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Introduction 

A. L. Leiner 

In the seven years since SEAC first began 
regular operation (April 1950), the feasibility of 
applying general-purpose digital computing ma¬ 
chines to a broad range of new problems has 
become well established. During this period, 
digital computers have been successfully put to 
work on a wide variety of scientific and engineering 
calculations, clerical and technical data-processing 
jobs, and real-time control operations. 

For some important applications, however, the 
opportunity of using automatic computers is still 
severely restricted by the limited speed at which 
available digital machines can carry out the basic 
arithmetical operations. For this reason a con¬ 
siderable development effort is still being directed 
toward the design of faster digital arithmetic 
devices. 

In attacking the general problem of how to 
increase arithmetic computation speeds, two dis¬ 
tinct paths are open to the computer designer. 
One approach consists in trying to develop elec¬ 
tronic components and circuitry capable of ampli¬ 
fying, storing and switching signals at higher 
basic repetition rates. The other approach at¬ 
tempts to gain over-all speed by finding methods 
for organizing slower electronic elements into 
more efficient over-all systems. In following the 
latter course, the increased problem-solving speed 
is obtained by harnessing the same simple com¬ 
puting elements together in more complex logical 
combinations. A typical example of the latter 
method, for instance, would be to organize the 
basic computing elements in such a way that 
several separate steps of a given over-all operation 
could be carried out simultaneously by different 
units in the same machine. A straightforward 
application of this principle, however, would often 
entail the use of excessively large amounts of 
additional equipment. As a rule, therefore, 
methods based on the use of duplicated equipment 
must also be coupled with the use of more subtle 
algorithms for carrying out the basic processes and 
the use of processing logics specially adapted to 
the physical peculiarities of the available comput¬ 
ing components. 

The two papers that follow represent attempts 
to produce faster arithmetic processing units by 
increasing the complexity of their logical structure 
without at the same time materially increasing the 
number of components used. In the first paper, 

which is concerned with addition and subtraction 
operations, the increased speed is obtained chiefly 
by using the early phases of the operation for 
generating certain special auxiliary functions of 
the digits in the numbers being added together. 
These auxiliary functions are then used later on in 
the process to facilitate the determination of the 
conventional “carry” signals that are required in 
the last stages of the operation. The adder 
designs illustrated are particularly suited to the 
special type of dynamic pulse circuitry developed 
at NBS during the course of the SEAC and 
DYSEAC programs. When associated with a 
suitably fast storage device, these adder designs 
yield over-all arithmetic processing units that 
perform up to 150 times faster than the earlier 
machines. With appropriate modifications, the 
same principles could be applied to other types of 
electronic circuitry. 

The second paper is concerned with the more 
general problem of how multiplication speeds can 
be improved by omitting certain time-consuming 
steps that are shown to be not strictly necessary. 
These steps are ordinarily included when the 
elementary definition of multiplication as a simple 
sequence of repeated addition operations is applied 
in too straightforward a fashion. The authors 
show how, by making a simple preliminary inspec¬ 
tion of one of the numbers to be multiplied, up to 
two-thirds of the usual addition steps can some¬ 
times be skipped. In this way speed increases of 
of 2.5 to 3 over standard methods can generally 
be obtained. This shortcut multiplication meth¬ 
od, unlike the previously described addition 
method, is of general applicability and not neces¬ 
sarily associated with any particular class of 
computing component or circuitry. In terms of 
equipment needs it compares most favorably with 
other proposed methods that involve the use of 
several separate addition devices. 

The present Circular contains the first part of a 
group of papers to be published on the logical 
design work carried out at NBS since 1948 on 
digital-computing, data-processing, and control 
systems. The second section, in a forthcoming 
Circular, will describe several digital systems other 
than the SEAC and DYSEAC that have been 
designed for various general-purpose and special- 
purpose applications. 
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1. A Logic for High-Speed Addition 
A. Weinberger and J. L. Smith 

1. Introduction 

The development at the National Bureau of 
Standards of the diode capacitor memory [1,2],1 
which is capable of being read or written into 
randomly at the rate of one word per microsecond, 
has made it worth while to build devices capable 
of processing information at comparable rates. 
Since the basic microo-peration common to most 
arithmetic processes is the adding of two numbers, 
it seemed desirable to design an adder having a 
cycle time no greater than l^isec. 

The major speed limitation in any adder is in 
the production of carries, and in this paper the 
problem is attacked from the standpoint of logical 
organization. Although work is being done else¬ 
where on this subject, using newer and faster 
basic circuit elements, the analyses to be described 
show that it is both feasible and economical to 
achieve l-^sec addition times for 53-bit words, 
using the 1-Mc circuitry that has been success¬ 
fully utilized in SEAC [3] and DYSEAC [4,5]. 

The increased complexity of the logic of this 
adder necessitated the extensive use of Boolean 
algebra in arriving at the design itself. Because 
the procedure used in developing the final design 
is an interesting example of the practical applica¬ 
tion of Boolean algebra, the actual logic of the 
design process is described in considerable detail. 

Before discussing the adder, a brief description 
of the logical capabilities of the SEAC circuitry [6] 
will be presented. As shown in figure 1.1, the 
basic electronic unit consists essentially of three 
levels of diode gates in an OR-AND-OR logical 
array followed by a transformer-coupled pulse 
amplifier. The rate at which successive pulses 
pass through such a stage is determined by the 
clock frequency, which is, in this case, 1 Mc/sec. 
The transit time of a pulse through a stage, how¬ 
ever, is much less than 1 ,usec. For this reason, 
the clock pulses are made available in several 
phases. The way in which different stages are 
controlled by clock pulses of different phases is 
illustrated in figure 1.2. In SEAC, for example, 
1-Mc clock pulses are available in 3 phases, 
K msec apart. In DYSEAC, 4-phase clock pulses 
are used, whereas for reasons that will be developed 
later, in the adder to be described a 5-phase clock 
is used. Figure 1.3 shows graphically these timing 
relationships for SEAC. Signals emitted from 
different stages clocked at different times must be 
synchronized by means of electric delay lines 
before they are gated in a common stage, as shown 

1 Figures in brackets indicate the literature references on page 12. 

in figure 1.4. Both positive and negative signals 
are available from a stage, the negative signals 
being used for inhibiting (see fig. 1.5). 

The logical gating required in any stage of the 
adder to be described is essentially of the same 
complexity as that required in the packaged 
building blocks used in constructing DYSEAC, 
and in the OR-AND-OR gating configuration of 
a stage up to 4 AND-gates and up to 6 inputs in 
the largest AND-gate are permitted. 

Boolean notation of the sort described by 
Richards [7] will be used hereafter to describe the 
gating configurations. In figure 1.6 are shown a 
typical gating stage and the corresponding Boolean 
expression for the output in terms of the inputs. 
There are three terms in the expression, each one 
corresponding to an AND-gate; the first term, 

(AJrB)CDEF, corresponds to the top AND-gate; 
the second term, (G-\-H)I, corresponds to the mid¬ 

dle AND-gate; and the last term, J(K-\-L-\-M)N, 
corresponds to the bottom AND-gate. The fac¬ 
tors of a term represent the inputs to the corre¬ 
sponding AND-gate. For example, the five 

factors of the first term, (A-\-B), C, D, E, and F, 
correspond to the five inputs to the top AND-gate; 
Whenever a factor consists of more than one term, 
it is represented by an OR-gate. For example, the 
factor (A-+-B) of the first term corresponds to the 
2-input OR-gate of the top AND-gate. A factor 
could also be a negative or inhibit signal, and in 

this case it is denoted by a bar on top; e. g., C and 

D are two factors of the first term corresponding 
to the two negative signals, which may inhibit 
the top AND-gate. For the sake of simplicity in 
the discussion of the Boolean expressions that 
follow, no distinction is made between delayed 
and undelayed signals. 

GATING STAGE 

CLOCK 

D :::t -'I -Qa 
OR-GATE AND-GATE OR-GATE 

.TRANSFORMER-COUPLED 
PULSE AMPLIFIER 

Figure 1.1. One stage of SEAC-type circuitry. 
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CLOCK 
PHASE 

Li 
CLOCK 
PHASE 

u 
-o- -ETC. 

Figure 1.2. Gating stages with different clock phases. 

CLOCK 
PHASE 

CLOCK _ 

PHASE 3 

t l/J Sec) 
£^ % i 2 

Figure 1.3. Time relationships among SEAC clock phases. 

