
NBS [CIRCULAR 594
SECTION 1

System Design of Digital Computers

at the National Bureau of Standards:

Methods for High-Speed Addition
and Multiplication

UNITED STATES DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress,
March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the develop¬
ment and maintenance of the national standards of measurement and the provision of means
and methods for making measurements consistent with these standards; the determination of
physical constants and properties of materials; the development of methods and instruments
for testing materials, devices, and structures; advisory services to Government Agencies on
scientific and technical problems; invention and development of devices to serve special needs
of the Government; and the development of standard practices, codes, and specifications.
The work includes basic and applied research, development, engineering, instrumentation,
testing, evaluation, calibration services, and various consultation and information services. A
major portion of the Bureau’s work is performed for other Government Agencies, particularly
the Department of Defense and the Atomic Energy Commission. The scope of activities is
suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau’s work take the form of either actual equipment and devices or
published papers. These papers appear either in the Bureau’s own series of publications or in
the journals of professional and scientific societies. The Bureau itself publishes three monthly
periodicals, available from the Government Printing Office: The Journal of Research, which
presents complete papers reporting technical investigations; the Technical News Bulletin, which
presents summary and preliminary reports on work in progress; and Basic Radio Propagation
Predictions, which provides data for determining the best frequencies to use for radio communi¬
cations throughout the world. There are also five series of nonperiodical publications: The
Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports,
and Miscellaneous Publications.

Information on the Bureau’s publications can be found in NBS Circular 460, Publications
of the National Bureau of Standards ($1.25) and its Supplement ($0.75), available from the
Superintendent of Documents, Government Printing Office, Washington 25, D. C.

UNITED STATES DEPARTMENT OF COMMERCE • Sinclair Weeks, Secretary

NATIONAL BUREAU OF STANDARDS • A. V. Astin, Dirittor

System Design of Digital Computer

at the National Bureau of Standards:

Methods for High-Speed Addition

and Multiplication

National Bureau of Standards Circular 591, Section 1

Issued February 14, 1958

For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C.

Price 20 cents

Contents

Page

Introduction, by A. L. Leiner_ 1

1. A logic for high-speed addition, by A. Weinberger and J. L. Smith.. 3

1. Introduction_ 3

2. Sequential carry generation_ 4

3. Simultaneous carry generation_ 5

4. Use of auxiliary carry functions_ 6

5. Two levels of auxiliary carry functions_ 8

6. References_ 12

2. Shortcut multiplication for binary digital computers, by J. L. Smith

and A. Weinberger_ 13

1. Introduction_ 13

2. Basis for shortcut multiplication_ 13

3. Rules for governing shortcut multiplication_ 14

3.1. Rules for adding or subtracting the multiplicand_ 15

3.2. Rules for shifting_ 15

4. Effectiveness of shortcut multiplication_ 16

5. Appendix 1. Speed for infinite-length multiplier_ 17

6. Appendix 2. Speed for finite-length multiplier_ 19

II

Introduction

A. L. Leiner

In the seven years since SEAC first began
regular operation (April 1950), the feasibility of
applying general-purpose digital computing ma¬
chines to a broad range of new problems has
become well established. During this period,
digital computers have been successfully put to
work on a wide variety of scientific and engineering
calculations, clerical and technical data-processing
jobs, and real-time control operations.

For some important applications, however, the
opportunity of using automatic computers is still
severely restricted by the limited speed at which
available digital machines can carry out the basic
arithmetical operations. For this reason a con¬
siderable development effort is still being directed
toward the design of faster digital arithmetic
devices.

In attacking the general problem of how to
increase arithmetic computation speeds, two dis¬
tinct paths are open to the computer designer.
One approach consists in trying to develop elec¬
tronic components and circuitry capable of ampli¬
fying, storing and switching signals at higher
basic repetition rates. The other approach at¬
tempts to gain over-all speed by finding methods
for organizing slower electronic elements into
more efficient over-all systems. In following the
latter course, the increased problem-solving speed
is obtained by harnessing the same simple com¬
puting elements together in more complex logical
combinations. A typical example of the latter
method, for instance, would be to organize the
basic computing elements in such a way that
several separate steps of a given over-all operation
could be carried out simultaneously by different
units in the same machine. A straightforward
application of this principle, however, would often
entail the use of excessively large amounts of
additional equipment. As a rule, therefore,
methods based on the use of duplicated equipment
must also be coupled with the use of more subtle
algorithms for carrying out the basic processes and
the use of processing logics specially adapted to
the physical peculiarities of the available comput¬
ing components.

The two papers that follow represent attempts
to produce faster arithmetic processing units by
increasing the complexity of their logical structure
without at the same time materially increasing the
number of components used. In the first paper,

which is concerned with addition and subtraction
operations, the increased speed is obtained chiefly
by using the early phases of the operation for
generating certain special auxiliary functions of
the digits in the numbers being added together.
These auxiliary functions are then used later on in
the process to facilitate the determination of the
conventional “carry” signals that are required in
the last stages of the operation. The adder
designs illustrated are particularly suited to the
special type of dynamic pulse circuitry developed
at NBS during the course of the SEAC and
DYSEAC programs. When associated with a
suitably fast storage device, these adder designs
yield over-all arithmetic processing units that
perform up to 150 times faster than the earlier
machines. With appropriate modifications, the
same principles could be applied to other types of
electronic circuitry.

The second paper is concerned with the more
general problem of how multiplication speeds can
be improved by omitting certain time-consuming
steps that are shown to be not strictly necessary.
These steps are ordinarily included when the
elementary definition of multiplication as a simple
sequence of repeated addition operations is applied
in too straightforward a fashion. The authors
show how, by making a simple preliminary inspec¬
tion of one of the numbers to be multiplied, up to
two-thirds of the usual addition steps can some¬
times be skipped. In this way speed increases of
of 2.5 to 3 over standard methods can generally
be obtained. This shortcut multiplication meth¬
od, unlike the previously described addition
method, is of general applicability and not neces¬
sarily associated with any particular class of
computing component or circuitry. In terms of
equipment needs it compares most favorably with
other proposed methods that involve the use of
several separate addition devices.

The present Circular contains the first part of a
group of papers to be published on the logical
design work carried out at NBS since 1948 on
digital-computing, data-processing, and control
systems. The second section, in a forthcoming
Circular, will describe several digital systems other
than the SEAC and DYSEAC that have been
designed for various general-purpose and special-
purpose applications.

1

1. A Logic for High-Speed Addition
A. Weinberger and J. L. Smith

1. Introduction

The development at the National Bureau of
Standards of the diode capacitor memory [1,2],1
which is capable of being read or written into
randomly at the rate of one word per microsecond,
has made it worth while to build devices capable
of processing information at comparable rates.
Since the basic microo-peration common to most
arithmetic processes is the adding of two numbers,
it seemed desirable to design an adder having a
cycle time no greater than l^isec.

The major speed limitation in any adder is in
the production of carries, and in this paper the
problem is attacked from the standpoint of logical
organization. Although work is being done else¬
where on this subject, using newer and faster
basic circuit elements, the analyses to be described
show that it is both feasible and economical to
achieve l-^sec addition times for 53-bit words,
using the 1-Mc circuitry that has been success¬
fully utilized in SEAC [3] and DYSEAC [4,5].

The increased complexity of the logic of this
adder necessitated the extensive use of Boolean
algebra in arriving at the design itself. Because
the procedure used in developing the final design
is an interesting example of the practical applica¬
tion of Boolean algebra, the actual logic of the
design process is described in considerable detail.

Before discussing the adder, a brief description
of the logical capabilities of the SEAC circuitry [6]
will be presented. As shown in figure 1.1, the
basic electronic unit consists essentially of three
levels of diode gates in an OR-AND-OR logical
array followed by a transformer-coupled pulse
amplifier. The rate at which successive pulses
pass through such a stage is determined by the
clock frequency, which is, in this case, 1 Mc/sec.
The transit time of a pulse through a stage, how¬
ever, is much less than 1 ,usec. For this reason,
the clock pulses are made available in several
phases. The way in which different stages are
controlled by clock pulses of different phases is
illustrated in figure 1.2. In SEAC, for example,
1-Mc clock pulses are available in 3 phases,
K msec apart. In DYSEAC, 4-phase clock pulses
are used, whereas for reasons that will be developed
later, in the adder to be described a 5-phase clock
is used. Figure 1.3 shows graphically these timing
relationships for SEAC. Signals emitted from
different stages clocked at different times must be
synchronized by means of electric delay lines
before they are gated in a common stage, as shown

1 Figures in brackets indicate the literature references on page 12.

in figure 1.4. Both positive and negative signals
are available from a stage, the negative signals
being used for inhibiting (see fig. 1.5).

