧ	A	A	A	6	0 2.	5						
10 10	18				A	~	8.8	3.1	3.3	35	3.5	4	₹	L.	3.5	3.4 3.	0	5 A						
20 1 2 3	61				Ł	P	P	J	P	Ł	3 8	F	4	3.5 [:	3574	3.3 3.	2 3.	5						
21 21 32 <t< td=""><td>20</td><td></td><td></td><td></td><td></td><td>2.5</td><td>3.0</td><td>3.1</td><td>3.3</td><td>$(3.3)^{A}$</td><td>(3.3) A</td><td>3.4</td><td>R</td><td>A</td><td>3.6</td><td>3.3 3.</td><td>1 (2.1</td><td>5 (3</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	20					2.5	3.0	3.1	3.3	$(3.3)^{A}$	(3.3) A	3.4	R	A	3.6	3.3 3.	1 (2.1	5 (3						
22 3	21					R	1 27	3.1	J.J	(3.3) A	3.6	3.6	3.5 ((3.4)A [:	3.3]4	3.3 (3	· 0) A 2.	5 A						
23 1 1 2 3 3 3 3 3 3 3 4 A	22					N.	3 2.8	3.1	3.3	34	3.6	A(2 E)	P	A	3.5	32 3	.0 (2.	7) ⁴ A						
24 1 $a^{\chi} \left(a^{\chi} \right) \left(a$	23				1.6	8.	2 2.9	3./	υ. G	3.6	3.6	3.7	3.6	35) A	T	V V	3							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	24					5	× (2.2)	K 3.0	* 3.4 A	[3.4]A	3.4 8	¥ ¥	×	× V	3.3 1	3.2 2	94 2.	1 (16)	× c					
26 1 $(x_1)_{a}^{b}((x_2L)_{a}^{b}((x_$	25				(2.1)	K 2.	14 25	P F	X V X	* 4	Y K	3.6 *	3.5 K	3 + x :	3.3 ×	3.14 (2	ic) A 2.	4 1 18	¥					
27 2 3.2 3.7 3.3 3.5 $(3.1)^{4}$ $(3.5)^{4}$ $(3.5)^{4}$ $(3.5)^{4}$ $(3.5)^{4}$ $(3.5)^{4}$ $(3.5)^{4}$ $(3.5)^{4}$ $(3.5)^{4}$ $(3.5)^{4}$ $(3.5)^{7}$ </td <td>26</td> <td></td> <td></td> <td></td> <td></td> <td>(z.</td> <td>1)2 (2.6)</td> <td>A (2. P).</td> <td>A [3.] X</td> <td>(3.4)</td> <td>355</td> <td>3.64</td> <td>J</td> <td>J</td> <td>35</td> <td>3.2 6</td> <td>1</td> <td>(1.5</td> <td>) 5</td> <td></td> <td></td> <td></td> <td></td> <td></td>	26					(z.	1)2 (2.6)	A (2. P).	A [3.] X	(3.4)	355	3.64	J	J	35	3.2 6	1	(1.5) 5					
28 30 \vec{a}	27					З.	3 27	3.0	3.1	3.3	9. 9 1	[34]A	(36)4	3.5	3.5	3.3 2.	.9 2.	4 A						
29 30 λ^{2} $3 \cdot \lambda^{2}$ λ^{2}	28					.2	2 26	0 m	3.2	A	4	A	υ	0	∋. ¥. €	3.3 2.	9 2.	× S						
30 u_{2} u_{2} u_{2} u_{3}	29					8	5 x 7	3.1	ω. Έ	(3.4)A	3.5	(3.6)A	3.6] A	5.0	3. 4	3.2 (3.	0)F 2.	A Y						
31 31 31 32 3.7 3.7 3.4 A A A A A A A B A A A A A B A B A B A B A B A B A A A A A A B A A B A A A A B A B A <	30					ς.	2 2.5	1 3.0	K 3.1 K	(3.2) A	XX	A	(3 6) F (3.5)5	7 E E E	3.2× 3.	8 7 2.	3 4						
Median $(1/7)$ \vec{s} :3 \vec{s} :7 $\vec{3}$:	31					P	27	3.0	3.4	3.4	3.4	A	R	A	A	3.2 2.	8	n						
Median Median $(1/7)$ $\vec{x} \cdot 3$ $\vec{x} \cdot 7$ $\vec{3} \cdot 5$ $\vec{3} \cdot 5$ $(3 \cdot 5)$ $\vec{3} \cdot 7$ <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																								
Court Court 5 25 30 29 28 28 28 45 19 14 17 23 27 27 27 2 8	Median				(1.7	3	3 27	3./	3.3	3.4	3.5	3.6	3.5 ((3.5)	X.E	3.2 3	6	5 1.7						
Sweep_LO_Mc10_250_Mc10_257_min	Count				5	25	30	29	28	25	19	14	14	17	23	27 2	2 2	2 8						
										Swe	tep 1.0 A	Mc to 25.0	Mc In 0.	25- min										

1 C F

1946	
June	
adopted	
Form	

26

4 8 TABLE Centrol Rodio Propagation Loborotary, National Bureau of Standords, Washington 25, D.C

В. Э. В. National Bureau of Standards McC. 5.6100 5.2110 6.6,20 7.7 100 2.3 110 3.7 140 1001 7.9 274 110 43,00 6.0110 100 3.6110 3.1 110 (3.5)3 3.8 1,30 2.01,30 3.6130 110 100 y G № © Y Y Y Y ც ** G 6 Ŀ P G G ს G G 7.6 520 7.0 7.4 8 S 254110 9.0/00 (4.8) 5 (25) 70110 (6.0)50 6.0110 110 (6.0)° (.8 120 11 0 5:0 110 3.5410 (5:2)5 36160 3.07,20 (58)5 73,110 3.3/20 2.84/10 (4.2)5 5.8,10 5.3110 11.6110 10.900 33/10 3.74 110 38 120 52110 87110 53410 36110 2.5 110 3.0110 53110 43 110 5.8 110 5.4 100 10 2.8 110 ·// 0 (48.k) Y Ա 30 Y G 22 U Y U હ B.E.B. 011 (2.8) 3.2 4 00 2.0 190 2.64,10 12.6 9.0110 12021(1.5) 30120 1.8120 (3.6)50 100 110 21 McC. U y 30 y 5 Ŀ Y 2(02) 39 56/10 3.8 6.3 4.4 110 (5:5) 2.74,00 18110-13.0 119 13.0 110 (4.0)50 0110.7 2.5110 3.1/120 (4.8) 20 (5:3)5 4.3 120 5.7 110 284120 Y Colculated by: 3.5 20 ც G ც G (2.0)5 ŝ Scoled by:. 2.4/20 5.0,20 4.5,20 3.7 120 6.4 110 44 331200 9.6 110 45,10 82/20 (11.4)30 9.0110 8.2 110 5:0/30 6.0110 59 120 9.5 110 5.5 100 4.2 110 8811020110 ს 3.0 110 2 2,10 4.8 100 411,20 5.5 110 ც 6 ც ს 43 Y Y Ա Y (3.8)5 5.2,20 ~ (110)5 4.3120 4.2,20 3.0/30 4 4.2 120 9.7 110 145,20 9 J Y კ Y *S*. Y (4 Y y Y G œ 4.9120 11 6/30 3.4 /30 011 N16 446 5.81/10 36120 6.2/00 011 14 4.4 130 4.84 110 3.4120 110 J 5 G G y 3 Y კ G G ს 9 * Ļ હ 9 9 J G 10.4 657100 8.0120 7.2 120 011 8 61) 9.4 120 431,00 3.0100 2.04 110 12.7/30 9.0 110 001 7# კ الع в Y კ კ ც G Y ც G y ** 9 Y હ G Y 3 Y (11.4)5 011/0.9 3.9120 4.100 8.0120 5.0/00 6.6/20 44110 6.0 110 72,20 3.0 100 3.0100 601,00 5.8110 4.8,00 5.04110 5.4 110 5.4110 7.84 120 56,110 6.1 110 12.4110 76F10 3.6100 4.0100 5.3100 3.7100 100 (3.7)5 (4.8)5 6.6/00 6.6 100 5.6103 49120 6.41/10 6.4 110 7.6F110 Y ს 4.6 ŝ ৬ ს G G G Y ও DATA 5.64100 355 3.3 100 (0.0/10) 554/10 3.7 100 5.2/00 4.01,00 (5.8)5 3.1 100 9.7 110 S.SYIIO 23.0 110 4.74/10 4.47/10 50120 7.2 100 10.6120 12.8,10 8.3,00 4.8,100 58110 3.9120 6.0110 5.9 100 3.7100 9 ی^اں G J 4.2 ს 13 y Y G ୯ Mean Time 51 100 30100 7.0100 11.0110 3.4,00 011 E.H 6.9 110 9.0 110 100 6.5110 8.8 130 5.0100 474 100 3.3100 IONOSPHERIC 5 6 Y ც J υ Y U G 440 404 535 5.0100 9.5 110 5 7.54,20 3.8110 2 5.3 100 11.9,00 0110 5.4 110 5.0,10 6.100 0110.6 6.0 100 8.6100 8.0130 5 ტ 1001 110 ს 6 W.97 <u>Ci</u> 5.85 5 521101 9.5.0 7.31,000 5.0 110 70,00 1.1 120 5.0 100 5.0110 5.4 110 7.3,20 7.2 100 17.71,00 5.6 100 7.67,20 39,20 51100 37100 42100 9.45 7.4 100 9.8 110 5.49 110 6.34,30 844 140 100 11.0110 9.6 110 9.8110 5.5110 7.6110 5.4110 6.6100 6.84,00 5.6 110 100110 13.8/10 8.0 110 58 110 3.5,20 4.67,110 5.31,10 5.3,110 5.2 110 48 110 9.2 110 22.0/140 35120 6.4 110 6.4 100 5.4 G J ~ G 0 6.8F 7.0F 1001 5.01 4. TY 120 5.4 110 4.9 100 5.8510 3 8 100 3.7 11 0 5.7 110 # a0106 011 8.9 54110 9.5 110 5 ტ 6.8 2 3.6120 5.4110 6.2 110 11.4 5941207 8.2120 017811 9.4 100 4.9 120 38 ,20 5.2 110 4.24 120 8.2 120 3.6110 5.6,00 S.05 3.4 110 4.7 120 92110 7.6120 4.7 120 5.44 110 64Y 110 4.1/120 34 110 564 110 #3120 7.8 130 5.5 115 110 5.0 110 7.6 100 6 04,110 5.4 6 60 8.87 100 447 120 1011 9.6110 497 120 2.6 110 4.4 8.85 110 110 10.3 110 11 8:2 Y Ģ 6 13 y Y ც 43 80 9 G 14.5,00 16.67 130 4.1 120 4.2 110 4.1 120 7.2 110 5.9 120 G 53/20 38130 4.2/120 4.1 120 5.5Y 100 3.7Y 120 120 3.74 120 6.6140 3.0 Y 100 3.7 F 110 3.3 110 3.3 110 2.0 110 53 110 43130 76 120 56110 6.07 110 6.0 110 4.5 110 9.410 5.65 110 6.3510 4.54,40 32 110 13.67,20 3.67,20 5.04 110 58 120 5.3120 7.6120 2.0 120 10.3 110 8.4 110 G კ 4.1 6 4.31,0 G G G 6 G 3,2 2.0 110 6.5 130 3.8 110 3:44 110 7 6.6 110 100 2.4 100 2.3 /20 3.4 /30 1.8 120 947 100 1.8120 36130 Y G y 90 Y 4.3 3.2 y 120 5.4 18/10 5.7 100 2.87100 2.84 120 -5 16.94 130 1.7 100 2.0 /10 2.24 140 3.0130 7.0 100 1.8 130 3.2/ 110 3-0130 კ 0 22 Y ს y Ъ ს J 3 ~ ი ს G 1950 ს 3.44 110 3.07 100 2 67,10 8.1 120 2.84 110 4.0 F 301 (55) 6.4 100 4.3 120 9.84 100 43 110 100/ (1.5) U 120 ს Wol.77. Long , 04 5 ს P Y ც و م رى. ا G G Y Y Y y y 2.7 July (Month) (28%) 001 7 9 3.0/5 100 011 (2.5) 10.34 100 2.74 100 S 5.2 100 7.9 120 3.3 120 504 110 7.84 100 110 4.0 100 110 1.1 120 لع 130 2.8y 100 2.4Y 110 100 3.2 120 7.4 110 5.0 100 3.0 110 13 5.3 ю 0 ୯ G Y G G y G G 9 3 Washingtan, D.C. 1.7 2.9 5.2 2 1.8 120 1.4 110 3.67 3.17 100 38 130 , 011 3.8 110 3.74 110 2.54 110 63 130 7.0 100 4.51 100 Lot 38.7°N 110 100 110 100 6.7 100 4.7 100 100 120 100 2.5 Mc,Km 020 ს ს ც კ ა G Y Y Ⴐ G ୯ Ь 331 3.7 595 3.0 2.8 100 2.2 7.0 2.81 120 2.7 100 (5:9) 3.61 120 4.3 130 40 120 4.0 120 3 100 100 110 120 G ს კ ى ს ې ō 6 G G ს ৬ ى (3.7)5 Y G ს ** G 4.00 3.9 110 247 120 (Characteristic) 110 6.37,00 5.4 110 100 100 3.0 110 110 110 110 110 110 110 110 110 100 1001 00 Observed of _ ৬ ୯ Ⴐ G ს ს ୯ ୯ G ს ŝ 6.0)3 5(4.9) 234 2(6.2 3(2.8) 3.8/5 5:5 605 4.4 3.0 5 1.4 0 ы 4 Medion Day ß 9 ~ 0 25 29 60 n 11 0 23 4 5 97 6 20 24 26 2 20 2 22 23 27 30 28 31