Figure 1.4. Synchronizing by means of electric delay lines. 

DELAYED NEGATIVE 

CLOCK 

L 
|delay| c 

CLOCK 

Lr 
DIRECT NEGATIVE 

6- 

Figure 1.5. Use of negative signals for inhibiting. 

=0-O-OUTPUT=(A+B) C 5E F 

“17 +(G+H) 1 (G+H) I 

+ J(K+L+M)N 

Figure 1.6. Typical gating stage and corresponding 
Boolean expression. 

2. Sequential Carry Generation 

The analysis leading to the design of the parallel 
adder will now be described in detail. 

Let 

J4=augend=JA;t2s~1+JA)fc_i2*_2-|- . . . +^2°, 

B= addend = Bk2k~l-\-Bk-i2k~2jr . . . -\-Bi2°, 

S= sum =£*2*-1+,S'*_i2*-2+ . +SX 2°, 

£4=the carry resulting from the addition in 
the &th digit position. 

The well-known rules for binary addition are 
given in the form of a function table (table 1.1). 
From these, the binary sum and carry can be ex¬ 

pressed in Boolean notation as follows: 

Sk=AkBk Ok-1+A kBk Ct-1+AkBk Ck~ i+AkBk Ck~ i. 

(D 
Table 1.1. Function table for binary addition 

Augend_ •4 k 0 0 0 0 1 1 1 1 

Addend_ Bk 0 0 1 1 0 0 1 1 

Previous 
carry. Ck-1 0 1 0 1 0 1 0 1 

Sum. sk 0 1 1 0 1 0 0 1 

Carry ck 0 0 0 1 0 1 1 1 
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Ck=AkBkCk^x-\-AkBkCk^x-\-AkBkCk^x-\-AkBkCk-x 

=Ak Bk+AkOk-i+BkCk~i 

= (Ak-\-Bk){Ak-\-Ck-x){Bk-\-Ck-x) (2) 

=AkBk + {Ak+Bk) Ck-1. 

The carry function, Ck, has been reduced from 4 
terms of 3 factors each (corresponding to 4 AND- 
gates with 3 inputs each), as shown in the top line 
of eq (2), to 3 alternative forms, each involving 
fewer terms and factors. 

Since the expression for Sk in eq (1) can be 
implemented in one gating stage, any sum digit 
can be made available during the clock phase 
immediately following the formation of its cor- 

3. Simultaneous 

The limitation on the sequential method of 
forming the carries stems from the use of eq (2), 
which specify Ck as an explicit function of Ck_x. 
It can be shown that a carry need not depend 
explicitly on the preceding one, but can be ex¬ 
pressed as a function of only the relevant augend 
and addend digits and some lower-order carry. A 

Cx= AXBX 

T (Ax-\- Bx)Co 

c2= A2B2 = A2B2 

+ (A2+B2)Cx + {A2JrB2)Ax 

responding carry, Ck_x. However, if the carries 
are generated according to eq (2), each carry digit 
would have to await the formation of the next 
lower-order carry. As a result, the sum digits 
coidd be obtained at the rate of only one per clock 
phase, for if C\ is available during the first clock 
phase, C-2 could be generated during the second 
clock phase, C3 during the third clock phase, etc. 
For numbers having n binary digits, n— 1 possible 
carries would have to be provided for, requiring 
n— 1 clock phases for their complete determina¬ 
tion. If a 4-phase, 1-Mc clock were used, 4 suc¬ 
cessive sum digits coidd be obtained during 1 /jsec. 
Such an arrangement, using sequential carry 
generation, would provide an increase in speed of 
a factor of only four over the addition speed of a 
completely serial adder. 

Carry Generation 

considerable gain in speed may be obtained as a 

result of this. 

Using the functional form given by the last 

equation in (2), successive carries are shown to be 

expressible in terms of the same lower-order carry 

by a method of substitution. 

Bx 

+ (A2+B2) (Ax -\-Bx)Cn 

C3 — A3B3 

+ (H3+B3)C2 

— a3b3 

+ (A3+B3) An B2 

+ {A3A~ B3) (A2-\- B2)AxBx 

d- {A3 T B3) (A2 -\~B2) (Ax + Bx) Co (3) 

c4= a4b4 axba 

+ (Ai-\-Bi)C3 + (Ai-\~Bi)A3B3 

{Ax+Z?4) (A3+B3)A2B-2 

+ (Hi+Hj) (A3-{-B3) (A2-\- B2)AxBx 

+ (Ai+B±) (A3 A-B3) {An + Bn) (Ax + Bx) Co 

axb4 

+ (AiJrBi)AsB3 

+ {Ai+Bi) (A3+B3) A2B2 

+ (A4+H4) {A3-\-B3) (A2-\-B2) (Hi+HilfAxT C0) (Bx-\-Co). 
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Equations (3) show how as many as 4 successive 
carries can be expressed as functions of the same 
carry, with all expressions consisting of no more 
than 4 terms and with the largest term consisting 
of no more than 6 factors. These 4 carries can 
therefore be generated simultaneously by means 
of only 4 gating stages. 

Similarly, the next more significant four carries, 
C5 through Cs, can be formed simultaneously dur¬ 
ing the next clock phase as functions of the appro¬ 
priate augend and addend digits and C4. In short, 
four successive carry digits can be formed simul¬ 
taneously every clock phase. One gating stage 
per carry is required. 

To summarize, if C0 is available in the first clock 
phase, Ci through C4 can be generated during the 
second clock phase, C5 through Cs during the third 
clock phase, etc. Each group of sum digits can 
be obtained one clock phase after the corre¬ 

sponding group of carries has been formed. Figure 
1.7 illustrates in block-diagram form an adder 
utilizing this principle of simultaneous carry 
generation. 

987654321 

A A A A A A A A A 

B B B B B B B B B 

I AUGEND 

Co] [ ADDEND 

CARRY 

GENERATION 

SUM 

Figure 1.7. Nine-bit parallel binary adder. 

4. Use of Auxiliary Carry Functions 

Of signal importance is the use that can be 
made of the second clock phase to further speed 
up the addition process. This time can be utilized 
to form certain auxiliary carry functions, which 
enable additional carries to be generated during 
the third clock phase simultaneously with the 
carries C5 through Cs. More specifically, C9, Cw, 
etc., can be formed during the third clock phase as 
functions of C4 if some of the terms involving only 
the augend and addend digits in the expanded 
relations for C9, Cv>, etc., are combined as auxiliary 
carry functions in separate stages during the 
intervening clock phase. 

For example, the expression for C9 is shown in 
the first equation in (4) expanded as a function of 
04. Because of limitations on the gating com¬ 
plexity, it is not possible to form (79 directly even 
if it were reduced to four terms. Instead, the 
function is implemented by parts. 

(The outlines drawn around the various parts of 
eq (4) serve merely to correlate the corresponding 
parts of the two equations.) The 5 terms en¬ 
closed within the triangle can be reduced to 4 
terms by combining the first 2 terms. This re¬ 
duced 4-term expression can then be implemented 
in 1 gating stage during the second clock phase, 
and it is then designated by X%. The single factor 
enclosed within the rectangle can also be im¬ 
plemented during the second clock phase in one 
gating stage. It is designated by Yg. By means 
of these 2 auxiliary carry functions, X9 and Yg, 

the actual carry C9 can be formed quite handily 
in 1 gating stage during the third clock phase, 
according to the second equation in (4). 

The next 4 carries, Cx0 through (713, can also be 
formed during the third clock phase by utilizing 
these same auxiliary carry functions. The most 
complicated of these expressions, the one for C13, 
is given in eq (5), where further combinations are 
made to reduce the number of terms to four. 

Cig—AigBig 

+ (Al3+B13)A12Bi2 

+ CAi3+Bif) {An+1^12) Ai xBi 1 
T" (Aig-f-Bif) {AnY Bif) (AnY Bu) A10B10 

+ (Ai3 + Hi3) (Ai2-\-Bi2) (An+Ull) (A10AB10) Xg 

+ (Anf-Bn) {Anf-Bif) (An+5U) (Al0+510) 19C4 

(5) 

Cis= (A]3+7?13) (A13+A12) {AiZ-\-Bif) {Bizf-Aif) 

(BiZ-\-Bif) 

+ (A13+I?13) {An-{- Bvf) AnBn 

+ (A13 + H13) (Aigf-Bn) (Au-|-i?n)/l1o-B1o 
+ (A-i3 + I?i3) {A12AB12) (A.n + i?n) (vbo + Iho) 

(Xg+Yg){Xg+Ci). 
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Figure 1.8 illustrates a parallel adder that will 
complete an addition on 14 binary digits in 4 
clock phases, using 1 pair of auxiliary carry 
functions. 