The logical gating required in any stage of the
adder to be described is essentially of the same
complexity as that required in the packaged
building blocks used in constructing DYSEAC,
and in the OR-AND-OR gating configuration of
a stage up to 4 AND-gates and up to 6 inputs in
the largest AND-gate are permitted.

Boolean notation of the sort described by
Richards [7] will be used hereafter to describe the
gating configurations. In figure 1.6 are shown a
typical gating stage and the corresponding Boolean
expression for the output in terms of the inputs.
There are three terms in the expression, each one
corresponding to an AND-gate; the first term,

(AJrB)CDEF, corresponds to the top AND-gate;
the second term, (G-\-H)I, corresponds to the mid¬

dle AND-gate; and the last term, J(K-\-L-\-M)N,
corresponds to the bottom AND-gate. The fac¬
tors of a term represent the inputs to the corre¬
sponding AND-gate. For example, the five

factors of the first term, (A-\-B), C, D, E, and F,
correspond to the five inputs to the top AND-gate;
Whenever a factor consists of more than one term,
it is represented by an OR-gate. For example, the
factor (A-+-B) of the first term corresponds to the
2-input OR-gate of the top AND-gate. A factor
could also be a negative or inhibit signal, and in

this case it is denoted by a bar on top; e. g., C and

D are two factors of the first term corresponding
to the two negative signals, which may inhibit
the top AND-gate. For the sake of simplicity in
the discussion of the Boolean expressions that
follow, no distinction is made between delayed
and undelayed signals.

GATING STAGE

CLOCK

D :::t -'I -Qa
OR-GATE AND-GATE OR-GATE

.TRANSFORMER-COUPLED
PULSE AMPLIFIER

Figure 1.1. One stage of SEAC-type circuitry.

3

GATING STAGE GATING STAGE

■O

CLOCK
PHASE

Li
CLOCK
PHASE

u
-o- -ETC.

Figure 1.2. Gating stages with different clock phases.

CLOCK
PHASE

CLOCK _

PHASE 3

t l/J Sec)
£^ % i 2

Figure 1.3. Time relationships among SEAC clock phases.

Figure 1.4. Synchronizing by means of electric delay lines.

DELAYED NEGATIVE

CLOCK

L
|delay| c

CLOCK

Lr
DIRECT NEGATIVE

6-

Figure 1.5. Use of negative signals for inhibiting.

=0-O-OUTPUT=(A+B) C 5E F

“17 +(G+H) 1 (G+H) I

+ J(K+L+M)N

Figure 1.6. Typical gating stage and corresponding
Boolean expression.

2. Sequential Carry Generation

The analysis leading to the design of the parallel
adder will now be described in detail.

Let

J4=augend=JA;t2s~1+JA)fc_i2*_2-|- . . . +^2°,

B= addend = Bk2k~l-\-Bk-i2k~2jr . . . -\-Bi2°,

S= sum =£*2*-1+,S'*_i2*-2+ . +SX 2°,

£4=the carry resulting from the addition in
the &th digit position.

The well-known rules for binary addition are
given in the form of a function table (table 1.1).
From these, the binary sum and carry can be ex¬

pressed in Boolean notation as follows:

Sk=AkBk Ok-1+A kBk Ct-1+AkBk Ck~ i+AkBk Ck~ i.

(D
Table 1.1. Function table for binary addition

Augend_ •4 k 0 0 0 0 1 1 1 1

Addend_ Bk 0 0 1 1 0 0 1 1

Previous
carry. Ck-1 0 1 0 1 0 1 0 1

Sum. sk 0 1 1 0 1 0 0 1

Carry ck 0 0 0 1 0 1 1 1

4

Ck=AkBkCk^x-\-AkBkCk^x-\-AkBkCk^x-\-AkBkCk-x

=Ak Bk+AkOk-i+BkCk~i

= (Ak-\-Bk){Ak-\-Ck-x){Bk-\-Ck-x) (2)

=AkBk + {Ak+Bk) Ck-1.

The carry function, Ck, has been reduced from 4
terms of 3 factors each (corresponding to 4 AND-
gates with 3 inputs each), as shown in the top line
of eq (2), to 3 alternative forms, each involving
fewer terms and factors.

Since the expression for Sk in eq (1) can be
implemented in one gating stage, any sum digit
can be made available during the clock phase
immediately following the formation of its cor-

3. Simultaneous

The limitation on the sequential method of
forming the carries stems from the use of eq (2),
which specify Ck as an explicit function of Ck_x.
It can be shown that a carry need not depend
explicitly on the preceding one, but can be ex¬
pressed as a function of only the relevant augend
and addend digits and some lower-order carry. A

Cx= AXBX

T (Ax-\- Bx)Co

c2= A2B2 = A2B2

+ (A2+B2)Cx + {A2JrB2)Ax

responding carry, Ck_x. However, if the carries
are generated according to eq (2), each carry digit
would have to await the formation of the next
lower-order carry. As a result, the sum digits
coidd be obtained at the rate of only one per clock
phase, for if C\ is available during the first clock
phase, C-2 could be generated during the second
clock phase, C3 during the third clock phase, etc.
For numbers having n binary digits, n— 1 possible
carries would have to be provided for, requiring
n— 1 clock phases for their complete determina¬
tion. If a 4-phase, 1-Mc clock were used, 4 suc¬
cessive sum digits coidd be obtained during 1 /jsec.
Such an arrangement, using sequential carry
generation, would provide an increase in speed of
a factor of only four over the addition speed of a
completely serial adder.

Carry Generation

considerable gain in speed may be obtained as a

result of this.

Using the functional form given by the last

equation in (2), successive carries are shown to be

expressible in terms of the same lower-order carry

by a method of substitution.

Bx

+ (A2+B2) (Ax -\-Bx)Cn

C3 — A3B3

+ (H3+B3)C2

— a3b3

+ (A3+B3) An B2

+ {A3A~ B3) (A2-\- B2)AxBx

d- {A3 T B3) (A2 -\~B2) (Ax + Bx) Co (3)

c4= a4b4 axba

+ (Ai-\-Bi)C3 + (Ai-\~Bi)A3B3

{Ax+Z?4) (A3+B3)A2B-2

+ (Hi+Hj) (A3-{-B3) (A2-\- B2)AxBx

+ (Ai+B±) (A3 A-B3) {An + Bn) (Ax + Bx) Co

axb4

+ (AiJrBi)AsB3

+ {Ai+Bi) (A3+B3) A2B2

+ (A4+H4) {A3-\-B3) (A2-\-B2) (Hi+HilfAxT C0) (Bx-\-Co).

5

Equations (3) show how as many as 4 successive
carries can be expressed as functions of the same
carry, with all expressions consisting of no more
than 4 terms and with the largest term consisting
of no more than 6 factors. These 4 carries can
therefore be generated simultaneously by means
of only 4 gating stages.

Similarly, the next more significant four carries,
C5 through Cs, can be formed simultaneously dur¬
ing the next clock phase as functions of the appro¬
priate augend and addend digits and C4. In short,
four successive carry digits can be formed simul¬
taneously every clock phase. One gating stage
per carry is required.

To summarize, if C0 is available in the first clock
phase, Ci through C4 can be generated during the
second clock phase, C5 through Cs during the third
clock phase, etc. Each group of sum digits can
be obtained one clock phase after the corre¬

sponding group of carries has been formed. Figure
1.7 illustrates in block-diagram form an adder
utilizing this principle of simultaneous carry
generation.

987654321

A A A A A A A A A

B B B B B B B B B

I AUGEND

Co] [ADDEND

CARRY

GENERATION

SUM

Figure 1.7. Nine-bit parallel binary adder.

4. Use of Auxiliary Carry Functions

Of signal importance is the use that can be
made of the second clock phase to further speed
up the addition process. This time can be utilized
to form certain auxiliary carry functions, which
enable additional carries to be generated during
the third clock phase simultaneously with the
carries C5 through Cs. More specifically, C9, Cw,
etc., can be formed during the third clock phase as
functions of C4 if some of the terms involving only
the augend and addend digits in the expanded
relations for C9, Cv>, etc., are combined as auxiliary
carry functions in separate stages during the
intervening clock phase.

For example, the expression for C9 is shown in
the first equation in (4) expanded as a function of
04. Because of limitations on the gating com¬
plexity, it is not possible to form (79 directly even
if it were reduced to four terms. Instead, the
function is implemented by parts.

(The outlines drawn around the various parts of
eq (4) serve merely to correlate the corresponding
parts of the two equations.) The 5 terms en¬
closed within the triangle can be reduced to 4
terms by combining the first 2 terms. This re¬
duced 4-term expression can then be implemented
in 1 gating stage during the second clock phase,
and it is then designated by X%. The single factor
enclosed within the rectangle can also be im¬
plemented during the second clock phase in one
gating stage. It is designated by Yg. By means
of these 2 auxiliary carry functions, X9 and Yg,

the actual carry C9 can be formed quite handily
in 1 gating stage during the third clock phase,
according to the second equation in (4).

