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Foreword

The Symposium on the Evaluation of Optical Imagery was one of

the twelve symposia conducted as part of the scientific program of

the National Bureau of Standards in the year 1951 which marked the

fiftieth anniversary of its establishment. The subject for this sympo-

sium was chosen because of its current interest and because it is one

in which the Bureau has been active for many years.

In the field of applied optics it is the generally accepted practice to

evaluate optical designs on the basis of geometrical optics, and the

performance of optical systems has often been based upon measure-

ments of the geometric aberrations. This practice is justified when
the aberrations are so large that diffraction plays but a small part in

determining the quality of imagery. Now, however, better optical

systems are being produced, automatic computing machines make it

feasible to completely test an optical design by computation, the inter-

ferometer enables the wave front emergent from an optical system to

be completely mapped, and integrating devices enable the diffraction

effects to be readily and completely determined. With these con-

temporary developments it seemed timely to reexamine and compare
the different methods of image evaluation with the purpose of placing

them on a sound engineering basis and utilizing the principles of

physical optics when justified.

The scientific excellence of the symposium derived from the quality

of the papers and discussions presented by the participants. The
generosity of the speakers in making their material available for

publication in this volume is sincerely appreciated.

Acknowledgment is made to Dr. Wallace R. Brode, Dr. H. R. J.

Grosch, Dr. A. Marechal, Dr. Stanley S. Ballard, and Dr. Brian

O’Brien who served as chairmen at the different sessions. The gen-

erous cooperation of the Office of Naval Research in making this sym-
posium possible is also gratefully acknowledged.

A. V. Astin, Director,

National Bureau of Standards.
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Introduction

By Irvine C. Gardner

Geometric optics is one of the older branches of optics, but the parts

most directly related to optical design were for a long time not devel-

oped into a continuous body of scientific knowledge. This situation

arose partly because the earlier designers were expert artisans or

craftsmen who did not have the same facilities for communicating with
each other as did the contemporary scientists and, also, partly because
methods of design w^ere viewed as trade secrets. Optical design as we
know it begins with Fraunhofer (1787-1826) because prior to the dis-

covery of the Fraunhofer lines there could be no precise measures of

index of refraction. However, it is only in the last few decades that

books have attempted to explain in detail how an optical system is

designed. “A System of Applied Optics” by H. Dennis Taylor, is

one of the earliest notable books that attempted conscientiously to

set forth a method of designing an optical system. Even now the

method of designing an optical system is not a well-established regular

procedure. Successful designers are very often self-taught, each to a
large extent has his own methods; and consequently optical design
still remains to a considerable extent an art rather than a science.

If the design of an optical system is such that large aberrations play
a predominant part in determining the distribution of energy in an
image spot, the problem may lie entirely within the domain of geo-
metrical optics. On the other hand for the microscope, the astro-

nomical telescope, or the modern airplane-camera lens with small field

angle and long focus, where the distribution of energy in the image spot
is largely determined by diffraction, then the final judgment of the
result should involve an appeal to physical optics. Reliance upon
physical optics has not been general partly because of tradition and
partly because in many instances it was not practicable to make the
required extensive computations.

Designing an optical system by an established procedure is an engi-

neering task. It has been customary in requesting the design of a new
optical system, such as a camera objective, to specify performance
characteristics as, for example, the aperture ratio or relative aperture,
the focal length, the field of view, and resolving power. However,
there is no generally accepted and established method of interpreting
the quality of the image, as indicated by the results of ray tracing, or
the computed diffraction effects in terms of resolving power. In most
instances if good resolving power is required, the designer simply per-
fects the design as much as possible within the limits of time and cost
and hopes that the resulting lens will perform as well as required.
This laissez-faire attitude has persisted even up to the present time
because usually a system designed solely on the basis of geometric
considerations performs better than anticipated. This occurs because
of compensations that arise from the physical nature ofjight. Although

VII



this is the preferable direction in which an error of judgment should
lie, it will be understood that too large a factor of safety may be
expected to result in optical designs that are unnecessarily complicated
or may deter one from designing systems giving a more spectacular
performance than is considered possible on the basis of geometric
optics. These considerations illustrate the need for a more completely
engineered method of image evaluation. The need for this is further
indicated when it is noted that recently serious doubt has arisen as to

whether or not resolving power is always a correct criterion of lens

performance. As is shown by some of the articles in this volume,
there are instances in which the image plane of a photographic lens

that produces the most desirable photograph is not in the plane of

maximum resolving power but in a plane differently defined, which
may be designated in a general way as the plane of maximum contrast,

or the plane that produces photographs with the steepest density
gradient.

Not all of these apparent lacks should be charged against the lens

designer. The design of a complicated lens system requires an ex-

tremely large program of tedious and time-consuming computations
and it has in most cases not been possible to extend this work beyond
the stage at which a satisfactory lens is assured. Furthermore,
experimental tools, by which the distribution of energy within an
image spot could be accurately determined, have not been available.

The recent availability of new experimental and computational tools

has greatly changed the outlook. The photomultiplier tube, with its

spectacular increase of sensitivity beyond that of previous devices
used for the same purpose, makes possible measurements of image
quality that were previously unattainable. The programmed elec-

tronic computing machine not only makes possible much more elabo-

rate algebraic computations or ray tracings in order to arrive at more
nearly perfect designs but it also offers possibilities of making extended
calculations in connection with the evaluation of an image that were
previously impracticable. It is now practicable to trace skew rays,

a task that the lens designer has previously avoided, so far as permis-
sible, because of the excessive labor. It is also possible to compute
diffraction patterns, thereby evaluating the image quality in terms of

physical optics. Thus optical design, one of the older and traditional

branches of optics, has again been brought into a nascent state.

In connection with the recognition of the fiftieth anniversary of the
establishment of the National Bureau of Standards it was considered
appropriate to conduct a series of symposiums dealing with scientific

subjects of current interest. In view of the indicated state of flux

existing in the theory of optical design it was considered desirable to

select some phase of this subject, and accordingly the Symposium on
Optical Image Evaluation was planned. The fact that nearly 250
people from all parts of the United States and Europe fully occupied 3

days with the formal presentation of papers and with informal dis-

cussion indicates that the choice of subject was a fortunate one and
that the renewed vitality of the subject as presented in the preceeding
paragraphs is generally realized.

This interest in optical image evaluation is abundantly justified by
its importance and complexity. In order to show briefly the different

possible courses that image evaluation may take, reference may be
made to figure 1 where two main branches are shown. The evalua-
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IMAGE EVALUATION

Figure 1 . Diagram showing relation between
different methods of image evaluation

tion may be based upon a lens design before a prototype has been
actually constructed. In this case one has a constructional speci-

fication of the lens embodying such parameters as radii of curvature,
thickness, separation, and index of refraction etc. Following Dr.
Herzberger, this will be referred to as a mathematical model of a lens.

The course of rays through the lens may be determined by computa-
tions either by the older or the newer methods. It is now practicable

to trace rays sufficient in number for any desired purpose. There are

at least three possible evaluations: (a) Purely geometrical interpreta-

tion may be based on the distribution of the rays in the neighborhood
of an image point; (b) the computation may be made in such a manner
that a contour may result showing the distance measured in wave-
lengths between the emergent wavefront and the desired emergent
wavefront, which is usually either plane or spherical; (c) the distribu-

tion of intensity in the diffraction pattern may be computed. This
gives an interpretation of the image quality in terms of physical
optics and usually involves a numerical integration that can be
performed by a digital computer or an integration made by a mechani-
cal analog machine. Having determined the diffraction pattern an
estimate may be made of the resolving power.
Now follow the other of the two main stems. In this instance one

has a prototype or a production sample of the lens and evaluates the
quality of the image by an experimental method. The experimental
method (a') most closely analogous to the method (a) of the preceding
paragraph is the Hartman test and its variations or some variation of

the Schlieren test by which the geometric paths of the rays are de-
termined. The lens interferometer (method b') may be used to give
information that is directly comparable with that afforded by the
method (b) . According to method (c') the star image may be photo-
graphed on a large scale to show the diffraction pattern, the distribu-

tion of energy within the diffraction pattern may be measured by one
of the special scanning methods using the photomultiplier tube, or
rather scanty information regarding the diffraction pattern may be
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obtained by means of the resolving power test. Any of these proce-
dures (method c') offers results that may be compared ’with the results

of paragraph (c).

The methods outlined permit the characteristics of the imagery to

be determined. However, the evaluation, in the full sense of the
word, is not completed until these measured characteristics are com-
pared with the desired characteristics. As has been mentioned there

are still differences of opinion concerning the characteristics that are

desired. And when this subject is more thoroughly studied it will

doubtless be found that different performance characteristics of

imagery are desired for different purposes. By different purposes one
refers not only to such manifest differences as those of visual instru-

ments, photographic instruments, and projection instruments but to

divisions of application that exist within these grand divisions. In
photography, for example, one has airplane photography in which the
object is conspicuously low in contrast, pictorial photograph}", and
process work. In projection one has motion-picture projection where
high magnification and good resolving power are required, and tele-

vision projection for which the detail on the screen is necessarily

limited.

This brief resume gives an idea of the large field of engineering

knowledge concerning image evaluation that remains to be filled in.

The papers of this symposium touch upon most aspects of the problem
in more or less detail but, like most useful scientific work, the papers
also suggest the large amount of work that remains to be done.
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1. The Diffraction Theory of Aberrations

By F. Zernike 1

My starting point has been a new series development of the aberra-
tion function. Let V represent the optical patfffrom an object point
P through any optical system to its Gaussian image P', expressed as a

function of the rectangular coordinates y and 2 of the point of inter-

section Q with the exit pupil (

y

in the axial plane). Customarily this

is developed into a power Series, general term avqy
v za

,
leaving out the

dependence on the axial distance of P, with which we are not specially

concerned here. Of course y and 2 may as well be replaced by polar
coordinates R and <p, making the general term auRk

cos* <p. Opticians
are quite accustomed to this development, so much so that specific

names have been given to each of the lower terms, each being thought
of as a single aberration. From a somewhat different problem I came
in 1934 to consider a different development, rearranging the powers
into polynomials, the general term bnmS™(y, z) being homogeneous
of the nth degree and also expressible as bnmRn (r) cos m<p, in which
r=R/Rm ,

where Rm is the radius of the circular exit pupil. These
“circle polynomials” are perfectly determined by one condition, that
of orthogonality, i. e.,

J.
R™(f)Rn' (r)rdr=

0

for n^n' (i)

together with the normalizing condition that the maximum value of

each shall be equal to one. Rather than give a table of these poly-
nomials (see literature) I show their properties by figures 1.1 and 1.2,

which give their course within the area of the pupil.

With the new development a single aberration shall mean an aberra-
tion characterized by a single term, i. e., by a circle polynomial. The
remarkable advantages of this will appear presently.

Calculating the diffracted amplitude at a point in the receiving
plane specified by polar coordinates p, \{/ measured from P' as origin,

one obtains, apart from irrelevant constant factors,

^R™{r)rd.r f cos (pr cos <p) cos m(<p-f-^)d<p=

R™Jm(pr)rdr=± p~ lJn+1(p) cos m\J/.cos m \

From this simple result a further development led to a new formula for

the amplitude in the neighborhood of an aberrationless focus

^o=2(— i)
n(2n+l)x-*Jn+yXx)p- lJ2n+i(p), (2;

71= 0

1 Natuurkundig Laboratorium, Groningen, Netherlands.
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0.0 7.1 6.2 5.5

Figure 1.1. Nodal lines for the complete circle polynomials.

The first row belongs to the third order aberrations, respectively, spherical aberration
,
coma, astigmatism;

t t__ the second row to the fifth order aberrations; the third row to the seventh-order aberrations.

Figure 1.2. Graphical representation of the radial parts
,
same arrangement as

in figure 1.1.

Figure 1.3. Contour lines of equal intensity near an aberrationless focus.

The numbers give the percentage of the value at the focus. The straight lines indicate the boundary of

the geometric cone.

in which x measures the axial distance from the focal plane. This
formula was checked numerically with those of Lommel (1886), which
contain power series, different for points inside and outside the geo-

metrical light cone. Figure 1.3 gives the resulting surfaces of equal
intensity, the complete three-dimensional figure being generated by
revolving the figure around the horizontal axis. A figure of this kind
was first given by Berek in a rough but correct sketch from LommePs
results and afterwards repeatedly copied in the German literature with
such errors that it finally appeared with marginal rays under an angle
four times too small and with rectangular axes interchanged

.
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The next step is to introduce ordinary spherical aberration by adding
a term /Si?? to V. Developing the diffraction integral into powers of

the coefficient /3, the first approximation is found to be

U0 jd^ / ( i) (f2.7l~\-~B)X ! (x) p \CLnJ2n+5~\~ bnJ 3] j

where an ,
bn ,

cn are simple expressions in n. Representing the bracket
expression as the result of an operation 04 on J^n+i, the same operation
must be applied repeatedly to obtain the higher terms and the final

series is represented symbolically by

u=^(—i) n (2n-\-l)x-1/2Jn+1/2 (x)p-
1e-ipO^J2n+1 (p), (3)

a result that is not only elegant but very useful. For higher order
spherical aberrations one has only to substitute a different operator.

Figures 1.4 and 1.5 give some results.

In order to judge the quality of an optical image, Strehl as early as

1895 introduced the brightness in the center of the diffraction image
as compared to the same without aberrations. This is an efficient

way of expressing the deterioration of the image through small aber-
rations by a single number, which we shall call the “Strehl Definition.”

For the best performance this should be 90 percent or more. Suppose
there are a number of single aberrations present, with coefficients

respectively, Bx ,
B2 ,

Bs ,
etc. The Strehl Definition SD will be

SI)=l—Bl-Bl—Bl— . . .,

Figure 1.4. Contour lines for third-order spherical aberration, j8=l, Strehl

Definition 0.81.

The geometric caustic has been inserted, also the radius of the geometric circle of greatest constriction.

Figure 1.5. Contour lines for fifth order-spherical aberration, /8=1, Strehl

Definition 0.86.

The vertical line shows location and size of the circle of greatest constriction in the case of optimum bal-

ancing according to geometric optics.
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where there are no cross products because of the orthogonality. This
means that each separate aberration diminishes the SD on its own
account, uninfluenced by others. In other words, there is no use in

leaving a residual of lower aberrations in order to balance a higher
one. Or expressed in the old way: Each circle polynomial contains
next to the highest power of r a number of lower powers which balance
it in the best way. It is worth while to dwell somewhat longer on the
question of balancing and on the tolerances that result from these
calculations.

The quarter-wave limit was announced in 1878 by Lord Rayleigh,
who was then so much ahead of his time that his result was considered
for at least 50 3^ears as unsurpassed, and worse, as self-explanatory in

the following way.
The waves that come together to a single focus should reinforce

each other by being in the same phase. Because of aberrations the
phases will differ, but not much harm will be done if the deviations
from the mean are less than one quarter, because there will be no
opposite components in that case.

However, Rayleigh did much better than this; he calculated the
intensity in the paraxial focus for two types of aberration and remarked
that it should at least be 80 percent. He omitted the effect of refocus-

ing, which is very marked. As an instance I take the eighth-order
spherical aberration, expressed in units of X/2?r by V=/38r

8
. This

cannot well be corrected, even in a high-power microscope objective,

whereas fourth- and sixth-power terms can be adjusted more or less

at will by the designer. If he cancels the fourth and sixth powers the
decrease in SD, which equals the integral of V2 over the aperture,

will be

jyl (
r
,_l

r
,+lj2rdr=A_^

where the constant term 1/5 appears because of the necessary adjust-

ment of phase, and the term with r2 because of the adjustment to best

focus. The coefficients 1/5 and —4/5 have been determined so as to

make the integral a minimum. If now a residual of r
4 aberration is

introduced for balancing, the three resulting coefficients will have to

be calculated anew, with r6 and r
4 aberrations four new coefficients.

The calculation is more straightforward with the circle polynomials.

It is easily found that r8 can be represented by these functions

r8=^fi8+^fl6+f £4+§i?2
+i> (4)

70 10 7 5 5

and the integrated square of this sum can be written down at once,

as the cross products vanish, whereas Bn
2 gives 1 /(ti+ 1). The numer-

ical result, brought to a common denominator, is

2Yq2
(1+ 63+ 720+2352+ 1764). (5)

The sum in parentheses equals 4,900 and the whole expression 1/9.

However, as stated above, a constant should in all cases be added to

(4) so as to minimize the integral and this clearly should be —1/5,
thus canceling the term 1,764 in (5). This brings down (5) to 16/225,

4



corresponding to the unchanged (paraxial) focus. By adjusting the
focus, the term with B2 can be cancelled, leaving 784 as the sum in (5),

result 4/225, same as stated above. Best balancing with the fourth
order will in the same way leave only 64, with fourth and sixth orders
only 1. These numbers are the squares of the successive binomial
coefficients of the eighth power.

If we allow a tolerance of 10-percent decrease in Strehl Definition,

we obtain for the maximum value of 08 ,
(16/225)01=0.1 or 08

=
(15/4)0.316 in the most unfavorable case, no balancing paraxial focus.

This is the tolerance expressed in radians, a factor X/2?r must be added
to transform it to the usual linear measure. Calling the new coeffi-

cient b8 ,
we obtain successively

6 8=0.189X, =0.378X, =1.32X, =10.6X, (6)

respectively for no balancing and paraxial focus, no balancing and
best focus, balancing with fourth order, balancing with fourth and
sixth orders.

In a sense these results may be too favorable for the fully balanced
error. We have started from the power series and as an example
cut this off after the r8 term, supposing the higher terms to be negligible.

Then the term b8r
8 was changed to

^ bsRs
=~ bs (7Or

8— 140r6+ 90r4— 20r2+ 1 )

.

It is more consistent to judge the advantage obtained from the circle

polynomials by starting from a development W=Sc2w i?2raW and cutting
this off after the term with R8 . I have compared a small number of

practical examples (to be treated in a later paper) that show that the
ratio of the coefficients b 8/c8= 70 is only approximated to if the power
series converges very fast; if its successive coefficients decrease in a
ratio of 10:1, it is 54, if 4:1 then 35. In this last case therefore, the
tolerance for b 8 would still be 5.3 X when fully balanced.

In view of these results, which are specially favorable for spherical

aberration, it would seem preferable to state the tolerance for 10-

percent decrease in Strehl Definition in the following general way,
applicable to all kinds of aberrations:

maximum
|
rms deviation oj path= X /

(

2 7ry 10) = 0.0503 X. (7)

It is worth while to compare these numbers with the results of balanc-
ing according to geometrical optics. Taking once more the path-aberra-
tion 08r

8
,
this corresponds to a transverse aberration of the ray equal to

its derivative, 808r
7

,
expressed in diffraction units (in which the first

dark ring has a radius of 3.83). Now the designer will endeavor to

balance this by leaving lower order aberrations, so as to obtain a
minimum “circle of greatest constriction” of the beam. For this

well-known problem, one should take

0 8 (V 7— 14r 5+7r 3—| 0 8T7(r), (8)

in which the polynomial Tn is defined by Tn= cos if cos $=r.

5



Evidently, Tn oscillates between +1 and —1 in the interval — l-»+l
of r. In our case, therefore, the greatest constriction has a radius

of 1/8 08 . Now, it is hardly possible to find a tolerance for this in a
consistent way. The conventional view seems to have been that a
disk of this kind must be superimposed on the Airy disk. It could
then at most be allowed to have a radius of 2, i. e., equal to the mean
radius of the diffraction disk. The tolerance would hence be

l/8j88=2, 68=16 X/27r=2.5X (geometric optics),

or only one-fourth of the real diffraction tolerance! The practical

result of this geometric balancing is remarkably good. To calculate

it, we must obtain the path-aberration by integrating (8) giving

H r 6 _)_Z r 4.

4 16 0
fis~60 Rf

168 )
and find the integrated square of this, which is (08/12O)

2
. Hence the

geometric disk of radius 2, and jS8
= 16, will in reality give a Strehl

Definition of 98.2 percent or the tolerance for 90-percent definition is

6 8=6.0X, i. e., four-sevenths of the optimum.
Results like this, and comparable ones for the lower aberrations,

explain why practical designers never had trouble to remain within
tolerances, as they were apt to adopt far too strict ones. The great
use made of the graphical representation of the longitudinal errors,

initiated by von Rohr, has even led to balancing so as to make the

longitudinal aberration oscillate between narrow limits. Even this

gross error does little harm because of the beneficial influence of

destructive interference. In short, the peculiar properties of the

waves of light are very favorable to the lens designer, even if he
ignores them altogether.

Coming now to the off-axis errors, I can only give a brief survey of one
of these, astigmatism. The calculations were made by Nijboer, in

much the same way as above. Figure 1.6 gives the contour lines of

equal intensity for a small amount of astigmatism, which according
to geometric optics would give rise to a “circle of least confusion’

’

of radius 2. In reality the Airy disk proper is changed very little,

the error having a marked influence only on the first and second dark
rings, which are each split up into four dark spots. Figure 1.7 shows
the case of a four times greater astigmatism. Here the Airy disk

itself is split up into four maxima and the cross-shaped figure is very
pronounced. This is the largest amount for which the series develop-
ment with circle polynomials could be used, the final formula occupying
a whole printed page.
Large amounts of various aberrations were studied experimentally

by Nienhuis. Figure 1.8 gives one of his results. What puzzled us

was that the figure did not seem to approximate to the evenly illumi-

nated circle of geometric optics. A tentative explanation is as follows.

At any point Q of the edge of the diaphragm some light will be diffrac-

ted, inward and outward, in directions perpendicular to the edge.

The direct ray through Q will intersect the receiving plane in a point

S on the geometric optical circle. If Q describes the edge of the

pupil, S will describe the geometric circle in the opposite direction
,
as

6
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Figure 1.6. Contour lines in the central plane for third-order astigmatism of
amount /3= 1.

The numbers give the intensities corresponding to a value of 1,000 at the center of the Airy disk. The
broken circle indicates the geometric disk.

Figure 1.7. Contour lines in the central plane for third-order astigmatism of
amount (3=4-

Maximum intensities of 0.095 at four off-axis spots. The broken circle should be evenly illuminated accord
ing to geometric optics.

255754—54 7



Figure 1.8. Astigmatism, (1=17.

A, complete pattern; B, edge effect alone; C, pattern at focal line.

is well known. As S moves, a narrow strip of diffracted light will

therefore be seen radiating from S in a direction turning opposite to

the radius through S. These strips will all be tangent to a four-pointed
curve, an asteroid, which indeed appears in figure 1.8,a, as the boundary
of the illuminated pattern. Nienhuis gave an experimental proof of

this explanation by covering up most of the lens aperture, leaving

only a narrow annulus at the margin. He thus obtained figure 1.8,b,

in which the circle of least confusion has disappeared, leaving only
an interference pattern caused by the overlapping of the diffracted

rays. Practically the same is found in figure 1.8,c, where the geometric
optical pattern has contracted into a focal line.

The last development in this matter is by N. G. van Kampen, who
found asymptotic formulas for small wavelengths, which confirm
these experimental results.

F. Zernike, Physica 1, 689 (1934).
B. R. A. Nijboer, Thesis Groningen (1942). Physica 10 , 679 (1943); 13 , 605

(1947).
K. Nienhuis, Thesis Groningen (1948).
F. Zernike and B. R. A. Nijboer, Contribution in La Theorie des Images Optiques,

p. 227 (Paris, 1949).
K. Nienhuis and B. R. A. Nijboer, Physica 14 , 590 (1949).

N. G. van Kampen, Physica 14 , 575 (1949); 16 , 817 (1950).
E. Wolf, Reports on Progress in Physics 14 , 95 (1951).
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2. The Contrast of Optical Images and the Influence

of Aberrations

By Andre Marechal 1

Introduction

The estimation of the quality of optical images is mainly based on
the knowledge of their contrast, i. e., the relative variation of the

illumination in the image. In most cases improving the quality

means increasing the contrast. Even in the vicinity of the resolution

limit, any gain in contrast is helpful because it may slightly improve
the resolution.

To begin with, we shall consider the mechanism of the formation
of optical images in order to determine the contrast. Then we shall

compute the losses of contrast produced by the presence of small
aberrations in the images of some classical objects.

Theoretical Study of the Contrast of Optical Images

The Formation of Images

We generally define contrast as being the ratio (I—i)/i ,
I and i

being the maximum aud minimum illumination in the image. This
definition does not hold for a bright point source or a bright line source,

but it is very useful in the case of a dark point or a dark line in an
extended background, or in the case of a periodic structure. The
distribution of light in the image of a dark line is represented by the

solid curve in figure 2.1, and the distribution in the object is shown
by the dotted curve.

Consider an instrument where Ox is the axis, Oyz the object plane,

and O'y'z' the image plane (fig. 2.2). We can refer the exit pupil to

angular coordinates /3,y with origin at 0 '
. We can now determine the

laws of formation of the images and study at least the two extreme
cases of coherent and incoherent illumination.

Incoherent Illumination

Suppose that every point of the object acts as an independent
source (as, for instance, in the use of astronomical instruments).
The image of the point source will be a diffraction pattern, sometimes
influenced by the presence of aberrations, and the distribution of light

in the image will be obtained by adding the illuminations produced by
the different points.

Consider a point source at 0{y=z= 0). The distribution of light

in its image is given by the laws of diffraction, i. e., the Huygens-
1 Institut d’Optiaue, Paris, France.
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Figure 2.1. Contrast reduction in the image of a dark line.

Figure 2.2. Geometrical orientation of the object, lens, and image

Fresnel principle, which can be expressed as follows: If A((3,y) is

the wave distortion produced by aberrations, the complex amplitude
in y', z' will be

A(y',z')=
JJp

exP y (A+Py'+ yz')^dpdy, (1)

where X is the wavelength.

The complex amplitude A(y', z
f

) appears as the Fourier transform
of

exp
C7 ta

}
If we denote now by

D(y',z') = \A(y',z')\>

the distribution of light in the diffraction image, the resulting illumina-

tion for the whole object will be

I(y', «')=JJ
'p(y’—y, z’-z)0(y, z)dydz, (2)

where 0(y, z) represents the distribution of light in the object. Let
us now consider some classical cases.

10



(a) Dark point in a bright field: 0(y, z) is unity everywhere, except
in a small surface s around the origin 0. The illumination will be

Ky',z')=jj
D(y'—y, z'—z)dydz—sD(y', z']

=jj
D(y', z')dy'dz' —sD(y'

,
z').

(3)

The first part is obviously a constant proportional to the total

energy in the diffraction image of a point source, and we have to sub-
tract from this constant the quantity sD(y'

,
z'), as shown in figure 2.1.

The contrast varies then as the function D(y'
,
z'). This means that

any improvement shown in it will be the same as for the case of the
image of a single bright point.

(b) Bright line: Suppose that a bright line source of width e is ex-

tended along the Oz axis. 0(y, z) is zero everywhere except for

0<jy<je; the illumination is then

Ky\ *') I
4- CD

Jr-
D(y', z'-z)dz=t D(y', z')dz'= eS(y'), (4)

which is a function of y' only.

If we represent by a solid the function D(y '
,

z'), the value at any
point y' of the illumination eSjyj would be proportional to the area
of the plane section of that “diffraction solid’ ’ where it is intersected

by a plane through the point and perpendicular to the y' axis.

(c) Dark line: The illumination will be obviously complementary
to the preceding

I(y’,z’)=jjD{y',z')dy’dz'—jD{y'
,
z')dz'. (5)

(d) Edge oj a bright area:

0(y, z)

0 if y<C.0

1 if ?/> 0,

D(y'-y,z'— z)dz= S{y’—y)dy.
f:

We will define the contrast as the slope of the curve I(y'): dlldy'=
S(y'). This signifies that when the illumination is incoherent, the

contrast oj the images is related either to D(y '
,

z') when the object is a
point, or to S{y') when the object is a line or the edge oj an area.

Coherent Illumination, Phase Contrast

Now suppose that the vibrations from the object are no longer
independent of one another, but that they are related, the complex
amplitude being a function F0 (y, z). To determine the vibrations in

the pupil, we have to compute in any direction from the object the
resulting amplitude by applying the Huygens-Fresnel principle. The

11



mathematical expression is the transformation giving the amplitude
in the pupil.

G(P,

y

)
=
JJ0

-p’°(2/ >
exP [“jf (Py+yz)~^dydz,

and the amplitude in the image will be

Fi (y',z')=jfpG(P> t) exp Y (A+/3j/'+ Y2')l d&dy

= JJp
exp

\j T <
-
A+ 182//

+

T3')
J
<^7

///.<* z) exp^-j y (/32/+ 7z)J cfydz.

By reversing the order for the integrations, the latter becomes

Fi(y',z')=JJ/o (y , z)(fytfzJJp
exp [i^{A+/3(2/'-2/)+ T(z'-z)J]rf^T

(6)

=

z

^A('y
'~

y’ z'—z)dydz.

This relation is very similar to (2) where the intensities are now
replaced by the complex amplitudes.

Let us now examine various cases, beginning with the case of a

uniformly illuminated object, in order to know the amplitude in a

coherent background.

(a) Uniform surface: Let F0 {y,z)=l everywhere;

Fiiy',z')=^A{y’—y, s'—z)dydz,

which can be written as

Fiiy', z')=JJ^(t/', z')dy'dz'.

We have already noticed that A{y r
,z

f

) is the Fourier transform of

exp
t
;(27r/X)A(/3,7). We can write the reverse transform as follows:

exp
[j ^A(/3,7)J=JJ

A(y', z') exp ‘fw+ yz')~^ dy'dz'. (7)

If we choose (3=y=0 we obtain the value of

Ft(y',z')=jjA(y',z')dy'dz'= exp
£7^ A(0,0)J,

which is a constant over the field.

We can now use the convention that A(0,0)=0, so that

1.
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(b) Dark jpoint in a coherent background: We have to subtract from
the preceding result the contribution of a point located at O and whose
area will be Fdy' ,z') — 1— sA(y',z').

The intensity will be

\Fi (y\z')\
2=(l-sA)(l-sA*)~l-s(AAA*) = l-2sR[A(y',z')], (8)

where R(A) means the real part of the complex amplitude A(y',z').

The contrast of the image will be expressed by R(A(y' ,z')).

(c) Bright coherent line: Suppose that the line is along Oz, e being
its width. Then

where

')=efA(y',s’-z)dz=ta(y'),

a(y')=J
'
A{y’ ,z’)dz’

.

The intensity will be:

e*a(y')a*(y')- (9)

(d) Dark line in a coherent background: We must subtract the
amplitude corresponding to the line from the uniform amplitude.

Fiiy'^^l-eaiy').

The intensity will be:

1— 2eR[a(y')],

and the contrast will be related to R[a(y')\.

(e) Phase contrast objects: Phase objects observed with phase con-
trast techniques behave like amplitude objects observed in coherent
illumination. The results obtained in b, c, and d can be applied
to them.

Expressions of Contrast Implying Various Pupillar Integrals

(for Small Aberrations)

It is very useful to express the various quantities that govern the
contrast of the image by integrations performed on the pupil. It

will then be possible to study the effect of aberrations, whose nature
will be given by the wave distortion A(/3,y). To obtain these expres-

sions, we use general properties of the Fourier transform. Because
of Professor Duffieux’s work,2 such transformations are rather easy.

Furthermore, if we limit ourselves to small aberrations, we will be
able to use the following expansions:

exp
2tT

A 1
2^ A 2cos —- A=1

—

rj- A2
.

A A

2 P. M. Duffieux, L’integrale de Fourier et ses applications a 1’Optique (Societe Anonyme des Imprimerie
Oberthur, Rennes, 1947).
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Points

a. Bright point or dark point in an incoherent background:

The illumination for a bright point will be

\A(y',z')\>=
|
JJ ^ (&+Py'+yz')^dpdy

We can conventionally introduce the linear terms py'-\-yz' into

A

(

0 ,7 ) and limit our study to .4(0,0), keeping in mind that A has to

include a linear form in p and y.

dpdy
When A is small, and if dec then

ffdpdy 5

+4r"-¥ A2H[Jf0^x aIS a2H’
or

0(0,0)= \A(0,0)\ 2
= ’

1
[JJ

A2^-(JJAtf<o
JJ (11)

b. Dark point in a coherent background: The real part of ,4(0,0) will

be expressed by

cos^ Adfidy.
A

For small aberrations we will write

R(A(0,0))=l-^-ff^du .

Lines

a. Incoherent illumination: We evaluate

1*0(0,z')dz'=f \A(0,z')\
2dz'

.

We notice that

A(0,z')= Jexp
[J^ yz'~^ dyJ exp

|J^ A(j8,7)J
dp

appears as the one-dimensional Fourier transform of

v(t)=

J

exp UY A(jS,7)J dfi.

Applying the Plancherel theorem (which expresses mathematically
the equality of the energy in the pupil and in the image when con-

14



sidered with two parameters) we can write

J
\A{0,z')\Hz'=J \v{y)\Hy.

For small aberrations this expression can be written

j*Z?(0,
«')<*«'=

J

/ r A-vg / r Arfg vy
x2

vJ 82-81 \J fc-eJ L dy,

(12 )

where ft (7) and ft (7) are the lower and upper limits of the pupil.

(b) Coherent line: We evaluate a (?/) —^A(y'
,
z') dz '

.

Using eq 7 and making 7= 0,

exp j A(/3,0)=
J

exp ^^ Py’
J
dy’j

A{y’,z')dz',

which shows that a(?/') is the Fourier transform of

exp |i? y- A(/3,0)J.

The reverse transformation can be written

a(y’)=
J

exp
£7 ^ A(/3,0)J

exp [^—

j

^
in which we will take y'= 0

«(°)=
J"exp

[^.7 ^ A(0,°)J dp. (13)

According to the case to be studied (bright or dark line) we will use
one of the two expressions:

k(0)|
2= j"exp

[5 ^ A(/3,0)J
dpJexp j ^ A(/3,o(J dp,

R [a(0)]=Jcos
2tA

(

/3,0)
dp.

For small aberrations these expressions can be written

K0)|
2=032-/3,)2 [l-^-

2 A2
Q3,0)

ft” ft

A(ftO)

ft-ft
(14)

(15)

15
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Application to Determination of Tolerances for Various

Aberrations

If the pupil is circular, polar coordinates may be useful:

(3=

a

cos 4>

y= a sin
<f>.

Let h be the relative aperture alam Then we may write the distor-

tion of the wave front as follows:

A=Dh2-\-Sh*-{-S'he
-\- (kh-\-ch3 -\-c'h5) cos (<£— ^-{-Ah2 cos 2(0— <£0),

in which D is the defect caused by errors in focusing, S is the third-

order spherical aberration, S' is the fifth-order spherical aberration,

k represents the linear expression in j8 and y to be introduced in A
(lateral displacement of the image in the <£0 direction)

,
C is the third-

order coma in the 4>0 direction, C' is the fifth-order coma in the <£0

direction, A is the astigmatism in the <f>Q direction, and h will vary from
0 to 1.

The results of the integrations are quadratic polynomials with
respect to the preceding coefficients. The relative losses of contrast
are the following:

INCOHERENT ILLUMINATION
(a) Point:

4tt
2

X2
'

[t
D
5+T+A s

’+A DS
'+i

SS
'+TT2

S '

(b) Line:

k2 .kc c
2 .kc'cc' c'

2 ,A 21
+

4
+

3
+

8
+

4
'

5
+

12
+

6 J

[0.33962S2+0.305425"
2

+2X0.31992Z)S

+2X0.28474Z)S'+2X0.31691SS"

+ sin2 ^ (0.0 1 6549c2+0.038678cc'+ 0.0239 19c'
2

)

+cos2 <#>(0.65160P+0.85639fcc+0.63653fcc'

+ 0.3 1827c2+0.50607cc'+0.20991c'
2

)

+ 0.32508(4 cos 2tf+Z>)
2+0.81242 sin2

2<t>].

(a) Point:

COHERENT ILLUMINATION

2jr
2 fZl3

. SD . S2+2DS’ . SS'
,
S'

2

,

P .kc . kc' c2

,

cc' c'
2 4H

u LT+V+ 5 +^+T+ 4 +T+V+ 8+T + 12+T2I
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(b) Dark line:

2xT(^+^cos20) 2

,

5
^
S 2

. S' . 2$(Z7-f-A cos 2(f>) . 2 S'(D -\-A cos 2<f>)_+__l _
| 9

2SS'
11

Fcos2
(f>

k 2

3

2cc'

9

2 kc

5

(c) Bright line:

47r
2 r4(D-\-A cos 2(f>)

2 1QS(D+A cos 20) 16$2

X2
L 45

+
15-7

+
9.25

48SS'
5-7-11

36 S'
2

13-49
fcos2

<*>(y+
2 kc

5

c

7

8$'CD+A cos 2 (f))

9-7

2kc' 2 cc' c'Vl
7
+

9
+
11/J

Various problems can now be solved. We have studied the following
ones:

a. The effect of a given aberration alone, and the determination of

the maximum value of that aberration such that the relative loss of

contrast does not exceed the conventional value of 0.2 (average loss

of contrast for a point in the case of the Rayleigh limit). If, for

instance, we consider the effect of third-order spherical aberration
alone ($ term) on the contrast of an incoherent line, we write

0.339S2 <0.2 or |S[<0.28X.

b. For high-order aberrations we have to stud}7 the best way of

balancing the liigh-order component with lower order terms. For
example, in the case of “corrected” spherical aberration and its effect

on the contrast of a coherent bright line, we write

¥[w D’+TO7 DS+"->0A

from which we can determine the proper values of D and S leading to

the minimum value of the polynomial. These values are D= (5/11)
S'

and $=— (15/11)$'. If we compute the minimum as a function of

S' we obtain $'< 3.7X. The relation $=—(15/11)$' determines the

aperture of correction of the curve of longitudinal spherical aberration
(fig. 2.3). By using the relations between longitudinal and wave
spherical aberration, it can be shown that the aperture hQ of correction

will be -/yo=V2/3 •$/$' times the maximum aperture hm (v Q is the
parameter (h Q/hm)

2
)-

Let us now consider the case of coma. As is well known, the dis-

tortion of the wave front is: Image magnitude times angular aperture
times (offense against sine condition minus (longitudinal spherical

aberration/distance pupil image). It is interesting to know what
maximum value of the fifth-order term will be tolerable and what
optimum aperture of correction is to be chosen. In the case of the
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Figure 2.3. Aperture of erection of longitudinal spherical aberration.

coherent bright line perpemcular to the comatic flare (<£>0
= 0 ) we write

Air
2 /k 2 2kc c

2 2kc'2cc f

X2 V3
+

5 '7 + 7
+

9

The minimum value of the polynomial is obtained when k= (5/21) C"
and C=— (10/9)C'(r0=10, , so that the optimum aperture of cor-

rection will be h0= (JlO/S'tm and the tolerance will be (7'= 1.85X.

The results are collected ini able 2.1. In the case of coma we have
listed the tolerance for the . o possible directions of the comatic flare

(when ^>o=0 the flare is pcpendicular to the object). In coherent
illumination the coma has n< effect vThen the flare is parallel to the line

and the tolerance becomes lfinite. In the case of astigmatism the

best focus is located midwa; between the focal lines if the object is a
point, and the tolerances ai given for that position (D= 0). When
the linear object is parallel i one of the focal lines, the best focus is

located on that line and thn the astigmatism has no effect. The
maximum displacement wit' respect to that line is given by the tol-

erance for errors in focusing
Let us now take an examle. Suppose that the amount of astig-

matism in an instrument is uch that ^L= X/8 (the distortion of the

wavefront being ±0.125\ orboth sides of the reference sphere; alto-

gether (0.25X). The losses f contrast will be, for a dark point in a
bright field, in incoherent ilimination 0.2(0. 125/0. 17)

2=0. 11 and in

coherent illumination 0.2 (0. 25/0. 25)
2= 0.05. The losses for an in-

coherent line would be (midwy between the two focal lines) when the
line is parallel to a focal line. j. 2 (0.125/0. 2

)

2= 0.04 and, when the line

makes a 45° angle with bothocal lines, 0.2(0. 125/0. 18)
2= 0. 10. The

rates of losses of contrast cat vary on a large scale (here the ratio of

the extreme cases is about 3)

The Mechanical Compitation of Diffraction Patterns

When the aberrations are ether very small or very large, it is pos-
sible to compute the distribuon of energy in diffraction patterns by
using mathematical expansios. 3 We have ahead}’ shown that the

3 See paper 1, page 1. in this Symposium.
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Figure 2 .4 . Mechanical integrating device for computing diffraction patterns.

Figure 2 . 5 . Repartition of energy represented by isophote curves, in the presence

of “corrected” coma, balanced Sd^-oth order
, for four values of the aperture of

correction (Ji 0/hm)
= 1 H

,
1 . 1 *, 1 . 2 *, 1 .3 *.
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losses of contrast can be expressed as functions of various pupillar

integrals that can also be easily expressed in the case of small aberra-

tions. When the aberrations are neither very small nor very large

(in the transition between diffraction and geometrical optics) these

mathematical procedures may fail. It is then useful to perform the
integration expressed in eq 1 for a point source by means of a special

mechanical device (fig. 2.4). S
The principle of such a machine has already been described else-

where. 4 The real and imaginary parts of the complete integral are

developed by two integrating wheels, whereas the distortions of the
wavefront (of any order) are given by cams, amplifier levers, adding
tape, etc. The machine has been used for solving the following

problems:
a. Distribution of energy in the presence of third-order aberrations.

The goal of that study was mainly the knowledge of the transition

between diffraction patterns and geometrical caustics. It seems that
the transition is very rapid in the case of astigmatism when the focus-

* A. Marechal, Thesis (Paris. 1917); Rev. opt. 26, 257-277 0947), 27, 73-92, 269-287 (1948); J. Opt. Soc. Air,
37, 982 (1946).
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ing is done on a focal line. The diffraction pattern is already similar

to the geometrical pattern even when the aberration is as small as

X/4. The transition is more gradual for coma, and still more gradual
for spherical aberration.

b. Determination of the proper aperture of correction of geometrical
aberrations when the aberrations are of the order of two or three
times the Rayleigh limit.

c Special studies of practical cases of microscope objectives,

Schmidt cameras, etc. The results can be represented by curves of

equal illumination in the image plane.

Figure 2.5 shows the example of the study of comatic flares in the
presence of corrected coma. The distortion of the wavefront is sup-
posed to be conveniently represented by the superposition of third-

and fifth-order terms; the fifth-order term is 5 X (twice the tolerance
for a bright-point source. See table 2.1); the third-order term is

varied by steps as well as the aperture of correction h0=v^hm ] the
maximum illumination in the flare is 0.436, 0.46, 0.45, 0.40 for v0=l,
1.1, 1.2, 1.3 so that the optimum aperture of correction is about 1.13^,

whereas for a smaller aberration the maximum would be obtained
for 1.2^. As a consequence the aperture of correction has to be
decreased with increasing aberration. Extensive results will be pub-
lished in the near future.

The present work has been performed in close collaboration with
G. Pieuchard, to whom I express my best thanks. W. G. Steel,

working on a generalization of the present work to the case where
the pupil involves a central obscuration, has been able to test many
of the results obtained.
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3. Diffraction Images Produced by Fully Corrected

Objectives of High Numerical Aperture

By Harold Osterberg and Robert A. McDonald 1

Introduction

The theory of diffraction by optical systems has been extended by
R. K. Luneberg [1]

2 to include the effect upon the diffraction image
of the geometrical coordination of the rays in the object and image
space. An explicit form of the primary diffraction integral has been
derived from Luneberg’s formulation by Osterberg and 'Wilkins [2]

upon the supposition that the objective is free of spherical aberration

and coma. The main purposes of the present paper are to integrate

and to discuss the primary diffraction integral under the additional
supposition that absorption and reflection losses within the objective

are negligible. A universal law governing diffraction phenomena with
fully corrected objectives can be obtained only by ignoring the variable
loss of light in the axial bundle of rays. We shall see that the uni-

versal law thus obtained differs in several interesting and important
respects from the accepted classical laws governing idealized diffraction

images.

Amplitude Variation Over the Converging Wavefront

Wavefronts expand (fig. 3.1. and 3.2) from an unresolvably small
area centered about the axial point 0 and are converged without
spherical aberration toward the conjugate point 0' of the image space.

Let

p= sin d; p w=sin

Po =sm d 0 . Pom Sill (1)

The numerical apertures of the objective with respect to its object and
image space are npm and n 0p0m ,

respectively, where n 0 and n are the
refractive indices of the object and image space, respectively.

If Abbe’s sine condition is obeyed,

nMp=noPo , (2)

where M is the magnification ratio. Accordingly,

nAlpm=n 0p0,n=A

.

A., (3)

where Ar
. A. denotes the numerical aperture of the system.

1 American Optical Co.. Research Laboratory, Stamford, Conn.
2 Figures in brackets indicate the literature references on p. 35.
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Figure 3 . 1 . Convention with respect Figure 3 . 2 . The amplitudes of A 0

to the axial bundle of rays. and A of the diverging and con-
verging wavefronts, respectively .

When the rays of the axial bundle obey (eq 2) and when these rays
are transmitted equally from 0 to O' (fig. 3.2) it can be shown [3]

that except for an unimportant factor of proportionality

A(p)/A0 (po)=k(p)= (l—p2
)
H/(l—pl) H % (4)

in which A 0 (p 0) and A (p) represent amplitudes on the expanding
wavefront W0 and on the converging wavefront W, respectively. For
unpolarized light one may set

A 0 (po)= 1 (5)

and

A(p)=k(p)= (l—p2
)
Hl(l—pl)H . (6)

Microscope objectives have the property and hence that

pl>p
2

. Accordingly, we observe from eq 6 that the amplitude A(p)
increases toward the outer portions of the converging wavefront.
This increase becomes substantial when p 0 can approach unity. The
upper practical value of p om=N. A./n 0 falls in the neighborhood of

0.95. The corresponding ratio K(pm ) is approximately 1.8.

On the other hand, camera and telescope objectives have the
property \M\<^1 and hence that p„<02

- It follows from eq 6 that the
amplitude A(p) decreases towardjthe outer portions of the converging
wavefront. This amplitude variation is ordinarily negligible with
telescope objectives because they have low numerical aperture with
respect to both object and image space.

Let T(p) denote the amplitude transmission of the system for rays
in the axial bundle. Reflection losses render T{p) a decreasing function

of p. The functions T(p) and k(p) counteract with microscope objec-

tives but conjoin with camera objectives.

The Primary Diffraction Integral

The primary diffraction integral U(r) for fully corrected objectives

obeys [4] the relation

Cpm
U(r)=2ir P(p)J0(2irrnp)pdp; (7)

P(p) = A(p)T(p)

(1 -P 2)*' (S)
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Here, r is distance in number of wavelengths from the diffraction

head (center of the diffraction image of an unresolved pinhole), P(p)
is the pupil function, J0 is a Bessel function of the first kind and zero

order, A(p) is given by eq 6, and T(p) is the amplitude transmission

of the axial bundle of rays. For lossless objectives T(p)= l. The
energy density in the diffraction image of a single, unresolvably small
pinhole in an opaque slide is proportional to U2

(r).

By combining eq 6, 7 and 8, we obtain explicitly

Pm T(p)J0 (2Trnp)pdp

(i-p*)*(i-p3*

in which p and p 0 obey eq 2.

Airy’s diffraction integral is obtained by setting P(p) = l

The familiar result is

(9)

in eq 7.

J^ (2irmp) pdp= 2 irpl
Ji(2Trnp n)

2ttrnpm
(10)

in which Jx is a Bessel function of the first kind and first order.

Debye’s diffraction integral is obtained by setting A(p)T(p)= 1

in eq 8. It is

J0 (2irmp) pdp

(1 -P2
)
H (11 )

The solutions of eq 10 and 11 are practically alike for small pm .

However [5], with respect to eq 11

Limit U{r)=2*
S™d^- (12)

Pw =i 2imr

From a physical viewpoint, Debye’s diffraction integral does not
generate a single type of diffraction image.

Reversibility of the Primary Diffraction Integral for

Fully Corrected Objectives

An objective and its primary diffraction integral are said to be
reversible with respect to a pair of conjugate object and image planes
when the diffraction images formed by interchanging the object
point 0 and the conjugate image point O '

,
figure 3.1, have similar

distributions of energy density. Airy’s diffraction integral of eq 10
is reversible. Debye’s diffraction integral of eq 11 is not reversible.

The reversibility of the diffraction integral of eq 9 will now be
demonstrated for the case T(p)= 1, that is, for lossless objectives.

Let ra denote Airy’s limit of resolution measured as number of

wavelengths in the image space. Then

27T?vrp TO=3.8317 = /3, (13)

the first root of Jl(2Trranpm)
= 0. Let x be distance measured in
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Airy units ra from the diffraction head to other points in the diffraction
image.

Let also

x= r/ra . (14)

w= plpm , (15)

By introducing the changes of variable of eq 13 to 15 together with
p 0 from eq 2 into eq 9, we obtain the primary diffraction integral for
fully corrected, lossless objectives in the universal form

U(x)=2t Pi£ J0((3xw)wdw
(16)

U2
(x) describes the distribution of energy density produced about

point O', figure 3.1, by the light radiated from an unresolved pinhole
centered on the object point 0.

If the object point 0 and the conjugate image point O' are inter-

changed,

U\x)= 2 -p:
2

f
Jo

(l

J0((3x'w)wdw

(1 — p, wYv-{—-vi
(17)

in which the primed quantities refer to the new image space (formerly
the object space). The equations of transformation from one space
to the other are

Therefore,

if
©
^ II s if

t—

>

(18)

Pm Pom P'-I^Pm/P'O* (19)

n'M'ln0=n0/nM; (20)

r'a= 0.ti098/n'pn=0.6098/n opom=ral\M\. (21)

By introducing eq 18 to 20 into eq 17, one obtains in a straightfor-

ward manner the result

u'ix'M 2
<f.‘

J0((3x'w)wdw

[

nMp

,

\ n 0 -)T ( 1
- tw2

yA
(22 )

where x' is distance measured in Airy units ra in the new image space.

Comparison of the integrals of eq 16 and 22 shows that they are

similar with respect to the role of x and x'. The primary diffraction

integral of eq 16 is therefore reversible.

It follows from the reversibility of the primary diffraction integral

that the diffraction images produced by a fully corrected objective

operated as a microscope or as a camera objective between a fixed

pair of conjugate planes are similar. This similarity holds in spite

of the fact that the amplitude variation on the convergent wavefront
is an increasing function of p, figure 3.2, with microscope objectives

but a decreasing function of p with camera objectives.

Repetition of the above argument relative to eq 16 and 22 shows
that the more general primary diffraction integral of eq 9 is reversible
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provided that the amplitude transmission T(p) for the axial bundle is

the same whether the light passes from 0 to O' or from O' to 0 in

figure 3.1. Functions T(p) having this property will be called revers-

ible. If, therefore, the reflection and absorption losses within a fully

corrected objective lead to reversible amplitude transmission func-

tions T(p), the corresponding primary diffraction integral is reversible.

An Approximation with Respect to Microscope
Objectives

In integrating eq 9 for microscope objectives, one may set

(l_ p
2)-K= l (23)

because 0 SpSpm with p TO< 0.04. The primary diffraction integral

for fully corrected microscope objectives may therefore be integrated

in the alternate approximate forms

t-t^n o f
p™*/0 (27rrp)pdpL(r)=2x

J. (i-w ’

(24)

o 2 f
1 MPxw)wdw

U(x)=2*Pm
) o {1

_NvyA > (25)

in which n— 1 and

Po= nMp/rio=Mp/n 0 ; (26)

N_\M\pm_N.A. (27)
n 0 n 0

ra =ommiN.A. (28)

in number of wavelengths and

x=r/ra . (29)

Phenomena at the Diffraction Head

The diffraction head corresponds to the center of the diffraction

image of a single particle, that is, to the point r=x= 0 in eq 24 and 25.

From eq 25

mo)

TTPm
2
Jo’

wdw
(1 -N2w2)*’

=3^ ii-a-v2
)*]. (30)

N is defined by eq 27.

The energy density (7(0) at the diffraction head is given by (72 (0) so

that

6r(0)_ 16 [1— (1—iV2
)^]

2

9 A74 (31)
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G(0)/tt
2
p* is called the normalized energy density. From eq 31

6r(0)/7r
2
pi—>16/9 as iV—>1; (31, a)

6?(0)/7r
2p*—>1 as W->0; (31, b)

G(0)i*pi£ 16/9. (31, c)

The usual classical value of G(0)/tt2
p* is obtained from Airy’s

diffraction integral of eq 10 and is unity. We observe that the nor-
malized energy density at the diffraction head can exceed the
classical value appreciably.

It has been concluded by R. K. Luneberg [6] that among all primary
diffraction images obeying eq 7 and producing equal total energy flux

through the plane of the image, the primary diffraction image having
the greatest normalized energy density at the diffraction head is the
classical case of eq 10, that is, the case in which P(p) is equal to a

constant. This conclusion remains useful in considering the properties
of diffraction integrals. However, one should not construe Luneberg’s
theorem to mean that the highest possible normalized energy density
at the diffraction head is under all circumstances the classical value
unity.

Primary Diffraction Images with Microscope
Objectives

With respect to eq 25, let

F(w2)^(1-N2w2)-x (32)

be approximated by the power series

j(w2

) = 1 + a lw2jra2w4
-\- . . . a mw2m

, (33)

in which the finite number m of coefficients at is chosen high enough
so that/ (

,ip
2

) is a satisfactory approximation to the monotonic function
F{w2

) in the interval 0 ^ wS 1.

In the following calculations the coefficients at have been deter-

mined from j(w2
) and F(w2

) by the method [7] of least squares.

From eq 25, 32, and 33,

P4=S aj f
‘ J,{fixw)wv+Hw. (34)

-TTPm j=0 JO

It is convenient to introduce the change of variable z= t$xw and thus

obtain

U(x)

2 7rp
2

Then, because

ruz)z 2^dz=±
Jo „=o(— 4)

(0x) 2

rjy^L [j^G^+ WoGte)],
J

\ V-Y

(35)

(36)
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U(x) ^ a, ^ (ffxf" O'!)
2 T Ji((3x) n JoC/Sx)"!

27rp
2 px ex

+z
" o?*)

2
J'
^

To calculate U(x) for small z-values, we have preferred to expand
J0 (z) in eq 35 into the standard Bessel series and to integrate term
by term. The resulting expression for U(x) is

U(x) 1^ “ /-IV {px)2'

ZnPm 2 j=0 /=o \ 4 / (r!)
2

(j+ r+l)
(38)

It is pointed out that the method of eq 32 to 38 can be applied to

the exact integral of eq 16 by choosing

F(w2
)
= (1-2W)"* (1-p>2)-* (39)

The use of eq 39 instead of eq 32 is not justified unless one employs
a higher number of coefficients than employed by the writers.

The normalized energy densities U2
(x)/ir

2
p * have been calculated

from eq 37 and 38 for the cases N=N.A./nQ equal to 0.85, 0.92 and
0.95 and are plotted against £=r/ra as the solid curves in figures 3.4

to 3.6. The case iV=0.95 corresponds to “dry” microscope objectives

having the numerical aperture 0.95 or to oil-immersion objectives

having the numerical aperture 1 .44

.

The number and values of the coefficients dj are listed in table 3.1.

The agreement between F{w2
) and f(w2

) is illustrated in figure 3.3

for the case N= 0.85. The deviation of/ from F is less than 3, 13 and
19 parts per thousand for iV=0.85, 0.92 and 0.95, respectively. The
addition of one coefficient for the case iV=0.95 is indicated but would
not, we estimate, alter appreciably the diffraction curve of figure 3.6.

Table 3.1 Number and Values of the Coefficients a
}

N

0. 85
.92

.95

a \ (12 03 04

0. 208353
. 206122
. 322624

-0. 065553
. 203478

-.328069

0. 231649
-.316991

. 362459
0. 491368

. 400207

The normalized energy densities U2
(x)/'jr

2
ptl

belonging to Airy’s

diffraction integral of eq 10 are included for comparison as the broken
curve of figures 3.4 to 3.6. Airy’s diffraction curve is unity at the
diffraction head where x=0 and reaches its first zero at Airy’s limit

of resolution, where x=l.
The most conspicuous property of the solid curves drawn in figures

3.4 to 3.6 for fully corrected, lossless microscope objectives is the
rapid increase of energy density at the diffraction head (x=0) with
increasing N. This property has been explained on page 28.

A second interesting property of the solid curves of figures 3.4 to 3.6

is that the first zero of the energy density occurs at ^-values less than
unity, that is, within Airy’s limit of resolution. The data from which
figures 3.4 to 3.6 have been plotted show that the first zeros occur
near z=0.96, 0.95, and 0.94 for cases 7V=0.85, 0.92, and 0.95, respec-
tively. Let x0 denote the first root of U2

(x) =0. Then with respect to

the primary diffraction curves for fully corrected objectives ^0 =L
Furthermore, xQ is a decreasing function of N.
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Figure 3.3 The fit of f(w
2
) to F(iv2

)

for the case N=0.85.

1.5

o 1.0 2.0 0 1.0 2.0 3.0

x = r/ra

Figure 3 . 4 . The primary diffraction curve for the case N=0.85.

U2 (j) is proportional to the energy density in the diffraction image. Distance i from the center of the
diffraction image is measured in Airy units r 0 .

It is especially noteworthy that z0 is a decreasing function of N
while the energy density at the diffraction head is an increasing func-

tion of N. The energy density at the diffraction head is therefore a
decreasing function of x0(N). The reduction of x0 below z0=l by
artificial means such as coating [8] the exit pupil of the objective is

invariably accompanied by marked reduction in the energy density
at the diffraction head. In other words, when one attempts to de-

crease Xq artificially, he is faced by the damaging fact that the energy
density at the diffraction head becomes an increasing function of x0 .

Figures 3.4 to 3.6 show that the ratio of the energy densities at the

subsidiary maxima to the energy density at the central maximum is

higher with the fully corrected objective than with Airy type objec-
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U2
(x)

1.5

Figure 3.5. The 'primary diffraction curve for the case N=0.92.

Figure 3.6. The primary diffraction curve for the case N=0.95.

tives (idealized objectives that obey Airy’s diffraction integral). The
relative increase in the brightness of the diffraction rings is however
small.

Resolution of Two Like Pinholes in an Opaque Slide

We have seen from figures 3.4 to 3.6 that asN is increased the energy
density at the diffraction head increases and the location x Q of the first

zero in the energy density decreases, that the normalized energy
density at the diffraction head is greater than unity and that xQ is less

than unity. These observations lead to the expectation that fully

corrected objectives will have greater resolving power than the ideal-

ized Airy-type objective. This expectation will now be justified.
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Let two like pinholes having unresolvably small area A be located
equidistantly from the optical axis and be illuminated as in a micro-
scope by a substage condenser whose numerical aperture with respect
to the object space of the objective is variable and is denoted by

A "condenser ^oPcm • (40)

Let

® .A . condenser/AEA . objective ? (4 1

)

0=3.8317; (42)

£=distance measured in Airy units from the optical axis in

the image space of the objective;

2L=separation in Airy units of the centers of the geometrical
images of the two pinholes in the image space of the
ob

j
ective

;

1sElIIIN (43)

Z2 = /3(x+£); (44)

,
2Ji(2@sL).

2psL (45)

u{Z) =U{Z)l2trpll
, ^

(46)

where U(Z) is to be calculated from
fully corrected objectives;

eq 37 and 38 for

and

G{x) — the distribution of energy density in the sharply focused
diffraction image of the two pinholes.

Then it can be shown by repeating for opaque backgrounds an argu-
ment by Osterberg and Wissler [9] that

G(x)I^A2
Pip

2
cm=u2(Zl ) +u2 (Z2) +2*u{Zx)u{Z2). (47)

Equation 47 is identical to an equation derived independently (and
almost simultaneously) by Hopkins and Barham [10]. Equation 47
includes the effect of the numerical aperture of the condenser upon the

diffraction image of the two pinholes.

The curves of figures 3.7 to 3.9 have been calculated from eq 47 for

the case s= 1, that is, for the case in which the numerical aperture of

the substage condenser is equal to the numerical aperture of the
objective. The curves G{x) are symmetrical about the point x=0
and therefore have been plotted only for £>0.
The family of diffraction curves of figure 3.7 belong to fully corrected

objectives for which iV=0.85. A pronounced concentration of energy
density occurs at the points £=±0.5 Airy unit when the separation

2L is 1.0 Airy unit. The two pinholes are easily resolved when
z=±0.5, are undoubtedly resolved when L=0.45 but are probably
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Figure 3.7. Diffraction curves Figure 3.8. Diffraction curves for
for two pinholes for the case two pinholes for the case N=0 92.
N—0.85.

The pinholes are located equidistantly
from the optica] axis and x is measured in
Airy units from the optical axis.

Figure 3.9. Diffraction curves for
two pinholes for the case N=0.95.

Figure 3.10. Comparison of the

diffraction curves for two pin-
holes as produced by an objective

of Airy type and by a fidly cor-

rected objectivefor which N=0.95.

The pinholes are separated by 2L=0.90
Airy unit in the object space.
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not resolvable when Z=0.42. The physical limit [11] of resolution is

the separation 2L for which

-
}&

=0 at x=0 - (48)

Evidently, the physical limit of resolution, 2L, falls slightly below 0.84
when iV=0.85.

The family of curves of figure 3.8 belong to the case iV=0.92. A
more definite dip in the energy density now occurs at £=0 for the
half-separation A= 0.42. The diffraction images described by this

family of curves show definitely better contrast and resolution than
do the diffraction images for the case iV=0.85. This trend toward
better contrast and resolution with increasing N is continued in
figure 3.9 for the case JV=0.95.

The physical limit 2L is estimated to be 0.82 when iV=0.95. The
physical limit 2L is [12] 0.843 with Airy-type objectives in viewing
two, like, true pinholes in an opaque slide under the condition s= 1.

The physical limit of resolution is therefore lower (more favorable)
with fully corrected objectives than with the idealized Airy-type
objective.

The diffraction curves of figure 3.10 have been included for com-
parison of the fully corrected objective with the Airy-type objective.

To compute G(x) for objectives of Airy type, one determines U(Z)
in eq 46 from Airy’s diffraction integral of eq 10. Whereas the half-

separation A=0.45 is resolved by both objectives, resolution is more
certain and contrast is better with the fully corrected objective.

Another interesting point of comparison is afforded by figure 3.10.

According to the laws of geometrical optics, the concentration of

energy density should occur at x— =t=L Airy units when the separation

is 2L Airy units. Figures 3.4 to 3.6 display the typical tendency
that the concentrations of energy density do occur near £=±A
when 2 1.0, but that the concentrations depart from the locations

x=±L when 2L<T.0. In figure 3.10 the concentration of energy
density occurs near £=0.4 and £=0.35 for the fully corrected objective

and the Airy-type objective, respectively.

The concentration of energy density lies closer to the geometrical
location £=0.45 with the fully corrected objective than with the

objective of Airy type.

In summary, a fully corrected objective that has negligible internal

losses of light due to reflection and absorption is superior to the

idealized objective of Airy type in practically all respects from the

viewpoint of physical optics. The amplitude variation introduced
over the converging wavefront by bending the rays from the object

space into the image space in accordance with Abbe’s sine condition

is beneficial and should not be counteracted by the deposition of an
absorbing coating over the exit pupil of the objective to render the

objective of Airy type.

Conclusions

The following advantages over the idealized objectives of Airy type

are possessed by fully corrected objectives that have negligible internal

losses of light.
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(1) The energy density at the diffraction head is higher. This
energy density increases with N=N.A./n 0 and approaches 16/9

times the classical value as N approaches unity. (2) The first

zero of the energy density occurs nearer to the diffraction head.

(3) The physical limit of resolution is lower (more favorable) in view-
ing two pinholes in an opaque slide. (4) Actual resolving power
is better in viewing the diffraction images of two illuminated pin-

holes in an opaque slide. (5) Contrast in the diffraction image of two
illuminated pinholes is higher.

The single advantage retained by the classical objective of Airy
type is that the brightness of the diffraction rings is lower with respect

to the brightness of the central maximum.
The primary diffraction integral for fully corrected objectives is

reversible. Not all primary diffraction integrals have this property.
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Discussion

Dr. F. Mooney, Bausch & Lomb Optical Co., Rochester, N. Y.: I

would like to hear Dr. Osterberg redefine a fully corrected objective.

Dr. Osterberg: Insofar as my purposes are concerned, a fully

corrected objective is without spherical aberration and is fully cor-

rected for any design condition that is without color. With mono-
chromatic light, you would not have to correct for color.

Dr. G. Toraldo, Instituto Nazionale di Ottica, Arcetri, Florence,
Italy: I would like to remark on Dr. Osterberg’s paper. I think that
to treat the problem from a purely academic point of view is not
sufficient when such large angles are considered. I have already dis-

cussed with Dr. Osterberg the question of polarization, but there is

still another question. What is the meaning of the curves of the
diffraction disks when one has such a large angle? One must specify
what is intended. Also, it appears that the conservation-of-energyr

law is violated because either the other patterns or these are true.