By means of additional auxiliary carry functions 
it is possible to extend still further the sequence 
of carries that can be formed in the same clock 
phase. For example, as shown in eq (6), Cu can 
be expressed as a simple function involving <74 
and another pair of auxiliary carry functions, Xu 

and Yu, which are defined implicitly in eq (6). 

1st. 

CLOCK 
PHASE 

2nd. 

CLOCK 
PHASE 

3 I'd. 

CLOCK 
PHASE 

4th. 
CLOCK 

PHASE 

14 13 12 II 10 9 8 7 6 5 4 3 2 1 

A A A A A A A : A A A AAA A AUGEND 

ADDEND B B B B B B B B B B B B B B Co( 

A A A A A A A r A (AAA 
BBBBB BBBBBBBBB 

S S S S S S S S S S S S S S | 
SUM 

Figure 1.8. Fourteen-bit parallel binary adder. 

C15, 6’ie, and (?i7 can also be implemented in single 
stages as functions of (?4 by using the same two 
pairs of auxiliary carry functions. CK, CK, and 
C;0 require still a third pair of auxiliary carry 
functions in order that they be generated during 
the same clock phase as functions of G±. 

If it were desired, a total of 25 carries could be 
generated simultaneously as functions of Ci dur¬ 
ing the third clock phase without exceeding the 
limitations on gating complexity. However, if 
the number of simultaneous carries is limited to 
16, only 3 pairs of auxiliary carry functions are 
required. Figure 1.9 illustrates a parallel adder 
that can add numbers of 21 binary digits in 4 
clock phases, utilizing this scheme. 

CLOCK A 1 A A A A A A A A A A 

PHASE B B B B B 8 B B B B B 

L . 
2nd. 

CLOCK m nr 
PHASE m ls 

3 rd. 
CLOCK 1 [ &r4r 

98?, 65432 1 

A | A , A A lA 'A A lA | A A 

•: 4-r-l 

PHASE [~CjC~ c I C 1 c c c c c 
J y / 

c c c c c c 

AAAAAAAAAA 
BBBBBBBBBB 

TV 
A A 
8 B 4th. 

PHASE I S 1 S | S|S | S 1 S~ |S | S |S1S 1 S j S1 S ssssssss 

L91-9 

AUGEND 

ADDEND 

CARRY 

GENER¬ 
ATION 

A A AAAAAAA 
B B ! B j B B B B B, B 

SUM 

Figure 1.9. Twenty-one-bit parallel binary adder. 
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5. Two Levels of Auxiliary Carry Functions 

To extend the parallel adder to accommodate 
53 binary digrits, it will be shown that only 1 addi¬ 
tional clock phase is necessary, and that during 
the fourth clock phase the carries C2X through C52 
can all be generated as functions of C20. The en¬ 
tire parallel array of sum digits, Si through S53) 
can then be formed during the fifth clock phase. 

The ability to generate all of the carries C2X 
through Cr52 during the fourth clock phase stems 
from the fact that two clock phases are available 
between these carries and the input digits. This 
permits the formation of two levels of auxiliary 
functions. The first level consists of sets of X’s 
and F’s, which are functions of the relevant 

augend and addend digits only, as was the case 
previously. The second-level auxiliary carry func¬ 
tions are generated by sets of stages labeled Z and 
W and are functions of certain first-level functions 
only. 

Figure 1.10 illustrates in block-diagram form 
the complete 53-bit adder, which makes use of 
first-level and second-level auxiliary carry stages. 
As in the case of the preceding carries, C2X through 
C32 are generated as functions of the appropriate 
augend and addend digits, some of the first-level 
auxiliary carry stages, and C2o■ For example, the 
most complicated of these, C32, is shown in eq (7) 
to be reducible to four terms. 

C32—A32B32 

+ (A32+B32) a31b31 

A (A32AB32) (A3i-\- B3x) A30B3o 

a( a32+B32) (A31 a b3 1) (A30AB30) xm 

+ (A32+B32) (A3l+B31) (A30+B30) Y29X2s (7) 

+ (AI32+-B32) (A31-\-B31) (A30+.B30) y22y25c20 

C32= (A32A B32) {A32AA3l) (A32AB3i) (B32-\-A3i) (Z?32+i?3i) 

+ (A32+B32) (/13i + B3i)A3oB30 

A (A32AB32) (-431+_Z?31) (A3o A B3o) {X29A r29) (X29AX25) 

+ (A32AB32) (-431 + -S31) (A3o + i?3o) F29F25C20. 

53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 II 10 9 8 7 6 5 4 3 2 I 

A A A A A A A A A A A A A A A A A A A A a! A 1 A a| a A 1 A 1 A A A A j A j A A! a: A A A j A A A ' A A 1 A | A 1 A ' a| A A ! A A A 

B B B B B B B B B B B B B B B B B B B B 

CD 

CD 

CD B |b B 

00 

CD B B 8 1 8 1 B : B [ B B b : b , b : b B B , b“Ib |B 

CD 

CD 818,8 B 

ITT 

1 AUGEND 

0r ADDEND 

CLOCK |S I s [ s| s I s | S[ S, S[S | S j S [ S j S ! s | s | s | s ] s j s | s j s | s | s ] s [ s j s j s ] s ] s | s | s ; S | S | s | s | s | s | s | s | s | s | s j s | s j s ] s j s | s | s | s [ s ] s j s | >SUM 

Figure 1.10. Fifty-three-bit -parallel binary adder. 
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The next higher-order carry, C33, requires a third 
pair of auxiliary carry functions, A"33 and F33, as 
shown in eq (8). Also, at this point it becomes 
economical to form a pair of second-level auxiliary 
carry functions, Z33, consisting of the terms within 
the solid-line triangle, and W33, consisting of the 
factors within the solid-line rectangle. C33 can 
then be simply generated by means of Z33 and W33, 
as shown in the last of eq (8). 

The subsequent carries, C3i, C35, etc.., are simi¬ 
larly generated by means of these and, when neces¬ 
sary, other second-level auxiliary carry functions. 
For example, for the carries up to C37, the same 
pair of second-level functions, W33 and Z33, is 
sufficient, whereas C38 requires the use of another 
pair of first-level and second-level auxiliary carry 
functions in a manner exactly analogous to the 
formation of C33. 

(8) 
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The last digit position where auxiliary carry 
functions are introduced is at 48. The carry at 
this position, C48, is shown in eq (9) to be a simple 
function of the last pair of second-level auxiliary 
carry functions. 

The collected Boolean expressions for the 
auxiliary carry functions and for the carry func¬ 
tions themselves for this particular 53-bit adder 
are given in tables 1.2 and 1.3. 

The number of gating stages required to imple¬ 
ment this design can be seen by examining figure 
1.10. Each square box in the diagram represents 
one gating stage. Of the 238 stages used in the 
whole adder register, note that only 26 are used 
to create the auxiliary carry functions. The 
other 212 stages are needed irrespective of how 

the carry digits are formed, because they comprise 
53 sets of 4 stages for the augend, addend, carry, 
and sum digits. 

Table 1.2. Auxiliary carry functions 

Fk represents (Ak+Bk)(Ak+Ak-i)(Ak-\-Bk-\){Bk+Ak-\){Bk+Bk-\). 
Dk represents AkBk. Rk represents (Ak+Bk). 