The next 4 carries, Cx0 through (713, can also be
formed during the third clock phase by utilizing
these same auxiliary carry functions. The most
complicated of these expressions, the one for C13,
is given in eq (5), where further combinations are
made to reduce the number of terms to four.

Cig—AigBig

+ (Al3+B13)A12Bi2

+ CAi3+Bif) {An+1^12) Ai xBi 1
T" (Aig-f-Bif) {AnY Bif) (AnY Bu) A10B10

+ (Ai3 + Hi3) (Ai2-\-Bi2) (An+Ull) (A10AB10) Xg

+ (Anf-Bn) {Anf-Bif) (An+5U) (Al0+510) 19C4

(5)

Cis= (A]3+7?13) (A13+A12) {AiZ-\-Bif) {Bizf-Aif)

(BiZ-\-Bif)

+ (A13+I?13) {An-{- Bvf) AnBn

+ (A13 + H13) (Aigf-Bn) (Au-|-i?n)/l1o-B1o
+ (A-i3 + I?i3) {A12AB12) (A.n + i?n) (vbo + Iho)

(Xg+Yg){Xg+Ci).

6

Figure 1.8 illustrates a parallel adder that will
complete an addition on 14 binary digits in 4
clock phases, using 1 pair of auxiliary carry
functions.

By means of additional auxiliary carry functions
it is possible to extend still further the sequence
of carries that can be formed in the same clock
phase. For example, as shown in eq (6), Cu can
be expressed as a simple function involving <74
and another pair of auxiliary carry functions, Xu

and Yu, which are defined implicitly in eq (6).

1st.

CLOCK
PHASE

2nd.

CLOCK
PHASE

3 I'd.

CLOCK
PHASE

4th.
CLOCK

PHASE

14 13 12 II 10 9 8 7 6 5 4 3 2 1

A A A A A A A : A A A AAA A AUGEND

ADDEND B B B B B B B B B B B B B B Co(

A A A A A A A r A (AAA
BBBBB BBBBBBBBB

S S S S S S S S S S S S S S |
SUM

Figure 1.8. Fourteen-bit parallel binary adder.

C15, 6’ie, and (?i7 can also be implemented in single
stages as functions of (?4 by using the same two
pairs of auxiliary carry functions. CK, CK, and
C;0 require still a third pair of auxiliary carry
functions in order that they be generated during
the same clock phase as functions of G±.

If it were desired, a total of 25 carries could be
generated simultaneously as functions of Ci dur¬
ing the third clock phase without exceeding the
limitations on gating complexity. However, if
the number of simultaneous carries is limited to
16, only 3 pairs of auxiliary carry functions are
required. Figure 1.9 illustrates a parallel adder
that can add numbers of 21 binary digits in 4
clock phases, utilizing this scheme.

CLOCK A 1 A A A A A A A A A A

PHASE B B B B B 8 B B B B B

L .
2nd.

CLOCK m nr
PHASE m ls

3 rd.
CLOCK 1 [&r4r

98?, 65432 1

A | A , A A lA 'A A lA | A A

•: 4-r-l

PHASE [~CjC~ c I C 1 c c c c c
J y /

c c c c c c

AAAAAAAAAA
BBBBBBBBBB

TV
A A
8 B 4th.

PHASE I S 1 S | S|S | S 1 S~ |S | S |S1S 1 S j S1 S ssssssss

L91-9

AUGEND

ADDEND

CARRY

GENER¬
ATION

A A AAAAAAA
B B ! B j B B B B B, B

SUM

Figure 1.9. Twenty-one-bit parallel binary adder.

444675-58- -2 7

5. Two Levels of Auxiliary Carry Functions

To extend the parallel adder to accommodate
53 binary digrits, it will be shown that only 1 addi¬
tional clock phase is necessary, and that during
the fourth clock phase the carries C2X through C52
can all be generated as functions of C20. The en¬
tire parallel array of sum digits, Si through S53)
can then be formed during the fifth clock phase.

The ability to generate all of the carries C2X
through Cr52 during the fourth clock phase stems
from the fact that two clock phases are available
between these carries and the input digits. This
permits the formation of two levels of auxiliary
functions. The first level consists of sets of X’s
and F’s, which are functions of the relevant

augend and addend digits only, as was the case
previously. The second-level auxiliary carry func¬
tions are generated by sets of stages labeled Z and
W and are functions of certain first-level functions
only.

Figure 1.10 illustrates in block-diagram form
the complete 53-bit adder, which makes use of
first-level and second-level auxiliary carry stages.
As in the case of the preceding carries, C2X through
C32 are generated as functions of the appropriate
augend and addend digits, some of the first-level
auxiliary carry stages, and C2o■ For example, the
most complicated of these, C32, is shown in eq (7)
to be reducible to four terms.

C32—A32B32

+ (A32+B32) a31b31

A (A32AB32) (A3i-\- B3x) A30B3o

a(a32+B32) (A31 a b3 1) (A30AB30) xm

+ (A32+B32) (A3l+B31) (A30+B30) Y29X2s (7)

+ (AI32+-B32) (A31-\-B31) (A30+.B30) y22y25c20

C32= (A32A B32) {A32AA3l) (A32AB3i) (B32-\-A3i) (Z?32+i?3i)

+ (A32+B32) (/13i + B3i)A3oB30

A (A32AB32) (-431+_Z?31) (A3o A B3o) {X29A r29) (X29AX25)

+ (A32AB32) (-431 + -S31) (A3o + i?3o) F29F25C20.

53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 II 10 9 8 7 6 5 4 3 2 I

A a! A 1 A a| a A 1 A 1 A A A A j A j A A! a: A A A j A A A ' A A 1 A | A 1 A ' a| A A ! A A A

B

CD

CD

CD B |b B

00

CD B B 8 1 8 1 B : B [B B b : b , b : b B B , b“Ib |B

CD

CD 818,8 B

ITT

1 AUGEND

0r ADDEND

CLOCK |S I s [s| s I s | S[S, S[S | S j S [S j S ! s | s | s | s] s j s | s j s | s | s] s [s j s j s] s] s | s | s ; S | S | s | s | s | s | s | s | s | s | s j s | s j s] s j s | s | s | s [s] s j s | >SUM

Figure 1.10. Fifty-three-bit -parallel binary adder.

8

The next higher-order carry, C33, requires a third
pair of auxiliary carry functions, A"33 and F33, as
shown in eq (8). Also, at this point it becomes
economical to form a pair of second-level auxiliary
carry functions, Z33, consisting of the terms within
the solid-line triangle, and W33, consisting of the
factors within the solid-line rectangle. C33 can
then be simply generated by means of Z33 and W33,
as shown in the last of eq (8).

The subsequent carries, C3i, C35, etc.., are simi¬
larly generated by means of these and, when neces¬
sary, other second-level auxiliary carry functions.
For example, for the carries up to C37, the same
pair of second-level functions, W33 and Z33, is
sufficient, whereas C38 requires the use of another
pair of first-level and second-level auxiliary carry
functions in a manner exactly analogous to the
formation of C33.

(8)

9

The last digit position where auxiliary carry
functions are introduced is at 48. The carry at
this position, C48, is shown in eq (9) to be a simple
function of the last pair of second-level auxiliary
carry functions.

The collected Boolean expressions for the
auxiliary carry functions and for the carry func¬
tions themselves for this particular 53-bit adder
are given in tables 1.2 and 1.3.

The number of gating stages required to imple¬
ment this design can be seen by examining figure
1.10. Each square box in the diagram represents
one gating stage. Of the 238 stages used in the
whole adder register, note that only 26 are used
to create the auxiliary carry functions. The
other 212 stages are needed irrespective of how

the carry digits are formed, because they comprise
53 sets of 4 stages for the augend, addend, carry,
and sum digits.

Table 1.2. Auxiliary carry functions

Fk represents (Ak+Bk)(Ak+Ak-i)(Ak-\-Bk-\){Bk+Ak-\){Bk+Bk-\).
Dk represents AkBk. Rk represents (Ak+Bk).

