PART A

IONOSPHERIC DATA

ISSUED

APRIL 1965

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
CENTRAL RADIO PROPAGATION LABORATORY
BOULDER, COLORADO
IONOSPHERIC DATA

CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ionospheric Data</td>
</tr>
<tr>
<td>Table of Smoothed Observed Zurich Sunspot Numbers</td>
</tr>
<tr>
<td>World-Wide Sources of Ionospheric Data</td>
</tr>
<tr>
<td>Tables and Graphs of Ionospheric Data</td>
</tr>
<tr>
<td>Index of Tables and Graphs of Ionospheric Data in CRPL-F248 (Part A)</td>
</tr>
</tbody>
</table>
The CRPL-F series bulletins are issued as part of the responsibility of the Central Radio Propagation Laboratory for the exchange and distribution of ionospheric and related geophysical data. Part A, "Ionospheric Data," and Part B, "Solar-Geophysical Data," of the CRPL-F series present a variety of data collected by CRPL in the course of its research and service activities. Through the CRPL-F series, as part of the general exchange of scientific information, these data are made available for use by others in research on radio propagation and the ionosphere, and in other geophysical applications.

In the CRPL-F series, Part A, tables of monthly median values of vertical-incidence ionospheric data are presented accompanied by graphs of critical frequencies and $M(3000)F_2$. The tables include the number of values entering into the median determination (count). When available, the upper and lower quartile values (indicated by UQ and LQ) are listed for f_{oF2}, f_{oF1}, f_{oEs}, $M(3000)F_2$, $h'F_2$ and $h'F$. Space limitations do not permit inclusion of quartile values for the other characteristics. The tables are prepared by machine methods and the graphs are plotted automatically.

The tables and graphs present the ionospheric data as received from the originating laboratory. Responsibility for the accuracy and reliability of the data rests entirely with the originator. Medians of data for the U.S. stations are computed by CRPL in accordance with the recommendations of the World-Wide Soundings Committee.

Data will appear in the F-series, Part A, only when the complete daily-hourly tabulations have been received by the CRPL or the World Data Center A for Airglow and Ionosphere. In general, priority of publication is given to the most current data. Data received too long after the month of observation may experience an indefinitely prolonged delay before finding space in the F series, Part A.

Information on symbols, terminology and conventions may be found in the "URSI Handbook of Ionogram Interpretation and Reduction of the World-Wide Soundings Committee," edited by W. R. Piggott and K. Rawer (Elsevier, 1961), which supersedes previous documents. A list of symbols is available from CRPL on request.

Units and Abbreviations of Ionospheric Data Tables

- f_{oF2}, f_{oEs} - - - Tenths of a megacycle
- f_{oF1}, f_{oE} - - - Hundredths of a megacycle
- $h'F_2$, $h'F$, $h'E$ - Kilometers
- $M(3000)F_2$ - - - Hundredths
- MED - Median
- CNT - Count
- UQ - Upper Quartile
- LQ - Lower Quartile
Key to Points of Ionospheric Data Graphs

- foF2: x
- foE : o
- M(3000)F2 : ◊
- foF1: Δ
- foEs: +

< Less-than value indicated. > Greater-than value indicated.
- - - Interpolated value indicated.

The following table contains the latest available information on twelve-month smoothed average of observed Zurich relative sunspot numbers, beginning with the minimum of April 1954. Final numbers are listed through June 1964, the succeeding values being based on provisional data.

