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Foreword

The Symposium on Gravity Waves was the third of twelve symposia

held as part of the scientific program of the National Bureau of Standards

in the year 1951, which marked the fiftieth anniversary of its establish-

ment. The subjects represented scientific fields of considerable current

interest in which the National Bureau of Standards is active.

The papers presented at this symposium cover some of the results, both

experimental and theoretical, in the study of gravity waves from many
leading institutions both in the United States and abroad. The program

was planned and conducted by the Bureau’s Mechanics Division, in

particular by K. Hilding Beij and Garbis H. Keulegan, who were co-

chairmen of the committee on arrangements.

The cooperation of the Office of Naval Research in making possible this

symposium is gratefully acknowledged.

A. V. Astin, Director,

National Bureau of Standards.
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1. Discrete and Continuous Spectra in the

Theory of Gravity Waves 1

By F. Ursell i

It is shown how systems with discrete and continuous spectra differ in their physical
behavior. It has generally been assumed that waves in an infinite canal have a con-
tinuous spectrum; examples are here given to show that the spectrum is mixed on a
sloping beach and when there are internal boundaries. The corresponding oscillations

are three-dimensional. The relation of the theory of spectra to the problem of unique-
ness is discussed.

1. Introduction

This paper deals with properties of wave motion in an infinite canal of

constant width; these may have important applications and should be
more widely knowm. The discussion given here, applicable in the first

place to an ideal inviscid fluid, will show’ how the general theory of eigen-

vibrations and their spectral frequencies links up with the determination
of resonances and with the problem of uniqueness, particularly with the
radiation condition of Sommerfeld [l],

2 winch ensures uniqueness in many
cases of forced periodic motion. But the Sommerfeld condition cannot be
directly applied when the spectrum is mixed, as will be seen.

To illustrate the definition and physical significance of the spectrum
wre shall discuss examples of wrave motion in a canal, first, of finite length

and uniform depth; second, of infinite length and uniform depth; and
third, of infinite length and nonuniform depth. Their spectra are,

respectively, discrete, continuous, and mixed. Mixed spectra seem to be
uncommon in physics, and attention is here called to their existence.

It will be assumed throughout that the linear theory given by Lamb
[2, chapter 9] is applicable. Let the a>axis be taken along the length of

the canal, the ?/-axis vertically downw-ard, and the 2-axis across the canal.

In the first two cases, it will also be assumed that the canal is of infinite

depth. This assumption has no influence on the character of the

spectrum.

2. Canal of Finite Length and Uniform Depth

In a canal of infinite depth, bounded by the vertical planes z= 0,

x = a
;

2= 0, 2 = 6; the normal modes are given by the velocity potentials

[3, p. 75]

(x,y,z)e
m,n = Cmn cos cos exp

a b

r I™-
XP

2 n2

2
+

6

~

2
_

,urm,»t

1 Trinity College, Cambridge, England.
° Figures in brackets indicate the literature references on p. 5.
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where m,n are integers, Cm,n is a complex constant,

2 /
1,1

am,n = g^yJ—2
+“

(

1 )

and the real part of the expression on the right is to be taken. The
frequencies given by (1) form a discrete enumerable set tending to infinity,

and it is easily verified that

+ — (2)

independent of b. The frequencies o-m , n/27r derived from (1) are called the
spectral frequencies of the system, or simply the spectrum. The spectrum
is important in describing both free and forced motion.
The free motion, generated by an external agency that is no longer act-

ing, is known to be of the form

4>[x,y,z)t] = 'E'L<f>vi,n[x,y>z¥ffm,nt
> (3)

m n

and so a frequency analysis leads to the spectral frequencies. To define

a periodic forced motion, we suppose that there is a simple harmonic forcing-

agency, of frequency a/2ir not belonging to the spectrum. The motion is

known to consist of free modes, together with a shnple harmonic motion
of frequency o-/2tt. The latter component is here called the periodic

forced motion, its amplitude at any point depends only on the forcing

agency, not on the initial conditions. For similar agencies differing only
in the values of a, a frequency-amplitude diagram can be drawn that has
infinities [resonances] at the frequencies of the spectrum (1).

3. Canal of Infinite Length and Uniform Depth

Suppose the length of the canal becomes infinite, a—> The relation

(2) suggests that the spectrum becomes continuous and this is easily

verified. The normal modes are

4>n (x,y,z;k)e
lffnWt = Cn (k) cos kx cos^ exp /c

2

+^-Je
,<rn(fe)i

,

where

O-
2 (k) = gVk2+(mr/b) 2

,

and k is any positive number. For two-dimensional modes (n = 0) all

real values of <r are eigenvalues, for three-dimensional modes (w>0) all

real <r>\/ (gnw/b). When n is given, there is thus a lower limit (cut-off

frequency) below which normal modes are impossible.

The free motion is now of the form

<t>(x,y,z;t) =Y cos j* Cn(k) cos kn exp
£
—y^

k

2
-\— (3a)

When the variable in each integral is changed to a, it becomes a Fourier

integral in t for fixed values of x,y,z. Therefore, each integral —> 0 for fixed

finite x,y,z as t~+ oo [4, p. 11]. So the amplitude at all finite points tends

to zero, and the whole energy is ultimately transferred to infinity by radia-

1



tion. As for the periodic forced motion, we can now define this either as

in the first case or alternatively as the periodic motion which is approached

asymptotically as t —* ». It can be determined uniquely from the motion
of the boundaries together with the radiation condition discussed in detail

by Sommerfeld [1]. Resonances no longer occur at all spectral fre-

quencies but only at the cut-off frequencies, as can be seen from the

Green’s function [5, p. 350, eq 10]. Near a cut-off frequency <rj

2

t the

amplitude is 0(|<r-<Ji| “*), while near a discrete frequency (t2/2tt in the first

case it was 0 ( |

cr—cr
2 1

_1
) . Resonances of this type also occur in the theory of

electromagnetic wave-guides [6, p. 541].

4. Canal of Infinite Length and Non-Uniform Depth

The continuity of the spectrum in the second case depended ultimately

on the relation (2), and for other boundaries there is no obvious reason

why the corresponding spectrum should not tend to a mixed ,—partly

discrete and partly continuous—,
spectrum as the longest dimension of

the canal tends to infinity. It is the aim of this paper to emphasize that

mixed spectra occur quite naturally in the theory of gravity waves, and
to point out the consequences. To the discrete frequencies in a mixed
spectrum there correspond modes of finite energy <f>m,n exp (i(T m>nt), with

grad <f)m,n\-dT< co, and the free motion is the sum of a double series

(3) and a series of integrals (3a). That part of the energy which has gone
into (3a) is ultimately radiated to infinity, while the energy in (3) remains
in the finite part of space, although our prejudices, derived from the

second case suggest that the whole energy goes to infinity whenever there

is a way left open for it. The discrete modes are also relevant to the

discussion of uniqueness
,
for they satisfy the homogeneous boundary con-

ditions and also the radiation condition (trivially since each mode is small

at infinity). Thus uniqueness implies a continuous spectrum, and con-

versely; if there are discrete modes the radiation condition is insufficient

to exclude them or determine the amplitude of the ultimate (inviscid)

motion as distinct from the periodic forced motion. As for the latter,

resonances occur at the discrete frequencies and at the cut-off frequences.

It is believed that all vessels of finite dimensions have a discrete spec-

trum, although published proofs seem to be somewhat defective. It

would be very desirable to have a rigorous proof of the discreteness and
completeness of the normal modes.

5. Examples of Mixed Spectra

All known examples relate to three-dimensional motion and can be
written

<j>{x,y,z)e
i<Tt= F {x,y) cos kze” 1

,
with cr<gk,

where 2ir/k is the wavelength across the canal, and F(x,y) satisfies

Fxx (x,y)+Fyy (x,y)
- k2F {x,y) = 0

and the boundary conditions

dF/dn= 0 at fixed boundaries, (4)
and

3



(5 )
<r
2F+g— = 0 on y = 0,

dy

given by Lamb [2, p. 364].

The best-known example is the edge-wave of Stokes [2, p.447],F(x,y) =
e —k(x cos rt+y.sin a)

^

satisfying (4) on the sloping beach, x sin a = y cos a, and
(5) if a-

2 = gk sin a, and clearly of finite total energy. This was discovered
in 1846, but Stokes and after him Lamb failed to realize the theoretical

and practical applications. In fact, it is only one of the more general
class

n

F(x
fy) = e~^x cos sin a]_|_

n[e~
cos (2m~ 1)«— y sin (2m-l)a

m = 1

_|_g— &[* cos (2m l)ac -\-y sin (2m-f-l)a]j

where a2= gk sin(2n+l)a:, a<ir/2(2w+l),

4 /
(n-r+l)«

A-m,n— t 1) II .
, \

r= i tan (n-j-r)o:

There is also a continuous spectrum gkKa^K oo . These modes were sug-

gested to the author by C. Eckart’s approximate theory [8, p. 93] based
on the paper that Eckart communicated to this symposium. It has been
suggested, by Eckart and others, that edge-waves excited by linear or

nonlinear resonance may be observed as surf-beats on beaches; the fore-

going theory may make a detailed discussion possible, although for small

a the number of modes is large. Further discrete modes may emerge
from the work that A. S. Peters described at this symposium, but which
has not yet been studied in detail.

Discrete modes are not confined to sloping beaches. This significant

point was established by the author [5]. (For an approximate theory

see Eckart [8].) It was shown that discrete modes occur along the out-

side of the submerged circular cylinder,

x2
+(y-f)

2= a2,a<f,

which is fixed right across a canal infinite in both directions along its

length (- oo <x<oo). The motion is symmetrical about the plane £ = 0.

Discrete modes occur when a convergent infinite determinant vanishes,

and it is shown that this occurs when ka is small, and

The previous example suggests that further modes appear as ka increases.

No two-dimensional discrete modes are known. Their possible occur-

rence is limited by a uniqueness theorem due to F. John [7, p. 71],

applicable to bodies intersecting the surface, and such that no vertical

line intersects both the body and the free surface. A case not dealt with

by John, the two-dimensional motion round a submerged circular cylinder,

was studied by the author, who showed that there are no discrete modes
[9]. But a fundamental question remains: Do two-dimensional discrete

modes exist? More generally, are there any examples of discrete fre-

quencies embedded in continuous spectra? The answer to this question

will throw much light on the general theory of gravity waves.
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2. Reflection of Water Waves from Floating Ice

in Water of Finite Depth 1

By Mortimer Leon Weitz 2

Abstract

The reflection of water waves that occurs when half the surface is

covered by floating material (such as ice particles, for example) of uniform
surface density, and the other half is free, was discussed. The waves may
strike the straight line of separation between the two regions at any angle

of incidence, and the water may have arbitrary finite but constant depth.

The linear water-wave theory is employed.
The problem is first formulated as a boundary-value problem. By

using Green’s theorem and a suitably chosen Green’s function, an integral

equation is obtained for the velocity potential at the surface. This
integral equation is practically of the Wiener-Hopf type and is solved by
a slight modification of the procedure used by A. E. Heins .

3

1 Based on an article of the above title by Mortimer Weitz and Joseph B. Keller, Communications on
Pure and Applied Mathematics, vol. Ill, No. 3, Sept. 1950, pp. 305-318.

2 Institute for Mathematics and Mechanics, New York University, New York, N. Y.
s A. E. Heins, Water waves over a channel of finite depth with a dock, American Journal of Mathematics

70, 1948, pp. 730-748.
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3. Laboratory Study of Breakers

By H. W. Iversen 1

The phenomena of breakers have been studied in the laboratory to determine the

geometry and kinematics of breakers for various initial periodic wave conditions and
for various beach slopes. The results so obtained, while limited in scope and restricted

to uniform wave trains on impervious smooth bottoms of constant slope, show relation-

ships of breaker heights, depths at breaking, breaker shapes, velocity fields, and other
details of the breaker.
The size of the laboratory channel limited the investigation to beach slopes steeper

than 1:50 and to waves which, for the most part, were not generated as deep-water
waves. Data on the wave-height transformation as a function of depth, from the
generating area to the breaker point, resulted in information that shows that the
usual application of small amplitude theories to obtain the deep-water wave steepness
from wave height and depth is not a reasonable approximation for waves of finite

height. The effect is also apparent in the correlations of the geometric features

of the breaker.

Breaker results of height, depth, crest elevation, surface shape, and velocity field

were obtained for beach slopes of 1 :10, 1 :20, 1 :30, and 1 :50. A marked beach slope

effect is shown by the results. For example, breaker heights for the same incident

wave on the 1:10 beach slope averaged 30 percent higher than those on the 1 :50 beach
slope. Other results show features of the breaker which indicate the nature of the
breaking action and of the effect of the bottom slope.

1. Introduction

In view of the limited knowledge of a complete description of breaker
action, a laboratory study was made to obtain evidence of the geometry
and kinematics of breakers for a range of incident wave characteristics,

and for various beach slopes. During the course of the breaker study
some questions were raised regarding the transformation of wave heights
on shoaling bottoms prior to the breaker point. Laboratory information
on this latter phenomena was obtained also.

An attempt has been made to describe breakers for the limited range of

initial wave characteristics and the limited range of beach slopes that
could be placed in the available laboratory wave channel. Due to the
varied asymmetrical shapes of breakers such a description is limited.

The summary results as herein presented point out enough of the salient

features of breaker action to permit comparison of effects of the prime
variables of initial wave characteristic and of beach slope.

2. Definitions of Terminology and Symbols

The description of breakers involves the use of terminology which may
not be consistent in all wave apd breaker studies. In order to avoid
misinterpretation or confusion, the terminology and symbols as shown

1 University of California, Berkeley, Calif.
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on figure 1 are adopted for this discussion. Subscripts are used with the
symbols to designate particular locations of the variables. Subscript 0

refers to deep water wherein the wave form is not affected by the proxim-
ity of the bottom. Subscript b refers to the breaker point.

Figure 1 . Wave and breaker terminology.

3. Experimental Procedure

Two sets of experiments were performed, one in which the breaker

details were examined, the other in which wave-height transformation in

shoaling water was obtained. Both were made in the same laboratory

wave channel, figure 2, which consists of a 1-foot-wide by 3-feet-deep

rectangular cross section of smooth side walls and smooth bottom with a

working length of 54 feet. Smooth, impervious plane sloping bottoms of

reinforced plywood or metal sheeting were placed in the channel to give

desired beach slopes. In some arrangements a seaward toe was used with

a steeper slope than the normal beach to give a longer constant depth

portion of the channel. All beaches were sealed at the junction of the

beach bottom and side walls.

10



Waves were generated as a continuous periodic train by a hinged plane

flap oscillated with a constant period. The period and amplitude of the

flap were adjustable to enable a range of initial wave conditions. For the

breaker studies the flap was driven through top and bottom independently

adjustable cranks to permit a closer approximation of a shallow water

wave at the wave generator.

8#oeh of 1:15 9 slop#

Btoch of 1:18.5 slop#

POINT GAGES FOB WAVE HEIGHTS

»•

1

WAVE
GENERATOR

illinium mm iii ii j ii 1 1 1 -j

fF
— —

.

o #• ——_ Channel bottomu
t

i

—
CHANNEL ARRANGEMENT FOR WAVE HEIGHT TRANSFORMATION STUDIES

T
3

‘

-L

Figure 2. Channel arrangements.

Measurements w’ere made as follows: (1) Wave-height transformation

studies. Crest and trough positions at various stations as diagrammed in

figure 2(a) were obtained with vertical point gages. Depth readings at

each of the stations also were obtained. The wave period was obtained
from the timed oscillations of the wave generator. (2) Breaker studies.

Wave heights in the constant depth portion of the channel were obtained
from point gage readings of crest and trough elevation. Movies of the
breaker region were taken through the glass walls of the channel with the
camera axis at the still water level. To obtain the kinematics of the water
movement in the breaker, particles of a mixture of xylene and carbon-
tetrachloride, with zinc oxide for coloring, with a specific gravity corres-

ponding to that of the water, were introduced in the breaker region. The
point to point movement of the particles was then recorded on the movies,
from which each particle velocity was obtained by superposition of the
projected movie frames to give distance moved and time interval of

movement. Complete velocity fields were mapped for each wave for

successive positions before and during breaking. The breaker surface
profile transformation was also obtained by this procedure.
The limitation of the length of the laboratory wave channel restricted

the investigation to beach slopes of 1 :50 or steeper. In addition, in older
to cover a range of characteristic waves with appreciable heights for

reasonable measurements of vertical displacements, the majority of the
waves were not generated as deep water waves due to the depth limita-
tions of the channel. The defining incident waves, characterized by the

11



deep water wave steepness, the ratio of the deep water wave height to the
deep water wave length, were evaluated from the wave heights measured
in the constant depth portion of the channel with application of wave
height transformation information to obtain deep water wave heights.

4. Results—Wave-Height Transformation on
Shoaling Bottom

A brief review of oscillatory wave theory is necessary to establish certain

arguments of this discussion.

4.1 Waves of Small Steepness

Wave theories are presented in Lamb [l]
1 for waves of small steepness

(wave height small as compared to the wave length) . Pertinent relation-

ships are

(a) Wave velocity :

From which,

C- anh
L2tt L J

cyc„=|^— tanh—
j

.

( 1 )

(2 )

The wave velocity is uniquely determined from the period and the wave
length

.

U =
L

Co C
0 )

Combining equations 2 and 3 results in

_C__L

Co
_
Lo

(4)

At values of L/L0 corresponding to d/L from equation 6, the product

Jj d_d_

Lq L Lo
(5)

is obtained. This is unique and results in d/L, C/Co, and L/L0 as

functions of d/LQ .

(b) Wave height. Wave-height transformations result from a considera-

tion of the energy contained in a wave and the redistribution .of this

energy as the wave travels into shoaling water. Energy dissipation due

to internal or bottom friction is neglected.

H
\

-llCcf
Ho \

_2n C J

where

II" 47rd/L 1
n
“2L

1+
sinh (47rd/L)J‘

1 Figures in brackets indicate the literature references on p. 29.

(6 )

(7 )

12



The factor, n
,
enters since one-half the wave energy travels with the wave

in deep water, but in shallow water, with d<g.L, all the energy travels

with the wave velocity. Since d/L is a function of d/Lo, it follows that

n and H/H 0 are functions of d/L0 . Equations 4, 6, and 7 are shown in

figure 3.

1.20

1. 10

1.00

0.90

0.80

0.70

0.60

0.50

0.40

Figure 3. Wavejransformations as function of depth from small amplitude theory.

4.2 Waves of Finite Amplitude

Stokes [2] developed a solution for wave velocity in deep water that
included a wave-height parameter. Struik [3] expanded the analysis to
include finite waves in any depth. To the third approximation in the
analysis

:

where

B
'2 (cosh 47rd/L) 2+2(cosh 47rd/L)+5"l

8(sinh 2ttd/L) 4
(9)

For waves of small amplitude, H L, equation 8 reduces to equation 1

The question arises as to the effect of the inclusion of the finite wave
height on the transformation relationship, equation 6, to predict wrave
heights as a function of depth from a given deep water wave in a periodic
train of waves. The analytical theory of the energy transformation for

this case has not been solved. The assumption is made that the energy
transformation development is of the same nature as that of the small
amplitude theory. That is, the velocity ratio and an energy conversion
factor, n, will apply.

From equation 8

13



The velocity ratio is a function of the wave steepness as well as the

relative depth. The factor, £, becomes increasingly important as the

depth ratio becomes smaller. For example, at d/L = 0.5, £ = 1.01 and

at d/L = 0.1, £=10.0. In addition, the decrease in the wave length, if

somewhat on the order of the small amplitude transformation, affects the

ratio H/L more markedly than any change in height. Thus, the numer-

ator of the right-hand term of equation 10 increases as the depth becomes

smaller. The magnitude is not negligible for small values of d/L and

finite values of H/L.
Since n, from the small amplitude theory, is a function of d/L, as was

C/C o, it is reasonable to assume that n, in finite waves, will be a function

of d/L and H/£, with more dependence upon the wave height as the depth

becomes smaller.

One factor that has not been included in either theory is the effect of

the bottom slope upon the transformation. The assumption is made
that the wave character at a specified depth on a sloping bottom is the

same as that developed for the relationships at a corresponding constant

depth. On steep beaches this assumption is open to question. On
shallow beaches, where the depth gradient is small, it may be reasonable,

although frictional effects will become increasingly important and should

be included.

Figure 4. Experimental wave-height transformations.

Hm . Measured wave height at depth, d ; H o, deep-water wave height; L o, deep-water wave length.

The experimental investigation [4] covered two beach slopes and a

range of wave heights and period. Table 1 includes the defining variables

for each investigated condition. Table 2 presents the measurements of

one run as a sample of the data obtained from the wave-height transfor-

mation. The deep water wave length, L0 ,
was computed from the

measured period from a combination of equations 1 and 3, which reduce to

Lq-5.12T 2 for d large as compared to L (L0 ,
in feet; T, in seconds).

14



Table 1. Summary of test conditions for transformation of waves on a sloping bottom

[For runs 1, 7, and 8, Ho= H'm . For all other runs, Ho computed from curve of figure 4]

Run Beach
slope

Period,
T

Deep-
Water
wave
length,

ho

Wave height
in constant
depth region
of channel,

H'm

Depth in

constant
depth region
of channel,

d

Deep-
water
wave
height,

Ho

Deep-
water
wave

steepness,

Ho/Lo

1

Seconds
( 0.865

Feet
3.83

Feel
0.351

Feet
2.55

Feet
0.351 0.092

2
|

l 1.15 6.73 .290 2.55 .308 .046

3 ( 0.072 1.22 7.63 .262 2.55 .284 .037
4 f (1:13.9)

[

1
1.50 11.53 .195 2.55 .226 .020

5
|

1.54 12.16 .182 2.55 .214 .017

6 1 l 197 19.89 .135 2.55 .169 .0084

7 f 0.86 3.80 .333 2.44 .333 .088
8

0.054

[
(1:18 5)

I .965 4.77 .320 2.44 .320 .067

9 1.34 9.20 .219 2.44 .248 .027
10

!
1.50 11.53 .190 2.44 .223 .019

11
[ 1.97 19.89 .123 2.44 .154 .0077

Table 2. Sample summary of measured results of the transformation wave heights on a

sloping bottom

Run 1. Beach sio; e=0.072; wave period, T =0.865 second; deep-water wave length, Lo= 3.83 feet;

deep-water wave height, Ho =0.351 feet

Station

Measured values Computed ratios

Depth
d

Wave
height
Hrn

Relative
< iepth

d/ho

Relative
height
Hrn/Ho

Feel Feet
50 2.550 * 0.353 0.665 1.00
45 2.545 * .343 .662 0.98
40 2.545 * .360 .662 1.02
36 2.548 * .347 .665 0.99
34 2.31 .347 .602 .99

32 1.97 .337 .515 .96

30.7S 1.727 .343 .451 .98
30 1.675 .339 .437 .97
29 1.616 1.338 .422 .97

28 1.551 0.335 .405 .96

27 1.485 .332 .388 .95
26 1.412 .332 .369 .95
25 1.349 .319 .352 .91
24 1.282 .315 .335 .90
23 1.215 .317 .317 .90

22 1.149 .317 .300 .90
21 1.07S .316 .281 .90
19 0.930 .30S .243 .88
IS .872 .308 .22.8 .88
17 .796 .311 .20S .89

16 .727 .312 .190 .89
15 !649 .308 .169 .88
14.5 .613 .306 .160 .87
13.5 .541 .304 .141 .87
13 .504 .314 .132 .89

12.8 .488 .319 .127 .91
12.5 .464 .321 .121 .91
12.3 .449 .322 .117 .92
12 .427 .325 .111 .92
11.8 .412 t .324 .108 .92

* Average H'm =0.351, in constant depth portion of channel,
t Breaker point.
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In this, and the following, the effect of the wave steepness on L0 ,
as

shown by equations 3 and 8,

—Nf)1 (id

is not included. The small values of H0/Lq of the majority of the experi-

mental waves, plus the fact that the gradient of the experimental results

with respect to L0 is small, justifies the approximation.

When the transformation results of figure 3 were applied to each meas-
ured wave height at the corresponding depth

,
the deep-water wave heights

did not result in the expected same value. An experimental wave-height

transformation as a function of d/Lo was then defined. The runs were

selected in which the ratio d/Lo in the constant-depth portion of the

channel was greater than 0.5, for which equations 2 and 10 reduce to

C = C o for all practical purposes. Hence, the average of the measured
heights in the constant-depth portion of the channel was taken as the

deep-water height. At other depths, the ratios of the measured height

to deep-water height, Hm/H0 ,
were then plotted as a function of the

corresponding relative depth d/Lo, figure 4a. Within the experimental

error, the points define a single curve for the larger values of d/Lo.

Regular deviation trends are noted at the lower values of d/Lo.

For the conditions with the ratio d/L0 in the constant-depth portion

of the channel less than 0.5, the curve established in figure 4a was used to

obtain H'm/H o- H0 was computed from the measured H'm in the constant-

depth portion of the channel. The extension of figure 4a by this artifice

is shown in figure 4b.

As has been shown from the theories, the wave-height transformation,

for waves of finite amplitude, is a function of both d/L and H/L. For

small values of H/L, the finite amplitude velocity, and presumably the

energy transformation factor, n, reduces to the small amplitude theory.

Hence, H/L, or (H0/L0 ), is a parameter in the wave-height transformation

and the single experimental curve of figure 4, based upon the laboratory

experiments, is not a true representation of the situation. Thus, the

method of extension of figure 4a into figure 4b is questionable. A series of

wave-height transformation curves should result with Ho/Lo as a para-

meter. For small values of Ho/Lo and large values of d/Lo, the small

amplitude theory gives a limiting relationship as shown.

Positive confirmation of the effects of the deep water steepness para-

meter, Ho/Lo, over a wide range of values can be accomplished with similar

transformation experiments of the nature of those reported by which

figure 4 was established. A deeper laboratory wave channel than that

now available is needed in order to generate deep water waves over a

larger range of Hq/Lq for an extension of the results.

The deviation of results of each wave condition from the experimental

curve at the smaller values of d/Lo results from two conditions: (1) the

finite wave-height, theory predicts an increasingly appreciable effect of

wave steepness at small values of d/L0 ;
and (2) when the wave approaches

the breaking stage it is no longer the theoretical symmetrical wave, but

is steeper on the front face than on the back face.
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5. Breaker Studies

$ Data obtained from the breaker studies included the complete geometry
of the wave transformation in the region of breaking, and also the complete

velocity field from the water surface to the beach bottom at increments

of the wave and breaker position in the region of breaking. The complex
nature of the transformation of a wave into a breaker, with the depend-

ence of the transformation upon initial wave steepness and beach slope,

precludes any simple presentation of the experimental results. Certain

features pertaining to the breaker point can be correlated. These include

the variables as listed on figure lb. Correlations are made as a function

of deep water wave steepness and beach slope. Results of measured
values are listed in tables 3, 4, 5, and 6 for the four beach slopes that were
investigated, namely, 1:10, 1:20, 1:30, and 1:50. Correlations are

shown on included figures, which will be discussed in turn.

The same limitation was present in the breaker experiments as was
present in the wave-height transformation experiments, i.e., most of the

waves that were generated were not deep-water waves in the constant

depth portion of the channel. Deep water wave-heights were computed
from measured wave-heights in the constant-depth portion of the channel,

using the transformation results from small amplitude theory, figure 3,

and using the laboratory results, figure 4.

Breaker-height correlations, based upon evaluation of H 0 from small-

amplitude theory, and results based upon evaluation of H 0 from the

experimental wave-height transformation established in figure 4, are

shown in figures 5, 6, 7, and 8 for the four beach slopes investigated. The
breakers are segregated into groups based upon the absolute breaker

height. An apparent scale effect is noted. Application of the experi-

mental transformation results lowers the breaker-height index, since

larger deep-water wave-heights are predicted than those predicted from
small-amplitude theory. While some rectification of the breaker results

is evident, the scale effect still appears.

In view of the deductions made relative to the results of figure 4,

neither the theoretical small-amplitude transformation results nor the

laboratory experimental curve of figure 4 should be used in all cases to

evaluate deep-water wave-heights from measured wave-heights in the

constant-depth portion of the channel. The breaker results substantiate

this conclusion.

For given deep-water waves of a fixed steepness, Hq/L q ,
the wave train

is defined. In the absence of frictional effects, the breaker geometry, in

this case Hb/Ho, should be uniquely defined and not a function of the

absolute height of the wave. If so, all the breaker results for one beach
should produce a single relationship of Hb/H0— <f)(Ho/L0). Since Hb and
L0 were measured directly (L0 computed from the measured period), the

only other variable to investigate is that of H 0 .

An argument is proposed as follows: Consider one beach slope in the
laboratory channel. Two waves are investigated with the following

conditions:

d[= d'
2 (The constant depth portion of the channel. This

corresponds to laboratory experimental condition.)

Loi = Z/o2

Hm i>Hm2 (This corresponds to the larger and smaller sets of waves
based upon absolute height.)

17
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Table 5. Summary of Data—Beach Slope 1:80

Run

Deep
water wave
steepness,*
H0/L0

Period,
T

Wave
height,f
Hm

Still water
depthf
(at Hm),

dm

Breaker
height,
Hb

Depth at
breaking,

db

Seconds Feet Feet Feet Feet
8 0.0665 1.05 0.356 1.65 0.350 0.480
7 .0080 2.37 .230 1.64 .415 .510

9 .0353 1.24 .255 1.58 .275 .365
4 .0214 1.46 .214 1.55 .285 .350
3 .0099 1.87 .169 1.50 .262 .373
5 .0084 2.03 .173 1.49 .253 .335
6 .0043 2.67 .164 1.52 .290 .370

10 .0138 1.49 .144 1.44 .225 .270
11 .0093 1.60 .112 1.40 .175 .260
12 .0074 1.79 .115 1.40 .180 .260
14 .0052 2.10 .115 1.44 .215 .275
2 .0042 2.29 .116 1.43 .230 .280

16 .0035 2.52 .117 1.43 .200 .265
15 .0027 2.52 .093 1.42 .190 .230
1 .0025 2.65 .097 1.41 .180 .244

* Lo from 5.12P2
; Hq from Hm and dm/L§, using small-amplitude theory,

t Constant-depth portion of channel.

then

^-=^< 0.5
-C'Ol Lq2

(The wavesVere not measured as deep water waves.)

Hrn1

Loi

Hn*

Lq2

Hence the second wave more nearly approximates a small-amplitude wave.
The breaker-height index, Hb/HQ ,

would then be based upon a computed
H o, from Hm and d/L0 ,

from a transformation relationship that more
nearly approximates the small-amplitude transformation. Likewise, the

first wave more nearly approximates a finite wave and the experimental
transformation results.

As can be noted in figures 5, 6, 7, and 8 the net result would be to lower
the breaker index values of the larger waves (or breakers) to a greater

extent than the smaller waves (or breakers). Thus, all data would be
brought into a greater conformity than is shown on either of the two
presentations on each of figures 5, 6, 7, and 8 and would be approximated
by the curves that are shown on figures 5, 6, 7, and 8.

Figure 9 presents all the results of figures 5, 6, 7, and 8 to show the beach
slope effect upon the breaker-height index. Curves have not been drawn
in figure 9 in order to preserve the relative comparison of the points with-

out the influence of the curves. Whichever evaluation of deep-water
wave-height is made, a definite beach-slope effect is noted with higher

breakers on the steeper beaches for the same initial wave train.

The other discernible relations of wave geometry, if specified on a

dimensionless basis, can be correlated in a number of different ways. All

geometrical relationships, such as the depth at breaking, can be referred

to the deep-water wave-heights, e.g., (Ib/Hq. Since the deep-water wave-
heights have not been determined with a desired reliability, all variables

are related to the breaker height that was measured directly. Results are

presented for the beach slopes of 1:10, 1:20, and 1:50. Data with the

1:30 beach slope were obtained for breaker heights only. All variables
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BREAKER

HEIGHT

INDEX

were related to the deep-water steepness with evaluation of the deep-water
wave-height and length from the small amplitude theory. A curve has
been drawn through compatible results in each representation wherein
agreement of the results indicates a definite trend.

Results are presented in a series of figures (see fig. 1 for definition of
terminology). Figure 10. Depth; crest elevation; Figure 11, Back-
wash depth; forward stagnation point; Figure 12. Front face angle;
Back face angle; Figure 13. Backwash velocity; crest velocity.
Some comments should be made relative to the evaluation of the results

that appear in the above figures. The breaker point is, to a certain degree,

DEEP WATER WAVE STEEPNESS - H 0 /L 0

22

Figure 5. Breaker heights from laboratory data.

Eeach slope, 1:10. O, 0.40 >H& >0.36; X, 0.35 >H& >0.25; , 0.24 >E& >0.16,



a matter of judgment, which depends upon the type of breaker that is

formed. For “spilling” breakers, in which the crest became unstable in a

mild fashion with the appearance of “white water” at the crest, which
expanded down the front face of the breaker, the picture preceding that

in which the first white water appeared was taken as the breaker point.

For “plunging” breakers, in which the crest overshot the body of the wave
to project ahead of the wave face, the picture in which the front face at

the crest was vertical was taken as the breaker point. For “surging”

breakers, in which the front face of the wave became unstable over the

major portion of the face in a large-scale turbulent fashion, the picture

preceding this action was taken as the breaker point. The movies, from

Figure 6. Breaker heights from laboratory data.

Beach slope, 1:20. O, 0.42 >Hb >0.36; X, 0 .35 >Hb >0.25; , 0.21 >Hb >0.14.
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which the results were obtained, were taken at approximately 60 frames
per second. The time interval of one-sixtieth of a second permitted a
reasonable approximation of the breaker point.
The depth, crest elevation, backwash depth, and front and back face

angles were easily determined from the selected pictures. The forward
stagnation point, which was determined from the particle movements, was
noted to occur at approximately the intersection of the still water line
and the front face of the wave. Backwash velocities were obtained by
averaging all particle velocities in the region of minimum depth in the

24

Figure 7. Breaker heights from laboratory data.

Beach slope, 1:30. O, 0.41 >Hi >0.35; X, 0-29 >Hb >0.25; Q, 0.23 >Hb >0.17.



BREAKER

HEIGHT

INDEX

backwash. Crest velocities were obtained from the gradient of the crest

position-time history. Small surface irregularities influenced the selection

of the crest position in any one picture.

Relative comparison of beach slope effect in terms of a given wave train

is difficult from figures 10 and 11. If the curves shown in figures 5, 6, 7.

and 8, for the breaker height as a function of initial steepness and slope,

are accepted, then cross-computations may be made to obtain ratios

with the deep-water height as the denominator. Results so obtained are

shown in figure 14 for the 1:10 and 1:50 slopes.

For a given wave train defined by the deep-water wave height and
length, on a steep beach as compared to a flat beach, the breaker is higher,

Figure 8. Breaker heights from laboratory data.

Beach slope, 1:50. O, 0.39 >iT&>0.36; x, 0.33 >Hb >0.25; , 0.24 >Hb >0.17.
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breaks in deeper water with a higher crest elevation, has a flatter back
face and a steeper front face, and has a smaller depth in the backwash
with a higher backwash velocity.

The backwash, which is a function of events preceding a particular

breaker, is a factor in the breaking action. High backwash velocities

retard the base of the wave with a consequent tendency to promote a
“plunging” breaker. At large values of deep-water steepness, the
breakers on all beaches were “spilling.” At smaller values of deep-water
steepness the waves tend to plunge with greater tendencies on the steeper

slopes. At the extreme lower values of the deep-water wave steepness,

particularly on the 1:10 slope, the breaker tended to “surge.”
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Other features of the breaker, particularly the kinematic field, may be

noted in figures 15a and 15b. All the breakers studied showed essentially

the same general kinematic field, except for the differences as noted in the

fore part of the breaker in terms of the backrush and forward stagnation

point.

The laboratory waves were of uniform period and geometry. Natural

waves seldom correspond to this condition. What effect the previous

and following wave histories have upon a single wave under consideration,

if the wave train is irregular, is not known. The effect of bottom friction

and percolation should be included for waves on natural beaches.

Figure 10. Breaker crest and depth indexes.
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6. Summary

1. Laboratory results are presented for the transformation of wave
heights as a function of depth in a wave system in a steady state of

oscillation. The small amplitude theory is shown to be inadequate for

laboratory wave channel work to enable evaluation of the true deep-water

wave from a shallow-water wave-height measurement.

2. Breaker geometrical relationships are established for plane imper-

vious beaches with slopes from 1:10 to 1:50. In this range, the beach

slope has a marked effect upon the breaker in that, for a given wave train,

the breaker is approximately 40 percent higher on a 1:10 slope as com-

pared to a 1 :50 slope. The breaker is also steeper in front and flatter in

back, with a greater tendency to plunge.
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Figure 14. Breaker geometries based on deep-water height.
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Figure 15. Kinematics at breaker point.

Equal breaker heights.
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4. Mechanics of Sand Movement
by Wave Action
By Joseph M. Caldwell 1

Abstract

The results of a high-speed moving-picture study of the movement of

beach sand by wave action in a laboratory flume were presented. The
growth and progression of sand ripples was described, and the manner in

which these ripples affect the movement of the sand was discussed.

Results were presented showing that ripple forms move shoreward even
while net sand movement is seaward from the beach. Hypotheses as to

the cause of the observed sand transportation and the resulting sorting

of the sand were presented.

1 Beach Erosion Board, Washington, D. C.

5. Theory of Floating Breakwaters in

Shallow Water
By J. J. Stoker 1

Abstract

The exact theory for the interaction between floating bodies and water
waves of small amplitude has been derived and discussed recently by F.

John (On the motion of floating bodies, Communications on Pure and
Applied Mathematics, vol. Ill, No. 1, 1950). F. John, in the same paper,

also derived an approximate theory for rigid bodies floating in shallow
water. The term “shallow water” means that the depth of the water
should be small compared to the wave length of the surface waves.
The theory of floating breakwaters, which are not necessarily rigid

bodies, in shallow water, was discussed. The theory was rederived in a

sufficiently general way to apply to floating structures, which might, for

example, be flexible beams, stretched membrances, floating ice particles,

or also rigid bodies.

The mathematical formulation of the theory leads to the linear wave
equation in places where the water surface is not covered by an obstacle,

to a modification of the equation of the vibrating beam for a place where
the surface is covered by a beam, and to other appropriate equations
when the surface is covered by other obstacles. In addition, transition

conditions at the junctures of regions of different properties must be
derived, and appropriate conditions at oo must be prescribed. The result

is a linear problem of a rather complicated type for which, however,
methods of solution are known.

Special cases were then discussed in which the reflection and trans-

mission coefficients, which measure the efficiency of a floating breakwater,
were calculated. It is felt that this theory should form a reasonable
basis for the design of structures to serve as breakwaters in shallow water.

1 Institute for Mathematics and Mechanics, New York University, New York, N. Y.
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6. On the Limiting Clapotis

By Pierre Danel 1

Several examples are known of structures which, having stood for years under heavy
storms, were destroyed fairly rapidly by a much milder one.

Hence the idea, borne out by model experiments, that certain waves may be actually
worse than others of even greater magnitude, this depending also on the design of the
structure itself and bottom topography.

This discussion is a short summary of research made in Grenoble to determine the
wave characteristics that, for a given location and design of structure, give the heavi-
est pounding.

It is shown that this ties in with the determination of the limiting clapotis, or stand-
ing, wave, depending on the amount of wave energy reflected by the structure.

Experience with most types of breakwaters and maritime structures

has shown that the greatest destructive effect is generally produced by
the heaviest waves that reach effectively the structure. These may some-
times coincide with the largest incoming waves, but that is not always
the case. Quite often the effect of bottom topography is such that the

largest waves, under the influence of the shallowing of the bottom com-
bined with the effects of local refraction and diffraction, already lose most
of their energy by breaking or, at least a fair amount of it, by combing
in various ways.

This dissipation of energy well ahead of the structure itself may also

be enhanced by the waves reflected from the structure itself. The
amount of reflection, in terms of energy, may vary from 100 percent for a

good reflector such as a vertical wall to only a few percent for a good dis-

sipator.

Although the problem of predicting the heaviest waves that can
physically reach a given structure is of prime importance to the engineer,

a glance through the literature seems to indicate that so far it has been
very little studied, not so much because its importance was not recognized

but because theoretically it appeared very difficult to tackle properly

(and in all likelihood still does), and also because its experimental study
by means of model or flume experiment was not an easy matter either.

In the last few years most of the experimental difficulties have dis-

appeared one after the other and laboratory technique has progressed by
leaps and bounds very rapidly indeed not onty by the wonderful achieve-

ments in instrumentation but also b}r many new experimental techniques.

One of the most outstanding is that of the wave-filter devised by Mr.
Biesel, and its many recent improvements. 2

In this short note however we shall not dwell at length on the many
difficulties met with in experimenting on various types of waves and
clapotis especially close to the breaking point. A special paper on experi-

mental technique is now being prepared to be published at a later date.

1 Laboratoire Dauphinois d’Hydraulique, Ets. Neyrpic, Grenoble, France.
1
F- Biegel, Filtre a boule, La Houille Blanche 3, 276 (1948); 373, (A1949),

35



We will content ourselves in this first paper on this subject to present
some of the experimental results so far obtained to date by the Neyrpic
Laboratory of Grenoble (France).

The problem that faces the designing engineer, as already mentioned,
is to be able to predict the heaviest wave that will actually reach the
structure and which, by its incessant pounding during big storms, may
bring havoc to the structure if it is not properly designed.

Let us then suppose that the largest waves in the open sea and coming
toward the structure can be predicted either from local statistics or from
reasonably adapted fetch formulae. These waves have then to be
‘Touted” to the structure by known means of ascertaining the “wave
pattern” taking into account both refractional and diffractional effects.

In this routing it will be often found that some of the heaviest waves
already break and lose energy before reaching the structure. But close

to the structure, as already mentioned, account has to be taken in the
“wave routing” of the waves reflected from the structure. The combined
effect of the incoming waves with the reflected waves causes a wave pat-

tern, which, with increased intensity of the incoming wave, reaches a limit

above which some breaking or combing will occur. It is then essential

for the designing engineer to ascertain properly this limiting condition.

Figure 1 . Limiting wave and limiting clapotis.

2a= amplitude of the incident wave at depth, h; L = wave length; h= water depth.

Progressive wave j^brS^f x°'
<*«>•*

In figure 1 a plot is given as a solid curve for the limiting pure clapotis,

that is, for a total reflection. In other words, the amount of energy
reflected is equal to the incoming energy, the structure being parallel to

the wave crests.

As conditions depend on both wave characteristics and local depth,

the plot, in dimensionless numbers, has for abscissa the ratio of depth to

wave length and for ordinates the ratio of the total amplitude, 2a, to that

of the wave length. 2

a

is the amplitude the waves would have at the

local depth were they not altered by the reflected waves.
Experience has shown that, with the limitations due to surface tension,

the limiting clapotis is practically cuspidal as had been already sug-

gested by some approximate theory (although it seems to still be a moot
question among theoreticians).

This cuspidal condition is naturally very unstable and difficult to

produce accurately experimentally. To get quick results as a first

approximation we have plotted, as solid circles, clapotis that have not
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reached the limiting condition and, as vertical crosses, the experimental
points where slight breaking or combing was noticed, which may happen
either because the pure clapotis would actually be above the limiting

condition we are now looking for, or on the other hand because for one
reason or other the incoming wave is not “pure” enough as any harmonics
will induce some early combing.

In spite of these difficulties, we feel that the solid curve given is fairly

representative of the real limit.

For this first paper on the subject we had not the time to carry on
experiments with various percentages of reflection. However we present
on the same graph experimental data for the limiting wave, that is when
there is no reflection at all.

The limiting condition in deep water has been known theoretically for

quite some time giving the asymptotic limit 2a/L = 0.14 for the dotted
curve representing the condition for the limiting wave on the graph.

In fairly shallow waters it has been pointed out already by various
authors that a good approximation is given by the solitary wave theory.
The straight portion of the dotted curve from the origin corresponds to
the condition of the limiting solitary wave.

For intermediate conditions in medium depth the approximations, as

given by Miche, are quite close to our curve.

Here again, as for the limiting clapotis, plots are given of points before
breaking and after breaking or combing. The limiting wave is not cuspi-

dal but is angular at 120° as already known theoretically. When the
experimental waves are free from harmonics or out of phase components,
they come very close to the shape of the theoretical limiting wave dis-

playing almost the 120° angle, save for a slight rounding up of the apex
due to surface tension.

Although the case of the limiting wave was better known theoretically

than that of the limiting clapotis, to our knowledge the problem had not
been covered experimentally before. Of course for the limiting wave the
amplitude, as plotted on the graph, corresponds not only to the incoming
wave but also to the limiting wave itself as in this case it is all one and the
same thing.

It must be noted here that the characteristics of the incoming waves
that correspond to the limiting condition at the structure with no reflection

(limiting wave) and for total reflection (pure clapotis) are not so far

apart as might be supposed.
For a partial reflection (partial clapotis) the limiting conditions will

correspond to a curve in between the two given curves, and from lack of

a better tool the designing engineer can already interpolate between the
two curves according to the reflection coefficient of the structure.

This may not seem a very accurate procedure. However, it must be
borne in mind that the characteristics of the incoming waves at sea are

more or less just a little better than guessed from fetch formulae or local

statistics: this flavours the uncertainties of flood prediction for rivers.

Just the same, although easier to ascertain, the reflection coefficient of

most structures is not accurately known.
Another engineering aspect of the problem is that of the safety coeffi-

cient of the structure. If the structure is studied along the line here
discussed, the first thing is to ascertain which waves are the most dan-
gerous, and generally it is found they are just close to the limiting waves;
then and then only, to check approximately from fetch formulae and
“local wave routing” whether they are likely to occur and how often.

If the predicted heavy waves are just slightly under the limiting waves
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here discussed, the structure should be designed, in our opinion, for the
limiting condition with enough safety in view of the uncertainty of the
“predicted waves.” In this way almost 100-percent-safe structures

could be designed, and most of the money spent annually on heavy main-
tenance could be saved.

It must be noted that a totally reflecting structure, such as a vertical

wall, cannot be reached and pounded upon by as heavy waves as perfectly

absorbing structures. This advantage, however, is often more than
counterbalanced by many inconveniences, such, for instance, as inducing a

very choppy condition at sea nearby, rendering navigation more haz-

ardous.

A full discussion of the advantages and disadvantages of the various

profiles used or proposed would be out of place here. In this short note

we just wanted to show by an example that by the proper blending of

theory and modern experimental technique the designing of maritime
works is becoming more and more an exact science and that really safe

structures will be designed leaving the mystery of the insuperable pound-
ing of raging seas to the realm of literature where they should belong.
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7. Observations of Internal Tidal Waves

By Jonas Ekman Fjeldstad 1

In 1933 a theory was given of internal waves in a sea where the density varied
continuously with depth. It was shown that an infinite number of solutions could be
found, corresponding to waves of the same period but different velocities of propaga-
tion. To test this theory measurements were made in 1934 of temperature and salin-

ity at different depths, and at the same time current measurements to determine the
tidal currents. The temperature and the salinity showed quite large variations of

tidal period which could be explained satisfactorily by assuming that they were com-
posed of four internal waves. The amplitudes of these waves could be calculated

from the density variations. The theory made it possible to calculate also the current,

for comparison with the observed values. From the theoretical velocities of propa-
gation it was then possible to compute vertical oscillations and tidal currents also and
compare the results with the observations. It was found that the phase angles com-
puted in this way corresponded fairly well with those observed. Since the observations
at the three different stations were not simultaneous it was impossible to ascertain if

the diminution of the amplitudes was caused by the configuration of the fjord only or

if the friction also should be taken into account.

In 1949 the observations were repeated with two vessels simultaneously. Con-
ditions were much the same as in 1934 and a similar program was carried through.
The two vessels were anchored about 11 km apait. It was found that the tidal cur-

rents were small, except in the upper 15 to 20 m. The variation of temperature and
salinity indicated large internal waves of a progressive type. The phase differences

between the two stations amounted to some 5 hours, corresponding to a velocity of

propagation of 60 cm/sec. This is also the theoretical value found for the first-order

internal wave. The theory makes it possible to give a more detailed analysis of the
wave phenomenon.

In 1933 I gave a theory of internal tidal waves in a sea where the density

is a continuous function of depth. 2
I shall briefly recall some theoretical

considerations.

If p be the density and w = d{ dt the vertical component of velocity,

then w is a solution of the second-order differential equation

subject to the boundary conditions w = 0, z = 0, (bottom) ; and dw/dz—
\2gw= 0, z= h, (surface).

The equation has ordinarily an infinite number of solutions. These
correspond to internal waves of the same period but different velocities

of propagation. We shall designate these waves as waves of the first

order, second order, and so on. The wave of zero order is then the

ordinary tidal wave.
The horizontal velocity is connected with the vertical elevation of a

particle from its equilibrium position by the equation

1 Oseanografisk Institute Universitetet, Oslo, Norway.
' J. E. Fjelstad, Observations of internal tidal waves, Geof. Publ. (Oslo) X:6, 1933.
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X is a parameter that is connected with the velocity of propagation c.

When the influence of the earth’s rotation can be neglected, we have
simply X = 1/c.

To test the theory some observations were made in the summer of 1934
in Herdlafjord, near Bergen, Norway. One end of the fjord is nearly

closed by an island and a ridge with a maximum depth of some 20 m.
The other end opens into a larger fiord system. The depths vary between
200 and 300 m.

Observations were made at three different stations. Station 1 was
occupied for 88 hours, and temperature measurements were made every
half hour at the depths 0, 5, 10, 15, 20, 30, and 100 m. Water samples
for determination of salinity were taken at the same depths every hour.

At the same time, current measurements were made at the surface and
at 5-, 10-, 15-, 35-, 50-, and 100-m. depths. At the two other stations the

time intervals covered by the observations were 33 and 36 hours.

In table 1 we give the results of the harmonic analysis of the density

variations and the corresponding amplitudes of the vertical oscillations

at Station 1.

Table 1

Depth k r

m Degrees cm
5 0.344 14 59

10 .306 50 130
15 .272 42 220
20 .158 43 283
30 .057 44 222

100 .009 18 680

The computed values of the amplitude of the vertical oscillations at

30- and 100-m depth are naturally rather uncertain because the gradient

of density is very small at these depths.

The results of the current measurements are given in table 2.

Table 2

Depth V k

m cm/sec Degrees
5 8.7 245

10 11.1 242
15 6.8 242
35 3.7 242
50 0.9 216

100 1.2 121

i

From the mean density distribution the theoretical internal waves
could be found by a numerical integration process, and from the observed

density variations the coefficients of the different internal waves could be

computed. When trying to represent the observed vertical oscillations

by four internal waves, the result was

f = 13.88 cos (<rt—kiX—£2°)wi+6.90 cos(at—

k

2x— 242°)tC2+2.85 cos(at—

kiX— 291°)w3+ 3.64 cos (at

—

te— 268°)W4.
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For x = 0 we get the values in table 3.

Table 3

Depth r k fo6s hobs

m cm Degrees cm Degrees
5 58 19 59 i4

10 184 55 130 50
15 246 51 220 42
20 290 45 283 43
30 367 41 222 44
100 503 50 680 18 !

For comparison the observed values are entered in the same table. On
the assumption that the waves are progressive, we may with the same
set of coefficients compute the corresponding velocities, which may then

be compared with the observed values. The results are given in table 4.

Table 4

Depth V k Vobs hobs

m cm/sec Degrees cm/sec Degrees
5 13.8 237 8.7 245

10 10.2 232 11.1 242
15 6.7 222 6.8 242
35 2.3 227 3.7 242
50 09 241 0.9 216
100 1.4 42 1.2 121

The approximate agreement between computed and observed values

confirm the assumption of free progressive waves.
The theory gives the velocities of propagation to be 62, 33, 23.4 and

17.4 cm/sec for the four internal waves. We are then able to calculate

the values which are to be expected at the two other stations. We shall

only reproduce the results for Station 3.

Putting x=12.3 km in the formula, we find the values in table 5.

Table 5

Depth r k 0.44 f fobs hobs

m cm Degrees cm cm Degrees
5 166 202 70 78 179

10 252 207 106 106 200
15 273 198 115 111 181
20 257 191 108 94 198
30 168 194 71 69 (241)
100 137 287 57

As will be seen, the computed amplitudes are much larger than the
observed. In the fourth column we give the computed amplitudes multi-
plied by a common factor 0.44. These reduced amplitudes agree very
nearly with the observed values. To explain the reduction of amplitude,
we have to take into account that the breadth of the fjord at Station 3

is about double that at Station 1, but we have also to bear in mind that
the observations are not simultaneous.
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The reduced amplitudes and the phase angles correspond fairly well

with the observed values, and this may be taken as a confirmation of the
theory.

In the summer of 1949 I had an opportunity to repeat the observations
in the same fjord, and this time I had two vessels at my disposal so that

the observations were simultaneous. For Station 1 the Armauer Hansen
was anchored at the same place as at Station 1 in 1934, and for Station 2

the Johan Hjort was anchored at a distance of 11 km from Station 1.

The final analysis is not yet finished, but I can give some preliminary
results.

Temperature measurements were taken every half hour at 0, 5, 10,

20, 30, 50, and 100 m, and water samples were collected at the same
depths every hour. On board the Armauer Hansen

,
current measure-

ments were made at the surface and at 5-, 10-, 15-, 20-, 30-, 40-, and 60-m
depths. At Station 2, the Johan Hjort

,
current meters were used at

5-, 10-, 15-, 20-, and 30-m depths.

The results of the harmonic analysis of the density oscillations and
different depths are given in table 6.

Table 6

Depth
Station 1 Station 2

°T k <rt k

m Degrees Degrees
5 0.423 78 0.333 210

10 .304 56 .139 213
20 .189 74 .094 191
30 .138 80 .041 185
50 .048 68 .021 211
100 .006 61 .002 168

As will be seen, there is a large phase difference between the two
stations. The mean value is 127 degrees, corresponding to 4.38 hours.

As the distance is 11 km, we find a velocity of propagation of 70 cm/sec.

The results of the harmonic analysis of the tidal currents are given in

table 7.

Table 7

Station 1 Station 2

Depth
V k V k

m cm/sec Degrees cm/see Degrees
0 11.3 260

14.5 280 6.6 29
ib 13.2 275 6.6 51
15 12.4 265 6.6 65
20 5.5 254 5.3 80
30 3.4 204
40 4.0 231
60 1.3 171

The W'eather conditions during the measurements were very unfavorable

with heavy rain and wind. This was unfortunate, not only because the

observation work was disagreeable, but during more than a day the whole
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surface layer was swept away, and thus the density distribution in the

upper layer was changed, so that the conditions could not be regarded as

stationary. The observations cover a time interval of 4^ days.

We have made numerical integrations corresponding to the mean
density distribution during the first day at Station 1. Using the method
of the least squares to determine the coefficients of four internal waves,

we found

£*=15.08 cos(at—kiZ—71°)wi+8.58 cos(at—k2x— 249
0
)w2

+0.82 cos (at— k$x— 307°)w3+2.86 cos(<r£— k±x— 146°)w4 -

We have also tried to draw a curve for the observed vertical oscillation

and determine the coefficients by numerical integrations. The result

was then

£* = 15.58 eos(cr£

—

k\X— 7 1 ° ) ici+ 8 .48 cos(at—k2x—252°)w2

+ 1.00 cos(<jf

—

k%x — 276°)rc3+ 1.16 cos(at— k±x— 152
0)w4 .