Sweep 1.0 Mc to 25.0 Mc in 0.25 min Monuol 🛛 Automotic 🛛

30

10

31

31

3/

00

30

ñ

30

28

27

30

5

3/

31

Ē

18

31

30

15

3 /

31

จิ

2

Count

** MEDIAN FES LESS THAN MEDIAN FOE, OR LESS THAN LOWER FREQUENCY LIMIT OF RECORDER

Form adopted June 1946	al Bureau of Standards	B.E.B. (Institution) McC.	McC. B.E.B.	21 22 23	2 (8.7) 5 (8.7) 5 (7.8) 5	2(0.0) 2(0.0)	(1.9)7 1.7 X 8.X	1.8 1.7 1.2	(1.8) 5 (1.8) 7 1.8 5	(1.9)5 (1.9) ⁵ 1.9 ⁵	6.1 8 (6.7)	1,9 (1,9) ⁵ (1.8) ⁵	کر(ی ک) ² (۲.) (۲.)	1.9 (1.8)5 (2.0)5	ال ا	X S S S S S S S S S S S S S S S S S S S	2(0,0) × (2,0) × (2,0)	(1.9) 5 (1.8) 5 1.8 F	(1.8) 2 1.9 E	(1.9) [1.8] 1.8 "	(1.8) 5 (1.7) 5 (B)	(1.8) ⁵ (1.8) ² C	29 1.9 1.9	(1.9) S (1.8) C (1.7) E	2 (1.9) 5 (1.8) 5	a 18 (19,1 21 21	8. 8 (8.) 6.	1.7 x x (1.7) x (1.8) x	×(1.8) 5 × (1.8) 5 × (2.8) 3	(1.9) 5 (1.9) 5 1.8 6	$(7.8)^{S}$ $(7.9)^{S}$ $(7.8)^{S}$	1.9 (2.0) 5 1.8	(1.9) ⁵ (2.0) ⁵ (1.9) ⁵	1.9 5 20 5 (1.9) 5	~~~ (1.8) ⁵ (1.8) ⁵		(1.9) (1.8) (1.8)	3/ 3/ 29
	Natior	by:	lated by:	20	s (0.0)	2 (0 ح)	7.8.1	\$(6.1)	ط(0.2)	(1.9) 5	(2.1) 5	6.1	(1. 8)	(0.C)	× (1.8) 5	200%	x(0.0)	10 °	یں ت ہ	F(0~)	6.1	(6.1)	6.1	(1.9)5	5(020)	(1:9)5	(1.8)3	× 6%	1.85	2,/	2(61)	0.0	6.	20%	(6.1)		(6.1)	3/
		Scale	Calci	61	s (0.2)	6	1.8.1	87	د (رید)	5(6.1) 3	2(0:0)	6.1	5 0	67	a (61)2	a(61)x	x (1.9) x	20.2	6.1	2 (0.0)	0 Ø	م م (م.۵)	1.9	(/. 8) ⁵	, o ,	(6.9)	0.0	4 67	194	1.7	1.9	s o	61	40%	6 '		6.1	16
				8	6.	6.1	x (1.9)	7 20 7	6.7	5 (0.50)	6.7	0	6.1	0.0	r (1. 2)	r	\$ 0.0	6.1	6.1	0.0	0.20	0.2	6.1	5 1.9	°.	6.1	2.0	1 00 1	x (1.6)x	U	2.0	0.0	0.0	20.00	00 1		6.1	30
25. D.C.				17	<i>o</i> d ./	80 1	× 1.8	6.1	6.1	6.1 5	6.1	6.1	<u>,</u> 0	5 1.9	× 1,7	9.1	x 1.8	6.9	61	× 3.0	1.8	ي. م	60.1	(1.8)	¢0 V	61 2(6.1	* 1.7	+ (16)	5	6.1	2.0 .0	6.1	× ×	6.1		6.1	30
Vashinatar	n			91	6.1	6.	(6-7)	5	5 6.9	000	1.0	<u>~</u>	5. 50	(1.8.	× 10	*	*7	6	6.1	81 4	6.	5 1.9	00	S A	6.1	6%)	S. O	× / 8	4	5 (1. 7)	5 1.8	0.0	6.7	F (1.8)	8.1	_	2.9	62
andards. V	<	I		15	F 1.8	U	27	1.8	(1.8)	5 /8	6.7	61	(8.7)	5 1.9	× 1.8	٦ ب	بر م	5 / 8	1.00	(1)	5 1.7	(0.0)	6%	(1.2	00	6.6	do V	× .6	4	(7.6)	(1.8)	00	6.7	4 1.7	6.1		2 2.0	5 6
au of Sto		I	Time	4	1.2	J	00	6.1	1.6	(1.8)	60 \	6.1	6.1	1.0	1.6	ں *	× 1.7	(1.7	1.8	6.7	(1.8)	5 1.9	69.7	1.8	♦	60 %	80 1	+ / /	ڻ ۲	U	00 ``	U	S.0	ף' ג ג	18	_	2.2	600
ional Bure	C C C		Mear	13	9% 5	U	0. /	C 7	2.1	<i>6</i> 0 '	6.1	00 /	61	1) 4	00 \`	ں *	U F	2.7	7 2.7	c .	1.9	(0.0	6.1	2.	6.1	× 7	<i>م</i> `	5 27	ণ শ	U	1.8	J	» / 8.	x 1.6	8.7	_	1	20
I A O L	HA		75°W	12	5(19)	U	3	1.6	5 (19,	1.7	× (1.1	00	5 1 2 2	4.2	0	× 1.6	, 00	P (15,	A A	F 1.9	~ ~	6.7	8	1.8	* (~~	9 9	* (1.6)	ڻ *	x (27)	1.7	6.1	1 1.6	((1) +	00	_	1	60
an Labaro	ONC			=	(1.9	6.1	6.7	× (5 11.8	√	(1.9	1	0	5. 1.9	6.7	U ×	ی ۲	1.9	(1.9.	(1.8)	1.8	0.00	1.7	0,	40 1	(1.8)	00 \`	1.6	ۍ ۲	+ 1.7	3.7 (>	1.8	× i X	6.7		1.8	09
Prapagati		2		9	21/9	0.0	5. 1.9	5.5	81)	V	V /	(7.6.	K ()	(2)	2	ڻ *	*	1.7	6.7	<	2.6	8	0.0	6.	6.	ک ب	× 1.9	4	5 A	×.	(1.8	PH 1.8	1.9	ک ۲۲	1.7	_	6.1	30
Radia				60	(/.9) 7 ~.0	1.9	(18	8	6.	0.00	A r	: c)	5	4	0 *	5	5	U	×	2	× (بر ح.0	0.0	6.	8,	2.2	** 1.7	() *	× 1.8	2.7	(12	1.9	x (a)	8.1		0 1.9	0
Centra				08	6.	(20	6.	<u>5</u> 1.8	0 , /	1	<u>م</u> .	8%)	2	0.0	0.0	ن *	7 1.4	(050)	U	9 1	N	0.0	<i>.</i> 0	j.	20	9 0	20	× 8.0	ڻ *	× 1.9	Ś	2.0	0.0	* >	2	_	3	89
		[07	1.7	ي. ٥	6./	(1)	00	5 1.9	r 10	0) 20 0.0	(.e)	L L	500	ণ্ড *	x (1.2)	* ~) F 2.0	5	¢	۳ را را	6.7	× 1.9	F 1.9	67	0.7	× 1.8	() 4+	× (1.9,	F 0.1	6.7	6.7	6.1	9		6.1	29
				90	0.0	5. 1.9	3.7	67 6	6.1	0.50	5 2.0	ر (ي : ا	5 2.	7 31	5 (0)	5	S X	л . У	1.00	(2.6	S.	ì	3	× 1 .8	F 1.9	5 0.	5000	5 22.1	× 1.9	×	× 2.3	5	6.1	تر ج ج	5 0.0	_	0 2.1	18
	1950		2	1 05	2) 2 (2 (2.0	e G	P 1	E) 7 / 8	21/9	5.0	5	<u>ی کے (م</u>	V (1.8	5 (2)	14	× (2.0	x 0.1	2 3	D S(0	5 1.9	6 1 0	5	5	5% 2 (()	(2.0	× × (1.9	K (1.9)	F 2.0	9. 1. (0	0	ی. م.رم	51 20	F (20		O	30
	VIULY	VIONT (1)	77.1°V	90	(1.8	5 1 20	500	2 (2.8	2.2	5.1 1.9	5.1	51 1.9	(2.0	ج. م	F 1.9	F (1.9	E A	F 20	F (1.9	5 (19	No. No.	5.1	2 20	1.9	F (1.8	P P	/.8	J 1.9	5	F 1.8	F. 1.9	2	1000	6:1	6. 50	_	61	800
		Ö Ö	N , Lang	03	5 1 8	15 (2.0	5 (2.0	r (2.0	/ 8	, , ,	21	5 (19	67	5.9	15 1.9	* (19)	£ 19	× / 8	5	5 (19)	1.9	6	0,5 6.0	57	£ /.0	5 60	6.1	74 (1.8)	× (1.2	× - 2	6. 31	5 1.9	(2.8	ر م.دم	15 (2.0	_	6.1	10
	11-11	hingtor	, 38.7°	02	S (1.9	5 (1.9	5 (2.0	2. 1. 8	00 1 1 1	F /.9	1 20	(B)	00	F 20	F (2.0	لر > ۲۰	* 1.9	5 1.8	F 1.9	F (1.8)	F 1.9	6 7	(2.0	8%	F 1.9	6.7	~ ~	1 (1.8	5	44	£ (1.9	21	6.1	20.7	F (1.9	_	6.9	29
	0)F2	stic) Was	Lo	0	5 (1.9	\$ 11.9	5 (1.9	× 1.7	80 X	50.00	00 X	ج ز	7.8	51 20	F 19	F (.c)	7 2.0	5 4 (1.9)	F 2.1	5 1.9	2.0	6.1	5, 19	29.7	£ (1.8)) E / B	1.9	× (1.2	15 (1.6)	5.7	F 1.9	01 50	5.1.9	0º '	F 19		8.19	Ĩ P
	M150((Character served at _		y 00	(2.0	6.0	5 (1.8	8./	Ň	5.7	1.8	000	Do X	67)	6.7	20	6.7	× (10	2.2	6.0	6.1	6.	61)	1.8	6.1	Q. 8	6.8	8.1	× (1.6	* (i. g)	1.00	(1.8.	87	1.	× 8		un /	11 31
	\sim	90		å			. ,			-		~	,	Ξ	=	12		4	-	9	=	9	5	20	2	22	23	24	25	26	27	28	29	30	31		Medi	Cout

TARIF AG

Sweep 1.0 Mc to 25.0 Mc in 0 25 min Manual 🗆 Autamatic 🗷

1946
June
odopted
Form

28

TABLE 50 Central Radia Propagatian Laboratory, National Bureau of Standards, Washington 25, D.C.

