PUBLICATIONS

of the

NATIONAL BUREAU OF STANDARDS

1901 to June 30, 1947

CIRCULAR 460
PUBLICATIONS
of the
NATIONAL BUREAU OF STANDARDS
1901 to June 30, 1947

NATIONAL BUREAU OF STANDARDS CIRCULAR 460
Issued August 16, 1948
FOREWORD

The National Bureau of Standards is the principal agency of the Federal Government for fundamental research in physics, chemistry, and engineering. Its activities include research in electricity, electronics, atomic physics, applied mathematics, mechanics and sound, radio and radio propagation, optics, heat and power, metallurgy, metrology, ordnance, physical chemistry, mineral products, organic and fibrous materials, and building technology.

The Bureau also has custody of the national standards of physical measurement, in terms of which all working standards in research laboratories and industry are calibrated, and conducts research leading to the improvement of these standards, the techniques of measurement, and improved instrumentation. Improved methods of testing materials and equipment are developed, physical constants and properties of materials are determined, and technical processes are investigated.

The results of the Bureau's research, development, and test activities are reported in two types of publications: periodical and nonperiodical. There are three periodicals: the Journal of Research of the National Bureau of Standards, the Technical News Bulletin, and Basic Radio Propagation Predictions.

Mathematical tables, studies and tests of construction materials, safety codes, weights and measures recommendations and information, commodity standards, and miscellaneous compilations of data are reported in the following nonperiodical series: Mathematical Tables, Building Materials and Structures Reports, Circulars, Handbooks, Commercial Standards, Simplified Practice Recommendations, and Miscellaneous Publications.

This Circular presents a complete list of Bureau publications, with brief abstracts for those issued during the period January 1, 1942 to June 30, 1947. Circular C24 and Supplements, listing abstracts of all publications from 1901 to December 31, 1941, are available for those desiring this more complete reference.

E. U. CONDON, Director.
PUBLICATIONS
of the
NATIONAL BUREAU OF STANDARDS
1901 to June 30, 1947

CONTENTS

Foreword .. II
1. General information .. 2
 Purchase procedures .. 2
 Announcements of Bureau publications 2
 Catalogs of publications 3
 Mailing lists ... 3
 Depository libraries 3
 Bound volumes ... 10
2. Periodicals of the Bureau 15
 Journal of Research of the National Bureau of Standards 15
 National Bureau of Standards Technical News Bulletin 16
 Basic Radio Propagation Predictions 16
3. Titles and abstracts of publications 16
 Scientific Papers .. 18
 Technologic Papers 33
 Research Papers ... 43
 Circulars .. 168
 Handbooks ... 183
 Miscellaneous Publications 185
 Simplified Practice Recommendations 193
 Commercial Standards 198
 Building Materials and Structures Reports 207
 Building and Housing Publications 218
 Mathematical Tables 219
4. Author index ... 222
5. Subject index .. 310
1. GENERAL INFORMATION

PURCHASE PROCEDURES

The publications of the Bureau are distributed principally by the Superintendent of Documents, United States Government Printing Office, Washington 25, D. C., who sells them, as long as copies are available, at the prices given in this Circular. Where prices are omitted, the publications are out of print, but may be consulted in reference libraries maintaining sets of Bureau papers.

How to make remittances. Remittances for publications for which individual sales or subscription prices are shown should be mailed to:

Superintendent of Documents,
U. S. Government Printing Office,
Washington 25, D. C.

The rules of the Superintendent of Documents require that remittances be made in advance, either by coupons sold in sets of 20 for $1 and good until used, or by check or money order payable to the Superintendent of Documents. Currency, if used, is at sender's risk. Postage stamps, foreign money, and defaced or smooth coins are not acceptable. Postage is not required in the United States, to United States possessions, and to countries extending franking privileges. For mailing to other countries, an additional amount of about one-third of the purchase price is required. Remittances from foreign countries should be by international money order payable to the Superintendent of Documents, or by draft on an American bank. The letter symbol with each publication number and the full title of the publication must be given when ordering. If 100 copies or more of any publication are ordered, a discount of 25 percent is allowed.

ANNOUNCEMENTS OF BUREAU PUBLICATIONS

There are several official sources of information as to new publications of the National Bureau of Standards. The following announcements are issued regularly by governmental agencies. In addition, many of the technical journals carry notices of new Bureau publications of interest in their respective fields.

Price Lists. Publication lists prepared by the Superintendent of Documents on special subjects. These will be furnished free, on application, if the subject concerning which information is desired is stated.

List of Selected Government Publications. Issued semimonthly by the Superintendent of Documents. Each list is arranged alphabeti-
cally by subjects, with annotations and prices. May be obtained free from that office.

Building Materials and Structures Reports. The Superintendent of Documents maintains a free mailing list of addresses to receive notices of new reports in this series. An alternative method is to deposit with the Superintendent of Documents the sum of $5, with the request that these reports be mailed to you as issued.

Business Service Check List. Weekly announcement of publications of the Department of Commerce. Lists titles and prices of National Bureau of Standards publications, as well as those of other offices of the Department of Commerce. Available from the Superintendent of Documents for $1.00 a year domestic; $1.75 foreign.

CATALOGS OF BUREAU PUBLICATIONS

Previous catalogs and this Circular give a complete list of the titles and brief abstracts of the Bureau's publications up to June 30, 1947. These lists are available from the Superintendent of Documents, United States Government Printing Office, Washington 25, D. C., at the prices given below, or they may be available for consultation in libraries maintaining sets of Bureau Circulars.

<table>
<thead>
<tr>
<th>Catalog</th>
<th>Description</th>
<th>Pages</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular C24, 7th edition: Publications of the Bureau of Standards 1901 to 1925.</td>
<td>271, including brief abstracts and subject index</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Circular C24 Supplement: Supplementary list of publications of the Bureau of Standards, July 1, 1925, to December 31, 1931.</td>
<td>214, including brief abstracts and subject index</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Circular 24 Supplement: Supplementary list of publications of the National Bureau of Standards, January 1, 1932, to December 31, 1941.</td>
<td>386, including brief abstracts. The subject and author indexes cover the period 1901 to December 31, 1941.</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Circular 460: Publications of the National Bureau of Standards 1901 to June 30, 1947.</td>
<td>375, including subject and author indexes, and brief abstracts for the period from January 1, 1942 to June 30, 1947.</td>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>

MAILING LISTS

Names of individuals are not placed on the Bureau's mailing lists. The principal distribution is by the Superintendent of Documents on a sales basis. A limited edition of each paper is printed for Bureau administrative needs and for official distribution to cooperating laboratories, technical organizations, Government agencies, and to leading public and educational institutions libraries. In addition, the Superintendent of Documents distributes copies of selected Bureau publications to the Government depository libraries listed below.

DEPOSITORY LIBRARIES

The Superintendent of Documents, United States Government Printing Office, is authorized by law to furnish Government publications to designated depository libraries. The libraries listed below are now receiving certain selected publication series of the National Bureau of Standards for general reference use. Whether or not a given library has a copy of any particular publication can only be determined by inquiry at the library.
<table>
<thead>
<tr>
<th>State or territory</th>
<th>City</th>
<th>Name of library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>Auburn</td>
<td>Alabama Polytechnic Institute.</td>
</tr>
<tr>
<td></td>
<td>Birmingham</td>
<td>Birmingham Southern College, M. Paul Phillips Library</td>
</tr>
<tr>
<td></td>
<td>Clayston</td>
<td>Public</td>
</tr>
<tr>
<td></td>
<td>Florence</td>
<td>Barbour County Library.</td>
</tr>
<tr>
<td></td>
<td>Jacksonville</td>
<td>State Teachers College.</td>
</tr>
<tr>
<td></td>
<td>Montgomery</td>
<td>State Teachers College.</td>
</tr>
<tr>
<td></td>
<td>Spring Hill</td>
<td>State Capitol, Department of Archives and History.</td>
</tr>
<tr>
<td></td>
<td>Tuskegee</td>
<td>State and Supreme Court.</td>
</tr>
<tr>
<td></td>
<td>College</td>
<td>Tuskegee Institute, Hollis Burke Frissell Library.</td>
</tr>
<tr>
<td></td>
<td>University</td>
<td>University of Alabama.</td>
</tr>
<tr>
<td></td>
<td>Flagstaff</td>
<td>University of Alaska.</td>
</tr>
<tr>
<td>Arizona</td>
<td>Phoenix</td>
<td>Territorial Historical Library and Museum.</td>
</tr>
<tr>
<td></td>
<td>Tempe</td>
<td>Arizona State Teachers College.</td>
</tr>
<tr>
<td></td>
<td>Thatcher</td>
<td>Phoenix Public.</td>
</tr>
<tr>
<td></td>
<td>Alturas</td>
<td>Arizona State Teachers College, Matthews Library.</td>
</tr>
<tr>
<td></td>
<td>Bakersfield</td>
<td>Gila Junior College Library.</td>
</tr>
<tr>
<td></td>
<td>Berkeley</td>
<td>University of Arizona.</td>
</tr>
<tr>
<td></td>
<td>Claremont</td>
<td>College of the Ozarks.</td>
</tr>
<tr>
<td></td>
<td>Eureka</td>
<td>Hendrix College Library.</td>
</tr>
<tr>
<td></td>
<td>Long Beach</td>
<td>University of Arkansas.</td>
</tr>
<tr>
<td></td>
<td>Los Angeles</td>
<td>Sharp County Public Library.</td>
</tr>
<tr>
<td></td>
<td>Oakland</td>
<td>Arkansas State College.</td>
</tr>
<tr>
<td></td>
<td>Pasadena</td>
<td>Arizona Polytechnic College.</td>
</tr>
<tr>
<td></td>
<td>Redlands</td>
<td>Modoc County Public Library.</td>
</tr>
<tr>
<td></td>
<td>Sacramento</td>
<td>Kern County Free Library.</td>
</tr>
<tr>
<td></td>
<td>San Diego</td>
<td>University of California at Los Angeles.</td>
</tr>
<tr>
<td></td>
<td>San Francisco</td>
<td>University of Southern California.</td>
</tr>
<tr>
<td></td>
<td>Santa Barbara</td>
<td>Oakland Public Library.</td>
</tr>
<tr>
<td></td>
<td>Santa Rosa</td>
<td>California Institute of Technology.</td>
</tr>
<tr>
<td></td>
<td>Stanford University</td>
<td>University of Redlands.</td>
</tr>
<tr>
<td></td>
<td>Stockton</td>
<td>California Public Library.</td>
</tr>
<tr>
<td></td>
<td>Torrance</td>
<td>City Free.</td>
</tr>
<tr>
<td></td>
<td>Boulder</td>
<td>San Diego Public Library.</td>
</tr>
<tr>
<td></td>
<td>Colorado Springs</td>
<td>San Francisco Public Library.</td>
</tr>
<tr>
<td></td>
<td>Denver</td>
<td>Santa Barbara Public Library.</td>
</tr>
<tr>
<td></td>
<td>Fort Collins</td>
<td>Free Public.</td>
</tr>
<tr>
<td></td>
<td>Golden</td>
<td>Stanford University.</td>
</tr>
<tr>
<td></td>
<td>Gunnison</td>
<td>Stockton Free Public Library.</td>
</tr>
<tr>
<td></td>
<td>Pueblo</td>
<td>Torrance Public Library.</td>
</tr>
<tr>
<td></td>
<td>Bridgeport</td>
<td>University of Colorado.</td>
</tr>
<tr>
<td></td>
<td>Hartford</td>
<td>Colorado College, Coburn Library.</td>
</tr>
<tr>
<td></td>
<td>Middletown</td>
<td>Colorado State Public Library.</td>
</tr>
<tr>
<td></td>
<td>New Haven</td>
<td>Public.</td>
</tr>
<tr>
<td></td>
<td>New London</td>
<td>Regis College. University of Denver, Mary Reed Library.</td>
</tr>
<tr>
<td></td>
<td>Storrs</td>
<td>Colorado State College of Agriculture and Mechanic Arts.</td>
</tr>
<tr>
<td></td>
<td>Waterbury</td>
<td>Colorado School of Mines.</td>
</tr>
<tr>
<td></td>
<td>Washington</td>
<td>Western State College.</td>
</tr>
<tr>
<td></td>
<td>Dover</td>
<td>Public.</td>
</tr>
<tr>
<td></td>
<td>Dover</td>
<td>Trinity College.</td>
</tr>
<tr>
<td></td>
<td>Newark</td>
<td>Wesleyan University.</td>
</tr>
<tr>
<td></td>
<td>Wilmington</td>
<td>Yale University.</td>
</tr>
<tr>
<td></td>
<td>Washington</td>
<td>Connecticut College, Palmer Library.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U. S. Coast Guard Academy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Connecticut.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silas Bronson.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Delaware.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wilmington Institute Free Library.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Department of Agriculture.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Department of Interior, U. S. Geological Survey Library.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Department of Justice.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Department of State.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>National War College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Navy Department, Naval Records and Library.</td>
</tr>
<tr>
<td>State or territory</td>
<td>City</td>
<td>Name of library</td>
</tr>
<tr>
<td>--------------------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>District of Columbia (con't)</td>
<td>Washington (con't)</td>
<td>Post Office Department, Historical Library. Public. Treasury Department.</td>
</tr>
<tr>
<td>Florida</td>
<td>Coral Gables</td>
<td>University of Miami, Law Library.</td>
</tr>
<tr>
<td>Florida</td>
<td>De Land</td>
<td>John B. Stetson University, Sampson Library.</td>
</tr>
<tr>
<td>Florida</td>
<td>Fort Lauderdale</td>
<td>Fort Lauderdale Public.</td>
</tr>
<tr>
<td>Florida</td>
<td>Gainesville</td>
<td>University of Florida.</td>
</tr>
<tr>
<td>Florida</td>
<td>Jacksonville</td>
<td>Jacksonville Public.</td>
</tr>
<tr>
<td>Florida</td>
<td>Lakeland</td>
<td>Lakeland Public.</td>
</tr>
<tr>
<td>Georgia</td>
<td>Athens</td>
<td>University of Georgia, General Library. Carnegie.</td>
</tr>
<tr>
<td>Georgia</td>
<td>Atlanta</td>
<td>Georgia State. Academy and Junior College of Augusta. Georgia Teachers College.</td>
</tr>
<tr>
<td>Georgia</td>
<td>Augusta</td>
<td>College of Georgia. North Georgia College.</td>
</tr>
<tr>
<td>Georgia</td>
<td>Collegeboro</td>
<td>Emory University, Asa Griggs Candler Library.</td>
</tr>
<tr>
<td>Georgia</td>
<td>Dahlonega</td>
<td>Washington Memorial.</td>
</tr>
<tr>
<td>State or territory</td>
<td>City</td>
<td>Name of library</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Kansas (con't)</td>
<td>Hays</td>
<td>Fort Hays Kansas State College, Forsyth Library</td>
</tr>
<tr>
<td></td>
<td>Hiawatha</td>
<td>Morrill Free Public.</td>
</tr>
<tr>
<td></td>
<td>Lawrence</td>
<td>University of Kansas.</td>
</tr>
<tr>
<td></td>
<td>Manhattan</td>
<td>Kansas State College of Agriculture and Applied Sciences.</td>
</tr>
<tr>
<td></td>
<td>Pittsburg</td>
<td>Pittsburgh Public.</td>
</tr>
<tr>
<td></td>
<td>Salina</td>
<td>Kansas Wesleyan University.</td>
</tr>
<tr>
<td></td>
<td>Topeka</td>
<td>Kansas State Historical Society.</td>
</tr>
<tr>
<td></td>
<td>Wichita</td>
<td>University of Wichita.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kentucky</td>
<td>Ashland</td>
<td>Ashland Public.</td>
</tr>
<tr>
<td></td>
<td>Bowling Green</td>
<td>Western Kentucky State Teachers College.</td>
</tr>
<tr>
<td></td>
<td>Danville</td>
<td>Centre College.</td>
</tr>
<tr>
<td></td>
<td>Frankfort</td>
<td>Department of Library and Archives, Legislative and Law Library.</td>
</tr>
<tr>
<td></td>
<td>Lexington</td>
<td>University of Kentucky.</td>
</tr>
<tr>
<td></td>
<td>Lincoln Ridge</td>
<td>Lincoln Institute of Kentucky.</td>
</tr>
<tr>
<td></td>
<td>Louisville</td>
<td>Louisville Free Public.</td>
</tr>
<tr>
<td></td>
<td>Murray</td>
<td>University of Louisville.</td>
</tr>
<tr>
<td></td>
<td>Somerset</td>
<td>Murray State Teachers College.</td>
</tr>
<tr>
<td></td>
<td>Winchester</td>
<td>Carnegie Public.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kentucky Wesleyan College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Louisiana</td>
<td>Baton Rouge</td>
<td>Louisiana State University, Law Library.</td>
</tr>
<tr>
<td></td>
<td>Lafayette</td>
<td>Louisiana State University, Public Documents.</td>
</tr>
<tr>
<td></td>
<td>Lake Charles</td>
<td>Southwestern Louisiana Institute.</td>
</tr>
<tr>
<td></td>
<td>Natchitoches</td>
<td>John McNeese Junior College.</td>
</tr>
<tr>
<td></td>
<td>New Orleans</td>
<td>Louisiana State Normal College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tulane University, Howard-Tilton Memorial Library.</td>
</tr>
<tr>
<td></td>
<td>Ruston</td>
<td>Louisiana Polytechnic Institute.</td>
</tr>
<tr>
<td></td>
<td>Shreveport</td>
<td>Shreve Memorial Library.</td>
</tr>
<tr>
<td></td>
<td>Augusta</td>
<td>Maine State.</td>
</tr>
<tr>
<td></td>
<td>Bangor</td>
<td>Bangor Public.</td>
</tr>
<tr>
<td></td>
<td>Brunswick</td>
<td>Bowdoin College.</td>
</tr>
<tr>
<td></td>
<td>Lewiston</td>
<td>Bates College.</td>
</tr>
<tr>
<td></td>
<td>Orono</td>
<td>University of Maine.</td>
</tr>
<tr>
<td></td>
<td>Portland</td>
<td>Portland Public.</td>
</tr>
<tr>
<td></td>
<td>Waterville</td>
<td>Colby College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maryland State.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U. S. Naval Academy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enoch Pratt Free.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Johns Hopkins University.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Morgan State College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peabody Institute.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington College, George Avery Bunting Library.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Maryland.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Western Maryland College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amherst College, Converse Memorial Library.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Massachusetts State College, Goodell Library.</td>
</tr>
<tr>
<td></td>
<td>Boston</td>
<td>Boston Athenaeum.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boston Public.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>State Library of Massachusetts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Public.</td>
</tr>
<tr>
<td></td>
<td>Brookline</td>
<td>Harvard University, Document Division Library, Littauer Center.</td>
</tr>
<tr>
<td></td>
<td>Cambridge</td>
<td>Massachusetts Institute of Technology.</td>
</tr>
<tr>
<td></td>
<td>Lynn</td>
<td>Lynn Public.</td>
</tr>
<tr>
<td></td>
<td>New Bedford</td>
<td>Public.</td>
</tr>
<tr>
<td></td>
<td>Salem</td>
<td>Essex Institute.</td>
</tr>
<tr>
<td></td>
<td>Tufts College</td>
<td>Tufts College.</td>
</tr>
<tr>
<td></td>
<td>Wellesley</td>
<td>Wellesley College.</td>
</tr>
<tr>
<td></td>
<td>Williamstown</td>
<td>Williams College.</td>
</tr>
<tr>
<td></td>
<td>Worcester</td>
<td>American Antiquarian Society.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Free Public.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michigan</td>
<td>Ann Arbor</td>
<td>University of Michigan, General Library.</td>
</tr>
<tr>
<td></td>
<td>Battle Creek</td>
<td>Battle Creek Public School.</td>
</tr>
<tr>
<td></td>
<td>Benton Harbor</td>
<td>Benton Harbor Public.</td>
</tr>
<tr>
<td></td>
<td>Bloomfield Hills</td>
<td>Cranbrook Institute of Science Library.</td>
</tr>
<tr>
<td></td>
<td>Detroit</td>
<td>Detroit Public.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Detroit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wayne University.</td>
</tr>
<tr>
<td></td>
<td>Grand Rapids</td>
<td>Grand Rapids Public.</td>
</tr>
<tr>
<td></td>
<td>Houghton</td>
<td>Michigan College of Mines and Technology.</td>
</tr>
<tr>
<td></td>
<td>Kalamazoo</td>
<td>Public.</td>
</tr>
<tr>
<td></td>
<td>Lansing</td>
<td>Michigan State.</td>
</tr>
<tr>
<td></td>
<td>Muskegon</td>
<td>Hackley Public.</td>
</tr>
<tr>
<td></td>
<td>Port Huron</td>
<td>Port Huron Public.</td>
</tr>
<tr>
<td></td>
<td>Saginaw</td>
<td>Hoyt Public.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State or territory</td>
<td>City</td>
<td>Name of library</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Minnesota</td>
<td>Duluth</td>
<td>Duluth Public</td>
</tr>
<tr>
<td></td>
<td>Fergus Falls</td>
<td>Fergus Falls Public.</td>
</tr>
<tr>
<td></td>
<td>Minneapolis</td>
<td>Public.</td>
</tr>
<tr>
<td></td>
<td>Northfield</td>
<td>University of Minnesota.</td>
</tr>
<tr>
<td></td>
<td>St. Paul</td>
<td>St. Olaf College.</td>
</tr>
<tr>
<td></td>
<td>St. Peter</td>
<td>Minnesota Historical Society.</td>
</tr>
<tr>
<td></td>
<td>Stillwater</td>
<td>Minnesota State.</td>
</tr>
<tr>
<td></td>
<td>Columbus</td>
<td>St. Paul Public.</td>
</tr>
<tr>
<td></td>
<td>Hattiesburg</td>
<td>Gustavus Adolphus College.</td>
</tr>
<tr>
<td></td>
<td>Jackson</td>
<td>Carnegie Public.</td>
</tr>
<tr>
<td></td>
<td>State College</td>
<td>University of Mississippi.</td>
</tr>
<tr>
<td></td>
<td>Cape Girardeau</td>
<td>State Teachers College.</td>
</tr>
<tr>
<td></td>
<td>Columbia</td>
<td>University of Missouri.</td>
</tr>
<tr>
<td></td>
<td>Fulton</td>
<td>Westminster College.</td>
</tr>
<tr>
<td></td>
<td>Hannibal</td>
<td>Free Public.</td>
</tr>
<tr>
<td></td>
<td>Jefferson City</td>
<td>Lincoln University.</td>
</tr>
<tr>
<td></td>
<td>Kansas City</td>
<td>Missouri Supreme Court.</td>
</tr>
<tr>
<td></td>
<td>Liberty</td>
<td>Kansas City Public, Document Department.</td>
</tr>
<tr>
<td></td>
<td>Rolla</td>
<td>Rockhurst College.</td>
</tr>
<tr>
<td></td>
<td>Springfield</td>
<td>University of Kansas City.</td>
</tr>
<tr>
<td></td>
<td>St. Joseph</td>
<td>School of Mines and Metallurgy, University of Missouri.</td>
</tr>
<tr>
<td></td>
<td>St. Louis</td>
<td></td>
</tr>
<tr>
<td>Montana</td>
<td>Bozeman</td>
<td>Montana State College.</td>
</tr>
<tr>
<td></td>
<td>Butte</td>
<td>Montana School of Mines.</td>
</tr>
<tr>
<td></td>
<td>Helena</td>
<td>Helena Public.</td>
</tr>
<tr>
<td></td>
<td>Lewistown</td>
<td>Historical Society of Montana.</td>
</tr>
<tr>
<td></td>
<td>Missoula</td>
<td>Fergus County High School.</td>
</tr>
<tr>
<td></td>
<td>Fair</td>
<td>State University of Montana.</td>
</tr>
<tr>
<td></td>
<td>Crete</td>
<td>Dana College.</td>
</tr>
<tr>
<td></td>
<td>Fremont</td>
<td>Doane College, Whitin Library.</td>
</tr>
<tr>
<td></td>
<td>Lincoln</td>
<td>Midland College.</td>
</tr>
<tr>
<td></td>
<td>Omaha</td>
<td>Nebraska State.</td>
</tr>
<tr>
<td></td>
<td>Scottsbluff</td>
<td>University of Nebraska.</td>
</tr>
<tr>
<td></td>
<td>Carson City</td>
<td>Municipal University of Omaha Library.</td>
</tr>
<tr>
<td></td>
<td>Reno</td>
<td>Omaha Public.</td>
</tr>
<tr>
<td></td>
<td>Concord</td>
<td>Nevada State.</td>
</tr>
<tr>
<td></td>
<td>Dover</td>
<td>University of Nevada.</td>
</tr>
<tr>
<td></td>
<td>Durham</td>
<td>Nevada State Historical Society.</td>
</tr>
<tr>
<td></td>
<td>Hanover</td>
<td>New Hampshire State.</td>
</tr>
<tr>
<td></td>
<td>Laconia</td>
<td>Dover Public.</td>
</tr>
<tr>
<td></td>
<td>Manchester</td>
<td>University of New Hampshire, Hamilton Smith Library.</td>
</tr>
<tr>
<td></td>
<td>Atlantic City</td>
<td>Dartmouth College.</td>
</tr>
<tr>
<td></td>
<td>Bayonne</td>
<td>Laconia Public.</td>
</tr>
<tr>
<td></td>
<td>Camden</td>
<td>City Library.</td>
</tr>
<tr>
<td></td>
<td>Convent Station</td>
<td>Free Public.</td>
</tr>
<tr>
<td></td>
<td>Elizabeth</td>
<td>Free Public.</td>
</tr>
<tr>
<td></td>
<td>Jersey City</td>
<td>Free Public.</td>
</tr>
<tr>
<td></td>
<td>Madison</td>
<td>Free Public.</td>
</tr>
<tr>
<td></td>
<td>Newark</td>
<td>Free Public.</td>
</tr>
<tr>
<td></td>
<td>New Brunswick</td>
<td>Rutgers University.</td>
</tr>
<tr>
<td></td>
<td>Princeton</td>
<td>Drew University, Rose Memorial Library.</td>
</tr>
<tr>
<td></td>
<td>Trenton</td>
<td>Princeton University.</td>
</tr>
<tr>
<td></td>
<td>Albuquerque</td>
<td>New Jersey State.</td>
</tr>
<tr>
<td></td>
<td>Las Vegas</td>
<td>Free Public.</td>
</tr>
<tr>
<td></td>
<td>Santa Fe</td>
<td>University of New Mexico.</td>
</tr>
<tr>
<td></td>
<td>Silver City</td>
<td>New Mexico Highlands University.</td>
</tr>
<tr>
<td></td>
<td>State College</td>
<td>New Mexico State Law.</td>
</tr>
<tr>
<td></td>
<td>Albany</td>
<td>New Mexico State Teachers College.</td>
</tr>
<tr>
<td></td>
<td>Brooklyn</td>
<td>New Mexico College of Agriculture and Mechanical Arts.</td>
</tr>
<tr>
<td></td>
<td>Canton</td>
<td>New York State.</td>
</tr>
<tr>
<td></td>
<td>Flushing</td>
<td>Brooklyn College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pratt Institute.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Public.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>St. Johns University.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grosvenor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Buffalo Public.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Buffalo Public.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Queens College.</td>
</tr>
<tr>
<td>State or territory</td>
<td>City</td>
<td>Name of library</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>New York (con't)</td>
<td>Farmingdale, L. I.</td>
<td>State Institute of Applied Agriculture.</td>
</tr>
<tr>
<td></td>
<td>Glens Falls</td>
<td>Crandall.</td>
</tr>
<tr>
<td></td>
<td>Hamilton</td>
<td>Colgate University.</td>
</tr>
<tr>
<td></td>
<td>Ithaca</td>
<td>Cornell University.</td>
</tr>
<tr>
<td></td>
<td>Jamaica</td>
<td>Queens Borough Public.</td>
</tr>
<tr>
<td></td>
<td>Keuka Park</td>
<td>Keuka College Public.</td>
</tr>
<tr>
<td></td>
<td>Newburgh</td>
<td>Newburgh Free.</td>
</tr>
<tr>
<td></td>
<td>New York</td>
<td>College of the City of New York.</td>
</tr>
<tr>
<td></td>
<td>Potsdam</td>
<td>Yassar College.</td>
</tr>
<tr>
<td></td>
<td>Poughkeepsie</td>
<td>University of Rochester, Rush Rhees Library.</td>
</tr>
<tr>
<td></td>
<td>Rochester</td>
<td>Union College.</td>
</tr>
<tr>
<td></td>
<td>Schenectady</td>
<td>St. Bonaventure College.</td>
</tr>
<tr>
<td></td>
<td>St. Bonaventure</td>
<td>St. Bonaventure College.</td>
</tr>
<tr>
<td></td>
<td>Syracuse</td>
<td>Syracuse University.</td>
</tr>
<tr>
<td></td>
<td>Troy</td>
<td>Troy Public.</td>
</tr>
<tr>
<td></td>
<td>Utica</td>
<td>Utica Public.</td>
</tr>
<tr>
<td></td>
<td>Yonkers</td>
<td>Yonkers Public.</td>
</tr>
<tr>
<td></td>
<td>West Point</td>
<td>U. S. Military Academy.</td>
</tr>
<tr>
<td></td>
<td>Chapel Hill</td>
<td>University of North Carolina.</td>
</tr>
<tr>
<td></td>
<td>Charlotte</td>
<td>Chapel Hill.</td>
</tr>
<tr>
<td></td>
<td>Davidson</td>
<td>Davidson College.</td>
</tr>
<tr>
<td></td>
<td>Durham</td>
<td>Duke University.</td>
</tr>
<tr>
<td></td>
<td>Greensboro</td>
<td>Agricultural and Technical College.</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Salisbury</td>
<td>Catawba College.</td>
</tr>
<tr>
<td></td>
<td>Wake Forest</td>
<td>Wake Forest College.</td>
</tr>
<tr>
<td></td>
<td>Washington</td>
<td>Public Schools Library.</td>
</tr>
<tr>
<td></td>
<td>Wilson</td>
<td>Atlantic Christian College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schönstatt College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Southwestern Christian.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>State Historical.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>State Law.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>North Dakota Agricultural College and Experimental Station.</td>
</tr>
<tr>
<td>North Dakota</td>
<td>Fargo</td>
<td>North Dakota State Teachers College.</td>
</tr>
<tr>
<td></td>
<td>Grand Forks</td>
<td>State Teachers College.</td>
</tr>
<tr>
<td></td>
<td>Minot</td>
<td>State Teachers College.</td>
</tr>
<tr>
<td></td>
<td>Alliance</td>
<td>Mt. Union College.</td>
</tr>
<tr>
<td></td>
<td>Ashland</td>
<td>Ashland College.</td>
</tr>
<tr>
<td></td>
<td>Athens</td>
<td>Ohio University, Edwin Watts Chubb Library.</td>
</tr>
<tr>
<td></td>
<td>Bowling Green</td>
<td>Bowling Green State University.</td>
</tr>
<tr>
<td></td>
<td>Bucyrus</td>
<td>Bucyrus Public.</td>
</tr>
<tr>
<td></td>
<td>Oxford</td>
<td>Miami University.</td>
</tr>
<tr>
<td></td>
<td>Chillicothe</td>
<td>Miami University.</td>
</tr>
<tr>
<td></td>
<td>Cincinnati</td>
<td>Public.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Case.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cleveland Public.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Western Reserve University, Adelbert College Library.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ohio State.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ohio State University.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Columbus Public.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dayton Public.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ohio Wesleyan University, Charles Slocomb Library.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kenyon College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Denison University.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hiram College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marietta College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oberlin College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Free Public.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Warde Public.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Toledo Public.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brumback Library of Van Wert County.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Youngstown Public.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>East Central State Teachers College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Northwestern State Teachers College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Southeastern Teachers College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Central State Teachers College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carnegie Public.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Langston University.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Oklahoma.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oklahoma State.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oklahoma Baptist University.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agriculture and Mechanical College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Northeastern State Teachers College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Tulsa.</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>Ada</td>
<td>Eastern State Teachers College.</td>
</tr>
<tr>
<td></td>
<td>Alva</td>
<td>North Central State Teachers College.</td>
</tr>
<tr>
<td></td>
<td>Durant</td>
<td>Central State Teachers College.</td>
</tr>
<tr>
<td></td>
<td>Edmond</td>
<td>Carnegie Public.</td>
</tr>
<tr>
<td></td>
<td>Langston</td>
<td>Langston University.</td>
</tr>
<tr>
<td></td>
<td>Norman</td>
<td>University of Oklahoma.</td>
</tr>
<tr>
<td></td>
<td>Oklahoma City</td>
<td>Oklahoma State.</td>
</tr>
<tr>
<td></td>
<td>Shawnee</td>
<td>Oklahome Baptist University.</td>
</tr>
<tr>
<td></td>
<td>Stillwater</td>
<td>Agriculture and Mechanical College.</td>
</tr>
<tr>
<td></td>
<td>Tahlequah</td>
<td>Northeastern State Teachers College.</td>
</tr>
<tr>
<td></td>
<td>Tulsa</td>
<td>University of Tulsa.</td>
</tr>
<tr>
<td>State or territory</td>
<td>City</td>
<td>Name of library</td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| Oregon | Corvallis | Oregon State Agricultural College.
| | Salem | University of Oregon.
| | Allentown | Pacific University.
| | Bethlehem | Library Association of Portland.
| | Bradford | Reed College.
| | Carlisle | Oregon State.
| | Erie | Muhlenberg College.
| | Harrisburg | Lehigh University.
| | Havertford | Carnegie Public.
| | Huntingdon | J. Herman Bosler Memorial Library.
| | Lancaster | Erie Public.
| | Meadville | Pennsylvania State.
| | Philadelphia | Haverford College.
| | Pittsburgh | Juniata College.
| | Pottsville | Franklin and Marshall College, Fackenthal Library.
| | Reading | Allegheny College.
| | Scranton | Free Library of Philadelphia, Department of Public Documents.
| | State College | Mercantile.
| | Swarthmore | Philadelphia Commercial Museum.
| | Washington | University of Pennsylvania.
| | Pittston | Carnegie Library.
| | Reading | University of Pittsburgh.
| | Scranton | Pottsville Public.
| | State College | Reading Public.
| | Swarthmore | Scranton Public.
| | Manchester | Swarthmore College.
| | Williamsport | Washington and Jefferson College, Memorial Library.
| | Manilla | James V. Brown Library.
| | Mayaguez | Department of Agriculture and Commerce, Scientific Library.
| | Ponce | The National Library, Public Documents Section.
| | Rio Piedras | University of the Philippines.
| | Kingston | University of Puerto Rico, College of Agriculture and Mechanical Arts.
| | Providence | Brown University.
| | South Carolina | Providence Public.
| | Charleston | Rhode Island State.
| | Clemson | Westerly Public.
| | Clinton | Charleston College.
| | Columbia | Charleston Library Society.
| | Greenwood | Clemson College.
| | Rockhill | Presbyterian College.
| | Brookings | South Carolina State.
| | Huron | University of South Carolina.
| | Mitchell | Greenwood Public.
| | Pierre | Winthrop College, Carnegie Library.
| | Spearfish | South Dakota State, Lincoln Memorial Library.
| | Vermillion | Huron College.
| | Yankton | Dakota Wesleyan University.
| | Chattanooga | South Dakota Free.
| | Clarksville | Carnegie Free Public.
| | Knoxville | Black Hills Teachers College.
| | Memphis | University of South Dakota.
| | Murfreesboro | Yankton College.
| | Nashville | Joint University Libraries.
| | Tennessee | State Teachers College.
| | Ablenеe | Carnegie.
| | Austin | University of the South.
| | Brownwood | Hardin-Simmons University.
| | Canyon | Texas State.
| | College Station | University of Texas, Documents Acquisitions.
| | Commerce | Howard Payne College.
| | Corsicana | West Texas State Teachers College Library.
| | Dallas | Agriculture and Mechanical College of Texas.
| | Denton | East Texas State Teachers College.
| | El Paso | Public.
| | Fort Worth | Dallas Public.
| | Fort Worth | Southern Methodist University.
| | Texas | Texas State College for Women, College of Industrial Arts.

9
<table>
<thead>
<tr>
<th>State or territory</th>
<th>City</th>
<th>Name of library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texas (con't)</td>
<td>Galveston</td>
<td>Rosenberg Library.</td>
</tr>
<tr>
<td></td>
<td>Georgetown</td>
<td>Southwestern University.</td>
</tr>
<tr>
<td></td>
<td>Gilmer</td>
<td>East Mountain High School.</td>
</tr>
<tr>
<td></td>
<td>Houston</td>
<td>Houston Public.</td>
</tr>
<tr>
<td></td>
<td>Kingsville</td>
<td>Texas College of Arts and Industries.</td>
</tr>
<tr>
<td></td>
<td>Lubbock</td>
<td>Texas Technological College.</td>
</tr>
<tr>
<td></td>
<td>Marshall</td>
<td>Bishop College.</td>
</tr>
<tr>
<td></td>
<td>San Antonio</td>
<td>Carnegie.</td>
</tr>
<tr>
<td></td>
<td>Waco</td>
<td>Baylor University.</td>
</tr>
<tr>
<td></td>
<td>Ephraim</td>
<td>Snow College.</td>
</tr>
<tr>
<td></td>
<td>Logan</td>
<td>Utah State Agricultural College.</td>
</tr>
<tr>
<td></td>
<td>Ogden</td>
<td>Carnegie Free.</td>
</tr>
<tr>
<td></td>
<td>Provo</td>
<td>Brigham Young University.</td>
</tr>
<tr>
<td></td>
<td>Salt Lake City</td>
<td>University of Utah.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Utah State.</td>
</tr>
<tr>
<td>Vermont</td>
<td>Burlington</td>
<td>University of Vermont.</td>
</tr>
<tr>
<td></td>
<td>Middletown</td>
<td>Middlebury College.</td>
</tr>
<tr>
<td></td>
<td>Montpelier</td>
<td>Vermont State.</td>
</tr>
<tr>
<td></td>
<td>Northfield</td>
<td>Norwich University.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Averett College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emory and Henry College.</td>
</tr>
<tr>
<td></td>
<td>Fredericksburg</td>
<td>Mary Washington College.</td>
</tr>
<tr>
<td></td>
<td>Hampden Sydney</td>
<td>Hampden Sydney College.</td>
</tr>
<tr>
<td></td>
<td>Lexington</td>
<td>Virginia Military Institute.</td>
</tr>
<tr>
<td></td>
<td>Norfolk</td>
<td>Washington and Lee University.</td>
</tr>
<tr>
<td></td>
<td>Petersburg</td>
<td>Norfolk Public.</td>
</tr>
<tr>
<td></td>
<td>Richburg</td>
<td>Virginia State College.</td>
</tr>
<tr>
<td></td>
<td>Salem</td>
<td>Virginia State.</td>
</tr>
<tr>
<td></td>
<td>University</td>
<td>Roanoke College, Bittle Memorial Library.</td>
</tr>
<tr>
<td></td>
<td>University of Richmond P. O.</td>
<td>University of Virginia.</td>
</tr>
<tr>
<td></td>
<td>Williamsburg</td>
<td>University of Richmond.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>William and Mary College.</td>
</tr>
<tr>
<td>Washington</td>
<td>Everett</td>
<td>Everett Public.</td>
</tr>
<tr>
<td></td>
<td>Olympia</td>
<td>Washington State.</td>
</tr>
<tr>
<td></td>
<td>Pullman</td>
<td>State College of Washington.</td>
</tr>
<tr>
<td></td>
<td>Seattle</td>
<td>Seattle Public.</td>
</tr>
<tr>
<td></td>
<td>Spokane</td>
<td>University of Washington.</td>
</tr>
<tr>
<td></td>
<td>Tacoma</td>
<td>Spokane Public.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>College of Puget Sound.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tacoma Public.</td>
</tr>
<tr>
<td>West Virginia</td>
<td>Walla Walla</td>
<td>Whitman College.</td>
</tr>
<tr>
<td></td>
<td>Athens</td>
<td>Concord State Normal.</td>
</tr>
<tr>
<td></td>
<td>Charleston</td>
<td>State Library, Department of Archives and History.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Davis and Elkins College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fairmont State Teachers College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Harpers Ferry, Roger Williams Library.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Huntington, Marshall College, James E. Morrow Library.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>West Virginia State College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>West Virginia University.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Salem College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lawrence College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beloit College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eau Claire Public.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fond du Lac Public.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Public.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>State Historical Society.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Wisconsin.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wisconsin State.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Law Library of Milwaukee County.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Milwaukee Public.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Racine.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Super Public.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Superior State Teachers College.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Natrona Country Public.</td>
</tr>
<tr>
<td></td>
<td>Casper</td>
<td>University of Wyoming.</td>
</tr>
<tr>
<td></td>
<td>Cheyenne</td>
<td>Wyoming.</td>
</tr>
<tr>
<td></td>
<td>Laramie</td>
<td></td>
</tr>
</tbody>
</table>

BOUND VOLUMES

Bound volumes containing the Scientific Papers and the Technologic Papers may be purchased at the prices indicated below. Only seven bound volumes of the Technologic Papers, volumes 16 to 22, consecutively paged, were printed. Earlier Technologic Papers were published as separate articles, individually paged.

The first 14 volumes of the Scientific Papers were issued as the "Bulletin," and the separate papers were called "Reprints." Some
of these papers are available for purchase only in the quarterly numbers of the Bulletin; see list below.

In July 1928 the Scientific and Technologic Papers were combined and issued under the title “Bureau of Standards Journal of Research,” and beginning with volume 13, July 1934, the name of the Journal was changed to “Journal of Research of the National Bureau of Standards.”

SCIENTIFIC PAPERS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1904-05</td>
<td>1</td>
<td>S1 to S8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>S9 to S13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>S14 to S25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>S26 to S30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>S31 to S39</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>S40 to S44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>S47 to S54</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>S55 to S61</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>S62 to S65</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>S66 to S76</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>S70 to S76</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>S77 to S80</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>S81 to S86</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>S87 to S92</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>S93 to S96</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>S97 to S104</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>S105 to S106</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>S109 to S115</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>S116 to S123</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>S124 to S130</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>S131 to S136</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>S137 to S142</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>S143 to S150</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>S151 to S158</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>S159 to S165</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>S168 to S169</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>S170 to S178</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>S174 to S181</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>S182 to S186</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>S197 to S199</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>S195 to S203</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>S207 to S212</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>S213 to S218</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>S219 to S222</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>S225 to S229</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>36</td>
<td>S230 to S231</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>37</td>
<td>S232 to S237</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>38</td>
<td>S238 to S244</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>S245 to S250</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>S251 to S254</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>41</td>
<td>S255 to S257</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>42</td>
<td>S258 to S265</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>43</td>
<td>S260 to S271</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>44</td>
<td>S266 to S272</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>45</td>
<td>S272 to S275</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>46</td>
<td>S279 to S283</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>47</td>
<td>S280 to S284</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>48</td>
<td>S293 to S302</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>49</td>
<td>S307 to S309</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>S310 to S317</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>51</td>
<td>S318 to S329</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>52</td>
<td>S330 to S368</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>53</td>
<td>S369 to S404</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>54</td>
<td>S405 to S438</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>55</td>
<td>S439 to S468</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>56</td>
<td>S469 to S497</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>57</td>
<td>S498 to S523</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>58</td>
<td>S547 to S572</td>
<td></td>
</tr>
</tbody>
</table>

Cents: $2

Buckram-bound volume: TP and C, 5c; I, 5c

Separately printed title page (TP), contents (C), and index (I), for unbound sets: $2
TECHNOLOGIC PAPERS

<table>
<thead>
<tr>
<th>Volume</th>
<th>Containing technologic papers</th>
<th>Bound volume</th>
<th>Combined title page contents and index for unbound sets</th>
<th>Issued</th>
<th>Volume</th>
<th>Containing technologic papers</th>
<th>Bound volume</th>
<th>Combined title page contents and index for unbound sets</th>
<th>Issued</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T1 to T11</td>
<td></td>
<td>Cents</td>
<td>1910-12</td>
<td>12</td>
<td>T121 to T142</td>
<td></td>
<td>Cents</td>
<td>1919</td>
</tr>
<tr>
<td>2</td>
<td>T12 to T19</td>
<td></td>
<td>Cents</td>
<td>1912-14</td>
<td>13</td>
<td>T143 to T168</td>
<td></td>
<td>Cents</td>
<td>1919-20</td>
</tr>
<tr>
<td>3</td>
<td>T20 to T31</td>
<td></td>
<td>Cents</td>
<td>1911-16</td>
<td>14</td>
<td>T170 to T183</td>
<td></td>
<td>Cents</td>
<td>1920-21</td>
</tr>
<tr>
<td>4</td>
<td>T32 to T42</td>
<td></td>
<td>Cents</td>
<td>1913-14</td>
<td>15</td>
<td>T184 to T202</td>
<td></td>
<td>Cents</td>
<td>1921</td>
</tr>
<tr>
<td>5</td>
<td>T43 to T58</td>
<td></td>
<td>Cents</td>
<td>1914-15</td>
<td>16</td>
<td>T203 to T220</td>
<td>$2</td>
<td>5</td>
<td>1921-22</td>
</tr>
<tr>
<td>6</td>
<td>T54 to T62</td>
<td></td>
<td>Cents</td>
<td>1915-16</td>
<td>17</td>
<td>T221 to T247</td>
<td>$2</td>
<td>5</td>
<td>1922-24</td>
</tr>
<tr>
<td>7</td>
<td>T61 to T73</td>
<td></td>
<td>Cents</td>
<td>1916-17</td>
<td>18</td>
<td>T248 to T272</td>
<td>$2</td>
<td>5</td>
<td>1924-25</td>
</tr>
<tr>
<td>8</td>
<td>T74 to T84</td>
<td></td>
<td>Cents</td>
<td>1916-17</td>
<td>19</td>
<td>T273 to T301</td>
<td>$2</td>
<td>5</td>
<td>1924-26</td>
</tr>
<tr>
<td>9</td>
<td>T85 to T100</td>
<td></td>
<td>Cents</td>
<td>1916-17</td>
<td>20</td>
<td>T302 to T327</td>
<td>$2</td>
<td>5</td>
<td>1925-26</td>
</tr>
<tr>
<td>10</td>
<td>T101 to T108</td>
<td></td>
<td>Cents</td>
<td>1917-18</td>
<td>21</td>
<td>T325 to T352</td>
<td>$2</td>
<td>5</td>
<td>1926-27</td>
</tr>
<tr>
<td>11</td>
<td>T109 to T120</td>
<td></td>
<td>Cents</td>
<td>1918-19</td>
<td>22</td>
<td>T353 to T370</td>
<td>$3</td>
<td>5</td>
<td>1927-28</td>
</tr>
</tbody>
</table>

1 Prior to volume 16, this series was issued as individual papers only, not consecutively paged.
2 Suggested volume grouping up to Technologic Paper 202.
3 Not issued prior to volume 16.

RESEARCH PAPERS

<table>
<thead>
<tr>
<th>Volume</th>
<th>Issued</th>
<th>Number</th>
<th>Containing research papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1928</td>
<td>1</td>
<td>RP1 to RP5</td>
</tr>
<tr>
<td>2</td>
<td>1929</td>
<td>2</td>
<td>RP6 to RP10</td>
</tr>
<tr>
<td>3</td>
<td>1929</td>
<td>3</td>
<td>RP11 to RP15</td>
</tr>
<tr>
<td>4</td>
<td>1930</td>
<td>4</td>
<td>RP16 to RP23</td>
</tr>
<tr>
<td>5</td>
<td>1930</td>
<td>5</td>
<td>RP24 to RP31</td>
</tr>
<tr>
<td>6</td>
<td>1930</td>
<td>6</td>
<td>RP32 to RP36</td>
</tr>
<tr>
<td>7</td>
<td>1931</td>
<td>7</td>
<td>RP37</td>
</tr>
<tr>
<td>8</td>
<td>1931</td>
<td>8</td>
<td>RP38 to RP44</td>
</tr>
<tr>
<td>9</td>
<td>1931</td>
<td>9</td>
<td>RP45 to RP49</td>
</tr>
<tr>
<td>10</td>
<td>1931</td>
<td>10</td>
<td>RP50 to RP59</td>
</tr>
<tr>
<td>11</td>
<td>1931</td>
<td>11</td>
<td>RP60 to RP66</td>
</tr>
<tr>
<td>12</td>
<td>1931</td>
<td>12</td>
<td>RP67 to RP76</td>
</tr>
<tr>
<td>13</td>
<td>1931</td>
<td>13</td>
<td>RP77 to RP90</td>
</tr>
<tr>
<td>14</td>
<td>1931</td>
<td>14</td>
<td>RP91 to RP96</td>
</tr>
<tr>
<td>15</td>
<td>1931</td>
<td>15</td>
<td>RP99 to RP107</td>
</tr>
<tr>
<td>16</td>
<td>1931</td>
<td>16</td>
<td>RP108 to RP111</td>
</tr>
<tr>
<td>17</td>
<td>1931</td>
<td>17</td>
<td>RP112 to RP119</td>
</tr>
<tr>
<td>18</td>
<td>1931</td>
<td>18</td>
<td>RP120 to RP128</td>
</tr>
<tr>
<td>19</td>
<td>1931</td>
<td>19</td>
<td>RP129 to RP139</td>
</tr>
<tr>
<td>20</td>
<td>1931</td>
<td>20</td>
<td>RP140 to RP151</td>
</tr>
<tr>
<td>21</td>
<td>1931</td>
<td>21</td>
<td>RP150 to RP159</td>
</tr>
<tr>
<td>22</td>
<td>1931</td>
<td>22</td>
<td>RP160 to RP166</td>
</tr>
<tr>
<td>23</td>
<td>1931</td>
<td>23</td>
<td>RP167 to RP175</td>
</tr>
<tr>
<td>24</td>
<td>1931</td>
<td>24</td>
<td>RP176 to RP182</td>
</tr>
<tr>
<td>25</td>
<td>1931</td>
<td>25</td>
<td>RP183 to RP193</td>
</tr>
<tr>
<td>26</td>
<td>1931</td>
<td>26</td>
<td>RP194 to RP210</td>
</tr>
<tr>
<td>27</td>
<td>1931</td>
<td>27</td>
<td>RP211 to RP229</td>
</tr>
<tr>
<td>28</td>
<td>1931</td>
<td>28</td>
<td>RP230 to RP242</td>
</tr>
<tr>
<td>29</td>
<td>1931</td>
<td>29</td>
<td>RP248 to RP253</td>
</tr>
<tr>
<td>30</td>
<td>1931</td>
<td>30</td>
<td>RP254 to RP258</td>
</tr>
<tr>
<td>31</td>
<td>1931</td>
<td>31</td>
<td>RP259 to RP267</td>
</tr>
<tr>
<td>32</td>
<td>1931</td>
<td>32</td>
<td>RP268 to RP278</td>
</tr>
<tr>
<td>33</td>
<td>1931</td>
<td>33</td>
<td>RP279 to RP291</td>
</tr>
<tr>
<td>34</td>
<td>1931</td>
<td>34</td>
<td>RP292 to RP302</td>
</tr>
<tr>
<td>35</td>
<td>1931</td>
<td>35</td>
<td>RP303 to RP313</td>
</tr>
<tr>
<td>36</td>
<td>1931</td>
<td>36</td>
<td>RP314 to RP328</td>
</tr>
</tbody>
</table>

RESEARCH PAPERS—Continued

<table>
<thead>
<tr>
<th>Volume</th>
<th>Issued</th>
<th>Number</th>
<th>Containing research papers</th>
<th>Paper-bound number</th>
<th>Bound volume</th>
<th>Separately printed combined title page, contents, and index for combined sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1931</td>
<td></td>
<td>1 RP329 to RP338</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 RP339 to RP347</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 RP348 to RP360</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 RP361 to RP371</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 RP372 to RP388</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 RP387 to RP395</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7 RP396 to RP406</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 RP407 to RP413</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9 RP416 to RP426</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 RP427 to RP433</td>
<td></td>
<td>$3.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 RP434 to RP443</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 RP446 to RP452</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13 RP453 to RP460</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14 RP461 to RP470</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15 RP471 to RP481</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16 RP482 to RP492</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17 RP493 to RP500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18 RP501 to RP511</td>
<td></td>
<td>$3.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19 RP512 to RP521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20 RP522 to RP530</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21 RP531 to RP539</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22 RP540 to RP548</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23 RP549 to RP560</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24 RP561 to RP572</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 RP573 to RP583</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26 RP584 to RP592</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27 RP593 to RP599</td>
<td></td>
<td>$3.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28 RP600 to RP608</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>29 RP609 to RP619</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 RP620 to RP629</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>31 RP630 to RP638</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32 RP639 to RP652</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33 RP653 to RP665</td>
<td></td>
<td>$3.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>34 RP666 to RP675</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35 RP676 to RP684</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>36 RP685 to RP690</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>37 RP691 to RP698</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>38 RP699 to RP708</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>39 RP709 to RP717</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40 RP715 to RP728</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>41 RP729 to RP742</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>42 RP743 to RP752</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43 RP753 to RP758</td>
<td></td>
<td>$3.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>44 RP759 to RP765</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45 RP766 to RP774</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>46 RP775 to RP783</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>47 RP784 to RP793</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48 RP794 to RP803</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>49 RP804 to RP814</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 RP815 to RP821</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>51 RP822 to RP831</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>52 RP832 to RP839</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53 RP840 to RP848</td>
<td></td>
<td>$3.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>54 RP849 to RP856</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>55 RP857 to RP867</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>56 RP865 to RP873</td>
<td></td>
<td>$3.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>57 RP874 to RP880</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>58 RP881 to RP888</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>59 RP889 to RP898</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 RP899 to RP906</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>61 RP907 to RP912</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>62 RP919 to RP924</td>
<td></td>
<td>$3.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>63 RP925 to RP932</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>64 RP938 to RP945</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>65 RP946 to RP956</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>18.....</td>
<td>1937</td>
<td>1</td>
<td>RP957 to RP965</td>
<td></td>
<td></td>
<td>$3.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>RP966 to RP974</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>RP975 to RP982</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>RP982 to RP989</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>RP990 to RP999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>RP1000 to RP1005</td>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>RP1006 to RP1015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>RP1016 to RP1022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>RP1023 to RP1030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>RP1031 to RP1039</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>RP1040 to RP1049</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>RP1050 to RP1058</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>RP1059 to RP1068</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>RP1069 to RP1077</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>RP1073 to RP1080</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>RP1085 to RP1091</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>RP1092 to RP1101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>RP1102 to RP1109</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>RP1110 to RP1119</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>RP1120 to RP1123</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>RP1129 to RP1136</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>RP1137 to RP1142</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>RP1148 to RP1150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>RP1151 to RP1162</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>RP1163 to RP1171</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>RP1172 to RP1178</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>RP1179 to RP1188</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>RP1189 to RP1199</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>RP1200 to RP1208</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>RP1209 to RP1217</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>RP1218 to RP1227</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>RP1228 to RP1236</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>RP1237 to RP1244</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>RP1245 to RP1251</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>RP1252 to RP1258</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>RP1259 to RP1265</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>RP1266 to RP1272</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>RP1273 to RP1279</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>RP1280 to RP1286</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>RP1287 to RP1294</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>RP1295 to RP1301</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>RP1302 to RP1309</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>RP1310 to RP1317</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>RP1318 to RP1323</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>RP1324 to RP1332</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>RP1333 to RP1340</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>RP1341 to RP1345</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>RP1346 to RP1353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>RP1354 to RP1356</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>RP1362 to RP1367</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>RP1368 to RP1374</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>RP1375 to RP1382</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>RP1383 to RP1389</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>RP1390 to RP1397</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>RP1398 to RP1405</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>RP1406 to RP1414</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>RP1415 to RP1422</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>RP1423 to RP1428</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>RP1429 to RP1434</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>RP1435 to RP1443</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>RP1444 to RP1448</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>RP1449 to RP1454</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>RP1455 to RP1460</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>RP1461 to RP1467</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>RP1468 to RP1472</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>RP1473 to RP1479</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>Issued</td>
<td>Number</td>
<td>Containing research papers</td>
<td>Paper-bound number</td>
<td>Bound volume</td>
<td>Separately printed combined title page, contents, and index for combined sets</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>--------------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>29...</td>
<td>1942</td>
<td>1</td>
<td>RP1480 to RP1488</td>
<td>30</td>
<td>$3.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>RP1489 to RP1494</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>RP1495 to RP1498</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>RP1499 to RP1501</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>RP1502 to RP1506</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>RP1507 to RP1512</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>RP1513 to RP1518</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>RP1519 to RP1525</td>
<td>30</td>
<td>$3.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>RP1526 to RP1530</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>RP1537 to RP1540</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>RP1541 to RP1544</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>RP1545 to RP1548</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>RP1549 to RP1552</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>RP1553 to RP1557</td>
<td>30</td>
<td>$3.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>RP1558 to RP1562</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>RP1563 to RP1566</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>RP1567 to RP1569</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>RP1570 to RP1572</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>RP1573 to RP1575</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>RP1576 to RP1579</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>RP1580 to RP1583</td>
<td>30</td>
<td>$3.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>RP1584 to RP1587</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>RP1588 to RP1591</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>RP1592 to RP1596</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>RP1597 to RP1601</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>RP1602 to RP1605</td>
<td>30</td>
<td>$3.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>RP1606 to RP1611</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>RP1612 to RP1617</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>RP1618 to RP1623</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>RP1624 to RP1630</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>RP1631 to RP1637</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>RP1633 to RP1644</td>
<td>30</td>
<td>$3.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>RP1645 to RP1650</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>RP1651 to RP1655</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>RP1656 to RP1659</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>RP1660 to RP1663</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>RP1664 to RP1667</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>RP1668 to RP1673</td>
<td>30</td>
<td>$3.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>RP1671 to RP1675</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>RP1676 to RP1680</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>RP1681 to RP1687</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>RP1688 to RP1692</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>RP1693 to RP1699</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>RP1700 to RP1704</td>
<td>30</td>
<td>$3.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>RP1705 to RP1711</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>RP1712 to RP1717</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>RP1718 to RP1722</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>RP1723 to RP1729</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>RP1730 to RP1735</td>
<td>30</td>
<td>$3.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>RP1736 to RP1741</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>RP1742 to RP1746</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>RP1747 to RP1750</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>RP1751 to RP1757</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>RP1758 to RP1764</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>RP1765 to RP1772</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>RP1767 to RP1779</td>
<td>30</td>
<td>$4.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>RP1780 to RP1786</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>RP1787 to RP1795</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>RP1796 to RP1806</td>
<td>45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. PERIODICALS OF THE BUREAU

JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS

Complete scientific reports of the Bureau's research and development, both experimental and theoretical, in physics, chemistry, and
engineering and the results of test and instrumentation activities in these fields are printed in this Journal. The subject matter of the reports embraces the fields of electricity, electronics, atomic physics, applied mathematics, mechanics and sound, radio and radio propagation, optics, heat and power, metallurgy, metrology, ordnance, physical chemistry, mineral products, organic and fibrous materials, and building technology. Since the inception of the Journal of Research in 1928, over 1,800 Research Papers have been published. Titles and abstracts of these papers are included in this Circular.

NATIONAL BUREAU OF STANDARDS TECHNICAL NEWS BULLETIN

This monthly publication summarizes the current research, development, and test activities of the Bureau. The articles are brief, with emphasis on the results of research and their significance, chosen for their importance to other scientists, engineers, and to industry. Resumes of longer research reports, important national and international conferences on fundamental science in which the Bureau has represented the Nation, and a bibliography of all publications by members of the staff as published are included. Within its 12 monthly pages the Bulletin is designed to give a succinct account of the current work of the Bureau.

BASIC RADIO PROPAGATION PREDICTIONS

This is a monthly publication for those concerned with radio communication in determining the best sky-wave frequencies over any path at any time of day for average conditions for the month of prediction, which are made three months in advance. Charts of extraordinary-wave critical frequency for the F2 layer and of maximum usable frequency for a transmission distance of 4,000 km, of highest frequency of sporadic-E in excess of 15 Mc are included. In addition, there are various maps, charts, diagrams, and nomograms needed to make practical application of the world-contour charts, together with examples of their use.

<table>
<thead>
<tr>
<th>ANNUAL SUBSCRIPTION</th>
<th>United States</th>
<th>Canada, Cuba</th>
<th>Mexico</th>
<th>Newfoundland</th>
<th>Republic of Panama</th>
<th>Other countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOURNAL OF RESEARCH of the National Bureau of Standards:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 monthly issues (2 volumes), paper covers</td>
<td>$4.50</td>
<td>$5.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bound volume (½ year, 1 volume), blue buckram</td>
<td>3.00</td>
<td>3.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TECHNICAL NEWS BULLETIN, 12 monthly issues</td>
<td>1.00</td>
<td>1.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BASIC RADIO PROPAGATION PREDICTIONS, 12 monthly issues</td>
<td>1.00</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Additional amount for postage not required.

3. TITLES AND ABSTRACTS OF PUBLICATIONS

Where prices are shown the publication may be purchased from the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. If the price is omitted, the publication is out of print, but may be consulted in libraries maintaining reference sets of Bureau publications. Abstracts of publications issued prior to January 1, 1942, are included in Circular C24 and Supplements.
The letter-symbol designations given below are used in this Circular for the publication series indicated, and these letters should be included with the serial number in all references to Bureau publications.

S, Scientific Papers.
T, Technologic Papers.
RP, Research Papers.
C, Circulars.
H, Handbooks.
M, Miscellaneous Publications.

R, Simplified Practice Recommendations.
CS, Commercial Standards.
BMS, Building Materials and Structures Reports.
BH, Building and Housing Publications.
MT, Mathematical Tables.
Results of research in science and technology were reported in the Scientific Papers. The first 14 volumes of the Scientific Papers were issued as the “Bulletin of the Bureau of Standards” and the separate papers were called “Reprints”.

SCIENTIFIC PAPERS FROM BULLETIN OF THE BUREAU OF STANDARDS, VOLUME 1, 1904-05

S3. The so-called international electrical units. Frank A. Wolff.
S5. On secondary spectra and the conditions under which they may be produced. P. G. Nutting.
S7. On fibers resembling fused quartz in their elastic properties. K. E. Guthe.
S20. The use of white walls in a photometric laboratory. Edward P. Hyde.
S22. Detector for small alternating currents and electrical waves. L. W. Austin.
S23. The positive charges carried by the canal rays. L. W. Austin.
S24. Radiation from platinum at high temperatures. G. K. Burgess.

SCIENTIFIC PAPERS FROM BULLETIN OF THE BUREAU OF STANDARDS, VOLUME 2, 1906

S26. Talbot’s law as applied to the rotating sectored disk. Edward P. Hyde.
S34. Spectrum lines as light sources in polariscope measurements. Frederick Bates.
S36. On the platinum point electrolytic detector for electrical waves. L. W. Austin.
S41. Revision of the formulae of Weinstein and Stefan for the mutual inductance of coaxial coils. Edward B. Rosa.
S42. The mutual inductance of two circular coaxial coils of rectangular section. E. B. Rosa and Louis Cohen.

S43. On the determination of the mean horizontal intensity of incandescent lamps by the rotating lamp method. E. P. Hyde and F. E. Cady.

S44. Purity and intensity of monochromatic light sources. P. G. Nutting.

SCIENTIFIC PAPERS FROM BULLETIN OF THE BUREAU OF STANDARDS, VOLUME 3, 1907

S52. The influence of basic lead acetate on the optical rotation of sucrose in water solution. F. J. Bates and J. C. Blake.

S53. On the colorimetric determination of iron with special reference to chemical reagents. H. N. Stokes and J. R. Cain.

S55. Radiation from and melting points of palladium and platinum. C. W. Waidner and G. K. Burgess.

S57. On the establishment of the thermodynamic scale of temperature by means of the constant-pressure gas thermometer. Edgar Buckingham.

S58. An exact formula for the mutual inductance of coaxial solenoids. Louis Cohen.

S60. The production of high frequency oscillations from the electric arc. L. W. Austin.

S63. On the determination of the mean horizontal intensity of incandescent lamps. E. P. Hyde and F. E. Cady.

S64. The simultaneous measurement of the capacity and power factor of condensers. Frederick W. Grover.

S65. A new determination of the ratio of the electro-magnetic to the electrostatic unit of electricity. E. B. Rosa and N. E. Dorsey.

S66. A comparison of the various methods of determining the ratio of the electromagnetic to the electrostatic unit of electricity. E. B. Rosa and N. E. Dorsey.

S69. On the standard scale of temperature in the interval 0° to 100°. C. W. Waidner and H. C. Dickinson.

SCIENTIFIC PAPERS FROM BULLETIN OF THE BUREAU OF STANDARDS, VOLUME 4, 1907-08

S70. Clark and Weston standard cells. F. A. Wolff and C. E. Waters.

S71. The electrode equilibrium of the standard cell. F. A. Wolff and C. E. Waters.

S76. The influence of frequency on the resistance and inductance of solenoidal coils. Louis Cohen.

S77. The atomic weight of hydrogen. W. A. Noyes.

S78. The best method of demagnetizing iron in magnetic testing. Charles W. Burrows.
SCIENTIFIC PAPERS FROM BULLETIN OF THE BUREAU OF STANDARDS, VOLUME 5, 1908-09

S94. Some contact rectifiers of electric currents. L. W. Austin.
S95. A method for producing feebly damped high frequency electrical oscillations for laboratory measurements. L. W. Austin.
S96. On the advantages of a high spark frequency in radio-telegraphy. L. W. Austin.
S98. Remarks on the quartz compensating polariscope with adjustable sensibility. Frederick Bates.
S100. Note on the approximate value of Bessel's functions for large arguments. Louis Cohen.
S102. The principles involved in the selection and definition of the fundamental electrical units to be proposed for international adoption. F. A. Wolff.
S103. The luminous equivalent of radiation. P. G. Nutting.
S104. The temperature formula of Weston standard cell. F. A. Wolff.
S106. Dependence of magnetic hysteresis upon the wave form. Morton G. Lloyd.
S113. A volt scale for a watts-per-candle meter. Herbert E. Ives.
S114. The coefficient of reflection of electrical waves at a transition point. Louis Cohen.

SCIENTIFIC PAPERS FROM BULLETIN OF THE BUREAU OF STANDARDS, VOLUME 6, 1909-10

S116. The determination of the ratio of transformation and of the phase relations in transformers. E. B. Rosa and Morton G. Lloyd.
S117. The determination of the magnetic induction in straight bars. Charles W. Burrows.
S118. A method for constructing the natural scale of pure color. P. G. Nutting.
S120. The thermoelectric properties of tantalum and tungsten. W. W. Coblenz.
S121. The estimation of the temperature of copper by means of optical pyrometers. G. K. Burgess.
S122. The resolving power of objectives. P. G. Nutting.
S123. The theory of the Hampson liquefier. Edgar Buckingham.
S125. The daylight efficiency of artificial illuminants. Herbert E. Ives.
S126. Coupled circuits in which the secondary has distributed inductance and capacity. Louis Cohen.
S131. Selective radiation from various solids. II. W. W. Coblentz.
S133. Luminosity and temperature. P. G. Nutting.
S137. Mica condensers as standards of capacity. Harvey L. Curtis.
S138. The mutual inductances of two parallel coaxial circles in terms of hypergeometrical series. Frederick W. Grover.
S140. The comparative sensitiveness of some common detectors of electrical oscillations. Louis W. Austin.
S141. Photometric units and nomenclature. E. B. Rosa.

SCIENTIFIC PAPERS FROM BULLETIN OF THE BUREAU OF STANDARDS, VOLUME 7, 1911

S143. Note on the temperature scale between 100 and 500°C. C. W. Waidner and G. K. Burgess.
S146. The intensities of some hydrogen, argon, and helium lines in relation to current and pressure. P. G. Nutting and Orin Tugman.
S147. The temperature coefficient of resistance of copper. J. H. Dellinger.
S150. Note on oscillatory interference bands and some of their practical applications. G. O. Squier and A. C. Crehore.
S152. The reflecting power of various metals. W. W. Coblentz.
S153. The action of sunlight and air upon some lubricating oils. C. E. Waters.
S156. Selective radiation from various substances. III. W. W. Coblentz.
S157. The measurement of electric oscillations in the receiving antenna. L. W. Austin.
S158. Some experiments with coupled high-frequency circuits. L. W. Austin.
S159. Some quantitative experiments in long distance radiotelegraphy. L. W. Austin.
S160. The behavior of high-boiling mineral oils on heating in the air. C. E. Waters.
S161. The determination of vanadium in vanadium and chrome-vanadium steels. J. R. Cain.
S162. On the computation of the constant c of Planck’s equation by an extension of Paschen’s method of equal ordinates. Edgar Buckingham and J. H. Dellinger.

5165. Thermodynamics of concentration cells. Henry S. Carhart.

5166. The capacity and phase difference of paraffined paper condensers as functions of temperature and frequency. Frederick W. Grover.

5167. The steam-turbine expansion line on the Mollier diagram and a short method of finding the reheat factor. Edgar Buckingham.

SCIENTIFIC PAPERS FROM BULLETIN OF THE BUREAU OF STANDARDS, VOLUME 8, 1912

5170. The correction for "Emergent Stem" of the mercurial thermometer. Edgar Buckingham.

5173. Outline of design of deflection potentiometers with notes on the design of moving-coil galvanometers. H. B. Brooks.

5174. The determination of total sulphur in India rubber. C. E. Waters and J. B. Tuttle.

5175. The measurement of the inductances of resistance coils. Frederick W. Grover and Harvey L. Curtis.

5176. The luminous properties of electrically conducting helium gas. II. Reproducibility. P. G. Nutting.

5178. The hydrolysis of sodium oxalate and its influence upon the test for neutrality. William Blum.

SCIENTIFIC PAPERS FROM BULLETIN OF THE BUREAU OF STANDARDS, VOLUME 9, 1913

5181. The four-terminal conductor and the Thomson bridge. Frank Wenner.

5186. Determination of manganese as sulphate and by the sodium bismuthate method. William Blum.

5188. Instruments and methods used in radiometry. II. W. W. Coblentz.

5189. Antenna resistance. L. W. Austin.

5190. Energy losses in some condensers used in high-frequency circuits. L. W. Austin.

5191. Selective radiation from various substances. IV. W. W. Coblentz.

5192. On a modified form of stability test for smokeless powder and similar materials. H. C. P. Weber.

5199. A simplified formula for the change in order of interference due to changes in temperature and pressure of air. I. G. Priest.

5202. Note on cold-junction corrections for thermocouples. P. D. Foote.

SCIENTIFIC PAPERS FROM BULLETIN OF THE BUREAU OF STANDARDS, VOLUME 10, 1914

S204. The constants of spectral radiation of a uniformly heated enclosure or so-called black body, Part I. W. W. Coblentz.
S208. Windage resistance of steam-turbine wheels. Edgar Buckingham. 10c.
S210. Observations on ocean temperatures in the vicinity of the icebergs and in other parts of the ocean. C. W. Waidner, H. C. Dickinson and J. J. Crowe.
S212. Melting points of some refractory oxides. C. W. Kanolt.
S214. Note on the setting of a mercury surface to a required height. M. H. Stillman.
S221. Influence of atmospheric conditions in the testing of sugars. Frederick Bates and Francis P. Phelps.

SCIENTIFIC PAPERS FROM BULLETIN OF THE BUREAU OF STANDARDS, VOLUME 11, 1915

S223. The testing of potentiometers. Frank Wenner and Ernest Weibel.
S224. The emissivity of metals and oxides. I. Nickel oxide (NiO) in the range 600 to 1300°C. G. K. Burgess and P. D. Foote.
S225. Adjustments of the Thomson bridge in the measurement of very low resistances. Frank Wenner and Ernest Weibel.
S226. Quantitative experiments in radiotelegraphic transmission. L. W. Austin.
S231. Specific heat of copper in the interval 0° to 50°C, with a note on vacuum-jacketed calorimeters. D. R. Harper 3d.
S235. A direct-reading instrument for measuring the logarithmic decrement and wave length of electromagnetic waves. Frederick A. Kolster.
S243. The emissivity of metals and oxides. III. The total emissivity of platinum and the relation between total emissivity and resistivity. Paul D. Foote.
SCIENTIFIC PAPERS FROM BULLETIN OF THE BUREAU OF STANDARDS, VOLUME 12, 1915-16

S245. Temperature coefficient of magnetic permeability within the working range. Raymond L. Sanford.

S248. Specific heat and heat of fusion of ice. H. C. Dickinson and N. S. Osborne.

S251. Interference measurements of wave lengths in the iron spectrum (2851-3701), with notes on comparisons of lengths of light waves by interference methods, and some wave lengths in the spectrum of neon gas. Kelvin Burns and W. F. Meggers.

S255. Calculation of the maximum force between two coaxial circular currents. Frederick W. Grover.

S257. Note on the resistance of radiotelegraphic antennas. L. W. Austin.

S260. “Center of gravity” and “effective wave length” of transmission of pyrometer color screens, and the extrapolation of the high temperature scale. Paul D. Foote.

S262. Present status of the determination of the constant of total radiation from a black body. W. W. Coblentz.

S263. Illumination from a radiating disk. Paul D. Foote.

S265. Life testing of incandescent lamps at the Bureau of Standards. G. W. Middlekauff, B. Mulligan, and J. F. Skogland.

SCIENTIFIC PAPERS FROM BULLETIN OF THE BUREAU OF STANDARDS, VOLUME 13, 1916-17

S268. Constants of the quartz-wedge saccharimeter and the specific rotation of sucrose. I. The constants for the 26-gram normal weight. Frederick Bates and Richard F. Jackson. 15c.

S269. Effect of imperfect dielectrics in the field of a radiotelegraphic antenna. John M. Miller.

S284. Constants of spectral radiation of a uniformly heated inclosure or so-called black body. II. W. W. Coblentz.

S287. Calculation of Planck's constant $c\nu$. J. H. Dellinger.

S289. The damping of waves and other disturbances in mercury. M. H. Stillman. 5c.

S292. International system of electric and magnetic units. J. H. Dellinger.

S293. The saccharimetric normal weight and specific rotation of dextrose. Richard F. Jackson. 10c.

SCIENTIFIC PAPERS FROM BULLETIN OF THE BUREAU OF STANDARDS, VOLUME 14, 1918-19

S301. Aneroid calorimeter for specific and latent heats. N. S. Osborne.

S307. Note on electrical conduction in metals at low temperatures. Francis B. Silsbee.

S312. Wave-length measurements in spectra from 5600A to 9600A. W. F. Meggers.

S318. The application of dicyanin to the photography of stellar spectra. Paul W. Merrill. 10c.

S320. Additions to the formulas for the calculation of mutual and self inductance. F. W. Grover.

S323. Some characteristics of the Marvin pyrheliometer. Paul D. Foote.

S324. Wave lengths in the red and infra-red spectra of iron, cobalt, and nickel arcs. W. F. Meggers and C. C. Kiess. 5c.

S327. Measurements on the index of refraction of air for wave lengths from 2218 A to 3000 A. W. F. Meggers and C. G. Peters. 10c.

SCIENTIFIC PAPERS FROM BULLETIN OF THE BUREAU OF STANDARDS, VOLUME 15, 1919-20

S331. A relation connecting the derivatives of physical quantities. M. D. Hersey. 5c.

S332. Preliminary determination of the thermal expansion of molybdenum. Lloyd M. Schad and Peter Hidnert.

S333. Optical conditions accompanying the striae which appear as imperfections in optical glass. Lieut. Commander A. A. Michelson, U. S. N.

S334. New forms of instruments for showing the presence and amount of combustible gas in the air. E. R. Weaver and E. E. Weibel.

S339. Standardization of the sulphur boiling point. E. F. Mueller and H. A. Burgess. 5c.

S343. Location of flaws in rifle-barrel steel by magnetic analysis. R. L. Sanford and Wm. B. Kouwenhoven.

S345. Measurements of wave lengths in the spectra of krypton and xenon. Paul W. Merrill. 5c.

S349. Photoelectric spectrophotometry by the Null method. K. S. Gibson.

S351. Dependence of the input impedance of a three-electrode vacuum tube upon the load in the plate circuit. John M. Miller.

S353. Variation in direction of propagation of long electromagnetic waves. A. Hoyt Taylor.

The determination of the output characteristics of electron tube generators. Lewis M. Hull.

Notes on the microstructure of iron and mild steel at high temperatures. Henry S. Rawdon and Howard Scott.

Constants of radiation of a uniformly heated inclosure. W. W. Coblentz. 5c.

Concerning the annealing and characteristics of glass. A. Q. Tool and J. Valasek.

Magnetic testing of straight rods in intense fields. W. L. Cheney.

Distribution of energy in the spectrum of an acetylene flame. W. W. Coblentz.

Relation of voltage of dry cells to hydrogen-ion concentration. H. D. Holler and L. M. Ritchie.

A new interferential dilatometer. Irwin G. Priest. 5c.

Contrast sensibility of the eye. Enoch Karrer and E. P. T. Tyndall.

The turbidity standard of water analysis. P. V. Wells.

Ionization and resonance potentials for electrons in vapors of lead and calcium. F. L. Mohler, Paul D. Foote, and H. F. Stimson. 5c.

A new cadmium vapor arc lamp. Frederick Bates.

Wave lengths longer than 5500 A in the arc spectra of seven elements. C. C. Kiess and W. F. Meggers. 5c.

The intercrystalline brittleness of lead. H. S. Rawdon.

A new spectropyheliometer and measurements of the component radiations from the sun and from a quartz mercury vapor lamp. W. W. Coblentz and H. Kahler.

Reflecting power of monel metal, stellite, and zinc. W. W. Coblentz.

An electron tube transmitter of completely modulated waves. Lewis M. Hull.

Notes on the testing of magnetic compasses. R. L. Sanford.

Measurement of hysteresis values from high magnetizing forces. W. L. Cheney.

Variation of residual induction and coercive force with magnetizing force. R. L. Sanford and W. L. Cheney.

Atomic theory and low-voltage arcs in caesium vapor. Paul D. Foote and W. F. Meggers. 5c.

Permeability of rubber to gases. J. D. Edwards and S. F. Pickering.

Adjustment of parabolic and linear curves to observations taken at equal intervals of the independent variable. H. M. Roeser.

Relative spectral transmission of the atmosphere. E. Karrer and E. P. T. Tyndall.

The two common failures of the Clark standard cell. E. C. McKelvy and M. P. Shoemaker.

The measurement of diffuse reflection factors, and a new absolute reflectometer. A. H. Taylor. 5c.

Air forces on circular cylinders, axes normal to the wind, with special reference to dynamical similarity. Hugh L. Dryden.

Relation of the high-temperature treatment of high-speed steel to secondary hardening and red hardness. Howard Scott. 10c.
5396. Thermal and physical changes accompanying the heating of hardened carbon steels. Howard Scott and H. Gretchen Movius.

5398. Positive and negative photoelectrical properties of molybdenite and several other substances. W. W. Coblentz. 10c.

5400. Use of ammonium persulphate for revealing the macrostructure of iron and steel. Henry S. Rawdon.

5401. Infra-red transmission and refraction data on standard lens and prism material. W. W. Coblentz.

5402. Recent modifications in the construction of platinum resistance thermometers. T. S. Sligh, Jr.

SCIENTIFIC PAPERS FROM BULLETIN OF THE BUREAU OF STANDARDS, VOLUME 17, 1922

5407. Interference measurements in the spectra of argon, krypton, and xenon. W. F. Meggers. 5c.

5408. Use of the Ulbricht sphere in measuring reflection and transmission factors. Enoch Karrer.

5409. Preparation of photographic filter factors. Raymond Davis.

5410. Preparation of galactose. E. P. Clark.

5411. The spectral distribution of energy required to evoke the gray sensation. Irwin G. Priest.

5412. Spectroradiometric investigation of the transmission of various substances, II. W. W. Coblentz.

5413. Wave lengths longer than 5500 A in the arc spectra of yttrium, lanthanum, and cerium and the preparation of pure rare earth elements. C. C. Kiess, B. S. Hopkins, and H. C. Kreimers. 5c.

5416. Wave lengths in the yellow, red, and infra-red. F. M. Walters. 5c.

5418. A portable vacuum thermopile. W. W. Coblentz. 5c.

5420. A portable vacuum thermopile. W. W. Coblentz. 5c.

5421. The spectral distribution of energy required to evoke the gray sensation. Irwin G. Priest.

5422. The spectral distribution of energy required to evoke the gray sensation. Irwin G. Priest.

5423. Spectroradiometric investigation of the transmission of various substances, II. W. W. Coblentz.

5424. Wave lengths longer than 5500 A in the arc spectra of yttrium, lanthanum, and cerium and the preparation of pure rare earth elements. C. C. Kiess, B. S. Hopkins, and H. C. Kreimers. 5c.