A 9 = RoT RqRsRiD$
T RoRs^ReDs

A* i4 —F u + RuRuDn+RuRuRiiDn
+ .R14.R13.R12fl11.D10

A18 =Di8 + Ri8Di7 + Ri8Ri7Di6

+ RisRnRieDis

•A„5 = A25 T R25R24D23 + R25R24R23D22

T R25R24R23R22D21

A22= D29+ A29D28 + R29R28D27

-(- R29R28R27D26

A33 = D33+R33D32+R33R32D31

+ R33R32R31D30

A38 = R38+ R38R37D36 + R38R37A36D35

+ RmRwRmRmDm

A 43 = R43+R43^42D41 + R43R42R41D40

T R43R42R41R40D39

A 48 = Fi%-\- RwRuDwA RisRtfRwDib
+ A48R47R46S45D44

^33 — A33+ F33A29+ F33F29A25

Z38 = A38 + F38A33 + F38F33A29+ F38F33F29AT25

Z43 = A43+ F43A38+ F43F38A33

+ F43 F38 F33 (A29 -H F29) (A29+ A25)

Z48 =A48+ F48A43

+ F48F43(A38+ F38) (A38+ A33)

+ F48F43F38F33(A29-|- F29) (A29+A25)

F9 = RqRqR-jRqRs

114 — RuRizRnRnRio

Fl8 = RlgR17R16R15

F25 — A25R24R23R22R21

F29 — R2qR2sR2tR26

F33 — R33R32R31R3O

F38 — R38R37I1A0R35A34

F43 R43R42R41R40R39

f48 — R48R47R46R45S44

1F33= F33F29F25

1F38= F38F33F29F25

wi3= F43 F38 F33F29 F25

1F48= F48 F43 F38 F33 F29 F25

10

Table 1.3. Carry functions

Fk represents (,4k+Bk)04k+^4k-i)G4k+Bk-i)(Bk+;4k-i)(Bk+Bk-i). Bk represents ^lkBk. Bk represents G4k+Bk).

C, =Di + RiCo
C2 = A + «*A + J#iC0
C3 = ATAAT- AAA4- R3R2R1C0
C4 = A + A A +AAA + A A A A {Al + Co) (AT Co)
C5 = A T A C4

Co = ATAAT AAA
C7 = AT A ATAA ATAAAA
Cg = AT AA AT AAAAT AAAAC4
Co =x9tf9c4
C10=AoTAo(X9T 19) (X9TC4)
Cll= AlT -Rll AoT AlAo(X9T Fj) (Xg T C4)
Cl2= A2T A2 AlT A2A1 AoT A2A1 Ao(X9T F9) (X9T C4)
C\g—F 13+ A3A2A1T A3A2A1 AoT R13 A2A\R 10(X9T Fg) (X’gT C4)

ci4=x14tf14x9tf14f9c4
Ci5=AsTAsXi4ti?i5Fi4(x9+ y 9) (X9tC4)

Cia= AeT AsAbT AeAsXi4T As Ad Fi4(X9T Fg) (XgT C4)
Cn=Fn~\- RnRigDtf-^ RnRigRigXu-Y RnRigRigY h(X9T Y 9) (X9T C4)

c18=xI8+ f18x14t f18f14x9t f18f14f6c4
Ci9 = Z)i9 + i?i9(X]8+ Y is) (X18 + Xi4) T i?i9Fi8Fi4(X'9+ F9) (XgT C4)
C20= Ao T Ao A9 + Ao A9 (X, 8 + Fj8) (X18+ Xh) + A0A9 Fi81 14 (XgT Y 9) (XgT C4)

C21 = At T At C20
C22=A2 T A2 Ai T A2 Ai C20
C23 = A3 T As A2T R23R22 AlT A3A2A1C20
C24^= A4T A4A3A2T A4A3A2 At T R24R22R 22^21 C20

C25== X25T F25C20

C20=ZI26 T ^2 29X25 T i?26 F25C20

C27— A7 T A7 Ag X A7 A5X25 T A? A’6 F25C20

C28 — A8 T AsAtAhT A8A7A0X25+ AsAtAs F25C20

C29 = X29+ F29X25T F29F25C20
C3o = AoT Ao(X2gT F29) (X29+ X25) T t^30 ^29 F25C20
C31= AlT Al AoT Al Ao(X2gT F29) (X29T X25) + Al Ao F29F25C20
C82 = A2T A2A1A0T R32R31R3O (X2gT F2g) (X29+ X25) + R32R ZlR^O Fig F25C20

c33=z33t tf33c20

C34= AiT A4(Z33T TF33) (F33+ C20)
C35= A5+ A5 AlT AdA4(Z33T TF33) (Z33T C20)
C38= AeT Ae A5T AeAs AlT A6 A5 Al(Z33T 1F33) (Z33T C20)
C37 = X37+ A7A6 A5T A7A6A5A4T ff37-ff39A.5 Al(Z33T TI 33) (Z33T C20)

C38= Z38T tf38c20

C39=A9+A9(F38+ 1F38)(Z38+C2o)
C40= Ao+Ao Ag+Ao Ag (Z38 + TF38)(Z38+ C20)

C41= Al + Al AoT Al Ao A9T Z?4j/?4o/?39(Z38 + H 38) (Z38T C20)

C42 = A2T A2A1 AoT 42 A1 Ao As+ A2A1 AoA»(Z3sT TF38) (Z38T C2o)
C43=Z43+ ll'43C2o
C44 = A4 T A4 (z43 T TF43) (Z43 T C20)

C45= A5T A5A4T A5Al(Z43T TF43) (Z43+ C20)

C46= AsT Ae A5T /?46 A5 A4+ AeAs A4(Z43T Tl' 43) (Z43+ C20)

C47=A7 T A7 Ae As T ArAeAsAiT A?Ao AsAi^mT TF43) (Z43T C2o)
C48=Z48+TF48C20

C49= A9 + ^49(Z48+ TF48) (Z48+ C20)

C50= Ao+ S50A9+^50^49(^43+ WiS) (Z48+ C20)

Csi= At 4" ^?31 Ao+ R51A0A9+ -^51 Aoff 49(Z48+ TF48) (Z48+ C20)

C52 = F52+ i?52AlAo+-^52^51^50 A9+ ^52-^51 Ao-fi>4»(Z48+ 1F48) (Z48+ C20)

11

As indicated previously, five clock phases are
occupied, starting with the input digits and ending
with the sum digits. As the adder is to be used
for multiplications and divisions in a repetitive
fashion requiring the recirculation of the sum
digits back into one of the inputs with appropriate
shifts, the clock pulses must occur in five phases
to allow an addition cycle to be completed in 1
jusec.

The top line of table 1.4 gives some statistics
on the number of components required for the
adder represented in figure 1.10. Two other
slightly different versions have been worked out
in which fewer gates need to be driven by the
most heavily loaded tube. As the table shows,
these variations also require different proportions

of components. Approximately 10,000 germanium
diodes are required in each of these versions.

Table 1.4. Number of components required

Maxi¬
mum
load 1

Number
of stages Tubes

Delay
lines

25 238 238
lisec
300

19 253 253 250
14 285 285 150

1 Unit of load=one gate-load.

6. References

[1] A. W. Holt, An experimental rapid access memory
using diodes and capacitors, Proc. Assoc, for Com¬
puting Machinery Conference, p. 133-142 (December
1952) .

[2] R. J. Slutz, A. W. Holt, R. P. Witt, D. C. Friedman,
High-speed memory developments at the National
Bureau of Standards, NBS Circ. 551, p. 93-108
(January 1955).

[3] S. Greenwald, R. D. Haueter, S. N. Alexander, SEAC,
Proc. Inst. Radio Engrs. 41, p. 1300-1313 (October
1953) . See also, NBS Circ. 551, p. 5-26 (January
1955).

[4] A. L. Leiner, S. N. Alexander, System organization of
the DYSEAC, Trans. Inst. Radio Engrs.-Prof.
Group Electron. Computers, EC-3, No. 1 (March
1954) .

[5] A. L. Leiner, W. A. Notz, J. L. Smith, A. Weinberger,
System design of the SEAC and DYSEAC, Trans.
Inst. Radio Engrs.-Prof. Group Electron. Com¬
puters, EC-3, No. 2 (June 1954).

[6] R. D. Elbourn, R. P. Witt, Dynamic circuit techniques
used in SEAC and DYSEAC, Proc. Inst. Radio
Engrs. 41, p. 1380-1387 (October 1953). See also,
Trans. Inst. Radio Engrs.-Prof. Group Electron.
Computers, EC-3, No. 1 (March 1953), and NBS
Circ. 551, p. 27-38 (January 1955).

[7] R. K. Richards, Arithmetic operations in digital com¬
puters, p. 26-50 (D. Van Nostrand Co., Inc., New
York, N. Y., 1955).