July 1950 (M3000)F2

IONOSPHERIC DATA

National Bureau of Standards

0,10	haracteristi	Washi	ington.	D.C.	(II Ir						2	500		2	1				Scale	by:	McC	(Institution	B.E.B.	
		Lat	38.7°N	- , Lang 7	Mol 2			[12	W°5	Mean Tim	je				Calcr	lated by:	B.E.E		McG.	
Day	00	10	02	03	04	05	90	20	08	60	01	=	12	12	14	5	2 17	18	61	20	21	22 23		
-	(3 0)	F (29)	5 (2.9) S	27	(28)3	29	30	< 2 6 <	8.2	(28) 5	38	(2 9) 5	(2 8) 5	25	25F 2	8	9 28	2. S	5 (0 8)	(3 0) 5	29)5 (2	(a) 5 (a) 8	74	
0	(28)	F (2 9) F	5 (2 2) F	3 (1 5)	67	(30)5	29	30	(3 0)3	3.0	3.0	8 7	J	J	U U	er 1	9 28	29		(3 0) 5	29 (3	1)3 (2.8	2 (
ю	(2 2)	F (2 9) 7	F (3 1) F	- (2 9)5	30 5	3 /	- 6	29	2.8	(30) 5	2.9	29	30	27 -	28 2	6 63	() x 2 2	x (2 9)	(2 8)r	285	(30) X 2	i. e F	XX	
4	2.74	F 2.61	28 F	(3 1) R	(2 8)	8 %	8 %	(2 7)	28	(2.8) J	(x 7) H	30	25	27 .	2.8	7 2	9 29	28	28	(2 8) 5	2.7 2	7 2 4		
5	2.7	282	27	27	(28)3	28	29	2 8	28	2.7	(2 8) 5	(2 2) 5	5 (8.2)	2.4 0	25 (2	8) ⁵ d	P 2.8	29	(31)5	q (0 E)	(2 8) 5 (2	x H (8) F	
9	291	301	285	295	29F	29	(9.0)	529	27	29	Ø	A	27	2.7 (6	2.8) 5 2	8 (3	0 8 5 (0	(3 0)	5 (2 8) 5	2 (6 2)	(29) 5 (2)	2 2 5 6 3	LL.	
2	275	285	29F	295	295	30 F	3.0	F 3.1 1	3.1	VOE	2.8	(2.2) H	29	29.	2 8.2	8 2.	9 29	29	7(6.2)	$(3.1)^{S}$	(2 8) 7 (2	8)5 2.		
8	305	28	(28)3	E(g. E)	ی ۳	3.05	(3 2)	A 3.0	(2 2) #	R	(d.5)H	2.7	26	2.7	2 8 2	8	7 29	o mj	2.9	2.9	2.8 (2	8) 5 (2)) 5	
6	28	27	28	2.9	(2 9)3	E(1.E)	3 7	(7.5)	3.0	(33) ^H	30	30	28	2.8	29 (2.	8)5 2.0	3.0	2.8	3.0	(2.8.2)	28 (2	2 (b.) 2 (b.))5	
0	(2 9) 5	295	305	28 F	304	(x 7)7	3.1	L.	3.0 F	3.1	$(3.1)^{F}$	305	2.6 F	r U	8 F 2	8 (2	3) 5 2.9	30	29	(2.9)	2.9 (2	P) F (3.0	F. (
-	2.9 F	29F	(3.0) 5	2.9F	29F	$(3.1)^{3}$	(3 2)	s 3.2	3.0	Ł	N	28	26	2.8	2.5 1 2.	2 4 2.	PX 3.6	× (2 7)	2(8.6)V 3	×(2,6) 5×	(27) 5 2	-7 F K3.3	54	
12	268	×(2 4)2	F	(2.P) F	$(2, 9)^F$	315	P	×	* 5	× S	e ×	6 *	G ×	x S	GA	9 × (2.	3) \$ 2 2 4	7 2.6	r (q.g) 5	(3.0) ×	(L. L) × (L. L)	P)S S	×	
- 3	2.07	30 ×	2.9 F	2.8F	×	(2.9) ⁵ X	B	(1 2)	2.2 7	ج م	* 5	× G	2.5K	£ €	1.6 × G	x X	6 4 2.7	1 2.9'	X (6.2)	(2 9) ^S	(2 9) × K(3	· 0) 5 × (2. 8	Ste	
4	K(2 8) F	× (28) 5	2.8.4	275	3.0 %	3.15	3.1	3.0	(3.0) ⁵	З.С	2.6	20	2.7	2.7 (2 7)5 2.	Ъ. К	8 2.9	2.9	3.0 %	3.0 F	(2.9) F (2	7) F 2.9	J.	
15	27 F	325	30F	3.15	(z 9)F	28	$(3 \cdot l)$	F 3.0	J	J	2.8	(2 9) P	(2.3) J	2.6	2.8 3.	2 2	8.8	2.9	5 7	3.1 8	(2) 2 3	29 F 2.9	F	
91	(28) 5	2.8 F	(2.7) 5	5 (6 2)	(2.9) 5	J	(3.0)	J 6	x + H	A	Ţ	(2 E) A	A	2.7 0	2.8 (2.	() R 2	0.6 3.0	3.0	2(0.8)	H(1.E)	(2 9) 5 (2	2 × 2 (S.	24	
17	295	29F	2.8 F	2.8 F	3.0 F	28	3.2	P	N	3.3	3.2	2.7F	2.9	28 (.	2.81 3 2.	7 2.	8 2.8		3.1	2.9	(2.7) 2 (3	-() S 3. J		
18	29	29	2.9 F	2.9 F	2.9	2.9	3.2	32	$(\gamma, \gamma)^H$	3.1	3.0	29	2.8 (2.9)5	2.9 (3.	0)5 2.	9 2.9	0. 0.	3.0)5	s (6.8)	(28) 5 (2	. P) ₹ C		
61	(2.9)	3.0	(3.0) 5	(3.0) F	28 F	3./	3.2	2.9	295	2.9	2.9	27	6.2	9.0	8	9 2.	8.2 8	2.8	5.8	8.8	28	9 2.5		
20	29	28	22	2.9	2.8 F	3 0 E	28	4 2.9	2.9	3.0	2.9	28	27	2.8	2.8 62	715 A	(28)5 29	(2.7) 3	(2 8) 5	(2 P) 5 (2	P) & (2.7	sk	
21	26F	(2.7)F	295	2.7 F	A (6.2)	2.9F	3.0	F. 2.9	2.6	8.2	2.8	2.7	2.8	2.9.	A a.	7 2.0	2 29	3./	295	(3.0)5	2.8 (2	7) 3 (2 %	54	
22	$(2.7)^{S}_{F}$	6.2	2.9 F	(31)7	Ą	(2 d) S	3.0	×.8	4.9	285	7	(2 B) H	(J. 0) ^H	26	27 2	2 (2.9	9.2 2 (2.9	2.9)	2 (6.2)	2.7 2	P (28,	52	
23	2.7	29	27	28	8.8	(3.0) 5	<i>w</i> 0	3.1	3./	X.9 H	2.9	2.8	2.9	2.7	2.7 2.	8 3.	0 2.8	Э. С	3.0	2 (8.2)	28 (2	8 \$ \$ 8		
24	×.7 ×	(2 6) X	x (2. X)	x (2.2) 3	x 6.2	X(2.9) 3	3. /	* 8	3.1 ×	2.64	× 8.2	x.5 X	(2.5) ×	2.6×	N.S. K 2.	5 2	1 2.5	× 2.8	× 8.8 ×	2.84	2.6 × 1/3	(-7) F (2.P.	F I	
25	$^{\kappa}(\mathcal{Z}.\mathcal{S}) \stackrel{5}{F}$	×(2 ×) ×	S	(2.6) F	5	(2.9)F	282	5	* 5	4 4	× *	× ب	х Х	ج ۲	F F	X	× (25)× (2.5)	× 2.9 ×	2.8 ×	(2, P) = K(1)	(2.2) 2 (2.2)	124	
26	K(2 7) F	x 9 x	2.9 F	x 8.8	2.8 X	3.0 4	3.2	X (6.2)	294	284	3.0 ×	x.6 X	(2 () 5	J	C (2.	×) = (×	() ⁵ C	υ	2.6	3.0	(2.8) J (2	8.5 Z (8.	٦	
27	2.81	2.91	(29)F	2.9F	2.98	2.41	3.4	3.2	3.1	3.0	(2. P) S	2.5	2.6	8.8	2.2 (2.	8) 5 2	7 28	3.0	2.9	(2.9) F	(2.2) (2	S) 5 (2.7.	ر ار ار	
28	(27) F	2.9 1	2.9 F	2.9 F	8.X	2.9	9.0 0	ъ ø	o ŵ	(2.7) H	2.7 V	2.9	s B	J	r C	<i>6</i> <i>6</i>	3.0	2.9	0 O	3.0	3.0 (3	1) 5 2.6		
29	285	285	2.9	5(8.2)	2.9	00	2.9	2.7	3.0	2.8	2.9	28	(2.5) ^H	2.7 3	2.9 2.	8 à.	9 3.0	3.1	2.9	<u>ع</u> . ه	(2.9) ^S (3	· 0) 5 (2.9	2	
30	2.7	2.7	2.8.2	3.0	(2 P) 5	3.0 F	3.2	8.2	N×	(3.1) #	N K	X X.X	(2.6) H	2.4× 2	2 F X.	67 2.	75 2.9	7 3.1 4	2.9.5	NO NY	2.8.5	1.0 × (2.9	. 5	
31	R 8.2	2.9 F	(2.9) F	(2.9) 3	2.95	(3.0)5	ы. 0.	3.3	3.0	8.8	2.6	2.9	28	2.7	2.8 2	2 2.	8 2.8	2.8	2.8	(2.9)3	2.9 (2	(2)5 (2.7) 5	
Median	28	2.9	2.9	5.2	2.9	ю. 0	<i>w</i> .0	2.9	2.9	29	3.8	2.8	2.7	2.7 0	2.8 2.	r v	8.8 8	2.9	29	(2 2)	(8.2)	(J) (J.	()	
Count	3-	31	17	31	58	ЭÐ	ار	52	38	27	36	°E	29	22	27 28	2	30	30	31	37	16	31 29		
											Swe	ep 1.0	Mic to 25.0	Mc in 0.2	5 min									
												Manua		amatic 🛛										

								Central	Radia Pre	notion	T/Laborator	ABLE V. Notiona	51 Bureou	of Standar	ds. Washi	Jaton 25.	0						Form adap!	ad June 1946
(M300(0)FI	11-11	J.	۱۷ ۱۷	1 ⁹ 50					C	UONE UONE	HFR		TV				1	Nati	onal	Bureau	of St	andard	ls
(Character) Observed at	Wash	ington,	D. C.	(UIL						2	502		2	-	T			Ŵ	coled by:	ш	<u>.E.B.</u>	Istitution)	McO	Ö
	Lot.	38.7°N	L png 7	M°1.7							2	N°3	Mean T	те				0	olculated b	N. N	AcC.		B.E	.В.
Dey 00	0	02	03	04	05	06	07	08	60	0	=	12	13	14	15	16	17 11	9	20	21	22	5		-
-						7	3.3	(36)7	37	(3 8) H	39	3.9	39	3.6	36	34 (,	3.3) ^P L							
2						~	7	(2 5)	3.8	4.0	$(4.2)^{H}$	J	J	J	J	3.6)4	A Y							
ю						Ø	(3 4,	(J.E) (3.4)	3.6	37	38	4.0	3.9	3.6	3.6	3.41	334 3.	3 f						
4						A	3.5	(3.4)	T	(3E)	3.8	3.5	3.8 #	3 5	S	3 () 7 (.	2 () 2							
2						(3.2	JP 3.4	H 35t	3.8	36 *	H 0.4	(39)5	394	3.8 F /	(3.2) ⁵ (3.7)5	7 88		_		_			
9						(3.3	7 33	3.6	A	A	P	S (g.E)	36	Ţ	A	A (C	2 4)P L							
7		,				5.5	F 3.4	3.7	A	A	3.8	4.0	(39) ⁵ ((3.8) ^S	H(1.6	3.5	7 4 7							
60	\ 					A	(3.¥	A di	A	3.6 #	3.9	4.0	3.6	3.8 H	3.8	3.6)4	3.6 1							
б						Ø	(3.7	A A	34	N	Ø	A	3.0	3.6	3.6 (3.3) ^P (:	3.6)P L							
10						7	3 4	A	A	36	39	37	J	3.7	3.7	3.9 4	3.4 A						_	
=						A	Ţ	3.6	A	N	38	β	A	35K	3.8 K	3.64	3.5K (3.	3)5					-	
12						3./	F 3.6	K 3.4'	Y 3.7 A	5 3.6 K	4.0 x	(3 8) R	35 X	7 * 1	4(2.6)	3.64	3.44 3.	A T L	×					
13						3.4	5 33	X 3.8 X	×07	394	× 0 ×	3.8 %	3.9 ×	3.9 K	3.84	3.74	334 A	¥						
41						~1	ک ۲	3.6	3.7	R	3.8	3.7	4.1	(3.7)5	3.8	3.51	3.5 2							
15						3.7	(3.5)	C	07	3.6	4.2	(+.1)P	0 +	3.4	3.6	P	34 1							_
16						(34	(3.3)	5.8	Ł	P	q	V	P	4.0 (3.3) H	3 4	4.0 (3.	e) F						
17						7	A	Ą	A	(4.2)	F	F	4.1 F	(39)5	3.7	3.9	7 7		_			_		
81						L	7	3.5	3.9	(39)5	N	3.7	$(\neq o)^{H}$	3.7	3.6	₹	3.7 4							
61						(3.9) (3.6,)P 3.5	3.6	3.7 #	3.6	3.8	3.8	3.7	38	3.5	3.5 (3.	5)P						
20						0	(3.3	7. 3.4	3.6	3.7	$(3.7)^H$	3.6	36 (" 3.6) H	A	Þ	7 7							
21						Ś	(2 5) 7	P (3.4)	3.6	(3.6) J	35#	P	3.8	A (3.6)H	Þ	A							_
22						7	5. J	3.5	P	Р	3.0	3.7	3.8	3.6	3.6	3.7	3.6 A		_			_		-
23						-1	7	3.4	3.8	3.3 H	38	(3.6) H	H (8.E)	3.7	76	3.4 (.	3.5)P L	_	_		-		_	
24							× 3.1	K 3 8	3.9 1	$(3.3)_{\chi}^{H}$	× 2 E	3.6 ×	37 ×	3.5%	35 4	344	3.54 1	×	_			_		
25						9.4	(K 3.3	1 35	3.6 1	(4.1) X	(3.6) ×	3.6 ×	× 0 ×	3.8 61	3.7) SI	3.6) × (9. E	3 4)× (3.	3) \$						
26						-1	A X	× 3.6	1 3.6 4	× ×	3.8 x	(3.7) ×	J	J	A	3.7)#	CC	_						
27						Q	7	3.3	3.6	3.7	$(3.7)^{P}$	4.0	36	3.6 (.	3.5) ⁵	3.5	3.3 L							
28						Q	3 4	3.4	$(\mathcal{A},\mathcal{A})^{h}$	3.7	A	3.7	J	CC	3.6) 5 ()	3.6)P (.	3.6)P L					_	_	
29						7	7	3.3	3.7	3.6	3.7	A	36	37	3.6	3.3 " (;	3.67 L					_	_	_
30						Q	32	X 3.4	4.0 ×	N *	385	× F	3.8 ×	0 4 4	358	367	7 4 4	*				_		
31						-	7	3.7	с. С	Q	3.8	A	3.4)3	35	3.6	3.7	3.5 1					_		
																			-				_	
Median						3.4	3.4	3.5	2.E	3.7	3.0	3.8	8.6	3.7	3.6	3.6	35 (3	3)	_				_	-
Count						01	21	26	22	21	25	22	25	25	26	26	56 6	-	_				_	