The other patterns contain more energy. Which is the correct one?
Dr. Osterberg: You have asked, I believe, two questions. One

question you have asked really amounts to this: If we had an illu-

minated pin hole can we say that the wavefront that expands from it

can be regarded as spherical?
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The first remark to be made is this: In the classical viewpoint, of

course, when considering Airy-type objectives we asked no question
in this regard so I may stand my ground and say I take the same privi-

lege. However, there is this to be said. I agree with Toraldo that
the only way you can really solve these problems is to start with the
atomic radiator in the source, trace your polarization vectors all the
way through, and calculate the energy density at the end.

I have done this in connection with the building up of a theory of

phase microscopy. I have started with the dipole radiators in the
source and have traced the development through to the final energy
densities and under certain approximations that are made we get the
final result.

Now, the approximations in a theory like this are sometimes very
difficult to analyze. Just what do they mean? If one supposes that
the microscope illuminator has sufficient numerical aperture to focus
the complete diffraction energy in the source then your conclusion
would follow. That takes care of one question. What was the
second?

Dr. Toraldo: The energy consideration, the diffraction disk.

Dr. Osterberg: Yes. Here is how I view that. Let us take a
small cone of rays containing a certain amount of energy. On passing
through a microscope objective, this energy flux converges as another,
and longer, cone. As the angular aperture increases, the emergent
flux is squeezed into a narrower and narrower cone relative to the

incident cone, so the amplitude is greater on the outer portions of the

wavefront.
Now, when you develop a theory for the Airy-type objective what

do you say? You say that the energy on that wavefront is uniform.
What have you done? You have thrown away energy. I have only
included that energy and so I get the taller diffraction peaks.

Chairman: Dr. Herzberger.
Dr. M. Herzberger, Eastman Kodak Research Laboratoiy,

Rochester, N. Y.: I wish to make one remark with respect to the

beautiful paper of Prof. Zernike. I enjoyed very much the mathe-
matical treatment as well as the agreement shown between theory and
practice. I wish to say that geometrical optics is not as bad as it has
been made to seem. The circle of confusion of which Prof. Zernike
spoke is based on an inaccurate approximation to geometrical optics.

From more exact computation one gets a picture that is similar to your
diagrams and that shows the diamond shape of the image though, of

course, it does not show the interference pattern.

Prof. Zernike: I want to make a remark on Dr. Osterberg’s paper.

I looked into the history of the subject myself about 5 years ago. I

did not publish anything about it. A year and a half ago I visited

H. H. Hopkins in England who has written a paper on this subject.

Then we learned of a paper by “Ignatovsky” a Russian physicist who
worked in Germany before 1917, but this paper was written in 1918 in

Russian. He probably solved everything about it, including the

directed vibrations of light and my impression is that because of that the

influence is much less than Dr. Osterberg has shown. The Airy disk

remains practically unchanged.
Dr. Osterberg: With respect to Dr. Hopkins, I am under the

impression that any of his papers that I have seen had to do with
assumed vibrations on the converging wavefront. Generally speaking,
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the amplitude is decreasing. I am not aware that Hopkins has studied

the particular variation of this paper. Here we have included the

variation of the amplitude produced by bending of the rays in accord-

ance with the Abbe sine condition. Is it your impression that Hopkins
has discussed this consideration?

Prof. Zerntke: I could not say off-hand.

Prof. Marechal. Hopkins has discussed the reverse. He con-
sidered an incident plane wavefront and studied the formation of the

image assuming that the angular aperture was very great. It is ex-

actly the reverse of the case studied by Dr. Osterberg.
In the line of Hopkins’ work we have performed the computation

for the diffraction image given by an aplanatic system of high numer-
ical aperture (in the image space). The image is no longer circular,

but elliptical, as Hopkins has shown. The direction of the longer
axis of the ellipse representing the electric energy is also the direction

of the shorter axis for the magnetic energy; now if we consider the
Poynting vector we find a circular distribution. Experiments have
been tried in order to show the ellipticity of the distribution of electric

energy, but no conclusion has been obtained as yet.

Dr. Osterberg. Are you certain that he included the bending of

the rays in his (Ignatovsky’s) work according to the Abbe sine con-
dition? If he did not he would not get this result.

Prof. Zernike. I should have added that he gave me a reprint of

the paper to be translated but I have not referred to it for a year and
a half.

Dr. Osterberg. Its contents should be interesting.

Dr. M. Golay, Signal Corps Engineering Laboratories, Fort Mon-
mouth, N. J. We have seen many papers in which we are concerned
with what happens to an image. We start with a point source, or if

you like, from a perfect Airy disk, which I believe will give us the

same results, and we arrive at an imperfect image. Of course, we are

not interested in one lens. We are interested in many lenses. We
are interested in what happens to the imperfect image and how much
worse it is in the next step, and one question would be, what is there

about these calculations that is additive and would permit one to

take these steps individually and know what happens at the end of

the system. I have a suspicion that some of the B2 terms of Prof.

Zernike have this additive property. If you look at it from the stand-
point of thermodynamics, something is always lost and is never re-

trievable. Recently in communication engineering there have been
beautiful applications of this notion of things that are lost and not
recovered. I wonder if there is not an application in this field of that
notion of entropy that has a good mathematical and useful significance,

and can be applied to what happens in images and give us a good
strong concept to discuss not just one lens but to discuss a system of

lenses. This is merely a suggestion.
Dr. Herzberger. I would like to make a remark about what has

been said. I think there is a law that governs the action of an optical

system. The optical image formation can always be described as the
result of a wavefront calculated from geometrical optics, diffracted at

the exit pupil. There is ample experimental evidence to verify this

statement, which is the basis of all calculations of the diffraction image.
Besides, there is some kind of an invariant, discovered by R. Strau-

bel, that governs the connection between contrast and resolution in
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optical systems. One can only improve one of these two factors at
the expense of the other. Straubel especially investigated the influ-

ence of absorption on resolution and contrast, an investigation in

which the theoretical conclusions were paralleled by experimental
studies.

Dr. R. C. Spencer, Air Force Cambridge Research Laboratories,
Cambridge, Mass. I am interested primarily in microwave optics
and microwave optical systems. Although we have attempted to

obtain some help from existing optical theory, in general we have
been forced to attack directly certain problems that differ materially
from the usual optical problems. These differences I would like to

point out.

(a) The intensity illumination over the aperture of a reflector-type

antenna or metal lens is not constant but reduced by as much as a
factor of 10 at the edges, (b) The J/d ratios range from unity down
to one-third, (c) The field, or the angle over which a horn will pick
up the image, ranges in certain cases from 30 through 90° and at times
360°. (d) In some cases the feed is off-axis so that the optical system
is not symmetrical, (e) We are working much closer to the limitation

of the Rayleigh disk. For instance, a drop of 20 percent (one decibel)

in the intensity of the center of the Rayleigh or Airy disk will raise

the intensity of the side lobes (diffraction rings) to such an extent that
the pattern becomes unusuable.

Operational methods 1 have proved a powerful tool in evaluating
the effect of aberrations on diffraction patterns. For a one-dimen-
sional aperture with amplitude illumination /(x), the diffraction pat-
tern is the Fourier transform g(u ) of f(x). It can be shown that if

j(x) is perturbed by multiplication by a function H(x) then the diffrac-

tion pattern is H(—iD)g(u) where D=d/du. Thus H(—iD ) is an
operator that transforms or perturbs the normal diffraction pattern
g(u). This device gives a short-cut method for evaluating certain

patterns. Thus the pattern for an amplitude illumination (1— x2
) with-

in the range ±1 and zero without, is (l+Z)2)^^) where g0 (u ) is the

amplitude diffraction pattern for the uniformly illuminated aperture.

For an aperture illumination in a series of powers of x over the range

± 1 the diffraction pattern is a series of derivatives of (sin <£)/<£.
2

When’applied to the analysis of phase errors over the aperture caused
by various’aberrations, the [amplitude perturbation function is H(x)=
ei<t>{x) an(t the perturbed amplitude diffraction pattern is simply the

normal pattern g(u) multiplied by the operator e i<t>{
~ D)

,
the rule being

to replace x by —it). This has been used successfully in evaluating

the effects of defocusing and should converge for other aberrations.

In general, the operator is expanded in powers of D. For example,
in the case of Fresnel diffraction for a uniformly illuminated aperture

the aperture amplitude e
ipx2

f(x) is transformed over to the amplitude

diffraction pattern ePD2
g(<t>)= (l-h(3D2jr(3D2jr(3

2Di
l2\-\- • • )g(4>) where

where 0 is the phase error at either [end of [the aperture and g(4>)=

1 MIT Rad. Lab. Series, 12, 186 (McGraw-Hill Book Co. 1949): (a) Roy C. Spencer, Paraboloid diffrac-

tion patterns from tbe standpoint of physical optics, MIT Radiation Laboratory Report T-7 (Oct. 21, 1942)

;

(b) Roy C. Spencer, Synthesis of microwave diffraction patterns with application to csc20 patterns, MIT
Radiation Laboratory Report 54-24 (June 23, 1943); (c) Roy C. Spencer, et al., Tables of Fourier transforms
of Fourier series, power series, and polynomials, MIT Radiation Laboratory Report S-58 (Aug. 30, 1945);

(d) Roy C. Spencer, Fourier integral methods of pattern analysis, MIT Radiation Laboratory Report
762-1 (Dec. 5, 1945); (e) Roy C. Spencer and Pauline M. Austin, Tables and methods of calculation for line

sources, MIT Radiation Laboratory Report 762-2 (March 30, 1946).
2 Harvard Computation Laboratory Series, vol. 22, Tables of the function (sin 4>)l<t> and of its first eleven

derivatives, Introduction—Section II “Application” by Roy C. Spencer.
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(sin <£)/</> is the amplitude diffraction pattern for a uniformly illu-

minated aperture.

A special aspect of this problem is the fractional loss in gain (or

brightness at the center of the Rayleigh disk) due to phase errors.

If the phase front is approximated by a plane so that the square of

the error between the phase front and the plane is minimized by the
method of least squares, using as a weight function the amplitude
illumination Fix, y ), then the fractional loss in gain 3

is given by

46 Jf
4>

2F(x
}
y)dxdy

“
J

[*F(x,y)dxdy

Thus, neglecting powers of $ above the second the fractional loss in

gain is the weighted-mean squared phase error
,
with <j> in radians.

Needless to say, if the loss in gain is held down to a few percent, this

sets an upper limit on both the increase in the width at half power
and the energy increase in the side lobes.

Dr. J. G. Baker, Research Associate of Harvard College Observa-
tory, and Optical Consultant to the Perkin-Elmer Corp., Norwalk,
Conn.: I should like to ask Dr. Zernike if in his treatment he can
include the primary astigmatism in terms of the higher order angular
departures from the optical axis. When you go far off-axis, large

aberrations have to be considered, and I am wondering whether your
expressions will not have to be modified. You have normalized to

unity over the aperture in each case and I am wondering if corrective

factors are needed when you get to large oblique aberrations? The
image may show hydrid symmetrical and unsymmetrical aberrations.

The question is of interest to me because in some systems I have
designed, the inclinations run to 30 degrees off-axis and yet the require-

ments on image quality are comparable to those on-axis. Vignetting
is another thing to consider.

Dr. Zernike: We have applied the theory only to circular pupils.

Dr. Marechal: There is no essential difference in the off-axis

theory at moderate angular apertures for a circular pupil.

Dr. Baker: I have one system of 52-degrees total field at f/0.65

where these considerations are of importance. The vignetting arises

from film-holder shadows as well as from lens and mirror cells, and the
pupil is far from circular.

Mr. A. J. Lipinski, University of California, Los Alamos Scientific

Laboratory, Los Almos, N. Mex.: I wish to address a question to Dr.
Zernike. How did you consider the geometrical as compared to the

diffraction images? You mention four times better just by the dif-

fraction theory and then you later mention this can be made by bal-

ancing the aberrations to 28 times what actually appears geometrically.

Then you say in a practical case you reduce it to 5.6 times. I am a
little uncertain as to what you mean.

Prof. Zernike: I had to abridge my talk somewhat. I had really

in my paper a somewhat different thing. The 5.6 or 28 refer to the
difference between balancing the error or by fourth and sixth orders
or by not doing that. This polynomial (illustrating) would mean

3 Roy C. Spencer, A least square analysis of the effect of phase errors on antenna gain, AFCRC Report
E5025 (January 1949).
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that you want the ray to go up and down so that you have this circle

of confusion. You have the answer to this in the paper. I find that
by doing it geometrically, making a transverse aberration of the rays
you get an approximation that is not too far from the diffraction

theory treatment, which means that judged by the geometrical optics

you are always rather far out. This disk that would be calculated

from the rays is much larger than the relative function that you get.

If you look at the diffraction properties, it would be only 1.75 times
less than the correct one. I think that answers your question.

Mr. G. H. Conant, Jr., Harvard College Observatory, Cambridge,
Mass.: Dr. Zemike, would you restate your ordinate and abscissa

on the diagram of the isophotes? Axial sections near the focus
were shown.

Prof. Zernike: It was just near the focus of the aberrations.

You would have to rotate the entire diagrams in order to get a three-

dimensional figure.

Prof. Marechal: The question of resemblance between the
effective diffraction pattern and the geometrical approximation is

rather intricate. It seems that it depends entirely upon the nature
of the aberrations. In the case of astigmatism if you focus on one
focal line the diffraction pattern is very similar to the geometrical
focal line even if the aberration is very small (half a wavelength).
If you increase the aberration you will rapidly obtain the aspect
predicted by geometrical optics.

In the case of coma it seems that you have to go up to three or

four wavelengths at least to have some resemblance between diffrac-

tion image and the geometrical one, and for spherical aberrations, it

seems to be still more. In fact, it is quite difficult to tell exactly
how we can define the resemblance.

In the case of coma you have still a high maximum when the
aberration is of the order of magnitude of 2 or 3 wavelengths. Instead
of rings you have horseshoes.

Dr. H. R. J. Grosch, General Electric Co., Dockland, Ohio: I

would just like to comment upon noise. I suppose we could interpret

band width, which, after all, is the limitation of the channel over
which the information is coming as some function of N, but what are

we going to do about the question whether the noise introduced by
the imperfect lens system is what the communication boys call

“white” or not? I think the trouble is that there are highly selective

effects. I have a feeling that we are not anywhere near close enough
to information theory from the communication engineering viewpoint
yet.

Mr. Golay: As I understand it, we have a loss due to the poor
quality of the system. This poor quality may be something that

cannot be avoided but it is not noise. We may have a system that

is as good as we can make it. But can we have a measure of the
poor quality that is additive so that we can predict what we will

have at the end of the system?
Dr. Baker: This is a short question. Are these orthogonal

functions necessary and sufficient to represent any possible aberra-

tions of the wavefront to all orders?
Prof. Zernike: Certainly.
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4. Bases for Testing Photographic Objectives

By L. E. Howlett 1

General Considerations

It is a matter of more than passing interest that in spite of the fact

that optical instruments have for a very long time been widely used
as tools in scientific research, there is a great deal of disagreement as

to the way in which their image quality should be judged. An ex-

planation for this condition, which is at least plausible, may be found
in the historical development of the uses to which lenses have been put.

Whatever the real validity of such an explanation it serves to bring
out the erroneous trends of thought on optical performance that have
been largely responsible for the present diversity of opinion.

There have been three distinct periods in the development of the
usefulness of optical instruments to meet scientific needs.

Until the early years of the nineteenth century optical instruments
found their major, if not exclusive, scientific use as an aid in making
visual observations. Astronomical research combined with other
applications of telescopes was probably the most important scientific

use.

Shortly after the opening of the nineteenth century the development
of photographic science was very rapid. For pictorial reasons a
demand arose for lenses that would cover a reasonably large field of

view. To attain this end a diminution of image quality below that
of the astronomical requirement was considered quite acceptable be-
cause the intrinsic resolution of available emulsions was certainly

inferior to that obtained visually on the axis of telescopic systems.
By the twentieth century lenses came to be combined not only with

photographic emulsions but with many other kinds of energy re-

ceivers such as thermopiles, photocells, etc. They became an impor-
tant element in television where the character of their optical imagery
is of great importance in the performance of electrical circuits and the
over-all quality of a sj^stem as a transmitter of information in the
form of electrical signals.

It is a most unhappy circumstance that during the expansion of the

use of lenses from the stage where they were an aid to visual observa-
tion to where they were used to make observations in combination
with photographic emulsions, thermopiles, photocells, etc., designers

ignored the necessity of reconsidering and adjusting for validity the

design criteria, which had proved wholly acceptable for the design of

good objectives for visual use. It seems they had become generally
satisfied with an erroneous conception that if a lens performed well

in combination with the eye it would perform equally well when com-
bined with any other type of energy receiver. Those who would not
expect a microscope objective designed for the infrared to excel in the

* Division of Physics, National Research Council, Ottawa, Canada.
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ultraviolet nevertheless assumed that a good visual lens must be a
good photographic lens. The thought that a lens performing in only
an adequate way with the eye might be superior to a first- quality
visual lens when combined with a photographic emulsion or other
receptor did not receive appropriate consideration. It seems that
only currently is the condition underlying such a concept being given
any attention by designers. If all lenses over their reputed field of

view were limited only by diffraction theory no such confused thinking
would have developed in the stud}7 of lens-film and lens-electrical

combinations. The fact that all lenses with significant fields of view
have their imagery limited by aberrations makes possible a very varied
performance of the same lenses when combined with different types
of observing receptors. Therefore, it cannot be too strongly empha-
sized or frequently repeated that when the image of a point source is

an irregular spot in which the distribution of energy is a function of

specific residual aberrations, a variety of interpretations of its form
and size can be made by energy receivers of different chromatic and
contrast sensitivity and that hence a number of different standards
of performance are possible.

In the beginning, astronomy presented the most important demands
and the requirements of this field together with limitations of theo-
retical understanding and available optical materials governed the
type of systems developed. In observing stars it is not essential,

even though sometimes desirable, that the telescope cover a large field

of view. In any case, a very large amount of astronomy can be carried

out by instruments having quite limited fields. At the same time it is

of prime importance that the quality of the image be of the very best.

It so happened that with these conditions it was possible to develop
lens systems of quite simple design with available materials that would
form on the axis an image limited only by diffraction effects. Because
of the use it was natural enough to use simple visual experiments to

determine the quality of the image formed by the finished product
and to judge in large measure the success of the design by the ability

of the system to separate visually the images of two closely placed
point sources in the object space. Diffraction theory permitted the
mathematical prediction of the intensity distribution in the image of a

point source when no aberrations were present and an ultimate stand-

ard of performance could thus be set. The ability of an optical sys-

tem to separate point sources came to be called resolution and Lord
Rayleigh’s name is associated with the standard mathematical defini-

tion of this property when diffraction theory alone determines image
quality. Resolution, in the absence of aberrations and except for its

dependence on the wavelength of the light employed, came to be con-
sidered as an intrinsic property of the geometry of the system. Since
the range of wavelengths used in such optical systems is generally not
large, the persistent tendency to slip erroneously into thinking of

visual resolution as an intrinsic property of optical systems was not
too calamitous. However, it was most unfortunate that this mode of

thought had become a habit when consideration had to be given to

photographic objectives in which images are limited by residual

aberrations.

When aberrations are present the distribution of the energy in the

image, both as to intensity and wavelength, is dependent on the par-

ticular residual aberrations left by the designer and the quality of the

light forming the point source. This energy distribution will be a
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function of the particular design and it is difficult to define the func-
tion completely and accurately on a theoretical basis. The distribu-

tion will vary with position in the field. The position of best focus or
the position of the smallest size of image will vary with the position

in the field of view and the position can be different for different means
of observation—eye, photographic emulsion, photocell, etc. When
the lens is used in photography, it is practically essential that the
field of view be recorded on a flat plane. Since the position of best
focus varies with the angular position in the field of view, a problem
arises as to how to select as the focal plane for a particular lens-

emulsion combination the one that will give the best compromise
between the size of spots in different positions in the field of view.
The interpretation of the energy in the image plane for a photographic
emulsion will not be the same as that of the eye because of different

response characteristics. It may see either a larger or smaller spot.

In consequence the lens-emulsion combination may be able to separate
two nearby point sources with less or more facility than the lens-eye.

The position of maximum brightness of the spot may appear in dif-

ferent places to the eye and to the photographic emulsion. Conse-
quently photographic records of distortion might differ from visual

ones. There are emulsions with different sensitivities and each will

give its own interpretation of the image as to size and apparent energy
distribution. Other types of receptors give other interpretations of the

same energy distribution because of their own peculiar responses.

It becomes immediately apparent from these considerations why a
lens of high visual performance is not of necessity equally satisfactory

for photographic emulsions or for forming a signal to be transmitted
electrically.

The foregoing shows that the essential requirement for judging the
quality of images in the presence of aberrations is that the judgment
be based, not on any particular type of energy receiver for observing
the images, but on that particular energy receiver with which it is

proposed to couple the lens for some definite scientific task. It is

not to be taken from this that visual observations are to be outlawed
in making studies of photographic objectives. It does require,

however, that if for convenience a visual method is desirable a series

of experiments must first be done to show the equivalence of the
visual methods to those of practice. The same applies to the sub-
stitution of any other kind of receptor for the observations. The
equivalence once established holds only for one lens type.

One can point out that for well-designed photogrammetric objec-

tives no difference has yet been shown between the distortion as

measured visually and the distortion as measured photographically.

On the other hand, it is reasonable to suppose that it would be possible

for a significant difference to exist in the case of lenses of inferior

design or poor workmanship. Accordingly, if the purpose of the test

is to establish acceptability of the new lens for photogrammetric
purposes, it is more reasonable because it is safer to determine photo-
graphically the distortion of a lens of unknown performance.

The plane of best photographic focus can differ from the position

of best visual focus even in a good lens. Consequently this plane
must be initially selected for a particular lens on the basis of a photo-
graphic investigation. Such an investigation is tedious, and it is

fortunate that for a particular type of lens it seems that the plane of
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best photographic focus once determined can be located for other
lenses of the same type by reference to the position of best visual

focus on the axis. Preferably, several lenses of a type should be used
to determine the relationship.

Inasmuch as some earlier visual methods of image assessment are

shown to be generally inappropriate for lenses intended for photog-
raphy and other specialized purposes, it is well to consider whether
the long used resolution criterion is a suitable one for grading the
performance of different types of photographic objectives. We must
make the decision in the light of the use. In the case of lenses used
for photography that will be the basis of photogrammetric routines

or reconnaissance the collection of information is of prime importance.
For this purpose the resolution criterion seems very apt. The ability

of the lens to reveal information must be very intimately and directly

related to its ability to resolve adjoining fine detail. There may be
some question as to whether the relationship is a linear one. Indeed,
there are good grounds for thinking that in air photography useful

information does, to some extent, come in size ranges. Thus, a

10-percent increase in resolution might be relatively unimportant in

small scale photographs for forestry interpretation since such an
increase does not make possible the recording of another size group
of useful detail. On the other hand, at large scale when a built-up

area is being photographed an increase of 10 percent in resolution

might very materially increase, by a much larger percentage, the
amount of useful information available for interpretation. Although
accepting the validity of resolution as a method of evaluating a lens

for air photography, it can still be conceded that experiments designed
to relate such measurements to photographic interpretability may
be of considerable general interest. Nevertheless, it seems unlikely

that these experiments will either disprove that a lens of higher
resolution will give more information than a lens of low resolution or

disturb the continuing practical demand for lenses of higher and higher
resolution.

An Acceptable Testing Procedure for Aerial

Photographic Objectives

Keeping the previous discussion in mind we can propose suitable

tests for photographic objectives intended for aerial photography.
Different but similarly conceived tests can be proposed for lenses

intended for other tasks. The procedures set forth in the following
are those currently used for aerial photographic objectives in the
National Research Laboratories of Canada.
A good quality collimator having a focal length at least four times

that of the objective to be tested is used to place the resolution target

at infinity since the object distance in aerial photography is always
the equivalent of infinity. The excess focal length of the collimator

guarantees that its aberrations will be insignificant compared with
those of the lens under test. The quality of the illumination of the
target is mean noon sunlight since this is characteristic of aerial-

photographic operations. In front of the collimator is a sturdy beam
that swings about an axis near the end closest to the collimator.

The test lens is mounted on the beam over this axis so that its entrance
pupil is flooded with light at all angular positions of the biam. The
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latter also carries a plate holder that can be placed at varying distances
up to 60 inches from the test lens. The test lens carries the filter or
filters that will generally be used with it in practical operations.

This will include not only colored filters but any filter that is used to

equalize the intensity across the field of view of the test lens. The
lens can be adjusted so that the film or plate plane is parallel to the
machined surface of its mounting flange. Provision is made for
maintaining the film flat either by a register glass or a suction back.
The plate holder covers a narrow strip of the field of view from corner
to corner of a 9- by 9-inch format. Recordings of the collimator
target are made photographically at a number of angular positions in

a series of parallel planes in the neighborhood of the visual focus.

The emulsion to be used with the lens will be the one to be employed
in air operations. The film strips are processed according to the
recommended procedure under careful sensitometric control. The
exposure time at each position of the field is the same. It is chosen so

that the density produced at each position favors the negative material
yielding the maximum resolution. If vignetting is severe, positions
representing smaller areas of the format are sacrificed. After process-
ing the film strips the resolution is assessed with the aid of a binocular
microscope. The magnification and illumination are so adjusted
that the reading of the maximum possible resolution is favored.
From these data through-the-focus curves are plotted for each angular
position in the field. From values taken from smooth curves based
on these points off-axis graphs are plotted for the several planes
studied. The resolution is weighted on an areal basis. The resolution

at each position of the field is assumed typical of the annulus in which
it occupies the central position. Appropriate allowance is made for

the fact that the outer annuli are incomplete because the camera
format is rectangular. A final curve can be drawn, which relates

average resolving power over the rectangular format for a series of

planes parallel to the mounting flange. From this curve the plane
of best average photographic focus can be selected.

Visual observations are taken to determine the position of best

visual resolution on the axis. The separation of this position from
the plane of best average photographic resolution is used to permit
routine focusing of lenses of the same type by a simple visual routine.

The Shape and Contrast of the Resolution Target

No reference has so far been made to the shape and contrast of the
target best suited to lens resolution studies. Both these factors have
a bearing on the actual numerical quantity that will be obtained for

the resolution. Therefore it is highly desirable to obtain some meas-
ure of general agreement between laboratories on the exact shape and
contrast of the target so that values obtained by each may be im-
mediately compared. Unfortunately, there is very wide disagree-

ment on these points. Most targets will place lenses in the same
order of merit, but there will be exceptions. These are important
ones for performance testing because the proper design of a target

will be more severe on inferior lenses. Contrast of target for certain

uses of lenses is more important than shape of target. For perform-
ance tests in aerial photography, if testing is done at only one contrast,

low-contrast targets should certainly be used. This is essential
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because of the very great preponderance of low-contrast detail in

scenes from the air. However, it is certainly of advantage to do
tests also at high contrast, providing the significance attached to

these results from a performance point of view as compared with
results from low-contrast targets is in proportion to the relative fre-

quency of high- and low-contrast detail in an air photograph. Perfect
lenses would be placed in the same order by all shapes of targets at
all contrasts and it is again the residual aberrations that complicate
the problem of assessment.
The correct basis of choosing a target can be simply stated and

there is unlikely to be serious disagreement on the point. The form
and contrast of the target should conventionalize the task in the
practical application of the lens. It should be as simple as essential

requirements allow to make testing an eas}7- routine. In air photo-
graphy this means that it should attach equal importance to edges in

any direction and that it should take account of the mutually de-
structive effect at the limit of resolution of neighboring edges at any
orientation with respect to each other. It should be possible to

associate some degree of recognizability with the limit of resolution.

It should not make demands for qualities that will serve no useful

purpose in the application of the lens or production difficulties may be
caused unnecessarily. Important requirements must take precedence
over lesser ones.

Some interest has been shown in letters and other targets calling

for a greater degree of recognition than the more conventional geo-
metrical forms. It is argued that they have the merit of presenting
the observer with an unknown target. The value of this is questioned,
since in very extensive observations on resolving-power targets in

our laboratories practically no discernible tendency to cheat uncon-
sciously has been noted. The establishment of the limit of resolution

of adjoining edges is after all the prime requirement whether the
edges constitute a conventional target, a letter, or some natural
object in the landscape. It therefore seems unprofitable to compli-
cate the testing for no profitable result. In using letters there is also

the further complexity or uncertainty that the recognizability of a
given letter will vary with its orientation in the field of view because
of the asymmetry of the spot-like image of a point source, which due
to aberrations is formed by a photographic objective. It therefore

appears that there is no advantage in going to great complexity. A
single, simple target conventionalizing to a reasonable degree the

practical task will fully suffice.

We think we have met the target requirements outlined in a satis-

factory way for routine lens performance tests in the laboratories of

the National Research Council of Canada. We have chosen a bright

annulus form of target on a darker background. The thickness of

the annular ring is equal to the diameter of the central area. In the

recorded images of this target resolution is considered to exist as long
as the image appears as a line of density enclosing a central light area.

If the line of density is broken b}T astigmatism or if the central area
disappears, the limit of resolution is exceeded. This accepts resolu-

tion with some distortion as having adequate recognizabilit}". The
target has the advantage that it does not place any particular impor-
tance on edges in any given direction such as the radial or tangential.

This, as stated earlier, is certainly the condition in actual operations

where equally important detail will be lying so that its edges are in
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any direction at all. The simple single form of this target as com-
pared to lines in the radial and tangential directions, or in more
directions, permits an experimental averaging of the various factors.

It thus avoids the necessity of making an average on some arbitrary
arithmetic basis of the resolving power in two or more specific direc-

tions. The mutually destructive effect at the limit of resolution of

nearby edges lying in different directions, which obtains in any aerial

photograph, is rather adequately represented by the mutually de-
structive effect of small sections of the inside of the annular ring.

Resolution measurements on lines in specific directions take no
account of this important factor which is particularly important in

the case of poorer lenses. At the limit of resolution the aberrations
in all directions at the inside edge of the annulus add up to destroy
resolution and cause the disappearance of the central area. It has
been definitely shown in the case of lenses of inferior design that the
annulus type of target records a relatively more rapid fall-off of

resolution towards the corner of the photograph than radial or tangen-
tial lines. Under such circumstances it is reasonable to suppose that
the resolution picture given by the annulus target is more representa-
tive of what will occur in air photography than the performance
suggested by the resolution on radial and tangential lines. This
revealing property is of obvious value in testing new lenses of unknown
performance.
Selwyn and his coworkers first suggested during the last war that

because the great majority of aerial detail is of low contrast it would
be sensible to adopt a low-contrast target for the assessment of aerial-

photographic objectives. Our laboratories in Ottawa have accepted
this proposal and our annulus targets have the log contrast of 0.2

suggested by Selwyn. Recent work by Carman and Carruthers has
given extensive experimental authority to Selwyn’s proposal and has
further shown that the typical average log-contrast ratio for a great
variety of scenes is considerably lower than 0.2. A log contrast of

0.1 might be considered more typical. It is not thought that any
great increase of validity will be obtained by substituting a 0.1 target
for a 0.2 target in resolution tests. The difficulty of making the tests

would be much increased. Nevertheless, tests are under way in our
laboratories to make certain that this conclusion is warranted.

It is sometimes argued that high-contrast targets reveal differences

between lenses more readily than low-contrast targets. This con-
tention is undoubtedly true. The fact in itself is not of great im-
portance unless the differences revealed are of real significance in

the work to be assigned to the lens. In an aerial scene the amount of

high-contrast detail is but a small fraction of the low-contrast detail.

It seems unreasonable to evaluate the results obtained with high-
contrast targets in any other proportion but this fraction. For aerial

photography a lens that has 120 lines per millimeter on a high-contrast
target and 15 lines per millimeter on a low-contrast target is not by
any manner of means twice as good as a lens that has 60 lines per
millimeter on high-contrast target and 15 lines per millimeter on a

low-contrast target. Indeed, it is only very slightly better. On the
other hand, if the low-contrast figure for the lens performing in the
poorer way at high contrast were 25 lines per millimeter instead of

15 lines per millimeter it certainly would be nearly 66% percent better
than the other on an overall basis. Such a lens as that postulated
is highly desired at the present time.
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The Distinction Between Two Types of Testing

The relative merits of performance testing and tests that are
designed to study one or more of the various physical factors that
contribute to overall performance are quite often vigorously argued.
Such arguments are quite pointless since the two kinds of tests serve
quite different purposes. The typical designer requires, for the
development of his science, physical information specified by him,
which will help him to improve his methods and his designs so that
his product can meet performance tests. The choice of information
must be his. The user of the lens on the other hand is not concerned
with these design problems. He wants to know how well a particular
lens will cope with the problems with which it wull be faced in a
particular task in which he is interested and not some other task.

Since all optics is generally a compromise one cannot usually meet all

working requirements equally well. The two types of experiments
may well be quite different in form since they are different in purpose.
One is really an investigation and the other is a test. Neither type
of work should have its usefulness limited by confusing the two
separate requirements and the user must be left as free as is the
designer to specify the testing requirement that best suits his problem.
In our laboratories we are interested in both types of work. Experi-
ments of the second type are at present going on, but no reference
will be made to them here since the concern of this paper is to empha-
size the proper general requirements for performance tests and to
treat more specifically those required for photogrammetry and air

reconnaissance. Agreement on performance tests does not need to

await the solution of the long term problems of improving image
formation. Performance tests must judge the end result in the most
informative way and need not contribute directly to improvement of

design.

Although performance tests do not of necessity contribute aid to

the designer in his efforts to meet the user requirement, those outlined

here have in fact made such a contribution. It is a general one but
of the greatest importance. Because it does not point a detailed

path it does not seem to have commended itself to many designers.

By contact printing a resolution target on to Aero Super XX it can
be shown that Aero Super XX will resolve about 25 lines per milli-

meter with a line target having a log contrast ratio of 0.2. For the
many aerial photographic objectives that have been tested in our
laboratories in combination with Aero Super XX, the effective maxi-
mum resolution of the combination turns out with monotonous
regularity as about 15 lines per millimeter. This is approximately
60 percent of what the emulsion itself can do. The apparent visual

resolution may be 150 or more lines per millimeter and will vary
greatly from lens to lens and type to type. The high-contrast photo-
graphic results may also be quite high and varied. It is suggested by
these results that the designer is endeavoring to get some fraction of

the energy from a point source into a very compact spot in the image
space and letting the rest fall where it will outside this spot. Visually

this central spot is sufficiently concentrated, compared with its sur-

roundings, to yield quite high resolutions. It is often of the order of
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hundreds of lines per millimeter. The resolution may even be quite

impressive photographically for high-contrast targets on Aero Super
XX. However, for low-contrast targets on Aero Super XX, the light

that falls outside of the central compressed spot is very significant,

and in consequence very substantially lower resolutions are obtained

.

Much better results, and a far more useful lens, would be obtained if the

designer ceased from making a concentrated spot from a relatively

small fraction of the light for visual interpretation and concentrated his

attention on packing nearly all the light to which the emulsion is

sensitive into a spot of quite significant size but one that would
correspond to a resolution of 25 lines per millimeter on Aero Super XX
with a low-contrast target, mean noon sunlight and a minus blue

filter. In such a case we would have a lens ideally suited to work with
this particular emulsion in air photography. Present lenses have
characteristics that fight with those of the emulsion. Since there is

little hope of changing the emulsion the lens designer must change his

design criteria.

It is of interest to note that some time ago a number of metrogon
lenses were tested by the methods outlined earlier and that their

performance on low-contrast targets were very uniform. Visually

and photographically at high contrast there were considerable differ-

ences. Nevertheless, no distinction has ever been made between these

particular lenses by those continually using photographs from them
for photogrammetric purposes over a period of years. This would
seem to be practical subjective evidence to justify concluding that the

low-contrast results are judging the important factors of performance
in so far as the mappers are concerned. It has also been found in our
laboratories that designs said by designers to be sensitive to certain

curvatures, separations or surface figures are in point of fact quite

insensitive to one or all of these factors with Aero Super XX, low-
contrast targets, mean noon sunlight and minus blue filters. Again,
this suggests that there is a straining to attain something that gives

little profit in the practical photographic problem although the de-

signer's concern about close tolerances is shown to be fully justified on
visual performance of the same lenses.

Conclusions

The foregoing discussion leads to some important conclusions.

Performance tests of lenses must be based on the condition of use.

They must not be confused with experiments that the designer may
require to obtain information on ways to improve his product. Per-
formance tests for aerial photographic objectives must take account of

the quality of the light and the characteristics of the instrument that
will record the image. Resolution tests are generally an adequate
means of testing the performance of these lenses if the main purposes is

to secure information. A target for resolution tests must convention-
alize, both in form and contrast, the task to be assigned to the lens in

practice. Results of such testing suggest that we would get much
better lenses for air photography if all the energy from a point source
could be concentrated in a spot in the image space that would give, at

any position in the useful field of view, 25 lines per millimeter on a
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target having a log contrast of 0.2. On the basis of tests carried out
on most of the available aerial photographic lenses this is obviously
not being done at the present time although enough energy is being
sufficiently concentrated into a smaller spot to lead the eye to observe
a much larger resolution because of its ability, by reason of its response
curve, to ignore to a sufficient degree radiation that falls outside the
main concentration.
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5. Quality Aspects of the Aerial Photographic System

By Duncan E. Macdonald 1

As the work at the Boston University Optical Research Laboratory
is primarily concerned with the field of aerial photography, the con-
siderations of this paper have been directed to that field. However,
it is felt that aspects of this discussion may be considered for more
general application.

In aerial photography, pictures are taken of ground objects through
long air paths by cameras, lenses, and associated equipment mounted
on unstable and translating platforms. The resulting photographic
negatives, consisting of nonhomogeneous clumps of silver, arranged
in numbers and sizes as to approximate the geometric pattern of

reflectivities of the ground objects, are then printed. These positive

prints are viewed by trained observers known as photointerpreters,
generally under low-power stereoscopes. These interpreters then per-

form the important transduction process—that of converting the
message coded in silver clumps into a verbal report. This system
is shown in figure 5.1. This paper will discuss the role of several of

these components in the system performance.
Aerial photography has as its objective the gathering of information

and, thus, the capacity of this photographic system for revealing
information is taken to be a meaningful performance criterion. It

is perhaps in order to review briefly the development of a common
quality criterion that is now in general use, namely that of resolution.

In 1850 Dawes [1]
2 reported on the result of his experiment on the

conditions for separation of two stellar images, and in 1879 Rayleigh

[2] presented a theoretical criterion for the resolution of two point
images. Inasmuch as point images are difficult to treat experimen-
tally, it has generally been the custom of the experimentalist since

that time to employ test objects consisting of a periodic array of

finite geometric details (usually lines) and then to score the resolution

of the system in the appropriate coordinate in terms of the fineness

of detail that it records (lines per millimeter).

In such fields as astronomical and spectroscopic photography, the
original concepts of Rayleigh and Dawes appear to coincide in many
instances with the technical objectives. Although at the present
time a resolution score is used with some measure of success as a

quality criterion for aerial photography, the message presented to the
system is of a character quite dissimilar to that of the usual test object.

It therefore appeared in order to examine how this and other criteria

related to the performance of the system.
In the many approaches to the problem of photographic perform-

ance, there is, in general, one point in common—the consideration
that the limit of resolution of the system is that point where contrast

1 Director, Optical Research Laboratory, Boston University, Boston, Mass.
2 Figures in brackets indicate the literature references on p. 72.
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Figure 5.1. The aerial photographic system.

is degraded to a value below that of the visual contrast threshold.

This implies that resolution is a function of the degradation of con-
trast of a system and suggests that a contrast-reduction function
might provide some insight for the judgment of aspects of the system
performance.

Consider the resolution limit of a lens-camera-film combination
determined in the laboratory as being the limit of a band-pass filter.

The nature of a vast majority of man-made objects, and indeed of the
inajorit}^ of natural objects of aerial photographic interest, is such
that perfect imaging and recording would reveal square waves of

intensity. (This is one characteristic of the message.) However,
if square-wTave detail is incident on the filter as is observed in the
laboratory when employing a parallel-line test object, the shape,
amplitude, and mean power of the waves become more and more
altered as one approaches the band-pass limit.

The filter concept coincides with the one-dimensional aspect of the
resolution target. For example, in the case of scanning pictures in a

line-scan, video-type system, the limit of frequency of the system
is VR, where V is the velocity of scan in millimeters per second and R
the resolution in lines per millimeter. Whether the frequency
characteristic is spatial, as in the case of a between-the-lens shutter,

or is temporal, as in the line-scan application, the resolution number is

directly proportional to the limiting frequency for a given set of

parameters.
A photographic system may, then, be described in terms of its

response to (a) detail that is of ordered occurrence, as in the case of the

resolution target, (b) detail that is isolated, and (c) detail that is

random, as, for example, the spatial frequency characteristics of the

objects on which the system is to be employed as a detecting device.

Because of the mutual influence of areas in proximity due to the

spreading of the energy by the system components, particularly by the

emulsion, the contrast-reduction functions differ for each of the above
classes. (Analogy may be made to network theory, where in linear

systems the steady state, transient or random responses uniquely
determine the characteristics of the system.) Schade [3] has treated

optical elements as low-pass filters and discussed the use of a “transfer

characteristic” to describe the performance of a system component
in terms of temporal responses for a given set of operational pa-

rameters.
Such characteristics in the aerial photographic system have been

recognized as contrast-reduction functions. Contrast-reduction char-

acteristics of a 6-inch //6.3 Bausch and Lomb Metrogon, a 12-inch

//5.0 Eastman Kodak Aerostigmat, and a 24-inch//6.0 Eastman Kodak
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Figure 5 . 2 . Relative contrast in image.

Aero-Ektar have been studied in the laboratory. Image contrast
has been defined as C=(Tb/Ti)—l, where T is the transmission as

measured on the negative, with subscript b denoting background, l

denoting line or object. Data were obtained from photographs of

line patterns, employing a photographic plate inclined to the focal

plane, as discussed by Zschokke [4] and later modified by Wetthauer
[5]. The length of the target lines falls normal to the axis of tilt.

Figure 5.2 shows the contrast-reduction characteristics as measured
on Super-XX emulsion for the case of isolated symbols, that is,

isolated white lines on a dark field. The contrast is expressed as a
function of image size.

Because of the nature of reduction in contrast, it is clear that in order
to detect a symbol, more contrast is required in the object as the image
becomes smaller. The limiting contrast expressed as a function
of image size may be thought of as the contrast-detection threshold
of the lens-emulsion system.

The quotient, visual contrast threshold (under the conditions of

viewing) divided by the percentage contrast reduction for a given
image dimension, is the object contrast threshold for this dimension
of image. Assuming conservatively a visual threshold of 0.1 the
data from figure 5.2 are taken to show the detection thresholds of

these lens-emulsion systems. These are presented as figure 5.3.

It is clear that this concept breaks down when the image becomes
effectively a point. In the same figure the systems are compared
for the case of symbols occurring at regular spatial positioning (resolu-

tion charts), it should be noted that this function for periodic
symbols approximates that for the case of isolated dark lines on a
bright field. In this latter case we have assumed that the visual

contrast threshold varies linearly with the reciprocal image size from
0.1 at 2 symbols per millimeter to 0.4 at 22 symbols per millimeter.

The 0.4 threshold appears in reasonable agreement with laboratory
measures. The validity of the assumptions bears little on the main
point. It is clear that there is a marked difference in the lens-emulsion
performance for the two types of symbols.
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SYMBOL SIZE IN MILLIMETERS

Figube 5.3. Object contrast thresholds.

The curves shown in figure 5.3 may be taken as representative of

the maximum contrast capacity of the lens-emulsion combination
for the typical aerial scene, as background and object are located
on the toe and straight-line portions of the photographic characteristic,

respectivelv. The test-object brightness ratio is of the order of

30 :1.

3

Let us now assume for purposes of discussion that the object space
consists of a universe of isolated symbols. Figure 5.3 describes the
response of a lens-emulsion system to this type of detail. We may
assume these symbols are distributed such that for any given region
(Ax) (Ac) the same number of symbols occur. Then, in a single

exposure the system explores a portion of the detail universe within
the area A,

A=fcCR(fd-xL), (1)

where CR is the contrast range in the scene/ / the focal length, 6 the

angular coverage of the system, xL the limit of detail size passed by
the system, and k a constant that includes a reciprocal scale factor.

3 The maximum brightness range encountered in an aerial scene, that is, highlight to shadow, is about
150:1. This maximum range is reduced by atmospheric haze to less than 30:1 by only a few hundred feet

of air path.
The data employed for this presentation have been taken from film processed to a gamma of 0.98 ±.02.

If the sensitometric data are known, it is straightforward to predict the alterations in the form of the curves
(fig. 5.3) for any changes in median exposure level for other conditions of processing, or for any specific object
if its photometric characteristics are known.

4 Cr = Cot~P h
,
where Co is the maximum contrast in the object, /3 the attenuation coefficient, and h the

flight altitude.
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Figure 5.4. Information-level diagram for aerial photographic interpretation.

It should be noted that the system may be tuned with respect to the
detail universe. The tuning is accomplished by varying the altitude

of flight, that is, by varying k, which enables the system to explore
any preselected range of detail size.

If the contrast threshold of a particular lens-emulsion system
(fig. 5.3) is described by \k(x), then the probability P that any par-
ticular unit of detail within the region will occur above the threshold
may be written

P may then be thought of as a measure of the range of symbols
subject to detection through the use of the system.
At the present time, the type of significant detail for a given form

of reconnaissance is of such a nature that military photointerpreters
state their requirements for photographs solely in terms of scale.

Whatever the significant quality criterion may be, the interpreter has
achieved, through his experience with many analyses, a concept of a
quality criterion that is meaningful to him. In limiting his require-
ment to a statement of scale, the interpreter tacitly assumes that the
other quality aspects will not differ greatly from the present-day
average. Thus, it appears that in military aerial photography, as in

many other kinds of photography, levels of information are quantized,
that is, changes in emission of information from aerial photographs
appear to occur at discrete scale levels. This quantized aspect of the
aerial photographic problem, as shown in figure 5.4, should not be
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FREQUENCY OF OCCURENCE OF SYMBOLS ON THE NEGATIVE IN

CYCLES PER MILLIMETER

Figure 5.5. Location of significant symbols, “A”, in a photograph of not quite

adequate quality for a particular purpose.

taken to be more than an illustration of the gross character of informa-
tion levels. These levels really define band limits and not discrete

lines.

It is more efficient, for all types of intelligence information, to work
near the upper limit of the allowable scale, since decreasing the scale

reduces the area coverage per exposure. It is not, however, without
sound basis that scale has evolved as a quality criterion. Aerial

photography has been restricted, at present, almost totally to the use of

Super-XX emulsion for work in the visible spectrum. A limiting ratio,

detail size/grain size, thus has a constant denominator. An improve-
ment of the detection characteristic for a given system is thus achieved
by increasing detail size. This same conclusion holds in comparisons
between present systems because of the emulsion dominance of the
contrast-reduction characteristic in these systems. It has been
suggested that those symbols of significance to a particular photo-
interpretation task must be so located as to have a high probability of

being above the incident contrast thresholds [6]. Thus, one might
expect that very similar distributions in size and contrast apply to

those symbols that are significant for many types of interpretation.

In photographs that are not quite adequate for a particular job these

symbols, as illustrated by A in figure 5.5, are submerged below the

threshold. The most common method to assure bringing them above
the threshold in the repeat photography is to tune the system by
increasing the scale. This translates the threshold-characteristic

origin to the right with respect to the fixed position of the symbols in

the detail universe. The translation can also occur in the Y direction

by refocusing (or a change in processing) to drop the threshold charac-
teristic below the significant details.

An effort has been made to stud}7 the statistics of aerial photographic
targets and, in particular, to attempt to isolate characteristics of the

significant symbols for a photointerpretation task. In one approach
to this problem, many of the using agencies of aerial photography were
contacted. For example, agencies employing aerial photography for

forestry purposes have been asked to submit representative prints

of aerial photographs taken for their work, which they found to be
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Figure 5.6. Enlarged sections of 'photographs used to determine classification of
forested land as to species, stand height, and stand density.

Classified by the using agency as: A, Not quite good enough; B, just good enough; C, excellent. (Cor-
responding microphotometer traces to the right.)

not quite good enough (A), just good enough (B), and excellent (C)

for a particular purpose in forestry survey. The purpose of the pho-
tography was also requested. By this approach, it was felt not only
that the statistics of this type of message could be found, but that
some insight might be gleaned as to the nature of those significant

symbols that the photointerpreter requires in order to achieve success

in the particular job. Figure 5.6 shows areas from three prints

submitted by the Great Northern Paper Co., Bangor, Maine, and
classified by the user in terms of A, B, and C. Scale of the photogra-
phy was 1:15,840. The photographs were employed by GNP to

determine species, stand height, and stand density. Six additional

photographs, reported on here, were submitted by the Air Survey’s
Engineer, Land and Forest Department, Victoria, B. C., obliques
taken with a 3.25-inch lens from altitudes of 17,400 to 20,000 feet.

This photography was used to extend control over large areas of

unsurveyed country. Analysis was conducted in the region of a 60-

degree depression angle.

Microphotometer traces were made over three portions of each
print. Samples of these traces are shown in figure 5.6, to the right.

The scanning aperture was set an order of magnitude below the limit

of resolution under normal viewing conditions. Although the scale

of the photography differed from set to set, the areas traced were in all
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cases over the image of wooded portions of the terrain. It is assumed
by this restriction that this type of photography involved a message
with circular symmetry; thus, the resultant plots should be similar
for any coordinate of trace.

The analyses were made from the traces. An edge was scored for

each case where a change in brightness (reflectivity) equal to or
greater than 10 percent occurred (that is, AB/B=0.l). A marked
change of slope was requisite before the next edge was recorded.
The 10-percent threshold value was chosen as representative of a
weighted threshold after consideration of the limit of visual contrast
threshold on the photographic material at the resolution limit, the
range of brightness adaptation levels encountered in the interpretation
process, and Blackwell’s [7] liminal contrast data. If absolute rather
than comparative values were required, it would be necessary to

correct the data to allow for the ability of the eye to see edges at

lower contrast in the case of larger details.

The close agreement from print to print within any user classi-

fication, regardless of scale or purpose of photography, seemed to

justify the lumping together of the data from all prints under any one
classification.

A plot of the relative frequency of occurrence of edges as a function
of distances between them shows no significant difference with
picture quality (fig. 5.7, A, not quite good enough

;
B, just good enough;

C, excellent). In this and the following figures each plot deals with
nearly 4,000 edges.

The data on reflectivity differences across edges, shown in figure 5.8,

indicate a marked difference with picture quality. The better the

picture the more skewed is the distribution of reflectivity differences

toward the greater differences. From this one infers that the symbols
are recorded with greater contrast (that is, with less contrast re-

duction by the system) in the better pictures.

Figure 5.9 shows the relative frequency distribution of edge gradi-

ents, dR/dx, R being reflectivity. Here the excellent photographs
stand out, while the difference between A and B categories is slight,

the just-usable photographs having relatively more steep-edge

gradients than the non-usable pictures.

Additional determinations of the relative frequency of AR/R and
dR/Rdx have been made. In each case the excellent photographs
stand out from the others as would be expected, but the difference

between classes A and B is again less obvious, apparently dealing

with some 10 percent of the total information. Coincidentally, this

figure is in good agreement with estimates obtained from experienced

scientist-photointerpreters who have expressed the feeling that it is

the appearance or nonappearance of some 5 or 10 percent of the sym-
bols that differentiates between usable and nonusable photography.

The atmosphere plays two distinct roles in the degradation of the

message—haze and turbulence. Atmospheric haze reduces the

contrast. Duntley [8] has treated the theory of atmospheric contrast

reduction and reports that all attempts to observe the so-called

“ground glass plate” effect or the “edge” effect failed. Carman and
Carruthers [9] have reported on their experiments tre&ting the bright-

ness characteristics of the aerial photographic message. Because of

this fine work there seems to be little need to devote time here to the

role of haze in aerial photography. The flight-test data show the

expected reduction in contrast with increasing altitude.
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Figure 5.7. Cumulative frequency distribution of distance between edges.
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Figure 5.8. Cumulative frequency dis-

tribution of reflectivity differences.

Figure 5.9. Cumulative frequency
distribution of slopes.

On the other hand, ah turbulence scatters energy out of the central

image, which causes a lower edge gradient and a resultant reduction

of image contrast. It appears logical to assume that the limit of

definition obtainable in aerial photography will be set by the optical

homogeneity of the atmospheric path. The inhomogeneities may be
considered to be local motions of small masses of air. These motions
are caused by micro-weather conditions and the motion of the aircraft

through the atmosphere.
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The average condition of the turbulence field introduces effects

similar to those caused by inhomogeneities in the lens and window
glass, effects which deteriorate the image through increasing flare

and diffraction (that is, decreasing the image contrast). This average
is not stationary for a number of reasons. One, a nontransient phe-
nomenon, is the migration of vortices and masses resulting in changes
in size, number, and density (air density) of the vortices in the turbu-
lence state from moment to moment. ‘Tliese[changes'are about a mean
condition. This phenomenonhesults in a'change in image quality about
an average. A second, a transient phenomenon, is the change in

the orientation of pressure gradients with respect to the optical axis

of the camera. This introduces an image motion during exposure
which will, in general, cause a deterioration of the image.

Wind-tunnel tests have shown a deterioration of the image with
increasing air velocities in a free tunnel [10]. Other tests which
perhaps have more significance here have been discussed in that same
report. Aerial photographs have been made over a point source of

light, a 1-inch-diameter, krypton-filled, helical-coiled tube of an
Edgerton flash lamp, cycled at 60 flashes per second. Photographs
were taken with a shutterless camera from an altitude of 6,000 feet in

a B-17 at an indicated air speed of 170 miles per hour. Point images
selected for stud}T were all located in the same position as referred to

the optical axis of the system. Inasmuch as exposure times were in

the order of 1/6,000 of a second, aircraft translation and other aircraft

motions and transitory turbulence effects can be neglected. Thus,
the variations in point dimensions from point to point were assumed
to be attributable to the changes in the condition of the turbulence
state from instant to instant and to variations in the grain distribution

in the photographic emulsion. The point images, when photo-
micrographed, appeared to consist of a high-density nucleus and a

low-density surround. Measures were made of the extent of the

nucleus and the surround in two arbitrarily selected coordinates.

It was then necessary to determine which part of this variation of

dimensions from point to point was due to the inherent emulsion
properties, inasmuch as, at this limit, one is dealing with the effect of

individual grains and their distribution. This consideration involved
a laboratory test emplo^fing the same light source, a moving film

magazine, the same lens as employed in the air, and an image scaled

down by the same factor as in the aerial test and located at the same
position with respect to the optical axis. The resulting distribution

of point diameters, both for the nucleus and the surround, is shown in

figure 5.10.

The distribution of the laboratory nucleus diameters shown in curve
3 affords some insight to the role of grain distribution in the emulsion.

It is clear, as one compares these results with those shown in curve 1

(obtained from an aircraft in flight), that not only is the diameter of

the central nucleus increased slightly but the dispersion of the diame-
ters is greater than that obtained in the laboratory, due to the presence
of turbulence. Curve 4 treats the laboratory case for the diameters of

the low-density surrounds, and curve 2 the same diameters for the

in-flight case. From these latter curves it is seen that turbulence
causes a spread of the surround energy over a wide range. It is

estimated that some 60 to 70 percent of the total energy of the point

is in this surround.
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Figure 5.10. Frequency distribution polygons of point-source image diameters
on Super-XX emulsions.

Although lens-emulsion characteristics have been treated previously
(figs. 5.2 and 5.3) in introducing the treatment of the message, it is in

order to touch briefly on one other aspect of these components. A
replot of the data on image contrast, using focal setting as a parameter,
indicates a shift in the position of minimum contrast reduction as a

function of detail size (fig. 5.11). The conditions of this experiment
included full-field illumination. This shift becomes more pronounced
as the scattered light is reduced (as may be seen by comparison with
previous results obtained with a collimated target [11]) or as one goes
to higher-resolution systems.

This is a manifestation of the well-known fact that the focal settings

for best resolution and minimum flare (that is, maximum sharpness)
do not necessarily coincide. Presented in terms of figure 5.3, this

would result in the intersection of the threshold curves for different

focal settings of the same lens. It may be stated that focal setting

should be selected to provide the minimum threshold, that is, minimum
contrast reduction, for the size of symbol under observation. In the
case of aerial photography, if the size distribution of the symbols
required for operational success be known, then that focal setting

which provides the lowest weighted contrast threshold over that size

distribution is the best setting. From this it is seen that the system
may be tuned in the coordinate of contrast for any given image size by
varying the focal setting.

Concerning the photographic emulsion, the concept of microscopic
and macroscopic photographic contrast has been discussed previously
by Baker [12]. To treat this concept, assume a scattering function

i(x)=ILf(x), (3)
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Figure 5 . 11 . Contrast in the image as a function of focal setting, with image size

as 'parameter .

where i(x) is the intensity at a distance x units from the edge of a line

of intensity /0 as imaged on the emulsion. The intensity that remains
in the line image after scattering is IL . This assumption implies that

the intensity over an infinitesimal line of width Ax may be taken as a

constant and the fall of intensity regarded as starting from the edge
of the line. Figure 5.12a illustrates this condition for a line of width
Ax. The dashed line indicates a distribution of intensity as imaged
by a perfect optical system. The solid contour indicates the distribu-

tion of that energy due to the scattering of light in the emulsion. The
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Figure 5 . 12 . Distribution of light intensity from a line assuming exponential
scattering.

intensity remaining in the line, IL ,
is considerably less than the incident

intensity, /0 .

Figure 5.12b shows the same case for larger detail where the behavior
of each line element of width Ax is shown to the same scale as in 5.12a.

The ordinates have been added to give the resulting contour of the

energy distribution in the emulsion for the gross detail. For a line

of this width, IL—I0 for the central portion. It is seen that there is a

critical detail size below which the central portions of the detail image
are no longer reinforced by energy scattered from other regions of the

detail in sufficient quantity to compensate for the loss of energy from
that central portion. Experiments show that for Super-XX emulsion
this critical detail size for isolated symbols is about 60 microns. The
presence of other symbols in proximity and/or the insertion of any
degrading component (for example, the lens) in conjunction with this

emulsion increases this critical dimension. The previous statistics,

shown by figure 5.7, indicate that some 20 percent of the symbols in

the aerial photography examined were recorded below the critical

size for the emulsion alone. These symbols are, therefore, no longer
in the same sensitometric reference framework, “photographic
density: object brightness”, as is observed for the macroscopic detail

of the photograph.

Redefining IL as the intensity of the midpoint of the line of width

x0 ,
IL as the average intensity over the line, and taking the origin of

coordinates at the point 1=0 and the mid-point of the line, then

r* oo

IqXq=IlXq-\-2 I Iz,f(x)dx. (4)

T

Having made the approximation (IL/IL)
= 1, the intensity IL may then
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be compared to the incident intensity I0 :

T (*>)= (5)
0 1+d.

2

The reduction in contrast for symbols occurring at regular spatial

frequencies may be treated by an expression of the form

7* (Xo)= [2/(a:o)]-
1

(6)
J- S

and for isolated symbols

2

where the subscripts s and d imply space and detail, or symbol,
respectively, and where, in going to the case of two-dimensional scat-

tering, the original function j{x) is modified as 4>(x).

The shutter [13], aircraft translation and camera vibration [14]

have been previously discussed. They reduce contrast in a manner
that may be treated by simple geometric considerations and need
not be reviewed here.

To assess the problem relating resolution, scale, and contrast criteria

to the detection and recognition of photographic detail, a laboratory
test setup has been constructed to provide simulated aerial photogra-
phy. A report has been made on the method and the preliminary
results discussed [15]. It is noted that this experiment concerns itself

solely with the information on the photograph as presented to the
interpreter. The equipment employs a 20-millimeter//1.5 Biotar lens

stopped down to //5.6, used in conjunction with a Fairchild Oscillo-

Record Camera. As this camera has provision for moving the film

during exposure, it allows opportunity to introduce image motion
effects common to most aerial photographs. The camera is aimed
in a horizontal direction into a 30-inch-diameter, plane, front-silvered

45-degree mirror located directly over a target array. To vary
resolution conditions, a turret head containing 13 ophthalmic lenses

and a clear aperture is located in front of the Biotar objective. By
this means, 14 different resolution values, from about 4 to 70 lines per
millimeter, in approximately equal steps of angular resolution, are

obtainable on Super-XX emulsion. It is assumed throughout that
this experiment represents photography employing perfect optics

used at different focal settings. The validity of the assumption is

substantiated by viewing microphotometer traces across the edge of

two adjoining photometric areas for each resolution condition (fig.

5.13).

The target array is shown in figure 5.14. The test objects consist

of squares and circles. The squares are }i of an inch on a side; the
circles are of the same area as the squares. Thus, according to Dunt-
ley’s work [16], the objects are of equal visibility. The objects are of
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three different diffuse neutral-gray reflectivities, 5, 13, and 40 percent,

and, in each case, the background for the objects is also one of these
same three reflectivities. Thus, six different combinations of object-

background reflectivities are available if the zero contrast conditions
are excluded.
For scoring purposes the test objects are arranged on a background

that is divided into 25 sections, a 5- by 5-unit grid, numbered down
the sides and lettered across the top. The observers record the loca-

tion of the test object by the proper designation, for example, 2C, 4C,
1A, etc. Forced discrimination is employed in all cases. For detec-

tion, a single object is located in each of 10 randomly selected positions

of the 25 possible. In the analysis the photo reader is then required
to indicate the 10 positions that most probably contain objects. For
differentiation, or recognition, 12 circles and 13 squares are located on
the target, one in each of the 25 positions. The analysis now calls

for indicating the 13 positions that contain squares. This work was
performed under 7X viewing with binocular microscopes. Through-
out the work, the dimensions are normalized in such a way that the
test object is taken as a unit square. Photographic scales are then
recorded in terms of object dimension, and resolution is expressed in

terms of lines per object. No generality is lost by this scaling of test

objects. It is only necessary to observe in any transformation that
the ratio of grain size to the detail image size be held constant. It is

thus possible to translate these results to any desired dimension only
by applying the same factor to both the object dimension and the
photographic scale.

The form of a typical object differentiation plot as a function of

resolution is shown for the scale of 1:3700 in figure 5.15. Incident
brightness ratio is the parameter. As all films have been processed

to a gamma of 0.98 ±.02, the image contrast, as presented to the

observer, may be tabulated for the case of macroscopic detail. The
loss of contrast due to decreasing detail size and/or reduced resolution

may then be calculated from system functions or measured on the

film. The data of this experiment are tabulated below for the macro-
scopic case.

Table 5.1. Contrast readings made at a resolution of 35 lines per millimeter on the

negative and at a scale of 1:3700

Reflectivities

Contrast

Object Background

% %
40 5 5.8
40 13 2.4
13 5 1.0

It is apparent from the experimental evidence at hand that count or

detection is insensitive to resolution and, in fact, may be considered

by treating only the energy distribution in the image and noting if

sufficient contrast occurs to bring the object above the visual contrast

threshold. Expressed in terms of angular resolution a, the number
of objects per resolved spacing, the detection threshold on Super-XX
emulsion over the range explored appears to follow the form

C-aa-b=0, (8)
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Figure 5.15. Object differentiation

as a function of resolution.
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where C is the image contrast and a and b are constants, a is about
0.09 and b is the contrast threshold that provides the same probability

of detection at peak resolution of the photographic material (that is,

same graininess conditions) for the same size symbol viewed under
the same conditions.

Preliminary data from the recognition experiment are shown in

table 5.2.

Table 5.2. Resolution and contrast on the negative for various 'probabilities of
recognition of isolated unit cubes

Emulsion

Super-XX Pan-X

Scale

Resolution Resolution

Contrastuiiua.su

Lines/ Objects/ Lines/ Objects/
object line object line

50% probability

f
2.22 0. 45 0.6 1.69 0.59 0.5

1:2500- 1 1.67 .60 2.7 1.35 .74 1.5

1 1.53 .65 4.5 1.27 .79 3.0

1:3700- / 2.56

\ 1.81
.39
.55

2.6
3.0

— — —
f
2.00 .50 1.2 5. 55 .18 6. 6

1:5000-
{ 1.72 .58 2.0 2. 85 .35 1.8

1 — — — - 2. 27 .44 2.3

80% probability

f
3. 12 0. 32 0.74 2.22 0. 45 0.5

1:2500- 1 1.78 .56 2.8 1. 81 .55 1.6

[ 1.56 .64 5.0 1. 58 .63 3.