Smoothed Observed Zurich Relative Sunspot Number

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1954</td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td>14</td>
<td>16</td>
<td>19</td>
<td>23</td>
<td>29</td>
<td>35</td>
<td>40</td>
<td>46</td>
<td>55</td>
<td>64</td>
<td>73</td>
<td>81</td>
</tr>
<tr>
<td>1956</td>
<td>89</td>
<td>98</td>
<td>109</td>
<td>119</td>
<td>127</td>
<td>137</td>
<td>146</td>
<td>150</td>
<td>151</td>
<td>156</td>
<td>156</td>
<td>160</td>
</tr>
<tr>
<td>1957</td>
<td>170</td>
<td>172</td>
<td>174</td>
<td>181</td>
<td>186</td>
<td>188</td>
<td>191</td>
<td>194</td>
<td>197</td>
<td>200</td>
<td>201</td>
<td>200</td>
</tr>
<tr>
<td>1958</td>
<td>199</td>
<td>201</td>
<td>201</td>
<td>197</td>
<td>191</td>
<td>187</td>
<td>185</td>
<td>185</td>
<td>184</td>
<td>182</td>
<td>181</td>
<td>180</td>
</tr>
<tr>
<td>1959</td>
<td>179</td>
<td>177</td>
<td>174</td>
<td>169</td>
<td>165</td>
<td>161</td>
<td>156</td>
<td>151</td>
<td>146</td>
<td>141</td>
<td>137</td>
<td>132</td>
</tr>
<tr>
<td>1960</td>
<td>129</td>
<td>125</td>
<td>122</td>
<td>120</td>
<td>117</td>
<td>114</td>
<td>109</td>
<td>102</td>
<td>98</td>
<td>93</td>
<td>88</td>
<td>84</td>
</tr>
<tr>
<td>1961</td>
<td>80</td>
<td>75</td>
<td>69</td>
<td>64</td>
<td>60</td>
<td>56</td>
<td>53</td>
<td>52</td>
<td>52</td>
<td>51</td>
<td>50</td>
<td>49</td>
</tr>
<tr>
<td>1962</td>
<td>45</td>
<td>42</td>
<td>40</td>
<td>39</td>
<td>39</td>
<td>38</td>
<td>37</td>
<td>35</td>
<td>33</td>
<td>31</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>1963</td>
<td>29</td>
<td>30</td>
<td>30</td>
<td>29</td>
<td>29</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>27</td>
<td>27</td>
<td>26</td>
<td>24</td>
</tr>
<tr>
<td>1964</td>
<td>20</td>
<td>18</td>
<td>15</td>
<td>13</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WORLD-WIDE SOURCES OF IONOSPHERIC DATA

THE IONOSPHERIC DATA PRESENTED IN THE 100 TABLES AND
GRAPHS OF THIS ISSUE WERE ASSEMBLED BY THE CENTRAL RADIO
PROPAGATION LABORATORY FOR ANALYSIS, CORRELATION, AND
DISTRIBUTION. THE FOLLOWING ARE THE SOURCES OF THE DATA.

COMMONWEALTH OF AUSTRALIA, DEPARTMENT OF THE INTERIOR
COCOS IS.

AUSTRALIAN DEFENCE SCIENTIFIC SERVICE
WEAPONS RESEARCH ESTABLISHMENT, DEPARTMENT OF SUPPLY
WOOMERA, AUSTRALIA

BELGIAN ROYAL METEOROLOGICAL INSTITUTE
DOURBES, BELGIUM

BRITISH DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH,
RADIO RESEARCH BOARD
IBADAN, NIGERIA (UNIVERSITY COLLEGE OF IBADAN)
PORT STANLEY (FALKLAND IS.)
SINGAPORE, MALAYSIA
SLOUGH, ENGLAND

DEPARTMENT OF TRANSPORT, TELECOMMUNICATIONS AND
ELECTRONIC BRANCH, CANADA
CHURCHILL, CANADA
KENORA, CANADA
OTTAWA, CANADA
RESOLUTE BAY, CANADA
ST. JOHNS, NEWFOUNDLAND

RADIO WAVE RESEARCH LABORATORIES, DIRECTORATE GENERAL OF
TELECOMMUNICATIONS, MINISTRY OF COMMUNICATIONS,
TAIPEI, HSIAN, TAIWAN, REPUBLIC OF CHINA,
TAIPEI (TAIWAN), CHINA

METEOROLOGICAL SERVICE OF CONGO
LEOPOLDVILLE, CONGO

CZECHOSLOVAK ACADEMY OF SCIENCES
PRUHONICE, CZECHOSLOVAKIA

DANISH NATIONAL COMMITTEE OF URSI
NARSSARSSUAAQ, GREENLAND

GENERAL DIRECTION OF POSTS AND TELEGRAPHS, HELSINKI, FINLAND
NURMIJARVI, FINLAND

THE FINNISH ACADEMY OF SCIENCES AND LETTERS
SODANKYLÄ, FINLAND

HEINRICH HERZ INSTITUTE, GERMAN ACADEMY OF SCIENCES,
BERLIN, GERMANY
JULIUSRUH/RUGEN, GERMANY
IONOSPHERE INSTITUTE, NATIONAL OBSERVATORY OF ATHENS
ATHENS (SCARAMANGA), GREECE