12

2. Shortcut Multiplication for Binary Digital Computers

J. L. Smith and A. Weinberger

1. Introduction

The usual method of accomplishing automatic
multiplication in binary digital computers con¬
sists of repeated additions of the multiplicand (the
partial product) to the partial-product sum under
the control of successive single digits of the multi¬
plier beginning at the least-significant end. A one-
position shift accompanies each addition cycle,
either the partial-product sum to the right, or the
multiplicand to the left. The process is somewhat
analogous to the pencil-and-paper method of
performing decimal multiplication, except that
instead of storing all the partial products sepa¬
rately and adding them together as the final step,
a running sum of the partial products is maintained
in an accumulator. This method requires as many
add-and-shift cycles as there are multiplier digits.
The accumulator is cleared initially. During the
first addition cycle, if the least-significant digit
of the multiplier is a 1, the multiplicand is added
to the contents of the accumulator, whereas if it
is a 0, nothing is added. In either case the
contents of the accumulator and of the multiplier
register are shifted one position to the right. Simi¬
larly, during the second addition cycle, the next
more significant digit of the multiplier determines

whether the multiplicand is or is not added to the
contents of the accumulator. Again, in either
case, the contents of the accumulator and of the
multiplier register are shifted one position to the
right. After each multiplier digit in turn lias
controlled the addition of the multiplicand to the
contents of the accumulator (with the one-position
shift for each cycle), the multiplication operation
is complete, and the final product is available in
the accumulator.

To complete the description of the multiplica¬
tion process, it should be pointed out that the
length of the final product (assuming full sig¬
nificance) is generally equal to the sum of the
lengths of the multiplicand and multiplier. The
accumulator must therefore be of that length if it
is to store the complete product. Actually, the
product can be accumulated partly in the accumu¬
lator (major product) and partly in the multiplier
register (minor product). Each digit of the minor
product (the least significant one in the accumu¬
lator) obtained during any addition cycle is stored
in the extreme left-hand position of the multiplier
register, which is vacated during each shift of the
multiplier-register contents.

2. Basis for Shortcut Multiplication

Whenever any multiplier digit is a 0 and nothing
is to be added to the partial-product sum, it is
obvious that that addition cycle could be omitted
entirely, and that only a shift need be performed.
A sequence of zeros would allow omitting as many
addition cycles as there were zeros. The idea will
now be developed that if a sequence of l’s occurs
in the multiplier, cycles corresponding to these
l’s may also be omitted in much the same way, if
subtraction of the multiplicand from the partial-
product sum is provided for.

Consider a string of n consecutive l’s in the
multiplier. The placement of the binary point is
arbitrary so far as this argument is concerned, and,
for the sake of simplicity, let it be located to the
right of the right-hand 1. Then the numerical
value of just this string of n l’s is

2«-iq_2"“2+2n-3+. . . +21 + 2°.

It is quite easily shown that this expression is
equal to

2"—2°.

Therefore, in computing the partial products
corresponding to this string of n l’s, one subtrac¬
tion of the multiplicand for the right-hand 1
and one addition of the multiplicand for the 0 to
the left of the string are sufficient. Such a se¬
quence of l’s begun by a subtract cycle is referred
to hereafter as a subtract sequence.

The fact that it is possible to compute a product
correctly by omitting cycles that correspond to
strings of 0’s and to strings of l’s is the basis for
this method of shortcut multiplication.

During the multiplication process, it is a funda¬
mental requirement that the contents of the
accumulator (and of the multiplier register) be
shifted one digit position to the right for every
digit of the multiplier, regardless of whether or not
any of the cycles are omitted. Therefore, in
order that the multiplication time be shortened
to the fullest extent by virtue of omitting cycles of
the operation, arrangements shoidd be made for
accomplishing multiple-position shifts as rapidly
as possible. Ideally, the shifts that correspond
to cycles to be omitted should be combined with
the shift that corresponds to the last cycle actually

13

performed. Thus, for example, if 3 cycles are to
be omitted, 1 shift of 4 digit positions should be
executed instead of 4 shifts of 1 digit position each.

From considerations of the logical gating re¬
quired to accomplish any shift, it is evident that
the number of different shift paths must be limited
to only a few. But it will become evident that a
point of diminishing return exists such that there
is little need for exceeding the provision to omit
either 1, 2, or 3 cycles at any one time.

There are two important features that must be
incorporated in a device using a multiplication
scheme such as this. These are illustrated in

figure 2.1 where shifts of 1, 2, 3, and 4 positions
are provided for (corresponding to the omission
of 0, 1, 2, and 3 cycles). First, shift paths of the
same lengths as are provided for the accumulator
must also be provided for the multiplier register
in order to have the proper multiplier digits at
hand for controlling the next cycle. Second,
provision must be made for examining a number of
succeeding multiplier digits at once in order to
determine how many of the succeeding cycles are
to be omitted, and whether the multiplicand
should be added or subtracted (or neither) during
the current cycle.

■INFORMATION

Figure 2.1. Schematic diagram for shortcut multiplier.

3. Rules for Governing Shortcut Multiplication

The previous paragraphs have outlined the basis
for speeding up the multiplication process by
omitting cycles of the operation. The means for
governing such a procedure, in order to be mechan¬
ized, must be reduced to a set of well-defined rules.

Before the rules are set down in detail, an ad¬
ditional fact relating to a subtract sequence will
be explained. For example, if the sequence is

11101011,

then its numerical value (assuming the sequence
to be an integer) is

27+26 + 25+23+2I + 2°,

which can also be expressed as

28—24—22—2°.

This means that if a sequence of l’s in the multi¬
plier is begun by subtracting for the right-hand 1,

14

cycles for the rest of the l’s can be omitted, but
cycles for the 0’s become subtractions. Note that
in the example the two 0’s correspond in value to
22 and 24, and that these appear negatively in the
last expression.

In the succeeding discussions, it is assumed that
any number of cycles from 0 to n may be omitted
at any one time, i. e., that the accumulator and
multiplier registers can shift any number of posi¬
tions from 1 to n+1. For the sake of brevity in
the discussions to follow, an omitted or nonomitted
cycle corresponding to any multiplier digit will be
referred to simply as an omitted or nonomitted
multiplier digit. The action proceeds from right
to left through the sequence of multiplier digits.

Developing the rules for governing this method
of shortcut multiplication falls naturally into two
parts. First are the rules for determining whether
to add or subtract the multiplicand or to do
neither. This latter case, which constitutes a
trivial cycle, is required only because the number
of different shift paths, and hence the maximum
amount of shift, is restricted for reasons of equip¬
ment economy; it is not always possible to omit as
many cycles as could be omitted if there were no
restriction on the maximum amount of shift.
Second are the rules that determine how many
digit positions the accumulator and multiplier
registers are to be shifted. As stated before, the
number of positions ranges from 1 to w+1.

Both sets of rules depend on (a) the current
right-most digits of the multiplier after the shift
for the previous cycle has been accomplished, and
(b) the sign of the partial-product sum, i. e.,
whether the last nontrivial cycle was an add cycle
or a subtract cycle.

3.1. Rules for Adding or Subtracting the
Multiplicand

Case I. Partial-Product Sum Not Negative (Add
Sequence):

If the partial-product sum is not negative, as it
is in the initial state or as the result of adding for
the last nontrivial cycle, the multiplicand is to be
added if the current right-most digits of the
multiplier are XX01. (Unspecified digits are
immaterial.) It is not advantageous to begin a
subtract sequence for a single 1 because an addi¬
tion would be required during the very next cycle
for the indicated 0. But for two or more l’s it is
advantageous, so that if the current right-most
digits are XXll, the multiplicand is to be sub¬
tracted from the partial-product sum.

If during an add sequence the current right¬
most multiplier digits are XXXO (either an initial
condition or a condition that might arise because
a shift of more than n-\-\ digit positions is not
permitted), the multiplicand is to be neither
added nor subtracted, and the current cycle is a
trivial one.

Case II. Partial-Product Sum Negative (Subtract
Sequence):

If the partial-product sum is negative, as the
result of subtracting for the last nontrivial cycle,
the multiplicand is to be subtracted if the current
right-most digits of the multiplier are XX10.
In this instance, the 0 is treated like those in the
subtract sequence described earlier in this section.
It turns out to be advantageous to maintain a
subtract sequence for isolated 0’s. But for two
or more consecutive 0’s it is advantageous to
terminate the subtract sequence, so that if the
current right-most digits are XX00, the multi¬
plicand is to be added to the partial-product sum.

If during a subtract sequence the current right¬
most multiplier digits are XXXI, a condition that
might arise because a shift of more than n+l digit
positions is not permitted, the current cycle is a
trivial one, and the multiplicand is to be neither
added nor subtracted.

In table 2.1 are given practical add-subtract
rules in a form that can easily be mechanized.

Table 2.1. Rules for adding or subtracting

Action Required condi¬
tions 1

Add multiplicand
Subtract multiplicand

01/+ or 00/-
11/+ or 10/-

1 The digits shown are the current right-most digits of the multiplier. The
sign indicates whether the partial-produet sum for the last nontrivial cycle is
positive or negative, i. e., whether the last nontrivial cycle was add or sub¬
tract.