Sweep 1.0 Mc to 25.0 Mc in 0.25 min Monuol 🗆 Automotic 🕅

irm odopted June 1946	ldards B.E.B.	B.E.B.																																	4434443			
5	of Stan		23																																			
	McC	McC.	22																																	_		
	lional B	by:	0 21																																		_	
	.nq papa	afculated	9 2	4	9			10	6	د (ح)	3.9					×	-	T	7	4	a	0		⊲	4		S (0) X	2.74	0	6	0	A				0	2	
	1 0	, 0	8	9	0;	×	6	2	5 07	K0 (3	0	2.8	3.6	20)2	5 57	X OX	0%	10%	10) 5 4	07	× / /	8.8	8.8) ⁵	07	A(2.8)	9.6	1.1 × (4	3.0 4	υ	4.0	q	<i>q</i> ,	× 0.7	2.7		4 0%	52	
0			1 21	A	3.7	× × S	4(1)	5 (0%	3.9	0%	0.2	20%	20	3)5 (2	4.18	× 1.14	11	. 1.2	1.1 - (4	4.0	4. 3 2	3.7 3	3.9	X.0)A	V.0 (3	A.	395	×(5.7	U		4.1	4.0) =	10 ×	e si		4.0	27	
aton 05			16	Ą	4. A	N.1 K	A 6	2.1) ⁵ (A.1)A	2.9	4.1	A	3.9)5	4.1K (4	* 0.%	4.04	0.1	4.0	4.1	4.4	4.1	2%	3.6	2.0 (-	4.1	T	4.1 ×	4.1× C	4.1	4.1	2.7	2 1%	× 0.2	4.2		4.1	52	
de Wachin			15	4	U	Q	Ð	4.1 (4.0)9	3,9,5	4.0	V	2.0	4.17	200	1.2 ×	6.7	8			0%	V	6.M	V	4.0	V	×.0 ×	4.2 ×	1.4	2:0	17	4.5	4.22	, A		4.1	0,	
Standar	ATA	ae	14	V	υ	4.1	Þ	Ø	(1. K) A (1. K)	4.1	40	¢	40	(4.0) K (× V	4.31%	P	A	$\left \frac{\partial}{\partial (\mathcal{L}, \mathcal{L})} \right ^{B}$	Q	Ø	5%	4	(4,1) ^A	¢	A(1.4)	×	X I K	U	4.0	U	4.22	4.3) F	R		4.1	15	25 min
52	0	Mean Tır	13	4	U		V	4.1	5.0	((~ ×)	(4.1) ^B	¢	U	A	* 13. *	XCX	1	4.1	2.3	A	A	¢	A	4.3	Q	4.2	×	4.34	U	(4.0) ^A	U	R	4.4)5	Ø		4.1	/3	Mc In 0
BLE	HER	No So W	12	4.1	υ	Ð	D	(the (the)	4.0	B(0 /-)	Ð	Ø	Ð	Q	ν Ω	× Ø	Þ	A	4.3	Ø	∢	¢	4.4	4.2	A(C.F)	4.1	× V	X.2.K	4.07	∢	∢	(4, 3) ^A	AK	A		4	21	Mc ta 25.0
TA	IOSF	2	=	1.16	5.10	4	Q	A	4.2	4.2	D	4.1	₹	(4.3)	X (17)	X	4	7	A	A	2.3	4.0	(4.3)	4.4	4.0	4.2	4.0%	A *	×, 1 K	2.2	A	4.3	4	4.4		2.2	18	Manua
401,0000	NOI		01	1.1	V	¢		A	1.2	(4.2)	5%	4.0	4.1	4.2	×1.1×	(4,3)A	(4, 3) ^A	(4.2)A	2.2	(4.5)A	4.3	V	A(c	(4.3) A	4.4	4.2	×	A	A(E.H)	5.2	V	(4.4)	(H,H)R	£.3		¢.5	85	Swe
Radio Pro			60	2.2	(4.2)	4.4	Q	(~, I) ^A	5.10	4.0	24	1.7	14	Ŕ	* 1 *	(4.3)A	Q	∢	₹	4.6	4.4	Ø	4	1.12	2.2	4.2	× 60.5	A K	A K	4.2	4.)	4 7	× 3×	4.4		6.12	2	
Control	5		08	4.0	(4.1)A	52	1.74	0%	5.7	0	4.0	A(1,4)	17	2.3	× 0%	× 2.4	A. W	1.7	2,3	(4.3)9	4.2	V	4.52	7	4.2	2%	4.2	A	(43) A	2.2	t. M	4.1	×0.7	7.5-		10%	90	
		1	07	4.0	Ø	4.1	4.0	6°E	4	6 13	4.0	(1)y	0.2	6 5	× 1.72	* 17.7	\$	4,1	4.2	0%	4.1	A	3.7	4.1	3.9	3.8	(N.0)X	× 2.7	(4.2)2	1.14	2.2	50	¥ C. %	1.1		4.1	00	
			90	(3.9)	(3.7)	3.9	£%	(3.8)	(4.2)	6	5.7	F (4.1)	4.04	4.0	× ×	3.9.5	0.	∢	4	V	3.7	A	4.0	4.3	C3.1-	4.1	3.7 ×	× 0.7	4(6%)	6.2	0.≯	3.6	4.0	A		×.0	20	
	19 <u>50</u>		05	<	¢	Ø		00 M		<	∢	(38)	<	0	¢	(4.1) k	Q		J		Ø	<				3.9		((r/+)								(3.9)	6	
	July Month)	77. IoV	0								19201.0	1.000.000	-		10-11-11-10		36.7536.					E.C.C.C.M	topont					_			_					-	_	
		N Lano	03																								-											
	(Unit)	of 38.7°	30 1																																			
	00)E	-	0																							_								_				
	(MI5((Charach	Observed a	Day 0	-	0	2	4	5	9	2		елеса Ф	0	_	2	2	4	5	9	7	0	6	0	_	2	01	4	5	9	2	8	6	0	_	+	ian	1 L	

Ionospheric Storminess at Washington, D. C.

July 1950

Day	Ionospheric 00-12 GCT	character* 12-24 GCT	Principal Beginning GCT	etorns End GCT	Geomagnetic 00-12 GCT	character** 12-24 GCT
1 2 3 4 5 6 7 8 0	2 2 1 4 1 1 2 2	3 *** 3 1 3 2 1 1	2100	0300	3 2 1 4 3 3 2 2 2	N 2 4 N N N N N 2 2
10 11 12 13 14 15 16 17 18 19 20	1 1 4 4 2 2 2 1 0 0	2 3 4 2 3 2 1 1 1	1900	1200	2 2 6 5 3 3 3 2 1	2 3 4 7 7 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
20 21 22 23 24 25 26 27 28 29 30 31	2214543224	1 3 2 1 4 7 4 2 2 0 4 1	0500	₩ 0600	2 2 3 1 4 5 1 2 2 2 2 3 3	222132232

*Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

**Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

***No readable record. Refer to table 42 for detailed explanation. ----Dashes indicate continuing storm.

#No I-figure owing to insufficient data. Conditions probably disturbed.

##Time of ending unknown because of lack of record. ##Storm began at 1500 GCT on June 29, 1950.

Sudden Ionosphere Disturbances Observed at Washington, D. C.

				2
1950 Day	GCT Beginning End	Location of transmitters	Relative intensity at minimum*	Other phenomena
July 12	1604 1700	Ohio, D. C., England	0.0	Terr.mag.pulse** 1608-1620 Solar flare*** 1620
15 17 17	1829 1905 1335 1400 2110 2120	Ohio, D. C., England Ohio, D. C., England Ohio, D. C.	0.1 0.1 0.2	
18	1312 1340	Ohio, D. C., England	0.1	Solar flere*** 1320
21	1315 1340	Ohio, D. C., England	0.3	Terr.mag. pulse** 1313-1320 Solar flare*** 1315
22	1548 1605	Ohio, D. C., England	0.05	Solar flare*** 1550
29	1720 1840	Ohio, D. C., England	0.0	

July 1950

*Ratio of received field intensity during SID to average field intensity before and after, for station KQ2XAU (formerly W8XAL), 6080 kilocycles, 600 kilometers distant.

**As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

***Time of observation at the McMath-Hulbert Observatory, Michigan.

Sudden Ionosphere Disturbances Reported by Engineer-in-Chief,

1950 Day	GCI Beginnin	g End	Receiving station	Location of transmitters	Other phenomena
July 12	1610	1620	Breatwood	Austria, Barbados, Canary Is., Co- lombia, New York, Portugal, Thailand, Uruguay, Venezuela, Yugoslavia	Terr.mag.pulse [*] 1608-1620 Solar flare ^{**}
12	1610	1630	Sonarton	Argentina, Brazil, Canada, New York	Terr.mag.pulse* 1608-1620 Solar flare** 1620
21	1314	1335	Somerton	Argentina, Brazil, Canada, New York	Terr.mag.pulse* 1313-1320 Solar flare** 1315

Cable and Wireless, Ltd., as Observed in England

*As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

** Time of observation at McMath-Hulbert Observatory, Pontiac, Michigan,

Table 56

Suiden Ionosphere Disturbances Reported by ECA Communications, Inc.,

as Observed at Point Reyes, California

1950 Day	GC: Beginni:	r 1g End	Location of transmitters		
July 13	0200	0400	Australia, China, French Indo-China, Hawaii,		
19	0040	0100	Japan, Java, Philippine Is. Australia, China, Hawaii, Japan, Java, Philippine Is.		

Sudden Ionosphere Disturbances Reported by Engineer-in-Chief

Cable and Wireless, Ltd., as Observed at Colombo, Ceylon

1950	GCT		Location of transmitters	Other	
Day	Beginning End			phenomena	
May 3	0940 10	035	England Solar fla 0950 Solar fla	Solar flare [‡] 0950 Solar flare ^{‡‡}	
5	0615 06	550	China, England	Solar flare***	
22	0945 10	030	England	0937	

Time of observation: *Heudon Observatory, France. **Stockholm Observatory, Sweden. ***Prague Observatory, Czechoslovakia.

Table 58

Sudden Ionosphere Disturbances Reported by RCA Communications, Inc.,

as Observed at Riverhead, New York

1950	GC:	r	Location of transmitters	Other
Day	Beginnin	ng Knd		phenomena
July 12	1608	1640	Argentina, California, Canada, Eng- land, Italy, Morocco, Panama	Terr.mag.pulse [®] 1608-1620 Solar flare ^{®®} 1620

*As observed on Cheltenham magneogram of the United States Coast and Geodetic Survey.

**Time of observation at McMath-Hulbert Observatory, Pontiac, Michigan.
Table 59

Sudden Ionosphere Disturbances Reported by Institut für Ionosphärenforschung,

Day	GCI Beginnin	r ng Ind	Location of transmitters	Relative intensity at minimum*	Other phenomena
June 1	.950				
8	1200	1210	Lindau***, München**	0.2	
20	1230	1300	Lindau ^{s se} , München ^{se}	0.1	

as Observed at Lindau, Harz, Germany

*Ratio of received field intensity during SID to average field intensity before and after, for station Voice of America, 6078.9 kilocycles, 400 kilometers distant.

**Station Voice of America, 6078.9 kilocycles.

***Lindau station, 1780 kilocycles, pulse, transmitter and receiver at Lindau.

<u>Note</u>: Observers are invited to send to the CRPL information on times of beginning and end of sudden ionosphere disturbances for publication as above. Address letters to the Central Eadio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.

Provisional Radio Propagation Quality Figures

(Including Comparisons with CRPL Warnings and Forecasts) June 1950

	North	CRPL*	CRPL**	North	Geo-	
	Atlantic	Warning	Forecasts	Pacific	mag-	
	quality		(J-reports)	quality	netic	
Day	figure			figure	KCh	
	Half day	Half day		Half day	Half day	Scales:
	GCT	GCT		GCT	GCT	Quality Figures
	(1) (2)	(1) (2)		(1) (2)	(1) (2)	(1)- Useless (2)- Very poor
						(3)- Poor
1	5 5			56	3 3	(4)- Poor to fair 5 = Fair
2	6 6			76	3 2	6 - Fair to good
3	6 6		Х	76	2 3	7 - Good
4	5 6		Х	77	3 2	9 - Excellent
5	7 7			76	3 2	
						Geomagnetic $K_{Ch} \rightarrow 0$ to 9, 9 representing the greatest
6	(4) 5	W		6 6	(5) (4)	disturbance; Kch > 4 indicates
7	5 6	U		8 7	1 2	significant disturbance,
8	7 6			8 7	1 3	enclosed in () for emphasis.
9	5 5	W W		76	(4) 3	
10	(4) 5	U		77	3 3	Symbols:
						expected
11	6 6			77	2 2	
12	7 7			77	2 2	U Unstable conditions
13	7 6			7 7	2 2	0xp000cd
14	6 7			7 7	2 2	N No disturbance expected
15	7 6		Х	6 6	2 1	X Probable disturbed date
16	8 6		X	7 7	1 3	Scoring
17	6 6	U	X	76	3 3	H Storm (Q < 4) hit
18	6 6	U (U)	X	76	3 2	
19	7 6			8 7	1 2	(M) Storm severer than predicted
20	7 6			87	1 2	
						M Storm missed
21	7 6			8 7	2 2	G Good day forecast
22	6 6			8 6	3 3	0 Overwarning
23	6 5		Х	8 7	3 (4)	0 00010000000
24	(3) 5	W W		76	(5) 3	Scoring by half day according
25	55	U		6 5	3 2	Quality Figure
					1	€3 4 5 ≥ 6
26	6 5			6 6	3 2	W H H O O
27	7 7			7 6	1 2	
28	7 6			7 7	2 1	U (M) H H U
29	7 5			7 6	2 (4)	N M M G G
30	(3) (4)	w w		6 6	(5) 3	х н н о о
Score:		Warning	Forecast			
		N.A. N.P.	N.A. N.P.			
Н		6 0	0 0			
(Ⅲ)		0 0	0 0			
М		1 0	5 0			
G		46 47	41 46			
0		7 13	14 14			

*Broadcast on WWV, Washington, D. C. Times of warnings recorded to nearest half day as broadcast. () broadcast for one-quarter day. Blanks signify N. **In addition to dates marked X, the following were designated as probable disturbed days on fore-cast more than eight days in advance of said dates: June 19, 20, and 24.

Table 61

American and Zurich Provisional Relative Sunspot Numbers

July 1950

Date	R _A ≉	^R Z**	Date	R_A≉	RZ ^{##}
1	80	70	17	115	96
2	68	58	18	99	83
3	59	58	19	111	102
4	58	66	20	127	130
5	63	75	21	129	108
6	101	88	22	139	125
7	104	98	23	133	115
8	90	77	24	136	108
9	86	67	25	130	96
10	96	68	26	150	118
11	92	78	27	144	112
12	81	68	28	142	110
13	88	67	29	134	112
14	92	98	30	117	106
15	90	75	31	91	100
16	100	89	Mean:	104.7	91.0

*Combination of reports from 43 observers; see page 8. **Dependent on observations at Zurich Observatory and its stations at Locarno and Arosa.