The agreement is excellent for the two first internal waves, but for the

third and fourth the agreement is only qualitative. However these

waves have only small amplitudes. With the first set of coefficients we
compute the values in table 8 for the vertical oscillations.

Table 8

Depth r k fob3 kobs

m cm Degrees cm Degrees
5 43 77 43 78

10 150 59 153 56
20 370 73 37S 74
30 524 78 507 80
50 628 73 668 68
100 520 53 495 61

The agreement between computed and observed values is satisfactory,

indicating that four waves are sufficient to represent the observed internal

oscillations.

Using the same set of coefficients, we can also calculate the correspond-
ing horizontal velocities. The results, together with the observed values,

are given in table 9.

Table 9

Depth V k Vobs kobs

m cm/sec Degrees cm/sec Degrees
0 9.7 264 11.3 260
5 11.1 242 14.5 280

10 10.8 251 13.2 275
15 9.4 257 12.4 265
20 7.6 259 5.5 254
30 4.2 255 3.4 204
40 1.7 235 4.0 231
60 1.0 125 1.3 170
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The velocities computed from the observed density variations give a
more gradual decrease with depth than those observed, and there seems to
be a systematic difference of phase. At present it is difficult to say whether
this indicates that the waves are of a more complex nature than assumed,
or if it may be attributed to casual errors. We have also to bear in mind
that the ordinary tidal current has not been included in the values cal-

culated, and that no corrections have been applied to account for the
influence of the surface tide. By using Bessels functions for the solution
one gets better agreement.

It would be tempting to make an analysis of the currents in the same
manner as has been made with the densities, and so obtain independent
values of the coefficients of the different internal waves. But the diffi-

culty is that we have no current measurements in the deeper layers. The
method of least squares breaks down in this case, because the determinant
of the normal equations will be nearly zero. This is what might have
been expected, since it is possible to represent a function which is constant
in the upper layers by a sufficient number of eigenfunctions. One of the
coefficients will therefore be arbitrary.

Using the theoretical velocities of propagation, which in this case are

60, 34, 22, and 17 cm/sec, we may calculate the values of the vertical

oscillations and the corresponding tidal currents that would be expected
at Station 2 if there were no decay of the waves. The results are given in

tables 10 and 11.

Table 10

Depth r k fobs kobs

m cm Degrees cm Degrees
5 186 194 33 210

10 203 200 73 213
20 275 232 184 191
30 365 249 176 185
50 385 266 189 211

Table 11

Depth V k 1 Vobs kobs

m cm/sec Degrees cm/sec Degrees
5 10.8 30 6.6 20

10 6.1 73 6.6 51
15 5.8 88 6.6 65
20 5.1 96 5.3 80

As will be seen, there is an approximate agreement of phase, but the

observed vertical amplitudes are much smaller than the calculated values.

This is in accordance with the results of 1934. The amplitudes marked
“obs.” are computed from density amplitudes by means of the formula

.Jpo npi+r— =(h
az

and consequently they are affected with relatively large errors in the

deeper layers, where the gradient of density is small.
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The large phase difference between the tidal currents at the two stations

is a phenomenon worthy of attention, since it could not be explained with-

out taking the internal waves into account. An ordinary tidal wave
would have nearly the same phase at two places which are lying so near to

each other. It shows that the internal waves may change the tidal cur-

rents very considerably.

As to the cause of the internal waves, it is clear that the tide producing
potential of the moon is not able to create internal waves of noticeable

magnitude. But when the tidal currents are distorted by the bottom
configuration, this will set up internal waves such that the superposition

of the ordinary tidal wave and the internal waves will give a variation of

tidal currents with depth, which is necessary to satisfy the boundary
conditions of the current.
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8. Motion of Water Due to Breaking of a Dam,
and Related Problems

By Frederick V. Pohle 1

The two-dimensional hydrodynamical equations of motion, expressed in Lagrangian
representation, are used to investigate the motion of an ideal fluid. This representa-

tion has the far-reaching advantage in problems with time-dependent free boundaries
that the independent space variables (a, b) are the initial coordinates of the particles:

the region occupied by (a, b) is thus a fixed region independent of t.

The displacements X(a,b;t), Y(a,b;t) and the pressure P(a,b;t) are expanded in

powers of the time, t. Equating to zero the coefficients of powers of f leads to a system-
atic procedure for the determination of the successive terms in the three expansions.
Each term is a solution of the Poisson equation, in which the inhomogeneous terms are

known functions of previously determined quantities. In all cases considered, higher
approximations require determination of a Green’s function, which is the same for

all approximations.
The method is applied to the initial stages of the breaking of a dam.
Certain calculations for semicircular and hemispherical domains agree with similar

calculations carried out independently by C. K. Thornhill, using other methods.
Calculations of the maximum pressure exerted on a dam during an earthquake agree

with the previous work of H. M. Westergaard.

1. Introduction

The hydrodynamical equations of motion may be formulated in two
different ways, which bear the names of Euler and Lagrange respectively.

The more commonly used Eulerian representation takes the space coordi-

nates (x,y,z ) and the time
( t ) as independent variables; the dependent

variables (pressure, density, velocity) are determined as functions of

The Lagrangian representation, which will be used in this

paper, introduces the initial particle displacements (a,b,c) as the inde-

pendent variables in place of (x,y,z). The dependent variables are the

particle displacements (X,Y,Z,), the pressure (P), and the density (p).

The Eulerian representation concentrates upon a fixed point (x,y,z )

and describes the motion of the fluid which streams past this point. In
the Lagrangian representation one seeks to determine the motion of all

particles at any time t. In many problems such specific information is

not required, if the domain of (x,y,z ) is known in advance or if a fixed,

known domain may be obtained by a suitable linearization process, such
as that used in the theory of surface waves.
The Lagrangian representation is suited to those hydrodynamical

problems in which the domain of (x,y,z ) must be determined as part of

the problem, for example, the determination of a time-dependent free

boundary. The important distinction between the Eulerian and
Lagrangian representations were clearly pointed out by Dirichlet [1]

2
,

1 Polytechnic Institute of Brooklyn, Brooklyn, N. Y. This work was done while the author was on the
research staff of the Institute for Mathematics and Mechanics, New York University.

Figures in brackets indicate the literature references on p. 53.
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who emphasized that (x,y,z ) were not “independent variables’’ in the
usual sense.

The Lagrangian representation has the far-reaching advantage that the
independent space variables (a,b,c) are the initial coordinates of the
particle: the region occupied by (a,b,c) is therefore & fixed region. The
purpose of this paper is to develop an expansion scheme suitable for the
treatment of time-dependent free boundary problems, for example, to

the determination of the initial stages of the flow from a dam, the forward
wall of which has been suddenly removed.

2. General Expansion Scheme for the Solutions

of Hydrodynamical Problems in

Lagrangian Representation

Since two dimensional problems alone will be considered, the necessary

equations will be restricted to those cases. If the horizontal z-axis is

taken as positive to the right and the vertical y-axis is taken as positive

downward, the equations of motion are [2, p. 13]

X»Xa+ {Ytr\-g)Ya Jr (l/p)Pa = 0 1

XttXh+(Ytt+g)Yb+(l/p)Pb=Oj

In eq 2.1, p is the density, P is the pressure, and X,Y are the horizontal

and vertical displacements, respectively; the independent variables are

(a,b;t ). The only external force considered is the force due to gravity.

Subscripts are used to denote partial differentiation.

The equation of continuity for an incompressible fluid is [2, p. 15]

XaYb-XbYa
= 1. (2.2)

The condition for irrotational flow is

X aX*,+ Y aYbt=XbXal+ YbY al . (2.3)

Equation 2.3 may be obtained directly from the corresponding Eulerian

condition [4, pp. 9-10]. If P is eliminated from the eq 2.1 by differentia-

tion, the result is

(XaXbt+ YaYbt) t
= (X6X0,+ YbYat) t

. (2.4)

Integration of eq 2.4 with respect to t yields eq 2.3; an arbitrary function

of (a, b) must be added. This function represents the vorticity at £ = 0,

which is zero since the fluid is assumed to be irrotational at t= 0. The
arbitrary function is therefore zero and the flow remains irrotational for

all time.

The assumption that X, Y, and P can be represented as analytic

functions of t leads to the expansions

X(a,6;0 = EXWf; Y(a,b;t) = ±YUt'; P(a,b;t) =
r = 0 r = 0 r— 0

X® = a, y® =6; X«=J»W),7W = r«(o,6); pM=p«(0,b).
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If the expansions for X and Y in eq 2.5 are substituted into the con-

tinuity eq 2.2 and the coefficients of t
n

,
(w^l), are set equal to zero, one

obtains

x®+y(?=o,

X^ +Fy^-L - '-
rr ’.

T (»fc2). (2.6)
r= i d{a,b

)

The usual notation for Jacobians has been used in eq 2.6.

The same substitution of X and Y from eq 2.5 into the irrotationality

condition 2.3 yields the conditions (n^2)

Y(k) _ y(n) _ _^ b 1 a
— d(XM,Xin- r)

)

d{a,b )

d(F(r)
,Fin-'>)

d (a,b )

(2.7)

The right-hand side of eq 2.7 is zero for n= 1,2.

Comparison of the sets of eq 2.6 and 2.7 shows that the left-hand sides,

respectively, resemble the Cauchy-Riemann equations of function theory,

Separate equations can therefore be found for X and Y

^

in terms of

X® ...XM_1
;
F (0)

... Yn~ 1
. Let A denote d2/da2

-\-d
2/db2

;
then the equa-

tions for X (1) and F (1) are AX (1) =0, AF (1) =0. The equations for X (2)

and F (2) are

(a _ a

r

a(z (1) ,F-
(1)

) i

da[_ d(a,b ) J’ <96L d(a,b) J
(2.8)

The general equations for AX AF (w) will involve known functions of

previous^ determined functions [4, p. 151. These equations are all of

the Poisson type for a fixed domain. Therefore the knowledge of the

appropriate Green’s function makes possible an explicit solution of the

inhomogeneous equations, of which eq 2.8 are typical examples.

X Cl) and F (1) represent the initial components of velocity; a and b

represent the initial displacements. These quantities and the necessary

boundary conditions specify the general problem. The right hand sides

of eq 2.8 are therefore known functions; X (2) and F (2) can be determined

when the appropriate boundary conditions have been imposed. The
known values of X® and Y® can be inserted into the equations for X<3)

and F®, and so on. The successive terms can be calculated in this

way, but the inhomogeneous terms become extremely complicated.

The successive terms in the expansion of P must also be determined.

The boundary condition for P along a free boundary is P(a,b]t) = 0; the

quantities b and a are connected by their values at t = 0. This formulation

of the free-surface condition is simpler than the corresponding formulation

in the Euler representation. Other boundary conditions also enter; for

example, along a fixed horizontal bottom, 5 = 0, the kinematical condition

is F (a,0 ;t) = 0 for all a and t. This condition implies that Fw (a,0) = 0 for

all r. The appropriate boundary conditions can therefore be imposed
upon X (r)

,
F (r)

,
and [4, pp. 22-25; p. 351.

The successive pressure terms P (0)
,
P (1)

,
... are obtained from the eq

2.1 after the substitutions from eq 2.5 have been made. The general
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results are obtained by setting the coefficient of t
n equal to zero in eq 2.1

»+

1

(n+2) (n+l)X°,+2) +Er(r- l)JX
(r)X<y ,- r)+ KWiW,“ r)

)

+gYV+-P™= 0,
P

»(«)

(n+2) (n+1) y(,i+2> +Xr(r- 1){V'^+^+ y® y'?+2
- r)

}

r= 0

+?y (

?
) +-p (

?
) =o.

(2.9)

The general continuity equation of 2.6, with n replaced by (n+2) is

(2 . 10 )

»|la/yW y(w+2-r)\
^(«+2)_|_y(w+ 2) _

r= l d(a,b)

If the first of eq 2.9 is differentiated with respect to a and the second
equation is differentiated with respect to b, the sum of the results will

contain X<”+ 2)+ F£
w+ 2)

,
which can be eliminated by eq 2.10. The result

is an equation of the Poisson type for P (w)
;
the inhomogeneous terms are

known functions of X^r

\ F (r) (r= 1,2,... (n+1) ) [4, p. 18]. In the deter-

mination of P (0) only (a,b) and (X (1)
,
FO)) enter; thus the initial displace-

ments and the initial velocity components alone determine the initial

pressure distribution P(a,6;0)\ Lichtenstein [3, p. 411] has commented
upon this property of the Lagrangian equations in contrast to the Euler
equations.

On a free boundary, P (0) =0. If a fixed horizontal boundary is present,

P (

l? = pg f
which is the hydrostatic pressure gradient. Once P (0) is deter-

mined, X (2) and F (2) are known from eq 2.9 with n = 0. The known func-

tions can then be inserted into the equation for P (1
); if PC0 is known,

X (3) and F (3) can be determined from eq 2.9 wdth n= 1. The successive

terms of P(a,b]t ) can be calculated in this way.

3. The Initial Stages of the Breaking of a Dam

The water is assumed to occupy the region shown in figure 1.

The wnll of the dam (a = 0,0<b<h ) is assumed to be removed instan-

taneously at £= 0; the fluid is initially at rest everywhere. The mathe-
matical conditions are:

X(a,b;0) =a,

Xt (a,b-fi)
= 0,

P(a,h;t) =0,

Y(a,0;t)

F (a,6;0) =6, (3.1)

F*(a,6;0) = 0, (3.2)

P(0,&;0 =0, (3.3)

0. (3.4)

The conditions 3.1 are satisfied by the expansions assumed in eq 2.5.

The conditions 3.2 assert that all particles start from rest; in particular,

X® =0; y (1) =0. (3.5)
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The conditions 3.3 assert that the pressure is zero on the free surfaces

(b = h,a> 0) and (a= 0,0<b<h). Since the pressure is hydrostatic

everywhere for £<0, there will be a discontinuity in P at £ = 0, and a

singularity in the pressure gradient must be expected. The condition 3.4

#
s the kinematic boundary condition on the bottom of the dam.

i

b

b = h

0

b = o
a

Figure 1. Region occupied by water.

The boundary condition for the terms of X(a,b\t) and F (a,b;t ) can now
be determined from eq 3.3, 3.4, and 2.1. For example, F (2) (a,0)=0,

Y® (0,6) = (m)<7 ,
and X (2) (a,h) = 0; these conditions have obvious physical

interpretations. The boundary conditions for the higher terms are more
complicated and need not be written here. The eq 2.6 and 2.7 show
that X (2) and F (2) are conjugate potential functions. The functions F (2)

and X (2) are determined as the real and the imaginary parts, respectively,

of the complex function F (2) +fX (2)
. The usual methods of conformal

mapping [4, pp. 26-29] determine these functions to be

X (2)
(a,6)

= --f- log

cos^©+>
2ir

sin2© +sinh2
(S)

F (2)
(a,6) = —-arc tan

7T

. 7r6

sm -

—

2h

sinh
TTCL

2h

(3.6)

The functions in eq 3.6 behave physically in a reasonable way [4, pp.
29-33].

The initial pressure distribution P® can be calculated from Pty =
-2pX (2)

;
this result follows from the first equation of 2.9 with n— 0.

The boundary conditions for the higher terms of X and F become too

involved to be used directly. A more suitable formulation may be made
in terms of the pressure, for P (a,b;t) has the two fixed boundary conditions.

P«(a,fc)= 0; jpfr> (0,6) =0.(r= 0,l,2,...). (3.7)

The differential equations for P (r) are all of the Poisson type (or of the

potential type for P (0)
), and the main problem is to determine the condi-
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tions along b = 0
;
for P (°> the condition on b = 0 is P (

$ = — pg. The function
P co) may be determined as a Fourier series

P (0\a,b)=pg(h-b)
1

ol(2n+l) 5

— (2w+l)^a

,
2h

COS
/2n±l

V 2h
M- (3.8)

The eq 2.9 may be used to determine the series representations of Y (2)
,

F (2)
. Equation 3.8 shows, for fixed b, that the pressure rapidly becomes

equal to the hydrostatic pressure pg(h-b) as a increases. The same
effect is observed for fixed a and decreased h, that is, as the water becomes
shallower in the depth.

The differential equation for P (2> can now be determined to be [4, pp.
38-39], (P (1) = 0),

AP <2)

— Sn/72

iJ ,
Kd 7rb\

h
\
cosh J- cos t)

(3.9)

The boundary conditions are

P®(a,h) = 0; P (2)
(0,b) = 0; Pf(a,0) = ^-

1

2h sinh (va/2h)
(3.10)

The solution of eq 3.9 under the conditions 3.10 requires the determina-

tion of the appropriate Green’s function. This function may be obtained

in closed form by conformal-mapping methods [4, p. 42], but a more useful

series representation is

G(x,y;a,b)

G(x,y;a,b)

4 « i- E -—TT cos O^ny) COS (XJO sinh (\nx)e~
Xna

,

7r„=02n+l
0 <x<a,

4 « i
- E ^—rr cos (\ny) (cos \nb) sinh f\na)e

~ XnX
,

7T „= 02^+l

x^a, \ n=
(2?Z—(— 1 )7T

2/i

(3.11)

The result 3.11 is derived in [4, p 46].

The function P (2) may now be written in the usual way in terms of

integrals of eq 3.11 and the functions appearing in eq 3.9 and 3.10.

4. Applications

The methods of section 2 can be applied to a wide variety of problems

[4, part IV], of which two may be taken as representative.

(a) C. K. Thornhill, in a discussion at the Institute for Mathematics
and Mechanics at New York University 3 discussed flow problems of this

general nature by means of the Euler representation. In particular, a

semicircular domain can be treated in the same way that the problem of

the breaking of the dam was treated in section 3.

s September 1950. The results are to be published in the near future.
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A cylindrical mass of water is assumed to be initially in the shape of a

unit semicircle (x2 -\-y2 = 1, 0); at t = 0, the boundary is removed and
the initial stages of the flow are to be determined. Here AP (0) =0 in

x2+y2
ik 1, ?/= 0; P (0) =0 on x2+y2 =l, y^ 0, Pty =-pg on y= 0, |x|^l.

The procedure outlined in section 3 may be used to determine P (0)

explicitly [4, p. 49]. In particular, the pressure at the stagnation point

(0,0) is 2pg/x for unit height; this value agrees with Thornhill’s result,

which was obtained numerically.

The same method can be applied to the spherical case, x2 -\-y2 -\-z2 = 1,

2/^0, [4, pp. 50-51]. The pressure at (0,0,0) in this case is pg/2 for

unit height.

(b) Westergaard [5] has treated the problem of a vertical oscillating

wall and has determined the maximum dynamical pressure resulting from
such a motion. The wall is the forward face of a dam, and it is assumed
that the simple harmonic oscillations are caused by a sudden earthquake.

Figure 1 may be used to represent the dam; the wall (a = 0, 0<b<h) is

assumed to have a known acceleration, a, at t = 0. The boundary con-

ditions for P® are P ((

g (a,0) =-pg, P (

a
0)

(0, b) = -pa, P® (a,h) = 0;AP® =
0 in a^0, 0 <b<h. The pressure, P (0)

,
may be found as a Fourier series

[4, p. 54]. The result agrees with Westergaard’s result.
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9. Symmetrical, Finite Amplitude Gravity Waves

By T. V. Davies 1

The problem of the steady propagation of gravity waves of finite amplitude in a
tank with a horizontal base is a nonlinear problem of a special type. The stream
function \p satisfies a linear partial differential equation and the nonlinearity enters

through the free surface boundary condition. The classical theory converts the non-
linear boundary condition into a linear condition using the perturbation method and is

therefore restricted to infinitesimal amplitude waves. It is possible, however, to

deal with the finite amplitude problems by replacing the exact nonlinear condition

by a new nonlinear condition that is a close approximation and for which the exact

solution may be determined. This enables one to discuss all waves up to and includ-

ing the limiting case when breaking occurs at the crest. The Levi-Civita approach is

used for this purpose, and the application of the method to the solution of the solitary

wave problem is demonstrated.

1. Introduction

The essential difficulty and interest of the classical gravity wave problem
lies in the fact that the boundary condition to be satisfied at the free

surface of the fluid is nonlinear in the dependent variables. If we express

Figure 1. Diagram of wave showing rotation.

Wave length=AB OE= a; AD — h.

the problem in the Levi-Civita form [1]
2 in which the dependent vari-

ables are r and 0(£= r— f0), and the independent variables are <f>
and

= the problem may be stated as follows:

* The Institute for Advanced Study, Princeton, N. J. Presently at King’s College, London, England.
' Figures in brackets indicate the literature references on p. 60.
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£ is a regular function of w throughout the rectangle— 0o<0<0o,
O<0<0i, and is periodic in 0 with period 20 o . With the assumption of

symmetry about 0 = 0, £ must satisfy the following boundary conditions

|3(£) = 0, (1)

3 (£)
= 0

> 0 = 0
,
0=±0o , (2 )

d 9 g o

Tj= — ^ e~‘ sin 6, *= 0. (3)
oy c3

The nonlinearity enters in condition eq 3, and in the first approximation
we modify this condition though still preserving its nonlinear character.

The aim of the present investigation is to deduce an approximate solution

to the gravity wave problem that will be valid up to and including the

wave that is on the point of breaking at the crest. We define this limiting

wave, following Stokes, to be that one for which the particles of fluid at

the wave crest are moving with exactly the velocity of propagation, c,

of the wave (or waves). Relative to axes that are moving with the wave
system (assumed above in the statement of the problem), the velocity of

the particles at the wave crest is then zero. This has an important
bearing upon the values of the symbols introduced above. The relative

velocity components (u,v ) are given in terms of r and 9 by the relation

dw -0 -0 £
u— iv*=-—= qe =ce =ce',

dz
(4)

where q = ceT . Thus in the case of the limiting wave that is on the point

of breaking at the crest, we have g = 0 orr= — oo at this point. In order,

therefore, to be able to discuss the breaking wave, it is necessary to retain

the term e -3r in eq 3, and we approximate instead to sin 9.

Stokes has shown that 9 satisfies— 7r/6 < 6< 7r/6, the equalities actually

being attained in the breaking case, and we may, therefore, approximate

to sin 6 in eq 3 by writing sin 6 = 1 sin 39, where l is a suitable constant.

Then eq 3 becomes approximately

or

v;
= ~ g

\e
3r

sin ^ =0 > (3 ’)

d0 c3

414-u, *-<>. o")

l may be chosen to be one-third, in which case our results will tend to coin-

cide with the classical small-amplitude theory when 9 becomes sufficiently

small, or alternatively, l may be chosen so that l sin 30 is the best fit. to

sin 9 throughout the interval O<0<7r/6. The former is more useful if we
wish to proceed to higher approximations (see eq 7).
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2. Periodic Waves in a Channel of Infinite Depth
OAi= 00

, 0o= icX)

The region occupied by one complete wave is now a semiinfinite strid

in the u’-plane, namely, — \ cX < $ < J cX, °°- Here we have
assumed that there is a state of absolute rest at \p= oo, 3 or relative

velocity +c to axes moving with the waves. In this case we use the

tracsformation (v . 1) s = exp(27rm'/cX), which converts the semiinfinite

strip into a circle \s\ < 1. It then follows that eq 3" is .satisfied on |s| = 1,

and hence throughout the emit circle

.d£ gl
si , ,

gl
7

i—+—e — constant = —= k,
aw c3 c3

the constant being evaluated at the center s = 0 or \p= co. Hence we
obtain the solution

X = l-Aeikw
(5)

where A, the constant of integration, is a real parameter such that

0<A<1. The lower range of A gives small amplitude waves, and the

upper limit is the breaking case. Since = i^cX = 7r, it follows that

c2 =
3gl-X

2tt
(6 )

By using eq 4 we can return to the physical plane, and it is easily shown
that the Stokes 120° angle is true for eq 5 at the breaking case. The
method of proceeding to higher approximations consists in using sin 6 = J
sin 3d— fsin30 successively, so that we replace eq 3 by

30

dip

(ism 3«+^ SW 30+^ Sm* 3«+...}- (7)

We then determine a solution of eq 7 in an ascending series in A, provided
we assume that <?/c3 is also dependent upon A. We thus obtain the
solution

3$ = 1 -Aeikw+^AH*ikw+A i(-—e2ikw+—eiik™\
54 \ 27 81 /

{7X/2tt
c2 =-

1 --A 2——A*+ . .

.

9 162

(8 )

(9)

It is easily shown that A is simply related to the ratio a/X.

1 No loss of generality is involved here.
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3. The Solitary Wave 0/u= ch,

We take the absolute velocity of the fluid at infinity to be zero or +c
relative to the moving system of axes. The fluid motion is now confined
to the strip 0<^<c/i,— °o <</>< co. If we choose x = e“ 3* as a new
dependent variable, then the problem may be stated as follows: x is a
regular function of w in 0<\f/<\pi and is such that

3f(x)=0, *=*i= cfc; (a)

3Kx)=0, 0= 0, 0=±co; (b)

IIOII1*1

^
^3.

re
(c4 )

X ^ 1
;

(d)

The method consists in continuing x analytically outside the strip

0<\f/<ch and over the whole ic-plane; the completed w-plane then
appears as in figure 2. We show first that

9
I(
^+-3 )/x!
aw c3

on
\l/
= 2\f/i, but thereafter the method is tentative. On the analogy

with the solution eq 5 for x> which has zeros at the points w= ±mc\+
i/k loggT, (m = 0,1,2,...) we introduce one zero of x at w= —

1(717 &— 3^1)
and consider the successive images of this zero in = ypi, \f/

= 2\f/i, and \J/
= 0.

We finally postulate periodicity of x in the
\f/

direction with period 2k.

It then follows that 3(x) = 0 around the perimeter of the semiinfinite

strip FGHK, and we may, therefore, map this rectangle on the upper half

of the x_plane - The mapping is effected by the Schwarz-Christoffel

theorem, and when the constants are suitably chosen we obtain

(

u— iv\ z
. 1

) =1— sin2 Kch sech2 -k(w— ich) • (11)

If we substitute eq 11 into eq 10c, we obtain the wave-velocity formula

—
0 = k cot Kch, (12)

c3

and from eq 11 it easily follows that the parameter k must satisfy the

inequality

0< Kch < - •_ “3 (13)

As k—

*

0, the solitary wave tends to a uniform flow; the upper limit is the

breaking case (obtained by writing x = 0,w = 0 in eq 11). The wave-
velocity eq 12 is similar to McCowan’s. To proceed to higher approxi-

4 In eq 10c we use eq 3" with l
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mations we again use eq 7, and the next approximation has been obtained

by Brian Packham [3].

We may quote one result of interest that pertains to the limiting

solitary wave. The equation of Bernoulli in the limiting case is q
2 = 2gy,

and when we specialize this to the conditions at infinity, we obtain c2 =
2ga. From eq 12, in the limiting case,

hence

g_h

c2

7T 7

r

= - cot ->

3 3

a 3^3
h 2t

= 0.827- (14)

3 {fl(x)}“ 0

arcx) =0

3 {f (X)} =0

3{g(x)} =0

3(X) =0

3{f(x)}*0

3{«(X)} = 0

3(X) s 0

^ {f (x)} =0

<t>=0

Fz G *

;

K o<

)

C w= i (77-//C + 3^,)

W= i (7T/AC + ^,) H

: W= i (7r/K-«/q)

F G

)

1

:

c w = - i ( 77-//C- 3 V', )

k W = - i ( 7T/ K - )

t W:-i( 77"/K + )

F, G,

+ 27T/K

f i ,
+ 2 7T/k

^ = 2 777AT

+ = 2

i = 0

t = - 2 tt/a:

t - 2 7T/AC

V' = - 2 y,
- 2 7T//C

Figure 2. Diagram of complex w-plane.

X indicates zero of x; € indicates pole of x; /(x) = ^)/x; =
)/*

This must be compared with McCowan’s value 0.78. The result eq 14

is modified when we proceed to higher approximations and details may be

found in eq 3.
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Finally, we may quote the result for the drift of a fluid element at the
base = This is given by

©=i rcj 1 — (1 — sin2 Kpi sech2
-k<J>)

5

f
d<t>,

A
(15)

and hence we have the approximate formula

® 4 sin2 up i f, ,

4
. , ,

,56 . , , ,

i
=
-~i^ri1+9

sin *+i^ slnMi+ •

The drift is in the direction of propagation of the wave.

(16)
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10. On the Complex Nature of Ocean Waves
and the Growth of the Sea Under

the Action of Wind

By Gerhard Neumann 1

The results of recent observations in the North Atlantic, the Caribbean Sea, and the
Gulf of Mexico are given. The state of the sea in its fully developed form represents a
wave system of two or three principle components which, with the secondary compons
ents, yields the complex picture of the rough sea surface. Observed wave dimension-
are compared with values derived from theory. Another phenomenon is the charac-
teristic wave groups resulting from interference.

The growth of the “sea” in relation to the complex nature of the ocean waves for

given wind velocities is dealt with. The analysis starts from the energy equation in a
form which equates the time variation of the wave energy to the difference between
the energy supplied and the dissipation. The energy dissipated plays a large role in

the energy balance. The dissipation coefficients, or the coefficients of eddy viscosity

of the complex wave motion with its turbulence, depend on the wind intensity and the
conditions of the sea. Their order of magnitude is comparable with the known values
of the “Austausch” coefficients for the upper layers.

For a given wind intensity are developed the differential relations between the wave
characteristics (velocity, wave length, wave height) and the fetch and wind duration.
The integrations are carried out numerically. A satisfactory agreement between
theory and observations is obtained.

1. Introduction

The question of the manner in which waves of the sea arise when the
wind blows over the water has not yet been clearly explained physically

.

Even the many attempts to discover empirical relations between the
dimensions of ocean waves and wind velocity by statistical treatment of

systematically collected observations led to few explanations, in part

even to contradictory results. The ideas regarding the translation velo-

city of fully developed wind waves diverged very greatly. The same
holds even for wave lengths and periods, although these characteristics

of waves in deep water are simply related to each other according to the
Gerstner formula. Some observers and theoretical workers support the
view that the translation velocity of fully developed wind waves in the
sea (phase velocity) is greater than the wind velocity, while others

energetically oppose this.

According to the theory of H. U. Sverdrup and W. H. Munk [1]
2 the

ratio “translation velocity to wind velocity”, <r/v = fi, for “significant,

waves” for end conditions with sufficiently long action by the wind and
sufficiently great sea-room (fetch) is about 0 = 1.37. These waves make
themselves evident byr their great wave length X and small steepness 8 =
H/\(H =wave height). With the value* <5 = 0.022, which these waves

1 Geophysikalischen Institut der Universitat, Hamburg, Germany.
' Figures in brackets indicate the literature references on p. 68.
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reach under final conditions, H/\ = 1/46. Thus in this case we are
concerned with mildly rounded waves of the swell type, which are never
the characteristic features shown by sea waves that are under the direct

influence of the wind. The wind agitated sea is covered with shorter and
steeper waves, which, however, in their entire picture can present a quite
irregular appearance.
The reason for the deficiencies in our empirical knowledge of the dimen-

sions of sea waves for different wind speeds is to be sought neither in mis-
conceptions nor in unexact observations; it lies more in the nature of the
sea-wave phenomenon in itself, because “irregularity is the conspicuous
feature of the sea surface”. (H. Jeffreys).

In a sea waves of different heights and lengths approach each other and
come together. Hence the sea obtains its so-called “rough” appearance,
especially in certain stages of complex wave formation. But the longer

the wind acts and the more the sea rises, that is to say, the more it

approaches its maximum conditions, the more distinctly “characteristic”

waves corresponding to the wind strength appear out of the wave mixture

;

at the same time, the originally more hill-like wave masses coalesce in

increasing mass into long combers. As the sailor says, the “sea” builds

up. With continuing development of the sea waves there comes into

being a category of longer but considerably flatter waves; yet the steeper

“sea,” breaking from time to time remains as partial waves. This
characteristic picture is impressed on the sea at all wind intensities, but
shows great fluctuations and irregularities in its appearance.
Another characteristic feature of fully developed sea waves is the typical

group phenomenon. If one tries to follow the “seas” individually for a

considerable time, one recognizes that sooner or later they diminish in

height and disappear in the wave mixture, while others rise up, which
later likewise die away. These wave groups are a consequence of certain

interference phenomena. The sea waves for a given wind intensity in a
completely or nearly completely developed condition are not only recog-

nizable by the characteristic “sea,” although this stands out most
strikingly, but also by a system of two or three principal waves, which in

turn overlay the waves of secondary size, making up the apparently
irregular picture of the rough sea surface. The sea waves are thus a
complex phenomenon and only as such to be explained in their entirety.

The first principal wave in complex sea waves is the above-mentioned
distinctly recognizable “sea.” It has a phase velocity, <r, which is always
smaller than the wind velocity, v. If the wind blows long enough, the

second principal wave builds up, of which the phase velocity becomes
greater than the wind velocity. This wave the author [2] has named
“long wave.” Its steepness is considerably less than that of the “sea,”

which is continually being overrun by the “long waves.” With diminish-

ing winds or when spreading out into a calmer region (dispersion) the

“long waves” come into appearance as swells. The dimensions of these

two principle waves and their interaction in a complex sea have previously

been discussed elsewhere [2].

2. Results of Recent Observations

In the autumn of 1950 and the winter 1950-51 the author had the oppor-

tunity of making special studies of sea waves in the North Atlantic Ocean,

the Caribbean Sea, and the Gulf of Mexico, and to collect voluminous
observational data on sea waves for different wind intensities in different
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stages of development, as well as on group phenomena in complex sea

waves. The primary feature of the observation program was the

measurement of individual “periods” (time intervals between succeeding

crests). Whenever possible the periods of characteristic waves immedb
ately foliowing each other in the sea were determined with simultaneous

wind measurements made with the aid of cupanemometers. From 70 to

150 (or more) single observations of periods were assembled in “series,”

together with the corresponding wind velocity. In total some 27,000

single measurements were assembled into about 250 series, which include

wind intensities in the range from 2 to 22 m/sec.

The observations of each series were represented in the form of fre-

quency diagrams for the “period” values (period-spectra) . Two examples

taken from this extensive material are shown in figure la and lb for wind
velocities of F=16 m/sec and F=13.5 m/sec, respectively. The indi-

vidually measured periods according to the wind intensity cover a more or

less large period interval, which in the range of short periods in nearly all

cases is sharply bounded. This means that at the lower end of a certain

period range only waves of secondary magnitude appear, which do not yet

perceptibly influence the characteristic form of the sea. Separate

“bands” in the period spectrum clearly show as accumulation points of

measured values in definite class intervals. The vertical arrows with the

|
T, = 6.6

Figure 1 . Frequency distribution of measured period values.

a, For ir= 16 m/s; b, for v= 13.5 m/s.

notations Ti and T-2 give the computed periods, which should stand out

as characteristic in the sea for the corresponding wind intensity according

to previous results [2]. T\ is the theoretical period for the “sea,” T2 for

the “long wave.” At a wind velocity of 16 m/sec (fig. la) an accumula-
tion of measured values in the class interval from about 7.5 to 9.5 seconds

clusters about the expected period of Ti = 8.3 seconds. At 13.5 m/sec
we find a corresponding cluster of observations about the computed value

Ti = 6.6 seconds. Similarly, although not in all cases so clearly marked,
frequency maxima can be found in the region of “long waves.”
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Worthy of notice is the accumulation of period values in a class interval

between the previously mentioned principle waves. For V= 16 cm/sec
this intermediate maximum appears with periods from 10.0 to 11.5

seconds, for a wind velocity of V = 13.5 cm/sec with periods from 8.5 to

9.0 seconds. Since period values for such “intermediate waves” were
determinable in nearly all the observation series, it appears that here we
have to do with a third characteristic wave in the complex sea motion.
These intermediate waves seemly have a translation velocity which cor-

responds to the wind velocity. In the figure, Tz marks a period that

applies to a wave whose phase velocity is equal to the wind velocity.

V, m/sec

Figure 2. Dependence of the periods Ti, T2, and Tz on the wind velocity^.

The curves give the theoretical relations T =/(r).

The results of the period measurements are expressed in a summary
presentation in figure 2. For each observation series the characteristic

periods were* taken from the frequency diagram and plotted as function

of the wind velocity. The observations arrange themselves in this presen-

tation in a clear relationship under each other and in correspondence with

the wind intensity. The curves drawn give the computed relations

T=f(v); that is,

Ti=f{v) (according to [2] or formula 4),

T2 =(2Tr/g) 1.37^ = 0.877^,

Tz=(2ir/g)v = 0Mv.

In the period spectra (see figs, la and lb) the frequency maximum is

spread out to a “period band.” This scatter of the individual measure-

ments in the region of the period maxima is not to be attributed to the
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unavoidable errors alone, but also in great measure is real and a very
natural consequence of interference of the three principle waves in the sea

movement.
In this paper the phenomenon of interference at different wind inten-

sities can only be briefly discussed. Concerning the investigations of

the time and space fluctuations of the complex sea conditions, which have
been treated more completely elsewhere [31, only one example will be
given here for the fully developed sea motion at a wind intensity of v= 16

m/sec. At this wind velocity three principal waves are to be expected
with periods of 7\ = 8.3 sec, T2 =14.0 sec, and 7

7

3 =10.2 sec. In figure 3

the time fluctuations of the sea motion are constructed, which were
derived theoretically from the combined action of the three principle

waves at a fixed place. The amplitude of the waves are ai= 3.0 m,
<22= 3.4 m, and 03 = 3.0 m.
The upper wave record (a) shows the waves following each other in

time at the location x — 0 for the time interval £= 0 to £= 260 sec (theo-

retical “wave record”) . The lower wave record (b) gives the corres-

ponding fluctuations for the same time interval at a location x = 550m,
that is, a place about one-third nautical mile from x = 0 in the direction of

travel of the waves. These constructed sea-level fluctuations show that

pronounced wave groups are to be expected only occasionally at a given

place. At 2 = 0 they are to be found in the beginning of the observation

period, where they occur at intervals of about 45 sec; at £= 550 m they
appear clearly at the end of the observation period. In these groups
single wave masses rise to considerably greater heights, so that apparently
in nature they do not quite reach their full heights because in passing a

certain maximum steepness they become unstable and break. On account
of the time and space regularity in their appearance a certain law is to be
expected in the case of the high “breakers.” The thought that the “law
of breakers” is connected with the interference phenomena thus suggest

itself.

Between the groups three smaller waves are to be observed whose
heights change greatly with time and space. Also a wave called “double-
wave”—a phenomenon often seen in the sea movement-—appears at

certain intervals. Following the passage of a succession of pronounced
groups, the picture of the sea movement at a fixed place changes after a

given time. The striking difference between especially high waves and
the smaller waves between the groups gradually equalizes in time, as the
upper curve in figure 3 .shows. The typical group character then occurs

Wove Troin (o)

Figure 3. Superposition of the three principal waves for v = 16 m/s.
Wave train (a): Fluctuations of the complex “sea” at a fixed point a during the time (= 0 to' (= 260 sec.
Wave train (b): Corresponding fluctuations during the same time at a point b 550 m distant from a.
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in another portion of the sea surface. During this time and space change
striking interference phenomena characterize the complex picture of the
wave disturbed sea surface, and only through the combined action of the
principle waves can the characteristic features of the actual sea structure

be made understandable.
The horizontal lines drawn in figure 3 between the individual wave

peaks identify, with the figures written in, the periods of waves which
were measured at the corresponding wind intensities in a fairly complex
sea, for example, from aboard a ship. The periods of successive waves
fluctuate—as the observations also have shown—within vide limits. So
it is understandable that no satisfactory results can be obtained on the

basis of some single, more detailed wave measurements in a complex
sea taken at random. The wave curves of theoretical construction in

figure 3 for the periods drawn are to be compared directly with the

observations in figure la.

3. The Growth of the “Sea”

Along with the question concerning the appearance and the dimensions
of fulh developed waves in a complex sea stands the problem of the

generation of the sea movement. A brief discussion will be given here of

the attempt to calculate the growth of the “sea” with consideration of

the complex nature of the wave-disturbed sea surface at different wind
velocities [3]. The starting point of these theoretical considerations,

like that of Sverdrup and Munk [1], is the energy equation, however in

the form that the time change in the energy of the wave motion is equal

to the difference between the supplied (A) and the dissipated (D) energies.

In the cited work [3] an investigation was made to determine the magni-
tude A — D, which is important for the growth of the sea. The dissipation

plays a great role in the energy balance in turbulent seas. For the

dissipation coefficient M (cm-1 g sec
-1

) or the eddy viscosity coefficient

of the turbulent wave-motion values were obtained which were of the same
order of magnitude as the well-known “austausch” coefficient. The
coefficient was determined empirically in this investigation; its relation

to the wind intensity and the actual state of the sea motion (called the

“age” /3 of the sea motion) can be expressed by the formulas

M (fi)
= Me ' Bm ' for 1 (1)

where

M (/3) = .1/(1 )e-2Ki-0> for 0.1</3<1, (2)

M= 1.825 X10- 5y5/2 (3)

/3m is the ratio a/v for the fully developed “sea”, and =1.37 (cm -1
g

sec
-1

). In addition, the empirical condition H/X = 5 = 0.215c
-7

^, i < /3 <
1.37, was used. The quantity r has the value 1.667. If the supplied

energy is equal to that dissipated (A—D), then there follows a relation

between the translation velocity of the “sea” and the wind velocity, v,

2r(£- 1)

In 182-5= bi\/v
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For the fully developed “sea” this formula, in agreement with previous
computations [2], gives the values in the table 1 below.

Table 1

V(m/sec) 4 G 8 10 12 14 16 20 24

Pm 0.56 0.61 0.66 0.70 0.74 0.78 0.81 0.88 0.94
ri(sec) 1.43 2.35 3.4 4.5 5.7 7.0 8.3 11.3 14.6
X (m) 3.2 8.6 18.0 31.5 51.0 75.0 107.0 198.0 327.0
H (m) 0.27 0.67 1.3 2.1 3.2 4.4 5.0 9.8 14.6

The periods 7\ and the wave lengths, X, follow from the Gerstner formulas,
and H from the empirical relation H/\=f(J3). The periods T\ here

computed are to be compared with the values given by the curve T\ in

figure 4.

gx/v 2

Figure 4. Fetch diagram.

Observed and computed values of P as functions of the distance of wave travel, x, and the wind velocity, v.

0=</>(gF/v2); O, observations (1950/51, M. S. Heidberg); +, Gibson; X , U. S. Engineers; A, Cornish;
#, Stanton.

From the energy equation the differential equations relating to the age
of the waves, (3, to the length of the fetch, F, or the time, t, that the wind
acts for a given wind velocity, v

f
were developed. The numerical inte-

gration of the equation leads to expressions of the form

P=4>(gFM),
or

P-f(gt/v),

which Sverdrup and Munk have also employed. From these solutions

the wave periods, the wave lengths, and the translation velocities of the

“seas” in the various stages of development of the sea motion are also

obtained. With help of the empirical relationship <5=/(/3), the wave
height can be determined for various wind intensities as a function of F
and t.

For the generation of sea waves, shorter fetches, or times required for

action by the wind, are derived than Sverdrup and Munk computed in
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their well-known work. In figure 4, as an example of the results, the

P = <f>(gF/v2
) diagram for the growth of the sea for different wind inten-

sities is given. For comparison with the computed curve are given, in

addition to some older observations, the measurements made by the
author in the autumn and winter of 1950-51 near the coast of the island

San Miguel (Azores) and in West Indian waters.

From the diagram we observe, for example, that for a wind velocity
y=10 m/sec the “sea,” that is to say, the waves with /3m = 0.7 and a
height H = 2.1 m, has arisen after passage over a fetch of about 62 km.
This relationship remains constant for the “sea” for increasing fetches, as

is expressed in the diagram by the horizontal line for ^ = 0.7. The straight

lines for other wind velocities are to be interpreted in a similar manner.
Thus in the region of the horizontal lines to the right of the curve fully

developed “seas” are to be expected. Here naturally for larger fetches

of any given magnitudes the values of for the corresponding wind
intensities are constant. To illustrate this fact in the diagram, the wind
intensities in meters per second corresponding to the observations in the
region of the horizontal lines have been written in.

The length of the shortest fetch that is necessary for the development
of the “sea” increases rapidly wdth increasing wind intensity. For
v = 20 m/sec, a fetch of 670 km is required to generate the wraves; for

v= 2S m/sec, a fetch of 2,000 km.
For the time of generation, that is for the shortest duration of wdnd

action for generation of the fully developed “sea” in an unlimited fetch,

the computation gives a duration of / = 6.5 hours for = 10 m/sec, 27.5

hours for y = 20 m/sec, and about 55 hours for v = 2S m/sec. After the

development of the “sea,” a certain amount of energy in the difference

“supplied minus dissipated energy” is left over, which is used in the

generation of longer waves in the disturbed sea. The process of gener-

ating the complex motion of the sea is thus no continuous action.

The extensive computations and the results of the analysis will be
published in the near future as a report on a wrave project dealing with

the generation and the growdh of complex ocean surface waves, conducted
in the Meteorology Department of New York University under the spon-

sorship of the Office of Naval Research.
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11. Results of Exact Wave Measurements (by

Stereophotogrammetry) with Special Reference

to More Recent Theoretical Investigations

By A. Schumacher 1

After some short remarks on the technique of wave stereophotogrammetry (single

stereo photos and stereo pictures of rapid sequence) it is pointed out what kind of infor-

mation on surface waves may be gained from wave plans in addition to dimensional
and morphological data (length and height, steepness, angles formed by the crests,

mass of waves). Topographic wave charts and profiles are discussed and qualitatively

analyzed with special regard to the problem of the co-existence of the well-known
wind-waves (the “sea” in the sailor’s nomenclature) and the longer waves (with phase
velocities greater than the respective wind velocities), a problem which, proceeding
from Sverdrup’s and Munk’s investigations, G. Neumann has recently discussed anew.
Examples supporting these ideas are given as well as some contradicting them. Espe-
cially with regard to these problems, the superiority of cine-stereophotogrammetry is

obvious. It is the only quantitative (or nearly quantitative) method that gives an in-

sight into the development of the waves with regard to space as well as to time, thus
supplying a clear perception and eventually numerical information on interference

phenomena. Therefore, a plea is made for continuation of cine-stereophotogram-
metric wave research (although it must be admitted that this way of investigation is

expensive and even somewhat uneconomical).

As far as I am aware, stereophotogrammetry has not yet been applied

to wave research by American oceanographers. Therefore, on the fol-

lowing pages a brief review is given of the technique of wave stereo-

photogrammetry and, in addition, it is pointed out in what way this

method may help to check and verify some results of more recent theo-

retical research

.

Table 1 briefly recapitulates the various attempts at stereophoto-

grammetric wave research. With the exception of the last entry, all

statements refer to German work. There are also Russian wave stereo-

photograms (obtained on the Black Sea), and a French attempt at wave
cine-stereophotogrammetry was made on the jetty of Algiers, but unfor-

tunately technical details are not available. 2

The principal merit of the first three attempts is to have shown the

applicability of the method; however, they could not yet sufficiently

fulfill the two fundamental demands which must be met in stereophoto-

grammetry, viz, a base line of suitable length at a sufficient height above
the sea surface. Later on a greater amount of freedom in handling the

apparatus aboard ship was obtained, thanks to the most remarkable
progress in measuring apparatus (especially by the invention of the

stereoplanigraph). With the apparatus constructed for the Atlantic

1 Deutsches Hydrographische Institut, Hamburg, Germany.
2 Moreover, only some years ago there have been successful attempts by the French Navy (carried out

on the coast of Morocco) to obtain cine-stereophotograms of swell and surf by airborne cameras with a
base line of 300 or 600 m (th(e two planes flying at a height of 1,000 or 2,000 m above the sea surface).
The author is indebted to M. Lacombe, Ingenieur Hydrographe en Chef de la Marine, for details of
these attempts.
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cruise of the Meteor 1925, it was no longer necessary to have the two cam-
eras unalterably connected with, or adjusted to, each other, but it was
sufficient to insure that the reciprocal position of the cameras could be
reconstructed for each shot. This was done by the aid of an auxiliary

camera rigidly fixed to each of the main cameras and facing the opposite
pair of cameras (fig. 1). On the rather small R. S. Meteor conditions
were not too favourable; however, thanks to the long duration of the
cruise, it was, for the first time, possible to bring home a number of

stereophotograms comprising at least one wave length. Up to 1934, this

apparatus was used aboard four other ships, either with the tube bearing
the cameras lengthened or with the cameras installed without any rigid

connection and adjusted by aid of the auxiliary cameras with open shut-

ters and focussing screens. The most successful installations were on the
liner Deutschland where two or three consecutive lengths of storm waves
could be caught, and on the liner San Francisco where G. Weinblum was
fortunate enough to obtain a stereophotogram of a wave of a medium
height of 16.5 m (50 feet), the maximum difference between crest and
trough being 18.5 m (56 feet).

The amounts of inaccuracy computed for a distance of 200 and 500 m
from the cameras refer to the minor and medium steps of the sea scale

where the water surface can still be distinctly defined, but they must not

be exactly applied to stereopictures of the sea in a full gale, when the

surface is a rather thick layer of foam and salty spray.

It must be admitted that the apparatus of the Meteor Expedition was
often somewhat troublesome to work with since for each snapshot four

plateholders had to be prepared and four plates had to be simultaneously

and correctly exposed, each of them having to catch the horizon as the

only line of reference. However, it is indispensable to continuously

check the reciprocal position of the cameras.

In 1938 it was possible to tackle the problem of wave stereophoto-

grammetry anew, now with rapid succession of pictures. The well-known

firm of Zeiss, who had also furnished the apparatus of the Meteor Expedi-

tion, constructed an implement mainly consisting of two cameras for

aerial photogrammetry and enabling consecutive stereosnapshots (up to

30 in one sequence) to be taken every second. In figure 2 the right-hand

camera is shown as photographed by the auxiliary apparatus of the left-

hand camera. There were no proper auxiliary cameras, but by the aid

of a lens and a prism (left side of fig. 2, in the tube pointing toward the

reader) the picture of the other camera and especially that of a mark-lamp

(shown as No. 7 in fig. 2) was projected on that portion of the wave film

where the sky appeared. In fig. 2 the optical axis of the wave camera

points toward the left, the film holder-—for 60 m of film, allowing about

300 exposures—is on the right side of the picture.
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As for wave stereophotogrammetry from aboard ships it may be pointed

out that the conditions aboard the liner Europa will hardly be surpassed

for some time to come.3

The only disadvantage was the ship's high speed of 26 to 27 knots, or

13.5 m/sec, whereby the identical space on the consecutive plans was
unpleasantly diminished. (The stereophotograms obtained aboard the

Europa
,
which are discussed below belong to a reduced speed of 12.5

knots or 6.4 m/sec.)

Figure 2; Right-hand camera
,
shown as 'photographed hy the auxiliary apparatus of
the left-hand camera.

Obviously the material about waves which can be derived from wave
charts is to a large extent of purely statistical and morphological character.

(Length and height, steepness, angles of crest profiles, mass of waves,
and eventually enlargement of the sea surface by seaway, e.g., for con-

siderations on evaporation.) This holds good, above all, if single wave
charts are analyzed; consecutive charts in rapid succession will certainly

also yield valuable evidence of nonstatistical character. Among the

problems discussed in more recent theoretical research there is especially

one to which the discussion of topographical wave charts may contribute,

viz., that of the coexistence of the “normal” and “longer” waves originated

at the same step of the Beaufort scale of wind force. The coexistence of

3 An aggregate almost equal to that used aboard the Europa was installed on the island of Heligoland
about 55 m above the sea surface, the blase line being about 70 m long. In this way, topographic charts
covering a rather large section of the sea surface could be obtained, one of them comprising 12 consecutive
wave lengths, each of them more than 100 m long, with lengths of crests up to 1,500 m.
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two such orders of magnitude has been already conjectured by Vaughn
Cornish and Graf Larisch-Moenich, both of whom are wT

ell known as

most careful observers [8].
4 Sverdrup and Munk, in their endeavours to

provide foundations for forecasting sea and swell, also point in this

direction, speaking of the larger waves present and, later of the one-third

highest waves as their “significant” waves. The familiar formula of the

classic wave theory are not applicable to the “significant waves” [9].

Recently, Gerhard Neumann [8] has discussed the problem of wave
generation by wind. In principle, Neumann agrees with Sverdrup’s
and Munk’s conception of longer waves, but he assumes that there are two
distinct maxima of wave length in the wave spectrum belonging to each

step of the Beaufort scale of wind force. The first “main wave” in the

complex sea-way is the rather steep “sea” in the sailor’s usual nomen-
clature with phase velocities smaller than the wind velocities. When
the wind blows long enough, a second “main wave” becomes more and
more conspicuous (though often hidden by the normal “sea”) with phase
velocities greater than the wind velocities and of lesser steepness than the

“sea.” This second category of “main waves” is called the “long waves”
by Neumann, the symbols referring to it are X*, H*

y
c*, etc. They become

Figure 3; Lengths and heights of “sea” and “long waves” as dependent on wind velocity.

(After G. Neumann).

4 Figures in brackets indicate the literature references on p. 78.
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obvious as swell after leaving the storm region or when the shorter and
steeper “sea” is abating with easing wind. It is impossible to give an
abstract of Neumann’s theoretical considerations; only a diagram repre-

senting lengths and heights of the “sea” (\,H ) and of the “long waves”

(\*,H*) as a function of wind velocity is reproduced (fig. 3) in order to

enable the reader to check the statements in tables 2 and 3.

By a large number of measurements of wave periods (about 27,000)
obtained during a recent winter voyage to the Carribean Sea and the

Gulf of Mexico, G. Neumann [10, 11] has found that for almost all steps

of the Beaufort scale the wave periods corresponding to the “sea” and to

the “long waves” have distinct maxima of frequency, and that between
these two maxima there is often a third maximum recognizable, which
remains to be discussed thoroughly.

Besides the evidence gained by G. Neumann from his observations it

seemed to be useful to look for further though by far more scanty evidence
in the topographical wave charts, especially of the Meteor work. Obvi-
ously, the most suitable objects of such a review are charts of trade-wind
waves, since in these regions one may expect to find rather uniform
conditions (G. Neumann himself has already referred to one of these

charts).

trough-lines

Figure 4. Plan of wave crests and troughs taken from wave chart.

It is to be regretted that altogether only seven serviceable wave plans
from the trade regions are available. They are published in [3] and [4];

in figures 4 and 5 two samples are given in a very simplified manner
merely showing the crests and troughs in order not to suppress the rather
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small amount of evidence that can be obtained from wave charts of this

extent.5

In table 2 the column “observations and measurements” contains the
observations of wind, sea, and swell made during the wave photographs
(the directions of wind and “sea” are in accordance with each other, the
roman numerals indicating the state of the sea) and the wave dimensions
are taken from the wave charts. The “sea” is the “wind sea” in the
sailor’s nomenclature, “swell” has in the former discussions of the wave
charts (e.g., in the Meteor work [3] ) mostly been taken in the usual sense,

although not without hesitation. In the column “wave dimensions
etc.” the wind in meters per second corresponds with the Beaufort step in

the left column, and the dimensions of the sea and the long waves belong
to this wind velocity according to Neumann’s paper quoted above (cf.

fig. 3). In six of the seven wave charts the length of the “swell” is in a

rather good agreement with the length of the “long waves” which are to

be expected after Neumann; as for the wave heights the accordance is

somewhat less.

