Page 8, line 1. For "as" read "or."

8, line 15. Should read "electrons are, so far as known, strictly identical, and, for ease of"

8, line 16. After "calculation" insert "are"

21, Fig. 6. The slip-rings should be marked A, A,

28, Fig. 12. On the hypotenuse, the expression under the radical sign should be \(R^2 + \omega L^2 \)

61, Fig. 42. On the scale of abscissas, the values given should be 0.5, 1.0, 1.5, 2.0, 2.5

64, Equation 50. Should read \(L_a = \frac{L}{1 - \omega^2 C_0 L} \)

37, Fig. 51. The condenser marked \(C \) should be marked \(C_1 \). The whole of the main coil should be marked \(L \). The upper section of \(L \) should be marked \(L' \). The lower three sections of \(L \) should be marked \(L'' \).

37, line 33. The last word in the line should be "in".

37, Fig. 52. The coil on the right of the figure should be marked \(L' \) instead of \(L'' \).

37, line 32. For \(L' \) read \(L_1 \).

38, line 10. For Fig. 31 read Fig. 53(a).

35, line 11. For Fig. 32 read Fig. 37.

70, line 12. For "in" read "is".
Page 71, line 13. For "are" read "is".

73, line 74. For \(Z_1 \) read \(X \).

74, Fig.61. The curves should be labeled \(X \) instead of \(Z \).

74, Fig.61. The value of \(C_0 \) should be 0.0008 microfarad.

75, line 8. The equation should read

\[
\lambda = \frac{m}{4\sqrt{L_0 C_0}}
\]

76, line 3. For \(L_0 \) read \(L \).

76, Fig.63. On the curves, for \(Z \) read \(X \), and for \(Z_L \) read \(X_L \).

76, Fig.63. The value of \(C_0 \) should be 0.0008 microfarad.

78, Fig.65. On the curves, for \(Z \) read \(X \), and for \(Z_L \) read \(X_L \).

78, Fig.63. The value of \(C_0 \) should be 0.0008 microfarad, and the value of \(\lambda \) should be 0.0003 microfarad.

78, last line. For "parabola" read "hyperbola".

84, Fig.65. The inductance coil in series with the antenna should be marked \(L \).

87, Fig.67. On the upper envelope of the wave train, the upper point should be marked \(A \), the middle point \(B \), and the lower point \(C \).

88, Fig.68. In circuit I, for \(a \) read \(E \).

108, Fig.77. The upper circuit should be marked I, the middle circuit II, and the lower circuit III.

128, In Table 3, the numbers, inequality signs, and minus signs, appearing to the right of \(\omega \) or \(\lambda \), should all be in the exponent.

137, line 23. The equation should read

\[
L_X = \frac{\lambda}{3.553 \cdot C_X}
\]

143, Fig.97. The (horizontal) hot wire should be marked \(A \).
Page 150, line 9. The equation should read
\[
\frac{I_1^2}{I_2^2} = \frac{R_2^2 + \omega^2 L_2^2}{R_1^2 + \omega^2 L_1^2}
\]

150. In the last equation on the page, for \(I_m \) read \(I_m \).

151. In the first and second equations on the page for \(I_m \) read \(I_m \).

151, line 23. The sixth word in the line should be "possibilities".

152, line 9. The equation should read:
\[
\omega \frac{I}{I_1} = \frac{I_2}{I_1} \sqrt{\frac{R_2^2 + \omega^2 L_2^2}{R_1^2 + \omega^2 L_1^2}}
\]

163, Fig.132. The resistance in shunt with the telephone receivers should be marked A.

179. In equation (79) insert the fraction bar in the fraction
\[
\frac{I_m}{I_1}
\]

182, line 5. For "soil" read "coil".

187. In equation (100), in the denominator of the expression under the radical sign, for \(I_1 \) read \(I_1^2 \).

188, line 8. The line should read "to the square of the setting, at constant frequency."