ICELANDIC POST AND TELEGRAPH ADMINISTRATION
REYKJAVIK, ICELAND

INDIAN COUNCIL OF SCIENTIFIC AND INDUSTRIAL RESEARCH,
RADIO RESEARCH COMMITTEE, NEW DELHI, INDIA -
KODAIKANAL, INDIA (INDIA METEOROLOGICAL DEPARTMENT)

IONOSPHERIC OBSERVATORY, INSTITUTE OF GEOPHYSICS,
TEHRAN, IRAN

NATIONAL INSTITUTE OF GEOPHYSICS, CITY UNIVERSITY, ROME, ITALY
ROME, ITALY

MINISTRY OF POSTS AND TELECOMMUNICATIONS, RADIO RESEARCH
LABORATORIES, TOKYO, JAPAN
AKITA, JAPAN
KOKUBUNJI, TOKYO, JAPAN
WAKKANAI, JAPAN
YAMAGAWA, JAPAN

GENERAL DIRECTORATE OF TELECOMMUNICATIONS, MEXICO
EL CERILLO, MEXICO

THE ROYAL NETHERLANDS METEOROLOGICAL INSTITUTE
DE BILT, NETHERLANDS

CHRISTCHURCH GEOPHYSICAL OBSERVATORY, NEW ZEALAND DEPARTMENT OF
SCIENTIFIC AND INDUSTRIAL RESEARCH
GODLEY HEAD (CHRISTCHURCH), N.Z.
SCOTT BASE, ANTARCTICA

NORWEGIAN DEFENCE RESEARCH ESTABLISHMENT,
KJELLER PER LILLESTROM, NORWAY
TROMSO, NORWAY

INSTITUTE OF TELECOMMUNICATION, WARSAW, POLAND
WARSAW (MIEDZESZYN), POLAND

RESEARCH INSTITUTE OF NATIONAL DEFENCE, STOCKHOLM, SWEDEN
KIRUNA, SWEDEN
LYCKSELE, SWEDEN
UPPSALA, SWEDEN

POST, TELEPHONE AND TELEGRAPH ADMINISTRATION,
BERNE, SWITZERLAND
SOTTENS, SWITZERLAND
UNITED STATES ARMY SIGNAL CORPS, UNITED STATES OF AMERICA
FT. MONMOUTH, NEW JERSEY
OKINAWA I.

NATIONAL BUREAU OF STANDARDS, UNITED STATES OF AMERICA
(CENTRAL RADIO PROPAGATION LABORATORY)
ANCHORAGE, ALASKA
BOULDER, COLORADO
MAUI, HAWAII
TABLES AND GRAPHS OF IONOSPHERIC DATA

February 1965 - August 1963

Boulder, Colorado (105°0'W)

Time	Frequency (kHz)	U	F	U	F	U	F	U	F	U	F	U	F	
00	210 - 245													
01	245 - 270													
02	270 - 290													
03	290 - 300													
04	300 - 302													
05	301 - 302													
06	302 - 304													
07	304 - 306													
08	306 - 308													
09	308 - 310													
10	310 - 312													
11	312 - 315													
12	315 - 317													
13	317 - 320													
14	320 - 323													
15	323 - 325													
16	325 - 328													
17	328 - 330													
18	330 - 332													
19	332 - 335													
20	335 - 338													
21	338 - 340													
22	340 - 343													
23	343 - 345													

Anchorage, Alaska (150°0'W)

Time	Frequency (kHz)	U	F	U	F	U	F	U	F	U	F	U	F	
00	158 - 180													
01	180 - 205													
02	205 - 230													
03	230 - 255													
04	255 - 280													
05	280 - 305													
06	305 - 330													
07	330 - 355													
08	355 - 380													
09	380 - 405													
10	405 - 430													
11	430 - 455													
12	455 - 480													
13	480 - 505													
14	505 - 530													
15	530 - 555													
16	555 - 580													

ANALYSIS

- Frequency ranges in kHz with U and F indicating upper and lower limits, respectively.
- Observations include L, F, E, and M classes.
GOOLEY HEAD