Figure 5. Plan of wave crests and troughs taken from wave chart.

Another group of wave charts representing a rough winter sea in the

North Atlantic (table 3) also yields wave lengths corresponding with

Neumann’s “sea” as well as with his long waves (cf. fig. 6).

The second example in table 3 (photographs taken aboard S.S. Europa
on 3/4/1939) is based on four wave charts of a fully developed storm sea;

here only the “sea” is caught with a wave length of 350 m and a height of

13 m, which is in good agreement with the calculation after Neumann.
The extent of the chart is not large enough to comprise the “long wave,”

which in this case would be 675 m long.

These four wave charts, the last two of which are reproduced in figures

7 and 8, represent the state of the sea every second. Thanks to the long

rolling period of the Europa (20 to 25 seconds) and to the installation of

the photo-apparatus not too far from the ship’s longitudinal, or rolling,

5 In the original publication the isohypses have a distance of only 20 cm, or 7.5 inches.
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axis, the differences in the height of the apparatus above the sea surface

are rather small. Therefore, corresponding wave profiles taken from the

charts under consideration of the ship’s speed will give a quasiquantita-

tive representation of propagation of waves within 4 seconds. In figure 9

this process is shown by the development of four profiles which are shifted

over the four wave charts according to the ship’s speed. (The profiles

Figure 6. Plan of wave crests and troughs taken from wave chart from
North Atlantic Ocean.

are confined lo the foreground and the center of the charts.) By the way,
the main wave crest is advancing at an average speed of 15 m/sec from
wave charts 1 to 4, or at 11 m/sec between charts 3 and 4. As for the

order of magnitude, these two values are in good agreement with the value
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of group velocity, u, (about 12 cm/sec) which, after JStokes* formula

w = |c, results from a wave length of 360 m (c=1.25\/x).
Finally, I should like to add some general and rather simple remarks

on exact wave measurements. Certainly, all methods and apparatus of

wave investigation have merits and disadvantages of their own
:
probably

most of them either surface wave recorders or pressure recorders [12 to 15]

while yielding comparatively much more observational material, are not

so expensive as stereophotogrammetry.

Profiles from 'barfs No. 1: , No. 2; „ No.3/ , No. 4-:.. -*—>»—

Figure 9. Wave profiles taken from wave charts.

.however, from theoretical, practical, and didactic view points it seems
not only useful but necessary to have exact £/iree-dimensional repre-

sentations of waves. For instance, it is probably a matter of makeshift
(and in the course of time it may prove to be insufficient) that the steep-

ness of waves is indicated by H :A without referring to the different lengths

of the two wave slopes. Furthermore, e.g., the relation of crest lengths

to wave lengths can be studied only in this way. Certainly, the cine-

stereophotogrammetrical method is much more effective than the method
of single shots, since it enables the time to be combined with the three

dimensions of space at least in a quasiquantitative way. At any rate the

simple chance that a number of consecutive films will be realizable, even
if full wave periods have not always been covered, greatly helps to diminish
the risk of a wave-research voyage with a stereophotogrammetric appa-
ratus of rapid sequence of pictures. As for the apparent costs of wave
cinestereophotogrammetry, I may just refer to a remark of Mr. Mason
[16] concerning “potential savings” in more efficient design of maritime
structures which may be as well applied to naval architecture. The
possibility of such savings should cause ideas of uneconomical research to

be set aside. In Germany the above quoted cine-stereophotogrammetric
investigations will hardly be resumed for a long time to come, but it is

hoped that one day it will be possible to continue the evaluation of the

films obtained in the spring of 1939. I should like to conclude with the
hope that American oceanographers, naval architects, and maritime
engineers, wdll become interested in this method of wave research, ship-

or shore-borne, as well as air-borne.
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12. Steady-State Characteristics of

Subsurface Flow

By Arthur T. Ippen 1 and Donald R. F. Harleman 1

Some analytical and experimental observations concerning steady state characteris-

tics of subsurface flows or density currents are presented.

(a) The uniform flow of a density current in the laminar and transition region is

investigated experimentally by varying the channel slope, rate of flow, and density
difference. Vertical velocity distributions in the subsurface flow and across the inter-

face are obtained from motion pictures of faffing droplets. From these data a general
coefficient C in the modified Chezy equation is determined for laminar flow conditions.

The influence of the ratio of depth to an adjusted hydraulic radius taking account of

shear at the interface is generalized for the range of experimental data.

(b) The interfacial waves, which in breaking give rise to mixing of the dense liquid

with the clear liquid above, are investigated according to the various criteria for wave
stability. These criteria are shown to be inter-related by a wave length fundamental
to the critical regime of flow. The influence of depth upon such wave motion is

shown to be negligible and interfacial waves may therefore be dealt with by “deep-
water” relationships.

(c) The front of a subsequent density current in uniform motion is defined by a
characteristic head or initial surge of larger depth moving with essentially constant
shape and velocity. Measurements obtained from motion pictures of the transit of

these fronts through the experimental flume result in a dimensionless representation
of their shapes. The assumption of a particular potential flow that fits the experimen-
tally determined shapes permits the calculation of dynamic pressures acting on the
surge fronts.

1. Introduction

Since 1947, experiments have been conducted at the Hydrodynamics
Laboratory of MIT on the characteristics of flows stratified due to density

differences. These flows demonstrate various open channel problems in

slow motion due to the greatly reduced influence of the gravitational

forces. While laminar flotv conditions prevail, these phenomena are

subject to theoretical solution.

The following problems are to be dealt with at this time

:

1. A steady uniform density current having a depth d is produced
along the bottom of an inclined rectangular tank. The depth, d, is

small in comparison with the depth of the lighter fluid above. The
driving force due to the small density difference between the fluid of the

subsurface flow and that of the supernatant fluid is in equilibrium with
the shear forces exerted by the stationary walls and by the moving inter-

facial boundary. The independent variables are velocity, depth to width
ratio, channel slope, and density difference. The interface between the

two fluids is distinct and smooth up to the point of mixing. The problem
is to determine the general relationship between the above variables when
laminar flow conditions are maintained.

Massachusetts Institute of Technology, Cambridge, Mass.
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2. The steady uniform flow conditions of these subsurface currents
are adjusted until interfacial waves appear. The ultimate breaking of

these waves leads to mixing of the denser fluid with the supernatant layer.

The experimental flow and wave characteristics in this critical region are

compared to various criteria for wave stability.

3. Upon releasing an underflow into the channel and maintaining
thereafter a constant rate of flow an initial head or surge of larger than
uniform depth is built up at the front of the stream. This head moves
with essentially constant shape and velocity. The characteristic shape
of this frontal surge is presented in dimensionless form.
The experimental difficulties are considerable due to the small density

differences involved and the consequent low velocities which are encoun-
tered. Therefore, special techniques had to be developed in order to

produce measurements of sufficient accuracy.

Figure 1 . Laminar flow between 'parallel boundaries.

Upper boundary in motion.

2. Uniform Subsurface Flow

2.1 Laminar Flow Theory-Velocity Distribution

The equation of motion for the laminar flow of an incompressible fluid

underneath a lighter fluid may be obtained by analogy to the case of

laminar flow between parallel plates, the upper one of which is in motion
relative to the lower stationary plate. Let the channel bottom be repre-

sented by the lower plate and the interface by the moving upper plate,

then following the notation of figure 1, the equation of motion for two-
dimensional conditions may be written as

u=Vi

b

2 d

\ 2b / 2p dx
(:
p+yh ) ( 1 )

The parabolic distribution curve is displaced by an amount varying
directly with the velocity of the moving boundary, and thus the mean
velocity, V, in the rc-direction has the magnitude

V=
b2 d

,—— (p+yh)
3/x dx

(2 )
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Equation 1 may be applied to the subsurface flow in the following man-
ner. Let d = 2b be the depth of the underflow; y and y' be the specific

weights of the lower and upper fluids, respectively; and S be the slope

of the energy gradient. Therefore, dh/dx= —S is the elevation change;
dp/dx = y'S is the pressure change; and d/dx(p-\-yh) = —AyS= —ApgS
with Ay =y—

y

r and v=p/p.
Equation 1 may then be rewritten as

4p d2—ss-
p 2v

(3)

Substituting for Vi in terms of V from eq 2, the dimensionless velocity

distribution law can be stated as follows:

In this equation, the parameter T

u / z\ 1 r/A2 1 z 1
“

f
= + W _

iJLW +zTn_ (4)

has been replaced by J,

indicating the ratio of viscous forces to gravity forces. This parameter,

J is readily shown to be equivalent to

J= Vv F2

Ap NrS—gSd2

p

where

Nr = Reynolds number, defined as Vd/v
t

(5)

F =Froude number, defined as V gd•

The interface velocity, Vi, results by substituting 2 = +d/2,

S-a-L.
V 6J

(6 )

The location of the maximum velocity, Vm ,
is obtained by setting the

derivative of eq 3 with respect to z equal to zero

j= 2J~i (7)

Substituting this value in eq 4, the relation between the maximum and
mean velocities is obtained

A*
V
=

3
+2/+

Ii/'
(8 )

If eq 6 is divided by eq 8, the relation between the interface and maximum
velocity is obtained

Vi ^ 12J- 1

Vm 12/2+4Jr

+4
(9)
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It should be noted that the velocity distribution given by eq 4 has two
limiting conditions that are of interest here.

(a) Parallel flow between stationary plates; therefore, F,= 0, and
from eq 6 Js= 1/12 = 0.083.

(b) Parallel flow with upper surface free, or laminar flow in an open
channel; therefore the maximum velocity occurs at zm/d=-\- 0.5,

and from eq 7 Jf= 1/3 = 0.333.

Therefore, the value of J for all uniform two dimensional subsurface
flows must lie between 1/12 and 1/3. While the value of J may vary
between these limits, it can be shown that the ratio Vi/Vm must be a
constant if the region near the interface is treated as a problem of laminar
boundary layer development between parallel streams. This problem was
investigated first by Keulegan [1]

2 in 1944, and again by Lock [2] in

1951. Both determined the velocity distribution and the growth of the
laminar boundary layer for the steady flow of a stream of viscous incom-
pressible fluid in contact with a parallel stream of different velocity,

density, and viscosity. Both streams are assmned to be of infinite

extent in the direction normal to the interface. For the case in which the

heavier fluid is in motion with a velocity Vm and the lighter fluid is at

rest, Keulegan and Lock have shown that the ratio of interface to maxi-
mum velocity is a constant depending only on the density and viscosity

ratios of the two fluids. For the range of densities and viscosities en-

countered in the flows of the present investigation, these fluid property
ratios may be taken as unity with negligible error and the corresponding
velocity ratio is Vi/Vm = 0.59, in accordance with table II of [1]. Sub-
stituting this value in eq 9, J is found equal to 0.138. However, for

cases of widely differing fluid properties, this constant obviously varies

from the value given, and the following treatment must be adjusted

accordingly.

For the problem under investigation, the case of indefinitely growing
zones of flow near the interface must be combined with the limitation

imposed by the bottom boundarj^. In the initial phase of establishing

the underflow, a laminar boundary layer will grow upward from the bot-

tom, as well as downward from the interface. Beyoud the point where
these two boundary layers meet, the velocity distributions must remain
fixed in a manner analogous to the cases of channel and pipe inlets.

There seems little question that this is the case (see fig. 4). It follows

that the ratio of energjr dissipated in the underflow to that dissipated in

the supernatant fluid is also constant, since the interfacial shear is con-

stant as soon as these equilibrium conditions are established. The
influence of the underflow remains confined to a relatively narrow zone

in the upper fluid. With J = 0.138 = constant, it follows from definition

that in the two dimensional flow

Vdv

d3—

g

M q
7.2d -

Ay d3
(10 )

In a given channel, therefore, and with the fluid properties fixed, the

depth, d, varies with the third root of the discharge, q. Also, for a con-

stant discharge, the depth will vary inversely with S* as the slope

changes along the course of the undercurrent.

- Figures in brackets indicate the literature references on p. 93.
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2.2 Generalized Resistance Function for Laminar Underflows

(a) Two-dimensional case

For comparison with established relations for free surface and for closed

conduit flow, it is desirable to express the parameter, J, in its relation

to the familiar resistance coefficient, Cf. The latter coefficient is useful

for laminar as well as turbulent flow conditions and is defined usually

from

T= Cf (ID

where r is the shear on the fixed boundary, and V, as before, represents

the average velocity of the flow. Assuming a uniform steady underflow
on a sloping bottom, the driving gravity force over a unit area is in equili-

brium with the shear stresses

ApgdS = T0 +Ti, ( 12 )

where S equals the sine and approximately the tangent of the channel
inclination, r0 is the bottom shear, and n the interfacial shear.

At this point, the effective hydraulic radius, Re ,
is introduced. The

hydraulic radius is commonly defined as the ratio of cross-sectional area

to wetted perimeter; i.e., it represents a purely geometric property of the

channel. For subsurface flows, however, the interface shear is less than
the fixed boundary shear. The shear varies linearly from a maximum
ro to zero at the point of maximum velocity to t*<to at the interface.

Letting t, = o:to, the total shear at the interface may be replaced by its

equivalent: i.e., a shear stress, to, applied over a width reduced from unit

width to a. Shear on lateral boundaries is not considered for the present.

Thus the effective hydraulic radius is simply

Re =
d

1 +«

The ratio a can also be defined in terms of zm/d (eq 7)

(13)

2zm

d
a = (14)

For open channel flow, a = 0, and Re = d, while for flow between stationary

plates, a = l and Re = d/2. Eliminating n in terms of a

ro = ApgR cS. (15)

With the definition of r from eq 11

r=J\/^R,s.
\ Cf \ p

From eq 5, J may be related to the resistance coefficient, Cf

1

c.

1+aF2

2 s'

(16)

(17)
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Since for underflows with small differences of viscosity and of density
J has been shown to have a constant value of 0.138, a has a corresponding
value of 0.64 (eq 14). Thus the laminar resistance law for these cases

becomes

1=0.114^- (18a)
c

For comparison, the equation for flow between stationary plates becomes

and for free surface flow

1

cf

0.083A*

1

Cf

0.167Nr

(18b)

(18c)

It is clear that the differences in the constants in eq 18a and 18c are

inherent entirely in the definition of Nr and J. If the velocities in the

Reynolds number and in the parameter J were expressed as maximum
velocities and the lengths by the effective hydraulic radii, the coefficient of

Nr would be reduced to a single value.

(b) Corrections for end effects

In establishing the validity of the laminar resistance law (eq 18a) by
experimental means

s
it is necessary to investigate the influence of the

three dimensional conditions existing in the tank. Specifically, the effect

of the side-wall resistance or*depth-to-width ratio/which" is neglected in

<L

TTTrnmiir 1 1 fril 1

1

"7“
7
—
To*

i

d

J

V.
i

i

-.,-4-

W b J

(a) (b)

Figure 2. Comparison of assumed shear distributions in (a) three-, and in

(b) two-dimensional channels.

eq 12, is to be developed by assuming the shear distribution in figure 2

as the most convenient one._ Three dimensional quantities will be dis-

tinguished by primes, thus V' = Q/A. Equation 12 therefore becomes

ApgdS = to' (1 +2d/6) +r{ , (19)

where t0
' and r/ are the bottom and interface shears introduced as average

shears over the width and sides. Assuming the ratio of t//to' again as a
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and comparing it to the two dimensional case of figure 2b, the value of

ro' may be expressed in terms of r0 ,
representing the bottom shear for the

equivalent two dimensional flow and therefore also the maximum value
of the bottom shear for the three dimensional flow.

From symmetry it follows that the centerline mean velocity of the
three dimensional case equals the mean velocity of the two dimensional
case. Therefore, the ratio V/V' is the same as tq/tq'.

tq V [l+a+2d/b]

tq'~ V'~ 1+a
* ( }

Thus the resistance, eq 17, can be modified to contain the mean velocity

V' rather than V in the JNr parameter and can be written

Cj 2(l+o:)

This equation is the basis for calculating the two dimensional friction

coefficient from experimental three dimensional quantities with Nr =
V'd/v and

r={v’v)j(+d2s)-

2.3 Experimental Results

The essential components of the experimental apparatus are shown in

figure 3. The glass walled flume is initially filled with clear water. The
heavier liquid for the underflow is produced in a mixing tank by adding
salt to give the required density difference. This salt solution is pumped
through the Venturi meter to the extrance chamber. A quick-opening
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Figure 4. Velocity distribution in uniform underflow.

Symbol Slope Ap/p V d J

ft/sec ft

0 0.005 0.0075 0.044 0.062 0.121

o .005 0107 .064 .058 .158

0 .010 .0132 .062 .042 .151

• .015 .0035 .074 .062 .130

o .015 .0090 .096 .046 .143

A vf»rag;fi 0.140
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gate releases the mixture into the flume. It proceeds along the bottom
to the far end where a siphon drain removes the underflow from the exit

chamber. After a uniform depth has been established along the length

of the flume, the discharge and depth are measured. The entire channel
can be tilted by raising the upper end, and slopes greater than 15 percent

can be obtained. For each run the variables are discharge, depth, slope,

and density difference, and, in addition, temperatures are recorded. For
5 runs of a total of 64, actual velocity distributions were obtained during

the period in which the flow was uniform. To obtain the velocity dis-

tributions, hypodermic syringes are used to inject periodically small

globules of butyl phthalate and xylene dyed red. The mixture can be
readily adjusted to produce a density slightly in excess of that of the two
liquids in the flume and thus the globules settle slowly through the upper
and lower strata to the bottom. The paths of the spheres are recorded by
means of a motion-picture camera. By projecting frame by frame, the

successive lateral positions of the drops are analyzed to give the velocities

at various points.

The velocity distribution curves for the five runs are plotted in dimen-
sionless form in figure 4, using the depth of the underflow and the maxi-
mum velocity as reference quantities. The experimental points are

compared to the theoretical velocity distribution given by eq 4 with
J = 0.138, as described in section 1 . The experimental data were obtained
on the centerline of the channel, and therefore two dimensional conditions

(as required by the theory) should be approximated. The value of J
as calculated from the experimental data is given for each run in the table

in figure 4 and varies from a minimum of 0.121 to a maximum of 0.158,

with an average for all runs of J = 0.140, which agrees with the
r

predicted

value.

10 20 40 60 80 IOO 200 *00 600 *00 1000

N r = Vd/u

Figure 5. Laminar resistance law for uniform underflow.

©, Kuiper; O, Noble and Podufaly; Q. Braucher; #, two-dimensional runs.

Figure 5 presents the experimental values of the resistance coefficient

as calculated from eq 21, for convenience represented as -\/~cf and plotted

against Nr. To obtain the two dimensional Nr, the value of Nr' was
corrected as per eq 20. This method gave the best agreement between
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experimental and analytical results. Five points were calculated on the

basis of measured two dimensional velocity distributions along the

center line and fit the theoretical line very closely. An indication of the

experimental range covered by Kuiper [5], Noble and Podufaly [6], and
Braucher [7] is given in table 1. In all, 64 runs are represented in the

plot of figure 5.

Table 1

All results for constant width of channel: b = 4.5 inches

Investigator

Ap

P
Slope 5

Depth, d
in inches

max min max min max min

W
Kuiper 0.024 0.0017 0.188 0.0060 1.19 0.14

Noble Podufaly .024 .005 .058 .029 1.12 | .22

Braucher .013 .0021 .015 .005 _ 1.44 1
.50

3. Instability of the Interface

By increasing the rate of underflow, undulations eventually appeared
at the initially smooth interface, which with further increases in flow

develop to the breaking point. Figurer6 shows this phenomenon. As
near to the breaking point as could be determined, observations of wave
length, discharge, and depth were made to define it.

b —

'

- - - - • - - -

Figure 6. Waves at interface of underflow.

a, Before mixing; b, mixing with upper layer.

3.1 Stability on Basis of Inertia and Gravity Forces

On this basis, with viscous damping neglected, the limit for stable inter-

facial waves is the condition for which the wave celerity becomes imag-
inary [3, 4].
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For layers of infinite thickness the relative velocity of the layers becomes

critical, and waves of length X begin to break when

(22 )

With both layers finite, h being the thickness of the supernatant layer

and d the depth of the underflow, this critical velocity is

Both equations have been plotted in figure 7, employing

as convenient parameters.

It is seen that the ratio h/d is of negligible effect on d/\ until F>1.
Therefore, for values of F lower than unity, eq 22 and 23 give the same
result. The parameter F was chosen in preference to the one employing

the wave length for its significance in free surface flow, the celerity

g—d denoting the speed of propagation of small gravity waves on the

underflow. When the analogous celerity, \
/r
gd for free surface flow

becomes equal to the velocity of flow, and therefore F c
= 1, large undula-

tions are known to appear and the flow is denoted as critical. This

condition is coincident with the minimum value of the “specific head,”

obtained by taking the derivative of the specified head Hs with respect to

d from

rr APj
,

V2 APn
,

?
2

Hs
= d+— = d+——

2g 2gd*
(24)

Combining this critical value of F c
= 1 with the stability criterion of

eq 22, the critical wave length becomes

X = ttd. (25)

Indeed, plotting the wave lengths X in figure 7 in terms of ttd from
experimental observations for incipient mixing, i.e., at the breaking point,

it is seen that the points lie close to these critical values of F = 1 and
X = 7rd. The scattering must be attributed to observational difficulties

in defining consistently the point of incipient mixing. The experimental

points seem to exhibit in general slightly larger values of F than given by
the theory, which neglects viscous damping.
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Figure 7. Stability criteria for interfacial waves.

( 1 ) F=-J*Ed
* p

<2> FW^K ,inhHr ftonh2-r)

3.2 Stability on Basis of Gravity and Viscous Forces

Keulegan [8] has defined a stability parameter or criterion for mixing
under these conditions as

Ap



(26b)

which is readily transformed for the case in question into the form

1

0 =
F*NR

If, as postulated in the preceding section, the surface disturbances
become unstable for a critical value of F c

= 1, the critical value of 0 at

which mixing begins is simply

From eq 18a, it is seen that 0 c is related to a critical friction factor cf a~

long as laminar flow exists

0 c=O.114c/c . (27b)

Equations 16 and 17 imply that again for F c
= 1 and for a: = 0.64, this

critical value of 0 is established for a critical slope

$ c= 7.20 c= O.82c/c . (28)

Since the Reynolds number Nr depends only on the rate of flow per
unit width q=Vd and the viscosity of the fluids involved, the values of

the instability criterion 0 C and of the critical slope S c are immediately
obtained. For all values of F<1, and thus with 0 values larger than 0 C

(see eq 26b), no mixing should occur.

•00 200 400 600 800 1000 2000 4000 6000 800010000

N R = Vd/ U= q/u

Figure 8. Instability criterion for two-dimensional flow.

• — 6c=1/Nr, laminar range, M.I.T.

O 0C= 0.127, laminar range, Keulegan.

O 00=0.178, turbulent range, Keulegan.

Figure 8 presents the data obtained during the present investigation,

together with Keulegan’s data [8], which for convenience are stated here
in terms of 0<i to conform to his definition of 0, with Reynolds numbers
adjusted from his definition of

VcR-Vcd Vcd-—=— to Nr =
V 4:V V
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It is seen that instability in the laminar range occurs essentially as
specified by eq 27 and not in accordance with a constant value of 0<i =
0.127. The variations of the experimental results from the theoretical

fine are as in figure 7 and are due to the difficulty in defining the experi-

mental point of instability and in determining accurate values of Ap/p for

the small density differences employed. Table 2 lists the results of the
experiments of Noble and Podufaly [6] on incipient mixing.

Table 2. Summary of runs at mixing

Ap

P

S d X F nr

0.001 0.029
in .

1.13
in .

3.2 0.79 290
.001 .087 0.44 1.4 1.37 122
.003 .029 .56 1.4 1.35 304
.005 .029 .56 1.8 1.08 287
.005 .058 .38 1.3 1.37 207

.005 .087 .30 1.0 0.83 100

.010 .029 .44 0.7 .97 252

.010 .058 .34 .7 1.06 190

.0145 .029 .38 .8 0.95 220

.0145 .058 .28 .7 1.15 174

.0145 .087 .27 .5 1.22 169

.024 .058 .2 3 .55 1.03 147

.024 .087 .22 .5 1.01 117

4. Initial Head of the Underflow

When first released into the channel, the front portion of the moving
underflow has been observed to have a characteristic “head,” or bulge,

of greater thickness than the uniform current following. The shape of

this head is of considerable interest and it has been pointed out that this

phenomenon has its counterpart in certain meteorological events of which
the moving cold front is perhaps the most familiar.

A qualitative analysis of the flow conditions at the head of the under-

flow shows that as the current moves along the channel it displaces the

lighter fluid upward. A force must be provided to accelerate the fluid

initially at rest and to overcome the interfacial as well as the fixed

boundary resistance. This initial force is obviously larger than the

gravity forces maintaining the subsequent uniform motion. Therefore,

this increased driving force for the head calls for an increase of the initial

depth of the underflow to d2>d.
The shape of the front was obtained by Braucher [7] experimentally

by taking motion pictures of the flow at certain positions along the flume.

The pictures were projected by single frames and the shape was traced

directly. By comparing the same head at various positions, it was found
that the front moved with essentially constant form and velocity. For
the range of variables involved in these experiments, it was found that

the shape could be presented as a single dimensionless curve, using the

maximum thickness d2 as the reference quantity. This curve, with

readings indicated from the various experimental profiles, is shown in

figure 9. Of interest is the lifting of the nose of the surge above the

channel bottom in the front, its relatively short length, and rather abrupt

change in the rear to the depth of uniform flow.
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'The experimental data employed in confirmation of the analytical

treatment presented were taken from theses for the degree of M.S.
carried on under the supervision of the authors by Kuiper, Noble, and
Podufaly, and Braucher, which are acknowledged in the references.

# Figure 9. Shape of density-current surge front moving with constant velocity.
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13. Wave Intensity Along a Refracted Ray 12

By W. H. Munk 3 and R. S. Arthur 3

This paper is concerned with the application of ray theory to the calculation of the
intensity of waves refracted in an arbitrary, two-dimensional velocity field, c{x,y).

A ray equation determines the path of the rays (orthogonals), and an equation of ray
separation expresses the convergence or divergence along a ray. These two equations
are combined into an equation of wave intensity

,
from which the intensity along a ray

can be determined given only the ray path and the wave velocity both on and near
the ray. This procedure has advantages over the usual method of computing intensity

from measurements of the distance between adjacent rays.

Application is made to special types of velocity fields. It is demonstrated that
periodic convergences of rays with associated maxima of intensity occur along the axes

of certain types of symmetrical underwater ridges (or of any comparable channel of

minimum velocity). Along the axes of symmetrical under-water troughs the rays
diverge and the intensity diminishes exponentially. Numerical and graphical meth-
ods for obtaining solutions over a complex bottom are outlined.

1. Introduction

Observed changes in the height of waves entering shallow water have
been accounted for on the basis of the change in group velocity and the

effect of refraction. For a wave train of given period the group velocity

is a function of depth only, and any variation in wave height along a fixed

depth contour is, therefore, the result of refraction. The refraction

factor, K, is a linear measure of this effect.

Wave rays (or orthogonals) are defined as lines which are everywhere
perpendicular to the wave fronts. They may be visualized as the wakes
behind surfboards which are always oriented normal to the crests, that is,

in the direction of wave motion. Let l0 designate the distance between
adjacent rays at some initial depth, l the distance between the same rays

at an arbitrary depth, and (3 = l/lo the ray separation factor. Then

K= |/3|-», Kb
= |0|-», (1.1)

depending on whether the arbitrary depth is outside or within the breaker

zone (Munk and Traylor, 1947).

Over a complex bottom, (3 can be determined by graphical methods.
One technique (Hydrographic Office, 1944) consists of constructing the

wave fronts by a method analogous to Huvgen’s and then drawing the

rays. Another method (Johnson, O'Brien, and Isaacs, 1948) makes it

possible to draw rays immediately. In either method the refraction

factor is obtained by measuring the distance between adjacent rays. Here
it will be shown how the refraction factor along a ray can be determined

1 Contributions from the Scripps Institution of Oceanography, New Series, No. 000.
2 Sponsored by the U.S. Navy Office of Naval Research, Project NR-083-005, Contract N6ori-lll,

Task VI, and the U.S. Army Beach Erosion Board, Contract W-49-055 eng 3.

2 University of California, Scripps Institution of Oceanography.
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directly. The latter procedure alone appears to be feasible in the case
of extreme convergence, such as occurs near focal points and caustics

(Pierson, 1951), or in the case of extreme divergence. However, these
are precisely the conditions for which the approximations underlying
any of these methods, including ours, must be critically examined.

In the construction of refraction diagrams it is assumed that the
expression

for the velocity c of a wave of length 2ir/k at constant depth h is an
adequate approximation in the case of sloping bottoms. This assumption
is supported by observations as well as theoretical investigations of certain

special cases (Lewy, 1946; Stoker, 1947; Lowell, 1949). The computa-
tion of intensity from these refraction diagrams is based on ray theory.

For very shallow water Lowell (1949) has shown this procedure to be
justified, except in regions of strong convergence or divergence of rays.

No attempt to justify ray theory is intended in the development that

follows.

2. The Ray Equation

Starting from Fermat’s principle, according to which the ray is a path
of minimum travel time, it can be shown that the expressions for para-

metric representation of the ray, x = x(t) and y = y{t), satisfy the equations

dx— = c cos a
dt

dy— = c sm a
;

dt

da Dc

dt Dn
(2.1a,b,c)

where t is the travel time, a the angle between the ray and the rc-axis, and
D/Dn denotes differentiation with respect to arc length n along the wave
front (fig. 1). The derivation of eq 2.1 requires that the wave velocity,

c, be a given function of x,y which, along with the necessary partial deriva-

tives, is continuous. An even more general form of eq 2.1 is valid for

waves refracted in the presence of a current as long as the conditions on c

obtain (Arrow, 1949; Arthur, 1950).

Elimination of a from eq 2.1a,b yields

dt= (i/c)VWf+Tdyy= (i/c)Ds

,

where s is the arc length along the ray. Substitution in eq 2.1c gives the

ray equation4

Da 1 Dc

Ds cDn
(2.2)

which states that the curvature of the ray is equal to the logarithmic

velocity gradient along the wave front and that the ray bends toward
the direction of lower velocity.

4 Equation 2.2 can be derived directly from the eikonal equation, which is the fundamental equation of

the wave fronts. Frank, Bergmann, and Yaspan (1946, pp. 42-46) give a complete development. Equa-
tion 2.2 follows immediately from eq 22 of their paper when specialized to two dimensions. See also,

eq 3.6 of Lowell (1949, p. 283), which is identical with eq 2.2.
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3. The Equation of Ray Separation

The variation of 0 in terms of the arc length s along a ray is derived

from elementary considerations using figure 1. If a denotes the angle

between the ray and the z-axis at point P, the corresponding angle of a

ray through A, an infinitesimal distance l removed, is -a +Da, where

Figure 1 . Definition of terms used in derivation of ray equation and equation

of ray separation.

Da = {Da/Dri)l. The ray separation at B is where Dl = Da- Ds.
Hence

lDl_Da
IDs Dn

In terms of /3 = l/lQ ,
the equation of ray separation

(3.1)

1 D(3 Da

(3 Ds Dn
(3.2)

is obtained. According to eq 3.2 the logarithmic change in the separation
factor along the way is equal to the curvature of the wave front. Lowell

(1949, p. 286) has derived this equation in a more systematic manner,
using the Gauss integral theorem.

It is to be emphasized that differentiation with respect to arc length s

and n is accomplished by use of the special operators

D d d— = (cos «)—+ (sin <*)—>
Ds ox dy

D_

Dn
d d

= — (sin a) b (cos a)—
dx dy

(3.3a,b)
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The arc lengths s and n do not constitute a set of curvilinear coordinates.

If a set of curvilinear coordinates r for the rays and w for the wave fronts

were to be introduced, a more complete notation would be

(d/ds) r for D/Ds ,
and (d/dn)w for D/Dn.

It is useful to derive a modified version of the ray-separation equation
by eliminating a from the ray eq 2.2 and the ray separation eq 3.2.

Because the operators 3.3 involve a, which varies differently along ray and
wave front, the order of differentiation is not immaterial in the mixed
second derivatives. For example, the difference of the mixed second
derivatives of a, as computed from repeated use of eq 3.3 is not zero but

Dn\ Ds) ~Ds\Dn) Vdx)
+
\dy) V Ds)

+
\DrJ

Substitution from eq 2.2 and 3.2 gives

D/Da\ _ DfDa\ _ _1 /-DcY 1/D0\*
m

Dn\Ds)~Ds\Dn)~ c2\Dn)
+

(3
2\Ds) ’

Differentiating eq 2.2 and 3.2 with respect to s and n, respectively, and
adding, yields

(3.4)

(3.5)

D_(Da\_D_(Da\ _1 &c 1jDc\*_lDV
(3 6 )

DtiKDs) Ds\Dn) cDn2 c2\Dn) (3 Ds2
(3

2\Ds)

If the right-hand members of eq 3.5 and 3.6 are equated, the elimination

of a from eq 2.2 and 3.2 is completed, and the final result is the modified

equation of ray separation,

where

D2B
^+w=°,

k2
1 D2

c Dvr
*

(3-7)

(3.8)

Equation 3.7 relates changes in the ray separation factor along the ray

to changes in wave velocity along the wave front. The solution /3(s)

to this second-order equation involves two arbitrary constants that can

be evaluated in terms of the initial conditions (3 = (30 and D(3/Ds = Kq(30

at s = 0. Here

1 D(3 Da

j3 Ds Dn
(3.2)

represents the curvature of the wave front, which is taken positive if the

wave front is convex as viewed from the direction of increasing s.

Either form of the equation of ray separation contains in a compact

manner the law governing the variation of intensity in a two-dimensional

velocity field, according to ray optics. The simplicity of eq 3.2 and 3.7

is, however, somewhat misleading. Their application involves the con-
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struction of wave fronts5 and rays on the refraction diagram, but it is

desirable to construct only rays. We shall therefore derive an equation
of wave intensity that is less compact but better adapted to calculations.

This equation of wave intensity will eliminate the need for constructing

the wave fronts, and will allow the determination of ft given only a ray
path and the wave velocity everywhere, i.e., both on and near the ray.

4. Derivation of an Equation of Wave Intensity

Differentiation of c with respect to n gives

and

Dc dc dc— = - (sin «)—+(cos a)—>
Dn dx dy

(4.1)

D2c J . . ,d2
c . dc dc

(cos a )—+ (sin a )

—

dx dy.

da d2c )—+(C0S Oi)——\
dx dxdy

J

d2c

+ (cos a) (cos a)——
1 dy2

L

dc dc
(cos a)—+ (srn a

dx dyjdy

da d2C )— — (sm a)-
dxdyj

(4.2)

If eq 4.2 is simplified ar.d substitutiors are made for groups of terms equal

to Dc/Ds and Da/Dn, the result is

_ i d 2
c ir . d2

c
* — 7T^

= _ sm2 a)— -2(sm
cDn L ch dx1

d2c d2
c Dc Da

a CCS a) + (COS2 a) — —

—

dxdy dy2 Ds Dn .

(4.3)

The term Da/Dn, the curvature of the wave front, cannot be evaluated,

given only the ray path and c= c(x,y). However, the equation of ray

separation 3.2 shows that

Da_\Dl
Dn ft Ds

and this result, together with eq 4.3 and 3.8, gives an equation of wave
intensity

D2
ft Dft

^+P^+?/3 = °, (4.4)

where

p(s) = — (cos «)[-—]- (sin a)R—

1

\_cdxj Lcdyft

ri d 2c] r i d2c i
|

ri d2cl
) — 2(sm a cos a) +(cos2 a)\

L c dx2j \_cdxdyj Lcdy2J
(4.5a,b)

As indicated, the coefficients p and q in eq 4.5 are functions of the arc

length s along a ray only, and the wave fronts are not required for their

evaluation. Equation 4.4 offers, therefore, a practical basis for the

determination of wave intensity, and considering the high development

5 In eq 3.2 the curvature of the wave front enters explicitly; in eq 3.7 the evaluation of k2 at a point on
the ray involves the second derivative of c along the curvilinear wave front. One may think that a
sufficient approximation could be attained by evaluating the derivative along a straight-line tangent to

the wave front, but it is easy to select examples that show that this is not the case.

99



of ray optics, it is surprising that this equation is not familiar. An
explanation might be that this law governing-wave intensity is adapted
to a continuous velocity field, whereas the development of ray optics

has been primarily concerned with discontinuous changes involved in the

design of lens systems.
The quantities in square brackets depend on c apd its partial deriva-

tives with respect to the fixed coordinates x,y. The values of p and q
are readil}T determined at each point of the ray in terms of a local coordi-

nate system that has its origin on the ray at the point of determination

and some specified orientation at that point. Two obvious, special cases

i

Figure 2. Local coordinate systems oriented with respect to ray and depthjcontours.

are a system (xr,yr ) oriented wdth respect to the rays (fig. 2, upper) and a

system (x c,y c) oriented with respect to the contours (fig. 2, lower).

For the ray system, a = 0 and

p(s) = -
1 dc_

c dxr

H>c
9 (S)=C^'

(4.5c,d)
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For the contour system, dc/dx c= 0 and d2c/dx c

‘
2= —K c (dc/dy c ), where

k c is the curvature of the contour at the point of intersection with the

ray. Consequently,

r l

p(s) = -(sin a)\ -—
L cdy

—2 (sin a cos a) -f- -(sin2 a) —— ^-
• (4.5e,f)

cdjz/J Lc5xcai/J Lc%J
Forms 4.5c,d appear to be simpler. However, a possible advantage of

forms 4.5e,f is that the expressions in square brackets depend only on
properties of the depth contours, and can be tabulated on charts of

bottom topography along each contour, regardless of direction of wave
approach, providing the wave period is specified. The dependence on
direction enters entirely through the trigonometric functions of a in

the parentheses. Equation 4.5f is simplified if the contours are parallel

or have at most only slight convergence or divergence, for, then |d
2c/

dx
t
dyc |<C1, and the middle term is negligible.

5. Application to Special Types of

Underwater Topography

5.1 Shelf of Uniform Depth

If the depth is constant, c is constant and p and q are zero. The
equation of wave intensity, 4.4, reduces to

with solution

/3=/30 (koS+1).

(5.1)

(5.2)

The two constants of integration (section 3) are evaluated in terms of

the initial value, /3 0 ,
of the ray separation factor and the initial curvature,

ko, of the wave front at the edge of the shelf, where s = 0.

The depth being constant, there is no refraction over the shelf and the

rays are straight. However, /3 remains constant along the ray only if the

wave front is initially plane (k 0 = 0) . If the wave front is initially convex
(diverging rays) as viewed from the positive s direction, then k0> 0 and 0
increases linearly with s along the ray. The refraction factor 1.1 and
wave intensity decrease. If the wave front is initially concave (con-

verging rays), then ko<0 and /3 = 0, where s=—

1

/k0 . Therefore, at a

distance (—

1

/k0 ) along the ray the wave intensity becomes infinite on
the basis of ray theory, i.e., a focal point, or caustic, is reached. This

conclusion is in agreement with results obtained by Pierson (1951) in a

detailed analysis of refraction over a semicircular ledge.

5.2 Straight, Parallel Contours

If the contours are parallel to the x-axis, then c= c(y ) and a= a(y);

the equation of wave intensity, 4.4, reduces to

m , . s—-Carnap
1 dc~\D(3

c dyJDs
+ (cos2

!/S = 0. (5.3)
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The known refraction relationships for this case, in terms of a, are

(Hydrographic Office, 1944)

c cos a

Co cos ao

sin a

sin aQ

(5.4a,b)

The first relation is Snell’s law. It can be verified that the second

relation satisfies eq 5.3, but the details are tedious and uninteresting.

5.3 Ridge and Trough

It is instructive to consider in some detail the special cases of a ridge

or trough for which the contours are symmetrical with respect to a straight

axis. One ray is assumed to coincide initially with the axis, and eq 2.2

shows that this ray continues as a straight line. The variation in /3 along

this axial ray is to be determined. The application to wave refraction

along any channel of maximum or minimum velocity, e.g., the sound
channel, is obvious.

Let the x-axis coincide with the axial ray and be directed in the direction

of wave propagation. Since a? = 0, then D/Ds= d/dx and the coefficients

of the equation of wave intensity, 4.4, are

where a, which is dependent on the inclination of the ridge or trough

along the axis, and 52

,
which is dependent on the bottom curvature normal

to the axis, are assumed constant along the axial ray. Along the axial

ray the wave velocity, as determined by eq 5.5a, is

c/co = e~ 2ax
, (5.6)

where c0 is the value of c at x = 0. If a = 0, the wave velocity and depth

along the axis are constant, and the ridge or trough is level. More gen-

erally, the ridge or trough may be inclined upward (a>0) or downward
(a< 0) in the direction of the axis. From eq 5.5b it is apparent that for

a ridge 52>0 and for a trough 62 <0.
The resulting form of the modified equation of wave intensity is

d2
/3 d/3

T^+2aj-+52
/3 = 0,

dxz dx
(5.7)

a second-order, linear differential equation with constant coefficients.

The solution in its various forms is particularly familiar because the same
type of equation arises in the study of damped oscillatory systems. The
solutions corresponding to overdamped, critically damped, and under-
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clamped oscillations are, respectively,

[cos
/o+ *°

/3= /30c 'j^cosh (X.r)+

0= 0oe (a+K0 ).r]

sinh (\x)

0 = Poe' cos (iXx)+
(7+^0

-^sin (i\x)

for X2 >0,

for X2 = 0,

for X2 <0,

(5.8a,b,c)

where X2 = a2— b2
. All arguments are real. The two constants of integra-

tion have been evaluated from the initial conditions (section 3) at
£• = 0:0 =j80 and (d0/d:c)o = Ko0o, where k0 is the initial curvature of the
wave front. For waves from a distant storm, ko=4=0.

The various forms of the solutions are shown in figure 3. The simplest
case is that of a level ridge or trough (fig. 3, upper). The results can be
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visualized easily in terms of Eckart’s (1950) analogy between the rays
and the paths of small balls rolling along suitably shaped surfaces with
1

'inverse” bottom topography (fig. 4). The ray over the submarine
ridge corresponds to the path of a ball rolling along a trough. If slightly

disturbed, the ball will roll first somewhat to one side and then to the
other side of the trough bottom, crossing the bottom at distances ir/b.

The zeroes of the (3 solution occur where the paths converge periodically

to produce a focal point or a caustic with infinite wave intensity. 6 The

Figure 4. Schematic view of wave refraction over a level
,
underwater ridge (upper),

and the corresponding rays traced by small balls rolling along a surface of “inverse”

topography (lower).

ray over the trough, on the other hand, corresponds to the path of a ball

moving along the very crest of a ridge. If slightly displaced, it will roll

down one side or the other. The adjacent rays, therefore, diverge from
the axial ray and the wave intensity diminishes.

6 Allyn Vine of the Woods Hole Oceanographic Institution has called our attention to an unpublished
manuscript by F. Brooks (1948) in which there is derived the distance ir/b between focal points on the axis

of a sound channel where the velocity varies parabolically with depth.
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Tilting ridges have periodic convergences only if the lower sign holds

in the inequality a2

^ b2 . This condition stated in terms of the curvature

of the contours, 4.5e,f, becomes

(5.9)

The critical case arises when the two members of the inequality are equal

(a2= b2
). Setting

c/cd = e~ 2axcosh ay, (5.10)

where Cd is the deep-water wave velocity, leads to the critical case.

The nondimensional representation of the topography (see fig. 5) asso-

ciated with eq 5.10 indicates that the “critical” ridge has a steep inclina-

FiGURE 5. An example of a submarine ridge corresponding to the “critically damped” case.
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tion and is relatively broad (contours have small curvature). If the
inclination is less steep, periodic focal points, or caustics, occur along the
axial ray.

6. Application to a Complex Bottom

It is assumed that the rays have been constructed directly (Johnson,
O’Brien, and Isaacs, 1948) and that p and q along the rays have been
evaluated from the contour charts by some suitable method. Such
methods will be discussed in a forthcoming paper. It suffices to remark
here that neither the term p(s)D(3/Ds or q(s)p in the modified equation
of wave intensity

D2B DB
^+P(s)^+9(s)0= ° (4.4)

may, in general, be considered negligible, and to outline the following

approximate methods for solution of the complete equation.

6.1

Constant Values of p and q

If the ray is divided into small intervals, and p(s), q(s) are replaced by
average values within each interval, the solution appropriate to each
interval is of the trigonometric or hyperbolic form discussed in section

5.3. The solutions are joined together by requiring j8(s) and Dfi/Ds to be
continuous from one interval to the next.

6.2

Kelvin’s Method

This method involves approximating the integral curve of a second-
order differential equation by fitting together circular arcs (Willers,

1948). Johnson, O’Brien, and Isaacs (1948) have derived an essentially

similar technique for the construction of wave rays. Consider the con-

struction of the integral curve (3 = l3(s ) on a /3,s-diagram, where the

curvilinear coordinate s is now laid out rectilinearly . If the angle between
the integral curve and the s-axis is 0, then the slope of the curve is Dfi/Ds =
tan 0, and the curvature, using eq 4.4, is

D2B/Ds2

kr = ——

—

—
(v tan 0— g/3)cos3

0. (6.1)p
[l+ {Dp/Ds) 2f2 y

The curvature is computed at the initial point s = 0, where 0, D(3/Ds,

p, and q are all known. The curvature is assumed constant over a small

interval of s, and an arc of a circle of this curvature constructed from the

initial point with the proper initial slope. The values of jS and D(3/Ds at

the end of the small interval are obtained, a new curvature computed,
and the new arc laid off, keeping (3 and D/3/Ds continuous. Repetition

of the process produces an approximation to the integral curve /3 = jS(s).

This method has the advantage of employing similar procedures for

computing the ray and the intensity.

6.3

WKB Method

The transformation

3= v(s)e~^{pDs
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reduces the equation of wave intensity 4.4 to the normalized form

where

Dh
Ds2

fX
'V~

’

H
2 {s)=q~

1 Dp

2 Ds*

(6.3)

(6.4)

Equation 6.3 has been studied intensively in quantum mechanics, and
it is possible to adapt, with certain modifications, methods which have
been developed for finding approximate solutions (see, for example,
Condon and Morse, 1929, pp. 44-47, 111-114). An approximate solution,

which constitutes the basis of the WKB method is,

JQp+fj^Dsj+Rexp —J (jjp
— ivjDs j> (6.5)

where mo is the value of ^ at s= 0, and the arbitrary constants A and B
are to be evaluated from the initial conditions. The solution is trigo-

nometric for m
2> 0 and hyperbolic for m

2< 0. The approximation becomes
inadequate when m2 approaches zero, and through these “forbidden”
regions solutions of type 6.5 have to be joined to other special solutions.

6.4 Analogue Computers

The modified equation of wave intensity is analogous to the equation
of a damped oscillation. It is also analogous to the equation of an
oscillatory voltage, V, in a RLC circuit, provided we identify p with
R/L, and q with 1/LC, (3 with V, and s with time. By changing resistance

and capacitance with time in the required manner, the recorded voltage

would give the desired solution. A more useful analogy is probably that

of the telegraph equation. Bullard and Moon (1931) have discussed a

method which depends on the equations of motion of a current-carrying

coil, suspended in a magnetic field. Mechanical analogue computers,

such as the differential analyzer, can also be used to obtain the solution.

Numerical methods which are capable of greater accuracy than any of

the above outlined methods are available (Willers, 1948; Kamke, 1943).

Greater precision is hardly warranted, however, in view of the fact that the

bottom topograph}- is known only approximately and that ray theory is

at best only an approximate method for determirirg wave intensity.

Dr. Carl Eckart of the Marine Physical Laboratory; Dr. Sherman C.

Lowell of the Office of Naval Research, London; and Dr. Willard J.

Pierson, Jr. of the Department of Meteorology, New York University,

have made many helpful comments. Dr. Pierson has undertaken experi-

ments in a ripple tank for the purpose of checking the applicability of our

ray theory results for underwater troughs and ridges. He will report his

conclusions at a later date.
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14. Diffraction of Water Waves by Breakwaters

By John H. Carr 1 and Marshall E. Stelzriede 1

Diffraction is an important factor in the determination of the distribution of wave
energy within a harbor, and therefore is of importance in harbor design. Previous
investigations in this field have made use of Sommerfeld’s solution of the diffraction of

waves by a semiinfinite screen to obtain results for semiinfinite breakwaters, and by
superposition, approximate results for continuous breakwaters with openings large

compared to the wave length. The investigation of this subject by the Hydrodynam-
ics Laboratories of the California Institute of Technology has been guided by the
theoretical solutions of Morse and Rubenstein for the diffraction of waves by ribbons
and by slits with the two boundary conditions of zero wave function and zero normal
gradient. Morse and Rubenstein separate the wave equation in elliptic cylinder co-

ordinates and obtain the total transmission and the angular distribution of the scattered
or diffracted waves in terms of Mathieu functions. This method bridges the gap be-

tween the method of Rayleigh for very small slits and the approximation based on
Sommerfeld’s solution, which is applicable for slit widths greater than three or four

wave lengths, and is useful for any angle of wave approach.
The difficulties of computation of the required Mathieu functions have been over-

come in recent years by the use of modern methods of machine computation. The
Institute for Numerical Analysis of the National Bureau of Standards has recently
completed the computation of the transmission and distribution of wave energy for

openings of one-half, one, two, and three wave lengths, with wave approach angles
from 0° to 90° in 15° increments. These data, in the form of polar plots of a dimension-
less intensity factor, are compared with experimental measurements conducted to

verify the theory, and the two results are found to be in good agreement. The experi-

mental procedure has also been used to investigate a number of breakwater configura-
tions for which theoretical solutions are not obtainable.

1. Introduction

Considered in the most general way, the disturbance level at a point in

a harbor is a function of the amount of wave energy entering the harbor
and the distribution of the energy within the harbor. Because the aim
of the harbor designer is to provide specific regions within the harbor
where the wave disturbances will always be less than some maximum,
and thus guarantee an optimum level of usability for these regions,

the design technique consists of the determination of disturbance
levels in particular places for certain assumed harbor configurations and
ocean conditions. The significance of diffraction in connection with the

problems of harbor layout and design is that both the amount of energy
entering the harbor and especially the distribution of wave energy within
the harbor are conditioned by this phenomenon.
The amount of energy entering the harbor is determined largely by the

size of the opening and the intensity and direction of the incident wave,
but for small openings— less than one wave length in width—diffraction

becomes an increasingly important modifying factor.

' California Institute of Technology, Pasadena, Calif.
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The distribution of wave energy within a harbor is governed by three
factors, diffraction, refraction, and reflection. Of these, diffraction and
refraction account for the distribution of what may be called the primary
wave disturbances—waves that have not yet reached a boundary and
reflected. Secondary, or reflected, wave disturbances are determined by
the character and alinement of the harbor boundaries, the distribution of

the primary disturbances, and subsequent diffraction and refraction.

Because the refraction of water waves is due to wave-velocity changes
corresponding to depth changes, refraction is an important factor in the
distribution of wave energy within a harbor only if the topography of the
harbor bottom is irregular. Typical harbors on open coasts are char-

acterized by fairly uniform water depths, especially as improved by peri-

pheral bulkheading and dredging, hence in many cases the primary
energy distribution, and as a consequence, the secondary distribution for

a given set of boundary conditions, may be predicted with sufficient

accuracy for engineering application by the consideration of diffraction

effects alone.

The Hydraulic Structures Division of the Hydrodynamics Laboratories,

California Institute of Technology, is engaged in a study of the applica-

tion of the principles of wave behavior to harbor design. This study is

sponsored by the Bureau of Yards and Docks of the Department of the

Navy. The investigation of water-wave diffraction described herein is

one result of this study.

2. Theory

2.1 General

There are two theoretical methods by which the general problem of

water-wave diffraction through a breakwater gap may be most directly

approached. The first mode of attack, which may be attributed to Pen-
ney and Price [1 ],

2 involves a solution by Sommerfeld [2] for diffraction of

light waves by a semiinfinite screen, or a half plane. The procedure is

extended by superposition to a breakwater with a gap. The resulting

solution is reasonably accurate, however, only for gap widths of over two
wave lengths.

The second method of approach may be credited largely to Morse and
his associates at Massachusetts Institute of Technology [6 to 9]. This
analysis, based on elliptic-cylinder coordinates and the associated Mathieu
functions, was originally developed for the diffraction of sound and
electromagnetic waves. At the Hydraulic Structures Laboratory it has

been used with a high degree of success in water-wave diffraction studies,

especially because the solution converges most rapidly for gap widths of

the order of zero to three wave lengths

.

2.2 Penney-Price Method

The principal features of the solution by Penney and Price have been
verified experimentally by Putnam and Arthur [3], and by Blue and
Johnson [4]. Although this theory did not serve as the primary basis of

work done at this laboratory, there is sufficient agreement between it and
the Morse-Rubenstein theory within certain areas, so that a brief dis-

cussion of it is warranted.

2 Figures in brackets indicate the literature references on p. 125,

110



The solution is based on the following assumptions
:

(a) The water is an
ideal, incompressible fluid, (b) Motion of the water is irrotational,

and the velocity potential
<f>

satisfies the Laplace equation,

d2
0 d2

0 d2
<f>

dx2 dy2 dz2
( 1 )

where x- and y-axes are in the plane of the undisturbed water surface,

and z is the vertical coordinate, (c) The wave height is very small,

(d) The pressure at the surface, z= rj(t), is constant. (e)The com-
ponent of the fluid velocity normal to the surface equals the velocity of the

surface normal to itself, (f) The velocity of the fluid normal to a fixed

boundary surface is zero, (g) The depth of the water is constant.

Losing these assumptions, the Laplace equation is solved for 0 and an
expression set up for the free water surface, by the method of Lamb [5].

These equations are, respectively,

4,=Ae~ika
cosh ^+h)-F(x,y), (2)

ii
=—A e'

k“
cosh kh F (x,y)

,

where
9

a2F e*F
, „—-a—-+&2F=o,

a*2 dy2

(3)

(4)

and where k = c= wave celerity, or velocity; X=wave length;

h = water depth; and Akc/g cosh kh= amplitude. Progressive waves
with straight crest alinement and traveling in the positive ^/-direction may
be represented by the following solution of eq 4

F(x,y)=e~ iky. (5)

Consistent with assumption (f), for a rigid barrier extending along the

positive rc-axis from the origin,

—=— = 0, when y= 0,x>0. (6)
dy dy

To study the diffraction of waves incident normally on a semiinfinite

rigid breakwater, the xy-plane may be divided into the three regions

(shown in fig. 1 for a general angle of approach). It can be shown [31

that the modulus and argument of F determine, respectively, the ampli-

tude and phase of the diffracted wave, hence the problem reduces to that

of finding a solution of eq 4, which satisfies the boundary condition of

eq 6, and which reduces to eq 5 when x is large and negative.