3.2. Rules for Shifting

The general rides for omitting cycles, which
follow easily from the precepts given in section 2,
are as follows.

1. If an add sequence is initiated or maintained,
i. e., if the cycle to be executed is an add cycle
(or, in case it is trivial, if the last nontrivial one
was an add cycle), the rule is: consecutive 0’s in
number from one to n immediately to the left of
the right-most multiplier digit are to be omitted.

2. If a subtract sequence is initiated or main¬
tained, i. e., if the cycle to be executed is a sub¬
tract cycle (or, in case it is trivial, if the last non¬
trivial one was a subtract cycle), the rule is:
consecutive 1 ’s in number from one to n immediately
to the left of the right-most multiplier digit are
to be omitted.

It should be clear that inasmuch as cycles are
being executed continually during the multiplica¬
tion process, the current right-most multiplier
digit is never omitted.

As the rules for shifting follow directly from the

15

rules for omitting cycles, the rules for shifting
have as their criteria:

1. whether the current cycle initiates or main¬
tains an add sequence, and

2. the number of consecutive 0’s or l’s to the
left of the current right-most multiplier digit.

If an add sequence is initiated or maintained, the
number of consecutive 0’s determines the shift; if
a subtract sequence is initiated or maintained,
the number of consecutive l’s determines the shift.
In any event, only the sign of the partial-product
sum resulting from the last nontrivial cycle and

the current right-most digits of the multiplier are
required as criteria for the rules, which are given
in table 2.2. By comparing tables 2.1 and 2.2 it
can be verified that the specific rules given in
table 2.2 contain implicitly the conditions of ini¬
tiating or maintaining an add or a subtract
sequence.

As mentioned previously, it will be shown that
there is little need for omitting more than three
multiplier digits at any one time, and hence in
the practical rules given, n is equal to 3. For n
greater than 3, the rules given in table 2.2 can be
extended in a manner that should be fairly obvious.

Table 2.2. Rules for shifting

Action Required conditions 1

Shift 1 digit position _ _ 10/+ or 01/ —
101/+ or 010/- or 100/± or 011/±

1001/+ or 0110/- or 1000/± or 0111,/±
0001/+ or 1110/- or 0000/± or 1111/±

. Shift 2 digit positions _ _.
Shift 3 digit positions.
Shift 4 digit positions_ „ _,

1 The digits shown are the current right-most digits of the multiplier. The sign indicates whether the partial-product sum for the last nontrivial cycle is
positive or negative, i. e., whether the last nontrivial cycle was add or subtract.

4. Effectiveness of Shortcut Multiplication

The effectiveness of this method of multiplica¬
tion can be expressed in terms of percentages or
ratios of the number of cycles actually required
to the total number required without shortcutting.
The smaller this ratio, the more effective is the
method.

For the sake of clarity in the examples to be
given, certain symbols to be placed atop each
multiplier digit are defined as follows:

• = a multiplier digit for which nothing is added
to or subtracted from the partial-product
sum; a trivial cycle.

+ = a multiplier digit for which the multiplicand
is added to the partial-product sum.

— = a multiplier digit for which the multiplicand
is subtracted from the partial-product sum.

* = a multiplier digit corresponding to an omitted
cycle.

The lower limit of effectiveness can be deter¬
mined by finding repetitive sequences of multi¬
plier digits such that the least number of digits
can be omitted, obeying the general rules given in
the last section. Thus, it can easily be verified
that for n= 1 an example of sequences that result
in omitting the least number of cycles is

. . . 000111000111000111000111,

and that the number of cycles actually required is
two-thirds of the number of digits. Likewise, it

can be seen that for nf> 1, examples of sequences
that result in omitting the least number of cycles
are

+-*+*-* +*-* +*-* +* -
. . . 00110011001100110011,

and

++*+*+*+*+* +*+*+* +
. . . 01010101010101010101.

In these cases the number of cycles required is
one-half of the number of digits. These sequences
represent the worst possible conditions from the
standpoint of speed. It is unlikely that they would
occur very often in practice, although they do
occur in the binary representation of certain deci¬
mal fractions, such as •§-, -L -fa, etc.

The upper limit of effectiveness is attained with
strings of similar digits whose lengths are multiples
of n-\-1. It is easy to show that the number of
cycles actually required for this kind of sequence is
l/(n+l) times the number of digits. For n=3,
an example of such a sequence is

. . . ooooooooooooiniinioooo.

In this case, which represents the best possible
conditions from the standpoint of speed, the num¬
ber of cycles required is only one-fourth of the
number of multiplier digits. There are, of course,
many such “best” sequences, and it is likely that
this kind of sequence, at least for parts of words,
would occur rather often in practice.

16

From the practical standpoint, perhaps the most
meaningful determination of effectiveness is the
one for a purely random sequence of multiplier
digits. A mathematical analysis 1 shows that the
limiting value of the ratio of the number of cycles
required (M) divided by the number of multiplier
digits (to), as to increases without bound, is

M 1 i+2-(n+1)

J,1™ TO-3 1—2_(n+1)"

It is obvious that if n, the maximum number of
cycles that may be omitted at once, also increases
without bound, the limit of this ratio is one-third.
For a practical value of m, say, 64, numerical cal¬
culation based on the results of a general mathe¬
matical treatment2 shows that the ratio is greater
than the limiting value by only about 0.01. The
results of such numerical calculations are sum¬
marized in figure 2.2.

Figure 2.2 shows graphically for various values
of n the ratio of the number of cycles actually
required to compute a product to the number of
digits in the multiplier. Besides the results for
random sequences, there are also shown the re¬
sults for best sequences and worst sequences. Al¬
though the random-digits points are constructed
from computed values for multipliers of a par¬
ticular length, namely, 64 binary digits, these
results do not differ significantly from the results
for somewhat shorter or longer words.

Figure 2.2 shows that if the maximum number
of cycles that can be omitted at any one time is
three, the average time to compute a product,
using a large number of random multipliers, is
about 40 percent of the usual multiplication time,
all other things being equal, or that the speed
factor due to shortcutting is about 2.5.

In practice, the multiplier digits are often not
random, nor even apparently so. However, ex¬
perience seems to indicate that departures from
randomness will usually favor the sequences of
similar digits that require fewer eyries rather than

those special sequences that require more cycles.
As a result, the average number of cycles required
for multiplications will generally turn out in
practice to be less than the theoretical number for
random sequences obtained from figure 2.2. If
the curve were plotted for the average number of
cycles required for multiplier sequences actually
occurring in practice, consisting of a mixture of
random or pseudo-random digits and strings of
similar digits, it would be found that this curve
would lie between the curve for random sequences
and the curve for the best sequences.

It is evident from an examination of figure 2.2
that, so far as random sequences are concerned,
the number of cycles required to compute a prod¬
uct decreases but little as n is increased beyond
three. This means that for random sequences
there is little need for providing the means to
omit more than three cycles at once. However,
for nonrandom sequences such that the curve for
the best sequences is applicable, it can be seen
that making n=7 would halve the number of
cycles required for n=2>. Thus, for sequences
consisting of a mixture of random digits and
strings of similar digits, only the nonrandom por¬
tions would be significantly affected by in¬
creasing n.

MAXIMUM NUMBER OF CYCLES OMITTED AT ONCE

Fioure 2.2. Effectiveness of shortcut multiplication.

5. Appendix 1. Speed for Infinite-Length Multiplier

The average rate at which digits of an infinitely
long multiplier sequence are disposed of in digits
per cycle is to be determined, under the assump¬
tions that the multiplier sequence is purely ran¬
dom, and that the add-subtract and shift rules
stated in the body of the paper apply. This
average rate is a fairly good approximation to the
speed factor achieved for random sequences of
practical length.

1 See Appendix 1.
2 See Appendix 2.

The probabilities of shifting by various amounts
from a nonomitted digit will now be derived for
specific conditions. These probabilities follow
directly from the shift rules stated in table 2.2.
All the conditions, stipulated by the sign of the
partial-product sum and the current nonomitted
(right-most) digit of the sequence, result in only
two sets of shift probabilities. These conditions
are grouped according to the resulting shift prob¬
abilities and are designated as case 1 and case 2.

17

Case 1:

The pertinent specific conditions are (a) partial-
product sum not negative and current right-hand
(nonomitted) digit 1, or (b) partial-product sum
negative and current right-hand digit 0.

Table 2.2 shows that under these conditions
there can never be a shift of just one position. In
order for there to be a shift of two positions, it is
required that the table 2.2 states be 101/+,011/+,
100/—, or 010/—. The number of different states
containing each of conditions (a) and (b), namely
two, is just one-half of the four pertinent combina¬
tions ending in 1/+ and 0/—, respectively.3
Therefore, because random sequences are being
considered, the probability of shifting two posi¬
tions from a nonomitted digit is -g- for case 1 condi¬
tions. By similar reasoning it can be seen that
the probability of shifting three positions is ^.
Then by extension, and as the rules are similar
for a shift of n and for a shift of n +1 positions, the
following table (2.3) of shift probabilities for case
1, designated by Vs can be compiled. It should be
borne in mind that n has the same definition as in
the body of the paper, i. e., n is the maximum
number of digits omitted at once. The amount
of shift ranges from 1 to n +1.