LAT. 43.65 LONG. 177.8E

DECEMBER 1964

<table>
<thead>
<tr>
<th>CHAR</th>
<th>HR</th>
<th>MEO</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>00</td>
<td>50</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>03</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>04</td>
<td>09</td>
<td>09</td>
</tr>
<tr>
<td></td>
<td>05</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>06</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>07</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>08</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>09</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>23</td>
<td>23</td>
</tr>
</tbody>
</table>

foF2

<table>
<thead>
<tr>
<th>CHAR</th>
<th>HR</th>
<th>MEO</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>00</td>
<td>340</td>
<td>370</td>
</tr>
</tbody>
</table>

foE2

<table>
<thead>
<tr>
<th>CHAR</th>
<th>HR</th>
<th>MEO</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>00</td>
<td>160</td>
<td>100</td>
</tr>
</tbody>
</table>

foEs

<table>
<thead>
<tr>
<th>CHAR</th>
<th>HR</th>
<th>MEO</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>00</td>
<td>260</td>
<td>270</td>
</tr>
</tbody>
</table>

h'F2

<table>
<thead>
<tr>
<th>CHAR</th>
<th>HR</th>
<th>MEO</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>04</td>
<td>110</td>
<td>110</td>
</tr>
</tbody>
</table>

h'E2

<table>
<thead>
<tr>
<th>CHAR</th>
<th>HR</th>
<th>MEO</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>04</td>
<td>5</td>
<td>26</td>
</tr>
</tbody>
</table>

h'F

<table>
<thead>
<tr>
<th>CHAR</th>
<th>HR</th>
<th>MEO</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>04</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

ATHENS

LAT. 30.0N LONG. 23.4W

NOVEMBER 1964

<table>
<thead>
<tr>
<th>CHAR</th>
<th>HR</th>
<th>MEO</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>00</td>
<td>160</td>
<td>160</td>
</tr>
</tbody>
</table>

foE2

<table>
<thead>
<tr>
<th>CHAR</th>
<th>HR</th>
<th>MEO</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>00</td>
<td>260</td>
<td>260</td>
</tr>
</tbody>
</table>

foEs

<table>
<thead>
<tr>
<th>CHAR</th>
<th>HR</th>
<th>MEO</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>03</td>
<td>28</td>
<td>30</td>
</tr>
</tbody>
</table>

h'F2

<table>
<thead>
<tr>
<th>CHAR</th>
<th>HR</th>
<th>MEO</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>04</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

CRITICAL FREQUENCY (109 HZ) IN M/C/S

<table>
<thead>
<tr>
<th>CHAR</th>
<th>HR</th>
<th>MEO</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>04</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

MED CNT

<table>
<thead>
<tr>
<th>CHAR</th>
<th>HR</th>
<th>MEO</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16</td>
<td>26</td>
<td>26</td>
</tr>
</tbody>
</table>

LAT. 38.0N LONG. 23.6E

SWEEP 1.0 MC TO 20.0 MC IN 7 SEC

TIME 180.0E

DISCUSSION

- The chart displays various parameters such as MEO, CNT, and frequency readings for different locations.
- The data is collected over a period of time, indicated by the HR values.
- The chart includes a section on critical frequency and MED CNT, which are important in understanding radio wave propagation.
Yamagawa Japan

September 1963

foF2

<table>
<thead>
<tr>
<th>Time</th>
<th>ME</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>36</td>
<td>04</td>
</tr>
<tr>
<td>04</td>
<td>32</td>
<td>06</td>
</tr>
<tr>
<td>08</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>14</td>
</tr>
<tr>
<td>16</td>
<td>28</td>
<td>18</td>
</tr>
<tr>
<td>20</td>
<td>28</td>
<td>22</td>
</tr>
<tr>
<td>24</td>
<td>32</td>
<td>26</td>
</tr>
<tr>
<td>28</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>32</td>
<td>28</td>
<td>34</td>
</tr>
<tr>
<td>36</td>
<td>26</td>
<td>40</td>
</tr>
<tr>
<td>40</td>
<td>26</td>
<td>04</td>
</tr>
</tbody>
</table>