Penney and Price show that eq 4, 5, and 6 are identical with those

satisfied by SommerfekPs solution for the diffraction of light waves
polarized in a plane parallel to the edge of the semiinfinite screen. In

Cartesian coordinates this equation may be written

F(x,y)A-±^e-^f\^
iu,

du+e^!f du}, (7)

^(V+?/), j-2 = x2
+2/

2
. (8)<7=

\x
(r_y)

111



The signs of cr and o-' for a given point are determined by which of the
three regions, Q, R, or S (fig. 1), contains the point. The form of this

Sommerfeld equation is convenient, in that it lends itself to evaluation
by means of tabulated values of Fresnel’s integrals,

s*u /»w
/ 7T / , 7T

/ cos-v?du and / sin-u2du, (9)
J o 2 J o 2

or by Cornu’s spiral. The behavior of the modulus and argument of F
over the plane, determined from eq 7, presents a complete picture of the

surface configuration in the three regions.

/y
/

Replacing Cartesian by polar coordinates, the Sommerfeld solution

may be generalized to the case of waves incident obliquely on a semi-
infinite barrier. So far the solution is exact; the specified boundary
conditions are satisfied exactly within the limits of certain approxima-
tions which were made for convenience. The procedure may be extended
to a breakwater with a gap by superposing the solutions for one semi-
infinite barrier to the right and one to the left, separated by a gap of width
d, and with the origin at the center of the gap.

The resulting compound solution is discussed by Penney and Price for

waves of normal incidence. The solution is no longer exact, for the

boundary conditions at each barrier are not automatically satisfied by
diffraction waves arising from incident waves on the other barrier. For
openings of over two wave lengths, dF/dy differs from zero by a relatively

small amount at the boundaries, with the accuracy improving with
increasing width of opening. For large gaps, therefore, the diffraction

picture presented by the behavior of the modulus and argument of F is

assumed to be reasonably accurate.

For angles of wave incidence other than normal, the determination of

wave heights becomes somewhat more involved. That factor, together

with the total unsuitability of the solution for small gaps, prompted the

adoption of another theory to serve as the basis for evaluation of experi-

mental data.
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2.3 Morse-Rubenstein Solution

The unsatisfactory features of the Penney-Price method are largely

avoided by the approach outlined by Morse and Rubenstein [6] for

diffraction of sound and electromagnetic waves by a slit in an infinite

plane. It is an exact solution for small gaps, and possesses the added
feature of leading to direct expressions for angular distribution of energy
transmitted through the opening, and for the total of such transmitted

energy.

Application of the exact boundary conditions of zero potential gradient

to the breakwater with a gap is expedited by the use of elliptic-cylinder

coordinates,

x = -cosh £ cos 0,

Figure 2. Elliptic cylinder coordinates.

For constant z, lines of constant £ and 0 become, respectively, confocal

ellipses and hyperbolas of focal length d (fig. 2). The suitability of these

coordinates for the expression of the desired boundary conditions lies in

the fact that, for 0 = 0, the hyperbolas degenerate into a straight line

with a gap of width d. On the other hand, diffraction around both ends
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of a barrier of finite length, the reciprocal case to the breakwater with a
gap, could be investigated by using the degenerate ellipse, corresponding
to £ = 0.

The three-dimensional wave equation is, in Cartesian coordinates,

dV
,

dV aV_l dhp

dx2 dy2 dz2 c2 dt2 (11 )

where c is again the velocity of wave propagation. Substituting the new
coordinates into eq 11 puts the wave equation in the ellyptic-cylinder

form —

—

(
(cosh 2^— cos 2<p)

d? d<f>
2J

d2

^+
dz2 ~ & dt2

( 12 )

It is desirable to find solutions of the wave equation, which, in addition to

possessing zero gradient at the two slit walls, disappear at infinity and
remain finite in the gap.

The variables in eq 12 may now be separated in the standard manner,
by assuming a product solution of the form

* =G(£)H{4>)Z{z) e- 2^, (13)

v being the wave frequency. Neglecting time and the ^-coordinate, since

the propagation vector is taken in the xy-plane, the following differential

equations result

d2H
b (b— s cos2

(t>)H = 0,
d4>

2
(14)

^+(s cosh2 £—6) (7= 0, (15)

where s— (td/\) 2
,
and b is a separation constant. Equations 14 and 15

are commonly known, respectively, as Mathieu’s equation and Mathieu’s
modified equation, the second being derivable from the first by substi-

tuting =
Solutions of these equations, and linear combinations of such solutions

are, of course, solutions of the wave equation from which eq 14 and 15

arise. Using a countably infinite number of values of the characteristic

constant b results in an infinite number of solutions of the differential

equations, not all of which are periodic. In particular, it is the solutions,

or Mathieu functions, of periods 7r and 2t, which are of present interest.

Each equation possesses even and odd solutions, which, in the case of

the angular functions, or solutions of eq 14, assume the form of Fourier

series
oo

Ser (s,4> ) = Y, 'Dek cos kef), (16a)
k= 0

Sor (s,<t>) = Y'D°k sin hf>. (16b)
t=o

That these functions form an orthogonal set can be easily shown. Even
and odd solutions of the first kind of the modified equation are designated
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JeT (s,£) and Jor (s,£), and these of the second kind are Ner (s,£) and
Nor {s,t;). As their designations indicate, these radial Mathieu functions
are normally expressed in terms of Bessel’s functions of the first and
second kinds. Computable factors of proportionality or joining factors,

however, relate the radial functions to each other and to the angular
functions.

The subscripts r in eq 16a and 16b are index numbers 0, 1, 2, 3, . . .

corresponding to increasing characteristic values of the parameter b that

yield the desired periodic functions and identify the order of the solution.

In practice, for a gate width of three wave lengths or less, convergence of

the final equations is such that it is necessary to consider values of r up
to a maximum of about five or six. The primed summation signs indicate

that for even values of r, only even values of k are included in the summa-
tion, and for odd r only odd values of k are summed.
The Mathieu coefficients, Dek and Dok ,

may be determined by sub-
stituting eq 16a or 16b into the Mathieu eq 14, using the series representa-
tion for trigonometric functions, and equating coefficients of like powers
of 4> to zero. The coefficients are then seen to satisfy certain recursion

relationships that may be represented by continued fractions. The value
of such fractions may be computed, provided the first coefficient is known.
This first coefficient, where k = 0 or 1, as the case might be, is effectively

established by choosing

and

Sem (s,0) = 1, (17a)

i

]<£=o
= 0,

f>

(17b)

Sow(s,0)=0, (18a)

[Som (s,cf)) ]<£=o == 1* (18b)

Normalizing in this manner also insures the vanishing of the wave-function
gradient at the boundaries. Stratton, et al. [9] published a very limited

table of even and odd coefficients with their associated characteristic

values. The Institute for Numerical Analysis of the National Bureau of

Standards is publishing an extensive table of coefficients, characteristic

values and joining factors. This publication [10] may well serve as a

handbook on Mathieu functions, as, in addition to the tables and an ex-

tensive bibliography, the introduction contains a summary of all

important relations involving the functions.

Morse [8] demonstrates that the addition formula expressing the

expansion of a plane, or in the case of water straight-crested, wave in

terms of Mathieu functions is, exclusive of the time factor,

Jk(x cos u+ym «> = V&rLtT(AW(s,«)
m L \W rnf

' S6m (S,<f>)j6m (S
’0+(wj)Som

(s,u)Som (s,<f>)Jom (s,Z ) , (19)
}

where Nm and Nm
'
are normalization factors, and u is the angle of inci-

dence of the waves with the breakwater. The diffracted wave beyond the



rigid breakwater with a gap is expressed by the equation

jjn— 1

\p =V87r£—-sin ymetymSem (s,u)Sem(s,<l>) — [Jem (s£)+iNem (s£)]. (20)
m A m

Here ym is the phase angle of the partial wave, and ctn ym = (Nem (sfi))

/(Jem(s,0)) is identical in value to the joining factors fe ,
r tabulated by the

Institute for Numerical Analysis. The quantity in brackets bears the
same relationship to the radial functions of the first and second kinds as

Hankel functions bear to the Bessel functions, and represent diverging

cylindrical waves which disappear at infinity but remain finite in the region

of the gap. It may be shown that the gradient of the wave function of

eq 20 is zero at the slit boundary, and that ^ and its gradient are con-

tinuous in the slit opening.

The modulus of eq 20 represents the amplitude of the diffracted wave.
It may be shown 3 that at sufficient distance R from the center of the

opening, the normal expression for the energy flux carried by a straight-

crested wave may be applied with ample accuracy to a diverging circular

wave. As a matter of fact, at points where the radius of curvature of the

wave crest is as little as about three wave lengths, the error introduced

by using this relationship is negligible. It is apparent, therefore, that

the ratio of energy intensity at a point in the harbor to that in the open
sea is where hp# is the wave height at the point, and hi is the inci-

dent wave height. Or, if the incident intensity is taken as unity, the

intensity at a point is just hi#.

If the asymptotic forms of the radial functions

Jem (s,

Cf)

G0S

(21 )

where a=
[
cp_(^).] ;

and p = cosh £, be introduced into eq 20,

and the modulus squared, this expression results

Ip# -K# = —7= L ~
r , r

sin ym sin ynSem (s,u)Sen (s,u)
Sp m,n A A

n

•Sem (s,<l>)Sen (s,<l>) cos (yn-ym )- (22)

Wi en R is sufficiently large,

(23 )

Then the intensity of the diffracted wave at (/?,<#>) resulting when a plane

3 Proof that the plane-wave expression is valid for diverging waves of sufficiently large radius of curva-

ture was communicated to the Hydraulic Structures Laboratory by L. I. Schiff, and is based on the

rapidity of convergence of the Bessel’s functions of the first and second kinds for a given radius of curva-

ture of the wave crest.
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wave of unit intensity is incident on the other side of the slit at an angle u
to the plane of the slit, is

(24)

I = E “ * —/

-

sin 7m sin ynSem (s,u)Sen (s,u )

m,n X V S

• Sem (s,(j>)Sen (s,0) cos (yn- ym ) , (25)

Equation 25 is used to define an intensity factor corresponding to a point

(.R = IX,
<f>
=

<f>i), which is so close to the gap that the preceding analysis, of

course, is not valid. The factor is tabulated in this form, however, only

to serve as a number which may be divided by RJ\ to yield the intensity

at a point (Ri, 4>i), as eq 24 indicates.

Proceeding further, the total energy transmitted through the opening is

obtained by integrating over </>, as follows:

7
/^tt

j^
f'2-ir

IRl4>Pld<£=— 7=~ / E/m(0)/n(0)cOs(7n-7m)d</), (26)
o /ti v s 2 y o W2

,M

where

/m(0) = Z'^_ sin 7w*Sem (s,w)^em (s,</>),

m 4V m

/«(0) = sin ynSen(s,u)Sen (s,(f>). (27)
n N n

The integral and summation signs in eq 26 may be interchanged, because
the series is uniformly convergent throughout the interval of integration.

In addition, it may be noted that, because of the orthogonality of the

Mathieu functions, all terms of eq 26 disappear except the ones in which
m = n

,
and the cosine factor becomes unity.

Equation 26 becomes, therefore,

2dx 1
/* 2ir

T' = Td= —y='£—£sin2ym [Sem (s,u)]2 I [£em ($,<£)

]

2
d<£. (28)

VSmNm Jo

Moreover, since the integrand in this equation is by definition identical

in value to the normalizing factor, Nm) the final form of the equation for

the total transmission factor is taken as

2tt 1
T=~7=Z!7^sm2

7m [Sem (s,u) f. (29)
VS m Nm

T may be interpreted physically as the ratio of the energy actually trans-

mitted through the slit to the energy which geometrical optics predicts

would be transmitted at normal incidence. Equation 29, being relatively

simple in form, could be computed manually without too much difficulty.

Equation 25, however, which is by far the more important of the two
relationships from a design standpoint, lends itself best to mechanical
means of computation. Plots of the two factors as computed by the

Institute for Numerical Analysis, appear in figures 3 and 4.
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OPENING = \z WAVE LENGTH

Figure 3. Polar

(Vertical face

of intensity factor,

breakwaters.)

2.4 Comparison

While the Morse-Rubenstein solution appears to be of most direct

value in harbor design, it should be pointed out that the Penney-Price
solution, too, possesses certain valuable qualities. The wave crest aline-

ment and phase relationships, for example, are more readily ascertained

by the latter method, except for the small openings. For very large gap
widths, say of the order of seven or eight wave lengths, the boundary
condition of the Penney-Price solution approaches the desired value
rather well, whereas the Mathieu functions converge much more slowty
for large openings. For that reason, it may be more convenient for such
large widths to determine the energy intensities by means of the Penney-
Price approach.

It is interesting to note that there is a great deal of agreement between
results of the two methods in their common domain. It has been found,

118



for example, that an intensity plot based on wave heights tabulated by
Penney and Price for an opening of 2.5 X shows a form strikingly similar

in relative proportions to one for a 2A opening based on the Morse-Ruben-
stein solution.

An important quantitative result developed by Penney and Price for

the slit problem appears to apply reasonably well when compared with the

Morse-Rubenstein curves of figure 3. For distances behind the gap

greater than some minimum

= (30)

or, the maximum intensity factor is approximately equal to the square of

the opening in wave lengths.

Figure 4. Theoretical transmission factors.

3. Experiments

3.1 Techniques

The primary purpose of the experimental program was to check the

theoretical results of the Morse and Rubenstein solution for vertical face,

straight breakwaters. This was especially important for small openings
and for wave-approach angles less than 90°, since no experimental work
covering this range of variables had come to the attention of the Labora-
tory. The development of equipment and techniques for this purpose
made it possible to extend the experimental investigation to include

some breakwater configurations of practical interest, which, because of

their alinement, are not susceptible to theoretical analysis.
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The experiments were conducted in an L-shaped basin (fig. 5), 20 feet
wide by 60 feet long, with an offset portion 12 by 24 feet at the shallow
end. The water depth at one end of the basin w^as made 12 inches to
accommodate one of the standard laboratory pneumatic wave generators,
with the bottom rising from this depth at a slope of 1 in 40 to a line where
the depth is 3 inches. The remainder of the basin has a uniform depth
of 3 inches. The breakwaters and “harbor” were located in the region of
uniform water depth, thus eliminating refraction phenomena from the
investigation. Pea gravel beaches around the periphery of the harbor
effectively prevented reflection from the basin walls. Different angles of

Figure 5. Basin for experimental measurements.

wave approach wrere obtained by rotating the breakwater, the wave
machine remaining fixed. The offset portion of the basin provided space

for a damping beach to prevent the reentry of waves reflected from the

breakwrater into the region near the breakwrater opening, thus simulating

a basin of infinite extent. For the cases where the breakwater was alined

at 60° and 90° to the direction of wave approach, waves reflected from the

breakwater were not intercepted by this side beach, but traveled the

length of the basin, reflected from the wave machine and so could inter-

fere with the incident wrave train. Difficulties of this kind were pre-

vented by providing sufficient distance from wave generator to breakwater
so that measurements could be obtained before waves reflected from the

breakwater reached the wave generator.

Incident wrave height was measured in deep water, near the wave
machine, to insure freedom from obscuring reflections. The data obtained

wras corrected to represent wrave heights incident at the breakwater

opening. Calculations based on the effect of shoaling indicated that the

deep-wrater values should be reduced by 8 percent, but direct measurement
of the change in incident wave height gave a value of 25 percent. The
additional height reduction is assumed to be a fluid friction phenomenon.
The distribution of transmitted wave energy was obtained by vrave-

height measurements at 4° intervals on a semicircle of radius 5.76 wrave
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lengths centered on the opening. The intensity factor, Ir <<t,
in each

direction <£ can then be expressed as:

Ir,4> ~
ihR,4>

where

b (kM y

Qiif 'x ’ (KY

^i?,0 = wave height measured at (fr,R, inside the breakwater,

hi =wave height incident at the breakwater,

R = radius of measuring circle,

X = wave length.

The total transmission factor, T, is computed by a summation process

f\hR^Rd<f>
T=

h?d

where d is the gap width in the same units as R.
Wave heights were measured by means of sixteen channels of electrical-

conductivity cells. Each cell consists of a pair of wire electrodes sup-

ported and spaced one-half inch apart by an insulating block at one end.

The electrodes are immersed to a mean submergence of 1 inch, and a

constant voltage is applied across the cell. The amount of current con-

ducted by the cell is a linear function of the submergence, hence of wave
height. The current signal from each cell corresponding to the wave
motion past each cell is recorded on a galvanometer oscillograph.

3.2 Results

A comparison of theoretical with experimentally determined energy
transmission for vertical face straight breakwaters is shown in figure 6.

The theoretical solutions indicate that for projected widths of openings
in the direction of wave approach greater than one-half wave length, the

effect of diffraction on energy transmission is minor, but for smaller open-
ings, the energy transfer is larger than would be expected from geometrical

considerations. The experimental data are in fairly good agreement
with the theoretical values with respect to these general conclusions,

although the measured values are about 20 percent lower than theoretical.

Because wrave energy is proportional to the square of the wave height, the
difference between theory and experiment on a wave-height basis—
wffiich is the measured quantity— is but 10 percent in most cases. These
results are considered sufficient evidence of the validity of the theoretical

approach, at least for engineering applications.

The most important application of diffraction considerations is in the

analysis of wave-energy (or height) distribution in the lee of the break-

water gap. Figures 7, 8, and 9 present some results of experimental
distribution measurements for three breakwater configurations: (1)

straight arms in line with each other, (2) straight arms inclined sym-
metrically with respect to an axis consisting of the perpendicular bisector

of the line of the opening, (3) straight arms at right angles to each other,

the seawrard arm parallel, and the leeward arm perpendicular to the in-

cident wave crests. Three degrees of sheltering of the gap by the sea-
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ward arm were studied, corresponding to projected openings in the direc-

tion of wave advance of l/\/2 and zero gap 'widths, and a seaward arm
overlap of l/V^ gap widths.

Figure 6. Theoretical and experimental transmission factors.

(Vertical face straight breakwaters.)

The experimental data for straight breakwater alinements, some of

which are shown in figure 7, may be compared with the theoretical data
of figure 3. The agreement between experiment and theory, while not

exact, is reasonably close, and supports the important general conclusions

of the theory. In particular, the experimental data verify that the maxi-
mum value of the intensity factor is proportional to the square of the gap
width, and that the effect of reducing the gap width is to distribute the

wave energy more uniformly in the region behind the breakwater.

Figures 8 and 9 present experimental data for the wave-energy distri-

bution in the lee of some breakwater configurations that cannot be

analyzed by the theoretical approach.

The data of figure 8 show the energy distribution resulting from normal
wave approach for an important class of breakwater alinements — sym-
metrical arms converging seaward, or so-called “wave traps.” The data

show that, as the included angle between the breakwater arms is reduced

from 180° (straight breakwater) to 90°, there is virtually no change in the

energy distribution. This result is in agreement with the observations of
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Figure 7. Polar plots of energy distribution.

(Vertical face straight breakwaters.)
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Figure 8. Polar plots of energy distribution.

(Vertical face symmetrically inclined breakwaters.)



Blue and Johnson [4]. For still smaller included angles, marked changes
appear due to the partial frustration of the diffraction process, or pre-

vention of free expansion of the wave crests. Thus, the 60° and 30°

alinements are marked by a decrease in intensity along the axis of sym-
metry, and a build up of intensity along the breakwater arms. It should
be noted that for such extreme cases as the 30° alinement the intensity

t 1 t

Two wave length openings

Figure 9. Polar plots of energy distribution.

(Vertical face right angle breakwaters.)

factor concept is not valid, and the data cannot be used to compute wave
heights at other than the original measuring distance of 5.76 wave lengths

from the opening. In the limiting case of parallel breakwater arms,

there would be no diffraction at all, the wave heights remaining constant

for the entire length of the channel; in the 30° case illustrated, the

heights must decrease at some rate intermediate between the “zero rate”

for a channel and the inverse square root of distance relation for complete
diffraction. The data clearfy indicate the transition in behavior between
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60° and 30° enclosed angles, and so points out an important factor to be

considered in the design of harbors with converging breakwaters.

The data of figure 9 are included as a purely experimental evaluation of

types of energy distribution that may occur for typical asymmetrical
breakwater alinements. The origin of the polar plots for these cases is

not the center of the breakwater opening as in the other figures, but is the

terminus of the breakwater arm oriented parallel to the incident wave
crests.

The case in which the seaward arm does not shelter the opening may be
regarded as a half-model of a straight breakwater with a gap width of

2\/2A. The resulting intensity diagram, with allowance for the skewness
resulting from the unsymmetrical locus of the plot, compares in general

shape (although somewhat deficient in magnitude) with the corresponding

data of figure 3 for a 3A opening.

The intensity diagram for the case in which the seaward leg just shelters

the gap is similar in shape and of the same order of magnitude as those for

the straight breakwater with 0° wave approach. This observation is in

agreement with the behavior observed for some of the symmetrically
inclined breakwater alinements, that the diffraction process is more sensi-

tive to the angle of wave approach with respect to the alinement of the

opening than to the alinement of the breakwater arms which define the

opening.

The diagram for the case in which the seaward arm overlaps the lee-

ward arm not only shows the remarkable increase in sheltering obtained
with such alinements, but also indicates a shift in direction of the maxi-
mum disturbance. The latter effect is easily explained : The wave crests

after diffraction around the terminus of the seaward arm of the break-

water approach the leeward leg at nearly 90°, and the resulting intensity

distribution is as would be expected after diffraction around the leeward
terminus.
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15. Scattering of Water Waves Treated by the

Variational Method

By Joseph B. Keller 1

Abstract

To describe the scattering (i.e., reflection, transmission, and diffraction)

that occurs when water waves impinge upon a submerged or floating

obstacle, a discontinuity of bump in the bottom contour, a change in

width or depth of a channel, etc., requires the solution of a partial dif-

ferential equation subject to specified boundary conditions. But
generally the complete solution is not desired—only its behavior far from
the obstacle is required. The far behavior of the solution (in the linear

theory) can be obtained without solving the complete problem, by means
of the variational method employed extensively by Schwinger and his

coworkers to treat the corresponding electromagnetic problems.

The method depends upon the fact that the far field can generally be
characterized by one number, the amplitude of a scattered wave, or some-
times by the amplitudes of several scattered waves. This fact can be
deduced from the representation of the solution as an integral over the

obstacle, which is obtained from Green’s theorem. From this same repre-

sentation both an integral equation and various variational problems for

the solution can be obtained. The stationary values of these variational

problems are just the amplitudes of the scattered waves. Thus good
approximations to these amplitudes can be obtained by applying the

Rayleigh-Ritz method (or any similar procedure) to the variational expres-

sions. The method has been applied to several water-wave scattering

problems: a small post in a channel or rectangular cross section, a change
in depth of a channel 2

(e.g., “continental-shelf” problem), etc.

1 Institute for Mathematics and Mechanics, New York University, New York, N. Y.
? This application was made by Mortimer L. Weitz and the author.
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16. The Diffraction of a Swell. A Practical

Approximate Solution and Its Justification

By H. Lacombe 1

There is presented a practical approximate solution for the evaluation of the ampli-
tude of a swell diffracted at any incidence whatever by a pass in a breakwater.
M. Schoemacher, of the Laboratory of Delft, has reported that the problem of the

diffraction by a pass at any incidence whatever has been solved. But this solution

involves the rather unusual Mathieu functions [2],
2 of which there exist few detailed

tables. There is presented a solution easy to employ which, even though approximate

,

should suffice for most cases.

There is also presented a generalization of Huyghens principle for oblique incidence
derived from the method advocated by Kirchhoff [3] to justify this principle for waves
of three dimensions. The assumptions are examined in detail; because it is difficult

to predict their effect, it is necessary to compare with the exact solution and, still

better, with the results of model tests.

1. Generalization of Huyghen’s Principle

Consider a swell moving in the unlimited plane xOy of water of depth
k, Oz being positive upward. Its velocity potential is of the form

g Chk(h+z)

a Ch kh
ue

iai

)

with a= 2r/T= gk Th kh and k = 2tt/\,

T the period, X the wave length, u, a function of x and y, is the topo-

graphy of the free surface at the instant £ = 0. As (f> satisfies A<£ = 0, one
has

d2u d2u
7—H

—

z+k2u= 0.
dx2 dy2

Consider on the other hand, the function

Ch k(h-\-z)

+ = D 0 (kr)e
iat

,Ch kh

where r is the distance of a fixed point P from any point M, and D 0 (kr )

= v(kr). Following the notation of Lamb [4],

D0 (Z) = -Y0(Z)-iJ0 (Z ),

1 Service Hydrographique de la Marine, Paris, France.
5 Figures in brackets indicate the literature references on p. 139.
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Jo and 70 being the Bessel functions of order 0, of the first and second

kinds, respectively. Retaining the real part one has

Doikrfe^^Joikr) sin at—Y0 (kr)cos at. \p satisfies A\p= 0, and one has

d2v ldv—

A

\-k?v = 0.
dr2 rdr

\J/
is the velocity potential of a surface wave created by oscillations in

the small region enclosing the point P

.

Consider then (fig. 1) a volume, V, formed by a vertical cylinder with

horizontal cross section, l, in the interior of which is placed a second

circular cylinder of radius e whose cross section X centers on the vertical

through P. These cylinders are limited at the bottom where z= —h and
on the surface where z#0.

For the volume comprised between the two cylinders, where \{/ and (f>

remain finite as well as their derivatives, we can write Green’s theorem

JJJ (<pAt+tA(f>)dv=
J"

J*
(1)

The normal derivative is taken in the outward sense from V.

The triple integral is zero because A4> = A\f/ = 0. The surface integral is

taken over the whole surface of the volume V, that is to say, on the one

hand over the surface of the exterior cylinder S and the surfaces of the

bases diminished by the bases of the small cylinder, and on the other hand
over the lateral surface £ of the interior cylinder. Thus the formula

reduces to
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Since at the surface and at the bottom the normal is directed according

as Oz is positive or negative, one has

d(j> d\f/ d\f/ d\f/— = ±— >
-— = ±— »

dn dz dn dz

rigorously at the bottom where z is equal to —h, to the second order

(approximately for a flat wave) near the surface.

The integrals relative to the bottom and to the surface are thus zero.

There remain the integrals relative to the lateral surfaces of the two
cylinders; substituting the values of and \[/, they become

Ch2 /c(/i+

5 Ch

z{h+z)( dv du\———1 u—— v— lah
;
2 kh \ dn dn)

(

Ch 2 k(h-\rz)( dv

v Cn2 kh \ da
= 0 .

u and v depending not on z bat only on l and X, one ca l si nplify and write

du\
V— )e(ld — 0
dn)

because on the circle X one has d\ = edO.

The second term of the second integral tends toward zero because
du/d n = —du/de has a finite limit and eDo(ke) tends toward zero, since for

small z,

Do(z)#

-

2
\og

Z

0
-

7T Z

As to the first term, u tends toward uP) edv/dn = —dv/de tends toward
2/ 7r, and

dv
u—edd — —

, dn
dd = 4:U,

One thus has deduced the fundamental formula

(3)

which relates the value up of u at a point P to the values supposedly
known which the function </> has on the closed contour l.

Let there be an unlimited basin of constant depth referred to the two
axes Ax and Ay. There is propagated in the direction of y positive a

simple harmonic wave of the form

ga Chk(h+z)
ik ial

a Ch kh

Suppose one introduces in this basin a breakwater leaving a pass AB
(fig. 2). Let AX and A Y be the axes relating to the breakwater, and Ax
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and Ay the axes relating to the direction of the swell. Let a be the angle

between Ox and AB, A being the first end of the pass reached by the

swell. The coordinates of the point P where one seeks the motion are

x,

y

and X,Y in the two systems of axes.

We apply Green’s theorem to a closed contour l formed by the portion

X'A of the breakwater, the pass AB, the portion BX
,
and then a line to

infinity represented schematically by the broken line in the figure.

We then suppose that (a) the functions u and du/dn are identically

zero from X' to A, from B to X, and on the remainder of the contour l;

(b) between A and B the function u maintains on AB the value that it

would have in the absence of the obstacle; (c) in spite of the discontinu-

ity thus introduced in u and du/dn, we can apply Green’s theorem.

Nolhing can be said at this time as to whether the movement lhat we
will deduce from eq 3 will coincide with the assumed movement at F= 0.

Under these conditions, the function u on AB is taken equal to ae~ ky

or ae~ iklBlna
,
denoting by l the length AM (fig. 2). Let 6 be the angle

between the normal at M to AB directed toward Y negative, and the

radius vector PM= r. Equation 3 gives

4up= — f [" (ae~
iM ““ “— —D0 (Jcr)/- (ae~

ikl sin
“) ~\dl,

J abL dn dn J

du du _ ik

dn dy

On the other hand, if r is sufficiently large, greater than two or three

wave lengths, one has practically

Do(fcr)#
i\/V i<*'+"‘>

ic \ r
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by neglecting a term in r~*. In the same manner, by neglecting a new
term r~q one has practically

dv dv— = cos 0— =
dn dr

y/\ik cos 6 •

i(kr+ir/4)

7r y/r

By substitution, these become

— i[k(l sin a+r) — ir/4]

4U«=~=-W\ f
7T J ,

(cos 0-f-cos a:)dZ,

ab Vr

and, taking X as the wraY of measure of horizontal lengths

Up
1 CQS a+ CQS 9 _-j\2r (l sin a+r) -x/4]^

vA 2
(4)

One passes to <j>P by multiplying by
Ch k(£+h ) )V(

Ch kh
6 ' This formula,

gives a statement of Huyghen’s principle valid (within the limits of the

assumptions made) for oblique incidence.

The motion at P can be considered as due to elementary sources dis-

tributed on AB, the phases being taken equal to those that exist on AB in

the original motion, say 2irl sin a, and which produce at M a motion

inversely proportional to y/r and of which the phase is retarded by 2xr
because of the trajectory MP. The term (cos 0+ cos a)/2 expresses the
effect of the oblique incidence and of a directivity of the sources.

For normal incidence, 45 is a wave surface and the angular term
becomes (1+ cos 0)/2. If one refers to our study of diffraction at normal
incidence [5], one sees that we arrive here at the average of two solutions,

which we have believed should be considered and which are quite close,

at least near the limit of the geometric shadow.

2. Practical Evaluation of the Motion

Displacing the phases by 7t/4 and taking in the following as origin of

the phases those existing at the point P in the absence of an obstacle,

that is to say, subtracting 2try, we have

-4= (cos 0+cos a)e-'l2’ <'

y/r

The equation is valid in large part if F>2.
Placing 3 then

l sin a— yA-r= p
2
/4: =PM— PQ,

P has two values of opposite sign between which we will later make a

choice. Eliminating l, this becomes

MC*=Jl=xj*=r*-Y>, dl= j==£±Vr2-P
* This change of variables is that previously used by Fresnel for the study of optical diffraction.
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Since cos 6 = Yj

r

,
up is equal to

a r ( r I

Y \
u7,
= - / 1 v r cos cH—7=

)
2J ab\ Vr/

ip-n/2 dr
(5)

and one easily obtains

pclp rdr sin a dr— =dr-\ and , .

2 ±Vr2-F2 ±Vr2-72

dp

r=
p
2+4F cos o:±p sin a\/

p

2+8F cos a

t 2 sin a. I— -1_—sin a,
16 ' 2

4 cos2 a

Placing these values in eq 5, we finally have

_a f Vp2+8F COS a± p sin a
'U'p I ni~ • — " ~~

AB v p
2+4F cos ct±p sin a\/p2+8F

e~
iphr/2

dp.

The two signs lead to two determinations of r as a function of p.

p becomes zero when M passes beyord the point Q' on the normal to

the incident crests passing tt rough P. It is logical to take p positive on

one side of Q' and negative on the other, and one passes over the entire

infinite line X'X when p varies from — oo to + oo

.

When the point P, in relation to Ay (A being the first end of the break-

water reached by the swell), is on the side opposite to B (the second end

of the breakwater reached by the swell) the parameters p 0 and pi relative

to the ends of the breakwater A and B are negative; p 0 is negative and

Pi positive when P is found between Ay and By': p 0 and pi are negative if

P is on the side of By', which does not contain Ay. And one has

PO= ± 2VPA-PA h = - 2V2R0 sin
6-^~

Pl=±2VPB-BBi, =-2V/
2i?isin^y

-

with Ro = PA, Ri = PB.
Figure 2 shows these conventions in the framed labels.

Restoring the factor eiat and retaining the real part, one sees that the

superficial motion at P is

Ur>e"-
1/

VJ+BY cos a— p sin a
cos dp

po V

p

2+4F cos a— p sin p
2+8F cos a

=~
J"

P cos^at-^p^dp. (6 )
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The amplitude of the motion is given by the distance of the points of

parameters p 0 and pi on the curve

and

* a f' 7r

a = -
/

P cos-pWp
2J o 2.

v a f' . ir
7“=

2y Psin
2
pdp -

Taking a= 1, one obtains the relative amplitude. The curves (fig. 3)
are analogous to the Cornu spirals, and to the spirals introduced with
relation to normal incidence [5], and as long as Y> 2, they practically

Figure 3. Spirals of relative amplitudes.

Take the interior 3piral which is the Cornu spiral reduced in the ratio 1/ V 2.

differ very little. The angle of contingence is 7rp
2
/2; the radius of curva-

ture at the point of the parameter p is $t = P/2Tp. The curves p = const,

are parabolas which one can trace once and for all (fig. 4). The straight

line p = 0 corresponds to the parallel to the direction of propagation of

the incident swell passing the end of the pass.
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3. Some Practical Examples

3.1 Case of Very Large Passes. Semiinfinite Breakwaters

For Y greater than several units and |p|<2.5 we have verified that the

spirals were practically identical with the spirals of Cornu.4 Thus on a

straight line y = constant, the motion is the same as for normal incidence

because the parameter p 0= =fc 2\/R a—y has the same value as for normal

incidence (fig. 5).

The curve obtained for y = 4 and a = 30° is, to the accuracy of the draw-

ing, almost identical with the “simplified solution” proposed by J. A.

Putnam and R. S. Arthur [6].

The curves of equal amplitude, for Y greater than a few units, are

approximately parabolas having the end A of the pass as focus.

4 Therefore symmetrical; it is thus not necessary to particularize the signs of po and pi but it suffices to
take the different branches of the spiral when popi<0.
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AGITATION ALONG A-B

Figure 5. Solution for y=4 and a = 30° compared with simplified solution proposed by

Putnam and Arthur.

Dash line, proposed solution: full line .simplified solution by Putnam and Arthur

Figure 6. Diagram of breakwater with narrow pass , showing notation.
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3.2 Case of Passes of Limited Dimensions

One effects the integration between the values p 0 and pi of the para-

meter corresponding to the ends A and B of the pass. The amplitude
passes through minima, the parameters p 0 and pi being of the same sign,

if the values of 7rpi
2/2 — 7rp 0

2/2 differ by a multiple of 2t) if they differ by
an odd multiple of 7r, there is on the contrary a maximum.

If the distance Lfrom the center of the pass to the point under consideration

is large in comparison to the dimension D of the pass (I) in wave lengths),

the values of p are small and differ little in the neighborhood of the straight

line passing through the center C of the pass and parallel to the direction

of propagation (fig. 6). If far from this straight line, the values of p

differ more but are large, and the spirals are thus almost circles. Thus the

amplitude in all cases (fig. 7) becomes

29isin j(pi-po), (7)

being the radius of curvature pertaining to the value of p relative to

the point C
,
namely,

p = — 2V2L sin——

-

A

(See fig. 6 for significance of notation).

138



Under these conditions, one shows in a simple manner that the expres-

sion 7 becomes practically

D
2VL

(sin 0o+sin 0}
sin ttD (cos 0— cos 0O )

ttD (cos 0— COS do)

where D and L are expressed in wave lengths.

For 4> = 6o, this expression takes a value equal to

(8 )

D sin do D cos a

Vl
=
Vt

which gives the amplitude on the straight line passing through the center

of the pass and parallel to the direction of propagation.

There are minima of very slight motion in the directions such that

7tD (cos do— cos 0) =mr,

whence cos dQ
— cos (f>

=n/D
,
n being a positive or negative integer.

The maxima of amplitude are found practically on the radius vectors

such that

cos do
— cos 0 =

2p+l

2D

p being a positive or negative integer but not zero; there is a supple-

mentary maximum found for 0 a little larger than do] the error with respect

to do arises from the presence of the term sin 0O+ sin 0 and is so much the

larger as 0 varies more rapidly in the neighborhood of do, that is to say

that do is smaller. As a result there is a dissymmetry of the branches so

much the greater as d0 is the smaller.

Whatever the case may be, one finds these diagrams of directivity at

the “branches,” [1, 5], the directivity being so much the greater as the

pass is larger with respect to the wave length. These branches are, for

normal incidence at least, visible on certain photographs obtained in the

laboratory [7].

Figure 8 relates to an incidence of 60°; for a width of the pass of three

wave lengths.

One deduces from formula 8, contrary to our assumptions, that the

motion is not zero for 0 = 0 and 0 = t, but small, on the interior face of the

breakwater. The result obtained is thus only approximate and only

model tests will make it possible to state that our assumptions will not

lead to errors too large for practice.
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Figure 8. Diagram, of amplitudes for a pass width of three wave lengths
,
angle of incidence

a equal to 60°.
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17. The Criterion for the Possibility of

Roll-Wave Formation

By A. Craya 1

The theoretical interpretation of roll waves, proceeding from the equations of Saint-
Venant, can follow two primary lines of approach : the first considers the stability of

flow in a channel, i.e., the damping or amplification of a perturbance of small initial

amplitude
;
the second proceeds from a systematic analysis of the quasisteady regime

introduced by H. A. Thomas.
The object of the study is to analyze, compare, and clarify these two points of view

for a prismatic channel of arbitrary cross section and for resistance laws of general
form. Both lead to the same criterion for the condition of roll-wave formation, which
coincides for particular conditions with the formula obtained by Vedernikov from a
somewhat different stability derivation.

1. Introduction

Within the vast family of gravity waves, “roll waves” do not occupy a

place of major importance in engineering science; nevertheless, they are

of a certain indirect interest, because they constitute a phenomenon at the

border of the usual open-channel flow and thereby can serve to check the
validity of the approximate equations by means of which we nowadays
calculate these flows.

Since the time of Boussinesq, who initiated its study without being
aware of it, many investigations have been devoted to this question by
diverse methods and approximations; as a consequence, the theory has
lost in unity while gaining in scope, and the logical relationship and the

practical agreement of the various results do not always appear very
clearly.

The object of this study is to give a simple and coordinated presenta-

tion of the theory without resorting to too complicated calculations;

while still considering a very general case, i.e., channels of arbitrary

cross section and arbitrary resistance laws. The line of approach of the

investigation of quasi-steady regimes inaugurated by H. A. Thomas is

first examined and its consequences are analyzed in a geometrical manner
by introducing a convenient representative plane. Thereafter, the study
of stability of a permanent regime is centered on the motion of an ele-

mentary wave, following a presentation which we have introduced in a
previous publication .

2

We then finally emphasize the agreement of the

results thus obtained and the complementary physical interpretations

implied by each of the two fines of research.

1 Iowa Institute of Hydraulic Research, Iowa City, Iowa. On leave from Etablissements Neyrpic and
University of Grenoble, France.

3 Craya, A., Calcul graphique des regimes variables dans les canaux, La Houille Blanche, No. 1, Nov.
1945, pp. 39-60.
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2. Basic Equations

In the following treatment we shall use the well-known approximation
of the equations of Saint-Venant. Letting x be the abscissa measured
along the bottom, i the slope of the bottom (assumed to be constant but
not necessarily small), U the mean velocity, Q the discharge, h the depth
measured normal to the bottom, A the coefficient of resistance, R the
hydraulic radius, the dynamic equation and the equation of continuity
are written

d
(i

.,U>\ IdU . . U> .—lh cosi+— ]+——= sm i-eX— > (e = sign of U)
dx\ 2g) g dt gR

dQ du = Q
dx dt

( 1 )

These equations can be somewffiat perfected by introducing, according to

Boussinesq, a coefficient a of unequal velocity distribution; this factor

certainly plays a role in the very turbulent flows which we are going to

consider, but it is not at all certain that we can accept a = const., as is

commonly done. We thus prefer to avoid this question and, in an attempt
towrard clarity, to follow' the basic equations given previously.

3. Quasi-steady Regimes

The most simple solutions of eq 1 leading to important results in several

domains are those corresponding to a mass propagation of a surge with a

constant celerity; observed from reference axes moving with velocity c,

the phenomenon is reduced to a steady flow condition, but with moving
wralls. The introduction of this very simple and very fruitful notion is

due to H. A. Thomas.
Writing U and co as functions of x— ct, the basic eq 1 are immediately

translated into relative axes by

cos £+
2g)

= sin i—e\-
(c±uy

i

gR
U'co'= Q' = const., (2 )

w'here e is the sign of c+C7', and U' and Q' are the relative velocity and
the relative discharge, respectively. Evident^ these equations define

generalized backwater curves and reduce to the customary backwater
curves of hydraulics when c = 0. In wffiat follows we shall, by convention,

take the positive direction of x in the dowmstream sense. The term sin i

is then positive, and the quantities U', Q', U
,
and Q are measured alge-

braically according to the positive direction chosen.

As in classical hydraulics the development of these new backwater
curves is governed by the notions of critical depth and normal depth.

The first one always corresponds to the minimum of the specific head E.
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The derivative E' of this quantity with respect to h is written

Q'2

E'= cos i——b,

gw2

where co is the area of the cross section and b the width at the free surface

.

From this we obtain for the critical regime defined by E' = 0

Q'=±yj^cosi. (3)

In the following articles we shall make great use of a representative

plane Q',o> which seems to us particularly well adapted to the results that
we have in view; on such a plane (fig. 1) the curve of critical regime E' = 0

divides two regions corresponding, respectively, to so-called “shooting”
flow (E'< 0 or co<coc ) and “tranquil” flow (E'> 0 or co>coc ). As to the
notion of normal depth, we define it by the condition of uniform flow,

that is, by the relation F = 0, where F is the right-hand member of the

dynamic eq 2 ;
this can also be written, designating by x the wetted peri-

meter, in the form

„ • . ,(*»+Q ') 2

b =smt- eX x-
go?

In order to represent these new uniform regimes on the plane Q
f

,
co it is

convenient to introduce the absolute velocity through the relation

Q = coi JrQ',

and to find as a preliminary task the dotted curve of figure 2 representing

. . XQ2

sm i ix = 0,
go?
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which is the law of ordinary uniform regimes Q(co) for fixed sides; then,

by laying off from the straight line Ot of slope —c, the ordinates mM
equal to m'M', we will obtain the desired curve of uniform regimes for

moving side.

Figure 2. Diagram for evaluating uniform regimes in 'plane Q', co.

With the introduction of the quantities E' and F the profile of the surge

is written

and the slope of the free surface with respect to the bottom depends on
the depth of water with respect to the normal and critical depths. The
over-all situation is clearly represented by the plane Q', co, on which the

curves of normal and critical regime are drawm (fig. 3); this plane is

divided into regions in wrhich the sign of E'/F remains constant; the

cross-hatched regions correspond to positive values, i.e., to a depth of

water increasing with distance downstream; each water-surface line is

given by an intersection of the diagram by a straight line Q
f — Const.;

during the passage across the critical regime the profile is (theoretically)

normal to the bottom, and in the vicinity of the point of uniform flow we
have an asymptote parallel to the bottom. A first essential point that we
note at once and wiiose importance will become clear later is the possibility

of two cases, depending on whether the minimum of the curves of uniform
regime falls into the tranquil region (fig. 3a) or the rapid region (fig. 3b).

Let us further note that fig. 3 corresponds to c>0, i.e., to surges moving
downstream; wre shall leave aside the case of the surges moving upstream,
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which is in general less interesting for the subject with which we are

concerned.

Figure 3 allows a systematic classification of surges of constant form

to be made, and we note in passing that it shows a few supplementary

Figure 3. Regions of normal and critical regime in plane Q',u.

(a) Minimum of uniform regime in tranquil region, (b) Minimum of uniform regime in rapid region.

cases in addition to those originally indicated by Thomas for a rectangular

channel. But the second essential point which we would like to bring into

light is Seddon’s law for the celerity of surges. If we cut, for example,

the graph in fig. 3a by a horizontal line comprised between the lines L'

and L", we obtain the surge of fig. 4, which corresponds to the passage of

Figure 4. Surge corresponding to passage from uniform regime Qiwi to another uniform
regime $2^2-

a uniform regime Q\u\ to another uniform regime Q 2W2 . By virtue of the

relations

Ql=Q'+ CCdi, Q2=Q' -\-cw2,

the celerity is then given as

AQ
c ——

>

Aco
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and if the perturbation is very small, i.e., if we consider an intersection

by a line very close to L", the celerity becomes the law of Seddon

_dQ
dw

We now come to the phenomenon of roll waves. As we have seen,

surges of constant form do not allow periodic solutions; this is due to the
approximation of the equations of Saint-Venant, and R. F. Dressier

obtained solutions for such waves in this approximation by combining
portions of the preceding surges with hydraulic jumps (fig. 5). Such a

Figure 5. Combination of surges with hydraulic jumps.

section AB necessarily allows the crossing of the critical regime'at C, and
in this case it is a crossing without the usual circumstance of a water-
surface line perpendicular to the bottom; in other words, in such a point

C the denominator F of the backwater equation must be zero as well as

E', which corresponds to the lines L'L" of fig. 3a and L, L', L" of fig. 3b.

Furthermore, we must take into account the fact that, owing to well-

known energy considerations, only the positive jump has a physical

existence. With the sign of the discharge Q
f
indicated by fig. 3 and

transferred on fig. 5, the backwater AB must necessarily increase in the

downstream direction, which then excludes the case of fig. 3a; thus, if we
assimilate roll waves into the scheme just described, they are only possible

for the case of fig. 3b, i.e., for a minimum of the curve of normal regime in

the rapid region.

Such is then the criterion to which one is led by following the water-

surface line of quasi-steady regimes, and we are going to develop and trans-

late this into equation form. If w is the abscissa of the minimum M of

fig. 3b, we note with reference to fig. 2 and to the manner in which the

curve OMN relative to a certain celerity c is deduced from the ordinary law
OM'N' of uniform regimes, that this celerity c is the slope of the curve

OM'N' at the point M' of the same abscissa as the minimumM
;
we have,

in fact, at the point M, dQ'/dw = 0, i.e., according to Q' = Q— cu,

Consequently, the ordinate Q' of the minimum M is known as soon as the

abscissa is given
;
that is,

Q' =Q-
dQ

doo
(4 )
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In other words, if we consider all the possible celerities c, the line connect-

ing the corresponding minimums M is the curve defined by eq 4 where

QM is the law of the uniform regimes. To clarify our criterion of the
possibility of roll waves, we have then only to compare the different

points of eq 4 with the curve of critical regimes given by eq 3, i.e., to

write

If a physical interpretation of the foregoing result is desired, we can,

by grouping the terms differently and by dividing through by <o, rewrite

the inequality 5 in the form

U -(- /— cos i. (5a)
do: \ b

As we have seen, dQ/do: is the celerity of Seddon, i.e., the celerity of a

small surge which has arrived at an invariable form and is governed
essentially by the channel resistance. The right-hand side of the inequal-

ity, on the contrary, is the Lagrangian celerity for an elementary wave
under the exclusive action of gravity and inertia. Roll waves are possible

in the neighborhood of a uniform regime only when the first celerity is

greater than the second. Later we shall see an additional interpretation

of this fact starting from the idea of stability of a uniform regime.

For a detailed calculation of criterions, it is convenient to introduce

systematically the mean velocity U instead of the discharge by means of

the relation Q=Uu; eq 5 then becomes

or, again, by letting V be the relative celerity y/(goj/b) cos i,

V d
-Cco—log U. (5b)
U do:

The ratio U/Vis nothing but the Froude number of a uniform flow, and to

make roll waves possible this factor must be greater than a certain limit.

We shall take up this calculation later.

4. Stability of an Elementary Wave

Historically it is not from the previous viewpoint of quasi-steadv

regimes that the roll waves have first been analyzed, but rather from
stability considerations. Starting from a uniform regime, for example,
the evolution with time of a sinusoidal undulation of very small amplitude
is studied and, depending upon the case, an exponential damping or

amplification is found. This was first done by Harold Jeffreys for the
case of Chezy resistance. In the same order of ideas a clearer physical

picture of the phenomenon is obtained by substituting for the sinusoidal

perturbation a steep wave front.

147



For the following discussion we shall define an elementary wave as a
shock wave of very small amplitude (fig. 6). It is appropriate to note
here that this is a schematic theoretical representation, since real wave
fronts are in general complicated by secondary phenomena; still, this

concept is extremely useful, and we have shown in a previous publication
that it permits the theory of characteristics to be shown in a particularly

Figure 6. Schematic shock wave of small amplitude.

intuitive fight. It is easily proved that within the conditions of fig. 6

the celerity of an elementary wave is

c=U+V} where h

and that the variation of the velocitjr AU and of the section Aw across

the wave are related in the form

AU= g— cos i Aw,
ow

which can then again be written AU — A

Z

by introducing the new variable

function of the depth of water

Z= ~ cos i do).

OW

The theory of characteristics introduces systematically the viewpoint of

an observer who would move along a channel of variable flow with the

local celerity of an elementary wave; such an observer descending the

current, for example, with a celerity U-\-V notes on his way variations of

velocity and height governed by the relation

d(U+Z)=Mdt, where

We know that we have here an alternative expression of the equations of

Saint-Venant, from which, indeed, it can be derived by a simple linear

combination.
The foregoing properties, which we have recalled here briefly, permit

calculation of the evolution of a wave front of very small amplitude, as

we have indicated in our previous publication. In fact, let U and Z be

the state of the wave front at the point M immediately upstream, and
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Uo and Z0 the similar variables at M0 on the downstream side (fig. 6).
An observer accompanying the wave at M notes that

d{U+Z) = jj-^dx.

On the other hand, an observer moving with M0 notes that

d(U,+Z,)=~~Fdx.
b'OT* v o

From these two relations we obtain by subtraction, and by noting that

the variations AU and AZ remain constantly equal on the passage of the

wave front, the expression

(6 )

in which AfM/(U+V) denotes the variation of M/(U-\~V) across the

elementary front wave and consequently for AU = AZ. As can readily be
seen, this calculation assimilates the celerity of the elementary wave into

that of the observer of characteristics at M
,
and this is the reason why it

is applicable only to the limiting cases of an elementary wave; for a
finite shock wave, a traveler accompanying the wave front is no longer an
observer of characteristics at M and the independent calculation of the

evolution of the wave front becomes impossible.

Equation 6 gives much more complete information than we shall

content ourselves with supplying here; in fact, it does not suppose an
initial uniform regime (it is, however, assumed steady); conveniently
modified, it could apply to a channel of variable cross section; and finally,

it gives the coefficient of exponential damping or amplification. If we
limit ourselves to a uniform regime, this relation becomes, since M0 is

zero,

— (AZ)=-
A/M

.

dx
y ' 2Uo+M„

(6a)

and the criterion of instability, i.e., of amplification, is thus A/M>0.
Let us consider a representative plane 17,w (fig. 7). The curve of

uniform regime

divides this plane into two regions for which M is, respectively, positive

and negative. The criterion consists of studying the sign of M in the

vicinity of the point of uniform regime M and along the direction MF
corresponding to AU= AZ, i.e.,

AU=^j^~ cosi Aw. (7)

There will be amplification if the half-line MF directed toward the positive

Aw falls into the positive region of M, i.e., if the slope is greater than
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that of the tangent to the curve of uniform regimes in M, hence if

g cos i

boo
K
dU'

doo

Upon multiplying by co, we see that we obtain exactly the criterion given
by the consideration of the quasi-steady regimes,

dU
COS l< O0

~

—

0

doo

But our actual viewpoint yields an additional physical interpretation;

we see on the diagram of fig. 7 that the representative point of the wave
front is somewhere on the line MF, and that for this wave front the insta-

bility corresponds to an excess of the slope over the resistance.

5. Criteria for the Possibility of Roll Waves

By two quite different ways the equations of Saint-Venant lead to the

following criterion for the formation of roll waves: if U is the mean
velocity of the uniform regime in a channel (known functions of the

cross section co), and if V=V goo/b cos i is the critical velocity relative to

this section (or the relative velocity of an elementary wave front), there

is instability and hence a possibility for the formation of roll waves when

V d
-<oo—\ogU. (8)U doo

If we want to specify this relation for the various types of resistance

equations, we note first that in all cases where the notion of the hydraulic

radius applies, i.e., for all cases where we can assume a rather uniform
distribution of the frictional forces along the wetted perimeter, the mean
velocity will be a function of the cross section oo through the single inter-

mediary of the hydraulic radius R. Taking the derivative of the above
equation first with respect to R and then with respect to oo, we obtain

(8a)
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We can finally further elaborate and consider first the case where the

coefficient of resistance X depends on the Reynolds number in the approxi-

mate form of a monomial lawX = K(JJR)~a such that the law of the uniform
regime is written

i+«

U=K'R2~a
.

Equation 8 becomes in this case

V / „(fc\l+a

U\ R
dj2-a

(8b)

If we are, however, in the domain of surface roughness with an approxi-

mate relation \ =KR~P
,

i.e., with* the law of uniform regimes
1

l+fl

XJ=K"R 2
,

the criterion of instability is written

V
U
<
\ eW 2

(8c)

These last expressions have also been obtained by Vedernikov starting

from a more complicated stability calculation.

For resistance laws which do not have the monomial form, we could

utilize eq 8a, or more generally eq 8 for the cases of laminar regimes where
the resistance law can be calculated independently of the notion of the

hydraulic radius.
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18. Waves and Seiche in Idealized Ports

By John S. McNown 1

Both waves and significant mass oscillations, or seiches, can be caused within a port
by the sea waves at the entrance. In certain cases for which the geometry is compara-
tively simple, analyses of this movement can be made which are useful both in the
design of ports and in tests on scale models.
For the special case in which the horizontal velocity at the port entrance is zero, the

possible movements are those occurring in a closed basin which were studied by Lord
Rayleigh. The period of the internal movement corresponds to that of the external
wave, and the amplitudes are related, somewhat less precisely, by the nearly complete
formation of a clapotis at the entrance. For a given port geometry an infinite but
discrete number of motions and corresponding periods are found; only those for com-
paratively long periods are treated in detail in this study.
For all other periods, the clapotis is incomplete and the horizontal velocity at the

entrance is periodic and no longer equal to zero. For such motions, the corresponding
mathematical conditions lead to infinite series of Bessel functions for a circular port,

and to products of trigonometric and hyperbolic functions for a rectangular port.

From these analyses it is possible to demonstrate the significance of minor variations
of the period, of the location of the entrance, and of the form of the port itself. In
addition, correlations between results of theory and experiment provide a basis for

extensive studies of the dissipation of energy within a port.