1

1:3700- 2. 22 .45 3.6

1:5000- f 2.85 .35 1.6 3." 70 '.’27 1.8

\ 2.50 .40 2.5 3. 33 .30 2.7

95% probability

f
5.26 0.19 0. 75 3. 33 0. 30 0.6

1:2500-
\ 2.38 .42 2.8 2. 38 .42 1.6

l 2.00 .50 4.8 2. 22 .45 3.1
1:3700- 3. 33 .30 4.8 — — —

100% probability

f
7.14 0. 14 0.8 5.00 0.20 0. 75

1:2500-
\ 5.00 .20 3.2 2. 85 .35 1.6

l 4.00 .25 6.0 2.50 .40 3.1
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A portion of these data is plotted in figure 5.16. These show image
contrast as a function of resolution. Probability of recognition is a
parameter. It is clear that the threshold for this form of recognition
is sensitive to resolution but, broadly speaking, insensitive to contrast.

It is perhaps of interest to note in conjunction with these results the
mechanism of the visual process. Peripheral vision provides for the
detection of objects due to contrast (if we limit ourselves to a static

gray scale, as in the case of photography). If the stimulus is sufficient,

a reflex feed-back mechanism brings the object onto the fovea. Thus,
the presence of the object is detected at low resolution and recognized
(or studied with the intent of recognition) in the high-resolution por-
tion of the eye.

It is possible to compare, by means of figure 5.16, two different

emulsions that present the same type of data under the same condi-
tions of resolution or contrast, the only difference being grain. In
that class of photography where the purpose of the picture is to reveal
information, it appears that consideration should be given to a
graininess factor defined in terms of the role of the grain obscuring or
obliterating information. In figure 5.16 the effect of graininess is

manifest by the shifting of the curves in the direction of better resolu-

tion or increased contrast, for any given probability of recognition, as

one goes from Pan-X to Super-XX emulsion.
Neglecting the psychological components (experience, recall, etc.)

we may regard recognition as a higher-order detection. It is by means
of detection of the presence of substructure within a symbol, or by
detection of characteristic symbol groupings, or by detection of mark-
ings that reveal texture that recognition is achieved.

In the experiment described, the detection criteria measure the
ability to detect the presence of, that is, to count, symbols. The
result is not an absolute threshold for, as in actual interpretation, a

search factor is involved. In this same experiment the recognition
criteria correspond to detection of substrueture. This is related to the
decision as to whether a continuity or discontinuity in edge contour
occurs. To render this decision the interpreter requires sufficient

definition to observe that a finite portion of the object is bounded
either by an arc or a discontinuity and/or a straight edge. Most prob-
ably the decision is based upon judgments of curvature.
From the particular results shown in figure 5.16, it is seen that when

the unit square is imaged at 0.12 millimeter on a side on Super-XX
emulsion the significant dimension over which a density difference

must be detected appears to be about 15 microns at low contrast and
8 microns at higher contrast. Thus, at these higher contrasts the

decisions are rendered by detection of brightness fluctuations occurring
over spatial dimensions of the same order of magnitude as those of the

individual grain. We may infer that the manner in which the resolu-

tion must improve as the image contrast decreases depends upon the

symbol shape, and, more important, in the general case, upon the

ratio of this significant symbol size to the grain size. From the experi-

ment it is clear that in passing to better resolutions image contrast

alone determines whether or not the sub-symbol is detected and, there-

fore, whether or not the gross recognition is achieved.
For simplicity, let us assume that the photographic interpreter

makes his decisions or gains his information through scanning the

photograph from blur point to blur point in a manner analogous to an
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electron beam sweeping the mosaic of an orthicon tube. In this pro-
cedure the interpreter faces a basic decision as he proceeds from one
blur point to the adjacent blur point: either “yes, the density does
differ” or “no, the density does not differ.” If there is no detectable
change, the interpreter then concludes that there is no change from
point to point in the object space as represented by the two image
points. On the other hand, if a change does occur, then the interpreter
must conclude that there is a change, a boundary, an edge, or a point
of a brightness extreme within the corresponding area in the object
space. According to the accepted view of the visual process the mag-
nitude of this change is not important, nor are the levels at either side

of the boundary. To quote Zoethout [17]:

When a certain area of the retina is illuminated we are very little

concerned with the absolute intensity of the light falling upon this area
or the absolute intensity of the resultant sensation; but the ability to
discern the difference between the light in this area and that in the
neighboring portions of the retina is of prime importance. Upon visual
discrimination acuity depends practically all our seeing.

Although the magnitude of the change in brightness over an edge is

not important in the basic judgments that enter into photointerpreta-
tion, the brightness range over which a system can differentiate

between small brightness differences enters into any measure of the
information capacity of the system. Thus, although figure 5.3

(threshold contrast as a function of image size) shows the relative area
of a one-dimensional detail universe that occurs above the system
threshold, the one-coordinate case, to be completely represented, must
be measured by a volume, the other coordinate being the median
exposure level or its equivalent.
The role of the edge in photography is well recognized. Howlett

[18] has long emphasized the importance of edges in the photographic
problem and has designed his resolution targets with this in mind.
More recently, Higgins and Jones [19] have treated subjective picture

sharpness and in their work have correlated sharpness judgments with
a gradient function.

The conditions of maximum sharpness and minimum flare (maxi-
mum symbol contrast) are apparently coincident. However, it is

seen in figure 5.11 that, for those lenses examined, no one focal setting

provides maximum image contrast for all symbol sizes. This implies

that to achieve maximum information the focal setting must be
chosen with consideration as to the size of the significant detail in the

image. As a consequence, it turns out that the focal setting that

provides maximum information in photographs that are studied under
unit magnification does not necessarily provide maximum information
under any other power.

Therefore, in such cases as aerial photography, when the picture is

subject to study under several magnifications in an effort to extract

the maximum information, it becomes necessary to consider the dis-

tribution of symbol sizes to be recorded. From this distribution it

should be possible to determine the focal setting that provides the

optimum (weighted) contrast threshold over the format.
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Summary

A photographic system is called upon to record symbols of different

shapes and sizes and with different spacings and arrangements.
These symbols also occur at different contrasts.

This paper considers only a one-dimensional aspect, that is, size

not shape. By viewing isolated symbols as well as symbols occurring
at regular spatial frequencies two extremes of spacing or arrangement
are considered. Because the present photographic emulsion dominates
the contrast-reduction characteristic, the threshold curves will be of

the same general shape for all present aerial photographic systems.
The statistics of certain photographic messages were analyzed;

photographs were classified by the using agencies as not quite good
enough, just good enough, or excellent, for a particular purpose.
These photographs were taken of natural objects to lend validity to

the assumption of similar distributions of distances between edges
and inherent contrasts in the object space. The prints were analyzed
and similar normalized distributions in the z-coordinate were observed
on all pictures. On the other hand, the distributions of brightness
differences across edges were different and related to usability of the
photography. The results indicate that the greater the contrast
reduction by the system the poorer was the picture as classified by the

using agency. The presence of symbols on aerial prints, which are

finer than the air-borne resolution generally recorded even with high-

contrast, line-pattern targets, indicates that the nature of the detail

universe is not comparable to that of our target structure. From
these analyses there is an indication that the statistics of the recorded
messages are quite similar, although the target and/or purpose may
differ. This consideration also involves cursory examination of

photographs for urban analysis.

The contrast-reduction function of the lens-emulsion system has
been interpreted in terms of the object contrast that is required to

render a detectable symbol on the emulsion for the two spatial

arrangements considered. It is held that the shape of this threshold
curve is important in determining the ability of the system to record
symbols. Until a statistical weighting can be applied to the size,

shape, and spatial distribution in the object space, probably no more
meaningful expression of the system capabilities can be given than
through an interpretation of eq 2, which considers a weighted mean
performance over the format

This expression may be considered as giving the probability that any
symbol in a random detail universe will be located above the system
threshold. It becomes then a measure of the capacity of the system.
When symbols are in close proximity in the object space (approxi-

mated by the data for symbols occurring at regular spatial frequencies)
it is improbable that these symbols possess sufficient inherent contrast
to be recorded at the high-contrast resolution limit of this system.
This fact, coupled with the observation that peak-contrast rendition
in the image does not occur at the same focal setting for all image
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sizes, implies that judgment of relative performance of aerial photo-
graphic systems on the basis of high-contrast resolution scores in the
laboratory is not infallible. It further emphasizes that the best
operational focus cannot be determined in the laboratory from a
maximum resolution setting on a high-contrast target.

The experimental work on the psycho-physical detection-recogni-
tion criteria on the emulsion, as a function of resolution, scale, and
contrast indicates that the fundamental problem is providing sufficient

contrast in the image to permit its detection. For a given shape and
size of symbol a certain minimum level of sharpness is requisite. At
any point above this level of sharpness, however, the criterion is

again one of contrast.

In figure 5.16 it is seen that at a given image contrast the same level

of recognition may be achieved on Pan-X emulsion at a lower resolu-

tion than on Super-XX. This fact is introduced to point out the
significant role that graininess plays in obscuring photographic infor-

mation and the resulting need for directing more attention to this im-
portant factor. With the emphasis directed on achieving a large

resolution number we may have overlooked this factor and others of

equal significance that have major bearing on the information that the
picture can reveal.
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6. A Mathematical Model of an Optical System
1

By Max Herzberger 2

The new methods of rapid computation (IBM equipment, electronic

devices) give the possibility of investigating systematically the
validity and practicability of optical methods. The author has
started an ambitious enterprise. He is tracing a set of more than a
thousand rays through each of three optical systems: (1) An aerial

lens with an aperture of //5.6 and a half-field angle of 22 degrees;

(2) a wide-angle lens with an aperture of //6.3 and a half-field angle
of 37K degrees; (3) a lens with an aperture of //7 and a half-field

angle of 9 degrees.

The first problem is to see whether it is possible to find a mathe-
matical model for the lens in question, i. e., to find a mathematical
formula with not too many constants with which object and image
rays can be coordinated analytically with an accuracy of a few units

of the fifth decimal (for focal length equal to one). The second
problem is to find out how many of the thousand rays are necessary
and sufficient to derive a function with this accuracy. Figure 6.1

shows that the desired accuracy was obtained.
This mathematical model is used to analyze the optical images.

The intersection points of a set of rays equally distributed over the
entrance (or exit) pupil, (a) with a set of image planes, (b) with the
plane through object point and system axis (the meridian plane), are

plotted (fig. 6.2, 6.3, and 6.4).

The plot of these last points, which are called the diapoints of the
object, lends itself particularly well to a graphical analysis of the
system and permits one to investigate the aberrations of each single

ray.

In this paper, a preliminary study is made of an aerial lens having
an aperture of //5. 6. The agreement between the model, the exact
calculation, and the photomicrograph of the images is shown, and an
analysis of the diapoint diagram is given.

Once a mathematical model of an optical system is given, it can be
investigated. In a future paper an attempt will be made to follow up
recent ideas in order to compute the influence of diffraction, to

analyze the image errors as function of the aberrations at the single

surfaces, and to study different approaches to determine the quality

of the optical image for the three lenses mentioned in the introduction.

The analytical approach taken in the present paper rests on the
mixed characteristic function of Hamilton and Bruns.

Let the object and image origins be put at the entrance and exit

pupils of the optical system (in this case, the nodal points). Let the
optical axis coincide with the z(z') axis of our coordinate system.

1 Communication No. 1463 from the Kodak Research Laboratories.
2 Research Laboratories, Eastman Kodak Company, Rochester, N. Y.
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Figure 6.1. Deviation of the data obtained by ray tracing from the mathematical
model of the optical system.

Let object and image rays be given in each case by the intersection

point of the ray with the plane z,(z') = 0, i. e., by x, y, (x'
,
y'), respec-

tively. The optical direction cosines may then be designated by
and they will be normed in such a way, that

s
2+u2+r2=< r 2+v2+r ,2=^2

,
(i)

n, n' being the refractive indices of object (image) space.

Since the optical system has symmetry with respect to the system
axis, the characteristic function, V, is a function of the symmetric
functions of the coordinates, i. e., of

u=h (^
2
+’7

2
), v=£x'+riy', w=h(x' 2 +y' 2

), (2)

and for a system of parallel rays with an inclination of 0, 5, 10, 15,

20, 24 degrees from the axis, respectively. V is a function of v and w,
and the direction cosines of the image ray are

* - dv dw
dV . dF ,W v+ d^V"- (3)

From (3) the coordinates of the diapoint can be computed, i. e.,

the intersection point of the rays with the meridian plane, as

x'D= (V2/V3)S,
y'D= (V2IV3)v, z'D=- 1/V3 , (4)

using the abbreviation,

dV
dv

V2 ,

Let V be given by a fifth-order development, i. e.,

V=a0 -j-a2v-j- a3w+ \ (a22v
2+ 2a23vw+a33w2

)

+i («222«
3+ 3a223v

2w+ 3a233vw
2+ a333w3

) , (5)

and therefore,

V2
— d/2 —|— (a22vT a23w) -j- 2 (u222^

2T2a223vw -f- cl233w2
) ,

V3=

a

3 4- (a23v+ a33w)+ i (a223v
2+2a233vw+ a333w2

)

.
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Inserting these into eq 3, the coefficients a t ,
aik ,

aik\ can be calculated

from a small number of rays traced through the system by the method
of least squares. (At least five meridian rays and five skew rays
should be traced.)

Figure 6.1 gives the fit of the mathematical model. The system
had a focal length of 3, and the deviation for rj', calculated by
(5) from the ray-trace data for the rays up to a 20° field angle is,

in general, smaller than 1X10 -5
. Only for the field angle of 24°

did the deviation amount to a few units in the fifth decimal. In-

troducing a few more coefficients reduced the errors to insignificant

size.

The coefficients of the functions are given by table 6.1.

Table 6. 1.

0° 5° 10° 15° 20° 24°

02 +1. 000005 +0. 999999 +1. 000008 +1. 000216 +1. 000776
03 +0. 326322 +0. 325219 +. 321972 +. 316264 ~j~. 307558 +. 297747
022 351799 -. 346312 335021 -. 313910 278191

023 087948 088330 -.091106 094766 094814

033 +0. 089396 +. 0912C7 +. 087397 +• 067329 +. 050488 +. 030552

0222 06390 07172 +. 02139 00011 03586
0223 -. 00680 03740 06315 06494 -.28434
0233 39280 45960 49228 58776 -1.09514
0333 -4. 15539 -4. 26160 -4. 44175 -3. 88328 -4. 41015 -4. 72242

Inspection of table 6.2 shows that the coefficients are slowly
changing functions of u= 1/2 sinV. They can be replaced by

ai=af + a (

l
-
)u+ l/2afu2Jrl/Qafu3

, (6 )

thus obtaining V as a function of u, v, w.

When V is obtained, the desired intersection points are calculated

for a large system of rays, evenly distributed over the exit pupil (the

points were ordered in equilateral triangles evenly distributed over
the vignetted exit pupil). Thus, the intersection can be plotted (a)

with a set of planes perpendicular to the axis (in this case, three planes

were chosen, one through the Gaussian focal plane, and two 0.75 and
1.5 mm, respectively, in front of it); and (b) with the meridian plane
(calculation of the diapoints).

Figure 6.2 shows these spot diagrams. On the right will be seen
the size of the vignetted apertures, this giving a measure of the light

going through the system for different points of the field. The lines

yn == constant are drawn on these apertures, and they contain the points
used for the spot diagrams. The symmetry of the problem with
respect to the meridian plane makes it only necessary to scan the rays
of one-half of the aperture.

Table 6.2.

24° 24° 24°

ai +1. 000731 0222 +. 17443 02223 -11. 1725
03 +0. 0297783 0223 -. 11766 02233 -4 4855
022 -. 283235 0233 -.58800 02333 -24. 0728
023 -. 096540 0333 +2. 62365 03333 -501. 5666
033 -.009835 02222 +4. 7495
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Figure 6.2 shows the quality of the optical image in detail.

Obviously, the best image plane is not the plane through the Gaussian
focus, but the plane about 1.5 mm in front of it. The field is very
slightly curved forward and comes back at about 20 degrees and then
curves rapidly backward. The image at 20 degrees looks slightly

more compact than at 15 degrees, and at 24 degrees there is no longer

any image to speak of.

Also, Figure 6.2 contains reproductions of photomicrographs taken
by L. A. Jones and R. N. Wolfe 3 of these laboratories printed side by
side with the spot diagram, showing the agreement between computa-
tion and photographic image.
The difficulty of analyzing the spot diagrams lies in the fact that

near the plane of best focus there is a heaping of singularities of the

wave surface. This is illustrated in Figure 6.3. The image is analyzed
by computing the intersection points of the lines, y"N = constant, going
through a set of parallel lines in the exit pupil.

-.2 0 +.2 -.2 0 +.2 -.2 0 +.2

Figure 6.3. Analysis of the optical images obtained by scanning the vignetted

aperture.

3 L. A. Jones and R. N. Wolfe, J. Opt. Soc. Am. 35, 559 Q945).
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The figures are drawn for the Gaussian focal plane and the best
image plane 1.5 mm in front of it, and they are four times magnified
with respect to the spot diagrams, thus showing where the condensa-
tion of light occurs. Inspection of these figures shows that these
curves are highly irregular and multivalent, which makes it very
obvious why it is so difficult to compute the intersection points in the
image plane as simple functions of the direction of the ray and the
intersection height in the aperture of the plane.

The author has, for a long time, drawn to the attention of the
optical designer the importance of computing the diapoints, i. e., the
intersection of the rays (from a given object point) with the meridian
plane, i. e., the plane through the object point and the axis (for a
meridional ray, the diapoint coincides with the sagittal focus). It

can be proven that the knowledge of the diapoints gives complete
information about the optical image and, moreover, that the diapoints
allow a simple analysis of the image qualities. If the diapoints form
a straight line, the image rays form a symmetric image with the line

in question as the axis symmetry. The deviation of the diapoints
from the best straight line gives a measure of asymmetry.

Figure 6.4 is a plot of the spot diagrams and, on a large scale to

Figure 6.4. Diapoint analysis of an optical system.
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the right, the diapoints for each angle, the lines hereby corresponding
to lines yN= constant. On the left is plotted for each of these lines

the deviation from symmetry. The attention of the reader is called

to the fact that these lines are simple curves that can easily be analyzed
mathematically.

Even a superficial inspection of these curves shows that the spherical

aberration remains practically constant up to 20 degrees, that a

slight forward curvature exists which is corrected at about 20 degrees,

and not much of an image remains at 24 degrees. These curves show
the effect of vignetting, and also that the image at 20 degrees is

slightly better, though slightly less symmetric, than at 15 degrees
off-axis.

The mathematics of the problem in question is best attacked when
the angle characteristic, W, is employed and used as a function of

the variables,

a=t, b^'+w', (7)

The diapoint coordinates then become, for an infinite object point
(a= constant),

dW , dW
x°=^b’ dc

(8)

thus determining W completely. Moreover, distance K of the
points of the caustic from the diapoints can be computed by the
expressions,
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and the values of the function

W„W„-W& (10)

give a measure of the asymmetry of the image.

It will be shown in a future paper how these diapoint aberrations
can be split up into the contribution of the single surfaces, according
to the methods already described. 4,5

Diffraction effects also can easily be computed from a knowledge
of the characteristic function, V, since V gives, for each point of the
exit pupil, the light path for a plane-entering wave. By using
Fresnel’s integrals, the amplitude and phase of the resulting light

vector can then be computed at any point in image space.

Furthermore, the geometrical optical data will be coordinated
with the recent attempts to find an analytic measure for the sharp-
ness of an optical image.

4 M. Herzberger, J. Opt. Soc. Am. 38, 324-328 (1948).
5 M. Herzberger, J. Opt. Soc. Am. 37, 485-493 (1947).
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7. Methods and Apparatus for Measuring Perform-

ance and Quality of Optical Instruments

By A Arnulf 1

Introduction

From the user’s point of view, and for a given point in the field,

the value of an optical instrument is completely described by two
figures. The first is its performance (Leistung), which, after

Lohle, is the number showing how much the instrument multiplies

visual sharpness. In France this number is called the “amplifica-

tion” of the instrument. The second figure is the quality, which, in its

simplest form, is the ratio of the performance of the instrument under
test to the performance of a perfect instrument with similar

characteristics.

Visual Instruments

Theory

Let us first consider the case of visual instruments in which the

aerial image is observed with an eye-piece. The work on resolving

power relative to perfect instruments, which I reported a few years
ago, allows us, first, to find^an absolute criterion of the quality of the

instrument, and secondly, to find a simple connection between its

quality and its performance. 2

We define the perfect instrument as an instrument in which the
distribution of light in the image is determined by diffraction alone.

For such an instrument, the resolving power is given by the equations

S-ti=2n sin U‘T=su -co, (1)

where S and T are the angular and linear resolving powers of the

instrument, 9 and n sin U are the linear aperture and the numerical
aperture of the objective, and su is the resolving power of the eye
for the diameter ^ of the pupil.

These equations may be written

S-G=T-P=su , (2)

where G is the angular magnification, and P the power of the

instrument.

1 Institut d’Optique, Paris, France.
2 A. Arnulf, Compt. rend, ac. sc. 200, 52 and 306 (1937); La Vision dans les Instruments, Edit. Rev.

opt. (1937).
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Instrumental Efficiency

Let us consider an imperfect instrument with the same exit pupil
and the same magnification as the perfect instrument. S',G',T',P'
are corresponding terms for the defective instrument. We know
that Therefore,

S'-G>S-G or *;>*•
Furthermore,

S__ £o.

Therefore, if we compare a defective instrument with a perfect one
with identical optical characteristics, the ratio of the resolving powers,
or of the performances, is given by the ratio of the resolving powers
of the eye in the image field. The quality of the image is then defined
by

(3)

(4)

which is called instrumental efficiency because it depends only upon
the effect caused by the defects of the image.
Let us compare the quality of two different instruments, for example,

the big telescope in Yerkes Observatory and a low-magnification
microscope. The above method will give for each one its instrumental
efficiency and the ratio of these two efficiencies will give the relative

instrumental efficiency of the two instruments.
We may sum up the principle of this method as follows. The

resolving powder of the eye in the image field of a perfect instrument is

the same as the resolving power of the eye alone with the same
diameter of the pupil. The defects of the instrumental image degrade
this resolving power, and this degradation determines the quality.

Total Efficiency

The criterion defined above gives the loss of quality compared with
a perfect instrument of the same type, and it is practically the most
important fact. However, where the user is to be considered, there

is a loss of the effective quality caused by the stopping of the pupil,

which increases the resolving power of the eye. Therefore, it is

necessary to consider this stopping effect in order to compare the

quality and the performance. Similar considerations to those pre-

viously used show that when we include both the stopping of the eye
and the defects of the image, the quality is given by

Et
= (6)

Sn being the lowest resolving powder obtainable with the eye, corre-

sponding to a pupil diameter of about 2.5 to 3 mm. This is, for all

practical purposes, the resolving power of the eye in daylight.

Ep=sn/su is the efficiency of the stopping process. This can be
obtained by measuring visual sharpness.

Radius of pupil (mm) 0.2 0.4 0.75 1.0 2.0 4.0

Pupil efficiency 0.07 0.23 0.50 0.64 0.88 1.0
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According to what has been said, one conclusion that may be reached
is that an optically perfect instrument might be a visually moderate
instrument. This is the case especially with instruments operating
at the magnification giving the best resolving power.

Relation Between Efficiency and Performance

In the case of visual instruments, there is a precise relation between
the performance and the efficiency. The performance is given by
the amplification A, where A = sJS. This means that

A=G'Et . (7)

In this equation G is the angular magnification for telescopes, or the
conventional magnification for microscopes or such instruments.
For a perfect instrument, Et= 1 and A= G-EP .

Experimental Procedure

Measuring the efficiency requires: (1) The determination of the
resolving power of the tested instrument from which is deduced the
resolving power of the eye in the image field by using the formula

s'a=S -=S-G,
CO

or

s'a=T-— sm -=T-P
;

CO

(2) the resolving power of the eye without the instrument, for one or
several apertures of the pupil, which gives the relation to the perfect

instrument.

The quality of an instrument is a function of the experimental
conditions. Therefore, it is necessary to choose conditions such that
the result might be valid in as many cases as possible, and also to

duplicate as nearly as possible the conditions under which the instru-

ment is to be used. The conditions of testing once defined will be
taken as a constant standard.

1. The test object is seen against a background of uniform bright-

ness, which covers the entire field of the instrument. This is necessary
if one is to introduce all the stray light that the instrument might give

under use. The effect eventually produced by the sun or moon will

be realized by sources situated in precise points in the field.

2. No optical system will be interposed between the instrument and
the test object in order to avoid any effect caused by its defects and
stray light it might introduce.

3. No telescope is placed behind the eye piece to increase the mag-
nification for the same reasons given in item 2, and also because the
increased efficiency makes the test unnecessarily strict and does not
duplicate the conditions of use. It is not reasonable to expect the

instrument to have a better quality than that given by a perfect instru-

ment with the same magnification.
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4. The standard resolution test object is the Foucault test object,

or a test object consisting of two parallel lines of infinite length and
of varying contrasts. For simplicity one can use a contrast of 1 and
a very low contrast, 0.01 or 0.02. Tests with the higher contrast are
more sensitive to astigmatism or focusing defect, whereas with the
lower contrast they are more sensitive to stray light, spherical aberra-
tion, and chromatism. It is desirable to use several brightnesses
representing daylight, twilight and night. Night instruments tested
under daylight conditions might give results completely different from
the desired results.

Description of the Apparatus

Figures 7.1 and 7.2 show the arrangement of the apparatus. The
background with a uniform brightness is obtained by placing the nose
of the instrument I in a lighted sphere S, and by using several plane
screens Elf E2 which illuminate the field. The black test object is

seen against the last screen.

The variation of the contrast is obtained by using a rotating white
disk D, of the same brightness as the backround, and consisting of

two similar sectors between which the aperture can be varied while
the disk is rotating. The contrast is given by C= a/360, (

a

in de-

grees), a being the total aperture of the disk.

Furthermore, the angular size of the test object T can be varied
continuously by projecting its image on a fixed plane, the objective 0
and the test object T being moved simultaneously with suitable cams.
The apparatus is simple to use with any form of test object (fig. 7.3

and 7.4).

•Ol

l o]

Figure 7.1. Testing apparatus for visual instruments.

(General arrangement.;

Figure 7.2. Testing apparatus for visual instruments.

Control of the contrast and the angular size of the test object.

id
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Figure 7.3. Testing apparatus for visual instruments.

Instrument to be tested and sphere S. For efficiency measurements,
the photometer behind the eye piece is removed.

Figure 7.4. Testing apparatus for visual instruments.

Rotating disk D; test object A; optical bench R; round bright screen for the background.

Standard characteristics for the examination of visual instruments
are as follows

:

Brightness oj the background.

540-*, 10~ 4
,
2-10~\ 5-10- 7 10~\ 5-10" 10

Stilb.

The values most used are in italic.
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Nature oj the test object. Foucault resolution test object, or equiv-
alent test object with two parallel lines.

Contrasts.

1.0 0.5 0.25 0.10 0.06 0.03 0.015 0.01

Generally we use two contrasts, contrast 1.0 and the contrast nearest
the threshold for the brightness used.

Points tested in the field. The center, a circle equal to two-thirds of

the radius of the field, a circle 2° from the edge of the field.

The instrument is always tested in the same conditions under which
it is used, without any accessory optical aids.

Examples of the Effect of Isolated Defects

Decrease in brightness. Figure 7.5 shows the variation of the effi-

ciency with the brightness for an optically perfect instrument with a
transmission factor 0.35, using a Foucault test object of unit contrast.

The efficiency is related to the slope of the curve of visual sharpness
and brightness. It is equal to 1 for daylight and very nearly 1 for

night vision (the slope is zero or very small). It is least in the bright-

ness region where visual sharpness varies most rapidly with the bright-

ness, that is, in twilight, and again near the threshold.

Stray light. Stray light produces a decrease in perception for low
contrasts, which can be computed in every" case if we have previously
measured the stray light. Figure 7.6, curve 1, is the curve for an
instrument the correction of which is nearly perfect. Table 7.1 gives

the values of efficiency versus contrast for two binoculars in the center

of the field. Lines A refers to an instrument without blooming, lines

B to the same instrument with bad blooming which increases the

scattering.

Monochromatic spherical aberration. This effect has been reported
by M. Frangon for both theoretical and experimental methods. 3 The

io
-10

to
-9

io
-8

io~ 7 io
-6

icr5 io~ 4 io
-3

io~2 io
-1

BRIGHTNESS
,
STILB

Figure 7.5. Efficiency versus brightness of a perfect instrument having a trans-

mission factor of 0.35.

Test of resolution with full contrast.

3 M. Francon, Rev. opt. [10] 26, 354 (1947); [3] 27, 157 (1948).
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Figure 7.6. Efficiency versus contrast.

Table 7.1. Efficiency versus contrast for two binoculars, before and after a diffusing
blooming, showing the effect of stray light

(Center of the field) Lines A: Before blooming. Lines B: After blooming.

Contrast 1 0.6 0.3 0.1 0. 08 0. 05

JA 0.73 0. 91 0. 97 0.98 0. 97 0. 90
Hb. .73 .90 .91 .91 .15 0

o/A. .85 .85 .95 .95 .85 0
2\b. .85 .85 .94 .60 .25 0

curve (fig. 7.7) gives, as a function of the third-order spherical aberra-
tion given in phase differences, the values of efficiency for various
contrasts in the test object, when the exit pupil of the instrument
corresponds to the best resolving power (magnification giving w=0.6
mm) . We can see that for small contrasts and the Rayleigh tolerance

(X/4) the fall in efficiency is considerable. Figure 7.8 shows experi-

mental results obtained with a contrast of 0.03, varying the diameter
of the pupil of the eye. An aberration corresponding to the Rayleigh
tolerance has no effect on pupils larger than 3 mm. For smaller pupils

the efficiency decreases quickly. Figure 7.6 III and IV shows the
results for a very large spherical abberration.

Astigmatism. The results in table 7.1 are those of the very com-
mon case of an instrument with a little astigmatism. The efficiency

is better for medium contrasts than for high contrasts. Figures
7.9 and 7.10 show how the resolving power varies with the diameter
of the pupil when astigmatism is present, and this explains the above
results.

Chromatism. This question is being studied both theoretically and
experimentally. Curve II figure 7.6, shows the variation of efficiency

with contrast for a very large chromatism (aperture f/12, no chromatic
correction)

.
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Figure 7.7. Efficiency
versus spherical aberra-
tion expressed in phase
differences for various
contrasts.

Figure 7.8. Efficiency
versus pupillar di-

ameters for various
amounts of spherical

aberration expressed in
phase differences.

PUPILLAR DIAMETERS, mm

0 12 3

PUPILLAR DIAMETERS, mm

Figure 7.9. Specific limit of
resolution of the eye versus the

pupillar diameter.

A, without astigmatism; B, astigmatism
(4 diopters, parallel to the lines of the test
object): C, astigmatism (4 diopters, perpen
dicular to the lines of the test object).
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Figure 7.10. Efficiency versus contrast of 'photographic objectives

Solid lines, lens with third,order spherical aberration; dotted lines, well corrected lens.

Quality in the Whole Field of an Instrument

The question arises as to whether it is possible to evaluate with one
number the quality of an instrument over its entire field. Two very
different cases occur.

1. Instruments jor pure observation. These are used to examine
minutely, details in objects seen in the field of the instrument. In
this case we are interested in the resolution of details in the center of

the field. It would not be reasonable to include in the measurement
the edge of the field when it does not enter into the examination of

details. This instrument will be characterized by the area within
which the efficiency is greater than 0.9 times the efficiency in the
center.

2. Instruments to discover objects. In this case the periphery of the
field has the greatest importance, as is the case for the periphery of

the retina, the efficiency in foveal vision having practically no im-
portance. The efficiency to be introduced is the efficiency that corre-

sponds to a point on the retina situated at a distance from the fovea
equal to the field of the instrument, and the whole efficiency of the
field will be equal to the mean peripheral efficiency for the whole field.

Instruments With Diffusing Screen (Photographic
Emulsion)

Theory

The method that is described here has been completed by Mme.
Marquet. 4 Similar methods have been studied by various other
workers. 5

The principle of the method is the same as for the visual case, but
instead of the angular resolving power of the eye, we have here the

linear resolving power of the eye-emulsion combination, the optical

image of the object being focused on the emulsion with a perfect ob-
jective of variable aperture. If S and T are the resolving powers of

the instrument, 12 and n sin U the linear or numerical apertures of the

objective in the object space, n sin u the numerical aperture in the

image space for a perfect instrument, we have

SSl=2n sin U-T= 2n sin u-t.

The total efficiency E, which is similar to the total efficiency in

4 M. Marquet, Sciences et Industries Photographiques, [2]18, 139-142 (May 1947).
5 A. Couder, Cahiers phys., No. 14, pp. 35-48 (May 1943); Sciences et Industries Photographiques,l 2]

14
, 170-174 (August 1943). L. E. Howlett, Can. J. Research (July 1946). E. W. Selwyn and J. L. Tearle,

[B] (Sept. 1946).
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visual instruments, and is used in the calculation of the performance,
is given by Et= tjt

,
where t ro

is the resolving power with a perfect
objective, the numerical aperture of which is very large, t ro ,

being
independent of the aperture, is called the resolving power of the
emulsion.
The absolute efficiency introduces two kinds of losses in the resolu-

tion

1. The increase in resolving power of the perfect instrument as it

is stopped down, because the diffraction pattern becomes more and
more important in comparison with the area of granularity-diffusion
in the emulsion. We evaluate it by the aperture efficiency Ev=
tm /t0 ,

where tn is the resolving power of the emulsion for a perfect
instrument with the same aperature as that of the tested instrument.

Let us note that for ordinary emulsions, for small apertures,

2 sin u= 0.1, for example. In the case of photographic lenses, the
aperture efficiency is rarely important. However, it is always
important in the photographic microscope.

2. The decrease in resolving power caused by all the defects in the
image produced by the instrument is given by the instrumental
efficiency Ei=t0lt. This is the ratio between the resolving power t0

of the emulsion with a perfect instrument, the aperture of which is

the same as the aperture of the tested instrument, and the resolving

power t of the emulsion with the tested instrument.
3. We have then, E

t
=Ep -Ei.

Experimental Procedure

The test objects are illuminated as for visual instruments. We
generally use the higher brightnesses only. In order to measure t in

the case of the perfect objective, it is necessary to use an instrument
sufficiently good to be considered practically perfect. We therefore

use astronomic lenses with very short focal lengths, between 20 and
50 mm, or apochromatic microscope objectives, set in a small camera
with a high-precision movement for focusing.

A very important point is to know what magnification is to be used
when observing the photographic images, this magnification depending
upon the conditions of use.

When the photographs are to be seen without magnification, the

observation is done with the naked eye at a standard distance of 250
mm.

Frequently we want to determine the best resolving power. It is

obtained, for all practical purposes, when the area of granularity-

diffusion in the emulsion is seen from the eye within an angle of 4 to

10 minutes. This is obtained for a resolution test when the angular
resolution for the eye is between 3.5 and 8 minutes.

Example of an Efficiency Determination

Figure 7.10 gives the variation of efficiency with contrast in the

center of the field for an excellent photographic lens operating at

apertures of f/6.7 and f/12, and for a lens with third-order spherical

and chromatic aberrations.

We might notice two interesting results. A photographic lens,

considered to be an excellent one, never reaches an efficiency of 1 for
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any contrast, even for (7=1. This has already been noted by many
observers.

The loss in the efficiency is largest for a contrast between 0.1 and
0.2, after which the efficiency increases rapidly, until the perceivable
image disappears. This is a different result from that obtained in the
case of a visual instrument. This occurs because the emulsion does
not reproduce small contrasts very well, and the defects of the instru-

ment have less and less effect on the resolving power.

Conclusion

The method given above, used now for 20 years for visual instru-

ments, and nearly 10 years for photographic instruments, has satis-

factorily solved, for us, the problem of determining the quality of an
instrument in any point in the field. It avoids the discrepancies that
occured very often between the results of tests in the laboratory and
the practical use of the instrument. However, it has the serious

disadvantage of not separating the eye from the optical image. If it

were possible to separate them, then by combining the quality of the
optical image, without any receiver, and the special properties of any
receiver, it would be possible to predict the quality of the instrument
for any condition. This is not yet possible because we do not yet
know enough either of the variations of the distribution of illumination
with various aberrations taken together, or of the properties of

receivers. However, the experimental method maintains its interest

because it is rapid, and because it takes into account the totality of

the effects produced by instrument defects, some of which cannot be
forecast by computation.

Discussion

Dr. H. Osterberg, American Optical Co., Stamford, Conn.: A
question for Dr. Macdonald. If your answer to this question is

“Yes,” I would like to ask one more. You mentioned the discrimina-
tion of squares and circles.

Dr. D. E. Macdonald, Optical Research Laboratory, Boston,
Mass.: Yes.

Dr. Osterberg: In connection with one of your charts?

Dr. Macdonald: I have answered “Yes.”
Dr. Osterberg: Have you studied the proposition as to when an

individual would judge a square that has rounded corners to be a
square as a function of the distance he stands from this figure?

Dr. Macdonald: I could answer the question “Yes” but I can’t

give you the information as to what the functional relationship is at

this time. I would like to point out that I mentioned in qualifying

this—

.

Dr. Osterberg: May I interrupt? I am not going to ask for such
a complicated functional relation as you think. What I am interested

in is this. What is the ratio of the radius at the corner of the square
to the diagonal when this person reports this square with rounded
corners to be a square?
Dr. Macdonald: We don’t have the information in that form at

all. As I tried to point out at the start, this was preliminary data
presentation on the basic discrimination or recognition only of this
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one type, the simplest type of discrimination we could think of, that
is, between a square and a circle. Under different conditions of

resolution—this involves the rounding of the corners, but we did not
purposely" introduce a form factor of this type—we have presented
the same information to the analysts at different observing distances
to bring in the effect of variable magnification.
As I say, I am not prepared to give any answers on any aspect

except the basic square-circle differentiation at this time.

Dr. Osterberg: Thank you.
Chairman: Are there other questions that anvbody would like to

ask?
Dr. H. R. J. Grosch, General Electric Co., Dockland, Ohio: I

would like to point out that these problems of interpretation of photo-
graphs, et cetera, remind me very much of the work done in educa-
tional and psychological testing because we have essentially a sub-
jective phenomenon and we have experienced photointerpreters who
would be willing to tell us this was or was not a good photograph but
who would be unable to describe exactly why they thought so.

On the other hand, we have a series of measurements or tests that
can be performed under controlled conditions but that do not measure
the parameters of the problem partly because we don’t know which
are important. For instance, we assign arbitrary names such as

“contrast” and “resolution” to certain things, but it is by no means
certain that these are pure factors just as the terms “intelligence,”

“quickness,” “retentiveness,” don’t mean too much.
Now, there is a mathematical technique that ranges over into the

field of fantasy at times, known as “factor analysis.” There are many
proponents of this in Washington, hiding in cubby-holes of the Penta-
gon and similar sin spots, and I would like to suggest both to Howlett
and Macdonald that it might be possible to run a standard factor

analysis relating—or perhaps I should say correlating—the subjective
judgments of their trained observers with measurements that they
have made of the objectives, such as motion and stability of the

camera.
Dr. Macdonald: I think that is exactly what we are trying to do

with this statistical analysis of photographs. We are trying to bring
out these subjective factors that are so enmeshed in the personality

structure of the photointerpreter. The only way to drag them out
seems to be through some statistical form.
We thought perhaps the incentive in a commercial organization for

fuller interpretation might result in a more uniform background of

training, one that we could trace back more easily than we could in

the case of military photointerpreters. So analysis in this type has
so far been restricted to the commercial applications of photography.

In terms of the basic units—and this ties in with the definition

that we have to make if we are going to define the information content
of a picture—we need, perhaps, a basic point where there is a binary
decision that the photointerpreter makes. There are several ways of

deciding what type of decision he makes. For example, if he is

scanning along a line, his decision would be either “Yes, there is an
edge,” or “No, there is not an edge,” as he goes from blur point to

blur point.

I am talking about a discreet one-dimensional case and I have
mentioned previously that the problem is one of moving to a two-
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dimensional source and a continuous case. If the existence of an
edge is a logical unit of information, then its evaluation depends on
(a) the absolute magnitude of the change, and (b) the gradient.

Chairman: I believe we had one other question.

Mr. A. H. Katz, Photo Reconnaissance Laboratory, Wright Air
Development Center, Dayton, Ohio: This is just an additional com-
ment on the remarks made by Dr. Grosch, to the effect that it is

only lately, after 10 years of talking to photointerpreters, that they
have even been willing to realize that there is something in the picture

other than the scale. This is a waste of good standard deviations.

Dr. R. A. Woodson, Armour Research Foundation of Illinois,

Institute of Technology, Chicago, 111.: I would like to direct a question
to two gentlemen, Dr. Howlett and Prof. Arnulf. They both deal

with the same question. Should we test a lens in the way it is in-

tended to be used, or should we magnify the image for its inspection?
Now, let’s consider this first on the basis of the decision of whether a
basic lens design is satisfactory, and, second, on whether an instru-

ment made to such a design satisfies the performance requirements.
If you consider that in production manufacture of an optical instru-

ment the operators will have variable visual accuity, you will have
disagreements as to the rejection and acceptance of an instrument,
whereas if the image is viewed under magnification you eliminate
'that human factor. I would like comments, please.

Chairman: Mr. Arnulf, do you wish to comment? Is Dr. Howlett
here?

Dr. L. E. Howlett, National Research Council, Ottawa, Canada:
Mr. Chairman, I want to say that it would be acceptable under the
circumstances outlined to use whatever degree of magnification was
required. Whatever visual criterion is used in the test could be one
well correlated with the circumstances of use. Such a procedure
would make the test easier, too.

Dr. W. Wallin, U. S. Naval Ordnance Test Station, Inyokern, China
Lake, Calif.: Dr. Howlett, it strikes me as somewhat anomalous and
bothers me that the philosophy you express seems quite adequate as

a functional test, suitable as inspection technique; but let us suppose
that we have established to our satisfaction that such a test is in-

adequate. Then we want to arrive at something more analytic,

divide and conquer. There are factors present in the lens system,
itself, factors present in the photographic emulsion, let us say, and
factors imposed by external circumstances.

If we are to understand the problem we have to analyze them and
separate them, and yet once we do that we depart from your basic

philosophy, don’t we? I would like your comments; or haven’t I

made my question clear?

Dr. Howlett: Well, perhaps you have. I will try and answer it.

I think there are two distinct things involved there. Perhaps I

did not make them sufficiently clear but I did refer to them. Certainly,

any philosophy of evaluating quality of an image from the point of

view of the user must, in the last analysis be a routine test, but that
still has no bearing on any other test. You can do all the analyses
that you like but keep it separate until it is in a form where it can be
incorporated as an explanation or where it will lead to improvements
in the evaluation. You can still evaluate the quality of an image on
the photographic emulsion even if you don’t know all about the for-
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mation of the image, the developers, the various lens elements, et

cetera, all of which are extremely important.
Having evaluated in an orderly manner the quality of the image,

you can still go on.

Dr. Wallin: You are not saying then that the information we
get is not going to help us?
Dr. Howlett: I did not understand that.

Dr, Wallin: The question was, should we really rely on visual

analysis in evaluating a lens that is to be used photographically?
Dr. Howlett: I think it is quite reasonable to do so if you can show

that by so doing your results correlate precisely with the photographic
procedures that are going to be used. We have found that there are

particular visual points that are always within a reasonable tolerance

of where the photographic plate should be. I think that is perfectly

acceptable and saves an enormous amount of time.
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8. Image Quality as Used by the Government Inspector

of Visual Telescopic Instruments

By H. S. Coleman 1

Introduction

There are a considerable number of points of view from which image-
quality evaluations can be considered. It is the purpose of this paper
to discuss image-quality evaluation from the point of view of a govern-
ment inspector whose responsibility is to determine whether or not a

given optical system submitted to the Government conforms with its

specifications. Because of the widely different procedures that might
be followed in inspecting optical systems, it is the purpose of this paper
to describe what are perhaps the most popular three inspection proc-

esses used in inspection and to show the correlation among the image-
quality evaluations that are obtained among these three methods.
For purposes of presenting a description of the above mentioned test

equipments, this paper is divided into three parts, corresponding to the

three test procedures under consideration. The first of these test

procedures involves the use of a device referred to as “the Kinetic
Definition Chart Apparatus” 2 (because of its motorized parts), the

second involves the use of a “Twyman-type Interferometer,” 3 and the

third involves the use of a device referred to as a “Dioptometer.” 4

The Use of the Kinetic Definition Chart Apparatus in
the Inspection of Visual Telescopic Systems

The following section of this paper describes the Kinetic Definition

Chart Apparatus (hereafter abbreviated to K. D. C. apparatus) and
presents examples of the type of optical data that can be obtained
with this equipment. The basic principles upon which this device

depends were first described by Fabry 5 in 1935.

The K. D. C. apparatus can be regarded as an apparatus for measur-
ing the “resolving power” of optical systems in which the spacing

between the elements of the test object used and the contrast of the

elements of the test object used can be varied continuously.

The Apparatus

The K. D. C. apparatus is essentially a continuously variable re-

solving-power apparatus in which the target is made to appear (by
optical collimation) at any desired range and in which the contrast of

1 Director of the Scientific Bureau, Bausch & Lomb Optical Co., Rochester, N. Y.
2 H. S. Coleman and S. W. Harding, J. Opt. Soc. Am. 37, 263 (1947).
2 H. S. Coleman, D. G. Clark, and M. F. Coleman, J. Opt. Soc. Am. 37, 671 (1947).
4 H. S. Coleman, M F. Coleman, and D. L. Fridge, J. Opt. Soc. Am. 41 , 94 (1951).

*C. Fabry, Proc. Phys. Soc. London 48, 747 (1935).
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the target may be varied thus simulating conditions existing in the
field. In addition, the test object may be surrounded with an illumi-

nated region designed to simulate natural backgrounds against which
targets may be viewed. The apparatus consists of a test object, an
optical-reduction unit, a collimating unit, a standard telescope, an
auxiliary telescope, an artificial sky, an off-axis fixture, and a mecha-
nism whereby the angular subtense of the elements of the test object
may be varied continuously. Each of these parts is discussed sep-
arately.

Test object. The basic type of test object used was first introduced
by Foucalt 6 in 1858. This object consists of alternate white and gray
bands of equal width of the form shown in figure 8.1 In general, it

has been found desirable to use test objects in which the markings are
oriented in four directions. The relatively coarse numbers shown in

figure 8.1 are for purposes of identifying the test object and for focus-

ing. The K. D. C. test objects can be made having any deshed spacing
and contrast between the white and gray bands. These are calibrated

photoelectrically for the number of bands per unit length and for con-
trast. The test object is ifiuminated by means of a sphere as shown
in figure 8.2.

Optical reduction unit. The apparent size of the test object is re-

duced optically by means of any one of a set of lenses mounted in a
turret shown in figures 8.2 and 8.3. These lenses are referred to as the
optical-reduction unit. The apparatus in its present form utilizes

microscope objectives having focal lengths of 4, 8, 16, and 32 mm., and
Plossel-type eyepieces having focal lengths of 20 and 50 mm., respec-

tively. The optical-reduction unit is required in order to obtain
practical limiting distances of resolution. As a result of this feature,

the entire length of the Iv. D. C. apparatus is approximately 6 feet.

Early models were as long as 120 feet.

Collimating unit. The collimating unit is used to make the test

object appear (optically) to be at any desired range. It consists of a
high-grade telescopic objective located such that its focal plane may
be placed at any desired distance from the image of the test object
formed by the optical-reduction unit.

Standard telescope. The standard telescope consists of highly cor-

rected optical parts and is provided with efficient stray light stops.

The objective has a clear aperture of 2.5 inches and an effective focal

length of 15.75 inches. Provision is made for varying the aperture
of the standard telescope by means of a set of stops so that its entrance
pupil can be made equal to that of the optical device under test.

The standard telescope is used to establish the minimum angle of

resolution for a “ perfect” optical system of a given aperture, to ac-

quaint the observer with the appearance of an image formed by a
high-grade optical system, and to adjust the collimating unit for the

deshed target distance. This adjustment is made by focusing the

standard telescope on an outdoor target placed at the desired range
and then by adjusting the distance between the collimating lens and
the image of the test object formed by the optical-reducing unit so

that the test object is at the same focal setting as the outdoor target.

Auxiliary telescope. The auxiliary telescope is an astronomical-type
telescope having an entrance pupil of 1.250 inches, which is provided
with a set of eyepieces making it possible to vary its magnification
from 1 to 30x. The auxiliary telescope is used hi series with the

instrument under test as shown in figure 8.2.

6 L. Foucault, Ann. Observ. Paris, 5, 197 (1859).
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Figure 8.2. Schematic diagram of Kinetic Definition Chart apparatus.

Figure 8.3. The Kinetic Definition Chart apparatus.
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In the quality-control processes, the auxiliary telescope has three
functions. The first of these is to make it possible to test the system
under consideration at full aperture. This is done by reducing the
exit pupil of the combination of the system under test and the auxiliary

telescope to less than that of the natural pupil of the eye. Frequently
the aberrations in optical systems are greatest at the margin of the
aperture and may not be noticeable if the pupil of the eye becomes the
effective stop of the system. In addition the pupil size varies from
inspector to inspector. The second function is to reduce the portion
of the pupil of the eye being used in the measurement to such an
extent (1 mm or less) that the eye performs as a “perfect” optical

device. This practically eliminates differences in measurements made
by various observers. The third function of the auxiliary telescope

is to produce a sufficiently large image on the retina of the observer’s

eye to make an observation “comfortably.” In this connection, it

should be noted that the auxiliary magnification does not provide a
means of exceeding the limit of resolution of the eye because of the
inverse relation between the size of the exit pupil at the eye and
magnification, and as a result of the limitations imposed by diffraction

theory.

Artificial sky. In order to simulate outdoor conditions, the image of

the test object formed by the optical-reduction unit is surrounded by
an illuminated region. This region is referred to as “the Artificial

Sky” and subtends an angle of approximately 30° measured from the

center of the collimating objective. The artificial sky is constructed
so that it forms an adjustable field stop for the optical-reduction unit.

This adjustment is accomplished by means of a series of spherical

segments having various apertures and mounted in a turret as shown
in figure 8.2.

The artificial sky has two functions. The first is to produce a known
brightness level to which the observer’s eye is to be adapted. The
second function provides a means of taking into account the stray

light normally introduced into an optical system by natural back-
grounds when the optical instrument under consideration is perform-
ing its intended task. Stray light in optical devices reduces the con-

trast of the image on the retina and, consequently, the range at which
objects are visible.

Variable spacing unit. The mechanism for controlling the angular

subtense of the target markings consists of a motorized unit by means
of which it is possible for the observer to vary continuously the distance

between the test object and the optical-reduction unit. This variation

changes the size of the image formed by the optical-reduction unit

and, consequently, the angular subtense of the target markings. The
distance between the optical-reduction unit and the test object is

indicated on a scale graduated m tenths of an inch. The optical parts

are arranged so that the scale reading is directly proportional to the

minification of the image of the test object formed by the optical-

reduction unit. In this connection it might be noted that for the

range over which the target is moved, the longitudinal displacement
of its image formed by the optical-reduction unit is much less than
the focal range (depth of focus) of the collimating objective and hence
the image viewed is always in focus. This means that neither the

instrument under test nor the auxiliary telescope have to be changed
in focus when making a K. D. C. measurement.
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By virtue of the continuous feature of varying the distance between
the test object and the optical-reduction unit, precise resolution

measurements can be made since it eliminates the use of the discreet

angular intervals of conventional resolution objects.

Gages. In order to facilitate the adjustment of the K. D. C. appa-
ratus two special gages have been devised. These are shown in figure

8.2 and 8.3.

The first of these gages, referred to as the space gage, is used to set

the distance between the target and the optical-reduction unit so that

the scale reads linearly with minification. This gage is simply a

metallic block 5 inches long. Appropriate scale readings have been
determined for each of the optical-reduction units wdien the gage is

placed between the face plate of the test-object illuminator and the cell

of the optical-reduction unit.

The second gage, referred to as the alinement gage, provides a means
of alining the optical axes of the test object, the optical-reduction unit,

and the collimating unit. This gage is essentially a combination two-
dimensional square and height gage and is used as indicated sche-

matically in figure 8.2.

Off-axis fixture. The K. D. C. apparatus is provided with a mechani-
cal assembly for mounting the optical system under test for making
resolution measurements at various field angles. This fixture,

referred to as “the off-axis fixture,” is designed so that the optical

device under test can be alined with the optical axis of the collimating

unit and can be rotated about its own entrance pupil. The off-axis

fixture also provides a means of rotating the auxiliary telescope about
the exit pupil of an optical device under test.

The Procedure

The end product of the K. D. C. test is a quantity referred to as the
K. D. C. efficiency. This efficiency is a numerical measure of the

quality of an optical system. The axial K. D. C. efficiencies of the
better present-day optical systems approximate 100 percent. The
K.D.C. efficiency may be used in either of two different forms depend-
ing upon whether the measurements are to be used for predicting the
performance or for determining the quality of an optical device under
consideration.

In predicting the performance of telescopic systems, it is desirable

to know how much farther a given object can be seen with the instru-

ment under consideration than with the unaided eye. This point of

view gave rise to the definition of the K. D. C. efficiency given by eq 1.

K. D. C. efficiency 100
; (1)

where

X'i=K. D. C. scale reading at limit of resolution for the eye plus
instrument under test,

Xe= scale reading at limit of resolution for the unaided eye,

Mi— the magnification of the instrument under test.

In determining maximum resolution of an optical system, auxiliary

magnification is generally used for the reasons indicated above. In
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this case, K. D. C. efficiency is defined by eq 2, which is equivalent to

the definition presented in eq 1, when less than 1-mm diameter of the
eye is used.

K.D.C. efficiency= r

^
LX 100, (2)

where

X;=K.D.C. scale reading at the limit of resolution for the instru-

ment under test using the auxiliary telescope,

S K. D. C. scale reading at the limit of resolution for the
standard telescope having the same entrance as the
instrument under test and using sufficient auxiliary
magnification to eliminate the imperfections that may be
introduced by the observer’s eye.

It will be noted that when one uses eq 2, he is simply comparing an
instrument under test with one known to be of high optical quality and
to be practically free from stray light. It should be noted, however,
that since the standard telescope has a constant specific coefficient

of resolution (defined to be the product of the aperture in inches and
the minimum resolvable angle in seconds) of 4.51 inch seconds, the
K. D. C. efficiency may be converted into angular units. In making
K. D. C. measurements, the limit of resolution is taken to be the scale

reading at which the direction of the markings at any one of the four
orientations cannot be specified.

The procedure for making K. D. C. measurements for telescopic

systems may be divided into two parts. The first of these consists in

axial measurements using test objects of various contrasts. The
second is the measurement of resolution at various field angles with a
test object of fixed contrast. The procedure consists simply in noting
the K. D. C. scale readings at the limit of resolution for each target
contrast or field angle. The results of such measurements are plotted
in the form shown in figures 8.4 and 8.6. As indicated, measurements
may be made without the Artificial Sky in operation and at different

brightness levels. In order to illustrate the importance of surface
defects and cleanliness a thumbprint was placed on the center of the
objective of the standard telescope to provide a source of stray light

as this instrument is practically free of such defects. In the measure-
ments presented, a uniform surround was used and the target was at

the same apparent brightness as the surround and an auxiliary tele-

scope was used. Figure 8.5 is presented to illustrate the relation of

K. D. C. efficiency to the scale readings presented in figure 8.4. It is to

be noted that the K. D. C. efficiency for any field angle is 100 percent by
definition for the standard telescope with clean optics. Figure 8.7

shows an example of the K. D. C. efficiency obtained for a 5x telescope

at various field angles without the use of auxiliary magnification.

Possible errors. There are two principal sources of error in making
measurements using the K. D. C. apparatus. The first of these is in

focusing on the image and the second is the failure to expose the image
of the object to the eye long enough. The error in focusing has been
reduced by focusing on numerical figures rather than on the resolution

markings of the test object. The exposure time required may be as
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Figure 8.4. Kinetic
Definition Chart scale

readings (x) versus
target contrast for a
standard telescope with
and without artificial

sky.

Figure 8.5. Kinetic
Definition Chart effi-

ciency versus target con-

trast for standard tele-

scope with thumbprint
on the front of the ob-

jective.

Figure 8.6. Kinetic
Definition Chart effi-

ciency versus field angle

for 3x telescope with
and withoutj artificial

sky.

Figure 8.7. Kinetic
Definition Chart effi-

ciency versus field angle

for 5x telescope without
auxiliary magnifi-
cation.
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much as 10 seconds for low-contrast objects or for poor-quality images.
This error appears to be related to unsteadiness of the observer’s head
as the required exposure time can be reduced by using a chin rest.

If the above errors are minimized, the probable error in the resolution
measurements made using the K. D. C. apparatus does not exceed 2

percent in the case of optical devices of high quality.

The Dioptometer

The dioptometer used to test the instruments mentioned in this

paper is of a fairly classical design and therefore is described briefly.

It is shown schematically and photographically together with its

accessories in figures 8.8 and 8.9. The dioptometer is a simple tele-

scopic system consisting of an objective, an eyepiece, and a reticle,

and is calibrated to measure the distance an object appears to be from
its objective in units referred to as “the diopter”. The diopter is

the reciprocal of the apparent target distance in meters. This device
is used to focus on the image of a test object, in the shape of a cross,

formed by an optical instrument under test. If both the vertical and
horizontal parts of the image of the cross can be brought into sharp

Figure 8.8. D-2 dioptometer used to measure the astigmatism of telescopic systems.

TEST OBJECT

TES ON PROCEDURE:
THE TELESCOPE UNDER TEST IS ROTATED ABOUT

AN AXIS THROUGH ITS ENTRANCE PUPIL

• THE OIOPTOMETER IS ROTATED ABOUT AN AXIS

THROUGH THE EXIT PUPIL OF THE INSTRUMENT UNDER TEST

• THE ASTIGMATISM IS THE DIFFERENCE INI
FOCAL SETTINGS OF THE

dioptometer for the vertical and horizontal elements of

tuc iMAr.F of THF TFST IMAGE

Figure 8 . 9 . Schematic diagram of the apparatus used to measure the astigmatism

of telescopic systems by means of the dioptometer.
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FIELD ANGLE (DEGREES)

Figure 8.10. Dioptometer readings versus angle of view.

A. Analysis of a 7- by 50- by 7-degree prism-erecting telescopic system; B. Difference in dioptometer
reading between the two foci.

focus when viewed with the dioptometer, the instrument is said to be
free from astigmatism. If the two parts of the image of the cross

cannot be brought into sharp focus for the same scale reading of the
dioptometer, the instrument under consideration is said to have astig-

matism. The magnitude of astigmatism is determined by focusing
the dioptometer first on the vertical and then on the horizontal parts
of the image of the cross and noting the dioptometer scale readings
thus obtained. The difference in focus between the vertical and hori-

zontal lines thus obtained is referred to here as astigmatism. Meas-
urements of astigmatism are usually made for various field angles.

Typical dioptometer data are shown in figure 8.10.

The Interferometer

The interferometer used to test the instruments mentioned in this

report is shown schematically and photographically in figures 8.11 and
8.12. It resembles the well-known Twyman instrument except in

certain mechanical details. The procedure used to evaluate the qual-

ity of an optical system, however, is new and is therefore described.

Most attempts to use the interferometer for purposes of evaluating
the quality of optical systems have been confined to lenses and prisms
and depended upon the counting of the number of interference fringes

obtained in some specified manner. Such task is almost hopeless in

the case of the great variety of complex interference patterns obtained
in testing telescopic systems. Because of the difficulty in analyzing
the interferometer patterns produced by complex mixture of aberra-
tions, consideration was given to the possibility of evaluating the
quality of an optical system on a basis that did not require the specifi-

cation of the magnitudes of the specific aberrations. Since the main
use of the interferometer, from the point of view of this paper, was
to evaluate the optical quality of visual telescopic systems, an investi-

gation was made of the type of interferometer patterns that were
produced by telescopic systems focused visually. In this investigation
a number of instruments were focused on numerals subtending angles
well above the limit of resolution and placed optically at infinity.

The investigation indicated that the best visual focus was found to

give rise to interferometer patterns having one part covered by a single

interference area. This region is the area over which the optical-

path-difference does not exceed one-quarter of a wavelength (taking
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Figure 8.11. Schematic diagram of interferometer used to test telescopic systems.

Figure 8.12. Interferometer used to test telescopic systems.

Figure 8.13. The interferometer quality at various field angles of the right barrel of

the 7- by 50- by 7.1-degree binocular, Mark 28 Model 0 serial no. 197549.

Adjusted for best focus.
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into account the double passage of the light through the telescopic

system under test) . The diameter of this area was found to decrease
by any slight change from best visual focus. The diameter of the
largest circle that can be inscribed in this area is taken to be a measure
of the optical quality. When this diameter is expressed as the percent
of the axial entrance pupil of the system under test, the percentage
is referred to as the interferometer quality (hereafter interferometer
quality may be abbreviated to I. Q.). The diameter of the inscribed

circle is referred to as the I. Q. circle, and is defined in terms of the
area over which the optical-path-difference, introduced by a system
under test, does not exceed one-quarter of a wavelength. For practi-

cal purposes, the interferometer quality might be thought of as the
percentage of the entrance pupil of the system under test that is free

from aberrations.

A sample of the data obtained showing the interferometer quality
of an instrument is presented in figure 8.13. Because of the symmetry
found for the aberrations across the field of the optical systems
studied, data are presented only for the semifield angles of 0, 1, 2,

2.5, and 3 degrees to the left of the optical axis.

Conclusions

Certain general conclusions have been drawn concerning the various
experimental procedures mentioned in this paper. These conclusions

are stated briefly for each type of apparatus.
The K. D. C. Apparatus. The conclusions concerning the use of

the K. D. C. apparatus are summarized as follows: (1) The K. D.
C. apparatus is a versatile device that may be used to measure resolv-

ing power of a variety of optical devices including telescopes, photo-
graphic objectives, microscope objectives, eyepieces, and the human
eye; (2) the K. D. C. apparatus provides a means of taking into

account the brightness level to which the human eye is adapted, the
ill effects introduced by stray light, and the target contrast; (3) the

K. D. C. apparatus is sufficiently rapid and impersonal to be used
for quality-control purposes for visual telescopic systems being mass
produced; (4) the K. D. C. apparatus provides a means of objectively

evaluating the design of optical systems; (5) the K. D. C. apparatus
may be used to obtain data required for predicting the performance of

optical systems.
The Dioptometer. The dioptometer described in this report pro-

vides a simple means of evaluating the quality of optical systems in

which the predominant aberration is astigmatism.
The Interferometer. The conclusions reached concerning the use

of the interferometer mentioned in this report are as follows: (1) The
interferometer may be used to evaluate the quality of optical systems
of moderate dimensions being mass produced; (2) the procedure
described for using the interferometer in this paper is simple and
rapid and does not require a technically trained operator; (3) the

interferometer is the most precise test fixture for evaluating the

quality of optical systems available at the present time; (4) It is

evident from figures 8.14, 8.15, 8.16, and 8.17 that a high degree of

correlation exists among the data obtained using the K. D. C. appar-
atus, the interferometer, and the dipotometer for the instruments
mentioned in this paper; (5) The high degree of correlation obtained
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between the Dioptometer values of astigmatism values and the
K. D. C. efficiency, indicates that astigmatism is the principal aber-
ration responsible for the rapid decrease in optical quality across the
field for the present design. This may be seen by comparing figure
8.14 with figure 8.17.

Figure 8.14. Average values of the

Kinetic Definition Chart efficiency

and the astigmatism, in diopters for
all the instruments tested.

Figure 8.16. Average values of the

astigmatism and [the interferometer
quality for all the instruments tested.

Figure 8.15. Average values of the

Kinetic Definition Chart efficiency

and the interferometer quality for
all the instruments tested.

Figure 8.17. Relation between Kinetic
Definition Chart efficiency and astig-

matism for pure primary astig-

matism.
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9. Application of Fresnel Diffraction to

Measurements of High Precision

By A. C. S. van Heel

1

Introduction

On a previous occasion it has been emphasized that a direction can
be determined with surprising precision by means of a diffraction

pattern of the Fresnel class and especially wThen settings are made on
the color transitions, occurring in the usually very diversely colored
patterns obtained when a wdiite light source is used. 2,3 As one such
application, a spherometer for large radii and a flatness tester were
described. As this work has been continued and the results have
been found to be of desirable accuracy, although the simple method
has not been modified essentially, a description of these developments,
together with some comments and corrections of the previous publi-

cation, appears justified. It will be shown that the scope of the method
is exceedingly general and its application to the measurement of even
very small aberrations is quite possible. The method is essentially a

means of studying the structure of wave fronts, or, wiien the concep-
tion of light rays as normals to these is preferred, the structure of

light pencils.

Study of a Flat Surface

The determination of the form of a nearly flat surface may serve
as a relatively simple example and will be described in some detail.