foE

<table>
<thead>
<tr>
<th>Time</th>
<th>ME</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>24</td>
<td>04</td>
</tr>
<tr>
<td>04</td>
<td>22</td>
<td>08</td>
</tr>
<tr>
<td>08</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>24</td>
</tr>
<tr>
<td>24</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>28</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>32</td>
<td>8</td>
<td>36</td>
</tr>
<tr>
<td>36</td>
<td>6</td>
<td>40</td>
</tr>
</tbody>
</table>

foEs

<table>
<thead>
<tr>
<th>Time</th>
<th>ME</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>32</td>
<td>04</td>
</tr>
<tr>
<td>04</td>
<td>30</td>
<td>08</td>
</tr>
<tr>
<td>08</td>
<td>28</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>26</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>24</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>28</td>
<td>18</td>
<td>32</td>
</tr>
<tr>
<td>32</td>
<td>16</td>
<td>36</td>
</tr>
</tbody>
</table>

foF2

<table>
<thead>
<tr>
<th>Time</th>
<th>ME</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>28</td>
<td>04</td>
</tr>
<tr>
<td>04</td>
<td>26</td>
<td>08</td>
</tr>
<tr>
<td>08</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>22</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>24</td>
<td>16</td>
<td>28</td>
</tr>
<tr>
<td>28</td>
<td>14</td>
<td>32</td>
</tr>
<tr>
<td>32</td>
<td>12</td>
<td>36</td>
</tr>
</tbody>
</table>

foE

<table>
<thead>
<tr>
<th>Time</th>
<th>ME</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>24</td>
<td>04</td>
</tr>
<tr>
<td>04</td>
<td>22</td>
<td>08</td>
</tr>
<tr>
<td>08</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>24</td>
</tr>
<tr>
<td>24</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>28</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>32</td>
<td>8</td>
<td>36</td>
</tr>
</tbody>
</table>

foEs

<table>
<thead>
<tr>
<th>Time</th>
<th>ME</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>30</td>
<td>04</td>
</tr>
<tr>
<td>04</td>
<td>28</td>
<td>08</td>
</tr>
<tr>
<td>08</td>
<td>26</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>24</td>
<td>18</td>
<td>28</td>
</tr>
<tr>
<td>28</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>32</td>
<td>14</td>
<td>36</td>
</tr>
</tbody>
</table>

Taipei China

September 1963

foF2

<table>
<thead>
<tr>
<th>Time</th>
<th>ME</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>30</td>
<td>04</td>
</tr>
<tr>
<td>04</td>
<td>28</td>
<td>08</td>
</tr>
<tr>
<td>08</td>
<td>26</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>24</td>
<td>18</td>
<td>28</td>
</tr>
<tr>
<td>28</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>32</td>
<td>14</td>
<td>36</td>
</tr>
</tbody>
</table>

foE

<table>
<thead>
<tr>
<th>Time</th>
<th>ME</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>28</td>
<td>04</td>
</tr>
<tr>
<td>04</td>
<td>26</td>
<td>08</td>
</tr>
<tr>
<td>08</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>22</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>24</td>
<td>16</td>
<td>28</td>
</tr>
<tr>
<td>28</td>
<td>14</td>
<td>32</td>
</tr>
<tr>
<td>32</td>
<td>12</td>
<td>36</td>
</tr>
</tbody>
</table>

foEs

<table>
<thead>
<tr>
<th>Time</th>
<th>ME</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>30</td>
<td>04</td>
</tr>
<tr>
<td>04</td>
<td>28</td>
<td>08</td>
</tr>
<tr>
<td>08</td>
<td>26</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>24</td>
<td>18</td>
<td>28</td>
</tr>
<tr>
<td>28</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>32</td>
<td>14</td>
<td>36</td>
</tr>
</tbody>
</table>

Critical Frequency (10s in Mcs)

Yamagawa Japan

<table>
<thead>
<tr>
<th>Time</th>
<th>Critical Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>16.20</td>
</tr>
<tr>
<td>04</td>
<td>17.40</td>
</tr>
<tr>
<td>08</td>
<td>19.00</td>
</tr>
<tr>
<td>12</td>
<td>21.50</td>
</tr>
<tr>
<td>16</td>
<td>24.00</td>
</tr>
<tr>
<td>20</td>
<td>26.50</td>
</tr>
<tr>
<td>24</td>
<td>29.00</td>
</tr>
<tr>
<td>28</td>
<td>31.50</td>
</tr>
<tr>
<td>32</td>
<td>34.00</td>
</tr>
</tbody>
</table>