5426. Operation of the modulator tube in radio telephone sets. E. S. Purington.

5427. Mathematical theory of induced voltage in the high-tension magneto. Francis B. Silsbee.

5428. Characteristic soft X-rays from arcs in gases and vapors. F. L. Mohler and P. D. Foote. 10c.

5429. Spectroradiometric investigation of the transmission of various substances, II. W. W. Coblentz.

5430. Wave lengths longer than 5500 A in the arc spectra of yttrium, lanthanum, and cerium and the preparation of pure rare earth elements. C. C. Kiess, B. S. Hopkins, and H. C. Kreimers. 5c.

5432. Mathematical theory of induced voltage in the high-tension magneto. Francis B. Silsbee.

5433. Characteristic soft X-rays from arcs in gases and vapors. F. L. Mohler and P. D. Foote. 10c.

5434. Spectroradiometric investigation of the transmission of various substances, II. W. W. Coblentz.

5435. Wave lengths longer than 5500 A in the arc spectra of yttrium, lanthanum, and cerium and the preparation of pure rare earth elements. C. C. Kiess, B. S. Hopkins, and H. C. Kreimers. 5c.

5437. Mathematical theory of induced voltage in the high-tension magneto. Francis B. Silsbee.

5438. Characteristic soft X-rays from arcs in gases and vapors. F. L. Mohler and P. D. Foote. 10c.

5439. Spectroradiometric investigation of the transmission of various substances, II. W. W. Coblentz.

5440. Wave lengths longer than 5500 A in the arc spectra of yttrium, lanthanum, and cerium and the preparation of pure rare earth elements. C. C. Kiess, B. S. Hopkins, and H. C. Kreimers. 5c.

5442. Mathematical theory of induced voltage in the high-tension magneto. Francis B. Silsbee.

5443. Characteristic soft X-rays from arcs in gases and vapors. F. L. Mohler and P. D. Foote. 10c.

5444. Spectroradiometric investigation of the transmission of various substances, II. W. W. Coblentz.

5445. Wave lengths longer than 5500 A in the arc spectra of yttrium, lanthanum, and cerium and the preparation of pure rare earth elements. C. C. Kiess, B. S. Hopkins, and H. C. Kreimers. 5c.

5447. Mathematical theory of induced voltage in the high-tension magneto. Francis B. Silsbee.

5448. Characteristic soft X-rays from arcs in gases and vapors. F. L. Mohler and P. D. Foote. 10c.

5449. Spectroradiometric investigation of the transmission of various substances, II. W. W. Coblentz.

5450. Wave lengths longer than 5500 A in the arc spectra of yttrium, lanthanum, and cerium and the preparation of pure rare earth elements. C. C. Kiess, B. S. Hopkins, and H. C. Kreimers. 5c.
S438. Tests of stellar radiometers and measurements of the energy distribution in the spectra of 16 stars. W. W. Coblentz. 10c.

SCIENTIFIC PAPERS FROM BULLETIN OF THE BUREAU OF STANDARDS, VOLUME 18, 1922–23

S439. Sensitometry of photographic emulsions and a survey of the characteristics of plates and films of American manufacture. R. Davis and F. M. Walters, Jr.
S442. Wave-length measurements in the arc spectra of neodymium and samarium. C. C. Kiess. 5c.
S445. A piezo electric method for the instantaneous measurement of high pressures. J. C. Karcher.
S448. The decarburization of ferrochromium by hydrogen. Louis Jordan and F. E. Swindells.
S450. An electron-tube amplifier using sixty-cycle alternating current to supply power for the filaments and plates. P. D. Lowell.
S452. The structure of martensitic carbon steels and the changes in microstructure which occur upon tempering. Henry S. Rawdon and Samuel Epstein.
S455. Tables for the calculation of the inductance of circular coils of rectangular cross sections. Frederick W. Grover.
S459. The structure of fucose. E. P. Clark.
S466. Wave length measurements in the arc spectra of gadolinium and dysprosium. C. C. Kiess. 5c.

S468. Formulas and tables for the calculation of the inductance of coils of polygonal form. Frederick W. Grover. 10c.

SCIENTIFIC PAPERS FROM BULLETIN OF THE BUREAU OF STANDARDS, VOLUME 19, 1923–24

S473. A method for the measurement of sound intensity. J. C. Karcher.

S474. Series in the arc spectrum of molybdenum. C. C. Kiess. 10c.

S475. The visibility of radiant energy. K. S. Gibson and E. P. T. Tyndall.

S478. Redetermination of secondary standards of wave length from the new international iron arc. W. F. Meggers and C. C. Kiess. 5c.

S479. Interferometer measurements of the longer waves in the iron arc spectrum. W. F. Meggers and C. C. Kiess. 5c.

S482. Gravitational anisotropy in crystals. Paul R. Heyl. 10c.

S483. Investigations on the platinum metals — IV. Determination of iridium in platinum alloys by the method of fusion with lead. Raleigh Gilchrist.

S492. Formulas, tables, and curves for computing the mutual inductance of two coaxial circles. Harvey L. Curtis and C. Matilda Sparks.

S497. Thermal expansion of aluminum and various important aluminum alloys. Peter Hidnert.

SCIENTIFIC PAPERS FROM BULLETIN OF THE BUREAU OF STANDARDS, VOLUME 20, 1924–26

S498. Tables for the calculation of the mutual inductance of circuits with circular symmetry about a common axis. F. W. Grover.

S499. Investigations on the platinum metals — VII. Arc spectra of the platinum metals (4500A to 9000A). W. F. Meggers. 10c.

5502. An improved type of wave meter resonance indicator. Morris S. Strock.

5505. Critical potentials associated with excitation of alkali spark spectra. F. L. Mohler. 10c.

5506. Theory and interpretation of experiments on the transmission of sound through partition walls. Edgar Buckingham. 10c.

5508. Spark photography and its application to some problems in ballistics. Philip P. Quayle.

5509. Alternating current distribution in cylindrical conductors. Chester Snow.

5511. A nonintermittent sensitometer (time-scale exposure machine) with clock-controlled motor drive. Raymond Davis. 15c.

5512. Temperature estimates of the planet Mars. W. W. Coblentz. 10c.

5514. Gases in metals: II. The determination of oxygen and hydrogen in metals by fusion in vacuum. Louis Jordan and James E. Eckman.

5515. Thermal expansion of tungsten. Peter Hidnert and W. T. Sweeney. 5c.

5516. A shielded resistor for voltage transformer testing. Francis B. Silsbee.

5517. A special camera for photographing cylindrical surfaces. Raymond Davis.

5518. Metallurgical etching reagents, III; for alloy steels. Edward C. Grossbeck.

5521. Measurements of the index of refraction of glass at high temperatures. C. G. Peters. 10c.

5522. Pure zinc at normal and elevated temperatures. John R. Freeman, Jr., Frederick Sillers, Jr., and Paul F. Brandt.

5523. Wind pressure on structures. Hugh L. Dryden and George C. Hill.

SCIENTIFIC PAPERS FROM BULLETIN OF THE BUREAU OF STANDARDS, VOLUME 21, 1926-27

5524. Measurements on the thermal expansion of fused silica. Wilmer Souder and Peter Hidnert.

5527. Short tests for sets of laboratory weights. A. T. Pienkowsky.

5528. A study of the relation between intermittent and nonintermittent sector wheel photographic exposures. Raymond Davis. 20c.

5533. Relations between rotatory power and structure in the sugar group. Part I (1 to 10). C. S. Hudson.

5534. Effect of concentrated loads on the length of measuring tapes. Lewis V. Judson. 10c.

5536. A portable radio direction finder for 90 to 7,700 kilocycles. F. W. Dunmore.

5537. Formula for the inductance of a helix made with wire of any section. Chester Snow.

5538. Spectral energy distribution of the light emitted by plants and animals. W. W. Coblentz and C. W. Hughes.

5542. Electrical field of a charged wire and a slotted cylindrical conductor. Chester Snow.

5543. Linkage-current diagram for representing magneto operation. F. B. Silsbee and D. W. Randolph. 20c.

5544. Effect of eddy currents in a core consisting of circular wires. Chester Snow. 10c.

5545. Determination of the magnetic induction in sheet steel. Raymond L. Sanford and James M. Barry. 10c.

SCIENTIFIC PAPERS FROM BULLETIN OF THE BUREAU OF STANDARDS, VOLUME 22, 1927-28

5548. Wave-length measurements in the arc and spark spectra of zirconium. C. C. Kiess. 5c.

5549. Wave-length measurements in the arc spectrum of scandium. William F. Meggers.

5550. Application of the algebraic aberration equations to optical design. I. C. Gardner.

5551. Absorption spectra of iron, cobalt, and nickel. W. F. Meggers and F. M. Walters, Jr. 10c.

5554. Determination of sulphur trioxide in the presence of sulphur dioxide, together with some analyses of commercial liquid sulphur dioxide. J. R. Eckman.

5555. A weight burette for the micromeasurements of liquid volumes. Martin Shepherd.

5556. Current distribution in supra conductors. F. B. Silsbee. 10c.

5557. A suggested new base point on the thermometric scale and the $\alpha \rightarrow \beta$ inversion of quartz. Frederick Bates and Francis P. Phelps. 5c.

5558. An analysis of the arc and spark spectra of scandium (Sc I and Sc II). Henry Norris Russell and William F. Meggers. 20c.

5559. A burette for the accurate measurement of gas volumes without gas connection to a compensator. E. R. Weaver and Martin Shepherd.

5566. Indeterminateness of electrical charge. Chester Snow.

5568. Methods, formulas, and tables for the calculation of antenna capacity. Frederick W. Grover.

5569. Generator for audio currents of adjustable frequency with piezo-electric stabilization. August Hund. 10c.

5570. Thermal expansion of alloys of the “stainless iron” type. Peter Hidnert and W. T. Sweeney. 10c.

Results of investigations of materials and methods of testing were reported in the Technologic Papers.

In July 1928 the Scientific and Technologic Papers were combined and issued under the title “Bureau of Standards Journal of Research,” and beginning with volume 13, July 1934, the name of the Journal was changed to “Journal of Research of the National Bureau of Standards.”

TECHNOLOGIC PAPERS

TECHNOLOGIC PAPERS OF THE BUREAU OF STANDARDS, 1 to 202, 1910–21

T1. Effect of preliminary heat treatment upon the drying of clays. A. V. Bleininger.
T3. Tests of the absorptive and permeable properties of portland cement mortars and concretes, together with tests of damp-proofing and waterproofing compounds and materials. Rudolph J. Wig and P. H. Bates.
T4. The effect of added fatty and other oils upon the carbonization of mineral lubricating oils. C. E. Waters.
T5. The effect of high-pressure steam on the crushing strength of portland cement mortar and concrete. Rudolph J. Wig.
T7. The testing of clay refractories, with special reference to their load carrying ability at furnace temperatures. A. V. Bleininger and G. H. Brown.
T8. A rapid method for the determination of vanadium in steels, ores, etc., based on its quantitative inclusion by the phosphomolybdate precipitate. J. R. Cain and J. C. Hostetter.
T10. The melting points of fire brick. C. W. Kanolt.
T11. Comparison of five methods used to measure hardness. Ralph P. Devries.
T13. The evaporation test for mineral lubricating and transformer oils. C. E. Waters.
T19. Physical testing of cotton yarns. W. S. Lewis.
T23. The technical control of the colloidal matter of clays. H. E. Ashley.
T31. Some leadless boro-silicate glazes maturing at about 1100°C. E. T. Montgomery.

1 Prior to volume 16, 1921-22, the series was issued as individual papers.

T33. Determination of carbon in steel and iron by the barium carbonate titration method. J. R. Cain.

T34. Combustion method for the direct determination of rubber. L. G. Wesson.

T42. Standardization of No. 200 cement sieves. R. J. Wig and J. C. Pearson.

T44. A study of some recent methods for the determination of total sulphur in rubber. J. B. Tuttle and A. Isaacs.

T46. Value of the high-pressure steam test of portland cement. Rudolph J. Wig and Herbert A. Davis.

T51. Use of sodium salts in the purification of clays and in the casting process. A. V. Bleininger.

T56. Protection of life and property against lightning. O. S. Peters.

T57. Difference in weight between raw and clean wools. Walter S. Lewis.

T59. Standard test specimens of zinc bronze (Cu 88, Sn 10, Zn 2) — Parts I and II. C. P. Karr and Henry S. Rawdon.

T60. Microstructure of changes accompanying the annealing of cast bronze (Cu 88, Sn 10, Zn 2). Henry S. Rawdon.

T64. Determination of barium carbonate and barium sulphate in vulcanized rubber goods. John B. Tuttle.

T67. Some qualitative tests for gum arabic and its quantitative determination. C. E. Waters and J. B. Tuttle.

T69. Determination of carbon in steels and irons by direct combustion in oxygen at high temperatures. J. R. Cain and H. E. Cleaves.

T72. Influence of frequency of alternating or infrequently reversed current on electrolytic corrosion. Burton McCollum and G. H. Ahlborn.

T73. Data on the oxidation of automobile cylinder oils. C. E. Waters.

T75. Data on electric railway track leakage. G. H. Ahlborn.

T82. Failure of brass. 1. — Microstructure and initial stresses in wrought brasses of the type 60 per cent copper and 40 per cent zinc. Paul D. Merica and R. W. Woodward.

T92. Measurement and specification of the physical factors which determine the saturation of certain tints of yellow. Irwin G. Priest and Chauncey G. Peters.

T96. Comparative tests of stitches and seams. Walter S. Lewis.

T103. Typical cases of the deterioration of muntz metal (60:40 brass) by selective corrosion. H. S. Rawdon.

T105. Comparative tests of porcelain laboratory ware. C. E. Waters.

T108. Ground connections for electrical systems. O. S. Peters. 50c.

T111. The compressive strength of large brick piers. J. G. Bragg.

T112. Standardization of the Saybolt Universal Viscosimeter. Winslow H. Herschel.

T123. Physical and chemical tests of the commercial marbles of the United States. Daniel W. Kessler.
T124. The constitution and microstructure of silica brick and changes involved through repeated burnings at high temperatures. H. Insley.
T125. The viscosity of gasoline. Winslow H. Herschel.
T132. Mechanical properties and resistance to corrosion of rolled light alloys of aluminum and magnesium with copper, with nickel, and with manganese. P. D. Merica, R. G. Waltenberg, and A. N. Finn.
T142. Materials and methods used in the manufacture of enameled cast-iron wares. Homer F. Staley.
T145. Direct determination of India rubber by the nitrosite method. John B. Tuttle and Louis Yurow.
T146. The cadmium electrode for storage battery testing. H. D. Holler and J. M. Braham.
T147. An apparatus for measuring the relative wear of sole leathers and the results obtained with leather from the different parts of a hide. R. W. Hart and R. C. Bowker. 5c.
T149. Estimation of nitrates and nitrites in battery acid. L. B. Sefton.
T152. Investigation of the compressive strength of spruce struts of rectangular cross section and the derivation of formulas suitable for use in airplane design. J. E. Boyd.
T153. Area measurement of leather. Frederick J. Schlink.
T156. Metallographic features revealed by the deep etching of steel. H. S. Rawdon and Samuel Epstein.
T159. Porosity and volume changes of clay fire bricks at furnace temperatures. George A. Loomis.
T160. Effects of oils, greases, and degree of tannage on the physical properties of russet harness leather. R. C. Bowker and J. B. Churchill. 5c.
T165. Enamels for sheet iron and steel. J. B. Shaw.
T166. Laboratory wearing test to determine the relative wear resistance at different depths throughout the thickness of a hide. R. W. Hart.
T174. Effects of Cal as an accelerator of the hardening of Portland cement mixtures. Roy N. Young.
T177. Sulphur in petroleum oils. C. E. Waters.
T178. Steel rails from sink-head and ordinary rail ingots. George K. Burgess.
T183. Notes on small flow meters for air, especially orifice meters. Edgar Buckingham.
T186. Oscillograph measurements of the instantaneous values of current and voltage in the battery circuit of automobiles. George W. Vinal and C. L. Snyder.
T188. Some properties of white metal bearing alloys at elevated temperatures. John R. Freeman, Jr., and R. W. Woodward.
T201. Friction and carrying capacity of ball and roller bearings. H. L. Whittomore and S. N. Petrenko.

TECHNOLOGIC PAPERS OF THE BUREAU OF STANDARDS, VOLUME 16, 1921-22

T204. Cutting fluids. Eugene C. Bingham.
T205. Tensile properties of some structural alloy steels at high temperatures. H. J. French.
T208. Weighing by substitution. C. A. Briggs and E. D. Gordon. 5c.
T212. Carbon monoxide in the products of combustion from natural gas burners. I. V. Brumbaugh and G. W. Jones. 10c.
T215. Durability of sole leather filled with sulphite cellulose extract. Roy C. Bowker. 5c.

TECHNOLOGIC PAPERS OF THE BUREAU OF STANDARDS, VOLUME 17, 1922-24

T221. The magnetic susceptibility and iron content of cast red brass. L. H. Marshall and R. L. Sanford.
T222. Relative usefulness of gases of different heating value and adjustments of burners for changes in heating value and specific gravity. Walter M. Berry, I. V. Brumbaugh, J. H. Eiseman, G. F. Moulton, and G. B. Shawn.
T224. Rate of exhaustion of a closed tank by a reciprocating air pump. Edgar Buckingham.
T231. Tentative standard test methods and percentages of oil and moisture in hair press cloths. F. R. McGowan and C. W. Schoffstall. 5c.
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>T234</td>
<td>Methods of measuring the plasticity of clays.</td>
<td>F. P. Hall</td>
</tr>
<tr>
<td>T237</td>
<td>Aeronautical instruments.</td>
<td>Franklin L. Hunt</td>
</tr>
<tr>
<td>T238</td>
<td>Some compressive tests of hollow-tile walls.</td>
<td>Herbert L. Whittemore and Bernard D. Hatcock.</td>
</tr>
<tr>
<td>T239</td>
<td>Tests of caustic magnesia made from magnesite from several sources.</td>
<td>P. H. Bates, Roy N. Young, and Paul Rapp.</td>
</tr>
<tr>
<td>T242</td>
<td>Detector for water vapor in closed pipes.</td>
<td>E. R. Weaver and P. G. Ledig.</td>
</tr>
<tr>
<td>T243</td>
<td>Stresses in a few welded and riveted tanks tested under hydrostatic pressure.</td>
<td>A. H. Stang and T. W. Greene.</td>
</tr>
<tr>
<td>T244</td>
<td>A measure of the color characteristics of white papers resulting from heat treatment.</td>
<td>Leslie H. Marshall</td>
</tr>
<tr>
<td>T245</td>
<td>Embrittlement of malleable cast iron resulting from heat treatment.</td>
<td>R. E. Lofton.</td>
</tr>
<tr>
<td>T248</td>
<td>Exposure tests on colorless waterproofing materials.</td>
<td>D. W. Kessler</td>
</tr>
<tr>
<td>T251</td>
<td>Equalizer apparatus for transverse tests of bricks.</td>
<td>H. L. Whittemore</td>
</tr>
<tr>
<td>T252</td>
<td>The nick-bend test for wrought iron.</td>
<td>Henry S. Rawdon and Samuel Epstein.</td>
</tr>
<tr>
<td>T253</td>
<td>Standardization of hosiery box dimensions.</td>
<td>Charles W. Schoffstall and E. M. Schenke.</td>
</tr>
<tr>
<td>T254</td>
<td>Emissive tests of paints for decreasing or increasing heat radiation from surfaces.</td>
<td>W. W. Coblenz and C. W. Hughes.</td>
</tr>
<tr>
<td>T258</td>
<td>Strength of steel tubing under combined column and transverse loading, including tests of columns and beams.</td>
<td>Tom W. Greene.</td>
</tr>
<tr>
<td>T259</td>
<td>Saturation relations in mixtures of sucrose, dextrose, and levulose.</td>
<td>Richard F. Jackson and Clara Gillis Silsbee.</td>
</tr>
<tr>
<td>T261</td>
<td>Influence of sulphur, oxygen, copper, and manganese on the red-shortness of iron.</td>
<td>J. R. Cain</td>
</tr>
<tr>
<td>T262</td>
<td>Comparison of American and foreign clays as paper fillers.</td>
<td>Merle B. Shaw and George W. Bicking.</td>
</tr>
<tr>
<td>T263</td>
<td>Tangent modulus and the strength of steel columns in tests.</td>
<td>O. H. Basquin</td>
</tr>
<tr>
<td>T268</td>
<td>A study of silk waste used for cartridge-bag cloth, with an appendix on the general classification of waste silk.</td>
<td>F. R. McGowan, Charles W. Schoffstall, and A. A. Mercier.</td>
</tr>
</tbody>
</table>
T270. An analysis of the deformation of the mooring spindle of the Shenandoah. L. B. Tuckerman and C. S. Aitchison. 10c.
TECHNOLOGIC PAPERS OF THE BUREAU OF STANDARDS, VOLUME 19, 1924-25
T277. Comparative wearing qualities of Pima and ordinary cotton used in mail bags. F. R. McGowan, Charles W. Schoffstall, and A. A. Mercier. 10c.
T278. Effect of twist on the physical properties of a number 7s yarn. F. R. McGowan, Charles W. Schoffstall, and A. A. Mercier. 10c.
T280. Reclamation of gasoline used in dry cleaning. C. C. Hubbard.
T284. A study of the seasonal variation of radio-frequency phase difference of laminated phenolic insulating materials. J. L. Preston and E. L. Hall.
T286. Comparative durability of chrome and vegetable tanned sole leathers. R. C. Bowker and M. N. V. Geib.
T288. Comparative cold-rolling tests of open-hearth steel strip (deep drawing stock) and electrolytic iron strip. John R. Freeman, Jr., and R. D. France.
T289. Comparative slow bend and impact notched bar tests on some metals. S. N. Petrenko.
T290. Relationship between the heating value of gas and its usefulness to the customer. E. R. Weaver. 30c.
T294. Wearing qualities of tire treads as influenced by reclaimed rubber. W. L. Holt and P. L. Wormeley. 5c.
T297. A statistical study of conditions affecting the distance range of radio-telephone broadcasting stations. C. M. Jansky, Jr.
T299. Dielectric constant, power factor, and resistivity of rubber and gutta-percha. H. L. Curtis and A. T. McPherson. 20c.
TECHNOLOGIC PAPERS OF THE BUREAU OF STANDARDS, VOLUME 20, 1925-26
T303. Causes of some accidents from gas appliances. An investigation conducted in Baltimore in cooperation with the Baltimore Health Department, United

T305. Permeability of stone. D. W. Kessler. 10c.

T308. Cement-lime mortars. H. V. Johnson.

T314. Shear tests of reinforced concrete beams. Willis A. Slate.

T316. Analysis of synthetic tanning materials. Edward Wolesensky. 5c.

T325. Recent developments in lamp life-testing equipment and methods. J. F. Skogland and R. P. Teele, Jr.

T330. Resistance of conductors of various types and sizes as windings of single-layer coils at 150 to 6,000 kilocycles. E. L. Hall.

T332. Statical hysteresis in the flexure of bars. G. H. Keulegan. 10c.

T337. Soundproofing of apartment houses. V. L. Chrisler.

T339. Use of sulphite cellulose extract as a tanning material. E. L. Wallace and R. C. Bowker.

T343. Study of the windows of window envelopes for the purpose of developing standard specifications. R. E. Lofton. 5c.
T345. Note on the determination of weight per gallon of blackstrap molasses. Carl F. Snyder and L. D. Hammond. 5c.
T347. Effect of laundering upon the thermal insulating value of cotton blankets. Philip Rudnick.
T352. Use and testing of sphygmomanometers. J. L. Wilson, H. N. Eaton, and H. B. Hendrickson. 20c.

TECHNOLPICS PAPERS OF THE BUREAU OF STANDARDS, VOLUME 22, 1927-28

T353. Some vulcanization tests of guayule rubber. D. Spence and C. E. Boone. 5c.
T364. Tensile properties of soft rubber compounds at temperatures ranging from —70°C to +147°C. R. F. Tener, S. S. Kingsbury, and W. L. Holt. 10c.
T365. Statical hysteresis in cycles of equal load range. G. H. Keulegan. 5c.
RESEARCH PAPERS

Research Papers are reprints of individual articles appearing in the monthly issues of the Journal of Research. They are made available in this form to serve the need of research workers, technical groups, and others for the separate papers relating to the particular subjects in which they have cooperated or are interested.

RESEARCH PAPERS FROM BUREAU OF STANDARDS JOURNAL OF RESEARCH, VOLUME 1, JULY—DECEMBER 1928

RP4. Interferometer measurements of wave lengths in the vacuum arc spectra of titanium and other elements. C. C. Kiess. 5c.
RP8. Wave-length measurements in the arc and spark spectra of hafnium. William F. Meggers. 15c.
RP16. Methods for the derivation and expansion of formulas for the mutual inductance of coaxial circles and for the inductance of single-layer solenoids. Frederick W. Grover.
RP17. Effect of clearance and displacement of attracted disk, and also of a certain arrangement of conducting hoops, upon the constant of an electrometer. Chester Snow. 5c.
RP18. Mutual inductance of any two circles. Chester Snow. 5c.
RP23. Tables of theoretical Zeeman effects. C. C. Kiess and W. F. Meggers. 15c.
RP24. Mutual inductance and torque between two concentric solenoids. Chester Snow. 5c.
RP31. Effect of temperature change on the color of red and yellow Lovibond glasses. Deane B. Judd. 5c.

RP33. Use of the under-water spark with the Hilger sector photometer in ultraviolet spectrophotometry. H. J. McNicholas. 5c.

RP34. Reaction of water on calcium aluminates. L. S. Wells.

Title page and contents for volume 1.

RESEARCH PAPERS FROM BUREAU OF STANDARDS JOURNAL OF RESEARCH, VOLUME 2, JANUARY—JUNE 1929

RP38. A technical method of using the mercury arc to obtain data at wave length 560 m/Å in the spectrophotometric analysis of sugar products. H. H. Peters and F. P. Phelps. 5c.

RP40. Note on a piezo-electric generator for audio frequencies. August Hund.

RP42. Laboratory corosion tests of mild steel with special reference to ship plate. Henry S. Rawdon.

RP43. Least retinal illumination by spectral light required to evoke the “blue ares of the retina”. Deane B. Judd.

RP44. The service of refractory blocks in a small experimental glass tank. W. L. Pendergast and Herbert Insley.

RP45. Apparatus and methods for the separation, identification, and determination of the chemical constituents of petroleum. Edward W. Washburn, Johannes H. Bruun, and Mildred M. Hicks.

RP49. Discharge coefficients of square-edged orifices for measuring the flow of air. H. S. Bean, E. Buckingham, and P. S. Murphy.

RP50. Apparatus for thermomagnetic analysis. Raymond L. Sanford. 10c.

RP52. An interference method for the determination of axial and oblique aberrations. A. H. Bennett.

RP53. Determinations of molecular weights in the vapor state from vapor pressure and evaporation data. Edward W. Washburn. 5c.

RP55. An analysis of the arc and spark spectra of yttrium (Yt I and Yt II). William F. Meggers and Henry Norris Russell.

RP56. The precise measurement of X-ray dosage. Lauristin S. Taylor. 10c.

RP60. Continuous spectrum X-ray from thin targets. Warren W. Nicholas.

RP62. Thermal expansion of tantalum. Peter Hitnert. 5c.

RP64. Prism refractometry and certain goniometrical requirements for precision. L. W. Tilton.

RP66. A new seismometer equipped for electromagnetic damping and electromagnetic and optical magnification (theory, general design, and preliminary results). Frank Wenner. 15c.

RP70. Some observations of short-period radio fading. T. Parkinson.

RP71. The determination of the source and the means of prevention of stones in glass. Herbert Insley. 5c.

RP72. The spotting of plated or finished metals. W. P. Barrows.

RP73. The arc spectrum of chlorine and its structure. C. C. Kiess and T. L. de Bruin.

RP75. Accurate determination of the gasoline content of natural gas and the analytical separation of natural gases by isothermal fractional distillation. Martin Shepherd.

RP76. Relation of radio wave propagation to disturbances in terrestrial magnetism. I. J. Wymore.

Title page and contents for volume 2.

RESEARCH PAPERS FROM BUREAU OF STANDARDS JOURNAL OF RESEARCH, VOLUME 3, JULY — DECEMBER 1929

RP78. Relative visibility of luminous flashes from neon lamps and from incandescent lamps with and without a red filter. F. Chapin Breckenridge and J. E. Nolan.

RP79. A crystalline difructose anhydride from hydrolyzed inulin. Richard F. Jackson and Sylvia M. Goergen. 5c.

RP83. Note on the ratio of the electromagnetic to the electrostatic unit of electricity as compared to the velocity of light. Harvey L. Curtis. 5c.

RP89. The first spectrum of krypton. William F. Meggers, T. L. de Bruin, and C. J. Humphries.

RP90. A comparison of the formulas for the calculation of the inductance of coils and spirals wound with wire of large cross section. Frederick W. Grover. 10c.

RP92. Effect of service on endurance properties of rail steels. John R. Freeman, Jr., and Haig N. Solakian.

RP94. The mutual inductance of two parallel circles. Chester Snow. 5c.

RP95. Soil-corrosion studies, 1927—28. K. H. Logan. 5c.

RP96. Photoionization of some alkali vapors. F. L. Mohler and Carl Boeckner. 5c.

RP97. Making the glass disk for a 70-inch telescope reflector. A. N. Finn.

RP99. Thermo electric temperature scales. Wm. F. Roser.

RP100. Light-fastness of lithographic ink pigments. William D. Appel and Robert F. Reed.

RP104. Preparation of experimental sagger bodies according to fundamental properties. R. A. Heindl and L. E. Mong.

RP105. A suppressed-zero electrodynamic voltmeter. F. K. Harris. 5c.

RP106. Two isomeric crystalline compounds of d-mannose with calcium chloride. J. K. Dale. 5c.

RP111. The heat of formation of sulphur dioxide. J. R. Eckman and Frederick D. Rossini.

RP115. The first spectrum of xenon. W. F. Meggers, T. L. de Bruin, and C. J. Humphreys.

RP118. Correcting engine tests for humidity. Donald B. Brooks. 10c.

RP119. Analysis of diaphragm system for the X-ray standard ionization chamber. Lauriston S. Taylor. 10c.

RP120. Turning with shallow cuts at high speeds. H. J. French and T. G. Digges.

RP122. A method for measuring the stress-strain relations of wet textiles with application to wet rayons. Homer A. Hamm and R. E. Stevens. 10c.

RP127. Melting, mechanical working, and some physical properties of rhodium. Wm. H. Swanger.

Title page and contents for volume 3. 5c.

RESEARCH PAPERS FROM BUREAU OF STANDARDS JOURNAL OF RESEARCH, VOLUME 4, JANUARY—JUNE 1930

RP131. Throwing power in chromium plating. H. L. Farber and W. Blum.

RP133. Notes on the design of 4-terminal resistance standards for alternating currents. Francis B. Silsbee.

RP135. Method and apparatus used in testing piezo oscillators for broadcasting stations. E. L. Hall.

RP136. Phase equilibria in the system SiO₂—Z. E. N. Bunting.

RP137. Effects of small changes in temperature on the properties of bodies. Mayo D. Hersey.

RP138. The neutralization of space charge by positive ions in caesium vapor. V. E. Whitman. 5c.
RP139. Regularities in the arc spectrum of hafnium (Hf i). William F. Meggers and Bourdon F. Scribner. 5c.

RP140. Standards for testing magnetic permeameters. Raymond L. Sanford. 5c.

RP143. Rayon as a paper-making material. Merle B. Shaw and George W. Bickling. 5c.

RP144. A precision method of calibrating a tuning fork by comparison with a pendulum. Charles Moon. 5c.

RP145. The principles of measurement and of calculation in their application to the determination of diophantine quantities. Edward W. Washburn.

RP146. Durability tests of spar varnish. C. L. Came.

RP148. Applying the visual double-modulation type radio range to the airways. H. Diamond.

RP149. The absorption of sound at oblique angles of incidence. P. R. Heyl, V. L. Chrissler, and W. F. Snyder.

RP151. Heat capacities in some aqueous solutions. Frederick D. Rossini.

RP152. Preliminary investigations upon two cellulosic wastes as sources for xylose. W. L. Hall, C. S. Slater, and S. F. Acree. 5c.

RP155. Applying the radio range to the airways. F. G. Kear and W. E. Jackson.

RP156. New piezo oscillations with quartz cylinders cut along the optical axis. August Hund and R. B. Wright.

RP160. A tuned-reed course indicator for the 4 and 12 course aircraft radio range. F. W. Dunmore.

RP163. Reduction of data on mixture of color stimuli. Deane B. Judd.

RP164. Tensile properties of rail and some other steels at elevated temperatures. John R. Freeman, Jr., and G. Willard Quick. 20c.

RP165. A convenient form of Geiger tube counter. L. F. Curtiss. 5c.

RP166. Probability fluctuations in the rate of emission of α particles. L. F. Curtiss. 5c.

RP167. The sensitive surface of the Geiger tube electron counter. L. F. Curtiss. 5c.

RP168. Calorimetry of a fluid. N. S. Osborne. 5c.

RP169. The calibration of the "fingerhut" ionization chamber. Lauriston S. Taylor and George Singer. 5c.

RP170. An apparatus and method for determining the compressibility of a gas and for "supercompressibility". Howard S. Bean.

RP171. A new method of analyzing α-ray photographs. L. F. Curtiss. 5c.

RP172. The arc spectrum of bromine and its structure. C. C. Kiess and T. L. de Bruin. 10c.

RP175. Light scattering in liquids. R. M. Langer and William F. Meggers. 15c.

RP176. A comparison of the quinhydrone and hydrogen electrodes in solutions containing tannin. E. L. Wallace and John Beek, Jr.

RP182. Endurance properties of some special rail steels. John R. Freeman, Jr., and R. D. France. 10c.

Title page and contents for volume 4. 5c.

RESEARCH PAPERS FROM BUREAU OF STANDARDS JOURNAL OF RESEARCH, VOLUME 5, JULY—DECEMBER 1930

RP184. Resonance and quenching of the third principal series line of caesium. C. Boeckner. 5c.

RP185. Relationships between Rockwell and Brinell numbers. S. N. Petrenko.

RP186. Photo-ionization of caesium by line absorption. F. L. Mohler and C. Boeckner.

RP187. Regularities in the spectra of lutecium. William F. Meggers and Borden F. Scribner. 5c.

RP190. The preparation of fiber test sheets. M. B. Shaw, G. W. Bicking, and L. W. Snyder. 10c.

RP191. The Geiger tube electron counter. L. F. Curtiss. 5c.

RP194. Fire clays; some fundamental properties at several temperatures. R. A. Heindl and W. L. Pendergast.

RP195. A precise and rapid method of measuring frequencies from 5 to 200 cycles per second. N. P. Case.

RP197. Accelerated tests of asphalts. O. G. Strieter.

RP203. Phase equilibria in the system Cr$_2$O$_3$-SiO$_2$. E. N. Bunting.

RP206. Cutting tests with cemented tungsten carbide lathe tools. T. G. Digges.

RP207. Heat transfer through metal-inclosed insulation. M. S. Van Dusen.

RP208. Effects of gases on photo-ionization of caesium by line absorption. F. L. Mohler and C. Boeckner.

RP209. A calorimetric determination of thermal properties of saturated water and steam from 0° to 270°C. N. S. Osborne, H. F. Stimson, and E. F. Fiock. 20c.

RP259. The heat of formation of water. Frederick D. Rossini.

RP260. The heats of combustion of methane and carbon monoxide. Frederick D. Rossini.

RP263. Optimum use of material in biological assays. Warren W. Nicholas. 5c.

RP265. Determination of magnesium in Portland cement and similar materials by the use of 8-hydroxyquinoline. J. C. Redmond and H. A. Bright.

RP267. Determination of small quantities of volatile organic acids in sulphuric acid solutions. D. N. Craig. 5c.

RP271. Further studies of the X-ray standard ionization chamber diaphragm system. Lauriston S. Taylor and George Singer. 10c.

RP274. Probabilities of recombination into the 1S state of caesium. C. Boeckner. 10c.

RP275. Regularities in the second spectrum of xenon. C. J. Humphreys, T. L. de Bruin, and W. F. Meggers. 5c.

RP279. A method for the standardization of permeameters at high magnetizing forces. Raymond L. Sanford. 5c.

RP322. The arc spectrum of rhenium. William F. Meggers. 10c.
RP326. The freezing point of platinum. Wm. F. Roesser, F. R. Caldwell, and H. T. Wensel. 5c.
RP327. Special refractories for use at high temperature. Wm. H. Swanger and Frank R. Caldwell.

Title page and contents for volume 6. 5c.

RESEARCH PAPERS FROM BUREAU OF STANDARDS JOURNAL OF RESEARCH, VOLUME 7, JULY—DECEMBER 1931

RP336. A course indicator of pointer type of the visual radio range-beacon system. F. W. Dunmore.
RP337. The visible and ultra-violet absorption spectra of carotin and xanthophyll and the changes accompanying oxidation. H. J. McNicholas.
RP346. The determination of oxygen and nitrogen in irons and steels by the vacuum fusion method. H. C. Vacher and Louis Jordan. 10c.
RP350. Thermomagnetic investigation of tempering of quenched 0.75 per cent carbon steel. G. A. Ellinger. 10c.
RP351. Hyperfine structures in the first spectra of krypton and xenon. C. J. Humphreys. 5c.
RP354. The passage of gas through the walls of pyrometer protection tubes at high temperatures. William F. Roesser.
RP357. Aqueous solutions of ethylene glycol, glycerine, and sodium silicate as quenching media for steels. Thomas E. Hamill. 15c.

RP360. Isolation and determination of the cyclohexane in a midcontinent petroleum. Johannes H. Bruun and Mildred M. Hicks-Bruun. 5c.

RP361. Relation between the twist and certain properties of rayon yarns. Homer A. Hamm and Richard S. Cleveland. 5c.

RP362. The hydrolysis of chestnut and quebracho tanned leathers by sulphuric acid. E. L. Wallace and E. G. Lapham.

RP363. Correlation of certain soil characteristics with pipe line corrosion. I. A. Denison.

RP365. A correlated color temperature for illuminants. Raymond Davis. 10c.

RP368. The porosity of electroplated chromium coatings. W. Blum, W. P. Barrows, and A. Brenner.

RP369. The use of saturated ammonium chloride in the elimination of contact potentials. S. F. Acree and C. N. Murray. 5c.

RP375. Isolation and determination of methylcyclopentane in a mid-continent petroleum. Mildred M. Hicks-Bruun and Johannes H. Bruun. 5c.

RP376. The photographic emulsion; the silver ion-gelatin equilibrium. Burt H. Carroll and Donald Hubbard. 5c.

RP377. A general formula for the computation of colorimetric purity. Deane B. Judd. 5c.

RP378. Variation of photographic sensitivity with different light sources. Raymond Davis and Gerald Kent Neeland.

RP381. The decomposition of tricalcium silicate in the temperature range, 1,000° to 1,300°C. E. T. Carlson. 5c.

RP390. Investigations of Kennelly-Heaviside layer heights for frequencies between 1,600 and 8,650 kilocycles per second. T. R. Gilliland, G. W. Kenrick, and K. A. Norton. 10c.

RP393. Thermal expansions of gasolines from 0° to 30°C. C. S. Cragoe and E. E. Hill. 5c.

RP395. The effect of pH on the photo-chemical decomposition of silk. Milton Harris and Daniel A. Jessup. 5c.

Title page and contents for volume 7. 5c.

RESEARCH PAPERS FROM BUREAU OF STANDARDS JOURNAL OF RESEARCH, VOLUME 8, JANUARY—JUNE 1932

RP396. The preparation of crystalline methyl-d-gulosides by means of coordination compounds with calcium chloride. Horace S. Isbell. 5c.

RP399. A method for determining the volume changes occurring in metals during casting. C. M. Saeger, Jr., and E. J. Ash. 10c.

RP400. Registration of cathode rays by thin films of metals and metal compounds. Warren W. Nicholas and C. G. Malmberg. 5c.

RP401. Effect of casting temperatures and of additions of iron on bearing bronze (Cu80:Sn 10: Pb 10). C. E. Eggenschwiler. 10c.

RP404. An electrostatic voltmeter. Warren W. Nicholas. 5c.

RP405. The heats of combustion of methyl and ethyl alcohols. Frederick D. Rossini. 10c.

RP408. Tensile properties of rail steels at elevated temperatures. G. Willard Quick. 10c.

RP409. Resistance to impact of rail steels at elevated temperatures. G. Willard Quick. 5c.

RP410. Kaolins; effect of firing temperature on some of their physical properties. R. A. Heindl, W. L. Pendergast, and L. E. Mong. 5c.

RP412. Some studies of radio transmission over long paths made on the Byrd Antarctic Expedition. L. V. Berkner. 10c.

RP413. Phase equilibria in the system SiO2—ZnO—Al2O3. E. N. Bunting.

RP416. Heat of vaporization of water at 50°, 70°, and 90°C. E. F. Flock and D. C. Ginnings. 5c.

RP417. Note on international comparison of X-ray standards. Lauriston S. Taylor. 5c.

RP418. The course of the oxidation of the aldose sugars by bromine water. H. S. Isbell and C. S. Hudson. 5c.

RP419. Fluctuations of the rate of emission of α-particles for weak sources and large solid angles. L. F. Curtiss. 5c.

RP422. Accelerated weathering tests of soldered and tinned sheet copper. Peter R. Kosting. 10c.

RP423. The chromium oxide and the vanadium oxide band spectra. W. F. C. Ferguson. 5c.

RP424. Air density corrections for X-ray ionization chambers. Lauriston S. Taylor and George Singer. 5c.

RP425. The arc spectrum of phosphorus. C. C. Kiess. 10c.

A pycnometer for determining the volume change occurring at an electrode and its application to a cathode of silver chloride in a solution of potassium chloride. E. R. Smith.

RP431. Capacitance and power factor of a mica capacitor as measured at the Bureau of Standards and the National Physical Laboratory. Harvey L. Curtis, C. Matilda Sparks, L. Hartshorn, and N. F. Astbury. 5c.

RP432. Isolation and determination of normal heptane and of methylcyclohexane in a midcontinent petroleum (including a determination of the phase equilibrium diagram for the condensed system normal heptane-methylcyclohexane). Mildred M. Hicks-Bruun and Johannes H. Bruun. 5c.

RP434. A contribution relative to the structure of collagen. John Beek, Jr. 5c.

RP437. Simplified automatic Wilson chamber. L. F. Curtiss. 5c.

RP438. Isolation of normal decane from petroleum by distillation and equilibrium melting. Johannes H. Bruun and Mildred M. Hicks-Bruun. 5c.

RP439. A laboratory apparatus for the continuous extraction of liquids by low-boiling solvents. R. T. Leslie.

RP441. A study of the delta lactones formed by the oxidation of aldoses with bromine water. Horace S. Isbell. 5c.

RP442. Effect of antimony on the mechanical properties of a bearing bronze (Cu 80:Sn 10:Pb 10). C. E. Eggenschwiler. 5c.

RP444. An unrecognized property of the reversible pendulum. Paul R. Heyl. 5c.

RP446. A method for determining the most favorable design of gas burners. John H. Eiseman, Elmer R. Weaver, and Francis A. Smith.

RP451. The isoelectric point of wool. Milton Harris. 5c.

Title page and contents for volume 8. 7 p. 5c.

RESEARCH PAPERS FROM BUREAU OF STANDARDS JOURNAL OF RESEARCH, VOLUME 9, JULY—DECEMBER 1932

RP455. Power input and dissipation in the positive column of a caesium discharge. F. L. Mohler.

RP458. Note on the probable presence of 2,2-dimethylpentane in a midcontinent petroleum. Johannes H. Bruun and Mildred M. Hicks-Bruun. 5c.

RP462. Infrared spectra of helium. William F. Meggers and G. H. Dieke. 5c.

RP464. The influence of temperature on the evolution of hydrogen sulphide from vulcanized rubber. A. D. Cummings. 5c.

RP465. Some of the factors which affect the measurement of sound absorption. V. L. Chrisler and Catherine E. Miller.

RP466. The reciprocal spherical aberration of an optical system including higher orders. Harold F. Bennett. 5c.

RP467. An attachment for turning approximately spherical surfaces of small curvature on a lathe. I. C. Gardner.

RP468. Wave lengths and Zeeman effects in lanthanum spectra. William F. Meggers. 5c.

RP469. Note on the freezing point of "isooctane" (2,2,4-trimethylpentane). Johannes H. Bruun and Mildred M. Hicks-Bruun. 5c.

RP471. A new determination of the atomic weight of osmium. Raleigh Gilchrist. 5c.

RP473. Infra-red arc spectra photographed with xenocyanine. W. F. Meggers and C. C. Kiess. 5c.

RP474. Tensile properties of cast nickel-chromium-iron alloys and of some alloy steels at elevated temperatures. William Kahlbaum and Louis Jordan. 5c.

RP476. The structure of the chromic acid plating bath; the theory of chromium deposition. Charles Kasper.

RP478. Radiation from caesium and other metals bombarded by slow electrons. C. Boeckner.

RP479. A simplified precision formula for the inductance of a helix, with corrections for the lead-in-wires. Chester Snow.

RP481. Creep at elevated temperatures in chromium-vanadium steels containing tungsten or molybdenum. William Kahlbaum and Louis Jordan. 5c.

RP482. The synthesis, purification, and certain physical constants of the normal hydrocarbons from pentane to dodecane, of n-amyl bromide, and of n-nonyl bromide. B. J. Mair. 5c.

RP483. A study of some ceramic bodies of low absorption maturing at temperatures below 1,000°C. R. F. Geller and D. N. Evans.

RP484. The determination of magnesia in phosphate rock. James I. Hoffman. 5c.

RP485. Collisions of the first and second kind in the positive column of a caesium discharge. F. L. Mohler.

RP487. A calorimetric method for determining the intrinsic energy of a gas as a function of the pressure. Edward W. Washburn. 5c.

RP488. The photographic emulsion; variables in sensitization by dyes. B. H. Carroll and Donald Hubbard.

RP489. A method for the separation of rhodium from iridium and the gravimetric determination of these metals. Raleigh Gilchrist. 5c.

RP490. The isoelectric point of silk. Milton Harris. 5c.

RP493. The variation with angle of emission of the radiation from metals bombarded by slow electrons. C. Boeckner. 5c.

RP495. Analytical methods for the determination of levulose in crude products. R. F. Jackson, J. A. Mathews, and W. D. Chase. 5c.
RP496. Determination of alumina and silica in steel by the hydrochloric acid residue method. J. G. Thompson and J. S. Acken. 5c.
RP498. Analysis of weighted silk. R. T. Mease. 5c.
RP499. The heat of formation of hydrogen chloride and some related thermodynamic data. Frederick D. Rossini. 5c.
RP500. Thermal expansion of lead. Peter Hidnert and W. T. Sweeney. 5c.
RP501. Isolation of the three xylenes from an Oklahoma petroleum. Joseph D. White and F. W. Rose, Jr. 5c.
RP503. The calorimetric determination of the intrinsic energy of gases as a function of the pressure. Data on oxygen and its mixtures with carbon dioxide to 40 atmospheres, at 28°C. Frederick D. Rossini and Mikkel Frandsen. 5c.
RP505. The measurement of low-voltage X-ray intensities. Lauriston S. Taylor and C. F. Stoneburner. 5c.
RP506. A multirange potentiometer and its application to the measurement of small temperature differences. H. B. Brooks and A. W. Spinks. 5c.
RP507. The density of some soda-lime-silica glasses as a function of the composition. F. W. Glaze, J. C. Young, and A. N. Finn. 5c.
RP509. Deflection of cosmic rays by a magnetic field. L. F. Curtiss. 5c.
RP510. The system: CaO-B₂O₃. Elmer T. Carlson. 5c.
RP511. A metal-connected glass electrode. M. R. Thompson. 5c.
Title page and contents for volume 9. 7 p. 5c.

RESEARCH PAPERS FROM BUREAU OF STANDARDS JOURNAL OF RESEARCH, VOLUME 10, JANUARY—JUNE 1933

RP512. White-metal bearing alloys: mechanical properties at different temperatures and service tests. Harry K. Herschman and John L. Basil. 5c.
RP513. The cause and elimination of night effects in radio range-beacon reception. H. Diamond. 5c.
RP514. The heat capacity, heat of sublimation, and heat of solution of phosphorus pentoxide. Mikkel Frandsen. 5c.
RP515. The interference method of measuring thermal expansion. George E. Merritt. 5c.
RP516. Effect of lathe cutting conditions on the hardness of carbon and alloy steels. T. G. Digges. 5c.
RP518. Effect of service temperature conditions on the electromotive force of unsaturated portable standard cells. J. H. Park. 5c.
RP519. The Thomas recording gas calorimeter. R. S. Jessup. 5c.
RP521. Further description and analysis of the first spectrum of xenon. C. J. Humphreys and W. F. Meggers. 5c.
RP522. The elimination of background "noise" in sensitive pulse amplifiers. L. F. Curtiss. 5c.
RP523. The pressure of saturated water vapor in the range 100° to 374°C. N. S. Osborne, H. F. Stimson, E. F. Flock, and D. C. Ginnings. 10c.
RP524. Some fusion properties of ground coat enamels as influenced by composition. W. N. Harrison and B. J. Sweo. 5c.
RP526. Temperature effect and its elimination in Geiger-Müller tube counters. L. F. Curtiss. 5c.
RP528. Apparatus for comparison of length of gages. Charles Moon. 5c.
RP530. Reference tables for platinum to platinum-rhodium thermocouples. Wm. F. Roese and H. T. Wensel. 5c.

RP531. Temperature coefficient of the moduli of metals and alloys used as elastic elements. G. H. Keulegan and M. R. Houseman. 5c.

RP532. A magnetic balance for the inspection of austenitic steel. Raymond L. Sanford. 5c.

RP533. Determination of aluminum in nitriding steels by the use of 8-hydroxyquinoline. H. A. Bright and Robert M. Fowler. 5c.

RP534. The oxidation of alpha and beta glucose and a study of the isomeric forms of the sugar in solution. Horace S. Isbell and Ward Pigman. 5c.

RP435. Scattering of electrons by ions and the mobility of electrons in a caesium discharge. C. Boeckner and F. L. Mohler.

RP537. Thermoelectric properties of platinum-rhodium alloys. Frank R. Caldwell.

RP538. The vapor pressure of liquid and solid carbon dioxide. C. H. Meyers and M. S. Van Dusen.

RP540. Infrared spectra of neon, argon, and krypton. William F. Meggers and C. J. Humphreys. 5c.

RP542. 1,1-dimethylcyclopentane and 2-methylhexane in a midcontinent petroleum. Johannes H. Bruun and Mildred M. Hicks-Bruun. 5c.

RP543. The combination of silk and wool with positive and negative ions. Milton Harris. 5c.

RP545. Wind pressure on a model of the Empire State Building. Hugh L. Dryden and George C. Hill. 5c.

RP547. The influence of pH on the deterioration of vegetable-tanned leather by sulphuric acid. R. C. Bowker and E. L. Wallace. 5c.

RP548. An apparatus for magnetic testing at high magnetizing forces. Raymond L. Sanford and Evert G. Bennett. 5c.

RP549. Screw micrometer gages for rubber specimens. W. L. Holt. 5c.

RP552. Purification of hydrocarbons by crystallization from liquid methane. Isolation of 2-methylheptane from petroleum. R. T. Leslie. 5c.

RP554. Isolation of ethylbenzene from an Oklahoma petroleum. Joseph D. White and F. W. Rose, Jr. 5c.

RP555. The flexometer, an instrument for evaluating the flexural properties of cloth and similar materials. Herbert F. Schiefer. 10c.

RP558. Long-wave arc spectra of alkalis and alkaline earths. William F. Meggers. 5c.

RP559. The determination of stresses from strains on three intersecting gage lines and its application to actual tests. Wm. R. Osgood and Rolland G. Sturm.

RP560. Critical solution temperatures of mixtures of gasoline, ethyl alcohol, and water. Oscar C. Bridgeman and Dale Querfeld. 5c.

RP561. The compressometer, an instrument for evaluating the thickness, compressibility, and compressional resilience of textiles and similar materials. Herbert F. Schiefer. 10c.

RP562. The thermal expansion of refractories to 1,800°C. R. A. Heindl.

RP564. The infrared arc spectra of manganese and rhenium. William F. Meggers.

RP566. The viscosity of sulphuric-acid solutions used for battery electrolytes. G. W. Vinal and D. N. Craig. 5c.
RP567. Composition of grids for positive plates of storage batteries as a factor influencing the sulphation of negative plates. G. W. Vinal, D. N. Craig, and C. L. Snyder.

RP568. The freezing point of iridium. F. Henning and H. T. Wensel. 5c.

RP569. The precipitation and titration of magnesium oxyquinolate in the presence of calcium oxalate, and its application in the analysis of portland cement and similar silicates. John C. Redmond. 5c.

RP570. A new description and analysis of the arc spectrum of chlorine. C. C. Kiess. 5c.

RP571. The effect of gasoline volatility on the miscibility with ethyl alcohol. Oscar C. Bridgeman and Dale W. Querfeld. 5c.

Title page and contents for volume 10. 7 p. 5c.

RESEARCH PAPERS FROM BUREAU OF STANDARDS JOURNAL OF RESEARCH, VOLUME 11, JULY—DECEMBER 1933

RP573. An international comparison of temperature scales between 660° and 1,063°C. Wm. F. Roesser, F. H. Schofield, and H. A. Moser.

RP574. A study of some factors influencing the strength and stability of experimental papers made from two different sulphite pulps. Royal H. Rasch, Merle B. Shaw, and George W. Bicking. 5c.

RP575. Permissible curvature of prism surfaces and inaccuracy of collimation in precise minimum-deviation refractometry. L. W. Titon. 5c.

RP578. The present status of the standards of thermal radiation maintained by the Bureau of Standards. W. W. Coblenz and R. Stair. 5c.

RP579. Note on an improved chain-packed distilling column. Sylvester T. Schicktanz. 5c.

RP581. Phase synchronization in directive antenna arrays with particular application to the radio range beacon. F. G. Kear.

RP583. The effects of atmospheric moisture on the physical properties of vegetable and chrome tanned calf leathers. W. D. Evans and C. L. Critchfield. 5c.

RP584. The activity coefficients of hydroxyl ion in solutions of calcium hydroxide at 30°C. E. P. Flint and Lansing S. Wells. 5c.

RP586. The standard-cell comparator, a specialized potentiometer. H. B. Brooks. 5c.

RP587. The optical properties, densities, and solubilities of the normal formates of some metals of group II of the periodic system. F. W. Ashton, D. F. Houston, and C. P. Saylor.

RP588. Effect of glass containers on the electromotive force of Weston normal cells. G. W. Vinal and M. Langhorne Howard. 5c.

RP589. Preliminary list of terms for the arc spectrum of tantalum. C. C. Kiess and Harriet K. Kiess. 5c.

RP590. Thermal expansion of columbium. Peter Hidnert and H. S. Krider. 5c.

RP591. Aerodynamic characteristics of automobile models. R. H. Headl. 5c.

RP593. A method of providing course and quadrant identification with the radio range-beacon system. F. W. Dunmore.

RP595. Comparison of high voltage X-ray tubes. Lauriston S. Taylor, George Singer, and C. F. Stoneburner. 5c.

RP599. The second spectrum of krypton. T. L. de Bruin, C. J. Humphreys, and William F. Meggers. 5c.

RP604. The deposition of chromium from solutions of chromic and chromous salts. Charles Kasper.

RP605. The utility of the spark test as applied to commercial steels. R. W. Buz- zard. 15c.

RP606. The system liquid iron-carbon oxides. H. C. Vacher. 5c.

RP607. A simple calorimeter for heats of fusion. Data on the fusion of pseudo-cumene, mesitylene (α and β), hemimellitene, α- and m-xylene and on two transitions of hemimellitene. Frederick D. Rossini. 5c.

RP612. Wear resistance of natural stone flooring. D. W. Kessler. 5c.

RP613. Preparation and properties of aldonic acids and their lactones and basic calcium salts. Horace S. Isbell and Harriet L. Frush. 5c.

RP614. The isolation of mesitylene, pseudocumene, and hemimellitene from an Oklahoma petroleum. Beveridge J. Mair and Sylvester T. Schicktanz. 5c.

RP615. The attraction between coils in the Rayleigh current balance. Chester Snow.

RP616. Formula for specific volumes of saturated vapors. Cyril H. Meyers. 5c.

RP617. Infrared absorption spectra of some plant pigments. R. Stair and W. W. Coblenz. 5c.

RP618. Preparation of calcium lactobionate and lactobionic δ-lactone. Horace S. Isbell. 5c.

RP621. A radio direction finder for use on aircraft. Wilbur S. Hinman, Jr.

RP624. Arc spectrum of silicon in the red and infrared. C. C. Kiess.

RP625. Critical study of the determination of ethane by combustion over platinum in the presence of excess oxygen. Martin Shepherd and Joseph R. Branham. 5c.

Title page and contents for volume 11. 7 p. 5c.

RESEARCH PAPERS FROM BUREAU OF STANDARDS JOURNAL OF RESEARCH, VOLUME 12, JANUARY—JUNE 1934

RP634. A glass electrode potentiometer system for the determination of the pH values of weakly buffered solutions, such as natural and treated waters. John O. Burton, Harry Matheson, and S. F. Acree.

RP637. Influence of neighboring structures on the wind pressure on tall buildings. C. L. Harris. 5c.

RP641. A gamma-ray ionization chamber for use with a direct-current amplifier. L. F. Curtiss. 5c.

RP642. A sedimentation method for the determination of the particle size of finely divided materials (such as hydrated lime). Dana L. Bishop.

RP643. A critical test for the purity of gases. Martin Shepherd. 5c.

RP648. Note on phase equilibria in the system Na₂O-TiO₂. Edward W. Washburn and Elmer N. Bunting. 5c.

RP650. Some physical properties of platinum-rhodium alloys. J. S. Acken. 5c.

RP652. Filters for producing the color of the equal-energy stimulus. Raymond Davis and K. S. Gibson. 5c.

RP653. Statistical investigation of the uniformity of grades of 1,000 Lovibond red glasses. Geraldine K. Walker.

RP655. Methods for the separation of platinum, palladium, rhodium, and iridium from one another and for their gravimetric determination. Raleigh Gilchrist.

RP657. Some experiments with pure-metal resistance standards. James L. Thomas. 5c.

RP658. Reproducibility of the ice point. James L. Thomas. 5c.

RP660. Sources of error in measuring opacity of paper by the contrast-ratio method. Deane B. Judd.

RP663. Portable detector for radium. L. F. Curtiss. 5c.

RP664. Determination of small amounts of zinc in steels and irons. H. A. Bright. 5c.

RP665. Thermal expansion of bearing bronzes. Peter Hidnert. 5c.

RP667. Thermal expansions of some soda-lime-silica glasses as functions of the composition. B. C. Schmid, A. N. Finn, and J. C. Young.

RP668. Apparatus for measuring thermal conductivity of metals up to 600°C. M. S. Van Dusen and S. M. Shelton.
RP669. Thermal conductivity of some irons and steels over the temperature range 100° to 500°C. S. M. Shelton. 5c.

RP671. First spectrum of tantalum. C. C. Kiess and E. Z. Stowell. 5c.

RP672. Some optical and crystallographical properties of the alkali zinc uranyl acetates. Herbert Insley and Francis W. Glaze.

RP673. The carbonization process: A study of the system wool — sulphuric-acid — water. Milton Harris. 5c.

RP674. Compression cutting test for rubber. W. L. Holt. 5c.

RP675. Wear of dies for extruding plastic clay. R. T. Stull. 5c.

RP676. Freezing point of rhodium. Wm. F. Roeser and H. T. Wensel. 5c.

RP682. Effect of experimental conditions on the measurement of the air permeability of paper. F. T. Carson.

RP689. Iodine number of wool: A method for determining the action of various chemical reagents on wool and other proteins. Milton Harris, Harvey A. Neville, and William C. Fritz. 5c.

Title page and contents for volume 12. 7 p. 5c.

RESEARCH PAPERS FROM JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, VOLUME 13, JULY—DECEMBER 1934

RP691. A formula and tables for the pressure of saturated water vapor in the range 0° to 374°C. Nathan S. Osborne and Cyril H. Meyers. 5c.

RP692. Heats of combustion and of formation of the normal paraffin hydrocarbons in the gaseous state, and the energies of their atomic linkages. Frederick D. Rossini.

RP693. Thermal expansion of artificial graphite and carbon. Peter Hidnert. 5c.

RP695. Variations in refractive index of CO₂-free dry air and a statistical correlation with solar activity. L. W. Tilton. 5c.

RP697. Photochemical decomposition of silk. Milton Harris. 5c.

RP698. Contribution to the design of compression members in aircraft. Wm. R. Osgood.

RP700. Dependence of sound absorption upon the area and distribution of the absorbent material. V. L. Christer. 5c.

RP701. Heats of combustion and of formation of the normal aliphatic alcohols in the gaseous and liquid states, and the energies of their atomic linkages. Frederick D. Rossini.

RP702. A brightness meter for luminous preparations. L. F. Curtiss. 5c.

RP703. Refractive index and dispersion of normal and heavy water. L. W. Tilton and J. K. Taylor. 5c.

RP742. Effect of cold-rolling on the indentation hardness of copper. John G. Thompson. 5c.

RP743. Calibrations of the line standards of length of the National Bureau of Standards. Lewis V. Judson and Benjamin L. Page. 5c.

RP744. Ultraviolet transmission changes in glass as a function of the wave length of the radiation stimulus. W. W. Coblenz and R. Stair. 5c.

RP745. Isolation of a nonanaphthene from an Oklahoma petroleum. Joseph D. White and F. W. Rose, Jr. 5c.

RP747. Young's modulus of elasticity at several temperatures for some refractories of varying silica content. Raymond A. Heindl and William L. Pendergast. 5c.

RP748. Comparison of the ground-plane and image methods for representing ground effect in tests on vehicle models. Roy H. Heald. 5c.

RP749. Air forces and yawing moments for three automobile models. Roy H. Heald. 5c.

RP751. Photoelastic properties of soft, vulcanized rubber. Wilfred E. Thibodeau and Archibald T. McPherson. 5c.

Title page and contents for volume 13. 7 p. 5c.

RESEARCH PAPERS FROM JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, VOLUME 14, JANUARY—JUNE 1935

RP755. Interference measurements in the infrared arc spectrum of iron. William F. Meggers. 5c.

RP757. Use of the pipette method in the fineness test of molding sand. Clarence E. Jackson and C. M. Saeger, Jr. 5c.

RP758. Moisture relations of aircraft fabrics. Gordon M. Kline. 5c.

RP760. Specific volume, compressibility, and volume thermal expansivity of rubber-sulphur compounds. Arnold H. Scott. 5c.

RP762. Index of refraction, density, and thermal expansion of some soda-alumina-silica glasses as functions of the composition. Conrad A. Faick, John C. Young, Donald Hubbard, and Alfred N. Finn.

RP765. Combining weight of collagen. John Beek, Jr. 5c.

RP768. Methods of testing thermocouples and thermocouple materials. Wm. F. Roeser and H. T. Wensel. 10c.

RP770. Optical rotations and other properties of the lead and calcium aldonates. Horace S. Isbell. 5c.

RP774. A precision cathetometer. Charles Moon. 5c.

RP780. Recent studies of the ionosphere. Samuel S. Kirby and Elbert B. Judson.

RP781. Infrared spectra of noble gases (10500 to 13000 A). William F. Meggers.

RP783. Arc spectrum of copper in the infrared. C. C. Kliess. 5c.

RP784. Thermal expansion of monocristalline and polycristalline antimony. Peter Hidnert. 5c.

RP785. A filter for obtaining light at wave length 560 mμ. Kasson S. Gibson. 5c.

RP786. Refractive index of rubber. Archibald T. McPherson and Arthur D. Cummings. 5c.

RP790. A method for finding the roots of equation f(x)=0, where f is analytic. Charles L. Critchfield and John Beek, Jr. 5c.

RP792. Thermal behavior of the kaolin minerals. Herbert Insley and Raymond H. Ewell.

RP793. Multiplets and terms in the first two spectra of columbium. William F. Meggers and Bourdon F. Scribner. 5c.

RP796. An apparatus for measuring the boiling points of lubricating oils and other compounds of high molecular weight at reduced pressures. Sylvester T. Schicketanz.

RP797. Mechanism of chromium deposition from the chromic acid bath. Charles Kasper.

RP800. Recent sound-transmission measurements at the National Bureau of Standards. Vivian L. Chrisciler and Wilbert F. Snyder.

RP801. Selective adsorption from soap solutions. Harvey A. Neville and Milton Harris. 5c.

RP802. Effect of sulphuric acid on chrome-tanned leather. Everett L. Wallace, John Beek, Jr., and Charles L. Critchfield. 5c.

RP803. Atmospheric exposure tests on nonferrous screen wire cloth. G. Willard Quick. 10c.

Title page and contents for volume 14. 7 p. 5c.

RESEARCH PAPERS FROM JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, VOLUME 15, JULY—DECEMBER 1935

RP805. Method for measuring the pH of leather, using a simple glass electrode assembly. Everett L. Wallace. 5c.

RP806. Effect of pressure on the dielectric constant, power factor, and conductivity of rubber-sulphur compounds. Arnold H. Scott. 5c.

65
RP808. Separation of a dimethylcyclohexane fraction from a midcontinent petroleum. Robert T. Leslie. 5c.

RP810. Effect of alkalies on wool. Milton Harris.

RP811. Influence of sulphonated cod-liver oil on the deterioration of vegetable-tanned leathers by sulphuric acid. Everett L. Wallace, Charles L. Critchfield, and John Beek, Jr. 5c.

RP812. Infrared arc spectrum of chromium. C. C. Kiess. 5c.

RP814. A thin cell for use in determining the refractive indices of crystal grains. Charles Proffer Saylor. 5c.

RP815. Color and spectral transmittance of vegetable oils. Harry J. McNicholas. 5c.

RP817. Isolation of ethylcyclohexane from a midcontinent petroleum. Frank W. Rose, Jr. and Joseph D. White. 5c.

RP818. Effect of protective coatings on the absorption of moisture by gelatin-latex gas-cell fabrics. David F. Houston. 5c.

RP820. Fractionation of the isopes of oxygen in a commercial electrolyzer — a correction. Edgar R. Smith and Mieczyslaw Wojciechowski. 5c.

RP823. Purification of gallium by fractional crystallization of the metal. James I. Hoffman and Bourdon F. Scribner. 5c.

RP825. Heats of vaporization of eight gasolines. Ralph S. Jessup. 5c.

RP826. Mechanical properties of cotton yarns. Herbert F. Schieber and Daniel H. Taft. 5c.

RP827. A study of sagger clays and sagger bodies. Raymond A. Heindl. 5c.

RP830. Infrared absorption spectra of plant and animal tissue and of various other substances. R. Stair and W. W. Coblentz. 5c.

RP832. Yield and purity of levulose derived from the calcium levulate process. Richard F. Jackson and Joseph A. Mathews. 5c.

RP833. Heat of combustion of isobutane. Frederick D. Rossini. 5c.

RP834. Comparative wear of chrome-tanned, vegetable-tanned, and retanned sole leather. Roy C. Bowker and Warren E. Emley. 5c.

RP837. Hardening characteristics and other properties of commercial one-percent carbon tool steels. T. G. Digges and Louis Jordan. 5c.

RP841. The difference in vapor pressures of ortho- and para-deuterium. F. G. Brickwedde, R. B. Scott, and H. S. Taylor. 5c.

RP844. Heat capacity, entropy, and free energy of rubber hydrocarbon. Norman Bekkedahl and Harry Matheson. 5c.

RP845. Determination of magnetic hysteresis with the Fahy simplex permeameter. Raymond L. Sanford and Evert G. Bennett. 5c.

RP846. Deterioration of vegetable-tanned leathers containing sulphuric acid and glucose. Everett L. Wallace and Joseph R. Kanagy. 5c.

RP847. The Priest-Lange reflectometer applied to nearly white porcelain enamels. Irwin G. Priest (Adapted for publication by Deane B. Judd). 5c.

RP850. Effect of humidity in hot-wire anemometry. Galen B. Schubauer. 5c.

RP851. Determination of principal stresses from strains on four intersecting gage lines 45° apart. Wm. R. Osgood.

RP856. Unicontrol radio receiver for ultra high frequencies, using concentric lines as interstage couplers. Francis W. Dunmore.

Title page and contents for volume 15. 7 p. 5c.

RESEARCH PAPERS FROM JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, VOLUME 16, JANUARY—JUNE 1936

RP860. A summary of information on the preparation and properties of pure iron. John G. Thompson and Harold E. Cleaves. 5c.

RP862. Effect of number of warp and filling yarns per inch and some other elements of construction on the properties of cloth. Herbert F. Schiefer, Daniel H. Taft, and John W. Porter.

RP865. Note on the guarded-field X-ray ionization chamber. Lauriston S. Taylor and George Singer. 5c.

RP866. Mesle's chord method for measuring the thickness of metal coatings. William Blum and Abner Brenner. 5c.

RP869. Reversal temperature and population of excited states in the cesium discharge. Fred L. Mohler. 5c.

RP870. Absorption of X-rays by lead glasses and lead-barium glasses. George Singer. 5c.

RP874. Radio field-intensity and distance characteristics of a high, vertical broadcast antenna. Samuel S. Kirby. 5c.

RP881. Arc and spark spectra of columbium. William F. Meggers and Arthur S. King. 5c.
RP888. A study of the weathering quality of roofing felts made from various fibers. O. G. Strieter.
RP889. Calculation of the concentration and dissociation constant of each acid group in a mixture from the pH titration curve of the mixture. J. O. Burton and S. F. Acree.
RP890. Thermal expansion of copper-beryllium alloys. Peter Hidnert.
RP894. An alternating-current magnetic comparator and the testing of tool-resisting prison bars. Raymond L. Sanford.
RP898. Third spectrum of xenon. C. J. Humphreys.
Title page and contents for volume 17. 7 p. 5c.

RESEARCH PAPERS FROM JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, VOLUME 17, JULY—DECEMBER 1936

RP899. Distribution of the energy in the extreme ultraviolet of the solar spectrum. W. W. Coblentz and R. Stair. 5c.
RP901. Intensity distribution in the line emission spectrum of cesium. Fred L. Mohler.
RP905. Drop of potential in the metallic electrodes of certain electrolytic cells. Chester Snow.
RP906. Term analysis of the first spectrum of vanadium (V1). William F. Meggers and Henry Norris Russell.
RP907. Experimental study of the scour of a sandy river bed by clear and muddy water. Chilton A. Wright.
RP909. Soluble decomposition products in aged vegetable-tanned leathers. Joseph R. Kanagy. 5c.

RP910. Distribution of compounds in portland cement. J. Arthur Swenson and E. P. Flint. 5c.

RP911. The system K₂O-PbO-SiO₂. R. F. Geller and E. N. Bunting. 5c.

RP913. Comparison of data on the ionosphere, sunspots, and terrestrial magnetism. Elbert B. Judson.

RP914. Preparation and properties of calcium lactobionate-calcium bromide. Horace S. Isbell. 5c.

RP915. Empirical relation between the atomic dimensions and the melting and sublimation points of the noble gases, halogens, and elements of the sulphur group. D. H. Brauns. 5c.

RP916. The French sugar scale. Frederick Bates and Francis P. Phelps. 5c.

RP917. Structural characteristics of some constituents of portland cement clinker. Herbert Insley. 5c.

RP918. Electrolytic measurement of the corrosiveness of soils. I. A. Denison.

RP919. Thermal control in minimum-deviation refractometry and temperature coefficients for a medium flint glass. Leroy W. Tilton. 5c.

RP921. Ebulliometric and tonometric measurements on normal aliphatic hydrocarbons. Mieczyslaw Wojciechowski. 5c.

RP922. Boiling point of ethyl ether and its relation to pressure. Mieczyslaw Wojciechowski. 5c.

RP924. Ionization of air by Lenard rays. Lauriston S. Taylor. 5c.

RP925. Harmonic method of intercomparing the oscillators of the national standard of radio frequency. Evan G. Lapham. 5c.

RP927. Time factors in the ionization of carbon disulphide by X-rays. Lauriston S. Taylor. 10c.

RP930. Effects of corrections for liquid-junction potentials of saturated calomel electrodes on dissociation constants obtained by electrometric titration. Walter J. Hamer and S. F. Acree. 5c.

RP932. Difference in atomic weights of oxygen from air and from water. Edgar R. Smith and Harry Matheson. 5c.

RP933. Heat of hydrogenation of ethylene. Frederick D. Rossini. 5c.

RP934. Accurate representation of refractive index of distilled water as a function of wave length. Leroy W. Tilton. 5c.

RP935. Inks for recording instruments. G. E. Waters.

RP938. Thermal expansion of lead-antimony alloys. Peter Hidnert. 10c.

RP940. Ebulliometric and tonometric study of normal aliphatic alcohols. Mieczyslaw Wojciechowski. 5c.

RP941. The system lime-boric oxide-silica. E. P. Flint and Lansing S. Wells.

RP942. Care of filmslides and motion-picture films in libraries. Charles G. Weber and John R. Hill. 5c.

RP943. Hydrocarbons in the fraction of a midcontinent petroleum distilling between 115° and 124°C. Robert T. Leslie. 10c.

RP944. Estimation of chromaticity differences and nearest color temperature on the standard 1931 ICI colorimetric coordinate system. Deane B. Judd. 5c.

RP948. Electron concentration and spectral intensity distribution in a cesium discharge. Fred L. Mohler. 5c.

RP952. Differences in limes as reflected in certain properties of masonry mortars. Lansing S. Wells, Dana L. Bishop, and David Watstein. 5c.

RP955. Isolation of an isononane from petroleum — Its fractionation from naphthenes by distillation with acetic acid. Joseph D. White and Frank W. Rose, Jr. 5c.

RP956. Selection of colors for signal lights. Harry J. McNicholas. 10c.

Title page and contents for volume 17. 7 p. 5c.

RESEARCH PAPERS FROM JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, VOLUME 18, JANUARY—JUNE 1937

RP959. A microburette for testing the absorptiveness of thin paper. F. T. Carson. 5c.

RP960. Thermal expansion of cemented tungsten carbide. Peter Hidnert. 5c.

RP966. Heats of combustion of the liquid normal paraffin hydrocarbons from hexane to dodecane. Ralph S. Jessup. 5c.

RP967. Separation of constant-boiling mixtures of naphthene and paraffin hydrocarbons by distillation with acetic acid. Sylvester T. Schicktanz. 5c.

RP968. Determination of sulphur occurring as sulphide in portland cement. Harry A. Bright.

RP971. Accurate representation of the refractivity and density of distilled water as a function of temperature. Leroy W. Tilton and John K. Taylor. 5c.

RP973. Simplified determination of resin in papers and pulps. Herbert F. Launer. 5c.

RP974. Permeability to moisture of synthetic resin finishes for aircraft. Gordon M. Kline. 5c.

RP976. Cooperative study of methods for the determination of oxygen in steel. John G. Thompson, Herbert C. Vacher, and Harry A. Bright. 10c.

RP977. A new phenomenon in the superconducting transition of tantalum and of tin. Francis B. Silsbee, Russell B. Scott, and Ferdinand G. Brickwedde. 5c.

RP978. Optical rotation and atomic dimension for the four optically active 1-halo-gen-2-methylbutanes. Dirk H. Brauns. 5c.

70
RP979. Simplified volumetric determination of alpha, beta, and gamma cellulose in pulps and papers. Herbert F. Launer. 5c.

RP980. Reaction of wool with strong solutions of sulfuric acid. Milton Harris, Ralph Mease, and Henry Rutherford. 5c.

RP981. Performance characteristics of a water current meter in water and in air. Galen B. Schubauer and Martin A. Mason. 5c.

RP983. Calorimetric determination of the thermodynamic properties of saturated water in both the liquid and gaseous states from 100° to 374°C. N. S. Osborne, H. F. Stimson, and D. C. Ginnings. 10c.

RP984. Precision camera for testing lenses. Irvine C. Gardner and Frank A. Case. 10c.

RP985. Boiling-point—composition diagram of the system dioxane-water. Edgar R. Smith and Mieczyslaw Wojciechowski. 5c.

RP986. "Camera finish" at the race track. Irvine C. Gardner. 5c.

RP987. Studies on a portion of the system CaO—Al₂O₃—Fe₂O₃. Howard F. Murdoch. 5c.

RP990. Configuration of the pyranoses in relation to their properties and nomenclature. Horace S. Isbell. 10c.

RP992. Interference measurements of wave lengths in the ultraviolet spectrum of iron. William F. Meggars and Curtis J. Humphreys. 10c.

RP993. Effect of sizing, weaving, and abrasion on the physical properties of cotton yarn. Walter T. Schreiber, Martin N. V. Geib, and Omar C. Moore. 5c.

RP995. The system PbO-B₂O₃. R. F. Geller and E. N. Bunting. 5c.

RP996. Preparation of iron oxide as a source of high-purity iron. Harold E. Cleaves and John G. Thompson. 5c.

RP1002. Accelerated weathering tests of mineral-surfaced asphalt shingles. Hubert R. Snoke and Braxton E. Gallup. 10c.

RP1003. Compressibility of fused-quartz glass at atmospheric pressure. Walter B. Emerson. 10c.

RP1005. Compensation of strain gages for vibration and impact. William M. Bleakney. 5c.

Title page and contents for volume 18. 7 p. 5c.

RESEARCH PAPERS FROM JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, VOLUME 19, JULY—DECEMBER 1937

RP1006. Experiments with the underground ultra-high-frequency antenna for airplane landing beam. Harry Diamond and Francis W. Dunmore. 10c.

RP1007. Some properties and tests of traffic or zone paints. Eugene F. Hickson. 10c.

RP1008. Arc and spark spectra of lutecium. William F. Meggers and Bourdon F. Scribner. 5c.

RP1012. Nature of the acid-dyeing process. Arthur L. Smith and Milton Harris. 5c.

RP1014. Gases in some optical and other glasses. Clarence Hahner, George Q. Voigt, and Alfred N. Finn. 5c.

RP1017. Infrared absorption of nineteen hydrocarbons, including ten of high molecular weight. Frank W. W. Rose, Jr. 5c.

RP1018. Temperature and hysteresis errors in calomel half-cells. Baker Wingfield and S. F. Areee. 5c.

RP1019. Device for testing haemacytometers and other pipettes of small capacity. Elmer L. Peffer. 5c.

RP1020. Permeability of organic polysulphide resins to hydrogen. Theron P. Sager. 5c.

RP1021. β-d-talose and d-talose acetates and orthoesters. William Ward Pigman and Horace S. Isbell. 5c.

RP1023. Molecular volumes and expansivities of liquid normal hydrogen and parahydrogen. Russell B. Scott and Ferdinand G. Brickwedde. 5c.

RP1024. Calorimetric determination of the heats of combustion of ethylene and propylene. Frederick D. Rossini and John W. Knowlton. 5c.

RP1027. Paraffin hydrocarbons isolated from crude synthetic isoctane (2,2,4-trimethylpentane). Donald B. Brooks, Robetta B. Cleaton, and Frank R. Carter. 5c.

RP1028. Heats of combustion and of formation of the normal olefin (alkene-1) hydrocarbons in the gaseous state. Frederick D. Rossini and John W. Knowlton.

RP1029. Measurements of certain physicochemical constants of benzene. Mieczyslaw Wojciechowski. 5c.

RP1030. Deformation of Young’s modulus of fire-clay brick in flexure at 1,220°C. Raymond A. Heindl and William L. Pendergast. 10c.

RP1033. Separation of the three methyloctanes from midcontinent petroleum. Joseph D. White and Augustus R. Glasgow, Jr. 5c.

RP1034. Graphical computation of stresses from strain data. Ambrose H. Stang and Martin Greenspan. 10c.

RP1036. Recombination of ions in the afterglow of a cesium discharge. Fred L. Mohler. 5c.

RP1037. Journal-bearing design as related to maximum loads, speeds, and operating temperatures. Samuel A. McKee. 5c.

RP1039. X-ray diffraction patterns of sol, gel, and total rubber when stretched, and when crystallized by freezing and from solutions. George L. Clark, Enno Wolthuis, and W. Harold Smith. 10c.

RP1042. Service-test results of titanium-treated and silicon-treated steel rails. G. Willard Quick. 5c.

RP1043. Stress-strain characteristics of wool as related to its chemical constitution. Arnold M. Sookne and Milton Harris. 5c.
RP1044. Entropy of isoprene from heat-capacity measurements. Norman Bekkedahl and Lawrence A. Wood. 5c.

RP1045. Recombination in the afterglow of a mercury discharge. Fred L. Mohler. 5c.

RP1047. Evaluation of crush-resistant finishing treatments for fabrics. Herbert F. Schiefer. 5c.

RP1050. Method and apparatus for the rapid conversion of deuterium oxide into deuterium. John W. Knowlton and Frederick D. Rossini. 5c.