In figure 9.1, S is a horizontal slit, some tenths of a millimeter wide,
receiving light from a glow- lamp or, better, from a carbon arc. At
a distance a of about 2 m, a metallic grating G is placed, at TT' the
surface to be tested is placed. The light reflected from this surface

is observed at MM' by means of a traveling microscope of 1owt magni-
fication (10), reading to approximately 1 micron. The distances b

and c are approximately 1 m.

In order to remove the observing microscope from the path of the

incident light the surface is tilted about the line TT' by an angle a, so

that MM' is not in the plane of the figure but behind it. When
calculating the results this tilt has to be taken into account, a simple
procedure for flat surfaces, but requiring a rather complicated correc-

tion formula when the surface is convex or concave. Fortunately,
the formula can be simplified to

S—gy-\-hRy-\- . . (1)

1 Laboratory of Technical Physics, Technical University, Delft, Holland.
2 A. C. S. van Heel, J. Opt. Soc. Am. 40 . 809 (1950).
3 A. C. S. van Heel, J. Opt. Soc. Am. 41

, 277 (1951) correction.
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Figure 9.1. Surface tester. Figure 9.2. Slope derived

from deviation.

where 5 is the correction to the observed distance OB, y the distance

from SO at which the incident ray intersects the plane of the grating,

and R the curvature of the surface; g and h are constants, depending
on a, a, b, and c. The value of a= 2.09° ±0.05° allows the following

terms of (1) to be neglected, as they amount to much less than the
tolerances given by the precision of pointing, as long as the radius of

the surface is greater than about 1 m.

In the following this correction is always assumed to have been
applied, in order to simplify the discussion.

Derivation of the Surface Profile

The diffraction pattern displays its multiple and significant colors

MM' exactly as if this plane were at a distance b-\-c beyond G and
the reflecting surface were not present, provided that it is perfectly

plane. Deviations from planeness give rise to changes in direction of

the normal. Thus in the case of figure 9.1, if TT' is not plane the
normal at A might have a different direction, and the “correct”
position of the intersection with MM' of the normal to the reflected

wave front or reflected “light ray” would be displaced from B to C.

When the deviations from planeness are small the variations of the
slope are given with ample accurac}?

- by 1/2 BC/c. Referring to

figure 9.2 we can write

dzldy= — iAlc, (2)

where A=BC is the observed deviation from the theoretical point
of intersection. The last is known from

y'
0=y(a+b+c)la} (3)

where y has the meaning given above.

Integrating the curve for dz/dy with respect to y we find the form
of the surface 2 (y ).

Once the shape of the reflecting surface along a line lying in the

plane of figure 9.1 has been established, the coordinates may be
transformed (translation and rotation) when this is necessary to com-
pare different series of measurements on the same surface. Again,
when the surface has been tilted about an axis normal to the plane of

figure 9.1, as may happen when the object has been removed, cleaned,

and replaced, a rotation usually must be taken into account together

with an accompanying division of c by the cosine of the tilting angle.
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Straightness of the “Light Rays” and Basis of
Measurement

Before proceeding to give detailed results, we must say some words
on the “light rays” and the way measurements are performed. As has
been stated in a previous publication (see footnotes 2 and 3), the
maxima of light in the diffraction pattern correspond more or less to

the slits in the grating and the minima to the wires, provided the
observing distance (6+c) is small enough to obviate any “forkings” as

indicated in figure 4 of the cited article. Still the assumption that the
loci of the colored maxima (and of the otherwise colored minima) are

straight is even then only approximately true and needs testing.

This can be and is done by removing the surface to be tested and
measuring the pattern at different distances from G.

Since 1949 the traveling microscope has been improved; the con-
sistency and accuracy of the readings have been considerably bettered,

while magnification has been increased from 5 to 10. The small
autocar lamp has been replaced by an arc lamp, which permits the

color transitions in the pattern to be more clearly and precisely

determined. Thus the measurements are more trustworthy.
It appears from careful observations that the observed curvature of

these loci 4 is considerably smaller than was then thought and, for a
large part, is to be ascribed to observation errors. Instead of the not
very consistent curvatures of these loci, we can now state, with more
confidence, that the loci are practically straight (with a grating period
of about 0.6 mm and at distances from G up to 2 m). Deviations
from straightness are never more than 3 microns, even up to the

eleventh grating slit above or below the middle slit O.
This fact has emboldened us to speak of “light rays” as a short

expression for these loci and facilitates in no mean measure their use.

The way in which the curvature begins to play a part when the dimen-
sions are altered and especially how the loci behave when the light is

reflected has to be studied separately. For our present purpose we
will let this point rest and make use of the fact that the loci are

straight within less than 3-10 —

3

/2- 1

0

3
,
or 0.3 second of arc.

Not only the maxima and minima are colored, they are also accom-
panied by fringes of divers hues and intensities. Each period repeats

itself with the same sequence of colors, symmetrical about the maxi-
mum as well as about the minimum. Thus there is more than one
characteristic to determine their position.

Even with one characteristic for each period we found a mean error

of 8.2 microns in five series of determinations on 19 maxima with four
pointings on each maximum; the five series gave respectively 6.4, 8.3,

8.1, 9.6, and 8.3 microns.
The distances a, 6 and c were measured several times in a period

of 6 months and could be trusted to about 0.2 mm.
At 19°.0 C their values were: u=2342.1 mm, 6=1204.2 mm, c=

1179.4 mm. A discussion of errors shows that the uncertainty" of

these distances has no appreciable influence on the final results. The
supports being beams of steel, the values can be corrected for temper-
ature with a dilatation coefficient of 12. 10

-6
. The object whose surface

was to be tested was applied by a double spring to a contact ring.

The distances 6 and c were measured to and from this plane. When

* A. C. S. van Heel, J. Opt. Soc. Am. 40, 812 (1950).
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Figure 9.3. Grating with partly blocked slits.

Figure 9.4. General view.

convex or concave surfaces are studied a correction for the sagitta

has to be applied. . -w,
,
During the measurements it is desirable to know with which slit of

the grating one is concerned. This was effected by blocking parts of

the slits as indicated in figure 9.3. The slit 0 is at O in figure 9.1, the
slits 3 and —3 have been blocked except in the central parts. The
coloration of the diffraction fringes corresponding to these is distinctly

affected, thus they can be identified, but only at their marginal parts.

Although the influence of the blocking extends farther towards the
center than corresponds to the geometrical shadow of the stops, the
neighborhood of PP', where the measurements are made is unaffected.

This was ascertained by a separate series of measurements.

Practical Realization

Figure 9.4 gives a general view of the instrument. It has been set

up in a basement, whose temperature is constant for long periods of

time within 1° C. Brackets in the wall support two strong steel pipes

of 4-m length and 3.2-cm outside diameter. Slit S, grating G, micro-
scope M, and object A are mounted on robust carriages clamped on
the pipes. The light from an arc lamp (not shown in the figure) is

thrown on to the slit by means of a mirror, so that the arc lamp is at

a sufficiently large distance from the apparatus to avoid warming it

by radiation or convection.

The microscope has a doublet object glass. The light pencils re-

flected by the tested surface, which are approximate^ horizontal, are

received in the plane of a cross wire on which the microscope is focused.

By means of a plane mirror the light is turned into the vertical direc-

tion to facilitate observation.

It may be noted in passing that optical parts are not inserted in the

light path between the source and the cross wires (with exception, of

course, of the test surface itself), but that beyond the cross hairs no
error is introduced by any reasonably good optics. The warning may
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be repeated here not to make use of a grating on glass, as every slight

inhomogeneity of the glass and every deviation from flatness of the
surfaces of it are deleterious to the perfect formation of the diffraction

pattern. Thus only metal gratings with air gaps can be used.

Probably the gratings are best made by stretching wire of constant
thickness over the grooves of two parallel precision screws. We have
applied ourselves to the construction of such a harp, plugging the ends
of each wire into holes in a robust frame, on which also the screws
were mounted, but as yet either the wires were not sufficiently straight

or their thickness, about 0.3 mm, changed by the too strong stress.

We also tried metal sieves, whose holes act as slits, the light source
being a slit. This entailed the necessity of calibrating each row of

holes, this calibration being by means of a precision traveling micro-
scope, provided with a supplementary cylindrical lens. Thus the posi-

tion of each “slit” was known to within a few microns and had to be
taken into account in the calculations. Although precision is not
impaired seriously in this way the evaluations are somewhat tedious,

and we are still trying to produce a grating with sufficient precision

to avoid correction terms.

Flat Surface

A standard flat of natural quartz, cut perpendicular to the axis,

diameter 65 mm, thickness at the center 20 mm, was one of the first

objects to be studied. The cylindrical slab is slightly prismatic, hav-
ing a thickness of 18 mm at one side and of 22 mm at the other side.

The form of the standard surface was investigated in two perpendicular
directions. In position I the virtual line of intersection of front and
back surface is vertical; this gives the profile along the diameter a-a
in figure 9.5. In position II the intersection line is horizontal, the
thickest part of the slab being at the bottom; this gives the profile

along the diameter b-b in figure 9.5. The back surface had been
dulled with paraffin wax. The front surface has been studied as it

came from the polisher.

The diameter of the contact ring, on which the slab was pressed
with a force of the order of 1 to 2 kg, was 52 mm.

In figure 9.6 we give the results of the measurements in position II,

as these were repeated under different conditions. Position I gives

comparable results.

The first series gave the results indicated by open circles. The slab

was then removed, cleaned again as it had been before the first series

with a piece of cotton wool and acetone, replaced and the second
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Figuke 9.6. Profile of fiat; 'position II.

series was made, giving the dots in figure 9.6. Although the corre-

spondence was very good, we were not satisfied with the fidelity to

the true form of the profile unless it was tested again with a transverse
translation of the surface. Only thus could we make certain that the
ups and downs of the curve are to be ascribed to the surface and not
to some faulty calibration of the grating or other error. The slab,

therefore, was removed again, cleaned in the same way and replaced
in a slightly higher position, shifted 6.5 mm compared to the former
positions. The third series of observations then gave the values
indicated by crosses in figure 9.6.

To each of the curves yielded by these series small vertical trans-

lations (in the vertical direction of the figure corresponding to the
2-direction in figure 9.2) and small rotations have been applied, in

order to obtain a satisfying coincidence. Even a small particle of

dust on the contact ring gives rise to such variations of the position

of the flat.

The curve corresponding to the third series, moreover, has been
shifted in a horizontal direction along a distance of 6.5 mm.
We were gratified to find a very good coincidence of the three

independent curves. The mean deviation from the mean curve
amounts to only 1.2 • 10~ 6 mm or 12 A or about X/475.

The integration of the cte/dy-curves gives, as is well known in such
cases, reasonably good results.

Further, a parabola (thin line in fig. 9.6) has been calculated to

account for a mean curvature of this part of the surface (and along

the line b-b of fig. 9.5). The radius of curvature is 2.8 km (concave).

It seems to us that the following can be inferred. (1) Irregularities

of a reflecting surface can be studied in this way to about 12 A; it is

to be understood that only the relative positions are found of means
over areas of, as yet, unknown extension, because we have not yet
ascertained how far the diffracted light from a given slit has an appre-
ciable influence; a preliminary investigation seems to indicate 5 mm2

as the order of magnitude of these areas. (2) The mean radius of a

reflecting surface can be found, again without touching the surface and
without a reference surface, over a range of 1 to 2 cm with a precision

corresponding to an error in the sagitta of 12 A.

The last conclusion can also be put as follows: In the manner
described, deviation from flatness of a reflecting surface is found in an
“absolute ’ 1 wav when the surface is 1 to 2 cm in diameter and the

radius is smaller than 34 km.
It is not possible without serious variation of the method, to find the

thickness of parallel layers. Thus the surfaces a and b in figure 9.7

are not to be distinguished in the manner described.

As has been mentioned, the observations of the same fiat in position I

give analogous results (See fig. 9.8). Here two series were observed.
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Figure 9.7. Parallel layers not indicated.

5 0 5 mm
' I I

Figure 9.8. Results of two series of measurements on a flat surface.

For the central portion (11 mm) the mean error of the mean values is

11 A or X/520. The whole range of 18mm of the measured profile, how-
ever, has a larger mean error (32 A or A/180), but inspection of the
curves for the first series (open circles) and the second series (dots) of

figure 9.8 shows that the general form of the surface is changed between
the two series. The mean radius of curvature is 1,4 Ian for the first

series and 2,4 km for the second series. Presumably, the force applied
by the springs to press the slab on to the contact ring has been
distributed in a somewhat different way in the two cases. This
conclusion was strenghtened by an inspection of the construction of

the springs, which are not very apt to act evenly when the wedge-like
slab has its edge vertical.

A rather crude estimation of the stress made this explanation
plausible. In position II the force of the two symmetrically placed
springs will be less liable to be disturbed unevenly, even when the
slab is shifted upwards.

Curved Surfaces

The study of curved surfaces proceeds along the same lines. Again
the observations must be corrected for the tilt a and then can be
compared to the theoretical positions, calculated with a preliminary
value of the surface curvature.

In figure 9.9 we give the results obtained with the convex and con-
cave parts of a gage of about 4 m radius. Again two positions, I and
II, are investigated as in the case of the flat surface.

From the dz/dy-curves the profiles follow by integration and the
curves thus obtained are reduced to a mean orientation of the surface.

It is to be remembered that here the effects of the mean curvature has
been left out. The radius for the convex surface is 3987.5 mm, for the
concave surface 3984 mm.
On applying the two parts to one another and illuminating with

sodium light, figure 9.10 was obtained; for this the surfaces were sil-

vered with a rather thick transparent layer to get sharp interference

fringes. The diameter of the gages is 62 mm, but only the central

part with diameter 18 mm, where the fringes are nearly straight, has
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CONVEX X

Figure 9.9. Profiles of convex and concave surfaces.

range

Figure 9.10. Interference test.

been tested by the diffraction method. The directions I and II are

indicated in the figure.

The general trend of the profiles can be recognized in figure 9.10.

As an essential difference between the two methods of observation,

the described diffraction method and the interference method, we
want to emphasize that with the first the mutual influence of the two
glasses is obviated. Indeed, the possibility now arises of investi-

gating the eventual influence of the presence of surface forces on the
form of the surfaces.

Further, it is no mean advantage that each surface is studied
separately without the aid of an auxiliary surface. In that sense the

diffraction method might be called an absolute one.

The spherometry of surfaces with large radii offers no difficulty

with the apparatus as described. The precision tends to be too great
for practical and workshop uses. For these purposes, however,
there is no need to spend too much time on the observation of many
lines. If only the two marked or blocked lines are observed a pre-
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cision is easily and speedily attained, which is amply sufficient for

current use. In this connection it is valuable that no silvering or

other treatment of the surfaces is needed to insure sufficient illumina-

tion of the image.

Focussing of Lenses or Mirror Systems and
Determination of Aberrations

The preceding account of the study of reflecting surfaces applies

largely to the investigation of the performance of lenses. Indeed,
the reflected wave front has been the object of study. Only by divid-

ing by 2 c were inferences made about the reflecting surface. Essen-
tially the described method is a tool to look into the structure of plane
or moderately curved wave fronts, that is, of parallel or moderately
divergent or convergent pencils.

The determination of the position of the focus of a well corrected
positive system can be done with extreme precision by placing the
slit approximately at that point and studying the convergence or
divergence of the emergent pencil oy means of the grating, observa-
tions being made at say 2 m distance from it.

From the mean curvature of the emergent wave front, the distance
of the slit from the focus can be calculated with any desired accuracy
if the focal length is approximately known.
Assuming a mean error of the sagitta of the wave front of 25 A,

the error in the position of the "mean” focus due to these observational
errors amounts to:

0.6 micron for a focal length of 100 mm,
16 microns for a focal length of 500 mm,
60 microns for a focal length of 1000 mm.

If the aperture of the system is large enough and its correction

sufficiently good this accuracy can even be bettered by making use of

gratings of larger breadth.
Of more importance perhaps is the determination of aberrations.

Path differences can be measured with a precision of 25 A. Conver-
sion into other measures of aberration is only a question of elementary
theory.

As was mentioned before, 5 the (axial) aberrations of a very good
objective lens, f=60 cm, aperture 1/10, were determined with the
given precision by means of the diffraction method.
A decided advantage over the diffraction methods working with a

grating in the neighborhood of the focus is the great simplicity with
which the observations are reduced to data of path differences, while
on the other hand the apparatus is much simpler in construction than
the lens interferometer. It is not known to the author what accuracy
can be attained in practice with the interferometer. Only tests of

given well corrected systems by the described method, might give

some ides of how the accuracies of the two methods compare.
The same applies to the elegant and simple method of Gardner and

Bennett. 6

When aberrations of optical systems are the chief object, the ap-

5 A.rC. S. van Heel, J. Opt. Soc. Am. 40,815 (1950).
6 1. C. Gardner and A. H. Bennett,*J.,Opt. Soc. Am. 11, 441 (1925).
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paratus, up to now only used incidentally for this purpose, should be
reconstructed in order to facilitate adjustment, especially when the
observation is to be made photographically. A vertical mounting
then seems to be indicated.

Photographic Method

It was felt during the somewhat lengthy observations that a more
rapid recording of the diffraction patterns would be an improvement,
as for instance, the influence of temperature variations should be
obviated. Therefore, exposures on Kodak Ektachrome and Koda-
chrome films have been made. It appeared that the times of exposure
were reasonably short, well below 1 minute.
Measurement of the films showed that practically the same precision

is attained (the grain not being observable at the low magnification
used), even when the rendering of color is not perfect. The mean
error amounts to 9 microns, which compares, not unfavorably, with
the values given on page 111 for direct observations.
The regular and irregular variations of the film during the processing

can, with careful handling, be kept within this limit. We should make
most of our observations photographically, as measurement can then
be done at leisure, but development of the films still forms a drawback.
The processing is lengthy and cumbersome and sending to a processing

factory of the firm still entails too long a delay. We expect that these

drawbacks will be solved in future.

Concluding Remarks

We hope to have it made clear that it is advantageous to use
Fresnel diffraction for the study of the form of wave fronts in the field

of technical optics. Adaptation to special cases can facilitate the
production of the deshed data with great accuracy. No very special

parts are needed, although a good wire grating helps much to simplify

the evaluation of the results.

Precision might still be bettered by making use of more than one
color transition at each period of the diffraction pattern. An error

in the determination of light path differences of 15A seems to be
attainable.

The author thanks the members of the optical group for their help,

especially H. C. Voorrips, who has made most of the observations.
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10. Image Structure and Test Data

By James G. Baker 1

It has been the good fortune of the author over a period of 16 years
to have been closely concerned with the design, construction, testing,

and application of over 50 uniquely different imageforming optical

systems and in fact, with the projects requiring such equipment.
Many of these systems have been of substantial size and complexity,
in both the visual and photographic domains. Several have em-
ployed as many as 35 surfaces in an effort to comply with require-

ments on field angle, aperture, resolution, and basic task.

The instruments in which these systems are mounted list among
them large astronomical telescopes, visual telescopes, periscopes,

theodolites, spectrographs, navigational sights, and to a very con-
siderable extent, photographic objectives. These latter objectives

have had as many as 11 elements and for astronomical purposes have
focal lengths up to 320 inches. Apertures have been as large as 33
inches, and formats as large as 27 by 27 inches.

Because of this close association between calculation and the build-

ing of equipment, supplemented by observing experience in the use
of large astronomical instruments, the author has been able to accu-

mulate a fund of visual testing experience difficult to transcribe on
paper. In the case of large aerial lenses the writer has been on
numerous high-altitude flights for testing purposes, and has under-
taken cold- and pressure-chamber tests of the same lenses. The
purpose of all of this procedure was to leave as small a gap as possible

between various phases of development of the optical equipment,
from conception to final application.

Because of the necessary expenditure of many thousands of hours
of computations in the design of these systems, it has been of the

utmost importance to the author to form a reasonably consistent pic-

ture in his own mmd of the many factors governing the performance
of the systems for then intended purposes. The follow-through to

the final application of any given system, especially where photography
is involved, had to be pursued to furnish a safe basis for further work.
In this way aerial flight testing as early as 1942 provided the author
with first-hand experience on the conditions of aerial photography
in the field. The accumulated results over a period of 5 years during
World War II have led to what the author hopes are improved com-
promises in the instruments of the post-war period in which he has
been involved.

Unsatisfactory testing conditions encountered during the manu-
facture of several of the large astronomical Schmidt telescopes in

1938-40 caused the author to set up testing equipment at the Harvard

1 Research Associate of Harvard College Observatory, and Consultant to the Perkin-Elmer Corp., Nor-
walk, Conn. Acknowledgment is also made to the Flight Research Laboratory at Wright-Patterson Air
Force Base for sponsoring a portion of the work described in this paper, and to the Photographic Laboratory
at WPAFB without whose continual cooperation the long term work described here would not have
been possible.
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College Observatory as soon as circumstances permitted. In 1941 a
“testing tunnel” 22 feet long and 4 feet square was constructed. An
existing 24-inch aperture f/5 astronomical mirror was mounted on a
concrete pier for a collimator. This testing tunnel with its collima-

tor was used for visual examination of a number of instruments built

during the war at Harvard under the NDRC program. Photographic
testing and photomicrographic enlargements were employed at in-

frequent intervals to supplement the extensive visual work. Photo-
graphs of star trails and planets were occasionally made.
No systematic laboratory testing by photographic means was

employed at Harvard but the writer maintained close contact with
the copious testing accomplished under OSRD contracts at the
Massachusetts Institute of Technology, Mount Wilson Observatory,
the National Bureau of Standards, the Eastman Kodak Company,
and at Wright Field. Some of the Harvard lenses were tested inde-

pendently at several of these places, and abundant data are available.

If one adds the extensive testing carried on in England and Canada
during the war, the volume of data becomes very great indeed.
The material is far from being obsolete. Any one interested in the
detailed performance of a variety of optical systems would do well to

have these data at hand. It would be very difficult even to reproduce
the data. The author has drawn liberally on this information in the
postwar years.

During the fall of 1945 a number of reports were prepared by the

staff of the NDRC project at Harvard on the optical developments
carried on there during the period from 1940 to 1945. In the first 3

months of 1946 a further opportunity was presented to the writer in

reviewing the testing work and optical developments throughout the

nation, and summarizing these as a coauthor in the NDRC volume
on instruments. This period of review led to the presentation of a
conception of the problems of image quality, as touching on resolution

and contrast, for purposes of optical design.

It was pointed out that the lens design could be adjusted in the

final balancing of aberrations to go with the level of resolution to be
expected as an average in the air, and that by putting as much light

energy as possible within a circle of confusion determined by the

adopted level of resolution, the designer could improve the microscopic

contrast at that level. In fact, these considerations were made use of

in 1941 in the design of a 40-inch f/5 telephoto. It is very probable
that the Zeiss designers were doing more or less the same thing

before the turn of the century, inasmuch as lens bench practice

almost inevitably requires it.

Users of lens systems often tend to look at the problem from
another side, where a different focus may be found to exist for maxi-
mum resolution and for maximum contrast. However, it should be
observed that the user of a finished system has far fewer variables at

his disposal than the designer, and in fact is faced with simply the

question of what focus to use. It is incumbent on the designer from
the start of his work to control the image in matters of contrast and
resolution. Consequently, it is vital that the designer understand as

much as possible the details of image structure and test data for the

guidance of his efforts and the success of his output. Where the

design results can be supplemented by final laboratory adjustments
of the finished lens, so much the better, and the old-time optical

manufacturers made many test models for the purpose.
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Visual Testing

It is well known that in the presence of image aberrations there
may be a very distinct difference between the visual and photographic
performance. For convenience, however, it is often necessary for the
observer to omit the photographic process and to judge from the visual

image insofar as he can what the probable photographic performance
will be. In systems having very little aberration the visual evaluation
can be applied with confidence. The observer looks for a sharply
defined image of a source pinhole, even though the pinhole image
may be embedded slightly in unfocused light. Many observers
prefer to use a brilliant star point, but the writer has found that it is

difficult to judge the distribution of light in the image, or the relation

between the intense central point surrounded by diffraction rings and
the probable photographic performance.

In a few cases where absolute perfection is required in the image
within the possibilities of wave optics, a detailed analysis of the
structure of the diffraction rings may prove necessary. Photographic
systems do not require this kind of analysis directly. One is more
interested in whether a bright but not dazzling pinhole, whose image
in the focal plane measures perhaps 0.020 mm, presents a “clean”
edge even in the presence of color aberrations or monochromatic
aberrations. If the color correction by design differs appreciably
from the visual range, one is obliged to make use of a suitable filter

in which the response of eye and photographic emulsion receive

proper weighting. Obviously, this process becomes more and more
unreliable in outlying regions of the spectrum. If visual testing is to

be employed at all under these circumstances, one must check the
performance in the nearest accessible color region for comparison
with the calculated design performance in the same region. Obviously,
the designer of the system ordinarily prefers to do this kind of checking
himself, owing to his familiarity with the aberrations and their color

gradients. The success of the venture will depend greatly on the
fund of experience available to the designer at the lens bench.

In- 1943 a demonstration instrument was made at Harvard to show
the difference between the performance of a two-element achromatic
doublet, designed according to purely geometrical optics for smallest

axial circle of confusion, and of a similar two-element achromatic
doublet designed according to strictly physical optics. Two f/4

objectives were constructed from the same melts of optical glass and
to the same test plates. The curves and thicknesses were all within
critical tolerances. The only difference between the pair of doublets

lay in the rear surface radius. The one differed by a calculated

number of fringes from the other to span the gap between geometrical
and physical correction. On the test bench the performance of the
“physical optics” instrument proved to be in close agreement with
the usual diffraction image structure and the image was sharply
defined. The “geometrical optics” lens showed quite marked spherical

aberration in the image.

Again in 1943 a “spherical-aberration analyzer” was constructed
to be used at the testing tunnel for studying the image structure corre-

sponding to varying amounts of third- and fifth-order spherical aber-

rations and stop diameters adjusted into the system. The two-element
system was mounted in micrometer form so that it was possible to
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obtain the exact design figures corresponding to any given situation
of the spherical-aberration analytical terms and focal ratio. The
visual information obtained at the testing tunnel was then applied
in the further design work of the period. No photographic testing
was accomplished with this instrument, but such testing would even
now be very worthwhile.

Another brief but interesting experiment was performed in 1943
along the same lines for the purpose of information on balancing of

aberrations for contrast and resolution. Even in 1941 the writer had
adopted a rule in design of getting as much light from the aperture
into a 20-micron circle as possible and the remaining light as far away
as possible, for the purpose of maintaining contrast at a fairly critical

resolution level. This rule might be recast into modern language in

much more detail. The experiment performed in 1943 tended to

confirm this rule adequately well. In this experiment, a well made
positive simple lens with spherical surfaces was mounted as a telescope
objective and used with a microscope as eyepiece. A large amount
of under-corrected spherical aberration was necessarily present.

A boy was stationed about 40 feet away in a dark room with his

face illuminated by a sodium-vapor lamp. His face was observed
through the telescopic system with the 20X microscope mounted on a
micrometer slide. Various focal settings were averaged for the reading
at which the boy’s face presented the most pleasing compromise be-
tween contrast and resolution.

Thereafter, a small pinhole was placed over the sodium light at the
same distance and used as a new object. It was observed that as the
microscope was moved from decidedly outside focus, the image of the
pinhole first formed at a rather definite microscope reading. Here,
the pinhole image appeared for the first time to present an edge or

smooth outline, but was surrounded by a very large single flare of

undercorrected primary spherical aberration.

As the microscope was moved closer to the lens in small increments,
the pinhole image measuring about 0.020 mm in diameter became
brighter and more sharply defined. This fact means that a larger

portion of the lens aperture provided light within the Rayleigh limit

with a corresponding increase in the brightness of the pinhole image
and sharpness of edge. Finally, just beyond the setting for maximum
sharpness of the pinhole image, a slight secondary flare began to

grow from the edge of the pinhole. At this setting the Rayleigh
limit was so far exceeded by an intermediate zone of the aperture as

to cause the resulting caustic to add the furry edge to the pinhole

image. The pinhole with the surrounding small secondary flare still

lay embedded in a much greater flare of spherical aberration from
the outer zone of the lens. The micrometer reading 'previously ascer-

tained for the best over-all rendition of the boy’s face agreed closely with

the focal setting on the pinhole showing the slight secondary caustic flare.

With the pinhole image having a diameter of about 0.020 mm, one
might judge the diameter of pinhole image plus flare as about 0.030 mm.
Farther inside or outside of this focal setting, one observed that the

image of the boy’s face grew worse, though on the outside at least

the edge of the pinhole image itself was sharper.

All of this can be interpreted to mean that for a particular type of

object, such as the face of a boy, best pictorial results are given by a

certain degree of contrast and resolution. If the resolution were to
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be emphasized, the contrast suffers. If a larger blur circle is used to

bring a higher percentage of the light into the expanding circle, the
resolution may fall as the contrast increases. The picture “ quality

”

appears then to be a proper balance between contrast and resolution for a
given type of object and scale of object in the focal plane, both depending
on the quality of the optical instrument. A fairly high contrast is

required for large and small detail to obtain a pleasing pictorial effect,

but there must be enough resolution too for defining what is sought
in the picture.

The visual testing of the many different optical systems developed
at Harvard consisted mostly of examining the image of a pinhole

formed from the 24-inch mirror collimator and of such a size at the

focus of the collimator to give a 0.020 mm image in the focal plane
of the lens under test. The microscope power usually ranged from
50X to 100X with no attempt made to increase the magnification
much beyond the merit of the image. Image characteristics were
judged from the appearance of the pinhole image at varying off-axis

angles and with different filters. Quite frequently, three-line test

patterns were examined for guidance, but most judgments as to the

residual defects of the lens performance were derived from pinhole

images. Differential corrections to airspaces and occasionally to

radii were determined from the pinhole images, via design calculations,

and applied to the lens with subsequent rechecking. By this process

the best compromises were sought and achieved in the final lens.

It has been the author’s experience and perhaps bias that visual

testing can be much more exhaustive of a system’s ultimate perform-
ance than photographic testing in the focal plane. Xo doubt, photo-
electric or photomicrographic methods can be substituted for visual

testing in order for one to obtain quantitative data. However, in

the focal plane itself use of the turbid photographic emulsion spoils the
optical image to such a degree that the subtle aspects of the image
structure are lost. Photographic testing in the focal plane for

photographic objectives is, nevertheless, highly desirable on the basis

that acceptance tests on performance ought to be based on what the
instrument is supposed to do. If a photographic objective provides
nearly perfect visual images, it may be over-designed and too com-
plicated. If an objective is afflicted by many hybrid aberrations, the
observer may find it extremely difficult from a visual examination to

judge the photographic performance. The average lens of good
quality lies between these two extremes.

Visual testing on a lens bench or in a testing tunnel is often necessary
for the designer to determine whether his lens is built to his specifica-

tions and whether further improvement can be achieved. Ideally, a
design ought to go through a prototype stage and at least one differen-

tial correction if necessary before the final optimum performance can
be determined. With the introduction of modern high-speed com-
puting and with a better quantitative knowledge of image structure,

designers may be able before long to eliminate need for a differential

correction on any pronounced scale. As it is, an individual with
considerable design and testing experience can minimize the gap
between design and performance by judgment alone.

The author feels that it is relatively unproductive for a new type
of optical system to receive exhaustive testing before the designer
himself has done all he wishes on improving the system. It is easy
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to make rather small adjustments that will change the apparent
structure of the image very appreciably. The designer can look at
the image and read into it how it would look if he made certain
alterations in the design. The nondesigner can only accept it for
what it is, and may spend too long a time reaching conclusions that
may be invalid for the next lens off the. production line.

Close attention to detail near the end of fabrication of a lens
system may result in a gain in performance by a factor of two or more.
Such an adjustment may, for example, convert an effective image
0.020 mm in diameter into one 0.010 mm in diameter without any
loss of contrast. There may be compromises possible that will bring
about an average high-level performance over the field instead of one
excessively high on axis and poor near the edge of the field.

The balancing for maximum contrast at a desired resolution level

is a case in point. The designer may be tempted to demonstrate a
high visual or even photographic resolution, whereas better pictures
might be obtained at a more conservative resolution level by improving
the microscopic contrast.

In aerial photography pictures having a resolution of about 10
lines/mm, with good contrast at 5 lines/mm or coarser, appear to be
of excellent quality to the uncritical observer. If such a performance
is taken as the norm, then one overlooks a whole realm of complex
considerations in image structure at a level of 30 lines/mm or finer.

Visual study of the subtleties of image structure beyond 30 lines/mm
becomes then relatively unimportant. For quality work, however,
the question of whether a system has received adequate final differen-

tial correction and adjustment is still vital. Otherwise, an elaborate
and expensive system inadequately made may perform no better on
the average than a simpler system carefully adjusted.

Image Structure

An optical image formed well off-axis in a large fast lens is a hybrid
structure resulting from the contributions of many types of image
errors or aberrations in varying degrees according to the design.

Figure 10.1 gives a schematic array of the many conditions at work,
each of which in turn requires a number of power series terms for

analytical representation. Moreover, the fifth order indicated is still

quite insufficient to give an accurate description of the image errors

that occur in such a lens as a 12-inch f/2.5 for 9 by 9 format, and
one must draw either on still higher order terms with slow convergence
or abandon series methods altogether. In such cases a useful procedure
is to make use of the first, third and fifth order for analytical control

but to analyze image structure by exact ray-tracing.

In some of the systems designed at Harvard all terms of the first,

third, and fifth orders given in figure 10.1 have been satisfied with the

exception of a residual oblique spherical aberration and secondary
spectrum. In others, the latter two aberrations have been controlled

as well. An aberration is spoken of as being satisfied when its con-

tribution to image structure taken together with any other balancing
residuals falls within a tolerance based on performance requirements.

The coefficient of such an error is necessarily small or close to zero

if a fast lens is involved, a fact that often implies a zero in the solution,

and some control of the aberration by the designer.

122



c
o

c

O

fa

fa

Primary Spectrum in Lateral Color, or

Chromatic Difference of Magnification.

(One Condition)

Primary Distortion, or Third Order

Distortion. (One Condition)

Primary Coma, or Third Order Coma,
or Zonal Difference of Magnification.

(One Condition)

Secondary Spectrum in Lateral Color, or
Secondary Variation of Magnification

with Color. (One Condition)

Chromatic Variation of Distortion, or

Variation of Distortion with Color.

(One Condition)

Fifth Order Distortion or

Secondary Distortion. (One Condition)

Chromatic Variation of Primary Coma, or

Variation of Third Order Coma with Color.

(One Condition)

Fifth Order Oblique Coma, or Variation of
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Fifth Order Spherical Aberration, or
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Chromatic Spherical Aberration, or Variation of
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Fifth Order Tangential Astigmatism, or

Secondary Tangential Astigmatism.
(One Condition)

Variation of Third Order Tangential Astigmatism
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Fifth Order Radial Astigmatism, or

Secondary Radial Astigmatism. (One Condition)

Variation of Third Order Radial Astigmatism
with Color. (One Condition)

Secondary Spectrum in Longitudinal Color
(One Condition)

Figure 10 . 1 . A schematic array of the 25 conditions affecting lens performance
through the fifth order of approximation.

Fifth-order field curvature and astigmatism can often be controlled

in spite of the complexity of the effort. The asymmetrical terms of

the fifth order come out quite often to be small or negligible. In
a few cases it has proved possible to eliminate the oblique spherical
aberration of the fifth order and leave residuals of the seventh or

higher orders. In all cases the residual higher order aberrations have
been balanced as well as judgment allows, taking diffraction image
formation and vignetting into account, and weighted according to the
requirements of the problem.

Figure 10.2 shows a typical array of power series terms for the
third, fifth and a portion of the seventh orders, evaluated for the case
of a 40-inch f/5 telephoto lens for 9 by 9 format. The coefficients are
in millimeters when the normalized field-angle 6 is equal to 1 in the
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Figure 10 . 2 . A typical array of coefficients of third, fifth and seventh orders of

approximation.

corner of the format, and where the maximum values of y or 2 are

equal to 1 in the entrance pupil. The quantities Ay and A z refer to the

intercept of a ray, defined by 6, y and 2 in the entrance pupil, in the

focal plane in millimeters relative to the Gaussian point of zero

distortion. The quantity cN refers to an aspheric coefficient of the

last surface of the system. The series was evaluated before reintro-

ducing first- and third-order residuals for balancing of aberrations.

Figure 10.3 shows the image form calculated from the series of figure

10.2, but with balancing included. The numerical quantities are in

millimeters and indicate that the effective image is of the order of

0.020 mm in diameter. The image structure in figure 10.3 is purely

geometrical optics, and by physical optics the image is very nearly

the usual spurious disk surrounded by diffraction rings with very little

extra fight in the rings. The vertical elongation of the image in the

skew direction was indeed observed in the lenses built, but, neverthe-
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Figure 10.3. Enlarged geometrical image calculated from series for a 40-inch f/5
telephoto lens.

less, resolution on Super-XX emulsion at high contrast reached a
level of 45 lines/mm.

In the meridional plane, owing to maximum deviations of the rays
at the rim of any given surface, the aberrational elongations in the

image can easily dominate over the skew aberrations. Thus, comatic
flares and oblique spherical aberration usually cause a faster deteriora-

tion of the image in the meridional plane than do the skew terms.

However, owing to the greater ease of designing in the meridional
plane, one often finds near the end of his work that the meridional
elongations in the image have been brought nearly to zero, but that
the image squeezes out still in the vertical direction, above and below
the meridional plane. Figure 10.3 indicates that this residual defect

occurred in the case of the 40-inch f/5 lens, but other examples at

hand show the effect even more strongly. With the advent of faster

computing methods by automatic machine, it is probable that the
skew direction will come in for more evaluation during the course of a
design with improved chances for better image structure in all azimuths.
Much more complicated off-axis images have been encountered

than can be shown here. Variations with color have to be considered,
and if present in appreciable amount, the effect on the location of focus
and image structure must be dealt with during the course of the
design. The final balancing of aberrations must also involve contrast-

resolution factors, aperture, field, and color errors, weighted according
to requirements. It is clear that a designer must be as familiar as

possible with the behavior of systems of known corrections in order to

determine in advance just what he must do for optimum results. It

is probable that German designers of 50 years ago had a very good
idea of image structure and balancing, but kept such information
only as part of their experience or as company data. Nowadays we
may be plowing up much old ground, but this time the growing
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Figure 10.4. Image errors of an f/1 Schmidt camera.

knowledge of physical optics, photographic effects, psychological
factors and the like are undoubtedly going to lead to scientific results

available to everyone.
Figure 10.4 shows the oblique errors of a standard Schmidt system

as calculated from series and verified by selected rays. The aberra-
tion is almost entirely oblique spherical aberration caused by fore-

shortening of the oblique beam and by the increase in the refractive

strength of the plate for inclined rays. Figure 10.4 shows that the
unvignetted off-axis image errors of an 8-inch f/1 Schmidt camera
are by no means inappreciable. Star photographs made with a
12-inch f/1 Schmidt demonstrate the radial elongation of the images
very clearly.

During the summer of 1940 the author made a prolonged attempt to

improve the Schmidt by introducing more correcting plates. Figure
10.5 shows an array of terms for the various aberrations of the third

and fifth orders for the generalized system of the same figure. Alge-
braically, the equations hold for a solid glass type of Schmidt system
with air-lens aspheric surfaces that may have finite bendings. Aspheric
terms on the mirror are also included. One needs only to substitute

proper values for the indices of refraction in order to obtain valid

equations for a mirror in air, combined with three thin correcting

plates that may have finite bendings.
The equations in figure 10.5 show many relationships of interest

with respect to the fifth order, and demonstrate how very lengthy
an explicit solution through the fifth order for even a Cooke triplet

would be. The Schmidt system is about as tractable as any that

can be handled in this way. No attempt has been made to find a

solution to the analytical expressions, for in order to improve on the

ordinary Schmidt, one must have all of the expressions zero simul-

taneously. Physical considerations can circumvent the use of such
complicated expressions, and indeed in 1943 the author came across

a rather simple solution to the problem in the form of the “double
shell” Schmidt system with a correcting plate of higher order
asphericity.
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Such a system was developed for television purposes in December,
1943 for the Perkin-Elmer Corp. Shell systems were designed
independently elsewhere, as information coming to hand at the end
of the war indicated, with some as early as 1940. In the spring of

1946 the double-shell system was further elaborated at Harvard into

the Super-Schmidt Meteor Cameras to include an achromatized
correcting plate and arranged to have the light coming through the

second shell twice with a favorable effect on the image quality.

These “Super-Schmidt Meteor Cameras” now in successful opera-

tion cover a field of 52 degrees on specially curved film, have a speed
of f/0.65, a color range from 3700-5000 and a clear aperture of 12.2

inches for an 8-inch focal length. The effective star image appears
to be of the order of 0.025 mm in diameter over most of the field.

The extremely low f/number causes focusing to be extremely critical

to the extent that a focal error of 0.010 mm already shows to dis-

advantage. The secondary spectrum of this system is negligible

by ordinary standards, but the focal tolerance here is so critical that

the image is enlarged appreciably by the secondary spectrum of the

correcting plate and shell combination. There appears to be no easy
solution to the defect caused by the secondary spectrum, inasmuch
as the requisite crystalline materials or special glasses are either not
available or would have achromatizing curves too strong to be useful.

The observed performance of the Super-Schmidt Meteor Cameras is

all the more striking, because the central 7.4 inches diameter of the
12.2-inch aperture is blocked out by the film and film-holder. The
sharp images are thus formed from an annular entrance pupil, a fact

that causes the focal tolerance to be all the more critical. This outer
annulus is the region of the worst aberrations, and the core of the
image normally formed by the inner zones is missing. Nevertheless,
the color error remains the limiting defect in the center of the field,

and only slight comatic wedges defined by the vignetting character-
istics appear in the outer field.

Figure 10.6 shows a cross-sectional cut-away of a 36-inch f/8

apochromatic lens for a 9 by 9 format, designed in 1943. The apo-
chromatic correction was achieved through a combination of a fluorite

element with light crown elements elsewhere. This fluorite element
was cemented between two glass elements in the central negative
component. The design of this apochromatic system was particularly

interesting in view of the first-time use of a large element of fluorite

in a lens system. The standards of the design had to be set at a high
level of performance. There is no gain in eliminating secondary
spectrum if the monochromatic aberrations are made larger thereby.
The true apochromat is corrected to have a common focus for three
colors and is also corrected for spherical aberration and coma for

two colors. This aerial lens also had to have flat field, freedom from
astigmatism, and distortion, and had to have an off-axis image
sensibly free of oblique spherical aberration.

Figure 10.7 shows the residual meridional aberrations. The inner
part of the field shows some outward coma, which at % field has
practically disappeared with the up-swing at the right vignetted
away. The very corner image comes from the portion of the bottom
curve between the vertical lines, the rest being vignetted away, and
is evidently astigmatic. Figure 10.8 shows the effective field curves.
The tangential astigmatism causes trouble only in the very corner.
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Figure 10.6. A cut-away view of a 86-inch f/8 apochromatic lens in which a single
small fluorite element is used.
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Figure 10.9. The color curve of the 36-inch f/8 apochromat.
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The performance of this system turned out to be quite satisfactory

even for astronomical purposes over a 9-inch diameter circle of the
field. The apochromatic correction was fully verified by independent
tests at Mount Wilson, and at Eastman Kodak Co. Figure 10.9

shows the color curve of the system as evaluated on the optical bench
at Mount Wilson. Diffraction came to the aid of the residual image
defects shown in figure 10.7 and figure 10.8, so that the star images
remained sharp even to photomicrographic magnifications up to 80X.

Figure 10.10 shows the color curve of a 100-inch f/10 astronomical
lens of four elements, designed for optimum performance in red light.

It can be seen that the color curve, though normal for an achromat, is

very pronounced in the yellow, green and blue, owing to the location

of the minimum in red light. This lens was actually built and tested

thoroughly. The visual image without filter showed a striking color

flare around a red “core”, enhanced by the sensitivity of the eye to

green light. However, the photographic image with yellow filter

showed almost no effect of the color curve on Super-XX film. While
color pictures taken with such a lens would no doubt be deficient, a

lens of this kind seems entirely adequate for black and white pictures

on panchromatic emulsion with yellow or red filter. The tests in the

laboratory proved that the sharp core of the image in orange and red
light accomplished more than the large flare in yellow and green light

detracted. Star images photographed in red light appear fully round
and sharp over a 14 by 14 photographic plate.

Many of the systems designed by the author have received similar

tests. The astronomical systems are in use and much data are at hand
on their performance. However, this report need not be burdened with
more information of this kind, information that might better appear in

the form of a manual or compendium of results. It is necessary here
only to show that the large variety of optical images designed, pro-
duced and studied by the writer have built up a certain fairly con-
sistent set of experience that make image interpretation reliable and
further design work more precise.

As a general rule, the lower order image errors must be satisfied

properly in order to draw on the liberal tolerances of the higher order
errors. In this sense, one must expand the image errors in terms of

the aperture, rather than of the field. Thus, fifth-order astigmatism
must be regarded as a first-order error in the aperture. The aberration
is just as important in the outer field as the simple focal error is on
axis. At each point in the field, then, the image quality must be

WAVELENGTH

Figure 10.10. Color curve of a 100-inch //10 Ross lens for red light.
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studied in powers of the aperture. The focal errors such as curvature
of field and astigmatism must be satisfied first. Next, the variations
of these errors with color must be satisfied, together with lateral

color, which is of first-order importance. Next come coma-like errors,

varying as the square of the aperture. Thereafter come errors of

spherical aberration, easy to control on axis but very difficult to control

at far off-axis angles.

Lens- Film Performance

Figure 10.11 is reproduced through the courtesy of the Eastman
Kodak Company. The several characteristics of Super-XX and Pana-
tomic-X roll films are shown all on one type of graph. The target

contrast is given as the log of the ratio of high light to low light in-

tensity. It will be seen that at a contrast level of 2:1, the resolving

power is still as good as 25 lines/mm. Figure 10.11 also shows how the

resolving power determined from conventional three-line patterns is a
function of exposure. The peak resolving power occurs at a density
of about 1.7 for Super-XX and about 1.4 for Panatomic-X for high
target contrast. It is significant that the maximum resolving power

Figure 10.11. Photographic properties of Super-XX and Panatomic-X aerial film.

(Courtesy of the Eastman Kodak Company).
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for lower contrast shifts to lower density levels for both emulsions, an
effect more pronounced for Pan-X than for Super-XX.

In view of the nature of the curves in figure 10.11, combined with
experimental microphotometer tracings made on test patterns, the
author was led to propose late in 1945 a type of testing involving the

concepts of macroscopic and microscopic contrasts. The term macro-
scopic contrast refers to the contrast of large areas on the emulsion.

The term microscopic contrast refers to the measured contrast at a
given line number in a sequence of decreasing line widths and separa-

tions. Microscopic contrast is therefore a function of line number and
goes into macroscopic contrast in the limit for large areas. Microscopic
contrast goes to zero at the limit of resolution of the photograph, if

measured in terms of density difference.

It is evident that the visibility of resolving-power lines depends,
to a large extent, on density difference between lines and spaces on
the test emulsion. As far as the emulsion is concerned, it does not
matter whether the reduction in density difference in the finer lines

is caused by aberrations of the lens system, by general fogging, or

by turbidity within the emulsion. The final microscopic contrast of

a given lens-film combination will depend functionally on the intrinsic

characteristics of the emulsion, the target contrast, the lens quality,

the exposure, development, and means for measuring the contrast.

For each value of target contrast one can plot a curve of micro-
scopic contrast, as measured in terms of density difference, against

line number from macroscopic contrast down to zero, in any given test

of lens-film under standardized conditions. The resultant curves are

then to be related to performance characteristics that can be considered
of direct importance to the ability of the combination to reveal detail

and contrast.

Such a family of curves can be plotted for a “perfect lens-film

combination”, and then for the test lens-film combination, all other
conditions being held constant. A good test lens will have the micro-
scopic contrast as close as possible to the ideal limiting curve all

the way down the progression of line number. One can interpret from
such curves the performance of the lens under varying conditions of

haze, and target contrast.

While this procedure was described in 1945, no one has carried

it out systematically so far as the author is aware. However, the
new resolution-contrast test pattern of the Bureau of Standards
accomplishes essentially the same thing, except for differences pro-
duced by the use of long lines. The differences may be marked where
the aberrations are large. The Bureau of Standards results may indi-

cate higher resolution values over tests conducted with the standard
three-line patterns.

If we view the limiting resolution from the standpoint of the
emulsion, we can relate the target contrast needed for the imperfect
lens-film to attain the stated resolution, to the target contrast needed
for the perfect lens-film to attain the same resolution. In this way
the loss of picture quality can be expressed in terms of the microscopic
equivalent target contrast. Thus, at a given resolution limit the inferior

lens will require more contrast in the target for resolution than will

the perfect lens, and the equivalent target contrast will be a measure
of the loss of quality.
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Table 10.1.

Macroscopic ground
target

Super-XX Pan-X
Ground
target

contrast
Haze

Microscopic
equivalent
target con-

trast

High contrast

Perfect lens

Imperfect lens .

Lines'mm
/ 50

l 34

/ 26

\ 23

Lines/mm
70
43
32
27

1/0.001

1/0.001

1/0.001

1/0.001

%
None
50

None
50

1/0.001

1/0.33

1/0.50

1/0.60

Low contrast

Perfect lens _ _ / 26

\ 20
f 16

l 14

32
23
17
14

1/0.50

1/0.50

1/0.50

1/0.50

None
50

None
50

1/0.50

1/0.67

1/0.74

1/0.80
Imperfect lens

Table 10.1 gives a tabulation of contrast values worked out from
typical results of aerial photography. It is evident that the poor
lens gives lowered microscopic contrast, which is the equivalent of

added haze for the perfect lens. Increased gamma of development
may restore the contrast in the coarser patterns but cannot affect the
finer patterns appreciably. Excessive macroscopic contrast produced
by prolonged development for the purpose of increasing the micro-
scopic contrast will then distort the tonal values of the photograph.

It is also evident from table 10.1 that the perfect lens has its per-

formance lowered more rapidly by the addition of haze than does the

poor lens, though at all times the perfect lens stays systematically
superior to the poor lens. Another way of stating the case is to say
that the law of diminishing returns sets in when the image quality is

perfected beyond a certain point, and that one pays dearly for a slight

increase in contrast and resolution. Much aerial photography occurs

at low contrast where the superiority of the perfect lens is less clearly

defined. All of such troubles are caused essentially by the diffusing

nature of the emulsion.

Table 10.1 proves that an increase in focal length is more important
than an increase in lens performance, where we can assume a certain

reasonable quality to every professional lens system. If haze is so

bad that even a perfect lens-film will yield only 16 lines/mm, say,

the imperfect lens-film of average performance may still resolve 12

lines/mm. If the focal length of the imperfect lens is increased by
33 percent, the resulting performance referred to the target will be
approximate^ identical to that of the smaller perfect lens, inasmuch
as the haze factor is independent of focal length. In aerial photog-
raphy at a given altitude under such bad haze conditions, either one
can use a greater focal length to achieve ground resolution or else fly

lower with the same camera, all to achieve a larger scale that in the

presence of haze may permit the desired object to be resolved.

It is well known that comparative photographs taken with large

and small lenses have about the same macroscopic contrast in the

presence of haze, but have ground resolution approximately propor-

tional to focal length. There are many other factors, such as innate

lens quality, the mounting, shutter, filter, used, etc. However, if
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all these things are held equal, and if the laboratory performance in

lines/mm remains independent of focal length as is largely true of

modern aerial lenses for the USAF, then the focal length is the most
important factor in achieving ground resolution. Desirably, one
should have as perfect a lens as prudence and economy of construc-
tion can supply, but the focal length is still the most important factor.

Where attention is given on a high technical level to every detail

of the aerial lens, photography and flight conditions, one can readily

achieve an average of 25 lines/mm in the air with a top quality lens.

The imperfect lens may still produce an average of 18 lines/mm, if

all other factors are optimized. These figures are obtainable only in

the absence of haze and for high target contrasts on the ground.
It has proved possible under excellent conditions to reach a resolv-

ing power in the air of 42 lines/mm in a direct test run over ground
targets, a figure that the author believes to be the peak so far recorded
anywhere. This one test run proves that on excellent days the pure
gaseous atmosphere remaining contributes only a slight amount of

haze if a red filter is used. However, over much of the world, the
atmosphere on the average is very hazy, whereby the differences

between good and bad lenses in practice are much obscured.

Focal Problems in Aerial Photography

Possibly the most direct cause of inferior aerial photographs is

simply an inadequate focal setting. A “poor” lens may have a greater
depth of focus than a “perfect” lens. Therefore, if owing to errors

of usage, the lens is out of focus, it can easily happen that the poor
lens will return a better picture than the perfect lens. The perfect

lens has a higher peak resolution but may have a shorter base to the
curve of resolution against focal setting. In the limit with a perfect
lens the depth of focus curve can be calculated from known emulsion
properties and the nature of the target. The agreement is exact.

With an imperfect lens one finds it difficult to calculate the curve of

resolution against focal setting, owing to the influence of color aber-
rations, zones of the lens, etc.

The problem of focusing a lens system depends greatly on the
nature of the images produced and on the light source, filter and
emulsion. Usually, for an imperfect lens there will be a focal position
of best resolution and another of best contrast, though the latter may
change with the target contrast. For the perfect lens the optimum
focal settings for best resolution and best microscopic contrast coin-

cide. At moderate levels of resolution such as 10 lines/mm, the
limitation being produced by vibration, image motion and/or by haze,

focusing for best microscopic contrast in the laboratory may prove to

be the best answer. If vibration and image motion are eliminated,
and if haze is moderate, at a level of 20 lines/mm, focusing for best

resolution probably will yield optimum results. An experienced
photographer in the field might consider the situation and set his focus
accordingly. It is unlikely that routine observers will have sufficient

training, and hence fixed focus cameras are still necessary.

Many workers in aerial photography are not acquainted with the
fact that the focal position of a lens is not necessarily stationary. A
lens may be said to be factory-focused. This statement implies that
there exists a focus and that the only problem is to find its position.
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Once such is accomplished, the aerial pictures taken thereafter are

always supposed to be in focus.

The smaller aerial lenses have such slight changes of focus within
the large tolerance permitted by the observed depth of focus curves as

to cause little or no focus troubles in practice. Large aerial lenses,

however, exhibit a noticeable shift in focus caused by: (1) Temperature
changes between equilibrium conditions; (2) thermal gradients or

transients; (3) air density effect; (4) ground distance, according to

vertical or oblique; (5) simple flexure of the camera and its component
parts; (6) change in focal setting with change of filter and/or emulsion;

(7) change in focus caused by stopping down, if lens imperfect. We
are concerned here with only the first four causes.

Figure 10.12 shows the results of observations made in a cold-chamber
test of a 40-inch lens. The total range of focal changes amounts to

nearly 1 mm, owing to thermal gradients and to changes between
equilibrium temperatures. The depth of focus at the level of 40
lines/mm is of the order of 0.15 mm. A focal error of the order of 0.5

mm can already cause a loss of resolution to perhaps 20 lines/mm or so.

Figure 10.13 shows the combined effects of ground distance for

vertical photographs and focal changes caused by loss of air from the

lens at the various altitudes. Here again appreciable errors are

UK*. OCT 23.44 TUES.OCT24 WEO OCT 25 THUR.OCT 26 FRI OCT 27 SAT. OCT 28 SUN. OCT 29

IMAGE PLANE TOWARD LENSES IMAGE PLANE AWAY FROM LENSES

Figure 10.13. The air-density effect and ground-distance image shift for a 40-inch

f/5 telephoto lens.
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encountered for both effects. At very low altitudes, of course, the
ground distance effect becomes very large.

Table 10.2 contains calculated shifts for the case of a 24-inch and of

a 144-inch focal length. It is clear that the focal errors are so large

as to represent a serious problem to the aerial photographer. Ther-
mal-gradient changes are even more serious than equilibrium changes,

as shown by figure 10.12.

Table 10.2. Change in equilibrium temperature

A change of —80° C causes the image in the case of a 24-inch focal length to move 0.90 mm beyond the film

plane away from the lens. The corresponding shift in the case of a 144-inch focal length is 6.30 mm.

Air-density effect

Focal length

Altitude
24-inch 144-inch

image shift image shift

ft mm mm
Infinity —0. 65 -3.44
40, 000 - .50 -2. 60

20, 000 - .32 -1.71
10, 000 - .19 -1.00
5, 000 - .11 -0. 54
2,000 - .05 - .24
Ground .00 .00

Ground-distance efEect

Infinity 0.00 0. 00
40,000 .03 1. 10

20,000 .06 2. 20
10, 000 .12 4. 39
5,000 .24 8. 78
2. 000 .61 21.95

Ideally, large lenses ought to be focused in the air immediately
before a picture run is made. Short of this, the next best procedure
is to prepare tables of focal changes from laboratory cold- and pressure-

chamber observations. There is little justification in one’s guessing
at the focal setting for a large lens unless such tables have been
prepared. A trained observer should also take thermal gradients into

account. If the focal problem is carelessly handled, pictures as poor as

3 lines/mm might result and one may as well make use of a lens of

shorter focal length.

Several of the lenses discussed above have been tested thoroughly
at the Eastman Kodak Co. through the work of L. A. Jones, R. N.
Wolfe, and associates. A very few of the voluminous and careful

test results are reproduced here by permission of the Research Labora-
tories, for which acknowledgment is hereby made.

Figure 10.14 and figure 10.15 show the results of resolving power
against focal setting for a 6-inch f/3.5 sphericaUy-concentric lens.

Because of the spherical symmetry no single optical axis exists. The
very slight deterioration of the tangential resolving power in figure

10.14 is brought about by the fore-shortening of the aperture in the
oblique beam with the consequent loss of diffraction resolving power.
This lens was corrected for use with a red filter, and the spherical

correction at f/3.5 was just slightly beyond one Rayleigh limit. The
curves at high contrast show peak resolutions as much as 70 lines/mm
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Figure 10.14. Resolving power versus focal setting for a 6-inch f/3 wide-angle
lens with red filter, Super-XX Aero Pan, and high-contrast 3-line test object.

radial;—, tangential.

Figure 10.15. Resolving power versus focal setting for a 6-inch f/3 wide-angle
lens with red filter, Super-XX Aero Pan, and low-contrast Cobb test object.

radial;—
, tangential.

on Super-XX. The apparent large depth of focus is brought about
by the broadening of the bright lines of the test pattern at the expense
of the dark spaces between the lines. That is, at a position 0.3 mm
outside of focus, the dark spaces were only 0.020 mm wide on the test

negative but still one could see three separate lines. This effect

increases the depth of focus of the three-line pattern over and beyond
what one would normally expect from the size of an out-of-focus star

image.
Figure 10.15 shows the peak resolution to be expected with the

Cobb 2-line test chart at low contrast (log contrast equals 0.17).

This f/3. 5 lens is nearly as good a lens as might be required to test

the film itself. Hence, the loss of resolution down to about 20 lines/mm
is an emulsion property. It is clear again that good image correction

can be swallowed up at low contrast by the turbidity of the emulsion.
Testing at low contrast provides only a compressed scale for distin-

guishing between good and poor lenses. Table 10.1 is typical of

what happens. Figure 10.15 as compared to figure 10.14 points it

out again. If testing at low contrast is to be accomplished without
additional testing at high contrast, the observer must content himself
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with considering that no lens is very good and that every designed
lens is fair.

The author believes that the high peak resolution observed may be
brought about by the f/3.5 speed rating of the spherical lens, along
with a near absence of spherical aberration and color. The 40-inch
f/5 telephoto lens in the controlled models at least was just as well

corrected for spherical aberration but in red light gave somewhat
lower peak resolutions. The probable slight dependency on f/number
ought to be kept in mind as more data become available. The
dependence is shown to some extent by the many Eastman tests.

Figure 10.16 shows wedge photographs made with the 40-inch f/5

telephoto. The figure is more or less self-explanatory. The ordinates

are logarithmic and hence the length of the sharp peak indicates that
most of the light is where it belongs. For comparison purposes
figure 10.17 shows similar wedge patterns for the standard 24-inch
f/6 aerial lens, which is of Tessar construction, and about at the limit

of what a Tessar can be expected to accomplish. The sharp peaks
of figure 10.16 are intended to produce high resolving powers with
good microscopic contrast at the level of 30 lines/mm. The shallow
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peaks of figure 10.17 in cases of heavy exposure produce “muddy”
photographs so far as the microscopic contrast is concerned, at levels

around 20 lines/mm. Figures 10.18 and 10.19 show the resolution

curves for this same f/6 standard Tessar for high and low contrast.

Figure 10.20 shows the wedge photographs for a 100-inch astro-

nomical Ross lens. The peaks are sharp, even though there is very

Figure 10.18. Resolving power versus focal setting for a 24-inch f/6 Tessar lens,

with Super-XX Aero Pan, tungsten, no. 12 filter, and high-contrast 8-line test

object.

radial;—, tangential.

Figure 10.19. Resolving power versus focal setting for a 24-inch f/6 Tessar lens,

with Super-XX Aero-Pan, tungsten, no. 12 filter, and low-contrast Cobb test object.
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considerable secondary spectrum. Figures 10.20 and 10.22 show the
observed resolving powers at high and low contrasts. It should be
noted that the optical glass of this lens was deficient. The observed
axial visual image in red light showed no “clean” edge, but rather a

hazy patch of small size. The loss of contrast in the edge causes a
loss of microscopic contrast for the finer lines. This loss is barely
discernible in the wedge photographs of figure 10.21, where the
approach to the peak is slightly broader than would have been the

case if the lens had been fully corrected. Another lens of the same
design made since shows resolving powers as high as 55 lines/mm at

high contrast.

Figures 10.23 and 10.24 show the resolving power results for the

Figure 10 . 21 . Resolving power versus focal setting for a 100-inch f/10 Ross lens

with Super-XX Aero Pan, tungsten, no. 12 filter, and high-contrast 3-line test

object.

, radial;— ,
tangential.

DISTANCE IN mm FROM BEST VISUAL AXIAL FOCUS THROUGH 25 FILTER

Figure 10 .22 . Resolving power versus focal setting for a 100-inch f/10 Ross lens
with Super-XX Aero Pan, tungsten, no. 12 filter, and low-contrast Cobb test object.

, radial;
-— , tangential.

Figure 10 .23 . Resolving power versus focal setting for a 36-inch f/8 apochromat
with Super-XX Aero Pan, “daylight”

,
no. 12 filter, and high-contrast 3-line test

object.

, radial; , tangential.
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DISTANCE IN mm FROM BEST VISUAL AXIAL FOCUS

Figure 10 .24 . Resolving power versus focal setting for a 36-inch f/8 apochromat
with Super-XX Aero Pan, “daylight” no. 12 filter, and low-contrast Cobh test

object.

Object distanee=28.8 focal length;
,
radial;

, tangential.

36-inch f/8 apochromat discussed above. The effect of the apoch-
romatism is not evident in the resolving powers as such but would
show up more in the level of microscopic contrast around 30 lines/mm.
Such lenses as the 36-inch apochromat would take aerial pictures of

good microscopic contrast around the average expected resolving
power in the air of 25 lines/mm., where other factors have been
minimized.

The Calculated Photographic Image

With the coming use of electronic calculating equipment in optical

design, consideration must be given as to whether the photographic
image can be calculated. The cost of a large lens is so considerable
as to make it desirable to go as far as possible on paper during the
design stages. To a considerable extent the views described above
have been drawn on repeatedly by the author in designing photo-
graphic systems and in predicting by judgment alone what might
resonably be expected of the lens in photographic test. However, if

it should prove possible to calculate the photographic image with
accuracy, a step in quantitative analysis will have been achieved.

The author with the valued assistance of W. Kandolph Angell, Jr.

has made a preliminary attempt to calculate the photographic image
in a special case. A simple plano-convex lens of barium crown glass

with its normal complement of primary color was set up in the lab-

oratory. Infrared photographic resolving power focusing runs were
made at a 10-fold reduction between collimator and lens. A minus-
blue filter was used, but otherwise the standard aerial infrared film was
exposed to the spectral colors from a 3,000° tungsten source. Figure
10.25 reproduces a portion of the photographs taken. The second
pattern seems resolved and corresponds to a resolution of 16.6 lines/mm
When one considers that the primary spectrum from 5000 to 9000
angstroms is altogether uncorrected, that the lens has some spherical

aberration, and otherwise is f/4, the observing of 16.6 lines/mm indi-

cates to some extent how inadequate a lens can be and still give fair

photographs. Of course, the microscopic contrast is low and even at

a level of 5 lines/mm the photograph resulting would appear “muddy”
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Figure 10.25. Enlarged view of test images produced by a simple f/4 lens of 10-inch
focal length.

• Pattern 2 is 16.6 lines/mm.

Figure 10.26. Schematic view of the problem of calculating the photographic image
in the presence of large chromatic aberration.