A 9 = RoT RqRsRiD$ 
T RoRs^ReDs 

A* i4 —F u + RuRuDn+RuRuRiiDn 
+ .R14.R13.R12fl11.D10 

A18 =Di8 + Ri8Di7 + Ri8Ri7Di6 

+ RisRnRieDis 

•A„5 = A25 T R25R24D23 + R25R24R23D22 

T R25R24R23R22D21 

A22= D29+ A29D28 + R29R28D27 

-(- R29R28R27D26 

A33 = D33+R33D32+R33R32D31 

+ R33R32R31D30 

A38 = R38+ R38R37D36 + R38R37A36D35 

+ RmRwRmRmDm 

A 43 = R43+R43^42D41 + R43R42R41D40 

T R43R42R41R40D39 

A 48 = Fi%-\- RwRuDwA RisRtfRwDib 
+ A48R47R46S45D44 

^33 — A33+ F33A29+ F33F29A25 

Z38 = A38 + F38A33 + F38F33A29+ F38F33F29AT25 

Z43 = A43+ F43A38+ F43F38A33 

+ F43 F38 F33 (A29 -H F29) (A29+ A25) 

Z48 =A48+ F48A43 

+ F48F43(A38+ F38) (A38+ A33) 

+ F48F43F38F33(A29-|- F29) (A29+A25) 

F9 = RqRqR-jRqRs 

114 — RuRizRnRnRio 

Fl8 = RlgR17R16R15 

F25 — A25R24R23R22R21 

F29 — R2qR2sR2tR26 

F33 — R33R32R31R3O 

F38 — R38R37I1A0R35A34 

F43 R43R42R41R40R39 

f48 — R48R47R46R45S44 

1F33= F33F29F25 

1F38= F38F33F29F25 

wi3= F43 F38 F33F29 F25 

1F48= F48 F43 F38 F33 F29 F25 
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Table 1.3. Carry functions 

Fk represents (,4k+Bk)04k+^4k-i)G4k+Bk-i)(Bk+;4k-i)(Bk+Bk-i). Bk represents ^lkBk. Bk represents G4k+Bk). 

C, =Di + RiCo 
C2 = A + «*A + J#iC0 
C3 = ATAAT- AAA4- R3R2R1C0 
C4 = A + A A +AAA + A A A A {Al + Co) (AT Co) 
C5 = A T A C4 

Co = ATAAT AAA 
C7 = AT A ATAA ATAAAA 
Cg = AT AA AT AAAAT AAAAC4 
Co =x9tf9c4 
C10=AoTAo(X9T 19) (X9TC4) 
Cll= AlT -Rll AoT AlAo(X9T Fj) (Xg T C4) 
Cl2= A2T A2 AlT A2A1 AoT A2A1 Ao(X9T F9) (X9T C4) 
C\g—F 13+ A3A2A1T A3A2A1 AoT R13 A2A\R 10(X9T Fg) (X’gT C4) 

ci4=x14tf14x9tf14f9c4 
Ci5=AsTAsXi4ti?i5Fi4(x9+ y 9) (X9tC4) 

Cia= AeT AsAbT AeAsXi4T As Ad Fi4(X9T Fg) (XgT C4) 
Cn=Fn~\- RnRigDtf-^ RnRigRigXu-Y RnRigRigY h(X9T Y 9) (X9T C4) 

c18=xI8+ f18x14t f18f14x9t f18f14f6c4 
Ci9 = Z)i9 + i?i9(X]8+ Y is) (X18 + Xi4) T i?i9Fi8Fi4(X'9+ F9) (XgT C4) 
C20= Ao T Ao A9 + Ao A9 (X, 8 + Fj8) (X18+ Xh) + A0A9 Fi81 14 (XgT Y 9) (XgT C4) 

C21 = At T At C20 
C22=A2 T A2 Ai T A2 Ai C20 
C23 = A3 T As A2T R23R22 AlT A3A2A1C20 
C24^= A4T A4A3A2T A4A3A2 At T R24R22R 22^21 C20 

C25== X25T F25C20 

C20=ZI26 T ^2 29X25 T i?26 F25C20 

C27— A7 T A7 Ag X A7 A5X25 T A? A’6 F25C20 

C28 — A8 T AsAtAhT A8A7A0X25+ AsAtAs F25C20 

C29 = X29+ F29X25T F29F25C20 
C3o = AoT Ao(X2gT F29) (X29+ X25) T t^30 ^29 F25C20 
C31= AlT Al AoT Al Ao(X2gT F29) (X29T X25) + Al Ao F29F25C20 
C82 = A2T A2A1A0T R32R31R3O (X2gT F2g) (X29+ X25) + R32R ZlR^O Fig F25C20 

c33=z33t tf33c20 

C34= AiT A4(Z33T TF33) (F33+ C20) 
C35= A5+ A5 AlT AdA4(Z33T TF33) (Z33T C20) 
C38= AeT Ae A5T AeAs AlT A6 A5 Al(Z33T 1F33) (Z33T C20) 
C37 = X37+ A7A6 A5T A7A6A5A4T ff37-ff39A.5 Al(Z33T TI 33) (Z33T C20) 

C38= Z38T tf38c20 

C39=A9+A9(F38+ 1F38)(Z38+C2o) 
C40= Ao+Ao Ag+Ao Ag (Z38 + TF38)(Z38+ C20) 

C41= Al + Al AoT Al Ao A9T Z?4j/?4o/?39(Z38 + H 38) (Z38T C20) 

C42 = A2T A2A1 AoT 42 A1 Ao As+ A2A1 AoA»(Z3sT TF38) (Z38T C2o) 
C43=Z43+ ll'43C2o 
C44 = A4 T A4 (z43 T TF43) (Z43 T C20) 

C45= A5T A5A4T A5Al(Z43T TF43) (Z43+ C20) 

C46= AsT Ae A5T /?46 A5 A4+ AeAs A4(Z43T Tl' 43) (Z43+ C20) 

C47=A7 T A7 Ae As T ArAeAsAiT A?Ao AsAi^mT TF43) (Z43T C2o) 
C48=Z48+TF48C20 

C49= A9 + ^49(Z48+ TF48) (Z48+ C20) 

C50= Ao+ S50A9+^50^49(^43+ WiS) (Z48+ C20) 

Csi= At 4" ^?31 Ao+ R51A0A9+ -^51 Aoff 49(Z48+ TF48) (Z48+ C20) 

C52 = F52+ i?52AlAo+-^52^51^50 A9+ ^52-^51 Ao-fi>4»(Z48+ 1F48) (Z48+ C20) 
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As indicated previously, five clock phases are 
occupied, starting with the input digits and ending 
with the sum digits. As the adder is to be used 
for multiplications and divisions in a repetitive 
fashion requiring the recirculation of the sum 
digits back into one of the inputs with appropriate 
shifts, the clock pulses must occur in five phases 
to allow an addition cycle to be completed in 1 
jusec. 

The top line of table 1.4 gives some statistics 
on the number of components required for the 
adder represented in figure 1.10. Two other 
slightly different versions have been worked out 
in which fewer gates need to be driven by the 
most heavily loaded tube. As the table shows, 
these variations also require different proportions 

of components. Approximately 10,000 germanium 
diodes are required in each of these versions. 

Table 1.4. Number of components required 

Maxi¬ 
mum 
load 1 

Number 
of stages Tubes 

Delay 
lines 

25 238 238 
lisec 
300 

19 253 253 250 
14 285 285 150 

1 Unit of load=one gate-load. 
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2. Shortcut Multiplication for Binary Digital Computers 

J. L. Smith and A. Weinberger 

1. Introduction 

The usual method of accomplishing automatic 
multiplication in binary digital computers con¬ 
sists of repeated additions of the multiplicand (the 
partial product) to the partial-product sum under 
the control of successive single digits of the multi¬ 
plier beginning at the least-significant end. A one- 
position shift accompanies each addition cycle, 
either the partial-product sum to the right, or the 
multiplicand to the left. The process is somewhat 
analogous to the pencil-and-paper method of 
performing decimal multiplication, except that 
instead of storing all the partial products sepa¬ 
rately and adding them together as the final step, 
a running sum of the partial products is maintained 
in an accumulator. This method requires as many 
add-and-shift cycles as there are multiplier digits. 
The accumulator is cleared initially. During the 
first addition cycle, if the least-significant digit 
of the multiplier is a 1, the multiplicand is added 
to the contents of the accumulator, whereas if it 
is a 0, nothing is added. In either case the 
contents of the accumulator and of the multiplier 
register are shifted one position to the right. Simi¬ 
larly, during the second addition cycle, the next 
more significant digit of the multiplier determines 

whether the multiplicand is or is not added to the 
contents of the accumulator. Again, in either 
case, the contents of the accumulator and of the 
multiplier register are shifted one position to the 
right. After each multiplier digit in turn lias 
controlled the addition of the multiplicand to the 
contents of the accumulator (with the one-position 
shift for each cycle), the multiplication operation 
is complete, and the final product is available in 
the accumulator. 