RP1051. Dimensional changes in aerial photographic films and papers. Raymond Davis and Emory J. Stovall, Jr. 5c.

RP1052. Guloneptonic acids and α-d-α-guloseptose. Horace S. Isbell. 5c.

RP1053. Arc and spark spectra of ytterbium. William F. Meggers and Bourdon F. Scribner. 5c.

RP1055. An improved apparatus for measuring the thermal transmission of textiles. Richard S. Cleveland. 5c.

RP1057. Use of arsenious oxide in the standardization of solutions of potassium permanganate. Harry A. Bright. 5c.

Title page and contents for volume 19. 7 p. 5c.

RESEARCH PAPERS FROM JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, VOLUME 20, JANUARY—JUNE 1938

RP1061. Interference measurements in the first spectra of neon, argon, and krypton between 4812 and 3319 A. Curtis J. Humphreys. 10c.

RP1062. Infrared spectra of iron, titanium, and carbon. Carl C. Kiess. 5c.

RP1064. Some "soft" glazes of low thermal expansion. R. F. Genner, E. N. Bunting, and A. S. Creamer. 5c.

RP1065. Strength, water absorption, and resistance to freezing and thawing of sand-lime brick. John W. McBurney and Allan R. Eberle. 5c.

RP1066. Approximate glass content of commercial portland cement clinker. William Lerch. 5c.

RP1067. A laboratory extraction apparatus and its use in separating a lubricating-oil fraction with acetic acid. Sylvester T. Schickantz. 5c.

RP1068. Volumetric determination of alpha-, beta-, and gamma-cellulose in pulps, and in papers containing sizing, filler, and other materials. Herbert F. Launer. 5c.

RP1069. Bromine oxidation and mutarotation measurements with α-d-β-mannoheptose and α-d-α-gulohexose. Horace S. Isbell. 5c.

RP1070. Some experiments at radio frequencies on superconductors. Francis B. Silsbee, Ferdinand G. Brickwedde, and Russell B. Scott. 5c.

RP1072. Quantitative analysis, with respect to the component structural groups, of the infrared (1 to 2/u) molal absorptive indices of 55 hydrocarbons. Frank W. Rose, Jr. 10c.

RP1073. Weathering tests on filled coating asphalts. C. G. Strieter. 10c.

RP1074. Minor constituents in portland cement clinker. Herbert Insley and Howard F. McMurdie. 10c.

RP1078. An absolute electrometer for the measurement of high alternating voltages. Herbert B. Brooks, Francis M. Defandorf, and Francis B. Silsbee. 15c.
RP1079. A transformer method for measuring high alternating voltages and its comparison with an absolute electrometer. Francis B. Silsbee and Francis M. Defandorf. 10c.
RP1080. Reference tables for iron-constantan and copper-constantan thermocouples. William F. Roeser and Andrew I. Dahl. 5c.
RP1081. Magnetic method for measuring the thickness of nonmagnetic coatings on iron and steel. Abner Brenner. 5c.
RP1083. Photoelastic determination of stresses around a circular inclusion in rubber. Wilfred E. Thibodeau and Lawrence A. Wood. 5c.
RP1085. Refractive index and dispersion of distilled water for visible radiation, at temperatures 0° to 60°C. Leroy W. Tilton and John K. Taylor. 15c.
RP1087. Quick-drying stamp-pad inks. C. E. Waters. 5c.
RP1089. Detection of oxidation in wool. Henry A. Rutherford and Milton Harris. 5c.
RP1090. Reaction of wool with hydrogen peroxide. Henry A. Rutherford and Milton Harris. 5c.
RP1092. Effect of carbon on the critical cooling rate of high-purity iron-carbon alloys and plain carbon steels. Thomas G. Digges. 10c.
RP1094. Electromotive force of saturated Weston standard cells containing deuterium oxide. Langborne H. Bickwedde and George W. Vinal. 5c.
RP1097. Boiling points of benzene, ethylene chloride, n-heptane, and 2,2,4-trimethylpentane over the range 660- to 860-mm pressure. Edgar Reynolds Smith and Harry Matheson. 5c.
RP1105. Supercooling and freezing of water. N. Ernest Dorsey.
RP1108. Reproducibility of the silver-silver chloride electrode. Edgar Reynolds Smith and John Keenan Taylor. 5c.
RP1109. Influence of copper and iron salts on the behavior of leather in the oxygen bomb. Joseph R. Kanagy. 5c.

Title page and contents for volume 20. 7 p. 5c.
RP1111. Measurement of supervoltage X-rays with the free-air ionization chamber. Lauriston S. Taylor, George Singer, and Arvid L. Charlton. 10c.
RP1119. Combination of hydrochloric acid and sodium hydroxide with hide, tendon, and bone collagen. John Beek, Jr. 5c.
RP1122. Separation of isopropylbenzene from a midcontinent petroleum by adsorption with silica gel and distillation with acetic acid. Joseph D. White and Frank W. Rose, Jr. 5c.
RP1123. Separation, by distillation with acetic acid, of the aromatic hydrocarbons from the fraction of a midcontinent petroleum boiling between 154° and 162°C. Frank W. Rose, Jr., and Joseph D. White. 5c.
RP1124. Extension and revision of the arc spectrum of silicon. Carl C. Kiess. 5c.
RP1125. Preliminary lists of terms for the arc and spark spectra of tungsten. Donald D. Laun. 5c.
RP1126. Electrolytic resistors for direct-current applications in measuring temperatures. D. Norman Craig. 10c.
RP1127. Effect of glass content upon the heat of hydration of Portland cement. William Lerch. 10c.
RP1128. Accelerated aging of leather in the oxygen bomb at 100°C. Joseph R. Kanagy. 5c.
RP1129. Optical and dimensional changes which accompany the freezing and melting of Hevea rubber. W. Harold Smith and Charles Proffer Saylor. 10c.
RP1131. Phase equilibria studies on mixtures of the compounds 4CaO.Al₂O₃.Fe₂O₃—2CaO.Fe₂O₃—K₂O.Al₂O₃. William C. Taylor. 5c.
RP1132. Quantitative formation of furfural from xylose. Elizabeth E. Hughes and S. F. Acree. 5c.
RP1133. Surface tension of vitreous enamel frits at and near firing temperatures. William N. Harrison and Dwight G. Moore. 10c.
RP1136. Production of accurate one-second time intervals. William D. George. 10c.
RP1140. Heats of combustion of diamond and of graphite. Ralph S. Jessup. 5c.
RP1141. Heat and free energy of formation of carbon dioxide, and of the transition between graphite and diamond. Frederick D. Rossini, and Ralph S. Jessup. 5c.

RP1146. Effect of purification treatments on cotton and rayon. Ruby K. Worner and Ralph T. Mease. 5c.

RP1148. Calculation of stresses and natural frequencies for a rotating propeller blade vibrating flexurally. Walter Ramberg and Sam Levy. 10c.

RP1150. Cesium discharge under conditions of nearly complete ionization. Fred L. Mohler. 10c.

RP1151. Laws of turbulent flow in open channels. Garbis H. Keulegan. 10c.

RP1153. Expansion effects on the inversion of silica crystals in certain devitrified glasses. Arthur Q. Tool and James B. Saunders. 5c.

RP1154. Portable Geiger counter unit. Leon F. Curtiss. 5c.

RP1155. Concrete as a protective material against high-voltage X-rays. George Singer, Lauriston S. Taylor, and Arvid L. Charlton. 10c.

RP1157. Correlation of an electrolytic corrosion test with the actual corrosiveness of soils. Irving A. Denison and Robert B. Darnielle. 5c.

RP1160. Properties of purified normal heptane and isooctane (2,2,4-trimethylpentane). Donald B. Brooks. 5c.

RP1162. Resistivity and power input of the cesium discharge at high current density. Fred L. Mohler. 5c.

Title page and contents for volume 21. 7 p.

RESEARCH PAPERS FROM JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, VOLUME 22, JANUARY—JUNE 1939

RP1164. Second spectrum of xenon. Curtis J. Humphreys. 10c.

RP1165. Solubility of lead sulfate in solutions of sulfuric acid, determined by dithizon with a photronic cell. D. Norman Craig and George W. Vinal. 5c.

RP1166. Permeability of neoprene to gases. Theron P. Sager and Max Sucher. 5c.

RP1173. Separation of 1,2,4-trimethylcyclohexane and an isononane from a mid-continent petroleum. Joseph D. White and Augustus R. Glasgow, Jr. 10c.

RP1174. Summary of an investigation of the composition of a midcontinent petroleum distillate, boiling between 100° and 130°C. Robert T. Leslie. 10c.

RP1177. Relation of camera error to photogrammetric mapping. Irvine C. Gardner. 10c.

RP1178. Mutual inductance and force between two coaxial helical wires. Chester Snow. 10c.

RP1181. A precision radio instrument for transmitting measurements of ultraviolet intensities from unmanned balloons to a ground station. R. Stair. 10c.

RP1184. 2,6-Dimethylheptane: Its synthesis, properties, and comparison with an isononane from petroleum. Joseph D. White, Frank W. Rose, Jr., George Caingaert, and Harold Soros. 6c.

RP1185. Separation of hydrocarbons of high molecular weight by adsorption on silica gel. Charles B. Willingham. 5c.

RP1186. Relation between moisture content and flow-point pressure of plastic clay. Ray T. Stull and Paul V. Johnson. 5c.

RP1187. Effect of the solubility of glass on the behavior of the glass electrode. Donald Hubbard, Edgar H. Hamilton, and Alfred N. Finn. 5c.

RP1188. Establishment of a temperature scale for the calibration of thermometers between 14° and 83°K. Harold J. Hoge and Ferdinand G. Brickwedde. 10c.

RP1189. International Temperature Scale and some related physical constants. H. T. Wensel. 5c.

RP1192. Heat and free energy of formation of water and of carbon monoxide. Frederick D. Rossini. 5c.

RP1193. Heats of combustion of tetramethylmethane and 2-methylbutane. John W. Knowlton and Frederick D. Rossini. 5c.

RP1194. A method of reducing the effect of disturbances in the galvanometer branch of a potentiometer circuit. Frank Wenner. 5c.

RP1195. A potentiometer for measuring voltages of 10 microvolts to an accuracy of 0.01 microvolt. Ray P. Teele and Shuford Schuhmann. 10c.

RP1197. Density of some soda-potash-silica glasses as a function of the composition. John C. Young, Francis W. Glaze, Conrad A. Faick, and Alfred N. Finn. 5c.

RP1202. Behavior of rubber hydrocarbon in a molecular still. W. Harold Smith and Henry J. Wing. 5c.

RP1203. Base-combining capacity of wool. Milton Harris and Henry A. Rutherford. 5c.

RP1205. Determination of the pH value of papers. Herbert F. Launer. 5c.
RP1208. Torque between concentric single-layer coils. Chester Snow. 5c.
RP1209. Standardization of the luminous-transmission scale used in the specification of railroad signal glasses. Kasson S. Gibson and Geraldine Walker Haupt. 5c.
RP1210. Development of a fibrous texture in cold-worked rods of copper. Herbert C. Vacher. 10c.
RP1211. Effects of methionine, djenkolic acid, and benzyleysteine on the estimation of cystine by the dropping mercury cathode. Edgar Reynolds Smith and Clement James Rodden. 5c.
RP1212. Nature of energy losses in air capacitors at low frequencies. Allen V. Astin. 5c.
RP1213. Electroanalytical determination of copper and lead in nitric acid solution containing small amounts of hydrochloric acid. John A. Scherrer, Rosemond K. Bell, and William D. Mogerma. 5c.
RP1216. Resolving power and distortion of typical airplane-camera lenses. Francis E. Washer. 5c.
RP1217. Edge correction in the determination of dielectric constant. Arnold H. Scott and Harvey L. Curtis. 5c.

RESEARCH PAPERS FROM JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, VOLUME 22, JULY—DECEMBER 1939

RP1221. Rate of oxidation of steels as determined from interference colors of oxide films. Dunlap J. McAdam, Jr. and Glenn W. Geil. 10c.
RP1222. Pressure displacements in the second spectrum of iron. Curtis J. Humphreys. 5c.
RP1224. Strength of a welded steel rigid frame. Ambrose H. Stang and Martin Greenspan. 5c.
RP1225. Transformation of austenite on quenching high-purity iron-carbon alloys. Thomas G. Digges. 5c.
RP1226. Preparation of high-purity iron. John G. Thompson and Harold E. Cleaves. 10c.
RP1227. Improved interferometric procedure with application to expansion measurements. James B. Saunders. 10c.
RP1228. Measurements of heat capacity and heat of vaporization of water in the range 0° to 100°C. Nathan S. Osborne, Harold F. Stimson, and Defoe C. Ginnings. 5c.
RP1229. Thermal properties of saturated water and steam. Nathan S. Osborne, Harold F. Stimson, and Defoe C. Ginnings. 5c.
RP1230. Electrophoresis of collagen. John Beek, Jr., and Arnold M. Sookne. 5c.
RP1233. Quantitative formation of furfural and methylfurfural from pentoses and methylpentoses. Elizabeth E. Hughes and S. F. Acree. 5c.
RP1234. Electrophoretic studies of silk. Arnold M. Sookne and Milton Harris. 5c.
RP1235. Approximation to a function of one variable from a set of its mean values. Martin Greenspan. 5c.
RP1236. Preparation of crucibles from special refractories by slip-casting. John G. Thompson and Manley W. Mallett.
RP1237. Effects of humidity and composition on strength and Young's modulus of enamels. Dwight G. Moore and William N. Harrison. 5c.
RP1238. Saturation of gases by laboratory wet test meters. Francis A. Smith and John H. Eiseman. 5c.
RP1240. Dropping tests for measuring the thickness of zinc and cadmium coatings on steel. Abner Brenner. 10c.
RP1241. Comparison of accelerated aging of record paper with normal aging for 8 years. B. W. Scribner. 5c.
RP1242. An apparatus for magnetic testing at magnetizing forces up to 5,000 oersteds. Raymond L. Sanford and Evert G. Bennett.
RP1243. Length changes and endothermic and exothermic effects during heating of flint and aluminous clays. Raymond A. Heindl and Lewis E. Mong. 5c.
RP1245. Electrophoretic studies of wool. Arnold M. Sookne and Milton Harris. 5c.
RP1247. Determination of optimum voltage for airplane electric systems. Vernon H. Grant and Melville F. Peters. 5c.
RP1249. Reflux regulator and head for laboratory rectifying columns. Frederick D. Rossini and Augustus R. Glasgow, Jr.
RP1251. X-ray studies of compounds in the system PbO-SiO₂. Howard F. McMurdie and Elmer N. Bunting. 5c.
RP1252. A portable apparatus for determining the relative wear resistance of concrete floors. Louis Schuman and John Tucker, Jr.
RP1253. Application of the interferometer to the measurement of dimensional changes in rubber. Lawrence A. Wood, Norman Bekkedahl, and Chauncey G. Peters. 5c.
RP1255. Photochemical decomposition of the cystine in wool. Henry A. Rutherford and Milton Harris. 5c.
RP1256. Tensile properties of rubber compounds at high rates of stretch. Frank L. Roth and William L. Holt. 5c.
RP1257. Internal absorption of gamma rays in radium-beryllium neutron sources. Leon F. Curtiss. 5c.
RP1258. Determination of cross-sectional areas of structural members. James A. Miller. 10c.
RP1259. Physical properties of purified 2,2,3-trimethylpentane. Donald B. Brooks, Frank L. Howard, and Hugh C. Crafton, Jr. 5c.
RP1261. Potentiometric method for the accurate measurement of hydrogen-ion activity. Walter J. Hamer and S. F. Acree. 5c.
RP1262. Retention of aluminum ion and hydrogen ion in papers. Herbert F. Launer. 5c.
RP1264. Zeeman effect in the second and third spectra of xenon. Curtis J. Humphreys, William F. Meggers, and T. L. de Bruin. 5c.
RP1265. An improved electric hygrometer. Francis W. Dunmore. 5c.

Title page and contents for volume 23. 7 p. 5c.

RESEARCH PAPERS FROM JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, VOLUME 24, JANUARY—JUNE 1940

RP1266. Infrared arc spectrum of germanium. C. C. Keiss. 5c.
RP1269. Thermal expansion of some chromium-vanadium steels. Peter Hidnert. 5c.
RP1270. Sensitive aneroid diaphragm capsule with no deflection above a selected pressure. W. G. Brombacher, V. H. Goerke, and F. Cordero. 5c.
RP1271. Physical properties of some purified aliphatic hydrocarbons. Donald B. Brooks, Frank L. Howard, and Hugh C. Crafton, Jr. 5c.

RP1273. Application of vibrators for measuring mortar consistency and fabricating mortar cubes. Raymond L. Blaine and John Tucker, Jr. 10c.

RP1274. Alpha and beta methyl lyxosides, mannosides, gulosides, and heptosides of like configuration. Horace S. Isbell and Harriet L. Frush. 10c.

RP1275. First spectrum of tin. William F. Meggers. 10c.

RP1276. Reaction of bromine with furfural and related compounds. Elizabeth E. Hughes and S. F. Acree. 5c.

RP1277. Structure of difructose anhydride III (difructofuranose 1,2',2,3'-anhydride). Emma J. McDonald and Richard F. Jackson. 10c.

RP1278. Stability of base-metal thermocouples in air from 800° to 2,200°F. Andrew I. Dahl. 5c.

RP1279. Predictions of normal radio critical frequencies related to solar eclipses in 1940. Newbern Smith. 5c.

RP1280. Boiling points of n-heptane and 2,2,4-trimethylpentane over the range 100–to 1,500-millimeter pressure. Edgar Reynolds Smith. 5c.

RP1281. Dielectric constant, power factor, and resistivity of marble. Arnold H. Scott. 5c.

RP1283. Measurement, in roentgens, of the gamma radiation from radium by the free-air ionization chamber. Lauriston S. Taylor and George Singer. 5c.

RP1284. Second ionization constant and related thermodynamic quantities for malonic acid from 0° to 60°C. Walter H. Hamer, John O. Burton, and S. F. Acree. 5c.

RP1286. Combination of wool protein with acid and base: Hydrochloric acid and potassium hydroxide. Jacinto Steinhardt and Milton Harris. 10c.

RP1288. Note on the effect of pressure on the wavelengths of the international secondary standards in the first spectrum of iron. Curtis J. Humphreys. 5c.

RP1290. Concerning the existence of fractions of the sericin in raw silk. Henry A. Rutherford and Milton Harris. 5c.

RP1292. Some observations on determining the size of pores in paper. Frederick T. Carson. 5c.

RP1294. Thermodynamic properties of sulfuric-acid solutions and their relation to the electromotive force and heat of reaction of the lead storage battery. D. Norman Craig and George W. Vinal. 5c.

RP1295. Friction and temperature as criteria for safe operation of journal bearings. Samuel A. McKee. 5c.

RP1296. Isolation of 3-methylhexane, trans-1,2-dimethylcyclopentane, and trans-1,3-dimethylcyclopentane from petroleum. Augustus R. Glasgow, Jr. 5c.

RP1297. Small inertia-type machine for testing brake lining. Rolla H. Taylor and William L. Holt. 5c.

RP1298. Effect of paint on the sound absorption of acoustic materials. V. L. Chrisler. 10c.

RP1299. Pectic substance in cotton and its relation to the properties of the fiber. Roy T. Whistler, Albert R. Martin, and Milton Harris. 5c.

RP1300. Apparatus for the study of the photochemistry of sheet materials. Herbert F. Launer. 10c.

RP1301. Redetermination of the Munson-Walker reducing-sugar values. Lester D. Hammond. 5c.

RP1303. Equipment for conditioning materials at constant humidities and at elevated temperatures. James G. Wiegerink. 5c.
RP1304. Moisture relations of textile fibers at elevated temperatures. James G. Wiegerink.

RP1306. Preparation and some physical properties of 2,2,4,4-tetramethylpentane. Frank L. Howard. 5c.

RP1308. Influence of austenitic grain size on the critical cooling rate of high-purity iron-carbon alloys. Thomas G. Digges. 10c.

RP1309. Microscopic examination of cotton fibers in cuprammonium hydroxide solutions. Charles W. Hock and Milton Harris. 5c.

RESEARCH PAPERS FROM JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, VOLUME 25, JULY—DECEMBER 1940

RP1311. Length changes of whiteware clays and bodies during initial heating, with supplementary data on mica. R. F. Geller and E. N. Bunting. 10c.

RP1313. Relations of cation exchange to the acidic properties of cotton. Arnold M. Sookne and Milton Harris. 5c.

RP1314. Electrodialytic estimation of ash and of acidic and basic groups in textile fibers. Arnold M. Sookne, Charles H. Fugitt, and Jacinto Steinhardt. 5c.

RP1315. Determination of thickness of acid-resistant portion of vitreous enamel coatings. William N. Harrison and Leo Shartsis. 5c.

RP1317. Description and analysis of the second spectrum of vanadium (V II). William F. Meggers and Charlotte E. Moore. 10c.

RP1321. Effect of speed of pulling jaws on the tensile strength and stretch of leather. Robert B. Hobbs. 5c.

RP1322. Effect of rate of heating through the transformation range on austenitic grain size. Samuel J. Rosenberg and Thomas G. Digges. 15c.

RP1323. Methods, apparatus, and procedures for the comparison of precision standard resistors. Frank Wenner. 15c.

RP1325. Improvements in the preparation of d-galacturonic acid. William Ward Pigman. 5c.

RP1327. Permeability of elastic polymers to hydrogen. Theron P. Sager. 5c.

RP1328. Electrode potential measurements as a means of studying the corrosion characteristics of wrought aluminum alloys of the duralumin type. Hugh L. Logan. 5c.

RP1330. Integrating circuit for vapor-type Geiger-Müller counters. Leon F. Curtiss. 5c.

RP1332. Thickness of a liquid film adhering to a surface slowly withdrawn from the liquid. Francis C. Morey. 5c.

RP1334. Method for determining the moisture condition in hardened concrete. G. Rupert Gause and John Tucker, Jr. 5c.

RP1337. Effects of drying conditions on properties of textile yarns. James G. Wiegerink. 5c.

RP1338. Reaction of silk fibroin with diazomethane. Henry A. Rutherford, Wilbur I. Patterson, and Milton Harris. 5c.

RP1340. Studies on the system lime-ferric oxide-silica. Milton D. Burdick. 5c.

RP1342. Recombination and electron attachment in the F layers of the ionosphere. Fred L. Mohler. 5c.

RP1346. Mutual inductance of two helices whose axes are parallel. Chester Snow. 10c.

RP1347. Effect of low temperatures on the properties of aircraft metals. Samuel J. Rosenberg. 10c.

RP1351. Preparation of benzoic acid of high purity. Frank W. Schwab and Edward Wichers. 5c.

RP1352. Effect of composition and other factors on the specific refraction and dispersion of glasses. John C. Young and Alfred N. Finn. 5c.

RP1353. Strength and elongation of silk yarns as affected by humidity. E. Max Schenke and Howard E. Shearer. 5c.

Title page and contents for volume 25. 7 p. 5c.

RESEARCH PAPERS FROM JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, VOLUME 26, JANUARY—JUNE 1941

RP1354. A determination of the magnetic saturation induction of iron at room temperature. Raymond L. Sanford and Evert G. Bennett. 5c.

RP1359. Surface characteristics of cotton fibers, as indicated by electrophoretic studies. Arnold M. Sookne and Milton Harris. 5c.

RP1360. Combination of silk fibroin with acid and with base. Leland F. Gleyste and Milton Harris. 5c.

RP1361. Thermal expansion of electrolytic chromium. Peter Hidnert. 5c.

RP1365. Boiling points of benzene, 2,2,3-trimethylbutane, 3-ethylpentane, and 2,2,4,4-tetramethylpentane within the range 100 to 1,500 millimeters of mercury. Edgar Reynolds Smith. 5c.

RP1368. Some factors influencing the performance of diaphragm indicators of explosion pressures. Frank E. Caldwell and Ernest F. Flock. 15c.

RP1370. Base-combining capacity of cotton. Arnold M. Sookne and Milton Harris. 5c.

RP1371. Some factors affecting the properties of ceramic talcose whiteware. R. F. Geller and A. S. Creamer. 10c.

RP1372. Analytical separation and purification of gases by fractional distillation and rectification at low temperatures. Martin Shepherd. 10c.

RP1373. Determinations of hydrogen in ferrous materials by vacuum extraction at 800°C and by vacuum fusion. Vernon C. F. Holm and John G. Thompson. 5c.

RP1374. Influence of grinding treatments on the surface hardness of intaglio printing plates of 0.33-percent carbon steel. Harry K. Herschman and Frederick Knoop. 10c.

RP1375. Freezing temperatures of high-purity iron and of some steels. William F. Roeser and H. T. Wensel. 5c.

RP1376. Electrophoretic studies of nylon. Milton Harris and Arnold M. Sookne. 5c.

RP1379. Daytime photoelectric measurement of cloud heights. Maurice K. Laufer and Laurence W. Foskett. 5c.

RP1380. A manometric gas analysis apparatus. Martin Shepherd and E. O. Sperling. 5c.

RP1381. An apparatus for the absorption or gravimetric determination of constituents of a gas mixture. Martin Shepherd and Harry W. Bailey. 10c.

RP1382. Modifications of apparatus for volumetric gas analysis. Martin Shepherd. 5c.

RP1386. Colorimetric determination of phosphorus in steel and cast iron. John L. Hague and Harry A. Bright. 5c.

RP1387. Method for determining the components of asphalts and crude oils. O. G. Strieter. 5c.

RP1388. Methods for determining sound transmission loss in the field. Albert Landon. 10c.

RP1389. Metastability of cadmium sulfate and its effect on electromotive force of saturated standard cells. George W. Vinal and Langhorne H. Brickwedde. 5c.

RP1391. Analysis of dental amalgams containing mercury, silver, gold, tin, copper, and zinc. Harold J. Caul and Irl C. Schoonover. 5c.

RP1393. Slopes of pv isotherms of He, Ne, A, H2, N2, and O2 at 0°C. Carl S. Cragoe. 10c.

RP1395. Spectrophotometric determination of praseodymium, neodymium, and samarium. Clement J. Rodden. 5c.

RP1396. Critical study of the determination of carbon monoxide by combustion over platinum in the presence of excess oxygen. Joseph R. Branham, Martin Shepherd, and Shuford Schuhmann. 5c.

RP1397. Determination of freezing points and amounts of impurity in hydrocarbons from freezing and melting curves. Beveridge J. Mair, Augustus R. Glassgow, Jr., and Frederick D. Rossini.

Title page and contents for volume 26. 7 p. 5c.

Research Papers from Journal of Research of the National Bureau of Standards, Volume 27, July—December 1941

RP1398. Enzymatic hydrolysis of disaccharides and halogenosalicins. William Ward Pigman. 5c.

RP1400. Effect of the chemical durability of glass on the asymmetry potential and reversibility of the glass electrode. Edgar H. Hamilton and Donald Hubbard. 5c.

RP1401. An improvement in the "partition method" for the determination of boron. Francis W. Glaze and Alfred N. Finn. 5c.

RP1403. Microstructural characteristics of high-purity alloys of iron and carbon. Thomas G. Digges. 10c.

RP1404. Photochemical reactions in silk. Henry A. Rutherford and Milton Harris. 5c.

RP1406. Quantitative determination of fluorine in organic compounds. Dirk H. Brauns. 5c.

RP1407. Thermal expansion of cast and of swaged chromium. Peter Hidnert. 5c.

RP1409. Studies of the chemical durability of glass by an interferometer method. Donald Hubbard and Edgar H. Hamilton. 5c.

RP1411. Relationship of the garnet-hydrogarnet series to the sulfate resistance of portland cements. E. P. Flint and Lansing S. Wells. 5c.

RP1412. Microscopic structure of the wool fiber. Charles W. Hock, Robert C. Ramsay, and Milton Harris. 10c.

RP1415. A physical photometer. Ray P. Teele. 5c.

RP1416. Comparison between the observed density of crystalline rubber and the density calculated from X-ray data. W. Harold Smith and Nancy P. Hanna. 5c.

RP1418. Evolution of carbon dioxide and water from vegetable-tanned leathers at elevated temperatures. Joseph R. Kanagy. 5c.

RP1421. The system 2CaO·SiO₂−K₂O·CaO·SiO₃, and other phase-equilibrium studies involving potash. William C. Taylor. 10c.

RP1423. Isolation of 1,2,3,4-tetramethylbenzene, 5,6,7,8-tetrahydronaphthalene, 1-methyl-5,6,7,8-tetrahydronaphthalene, and 2-methyl-5,6,7,8-tetrahydronaphthalene from petroleum. Beveridge J. Mair and Anton J. Streiff. 10c.

RP1425. Thermal expansion studies of boric oxide glass and of crystalline boric oxide. James J. Donoghue and Donald Hubbard. 5c.

RP1426. Titration and conductivity measurements of aqueous extracts from bottles. Edgar H. Hamilton and Donald Hubbard. 5c.

RP1428. Locating the principal point of precision airplane mapping cameras. Francis E. Washer. 10c.

RP1434. The planoflex, a simple device for evaluating the pliability of fabrics. Edwin C. Dreby. 10c.

RP1435. Relation of electromotive force to the concentration of deuterium oxide in saturated standard cells. Langhorne H. Brickwedde and George W. Vinal. 5c.

RP1436. Use of chlorites for treating raw sugars. Horace S. Isbell. 5c.

RP1437. Structure of tricalcium aluminate. Howard F. McMurdie. 5c.

RP1438. The carbohydrate content of collagen. John Beek, Jr. 5c.

RP1439. Heats of isomerization of the nine heptanes. Edward J. R. Prosen and Frederick D. Rossini. 5c.

RP1441. Fluidity of Triton F and xanthate solutions as a measure of cellulose degradation. Ralph T. Mease and Leland F. Gleysteen. 5c.

RP1442. An improvement in the method for dissolving cellulose in cuprammonium solution for fluidity measurements. Ralph T. Mease. 5c.

RP1443. A resistor furnace, with some preliminary results up to 2,000°C. R. F. Geller. 5c.

Title page and contents for volume 27. 7 p.

RESEARCH PAPERS FROM JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, VOLUME 28, JANUARY—JUNE 1942

RP1444. The tee-bend test to compare the welding quality of steels. George A Ellinger, A. G. Bissell, and Morgan L. Williams.

A bend test for comparing the welding quality of steels is described in this paper. Specimens of fillet-welded T-sections of a number of low-alloy high-tensile steels were bent in special testing jigs at room temperature and at temperatures as low as —20° F. Several criteria, such as maximum load, angle at maximum load, type and location of fractures, were used to compare the specimens. A special method of statistical analysis, which is described in detail in the paper, was used to evaluate the data and to compare and rate the welding quality of the steels. 49 p. 30c.

In a study of a new glass (96 percent silica, glass No. 790) used in heat-resisting glassware, its expansivity is compared with that of fused quartz. For this comparison a modification of Fizeau's method for determining very small differences in linear expansion was used and is presented. This method has the advantage of permitting the use of relatively long samples, the procurement of very sharp and well-defined interference bands, and the almost complete elimination of the effect of changes in the refractive index of air on the results.

The results indicate that the No. 790 glass has a coefficient of expansion approximately twice that of fused quartz at room temperature, an expansivity equal to fused quartz at approximately 300° C, and an expansivity less than one-half of that for fused quartz in the neighborhood of 700° C. 5 p. 5c.

In this paper is reported the condition of specimens of metallic and nonmetallic coatings after exposure to soils for periods ranging from 2 to 16 years. Conclusions previously drawn relative to the protective value of zinc and lead coatings are generally confirmed by the latest inspections. A specially applied zinc coating prevented serious pitting in 16 soils over a 16-year period, but a commercial coating of the same weight, exposed to more corrosive soils, did not prevent pitting entirely during the initial 2-year period. Lead corrodes sufficiently in many soils to render lead coatings unsatisfactory. Tin applied as a protective coating was of little benefit in reducing the corrosion of copper in soils. A 7-year-old vitreous enamel, two 7-year-old hard-rubber coatings, and a 2-year-old baked synthetic resin coating have shown little or no evidence of failure 15 p. 5c.

Transverse-strength properties were determined on 1.2-in.-diameter test bars made from three types of alloy iron heated, before casting, to the maximum temperatures of 1,400°, 1,500°, 1,600°, and 1,700° C. The bars were vertically cast, bottom-poured in green-sand molds, at a temperature of 100°, 150°, 200°, or 250° C above
the liquidus. Total, plastic, and elastic deflection, modulus of rupture, relative moduli of elasticity, and total, plastic, and elastic resilience were determined, and the microstructure of the test bars was examined. Comparative values of four different relative moduli of elasticity relating to the same test bars but calculated by different methods are discussed. Comparison of transverse test properties of alloy and plain carbon irons is made. 22 p. 15c.

The polarographic method is used in a study of the polyhydroxymonocarboxylic acids, their lactones, lactides, and other condensation products. With a tetraethylammonium chloride environment, polarographic waves are obtained which show the behavior of the hydroxy acids and their lactones with respect to electrolytic reduction and the products which they form in dilute aqueous solution.

Freshly prepared solutions of the aldonic acids give the ordinary hydrogen wave but do not give waves which correspond to the reduction of the carboxyl group. When a solution containing an aldonic acid is allowed to stand, the wave due to the hydrogen ion decreases and a wave caused by the gamma lactone appears. In the presence of oxygen a wave, apparently caused by some substance produced by the interaction of the sugar acid, mercury, and oxygen, forms at about -1.1 v. The formation of this wave is accompanied by a corresponding decrease in the hydrogen wave. Freshly prepared solutions of the delta lactones of the aldonic acids give waves at about -2.3 v, with respect to a mercury anode, which appear to be due to the reduction of the lactones. The heights of these waves decrease with time until, after several hours, they disappear. The absence of an appreciable delta lactone wave in a 0.01 M aqueous solution of an aldonic acid shows that the position of the equilibrium between the free acid and the delta lactone is far toward the free acid. The gamma lactones of the aldonic acids give polarographic waves at potentials slightly higher than the delta lactones. When a solution containing a gamma lactone is allowed to stand, the height of the gamma lactone wave decreases while a wave corresponding to the reduction of the hydrogen ion appears. The inflection points for the gamma lactone waves vary only slightly with the configuration of the groups comprising the lactone structure. This small variation in the inflection points shows a regularity which indicates that the stereomeric positions of the hydroxyl groups are of importance. When the hydroxyl of carbon 2 and the residual carbon group attached to carbon 4 are in the cis position, the reduction potential seems to be higher than it is when these groups are in the trans-position. 37 p. 10c.

The value of an electric current has been measured in absolute units by a current balance, and simultaneously in international units by standard cells and standard resistors. In the current balance a subdivided helix served as the two fixed coils and, as the moving coil, either a short helix or a compact spiral. The two moving coils were the same ones that were described in a previous paper in which the fixed coils were spirals.

The value obtained when using these two moving coils and the subdivided helix differs by only 4 parts in a million from the value obtained when using these moving coils and spirally wound fixed coils. These values are, however, somewhat different from those obtained when using multilayer coils wound with copper wire. The relationship between the absolute and international ampere, from the most dependable measurements at the National Bureau of Standards, may be expressed as

\[1 \text{ NBS international ampere} = 0.999850 \text{ absolute ampere}. \]

In the preceding paper published by members of the Bureau staff on this subject the value given was \(1 \text{ NBS international ampere} = 0.999860\) absolute ampere. 25 p. 10c.

RP1450. Rectangular plate loaded along two adjacent edges by couples in its own plane. William R. Osgood.

A. and L. Föppl give an approximate solution for the stresses in the rectangular knee of an L-shaped plate loaded by couples acting on the legs in the plane of the plate. A solution is presented here that is exact in the sense that the equations of equilibrium and the condition of compatibility (for two-dimensional systems) are satisfied at every point. Small self-equilibrated stresses remain along the free edges of the knee. 5 p. 5c.

A procedure is described in detail for the simultaneous spectrographic determination of antimony, arsenic, bismuth, cadmium, copper, indium, iron, lead, silver, and zinc in tin metal of commercial grades. The preparation of standards and samples by chill-casting of tin in open molds and in evacuated tubes is described. The use of a press is found convenient in forming electrodes from tin metal. The characteristics of the tin spark under varied operating conditions are discussed in connection with the selection of optimum conditions of excitation. Application of the step sector provides a means of extending the range of line intensity measurements with the microphotometer as well as for plate calibration. Rapid reduction of the photometric measurements to intensities is made by a modified graphical calculator. The shapes of the analytical curves derived from measurements on tin standards are compared, and deviations from the ideal case are discussed. Repeated determinations in routine analysis are estimated to fall within 5 percent of the actual concentration, with few exceptions. The analyses are carried out on groups of six samples in a working time of 5 minutes per determination. 26 p. 10c.

It has been shown earlier that the titration curves of wool and other proteins obtained with different strong acids differ widely in position with respect to the pH coordinate. By assuming that these differences were due to combination of the protein with anions as well as with hydrogen ions, it was possible to calculate from the pH of the midpoint of each curve numerical values of the affinity of each anion for wool. In the present paper, modifications of the equations for calculating anion affinity are described. It is shown that the new equations described the titration curves as a whole instead of merely the positions of their midpoints. The new forms are also shown to describe the effects of the presence of salts on the titration curves at least as adequately as did the earlier ones. 9 p. 5c.

Titration curves of wool with 18 strong acids at 0°, 25°, or 50° C have been added to the data for 19 others presented earlier. Several have been investigated at more than one temperature. The reversibility of the equilibria measured has been demonstrated quantitatively. New anion-wool dissociation constants, based on modifications of equations previously used to calculate anion-wool affinities, are tabulated for 33 anions, and heats of dissociation of a few anion-wool complexes are also given. The previously reported tendency of affinity to rise with molecular-weight is confirmed; fairly consistent relationships between the affinity and the molecular weights of strong organic acids appear. 16 p. 5c.

RP1454. Intercomparison of platinum resistance thermometers between —190° and 445°C. Harold J. Hoge and Ferdinand G. Brickwedde.

Eight platinum resistance thermometers satisfying the requirements of the International Temperature Scale were calibrated on the international scale and intercompared from —190° to 445° C. The 8's of the Callendar-Van Dusen equations for seven of these thermometers ranged from 1.49375 to 1.49862. The 8 for the eighth thermometer, E, was 1.51155. After minimizing the effects of relative calibration errors, the maximum difference between the readings of the group of seven thermometers was 7 millidegrees between —190° and 0° C and 1.3 millidegrees between 0° and 100° C. Maximum differences from the mean were 4.0 and 0.8 millidegrees, respectively. For thermometer E, deviations from the mean of the other seven were 15 millidegrees at —110° C and 3 millidegrees at +50° C. Tables of differences between readings of platinum resistance thermometers arising from assumed calibration errors at the fixed points were calculated and are included. 24 p. 10c.

Sixty-three experimental papers were made in the Bureau's semicommercial mill in studies to determine the relationship between the mechanical beating of the fibers and the properties of paper for multicolor offset printing. A series of papers was made from each of the kinds of wood fibers commonly used in offset papers and from various mixtures of these fibers. Each series comprised papers made with widely different degrees of beating, and the effects of the variations were determined by laboratory and printing tests of the papers.
The data obtained indicate that for the best results in multicolor printing, the papers should be made with the minimum of beating necessary to obtain the required formation and finish. The formation of gel on the fibers should be carefully controlled, because the high strength associated with gel, particularly high folding endurance, is directly opposed to several of the properties most important in multicolor lithography. The admixture of filler pulp with a strong pulp such as sulfite lessens the adverse effects of beating and assists in obtaining suitable formation and finish. The best all-around results were obtained with sulfite-soda and sulfate-soda mixtures. Deinked book stock had excellent opacity, but papers containing appreciable amounts of it curled excessively. 24 p.

The transmittancies of solutions of the nitrates of dysprosium, holmium, erbium, thulium, and ytterbium were measured, over the range 350 to 1,000 μ, by means of a double-monochromator photoelectric spectrophotometer. Terbium and yttrium show no appreciable absorption in this range. The bands found most suitable for determination of the five elements are: for dysprosium, at 910 μ; for holmium, at 643 μ; for erbium, at 521 μ and 653 μ; for thulium, at 684 μ; and for ytterbium, at 550 μ and 973 μ.

Measurements were also made of the variation with concentration of the transmittancies of solutions of the nitrates of the five elements at the wavelengths given. The results obtained were applied to the analysis of several mixtures of rare-earth oxides. The procedure supplements a similar one, previously published, for the analysis of mixtures of rare earths of the cerium group. 13 p.

The dielectric constants and power factors of mixtures of calcium carbonate with Vistanex and with natural rubber were determined at 1 and 100 kilocycles per second. There was little difference between the values at the two frequencies. Two different formulas were found to express the dielectric constants of the mixtures as functions of the dielectric constants of the respective components. The dielectric constant of the pure calcium carbonate employed was determined by the method of liquid mixtures. The power factors of the rubber-calcium carbonate mixtures were intermediate between those of the components. The conductivities of the Vistanex-calcium carbonate mixtures measured at the end of 1 minute of electrification were intermediate between those of the components, but the conductivities of the mixtures of natural rubber and calcium carbonate seemed to go through a minimum. 18 p.

In earlier publications (S512 and S553), data were given on the planetary radiation emanating from different parts of the surface of Mars as measured with a thermocouple and filters. From these radiometric measurements, planetary temperatures were calculated by five methods, using the transmission data of the earth's atmosphere at 7 to 15 μ, published by Fowle in the Smithsonian Physical Tables. In the meantime, based upon observations at Flagstaff, Ariz. (elevation 7,250 ft.), Adel and Lampland have published atmosphere transmissions that appear to be somewhat different from the Smithsonian measurements, in the spectral band extending from 7 to 15 μ.

Since the planetary-radiation measurements were made at Flagstaff, the data obtained during the oppositions of Mars in 1924 and in 1926 have been recalculated, using the atmospheric transmissions observed at that station. In the present communication the five methods and procedures previously used, by three calculators, in deriving planetary temperatures are reviewed, and it is shown that in four of these methods of calculation, which employ the law of total radiation of a black body, there is but little difference in the planetary temperatures deduced by using the transmission coefficients of the earth's atmosphere published by these two sets of observers. This is owing to the fortuitous circumstance that, while they differ in spectral outline, there is but little difference in the total areas encompassed by these two transmission curves, and hence, in the calculated total amount of planetary radiation transmitted by the earth's atmosphere. Hence, no revision is made of the planetary temperatures previously deduced by the four methods involving the law of total radiation.

On the other hand, the fifth method, using the law of spectral radiation of a black body and the Flagstaff transmission coefficients of the atmosphere, gives planetary temperatures that are entirely different from the values previously deduced by this method, and by the four other methods, by applying the Smithsonian data. This
inconsistency can be eliminated, at least in part, and the data harmonized by taking into consideration selective emission of the planetary surface.

On the assumption that the surface of Mars, like that of the earth, is composed of silicates (feldspar, mica, silica, etc.) which have a high selective emission at 8 to 10 μ, the temperatures derived from the spectral components of planetary radiation of Mars, measured in 1926, are in good agreement with the values calculated by other methods that are less affected by selective spectral emission. From this it would appear that, assuming that the temperatures deduced by the other methods of calculation are indicative of meteorological conditions at the time of making the observations, the fluorite-filter method of analysis may be a useful means of securing information on the selective spectral emission of the planetary surface.

In a supplementary note a new thermocouple, made of bismuth and Chromel-P wires, suitable for planetary radiometry is described. 13 p. 5c.

RP1459. Tensile elastic properties of nickel, copper, open-hearth iron, and typical steels. Dunlap J. McAdam, Jr., and Russell W. Mebs.

From stress-set curves are derived proof stresses for five values of permanent set. From corrected stress-strain curves are derived values of the modulus at zero stress and its stress coefficient. The diagrams show the influence of prior plastic extension on these indices.

The curves of variation of the proof stresses with plastic extension are affected by the rate of work-hardening, by variation of internal stresses of two kinds, and by the rest interval. The curves of variation of the modulus of elasticity with plastic extension are affected by variation of crystal orientation, internal stress, and lattice expansion, and by rest. The curves of variation of the stress coefficients of the modulus are affected by all these factors except possibly the reorientation factor. 68 p. 15c.

Since the beginning of the Bureau's soil-corrosion investigation in 1922, specimens of a wide variety of materials suggested for service underground have been exposed to various soil conditions and inspected at regular intervals. In this paper is reported the condition of the specimens of ferrous and nonferrous metals after underground exposures of from 2 to 17 years. Because of the variety of environmental conditions represented at the test sites, some idea of the corrosion resistance of the materials in most of the corrosive environments commonly encountered in soils can be obtained. Relations between corrodibility and chemical composition are indicated for certain classes of materials. 22 p. 10c.

Seventeen brands of air-setting refractory mortars of the type marketed in the dry condition were investigated in the unheated state with regard to tempering water, fineness of grain, soluble alkali content, pyrometric-cone equivalent, suitability for troweling and dipping, drying and setting properties, and strength. After heat treatments at various final temperatures the strengths of the mortars were determined. In rupturing assemblages of two half-brick and mortar, the types of failures were noted. The tendency of the mortars to shrink, crack, and flow when exposed to high temperatures, both in fusion blocks and in units of three brick each, was also investigated. The ingredients of the mortars were all fine-grained, only a small amount being retained on a No. 40 sieve. The strengths of the neat mortars covered a wide range; the strengths of those received and stored in metal drums indicated the desirability of storage in airtight containers. In a series of heat treatments the neat mortars in general were found to have the least strength when preheated at 750° C. However, the least strengths of the majority were noted in assemblages of brick and mortar preheated at 1,000° C. The mechanical troweling machine gave a better indication of the workability of the mortars than did the time-of-set test. Observations made on the mortars heated in fusion blocks in general corroborated the observations made of the shrinkage, cracking, and fusion of the same mortars heated in brick piers. 16 p. 15c.

RP1462. Creep rates of cold-drawn nickel-copper alloy (monel metal). John A. Bennett and Dunlap J. McAdam, Jr.

A description is given of new equipment recently assembled at this Bureau for testing the creep of metals. The apparatus was used to study the creep rate of cold-drawn nickel-copper alloy over a wide range of stress and temperature. Each specimen was used for a series of tests, which allowed a more rapid determination of the characteristic creep rates than using a single specimen for each test. The data indicate that the characteristic creep
rate depends only on the stress and temperature, and is not affected by prior stresses or temperatures. The influence of stress on the rate of creep increases with increasing stress, while the influence of temperature on the rate of creep decreases with increasing temperature. The results of the tests are shown in graphs, as no mathematical expression was found which would represent them. 21 p. 10c.

Laboratory measurements of coefficients of friction of soft rubber compounds were made by towing specimens on horizontal tracks and by allowing them to slide down inclined tracks. The specimens were prepared by attaching the rubber to a metal backing and molding it against glass surfaces having different degrees of roughness. The coefficients increase markedly with speed, ranging from about 1 at 10^{-4} cm/sec to more than 4 at 5 cm/sec. The occurrence of vibrations prevented observations at higher speeds. Static friction is greater than dynamic friction for speeds appreciably less than 10^{-3} cm/sec and less than dynamic friction for greater speeds. The coefficients decrease slightly with increasing pressures and are independent of the size of the specimen. Except at very low speeds the smoother surfaces yield the higher coefficients. Materials such as talc or bloom on the sliding surfaces cause large decreases in the coefficients.

Attention is called to the dependence of the coefficients of friction on the speed, which is shown in several previous investigations on rubber and other materials. 24 p. 10c.

RP1464. The first spectrum of antimony. William F. Meggers and Curtis J. Humphreys.

The spectrum emitted by neutral antimony atoms has been photographed, measured, and analyzed. Measured wavelengths and estimated relative intensities are given for 466 lines, ranging from 1388.91 to 12466.75 A in wavelength and from 1 to 2500 in intensity. Nearly 80 percent of these lines are classified as combinations of 60 even energy levels arising from 5s^2 5p^2 ns, 5s^2 5p^2 nd, and 5s 5p^4 electron configurations and 31 odd levels from 5s^2 5p^3, 5s^2 5p^2 np, and possibly 5s 5p^2 nf. The average difference between observed and computed wave numbers is 0.15 cm^{-1}. A paucity of lines in the visible spectrum and intense radiation of antimony atoms in the ultraviolet and infrared are seen to be consequences of the relative values of various groups of levels. Although it is not possible to give a complete quantum interpretation of all the levels, several spectral series of the type 5s^2 5p^3 — 5s^2 5p^2 ns are proposed, and an absolute value of 69700 cm^{-1} is deduced for the ground state, 5s^2 5p^4 S_{0\frac{1}{2}}, of neutral antimony atoms. From spectroscopic data, the principal ionization potential of antimony is calculated to be 8.64 volts. 16 p. 5c.

In the course of previous investigations to establish the merits of soldered joints in copper-tube lines for domestic plumbing and other purposes, it became evident that in the evaluation of such joints consideration must be given to possible deterioration with time of the bond of the soldered joint if the service involves use at elevated temperatures. Joints made with solder containing tin were found to be susceptible to such a change, under favorable circumstances, whereas many lead-base solders were not. By means of metallographic studies of specimens cut from soldered joints held at elevated temperature for long periods, the nature of the microstructural change was established and correlated with the lowering of the bonding properties of the soldered joint. Essentially, this consists in the formation of a bonding layer adjacent to the copper base by alloying, by diffusion of the tin of the solder and the adjacent copper. Microhardness determinations showed this constituent to be much harder than the initial solder and also harder than the copper base. Evidence of brittleness was also found. Most tin-free lead-base solders, including lead-silver solder, were found not to be susceptible of this change. Lead-cadmium solder was an exception. 9 p. 10c.

At temperatures above 350° C, electrical conduction may become troublesome in the glass through which the leads of certain types of resistance thermometers are sealed. It was found that conduction in these seals is rapidly reduced by polarization of the glass, and that the error in temperature measurement resulting from conduction in the glass may be considerably reduced by adopting a measuring schedule which takes full advantage of this polarization.
One type of glass was investigated under experimental conditions which prevented polarization. At 445° C this glass had a volume resistivity of approximately 21,000 ohm-cm. The temperature dependence of the resistance could be represented very roughly by \(1/r = A e^{-\epsilon/k T}\), with \(\epsilon\) having a value of the order of 0.8 electron volt. 10 p. 6c.

Tensile and compressive tests were made on specimens from chromium-nickel (17–7 and 18–7) stainless-steel sheets, with cold-reductions from zero percent (annealed) to 50 percent, and thicknesses ranging from 0.01 to 0.06 in. The tensile yield strengths ranged from 34 to 200 kips/in². The effect of a stress-relieving treatment at 300° C for 24 hours was investigated for one of the compositions.

The tensile tests were made on standard specimens. The compressive tests were made by the pack method developed at the National Bureau of Standards and by the cylinder method developed by Russell Franks of the Union Carbide & Carbon Research Laboratories. Tests were made on both longitudinal and transverse specimens from each sheet.

The results are given in tables and stress-strain curves to facilitate application in the design of light-weight structures from these materials. The effect of the degree of cold-reduction and of the stress-relieving treatment on the shape of the stress-strain curves and on the tensile and compressive properties is discussed. 69 p. 15c.

An investigation of the mechanism by which lightly oxidized specimens of ferrous materials were brightened when heated in vacuum showed that the presence of carbon was essential. Oxidized specimens of iron containing small amounts of carbon were brightened in 15 to 20 minutes at 800° C and the elimination of the oxide film was accompanied by decreases in the carbon content. Cleanup of oxide films on stainless steel occurred also when the specimens were heated to about 1,050° C. Oxidized high-purity iron which contained less than 0.001 percent of carbon could not be brightened by vacuum heating at temperatures up to 1,250° C. Vacuum heating of lightly oxidized specimens of high-purity iron sometimes caused the oxide film to agglomerate, forming distinct, geometric patterns that could be observed under the microscope. 11 p. 10c.

Data are given on the intensity of the biologically effective ultraviolet radiation, of wavelengths 3200 A and shorter, from the sun and the entire sky, incident on a horizontal plane, under various meteorological conditions, in high latitudes. These data were secured by means of a photoelectric cell and automatic recording apparatus, whereby a continuous record of ultraviolet intensities, in absolute value, was obtained during the voyage of the Louise A. Boyd Arctic Expedition, up the west coast of Greenland to Etah (lat. 78°3' N) and down the coast of Baffin Land and Labrador.

The outstanding results of this survey are, that, for the same solar heights, in the highest latitudes visited (78° N) the ultraviolet intensities appear to be somewhat higher than in latitude 62° N, but somewhat lower than in latitude 39° N (Washington), in agreement with expectation, taking into consideration the distribution of ozone in the stratosphere with latitude and the season. In the highest latitudes, at the noon hour, on the clearest days, in mid-summer, the intensity of the ultraviolet solar and sky radiation ranged from 30 to 40 \(\mu\text{w/cm}^2\), which is a significant value biologically, of especial interest to the medical profession in connection with the question of the incidence of rickets. 11 p. 10c.

RP1470. Rate of oxidation of typical nonferrous metals as determined by interference colors of oxide films. Dunlap J. McAdam, Jr. and Glenn W. Geil.

By means of interference colors the rates of oxidation were determined for 18 nonferrous metals and were compared with those for typical steels. The influence of temperature, oxidation time, and film thickness on the rate of oxidation is illustrated by projections of surface in three-dimensional diagrams. The diagrams for the nonferrous metals are similar to those for steels. For a constant film thickness, the relation between temperature and oxidation time is linear logarithmic. The variation of film thickness with either temperature or oxidation time, plotted logarithmically, is represented by a reversed curve. A discussion is given of the influence of the affinity of the metal for oxygen and of the rate of diffusion through the oxide film. The film
behaves as if the specific resistance varies nonlinearly with the film thickness. 43 p.

RP1471. Improved instrument for measuring the air permeability of fabrics. Herbert F. Schiefer and Paul M. Boyland.

This paper describes a new model of an instrument for the direct measurement of the air permeability of fabrics. The air, which is drawn through the fabric by a given suction, is measured with orifice-type flowmeters. The instrument is mounted in the top of a table and a new clamping device is provided, which permit measurements to be made rapidly on any part of a large piece of cloth without cutting.

The calibration and operation of the instrument are discussed. Results of measurements on two very different types of fabrics — parachute cloth and blankets — are given for several methods of clamping. A suitable method is described for which the edge leakage is negligible. The random sampling error of the average of 5 tests for air permeability is less than 5 percent, approximately 9 times out of 10. 6 p. 10c.

RP1472. Properties of high-purity iron. Harold E. Cleaves and John M. Hiegel.

Results are recorded of new determinations of the workability, microstructure, density, and the thermal, mechanical, electrical, and magnetic properties of high-purity iron, in which the maximum amount of an individual impurity was 0.004 percent and the total of impurities in any specimen was 0.01 percent or less. 25 p. 10c.

Tests were made to determine the mechanical properties of perforated cover plates intended to be used as a substitute for lattice bars or batten plates in built-up box-type columns. Each test column was built up from one perforated plate and either two or four angles. Columns with unperforated plates were used as controls.

In this paper the program is outlined and the methods of test are described. The results of the tests and the conclusions will be presented in subsequent papers. 18 p. 10c.

Tests were made to determine the mechanical properties of perforated cover plates intended to be used as a substitute for lattice bars or batten plates in built-up box-type columns. Each test column was built up from one perforated plate and either two or four angles. Columns with unperforated plates were used as controls.

This paper gives the results of the tests on columns having plates of three different perforation spacings.

It was found that the perforated plates contributed to the strength, and especially to the stiffness, of the columns, and that the factor of stress concentration, due to the presence of the perforations, varied from 2 to 2.5 based on the gross area (1.8 to 2.1 based on the net area). 26 p. 10c.

Knock ratings made at altitude have shown systematic differences from ratings made at sea level, on some fuel types. Altitude-chamber tests showed that complete agreement could be obtained if tests were made at uniform knock intensity, and that uniform knock intensity was obtained when the cylinder clearance volume was reduced in linear relation to air pressure. From these tests, equations are developed to relate clearance volume for standard knock intensity to air pressure and to octane number for the ASTM Motor and the CFR Research Methods of knock rating. Equations are also developed to relate octane-number requirement to air pressure, and these are shown to agree with road-test data. 22 p. 10c.

A study of the weathering resistance of vitreous enameled architectural panels was begun by the National Bureau of Standards in 1939. The study involves 864 one-foot-square panels, representing 14 types of enamel and a like number of 4- by 6-in. laboratory specimens. At the end of the first year of exposure at four locations selected for different climatic conditions, over half of the panels showed no visible weathering effect, and in no case did weathering produce any failure of the enamel to protect the underlying metal from rusting.

The full-mat enamels were found unsuited for architectural use where appearance is important, because of fading and of difficulty in cleaning. Mild fading, found on
some of the non-acid-resistant colored enamels, was associated with a minute pitting of the enamel surface, probably caused by the presence of acid-forming gases in the atmosphere. The enamels of high acid resistance did not show this effect.

Weathering of the panels was found to be more pronounced at those locations where there is a relatively high concentration of combustion gases, and less severe where there is a practical absence of these gases in the atmosphere. An accelerated weathering test is described, which gives an effect closely resembling the most important form of actual weathering. 20 p. 10c.

RP1477. Relief of residual stress in streamline tierods. Rolla E. Pollard and Fred M. Reinhardt.

About two-thirds of the residual stress in cold-worked SAE 1050 steel tierods was relieved by heating them 30 minutes at 600° F. Cold-worked austenitic stainless steel tierods could be heated at temperatures up to 1,000° F without lowering the important physical properties. With materials of straight 18–8 composition, however, the limiting heating temperature was found to be about 900° F, because at higher temperatures precipitation of chromium carbide occurred. It is possible that materials containing additions of titanium, columbium, or molybdenum could be heated at higher temperatures, since the carbides of these elements would be precipitated in preference to chromium carbide.

Microscopic examination and Vickers indentation tests indicated localized differences in the amount of cold-working. Such differences may explain the distribution of residual stress in cold-worked tierods. 18 p. 10c.

Ability to resist fading is a valued property of most paint and textile materials, and therefore improved methods for measuring the course of fading are in demand. Two of the important evidences of the fading of paints, namely change of color and change of gloss, can be measured rapidly by photoelectric methods developed within the past few years. In the present study photoelectric tristimulus measurements of color change and photoelectric measurements of specular-gloss change were used to follow the fading of several paint samples exposed both to outdoor weather and to two machine treatments (A and B) designed to weather the samples at an accelerated rate. With these measurements it was possible to compare numerically the rates of artificial and natural fading of the paints. The data which were obtained show: (1) the treatment used in conjunction with apparatus A caused fading which averaged 20 times as fast as fading outdoors, but the speed-up factor varied from roughly 5 times for one paint to roughly 40 times for another; (2) the treatment used in conjunction with apparatus B caused fading which averaged 5 times as fast as fading outdoors, but the speed-up factor varied from roughly 3 times for one paint to roughly 20 times for another; and (3) for almost every paint tested the factor relating the speed of fading from treatment in apparatus A to the speed outdoors was more nearly constant through the whole fading process than the corresponding factor for treatment in apparatus B. Thus treatment A not only faded paints faster, but it provided a preview of the course of fading which was usually a better representation of outdoor fading than that provided by treatment B. The data collected during the present study are noteworthy chiefly for the methods they demonstrate. These should be valuable for future studies of the fading of materials and for the examination of methods for accelerating fading. 21 p.

The carbon and hydrogen contents of samples of bone chars, charcoals, and vegetable carbons are determined by combustion in oxygen, the resultant carbon dioxide and water being weighed. The procedure for the handling of such highly adsorptive substances is set forth with a description of the necessary apparatus.

A simple procedure is adopted to bring each sample for analysis to a constant weight. This consists in exposure of the sample to air saturated with water in an exsiccator for 18 hours, and subsequent heating in a helium atmosphere at 105° C for 18 hours. In the determination of the carbon, corrections are made for the carbonate remaining in the ash from the combustion and for the carbonate and the adsorbed carbon dioxide contained in the original sample.

The results are tabulated to give these separate contributions to the total carbon. A comparison is made with the results for the same materials obtained by the deter-
mination of the loss upon ignition of the acid-washed residue of each sample. 11 p. 5c.
Title page and contents for volume 28. 6 p. 5c.

RESEARCH PAPERS FROM JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF
STANDARDS, VOLUME 29, JULY—DECEMBER 1942

RP1480. A new determination of the constant of gravitation. Paul R. Heyl and
Peter Chrzanowski.
A new determination of the constant of gravitation by means of the torsion balance
has been made in the hope of improving the precision of the result published in 1930.
A number of suggested improvements in the apparatus were tried, and two of these
were adopted. The result obtained shows so slight an improvement over the 1930
result that it appears that the limiting point of diminishing returns has been reached
with this form of apparatus. 31 p. 10c.

RP1481. Influence of initial structure and rate of heating on the austenitic grain size
of 0.5-percent-carbon steels and iron-carbon alloy. Thomas G. Digges
and Samuel J. Rosenberg.
Tests were made to determine the influence of variations in initial structure and rate
of heating through the transformation temperature range on the grain sizes at 1,475°
and 1,600° F of a high-purity alloy of iron and carbon and two commercial steels
each containing 0.5 percent of carbon. Variations in initial structure had no effect
on the grain size of the iron-carbon alloy. Although the initial structure had some in¬
fluence on the grain size of the steels, no correlation was found between the grain size
and the spacing of pearlite or the form and distribution of the carbides. The rate of
heating had a pronounced effect on the grain size of the iron-carbon alloy, and in
some cases the rate of heating also influenced the grain size of the steels. However,
the trend in the steels was the reverse of that of the iron-carbon alloy in that the finest
grains were obtained in the steels with slow rates of heating. 8 p. 15c.

The microscopic structure of flax and of related bast fibers was investigated. The
stem of the flax plant consists of two main parts, a central woody core, and a surround¬
ing cortex which contains the bast fibers. The cambium layer lies between these
regions. Retting involves, essentially, a softening of the tissues to permit separation of
the fibers from the other parts of the stem. The cambium layer is attacked first dur¬
ing this treatment, followed later by attack on other thin-walled cells in the cortex.
Flax and related bast fibers, such as hemp, jute, and ramie, have a similar origin
and structure. They are obtained from the stem in the form of long filaments, each of
which is made up of cells. In this respect they differ from cotton fibers, which are single
plant cells.
A flax cell has a primary and a secondary wall. The former constitutes the sur¬
face of each cell and consists largely of wax and other material, much of which has
generally been assumed to be of a pectic nature. The secondary wall, which comprises
the bulk of the fiber, is made up of innumerable cellulose fibrils, the outermost layer
of which winds in one direction, whereas the majority of the fibrils beneath this layer
wind in the opposite direction. These fibrils are grouped so as to give the wall a lamellar
pattern. There is a greater number of these layers in the walls of the cells at the base
of the stem than in the cells from the growing tip. A corresponding increase in thick¬
ness of the wall, from the tip of the stem where the cells originate to the base where
they mature, also prevails. All the bast fibers have essentially similar structures. Flax
and ramie, however, differ from hemp and jute in the directions of fibrillate orienta¬
tion, and this accounts for some of the differences in the physical properties of the two
groups. 10 p. 10c.

Alum-, indian-, and chrome-tanned lace leathers, submitted by various manu¬
makers, were tested for deterioration under accelerated-aging conditions. In addi¬
tion, the physical and chemical properties of these leathers were determined accord¬
ing to the tests prescribed by the Federal specification for lace leathers. The alum-
tanned lace leathers were much less stable under the conditions of accelerated aging
than the indian- and chrome-tanned leathers. Several types of chrome-tanned leathers,
including chrome-tanned lace leather, showed intermediate stability. From the results
of these tests, it appears that measurements of physical properties, such as strength,
stretch, and flexibility, together with an accelerated-aging test, may be expected to
give more valuable information about the performance characteristics of lace leathers
than the measurements required by the present Federal specification. 6 p. 5c.
RP1484. Effect of moderate cold-rolling on the hardness of the surface layer of 0.34-percent-carbon steel plates. Harry K. Herschman.

The influence of moderate cold-rolling on the surface indentation hardness of 0.34-percent-carbon steel plate initially surface-finished by three different methods was investigated. Variations of the hardness of the surface layers extending to different depths below the surface of the specimens were determined by applying different loads on a Knoop indenter. Indentation hardness tests also were made with the Rockwell Superficial hardness machine. The results obtained with the Knoop indenter showed significantly lower hardness numbers for the superficial layer of the steel after the lighter degrees of rolling, the magnitude of change apparently being influenced by the mode of initial finishing. Hardness decreases were not revealed by tests made with the Rockwell Superficial machine nor in any case in which the penetration of the Knoop indenter exceeded about 0.0003 inch. 11 p. 10c.

Results are given which indicate that the ability of a textile fabric to withstand repeated flexing depends upon the structure of the fabric, the position and structure of the yarn in the fabric, and the kind of fiber from which the fabric is made. 3 p. 10c.

RP1486. Elasticity of wool as related to its chemical structure. Milton Harris, Louis R. Mizell, and Lyman Fourt.

Wool protein, like other fibrous proteins, is composed of long, flexible molecular chains. This flexibility appears to be the basis of the "long-range" elasticity of wool fibers. The wool fiber is distinguished from other textile fibers by the presence of covalent disulfide cross-links between these main chains. Rupture of these links by chemical means decreases the strength of the fiber without necessarily affecting the elastic recovery. Rebuilding the covalent linkages largely restores the original properties of the fiber.

Wool appears to be analogous to rubber in several respects. Thus the stress-strain, solubility, and swelling characteristics are greatly influenced by the extent of cross-linking in the two materials. 14 p. 5c.

Measurements of specific heat were made on a sample of Hycar O. R. synthetic rubber from 15° to 340° K by means of an adiabatic vacuum-type calorimeter. The experimental values of the specific heat between 15° and 22° K were well represented by the Debye specific-heat equation, using a βv value of 80, and accordingly the values below 15° K were calculated with this equation. At about 250° K the material has a transition of the second order, the specific heat increasing by about 40 percent to a value of $1.84 \text{ int. joule-gram}^{-1}\text{degree}^{-1}$ just above the transition. From 250° to 340° K the specific heat-temperature curve is nearly linear, and the values can be calculated to within 0.2 percent from the formula $C_p = 0.002837 + 1.126$, in int. joules-gram$^{-1}\text{degree}^{-1}$. At 298.16° K (25° C) the specific heat is 1.971 ± 0.002 int. joules-gram$^{-1}\text{degree}^{-1}$ (0.4712 calories-gram$^{-1}\text{degree}^{-1}$). The increase in entropy resulting from heating from 0° to 298.16° K was calculated to be 1.743 ± 0.002 int. joules-gram$^{-1}\text{degree}^{-1}$ (0.4167 ±0.0005 calories-gram$^{-1}\text{degree}^{-1}$). 9 p. 5c.

There is disagreement in the literature regarding the use of the Coriolis and the Boussinesq velocity-distribution coefficients in the open-channel flow equation. It is shown in this paper that the use of either coefficient is correct, provided the terms representing the effects of resistance are properly interpreted. The methods of deriving the two forms of the flow equation are given in detail, and it is shown that in the form of equation containing the Boussinesq coefficient, the friction coefficient is related directly to the wall friction. In the form of equation containing the Coriolis coefficient, the friction coefficient is related to the rate of energy loss in the water. This has a direct bearing on the correct use of Manning's "n" in the equation of flow in open channels. 15 p. 10c.

RP1489. Metallographic study of the formation of austenite from aggregates of ferrite and cementite in an iron-carbon alloy of 0.5 percent carbon. Thomas G. Digges and Samuel J. Rosenberg.

The formation of austenite on heating aggregates of ferrite and cementite in a high-purity alloy of iron and carbon (0.50 percent carbon) is described. In fine pearlite,
austenite was preferentially nucleated at the interfaces of ferrite and carbide at the boundaries of pearlite colonies and proeutectoid ferrite or at the boundaries between pearlite colonies, although it occasionally formed within the colonies. In spheroidized structures, nucleation occurred at ferrite-carbide interfaces at the cementite network or at isolated cementite particles. Austenite formed at numerous interfaces, so that in the initial stages it was always fine-grained. However, if the rate of heating is slow, rapid grain growth takes place in the Ac_1-Ac_3 temperature range. The predominant factor in establishing the austenite grain size in this alloy was the rate of growth and not the rate of nucleation. 9 p. 10c.

By means of a series of three successive fractional precipitations, a solution containing 2 kg of commercial cellulose acetate was separated into 15 fractions varying in degree of polymerization from 30 to 380. The procedure involved the fractional precipitation of the acetate from a solution in acetone, using ethyl alcohol as the precipitant.

From the viscometrically estimated chain-lengths of the fractions, the distribution of chain-lengths in the starting material (excepting the first fraction) was obtained. The first fraction was not completely soluble in acetone or Methyl Cellosolve, and therefore no estimate of its degree of polymerization was obtained. It was shown that a large proportion of the ash and haze-producing materials are contained in this first fraction. All of the other fractions have very low ash contents, and with the exception of the fractions of very low degrees of polymerization, the acetyl contents are constant. A phase diagram showing some of the solubility relationships of the starting material and several of the fractions is given. 8 p. 5c.

An investigation has been made of the mode of attack of cellulose by periodic acid during the early stages of the oxidation (that is, oxidation of approximately 1 percent of the glucose residues). Under these conditions, it is shown that the reaction is confined to oxidation of the secondary hydroxyl groups to aldehyde groups, and results in a rupture in the carbon chain between carbon atoms 2 and 3 of the glucose unit. In accordance with this mechanism it is shown that two moles of aldehyde groups are produced for each mole of oxidant consumed. The aldehyde groups of the periodic acid-oxycellulose can readily be converted to carboxyl groups, titration of which provides an independent check on the content of the former.

Periodic acid-oxycellulose is characterized by its susceptibility to further attack by alkaline solutions. The alkali-sensitivity of these materials, as measured by solubility in hot dilute sodium hydroxide and by cuprammonium fluidity, appears to be proportional to the content of aldehyde groups. However, upon conversion of all of the aldehyde groups to carboxyl groups, the alkali-lability practically disappears. The results suggest that the sensitivity of periodic acid-oxycellulose to alkali does not depend solely on the rupture of the glucose ring between carbon atoms 2 and 3, but is related to the specific instability toward alkali of the dialdehyde formed during the oxidation. 11 p. 5c.

RP1492. A flow manostat for various purposes, including the candy test. Max J. Proffitt.

The flow manostat described in this paper is virtually a sensitive pressure-reducer in which the valve unit consists of a knife-edged circular orifice which is converted into an annular opening by means of a coaxial tapered core that floats upon a liquid surface which is depressed through contact with the gas at the regulated reduced pressure. Any change in the regulated pressure produces an axial movement of the core, thus expanding or contracting the area of the annular opening by an amount which is just sufficient to compensate approximately the effects of the change in the service pressure that induced the change in the regulated pressure. To minimize friction, the major diameter of the spindle or tapered part of the core is made slightly less than the diameter of the orifice. This allows the spindle to move its full length through the orifice without touching the edges of the orifice. Each valve unit has only a short range of variability in throughput capacity. Any reasonable capacity outside of this range can be obtained by substituting a valve unit of appropriate size in the same manostat. Each valve unit comprises an orifice plate with knife-edged opening (or else a pair of such plates), together with a properly fitting core having one spindle or two as required. The volume of flow always is governed by the discharge characteristics of the nozzle or fixed group of simultaneously operating nozzles served by the manostat. Any change in these characteristics will involve readjustment of the regulated pressure.
An experimental manostat equipped with a double, self-balancing valve unit conforming approximately with this design reduced a gas service pressure varying between the limits of 104 and 164 mm of water to a regulated pressure of 49.6 ± 0.5 mm of water, while serving three burners consuming a total of about 8 cubic feet of gas per hour. 13 p. 10c.

RP1493. An equation for the isotherms of pure substances at their critical temperatures. Cyril H. Meyers.

An empirical equation is presented for data along the isotherms of pure substances at their critical temperatures and densities up to 1.1 times the critical density. The equation has five constants in addition to the universal gas constant. Of these five one is limited to a single value, if a simple solution to the equation is to be obtained; three are determined by the critical conditions; and the remaining constant is determined empirically from data other than those for the critical state. Three of the five constants are independent of the substance, one is an explicit function of \(\frac{RT_c}{p_cV_c} \), whereas the reciprocal of the fifth is found to be practically a linear function of \(\frac{RT_c}{p_cV_c} \) for values of that ratio up to 3.8 or 3.9. This relation correlates the isotherms for various substances, so that data on two well-chosen substances, such as hydrogen and carbon dioxide, suffice to determine the fifth constant and consequently the critical isotherm for other substances, for which \(\frac{RT_c}{p_cV_c} \) is not greater than 3.8. For substances such as ammonia (for which \(\frac{RT_c}{p_cV_c} \) is 4.08), the fifth constant may not conform to the linear relation.

The equation represents the data for 12 of 13 substances within the experimental error, the exceptional substance being water (for which \(\frac{RT_c}{p_cV_c} \) is 4.34).

At low densities the equation reduces to a simpler form which expresses \(pV/RT \) as a quadratic function of density.

The fugacity along the critical isotherm can be calculated from the equation. The fugacity at the critical state is approximately two-thirds the critical pressure for all substances. The fugacity of \(CO_2 \) is calculated at 1 atmosphere and at the critical pressure. 20 p. 10c.

RP1494. X-ray measurement of the thickness of the cold-worked surface layer resulting from metallographic polishing. Herbert C. Vacher.

Different thicknesses of cold-worked layers, each representative of a specific abrasive treatment used in metallographic polishing, were produced on annealed specimens of steel (0.34% C), copper, and aluminum. The back-reflection patterns of the specimens showed a progressive increase in the degree of diffuseness with thickness in the range from 2 to 25 microns on the steel specimens, 2 to 42 microns on the copper specimens, and 5 to 95 microns on the aluminum specimens. A comparison of these patterns with others obtained from copper and steel specimens indicated that the cold-worked layers produced by certain fine-abrasive treatments were thicker than those produced by certain coarse-abrasive treatments. 5 p. 10c.

For use in the calibration of electrometric pH assemblies, 17 standard buffer solutions have been investigated, and pH values at 20°, 25°, and 30° C have been assigned to them. The pH values of these solutions range from 2.27 to 11.68 and are considered accurate to ±0.02 pH unit.

Hydrogen–silver–chloride cells without liquid junctions were used for establishing the precise pH values of the buffer mixtures. The assumptions made to determine the activity coefficients of the ions in the mixtures are discussed. The method of assigning an accurate pH value to a buffer mixture is outlined.

Directions for preparing the mixtures from purified anhydrous salts, standard solutions of acid and alkali, and pure water are given. Changes of temperature have a large effect on the pH values of the buffers of pH greater than 7 than on those of the acid buffers. In all cases the effect of dilution is small; an error of 1 percent in the volume of solvent added results in a change of less than 0.001 pH unit.

The use of a pH meter of the glass-electrode–calomel-electrode type calibrated by means of a standard buffer may often involve greater uncertainties than those inherent in the pH value assigned to the buffer mixture. It should be recognized that errors arising from liquid junction, hysteresis, temperature, and salt effects may combine to give an uncertainty of 0.01 and 0.03 unit or more in practical pH tests. 8 p.

The adsorption of nitrogen was determined at liquid nitrogen and liquid oxygen temperatures by measuring the pressure decrease of a known volume of the gas
exposed to each of 20 different samples of bone blacks, activated carbons, vegetable carbons, and coconut charcoals. Typical adsorption isotherms of these data are illustrated. Specific surfaces were estimated with fair accuracy from an analysis of the data with the aid of the multimolecular theory of adsorption. The surfaces of new bone chars, service bone chars, and spent bone chars are compared; the ratio of the specific surface of a new char to that of a spent char may be as great as 7. The distribution of pore sizes in the adsorbents is discussed and the data are divided into five groups, each characterized by a value of \(n \), which is defined as the maximum number of adsorbed layers possible on the surface of the material. All the samples in each group have a common isotherm when reduced to unit surface. The differential heats of adsorption are also determined from the data. The adsorption at 77°K is also considered from the standpoint of capillary condensation. The volume, as adsorbed liquid nitrogen, is plotted against the corresponding radius of a cylindrical capillary, which is determined from the Kelvin equation. 35 p. 10c.

Directions are given for the preparation of \(l \)-erythronic, \(d \)-threonic, \(d \)-lyxonic, \(l \)-zylonic, and \(d \)-arabonic acids by means of oxidation with oxygen of certain sugars in alkaline solution. \(d \)-Arabonic acid was obtained in about 70-percent yield, in agreement with the results of prior investigators. Lower yields were obtained for other aldonic acids, and they do not differ greatly from those obtained by oxidation with air. Nevertheless, the simplicity of the method makes it suitable for the production of lower aldonic acids by persons requiring a supply of these scarce materials. \(l \)-Erythronic and \(d \)-threonic acids were separated in the form of brucine salts, the optical rotations of which were found to be represented by the following expressions:

\[
[a]_D^{\text{m}} = -28.4 - 0.85C + 0.025C^2,
\]

in which \(C \) is the grams of anhydrous brucine \(d \)-erythronate in 100 ml of aqueous solution;

\[
[a]_D^{\text{m}} = -28.5 - 0.9C + 0.025C^2,
\]

in which \(C \) is the grams of anhydrous brucine \(d \)-threonate in 100 ml of aqueous solution. 6 p. 5c.

The relative illumination in the focal plane was measured for a number of wide-angle airplane-camera lenses, using a method depending upon the determination of the light-transmitting area of the lens effective at definite orientations of the lens. A new factor dependent on the lens design was found to be operative in reducing the values of the relative illumination in the unvignetted portion of the field for certain types of lenses. Determinations of the resolving power were also made and showed considerable variation in performance with type of lens. The effect of basing the distortion values upon the calibrated focal length instead of the equivalent focal length was determined. 14 p. 5c.

New measurements yielded the value \(26428.4 \pm 2.6 \) international joules per gram mass for the heat of combustion, \(Q_B \), of benzoic acid at 25° C under the conditions of the standard bomb process. The difference, 0.036 percent, between the above value and that reported in 1934 is due to five factors: (1) An error in the previous value, resulting from the effect of dissolved carbon dioxide on the determination of the nitric acid formed in the bomb, (2) a change in the value used for the energy of formation of nitric acid in the bomb, (3) taking account in the present work (in the calculation of the value of \(Q_B \) at 25° from the observed value at 30°) of the temperature dependence of the Washburn reduction, (4) a change in the value used for the temperature coefficient of heat of combustion, arising from the use of a new value for the specific heat of benzoic acid, and (5) a small difference in the results of the calorimetric measurements. The 1934 results, when corrected for the first four of the above effects, are in agreement within 0.01 percent with the results of the present measurements. The procedure for correcting the results of calibration experiments originally calculated on the basis of the 1934 value of \(Q_B \) is described.

With one exception, values of \(Q_B \) at 25° C calculated from the results of previous measurements are in satisfactory agreement with the value given above.

When the amount of benzoic acid burned in each experiment was calculated from the mass of carbon dioxide formed, the present measurements yield the value \(3226.39 \pm 0.32 \) international kilojoules per mole for \(\Delta H^\circ_{298,15} \), the decrease in heat content for the combustion reaction at 25° C when each of the gases involved in the reaction is in the thermodynamic state of the unit fugacity and the water formed in combustion is in the liquid state. 24 p. 10c.

The resistance of wool to digestion by enzymes is probably due to a unique structure, consisting of peptide chains joined by disulfide cross-links to form a three-dimensional polymeric network of extremely high molecular weight. This conclusion is substantiated by a study of a series of derived wool proteins similar in composition but expected to differ in molecular weight. The proteins were prepared by first "de-polymerizing" wool by reducing its disulfide cross-links to sulfhydryl groups, then making a series of solutions of this protein of widely varying concentration, and finally rebuilding the disulfide cross-links by reoxidation.

An investigation of the rates of digestion by pepsin of a series of such proteins showed that those preparations expected to be of low molecular weight were rapidly digested, whereas those expected to be of greatest molecular weight were almost as resistant to digestion as untreated wool. 7 p. 5c.

Tests were made to determine the mechanical properties of perforated cover plates intended to be used as a substitute for lattice bars or batten plates in built-up box-type columns. Each column was built up from one perforated plate and either two or four angles. Columns with unperforated plates were used as controls.

This paper gives the results of the tests on columns having plates of three different perforation spacings. The plates had ovaloid perforations and a width-to-thickness ratio of 68.

It was found that the perforated plates contributed to the strength and to the stiffness of the columns. The factor of stress concentration, due to the perforations, varied from 2 to 2.6 based on the gross area (1.7 to 2.1 based on the net area). 24 p. 10c.