Table 2.3. Case 1 shift 'probabilities

j 1 2 3 . i . . n n+ 1

V 0
1
2

1
4 . 2-< ■.-a

Case 2:

The pertinent specific conditions are (a) partial-
product sum not negative and current right-hand
digit 0, or (b) partial-product sum negative and
current right-hand digit 1.

Table 2.2 shows that in order for there to be a
shift of one position, it is required that there be
10/+ or 01/—. But the number of these is just
one-lialf of the pertinent combinations ending
in either 0/+ or 1/—. Hence the probability of
shifting one position is \ for case 2 conditions.
By similar reasoning it can be seen that the
probability of shifting two positions is + and
so on. Table 2.4, showing the case 2 shift proba¬
bilities, designated by WJ, is constructed in the
same manner as table 2.3.

Table 2.4. Case 2 shift probabilities

j 12 3.. i . . n n+1

Wj All
2 4 8 . 2-*' . . . 2-" 2-"

3 For example, the four combinations ending in 1/+ are 001/+, 011/+, 101/+,
and 111/+.

A fact regarding the combined effects of the
add-substract rules of table 2.1 and the shift rules
of table 2.2 that can easily be verified is that a
shift of any amount less than n+1 always results
in case 1 conditions, and that a shift of just « + l
positions results in case 1 conditions and case 2
conditions with equal probability. This latter
statement is true because, so far as the rules are
concerned, the right-hand digit after a shift of
w+1 positions is completely unknown prior to
the shift, and it can be a 1 or 0 with equal proba¬
bility. It is also a fact, evident from an inspection
of table 2.1, that the so-called trivial cycles, for
which neither addition nor subtraction is done,
are the very ones for which the case 2 conditions
apply; conversely, cycles for which case 2 condi¬
tions apply are all trivial cycles.

The following argument, which evaluates the
probabilities of occurrence of case 1 and case 2
conditions, is based on the assumption that the
multiplier sequence is sufficiently long so that the
probabilities for one cycle are identical to the
probabilities for the preceding cycle.

Let Q be defined as the probability that case 2
conditions apply for any cycle. Then, clearly,
1 — Q is the probability that case 1 conditions
apply. Since it is noted in the preceding para¬
graph that case 2 results from a shift of ti + 1
positions with a probability of one-half, it follows
that the probability of having had a shift of 7i+1
positions is 2 Q.

Now, from tables 2.3 and 2.4, it can be seen
that the probability of shifting n-\-\ positions
for case 1 is 2_(re~1), and for case 2, 2~n. Then 2Q
can be evaluated by taking the weighted mean
of the shift probabilities for the two cases.

2Q=(l-Q)2~^ + Q2-\ (1)

After some reduction, there is obtained

2 — i)

2+2“"’
(2)

and

9— r>-n

1“<3=2++’ for,!3=L
(3)

Equations (2) and (3) are the expressions for the
probabilities of having case 2 and case 1 condi¬
tions, respectively, after an infinite number of
cycles.

The next step is to determine the average shift
for case 1 and for case 2. This can be done from
the information contained in tables 2.3 and 2.4.
The average shift is simply the weighted mean of
all the possible shifts for each case. Thus, if A is
defined to be the average shift for case 1, we have

A=J2 f2-(i-1) + (%+l)2-("-1), (4)
1=2

18

which by well-known methods is reduced to

A=3 —2“(n-1), forn>l. (5)

Similarly, if B is defined to be the average shift for
case 2, we have

B=22i2-i+(n+l)2-n (6)
i=1

= 2 — 2“", forn>0. (7)

The average rate of shifting is the weighted
mean of A and B, using for the weights l — Q and
Q, respectively. Thus the average rate of shift¬
ing is

L=(1-Q)A+QB, (8)

which, through the use of eq (2), (3), (5), and (7),
becomes

1_0-(re+l>

L=31+2-N+iT for7l-L

The quantity L is the average amount of shift
per cycle, i. e., the average number of digits dis¬
posed of in each cycle. The reciprocal of this is
the average number of cj^cles required per digit.
If the total number of cycles required to compute
a product is M, and if the number of digits in the
multiplier is m, then we have

1 ..Ml l+2-(n+1) „ ,im

Z=t”lm=3 f0r’,-L {10)

In table 2.5 are given the values of l/L for
various values of n. For the sake of complete¬
ness, the value for n=0 (the usual multiplication
method) is included, which is unity.

Table 2.5. Relative multiplication times

n 0 1 2 3 4 5 6 CO

1IL 1
5 3 17 11 65 43 1

9 7 45 31 189 127 O

6. Appendix 2. Speed for Finite-Length Multiplier

The average number of cycles required to
generate a product is to be determined under the
assumptions that the multiplier is a purely random
number of finite length and that the add-subtract
rules and the shift rules stated in the body of this
paper apply.

To anticipate the discussion, a quantity Xk is
defined to be the probability that the 4th digit of
a sequence is not omitted—i. e., the probability
that one cycle will be expended in passing over
the Mil digit. Then the total number of cycles
expended in passing over m digits of an m-digit

m
sequence is ^2Xk. It is the purpose in this

i
appendix to derive an expression for this quantity
in terms of known constants and parameters.

To begin the discussion, the definitions of
certain terms are given.

/?*=the probability of omitting the Mh
digit.

AA=t,he probability of not omitting the
Mh digit.

P*=the probability that the Mh digit cor¬
responds to an add or a subtract
cycle.

(4=the probability that the 4th digit cor¬
responds to a trivial cycle.

S'!=the probability of shifting j places
from the 4tli digit, provided the 4th
digit is not omitted.

A+S*=the actual probability of shifting j

places from the 4th digit.
n=the maximum number of digits that

may be omitted at once, and the
amount of shift may range from 1
to 71+1.

Note that the superscript on S is not to be inter¬
preted as an exponent.

From these definitions some rather obvious
relations can be derived.

Xk-\-Rk— 1 (i)

PkJrQk=Xk (2)

n+1
TiSi= i,
j=i

(3)

where 7i+l is the maximum amount of shift.
If the digit 4 is not omitted, then during the

previous cycle when the nonomitted digit was,
say, 4—p, there must have been a shift of exactly
j) positions. The probability that the 4th digit
is not omitted is therefore given by

n+1
Xk=J2X(4)

p=i

In appendix 1 it is shown that under all cir¬
cumstances there are only two sets of probabilities
for shifting various amounts, designated case 1
and case 2. These shift probabilities are given in
tables 2.3 and 2.4 and are labeled VJ and Wj,
respectively. For case 1, Vi is the probability
that a shift of j places will take place, and for
case 2, IF1 has a similar definition. Note that
the superscripts on V and IF are not to be inter¬
preted as exponents.

It is also brought out in appendix 1 that the
trivial cycles are the ones for which the case 2
shift probabilities apply, and conversely. This

19

means then that the probability that case 2
conditions apply for any digit k equals Qk, and
that the probability that case 1 conditions apply
equals Pk. Therefore, the total probability of
shifting j places from the /cth digit is

XkSl=VJPk+WiQk. (5)

Now, the probability of occurrence of case 2
conditions, i. e., Qk, is one-half the probability
that there was a shift of n+1 positions during the
previous cycle (noted in appendix 1):

Qk,=hXic-(n+\)S'i't\n+1). (6)

Then, through the use of eq (5) and (6) and the
values of Vn+1 and Wn+l from tables 2.3 and 2.4,
there is obtained

Q^AQk-in+ly2-n+P^n+iy2-^], (7)

which becomes

Qk=2-nPk_in+1)+2-^Qk_(n+v (8)

If the digit k is omitted during the cycle cor¬
responding to the nonomitted digit k—p, then
there must be a shift of any amount greater than
p during this cycle. For example, if the (k—4)th
digit is the nonomitted digit, then the shift must
be either 5,6,7, . . ., or n +1, and in this instance
the probability of omitting the Hh digit is

n+1

Xlc-i^iSl-4-
2=5

If, for the omitted digit k, all possible nonomitted
digits to the right, k—p, are considered, the
probability of omitting this fcth digit is the sum
of such expressions for all possible p.