1. Introduction

Because of the extreme complexity of the formation by storm waves of

surface disturbances and mass oscillations within a harbor, useful design

criteria can probably best be obtained by first considering occurrences
which take place within harbors of simplified geometry. In certain

idealized cases, theoretical analyses can be completed and these can be
compared with laboratory studies. In this way useful concepts can be
provided for additional fundamental studies, for model investigations,

and for certain phases of the design of ports.

For this study, harbor geometries were selected not as models repre-

sentative of suitable designs, but on the contrary as forms in which
certain undesirable phenomena could be isolated and studied. Once the

nature and causes of these unwanted disturbances are better understood,

determination of the necessary corrective measures should become much
less difficult. Accordingly, forms were selected for which the walls are

vertical and totally reflecting, the bottom is horizontal, and the plan of

the harbor is simply definable in the geometrical case. An additional

advantage in the study of such simplified forms is that available mathe-
matical methods can be used as a guide to experimentation and in

extending the results obtained.

External waves can stimulate two essentially different kinds of motion
within a harbor, (1) resonant motions for which the possible modes are

1 Etablissements Neyrpic and University of Grenoble, France. On leave from Iowa Institute of

Hydraulio Research, Iowa City, Iowa.
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identical to those occurring in completely closed basins, and for which
there' is; no component of velocity normal to the plane of the entrance,

and^(2) the equallyjmportant although heretofore undiscussed nonreson-

ant motions which arejiirectly affected by a normal velocity component
at the entrance other than zero. For a port of given dimensions an infinite

but discrete series of periods exists for the various possible motions of the

first type. These motions are resonant in the sense that once established,

they continue with the addition of an amount of energy which is theo-

retically zero and actually negligibly small, in contrast to all the other,

nonresonant, motions. These two types of motion can also be charac-

terized by the essentially complete clapotis which forms immediately
outside the entrance. Only for the resonant case does the crest line coin-

cide with the entrance. Although there is evidently a gradual transition

of nonresonant motions between successive pairs of resonant conditions,

the distinction between the types of motion is important in the conduct

of the corresponding analyses.

Resonant motions are closely analogous to the vibrations of a mem-
brane, and it was this analogy that led Rayleigh to make a systematic

analysis of surface oscillations occurring in a cylindrical container [l].
2

The only difference between the analyses of the two physical problems is

that the amplitude is zero at the periphery of a taut membrane, whereas
for the basin the amplitude is a maximum and the normal velocity is

zero. Rayleigh and Bouasse [2] have presented discussions of a number
of cases of resonant motions in circular and rectangular containers and
have shown good correspondence between the results of calculations and of

experiments conducted by Guthrie [3]. Lamb [4] also gives a brief resume

of resonant motions and refers to much earlier but apparently incomplete

studies by Poisson, Merian, and Ostrogradsky. However, neither the

stimulation of these resonant motions by an external gravity wave nor

the occurrence of nonresonant motions had been considered previously.

Consequently, a basic study of idealized ports, described herein, was
undertaken in order to determine the characteristic features of the motions

within ports excited by wave motion at the entrance, both calculations

and experiments being included.

The writer conducted this investigation at the Neyrpic Laboratory in

Grenoble, France, while, as a Fulbright research scholar and exchange

professor at the University of Grenoble, he was on leave from the Iowa
Institute of Hydraulic Research. This report has been abstracted from a

thesis submitted to the Faculty of the University of Grenoble in partial

fulfillment of the requirements for the degree of Docteur es Sciences in

the Department of Mathematics. Additional material as well as more
complete detail is available in thesis form and will be published subse-

quently in La Houille Blanche. The subject of the investigation was
suggested by P. Danel, director of the Neyrpic Laboratory. The method
used in the calculation of the nonresonant motions was contributed by
Professor J. Kravtchenko of the Faculty of Sciences at the University of

Grenoble. Numerous members of the Neyrpic Staff, in particular Mr.
Biesel and Mr. Chapus, advised or assisted the writer in various phases

of the undertaking. Mr. Carvalho and Mr. Castanho, engineers from

Portugal studying laboratory techniques at Neyrpic, assisted with the

experiments and the preparation of the illustrative material.

2 Figures in brackets indicate the literature references on p. 164.
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2. Theoretical Investigations

Calculations based on the classical theory of wave motion formed an
important part of this investigation. Once it was found by a comparison
of calculated and observed results that certain restrictive assumptions
did not result in significant discrepancies, results of the theory summarized
in the following paragraphs were invaluable in the conduct of the experi-

ments. The period and modes of the various resonant motions, the

probability of resonant harmonics occurring, the effect of possible system-
atic errors, and other important characteristics could thus be calculated.

Also, certain problems of stability and several phenomena which could

not be studied easily in the Laboratory were also investigated by means
of the theory obtained.

2.1 Derivation of Basic Equations

Analysis of the surface disturbance within a harbor consists of the
determination of a periodic function satisfying the conditions: (1) that

a particle on the surface has a zero velocity normal to the surface itself,

(2) that the velocity normal to the solid boundary at the walls and bottom
of the port is zero, and (3) that the horizontal component of velocity at

the port entrance is a function of time and space determined from the
fact that a clapotis forms outside the port entrance. The assumption
that viscous effects are negligible makes possible the use of a velocity

potential, and the boundary conditions are greatly simplified by the

restrictions mentioned in the introduction that the bottom of the port is

horizontal and the walls are vertical.

For irrotational motion, the velocity potential, which is evidently a
function of both space and time, satisfies the Laplacian equation

V2
0 = 0. (1)

Also, if the amplitude of the motion is very small, the well known condi-

tion for the free surface can be expressed in equation form

d2
<f> d(j)

dt2 dz
(* = 0 ), (2 )

in which z is taken as positive in the vertical upward direction with the

origin in the free surface. If, in addition, the motion is supposed to be
simply harmonic, 0 can be written as a sum of elementary functions of

the type

071

A nVo 2wt cosh k(z-\-li)

k
C0&

T cosh[kh
Fn(x,y), (3 )

in which V0 is an arbitrary velocity of reference occurring at the surface

for the entire width of the entrance, k is an inverse length characterizing

the horizontal dimensions, T is the period of the occurrence, and h is the

depth of the water. The form of the function F(x,y), through wilich the

surface amplitudes are described, depends upon the geometry of the basin,

and it has been defined only for closed basins of extremely simple descrip-

tion, such as rectangles and circles.
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If the value of <f>n from eq 3 is substituted into eq 1, F(x,y) is found to

satisfy the criterion

V2F+/b2F= 0. (4)

Also, if eq 2 is to be satisfied,

\
=gk t&nhkh. (5)

The two relationships, eq 4 and 5, are fundamental to this study, as well

as to studies of other physical problems. More detailed presentations

have been made by Lamb, Rayleigh, and others. The goal of the fol-

lowing analysis is the attainment of solutions that satisfy eq 4 and the
assigned boundary conditions, eq 5 representing the relationship between
the period of the occurrence, the depth of the water, and the parameter k.

2.2 Application to Circular Ports

If the wall of the port is a circle, the unknown function F(x,y) is most
readily describable in terms of Bessel, or cylindrical, functions. In fact,

if eq 4 is expressed in polar coordinates the resulting differential equation
is that characteristic of Bessel functions of the first kind, a typical solution

being expressible in the form

Fn (r,0) =Jn (kr) cos nd. (6)

The general solution is an infinite series of such terms.

The boundary conditions at the walls and at the entrance can be fulfilled

by means of the evaluation of the appropriate coefficients A n in eq 3.

It is first assumed that the motion induced at the entrance is that corre-

sponding to the clapotis, formed at the entrance, the horizontal component
of the velocity at the entrance being defined as follows:

Vr =Vo cos
27rt cosh k(z-\-h)

T cosh kh
(7)

The half angle /3 subtended by the entrance is considered to be sufficiently

small that the arc and the chord at the entrance can be assumed to coin-

cide. Along the remainder of the periphery, of course, the boundary
condition is simply that Vr is zero if r is equal to R

,
the radius of the circu-

lar boundary. These two conditions can be imposed simultaneously

through application of a Fourier expansion that defines a set of coeffi-

cients for an infinite series of cosine terms. An expression for Vr can also

be obtained by differentiation of 4> with respect to r in eq 3, and the result-

ing values can be equated term by term to those of the Fourier series.

The resulting values of A n are as follows:

(3 2 sin n(3
0=

We(fcfl)’
n=

irnj'n (kR)'
(8 )

Finally, the variation of the surface elevation can be determined by
evaluating Vz and integrating with respect to time,

= f»*-J dt

VoT——tanh kh A nJn (kr) cos nd.
27T « = 0

(9)
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in which n represents the maximum (or minimum) value corresponding
to t= 0.

Once the arbitrary values k and h have been assigned, the period can
be computed from eq 3 and, if R is known, n can be evaluated in terms of

Vo from eqs 8 and 9. It remains only to relate Vo to the characteristics

of the external wave. This can be done in accordance with the assump-
tion that the amplitude and the surface velocity at the center of the
entrance are the same for both the internal motion and the external

clapotis. For the latter,

2
(VqT tanh kh\ 2

#n„+(
)

=a‘, (10)

in which n 0 and Vo are the maximum value of n and Vr at the entrance,

and a is the amplitude of the clapotis (twice the amplitude of the incident

wave if the clapotis is completely formed).

2.3 Resonant Motions

For certain combinations of values of k and n the denominator of the
expression in eq 8 becomes zero, and, if the value of V0 did not approach
zero also, the corresponding value of A n and of the amplitude would
become infinite. For these resonant motions, no is equal to a, and only a
single term remains

Jnikr)
n—a————cos nd.

JnikR)
(11 )

As indicated in a preceding section, these motions are identical to those
occurring in a closed basin, except that they are considered to be excited

at an opening in the wall by an external wave. Typical cases of elemen-
tary resonant movements are shown in figure 1. These motions are

characterized by the number of nodal diameters, which is equal to n,

and by the number of nodal circles, which is related to the value of k.

By the application of the preceding equations, it is possible to calculate

the variation of the amplitudes and velocities of both resonant and non-
resonant motions excited within a circular port by a periodic wave at the

port entrance, and the same methods can be applied to other simply
defined port geometries. It is notew-orthy from the results already pre-

sented that amplitudes within the port can greatly exceed those of the

incident wave. Also, these movements are dependent upon the width
of the opening only insofar as the curved profile for the internal motion
differs from the horizontal profile of the incident wave.

3. Laboratory Investigation

Experiments were conducted in a canal at the Neyrpic Laboratory winch
had been constructed with the canal bottom very carefully made horizon-

tal for another study [5]. The canal is 4m wide and 25 m long, with water
depths possible up to 0.5 m. Waves of adjustable amplitude and period

are produced at one end of the canal by a wave maker of the horizontal-

displacement type. The circular port installed in it was made of 15 con-

crete blocks each 20 cm high and subtending an arc of tt/8 radians. The
entrance, of the same angle, w’as centrally placed on a diameter parallel

157



to the axis of the canal so that the approaching wave chests were parallel
to the entrance chord. The diameter of the port was 3.2U m, and a con-
stant water depth of 16 cm (or R/10) was utilized in all the experiments.
A beach on either side of the entrance served to dissipate a large part of

the energy of the oncoming wave. The use of a wave filter composed
of wire mesh also provided damping of the unwanted reflections and
harmonics [6].

Figure 1 . Typical resonant movements in a circular port.

The amplitudes of the motion of the oncoming wave and of that within

the port were measured by means of a slightly modified point gage. A
small horizontal arm was mounted near the point of the gage at the end of

which a needle, sharpened on both ends, was affixed in the vertical posi-

tion. Observations were then made for the points of minimum elevation

with the upper end of the needle, and for the maximum elevation with the

lower end. Observations were easily made, because the slight surface

disturbances caused a marked change in the light pattern at the bottom
of the canal. Traverses made by this method could be duplicated by
two different observers within 0.2 mm. The periods of these motions
were determined by measuring with a stop watch the elapsed time for

30 or 60 cycles.

Numerous motions of the resonant type have been observed, and for

several of these detailed measurements have been made and compared
with the corresponding Bessel functions. Measurements for two such

motions are shown in figure 2, the upper for the case of no nodal diameter
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(Jo) and two nodal circles, and the lower for the case of two nodal diame-

ters (J2 ) and one nodal circle. The double amplitudes at the entrance

were assumed to be equal for both experiment and theory. The experi-

mental points are reasonably close to the curves obtained theoretically

indicating beyond question that the principal motion observed is the same
as that predicated on theory. An effect of utilizing amplitudes which
are by no means negligible is readily seen by comparing the two sets of

points with crests and troughs interchanged, the crests being invariably

more pointed than the troughs as for two-dimensional waves. Another
disparity that was frequently found is illustrated by the points near the

center for the J2 movement. These disturbances were caused by har-

monics of the fundamental wave, usually occurring with a frequency

clearly defined as two, three, or four times that of the fundamental motion.

For the J2 motion shown in figure 2 the third harmonic was observed.

o Observed
entrance __ Theoret/cai center

Figure 2. Comparison of results of experiment and theory for resonant movements in a
circular port.

Photographs of these motions have also been taken, those for the Jo
case being presented in figure 3. The two separate photographs are for

conditions of maximum amplitude out of phase by one-half period. The
central hill, in the upper picture, and the ring in the lower one are strik-

ingly apparent. Also apparent are the constancy of the elevation at the

wall at amr one time and the change of this elevation corresponding to

the change from crest to trough at the entrance. In figure 4, similar

photographs of the J2 motion are somewhat more difficult to decipher.

Because of the relative complexity of the surface configuration, a bar
was placed across the basin so that an indication could be obtained from
the distortion of the reflected image. The formation of the two crests,
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on either side of the center in the upper photograph, and in front of and
behind in the lower one, can be readily detected. Also it can be seen that

the movement at the center is comparatively very small. For these

photographs the exposure time was 1/100 second, and the lighting was
nearly horizontal. The water was made relatively opaque by the addition

of a large quantity of starch.

Figure 3. Jo movement.

Calculated results and those obtained experimentally were also obtained
for one movement classed as nonresonant. The value 6 was chosen for

kR, as a typical value for which no one resonant condition would be domi-
nant. The curves shown in figure 5 were then calculated point by point

to obtain the variation of n along the axial diameter and around the wall.

Sixteen terms were included in the summation, and in some cases an
approximate integration was made for the remaining terms. Motions
corresponding to </4 ,

J5 ,
and J& were found to be dominant, and the total

contribution of terms after the sixteenth was found to vary between a

negligible amount and slightly over 5 percent.

Results of experiments conducted for the same value of kR are also

shown in figure 6, and once again the differences between the two results

are found to be small. In this case the results were adjusted by an arbi-
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trarily selected coefficient, so that it is the shape of the curves that is com-
pared, not the absolute amplitudes. The largest difference is seen to

occur at the entrance; this is a consequence of the fact that the computed
amplitude varies considerably across the entrance, and, because the

amplitude of the approaching wave is practically constant, some adjust-

ment must take place. It is noteworthy that the assumed velocity dis-

continuity at each edge of the entrance was more or less substantiated in

the laboratory by the intermittent occurrence of vortices at these points.

It was also observed that the effects of harmonics were relatively more
important for nonresonant than for resonant motion. That is, more dis-

persion was found in the results, and no true nodes were observed.

Figure 4. J2 movement.

4. Interpretation of Results

Immediately evident from the comparisons of the theory of oscillations

in the type of idealized port studied and the corresponding experiments is

the fact that both qualitative and quantitative accord is found. Such
simplifications in the theory as small amplitudes, linear superposition,

irrotational motion, and the arbitrary inclusion of velocity discontinuities

are found to be surprisingly close approximations. Thus additional

calculations based on these same assumptions should be equally worth
while. Other port shapes more nearly conforming to reality can also be
computed, but because such calculations are still more difficult, verifica-

tion of the underlying assumption in the study described herein was
thought to be a necessary prelude to a more extensive investigation. It is
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Figure 5. Comparison of results of experiment and theoryfor nonresonant movement in a
circular port.

Figure 6. Patterns of motion for periods in the vicinity of two nearly

coincident resonances.

T(sec)

1.580
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1.575

1.577
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nonetheless possible to derive certain conclusions from this study which
are immediately useful.

One of the most troublesome features of nearly all model studies of the

effect of waves on harbors is the instability of the phenomenon observed
within the harbor. Because of the geometrical complexity of any natural

port the isolation of factors causing this instability is practically impossi-

ble. However, with the idealized configurations discussed herein it is

possible by means of either theory or experiment to consider a number
of effects, only a few of which can be mentioned in this abbreviated

treatment.

The effects of higher order harmonics, particularly those which may be
resonant, have already been mentioned. Also, it is possible that slower

movements may occur, these movements being characteristic of the model
dimensions and not of the similar occurrence in nature. Another phenom-
enon of importance in model studies is the observed pumping effect of the

wave at the entrance. From an analysis of the observed data, an increase

of 1 to 3 mm in the water depth within the port was found to exist.

For certain conditions, it is possible that slight changes in the period of

the artificially produced wave can produce disproportionate changes in the

resulting movement. One such case has been analyzed for the circular

port, and the results of the calculations are shown in figure 6. In this

instance values of kR, or of the period, were selected in the immediate
vicinity of two resonant conditions having nearly equal periods {J\ with
one nodal circle and J4 with no nodal circle). The changes in the calcu-

lated movement with very small changes in the period are extremely
marked, the total change in period for the entire range computed being

only 0.006 sec, or 0.4 percent, of the period. With the several separate

basins found in most harbor models such accidental synchronization is

likely to occur frequently but in a degree perhaps less remarkable. From
a practical viewpoint this indicates the utility of trying several different

periods in an attempt to find one that is comparatively stable.

As it is the prevention rather than the production of large surface dis-

turbances that is important in the design of harbors, the dissipation of the

incoming energy is the most important phase of a broad investigation of

ports. A comparison of the gradual dissipation of this energy without
special devices, such as a beach or artificial disturbances, is shown in

figure 7. In obtaining the results indicated by the two curves, the stimu-

lations of the wave was stopped, in one case by simply stopping the wave
machine, and in the other by inserting a barrier at the entrance coinciding

with the circular interior. In each case, the motion (J0 with two nodal

circles) was found to be remarkably persistent. With the entrance open,

for example, the surface outside the port became calm long before that

inside, even though the dissipation was primarily caused in this case by
the passage of weaves from the port through the entrance.

It has been amply proved that the motion produced in a port can have
an amplitude not only equal to but even a number of times greater than

the amplitude of the wave that produces it. Furthermore, from theoreti-

cal considerations, this amplitude can occur equally well with an entrance

width that is extremely small. This fact was qualitatively verified experi-

mentally by reducing the angle of the opening from 22.5° to 7.5° by insert-

ing two small blocks at either side of the entrance. The motions observed

subsequently wrere found to be essentially the same as those presented

herein, except for the fact that it was more difficult to obtain well-defined

resonant motions. Although a relationship surely exists between the
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energy entering the port and the structure necessary for dissipation, these
rather elementary observations serve to emphasize the necessity for obtain-
ing the dissipation of energy within a port in some other way than by
narrowing the entrance.

0 1 2 3 4 5
T (min }

Figure 7. Diminution of amplitude with time in the absence of stimulation by the

external wave.

5. Conclusion

From this preliminary study of surface disturbances and mass oscilla-

tions within idealized harbors, it is evident that analyses and experiments
can be combined to furnish useful information for the design of ports.

Approximate analyses give results that correspond well with measurement,
thereby making possible the theoretical solution of problems not easily

studied in the laboratory. Significant among the results observed are

(1) the occurrence of disturbances within a port for which the amplitude
is much larger than that outside, (2) the independence of this result on the

width of the entrance opening, (3) the possibility of irregular motions in

model studies resulting from chance synchronization of two or more
resonant motions, and (4) the almost negligible rate of energy dissipation

in the absence of special devices for the absorption of energy.
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19. The Propagation of Gravity Waves from
Deep to Shallow Water

By Carl Eckart 1

The Laplace equation, together with the appropriate boundary conditions at the
free surface and the rigid bottom (of variable depth h{x,y) beneath the undisturbed
surface), is transformed into an integro-differential equation. This is shown to be
approximated by the partial differential equation

where pQ/pg is the surface displacement and m = 1 — exp (
— 2ah), k2 = K2 ctnh(*/i),

k = u2
/g, co = frequency, radians per second, g = acceleration of gravity, p = density of the

fluid.

It can be shown that the above expression for the wave-number k differs from the
commonly accepted value, which is the root of the equation K=k tanh(M), by less than
4 percent for any value of kh

;
and, for both large and small values, by considerably less.

The integro-differential equation also leads to a series for the pressure at any depth
in terms of po and its derivatives. The excess pressure at the bottom, when calculated

from the first two terms of this series, is

p{—h) =po [1— exp(— K/i)]/sinh(KA).

If h is independent of x and y, the exact expression is known to be p(— h) =p0/cosh(kh).

The difference between these twro expressions is again less than 5 percent for any value
of kh, and approaches zero for both large and small values of kh.

When h = sx (plane bottom of constant slope), the wave equation given above can
be solved in terms of hypergeometric functions. This solution yields an analytic

expression for the increase in height when the waves travel from very deep water into

shallow water : a wave of unit amplitude in deep water, and of angle of incidence 6
,

increases to the height H = {\ cos 6) i/(ich)i for small values of Kh. The factor 1/2 is

readily identified as being the ratio of the group and phase velocities in deep water.

1. Introduction

The propagation of gravity waves on the surface of an incompressible

fluid involves a nonlinear boundary condition at the free surface. It is

customary to simplify the problem by neglecting the nonlinear terms in

this boundary equation, as well as in the Eulerian equations, and this will

be done in the following also.

This linearized problem has been solved exactly only for the case of

a plane bottom: these calculations for a horizontal plane are given by
Lamb [1, Chap. IX] 2 and an extensive treatment of the sloping plane

(together with references to the relevant literature) has recently been

given by Stoker. [2] More frequently, the problem is further simplified

by supposing (1) that the water’s depth is everywhere small compared to

the wave length,3 and (2) that the slope of the bottom, while not constant,

1 Scripps Institution of Oceanography, University of California, La Jolla, Calif.
2 Figures in brackets indicate the literature references on p. 173
3 Strictly, small compared to the length that the waves would have if they were propagated on the

surface of very deep water; for simplicity, this is called the “deep-water wave length.”
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is everywhere small. The basic equations of this “shallow-water theory,”

together with their solutions for a few special cases, are given by Lamb.
[1, Chap. VII, p. 291]

It appears that it is possible to generalize the equations of the shallow-

water theory so that it applies equally well to water of any depth. How-
ever, the assumption that the bottom slope is small enough to be negligible

must be retained, and certain other terms must also be neglected. It has
not been possible to formulate the necessary and sufficient conditions

under which these approximations are justifiable, but various tests have
been applied to the approximate equations, and these lead one to have
reasonable confidence in them.

Since these approximate equations can be treated more readily (by the

WKB and numerical methods if necessary) than can those of the exact

linearized theory, they are useful in certain applications. Moreover, the

methods employed in deriving them can also be used to obtain approxi-

mate solutions of other boundary-value problems.

2. Derivation of the Equations

Let the positive 2-axis be vertically upward and the undisturbed free

surface at 2 = 0. Let the pressure be — pgz-\-p(x,y,z,t), where p is the

density of the fluid and g the acceleration of free fall. If the pressure

over the fluid be zero, the linearized equation of the free surface will be

pgz= p (x,y,0,t) = p 0 (x,y,t)

.

(1

)

The free surface must also move with the fluid; to the same linearizing

approximation, this results in the boundary condition

r^+~ = °. when z= 0. (2)
dz dt2

If the wave motion is simply harmonic, with period 27r/co, eq 2 may be

written

dp

dz
= u>

2
p/g= Kp, when 2= 0.

where 2t/k is the deep-water wave length.

If the equation of the bottom is

2= —h(x,y)

and it is impermeable, the remaining boundary condition is

dp dh dp dh^dp

dx dx dy dy dz
when 2 = — h.

(2a)

(3)

(4)

4 It is difficult to justify the inclusion of the terms in dh/dx, dh/dy in eq 4 without also presenting argu-

ments against the linearized eq 1 and 2. However, the omission of these terms from eq 4 yields results

that are demonstrably false. The inclusion of the analogous terms in eq 1 and 2 yield nonlinear equations

that cannot easily be solved. These matters will not be discussed further, but are mentioned here because

they present problems that need clarification.
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Finally, the function p must satisfy Laplace’s equation

sjp Vp ejp

dx2 dy2 dz2

The present problem is the approximate solution of these equations.

It will be necessary to consider the values of p at two different levels,

z and f, and to introduce the auxiliary function

= (lA)sinh «($—«),

which satisfies the differential equation

Equation 5 may be rewritten

where

A = {d/dx) 2+{d/dy) 2
.

(6 )

(7)

(5a)

Multiplying eq 7 b}T

p(£), eq 5a by g and subtracting, one obtains

dr
Ap(r)+«2

p(r)

On integrating this from r = 0 to 2
,
the result is

p(z)-p(0) cosh sinh Kz= f gtf,z)[A+K2
]p(t)d{. (8)

Adr/r= 0 0

Using eq 2a, this becomes

p(z)=p Qexp (kz)+- f sinh K(£-z)[A+K2]p({)d£, (9)
=0

which is an integro-differential equation that is in all respects equivalent

to the two equations, eq 5 and eq 2a. If the function Po(x,y) is known,
eq 9 determines the function p(x,y,z) uniquely. It therefore remains to

determine p 0 so that eq 4 is satisfied.

Before proceeding to this, we note that

k sinh fc(r— z)d£= d[cosh k({—z) — 1],

so that eq 9 may be transformed by partial integration into

V («) = Po exp (kz)+ (1/k
2
) [1— cosh kz] [Ap Q+K2

p 0 \

+\ f [l-cosh K (r-z)][A+K2]^^df. (9a)
K-J 0 Of

Under some circumstances, the value of the integral will be small com-
pared to the values of the other two terms in eq 9a; then an approximate
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solution is obtained by simply ignoring the integral. Without examining
the justification for this approximation, it 'will be adopted throughout
the following.

If this approximate value of p is substituted into eq 4, the result is

0 = exp(— kK){S£+S£+K^+(iA)sinh Kh\*p°+^ +.
.

(

10 )

where the dots indicate terms involving third derivatives of h, etc.; these
will be neglected. 5

The approximate eq 10 determines po(x,y), and hence completes the
determination of p(x,y,z). It may be written more systematically as
the wave equation

where

;(£(
M£)+£(^))+fc2po=o

’

M = l — exp (
— 2kK),

(11 )

(12 )

k2 = k2 ctnh (kJi) . (13)

3. Some Tests of the Validity of the Approximation

As a first test of the validity of these results, one may recover the usual

equation for very shallow water. If 1,

and eq 11 becomes

ix-^2k}i, k2-*u>2/gh,

dx\ dxj dy\ by)
+u2

p0/g= 0,

which has long been accepted as correct in this limiting case. [1, Chap.
VII, p. 291]

As a second test, let h be constant; a rigorous solution is known [1, p.

364] to be

Po=A cos (kx—ut)> (14)

where A is a constant of integration, and k is the root of the transcendental

equation

k = & tanh (M). (15)

Since ju is constant in this case, eq 11 also has a solution of this form,

but k is determined by eq 13 and not by eq 15. The great formal differ-

ence between the two is misleading, as is shown in figure 1 ;
the solid fine

of this figure is the graph of eq 15, while the circles represent values of k

calculated from eq 13. The agreement between the two is very satis-

factory, even when kh~l, and is extremely close for both larger and
smaller values.

5 An alternative derivation can be given by substituting the rigorous eq 9 into eq 4, then integrating by
partsl and neglecting the integral. The terms indicated by dots in eq 10 are then absorbed in the integral

and disappear with it. While this is more systematic, it is also more elaborate, and no easier to justify

than is the derivation here given.
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One may also use the simplified eq 9a to calculate the pressure on the

bottom, and compare the result with that deduced from the known
rigorous solutions. Equation 9a yields

p(— h) = p 0 [l— exp (
— /dO]/sinh nh, (16)

while the rigorous value of this ratio is

p(— h) =p 0/cosh kh. (17)

These two equations are compared numerically in figure 2, and again, the

comparison is satisfactory.

—
, p(—h)/po=l/cosh kh

O, p(— h)/po=(l— e~kh)/sinh kh

4. Solution of the Equation for a Bottom of

Constant Slope

If the bottom has a constant slope, eq 11 can be solved in terms of the

hypergeometric function. In this case

h = sx (18)

s being the slope of the plane bottom. The introduction of a new inde-

pendent variable

£ = exp(— 2kK) (19)

results in

/*= !-£, &2 = k
2 (1+£)/(1-£). (20 )
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The eq 11 is separable in this case, so that there are solutions of the form

Po(s,y)=g(£)exp(%),

where b = k sin 0 is a constant, and 0 is the angle of incident*

before refraction in the shoaling water. The function c

hypergeometric equation

€)||] + [(K
2-b2

) - tf+V)t]q/W

The abbreviations

a2 = (b2— k
2)/4k2

s2 = — cos2 0/4s2

P2 =[b2+K2 (l+s2
)}/4,c

2
s2

*h a

3.0

Figure 2. Comparison of equations 16 and 17.

—
, kh—kh tanh kh

O, k2h2/tanh kh=k2h2

(21 )

of the waves
satisfies the

0 . (22 )

(23)

3.0

Ah
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are convenient, and it is readily found that two solutions of eq 22 are

g =b = {
±“F(±«+^+i. ±«-|8+|.2a+l,J), (24)

where F is the hypergeometric series [3] [4, Chap. VI] [5, Chap. IV, No. 7,

Chap. XVII] [6, Chap. II.].

F(l,m,n,x )
= 1+

Im

1-n
x-\-

l*2*n(n+l)

It is to be noted that, for large positive values of x (deep water), £ is

very small, and the approximation

g± = £
±a = exp (±ux cos 0) (25)

is valid, so that p 0
= exp in(±x cos 6+y sin 0). These two solutions

therefore reduce approximately to the known solution for deep-water
waves in this region.

For the shallow-water region, x is small, and £~1, so that the series in

eq 24 converge very slowly. There are other solutions, however, that
converge more rapidly. One of these is

Qi= £“Z'’(a+/3+i, a—^+i, 1, 1— £). (26)

In general, there is a second solution, obtainable from qi by changing the

sign of a. However, because the third argument of F in eq 25 is an
integer, this solution becomes identical with qi and it is necessary to find

a more complicated expression, which involves a logarithmic singularity

at £ = 1. This is g0 ,
where

irg0= 0l) -H> (m) +l°g[7
2
(f~ 1) ]}qi+Fi(l,m,l,l- £)

+F1(m,l,l,l-t)+2F3 (l,m,l,l-$), (27)

and

Z=a+0+^; m= a-/3+^; <£© log T(Z); 7=1.7811...;

d d
Fi (l,m,n,x) =—F (l,m,n,x ) ;

F3 (<l,m,n,x )
=—F (l,m,n,x )

.

di dn

The expressions for q0 and qi are too elaborate to be readily calculated

numerically. However, just as it was possible to obtain approximations
to q± for small values of £, so it is possible to obtain approximations to

g0 and gi, that are valid when 1 — £ is small, and both
|

a
|

and /3 are large.

(This latter condition is fulfilled when the slope of the bottom is small
and the waves are incident from a direction that is not too nearly parallel

to the beach.)

The approximation is

q0=N0 [2(Kx/s)
i
],

qi=JQ[2(Kx/sf ],

where N0 and J0 are the Neumann and Bessel functions, respectively.
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This is again very satisfactory, for these are the solutions obtained by
Stoker and others from the shallow-water theory [2].

The eq 25 thus gives simple expressions for g+ and g_ in deep water, and
eq 28, simple expressions for q0 and qi in shallow water. It remains to

find the relations between the four solutions. These are the known
formulas for the analytic extensions of the hypergeometric function and
may be written

q1=A(.-a,0)q+ +A(a,p)q-,

qo+ki=B (a,0)A (~a,/3)q+ ,

where

A (a, = r(2a)/r(a+/3+I)r(a-/3+I)>

B (a,$ )
= sin (2Ta)/COS [7T (a-f (3) ]cos [tt {a— (3) ]

.

(29)

(30)

The function A (a,(3) can be transformed, by using known properties

[6, p. 1] of the gamma function, into

A («,£) = [-27ra|5(a,|8)|]-*exp[t©(a,i8)], (31)

where the function 9 (a,j8) = — 9 (— aft) is difficult to evaluate. Physically,

this function represents the total change in phase of the waves as they
move from deep to shallow water, and is of little interest. Of greater

interest is the change in amplitude of the waves, and this is independent
of the function 9.

Using the known asymptotic expansions of the Bessel functions

iVo(o-) = sin(<r— 7r/4)/(7ro-/2)% 1

JoW =cos(<r—

7

t/4)/(x<t/2)
¥

, j

it is seen that for the shallow-water region,

_x . . .i .r37T /w\
qo+iqi= Tr

2 (s/KXj^xp i\
— -21 —

J

For the deep water region,

g+ = exp (— inx cos 6 )

.

n

(32)

(33)

(34)

Hence, the second of eq 30 shows that a wave of unit height in deep water
will have the height

H=[2a/\B(a,(3)\]Hs/KX)*
(35)

in shallow water. For small values of s, this simplifies further, to

H=(Jcos0)VW*. (36)

The dependence of H on the water depth is well known from the usual

shallow-water theory [1, Chap. VII, p. 291] and the factor (cos 0)* can

easily be derived from considerations of the laws of refraction and the

assumption that the energy is propagated in the direction of the rays.

The factor (J)* results from the fact that, in deep water, the group velocity

is half the phase velocity, whereas in shallow water the two are equal.
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5. Summary

An approximate wave equation has been derived, for the propagation
of gravity waves on water of any depth.

Although the precise conditions for the validity of the approximations
have not been established, they appear to be justifiable in a wide variety

of cases.

A byproduct of this investigation is an approximate solution of the

usual equation connecting the deep-water wave number, k, to the wave
number k at depth h. The supposedly exact equation is eq 15, and its

approximate solution is given by eq 13, in a closed form suitable for use
in analytic applications.

Certain applications of the results here obtained will be reported

elsewhere
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20. On the Propagation of Waves from a

Model Fetch at Sea 1

By Willard J. Pierson, Jr .

2

The previously known solutions; vis, the simple sine wave, the Cauchv-Poisson
problem, and the Gaussian Wave Packet, to gravity wave propagation in infinitely

deep water are shown to be inadequate in practical wave forecasting problems. The
new exact solutions are presented; one for a finite wave group, and the other for a
finite wave train.

The finite wave group is given by, 771 (0,0, t) =Ae<r -°'2
*
2
sin 2irt/T at x=0, y = 0. If

most spectral components travel in the positive x direction, the solution, vi (x,t), is

given. The group is called a finite wave group because its parameters can be chosen
so that it passes x=0 in about 1 minute. The modification of the group as it travels
is discussed.

The finite wave train is given by the formula,

t?ii (0,0,0 =A sin 2-ni/T, if —nT<t<nT,

and by zero otherwise. The solution for n of the order of 103 is given, and it is shown
that the train advances with the group velocity determined by T, and that the ends are
modulated by Fresnel Integrals.

The problem of waves propagating into calm air and still water from the edge of an
area of generation is then considered. Three or four hundred finite wave groups of the
form given above are propagated at time intervals, (f), of the order of 2 minutes into

the area of decay. The case considered can be given by the equation

vm(0,0,t)="i
+_A ne-‘’

,(-‘- nT+s^sm(^(t-nr+Sn)+e,,y

It is shown that forerunners of swell can be obtained from the equation, that the
transformation from sea into swell can be demonstrated, and that it is not necessary to

assume selective attenuation of the lower periods in order to explain the period increase
of ocean swell.

It is concluded that a sound wave forecasting theory must be based upon the proper-
ties of the spectrum of the waves at the source region, and until some quantitative
information about this spectrum is obtained the forecasting of ocean waves will be
inaccurate.

1. Introduction

The sea surface at the forward edge of a stationary storm at sea is very

complex. Waves of varying amplitude are propagated out of the storm
into an area of relatively still water. They are in reality short crested

waves, and they appear to occur frequently in groups of high waves
separated by times at which the waves are relatively low.

1 The results of this paper have been obtained under the sponsorship and generous assistance of the
Beach Erosion Board, Corps of Engineers, United States Army as part of the results of a contract ad-
ministered by the Research Division of New York University.

2 New York University, New York, N. Y.
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2. Previous Models

Various models of such a storm at sea have been considered. They
approximate reality as described above quite crudely when one attempts
to apply them to practical wave-forecasting problems. One such model
is the simple sine wave for infinitely deep water, where L = gT2/2ir

(see Lamb [6]
3
) and where the sea surface is given by eq 1.

. /4:t2x 2irt\
v(x,t)=Asm^—~y)- (1 )

If used as a model of a storm at sea, the above equation is most unrealistic

because the storm never started and will never stop.

Another model is the Cauchy-Poisson wave train (Lamb [6] for exam-
ple) given by eq 2 for the case of an infinitely high, infinitesimally wide,
infinitely long column of water that starts to fall into the sea surface at

x= 0 at the time t= 0

The Cauchy-Poisson problem has been used frequently to derive certain

wave-forecasting properties. Some of these results are inaccurate because
the spectrum of the disturbance at the source is a white-noise spectrum;
i.e., all spectral frequencies have the same amplitude. Since the sea

surface does not have a white-noise spectrum as evidenced by the fact

that a “significant” period can be defined in the source region, periods

are frequently forecasted to be present in the decay area that were never
present in the original disturbance. As an extreme example, if the

spectrum of the disturbance were constant from ju = 27t/10 to h= 2t/5
and zero everywhere else, it would be physically impossible to observe

periods greater than 10 seconds and less than 5 seconds in the decay area.

The Gaussian Wave Packet as discussed by Coulson [2] is another
model. The solution that is given is an approximation, and comparison
of the Gaussian Wave Packet to the results to be presented here will show
that the approximation makes the results useless for application to the

problem at hand.

3. A Model Wave Group

Consider a disturbance at the point z = 0 on the sea surface as a func-

tion of time. Let it be given by eq 4.

Vi (0,0=Ae“^
2

sin^- (4)

If T= 10 seconds, a= 1/20 seconds
-1

,
and A = 10m, for example, the ampli-

tude of the disturbance is very very small after only 2 minutes have
elapsed. If the most of the disturbance is traveling in the positive x

direction, and if the crests are infinitely long in the y direction, it would
be of interest to find out what the disturbance is like at a great distance

x from x = 0 and at a time, t, several hours after t = 0.

s Figures in brackets indicate the literature reference on p. 186
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The problem can be solved by the application of Fourier Integral

Theory, and the' sp ectrum of the disturbance is given by eq 5. (See

Sommerfeld [8] for the definition of the symbols employed.)

. 27d .

sin—sin iitdt

+e (5)

Then, if a correct spectral wavelength is assigned to each spectral

frequency, vh(x,t) is given by eq 6.

zA f
+
“e~ (6 )

The solution is then given in the form of eq 7 by integration of eq 6,

where D is given by D = 1+ (IQaW/g2
)

.

Note that when x = 0, eq 7

reduces to eq 4.

16ttW
eT>D V 4tt y . sm

/4A
\DgT*

2nd

DT
4cr4t

2x
(7)

Equation 7 is a product of two terms. The first term is a slowly vary-
ing function of time and space. It represents the envelope of the wave
train. The second term is the pseudo-sinusoidal term that varies rapidly

as a function of time and space and represents the waves under the

envelope.

The term that represents the envelope is a maximum for a fixed value

of x, say Xi, when t = 4irXi/gT. Thus the maximum travels with the group
velocity of waves with the period T, and at the point Xi the maximum
amplitude is A/Dh
Now let t=

4

.txi/gT1

-\-t'= so that the behavior of the group can
be studied near the time, t' = 0, when the maximum amplitude passes the

point x\. Then the envelope has the value AD~* exp (— (vt'y/D).

For large Xi, which means a large D, t' must vary through a large range
of values before the amplitude becomes small. The envelope of the

finite wave group therefore travels with the group velocity of waves with
a period, T] it dies down in amplitude and spreads out over the sea

surface.

Now consider the argument of the sinusoidal term in eq 7. After the

substitution of t= 4Trxi/gT-\~t'
,
the argument of the sine becomes eq 8,

where the terms involving Xi alone are lumped into d{xi) because interest

is to be confined to variations with t'.

Arg s(rj) = —
2td'

T

4a*Xi (t'Y

DgT
0(zi). (8 )

T* can be defined to be the apparent local period, by the condition

that the argument of the sine decreases by 27t when t
r
increases by T.

Equation 9 is the result.

d(Arg s(?7))^A(Arg s

(

77) ) 27t 27t Sa^xit'

dt'
^

At' DgT ‘ (9)
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Therefore, the apparent local period is given by eq 10.

equals zero,

1 _
1 8o*xit'

T*
==1

T ' 2tcDgT
*

When t

'

( 10 )

the apparent local period is equal to the apparent period at Zi = Q. For
Xi not zero, and for t' less than zero, T* is greater than T; and for t'

greater than zero, T* is less than T. Thus high period waves arrive first

at Xi, followed by waves at maximum amplitude of period, T, and finally

by shorter period waves. It can be shown that the waves in the group
travel along through the group increasing in period and amplitude as

Figure 1 . Form of thefinite wave group as afunction of time when it passes various points.

they travel and then pass through the group still increasing in period but
decreasing gradually in amplitude to zero. Figure 1 shows the appear-
ance of the wave record as a function of time at various fixed x\.

4. A Model Wave Train

Consider a disturbance at the point x = 0 on the sea surface as a func-
tion of time. Let it be given by eq 11.

*?n(CM) =
. 2irt

A sin—

>

T

0
,

—nT<t<nT,

otherwise.

(ID
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If T equals 10 seconds and n equals 1,800, the wave amplitude would be
zero up to 5 hours before t equals zero. Then a full-amplitude sinusoidal

wave would be observed until 5 hours after t equals zero, and then the sea

surface would become and remain flat again.

For other x, the problem can again be solved by the application of

Fourier Integral Theory, and the spectrum of the disturbance is given
by eq 12.

sin nTix sin nT,

u

•

( 12 )
2tt 2x—

M

Under the assumption that most of the waves are traveling in the
positive x direction, and if correct spectral wavelengths are assigned to

the spectral periods, the sea surface as a function of x and t is given by
eq. 13.

A f +X)

Vu CM) =— / sin nTix
TtJ —oo *77

(H
sm (13)

Integration of eq 13 then yields eq 14, where G and H are given by
eqs 15 and 16.

>/ii CM) = VgP+H' sin _y+tan_ *7) ' (14 )

„ AV r'trAlT~‘+n1 )/ T . 7T \
G
=2l -J,

(cos-S’+sm-

f
i t

cos-52 +sin-i (15)

H =

t

if

U. (

7T . 7T \ ,

cos-52— sm-52
)c?5

2 2 J

/ cos-52— sm-52 )ab

J 0 V 2 2 / J
(16)

G and H are combinations of Fresnel integrals as tabulated, for example,
by Janke and Emde [5]. When the upper limit of integration is greater

than 8.5, the integral from zero to 8.5 of sin (ir/2)82d8 and cos (7r/2)52d5

is essentially one-half. For a fixed xh the solution shows that the sharp
rise in amplitude of the wave height arrives at the point xi, at a time
determined by the group velocity of waves with a period, T; that the

wave train is essentially constant in amplitude and takes essentially 2nT
seconds to pass aq; and that the wave-train amplitude dies out again

rapidly after the 2nT seconds. The amplitude of the forward edge of

the wave train is given as a function of t' at various X\ in figure 2. t' here

is defined by t= (ArXi/gT) — nT-\-t'. When t' equals zero or 2nT, the

amplitude of the waves is one-half of A. A number of low waves arrive
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before t' equals zero, and a few are still present after t' equals 2nT. A rise
to full amplitude occurs 20 to 30 minutes after V equals zero for typical
values of X\. The waves under the envelope have the period T due
to the fact that the spectrum, eq. 12, is concentrated very sharply at
u= (2t/T) for ju>0 when n is large.

-7 *6 -5 *4 -3 -2 -I 0 I 2 3 4 5 6 7 *

Figure 2. Variation of the envelope, the average potential energy, and the phase of the

crests for relatively large values of X\ as a function of t'.

5. Waves From a Model Fetch at Sea

The model w^ave group studied above lasts for only a short time. One
wave group does not make a storm. The model wave train lasts long
enough, but it is far too regular at the source to be very realistic. How-
ever, if wave groups such as those studied in eq 3 are sent out one after

the other from the storm area at time intervals of the order of r equal to
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100 seconds, and if the wave groups vary in amplitude and phase, then a

fairly realistic storm at sea can be manufactured mathematically.

Consider, then, eq 17 given below, W’here the A n are arbitrary. 6n ranges

randomly from — x to tt, t is of the order of 100 seconds, and dn is randomly

distributed with a range of, say, 10 seconds.

.11(0,0 =2] Ane~
ff2(t~ nT+Sn)2 sm(^(t-nT+8n)+dn Y (17)

n=—p ' '

Vm(x,t) can be found immediately with the use of eq 7 by substitution

of t—nr+bn for t in eq 7, by the addition of 6n to the argument of the sine

and by setting A equal to A n . Each wave group then travels as described

in section 3. However, as the wave groups travel they overlap, and

very complicated sums would have to be evaluated in order to find out

what occurs.

A simpler case can be studied by setting the A n equal, and dn and 0n

equal to zero, can then be given by eq 18 at x equal to zero.

(0,0 =2 Sin(^«— nr)Y (18)

n= ~P ' '

The spectrum of y*u can then be given by eq 19, and the free surface

as a function of x and t is then found to have the form of eq 20.

A /•+»

%nOM) — cos nTfxe

'4®*
•
(l^X \

sml /xt I

\ g /
dn- (20)

The expression, which involves the sum over n of cos urn, can be

expressed as a finite harmonic series, and the use of eq 21, plus some
rearrangement of terms, yields eq 22.

e
*(P+i)Tn

1 —

e

,v“ (21 )

n=+p
'y

^
cos urn = y ]

e
l

n— ~ p n=

0

72 = 0

1 =
sin (pt+t/2)/i

sin Tfi/2
(22 )

The term 1/sin (r/2)ju is plus or minus infinity, depending upon how
u approaches 27rm/r, and it can be expressed in series form by eq 23.

(23)
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Equations 22 and 23 substituted into eq 20 then yield eq 24.

—A
/+

oo m= + ™

i)’
'+i

\/7T(7T

e~ ("
- !T )’/4"’ sin(y_idjdn

sin(pr+r/2)M

/27tm27rm \

(24 )

The factor exp [—^
2/4o-2

]
is small for ju less than or equal to

zero for appropriate values of a and T. For a fixed m, the term

(

2?rw \

—jj,— ,u
j
is a spike at m = 2?rm/r, and therefore the inte-

gral can be adequately approximated by the substitution of ju = 27rm/r, in

the exponential factor and by the omission of the terms involving m less

than or equal to zero.4 Equation 25 is then a valid approximate result.

a
,

/~ 00 / 2mn 2ir \ 2
„

OT Em= \

(— l)
m

/'
+0° sin(pT+r/2)/i . At2#

2ttm
sin

“M

(25)

The term to be integrated in eq 25 is very similar to eq 13, where r/m
replaces the T in eq 13. If (pr+r/2) were equal to an integer, say k,

times r/m, then eq 11 would be satisfied. This implies that eq 26 holds.

7?t+t/2 = Kr/nt, (26)

or

mp+m/2 = /i. (27)

K is an integer if m is even, and the results of section 4 apply directly.

If m is odd, a problem similar to eq 11 can be solved with the sinusoidal

term of full amplitude from — (n+J) T< t< (n+J) T instead of as given

in eq 1 1 . The solution does not differ from eq 14 in any important aspects.

Therefore, the free surface given by Vm(x,t) consists of a number of

wave trains which take (2p+ l)r seconds to pass the point rr = 0. The
first train has a period of r seconds and an amplitude of

(VV-A/o-r)exp(—

0

^—
y)

2/4o-
2
)

•

The second train has a period of r/2 seconds and an amplitude of

. /— . . v ,
/2tt2 2tt\.

a on(VJrA/(rr)exp(-^—
-J/

4<r2)

* These very low components travel in the negative x direction, and do not affect the results in principle.

The assumption, however, does permit the easy integration of eq 6.
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seconds, and so forth. The periods of the waves that would propagate

into the area of decay, for r=100 seconds, would be 100 seconds, 50

seconds, 33.3 seconds, 25 seconds, 20 seconds, 16.7 seconds, 14.3 seconds,

12.5 seconds, 11.1 seconds, 10 seconds, and so forth through 4 seconds for

m = 25, 2 seconds for ra = 50, and 1 second for ra=100. If T were 10

seconds, the train with a 10-second period would have a maximum ampli-

tude, and for typical values of a the trains with 1- and 100-second periods

would be very low.

For the values of a, T, and A of section 3, and for r = 100 seconds, the

amplitude of the 100-second component would be less than 10-12 m,
and the amplitude of the 10-second component would be 3.55 m.

If p were equal to 180, the wave system represented by eq 18 would
require 10 hours and 2 minutes (36,100 seconds) to pass the point £ = 0.

From eqs 4, 15, 16, and 25, this wave system can be broken down into

a number of wave trains of different spectral periods, and each wave
train would advance with its own group velocity into the area of decay.

Each wnve train wnuld take essentially 10 hours to pass a point in the

area of decay, but they wnuld pass at different times.

For the chosen values of parameters of eq 18, only periods ranging
from 17 to 7 seconds are important. All others are associated with wave
trains less than \ cm in height. The spectral periods, the wrave-train

amplitude, and the 1,000-km travel times are shown in table^l.

Table 1 . Component periods
,
amplitudes

,
and 1,000-km travel times for the important

wave trains in eq 25

m
Period Amplitude

Travel time of
forward edge to
a point 1,000 km

away

i

Seconds
100

Meiers
<10-'2

Hours

6 16.7 0.006 21.4
7 14.3 .094 25.0
8 12.5 .755 28.5
9 11.1 2.39 32.0
10 10.0 3.53 35.6
11 9.09 2.39 39.2
12 8.33 0.755 42.7
13 7.69 .094 46.3
14 7.14 .006 49.8

The sum of the amplitudes in table 1 is 10 m within the accuracy of

the computations, so that the amplitude at phase reinforcement equals
the maximum amplitude of the wrave groups in eq 18.

Figure 3 shows the effect of dispersion on the original wave system.
The wraves that wnuld be observed at a point 1,000 km aw- ay are shown
on a time-period coordinate system. A sinusoidal wTave train with an
amplitude of 0.6 cm would arrive 21.4 horns after the wave system started

at x equal to zero, as shown on the first bar in the upper left of the figure.

It would pass completely in 10 hours, and 31.4 hours after the start of the
w'ave system at x equal to zero the component wnuld no longer be present.

Similar remarks can be made about each bar in the diagram. When the
various bars of the diagram overlap the sea surface is the sum of the
various sinusoidal terms indicated. Sine weaves of different periods will

sometimes add to a maximum and sometimes cancel to a minimum. In
fact, there will be a point of phase reinforcement every 100 seconds in this

model. The maximum amplitudes present are therefore just the sums
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of the amplitudes of the components. The peak amplitudes are shown
above the dispersion diagram as a function of time along with the periods
that go to make up the peak amplitudes.

The forerunners of swell discussed in the literature are clearly shown
in this model. This swell will be more regular than the original model
waves. What is of more interest is the trailing end of short-period waves,
which is not discussed or emphasized as much in the literature. The
waves that arrive after 42 hours will have periods less than the apparent
period in the original storm, and the question as to why they are not
observed more often arises.

Periods Present 16.7
16.7

14.3

16.7
14.3

12.5

14.3

12.5

ll.l

12.5

10.0

ii.i

10.0
9.09

10.0
9.09
8.33

8.33
7.69

8.33
7 69
7.14

7.69
7.14

7.14

Peak Amplitudes
]

meters -1
.006]'•H’H 3.24M ]

667
]>24

1
.860

j
[.,00]

J

.006

Figure 3. Dispersion curve for model wave system.

| 1 Half-amplitude points.

, Leakage.

The decrease in wave period of waves arriving from a distant storm
has been observed. The work of Deacon [3] is the paramount example
that this model agrees crudely with what occurs in nature. The spectrum
of waves from a distant hurricane given by Donn [4] is a second example.

The wave records from a distant hurricane given by Pierson [7] are another

example. The current wave-forecasting methods of Sverdrup and Munk
[9] extended in part by Arthur [1] provide no means to forecast this trailing

end of the waves from the storm.

Now consider eq 17. It differs from eq 18 in that it is more random in

a somewhat artificial way. Figure 4 shows the appearance of segments

of eq 17 and 18 where the irregular wave record applies to eq 17. Equa-
tion 17 cannot be treated by the techniques of eq 19 through 27. How-
ever, other techniques that will be discussed in detail in a forthcoming

paper permit a stucD of eq 17.

It can be shown that after the waves travel a short distance from x

equal to zero, they become much more regular in appearance
;
that a sort-

ing of the spectral components, such as shown by figure 3, occurs; and
that the analysis given in figure 3 is a very good approximation to the

waves that arrive at a distant point, except that the growth to half ampli-

tude and to full amplitude is slower because there is more leakage. Only

one condition needs to be imposed in order to obtain all of the above

conclusions. The condition is that the A n in eq 17 must be randomly
distributed (not necessarily with a normal distribution) and that the A
of eq 18 be chosen to be equal to the square root of the average of the

184



squares of the A n . That is, eq 28 should hold within a small error for

N of the order of 20 or 30.

where

A'2
_1

N

« =g+ N

n=q

—p<q<q+N<p.

(28)

Equation 28 imposes the condition that there is no trend in the wave-

group amplitudes and that the disturbance is in a steady state.

Figure 4. Random and nonrandom storm waves.

6. Summary and Conclusions

The model fetch discussed in this paper sent out model wave groups at

successive time increments. The model fetch is infinitely wdde, and all

spectral components are assumed to be traveling in the positive x direc-

tion. The crests of the model waves are infinitely long in the y direction.

Models have been constructed for fetches of finite width which send out

irregular short crested waves with spectral components that travel in

many directions. These models will also be discussed in the forthcoming

paper referred to above. The models are very realistic in that they are

not restricted to any particular spectrum.

Although the model waves discussed in this paper are not too realistic,

they do serve to emphasize one extremely important point. The waves
propagated into the area of decay were described quantitatively in terms

of parameters determined at the source. These parameters, were A,

r, and discrete values of the continuous spectrum given by eq 5. If the

spectrum had been different, the results would have been different. Very
little is known quantitatively about these parameters in nature. Until

these parameters (or better yet, those that follow from the model fetch of

finite width wrhich sends out short crested waves) are measured accurately

in the storm area, wave-forecasting methods will always be inaccurate.
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21. On the Theory of Short-Crested

Oscillatory Waves

By Robert A. Fuchs 1

The irrotational motion of an infinite periodic wave train which is not of the cylindri-

cal or long-crested type is investigated to a second approximation for water of an
arbitrary finite depth. The surface profile is doubly periodic or short-crested and
sinusoidal to a first approximation, as Jeffreys first pointed out. In a manner similar to

the long-crested theory of Stokes, the elevations are no longer similar to the depressions,

as was the case for the linear theory, but the depressions are broader and the elevations
narrower. The surface profiles of short-crested waves are compared with the profiles

of long-crested waves having the same steepness ratios in deep water. The assump-
tions of conservation of power and constancy of both the wave period and the ratio

of the wave lengths involved leads to approximate expressions for the changes in wave
lengths and amplitudes of short-crested waves moving shoreward. The long-crested
wave appears from this analysis to be the most prominent in shallow water.
The linearized irrotational theory is applied to the treatment of a finite wave group

generated by an initial elevation doubly periodic over a square region on the still water
level and zero elsewhere. The motion of the emitted wave groups is discussed by the
method of stationary phase applied to the appropriate double Fourier integral. Par-
ticular attention is paid to the two dimensional frequency spectrum.