Recent absolute determinations of the acceleration of gravity differ from the generally accepted Potsdam value by amounts considerably greater than the probable error assigned to that value by the Potsdam investigators. The discrepancy is due in large part to an adjustment made with the intent of correcting for certain systematic errors. The adjustment was probably not warranted. If this adjustment is not made, the Potsdam result is about 12 parts per million less than the commonly accepted value as compared with 14 and 20 parts per million less as found in the recent absolute determinations. The best value of g for general use when accurate absolute values are needed is probably obtained by reducing the local value in the Potsdam system by about 15 parts per million. The Subcommittee on Gravity of the National Research Council Committee on Fundamental Physical Constants has recommended a reduction of 17 parts per million. 12 p. 5c.

The rates of hydrolysis by dilute acids of both a dissolved protein (egg albumin) and an insoluble protein (wool) are shown to depend not only on the temperature and acidity but also on the acid used. When hydrolyzed at 65°C by certain strong monobasic acids of high molecular weight, the amide and the peptide bonds are broken over 100 times as fast as when they are hydrolyzed with hydrochloric acid. Even among the common mineral acids, large differences appear. These differences in hydrolytic effectiveness parallel differences in the affinities of the anions of the acids for protein.

A further reason for attributing this effect to the anions is the attainment, with anions of high affinity, of a maximum rate of amide hydrolysis at relatively low concentrations, stoichiometrically equivalent to the sum of the amino plus the amide groups. A similar limiting anion concentration or maximum rate of hydrolysis of the much more numerous peptide groups is not observed. On the basis of details of the dependence of the rate of hydrolysis on concentration of effective anions and hydrogen ions, a mechanism which involves combination of the groups hydrolyzed with hydrogen ions, is proposed.

At low concentrations of effective anions, amide hydrolysis is catalyzed more strongly than peptide hydrolysis. By keeping the concentration slightly below stoichiometric equivalence to the sum of the amino plus amide groups the amide groups may be rapidly hydrolyzed without extensive hydrolysis of the peptide bonds in the protein. Practical applications are suggested. 13 p. 5c.

The reflection factor of a plane boundary between two media has been computed by the Fresnel formula for unpolarized, perfectly diffused incident light as a function of the relative index of refraction of the media. Because of total internal reflection, the factors depend importantly upon whether the diffuse flux is incident externally or internally. For example, diffuse light in air incident on the plane surface of glass of index 1.5 is 9.2 percent reflected; but if the perfectly diffuse light is incident internally, the reflection factor is 60 percent. 4 p. 5c.

The NBS and Shawmut machines for testing the wear resistance of carpets, a gage for measuring the thickness of carpets, and an instrument for measuring the length of a tuft of pile from a carpet are described. The effects of the height of the vacuum-cleaner nozzle above the pile, the amount of suction at the nozzle, and the relative humidity and temperature of the air in which the test is made, on the results obtained with the NBS machine were studied. The effect of systematic changes in carpet construction on the wear resistance was investigated with each machine and under severe service conditions. Tests on 24 carpets of Axminster, velvet, and Wilton weaves were made on the two types of machines in several laboratories, and the results obtained in the different laboratories were correlated with each other and also with the results of 3 years of service tests on the same carpets. The correlations were highly significant, but large systematic differences between the weaves and between the laboratories were obtained. The latter difference is attributed primarily to a lack of uniformity in the testing procedures. Three types of vacuum-cleaning systems were used during the service tests, and their effect on the wear of the carpets and the effectiveness of cleaning were observed. The S index, which is the time required to wear the pile of a carpet down to one-fourth of the matted pile thickness, corresponds closely with the time at which a carpet in a service test would be discarded on account of visible wear. The deviation of the S index of a single test from the average is less than 10 percent in 9 trials out of 10. The nature of the wear produced by the two machines on the pile fibers was found to be similar to that produced during the service tests. The analysis of carpets do not yield sufficient data to determine the probable durability of carpets in general. The relative wear of carpets for a given use can be evaluated by means of laboratory wear tests. For general interlaboratory comparison of the relative wear resistance of carpets, the testing machines and the testing procedures must be rigidly standardized and controlled. 47 p. 20c.

Recent work at this Bureau has shown that the disulfide cross-linkages of wool can be transformed to more stable bis-thioether linkages by a two-step process. The disulfide groups are first reduced to sulhydryl groups by means of a mercaptan, and then, by treating the wool with an aliphatic dihalide, pairs of sulfur atoms are linked together through short hydrocarbon chains. Wools modified by such a process have now been studied more extensively. It was found that they are decidedly more stable than untreated wool toward many chemical agents, including alkalies, acids, oxidizing agents, and reducing agents; are stained less easily by metals; and are attacked much less readily by certain biological agents, including moths, carpet beetles, and enzymes. 9 p. 10c.

A method has been developed for preparing specimens of synthetic rubber in a form suitable for precise measurements of the density. The rubber is outgassed in a vacuum chamber, and while still under vacuum is molded into a sheet about 1/16 in. (1.6 mm) thick. Specimens weighing between 1 and 2 g each are cut from this sheet and are employed for the measurement of the density by the method of hydrostatic weighings. The values obtained with different specimens from the same sample rarely differ from each other by more than 0.05 percent. Measurements are made soon after molding because some rubbers recover, and develop roughened surfaces and vacuoles which bring about a decrease in the apparent density.

Unvulcanized Buna S, prepared in a laboratory polymerization with a minimum quantity of materials other than butadiene and styrene, was found to have a density of 25° C of 0.9291 g/cm³. Corresponding values for butadiene-styrene copolymers produced on a commercial scale are as follows: Firestone Buna S, 0.9358; U. S. Rubber Co. Buna S, 0.9369; Standard Oil Co. (N. J.) Buna S, 0.9390; Chemigum IV, 0.9391; Hycar O. S.-20, 0.9385; and Hycar O. S.-30, 0.9303 g/cm³. The densities of other common varieties of synthetic rubber were found to be as follows: Neoprene
RP1508. Ten-year tests of high-early-strength cement concretes. Louis Schuman.

Data on 10-year compressive strengths of concrete cylinders made from 12 commercial high-early-strength cements are given, supplementing the results up to 1 year given in Research Paper 799. When cured in moist air, the concretes generally continued to gain strength between 1 and 10 years. For concretes stored in the air of the laboratory, the 10-year strengths are approximately equal to those at 28 days. Comparisons are given between strengths of concretes made in 1910, 1930, and 1941, showing that concretes made with some present-day cement may attain strengths in 1 month exceeding those for the older cements at 10 years. 7 p. 5c.

RP1509. Interval selector for random pulses. Francis J. Davis and Leon F. Curtiss.

An interval selector is described which has been developed to study the distribution of pulses from Geiger-Müller counters. The circuit is designed to count pulses with a separation less than τ, where τ may be varied between 3×10^{-5} sec and 0.2 sec. Tests are described which show that the circuit accomplishes these measurements with considerable precision.

Results of tests on alcohol-vapor-argon and amyl-acetate-vapor-argon-type Geiger-Müller counters are given which show that counters of this type can be prepared in a simple manner, yielding the proper random distribution of pulses even at very rapid rates of counting. Counters thus prepared have maintained their characteristics for at least 2 years. 11 p. 5c.

In order to extend previously reported analyses of the combination of acids with wool, measurements have been made over a wide range of concentrations, of the amounts of the anions of two acids combined by wool fibers when acids of different affinity for protein are present in different proportions or in mixtures of their acid and salt forms. It is shown that anions compete with one another for combination with the fiber, so that the amounts of each combined depend not only on the amounts initially present but also on their respective affinities for wool. The bearing of these results and their interpretation on the theory of acid dyeing is discussed, with special reference to the factors promoting the attainment of "level" or "solid" application of dye to the fibers. 8 p. 5c.

Wool immersed in mixtures of two strong acids, or of one acid and a salt of a second, combines with these acids in unequal amounts. The present paper demonstrates that the results obtained with mixtures may be predicted with fair approximation from the anion-wool dissociation constants previously assigned to each anion on the basis of titration data. Methods are described for calculating the total acid and the relative proportions of each which are bound. Conversely, it is also shown that approximate values of the dissociation constants may be calculated from the results of experiments with mixtures. 12 p. 5c.

RP1512. Further phase-equilibrium studies involving the potash compounds of portland cement. William C. Taylor.

The present research on the system $K_2O.23CaO.12SiO_2-CaO-5CaO.3Al_2O_3$ is a part of the program designed to determine the manner in which K_2O affects the compound composition of portland cement clinker. Thermal and optical data are presented and a phase-equilibrium diagram of this system has been constructed. The only compounds that were observed in the system under equilibrium conditions are the components of the system and $3CaO.Al_2O_3$. The effect of K_2O on the compound composition of clinker containing K_2O, CaO, MgO, Al_2O_3, Fe_2O_3, SiO_2, and SO_3 has been studied also. The only compounds of K_2O found to be stable are K_2SO_3 and $K_2O.23CaO.-12SiO_2$, the K_2O combining preferentially with the SO_3 present. 15 p. 10c.

Title page and contents for volume 29. 6 p. 5c.
RP1513. Mechanical properties of cellulose acetate as related to molecular chain length. Arnold M. Sookne and Milton Harris.

The mechanical properties of films prepared from a series of fractions of cellulose acetate, varying widely in molecular chain length (DP), were determined. A fraction of DP 30 would not form a coherent film; fractions of higher DP showed a rapid improvement of mechanical properties with increase in DP, but above 150, further improvement was slight. A close correlation was found between the results of folding endurance and ultimate elongation measurements. These properties are more sensitive than tensile strength to changes in DP and heterogeneity with respect to DP. Investigation of the properties as a function of both weight-average and number-average DP indicated that at any given weight-average DP the fractions are superior to the blends and, furthermore, those blends which contain fractions of low DP are inferior to those which do not. In contrast, at any given number-average DP within the range studied, the properties of the fractions and all of the blends are approximately equal. 14 p. 10c.

Tests were made to determine the mechanical properties of perforated cover plates intended to be used as a substitute for lattice bars or batten plates in built-up box-type columns. Each test column was built up from one perforated plate and either two or four angles. Columns with unperforated plates were used as controls.

This paper gives the results of the tests on columns having plates of three different perforation spacings.

It was found that the perforated plates contributed to the strength, and especially to the stiffness, of the columns, and that the factor of stress concentration, due to the presence of the perforations, varied from 2 to 2.6 based on the gross area (1.7 to 2.1, based on the net area). 25 p. 10c.

An electrode holder has been constructed for improving the speed and ease of operations in miscellaneous spectrographic testing. Advantages afforded by the new holder include: (1) application to a variety of electrode sizes and excitation conditions, (2) positive and precise adjustment and motion of the parts, (3) water-cooling of the electrode clamps, and (4) a housing for protection against light, fumes, and electric shock. The construction of the holder and its application to excitation problems with the high-voltage spark, the a-c arc, and the d-c arc are described. 5 p. 5c.

The course of the reaction of the cystine in wool with alkali has been reinvestigated. The earlier findings that one sulfur atom is split from each molecule of cystine are confirmed. Of the residual noncystine sulfur in the alkali-treated wool, more than 25 percent has been accounted for as lanthionine. No significant amounts of sulfhydryl groups are in the treated wools. The results lead to the conclusion that the alkali cleavage of the disulfide group does not consist primarily in a hydrolytic rupture between the sulfur atoms with the formation of a sulfhydryl compound and a sulfenic acid, as postulated earlier; rather, they are more consistent with a mechanism recently advanced by Nicolet and Shinn, which involves a rupture between sulfur and carbon to yield dehydroalanine and a —CH₂—S—SH residue. An atom of sulfur is then eliminated from the latter and the sulfhydryl group thus formed reacts with dehydroalanine to form lanthionine. 7 p.

Papers were irradiated with a carbon arc through a filter that completely eliminated infrared, and ultraviolet shorter than approximately 330 millimicrons. Sheet temperature was kept near 30° C during irradiation, through contact with a thermostated metal backing, thereby eliminating heat effects, shown otherwise to overshadow light effects, using intense sources.

In consequence, the results differed from those of previous workers. Yellowing of papers (without lignin) commonly ascribed to light was found to result from heat or age, but not light; papers bleached when heat effects were eliminated during irradiation. Even lignified paper was bleached by light in nitrogen.

102
Paper scorched brown at high temperatures or yellowed at 100° C, and yellow papers 250 years old were bleached by light. Lack of oxygen inhibits but does not altogether prevent photochemical deterioration. The role of water vapor differs fundamentally for cotton and wood-pulp paper. Lignified paper is very unstable to light. Printers' ink extensively protects paper. Irradiated papers are subsequently less stable in the dark than those not previously irradiated.

The order of photochemical stability of papers was as follows: new-rag, refined sulfite, old-rag, soda-sulfite, and newsprint. The light stability of new-rag papers was greatly affected by acid and rosin, whereas that of old-rag and soda-sulfite was only slightly affected, in contrast to heat stability, for which pH is important for all fibers. Newsprint, made neutral with NaHCO₃, showed a large increase in light stability. Rosin did not seriously affect the stability of any papers as long as their acidity was low.

RP1518. Thermal expansion of some bronzes. Peter Hidnert.

The results obtained in the course of independent tests and investigations on the linear thermal expansion of four groups of bronzes designated as tin-zinc, leaded, aluminum, and silicon bronzes are given for different temperature ranges. Curves showing the typical expansion and contraction characteristics of these bronzes during heating and cooling are presented. Ternary diagrams are given to show the effect of composition on the coefficients of expansion of copper-tin-zinc and copper-tin-lead alloys. In general, the coefficients of expansion of these copper-base alloys increase as the addition of tin, zinc, or lead is increased. For the range from 20° to 100° C, the average coefficients of expansion of the various bronzes were found to be between 16.8 × 10⁻⁶ and 19.0 × 10⁻⁶/° C. 13 p. 5c.

To ascertain the completeness of precipitation of hydroxides under conditions of controlled alkalinity in the range pH 1 to 10, experiments were made with over forty of the chemical elements. Discussion is given of possibilities for analytical separation through controlled hydrolytic precipitation. 11 p.

RP1520. Thermal expansion of titanium. Peter Hidnert.

This paper gives data on the linear thermal expansion of titanium (97.2 percent) at various temperatures between −190° and +700° C. The coefficient of expansion of titanium increases from about 5 × 10⁻⁶/° C at −150° C to about 12 × 10⁻⁶/° C at 650° C. The data on thermal expansion do not indicate the existence of polymorphic transformations of titanium between −190° and +700° C. 5 p. 5c.

RP1521. Modification of the Carius combustion tube to minimize losses by explosion: Pressures attained on heating nitric acid to 300° C. Charles L. Gordon.

This paper describes a modified form of tube which minimizes the likelihood of loss by explosion in the Carius method of determining halogens and sulfur in organic substances. The familiar Carius tube of Pyrex glass cannot be sealed properly in the laboratory. Residual strains in the glass seals cause the tubes to burst at pressures much lower than those to be expected from the normal strength of the glass. By sealing smaller neck-tubes on the usual heavy-walled tubes, all the seals except the small final seal can be oven-annealed at the factory.

While the bursting pressure of the unmodified tubes was found to be between 1,000 and 1,400 pounds per square inch, the modified tubes burst at over 2,500 pounds per square inch. The pressures developed during a Carius determination were estimated from determinations of the pressures developed by various amounts of fuming nitric acid in a specially designed gage. Such pressures were found to be below 1,520 pounds per square inch at temperatures up to 300° C when the amount of acid was limited to that customarily used. 5 p. 5c.

In a method frequently used to determine the tendency of paper to curl, a measurement is made of the amount of curl of a small piece of the paper floating on water. The measurement is customarily made in terms of an arbitrarily chosen angle. The maximum curvature, however, is a more logical measure of curliness. An effort had been made to determine the maximum curvature of freely curling paper from measurements made of the curling of paper in contact with water, and the new apparatus devised for the purpose is described. Measurements were made of the relative curliness of a
number of lithographic papers. The correlation of curl with other related properties is discussed. The results of the measurement of curl agree reasonably well with what is known about the behavior in use of the papers studied. 9 p. 5c.

Previous studies of the combination of wool with strong acids have been extended to include 13 week acids. It is shown that, unlike strong acids, these substances combine with wool in the molecular (undissociated) as well as in the ionic (dissociated) form. The amounts combined as molecules may far exceed the amounts taken up as ions.

Estimates are given of the relative tendencies of these weak acids to combine with wool. They vary over a three-hundredfold range. The negligible effect of temperature on the equilibrium between wool and one of these acids, monochloroacetic, suggests that the combination with undissociated acids is akin to a competitive solution and involves the displacement of combined water. 6 p. 5c.

RP1524. pH values of certain phosphate-chloride mixtures, and the second dissociation constant of phosphoric acid from 0° to 60° C. Roger G. Bates and S. F. Acree.

Measurements of the electromotive forces of galvanic cells composed of hydrogen and silver–silver-chloride electrodes in aqueous chloride-phosphate solutions were made at 5-degree intervals from 0° to 60° C. The solutions were mixtures of sodium chloride, disodium hydrogen phosphate, and either sodium or potassium dihydrogen phosphate; three ratios of the molalities of the two phosphate salts were employed, and a wide range of concentrations was covered. The second dissociation constant was evaluated from the experimental data. The values of the negative logarithm of the constant at each of the 13 temperatures studied may be computed from the following equation:

\[pK_2 = \frac{1979.5}{T} - 5.3541 + 0.019840T, \]

where \(T \) is in degrees Kelvin.

For each temperature, the heat and entropy of dissociation, the change of heat capacity, and the free-energy change accompanying the dissociation of 1 mole of \(\text{H}_2\text{PO}_4^- \) were computed from the variation of the second dissociation constant with temperature.

The pH value of each solution was calculated. The pH values from 0° to 60° C of mixtures of sodium (or potassium) dihydrogen phosphate, disodium hydrogen phosphate, and sodium chloride, in which \(m_{\text{H}_2\text{PO}_4} = m_{\text{Cl}} \) and the ratio of the molality of the two phosphate salts were employed, and a wide range of concentrations was covered. The second dissociation constant was evaluated from the experimental data. The values of the negative logarithm of the constant at each of the 13 temperatures studied may be computed from the following equation:

\[\log (\text{pH})_t = (pK_2)_t - \log (m_{\text{H}_2\text{PO}_4}/m_{\text{HPO}_4}) - 3\sqrt{\mu} / (1 + B_0 \sqrt{\mu}), \]

where \(\mu \) is the ionic strength. These solutions are proposed as pH standards in the range 6.4 to 7.4. 27 p. 10c.

A miniature Geiger-Müller tube counter having a tube 0.8 mm in internal diameter is described. This "hypodermic-needle" type of counter has been found useful in locating and measuring a well-defined beam of gamma radiation. It could also be used to measure a beam of hard X-rays reflected from a crystal. Another suggested use is direct insertion into specimens, such as living biological material. 2 p. 5c.

The relative enzyme content of enzyme preparations which hydrolyze sucrose and inulin was determined for 14 enzyme preparations representing the principal commercial types available. Those of fungal origin seem invariably to contain invertases in about 0.5 to 1.0 percent of the quantities in commercial purified yeast invertase preparations. Enzyme preparations from plant sources (wheat, almond, and malt), from animal tissues (pancreases), and from Bacillus mesentericus had negligible contents of invertase. Enzyme preparations from Aspergillus niger and yeast exhibited considerable ability to hydrolyze inulin, those from Aspergillus oryzae and A. flavus exhibited some slight activity, and preparations from other sources were essentially inactive. For several representative enzyme preparations, the rate of hydrolysis of inulin and sucrose was studied and found to approximate a first-order reaction. The activity of the inulase in several A. niger enzyme preparations was found to be greatest in the range pH 3 to 4. Invertase preparations from A. niger were most active at pH 3 to 4 and those from A. oryzae at pH 5.0 to 5.5.
The results are considered from the viewpoint of the Weidenhagen theory, and it is shown that the original theory is incompatible with the present results in that either the invertases and inulases are different enzymes or they represent a class of enzymes (fructofuranosidases) in which the individual members vary according to the source. Thus the ratio of invertase to inulase activity varies from about 5 for the A. niger preparations to more than 4,000 for the yeast preparation. Following the suggestion of Helferich, the term "emulsin" is used as a synonym for a crude mixture of enzymes.

It is shown that the A. niger emulsins hydrolyze juices from the Jerusalem artichoke, which contain levulose polysaccharides. This reaction may be useful for the commercial production of levulose from this source, as enzymic hydrolysis has certain advantages that may offset the high cost of the enzyme preparation.

Consideration is given to the different methods available for expressing enzyme activity. It is shown, for the enzymes reported in the present paper, that the pseudo first-order reaction constant is proportional to the enzyme concentration over a fairly wide range, and that this constant may be utilized for the expression of the enzyme content of various emulsins. Since the substrate concentration must be specified, it is suggested that the concentrations proposed by Weidenhagen be generally accepted, and that his standard conditions of temperature, etc., also be adopted.

Tests were made to determine the mechanical properties of perforated cover plates intended to be used as a substitute for lattice bars or batten plates in built-up box-type columns. Each test column was built up from one perforated plate and either two or four angles. Columns with unperforated plates were used as controls.

This paper gives the results of the tests on columns having plates of three different perforation spacings.

It was found that the perforated plates contributed to the strength and to the stiffness of the columns, and that the factor of stress concentration, due to the presence of the perforations, varied from 2.5 to 3.4 based on the gross area (2.2 to 2.8 based on the net area).

The properties of 33 part-wool blankets of 8 constructions were measured, and the changes produced by 10 washings were observed. It is concluded that part-wool blankets should prove quite satisfactory for use in barracks in place of the all-wool army blanket, thereby effecting a substantial saving of wool, which might be needed for other military purposes.

Blankets varying greatly in air permeability were tested alone and in combination with one and with two sheets for air permeability and thermal transmission. The air permeability of the sheets was low in comparison with that of the blankets. The results show the effect of moving air on the thermal transmission of the blankets and of the blankets between two sheets. The effect of laundering on the weight, thickness, compressibility, compressional resilience, breaking strength, air permeability, and thermal transmission of the blankets is also reported.

It is concluded that for outdoor use, where protection against the wind and rain or snow is important, as in an open lifeboat at sea, a combination of a blanket and sheet or wind-resistant cloth would afford far more protection than a blanket alone.

Mixtures of 12 commercial Portland cement clinkers and water were filtered at 7 minutes and at 2 hours after mixing, and the chemical composition, pH, conductivity, surface tension, and density of the extracts were determined. The effects on the composition and physical properties of the extracts, produced by the addition of small amounts of various materials to the pastes, were studied in parallel experiments. The added materials included gypsum, which was used in preparing the cements from the clinkers, calcium chloride, calcium acetate, fluosilicic acid, sucrose, TDA, tannic acid, and triethanolamine.

In the majority of the extracts, soda and potash were present in greater amounts.
than any of the other dissolved oxides. Relatively high concentrations of sulfate occurred in the extracts of the clinkers that contained the larger amounts of potash. The lime concentration and basicity of the extracts were largely determined by the amounts of alkali oxides present. The concentration of silica corresponded approximately to the reported solubility of silica in lime solutions. Low concentrations of oxides of the \(\text{R}_2\text{O}_3 \) group were found except in extracts from pastes containing the added organic materials. 41 p. 10c.

A system for the classification of the carbohydrases has been proposed by Weidenhagen, and, although it has considerable value, it also has a number of obvious deficiencies. It is demonstrated in the present paper that many of these difficulties may be obviated by considering the individual enzymes of Weidenhagen, e. g., \(\alpha \)-glucosidase, as classes of enzymes of similar action but varying according to the source. The results of more recent studies of the specificity of the carbohydrases are considered, and the action of enzymes on pentoses, hexoses, and heptoses of similar ring conformations is interpreted. These results and the conception of the complex nature of Weidenhagen's individual enzymes are utilized in the establishment of a provisional system for the classification of the carbohydrases. 9 p. 5c.

Seventy-three experimental papers have been made in the Bureau's experimental paper mill in studies to determine the relationship between the mechanical beating of the fibers and the properties of offset papers made from them. A previous publication contains the data for the wood-fiber papers. The present article reports an extension of the work to include papers made of rag fibers, and mixtures of rag and wood fibers.

The rag fibers responded to beating differently in some respects than the wood fibers. Old rags withstood the prolonged beating required for the development of maximum strength and optimum formation without the adverse effects of such treatment noted in the preparation of wood fibers. All the rag-fiber papers had appreciably lower expansivity than wood-fiber papers of corresponding bond strength, and the mixture of old-rag fibers with strong sulfite, in equal proportions, produced papers with folding endurance approaching the average for the two pulps. Papers made of the sulfite pulp and wood-fiber filler pulp in like proportions have been found to have fold values little above that of the weaker pulps.

The addition of clay filler to a sulfite paper lowered the expansivity in the machine direction but did not lower it appreciably in the cross direction. 13 p. 5c.

Studies were made of the effects of added materials on the properties of a group of portland cement clinkers representing standard-portland, moderate-heat-of-hydration, high-early-strength, sulfate-resistant, and white cements. The materials used were gypsum, sugar, calcium chloride, TDA (grinding aid), tannic acid, triethanolamine, calcium acetate, and fluosilicic acid. The effects were judged by comparing the results of tests of specimens of clinker pastes containing the materials under investigation with the results of similar tests of the clinker pastes to which nothing had been added.

It was found that although some of the materials caused large changes in the behavior of the clinker pastes during their early history, these effects largely disappeared thereafter. Few of the substances had much effect on the results of tests performed at 28 days. No tests were made to evaluate the effect of the added materials after longer periods. 21 p. 10c.

Twelve brands of the heat-setting type of refractory mortar were studied with respect to sieve analysis, pyrometric cone equivalent, amount of mixing water required, troweling and drying properties, and strengths after heating at various temperatures. The tendency of the mortars to shrink, crack, and adhere when exposed to high temperatures, both in fusion blocks and in units of three bricks each, was also investigated. 8 p. 5c.

RP1535. Sources of error in precise commercial refractometry. Leroy W. Tilton.

Exclusive of compensators, the mechanical requirements for accurate refractometry to a few units of the fifth decimal place in index are difficult but not impracticable.
Optical requirements are high because the symmetrical use or all apertures is, in general, not possible. If it is necessary to distinguish between index of sample referred to air at 0 or at t, this usually can be done by choice of a relative or an absolute temperature coefficient when correcting for temperature of the refractometer block. For an error of 1×10^{-3} in index of solids, the permissible prism of contact liquid is one-third fringe per centimeter as viewed in the exit pupil of the telescope. The requirements for minimum shielding of critically refracted rays, for absence of certain interference fringes in the field of view, and for surfacing of the illuminating prism are so related with reference to measurements on small samples of liquid that compromises are necessary in the design of precision refractometers.

As a result of a series of previous investigations by the phase equilibrium method, it has been concluded that K_2SO_4 and $K_2O.23CaO.12SiO_2$ are the only compounds containing K_2O that may exist when a mixture of K_2O, CaO, MgO, Al_2O_3, Fe_2O_3, SiO_2, and SO_3 in the proportions occurring in portland cement clinker, is heated and cooled under equilibrium conditions. Frequent observations of a prismatic dark interstitial phase in etched, polished sections of commercial clinker and in rapidly cooled laboratory clinkers led to the present study of the relation of this phase to the system $K_2O.23CaO.12SiO_2-CaO-5CaO.3Al_2O_3$ and to other systems involving K_2O. The prismatic phase has not been found to exist under equilibrium conditions, but has been produced only under conditions of rapid cooling. Both thermal and compositional conditions that have been found to be required for its formation suggest that it may be a metastable form of $3CaO.Al_2O_3$ and monotropic with respect to the stable, isotropic, rectangular $3CaO.Al_2O_3$. That portion of K_2O combined as K_2SO_4 has been found to have no effect in inducing the formation of the prismatic phase. The conditions necessary for the formation of this phase have been outlined. Although the exact composition has not been established definitely, because of the experimental difficulties that have been outlined, the close relationship between the prismatic phase and $3CaO.Al_2O_3$ leads to the recommendation that this phase be referred to as “prismatic $3CaO.Al_2O_3$” instead of the term “prismatic dark interstitial material.” 18 p. 10c.

An improved method for obtaining the titration curves of monobasic acids is outlined. The sample, 0.005 mole of the sodium salt of the weak acid, is dissolved in 100 ml of a 0.05-ml solution of sodium chloride and titrated electrometrically with an acid-salt mixture in a hydrogen-silver-chloride cell without liquid junction. The acid-salt mixture has the composition: nitric acid, 0.1 m; potassium nitrate, 0.05 m; sodium chloride, 0.05 m. The titration therefore is performed in a medium of constant chloride concentration and of practically unchanged ionic strength ($\mu = 0.1$). The calculations of pH values and of dissociation constants from the emf values are outlined. The titration curves and dissociation constants of formic acid and of acetic acid at 25°C were obtained by this method. The pK values (negative logarithms of the dissociation constants) were found to be 3.742 and 4.754, respectively. 13 p. 5c.

Hydrated magnesium sulfate was identified as the principal compound in efflorescence on white-coat plaster finish. This salt is not a constituent of the white-coat backing but is formed by reactions involving gypsum and magnesia in the plaster, carbon dioxide from the air, and water. The reaction to form magnesium sulfate cannot take place until after the $Ca(OH)_2$ has been changed to $CaCO_3$. Magnesium sulfate efflorescence may also be formed on cement products by the same reactions. 6 p. 5c.

RP1539. Study of the system $CaO-Al_2O_3-H_2O$ at temperatures of 21° and 90°C. Lansing S. Wells, W. F. Clarke, and H. F. McMurdie.

A study has been made of the system $CaO-Al_2O_3-H_2O$ at temperatures of 21° and 90°C. Diagrams have been constructed showing the solubility relations of the various phases at these temperatures. The solid phases were investigated by petrographic and X-ray diffraction methods. By means of X-ray diffraction patterns, it was found that the so-called hexagonal tricalcium aluminate hydrate is in reality a mixture of hexagonal $2CaO.Al_2O_3.8H_2O$ and hexagonal $4CaO.Al_2O_3.13H_2O$ intercrystallized in equimolecular proportions. On standing at room temperature, dry dicalcium aluminate
hydrate is slowly converted into the tetracalcium aluminate hydrate and hydrated alumina. Loss of water of hydration in the tetracalcium aluminate results in a decrease in the unit cell along the c axis. Although the hexagonal di- and tetracalcium aluminate hydrates exist only as metastable phases in the system between 21° and 90° C, their approximate solubility relationships were ascertained at 21° C. As the temperature increases, the hexagonal aluminates become less stable. The only stable phases that occur in the system CaO-Al₂O₃-H₂O at atmospheric pressure over the temperature range of 21° to 90° C are gibbsite (Al₂O₃·3H₂O), the isometric tricalcium aluminate hexahydrate (3CaO·Al₂O₃·6H₂O), and Ca(OH)₂. The solubility curves of these three stable phases in the system CaO-Al₂O₃-H₂O were determined at 21° and 90° C. Over this temperature range, gibbsite is the stable phase up to a concentration of 0.33 g of CaO per liter; at concentrations greater than this, 3CaO·Al₂O₃·6H₂O is the stable phase until those points are reached at which Ca(OH)₂ also appears as a solid phase. The series of invariant points for gibbsite and the isometric phase occur at a concentration of 0.33 g of CaO per liter, but with the concentration of Al₂O₃ increasing from 0.02 g of Al₂O₃ per liter at 21° C to 0.11 g of Al₂O₃ per liter at 90° C. 43 p. 10c.

RP1540. Perforated cover plates for steel columns: Compressive properties of plates having a net-to-gross cross-sectional-area ratio of 0.33. Ambrose H. Stang and Martin Greenspan.

Tests were made to determine the mechanical properties of perforated cover plates intended to be used as a substitute for lattice bars or batten plates in built-up box-type columns. Each test column was built up from one perforated plate and four angles. Two columns had circular and two ovaloid perforations. For each column the ratio of net-to-gross cross-sectional area in the plate was 0.33.

In this paper the methods of test are described, and the results of the tests of the four columns are given. 16 p. 10c.

RP1541. Thermal expansivity and density of indium. Peter Hidnert and Mary Grace Blair.

The linear thermal expansion of cast indium of high purity was investigated between —190° and +100° C and the cubical thermal expansion between 0° and 50° C. The following equation was derived for the linear expansion of indium:

\[L_t = L_0 [1 + (28.9t + 0.013t^2) \times 10^{-6}], \]

where \(L_o \) represents the length of the metal at 0° C, and \(L_t \) the length at any temperature, \(t \), within the range of the observations. The average coefficients of cubical expansion of indium were found to be 77 \(\times 10^{-6} \) and 101 \(\times 10^{-6} \) per degree centigrade for the ranges 0° to 25° C and 25° to 50° C, respectively. These coefficients of cubical expansions are not equal to three times the coefficients of linear expansion for the corresponding temperature ranges on account of the anisotropy of indium.

The density of cast indium was found to be 7.281 g/cm³ at 22.6° C. The density of indium calculated from the best available data on atomic weights and lattice constants is 7.40 g/cm³. Observed densities at 0°, 25°, and 50° C are also given in this paper. 7 p. 5c.

Continuing earlier measurements of ultraviolet solar radiation (RP877), a summary is given of similar measurements made during the years 1936 to 1942, in Washington, D. C. Marked variations in the spectral quality and total intensity of ultraviolet solar radiation, attributable to variations in atmospheric turbidity, and, to a less extent, to well-known cyclonic and seasonal changes in ozone concentrations in the stratosphere, are recorded. On the clearest days the biologically effective ultraviolet of wavelengths shorter than 3132 A, incident directly from the sun and the surrounding sky at midday, ranges from about 75 microwatts per square centimeter (\(\mu \text{w/cm}^2 \)) in midsummer to about 12 \(\mu \text{w/cm}^2 \) in midwinter. 13 p. 5c.

This paper gives constructional data relating to a tungsten-filament-in-quartz lamp and a discussion of its applications to precision filter radiometry. This lamp is adapted for use in the calibration of the spectral and total radiation sensitivity of phototubes. In its applications, it supplements the spectroradiometer for calibrating phototubes while employing the tubes with the associated filters used in measuring the radiation under the investigation.

The spectral radiation output from such a lamp depends upon the temperature.
of the filament, the emissivity of tungsten, and the transmission of the fused-quartz envelope. A table of relative blackbody radiation intensities has been calculated for the temperature range 2,500° to 2,900° K in the wavelength interval 2300 to 3500 angstroms. 11 p. 10c.

RP1544. Effect of turbulence and channel slope on translation waves. Garbis H. Keulegan and George W. Patterson.

This paper is the second of a series dealing with the motion of flood waves and other waves of translation in open channels. The first paper considered waves controlled solely by inertia forces; the present one is an analysis of the combined effects of turbulent friction and inertia. The basic equation of motion for gradually varied unsteady flow in prismatic channels is derived from fundamental principles. The effect of the velocity distribution in the original undisturbed current on the motion of short waves is investigated, and the effects of wave height, curvature of profile, and fluid friction on the celerity of a wave-volume element is analyzed in detail. The deformation of a straight sloping front and the change of height of an abrupt wave front is treated. Special emphasis is laid on disturbances of negligible curvature and practical methods of handling engineering problems arising in connection with the operation of locks or hydroelectric canals are given. 52 p. 10c.

Title page and contents for volume 30. 6 p. 5c.

RESEARCH PAPERS FROM NATIONAL BUREAU OF STANDARDS JOURNAL OF RESEARCH VOLUME 31, JULY—DECEMBER 1943

In a study of the spacing and width of tensile cracks, axially reinforced cylinders were tested by applying tensile forces to the reinforcement and observing the deformations of the concrete and the spacing and the width of cracks. The test data and theoretical equations were in good agreement with respect to the effects of the principal factors controlling the spacing and the width of cracks. The spacing and the width of cracks were found to depend chiefly on the ratio of the diameter to the percentage of reinforcement and the nature of the deformations on the bars. It is concluded that the use of a type of reinforcement bar that will afford more reliable anchorage would result in better control of cracking of reinforced concrete and economy in the use of reinforcement steel. 24 p. 10c.

An autographic load-elongation apparatus for testing single fibers is described. The apparatus is adapted to making a continuous load-elongation record at constant rate of elongation and to making a point by point record at constant rate of loading. It is also useful for obtaining relaxation curves for single fibers. It combines the principles of a hand-operated machine developed in this laboratory and an automatic electronic balance developed by Muller and Garman [5]. Sensitive automatic operation is attained by means of photoelectric controls, and autographic recording in rectangular coordinates is provided. Examples are given of the performance of the apparatus. 7 p. 10c.

RP1547. Ring structures and mutarotations of the modifications of d-galacturonic acid. Horace S. Isbell and Harriet L. Frush.

A study of the two crystalline modifications of galacturonic acid has been made with the object of determining their ring structure. The results show that they are a pair of alpha-beta pyranoses analogous to the alpha and beta galactopyranoses. On oxidation with bromine water, the two modifications yield optically active lactones of mucic acid. 12 p. 5c.

RP1548. Ten-year tests on commercial masonry cements. R. L. Blaine.

In an investigation of the properties of 41 commercial masonry cements reported in 1934, additional specimens were made for test at a later age. Two-inch mortar cubes made of these cements were tested in compression after both water and air storage for 10 years. Mortar bar specimens were measured for linear change after storage in water for 10 years.

The compressive strengths of the 1:3 (cement to standard sand) mortar cubes varied from 200 to 6,000 lb/in.² at 10 years. Variables such as type of cement, amount of mixing water, ratio of cement to sand, gradation of sand, as well as storage conditions are shown to affect not only the strength at 10 years but also the gain in strength between 28 days and 10 years.

The length measurements indicate a trend of greater expansion with greater magnesium content of the cement. 9 p. 5c.

The development of the Inter-Society Color Council-National Bureau of Standards (ISCC-NBS) system of color names, based on the standards in the Munsell Book of Color, made it necessary to specify the master standards of this book in fundamental terms. Accordingly, spectral reflection curves were run for each of the 421 master standards on the General Electric recording spectrophotometer at the National Bureau of Standards, using slit widths of approximately 4 millimicrons. Various corrections were applied to these spectrophotometric data in accordance with methods regularly used for such work at the Bureau. Colorimetric computations were then made with these data, resulting in tristimulus specifications according to the 1931 ICI standard observer and coordinate system. Four illuminants were used: ICI illuminants A and C, representative of incandescent-lamp light and average daylight, respectively, illuminant “D” (lightly overcast north sky), and illuminant “S” (extremely blue sky). The colorimetric specifications of the Munsell standards for all four illuminants are thus given.

The trilinear coordinates for the Munsell standards calculated for ICI illuminant C have been plotted on large chromaticity (x, y) diagrams and constant Munsell chroma lines drawn in. (Similar values obtained by Glenn and Killian at the Massachusetts Institute of Technology in 1935 for Munsell color standards bearing the same hue-value-chroma designations have also been plotted on the diagrams and differences between the two sets of data are discussed.) These diagrams serve as means for determining the Munsell notation and thereby the ISCC-NBS color name for any color whose trilinear coordinates and apparent reflectance are given. 22 p. 25c.

RP1550. Thermal expansion of some industrial copper alloys. Peter Hidnert and George Dickson.

This paper gives data on the linear thermal expansion of some industrial copper-nickel, copper-nickel-aluminum, copper-nickel-tin, and miscellaneous copper alloys (copper-tin, copper-lead-antimony, copper-manganese-aluminum, copper-nickel-iron, copper-nickel-zinc, copper-nickel-tin-lead, copper-nickel-zinc-iron, copper-tin-zinc-iron, copper-tin-zinc-lead, copper-zinc-aluminum-iron-manganese) for various temperature ranges between 20° and 900° C. The addition of 3 percent of nickel or the combined addition of 4.5 percent of nickel and 5 percent of aluminum to copper was found to have little effect on the linear thermal expansion. The effect of various treatments on these copper-nickel and copper-nickel-aluminum alloys was also small. The coefficients of expansion of two copper-nickel-tin alloys containing 20 and 29 percent of nickel were appreciably less than the coefficients of expansion of copper for temperature ranges between 20° and 600° C. Three copper alloys containing more than 28 percent of nickel showed the smallest coefficients of expansion of the miscellaneous alloys. The coefficients of expansion of the copper alloys reported in this paper were found to be between 14.9 × 10^-6 and 20.4 × 10^-6 per degree centigrade for the range from 20° to 100° C. 6 p. 5c.

In previous articles by the author it is suggested that certain optically active halogen derivatives may be divided into two classes. The first class has the halogen directly attached to an asymmetric carbon atom. For these substances the writer has formulated the rule that the differences of their specific rotations, (Cl-F), (Br-Cl), and (I-Br) have the same numerical relation as the respective differences of the radii of the covalent-bonded atoms (41:17:21). The second class of optically active halogen derivatives has the halogen attached indirectly (by a chain of atoms) to an asymmetric carbon atom. For these latter substances the rule was formulated that the differences of their molecular rotations have a numerical relation, which likewise agrees with that for the respective differences of the radii of the neutral halogen atoms.

As these rules were established for halogen derivatives of carbohydrates, which contain several asymmetric carbon atoms, it was found desirable to investigate halogen derivatives, which contain only one asymmetric carbon. The results of the last investigation (see footnote 1) showed that the derivatives of the amylo alcohol, 2-methylbutanol-1, checked the above rule for the second class very well. The present communication reports the results obtained in checking the above rule for the first class with the halogen derivatives of the other active amylo alcohol, pentanol-2. Pure optically active D- and L-pentanol-2 were prepared and halogenated by different methods in order to obtain the 2-fluoro-, 2-chloro-, 2-bromo-, and 2-iodopentanes of highest rotation.

In spite of the difficulty that a partial inversion takes place in the halogenation,
resulting in a mixture of D and L halogen derivative, the conclusion can be drawn that rule I is not contradicted by the values found, since the deviations can be plausibly explained by the incompleteness of the Walden inversion. Rule II should not be applicable to this type of compound, and the results confirm this. It is further shown that all halogen derivatives of pentanol-2 of like configuration have the same sign of optical rotation. The specific gravity, refractive index, and boiling points at various pressures were also determined. 24 p. 10c.

RP1552. Tensile and other properties of concretes made with various types of cements. Louis Schuman and John Tucker, Jr.

An improved tensile-test method for concrete has been developed. Cylindrical specimens, 4 by 16 inches, are used, and loads are applied at both ends through threaded rods embedded in a rich mortar. Compressive- and tensile-strength and stress-strain determinations have been made for concretes made with various types of cements, including cements with aerating agents, and with various aggregates. At early ages, strengths for moderate-heat cements were but slightly lower than for normal cements, whereas those for high-early-strength cements were considerably higher. Tensile strengths usually attained maximum values between 7 days and 3 months. Tensile strengths depended on compressive strengths, type of cement, type of aggregate, and on sand-gravel ratios. 18 p.

A study was made of the physical properties of red brass (Cu, 85%; Sn, 5%; Pb, 5%; Zn, 5%), melts of which had been made and poured in an atmosphere of hydrogen, nitrogen, methane, carbon dioxide, carbon monoxide, and air. The tensile properties, hardness, density, and electrical resistivity of the sand-cast bars, in general were inferior to those of the chill-cast metal. For both the sand-cast and chill-cast bars, hydrogen and methane had deleterious effects. The effect of hydrogen was most pronounced and detrimental. The unsoundness of the hydrogen-treated metal, as shown by microstructural study and by density surveys, is the most important factor responsible for the inferior properties of the metal treated in this way. 16 p. 10c.

Buna S compounds containing gilsonite have properties that render them suitable for the insulation of communication cables. The principal limitation of these compounds as produced at the time of this investigation was that Buna S contained constituents which caused relatively high water absorption. Electrical measurements were made of gilsonite and of compounds of Buna S containing from 0 to 56 percent of gilsonite by volume, i.e., from 0 to 150 parts by weight per 100 parts of Buna S and 12 parts of other ingredients. The base compound contained, in parts by weight: Buna S, 100; stearic acid, 2; zinc oxide, 5; accelerator, 2; and sulfur, 3. The dielectric constant of this base compound at 1,000 cycles per second was 2.85, and the power factor 30 \times 10^{-4}; the d-c conductivity was 11 \times 10^{-16} mho/cm 1 minute after application of potential. Under the same conditions the dielectric constant of the gilsonite alone was 2.60, the power factor 15 \times 10^{-4}, and the conductivity less than 2 \times 10^{-16} mho/cm. Most of the requirements of the United States Coast Guard specifications for the insulation of submarine cable were met by a compound containing 25.6 percent of gilsonite by volume, or 40 parts of gilsonite by weights per 100 parts of Buna S and 12 parts of other ingredients. This compound had the following properties; dielectric constant at 1,000 cycles per second, 2.78, and power factor, 65 \times 10^{-4}; d-c conductivity, 4 \times 10^{-16} mho/cm; tensile strength, 1,200 lb/in²; ultimate elongation, 470 percent; tensile stress at an elongation of 200 percent, 560 lb/in². At the frequencies at which the measurements were made, namely 100, 1,000, 7,500, and 100,000 cycles per second, the dielectric constant of the base compound decreased from 2.88 to 2.78, and the power factor increased from 15 \times 10^{-4} to 145 \times 10^{-4}. The change with frequency became smaller with additions of gilsonite. Extraction of the Buna S with water before compounding removed about 0.8 percent of water-soluble materials and reduced the absorption of water to about one-third of the value for the commercial material. The change of dielectric constant on immersion in water was reduced by prolonged washing of the Buna S, but the power factor was little affected. 21 p. 10c.

In support of the concept that sugars having like configurations for the atoms comprising the pyranose ring have like properties, it has been found that D-glycero-
D-gulo-aldoheptose (formerly D-α-glucoheptose) resembles D-gulose in that it forms crystalline compounds with calcium chloride, and in that the equilibrium which exists in aqueous solutions is shifted in marked degree by changes in the concentration of calcium chloride. It was shown that the addition of calcium chloride shifts the equilibrium toward the unknown alpha-pyranose modification. The equilibrium optical rotation of D-glycero-D-gulo-aldoheptose in a 4-percent aqueous solution in the presence of calcium chloride varies according to the relationship

$$[\alpha]_D^20 = - 20.2 + 3.54m - 0.067m^2,$$

in which m is the grams of calcium chloride per 100 ml of solution. A crystalline compound, β-D-glycero-D-gulo-aldoheptose.CaCl₂.2H₂O, was prepared and its mutarotation was measured. In 4-percent aqueous solution,

$$[\alpha]_D^20 = - 6.5 \times 10^{-6} + 0.007t - 9.3$$

6 p. 5c.

The real density of leather calculated from the weight of a measured volume, allowing for voids, and the apparent density of leather calculated from the weight of a measured volume, not allowing for voids, were studied. The real-density values of different samples of leather and a sample of raw hide were determined by a method in which Boyle's law is applied. The apparent density of some of these samples, obtained by direct dimensional measurement and by displacement of mercury, is compared with the real density. The real densities of most of the samples vary within a narrow range (1.387 to 1.516), whereas the apparent densities vary over a greater range, depending upon the treatment. For this reason the apparent density is believed to be a more valuable factor for most practical considerations. The influence of location of the specimen on the hide on real density is considered, and results that show the effect of compression on both densities are given. Moisture content is shown to have considerable influence on the real density. For leathers that do not have abnormally high grease contents, the permeabilities to air and water vapor appear to show some correlation to the percentage of voids, which is calculated from the ratio of the apparent to the real density. 11 p. 5c.

RP1557. A counting method for the determination of small amounts of radium and of radon. Leon F. Curtiss and Francis J. Davis.

A method for determining small quantities of radon is described, in which the alpha particles from the radon and RaA and RaC are counted in an ion-counting chamber. Details of an arrangement for automatically making a printed record of the hourly totaled count are given. Advantages of this method over that using an ionization chamber with electrometer are discussed. 16 p.

Potassium p-phenolsulfonate is a good buffer for the pH range of 8.4 to 9.2 and for spectrophotometric studies of metacresolsulfonphthalein and thymolsulfonphthalein. Its useful pH range lies between those for borates and secondary phosphates and therefore fills an important gap. The purified product is not commercially available, and quantitative tests for indicating its purity have not been reported. It was found that a pure product may be obtained after only three recrystallizations. A quantitative method of analysis by bromometric titration was developed. Two molecules of bromine react quantitatively with 1 molecule of p-phenolsulfonate in molar hydrochloric acid at 0° C within 5 minutes.

Ultraviolet absorption spectra were obtained and showed differences between the primary and the secondary salt. The spectrophotometric data indicate that the sulfonate group is almost completely ionized in dilute solutions. 8 p. 5c.

RP1559. The second dissociation constant of p-phenolsulfonic acid and pH values of phenolsulfonate-chloride buffers from 0° to 60° C. Roger G. Bates, Gerda L. Siegel, and S. F. Acree.

The thermodynamic dissociation constant of the phenol group of p-phenolsulfonic acid was calculated from electromotive-force measurements of hydrogen-silver-chloride cells without liquid junction. Thirty-nine buffer mixtures of potassium p-
phenolsulfonate, sodium hydroxide, and sodium chloride were studied in five series of experiments from 0° to 60° C at intervals of 5 degrees. In three series, the molal ratio of phenolsulfonate ion to phenolate-sulfonate ion was unity, and in two series the buffer ratio was 2:3. For two series of experiments, one at each buffer ratio, the molality of sodium chloride was maintained constant near 0.05 for all dilutions of the buffer. In the other experiments, the molality of each component of the solution varied between 0.0037 and 0.1.

The values of pK_2, the negative of the common logarithm of the second dissociation constant, between 0° and 60° C are given by the equation

$$pK_2 = 1961.2/T - 1.1436 + 0.012139T,$$

where T is in degrees Kelvin.

Equations were formulated to give the changes of free energy, heat content, entropy, and heat capacity that accompany the dissociation at infinite dilution of a mole of phenolsulfonate ion at any temperature between 0° and 60° C. For the dissociation of the phenol group at 25° C, ΔF° is 12,351 cal, ΔH° is 4,036 cal, ΔS° is -27.9 cal deg$^{-1}$, and $\Delta C^\circ p$ is -33 cal deg$^{-1}$.

The pH value of each buffer-chloride mixture was calculated from the experimental data and the activity coefficients that were found to characterize each series of solutions. The pH values of other phenolsulfonate buffers which have molal ratios, m_1/m_2, of phenolsulfonate ion to bivalent phenolate-sulfonate ion between 2/3 and 1 can be computed for temperatures between 0° and 60° C with an accuracy of $+0.002$ unit from their compositions and from the dissociation constants and ionic parameters given in this paper. The equation used is

$$pH = pK_2 - \log(m_1/m_2) - 3A\sqrt{\mu}(1 + 8B\sqrt{\mu}),$$

where μ is the ionic strength. Buffer solutions of this type are suitable pH standards in the range 8.6 to 9.0.

X-ray powder diffraction data of 15 hydrated calcium silicates are reported as a supplement to a previously published report on the formation of these compounds. These data may be useful to workers on portland cement hydration, boiler scale, etc., for the identification of phases.

RP1561. Structure of the wool fiber as revealed by the electron microscope. Charles W. Hock and Howard F. McMurdie.

An investigation of the wool fiber with the electron microscope was undertaken in order to get more data on the structure of the fiber and its constituent cells, and to correlate this information with results previously obtained by other methods. Specimens were prepared for examination by various physical and chemical procedures.

Over a wide range of magnifications the cortical cells always showed a distinctly fibrous structure, whereas with the optical microscope only fibrils were observed within the cortical cells, the higher resolving power of the electron microscope made possible the resolution of still finer microfibrils. The scale cells, on the other hand, showed little internal organizations. This difference in structure between the fibrous cortex and the nonfibrous or amorphous cuticle is believed to be of fundamental importance in interpreting many of the properties of the fibers.

A friction meter is described, and its application to the evaluation of the smoothness of a wide variety of fabrics is discussed. The ruggedness, sensitivity, and ease of operation of the instrument make it suitable for the routine testing of fabrics, the evaluation of finishing agents, and the control of finishing processes.

Minute changes in the surfaces of teeth are detected by observing the injury to calibrated indentation marks made in these surfaces by a diamond hardness indenter. Abrasive and chemical injuries are disclosed by observing or photographing a series of these marks, so placed that each small area is definitely identifiable. Objectionable abrasives in dentifrices are readily detected by brushing a tooth surface on which indentations have been placed.

The indentations also give an indication of the hardness of the tooth and enable the investigator to select areas of known hardness for experimental tests.
Some data are presented to show the initial effects of chemical solutions and bacterial actions, which may play important roles in the development of dental caries.

Eleven figures and two tables correlate the experimental work. 7 p. 10c.

Phase relations were studied for those portions of the binary and the ternary systems containing over 50 percent of PbO. It is reasonably certain that the binary system contains the compound PbO,Al2O3. In the ternary system 3 compounds (5PbO-Al2O3,4SiO2, 4PbO,Al2O3,2SiO2, and 6PbO,Al2O3,6SiO2) were identified, 4 others were indicated by optical and X-ray properties, and 10 quintuple points, which include 6 eutectics, were established. Also, Al2O3 (99.9 plus purity) was observed to melt at 2,035° C. 16 p. 10c.

An extension of the ISCC-NBS (Inter-Society Color Council-National Bureau of Standards) system of color names for the description of the colors of drugs and medicines, has been made for describing the colors of lights. The color names consist of hue names, such as red, pink, yellowish green, or purple, without further modifiers, since they are intended to differentiate lights chiefly according to hue. The hue names are among those used in the ISCC-NBS system and carry the same meaning. The chromaticity ranges identified by each of these hue names are defined by areas on the ICI chromaticity diagram. Comparisons are made between the centers of the proposed hue-name ranges and similar values by other authorities, and with the standard colors recognized in various specifications for marine, railway, aviation, and traffic signal colors. 8 p. 5c.

Lactic, citric, hydroxyacetic, and gluconic acids were found satisfactory for stabilizing iron solutions to be used for tanning leather. The influence of pH and concentration on the combination of iron (Fe2O3) with standard hide powder was investigated. The maximum fixation of 23 to 25 percent of ferric oxide occurs in the pH range 3.5 to 4.0. Practical tanning experiments were made with goat- and calf-skins. The shrinkage temperatures of the iron-tanned leathers are lower than those of well-tanned chrome leathers. The results of accelerated aging tests indicate that all of the iron-tanned leathers tested had at least fair aging qualities except where gluconic acid was used. The use of iron salts for replacing those of chromium in the tanning of leather shows most promise where citric acid is used for stabilizing the solutions. 11 p. 5c.

RP1567. pH values of acid-salt mixtures of some aromatic sulfonic acids at various temperatures and a criterion of completeness of dissociation. Walter J. Hamer, Gladys D. Pinching, and S. F. Acree.

A method is described to differentiate between completely and incompletely dissociated acids by means of measurements of the emf of galvanic cells without liquid junctions. Hydrogen and silver-silver-chloride electrodes and solutions of the acid, its sodium or potassium salt, and sodium or potassium chloride are used. The activity coefficients of hydrochloric acid in such mixtures are calculated by the equation relating the emf to the activity of hydrochloric acid in known concentrations of the acid and salts. If the mean values of the activity coefficient of hydrochloric acid in the mixtures are higher than those predicted by the limiting law of Debye and Hückel, the acid is then considered to be completely dissociated. If they are lower, the acid is incompletely dissociated. By this method it was found that the sulfonic acid group in p-phenolsulfonic and 4-chlorophenol-2-sulfonic acids may be regarded as completely dissociated into sulfonate and hydrogen ions at temperatures of 10°, 25°, 40°, and 60° C.

Solutions containing p-phenolsulfonic acid, its sodium or potassium salt, and sodium or potassium chloride and solutions containing 4-chlorophenol-2-sulfonic acid, its sodium salt, and sodium chloride are suitable for use as pH standards. Their pH values range from 1.2 to 2.5 and vary only slightly with temperature changes. Directions for their preparation are given.

The significance of the complete dissociation of the sulfonic acid group in the calculation of the ionization constants and pH values of sulfonate buffers and indicators is discussed in terms of the tautomeric relations and the theory of color changes of indicators. 14 p. 5c.

Formulas are derived for computing the over-all lengthening (or shortening) of a tension (or compression) member having a uniform gross cross section and a series
of similar perforations of circular, elliptical, or "ovaloid" shape uniformly distributed along the length.

Tests made on strips having circular perforations show that the applicable formula gives good results over the practical range of the variables. 18 p. 10c.

RP1569. Basic ionization constant of metacresolsulfonphthalein; pH values and salt effects. Elizabeth E. Sager, Harry J. Keegan, and S. F. Acree.

Spectral transmittancy values at room temperatures approximating 25°C were obtained for \(1.25 \times 10^{-5} M \) metacresolsulfonphthalein in water and in 0.001- to 8\(M \) hydrochloric acid. In water the indicator exists in the yellow form (Y), and hydrogen ions (H) from acids convert it into the red form (R). The molar concentrations of each form of the indicator in various concentrations of hydrochloric acid were computed from the spectrophotometric data. The dissociation constant \((K_b) \) for the reaction of the indicator with hydrochloric acid is given by the equation

\[
K_b = \frac{M_H f_H M_Y f_Y}{M_R f_R},
\]

in which \(M \) and \(f \), with appropriate subscripts, represent the molarities and activity coefficients, respectively. The value of \(K_b \) is \(1.98 \times 10^{-2} \) and that of \(-\log K_b \) or \(pK_b \) is \(1.703 \pm 0.005 \). The indicator is useful over the pH range 0 to 3. 21 p. 10c.

RESEARCH PAPERS FROM JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, VOLUME 31, JANUARY—JUNE 1944

Studies on the manner of combination of Na\(_2\)O in portland cement clinker have revealed crystalline phases of chemical composition near that of 2CaO·SiO\(_2\), but possessing properties quite different from those heretofore reported for the \(\beta \) form of this compound. These phases result when certain compositions in the quaternary systems Na\(_2\)O-CaO-Al\(_2\)O\(_3\)-SiO\(_2\) and Na\(_2\)O-CaO-FeO\(_3\)-SiO\(_2\) are quenched from high temperatures. Optical, thermal, and X-ray diffraction data have been obtained which indicate that they are solid solutions of Na\(_2\)O and Al\(_2\)O\(_3\) and of Na\(_2\)O and FeO\(_3\), in a high-temperature form of 2CaO·SiO\(_2\) having a hexagonal structure. There is also evidence that this hexagonal lattice is the fundamental structure of the \(\alpha \) form of 2CaO·SiO\(_2\).

In the pure compound the \(\alpha-\beta \) inversion temperature has been reported to be \(1,420^\circ \pm 2^\circ \) C, whereas in the phases described in this paper the transformation temperature may be lowered by as much as \(245^\circ \) C, e. g., to \(1,175^\circ \pm 10^\circ \) C. The inversion from \(\alpha \) to \(\beta \) is accompanied by considerable ex-solution of dissolved material, showing that the extent of solid solution of these oxides in \(\beta-2CaO·SiO_2 \) is much less than in the \(\alpha \) form. As a result of this precipitation the grains of \(\beta \) 2CaO·SiO\(_2\) are more or less densely clouded, closely resembling the grains of 2CaO·SiO\(_2\) in some commercial clinkers. The data also indicate that the complex twinning structure often observed in 2CaO·SiO\(_2\) in portland cement clinker and in experimental preparations is the result of inversion from the \(\alpha \) to the \(\beta \) phase, and is not typical of the \(\alpha \) modification, as some investigators have believed. 10 p. 10c.

This paper is the second report of an investigation on the analysis of the gasoline fraction of representative crude petroleums by the API Research Project 6 at the National Bureau of Standards. The samples for analysis were selected so as to cover the largest possible range in composition; included one high in aromatics, one high in isoparaffins, one high in normal paraffins, and one high in naphthenes (cycloparaffins); and came from the following fields: Ponca, Okla.; East Texas; Bradford, Pa.; Greendale-Kawkawlin, Mich.; Winkler, Tex.; Midway, Calif.; Conroe, Tex. The fractionating processes of adsorption and distillation were used in the analysis.

Data are given on the amounts of the individual hydrocarbons (paraffins and naphthenes, 40° to 102° C, and aromatics to 160° C) in the gasoline fraction of the seven naphthas. A number of conclusions have been drawn from the data. 27 p. 10c.

Commercial critical-angle refractometers are inadequate for acceptance tests on optical glass for precision uses. To facilitate spectrometer determinations, coefficients have been devised which, together with a table of natural sines and slide-
rule operations, permit the computation of refractive indices of glass with an accuracy of $\pm 3 \times 10^{-6}$ from minimum-deviation data taken on prisms having angles of 60° ± 30'. 6 p. 5c.

RP1573. Interpretation of some reactions in the carbohydrate field in terms of consecutive electron displacement. Horace S. Isbell.

An attempt has been made to show how the concept of consecutive electron displacement that has been developed in recent years may be used for the interpretation of certain reactions in the carbohydrate field. The viewpoint in general is that the peculiar properties of systems involving double bonds may be explained by the migration of electron pairs in the molecule from points of high electron density to points of lower electron density, with the addition and elimination of ions. A number of apparently unrelated complex reactions of the carbohydrates are considered and it is shown that the formation of the products may be explained by a few simple reactions involving shifts of electron pairs; these include enolization, de-enolization and double decomposition. Mechanisms are presented for the formation of the four classes of saccharinic acids from the 1,2- the 2,3-, and the 3,4-enediols, for the formation of diacetylkjic acid from acetylgulosone, for the formation of unsaturated lactones from hydroxy acids, for the conversion of triacetylglucal to diacetylseudoglucl, for the conversion of tetramethyl-1, 2-glucoseen to ω-methoxymethylfurfural, and for the formation of furfural and levulinic acid. 15 p. 5c.

The rates of wear of different tread materials were determined by weighing tires after running them prescribed distances on the roads. The method proved feasible for passenger car tires, involved a minimum amount of work, and yielded data in a few miles of driving which could be used to predict the life of the tread. This paper presents typical results obtained on five different tread materials, including prewar natural rubber treads. The rate of wear of the least resistant tread material was eight times that of the most resistant material. 5 p. 5c.

A new immersion method for determining indices of refraction and ν values, employing the double-diaphragm method for securing oblique illumination, is described. The average error in the determination of indices of refraction based upon 144 measurements is 2×10^{-5}; the maximum error is 5×10^{-5}. Complete measurements of the indices of refraction for the sodium D line and the hydrogen F and C lines may be made in approximately 1 1/2 hours, and from these measurements the ν values may be calculated with an average error of 0.1 and a maximum error of 0.8. 9 p. 10c.

RP1576. Salts of galacturonic acid and their application to the preparation of galacturonic acid from pectic substances. Horace S. Isbell and Harriet L. Frush.

Twelve new salts of galacturonic acid have been prepared and their properties investigated. Crystalline sodium, potassium, ammonium, cadmium, and silver galacturonates have been found to contain the beta pyranose modification, and crystalline calcium and strontium galacturonates, the alpha modification. A unique type of double salt containing a monovalent and a divalent metal in combination with the alpha pyranose modification of galacturonic acid has been obtained, and the following members of this class have been crystallized and studied: Sodium calcium, sodium strontium, sodium barium, sodium cadmium, sodium lead, and potassium calcium galacturonates. Mutarotation studies have been conducted in order to determine the structure of the galacturonate component in the salts. The crystallizing properties of the normal calcium and strontium galacturonates, and especially of the sodium calcium and sodium strontium galacturonates, makes these salts particularly suitable for the separation of galacturonic acid from the hydrolytic liquors of plant materials. 18 p. 10c.

This note describes the present state of the development of an analytical combustion apparatus for the accurate determination, on a macro scale, of carbon and hydrogen in hydrocarbons or in compounds containing carbon, hydrogen, and oxygen. The precision and accuracy attainable are indicated by a report of the results of a series of five experiments performed on highly purified benzoic acid. 6 p.

As a part of a study of the properties of concrete aggregates, thermal-expansion determinations were made on 123 specimens of aggregate materials by the optical interferometer method over the temperature range — 20° to + 60° C. Additional measurements were made on crystals of calcite, quartz, and feldspar. The thermal expansivities of most aggregate materials are close to or within the range of expansivities of hardened portland cements. Certain exceptions are pointed out. Crystal orientation, rock texture, and composition are discussed with regard to their effects on the relation of the thermal expansion of aggregates to the durability of concrete. 26 p. 10c.

Earlier work at this Bureau has shown that wool that has been reduced with thioglycolic acid and then alkylated with ethyl bromide is attacked by pepsin in such a way that the scale material remains intact, whereas the interior of the fiber is completely dissolved. The composition of the scale material so obtained has now been studied. It has been found that it is essentially protein in chemical nature and, although it contains the same amino acids as the whole wool, the proportions of these in the two materials differ; thus, the whole wool used in this work contained 12.2 percent of cystine, 8.6 of arginine, 6.1 of tyrosine, and 9.5 of serine, whereas the scale material contained 20.3, 4.8, 3.3, and 11.2 percent, respectively. 4 p. 5c.

RP1580. Effect of sodium chloride on the pH of p-phenolsulfonate buffers from 0° to 60° C. Roger G. Bates and S. F. Acree.

The electromotive forces developed between the hydrogen and silver chloride electrodes of galvanic cells which contained 12 mixtures of potassium p-phenolsulfonate, sodium hydroxide, and sodium chloride were measured from 0° to 60° C at intervals of 5 degrees. Sufficient alkali was used to neutralize half of the phenolsulfonate in each solution. The molal ratios of sodium hydroxide to sodium chloride were 10, 4, 2, and 1. The pH of each solution, and of six phenolsulfonate buffers without sodium chloride, was determined. Equations are given to represent the change of pH at each of the 13 temperatures with molality of sodium chloride. It is shown that the ionic strength and pH of unknowns may be obtained approximately, and the usual salt errors largely eliminated, from emf measurements on two portions of the unknown solution to which different amounts of sodium chloride have been added. 13 p. 10c.

RP1581. Thermal expansion of high-silicon cast iron. Peter Hidnert and George Dickson.

This paper gives data on the linear thermal expansion of high-silicon cast iron containing approximately 14 percent of silicon, with 3 percent of molybdenum and without appreciable molybdenum, at various temperatures between 20° and 700° C. Differences between the coefficients of expansion of these high-silicon cast irons were found to be slight. Both high-silicon irons were found to have slightly higher coefficients of expansion than electrolytic iron for temperature ranges between 20° and 300° C, and appreciably higher coefficients for higher temperature ranges. No indication of growth similar to that of ordinary cast iron was observed on heating the high-silicon cast iron to 700° C. 5 p. 5c.

A simple method is described for determining the amount of aromatic hydrocarbons in a mixture of hydrocarbons, as in the gasoline fraction of petroleum. The mixture to be analyzed is filtered through a column of solid adsorbent. An aromatic-free filtrate is obtained which contains the paraffin, naphthene, or olefin hydrocarbon which was associated in the original solution with the quantity of aromatic hydrocarbon which has been adsorbed. The concentration of an aromatic hydrocarbon in an unknown solution is determined by means of a calibration curve, established from experiments on known solutions which show the amount of aromatic-free filtrate produced by the standard adsorbent from solutions of various concentrations of the aromatic hydrocarbon. Results of experiments are given for several concentrations of eight binary solutions of an aromatic hydrocarbon with a paraffin or naphthene hydrocarbon and for three concentrations of a solution consisting of an aromatic hydrocarbon with a paraffin and an olefin. These experiments show that, if the temperature is controlled to within 1° C, the amount of aromatic hydrocarbon can be determined with an accuracy corresponding to 0.10 or less in the percentage by volume. A general procedure is given for determining the aromatic hydrocarbons in a “straight-run” gasoline and in a gasoline containing olefins. 14 p.

A method is described for separating, by the process of adsorption, the aromatic hydrocarbons from their mixture with paraffin and naphthene (cycloparaffin) hydrocarbons, as in the gasoline or kerosine fractions of petroleum. The mixture is introduced into the top of a column containing an appropriate excess of solid adsorbent. A low-boiling paraffin hydrocarbon, such as pentane, butane, or propane, is then added in sufficient quantity to remove from the column the paraffin and naphthene hydrocarbons but not the aromatic hydrocarbons. The latter are then removed by adding an appropriate desorbing liquid, such as methanol. The paraffins, naphthenes, and pentane are thus obtained as a mixture from which the pentane is easily removed by distillation. The aromatic hydrocarbons are obtained as a mixture with pentane and methanol. The methanol is easily removed by extraction with water and the pentane by distillation.

This method of separation was tested on a known mixture of 17 pure hydrocarbons, the normal boiling points of which covered a range from 60° to 174° C and included all of the 5 normal paraffins from n-hexane through n-decane, the isoparaffin 2-methyl-pentane, the 4 normal alkyl cyclohexanes from cyclohexane through n-propylcyclohexane, and all of the 7 possible aromatic hydrocarbons and benzene through isopropylbenzene. The separation of the aromatic hydrocarbons from the paraffins and naphthenes was quantitative within the limits of measurement, and their recovery was complete within the normal operating loss of material in processing.

Experimental determinations were made of the quantity of aromatic hydrocarbon adsorbed per unit quantity of adsorbent, for a number of different binary solutions or aromatic hydrocarbons with paraffins or naphthenes, at several concentrations of the aromatic hydrocarbon, and with silica gel, carbon, magnesia, alumina, Filtrol, and Florisil as adsorbents. The results are displayed in the form of adsorption isotherms. 19 p.

A method is described for determining individual hydrocarbons in mixtures of hydrocarbons by the measurement of freezing points. Experimental data are given for the determination of the four C_8 aromatic hydrocarbons. The uncertainty of the determination of each hydrocarbon is near ± 1 percent of the total sample. 11 p.

RP1585. Theoretical analysis of certain time-temperature freezing and melting curves as applied to hydrocarbons. William J. Taylor and Frederick D. Rossini.

A method is described for determining analytically or graphically, from appropriate time-temperature freezing and melting curves obtained on hydrocarbons, the freezing point of a given substance, and within certain wide limits, the freezing point of that substance for zero impurity (liquid-soluble, solid-insoluble). 17 p.

RP1586. A method for the determination of the pH of 0.05-molal solutions of acid potassium phthalate with or without potassium chloride. Walter J. Hamer and S. F. Acree.

The pH values of a 0.05-m solution of acid potassium phthalate containing various amounts of potassium chloride were determined at 5-degree intervals from 0° to 60° C, inclusive, from the measurements of the electromotive force of galvanic cells without liquid junction using hydrogen and silver-silver-chloride electrodes. A method is described for the determination of the pH directly from the emf by means of the equation

\[pH = \left(\frac{E - E^o}{RT/F} + \log m_{CI} - P\right)/Q, \]

where \(P \) and \(Q \) are constants whose numerical values depend on the ionic strength of the solution and the nature of the cation and \(E^o \), \(R \), \(T \), and \(F \) have their usual significance. By this method a 0.05-m solution of acid potassium phthalate, National Bureau of Standards Standard Sample 84a, is found to have a pH of 4.008 at 25° C, and this value does not vary much with the temperature. A description is also given of the application of the method to the determination of the pH and the ionic strength of unknown solutions of low salt content.

Equations were formulated to express the variation of the pH of a 0.05-m solution of acid potassium phthalate with temperature and with the concentration of potassium chloride. The pH values may be computed for temperatures from 0° to 60° C, inclusive, by the equation.

\[pH = 5.13 \log T + 1519.62/T + 0.01092 T - 17.039, \]

118
where \(T = t^\circ C + 273.16 \). The pH values for concentrations of potassium chloride from 0 to 0.05 \(m \) may be computed by the equation.

\[
\text{pH with salt} = \text{pH without salt} - 0.993m_{KCl} + 2.124m_{KCl}^2.
\]

The solutions may be readily prepared from known weights of acid potassium phthalate, potassium chloride, and distilled water and are well suited for use as pH standards, in that their pH values do not change much with temperature or dilution. 13 p. 5c.

The "chilling effect", or "clamminess", that moist fabrics produce when in contact with the body was evaluated by subjective tests, by measurement of the drop in temperature that ensued when the moist fabrics were placed on an artificial "skin" surface, and by tests with a moisture-sensitive paper designed to measure the extent of contact which the fabrics made with a surface. Using fabrics of various fiber compositions and constructions, a good qualitative relation was found in these tests. Fabrics which produced considerable chilling in subjective tests were found to make good contact and to cause a substantial drop in skin temperature. Conversely, fabrics which caused little or no clamminess made poor contact and the accompanying drop in temperature was relatively small. The results of these experiments show clearly the progressive improvement of the fabrics with respect to chilling, as their wool content is increased, and also the superiority of certain types of construction that minimize the extent of contact of the fabrics with the skin. 24 p.

This paper describes two technics for purifying substances by slow fractional freezing.

The first involves the slow lowering of a cylindrical cell, filled with the fused substance, through a heating coil in such a way that freezing begins at the bottom and progresses upward, as the cell emerges from the coil, until the whole mass has solidified. The solidified column, tube and all, is cut into the desired fractions.

The second technic, which is suitable for larger quantities, affords better control of the rate of freezing and provides a larger solid-liquid surface for a given quantity of material. A spherical flask filled with the liquid is cooled at a controlled rate in such a way that freezing begins at the wall of the flask and proceeds inward at a regulated slow rate until the desired fraction has solidified, after which the remaining liquid is siphoned out of the flask.

The purification of benzoic acid was much more rapid by this method than in earlier trials by crystallization from solvents. Acetanilide was also effectively purified. Observations incidental to the work show that the freezing point of pure acetanilide is 114.29 ± 0.01° C. 7 p. 5c.

The fiber composition, weight, thickness, compressibility, compressional resilience, thermal transmission, air permeability, breaking strength, and shrinkage of 156 different blankets are recorded. The effects of laundering; of laundering and renapping; of laundering, renapping, and abrasion; of dry cleaning and renapping; and of dry cleaning, renapping, and abrasion on these properties of a large number of blankets are shown. A linear relationship was found between the compressional resilience and the wool content of cotton-wool blankets. The thermal transmission of the blankets was found to be independent of the kind of fiber. The reciprocal of thermal transmission was found to be related linearly to the thickness. The thermal transmission computed by means of the equation \(I/T = 3.0 t_{0.1} + 0.63 \), where \(T \) is the thermal transmission in Btu/(°F hr 1 ft \(^2\)), and \(t_{0.1} \) is the thickness in inches at a pressure of 0.10 lb/in.\(^2\), was found to agree with the measured values within ± 10 percent, 95 times out of 100. Empirical relationships were also found among thermal transmission, thickness at 1.0 lb/in.\(^2\), and compressibility; and among thickness at 0.10 lb/in.\(^2\), compressibility, and weight. The relation between breaking strength and weight, and that between breaking strength and compressibility, are discussed. Minimum requirements are suggested for the properties of blankets for use in a performance specification. 24 p. 15c.
RP1590. Studies of portions of the quaternary system soda-lime-silica-water at 25° C. George L. Kalousek.

A study has been made of portions of the system soda-lime-silica-water at 25° C. The only solid phases found were Ca(OH)$_2$ and a four-component gel of variable composition. The boundary, Ca(OH)$_2$—soda-lime-silicate gels, was determined and the compositions of the gels along this boundary shown to vary from 0.003-Na$_2$O : 2.0CaO : 1.0SiO$_2$: xH$_2$O (at 0.2 g of Na$_2$O per liter) to about 0.25 Na$_2$O : 1.0CaO : 1.0SiO$_2$: xH$_2$O (at 20 g per liter and extending to 101 g per liter of Na$_2$O). In regions off the boundary, at selected constant concentrations of Na$_2$O but with increasing concentrations of SiO$_2$ in solution, the Na$_2$O : SiO$_2$ molar ratio of the gels varied only slightly from 0.2 in most cases; the CaO : SiO$_2$ molar ratio, however, decreased to values approaching 0.1 at the maximum concentrations of SiO$_2$ used. Interpretations pertaining to relations between the composition of the gels and solutions are given. 18 p. 10c.

RP1591. Laminar flow at the interface of two liquids. Garbis H. Keulegan.

The velocity distribution in the laminar boundary layers at the interface of two liquids in relative rectilinear motion, the thickness of the layers, and the stress at the interface are determined. Numerical results are given for nine cases of liquids in contact, including identical liquids and liquids with varying degrees of dissimilarity in characteristics. The evaluation of the desired quantities is based on Prandtl’s boundary-layer theory, and is carried out by a method of successive approximations. The numerical results are those given by the second approximation. 25 p. 10c.

RESEARCH PAPERS FROM JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, VOLUME 33, JULY—DECEMBER 1944

RP1592. Thermodynamic properties of cis-2-butene from 15° to 1,500°K. Russell B. Scott, W. Julian Ferguson, and Ferdinand G. Brickwedde.

The following properties of a sample of cis-2-butene, 99.94 percent pure, were measured: (1) the specific heat of solid and of liquid from 15° to 300°K, (2) heat of fusion at the triple point (130.25 int. joule g$^{-1}$), (3) triple-point temperature (−138.900 ±0.008°C), (4) heats of vaporization at several temperatures between 246° and 293°K, and (5) vapor pressure from 200° to 296°K. With these experimental data, calculations were made of (1) the normal boiling temperature (3,718°C), (2) volume of the saturated vapor, (3) enthalpy and entropy of the solid and the liquid from 0° to 300°K, and (4) entropy, enthalpy, and specific heat of the vapor in the ideal gas state from 245° to 300°K. Thermodynamic functions for cis-2-butene in the ideal gas state from 300° to 1,500°K were calculated from spectroscopic data. Thermodynamic data for the cis-trans isomerization of 2-butene are included. 20 p. 10c.

A description is given of a photoelectric ultraviolet-intensity meter and automatic integrating and recording apparatus for measuring the biologically effective component of ultraviolet radiation, of wavelengths 3132 Å and shorter, from the sun and the entire sky, incident on a horizontal plane, under various meteorological conditions. Methods of standardization, in absolute value, are described (see RP1542 for supplementary data). A continuous graphical record of the integrated daily total amount of biologically effective ultraviolet solar and sky radiation observed during a period of 3 years (1941 to 1943) in Washington, D. C. is given. The monthly totals of biologically effective ultraviolet, in absolute value (milliwatt minutes per square centimeter) mw min/cm2 are also given graphically. On the clearest days the biologically effective component of ultraviolet radiation of wavelengths 3132 Å and shorter, incident from the sun and the whole sky at midday, ranges from about 180 micro-watts per square centimeter, (µw/cm2) in midsummer to about 30 µw/cm2 in midwinter. A series of erythema tests is given, correlating the physical (radiometric) measurements with the physiological reaction of the untanned skin, which information is of interest in helotherapy and bioclimatology. 24 p. 10c.

A new process for the preparation of vitamin C from beet pulp and other pectic substances has been developed. The pectic substance is treated with a pectinase, the resulting galacturonic acid is separated in the form of a difficultly soluble salt which is reduced with hydrogen to a salt of L-galactonic acid. The salt is converted to L-galactono-lactone and oxidized to 2-keto-L-galactonic acid, which is lactonized and enolized to yield ascorbic acid (vitamin C). Electronic interpretations are pre-
sented for the conversion of methyl 2-keto-L-galactonate to ascorbic acid by basic catalysts, for the lactonization and enolization of 2-keto-hexonic acids by acid catalysts, and for the formation of furfural and reductic acid from pentoses, galacturonic acid, and ascorbic acid. 17 p. 10c.

RP1595. Specific heat and increases of entropy and enthalpy of the synthetic rubber GR-S from 0° to 330° K.

Robert D. Rands, Jr., W. Julian Ferguson, and John L. Prather

Specific heat measurements were made over the range 12° to 330° K on a sample of synthetic rubber GR-S (Buna S) by means of an adiabatic vacuum-type calorimeter. A Debye specific heat function was used to calculate values below 15° K. At about —61°C the material undergoes a transition of the second order, the specific heat increasing rapidly by about 40 percent. From —50° to +60°C, the specific heat values can be calculated to within 0.1 percent by the equation

$$C_v = 0.4346 + 7.029 \times 10^{-4} \ell + 1.156 \times 10^{-6} \ell^2$$ in calories gram\(^{-1}\) degree Kelvin\(^{-1}\). At 25°C the specific heat is 1.894 international joules gram\(^{-1}\) degree Kelvin\(^{-1}\) (0.4528 calorie gram\(^{-1}\) degree Kelvin\(^{-1}\)). The increase in entropy from 0° to 298.16° K is calculated to be 1.824 international joules gram\(^{-1}\) degree Kelvin\(^{-1}\) (0.4359 calorie gram\(^{-1}\) degree Kelvin\(^{-1}\)). Values of specific heat, and increases of entropy, enthalpy, and free energy are tabulated at 5-degree intervals. The experimental data indicate that values below the transition are dependent upon the thermal history of the sample. This phenomenon, as well as the temperature drifts observed, can be explained on the theory that the transition results from an increasingly slow approach to the equilibrium state at temperatures in the transition region and below. 8 p.