Date				Deg	ree	s r	ort	h d	of 1	the	50	lar	eq	uat	or				0				De	gre	ез :	sout	h	of	the	sol	lar	eqt	ato	or			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	- 5	Ť	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
																				T																	
1950																				l																	
								_	_	2	Δ	Λ	5	7	10	13	12	9	5	4	3	2	-	_	_	-	-	-	-	-	_	-	-	-	-	-	-
Jul. 1.6	-	-	-	-	-	-	-	-	1	3	3	4	7	5	6	- 9	10	4	3	3	2	2	3	7	9	6	3	4	3	-	-		-	-	-	-	-
3.6	-	-	-	-			_	_	1	2	3	4	4	5	5	6	4	2		2	3	7	10	11	8	3	2	3	_	-	60	-08	-	-	-	-	
4.7	-	-	_	_	_	_	_	2	3	4	3	3	4	4	5	4	3	3	4		8	10	9	10	9	4	4	3	-	-	-	-	-		-	-	
5.7	**	-		_	_	_	_	2	3	4	3	3	2	5	4	4	3	2	2	3	4	10	13	13	10	4	6	4	2		-	-	-	-	-	-	
6.6	-	-	-	-			_	2	-	1	2	3	4	10	ģ	10	6	4		4	4	7	9	4	3	_	-		-	-	-	-	-	-	-	-	-
9.9	-	-		_	_	_	3	4	2	1	6	9	12	14	17	15	11	8	4	4	5	11	12	11	10	8	7	4	2	4	3	1	-	-	-	-	-
10.6		~	v	v	v	Y	Y	Ŷ	2	3	5	9	13	18	14	17	16	13	9	6	9	-9	- 7	5	5	4	5	3	Х	Х	Х	Х	Х	Х	X	х	Х
11.7	1	î	2	^ _	î	î	3	3	3	3	4	9	ii.	12	īī	18	14	12	ho	8	8	5	ε	4	1	2	3	2	2	-	-	2	-	-	-	-	-
12.0	1	1	ົ້	7	2	i	3	3	4	4	5	3	ÿ	īī	11	16	19	16	b 4	11	9	10	10	9	2	-	3	4	3	3	3	3	3	-	-	•	-
13.0		-	-	-	~	-	-		-	2	2	4	4	4	7	13	14	12	9	8	4	5	5	3	2	-	-	-	-	-	-	-	-	-	-	~	-
14.78	-	_	_	_	_	_	_	-	-	-	3	3	5	9	10	13	14	13	17	6	9	10	8	8	3	-	-	-	-	Х	Ä	X	Х	X	X	Х	Х
16.70	-	_	_	_	-	_	-	_	_	_	_	3	4	6	10	12	12	10	7	5	6	9	8	8	4	4	2	-	-	-	-	-	-	-	-	-	-
17 69	Y	Y	Y	¥	х	χ	х	1	-	2	4	5	5	8	12	14	15	13	13	9	8	9	10	12	5	3	4	-	-	Х	х	Х	х	х	X	X	Х
18 60	A	î	2	2	2	2	2	3	4	5	5	8	6	7	12	14	17	17	13	h1	11	11	13	14	10	5	3	2	-	-	-	-	-	-	•	-	-
19.6	-	-	-	-	-	2	3	2	4	7	9	9	7	5	9	12	13	14	ho	9	12	14	13	11	7	5	5	3	3	-	-	-	-	-	-	-	-
20.8	-	_	-	_	-	_	_	3	3	3	4	4	6	5	7	9	10	10	8	6	4	9	12	7	4	4	3	-	-	-	-	-	-	-	-	-	-
21.6	-	-	_	_	2	2	3	4	4	5	5	5	4	у	9	11	11	13	9	8	8	7	9	7	4	2		-	-	-	-			-	-	-	-
22.6	-	-	-	-	_	-	_	2	4	4	3	5	4	3	9	7	9	10	9	9	9	12	9	5	2	-	-	-	-	-	-	-	-	-	-	-	-
23.8	-	-	_	-	-	-	-	3	4	4	6	6	7	8	11	13	12	7	10	þο	10	12	9	4	4	~	-	-	-	-	-	-	-	-		-	-
24.6	-	-	<u> -</u>	-	-	-	-	-	5	5	9	8	9	8	11	11	12	9	7	5	6	8	9	5	3	-	-	-	-	-	-	-	-	-	-	-	-
25.6	-	-	-	-	-	-	-	2	4	7	6	4	5	9	10	12	14	11	8	5	4	4	4	5	3	3	-	-	-	-	-	-	-	-	-	-	-
26.6	-	-	-	-	-	-	-	-	-	2	3	2	3	5	8	11	12	12	10	4	3	3	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-
27.6	-	-	-	**	-	-	-	-	-	3	3	4	4	4	7	9	12	11	9	3	3	4	3	-	-	-	-	-	-	~	-	-	-		•	#D	-
28.7a	2	2	2	-	-	-	-	2	3	2	2	2	4	5	9	11	13	14	12	12	13	15	4	2	2	2	-	-	-	2	2	2	2	-		-	
29.6	-	-	-	-	-	-	-	3	2	-	-	2	3	3	8	9	10	10	10	9	12	12	12	4	3	2	2	-	2	2	-	-	-	-	-	-	-
30.8	х	Х	Х	х	Х	Х	-	-	-	-	-	-	-	3	3	4	- 3	3	4	2	4	4	4	2	-	-	-	-	X	х	х	Х	X	х	x	х	X
31.7	-	-	-	2	2	2	3	3	3	4	4	4	4	5	4	5	6	4	6	4	8	11	15	14	13	8	5	3	3	-	-	-	-	-	-	-	-
																- 1499			L	1									-								

Table 63a

Coronal observations at Climax, Colorado (6374A), east limb

																					-												-	_				_
Date					Deg	Tee	s n	ort	h o	f t	he	sol	ar	equ	ato	r	_			0				Deg	ree	s s	out	h c	of t	he	sol	ar	e ou	ato	r			
GCT		90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1950																																						
																				1																		
Jul.	1.6	-	-	-	-	-	-	-	-	-	-	-	5	6	6	-	11	6	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3.6	-	-	-	-	**	-	-	-	-	-	-	-		-	-	-	-	4	4	4	4	5	4	2	-	-	-	-	-	-	-	-	-	-	-	-	-
	4.7	-	-	-	-	-	-	-	-	-	-	-	-	-	4.2	-	-	-	-	-	2	13	9	11	10	-	-	-	-	-	-	-	-	*	-	-	-	-
	5.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	3	6	3	3	-	-	-	-	-	-	-	-	-	-	-	-	
	6.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	5	7	-	-	•	43	-	-	-	-	-	-	-	-	-
	9.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	10.6	-	-	-	-	-	-	-	-	-	-	-	-	-	8	12	10	9	8	4	5	-	-	3	3	2	-	-	-	-	-	-	-	-	-	•		-
	11.7	X	Х	Х	Х	X	Х	Х	Х	-	-	-	-	-	-	4	4	6	-	-	-	-	-	-	3	-	-	-	-	X	х	Х	X	х	Х	х	х	Х
	12.6	-	2	1	-	1	1	1	3	3	3	1	3	2	3	1	4	6	4	-	-	-	-	-	4	4	5	2	-	-	3	-	3	-	-	-	2	2
	13.6	-	-	-	3	-	1	3	4	3	2	2	3	3	2	3	6	10	5	5	10	-	3	1	-	3	4	3	4	-	2	-	-	1	1	-	3	2
	14.7a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	6	6	7	14	11	4	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	15.8	-	-	-	-	-	-	-	-	-	-	-	-	-	1	7	8	8	12	4	-	3	8	-	-	-	-	-	-	-	X	х	х	х	Х	Х	Х	X
	16.7a	-	-	-	-	-	-	-	-	-	-	-	-	-	**	-	2	5	9	3	4	4	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	17.6a	X	X	X	X	Х	Х	х	-	-	-	-	-	-	-	-	2	6	13	4	5	9	11	8	6	3	2	-	-	-	х	X	X	х	х	х	X	X
	18.6a	2	3	3	3	3	-	-	4	2	-	-	-	-	-	**	3	2	9	13	5	12	13	14	10	10	5	3	2	2	3	-	-	-	-	-	•	-
	19.6	3	3	2	2	-	-	-	-	-	-	-	-	-	-	-	-	3	3	10	4	12	19	14	13	9	3	3	-	-	4	3	3	-	-	-	-	-
	20.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	8	9	3	4	4	11	14	8	8	5	-	-	-	-	-	-	-	-	-	-	
	21.6	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	4	5	3	3	4	5	8	8	2	2	-	-	-	-	-	-	-	-	-	-	•
	22.6] -	-	-	-	-	-	-	-	-	-	-	-	-	-	4	7	4	5	3	-	4	3	3	3	3	-	-	-	-	-	-	-	-	-	-	-	-
	23.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	10	7	3	-	5	9	4.	-	-	-	-	-	-	-		-	-	-	-	-	
	24.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	12	10	3	-	-	9	7	3	-	-	-	-	-	-	-	-	-	-	-	•	
	25.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	5	5	3	3	3	4	7	12	5	3	3	3	2	2	-	-	-	-	-	-	-
	26.6	-	-	-	-	-	-	-	-	-	-	3	3	3	-	-	-	10	3	3	4	3	2	5	5	5	-	-	-	-	-	-	-	**	-	-	•	-
	27.6	-	-	-	-	-	-	-	-	-	-	-	-	49	-	-	3	9	4	3	3	3	7	3	4	4	4	-	-	-	-	-	-	-	-	-	-	
	28.7a	-	-	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	11	6	ho	8	ŷ	5	3	4	4	2	3	-	-	-	-	-	-	-		Ð
	29.6	2	2	2	-	-	-	-	-	-	-	4	2	3	2	3	-	5	4	2	3	12	10	8	4	4	2	-	2	-	-	-	-	-	-	-	-	-
	30.8	X	X	. Х	Х	х	Х	-	-	-	-	-	-	-	*	-	-	-	-	-	3	4	5	-	-	-	-	-	-	Х	X	х	X	X	х	х	х	х
	31.7	2	2	-	-	-	-	*	2	-	3	5	5	4	2	-	-	-	-	2	3	5	10	13	9	4	-	2	2	2	2	-	-	-	2	2	3	3
																															_							
																			-		-		-				_			and pro-	-		_		-		-	-

Date	Τ				De	ree	8	sout	ch c	of t	he	80	lar	eq	at	or				0				De	gree	9 8 I	ort	ch d	of t	he	sol	lar	eq	ato	T			
GCT	9	0	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
	Ť																				•																	
1950																																						
Jul. 1.6		-	_	-	-	-	-	-	-	-	-	-	2	3	4	6	6	6	3	9	13	13	11	10	8	4	4	3	5	5	2	-	-	-	-	-	-	-
3.6		_	-	-	-	-	-	-	~	3	3	4	2	4	6	10	13	12	9	10	11	15	16	19	12	8	9	7	6	4	3	3	2	-	-	-	-	-
4.7		_	-	-	_	-	-	-	-	_	-	-	4	6	9	12	13	11	7	11	13	13	16	14	12	8	8	6	10	3	-	X	Х	х	х	X	X	Х
5.7		-	X	Х	X	х	Х	х	х	-	-	-	-	-	3	3	5	7	4	4	5	4	5	6	3	3	3	-	-	-	-	Х	Χ	Х	Х	λ	X	-
6.6		_	-	-	_	-	-	-	-	-	-	-	2	3	4	9	10	8	5	7	10	11	13	10	8	5	6	7	6	7	4	3	-	-	-	-	-	-
9.9		-	-	-	-	-	-	-	-	-	-	3	3	3	4	3	4	8	6	4	3	4	8	9	8	5	2	1	1	-		-	Х	х	Х	Х	Х	-
10.6		-	-	-	-	-	-	-	-	-	-	-	-	3	5	6	7	7	7	6	7	11	15	15	13	9	7	7	11	11	4	-		-	~	-	-	-
11.7		х	х	Х	х	Х	Х	Х	Х	Х	χ	Х	Х	X	Х	Х	Х	Х	Х	X	X	X	X	X	Х	Х	Х	Х	X	Х	Х	Х	Х	х	χ	λ	Х	X
12.6		-		-	1	1	2	-	-	1	1	1	2	4	10	7	5	6	7	14	18	25	31	34	17	13	10	8	9	10	8	3	1	1	-	eta	-	ca.
13.6	a	-	-	-	-	-	2	1	2	1	1	2	3	3	3	4	5	5	5	12	16	21	22	32	18	15	9	5	7	9	4	4	2	-	1	1	-	1
14.7		-	-	-	-	-	-	-	-	-	-	-	-	2	3	3	3	2	4	5	16	13	13	12	10	4	5	3	-	-	-	-	-	-	-	-	-	-
15.8		х	Х	х	х	Х	Х	Х	X	Х	Х	Х	X	Х	Х	Х	Х	Х	X	X	X	Х	X	X	Х	Х	Χ	Х	X	Х	Х	Х	X	х	Х	Х	Х	
16.7		-	-	-	-	-	3	3	2	5	4	6	8	9	8	4	3	8	10	2	5	4	5	7	10	5	4	3	3	-	aip.	-	-	-	-	-	-	-
17.6		х	Х	Х	Х	Х	Х	Х	х	X	X	Х	X	Х	Х	Х	Х	Х	Х	X	X	Х	Х	Х	χ	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х
18.6		-	-	-	-	-	5	5	4	2	5	10	12	13	20	19	15	10	8	4	4	4	4	- 7	9	10	8	6	4	3	2	2	-	-	-	-	*30	-
19.6		-	-	-	-	3	3	3	4	2	4	10	10	13	17	20	18	10	5	5	6	7	8	9	11	12	9	9	4	2	4	2	-	-	-	-	-	-
20.8		-	-	-	-	-	-	-	-	-	-	4	4	11	15	15	15	10	4	4	5	4	- 7	8	- 7	8	9	4	4	4	2	-		-	-	-	429	-
21.6		-	-	-	-			-	-	-	-	3	5	10	15	14	14	14	10	5	9	10	13	14	17	13	12	11	5	4	4	4	2	-	-	-	-	-
22.6			-	-	-	-	3	3	3	2	3	6	7	9	10	11	12	12	9	5	5	- 9	10	13	16	11	10	5	4	4	5	3	54	-	-	-	-	789
23.8		-	-	-	-	-	-	-	-	-	-	3	4	9	6	8	10	11	9	9	6	4	9	16	14	13	9	4	4	3	3	3	5	-	-		-	-
24.6		-	-	-	-	-	-	-	~	-	-	3	4	3	3	5	5	- 7	5	5	6	9	9	13	13	12	11	3	-	æ	-	-	- 18	-	-	-	-	**
25.6		-	-	-	-	-	-	-	-	-	-	-	-	3	4	ь	6	7	6	6	10	12	13	13	12	10	8	6	3	-	-	-	-	-100	-	-	-	-
26.6		-	-	-	-	-	-	-	**	-		-	3	3	3	1	3	3	4	6	9	11	12	13	8	6	4	2	5	4	3	- 49-	-	-	-	-	-	-
27.6		X	Х	Х	Х	X	Х	-	-	6.0	2	3	3	3	**	3	4	4	5	4	5	9	13	9	5	3	-	2	3	3	3	6 pp		-	-	-	-	~
28.7		-	-	-	-	-	-	-	-	-	-	-	2	4	4	6	8	7	9	9	9	14	18	17	10	5	3	2	1	3	4	2	3	2	-	-		2
29.6		-	-	-	-	-	-	-	-	-	-	-	3	7	9	10	10	13	10	12	11	12	16	17	16	9	4	4	3	2	2	-	-	-	-	-	-	*
30.8		-	-	-	-	-	-	-	-	-	-	-	-	5	10	10	14	12	7	6	5	7	8	8	6	3	4	-	-	-	-	-	-	-	-	-		-
31.7		-	-	-	-	-	-	-	-	-	-	-	3	8	11	14	20	15	15	15	27	30	18	14	12	9	9	10	7	4	3	-	-	-	-	-	-	-

Note: Observation low weight: July 14.7 at S45-S90 and N50-N90.