Figure 10.27. Enlarged view of the image region in the problem of calculating the

photographic image in the presence of large chromatic aberration.

and unsatisfactory. Some of the out-of-focus colors have blur circles

considerably larger than the entire test pattern.
Figure 10.26 shows the initial circumstances of the attempt to cal-

culate the image. A mean focal plane was chosen to lie at 0.8 micron,
though the results of figure 10.25 are not necessarily found optimum
at 0.8. A small object element of area providing the illumination
images into a similar area, da' . The illumination on the mean focal

plane at 0.8 micron consists of the in-focus 0.8-micron light plus the
inside and outside focus neighboring colors.

The illumination of any element da' in its own focal plane is given by

E\d\da' =kiv sin2 d'B\d\da,

which is the standard formula. We need it here only to show that the
distribution of the illumination E\ with wavelength is proportional to

the similar emission from the object. The dilutionfactor k need not be
evaluated, and we can work directly with E\, instead of B\.

Figure 10.27 shows an enlarged view of the space around the image,
element. E[ (not a derivative) is taken as the illumination function
on the chosen focal plane at 0.8 micron, resulting from the illumination
E\ on the displaced focal plane at another wavelength, X. If the ele-
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ment of area da' is taken to be extremely small compared to the color

aberration, then the illumination in the focal plane at 0.8 micron will be

E'xd\da' JJ
Exd\da'

(Ax) max.
dAx ,

where (.Ax) max. is the total area of the out-of-focus blur circle striking

the 0.8-micron focal plane, and where the integration is taken over
the entire illuminated area of the test pattern, whatever its shape,
within the radius of the blur circle of area (Ax) max ..

This integration can be performed at each wavelength, and in fact

E'xd\da' ExdXda'.

If we multiply by the dependence of filter transmission on wavelength,
Fx, and by the sensitivity of the emulsion relative to wavelength, Sx,

we have

FxSxE'xd\da'=
ss**

(FxS\Ex) d\da'

.

To convert to the characteristic curve, we have simply

log<f =log f (FxSxEx)d\+log k,

where k is a constant. Where the blur circle is completely illuminated
for a macroscopic area, a', then the photographic density can be set

at any desired value by an adjustment to the abscissa scale. In par-

ticular, for infrared aerial film we can set this maximum density that
would be obtained by photographing a uniformly illuminated surface

at 1.6 on the standard characteristic curve for this emulsion. For
any other pattern to be calculated, we have only to evaluate

tFxSxEx)d\

.

This procedure has been carried out for the case actually photo-
graphed, as in figure 10.25, but only for the 10 lines/mm resolution

level. Figure 10.28 shows the variation of focal position with color,

which represents a substantial change. Figure 10.29 shows a graph
of Bx, which we can take directly as being equivalent for our purposes
to Ex. Figure 10.30 is the spectral sensitivity curve obtained from
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Figure 10.28. Variation of back focal distance with color.

Figure 10.29. Black-body radiation curve for 8,000° K.

Figure 10.30. Spectral sensitivity curve for I—N emulsion.

Figure 10.31. Characteristic curve adopted for I-N emulsion.
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the Kodak Handbook of Photographic Plates. Figure 10.31 is the
characteristic curve adopted for type I-N infrared emuslion. Figure
10.32 is the product of the filter function F\ (minus-blue), S\, and
E\. The total area under the curve represents the maximum expo-
sure. Integration was performed by planimeter, in convenient units.

The logarithm of the area was then set at density 1.6 on the character-
istic curve.

Figure 10.33 represents typical curves for the indicated points on
the pattern. The solid curve represents the illumination at point A
on the inserted diagram, which is within a bright line. The peak
illumination comes then from the in-focus 0.8-micron light and
neighboring colors. Similarly, at point B where there would be no
illumination if the lens were good, one can see from the dashed curve
that at 0.8-micron there is indeed no illumination. Other outlying
colors do contribute to the surface brightness, however, mostly from
colors not far distant.

It is to be noted that the blur circles include all three lines of the

pattern. The integration is performed by moving the chief ray or

point of the planimeter over the outline of the bright areas of the best

pattern within the requisite distance of da'

.

The color aberrations of

this particular lens are so large as to have the entire out-of-focus

pattern contributing to the photographic image at each point.

Figure 10.34 is the final result, where the calculated densities are

tabulated on an enlarged diagram of the three-line pattern. The
largest calculated density is 1.20, whereas the adopted density for

macroscopic areas is 1.6. However, a density of 1.20 still represents

Figure 10.33. Sample curves of calculated illumination versus wavelength.

Back focal distance =275.27 mm at X=0.8|*. —
,
exposure A at Vo=12.5 ul., Yo=12.5 ul.; - exposure B

at Vo=27.5 ul., Fo=12.5 ul. 1 ul= l unit length=10 microns Lines and spaces of resolving-power pattern
are each 50 microns wide.
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DENSITY CHART

Figure 10 . 34 . Calculated photographic image of a three-line resolution pattern at

10 linesImm level for test case of unachromatized simple lens.

good blackness of the image, and indeed this density can be changed
by exposure time and development.
The density differences between the spaces and the centers of the

bright lines seem small, but experience with measured targets indicates

that the eye would call this pattern well resolved. The microscopic
contrast would be low, but the three lines could easily be seen.

It is difficult to determine whether the calculated and observed
patterns agree. We plan to repeat the experiment with a photomicro-
graphic enlargement as well, in order to have some control on the

photographic factors. Also, in redoing the work, we plan to deter-

mine the actual best-focus position of the emulsion against millimeters
of back focal length, as calibrated from the sodium image. Also, the
lens will be stopped down enough to minimize the added effects of

spherical aberration.

An Objective Method of Testing

During the summer of 1944 in the wartime laboratory at Harvard,
the author initiated a form of testing designed to eliminate the
personal equation from evaluation of lens performance. Special card-
board charts were printed for the purpose and copied to target size
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Figure 10 . 35 . A view of the large testing tunnel.

at varying contrasts onto lantern slide plates. These charts contained
lines of thoroughly scrambled block letters, the letters in each line

being smaller than in the preceding line in a geometrical progression.

Test negatives from the tunnel were read off by an uninformed observer
against a check list. The lens performance was scored according to

the line where the observer made fewer than 50 percent errors. This
particular testing method was used for awhile in 1944 and then set

aside for other more urgent activities.

In recent months the author has taken up this type of test procedure
once again, the purpose being to determine what image properties of a

lens facilitate recognition of various types of objects at varying
contrasts. Time has not permitted more than a preliminary series of

observations, but enough can be presented here to indicate the nature
of the work.

Figure 10.35 shows a view of the testing tunnel in the author’s
laboratory. The tunnel is 28 feet long, 4 feet square, and so con-
structed that the sides of the tunnel may be fastened to the ceiling or

lowered at will. A 16-inch paraboloidal mirror is set up as a colli-

mator at the far end of the tunnel. This mirror delivers the col-

limated rays from a target about in the center of the tunnel to the
test lens at the other end. Ordinary focal-plane test photographs or

photomicrographic enlargements can be made for any lens up to

100-inches focal length or so.

In order to avoid small photographic targets with uncertain prop-
erties for the smallest resolution lines, the writer has prepared to use
a live target, shown in figure 10.36. The target cabinet is made of

oak and houses 52 light bulbs of daylight type rated at 60 watts.

There is an intermediate diffusing screen and then an interchangeable
target panel. The present target measures approximately 24 by 24
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Figure 10.36. A view of the test target and cabinet.

inches and is handpainted onto a 48- by 48-inch ground glass. The
unpainted surface serves as a macroscopic photometric standard.
The surface brightness corresponds to that of the ground on a cloudy-
bright day.

In testing lenses of short focal length one can photograph the
target directly from distances up to 50 feet in the laboratory itself.

For testing lenses of greater focal length, one reimages the target by
means of a suitable reducing lens of high quality onto the focal plane
of the collimator mirror. The resulting small image is collimated by
the mirror and the parallel rays sent to the test lens. In this way one
can be sure that the surface brightness of even the smallest target

will remain the same as for the macroscopic photometric areas.

Varying contrasts are introduced into the collimated beam by
means of a beam-splitter placed over the reducing lens near the focus
of the mirror. The lowered contrast will then be brought about by
a superposition of uniform illumination onto the whole target area
including the photometric area and test patterns. Temporarily, the
writer has had to approximate the equivalent by adding fogging
exposures to the target exposures and for this paper has made use of

a 3-inch f/3.5 Tessar test lens.

Because the target panels are interchangeable, one can copy large-

scale transparencies as live objects down to the smallest size used for

test purposes. Thus, different surface objects of interest, such as

roads, houses, streams, railroads, etc., can be copied at varying scale

with a given lens and the range of its effectiveness for each kind of

target determined. Variable haze and color of haze can easily be
introduced.
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Figure 10.37 shows the target used in the present preliminary
investigation. The picket-fence pattern is intended for micro-
densitometry. The standard three-line patterns decrease in size

according to the cube root of 2, although admittedly, the sixth root
of 2 is more desirable. Similarly, the letters are selected for unique-
ness from the alphabet and in each line have been scrambled to

confuse the observer. The block letters are as large as the three-line

patterns, and the line width of the letter in every case is equal to the
line width of the corresponding three-line pattern. There are 10

shape objects selected for distinctness but basic to the problem of

recognition. Also, there are 10 figure objects, selected for recognition
tests of orientation and shape.

Every test line and shape in the entire target has clean-cut edges
and sharp intersections, produced by ruling pen and hand correction.

Thus, every edge and corner delivers a pure square wave to the test

lens via the collimator. There is no intermediate photographic
process to cause a crumbling away of edges and corners of the smaller
patterns, and the minifying lens used at the focus of the collimator

at f/15 gives results of microscopic quality. The only real deficiency

in this live target set-up arises from small air turbulence within the test

tunnel. Experience to date indicates that the air in the tunnel limits

performance to approximately 1 second of arc.

Five test films have been taken. The results of the fifth run are

given in figures 10.38, 10.39, 10.40, and 10.41. The author reduced

= = Hi !i! in

VLCHF5TZJD
JTD5CFVHZL
HTCDZJSVLF
ZVLTJ5CFOH
LHJF5VTZDC

TLCSVFHDZJ

Figure 10.37. The test target for letters, shapes and figures as used at present.
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the negatives personally, making use of a 60X microscope and calling

off each shape, letter, or figure to a recorder who scored against a key.

The order of reading was altered frequently, nor did the author

examine the key prior to the microscopic examination of the test

negatives. Nevertheless, it was apparent that slight effects of memory
do interfere with the complete objectivity of the test, and arise in the

unavoidable process of elimination.

In figures 10.38 through 10.41 the first column gives the resolving

power at the image plane of the test lens, corresponding to the pattern

number given in the second column. However, these resolving-power

figures are not the observed values but are the progression used.

Row 1 is the finest pattern, and also represents the finest patterns

among the shapes, figures and letters. The scale, then, runs from

5 to 40 lines/mm. The check marks mean that the particular test

object was read correctly against the key.

Figure 10.38. A tabulation of individual test results
,
5—1 to 5~4-
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Figure 10.39. A tabulation of individual test results, 5-5 to 5-8.

In the last column on the right, we have from top to bottom in each
group the film number and picture number. The f/number is then
given, and next the exposure time as marked on the lens. It is obvious
that these exposures are not correct, because there is no recognizable
difference in density between l/500th and l/125th. However, the
first three observations can be compared for the}’ should be equivalent.

40/32 means that the lens resolved 40 lines in the horizontal line

pattern, and 32 lines in the vertical pattern. The pictures indicated
that the lens possesses either a slight decentration or that the shutter
introduced vibration, even though the camera was clamped to a
concrete pier. The next figure is the distance to the target in feet,

focused by rangefinder. The figure 0.45/0.06 represents the observed
densities of the high light and low light as measured by visual densito-
meter, and therefore represents the contrast in terms of density
differences.
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Figure 10.40. A tabulation of individual test results
,
5-9 to 5-12.S^jjF

Roll 3- Plus -X, 13 min. Microdol
(

,
70°C, tray.

R.E Row Shapes Figures Letters #

40 1 3 -12
32 2 X X X X X X X X

25 3 X X X X X X X X X f/11
20 4 X X X X X X X X X X

16 5 X X X X X X X X X X 1/100
13 6 X X X X X X X X X X 20/20
10 7 X X X X X X X X X X X X X X X 20

'

8 8 X X XXX X X X X X XX X X X X X X X X X X X

6 9 X X X X X X X X X X X X X X X X X X X X X X X X X X 0.89

5 10 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
0.75

Figure 10.41. A tabulation of individual test results .3-1 2.
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The first six pictures of roll 5 (5-1 through 5-6 in fig. 10.38 and
10.39) are for high contrast and were taken by single direct exposures
of the infinite contrast target at the marked exposure times given.
The next six pictures of roll 5 (5-7 through 5-12 in fig. 10.39 and
10.40) were taken in reverse order of exposure time, and contained
the direct exposure as marked and a fogging exposure of the photo-
metric area, also of the exposure time marked. Hence, in this case
the total exposure given the emulsion was in the ratio of 2/1, if we
neglect the superposition of exposures. The recorded densities of

high light and low light show what happened, and again we note
from 5-10 to 5-12 no change in low light density in spite of a sup-
posedly shorter exposure time for the last picture.

Figure 10.41 shows a similar set of observations made with a single

direct exposure and two fogging exposures made for 3-12 at 1 /100th
of a second. The observed densities are 0.89/0.75. Figure 10.42

reproduces another low-contrast picture of densities 0.62/0.47. The
patterns look well resolved in spite of the lowered contrast, but the
picture quality is far from pleasing.

Table 10.3 gives a summary of the test results on roll 5 and on
3-12, and represents therefore three contrast groups. In order to

make this tabulation the author arbitrarily assumed a criterion from
figures 10.38 through 10.41 that at least 6 out of 10 test patterns had
to be read correctly. The line so qualifying is then recorded in table

10.3 as the resolving-power equivalent. Thus, on 5-2 under Shapes

Figure 10.42. Reproduction of a sample low-contrast target photograph.
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Table 10 . 3 . Target resolving power corresponding to 60-percent score

Densities Shapes Figures Letters R.P. Number

0. 45/0. 08 13 20 >40 36 5-1

0. 53/0. 07 20 16 >40 36 5-2

0. 51/0. 03 20 16 >40 36 5-3

0. 80/0. 07 16 16 >40 32 5-4

1. 12/0. 08 20 16 >40 32 5-5

1. 46/0. 33 16 20 >40 32 5-6

0. 74/0. 47 13 13 40 28 5-12

0. 76/0. 49 13 10 >40 28 5-11

0. 68/0. 44 13 13 >40 28 5-10

0. 92/0. 64 10 10 40 24 5-9

1. 17/1. 00 8 8 32 22 5-8

1. 57/1. 42 13 8 32 25 5-7

0. 89/0. 75 8 6 32 20 3-12

the equivalent resolving power 20 is recorded. This means that the

three-line pattern at 20 lines/mm has a single line width equal to

0.025 mm and a height to each line of 0.125 mm. The corresponding
shapes all have a longest dimension of 0.125 mm on the test negative
and an average width of 0.025 mm. Under these conditions at least

6 out of 10 were recognized while at the same time the mean resolving

power in the two directions on the same test negative 5-2 was observed
to be 36 lines/mm. One would conclude that when the photograph
resolves 36 lines/mm, shapes measuring 0.125 by 0.025 mm can be
recognized with at least a 60-percent probability of correctness from
among 10 varying objects of similar nature if the contrast is high on
the photograph.

Table 10.3 indicates that on the whole the Shapes and Figures
correspond well for equal difficulty of recognition. The letters on the
other hand are so easily recognizable as to require a complete revision

of the target.

It was obvious to the author in reducing the test negatives that

there is a considerable variation in difficulty of recognition among
the various shapes and figures in the same rows. After a few thousand
readings have been made from test negatives taken with the best lens

available at different scales, one could make up a new target with the
shapes and figures on a line arranged for equal statistical difficulty,

and similarly for the letters. This new target would then serve
for testing inferior lenses and the criterion of a 60-percent score

would become much more meaningful and more sharply defined
between lines. As it stands, the diamond figure with its longest
diagonal tilted at 45 degrees was recognizable down into the smallest
lines of patterns. Likewise, among the shapes the so-called truck

was recognizable, even when only a grain or two represented the
wheels. Practice of the observer is also a real factor. The author
became rapidly more skillful in interpreting the test negatives as he
worked. Figures 10.38 through 10.41 were observed after the author
had practiced for about an hour in a preliminary reading. The most
difficult patterns to distinguish were those having rounded corners
versus those with sharp corners, such as the shapes representing the
basic profiles of a boat versus a canoe. The decay in the image
quality caused by the lens-film combination does round off corners
and therefore interferes with recognition.
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Recognition Factors

Different types of objects have certain characteristics that lead to

their recognition, as distinct from resolving power and detectability.

Near the limit of the emulsion where the recognition factors become
suppressed, recognition begins to fail. An imperfect lens in general
will require a larger scale compared to the perfect lens before recogni-
tion can be achieved. Similarly, an increase in contrast of the image
will improve the chances for recognition, whether this increase in con-
trast arises from use of a better lens or from higher target contrast or

both. For example, the good lens may be able to show recognizability
for a truck in the shade of a tree. The bad lens will fail here, but
may nevertheless be able to provide recognizability for the truck at

exactly the same scale, if the truck is out in sunlight. The labora-
tory target discussed above contains recognition factors for each of the
shapes and figures involved.

Figure 10.43 shows these recognition factors in the case of standard
block letters. The particular choice of the factors in the second line

was made by the author, whereas other workers might adopt different

criteria. However, an attempt is made here to have an arc as short
as can be distinguished from a straight line segment, and to give only
a minimum number of factors. Every letter can be distinguished
clearly from every other letter in the scheme adopted.
The third line shows a message that appears entirely unfamiliar,

and seems to be only a hodge-podge of letters. The fourth line shows
a message that becomes legible upon close examination. The fifth

line reproduces the fourth with fewer recognition factors, but is still

recognizable once the fourth line has been read. Finally, the third

line is simply the fourth line reproduced backwards without spaces. A
trained interpreter could easily read the message in the third line.

The point is that training is necessary in deciphering various types of

objects, and the trained observer needs fewer recognition factors.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

V * " V
I w * • V r • ~

*v •*, • • - c *•••:" •
. .

i W WI .1 » Wk « - «. fc fc v IV

'
• . r r i • a * r r i i

v. c

• r * t

Figure 10 .43 . Recognition factors for letters of the alphabet.
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The last double line presents a statement familiar to most people.

These are ample clues for almost anyone to determine the meaning. A
trained observer could read this line with fewer than half the clues.

Context is so effective that clues required to decipher letters or words
can be suppressed in the entire message. Hence, if the message is

viewed as a unit, there will exist a minimum number of recognition

factors for the message, as distinct from the individual letter. That
is, each object or unit of information required will have this minimum
number of recognition factors in context with the surroundings.

A blur on a railroad track is likely to be a locomotive or a car. The
same blur on a road is likely to be a truck. If on a runway, the same
blur is likely to be an airplane, etc.

The type of lens testing described above is to be applied toward
measuring the ability of the lens to produce recognition of standard
objects and forms. Once correlations have been established with
ordinary three-line patterns, the latter may continue to serve as a

quick measure of lens performance. In the final analysis it should be
possible to draw up a list of object types, and tabulate the scale versus
contrast any given lens must employ in order to assure recognizability.

A good lens should be able to provide such information at a smaller
scale than a poor lens. Hopefully, the correlations between resolving

power and contrast on the one hand, and the objective targets on the
other, will be so distinct as to render the laboratory study sufficient

for a broad range of applications in the field.

Discussion

Mr. D. P. Feder, National Bureau of Standards, Washington,
D. C.: This question is addressed to Dr. Coleman. What about the
difficulty of calculating the interferometer patterns that I notice seem
to fit quite well to the observed pattern? How long a calculation

is this?

Dr. Coleman: That takes about 8 horns.

Mr. Feder: Is that for any degree?
Dr. Coleman: Yes. You would have to know the aberrations to

know the magnitude.
Dr. Baker: Is this with a test system?
Dr. Coleman: This is to calculate.

Dr. Baker: On a test instrument?
Dr. Coleman: Any system we considered.

Chairman: Are there other questions, please?
Dr. K. Y. Pestrecov, Bausch & Lomb Optical Co., Rochester,

N. Y. : This question is to Dr. Baker. You mentioned a beautiful
wide-angle lens that resolves 60 or 70 lines/mm. Why isn’t it used for

aerial photography?
Dr. Baker: That is a spherically symmetrical lens with a curved

field that I developed for aerial photography in 1941. The system
has been used successfully. However, the curved field introduces
awkward problems and as a consequence the lens has been little used.
The first one was designed and built at the Harvard Observatory in

1941. Two more were built at Harvard during the war along with a
rectifying printer projection lens designed by Dr. Grey.
Dr. Pestrecov: Were the calculations on the photographic image

resulting from large color aberrations published?
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Dr. Baker: The work will be published. It is part of our activities

at Harvard Observatory right now.
Dr. Pestrecov: Is it contract work?
Dr. Baker: Yes, it is contract work. This portion of our work is

declassified, as most of it probably will be. It is of interest, I think.
Dr. Pestrecov: It is very interesting. Do ou hope to publish

it soon?
Dr. Baker: Well, I think so, as part of the proceedings of this

Symposium.
Prof. B. O’Brien, University of Rochester, Rochester, N. Y.

:

I would like to ask Dr. van Heel if he has been successful in using
ordinary photographic materials for recording these interesting pat-
terns. Granted the color film is ideal but there are inconveniences
as has been emphasized

;
can you not make rather successful measure-

ments from black and white photographs?
Dr. van Heel: I did not understand you.
Dr. Pestrecov: Can you not make rather successful measurements

in black and white?
Dr. van Heel: I am sorry. I have not been clear. The whole

method depends on the fact that you can discern colors.

Dr. Pestrecov: Must this necessarily be true? For example, sup-
pose you admit two narrow wavelength bands. Can you not use these
as appropriately?

Dr. van Heel: Assume that you use two filters. The image of a

red line and of a green line are next to each other on the plate. If

the limit of resolution is infinitely small, you can get anything you
want, but in practice it is hardly feasible to obtain that precision in

black and white. I tried it with monochromatic light and with the
photographic plate. It is difficult to locate the right position. I

don’t contend it is impossible, but why not use your ability to discrimi-

nate colors?

Dr. Pestrecov: I was thinking only of the practical difficulties of

the time—was it two weeks?—required for the return of the processed
films from Paris.

Mr. J. M. Naish, Optics Section, Instrument and Photographic
Dept., Royal Aircraft Establishment, Hants, England: Would Prof,

van Heel please say a little about the actual making of the grating?

How accurate is it necessary to maintain the spacing and thickness of

the wires?
Dr. van Heel : It should be perfect—a grating of that spacing would

be like this (illustrating). I ought to know all of these positions

within 2 microns, and it would be fine without recalibrating every
time, but I have not succeeded in making such a grating so I have
to calibrate for all positions and all the lines and to use my cali-

bration table.

Mr. Naish: And what is the ratio of line to space?

Dr. van Heel: It is unimportant. In any case you get colors.
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11. Geometrical and Interferential Aspects of the

Ronchi Test

By G. Toraldo di Francia 1

The Ronchi test, when performed with a low-frequency ruling, presents a
purely geometrical character: ray optics is then fully sufficient to explain the
appearance of the patterns. On the contrary, when a high-frequency grating is

employed, the result is undoubtedly a phenomenon of interference and must be
dealt with by means of wave optics. Still the interference patterns retain a close

resemblance to the geometrical ones. It is interesting to investigate the cause of

the resemblance and this is done very easily by means of the eikonal function.
As the frequency increases the transformation of the shadows of the grooves into

interference fringes is followed step by step. The theory is applied to the third-
order aberrations and in that case it is found that, apart from a displacement,
the interference pattern is identical to the geometrical one.

Introduction

One of the most sensitive tests for the quality of the image of a

point is the Ronchi test. As is well known, this test consists in study-
ing the light wave transmitted by an optical system by means of a

diffraction grating. In spite of the fact that diffraction plays an im-
portant role in the observed phenomena, there can be no doubt that
the ultimate result is the production of an interference pattern. For
this reason it is customary to give the apparatus the name of “grating
interferometer’'. On the other hand there are many cases when the
test can be considered from a third point of view, that is, the merely
geometrical one.

Since the early days of the Ronchi test there has been much spec-
ulation regarding its theory and interpretation. In this connection
the question arose as to the simplest way of approaching the problem
of interconnecting the three different aspects we have just mentioned.
Many bulky calculations were carried out on this purpose, especially

by the researchers of the Istituto di Ottica at Areetri.

In almost all previous researches on the subject the simplifying
assumption was made that the grating merely splits the impinging
wave into many identical waves, rotated through a given angle with
respect to one another. However this procedure did not bring about
an actual simplification; on the contrary it led invariably to extremely
length}' calculations.

The purpose of this paper is to show how much the problem is

simplified by a more rigorous approach that takes into account the
actual phenomenon of diffraction. It will become apparent that in

this way a better insight can be obtained of the passage from the
pure geometrical phenomenon to the interferential one.

1 Istituto Nazionale di Ottica, Areetri, Firenze, Italy.
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Some Geometrical Relations

The shape of the wave under test will be determined by means of

the mixed eikonal function, or what amounts to the same, by means
of its wave aberration at infinity. In other words the wave will be
thought of as coming from infinity and its wave aberration will be
computed with respect to a spherical wave of infinite radius, whose
center we shall call CT . Taking the axis of the wave as the z-axis,

any point on the wave front at infinity can be defined by means of

the two last direction cosines (3 ,

7

of the corresponding ray. The wave
aberration w((3,y) will also be a function of these two cosines.

As is well known, from the theory of the eikonal function, if we call

y and 0 the coordinates of the point where a given ray meets the
plane through CT perpendicular to the axis, we have

yi
dww ( 1 )

From these relations it follows easil}’ that, if w has the form

«’= |(/3
2+ -y

2

), (2 )

the wave is spherical and Cr is located at a distance x apart from the
center of the wave.

Astigmatism corresponds to the wave aberration

•-(!+!) «+(!-!> »>

If we assume the plane 7= 0 to be the meridional plane, a is the dis-

tance from the radial focus to the tangential one and x is again the

distance of Cr from the middle focus.

Third-order coma for a centered system is given by

^=|(/32+T2
)+c(i8

3+ j87
2
), (4)

the plane 7=0 being taken as the meridional plane and CT being at

a distance x from the paraxial focus.

Third-order spherical aberration is given by

w=|0 2+ T
2
)+*(/3

2+7 2
)
2

, (5)

where x has the same meaning as before.

Now let us take a thin rectilinear wire and put it in the path of the

light wave. If the observer places his eye directly behind the wire,

he sees the shadow of the wire projected at infinity. The shape of

the shadow is an indication of the type of aberration that is present.

Now it is very easy to find an angular equation for this shadow.
Let us suppose that the wire is parallel to the y axis and is placed at

a distance zQ from the x axis. We take CT to be the point of the x
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axis that has minimum distance from the wire. According to eq 1

the wire wall meet with all rays satisfying the equation

dw
dy
= 20 . (6 )

This is the angular equation of the shadow. In practice, after writ-

ing eq 6 explicitly, one can replace /3 and y by two rectangular coordi-

nates Y and Z, respective^, and obtain the equation of the shadow as

projected on some very distant screen. This is only an approximation,
but a very good one, meeting all the requirements of practical appli-

cation. Accordingly we shall rewrite eq 6 in the form

dw(F,Z)

dZ
Zq. (7)

In this way one obtains for a spherical wave from eq 2

xZ=z0 , (8)

which is a straight line parallel to the y axis. This is represented in

figure 11.1a, where the circle represents the exit pupil of the instru-

ment.
In the case of astigmatism we assume that the meridional plane of

the wave is rotated through an angle $ with respect to the y axis, that
is, with respect to the wire. Thus we replace /3 with d cos <p—

y

sin <p

and y with (3 sin <0+7 cos <p. With this substitution the wave aber-
ration (3) takes the form

w=f0+j cos 2<p^ (3
2—

~

dY cos 2 |
cos 2<p^ y

2
-

Figure 11.1. The shadow of a thin straight wire.

a, Perfect spherical wave; b, astigmatism; c, coma (wire parallel to the meridional plane); d, coma (wire
perpendicular to the meridional plane); e, spherical aberration.
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By applying eq 7 we easily arrive at

y_ 2x— a cos 2

v

^
a sin 2(p a sin 2 <p

'

This equation represents a straight line. When x is made to vary,
the line turns around a fixed point P of the Y axis (fig. 11.1, b).

Let us consider the case of coma. By applying (7) to (4) one
easily gets

Z(2cY+x)=z0 . (10)

The shadow has, therefore, the shape of an equilateral hyperbola,
with the asymptotes parallel to the Y and Z axes, respective^ (fig.

11.1, c). The center of the hyperbola is located on the Y axis (that is

on the meridional plane) at a distance —x/2

c

from the axis. It is

interesting also to consider the case where the wire is perpendicular
to the meridional plane, instead of being parallel to it. One has only
to write (4) in the transposed form

w=| x (fi
2+ y*)+c (7

3+tA (11)

where the roles of /3 and y have been interchanged, and to apply the
eq 7. Thus, one obtains

xZ+ 3cZ2 -\-cY2 =Zq. (12)

as the equation of the shadow. This is an ellipse, with its axes
parallel to the Y, Z axes (fig. 11.1, d.) The center of the ellipse is

located on the Z axis at a distance —x/6

c

from the axis of the wave.
Finally in the case of spherical aberration, we use eq 5 to obtain the

equation

Z[x+4s(Y2+Z2
)]
= z0 . (13)

This represents a cubic, very well known in optics (fig. 11.1, e).

The Grating Interferometer

Let us now consider the grating interferometer. If the spacing of

the ruling is large, we can apply ray optics, considering the pattern as

consisting of the shadows of the grooves. It would then be very easy
to discuss the patterns, by means of the results of the preceding
section. However, we will take another way of approach that will

prove much more instructive.

According to Huygens principle, each point of the wave front at

infinity sends out a spherical wave, which arrives at the center of the

reference sphere as a plane wave. The phase of this plane wave can
be computed by means of the wave aberration at infinity and is

evidently —2
Thus, we arrive at the decomposition of the impinging wave into a

bundle of plane waves, each having its own orientation and phase.

Each one of these plane waves, when incident upon the grating is
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split into a set of diffracted plane waves. We assume the grating to

be perpendicular to the x axis and the grooves to be parallel to the

y axis.

According to the laws of diffraction by a grating, a diffracted wave
of the k'th order will have the direction cosines /3, 7 if the original

wave had the direction cosines /S', y'

,

given by

P'= P

y'= y— k'
x

v

p being the period of the grating. In the same direction we find the
diffracted wave of k" th order, corresponding to an incident wave
whose direction cosines are

According to what we have stated above, the phases of these two
waves will be, respectively,

There will be positive or negative interference, accordingly, as the
difference of the phases is a multiple of 27r or an odd multiple of x.

Therefore, the angular equation of the nth bright fringe at infinity

will be

w (p,y—k” (p,y-V X)=n\-

If only the two waves considered were present, an observer, placing
his eye directly behind the grating, would see an interference pattern
whose nth bright fringe on an infinitely distant screen would have the
equation

w(Y,Z-Jc"^-w(Y,Z-k'^=n\- (14)

This is the fundamental functional equation of the grating inter-

ferometer.

The Passage from Geometrical Optics to Wave Optics

Let us now assume that the spacing p is very large with respect to

the wave length. In this case k'\/p and k"\/p are very small and
we can expand the functions w of eq 14 in Taylor series, retaining
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only the first derivatives. Thus we obtain

dw_ np
dZ~¥^Fr

For two consecutive waves k'—k"= 1, and we get

c)w

dZ
np. (15)

A comparison with eq 7 shows that the nth bright fringe has the same
equation as the projection of the nth transparent groove of the grat-

ing; the dark fringes are therefore coincident with the shadows of

the opaque groove of the grating.

This result is valid for the interference of two consecutive waves.
But we can easily extend it so as to take into account all the waves
diffracted by the grating. Indeed, we can divide the entire set

of diffracted waves into pairs of consecutive waves, each pair

forming its dark fringes on the geometric shadows of the opaque
grooves. By superimposing the interference patterns of all these

pairs we get evidently as a net result the shadows of the grooves.

In this manner, although we started from wave optics, we have
accounted for a purely geometric phenomenon. We can therefore

utilize the results of our discussion of the shadow of a wire. The
patterns of figures 11.1 now become, respectively, the patterns of

figure 11.2.

Let now the spacing p become smaller, so that a better approxima-
tion is needed. In the Taylor expansion of the functions w of eq 14

Figure 11.2. Interference patterns with a low-frequency grating.

a, Perfect spherical wave; b, astigmatism; c, coma (meridional plane parallel to the lines of the grating);

d, coma (meridional plane perpendicular to the lines of the grating)
;
e, spherical aberration.
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one must retain also the second derivatives. Assuming for the sake
of simplicity k'—Jc"= 1, one obtains

Let us put

dw k'-{-k" X d2w
~dZ 2 pW2

~np '

k’+k" X .-^rs -

(16)

(17)

We see at once that in the present approximation eq 16 can be written

dZ_}(Y,Z-S)
—np, (18)

where the left side is dw/dZ computed at the point Y,Z—8. It is

easy to interpret eq 18 if we notice that 8 is the arithmetic mean of the
angles of diffraction k'\/p and k"\/p of the two waves k' and k"

,

respectively. A comparison of eq 18 with eq 15 shows that the entire

pattern has been shifted by the amount 8 along the Z axis with respect

to the preceding approximation. This happens because the scatter-

ing of the different waves with respect to the central wave has now
become apparent and the field of interference of the waves k'

,
k" is

centered around the point F=0, Z=8. The situation is illustrated

in figures 11.3a, 11.3b, 11.3c, 11.3d, and 11. 3e, each case correspond-
ing to that designated with the same letter in figures 11.1 and 11.2.

Apart from the
k
shift, the patterns are still Identical to those of the

shadows of the grooves. Of course, they are repeated many times;

once for each possible pair of waves. If the successive interference

fields partially overlap, the result is a very complicated phenomenon
of multiple interference. However, in figure 11.3 we have repre-

sented the case where p is already sufficiently small for being out of

this intermediate’stage^of confusion.

Finally we pass to a third approximation. First we shift the origin

to the point F=0, Z=8; owing to the definition (17) of 8, eq 14 is

replaced by

w k'—k"
2

We put k'—k"= 1, and

(19)

(20 )

Then we expand the functions w of eq 19 in a Taylor series, up to the
third derivatives inclusive. We find thus

dZ+ 6 bZ3
np ‘ (21 )

The new feature with respect to eq 15 is represented by the term con-
taining cfw/dZ3

. This term has no influence when only such aberra-
tions are present as are described by eq 2, 3, and 4, where no power
of 7 higher than the second appears. In the casd of eq 11, the term
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Figure 11 .3 . Interference patterns with a high-frequency grating.

a, b, e, d, and e, correspond respectively to the same cases of figure 11.2.
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cys would only bring a constant in the left side of eq 21; this would
amount to the same as changing n, i. e., the order of each fringe,

and would by no means alter the structure of the pattern.

We conclude that, apart from the lateral shift, the interference

patterns of the third-order aberrations up to coma are identical to

the corresponding shadow of the grating, repeated as many times as

there are pairs of consecutive waves. This result evidently holds

good in any further approximation, depending on higher derivatives

of w.

As regards spherical aberration, insertion of (5) into (21) brings to

Z[x+ 4se 2+ 4s(F2+Z2)]=7ip. (22)

A comparison with eq 13 shows that the difference is represented by
the constant term 4s e

2 in the square brackets. This term has the

same effect as a change of origin for x. It follows that in the present
approximation we have exactly the same patterns as in the preceding
ones; but they occur at different locations of the grating along the

axis of the wave. This result holds in any higher approximation.

Conclusion

We have thus given all the elements that are needed for a discussion

of the Ronchi test as applied to third-order aberrations. We have
purposely not dwelled on the many rules that can be given for the
quantitative evaluation of actual aberrations by means of the inter-

ference patterns. These rules are very easy to derive once the basic

equations given in the present paper are known and their meaning
is understood.
We have shown that both the geometric and the interferential ver-

sions of the Ronchi test give rise to the same type of patterns; but
this does not mean that they are equivalent. Of course the inter-

ferential one is much more sensitive and must be applied in all the
cases where a high degree of accuracy is required. One must not
be deterred from making use of it by the fear of all the fine adjustments
that are inherent in every interferential test. Indeed, the grating
represents the only interferometer that need not be adjusted; it could
be termed a self-adjusted interferometer.
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12. A Combined Test Procedure for Camera Lenses,

and Photoelectric Examination of Intensity

Distribution in Line Images

By Erik Ingelstam and Per J. Lindberg 1

Lens Tester

The first part of this paper deals with a simple and convenient instru-

ment for testing lenses, which we believe to be novel. By means of

this instrument it is possible to determine the tangential and radial

resolving power (estimated from a photographic negative), the cor-

responding image surfaces, and the distortion, by a method that is

rapid and inexpensive. For a more complete description reference
should be made to an earlier report from our laboratory [l].

2

Apparatus

This instrument is shown in figures 12.1 and 12.2. The characteris-

tic feature is a collimator provided with a “tilted test plate” making
an angle of 60° with the focal plane and shaped as shown in figure 12.2.

Its function is evident from the figure. An advantage of the method is

that the test is made with the lens mounted in the camera to which
it is fitted, with its own film holder and in conjunction with a filter if

desired. The test can be made at different field angles, h, from the
axis and on the resulting negative one can read the point of greatest

sharpness. This point is related to the distance from the emulsion to

the position of greatest sharpness by the quadratic equation shown in

figure 12.1. The patterns of line groups on the plate shown in figure

12.2 have been distorted to produce the known square contour of the
Foucault groups on the test negative as shown in figure 12.3. The
determination of the x positions is very rapid, and in the legend com-
ments are made concerning the presence in this case of one region of

best resolution and one of best contrast as discussed by Kingslake in

this symposium.
This type of test plate has been of good use for different purposes.

The requirements of the Royal Swedish Air Force brought about the
construction of most of the apparatus reported here, and it has been
used for most of the qualification tests of new lens designs as well as

for a routine collimator to be used in the over-all program of the Swed-
ish Ah* Force for controlling and adjusting the cameras for air recon-
naissance. The authors are indebted to O. Hagsten, Chief of the

Photographic Department of the Royal Swedish Airboard and his

staff, for excellent collaboration and advice concerning the many
practical problems in aerial photography.

1 Optics Laboratory, Royal Institute of Technology, Stockholm 70. Sweden.
2 Figures in brackets indicate the literature references at the on p. 182.
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Figure 12.2. Shape of the “tilted test plate,” the consecutive line groups being in

the scale ratio of 2 l/

$.

Figure 12.3. An enlarged record of a tilted test plate with interrupted line groups.

The smallest groups are best resolved at a S, which coordinate indicates the intersection between the test-

plate image and the camera plate, so the focusing defect is the distance between xS and 2=0.
At the point 22 out of focus there arise line groups with reduced number of lines, which is sometimes a form

represented in the record. At 23 large groups are imaged without halation, and at first one would say that

the best sharpness is situated there, but x5 indicates the best “micro-sharpness.”
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Another application of the tilted test plate is the testing of the

optics of fluorographic cameras, which is reported elsewhere [2].

In order to obtain the distortion of a camera simultaneously with
the test of its resolving power, we have made use of a support, of

which the main features are shown in figure 12.4. Not having the
several fixed collimators used in the larger laboratories, we turn the
camera support around an axis, the angles being read with the pre-

cision of a few seconds of arc. Besides the plate (fig. 12.2), the colli-

mator is provided with indices in the focal plane designed to photo-
graph well with different resolutions. In the series of records taken
as the camera is turned to equally spaced fixed angular positions, the
positions of these indices can be exactly measured in the comparator.
In order to avoid reading the micrometers on the precision scale every
time, the support has fixed angular positions, maintained by the ball

and spring positioner shown in detail in figure 12.5. It has been
proven that the positions determined by a ball-bearing ball position-

ing into conical holes are, because of freedom from hysteresis, repro-

ducible within less than 1 micron. Therefore, in certain cases, when
it is not necessary to know the absolute value of the distortions, but

Figure 12.4. Side and upper view of rotatable camera support.

1, Camera-lens system; 2, collimator lens; 3, film or plate holder; 4
,
rotatable camera support; 5, goniom-

eter precision scale; 6, ball and spring positioner; 7, ball bearing of the rotatable support; 8, V-shaped path
for the ball bearing; 9, optical prism bench; 10, box-like base.

Figure 12.5. Ball and spring positioner.
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only relative displacements across the image field, these positions
form the necessary fixed points. This is the case when lateral chro-
matic aberration is examined; parallel adjacent rows of records are
taken with six different interference filters inserted between the test

plate and the light illuminating the collimator, the successive rows
being displaced by slightly tilting the collimator. A cross-table

measurement of the indices obtained in this way is sufficient to eval-

uate this type of aberration. The corresponding axial chromatic
aberrations in the radial and tangential directions are, of course, at

the same time determined from the records of the tilted test plate.

It should be clear that all photographically achievable information
about a camera can be recorded on one single photographic plate by
means of this procedure. The values of the resolving powers ob-
tained are relative ones photographically recorded and visually esti-

mated. Because of this lack of information the instrument described
in the second part of this paper was constructed.

Image Scanner

In our laboratory we have found it valuable also to construct equip-
ment for measuring intensities in optical images, and accordingly, a

photoelectric scanning device has been constructed. The arrange-
ment is suitable for measuring across a line, as the light passes through
a linear slit to the phototube. The sensitivity is sufficiently great to

permit the use of a pinhole aperture, e. g., of a few tenths of a micron
in diameter if this should be necessary, but the “indefinitely long”
linear slit is appropriate for most purposes. Of former constructions
of this class the interesting method of Jones and Wolfe [3] may be
mentioned. The intensity distribution perpendicular to the slit was
obtained by photographing through a gray wedge, thus obtaining
logarithmic curves that gave much information about image intensity

distribution in a lens system. Further, Herriott [4] has devised a
registration device utilizing a photocell, its current being coupled to

the ^-coordinate of an oscillograph whose z-axis was synchronized
with the movement of the entrance slit across the image, the move-
ment being maintained by the electromagnetic system of a loud-
speaker. In this wav the oscillograph directly shows the intensity

curve. Surety, other laboratories in optics must also have devised
similar equipment utilizing photoelectric measurements of aerial

images.
The main characteristics aimed at in our construction are : (1)

Wide range of sensitivity with true response (10
6
), which makes it

necessary to have the power supply for the photomultiplier tube, the
amplifier contained in the system, and the recorder, all well and pre-

cisely constructed and quickly adjustable by switches to different

ranges of sensitivity; (2) freedom from extraneous fight in the system
itself, a feature that is absolutely necessary in order to cover the large

range to which reference has been made (achievable only bv avoiding
the use of any type of subsequent magnifying system after the image,
such as a microscope)

; (3) very narrow entrance slits, as we still want
a true shape of the intensity function perpendicular to the slit.

Photocell carriage. The photomultiplier tube is an RCA 931-A,
its mounting with base above being shown in figure 12.6. The adjust-

ment of the device before inserting the phototube is obtained by the
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Figure 12.6. Photoelectrical unit.

A, Tube housing; B, screw for slit adjustment; C, tube for insertion of adjusting microscope; D, microme -

ter screw for axial slide displacement; E, micrometer screw for transversal slide displacement; F, gear box for
E screw; G, synchronous motor; H, glass under test.

microscope inserted into a tube at the rear. The upper part of the
carriage is adjustable in all directions; if the slit is to traverse a plane
which is obliquely cut by the light rays, the tube housing can be
turned before clamping. A micrometer serves for the displacement
in the axial direction. A precision advance laterally is obtained
by a micrometer screw pushing a slide. The synchronous motor is

coupled to the gear box giving to the slide a variety of speeds easily

changed during the recording. The most commonly used speeds are

25, 5, 1, and 0.2 microns per second. Of course, everything must be
very substantially built in order not to be disturbed by occasional
vibrations in the building during the recording.

Production of the slit. The slits are formed by shadowed metal evap-
oration onto glass plates. Before evaporating the aluminum the in-

tended slit area is covered by a quartz thread drawn as described in

Strong’s Handbook [5], and fixed in position by tapes. A selection

of such slit plates from 1-micron slit width up to about 10 microns for

use as will be reported later was prepared. Made by this method they
are precisely uniform, the measurement of their widths being deter-

mined by viewing the positions of their Fraunhofer diffraction minimas.
One eye looks at a slit illuminated with monochromatic light, the other
eye observes where the diffraction minima fall on a metric scale. In
this way the uniformity of a slit is rigorously controlled, and a precise

measure of its width is achieved. The slit side of the glass plate is

always turned toward the incident light. Between the slit plate and
the photomultiplier tube a diffiusing screen is mounted to equalize

the intensity over the photosensitive area thus securing a constant
gain.

Electric equipment. The potential applied to the multiplier tube is

supplied by a rectifier and stabilizing unit shown in figure 12.7 as P.

It gives variable dynode voltages, of 50, 70, and 100 volts. The photo-
multiplier current is amplified by a balanced d-c amplifier, A, with
decade input resistances, making it possible to vary the sensitivity in

decades by means of simple switching. The output of the A unit
leads to the Speedomax recorder, ordinarily adjusted, however, for a
balancing time of 1.5 seconds.
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Figure 12 . 7 . Electric equipment.

P, Power supply; S, switch; A. amplifier; R, recorder.

Records of test line figures, etc. We need not go in any detail into

the troublesome questions related to resolving power in this sympo-
sium. It should be sufficient to point out that most of the practical

men dealing with and buying photographic lenses still have nothing
more than a specification that the resolving power is e. g., 38 lines/mm
at the image center, though we know that such a specification is so

incomplete as to have little value because it is based on a subjective
estimation of the limit of visual recognition of structure by means of

magnification on a photographic film, possibly also with unknown
graininess. In view of the large amount of basic research by Selwyn,
Arnulf, Coleman, and others we feel that there is now a great need to

base measurements upon real physical quantities and to separate a

physical resolving power which only deals with the intensity distribu-

tion in the aerial image.
Even in this idealized case of an infinitely narrow long object slit

the specifications are, as well known, not unambiguously defined.

In spectroscopy the conventional measure of resolving power is, in

spite of criticism, the well-known Rayleigh criterion. The applica-

tion of this criterion in spectroscopy generally requires that the natural
line width be substantially infinitely small. Therefore, very narrow
spectrum lines and appropriate slit widths are used. The criterion

corresponds to a drop in the intensity curve between the two maxima
of 19 percent, this figure being partially conventional. As is well

known, the eye easily resolves closer fine objects, which often leads to

confusion. The Sparrow criterion [6] which demands that between
two or more lines, no drop shall be present in the intensity curve, or

the slope shall be zero at one intermediate point, thus defines a limit

of resolving power less severe. The criterion has also some further

advantage.
When one tries to define physical resolving power for line images

for photographic and similar optical apparatus, it seems to be proper
to consider the infinitely narrow line. From this ideal object, by
integration, one can derive the common test figures with a rectangular

intensity shape, as the Foucault targets, and also the desirable Selwyn
test objects with a sinuoidal intensity function. This is possible by
means of known mathematical procedures [7, 8]. The criterions

mentioned, however, relate to the shape of the curves at the top, or

to the slope, and they are insensitive to the presence of stray light.
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The stray light is taken into account in Selwyn’s tests but only when
the tests are performed in such a manner that the whole area or a

known area of the light field is occupied by the test figures, which in

practice is often neglected. The test figures with rectangular shape
and decreased contrast now often in use are no doubt valuable for

routine practice, but there is a link missing between what they give

and the problem of the influence of stray light on a physically ideal

image.
If one can obtain a well-defined physical conception of the resolving

power, and by means of recording devices such as the one reported
here analyze experimentally the true intensity shape of lines, it would
be possible to relate this physical recolving power to visual resolving

powers and the photographic resolving power under the various cir-

cumstances as investigated by Arnulf, Selwvn, and others. In the
general case it demands recalculations which may possibly be incon-
venient, but there is still a large interest in exactly knowing the in-

tensity distribution in one-dimensional optical images. In designing
and constructing this highly precise image scanner, the chief purpose
has been to provide a means for making objective physical measure-
ments of resolving power and contrast. The experimental results

here presented illustrate its suitability for this purpose.

Special Records

Experimental results. Several series of records have been made with
test plates of the ordinary rectangular shape in our device. Figure
12.8 shows records taken with lines in groups of three in geometric
progression. They were taken with commercial photographic ob-
jectives. Without any large uncertainty, the resolving power accord-
ing to the Sparrow criterion can be determined from the first group
where the undulations at the top disappear. It must, however, be
understood that one deals here with broad lines, their widths being
equal to the space between them, and not with an ideally narrow line.

LINES/MM

87
LINES/MM

Figure 12.8. Records of three-line Foucault groups.
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Accordingly, a recalculation of the ideal narrow line is necessary;
such integration procedures being possible by means of mechanical or
optical devices. Collimators with different focal lengths were used,
the objects being placed in their focal planes. When the focal length
of the objective to be tested was short, the object was placed about 15
meters distant without a collimator. In these records white light was
used.

A better solution for the study of a physically ideal line is achieved
by examining a single line imaged by the lens under test. A special

purpose in taking up this research is the examination of the influence

of poor polish of glass surfaces on the intensity distribution.

When examining the image intensity distribution in the outer part
of the line image where the intensity has dropped to 10

“ 5 or 10
_6

complete freedom from scattered light and other disturbances must be
achieved. For example, in the plate forming the entrance slit of the
photocell there may be some very small pinholes in the evaporated
laj^er that permit the passage of stray light. In order to be free from
this, an additional opaque screen is placed between the slit and the
source with a slit approximately 20 microns wider than the definitive

slit.

The apparatus is arranged for this purpose as shown in figure 12.9.

The object slit consists of a uniformly broad straight slit. It is

illuminated by a monochromator of special type. This monochrom-
ator consists of a plane grating and a lens, this device imaging a
monochromatic part of the light from a ribbon-filament lamp onto the
slit. This arrangement provides many times the illumination that is

provided by interference filters, which have also been used. The lens

whose intensity distribution was primarily studied was a plano-

convex lens of F= 1,000 mm and a diameter of 45 mm, the edges being
shielded to prevent reflection of any noticeable amount of light.

The special investigation taken up is the influence on the intensity-

distribution of different polishes on a glass surface situated near the

focal plane. For this purpose two nearly equal thick piano-parallel

plates, one of smooth, one of rough polish, were subsequently placed
as shown in figure 12.9. Because of the short distance between
surface and focal plane, only about one-hundredth of the focal length,

a bad polish causes mainly stray light; when the distance is larger, the

TUNGSTEN BAND LAMP

GRATING MONOCHROMATOR

10 METRES
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central part of the image will be affected causing loss of resolving

power. The additional spherical aberration caused by the plate, as

well as the original spherical aberration, is of minor importance for the

total shape of the curve and can be calculated with sufficient precision.

The area where the rays traverse the glass plates is precisely determined
by records on photographic paper to permit their examination with
multiple beam interferometry; they were in advance selected by
examination in a Michelson interferometer and had sensibly perfect

planeness and homogeneity.

Figure 12.10. Intensity distribution.

Solid curve, fine-polished glass; dotted curve, rough-polished glass.

Figure 12.11. Different axial cuts of image.
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Figure 12.10 gives two typical curves for the central part of the
image transformed to a logarithmic scale of intensity. The ^-co-
ordinate is linear. An interesting feature is the true record of the
outer parts of the image, the undulations up to about the 20th being
clearly recorded. A test of the correct performance of the carriage

micrometer drive is afforded by the coincidences of the fringes. In
figure 12.11 the central image is represented, down to about 10

-2
- 5

of the maximum intensity. The different curves are displaced
laterally in this diagram for different positions along the axis. There
are different parallel sections of the ray about the plane of the best
focus. Figure 12.12 shows an original record for illustrative purposes.
The sensitivity range has been changed three times, namely, in the
ratios of 10, 10, and 19, the exact values of these ratios having been
determined separately. The fluctuations of the last record is due to

electronic noises and thus limit the accuracy.
In order to pass over to still larger angles, the intensity was in-

creased about 100 times by widening the slits. This affords less

detail and accuracy in the central part, which is of no great importance
as this second record covers a region extending some hundreds of

microns beyond the first record. These recordings have been extended
to approximately 4 mm from the center, thus covering scattering

angles up to about 20 degrees.

In figure 12.13 the corresponding curves for the best focal position

in the two cases, with high-polished glass and with rough-polished
glass are traced, logarithmically in the ^-direction. The curves without
glass are, within the accuracy, close to those for the highly polished

glass. A comparison shows that the centers are somewhat changed in

the sense that the rough-polished glass gives a lower intensity. The
outer regions are still more different, the light spread resulting from
the fine structure of the wavefront due to the undulated profile curve
is quite evident and well measurable within desired accuracy.

Quantitative relations between the amount of stray light and the

shape of the wavefront as studied by means of the multiple-interference

or phase contrast may, we hope, be established when more data are

gathered and treated in detail. The interest of such an investigation

seems to be indicated by, on one side, the possibility nowadays,
thanks to phase contrast and other methods, to examine precisely

Figure 12.12. Original record.
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Figure 12.13. Intensity distribution Jar from the center.

Solid curve, fine-polished glass; dotted curve, rough-polished glass.

such fine structure of wavefronts, and, on the other side, the troubles

in some instruments due to scattered light for the reason mentioned.

Illustrative examples to be studied are the front lenses of micro-

scopes, and spectroscopic instruments, where this type of stray light

is often known as foot light. A recent investigation with phase con-

trast on such types of irregularities in the wavefront [9] should be

supplemented by recordings of the intensity distribution as per-

formed here.

The experimental procedure used here is a means for studying the

real performance of a lens system comparing the intensity with that

predicted from theoretical calculations. The curves shown here

have not yet been analyzed in this way, but the slope of the curves,

figure 12.13, seems to agree with the corresponding functions in this

region (W, more than one hundred diffraction units) remote from the

line center.

Note added in proof (Oct. 1953): A subsequent development of

this scanner is reported in P. Lindberg, Measurements of Contrast

Transmission Characteristics in Optical Image Formation, Optica

Acta (in press)

.
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13. Measurements of Energy Distribution in Optical

Images

By R. E. Hopkins, 1 Howard Kerr, 1 Thomas Lauroesch, 1
'

2

and Vance
Carpenter 1,3

Introduction

The Photographic Branch of the Signal Corps is constantly faced
with the problem of how to write specifications for lenses to be used
in then* various applications. They were well aware of the short-

comings of the standard methods of specifying a lens’ performance,
and requested that our laboratory study the problem and recommend
testing and specification procedures. In contrast to the Air Force
they were primarily interested in lenses of moderate focal length
ranging from 1 to 20 inches.

The first part of this study included an investigation of the literature

on the subject. One point that seemed to crystallize out of the study
was that most of the work had been done by users of equipment.
The tests performed were usually designed to measure the final per-

formance of the lens, and most of the interest was centered around
the validity of the testing procedures.
During and after the second war several workers began describing

methods for testing the lens itself [1,2, 3].
4 Jones and Wolff [4]

described a method for determining the distribution of energy in an
image with a photographic process. Herriott [1] described a photo-
electric method for measuring the intensity contour of a line image.
Hansen [5] performed an important basic experiment. He studied
an Elmar 8-em focal-length lens at several apertures by photographing
a periodic grating and a transparency of a building. He found that
the lens resolved the best when used at the full aperture of f/3.5. On
the other hand, observers when asked to pick the sharpest picture of a

building selected pictures taken at f/6.3. The spherical aberration of

the lens was measured on an interferometer, and showed that the

minimum diameter of the blur circle at f/6.3 was less than for f/4.5.

Prior to reading this article Dr. Robert Wolfe at Eastman Kodak
suggested to us during a conference a similar approach to the problem
of image evaluation.

S. Huber [6] wrote a paper in 1943 that described a logical approach.
He designed and constructed a lens with known spherical aberration,

and calculated the distribution of light in the image. He then took
photographs of a test chart and correlated the results. He found that
the resolving power could be related to the diameter of the central

core of the image that contained 25 percent of the total light.

1 Institute of Optics, University of Rochester, Rochester, X. Y.
2 Xow located with Eastman Kodak Co.
3 Xow located with American Optical Co.
4 Figures in brackets indicate the literature references on p. 198.
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It was clear from the trend of papers that more information on the
image energy distribution of lenses was needed. It was also evident
that purely physical measurements on the image would not be
sufficient. A physical measurement would answer many of the
problems of resolution and contrast but, in order to set up tolerances
on energy concentration, experiments like Huber’s and Hansen’s
would be needed.
With this background it was decided that the problem would be

studied as follows. (1) A purely physical method for measuring the
characteristics of the lens would be developed; (2) studies similar to

Huber’s and Hansen’s would be made to relate image characteristics

with performance on film.

Another point that came out of the literature was that many of the
papers on the subject dealt with the problem of how to treat unsym-
metrical off-axis images. If one accepts the concept that the object
is made up of a series of points and that it is the function of the lens to

form a faithful image of the point, the problem then is to measure how
well the lens does form a point image and no particular weight should
be given to structure of the image in anything but a radial direction.

Therefore, it was decided to measure only the radial energy distri-

bution. This approach is probably valid only if the objects being
photographed have random orientation of all edges. It is obvious
that if one intends to photograph railroad ties or picket fences then
radial and azimuthal distribution should be known.

Methods for Measuring Energy Distribution

Interferometer

The first approach was to use the interferometer. The instrument
and testing procedures have been adequately described in the litera-

ture [7, 8]. In general, the interferometer has been rejected as a

testing instrument on two counts, which are believed to be not entirely

justified.

Several authors have described detailed methods for analyzing an
interferogram to determine the coefficients of the various Seidel

third-order and high-order coefficients. These methods are difficult

and time consuming. However, if one merely uses the interferogram

to determine the radial energy distribution the interpretation is

simple and straightforward. For example, figure 13.1 shows the

interferometer pattern of an f/2 photographic lens. The radial energy
distribution of energy can be determined by marking off equal slope

contours. Measuring the areas included within the contour lines

and dividing them by the total area gives a radial energy distribution

plot. This can be done accurately if necessary, but for many pur-

poses merely a rough estimate of area is sufficient. For example,
figure 13.1 shows at a glance that there is considerable vignetting at

20° off-axis and that only about 30 percent of the energy is well

concentrated into a spot. 5

The other complaint about the interferometer is that it is too

sensitive. This is not justified if one attempts to gather no more
information than other less sensitive devices like a lens bench test.

The interferometer is sensitive because it is capable of giving detailed

5 Coleman [8] made the valuable suggestion of using the area of the largest inscribed circle free from fringes

as a measure of quality.
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PARAXIAL FOCUS INTERMEDIATE FOCUS 5° opF axis

Figure 13 . 1 . Interferogram of F/2-5O-mm focal-length photographic lens.

Wave length 5461 A.

information much of which is not needed for analyzing a photo-
graphic lens.

The interferometer is the perfect instrument from a lens designer’s

viewpoint. It dissects the image for him. It gives him a quantitative
picture of the wave front. It gives him a feel for the design.

It does have the following disadvantages: (1) It does not indicate

directly the effect of diffraction; (2) the interferogram does not show
the effects of scattered light.

Further studies relating interferograms and the diffraction effects

are needed in order to make the interferometer more useful.

Several measurements of energy distribution were made on lenses

with the interferometer. Reasonably good agreement was obtained
between this method and a photoelectric method to be described.

However, the measurements on the interferometer and the photo-
electric device were made on separate pieces of equipment and it was
not possible to be sure of the focus accurately enough to establish

whether the differences were real or due to diffraction.

Photoelectric Method

There are several methods described in the literature for measuring
the performance of a lens photoelectrically [1, 2]. Most of the
methods described use a slit source and the image formed by the lens

is scanned across the narrow dimension. If one accepts the concept
that the radial energy distribution is a measure of the performance
of the lens, then the image of a point source may be photometered
by allowing the light to pass through successively larger circular

apertures.

The experimental arrangement to be described measures the radial

energy distribution. A schematic arrangement of parts is shown in

185



PHOTO MULTIPLIER

Figure 13.2. Schematic arrangement for photoelectric testing of photographic lenses.

Figure 13.3. Method of plotting energy distribution

Lens name, Sonnar 50 mm; focal number, F/2; focal setting, best visual; filter, Wratten 58. X — ,
0°;

•
,
15°.

figure 13.2. The lens to be tested is set up to form an image of a
point source, imaged at infinity by a collimator. The image is then
reimaged with a microscope objective onto an aperture slide. The
aperture slide contains a series of small apertures that may be slid

into the image plane. The light that passes through the aperture is

received by a photomultiplier. A measurement of the energy distri-

bution is made by sliding in the smallest aperture. The current
through the photomultiplier is recorded. Larger and larger aper-

tures are then slid into place until there is no further increase in

photomultiplier current. The percentage of flux for any particular

aperture is then obtained by dividing the current for each aperture
by the current for the largest aperture. The data obtained for a

lens is then plotted as shown in figure 13.3. The interpretation of

this plot for the 0° image is as follows: 30 percent of the total energy
in the image of a point source is contained within 10 microns; 80
percent is confined to 60 microns. Note that these curves are not
intensity-distribution curves. In order to find the intensity at any
radius it is necessary to differentiate the curve.

Experimental Details

1. The photomultiplier used was an RCA 931 A. This tube is

definitely red insensitive, but no attempt was made to balance the

186



photomultiplier with photographic response. Most of the measure-
ments reported in this paper were made using filtered light. The
light source was a 50-cp automobile-headlight bulb.

2. The photomultiplier was battery operated and was followed by
a low-noise a-c amplifier. The final signal was measured with a

Ballantine volt-meter. The light was chopped at 900 c/sec.

3. Special Bausch and Lomb 6 coated microscope objectives were
used to view the image. These objectives were painted dull black
and special care was taken in blackening the mount and spacing rings

in order to eliminate scattered light.

4. Ground glass was used between the apertures and the photo-
multiplier.

5. The size of the holes and their apparent sizes when in use by the
microscope objectives is shown in table 13.1.

6. The reflex viewer was used to provide a view of the image being
photometered.

Table 13.1. Size of holes in aperture plate versus size appearing in focal plane of
lens being tested

Apparent size with —
Size of hole (p)

100 200 400 800 1600 2000 4000

16-mm objective (p)--
8-mm objective ip)--

7.8
3.9

15. 5

7.8
31.0
15.5

62
31.0

124
62

155

78

310
155

Test on Reliability of Equipment

The linearity of the amplifier was checked electrically by putting
in a calibrated electrical signal from a Jackson signal generator. The
overall equipment was checked as a photometer in the following
manner. A well corrected telescope objective was used as a test lens.

The largest size aperture was then put in place. A green Wratten
No. 58 filter was inserted in front of the point source. Neutral filters

were then also inserted in front of the point source and their trans-

missions were measured with the equipment. The filters were cali-

brated previously using a Bausch and Lomb Martens photometer.
The results are shown in table 13.2. The errors included in the table
are the average deviation from the mean of four readings. The

Table 13.2. Transmission measurement made with photoelectric equipment and
compared with measurements made on a Martens polarizing photometer

Martens
polarizing
photometer

Photoelectric
photometer

%
78. 2 ± 2

62 ± 1

46 ±1
36. 6 ± 0. 7

28. 9 ± 0. 6

25. 3 ± 0. 5

18. 5 ± 0. 4

14. 9 ± 0. 3
9. 1 ± 0.

2

0~r
/O

73. 9 ± 0.

7

62. 9 ±0.4
44.7 ± 1

38.6 ± 1

28. 3 ± 0.

1

26. 0 ± 0.

4

18. 4 ± 0. 3

15. 2 ±0.4
10. 4 ± 0.

6

6 Recommended for our use by James Benford.
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greatest discrepancy occurs at the high transmission values. The
error may be due either to the Martens or the photoelectric reading.
The largest discrepancy between the two methods amounts to 4
percent.

The complete reflex viewer and photoelectric equipment was checked
by measuring the energy distribution of the image formed by a perfect
lens. A well corrected telescope objective stopped to f/15 was set up
directly on axis. Several attempts were made to measure the image
from a point source and when compared with the Airy disk the meas-
ured image was always larger. Several refinements were made. The
lens was centered more accurately, the tungsten source was replaced
with a mercury source with a filter isolating the 5461 A line. The
energy distribution was measured at several positions of focus. The
pinhole was made as small as feasible. With all these refinements the
agreement with the theoretical curve improved. The best agreement
found is shown plotted in figure 13.4. The results are tabulated in

table 13.3. The curve is made up of points using a 16-mm and an
8-mm objective. The agreement with the theoretical curve is only
fair but we believe the difference is not due to an error in measurement.
There are two reasons why the experimental curve could be broader
than the theoretical curve. (1) There is scattered light. The lens is

an air-spaced doublet. The surfaces were not tested but they may be
imperfectly polished or imperfectly cleaned. (2) The air between the
source and lens was not completely homogeneous. One could observe
slight image boiling. This effect would broaden the image.
Attempting to fit the measured curve with the theoretical curve

actually strengthened our confidence in the reliability of the equip-

ment. Each improvement made in technique showed up as a better

check. In order to get still better agreement it would be uecessary to

check the lens surfaces and probably repolish them. Also steps would
have to be taken to ensure perfectly homogeneous air between the

source and the lens.