To complete the description of the multiplica¬ 
tion process, it should be pointed out that the 
length of the final product (assuming full sig¬ 
nificance) is generally equal to the sum of the 
lengths of the multiplicand and multiplier. The 
accumulator must therefore be of that length if it 
is to store the complete product. Actually, the 
product can be accumulated partly in the accumu¬ 
lator (major product) and partly in the multiplier 
register (minor product). Each digit of the minor 
product (the least significant one in the accumu¬ 
lator) obtained during any addition cycle is stored 
in the extreme left-hand position of the multiplier 
register, which is vacated during each shift of the 
multiplier-register contents. 

2. Basis for Shortcut Multiplication 

Whenever any multiplier digit is a 0 and nothing 
is to be added to the partial-product sum, it is 
obvious that that addition cycle could be omitted 
entirely, and that only a shift need be performed. 
A sequence of zeros would allow omitting as many 
addition cycles as there were zeros. The idea will 
now be developed that if a sequence of l’s occurs 
in the multiplier, cycles corresponding to these 
l’s may also be omitted in much the same way, if 
subtraction of the multiplicand from the partial- 
product sum is provided for. 

Consider a string of n consecutive l’s in the 
multiplier. The placement of the binary point is 
arbitrary so far as this argument is concerned, and, 
for the sake of simplicity, let it be located to the 
right of the right-hand 1. Then the numerical 
value of just this string of n l’s is 

2«-iq_2"“2+2n-3+. . . +21 + 2°. 

It is quite easily shown that this expression is 
equal to 

2"—2°. 

Therefore, in computing the partial products 
corresponding to this string of n l’s, one subtrac¬ 
tion of the multiplicand for the right-hand 1 
and one addition of the multiplicand for the 0 to 
the left of the string are sufficient. Such a se¬ 
quence of l’s begun by a subtract cycle is referred 
to hereafter as a subtract sequence. 

The fact that it is possible to compute a product 
correctly by omitting cycles that correspond to 
strings of 0’s and to strings of l’s is the basis for 
this method of shortcut multiplication. 

During the multiplication process, it is a funda¬ 
mental requirement that the contents of the 
accumulator (and of the multiplier register) be 
shifted one digit position to the right for every 
digit of the multiplier, regardless of whether or not 
any of the cycles are omitted. Therefore, in 
order that the multiplication time be shortened 
to the fullest extent by virtue of omitting cycles of 
the operation, arrangements shoidd be made for 
accomplishing multiple-position shifts as rapidly 
as possible. Ideally, the shifts that correspond 
to cycles to be omitted should be combined with 
the shift that corresponds to the last cycle actually 
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performed. Thus, for example, if 3 cycles are to 
be omitted, 1 shift of 4 digit positions should be 
executed instead of 4 shifts of 1 digit position each. 

From considerations of the logical gating re¬ 
quired to accomplish any shift, it is evident that 
the number of different shift paths must be limited 
to only a few. But it will become evident that a 
point of diminishing return exists such that there 
is little need for exceeding the provision to omit 
either 1, 2, or 3 cycles at any one time. 

There are two important features that must be 
incorporated in a device using a multiplication 
scheme such as this. These are illustrated in 

figure 2.1 where shifts of 1, 2, 3, and 4 positions 
are provided for (corresponding to the omission 
of 0, 1, 2, and 3 cycles). First, shift paths of the 
same lengths as are provided for the accumulator 
must also be provided for the multiplier register 
in order to have the proper multiplier digits at 
hand for controlling the next cycle. Second, 
provision must be made for examining a number of 
succeeding multiplier digits at once in order to 
determine how many of the succeeding cycles are 
to be omitted, and whether the multiplicand 
should be added or subtracted (or neither) during 
the current cycle. 

■INFORMATION 

Figure 2.1. Schematic diagram for shortcut multiplier. 

3. Rules for Governing Shortcut Multiplication 

The previous paragraphs have outlined the basis 
for speeding up the multiplication process by 
omitting cycles of the operation. The means for 
governing such a procedure, in order to be mechan¬ 
ized, must be reduced to a set of well-defined rules. 

Before the rules are set down in detail, an ad¬ 
ditional fact relating to a subtract sequence will 
be explained. For example, if the sequence is 

11101011, 

then its numerical value (assuming the sequence 
to be an integer) is 

27+26 + 25+23+2I + 2°, 

which can also be expressed as 

28—24—22—2°. 

This means that if a sequence of l’s in the multi¬ 
plier is begun by subtracting for the right-hand 1, 
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cycles for the rest of the l’s can be omitted, but 
cycles for the 0’s become subtractions. Note that 
in the example the two 0’s correspond in value to 
22 and 24, and that these appear negatively in the 
last expression. 

In the succeeding discussions, it is assumed that 
any number of cycles from 0 to n may be omitted 
at any one time, i. e., that the accumulator and 
multiplier registers can shift any number of posi¬ 
tions from 1 to n+1. For the sake of brevity in 
the discussions to follow, an omitted or nonomitted 
cycle corresponding to any multiplier digit will be 
referred to simply as an omitted or nonomitted 
multiplier digit. The action proceeds from right 
to left through the sequence of multiplier digits. 

Developing the rules for governing this method 
of shortcut multiplication falls naturally into two 
parts. First are the rules for determining whether 
to add or subtract the multiplicand or to do 
neither. This latter case, which constitutes a 
trivial cycle, is required only because the number 
of different shift paths, and hence the maximum 
amount of shift, is restricted for reasons of equip¬ 
ment economy; it is not always possible to omit as 
many cycles as could be omitted if there were no 
restriction on the maximum amount of shift. 
Second are the rules that determine how many 
digit positions the accumulator and multiplier 
registers are to be shifted. As stated before, the 
number of positions ranges from 1 to w+1. 

Both sets of rules depend on (a) the current 
right-most digits of the multiplier after the shift 
for the previous cycle has been accomplished, and 
(b) the sign of the partial-product sum, i. e., 
whether the last nontrivial cycle was an add cycle 
or a subtract cycle. 

3.1. Rules for Adding or Subtracting the 
Multiplicand 

Case I. Partial-Product Sum Not Negative (Add 
Sequence): 

If the partial-product sum is not negative, as it 
is in the initial state or as the result of adding for 
the last nontrivial cycle, the multiplicand is to be 
added if the current right-most digits of the 
multiplier are XX01. (Unspecified digits are 
immaterial.) It is not advantageous to begin a 
subtract sequence for a single 1 because an addi¬ 
tion would be required during the very next cycle 
for the indicated 0. But for two or more l’s it is 
advantageous, so that if the current right-most 
digits are XXll, the multiplicand is to be sub¬ 
tracted from the partial-product sum. 

If during an add sequence the current right¬ 
most multiplier digits are XXXO (either an initial 
condition or a condition that might arise because 
a shift of more than n-\-\ digit positions is not 
permitted), the multiplicand is to be neither 
added nor subtracted, and the current cycle is a 
trivial one. 

Case II. Partial-Product Sum Negative (Subtract 
Sequence): 

If the partial-product sum is negative, as the 
result of subtracting for the last nontrivial cycle, 
the multiplicand is to be subtracted if the current 
right-most digits of the multiplier are XX10. 
In this instance, the 0 is treated like those in the 
subtract sequence described earlier in this section. 
It turns out to be advantageous to maintain a 
subtract sequence for isolated 0’s. But for two 
or more consecutive 0’s it is advantageous to 
terminate the subtract sequence, so that if the 
current right-most digits are XX00, the multi¬ 
plicand is to be added to the partial-product sum. 

If during a subtract sequence the current right¬ 
most multiplier digits are XXXI, a condition that 
might arise because a shift of more than n+l digit 
positions is not permitted, the current cycle is a 
trivial one, and the multiplicand is to be neither 
added nor subtracted. 

In table 2.1 are given practical add-subtract 
rules in a form that can easily be mechanized. 

Table 2.1. Rules for adding or subtracting 

Action Required condi¬ 
tions 1 

Add multiplicand 
Subtract multiplicand 

01/+ or 00/- 
11/+ or 10/- 

1 The digits shown are the current right-most digits of the multiplier. The 
sign indicates whether the partial-produet sum for the last nontrivial cycle is 
positive or negative, i. e., whether the last nontrivial cycle was add or sub¬ 
tract. 

3.2. Rules for Shifting 

The general rides for omitting cycles, which 
follow easily from the precepts given in section 2, 
are as follows. 