RP1596. Dipole moment and structure of trioxane. Arthur A. Maryott and S. F. Acree

Trioxane is a solid polymer of formaldehyde resembling the well-known solvent dioxane in its chemical properties. The molecule can possibly exist in two spatially different forms resembling a chair and a cradle, for which the theoretical dipole moments are 2.3 and 0.6 \(\times 10^{-18}\) electrostatic unit (esu), respectively. The experimental value in benzene was found to be 2.18\(\times 10^{-18}\) esu. Hence it is concluded that ordinary trioxane is largely in the chair form, possibly in equilibrium with a small amount of the cradle form. This cyclic ether would therefore be suitable for mixing with nonpolar solvents to study the effect of increased polarity on the activities and absorption spectra of indicators. 4 p. 5c.

RP1597. Interferometer measurements on the expansion of iron. James B. Saunders

The interferometer has been applied by many investigators to the measurement of thermal expansion but has failed to yield the precision that they apparently expected and sometimes have claimed. In their explanation of the resultant discrepancies, most observers have attributed them to actual differences in the physical properties of the sample; however, some have admitted failure to find a satisfactory explanation.

Several sets of data, taken on relatively pure iron by different observers and different procedures, are compared. The results show good agreement between data taken with those interferometer methods that are free from tilting of spacers and air-film errors, whereas the failure to eliminate these two errors produces data that cannot be duplicated except by chance. The interferometer data that are free from these errors also agree satisfactorily with data that have been obtained by other precision methods.

Some investigators claim to have found indications of a characteristic temperature effect in the expansivity curve of iron in the temperature range from 0° to 250°C. It is shown that when the expansion data are freed from errors of tilting and changes in air films, the indications of such effects do not appear. 9 p. 10c.

A study was made of the reproducibility of hydrogen electrodes of various types and of silver-silver-chloride electrodes of the thermal-electrolytic type in aqueous solutions of phthalates, in order to learn whether phthalates are reduced to hexahydropthalic acid and the electromotive force thereby changed. If so, glass electrodes would have to be used to determine the pH values of solutions of phthalates. This type of study is necessary for all reducible materials. Electromotive-force measurements of the electrode combinations were made for various periods of time. The potentials of hydrogen electrodes prepared with platinum sponge under a variety of conditions constantly increased with time and frequently were erratic, whereas those made with palladium sponge under different conditions remained remarkably constant for periods of 35 hours. Even after 75 hours, the potentials increased only 0.3
mv—which corresponds to an increase of only 0.005 in pH. Palladium or platinum electrodes having the same type of coating but of different ages agreed in potential after 2 hours in phthalate solutions. The rate and the magnitude of the increase in potential for the platinum electrodes after approximately 2 hours depend mainly upon the thickness of the metallic sponge. The characteristics of the palladium electrodes were practically independent of the thickness of the metallic sponge; of the current density used in the electrolysis; of the concentration, composition, acidity, and conductance of the plating solution; and of the concentration, composition, pH, and buffer capacity of the phthalate solutions in which the electrodes were used. The difference in the behavior of platinum and palladium hydrogen-electrodes may be caused by their different catalytic activity. 17 p. 10c.

RP1599. Extent of hydrolysis of starches by amylases in the presence and absence of yeasts .. William Ward Pigman

The extent of enzymic conversion of corn starch, waxy maize starch, and potato amylase into materials fermentable by yeasts was studied for a number of different types of amylases. When the amylases are allowed to act on the starch substances, complete conversion to fermentable material may take place when the yeasts are allowed to act in the presence of the enzymes but not when the amylases and yeast act separately. The amylases that are capable of bringing about complete conversion are the cereal a-amylases and the fungal amylases. Certain bacterial amylases, pancreatic amylases, and the cereal b-amylases convert starch only partially to fermentable substances in the presence of yeasts. The experiments described in the present paper were carried out at starch concentrations comparable to those employed in industrial grain-alcohol processes.

With the notable exception of the malt amylases and the b-amylases, all of the enzyme preparations studied are capable of synthesizing unfermentable substances from maltose and presumably from starch hydrolysis products. For certain of the enzyme preparations, this synthesizing action provides an explanation for the lack of complete conversion of the starches to fermentable materials. For other enzymes, however, other explanations are more probable. The nature of the actions of the amylases are considered in relation to the structures of the starch substances.

RP1600. A physical method for determining residual water and other volatile materials in pure substances............. Frank W. Schwab and Edward Wichers

A method is described for determining small amounts of water and other volatile substances present as impurities in various organic and inorganic compounds. The impurity is separated by fusing the substance in a cell attached to a collecting system and allowing it to freeze slowly while the vapors are collected by pumping them into a trap of known volume, cooled by liquid air. When the trap is warmed to room temperature, the pressure of the vapor within it, if below saturation, together with the temperature and volume, determine the quantity of impurity in terms of moles and if its identity is known, in terms of weight. An auxiliary procedure permits the impurity to be isolated as a liquid, in a capillary container, and thus to be identified.

It was found that the current Standard Samples of benzoic acid (39f and 140) contains less than 0.002 percent of water and do not adsorb water on exposure to an atmosphere of high humidity. The method is further illustrated by the determination of residual solvents in acetaldehyde crystallized from benzene and from a mixture of alcohol and water, and of water present in potassium dichromate as entrapped mother liquor. 8 p. 5c.

RP1601. Optical rotation as an indication of aromatic substituent influences and intramolecular interaction................................. William Ward Pigman

As a result of a comparison of the rotations of certain aromatic b-glucosides and their tetraacetates, it is shown to be probable that the rotations of the acetylated glucosides are influenced by steric interactions between the aglycon group and the sugar portion of the molecule. This behavior is in contrast to the influences predominating in the case of the unacetylated compounds which, as shown in previous work, probably operate on the resonance of the aglycon aromatic ring or in an inductive fashion.

As a test for the explanation of the anomalous positive rotations of certain of the acetylated b-glucosides, the rotation of several of these substances in nitrobenzene solution was measured over the temperature interval 20° to 150°C. Over this temperature range, several of the glucosides, and in particular those which
show anomalous positive rotations at room temperature, exhibit a change in sign of rotation from positive to negative.

The preparation and properties of the following new compounds are described: The \(\text{m-nitrophenyl } \alpha-\text{n-glucoside and its tetraacetate, the } o,p- \text{ and } o,o'-\text{dinitrophenyl } \beta-\text{glucoside tetraacetates, and the } \text{m-nitrobenzyl } \beta-\text{glucoside tetraacetate.} \)

The rotatory dispersion of these and other glucosides is reported for five wavelengths over the visible spectrum. 16 p. 5c.

RP1602. Soil-corrosion studies, 1941: Ferrous and non-ferrous corrosion-resistant materials and nonbituminous coatings.

Kirk H. Logan and Melvin Romanoff

The soil-corrosion investigation started in 1922 was intended to yield information on the corrosiveness of typical soils throughout the United States. The investigation of special materials and coatings begun 10 years later was intended primarily to assist manufacturers in the development of materials suitable for use in corrosive soils.

No attempt to secure specimens such that systematic data on the effect of individual alloying elements could be obtained was made but, manufacturers were invited to submit materials on which they desired information. Furthermore, the specimens were buried under simulated practical conditions, so that accurate technical control was not feasible. Also, since very few specimens of each type were included, dispersion of the data resulting from the general conditions of the tests makes it impossible to draw very definite conclusions with regard to the comparative merits of the several materials investigated. Nevertheless, the data give a general indication of what may be expected of a considerable variety of alloys when exposed to severe soil conditions. The addition of very small percentages of alloying elements does not have a marked effect on the rate of corrosion, but rather large percentages are apt to bring about a considerable improvement in corrosion resistance.

Steels high in nickel and chromium, and copper alloys high in copper are very resistant to nearly all soil conditions. Lead corrodes only slightly when a coating of an insoluble lead salt is deposited on the lead. Bursting and crushing tests indicate that asbestos-cement pipe gained somewhat in strength from exposure to the soil for 4 years.

A 3-ounce coating of zinc adds about 3 years to the life of steel exposed to some of the most corrosive soils in the test sites. Lead coatings appear to be inadequate for severe soil conditions.

Several thick experimental coatings prevented practically all corrosion at most of the test sites for 9 years. Air-dried Bakelite coatings blistered within 4 years, but a baked-on Bakelite coating showed no change in appearance after 4 years except for a few blisters. Pitting occurred under some of these blisters. Most thin coatings blistered, became brittle, and within 4 years permitted rusting and pitting of the metal to which they were applied. 52 p.

RP1603. Revised results obtained with certain dehydrating agents used for drying gases.

John H. Bower

This paper is a revision of a former paper, and as a result of further study it includes two revised values. New samples of anhydrous magnesium perchlorate, or Amhydrone, silica gel, and alumina were obtained and tested for dehydrating efficiency. The method used was similar to that described in the earlier paper, except that a drying tower replaced the U-tube and each desiccant was tested separately. No change of efficiency value was obtained with anhydrous magnesium perchlorate, but new values for silica gel and alumina were found and replace the values originally given. 2 p.

RP1604. Stress-corrosion tests of bridge-cable wire.

Rolla E. Pollard

Stress-corrosion cracks were produced in several statically stressed specimens of cold-drawn wire from the Portsmouth Bridge and in one specimen of heat-treated wire from the Mt. Hope Bridge by immersion in dilute nitrate solutions. No cracks were produced in the cold-drawn Mt. Hope replacement wire after long exposure. No cracks were produced by immersing similar specimens in more corrosive media such as distilled water or dilute ammonium sulfate or in inhibitive solutions such as dilute ammonium nitrate or dilute sodium hydroxide. The results conform, in this respect, to the selective corrosion theory of intercrystalline attack. However, due to the limited amount of materials and their incompletely known history, the effect of such factors as composition, fabrication and heat treatment of the steel could not be determined. 11 p. 10c.
A substitution group for generating families of thermodynamic formulas is derived. The method of derivation is based upon the transformation properties of a "group of functions" under a contact transformation. There exists a characteristic function and a "group of functions" for each representation, that is, each coordinate system, and to each function of the group there is an associated contact transformation which transforms the group into its equivalent in another representation. The invariance of the functional form of the characteristic functions of functions under contact transformations is equivalent to invariance under a substitution group \(G \) on the space \((EHFG)(V - S - TP)\). The group \(G \) is independent of the representation and can be generated geometrically.

There are four contact transformations (including the identity) associated with each representation. These transformations are equivalent, and from them families of equations can be found which are invariant under the group \(G \). Other families can be found among the transformation formulas for the higher derivatives.

Formulas deducible by simple operations, for example, differentiation, on the characteristic group of functions of a given representation provide basic forms for families invariant under the group \(G \). The number of members in a family is 1, 2, 4, or 8.

Review of recent absolute determinations of the ohm and the ampere.

Harvey L. Curtie

In the decade preceding 1944 there were published the results of eight determinations of the absolute ohm and seven of the absolute ampere. These determinations were made in the national standardizing laboratories of England, France, Germany, Japan, and the United States. However, only preliminary results of some of the researches have been published, and one value of the absolute ampere was obtained in an experiment that was originally developed for another purpose. Hence to obtain the most probable values of the absolute ohm and ampere, it is necessary to ignore some of the published results and to consider some of those remaining as more reliable than others. A critical analysis has been prepared of each of the determinations, and this analysis has been used as a basis for weighting the results.

The most probable value of the absolute ohm is given by the relation

\[1 \text{ mean international ohm} = 1.000 \, 490 \text{ absolute ohms}. \]

The mean deviation from the mean of the results used in obtaining this value is only 14 parts per million. Further confirmation of the probability of this result is shown by the agreement with the results of two other recent compilers of the absolute-ohm determinations.

The most probable value of the absolute ampere is given by the relation

\[1 \text{ mean international ampere} = 0.999 \, 853 \text{ absolute ampere}. \]

The mean deviation from the mean of the three results used in obtaining this value is 3 parts per million. Other recent compilers, however, have given larger values, one, 27 parts per million larger, and the other, 119 parts per million larger.

Heats of combustion of eight normal paraffin hydrocarbons in the liquid state.

Edward J. Prosen and Frederick D. Rossini

The heats of combustion of \(n \)-pentane, \(n \)-hexane, \(n \)-heptane, \(n \)-octane, \(n \)-nonane, \(n \)-decane, \(n \)-dodecane, and \(n \)-hexadecane, in the liquid state, were measured with a bomb calorimeter. The samples of hydrocarbon were of known high purity, were inclosed in thin glass bulbs and placed in a platinum cup in the calorimetric bomb with purified oxygen at a pressure of 30 atm, and were ignited electrically with a wire fuse. The amount of reaction in each experiment was determined from the amount of carbon dioxide formed by the combustion. Tests were made for the presence of carbon monoxide and other products of incomplete combustion. The calorimeter system was calibrated with electrical energy.

From the experimental data were calculated the following values for the heat of combustion, at 25° C and constant pressure, of the liquid hydrocarbon in gaseous oxygen to form gaseous carbon dioxide and liquid water, with all the reactants and products in their thermodynamic standard reference states, in int. kj/mole:
- \(n \)-pentane, 3508.56 ± 0.77
- \(n \)-hexane, 4162.94 ± 0.83
- \(n \)-heptane, 4816.35 ± 0.87
- \(n \)-octane, 5469.82 ± 1.05
- \(n \)-nonane, 6123.90 ± 1.12
- \(n \)-decane, 6777.47 ± 1.52
- \(n \)-dodecane, 8085.20 ± 1.65
- \(n \)-hexadecane, 10699.1 ± 2.8

The corresponding values in kcal/mole, obtained by using the factor 1/4.1833, are \(n \)-pentane, 838.71 ± 0.18;
RP1608. Liquid-junction potentials, and relative activity coefficients of chloride ions, in concentrated mixed chlorides and nitrates at 25°C.

George G. Manov, Nicholas J. DeLollis, and S. F. Acree

Measurements are reported of the electromotive forces at 25°C of pairs of calomel half-cells in which portions of the saturated potassium chloride had been replaced at constant ionic strength (4.831) by hydrochloric acid and potassium nitrate. The method of cells with liquid junctions was used.

Data are given for the stability of half-cells prepared with these electrolytes, for the reproducibility of the liquid junction and the calculated value of its potential, and for the activity coefficient of the chloride ion in these mixtures relative to that of saturated potassium chloride solution. The addition of hydrochloric acid raises and the addition of potassium nitrate lowers the mean activity coefficient of chloride ion in potassium chloride solutions. Because the difference between the effective ionic mobilities for the cations and the anions in these solutions is smaller than in saturated potassium chloride alone, such cells are useful as reference electrodes in the reduction of the error caused by the neglect of the liquid-junction potential in the determination of pH by electrometric methods.

RP1609. Ionization constant of boric acid and the pH of certain borax-chloride buffer solutions from 0° to 60°C.

George G. Manov, Nicholas J. DeLollis, and S. F. Acree

The ionization constant of boric acid was determined by the use of the electromotive force of cells without liquid junctions. Hydrogen and silver-silver-chloride electrodes were immersed in borax-sodium chloride solutions. To reduce the possibility of formation of polyborates, dilute solutions were used. The emf were measured at 5-degree intervals over the temperature range 0° to 60°C.

The negative common logarithm of the ionization constant \(pK \) of boric acid over the temperature range 0° to 60°C may be represented by the equation

\[
pK = 2237.94/T + 0.016883T - 3.305,
\]

where \(T \) is the absolute temperature.

The data indicate that the mean activity coefficients of the ions of sodium chloride and of sodium borate do not differ appreciably. The pH values for the solutions studies and for rounded values of the concentration are tabulated as functions of temperature and ionic strength. These solutions, which range in pH values from 8.934 to 9.465, can be used as standards in the calibration of glass-calomel and other electrometric pH equipment.

A discussion is given of the significance of the quantity \(a_0 \) (commonly called the “distance of closest approach” of the ions) and its importance in the calculation of pH values, especially when the buffer ion is not univalent.

The changes in free energy, heat content, entropy, and heat capacity that accompany the ionization of 1 mole of boric acid are listed.

RP1610. Determination of tin in nonferrous metals by distillation as bromide and precipitation with cupferron.

William D. Mogerman

A gravimetric method is described for the determination of tin in copper-base and lead-base alloys. The procedure involves separation of the tin by distillation, precipitation with cupferron, and ignition to stannic oxide. Results obtained by applying the method to known amounts of tin and to a number of nonferrous alloys show that an accuracy to ± 0.2 mg can be expected for amounts of tin ranging 0.05 to 0.24 g.

RP1611. Machines and methods for testing cordage fibers.

Herbert F. Schiefer

Machines are described for testing the flexural endurance and the resistance to abrasion of cordage fibers. In the test for flexural endurance, a bundle of fibers having a twist of one turn per inch is repeatedly drawn back and forth over three small pulleys located at the vertices of an isosceles right triangle. In the test for resistance to abrasion, a similarly twisted bundle of fibers is drawn back and forth against a second bundle twisted once around the first. This test is made in such a way that the flexing of fibers during the test is reduced to a minimum.

The procedures for the selection of fibers, preparation of fiber bundles weighing 5 grains per 15 inches of length, and conditioning of test specimens are outlined. The unprocessed fibers were tested for the following: Fineness of fiber; dry and wet breaking strength and elongation; flexural endurance; resistance to abrasion; and the
effect of elevated temperatures, continuous soaking in fresh and in salt water, alternate
wetting and drying with fresh or salt water, and exposure to light with intermittent
spraying with water. The results of tests of six lots of abaca, nine of sisal, two of jute,
two of henequen, one of pita floja, one of ixtle, four of sansevieria, one of palmetto,
three of hemp, two of roselle, one of manzanita, two of yucca, and one of malvita are
given and discussed.

Great variations were found in the characteristics of different lots and grades of
one kind of fiber. There was considerable overlapping in results of different kinds.
No one kind of fiber was outstanding in all respects. Abaca was the strongest of the
fibers tested, but some of the lots of abaca were weaker than some lots of sisal. Hene¬
quen and sisal were more resistant to abrasion than the other fibers tested, and they
had higher flexural endurance, but were the least resistant to exposure to light and
intermittent spraying with water. Pita floja, one of the strongest fibers tested, was
one of the least resistant to abrasion. Sansevieria had exceptionally good strength.
Hemp and jute were very similar in all of the characteristics measured. The resistance to
abrasion of the fibers tested was profoundly affected by the direction of twist in
the ply relative to that in the bundle, and also by the addition of a small amount of
lubricant.

RP1612. Thermal-density coefficients and hydrometer correction tables for vegetable
tanning extracts.................Mary Grace Blair and Elmer L. Peffer

Densities and thermal expansions have been determined of the vegetable tanning extracts — quebracho, oak bark, hemlock bark, chestnut, and mangrove bark — within the range 1.00 to 1.12 specific gravity at 60°/60°F and over the temperature range 50° to 100°F. Thermal-density coefficients are presented in such a manner that the density of an extract at any temperature within the range can be calculated if its specific gravity at 60°/60°F or its density at 25°C is known. The information obtained has been used also in the preparation of tables for correcting hydrometer readings at observed temperatures in degrees barkometer, in degrees Twaddle, and in degrees Baumé to readings at the standard temperature 60°F. 11 p. 5c.

Herman Bogaty and Frederick T. Carson

A method is described for measuring the rate of filtration of water through filter papers, in which the paper is used as a cone in the usual manner and special apparatus is not required. An equation is derived, with which a water-filtration coefficient is determined from the filtration data. Data are presented also to show the effect of continued filtration on this coefficient. A correlation is shown between the air permeability of filter paper and the rate of filtration, enabling one to make a good estimate of the speed of a filter paper without wetting it. A definite procedure is recommended for determining the rate of flow of water through filter paper. 10 p. 5c.

RP1614. Attack of refractory platiniferous materials by acid mixtures at elevated
temperatures.
Edward Wichers, William G. Schlecht, and Charles L. Gordon

Iridium and other refractory metals and alloys of the platinum group can be
easily prepared for analysis, or for small-scale refining, by solution with hydro-
chloric acid and suitable oxidants in sealed tubes at temperatures up to 300°C. The
effects on the rate of solution of iridium caused by variations in temperature, in con-
centrations of hydrochloric acid and of the oxidant, and in the nature of the oxidant,
are reported. The rate increases rapidly with increase in temperature. It also increases
with increasing concentration of hydrochloric acid, up to nearly anhydrous hydrogen
chloride. With variation in the concentration of chlorine or equivalent oxidants, the
rate passes through a maximum at a relatively low concentration.

A number of other factors of less importance are also discussed. Suitable work-
ing conditions for dissolving various alloys and minerals are suggested. 19 p. 10c.

RP1615. Improved reflux regulator and head for laboratory distilling columns.
Charles B. Willingham and Frederick D. Rossini

A reflux regulator and head for laboratory distilling columns is described that
is an improvement over the one previously in use (see J. Research N. B. S. 23, 509
(1939) RP1249) in the distillation laboratory at the National Bureau of Standards
in connection with the work of the American Petroleum Institute Research Project 6.
The improvements are in better measurement of the temperature of the liquid-vapor
equilibrium, in reduction of the hold-up, and in increase in the mechanical strength.
5 p.
RP1616. Preparation of salts of galacturonic acid from beet pulp.
Horace S. Isbell and Harriet L. Frush

This investigation demonstrates that dried beet pulp can be hydrolyzed by a commercial pectic enzyme, and that calcium galacturonate, sodium calcium galacturonate, and sodium strontium galacturonate can be obtained readily from the hydrolyzate. The crystalline salts are obtained by neutralization of the hydrolyzate with suitable bases, followed by concentration. Samples of dried beet pulp gave calcium galacturonate, sodium calcium galacturonate, and sodium strontium galacturonate in yields corresponding to 105 g, 227 g, and 255 g/kg, respectively.

It is also shown that sodium strontium galacturonate can be separated, at least in some cases, directly from silage drainage liquor. The occurrence of galacturonic acid in the drainage liquor suggests the possibility of developing a process in which hydrolysis is effected by organisms grown in beet pulp. 12 p. 5c.

RP1617. Preparation of sodium strontium galacturonate from citrus products.
Harriet L. Frush and Horace S. Isbell

The present paper describes the convenient separation of galacturonic acid in the form of sodium strontium galacturonate from the hydrolyzates of citrus products, namely pectic acid, pectin, and the peel of oranges and of grapefruit. The methods are suitable for the preparation of large or small quantities of the salt, and it is believed that the preparation from pectic acid is commercially practicable.

Sodium strontium galacturonate is obtained from pectic acid in about 90-percent yield without the use of alcohol or other organic solvent. By treatment of the salt with an equivalent quantity of aqueous sulfuric acid, a solution is obtained from which about 65 percent of the galacturonic acid may be crystallized in one crop, substantially pure. Additional crops obtained by the use of an organic solvent make the yield nearly quantitative.

Pectin is not quite so satisfactory in the process as pectic acid, but because of its educational value, the preparation of sodium strontium galacturonate from pectin might be included in a course of laboratory instruction to demonstrate the presence of galacturonic acid in pectic substances. Both orange peel and grapefruit peel may be used for the preparation of sodium strontium galacturonate, but the industrial use of these materials does not seem feasible at present on account of the large quantities of relatively expensive enzyme required for hydrolysis. 6 p. 5c.

RP1618. Standard response functions for protanopic and deuteranopic vision.
Deane B. Judd

The color matches set up by the normal observer can be predicted satisfactorily by three functions of wavelength defining the ICI standard observer. It has been found possible by a transformation of coordinate system to express these three functions in a form such that two of the three pairs also represent the color matches of the two recognized types of red-green-blind observer, the protanope and the deuteranope, within the rather small uncertainties to which they are known. The remaining pair of functions represents, within the comparatively large uncertainties to which they are known, the color matches of the tritanope, a more rare type of observer who confuses reddish blue with greenish yellow. These three functions, therefore, serve to relate the color matches made by dichromats to those made by normal trichromats, and so make conveniently accessible the color confusions of average dichromatic observers. The use of these three functions in the solution of problems arising in the design of tests for colorblindness is illustrated by solution of three such problems, and their connection to theories of color vision is discussed. 31 p. 10c.

RP1619. Some experimental data on the heats of combustion of benzoic acid and carbon (graphite)........Edward J. Prosen and Frederick D. Rossini

Some experimental data are reported on the heats of combustion of benzoic acid and carbon (graphite). The data on benzoic acid support the change in the value for its heat of combustion recently reported from this Bureau by Jessup. The data on carbon (graphite) yield a slightly higher value for the heat of formation of carbon dioxide than that previously reported. 8 p. 5c.

RP1620. Heat of formation of carbon dioxide and of the transition of graphite into diamond......Edward J. Prosen, Ralph S. Jessup, and Frederick D. Rossini

A recalulation of data previously reported on the heats of combustion of graphite and diamond, together with consideration of some new data on graphite, yielded the following selected “best” values for the heats of combustion of graphite and diamond and of the transition of graphite into diamond:

748325°—48—9
C (c, graphite) + O₂ (gas) = CO₂ (gas); \(\Delta H_{298}^{\circ} = -393,447 \pm 45 \) int. j/mole = -94,051.8 ± 20.8 cal/mole.

C (c, diamond) + O₂ (gas) = CO₂ (gas); \(\Delta H_{298}^{\circ} = -395,343 \pm 96 \) int. j/mole = -94,505.1 ± 22.9 cal/mole.

C (c, graphite) = C (c, diamond); \(\Delta H_{298}^{\circ} = 1896 \pm 85 \) int. j/mole = 458.2 ± 20.3 cal/mole. 3 p. 5c.

RP1621. Preparing refractory oxides, silicates, and ceramic materials for analysis, by heating with acids in sealed tubes at elevated temperatures.

Edward Wichers, William G. Schlecht, and Charles L. Gordon

This paper describes the preparation for analysis of a number of refractory oxides, ceramic materials, and minerals by decomposition with hydrochloric or hydrobic acid at temperatures up to 300°C. All the oxides of the elements in the second, third, and fourth groups of the periodic system, with the exception of silica, titania, zirconia, and possibly hafnia, respond to the treatment. A number of silicate minerals, ordinarily difficult to prepare for analysis, are likewise successfully decomposed. 6 p. 5c.

RP1622. Use of sealed tubes for the preparation of acid solutions of samples for analysis, or for small-scale refining; pressures of acids heated above 100°C.

Charles L. Gordon, William G. Schlecht, and Edward Wichers

This paper describes special technics suitable for the use of sealed tubes in treating refractory materials with hydrochloric acid and other acid mixtures at elevated temperatures. Methods for filling, for sealing, and for opening tubes are discussed. The feasibility of reuse of tubes of Pyrex glass is discussed with some observed phenomena of the attack on the glass by the acids. A protecting shell is described together with a method of using solid carbon dioxide to provide the compensating pressures needed to protect the sealed tubes from bursting. The pressures developed on heating hydrochloric acid and mixtures of hydrochloric acid with nitric or perchloric acids were measured in a special gage, which is described. 14 p. 5c.

RP1623. Analogy of hydrated calcium silicoaluminates and hexalcium aluminate to hydrated calcium sulfoaluminates... E. P. Flint and Lansing S. Wells

Two hydrated calcium silicoaluminates were prepared, which appear to be the silica analogs of the hydrated calcium sulfoaluminates. The low-silica compound has the formula, 3CaO.Al₂O₃.CaSiO₃.12H₂O. It occurs as hexagonal plates, is uniaxial negative, and has the indices of refraction, \(\omega = 1.538 \), \(\epsilon = 1.523 \). The other compound occurs as needle-shaped prisms and is uniaxial negative; \(\omega = 1.487 \), \(\epsilon = 1.479 \). It was not obtained in pure form but, by analogy with other calcium aluminate complex salts, was tentatively assigned the formula, 3CaO. Al₂O₃. 3CaSiO₃. 30–32H₂O. The low-silica compound is slowly converted to the high-silica silicoaluminate on standing in contact with lime solutions. The high-silica compound was identified in mixtures of 3CaO. Al₂O₃. SiO₂ and 4CaO. Al₂O₃. Fe₂O₃; \(\beta \)-2CaO. SiO₂ and 3CaO. Al₂O₃; and 3CaO. SiO₂ and 4CaO. Al₂O₃. Fe₂O₃ which had stood in contact with approximately saturated lime solution for 3 years. A hydrated hexalcium aluminate, 6CaO. Al₂O₃. 3SiO₂. 3H₂O, was prepared. It occurs as long, needle-like prisms, is uniaxial negative, and \(\omega = 1.475 \), \(\epsilon = 1.466 \). Its formula may be written as 3CaO. Al₂O₃. 3Ca (OH). 30H₂O, which indicates that it is the compound formed when the CaSO₄, in the high-sulfate sulfoaluminate is completely replaced by Ca(OH)₂. 8 p. 5c.

Title page and contents for volume 33. 6 p. 5c.

RESEARCH PAPERS FROM JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, VOLUME 34, JANUARY—JUNE 1945

RP1624. Methods for measuring the coefficient of restitution and the spin of a ball.

Lyman J. Briggs

Four methods for measuring the coefficient of restitution of a ball are discussed and employed experimentally. These methods are:

1. The two-pendulum ballistic method of Thomas, in which the ball is struck by a flat-nosed projectile driven from an airgun.
2. A method based on spark photography, by means of which the ratio of the speed of the ball to that of the projectile is determined.
3. The measurement of the vertical rebound of a ball from a massive horizontal plate, when dropped from a known height, correction being made for air resistance.
4. The measurement of the angle of reflection of a ball rebounding from a smooth inclined plate, the angle of incidence being known.

A correction for spin is necessary in method 4 if the plate is not ideally smooth. Methods are described for measuring the spin velocity, and an approximate method for computing the spin is given, provided the coefficient of restitution is known.

128
The variation of the coefficient of restitution of golf balls with impact speed and
with temperature is experimentally determined, and a method for determining the
time interval during which the ball remains in contact with the club is described.
The coefficient of restitution of a golf ball when hit hard is roughly 0.7; the corres-
ponding value for a baseball of prewar construction is about 0.45. 23 p. 10c.

RP1625. Evaluation of the finish of a metal surface by a replica method.

Harry K. Herschman

A method for evaluating surface finish through the medium of a nearly trans-
parent plastic replica of a surface is described. The method consists essentially in
passing a narrow beam of light transversely through the moving replica onto a photo-
electric cell. Variations in the geometric characteristics of the film, which are associated
with the serrations of the surface reproduced, control the intensity of the light pass-
ning through the film and reaching the photocell at any instant. The fluctuations of
intensity of the transmitted light cause a pulsating voltage in the cell circuit, which is
recorded by an electronic voltmeter. This voltage increases with increased surface
roughness. The evaluations obtained by this means are very promising. Results for
different surface finishes are correlated with profile measurements of the surface deter-
mined with the microscope. 7 p. 10c.

RP1626. Wearing quality of some vegetable-tanned sole leathers.

Robert B. Hobbs and Ruth A. Kronstadt

The differences between the wearing qualities of vegetable-tanned commercial
sole leathers are small, the difference between the best and worst of the 20 tannages
studied amounting to less than 16 percent. Additional compression, similar to that
given by heavy rolling, improved the wear 5 percent. The test also indicated that
there is no significant difference in the wear of leather tanned from domestic and
from frigorifico hides; that water-soluble material and grease are lost from soles
in service, with the greatest loss being shown by water-soluble ash; that the “rub-
ber” and “leather” abrasive machines are of little use in predicting the relative wear-
ing qualities of tannages; and that the water-soluble content, firmness, and degree
of tannage are useful in estimating the wearing quality. These conclusions are based
on tests in service of about 500 pairs of soles, mostly at Camp Lee, Va. 19 p. 10c.

RP1627. Frequency meter for use with Geiger-Müller counter.

Leon F. Curtiss and Burrell W. Brown

An improved circuit is described for reading the rate of pulses from a Geiger-
Müller counter. Based on the usual procedure of leveling and rectifying the pulses
to charge a condenser, the improvements concern a bridge-type vacuum-tube volt-
meter to read the voltage on the condenser and an arrangement to compensate parasitic
potentials developed in the rectifier for the pulses. An adequate source of potentials
from one small transformer is described, which renders the circuit useful in portable
instruments. Particular care has been taken to design a circuit that is independent
of the voltage of the alternating-current mains from which the circuit is operated.
A modification of the circuit for rapidly decaying sources is also described. 6 p. 5 c.

RP1628. Heats of formation and combustion of 1,3-butadiene and styrene.

Edward J. Prosen and Frederick D. Rossini

Values are given for the heats of formation from the elements, and for the heats
of combustion, of 1,3-butadiene and styrene, in both the liquid and gaseous states,
at 25°C. 5 p. 5c.

**RP1629. Heats of combustion of benzene, toluene, ethylbenzene, o-xylene, m-xylene,
 p-xylene, n-propylbenzene, and styrene.**

Edward J. Prosen, Roger Gilmont, and Frederick D. Rossini

The heats of combustion of benzene, toluene, ethylbenzene, o-xylene, m-xylene,
p-xylene, n-propylbenzene, and styrene were measured with a bomb calorimeter.
The following values were obtained for the heat of combustion, at 25°C and constant
pressure, of the liquid hydrocarbon in gaseous oxygen to form gaseous carbon dioxide
and liquid water, with all the reactants and products in their thermodynamic standard
reference states, in international kilojoules per mole: Benzene, 9267.09 ± 0.48;
toluene, 3909.31 ± 0.49; ethylbenzene, 4564.09 ± 0.72; o-xylene, 4552.10 ± 1.42;
m-xylene, 4551.10 ± 0.62; p-xylene, 4552.09 ± 0.91; n-propylbenzene, 5217.37
± 0.68; styrene 4394.14 ± 0.82. With the factor 1/4.1833, the corresponding values
in kilocalories per mole are benzene, 780.98 ± 0.10; toluene, 934.50 ± 0.12; ethyl-
benzene, 1091.03 ± 0.17; o-xylene, 1088.16 ± 0.24; m-xylene, 1087.92 ± 0.15; p-
xylene, 1088.16 ± 0.22; n-propylbenzene, 1247.19 ± 0.16; styrene, 1050.40 ± 0.20.
7 p. 5c.
RP1630. Panel tests for thermal spalling of fire-clay bricks used at high temperatures
R. A. Heindl and W. L. Pendergast
Fifty brands of fire-clay brick, of which 16 were of the super duty, 28 of the high heat duty, and 6 of the intermediate heat duty classes, were tested for resistance to spalling by the standard method of the American Society for Testing Materials. Variations from the standard panel of brick in stretcher construction were made by laying brick as headers only, and also in combinations of stretchers and headers. The relation of gas pressure in the conditioning, or preheating, furnace, within the range 0.2 to 0.6 inch of water, to the spalling of firebrick was also investigated. The stability of volume and change in absorption resulting from reheating new specimens at 1,600°C for 5 hours under conditions of controlled gas pressure were determined of all the brands of the super duty class of brick as well as of 10 brands of the high heat duty class, the latter being reheated at 1,400°C only. The relation between the spalling loss by gravity only and after scraping with a trowel was investigated, as was also the relation between the spalling loss and the number of joints in the brick panel. 24 p. 15c.

RP1631. Application of the Ilkovic equation to quantitative polarography.
Floyd Buckley and John Keenan Taylor
Conditions of applicability of the Ilkovic equation to polarographic analysis were investigated for representative ions singly and in mixtures. Gelatin was used to suppress maxima found in current-voltage curves. Results obtained with a capillary of usual characteristics showed that a suppresser is necessary to secure agreement with the Ilkovic equation over any considerable drop-time range, and that the need increases with the drop-rate of the electrode and the dilution of reducible ion. A criterion of diffusion control satisfactory for classification of polarograms by visual examination was found. The application of the Ilkovic equation to quantitative analysis was shown to be inadvisable unless it is definitely established that the experimental conditions are well within the range for insuring diffusion control. A logarithmic relation between critical drop-time and suppresser concentration was found. 18 p. 10c.

RP1632. Comparative liquid-junction potentials of some pH buffer standards and the calibration of pH meters.
George G. Manov, Nicholas J. DeLollis, and S. F. Acree
By application of the equation $\text{pH} = \frac{(E - E_{ref} - E_j)/k}{k}$ to solutions whose pH values were known accurately, the sum of the potentials of the reference electrode and of the liquid-junction potential, $E_{ref} + E_j$, was obtained at 25°C by the method of cells with liquid junction for seven solutions suitable for standards of pH. The solutions used were 0.1018 m hydrochloric acid, pH 1.081; 0.01 m hydrochloric acid + 0.09 m sodium chloride, pH 2.101; 0.05 m potassium acid phthalate + 0.02 m potassium chloride, pH 3.989; 0.02 m potassium dihydrogen phosphate + 0.02 m disodium hydrogen phosphate + 0.02 m sodium chloride, pH 6.863; 0.02 m potassium phenolsulfonate + 0.02 m sodium phenolatesulfonate + 0.02 m sodium chloride, pH 8.795; 0.02 m boric acid + 0.02 m sodium borate (added together as sodium tetraborate) + 0.02 m sodium chloride, pH 9.155; and 0.01727 m calcium hydroxide + 0.01819 m sodium chloride, pH 12.38. Silver-silver-chloride electrodes immersed in saturated potassium chloride solution were used rather than the calomel electrodes customarily employed. As E_{ref} remains constant when the buffer is changed, values for the differences in the liquid-junction potentials of various buffers in contact with saturated potassium chloride solution were obtained from the data. These differences were then used to calibrate seven Type 015 and three “low-alkali error” glass electrodes of commercial manufacture. The average agreement between the true pH of the buffer-chloride solution (determined from cells without liquid junctions) and that read on various commercial pH meters when corrected for the difference in the liquid-junction potentials and the alkali error of the electrode was ± 0.01 pH unit. The data also furnish a critical test of the consistency of the pH values assigned to the various buffer solutions recommended by this Bureau for the calibration of the pH scale and for checking pH meters. Recommendations are made for checking pH meters. 13 p. 5c.

RP1633. Spectrographic determination of sodium, potassium, and lithium in portland cement with the direct-current carbon arc.
Armin W. Helz
Spectrographic methods, which are much less time-consuming than the usual chemical methods, are described for the determination of sodium, potassium, and lithium in portland cement. For the determination of sodium and potassium the sample is mixed with a mineral base containing silver for the internal standard.
For lithium a standard mixture of graphite and strontium carbonate is added to the cement sample. In either case a fixed amount of the resultant mixture is placed in the crater of a graphite electrode, which is made the lower positive element of a direct-current arc. The Na 749.8, K 769.8 A, and Li 323.2 A lines are used for the quantitative calculations. A discussion of the development of the method is given, followed by details of the adopted analytical procedure. The spectrographic analyses of 41 cements for sodium and potassium are given for comparison with the chemical values.

RP1634. Heats, free energies, and equilibrium constants of some reactions involving

\[O_2, \text{H}_2, \text{H}_2\text{O}, \text{C, CO, CO}_2, \text{and CH}_4 \]

Donald D. Wagman, John E. Kilpatrick, William J. Taylor, Kenneth S. Pitzer, and Frederick D. Rossini

Values are presented for the following thermodynamic properties: The heat-content function, \((H^\circ - H_0^\circ)/T\), the free-energy function, \((F^\circ - H_0^\circ)/T\), the entropy, \(S^\circ\), the heat content, \(H^\circ - H_0^\circ\), and the heat capacity, \(C_p^\circ\), for \(O_2\) (gas) to 5,000 °K, \(H_2\) (gas) to 5,000 °K, \(H_2O\) (gas) to 3,000 °K, \(N_2\) (gas) to 5,000 °K, \(\text{C (solid, graphite)}\) to 1,500 °K, \(\text{C (solid, diamond)}\) to 1,200 °K, \(\text{CO (gas)}\) to 5,000 °K, \(\text{CO}_2\) (gas) to 3,500 °K, and \(\text{CH}_4\) (gas) to 1,500 °K; the standard entropy, \(S^\circ\), for \(\text{H}_2\text{O (liq)}\) at 25 °C; the heat of formation, \(\Delta H^\circ\), the free energy of formation, \(\Delta F^\circ\), and the equilibrium constant of formation, \(K_f\), from the elements, for \(\text{H}_2\text{O (liq)}\) at 25 °C, and for \(\text{H}_2\text{O (gas)}, \text{CO (gas)}, \text{CO}_2\) (gas), and \(\text{CH}_4\) (gas), to 1,500 °K; the increment in heat content, \(\Delta H^\circ\), and the increment in free energy, \(\Delta F^\circ\), for the transition of graphite into diamond, to 1,200 °K and to 20,000 atmospheres.

From the foregoing, values were calculated for the increment in heat content, \(\Delta H^\circ\), the increment in free energy, \(\Delta F^\circ\), and the equilibrium constant, \(K\), for the following reactions, most of which are important in connection with the production of liquid hydrocarbon fuels from natural gas or coal and hydrogen:

\[
\begin{align*}
\text{C (solid, graphite)} + \text{CO}_2\text{(gas)} & = 2\text{CO (gas)} \\
\text{C (solid, graphite)} + \text{H}_2\text{O (gas)} & = \text{CO (gas)} + \text{H}_2\text{(gas)} \\
\text{CO (gas)} + 1/2\text{O}_2\text{(gas)} & = \text{CO}_2\text{(gas)} \\
\text{CO (gas)} + \text{H}_2\text{O (gas)} & = \text{CO}_2\text{(gas)} + \text{H}_2\text{(gas)} \\
\text{CH}_4\text{(gas)} + 1/2\text{O}_2\text{(gas)} & = \text{CO (gas)} + 2\text{H}_2\text{(gas)} \\
\text{CH}_4\text{(gas)} + \text{CO}_2\text{(gas)} & = 2\text{CO (gas)} + 2\text{H}_2\text{(gas)} \\
\text{CH}_4\text{(gas)} + \text{H}_2\text{O (gas)} & = \text{CO (gas)} + 3\text{H}_2\text{(gas)} \\
\text{CH}_4\text{(gas)} + 2\text{H}_2\text{O (gas)} & = \text{CO}_2\text{(gas)} + 4\text{H}_2\text{(gas)}
\end{align*}
\]

A table of the fundamental constants used in the calculations is given.

RP1635. Heats of isomerization of the 18 octanes.

Edward J. Prosen and Frederick D. Rossini

The heats of isomerization of all of the 18 octanes were determined by measurement of the ratios of their heats of combustion, in the liquid state for 17 and the solid state for 1, using the procedure previously described for the hexanes and the heptanes.

Values of the heats of isomerization are reported for the condensed (liquid or solid) state at 25°C and for the gaseous state at 25°C and 0°C.

RP1636. Region of usable imagery in airplane-camera lenses...

Francis E. Washer

The proper positioning of a lens with respect to the focal plane in a fixed-focus camera, such as an airplane-mapping camera, is governed by several factors that relate to the optical qualities of the lens. These factors are quality of imagery, depth of focus at a given stop opening, and curvature of field. This investigation shows that there is reasonably good agreement between observed depth of focus at a given stop opening and that predicted on the basis of geometric optics. Observed values of the maximum resolving power at various angular separations from the axis are generally lower at the larger stop openings than values predicted on the basis of physical optics. This lowering is doubtless a consequence of residual aberrations, inherent in an actual lens, which are more noticeable at large aperture ratios. A method of presenting the resolving power characteristics throughout the range of useful imagery in the form of sets of master curves has been developed. These curves show at a glance the variation of resolving power with distance from the plane of best axial imagery, the depth of focus for any observed value of the resolving power, the effect of field curvature on imagery in any given image plane, and the differing performance for tangential and radial imagery at various angular separations from the axis. Successive groups of these master curves show how variations in stop opening affect the performance of a lens.
RP1637. Relaxation of stresses in annealing glass...............Arthur Q. Tool

An empirical equation representing relaxation of stresses in annealing glass is derived. Although the derivation is based on Maxwell’s equation for viscous flow, consideration is also given to the changing viscosity as a glass anneals at a constant temperature. This new equation has been applied to data that were obtained by Adams and Williamson on the relaxation of stresses in annealing glass at various temperatures. It is shown that this equation applies very satisfactorily to their data. Also, it appears to be much more suitable than the reciprocal relation which these authors proposed as a substitute for the wholly unsatisfactory exponential relation that is derived directly from Maxwell’s equation. This exponential relation is unsatisfactory simply because it does not take into account the changing viscosity of annealing glass. Finally, the new equation leads to a clearer understanding of the nature and behavior of glass because it does not neglect the change in viscosity.

13 p. 5c.

RP1638. Copper reduction of dextrose, levulose, invert sugar, and sucrose-invert-sugar mixtures in citrate-carbonate solution.

Richard F. Jackson and Emma J. McDonald

The copper reduction values for dextrose, levulose, invert sugar, alone and in the presence of sucrose, have been determined, employing a modified Benedict’s copper citrate-carbonate reagent and the iodometric titration method of Shaffer and Hartmann. It has been found that under carefully controlled conditions this method is inferior with respect to precision to the methods of Munson and Walker and of Lane and Eynon, in which caustic alkali is a constituent of the copper reagent. Because of its convenience, it is valuable for rapid work where a precision not greater than 0.5 percent is required.

A table of equivalents for use in routine sugar analysis has been computed. 14 p. 5c.

RP1639. Effect of aeration on hydrogen-ion concentration of soils in relation to identification of corrosive soils..............Melvin Romanoff

Soils are generally air-dried to obtain comparable results in the measurement of pH. This paper points out the unreliability of such a procedure in measuring the pH of soils for the identification of corrosive areas. Large changes were observed in hydrogen-ion concentration of a poorly drained soil in passing from the moist field condition to the air-dried state and vice versa. This suggested a further investigation, and 62 air-dried soil samples taken from the National Bureau of Standards soil-corrosion test sites were saturated and stored without air for almost 1 year. Significant changes in pH were observed in the majority of the samples and large changes in many of them. It has been concluded that, for the identification of areas corrosive to iron and steel, pH measurements of soils should be made on samples maintained in the natural field condition. 15 p. 5c.

RP1640. Specific heats of gaseous 1,3-butadiene, isobutene, styrene, and ethylbenzene..............Russell B. Scott and Jane W. Mellors

This paper describes a flow calorimeter and measurements of the specific heats of four hydrocarbons that are of interest in connection with synthetic rubber. The measurements on gaseous 1,3-butadiene and isobutene cover the range —35° to +80°C. The specific heats of styrene vapor and ethylbenzene vapor were determined at 100°C. The calorimeter was tested by measuring the specific heat of normal hydrogen. The results on the hydrocarbons are believed to be correct to ±0.5 percent. 12 p. 5c.

RP1641. Free energies and equilibria of isomerization of the 18 octanes.

Edward J. Prosen, Kenneth S. Pitzer, and Frederick D. Rossini

Values of the following thermodynamic properties are presented in tabular and graphical form for the 18 octanes in the ideal gaseous state, for the range 298° to 1,000°K: (a) the standard free energy of isomerization divided by the absolute temperature, \(\Delta F^\circ/T \); and (b) the relative amounts of the several isomers present in equilibrium with each other. 7 p. 5c.

RP1642. Heats of combustion and formation of the paraffin hydrocarbons at 25°C.

Edward J. Prosen and Frederick D. Rossini

Selected “best” values are given for the heats of combustion (in oxygen to form gaseous carbon dioxide and liquid water) and the heats of formation (from the elements solid carbon, graphite, and gaseous hydrogen) for methane and ethane in the gaseous state, and for all the paraffin hydrocarbons from propane through the octanes and the normal paraffins through eicosane, in both the liquid (except for one octane which is solid) and gaseous states, all at 25°C. Equations are given for calculating values for all the normal paraffins above eicosane. 7 p. 5c.
RP1643. Comparison of the purity of samples of organic solvents by ultraviolet spectrophotometry. Marion E. Maclean, Priscilla J. Jencks, and S. F. Acree

Studies of the uniformity of different samples of organic solvents by ultraviolet spectrophotometry are described. The procedure used is applicable to the detection of impurities originally present or formed by deterioration and to the study of the effectiveness of purification procedures.

Absorption curves are given for n-heptane, 2,2,4-trimethylpentane, cyclohexane, methylcyclohexane, decahydronaphthalene, benzene, carbon tetrachloride, methyl alcohol, ethyl alcohol, ethyl acetate, and dioxane, in two or more grades of purity. The absorption curves of tetrahydronaphthalene, toluene, xylene, chlorobenzene, ethylene dichloride, trichloroethylene, acetone, dimethyldioxane, and carbon bisulfide are discussed briefly. The effect of filtration through silica gel on the ultraviolet absorption of several commercial solvents is shown. 10 p. 5c.

RP1644. Vapor pressure, latent heat of vaporization, and triple-point temperature of N₂O. Harold J. Hoge

The vapor pressure of N₂O has been measured from the triple point (T = 182.351° K = -90.809°C, p = 658.9 mm Hg) to 236°K (p = 10.25 atm). The data are compared with previous work in a graph that includes the entire liquid range.

The latent heat of vaporization was measured from the triple point to 205°K. At the boiling point (184.695°K = -88.465°C) the latent heat is 16.55 kj mole⁻¹. The consistency of the data was tested with Clapeyron's equation, which was also used to compute latent heats above the range of the direct measurements. 12 p. 5c.

RP1645. Methods of polishing steel and their effects upon the protective value of electroplated coatings. Gerald A. Lux and William Blum

To determine whether the "finish" of steel prior to electroplating affects the protective value of the plated coatings, strips of cold-rolled steel were polished with wheels to which abrasives of different grain size were glued. The resultant finishes were measured with a Profilometer and were expressed as root mean square, in microinches (millionths of an inch) of the departure of the contours from a plane surface. The finishes varied from a "superfinish," with root mean square of less than 1 microinch to 65 microinch, produced with a 90-grain abrasive. The weight (and average thickness) of steel removed by polishing was measured.

The polished specimens were plated with copper, nickel, and chromium of controlled thickness, and were exposed to the atmosphere at New York, N. Y.; Sandy Hook, N. J.; and Washington, D. C. The extent of rusting observed at periodic inspections was expressed on a numerical scale, and the average results over a period such as 1 year were expressed as "Percentage scores."

Comparison of these scores showed that wide differences in the surface finish of the steel had no significant effects on the protective value of the plated coatings. It is possible that use of hot-rolled steel, which is more likely to contain foreign inclusions, would have yielded differences as a result of polishing.

Results with accelerated tests, such as the salt spray, hot water, ferroxyl, and condensation tests, were not as reproducible and consistent as the atmospheric tests. 30 p.

RP1646. Photometer for luminescent materials. Ray P. Teele

In evaluating the usefulness of luminescent materials it is necessary to take into account the behavior of the human eye at low values of luminance. A photometer that provides for the determination of low luminances, with due regard for the characteristic behavior of the eye at such values, is described. It is interesting to note that both the luminescent materials and some of the phenomena of vision for the nearly dark-adapted eye have been known for many years, although the use of modern lamps to produce higher and higher illuminations has made it generally unnecessary to consider these phenomena. However, the use of the airplane for bombing with the countermeasure of blacking out as a means of passive defense and the need for markers in the interiors of blacked-out ships have shown many of the luminescent materials to be practical instead of merely novel, and has led to the development of methods for measuring the luminances they yield. 8 p. 5c.

RP1647. Freezing temperature of benzoic acid as a fixed point in thermometry. Frank W. Schwab and Edward Wichers

The freezing temperature of benzoic acid is found to be reproducible with a precision comparable to that of the ice point and somewhat superior to that of the steam point as usually observed in standardizing laboratories. For use in the calibration of thermometric instruments the acid is contained in a partially evacuated glass cell provided with a thermometer well. When thus confined, and if not heated excessively,
the substance maintains a constant composition for long periods of time. When properly manipulated, the acid in a given cell exhibits a freezing temperature reproducible from day to day within 1 millidegree.

The triple point of pure benzoic acid is 122.362° ± 0.002°C. Under a pressure of 1 atmosphere of dry air the freezing temperature is 0.013 degree higher. Corresponding elevations for oxygen and nitrogen are 0.001 and 0.015 degree, respectively. The pressure coefficient of the freezing temperature is 0.039 degree/atm. The change in volume of the acid on freezing is —0.138 cm³/g. The corresponding calculated value for the density of the solid at the freezing temperature is 1.27 g/cm³. The solubility of oxygen in the liquid at its freezing temperature, under a pressure of 1 atm., is 0.132 g/1,000 g of acid; that of nitrogen is 0.073 g.

An appendix deals with a method of calculating temperatures, in the ranges —190° to 0°C and 0° to 660°C, from observations with a platinum thermometer. For this purpose power-series equations are used instead of the Callendar and Callendar-Van Dusen equations. Tables are included to facilitate the computation of temperature. 40 p. 10c.

RP1648. pH of aqueous mixtures of potassium dihydrogen phosphate and disodium hydrogen phosphate at 0° to 60°C. Roger G. Bates and S. F. Acree

A method is suggested for computing the pH of phosphate buffers from electromotive-force measurements of cells without liquid junction. Each of the 33 buffer solutions studied was prepared from equal molal quantities of potassium dihydrogen phosphate and disodium hydrogen phosphate. The solutions were divided into five series with respect to the amount of sodium chloride added. The ratios of the molality of each buffer salt to that of sodium chloride in the five series were about 1, 2, 3, 8, and 10. The pH values were computed from measurements of cells with hydrogen electrodes and silver-silverchloride electrodes by a procedure that involves extrapolation of a function of the emf to zero concentration of sodium chloride. The values of the second dissociation constant of phosphoric acid given in an earlier paper (RP1524) were confirmed. The mean values of pK, the negative of the common logarithm of the second dissociation constant, are given as a function of absolute temperature, T, by the equation

\[pK = \frac{2073.0}{T} - 5.9884 + 0.020912T \]

between \(T = 273.16 \) and \(T = 323.16 \) (0° to 50°C). Equations are given to express the change of pH with molality of sodium chloride. The pH values from 0° to 60°C of eight phosphate buffers without chloride are listed. The densities of the buffers were determined. At 25°C, the pH of buffers containing equal molal quantities of potassium dihydrogen phosphate and of disodium hydrogen phosphate is given by the equations

\[\text{pH} = 7.162 + 2.18 m - 2.237 \sqrt{m} \]

and

\[\text{pH} = 7.169 + 2.39 c - 2.324 \sqrt{c}, \]

where \(m \) and \(c \), the molality and the molar concentration of each buffer salt, lie between 0.005 and 0.1. 22 p. 10c.

Results are given of seven melting-point determinations on alpha-alumina of high purity in an oxidizing atmosphere and under atmospheric pressure. There was detectable contamination of the specimens by vapors of other elements in the furnace atmosphere, but the results are believed to show that the melting point of alpha-alumina is within the range 2,000° to 2,030°C. 7 p. 6c.

RP1650. Heats and free energies of formation of the paraffin hydrocarbons, in the gaseous state, to 1,500°K.

Edward J. Prosen, Kenneth S. Pitzer, and Frederick D. Rossini

Values are presented for the heats of formation and the free energies of formation, from solid carbon (graphite) and gaseous hydrogen, of all the normal paraffin hydrocarbons and of the isomeric paraffins from the butanes through the octanes, in the gaseous state, to 1,500°K. 9 p.

RP1651. Method for calculating the properties of hydrocarbons and its application to the refractive indices, densities, and boiling points of the paraffin and monoolefin hydrocarbons.

William J. Taylor, Joan M. Pignocco, and Frederick D. Rossini

A method is described for calculating the properties of hydrocarbons which involves the summation of contributions from component parts of the molecule, together with contributions from interactions between adjacent component parts.
For the paraffin hydrocarbons, the calculations were made in terms of the difference in the value of the property between a given normal paraffin and its isomers, and the required constants were evaluated from data on 33 paraffins, C₅ to C₈. For these paraffins, the average deviation of the calculated from the experimental values is ± 0.00074 g/ml in density, ± 0.00042 in refractive index (nD at 20°C), and ± 0.55°C in the normal boiling point.

In the case of the monoolefin hydrocarbons, the calculations were made in terms of the difference in the value of the property between a given monoolefin and the corresponding paraffin having the same carbon skeleton, and the required constants were evaluated from data on 58 monoolefins, C₅ to C₇. For these monoolefins, the average deviation of the calculated from the experimental values is ± 0.0031 g/ml in density, ± 0.0020 in refractive index (nD at 20°C), and ± 1.33°C in the normal boiling point.

RP1652. Separation and determination of aromatic and monoolefin hydrocarbons in mixtures with paraffins and naphthenes by adsorption.
Beveridge J. Mair

A new method is described for separating and determining aromatic and monoolefin hydrocarbons in mixtures with paraffins and naphthenes by adsorption. The mixture to be analysed is introduced into the top of a column of silica gel and, when the liquid level just reaches the top of the silica gel, a suitable desorbing liquid, such as ethyl alcohol, is added. The desorbing liquid forces the hydrocarbon portion down the column, during which passage the hydrocarbon portion is fractionated according to the adsorbability of the various components. These components issue from the bottom of the column in the following order: Paraffin plus naphthene, monoolefin, and aromatic hydrocarbons. The analysis is made by determining the fraction of the total volume constituted by each of these classes.

Results of the analyses of five solutions containing aromatic and paraffin hydrocarbons, and three solutions containing aromatic, monoolefin, and paraffin hydrocarbons are given. A procedure is outlined for determining the aromatic content of a straight-run petroleum distillate, as in the gasoline or kerosine fractions.

RP1653. Methods for the evaluation of analytical filter papers.
B. W. Scribner and W. K. Wilson

As part of an investigation of analytical filter papers for the purpose of assisting in the development of standards of quality, improved methods for rate of flow of water, retention of fine precipitates, and determination of ash were developed. The use of complicated apparatus for measuring the rate of flow of water was avoided by applying Darcy's law to the ordinary conical filter. The use of prefiltered water in making the measurement was found necessary for satisfactory reproducibility. As the standard method for determining the ash content of paper is not sufficiently accurate for filter paper, the method was modified in that a tare crucible is used and the test specimen wetted and pressed into a compact wad to permit the use of as small a crucible as possible.

The other tests were bursting strength of wet paper, thickness, weight per unit area, alpha cellulose, copper number, and acidity (pH). The last three named are of importance relative to the purity of the cellulose and the stability of acid-washed papers, as instances of deterioration of the cellulose of such papers have been observed. Action of acid results in brittling of the papers and in the formation of modified forms of cellulose that are soluble in some solutions.

RP1654. Intrinsic viscosities and osmotic molecular weights of cellulose acetate fractions.
Arnold M. Sookne and Milton Harris

The intrinsic viscosities and osmotically estimated number-average molecular weights of a series of cellulose acetate fractions have been measured. It was found that within the range of chain lengths investigated (number-average molecular weight, M_n, up to 130,000) the number-average molecular weights are proportional to the intrinsic viscosities in acetone solutions, in agreement with Staudinger's rule and the results of Kraemer. An estimate is provided of the relative homogeneity with respect to molecular size of the fractions and the starting material from which they were prepared.

RP1655. Polymolecularity and mechanical properties of cellulose acetate.
Arnold M. Sookne and Milton Harris

The tensile strengths, ultimate elongations, and folding endurances of films prepared from a series of cellulose acetate fractions and blends were studied. When the mechanical properties are plotted against the intrinsic viscosities (or relative weight-average degrees of polymerization), the results for the fractions and different blends fall on separate curves. In contrast, when the mechanical properties are plotted against
the number-average degrees of polymerization, the results for the fractions and all of the blends fall approximately on a single curve for each property. The results are shown to be qualitatively consistent with the hypothesis that the mechanical properties of blends are the weight-averages of the properties of their components. The results emphasize the importance of the determinations of the number-average degree of polymerization in studying commercial polymolecular materials. 10 p. 5c.

RP1656. Term analyses of the first two spectra of columbium.
Curtis J. Humphreys and William F. Meggers

Published wavelengths and estimated intensities of lines characterizing the first two spectra of columbium (RP881) have been supplemented by observations of the arc spectrum (6500 to 8500 A) in an atmosphere of helium, by observations of the spark spectrum (2000 to 2100 A), and by measurements of the Zeeman patterns for 1,557 lines. All available data have been analyzed for the purpose of correcting and extending the information about the structures of Cb II and Cb I (RP793).

The Cb II table contains 1,723 lines (2002.41 to 7026.15 A), 1,494 of which are explained as combinations of 183 ionic energy levels comprising 27 singlet, 40 triplet, and 9 quintet spectral terms. The terms arising from electron configurations 4d², 4d³ 5s, and 4d³ 5p have been almost completely established, but efforts to find spectral series for Cb II were futile. The lowest energy (normal state) of Cb⁺ ions is represented by (4d⁴ a²D¹⁰), but the strongest emission lines involve (4d² 5s) a²F⁵, a metastable term. The most intense line of the Cb II spectrum is (4d⁵ 5s) a²F⁵ — (4d³ 5p) z²G⁶, with a wavelength of 3094.172 A. Zeeman patterns observed for 646 Cb II lines were most helpful in extending this analysis, which now includes 87 percent of the recognized lines and 95 percent of their total intensity.

The Cb I table contains 3,313 lines (2164.54 to 10920.7 A), 2,836 of which have been interpreted as combinations of 364 atomic energy levels representing 58 doublet, 55 quartet, and 13 sextet spectral terms. The lowest term (normal state of neutral Cb atoms is (4d⁴ 5s) a²D⁰₁⁰, and the strongest line of the Cb I spectrum is the transition (4d² 5s) a²D₄₁⁵ — (4d⁴ 5p) y⁵F₂, with a wavelength of 4058.931 A. The Cb I spectrum is largely accounted for by transitions between levels arising from 4d³ 5s or 4d⁴ 5s² and 4d³ 5p or 4d³ 5p⁻¹ electron configurations. Zeeman patterns measured for 911 Cb I lines have been 90 percent interpreted in this analysis, which now includes 86 percent of the known lines and over 93 percent of their intensity. Two members of the series (4d⁴ 5s) a²D and two each of (4d⁴ 5s²) a²(DFG) have been established. Extrapolation of these indicates a limit of 54,600 cm⁻¹, which represents the energy difference between the normal states of Cb atoms and Cb⁺ ions. The corresponding ionization potential for neutral columbium atoms is 6.77 volts. 109 p. 25c.

RP1657. Diamond cutting accelerated by an electric arc.
Chauncey G. Peters, Karl F. Neffen, and Forest K. Harris

The method universally employed for cutting plane surfaces or facets on diamonds has been to place the diamond in contact with a flat cast-iron lap charged with diamond powder and rotated at about 2,000 revolutions per minute. In the work described in this paper it was found that by producing a high-voltage electric arc at the contact between the diamond and the lap, the cutting rate is materially increased for all orientations of the diamond, and good progress can be made directly on a natural octahedron face, where cutting without the arc is almost impossible.

By applying the arc to a diamond saw the sawing rate is greatly increased, and diamonds can be sawed regardless of the orientation of the cut relative to the crystal axes. 7 p. 10c.

RP1658. A transfer strain gage for large strains.
Martin Greenspan and Leroy R. Sweetman

A simple strain gage, suitable for measurement of strains of from — 16 to + 32 percent on a 1.5-inch gage length, is described. 3 p. 5c.

RP1659. Refractive-index standards of fluorocrown glass..............Leroy W. Tilton

Refractive-index samples of fluorocrown glass, which provide solid standards in the index range between fused quartz, nD = 1.458, and low index silicate crown glass, n = 1.51, are characterized by very low temperature coefficients of index, and thus are especially recommended for use at extreme room temperatures. The calibration of such standards may be facilitated by comparisons with the precise data herein tabulated for six of these glasses in the temperature range 16° to 55°C. Because of surface weathering, repolishings are sometimes necessary to avoid hazy and possibly false critical border lines. In some cases bright bands appear in the dark portion of the refractometer field. These are interpreted as critical-angle phenomena corresponding to decomposition products in the surface layers. 10 p. 5c.

Title page and contents for volume 34. 7 p. 5c.

Single-cylinder-engine tests of nonhydrocarbon fuels and gasoline, at fixed compression ratio and at the compression ratio for trace knock for each fuel, show no material differences in performance other than those associated with differences in heats of combustion and vaporization. All the nonhydrocarbon fuels could be operated at compression ratios higher than was permissible with the gasoline, with corresponding increases in power and thermal efficiency. 37 p. 10c.

RP1661. Thermodynamic properties of 1,3-butadiene in the solid, liquid, and vapor states.
Russell B. Scott, Cyril H. Meyers, Robert D. Rands, Jr., Ferdinand G. Brickwedde, and Norman Bekkedahl

This paper presents a detailed description of apparatus used and the results obtained in the following measurements relating to the thermodynamic properties of 1,3-butadiene in the solid, liquid, and vapor states: (1) Specific heats from -258° to $+30^\circ$C, (2) heat of fusion, (3) heats of vaporization from -26° to $+23^\circ$C, (4) vapor pressures from -78° to $+110^\circ$C, (5) liquid densities from -78° to $+95^\circ$C, (6) vapor densities from 30° to 150°C, and (7) the critical pressure, volume, and temperature of 1,3-butadiene. Tables embodying the results of these measurements are included for specific heats, enthalpy, and entropy of the solid, liquid, and vapor. 48 p. 10c.

RP1662. Effects of some oxide additions on the thermal length changes of zirconia.
R. F. Geller and Paul J. Yavorsky

The oxides of cerium, yttrium, silicon, magnesium, and calcium were added in various proportions to zirconia of 99-percent purity, and the effects of these additions, combined with preheating at various temperatures ranging from 1,450° to 1,950°C, on thermal length changes of the zirconia during heating and cooling between room temperature and a maximum of 1,700°C were observed. The results are compared with similar observations on zirconia of 96-, of 98-, and of 99-percent purity without oxide additions.

The results show that the irregular thermal length changes accompanying phase transformations in zirconia may be prevented by changing the crystal to the stable cubic form. This was accomplished by (a) 11.5- and 15-percent additions of Y$_2$O$_3$ and heating at 1,700°C or higher; (b) 8- and 15-percent additions of MgO and heating at 1,550°C or higher, but only for the range from room temperature to 1,200°C; and (c) 5-, 6-, 8-, and 15-percent additions of CaO and heating at 1,550°C or higher, but additions of more than 6 percent caused the specimens to be very porous and proportionately weak. In all cases, however, the expansion during heating and contraction during cooling was relatively high. The coefficients of linear thermal expansion of the specimens that were all, or nearly all, cubic ranged from 8.8 to 11.8 $\times 10^{-6}$. Also, zirconia has a low thermal conductivity relative to such materials of high thermal expansion as alumina, magnesia, and beryllia (unpublished data). Consequently, a high resistance to thermal shock cannot be expected of the stabilized product, even though it is not subject to the structural disintegration characteristic of the commercially pure material. 24 p. 10c.

RP1663. Acetyl derivatives of certain heptoses, of gulose, and of lactulose.
Harriet L. Frush and Horace S. Isbell

In the course of an investigation of the stereomeric factors that influence the course of replacement reactions, several new acetyl derivatives of the sugars were prepared. Inasmuch as the sugar acetates are of importance for analytical purposes, for the synthesis of other substances, and for the elucidation of structure, the new compounds are reported, even though the study of the reaction mechanisms has been temporarily discontinued. The preparation and properties are given for several new acetates of the heptoses, and for acetates of D-gulose, D-glucoheptulose, and lactulose. The following new compounds are reported: Hexaacetyl-D-glycero-ß-D-idulo-aldoheptose, melting point 136°C, $[\alpha]_D^0 = -9.1^\circ$; pentaacetyl-D-glycero-a-D-idulo-aldoheptosyl bromide, melting point 114°C, $[\alpha]_D^0 = 143^\circ$; methyl pentaacetyl-D-glycero-ß-D-idulo-aldoheptoside, melting point 136° to 137°C, $[\alpha]_D^0 = -31.3^\circ$; hexaacetyl-D-glycero-ß-D-talo-aldoheptose, melting point 137°C, $[\alpha]_D^0 = 88.8^\circ$; hexaacetyl-D-glycero-L-galacto-aldoheptoses (crystalline mixture); pentaacetyl-D-gulose, melting point 113°C, $[\alpha]_D^0 = 86.2^\circ$ (needle form), and melting point 105° to 106°C, $[\alpha]_D^0 = 45.9^\circ$; octaacetyllactulose, melting point 188°C, $[\alpha]_D^0 = -6.8^\circ$. 14 p. 5c.
A. Keith Brewer and Vernon H. Dibeler

The basic principles underlying mass spectrometric analysis of hydrocarbon and gas mixtures are outlined. The method of calculating the composition from the mass-abundance records is described. Analyses of a number of hydrocarbon and other gas mixtures are shown. Whenever possible comparisons with different methods of analyses are given. The reproducibility and the accuracy obtainable in mass spectrometric analyses are described. 16 p. 10c.

RP1665. Heats of combustion and isomerization of the eight C₉H₁₂ alkylbenzenes.
Walter H. Johnson, Edward J. Prosen and Frederick D. Rossini

The heats of isomerization of the eight C₉H₁₂ alkylbenzenes were determined by measurement of the ratios of the heats of combustion in the liquid state of purified samples of these compounds by the procedure previously described for the hexanes, heptanes, and octanes. The data yield the following values for the heat of isomerization in the liquid state at 25°C, ΔH°, of n-propylbenzene into each of the C₉H₁₂ alkylbenzenes, in kilocalories per mole: n-propylbenzene, 0.00; isopropylbenzene, —0.67 ± 0.16; 1-methyl-2-ethylbenzene, —1.93 ± 0.16; 1-methyl-3-ethylbenzene, —2.48 ± 0.19; 1-methyl-4-ethylbenzene, —2.74 ± 0.26; 1,2,3-trimethylbenzene, —4.83 ± 0.22; 1,2,4-trimethylbenzene, —5.61 ± 0.16; 1,3,5-trimethylbenzene, —6.00 ± 0.26. These data were combined with the value previously reported for the heat of combustion of n-propylbenzene to obtain values for the heats of combustion of each of the C₉H₁₂ alkylbenzenes in the liquid state at 25°C. 6 p. 5c.

RP1666. Thin-walled aluminum beta-ray tube counters.
Burrell W. Brown and L. F. Curtiss

A description is given of aluminum-tube Geiger-Muller counters having a wall thickness of 0.004 inch and constructed from commercially available tooth-paste tubes. These tubes as furnished are in the hard temper and have uniform wall thickness, which enable them to stand complete evacuation without a tendency to collapse. By copperplating the aluminum it is possible to soft-solder fittings to the tube to construct a counter that can be permanently sealed after filling and that will maintain its characteristics over a long period. The procedure reduces the cost of making this type of counter, as the aluminum tubes are inexpensive, and very simple operations are required in the construction of the counters. 4 p. 5c.

RP1667. Method of lagrangian curvilinear interpolation.
William J. Taylor

This report describes a simplified method of computing Lagrangian coefficients for curvilinear interpolation, which may be used when tables of Lagrangian coefficients are not available or when tables are available but the coefficients are not tabulated for the exact fraction of the interval to which the interpolation is to be made. 6 p. 5c.

RP1668. An apparatus for photographing interference phenomena.
James B. Saunders

A photographic instrument is described that was designed for recording the changes produced in the order of interference fringes over long periods and for recording large changes in the order of interference. When this instrument is used with interferometric systems for studying the changes caused in transparent solids by heating, it can be made to yield a continuous record of the simultaneous changes in temperature, time, index, strain, and density. For example, to record those changes that are caused by the annealing of an optical glass at an annealing temperature near the lower part of its annealing range requires several weeks of continuous recording. The total amount of 35-millimeter film needed by the instrument for such a record (covering, say 3 months) does not necessarily exceed 10 feet. To record the expansion of a material that is being heated from room temperature to 500°C, at a rate of 3 degrees centigrade per minute, requires approximately 1 foot of 35-millimeter film. Thus, even very long tests require such a small amount of film that the operator is able to process it in any small dark room. The fringes are photographed at their natural size, and the fringe shifts can be determined from the photographic record without the use of enlarging or projection equipment. 30 p. 10c.

RP1669. Lapped bar splices in concrete beams.
Ralph W. Kluge and Edward C. Tuma

An investigation was conducted to determine the general behavior and strength of lapped bar splices that varied in length and method of lapping. The bond strength developed in the splice and the slip of bar were determined for two types and two sizes of reinforcement. The resulting data clearly illustrated the manner in which the stress was transferred from one lapped bar to the other; the relative merits of the two
types of bars, as well as the effectiveness of the two methods of lapping, are also shown.

32 p. 10c.

RP1670. Vapor pressures and boiling points of some paraffin, alkylcyclopentane, alkylcyclohexane, and alkylbenzene hydrocarbons.

Charles B. Willingham, William J. Taylor, Joan M. Pignocco, and Frederick D. Rossini

Measurements of vapor pressures and boiling points, over the range 47 to 780 millimeters of mercury and above about 12°C, were made on 52 purified hydrocarbons. The apparatus consisted of an electrically heated boiler, a vapor space with a vertical reentrant tube containing a platinum thermometer having a resistance of 25 ohms, and a condenser. Measurements of the temperature of the liquid-vapor equilibrium were made at 20 fixed pressures maintained automatically. The values of the fixed pressures were determined by calibration of the apparatus with water by using the vapor pressure-temperature tables prepared at the National Bureau of Standards.

The experimental data on the hydrocarbons were correlated, the method of least squares being used, with the three-constant Antoine equation for vapor pressures, \[
\log P = A - B/(C + t) \quad \text{or} \quad t = B/(A - \log P) - C.
\]
Experimental data together with the values of the three constants of the Antoine equation, applicable over the range of measurement, are reported for 30 paraffin, 4 alkylcyclopentane, 10 alkylcyclohexane, and 8 alkylbenzene hydrocarbons. 26 p. 10c.

RP1671. Color standard for ruby mica.........................Deane B. Judd

At the request of the Metals Reserve Company and the War Production Board, a study has been made of the color classification of mica used by the mica-consuming industry. This classification has been found to be consistent and can be reproduced from the chromaticity of the mica specimen and its daylight transmission considered in relation to thickness. A method of defining ruby mica in these terms is described, and as it does not depend upon the physical integrity of any material color standard, this definition constitutes a fundamental color standard for ruby mica. This standard is particularly for application to micas close to the border line between ruby and nonruby. 12 p. 5c.

RP1672. Compression of sole leather.........................Charles E. Weir

Specimens of sole leather were subjected to indentation tests and compressive tests. Comparisons between compression data and the indentation numbers of the original dry leather show that compression may be used as a measure of indentation. Compression of dry leather gives results showing better correlation between the methods and eliminates distortions occurring when moist leather is compressed. Compression data show satisfactory reproducibility. Compression for a three-minute period is adequate for test purposes, all changes being completed in this interval with the exception of a very minute compression proceeding at a slow rate. Compensation for variations in thickness of specimens may be effected by expressing the results in terms of percentage compression. Area and shape of specimens do not affect the compression appreciably. Compression-decompression curves show large hysteresis loops. The effect of tannery rolling in compressing leather is estimated to be equivalent to that produced by pressures of from 2,000 to 3,000 lb/in². Based upon the data obtained in the compressive tests, the lower limit of the coefficient of compressibility of leather is estimated to be \(33 \times 10^{-8} \text{ bar}^{-1}\). 16 p. 5c.

RP1673. Knock ratings of gasoline substitutes..................Afton D. Puckett

Knock ratings of gaseous paraffins and olefins through C₄, and of carbon monoxide, were determined by current motor and aviation test methods. Auxiliary apparatus and modifications of test engines necessary to rate gases are described.

Antiknock qualities of ethyl and normal butyl alcohol, and acetone, both alone and in blends, were determined by current motor-fuel rating procedures. Blending characteristics of these materials with straight run gasolines and naphthas were investigated.

Diethyl ether in ethyl alcohol blends showed a high positive sensitivity (Coordinating Fuel Research Committee (CFR) research minus American Society for Testing Materials (ASTM) motor octane number) for ether concentrations below 48 percent and a high negative sensitivity above that figure. The tests indicated that blends containing up to 45 percent of ether should give relatively knock-free performance under conditions of steady operation. 12 p. 5c.

RP1674. Hysteresis in the physical adsorption of nitrogen on bone char and other adsorbents..................Leland F. Gleysteen and Victor R. Deitz

An investigation has been made of some characteristics of hysteresis in the physical
adsorption of nitrogen on bone char, activated carbon, silica gel, and coconut-shell charcoal at 77.4°K. It was found that hysteresis became less pronounced in the order given, occurring only slightly in coconut-shell charcoal and only from high relative pressures in the pressure range in which the Langmuir equation was not obeyed. It was shown that it was highly probable that a true steady state was attained in the pressure determinations and that the time dependency of adsorption and desorption are compatible with the requirements of diffusion processes. In this paper the theories of hysteresis are reviewed on the basis of capillary condensation, and an alternative interpretation is suggested in terms of the theory of multimolecular adsorption. 24 p. 10c.

RP1675. Some physical properties of mica........Peter Hidnert and George Dickson

This paper gives data on the linear thermal expansion, changes in structure, power factors, and effects of heat treatments on the thickness, opacity, and color of micas (muscovite, phlogopite, biotite, ripidolite, and zinnwaldite) from different domestic and foreign sources. Tremendous linear thermal expansion was noted for some samples of phlogopite and biotite micas in a direction perpendicular to the cleavage plane. The transitions shown in the expansion curves of these samples at elevated temperatures appear to be related to the structural changes indicated in the X-ray diffraction patterns. Heat treatment of two phlogopite micas and two muscovite micas to 600°C, with or without a load, caused considerable increases in the power factors of the former and only slight changes in the latter. Nearly all the muscovite samples showed the greatest increases in thickness (up to 155 percent) after heat treatment at 800°C. The large increases in thickness of nearly all the muscovite samples accompanied changes from clear or translucent to opaque, or from polychrome to metallic color. None of the species of mica can be considered as a substance or material of fixed and reproducible properties. The physical properties of mica depend largely upon the chemical composition, the nature of the crystals, their magnitude and orientation, the presence of impurities, the way in which these enter the structure, the heat treatment, etc. Some of the phlogopite and biotite micas that possess tremendously high thermal expansion in a direction perpendicular to the cleavage plane may be used for high-expanding elements in temperature-responsive devices but may be unsatisfactory for use in devices in which large changes in dimensions with changes in temperature are not desirable. 46 p. 10c.

RP1676. Determination of the purity of hydrocarbons by measurement of freezing points.
Augustus R. Glasgow, Jr., Anton J. Streiff, and Frederick D. Rossini

An improved and simplified procedure is described for determining the freezing points of hydrocarbons from time-temperature freezing and melting curves, and for calculating the purity when the freezing point for zero impurity is (a) known and (b) not previously known. A procedure for determining the cryoscopic constant is also described. 20 p.

RP1677. Effect of pressure on the melting of crystalline rubber.
Lawrence A. Wood, Norman Bekkedahl, and Ralph E. Gibson

The effect of hydrostatic pressure on the melting of crystalline rubber has been the subject of a brief investigation extending to pressures above 1,000 atmospheres. With a particular sample of stark rubber, it was found possible to raise the temperature of melting, as determined by the disappearance of birefringence, from about 26° to 70°C by the application of a pressure of 1,170 bars (1,170 × 10⁶ dynes/cm²). The results, including observations at intermediate pressures, can be represented adequately by the equation log₈ (p + 1,300) = 5.9428 − (875/T). 6 p. 5c.

RP1678. Second dissociation constant of o-phthalic acid and related pH values of phthalate buffers from 0° to 60°C.Walter J. Hamer and S. F. Acree

Measurements were made of the potential difference between hydrogen electrodes and silver-silver-chloride electrodes in aqueous solutions of 72 different phthalate-chloride mixtures at 13 temperatures from 0° to 60°C. By described experimental and mathematical procedures, the second dissociation constant of o-phthalic acid and related thermodynamic quantities were evaluated, and pH values were assigned to 217 solutions, including some containing no potassium chloride. The addition of the chloride lowers the pH of the solutions principally because of an increase in the ionic strength.

The second dissociation constant may be computed at each temperature by the equation

\[\log K_2 = -2175.83/T + 9.55095 - 0.025694T, \]

where \(T = t°C + 273.16 \).
The pH values of the solutions may be computed for ratios of dipotassium phthalate to acid potassium phthalate from 1 to 2, and for ionic strengths, μ, from 0. to 0.5, by the equation

$$\text{pH} = -\log K_2 + \log \frac{\text{dipotassium phthalate}}{\text{acid potassium phthalate}} - 3A \sqrt{\mu} + 3.76B \sqrt{\mu} + \beta \mu,$$

in which A and B are constants dependent upon the temperature, and β is a constant dependent upon the temperature, salt concentration, and buffer ratio.

The addition of potassium chloride lowers the pH of the solutions in accordance with the equation

$$\text{pH} = (\text{pH})_0 + \alpha_1 m \text{KCl} + \alpha_2 m^2 \text{KCl} + \alpha_3 m^3 \text{KCl},$$

where $(\text{pH})_0$ is the value at any temperature for a solution containing no potassium chloride and α_1, α_2, and α_3 are constants.

These solutions with or without potassium chloride are useful as pH standards from 4.87 to 5.72 and vary only slightly with changes in temperature. They have good buffer capacity and may be readily prepared from pure materials. The NBS Standard Samples 84a and 84b of acid potassium phthalate or Standard Samples of comparable purity are recommended for preparation of the solutions, together with carbonate-free potassium hydroxide of high grade and distilled water of pH 6.7 to 7.3. 36 p. 10c.