Since we were interested in testing lenses and it was not known at

the time what accuracy of measurement was needed it was decided
not to check this point an}T further. As can be seen, there are differ-

Figure 13.4. Energy-distribution curve for an f/15 telescope objective.

Lens name, Telescope Objective; focal number, 15; focal setting, best visual; filter, Mercury 5461.

, Theoretical;
,
experimental; x, 16-mm objective; • ,

8-mm objective.
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Table 13.3. Energy content for a perfect telescope objective

The theoretical energy content for £ point source on axis is compared with the measured energy content
for a well-corrected F/15 (F'=35 cm) air spaced telescope objective. Monochromatic 5461 A light was used
for this test.

Spot
diameter

Energy

Airy disk
theoretical

Measured with
8-mm objective

Measured with
16-mm objective

M % % %
3. 75 14.5 9. 6 ± 0. 04
7. 50 47.2 35 ± . 6 35 ± 1. 5

15.0 83.0 73 ± .9 71 ± 1.5

30.1 90.8 89 ± 1.

3

85 ± 1.0

60.0 94.0 92 ± 3.

1

90 ± 2.

0

Figure 13.5. Experimental setup for image evaluation.

ences between the theoretical curve and the measured curve as large

as 12 percent, but it is our belief that the difference is not entirety an
error.

Image Evaluation Experiment

Following the suggestion of Wolff, Huber and Hansen the following

experiment was performed to relate the energy-distribution curve with
pictures taken on film. The basic experiment performed and the
equipment is illustrated in figure 13.5.

The point source image of a 7-inch Aero Ektar lens was photo-
metered. The lens was then shifted to a new position and a trans-

parency of a scene was photographed. The film plane was located
in the same position as viewed by the photometer. The scene that
was photographed is shown in figure 13.6. Finally, on a separate

film, a photograph of a %[2 line test chart was taken. In this manner
the energy distribution in the image, the resolving power, and a pic-

ture of a scene were obtained for several focal settings and f-number.

Experimental Details

1. The 7-inch Aero Ektar was used because it provided a large

variation of spherical aberration with change in f-number.
2. The scene was placed 8 feet from the lens, and it subtended 5°.

The image of the scene on the film was 13 mm by 11 mm. The long
focal length was used to obtain a reasonable size image on the film

without using the lens more than 2%° off-axis. The image quality
over the entire picture was then uniform.
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3. The Aero Ektar was mounted on a Kine Exacta camera body.
A special stiffened focal plane was built into the camera. For each
picture the film was pressed against the film plane by a pressure plate
that could be screwed down tight from the outside of the camera.

4. The lens was always focused at a definite focus position. The
settings used were 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, and 11.5. The
distance between each setting was 80/z.

5. Eastman Super XX film was used for all the tests. The Aero
Ektar was provided with an accurately polished 4-mm thick Corning
Sextant green filter. This filter has a peak transmission at 5200 A
and transmits 12% percent at 4900 A and 5580 A. All of the picture-

evaluation data was taken in green light with this filter.

6. A Wild 7

, V2 light lines on a dark background, high-contrast
resolution chart was used for resolution data. A 1-inch clear area
was used as a control area. The films were always developed to a

gamma of .8 ± . 1 . For each focal setting several exposures were made.
The resolution was read by at least two observers by viewing the

negatives with a 40X microscope.
7. The scene shown in figure 13.6 was photographed with an 8 by

11 camera using a Bausch & Lomb 12-inch Protar. The positive

transparency has a range of densities from .3 to 1.4 and a gamma of

.8. U. S. A. A. F. charts were placed alongside both sides of the print.

These were used as a check on the enlarging step. On the top and
bottom of the scene grey scales were used to control the exposure and
development. All the negatives were exposed and developed in

7 Supplied by Alan Murray, Bausch & Lomb Optical Co.

Figure 13.6. Scene photographed for image evaluation.
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microclol to a gamma of .8 ±.03 with a maximum density of 1.8

± .02 .

The negatives were then enlarged eight times in a Leitz condenser
enlarger, using a special lens loaned by the Signal Corps. This lens

is a Zeiss Biotar 10-cm focal length f/4, stopped down to f/6.3. The
lens is nearly perfect at this aperture ratio. The white-light image to

the first bright ring measured to be 7 jl.

The prints were made on Kodabromide F.3. Exposure and de-
velopment were controlled carefully to make the reproduced grey
scales alike. The grey scales were measured on the Capstaff reflection

densitometer. Any picture that had a density step differing by
more than ± .1 in the highlights and ± .02 in the shadows was rejected.

In the first series of pictures made (f/4 set no. 1) the tolerance was
±.02 but the tolerance was relaxed in order to obtain some results.

It was extremely difficult to make prints to fall within this tolerance

by using carefully controlled methods. The method finally adopted
was to make several prints and then select the ones that fell within
tolerance.

An extensive series of tests were performed to determine the loss

in resolution from the enlarging process. With a negative resolving

power of 37 to 40 lines per mm the prints on the average resolved 30
to 32 lines per mm. With a negative resolving power of 20 lines/mm
there was less than 1-line/mm loss in resolution due to the enlarging

process.

The above series of experiments provided the following data for

each position of focus of the lens: (1) Energy distribution curves;

(2) lines/mm resolution for several exposures; (3) glossy prints of a

scene.

Energy-distribution curves. Figures 13.7, 13.8, and 13.9 show the
energy-distribution curves for aperture ratios of f/2.5, f/4, and f/5.6.

Resolving-power data. The resolving-power data is summarized in

figure 13.10. The measured resolving power indicated by the dotted
lines is plotted against positions of focus. The first results showed
that the resolving power did not change with exposure if the density
of the control area remained between 1.4 and 2.0. The resolving

Figure 13 . 7 . Energy-distribution curves for Aero Ektar at f/2.5.

Lens name, Aero Ektar; focal numbers, 2.5; focal setting, 4.5 to 11.5; filter, Corning Green.
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Figure 13.8. Energy-distribution curves for Aero Ektar atfU.
Lens name, Aero Ektar; focal number, 4; focal setting, 4.5 to 11.5; filter, Sextant Green.

Figure 13.9. Energy-distribution curves for Aero Ektar at f15.6.

Lens name, Aero Ektar; focal number, 5.6; focal setting, 4 to 11; filter, Corning Sextant Green.

powers were, therefore, averaged if they fell within this range. At
least six independent film strips were used. It is well known that
reading resolving power is difficult. The result that one obtains
depends on the criterion used. The two observers who read the data
agreed on a criterion and then they read resolving power to within
an average deviation of not more than 3 lines/mm. It is our opinion
that the R. P. figure given is subject to a large error, as much as 10

or 15 lines depending on the criterion used. The resolving-power
data does, however, offer an interesting relative measure of the image
quality.

The solid curves in figure 13.10 are resolving powers calculated from
a formula based on the energy-distribution curves. At each focal

setting the size of spot that contains 30 percent of the energy was
determined. These spot sizes were used in the following formula to

predict resolving power.

R.P^WZlW+dff, (A)

192



where

di= spot size for 30-percent energy in microns
df= spot size for film (10 microns for Super XX).

FOCAL SETTING

Figure 13.10. Resolving power for several focus settings of the 7 in. Aero Ekton
atfl*.6,f/4,fl5.6.

The formula is empirical and is an oversimplification. It does,

however, indicate that the resolving power is determined by a very
small percentage of the energy. The agreement is good at the large

focal settings but discrepancies show up at the small focal settings.

At focal settings 4.5 and 5.5 the images contain small cores of light

and a large flare. This small core of light accounts for the high resolu-

tion. This type of distribution is due to the spherical aberration in the
lens. The effect is most pronounced at f/2.5, where the spherical aber-
ration is considerable. Inspection of the energy-distribution curves
indicates that less than 30 percent of the total energy is contained
within the small core. If the above formula were to predict the high
resolution shown at focal settings 4.5 and 5.5, it would be necessary to

use a spot size that contained less than 30 percent of the energy,
possibly as low as 10 percent. 8 It would then also be necessary to

combine this spot size with one at a higher energy level in order to fit

the curve at the higher focal settings. No attempt was made to obtain

8 We should recall that Huber [6] found that 25 percent of the energy determined the resolving power.
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better fittings for several reasons. The curves measured are not accu-

rately determined at such extremely small images. At the 10-percent

level, for example, the spot sizes run between 2/z and 14p in diameter.

There is also some question that the limiting resolving power is

significant. Finally, much more data would be needed to obtain a

reliable empirical formula.

Formula A is clearly incomplete because it limits the resolution to

60.5 lines/mm for Super XX. Resolution higher than this is possible.

A much simpler formula using the first power is as follows:

R.P.
700

d e -\-df
(B)

A comparison between these two formulas is shown in tables 13.4, a,

13.4,b, and 13.4, c.

Table 13 .4 . Comparison of calculated resolving powers
,
using formulas A and B

d\ A B Measured d\ A B Measured

(a) //5.6 (b) //

4

Lines/mm Lines/mm Lines/mm n Lines/mm Lines/mm Lines/mm
21 26 25 33 17.5 17.5

12 38.8 36.8 43.2 25 22.5 21.9 29.4

6 51.7 53.8 51.5 14 35.0 33.0 34.6
4 56. 2 63.6 55.9 7 49.6 50.0 44.8
6 51.7 53.8 54.1 7 49.6 50.0 49.2
10.5 42.7 40.0 38.3 9 44.8 43.8 44.8
16 32 30.4 28.1 15.5 32 31.1 32.4

24.0 23.3 22.6 22. 5

di A B Measured

(c) f/2.5

M Lines/mm Lines/mm Lines/mm
47 12 12.2 19

40 14.7 14 21

30 19.-1 17.5 26
20 27 23.3 31

15 33.6 28.0 34

13 36.7 30.4 34
15 33.6 28.0 30

It should be pointed out that these formulae do give a lens designer

some idea of the relation between resolving power and image size.

The examples are limited but it is the t}q>e of data a lens designer needs
to know, for how else is he to design a lens to meet specifications that

are invariably written in lines/mm. The formula gives a pessimistic

answer that may be advantageous.
Picture evaluation. The prints of the scene were observed by two

of the authors. Several combinations were obviously different in

sharpness. The remaining combinations that were difficult to dis-

tinguish between were selected for inspection by several observers.

The observers were asked to compare the pictures by pairs and to

pick the picture that they believed contained the more information.

Tables 13.5, 13.6, and 13.7 show the results of this survey. The first
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Table 13.5. Image evaluation data atf/2.5

Picture evaluation F/2.5

Focal
Setting

R. P. di
V. B. T.
Set 1

Comments

Lines/mm n
9.5 34 13 5 Very difficult to differentiate.

8.5 34 15 2 No significant difference.
9.5
10.5

34
30

13

15
6
1

jsignificant difference.

8.5
7.5

34
31

15
20

6

1
|Significant difference.

8.5 34 15 6 ^Significant difference due to less than 30-

10.5 30 15 1 J percent energy concentration.
7.5 31 20 3 INo significant difference. Depends on
10.5 30 15 4 / observer’s method of viewing.
7.

5

11.5
31

19

20
26

7
0

jSignificant difference.

6. 5

11.5
26
19

30
26 0

jsignificant difference. Reason not clear.

1 _ 1

Table 13.6. Image evaluation data at fl4-

Picture evaluation F/4

V. B. T.
Focal R. P. di Comments

settings

Set 1 Set 2

Lines/mm
8.5 49 7 8 3
9.5 45 9 1 5
8 .

5

49
1

7 8 4 1 All these pictures are similar. There is a possi-

7.

5

45 7 1 3 / bility that 8.5 is better than 7.5.

9.

5

45 9 2 4
7.5 45 7 7 3
10.5
6.5

32
35

15. 5

14.0
2 5

2
jDifference less than errors in printing.

10.5
5. 5

32
29

15.

5

25.0 1

6

1
jl0.5 significantly better than 5.5.

11.5 23 24.0 6 3 \No preference, however, 5.5 definitely has more
5.5 29 25.

0

3 4 / detail.

Table 13.7. Image evaluation data at f/o.6

Picture evaluation F/5.6

Focal
settings

R. P. di
V. B. T.
Set 1

Comments

Lines/mm 1 „

8 56 4
55 5

6
0

jsignificant difference.

9 50 8

55 5

0
6

jsignificant difference.

10 38 14 3 INo significant difference indicating influence
5 36 15 3 / of low energy concentration.
6

10
47 9
38 14

6

0
jsignificant difference.

6
9

47 9
50 8

4
2

jxo significant difference.

column is the focal setting. The second column gives the measured
resolving power on the negative. The third row contains the 30-

percent energy spot size. The fourth row contains the “Votes Better
Than” for the final prints. An arbitrary value of 75 percent of the
votes was called a significant difference.
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The data at f/4 is the most complete. Print set No. 1 was made
with the closest tolerance in tone quality. A complete duplicate set

of prints No. 2 were made to check the enlarging process.

Summary of Results

The survey may be summarized briefly as follows:

1. There was only one case of a significant difference where there
was disagreement between lines/mm and the 30-percent spot-size

criterion. This occurred at f/2. 5 for focal settings 6.5 and 11.5. The
curves for the two focal settings cross below 25 percent of the energy.
The lines/mm criterion agreed with the picture valuation. This
indicates that less than 25 percent of the energy is determining the
resolution and picture quality. This value may be lowered in this

case because the curves cross again at 65-percent energy content.
2. In one case (f/2. 5) there was a significant difference between

focal settings 8.5 and 10.5 in evaluation, no difference in the 30-

percent spot size but a difference of 34 and 30 lines per mm. This
also indicates that the energy concentration below 30 percent is

influencing the results.

3. There are cases, for example, at f/4, focal settings 11.5 and 5.5

where the observers divided their opinion, and the resolving power
and the 30-percent spot-size criterion were opposite. Careful observa-
tion of the prints reveal definitely more detail in some parts of the
picture with the high resolution. If the observers viewed the pictures

from a distance they picked picture 11.5. However, if they were
asked to view the pictures closely with a low-power magnifier they
would agree 5.5 had more detail. This observation agrees with what
Hansen [5] pointed out. His observers picked the pictures taken at

f/6.3 even though the pictures at f/4. 5 resolved more. The observers
either did not look for the fine detail, were not able to see it, or there

was a small percentage of fine detail in the picture and most of the
observers did not notice it.

4. The survey does show that very slight differences in resolving

power are significant in the final picture. The pictures also show that
as small as a 20-percent difference in spot-size results in a significant

difference in performance. No attempt was made to compare the
different f-number sets. Table 13.8 shows comparisons between
resolving powers for different focal settings and f-numbers when the

spot sizes were common. The agreement is fair but disagreement
does occur when spot sizes are similar and focal settings are on opposite

Table 13.8. Comparison of resolving powers for equal spot sizes obtained with

different conditions

Spot size R. P.

Condition

f/No. Focal setting

9 47 f/5.6 6

9 45 f/4 9.5

14 38 f/5.6 10

14 35 f/4 6.5

15 36 f/5.6 5.0

15 34 f/2.5 8.5

15 30 f/2.

5

10.5

15.5 32 f/4 10.5
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sides of focus. The pictures taken at the best setting at f/5.6 were
definitely better than those obtained at f/4, which in turn were better

than at f/2.5. The pictures also show very clearly the focus shift

between f/2.5 and f/4. There is a focal shift from 9.5 to 8, which is

approximately 120/z. This particular lens should be focused for best
focus at f/2.5. It is surprising how well the lens performs at f/2.5.

The image of a point source viewed visually is very large. The flare

extends out to 200 p.

It is clear that the energy-concentration requirements of a lens

depend on viewing conditions and interests of the observer. One
might generalize in the following manner. If a lens is required to

resolve fine detail then between 20 and 30 percent of the energy must
be concentrated to within the appropriate spot size. On the other
hand, if the prints are to be viewed so that this fine detail will never be
resolved by the observers then it would be better to allow a larger

spot size and put more energy within the spot size. Two opposite
cases are illustrated between the interests of a photointerpreter and
an amateur photographer.
The photointerpreter will view the prints with a magnifier looking

for every bit of information available. A lens for him then should
provide as much resolving power as possible, and the designer should
attempt to design a lens to put 30 percent of the energy to within as

small a spot as feasible.

The amateur photographer may take his pictures on a 3}£ X 4%
negative, make a contact print, and then view them from 10 inches.

From this distance he will probably not notice any detail less than
14 lines/mm. The lens, therefore, needs to have a spot size 40p
(Formula B) in diameter. The designer has the alternative of

placing more than 30 percent of the energy in this spot or simplifying

the design and allowing just 30 percent.

It is agreed that one can be carried away by oversimplified formulae.
The data obtained so far is scant. More data on more different

types of energy distributions should be studied. The data is confined

Figuee 13 . 11 . Plot of area weight-average spot size for several lenses.

Weighted-mean spot diameter of 50-mm objectives (50-percent concentration).

A, Ektar f/1.9; B, Sonnar f/2; C, Ektar f/4; D, Elmar f/3.5; E, Sonnar f/4; F, Elmar f/6.3.
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to Super XX and green light. Similar studies should be made with
red and blue light separated and then added together.

It is our belief, however, that much of the concern about the ac-

curacy of resolution data is splitting hairs. In actual practice a lens

must cover an appreciable field of view. Over this field of view the
spot size for the 30-percent energy concentration may vary by more
than a factor of 10. It would appear, therefore, that a lens can be
appraised most profitably by analyzing the energy concentration for

several points in the field for several positions of focus, and to place
the film in the proper position to obtain the minimum area-weighted-
average spot size. Figure 13.11 contains plots of area-weighted-
average spot sizes for several lenses. This type of analysis is extremely
lengthy and a simple criterion like a 30-percent energy spot size is

needed. We beheve a simple formula, even though an oversimplifi-

cation, is what optical designers need now. With it they can make
improvements in overall field performance of existing lenses.

Conclusions

The above experiments show that the energy-distribution curve
does indicate the performance of a lens. If the requirements on a
lens call for maximum resolution, as little as 25 or 30 percent of the
energy may be concentrated into as small a spot as possible.

It is recommended that lenses should be tested independent of film

by measuring the energy distribution in the image of a point source.

It is recommended that the lens should be checked photographically.
Line test charts are satisfactory if backed up with energy-distribution

curves. Anomalies ma}^ show up but they can be explained and
advance the knowledge of the subject.

It is also urged that the lens designer’s interests should be consid-

ered, by specifying lenses by their energy distributions. A single

spot size may be sufficient; two spot sizes would probably be even
better. Almost all military specifications are written today in terms
of lines/mm resolution. There is so little data available connecting
lines/mm and lens characteristics that the lens designer can go only
on his past experience and theories.

The photoelectric method described in this paper is probably not
suitable for production testing of lenses. The task of making all

the required measurements is formidable. The method suggested
by Schade [2] may offer a more convenient method of measurement,
but we urge that specifications should be written in terms of energy
concentration. Schade’s response factors can be converted to energy
concentration.
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Discussion

Dr. K. V. Pestrecov, Bausch & Lomb Optical Co., Rochester,

N. Y.: Dr. Hopkins, I really appreciate what you said at the very
end about too much emphasis put on resolution and perhaps some
other test could give you adequate results. But one who gets involved
in these data comes to a conclusion because of oversimplification. I

would like to challenge this statement. After all, if you have to

choose between photographs and one at first looks a little better to

you-—perhaps because there is a little better contrast—although the

resolution is a little lower, the picture with higher resolution still is

better when you look for finer detail. I think the interpreter looks

for recognition of detail. Resolution is my pet subject although I

don’t have much time to perform all these excellent experiments.
For example, if you consider a steeple on a church in several photo-

graphs, on one of the superficially worse looking photographs the

steeple may look a little better. The picture with the highest reso-

lution would have the peak of the steeple clearly defined. The photo-
interpreter looks for recognition of the steeple. Perhaps in high-

resolution photography some corners will be better defined although
the overall detail may be hazy; nevertheless, the picture may look a
little better and one would have an easier job of recognition. I am
not defending my position, I am just questioning. I think there is

some work pointing in that direction. It may be recognition of

detail but not mathematical detail that is so important. The photo-
graph may actually be better for functional use, aerial interpretation,

or something like that. I should like your comments.
Dr. Hopkins: I think there is a great deal in whether you are

trying to recognize something or whether you are trying to detect

what is there. I think it is splitting hairs. I think basically that if

you want to get a lens to satisfy all photointerpreters, you have to

put at least 25 percent of the light within as small a spot as is prac-
ticable. That, in itself, is theoretical. When you start to design
the lens, the minute you get off axis you really have a problem. I

am not so sure that anything more refined is necessary at this time.

The experience we have had is that if there is high resolution the
people can pick up more detail. We would ask them to look at the
ivy in this picture and tell whether it had little leaves or little buds
on it. They would be able to tell in the high-resolution picture but
not in the others.

From the results we had, resolution is very important. Also, I

have heard a lot of comments about people saying they can show
me a picture that does this or does that, but I haven’t seen them.
We have a set of pictures you can look at.

Mr. R. V. Shack, National Bureau of Standards, Washington,
D. C.: WTien you get off axis do you recenter your spot?
Dr. Hopkins: Yes, when you have coma it means that you will

be pushing the aperture around each time you change it.

Dr. M. Herzberger, Eastman Kodak Co., Rochester, N. Y.:
Prof. Hopkins, I think your method and the method that we apply
can be very easily coordinated since we have in our calculations a
quantity that is equivalent to the light distribution. One can very
easily count the number of points within an area, and this deter-

mines the area that contains 20 or 25 percent of the light and one
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can easily see by inspection where to look for such an area. I think,
if you have a lens, it would be quite interesting to try to see whether
we could duplicate your results from the data of the calculation.

Dr. Hopkins: It would be very interesting. We actually have
the design data on that F/2.5. We have retraced it and checked the
energy-distribution curves. There is quite a difference. We don’t
know whether the lens was not made right or the patent fails to

include the latent constructional details.

That actually is a very difficult problem to work out. I would
not want to attempt it on anything more than a simple doublet.
Dr. Pestrecov: I would like to state that we have recently found

with some of our work that there is a negative correlation between
limiting resolving power and what we have been choosing to call

picture sharpness. This business of using a resolving-power limit

can get you into very serious trouble. It does not tell you about
picture sharpness. In a great many cases they do run parallel, but
in many significant cases they do not.

Dr. Hopkins: I covered myself by saying that if we had high-
resolution data and energy data we would be able to explain this.

Mr. A. H. Katz, Wright Air Development Center, DajTon, Ohio:
In connection with the points raised by Dr. Pestrecov and in earlier

papers, I notice that a number of people have been gleefully trying
to kick the three-line resolution target to death. I want to point out
again—and I have done this in other meetings, 1,2 that it has served
its purpose well. This purpose, simply stated, is to serially grade
lenses in a manner that will correlate with their photograph-making
rank. I have yet to be shown that our use of the three-line target in

the judging of lenses to be used for aerial photography has led to any
error, let alone consistent error.

Now, we have lots of data, most of which is not neat and packaged.
The exigencies arising with the working conditions in the Air Force
are such as to effectively preclude the careful running of planned ex-

periments. We substitute large numbers of airplane flights and
tests, and after a number of years we come to pretty definite con-

clusions—by statistical osmosis, if you will. We know by now that

when we get a lens that performs well in the laboratory (on the much
maligned three-line high-contrast target) it will take high-quality

photographs in the air on good days as well as bad days. The con-

verse is also true. Laboratory tests enable us to predict the quality

of actual aerial photographs. I can’t expect much more of a labora-

tory test. Let us not forget that it is only within the last 10 years

that lens performance began to be specified in terms of resolution

requirement over the field, and that manufacturers began to use these

tests, and it is only within the last couple of years that photointer-

preters have begun to hear of lines per millimeter as a measure of

performance.
A word about the photointerpreter, whose name has already been

taken in vain. He is the consumer of the photographs produced by
the lenses, and if he were here today he’d be speechless. Only lately

has he really realized that the scale of a photograph (the altitude

divided by the focal-length) is not enough to describe what he needs.

The fact that some photographs are sharper than others has only com-

1 A. H. Katz, Contributions to the theory and mechanics of photointerpretation from vertical and oblique

photographs, Photogrammetric Eng. 16 , 339-386 (June 1950).
2 Panel Discussion, Cameras, lenses, and calibration, Photogrammetric Eng. 17 ,

417-420 (June 1951).
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plicated his life, and it is not because of him—as would be logical

—

that we have specified, procured, tested, and standardized lenses,

many of which can hardly be significantly proved. What I mean is

that we’ve done this for the photointerpreter, but not because of any
enlightened self-interest on his part.

A few years ago the Air Force issued a statement that we could

take photographs of railroad ties from 40,000 feet. It so happens
that we had previously resolved railroad ties on photographs from
30,000 feet, but we couldn’t find these when asked to produce actual

photographs. Well, we had to do it. We did it. It was not extra-

ordinarily difficult, but it was not done the first time we tried. One
of the requirements on the photography was that it be of the St. Louis
area. We used one of Dr. Baker’s 40-inch f/5.0 telephoto lenses,

mounted on a standard K-22 camera, and flown in an RF-80 recon-

naissance aircraft. No moving film magazine, no special mounts were
used. Just straight photographic technique—careful exposure, devel-

opment, and printing. We found the particular stretch of track later.

The contrast—on the ground—between ties and ballast was negli-

gible—the main differences being that of texture between well oiled

ties and dirty darkened ballast. Now in this series of photographs
was one of the Alcoa aluminum plants in East St. Louis; I identified

this as such because on the roof of one of the buildings was painted
“alcoa.” However, when I started to show these exceptionally

sharp photographs to a photointerpreter here in Washington he iden-

tified the aluminum plant before I got the photograph within 2 feet

of his eyes. His identification was based on the large residue lake

near the plant, a characteristic feature of aluminum production plants,

I haven’t the vaguest idea how to put this into an equation.

I think many of you here have either cooperated on or seen this

standard—Military Standard-150. 3 It represents the best govern-
ment-industry-designer agreement we have ever had on the subject of

definitions and test methods. In this standard we adopted the area-
weighted-average resolution of radial and tangential resolution

AWAR=^‘RiJtAt

'J\

where i?* and Tt are the radial and tangential resolution in the zone of

area A i} and A is the total area of the field used. Some of us like to

ascribe some meaning to this average, although what happened is

that we needed a number and we produced the most reasonable and
justifiable we could think of.

But how about the difference between two lenses that have the same
AWAR? Suppose we have a lens whose resolution varies from 40
lines/mm at the center to 10 lines/mm at the edge of its field, and that
the average is 20 lines/mm. Let us say we have another lens that
varies from 22 to 18 lines/mm, center to edge, and that also averages
20 lines/mm. Which lens is preferable, assuming uniform probability
of occurrence of objects of interest in all parts of the field? I strongly
suspect that we really want the second lens.

Other questions dealing with evaluation of two lens systems are
even more complicated. Suppose for Air Force purposes, we have,

3 Photographic lenses, Mil-Standard-150 (U. S. Government Printing Office, Oct. 23, 1950) 25£.
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let’s say (with our test, which can be disputed the rest of the evening
of course) a lens that will average 22 lines/mm with the film used hi
aerial photography. Let’s also suppose it weighs 3 times as much and
costs 10 times as much as another lens of the same focal length and
angular coverage, but that the second lens averages only 14 lines/mm.
(By the way, we never seem to be faced with the converse of this situa-

tion. Here’s a good problem for the lens designers.) Let’s further
suppose that the detail we’re interested in is caught wuth the lighter,

cheaper, lower resolution lens perhaps but 10 percent of the time it is

used, but the better lens records this detail in interpretable form 90
percent of the time it is used. How then compare the value of the
lenses?

From this standpoint it is clear that relative figures of 9 to 1, or some
function of these figures, is more reasonable than actual cost or resolu-

tion figures. I am not throwing these out as answers but am only
suggesting that there are large numbers of questions that are un-
answered, even after resolution figures or other performance indices
are given. Unfortunately, the more we learn of this business, the more
questions arise. Progress here seems to he in the direction of aware-
ness of relevant questions.

I also feel strongly that Ave are really looking for some measure of

the information content of an optical (or photographic) image. This
question has not been thoroughly explored, and as far as measuring
information content, I feel that all proposals—U. S. Air Force resolu-

tion measurements, Howlett’s doughnuts, Cobb Charts, Eastman’s
acutance, etc.—while clearly having some relation to information
content, are equally poor measures of information content. This is

no criticism of these interesting systems. They Averen’t supposed to

measure information content, and they don’t. I think this may Avell

be a fruitful area for careful investigation.

This particular problem is already under investigation by Dr.
Macdonald’s group at Boston University, where the concepts of com-
munication theory and related techniques are being applied. The
mam difference betAveen this approach and the ordinary methods of

measuring lens performance seems to be in consideration of the over-
all system—including the ground object, the atmosphere, the camera,
its platform, the lens, and its AA'indows, the film, processing system,
and the interpreter. But since this is such a large subject it provides
me a good place to stop.

Chairman: Dr. Baker?
Dr. J. G. Baker, Haiward College Obseiwator}" and Perkin-Elmer

Corp., Nonvalk, Conn.: There is one point I meant to emphasize this

morning in connection AAuth aerial photography. It is that an increase

in focal length appears to be much more effecthm in improving ground
resolution than an increase in the ultimate quality of a lens. In other
AAmrds, put it this way. Suppose that a

tou are taking aerial photo-
graphs under hazy conditions, AAdiich is often the case. If Amu double
the focal length, you may realize up to twice the results in groimd
resolution, whereas if Amu double the lens quality of the standard
lenses, you may realize only a 20-percent gain. On good photographic
days, a doubling of the lens quality may realize up to a 60 percent-
gain, possibly, aaTucIi is likely to be a striking difference. The focal

length is still the more important parameter.
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This does not mean that quality should not be sought after. Where
the focal length must be held to a certain value because of space
limitations, the high-quality lens will easily out-perform the low-
quality lens. Differences of a few lines/mm are discernible and often

of importance. But where the focal length can be increased, that is

the more certain way to increase ground resolution. Where quality

and long focal length are combined, you have the best answer, and
this has been the goal of my own work since 1941.

However, at some point in the quality spectrum the law of dimin-
ishing returns sets in, and a lens may become too expensive for the

percent gain achieved. The designer should go as far as he can in

obtaining quality, while employing practicable constructions. But
sometimes the demands of a problem are so severe as to require com-
plicated constructions in order to maintain even a fair degree of

quality. When I speak of lens quality, I am thinking of microscopic
contrast as well as of resolution.

Dr. R. C. Gunter, Clark University, Worcester, Mass.: These
remarks are addressed to Dr. Ingelstam and to practically everyone
who has spoken before and some who are going to speak subsequently.
Some years ago during a rather heated discussion between some
medical men, when it didn’t seem that we were going to be able to

resolve the question as to whether a new theory was or was not
applicable to the human brain and various ones were tearing each
other apart mentally, I suggested that perhaps the reason for the
difficulty and the lack of agreement between the experimentalists and
the theorists was similar to that that had existed in objection between
the wave theory and the particle theory. The minute I said that
Werner turned around like a flash—I was the only physicist 1 think
in the group and that was the only observation I could make—and he
said, “The trouble with you is that you neglect the role of the
observer.”
Now, it has been touched upon several times as I have said, by Dr.

Howlett, by Dr. Hopkins, and by many others, that we should be
able to separate the observer, the human being, from the equipment.
If we cannot at this time define what we mean by the word “energy
distribution”, perhaps we had better reevaluate some of the funda-
mental concepts of physics. On the other hand, it is perfectly pos-
sible and is indeed present in every day life—as Dr. Hopkins could
undoubtedly tell you though I haven’t conversed with him on this

—

if you ask somebody, “Do you see such-and-such in a picture,” if

there is any possibility of seeing it there invariably people will say,

“Yes.” There are many other experiments in which the borderline,

where we go from psychology, perhaps, into physics, is so nebulous
as to influence our decisions. This is a point, as Dr. Howlett men-
tioned, actually of rather deep philosophical importance, but I be-
lieve that the point that was made in Dr. Ingelstam’s abstract—it is

in quotations where he says so-and-so. I would like to see some dis-

cussion at a later date—it is getting late tonight—on some support
of experiments that could be conducted to find out just how much of

a part the observer plays from the point of view of seeing what he
wants to see. I have measured spectral lines and after awhile I knew
I was measuring lines that were not there but I was recording wave-
lengths for them.
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I would like to hear Dr. Ingelstam’s further delineation of his ideas
of putting down this term “standardization.”
Dr. E. Ingelstam, Royal Institute of Technology, Stockholm 70,

Sweden: I quite agree with you. One should distinguish what is

really physically measurable concerning the intensity distribution.

How it should be done I can not say at present. I think there could
be some discussion tomorrow after we hear Selwyn’s paper and some
other papers. However, I think that one should make a separation
between the physical resolving power and the intensity distribution

in a given instrument, and the influence of the receiver, maybe the
eye or the photographic plate. I think that there is sufficient work
done now to enable one to make decisions of this type. I quite agree
with the logic of your question.
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14. Optical Calculations at the National Bureau of

Standards

By Donald P. Feder 1

Since the advent of automatic computing machinery in the past
few years, these machines have been increasing in numbers very
rapidly. There are at present some six, large-scale, general-purpose,
automatic, digital computing machines in operation. In the next few
years their number will have increased to about 50. In addition
there are a larger number of medium-sized machines in use. In view
of the increasing availability of this equipment, which can greatly

facilitate optical calculations, you may like to hear something about
these machines and the optical calculations which have been pro-
grammed for them, at the National Bureau of Standards.

Three words have been used to describe these machines, “auto-
matic”, “high speed”, and “electronic”. By “automatic” one means
that the initial data and the constants of the system are introduced
into the machine, which solves the equations, stores necessary inter-

mediate results, makes logical decisions about the course of the

calculations, and finally prints out the answers in a useable form.

The phrase “high speed” can be best illustrated by an example.
The SEAC (Standards Eastern Automatic Computer) has been
coded to trace a general ray through a system of spherical surfaces.

Through a system of 10 such surfaces, the SEAC can trace a skew
ray in 8 seconds. In this time it does 440 additions, 320 multiplica-

tions, 10 divisions, and 20 square roots, and it does these things to 44
binary places (about 13 decimal places).

Finally “electronic” simply refers to the technology that has made
these machines possible.

In addition to the SEAC there is also available at the Bureau a
CPC (Card Programmed Electronic Calculator). This is a machine of

more moderate speed and capacity. It has a memory for 23 numbers
in one type of storage, and, in addition, a small high speed memory.
The use of the high speed memory permits the very rapid extraction

of square roots.

By comparison the SEAC has a memory of 1,024 words. In the
SEAC, however, some of the storage space always contains instruc-

tions. This limits the effective memory considerably. In the CPC
the instructions are on punched cards and do not occupy any of the
memory cells.

The CPC has been used for routine ray tracing since March 1950.

This machine required 34 seconds to trace a skewray through a spherical

surface. It traces one ray" at a time, which distinguishes it from cer-

tain other machines of this type. It has also been coded for non-
spherical surfaces so that now rays can be traced through any" system
of rotationally sy-mmetrical surfaces. The aspheric surfaces are

1 National Bureau of Standards, Washington, D. C.
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handled by adding a power series to the equation of a spherical surface.
The power series may contain as many terms as necessary and this

introduces no storage problem because the coefficients of the power
series are stored on punched cards. The problem is to find the inter-

section of the ray with the aspheric surface. A simple iteration has
been found, which converges and, what is more important, converges
in less than five iterations for any aspheric surface likely to be used
optically. The entire calculation requires about 2 minutes per
surface, but since not many surfaces of a system are apt to be aspheric,

this is not very' serious.

Something should be said about the type of formulas used in these
calculations. They involve only curvatures and never radii of curva-
ture. Each number used by the computer is bounded in a known way
by the linear dimensions of the optical system. Hence, by choosing a
proper scale factor it is always possible to fit the problem into the
machine. Floating decimal operations are thus avoided. All the
numbers involved are of the same order of magnitude and the accuracy
is very good.

These same statements might also be made in connection with the
other optical calculations discussed in this paper. The formulas have
always been converted to such forms that no number has the possi-

bility of becoming infinite. In practice this means that no number
becomes very large and so accuracy is maintained.
The other type of calculations presently being done at the Bureau

are calculations of the image errors of various orders. The CPC was
first programmed for the calculation of the first and third orders (that

is the Gaussian and Seidel coefficients). For this purpose two paraxial
ray's are traced through the system, a paraxial marginal and a paraxial

principal ray. The machine runs through the calculation and prints

the following data: The height of each ray' on each surface; the slope

angle of each rayT in each medium
;
the coefficient of spherical aberration,

of coma, of astigmatism, of field curvature, and of distortion. In addi-

tion it prints the first-order coefficient for the two ty'pes of chromatic
aberration and five checks, which ought to be zero. These checks
may be inspected to verify' that no mistake has been made. The
entire calculation including the printing requires only7 40 seconds per
surface.

A somewhat more unusual calculation is that to obtain the fifth-

order coefficients. The equations are algebraic equations modified
from those published by' Wachendorf. 2

It is too early' to sayT how valuable the fifth-order coefficients will be
since our experience with them is extremely' limited. It is likely' that

their chief value will be in optical design rather than in the evaluation
of image quality7 .

With the CPC the complete calculation of the fifth-order coefficients

requires 7 minutes per surface. While this may7 seem a long time, the

calculation is very laborious and would require almost too much time
to be practical for hand computing. This calculation is being pro-

grammed for SEAC and on this machine will probably' require only7 a

few seconds per surface.

The calculations mentioned above are all being done routinely' at

present in this laboratory'. It can be seen that with the possible

2 F. Wachendorf, Optik 5, 80 (1949).
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exception of the fifth-order coefficients and the tracing of skew rays
through aspheric surfaces, these calculations are no more extensive
than are commonly performed by lens designers using hand machines.
We have seen that there are gaps between the information that the
designer gains in this manner and the information that the user of the

system would like to have.
In the past the designer has usually obtained curves denoting the

aberrations of meridian rays as functions of aperture, and curves
showing the position of the sagittal and tangential foci as functions
of field angle. These have not been sufficient to answer many ques-
tions about the image formed by the system. Such a question, for

example, as the calculation of the limiting resolution in lines per
millimeter from a particular combination of object, lens, and film

could not be answered from such data alone. More generally, one
might be interested in the image contrast from an object of given
contrast produced by a lens and film of known characteristics. Ques-
tions such as these ought to be answered by calculation from the con-
structional data of the system.

In accomplishing this purpose various approaches might be tried.

With a machine such as SEAC, it should be possible to calculate the
diffraction disk for a luminous point. On the other hand it may not
be necessary to go beyond the geometrical picture, especially for

photographic objectives where the aberrations are likely to be many
times the Rayleigh limit. In this case it is possible to get an approxi-
mate distribution of energy in the image using a method similar to

that used by Herzberger.
In this method one divides the entrance pupil into a large number of

equal areas. For a particular object point a ray is traced through
each of the small elements of area, and its intersection with the

image plane is calculated. One supposes that the energy of each
element of the wave front arrives at the image plane in the neighbor-
hood of the ray. If the calculation is made for a large number of

rays, the distribution of their image points gives an approximate pic-

ture of the energy distribution in the image of a luminous point.

When the distribution of energy is known, a knowledge of the charac-
teristics of the photoreceptor should enable one to find the appearance
of the image.
Another possibility is to calculate the interferometer pattern for

various field angles. A large number of rays might be traced by a
machine such as SEAC which would retain in its memory the results

of the calculations, fit them to some favorable type of function giving

the wave surface and then by intersecting this surface with a series

of spheres one-fourth of a wavelength apart obtain an interferogram.

This could then be interpreted directly to secure an idea of the image
quality.
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15. Resolving Power of Airplane-Camera Lenses

By F. E. Washer 1

Shortly after the close of World War I, the National Bureau of

Standards began testing photographic objectives for the U. S. Army
Air Corps to determine their suitability for use in airplane cameras
for mapping projects. The measurements made included determina-
tions of spherical aberration, chromatic aberration, curvature of field,

astigmatic difference and distortion.

These measurements were made on a visual optical bench [l]
2 and

for a time were entirely adequate. However, as the use of airplane

photography for both planimetric and topographic mapping increased,

it became evident that the volume of work submitted to this Bureau
was too great to handle by the visual method. In addition, the eval-

uation of the quality of definition throughout the image plane together

with the location of the plane of best average definition is a laborious

and time-consuming process when performed visuall}7 . Moreover,
legitimate doubt exists as to whether a visual method can be satis-

factorily used to determine probable photographic quality of definition.

To meet the increasing demand for a rapid and adequate perform-
ance test for photographic objectives, the precision lens-testing camera,
shown in figure 15.1, was conceived bv I. C. Gardner and designed by
F. A. Case [2]. This device in its earliest form permitted the evalua-
tion of the equivalent focal length, distortion, and resolving power
from a single negative. Nineteen rows of images were obtained on
the negative, each of which showed the quality of imagery at 5° inter-

vals from the center of the field to a point in the image plane 30° from
the axis for a specific distance from the lens. Consequently, it became
an easy matter to locate the plane of best average definition and to

determine the back focal length of the lens associated with the plane
of best average definition.

A resolving-power test chart, shown in figure 15.2, was developed
for use in this equipment, consisting of a series of patterns of parallel

lines with the spacings varying by the square root of two. The con-
trast between the lines and spaces in the target patterns is high and
may be considered as infinite.

With the large number of lenses being tested, it was only natural
that a considerable quantity of test negatives would accumulate that

could be used to carry out statistical investigations of the quality of

imagery inside and outside of focus as well as in the plane of best axial

imagery. The first of these studies was reported in 1939 [3] and dealt

with three types of airplane camera lenses in most common use at that
time. The wide-angle lens had not yet come into extensive use at

that time and the investigation was confined to imagery in the angular
region between 0° and 30° from the axis for lenses having a focal length

1 National Bureau of Standards, Washington, D. C.
2 Figures in brackets indicate the literature references on p. 218.
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Figure 15.1. Precision lens-testing camera.

The 10 collimators are in the upper right-hand part of the photograph; the lens testing bench and plate
holder are in the lower left-hand part; the lens holder is obscured by the camera back and doew not appear
in the picture.

= II
Figure 15.2. Chart for testing resolving"power.

A chart of this type is located in the focal plane of each collimator.

of 8% inches. Several items of interest were found in this early in-

vestigation. First, the resolving-power characteristics of a given type
of lens remain remarkably constant from one lens to another. Second,
what appeared to be striking variations from one lens to another so

long as a single image plane was considered faded into insignificance

with proper choice of the focal plane. Third, by proper choice of a
focal plane, the performance of a lens in the outer portions of the field

could be considerably improved with only a small diminution of qual-
ity in the axial regions. This finding led directly to the concept of

plane of best average definition, which is now recognized as the best
plane to bring into coincidence with the focal plane of the aerial

camera. Fourth, the phenomenon of false resolving power was noted.
This led to the concept that a pattern should only be counted as re-

solved when it and all coarser patterns in the series were resolved.
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Each of the collimators of the lens-testing camera is provided with
one of these charts with the line patterns so proportioned that when a
given pattern is imaged by the lens under test the same value of re-

solving power is indicated regardless of its position in the field. The
values of the resolving power in the image plane of the test lens usually

ranges from 3.5 to 56 lines per mm for both tangential and radial

lines.

Eastman type V-E spectroscopic plates are generally used. This
emulsion, while too slow for airplane photography, has much greater

resolving power than the panchromatic films used in aerial photog-
raphy. Consequently, this makes it probable that an indicated

deficiency in the observed resolution arises from a deficiency in the

lens rather than in the photographic emulsion. The plates are proc-

essed in Eastman Dl9 developer for 3 minutes at 65° F.

When the lens-testing camera was first put in operation in early

1936, perhaps 50 lenses were tested the first year. The number has
increased steadily since, and during one recent year more than 300
lenses were tested. It is safe to say that the performance of well

over 1,500 lenses have been evaluated on the lens-testing camera
alone since 1936.

By 1940, it was evident that the trend was toward the use of wide-
angle aerial camera lenses and the precision lens-testing camera was
modified to extend its range to cover the region from 0 to 45 degrees
from the axis. The second study on resolving power was reported
in 1942 [4] and dealt among other things with the resolving-power
characteristics of several types of wide-angle lenses.

Throughout the years of making test negatives on the precision

lens-testing camera, it was always evident that the device was admir-
ably well suited to investigating image quality throughout the region

of usable imagery and in 1945 [5] a studv was reported along these

lines. The curves, shown in figure 15.3, illustrate the manner in

which the resolving power increases and decreases as the image plane
moves steadily from a point well inside focus to a point well outside

focus. The results are plotted at each 5° interval from 0 to 45
degrees from the axis for both tangential and radial resolving power.
The zero line of abscissae corresponds to the point of best axial focus.

The effect of curvature of field is strikingly manifested by the change
in relative position of the maximum with respect to the plane of best
axial imagery. The varying widths of the principal maximum
increase with increasing f-number and in the graphs shown for f/16,

the heights of the peaks are beginning to show the expected decrease.

From curves of this type, complete information concerning the

effect of stop opening on resolving power and depth of focus; the
change in maximum resolving power with angular separation from
the axis; and the effect of change in stop opening on the resolving

power in a given image plane may readily be obtained for a given lens.

The possibilities of the precision lens-testing camera as a research

instrument in the study of resolving power are by no means exhausted.
However, since this device was first put in operation the study of

resolving power of aerial camera lens has become the subject of interest

in other laboratories both here and abroad. These other investiga-

tions brought fresh points of view and new ideas regarding the manner
in which the subject should be approached. A wide variety of test

charts was developed by the various groups. Chief among these
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Figure 15.3. Resolving power versus position of the image plane for lens A a
apertures f/8 and f/16.

The resolving power throughout the region of useful imagery is shown for tangential T and radial R lines
at 5° intervals from 0° to 45°. The zero of abscissae marks the position of best visual focus on the axis at
f/8 and positive values of abscissae indicate positions farther from the lens.

charts are the three-line high-contrast target of the Air Force [6], the
low-contrast annulus target of the Canadian group [7] and the low-
contrast two-line or Cobb chart of the British group [8].

The principal changes in approach from that followed at this

Bureau are the emphasis on low contrast and the use of emulsions
having characteristics more nearly approximating the emulsions used
in the aerial camera. The low contrast of the test chart was justified

on the basis that the difference in brightness between adjacent objects

on the ground was small when viewed from an airplane and, conse-

quently, the variation in contrast in an aerial negative is low.

As a result of the findings of these other laboratories, there has
been some tendency to question the suitability of the high-contrast
chart in the determination of resolving power. It is right and proper
for such questions to be raised, but in defense, it ought to be stated

that the results of the resolving-power test as used at the National
Bureau of Standards have been applied as a go or not-go criterion by
the various mapping agencies. A lens to be accepted for use in aerial

photography must satisfy certain minimum requirements. These
minimum requirements were early established by examining a number
of negatives made by different cameras and assessing the negatives
as being suitable or unsuitable for use in map making. On checking
back to the resolving-power measurements made on these lenses for

the high-contrast target, it was found that the unsuitable negatives

were obtained with lenses having a resolving power less than 7 lines/

mm, whereas for the suitable negatives the resolving power of the

lenses exceeded 7 lines/mm in all parts of the useful field. It is
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unfortunate that this correlation was not made the subject of a

formal report instead of being* informally presented as was done at

the time.

This work was done by a committee of the American Society of

Photogrammetry and the suggested lower limit of 7 lines/mm first

appeared in 1935 in a tentative set of standard specifications [9]

prepared by this society. In later specifications the figure was
changed to 20 lines/mm for central imagery with the figure left at

7 lines/mm throughout the remainder of the useful field. In addi-

tion, there are Federal Specifications pertaining to optical perform-
ance that require that the quality of imagery be determined with the

aid of high-contrast charts. The Federal Specifications are used
extensively in connection with government purchases. The require-

ments contained therein have been developed over a period of years
in collaboration with representatives of industry and government
agencies. Consequently, any change that is recommended must be
in the direction of a definite improvement that is clear to all concerned.
A change in requirements frequently necessitates the development of

new test methods, the development of which must precede any actual

change in the Federal Specifications themselves. Accordingly,
changes in these specifications are not quickly made and even though
new requirements may appear desirable, the existing requirements
continue in use until the new requirements with appropriate test

methods are agreed upon.

Because of the uncertainty that had been created in the minds of

those people concerned with specifying quality of definition as a
result of the many diverse opinions on the subject, it was decided to

initiate further research at this Bureau into the factors affecting-

definition in the photographic image. A new resolving-power test

chart was designed that would simultaneously give information on
resolving power and the effect of contrast on resolving power. At the
same time, the chart was provided with a greater range of frequencies
and capable of yielding greater precision in determining the limit of

resolution. The design of this chart was reported by I. C. Gardner
in March 1950 [10] at the New York meeting of the Optical Society
of America.

The actual making of the new chart was reported at the Cleveland
meeting of the Optical Society of America in October 1950 [11].

This new resolving-power chart is so made that the transmittance of

the lines and spaces along the y-axis vary in such a manner that the

contrast is a linear function of y and the transmittance of the chart
averaged over an area embracing several pairs of lines is uniform
for the entire plate. Along the z-axis, the widths of the lines and
spaces progressively decrease so that the “instantaneous” value of

the line frequency is a linear function of the distance measured nor-

mally to a “zero” line of abscissal of the chart.

The chart was made in two steps, the first step being the making
of the master high-contrast chart, shown in figure 15.4. The range
of frequencies on the master target plate is from 0.2 to 2 line/mm,
which means that the actual widths of lines and spaces vary from
2.5 mm to 0.25 mm. To cover this range in a continuously varying
linear manner there are 200 lines and 200 spaces contained" in a dis-

tance of 180 mm. The zero line is 20 mm from the origin so that
the over-all length of the resolving-power portion of the chart is 200
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Figure 15 .4 . Master high-contrast test chart.

The line frequency is a linear function of the distance measured across the lines. The zero of the chart
is at the inner edge of the first broad line.

mm. It is necessary that the lines be as long as possible to provide
a contrast scale of approximately the same length as the frequency
scale and, moreover, to simplify the process of making microdensi-
tometric studies of final test images. The length of line used is ap-
proximately 185 mm, enabling the entire chart to be registered on a
standard 8- by 10-inch plate.

The second step consists in contact printing the high-contrast
target on a photographic plate under conditions such that the exposure
time varies over the plate in a predetermined manner [11]. The
high-contrast target is then removed and a second exposure is given
to the photographic plate in such a manner that the transmittance
averaged over several lines of the finished negative is a constant.

Figure 15.5 shows a typical variable-contrast target produced by this

process. For the particular variable-contrast target illustrated in

figure 15.5, the scale at the left marked “Contrast” shows that in the

original transparency the contrast varies in a linear manner from
0 to 1.5. Contrast as used here is simply the difference in photo-
graphic density between dark and light areas as measured on a densi-

tometer. The lower scale gives the line frequency or resolving power
in lines per millimeter at a 25x reduction. Since the present print

is somewhat reduced in size, the marked scale is correct only when
the distance from 0 to 50 is equal to 8.0 mm in the final image. The
chart was photographed for use in this illustration and it is unlikely

that the contrasts shown on the scale are still correct. However, in

the original, the contrast remains constant at a given y-height, whereas
the line frequency varies linearly from 0.2 to 2.0 lines/mm.
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Figure 15.5. Variable-contrast master test chart.

In addition to the features contained in the master high-contrast chart, the contrast varies in a linear
manner from 0 to 1.5. The “moire” effect appearing in the right-hand portion of the illustration is pro -

duced by the interaction of the periodic pattern of the halftone screen and the pattern of continuously vary-
ing liDe spacing in the chart. Consequently, the above figure is not a true reproduction of the chart, al-

though it is a fairly close approximation in the left-hand portion.

Some trials have been made with this new target and the results

are shown in figure 15.6. The target was set up at a distance of 51
focal lengths in front of the test lens. It was lighted from the rear

by a broad uniform light source and negatives were made using three
different emulsions with the lens set at an aperture of f/8. Figure
15.6 shows the results obtained with Eastman Spectroscopic Plate,

type V-G. The reduction ratio is 50 to 1 so that the frequency that
is shown at the bottom of the figure ranges from 10 to 100 lines per
millimeter. Values of the contrast obtained from microphotometric
recordings at three different heights across the negative image are

shown as a function of the line frequency. The contrast in the target

at a given height is approximately constant, so that the decrease in

contrast in the image results from action by the lens-emulsion combi-
nation. Curve 1 shows the results for high-contrast target, curve 2

for a medium-contrast target, and curve 3 for a low-contrast target.

The results appear to be in agreement with what one might anticipate

on the basis of the literature dealing with the subject of target con-
trast and resolving power. However, the chief point to emphasize
here is that the data for drawing these curves were obtained from a
single negative, with consequent marked reduction in the number of

factors that might conceivably make difficult the correlation of resolv-

ing power with contrast in the target.
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Figure 15.6. The variation in contrast for increasing line frequency for Eastman
spectroscopic type V-G emulsion.

Target contrast is 1.3 for curve 1; 0.5 for curve 2; and 0.2 for curve 3. (The average density of the negative
is 0.45).

At the present stage of the investigation, it is clear that it would be
difficult to determine just what value to assign to the upper limit of

resolving power of the lens for a given target contrast. The resolving
power reaches its maximum when the contrast in the image reaches
zero. However, because of local irregularities in the image it is not
possible in the present stage of the investigation to state with cer-

tainty just when the contrast in the image reaches zero. As a prac-
tical expedient it may be preferable in reporting the performance of a
lens under given conditions to state what the value of the resolving

power is for a selected value of contrast in the image for a specified

value of contrast in the target.

For example, we may wish to report what the resolving power is for

an image contrast of 0.1 for several values of target contrast. This
information is readily Obtained from these curves. Table 15.1 shows
the values of the resolving power for an image contrast of 0.1 for three

emulsions for the three values of target contrast that were shown in

figure 15.6.

Table 15.1 Resolving power in lines per millimeter for image contrast of 0.1 for
three emulsions for three target contrasts

Contrast V-G Pan Process Panatomic

'

1.3 64 36 30
0.6 46 25 20

0.2 33 13 13

Target

The development and use of the multiline variable-contrast target

have been of primary interest in our work on resolving power during
the past year. Consideration has been given to 3-line, 2-line, and
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Figure 15.7. Typical out-of-focus exposure showing spurious resolution.
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Figure 15.8. Microphotometer traces of images formed by a lens atf/5.6 on Eastman
spectroscopic emulsion type 5J/.8 GH.

1-line targets. Some of the results obtained with these targets, to-

gether with their theoretical interpretation, are reported in paper 20.

Work with high-contrast targets has not, however, been completely
neglected. The high-contrast target with continuously varying fre-

quency has been found to be exceptionally well suited to the study of

some phases of spurious resolution. A report on this phase of the
investigation was made by R. N. Hotchkiss [12] at the Cleveland meet-
ing of the Optical Society of America.

The axial imagery wTas studied throughout a region extending from
a point well inside best focus to a point well outside best focus. A
typical out-of-focus image is shown in figure 15.7. It is readily seen
that the contrast between adjacent lines and spaces quickly falls to

approximately zero as one proceeds toward the finer patterns. How-
ever, instead of remaining zero, the contrast rises and falls repeatedly
as one continues in the direction of the finer patterns. This waxing
and waning effect is even more strikingly illustrated in the microdensi-
tometric traces shown in figure 15.8. For the cases showm, the phe-
nomena can be explained fairly simply on a geometric basis. This
analysis is given in the September 1951 issue of the Journal of the
Optical Society [13].
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This work was performed in connection with a research project
sponsored by the Office of Air Research of the United States Air Force.
The success of this project to date is a result of the cooperation of a
number of people working on this project. These include Mr. Ros-
berry and Mr. Shack who devote full time thereto; Mr. Magill, Mr.
Tayman, and Mr. Darling who give a part of their time to the project;

and to Mr. Sine and Mr. Watts who assist in the necessary design of

instruments and the preparation of graphs.
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16. Theory of Resolving Power

By E. W. H. Selwyn 1

Fundamental Theory

The test object for a measurement of resolving power is usually

one in which the demarcation between areas of different brightness
is a hard edge. A common and typical example consists of dark and
bright bars. When an image of this is produced, either an aerial

image or one in a sensitive photographic layer, light spreads from the
bright bars into the dark. The diagram representing the brightness
distribution in the test object is like the castellations on old fortresses,

wherein the light bars are represented by short horizontal lines

interposed between other short lines, representing the dark bars,

spaced lower and connected by vertical lines. If the degree of spread-
ing of the light is small the corresponding diagram for the image is

somewhat similar but the corners are rounded and the vertical lines

are replaced by sloping ones. As the spread of light is increased,

relative to the spacing of the lines, the corners become more rounded,
and the slope of the connecting lines becomes greater until the spread
of light is about equal to the space between two light lines. A still

greater spread of light then causes the hollows to start filling up and
the tops of the diagram to drop. If we wish to be strict in terminology
we may say that the first stages represent a diminution in sharpness
and the last stage a diminution in contrast. When the last stage has
been reached the top of the diagram representing the distribution
of brightness approximates in shape to a curve of sines. If we start

with a test object in which the graduation from light to dark lines

is smooth and represented by a sine curve, only the contrast change
can take place, for the effect of spread of light must then always be
to raise the hollows and bring down the tops of the curve. Also the
curve cannot change its character. It always remains a sine curve,
with the same period. That this is necessarily so can be seen from
the consideration that two sine curves of the same period always sum
to another sine curve whatever the amplitudes of the original curves
and whatever the phase difference between them. We may consider
the spreading of the light as producing from the sine curve of the
original test object a whole set of sine curves of equal period, with a

total phase difference equal to the total spread of light and amplitudes
varying according to the character of the spread of light. Thus the
final curve for the image is also a sine curve with a lower amplitude
(but of the same period). It may also be shifted in phase from that
which would be appropriate if the image were perfectly sharp.

i Research Laboratories, Kodak Limited, Harrow, England.
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Apart from any difference of phase, which is related to the optical
distortion produced by the image forming system and is not of interest
in the pure resolving power problem, the only physical variables in-

volved are the period of the sine curve and the contrast. By elimi-

nating the gradual change in shape of the light-distribution curve (by
choosing a sine-curve test object in the first place) it becomes possible
to proceed with theoretical arguments. This is mainly because the
necessity of knowing how the changes of shape affect visibility of

the image of the test object is avoided. The contrast in the image
depends upon the interval between the bright bands, for as the test

object is made smaller and smaller (the image following suit) the
smudging-out effect of any unsharpness in image formation becomes
more and more pronounced. In theoretical discussion the relation

between the contrast in the image and the period of the sine curve is

of fundamental importance. We shall find it convenient to consider
first an optical system forming an aerial image.
The diagram representing the brightness of the test object or its

image may be split into two parts, one representing a uniform bright-
ness and the other the sine-curve portion, consisting of alternate
positive and negative sections. The uniform brightness is unaffected
by any lack of sharpness, but lack of sharpness diminishes the positive

and negative sections of the sine-curve portion equally since they are

of identical shapes. In other words, what happens to the amplitude of

the sine-curve is independent of what happens to the mean brightness
and if we change the mean brightness of the test object without
changing the amplitude (in brightness) of the sine-curve component,
the mean brightness in the image will be changed but the amplitude
of the sine-curve component in the image will remain unchanged, and
vice-versa. If a neutral filter is introduced between the test object
and the lamp illuminating it the amplitude will be reduced (so also

will the mean brightness but this is immaterial) and the amplitude
in the image will also be reduced in the same proportion. Thus the
ratio of the amplitudes in image and test object is constant for any
given test object and optical arrangement. In fact, however, the
amplitudes and mean brightnesses change in the same ratio, so that for

both test object and image, the important quantity is the ratio of

amplitude of brightness to mean brightness. If we call this ratio

for the test object a and for the image a*, then a*/a is a constant
for any one test object and optical system. Now the amplitude in

the image is dependent upon the amplitude in the test object, upon
the optical system and the spacing between bright stripes in the image.
It will be convenient to use the reciprocal r of the last quantity. The
above result therefore shows that

a*=af(r), (1)

/(r) being a function characteristic of the optical system, which may
be calculated, at least in theory, from the specification of the optical

system. The process of calculation starts from the brightness dis-

tribution in the image of a long line source. Each linear element of

this image is regarded as producing a geometrically perfect image of

the test object, a sine wave, that is, with phase appropriate to the

distance of the linear element from the center of the image and ampli-

tude proportional to the brightness of the element. All the sine
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curves of this type are added. The above is the fundamental formula
of the theory of resolving power when the test object is of the sine-

curve form.

Visual Resolving Power

The value of r that makes aj(r) equal to the least value of a* that
can be appreciated by the eye, under the conditions of observation,

is the visual resolving power of the system. The threshold value of

a* is not a quantity that can be calculated, a priori, but must be
determined experimentally. It may depend on the effective aperture
of the pupil of the eye, on the angular separation between the bright
stripes in the image on the retina, and upon the mean brightness of

the image, apart from other conditions such as the presence or absence
of a bright surround to the image. Let us take a simple system con-
sisting of a test object, a perfectly corrected lens forming an aerial

image of it, a perfectly corrected eyepiece to make the emergent
wave fronts flat, and the eye. The aerial image may be replaced by
a luminous test object exactly similar to the original but with spacing
between the bright stripes changed according to the magnification
and with lower contrast (an amplitude in fact of a*), owing to loss

of definition as a result of diffraction. That this is possible must be
so because the wave front arising from any point is spherical, exactly
as with the aerial image. But we have to assume that there is no
diffraction by the eye, although there may be distortions of the wave
front by refraction. The effective aperture of the eye is determined
by the exit pupil of the lens and eyepiece system. With such an
arrangement, using a test object with variable contrast, and placing
the lens at different distances it is possible to determine a wide variety
of conditions under which the image just ceases to be visible, as an
array of bright and dark stripes. The value of /(r) can be calculated,

since the image-forming properties of a perfectly corrected lens are
known from Airy’s discussion of diffraction by such a lens. Thus
it is possible to calculate af(r) at the limit of resolution, the angular
separation between bright bands, as seen by the eye, the effective

diameter of the pupil of the eye (the exit pupil of the telescopic

system), and the relative brightnesses of the various images. The
results that were obtained by such an experiment are exhibited dia-

grammatically in figure 16 . 1 . There appeared to be no influence of

Figttbe 16 . 1 . Visual threshold as a function of size of detail.
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Diam. of Pupil (mm)

Figure 16 .2 . Comparison of Cobb’s experimental
results with theory.

A, Limit set by retina and/or nystagmus; B, limit set by dif

fraction at pupil.

brightness (over a range of 10,000:1 !) outside the experimental error.

The striking feature about figure 16.1 is that the curve approaches
an asymptote at around li minutes of arc, but that apart from this

the threshold value of af(r) is remarkably nearly constant. The
simplest way of accounting for the asymptotic rise is to suppose
that the eye averages out detail over a range of lj minutes or so, in

consequence of coarseness of structure of the retina, or involuntary
movements (nystagmus) or both.

There is no evidence in the results that the value of af(r) at the
threshold varies with pupil aperture over a range of 0.1 to 2.0 mm and
it is probably legitimate to assume that below pupil apertures of 2

mm the eye is perfectly corrected. The light used in the experiments
was monochromatic and it may be that this is the reason why the eye
appears to be perfectly corrected to an aperture as large as 2 mm.

If it is assumed that the eye is perfectly corrected and that the

retina averages out the illumination over 1){ minutes of arc, the value
of a* in the image transmitted by the retina to the brain may be
calculated, in terms of brightness, from the formula

afi(r)j2 (r),

where /i(r) is a factor calculated for diffraction by the eye and j2 (r)

a factor calculated for the averaging effect of the retina. If now a*
is taken as 0.03, and a unity, corresponding to a high-contrast test

object, the results of Cobb on the resolving power of the eye at different

pupil apertures may be well duplicated, except that at apertures above
say 3 mm the observed resolving power is rather less than that cal-

culated, presumably owing to the greater effect of aberrations at

higher apertures (fig. 16.2).

Photographic Resolving Power

For some purposes the theory of photographic resolving power can
be very simple. If sine curve distributions of light, of different con-

trasts, were projected on a photographic material it would be possible

to determine the relation between the resolution of the developed
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image and the contrast of the light distribution. Suppose that the
results are exhibited in the form of a curve relating the minimum con-
trast of incident distribution necessary for the light and dark stripes

to be just visible in the developed imaged and r the reciprocal of the

distance between neighboring light stripes. Now draw on the same
diagram the curve showing the relation between the contrast in the
aerial image produced by an optical system and r. At the point where
the two curves cross, the optical system is producing an image with
spaces between stripes equal to those at which resolution just occurs
with an image on the material of the same contrast as that produced
by the optical system. The value of r at the common point is there-

fore the resolving power of the combined optical system and sensitive

material.