1. If an add sequence is initiated or maintained, 
i. e., if the cycle to be executed is an add cycle 
(or, in case it is trivial, if the last nontrivial one 
was an add cycle), the rule is: consecutive 0’s in 
number from one to n immediately to the left of 
the right-most multiplier digit are to be omitted. 

2. If a subtract sequence is initiated or main¬ 
tained, i. e., if the cycle to be executed is a sub¬ 
tract cycle (or, in case it is trivial, if the last non¬ 
trivial one was a subtract cycle), the rule is: 
consecutive 1 ’s in number from one to n immediately 
to the left of the right-most multiplier digit are 
to be omitted. 

It should be clear that inasmuch as cycles are 
being executed continually during the multiplica¬ 
tion process, the current right-most multiplier 
digit is never omitted. 

As the rules for shifting follow directly from the 
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rules for omitting cycles, the rules for shifting 
have as their criteria: 

1. whether the current cycle initiates or main¬ 
tains an add sequence, and 

2. the number of consecutive 0’s or l’s to the 
left of the current right-most multiplier digit. 

If an add sequence is initiated or maintained, the 
number of consecutive 0’s determines the shift; if 
a subtract sequence is initiated or maintained, 
the number of consecutive l’s determines the shift. 
In any event, only the sign of the partial-product 
sum resulting from the last nontrivial cycle and 

the current right-most digits of the multiplier are 
required as criteria for the rules, which are given 
in table 2.2. By comparing tables 2.1 and 2.2 it 
can be verified that the specific rules given in 
table 2.2 contain implicitly the conditions of ini¬ 
tiating or maintaining an add or a subtract 
sequence. 

As mentioned previously, it will be shown that 
there is little need for omitting more than three 
multiplier digits at any one time, and hence in 
the practical rules given, n is equal to 3. For n 
greater than 3, the rules given in table 2.2 can be 
extended in a manner that should be fairly obvious. 

Table 2.2. Rules for shifting 

Action Required conditions 1 

Shift 1 digit position _ _ 10/+ or 01/ — 
101/+ or 010/- or 100/± or 011/± 

1001/+ or 0110/- or 1000/± or 0111,/± 
0001/+ or 1110/- or 0000/± or 1111/± 

. Shift 2 digit positions _ _. 
Shift 3 digit positions. 
Shift 4 digit positions_ „ _, 

1 The digits shown are the current right-most digits of the multiplier. The sign indicates whether the partial-product sum for the last nontrivial cycle is 
positive or negative, i. e., whether the last nontrivial cycle was add or subtract. 

4. Effectiveness of Shortcut Multiplication 

The effectiveness of this method of multiplica¬ 
tion can be expressed in terms of percentages or 
ratios of the number of cycles actually required 
to the total number required without shortcutting. 
The smaller this ratio, the more effective is the 
method. 

For the sake of clarity in the examples to be 
given, certain symbols to be placed atop each 
multiplier digit are defined as follows: 

• = a multiplier digit for which nothing is added 
to or subtracted from the partial-product 
sum; a trivial cycle. 

+ = a multiplier digit for which the multiplicand 
is added to the partial-product sum. 

— = a multiplier digit for which the multiplicand 
is subtracted from the partial-product sum. 

* = a multiplier digit corresponding to an omitted 
cycle. 

The lower limit of effectiveness can be deter¬ 
mined by finding repetitive sequences of multi¬ 
plier digits such that the least number of digits 
can be omitted, obeying the general rules given in 
the last section. Thus, it can easily be verified 
that for n= 1 an example of sequences that result 
in omitting the least number of cycles is 

. . . 000111000111000111000111, 

and that the number of cycles actually required is 
two-thirds of the number of digits. Likewise, it 

can be seen that for nf> 1, examples of sequences 
that result in omitting the least number of cycles 
are 

*+*-*+*-* +*-* +*-* +* - 
. . . 00110011001100110011, 

and 

*+*+*+*+*+*+* +*+*+* + 
. . . 01010101010101010101. 

In these cases the number of cycles required is 
one-half of the number of digits. These sequences 
represent the worst possible conditions from the 
standpoint of speed. It is unlikely that they would 
occur very often in practice, although they do 
occur in the binary representation of certain deci¬ 
mal fractions, such as •§-, -L -fa, etc. 

The upper limit of effectiveness is attained with 
strings of similar digits whose lengths are multiples 
of n-\-1. It is easy to show that the number of 
cycles actually required for this kind of sequence is 
l/(n+l) times the number of digits. For n=3, 
an example of such a sequence is 

. . . ooooooooooooiniinioooo. 

In this case, which represents the best possible 
conditions from the standpoint of speed, the num¬ 
ber of cycles required is only one-fourth of the 
number of multiplier digits. There are, of course, 
many such “best” sequences, and it is likely that 
this kind of sequence, at least for parts of words, 
would occur rather often in practice. 
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From the practical standpoint, perhaps the most 
meaningful determination of effectiveness is the 
one for a purely random sequence of multiplier 
digits. A mathematical analysis 1 shows that the 
limiting value of the ratio of the number of cycles 
required (M) divided by the number of multiplier 
digits (to), as to increases without bound, is 

M 1 i+2-(n+1) 

J,1™ TO-3 1—2_(n+1)" 

It is obvious that if n, the maximum number of 
cycles that may be omitted at once, also increases 
without bound, the limit of this ratio is one-third. 
For a practical value of m, say, 64, numerical cal¬ 
culation based on the results of a general mathe¬ 
matical treatment2 shows that the ratio is greater 
than the limiting value by only about 0.01. The 
results of such numerical calculations are sum¬ 
marized in figure 2.2. 

Figure 2.2 shows graphically for various values 
of n the ratio of the number of cycles actually 
required to compute a product to the number of 
digits in the multiplier. Besides the results for 
random sequences, there are also shown the re¬ 
sults for best sequences and worst sequences. Al¬ 
though the random-digits points are constructed 
from computed values for multipliers of a par¬ 
ticular length, namely, 64 binary digits, these 
results do not differ significantly from the results 
for somewhat shorter or longer words. 

Figure 2.2 shows that if the maximum number 
of cycles that can be omitted at any one time is 
three, the average time to compute a product, 
using a large number of random multipliers, is 
about 40 percent of the usual multiplication time, 
all other things being equal, or that the speed 
factor due to shortcutting is about 2.5. 

In practice, the multiplier digits are often not 
random, nor even apparently so. However, ex¬ 
perience seems to indicate that departures from 
randomness will usually favor the sequences of 
similar digits that require fewer eyries rather than 

those special sequences that require more cycles. 
As a result, the average number of cycles required 
for multiplications will generally turn out in 
practice to be less than the theoretical number for 
random sequences obtained from figure 2.2. If 
the curve were plotted for the average number of 
cycles required for multiplier sequences actually 
occurring in practice, consisting of a mixture of 
random or pseudo-random digits and strings of 
similar digits, it would be found that this curve 
would lie between the curve for random sequences 
and the curve for the best sequences. 

It is evident from an examination of figure 2.2 
that, so far as random sequences are concerned, 
the number of cycles required to compute a prod¬ 
uct decreases but little as n is increased beyond 
three. This means that for random sequences 
there is little need for providing the means to 
omit more than three cycles at once. However, 
for nonrandom sequences such that the curve for 
the best sequences is applicable, it can be seen 
that making n=7 would halve the number of 
cycles required for n=2>. Thus, for sequences 
consisting of a mixture of random digits and 
strings of similar digits, only the nonrandom por¬ 
tions would be significantly affected by in¬ 
creasing n. 

MAXIMUM NUMBER OF CYCLES OMITTED AT ONCE 

Fioure 2.2. Effectiveness of shortcut multiplication. 

5. Appendix 1. Speed for Infinite-Length Multiplier 

The average rate at which digits of an infinitely 
long multiplier sequence are disposed of in digits 
per cycle is to be determined, under the assump¬ 
tions that the multiplier sequence is purely ran¬ 
dom, and that the add-subtract and shift rules 
stated in the body of the paper apply. This 
average rate is a fairly good approximation to the 
speed factor achieved for random sequences of 
practical length. 

1 See Appendix 1. 
2 See Appendix 2. 

The probabilities of shifting by various amounts 
from a nonomitted digit will now be derived for 
specific conditions. These probabilities follow 
directly from the shift rules stated in table 2.2. 
All the conditions, stipulated by the sign of the 
partial-product sum and the current nonomitted 
(right-most) digit of the sequence, result in only 
two sets of shift probabilities. These conditions 
are grouped according to the resulting shift prob¬ 
abilities and are designated as case 1 and case 2. 