195. Equation (107) in the denominator, for \(\omega \tau \) read \(\omega \tau \).

196, line 13. After "setting" insert comma.

199, line 27. The ninth word in the line should be "measurements".

219, line 24. After "obtained" change the period to a comma.

237, Fig.166. The armature contact of the buzzer should be marked A.

238, Equation (135). In the equation for \(p_{11} \), for \(k \) read \(k_1 \).

254, line 28. For 200 cm read 206.25 cm.
Page 244, last line. Read

\[
\frac{4\ell}{d} = 3300. \log_{10} 3300 = 3.51851
\]

245, line 2. For \(\log \) 3300 read \(\log_\varepsilon 3300 \).

248, line 19. The exponent should be raised to the proper position in \(\left(\frac{D}{2h} \right)^2 \).

255, line 3. Delete \(A_s = 0.633 \).

255, line 15. Should read "so that the correction is \((0.01257)(30)(13.70)(0.333) = 1.35 \mu H"."

256. In the table, in the column headed \(L \), the fourth item should be 0.318 instead of 0.388.

259, line 19. For 17269 read 0.17269.

259, line 20. For 104 read 0.00104.

259, line 21. Move to the right the quantity

\[
\frac{0.32}{16} = 0.816, \text{ which is equated to 0.0046}
\]

261, Fig. 184. For \(b \) read \(a \).

261, lines 9-11. Read "The correction for cross section may, in each case, be made by adding 0.01257 \(A_1 A_2 \) \((A_1 + B_1) \) to the value of inductance for the equivalent coil."

262. In equation (163) the numerator of the first fraction should be \(n-1 \).

263, Fig. 187. The line showing the dimension \(d \) should extend beyond the wires at each end of the coil a distance equal to half of the spacing of the wires.

263, next to last line. Enclose "Fig. 187" in parentheses.

264, line 17. Read

\[
= 12.8 \left[3.712 \cdot 0.723 + 0.004 \right] = 56.43 \text{ microhenries.}
\]
Equation (174) should read:

\[M = 0.002 \left[2.303 \log_{10} \frac{L}{D} + D - \sqrt{L^2 + D^2} \right] \]

271, Fig. 193. For B' read B. For B read B'.

274. In equation (185) delete the 2 appearing before each of the two expressions in parentheses on the right-hand side of the equation.

275. The last word in the title of Fig. 200 should be "section."

281. In the title of Fig. 205, the next to the last word should be "being."

281, line 23. Space should be inserted to separate the two equations:

\[g = \sqrt{250} \quad \text{and} \quad \frac{a^2 A^2}{g^4} = \frac{4}{625} \]

282. Fig. 206 is inverted. The next to the last word in the title of Fig. 206 should be "being."

284. Title of Table 12 should read "Values of Correction B in Formulas (155), (165), (168), and (169)."

286. In Table 16, in the fifth column, which is headed E, the last five values should be:

0.0010741
0.0010010
0.0009306
0.0008626
0.0007973

288, Fig. 207. In the vertical scale on the right of the figure the value appearing above \(\sqrt{ } \) should be 1.5.

289. In title of Fig. 208 delete the bracket appearing between \(\log_{10} \) and f.

295, line 13. Insert minus sign over the characteristic of the logarithm, to read 1.13265.
Equation (207) should read:

\[x = \pi d \sqrt{\frac{2 \mu f}{1000 \rho}} \]

Equation (208) should read:

\[\alpha_c = 0.01071 \sqrt{f} \]

Equation (229) should read:

\[\lambda_m = \frac{1.884 \times 10^9}{\omega} \]

In equation (253) the exponent should be \(\frac{3}{2} \).

In equation (255) for I read \(I^2 \).

Fig. 220 should be turned through 90°. The bottom of the figure now appears on the right.

For "Alternating" read "Alternating".

For "Laboratory" read "Laboratory."

In the second column, the first word should be "Conductors,"