By this means we have accomplished a synthesis between the purely
optical and the purely photographic properties of the combined
system. In principle, if the photographic curves for N photographic
materials and the optical curves for iV* optical systems were known
we could immediately find the resolving power for all the NN* com-
binations, for any and every contrast of test object.

There is, however, a difficulty. The above argument is sound if

the light is monochromatic. But if it is not monochromatic we may be
faced with a situation of the following type. Suppose we have a lens

giving an aerial image of a point source consisting of a bright central

dot of red light surrounded by a thin blue halo. This image is first

supposed to be projected on a sensitive layer that diffuses red light

more than blue. The image in the emulsion layer will then consist of

a diffuse red central area with a moderately diffused blue halo. Now
suppose the aerial image is projected on a sensitive layer, with the
same diffusing properties, for white light as a whole, as the preceding
one, but which diffuses blue light more than red. The image in the
emulsion layer will then be a fairly small central red spot with a diffuse

blue halo. When converted to black and white (by the process of

development) these two images will be quite different. In other
words we must take account of the distribution of color in the aerial

image and of the variation with color of the diffusion of light in the
sensitive layer. In practice this means that one needs to calculate

the amplitude of the sine distribution in the sensitive layer for every
wavelength of which the light is composed and then average according
to the color sensitivity of the material. Alternatively one may calcu-

late the distribution of actinic energy in the sensitive layer of the
image of a long thin line of light and use this for calculating the
amplitude of the sine-curve image.

Resolving Power of Sensitive Material

The amplitude of a sine-curve distribution of light projected on the
sensitive layer is reduced by diffusion of light in the layer, according
to the formula,

a**=a*<p{r), (2)

analogous to that for an optically formed image. The process of

development converts small percentage variations in exposure into
the same percentage variations in transparency, multiplied by 7, the
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slope of the usual density versus log exposure curve of the material at
the density at which the mean exposure is reproduced. The amplitude
of the image after development is therefore ya*(p(r). This is true only
if the amplitude is small, otherwise there is some distortion of the
sine curve. If the photograph is magnified M times the apparent
separation between bright stripes in the image is increased in the ratioM and the reciprocal of the separation is decreased, so far as the eye
is concerned, to r/M. Thus the amplitude of the signal to the brain,
in terms of light intensity, is reduced to

ya*(p(r)F(r/M),

where F(r/M) is a factor (equivalent to /i(r)/2 (r), used in discussing
Cobb’s results on variation of acuity with pupil aperture) to take
account of the unsharpness in image formation in the eye and the
averaging effect of the retina.

So far, everything has proceeded on the assumption that the image
is “smooth” that is to say, without taking any account of the irregular

distribution of grains in the photographic material. In order to deal
with the effects of this irregular distribution we imagine that the
surface of a uniformly exposed and processed material is divided up
by a grid into small equal and contiguous areas and that the densities

of all these areas are measured. These densities will be different one
from the other owing to the irregularity of distribution of grains. We
ask, “What is the statistical distribution of density and in particular

what is the root mean square fluctuation of density?” We suppose
that the variation from the mean of the density of any elementary
area of the grid is small enough for the density of a pair of areas taken
together to be equal to the average of the densities of the pair.

If the fluctuations of density from the mean for a long set of N
alternate areas of the grid be denoted by symbols like 81 the mean
fluctuation SSj/iV is zero and the mean square fluctuation A 2

is equal
to 252/N. For the set of areas interposed between the preceding
areas, with fluctuations denoted by symbols like 82 the mean fluctua-

tion 3j82/N is again zero and the mean square fluctuation is again equal
to A 2 and to 281/N. The mean fluctuation for the pairs of areas

taken together is 2(8i~\-82)/2N and is zero and the mean-square fluc-

tuation is 2(5 1+ 52 )
2/4A7

,
which is equal to Zdf/lN+ZSl/lN+'ZS&ftN.

If the distribution of fluctuations is symmetrical M2 is as likely to be
positive as negative, so that in a long sequence 25 i52/4W is zero. Thus
the mean square fluctuation for doubled areas is A2

/2. From this it

follows that the root mean -square fluctuation is inversely as the

square root of the elementary area of the grid, or

A— G/ -\/a,

where G is a constant, for the given sample of material, called the

“granularity” and a the area of an element of the grid.

There is a peculiarity about density, since it may legitimately be
regarded as having a “dimension” in the same way as mass. For in

just the same way as a mass may be measured by equilibrating it

against a number of arbitrary units of mass, a density may be mea-
sured by equilibrating it photometrically against a stack of units of
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density, such as pieces of neutral glass all of the same density. The
choice of unit is arbitrary. In terms of the definition of density,

namely

D=log (1IT),

(vThere D is the density and T the transmission) all this means is that
we have chosen the base of the logarithm arbitrarily. A much more
elaborate argument than the above, based on assuming a dimension
for density and assuming that the fluctuation of density is controlled

by a constant G and that the densities of neighboring areas are

uncorrelated, yields both the statistical distribution and the formula

A= Gj-\a.

The question now arises whether it is possible to estimate the
nature of the signal to the brain obtained from grainy photographic
material. We suppose that the retina constitutes a grid with elements
having areas determined by the disk of confusion (mainly the Airy
disk) of the optical apparatus of the eye and the averaging effect of

the retina, already discussed. The corresponding areas on the mate-
rial itself may be taken as a*/M2

,
where a* is the area of an element of

the retinal grid projected on the material at unit magnification and M
the magnification. The signal to the brain, in terms of density
fluctuation, is therefore

MG/Joi*.

The signal from the sine-curve image to the brain is, in terms of light

intensity,

B { 1+ 7a*

v

(r)F(r/M) sin 2trx }

,

where B is the mean fight intensity and x distance across the bright
and dark stripes. Now the appearance of almost any object, a
picture, for example, of the above sine-curve distribution of fight, is

practically independent of the light intensity (except for very low and
very high intensities). We may therefore legitimately take the
logarithm of the above expression and drop the term log B, thus
giving the equivalent total density fluctuation

2 logio eyci*(p(r)B (r/M),

provided the amplitude of the sine curve is small.

Now it is easy to show, for instance by superimposing a sample of

grainy photographic material upon a grainless transparency, that the
irregularity in density reduces the visibility of detail, and we therefore

have to enquire what the relation is between the sine-curve density
fluctuation, and the density fluctuation due to granularity at which
the sine-curve density fluctuation is just visible. Since the two terms
in the relation have the same dimension, namely of density, it follows

immediately by the very simplest of dimensional arguments that 2

2 If the limiting density difference, 8, that the eye can perceive be introduced_into the dimensional argu-

ment, the right-hand term must he multiplied by an arbitrary function of 5 -Ja*/GM. Other calculations
show that this function is constant when the parameter is small.
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2 logio eya*tp(r)F(r/M) =Const. GM/-Ja*.

The resolving power is to be calculated from this by solving for r.

The value obtained is dependent on the magnification. If F(r/M)
were proportional to M/r, the observed resolving power would be
independent of the magnification, sinceM would then disappear from
the equation. But if the magnification be chosen to obtain the
maximum value of r, the value of r will remain the same for small
changes in magnification. Thus the maximum value of r will be
secured at the value of M/r at which the curve of F{r/M) against

r/M contacts a rectangular hyperbola (i. e., a curve of Const.M/r
against r/M). This occurs at the point at which the slope of log

F (r/M) against lognM is —45°. This point obviously specifies a con-
stant ratio between r and M. That is to say maximum visibility and
maximum resolving power are attained when the magnification is

chosen so that the apparent separation between stripes is always the

same and of a certain magnitude.
In these circumstances the equation becomes

7a*v(f)— Const. Gr. (3)

The value of the constant has been estimated, from what is known
about the eye, at 0.003. The value of a* is determined by the con-

trast of the original test object, and the optical apparatus forming
the image, according to eq 1.

Thus the complete formula for the photographic resolving power is

yaj(r)y(r)= Const. Gr. (4)

A graphical illustration of the use of this formula is shown in figure

16.3, for a high contrast test object, for which a is unity. The visual

resolving power in the aerial image produced by the optical apparatus

is the value of r at the point of intersection A of fir) with the visual

log r

Figure 16 .3 . Graphical illustration of theory of resolving power.

A, Visual resolving power of optical system; B, resolving power of photographic material; C, resolving

power of photographic material and optical system combined.
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threshold, the resolving power of the photographic material is deter-

mined by the intersection B, at vhich eq 3 holds, and the resolving

power in the negative produced by the optical system by the inter-

section C, at which eq 4 holds. It is obvious that there is no simple
connection between the visual resolving power and the photographic
resolving power.

Results

The value of a theory is either that it enables results to be calculated,

or that it enables one to understand a phenomenon or group of

phenomena. Obviously, the function of a theory of resolving power
is to permit one to understand what is happening, for it is much easier

to measure the resolving power in any given case than to calculate it.

In spite of its defects (which will be mentioned shortly) the theory
given here gives an accoimt, of certain features found in resolving-

power measurements, sufficiently nearly quantitative to justify the
belief that any physical properties other than those discussed have
relatively unimportant effects.

The first result to be discussed concerns the variation with aperture
of the resolving power in the center of the field of a photographic
objective. The aberrations of such a lens are relative^ unimportant
at small apertures such as F/45. The function/(r) may thus be taken
as identical with that for a perfectly corrected lens. When the
aperture is increased a little the central core in the image of a point
remains about the same in size as the Airy disk appropriate to the
aperture under consideration, but there is a greater amount of light

in the outer parts of the image than when the lens is perfectly corrected.

The main effect of this is to decrease the value of /(r) by a roughly
constant factor for moderate and large values of r. As the aperture
is still further increased the image becomes more extended and the
central core may disappear or almost disappear. Then /(r) is dimin-
ished still more, its value at large values of r diminishing greatly.

An estimate of its value at various values of r may be obtained from
estimates of the visual resolving power of the lens with test objects
of different contrasts. It is not difficult, if this be done for the maxi-
mum aperture, to estimate graphically a set of curves of j{r) for

different apertures. The form of (p{r) for photographic materials
may be found if it is assumed (as is commonly done in photographic
theory) that the sideways scatter of light in the sensitive layer follows

a negative exponential law. The curve for any given material may
then be obtained from a knowledge of the granularity G and the
resolving power, using eq 3. Sufficient information is thus provided
to determine, by the method illustrated in figure 16.3, the resolving
power at any aperture. Results of such a calculation are shown in

figure 16.4. The visual resolving power for high-contrast test objects
at moderate and small apertures approximates closely to that expected
from Rayleigh's formula, while the decrease caused by diminishing
the contrast of the test object is not great. The resolving power at

high apertures is markedly below the theoretical. With a material
of low granularity the resolving power is much decreased and the
maximum occurs at a smaller aperture than that at which maximum
visual resolving power is found. With materials of greater granularity
the resolving power is still more decreased and the curve against
aperture becomes flatter. These results are of a general character
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500

Aperture

Figure 16.4. Resolving power of camera objective as a function of aperture.

a, Visual resolving power, high-contrast test object; b, visual resolving power, low-contrast test object;
c, photographic resolving power, fine-grain film, low-contrast test object; d, photographic resolving power,
medum-grain film, low-contrast test object; e, photographic resolving power, coarse-grain film, low-contrast
test object.

log r/M

Figure 16.5. Effect of magnification on resolving power.

and have been observed with all lenses that have been tested in these

laboratories. The resolving power observed varies with the density
of the processed material. The above results refer to a density of

1.0, at about which density the resolving power is a maximum.
The results obtained by experiments designed to check the theory

of photographic resolving power also provided evidence that the
observed resolving power depended upon the magnification used.

Typical results are shown in figure 16.5. The points shown consist

of six sets in which the resolving power varies over a range of 5:1,

but in the diagram as shown the six sets of points have been adjusted
along the log r direction so as to have the same mean value. It is

clear from the diagram that maximum visibility is attained when the

apparent separation between bright stripes is 1 mm, at the standard
viewing distance of 250 mm. As expected from theory this is a uni-

versal condition independent of the actual separation and the granu-
larity, but calculations from F(r/M) suggest a value four times less

for the magnification. The reason for the discrepancy is not known,
but it is known that different observers prefer different magnifications.

The above condition, namely making the apparent size of detail it is
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wished to see about 1 mm, is not far from correct for maximum visi-

bility on most photographic records.

If one could provide a diffusing screen with turbidity identical

with that of a photographic material, and introduce granularity into

the image, the image seen should be identical with that seen on a
negative developed so that 7— 1 . A difference of 7 from unity
can be allowed for by changing the contrast of the test object. Appa-
ratus of this kind has, in fact, been devised, and although the test

object consisted of two short bars of the type used by Cobb, and not
the sine-wave form, the resolving powers so observed were the same
as the photographic resolving powers within a standard deviation
of 15 percent. This is not much more than can be accounted for by
experimental and observational error. The gain in speed over photo-
graphic measurement is substantial.

Evaluation

There are certain defects in the preceding theory. The most out-
standing are the disagreement between the calculated optimum
magnification and that found by experiment as shown in figures 16.5,

and the disagreement between the theoretical estimate of the photo-
graphic threshold, involving granularity, and experimental determi-
nations. The latter are shown in figure 16.6. Curve B is the theo-
retical result (eq. 3). Curve A refers to a few estimates made by
determining corresponding values of G and r at which images of Cobb
test objects projected optically on samples of uniformly exposed and
processed photographic materials ceased to be visible. Curve C
refers to exposures made with sine-curve test objects of different

contrast analysed in such a way as to give the threshold almost
directly. Full details are given in the original publication. There is

agreement in order of magnitude and in the general result that the
photographic threshold increases with Gr approximately according to

a power law with an exponent of the order of unity. Perhaps this is

as much as can be expected from photographic experiments of
.
a type

that is notoriously liable to both systematic and accidental errors.

There are, however, stronger reasons than these for supposing that

log Gr

Figure 16.6. Photographic threshold (log A) as a function of Gr.
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the theory may be defective. Jones and Higgins have demonstrated
that granularity figures, obtained by the method used (theoretically

described in principle in this paper) do not correlate well with figures

for the graininess, the corresponding quantity estimated by purely
visual observation, and have also shown that the theoretical descrip-

tion is not followed when a is small. It seems likely that the density

of any given small area on the photographic material is not inde-

pendent of that of neighboring areas. In other words there is cor-

relation, which may formally be described by a quantity with the

dimension of length, corresponding with the distance over which the

correlation extends. The theory as given takes no account of such
a quantity, nor indeed does any theoretical treatment of granularity

yet proposed. Correlation might give the grainy structure a char-

acter akin to periodicity and this could well affect both the threshold

and the optimum magnification.
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17. A New System of Measuring and Specifying

Image Definition

By 0. H. Schade 1

Introduction

An objective analysis of image definition leads fundamentally to

methods for determining the geometrical properties or an equivalent
measure of the point or “star” image of the imaging device. When
the intensity distribution of the point image is invariable, it is obvious
that image quality and apparent sharpness vary inversely with a
significant diameter of the point image. When point images having
different intensity distributions are compared, however, this relation

is no longer true. It then becomes necessary to specify the relative

intensity distribution as well as a diameter. The problem is further

complicated by the fact that the point image of practical lenses

departs considerably from circular symmetry. Figure 17.1 illustrates

the changes in the geometry of the axial-point image in successive

stages of a motion-picture process. From a study of resolution

and detail contract characteristics of photographic and television

images it has long been apparent that the sharpness of an image has
no fixed relation to the limit of resolution of the system but depends
rather on the steepness and form of the intensity or luminance curve
representing a unit function transition, i. e., a sharp edge. It is not
difficult to see that the total length of the transition is equal to the
diameter of the point image (fig. 17.1), while shape and gradient
depend on the energy distribution in the point image. It must be
appreciated that the energy in a point image is a function of its volume
(considering intensity of the third dimension), and that a low-inten-

sity disk of light surrounding a small high-intensity center may con-
tain as much or more light flux as the bright center of the light spot
and thus produce a gradual transition with rounded corners. The
transition curve that is readily generated by displacing the point
image over a brightness step is, therefore, a much more sensitive

measure of quality than the intensity distribution in the point image.
The maximum gradient of a single transition, however, is not a

sufficient specification of image quality. Furthermore, the shape of

the transition is affected when several edges (or repetitive contours)
occur within a distance less than the maximum spot diameter. It

is known from communication theory that any complex transition

or waveform can be expressed by its Fourier components. The
properties of the point image can thus be specified accurately by a
response characteristic to optical sine waves ranging in wavelength
from infinity to zero.

1 Radio Corp. of America, Tube Department, Harrison, N. J.
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Figure 17 . 1 . Point images and edge transitions in a photographic process.

Response Characteristics of the Point Image

Normal optical-bar test patterns are “square-wave” flux patterns.

Accurate sine-wave test patterns can be obtained from variable-

density recordings of electrical constant-amplitude sine-wave fre-

quencies on the sound track of motion-picture film. A number of

sections so obtained are shown in figure 17.2. It is customary to

express the wavelength in these patterns in reciprocal units: the line

number N. The line number N will be defined in this paper as the
number of half-waves or “lines” (dark and light) in a length unit.

The line number has the dimension length
-1

. When the geometrical
properties of the point image are known, its response to sine-wave or

square-wave flux patterns is readily computed by scanning the flux

pattern with the point image, considering it as a scanning aperture.

The point image is thus defined as the resolving aperture or sampling
aperture of the image-forming device referred to the image plane,

the intensity distribution in the point image is represented by the

transmittance r of the aperture.

Response characteristics of a number of aperture types are shown in

figures 17.3 to 17.8. The line number is given in relative units Ns
defined by the equation

N5 =l/8, (1)

where l is the unit of length (1= 1 mm) and 8 is a significant diameter
of the aperture. The sine-wave or square-wave response is likewise

given in relative units. The sine-wave response factor rj is defined

as the ratio of the sinusoidal aperture flux ipN at a line number N to

the sinusoidal flux at a line number N approaching zero as a limit

as expressed by
t+ = 'I'n/'I'o- (2)

The square-wave flux response factor r&+ is defined similarly by

?Aj— A^y/A^o* (3)

The symbol A^ indicates that the square-wave response is measured
not by the peak amplitude 2 of the waveform but by the differential

2 The square-wave amplitude response rA£ is shown for comparison in some figures.
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Figure 17 . 2 . Sine-wave test 'pattern .
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Figure 17 . 3 . Response characteristics of square aperture (r=l).
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Figure 17 . 4 . Response characteristics of round aperture (t= 1 ).

Figure 17 . 5 . Response characteristics of round aperture (t=cos* r).
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Figure 17.6. Response characteristics of round aperture (r= e_(r/ro>2).

Figure 17.7. Response characteristics of theoretical lens (white light).

Figure 17.8. Response characteristics of round aperture {r= er r,T o).

flux, which is proportional to the mean value or area under the recti-

fied half-waves of the waveform, because the latter changes from a

rectangle to trapezoids and triangles or sinusoidal shapes when N
is varied from zero to infinity. Both response factors are single

valued and independent of contrast, provided waveform distortion is

avoided by the use of small “signals” when nonlinear devices such as

photographic films are measured. The use of sine-wave patterns
has the advantage of permitting a direct and accurate evaluation of

the overall response of systems containing a number of imaging-

stages in cascade. The over-all sine-wave response factors of the

system are simply the product of the response factors of the com-
ponents at corresponding line numbers. This advantage is lost for

square-wave response factors, because of the variable harmonic content
of the waveforms. Inspection of the computed characteristics,
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figures 17.3* to 17.8, however, shows that the ratio is substan-
tially independent of the aperture type at given values r^, permitting
a point by point conversion of square-wave to sine-wave response
characteristics with satisfactory accuracy.

The response characteristic of a theoretical aberration-free lens

limited only by diffraction is of interest as a standard of comparison.
The characteristic (fig 17.7) shows the “white” -light response com-
puted for a coaxial superposition of diffraction spots for a constant
energy spectrum for 0.4 /x to 0.7 /x.

3 The round aperture with a trans-

mittance T=e~r/ro (fig. 17.8) is of interest as a mathematical equiva-
lent for the aperture effect of grain structures in which the intensity

from an infinitesimal pencil of light decreases exponentially from
its center outward because of diffusion, absorption, and diffraction

in the grain layer; the magnitude of these optical effects (diameter
of the aperture) depends on the layer thickness, transparency,
spacing, and size of the particles. The theory is well substantiated
by measurements on a variety of film types and kinescope phosphors. 3

Plotted to a normalized scale with reference to the rated resolving

power Ncr of photographic film 4 at which r^^O.02, the measured
values result in a single curve shown in figure 17.9. A comparison
with figure 17.8 shows excellent agreement when Ncr is placed at

N/N8=5. 17.

Another characteristic of special interest is that of the round aper-

ture with T=e~ (J/To
)2

(fig. 17.6), which lias the form r^ = e~kN2 . It

can be seen from this form that a repetition or cascading of such aper-

ture processes will not change the shape of the characteristic, but only
the constant k.

The response characteristics of practical lenses, microscopes, tele-

vision tubes, and other image-forming devices can be measured accu-
rately by photoelectric methods, either by scanning test patterns with
their point image or by using a photoelectric or electronic micropho-
tometer 3 to scan the test-pattern image formed by the device. One
of these latter methods developed by the author appears to be partic-

ularly simple and flexible for testing lenses and was described and
demonstrated.

The quantitative information obtained from response character-

istics is demonstrated by table 17.1 showing the changes in the square-

Figure 17.9. Response characteristics of grain structures {measured)

.

3 Compare first reference on page 249.
. .

4 The photographic value Ncr (lines/mm) is to be multiplied by a factor of two according to the definition

of N used in this paper.
* The broken line curve for N/N. > 2.S should be positive in figure 17.3.
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Table 17.1 Square-wave response (rA ~f) of 8.3-mm apochromat, NA= 0.65 with
lOx compensating eye piece

(White light)

Theoretical * TA~

N/mm
Cover glass. 0. 18 0.127 0.127 None None
Tube length: (mm) 160 160 172 160 196

100 0.98 0.95 0. 925 0. 91 0. 925 0. 76 0. 89
250 .94 .88 .81 .78 .81 .49 .76
500 .87 .78 .655 .57 .648 .34 .585
700 .83 .72 .565 .45 .555 .25 .485

1, 000 .75 .64 .45 .31 .44 .195 .37

1,500 .64 .53 .30 .17 .30 .13 .225

2, 000 .52 .43 .21 .13 .21 .08 .135

2, 500 .42 .34 .14 .12 .14 .03 .07

3, 000 .32 .26 .095 .11 .095 .01 .033

3, 500 .22 .18 .055 .065 .055 .0 .018

4, 000 .14 .11 .036 .038 .036 .0 .002
4,500 .07 .06 .018 .018 .018 .0 .0

5,000 .03 .025 .008 .008 .008 .0 .0

5, 500 .01 .008 .0 .0 .0 .0 .0

Computed for 2,870* K source and 1P21 multiplier phototube.

wave response (rA\j/) of an 8.3-mm Bausch & Lomb Apochromat
(N. A.= 0.65) used with a lOx compensating eye piece at a magnifica-
tion of 300 when cover-glass thickness and tube length are varied.

The values have not been corrected for aberrations in the measuring
microscope (4-mm Apochromat N. A.= 0.95 with 25x compensating
eye piece) . It is of interest to the lens designer to note that a response
characteristic (sine wave or square wave) can be considered as the

sum of a number of component response characteristics of known
shape thereby permitting a reconstruction of the point image. This
process is illustrated on the characteristic of a 40-mm Cine Ektar lens

shown in figure 17.10. The measured characteristic (at 5°) can be
regarded as the sum of response characteristics from cos2 apertures.

The first component, curve 2, is obtained by continuing the “tail-

end of the curve as a cos2 response curve. Subtraction of this com-
ponent from the normal characteristic leaves curve 1, which closely

matches the response characteristic of a second cos2 aperture. The
flux division (\f/i and ^2 ) between the corresponding coaxial spots is

indicated by the response at iV=0 and happens to be equal for both
components. The diameters of the corresponding cos2 spots follow

from the respective Ns values (eq 1) ;
the relative flux intensities

Figure 17.10. Response characteristics of a camera lens for 16 millimeter film.
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Figure 17 . 11 . Synthesis of response characteristic from three round aperture
characteristics ([t=1 ).

( Yi and Yf) at the spot centers are obtained with

YxlY2=^xh\l^h\ and Yx+Y2
= 1. (4)

Addition of the cosine-squared intensity curves of the components
furnishes the approximate intensity in the point image from the lens.

A practical method for performing this analysis is shown in figure 17.11

illustrating a breakdown into round apertures with uniform transmit-
tance that appear as coaxial cylinders in a topographic representation
of the point image. The response characteristic of the lens is drawn
in log-log coordinates (curve r j in fig. 17.11). The response character-
istic of the round aperture (fig. 17.4) is drawn on a separate sheet of

log-log paper. The two curves are superimposed and a position

matching the tail end of the lens curve is found. This portion (curve
1 in fig. 17.11) is subtracted and the process is repeated. In this

particular case, the two additional component curves shown result.

Flux values, diameters, and intensities are then found as outlined
above and shown in the insert of figure 17.11. It should be noted
that the negative-phase portions of the round aperture responsemust
be included with negative sign when making the summation. The
process is reversible, illustrating a synthesis of the sine-wave response
from a complex symmetric aperture as the sum of three component
characteristics. It is not difficult to see that the response of an asym-
metric aperture can be obtained by the same process of subdivision
into cylindrical sections having displaced axes. This displacement is

equal to the displacement of all sine waves between respective response
characteristics, and causes a phase shift proportional to N that must
be duly considered when the summation is made.

Evaluation of a Measure of Equivalence (Ne) from the
Response Characteristic

The response characteristics of practical imaging devices depart in

general more or less from theoretical characteristics and may differ

considerably in the relative response between low and high line num-
bers. In the case of optical lenses the response may decrease more
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or less rapidly at low line numbers because of aberrations, although
the theoretical resolving power may still be measurable in some cases.

The differences in response characteristics and the condition of

astigmatism indicates that a comparison of image definition by a single

figure of merit requires the evaluation of a measure such as an equiv-
alent response characteristic or an equivalent aperture with standard
transmittance that can be specified by one significant number. It is

important that this equivalent measure agree with a visual impression
of sharpness. In an objective evaluation the “quality” of an image
or, more general, the quality of a device or system transmitting
information (code, sound, or pictures) is specified by three funda-
mental characteristics: Transfer characteristic, fluctuation or “noise”
level, and sine-wave response characteristic. The seemingty corre-

sponding visual impressions of tone range, graininess, and sharpness
in optical images, however, are not exact equivalents, because they
represent combinations of the above objective characteristics. A
judgment of contour sharpness, for example, is influenced by graini-

ness and by the amplitude of the brightness step (contrast), whereas
the sine-wave response characteristic is a relative measure describing

shape and length of the brightness transition only. In an objective

system of ratings, amplitudes, transmittance, “flare”, wave-form
distortion, rectification, etc., are specified or determined separately

by the transfer characteristic, which, in general, is not controlled by
the same parameters determining the frequency response of a system.
A low-reflection coating of lens elements, for example, improves the
light-transfer characteristic of the lens, but has no effect on the sine-

wave response characteristic. In order to agree with an objective

measure of definition, a visual comparison must be arranged for

judging the relative sharpness of images and requires that image con-
tent, transfer characteristic (luminance and contrast) and fluctuation

level in the images are made substantially identical. The impression
of relative sharpness in an image can then be considered as a visual

evaluation of the complex waveforms from a large number of arbitrary

cross sections of the intensity distribution in an image frame. In an
ideally sharp image the sum of the Fourier components of these cross

sections fills an infinite sine-wave spectrum with constant ampli-
tudes. Superposition of all components in random phase relation

results in a most general and interesting test pattern, appearing
optically as a random grain structure. Any cross section of this struc-

ture taken by a microphotometer with infinitesimal aperture is a

complex wave containing a constant-amplitude sine-wave spectrum

0 T

COMPLEX
APERTURE OUTPUT

0
NUMBER OF HALF WAVES
(N) PER UNIT LENGTH

SPECTRUM OF SINE -WAVE
COMPONENTS IN COMPLEX WAVE

Figure 17.12. Fourier components in ideal random grain structure.
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up to a very high line number, as illustrated by figure 17.12. An
imaging device with a finite scanning or sampling aperture integrates

high-“frequency” components, as illustrated by figure 17.13, a har-
monic analysis furnishing the sine-wave response characteristic of the

device. The complex wave contains a variational or modulation

component [\p] that can be measured in total by an rms current meter,

and a steady component that can be measured by a d-c meter.
Their ratio, known electrically as the “noise-to-signal” ratio, is the

relative deviation

= ji- (5)

When the sine-wave response is normalized according to eq 2 so

that = l at N= 0, the mean squared deviation is expressed by

[W=?oj” (n)ZndN, (6)

where r* is the sine-wave response factor and i/'o is a measure of the
magnitude of the a-c flux passing through the aperture at a line

number N approaching zero. A hypothetical aperture having a
constant response (rj = 1) from iV=0 to a line numberN* 5 where the

response drops abruptly to zero, would give a mean-squared deviation

The integral of squared response factors in eq 6 may hence be inter-

preted as a normalized mean-squared deviation or as an equivalent

passband of constant amplitude extending to the line number N* as

defined by

The measure N* has the dimension length
-1

. Its reciprocal value
expresses an equivalent length or diameter of the aperture in the

scanning direction. Like the aperture response, Nf depends, in

general, on the aperture orientation relative to the direction x of

aperture displacement. Apertures with circular symmetry have a

LINE NUMBER Cn)

SPECTRUM OF SINE -WAVE
COMPONENTS IN COMPLEX WAVE

Figure 17.13. Fourier components in grain structure integrated by a finite aperture.

5 The asterisk on the value N* is used to indicate that this value is obtained when a random grain struc-

ture is scanned. Other values will be introduced subsequently.
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single effective length proportional to their diameter 8 and a single

value N*. Elliptical or rectangular apertures can be specified by
two values and iVe

*
(6) obtained by orienting their major or minor

dimensions (

a

or b) in the direction of scanning. These two values
can be combined into a single value

Nf=(NfwN!,b)
y'2

(8)

representing an equivalent symmetric aperture.

The direct evaluation of the measure N* for an unknown aperture
requires a calibrated random grain pattern that must be tested by a
harmonic analysis of the complex aperture output. A practical

alternative is a synthesis of the sine-wave characteristic from the
aperture response to constant amplitude sine-wave patterns of

various wavelengths and an evaluation of Ne by eq 7. Optical sine-

wave patterns consisting of parallel “lines”, however, do not duplicate
exactly the sine-wave components in a random flux pattern, but rather
in a pattern that is random only in the direction x of scanning and
uniform in the direction y, perpendicular to the scanning direction.

Figure 17.14 illustrates the difference in cross sections through a
random grain structure and a synthetic structure representing a

random addition of sine-wave test patterns (random phase relation).

The differences resulting from scanning a random grain structure or

sine-wave test patterns and the suitability of iVe-values, in general,

for the purpose of indicating an equivalent aperture area can be

determined by a comparison with an equivalent N0 based on the
sampling of a normalized random structure. The various equivalents

Nf, Ne ,
and N0 can be computed without recourse to response

characteristics when the geometrical properties of the aperture are

known.
The effective sampling area of an aperture (pictured as a three-

dimensional body, the aperture transmittance r representing height)

may be determined by subdividing the aperture into differential

columns (fig. 17.15) with a base area Aa=AxAy and constant or

varying height representing the transmittance r =f(x,y) . The relative

deviation obtained by taking a large number of samples from a random

FLUX PATTERN
RANDOM IN X AND y

SYNTHETIC FLUX PATTERN
RANDOM IN X, UNIFORM IN y

0 LINE NUMBER (n)

|f
I
= [>6~f (n^n]

2

If I = % [{ (
ryk dN

]

2

If |

2

/f0
2

= 4~(r^)2d N
= Ne

Figure 17.14. Cross sections of random and synthetic grain structures (see text).



grain pattern with one differential column is Aa=(T 2n0Aa)
1/2lTn0Aa,

where n0 equals average number of grains per unit area. For a

normalized grain density n0= l, the above relation becomes Ao- 0
=

(r 2Aa) 1/2/rAa. Integration over the aperture yields the normalized
relative deviation

[lim i: T
2AaY'\ _ [ff f\x,y)dxd yY'

2

lun'Z-i rAa ff f(x,y)dxdy

The normalized relative deviation a 0 has the dimension length
-1

.

The length may be regarded as the geometric mean of the sides of an
equivalent rectangular sampling area ae having constant trans-

mittance t— 1. According to eq 1 the relative deviation 0
-

o=l/(&e)
1/2

can also be interpreted as the line number N0 of an equivalent square
sampling aperture and eq 9 may, hence, be stated in the form

tf \fff\x,y)dxdy]^

ff f(x,y)dxdy
(10)

The measure AT
0 is independent of the aperture orientation for both

symmetric and asymmetric apertures and can, hence, be used as a

standard for comparison. The equivalent passband N* of an
aperture scanning a grain structure random in x and y directions can
be computed by subdividing the aperture into incremental sections

parallel to the direction of scanning (fig. 17.15). The mean-squared
flux obtained is the same as that obtained when the aperture is

sampling. The flux at N=0 contributed by each section to \j/0

is represented by the areas f rdx of the sections, and because the flux

is random (out of phase) in y, the total flux is obtained by the sum
of the squares \jsl=f2[f T dx] 2

. The measure N* obtained when a

random grain pattern is scanned is, therefore,

ff f\x,y)dxdy

fdy[ff(x,y)dx] 2
’ (ID

The asterisk is used to distinguish N* from the value Ne that will

henceforth be used to indicate a sine-wave synthesis.

APERTURE SCANNING FLUX PATTERN RANDOM IN X AND y

SCANNING DIRECTION

APERTURE SCANNING SYNTHETIC FLUX PATTERN RANDOM IN X, UNIFORM IN y

c ''W-flBSf
SCANNING DIRECTION

APERTURE SCANNING FLUX PATTERN* RANDOM IN X AND y

[ff f
2
(x,y) dxdy]'2

rn c*.y) dx dy
f».y) \j/ =

PATTERN FLUX NORMALIZED SO THAT fT0 =l PER UNIT AREA WITH T= l)’

Figure 17.15. Subdivision of apertures for evaluation of the equivalent measures

Ne iV,,* and N0 .
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Evaluation of the equivalent passband Ne from a response character-
istic obtained by the method of scanning sine-wave test patterns
represents the case in which a synthetic structure random in the x
direction but uniform (in phase) in the y direction is scanned. The
aperture is subdivided into sections parallel to y. The mean-squared
flux [\f/]

2
is the sum of the squares of the section flux valuesyNT rdy] 2

.

and the flux is the squared sum of the section flux values, furnishing
the ratio

Ne=m 2

/^o

fdx[fj(x, y) dy]
2

[ffj(x,y)dydx] 2 (12 )

All measures A0 ,
Af, and Ne represent dimensionally a length -1

,
but

the formulations appear to have little resemblance to one another.
Because the measures N* and Ne depend on the direction of scanning,
asymmetric apertures require evaluation of two Ae-values as stated
by eq 8. For apertures having circular symmetry, however, the

sampling equivalent A0 is seen to equal the geometric mean (

A

* Ne)
112

.

To evaluate the relative accuracy of the three measures it is of interest

to determine how closely the values computed with eq 10, 11, and 12

compare in a number of representative cases. To obtain Ne in relative

unitsNe/N8 ,
the above equations must be multiplied by the ratio of the

characteristic lengths d/u when the length u chosen for computing the

measure Ne differs from the length expressing a characteristic diameter
of the aperture. In relative units eq 10, 11, and 12 can be written.

NolNr
{fff(x,y)dxdy]'»

u fff(x,y)dxdy
(10)

Nt/N,=_
<5 ffj\x,y)dxdy
ux fdy[ff(x,y)dx]

2} (11)

NJN,-
<5 fdx [fj{x,y) dy] 2

ux fff{x,y)dydx] 2 (12)

It must be kept in mind that the length u in eq 10 is the square root
of an area and, therefore, independent of the aperture orientation.

The length ux in eq 11 and 12 however, is always the characteristic

aperture length in the direction x of scanning.

The measure Ne for a round aperture with r= e
-(r/ro)2

,
for example,

may be computed in terms of a radius length r 0=ux ;
the corresponding

relative line-number unit Ns in figure 17.6 represents a length
-1

measured by the diameter 5=4r0 . The ratio 8/ux in this case is, there-

fore, four. The relative values in table 17.2 show that the sine-wave
equivalent Ne is as good an equivalent as the value Nf obtained by
the scanning of a random grain structure. Both values are somewhat
in error for a round aperture with t= 1 and for a square scanning
diagonally. Practical apertures such as lenses, grain structures, or

electron beams have nonuniform transmittances similar to the

aperture types 4 to 6 in table 17.1, for which the error is negligible or

zero. The definition of A* as the integral of squared response factors

given by eq 6 applies also to the measure Ne ,
which is obtained from a
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7 RECTANGLE T = I

Ne(a)= a

Ne(b) = -g

Ne=Wb
FOR_a = S

;

Ne _i/5~

NS lb

8 ELLIPSE
1r0l r0Z 2ir

T e
”(r/ro^

S,=4r0!

§2 = 4r02

Ne(')
r0,Y2^

1 ^ro ,r02 2F

sine-wave synthesis; i. e.,

Ae=JT?)
2^V (13)

The results obtained by a numerical integration of the squared
aperture response according to eq 13 are illustrated by the curves
N e(0-*2\n in figures 17.3 to 17.9 that show the growth of the partial

integral when the limit is increased from N=0 towards N=c°.
The accurate agreement of the values obtained by this method is a

check on the accuracy of the sine-wave response characteristics as well

as the formulation of eq 12. The e~T/r° aperture is of interest as a
mathematical equivalent for grain structures with finite thickness.

The line-number scale of this aperture is referred to a diameter 5= 6r0 ,

which for identical values Ne places the rated resolution Ncr of film

at the value NCTjN8= 1.245/0.241 =5.17 of the theoretical character-
istic. A comparison of figure 17.8 and 17.9 shows an almost perfect

agreement of the sine-wave response characteristics. The resolving

or sampling aperture of grain structures is, therefore, well represented 6

6 A finite grain size removes the pointed tip of the aperture transmittance. The effect, however, is negli-
gible because the flux contributed by a transmittance exceeding the value t= 0.65 (r=0.6 ro) is only 2.5 percent
of the total flux.
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by a round aperture with a transmittance r= e~ r/r o. The value Ne of

an asymmetric aperture of width a and height b can be determined
accurately when the deformation of the dimensions a or b from
circular symmetry does not alter the relative aperture transmittance
in the b or a dimension, respectively. In this case the sine-wave
measure Ne(a) or JVe(&) obtained with eq 12 is determined by the
dimension of the aperture (

a

or b), which is oriented parallel to the
direction x of scanning, the measure being independent of the aperture
scale factor in the y direction. The aperture is thus simply considered
first as an aperture with circular symmetry and a diameter 8= a,
furnishing the valueNeW ,

and second as an aperture with the diameter
8= b, furnishing the value Ne{b) . The geometric mean of these values

(eq 8) furnishes the symmetric equivalentNe . The corresponding pro-

cedure when the sine-wave response of an astigmatic lens is measured,
for example, requires orientation of the sine-wave pattern and scanning
direction parallel or perpendicular to the direction of astigmatism.
The values NeW and Ne(b) are then determined by numerical integra-

tion from the two corresponding sine-wave response characteristics

(eq 13). The evaluation of Ne is illustrated by two examples in

tables 17.3 and 17.4

The numerical evaluation of the measure Ne from a sine-wave
response characteristic by means of eq 13 is illustrated by table 17.3

for a 40-mm f : 1 .6 Cine Ektar lens measured at f : 1 .6 and 5° off axis.

The value a is the mean response factor within the increment AN.
The equivalent passband Ne is obtained directly in television lines per
millimeter; iVe=90 L/mm. Table 17.4 illustrates the evaluation of

Ne for grain structures from figure 17.9 in relative units. With
reference to the rated resolving power Ncr of film, Ne

= 0.241 Ncr .

Hence, for fine-grain positive film (type 5302) with A ĉr=180 television

lines per millimeter, We =43.4 L/mm.
It may be of interest to the lens designer that the measure Ne can

be estimated from the diameter Vs of the physical aperture passing

50 percent of the light flux in the star image. The relation

Table 17.3. Evaluation of Ne for 40-mm Cin6 Ektar lens at f/1.6 (5°)

Ne = 90 lines per millimeter

N/mm rf a a 2AN S(a) 2AiV

10 0.98 0. 99 9.8
20 .94 .96 9.2
30 .90 .92 8.5
40 .85 .88 7.7

50 .79 .82 6. 75 41.95

60 .74 .765 5. 85
70 .67 .70 4.9
80 .62 .65 4. 22

90 .57 .59 3.5
100 .53 .55 3.0 63. 42

120 .46 .49 4.8

140 .42 .44 3. 88

160 .39 .40 3.2
180 .36 .37 2. 76

200 .33 .345 2. 38 80. 44

250 .27 .30 4.5

300 .20 .23 2. 65

350 .14 .17 1.45

400 .08 .11 .61

450 .03 .05 .13 89.78
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Table 17.4. Evaluation of Ne for grain structures

2V«=0.241 Ner

N,Ncr

T
1 a a-AN 2(a) 2AN

0. 05 0. 97 0.985 0. 049
.10 .91 . 95 .045 0.094
.15 .835 .88 .0385
.20 .740 .79 .031 .1635
.25 .67 .685 .0235
.30 .53 . 585 .0171 .2041
. 35 .44 . 50 .0125 1

.40 .37 .41 .0084 .225

. 45 .30 .335 .0055

.50 .245 .275 .0038 .2343

.55 .20 .22 .0024

.60 .16 .18 .0016 .2383

. 65 .125 .14 .0010

.70 .10 .11 .0006 .240

.75 .075 .085 . 00035

.80 .058 .065 .0002 .2405

.85 .04 .045 .0001

.90 .03 .04 .0001 .2407

. 95 .02 .03
1.0 .018 .02 .241

Table 17.5. Diameter 8 and equivalent passband Ne of various aperture types

Aperture type
Relative trans-

mittance
Diameter (5) Relation of 5 to Ne

Square r=

1

s s= l/N.

Round . . . T= 1 2ro <$o=1.08 l/N,
Do r=COS2r 2ro 5co*= 1.59 l/N^e

Do r=e— r/ro 6ro 56=1.245 l/N e

Do r=e— (r/ro) 2 4ro 5 ex= 1.6 l/Ne

Table 17.6. Equivalent passband (Ne) and diameter (50) of equivalent round
sampling aperture of imaging components

Ne jo (microns)

-f/4: 250 L/mm 4. 32

//6.3 159 6.8

//8 125 8. 65
//16 62.5 17.3

_//1.6 (5°).... 90 L/mm 12

-//2-8 (5°) 180 6

-//2.8 (5°).... 64 17

-//2 27.3 39.5
..N„* 0. 241 N„ See figure 17.9

. 110 L/mm... 26. 5 L/mm 40.8
.220 53 20.4
-180 43.4 25
.-150 36 30
-r= 1 0. 50 Nc

** See figure 17.3

-r=l .45 Nc See figure 17.4

. r=cos2r_ - . 38 Nc See figure 17.5

T=e-r/r0 . 244Ncr
*

. T= e_(r/ro> 2 _ _ . 222 Nc See figure 17.6
.20 Nc See figure 17.7

40 mm Cine Ektar<

Film.

Exponential spot.
Exponential spot.
Theoretical lens..

See figure 17.7.

See figure 17.10 and
table 17.2.

*Nct= “rated” resolution
at r~^2%.

‘Ne= limiting resolu-
tion atr~=2%.
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iVe^0.63/c>o.5 is an approximation computed from the flux distribution
occurring in practical star images. The factor 0.63 is a compromise
value depending on the percentage of flux in the haze surrounding the
nucleus of the star image.
The line number for known round apertures is expressed in relative

units N/Ns that refer to the aperture diameter 8=1/Ns, where l is

the unit of length (1=1 mm, or l=V= vertical picture dimension).
Relative to the equivalent passband Ne ,

the diameter of these aper-
tures is expressed by the relations given in table 17.5.

An equivalent aperture or point image of specified characteristics

can thus be obtained for a system element by the insertion of its

iVe-value into the relations given in table 17.5.

The equivalent passband Ne (television lines) and the equivalent
aperture sizes of a number of system elements used in photographic
processes are summarized in table 17.6.

Equivalent Passband and Aperture Diameter of Proc-
esses Containing a Number of Elements in

Cascade

The sine-wave response characteristic of a number of system ele-

ments in cascade, including the eye if desired, can be computed
accurately by forming the products of the response factors rj

2 ,

. . . ri n
of actual response characteristics at corresponding line

numbers. The equivalent passband Ne (P) of the process is thus given
accurately by the integral

V,J, )=Jo

(r^r;, . . . rfn)
2dN (14)

Because of the nature of the response characteristics of lenses, films,

and television tubes it has been found that the equivalent sampling
area of a combination of such “apertures” can be evaluated with
usually less than 5-percent error by simply adding the equivalent

aperture areas of the components or, as expressed in terms of equiva-

lent aperture diameters:

5(p)— (<h
2+52

2+ . . . +5n
2
)* (15a)

also

l/A7e(2, )
~(l/A7

i

2
-hl/A

2̂

2+ . . . + 1/N.
n
*)* (15b )

Thus, it becomes a simple matter to compute the equivalent passband
Nt (p) and the aperture diameter of photographic systems by the use of

eq 15 in conjunction with table 17.6. Equation 15 is exact for expo-

nential apertures T= e“ (r/ro)2 because the response characteristic figure

17.6 has the form r^w=t-KN2
. The response characteristic of a

system of two-dimensional apertures tends to approach this form
(fig. 17.6), which may therefore be used as an equivalent response

characteristic with a line-number scale N&=Ne/1.6.

The simplified method will lead to larger errors and should not be

used when electrical components of a television system such as am-
plifiers or filters with sharp cutoff or a rising frequency characteristic
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are included. Although equivalent pass-bands (A7e) for such com-
ponents have a significance, they cannot be treated as normal optical

apertures.

Tests for Visual Equivalence

Xow that an objective measure for the equivalence of imaging
devices or systems has been established, it remains to be shown that

the equivalence holds under visual examination. It is obvious that
an equivalence indicated by equal measures Ne will be satisfactory

when obtained from sine-wave response characteristics that are very
similar in shape. A repetition of aperture processes always tends
to approach an e~ kN2 shape. This observation can be proven when
apertures of widely different form such as the combination of lenses

and film shown in figure 17.16 are cascaded. In combination with
the eye (fig. 17.17), the curve shape becomes even more normalized,
indicating that the measure Ne agrees with visual observations. A
most critical test for visual equivalence is a comparison of single

imaging processes with widely different characteristics but equal
measures Ne . This test can be made by comparing pictures made
with a complex aperture (lens) such as shown in figure 17.10 with
pictures made by an equivalent roimd aperture of constant trans-

mittance or with a round aperture with cos2 transmittance. The
response characteristic of the latter is shown by broken lines in figure

17.10, differing materially in resolving power from the actual lens.

From this point of view the equivalence may appear rather inade-

Figure 17.16. Response characteristics in a 35-millimeter motion-picture system.

100 g

5

Figure 17.17. Response characteristics of the eye at a viewing distance offour times
the vertical picture dimension.
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Figure 17.18. Edge transitions of equivalent apertures shown in figure 17.10.

quate; but when pictures are scanned or produced with these equiva-
lent spots, the transitions at sharp edges do not differ nearly as much
as shown by figure 17.18. To permit a visual comparison of images,
different aperture shapes and intensity distributions have been
synthesized accurately by out-of-focus projections with a precision

enlarger. When a pinhole is imaged out of fpcus it assumes the shape
of the enlarger lens diaphragm. In this position, variation of the
lens-stop diameter causes a proportional variation in diameter of the
out-of-focus point image. The f numbers corresponding to the lens

aperture components in figure 17.11 are indicated in the lower portion
of the insert as well as the relative exposures (1/speed) for obtaining
respective flux values.

Photographs were produced in this manner b}T multiple exposures,

the flux values being measured by a photoelectric device. To be
able to show any difference more pronouncedly, the pictures were
made with aperture sizes three times larger than that of the lens

(respective to the picture frame for which the lens is designed) and
thus represent a three times magnification of the image. The Ne

-

value in the originals was Ar
e=210, whereas that of the lens is iVe=630

in a frame 7 mm high. At a normal viewing distance these magnifi-

cations are found to have substantially equal sharpness, the equivalent
round aperture with constant transmittance appearing slightly

sharper. Upon close study the actual lens image exhibits higher
resolution but slightly softer edges. Similar observations and tests

made by comparing television images and motion pictures of equal

Ne ratings have shown that a visual evaluation of sharpness is in

good agreement with the objective equivalentNe .

Conclusions

A study of the factors determining the sharpness in images produced
by optical, photographic, and electrical image systems has shown
that the relative performance of an imaging device with respect to

detail rendition and edge sharpness is accurately specified by its

sine-wave response characteristic. Given the characteristics of the

components, the performance of any combination forming a multi-

element imaging system can be computed accurately. It has thus

been possible to solve many problems arising from a combination of

optical, photographic, and television processes. Measurement of a
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considerable number of lenses and television components has shown
clearly that the resolving power has little significance as a measure of

quality being perhaps the least important point on a response charac-
teristic. The objective measure Ne specifying the equivalent optical

passband of the imaging device or system is ideally suited for a

universal system of rating image quality, its use permitting a great
simplification of many problems. The sine-wave response factors and
the measure Ne state performance in relative units. Absolute values
of contrast require one additional specification—the large area con-
trast in the image plane, which can be determined by well known
methods. A specification of lens quality must, therefore, include
data on its large area contrast as well as a family of response character-
istics (or JVe-numbers) as a function of f:number and angle. In view
of the inadequacy of the present method of rating image quality by
the resolving power of the device, and because of the lack of precise

or useful information on detail rendition by lenses intended for pic-

torial purposes, the author recommends that the above system of

rating be studied for adoption as an objective standard. A lens

bench for photoelectric measurement of the response characteristic

of lenses (including microscopes) has been developed by RCA for

the Office of Naval Research under a study contract requiring an
accurate evaluation of image quality. It employs moving sine-wave
or square-wave test patterns photographed on the sound track of

motion-picture film and analyzes the image formed by the lens with a
slit aperture, which, referred to the image plane may be made as

small as 0.01 micron. Direct readings of the measure Ne can be
obtained with a calibrated “noise” film permitting, for example, an
experimental and rapid determination of optimum spacings of lens

elements. The proposed system of rating image-forming devices
has been applied successfully to solve many problems in television

systems that require a combination of optical, electrical, and photo-
graphic elements.

The author acknowledges the helpful criticism and contribution of

W. A. Harris of the RCA Tube Dept., Harrison, N. J., and Dr. D. O.
North of the RCA Laboratories, Princeton, N. J., in the analytical

evaluation of equivalent-aperture passbands (Ne ).

O. H. Schade, Electro-optical characteristics of television systems, RCA Rev.
9 (1948).

O. H. Schade, Image gradation, graininess and sharpness in television motion-
picture systems, J. Soc. Mot. Piet. Televis. Engrs. 56

,
No. 2 (Feb. 1951) and

58 No. 3 (March 1952).
0. H. Schade, A new system of measuring and specifying image definition, (un-

published paper given at the 69th Semiannual Convention of the Society of

Motion-Picture and Television Engineers in New York City on May 3, 1951).

Discussion

Dr. R. C. Spencer
,

1 Air Force Cambridge Research Laboratories,
Cambridge, Mass.: The repeated accounts over the past 2 days of

the subtle differences between resolving power on close-packed parallel

lines and overall picture quality, coupled with Otto Shade’s excellent

treatment of the subject using communication theory, prompt the
following remarks.

1 Presented in written form following the Symposium as a summary of Dr. Spencer’s oral discussion.
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Most optical tests involve the high-frequency cut-off of the optical
instrument, i. e., its ability to resolve two points (such as stars), two
parallel lines, or to follow an abrupt change in illumination (step

function). Let us consider now a more general target or input func-
tion Go(x,y) containing lower frequencies that can be represented in

the neighborhood of any point by a Taylor’s series. Assume that
if Go were a point (impulse) the optical instrument would spread it

out into a system function F(x,y). In general the output function
Gi(x,y), when G0 (x,y) is the input function, is the convolution (Fal-

tung) of Go and F, expressed as Gi=G0y,F. I have shown 2 that for

a one-dimensional case

<?.(*)=(s D") (?»W=Pe»

where P is an operator. Thus, if the nth moments of F(x), defined
by nn=fxnF(x)dx exist, the output function is a series of products of

moments of F(x) and derivatives of GQ (x). Thus, for an even func-
tion with /z0 normalized to unity

G1 (x)=Go(x)-i^D2Go(x)+ ....

This form is ideal for the correction or estimation of error of, say 10

percent, introduced into an input function by the limited resolving

power of the instrument. Note that for positive moments the output
curve Gi lies always on the concave side of the G0 (x) curve, thus
cutting the corners. The case of the second moment for estimating
distortion due to television scanning spots was substantiated by
Mertz and Gran 3 in 1934. I later generalized the term “instrument”
to include circuits, recording galvanometers, etc., in which cases the

fi2 term can be made zero or negative by proper underdamping.
It is noteworthy that the series of corrections is a differential

operator P; that a series of instruments can be used in tandem and
that the overall operator P is the product P 1P2P3 . . . ;

that if

each F(x) is shifted to its own center of gravity, thus making each

Mi=0, and all /Vs are normalized to 1, the second moments /t2 are

additive; also the /Vs.
These results are in agreement with the diffusion processes, and

laws of combination of random errors; in particular, the root-mean-

square width of the apparatus function is the square root of the sum
of the second moments of the individual system functions.

The simple theory breaks down in the case of the second moment
of the slit diffraction pattern [(sin </>)/<£]

2

,
which is infinite. This was

solved by Norbert Wiener who had independently realized the im-

portance of the second moment and by 1941 had derived the best

filter for an aperture, such that the second moment of its intensity

diffraction pattern, and hence its rms width, would be a minimum.
According to Wiener the amplitude transmission function over a

slit aperture should be cos x with the edges of the aperture at the

first zeros; also for a circular aperture the amplitude transmission

2 R. C. Spencer, Phys. Rev. 38, 618-629 (1931); [A]46, 337 (1934); [A] 48, 4 3 (1935); 52, 761 (1937), of which
n oo

eq 4 should read n n=Kn
I [A] 55, 239 (1939); [A] 60, 172 (1941). J. Appl. Phys. 20,413-414

J -OO

(1949).
3 P. Mertz and F. Gray, Bell Systems Tech. J. 8, 464-515 (1934).
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should be t/0 (r) with the edge coincident with the first null circle.

In conclusion, let me say that with most of the effort going into

the study of the limit of resolution using sharp targets, we should
begin to pay more attention to faithfulness of reproduction. The
discussion above presents the low-frequency extreme. It does
reiterate Shade’s contention that the moment of inertia is important,
especially for faithfulness of reproduction.
A complete solution, if successful, would have to incorporate con-

siderable portions of the theory of information and in particular

Wiener’s theory of filtering which not only encompasses the complete
spectrum of frequencies but enables the engineer to specify the opti-

mum filter for maximum faithfulness of response of a typical class of

input functions in the presence of unwanted noise. During the
present sessions we have seen repeated indications of variety of:

(a) inputjunctions such as star points, lines, sine waves, step functions,

square or round areas and typical shapes for letters, trucks, ships,

etc.; (b) noise from atmospheric haze and temperature variations,

photographic haze and particle size and resolution of the human eye.

There is still lack of agreement on what is considered to be maximum
faithfulness of reproduction for any one set of conditions but there
is agreement on the fact that defocusing and other aberrations change
the filtering characteristics of the instrument in a measurable manner,
these characteristics being resolution and contrast.

Dr. D. S. Grey, Polaroid Corp., Cambridge, Mass.: I would like

to comment on the papers by Selwyn and Schade. It has been some
3 years now since Selwyn and Schade have answered for us two ques-
tions that have received considerable discussion at this symposium.
One question is, what sort of resolution target should we use? The
second question is, how, from the energy distribution of the image of

a point source, can the lens designer determine what results his lens

will achieve under any particular test system with particular targets?

Now, the answer that Selwyn and Schade have given to the first

question is that it is entirely immaterial what type is used. It is

a question of how you interpret your results in connection with the

type of target you use. If you use a line target it does not matter
what the contrast in your lens is. If you interpret your results

properly you can get the factors that Selwyn and Schade have shown
to be pertinent and apply their analysis, and get the test results

you would receive with any other type of test target.

The other question that is of interest particularly to the lens de-

signer, is simply that the lens designer may obtain a spectrum of his

point image and then he can predict just what his lens will do under
a particular specified resolution of test.

I would like to point out one limitation to certain general aspects

of the Selwyn-Schade method of analysis, which is the dependence on
the object being illuminated by incoherent radiation. If the radia-

tion is coherent, many of the linear properties do not hold, and since

I have been working mainly in microscopy since Selwyn and Schade’s

paper appeared, I am, therefore, excused for not having climbed on
the bandwagon sooner.

Now, we can go even further than Selwyn and Schade have indicated

directly this morning. I am sure they had it in mind, however. If

we analyze the image by their method we can predict what the results

will be under test by any particular method. In particular, we can
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predict what we are going to get in the photographing of a real object,
if we know what the object is.

We can go even further than that by using certain very general
theorems that have been developed in communication theory. We
need not know exactly what our object is before we specify how our
lens is going to perform., that is, to permit us to distinguish certain
detail and say, “Is it there?” or “Isn’t it there?” We can use the
communication theorems and not concern ourselves with precisely
what objects we are trying to image, but with the certain general
properties of certain general classes of objects that we would like to

examine. All the theorems of communication theory can go right
over into optics just by a trivial change from one-dimensional notation
to two-dimensional notation. We just draw a wiggly line under
certain variables indicating that they are vectors and that certain
multiplications are dot products of certain vectors.

I have been quite surprised that there has been so much discussion
about just what type of target we should use so long after Schade and
Selwyn first published their work.
Chairman B. O’Brien, University of Rochester, Rochester, N. Y.:

Thank you, Mr. Grey. Is there any further discussion?

Dr. G. Toraldo di Francia, Instituto Nazionale di Ottica, Flor-

ence, Italy: I should like to remark upon Dr. Selwyn’s paper and
Dr. Schade’s paper.

Dr. Selwyn measured the increasing contrast that shows up in the
curve representing the contrast versus the spacing. He attributed
it to the defects of the eye. I think that one can very well explain
the phenomenon if one keeps in mind the fact that the resolution by
the eye is not a static thing but a kinetic thing. When the spacing
between the lines you have to resolve is larger, you need a larger

contrast because the eye needs a longer time to scan it.

In this connection, may I remind you of a very fine experiment
which I think was known to Helmholtz

;
looking through a pinhole in

a cardboard at the sky and moving the pinhole before one’s eye, one
may see the blood vessels of the eye very clearly. But as soon as the
cardboard is held stationary the blood vessels can no longer be seen.

This indicates that the veins in the eye cannot be seen because they
are not moving with respect to the retina.

Dr. Schade mentioned that the resolving power depends not on the

amplitude of the illumination but on the flux, and I agree with him.
We have made many experiments at the Optical Institute in Florence
that confirm that the resolving power does not depend on the ampli-
tude but on the energy. We have called it the energetic theory of

resolving power. Our experiments are in agreement.
Chairman O’Brien: Thank you, Dr. Toraldo. Now, at the risk

of being informal, and with Dr. Gardner’s permission, I would like

to add a comment to the discussion. What I have to say is that one
can resolve quite successfully complex patterns where the total time
of illumination is a microsecond or so and no possible scanning of

the eye can take place. In order for the visual mechanism to sense

the detail, it is necessary that the scanning be in space or in time.

It is not essential that it be a scanning in space. Either is adequate.

This does not mean that Dr. Selwyn’s results are to be disagreed

with. As a matter of fact, the agreement of published data is even
better than he said. This is, no doubt, modesty on his part. Even
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in Cobb’s figures you will find perfect agreement with the curve
sketched by Dr. Selwyn. Moreover, the fact that the angular sepa-

ration of lines as it broadens requires a higher, not a lower, contrast

of threshold, is in keeping not only with the physiology but the anat-
omy of the structures.

I shall now call time on myself and ask for more discussion.

Dr. R. E. Stephens, Optical Instruments Section. National Bureau
of Standards, Washington, D. C.: Dr. O’Brien, there is another thing

to add to that discussion. I think. The eye seems to be responsive
to gradients and also gradients of gradients. There is an experi-

ment I remember in which one produces a split field, one side of

which has uniform brightness, the other having a constant gradient
where the brightness at the boundary is the same as that of the uni-

form field. On opposite sides of the boundary there is an infinitesi-

mal difference in brightness nevertheless, a definite line is visible.

For sinewaves with the constant contrast, not only the gradient but
the gradient of the gradient is smaller for large spacing than for

short spacing.

Chairman O’Brien: I know you will agree that this is perhaps a

more elegant way of stating the same quantity. Data have been
published as a function of the breadth of that. All of these tie

neatly together. Is there any further discussion?

Mr. J. M. Xaish, Royal Aircraft Establishment, South Farn-
borough, Hants, England: I would like to make a remark upon the
question of standardization of resolving power by measurements.
This may not be a very appropriate moment to mention it in the
course of the symposium but I feel that sooner or later some remark
should be made upon this question. We believe that progress will be
accelerated by standardization of resolving-power measurements.

From the symposium so far the importance of resolving power as

a means of specifying the performance of the lens in terms of picture

quality must be amply illustrated. In spite of the many defects in

resolving power as a means of measurement, I think it seems that
there remains a thing that will be measured and Dr. Washer’s descrip-

tion of the measurement he makes, makes it very clear that it is not
a simple matter to carry out a large number of measurements on a

given day. The importance of other criteria for picture quality can-
not be called in question and, indeed, we have done a certain amount
of work on the relation between knife-edge test-object gradients and
interferometer quality values with the corresponding resolving-power
measurements in the same focal plane. I would think that is an
important correlation, especially if the results may be weighted for

the variation of wavelength, because of the importance of particu-

larly transverse chromatic aberrations, but nevertheless we feel that

we shall all be called back to the question of making these resolving-

power measurements in the standard fashion.

I would like to invite attention to the importance of standardizing
this procedure. Difficult though it is, it remains very important.
We have a British standard. I am not sure whether there is an
American standard for measuring resolving power, but I think that

eventually we must arrive at an international standard.

The difficulties envolved in accomplishing this are enormous but
may I briefly invite attention to the necessity for at least keeping
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this goal in mind in the future?
Chairman O’Brien: Thank you. That is a noble goal. I hope

some day we do achieve it. It certainly is worth keeping in mind.
Is there any further discussion of these papers?
Prof. F. Zernike, Natuurkundig Laboratorium, Groningen, Neth-

erlands: One question to Mr. Feder. In considering the calculation

of intensity in the aberration image, he has said that he is troubled
somewhat by the infinities that may occur there and he tries to get

away from them by looking at the energy on a certain small surface.

I would like to know how he determines the size of that surface

because everything will depend on that. Of course, in reality the
finite wavelength of light takes care of this infinity and it will never
be infinity at all.

Chairman O’Brien: Is Mr. Feder here?
Mr. D. P. Feder, National Bureau of Standards, Washington,

D. C.: I think my point was that with respect to geometrical optics

alone, in which the question of energy density has no meaning. Do
you agree with this?

Prof. Zernike: Yes.
Mr. Feder: And that one might try something of this nature if

the image is poor with respect to the Airy disk? One could, for

instance, divide the entrance pupil of the lens into a series of apertures
that cover the entire entrance pupil—say you divide it up in squares

—

and consider where the rays from the corners of the squares go.

Assume that the energy then goes into the spot formed by these rays.

Prof. Zernike: How many squares do you need?
Mr. Feder: I don’t know the answer to that, but I would like to

hear from Dr. Herzberger. Perhaps he will have an answer.
Dr. M. Herzberger, Eastman Kodak Co., Rochester, N. Y.:

Thank you very much. I would like to give an answer to that. In
the case of very well corrected optical systems, microscopes or

telescopes, it is
,
of course, necessary to calculate the diffraction image.

This is the only way to get the light intensity; but you can get a kind
of geometric optical pattern for a photographic lens in the following

way. Make a grating in the entrance pupil by dividing the entrance

pupil into equal parts. One can do that by a large number of equi-

lateral triangles. Then each ray represents an equal amount of light.