1. Introduction

In 1924 Jeffreys [4]
2 investigated wave systems that are periodic in

both the direction of propagation and in the crest direction. The term
short-crested was introduced in order to characterize such wave systems

in which the two associated wave lengths were of the same order of

magnitude. Waves whose crest wave lengths were much larger than the

wave length in the direction of propagation were called long-crested

waves. These include as special cases the cylindrical waves of Stokes.

In figure 1, we show a typical system of short-crested waves near breaking.

Notice the typical diamond-shaped pattern with flat troughs and steep

crests. Jeffreys made use of the shallow-water theory in discussing the

transformation of a mixture of short- and long-crested waves moving
shoreward. The dependence of the motion on the wave height was
investigated by determining the second-order terms in the equation for

the wave profile for shallow water of constant depth. This method was
open to objection, however, because it yields waves of nonpermanent form
in the shallow-w7ater theory.

The theory of such waves is placed on a more satisfactory foundation

by extending Stokes’ [9] theory for irrotational cylindrical waves in water

of finite depth to the general case of short-crested waves. All systems of

1 University of California, Berkeley, Calif.
? Figures in brackets indicate literature references on p. 200.
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periodic rectilinear waves are readily obtained by choosing the involved

parameters appropriately; in particular cylindrical waves are included by
choosing the wave number in the crest direction equal to zero or equiv-

alently by choosing the wave length in this direction to be infinite. The
calculations are carried out to the second order of approximation, neg-

lecting terms of the order of the cube of the wave height. The trans-

formation of short-crested waves on a sloping beach is approximately

determined by assuming that the power transmitted with the waves is

conserved. A typical interference pattern of a simple short-crested wave
group is obtained by superimposing two short-crested waves having

nearly the same^periods "and wavelengths and the same amplitude.

Finally, we discuss the case, of perhaps most practical interest, namely,

the motion of waves generated by an initially localized'displacement.

Figure 1 . Aerial photograph of short-crested waves.

The importance of short-crested wave systems has been indicated by

Jeffreys [5] when he showed that the weakest wind capable of raising

waves generates long-crested waves but stronger winds generate short-

crested waves. According to Jeffreys, this is due to the turbulence of

the wind being random not only in the direction of propagation but also

at right angles to this direction. This helps to explain the absence of

long-crested waves in deep water, as reported by many different observers,

including recently Side and Panton [8] and Williams [10].
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2. Basic Equations of Hydrodynamics

The basic equations describing irrotational motion in three dimensions
for water of finite depth d bounded by a free surface of zero pressure are

in the usual notation (Lamb 1932).

=
<f)xx+ <t>yy+ <f>zz

= 0
,

~ = QV~ Qt— i(0*+0j+0iS)+const, (1)
p

4>y= 0 on the horizontal bottom,

p = const on the free surface.

For convenience, we choose the positive p-axis directed downward and
the r-axis in the direction of wave propagation. For a constant velocity

of propagation c in the rr-direction the motion can be reduced to a steady
state by replacing x— ct by x. Then

~ — g(yA-k)+C(t>x—i (<^+<^+$Sj (2)
P

(<£*— c)p,+0„p y+0#p,= 0, when p = 0. (3)

These equations we proceed to solve by successive approximations subject

to the indicated boundary conditions. Expanding 0 about the plane

y = 0 and with the understanding that from now on all derivatives will

be evaluated at y = 0, we find the surface elevation is

where

V= +
Q Q

2 2g

c3

g<f>y C2(j) xx= Cc^x^yy <fix&xxy 2c(<^> z</> Xx~\~4> y4>xy~\~4>z4>xt) >

g

and terms of order higher than the second are neglected.

(4)

(5)

3. Linear Theory

Separating variables in Laplace’s equation we find the typical solution

<t>
=A cosh r(d—y) cos mx cos nz, where r2 =m2+n2

. By eq 5, neglecting

terms of the second order, the velocity of propagation is given by

or

c2 =—tanh rd>—tanh md,
m2 m

gL
,
2ttd>—tanh——)_

2tt L

(6 )

where L, L' are wavelengths in the x and 2 directions, respectively. One
sees in particular that the cylindrical wave propagates most slowly for
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a given wave length L and depth d. In terms of the wave amplitude, a
the characteristics of the wave motion are

?7 = a sin mx cos nz

,

ga cosh r(d—y)
4> = :—-— cos mx cos nz,

cm cosh rd

p cosh r(d—y) .— =y—

a

—-— sin mx cos nz,

pg cosh rd

gacosh r(d— y) .u— ~~4>x— ;—:—sin mx cos nz,
c cosh rd

gar sinh r(d—y)
v= —<j>y= —;—-— cos mx cos nz,

cm cosh rd

gan cosh r{d—y)
w= ~4>z — :—:—cos mx sin nz.

cm

\

cosh rd

(7)

The total energy per unit surface area = J kinetic energy = \gpa2
. The

corresponding total energy of cylindrical waves per unit surface area is

igpa2
. "

The^paths of the water particles are obtained by integrating the equa-
tions for the particle velocity components u, v, w after replacing x by
x— ct. The orbital paths are ellipses with one axis in the direction of

wave propagation, and making with a vertical plane an angle (3 given by

tan jS = -tan nz coth r(d—y ).
r

(8 )

The ellipses have their greatest inclination to the vertical at the still water
level and become entirely horizontal at the bottom. The length of the

semi rr-axis of the ellipse is

A =
am cosh r(d—y)——:—cos nz,
r smh rd

(9)

and the semilength of the inclined axis is

B =
a sinh r{d— y )

sinh rd
cos nz sec 13. (10 )

These expressions reduce to the classical ones for cylindrical waves if one
sets n = 0. Representative ellipses are given in figure 2.

4. Second Approximation

When the first approximation for <£ is substituted into the right hand
side of eq 5 one finds, after some calculation,

g<i> u-c2
<i> xx

=-
cA 2m sin 2mx/ 0 , . ,

3r2 3

r

2 \
I 2n2 cosh2 rd————cos 2nz 1

V 2 2/ (ID
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Figure 2. Second-order surface 'profiles.

First-order elliptical particle orbits.

The most general form for of the type indicated by separation of vari-

ables and satisfying this equation with the given first-order expression is

<£ =A cosh r(d—y) cos mx cos nz+B cosh 2r(d—y)sm 2mx

cos 2nzfi-D cosh 2m{d— y)sin 2mx. (12)

Substituting and collecting terms we find

A 2 4n2 cosh2 rd— 3r2 —3 A 2r2

D = ; ; B= ;

8me m sinh 2md 16 cm sinh2 rd
2 cosh 2md— ^

—

—

r tanh rd

(13)
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The equation of the wave profile then is

rj = a sin mx cos nz-\
ah ( .

. . . T(
2 si

sinh 2ra\

cos 2mx cos 2nz -f

4 sinh

a2 (m2—

n

2 cosh 2rd)

sinh2 rd— 1-
3 cosh 2rcP

sinh2 rd ,

/Tf2

4r sinh 2rd

’(3r2—4n2 cosh2 rd) cosh 2md

cos 2nz-

cosh 2md-
m sinh 2md

4r sinh 2rd

—

m

2 cosh2 rd+3r2 sinh2 rd

2

r

tanh rd

+n2 cosh2 rd
)
cos 2mx. (14)

Figure 3. Coefficients of second harmonics in equations for wave profiles.

A comparison is given in figure 3 between the coefficients of the second

harmonic terms in the surface profile of long- and short-crested waves in

terms of the same initial steepness in deep water, the transformation

being given in section 4. This figure shows that for a mixture of long-

and short-crested waves having the same steepness in deep water the

long-crested wave will be predominant in shallow water. The predomi-

nant second harmonic term for short-crested waves is proportional to

cos 2mx cos 2nz.

This expression 14 reduces essentially to Stokes’ classical second-order

formula for the surface elevation when n= 0. It is of course not possible

to express this surface elevation by a simple superposition of two cylin-

drical waves of second order meeting at an angle, even though this was
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possible to the first order. A pictorial sketch of the free surface is given

in figure 2 for conditions made clearer in section 5.

The particle motion can be determined by expanding the particle

coordinates about an equilibrium position, neglecting third-order terms
and integrating the resulting formulas for particle velocity components.
The resulting motion is quite complicated. One finds that in addition

to the oscillatory motion the particles are propagated in the direction of

the wave motion with a constant velocity.

U= — r2 (tanh2 rd+l)+cos 2ri3(r2 tanh2 rd+m2—

n

2

) J
• (15)

Thus U is a maximum for lines in the direction of propagation passing

through crests and troughs and a minimum for lines midway between
these. These maximum mass transport velocities coupled with the large

translational velocities of the short-crested waves breaking on these lanes

give rise to eddy cells in the near-shore circulation. One would expect

then that the separation between lanes of maximum current would vary
with the crest wave length being large for long-crested waves and small

for short-crested waves. This behavior has been noted by Shepard and
Inman [7] in their studies of rip currents.

5, Energy Flux; Refraction

Approximate expressions for the transformation of waves on gently

sloping beaches can be determined by applying Rayleigh’s method of

assuming that the average power transmitted per unit surface area in

a regular wave train is conserved. One finds that this average power
transmitted per unit area (Lamb 1932) is

P =
2rd

sinh 2rd/
(16)

Equating values of p between neighboring orthogonals a distance A

/

apart, we find

where

no-mo,

_*Q:
sinh 2rd/

w-w,

(17)

and the subscript 0 refers to “deep waters.” Assuming that m is always
equal to n this expression can be written on the form

Kd indicates the extent to which the height of the wave is modified by
refraction. The first factor a/a0=H/H0 is the ratio of wave heights for
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waves approaching at right angles to the depth contours. This ratio,

together with the ratio of velocities for constant period, is presented in

figure 4, as a function of d/L0 . If one assumes in addition that the period

is constant, one can compute the refraction of waves for parallel contours
according to Snell’s law, following the procedure given in Breakers and
Surf [2] for long-crested waves. This is included in figure 5.

Using this information, together with the equations for the surface

profiles of the long- and short-crested waves, we can trace approximately
the relative behavior of these waves as they move shoreward, assuming
they have the same height and wave lengths in deep water. The short-

crested wave, which was doubly sinusoidal in deep water, transforms as

it moves into shallower water, becoming higher and steeper in the crests

and broader and shallower in the troughs. The effect is to tend to

produce a doubly periodic system of isolated mounds separated by rela-

tively flat valleys. In this respect it suggests the behavior of long-

crested waves in approaching the solitary wave form. This behavior is

illustrated in figure 2. One sees that the long-crested wave peaks up
much more rapidly than the short-crested wave in shallow water. Actu-
ally, our approximations are rather poor, however, for one would expect

flow transverse to the direction of propagation, tending to transform

short-crested waves into a long-crested form. This flow would be expected

to be large for high waves in shallow water, and hence it would increase

rapidly as the waves approach breaking.

6. Simple Group

The simple group is generated by superimposing two sinusoidal wave
trains of neighboring wave lengths and frequencies and of the same ampli-

tude. Thus we have

rj = a cos (mix— ait)cos n\Z-\-a cos (m2a;
— a2t) cos n2z,

which can be written in the form

V-=2 cos(ax— (3t)cos(mx— at)cos yz cos nz
a

+2 sm(ax—(3t)sm(mx—at)sin yz sin nz, (19)

where =m— m2— m-\-a
,

ai= a— (3, a2 = a-+-/3, n\ — n—y, n2— n-\-y.

The amplitude factors 2a cos (ax— (3t

)

cos yz and 2a sin (ax—/3t

)

sin yz

are slowly varying functions of x and z giving rise to a two-dimensional

beat pattern. As an example, take m= n,a = y, a2 = \/2gm, a =m/ 10.

Figure 6 illustrates a typical set of cross sections of the free surface.

7. Initial Localized Disturbance

Jeffreys [6] has remarked that a short-crested wave may be considered

as the resultant of two long-crested waves moving in different directions.

Waves in a storm area will consist largely of short-crested waves, and as

these' waves leave the storm area they will tend to separate into long-

crested components. As we have seen, this is true to a first approxima-
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Figure 5. Change in wave direction and height due to refraction on leaches with straight,

parallel depth contours
, for short-crested waves (L = Z/).
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Figure 6. Surface 'profiles of a simple short-crested group of waves in deep water.

tion for infinite wave trains, since a product of the form cos mx cos ny
can always be written in the form of a sum of simple cosines. A funda-

mental question then is to what extent does this separation take place

for localized disturbances. This is by no means answered by the simple

remark above.
In order to attempt to answer this question, we shall solve the initial

value problem for which the surface displacement has the form

t(x,y,0)=f(x,y),
3f(~^’

0
- = g(s,y), (20)
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by superposition of plane waves, using Fourier’s integral theorem. One
finds that

fJ*
e^

kx+ly) (N cos at-\ sin at)dkdl
M
a

00

N=
~(tyfff(.x,v)e-

iikx+,y)dxdy

— 00

00

ffgMe-i(kx+ly)
dxdy.

(21 )

We consider for convenience the case g(x,y)=0, and we suppose the water

is infinitely deep, so that

o*= gVl<*+P.

Thus £ can be represented as a variety of plane waves moving in opposite

directions.

*//N(k,l)e
i{kx-\-ly—<rt)

dkdl JfN(k,l)e
i{kx+ly+’l)dUl. (22)

Now t can be evaluated approximately by applying the method of

stationary phase to each integral separately. Introducing polar coordi-

nates r, 6, one finds that stationary values of the phases occur for

7
Qt

2

^o =—cos 0,
7

Qt2 .

lo = —-smd.
4r2

(23)

Expanding the phase about these stationary points, one finds on making
the usual approximations that

r=
N(kM—

>—.= cosWb2-ac
(24)

where A, B, C are the derivatives akk, xk i, <rn evaluated at k0 , 70 . As
a particularly important case, consider that of an initial elevation of the

form cos ax cos ay for a square region of length 2n+J wave lengths about

the origin and zero outside. This generalizes Havelock’s [3] model for

cylindrical waves. Then

N(k,l)=-

cosj (2n-f-J)—jcosj (2n+i)—

|

tt a H)H)
(25)
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Substituting, one finds

r 2V2^¥
0(r2C°S(’)0(T2Sm0)COS

(4r)

r =—T
20(r2 cos 0)0 (t

2 sin 0)cos(—\
7rar \4rj

(26)

where

and

cos{(2n+J)7rr2

}
>;

1-T4
(27)

o
Qt2

T2= —
4r2a

These are waves moving radially outward from the origin with a variable
amplitude factor A(r,0) = r20(r2 cos 0)0 (t-

2 sin 0) for fixed r. Since r is

proportional to t, A(t,6) gives essentially the time history of the motion.
The wave length and period are

X =
Sttt2

gt2
’

T
da

dt

4:irr

gt

'

.

Hence

a = phase angle =—

•

47
-

group velocity = \ i
qt

wave velocity =— =

47

r

1

2\ 2tt‘

(28)

(29)

In general one finds that the group velocity for any depth is

(

2rd \
Id—— (30)

smh 2rd/

The wave length at the point of maximum amplitude is easily deter-

mined for 0 = O,±x/4, ±7t/2, .... For 0 = 0, A(t,6) is a maximum for

gt2/4r2 = a or X = 27r/a. The maximum of the disturbance for 0 = 0 propa-
gates with a group velocity associated with the original wave length

27r/a. For 0= 7r/4 the maximum amplitude occurs when r2 = \/2, which

implies X7r/4 = X0/v/
2. This is the wave length of a long-crested com-

ponent of an infinite train of the short-crested waves given initially.

After a fixed time the distances traveled by the maximum disturbance

will be in the ratio of the corresponding group velocities, which implies

that the distance along 0 = 0 is \^2 times the distance along 0= 7r/4. The
maximum disturbance occurs along 7r/4, and one finds for fixed r

maximum amplitude at 0 = 7r/4

maximum amplitude at 0 = 0

which is quite large for a large number of initial waves.

\/2(2n+i)^> (31)
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The amplitude factors A(r,0 ) for 0 = 0, 7r/4 are plotted in figure 7 for

4| complete wave lengths of the initial disturbance about the origin.

The principal effect occurs in the group moving with the group velocities

corresponding to the initial wave lengths. In advance of these oscilla-

tions, however, are several other groups of appreciable amplitude with

wave lengths of f\0 ,
£X 0 , fX 0 ,

for 0 = 0, tt/2, ... ,
where X 0 is the initial

wave length 2-rr/a. These groups moving with their corresponding group

50.0

40.0

30.0

*<r,e)

"7T-
20.0

10,0

0.0

12L ...
4 ’

i.— . rJ\ A/\

Figure 7. Amplitude factor A(T,d) for localized displacement J+.5 wave lengths long.

velocities will arrive first at a given place. After the arrival of the

maximum disturbance, one will find smaller disturbances having wave
lengths of ^-X 0 ,

^X 0 , T
9gX 0 ,

. . . for 0 = 0, 7t/2, .... In any particular

group the period decreases with time at a given position like 1/t. This

leads to a broadening of the frequency spectrum toward shorter wave
lengths, as observed by Barber and Ursell [1].

The behavior of the amplitude factor should be regarded only as indi-

cating the trend of the amplitude as a function of time. Inherent in the

use of the group approximation is the condition that at large distances the

waves appear to be due to a concentrated point displacement of infinite

amplitude. In order to secure amplitudes that are of the same order of
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magnitude as the assumed initial amplitude, one must go to distances

large compared with the dimensions of the initial disturbance. This may
be neither convenient nor possible in actual situations. The solution of

these difficulties requires a more refined asymptotic treatment of integrals

such as eq 21.
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22. The Present Status of the Resonance
Theory of Atmospheric Tides

By C. L. Pekeris 1

A review is given of the resonance theory of atmospheric tides with a view of clarify-

ing the apparent difficulties arising from the requirement of fine tuning, and from the
fact that the upper stratosphere has a controlling influence on the free period, although
its mass is only a fraction of 1 percent of the total mass in an atmospheric column. It

is shown that in treating problems of atmospheric tides, w’hich depend on the thermal
structure of the atmosphere above about 100 km, one must include the quadratic
terms in the equations of motion, since these become greater than the linear terms
retained, at heights above about 130 km. The emergence of the quadratic terms in

the differential equations is illustrated in figures 4 and 5.

Some other outstanding problems in atmospheric tides are then briefly discussed.

It is not generally recognized that our atmosphere, like the ocean,

undergoes tidal oscillations. The tide in the atmosphere is manifested
by a semidiurnal oscillation of the barometer. This phenomenon is

most marked in the tropics, where, on the one hand, the amplitude of the

atmospheric tide is at a maximum, and, on the other hand, the weather
disturbances are generally weaker than in northern latitudes. Figure 1

5 6 7 8 9

Figure 1 . Barographs taken at Batavia and Potsdam during November 5 to 9
,
1919.

shows a barograph for the period of November 5 to 9, 1919, taken at

Batavia, latitude 6° S, exhibiting clearly the semidiurnal oscillation.

On the barograph at Potsdam the tide, which is of smaller amplitude
there, is completely masked by the passage of a “low.” The atmospheric
tide is a world-wide phenomenon, and shows greater regularity than the

1 The Weizmann Institute of Science, Rehovoth, Israel.
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oceanic tide. In contrast to the latter, it follows the sun and not the
moon. Table 1 shows the times of maxima of the tide for a number of

equatorial stations, and it is seen that, with one exception, they occur
between 9:30 and 10 local time.

Table 1. Time of maxima of atmospheric tide at some equatorial stations

of different longitude

Simpson, Quart. J. Roy. Met. Soc. 44, 1, 1918.

Station Latitude Longitude
Time of maximum

local time
(a.m. and p.m.)

San Jose 9°56' N. 84°4' W. 9.6
Quito 0°14' S. 78°32' W. 10.0
Para .

1°27' S. 48°29' W. 10.0
Quixeramdbin 5°16' S. 39°56' W. 10.3
Ascension 7°55' S. 14°25' W. 9.8
Gabun 0°25' N. 9°35' E. 9.9
Cameroons 4°3' N. 9°40' E. 9.7
St. Paul de Loanda 8°49' S. 13°7' E. 9.8
Kwai 4°45' S. 38° 18' E. 10.0
Zanzibar 6° 10' S. 39° 10' E. 9.9
Dar-es-Salaam 6°49' S. 39°19' E. 9.6
Trivandrum 8°31' N. 76°59' E. 9.5
Singapore 1°15' N. 103°51' E. 9.8
Batavia 6°11' S. 106°50' E. 9.7
Finschhafen 6°34' S. 147°50' E. 9.5
Nauru 0°26' S. 166°56' E. 9.7
Jaluit 5°55' S. 169°40' E. 9.5

There is also a weak lunar tide in the atmosphere, but its amplitude is

only of the solar tide. Because the tidal potential of the moon is

greater than the tidal potential of the sun by a factor of 2.2, the preponder-
ance of the lunar tide in the ocean is quite understandable. The reversed

situation in relative magnitudes of the atmospheric tides has puzzled

mathematicians for over 150 years. Laplace [1 ]

2 was led to the conclu-

sion that the tide in the atmosphere is excited thermally and not gravita-

tionally. It was pointed out, however, by Sir William Thompson [2] that

on the thermal hypothesis one would expect an even larger diurnal atmos-
pheric tide of global regularity, which is not observed. Kelvin then

proposed the resonance theory, according to which the atmosphere
possesses a free period of oscillation very close to 12 solar hours, so that

the gravitational semidiurnal solar tide is magnified by resonance. The
tuning required to produce the observed magnification of about 100 has

to be to within about 4 minutes [3] of 12 solar hours.

An obvious objection to the resonance theory is the unlikelihood that

the atmosphere invariably retains that particular vertical temperature
distribution which is required for the sharp tuning. Actually, it turns

out that within a specified general pattern, the vertical temperature
distribution may vary within appreciable limits before detuning sets in.

Thus the temperature distributions shown in figure 2 [4] are, with the

exception of cases F and I
,
consistent with a period of free oscillation close

to 12 solar hours.

The general pattern of the resonating atmospheres shown in figure 2,

is a rise of temperature between the levels of about 35 to 55 km, followed

by a drop to about 75 km. At the time when this type of thermal struc-

ture of the atmosphere was proposed [41, there was strong evidence for

only the rising portion of the temperature curve as derived from anomalous

2 Figures in brackets indicate the literature references on p. 208.
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sound propagation [5] but for the falling portion there was only the indica-

tion from the existence of noctilucent clouds [6]. Tidal theory shows [4]

that unless the drop of temperature between 55 to 75 km exists, the atmosphere

will not possess a free period of 12 hours. The existence of this region of

falling temperature has since been verified bj^ direct soundings with V-2
rockets, as shown in figure 3.

M*

Figure 2. The atmospheres with the vertical temperature distributions shown above

{except F and I) have a period of free oscillation close to 12 solar hours.

Nevertheless, one may ask how can the thermal structure of the upper
stratosphere have such a deciding influence on the period of free oscilla-

tion when its mass is only a small fraction of the total mass in an atmos-
pheric column? Thus, how is one to explain the result of tidal theory
that atmosphere F in figure 2 is nonresonating, whereas atmospheres
A, B,C, D, E, and G are, when the fractions of the total mass in an atmos-
pheric column lying above the levels of 30, 40, 50, and 60 km are 1.1,

0.27, 0.091, and 0.033%, respectively? The answer is that the difficulty

posed by the above query would be valid only if the amplitude of the tidal

velocities were of the same order of magnitude throughout the atmos-
pheric column, for only then would the dynamic effect of the upper strato-

sphere be directly related to its mass. Actually, theory shows that the

amplitudes of the tidal velocities u increase with height, almost, but not
quite, as rapidly as p<Tq where p 0 (z) denotes the mean density at height z.

As a result, the energy density of wave motion E, which is proportional to

pQu2
,
remains of the same order of magnitude throughout the first 80 km for

the 12-hourly free oscillation. This is illustrated by the curve E in fig-

ure 4, where it is seen that the value of E at 60 km is th3 same as at the
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ground, and that the area under the K-curve above 30 km is more than
twice as large as the area of the E-curve in the atmospheric column below
30 km . Because the total energy of wave motion in the upper stratosphere
is more than twice as large as the energy in the lower regions, it is not
surprising that the period of free oscillation for this mode depends mark-
edly on the thermal structure of the upper stratosphere. It would also

follow that in considering the problem of the maintenance of a tuned
state for the semidiurnal oscillation, we should take into account not the
striking atmospheric variability in the troposphere and lower stratosphere

due to weather, topography, latitude, and seasons, but the probable
considerably smaller variability of the structure of the whole atmospheric
column extending from the ground up to about 80 km.

Temperature (degrees Kelvin)

Figu p ^3. Vertical tem perature distribution determined by a V-2 rocket sounding at

White Sands, New Mexico, on March 7, 1947 (N . Best, R. Havens
,
and H. La Gow,

Phys. Rev. 71
, 915, 1947).

The above considerations apply only to the 12-hourly oscillation.

The atmosphere possesses another free mode of oscillation with a period

of about 10J hours. This is the mode by which the pressure wave caused
by the Krakatau eruption of 1883 was carried three times around the

world [7]. Tidal theory shows that the energy of this wave is concen-

trated in the troposphere and lower stratosphere. As a result, all of the

atmospheres shown in figure 2 have nearly the same period of oscillation

for this mode, with atmosphere I differing from the others by about 10

minutes only.

There remain some unsolved problems in the resonance theory of atmos-
pheric tides that are associated mainly with the thermal structure of the

atmosphere above 80 km. One is the discovery made by Appleton and
Weekes [8] of the existence of a lunar tide in the K-layer of the ionosphere,

which is situated at about 110 km. The amplitude of this oscillation in

height of the K-layer is about 1 km, and its phase agrees with that of the

lunar pressure oscillation at the ground. According to the commonly
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accepted theory of the mechanism of ionization in the E-layer, the height

of the E-laver should be in phase with the pressure oscillation there,

from which it would follow that the lunar pressure variation at 110 km
is in phase with the pressure oscillation at the ground. On the other

hand, the resonance theory of atmospheric oscillations, when applied to

atmospheres having the structural pattern shown in figure 2, predicts [4]

that the pressure oscillation above 30 km is 180° out of phase with the

pressure oscillation at the ground. Weekes and Wilkes [9] have shown
that there is no difficulty in reconciling the above experimental results

with theory if one assumes that, in addition to the temperature maximum
at 60 km, there exists another temperature maximum at 110 km. This
suggestion meets, however, with the difficulty which will be treated in

detail presently, that above about 100 km, the quadratic terms in the

tidal equations which were considered negligibly small, become com-
parable to the linear terms which were retained.

The difficulty with the emergence of the quadratic terms in the tidal

equations above 100 km also besets any attempt at the solution of the

second outstanding problem in the resonance theory, which is to deter-

mine whether a given temperature distribution in the ionosphere, such
as, for example, the one shown in figure 3, can be reconciled with the

existence of a free period of 12 solar hours. According to the usual
linearized tidal theory the amplitude of the tidal velocities u increases

with height, reaching values in the ionosphere which are about a thousand
times greater than at the giound. Now at the ground the particle velocity

u near the equator is about 35 cm/sec for the solar semidiurnal tide.

With a magnification of 1,000, the particle velocity becomes comparable
to the velocity of sound, when it is no longer permissible to neglect the

quadratic terms in the tidal equations. Thus in the equation

Du (du du dii,

Dt
= p( \~w

dt dx

dp - dti

dx
P
dx

(1 )

where O denotes the tidal potential, it is customary to substitute du/dt
for Du/Dt. We may evaluate the error thus committed by determining
the ratio of the neglected term u{du/dx) to du/dt. Now in a wave pro-

gressing in the x direction

du 1 du— (2 )
dx Vdt

where V denotes the phase velocity. Hence

du du
-—

-f-u
dt dx

(3 )

It follows that- the neglect of the quadratic terms in the tidal equations
is justified only when the particle velocity u is negligibly small in com-
parison with the phase velocity V. This phase velocity is of the order
of the mean sound velocity in that portion of the atmospheric column in

which the bulk of the wave energy is concentrated. Since the sound
velocity varies only as T

V

is in the neighborhood of 320 m/sec.

It follows from linearized eq 1 that

Vi=p-po= PouV, (4 )
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where pi denotes the pressure oscillations. Hence

with

u Pi Pi (z)RTq(z) pi (z)H 0 (z)

V poV2 po(z)V2 po(z)H
(5)

H a (z) = (R/g)T0 (z), V2=gH. (6)

The factor H Q (z)/H varies relatively little with height, so that the ratio of
the quadratic terms to the linear term is of the order of the ratio of the pressure

of oscillation to the undisturbed pressure at the level considered. Obviously,
the linearized equations cease to be valid when (pi/p 0 ) approaches unity.

o——I v* —

—

0 0.1 0.2 03 04 0.5 0.6 07 0.8 0.9 IX) 1.1 12 1.3

Figure 4. Ratio of the neglected term u(du/dx) to the term (du/dt)
}
which is retained in

the equations of atmospheric oscillations.

Curve T is the assumed temperature distribution, E the wave energy density.

The regions of validity of the linearized equations is illustrated in

figures 4 and 5. The atmosphere in figure 4 is the one designated by B in

figure 2. It is seen that whereas in the first 80 km the quadratic term is

less than 0.1 of the linear term, the two terms become equal at 125 km.
Above that height, the retained linear term becomes even smaller than

the quadratic terms that are neglected in the linearized tidal equations.
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The linearized equations, therefore, become inadequate for the determin-

ation of the tidal motion above that level. One may, however, venture

to suppose that for this atmosphere the period of free oscillation will not

differ materially from that given by the linearized theory, because the

energy under the E-curve above 100 km is only a small fraction of the

wave energy in the whole atmospheric column.
Figure 5 gives similar results for an atmosphere treated by Weekes

and Wilkes [9]. Here, again, the quadratic terms exceed the linear terms

above 130 km.

Figure 5. Ratio of the neglected term u(du/dx) to the term (du/dt), which is retained in

the theory of atmospheric oscillations.

Curve T shows the assumed temperature distribution.

It follows from the above considerations that those features of atmos-
pheric oscillations which depend on the thermal structure in the iono-

spheric levels cannot be treated adequately by the linearized tidal theory.

Any conclusion derived from the linearized tidal theory that is condi-

tioned on the assumption of a particular temperature distribution in the

ionosphere is therefore open to question.

There are other outstanding problems in the theory of atmospheric-

tides that await solution. One of these is an explanation of the fact that
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the maximum of the solar semidiurnal pressure wave occurs at 10 o’clock

rather than at 12. This problem has been dealt with by Chapman [10],

but it would be worth returning to it in the light of the considerations on
the observed variation with height of the phase, which have recently

been made by Bjerknes [11].

Another problem that still requires elucidation is the origin of the

stationary component of the solar semidiurnal tide. This pressure oscilla-

tion has an amplitude of about 0.1 mm, and is at a maximum at high
latitudes. There is also an appreciable 8-hourly oscillation.
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23. Analysis of Sea Waves

By G. E. R. Deacon 1

The understandable reluctance of statisticians to use the periodogram technique to

search for periodicities in short graphs of economic events has been used to dissuade
oceanographers from employing it to analyze wave-pressure records, which look like

mixtures of sine waves and approximate in length to the infinite duration required for

full definition of the spectrum. The method of autocorrelation may have some
advantage in the search for a single periodicity, because its cross multiplication will

accentuate the principal periodic variation, but application of both methods to the
same record indicates that there is little to choose between them in this respect. For
the analysis of records which have been shown to approximate to mixtures of sine waves
autocorrelation seems to be an unnecessary intermediate step: the resulting correlo-

gram must itself be submitted to Fourier Analysis to obtain the desired information.
Experimental justification of the usefulness of the periodogram technique is avail-

able. By taking proper account of the response of a resonant filter to a gliding tone
(Barber and Ursell, 1948), the first ocean-wave analyzer gave the amplitudes of Fourier
components of artificial records correct to within 5 percent up to the sixtieth harmonic
(Barber, Ursell, Tucker, and Darbyshire, 1946). The significance of prominent fre-

quency bands that persist through analyses of consecutive records is demonstrated by
success in confirming applications of hydrodynamical theory to wave propagation
(Barber and Ursell, 1948, and Ursell, 1950). Confirmation of the theory that micro-
seisms are produced in a region of wave interference between similar wave trains

traveling in opposite directions (Longuet-Higgins, 1950) by analysis of simultaneous
records of waves and microseisms (Darbyshire, 1950) might also be mentioned.

The first outcome of the improved methods of wave recording used
during the past 6 or 7 years has been the accumulation of a large number
of complex records from which the essential information can only be
disentangled with some difficulty. There have been two methods of

approach: on the one hand, the complexity of the records and scarcity

of information about the basic processes in the generation area has been
used as sufficient justification for a direct statistical approach, and on
the other, an attempt has been made to select incidents of sufficiently

simple nature and obvious interpretation to find simple rules or reason-

able assumptions that might be confirmed by statistical methods when,
for practical reasons, only crude observations can be made. As in other

branches of science the methods are complementary, serving different

purposes, and an attempt to assess their capabilities is not out of place

at the present time. Barber and Ursell (1948) have set up a fairly

precise physical model. Using the classical theory of Cauchy, Poisson,

and others, they conclude that the waves should behave roughly as though
they originated in an instantaneous point disturbance or a number of

such disturbances distributed over the generating area. The result

would be a continuous spectrum of waves, and a wave pattern that at

any time would be the sum of a large number of component wave trains.

After they leave the storm areas, the component waves, if not too steep,

should travel independently with the group velocities appropriate to their

1 National Institute of Oceanography, London, England.
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periods, and if the generating area is well defined and far enough from the
recording station, it should be possible to distinguish the component
wave trains one after another at the recording station and to trace them
back to the generating area by the group-velocity method. This conclu-
sion was confirmed by taking wave-pressure records of 20 to 30 minutes
duration every 2 hours at a point on the west coast of Cornwall, and
analyzing the records on a specially constructed Fourier Analyzer (Barber,
Ursell, Tucker, and Darbyshire, 1946).

It was soon found that most of the wave-frequency bands that appeared
in the analyses could be attributed without uncertainty to particular

storms shown on the meteorological charts, and by selecting well-defined
storms at various distances from the recording station, the travel times
could be measured with some accuracy. As expected, it was found that
the waves leaving the storm area behaved as a continuous spectrum, each
element of which traveled independently toward the distant coast with
the classical group velocity appropriate to its period. It was also found
that there was an upper limit of wave period that depended on the greatest

wind strength. It has since been found that there may be some devia-
tions from the classical behavior when the waves travel through an area
in which they are acted on by a strong wind, but these are not large

enough to upset the conclusions.

Seiwell and Wadsworth (1949), have set up an alternative model.
They believe that the new research method of autocorrelation analysis

should provide more information than the method of Fourier analysis,

and after working on 30 records taken more or less at random from the
North Atlantic Ocean, Mediterranean Sea, and Eastern American coast

(Seiwell, 1949, p. 527), they conclude that the sea-surface pattern consists

of a single cyclical component, or in rare cases two, on which is super-

posed a random variation “due to random motions of the water and local

intermittent wind action.” For the propagation of waves from the
storm area it was assumed that “the ocean acts as a filter, so that after

a certain distance from the generating area, swell of a single period is all

that remains of the wave pattern” (Seiwell, 1950 pp. 245-46). The
demonstration by Barber and Ursell that the upper and lower limits of

wave period at a distant station changed from hour to hour according to

simple expectation from hydrodynamical theory was dismissed as being

“based on misleading indication of periods from periodogram analyses of

finite amounts of data.” No theoretical justification was given for the

new model, but it was claimed to be a more realistic and more simplified

picture of the physical characteristics of the sea surface.

In the interests of future progress in wave research it is necessary to

decide whether the method of autocorrelation does give more information

when applied to sea waves, whether the idea of a single wave plus random
variations is more realistic than that of a wave pattern composed of trains

of waves of different period, and whether it is better to begin by analyzing

continuous series of records from simple well-defined incidents rather than
records taken from here and there without reference to the prevailing

meteorological conditions.

Mathematically, there is nothing to choose between the methods of

autocorrelation and Fourier analysis. Ursell (1950 p. 455) points out

that they both give perfect resolution of the available information. Only
difference in the ease with which one or the other form of resolution can be

used will make one method preferable to the other. Lee, Cheatham, and
Wiesner (1950) emphasize that the correlation method can make no
theoretical claim to be superior to the other, but they can make better
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use of it because, from an engineering aspect, it makes many equivalent

operations more practicable and feasible. The argument of the wave
researchers who use the Fourier analyzer is that they prefer it because
it makes the interpretation of wave records more practicable and feasible.

In the interpretation of wave records both analyses are examined visually,

the correlogram to see if it looks like a sine wave or mixture of sine waves,
and the periodogram to see if one or more parts of the envelope of the
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Figure 1 . Autocorrelograms and periodograms of artificial and real wave records.

A, 560 random numbers 0 to 70; B, 560 random numbers plus 93 “waves” +10 to —10; C, 560 random
numbers plus 56 “waves” +12 to —12.

Fourier ordinates in the spectrum stand well above the rest. To give

some indication of what it involves the autocorrelograms and periodo-

grams of four artificial records and one wave record are shown side by
side in figure 1. They were obtained with a photoelectric correlation

meter made in the Admiralty Research Laboratory, Teddington, by the
staff of the newly formed Institute of Oceanography, and with the Fourier
analyzer described by Barber, Ursell, Tucker, and Darbyshire in 1946.
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The performance of each machine has been checked by analyzing standard
records.

When random numbers are analyzed (first pair of records in fig. 1) the
correlogram shows no obvious periodicity, and no part of the envelope of

the Fourier ordinates in the periodogram stands well above the rest.

When a periodic variation, repeating every six numbers, is superposed on
the random numbers (second pair of records), the correlogram looks like

a sine wave with a period of six numbers, and the periodogram has a very
distinct peak at six numbers. A longer periodicity repeating every 10

numbers added to the same random numbers (third pair of records) is

also apparent in both analyses, although, for some reason, the sine wave
on the correlogram and the peak in the periodogram are not quite so

well-developed as those obtained from the somewhat smaller, shorter,

superposed variation used for the second pair. 2

AUT0C0RREL06RAM PERIODOGRAM

Figure 1 (continued). Autocorrelograms and periodograms of artificial and real wave
records.

D, 560 random numbers plus both “wave” trains; E, wave pressure record 30 minutes, 40 ft. Perranporth
1900 hr, September 4, 1948.

The fourth pah' of records represents corresponding analyses of the

random numbers with both periodic variations superposed on them. The
periodogram shows two peaks at 6 and 10 numbers like those in the second

and third periodograms, but interpretation of the correlogram is not so

easy. It looks like the sum of two or more sine waves and might be

the sum of those in the second and third correlograms, but the periods

could not be determined with any certainty except by submitting the

correlogram to Fourier analysis. The resulting power spectra for the

2 The spreading of the longer period into adjacent harmonics, and slight differences in the appearance of

the background, are possibly due to small variations in speed of the recording camera.
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correlograms in figure 1 would be very similar to the power spectra shown
below each periodogram in the figure, which were obtained by incorporat-

ing in the Fourier analyzer a circuit that squares and slightly smoothes

the output of the filter.

The fifth pair of records in figure 1 shows the autocorrelogram and
periodogram of a 30-minute wave record. The correlogram suggests the

presence of a number of periods, the periodogram gives a clear indication

that there is a wide band of wave periods from 5 to 12 seconds and a nar-

row band of swell of 19 to 20 seconds. The record from which the analysis

is made is part of a continuous series, and examination of the spectra of

preceding and succeeding lengths of record and the relevant meteorological

charts leaves no doubt that the narrow band of swell was part of the swell

from a tropical storm that developed off the coast of Florida and moved
northward along the eastern American coast. Comparison with the other

analyses in figure 1 shows that the background is very small, and this is

an almost universal feature of wave-pressure records. Seiwell’s papers

give the impression that what he really objected to was the apparently

arbitrary way in which the exponents of the periodogram technique had
to decide whether a particular peak was significant or not But he over-

rated the difficulty, since they have the great advantage of looking for a

pattern. Spurious indications might appear in individual analyses, but

they would not appear in every spectrum of a long series with upper and
lower limits in precisely the places where simple hydrodynamical theory

says the upper and lower limits of the swell from a storm that has already

appeared on the chart should arrive.

The fact that Bartels, Wilson, Yule, Kendall, and others cast doubts

on the suitability of the periodogram technique for detecting periodicities

in short series of such unaccountable events as are dealt with in Ayres’

Index of American Business Activity, or the Marriage Rate in England
and Wales, need not worry us in the least: in contrast to such economic

series our wave-pressure records contain at least 60 of the waves we wish

to detect
;
they look like mixtures of sine waves, and it is reasonable (Bar-

ber and Ursell, 1946, p. 552) to treat them as such.

For certain problems, such as the scatter of individual wave heights

about the mean height over a short interval, and attempts to predict

wave motion two or three waves ahead from a record of the previous

motion, statistical methods are more appropriate; but the main problem
in wave research is still to show how the general character of the wave
pattern changes in relation to wind and with distance from the gener-

ating area under all sorts of conditions. This requires detailed analysis

of continuous observations, and Fourier analysis has proved itself the

most useful method up to the present.

One of the outstanding examples of its usefulness in providing accurate

information about wave periods is that which led to the theory that

microseisms are produced in a region of interference between similar

wave trains traveling in opposite directions (Longuet-Higgins, 1950) and
to confirmation of the theory by analysis of simultaneous records of

waves and microseisms (Darbyshire, 1950). A demonstration of how
measurements of wave spectra from local and distant storms are leading

to a closer understanding of the changes in general character of the wave
pattern from hour to hour and day to day in relation to weather condi-

tions would be the most useful argument I could produce at this Sym-
posium. I think a good case could be made, but feel that it should be

left until my colleagues who are working on these lines can bring it forward
with all the detail that is necessary.
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We, in Britain, would like to take this opportunity of acknowledging
the help that we have received from the late Dr. Seiwell in wave research
and other aspects of oceanography, and to express our deep regret at his

untimely death.

Barber, N. F. and Ursell, F. 1946. The generation and propagation of ocean waves
and swell. Phil. Trans. Roy. Soc. [A] 240, 527.

Darbyshire, J. 1950. Identification of microseismic activity with sea waves. Proc.
Roy. Soc. [A] 202, 439.

Lee, Y. W., Cheatham, T. P. and Wiesner, J. B. 1950. Application of correlation

analysis to the detection of periodic signals in noise. Proc. I. R. E. 38, 1165.

Longuet-Higgins, M. S. 1950. A theory of the generation of Microseisms. Phil.

Trans. Roy. Soc. [A] 243, 1.

Seiwell, H. R. 1949. The principles of time series anatyses applied to ocean wave
data. Proc. N. A. S. 35, 518.

Seiwell, H. R. and Wadsworth, G. P. 1949. A new development in ocean wave
research. Science 109, 271.

Seiwell, H. R. 1950. Problems in statistical analyses of geophysical time series.

Science 112, 243.

Ursell, F. 1950. On the application of harmonic analysis to ocean wave research.

Science 111, 445.



24. Some Observations of Breaking Waves

By Martin A. Mason 1

Progressive oscillatory waves produced in a laboratory tank were made to break on
a sloping, impermeable beach. The geometry and character of the breaking wave
were observed by motion-picture photography at speeds up to about 800 frames a
second. Two beach slopes, 1 to 5 and 1 to 15, were used, and the range of wave steep-
ness varied from 0.005 to about 0.038. The experiments were largely exploratory in
character, for the purpose of defining the probable significant parameters controlling
the geometry and dynamics of breaking waves.

1. Observations

The experiments to be discussed were made for the purpose of observing
the general features of a breaking progressive oscillatory wave and explor-
ing the significance of various parameters as indicators of the geometry
and dynamics of these waves. It was recognized at the outset that the
internal motions of the water in the breaking wave probably offer the
most significant and sensitive measure of the dynamics of the breaking
wave. However, in view of the extreme difficulty presently of determin-
ing these motions in nature observations of internal movements in the
breaking wave were not made. This exclusion does not imply in any way
a belief on the part of the author that such observation would not be
productive; it was felt rather that the possibilities of simpler methods of

definition should be explored first.

The principal objective of the experiments was to define the phenom-
enon of breaking waves, it being the author’s belief that definition of

what happens when a wave breaks is a necessary preamble to the develop-
ment of a theory, rather than the converse. The information to be
presented is therefore primarily descriptive and its principal value lies

in whatever use it may be to those who will attempt development of a
theory of breaking waves.

.

The breaking wave was studied in its simplest aspect, that of an essen-

tially uniform wave breaking on a uniform, impermeable slope, with
no material transportation involved. The waves were generated in

a tank 96 feet long, 1.5 feet wide, and in water 1.33 feet deep by a simple
pusher-type wave generator. In order to reduce the complicating
feature of reflected waves only the first few waves generated were observed.
The waves were observed visually and photographically, the latter by
means of 16 mm motion pictures taken at speeds of 64 and 800 exposures
a second. Considerable difficulty was experienced in obtaining satisfac-

tory photography with sufficient definition of detail of the breaking wave.
The problem appears to be one of lighting the breaking wave in such
fashion as to emphasize the features it is desired to observe and obscure

1 Beach Erosion Board, Washington, D.C.
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the less significant features, primarily the broken water and foam that
are the most apparent features of a breaking wave.

Breaking waves were produced on slopes of 1 to 5 and 1 to 15 for a
range of values of initial steepness in deep water from 0.009 to 0.044.
The breakers obtained included the “spilling” and “plunging” types
described previously by investigators at the University of California.
The process of breaking as observed can be described in the following

manner. As the wave approaches the area of breaking, it begins to
deform rapidly by a reduction in the speed of advance of the forward
face and consequent overtaking of the forward face by the seaward face
of the crest. The deceleration of the forward face appears to be related
to the speed and depth of the backwash from the preceding broken wave.
In fact, there seems to be an area of limited extent around the intersection
of the advancing forward face and the backwash within which the back-
wash flow is halted and the water surface rises rapidly, suggesting a con-
version of the kinetic energy of the backwash to potential energy in the
form of a rise in water-surface elevation. This area of energy conversion
progressed shoreward in the cases observed over a distance approximating
perhaps one-half wave length before initial breaking of the wave and at

a speed considerably less than the speed of travel of the advancing wave
crest. During this interval the advancing forward face of the wave
steepened rapidly until the initial break occurred. If the breaker was
of the spilling type, no further steepening was observed, the water at

the crest tumbling down the slope of the forward face, with that slope
remaining apparently at about the same inclination for a short time,
then flattening as the break was completed. If the breaker was of the
plunging type, the steepness of the forward face continued to increase,

reversed slope so that the crest of the wave overhung the point of initial

break, and finally the crest appeared to project forward as a jet curving
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out and down to meet the backwash just in advance shoreward of the
broken water associated with the initial break.

The geometry of the breaks described is shown on figures 1, 2, and 3.

It was observed that breaking waves were not of either the spilling or

plunging type exclusively, waves were observed to break clearly as one
or the other type and also in all intermediate fashions. It seems clear

that the spilling and plunging characteristics probably represent extreme
limits and that breakers may occur in any fashion between these limits.

It was noted that breaking is always initially7" signaled by the appearance
of broken water at the highest point on the forward face of the wave.
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In every case examined this point was the point of most abrupt change of

slope of the wave surface. High-speed photography showed the broken
water to be small masses or slugs or water probably mixed with entrapped
air giving them a characteristic foamy appearance, that detach from the

advancing face but are not projected or do not travel far from the face.

In fact, they appear simply to be detached and roll over the advancing
face. In a spilling breaker the separation of these masses appears to

spread like a grass fire, over the advancing forward face without pene-

trating into the wave but rather forming a bulbous protuberance of the

Figure 3. Intermediate breaker.

advancing face. In a plunging breaker the initial separation is of very

short duration, being succeeded by the forward and downward projection

of a tongue or jet of water from the crest of the forward face, the jet

curling down much in the form of a free-discharge jet to entrap the initial

broken water and plunge into the backwash of the preceding wave.
In connection with the initiation of breaking it was noted that at the

moment the break starts the highest elevation of the water surface usually

is seaward of the point of initial break. It appears, in fact, that the
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point of initial break is not necessarily the point of highest elevation of

the wave surface; however, in the tests made it always was located at

the point of most abrupt change in slope of the wave surface.

The horizontal-axis eddy frequently described as an important feature

of breaking waves was totally absent in the case of spilling-type breakers,

was observed most prominently when the breaker was of an intermediate

type, and was present for very short durations in the case of plunging

breakers. When the eddy motion was observed by high-speed photog-
raphy, it seemed to be of very short duration, the rotational motion then
being supplanted by random motion. The impression obtained is that

of a short-duration eddy motion modified rapidly to a random motion
characteristic of large-scale, high-intensity turbulence. The turbulence

did not appear to be isotropic, however such a determination made on the

basis of visual observation probably has little validity. In this connec-

tion, I should cite some unpublished observations of high speed photog-

raphy of material transportation in breaking waves that I made some
time ago that confirm the short duration of rotational eddy motion in

the breaker and the presence of turbulence as indicated by thorough
mixing of the transported material.

All of the breaking action of the wave appears to occur shoreward of

the point of initial break, indicating that the forward travel of the wave is

always sufficient to overcome and reverse the backwash of the preceding

wave. This obvious observation appears to be of some significance in

the evaluation of the energy dissipated in breaking. Certainly the
portion of the energy of the advancing wave dissipated in overcoming the

backwash of the preceding wave cannot be considered as available to

transport material or to contribute to the uprush of the wave. Both
these matters are of importance when determining the effects of breaking
waves on beaches and structures.

Nonmiscible drops injected into the breaking wave about one-eighth

wave length seaward of the point of break did not show motion character-

istic of the breaker region; in fact, their motion did not appear to be
greatly different, if different at all, from the normal orbital motion of the

wave. Unfortunately, the quality of the photography was not sufficiently

good to permit measurement of the actual orbital paths and velocities.

An attempt was made to measure the included angle between the

forward and seaward faces of the wave at breaking. Two difficulties

prevented obtaining valid results. One was the obscuring of the water
surface on the forward face at the time of initial break by the detaching

masses of water previously mentioned. The other lay in the determina-
tion of the inclination of the water surface. By reference to the figures it

will be noted that the surface of the about-to-break wave is a curve of

continuously changing radius of curvature, with one point of abrupt and
large change in curvature, this being the point at which breaking starts.

In this region of rapidly varying curvature the measurement of included
angle presents some difficulty, particularly if one attempts to measure the
angle by the use of tangents.

Measurements made by tangents to the curve fell within a wide range,

included angles at the point of break, ranging from a minimum of 88°

to a maximum of 145°. Other investigators have noted a similar lack

of agreement with the theoretical value of 120°. However, in those
instances, as in the results reported here, there is some question as to the
angle measured. Certain investigators are known to have employed the
angle included between a fine from the intersection of the shoreward face

of the breaker with the still-water fine and tangent to the forward part of
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the crest, and a line tangent to the seaward side of the breaker. My
observations lead me to the belief that the angle so measured is not a crite-

rion for breaking.

There is a good possibility that the initial break occurs whenever and
wherever the slope of the forward face of the wave becomes vertical, or

essentially so. Close observation of the photography obtained in the
tests reported herein showed that whenever an initial break occurred
there was an associated portion, however small, of the forward face that
was vertical or very nearly so. This condition appeared to hold for

spilling as well as for plunging breakers, although in this case there

is room for some uncertainty due to the limitations of the available

photography.

2. Further Experimentation

As a result of the observations described the following ideas are pro-

posed for further investigation.

There appears to be some reason to believe that breaking of a wave is

chiefly due to deformation of the w^ave shape, for whatever cause, beyond
a limiting shape. The limiting shape apparently may be of varying
form, since the widely different forms represented by spilling and plunging
breakers are both associated with breaking. The shape criterion for break-

ing apparently involves as its chief element the occurrence of a vertical, or

nearly vertical, slope on some portion of the forward face of the wave.
The occurrence of vertical slopes on the forward face of the wave may

be occasioned by the retardation of advance of the forward face and
consequent overtaking of the forward face by the remainder of the wave.
It will be noted that this behavior is not contradictory for the cases of

breakers in nonshoaling depths and in opposing currents.

Wave breaking is believed to be initially a local phenomenon, involving

limited areas of the forwTard face of the wave. Depending upon the

stability of form of the wrave, i.e., continuance or not of occurrence of

slopes approximating the vertical, the initial break may propagate to

a complete break or fail to propagate with resultant recovery of stability.

In the study of this phenomenon investigation should be made of breaking
in both shoaling and nonshoaling situations.

The turbulence phenomenon in the breaking wave should be given

attention. There appears to be considerable reason to doubt that the

horizontal-axis eddy, or roller, sometimes considered an important element
in the dissipation of energy in a breaking wrave, is, in fact, of any major
significance in the energy-dissipation process. The observations reported

here lead the author to suspect that the loss of energy in the breaking

process is relatively small and due chiefly to turbulence losses. Study
of the turbulence mechanism in a breaker should be rewarding, although

of great difficulty.

Study of the nature and rates of deformation of the wave shape immedi-
ately prior to breaking should offer a fruitful field of investigation.

In such study particular attention should be paid to the distribution of

potential and kinetic energies in the wave as it approaches breaking.

In conclusion, attention is called to the probable advantages attaching

to the study of breakers in nonshoaling situations, such as in an opposing

current of knowm characteristics, or under an opposing wind, where the

complicating effects of backwash from previous waves are not present,

and to the obvious usefulness of high-speed motion pictures to enable

adequate observation of details of the phenomena.
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25. Fourier Analysis of Wave Trains

By Garrett Birkhoff1 and Jack Kotik2

Various difficulties in defining a satisfactory general class of one-dimensional trains

of gravity waves are pointed out. Formal Fourier transform theory is used to suggest
plausible existence and uniqueness theorems. In particular, the following three
conditions on a wave train are shown to be formally equivalent: the spectra of the
components traveling in opposite directions are nonoverlapping; the total kinetic

energy in space is independent of time; the total kinetic energy (density) observed at
a point, totalled over time, is independent of the location of the point in space.

Finally, a Fourier analysis is made of the relation between elevation and pressure.

1. Introduction

It is well known [1, 2]
3 that ocean waves in an actual “seaway” are

usually complex superpositions of waves of many frequencies with various

origins. It is also generally agreed that Fourier analysis affords the

proper mathematical approach to the phenomenon. There is, however,
little agreement as to the statistical nature of this superposition, beyond
the idea that it consists of an underlying, nearly periodic “swell” due to

distant storms, disguised by an irregular, shorter period heaving and
tossing due to local causes.