Table 63b

Coronal observations at Climax, Colorado (6374A), west limb

Date					Deg	ree	8 8	out	h o	f t	he	sol	ar	eqι	ato	or				0				Deg	ree	s n	ort	h o	f t	he	sol	ar	equ	ato	r			
GCT		90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	1°	5	10	15	20	25	30	35	40 .	45	50	55	60	65	70	75	80	85	90
1950																					ľ																	
																				Į																		
Jul.	1.6	-	-	***	-	-	-	-	-	-	-	-	-	•	2	4	4	6	3	12	16	10	9	3		-	-	-	-	-	-	-	-	-	-	-	-	-
	3.6	-	-	-	-	-	-	-	-	-	-	-	-	4	5	7	13	13	-	9	13	12	7	3	-	-	-	-	-	-	-	-	-	~	-	45	-	6.0
	4.7	-	-	-	-	-	-	-	-	-	-	-	٤.	3	11	17	11	11	9	4	12	7	5	4	-	-	-		-	-	-	Х	X	Х	X	X	Х	Х
	5.7	-	X	X	Х	Х	Х	Х	Х	-	-	-	-	-	-	10	8	4	-	-	5	10	7	-	-	-	-	-	-	-	-	Х	Х	Х	Х	Х	х	-
	6.6	-	-	-	-	-	-	-	-	-	-	**	-	2	4	8	4	4	C.P	-	2	4	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	9.9	-	-	-	-	-	-	-	-	-	-	-	-	3	2	-	-	-	8	-	-	4	4	2	-	-	-	-	-	-	-	-	Х	X	Х	Х	Х	-
	10.6	-	-	-	-	-	-	-	-	-	-	-	-	6	4	-	-	7	-	-	2	10	10	3	9	-	-	-	-	-	-	-	-	-	-	-	-	-
	11.7	X	X	X	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	X	Х	Х	Х	X	X	X	X	Х	Х	х	х	Х	Х	Х	Х	Х	Х	X	Х	X	X	Х
	12.6	1	1	1	1	-	-	2	1	1	3	4	4	4	8	7	5	11	9	4	2	14	15	15	4	3	-	-	1	-	2	3	2	-	-	-	2	-
	13.6a	2	2	1	2	2	2	3	2	3	2	3	3	4	7	5	4	5	7	5	4	9	13	12	5	2	-	-	-	-	-	-	-	-	-	-	-	-
	14.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	9	12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	80
	15.8	X	X	Х	х	х	X	х	Х	х	Х	Х	Х	Х	Х	X	Х	Х	Х	X	X	X	Х	Х	X	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	X
	16.7	-	-	-	-	-	-	-	-	-	-	4	-	ette -	2		5	8	10	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
	17.6	X	X	Х	X	Х	X	Х	Х	Х	х	Х	Х	Х	Х	X	X	X	Х	X	X	Х	Х	X	Х	Х	Х	Х	х	Х	Х	Х	Х	X	χ	Х	Х	X
	18.6a	-	-	-	-	-	-	-	-	4	4	4	3	6	9	13	10	9	3	-	-	-	4	4	5	4	4	-	3	-	-	2	-	-	-	2	2	2
	19.6	-	-	-	3	5	3	-	4	5	5	4	4	4	5	5	9	4	3	2	-		-	2	5	5	5	2	2	2	2	-	-	-	-	2	2	2
	20.8	-	-	-	-	-	-	-	-	4	4	2	-	-	4	11	2	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	chip	-	69	-	~
	21.6	-	-	-	-	-	-	-	-	2	4	2	-	-	-	3	8	8	5	3	-	4	10	9	7	4	-	-	-	-	-	-	-	-	-	-	-	-
	22.6	-	-	-	-	-	-	3	2	2	2	4	2	-	2	5	10	8	8	5	4	9	12	12	13	-	-	-	-	-	-	-	-	-	~	-	-	-
	23.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	5	4	3	2	5	13	8	12	4	-	-	-	-	-	-	-	-	-		-	-
	24.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-2	2	2	-	-	3	4	6	8	4	2	4	-	-	-	-	-	-	-		-	-
	25.6	-	-	-	-	-	-	-	-	-	-	-	-	-	4	5	3	-		-	4	14	10	4	3	5	-	-	-	-	-	-	-	-	-	-	-	-
	26.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	13	10	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	27.6	X	Х	Х	х	Х	Х	-	-	-	-	-	-	-		-	-	-	-	-	3	3	8	4	4	-	-	-	-	-	-	-	-	-		-	-	-
	28.7	-	-	-	-	-	-	-	-	-	-	3	3	2	2	4	3	-	4	hı	13	6	10	8	-	-	-	-	-	-	-	-	-	-	-	3	**	
	29.6	-	-	-	-	-		-	-	3	3	4	9	9	10	5	5	5	4	5	5	3	5	4	2	2	-	-	-	-	-	-	-	-	-	2	2	2
	30.8	-	-	-	-	-	-	-	-		-	-	-	3	3	11	5	4	4	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	1	-	-
	31.7	3	3	2	2	2	4	5	4	3	2	2	5	6	9	15	20	18	11	-	12	11	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2
																	_																					

Note: Observation low weight: July 14.7 at S45-S90 and N50-N90.

Coronal observations at Climax, Colorado (6702A), east limb

GCT 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 15 20 25 30 35 40 45 50 55 60 65 70	5 80 85 9	90
1950		
Jul. 1.6 2 3 4 4 5 3 2		**
3.6 2 3 3 2 2 2		-
4.7 1 2 2 3 3		-
5.7		-
6.6 1 1 1 1		-0
9.9		-
10.6 2 4 4 3 1 2 2 3 1		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	XXX.	X
	~ ~ ~ ~	-
13.6 1 2 3 4 4 2 2		*
		-
		Y
		-
17,501 X X X X X X X X X		ъ
10, 00 =		-
$19,0 \qquad - \qquad $		
		-
		-
		-
		_
		-
30.8 X X X X X X	xxx	х
31.7 2 2 1 1 2 8 2 1 2 2 3 2 1 1		

Table 65a

Coronal observations at Sacramento Peak, New Mexico, (5303A) east limb

Date					Deg	ree	s r	ort	h c	of 1	the	so	lar	eq	ate	л.				0				Deg	ree	s :	sout	h (of	the	sol	ar	equ	ato	T			
GCT		90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1950																																						
Jun	2.8	_	_	_	_	_	-	_	_	10	10	10		12	10	07	20	76	70	170		50	0															
0.0000	5 0	-	_		_	_	-	-	_	10	10	10	11	12	12	23	20	30	38	36	25	20	э	-	-	-	-	-	-	-	-	-	-	-	-	-	-	*
	5.6		_	-	_	-	-	6	-	_	12	14	16	10	11	10	70	20	20	25	12	10	16		10	10		_	_	-	-	-	-	-		-	-	
	6.0	-	-	-	-	-		5	5	0	12	14	10	10	21	04	39	41	30	23	14	10	10	12	12	10	9	0	0	0	¢.	4	-14	3	*	-	•	-
	77	-	-	-	-	-	-	-	-	_	0	10	12	10	24	24	27	31	20	10	12	10	. 9	10	10	14	.9	.0	10	-	-	-	-	-		-	-	•
		-	-	-	-	-	-	~		7	1	. 9	16	14	16	15	18	16	11	10	1.9	6	13	10	14	13	11	12	10	1	4	-	7	1	0	3	-	-
	0.0	-	-	-	-	3	3	3	G	9	11	10	12	14	16	17	15	14	13	10	10	.9	8	14	13	14	11	15	14	. 7	7	b C	1	8	4	-	-	+
	9.0	-	-	-	-	-	-	4	0	9	10	11	13	15	15	15	13	13	11	12	10	10	11	25	24	19	16	17	14	11	9	Ð	4	4	8	-	-	-
	10.7	-	-	-	-	-	-	-	3	8	9	5	10	11	12	16	15	13	12	10	10	12	16	24	22	18	15	10	8	4	3	-		3	3	3	-	-
	11.8	-	-	-	-	-	-	-	4	5	6	6	. 7	9	12	18	17	12	10	9	5	6	13	17	25	13	11	10	9	5	3	-	-	-	-	-	•	
	12.8	-	-	-	-	-	-	5	6	8	9	9	11	13	23	25	20	14	15	11	9	14	16	27	20	14	15	10	8	3	-	-	-	-	-	-	-	-
	13.8	•	**	-	-	-	-	2	3	5	6	7	9	14	23	22	21	18	17	18	9	9	11	15	16	14	13	9	3	-	-	-	-	-	-	-	-	*
	14.7	-	-	-	-	-	*	-	3	3	3	-	-	ອ	16	15	14	13	12	12	111	10	10	13	12	11	8	8	3	-	-	-	-	٠	-	-	-	+
	15.7	-	-	-	-	-	-	-	-	-	-	-	5	6	18	15	16	18	17	13	12	12	12	12	11	10	δ	-	-	-	-	•	-	-	-	-		-
	16.7	-	-	-	-	-		-	3	5	9	9	8	11	12	13	18	20	17	15	13	12	10	9	10	9	3	-	-		-	-		æ		-	-	•
	17.7	-	•	-	-	-	-	3	3	5	10	9	9	11	13	14	17	16	18	17	13	12	10	11	10	10	10	3	•	-	-	-	-	•	•	-	•	-
	18.9	-	-	-	-	-	-	-	-	-	4	4	5	6	10	10	11	13	12	12	10	10	9	10	11	10	8	-	-		-	-	-	-	-	-	-	•
	20.8	-	-	-	-	=		-	•	5	7	9	11	13	14	17	33	37	34	31	26	18	12	11	13	12	9	6	-	-	-	-	+	-	-	-	-	۰
	21.9	-	-	-	-	-	-	-	-	5	7	7	10	-11	11	12	14	15	18	20	23	13	10	9	10	5	-	-	-	-	-	-	-	-	-	-	-	
	23.8	-	-	-	-	+	-	-	-	-	δ	10	13	12	12	10	9	8	14	13	12	9	9	10	9	7	5	-	-	-	**	+	-	-		-	-	-
	24.7	-	-	*	-	-	-	-	2	4	7	17	17	15	14	13	13	14	22	19	17	16	20	15	13	10	9	8	7	3	-		-	-	-		-	
	28.7	-	-	-	-	-	-	-	-	-	8	13	14	12	13	18	22	20	25	24	22	23	18	5	-	-	-	-	-	-	-	-			-	-	-	-

Table 64b

Date				Deg	ree	98 8	sout	h d	of 1	the	so	lar	eq	uet	n.				00				De	gree	89	nort	sh c	of t	he	so]	ar	equ	ie to	T			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1950																																					
Jul. 1.6	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	2	2	3	3	3	3	2	-	-	-	- 18	-	-	-	-	-00	-	-	-	•
3.6	-	-	-	-	-	-	-	-	-		-	1	2	2	3	3	2	1	-	-	2	3	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-
4.7	-	-		-	-	-	-	-	-	-	-	-	2	2	-	2	1	-	-	1	3	2		-	-	-	-	-	-	-	s.	X	Х	Х	Х	Х	Х
5.7	-	Х	х	Х	х	Х	х	Х	Х	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	Х	X	Х.	Х	Х	λ	-03
6.6	-	-	-	-	-	-	-	-	-	-	-	2	1	1	1	1	-	-	-	1	1		-0.9	-	-	-		-	-	-		-	-	-	e26	-	19
9.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-10	-	-	-	-	X	X.	Х	Х	Х	6.8
10.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	3	2	2	2	-	-	-	-	-		-	-	-	-	-	-	Cir.
11.7	Х	Х	х	х	Х	х	Х	х	х	Х	х	Х	Х	Х	Х	Х	Х	Х	X	X	Х	Х	X	X	Х	Х	X	Х	X	X	А	X.	Х	Х	Х	Х	X
12.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	1	-	-	1	3	7	4	11	6	3	3	2	2	1	ź	-	-	-		-	-	-
13.6a	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		2	2	3	3	10	5	3	1	2	-		-	-	-	-	-	-	-	-
14.7	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-011	-	-	-	-	-	-	-	-	-	-	-
15.8	X	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	X	Х	Х	X	X	Х	Х	Х	Х	X	Х	Х	X	X	Х	X	Х	Х	Х	Х	Х	
16.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
17.6	X	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	λ	Х	X	X	Х	Х	Х	Х	Х	X	Х	Х	Х	X	Х	Х	Х	Х	X	Х	X
18.6a	-	-	-	-	-	-	-	-	-	-	-	2	3	4	5	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	œ	-	-	-	-	-	-
19.6	-	-	-	-	-	-	-	-	-	-	-	1	3	5	4	5	3	-	-	-	-	-	2	3	2	2	2	-	-	-	4.00	-	-	-	-	-	639
20.8	-	+	-	-	-	-	-	-		-	-	2	3	3	3	3	3	-	-	-	3	4	4	3	2	2	-	-	-	-	-	-	-	-	-	-	-
21.6	-	-	-	-	-	+	-	-	-	-	-	-	2	3	3	3	4	2	-	-	2	-2	3	3	2	-	-		-	-	-		-	~	-	-	-
22.6	-	-	-	-	-	-	-	-	-	-	-	2	3	3	3	4	2	3	2	2	3	3	3	4	3	2	-	-	-	-	-	-	-	-	-	-	-
23.8	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	4	3	2	-	-	-	-	-	-		•	-	æ	-	-
24.6	-	-	-	-	-	-	-	- 09	-	-	-	-	-	-	-	-	-	-	-		-	3	3	3	2	2	2	-	-	-	-	-	-	-	-	-	-
25.6	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	3	2	3	2	.3	-	-	-	-	-	-	-	-	-	-	-	-
26.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
27.6	X	Х	Х	Х	Х	Х	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	40	-	-	-	-	-	-	74	-	-	-	-
28.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	~	-	-	-	**
29.6	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	2	3	4	5	2	3	-		- 24	-	-	-	-	-		-	-	-
30.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-
31.7	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	3	3	4	3	3	4	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Note: Observation low weight: July 14.7 at S45-S90 and N50-N90.