If one has a large number of rays and intersects them with the image
plane, one gets a distribution that is equivalent, or practically equiv-

alent, to the light distribution in the image. In that manner one can
get, by calculating the mumber of points within a given area, the

amount of light falling within that area.

Prof. Zernike: Well, my impression is that in order to make, as

I would say, an improvised method of taking into account the wave-
lengths of light

—

Dr. Herzberger: No, the wavelengths of light do not come into

this pattern because it would not be very different for different wave-
lengths—at least as long as the aberrations of the system are large

with respect to the wavelengths of light.

Prof. Zernike: I do not agree because Mr. Feder said expressly

that the intensity would be infinite.

Dr. Herzberger: Yes. You see, if one looks at these pictures

one gets an immediate impression of the light distribution because

the points are so dense. In geometrical optics there would be an
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infinite density at the caustic. W. R. Hamilton already has investi-

gated this problem and has tried to compare the intensity at different

parts of the caustic. One compares equal areas of the caustic and
thus finds a comparative measurement of the intensity at the caustic.

The spot diagrams, on the other hand, do not give a correct but an
approximate picture of the intensity distribution. They do, however,
seem to provide a more graphic method of showing the intensity

differences in the image than drawing lines of equal intensity.

Chairman O’Brien: Thank you, Dr. Herzberger. This subject

could easily be the topic of another symposium as extensive as this

one, and Dr. Gardner has asked that we try to undertake the afternoon
program very soon. However, before I spoke, at least Dr. Lucy had
waved and perhaps others, so rather than cut off too abruptly, may
we have your remarks?
Dr. F. A. Lucy, University of California, Los Alamos Scientific

Laboratory, Los Alamos, N. Alex.: I have a brief comment. I don’t
think we have to worry too much about the product of an infinite

density over a zero area. The exact limit of the caustic here being
really zero in area, we have an indeterminate form that can have a

finite product.
Dr. G. H. Conant, Jr., Harvard College Observatory, Cam-

bridge, Mass.: May I say in defense of Mr. Feder, that the problem
that he was discussing was one of computing with automatic computing
machinery and your machine cannot evaluate these indeterminate
things. The machine, itself, can only handle a certain finite range of

magnitude.
Chairman O’Brien: Air. Feder, would you like to cap }

Tour climax,

so to speak?
Mr. Feder: No, I was thinking about Dr. Zernike’s question. It

seems to me that it is essentially a matter of how closely you examine
the image. In other words, if you are going to look at it with a very
high powered microscope, then I don’t think this method will work.
But if you are going to examine it with something that has farily low
sensitivity, that is if you take a fairly large area of the image, and if

the image is bad with respect to the Rayleigh limit, it is a question of

selecting the triangles or squares or what have you in the entrance
pupil, so that the energy from one triangle or one square gets into the

portion of the area you examine in the image.
Chairman O’Brien: Dr. Hopkins?
Dr. R. E. Hopkins, University of Rochester, Rochester, N. Y.: It

seems to me that it is easy to see what the problem is if you think of

the interference patterns that I showed. When you have a round,
circular area free from fringe, you have to tell from physical optics

where the rays within that area are going.

Chairman O’Brien: It is refreshing to see you in such complete
agreement.

Prof. A. Marechal, Institut d’Optique, Paris, France: I have to

mention that Prof. Durand in France obtained a better approximation
in taking account of the different phases of the vibrations correspond-
ing to the traced rays. It is simpler than complete calculation of

diffraction patterns and nevertheless gives a good approximation.
In order to know the contrast of images, or the resolving power of

an instrument, information is needed on the diffraction pattern.

Those quantities determining the optical quality of the instrument
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can be computed by various integrations over the diffraction image.
Fortunately, Prof. Duffieux 4 and his co-workers have shown that
those quantities can also be computed by convenient integrations
performed on the exit pupil. The example of the contrast of images
of lines has been studied in a previous communication.
Mr. W. A. Allen

,

5

U. S. Naval Ordnance Test Station, Invokern,
China Lake, Calif.: In reference to the paper presented by Mr. Feder,
it might be mentioned that many other laboratories have been using
automatic computing machinery for the purpose of ray tracing. Spe-
cifically, the Los Alamos Scientific Laboratory 0 and the U. S. Naval
Ordnance Test Station 7 have investigated and designed many lenses

by automatic computing-machine methods. Recent work at the
Naval Ordnance Test Station has been based on generalized equations
used to trace rays through uncentered-spherical interfaces, prisms,

and aspheric surfaces. All surfaces may be considered either refract-

ing or reflecting. Our equations for an aspheric surface appear to

converge more rapidly than those used by the National Bureau of

Standards.
We have heard much discussion here about the desirability of con-

sidering the problem of lens design from the standpoint of physical
optics. It should be mentioned that ray tracing in the notation used
by the National Bureau of Standards and the Naval Ordnance Test
Station provides a calculation of the optical pathlength from object
to image. Machine performance is such that this distance is accurate
to the wavelength of light. Thus, the data from geometrical ray
tracing can be translated by straightforward methods into the lan-

guage of physical optics. Aspheric surfaces have been designed by
the methods of equalizing all optical pathlengths from object to

image .

5

In conclusion, I would like to suggest that there exists a great need
for a program involving the systematic evaluation of existing lens

prescriptions in terms of resolving power. Such a program would
entail the adoption of some reasonable arbitrary standard, such as

the criterion suggested by Dr. Hopkins, relating the results of ray
tracing to resolving power. Some agency should undertake the

analysis and publication of results pertaining to all lenses described
in the patent literature. At the present time, any lens design can be
investigated exhaustively and rapidly with respect to available glasses,

contemplated magnification, and configuration of the image surface,

by means of automatic computing machinery. Some resolving-power
data, however, brief and inadequate, should be known in advance of

such a thorough analysis in order to screen the large group of all

known lenses down to a few that might meet prescribed minimum-
performance standards. As Dr. Hopkins has remarked, many elec-

tronic calculators have been built at the public expense; ray-tracing

data obtained by their use should become public property. In my
opinion, publication of such information would eliminate much present

duplication of effort.

4 P. M. Duffieux, L‘integrale de Fourier et ses applications k 1‘optique, (Faculte des Sciences de Besancon,
1947).

5 Received after the close of the symposium.
6 W. A. Allen and R. H. Stark, J. Opt. Soc. Am. 41, 636 (1951).
7 W. A. Allen and J. R. Snyder, J. Opt. Soc. Am. (in press).
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Editor’s note: Dr. Allen’s reference to the early use of automatic computing
machinery for ray tracing at the Los Alamos Scientific Laboratory and at the
U. S. Naval Ordnance Test Station is most welcome. At the same time this

suggests the advisability of listing other early applications of a similar nature.
In 1944, Dr. James G. Baker used the IBM Automatic Sequence Controlled

Calculator (Mark I) at Harvard for tracing a series of skew rays through an optical

system. Th? equations used and an example of recorded data will be found in

one of the National Defense Research publications [1]. This is believed to be
the earliest use of automatic programmed computing machines for rav tracing.

In 1945 Grosch [2] reported on the tracing of meridional and skew rays by
means of International Business Machines Corporation equipment. The equip-
ment available at that time did not have large storage capacity or provision for

sequence programing. Consequently the tracing of a ray through a single sur-

face required the application and removal of 28 plug-boards. Such a procedure
reallv constituted a tour de force and could be only used when a large number of

rays, say 100 or more, were to be traced through a given optical system. With
such a requirement it is possible and desirable to perform a given operation on
all the rays before the plug-board is changed for the next operation. In this

method the rays are traced in 'parallel instead of in series.

At the fall meeting of the Optical Society of America, October 1949, Grosch [3]

reported on the tiacing of skew rays by the Selective Sequence Electronic Calcu-
lator (SSEC) of the International Business Machines Corporation. This is a
programmed machine with sufficient storage capacity to permit ray tracing in
series through a series of surfaces. In other words, a given ray is traced through
the entire optical system before a computation of a second ray is begun. On
March 9, 1950, at the time of the meeting of the Optical Society of America in

New York there was a demonstration of ray tracing by this machine for the
members of the society. At this same meeting Epstein [4] described a method
for calculating the third-order aberrations of an optical system by means of some
of the less complex IBM equipment.

In March 1950 at a meeting of the Association for Computing Machinery,
Donald P. Feder and Benjamin P. Handy, Jr., of the National Bureau of Standards
presented a paper titled ‘‘Optical Ray Tracing Problems and The Card Pro-
grammed Calculator” (CPC). This paper described the use of the CPC in tracing
skew rays through a system of spherical surfaces. Also in March of 1950 the
Standards Eastern Automatic Computer (SEAC) was first used to trace rays.

The use of both of these machines was further discussed by Feder [5] in a talk

given a year later at the March 1951 meeting of the Optical Society. At this

same meeting Wooters [6] described a method of ray tracing by means of the
IBM 604 unit.

In September 1951 Feder [7] gave the detailed formulas that had been used
with automatic computing machinery for tracing skew rays through any rota-
tionallv symmetric optical system and also formulas for calculating third-order
image errors for such systems. At the October 1951 meeting of the Optical
Society papers on the use of automatic digital computers for use in geometrical
optics were given by Cox and Ledda [8]; Jacobs, May, and Scholnick [9]; Wooters
[19]: and Woodson [11].

The foregoing is believed go be a complete summarv of the papers appearing
in the journal of the Optical Society of America as presented at its meetings
during the past 7 or 8 years. Other applications of programmed computing ma-
chinery to optical computations have perhaps been made by other firms and
institutions in this country but the information is not available for a complete
lisGing. It may be mentioned, however, that at the National Bureau of Stand-
ards, fifth-order aberration equations derived from the equations of Wachendorf
[12] are being used for computations on the SEAC machine.

[1] Design and development of an automatically focusing 40-inch f/5.0 distor-

tionless telephoto and related lenses for high-altitude aerial reconnaissance,
NDRC, Section 16.1, Optical Instruments.

[2] H. R. J. Grosch, Ray tracing with punched-card equipment, Abstract 27,
J. Opt. Soc. Am. 35, 803 (1945).

[3] H. R. J. Grosch, Ray tracing with the selective sequence electronic calcu-
lator, Abstract 42, J. Opt. Soc. Am. 39, 1059 (1949).

[4] L. Ivan Epstein, Calculation of third-order aberrations with the aid of IBM
machine, Abstract 9, J. Opt. Soc. Am. 40, 255 (1950).
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[5] Donald P. Feder, Ray tracing with automatic computing machinery, Ab-
stract 45, J. Opt. Soc. Am. 41 , 289 (1951).

[6] Glenn Wooters, Ray tracing with the IBM Electronic Calculating Punch
Type 604, Abstract 44, J. Opt. Soc. Am. 41 , 289 (1951).

[7] Donald P. Feder, Optical calculations with automatic computing Machinery,
J. Opt, Soc. Am. 41 , 630 (1951).

[8] Arthur Cox and Catherine E. Ledda, IBM automatic equipment in optical
design, Abstract 48, J. Opt. Soc. Am. 41 , 874 (1951).

[9] Donald H. Jacobs, Michael May, and Seymour Scholnick, A compact ultra-
high Speed digital rav-tracing machine, Abstract 49, J. Opt. Soc. Am. 41 ,

874 (1951).

[10] Glenn Wooters, Computing effects of lens variations with electronic calcu-

lator, Abstract 50, J. Opt, Soc. Am. 41 , 874 (1951).

[11] Robert A. Woodson, An analysis of H. D. Taylor’s f:2 photo lens using a
card programmed electronic calculator, Abstract 51, J. Opt, Soc. Am. 41 ,

874 (1951).

[12] F. Wachendorf, Bestimmung der Bildfehler 5. Ordnung in zentrierten
optischen Systemen, Optik. 5, 80 (1949).
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18. Position of Best Focus of a Lens in the Presence

of Spherical Aberration

By R. Kingslake 1

Introduction

The relation between the image formed by a lens and the amount
and kind of spherical aberration present, is of perennial interest to

optical designers. Since some residual spherical aberration is usually
unavoidable, the designer is concerned with knowing how best to

subdivide this residual between marginal overcorrection and zonal
undercorrection. The properties that must be considered in this

connection are (a) resolving power; (b) depth of focus; (c) the position
of the best image, and hence the “Focus shift” (i. e., a longitudinal
displacement of the plane of best definition as the lens is stopped down
to a smaller aperture); (d) contrast (aberrational haze causes a loss

of contrast in the image; this is, of course, entirely distinct from the
loss of contrast due to flare light from the lens).

No attempt was made in the present work to measure image con-
trast, although that would be necessary for a complete study of the

problem.

Historical Outline

For very small amounts of primary spherical aberration, in which
the sum of the maximum positive and negative departures of the light

wave from a perfect sphere does not exceed about a quarter of a wave-
length (the Rayleigh limit), it is well known [l]

2 that the best-focus
plane falls midway between the marginal and paraxial images, the light

distribution in the elementary star image being then very similar to

that of the ideal Airy disk. From integrations made by Lommel and
others, Picht [2] was able to plot a longitudinal section of the light

distribution in that simple case.

In 1925, H. G. Conrady [3, 4] studied the properties of a lens having
up to 20 times the Rayleigh limit of primary spherical aberration, and
found that neither the position of the best focus, the resolving power,
nor the depth of focus then agreed with simple theoretical predictions.

Her graphs indicate that as the amount of aberration is gradually
increased from zero, the plane of best resolution first falls midway
between the paraxial and marginal foci, up to the Rayleigh limit, but
after that it remains approximately stationary relative to the paraxial

focus while the marginal focus moves progressively further away.
Thus, neither the simple optical-path-difference theory nor the circle-

of-least-confusion theory derived from ray paths represents the facts

when large amounts of primary aberration are present.

The more general case of a lens having a zonal residual of undercor-
rection with some marginal overcorrection has been attacked by

1 Eastman Kodak Co., Rochester, N. Y.
2 Figures in brackets indicate the literature references on p. 266.
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various workers, an outstanding paper being that by Fliigge [5], but
without any general results being established. In view of the impor-
tance of the problem, it seemed worth while to make some direct

determinations of the properties of a lens having a variable amount of

zonal aberration, in the hope of finding out some definite laws.

Experimental Procedure

A convenient source of a variable amount of spherical aberration
was found to be an f/4.5 photographic lens of the Tessar type, of 4

inches focal length, focused by moving the front element. At each
position of the front element, the spherical aberration curve was
plotted by a modified form of the well-known Hartmann Test, taking
five zones of the lens in succession, using “Super-X” panchromatic
16-mm film, D-76 developer, and the band of green light transmitted
by a No. 57 filter. The lens was mounted on a nodal-slide lens testing-

bench, with a 25-mm photographic lens used as a microscope objective
to magnify the aerial image 14 times before it was photographed.
The film was housed in a Cine-Special 16-mm camera, without lens,

this camera being particularly suitable for the purpose as it is equipped
with a direct-view reflex finder and a single-frame crank. The longi-

tudinal position of the viewing microscope was indicated by a dial

gauge on the bench, graduated in thousandths of an inch (.025 mm).
The test object was either a point source or a resolution chart about
70 feet distant, the chart lines being spaced at intervals of y/2 from 24
to 300 lines per mm in the aerial image.

For each lens position, a strip of film was obtained, showing on suc-

cessive 16-mm frames: five pairs of dots from the five lens zones at

the inner Hartmann plane just within the best focus; then five pairs

of dots from the same zones of the lens at the outer Hartmann plane
0.080 inch (2 mm) beyond the inner Hartmann plane; and finally a
succession of photographs of the resolution test object at one-thou-
sandth-inch steps, passing through the best focus region. The expo-
sure time for the Hartmann dot patterns was about 40 seconds, and
for the resolution charts an 8-second exposure was satisfactory. In
some cases, the lens was subsequently stopped down to a known re-

duced aperture by an iris diaphragm mounted behind the lens in the

same plane as the Hartmann diaphragm, the exposure time being
increased to compensate for the reduced lens aperture.

The spacing of the successive pairs of dots in the Hartmann images
was measured bv projection on a distant screen, the exact projector

magnification being immaterial since the position of each zonal focus

between the two Hartmann planes was found by simple proportion.

Four of the zonal foci were used to determine the four coefficients

a, b, c, and d in a power series of the type

F=a+6F2+cF4+^F6
, (1)

the coefficient a representing, of course, the position of the paraxial

image-point. The fifth zonal focus was then used as a check, the ob-

served and calculated positions never differing by more than 0.001

inch (.025 mm).
The series of resolution-chart images on the film were first examined

macroscopically with the unaided eye, to locate the cleanest image
where the contrast is a maximum. They were then further studied
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under a 10X loupe to read the actual resolution achieved at each focus

position. The resolution figures were plotted on the same graph as

the measured spherical aberration curve for easy comparison.

Experimental Results

The effects of unscrewing the front element of the lens used for these

experiments, are shown in figures 18.1 to 18.6. The front element of

the lens was mounted on a triple-40 thread, hence it moved 1.905

mm/turn.
In these diagrams, each aberration curve is plotted against semi-

aperture, and above it is added a cui've of the resolving-power data
read directly from the film. The shaded circle on each chart repre-

sents the position of the image of greatest contrast and clearness, de-

termined from the film by direct view without a magnifier. It is

probable that this would represent the preferred image position for

FOCUS POSITION ,mm T^m OPDx

Figure 18.1 Front element screwed in fully.

Figure 18.2. Front element unscrewed 1/8 turn (.24 mm).
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T,mm OPI\

Figure 18.3. Front element unscrewed 1/4 turn (.48 mm).

Figure 18.4. Front element unscrewed 3/8 turn (.71 mm).

ordinary photography, although the focal position corresponding to

the peak of the resolution curve might be preferred if fine detail of

high contrast is being studied. An excellent illustration of this

phenomenon is given in [6].

The resolving-power graphs consist of two branches. The heavy
curve represents genuine resolution in which the separate lines in the
target are clearly imaged with sharp edges. However, in many cases

after genuine resolution had ceased or almost ceased, the finer pat-

terns would become clear again down to a very small pattern, after

which resolution would vanish a second time (fig. 18.7). The limits

of this extra-fine pseudo resolution are marked on the various graphs
by dotted lines. It must be regarded as a form of spurious resolution,
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Figure 18.5. Front element unscrewed 1/2 turn (.95 mm).

Figure 18.6. Front element unscrewed 5/8 turn (1.19 mm).

even though each pattern shows the correct number of lines (in this

case four) ancl there is no reversal of black and white. This case

has been recently recognized by workers at the National Bureau of

Standards [7].

The curves for extreme undercorrection, figures 18.5 and 18.6, show
two distinct peaks of genuine resolution, one a broad peak represent-

ing good resolution but a rather hazy image, and the other an abrupt

peak at the point of maximum contrast where the image is very clear

and clean. The latter resolution peak is evidently caused by the

bend in the aberration curve, for it vanishes when the lens is stopped

down (fig. 18.6). It should be noted that the peak resolution in lines

per millimeter is not greatly different in any of the charts, showing
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Figure 18 . 7 . An enlargement from, a typical 16-mm frame showing pseudo resolutions

.

that even 1 mm of spherical aberration is not serious in this respect.

The depth of focus increases greatly in the presence of undercorrection,
but it is very little effected by overcorrection.

The resolution figures obtained in this test were very high, being
substantially the visual resolution of the lens for monochromatic light.

It is probable that the pseudo resolution observed in these experi-

ments would not have been found had the aerial image been photo-
graphed directly without magnification.
By far the worst practical objection to spherical undercorrection

is the shift of focus with aperture. The small shaded circle on each
chart represents the position of the “best” image for ordinary photog-
raphy, and it is clear that if the lens were stopped down to a very
small aperture, the plane of “best” focus would move to the paraxial

image position. To illustrate this for the case shown in figure 18.6

the series of test-chart photographs was repeated after stopping the

lenses down from 17- to 12-mm aperture, and the “best” focus was
found to have moved to the position marked by the dotted shaded
circle on that chart. However, the peak of the resolution curve (ig-

noring the psuedo resolution) was unchanged in both position and
height by stopping the lens down in this way. This bears out the

conclusion of Conrady [3, 4] for lenses having pure primary aberration,

that the best-resolution plane remains approximately fixed relative to

the paraxial focus, even though the marginal focus is moved. This
phenomenon of focus shift did not appear when the lens was over-

corrected.

Theoretical Attempts to Explain the Observed
Phenomena

Two standard modes of approach have been used in the past in at-

tempting to predict the position of the best focus when the form of a

spherical aberration curve is known: (a) to determine the position of
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the geometrical circle of least confusion, and (b) to locate the center

of the sphere that best fits the emerging wave-front.

These procedures are well known, and they have been applied to

each of the six cases considered in this investigation. The geometrical
approach consists in plotting the curve of transverse aberration, P,

against semiaperture, Y, computed by T=F(Y/l'). Here F is the—

-

longitudinal focus position relative to an arbitrary zero, and V is

the distance from the Hartmann diaphragm to the image, in this case

about 80 mm. The position of the geometrical circle of least confusion
marked C on the graphs, is found by drawing such a sloping straight

line through the origin that the maximum positive and negative de-

partures of the T curve from the sloping line are equal to each other.

Taking any point on this line, the coordinates of which are Y and P,

the longitudinal position of the circle of least confusion on the F scale

is found at 8F=T(l'/Y). It is seen from the charts that only in the

presence of an undercorrected zone did the geometrical circle of least

confusion agree closely with the observed position of best contrast.

The second approach, namely, to plot the shape of the emerging
wavefront and try to fit a sphere to it as closely as possible [8, 9],

is more elaborate as it requires some additonal calculation. The
optical path difference, OPD, is equal to the integral of the angular
spherical aberration with respect to the aperture-height Y. Hence,

OPD r=l f
Y
TdY=-2 f

5

FY-dY=\ F(aY+bY3+cYs+dY*)dY.
I Jo l' Jo l' Jo

:.OPD Y
aY2 bYYcY6

2l'
2

4/
/2

Ql'
2 (2)

(The most convenient unit of OPD is the wavelength.) After sub-
stituting in this formula the values of a, b, c, and d found for each
case, the OPD curve was plotted against Y2 as ordinate, and a straight

line added such that the sum of the greatest plus and minus departures
of the curve from the line is a minimum. In most of the cases con-
sidered here, such a line merely joined the two ends of the curve.

By reading the Y2 and OPD values of a point on this line, and sub-
stituting them in the formula

SF=2l'
2

-OPD/Y2
,

the position of the center of curvature, P, of the best-fitting sphere
could be found. The maximum residual OPD between the wavefront
and the straight line was also read off the graph, giving a measure of

the aberration in multiples of the Rayleigh limit (X/4). By adding a
second straight line to the wavefront graph, at a maximum distance

X/4 from it, it was possible to ascertain by how much the lens must be
stopped down to reduce the aberration to the Rayleigh limit; this

point is shown on the aberration curves by an asterisk.

The position of physical best focus, P, agreed with the focus for

maximum contrast remarkably well, except in the case of extreme
overcorrection.

The numerical results of this investigation may be summarizd in

tabular form as follows. The “depth of focus’ ’, in column 7, represents

the longitudinal distance between the planes of 30-line genuine resolu-

tion on the two sides of the peak. The lens was, in all cases, used at

its full f/4.5 aperture.
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Focus shift, ii. e., distance
i

Spherical from paraxial focus to: Depth of
focus

(30 to
30 line)

Movement Marginal aberration ! Peak
of front spherical in multiples resolu-
lens aberration of Rayleigh Maximum- Maximum- tion

limit contrast resolution
image image

mm mm mm mm Lines1mm mm
0 +0. 85 5.0 +0. 10 +0. 10 230 0.62
0.24 +0. 57 3.4 0 -0.02 280 0. 51
0.48 +0.24 1.5 -0. 10 -0. 10 270 0. 46
0. 71 -0.08 1.2 -0.24 -0.20 240 0.40

0. 95 -0.40 2.8 -0. 45
f-0. 25
1-0. 45

/180
\240

0.70

1.19 -0.68 4.2 -0.63 f-0. 23
1-0. 67

/180
U30

1.17

Conclusions

The best distribution of undercorrection and overcorrection is

probably that shown in either figure 18.2 or figure 18.3, in which the
marginal overcorrection is several times as great as the zonal under-
correction. In these cases the peak resolution is very high, while
the best-contrast image and the peak of resolution fall close to the
paraxial focus. Such a lens will show negligible focus shift when it

is stopped down. The actual position of the best focus can be calcu-

lated by finding the center of the sphere that best fits the calculated
wave front, but in making this determination the extreme overcor-
rected margin of the lens must be ignored as the overcorrected
aberration tends to move the calculated point, P, more than it moves
the observed best focus. It must always be remembered that any
significant zonal undercorrection will lead at once to a focus shift.

The experiments described in this paper refer, of course, to a lens

of one particular focal length and aperture, and to one amount of

spherical aberration. It may well happen that in a much larger or
much smaller lens, different conclusions as to the best distribution

of marginal overcorrection and zonal undercorrection would be
reached. Also, if accurate measurements on image contrast had
been included, the advantages of a large amount of overcorrection

might well be offset by the excessive haze accompanying it.
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19. Image Evaluation by Edge Gradients

By Arthur Cox 1

The elementary fact to be faced in connection with any lens is

that it yields a light patch of finite size in the focal plane, and that
the quality of image it yields depends on the shape and size of this

light patch. A practical problem of importance is to bridge the gap
between knowing that the image quality is correlated to the form of

light patch, and establishing the^correlation in a simple and quanti-
tative way.
No correlation can be attempted until an adequate definition or

series of definitions of image quality, are established. Setting up a

suitable and useful criterion of image quality is a major problem,
and a number have been proposed. Two criteria of quality will be
considered in this paper, namely the resolving power of a lens as meas-
ured with a target having equal lines and spaces, and the ability of

a lens to detect a fine dark strip against a bright background. The
way in which these may be correlated with the form of light patch,
either measured or computed, will be examined. The correlation

between other criteria of quality and the form of light patch may
be established, in some cases, by an extension of the method proposed.

Suppose that the object field in front of a lens comprises two semi-
infinite areas, one bright, the other perfectly dark, with an abrupt
brightness transition across the boundary between them. If the light

patch were infinitesimally small the intensity distribution in the focal

plane would be represented by the line ABB'

C

in figure 19.1. Because
of the finite size of the light patch the actual intensity is represented
by the continuous curve of figure 19.1.

Suppose next that the object field comprises a bright strip of finite

width on a dark background. In the ideal case the boundaries of

the image of this strip would lie along BB' and DD'. With a semi-
infinite area terminating on BB' the intensity at a point P would be
given by PX in figure 19.1. With a semifinite area terminating on
DD' the intensity at P would be given by PX'

. The difference

between PX and PX' is the intensity at P due to the strip of finite

width. The intensity curves in figure 19.1, both the continuous curve
corresponding to BB' and the broken curve corresponding to DD '

,

are identical and parallel to one another. Hence PX' is equal to

QY where DB=PQ, and the intensity at P is the difference between
PX and QY. This procedure for obtaining the intensity due to a

bright strip may be extended to the case where the object field con-
tains lines and spaces of equal width, the spaces being completely dark.
Thus with the edge intensity distribution and the object field pattern
shown in figure 19.2 the intensity at P is given by PX— PiXi~\-
P2X2 . . . PwWn-P_ 1W_ 1+P_2W_2-P_3X_3 . . . +P-mX_m . The
summation of the terms with negative subscripts is over an even

1 Farrand Optical Co., New York, N. Y., (now Chief Optical Designer, Bell & Howell Co., Chicago, 111.
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intensity across a single
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Figure 19.2 . Variation of light

intensity due to a repeated
pattern.

number of terms ending on the flat part of the intensity curve.

In this way the intensity at any point, due to a repeated pattern
of bright lines and dark spaces, may be readily determined. In par-
ticular, the intensity at the center of a dark space may be compared
with the intensity at the center of a bright line. With a coarse line

pattern there is a considerable difference between these intensities.

As the pattern becomes finer the difference becomes less, goes through
zero and reverses its sign. By setting a suitable ratio of these inten-

sities, usually less than unity, as a criterion of resolution we can
readily determine the resolving power of the lens.

The above treatment is appropriate to the case where there is in-

finite contrast between lines and spaces. When the contrast is finite

we can consider a pattern of infinite contrast superimposed on a back-
ground intensity, and so derive the resolving power for finite contrast.

Thus if we have as light patch a uniform disk of diameter D , and if

X is the relative width of line or space, the intensities Ii and /2 at the

centers of the lines and spaces are given by table 19.1. Assuming a

criterion of resolution as /2 >.8/i we have r=.45. For a finite con
trast we can take a base intensity I0 and (/0+/)//0=a ty is the con-

trast ratio). Then we have

I[— 7o+//i— Iq (l ~\~a— lli)

12=Io~\~1

1

2=Io -\-ol— IT2 )

For a=2 and r2 >.Sl2 we have I2
=— 2 + .811} and X=.55. The

reduction in contrast has reduced the resolving power by about 20
percent.
The same basic technique used to determine resolving power can be

used to determine the visibility of a dark object on a bright back-
ground. Thus if the object field consists of a strip of width d sepa-

rating two semi-infinite areas, as shown in figure 19.3, the intensity

dip at the center of the strip is given by the difference between PX
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Table 19.1.

X /i h X Ii

1

h

1.0 1.000 0. 000 0. 35 0. 440 0. 560
0.9 0. 963 .037 .30 .414 .586
.8 .896 .104 .25 .462 .538
. 7 .812 .188 .20 .538 .462
.6 .715 .285 .15 .486 .514
.5 .609 .391 .10 .511 .489
.4 .495 .505 .05 .508 .492

INTENSITY

Figure 19.3. Light intensity in a narrow gap.

and QY. With a suitable criterion for a perceptible dip in intensity

it is a simple matter to determine the least angular width of a dark
strip that may be detected against a bright background.

The intensity gradient across an image boundary may be found
quite readily from the computed lens data, or determined experi-

mentally. As far as the computed intensity gradient is concerned,
it may be evaluated purely on the basis of geometrical optics, or on
the basis of diffraction theory and physical optics. These methods
of evaluation will be considered in turn.

At any point in the focal plane of the lens the deviations from the
principal rays, of rays through other points in the entrance pupil, may
be evaluated by standard ray tracing. A considerable economy in

ray tracing is effected if an aberration function of suitable form is

adopted to represent these deviations. A small number of rays then
furnish aberration constants from which the points of intersection

with the focal plane of a large number of rays may be readily deter-

mined. A convenient way in which to represent the deviation com-
ponents X and Y is the following:

AX= ^u0+Ui^+ ^(a2 i7
2

+6o^
2

) -\-%v (&3’7
2
-|-&i£

2

)
_b£(Gh’7

4
T' c£

3
)
J
r^>2^

2
f]
2

A— 1 =7;«!+ (o'2’7
2+^2

) + T7(«3^
2
+/5i^

2)+ (a4^
4+/W£2+Yo£

4
)

+

v

(a5 T?
4+ /W£3+ /33 ?7

2
£
2+ yi£

4
)

This is the most general formula taking in terms up to the fifth order
of the aperture, and is in effect a determination of the characteristic

function relative to a principal ray. The coefficients are functions of
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the position of the image in the field of the lens. To determine them
at any field position 16 rays have to be traced. This is no great prob-
lem with automatic computing machinery. Using these coefficients

we can determine the points of intersection with the focal plane of

rays that come through a large number of pupil points. We have
prepared tables for a less general aberration function, and calculated
the intersection points of 64 rays in each half of the exit pupil, for a
total of 128 intersection points, the calculation being carried out with
a Marchant desk calculator. We estimate that with the more general
aberration function, using an IBM 604 Electronic Calculating Punch,
we can calculate the intersection points of 200 rays from each half of

the pupil, giving a total of 400 intersection points, in about 15 minutes.
Prepunched decks of cards are used on which the aberration coefficients

are subsequently punched.
Given these intersection points we can prepare spot diagrams of the

type used by Herzberger and by Linfoot and Hawkins.
For present purposes they can be used to determine edge gradients

and then resolving power, using the technique already described.

Thus if we have the spot diagram shown in figure 19.4 for the points of

intersection of rays from an object point, and if we have a semi-
infinite bright area terminating on AA'

,

then the intensity at P is

given by the fraction of image points lying to the right of the line

P'P" through P parallel to AA'

.

By varying the position of P, and
so of P'P", and counting the number of points to the right of P'P"
we get the intensity gradient across AA'

.

The counting can be carried

out quickly on an IBM Sorter.

To summarize the method of evaluating resolving power we have
the following steps:

1. Trace sufficient rays to determine the coefficients in an aberra-

tion function.

2. Determine a sufficient number of points in the focal plane, using
the aberration function.

3. Determine the edge gradient across the boundary between a
light and dark area by counting the points in a focal plane to the right

of a line parallel to the boundary.
4. Determine the intensity, due to a repeated pattern of lines and

spaces, by erecting ordinates to the edge gradient curve with the

spacing of the test pattern and summing these alternatively positive

and negative.

5. Carry out the process described in step 4 for points correspond-
ing to the centers of lines and spaces. The resolving limit is achieved
when the ratio of these intensities surpasses a prescribed value. The
procedure described in step 4 must be modified, of course, to take into

account finite contrast, in the way previously described.

The above treatment has been described for the case where the ray
theory of geometrical optics is applicable and gives a sufficiently close

account of image formation. It may readily be extended, in theory,

to the case where the image intensity is determined by diffraction

theory. Thus if the intensity is I(x, y ) at the point (a?, y) in the neigh-

borhood of the Gaussian image X of an object point,—then the inten-

sity of I (P), at a point P near the boundary of a bright area and a

dark area, as shown in figure 19.4 is given by

1= J*Ida ,
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where da is an element of area, as shown, ancl the integration is carried

out over the shaded area shown in figure 19.4. This integration may
be carried out numerically if I(x, y ) is known at a sufficient number of

points within this area. Evaluating I{x, y ) at a large number of points

is a tedious process even with automatic computing machinery com-
mercially available. With the IBM 604 Electronic Calculating Punch,
for example, we estimate about 4 minutes per point in the image plane,

the integration over the pupil being replaced by summation over 400
points in the pupil. We have no estimates of how long the process

would take on SEAC or any like computer. The tune taken by
Marechal’s analogue computer is 8 minutes per point in the image
plane, and is restricted to a narrow class of aberrations.

The equation for I(P) given above leads immediately to an experi-

mental method of determining the edge gradient, namely by using the

knife-edge test. If a knife edge is traversed from right to left across

the image of a fine object point, then the intensity at a point such as

P due to the area bounded by AA', is the light transmitted past the
knife edge when it has moved from S'S" to P'P"

.

Under suitable circumstances the same basic technique can be ap-

plied to determine the resolving power of a film-lens combination.
Thus if we have an evenly illuminated area of film, sharply bounded

by the line AA'

,

the film density across the line AA' will not show an
abrupt change, but will be represented by the curve shown in figure

19.5, a. Suppose that we can consider this curve'as resulting from the

operation of two factors, without specifying in detail the physical

basis underlying them. As a result of the first factor, which may be
connected for example with scattering in the emulsion, points near
the boundary AA' receive an effective exposure represented by the

curve shown in figure 19.5, b. Exposure here is measured in terms of

incident light energy, not in terms of its logarithm. The second factor

Figure 19.4. Relation of light intensity to image patch

.

Figure 19.5. Combination of factors into film-density curve.
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conditions the response of the emulsion to the effective exposure, and
may be of the general form of the H and D cuive of the emulsion, show-
ing an initial toe and a region of saturation, as shown in figure 19.5, c.

We have to determine the effective exposure at a point due a given
pattern of radiation incident on the emulsion . Again we may proceed
by determining first the effective exposure at a point due to a semi-
infinite bright area bounded by a line AA', taking into account the
intensity curve I(x) due to the finite size of the light patch, and the
effective exposure curve E(x) due to the scattering another factor
previously defined. The effective exposure E(y) at a point distant y
from the boundary AA' is given by

taken over all values of x for which the integrand does not vanish.

The geometrical interpretation of this equation is that if we graph
I(x) as ordinate against E(y—x) as abscissa, then E(y) is the area
under the graph. To evaluate this geometrically for a range of values
of y we proceed as follows. With the same abscissa x draw the graphs
of I(x) and E{—x). Erect ordinates at a suitable number of points

Xi, x2 . . . xw and read off values of I(x) and E{—x) to serve as

ordinates and abscissae in the I(x) versus E(— x) graph. By erecting

ordinates at a distance y, positive or negative, from the original ordi-

nates, and by reading I(x) from the original ordinates and E(— x) from
the new ordinates we get the appropriate values of I(x) and E(y—x)
to insert in a graph such as that shown in figure 19.6. In one extreme
position the graph becomes the straight line MN: in intermediate
positions it takes the form shown by the dotted lines; and in the other
extreme position the graph degenerates to the origin 0. The param-
eter y defines a family of curves, and the area under the curve defined

by a particular value of y represents the effective exposure at a point

distant y from the boundary of an illuminated area.

Given the effective exposure due to a semi-infinite area we can pro-

ceed as before to find the effective exposure due to a repeated pattern
of lines and spaces. Using the response curve, which relates the
image density to the effective exposure, we can determine the image
densities due to the repeated pattern of lines and spaces. By adopting
a criterion of resolution in terms of image density we can proceed in

this way to determine the resolving power of the lens-film combination.

It is readily seen that the effective exposure curve obtained in this

way extends over a distance Xi~\-x2 ,
where I(x) and E(x) extend over

distances Xi and x2 . This corresponds to the rough rule given by Katz
that the reciprocal of the resolving power of a combination is the sum

E (y-x)

Figure 19.6. Density distribution on film of finite resolving power.
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of the reciprocals of the components. The exact relation between
component and combination resolving powers depends on the detailed

forms of I(x) and E(x). Under the conditions stated it is not a matter
of particular difficulty to establish this in any given case when the

forms of I{x), E(x) and the response curve are known. Numerical
and graphical methods have to be used, since the determination of the
area under the I(x), E(y—x) curve does not as a rule lend itself to

simple analytical treatment.
The technique described enables us to predict the resolving power

of a lens when its aberrational characteristics are known. When the
lens performance is described adequately by geometric optics the
determination of resolving power may be carried out quickly using an
IBM 604 Electronic Calculator. When the lens performance is

governed by diffraction theory, and if the diffraction pattern is known,
a simple adaptation of the method enables us to predict resolving

power in this case also. If we make reasonable assumptions about
the photographic emulsion we can obtain the resolving power of the

lens-film combination.
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20. A Proposed Approach to Image Evaluation

By R. V. Shack 1

Introduction

The basic element in the formation of any general image is the
image of a point. The description of a point image in terms of the
aberrations affecting it evaluates the imaging properties of the system.
This is the information with which the lens designer is most concerned,
but the user obtains from it only a rough qualitative idea of the
imaging properties as far as general usage is concerned. That is,

he knows that if the aberrations are small, the complex image he
obtains is better than if they are large. However, he finds it difficult

to establish a good psychophysical correlation between this type of

evaluation and the quality of the complex image he generally observes.
For quite some time the user has had his own way of evaluating an

image forming system. He determines its ability to resolve the com-
ponents of a repetitive object, the most common type now in use
consisting of alternate black and white lines of equal width. A
resolving-power test has several virtues. It is simpler and more
rapid to perform than any other existing test, and it gives the user an
indication of the size of the finest image detail he can obtain.

However, such a test has its disadvantages also. It is very difficult

for a designer to evaluate his design in terms of resolving power.
The resolving power obtained in a given test depends not only on the
imaging properties of the system, but also on the contrast of the object

and the amount of superimposed, nonimage-forming light falling on
the image plane. The fact that it is a threshold phenomenon results

in a low degree of precision in its determination and variability from
observer to observer. It is in a sense an artificial test, even to the
user, because he is in general not interested in the ability to separate
similar objects but in the ability to image random detail. It has been
found recently that the correlation between resolving power and the
subjective feeling of sharpness in the image is not as good as it had
been assumed to be.

Consequently, considerable work has been done in analyzing the
imaging process in order to improve testing procedures. The follow-

ing approach is based on the image of a straight edge, the basic method
of image derivation being suggested by Cox .

2 This v~as chosen because
its properties are two-dimensional, thereby simplifying the analysis,

and because its use makes the presentation of the concepts involved
much simpler than they otherwise would be. The information ob-
tained from a straight-edge image, or edge gradient, also has the

advantage of lying midway between the type of information contained

1 National Bureau of Standards, Washington, D. C.
5A. Cox, Technical Report No. 102, Farrand Optical Co., Inc.
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in a point image, of interest to the designer, and the type of informa-
tion that the user is interested in. The light distribution in the edge
gradient can be obtained directly from the light distribution in a point
image, and yet the nature of the edge gradient is of direct interest

to the user because much of the structure of his general image consists

of edges.

The Edge Gradient Concept

In figure 20.1, a, the upper drawing represents the light distribution

in a straight-edge object, where the light passing the straight edge is

assumed to be superimposed on a general background light. The
lower drawing represents the light distribution in the image. This
curve is the edge gradient. In figure 20.1, b, the straight edge is

assumed to block out light from the general background. The broken
curve in the lower drawing might be called an edge gradient attenua-
tion curve, because it represents the amount of light to be subtracted
from the background to yield the edge gradient, which is shown as a

solid curve.

Single Line Image

1. The formation of a line image. A line can be considered to be a

combination of two straight edges. In figure 20.2, a, the solid curve
in the center drawing represents the edge gradient for the left edge of

the line, as if the right edge were indefinitely far away. This light

Figure 20.1. The edge gradient.

Figure 20.2. Derivation of a line image.
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distribution is attenuated according to the dashed edge gradient
attenuation curve for the right edge of the line. The remaining light

is the light actually existent in the image of the line. The point by
point ordinate difference between the two curves yields the image
curve for the line, as shown in the bottom drawing.
Now a little reflection will show that the dashed curve is identical in

shape to the solid curve. The two curves are separated by the width
of the line, so the ordinate differences could just as easily have been
obtained by using one curve and obtaining ordinate differences between
points on the curve whose abscissa difference is equal to the line width.
This is illustrated in figure 20.2, b.

The ordinate difference AI is equivalent to the illumination at the
corresponding point in the image; Ax is the width of the idealized

geometrical image. These two methods for obtaining the image
curve are equivalent.

2. Variation in the line image with line width. The edge gradient

can be represented by a function f(x)

.

The line-image curve can
be represented by a function h(x), which will, in general, be differ

ent for each Ax, diminishing as Ax approaches zero. This is illustrated

by the curves in figure 20.3, a. The marks on the curves indicate the

magnitude of the Ax associated with each curve. If each curve is

divided point by point by its associated Ax, the set of curves in figure

20.3, b, will be obtained (actually, the curves as shown were divided
by 2Ax for convenience in presentation). The result of this process is

that the area under each curve is equal to the area under any other

curve in the set. The heavy curve at the bottom corresponds to the

distribution of the illumination in the image of an infinitesimally

fine line.

3. The relation between the fine-line image and the edge gradient . This
last curve is the limit as Ax approaches zero of h(x)/Ax. But, as

obtained, h{x)=j(x-\-Ax)—/(x). Therefore, by the definition of a
derivative, this limit is the first derivative of /(x). That is, the curve

hfx)

Figure 20 . 3 . Line-image variation with changing object line widths.
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Figure 20.4. Central illumination increment versus ideal image line width.

of the derivative of the edge gradient has the same shape as the
distribution of the illumination in a fine-line image.

4. The relation between the illumination at the center of a finite line

image and the edge gradient. If the illumination at the centers of the
line images in figure 20.3a are plotted against each corresponding Ax,

a curve is obtained such as that in figure 20.4. Hereafter, Ax will be
called W, the width of the ideal image line.

It will be noticed that, assuming the edge gradient to have point
symmetry about its center, each half of the edge gradient may be
obtained by plotting l/2A

I

against %W. If the edge gradient is not
symmetrical, the plot of %A

I

against Y2W will yield a curve of

average ordinates between the two halves, assuming that the lower
half is rotated 180° about the center to bring it into near coincidence
with the upper half. This curve is identical to the curve obtained by
plotting the line centers against the widths except that it is half the
size.

It is convenient to normalize the ordinate in order to make the
result independent of the brightness of the object line. The ordinate
then becomes K=Al/(Al) m&x ,

which varies from 0 to 1.

5. Summary—correlations. This curve of K versus W then is a

simple curve, characteristic of the imaging process, and independent
of variations in the contrast of the object, or, for that matter, any
amount of nonimage-forming light. This is true because K is a ratio

of the differences between two pairs of illumination levels and so is

independent of change of illumination, which acts on all the levels

either proportionally or additively. The curve is first of all a plot of

the variation in the relative illumination at the center of a line image
versus the ideal width of the line. By section 4, its shape is the same
as that of the edge gradient, or very nearly so, depending on the

symmetry. And by section 3, it is a plot of the relative amount of

flux contained within the limits of W in the fine-line image. These
relations are illustrated in figure 20.5. For example, at a point cor-

responding to a K of .5, the W obtained is the width of the ideal line

image where the corresponding actual line image has only half the

relative peak illumination. The same W is the width in the fine-line

image, which contains 50 percent of the total flux. And if there were
some good method of obtaining a numerical value of the edge gradient,

it could also be applied to this K versus W curve.
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FINE LINE IMAGE

IMAGE OF LINE WIDTH W

Figure 20.5. Line image, edge gradient relationships.

Therefore, such a curve is suggested as the basis for a new approach
to image evaluation. The lens designer can plot the curve for a
design if he knows the light distribution in the point image. This
means that he can predict the performance in terms that convey
considerable information to the user. This information is, of course,

the nature of the image of an edge, and the ability to reproduce
isolated fine detail.

6. Image-object contrast relations. Both the eye and a photographic
emulsion can be assumed to be linearly sensitive to the logarithm of

the illumination in the image. A convenient definition of the contrast
between two illumination levels is the difference between their loga-

rithms, or the logarithm of their ratio, which amounts to the same
thing. Photographically, this is equivalent to the density difference

between the corresponding parts of the image divided by 7.

The relation between the object brightness ratio R0 and the image
illumination ratio R t is given by the following equation,

7/ f-i
|

\(Ri~ 1 )

a)

where K is the image evaluation function obtained above; a is a meas-
ure of the nonimage-forming light present; log Rf is the image contrast

;

and log R0 is the object contrast.

This equation, derived in appendix 1, applies to dark lines in a
bright field as well as bright lines in a dark field.

All the quantities considered in eq 1 are ratios, and so anything
affecting illumination proportionally, such as transmission loss in the
lens, does not enter into the situation. In other words, such an
effect does not alter the contrast.

The quantity \R—1) is what is usually considered the optical con-
trast. Log R has the advantage of a better psychophysical correlation.

In dealing with photographic images, an emulsion contrast might be
defined as 7 log R. This would be simply the density difference in the

emulsion.
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Multiple Line Image

1. The formation of a multiple-line image. In this section, only
patterns having equal line and space widths will be considered.
The approach that was used to obtain the image of a single line can

be extended to images of a series of parallel lines. As illustrated in

figure 20.6, if the center of the edge gradient is located at the center
of one of the lines, then the illumination in the image at that point is

given by the sum of the components produced by each line within the
effective range of the edge gradient. An equivalent illumination is

obtained at the center of a space. Curves for both the line response
and the space response may be plotted as K/ and Ks

' versus IT, where
the K’s are analogous to the K obtained for a single line, the prime
being used to distinguish them.

If the lines and spaces are equal in width, then Ki -\-Ks
'= 1, and the

curves are symmetrical about K'= . 5, as shown in figure 20.6. The
point where the curves first meet as W diminishes is the physical limit

of resolution, for it is there that both line and space images have the
same illumination. Regions where the curves have crossed each other
show line patterns, but the resolution here is spurious. This occurs
because of the repetitive nature of the object.

2. Image-object contrast relations. The contrast relations for a
multiple-line image derived in appendix 2, are a little more complex
than they are for the single-line image. They are as follows.

'>=(i+«(S) (2)

p is a contrast reduction function defined in the same way as Schade’s
amplitude response factor. 3 It is equal to 2K/— 1. (3 is a measure of

the nonimage-forming light present. Mt is an image contrast factor,

where M*= (Ri— l)/(/?j-f-l), log R t being the image contrast. M0 is

the same type of factor for the object contrast.

That this equation is valid is indicated by figure 20.7. The three

graphs on the left are three plots of the same experimental data. They
were plotted this way so as to indicate the nature of the function

involved. The image contrast is the contrast in the emulsion. The
three graphs on the right, plotted from eq 2, are based on entirely

theoretical material, an analytical function being chosen for p as a

function of line frequency, which is similar to the p of the experimental

Figure 20 .6 . Derivation of a multiple line image.

O. H. Schade, RCA Rev. June, 1948.
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Figure 20.7. Comparison of experimental and theoretical contrast relationships.

The experimental data is for a 127-millimeter Ektar lens on V-G emulsion.

curves. Also, for convenience, a 7 of 2 was assumed. The nature of

the theoretical curves seem to agree quite well with the nature of the
experimental curves.

3 . Correlation between the multiple-line image and the one-line

image. Figure 20.8 shows the relationship between the AT-curve for

the one-line image, plotted as a solid line, and the AT'-curves for the
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Figure 20.9. Comparison of two- and three-line images with the multiple line

image.

multiple-line image, plotted as dotted lines. K
z

' is identical to K
except for a small region of W smaller than its value for a point near
the limit of resolution. The inserts are profiles of the fine-line images
associated with each graph.

4. Two- and three-line images. Figure 20.9 indicates the proper-
ties of two- and three-line images. In general they are identical with
those of the multiple-line image until the pattern is so fine that the

width of the edge gradient (or fine-line image) overlaps the entire

pattern of two or three lines. For smaller patterns the effect is approx-
imately as if the entire pattern were replaced by one broad line.

Figure 20.10 illustrates the nature of the image of a three-line

pattern as the line width in the pattern relative to the width of the

edge gradient diminishes. All the curves are drawn with the ab-

scissae expanded so that the apparent widths of the object lines are

the same for all the patterns.
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Summary
This analysis accomplishes two things. First, it suggests a new

approach to image evaluation, which conveys considerable information
to the user and yet is close enough to the designer’s approach for him
to predict the performance of his design in terms of the new approach.
Second, it provides an explanation for the phenomena involved in a

resolution test, thereby linking the new approach to the older resolu-

tion test. Experimental work is going on at present to investigate

the validity of the assumptions and conclusions obtained.

Appendix 1. Derivation of Image-Object Contrast
Relations for an Isolated Single Line

Let Bi be the background brightness and B2 the line brightness in the object.
The line may be either brighter or darker than the background. The corre-
sponding illuminations in the image are Ii = kBi and I2= kB2 ,

assuming no image
degradation. Let I t be the illumination in the center of the actual line image,
and i be the illumination in the image plane produced by nonimage-forming light.

Furthermore, let the following symbols be defined as indicated.

Then

h

\ Bi
h
h

R<= 1 1 -\-i

K= (I — ( 1 1+ i )

It— 1

1

=(br)(t^)= (1+a) (t=i>

( 2 )

( 3 )

( 4 )

( 5 )
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Appendix 2. Derivation of image-object contrast

relations for a multiple line object
Let Bi be the space brightness and B2 the line brightness in the object. The

corresponding illuminations in the image are Ii= kBi and I 2=kB2 ,
assuming no

image degradation. Let Ii be the illumination in the center of a line in the actual
image and I s be the illumination in the center of a space. Let i be the illumina-
tion in the image plane produced by nonimage-forming light.

Furthermore, let the following symbols be defined as indicated.

(1)

( 2 )

(3)

(4)

(5)

(6)

(7)

_h-Is
P ~B.-h

lBa

SIi+h)l2

7? =^i-h

M„= Ro 1 1 2 1 1

-Ro+1 I2 -\-I\

7? - L+iRi~h+i

Mi
Ri+

1

ow

M;= (-L-H) — (Z a -M)_ U— Is

(I -\~ (I -L+

/

s+ 2t

Because the lines and spaces are equally wide, the average illumination in the
image is constant. This means that

( 7* ) -f- ( /,-M ) ( 12+ i ) d* (L -\-i )

2
—

2

or

Ii+I.=I2+h.

Combining (2;, (7), and (8) we obtain

Mi— Irzh fWiY
(72+ L) +/3(/2+ /i) 1+/3 \/2+/l/

Combining (1), (4), and (9) we obtain

,=(i+« (|0-

Solving this, with (6), we would obtain for

1+
(JTfj)

' 1(1^)^
Discussion

( 8 )

(9)

( 10 )

(ID

Dr. M. Herzberger, Eastman Kodak Research Laboratory,

Rochester, N. Y.: I greatly enjoyed Dr. Cox’ paper, which was very
similar to my own ideas. I have some reservations on the last part

with respect to graininess, but I have to disappoint him on one point.

He said we are in disagreement on how to calculate the spot diagrams.

I have tried at least 10 or 15 different ways and found that for one

problem, one method is preferable and for another problem, another.
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Any method of calculating the light distribution is valuable. One
advantage of the method that I happened to select for my paper is

that this method gives the characteristic function, and thus a complete
mathematical analysis of the optical system.
Dr. D. S. Grey, Polaroid Corp., Cambridge, Mass.: Dr. Herz-

berger just touched in his last remark on what I wanted to say. His
method is the equivalent of getting response characteristics on the
lens whereas what you get is resolving power. If you admit in the
beginning that the response characteristic is what you want, you can
replace the integration by multiplication. The response-character-
istics method is not intended to make work, it is intended to save work.
Dr. R. E. Hopkins, Institute of Optics, University of Rochester,

Rochester, N. Y.: I asked Dr. Grey if he was going to start computing
response factors for every lens he designed and he made the statement
that he was not going to do it for every lens but he was going to do it

for some of the lenses. He has already done some, but what he
hopes is that this theory is going to give him rules of thumb for

designing better lenses. I thought that was a wonderful way of

putting it. I think that studies such as Cox is doing on the high-speed
computing machine are going to give valuable information, but I

think we must remember that not everybody is going to be able to use
these machines. Since you are spending taxpayers’ money to get

this data—and I am a taxpayer—I think it is up to you to publish
this data so I will be able to get this rule of thumb for making better
lenses.

Mr. A. Cox, Bell & Howell Co., Chicago, 111.: The equipment we
are using is an IBM Commercial Unit, not the rather glorified equip-
ment that the Bureau of Standards can afford.

Chairman B. O'Brien, University of Rochester, Rochester, N. Y.:

Even so, it is your duty to publish it.

Dr. G. H. Conant, Jr., Harvard College Observatory, Cambridge,
Mass.: I would like to ask Mr. Cox a question, if I may. What
digital accuracy do you find it necessary to carry in tracing the rays
through the system, to get the data that are later evaluated?
Mr. Cox: As a rule we planned on using machine 604. The work

will be described in Chicago. We have used 60 program sometimes
and for spherical surfaces, using the 604, we go to five-figure accuracy,
which is quite sufficient for most photographic lenses. That takes
about 16 seconds per surface. When we need to pick up the accuracy,
then we do another run through four different boards, which provides
us with an extra two-figure accuracy.
Dr. K. V. Pestrecov, Bausch & Lomb Optical Co., Rochester,

N. Y.: My question applies to three or four speakers who talked
about analysis of response factors, energy distribution and about pre-

dicting the resolution. However, perhaps I am presenting the
question too soon. I am interested in why we did not have any tables

here computed at a 25-degree resolution on double X. We actually
obtained 13. Why is there no experimental confirmation or data?
Maybe it is too early to have them. I would like to see them to know
where we really stand in actual experimentation with these suggested
methods for computing resolving power.
Mr. Cox: So far the results that have been computed have been

on classified military instruments. We have found reasonably good
agreement on a rather simple basis. With military instruments we
would be working on or near the axis.
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Dr. Pestrecoy: It would be on or near the axis. I probably can
design a lens that will resolve to the Rayleigh limit. I am a little
lost as to what to expect from a lens of large field angle. I would
like to know if you computed such lenses?
Mr. Cox: We computed an F.2 lens at 15 degrees and got close

agreement.
Dr. Pestrecoy: Thank you.
Dr. Grey: What else could have gone wrong? Are you asking

whether we know our arithmetic?
Dr. Pestrecoy: Well, on paper all of the theories sound very

plausible. I don't know whether you have experimental confirmation
but I would like to know how they work when you have extremely
complicated aberrated images—I am still somewhat doubtful that
your resolution measurements given in comparison will be correct.
I am going to suggest a test at 25 degrees with an extremely complex
image pattern and I would like to see somebody predict the resolu-
tion, at 15 degrees. Has anybody done anything like that?
Dr. Grey: I haven’t had any complaints and I have used this.

Even in tests 15 degrees off axis I would expect that the physical
optics would enter in an order of magnitude that would be about the
discrepancy you would expect. We don’t know exactly what the
response characteristic of the emulsion is so there are two sources of

error. One is the emulsion and the other is the use of geometrical
optics rather than physical optics.

Dr. J. G. Baker, Harvard College Observatory and Perkin-Elmer
Corp., Norwalk, Conn.: I should like to add a few remarks. I have
studied the effect of chromatic aberrations on resolving power because
color addition is an important part of the problem. Also, in the
presence of aberrations of large magnitude it is necessary to consider
the particular resolving-power target rather than just the intensity

distribution across an edge. One has to integrate over the pattern
as a whole in order to determine what its photographic image will be.

There is another point I want to make. For a number of years I

have been using at Harvard a method of testing related to the one
Dr. Cox describes. I have called it the “Visual Hartmann Test.”
Instead of integrating across the image, in this particular form of

test I have integrated across the exit pupil. The set-up requires a

linear scale across the meridional diameter of the exit pupil and a

micrometer controlled knife-edge movement in the vicinity of the

mean image. Observing as in the Foucault test, one plots the posi-

tions of all bright-dark edges seen in the exit pupil according to scale

readings against the micrometer reading. The knife-edge is moved
in chosen small increments across the image. The resulting graph
represents in effect the slopes of the wave-front. By integrating

under the curve, one obtains in effect the shape of the wave-front
error in fringes or in any other convenient units, and can correct to

any other nearby focal setting. The test is particularly useful for

aspheric figuring and I have used it during 1937 to 1939 perhaps sev-

eral hundred times. I have used it also in the area figuring of a

completely unsymmetrical optical system. The test is a useful one
in the laboratory.
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Excerpt From Letter From T. Smith 1

Dr. Gardner: It was my sincere wish that Mr. T. Smith might be
present at this symposium. He is so well known personally to all of

you from across the Atlantic and so well known by his publications

to those on this side that his presence would have added greatly to

the meeting as a whole, and in particular his contributions to the

discussions of the papers would have been most illuminating and
helpful to all of us. I know that all here join me in regretting that
Mr. Smith found it not possible to be with us. At my request he has
prepared a letter for the symposium which I wish to read at this time.

“My hope is that on this occasion when you have present representatives of

many countries, you may be able to present questions to them which they will

like to consider with their colleagues when they have gone home, and that ulti-

mately agreements may be reached which will be of service to all concerned with
optical instruments.

“I will begin with a somewhat minor matter. I suppose that in these days
almost all countries are interested in aerial surveys. We all desire the maps that
are made to be highly accurate, and one of the factors necessary to this end is

excellent correction in the photographic lenses used in the cameras. Perhaps
each of the major countries has its own specification for the lenses used for this

purpose. It would be interesting to know whether there is sufficient experience
for all to agree on the relative importance of the various aberrations that must be
kept within close limits. Since the focal lengths are greater than with most lenses

intended to cover the same angular field with corresponding relative apertures,
aberrations are more appreciable, and it becomes more difficult to keep the large

number that may be significant within acceptable limits unless the construction
becomes decidedly complex. Freedom from distortion seems to be an important
property, and if this is achieved there seems to be no justification for demanding
precise centering of the lens in the camera. The prints of the reference marks on
the pressure plate enable every photograph to be placed in the same position
relative to the lens, and this, rather than reference to the lens axis, is the essential

requirement for the construction of accurate maps. It appears undesirable to
insist on high accuracy in making an adjustment of some difficulty when this

results in no improvement in the final product, and may possibly cause less

perfect adjustment in ways that are of real importance, through the difficulty of

securing close observance of many adjustments simultaneously.
“Another question that might be considered is whether tele-photo lenses should

be used for taking photographs for maps. Unless the centre of the lens aperture
coincides with a nodal point or its real image in part of the system the axis of the
refracted cone of rays lies in a different direction from that of the incident cone,
and this causes a displacement on the plate of the point representing a feature
of the ground which lies out of the plane focused on the plate. The use of tele-

photo lenses for purposes other than precise mapping seems free from objection.
I should be greatly interested in knowing what opinions are held now on these
questions—it is some years now since I was in touch with these matters.

“The second subject on which I would like to say a word is the graphical rep-
resentation of aberrations. It was natural that the representations of aberrations
used by von Rohr and others should have been adopted in the early days when
new constructions were being evolved, but it is less clear that we should now con-
tinue to employ them rather than record our results in a different way. We ought,
I think, to consider in the first place what the purpose of these records is. If we
only mean to give some idea to the general public of the state of correction of

lenses of different designs it may not matter much how these outstanding defects
are recorded. But if we are concerned in giving information that will be of value

1 Roselyn, Holton, Wincanton, Somerset, England.
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to technical workers the position is different. For example, if longitudinal central
aberration is recorded with the first power of the aperture zone as independent
variable, the central part of the curve means nothing, and the outer parts which
are of real importance are considerably squashed up; a diagram of this kind no
doubt appeals to the makers of lenses that are less good than the best obtainable.
But apart from this a diagram of this kind is not particularly useful to technical
workers. The prime consideration for work of high quality is that path differ-

ences should not exceed some definite limit—say a quarter of a wavelength of the
light taken as a reference standard. If the longitudinal aberration is plotted
with the cosine of the angle made by the ray with the axis as ordinate, the position
of focus where the differences of path are a minimum can be found by drawing a
straight line parallel to the ordinate axis so as to cut off equal areas between this
line and the aberration curve, the axis and the extreme aperture being the other
limits of these areas. In many cases the same use can be made of diagrams with
the square of the aperture rather than the first power as the independent variable.
Second-order ordinates should also be used to record coma. Similar criticisms
can be made of the usual representations of curvature and astigmatism as well as
of distortion. The central parts of these diagrams are useless, and the important
parts made to look of little consequence. If the square of the angular field, or
better still the cosine of the inclination of the principal ray of a pencil to the axis,

were taken as variables the diagrams would gain greatly in value. For distortion
the transverse displacement would be plotted as a fraction of the ideal distance
from the axis.

“But there is another point to be considered bearing on the graphical represen-
tation of aberrations. In all the early work it seems to have been assumed that
it would suffice to record only those aberrations which are of types represented
in the aberrations which I call the first order but are very frequently named third-
order aberrations. It happens that these can be exhibited as dependent on only
one of the fundamental variables—some on the aperture and others on the field.

Among the higher order aberrations are some which necessarily depend on both,
and the way in which these aberrations—and they are becoming increasingly im-
portant in the development of modern instruments—can be represented graphically
so as to be of value to lens designers is not clear. For this reason I am inclined

to think that it is of more importance to give aberrations by means of the values
of coefficients than by means of diagrams. The coefficients that occur in one of

the Hamiltonial Characteristic functions—the directional function T has distinct

advantages for this purpose—would meet all needs conveniently. In this con-
nection it is not superfluous to point out that the theory of these calculations has
been fully worked out; the real bar to their use in the past for all but the best
known aberrations has been the numerical computation; but with the advent of

the very powerful and rapid computing engines developed in recent years the
labor aspect of this suggestion seems no longer important. It would, of course,

become important to reach agreement on standard forms for the representation
of those aberrations to which in the past so many of us have been willing to shut
our eyes.

“I have taken the liberty of mentioning two or three optical topics that seem
interesting to me, but I realize they may not fit at all into the program that you
have in mind for the celebrations you are holding. I should like to leave them in

your hands to deal with exactly as you think fit. I should in any case be most
interested to hear your views on these and indeed on any other optical subjects

that are discussed at your meetings.”

Prof. F. Zernike, Natuurkundig Laboratorium, Groningen, Neth-
erlands: Yes. Mr. Chairman, and attendants of the symposium.
As one of the foreign guests who have so generously been invited to

come to this country and attend this wonderful symposium that has

I think, and you will all agree, far surpassed our best expectations, I

want to express our great gratitude to all who have given their time

and efforts to the organization of this symposium as well as to the

National Bureau of Standards and the other organizations who have
backed it and altogether enabled us to come here.

Of course, we see all these personified in Dr. Gardner and therefore

I expressly address Dr. Gardner and tell him how much we have

288



enjoyed being here. We have not only listened to so many, perhaps
too many, scientific papers, all presented in a very congenial way I

would say, but we have especially, also, met old friends and have made
new ones, and I think this personal note is also of great importance
to the progress of the science we represent. Thank you very much.
Dr. I. C. Gardner, National Bureau of Standards, Washington,

D. C.: Dr. O’Brien, I would like to say that the success of this sym-
posium has depended in the main on the fact that fortunately a very
timely subject was chosen and those who participated have cooperated
most wonderfully well.

o
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