17 



Case 1: 

The pertinent specific conditions are (a) partial- 
product sum not negative and current right-hand 
(nonomitted) digit 1, or (b) partial-product sum 
negative and current right-hand digit 0. 

Table 2.2 shows that under these conditions 
there can never be a shift of just one position. In 
order for there to be a shift of two positions, it is 
required that the table 2.2 states be 101/+,011/+, 
100/—, or 010/—. The number of different states 
containing each of conditions (a) and (b), namely 
two, is just one-half of the four pertinent combina¬ 
tions ending in 1/+ and 0/—, respectively.3 
Therefore, because random sequences are being 
considered, the probability of shifting two posi¬ 
tions from a nonomitted digit is -g- for case 1 condi¬ 
tions. By similar reasoning it can be seen that 
the probability of shifting three positions is ^. 
Then by extension, and as the rules are similar 
for a shift of n and for a shift of n +1 positions, the 
following table (2.3) of shift probabilities for case 
1, designated by Vs can be compiled. It should be 
borne in mind that n has the same definition as in 
the body of the paper, i. e., n is the maximum 
number of digits omitted at once. The amount 
of shift ranges from 1 to n +1. 

Table 2.3. Case 1 shift 'probabilities 

j 1 2 3 . i . . n n+ 1 

V 0 
1 
2 

1 
4 . 2-< ■.-a 

Case 2: 

The pertinent specific conditions are (a) partial- 
product sum not negative and current right-hand 
digit 0, or (b) partial-product sum negative and 
current right-hand digit 1. 

Table 2.2 shows that in order for there to be a 
shift of one position, it is required that there be 
10/+ or 01/—. But the number of these is just 
one-lialf of the pertinent combinations ending 
in either 0/+ or 1/—. Hence the probability of 
shifting one position is \ for case 2 conditions. 
By similar reasoning it can be seen that the 
probability of shifting two positions is + and 
so on. Table 2.4, showing the case 2 shift proba¬ 
bilities, designated by WJ, is constructed in the 
same manner as table 2.3. 

Table 2.4. Case 2 shift probabilities 

j 12 3.. i . . n n+1 

Wj All 
2 4 8 . 2-*' . . . 2-" 2-" 

3 For example, the four combinations ending in 1/+ are 001/+, 011/+, 101/+, 
and 111/+. 

A fact regarding the combined effects of the 
add-substract rules of table 2.1 and the shift rules 
of table 2.2 that can easily be verified is that a 
shift of any amount less than n+1 always results 
in case 1 conditions, and that a shift of just « + l 
positions results in case 1 conditions and case 2 
conditions with equal probability. This latter 
statement is true because, so far as the rules are 
concerned, the right-hand digit after a shift of 
w+1 positions is completely unknown prior to 
the shift, and it can be a 1 or 0 with equal proba¬ 
bility. It is also a fact, evident from an inspection 
of table 2.1, that the so-called trivial cycles, for 
which neither addition nor subtraction is done, 
are the very ones for which the case 2 conditions 
apply; conversely, cycles for which case 2 condi¬ 
tions apply are all trivial cycles. 

The following argument, which evaluates the 
probabilities of occurrence of case 1 and case 2 
conditions, is based on the assumption that the 
multiplier sequence is sufficiently long so that the 
probabilities for one cycle are identical to the 
probabilities for the preceding cycle. 

Let Q be defined as the probability that case 2 
conditions apply for any cycle. Then, clearly, 
1 — Q is the probability that case 1 conditions 
apply. Since it is noted in the preceding para¬ 
graph that case 2 results from a shift of ti + 1 
positions with a probability of one-half, it follows 
that the probability of having had a shift of 7i+1 
positions is 2 Q. 

Now, from tables 2.3 and 2.4, it can be seen 
that the probability of shifting n-\-\ positions 
for case 1 is 2_(re~1), and for case 2, 2~n. Then 2Q 
can be evaluated by taking the weighted mean 
of the shift probabilities for the two cases. 

2Q=(l-Q)2~^ + Q2-\ (1) 

After some reduction, there is obtained 

2 — i) 

2+2“"’ 
(2) 

and 

9— r>-n 

1“<3=2++’ for,!3=L 
(3) 

Equations (2) and (3) are the expressions for the 
probabilities of having case 2 and case 1 condi¬ 
tions, respectively, after an infinite number of 
cycles. 

The next step is to determine the average shift 
for case 1 and for case 2. This can be done from 
the information contained in tables 2.3 and 2.4. 
The average shift is simply the weighted mean of 
all the possible shifts for each case. Thus, if A is 
defined to be the average shift for case 1, we have 

A=J2 f2-(i-1) + (%+l)2-("-1), (4) 
1=2 
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which by well-known methods is reduced to 

A=3 —2“(n-1), forn>l. (5) 

Similarly, if B is defined to be the average shift for 
case 2, we have 

B=22i2-i+(n+l)2-n (6) 
i=1 

= 2 — 2“", forn>0. (7) 

The average rate of shifting is the weighted 
mean of A and B, using for the weights l — Q and 
Q, respectively. Thus the average rate of shift¬ 
ing is 

L=(1-Q)A+QB, (8) 

which, through the use of eq (2), (3), (5), and (7), 
becomes 

1_0-(re+l> 

L=31+2-N+iT for7l-L 

The quantity L is the average amount of shift 
per cycle, i. e., the average number of digits dis¬ 
posed of in each cycle. The reciprocal of this is 
the average number of cj^cles required per digit. 
If the total number of cycles required to compute 
a product is M, and if the number of digits in the 
multiplier is m, then we have 

1 ..Ml l+2-(n+1) „ ,im 

Z=t”lm=3 f0r’,-L {10) 

In table 2.5 are given the values of l/L for 
various values of n. For the sake of complete¬ 
ness, the value for n=0 (the usual multiplication 
method) is included, which is unity. 

Table 2.5. Relative multiplication times 

n 0 1 2 3 4 5 6 CO 

1IL 1 
5 3 17 11 65 43 1 

9 7 45 31 189 127 O 

6. Appendix 2. Speed for Finite-Length Multiplier 

The average number of cycles required to 
generate a product is to be determined under the 
assumptions that the multiplier is a purely random 
number of finite length and that the add-subtract 
rules and the shift rules stated in the body of this 
paper apply. 

To anticipate the discussion, a quantity Xk is 
defined to be the probability that the 4th digit of 
a sequence is not omitted—i. e., the probability 
that one cycle will be expended in passing over 
the Mil digit. Then the total number of cycles 
expended in passing over m digits of an m-digit 

m 
sequence is ^2Xk. It is the purpose in this 

i 
appendix to derive an expression for this quantity 
in terms of known constants and parameters. 

To begin the discussion, the definitions of 
certain terms are given. 

/?*=the probability of omitting the Mh 
digit. 

AA=t,he probability of not omitting the 
Mh digit. 

P*=the probability that the Mh digit cor¬ 
responds to an add or a subtract 
cycle. 

(4=the probability that the 4th digit cor¬ 
responds to a trivial cycle. 

S'!=the probability of shifting j places 
from the 4tli digit, provided the 4th 
digit is not omitted. 

A+S*=the actual probability of shifting j 

places from the 4th digit. 
n=the maximum number of digits that 

may be omitted at once, and the 
amount of shift may range from 1 
to 71+1. 

Note that the superscript on S is not to be inter¬ 
preted as an exponent. 

From these definitions some rather obvious 
relations can be derived. 

Xk-\-Rk— 1 (i) 

PkJrQk=Xk (2) 

n+1 
TiSi= i, 
j=i 

(3) 

where 7i+l is the maximum amount of shift. 
If the digit 4 is not omitted, then during the 

previous cycle when the nonomitted digit was, 
say, 4—p, there must have been a shift of exactly 
j) positions. The probability that the 4th digit 
is not omitted is therefore given by 

n+1 
Xk=J2X(4) 

p=i 

In appendix 1 it is shown that under all cir¬ 
cumstances there are only two sets of probabilities 
for shifting various amounts, designated case 1 
and case 2. These shift probabilities are given in 
tables 2.3 and 2.4 and are labeled VJ and Wj, 
respectively. For case 1, Vi is the probability 
that a shift of j places will take place, and for 
case 2, IF1 has a similar definition. Note that 
the superscripts on V and IF are not to be inter¬ 
preted as exponents. 