Sanford B. Newman and Helen G. Wheeler

Static and impact tests were made on spliced specimens of 3/8-inch-diameter three-strand nylon rope and 3/8-inch-diameter, four-strand, sisal rope.

The stretch of the ropes under impact and static loading up to failure was measured, and from these data energy-stretch behavior was determined.

It was found that the energy required to cause failure under impact loading was greater than the energy required to cause failure under static loading. The stretch of the rope at failure was practically the same under impact and static loading.

The results of these tests indicate that energy values computed from static tests of these ropes give a safe estimate of the performance of the rope under impact loading. 15 p. 10c.

RP1680. Oxidation of galacturonic acid and of 5-keto-gluconic acid in alkaline solution.

Horace S. Isbell and Nancy B. Holt

In the present investigation determinations were made of the quantities of oxalate, tartrate, and trihydroxyglutarate formed by the oxidation of galacturonic acid and of 5-keto-gluconic acid in the presence of various bases and various concentrations of the base. Although preliminary measurements indicate that the proportions of the products can be altered by use of catalysts, this report is restricted to the results obtained without the addition of catalytic substances. Oxidation of sodium galacturonate with oxygen in 1-N sodium hydroxide solution gave oxalate, D-tartrate (levo), and D-arab-o-trihydroxyglutarate in yields of 0.10, 0.10, and 0.45 mole, respectively, per mole of galacturonate. Oxidation of sodium 5-keto-gluconate under like conditions gave oxalate, L-tartrate (dextro), and 22/fo-trihydroxyglutarate in yields of 0.29, 0.10, and 0.45 mole, respectively, per mole of sodium 5-keto-gluconate. Directions are included for the preparation of potassium D-arab-o-trihydroxyglutarate from galacturonic acid. 6 p. 5c.

RP1681. Utilization of nonpetroleum fuels in automotive engines.

Jesse T. Duck and Clarence S. Bruce

A number of substitute fuels and blends were tested to determine their relative efficiency in the operation of common types of engines. The tests showed that the maximum power developed with alcohol and with some of the other fuels was slightly greater than with gasoline. The specific fuel consumption with the various fuels was approximately in inverse proportion to the heat of combustion of the fuel used. Analysis showed that the mixture distribution was less uniform with the substitute fuels than with gasoline. Tests made with low-proof alcohols showed that an engine can be operated on blends as low as 70 proof, but it is ordinarily impractical to use a blend much below 190 proof because of the excessive volume required. 27 p. 10c.

RP1682. Heats, equilibrium constants, and free energies of formation of the acetylene hydrocarbons through the pentynes, to 1,500°K.

Donald D. Wagman, John E. Kilpatrick, Kenneth S. Pitzer, and Frederick D. Rossini

Values are presented for the following thermodynamic properties for acetylene, propyne (methylacetylene), 1-butyne (ethylacetylene), 2-butyne (dimethlacetylene), 1-pentyne (n-propylacetylene), 2-pentyne (methylethylacetylene), and 3-methyl-
1-butyne (isopropylacetylene), in the gaseous state, to 1,500°K: The heat-content function, \((H^o - H^o_0)/T \); the free-energy function, \((F^o - H^o_0)/T \); the entropy, \(S^o \); the heat content, \(H^o - H^o_0 \); the heat capacity, \(C_p^o \); the heat of formation from the elements, \(\Delta H_f^o \); the free energy of formation from the elements, \(\Delta F_f^o \); and the logarithm of the equilibrium constant of formation from the elements, \(\log \epsilon K_f \).

Equilibrium constants and concentrations of components are given in tabular and graphical form for the isomerization of the two butynes and of the three pentynes as a function of temperature to 1,500°K. Equilibrium constants are also given in tabular and graphical form for the dehydrogenation of ethane to ethylene to acetylene, of propane to propylene to propyne, of n-butane to 1-butene to 1-butyne, and of n-pentane to 1-pentene to 1-pentyne. 30 p. 10c.

RP1683. Reaction of periodic acid on the difructose anhydrides.
Emma J. McDonald and Richard F. Jackson

Diheterolevulosan, difructose anhydrides I, III, and II react, respectively, with 4, 2, 1, and 1 moles of periodic acid per mole of sugar. These results are in keeping with the known sturctures of the first three sugars. It is suggested that difructose anhydride II is a 1,2'-2,4'-difructofuranose. 4 p. 5c.

RP1684. Thermodynamic properties of solid and liquid ethylbenzene from 0° to 300°K.
Russell B. Scott and Ferdinand G. Brickwedde

The following properties of a sample of high purity ethylbenzene were measured: (1) Specific heat of solid and liquid from 15° to 300°K; (2) triple-point temperature (−95.005 ± 0.010°C for pure ethylbenzene); (3) heat of fusion (86.47 int. j g⁻¹); (4) heat of vaporization at 294°K (400.15 int. j g⁻¹); and (5) vapor pressure from 273° to 296°K. With these experimental data, the enthalpy and entropy of the solid and of the liquid in the range 0° to 300°K were calculated. 12 p. 5c.

RP1685. Assembly and calibration of a density balance for liquid hydrocarbons.
Alphonse F. Forziati, Beveridge J. Mair, and Frederick D. Rossini

The assembly and calibration are described of a density balance for rapidly measuring the densities of liquid hydrocarbons on samples as small as 9 milliliters in volume. The reproducibility of the measurements is ± 0.00002 to ± 0.00003 gram per milliliter and the over-all uncertainty is estimated to be about ± 0.00005 gram per milliliter. 7 p. 5c.

RP1686. Ultraviolet spectra and dissociation constants of p-hydroxybenzoic acid, methyl, ethyl, n-butyl, and benzyl p-hydroxybenzoate and potassium p-phenolsulfonate.
Elizabeth E. Sager, Marjorie R. Schooley, Alice S. Carr, and S. F. Acree

The apparent first and second dissociation constants of p-hydroxybenzoic acid, the constants for the phenol group of methyl, ethyl, n-butyl, and benzyl p-hydroxybenzoate, and potassium p-phenolsulfonate have been determined from ultraviolet spectral data. The compounds have wide absorption bands located in the region of 200 to 400 μm, and the differences between the transmittancy curves for their ionic and molecular forms are great enough to permit the measurement of several intermediate steps in the transformation at various pH values. The buffers used to control the dissociation were acetates, phosphates, and borates, all of low ionic strengths. Esterification of the carboxyl group of p-hydroxybenzoic acid apparently increases the dissociation of the phenol, and pK decreases from 9.3 for the second dissociation of the acid to 8.3 for the esters. The thermodynamic dissociation constants are estimated. 18 p. 10c.

RP1687. First dissociation constant of o-phthalic acid and related pH values of phthalate buffers from 0° to 60°C.
Walter J. Hamer, Gladys D. Pinching, and S. F. Acree

Measurements were made at 5-degree intervals from 0° to 60°C of the potential difference between hydrogen electrodes and silver-silver-chloride electrodes in 45 aqueous solutions that contained various amounts of o-phthalic acid, acid potassium phthalate, and potassium chloride. The first dissociation constant of o-phthalic acid and related thermodynamic quantities were evaluated, and pH values were assigned to each of the 45 solutions. The equation obtained for the first dissociation constant as a function of temperature is

\[\log K_1 = -561.57/T + 1.2843 - 0.0078833 T, \]

where \(T = t°C + 273.16 \).

The pH values of the solutions range from 2.70 to 3.26 and vary only slightly with changes in temperature. The solutions have good buffer capacity and may
be readily prepared from pure materials. Each solution is suited for use as a pH standard.

The separation of the carboxyl groups in o-phthalic acid was found to be 1.66 Å by means of an equation relating this distance with the ratio of the two dissociation constants of o-phthalic acid. This value is higher than 1.53 Å obtained from X-ray measurements of the carbon-carbon distance in the diamond and 1.43 in the benzene molecule.

The problem of convergence or lack of convergence of apparent dissociation constants calculated by different methods to a single thermodynamic value in the limit of infinite dilution is discussed. 26 p. 10c.

Title page and contents for volume 35. 6 p. 5c.

RESEARCH PAPERS FROM JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, VOLUME 36, JANUARY—JUNE 1946

RP1688. Specification of railroad signal colors and glasses.
Kasson S. Gibson, Geraldine Walker Haupt, and Harry J. Keegan

This paper is a continuation of Bureau Research Paper RP1209 and describes the cooperative work done by the Association of American Railroads Signal Section, Corning Glass Works, and the National Bureau of Standards leading to the formulation of the AAR Signal Section specifications for signal colors and glasses.

The previous paper defined the luminous transmission scale used by the signal engineers and glass manufacturers. The present paper describes the glasses selected by these engineers to define the limits of acceptable chromaticities afforded by these glasses when combined with kerosine or electric illuminant. The spectral transmissions of the glasses are given, together with the luminous transmissions and chromaticities for the specified illuminants.

The photometric and colorimetric parts of the AAR Signal Section three-part specifications are illustrated and the reasons given for the choice of tolerances both on the acceptable signal colors and on the glasses certified by the National Bureau of Standards as duplicates of the standard limit glasses.

Various other data of interest are given, including the expression of the permissible chromaticities of signal colors in a uniform-chromaticity-scale coordinate system. 30 p. 10c.

RP1689. Attack on refractory clay pots by optical glasses.
Willard H. Parsons and Herbert Insley

Examinations were made of the walls and bottoms of approximately 200 refractory clay pots of lined and unlined types to determine the extent of penetration of optical glasses into refractory material. Examinations made with a petrographic microscope of samples of unused pot bottom indicated the structure of the heat-treated refractory. Similar examinations of selected samples from the bottoms of 62 used pots revealed the manner of attack by corrosive glasses and identified the crystalline and glassy reaction products formed. These reaction products were found at the interface between refractory and glass and within pot bottoms penetrated by glass. The pots were used in the manufacture of barium crown, barium flint, light crown, borosilicate crown, and several different flint optical glasses. 15 p. 10c.

RP1690. pH standards at various temperatures: Aqueous solutions of acid potassium phthalate.
Walter J. Hamer, Gladys D. Pinching, and S. F. Acree

pH values of aqueous solutions of acid potassium phthalate, National Bureau of Standards Standard Sample 84a, are given for concentrations from 0.001 to 0.2 m and for temperatures between 0° and 60°C. They were calculated from the values of the two dissociation constants of o-phthalic acid and the activity coefficients of the acid phthalate and phthalate ions. The pH values range from 3.88 to 4.42. They may be computed for any temperature from 0° to 60°C, inclusive, by the equation

\[\text{pH} = \frac{A^*}{T} + B + CT \]

or by the equation

\[\text{pH} = \text{pH}_{15} + k(t - 15)^2 \]

where \(A^*, B, C, \) and \(k \) are constants whose numerical values are dependent upon the molality of the solutions, \(\text{pH}_{15} \) is the pH value at 15°C, and \(T = t°C + 273.16 \).

A 0.05-m solution of acid potassium phthalate, the one used most extensively in the calibration of pH assemblies, has a pH value of 4.005 at 25°C. Its pH value at any temperature from 0° to 60°C, inclusive, may be computed by the equation

\[\text{pH} = 1336.08/T - 5.2678 + 0.0160697T \]

or by the equation

\[\text{pH} = 4.000 + 0.0000479(t - 15)^2 \]

The pH values of a 0.05-m solution of acid potassium phthalate prepared with Stand-
ard Samples 84a and 84b were found to agree within 0.001 pH unit at the various
temperatures.

Directions are included for preparations of the solutions on a molal and a molar
scale of concentration. A critique of the method of evaluating the pH values and
comparisons with older values reported for 0.05-\textit{M} and 0.2-\textit{M} solutions are given.

16 p. 5c.

RP1691. Extraction of alumina from clays and high-silica bauxites.
E. P. Flint, W. F. Clarke, E. S. Newman, Leo Shartsis, D. L. Bishop,
and Lansing S. Wells

Two processes for extracting alumina from low-grade ores are described, one
applicable to both clays and high-silica bauxites, and the other only to bauxites.
In the former process, a line-containing sinter is prepared and annealed by cooling
it slowly through the range of 1,300° to 1,200°C. The annealed sinter dusts to a
powder which requires no grinding. This material is extracted with a solution con¬
taining about 200 g of \(\text{Na}_2\text{CO}_3 \) and 150 g of \(\text{NaCl} \)/liter, and an extract is obtained in
which the concentration of \(\text{Al}_2\text{O}_3 \) is 70 to 80 g/liter and that of \(\text{SiO}_2 \), 1 to 2 g/liter.
By boiling the extract with a seed charge of synthetic sodalite, \(3\text{Na}_2\text{O}.5\text{Al}_2\text{O}_3.6\text{SiO}_2.
2\text{NaCl} \), its silica content is reduced to 0.1 percent of the alumina content or less.
Alumina, suitable for the manufacture of aluminum by electrolytic reduction, is pre¬
cipitated by passing carbon dioxide into the desiccated solution. About 95 percent
of the alumina in the clay is recovered by this method.

The other process developed in this investigation involves the extraction of alu¬
mina from high-silica bauxites with sodium hydroxide-sodium chloride solution and
recovery of soda and alumina from the residues by a modified soda-lime-sinter method.
recoveries in excess of 90 percent of the alumina in high-silica bauxites are obtained.

In cyclical operation of each process, the spent solution from the alumina-prepar¬
tation step is used in the treatment of a fresh batch of material.

When the bauxites are extracted with solutions containing mixtures of sodium
hydroxide and sodium carbonate, sodium sulfate, sodium bromide, or sodium
nitrates, the quantities of silica present in the extracts are lower, the higher the concentra¬
tion of the salt. This is caused by the formation and increased stabilization of slightly
soluble compounds related to sodalite. Comparisons of the X-ray diffraction pat¬
terns of various sodalite type compounds are presented. By the extraction of bauxite
with sodium hydroxide solution, in the absence of added salts, a relatively soluble
hydrated nephelite, \(\text{Na}_2\text{O}.\text{Al}_2\text{O}_3.2\text{SiO}_2.2\text{H}_2\text{O} \), is formed, which has a crystal struc¬
ture different from that of sodalite. 44 p. 10c.

RP1692. Stability of double-walled manganin resistors
James L. Thomas

The international ohm is now maintained at the National Bureau of Standards
by means of double-walled manganin resistors. It is assumed that the average resis¬
tance of a group of 10 standards, selected from a group of 24 constructed in 1933,
remains constant with time. No one of the 10 standards has changed in resistance
with reference to their average by more than 1 part in a million in 12 years. 4 p. 5c.

RP1693. Heat capacity of a two-phase system, with applications to vapor correc¬
tions in calorimetry
Harold J. Hoge

A formula is derived that gives the heat capacity of a system composed of solid
or liquid in equilibrium with saturated vapor in terms of the specific heat of the
condensed phase and certain auxiliary data. This formula is valid throughout the
entire range from 0 to 100 percent of vapor, and at the latter extreme reduces to a
well-known relation between the specific heats of saturated liquid and saturated vapor.

The formula is applied to the calculation of vapor corrections in calorimetry. Its
advantage lies in the fact that the correction is expressed as a single term that
may be readily transformed with Clapeyron’s equation, yielding two alternative cor¬
correction formulas.

Vapor corrections to the heat capacity and to the heat of fusion are summarized
and tabulated for four different experimental procedures in calorimetry. 8 p. 5c.

RP1694. A method for determining small amounts of gold, and its use in ascertaining
the thickness of electroplated gold coatings
W. Stanley Clabaugh

This paper presents a method for the determination of the thickness of gold elec¬
trplate, using a punch and die to obtain samples of known small area. Amounts of
gold up to 10 micrograms (0.010 mg), corresponding to a thickness of 0.00050 mm
(0.0002 in.) or less on 1 mm² (0.00155 in.²) of surface, are determined directly by
means of the color produced with \(\alpha \)-tolidine. Results are reported for thicknesses of
gold plate on experimentally plated samples and on commercially plated products.
9 p. 5c.

144
RP1695. Purification and properties of 29 paraffin, 4 alkylcyclopentane, 10 alkylcyclohexane, and 8 alkylbenzene hydrocarbons.

Alphonse F. Forziati, Augustus R. Glasgow, Jr., Charles B. Willingham, and Frederick D. Rossini

This report gives the results of the purification and measurements of refractive index (n_B at 20° and 25°C), density (at 20° and 25°C), boiling point and pressure coefficient of the boiling point (at 1 atm) and, except for four of the compounds, the freezing point, together with the calculated amount of impurity, of samples of 51 hydrocarbons, including 29 paraffins, 4 alkylcyclopentanes, 10 alkylcyclohexanes, and 8 alkylbenzenes. 8 p. 5c.

RP1696. Effect of some added materials on dicalcium silicate.

Edwin S. Newman and Lansing S. Wells

Studies of binary systems are helpful in the investigation of polycrystalline systems forming industrial products, such as portland cement, dolomite refractories, or blast-furnace slags. Details are given of the application of differential heating and cooling curves to the determination of the temperature of the $\alpha \rightarrow \beta$ inversion of $2CaO.SiO_2$ in binary mixtures with CaO, SiO$_2$, Al$_2$O$_3$, MgO, Fe$_2$O$_3$, CaF$_2$, TiO$_2$, BaO, Cr$_2$O$_3$, B$_2$O$_3$, Mn$_2$O$_3$, V$_2$O$_5$, P$_2$O$_5$, Na$_2$O, and K$_2$O. These added materials, excepting CaO, lowered the temperature of the $\alpha \rightarrow \beta$ inversion and estimates of the limits of solid solution in α-$2CaO.SiO_2$ are given. X-ray patterns of β-$2CaO.SiO_2$ containing BaO, P$_2$O$_5$, Na$_2$O, or K$_2$O indicated the existence of solid solutions of the substitution type. Observations were made of the effectiveness of the added materials in preventing dusting, which results from the $\beta \rightarrow \gamma$ inversion of 2CaO.SiO$_2$. It was found that MnO$_2$ should be added to the list of known chemical inhibitors of dusting. 22 p. 10c.

RP1697. Reproducibility of the lead electrode and the electromotive force of the lead stick-lead amalgam cell at 0° to 60°C.

Roger G. Bates, Murray Edelstein, and S. F. Acree

The potentials of four types of solid lead electrodes with respect to saturated lead amalgam were obtained. Although lead anneals spontaneously, the surface condition has a profound effect upon the electromotive force. Untreated lead sticks were, in general, positive to lead the surface of which had been rendered strain-free. When etched in a mixture of nitric acid and lead nitrate, these lead sticks soon reached the same potential. Removal of air from the solutions improved the agreement among the electrodes.

Twelve sticks cast from National Bureau of Standards Standard Sample 49b and twelve cast from “spectroscopically pure” lead were etched and used to determine the difference of potential between stick lead and 8-percent lead amalgam at intervals of 5 degrees from 0° to 60°C. The results are given by the equation

$$E = 0.005347 + 0.000020t,$$

where E is the electromotive force in international volts and t is in degrees centigrade. Thermodynamic constants were computed from the temperature coefficient of electromotive force. No difference was found between the two kinds of lead. 12 p. 5c.

RP1698. Engine tests with producer gas. Frederic A. Middleton and Clarence S. Bruce

Bench tests with a four-cylinder stationary engine were made with gasoline and producer gas from charcoal as the fuels. A comparison of their performance revealed that maximum power from producer gas from charcoal is about 55 percent of gasoline power, and that about 11.4 pounds of charcoal is equivalent to 1 gallon of gasoline. When operating an engine on producer gas the spark should be advanced beyond the setting for maximum power with gasoline. 14 p. 5c.

RP1699. Phase equilibrium relations in a portion of the system Na$_2$O-CaO-Al$_2$O$_3$-SiO$_2$.

Kenneth T. Greene and R. H. Bogue

A study of a portion of the system Na$_2$O-CaO-Al$_2$O$_3$-SiO$_2$ has been made as a step in the investigation of the problem of the state of combination of Na$_2$O in portland cement clinker. Quenching data are given for compositions in the tetrahedron formed by 2CaO.SiO$_2$, CaO, Na$_2$O,Al$_2$O$_3$, and Al$_2$O$_3$, and phase diagrams are shown for three composition planes through the space model. Five invariant points were located approximately, at one of which 2CaO.SiO$_2$, 3CaO.SiO$_2$, 3CaO.Al$_2$O$_3$, and Na$_2$O.8CaO.3Al$_2$O$_3$ are in equilibrium with liquid. This point, which is not a eutectic, occurs at 1,440° ± 10°C and has a composition of 3.5 percent Na$_2$O, 55.2 percent CaO, 31.0 percent Al$_2$O$_3$, and 10.8 percent SiO$_2$. Evidence was obtained of the formation, under favorable conditions, of a solid solution between 3CaO.Al$_2$O$_3$ and Na$_2$O.8CaO.3Al$_2$O$_3$ at temperatures below that of liquid formation. Present information indicates that Na$_2$O may be present in
clinker in several possible forms: (1) in glass, (2) as \(\text{Na}_2\text{O} \cdot 3\text{CaO} \cdot 3\text{Al}_2\text{O}_3 \) or a solid solution of this compound and \(3\text{CaO} \cdot \text{Al}_2\text{O}_3 \), (3) in solid solution in \(2\text{CaO} \cdot \text{SiO}_2 \), (4) as inclusions of a soda-bearing phase in \(\beta-2\text{CaO} \cdot \text{SiO}_3 \) produced by ex-solution on inversion from \(\alpha-2\text{CaO} \cdot \text{SiO}_2 \). 23 p. 10c.

RP1700. Spectrophotometric and colorimetric determination of the colors of the TCCA standard color cards.

Genevieve Reimann, Deane B. Judd, and Harry J. Keegan

The color cards of the Textile Color Card Association of the United States are widely used in the textile and allied industries and by many procuring agencies of the Federal Government. The Textile Color Card Association issues both seasonal and standard color cards. The seasonal cards provide a color-forecasting service to textile manufacturers and promote color coordination among the trades; the standard cards present colors for which there is a popular and continuing demand. Most important of the color cards is the Standard Color Card of America, the current ninth edition containing 216 colors. Preeminent among the many special sets of color cards issued by the Association for use of the Federal Government is the United States Army Color Card showing 22 official colors for the army and services. The specification of the colors of the Ninth Edition Standard Color Card and the United States Army Color Card has been undertaken for the purpose of correlating these textile standards with American War Standard Z44-1942 for the specification and description of color. The 238 samples comprising these color cards have been examined by basic spectrophotometric and colorimetric procedures. From this study there have been found daylight reflectance, \(Y \), chromaticity coordinates \((x, y)\), Munsell notations, and ISCC-NBS color designations for these samples, as recommended by American War Standard Z44-1942. As more than half of these textile standards are fluorescent, and as existing spectrophotometers are not suited to the evaluation of such samples, considerable reliance has been placed on quantitative colorimetric and photometric comparisons with the Munsell color standards, both by means of a chromatometric-difference colorimeter and by the Martens photometer.

As a closing check, Munsell book notations of these textile standards have been obtained by a direct visual comparison with the color scales of the Munsell Book of Color. 39 p. 15c.

Frederick T. Carson and Merle B. Shaw

Fourteen groups of high-grade papers, differing in fiber composition, were made in the Bureau's experimental paper mill. Papers within the groups differed in the beating treatment of the pulp, in the surface-sizing treatment, and in the use or omission of melamine resin. Of the several kinds of fibers studied, carao mixed with cotton appears to approach most nearly the desirable characteristics associated with linen-content currency paper. The high-quality wood fibers available do not appear suitable for use in currency paper. Melamine resin in currency-type paper improves folding endurance, tensile and bursting strength, strength after crumpling, stretch, resistance to abrasion, and closure of the sheet. It greatly increases the strength of the paper when wet. However, it makes the dry paper somewhat easier to tear. 20 p. 10c.

RP1702. Heats of formation, hydrogenation, and combustion of the monoolefin hydrocarbons through the hexenes, and of the higher \(1 \)-alkenes, in the gaseous state at 25°C.

Edward J. Prosen and Frederick D. Rossini

For ethylene, propylene, the four butenes, the six pentenes, and the 17 hexenes, and all the higher \(1 \)-alkene hydrocarbons, in the gaseous state at 25°C, values are given for the heats of formation (from the elements solid carbon (graphite) and gaseous hydrogen), the heats of hydrogenation in the gaseous state, and the heats of combustion (in oxygen to form gaseous carbon dioxide and liquid water). The values for 2 of the pentenes, 14 of the 17 hexenes, and all the higher \(1 \)-alkene hydrocarbons, were calculated by a method involving correlation of the heat of hydrogenation with structure and the use of constants evaluated from the available experimental data on 4 butenes, 4 pentenes, 3 hexenes, and 1 heptene. 7 p. 5c.

RP1703. Studies of binary and ternary combinations of magnesia, calcia, baria, beryllia, alumina, thoria and zirconia in relation to their use as porcelains.

R. F. Geller, P. J. Yavorsky, B. L. Steierman, and A. S. Creamer

Specimens formed by pressing were heated and tested for absorption and shrinkage to determine the vitrification range. These pressed specimens represented the various oxides in simple binary and ternary combinations and also with minor additions of auxiliary oxides. Vitrified pieces were tested for strength in compression, thermal conduction and expansion, electrical resistance, dielectric properties, water
solubility, and resistance to attack by PbO liquid and vapor. Several compositions of unusual and valuable properties were disclosed. Phase relations were approximated by fusion tests and petrographic examinations of nonquenched samples. 36 p. 15c.

RP1704. Analysis of a standard sample of the carburetted water-gas type by laboratories cooperating with the American society for testing materials.

Martin Shepherd

This is a report of the analysis of a standard sample of carburetted water-gas by 24 laboratories in cooperation with Subcommittee VII of Committee D-3 of the American Society for Testing Materials. The data are presented in a series of frequency distribution plots, which show at a glance how the analyses compare with respect to each component of the gas mixture, as well as the calculated heating value and specific gravity. These plots form a clear picture of this type of gas analysis in this country. Although some very creditable work was reported, the need for some standardization is evident. 37 p. 15c.

RP1705. Spectrographic determination of boron in steel.

Charles H. Corliss and Bourdon F. Scribner

The spectrographic determination of small amounts of boron in thin steel rods and in massive pieces of steel was investigated by using several types of arc-like discharges. The sensitivity and accuracy in determining boron were found to be affected by variations in the rate of cooling of the electrodes. With \(\frac{3}{4} \)-inch-rod electrodes, the high-voltage alternating-current arc permits determinations down to 0.0006 percent of boron, with an average deviation of ±4 percent. With more massive specimens the high-voltage alternating-current arc is insensitive, but an overdamped condenser discharge or similar source provides adequate sensitivity and precision. Determinations as low as 0.0001 percent of boron are made with a direct-current arc to which sodium is added to suppress an interfering Fe II line. In the course of the investigation, a series of six boron steels in two sizes, \(\frac{3}{4} \)- and \(\frac{5}{4} \)-inch rods, were issued as National Bureau of Standards Standard Samples covering the range 0.0006 to 0.019 percent of boron. 14 p. 5c.

RP1706. Hygroscopicity of optical glasses as an indicator of serviceability.

Donald Hubbard

Several modifications of a powder-hygroscopicity method have been tried as a rapid means of determining the serviceability of optical glasses, i.e., their ability to maintain a clear polished surface under normal conditions of service. The method has been applied to a wide variety of glasses, and it shows the typical optical glasses in common use to be much less hygroscopic than the average commercial sheet and container glasses. In fact, many of the optical glasses even compare favorably with the better chemical laboratory wares, such as Pyrex, Tamworth, and Kimble N-51-a. This grouping of these glasses of such very dissimilar chemical durabilities serves well to emphasize that the capacity of a glass to maintain a clear surface upon exposure to the atmosphere, and its chemical durability as conventionally determined are two inherently different properties. A comparison of the hygroscopicity values of the Corn- ing 015 electrode glass with those of the optical and chemical ware glasses whose electrode capacity is very poor suggests strongly that the pH response of a glass is primarily a function of its hygroscopicity. Tests made on a limited number of glasses of the binary series Na\(_2\)O-SiO\(_2\), K\(_2\)O-SiO\(_2\), Li\(_2\)O-SiO\(_2\), and PbO-B\(_2\)O\(_3\) appear to reflect some of the critical compositions of the respective phase equilibrium diagrams. 11 p. 5c.

Langhorne H. Brickwedde

The work reported here is a continuation of earlier studies on the effect of heavy water on the electromotive force of standard cells.

The solubility of cadmium sulfate was measured in heavy water and in normal water. This salt was found to be about 8 percent less soluble in heavy water than in normal water in the temperature range -1° to +70°C. At 43.6°C, CdSO\(_4\) \(\cdot \) \(\frac{8}{3} \)H\(_2\)O, CdSO\(_4\) \(\cdot \)H\(_2\)O, and saturated H\(_2\)O solution are in equilibrium. CdSO\(_4\) \(\cdot \) \(\frac{8}{3} \)D\(_2\)O, CdSO\(_4\) \(\cdot \)D\(_2\)O, and saturated D\(_2\)O solution are in equilibrium at 45.4°C. 7 p. 5c.

Richard S. Hunter

As shininess is one indication of surface smoothness, a photoelectric glossmeter was developed for possible use as a production-inspection device for evaluating the roughness of fairly coarse machine-finished surfaces. A near-grazing angle, 75 degrees, was chosen for the measurement of gloss. Therefore, specimens of the type having narrow ridges of metal between adjacent tool cuts are rated low in gloss, or rough.
Although the glossmeter essentially measures the fraction of the unshadowed surface that is nearly parallel to mean surface, the instrument resulting from the present development has proved to be a simple and useful device for making rapid comparisons of the roughness of surfaces machined with about the same feeds. 7 p. 5c.

RP1709. Absorption and scattering by sound-absorbent cylinders.
Richard K. Cook and Peter Chrzanowski

The absorption and scattering of a plane wave of sound by an infinitely long circular cylinder whose axis is perpendicular to the direction of propagation of the wave are calculated. The surface of the cylinder is assumed to have a known normal acoustic impedance. The calculations take account of diffraction effects. Absorption measurements were made on long cylinders placed in a reverberation room, where the incident wave directions are at all angles to the axes of the cylinders, and were compared with the calculated values. In order to make the comparison, the reverberation-room statistics appropriate for cylinders (which are different from the statistics for flat patches of absorbent material) are developed and applied. The theory predicts, and measurements confirm, that absorbent cylinders can have coefficients of absorption greater than unity. Fairly good agreement between the calculated and measured coefficients is found. The reverberation-room statistics appropriate for spherical absorbers are also developed, although no measurements were made on spheres. 18 p. 10c.

RP1710. Dynamic tensile tests of parachute webbing.
Ambrose H. Stang, Martin Greenspan, and Sanford B. Newman

Dynamic-load-stretch and stretch-energy data were obtained for two types of nylon and one type of cotton parachute webbing. These data were compared with similar data obtained from static tensile tests of the materials. The dynamic and static breaking strengths of the webbing were also obtained.

The nylon specimens showed a reduced strength, stretch, and capacity for energy absorption under dynamic loading as compared with static loading. The cotton specimens showed under dynamic loading about the same strength, reduced stretch, and increased energy absorption. The energy absorbed by the broken nylon specimens was more than three times that of the broken cotton specimens. 9 p. 5c.

RP1711. Note on the density and heat of combustion of benzoic acid...R. S. Jessup

The results of various determinations of the density of benzoic acid are summarized. The three most recent values are in reasonably good agreement with each other, but are higher by about 4.5 percent than the value most commonly referred to in the literature. The difference of 4.5 percent in density affects the reduction of weight in air to mass by an amount corresponding to 0.004 percent in mass, and in heat of combustion per gram mass. 3 p. 5c.

Donald B. Brooks

From an empirical equation, based on single-cylinder-engine test data and relating engine power to fuel consumption, engine-performance curves are derived analytically for typical examples of poor mixture distribution. Investigation of the resulting information shows that the minimum specific fuel consumption is a satisfactory criterion of distribution quality. A method is developed for ascertaining the attainable improvement over a given distribution. 15 p. 5c.

RP1713. Effects of mildew on vegetable-tanned strap leather.
Joseph R. Kanagy, Arbelia M. Charles, Edward Abrams, and Rees F. Tener

Samples of vegetable-tanned strap leather were exposed to conditions favorable for mildew growth in a tropical room at Fort Belvoir, Va., and in soil burial beds and in a humidity cabinet at the National Bureau of Standards. Mildew under these conditions varied from moderate to very heavy growth.

Physical tests showed that the growth of mildew on leather increased its stiffness, caused a loss in tensile strength, decreased stretch at the breaking point, and weakened the grain surface. Chemical tests revealed a loss of grease, water solubles, glucose, tannins, and nontannins.

No appreciable deterioration of the hide substance was indicated by the tests. The change in physical properties appeared to be due to the mildew activity impairing principally the outer surface of the leather.

The molds in assimilating the grease bring about decomposition (decarboxylation) of the fatty acids. This is shown by a decrease in the saponification number.

Samples of leather containing a fungicidal oil having as active ingredients a mixture of paranitrophenol and pentachlorophenol in equal proportions and aged under
the same conditions as the untreated leathers showed no evidence of mildew after 12 weeks. 14 p. 5c.

RP1714. Heats of combustion and formation at 25°C of the alkylbenzenes through C_{10}H_{14}, and of the higher normal monoalkylbenzenes.
Edward J. Prosen, Walter H. Johnson, and Frederick D. Rossini

Values are given for the heats of combustion (in oxygen to form gaseous carbon dioxide and liquid water) and the heats of formation (from the elements, solid carbon (graphite) and gaseous hydrogen), at 25°C, for benzene, toluene, the four C_{6}H_{10}, the eight C_{8}H_{12}, and the 22 C_{10}H_{14} alkylbenzenes, in both the liquid and gaseous states, and for the higher normal monoalkylbenzenes in the gaseous state. 7 p. 5c.

RP1715. Heats of combustion of four cyclopentane and five cyclohexane hydrocarbons. Walter H. Johnson, Edward J. Prosen, and Frederick D. Rossini

The heats of combustion of cyclopentane, methylcyclopentane, ethylcyclopentane, n-propylcyclopentane, cyclohexane, methylcyclohexane, ethylcyclohexane, n-propylcyclohexane, and n-butylcyclohexane were measured with a bomb calorimeter. The following values were obtained for ΔH^0, the heat of combustion at 25°C and constant pressure of the liquid hydrocarbon in gaseous oxygen to form gaseous carbon dioxide and liquid water, with all the reactants and products in their thermodynamic standard reference states, in international kilojoules per mole (with the corresponding value in terms of the conventional thermochemical calorie being given in parentheses):

- Cyclopentane, 3290.34 ± 0.72 (736.54 ± 0.17)
- Methylcyclopentane, 3937.07 ± 0.75 (941.14 ± 0.18)
- Ethylcyclopentane, 4591.17 ± 0.94 (1097.50 ± 0.22)
- n-Propylcyclopentane, 5244.75 ± 1.18 (1253.74 ± 0.28)
- Cyclohexane, 3919.26 ± 0.70 (936.88 ± 0.17)
- Methylcyclohexane, 4564.52 ± 0.95 (1091.13 ± 0.23)
- Ethylcyclohexane, 5221.71 ± 1.46 (1248.23 ± 0.35)
- n-Propylcyclohexane, 5874.79 ± 1.15 (1404.34 ± 0.27)
- n-Butylcyclohexane, 6529.21 ± 1.22 (1560.78 ± 0.29).

5 p. 5c.

RP1716. Size grading of diamond powder.
B. L. Steierman, H. Insley, and W. H. Parsons

A study has been carried out on certain aspects of diamond-powder grading. Various liquids were tried as dispersing media, and of the 30 materials tested, gelatin solution was found to be the best. Several methods of separating the powder into size fractions were investigated and are discussed. The Cooke short-column elutriator was found satisfactory for determining the size of large quantities of powder with little manual attention. Results of size fractionation are shown by photomicrographs. 10 p. 5c.

RP1717. Precision of telescope pointing for outdoor targets.
Francis E. Washer and Helen Brubaker Williams

The probable error of a single pointing (PE_s) is measured for a single telescope with a variety of targets. This investigation shows that, although some change in PE_s with distance does occur, the distribution of PE_s as a function of distance can usually be neglected and a value of 0.62 second assigned as a practical average. The values of PE_s for an indoor target usually show a small variation from one experienced observer to another, and from right to left eye of the same observer. There is also a measurable systematic difference in pointing between the right eye and the left eye of the same observer. In outdoor pointing, a long-period error or drift is usually superposed upon the short-period errors. 10 p. 5c.

RP1718. Crystallization of unvulcanized rubber at different temperatures.
Lawrence A. Wood and Norman Bekkedahl

The crystallization and melting of unvulcanized natural rubber in the unstretched state have been investigated at different temperatures. Change of volume has been used as a quantitative measure of the extent of crystallization, and mercury-filled dilatometers containing the rubber have been used for the volume measurements. Crystallization was observed to occur at temperatures between -50° and $+15^\circ$ and to be most rapid at about -25°. The final decrease of volume on crystallization was usually found to lie between 2.0 and 2.7 percent.

The melting of the crystalline rubber was found to occur over a range of temperature and to be strongly dependent on the temperature at which the crystals were formed. The temperature at which the beginning of melting occurs is from
4 to 7 degrees above the temperature of crystallization. The range of melting is about 35 degrees at the lowest temperatures and decreases to about 10 degrees at the highest. The same range of temperature of melting is obtained regardless of the extent of the crystallization. 22 p. 10c.

RP1719. Hygroscopicity and electrode function (pH response) of glasses as a measure of serviceability........................Donald Hubbard

The pH responses of electrodes prepared from glasses of widely different composition have been compared with the hygroscopicity of the glasses. The resulting data indicate that glasses of low hygroscopicity, such as the chemical glasswares and common types of optical glasses, give pH responses that fall appreciably below the theoretical predicted from the Nernst equation and are incapable of producing satisfactory electrodes. Further, electrodes blown from glasses of intermediate hygroscopicity, such as the common bottle and sheet glasses, give pH responses more nearly approximating the theoretical, whereas the Corning 015 glass, whose superior pH response places it in a class by itself, has a very high hygroscopicity. These results strongly support the belief that adequate hygroscopicity is one of the primary factors in determining the suitability of a glass for pH measurements. The data also suggest that the pH response might well be used as a rapid test for the serviceability of optical glasses, i.e., the ability to maintain a clear polished surface upon exposure to the atmosphere. For this purpose it is necessary to determine the pH response over a range in which the "chemical durability" of the glass remains constant in order to avoid the voltage anomalies that accompany durability changes. 10 p. 5c.

RP1720. Fineness test of molding sand...Margaret Price and Alexander I. Krynitsky

It is recognized that the present American Foundrymen's Association sand fineness-test method is not entirely satisfactory since sands with the same AFA classification may have different properties. In view of this fact other methods have been proposed, but in general little was published on this subject. The need for more data has prompted the present investigation. The object of this study was to evaluate the merits of the regular pipette, the Andreasen pipette, and the hydrometer methods in making fineness determinations on Albany and Lumberton molding sands. The hydrometer method which was described in detail in the paper was found to be preferable because it yields satisfactory results conveniently with a minimum expenditure of time for the operator. 21 p. 10 c.

RP1721. Effect of sodium chloride on the apparent ionization constant of boric acid and the pH values of borate solutions.

George G. Manov, Nicholas J. DeLollis, Phoebe W. Lindvall, and S. F. Acree

The pH values for solutions of borax (sodium tetraborate decahydrate) and sodium chloride were determined from 0° to 60°C by the method of cells without liquid junction. In one series, the effect of sodium chloride on the apparent ionization constant of boric acid was determined by measurements of cells in which the concentration of borax was maintained constant (0.01m) while that of the sodium chloride was varied. In a second series, the pH values of various concentrations of borax in 0.01-m sodium chloride were measured, and in a third, similar measurements were made of solutions containing 0.025-m borax with a variable concentration of chloride.

The values of other investigators for the pH of solutions of borax in which cells with liquid junctions were involved are compared with those currently reported. Some of these are modified to take cognizance of present-day views concerning electrolytic dissociation.

A 0.01-m solution of borax (3.81 g of borax per liter of solution) is recommended for the calibration of pH equipment. The equation

$$pH = \frac{2331.7}{T} + 0.017433T - 3.840$$

where T is the absolute temperature, represents the pH values for this solution from 0° to 60°C. 16 p. 5c.

RP1722. Heats, equilibrium constants, and free energies of formation of the mono-olefin hydrocarbons.

John E. Kilpatrick, Edward J. Prosen, Kenneth S. Pitzer, and Frederick D. Rossini

For ethylene, propylene, each of the four butenes, six pentenes, and 17 hexenes, and for the higher normal 1-alkenes, values are presented for the following thermodynamic properties to 1,000° or 1,500°K: The heat of formation from the elements, ΔH_f; the free energy of formation from the elements, ΔF_f; and the logarithm of the equilibrium constant of formation from the elements, $\log K_f$. For each of the 6 pentenes and 17 hexenes, values are also given to 1,000° or 1,500°K, for the following prop-
Properties: The heat-content function, \((H° - H_0°)/T\); the free-energy function, \((F° - H_0°)/T\); the entropy, \(S°\); the heat content, \(H° - H_0°\); and the heat capacity, \(C_p°\).

Equilibrium constants and concentrations are given in tabular and graphical form for the isomerization of the 4 butenes, 6 pentenes, and 17 hexenes, as a function of the temperature to 1,000° or 1,500°K. Equilibrium constants are also given in tabular and graphical form for some reactions of hydrogenation, dimerization, and alkylation.

Title page and contents for volume 36. 7 p. 5c.

RESEARCH PAPERS FROM JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, VOLUME 37, JULY—DECEMBER 1946

RP1723. Radio proximity fuze design. Wilbur S. Hinman, Jr., and Cledo Brunetti

The general principles governing the design of radio proximity fuzes are presented. The paper deals primarily with fuzes for smooth-bore projectiles, such as bombs, rockets and mortars. Illustrations and descriptions of the various fuzes in this category which were developed during World War II are given. Within security regulations, there is a reasonably detailed discussion of the performance and construction of fuze components, such as the oscillator, the amplifier, the antennas, the power supply and the safety and arming mechanisms. There is also a brief description of production practices and problems and methods of inspection and quality control. 13 p. 10c.

RP1724. Assembly, testing, and operation of laboratory distilling columns of high efficiency. Charles B. Willingham and Frederick D. Rossini

A description is given of the assembly, testing, and operation of the laboratory distilling columns used at the National Bureau of Standards in the work of the American Petroleum Institute Research Project 6 on the analysis and purification of hydrocarbons and in the work on the preparation of NBS Standard Samples of hydrocarbons. The following topics are covered: Assembly of distilling columns, including pot, rectifying section, jacket, head, reflux regulator, receiving assembly, electrical heating system, thermometric systems, and controlled-pressure system; testing of distilling columns, including test mixtures and results; and operation of columns, for both regular and azeotropic distillations. Drawings of the equipment and apparatus are given, including the arrangement of the 15 distilling columns, measuring instruments, and auxiliary equipment in the distillation room. A view of the distillation room is given. 15 p. 10c.

RP1725. Nickel plating on steel by chemical reduction. Abner Brenner and Grace E. Riddell

A process has been developed for the production of adherent nickel deposits of good quality on steel without the use of an electric current. The deposition of nickel is brought about by chemical reduction of a nickel salt with hypophosphites in a hot ammoniacal solution. The reaction is catalytic and, under the prescribed conditions of concentration and pH, no reduction occurs in the solution unless certain metals, such as steel or nickel, are introduced into the bath. The reduction then occurs only at the surface of the immersed metal with the production of a coating of nickel of 96 to 97 percent purity. 4 p. 5c.

RP1726. Temperature coefficients for proving rings. Bruce L. Wilson, Douglas R. Tate, and George Borkowski

Proving rings for calibrating testing machines are not compensated for change in elastic properties and dimensions with temperature. For this reason, temperature-correction factors must be used in computing ring loads from deflections obtained at temperatures that differ from the temperature of calibration. Temperature coefficients for 14 representative rings were computed from calibration results obtained at temperatures of 70° and 100° F. The temperature coefficient of one ring for the range +70° to -93°F was determined from measurements of the natural frequencies at these temperatures. The temperature coefficient of a proving ring is shown to be equal to the temperature coefficient of Young’s modulus of elasticity plus twice the coefficient of thermal expansion of the material of the ring. 7 p. 10c.

RP1727. Mutarotation and ring structure of mannuronic lactone. Horace S. Isbell and Harriet L. Frush

The numerous commercial applications of algin, a polysaccharide derived from certain marine plants, makes important the study of its principal constituent, D-mannuronic lactone. In this paper it is shown that by oxidation with bromine mannosaccharic dilactone of known structure is formed directly from mannuronic lactone without change in ring structure, and hence the latter substance, like mannosaccharic
dilactone, has a bicyclic structure consisting of two butylene oxide rings. The initial rapid mutarotation reaction of the substance is shown to consist of a conversion of the beta furanose modification to an equilibrium mixture containing the alpha furanose, and a detectable amount of the aldehyde modification. There is a small but measurable displacement of equilibrium with change in temperature. The mutarotation is exceptionally sensitive to basic catalysts and for this reason the point of minimum rate lies in the acid region at pH 3.1.

RP1728. Heats of formation and combustion of the normal alkylcyclopentanes and cyclohexanes and the increment per CH₂ group for several homologous series of hydrocarbons.

Edward J. Prosen, Walter H. Johnson, and Frederick D. Rossini

Values are presented for the heats of formation and combustion at 25°C for the normal alkylcyclopentanes and the normal alkylcyclohexanes, in the liquid state through normal butyl and in the gaseous state through normal hexadecyl, with equations to yield values for all the higher members of both series in the gaseous state.

The increment per CH₂ group is compared for the lower members of several normal alkyl homologous series, including paraffins, monoolefins (1-alkene), alkylbenzenes, alkylcyclopentanes, alkylcyclohexanes, and alkyl acetylenes (1-alkyne).

RP1729. Preliminary description and analysis of the first spectrum of uranium.

C. C. Kiess, Curtis J. Humphreys, and Donald D. Laun

Observations of the spectra emitted by uranium under arc and spark excitation have afforded a separation of the lines of neutral atoms from those emitted by ions. A list of more than 9,000 lines with accurate wavelengths, wave numbers, and estimated intensities, for the region 2900 Å to 11000 Å, has been compiled as descriptive of the spectrum of the neutral atom. About 2,000 of these lines have been classified as combinations between 18 low and metastable odd energy levels with about 280 high even levels. Well-resolved Zeeman patterns give g-values for several low levels that identify them as components of L, K, M, and K terms arising in the electron configurations f^2d^2 and f^3d^2. The spectrum of uranium is interpreted as that of a rare-earth element analogous to neodymium, uranium being the third member of a second group of rare earths beginning with thorium. From the fact that uranium is easily ionized in electric arcs and magnetic fields, and also that the short-wave limit of the observed spectrum does not extend below 2900 Å, it is concluded that the ionization potential of neutral uranium atoms is approximately 4 volts.

RP1730. Viscosity and the extraordinary heat effects in glass.

Arthur Q. Tool

In accordance with experience concerning the behavior of glass at temperatures within its annealing range, an equation is proposed that relates the various extraordinary heat effects to the inelastic deformability and to the degree of superheating or undercooling. By using this equation in connection with the thermal-expansion curves of a glass within its annealing range, certain constants that are related to the coefficient of viscosity and its changes with temperature and the degree of superheating or undercooling have been determined with reasonable results. Such results make it possible to estimate the inelastic deformability of a glass in its various conditions at all annealing temperatures and are, therefore, valuable in connection with problems that are encountered in the process of annealing glass. The apparent success achieved in applying the proposed equation to experimental data suggests that the concepts underlying this equation are fundamental and must be considered in any theory concerning the constitution of glass or that of any other extremely viscous liquid.

RP1731. An arrangement with small solid angle for measurement of beta rays.

Leon F. Curtiss and Burrell W. Brown

An arrangement using a Geiger-Müller counter with small aperture with a radioactive source at some distance from it is described for counting beta particles. Sources emitting only beta rays with maximum energies above 1 million electron volts of the order of 1 millicurie can be measured in terms of the disintegration rate from the observed counting rate and the solid angle as calculated from the dimensions of the apparatus. An independent check of the arrangement shows that this can be done reliably. A suggestion for discarding the use of the curie and substituting a unit consisting of 10^9 disintegrations per second to be called the “rutherford” is made. The curie is properly applicable only to members of the radium family.
RP1732. Heats, equilibrium constants, and free energies of formation of the alkylbenzenes. William J. Taylor, Donald D. Wagman, Mary G. Williams, Kenneth S. Pitzer, and Frederick D. Rossini

For benzene, toluene, ethylbenzene, the three xylenes, normal and isopropylbenzene, the three methylethylbenzenes, the three trimethylbenzenes, and the higher normal alkylbenzenes, values are presented for the following thermodynamic properties for the gaseous state to 1,500°K: The heat-content function, \((H^o - H^o_0)/T\); the free-energy function, \((F^o - H^o_0)/T\); the entropy, \(S^o\); the heat content, \(H^o - H^o_0\); the heat capacity, \(C_p\); the heat of formation from the elements, \(\Delta H^o_f\); the free energy of formation from the elements, \(\Delta F^o_f\); and the logarithm of the equilibrium constant of formation from the elements, \(\log K_f\).

Equilibrium constants and concentrations are given in tabular and graphical form for the isomerization of the four C_8H_10 alkylbenzenes and for the eight C_9H_12 alkylbenzenes as a function of the temperature to 1,500°K. Equilibrium constants are also given in tabular and graphical form for some reactions involving alkylation (addition of olefin to benzene to form alkylbenzene), cyclization (conversion of paraffin to alkylbenzene plus hydrogen), and trimerization (of acetylene to form benzene and of methylacetylene to form 1,3,5-trimethylbenzene). 28 p. 15c.

RP1733. A study of the damaging effect of fatigue stressing on SAE X4130 steel. John A. Bennett

The damaging effect of fatigue stressing above the endurance limit was investigated with notched specimens of SAE X4130 steel. The damage was measured by the decrease in endurance at another stress. A deflection method for detecting the formation of a fatigue crack permitted the damage measurement to be limited chiefly to the precrack stage. The results showed that the apparent rate of damage depends on the stress history. If the prestress is higher than the test stress, the damage occurs rapidly at first, then more slowly. The reverse is true if the damaging stress is lower than that used to measure the damage.

Tests also were made with smooth specimens in an effort to determine the cumulative damage caused by fatigue at more than one stress. Two methods were developed for extrapolating to determine the point at which fatigue cracking starts, so the damaging cycle ratios could be based on the life of the specimens prior to cracking. Complete S-N curves were determined for specimens after each of eight different damaging treatments. With these curves a method of expressing damage was developed that permitted the direct addition of damage occurring at different stresses. The reliability of this method was checked by testing specimens after fatigue loading at two or more different stresses and comparing the results with predictions based on the addition of the indicated damage. The agreement was within the experimental error. 17 p. 10c.

RP1734. Purification, purity, and freezing points of 31 hydrocarbons of the API-NBS series. Augustus R. Glasgow, Jr., Evelyn T. Murphy, Charles B. Willingham, and Frederick D. Rossini

This report describes the purification and determination of freezing points and purity of 31 hydrocarbons of the API-NBS series, including 2 pentanes, 5 hexanes, 2 heptanes, 1 octane, 3 alkylcyclopentanes, 3 alkylcyclohexanes, and 15 alkylbenzenes. 5 p. 10c.

RP1735. Absorption measurements for broad beams of 1- and 2-million-volt X-rays. George Singer, Carl B. Braestrup, and Harold O. Wyckoff

Experimentally determined concrete-absorption curves are given for wide-angle X-ray beams produced by a 1- and 2-million-volt resonance generator. Data on the variation of X-ray intensity with the distance from a concrete barrier are included. With this information as a basis, the thickness of a concrete barrier necessary for protection against a broad X-ray beam has been computed for 1- and 2-million-volt X-rays and for various tube currents and barrier-to-target distances. 4 p. 10c.

RP1736. Effect of reaction between mercury and oxygen upon polarographic waves of certain metals at small concentrations. Edgar Reynolds Smith, John Keenan Taylor, and Roberta Evelyn Smith

Polarographic waves of certain metals, notably of lead, zinc, copper, cobalt, and nickel in dilute neutral solutions, diminish progressively with time in the presence of mercury and air. This behavior is not to be explained by adsorption, as has previously been supposed, but by a reaction between mercury, water, oxygen, and the ions of the metallic salt which, in some instances, precipitates the metal from solution in the form of its hydroxide. This reaction is
\[2\text{Hg} + \text{H}_2\text{O} + 1/2 \text{O}_2 + \text{MCl}_2 = \text{Hg}_2\text{Cl}_2 + \text{M(OH)}_2,\]
in which M represents the metal. Recognition of this reaction and precautions to exclude it are essential for accurate polarographic determinations of small amounts of heavy metals. 5 p. 10c.

RP1737. Theory for axial rigidity of structural members having ovaloid or square perforations. Martin Greenspan

Formulas are derived for computing the over-all lengthening (or shortening) of a tension (or compression) member having a uniform gross cross section and a series of similar perforations of approximately ovaloid or approximately square shape uniformly distributed along the length. 5 p. 10c.

RP1738. Heat content, free-energy function, entropy, and heat capacity of ethylene, propylene, and the four butenes to 1,500°K. ... John E. Kilpatrick and Kenneth S. Pitzer

Values are presented for the following thermodynamic properties for ethylene, propylene and the four butenes, in the ideal gaseous state, to 1,500°K: heat-content function, \((H^0 - H_0^0)/T\); free-energy function, \((F^0 - H_0^0)/T\); entropy, \(S^0\); heat content, \((H^0 - H_0^0)\); heat capacity, \(C_p^0\). 9 p. 10c.

RP1739. A simple cyclic falling-film molecular still. John Keenan Taylor

The efficient cyclic falling-film molecular still described is characterized by simplicity of operation and ease of construction. The liquid to be distilled is pumped from the reservoir and introduced on the vertical cylindrical evaporator by an annular orifice. The resulting uniform distribution of the distilland, together with the short column used, makes for efficient operation. The apparatus may be used for charges of liquid ranging from a minimum of about 10 ml to 1 liter or more. 4 p. 5c.

RP1740. A study of resinous sealants for porous metal castings. . Vernon C. F. Holm

The repair of porous castings by sealing with liquid synthetic resins was investigated. The sealing efficiencies of fourteen resins were determined on porous bushings of aluminum, a copper-silicon alloy, and a red brass, impregnated by the vacuum-pressure method. Tests were made to determine the durability of the two most promising sealants by exposing specimens sealed with these resins to hot motor oil, high octane gasoline, boiling water elevated temperatures, high pressures, and thermal shock. The results suggest that this procedure for rendering porous castings pressure tight may be permissible in emergencies but that, in general, the foundryman should exert every effect to produce non-porous castings instead of trying to remedy porosity. 6 p. 10c.

RP1741. Testing large-capacity rotary gas meters. Howard S. Bean, Matthew E. Benesh, and Frank C. Witting

The paper describes two methods of testing rotary gas meters of large capacity. In one method, known as the field test method, the necessary equipment is taken to the meter location. In the other method, termed the “transfer method,” the test is made in a shop where conditions can be controlled more closely. Results obtained by the two methods are compared.

Tests made to study the instantaneous pressures within the closed measuring pockets of rotary meters and the effect of pulsations at the meter inlet are described, and the results discussed. 27 p. 15c.

RP1742. Poisson’s ratio of some structural alloys for large strains. Ambrose H. Stang, Martin Greenspan, and Sanford B. Newman

Values of Poisson’s ratio, as well as ordinary stress-strain properties, for tensile strains as high as 18 percent, were determined on sheets of aluminum alloys 24ST and 24SRT, chrome-molybdenum steel plate, and structural and fully killed low-carbon steel plate. 11 p. 10c.

RP1743. Electrode function (pH response) of potash-silica glasses... Donald Hubbard

The electrode function (pH response) of a series of potash-silica (K_2O-SiO_2) glasses was determined and a comparison made with the hygroscopicity of the glasses. All the K_2O-SiO_2 glasses investigated showed a very high hygroscopicity, with an accompanying sensitive pH response. However, between pH 2 and 4, glasses of 71.8 and 73.6 percent SiO_2 gave pH-response values higher than the 59 millivolts per pH predictable from the Nernst equation.

Electrodes prepared from all members of the series demonstrated large voltage departures from the straight-line relation with increasing alkalinity of the buffer solutions. For a glass of 75.76 percent SiO_2 content, the voltage departures were compared with the chemical durability of the glass and also with the sodium-ion concentration.
[N\text{a}^+]$, of the Britton-Robinson universal buffer solutions used. The voltage departures correlated with the magnitude of the attack much more convincingly than with the pH.

For several chosen pH values, the voltage departures for the electrodes of these glasses when plotted with reference to their SiO$_2$ content gave curves that indicated a sharp change in slope near 74 percent of silica. A corresponding change in slope was also shown by the hygroscopicity-percentage-silica curve. 6 p. 10c.

Beveridge J. Mair, Domenic J. Termini, Charles B. Willingham, and Frederick D. Rossini

This report describes the procedure and apparatus used in the purification and sealing “in vacuum” of 19 National Bureau of Standards Standard Samples of hydrocarbons, including 9 paraffins, 3 cycloparaffins, and 7 alkylbenzenes. 8 p. 10c.

RP1745. Thermal-expansion stresses in reinforced plastics...
Philip S. Turner

Failure of adhesive bonds is attributed to boundary stress concentrations. An analysis of the causes of internal-stress concentrations in rigid adhesive layers leads to the conclusion that stress concentrations can be eliminated in many cases by matching the coefficients of thermal expansion of the component parts. A stress-equilibrium formula for calculating the thermal-expansion coefficients of mixtures involves the density, modulus of elasticity, coefficient of thermal expansion, and proportion by weight of the ingredients. Illustrations of the application of the derived formula include lead-antimony and beryllium-aluminum mixtures, phenol-formaldehyde resins and glass-fiber mixtures, and plastic plywoods. The thermal-expansion coefficients of a number of pure and reinforced plastics are reported. Bonds obtained when thermal coefficients are matched are stable over a wide temperature range. 12 p. 10c.

RP1746. Salt effects of potassium nitrate, sodium sulfate, and trisodium citrate on the activity coefficients of p-phenolsulfonate buffers.
Roger G. Bates, Pauline T. Diamond, Murray Eden, and S. F. Acree

Electromotive-force measurements of cells without liquid junction that contained hydrogen and silver-silver-chloride electrodes and alkaline p-phenolsulfonate buffers with added salts of different valence types were made from 0°C to 60°C. The 63 buffer solutions studied were prepared by the partial neutralization of potassium p-phenolsulfonate with sodium hydroxide, and each contained approximately equal molal amounts of potassium p-phenolsulfonate and of potassium sodium p-phenolate sulfonate. These solutions were classified into five series on the basis of the kind of added salt and the ratio, R, of its molality to the molality of each buffer salt, as follows: Potassium nitrate, $R = 1$; sodium sulfate, $R = 1$; sodium sulfate, $R = 0.5$; barium chloride, $R = 0.5$; trisodium citrate, $R = 0.33$. All the buffers, with the exception of the series to which barium chloride was added, likewise contained sodium chloride, $R = 1$. The ionic strengths of the solutions varied from 0.05 to 0.8.

The values of the second dissociation constant of p-phenolsulfonic acid given in an earlier paper were confirmed. The influence of potassium nitrate, sodium sulfate, and trisodium citrate on the activity coefficient term, $f_{CI}/f_{HS}f_{PS}$, in which f represents an activity coefficient on the molal scale and the subscripts represent respectively chloride ion and the primary and secondary anions of the buffer, was determined for solutions containing no sodium chloride at 0°C to 35°C. No pronounced differences in character were observed among the effects of the salts of the three valence types in concentrations sufficient to make up one-fifth of the ionic strength of the mixture. 11 p. 10c.

RP1747. Equilibrium constants of some reactions involved in the production of 1,3-butadiene.
Ferdinand G. Brickwedde, Morris Moskow, and John G. Aston

Thermodynamic functions including free energy, enthalpy, entropy, and specific heat, are given for the compounds butadiene, benzene, cyclohexane, ethane, ethylene, ethyl alcohol and water and for the elements carbon (graphite), hydrogen and oxygen. From these are calculated and tabulated values of equilibrium constants for reactions of interest in connection with the production of 1,3-butadiene for synthetic rubber. Comparisons are made between table values and available experimental data on equilibrium constants, gaseous specific heats and entropies. The cracking of hydrocarbons is discussed and the importance of reaction rates in determining the amounts of reaction products is noted. 16 p. 10c.
The effects of various catalysts used to cure the resinous adhesives on the strength properties of plywood were investigated, particularly with regard to the degree of acidity developed by the catalysts in the resin film and in the plywood. The flexural, impact, and shear strengths, both initially and after aging, of birch plywood bonded with urea-formaldehyde and phenol-formaldehyde resins definitely decrease as the acidity of the plywood increases, as evidenced by a decrease in pH. Only in the case of plywood bonded with casein and urea-formaldehyde resins had the deterioration of the bond progressed sufficiently in the roof-agent tests to make it impossible to carry out strength tests because of delamination. A correlation between decrease in strength on aging of plywood bonded with alkali-catalyzed phenolic acid and increase in alkalinity of the panel was observed. Because of the different absorption capacities of the phenolic resins for acids and alkalies, it is not possible to predict the pH of plywood panel from the pH of the resin film.

The susceptibility of birch wood, itself, to attack by acids and alkalies was determined in order to better understand the mechanism of the deterioration of resin-bonded plywood. A marked decrease in strength occurred when the pH of the wood was lowered below 2.0. In the range between pH 2.0 and 2.5, strong acids, such as hydrochloric and sulfuric, had a more pronounced deteriorating effect than weak acids, such as hypophosphorous and nitranilic. A marked decrease in strength of the birch also occurred when the pH was raised to 8.8 by the absorption of an alkali, tetraethanolammonium hydroxide.

RP1749. Purification of sodium chloride and potassium chloride for use in electrochemical work, and the determination of small amounts of bromide.
Gladys D. Pinching and Roger G. Bates

The effects of small amounts of dissolved impurities on the potentials of silver-silver-halide electrodes immersed in solutions of alkali halides were studied. Traces of bromide exert disturbing effects on the potential of the silver-silver-chloride electrode. A convenient method for determining small amounts of bromide in the presence of chlorides and a satisfactory means of purifying sodium and potassium chlorides for precise electrochemical work are outlined. The procedure involves treatment of a saturated solution of the salt with chlorine, two successive precipitations with hydrogen chloride, and fusion of the air-dried product. A method for diminishing hydrolysis of the salts during fusion is described.

RP1750. Preparation of mannuronic lactone from algin.
Harriet L. Frush and Horace S. Isbell

A simple procedure is reported for the preparation of crystalline mannuronic lactone from algin. The algin is converted to alginic acid, which is hydrolyzed by the action of concentrated sulfuric acid followed by dilute acid. In contrast to prior methods, the lactone is crystallized directly from the hydrolyzate of alginic acid without the intermediate separation of the amorphous barium salt or the cinchonine salt. The yield is from 25 to 30 percent of the alginic acid used. The preparation and properties of crystalline sodium mannuronate and potassium mannuronate monohydrate are also described.

RP1751. Experimental manufacture of paper for war maps.
Charles G. Weber and Merle B. Shaw

Early in World War II, a new map paper was developed that greatly improved the quality and performance of war maps. The National Bureau of Standards cooperated in the development and, subsequently, determined by experimental manufacture how to make the paper from commercially available raw materials. The best results were obtained in experimental manufacture by using fiber furnishes of 100-percent strong bleached sulfate pulps with the addition of melamine-formaldehyde resin to increase the wet strength and titanium dioxide to produce the desired opacity. It was essential that the beating be very carefully controlled to preserve the maximum fiber strength. The most critical requirements from a manufacturing standpoint were very high resistance to tear, high wet tensile strength, high opacity, and good smoothness. A moderate degree of wildness was not objectionable. The data obtained by experiments were applied to initiate the commercial production of the new paper to meet unprecedented tonnage requirements.
RP1752. Purification, purity, and freezing points of 7 heptanes, 16 octanes, 6 pentenes, cyclopentene, and 7 \(\text{C}_9 \text{H}_{12} \) alkylbenzenes of the API-Standard and API-NBS series.
Anton J. Streiff, Evelyn T. Murphy, Vincent A. Sedlak, Charles B. Willingham, and Frederick D. Rossini

This report describes the purification and determination of freezing points and purity of 37 hydrocarbons of the API-Standard and API-NBS series, including 7 heptanes, 16 octanes, 6 pentenes, cyclopentene, and 7 \(\text{C}_9 \text{H}_{12} \) alkylbenzenes. 47 p. 20c.

Bourdon F. Scribner and Harold R. Mullin

A method of fractional distillation in the direct-current arc was developed for the spectrographic determination of 33 volatile impurity elements at concentrations as low as a fraction of a part per million in uranium-base materials. The method involves (1) the conversion of the sample matrix to a form having low volatility, (2) the addition of a small amount of a selected volatile "carrier" material, and (3) partial distillation of the mixture in a direct-current arc with an electrode assembly of improved design. In the analysis of uranium-base materials, the sample was converted to the oxide \(\text{U}_3\text{O}_8 \) and gallium oxide was added as a carrier (2 parts \(\text{Ga}_2\text{O}_3 \), 98 parts \(\text{U}_3\text{O}_8 \)). The procedure was applied to the determination of Ag, Al, As, Au, B, Ba, Be, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ge, Hg, In, K, Li, Mg, Mn, Na, Ni, P, Pb, Rb, Sb, Si, Sn, Ti, V, and Zn. Repeated results for B, Cd, Si, Fe, Mg; and Mn, determined photometrically, agreed within \(\pm \) 10 percent. The high sensitivity and general applicability of the method are results of the characteristic that the refractory sample matrix is not volatilized appreciably, during the period that the minute quantities of impurity vapors are swept into the arc by the carrier. 10 p. 10c.

RP1754. Vacuum-tube acceleration pickup. Walter Ramberg

The vacuum-tube acceleration pickup consists of a fixed indirectly heated cathode and two plates on either side of the cathode which are mounted elastically to deflect in response to acceleration normal to the plane of the plates. The tube has a natural frequency of about 800 cycles per second, and it has a flat response for sinusoidal accelerations from 0 to 200 cycles per second with enough output at accelerations of the order of 10 g to drive a recording galvanometer directly without the complications of an amplifier. The use of the tube is recommended in those applications in which its peculiar advantages of high natural frequency, ability to withstand large accelerations, and linearity outweigh the disadvantages of zero drift, warming-up time, high current consumption, and the need of filtering to remove natural frequency response. 7 p. 15c.

RP1755. Comparative bond efficiency of deformed concrete reinforcing Bars.
Arthur P. Clark

The purpose of the tests was to determine the resistance to slip in concrete of 17 different designs of deformed reinforcing bars.

The tests were of the pull-out type in which the bars were cast in a horizontal position; the depth of concrete under the bars and the length of embedment were varied. The slip of the bar was measured at the loaded and free ends.

Three tests were made of each variable for each design of deformation. It was established that a certain group of the bars was definitely superior to the others, in the sense that their average rating was significantly higher than the average of the others. Bars cast in the top position were much less effective than those cast in the bottom position. 8 p. 10c.

James I. Hoffman, Robert T. Leslie, Harold J. Caul, Lewis Jesse Clark, and John Drake Hoffman

The development of a process for the extraction of alumina from clay and the construction of a pilot plant are described.

The process consists in (1) roasting clay at about 700°C, (2) digesting the roasted product with dilute hydrochloric acid, (3) filtering to separate the insoluble siliceous matter from the solution containing the aluminum and soluble impurities, such as iron and alkali salts, (4) concentrating the solution, (5) precipitating the aluminum as the hydrated chloride from the concentrated solution by adding hydrochloric acid gas, (6) removing the crystals of hydrated aluminum chloride, (7) washing the crystals to remove adhering impurities, (8) calcining the hydrated chloride to obtain alumina, and (9) recovering hydrochloric acid from the waste products at the end of the process.
The operation of the pilot plant shows that the process is feasible for the production of alumina from clay but that the alumina costs more than that produced from bauxite by the present well-known processes. 19 p. 16c.

RP1757. Study of Ofner's method for the determination of invert sugar.
Emma J. McDonald and Anne L. Turcotte

In a previous investigation Jackson and McDonald studied Ofner's method for the determination of invert sugar in sucrose. They modified the procedure and were thus able to increase the reproducibility of results when determining from 5 to 25 mg of invert sugar in the presence of sucrose. This method has now been applied to pure invert sugar and to sugar samples containing 5 mg or less of invert sugar in 10 g of sucrose. It has proved to be a suitable method for the analysis of high-grade refined sugars as well as for the determination of 25 mg or less of invert sugar alone. A table is given for the conversion of milliters of iodine consumed to milligrams of invert sugar present. 5 p. 10c.

Title page and contents for volume 37. 5 p. 5c.

RESEARCH PAPERS FROM JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, VOLUME 38, JANUARY—JUNE 1947

RP1758. Vibrational frequencies of semirigid molecules: a general method and values for ethylbenzene..............William J. Taylor and Kenneth S. Pitzer

It is shown that in normal coordinate calculations of the vibrations of molecules it is sometimes advantageous to calculate the kinetic-energy matrix, rather than the reciprocal kinetic-energy matrix. Explicit formulas are given for the elements of the kinetic-energy matrix. Illustrative calculations are given for propane, toluene, and ethylbenzene. A semiempirical assignment of the vibration frequencies of ethylbenzene is made on the basis of these calculations and the spectroscopic data. 17 p. 15c.

RP1759. Analysis of a standard sample of natural gas by laboratories cooperating with the American Society for Testing Materials.... Martin Shepherd

This is a report of the analysis of a standard sample of natural gas by 30 laboratories cooperating with Subcommittee VII of Committee D-3 of the American Society for Testing Materials. The data are presented in a series of frequency distribution plots that show at a glance how the analyses from all laboratories compare with respect to each component determined, as well as calculated heating value and specific gravity. The heating value and specific gravity determined by analysis are compared with values carefully measured at the National Bureau of Standards. The analyses were performed volumetrically by the absorption and combustion methods, and the plots form a clear picture of this type of gas analysis in this country. Although some very creditable work is reported, the need for standardization is evident. 33 p. 20c.

RP1760. Purification, purity, and freezing points of 8 nonanes, 11 alkylcyclopentanes, 6 alkylcyclohexanes, and 4 butylbenzenes of the API-Standard and API-NBS series.
Anton J. Streiff, Evelyn T. Murphy, Janice C. Cahill, Helen F. Flanagan, Vincent A. Sedlak, Charles B. Willingham, and Frederick D. Rossini

This report describes the purification and determination of freezing points and purity of 29 hydrocarbons of the API-Standard and API-NBS series, including 8 nonanes, 11 alkylcyclopentanes, 6 alkylcyclohexanes, and 4 butylbenzenes. 42 p. 20c.

RP1761. Infrared absorption spectra of some experimental glasses containing rare earth and other oxides.............Ralph Stair and Conrad A. Faick

This paper gives spectral transmission data on soda lime glass containing rare earth (Y, Pr, Nd, Sm, Gd, Er) or other coloring oxides (V, Cr, Mn, Co, Ni, U) in the spectral region of 0.7 to 4.5 microns. 7 p. 10c.

John W. Rowen and Domenick Gagliardi

A review and an analysis of the theory of water repellency of textile fabrics have been made. The physicochemical basis underlying the wettability, or water repellency, of treated fabrics is discussed. A survey of the laboratory test methods for evaluating water repellency of textile fabrics is presented. A study was made of the water-repellent properties of 11 commercial raincoat and 4 military fabrics. For this study two of the more recent test methods were examined, the drop-penetration and the contact-angle tests. Two other, and older, test methods were also studied, the spray-rating and the hydrostatic-pressure tests. Several exploratory observations were made in an attempt to determine the mechanism by which water-repellent fabrics lose their repellency when exposed to rain. 15 p. 10c.
Adsortion of water vapor by untanned hide and various leathers was determined at relative humidities ranging from 0 to 96 percent of 100°F. The Brunauer, Emmett, and Teller equations for adsorption of gases in multimolecular layers were applied to the data. Adsorption for all of the samples below a relative humidity of 75 percent is a function of the available surface. Above 75 percent relative humidity, other factors exert an influence, the most important of which is probably size of the capillaries. Untanned hide and chrome tanned leather adsorb the most water vapor except at relative humidities above 75 percent at which sole leather adsorbs more. The behavior of the sole leather in this region is ascribed to the presence of deliquescent materials used in the finishing process. The other vegetable-tanned leathers adsorb less moisture than either hide or chrome leather. Calculated heats of adsorption indicate that the affinity of groups for water is not appreciably altered by tanning and that the adsorption is physical in nature. Methods by which the data may be applied to practical processes, such as fatliquoring and tanning, are pointed out.

Concentration of the isotopes of mercury by free evaporation in a 10-cell counter-current reflux still.

Concentration of the isotopes of mercury was carried out in a counter-current molecular still consisting of 10 stages. Distillation temperatures varied from 55°C to 100°C. A single-stage molecular still was operated, also with mercury, at temperatures varying from 108.1°C to 128°C with those obtained previously by other investigators operating with single-stage stills.

A new electromigration method for the separation of isotopes is described. This method is based on the principle of setting up a flow of electrolyte through a packed column in a direction countercurrent to the flow of the isotopic ions being separated and at a rate intermediate between the velocities of these ions. Under these conditions, the faster moving ions will make headway against the electrolyte stream while the slower moving ions will be carried back. The separation coefficient is given as equal to \(FV\frac{C}{S}/1000 \), where \(F \) is the Faraday constant, \(V \) is cathode volume in cubic centimeters, \(C \) is normality of the electrolyte, \(S \) is separation factor, \(I^+ \) is positive ion current and \(t \) is time in seconds. Free space and temperature distribution in the packing, balance between ion transport and stream counter-flow and other factors which determine column efficiency, are described. In a series of experiments for the concentration of \(^{39}\text{K}\) in the cathode compartment of the electromigration cell, the abundance ratio \(N = \frac{\text{K}}{^{41}\text{K}} \) was increased from its normal value of 14.2 to a maximum of 24 in about 500 hours of operation and a maximum separation coefficient of 0.385 \times 10^{-2} \) was obtained. Attempts to concentrate \(^{41}\text{K}\) in the anode compartment resulted in a lowering of the isotope abundance ratio to a minimum of 9.1. A study of the distribution of \(^{39}\text{K}\) in the packing in experiments carried out for the concentration of \(^{39}\text{K}\) in the cathode compartment, showed that the abundance ratio decreases rapidly from the cathode to anode direction. A description is given of the mass-spectrometer used in measuring the abundance ratio \(\frac{\text{K}}{^{41}\text{K}} \) and, also, of the automatic control used in regulating the counter-flow in some of the electromigration cells.

Concentration of \(^{39}\text{K}\) by countercurrent electromigration: Some theoretical aspects of the operation. The equations are derived which describe the operation (A), for the early stages of the run, (B), after infinite time with no production, and (C), after infinite time at fixed production. The formulas under (A) enable evaluation of the elementary separation coefficient, \(e \). Those under (B) enable calculation of the maximum separation in terms of various channeling factors which determine the length of theoretical unit cell, \(h \). The formulas under (C) enable calculation of optimum production conditions. When measured by the smallness of \(h \), the analysis depicts the fractionator as one which is about 100 times more powerful than a modern laboratory distillation column.

Concentration of isotopes of chlorine by the countercurrent electromigration method. The isotope \(^{35}\text{Cl}\) was concentrated in the anode compartment of an electromigra-
tion cell, with NaCl as the electrolyte. The operation was regulated by means of a stationary boundary between solutions of NaOH and NaCl as the lower and upper liquids, respectively. A concentration of Cl from the normal value of 75.76 percent to a minimum value of 80.7 percent was obtained in 474 hours. The maximum initial separation coefficient, \(\epsilon - 1 \), was \(0.207 \times 10^{-2} \). 5 p. 10c.

RP1768. Normal coordinate analysis of the vibrational frequencies of ethylene, propylene, cis-2-butene, trans-2-butene, and isobutene.

John E. Kilpatrick and Kenneth S. Pitzer

The secular equations for the vibrations of ethylene, propylene, cis-2-butene, trans-2-butene, and isobutene have been derived and have been factored to the greatest possible extent. A potential expression has been fitted to an assignment of vibrational frequencies for ethylene and deuterioethylene. Some of the constants so determined have been used in deriving approximate potential expressions for propylene, cis-2-butene, trans-2-butene, and isobutene. With the vibrational frequencies calculated from these potential expressions as a guide, frequency assignments have been made for propylene, cis-2-butene, trans-2-butene, and isobutene. 19 p. 15c.

RP1769. Infrared absorption spectra of twelve cyclopentanes and cyclohexanes.

Earle K. Plyler, Ralph Stair, and Curtis J. Humphreys

The infrared absorption spectra of seven cyclopentanes and five cyclohexanes have been measured in the region from 2 to 15 microns. The substances were cyclopentane, methylcyclopentane, 1,1-dimethylcyclopentane, trans-1,2-dimethylcyclohexane, cis-2-butene, trans-2-butene, cis-2,4-trimethylcyclohexane, also cyclohexane, methylcyclohexane, 1,1-dimethylcyclohexane, trans-1,2-dimethylcyclohexane, and cis-1,2-dimethylcyclohexane. The wave-lengths of all the observed absorption bands are given in a table, and a graph is shown of the percentage transmission over the wave length region of each substance. The hydrocarbons were highly purified in the chemistry division and these spectra will be of value as a check on the purity of these compounds which may be obtained from other sources. Also the more intense bands serve as a means of identification. For each substance the bands that are best suited for distinguishing it are noted.

Of special interest are the four dimethylcyclopentanes which were studied. The structural positions of the substituted methyl groups differ only slightly, but the spectral difference is quite marked. The infrared absorption spectra are well suited to show characteristic differences between isomers.

The measurements were made with a Perkin-Elmer spectrometer with a General Motors amplifier and Brown recorder. A slit control mechanism is described in detail. Although the slit control gear arrangement is relatively simple, the results obtained with it are good. The energy output is held nearly constant from 3.5 to 14.5 microns. 18 p. 15c.

RP1770. Elastic behavior and creep of refractory bricks under tensile and compressive loads.

Lewis E. Mong

Nine brands of firebrick, including two high alumina, four fire clay, two siliceous, and one silica, were subjected to creep tests. Specimens were cut from 9-inch bricks. Creep tests, with either tensile or compressive stresses, were made at 11 temperatures from 25° to 950°C, inclusive. Durations of tests were approximately 240 days. Small length changes, independent of stress direction, occurred at the lower temperatures. Lowest temperatures at which creep was significant were: high alumina, 700° to 850°C; fire clay, 600° to 700°C; siliceous and silica, 950°C. Creep results with compressive stresses could not be correlated with results with tensile stresses. At 950°C, specimens of different brands showed greatly different capacities to carry load. Repeated heatings caused growth of silica brick. Moduli of elasticity at room temperature were determined before and after the various heat treatments, and resultant changes in moduli are recorded. The changes were large for silica brick and small for the fire-clay brick. 12 p. 10c.

RP1771. Surface tensions of some optical glasses.

Leo Shartsis and Alden W. Smock

The surface tension of a number of optical glasses made at the National Bureau of Standards was measured by a modification of the anchor-ring method. At 1,800°C, the values for the flint glasses were in the range 210 to 230 dynes/cm; those for the barium-crown glasses were 260 to 310; the other types of glasses had intermediate values. Most of the glasses had positive temperature coefficients of surface tension. The surface-tension values increased with increasing periods of time. The glasses were maintained at elevated temperatures immediately prior to measurement. Positive rank correlation coefficients of statistical significance were found between seed quality of optical glasses and such factors as surface tension, pot attack, and amount of gas liberated during the melting process. 10 p. 10c.
RP1772. Laminar boundary-layer oscillations and transition on a flat plate.
Galen B. Schubauer and Harold K. Skramstad

This is an account of an investigation conducted at the National Bureau of Standards, with the cooperation and financial assistance of the National Advisory Committee for Aeronautics, in which oscillations were discovered in the laminar boundary layer along a flat plate. These oscillations were found during the course of an experiment in which transition from laminar to turbulent flow was being studied on the plate as the turbulence in the wind stream was being reduced to unusually low values by means of damping screens. The first part of the paper deals with experimental methods and apparatus, measurements of turbulence and sound, and studies of transition. A description is then given of the manner in which oscillations were discovered and how they were found to be related to transition, and then how controlled oscillations were produced and studied in detail. The oscillations are shown to be the velocity variations accompanying a wave motion in the boundary layer, this wave motion having all of the characteristics predicted by a stability theory based on the exponential growth of small disturbances. A review of this theory is given. The work is thus experimental confirmation of a mathematical theory of stability which had been in the process of development for a period of approximately 40 years, mainly by German investigators. 42 p. 20c.