If use is made of

9? —|— 1

1, (3)
7=1

and if the term for p= 1 is separated, eq (9)
becomes

from which is easily obtained

92+1 p m+1 Q 91+1

s Sl=Q- SF+f SWb (12)
]=p+1 -A-k J=p+1 -S*-k 7=p+l

which by virtue of the character of V and 11
(see tables 2.3 and 2.4) is

92+1 P, Q,

S St=~ W* (13)
j=p~h 1 x*-k x*~k

=Spk, for 2 <p<n. (14)

Therefore, eq (10) becomes

n
Pk—Xk_ i(l—(S'i_i) + XjXA_piS'^_p, (15)

p-2

and through the use of eq (4) there is obtained

Pk=Xk_x-Xk-SU+Xk

-N A—1*^*—1 Xk-(,n+l)£>k-Cn + l)- (16)

After some reductions, using eq (5) and (6), eq
(16) becomes

Pk~ X k Qk-\-Xk-l Qk-l Qk, (17)

which, by virtue of eq (2), is

Pk — PkXPk-1—Qk- (18)

But because of

Xk-\-Pk— 1, (1)

eq (18) is seen to be

1—Xk = Pk-\-Pk-l — Qk, (19)

which after further reductions, using eq (2),
becomes

Pk~i{ 1 P k-1). (20)

Equation (2), with the aid of eq (20) and (8) is
now to be summed to yield a closed expression in
terms of known constants and parameters. That
is to say, it is desired to find an expression for

Pk—Xk_ i(l Sl-i) S Xk—^2iPk-\-^2i Qk- (21)
k=1 fc=l fc=1

From eq (5) can be derived

w,

The summation of P* can be determined readily
through the use of eq (20) if the initial condition
is stipulated. The initial condition is that the
first digit is never omitted; i. e., Xi=l. Now
as the zero-th digit is nonexistent, P0 is not defined.

20

Therefore, eq (22) follows readily from eq (20) and

(2).
Pi=Qi=h (22)

If eq (20) is expanded until Pi is reached, there
is obtained

divisible by n+1. This in turn can be written as

m t r~ m—i(n+1) “I t

S ^=2 S 2-,(*+1) s P* +2-1S2-“*+1).
4=1 i=l L 4=1 J i =0

(28)

Ph=2-1-2-2+2-3- . . .

— (—2)-i— . . . -(-2)-*, (23)

from which by well-known techniques is obtained

W(l-(-2)-), for k>\. (24)

The summation of Pk is then

m m

(-2)*
4=1 4=1

=^m+i[2-1-2-2-f. . . —(—2)m]

=i[3m + l —(—2)_m], form>l.

(25)

To obtain the summation of Qk, eq (8) will be
expanded in a straightforward manner until the
first Qz is reached for which z<n-\-1.

_9-n p _L9—P 1
Vk—Z rk-(n+\) I " r*-2(w+l) i • • •

_L0-(i—1)(»+1) o-n p I

Substituting into this the expression for 22 P*,
eq (25), and using eq (21), there is obtained

m t

22 **=*[3m+l-(-2)-]+« 2_i("+1)
4=1 »=1

X[3m —3i(n+l) + l — (—2)Hn+1)~m]

+ §S 2~Un+l), for m > 1 and n>0, (291
i=0

[3m+l —(—2)_m]
4=1 9

o 9-(n+l)_9-(« + l)(n+l)

+|(3 m+1)-

:(n+l)

1—2_(n+1)

2-(n+l)(J_2“'(n+1>)

■71=2

2 — (*+1 > (ra+1)

(n+l)'\2

+3 (n+pt 1_2-(»+D

o
—- 2"

9 i = 1

}_2— 0 + 1) (b+1)

‘2 (l-2-("+1))’
(30)

+ 2-CS-1)("+1)-2-"P4-S(»+l) + 2“S(n+1)Q4-S(n+l),

(26)

where s is the integral number of times k—1 is
divisible by 71+1. It is important to note that
Qz=0 for 2 <2 <7i + l. This is true because Qz is
one-half the probability of having shifted npl
positions during the previous cycle, which is clearly
impossible for 2<7i+l. As the value of Qx is not
0, (eq (22)), the expansion of Qk may have only
Qi in the f+term. The summation of Qk can now
be wrpten as

to to—fa+1) to—2(m+l)

22Qk=2~n X P4+2-(n+1,.2-" X P4+ • • •
4=1 4=1 4=1

TO — i (71 + 1)

+2-(i-1)(n+1) • 2~n 22 Pk+•••
4=1

to—t (n+1)

_|_2_(t_1>(n+1) • 2~n X Pk
4=1

+&i:2-i<”+i>, (27)
i=0

where t is the integral number of times m — l is

where m> 1, n > 0, and where t is the integral
number of times m—l is divisible by 71+1.

The formula for the number of cycles required
to generate a product is complete except for the
terminal effect. An extra cycle is needed at the
end to terminate if the last nontrivial cycle was a
subtract and if the last digit is a 1. According
to the rules, a subtract cycle is initiated by 11,
and it is terminated by 00. The probability that
the last nontrivial cycle is a subtract, to be called
Z, is the probability that there is 11 somewhere
in the sequence that is not followed by 00. Some
examples follow, in which only the left-hand
portions of the sequences are shown.

(a) 11.

(b) 1011.

(c) 101011. . . .

(d) 10101011. . .

21

It should be noted that these sequences are
mutually exclusive. The probability of occurrence
of (a) is 2-2; of (b), 2-4; of (c), 2~6; of (d) 2-8; etc.
If the word is m digits long, the last sequence of
this kind has a probability of occurrence 2~m if m
is even, or 2~c”l~1) if m is odd. This latter fact
results from the requirement that all the sequences
be mutually exclusive. Now Z is the sum of all
these probabilities.

These reduce to

\m

Z=2 2-M
k=1

Z— jc 2~2k
k = 1

if m is even, or (31)

if m is odd. (32)

Z=i(if m is even, or (33)

Z=}(l-21"m) if m is odd. (34)

IP The
called

total number of cycles required,
M, is therefore

to be

m

M=j:xk+z
k-1

(35)

Figure 2.2 contains a plot of the values of M/m
for m=64 and for various values of n. A discus¬
sion of figure 2.2 is in the body of the paper.

22
U. S. GOVERNMENT PRINTING OFFICE: 1958

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its headquarters in Washington,
D. C., and its major field laboratories in Boulder, Colorado, is suggested in the following listing
of the divisions and sections engaged in technical work. In general, each section carries out
specialized research, development, and engineering in the field indicated by its title. A brief
description of the activities, and of the resultant publications, appears on the inside front cover.

WASHINGTON, D. C.

Electricity and Electronics. Resistance and Reactance. Electron Devices. Electrical In¬
struments. Magnetic Measurements. Dielectrics. Engineering Electronics. Electronic In¬
strumentation. Electrochemistry.
Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic
Technology. Length. Engineering Metrology.
Heat. Temperature Physics. Thermodynamics. Cryogenic Physics. Rheology. Engine
Fuels. Free Radicals Research.
Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid
State Physics. Electron Physics. Atomic Physics. Neutron Physics. Nuclear Physics.
Radioactivity. X-rays. Betatron. Nucleonic Instrumentation. Radiological Equipment-
AEC Radiation Instruments.
Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chem¬
istry. Inorganic Chemistry. Electrodeposition. Molecular Structure and Properties of Gases.
Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.
Mechanics. Sound. Mechanical Instruments. Fluid Mechanics. Engineering Mechanics.
Mass and Scale. Capacity, Density, and Fluid Meters. Combustion Controls.
Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Speci¬
fications. Polymer Structure. Plastics. Dental Research.
Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corro¬
sion. Metal Physics.
Mineral Products. Engineering Ceramics. Glass. Refractories. Enameled Metals. Con¬
creting Materials. Constitution and Microstructure.
Building Technology. Structural Engineering. Fire Protection. Air Conditioning, Heat¬
ing, and Refrigeration. Floor, Roof, and Wall Coverings. Codes and Specifications. Heat
Transfer.
Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Math¬
ematical Physics.
Data Processing Systems. SEAC Engineering Group. Components and Techniques. Digital
Circuitry. Digital Systems. Analog Systems. Application Engineering.
• Office of Basic Instrumentation • Office of Weights and Measures

BOULDER, COLORADO

Cryogenic Engineering. Cryogenic Equipment. Cryogenic Processes. Properties of Ma¬
terials. Gas Liquefaction.
Radio Propagation Physics. Upper Atmosphere Research. Ionospheric Research. Regular
Propagation Services. Sun-Earth Relationships.
Radio Propagation Engineering. Data Reduction Instrumentation. Modulation Systems
Navigation Systems. Radio Noise. Tropospheric Measurements. Tropospheric Analysis.
Radio Systems Application Engineering.
Radio Standards. High Frequency Electrical Standards. Radio Broadcast Service. High
Frequency Impedance Standards. Calibration Center. Microwave Physics. Microwave
Circuit Standards.