It is also brought out in appendix 1 that the 
trivial cycles are the ones for which the case 2 
shift probabilities apply, and conversely. This 
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means then that the probability that case 2 
conditions apply for any digit k equals Qk, and 
that the probability that case 1 conditions apply 
equals Pk. Therefore, the total probability of 
shifting j places from the /cth digit is 

XkSl=VJPk+WiQk. (5) 

Now, the probability of occurrence of case 2 
conditions, i. e., Qk, is one-half the probability 
that there was a shift of n+1 positions during the 
previous cycle (noted in appendix 1): 

Qk,=hXic-(n+\)S'i't\n+1). (6) 

Then, through the use of eq (5) and (6) and the 
values of Vn+1 and Wn+l from tables 2.3 and 2.4, 
there is obtained 

Q^AQk-in+ly2-n+P^n+iy2-^], (7) 

which becomes 

Qk=2-nPk_in+1)+2-^Qk_(n+v (8) 

If the digit k is omitted during the cycle cor¬ 
responding to the nonomitted digit k—p, then 
there must be a shift of any amount greater than 
p during this cycle. For example, if the (k—4)th 
digit is the nonomitted digit, then the shift must 
be either 5,6,7, . . ., or n +1, and in this instance 
the probability of omitting the Hh digit is 

n+1 

Xlc-i^iSl-4- 
2=5 

If, for the omitted digit k, all possible nonomitted 
digits to the right, k—p, are considered, the 
probability of omitting this fcth digit is the sum 
of such expressions for all possible p. 

If use is made of 

9? —|— 1 

1, (3) 
7=1 

and if the term for p= 1 is separated, eq (9) 
becomes 

from which is easily obtained 

92+1 p m+1 Q 91+1 

s Sl=Q- SF+f SWb (12) 
]=p+1 -A-k J=p+1 -S*-k 7=p+l 

which by virtue of the character of V and 11 
(see tables 2.3 and 2.4) is 

92+1 P, Q, 

S St=~ W* (13) 
j=p~h 1 x*-k x*~k 

=Spk, for 2 <p<n. (14) 

Therefore, eq (10) becomes 

n 
Pk—Xk_ i(l—(S'i_i) + XjXA_piS'^_p, (15) 

p-2 

and through the use of eq (4) there is obtained 

Pk=Xk_x-Xk-SU+Xk 

-N A—1*^*—1 Xk-(,n+l)£>k-Cn + l)- (16) 

After some reductions, using eq (5) and (6), eq 
(16) becomes 

Pk~ X k Qk-\-Xk-l Qk-l Qk, (17) 

which, by virtue of eq (2), is 

Pk — PkXPk-1—Qk- (18) 

But because of 

Xk-\-Pk— 1, (1) 

eq (18) is seen to be 

1—Xk = Pk-\-Pk-l — Qk, (19) 

which after further reductions, using eq (2), 
becomes 

Pk~i{ 1 P k-1). (20) 

Equation (2), with the aid of eq (20) and (8) is 
now to be summed to yield a closed expression in 
terms of known constants and parameters. That 
is to say, it is desired to find an expression for 

Pk—Xk_ i(l Sl-i) S Xk—^2iPk-\-^2i Qk- (21) 
k=1 fc=l fc=1 

From eq (5) can be derived 

w, 

The summation of P* can be determined readily 
through the use of eq (20) if the initial condition 
is stipulated. The initial condition is that the 
first digit is never omitted; i. e., Xi=l. Now 
as the zero-th digit is nonexistent, P0 is not defined. 
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Therefore, eq (22) follows readily from eq (20) and 

(2). 
Pi=Qi=h (22) 

If eq (20) is expanded until Pi is reached, there 
is obtained 

divisible by n+1. This in turn can be written as 

m t r~ m—i(n+1) “I t 

S ^=2 S 2-,(*+1) s P* +2-1S2-“*+1). 
4=1 i=l L 4=1 J i =0 

(28) 

Ph=2-1-2-2+2-3- . . . 

— (—2)-i— . . . -(-2)-*, (23) 

from which by well-known techniques is obtained 

*W(l-(-2)-*), for k>\. (24) 

The summation of Pk is then 

m m 

(-2)* 
4=1 4=1 

=^m+i[2-1-2-2-f. . . —(—2)m] 

=i[3m + l —(—2)_m], form>l. 

(25) 

To obtain the summation of Qk, eq (8) will be 
expanded in a straightforward manner until the 
first Qz is reached for which z<n-\-1. 

_9-n p _L9—P 1 
Vk—Z rk-(n+\) I " r*-2(w+l) i • • • 

_L0-(i—1)(»+1) o-n p I 

Substituting into this the expression for 22 P*, 
eq (25), and using eq (21), there is obtained 

m t 

22 **=*[3m+l-(-2)-]+« 2_i("+1) 
4=1 »=1 

X[3m —3i(n+l) + l — (—2)Hn+1)~m] 

+ §S 2~Un+l), for m > 1 and n>0, (291 
i=0 

[3m+l —(—2)_m] 
4=1 9 

o 9-(n+l)_9-(« + l)(n+l) 

+|(3 m+1)- 

:(n+l) 

1—2_(n+1) 

2-(n+l)(J_2“'(n+1>) 

■71=2 

2 — (*+1 > (ra+1) 

(n+l)'\2 

+3 (n+pt 1_2-(»+D 

o 
—- 2" 

9 i = 1 

}_2— 0 + 1) (b+1) 

‘2 (l-2-("+1))’ 
(30) 

+ 2-CS-1)("+1)-2-"P4-S(»+l) + 2“S(n+1)Q4-S(n+l), 

(26) 

where s is the integral number of times k—1 is 
divisible by 71+1. It is important to note that 
Qz=0 for 2 <2 <7i + l. This is true because Qz is 
one-half the probability of having shifted npl 
positions during the previous cycle, which is clearly 
impossible for 2<7i+l. As the value of Qx is not 
0, (eq (22)), the expansion of Qk may have only 
Qi in the f+term. The summation of Qk can now 
be wrpten as 

to to—fa+1) to—2(m+l) 

22Qk=2~n X P4+2-(n+1,.2-" X P4+ • • • 
4=1 4=1 4=1 

TO — i (71 + 1) 

+2-(i-1)(n+1) • 2~n 22 Pk+••• 
4=1 

to—t (n+1) 

_|_2_(t_1>(n+1) • 2~n X Pk 
4=1 

+&i:2-i<”+i>, (27) 
i=0 

where t is the integral number of times m — l is 

where m> 1, n > 0, and where t is the integral 
number of times m—l is divisible by 71+1. 

The formula for the number of cycles required 
to generate a product is complete except for the 
terminal effect. An extra cycle is needed at the 
end to terminate if the last nontrivial cycle was a 
subtract and if the last digit is a 1. According 
to the rules, a subtract cycle is initiated by 11, 
and it is terminated by 00. The probability that 
the last nontrivial cycle is a subtract, to be called 
Z, is the probability that there is 11 somewhere 
in the sequence that is not followed by 00. Some 
examples follow, in which only the left-hand 
portions of the sequences are shown. 

(a) 11. 

(b) 1011. 

(c) 101011. . . . 

(d) 10101011. . . 
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It should be noted that these sequences are 
mutually exclusive. The probability of occurrence 
of (a) is 2-2; of (b), 2-4; of (c), 2~6; of (d) 2-8; etc. 
If the word is m digits long, the last sequence of 
this kind has a probability of occurrence 2~m if m 
is even, or 2~c”l~1) if m is odd. This latter fact 
results from the requirement that all the sequences 
be mutually exclusive. Now Z is the sum of all 
these probabilities. 

These reduce to 

\m 

Z=2 2-M 
k=1 

Z— jc 2~2k 
k = 1 

if m is even, or (31) 

if m is odd. (32) 

Z=i( if m is even, or (33) 

Z=}( l-21"m) if m is odd. (34) 

IP The 
called 

total number of cycles required, 
M, is therefore 

to be 

m 

M=j:xk+z 
k-1 

(35) 

Figure 2.2 contains a plot of the values of M/m 
for m=64 and for various values of n. A discus¬ 
sion of figure 2.2 is in the body of the paper. 
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