RP1773. Ceramic coatings for high-temperature protection of steel.
William N. Harrison, Dwight G. Moore, and Joseph C. Richmond

A new type of ceramic coating for the protection of low-carbon steel in high-temperature service was developed during the war at the National Bureau of Standards and was used by the Army and Navy on the exhaust systems of certain aircraft and other vehicles. The outstanding features of these coatings are (a) high resistance to chipping under repeated thermal shock, (b) protection of the metal against oxidation during prolonged exposure at temperatures up to about 1,250°F, (c) freedom from the cracking and blistering produced in conventional porcelain enamels under comparable conditions of high temperature and severe thermal gradients, and (d) a mat surface which does not show high lights and, therefore, decreases the visibility. 15 p. 10c.

RP1774. Electrical characteristics of quartz-crystal units and their measurement.
William D. George, Myron C. Selby, and Reuben Scolnik

The problem of measuring the dynamic electrical characteristics of high frequency quartz-crystal units was investigated by using ordinary laboratory instruments such as r-f bridges and Q meters. Measurement methods and technics are given, together with relative merits and limitations. Antiresonance impedance up to 5,000,000 ohms was measured to ± 5 percent or better. Data concerning constancy of electrical characteristics, secondary responses, and changes with amplitude of vibration and temperature are given for a large number of S.T Me BT-cut crystal units having representative types of mountings. Results obtained on a few 60- and 100-kc units are also included. A convenient type of graphical representation of electrical characteristics of normal crystal units is suggested. 20 p. 15c.

RP1775. Ionization and dissociation of cis- and trans-2-butene by electron impact.
Vernon H. Dibeler

A study has been made of the appearance potentials and relative abundance of a number of ions from the mass spectra of cis- and trans-2-butene. The appearance potentials were found to be in generally good agreement with spectroscopic data. The mass spectra of the 2-butenes were compared with those of 1-butene and isobutene. The C2H5+ ion was found to be the only ion showing a significant difference between the 2-butene isomers. This difference approached a maximum with ionizing electrons of 40-volt energy and remained constant up to energies of 100 volts. 8 p. 10c.

Elmer N. Bunting, George R. Shelton, and Ansel S. Creamer

The results on barium-strontium titanates are given for heat treatments, absorption, shrinkage, thermal expansion, dielectric constant (K) at — 60° to 85°C, and also for Q, the reciprocal of the power factor, at 25°C for frequencies of 50 to 20,000 kc/s. A few measurements of K and Q were made at 3,000 mc/s. Specimens matured (absorption less than 0.1 percent) at 1,250° to 1,430°C. K values ranged from 34, for BaO:4TiO2, to several thousand for specimens with compositions on the BaTiO3-SrTiO3 join. Specimens having the composition BaO:5TiO2 were unique in that their temperature coefficient of K was practically zero. Q values ranged from 50 to 100 for test pieces containing over 40 percent of BaO, and from 400 to 10,000 for those with less than 40 percent of BaO. K values did not change appreciably with frequency.
Linear thermal expansions between 25° and 700°C ranged from 0.6 to 0.84 percent. Many of these specimens could be used in radio equipment. 13 p. 10c.

RP1777. Determination of small amounts of carbon monoxide in air by various reference methods. .. Martin Shepherd

This is a report of the cooperative analyses of two samples of carbon monoxide in air. The analyses were made by laboratories engaged in investigations for the military services during the past war, and this work served to bring the results of these laboratories into common agreement. 8 p. 10c.

RP1778. A magnetic-lens electron spectrometer: Radiations from 5.3 year cobalt⁶⁰. Leonard C. Miller and Leon F. Curtiss

An improved magnetic-lens spectrometer, similar in principle to that described by Deutsch, Elliott, and Evans has been constructed. The structure, operation, and method of calibration, using a ThB + C deposit, is described. Results of measurements of the primary beta-ray spectrum and of the gamma-ray spectrum converted in a uranium radiator are given. These give an end point for the value reported by Deutsch, Elliott, and Roberts of 0.308 ± 0.008 million electron volt (Mev). Two gamma rays were measured at 1.16 and 1.32 Mev, likewise in agreement with the values of 1.10 ± 0.03 and 1.30 ± 0.03 Mev, given by the same authors. 6 p. 10c.

RP1779. Preparation and physical properties of several aliphatic hydrocarbons and intermediates. Frank L. Howard, Thomas W. Mears, A. Footson, Philip Pomerantz, and Donald B. Brooks

In the course of a continuing investigation of the knock ratings of aliphatic hydrocarbons, pure paraffins and olefins have been prepared in quantities sufficient for engine tests. This report describes the methods of preparation and purification of three pentanes, four hexanes, three heptanes, four octanes, eight nonanes, seven decanes, four hexenes, five octenes, six nonenes, six decenes, and a number of alcohols, ketones, esters, and alkyl halides. Most of these compounds were highly purified. Physical constants measured include freezing point, boiling point, and its variation with pressure, refractive index, and density, and their variations with temperature. 31 p. 15c.

RP1780. Synchronization of oscillators...... Robert D. Huntoon and Albert Weiss

A theory is presented which predicts the behavior of any self-limiting oscillator in the presence of an injected sinusoidal voltage or current of small but constant magnitude. The internal mechanism responsible for synchronization is not needed, and the theory is thus applicable to any source of alternating current. Experimental verification of the theory is presented for the case of a low-power Hartley oscillator operating at 11.5 megacycles.

The theory is extended to include the mutual synchronization of two oscillators of arbitrary properties, and a method of treating the mutual interaction of several oscillators is outlined.

The theory is applied to a number of examples to indicate briefly the properties of a synchronized oscillator when used as (1) a linear voltmeter for small voltages, (2) a field-intensity meter, (3) a linear amplitude modulation demodulator for small signals, (4) a frequency modulation demodulator, (5) a synchronous amplifier limiter. The use of a synchronized oscillator for these applications is of particular interest because microwave generators can be used in addition to the more conventional triode oscillators. 14 p. 10c.

RP1781. Disintegration of scandium⁴⁶...........Irving Feister and Leon F. Curtiss

The beta and gamma radiations of scandium⁴⁶ have been studied by means of a magnetic-lens spectrometer. The beta-ray spectrum was found to be simple, with the maximum energy at 0.36 Mev. No indications were found of any other group of beta rays having energies above this value. The gamma-ray spectrum consists of two gamma rays, with energies 0.88 Mev and 1.12 Mev. These two gamma lines appear to be of equal intensity, and are therefore very probably in cascade. 4 p. 10c.

RP1782. High-temperature X-ray diffraction apparatus. Alvin Van Valkenburg and Howard F. McMurdie

A furnace for obtaining X-ray powder diffraction patterns of samples at elevated temperatures has been designed and constructed. This furnace is used with the Norelco X-ray spectrometer, in which the photographic film is replaced by a Geiger counter. The assembly has the following advantages over previously described high-temperature X-ray powder diffraction cameras: (1) Any number of patterns can be obtained without intermediate cooling of the sample, (2) in 40 minutes the pattern
is produced in a form ready for study, and (3) patterns can be obtained at temperatures up to 1,500°C. The diffraction data for the form of 2CaO·SiO₂ are given. 4 p. 10c.

RP1783. Heats of combustion and isomerization of six nonanes. Walter H. Johnson, Edward J. Prosen, and Frederick D. Rossini

The heats of isomerization of six of the nonanes were determined by measurement of the ratios of the heats of combustion in the liquid state of purified samples of these compounds by the procedure previously described for other hydrocarbons. The data yield the following values for the heat of isomerization in the liquid state at 25°C, \(\Delta H^\circ \), of \(n \)-nonane into the other nonanes, in kilocalories per mole: \(n \)-nonane, 0.00; 3,3-diethylpentane, \(-0.01 \pm 0.33\); 2,2,3,3-tetramethylpentane, \(-0.70 \pm 0.31\); 2,2,3,4-tetramethylpentane, \(-0.56 \pm 0.22\); 2,2,4,4-tetramethylpentane, \(-1.11 \pm 0.25\); 2,3,3,4-tetramethylpentane, \(-0.62 \pm 0.35\). These data were combined with the value previously reported for the heat of combustion of \(n \)-nonane to obtain values for the heats of combustion of the other five nonanes in the liquid state at 25°C. 4 p. 10c.

RP1784. Structure of difructose anhydride II. Emma J. McDonald and Anne L. Turcotte

The structure of difructose anhydride II is shown to be 2,1'-4,2'-difructofuranose. 3,4,6-Trimethylfructose has been identified as one of the hydrolysis products of hexamethyl difructose anhydride II. This has been accomplished by a chromatographic separation with subsequent identification of 3,4,6-trimethylglucosazone. 3 p. 10c.

RP1785. Mangabeira latex and rubber. Norman Bekkedahl and Waldemar Saffiot

The tree \textit{Hancornia speciosa}, more commonly known as the mangabeira, which grows in several of the tropical states of Brazil, yields a rubber-containing latex. This tree is very well known for the delicious fruit (mangaba) it bears, but it does not have such a good reputation for the quality of rubber it produces. The natives of Brazil coagulate this rubber by means of solutions of alum or sodium chloride. It has been found, however, from this investigation that if these coagulating agents are replaced by dilute hydrochloric acid or by the latex from another tree, the caxinguba (\textit{Ficus anthelminthica}), a rubber of much improved properties can be produced. 12 p. 10c.

RP1786. Spectrographic determination of minor elements in Portland cement. Armin W. Helz and Bourdon F. Scribner

A rapid spectrographic procedure for the determination of the minor metallic elements in portland cement is described. The method shows promise of easy extension to cement raw materials and many ceramic materials, provided reliable standard samples of these materials are available.

In the application of the method to portland cement, seven minor elements were determined. The precision in terms of probable error of a single determination is within 3 percent of the oxide concentration for aluminum, iron, magnesium, manganese, and titanium; 5 percent of the Na₂O concentration; and 8 percent of the K₂O concentration. Other minor elements, such as lithium, strontium, chromium, zirconium, and vanadium, may readily be included.

The spectrographic analyses of 21 portland cements are compared with chemical results for an estimate of the accuracy. Salient features of the procedure are (1) employing pellets consisting of the cement powder, with graphite as a binder, cobalt oxide as an internal standard, and potassium nitrate as a buffer, (2) applying the pellet as an electrode for excitation by an overdamped condenser discharge, and (3) photographing the spectrum with a step sector and a diffusing screen for obtaining uniformity of illumination. 9 p. 10c.

Electrical methods to drill diamond have been developed and applied to the making of diamond wire-drawing dies 0.0005 to 0.0015 of an inch in diameter that heretofore were produced solely by mechanical operations. The time required to produce excellent dies is reduced materially by applying these electrical methods to the following operations: 1, Pilot drilling the primary cone with a high-voltage spark in air; 2, drilling the secondary cone with a low-voltage spark in an electrolyte.

These two methods of drilling are described and their application to the making of small dies at the National Bureau of Standards is given in detail. 16 p. 10c.
The effect of artificial aging on the tensile properties and resistance to corrosion of 24S-T aluminum alloy.

Hugh L. Logan, Harold Hessing, and Harold E. Francis

The effect of aging commercial 24S-T aluminum alloy sheet, for various periods at 350°, 375°, 385° and 400°F, on its tensile properties and resistance to corrosion was determined. Aging for 3 hours at 385°F produced an increase in yield strength of about 25 percent above an initial value of about 50,000 lb/in.², an increase in tensile strength of about 3 percent above an initial value of 70,000 lb/in.², and a decrease to about one-third of the initial elongation of 17 to 18 percent. Approximately the same values for these properties were obtained by aging the material for 20 hours at 350°F, 5 hours at 375°F, or 1½ hours at 400°F. Materials aged 3 to 10 hours at 385°F and 6 to 12 hours at 375°F were generally immune to stress corrosion cracking and were no more severely damaged in corrosive media, NaCl + H₂O₂ solution or marine atmosphere, than the commercially heat-treated material exposed without artificial aging.

25 p. 15c.

Cooperative analysis of a standard sample of natural gas with the mass spectrometer.

Martin Shepherd

The mass spectrometer was used for the analysis of a standard sample of natural gas by laboratories cooperating with Subcommittee VII of Committee D-3 of the American Society for Testing Materials. The results of the cooperative analysis show the reproducibility and, in certain respects, the accuracy of this powerful new apparatus for gas analysis. The heating value and the specific gravity of the sample calculated from the analytical data were compared with the known values.

7 p. 10c.

Infrared emission spectra of krypton and argon.

Curtis J. Humphreys and Earle K. Plyler

The analysis of the spectra of the noble atmospheric gases, utilizing descriptive data covering the photographically accessible region, has long indicated the possibility of a considerable extension of most of these spectra into the infrared region beyond 1.3 microns. Observations of the spectra of krypton and argon, in the region between 1 and 2 microns, have been made with a Perkin-Elmer spectrometer, fitted with a flint-glass prism cut to an angle of 55 degrees. The sources were Geissler tubes, used in previously reported work.

More than 15 new lines of krypton have been observed. Part of these are blends of unresolved pairs or groups. The emission maxima have been determined in favorable cases to a precision of two wave numbers, roughly equivalent to one-tenth of the smallest scale division on the wavelength drum. All observed lines have been classified, the most intense being represented by combinations of the type 2p–3d, according to Paschen’s notation. Two new levels from the configuration spdf have been found. The remaining unobserved combinations of the type 1s–2p, occurring in this region, are, with one exception, too weak to be observed. The argon infrared spectrum was observed by Paschen. More of its predicted combinations are in the photographic region than in the case of krypton. A few lines near 1.4 microns have been observed.

5 p. 10c.
RP1793. Changes caused in the refractivity and density of glass by annealing.

Arthur Q. Tool, Leroy W. Tilton, and James B. Saunders

The changes in the refractivity of several glasses caused by annealing at different temperatures are presented. The results are given in the form of equilibrium temperature coefficients, as the glasses were annealed at each annealing temperature until there was no further change in the refractivity or density. The measurements on refractivity and density were made at standard atmospheric temperatures since the changes in these properties at such temperatures have a greater practical significance than the corresponding changes at temperatures within the annealing range. 7 p. 10c.

RP1794. Conductimetric titrations of acids and bases in benzene and dioxane.

Arthur A. Maryott

Acid-base titrations were made conductimetrically in pure benzene and dioxane with picric, trichloroacetic, and camphorsulfonic acids, together with primary, secondary, and tertiary amines. Although the conductances of the solutions were extremely low, lower by a factor of 10^{-8} or more than in water, the titrations gave sharp end points which generally were accurate to 1 percent or better. The unusual, though similar behavior of all titrations involving trichloroacetic or camphorsulfonic acid, where the conductance of the salt was enhanced greatly by the presence of free acid, was interpreted in terms of a reaction between salt and acid leading to the formation of a complex anion. The occasional variations in conductance with time, in one instance suggesting slow attainment of some secondary ionic equilibrium, and the effect upon the titration curves of the addition of a small amount of methyl alcohol to the solvent are discussed. 10 p. 10c.

RP1795. Analyses of alkylates and hydrocodimers.

Augustus R. Glasgow, Jr., Anton J. Streiff, Charles B. Willingham, and Frederick D. Rossini

This paper presents the results of work by the American Petroleum Institute Research Project 6 on the analyses, with respect to individual hydrocarbon components, of 28 different alkylates and hydrocodimers. The samples reported include 15 sulfuric-acid alkylates (one C$_3$, six C$_4$, one C$_4$-C$_6$, four C$_6$, one hot-acid dimer, one hot-acid trimer, and one cold-acid trimer), five hydrofluoric-acid alkylates (one C$_3$, one C$_3$-C$_4$, one C$_4$, one C$_4$-C$_5$, and one C$_5$), and 8 hydrocodimers. The analyses were made utilizing analytical distillations performed at high efficiency with high reflux ratio, together with accurately measured values of boiling point (obtained during the distillation) and of refractive index of the fractions of distillate. Also included in this report is a summary of the results of the subsequent spectrographic analyses, with respect to individual components, of one of the C$_4$ alkylates by six different laboratories, involving one Raman, one mass, and four infrared spectrometers. 45 p. 25c.

RP1796. An improved ice calorimeter — the determination of its calibration factor and the density of ice at 0°C. Defoe C. Ginnings and Robert J. Corruccini

There has been described an improved Bunsen ice calorimeter which has been constructed for measurements of enthalpy at high temperatures by the “drop” method. The calibration factor of the ice calorimeter has been determined electrically to be 270.37 ± 0.06 int. joules per gram of mercury, equivalent to 64.631 ± 0.014 calories per gram of mercury, where 1 calorie = 4.1833 int. joule. Using this calibration factor, it is calculated that the density of ice at 0°C and 1 atmosphere pressure is 0.91671 ± 0.00005 g/ml. 10 p. 10c.

RP1797. Enthalpy, specific heat, and entropy of aluminum oxide from 0° to 900°C. Defoe C. Ginnings and Robert J. Corruccini

Apparatus consisting of a furnace and ice calorimeter has been used for the measurement of enthalpies at high temperatures by the “drop” method. The calibration factor of the ice calorimeter has been determined electrically to be 270.37 ± 0.06 int. joules per gram of mercury, equivalent to 64.631 ± 0.014 calories per gram of mercury, where 1 calorie = 4.1833 int. joule. Using this calibration factor, it is calculated that the density of ice at 0°C and 1 atmosphere pressure is 0.91671 ± 0.00005 g/ml. 10 p. 10c.

RP1798. Transmission measurements with the Beckman quartz spectrophotometer. Kasson S. Gibson and Margaret M. Balcom

The Beckman quartz photoelectric spectrophotometer, covering the wavelength range from about 200 to 1,200 millimicrons is proving of great utility in spectral transmission and absorption measurements. Essential features of the instrument are described, including a constant-temperature inclosure (for samples) designed and constructed at the Bureau. Various instrumental characteristics are noted and possible errors discussed, particularly those that may be present in the measurement of polarizing samples. Wavelength calibrations are shown for two instruments. A detailed over-
all check of the reliability of data obtained on the Beckman spectrophotometer by means of glass standards of spectral transmittance shows it to give results over the wavelength range from 390 to 750 m/\mu fully as reliable as those obtained with our other spectrophotometers, if various precautions are taken. 16 p. 10c.

Appearance potentials and isotope abundance ratios for the rare gases have been measured with a Consolidated mass spectrometer. Results are consistent with spectroscopic values of appearance potentials and published isotope ratios. Ion currents at unit pressure increase with atomic number but no simple relation is evident. 4 p. 5c.

RP1800. Hydrocarbons in the 102° to 108°C fraction of petroleum. Augustus R. Glasgow, Jr., Charles B. Willingham, and Frederick D. Rossini

This report describes the analysis of the hydrocarbons in the 102° to 108°C aromatofree fraction of petroleum, which is shown to be composed substantially entirely of the following three compounds (normally boiling at the temperature indicated): ethylcyclopentane at 103.5°C; 1,1,3-trimethylcyclopentane at 104.9°C; 2,2-dimethylhexane at 106.8°C. The amounts of these three compounds in the original Ponca, Oklahoma, crude petroleum are estimated to be 0.16, 0.80, and 0.01 percent, respectively by volume. 6 p. 10c.

Bomb-calorimetric measurements have yielded for the heats of combustion (—\Delta H°c at 25°C of liquid styrene and solid polystyrene to form gaseous carbon dioxide and liquid water, the values 4394.88 ± 0.67 int. kj/mole (1050.58 ± 0.14 kcal/mole) and 4325.09 ± 0.42 int. kj/C8H8-unit (1033.89 ± 0.10 kcal/C8H8-unit), respectively, and for the heat of polymerization of liquid styrene to solid polystyrene at 25°C, the value 69.79 ± 0.66 int. kj/mole (16.68 ± 0.16 kcal/mole). The results obtained on two samples of polystyrene of different molecular weight were in agreement within the precision of the measurements.

Measurements of the heat of solution of solid polystyrene in liquid monomeric styrene gave the value 3.59 ± 0.21 int. kj (0.86 ± 0.05 kcal) evolved per C8H8-unit of polystyrene at 25°C. Addition of this to the value for the heat of polymerization of liquid styrene to solid polystyrene gives the value 73.38 ± 0.69 int. kj (17.54 ± 0.16 kcal) per mole of styrene for the heat of polymerization of liquid styrene at 25°C, when the final product is a solution of polystyrene in styrene containing 6.9 percent by weight of polystyrene. 10 p. 10c.

RP1802. Torsion of a rubber cylinder. R. S. Rivlin

It has been predicted theoretically that, in general, a right-circular cylinder of incompressible, highly elastic material, which is isotropic in its undeformed state, cannot be held in a state of pure torsional deformation by means of a torsional couple alone. In addition, normal surface tractions must be exerted over the plane ends of the cylinder. These normal surface tractions depend on the amount of torsion and on position on the plane ends of the cylinder. Experiments are reported here in which this phenomenon is observed in a right-circular cylinder of pure gum compound and the dependence of the surface traction on amount of torsion and its distribution over the surface of the cylinder is studied. 16 p. 10c.

RP1803. Compensation of the aperture ratio markings of a photographic lens for absorption, reflection, and vignetting losses. Irvine C. Gardner

At present the diaphragm markings of a photographic lens are based entirely upon geometrical considerations and do not take into account the losses of light resulting from absorption, reflection, and scattering. A method of equivalent marking is described, in which, for example, the marking 8 does not correspond to the geometrically determined aperture ratio 1:8 but to an opening sufficiently larger to permit the transmission of as much light as would be transmitted by the aperture 1:8 in the absence of any losses due to absorption, etc. Such a system of apertures may be referred to as equivalent, or compensated, apertures. Two systems of compensation are given, one based upon the illumination at the center of the field and the other based upon the average illumination over the entire field, thus taking vignetting into account. A relatively simple photometric procedure for determining either of the two systems of compensated graduations is described. For use during a transition period, a system of markings is described that will permit exposures to be determined either with light losses compensated or by the present method without compensation. Except for the
change of markings on a lens, no other instrumental changes are required to apply the new system of exposure determination. 8 p. 10c.

RP1804. Heat capacities of gaseous oxygen, isobutane, and 1-butene from -30° to $+90^\circ$C. Paul F. Wacker, Ruth K. Cheney, and Russell B. Scott

An adiabatic constant-flow calorimeter previously used was modified to improve its accuracy. The heat capacity of gaseous oxygen was measured at -30°, $+40^\circ$, and $+90^\circ$C, and the results were compared with values calculated from spectroscopic data. The experimental and spectroscopic values agreed within 0.04, 0.02, and 0.11 percent at the three temperatures. The heat capacity of isobutane was measured at -30°, $+0^\circ$, $+40^\circ$, and $+80^\circ$C. A few measurements were made on 1-butene at 40° and 90°C. Measurements on the hydrocarbons at two or more pressures permitted the calculation of values of $(\propto V/\propto T^2)$. 10 p. 10c.

The heats of solution of members of the series of solid solutions between 6CaO. 2Al$_2$O$_3$.Fe$_2$O$_3$ and 2CaO.Fe$_2$O$_3$ have been determined. Members of this solid-solution series are formed in cement clinker instead of the single compound 4CaO.Fe$_2$O$_3$.Al$_2$O$_3$ as formerly assumed. It has been shown that this assumption causes a negligible error in the latent heats at present used in estimating the glass content of portland cement clinker. It is pointed out, however, that the compositions and heats of solution of the glasses actually formed in portland cement clinker are still unknown. These quantities must be determined before the accurate estimation of the phase composition and glass content of commercial portland cement clinker is possible. 4 p. 5c.

RP1806. Relative thickness of lead, concrete, and steel required for protection against narrow beams of X-rays. George Singer, Harold O. Wyckoff, and Frank H. Day

The lead equivalents of X-ray protective barriers are given for both concrete and steel for potentials between 200 and 1,400 kv. These were determined experimentally using a pressure ionization chamber and an X-ray tube to which constant potential was applied. Narrow X-ray beams were used. The data obtained are compared with those published by other workers. Data on the relative masses referred to lead of both concrete and steel barriers are included. The agreement among the several laboratories is satisfactory when consideration is given to differences in the test specimens used and in the experimental technique. 7 p. 10c.

Title page and contents for volume 38. 5c.
CIRCULARS

Circulars are compilations of information on various subjects related to the Bureau’s scientific, technical, and engineering activities. They include not only the results of Bureau studies, but give data of general interest from other sources.

This series also contains Recommended Specifications, United States Government Specifications, and United States Government Master Specifications formerly issued by the Bureau. These bear a Specification number in addition to the Bureau Circular number, but all of these specifications have been canceled or superseded by Federal Specifications, now formulated by the Federal Specifications Board. The current list of Federal Specifications giving titles, symbols, and prices entitled “Federal Specifications Index”, revised to January 1, 1947, is for sale by the Superintendent of Documents, Government Printing Office, Washington 25, D. C., price 35 cents. A simplified list (Price List 75) is available free from the Superintendent of Documents.

C2. Measurements of length and area, including thermal expansion. 5th ed. 1915.
C3. Design and test of standards of mass. 3d ed. 1918.
C4. Verification of standards of capacity. 2d ed. 1905.
C5. Testing of clinical thermometers. 3d ed. 1917.
C6. Fees for electric, magnetic, and photometric testing. 7th ed. 1916.
C7. Pyrometer testing and heat measurements. 5th ed. 1913.
C10. Legal weights (in pounds) per bushel of various commodities. 4th ed. 1924. (Superseded by C425).
C11. Standardization of bomb calorimeters. 3d ed. 1917.
C12. Verification of polariscope apparatus. 1906. (Superseded by C44).
C15. The international unit of light. 3d ed. 1911.
C16. The testing of hydrometers. 5th ed. 1922.
C17. Magnetic testing. 4th ed. 1926. (Superseded by C415).
C19. Standard density and volumetric tables. 6th ed. 1924. 30c.
C20. Electrical measuring instruments. 2d ed. 1915.
C27. The testing and properties of optical instruments. 2d ed. 1918.
C28. The determination of the optical properties of materials. 1911.
C29. Announcement of a change in the value of the international volt. 1910. (Superseded by C60).
C31. Copper wire tables. 3d ed. 1914. 30c.
C34. The relation of the horsepower to the kilowatt. 3d ed. 1915.
C35. Melting points of chemical elements, and other standard temperatures. 4th ed. 1919. (Superseded by M126).
C36. The testing and properties of electric condensers. 1912.
C37. Electric wire and cable terminology. 2d ed. 1915.
C38. The testing of rubber goods. 5th ed. 1927.
C39. Specifications for and measurement of standard sieves. 1912.

168
C40. Sodium oxalate as a standard in volumetric analysis. 3d ed. 1920. (Superseded by C381).
C41. Testing and properties of textile materials. 3d ed. 1918.
C42. Metallographic testing. 2d ed. 1921.
C43. Jeweler’s and silversmith’s weights and measures. 2d ed. 1921.
C45. The testing of materials. 1913.
C46. The testing of barometers. 3d ed. 1922.
C47. Units of weight and measure — definitions and tables of equivalents. 1914. (Superseded by M121).
C49. Safety rules to be observed in the operation of electrical equipment and lines. 2d ed. 1915. (Superseded by H8).
C50. National standard hose couplings and fittings for public fire service. 2d ed. 1917.
C51. Measurement of time and tests of timepieces. 1914 (Superseded by C392).
C52. Regulation of electrotyping solutions. 2d ed. 1916. (Superseded by C387).
C53. The composition, properties, and testing of printing inks. 1915.
C54. National electrical safety code. 2d ed. 1916. (Superseded by H3 and H4).
C55. Measurements for the household. 1915.
C56. Standards for electric service. 2d ed. 1923.
C57. United States standard tables for petroleum oils. 2d ed. 1916. (Superseded by C154).
C58. Invar and related nickel steels. 2d ed. 1923.
C59. United States standard Baume hydrometer scales. 1916.
C60. Electric units and standards. 2d ed. 1920. (Supersedes C29).
C61. Specifications and tolerances for weights and measures and weighing and measuring devices. 2d ed. 1920. (Superseded by M85).
C62. Specifications for and methods of testing soaps. 3d ed. 1923. (Superseded by C383).
C63. Specification and tests for the transparency of paper and tracing cloth. 1917. 5c.
C64. Rules and regulations for enforcement of lime-barrel act. 1917. 5c.
C65. Gas calorimeter tables. 1917. (Superseded by C417).
C66. Standard samples for thermometric fixed points. 1917. 5c.
C67. Combined table of sizes in the principal wire gages. 1918.
C68. Public utility service standards of quality and safety. 1917.
C69. Paint and varnish. 1917.
C70. Materials for the household. 1917.
C71. Rules and regulations promulgated under authority of the Federal standard barrel law. 1917. 5c.
C72. The scope and application of the national electrical safety code. 1918.
C73. Copper. 2d. ed. 1922. 60c.
C74. Radio instruments and measurements. 2d ed. 1918. 75c.
C75. Safety for the household. 1918. (Superseded by C397).
C76. Aluminum and its light alloys (Superseded by C346).
C77. The table of unit displacement of commodities. 1919.
C78. Solder for aluminum. 2d ed. 1923.
C79. Electrical characteristics and testing of dry cells. 2d ed. 1923.
C80. Protective metallic coatings for the rustproofing of iron and steel. 2d ed. 1922.
C81. Bibliography of scientific literature relating to helium. 2d ed. 1922.
C82. United States Government specification for linseed oil, raw, refined, and boiled. 3d ed. 1927. (Superseded by C361).
C83. Specifications for the manufacture and installation of railroad track scales. 1920. (Superseded by C333).
C84. United States Government specification for basic carbonate white lead, dry and paste. 2d ed. 1922.
C85. United States Government specification for basic sulphate white lead, dry and paste. 2d ed. 1922.
C86. United States Government specification for turpentine. 3d ed. 1926.
C87. United States Government specification for zinc oxide, dry and paste. 2d ed. 1922.
C88. United States Government specification for leaded zinc oxide, dry and paste. 2d ed. 1922.
C89. United States Government specification for white paint and tinted paints made on a white base, semipaste and ready mixed. 3d ed. 1927.
C90. United States Government specification for red lead, dry and paste. 2d ed. 1922.
C91. United States Government specification for ocher, dry and paste. 2d ed. 1922.
C92. Operation and care of vehicle-type batteries. 1920.
C93. United States Government specification for iron-oxide and iron-hydroxide paints. 3d ed. 1927.
C94. United States Government specification for black paint, semipaste and ready mixed. 3d ed. 1927.
C95. Inks — their composition, manufacture, and methods of testing. 2d ed. 1925.
(Superseded by C400).
C96. Recommended specifications for quicklime and hydrated lime for use in the cooking of rags for the manufacture of paper. 1920.
C97. United States Government specifications for green paint, semipaste and ready mixed. 3d ed. 1922.
C98. United States Government specification for volatile mineral spirits for thinning paints. 2d ed. 1923.
C100. Nickel and its alloys. 2d ed. 1924.
C102. United States Government specification for composite thinner for thinning semipaste paints when the use of straight linseed oil is not justified. 2d ed. 1922.
C104. United States Government specification for asphalt varnish. 2d ed. 1923.
C105. United States Government specification for liquid paint drier. 2d ed. 1922.
C107. The testing of paper. 1921.
C108. Gypsum — properties, definitions, and uses. 1921.
C110. Specifications for marine sextants. 1921.
C111. United States Government specification for flat interior lithopone paint, white and light tints. 3d ed. 1928.
C112. Telephone service. 1921.
C113. The structure and related properties of metals, 2d ed. 1922. 25c.
C115. United States Government Master specification for pneumatic tires, solid tires, and inner tubes. 3d ed. 1927.
C116. How to get better service with less natural gas in domestic gas appliances. 1921.
C117. United States Government specification for interior varnish. 2d ed. 1922.
C118. Recommended specification for limestone, quicklime, and hydrated lime for use in the manufacture of glass. 1921.
C119. Specifications for lime flint glass tumblers. 1922.
C120. Construction and operation of a simple home-made radio receiving outfit. 1922.
C121. Construction and operation of a two-circuit radio receiving equipment with crystal detector. 1922.
C122. Sources of elementary radio information. 2d ed. 1923.
C123. United States Government specification for white floating soap. 2d ed. 1924.
C125. United States Government specification for soap powder. 1922.
C126. United States Government specification for salt water soap. 1922.
C128. United States Government specifications for chip soap. 2d ed. 1924.
C129. United States Government specification for ordinary laundry soap. 1922.
C130. United States Government specification for grit cake soap. 2d ed. 1926.
C131. United States Government specification for scouring compounds (a) and (b) for floors, and soap scouring compounds (c). 1922. (Superseded by C370).
C132. United States Government specification for hand grit soap. 2d ed. 1924.
C133. Description and operation of an electron-tube detector unit for simple radio receiving outfits. 1922.
C135. Caustic magnesia cement. 1922.
C136. Specification for numbered cotton duck for Government and commercial use. 2d ed. 1924.
C137. Auxiliary condensers and loading coil used with simple homemade radio receiving outfits. 1923.
A decimal classification of radio subjects — an extension of the Dewey system. (Superseded by C385).

United States Government specification for dry cells. 2d ed. 1927. (Superseded by C390).

United States Government specification for wood screws. 2d ed. 1927.

Description and operation of an audio-frequency amplifier unit for simple radio receiving outfits. 1923.

Tables of thermodynamic properties of ammonia. 1923. 30c.

Recommended specification for quicklime for use in causticizing. 1923.

Recommended specification for limestone and quicklime for use in the manufacture of sulphite pulp. 1923.

Summary of technical methods for the utilization of molasses, collated from patent literature, for the use of the American sugar industry. 1924.

United States Government specification for water resisting red enamel. 1923.

United States Government specification for leather belting. 1923.

A standardized method of measuring the size of hosiery. 1924.

Recommended specification for quicklime and hydrated lime for use in the manufacture of sand-lime brick. 1923.

Wall plaster: Its ingredients, preparation, and properties. 1924. 20c.

Recommended specification for ceramic whitening. 1923. 5c.

Recommended specification for quicklime and hydrated lime for the manufacture of silica brick. 1923.

National standard petroleum oil tables. 1924. (Supersedes C57. Superseded by C410).

United States Government master specification for coal-tar pitch for waterproofing and damp proofing. 1924.

United States Government specification for coal-tar saturated rag felt for roofing and waterproofing. 1924.

United States Government master specification for coal-tar pitch for roofing. 1924.

United States Government master specification for surfacing materials for bituminous built-up roofing. 1924.

United States Government master specification for asphalt for mineral-surfaced roofing. 1924.

United States Government master specification for asphalt for waterproofing and damp proofing. 1924.

United States Government specification for asphalt-saturated rag felt for roofing and waterproofing. 1924.

United States Government master specification for asphalt primer for roofing and waterproofing. 1924.

United States Government specification for titanium pigment, dry and paste. 1924.

United States Government master specification for flat glass for glazing purposes. 1924.

United States Government master specification for light-weight duck (army duck), grey. 1924.

United States Government master specification for tent duck (special construction for bleaching or dyeing), grey. 1924.

United States Government master specification for asphalt for unsurfaced built-up roofing. 1924.

Methods for calculating hosiery shipping case dimensions. 1924.

United States Government master specification for the construction of built-up roofing, type 4AWS. 1924.

United States Government master specification for the construction of built-up roofing, type 5AWS. 1924.

United States Government master specification for the construction of built-up roofing, type 3ACS. 1924.

United States Government master specification for the construction of built-up roofing, type 4ACS. 1924.

United States Government master specification for the construction of built-up roofing, type 5ACS. 1924.

United States Government master specification for the construction of built-up roofing, type 3TCS. 1924.
C176. United States Government master specification for the construction of built-up roofing, type 4TCS. 1924.
C177. United States Government master specification for the construction of built-up roofing, type 5TCS. 1924.
C178. United States Government master specification for the construction of built-up roofing, type 4TWS. 1924.
C179. United States Government master specification for the construction of built-up roofing, type 5TWS. 1924.
C180. United States Government master specification for the installation of metal flashings with built-up bituminous roofing. 1924.
C181. United States Government master specification for the installation of plastic flashing with built-up bituminous roofing. 1924.
C182. United States Government master specification for record and copying ink. 1924.
C183. United States Government master specification for writing ink. 1924.
C184. United States Government master specification for red ink. 1924.
C185. United States Government master specification for stamp-pad ink. 1924.
C186. United States Government master specification for typewriter ribbons. 2d ed. 1927.
C188. United States Government master specification for ribbons for computing and recording machines. 2d ed. 1927.
C189. Recommended specification for quicklime and hydrated lime for use in the absorption of carbon dioxide. 1924.
C190. United States Government master specification for plain, inlaid, and printed linoleums. 1924.
C192. United States Government master specification for asphalt prepared roofing. 1924.
C196. United States Government master specification for black waterproof drawing ink. 2d ed. 1927.
C197. United States Government master specification for indelible marking ink for fabrics. 2d ed. 1927.
C199. Specifications for hand operated grain Hopper scales. 1925. 10c.
C201. United States Government master specification for quicklime for structural purposes. 1925.
C203. Recommended specification for quicklime and hydrated lime for use in the manufacture of calcium arsenate. 1925.
C204. United States Government master specification for hydrated lime for structural purposes. 1925.
C207. Recommended specification for limestone, quicklime, lime powder, and hydrated lime for use in the manufacture of sugar. 1925.
C209. United States Government master specification for oil suction and discharge hose. 2d ed. 1926.
C211. United States Government master specification for gypsum wall board. 1925.
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>C218</td>
<td>United States Government master specification for rubber dam</td>
<td>1925</td>
</tr>
<tr>
<td>C219</td>
<td>United States Government master specification for rubber bandages</td>
<td>1925</td>
</tr>
<tr>
<td>C220</td>
<td>United States Government master specification for stomach or lavage tube</td>
<td>1925</td>
</tr>
<tr>
<td>C221</td>
<td>United States Government master specification for colon tube</td>
<td>1925</td>
</tr>
<tr>
<td>C222</td>
<td>United States Government master specification for politzer bags</td>
<td>1925</td>
</tr>
<tr>
<td>C223</td>
<td>United States Government master specification for rubber tips for crutches</td>
<td>1925</td>
</tr>
<tr>
<td>C224</td>
<td>United States Government master specification for rubber pillowcases</td>
<td>1925</td>
</tr>
<tr>
<td>C225</td>
<td>United States Government master specification for rubber catheters</td>
<td>1925</td>
</tr>
<tr>
<td>C226</td>
<td>United States Government master specification for rubber finger cots</td>
<td>1925</td>
</tr>
<tr>
<td>C227</td>
<td>United States Government master specification for rubber ice bags</td>
<td>1925</td>
</tr>
<tr>
<td>C228</td>
<td>United States Government master specification for helmet-shaped ice bags</td>
<td>1925</td>
</tr>
<tr>
<td>C229</td>
<td>United States Government master specification for friction tape</td>
<td>1925</td>
</tr>
<tr>
<td>C230</td>
<td>United States Government master specification for rubber insulating tape</td>
<td>1925</td>
</tr>
<tr>
<td>C231</td>
<td>Recommended specification for quicklime and hydrated lime for use in the purification of water</td>
<td>1925, 5c.</td>
</tr>
<tr>
<td>C232</td>
<td>United States Government master specification for rubber goods (methods of physical tests and chemical analyses)</td>
<td>1925</td>
</tr>
<tr>
<td>C233</td>
<td>United States Government master specification for tucks packing</td>
<td>1925</td>
</tr>
<tr>
<td>C234</td>
<td>United States Government master specification for wire insertion rubber packing</td>
<td>1925</td>
</tr>
<tr>
<td>C235</td>
<td>United States Government master specification for rubber packings and gaskets (molded, sheet, and strip)</td>
<td>1925</td>
</tr>
<tr>
<td>C236</td>
<td>United States Government master specification for cloth insertion rubber packing</td>
<td>1925</td>
</tr>
<tr>
<td>C237</td>
<td>United States Government master specification for low-pressure spiral gland packing</td>
<td>1925</td>
</tr>
<tr>
<td>C238</td>
<td>United States Government master specification for asbestos high-pressure rod packing</td>
<td>1925</td>
</tr>
<tr>
<td>C239</td>
<td>United States Government master specification for flax packing</td>
<td>1927, 2d ed.</td>
</tr>
<tr>
<td>C240</td>
<td>United States Government master specification for diaphragm packing</td>
<td>1925</td>
</tr>
<tr>
<td>C241</td>
<td>United States Government master specification for compressed asbestos sheet packing</td>
<td>1927, 2d ed.</td>
</tr>
<tr>
<td>C242</td>
<td>United States Government master specification for asbestos metallic cloth gaskets</td>
<td>1927, 2d ed.</td>
</tr>
<tr>
<td>C243</td>
<td>United States Government master specification for asbestos metallic cloth sheet packaging</td>
<td>1927, 2d ed.</td>
</tr>
<tr>
<td>C244</td>
<td>United States Government master specification for rubber valves</td>
<td>1925</td>
</tr>
<tr>
<td>C245</td>
<td>United States Government master specification for surgical operating pads</td>
<td>1925</td>
</tr>
<tr>
<td>C246</td>
<td>United States Government master specification for rubber ring cushions</td>
<td>1925</td>
</tr>
<tr>
<td>C247</td>
<td>United States Government master specification for surgeons’ rubber aprons</td>
<td>1925</td>
</tr>
<tr>
<td>C248</td>
<td>United States Government master specification for rubber hot-water bottles</td>
<td>1925</td>
</tr>
<tr>
<td>C249</td>
<td>United States Government master specification for cloth inserted hot-water bottles</td>
<td>1925</td>
</tr>
<tr>
<td>C250</td>
<td>United States Government master specification for cloth inserted fountain syringe</td>
<td>1925</td>
</tr>
<tr>
<td>C251</td>
<td>United States Government master specification for rubber fountain syringe</td>
<td>1925</td>
</tr>
<tr>
<td>C252</td>
<td>United States Government master specification for rubber air pillows</td>
<td>1925</td>
</tr>
<tr>
<td>C253</td>
<td>United States Government master specification for rubber sheeting</td>
<td>1925</td>
</tr>
<tr>
<td>C254</td>
<td>United States Government master specification for cloth inserted ring cushions</td>
<td>1925</td>
</tr>
<tr>
<td>C255</td>
<td>United States Government master specification for cheesecloth for wiping purposes</td>
<td>1925</td>
</tr>
<tr>
<td>C256</td>
<td>United States Government master specification for brown denim (shrunken)</td>
<td>1927, 2d ed.</td>
</tr>
<tr>
<td>C257</td>
<td>United States Government master specification for cheesecloth, bleached or semibleached</td>
<td>1925, (Superseded by C365).</td>
</tr>
<tr>
<td>C258</td>
<td>United States Government master specification for cheesecloth, unbleached</td>
<td>1926, 2d ed.</td>
</tr>
</tbody>
</table>
C259. United States Government master specification for brown denim (unshrunk), 1925.
C269. United States Government master specification for rubber-metal gasoline hose. 2d ed. 1926.
C270. United States Government master specification for mercerized cotton airplane cloth, grade A. 1925.
C271. United States Government master specification for rubber gloves for electrical workers (for use in connection with apparatus or circuits not exceeding 3,000 volts to ground). 1925.
C279. United States Government master specification for plastic fire-clay refractories. 2d ed. 1926.
C280. United States Government master specification for fire clay. 2d ed. 1926.
C281. United States Government master specification for fire-clay brick. 2d ed. 1926.
C287. United States Government master specification for water and wash deck hose. 1925.
C291. Standards for paper towels. 1925. (Superseded by C399).
C292. Temperature corrections to readings of Baumé hydrometers, Bureau of Standards Baumé scale for sugar solutions (standard at 20°C.). 1926. 5c.
C293. Research associates at the National Bureau of Standards. 1925.
C294. Architectural acoustics. (Superseded by C390).
C298. United States Government master specification for fire clay. 2d ed. 1926.
C299. United States Government master specification for fire-clay brick. 2d ed. 1926.
C300. Architectural acoustics. (Superseded by C380).
C301. United States Government master specification for ink, drawing, colored waterproof. 1926.

C304. Properties and manufacture of concrete building units. 1926.

C305. United States Government master specification for rubber tubing. 1926.

C308. United States Government master specification for rubber stoppers. 1926.

C309. Gas measuring instruments. 1926.

C311. Stucco investigations at the Bureau of Standards with recommendations for Portland cement stucco construction. 1926.

C312. United States Government master specification for rubber matting for use around electrical apparatus or circuits not exceeding 3,000 volts to ground. 1926.

C313. United States Government master specification for huck towels (with woven name). 1926.

C320. Puncture-sealing compounds for pneumatic tires. 1927.

C323. United States Government master specification for plastic magnesia cement (magnesia-oxychloride) used as flooring, bases, wainscots, etc. 1927.

C325. Ceramic properties of some white-burning clays of the Eastern United States. 1927.

C327. Selection and care of garden hose. 1927.

C328. Testing of measuring tapes at the Bureau of Standards. 1927. 10c.

C331. United States Government master specification for chrome yellow (lemon, medium, and orange; dry, paste on oil, and paste in Japan). 1927.

C332. Testing of line standards of length. 1927. 10c.

C333. Specifications for the manufacture and installation of two-section knife-edge railroad track scales. 2d ed. 1927. (Superseded by C393).

C337. Manufacture of lime. 1927. 45c.

C341. Use and care of automobile tires. 1927.

C343. United States Government master specification for clay hollow fire-proofing, partition and furring tile. 1927.

C344. United States Government master specification for clay hollow floor tile. 1927.

C346. Light metals and alloys — aluminum, magnesium. 1927. (Supersedes C76).
C357. United States Government master specification for white table oilcloth. 1927.
C360. United States Government master specification for integral waterproofing material (for use with portland cement mortar or concrete). 1928. (Supersedes C322).
C361. United States Government master specification for oil, linseed, raw. 1928. (Supersedes C82).
C368. United States Government master specification for shades, window; rollers; slats, cords, and accessories. 1928.
C370. United States Government master specification No. 34a for powder, scouring, for floors. 1928. (Supersedes C131).
C372. Recommended specification for quicklime and hydrated lime for use in soap making. 1929.
C373. Recommended specifications for quicklime for use in the distillation of ammonia from ammonia liquors obtained in coke and gas manufacture. 1929.
C375. Weights per United States gallon and weights per cubic foot of sugar solutions. 1929. (Superseded by C457).
C376. Thermal insulation of buildings. 1929. 5c.
C377. Some properties of sponge rubber. 1929.
C379. Care and adjustment of folding testers of the Schopper type. 1929. 5c.
C380. Architectural acoustics. 1930. (Supersedes C300, Superseded by C396).
C381. Sodium oxalate as a standard in volumetric analysis. 1930. (Supersedes C40). 5c.
C382. Bismuth. 1930. 10c.
C384. Sound absorption coefficients of the more common materials. 1930.
C386. Specifications for the manufacture and installation of railway track scales for light industrial service (for knife-edge scales only). 1930.
C387. Copper electrotyping. 1930. (Supersedes C52). 10c.
C388. Use of bismuth in fusible alloys. 1930. 5c.
C389. The making of mirrors by the deposition of silver on glass. 1931. 10c.
C393. Reclaimed rubber. 1931.
C394. Design of gas burners for domestic use. 1931.
C397. Safety for the household. 1932. (Supersedes C75).
C400. Inks. C. E. Waters. 1932. (Supersedes C95. Superseded by C413).
C403. A discussion of some of the principles of acoustical insulation. V. L. Chisler. 1933.
C408. Information for the amateur designer of transformers for 25- to 60-cycle circuits. Herbert B. Brooks. 1935. 5c.
C409. Production, heat treatment, and properties of iron alloys. Louis Jordan. 1936. 15c.
C410. National standard petroleum oil tables. 1936. 40c.
C413. Inks. C. E. Waters. 1936. (Supersedes C400. Superseded by C426).
C416. Gallonage tables for horizontal cylindrical tanks with flat ends. Elmer L. Peffer. 1937. 5c.
C417. Gas calorimeter tables. 1938. (Supersedes C65).
C419. Shoe constructions. Roy C. Bowker. 1938. 10c.
C422. Methods of testing hosiery. E. Max Schenke and Howard E. Shearer. 1938. 15c.
C423. Microscopic methods used in identifying commercial fibers. Thora M. Plitt. 1939.
C426. Inks. C. E. Waters. 1940. (Supersedes C413). 15c.
C427. Synthetic rubbers: A review of their composition, properties, and uses. Lawrence A. Wood. 1940. 10c.
C430. Glass stopcocks. Martin Shepherd. 1941. 10c.
C431. Typewriter ribbons and carbon paper. C. E. Waters. 1941. 10c.
C433. Physical properties of dental materials. Wilmer Souder and George C. Paffen¬
barger. 1942. $1.00.
1941. (Supersedes C9). 10c.
C435. American standard specification for dry cells and batteries. 1942. (Supersedes
C414. Superseded by C466).
1942. 10c.
C437. Optical and mechanical characteristics of 16-millimeter motion-picture pro¬
C438. Static electricity. Francis B. Silsbee
The nature and origin of the charges of static electricity arising in industrial proc¬
esses are discussed, and various methods of mitigation of the hazards which they
introduce are suggested. By defining suitable units for the quantities involved and
stating quantitative relationships between them, a basis is given for an engineering
This Circular presents information to assist the prospective purchaser of a motion¬
picture projector in the preparation of a specification and in the selection of equip¬
ment capable of good performance, yet not excessive in cost. Objective test methods
are described in detail, and simplified methods of sound measurements are indicated.
Although over-all performance of the equipment is stressed, certain difficulties and
lack of suitable test film prevent direct measurement of some of these characteristics.
Measurements on representative equipment are included. Improvements in 16-mm
sound projectors are suggested. July 6, 1942. 56 p. 15c.
C440. Polarimetry, saccharimetry, and the sugars.
This Circular supersedes National Bureau of Standards Circular No. 12, issued
July 6, 1906, and Circular No. 44, issued January 15, 1914, and revised November 1,
1917. The main purpose of this treatise is to explain the application and manipulation
of polarized light for industrial, analytical, and theoretical purposes. May 1, 1942.
810 p. $2.75 (bound in blue buckram).
C441. Elevator wire rope maintenance.
This service bulletin covers the items affecting rope life, which include lack of
lubrication, unequal tensions, misalignment of sheaves, lack of maintenance of sheave
grooving, poor brake setting, unduly high peaks of acceleration and retardation, and
changes in top and bottom hoistway clearances. It discusses methods of checking and
correcting these particular items, and closes with a suggestion that rope life be extended
further by decreasing elevator service, either by running fewer cars or by establishing
skip stops, or by similar methods. Dec. 7, 1942. 7 p. 5c.
C442. Maintenance of elevator mechanical safety appliances.
This Circular covers the items affecting the proper operation of governors, safeties,
and buffers. Governor items include clearances, driving-sheave wear, sluggish action,
and condition of jaws and of governor rope. The functional requirements of the re¬
leasing carrier are discussed in detail. This is followed by a general paragraph on the
function of undercar safeties. There are also paragraphs on cleaning and maintenance
of governors, and a discussion of various commonly used types of safety equipment. These
include instantaneous, flexible guide-clamp, wedge-clamp, and spring-actuated safe¬
ties. The need for periodic tests is stressed.
Section III discusses various requirements for guide rails, the need for adequate
rail fastenings, the effect of building settlement, maintenance of rail surface, and in¬
spection of rails after the setting of the safety.
Section IV, on buffers, covers the proper grade of oil for oil buffers, importance of
maintaining oil level, correct alinement of buffers, anchorage of buffer cases, corrosion
of metallic parts, and flooding.
A paragraph is devoted to the checking of alinement and supports of spring buffers.
Jan. 9, 1943. 10 p. 5c.
C443. Maintenance of elevator hoistway and car enclosures and equipment.
Executive Committee for the American Standard Safety Code for Elevators,
Dumbwaiters, and Escalators

This Circular includes a brief discussion of elevator accidents, stressing the large percentage occurring at hoistway entrances, and then discusses in some detail the protective devices for hoistway doors and the methods of maintaining such devices in the best operating condition. Instructions on the care of floors at elevator entrances are given, and the need for maintaining threshold illumination is stressed. The value of paint or other protective coatings on machine-room and hoistway walls is brought out. March 8, 1943. 8 p. 5c.

C444. Maintenance of elevator hoisting machines and brakes.
Executive Committee for the American Standard Safety Code for Elevators,
Dumbwaiters, and Escalators

This Circular covers certain suggestions for the inspection and checking of elevator hoisting equipment, including motors, gearing, brakes, and driving sheaves and drums. The inspection of belted machines is covered briefly, and there is a paragraph devoted to overhead sheaves and bearings. Motor-generator sets are covered by cross reference to similar equipment used in hoisting machines. March 15, 1943. 6 p. 5c.

C445. Effect of humidity on physical properties of paper.
Frederick T. Carson

To make available data that have been out of print for some time, an old publication by the National Bureau of Standards has been revised and the essential data presented again. The data are included in seven tables and six graphs. They show the variation with humidity of basic ream weight, bursting strength, tearing resistance, folding endurance, tensile strength, and stretch. References to the literature are included to supplement the information. Jan. 31, 1944. 12 p. 5c.

C446. Dead-weight machines of 111,000- and 10,100-pound capacities.
Bruce L. Wilson, Douglas R. Tate, and George Borkowski

A dead-weight testing machine of 102,000-lb capacity was installed at the National Bureau of Standards in 1927 to provide means for calibrating elastic calibration devices, which are used to calibrate force-indicating testing machines. To obtain a larger number of test loads the original machine was altered by the addition of nine 1,000-lb weights and an operating mechanism. To obtain the smaller test loads necessary for the calibration of elastic calibration devices having smaller capacities, a new machine of 10,000-lb capacity was installed. The two machines are described, and the errors of the weights of the machines are discussed. June 1943. 14 p. 5c.

C447. Mechanical properties of metals and alloys.
John L. Everhart, W. Earl Lindlief, James Kanegis, Pearl G. Weissler, and Frieda Siegel

This Circular is a summary of the results of a comprehensive survey of the technical literature on the strength and related properties, thermal expansion, and thermal and electrical conductivities of ferrous and nonferrous metals and alloys at normal, high, and low temperatures. In general, the data are presented in tabular form, although graphical representation is often used to indicate the effects of changing composition or conditions on the properties. Data on aluminum, copper, iron and steel, lead, magnesium, nickel, tin, zinc, a number of miscellaneous metals, and their alloys are included. The Circular is not limited to conventional engineering materials but contains the data on properties of many materials not usually classed as such. Literature references to the sources of the data are included. Dec. 1, 1943. 481 p. $2.25 (buckram bound).

C448. Permanent magnets.
Raymond L. Sanford

This Circular gives general information regarding the composition, treatment, and properties of permanent-magnet materials and the design and testing of permanent magnets. Aug. 10, 1944. 39 pp. 10c.

C449. Hydrometer correction tables and thermal density coefficients for vegetable tanning extracts.
M. G. Blair and E. L. Peffer

Tables are presented for correcting hydrometer readings made in vegetable tanning extracts at observed temperature in degrees barmometer, in degrees Twaddle, and in degrees Baumé to readings at the standard temperature 60°F. Thermal density coefficients are also included, which make possible the calculation of the density of a tanning extract at any temperature within the range of the investigation if its specific gravity at 60°/60°F is known. These tables are based on an investigation carried out by the National Bureau of Standards on the density and thermal expansion of
several vegetable tanning extracts — quebracho, oak bark, hemlock bark, chestnut, and mangrove bark extracts. The range is from 1.00 to 1.12 specific gravity at 60°/60°F and from 50° to 100°F. May 4, 1945. 24 p. 10c.

C450. Underground corrosion..........................Kirk H. Logan

This circular is a summary of the results of the National Bureau of Standards investigations of underground corrosion which began in 1922. Relations between the physical and chemical properties of the soil and their corrosiveness are described. The results of field tests of commonly used ferrous materials, ferrous alloys, lead, copper, copper alloys, zinc, asbestos-cement and a number of metallic and non-metallic coatings are given. Results of extensive field tests on bituminous pipe coatings made with the cooperation of the American Gas Association and American Petroleum Institute are also given. Methods of testing soils and coatings are described and their usefulness discussed. The theory and application of cathodic protection to underground structures are described. Details of test methods and apparatus are given in six appendices. Nov. 27, 1945. 312 p. $1.25. (buckram bound).

C451. Factors affecting results obtained with the Mooney Viscometer.
Rolla H. Taylor

Experience with the operation of the Mooney Viscometer in 18 laboratories indicates the need for better reproducibility of results. A study of the available data from these laboratories along with numerous experiments made at the National Bureau of Standards has shown the factors that must be considered in improving the reproducibility. If uniformity in the values of Mooney viscosity on the same sample with different viscometers and in different laboratories is to be obtained, the methods of adjustment that must be followed and the precautions that must be taken are cleaning, mechanical calibration, dimensions of dies, die holders, and rotors, die closures, and preparation of test pieces. Each of these items are the errors which may result from maladjustments and lack of precautions in the use of this instrument are discussed. Nov. 8, 1945. 14 p. 5c.

C452. Slip casting of clay pots for the manufacture of optical glass at the National Bureau of Standards.
Raymond A. Heindl, Gordon B. Massengale, and Louis G. Cossette

Between 1918 and 1940 the Refractories Section of the National Bureau of Standards manufactured about 70 slip-cast clay pots annually for use by the Glass Section for the production of optical glass. From 1940 to 1945, to meet the increasing military requirements for optical glass, the pot production was expanded gradually to a maximum of 2,300 annually. This Circular describes the plant changes made, the new machinery and equipment installed, and the general manufacturing procedure used to bring about this increased production. A description is also given of the two types of pots produced, namely, one with a low-porosity lining for the manufacture of the more corrosive glasses, the other without the lining for the less corrosive glasses. Information is given on the control of the density of the pot in order to obtain low gas permeability of the pot wall and on many of the difficulties that had to be overcome in order to produce satisfactory pots. July 15, 1946. 19 p. 10c.

C453. Apparatus for determining water-vapor permeability of moisture barriers.
Frederick T. Carson and Vernon Worthington

A conditioning and testing cabinet is described in which the hygrometric conditions are maintained by equilibrium with a saturated solution of an appropriate salt. The temperature of this solution and of the testing chamber is held constant by means of an envelope of moving air that completely surrounds the testing chamber, an open-coil heater and a thermoregulator being used to control the temperature of this air bath. Devices for supporting and weighing the permeability cells in the cabinet, without disturbing the hygrometric conditions, are explained in detail. The cells, hung by hooks from a rotary suspension disk, can be suspended one at a time from a weighing rod attached to a balance. Interlocking mechanisms for selecting and picking up the cells facilitate the weighing and protect the apparatus and the permeability cells from accidental injury. A method and apparatus for mounting the specimens in the permeability cells are described also. Materials covering a large permeability range can be accommodated. Some suggestions are made for accelerating the testing of good moisture barriers. Nov. 8, 1946. 18 p. 10c.

C454. Proving rings for calibrating testing machines.
Bruce L. Wilson, Douglas R. Tate, and George Borkowski

A description is given of the proving ring, which was developed at the National Bureau of Standards to provide an accurate portable load-measuring device for calibrating testing machines. Methods are described for calibrating proving rings by
dead weights for loads up to 111,000 lb and by means of other calibrated proving rings for higher loads. Rings which complied with the specification included in the paper were subjected to tests to determine the errors introduced by variations of the conditions of use. Provided reasonable care is exercised in using proving rings, the errors are shown to be small compared to ± 1 percent, the generally recognized tolerance for testing machines. Aug. 14, 1946. 21 p. 10c.

C455. Flameproofing of textiles ... M. W. Sandholzer

This Circular includes a review of the history and principles of flameproofing; an outline of types of treatments and the more common processes, formulas, and testing methods; and a brief list of references on the general subject. A testing method is also outlined for indicating the relative hazard of untreated textiles and those rendered more flammable by processing or coating. Aug. 23, 1946. 20 p. 10c.

C456. Magnetic testing .. Raymond L. Sanford

This Circular gives general information regarding magnetic quantities, the magnetic characteristics of materials, the principles employed in magnetic testing apparatus, and a brief discussion of the theory and application of magnetic analysis. Nov. 6, 1946. 39 p. 10c.

C457. Weights per United States gallon and weights per cubic foot of sugar solutions. Carl F. Snyder and Lester D. Hammond

A table is presented showing the weights per United States gallon and weights per cubic foot of sugar (sucrose) solutions at 20°C. The table comprises the weights (metric and avoirdupois) per gallon in air; weights (avoirdupois) per cubic foot in air; true specific gravities 20°/20°C and 20°/40°C; apparent specific gravities; grams of sucrose per 100 ml of solution in vacuum; and degrees Baumé; all from 0° to 95° Brix. at intervals of 0.1° Brix. The calculations are based on the density values of Plato. The degrees Baumé are taken from the table of Bates and Bercar. A supplementary table is included, giving the weights per gallon in air at different temperatures.

This Circular is a revision of Circular C375 (1929); it also replaces Letter Circular LC770. Dec. 5, 1946. 28 p. 10c.

C458. Chemistry of collagen ... Joseph R. Kanagy

One of the most important industrial proteins is collagen. On treatment with tannins or certain inorganic salts, it is converted into leather. This process is known as tanning. By prolonged heating with water, collagen is changed into glue which has a large number of commercial applications, such as the making of paper, photographic plates and adhesives. This Circular gives a general outline of the physical and chemical properties of collagen and was prepared for the large number of chemists employed in industries where this material or its transition product, glue, is processed. May 29, 1946. 26 p. 10c.

C459. Announcement of changes in electrical and photometric units.

This Circular gives a short account of the development of new international agreements on practical units of electricity and of light. In pursuance of these agreements, the electrical units based upon the resistance of a column of mercury and the rate of deposition of silver in a voltmeter will be superseded on January 1, 1948, by units derived from the fundamental mechanical units of length, mass, and time. This will increase the numerical values of resistances by 495 parts per million and those of voltages by 330 parts per million. The magnitude of photometric units will be fixed by assigning the value 60 candles per square centimeter for the brightness of a black-body radiator at the temperature of freezing platinum, and using certain standard spectral luminosity factors for the measurement of light differing in color from that of the black-body primary standard. This change in definitions of the units will involve little change in ratings of the common types of lamps. May 15, 1947. 7 p. 5c.

This Circular lists titles of the publications of the National Bureau of Standards from 1901 to June 30, 1947, with subject and author indexes. For the period from January 1, 1942, to June 30, 1947, brief abstracts are included with the titles of the publications. 75c.

C461. Tables of selected values of properties of hydrocarbons.

Frederick D. Rossini, Kenneth S. Pitzer, William J. Taylor, John E. Kilpatrick, Joan P. Ebert, Charles W. Buckett, Mary G. Williams, Helene G. Werner

This book includes, in bound form, all the tables of properties of hydrocarbons (and certain closely related compounds) which have been issued as of May 31, 1947
by the American Petroleum Institute Research Project 44. Some explanatory re-
marks, and tables of fundamental constants, conversion factors, and molecular
weights, are also included. $2.75 (buckram bound).

C462. Ionospheric Radio Propagation.
This book presents the elementary principles of sky-wave radio propagation at
high frequencies and their application to the problems of radio communication.
The basic theory of electromagnetic wave propagation is given together with a detailed
discussion of the structure of the ionosphere and the manner in which it reflects radio
waves. Practical methods of calculating radio propagation conditions are given to-
gether with explanations of their derivation. In press.

C463. Safety for the household..........................Stewart J. Owen
In this Circular consideration is given to the hazards (chemical, drugs and medicines,
electrical, fire, gas, lightning, mechanical, gardening and yard tools, hand tools,
home work-shop power tools, poisonous plants and vines often found in yards and
gardens, etc.) and recommendations are made to eliminate those hazards or to cope
with them where they cannot easily be eliminated. Methods of first aid are given
including resuscitation, home treatment of burns, scalds, cuts and bruises. Informa-
tion is given on the instruction of children in safe habits and of the value of organized
community safety programs. Helpful suggestions are made for the building of a safe
home and the installation in the home of approved equipment such as heating boilers,
laundry and plumbing fixtures. Supersedes C397. 75c.
These are recommended codes of engineering and industrial practice, including safety codes, developed in cooperation with the national organizations and others concerned. In many cases the recommended requirements are given official status through their incorporation in local ordinances by State and municipal regulatory bodies.

H3. National electrical safety code. 1920. (Superseded C54 to be superseded by H30).
H4. Discussion of the national electrical safety code. 1920. (Superseded C54).
H5. American logging and sawmill safety code. 1923. 60c.
H6. Safety rules for the installation and maintenance of electrical supply stations. 1926. (Superseded by H31).
H7. Safety rules for the installation and maintenance of electric utilization equipment. 1926. (Superseded by H33).
H8. Rules for the operation of electrical equipment and lines. 1926. (Superseded by H34).
H10. Safety rules for the installation and maintenance of electrical supply and communication lines. 1927. (Superseded by H32).
H13. (Formerly M95). Protection against lightning. 1929.
H14. (Formerly M85). Specifications and tolerances for commercial weighing and measuring devices. 1929. (Superseded by H22).
H15. X-ray protection. 1931. (Superseded by H20).
H16. Wood poles for overhead electrical lines. 1931.
H18. Radium protection for amounts up to 300 milligrams. 1934. (Superseded by H23).
H25. Screw-thread standards for Federal services. 1939. (Superseded by H28).
H27. Safe handling of radioactive luminous compound. 1941. 10c.
H31. Safety rules for the installation and maintenance of electrical supply stations. 1940. (Superseded H6). 10c.
H32. Safety rules for the installation and maintenance of electric supply and communication lines. 1941. (Superseded H10). 75c.
H33. Safety rules for the installation and maintenance of electric utilization equipment. 1940. (Superseded H7). 20c.
H34. Safety rules for the operation of electric equipment and lines. 1938. (Superseded C49 and H8). 20c.
H36. Safety rules for electric fences. 1940. 10c.

The purpose of this handbook is to present complete dimensional data upon which specifications may be based for threaded products for Government requirements. So
far as practicable, these data are intended to conform to generally accepted commercial practice, although certain special requirements of the Government necessitate the inclusion of some standards not generally applicable outside of the Government services. References are cited throughout the text to the standards promulgated by the American Standards Association, and to such other published standards as are in agreement with the specifications herein. Feb. 17, 1945. 274 p. $1.00. Supersedes H28 (1942).

H29. Specifications, tolerances, and regulations for commercial weighing and measuring devices. Ralph W. Smith

The specifications, tolerances, and regulations published herein comprise all of the current codes as adopted by the National Conference on Weights and Measures, the latest action reported having been taken by the 1941 Conference. The material relates to: apparatus in the metric system, linear measures, fabric-measuring devices, taximeters, odometers, liquid capacity measures, glass graduates, single-service measure-containers (except milk bottles), milk bottles, lubricating-oil bottles, liquid-measuring devices, grease-measuring devices, vehicle tanks, dry capacity measures, berry baskets or boxes, scales, weights; and general regulations relating to position of weighing or measuring device. Sept. 26, 1942. 148 p. 60c. (buckram bound). Supersedes H22.

The National Electrical Safety Code combines five separate parts of the code which have been issued as National Bureau of Standards handbooks H31 to H35, inclusive. The five parts of the code include definitions of terms used in the code, grounding rules, safety rules for the installation and maintenance of electric supply stations, safety rules for the installation and maintenance of electric supply and communication lines, safety rules for the installation and maintenance of electric utilization equipment, safety rules for the operation of electric equipment and lines, and safety rules for radio installations. 1948. (Supersedes H3). $1.25 (buckram bound).

H37. Testing of weighing equipment. Ralph W. Smith

A manual for State and local weights and measures officials, describing various types of commercial weighing equipment, the principles of their operation, and methods for their inspection and test. Jan. 31, 1945. 184 p. $1.00.

H38. Protection of radium during air raids. L. F. Curtiss

This Handbook contains the recommendations of a special committee appointed by the Director to draft regulations to protect individuals from effects of dispersal of radium during air raids and to provide adequate safeguards for the radium under such conditions. May 4, 1942. 17 p. 10c.

This Handbook is a discussion of Part 2 of the Fifth Edition of the National Electrical Safety Code, published as Handbook H32, Safety Rules for the Installation and Maintenance of Electric Supply and Communication Lines. It covers the more important revised requirements in Handbook H32, as well as others that, although substantially unchanged, can be effectively supplemented by a discussion. Three appendices are included. These contain technical data that will be helpful in making computations of the strengths of supporting structures and in determining crossing clearances. In some cases there are suggested engineering short cuts that give approximately the same results as formulas covered in the code. The material was prepared by the National Bureau of Standards Advisory Committee for the Preparation of the Discussion Handbook. July 15, 1944. 162 p. $1.00 (buckram).

H40. Code for protection against lightning. Ralph W. Smith

This American Standard Code gives basic rules for the protection of persons (part I), protection of buildings and miscellaneous property (part II), and protection of structures containing inflammable liquids and gases (part III). Detailed specifications are included on number, size, and form of points and rods, grounds, etc., together with detailed instructions for bonding metal roofs and metal-clad buildings. Sketches of protector masts and the resulting "cone of protection" are included. A discussion of the origin, characteristics, and effects is included as Appendix A, while Appendix B, consisting of a rather full bibliography, completes the publication. March 22, 1945. 99 p. 20c. Supersedes H21.
MISCELLANEOUS PUBLICATIONS

As the name implies, this series includes material, which, because of its character or because of its size, does not fit into any of the other regular publication series. Some of these are charts, administrative pamphlets, directories of specifications, annual reports, weights and measures conference reports, and other subjects appropriate to the Miscellaneous series.

M1. Manual of inspection and information for weights and measures officials. 1918. (Superseded by H1).
M2. The international metric system of weights and measures. 1906.
M3. The international metric system. (Chart). 40c.
M4. First annual conference on the weights and measures of the United States. 1905.
M5. Second annual conference on the weights and measures of the United States. 1906.
M6. Third annual conference on the weights and measures of the United States. 1907.
M7. Fourth annual conference on the weights and measures of the United States. 1908.
M10. Seventh annual conference on the weights and measures of the United States. 1912.
M15. Some technical methods of testing miscellaneous supplies, including paints and paint materials, inks, lubricating oils, soaps, etc. 1916.
M16. Report to the international committee on electric units and standards. 1912.
M22. Annual report of the Director of the National Bureau of Standards for the fiscal year ended June 30, 1902.
M23. Annual report of the Director of the National Bureau of Standards for the fiscal year ended June 30, 1903.
M25. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce and Labor for the fiscal year ended June 30, 1905.
M27. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce and Labor for the fiscal year ended June 30, 1907.
M28. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce and Labor for the fiscal year ended June 30, 1908.
M29. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce and Labor for the fiscal year ended June 30, 1909.
M30. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce and Labor for the fiscal year ended June 30, 1910.
M31. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce and Labor for the fiscal year ended June 30, 1911.
M32. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce and Labor for the fiscal year ended June 30, 1912.
M33. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce for the fiscal year ended June 30, 1913.
M34. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce for the fiscal year ended June 30, 1914.
M35. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce for the fiscal year ended June 30, 1915.
M36. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce for the fiscal year ended June 30, 1916.
M37. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce for the fiscal year ended June 30, 1917.
M38. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce for the fiscal year ended June 30, 1918.
M40. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce for the fiscal year ended June 30, 1919.
M42. Progress report of the National Screw Thread Commission, 1921.
M43. Thirteenth annual conference on the weights and measures of the United States, 1920. 20c.
M44. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce for the fiscal year ended June 30, 1920.
M45. Buying commodities by weight or measure, 1920.
M46. War work of the Bureau of Standards, 1921.
M47. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce for the fiscal year ended June 30, 1921.
M48. Fourteenth annual conference on the weights and measures of the United States, 1921. 20c.
M49. Graphic comparison of screw thread pitches, 1922.
M50. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce for the fiscal year ended June 30, 1922.
M51. Fifteenth annual conference on the weights and measures of the United States, 1922. 15c.
M52. Mollier chart of properties of ammonia, 1923. (Included in C142).
M53. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce for the fiscal year ended June 30, 1923.
M54. A standard state zoning enabling act, 1924. (Reissued as BH5).
M55. Sixteenth annual conference on the weights and measures of the United States, 1923. 30c.
M56. Tables and graphs for facilitating the computation of spectral energy distribution by Planck's formula, 1925.
M57. Large Mollier chart, 1924.
M58. Technical conference of state utility commission engineers, 1923.
M59. Seventeenth annual conference on the weights and measures of the United States, 1924. 35c.
M60. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce for the fiscal year ended June 30, 1924.
M61. 1924 report of the National Screw Thread Commission.
M62. Table of Brinell hardness numbers, 1924.
M64. The standard weights and measures of the United States, 1925.
M65. National directory of commodity specifications: classified and alphabetical lists and brief descriptions of existing commodity specifications, 1925. (Superseded by M130).
M67. Kilocycle-meter conversion table, 1925.
M68. Adjust your headlights, 1925.
M69. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce for the fiscal year ended June 30, 1925.
M70. Report of eighteenth national conference on weights and measures of the United States, 1925. 50c.
M71. Compressibilities of gases, 1925.
M72. Strain lines developed by compressive tests on structural members of the Delaware River Bridge at the United States Bureau of Standards for the Delaware River Bridge Joint Commission, 1926.
M73. Subject index of United States Government Master specifications. 1926. (Superseded by C319).
M75. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce for the fiscal year ended June 30, 1926.
M76. Mollier chart, properties of ammonia. 1927. 10c.
M77. Standards yearbook, 1927.
M78. Standard atmosphere chart. 1927. (Superseded by M82).
M79. Standards and specifications in the wood-using industries. 1927.
M80. Report of the twentieth national conference on weights and measures. 1927. 45c.
M81. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce for the fiscal year ended June 30, 1927.
M82. Standard atmosphere chart. 1927. (Supersedes M78).
M83. Standards yearbook, 1928. $1.00.
M84. Standard time conversion chart. 2d ed. 1931.
M85. Specifications and tolerances for commercial weighing and measuring devices. 1929. (Supersedes H1 and C61. Superseded by H22).
M86. Tables of spectral energy distribution and luminosity for use in computing light transmissions and relative brightness from spectrophotometric data. 1929. 10c.
M88. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce for the year ended June 30, 1928.
M90. Directory of commercial testing and college research laboratories. 1927. (Superseded by M125).
M91. Standards yearbook, 1929. $1.00.
M92. Code for protection against lightning. 1929. (Superseded by H21).
M94. Scientific and technical positions in the Bureau of Standards. 1929. (Superseded by M152).
M95. Protection against lightning. 1929. (Reissued as H13).
M96. Organizations cooperating with the National Bureau of Standards. 1930.
M97. Thermal properties of petroleum products. 1929. 15c.
M99. American national screw thread tables for shop use. II. Special threads. 1929.
M100. Plain and threaded plug and ring gage blanks. 1930. (Superseded by CS8).
M102. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce for the fiscal year ended June 30, 1929.
M103. Weights and measures references. Including an index to the reports of the national conference on weights and measures from the first to the twenty-first, inclusive, 1930.
M104. Testing equipment for large-capacity scales for the use of weights and measures officials. 1930. 10c.
M105. Certification plan — significance and scope. 1930.
M106. Standards yearbook, 1930. 75c.
M107. Safety code for brakes and brake testing. 1930.
M108. The manufacture and properties of a cellulose product (maizolith) from cornstalks and corncobs. 1930.
M109. Chart for determining the helix angles of screw threads. 1930.
M110. Standards and specifications for nonmetallic minerals and their products. 1930.
M111. Standard time zones of the United States and adjacent parts of Canada and Mexico. (Map). 1930. (Superseded by M155).
M112. Manufacture of insulating board from cornstalks. 1930.
M113. Simplification of sizes and terminology of high volatile bituminous coal. 1930. 5c.
M114. Filters for the reproduction of sunlight and daylight and the determination of color temperature. 1931. 45c.
M115. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce for the fiscal year ended June 30, 1930.
M117. Units used to express the wave lengths of electromagnetic waves. 1930.
M118. The optical rotation of liquids, its variation with wave length, temperature, solvent, and concentration. T. Martin Lowry. 1932. 10c.
M119. Standards yearbook, 1931. $1.00.
M120. Standards and specifications for metals and metal products. George A. Wardlaw. 1933.
M121. Units of weight and measure (United States customary and metric) definitions and tables of equivalents. 1936. (Supersedes C47). 30c.
M126. Temperature interconversion tables (°C–±1°F) and melting points of the chemical elements. 1937. (Supersedes C35. Superseded by M183).
M128. A survey of storage conditions in libraries relative to the preservation of records. 1931.
M131. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce for the fiscal year ended June 30, 1931.
M133. Standards yearbook, 1932.
M135. The international metric system of weights and measures. William Parry. 1932. 10c.
M138. Annual report of the Director of the Bureau of Standards to the Secretary of Commerce for the fiscal year ended June 30, 1932.
M139. Standards yearbook, 1933.
M146. Psychrometric charts for high and low pressures. Donald B. Brooks. 1935 (Supersedes M143).
M151. Design and construction of building exists. 1935. 10c.

M162. Summary report of research at the National Bureau of Standards on the stability and preservation of records on photographic film. B. W. Scribner. 1939. 10c.

M165. Standardization of packages. 1940. (Reprint from M164). 10c.

M166. Charts for testing lens resolution. Irvine C. Gardner. 1940.

M168. Protection of documents with cellulose acetate sheeting. B. W. Scribner. 1940. 5c.

M169. Standardization activities of national technical and trade organizations. Robert A. Martino. 1941. 75c.

M172. Index to the reports of the National Conference on Weights and Measures. Ralph W. Smith and William T. McCormac

This publication replaces National Bureau of Standards Miscellaneous Publication M103 with respect to the index of the several Reports of the National Conference on Weights and Measures. The earlier index covered the Conference Reports from the First to the Twenty-first, inclusive; the present publication covers all Conference Reports from the First to the Thirty-first, inclusive. Thus, the large amount of information on a wide variety of weights and measures subjects, which is embraced within the published reports of the proceedings of the National Conference from the first meeting in 1905 through the meeting in 1941, is made more valuable by reason of the means herein provided for locating readily all material on any specific subject and all material presented by any particular speaker. Oct. 14, 1942. 38 p. 10c. (Supersedes M103).

M173. The grade terminology problem......................Ihler J. Fairchild

Sets forth in digest form the grade terms, designations, and bases for grading or rating for sixty-four commodities and characteristics selected as broadly representative of the various grading and rating systems used in the United States of America. These terminologies and designations are compared in the light of the technical background for each commodity and impartially from the viewpoint of the buyer, seller, the inspection or testing agency, enforceability and provisions for future improvement in a search for the underlying principles and postulates as a general guide in the selection, formulation, or revision of grade designations in the future. Five general conclusions are drawn in order that grade terminology for the future may be further coordinated, simplified, and clarified. March 7, 1944. 29 p.

Sectional Committee on Building Code Requirements and Good Practice Recommendations for Masonry — A41.

Building Code Requirements for Masonry (ASA A41.1-1944) is a complete code
of minimum requirements for masonry construction including definitions, requirements for materials, allowable stresses and general requirements for all types of masonry except reinforced masonry. This document, prepared by American Standards Association Sectional Committee A41 under the sponsorship of the National Bureau of Standards, is one of a series of building code standards prepared by various committees under the jurisdiction of the Building Code Correlating Committee of the American Standards Association. The basis of the requirements of this code is discussed in an appendix. Mar. 15, 1944. 37 p. 15c. (Supersedes BH6.)

M175. Antiscatter treatments for glass.
Frank W. Reinhart, Ruth A. Kronstadt, and Gordon M. Kline

The relative effectiveness of various commercial and experimental antiscatter treatments for glass was investigated at the request of the United States Office of Civilian Defense. A vacuum-concussion apparatus was used to test glass treated with lacquers, tapes, plastic films, and adhesive-fabric combinations. The materials which gave satisfactory results as initially applied were subjected to wet-dry cyclic and heat tests to determine the aging characteristics of the antiscatter materials. Only a few materials retained the particles of glass satisfactorily in the vacuum test after subjecting to the two accelerated aging tests. A review is included of the experimental work and experiences of the British in developing treatments for glass to prevent it from scattering when fractured by bomb explosions. June 19, 1944. 31 p. 10c.

M176. Nomographs and charts for transmission lines. J. A. Dickinson

Chart 1 consists of two conductor loading nomographs from which, the vertical, and transverse wind loadings being given, the total conductor loading may be obtained.
Chart 2 consists of: Bending moments due to wind on a pole; and ultimate resisting moments of wood poles.
Chart 3 is the catenary curve giving values of the sag at points on the catenary curve expressed in pence of the center sag.
These are all full size reproductions of charts appearing in much reduced size in Handbook H39, Discussion Handbook, Part 2, N. E. S. C. Aug. 7, 1944. 3 p. 25c.