Taipei China

<table>
<thead>
<tr>
<th>Time</th>
<th>Critical Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>16.20</td>
</tr>
<tr>
<td>04</td>
<td>17.40</td>
</tr>
<tr>
<td>08</td>
<td>19.00</td>
</tr>
<tr>
<td>12</td>
<td>21.50</td>
</tr>
<tr>
<td>16</td>
<td>24.00</td>
</tr>
<tr>
<td>20</td>
<td>26.50</td>
</tr>
<tr>
<td>24</td>
<td>29.00</td>
</tr>
<tr>
<td>28</td>
<td>31.50</td>
</tr>
<tr>
<td>32</td>
<td>34.00</td>
</tr>
</tbody>
</table>

The images contain graphs and tables representing data on ionospheric parameters such as foF2, foE, foEs, and critical frequency, along with time intervals from 00 to 24 in 4-hour increments. The data is organized by month and year, with specific details for Yamagawa Japan and Taipei China.
<table>
<thead>
<tr>
<th>Location</th>
<th>Country</th>
<th>Date</th>
<th>Month</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akita</td>
<td>Japan</td>
<td>1963</td>
<td>Sept.</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1963</td>
<td>Aug.</td>
<td>46</td>
</tr>
<tr>
<td>Anchorage</td>
<td>Alaska</td>
<td>1965</td>
<td>Jan.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1964</td>
<td>Dec.</td>
<td>4</td>
</tr>
<tr>
<td>Athens</td>
<td>Greece</td>
<td>1964</td>
<td>Nov.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1963</td>
<td>Sept.</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1963</td>
<td>Aug.</td>
<td>47</td>
</tr>
<tr>
<td>Boulder</td>
<td>Colorado</td>
<td>1965</td>
<td>Feb.</td>
<td>1</td>
</tr>
<tr>
<td>Churchill</td>
<td>Canada</td>
<td>1964</td>
<td>Dec.</td>
<td>4</td>
</tr>
<tr>
<td>Churchhill</td>
<td>Canada</td>
<td>1963</td>
<td>Oct.</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1963</td>
<td>Sept.</td>
<td>32</td>
</tr>
<tr>
<td>Cocos I.</td>
<td></td>
<td>1964</td>
<td>Jan.</td>
<td>21</td>
</tr>
<tr>
<td>De Bilt</td>
<td>Netherlands</td>
<td>1963</td>
<td>Dec.</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1963</td>
<td>Nov.</td>
<td>25</td>
</tr>
<tr>
<td>Dourbes</td>
<td>Belgium</td>
<td>1963</td>
<td>Sept.</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1963</td>
<td>Aug.</td>
<td>44</td>
</tr>
<tr>
<td>El Cerillo</td>
<td>Mexico</td>
<td>1963</td>
<td>Sept.</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1963</td>
<td>Aug.</td>
<td>49</td>
</tr>
<tr>
<td>Ft. Monmouth</td>
<td>New Jersey</td>
<td>1964</td>
<td>Dec.</td>
<td>7</td>
</tr>
<tr>
<td>Godley Head</td>
<td>New Zealand</td>
<td>1964</td>
<td>Dec.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1963</td>
<td>Sept.</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1963</td>
<td>Aug.</td>
<td>50</td>
</tr>
<tr>
<td>Ibadan</td>
<td>Nigeria</td>
<td>1964</td>
<td>Jan.</td>
<td>20</td>
</tr>
<tr>
<td>Juliusruh/Rugen</td>
<td>Germany</td>
<td>1964</td>
<td>Aug.</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1964</td>
<td>July</td>
<td>12</td>
</tr>
<tr>
<td>Kenora</td>
<td>Canada</td>
<td>1964</td>
<td>Dec.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1963</td>
<td>Oct.</td>
<td>27</td>
</tr>
<tr>
<td>Kiruna</td>
<td>Sweden</td>
<td>1963</td>
<td>Sept.</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1963</td>
<td>Aug.</td>
<td>41</td>
</tr>
<tr>
<td>Kodaikanal</td>
<td>India</td>
<td>1964</td>
<td>Aug.</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1964</td>
<td>July</td>
<td>13</td>
</tr>
<tr>
<td>Kokubunji</td>
<td>Japan</td>
<td>1963</td>
<td>Sept.</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1963</td>
<td>Aug.</td>
<td>47</td>
</tr>
<tr>
<td>Leopoldville</td>
<td>Congo</td>
<td>1964</td>
<td>Feb.</td>
<td>19</td>
</tr>
<tr>
<td>Lycksele</td>
<td>Sweden</td>
<td>1963</td>
<td>Sept.</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1963</td>