Table 65b

Coronal observations at Sacramento Peak, New Mexico (5303A), west limb

Date					De	gre	88	sou	th ·	of	the	80	lar	eq	unto	ar .				0				Deg	gree	98 3	or	th (of 1	the	so.	lar	equ	ato	nr.			
GCT		90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	10	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
Date GCT 1950 Jun. 1 1 1 1 1 1	2.8 5.0 5.6 6.8 7.7 8.6 9.8 0.7 1.8 2.8 3.8 4.7 5.7 6.7	90	85	80	Dej 75	- - - - - - - - - - - - - - - - - - -	88 65 - - - - - - - - - - - - - - - - - -	5 5 3 - -	<u>th</u> 55		<u>+ the</u> 45 - - - - - - - - - - - - - - -	40 	5 5 8 3 4 - - -	eq1 30 7 - 11 - 7 10 8 3 5 5 -	10 8 16 13 9 10 10 6 7 9 4 - 3	20 14 10 28 14 11 10 11 9 9 13 5 3 4 -	21 15 30 16 14 11 12 13 13 15 10 5 9	21 12 21 13 12 11 13 13 13 17 13 7 8 4	5 22 10 15 - 13 12 12 12 12 12 15 26 14 13 6 10	21 10 13 14 15 17 12 19 25 16 16	18 10 16 15 17 22 11 12 25 28 27 23	10 31 11 20 18 27 30 12 13 13 13 19 24 26 33 23	15 31 11 25 30 22 14 14 26 23 30 40	Deg 20 3.0 12 35 26 25 28 19 13 13 23 22 24 30 37	17 12 28 20 24 25 14 13 20 23 23 33 28	30 13 11 21 17 19 24 15 14 16 18 13	12 12 10 21 16 20 25 19 14 12 8 9 13 14 13	5 8 22 15 22 25 17 13 12 12 5 9 11	6 - 23 15 20 23 16 14 12 14 13 8 8 10	7 - 16 - 18 22 16 13 12 14 15 10 15 10	sol 55 10 - 14 14 15 17 4 9 12 10 12 12 10	60 5 - 7 - 10 12 10 3 3 7 - 5 5 5 5	eq1 65	24 to 70	75	80	85	
1	7.7	-	-	-			-	-	-	-	-	-	-	-	-	3	5	5	8	9	16	20	38	30	22	17	10	9	7	6	4	3	-	-	-	-	-	-
î	8.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	8	9	12	17	15	14	14	13	9	5	**	-	-	-	-	-	-	-	-
2	8.03	-	-	-	-	-	-	3	4	3	4	9	12	. 13	13	23	25	17	13	9	9	8	8	12	17	15	19	13	12	12	11	10	- 7	3	-	-	-	
2	1.9		-	-	-	-	-	-			-	-	7	8	9	12	18	14	12	11	5	-	-	-	-	+	-		-	-	-	-	-	-		-	-	-
2	3.8	-	-	-	-	-	-	-	-	_	3	5	10	13	12	16	17	16	14	12	5	-	-	6	11	13	10	10	8	6	4	3	3	-	-	-	-	-
2	24.7	-	-	_	-	-	-	3	4	4	6	9	14	19	20	30	35	38	17	11	12	12	13	15	22	25	17	14	13	12	11	12	11	3	-	-	-	-
2	28.7	-	-	-	-	-	-	_	-	-	-	-	-	4	5	7	9	13	9	9	14	13	13	15	14	16	16	17	8	4	-	-	-	-	-	-		-

Table 66a

Coronal observations at Sacramento Peak, New Mexico, (63744), east linb

Date		-			Deg	ree	s n	ort	h o	e t	he	sol	er	equ	ato	T				00		af in <u>an an in</u>		Deg	r96	9 S	out	h of	th.	e s	ola	r 9	316	to	Ľ			
GCT		90	85	80	75	70	65	60	55	50 .	45	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35 /	40 4	5 5	0 5	5 60	<u>) (</u>	5 1	70 '	75	80 1	<u>-5</u>	jU.
																					[
1950																																						
lum	2.9	_	_	_	_	_		100	-	_	_		_	-	_	4	7	11	8	6	12	15	14	8	13	3	5	4	-100	æ	_	_	-	-	_	45.	-14	
Julia .	2.0					_	_	_	_	_	-		_	_	-	_		_	~		6	10	7			~			~	_	417	- P	-	-	-	-	-	-
	5.0	2	_	-		_	2	3	4	5	2	_	_	_	×.	6	11	9	12	6	3	12	5	2	15	7	2	~	-		-	-	-	rte	~	-	~	0
	2.0	2	_		_		<i>د</i>	5	-		2	_	_	-	_			10	1:	2	3	5	4	3	3				-	_			_	-		-	-	
	2.0	-	-	-	-	-	_	-	_	_	_	_	_	2	_	-2	_	10	7	3		č		1.5	4	a a	1		_	_		_	1	1	ī	1	1	
	1.1	2	-	-	1	1	-	2	-	1	1	1	1	1	2	1	- 2	2	1	2		_	7	2		0	-	Λ	2	5	1	1	-	-	ī	1	1	7
	0.0	3	1	1	T	Ŧ	2	Å.	1	T	1	Ŧ	1	1	1	1	0	*		1		_	1	12	78	0	1	-3	1	2	1	1	_	_	1	-	-	*
	2.0	1	T	Ţ	-	-	-	-	-	-	-	-	64	1	1	2		0	1		1.		- C	16		्र न	4	-	2	-	а. Э		_		_	_	_	-
	10.7	-	-	-	ш.	-	-	-	-	-	-	_	-	7	3	 7	20	0	~	1	1.			3	2	**	.)	4	1	3	1			-	_		_	_
	11.0	-	-	-	-	_	-	-	-	-	_	_	-	-		10	11	10	10			day.	11	0	19 5	- <u>2</u> -	645	-	Ŧ	1	+	Č.	-				_	
	12.8	-	-	-	~	1	1	-	-	-	0.0	-	-	-	3	14	1/	10	12	1	0	60	11	3	5	-	60 6	-	-	-	*	-	-	-	-	34	-	~
	13.8	-	-	-	-	1	1	1	T	-	-	-		-	4	5	TO	13	12	8	3		0	8	**	4.0	-		-	-	-	-	Cu.	1.6				
	14.7	-	-	-	-	-	-	-	-			-	-	-	-	-	2	4	9	11	3	6	3	4	2	-	-	-	-	**	629	-	-	-	-	-	-	-
	15.7	-	-	-	-	-	_		-	-	-	~		-	1	3	-	-	5	14	1	i.	-	**	-	66		-	-	-	-	-	-	e-		44	-	Ch.
	16.7	-	-	-	2	2	2	1	1	-	-	-	-	-	_	-	-	2	17	2	1	-	-	2	j.	-	-	79	-	-	-	-	-	-	~	-	40	14
	17.7	-	-	-	-	-	-	-	-	-	-		-	-	1	1	-	1	3	11	-	8.0	~		~	10%	-	-	-		-	-	-	-	-	-	-	<i>a</i> ,
	18.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Z	5	8	6	-	~	~			-	-	-	-10	-	**	-	-		-	-	6.0	4.9
	20.8	-	-	•	-	-	-	-	-	••	-	-	-	-	4	-	1	17	13	12	20	Ъ	sch-	3	6	7	4	1	43.	ļ	1	-	-	4.9	-	-	1.0	34
	21.9	-	-	~	-	-	-	-	-	-	-	-	-	-	-	~	5	12	13	17	26	10	-	~	a.	410	~	-	~	**	-	-	-		-	-	~	18.7
	23.8	-		-	-	-	-	-	-	-	-	-	-	-	-	9	1	1	~	-	-	-	- 18	-	٠	-	-	**	-107	-	-10	-	*	-	-	-	-	-91
	24.7	1	1	1	1	1	1	1	-	-	1	2	1	-	-	~	3	-	3	-	1	2	Ĩ1)	cə	1	1	1	***	1	1	1	1	-	-	-	-	-	wi.,-
	28.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10	9	9	4	1	-	-	-12	1.01	~	**	-	1.62	~	~	**	-	~	-	-	ulle	~	-
																					1																	

Table 67a

Coronal observation. at pacramento Peak, New Mexico, (6702A), east limb

COM 02 25 20 75 70 45 40 55 50 15 10 25 20 25 20 25 10 5	
	20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
1950	
Jun. 2.8 4 4 5 5 4	
5.0 4 4 4	
5.6 3 3 4 5 4 2	
6.8 2 3 3 3 2	
	1 1
8.6 1 1 1 1	
9.8	1 1 1 1 1
10.7	
10.7	
16.7	
17.7	
18.9	
20.8 1 1 1 1 1 1	
21.9 1 2 2 1	
23.8 2 1 1 2 6 3 - 1	1 2
24.8	

Date					Deg	ree	3 8	out	h o	f t	he	sol	ar	equ	ato	r				00				Deg	ree	s n	ort	h oi	f th	e	sol	ar	equ	ato	r			
GCT		90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	Ľ.	5	10	15	20	25	30	35	40 1	45 5	0	55 (50	65	70	75	80	85	90
1950																						-																
Jun.	2.8	-	-	-	-	-	-		-	-	-	-	-	-	-	-	4	4	4	4	6	7	15	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	5.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	5	6	8	8	5	-	-	-	-	-	-	-	-	-	-	-	-	-
	5.6	-	-	-	-	-	-	-	4	-	-	-	-	-	4	10	12	6	8	5	4	11	12	12	4	3	3	-	-	-	-	-	-	2	4	4	3	2
	6.8	-	-	-	-	-	-	-	-	-	-	-	-	-	6	10	9	6	8	9	9	7	-	8	8	6	-		-	-	-	-	-	-	3	4	3	-
	7.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	7	11	8	7	12	10	16	13	14	1	-	-	-	-	-	-	the state	-	-	-	-	-
	8.6	1	1	1	1	1	1	1	1	1	1	1	1	1	-	4	10	8	8	8	13	16	20	2	9	1	1	-	5	1	-	-	-	1	2	3	4	3
	9.8	-	- 4	-	-	-	-	-	1	1	1	-	-	-	-	-	-	8	1	11	11	-	10	17	10	14	1	-	1	1	-	-	-	-	-	2	2	1
	10.7	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	1	2	4	3	5	1	-	-	-,	-	-	-	-	-	-	-	-	***
1	1.8	-	-	-	-	-		-	-	-	-	-	-	-	-	1	1	5	4	-	1	2	5	1	-	-	-	-	-	90-	-	-	-	-	-	-	-	-
	12.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	12	13	6	8	10	17	5	14	-	60	-	-		-	-	-	-	-	-	-	-
:	13.8	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	2	4	12	10	8	9	10	12	-	-	-	-	-	-	-	-	-	-	-	-	-
	14.7	-	-	-	-	-	-	-	-	-	-	-	-	1	5	4	1	1	9	14	15	10	9	8	4	1	-	-	-	-	-	-	-	-	-	-	-	
1	15.7	-	-	-	-	-	-	-	-	-	-	-	-	3	5	4	10	9	12	11	11	12	12	12	7	1	-	-	-	-	1	2	2	2	2	3	3	0
1	16.7	-	-	-	-	-	-	-	-	-	-	-	1	2	2	2	1	5	11	1	-	1	8	12	12	1	-		-	-	-	-	-	-	-	-	-	-
]	17.7	-	-	-	-	-	-	-	-	-	-	-	1	1	2	2	2	1	8	1	-	-	10	13	7	-	-	-	-	-	-	-	-	•	-	-	-	-
1	18.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	**	-	8	10	-	-	-	-	-	-	-	-	-	-	-	-	-
2	8.02	-	-	-	-		-	-	-	-	- 19	-	3	-	-	1	21	10	6	4	1	-	3	3	-	-	-	-	-	-	CO.	-	-		-	-	-	-
2	21.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	12	8	10	-	-	-	-	-	1.2	-	-	-	-	-	**	-	-	-	-	-	-	-
2	23.8	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2	24.7	-	-	-	-	-	-	-	-	1	3	2	1	1	1	5	14	8	12	3	-	5	2	2	13	8	4	3	1	-			-	-	1	1	1	1
2	28.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	10	11	1	-	-	-	-	-	-	-	-	-	-	-	-	~

Tabla 67b

Coronal observations at Sacramento Peak, New Mexico, (6702A), west limb

Date	1			De	gree) S (sout	th (of	thə	so	lar	eq	uat	or					1			Dep	rea	991	nort	th d	of i	the	so	lar	eq	ate	or			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1950																																					
Jun. 2.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	2	3	2	-	-	-	-	-	-	-	-	-		-	-	-
5.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-68		**	-	-
5.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	4	4	3	-	-	-	-	-	-	-	-	-	-	-	-
6.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	65	-	-	-	-	-			-
7.7	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	1	-	-	-	-	-		-	-	~
8.6	-	400	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	1	1	1	1	1	1	1	-	-	-	-	-	-	-
9,8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	che	-	-	~	-	-	-	-	-	-	-	-	-	40	-	-		-	-	-	-	-
10.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11.8	-	-	-	-	-		-	-	-	-	-	454	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12.8	-	-	-	-	-	-	-	-	-	-	-	-	- 194	-	1	1	1	1	1	-	-	1	1	1	-	-	÷o	-	-	-	-	-	-	•	-	-	-
13.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	1	1	1	1	1	1	-	-	-	-1-	-	-	-	-	-	-	-
14.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	1	1	1	1	1	1	-		-	-	-	-	-
15.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-] -	1	2	2	3	3	3	1	-	-	-	-	-	-	-	-	-	-	-
16.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	2	3	3	3	3	1	-	-	-	-	-	-	-	-	-	2	-	-
17.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	3	2	2	-	-	-	-	-	-	-	-	-	87	43	-
18.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	3	2	1	-	80	-	-	-	-	-	-	-	-	-	-	-	-	-	Car	-	-	-
21.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
23.8	-	-	-	-	-	-	-	-	-	-	-	1	1	2	2	1	1	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
24.7	-	-	-	-	-	-	-	-	-	-	-	60	1	1	1	1	1	-	-	-	-		-	-	-19	-	-	-	-	-		-389		098	-	-	-100
28.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	-	-	-	-	-	-	-	-	-	-	-	æ