We suggest below (sections 4 to 6) a new statistics for describing

pressure and elevation variations. Its characteristic features are that

the mean density of wave energy per unit area is not zero, and that the

phases of Fourier components are random. We believe that these

features are characteristic of an actual seaway. As “Fourier’s Integral

Theorem” has only been established (by Plancherel; see [6, Ch. I]) for

systems that have finite total energy; we believe the reliance usually

placed in it [3, pp. 364, 384, 400] is unjustified. Therefore, we use it

below only as a heuristic tool.

We shall assume the usual Airy theory of infinitesimal gravity waves,

partly because it seems sufficiently accurate in deep water [1, appendix 1],

and partly because we know of no effective way to analyze nonlinear

wave trains into periodic constituents. We shall thus assume any wave
train to be characterized by a scalar velocity 'potential

<f>,
whose gradient

V<£ = u is the instantaneous particle velocity and which satisfies,

V2
0 = 0

, (1)

and suitable regularity conditions at infinity. We shall ignore atmos-
pheric-pressure variations (wind effects), and suppose the pressure,

p, given by

p-Patm= p(gy-<f>t)j (2)

'Harvard University, Cambridge, Mass.
5 Massachusetts Institute of Technology, Cambridge, Mass.
* Figures in brackets indicate the literature references on p. 234.
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where y is depth below surface level. The elevation function y(x,z;t) is

related to <£ by the kinematic condition

Vt=~4>y, on
2/
= 0

; (3)

moreover, neglecting capillary forces, it is directly determined from <j> by
the free surface condition

gy=-<t>t, ony = 0. (4)

Conversely, using potential theory, one can prove rigorously that y deter-

mines 4> up to an additive function <j>{x,z) without physical significance

—

that is, essentially uniquely—by eq 3. Hence wave trains can be defined

by their elevation functions.

Fourier’s Integral “Theorem” asserts that the elevation function of

a plane wave train can be written in the form

h (*;<)=f.1
A (7b) cos

(
Tex— at)+B (k) sin (kx— crt)\dk

+
J*

|Ai(/b)cos(A;a;+(rO+5i(A;)sin(A;a;— <7£)Jd/b. (5)

and that analogous formulas hold for (f>(x,y;t) and in the three-dimensional

case [3, pp. 364, 384, 400]. Here a2 — gk for ocean waves; a2= gk tanh kh

in water of constant depth, h; a2 = Tkz
/p for capillary waves, etc.

Many consequences follow readily from eq 5. For instance, in an

ocean of infinite depth,

4>tt = g<i>y ,
for all y>0, (6)

if capillarity is neglected [4]; not neglecting capillarity

<l>tt = g<t>y
Jr(T/p)$yyy. (6 ')

Second, the initial-elevation function y(x,z;0) and rate of rise y t (x,z;0)

completely determine a wave train. Third, for motions that are parallel

to the (:c,?/)-plane, wave trains are determined by the elevation y(0,t) and
slope yx (a,t) at any point x = a, as functions of time. Fourth, the expres-

sion 5 decomposes any plane wave into oncoming and outgoing compo-
nents, traveling in opposite directions.

Fifth, and last, the following three conditions are mathematically
/*oo . . .

/*oo

equivalent: (i) I y
2 (a,t)dt is independent of a, (ii) I y

2 (x,t)dx is inde-
J — 00 J — 00

pendent of t, (iii) the spectra of the oncoming and outgoing components

are nonoverlapping. Similar results hold for pressure (at any fixed

depth, y 0 ,
in an ocean with a horizontal bottom), etc.

Conditions (i) to (iii) may be regarded as characterizing the absence

of “clapotis”; unless they hold, the storm intensity observed by a pres-

sure or wave height recorded will depend on its horizontal location, as

well as its depth.
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2. Existence and Uniqueness Theorems

Although by Plancherehs Theorem, the preceding results are rigorously

established for an interesting class of wave trains, it would be preferable to

prove them in more complete generality. We have had some success in this.

Thus we have proved eq 6 and 6' in an ocean of infinite depth. From
eq 6 we have proved that, if surface tension is neglected, 0 is an analytic

function of all variables, in y> 0. This permits one to use derivatives and
power series freely, in this case.

If we are given bounded analytic initial values 77 (x,0), y t (x,0) of the

elevation and velocity, then we can construct a motion having these

initial values, and this motion is essentially unique, as discussed after

eq. 4. If we are given bounded, analytic values y (0,0 > Vx(0,t ) of the

elevation and slope at a point for all time, then there is at most one
motion with the assigned values, but the existence has not been demon-
strated. In the case of constant finite depth, we can also prove that

there is at most one motion with assigned initial elevation and velocity;

the existence is an open question. Tire three-dimensional analogue of

the first result is also correct; the various remaining cases are being

worked out.

Our only other result is negative : in an ocean of constant finite depth

h, there is no linear homogeneous partial differential equation L[0] = 0, not

a consequence of eq 1, satisfied even by all simply periodic waves traveling

in one direction.

We sketch the proof, using the operational calculus. By [3, p. 364],

the simply periodic waves are given by

0M= cosh k (y+h) sin. (kx— at). (7)

Let us write TL0m= &0a;2, Dy<f>ki= &0&3, D XD y<hki — k2
4>ki,, so that 0*2, 0*3, 4>m

are obtained from 0m by suostitutmg sinn for cosh and/or cos for sin.

Again, since Dyy= (v
2—D xx) }

any L[0] can be written as L[0]=Li[0] —
ilf[v

2
0], where Li[0] involves no powers of D y above the first. Since

ilf [V
2
0] = O follows trivially from eq 1, it will suffice to prove that Li = 0

if every Li[0m ]
= 0.

To prove this, we expand Li[0m] as a polynomial

0 = Li [0m] =E (~ )
m+nk2mo-

2n
fm>n,i (x,y ;t)cki<f>ki, (8)

i9m9n

which follows from Dxx= — k2 and D tt
= — <r

2
,
writing

Li = T,(Dx) 2m (P0
2nE /»,«,< (x,y,t)Di ,

m,/i t

where the eight Zfi are I, D x,
D y ,

D xy ,
D t ,

Dxt ,
Dyt ,

D xyt ,
and the ct

- are

1, k, k2
}

a, ak, ak, ak2 . Since a2 = gk tan hk is a transcendental (i.e.,

nonalgebraic) function of k
,
the coefficients of each monomial kras must

vanish in eq 8, identically in x,y,t. This will give us, for each m,n four

identities of the form

/m,»
f
i0M+/m—1,»—40*4= 0 fromr= 2m, s= 2n,

/m
1
n,20M+/m

(
n,30fc3 = 0 from r= 2m+l, s = 2n,

/m,n,50M+/m-i,5,80fc8 = O from r = 2m, s = 2n+l,

/m,n,60*6+/m,n,70fc7 = O from r= 2m+l, s= 2n+l.
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In order that these equations be literally correct, we define f’s with
negative indices to be zero. Write the typical equation as /i0i+/202 = O.

The essential point is that the f’s are independent of k, while the <£’s are
not. If one of the f’s (say /2 ) were ever different from zero, we could
divide by it, and get (say)

/l
__ _<fo

h 0i

a contradiction. Hence all the f’s are zero, and Li = 0.

3. Energy Spectrum and Autocorrelation Function

Assuming Fourier’s Integral “Theorem,” it is logical to define a wave
train moving in one direction by (cf. [3, p. 369]),

/
CO

C(k)cosh k(y+h)cos (kx— at— e(k))dk. (9)

Here C(k)> 0 is called the amplitude spectrum of 0, and e(k) is called its

phase spectrum.

If C(k) is quadratically integrable, then <f>(x,yo]to) is also, and C2 (k)dk

is related to the total energy I(k)dk in an infinitesimal band at wave
number k, by [3, p. 370]

2gl(k) =pC2 (k)a2 cosh2 kh. .10)

Following Wiener [6, p. 163], one might even call C2 (k) the “energy
spectrum” in eq 9 directly. Since the elevation 77= —<f> t at y = 0, one can

infer C (k) from the amplitude spectrum \/

A

2 (k)+B2 (k) of the elevation

function ??(£,£) [A(&) cos a(k) cos t-\-B(k) sin a(k) sin t]dk at any

point x
;

specifically, C (k )
= A 2

(k ) -\-B
2 (k) . One can also infer C (k )

from the amplitude spectrum of the difference

Ap = p— gy =f P (k)cos (at— p(k))dk (11)

between the pressure at any point (x,y), and the hydrostatic pressure

there, by the formula

C(k) =
P(k) sin

1
3(k)

<7 cosh k(h-\-y)sio.((3(k) — kx)
(11 ')

For mixtures of wave trains from different directions, with overlapping

spectra, the transformation froiu P(k) to E (k) depends on x as well as

y ,
by the remark at the end of section 1.

Wiener [5, 6] has defined the “energy spectrum” of a wide class of

functions f(t) with /=0 and f2> 0, not quadratically integrable, as the

Fourier cosine transform §F of the (unnormalized) autocorrelation func-

tion, F(h), itself defined by

F(h) =LinA f
T

'

f(.m+h)dt-fmt+h). (12)
r->ooJi J -t
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From &F the physical energy and power spectra of a simple wave train

can be inferred, by transformation formulas like eq 10 and 11', whether

fit) is a wave height or a pressure record.

Since the utility of FJi) has been debated, we might express our
opinion. Fiji) has the advantage of depending smoothly on fit), unlike

the Fourier transform g(k) of fit) (cf. [1]; also section 6); hence it can
be accurately measured. If fit) is almost periodic (i.e., if it has a line

spectrum), one gets F(h) homf(t) by bringing all components into phase.

If f(t) has a continuous spectrum one gets F(h) from/0) by bringing all

components into phase and squaring their amplitudes. In_general,

Fjh) = Fj— h), while F(0) represents/2
, —F"i0) represents f\, FIV

(0)

represents fftJ
etc.

In ocean swell from distant storms, Fiji) does not tend rapidly to zero,

but persists for scores of wave lengths. This follows from the Cauchy-
Poisson Theory [3, p. 387, (23)]; it would be interesting to prove that,

conversely, F(h)-> 0 slowly implies that energy is concentrated in narrow
bands.

The slowness with which F(h)—>0 makes it difficult to compute its

cosine transform; moreover, since F (h) involves squared amplitudes, FQi)

will not bring out the low amplitude “forerunners” of an approaching
heavy swell, except perhaps when F(h) is only considered for large h.

For this purpose of storm forecasting, periodogram analysis of fit) may
be more practical than Fourier-transforming the autocorrelation func-

tion FQi).

On the other hand, F(h) may yield good estimates of the total energy
in broad bands —K^k<K', using the formula

/
GO

A”1 (sin K'h- sin Kh)Fih)dh. (13)

Hence it may be useful in analyzing storm records.

In the same spirit, following Seiwell [2, p. 483], one might try to “filter”

the long-period ocean swell “signal” from local “noise,” by expanding

fit) in Fourier series on the (normalized) interval
)
— 7r,7r[ and subtract-

ing the component

fk,k' (t) - 1/m
sin(X'+i) it— t) — sin (K—%) it— r)dr

2 sin iit—r)
(14)

due to a narrow band indicated by a study of F(h) for large h, or by
periodogram analysis. This seems to us more logical than trying to fit

fit)—A cos (kt— e) for suitable A, k, and e, by an “autoregressive

sequence” (solution of a stochastic difference equation), as Seiwell did in

a paper to be published soon.

4. The Principle of Random Phase

A quantity computed from a sample of a stationary phenomenon will

be called physically significant if it does not depend on the sample. For
example, let the function

fit) =A cos t+B cos 21 (15)
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be observed over an interval a— T^t^a-\-T, where T is known but a is

random. What is observed is a function of r—t—a,

g(j) =Ai cos t+A 2 sin r+fh cos t+B2 sin r,

where ii=i cos a, A 2= —A sin a, Ri = Rcos2a, and B2=—B sin 2a.

Clearly, the squared amplitudes and B\-\rB\ of the observed
Fourier components are physically significant; so is their relative phase

2 tan_1 (A 2/Ai) — tan-1 (B2/Bi), mod tt.

But neither Ai alone, nor the phase of either periodic component alone, is

physically significant.

We shall generalize this result, by stating without proof a new general

principle.

Principle of Random Phase : Let 0 be any statistical ensemble 4 of

physical systems «, each described by one or more functions /w (t) of time.
If the statistics of 0 are time independent, then the phases eu (k), if defin-

able, are random, and the phases of components having incommensurable
frequencies are statistically independent.
That is, we suppose the /„ (t) to be Fourier-analyzed in some manner

by the formula

fu (t) = Aa (k)cos(kt—e(k))dk[Aa) (k)>0] }

unspecified except for the phase transformation formula

fu(t+c)—
J*

Aa (k)cos(kt—ei(k))dk, hi (k)=e(k)—kc].

Then for any fixed k, ew (&) is an evenly distributed random variable.

Further, if k\ and k2 are incommensurable, then eu (ki) and eu (k2 ) have
independent distributions. 5

If the fa (t) have continuous spectra—as seems to be the case for waves
in a seaway—then almost all pairs of frequencies are incommensurable.
This fact, combined with the Principle of Random Phase, suggests that

phase statistics, in the ordinary sense, have no physical significance.

In our opinion, the point is simply that the ordinary concept of phase
and FourieFs Integral “Theorem” is inapplicable, even formally, to func-

tions with/2>0 and a continuous spectrum. Thus, although phase in

the ordinary sense has no physical significance, the amplitude spectrum

gives only a partial description of random functions with /
2 >0. This

idea will be developed in section 7.

5. A New Statistical Model

We shall first describe briefly a new statistical model for ocean swell,

which is suggested by the Principle of Random Phase, and the fact that

the decay of ocean swell is gradual. WT
e believe the model applicable to

the analysis of Ap(t) or rj(t) at a fixed point.

4 See [7] for precise mathematical definitions of this and other concepts involved in the Principle of

Random Phase. A corresponding result holds for functions of n variables. A rigorous proof 'will be
published elsewhere.

5 If &i, &2> &3» • • are incommensurable, then the =e(&i) are distributed according to Daniell measure on
the infinite-dimensional torus.
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We prescribe a function I (k)=dE/dk, which corresponds to the energy
spectrum of the swell. For each index m we select an (almost periodic)

function

E ( ooP w

fm(t) = cos (kit-ei),
m i

where the ki are selected at random with probability density I(k), and
the e,- by the Principle of Random Phase. The components of fm (t) all

have the same amplitude, but there tend to be more of them in bands
where I (k

)

is large
;
now let oo . This procedure defines, in a natural

way, distributions for the Fourier coefficients of functions defined on an
interval —T<t<T, as follows. The quantities k and e have distribu-

tions, and these determine distributions for the Fourier coefficients of

(E/m)* cos (
kt—e ), and hence, by convolution, of the Fourier coefficients

m
of Fm (t) = (E/m)$Yl cos (>kd—ef). By the Central Limit Theorem, 6 the

i

statistical distribution of the nth (sin or cos) Fourier coefficient of f,*(t)

approaches a normal distribution as m-* a>, which is completely deter-

mined by its variance.

More precisely, if we choose units so that T= tt, and write

00

f(t) = A n cos nt-\-Bn sin nt,
1

we have, for the second moments,

AiJ-fk2 sin2 [(fc— re)x]- [k
2—n2]~2I (k)dk, (16a)

B2

n=—J"

n

2 sa?[(k— n)iv]- [k
2— n2 \~2I{k)dk, (16b)

<16c)

ER.1/ CM)

AJB~n= 0. (16e)

A shnple but instructive special case occm’s wrhen I (k) =d(k— n), 8 the

delta function. Then/(£) idealizes the sound from a large orchestra of

perfectly timed violins playing one note in unison. The output is simply

harmonic; the amplitudes A n,Bn are normally distributed. Hence the

sound intensity E = a(A 2
n -\-B\) should be distributed statistically (at

any fixed distance from the orchestra) like the area under the curve

y= (E/C) exp (—E2/2C2
), where ^ttC/A: is the expected energy.

The preceding example is due to Rayleigh. 7 For any I(k) our model

6 In a vector space of infinitely many dimensions, for the finite-dimensional case, see H. Cramer,
Random variables and probability distributions, Cambridge, 1937, p. 113.

7 Phil. Mag. [5] 10, No. 60 (1880) p. 73. For an abstract definition of Gaussian processes, see H. Cramer,
Annals of Math. 41 (1940) 215-230, especially S9; also J. L. Doob, Annals of Math. Stat. 15 (1944) 229.
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describes what is usually called a Gaussian process; this means that the

multivariate distribution of /(£i), . . . ,/(£«) is normal or Gaussian, for

any t\< ... <tn . The main novelty of our approach, apart from its

intuitive motivation, consists in its relevance to solutions of partial

differential equations with constant coefficients. Thus, for any statistical

distribution of energy, as a function of wave-length and direction of

propagation, the Principle of Random Phase determines a unique Gaus-
sian process, as a limit of superpositions of simply harmonic Airy waves.

To analyze such directional energy distributions, simultaneous observa-

tions from two or more wave recorders would have to be correlated.

But before considering such elaborate situations, it seems wise to make
some simple remarks. Thus, we note that a statistical approach resolves

the difficulty suggested at the end of section 1. Statistical data in an

unlimited ocean of constant depth will be independent of the horizontal

location (

x

and z coordinates) of a recorder. Near shore, the “clapotis”

of reflected waves may, however, change this.

6. Application

The preceding model seems to us to shed light on a vexing problem.

It is obvious that the spectrum of even a simply harmonic “swell,” whose

period is incommensurable with the interval (say 20 minutes) during

which a pressure record is taken, will be split up into many lines, if an

ordinary periodic analysis of the record is made. Specifically,

cos kt

* 1 'die 1 k
= / -sm(k-n)7r-cosnt+—— --smkTr, (17a)

k2—n2
7r k2—

n

2

00

^ ^ 2
sin kt=/ -sin (£— 71) 71

-
• sin nt+O. (17b)

Z—Jtt — n.z

It is easy to construct artificial examples in which the correlation

between the “real” spectrum of a function and its “apparent” spectrum

is far worse. Thus let

7r 17 7r 21 7r 25 7r 29
fit) =—cos—H—cos

—

1+—cos—1-{-—cos—t.J w
17 2 21 2 25 2 29 2

A graph contrasting the “real” with the “apparent” spectrum of f(t)

over (
— 7r,7r) is shown as figure 1.

It would be interesting to know statistically what is the expected

spectrum-spreading error introduced by periodic analysis of pressure

records, in this way. Although we cannot give a complete answer, we
can give the expected spectrum from waves whose energy is “really”

uniformly distributed in the interval N Sk^N+l, where N is an integer.

This is presumably typical, as regards the incommensurability of k with

T/r. We can substitute in eq 16d and 16e, where I (k ) is a step function.
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Figure 1. Absolute values of Fourier coefficients of

7T 17 7T 21 I 25 7r 29
f(x)=^cos-^-x+^cos-^x+—cos—x+^cos^x.

The aon are actually negative.

In closed form, the integrals are

H=
173-log |^ I +r^ (SI (2*(fc-»)) +SI (2ir(fc+»»)+
[47T

2
?l «+n Z7T

-^-(C7(2,r(fc+W)) - CI(2T(t -»)))]**^)-
1

(18a)
47rn J

B; = i -j-y-log
|

\+-^-(SI(2ir(Jc-n))+SI(2ir(Jc+n)))+
[4trn /c+n ^7r

-V(CI(2»(fc-»))-C7(2T()c+M)))k
+I

. (18b)
47r

2n J

We have tabulated in table 1 the numerical amplitude expectations

obtained in this way for N— 1
,

. . . , 20, and N—7 <n< Ar+7.
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Table 1

N= 1 N=

2

N=

3

N=4 N= 5 N= 6 N—7 V= 8 N=

9

V= 10

An-7
Bn-7

.0015

.0001
.0012
.0000

.0011

.0001

An-6
Bn-c

.0019

.0001
.0017
.0001

.0013

.0001
.0018
.0002

An-5
Bn-

5

.0025

.0001
.0021
.0001

.0019

.0003
.0017
.0003

.0015

.0003

An-4

Bn-4

.0036

.0000
.0029
.0003

.0025

.0003
.0023
.0005

.0022

.0006
.0020
.0006

An-3
Bn-3

.0056

.0004
.0035
.0005

.0039

.0009
.0035
.0010

.0033

.0011
.0032
.0012

.0030

.0014

An-2

Bn-2
.0098
.0012

.0088

.0016
.0069
.0021

.0063

.0024
.0059
.0027

.0056

.0028
.0055
.0029

.0053

.0031

An-i
Bn-i

.0238

.0040
.0121
.0133

.0167

.0077
.0157
.0183

.0150

.0088
.0144
.0094

.0140

.0098
.0139
.0099

.0135

.0101

Ajv
Bn

.2667

.1929
.2545
.1993

.2407

.2119
.2371
.2153

.2349

.2171
.2333
.2185

.2323

.2193
.2316
.2200

.2310

.2206
.2304
.2212

AjV+i
Bat+1

.2006

.2550
.2094
.2438

.2136

.2384
.2160
.2358

.2178

.2340
.2189
.2329

.2196

.2320
.2203
.2313

.2209

.2305
.2214
.2302

A jV+2
5JV+2

.0055

.0205
.0071
.0179

.0082

.0164
.0088
.0152

.0092

.0146
.0095
.0143

.0099

.0139
.0101
.0137

.0103

.0135
.0104
.0132

a A+3
Bn+Z

.0013

.0087
.0017
.0073

.0022

.0066
.0026
.0060

.0027

.0057
.0029
.0055

.0030

.0054
.0030
.0052

.0033

.0051
.0034
.0050

AiV+4 .0005
.0049

.0007

.0041
.0009
.0037

.0011

.0035
.0012
.0032

.0014

.0030
.0015
.0029

.0015

.0029
.0014
.0028

.0015

.0027

Ajv+5
Bn+5

.0003

.0033
.0004
.0028

.0004

.0024
.0006
.0022

.0005

.0021
.0006
.0020

.0007

.0021
.0008
.0018

.0008

.0018
.0008
.0018

An+

6

^iv+«

.0001

.0023
.0002
.0020

.0002

.0018
.0004
.0016

.0005

.0015
.0004
.0014

.0006

.0014
.0005
.0013

.0005

.0011
.0005
.0013

Aat+7
5at+7

.0001

.0017
.0002
.0014

.0001

.0013
.0002
.0012

.0003

.0011
.0002
.0010

.0004

.0010
.0003
.0011

.0003
0009

.0003

.0009

Table 1 indicates that Afr+h, BN+h have limiting values as N-*cd. We
give an asymptotic expression that confirms this and shows that as soon as

the third term is negligible we have A N= BN+h Bn=An+1 ,
AN-i = Bn+ 2 ,

etc., as indicated by the table. Starting with eq 18a and 18b, and using

the asymptotic expansions of SI(x) and CI(x) given in [9], we get

A
"~*l = +^-lSIl2ir(h+l)]-SI[2ir(h)]+ -

,

1 - [-CI[2ir(h+l)]
2 +2x 4TT

2(N-h)
&N-h j

+iog 2x| h+1
1

+CI [2xWi— log 2x| H
| ]+i^zy^v^) +0(iV

"
3)

’

with the natural convention logO— CZ(0)=0. The accuracy of this

approximation depends on the magnitude of N—h: using the first two

terms in all cases, we have, for N= 10, h= —4, .0016, .0026 instead of the

tabulated .0015, .0027; for TV =10, h = 4, we have .0022, .0003 instead of

.0020, .0006; for N= 10, h = 0, we have .2304, .2210 instead of .2304,

.2212; for N= 20, h= 20, we have .2281, .2234 instead of .2281, .2233;

for N= 20, h = —4, we have 0018, .0024 in both cases for N= 20, h = 4,

we have .0016, .0009 instead of .0016, .0010.
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Table 1 (Continued)

N=U Ar= 12 N= 13 N= 14 N= 15 AT=16 V=17 V= 18 N= 19 N=20

A A'- .0010 .0009 .0009 .0008 .0008 .0008 .0008 .0008 .0006 .0007
Bx-7 .0002 .0001 .0001 .0002 .0002 .0002 .0002 .0002 .0002 .0003

Ax-6 .0012 .0011 .0010 .0011 .0010 .0009 .0008 .0010 .0009 .0009
Bx~6 .0002 .0003 .0004 .0003 .0004 .0003 .0004 .0004 .0003 .0005

An-5 .0015 .0014 .0013 .0013 .0012 .0013 .0011 .0012 .0011 .0012
Bn-s .0005 .0004 .0005 .0005 .0006 .0005 .0005 .0006 .0005 .0006

An-4, .0019 .0019 .0018 .0018 .0017 .0017 .0016 .0016 .0016 .0016
Bx-4 .0007 .0007 .0008 .0008 .0009 .0009 .0010 .0010 .0010 .0010

.0028 .0027 .0027 .0027 .0026 .0026 .0026 .0026 .0025 .0025

BX-Z .0014 .0015 .0015 .0015 .0016 .0016 .0016 .0016 .0017 .0017

AX-2 .0052 .0051 .0050 .0050 .0048 .0049 .0047 .0048 .0046 .0046
Bx-2 .0032 .0033 .0034 .0034 .0034 .0035 .0035 .0036 .0036 .0036

An-i .0133 .0132 .0132 .0131 .0130 .0129 .0129 .0128 .0128 .0127
Bx-

1

.0103 .0104 .0104 .0105 .0106 .0107 .0107 .0108 .0108 .0109

Ax .2299 .2295 .2292 .2289 .2288 .2286 .2284 .2282 .2281 .2281
Bx .2215 .2221 .2224 .2225 .2226 .2228 .2230 .2232 .2235 .2233

An+1 . 2216 2221 .2224 .2226 .2227 .2230 .2231 .2233 .2234 .2235
Bn+i .2298 ! 2293 .2292 .2290 .2287 .2286 .2283 .2281 .2282 .2279

AN-r2 .0104 .0105 .0106 .0106 .0108 .0108 .0109 .0108 .0109 .0109
BAT+2 .0132 .0131 .0130 .0130 .0128 .0128 .0127 .0128 .0127 .0127

An+3 .0033 .0033 .0035 .0034 .0036 .0035 .0036 .0036 .0036 .0037
Bn+3 .0049 .0049 .0049 .0058 .0048 .0047 .0046 .0046 .0046 .0046

AN-i-4 .0017 .0016 .0016 .0016 .0017 .0017 .0017 .0017 .0018 .0018
Bn+4 .0027 .0026 .0016 .0026 .0025 .0025 .0025 .0024 .0024 .0024

AjV+5 .0009 .0009 .0010 .0010 .0009 .0010 .0010 .0010 .0010 .0010
BX+5 .0017 .0017 .0016 .0016 .0017 .0016 .0016 .0016 .0015 .0015

A N+6 .0006 .0005 .0006 .0006 .0006 .0006 .0006 .0006 .0007 .0007
Bx+6 .0012 .0011 .0012 .0010 .0011 .0011 .0011 .0011 .0011 .0011

AjV+7 .0004 .0003 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0005
Bn+7 .0010 .0009 .0010 .0009 .0008 .0008 .0008 .0008 .0008 .0008

7. The Sojourn Function

For a given wave or pressure record /(£), let P(?/) denote the proportion

of time during which f(t) <y. Let D(y)=P'(y ) be called the “sojourn

function” for/(£); for a differentiable /(£), D(y) is the frequency of occur-

rence of solutions of f(t) = y, times the mean of the reciprocal of /'(£)

when f(t)=y. It can be estimated by sampling /(£*•) = y i} and plotting

the distribution of the ?/;.

If f(t)=A cos (at—e) is simply harmonic, then D(y) = 0 if
| y |>| A |,

while D(y) = tt(A2— y
2)~* if \y\<A. For superpositions f(t)=A

cos ((ri£+ei)+A cos (o-2+e2) of two simply hannonic amplitudes,

D(-y)=D(y), and

1
ry+A

D(y)=- -

rJy-A '

dt

y-A
(19)

which can be expressed in terms of elliptic integrals.

The random linear superposition of infinitely many small disturbances

having independent origins (or incommensurable phases) will yield

a normal distribution. Thus, all models of the type of section 5 with

231



(20)

continuous energy spectrum l(k) will have as sojourn function

D(y) =
X

e
-y*/2E

y/\2tE
f

when normalized so that/=0.
We have plotted in figure 2 four graphs of D{y) from three independent

sources. 8 We tested the data for skewness and peakedness by computing

P and /
4

. We then tested for normality by the x2-test with six subdivi-

sions, corresponding to equal portions of a normal distribution with the

observed p.

[
[Figure 2.| 'The horizontal axis measures wave height except for the Oceanside curve,

where it measures pressure.

The vertical axis measures the number of occurrences of the corresponding height (or pressure) in a set of

equally spaced observations. These curves are cruder than the set of numbers used in preparing them.
Points on the curves are obtained by lumping together two, and in the case of C-5-1-A, four observa-
tions. The x2-test was based on the observations. The scale is different for each curve. The number
of observations is 375 for C-9-1-A, 423 for Grand Island, 354 for Oceanside, and 368 for C-5-1-A.

A wave-height record from Grand Island, Louisiana supplied by M.
Mason gave a normal D(y); so did one of two wave-height records

(C-9-1A, 1-375) taken by Seiwell at Bermuda. A second wave-height

record (C-5-1A, 1-368) taken by Seiwell at Bermuda was not normal;

neither was pressure record B from Oceanside, California, as given in [8].

The latter record was peculiar, for other reasons stated in section 8.

By eq 20 D(y) is the same for all models of the type of section 5 having

a continuous spectrum and the same p. But it is easy to construct

8 D(y) is not the same as the frequency distribution in wave height, previously studied by Admiralty
Mining Establishment Informal Report 1483/50, by W. R. Swann and N. F. Barber, or Univ. of Cali-
fornia Tech. Rep. HE116-318, by R. R. Putz.
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random time series with f2> 0 and nonnormal D(y). This shows that

D(y) is not determined by I(k), and suggests that the two are largely

independent. If so, D(y) supplements the amplitude spectrum of func-

tions with j
2> 0, in somewhat the same way that the phase spectrum

e(k) does in ordinary Fourier analysis.

Figure 3. Frequency distributions.

1.

2 .

3.

Frequency distribution of cosine curve:

T_ y V10 -56
.T- cos \u)-*r

Frequency distribution of approximate trochoid:

y=|cos-1(^) I k= 0.0069, 0=1.5,

Frequency distribution of approximate trochoid:

ka = 0.01035.

y=|cos-i(^), k = .0628, 0=5, ka= 0.3484.

4. Frequency distribution of y=a(cos k+^ka cos 2*x+f*2a2 cos 3kx), a= 7.9618, *=0.0628, ka= 0.5.

5. Frequency distribution of y= a(cos kx+\ka cos 2kx+%*2a2 cos 3kx), a= 0.5, k= l, ka= 0.5.

6. Frequency distribution of y= o(cos kx-\-%ka cos 2kx-\-%k2a2 cos 3kx), a= 5.5484, ^ =0.0628,
*a=0.3484.

Graphs 3, 4, and 6 have had their scales multiplied by constants to get them on the figure.

8. Principle of Random Sign

The marked skewness of the record from Oceanside is very disturbing,

because it is incompatible with linear wave theories. This is a special

case of the following general mathematical principle, whose proof involves

group theory, like the Principle of Random Phase—but applied to the

dependent instead of the independent variables.

Principle of Random Sign. Let Q and the fu (t) be as in the Principle of

Random Phase. If all information about the /w can be expressed by linear

homogeneous, or other odd order differential equations, then the statistics

are unchanged if each /„ is replaced by —fu .

Thus if such data can be taken at face value, linear theories of ocean

waves must be considered as inapplicable to the instruments or physical
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behavior of waves. Assuming the instruments to be working properly,

it is very hard to explain what they record, especially as the “steepness”
h/\ of the waves recorded was only about .42 '/448' = .00094. We have
graphed in figure 3 the sojourn function D(y) for trochoidal, long-crested

periodic waves; it is clear that the asymmetry is much too small to explain

the Oceanside B records.

Explanations based on the idea that “wind-driven waves are peaked,”
and on a tendency to break in the shallow water involved, are also uncon-
vincing, for such small h/X.

9. References

[1] N. F. Barber and F. Ursell, The generation and propagation of ocean waves and
swell, Phil. Trans. Roy. Soc., vol. 240 (1948), pp. 527-560.

[2] H. R. Seiwell, Ocean surface waves, Ann. New York Acad. Sci., vol. 51 (1949),
Art. 3.

[3] H. Lamb, Hydrodynamics, 6th edition, Cambridge, 1932.

[4] Henri Vergne, Ondes liquides de gravite, Actualities Scientifiques et Industrielles,

Paris, 1928.

[5] N. Wiener, Generalized harmonic analysis, Acta Math., vol. 55 (1930), pp. 117-258.

[6] N. Wiener, The Fourier integral, Cambridge, 1933.

[7] J. Kampe de Feriet, Sur Yanalyse spectral d’une function stationnaire en moyenne,
Actes du Colloque Inst, de Mecanique, Poitiers, vol. 3 (1950).

[8] R. R. Putz, Idealized reconstructions of ocean surface waves as inferred from
measurements on twenty-five subsurface pressure records, Univ. of California,

Eng. Res. Projects, Series 3, Report 317, 1950.

[9] Tables of sine, cosine, and exponential integrals, vol. 1, Federal Works Agency,
Work Projects Administration for the City of New York.

234



26. Water Waves Ovei Sloping Beaches

By A. S. Peters 1

^

Abstract

The study of water waves over sloping beaches leads to the problem of

solving the wave equation A2
<£
— ft

2
0 = O subject to mixed boundary condi-

tions on the sides of a sector of arbitrary angle. The equation arises

when we wish to study progressing waves whose lines of constant phase

at great distances from the shore make an arbitrary angle with the

shore line.

This paper presents a method for solving ihe problem. The method
depends upon the use of the Laplace transform of $ taken along the radius

vector p. The transform is used to change the problem into a potential

problem for a strip with more complex boundary conditions than those

which go with the wave equation. The potential problem, in turn, is

reduced to the solution of a certain ^-difference equation, and this is solved

by function theory methods.
The two solutions which are derived are out of phase in the surface at

infinity by tt/2 radians. One solution is regular at the shore; the other

has a logarithmic singularity there. The integral forms in which these

solutions are finally presented are valid both for 0 and k = 0.

1 Institute for Mathematics and Mechanics, New York University, New York, N. Y.
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27. Stability of Uniform Flow and
Roll-Wave Formation

By Robert F. Dressier 1

A uniform open channel flow down an inclined aqueduct sometimes changes into

a complicated periodic motion with a progressing-wave profile, the profile moving down-
stream faster than the water particles. This phenomenon called “roll-waves” is

investigated by three completely different methods:
(1) The construction of actual roll-wave solutions is effected by joining certain

special continuous solutions together by means of moving discontinuities or bores.

Of the three shock conditions of mass, momentum, and energy, the energy condition
requires the use of a resistance term whose magnitude varies inversely with the hydraulic
radius, as well as directly with the square of the velocity; otherwise, the equations are
not sufficiently non-linear to produce roll-wave solutions. These waves cannot exist

if resistance is absent, or if it exceeds a certain critical value. A two-parameter family
of solutions is obtained; in all cases, the flow is subcritical at the peaks and super-
critical in the valleys.

(2) By a perturbation procedure using maximum curvature of the profile as expan-
sion parameter, continuous periodic progressing waves are found in terms of elliptic

functions. These waves possess greater profile curvature than the discontinuous
solutions of the non-linear shallow water theory. The perturbation also yields a two-
parameter family of waves; these also are supercritical at peaks and subcritical in the
valleys.

(3) Using a stability analysis which observes the location of roots in the right or
left half-plane, the same critical condition on resistance causing instability is obtained
as in Section 2. This method likewise shows that a resistance term varying only with
velocity will produce uniform flows which are always stable, hence no roll-waves.
A more general analysis indicates that instability may occur whenever resistance varies
directly with any power of velocity, and inversely with any nonzero power of the
hydraulic radius.

1. Introduction

A uniform open channel flow down an inclined aqueduct sometimes
changes into a complicated progressing wave, periodic in distance, the
profile moving downstream faster than the water. These roll-waves

develop after the uniform flow becomes unstable. Some analyses have
been made of certain aspects of the final roll-wave motion by Thomas
[4]

2 and the author [2]. Results giving necessary criteria for the existence
of the waves were obtained by considering the correct slope of the wave
profile, or by satisfying the energy inequality at the moving shock discon-

tinuities (bores). The present purpose is to investigate the instability

of the original uniform flow, and to compare and correlate results with
previous conclusions arrived at from the different standpoints of shock
conditions and perturbation procedures [2].

Both the uniform and roll-wave flows are turbulent, hence any com-
pletely satisfactory explanation would require a foundation in turbulence

1 Institute for Mathematics and Mechanics, New York University, New York, N. Y.
^Figures in brackets indicate the literature references on p. 241.
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theory, emphasizing the resistive effect on the main flow due to the
turbulent components. The status of turbulence theory and mathema-
tical techniques seems to offer little hope of success at present in this

direction. Instead, hydraulicians resort to some more or less accurate
empirical resistance function, used in conjunction with the nonlinear
shallow-water equations.

Our present purpose is to discover what particular aspect of the com-
plicated resistance mechanism is responsible for instability and subse-
quent roll-wave formation. Within the limits of using an empirical func-
tion, we would like to explain what causes roll-waves and to isolate the
mathematical terms directly responsible for this phenomenon. Cornish

[1], with appendix by Harold Jeffreys, has presented some interesting

qualitative discussions on the formation of the waves with respect to the
resistive action of the stream bed.

A stability analysis of the uniform flow was presented by Jeffreys [3]

based upon the nonlinear shallow water equations plus the conventional
Chezy resistance formula,. This discussion will extend the results of

Jeffreys to a general resistance function. It is known empirically that
the turbulence creates a resistive force roughly dependent upon some
power of the velocity u, and indirectly upon some power of the hydraulic
radius (in this case the depth y), with a proportionality constant depend-
ing upon the stream bed. Let r2 be the constant, and 0 the inclination of

the channel. The Chezy formula takes resistance as —r2u2
/y. Using

this, Jeffreys obtained a criterion for instability of uniform flow as

tan0>4r2
. (1)

This same criterion was found to be a necessary condition for the existence

of roll-waves in [2 and 4].

Using the shock energy inequality to construct discontinuous roll-wave
solutions, the author noted that solutions could never be constructed if

the variation of resistance with depth was ignored. That is, if the resist-

ance depended only upon the square of the velocity, the energy shock
condition for the bores of the waves was always violated. Such a simpli-

fying assumption is often made, however, particularly when the depth is

considered to be approximately constant. We wish now to determine

whether the agreement between the energy and stability analyses extends

also to this case and to see more generally how instability depends upon
the form of the resistance function.

2. Stability Analysis for General Resistance

For a two-dimensional flow, let u be the velocity component parallel

to the inclined stream bed, and let y be the depth. The resistance func-

tion will be taken quite generally as —r2un/y
m

,
with m,n> 0 but otherwise

arbitrary. The nonlinear shallow water equations are then

T2Un
u t+uux+g cosdyx= g sin0 > yux+uyx+y t= 0. (2)

vm

The possible uniform flow is then u=U, y=Y where

(3 )
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Considering small deviations given by u= U-\-u(x,t), y=Y+y(x,t), and
linearizing in the usual manner yield two equations for u and y,

gm sin 6 nUn 1
_

Ut+ljux -\-g cos Qyx
=——

—

y—r—

—

u,
i Y m

Uyx+Yux+y t= 0. (4)

After eliminating y, we get the second-order linear equation for u{x,t)

r-nU71-1
( r2nUu\

u tt+2Uuxt+(U2—gY cos 6)uxx -\
— u t+[ mg sin 0-}——— mz=0. (5)
Ym \ Ym J

We now study the growth or decay of the large class of progressing

wave solutions of type

u =Aert
iex-H])

with wave speed s//3 and wave length proportional to 1//3. Letting

r-Yis= y, insertion of solutions Aeyt+iPx into eq 5 implies the relation

between y and /3

r2nC7TC_1 /iAn2U2n~2

y= iU(3±[ 32g

i

cos 0— i(3gm sm 0
2Ym \ AY2m

For stability, we require both roots to be in the left half of the complex
y plane. If parameters are adjusted so that the first square root in eq 5

will have real part equal to r2nUn~ 1/2Ym
,
then the corresponding y value

will be on the imaginary axis, and the other value in the left half-plane.

We therefore equate this square root to (r
2nUn~1/2Ym) -\-i8

,

equate reals

and imaginaries, eliminate 5, and use relation 3. The condition for the
right root to be on the s axis is then

m2ng2-nY^m~n Q— COgn (6 )

When the expression on the left is greater or smaller, it can be shown that

the root moves to the left or to the right, respectively. Furthermore,
considering the expressions in eq 6 as functions of d

,
we see that eq 6 will

always have a solution for one critical value of d between 0 and x/2.
Hence we have the stability criterion for our general resistance,

m2ng2-ny^m-n ^2 Q
^

cogn Q, (J )

implying stability for the two top signs, and instability for the bottom sign.

For the special case of the Chezy formula, m= 1, n = 2, eq 7 reduces to

the relation (1) tan0=4r2
. Likewise, m = |, n = 2 yields the criterion

for the Manning formula.
To see what is the essential nonlinearity in eq 2 causing instability and

roll-waves, we now consider two special limit cases of eq 7.

Case 1: m-+0, ?i>0.

In this limit case, eq 7 reduces to only one possibility 0<n2nr4 cos” 6,

hence we conclude that any flow governed by a resistance varying with
any power of the velocity, but independent of depth, must always remain
stable.
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Case 2: n—>0, m>0.
Now, by virtue of the relation for the constant flow

the only possibility for eq 7 is the equality g
2Y2m sin2 0 = r4 . One can see

that both 7 roots move to the s axis, still a region of stability. Although
this case, representing a kind of hydraulic Coulomb friction, may not
correspond accurately to any actual flows, the analysis nevertheless indi-

cates that both effects of depth and velocity are needed to create instability.

We thus arrive at the following conclusions:

(1) When turbulent resistance effects behave directly with any power of
the velocity and inversely with any power of the depth, there will always
exist an angle of declination beyond which the uniform flow becomes unstable.

(2) This critical angle where instability occurs is the same angle which
is obtained as a condition for the existence of roll-waves by satisfying the

shock energy inequality.

(3) Instability cannot occur if resistance depends only upon velocity

variation, or only upon depth variation
;

the simultaneous action of both

effects is required. This can be concluded either from the stability analysis,

or the shock energy approach.

For this reason, since one-dimensional compressible gas flow is gov-
erned by the same equations as above, with resistance depending only
upon velocity, one would not expect any instability to develop in such
flows.

3. Roll-Wave Solutions With Discontinuities

The material in this and the following section has been published in [2].

It is desired here to correlate all results on roll-waves from the three

different points of view. By considering all possible progressing wave
solutions with velocity c to the eq 2 with the Chezy formula, the profile

equation is

dY Y^m-jrycY-K)
|
Cy-X|/Pj)

% (K2/Y2
)—gY

where $ = x—ct, 7(f) is depth, U (f) is velocity, K=(c—U)Y, and
m= tan 6. There are no continuous periodic solutions to this, but dis-

continuous solutions can be pieced together, using the only solution to

eq 8 which is partly subcritical and partly supercritical, relative to the

moving wave.
This solution is given inversely by

r=c+-ym
n+7^r0+7o

2

m(YA-YB)

ln(7— YA ) —
7^+ 7^70+75
m(YA-YB )

ln(7— YB ), (9)

where 7A ,
YB ,

and 70 are known constants. Parameters C and K can

always be chosen to satisfy the shock conditions of mass and momentum

;

but satisfying the energy inequality, namely that particles must enter

a shock at supercritical speed and leave at subcritical speed, leads to the

240



necessary condition tan#>4r2
,
the relation (1). The resulting roll-waves

are subcritical at peaks and supercritical in the valleys. This method
leads to a two-parameter family of solutions. Furthermore, if the Chezy
formula is simplified by assuming that resistance does not depend upon
both velocity and depth, then it can be shown that the energy condition

will never be satisfied.

4. Continuous Roll-Waves With Larger Curvature

By a perturbation on the exact Eulerian equations, with expansion

parameter a = c

c

2h2 taken with co as maximum surface curvature and h as

depth, the nonlinear shallow water equations are obtained as lowest

approximations. Using the Chezy formula here, and neglecting resist-

ance in the next approximation, continuous periodic progressing waves
are obtained only by perturbing about the critical uniform flow. Their
profile can be expressed by

where cn is the Jacobi elliptic function, and yh y2 ,
A, and k are known

constants. We obtain a two-parameter family, also having the property
that the flow is subcritical at peaks and supercritical in the valleys.

Summarizing results from the approaches 1, 2, and 3, we have: 1 and
2 yield same conditions on slope

;
1 and 2 show that a simplified resistance

will produce only a uniform flow; 2 and 3 both produce a two-parameter
family of roll-waves, and both types exhibit the same subcritical and
supercritical pattern.
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28. Study of Wave Propagation in Water of

Gradually Varying Depth

By F. Biesel 1

The present paper is a theoretical study of periodic waves progressing in water of

variable depth. Although the theory can be extended to three-dimensional motion, we
shall only consider the two-dimensional case which can be briefly described as that of

waves advancing in a straight channel with rectangular cross section and variable
depth. This problem has already been studied by various authors, but the solutions

obtained have always been restricted to flat sea bottoms of constant slope and can be
worked out in practice only for a limited number of singular values of the bottom slope

(cf. the works of Miche, Stoker, Loewy, etc.) or for small bottom slopes and very small
relative depth (Lowell, Miche). The solution obtained by the present theory is sub-
ject to the restriction that the slope of the bottom is so small that its square is negligible.

Bottom curvature and higher derivatives of depth with respect to distance along the
wave course are also neglected. Provided these assumptions are satisfied, the bottom
may have any shape whatsoever.

In the first part of this paper, investigations are limited to first-order theories, that is,

the squares of the velocities due to the presence of waves are neglected (this is the case

for all previous theories of waves on sloping bottoms). In the second part, a second-
order correction is introduced, and it is shown by numerical examples that this correc-

tion may be important in some respects.

1. Outline of Fundamental Formulas

Rectangular coordinate axes OX and OZ will be used, OX being located

at mean sea level, with positive x in the direction of wave propagation,

OZ being directed vertically upward. The calculations always refer to

a section of unit thickness. The notation adopted is as follows:

x,z= coordinates referred to the OX, OZ axes,

u,w = OX and OZ velocity components,

p = pressure,

X,Z = displacements of particles from their mean positions,

T= period,

k= (2tt/T) = angular frequency,

L = wave length measured from crest to crest,

m= 27r/L,

Xa= wave amplitude,

To,K0,L0,mo,ao = values of above quantities in an infinite depth,

h = depth,

a = — (dh/dx) = slope of bed,

4> = velocity potential.

1 Etablissements Neyrpic, Grenoble, France.
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Since the equations that will be derived are of the first order in respect

to amplitude, use may be made either of the Lagrange or of the Euler
system of coordinates.

The latter sj^stem has been used to establish the basic equations, since

it is more usual. However, the results obtained will be finally expressed
in terms of Lagrange variables, since first-order equations of waves in

constant depth give a far better picture of reality in the Lagrange system
than in the Euler system. It seems reasonable to suppose that this will

also be the case for waves in slowly varying depths.

In order to obtain the equations of the irrotational motion of an incom-
pressible fluid, it suffices to find a velocity potential <f>(x,z,t), from which
the velocity components are deduced by

a)

This function should be harmonic with respect to x and z
,
i.e., that

520 d2
cb

v20=—H—-=0,v
dx2 dz2 ’ (2 )

and should, moreover, satisfy both the boundary condition at the bed
which can be written, without taking account of second-order quantities,

50

dz
for z = —h, (3)

and the constant surface pressure condition

1520 50

g dt2
^~

dz
;

for 2= 0, (4)

ignoring second-order quantities.

These four conditions are satisfied, to within terms of the order of a2
,

by the function

:

0 (ic,2,i) = — a~~ —— cosh m(z-\-h) sm(kt— / mdx

)

msmhm/iL J

-fed m(2+/i)sinh m(z-\-h) — m(z-\-h) cosh m(z-\-h)
[D2 tanh mh

m2 (z+h) 2

D sinh mil cosh mh
cosh m{z-\-h ) cos (kt- f (5)

In this equation

D = 1
mh

sinh mh cosh mh
m, k, and h are related by

and

gm tanh mh= k2
,

a0

(

D

tanh mh

Y

(6 )

(7)

(8)
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a 0 being constant. Moreover, the integration limits of
J
mdx are not

defined; thus the phase of the motion remains undetermined, but this

causes no difficulty in the present study.

It can easily be seen that if one considers only the first term of the

square bracket of formula 5, together with 7 and 8, one finds precisely the

same result as that given by the energy method. In effect, formula 7

shows that the relation between wave length, frequency, and depth is

the same as for a constant depth wave, and formula 8 shows that at each
point the amplitude is such as to make the energy flux constant. This
confirms the validity of the energy method as a first approximation.

But if we reduced this function to this first term its Laplacian v 2 would
not be zero. It would, in fact, be of the order of magnitude of a, and not

be negligible to the order of approximation required. The introduction

of the other terms reduces V2
<t>

to a negligible quantity of the order of

magnitude of a2
. This can be shown by computing V 2

</> with due regard

to formulas 6, 7, and 8. This calculation is rather long, as m, a, and h are

functions of x, and of no special interest; it was therefore thought unneces-
sary to reproduce it in this paper.

It is easier to make sure tha conditions 3 and 4 are fulfilled to within

the desired approximation.
We have

6<f) ak

dx sinh mh
cosh m(z+h)cos(kt— / mdx)/

“<*173;— r cosh m(z-\-h)-{-m(z+h)sinh m(z-\-h)
{

D

2 tanh mhL J

;[

-[

D sinh mh cosh mh

sinh m(z-hh)-\-m(z+h)cosh m(z-\-h)

7Y1
2
(z “l

-h

)

2

m(2+/i)sinh m(z-\-h)-\ cosh m(z-\-h

)

dd>w=—=
dz

l

ak T

sinh mh L

1

D2 tanh mh\

JJsin (kt—

J'

sinh m (z-j-h)sin (kt—
J'

mdx)

— -\ sinh m(z+h) +m(z-\-h) cosh m(z-\-h)
|

nh mh\_ J

[

(9 )

D sinh mh cosh mh

Tti
2
(z -j-h

)

2

m(z-{-h)coshm(z-\-h) -\ —sinhm(z+h)
]

— £cosh m(z+h)-\-m(z+h)smh m(z+/i)Jjcos(Atf— mdx)
j

• (10)

If we put z——h in these equations, we obtain the velocity values on
the bed

ak

sinh mh
[cos mdx) —

D2 tanh mh
sin (kt—

J'
ak

h~ a~
sinh mh

cos(kt— / mdx).

(id

(12 )
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From this it can be seen that condition 3 is fulfilled to within the
deshed approximation. Taking into account relationship 7 and the
particular way in which

<f> depends on the time, eq 4 may be written

d<p
4>m tanh mh=— > for z— 0.

dz

The expressions of 0 and of dcfr/dz for 2 = 0 are

ak
02= 0

—
m sinh mh

—mh cosh mh

[
cosh mh sin (kt— fmdx)+a j

— \ (J (
D2 tanh mh\

(13)

mh sinh mh

7
m2h2

D sinh mh cosh mh 2
cosh mh [cos (ktzt—

J'
radz)J (14)

(-) —
\ dz/ 3 =0 si

ak

sinh mh

+sinh mh)

sinh mh sin (kt-

1

/mdx)-\-a [ l /
l
D2 tanhmh\

mh cosh mh

D sinh mh cosh mh

— (cosh mh-\-mh sinh mh)\cos (kt—

J'
mda:)J

mh cosh mh-\ -sinh mh

(15)

When the necessary calculations are carried out, it [is easily seen that

these two expressions satisfy condition 13.

2. Study of Wave Motion

We already remarked that with a constant depth it is very advan-
tageous to utilize the Lagrange system of coordinates to express the

results of the first-order theories; a wave motion that is very similar to

reality is thereby obtained. For instance, a trochoidal free surface is

obtained from the start and the existence of a limiting value of wave
camber is immediately evident. On the contrary the linear theory

expressed in Euler coordinates gives a sine profile with no limiting camber.

It is thought reasonable to expect, that the Lagrange coordinates will

retain their advantages for waves in slightly varying depths.

The equations are therefore transformed into Lagrange coordinates,

and the X and Z components of the displacement of the particle, having

the initial coordinates x and z
}
are

X
a sin (kt—J'mdx) f 1

tanh mh
Ua

l^(tanhmW[1+mh tanh mh]+

D sinhmh coshmh 2 tanhmhrr tanhm/i

m2h2

]_£ 1+
mh

-fcos (kt— I mix), (16)
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r
f
1 r 1 min

Z= acos(kt-J mdx)-ca\-[^ ĥ
+
(taS^jiJ

+

1 r_mh_
+ MOfl

_ r l_+ J
sin

(

J /^). (17 )
iLtanhm/i 2 J Ltanhm/i JJ JD sinhm/t coshm/iL

These formulas can be written more simply

X= aoA sin(A;f—J*mdx)

a

0aA i cos (kt-

Z= a0B cos (kt—fmdx)-)raoaBi sin (kt-

mdx), (18)

mdx), (19)

A, Ai, B, and Bi being convenient functions of min.

The free-surface equations are then expressed parametrically by

£= x-\-aoA sin (kt—
J”

mdx)-\-aaoAi cos(kt—
J'

mdx),

£= a0B cos (kt

—
J'mdx)+aa qBi sin (kt

—
J'mdx)

,

(20 )

(21 )

£ and ( being the coordinates of a point of the free surface.

The trajectory of a particle of mean position x, y is first studied. The
time factor, which is the only variable, becomes the parameter of eq 20

and 21. It is then apparent that the trajectory is an ellipse, of which the

axes are generally inclined (fig. 1). Their slope i is easily calculated from
formulas 18, 19, 20, and 21.

First-order theory.

Neglecting terms of the order of a2
,
we have

i—

a

BA^BiA
A 2—B2

)
(22 )

l= a-
(cosh mix)2— Z>(sinh mil) 2

D2
(23)

247



(24 )

Replacing D by its value 6, eq 23 becomes

1 —mh tanh mh

mh

sinh mh cosh mh.

For sufficiently small values of the relative depth, it can be seen that
the orbit inclination for particles resting on the surface is only a fourth of

that of the bed (and has the same sign). We thus find a result which
has already been given by Miche. Formula 24 shows that the orbit

inclination is reduced to zero for a relative depth such that

1—mh tanh mh= 0. (25)

This remarkable value of the relative depth corresponds to the minimum
amplitude point indicated by Havelock and Miche.
With greater depths, the sign of the inclination of the major axis of the

orbits becomes the opposite to that of the bed slope, and the orbit-inclina-

tion/bed-slope ratio becomes greater as the depth increases.