<td>Aug.</td>
<td>42</td>
</tr>
<tr>
<td>Maui</td>
<td>Hawaii</td>
<td>1965</td>
<td>Jan.</td>
<td>2</td>
</tr>
<tr>
<td>Narssarsuaq</td>
<td>Greenland</td>
<td>1964</td>
<td>Dec.</td>
<td>3</td>
</tr>
<tr>
<td>Nurmijarvi</td>
<td>Finland</td>
<td>1963</td>
<td>Sept.</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1963</td>
<td>Aug.</td>
<td>43</td>
</tr>
<tr>
<td>Okinawa I.</td>
<td></td>
<td>1964</td>
<td>Dec.</td>
<td>7</td>
</tr>
<tr>
<td>Ottawa</td>
<td>Canada</td>
<td>1964</td>
<td>Dec.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1963</td>
<td>Oct.</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1963</td>
<td>Sept.</td>
<td>35</td>
</tr>
<tr>
<td>Port Stanley</td>
<td>Falkland I.</td>
<td>1964</td>
<td>June</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1964</td>
<td>May</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1963</td>
<td>Sept.</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1963</td>
<td>Aug.</td>
<td>50</td>
</tr>
<tr>
<td>Location</td>
<td>Country</td>
<td>Dates</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>---------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>REYKJAVIK</td>
<td>ICELAND</td>
<td>1964 Dec. 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SŁOUGH</td>
<td>ENGLAND</td>
<td>1963 Sept. 32, 1963 Aug. 44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOTTENS</td>
<td>SWITZERLAND</td>
<td>1963 Dec. 24, 1963 Nov. 26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TROMSO</td>
<td>NORWAY</td>
<td>1963 Sept. 29, 1963 Aug. 41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPPSALA</td>
<td>SWEDEN</td>
<td>1963 Sept. 31, 1963 Aug. 43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAKKANAI</td>
<td>JAPAN</td>
<td>1963 Sept. 34, 1963 Aug. 45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WARSAW</td>
<td>POLAND</td>
<td>1963 Dec. 23, 1963 Nov. 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WINNIPEG</td>
<td>CANADA</td>
<td>1963 Sept. 34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOOMERA</td>
<td>AUSTRALIA</td>
<td>1964 June 14, 1964 May 16, 1964 Apr. 17, 1964 Mar. 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YAMAGAWA</td>
<td>JAPAN</td>
<td>1963 Sept. 38, 1963 Aug. 48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CRPL REPORTS

(A detailed list of CRPL publications is available from the Central Radio Propagation Laboratory on request.)

Catalog of Data.
A catalog of records and data on file at the U.S. IGY World Data Center A for Airglow and Ionosphere, Boulder Laboratories, National Bureau of Standards, Boulder, Colorado, which includes a fee schedule to cover the cost of supplying copies, is available upon request.

CRPL-F (Part A), "Ionospheric Data."
CRPL-F (Part B), "Solar Geophysical Data."
These monthly bulletins have limited distribution and are sent, in general, only to those individuals and scientific organizations that collaborate in the exchange of ionospheric, solar, geomagnetic, or other radio propagation data of interest to the CRPL. Others may purchase copies of the same data from the U.S. IGY World Data Center A for Airglow and Ionosphere, National Bureau of Standards, Boulder, Colorado.

"Ionospheric Predictions."
This series of publications is issued monthly, three months in advance, as an aid in determining the best sky-wave frequencies for high frequency communications over any transmission path, at any time of day for average conditions for the month.
(NOTE: Tested sets of punched cards of the predicted numerical coefficients of numerical maps of the Ionospheric Predictions, for use with electronic computers, may be purchased by arrangement with the Prediction Services Section, CRPL, Boulder Laboratories, Boulder, Colorado.)