Outstanding Solar Flares, April 1950

Observa- tory	Date 1950	Time Observed Begin- End- ning ing (GCT) (GCI	Dura- tion	Area (Mill) (of) (Sun's) (Disk)	Posi Long- itude (Deg)	tion Lati- tude (Deg)	Time of Maxi- mum (GCT)	Int. of Maxi mum (GCT)	Rela- tive Area of Max (Tenths)	Import- ance	SID Obser- ved
Boulder McMath Boulder "" Wendelstein McMath Boulder "" " Wendelstein Boulder " " " " " " " " " " " " " " " " " " "	1950 Apr 1 1 3 1 4 5 7 8 7 8 10 11 12 12 12 12 12 12 12 12 12	Begin End- ning (GCT) 2005 0548 061 12005 0548 0548 061 1510 1510 1250 161 160 1515 161 160 1713 171 1311 230 2345 240 2345 240 2509 205 2008 202 2009 205 2009 205 205 162 1652 172 1652 163 1649 175 1655 163 1814 185 1857 192 11442 2237 2240 2240	(Min) (Min) (Min) (Min) (35) (45) (25) (45) (25) (45) $(45$	(of) (Sun's) (Disk) 530 220 610 260 873** 400 380 940 2200 1600 200 1600 200 1600 200 191** 396 2800 151 265 135 70 75 140 176 180 320 150 150 150 66 150 110 66 135 45	itude (Deg) N14 M28 S069 M13 N15 M15 N15 M15 N15 M15 N15 M16 N13 M16 N13 M13 N16 N13 M16 N13 M16 N13 M16 N13 M16 N13 M16 N13 M16 N13 M16 N16 N16 N16 N16 N16 N16 N16 N16 N16 N	tude (Deg) E36 W38 W33 W22 E770 E68 E14 E70 E68 E14 E00 E07 E14 E00 E07 E00 E07 E00 E07 E00 E00 E07 E00 E00	Maxi- mum (GCT) 1616 2118 1710 1922 0551 1935 0000 2020 0003 1 ^{1/5} 77 1555 1556 1724 1856 2350 1521 1614 1754 1856 2012 2029 2030 2202 1433 1530 1607 1652 1708 1800 1814 1905 2237 2241	Maxi mum (GOT) 10 12 20 15 10 20 15 20 59 7 8 8 8 6 12 9 10 10 7 6 8 8 6 5 7 8 8 6 5 7 8 7 8 8 8 6 5 7 8 7 8 7 8 7 8 8 8 6 5 7 7 8 7 8 8 8 6 7 7 7 8 7 7 8 7 7 8 7 7 7 7	Area of Max (Tenths) 3 5 1 6 3 3 4 3 4 3 4 3 4 3 4 3 6 3 4 3 4 3 4 3 6 3 4 3 4 3 6 3 4 3 6 6 6 6 7 6 6 7 6 7 6 7 7 7 8 7 7 7 8 8 7 8 8 8 7 8 8 7 8 8 8	2 1-2 1*	ved Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
" Wendelstein Boulder " " Wendelstein Boulder "	11 20 11 22 11 22 11 26 11 26 11 26 11 26 11 26 12 26 13 26 14 26 15 26 16 27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	858 220 291** 100 154 130 165 145** 304 770	\$04 \$13 \$16 \$11 \$11 \$12 \$11 \$11 \$11 \$11 \$15	W07 E48 E47 E16 E04 E15 E15 E15 E14 E15 W26	1825 1739 0618 1530 1616 1622 1634 1633 1750 1633	8 6 5 10 20 10		1	Yes Yes

*Longitude and latitude of calcium plage in which solar flare was observed. **Area corrected for foreshortening.

Table 69

Indices of Geomagnetic Activity for June 1950

Preliminary values of mean K-indices, Kw, from 34 observatories; Preliminary values of international character-figures, C; Geomagnetic planetary three-hour-range indices, Kp; Magnetically selected quiet and disturbed days

Gr. Day 1950	Values Kw	Sum	С	Values Kp	Sum	Final Sel. Days
1 2 3 4 5	2.5 2.7 2.1 3.2 2.5 3.9 1.9 3.4 4.1 4.0 2.0 1.9 1.2 2.7 2.5 3.9 2.6 2.5 1.8 3.4 3.4 3.4 3.1 2.2 1.9 2.7 1.7 0.9 2.1 2.3 1.2 1.1 2.6 2.1 2.3 2.0 1.8 1.8 1.9 1.9	22.2 22.3 22.4 13.9 16.4	0.8 1.0 0.8 0.4 0.5	2+302+4- 3-5=2-4- 4+4+2+2- 1-3=305= 303=2-4= 404=303= 2+30201= 202+1010 3=2+3=20 1+202=2=	240 24- 24+ 14+ 16+	Five Quiet 7 13
6 7 8 9 10	3.7 4.6 3.9 3.6 4.4 4.9 3.2 2.5 1.9 0.9 0.8 1.6 1.9 1.8 0.9 0.7 0.9 0.6 0.8 1.6 1.9 2.0 2.3 3.6 3.9 4.3 2.5 3.4 3.6 2.6 2.6 2.9 3.7 3.7 2.8 3.4 3.1 2.7 2.8 2.7	30.8 10.5 13.7 25.8 24.9	1.3 0.2 0.5 1.0 0.8	4=5+4+40 5+603+3= 20]=1=1+ 202=1=1= 1=0+101+ 2=202040 5=5+3=40 4030303+ 404=3+40 3+3=3+30	35∞ 10∽ 130 300 27+	19 20
11 12 13 14 15	3.1 1.5 1.4 1.7 1.8 1.8 1.5 2.2 2.2 1.2 2.2 1.9 2.1 1.6 2.1 1.8 1.1 0.9 1.2 1.1 1.2 0.8 1.0 0.8 1.3 1.9 1.9 1.6 1.7 1.6 1.2 0.8 1.4 1.1 1.1 1.2 1.0 0.8 0.8 0.9	15.0 15.1 8.1 12.0 8.3	0.5 0.4 0.0 0.2 0.0	302-201+ 202-102+ 2+1+3-20 201+2+2- 101-1+10 100+1-1- 1020201+ 2-1+1010 1+10101+ 100+0+1-	150 16- 7- 11+ 70	Five Dist, 6 9
16 17 18 19 20	0.5 0.4 0.4 1.1 1.5 2.5 2.9 1.6 2.2 3.6 2.9 2.2 2.1 2.9 2.5 2.1 1.7 2.2 2.3 2.1 1.1 1.7 1.4 0.6 1.6 1.6 0.7 0.8 0.9 1.6 1.6 1.0 0.6 0.9 0.8 1.1 1.6 1.8 1.7 1.2	10.9 20.5 13.1 9.8 9.7	0.4 0.6 0.4 0.2 0.2	0+0000l0 2=3=4=1+ 2+40302+ 2+30303= 202+302+ 102=1+10 2=2=1=1= 1=1+2=1= 0+101=10 2=202=1+	11- 23- 15- 90 10-	24 29 30 Ten
21 22 23 24 25	0.8 1.2 0.7 1.2 1.1 3.0 2.2 2.7 1.7 2.7 2.1 2.9 3.1 2.4 2.0 2.3 2.8 2.4 1.5 2.1 2.0 2.0 4.7 4.5 4.3 5.3 4.8 4.6 4.0 2.4 3.6 2.9 3.1 2.1 3.3 3.6 2.6 1.6 2.4 3.6	12.9 19.2 22.0 31.9 22.3	0.4 0.6 1.2 1.6 0.9	1-2-0+10 103+2+3+ 2=302030 4=2+202+ 3+3=2=2+ 20206=5+ 5=6+6050 5=2+4030 3+2+4=5= 301+3=4=	14= 200 250 360 25=	7 13 14 15
26 27 28 29 30	3. 6 2.9 1.5 2.0 2.0 1.2 1.7 1.6 1.1 0.9 1.1 1.2 1.8 2.3 1.8 1.8 2.1 1.2 1.2 1.7 1.1 0.8 1.1 1.3 0.8 1.1 1.8 2.4 4.0 5.2 4.9 4.7 4.9 5.6 2.8 2.8 3.1 3.5 2.9 3.4	16.5 12.0 10.5 24.9 29.0	0.7 0.3 0.2 1.5 1.4	4030202- 2+1-1+1+ 10101+10 2-202-2- 201+102- 100+1-10 101+2-2- 5-60606- 607-303+ 4-403+4-	16+ 11+ 90 280 34-	18 19 20 27 28
Mean	2.29 1.88 2.19 2.21 2.29 2.14 2.32 2.22	2,19	0,63			

40.00

30

25.0

20.0

150

10.0 9.0

8.0

70 6 Ň z £40

KONGY NGY LPEQU

CRITICAL 512

100

Fig 5.

40.0

30.0

25.0

200

150

100

9.0

8.0 7.0

6.0 N N N 50 Z

_4

FREQUENCY

100

32.3°N, 106 5°W

JUNE 1950

Fig 8. WHITE SANDS, NEW MEXICO

JUNE 1950

JUNE 1950

Fig. 12. MAUI, HAWAII

JUNE 1950

48

20.8°N, 156.5°W

Index of Tables and Graphs of Ionospheric Data

in CRPL-172

		Table page	Figure page
Akita, Japan			
April 1950		14	53
January 1950		16	59
Baton Rouge, Louisiana			
June 1950		12	48
Bombay, India			_
February 1950		15	57
January 1950		17	61
Capetown, Union of S. Africa			•
May 1950		. 14	53
Christchurch, New Zealand		• • - ·	20
April 1950		15	56
Dakar, French W. Africa		•••-/	
December 1949		12	63
November 1040	• • • • •	18	64
October 1040	• • • • •	18	65
De Bilt. Holland	• • • • •	• • 10	0)
New 1050		13	50
Dolhi Tadio	• • • •	•••••	50
Boberra and 1060		10	10
Jebruary 1950	• • • • •	15	57
Perman Alder		••• 17	OT
Formosa, Gaina		10	~
May 1950		13	51
April 1950		• • 15	55
Fribourg, Germany			10
December 1949		17	63
November 1949		18	64
October 1949		18	65
Guan I.			
May 1950		14	52
Huancayo, Peru			
June 1950		13	50
Johannesburg, Union of S. Africa			
May 1950		14	52
Lindau/Harz, Germany			
May 1950		13	51
Madras, India			
February 1950		16	58
January 1950	0 0 0 0 0	17	62
Maui, Hawaii		·	
June 1950		. 12	48

Index (CRPL-F72, continued)

Table page	Figure page
Oslo, Norway	
June 1950	46
Rarotongo I.	
March 1950 15	56
San Francisco, California	
June 1950	47
San Juan, Puerto Rico	1 -
June 1950	49
Tiruchy, India	~0
February 1950	50
January 1950	02
Tokyo _e Japan	rh
$\begin{array}{c} \text{April 1950} \\ \text{Source matrix 1060} \\ \end{array}$	54
Banuary 1950	00
	10
	~7
January 1050	59
Washington, \mathbf{D}	27
July 1050 12	46
Watheroo. W. Australia	
Anril 1950	55
White Sands. New Mexico	
June 1950	47
Yamagawa, Japan	·
April 1950	54
January 1950	60

CRPL and **IRPL** Reports

[A list of CRPL Section Reports is available from the Central Radio Propagation Laboratory upon request]

Daily: Radio disturbance warnings, every half hour from broadcast station WWV of the National Bureau of Standards. Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Weekly

CRPL-J. Radio Propagation Forecast (of days most likely to be disturbed during following month).

Semimonthly:

CRPL-Ja. Semimonthly Frequency Revision Factors for CRPL Basic Radio Propagation Prediction Reports.

Monthly:

CRPL-D. Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-. monthly supplements to TM 11-499; Dept. of the Navy, DNC-13-1 (), monthly supplements to DNC-13-1.

CRPL-F. Ionospheric Data.

Quarterly: *IRPL-A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific.

*IRPL-H. Frequency Guide for Operating Personnel.

- Circulars of the National Bureau of Standards
 - NBS Circular 462. Ionospheric Radio Propagation.

NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

Reports issued in past:

IRPL-C61. Report of the International Radio Propagation Conference, 17 April to 5 May 1944.

IRPL-G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions. IRPL-R. Nonscheduled reports:

- R4. Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies R5. Criteria for Ionospheric Storminess.
- R6.
- Experimental Studies of Ionospheric Propagation as Applied to the Loran System. Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System. An Automatic Instantaneous Indicator of Skip Distance and MUF. R7.
- R9.
- R10. A Proposal for the Use of Rockets for the Study of the Ionosphere.

- R10. A Proposal for the Use of Rockets for the Study of the Ionosphere.
 §R11. A Nomographic Method for Both Prediction and Observation Correlation of Ionosphere Characteristics.
 §R12. Short Time Variations in Ionospheric Characteristics.
 R14. A Graphical Method for Calculating Ground Reflection Coefficients.
 §R15. Predicted Limits for F2-Layer Radio Transmission Throughout the Solar Cycle.
 §R17. Japanese Ionospheric Data—1943.
 R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures—October 1943 Through May 1945.
 §R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For distances out to 4000 km.)
 §R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena

- \$R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena.
 R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System.
 \$R25. The Prediction of Solar Activity as a Basis for the Prediction of Radio Propagation Phenomena.
 R26. The Ionosphere as a Measure of Solar Activity.
 R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped
- R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped by Distance From Center of Disc.
 §R30. Disturbance Rating in Values of IRPL Quality-Figure Scale from A. T. & T. Co. Transmission Disturbance Reports to Replace T. D. Figures as Reported.
 R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.
 §R33. Ionospheric Data on File at IRPL.
 §R34. The Interpretation of Recorded Values of fEs.
 R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess of a Mc

- 3 Mc.
- IRPL-T. Reports on tropospheric propagation: T1. Radar operation and weather. (Superseded by JANP 101.)
 T2. Radar coverage and weather. (Superseded by JANP 102.)
- CRPL-T3. Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group WPG-5.)

Items bearing this symbol are distributed only by U. S. Navy. They are issued under one cover as the DNG-14 series. Sout of print; information concerning cost of photostat or microfilm copies is available from CRPL upon request.