This latter result may seem surprising and may even lead to doubts on
the validity of the theory. Indeed, the effect of the bed slope should
vanish as the depth increases, and, consequently, it appears inadmissible

that the orbit inclination should increase with the depth.
The above reasoning is perfectly correct, but, in point of fact, there is

no contradiction.

Indeed, when the relative depth is great, the orbits of the surface

particles become almost perfect circles and an extremely small deformation
is sufficient to change the direction of the axes.

In short, this increase of axis inclination is therefore a mathematical
phenomenon of no physical importance; this is, moreover, fortunate,

since the formulas given suppose that i is small. They become useless

when i becomes too large, as is the case for great depths, but since this

angle then no longer has any appreciable physical significance, no further

analysis is necessary.

Reference is once again made to eq 18 and 21 for the study of the form
of the free surface.

direction ofpropagation

Second-order theory.

We shall first investigate the lack of symmetry of the wave shape.

In order to do this, we shall fix om* attention on a given surface particle

and shall compare the surface slope of the wave when this particle crosses

the plane z = 0 on the front face of the wave (position M, fig. 2) and when
it recrosses the same plane on the back face (position M').
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The free surface slope is given at each point by:

.
r r— ma0B sin (kt—J mdx)-\- (—maaoBi~\~

a

0B') cos (kl—J mdx

)

dx

— 1 — maoA cos (kt— I mdx) (maa0Ai~\-aoA' )sin (ki— I mdx)
dx J

(26)

The aim is to compute the slope in the neighborhood of the particle,

with the initial coordinates (z,0) at the instant when it crosses the

plane 2 = 0.

We then have 2 = 0, or

-/B cos (kt— / mdx )+ aBisin (kt— / mdx) =0,-/
»

whence two sets of possible values for cos (kt-mdx) and sin (kt-mdx),

cos (kt— / mdx) =a-^> sin (kt—
J'

mdx) = — 1,-/

-/•
B!

cos (kt— / mdx) = —a~^> sin (kt— mdx) = 1.

(27)

(28)

The above values, in which, of course, terms of the order of

a2 are neglected, correspond, respectively, to the passage of the

front face (sin (kt—Jmdx) = — 1) and to the passage of the back

face (sin (kt—Jmdx) = 1).

Combining eq 27 and 28 with 26, the slopes are obtained always to the

same degree of approximation.

Si= —maQB—

m

2ala(ABi-{-AiB) — malA'B, (29)

for the front of the wave, and

S2=ma0B—

m

2a2a (ABi-\-A\B) — malA 'B, (30

)

for the back of the wave.
The mean slope s= ($i+s2)/2 may be taken as characteristic of the

lack of symmetry in the wave profile; the geometrical significance of

this is clearly shown in figure 2.

In particular, a negative mean slope would show that, at a given point,

the wave fronts are steeper than the rear slopes.

From formulas 29 and 30, the equation

s= -m2ala(ABi-\-AiB)—mA'B (31)

is immediately deduced.
When A, B, A L ,

and B 1 are replaced by their values, we have

3T

s =m2a
2

0a
—

mh

tanh mh
— 3mh tanh mh

D2 (sinh m/j.)
2tanh mh

(32)
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The preceding calculation thus shows that the lack of symmetry or

dissymmetry is a second-order quantity.

Consequently, eq 32 is logically speaking questionable, since the whole
theory is based on a first-order approximation only.

However, as mentioned in the Introduction, it is thought reasonable

to assume that the information thus obtained gives a correct approxima-
tion of reality, thanks to the use of Lagrangian coordinates.

Formula 32 shows clearly that the real dissymmetry tends to infinity

when the depth tends to zero. Of course, if one wished to study the

dissymmetry for very great values of s, it would be necessary to modify
the calculation in which s was supposed small. Nevertheless, the result

that has just been given shows that the dissymmetry has a marked
tendency to increase rapidly when the relative depth becomes small.

On the contrary, when the depth increases, the dissymmetry decreases,

is reduced to zero, and changes sign for mh — 1.7 approximately. For
higher values of mh, which correspond to fairly deep water, dissymmetry
is usually very small and continues to tend rapidly toward zero as the

depth increases.

Figure 3. Progression and breaking of a wave on a beach of 1 in 10 slope.

First-order theory.

Eight successive phases at intervals of T/8. Steepness approximately 1/80.

This first discussion on the formulas that have just been obtained

concludes with a numerical example. Figure 3 shows eight successive

phases of the motion of a wave, with a steepness equal to approximately

1/80 (0.04/7r exactly), on a l-in-10 slope beach. Each phase differs

by one-eighth period from the preceding one; the eight phases thus give

a complete cycle.
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The steepening of the front face of the wave is very apparent, and
finally gives the wave an overhang that is characteristic of the plunging,

breaking movement. Successive phases at the breaking point are repro-

duced in greater detail and on a larger scale in figure 4 where the time
interval separating successive profiles is T/48, the vertical segment on
the left side of this figure representing the amplitude in infinite depth.

Figure 4. Details of breaking of wave shown in figure 3.

First-order theory.

The great rapidity with which the waves change near the breaking

point can be seen in this figure. On a scale model, where the waves
have, for example, a 1-second period (approximately 5 feet long in infinite

depth), the time interval between two successive positions shown in

figure 4 would be only one fiftieth second. It is evident that the analysis

of such a rapidly changing phenomenon cannot be made by direct

observation.

With full-scale waves, the evolution would, of course, be much slower.

There is, thus, a surprisingly good qualitative agreement between the

shapes of real waves and the profiles given by the theory. It must be

pointed out that, although the results obtained are satisfactory in appear-

ance, the theory is only a first approximation and as yet unfit for the study
of the actual breaking as, at this point, our assumptions are no longer

valid for two reasons:

1. The wave steepness is far from being infinitely small, and the

theories of the first order in the amplitude are therefore of uncertain

accuracy.

2. The relative depth is small; this lessens the validity of the approxi-

mations for two reasons. It is known, first of all, that the terms of higher

order than the first become more important as the depth decreases; the

same is also true for terms in a of greater order than the first. The

251



approximations made herein thus rapidly lose their validity and become
incorrect when the depth decreases. The results concerning waves on
the point of breaking are therefore more of a qualitative nature than of

a quantitative one.

The preceding theory may be improved by taking into account terms
of the order of a2

. Keeping to the same order of approximation in a as

before, this may lead to the introduction of terms of the order of aa2
.

Such terms could probably be computed in much the same way as for those

of the order of aa, but this calculation, if not particularly difficult, would
be very long. It is, however, possible to introduce terms of the order of

a2
,
neglecting terms of the order of aa2

,
without any further theoretical

analysis, because the former terms are identical with the corresponding

ones for constant-depth waves.

i This procedure can be; justified theoretically by assuming that a and
a are small quantities of the same order, and that calculations are effected

only to the second order of approximation.

Figure 5. Progression and breaking of a wave on a leach of 1 in 10 slope.

Second-order theory.

Eight successive phases at intervals of T/8. Steepness approximately 1/80.

The introduction of the “classical” second-order terms in the calcula-

tion gives rise to important changes in the final results.

By way of comparison the motion of the same wave as given in figures

3 and 4 has been drawn in figures 5 and 6, using the second-order equa-

tions just spoken of. The second-order profiles differ from the first-order

profiles in the following ways:
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Figure 6. Details of breaking of wave shown in figure 5.

Second-order theory.

1. Breaking seems to take place earlier in (a greater depth).

2. The height of the wave at breaking point is much greater.

3. The tendency of the theoretical profile to plunge into the sea bed,
after the breaking point is greatly reduced.

A systematic comparison of the first- and second-order theories with
experiment remains to be made, but preliminary checks show that, in

many cases, agreement seems to be good even near the breaking point.
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29. Methods Used at the National Hydraulic

Laboratory of Chatou (France) for Measuring

and Recording Gravity Waves in Models

By J. Valembois 1

In the study of gravity waves at the Laboratory, for the experimental verifications

of theoretical results as well as for the study of particular problems, it is necessary to

have available means for measuring and recording waves under the best possible

conditions.

After having tried various procedures, the National Hydraulique Laboratory of

Chatou has settled on two methods that complement each other, and which, in most
cases, permit the carrying out of the measurements with all the precision required.

1. The “Starred-Sky” Method

1.1 Principle

This method, due to Mr. Barrillon, Ingenieur General du Genie Mari-

time, makes it possible in studies of harbor installations to obtain with

much less delay a single photograph giving a general scheme of the move-
ment in the model. It is susceptible of giving good precision, but experi-

ence has shown us that its interest lies chiefly in the possibility of com-
paring the effects of various constructions very rapidly, and therefore of

trying a large number of tests at smah cost.

The principle is very simple. Above the model is placed a grid of

luminous points, the image of which is photographed in the mirror formed

by the surface of the water. If this is motionless, the image of each

point is a fixed point. If the surface of the water is disturbed by a periodic

motion (wave, seiche), it is periodically deformed and the images of the

luminous points during the passage of each wave describe closed curves

the form and amplitude of which give immediate information on the

movement of the water.

For a simple progressive wave, each point describes a segment of a

straight line m the direction of propagation of the wave, its ^ength being

proportional to the amplitude .
2

Figure lb corresponds to a pure clapotis, figure lc to a composite swell,

for which the trajectories are circles or ellipses.

One can obtain an analogous result by sprinkling the surface with small

1 Laboratoire Nationale d’Hydraulique de Chatou, France.
2 The perspective view requires corrections, which are explained later.
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floats or confetti, but in this case the general currents, which are added to

the periodic movement, confuse the images obtained. Again, the floats

have a tendency to clump together and their inertia cannot be negligible.

^ ^ - - -

^ ^ ^
^ ^ ^ -

a b c

Figure 1 . Images of illuminated points for simple waves.

1.2 Formula Permitting the Determination of the Inclination

of the Water Surface From the Displacements of the

Luminous Points

Consider a liquid surface, a luminous point L at the height z, a camera P
at the height Z. I is the image of L viewed from P when the water

surface is undisturbed, D the distance of p (the projection of P on the

water surface) from I.

Figure 2. Diagram of light reflection.
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Suppose that the slope of the tangent plane at 7 to the liquid surface

varies from -\-a to —a, the line of slope Im of the plane making the angle

d (in projection on the plane of the water) with pi. If we are dealing

with a swell, Im is its direction of propagation.

The image of the luminous point, viewed from P, will go, at the level

of the plane of the water, from Ii to I2 in passing through 7. On the

photograph, one measures Iih = d and the angle 0 O between pi and 7i72 .

A simple calculation3 shows that one can deduce 6 and a from 0 O and d by
means of the following formulas

d=f(d0,D/Z),

( Z\ d f
(!)

“=(l+“) ^*(00, D/Z).

0 30 60 90

90 (degrees)

Figure 3. The angle 0 — 6o as a function of the angle do and the ratio D/Z.

The graphs in figures 3 and 4 give d—

6

0 and k as functions of d 0 and 7)/Z.

According as one deals with a swell or with a clapotis, the figures present

some slight difference with which we mil not concern ourselves, because

s For
J — Ol 0o— O, and«-( 1+|)A( i+|_)

6=ir/2, 0o =7t/2 and a=
^

d_

' 4Z*

For intermediate values of 6, the composition of two displacements along rectangular a^es parallel to
0 = 0 and 0 =7t/2 permits the calculation of the values of 0 0 and a.
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a long use of this method has shown us that it is of special interest when
a detailed ana^sis of the movement of the water at each point is less

important than the overall determination of the movement in the model.

0 30 60 90

90 (degrees)

Figure 4. The factor k as a function of the angle 6o and the ratio D/Z.

1.3 Practical Realization

At Chatou, the “starred sky” is constructed of square elements that

can be placed together. Electric lights can be placed in each element to

form the pattern of luminous points deshed. Current for the lamps is

obtained from a grid of metallic bars supported on two parallel frames

electrically insulated.

One should, naturally, determine the heights of the “starred sky”
and of the camera above the water as a function of the waves that one

wishes to detect, in such a fashion that, for the greatest curvatures of the

liquid surface, each luminous point will correspond to only one single

reflected point.

Examples. Figures 5, 6, 7, and 8 relate to the study of the protection

of the port of Quiberon against swells. One sees the difference in the

motion in the harbor according as the channel is closed or not, and the

slight advantage gained by the additional breakwaters in figure 6. (Actual

periods 8 and 9 seconds).
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Figure 5. Observations in model of the 'port of Quiberon.

Channel closed.

Figure 6. Observations in model of the port of Quiberon;

Channel open.
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Figure 7. Observations in model of the port of Quiberon, with additional breakwaters.

Channel closed.

Figure 8. Observations in model of the port of Quiberon
,
with additional breakwaters.

Channel open.
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2. Limnigraph With Vibrating Point

2.1 Principle of the Level Detector

This apparatus is one application of the detection of level by a vibrating

point, conceived and recently placed in operation at Chatou.4 It permits

the recording of very rapid variations in level with great precision.

A fine platinum needle is made to vibrate vertically. If the water

surface whose level, one wishes to measure or record is between the two
limits of oscillation of the needle’s point, this level is characterized by the

fraction of the period of oscillation during which the needle is in contact

with the water.

To avoid the effects of surface tension and the entrainment of small

drops of water by the needle, one must make it vibrate with sufficient

rapidity. Experience has shown that the electric-current frequency

(50 cycles a second in Europe) is perfectly suitable. To vibrate the

needle we use a loud-speaker motor driven by 50-cycle current and pro-

vided with an auxiliary device for centering.

Figure 9. Sketch of electric circuit for limnigraph with vibrating point.

The following example shows a simple method of using the procedure
for measuring a static water level (fig. 9). The interrupter formed by
the needle and the water is inserted in a direct-current electric circuit.

In the example chosen, the current is lOO/iA in the circuit during the
time, t, when the point is in contact with the water at each period T. The
average current that passes through the microammeter and that this

integrates is then 100pA t/T. The curve in figure 10 gives the value of

the current as a function of the level of the water; z0 and z, being the
limits of the sinusoidal oscillation of the lower extremity of the point.

One sees that there exists a practically linear relation between the meas-
ured current and the level as long as it stays within the zone indicated
by cross-hatching, which corresponds practically to two-thirds of the
amplitude of vibration.

4 Brevet fran?ais no. 578.615 P.V. U. S. patent applied for. See “La Houille Blanche,” no sp6cialB 1950, H. Gridel: “La mesure precise et l’enregiatrement des niveaux stables ou fluetuants au moyen de
pointes limnim^triques a vibrations entretenues.”
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Figure 10 . Current in limnigraph circuit as function of the water level'.

2.2 Limnigraph With Vibrating Point

The above arrangement does not give sufficient power for operating

a graphical recorder directly, so an amplifying relay specially designed

for good response is used. With this procedure, liquid waves can be
recorded with frequencies up to 10 a second. This frequency can be
increased for recording capillary waves by making the needle vibrate

more rapidly and by using a graphical recorder with greater rapidity

of response.

Figure 11 . Record of simple wave in model of the port of Quiberon.
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Actually, one is limited, in the maximum amplitude of waves to be
recorded, to about 5 mm. An arrangement is under study with a view
to permitting the recording of larger waves (several centimeters).
The sensitivity is regulated by the amplitude given to the vibration.

At maximum sensitivity of the apparatus constructed at Chatou, 1/100
mm is represented on the diagram by 2 to 3 mm. The stability of the
measurement is assured at least to 1/100 mm.
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Figure 12 . Record of complex wave in model of the port of Quiberont

2.3 Example of Records of Swells at the Laboratory

The records presented in figures 11 and 12 have been obtained in the
model of the port of Quiberon.
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30. The Slope of Lake Surfaces Under
Variable Wind Stresses

By Bernhard Haurwitz 1

Abstract

It has been observed that the inc ination of a lake surface caused by
a wind stress shows a distinct time lag in adjusting itseb to changing winds.

To analyze this phenomenon, use is made of the hydrodynamic equations
that are s’mplified by integrating over the whole depth of the lake so that

the total horizontal water transport in each water column, rather than
the velocity at each depth separately, is considered. The resulting

equation governing the motion of the water is closely related to the equa-
tion for seiches, the essential difference being an additional term repre-

senting the effect of the wind stress acting on the water surface.

It is found that the time required by the lake to espond to changing
wind stresses depends on the lengths of the seiche periods, which, in their

turn, depend on the vertical and horizontal dimensions of the lake. Such
a dependence of the rapidity with which the lake level adjusts itself to

the variable wind can be expected a priori.

Particular attention is given to the case of a wind which changes its

direction. Such a wind shift took place during the passage of the hurri-

cane of 26-27 August 1949, over Lake Okeechobee, Fla. During this

time very detailed observations were obtained by the Corps of Engineers,

U. S. Army, Jacksonville Florida District, in cooperation with the U. S.

Weather Bureau. These observations comprise, among others, wind
speed and direction and water-surface contours during intervals of half

an hour while the hurricane center moved ove* the northeastern part of

the lake. In conjunction with the passage of the hurricane cente • the

wind turned rapidly counterclockwise through about 180° during a time
of roughly 3 hours. This turning of the wind was accompanied by a turn-

ing of the isohypses of the lake surface, but the latter rotated more slowly

than the wind direction, so that for some time the wind blew parallel

rather than perpendicular to the isohypses It is shown that the theory
explains this behavior of the lake surface.

1 New York University, New York, N. Y.
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31. The Tide in an Enclosed Basin

By W. B. Zerbe 1

The surface of the water in an enclosed basin tends to remain perpendicular to the
plumb line. But the direction of the plumb line does not remain fixed with respect to

the rigid Earth. It is affected by the attraction of the Sun and Moon, that is, by the
tide-producing forces. Since the tilt of this surface is determined by the tide-producing
forces, its motion conforms to tidal periods and can be computed. The tangent of the
angle of deflection of the plumb line, and hence that of the tilt of the water surface, is

equal to the ratio of the horizontal component of the tide-producing force to the acceler-

ation g of gravity.

The formula involving the horizontal component of the tide-producing force is

developed, providing the means of computing for any time the angle of tilt in a vertical

plane in any desired azimuth. The maximum value of this angle (semirange of surface

oscillation) is about 0.022" due to the Moon and 0.009" for the Sun. Observations
made in 1947 of the tide in the David Taylor Model Basin are discussed and show that
the observed oscillation is less than that computed by the formula. The ratio of

observed to computed tilt is about 0.75, which is in agreement with results obtained by
other observers using other methods. The failure of the observed tilt to equal that
computed for a rigid Earth is accounted for by the fact that the observed tilt is measured
with respect to the Earth’s surface, which also tilts, for the Earth itself yields to the
tidal forces and is affected by the varying load of tidal water on the nearby coast.

This discussion pertains only to relatively small basins enclosed by
rigid boundaries as opposed to oceanic basins, which are usually large

and bounded at least in part by other water areas.

The surface of the water in such an enclosed basin—whether it be a lake

or a teacup—tends to remain level; that is, it tends to adjust itself every-
where perpendicular to the plumb line. But the direction of the plumb
line does not remain fixed with respect to the rigid Earth. It is affected

by the attraction of the Sun and Moon—that is, by the tide-producing
forces. A surface that remains normal to the forces acting upon it is an
equilibrium surface.

Over a large area, this terrestrial surface of equilibrium will be a curved
surface, but for a basin even as large as one of the Great Lakes, it can be
treated as a plane surface for our purpose without introducing material
error, which simplifies matters considerably.

Since the tilt of this plane is determined by the tide-producing forces,

its motion conforms to tidal periods. Whether the water surface in a

particular basin can thus continually adjust itself parallel to the equili-

brium surface depends upon whether the basin is deep enough for a long

wave to travel from one end to the other within the tidal period. The
formula for the velocity of a long wave is

v= Vgd, (1)

where g is the acceleration of gravity, and d is the average depth of the
basin.

'(jU, S. Coast and Geodetic Survey, Washington, D. C,
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Figure 1 depicts in a rather simplified way what happens to the surface
of the water in a basin under the influence of the lunar tide-producing
force. In this figure, we are looking down from above the North Pole.
The basin is located on the Equator and the Moon is over the Equator.
The Earth is depicted as a circle undisturbed by the tide-producing forces
(though we will later see that it also yields somewhat). We will not be
concerned with the more or less permanent deformation of the Earth
due to the centrifugal force of the Earth’s rotation, since we may assume
that the disturbance of this spheroidal surface by the tidal forces will not
differ materially from the disturbance of a true spherical surface due to
the same forces.

East

C

Figure 1 . Equatorial cross section.

As the Earth rotates, the water in a basin oscillates with respect to the Earth while remaining parallel

to the equilibrium surface.

The surface of equilibrium is ellipsoidal. If the surface of the water
in the basin remains normal to the plumb line, it will be parallel to this

surface, and as the Earth rotates, it mil oscillate as shown. At position A
it mil be parallel to the Earth’s surface (or parallel to the top edge of the

basin); at position B it will be high in the west end; at C it mil again

be parallel to the top of the basin; and at D it will be low in the west end.

At F it will again be parallel to the top of the basin, and during the next
half day the oscillation will be repeated. The picture will be varied in

some degree by the declination of the Moon and by having the basin in

other latitudes, as well as by introducing the Sun.

Now the plumb line remains perpendicular to the surface of the water
in the basin, and it will be seen that at position A it is also perpendicular

to the surface of the Earth and therefore points to the center of the Earth.
This is also true at C. At intermediate points, such as at B, the plumb
line is deflected.

It is through the horizontal component of the tide-producing force

that we can account for the deflection of the vertical. The angle of
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deflection of the vertical is also the angle of tilt of the surface of the water
in the basin. We will ca 1 this angle 6.

It is common in tidal work to speak of the tide-producing acceleration

as a force, which is satisfactory if we consider the acceleration as acting

on unit mass. This force is directed toward the attracting body at all

points on the Earth’s hemisphere nearest that body. At all points on
the other hemisphere, it is directed toward an opposite point. Point C is

on the dividing line, and at this point there is no horizontal component of

the tide-producing force. At A the total force is vertical, so that there

is no horizontal component there either. At all points on the Earth’s

surface between A and C, the force will be oblique to the surface, and it

will have a horizontal component.
The tangent of the angle of deflection of the plumb line is equal to the

ratio of the horizontal component of the tide-producing force to the

acceleration of gravity. Though g minus the vertical component of the

tide-producing force is a more accurate value for actual acceleration of

gravity than g alone, this refinement will change the value of the tangent
by less than 1X10-14

,
so that the use of g alone is adequate considering

the size of the quantities involved.

Let us now develop a formula for the horizontal component of the tide-

producing force, and this will give us immediately the tangent of the
angle 6. So far as practicable, we will use the notation and method used
by Schu:eman in his “Manual of the Harmonic Analysis and Prediction

of Tides.”

E

The tide-producing force is represented graphically in figure 2, where

0 is the center of the Earth,

C is the center of the Moon,
P is any point within or on the surface of the Earth,

b = PC = distance of point P from center of Moon,
d = OC = distance of center of Earth to center of Moon,
r = OP = distance of point P from center of Earth

,

a = mean radius of Earth, and

z = <COP
,
the zenith distance of the Moon.
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(X7 and PC will represent the direction of the attraction of the Moon
at points 0 and P. If in the same figure we take PC as representing the
magnitude of the attraction at P, we can represent the magnitude of the
Attraction at 0 by a line QC taken of such length that

QC=PC*
PC~OC* (2 )

since attraction varies inversely as the square of the distance.

The tide producing force at any point is the difference in attraction

that tends to change the position of a particle at that point with respect

to the Earth as a whole. The Earth can be considered a*s concentrated
at its center 0. According to figure 2, the point 0 is acted upon by attrac-

tion QC, and the point P is acted upon by attraction PC, which can be
resolved into components PQ plus QC. Because QC is an identical

attraction acting upon 0 and P, it will not change the position of one
with respect to the other. That leaves PQ as the difference in attraction

that tends to alter the position of P with respect to 0 and is the tide-

producing force of the Moon at P. The force PQ may be resolved into

the vertical and horizontal components PR and PT, respectively.

Now let

6M= mass of Moon,

E = mass of Earth,

ii
= Constant of gravitation, or attraction between unit masses at

unit distance,

gr= Mean acceleration of gravity at Earth’s surface.

Because gravitational attraction varies directly as the masses of the

attracting bodies and inversely as the square of the distance between

them, the magnitude of the attraction of the Moon for unit mass at point

0 in the direction OC is

(3)

and the attraction of the Moon for unit mass at point P in direction PC is

(4)

We can resolve these attractions into vertical and horizontal components,

but here we are concerned only with the horizontal. The horizontal

components will be taken perpendicular to the line OP in the plane OPC
with the positive direction being in the azimuth of the Moon. Then,

from eq 3 and 4 and figure 2,

Horizontal component of attraction at 0= DC=^—~sin z. (5)

Horizontal component of attraction at P =EC =^-sin CPR. (6)
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The horizontal component PT (which we will call F ) of the tide-producing

force PQ is equal to ED, which is the difference between eq 5 and 6. Then

From the plane triangle COP, we can obtain the relation

(8 )l)
2 = r

2 -\-d
2— 2rd cos z = d2 1 — 2-cos 2+^-y >

and

. _ _ d sin z
sin CPR = sin CPO =—

b

sin 2

(9 )

Substituting in eq 7 values of b and sin CPR from eq 8 and 9, we obtain

(10 )

Since

(11 )

Substitute eq 11 in eq 10 and transpose g, because it was seen that the

tangent of the angle of tilt, 6, of the water in a basin equals F/g. We have
then

(12 )tan d =—

Formula 12 represents completely the horizontal component of the

lunar tide-producing force at any point in the Earth. If the point is on
the Earth, then r will equal a, leaving only two variables, the Moon's
zenith distance z and the sine of its horizontal parallax a/d. It is still

a rather complicated formula, however, and it can be simplified by ex-

panding the quantity with the fractional exponent as a binomial into a

series of terms arranged according to ascending powers of r/d. Thus

1

t = 1+3 cos z(r/d)
I

2

+3/2(5 cos2 2— 1) (r/d) 2

+5/2(7 cos3 2—3 cos z) (r/d) 3

+ ...

[1 — 2 (r/d)cos 2+ (r/d) 2
]

(13)

The ratio r/d has, for the Moon, a maximum value of 0.018. Neglect-
ing the cube and higher powers of r/d, we substitute eq 13 in eq 12. Then
if we limit the discussion to points on the Earth's surface, r becomes the
mean radius a, and we obtain the formula shown in eq. 14.

tan d = F/g= (3/2) (M/E) (a/d) 3 sin 22+
(3/2) (M/E) (a/dp sin z(5 cos22 -l). (14)
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This represents the lunar portion of the tide-producing force. The
solar portion will be obtained by substituting solar for lunar values in

eq. 14. The first term, which involves the cube of the parallax, represents
about 98 percent of the lunar force and an even higher percentage of the
solar force. The second term, which involves the fourth power of the
parallax is of little practical importance. It is interesting to note that,

of the many harmonic constituents commonly used in tide prediction,

only the relatively unimportant and seldom used Ms is derived from the
second term of eq 14, all others being derived from the first term. At this

point then we will drop the second term of eq 14 and continue the develop-
ment of the first term only.

The positive direction is in the azimuth of the Moon, and this first

term has its maximum positive value when 3=45° and an equal maximum
negative value when 2=135°. It is zero when 2 = 0°, 90°

,
or 180° . Extreme

values of F/g, obtained when the Moon and Sun are nearest the Earth
and 2 = 45°, are

and

1.05X10 7 for the lunar portion, (15)

0.41 X 10“7 for the solar portion. (16)

The corresponding maximum value of angle 6 is then about 0.022" due
to the Moon and 0.009" due to the Sun. The angle 6 is the tilt of the

surface of the water from its mean position, hence the semirange.

A difficulty in the use of formula 14 arises from the fact that the force

is in the azimuth of the Moon (or Sun), and therefore the angle 0 is in the

vertical plane that is also in the azimuth of the attracting body,—and
this azimuth is continually changing. Moreover, the azimuths of the

Sun and Moon at any instant are seldom the same. The values in eq 14

are usually wanted for some fixed azimuth, such as that of a basin. In

adapting the formula to this purpose we will complicate the formula
somewhat, while greatly improving its usefulness.

We will first resolve the force represented by the first term in eq 14

into south and west components and from them derive a formula for

force in any desired azimuth. Letting subscripts s and w designate south

and west components, respectively, and A designate the azimuth of the

Moon, then

Fs/g= (3/2) (M/E) (a/d )
3 sin 2z cos A, (17)

Fw/g= (3/2) (M/E) (a/d) 3 sin 22 sin A. (18)

Although we will not go into the detail of their derivation, the following

formulas are readily derived from a consideration of the celestial sphere,

in which Y= latitude of the observation point, D = declination of the

Moon, t= hour angle of the Moon.

cos 2 = sin Y sin D+cos Y cos D cos t. (19)

sin 2 cos A = — cos Y sin D+sin Y cos D cos t. (20)

sin 2 sin A = cos D sin t. (21)
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Multiplying eq 20 and eq 21 by the value of 2 cos 2 from eq 19, we
obtain

sin 2z cos A = (3/4) sin 2F[(2/3) — 2 sin2 D
]
—

cos 2F sin 2D cos t\ sin 2F cos2 D cos 21 (22)

sin 2z sin A = sin F sin 2D sin £+cos F cos2 D sin 2£. (23)

Substituting these values in eq 17 and eq 18, we have

tan ds =Fs/g= (9/8) (M/E) (a/df sin 2F[(2/3) -2 sin2 D]

— (3/2) (M/E) (a/d) z cos 2F sin 2D cos t

+ (3/4) (M/E) (a/df sin 2F cos2 D cos 2 1 (24)

tan 6w = Fw/g= (3/2)(M/E)(a/d) z sin F sin 2D sin t

+ (3/2) (M/E) (a/d) z cos F cos2 D sin 2 1 (25)

If we let a designate any desired azimuth, then

tan dQ =Fa/g = Fs/g cos a+Fw/g sin a. (26)

Formula 26 shows that the horizontal force in the deshed azimuth, or

the tangent of the angle 6 in the vertical plane in the deshed azimuth,
will be obtained by multiplying the terms of eq 24 by cos a and those of

eq 25 by sin a and then combining them. This now permits the calcula-

tion of the angle of tilt along the axis of any basin for each hour or for any
time deshed. The second term of eq 24 can be made positive if deshed
by substituting (£+180°) for t.

Formula 26 can be developed into a series of cosine terms representing

the harmonic tidal constituents. We will omit the development but will

show the final formula so that amplitudes and epochs of the harmonic
constituents can be computed for use in predicting or for comparison
with the harmonic constants obtained by analysis of observations. The
formula is

tan 6a=Fa/g= (9/8) (M/E) (a/c) zP0ZfC cos E

+ (Z/2)(M/E)(a/c) zPFLfC cos (E-k/)

+ (3/2) (M/E) (a/c) zP2ZfC cos (E-k2) . (27)

in which a/c is the mean parallax, and the value of (M/E)(a/c)z
is

0.5582 X10-7
. The equivalent expression for the Sun equals 0.2569 X10-7

;

/ is the factor by which the mean amplitude of a lunar constituent is

multiplied to obtain the amplitude for a particular year; the 18.6-year

lunar variation, due to the variation in the obliquity of the Moon’s orbit,

is taken care of in this way. For solar constituents the value of / is unity;

C is the mean coefficient of the constituent
;
E is the constituent argument,

often given as V+u;

Pq= sin 21" cos a
; (28)

Pi= (cos2 2F cos2 a+sin2 F sin2 a)^; (29)

P2= cos F (sin2 F cos2 a+sin2 a)*; (30)
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Epoch Ki = tan
f sin Y sin a \

(31)
k — cos 2F cos a)’

Epoch K2= tan
-1

|

' sin a \
(32)

^sin Y cos a)

The formulas for epoch assume an absence of lag due to friction or inertia.

The values of f, C, and E for each constituent are readily obtained from
tables in any manual on tide prediction.

The last term of eq 27 represents the semidiurnal constituents and is

derived from the last terms of eq 24 and 25, which are functions of 21.

The second term of eq 27 is derived from the terms of eq 24 and 25, which
are functions of t and represents the diurnal constituents. The first

term of eq 27 is derived only from the first term of eq 24 and represents
the long-period constituents that have periods of a fortnight or more.
They do not depend upon the Earth's rotation but vary only with parallax

and declination. There is no west component of the long-period variation.

Observations in the David Taylor Model Basin

Observations of the tidal oscillation in the David Taylor Model Basin
were made in 1947 and were reported upon in the Transactions of the
American Geophysical Union. Observations of water level were made
every half-hour in both the east and west ends of the basin during the
7-day period from September 8 to 15, 1947. The gages were near the

ends of the basin and 2668 feet apart. The basin was 52 feet wide and
22 feet deep. The long dimension of the basin was oriented in a W16°N
to E16°S direction. The basin is near Washington, D. C., in latitude

38°58'30''N. and longitude 70°11'30"W.
A plotting of the observations made at each gage is shown in figure 3.

The original setting of the gages was arbitrary so that the distance between
the two sets of readings on the graph has no significance. There is a

general downward drift due to several possible causes that are not tidal.

The semidiurnal tidal oscillation with a diurnal inequality is clear. When
the water rose in one end of the basin, it fell in the other. The range of

the oscillation increased during the period as the Moon progressed from
quadrature to a new Moon in perigree. The observational period was not

long enough to bring out the long-period variations.

To compare the observed tide to the tide as computed by formula, the

observations were reduced to a horizontal datum by scaling the readings

from the sloping mean level line and replotting them using a horizontal

line as mean level. The original mean level was found by averaging 50
consecutive half-hourly observations, which cover about a tidal day,

plotting the mean at the midpoint of the group, and then moving along

hour by hour, repeating the process.

Because the tide at the east end should be just the reverse of that at

the west end, we concentrated on the tide at the west end and removed
some of the irregularities from the observations by inverting the curve

for the east end and averaging it with the one for the west end. The
curve for the west end for the 2 days September 12 and 13, processed in

this way, is shown in figure 4. The computed curve is shown in the same
figure for comparison.
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Sept. 8 , 1947 Sept. 9 Sept. 10 Sept 11 Sept. 12 Sept. 13 Sept. 14 Sept. 15

Figure 3. Half-hourly observations of water levels in the east and west ends of the

Taylor Basin.

While computations by formulas 26 or 27 give the tangent of the angle

of tilt rather than the height of the water, it is evident that the height of

the oscillation at the gage equals tan 6 multiplied by the distance of the

gage from the center of the basin or, in this case, by half the distance

between the gages.

Means of 14 highs and 13 lows for the 7 days give ranges of 0.00181

inch and 0.00241 inch for the observed and computed tides, respectively.

Corresponding values for angle d (semirange) are 0,024" and 0.031".

The computed curve shows the tide in the basin relative to a rigid

Earth. The observed curve shows the tidal motion relative to the actual

Earth. The difference between the two, as shown in figure 5, suggests

that the Earth’s surface also moves with a tidal period.
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Figure 4. The tide in the west end of the Taylor Basin.
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It has been established by many observers that there is a tidal motion
in the Earth’s crust. It is due to several causes. There is the direct

response to the tide-producing forces, which is considered to be nearly

instantaneous, as well as local deformations due to the variations in the

load of tidal water on the nearby coast. The latter variation will vary
with the locality, and both will be affected by the geology of the area.

Moreover, the^tidal motion of the water in the basin will be affected by
the change in attraction brought about by this periodic shifting of part

of the Earth’s mass.
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Figure 5. Earth movement determined from Taylor Basin observations.

It is interesting to know that from these observations it was computed
that the yielding of the Earth to the tidal forces has a range about half

that of the equilibrium surface and averages about 6 inches in the latitude

of Washington. But for purposes of this discussion it is more important

to know how much the actual or computed tide in the basin will appear

to be reduced when measured relative to the Earth, which itself yields to

the tide-producing forces.

One of the most satisfactory methods of determining such a relationship

is through the harmonic constants. The 7-day series was analyzed for

the harmonic constants of the eight most important tidal constituents.

The amplitudes and epochs of the same eight constituents were computed
by means of formula 27. The results are shown in table 1. The differ-

ence in phase was found to be due largely to the loading effect of the ocean

tide. The ratio of the observed to computed amplitude was determined

for each constituent, and a mean was obtained by weighting these ratios

according to the size of the theoretical or computed amplitude. The
ratio so obtained is 0.75.

A mean factor based upon many observations would be desirable.

Upon investigation, we find that factors based upon long periods of

observations made by various methods vary from 0.69 obtained by
Michelson and Gale, and also by Nishimura, to 0.84 by Schweydar.

It appears that the factor obtained from the Taylor Basin observations

will serve as a satisfactory mean.
In order then to compute the size of the tide oscillation that would

most likely be observed in a basin, the hourly values from formula 26 or

the amplitudes from formula 27 should be multiplied by the ratio 0.75.
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Table 1 . Harmonic Constants

Constituent

Computed
by formula

From
observations

Amplitude
ratio

Phase
difference

Hc KC Ho K0 Ho/Hc K0— Kc

Inch Degrees Inch Degrees

Mi 0. 100922 100.2 0.000720 73.5 0.781 — 26.7

S2 . 100429 100.2 .000303 78.1 .700 — 22.

1

N2 . 100178 100.2 .000149 73.8 .837 -26.4
k2 .000117 100.2 .000082 78.1 .701 -22.1
Ky .000430 84.6 .000318 105.6 .739 21.0

Oi .000306 84.6 .000228 76.0 .747 -8.6
p 1

.000142 84.6 .000105 105.6 .739 21.0

Qi .000059 84.6 .000039 65.1 .654 -19.5

t Weighted mean— 0.752

t Mean of amplitude ratios weighted according to size of amplitude of equilibrium constituent.

Michelson, A. A., and Gale, H. G., The rigidity of the Earth, Astrophysical J. L, No. 5,

pp. 330-345, 1919.

Nishimura, Eiichi, On Earth tides, American Geophysical Union, Transactions, 31,

pp. 357-376, 1950.

Schureman, Paul, Manual of harmonic analysis and prediction of tides, U. S. Coast and
Geodetic Survey Special Publication No. 98, revised (1940) edition, Washington,
1941.

Schweydar, W., Totschwankung und Deformation der Erde durch Flutkrafte.

Zentralbureau der International Erdmessung, No. 30, Berlin, 1921.

Zerbe, W. B., The tide in the David Taylor Model Basin, American Geophysical Union,
Transactions, 30, pp. 357-368, 1949.
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32. The Characteristics of Internal Solitary

Waves

By Garbis H. Keulegan 1

Abstract

An application of the method of approximations initiated by Boussinesq

,

to the disturbances of the interface points to the existence of waves of

permanent form; the internal solitary wave. The system considered is

a layer of liquid resting on another layer of greater density, the liquids of

the layers being initially at rest and of constant total depth.

The analysis is carried out assuming irrotational motions throughout
and utilizing the kinematic and dynamic boundary conditions in forms
appropriate to the upper free surface, the interface, and the horizontal

rigid bottom. The effect of viscosity in the region at the interface

is ignored.

Analysis reveals that the forms of permanent waves are symmetrical
with indefinite wave lengths. When the depth of the lower layer is

smaller than the depth of the upper layer, the wave is one of elevation,

that is with a single crest above the level of the undisturbed interface.

When the depth of the lower layer is greater than that of upper, the wave
is one of depression, that is, the trough is below the level of the undis-

turbed interface. When the depths of the layers are equal, no solitary

wave of the symmetrical form is possible.

Our experimental work has been confined to solitary waves of the

positive type. Results of observations appear to verify theoretical

deductions as regards the dependence of wave velocity on wave height,

on density differences, and on layer thicknesses. Confirmation has
been obtained also as regards the form of wave and particle displacements.

The study was undertaken as part of a project relating to model laws
of density currents, a project initiated and supported by the Corps of

Engineers of the Department of the Army.

1 National Bureau of Standards, Washington, D. C.

279





33. Growth of Wind-Generated Waves and
Energy Transfer

By J. Th. Thijsse 1

Observations in the wind flume of the hydraulics laboratory at Delft, Holland, and
on Dutch lakes have been used to check the graph given by Sverdrup and Munk for

the growth of waves by wind. There is some difference, but in general the agreement
is fair.

Many observations were made on waves which cannot be considered as “short”
ones. An extension of the graph for limited depth of the water was made on the
strength of these observations.

Combined observations in the same wind flume and on a water current flowing over
a fixed (paraffin) model of a wind-generated wave have lead to a rough evaluation of the
terms in the energy equation for growing waves. It appears that by far the greater

part of the energy in the waves is transmitted by the work of the normal pressure on
the surface. This work is positive because the wave itself and the normal pressure

both are asymmetric in respect of the crest. A trochoidal wave would hardly grow
under the influence of the wind.
The “sheltering coefficient” introduced by Sverdrup and Munk may be calculated

starting from these observations.

Nikuradse’s “roughness length” was also determined. It turned out to be about
half the height of the wave.

1. Growth of Wind—Generated Waves

In many hydraulic experiments done in our laboratory waves of various

kinds have to be considered. Although not much basic research upon
waves has been done, a considerable quantity of data has been assembled,

belonging to most of the topics mentioned in the program of the sympo-
sium on gravity waves, viz., generation of waves; impact of waves on
beaches, shores, and structures; application of optical theory; internal

waves, and tides.

A few remarks on generation of waves will be made in the following.

2. Generation of Waves

In the wind flume of the laboratory, constructed in 1936 and enlarged

in 1941, many observations have been made on the growth of waves by
wind. In most cases the depth of the water was about 1 foot. The
width of the flume is 4.0 m (13 ft lj in.), its effective length about 50 m
(165 ft). A wind with a velocity up to 17 m/sec (35 mph) may be applied.

The roof of the wind channel is slightly more than 2 feet over the water
level. In the lower foot the distribution of the wind velocity follows the

logarithmic law. This means that the influence of the roof on the phe-

nomena near the water surface must be small.

1 Wftterloopknndig LaboratoriUm, Delft, Netherlands.
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The dimensions of the waves have been compared with the graph give/
by Sverdrup and Munk [l]

2
. A difficulty proved to be the definition on

wind velocity. Sverdrup does not mention the level at which his wind
velocity has been measured. If we assume an anemometer is generally

installed 20 or 25 feet above sea level (2 ) and the velocity W of the wind
is in many cases 35 to 40 miles, then it appears that

2= (W2
/g)/5.

In our wind flume we calculate by extrapolating on the logarithmic dia-

gram the velocity of the air at a level equal to one-fifth of Sverdrup’s

“velocity-length” W2
/g. This velocity is used in plotting the points in

the diagram.
Waves have been raised with a height, H, of 1 inch to 4 inches, a length

X, of 1 foot to >5 feet. The “dimensionless” fetch is 1 to 15.

1 = radius of generating circle (=wave length/27r); H = height of the significant wave; F= fetch;

D= depth below mean level
;
Z= double velocity head of wind = II 2/g Curves of Sverdrup and Munk

shown by dotted lines.

Two lines have been drawn in the diagram (fig. 1): one for the wave

height, H, another for r = X/27r, both made dimensionless by dividing by

the “velocity-length.”

Both lines are decidedly higher than Sverdrup’s, which are shown as

dotted lines.

It is not certain that the difference may be attributed to the above-

mentioned definition of W.
The steepness of the waves agrees well with the value given by Sverdrup.

Besides the observations in the wind flume, which may be considered

as very accurate—as accuracy goes in observation of waves—a number of

observations have been collected on lakes in Holland. In these cases the

dimensionless fetch is high, and here the same values for height and length

of waves have been found as Sverdrup’s. At the greatest fetch there is

even an indication that the waves are somewhat smaller than Sverdrup’s.

2 Figures in brackets indicate the literature references on p. 287.

282



This is confirmed by waves raised by the trade wind, measured near

Curacao by photographing the broadside of a tanker that is hove to.

The impression is that for a very long fetch waves are not quite as high

as Sverdrup’s graph would indicate, and that also the length is somewhat
less. Here the difference is more than in the case of the height; this

means that the steepness of these waves is greater than Sverdrup’s.

There are few observations at moderate fetches, so it is not possible to

confirm the maximum of steepness that should occur at a relative fetch

of about 1,000. There is no reason, however, to contradict the existence

of this maximum.
The lines discussed up to now are valid for “short” waves in very deep

water, when the wave length is not more than twice the depth. The
longest waves generated in the wind flume are longer than this, so the

friction along the bottom must have an appreciable influence. It takes

energy from the waves and in consequence limits the process of growing.

It is important to know the state of equilibrium, in which the work done
by the friction along the bottom combined with the internal friction

counterbalances the energy transmitted from the air current to the

wave system.

A tentative effort has been made to complete Sverdrup’s graph for

waves other than short ones. The limited length of the wave flume was
overcome by reproducing the wave generated at the lower end of the flume

by wind at the upper end by a moving blade—a wave generator of the

usual type. At the lower end this wave—increased by the wind—was
measured. By repeating this process several times, a state of equilibrium

was eventually reached. It is evident that this method is not exact,

but the inaccuracy cannot be very great.

The result is shown in figure 1 . The depth has been made dimension-

less by dividing it by the “velocity-length.” There is a bundle of lines

now, each line starting from the one for unlimited depth and curving

until it is horizontal; the wave does not grow any more when the fetch

increases.

Figure 1 must be considered as a first tria1
. Many observations have

still to be collected in order to get an improved set of lines.

Meanwhile the graph is used in the Netherlands, e.g., for predicting the

consequences of deepening a shallow lake (this often happens when the

bottom consists of sand, as there is a shortage of sand in this country).

Many of these lakes have a depth of about 1.5 m (s'). Suppose they will

be dredged to a depth of 7.5 m. We want to know what happens when
the velocity of the wind, measured at a height of 6 m, is just over 17

m/sec, thus z=172
/g= 30 m. The relative depth is 1.5/30 = 0.05, which

will be increased to 7.5/30 = 0.25.

Take a small lake, 150 m long ( = F ), a medium one of 600-m length,

and a greater one of 7,500 m. The results are given in Table 1.

Table 1. Results of deepening shallow lakes

Shallow; 0/3=0.05 Dredged; D/3=0.25

150 600 7500 F 150 600 7500
5 20 250 F/z 5 20 250

0.0065 0.011 0.016 H/z 0.0065 0.013 0.047
0.20 0.33 0.48 H (m) 0.20 0.39 1.41
0.015 0.025 0.038 r/z 0.015 0.029 0.87
0.45 0.75 1.14 r (m) 0.45 0.87 2.61
2.8 4.7 7.3 (m) 2.8 5.5 16.4
1.3 1.7 2.3 T (sec) 1.3 1.9 3.2
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In the small lake the bottom has no influence on the growth of the
waves; dredging does not affect them.

Before dredging the waves in the medium-sized lake are influenced
by the bottom in the later part of their way. They are still growing, but
slowly. After dredging the bottom is not felt any more. At the lee

shore the height of the waves has been increased from 0.33 to 0.39 m, the
period from 1.7 to 1.9 sec.

After a fetch of 7,500 m the effect of dredging is very great; increase in

height from 0.48 to 1.41 m and in period from 2.3 to 3.2 sec. Protecting
the lee shore against erosion by waves is quite another problem after

dredging than it was before.

Observations of the speed of the waves in the wind flume have shown
values equal to or slightly more than the theoretical ones c=\/grth(d/r).
The excess, ascribed to the direct influence of the wind, is less than 10
percent.

3. Transfer of Energy From Wind to Waves

Recently a study on the transfer of energy from the wind into the wave
system has been started.

None of the terms of the equation: energy transmitted from wind by
normal pressure + energy transmitted from wind by tangential stress=
work done by internal friction+work done by friction along the bottom
-{-increase of energy.

RN+RT =Wi+Wb+

A

E

is sufficiently well known.
A start was made with RN . In another paper of Sverdrup and Munk [2]

this term has been discussed at length. The trouble is the “sheltering

coefficient,” which has to be deduced from field data.

Figure 2. Measurements on paraffin model of wind-generated wave.

In the Delft laboratory Rn was measured in the following way. A wave
was generated by blowing air in the wind flume. Its shape was photo-

graphed through the glass wall. The height, H, was 0.10 m, the length

1.2 m (r = 0.19m= X/27r). The crest was slightly asymmetrical, the lee

side steeper than the weather slope. On the whole the crest was steeper

than the trochoid, the trough flatter (fig. 2). A paraffin model (natural

scale) of this wave was placed in one of the flumes of the laboratory,

0.25 m wide. A current of water was made to flow over the wave. The
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roof over this current was curved according to the shape of the paraffin

wave but much flatter. The mean height of the water current was
0.38 m. The pressure was measured along the surface of the wave.
The velocity of the water was observed with a Pitot tube in a vertical

over the crest of the wave and in one over the trough.

In the wave flume the velocity of the wind was measured while the

waves were passing under the Pitot tube. Pressure drop of the air and
slope of the water level were also measured.

The pressure on the surface of the wave is not symmetrical; on the

lee side of the crest the graph shows a “shoulder” where the pressure is

nearly constant. The current follows the surface; no eddy has been
observed. There may be one near the shoulder if the wave is steeper still.

Over the next trough the pressure does not rise again to the original

value; the deficit corresponds with the loss of head caused by the presence

of the wave and the friction along the walls and the roof of the flume.

The pressure difference between crest and trough agrees perfectly with

the difference of velocity head in the current near the surface.

In the wind flume the velocity of propagation of the wave was 1.33

m/sec. This value was subtracted from the observed velocities of the

wind in order to find the relative speed.

These data are sufficient for calculating Rn- The wave is divided in

24 short sections Ax. For each the vertical component of the displace-

ment of the surface is multiplied with the pressure head y (corrected for

the loss of head).

The result is shown in table 2.

Table 2. Data for calculation of RN

Section Slope,
Az/Ax

y t (yAz/Ax) 10 s

1 0.03
m
0 0

2 .05 -.001 — .05

3 .06 -.001 -.06
4 .08 -.001 -.08

5 .11 -.002 -.22
6 .12 -.004 -.48
7 .17 -.005 — .85

8 .20 -.007 - 1.40

9 .24 -.009 - 2.16
10 .36 -.025 - 9.00
11 .29 -.075 - 21.8
12 .21 -.129 - 27.1

13 .06 -.170 - 10.2
14 -.20 -.152 + 30 4
15 -.38 -.087 + 33.1
16 -.48 -.062 + 29.8

17 -.38 -.054 + 20.6
18 -.20 -.050 + 10.0
19 -.12 -.029 + 3.48
20 -.08 -.005 +0.40

21 -.06 -.009 + .54
22 -.04 -.006 + .24
23 -.03 -.002 + .06
24 -.01 0 0

t The sum of yAz/A* is +0 .0552m.

The work done by the current over the wave is positive. This is

caused by the fact that on the side of the wave where the surface is rising

the mean value of the pressure is smaller than on the other half.
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The work is found by multiplying the sum by cpgAx (c= velocity,

p density of the medium passing over the wave, g acceleration of gravity).

Rn = cpgAX aydz/dx = 1 .33X 1000X 0.8X 0.05X 0.0552 = 36 W/m . This
must be divided by the proportion of the products pv2 of water (over the
paraffin wave) and air (relative speed in respect of the wave) . This propor-
tion cannot be calculated accurately, but it will not be very far from 25.

Extrapolating the wind velocity in the wind flume, it appears that at

a height of 6 m the velocity is 17 m/sec.
So the result is as follows : A wind of 17 m/sec at a level of 6 m over the

surface of the sea raises after a fetch of 50 m a wave with a length of 1.2 m
and a height of 0.10 m, traveling with 1.33 m/sec. The energy trans-

ferred to the water by normal pressure is 36/25 = 1.44w on a surface
with the length of the wave and the width of 1 m, or 1.2w/m2

.

The pressure is the lowest at the crest
;
the difference from the pressure

at the trough is 70 Newton/m2
;
this is about two-fifths of the velocity

head (measured at a height of 6 m).
It is possible to make an evaluation of the dimension yQ in the log-

arithmic formula for the velocity at a distance y from the boundary
v= (v*/x) log (y/yo).
Using the velocity of the air measured in the wind flume (ranging from

8.8 m/sec at 0.08 m over mean water level to 10.5 m/sec at 0.20 m over
mean water level and subtracting 1.3 m/sec for the speed of the wave) we
find yQ

= 1.6X10
-3m. So Nikuradse’s roughness length, about 33 yQ ,

is

0.05 m, that is, half the height of the wave.
The slope of the water in the wind flume is 0.011 m in a distance of

30 m. Intermediate points have also been measured; the water level

is slightly hollow. This means that the mean tangential stress r in-

creases with the size of the waves, which are only ripples at the upper
end of the flume.

There must be some stress along the bottom too, caused by the return

flow of water in the lower layers. We know (by other observations)

that this stress is between 5 and 10 percent of that along the surface.

Taking this stress and the horizontal component of the normal pressure

into account, we find for r about 0.8 N/m2
. It is concentrated near the

crests of the waves.
We may assume that the stress is proportional to the local velocity of

the wind, which may be calculated from our pressure observations by
means of Bernoulli’s law. The orbital movement is known at each point

of the wave, and so the work done by the tangential stress may be calcu-

lated. We shall not give the whole calculation but mention that the

work Rt is about 0.1 w per wave length and per meter in width.

So Rn~\~Rt = 1.4+0. 1 = 1.5 w.

What happens with this energy? The part that is stored in the wave,

causing it to grow, is readily deduced from Sverdrup’s diagram. In

unit time

AX and AH are found by reading the increase of X and H per unit length

and multiplying by the velocity of propagation c. The result is 0.4 w.

W/-hIF5 = 1.5— 0.4 = 1.1 w.
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By means of Sverdrup’s diagram a rough evaluation of Wb may also

be arrived at. We may read from it the growth of our wave in deep

water. This gives AE— 0.7w. In this ease there is no friction along the

bottom, and if we assume that Wj, as well as Rn and Rr, are the same in

both cases, Wb = 0.3 w. The balance, 0.8 w, must be equal to W/.

So the result is (per wave length and per meter in width) RN =1A w;
Rt = 0.1 w; TF/ = 0.8 w; ITb = 0.3 w; A# = 0.4 w.

The result cannot be more than a very rough approximation.

Observations of the normal pressure have been made with several

speeds of the water flowing over the paraffin wave. The pressure line is

always the same in respect to the velocity head. The “shoulder” is

always present and always at the same place. So is the little bump in

the line in section 20; here the pressure is always slightly higher than
just upstream and downstream of this spot.

Observations on a trochoid showed pressures that are nearly symmet-
rical in respect to the crest. So Rn is very small in this case, and this

leads to the conclusion that the growth of the wave is mostly caused hy
its asymmetric shape.

We intend to go on with this investigation. In the first place, better

observations have still to be made. The frictional force exerted on the
wind blowing over the waves and by the water flowing over the paraffin

has been measured. By means of observations in the empty wave flume
effort was made to calculate the stress along the fixed walls and roofs.

The balance should agree with the shear measured on the waves, but the

result is not satisfactory.

Other shapes of waves should be measured, especially steeper ones.

Direct observations of tangential stress at the bottom should be made.
Prior work of Bagnold [3], of Putnam and Johnson [4], and others should
be taken into consideration.

On the other hand, theoretical studies must complete the work.
The observations have been made by various engineers of the hydraulic

laboratory at Delft. Mr. J. G. Faber has taken great pains in measuring
with comparatively primitive means the data described in the second
part of this paper.
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