M177. Tests of instruments for the determination, indication, or recording of the specific gravities of gases.
Francis A. Smith, John H. Eisman, and E. Carrol Creitz

At the request of the American Society for Testing Materials, the National Bureau of Standards completed in 1941 a critical study of instruments available to industry for the determination, indication, or recording of the specific gravities of gases. Instruments were submitted for test by all interested manufacturers.

The study of 11 instruments with 15 test gases of known specific gravities, comprised determinations of accuracy and reproducibility, of the effects of changes of temperature, relative humidity and water content of the surrounding air, and of sources of error and applicable corrections. The test gases ranged in specific gravity from helium (0.15), in steps of approximately 0.15, to butane (2.06). The probable errors in the values of the specific gravities of the test gases and mixtures used as standards of reference averaged ± 0.0004, which made it possible to fix the errors of the instruments to 0.0001 specific gravity unit. Jan. 20, 1947. 143 p. $1.00.

P. A. Cooley and A. E. Rapuzzi

This is the third edition of the Directory, issued first in 1925, and again in 1932. It contains an alphabetical list of commodities and a thoroughly classified list of the specifications formulated by organizations having national recognition or agencies speaking with the authority of the Federal Government. A special effort has been made to increase the usefulness of the Directory. Where the use to which a commodity is put is not self evident from the title of the specification, a brief statement of this use is given. There is also given a brief summary of each specification so that the reader may to some extent judge for himself whether the scope of the specification fits his particular need. The detailed plans in accordance with which the Directory has been compiled were formulated or approved by an advisory board composed of representatives of 14 national organizations interested in the preparation and utilization of specifications. The commodity classification utilized represents a consolidation and simplification of Schedules A and B developed many years ago by the Bureau of Foreign and Domestic Commerce and used currently by the War Production Board. June 30, 1945. 1311 p. $4.00.
M178. (Supplement). Supplement to the National directory of commodity specifications.

This is a Supplement to the revised National Directory of Commodity Specifications issued in 1945. The purpose of the Directory is to list and briefly describe the standards, specifications, and codes that are formulated by all nationally known and recognized trade associations or technical societies as well as the specifications of governmental agencies that represent the Federal Government. An alphabetical index lists individual items under their various trade and technical names, giving their decimal classification numbers in order to facilitate the easy location of any item in the publication. The brief summaries covering technical characteristics, scope, and application aid the reader in selecting the specifications that fit their particular needs. The Directory is a convenient means for locating commodity specifications that are in existence. March 1, 1947. 322 p. $2.25 (buckram bound).

M179. American standard building code requirements for minimum design loads in buildings and other structures..................George N. Thompson

Recommended minimum requirements for use in building codes are presented covering dead, live, wind, and earthquake loads. These have been prepared by American Standards Association Sectional Committee A58 under the sponsorship of the National Bureau of Standards and constitute one of a series of related standards being developed by various committees under the jurisdiction of the Building Code Correlating Committee of the American Standards Association. An appendix presents information intended to assist local committees and officials in applying the requirements. Oct. 18, 1945. 32 p. 10c.

M180. Carbon brush terminals (electric).........................Andrew C. Tait

This publication consists of a chart showing stock sizes, types, and varieties of carbon brush terminals for all kinds of rotating electrical apparatus. This chart is a replica of that included in Simplified Practice Recommendation R210-45, Carbon brush terminals (electrical), and is issued separately, on special request of the industry, for wall display purposes. The wall chart will be on heavy paper, in size 16 x 19 inches. June 1, 1945. 1 p. 5c.

The purpose of this investigation was to correlate properties of jar rings with canning tests conducted at the Bureau of Home Economics. Fifty-four different samples of jar rings obtained from 11 different manufacturers were analyzed for rubber content and measurements were made of tensile strength, ultimate elongation, stress at 100 percent elongation, swelling on processing, indentation by apparatus designed to simulate a jar cap, and hardness. Only the swelling, indentation, and hardness tests made before and after processing bore a relation to the canning failures. The relation was not exact because some failures undoubtedly resulted from excessive variations in the jars and tops. Apparatus was developed for accurately measuring profiles of sealing surfaces. Results of the investigation are expressed in terms of a proposed specification for jar rings. Aug. 29, 1945. 18 p. 10c.

An investigation was made to develop improved specifications for sheet materials for lining shipping cases so that the liners would give better service in overseas shipments of supplies, particularly those for our armed forces. The sheetings were given various tests considered to have a bearing on their serviceability, such as strength, stretch, flexibility, resistance to scuffing, puncture, and permeation by water vapor and water. Packages containing the sheetings tested used as liners were subjected to simulated service conditions at a commercial testing laboratory. Correlation of the test data of the sheetings with the results of the simulated service trials indicated the properties that are of importance for satisfactory performance in use. Recommended requirements for these properties are included. Sept. 23, 1946. 23 p. 10c.

M183. Temperature interconversion tables (°C and °F) and melting points of the chemical elements.

This four-page chart is a revised edition of Miscellaneous Publication M126. Pages 1 to 3 give interconversion tables from °C to °F and °F to °C. Page 4 gives a list of the chemical elements, their melting points, and their atomic numbers and weights. April 10, 1947. 4 p. 5c.
M184. U. S. patents on powder metallurgy... Raymond E. Jager and Rolla E. Pollard

A total of 2,253 U. S. Patents pertaining to powder metallurgy are classified under four main headings: (A) Production, (B) Handling and Working, (C) Alloying, and (D) Applications. Under these main headings, the patents are listed by number in chronological order, together with the name of the inventor and a short abstract of the patent. Patents issued up to January 1, 1947, are included. July 1, 1947. 139 p. 30c.

M185. Rubber research and technology at the National Bureau of Standards.
Lawrence A. Wood

The paper consists of a summary of the activities of the National Bureau of Standards relating to natural rubber, synthetic rubbers, and related materials. It gives a brief outline of the work carried out in each of 13 different fields of investigation, and concludes with a bibliography of 174 publications by members of the staff of the National Bureau of Standards. May 1, 1947. 22 p. 10c.

A report of the proceedings of the thirty-second National Conference on Weights and Measures, held in Washington, D. C., September 26, 27, and 28, 1946, and attended by state, county, and city weights and measures officials. 126 p. 40c.

M187. Directory of commercial and college laboratories. Anne E. Rapuzzi

A list is given of commercial testing laboratories throughout the country with indications of the types of commodities which they are willing to test and the kinds of tests made. Special care has been exercised to make this list complete. There is also presented a list of laboratories in colleges which are used not only for purposes of instruction, but also to a considerable extent for testing and research work. Information concerning both the commercial laboratories and the colleges is arranged geographically for ready reference purposes. (Supersedes M171.) Aug. 30, 1947. 65 p. 30c.
SIMPLIFIED PRACTICE RECOMMENDATIONS

“Simplified Practice,” in this series, means reduction of excessive variety of manufactured products, or of methods. Simplified Practice Recommendations are records of stock items retained after superfluous variety has been eliminated. These recommendations are developed by voluntary cooperation among manufacturers, distributors, consumers, and others interested, through a regular procedure of the National Bureau of Standards established for that purpose — a procedure designed to insure not only the initial success of a program, but also its continued adjustment to meet changing industrial conditions.

Each printed booklet contains not only the specific recommendation itself, but also its history and development, the names of trade associations, firms, individuals, and others that approved the recommendation, and the personnel of the standing committee in charge of its maintenance and revisions as needed to keep them current with developments. The status of any recommendation at any time may be determined by writing to the Division of Commodity Standards, National Bureau of Standards, Washington 25, D. C. The date from which each recommendation is effective is given.

R1. Vitrified paving brick. August 15, 1940. 5c.
R2. Bedsteads, springs and mattresses. November 1, 1932. 5c.
R3. Metal lath (expanded and sheet) and metal plastering accessories. April 11, 1944. 5c.
R5. Hotel chinaware. January 1, 1924. 5c.
R8. Ferrous range boilers, expansion tanks, and solar tanks. September 1, 1947. 5c.
R18. Builders’ hardware (nontemplate). (Standards for builders’ hardware are set forth in Commercial Standard CS22-40).
R22. Paper (basic sheet sizes). December 31, 1940. 5c.
R24. Hospital beds. December 1, 1937. 5c.
R27. Cotton duck. November 1, 1936. 5c.
R29. Eaves trough, conductor pipe, and fittings and ridge rolls. February 1, 1942. 5c.
R32. Concrete building units. August 1, 1938.
R34. Warehouse forms. September 24, 1924. 10c.
R35. Steel lockers (single, double, and multiple tier). September 16, 1944. 5c.
R39. Dining-car chinaware. July 1, 1925. 5c.
R40. Hospital chinaware. July 1, 1925. 5c.
R41. Agricultural insecticide and fungicide (package sizes). November 1, 1942. 5c.
R42. Grocers' paper bags. March 1, 1943. 5c.
R43. Paint and varnish brushes. December 15, 1927. 5c.
R44. Box board thicknesses. December 31, 1936. 5c.
R47. Cut tacks and small cut nails. July 1, 1928. 10c.
R48. Shovels, spades, scoops, and telegraph spoons. September 1, 1942. 5c.
R49. Sidewalk, floor and roof lights. March 1, 1926. 5c.
R50. Bank checks, notes, drafts, and similar instruments. March 1, 1926.
R53. Steel reinforcing spirals. December 15, 1932. 5c.
R55. Tinware, galvanized and japanned ware. July 1, 1926.
R56. Carbon brushes (carbon, graphite, and metal-graphite) and brush shunts. June 15, 1936. 5c.
R57. Wrought-iron and wrought-steel pipe, valves, and fittings. October 1, 1932. 5c.
R58. Classification of iron and steel scrap. June 15, 1936. 5c.
R59. Rotary-cutter mill stock for wire-bound boxes. November 1, 1926. 5c.
R60. Packaging of carriage, machine, and lag bolts. November 15, 1943. 5c.
R61. Clay tiles for floors and walls. September 1, 1944. 10c.
R63. Metal spools (for annealing, handling, and shipping wire). January 1, 1928. 5c.
R64. One-pound folding boxes for coffee. July 1, 1930. 5c.
R65. Packaging of overhead electric railway material. October 1, 1931. 5c.
R66. Automobile brake lining. December 1, 1927. 5c.
R68. Metal and nonconducting flashlight cases. June 1, 1941. 5c.
R69. Packaging of razor blades. July 1, 1928. 5c.
R70. Salt packages. September 1, 1946. 5c.
R71. Turnbuckles. January 1, 1928. 5c.
R72. Solid section steel windows. September 1, 1927.
R73. One-piece porcelain insulators. October 1, 1927. 5c.
R74. Hospital and institutional cotton textiles. July 1, 1930. 5c.
R75. Composition blackboard. April 1, 1929. 5c.
R76. Ash handles. August 1, 1940. 5c.
R77. Hickory handles. November 1, 1945. 5c.
R78. Iron and steel roofing. June 1, 1928. 5c.
R79. Malleable foundry refractories. February 1, 1928. 10c.
R80. Folding and portable wooden chairs. March 15, 1928. 5c.
R81. Binders' board. March 1, 1928. 5c.
R82. Hollow metal single acting swing doors, frames and trim. August 1, 1928.
R83. Kalamein doors. April 1, 1928.
R84. Composition books. September 1, 1928. 5c.
R85. Adhesive plaster. October 1, 1947. 5c.
R86. Surgical gauze. June 1, 1947. 5c.
R87. Forms for concrete joist construction floors. May 1, 1932. 5c.
R88. Floor sweeps. June 1, 1937. 5c.
R89. Coated abrasive products. May 15, 1946. 10c.
R92. Hard fiber twine and lath yarn (ply and yarn goods). April 1, 1938.
R93. Paper shipping tags. March 1, 1939. 5c.
R94. Open-web steel joists. October 1, 1930. 5c.
R95. Skid platforms. October 1, 1930. 5c.
R96. Ice cake sizes. October 1, 1928. 5c.
R97. Bell-bottom screw jacks. June 1, 1947. 5c.
R98. Photographic paper. August 1, 1943. 5c.
R101. Metal partitions for toilets and showers. December 1, 1940. 5c.
R103. Industrial truck and trailer solid tires. June 1, 1934. 5c.
R104. Packaging of flashlight batteries. July 1, 1930. 5c.
R105. Wheelbarrows. April 1, 1932. 5c.
R106. Hospital plumbing fixtures. July 1, 1941. 5c.
R108. Dental hypodermic needles. June 15, 1944. 5c.
R110. Soft fiber (jute) twine. November 1, 1929. 10c.
R112. Elastic shoe goring. November 1, 1929. 5c.
R113. Restaurant guest checks. February 2, 1930. 5c.
R114. No. 1 Kraft paper sealing tape. February 1, 1930. 10c.
R115. Full disk buffing wheels. February 2, 1930. 5c.
R116. Dental brush wheels. February 1, 1931. 10c.
R117. Packaging of dental plaster, investment and artificial stone. November 1, 1930. 5c.
R118. Abrasive grain sizes. April 1, 1945. 5c.
R119. Fast selvage terry towels. March 1, 1931. 5c.
R120. Ice-cream brick molds and cartons. June 30, 1940. 5c.
R121. Calcimine brushes (block sizes). March 2, 1931. 5c.
R122. Wire insect screen cloth. November 1, 1931.
R123. Carbonated beverage bottles. May 1, 1943. 5c.
R124. Polished cotton twine. November 1, 1931. 5c.
R125. Waxed tissue paper. November 1, 1931. 5c.
R126. Set-up paper boxes (used by department and specialty stores). January 1, 1941. 5c.
R127. Folding paper boxes (used by department and specialty stores). January 1, 1941. 5c.
R128. Corrugated paper boxes (used by department and specialty stores). January 1, 1941. 5c.
R129. Notion and millinery paper bags (used by department and specialty stores). January 1, 1941. 5c.
R130. Dental lathe grinding wheels. January 1, 1932. 5c.
R132. Ice cream cups and cup caps. July 1, 1936. 5c.
R133. Surgical dressings. July 1, 1947. 10c.
R134. Singletrees, doubletrees and neckyokes. April 1, 1932. 5c.
R137. Dental cone-socket mirrors. September 1, 1932. 5c.
R138. Dental rubber (base and veneering). September 1, 1932. 5c.
R139. Commercial laundry extractors. October 1, 1932. 5c.
R140. Commercial laundry flat-work ironers. October 1, 1932. 5c.
R141. Commercial laundry tumblers. October 1, 1932. 5c.
R142. Commercial laundry washers. October 1, 1932. 5c.
R143. Paper cones and tubes (for textile winding). October 15, 1939. 5c.
R144. Paints, varnishes, and related products (colors and containers). November 1, 1945. 5c.
R145. Packaging of electric railway motor and controller parts. March 15, 1933. 5c.
R146. Corrugated and solid fiber boxes for canned fruits and vegetables. December 1, 1941. 5c.
R149. Sieve (screen) sizes of canned peas. May 1, 1933. 5c.
R150. Copper wire nails. July 1, 1934. 5c.
R151. To be assigned.
R152. Basic dimensions for cones for warp and knitting yarns and hole sizes for bobbins for filling cop winders. March 1, 1934. 5c.
R153. Hole sizes for taper tubes for filling cop winders. March 1, 1934. 5c.
R154. Cupola refractories. October 1, 1938. 10c.
R155. Cans for fruits and vegetables (names, dimensions, capacities, and designated use). September 1, 1940.
R156. Extracted-honey packages. June 1, 1941. 5c.
R157. Steel horizontal firebox heating boilers. January 1, 1937. 5c.
R158. Forged axes. November 17, 1942. 5c.
R159. Forged light hammers. November 17, 1942. 5c.
R160. Forged hatchets. November 17, 1942. 5c.
R161. Packaging of automotive (bus) engine parts. September 1, 1935. 5c.
R162. Packaging of air brake (electric railway) parts. September 1, 1935. 5c.
R164. Tin-lined steel ice cream cans. July 1, 1938. 5c.
R165. Photographic film for miniature copies of records. August 1, 1936. 5c.
R166. Color code for marking steel bars. April 1, 1937. 5c.
R167. Counter, window and radiator brushes. June 1, 1937. 5c.
R169. Bolts and nuts (stock-production sizes). October 1, 1945. 10c.
R171. Wooden boxes for canned fruit and vegetables. July 1, 1938. 5c.
R172. Stock folding boxes for garments and dry cleaning. September 1, 1938. 5c.
R173. Stock folding boxes for millinery. September 1, 1938. 5c.
R175. Heavy-duty, round, nesting, paper, food and beverage containers and lids. September 15, 1940. 5c.
R177. Single-faced corrugated-board rolls (used by department and specialty stores). January 1, 1941. 5c.
R178. Packaging of first-aid unit dressings and treatments. June 30, 1941. 5c.
R179. Structural insulating board (vegetable fiber). December 15, 1946. 5c.
R180. Copper conductors for building purposes. July 1, 1941. 5c.
R181. Non-ferrous range boilers. July 1, 1941. 5c.
R182. Food service equipment. October 1, 1941. 5c.
R183. Brass or bronze valves (gate, globe, angle, and check). September 1, 1946. 5c.
R184. Iron valves (gate, globe, angle, and check). March 1, 1947. 5c.
R185. Pipe fittings (gray cast iron, malleable iron, and brass or bronze). September 1, 1947. 10c.
R186. Cotton coton flannels for work gloves. November 1, 1944. 5c.
R187. Food trays or dishes (waxed paper, molded wood pulp, and wood types). April 1, 1942. 5c.
R188. Spring and slotted clothepins (sizes and packaging). April 1, 1942. 5c.
R189. Round and flat hardwood toothpickes (packaging and sizes). April 1, 1942. 5c.
R190. Stove pipe and accessories. August 1, 1942. 5c.
R192. Crayons, chalks, and related art materials for school use (types, sizes, packaging, and colors) May 1, 1945. 5c.
R193. Packages for shortening, salad oil, and cooking oil. July 1, 1942. 5c.
R194. Cotton jersey cloth and tubing for work gloves. June 1, 1942. 5c.
R195. Dental excavating burs. September 1, 1946. 5c.
R196. Glass containers for green olives (capacities, dimensions, and packaging). November 1, 1942. 5c.
R197. Glass containers for maraschino cherries (capacities, dimensions, and packaging). November 1, 1946. 5c.
R198. Wire rope. February 15, 1943. 10c.
R199. Cloth window shades. March 1, 1943. 5c.
R201. Iron and steel pop safety valves. September 15, 1943. 5c.
R202. Air compressors for automotive service stations and garages (motor driven, \(\frac{1}{2} \) to 10 horsepower). December 1, 1943. 5c.
R203. Containers and packages for household insecticides (liquid spray type). January 1, 1944. 5c.
R204. Bronze pop safety valves, and bronze, iron, and steel relief valves. February 1, 1944. 5c.
R205. Iron and steel relief valves for petroleum, chemical, and general industrial services. October 1, 1944. 5c.
R206. Swiss pattern files. October 6, 1944. 5c.
R207. Pipes, ducts, and fittings for warm-air heating and air conditioning. March 1, 1945. 10c.
R208. Fluid milk cans. August 1, 1946. 5c.
R209. Peanut butter packages and containers. June 1, 1945. 5c.
R214. Metal-cutting band saws (hard edge, flexible back), December 17, 1945. 5c.
R217. Copper water tube and copper and brass pipe. March 15, 1946. 5c.
R218. Paper tubes for packaging milk-bottle caps. March 1, 1946. 5c.
R219. Automatic regulating valves. April 1, 1946. 5c.
R220. Open-end and box wrenches. April 15, 1946. 5c.
R221. Steel rivets (stock production sizes). June 1, 1946. 5c.
R222. Hot-rolled carbon steel bars and bar-size shapes (produced from billets or blooms). June 30, 1946. 10c.
R223. Wire nails and staples. March 1, 1947. 10c.
R224. Medical and surgical hypodermic needles (for hospital use). January 1, 1947. 5c.
COMMERCIAL STANDARDS

Commercial standards are voluntary, recorded standards agreed upon by producers, distributors, and consumers, covering terminology, types, classifications, grades, sizes, and use characteristics of manufactured products as a basis for better understanding between buyers and sellers. They generally include standard methods of test, rating, certification, and labeling, and provide a uniform basis for fair competition. Each standard includes a list of members of the standing committee, a history of the project, a list of acceptors, and, except for recent issues, a list of other commercial standards.

The first date at the end of the abstract is the date the standard became effective; the second date, where given, is the date designated for clearance of nonstandard items from existing stocks.

Where prices are omitted, the standard may, in general, be consulted at the leading technical and public libraries, or be obtained in mimeographed form from the National Bureau of Standards.

CS0. Commercial Standards and their value to business. Free from Bureau.
CS3. Stoddard solvent (dry cleaning). (3d ed.) June 20, 1940. 10c.
CS5. Pipe nipples; brass, copper, steel, and wrought iron. Feb. 15, 1946. 5c.
CS6. Wrought-iron pipe nipples. (Superseded by CS5).
CS7. Standard weight malleable iron or steel screwed unions. May 1, 1930.
CS10. Brass pipe nipples. (Superseded by CS5).
CS11. Moisture regains of cotton yarns (2d ed.) Aug. 1, 1941. 5c.
CS22. Builder's hardware (nontemplate) (2d ed.) July 1, 1940. 10c.
CS25. American national special screw threads. (Superseded by CS24).
CS32. Cotton cloth for rubber and pyroxylin coating. June 15, 1931. 5c.
CS33. Knit underwear (exclusive of rayon). July 30, 1943. 20c.
CS34. Bag, case, and strap leather. Aug. 1, 1931. 5c.
CS36. Fourdrinier wire cloth. (2d ed.) March 15, 1933.
CS37. Steel bone plates and screws. Nov. 16, 1931. 10c.
CS38. Hospital rubber sheeting. June 1, 1932.
CS40. Surgeons' rubber gloves. July 6, 1932. 5c.
CS41. Surgeons' latex gloves. July 6, 1932. 5c.
CS42. Fiber insulating board. (3d ed.) Aug. 25, 1943. 5c.
CS44. Apple wraps. Dec. 1, 1932. 5c.
CS45E. Douglas fir plywood (export grades). Nov. 1, 1936. 5c.
CS46. Hosier lengths and sizes. (3d ed.) Aug. 15, 1940. 10c.
CS47. Marking of gold-filled and rolled-gold-plate articles other than watch cases. July 1, 1934. 5c.
CS48. Domestic burners for Pennsylvania anthracite (underfeed type). (2d ed.) Nov. 30, 1940. 5c.
CS49. Chip board, laminated chip board, and miscellaneous boards for bookbinding purposes. Dec. 15, 1934. 5c.
CS50. Binders board for bookbinding and other purposes. Oct. 1, 1934. 5c.
CS51. Marking articles made of silver in combination with gold. July 1, 1936. 5c.
CS52. 100-percent mohair plain velvet, 100-percent mohair plain frieze, and 50-percent mohair plain frieze. July 8, 1938. 5c.
CS54. Mattresses for hospitals. Sept. 6, 1935. 5c.
CS55. Mattresses for institutions. Sept. 6, 1935. 5c.
CS56. Oak flooring (2d ed.) Feb. 1, 1941. 5c.
CS56E. Oak flooring (exports). Feb. 5, 1941. 5c.
CS57. Book cloths, buckrams, and impregnated fabrics for bookbinding purposes except library bindings. (2d ed.) June 20, 1940. 5c.
CS60E. Hardwood dimension lumber (exports). July 1, 1941. 5c.
CS64. Walnut veneers. Dec. 15, 1937. 5c.
CS66. Marking of articles made wholly or in part of platinum. June 20, 1939. 5c.
CS67. Marking articles made of karat gold. Nov. 25, 1939. 5c.
CS68. Liquid hypochlorite disinfectant, deodorant and germicide. June 10, 1938. 5c.
CS69. Pine oil disinfectant. June 10, 1938. 5c.
CS70. Phenolic disinfectant (emulsifying type). (2d ed.) Feb. 1, 1941. 5c.
CS71. Phenolic disinfectant (soluble type). (2d ed.) Feb. 1, 1941. 5c.
CS72. Household insecticide (liquid spray type). June 10, 1938. 5c.
CS74. Solid hardwood wall paneling. May 20, 1939. 5c.
CS75. Automatic mechanical draft oil burners designed for domestic installations. (2d ed.) July 20, 1942. 10c.
CS76. Hardwood interior trim and molding. Oct. 25, 1939. 5c.
CS77. Sanitary cast-iron enameled ware. May 25, 1940. 5c.
CS81. Adverse-weather lamps for vehicles (after market). Jan. 1, 1941. 5c.
CS82. Inner-controlled spotlamps for vehicles (after market). Jan. 1, 1941. 5c.
CS83. Clearance, marker, and identification lamps for vehicles (after market). Jan. 1, 1941. 5c.
CS84. Electric tail lamps for vehicles (after market). Jan. 1, 1941. 5c.
CS85. Electric license-plate lamps for vehicles (after market). Jan. 1, 1941. 5c.
CS86. Electric stop lamps for vehicles (after market). Jan. 1, 1941. 5c.
CS87. Red electric warning lanterns. Jan. 1, 1941. 5c.
CS88. Liquid-burning flares. Jan. 1, 1941. 5c.
CS89. Hardwood stair treads and risers. Oct. 10, 1940. 5c.
CS90E. Crawler mounted, revolving power shovels, lifting cranes, dragline and clamshell excavators (export classifications). Feb. 15, 1947. 15c.
CS91. Factory-fitted Douglas fir entrance doors. Feb. 10, 1941. 5c.
CS92. Cedar, cypress, and redwood tank stock lumber. Apr. 15, 1941. 5c.
CS93. Portable electric drills (exclusive of high frequency). Oct. 18, 1941. 5c.
CS94. Calking lead. June 25, 1941. 5c.
CS95. Lead pipe. June 25, 1941. 5c.
CS96. Lead traps and bends. June 25, 1941. 5c.
CS97. Electric supplementary driving and passing lamps for vehicles (after market). Jan. 8, 1942. 5c.
CS98. Artists' oil paint. May 10, 1942. 5c.
CS100. Porcelain-enamed steel utensils. (2d ed.) Oct. 25, 1944. 10c.
CS101. Flue-connected oil-burning space heaters equipped with vaporizing pot-type burners. Jan. 1, 1943. 10c.
CS103. Cotton and rayon velour (jacquard and plain). Nov. 10, 1942. 5c.
CS104. Warm-air furnaces equipped with vaporizing pot-type oil burners. Oct. 1, 1946. 15c.
CS105. Mineral wool; loose, granulated, or felted form, in low-temperature installations. March 1, 1943. 5c.
CS106. Boys pajama sizes (woven fabrics). Dec. 9, 1944. 5c.
CS107. Commercial electric-refrigeration condensing units.
CS110. Tire repairs, vulcanized (passenger, truck and bus tires). Aug. 20, 1943. 5c.
CS111. Earthenware (vitreous glazed) plumbing fixtures. Oct. 15, 1943. 5c.
CS113. Oil-burning floor furnaces equipped with vaporizing pot-type burners. Feb. 17, 1944. 10c.
CS114. Hospital sheeting for mattress protection. Dec. 1, 1943. 5c.
CS116. Bituminized-fibre drain and sewer pipe. March 10, 1944. 5c.
CS118. Marking of jewelry and novelties of silver. Aug. 15, 1944. 5c.
CS121. Women's slip sizes (woven fabrics). April 20, 1945. 5c.
CS122. Western hemlock plywood. March 5, 1945. 5c.
CS123. Grading of diamond powder. May 5, 1945. 5c.
CS127. Self-contained mechanically refrigerated drinking water coolers. Effective six months after official announcement of cessation of hostilities. 10c.
CS128. Men's sport shirt sizes — woven fabrics. (Other than those marked with regular neckband sizes). Sept. 20, 1945. 5c.
CS129. Materials for safety wearing apparel. May 6, 1946. 5c.
CS131. Industrial mineral wool products, all types — testing and reporting. March 15, 1946. 10c.
CS132. Hardware cloth. April 15, 1946. 5c.
CS133. Woven-wire netting. June 1, 1946. 5c.
CS135. Men's shirt sizes (exclusive of work shirts). July 15, 1946. 5c.
CS139. Work gloves. March 6, 1947. 10c.
CS140. Testing and rating convectors. March 1, 1948. 10c.

CS5. Pipe nipples; brass, copper, steel and wrought-iron.
Covers the detail sizes and dimensions for brass, copper, steel, ferrous-alloy, and wrought-iron pipe nipples; reference to the appropriate Federal and ASTM Specifications controlling the quality of the pipe from which they are made and the threads; chamfering; tolerance on length; standard assortments of lengths for cartons of each size; and a recommended system of labeling to distinguish pipe nipples made according to these standards from those made from crop ends or used pipe. The pamphlet also contains a history of the project, list of acceptors, and the membership of the Standing Committee which is to consider all future revisions prior to circulation for written acceptance. February 15, 1946 (for new production). 5c.
Gives the standard classifications and corresponding body measurements set up by the dress pattern industry as a voluntary basis for dress pattern sizes. It includes for the purposes of this standard a definition of "body measurements." It also gives recommended standard widths of material for pattern layouts. Oct. 20, 1944 (for new production). 5c.

CS14. Boys’ button-on waists, shirts, junior and sport shirts.
Gives size designations, methods of measuring, and standard minimum measurements for boys’ waists and shirts made of woven fabrics. It also includes a system of button spacing for boys’ button-on waists, and a recommended label for use in guaranteeing full size. Aug. 20, 1943 (for new production). 5c.

CS15. Men’s pajama sizes — woven fabrics.
Gives size designations, methods of measuring, and standard minimum measurements for men’s pajamas, whether made from shrunk or unshrunk woven fabrics, together with a recommended label for guaranteeing conformity to the standard. Jul. 20, 1946 (for new production). 5c.

Provides for the marking of treated and untreated finished tents, tarpaulins, and covers, or the fabrics thereof, to show the weight of the fabric in the grey in ounces per square yard; the cut size and the finished size at time of completion of manufacture; the type of fabric; a statement to the effect that canvas products are subject to shrinkage due to variable climatic conditions; and definitions. It requires that no markings or sales descriptions be used to show the finished weight of the fabric which creates confusion in merchandizing. The pamphlet includes a basis and method for marking; the wording of a guarantee statement; nomenclature; definitions; conversion tables; history of the project; and the membership of the Standing Committee. April 15, 1946 (for new production). 5c.

CS33. Knit underwear (exclusive of rayon).
Gives standard methods of measuring and standard measurements set up by the underwear industry as a voluntary basis for the production and purchasing of knit underwear (exclusive of rayon). It also includes recommended box sizes, cone colors for single cotton yarns, and methods of washing. July 30, 1943 (for new production). 20c.

CS35. Hardwood plywood (3d ed.)
Provides minimum specifications for four standard types of hardwood plywood based on the water resistance and durability of the bond, in four standard grades. It covers tests, densities, standard thicknesses, widths and lengths, tolerances, workmanship, packing, inspection, grade-marking and certification, method of ordering, and nomenclature and definitions. Feb. 20, 1947 (for new production). 10c.

CS42. Structural fiber insulating board.
Provides minimum specifications for five classes of structural fiber insulating board known as building board, lath for plaster base, roof insulation board, interior board, and sheathing. It covers physical requirements and tests for thermal conductivity, strength, absorption, and expansion, and sets forth the standard commercial sizes, tolerances, and methods of packing and labeling. Aug. 25, 1943 (for new production). 5c.

CS59. Textiles — testing and reporting (4th ed.).
Records the standard methods of testing and reporting results of tests to determine breaking strength; bursting strength; colorfastness to chlorine, crocking, cleaning (dry and wet), atmospheric gases, laundering, light, perspiration, and pressing (dry and wet); shrinkage in laundering and cleaning; and yarn slippage. They are applicable to textiles composed entirely of cotton, linen, wool, silk or rayon and other synthetic fibers, or mixtures thereof. It also includes the wording of a certificate which may be used on laboratory reports to inform clients that the methods of test and the results thereof are reported in accordance with the requirements of the commercial standard. Feb. 20, 1944 (for testing and reporting). 15c.

CS73. Old growth Douglas fir standard stock doors. (3d ed.)
Provides minimum specifications for four grades of old growth Douglas fir standard stock doors, made in four thicknesses, 3/4, 1 1/8, 1 3/8, and 1 3/4 in. It covers construction, dimensions, and grading tolerances for seventy-seven standard stock designs or layouts which include house, garage, and cupboard doors, as well as sidelights. General
requirements for material, workmanship, and construction are set forth, together with provisions for inspection and labeling. Sept. 20, 1945 (for new production). 10c.

CS90E. Power cranes and shovels, convertible full revolving type: crawler, truck and wheel mounted: including clamshell, dragline, lifting crane, hoe, pile driver and skimmer scoop operating equipment (export classifications). (2d ed.)

Covers standard nomenclature and definitions, requirements for stability, propulsion, steering controls, climb and capacity, engineering data to be furnished for purposes of comparison for each machine offered, and shovel sizes of convertible full revolving type crawler, truck and wheel mounted, power cranes and shovels including clamshell, dragline, lifting crane, hoe, pile driver and skimmer scoop for export from the United States of America. It also includes a uniform system of labeling and wording for certificates of compliance with the standard to be furnished with each machine. Feb. 15, 1947 (for new production). 15c.

CS98. Artists' oil paint.

Covers one grade of artists' oil paint and includes criteria of color, nomenclature, chemical composition, working qualities, light-fastness, and performance. Also covers methods of testing to demonstrate conformance with the standard, packaging, and certification of quality. May 10, 1942 (for new production). 5c.

CS99. Gas floor furnaces (gravity circulating type).

Includes definitions, appliance construction requirements, sizing, placement, general installation requirements, venting, and gas connections. It also covers guarantee, certification, and labeling of gravity circulating-type gas floor furnaces. May 25, 1942 (for new production). 5c.

CS100. Porcelain-enameled steel utensils. (2d ed.).

Provides performance requirements for porcelain-enameled steel utensils, both multiple-coated and single-coated, for cooking, household, food storage, and hospital use. The requirements include quality of base metal, appearance, thickness, enameling, resistance to boiling acid, thermal shock, and impact; capacity, methods of test, and labeling. Oct. 25, 1944 (for new production). 10c.

CS101. Flue-connected oil-burning space heaters equipped with vaporizing pot-type burners.

Covers definition, general requirements, design and construction, performance, laboratory test code, and publication of heater ratings. It also covers informative labeling and guarantees on oil-burning space heaters. Jan. 1, 1943 (for new production). 23 p. 10c.

CS102E. Diesel and fuel-oil engines (export classifications).

Covers nomenclature and definitions, ratings, rules for fuel- and lubricating-oil guarantees, standard equipment, lists of spare parts, engine and accessory data, certification, and manufacturers' recommendations on other necessary or desirable equipment for stationary, machine and portable Diesel and fuel-oil engines in export from the United States. Oct. 30, 1942 (for new production). 10c.

CS103. Cotton and rayon velour (jacquard and plain).

Records minimum requirements for width, weights of the pile and the finished fabric, number of pile tufts per square inch, ends of pile and picks per inch, pile coverage, colorfastness to light, anchorage of pile, and abrasion resistance of cotton and rayon velour (jacquard and plain) for upholstery purposes. The standard also includes methods of test and the manner in which a group of manufacturers are to label their fabrics to inform the purchasers that the quality is in accordance with the requirements of the commercial standard. Nov. 10, 1942 (for new production). 5c.

CS104. Warm-air furnaces equipped with vaporizing pot-type oil burners.

Covers general requirements, furnace design and construction, performance, test codes for forced air and gravity furnaces, publication of furnace ratings, informative labeling, and guarantees. This standard does not include floor furnaces. Oct. 1, 1946 (for new production). 15c.

CS105. Mineral wool; loose, granulated, or felted form, in low-temperature installations.

Covers minimum physical and chemical requirements of loose, granulated, and felted mineral wool for use in insulating low-temperature areas. It includes thickness of insulation required for various operating temperatures, specifications for
auxiliary materials, tests, installation requirements, and method of guarantee compliance with the standard. March 1, 1943 (for new production). 5c.

CS106. Boys' pajama sizes (woven fabrics).

Gives size designations, methods of measuring, and standard minimum measurements for boys' and boys' junior pajamas, whether made from shrunken or unshrunken fabrics, together with a recommended label for use in guaranteeing conformity to the standard. Dec. 9, 1944 (for new production). 5c.

CS107. Commercial electric-refrigeration condensing units.

Covers requirements, rating, motor loading, and testing of air-cooled and water-cooled, belt-driven commercial electric-refrigeration condensing units, in 1/2- to 3-hp sizes, and water-cooled units of 5 hp, using methyl chloride, Freon 12, or SO2 refrigerants. Covers all other applications, including air conditioning. Covers minimum requirements for controls, shutoff valves and receiver-tank capacities, and also a uniform method of guaranteeing compliance with the standard and installation and service pointers.

CS108. Treading automobile and truck tires.

Covers inspection of the tire to be treaded and the conditions necessary for satisfactory treading, condition of casing and quality of cement used, equipment, workmanship, and guarantee to the purchaser. June 10, 1943. 10c.

Covers surface-fired and magazine feed, solid-fuel-burning warm air furnaces with forced-air circulation in sizes up to 80,000 Btu output, when using chestnut size anthracite as a test fuel.

CS110. Tire repairs, vulcanized (passenger, truck, and bus tires).

Covers general requirements for the inspection of the injury to the tire; the minimum acceptable condition of the tire; the method of repair for maximum service; and the recommended wording of a uniform guarantee label. Aug. 20, 1943 (for new production). 5c.

CS111. Earthenware (vitreous glazed) plumbing fixtures.

Covers earthenware (vitreous-glazed) plumbing fixture items such as bath tubs, lavatories, kitchen sinks, laundry trays and similar products. The requirements cover properties of the material, methods of test, method of inspection, grading, definitions, and labeling of items which meet the standard. Oct. 15, 1943 (for new production). 5c.

CS112. Homogenous fiber wallboard.

Provides minimum specifications for one grade of homogenous fiber wallboard of a nominal thickness of 1/8 inch, 4 feet wide, and from 6 to 12 feet long. It covers the physical requirements and tests for tensile and transverse strength, deflection, water absorption, and linear expansion, and sets forth the standard commercial sizes, tolerances, and methods of packing and labeling. Oct. 25, 1943 (for new production). 5c.

CS113. Oil-burning floor furnaces equipped with vaporizing pot-type burners.

Covers oil-fired, flue-connected floor furnaces equipped with vaporizing pot-type burners with or without mechanical draft or forced circulation, either manually or automatically controlled. It includes sections on definitions, general requirements, design and construction, performance, laboratory test code, publication of furnace ratings, informative labeling, guarantees, general installation requirements, sizing, placement, and venting. Feb. 17, 1944 (for new production). 10c.

CS114. Hospital sheeting for mattress protection.

Covers fabrics, coating material and workmanship; resistance to mineral oil and disinfectants; resistance to sterilization, accelerated aging and cracking; permeability to water; burning rate; thickness; breaking and tearing strengths; and methods of test. The wording of a guarantee statement by the manufacturer is included. Dec. 1, 1943 (for new production). 5c.

Covers uses, general requirements, dimensions, physical and chemical properties, and methods of testing of bituminized-fibre drain and sewer pipe (including 45° and
90° bends, straight couplings, and 5° angle couplings) in diameters ranging from 2 to 8 inches and in 5- and 8-foot lengths. It also establishes a uniform method of guaranteeing compliance with the standard. Mar. 10, 1944 (for new production). 5c.

CS117. Mineral wool: Blankets, blocks, insulating cement, and pipe insulation for heated industrial equipment.

Covers minimum physical requirements for mineral wool: Blankets, blocks, insulating cement, and pipe insulation for heated industrial equipment. It also covers standard sizes, tolerances, recommended insulation thickness for various operating temperatures, instructions on installation and method of guaranteeing compliance with the standard. May 25, 1944. 10c.

CS118. Marking of jewelry and novelties of silver.

Covers the marking of silver articles commonly or commercially known as jewelry or novelties (other than flatware, hollow ware and toilet ware) offered for sale in the United States.

Also sets forth definitions, quality marks, composition, exemptions, and certification labeling of sterling and coin silver jewelry. August 15, 1944 (for new production). 5c.

CS(E)119. Dial indicators (for linear measurements).

Covers the major essential requirements for precision dial indicators in the American Gage Design type in four groups of sizes, ranging from \(1\%\) in. to \(3\%\) in. bezel diameter, with four classes of dial markings in English measure, namely, 0.00005, 0.0001, 0.0005, and 0.001 in., and four classes of dial markings in metric measure, namely, 0.001, 0.002, 0.005, and 0.01 mm. Jan. 1, 1945 (for new production). 5c.

CS120. Standard stock ponderosa pine doors.

Provides minimum specifications for quality and construction of house, garage, cupboard, combination, summer, storm, and toilet doors, and sidelights made of ponderosa pine. Requirements for material, workmanship, sticking, sizes, and grading are set forth, together with illustrations and layouts for 120 different designs. The standard also covers tolerances, inspection, nomenclature and definitions and a method of certifying compliance. October 1, 1946 (for new production). 10c.

CS121. Women’s slip sizes (woven fabrics).

Gives standard methods of measuring and standard minimum measurements set up by the women’s slip industry on a voluntary basis for the production and purchasing of women’s slips (made from woven fabrics). It also includes a recommended label for use in denoting conformity to the standard. April 20, 1945 (for new production). 5c.

CS122. Western hemlock plywood.

Includes general requirements as to workmanship, glueing, veneer thickness, loading, and packing, together with detail specifications for four grades of moisture-resistant-type Western hemlock plywood. There are also included tests for bondage, table of standard sizes, size tolerances, inspection and grade marking provisions, and nomenclature and definitions. March 5, 1945 (for new production). 5c.

CS123. Grading of diamond powder.

Covers grade designations, grain size and size range, amount of “fines” or particles smaller than the minimum for each designation, adulteration and impurities, methods of sampling and inspection, and method of guaranteeing compliance with this standard. May 5, 1945 (for new production). 5c.

CS(E)124. Master disks.

Covers the major essential material and dimensional requirements for master disks in the American Gage Design styles in sizes from above 0.105 in. to and including 8.010 in., as well as specifications for hardness, finish, accuracy tolerances in three classes, and methods of test. It also covers uniform methods of marking, identification, and labeling to guarantee compliance with the standard. Sept. 15, 1945 (for new production). 5c.

CS125. Prefabricated homes.

Provides minimum requirements for one, one and a half, and two story prefabricated homes. It covers structural strength of the various component parts, requirements for light and ventilation, and recommended requirements for foundations, chimneys, heating, plumbing, insulation, and electrical wiring. It includes general requirements for material, workmanship as provided by the manufacturer, erection
at site, and assembly of prefabricated units, and protection during transportation and erection. May 10, 1945 (for new production).

CS126. Tank mounted air compressors.
Covers ratings, motor loading, methods of testing single-stage and two-stage air compressors from $\frac{1}{2}$ horsepower to 10 horsepower, inclusive. It also includes informative labeling. Dec. 5, 1945 (for new production). 10c.

CS127. Self-contained mechanically refrigerated drinking water coolers.
Covers definitions, general requirements, methods of testing, method of rating, standard rating conditions, size designations, minimum and maximum capacities, and uniform guarantees of ratings of self-contained mechanically refrigerated drinking water coolers of the insulated storage and instantaneous types, air-cooled or water-cooled, and of certain other listed types and sizes. Effective six months after official announcement of cessation of hostilities. (For new production). 10c.

CS128. Men's sport shirt sizes — woven fabrics (other than those marked with regular neckband sizes).
Gives size designations, methods of measuring, and standard minimum measurements for men's sport shirts (other than those marked with regular neckband sizes), whether made from shrunken or unshrunken woven fabrics, together with a recommended label for guaranteeing conformity to the standard. Sept. 20, 1945 (for new production). 5c.

CS129. Materials for safety wearing apparel.
Covers asbestos fabrics, flame resistant cotton fabrics, leather, woolen fabrics and accessory materials used in the manufacture of safety wearing apparel. The standard also covers methods of test, and methods of labeling to certify or guarantee quality, together with a list of acceptors, history of the project, and a roster of the Standing Committee. May 6, 1946 (for new production). 5c.

CS130. Color materials for art education in schools.
Covers material and workmanship, working qualities, color, packing, methods of test, and quality guarantee for wax and pressed crayons, semi-moist and dry cake water colors, liquid and powder tempera, Type “A” and Type “B” white dustless blackboard crayons, sight saving and colored dustless crayons, molded sight saving, white and colored chalk crayons, lecturers' colored chalk and dustless crayons, pastel crayons, and modeling clay. January 1, 1946 (for new production). 10c.

CS131. Industrial mineral wool products, all types — testing and reporting.
Provides uniform methods for testing and reporting the physical and chemical properties of mineral wool products made of rock, slag, or glass and describes equipment required to produce standard results. Methods of test are included for adhesive strength; compressive strength; corrosion resistance; coverage; density; fire resistance; moisture adsorption; odor emission; shot content; temperature stability and thermal conductivity. It also includes the working of a certification which may be used on laboratory reports to inform clients that the method of test and the results thereof are reported in accordance with the requirements of the commercial standard. March 15, 1946 (for testing and reporting). 10c.

CS132. Hardware cloth.
Describes the nomenclature, definitions and general requirements for commercial standard hardware cloth designed and woven primarily for use for window guards, screen door guards, tree guards, industrial machinery guards, and other farm and industrial purposes. April 15, 1946 (for new production). 5c.

CS133. Woven-wire netting.
Describes the nomenclature, definitions, and general requirements for galvanized steel, woven wire netting designed for use for poultry runs and pens, domestic animal pens, fur-bearing animal pens, crap traps, and stucco reinforcement. June 1, 1946 (for new production). 5c.

Covers the composition of the metal and reference to methods of test therefor, of cast aluminum utensils designed and intended for use in the cooking of food. It also includes requirements for marking and labeling to indicate compliance with the standard. July 20, 1946 (for new production). 5c.
CS135. Men's shirt sizes (exclusive of work shirts).
Covers methods of measuring and standard minimum measurements for men's shirts (exclusive of work shirts), together with a recommended label for use in guaranteeing conformity to the standard. July 15, 1946 (for new production). 5c.

CS136. Blankets for hospitals (wool, and wool and cotton).
Covers minimum requirements for all wool, 75 percent wool (cotton warp, wool filling), and 50 percent wool (cotton warp, wool and cotton filling) blankets including for each type the size, weight per square yard, thickness, breaking strength, compressibility, colorfastness, shrinkage and launderability. It also includes methods of test and the recommended working by which manufacturers and distributors may guarantee compliance with the standard. August 30, 1946 (for new production). 5c.

CS137. Size measurements for men's and boys' shorts — woven fabrics.
Gives size designations, methods of measuring, and standard minimum measurements for men's and boys' shorts, together with a recommended label for guaranteeing conformity to the standard. Dec. 30, 1946 (for new production). 5c.

CS138. Insect wire screening.
Describes the nomenclature, definitions and general requirements for commercial standard insect wire screening, designed and woven primarily for installation in or on, any dwelling, building, or structure, for the purpose of preventing the ingress of flies, mosquitoes, or other insects. January 2, 1947 (for new production). 5c.

CS139. Work gloves.
Gives standard definitions, nomenclature, methods of measuring and standard minimum measurements for work gloves, and designates the type of work glove that may be manufactured to the best economic interest of all concerned. It also includes a recommended label for guaranteeing conformity to the standard. March 6, 1947 (for new production). 10c.

CS140. Testing and rating convectors.
Covers definitions, general provisions relative to tests, methods of testing and rating cast-iron and non-ferrous steam and hot water convectors, procedure in obtaining approval of ratings, and method of guaranteeing compliance with the standard. March 1, 1948 (for new production). 10c.

CS141. Sine bars, blocks, plates, and fixtures.
Covers the major essential material and dimensional requirements for sine bars, blocks, plates, and fixtures in all sizes, particularly 5 in., 10 in., and 20 in., and in two accuracy classifications, commercial and laboratory. It also covers definitions of sine bars, blocks, plates and fixtures, and specifications for hardness, finish, accuracy tolerances, and methods of test, as well as uniform methods of marking, identification, and labeling to guarantee compliance with the standard. August 15, 1947 (for new production). 5c.
BUILDING MATERIALS AND STRUCTURES REPORTS

This series reports the results of Bureau investigations of the properties and suitability of new materials and new methods of construction. The program was carried out with the cooperation and advice of the housing agencies of the Government. The objective was to furnish the Government, the building industry, and the public with technical information that would be useful with particular reference to low-cost housing.

BMS31. Structural properties of “Insulite” wall and “Insulite” partition constructions sponsored by The Insulite Co, Herbert L. Whittemore and Ambrose H. Stang, with the collaboration of Thomas R. C. Wilson, Forest Products Laboratory. Oct. 26, 1939. 15c.

BMS37. Structural properties of “Palisade Homes” constructions for walls, partitions, and floors sponsored by Palisade Homes, Herbert L. Whittemore and Ambrose H. Stang, with the collaboration of Thomas R. C. Wilson, Forest Products Laboratory. Feb. 13, 1940.

BMS40. Structural properties of a wall construction of “Knap Concrete Wall Units” sponsored by Knap America Inc. Herbert L. Whittemore, Ambrose H. Stang, and Cyrus C. Fishburn. Feb. 21, 1940. 15c.

BMS42. Structural properties of wood-frame wall and partition constructions with “Celotex” insulating boards sponsored by The Celotex Corporation. Herbert L. Whittemore and Ambrose H. Stang, with the collaboration of Thomas R. C. Wilson, Forest Products Laboratory. Mar. 2, 1940. 15c.

BMS44. Surface treatment of steel prior to painting. Rolla E. Pollard and Wilbur C. Porter. Apr. 8, 1940. 10c.

BMS45. Air infiltration through windows. Eugene F. Coleman and Roy H. Heald. Apr. 29, 1940. 15c.

BMS47. Structural properties of prefabricated wood-frame constructions for walls, partitions, and floors sponsored by American Houses, Inc. Herbert L. Whittemore and Ambrose H. Stang, with the collaboration of Thomas R. C. Wilson, Forest Products Laboratory. June 3, 1940. 20c.

BMS48. Structural properties of “Precision-Built” frame wall and partition constructions sponsored by the Homasote Co. Herbert L. Whittemore and Ambrose H. Stang, with the collaboration of George E. Heck, Forest Products Laboratory. May 13, 1940. 15c.

BMS49. Metallic roofing for low-cost house construction. Leo J. Waldron. May 7, 1940. 20c.

BMS52. Effect of ceiling insulation upon summer comfort. Thomas D. Phillips. July 1, 1940. 10c.

BMS55. Effects of wetting and drying on the permeability of masonry walls. Cyrus C. Fishburn. Sept. 18, 1940. 10c.

BMS57. Roofing in the United States — Results of a questionnaire. Leo J. Waldron and Hubert R. Snoke. Sept. 18, 1940.

BMS60. Strength, absorption, and resistance to laboratory freezing and thawing of building bricks produced in the United States. John W. McBurney and Joseph C. Richmond. Nov. 5, 1940. 15c.

BMS64. Solar heating of various surfaces. Herman V. Cottony and Richard S. Dill. Jan. 23, 1941. 10c.

BMS70. Asphalt, prepared roll roofings and shingles. Hubert R. Snoke. Apr. 10, 1941. 20c.
BMS71. Fire tests of wood- and metal-framed partitions. S. H. Ingberg and Nolan
D. Mitchell. May 12, 1941. 20c.
BMS72. Structural properties of “Precision-Built, Jr.” prefabricated wood-frame
wall construction sponsored by the Homasote Co. Archie H. Easton and
Mahlon F. Peck, with the collaboration of R. F. Luxford, Forest Products
Laboratory. Apr. 14, 1941. 10c.
BMS73. Indentation characteristics of floor coverings. Percy A. Sigler and Myrtle
B. Woodward. Apr. 15, 1941. 10c.
BMS74. Structural and heat-transfer properties of “U. S. S. Panelbilt” prefabricated
sheet-steel constructions for walls, partitions, and roofs sponsored by the
Tennessee Coal, Iron & Railroad Co. Herbert L. Whittemore, Ambrose
BMS75. Survey of rooffmg materials in the North Central States. Hubert R. Snoke
and Leo J. Waldron. July 1, 1941. 15c.
BMS76. Effect of outdoor exposure on the water permeability of masonry walls.
Cyrus C. Fishburn, Douglas E. Parsons, and Perry H. Petersen. Aug. 15,
1941. 15c.
BMS77. Properties and performance of fiber tile boards. Daniel A. Jessup, Herman
Bogaty, and Samuel G. Weissberg. Aug. 8, 1941. 10c.
BMS78. Structural, heat-transfer, and water-permeability properties, of five earthwall constructions. Herbert L. Whittemore, Ambrose H. Stang, Elbert
20c.
BMS17. (Supplement No. 2). Sound insulation of wall and floor construction.
This supplement reports the results of sound-transmission measurements made on
a number of additional types of construction since the issuance of the original report
15 p. 10c.
BMS81. Field inspectors’ check list for building construction.
Report of Subcommittee on Structure, Central Housing Committee on
Research, Design, and Construction
This Check List is intended to be used as a guide and daily reminder to field in¬
spectors on building construction projects. It was prepared by a committee of repre¬
sentatives of Federal agencies active in the building field. In the preparation of the
report the committee had the benefit of the experience of its members and consul¬
tants, supplemented by data from technical reports.
The list is set up in practical form, in that it outlines the progress of the work by
stages rather than by trades. As a result, the inspector can follow the course of erec¬
tion day by day in its proper sequence without consulting an index to locate informa¬
tion on specific phases of the project. Each successive stage is clearly indicated, and
further details on special items are given in the appendices. April 8,1942. 68 p. 20c.
BMS82. Water permeability of walls built of masonry units.Cyrus C. Fishburn
The water permeabilities of small masonry wall specimens were measured. Four¬
teen kinds of workmanship, 39 kinds of units, and 10 kinds of mortars were represented
in a group of 140 walls.
The permeability of the specimens was low when the vertical joints were filled
or partly filled with mortar or grout, when the suction of the bricks was low, and
when a mortar having a high water retentivity was used. The effect of water retentivity of the mortars on the permeability of the walls was greatest when the bricksuction was high. Mortar having a low water retentivity stiffened rapidly when placed
in contact with dry, highly absorptive bricks, and units having a low suction floated
out of alinement when placed in contact with such a mortar. April 15, 1942. 37 p.
25c.
BMS83. Strength of sleeve joints in copper tubing made with various lead-base
A previous investigation on soft-soldered sleeve joints in copper tubing for domestic
plumbing lines and other uses dealt with joints made with two tin-base solders. To
supplement that investigation, the present one on similar joints made with various
lead-base solders was conducted. Solders of the following types were used: lead-silver,
lead-tin-antimony, lead-cadmium, high lead-low tin, and high-purity lead. Tensile
tests at room temperature (short-time tests) were maae, together with long-time tests
at temperatures ranging from 85° to 325°F. The information from the latter tests is

210


much more useful than the results of the short-time tests in evaluating soldered joints for service. Consideration must always be given also to possible bond deterioration of the soldered joint at elevated temperatures. On the basis of the results of the first investigation, joints in copper made with tin-base solders were considered satisfactory for general use, provided the temperature did not exceed 250°F. The results of the present study have shown that similar joints made with lead-base tin-free solders can be used with safety at temperatures as high as 325°F.

May 5, 1942. 9 p. 10c.

BMS84. Survey of roofing materials in the South Central States.
Hubert R. Snoke and Leo J. Waldron
A survey of the weathering qualities and of the extent of use of the various roofing materials on dwellings in the South Central States is described, with numerous references to similar surveys in the Southeastern, Northeastern, and North Central States.

Detailed studies of roofing materials in Chattanooga and Memphis, Tenn.; Jackson, Miss.; New Orleans, La.; Houston, Dallas, San Antonio, and Amarillo, Tex.; Oklahoma City, Okla.; Little Rock, Ark.; and Louisville, Ky., are reported.

A tabulation, by States, of the kinds of roofing materials used on 9,500 rural and small-town dwellings, along approximately 4,200 miles of highway between the cities listed above, is included; also a summary of the kinds of roofing materials used on more than 33,000 rural and small-town dwellings along approximately 11,000 miles of highway in the 37 States covered by the four surveys.

Forty-eight photographs, illustrating the types of weathering of roofing materials, and features of the design and construction of roofs are shown. May 5, 1942. 19 p. 15c.

BMS85. Dimensional changes of floor coverings with changes in relative humidity and temperature.
Percy A. Sigler, Robert I. Martens, and Elmer A. Koerner

The effects of changes in atmospheric conditions on the dimensions of floor coverings were investigated. The floor coverings tested included such general types as linoleum, cork, rubber, felt base, asphalt, strip wood, plywood, fiberboard, and several monolithic compositions, such as cement mortar and magnesium oxychloride. Dimensional changes due to a variation in relative humidity from 8 to 86 percent and those due to a variation in temperature from 32° to 90°F were determined. The floor coverings, testing equipment, and procedure are described, and the results are presented in graphic form.

Changes in relative humidity affect the dimensions of many floor coverings to a much greater extent than do changes in temperature within the range usually encountered in structures. Such floor coverings as strip wood, linoleum, and felt show a much greater dimensional change in the across-grain or across machine direction than in the grain or machine direction. The several monolithic compositions showed relatively small changes in dimensions. July 15, 1942. 7 p. 10c.

BMS86. Structural, heat-transfer, and water-permeability properties of “Speedbrik” wall construction sponsored by the General Shale Products Corporation.
Mahlon F. Peck, Vincent B. Phelan, Richard S. Dill, and Perry H. Petersen

For the program on the investigation of low-cost house constructions, specimens representing “Speedbrik” masonry wall construction were submitted by the General Shale Products Corporation. These specimens were subjected to structural, heat-transfer, and water-permeability tests.

The structural specimens were subjected to compressive, transverse, concentrated, impact, and racking loads, for each of which three like specimens were tested. The transverse, concentrated, and impact loads were applied to the inside face of the specimens.

The deformation under load and the set after the load was removed were measured for each increment of load.

Heat-transfer properties of two specimens were determined in a shielded hot-box heat-transfer apparatus.

Nine water-permeability specimens were tested under conditions that simulated exposure to a heavy wind-driven rain. July 15, 1942. 17 p. 15c.

Report of Subcommittee on Specifications, Central Housing Committee on Research, Design, and Construction

To meet the demand for short and uniform specifications for Government building construction, and in an attempt to reduce the time and labor now consumed in their
preparation, a representative committee of Federal agencies has made a study of
current specification-writing routine. In its report, this committee advocates a di-
rective method which, under proper supervision, should condense specifications, bring
about important economies, and increase efficiency.
Fundamental principles that have proved of value over a period of years have
been retained, and are coordinated in a basic specification which promotes uniformity
and permits choice of those materials and methods of construction best suited to
the specific project in hand.
Application of the method is made clear by three examples: a model basic specifi-
cation illustrating the procedure outlined, a typical contemporary specification, and
the typical specification rewritten in accordance with the method advocated. July
15, 1942. 23 p. 15c.

BMS88. Recommended building code requirements for new dwelling construction
with special reference to war housing.
Report of Subcommittee on Building Codes, Central Housing Commit-
tee on Research, Design, and Construction
A series of recommended requirements suitable for use in building codes is pre-
sented. The requirements apply to single- and two-family houses and to multiple
dwellings of limited height. They cover such matters as fire resistance, light and
ventilation, exits, strength of construction, and chimneys and fireplaces. In general,
good practice is required, certain well-recognized standards and specifications being
cited as acceptable evidence of good practice. Specific dimensions and other details
are given where necessary. The report contains an appendix, in which additional in-
formation is given, including methods of meeting specific code provisions and refer-
ces to source material. Sept. 25, 1942. 86 p. Superseded by BMS107.

BMS89. Structural properties of “Precision-Built, Jr.” (second construction)
prefabricated wood-frame wall construction sponsored by the Homasote
Co.
W. Gail Hoback, Herman L. Weiss, and Vincent B. Phelan (with the
collaboration of the Forest Products Laboratory)
For the program on the determination of the structural properties of low-cost
house constructions, the Homasote Co., Trenton, N. J., submitted 18 specimens,
representing a wall construction consisting of a wood frame with “Homasote” in-
sulating fiberboard on the inside face and bevel siding on the outside face.
The specimens were subjected to compressive, transverse, concentrated, impact,
and racking loads, for each of which three like specimens were tested. The transverse,
concentrated, and impact loads were applied to both faces of the specimens.
The deformation under load and the set after the load was removed were measured
for each increment of load. The results are presented in graphs and tables. July 17,
1942. 15 p. 15c.

BMS90. Structural properties of “PHC” prefabricated wood-frame constructions
for walls, floors, and roofs sponsored by the PHC Housing Corporation
Mahlon F. Peck, W. Gail Hoback, and Vincent B. Phelan with the
collaboration of Carlile P. Winslow, Forest Service
For the program on the determination of the structural properties of low-cost hous-
ing, the PHC Housing Corporation submitted 33 specimens representing “PHC”
prefabricated wood-frame constructions for walls, floors, and roofs.
The wall specimens were subjected to compressive, transverse, concentrated, im-
 pact, and racking loads; the floor specimens to transverse, concentrated, and impact
loads; and the roof specimens to transverse and concentrated loads. The transverse,
concentrated, and impact loads were applied to both faces of wall specimens. For each
of the loads, three like specimens were tested; the concentrated loads were applied
to the same specimens as either the transverse or the impact loads. The loads simu-
lated the loads to which the elements of a house are subjected in actual service.
The deformation under load and the set after the load was removed were measured
for each increment of load. The results are presented in graphs and tables. August
18, 1942. 34 p. 15c.

BMS91. A glossary of housing terms.
Compiled by Subcommittee on Definitions, Central Housing Committee
on Research, Design, and Construction
This glossary brings together the various terms used in the field of housing and
has been prepared to eliminate the confusion arising from the use of vaguely defined
terms or from attributing several meanings to the same term. Whenever possible,
definitions have been chosen which are already widely used in codes and statutes.
In selecting terms for inclusion in the glossary, reference has been made to building
codes, housing laws, and zoning ordinances, as well as to a large number of standard works. The definitions have been checked with foreign sources, especially "The International Glossary of Housing Terms" published by the International Federation for Housing and Town Planning. A glossary published early in 1937 by a committee from five principal Federal agencies concerned with housing was used as a basis of the present document. Sept. 3, 1942. 32 p. 15c.

BMS92. Fire-resistance classifications of building constructions.
Report of Subcommittee on Fire-Resistance Classifications, Central Housing Committee on Research, Design, and Construction

A classification of building construction from the standpoint of fire safety is presented by a committee of representatives of Federal agencies concerned with the design, construction, and operation of buildings. By considering only the basic properties having a bearing on fire hazard and fire resistance, four types were found sufficient to cover the whole range of building construction. Within each type are two or more classes which are defined by the fire resistance required for their structural members. In chapter I this classification is outlined and information given on how it can be applied with reference to the fire severity obtaining for given structural and occupancy conditions. Chapter II contains a discussion of the types of restrictions and limitations generally incorporated in building codes, with particular reference to their application to the classification of building types herein presented. Chapter III gives results of surveys of combustible contents of buildings housing typical occupancies as a basis for estimating fire severity. In chapter IV are given available fire-resistance ratings of building constructions and fire-resistance classifications of roofing materials. Oct. 7, 1942. 70 p. 30c.

BMS93. Accumulation of moisture in walls of frame construction during winter exposure.
Charles G. Weber and Robert C. Reichel

Data were obtained on the accumulation of moisture in seven types of walls during winter weather. The walls tested were full-height sections in the north outside wall of a frame house on the Bureau grounds. A relatively high humidity was maintained to produce an average drop in vapor pressure across the wall of about 0.2 pound per square inch, which is approximately that produced by an inside relative humidity of 50 percent at about 72 °F when the outside temperature is 0°F, or below. Nov. 4, 1942. 5 p. 10c.

BMS94. Water permeability and weathering resistance of stucco-faced gunite-faced, and "Knap Concrete-Unit" walls.
Cyrus C. Fishburn

The water permeabilities of small stucco, and gunite-faced walls and of walls built of "Knap concrete units" were measured before and after outdoor weathering. Six kinds of stucco facings, 2 thicknesses of gunite facings, and 7 kinds of units were represented in a group of 26 walls. All of the stucco- and gunite-faced walls were highly resistant to water penetration. Periods of outdoor exposure at Washington, D. C., varying from 16 to 49 months, had no important effect on permeability. The resistance to penetration of walls built of "Knap concrete units" was excellent after the walls were painted. Dec. 2, 1942. 20 p. 10c.

BMS95. Tests of cement-water paints and other waterproofings for unit-masonry walls.
Cyrus C. Fishburn and Douglas E. Parsons

One hundred thirty-one small, highly permeable masonry wall specimens built of concrete blocks or of bricks were treated with cement-water paints or with other waterproofings. The effectiveness of the treatments was measured by comparing the permeability of the walls, before and after treatment, when they were subjected to conditions simulating wind-driven rain. The durability of some treatments was observed by again testing the specimens after they had been weathered outdoors. The cement-water paints were effective waterproofings and could be applied to the best advantage on the walls of concrete blocks with stiff, rather than soft, brushes. The admixture of fine sand to the paint for the first coat applied to the coarse-textured concrete block increased the effectiveness and durability of the paints. Thick paint films resulting from the application of excessive amounts of paint were effective when first applied, but they were much less durable than thinner coatings. The permeability of the paint films of average thickness was lower after weathering than before. The colorless waterproofings were generally ineffective. Only one of the colorless waterproofings was satisfactory when first applied, but it was not durable and was much more permeable than the best cement-water paint treatments. The data confirm results previously obtained, which indicate that the only effective and durable method of waterproofing brick walls without changing their appearance was by repointing or grouting of the face joints.

213
A series of built-in waterproof membranes was an effective waterproofing for brick walls if the leakage through the facing was drained out of the wall through weep holes at the bottom.

The bituminous coatings applied to the inside faces of the walls were ineffective as waterproofings. March 15, 1943. 37 p. 25c.

BMS96. Properties of a porous concrete of cement and uniform-sized gravel. Perry H. Petersen

The physical properties of a porous concrete consisting solely of portland cement, water, and uniform-sized gravel were investigated. Each of three coarse aggregates, grits (No. 8 to No. 4), pea gravel (No. 4 to 3/8 inch), and 3/4-inch gravel (3/8 to 3/4 inch), was used, with 2 1/2 bags of cement per cubic yard in concrete tamped in place and 3 bags per cubic yard when no compacting was done. Walls, wallettes, beams, and bond pull-out specimens were tested, as well as 6- by 12-inch control cylinders. Compressive, transverse, shearing, and bond strengths are reported, as well as resistance to heat transfer, water penetration by capillarity, and rain penetration. March 18, 1943. 15 p. 10c.

BMS97. Experimental dry-wall construction with fiber insulating board. Charles G. Weber and Robert C. Reichel

The use of fiber insulating boards for the interior surfacing of walls and ceilings of houses has heretofore been limited with respect to choice of design of finish of the walls. The relatively high expansivity of the material with variations in the humidity of the surrounding air has made paneling necessary because molding or batten strips were required to conceal unsightly joints. It was found possible to overcome the difficulty and make paneling unnecessary. This was done by eliminating the usual nailing and substituting the use of invisible, flexible fasteners that permit the entire surface of a wall or ceiling to expand and contract as a unit. Several methods of fastening the boards to obtain this result were developed. Use of them permitted the successful application of all of the decorative treatments normally applied to a plaster wall, without restriction as to surface design. May 7, 1943. 8 p. 10c.

In order to develop basic data for terrazzo specifications, comparative tests were made on 77 marbles used as aggregates. The samples included calcites, dolomites, dolomitic marbles, serpentines, and travertines. Properties studied were abrasive resistance absorption, bulk specific gravity, and toughness of the original rock, and dust content, percentage of voids, and thickness grading of the chips. A few samples were studied for volume changes caused by moisture and temperature. Flat or elongated chips were found to increase the voids in aggregates, and evidence was found to indicate that the shielding effect of flat chips may interfere with the removal of excess cement paste from mixtures in the rolling operation. May 20, 1943. 19 p. 15c.

To determine structural and heat-transfer properties, tests were conducted at the request of the War Department on wall, floor, and roof specimens of “Multiple Box-Girder Plywood Panels.” The specimens were constructed by gluing and nailing one sheet of plywood between two frames and facing the outer surfaces with other sheets of plywood. The longitudinal and transverse members of the frames with the sheets of plywood formed closed cells, which provided heat insulation.

The wall specimens were subjected to compressive, transverse, concentrated, impact, and racking loads; the floor specimens to transverse, concentrated, and impact loads; and the roof specimens to transverse and concentrated loads. The loads simulated the loads to which the elements are subjected in actual service.

The deformations under load and the sets after the load was removed were measured for uniform increments of load. The results are presented in graphs and tables. The heat-transfer properties of three wall specimens were determined in a shielded hot-box heat-transfer apparatus. June 11, 1943. 25 p. 15c.

BMS100. Relative slipperiness of floor and deck surfaces. Percy A. Sigler

A new pendulum-type machine and a method for determining the relative slipperiness of floor surfaces under various conditions are described. The surfaces were tested when dry and clean, dry and dirty, wet and clean, wet and dirty, wet and
soapy, and in a few cases, oily. The results of tests of various floor materials are given,
including such general types as stone, terrazzo, cement-mortar, magnesite, ceramic
tile, metal, asphalt, rubber, linoleum, and wood. The surfaces of the materials were
tested after grinding them with No. 180 silicon carbide. Tests were also made of the
original surfaces of many of the materials. The test data show the effect of different
wax finishes on the antislip properties of several selected floor materials.

In general, considerable difference in slipperiness was found between dry and wet
surfaces. Most of the floor materials showed satisfactory antislip properties when dry.
Many would be classed as hazardous when wet. July 1, 1943. 12 p. 10c.

BMS101. Strength and resistance to corrosion of ties for cavity walls.
Cyrus C. Fishburn

The resistance to axial loads of ties for cavity walls was determined by testing
steel and cement-asbestos ties when they were embedded at the ends in brick ma¬
sory. Fourteen different ties and three mortars were represented in a group of about
110 specimens. The ties, with one exception, when spaced one to every 3 ft² of wall
area, provided connections of ample strength to resist the usual lateral forces to
which cavity walls are subjected.

The corrosion resistance of some of the steel ties was measured by exposing them
when unprotected and when coated to accelerated and to outdoor weathering. July
1, 1943. 9 p. 10c.

BMS102. Painting steel. Wilbur C. Porter

More than 60 priming paints for plain and galvanized steel surfaces were tested.
Because some of these primings were duplicates or near duplicates and others were
considered unsuitable, only 41 have been selected for this report. Accelerated labora¬
tory and outdoor exposure tests were employed to determine the relative protective
value of these primings when applied to treated and untreated galvanized and plain
steel panels. Particularly effective protection against corrosion was observed when
primings of the synthetic resin zinc chromate type were used over a phosphate-
treated surface. Special attention was given to the effect of pretreating new galvanized
steel before painting. More than 2,000 galvanized and plain steel panels were prepared
for exposure in the various tests. The relative durability to outdoor exposure of 15
topcoat paints is also discussed. Oct. 16, 1944. 12 p. 10c.

BMS103. Measurements of heat losses from slab floors.
Richard S. Dill, William C. Robinson, and Henry E. Robinson

Observations of heat-transfer properties of four concrete floors laid on the ground
and three concrete and one wood floor laid over crawl spaces were made in a special
structure provided at the National Bureau of Standards for the purpose. This paper
gives quantitative information on the results of these observations and suggests some
factors for estimating heat losses through floors. March 10, 1945. 21 p. 10c.

BMS104. Structural properties of prefabricated plywood lightweight construction
for walls, partitions, floors, and roofs sponsored by the Douglas Fir
Plywood Association.
Arnold Wexler, Sanford B. Newman, and Vincent B. Phelan

For the program on the determination of structural properties of low-cost house
constructions, the Douglas Fir Plywood Association submitted 75 specimens repre¬
senting prefabricated plywood building panels of both lightweight stress-skin and
commercial design. Wall, partition, floor, and roof specimens were of lightweight
stress-skin design. Specimens of commercial type panels (2- by 4-in. studs) were for
wall construction only, and furnished a basis of comparison of strength and weight
with the lightweight constructions.

The wall specimens were subjected to compressive, transverse, concentrated, im¬
pact, and racking loads; and the wall specimens of commercial type included three
different constructions for determining resistance to racking. The partition specimens
were subjected to compressive, transverse, impact, and racking loads; the floor
specimens to transverse, concentrated, and impact loads; and the roof specimens to
transverse and concentrated loads. The floor and roof specimens included two differ¬
ent constructions for determining resistance to transverse loads. Transverse, concen¬
trated, and impact loads were applied to both faces of wall specimens. The loads
simulated the loads to which the elements are subjected in actual service.

The deflection under load and the sets after the load was removed were measured
for uniform increments of load. The results are presented in graphs and tables. Nov:
1, 1945. 48 p. 25c.

The Paint Manual is intended to aid in the interpretation of Federal Specifications relating to paint materials and painting. It contains recommendations by the National Bureau of Standards and cooperating organizations for the most effective use of paint materials whose composition requirements and performance standards are covered in Federal Specifications. Procedures for the preparation of surfaces prior to painting as well as mixing, sampling, inspection, and precautions for safety in the use of paint are suggested and recent developments in the field of painting are explained.

A glossary of selected paint terms and pertinent references are included. October 11, 1945. 165 p. $1.00.

BMS106. Laboratory observations of condensation in wall specimens. Richard S. Dill and H. V. Cottony

Tests were made using a wall specimen equipped with eight different arrangements of barriers or seals intended to protect insulation in wall specimens from damage caused by condensation of water vapor. Each arrangement was tested in an apparatus by means of which it was exposed to warm moist air on one side and cold air on the other side so that the effectiveness of the vapor barrier in protecting the insulation and timber from condensation could be observed.

Temperature was closely controlled on both sides of the test specimen and water vapor was generated on the warm side at a rate sufficient to maintain a chosen humidity. Water and frost forming within and on the cold side of the specimen were collected in order to determine its permeability to the passage of water vapor. The importance of a watertight edge seal in obtaining the maximum protection with a vapor barrier was indicated. Aug. 2, 1946. 9 p.

BMS107. Building code requirements for new dwelling construction, recommended by the National Housing Agency and prepared in consultation with the National Bureau of Standards. George N. Thompson

Recommended minimum requirements for dwelling construction, developed by the National Housing Agency in consultation with the National Bureau of Standards, are presented for consideration by local authorities in revising their building codes. The requirements are based on an earlier publication "Recommended Building Code Requirements for New Dwelling Construction", which has been revised in the light of suggestions from governmental housing agencies, the Forest Products Laboratory, and many industrial organizations. They make free use of national standards, with such additions, modifications, and exceptions as the experience of the housing agencies has demonstrated to be advisable in the case of dwelling construction. An appendix supplies information intended to be helpful in applying and interpreting the provisions of the requirements themselves. Jan. 1, 1947. 43 p. 20c. Supersedes BMS88.

BMS108. Temperature distribution in a test bungalow with various heating devices. Richard S. Dill and Paul R. Achenbach

The comparative uniformity of temperature distribution attained with various types of heating devices or systems was determined in a test bungalow at the National Bureau of Standards. The heating appliances tested included a hot water heating system, floor furnaces located in several different positions, space heaters with fans, and electric and oil-burning warm-air furnaces. Each heating device was observed under a variety of weather conditions. The conditions inside and the weather outside the laboratory were recorded for comparison. Vertical temperature differences were computed for 32°F outside on the assumption that such differences are proportional to the inside-outside temperature difference. Feb. 28, 1947. 14 p. 10c.

Methods are here presented for designing small houses to provide adequate strength without waste of material.

For each element of a house, design loads for walls, floors, and roofs — compressive, transverse, and racking — were determined by the accepted principles of engineering mechanics for typical one- and two-story frame houses in several locations representative of extreme wind and snow loads in the United States.

Allowable loads for 100 wall, partition, floor, and roof constructions were obtained by loading large specimens in the laboratory at the National Bureau of Standards. The results of these tests are covered in the "structural properties" reports of the Building
Materials and Structures series. Allowable loads for each of these constructions are compared in this report with design loads for two houses in three locations. The comparison shows that some had insufficient strength while others were much stronger than is necessary. Damage by storm would be negligible and waste of material avoided if houses were designed according to the principles embodied herein. 1948. 132 p. $1.50.

BMS110. Paints for exterior masonry walls. Clara Sentel

Results of a series of tests in which four classes of masonry paints (cement-water, resin-emulsion, oil-base, and synthetic-rubber) were applied to test walls of porous masonry, are discussed in this report. The specimens were constructed of new and used common brick; cast concrete; stone-, cinder-, and lightweight aggregate-concrete block; and wood frame with cement-asbestos shingles. The walls were exposed to atmospheric conditions in Washington, D. C., for approximately 3 years.

Formulas for the paints and erection of the wall sections are described, as well as methods of applying paint to the specimens. Ratings based on weathering characteristics of each type of paint and evaluation of painting methods for coating the surfaces are given.

Results of the same tests for a 6-year period are shown graphically in the appendix. Nov. 15, 1947. 19 p. 15c.
BUILDING AND HOUSING PUBLICATIONS

This series contains reports of investigations and recommended requirements for building and housing. However, the majority of the reports in this series are obsolete and out of print.

BH1. Recommended minimum requirements for small dwelling construction. 1922. (Superseded by BH18).

BH2. Recommended minimum requirements for plumbing in dwellings and similar buildings. 1923. (Superseded by BH13).

BH3. A zoning primer. 2d ed. 1926.

BH5. A standard state zoning enabling act. 2d ed. 1926.

BH6. Recommended minimum requirements for masonry wall construction. 1924. (Superseded by M174).

BH9. Recommended building code requirements for working stresses in building materials. 1926.

BH10. A city planning primer. 1928.

BH13. Recommended minimum requirements for plumbing in dwellings and similar buildings. 1928. (Superseded BH2). 75c.

BH15. Care and repair of the house. 1931. 20c.

BH17. How to own your home. 2d ed. 1931. (Superseded BH4).

BH18. Recommended minimum requirements for small dwelling construction. 1932. (Superseded BH1).
MATHEMATICAL TABLES

The tables listed below (with the exception of MT15) were prepared by the Project for the Computation of Mathematical Tables conducted by the Federal Works Agency, Work Projects Administration for the city of New York, under the sponsorship of and made available through the National Bureau of Standards. They are of special interest to physicists, engineers, chemists, biologists, mathematicians, computers, and others engaged in scientific and technical work.

The tables have been arranged in the following groups: Those obtainable from: (1) the Superintendent of Documents, Government Printing Office, (2) Columbia University Press, and (3) those available elsewhere.

(1) TABLES OBTAINABLE FROM THE SUPERINTENDENT OF DOCUMENTS

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT1</td>
<td>Table of the first ten powers of the integers from 1 to 1,000.</td>
<td>$3.00</td>
</tr>
<tr>
<td>MT2</td>
<td>Tables of the exponential function e^x.</td>
<td>$3.00</td>
</tr>
<tr>
<td>MT3</td>
<td>Tables of circular and hyperbolic sines and cosines for radian arguments.</td>
<td>$2.50</td>
</tr>
<tr>
<td>MT4</td>
<td>Tables of sines and cosines for radian arguments.</td>
<td>$2.00</td>
</tr>
<tr>
<td>MT5</td>
<td>Tables of sine, cosine, and exponential integrals, volume I.</td>
<td>$2.75</td>
</tr>
<tr>
<td>MT6</td>
<td>Tables of sine, cosine, and exponential integrals, volume II.</td>
<td>$2.00</td>
</tr>
<tr>
<td>MT7</td>
<td>Table of natural logarithms, volume I.</td>
<td>$3.00</td>
</tr>
<tr>
<td>MT8</td>
<td>Tables of probability functions, volume I.</td>
<td>$2.00</td>
</tr>
<tr>
<td>MT9</td>
<td>Table of natural logarithms, volume II.</td>
<td>$3.00</td>
</tr>
<tr>
<td>MT10</td>
<td>Table of natural logarithms, volume III.</td>
<td>$3.00</td>
</tr>
<tr>
<td>MT11</td>
<td>Tables of the moments of inertia and section moduli of ordinary angles,</td>
<td>$2.00</td>
</tr>
<tr>
<td></td>
<td>channels, and bulb angles with certain plate combinations.</td>
<td></td>
</tr>
<tr>
<td>MT12</td>
<td>Table of natural logarithms, volume IV.</td>
<td>$3.00</td>
</tr>
<tr>
<td>MT13</td>
<td>Table of sine and cosine integrals for arguments from 10 to 100.</td>
<td>$2.00</td>
</tr>
<tr>
<td>MT14</td>
<td>Tables of probability functions, volume II.</td>
<td>$2.25</td>
</tr>
<tr>
<td>MT15</td>
<td>The hypergeometric and Legendre functions with applications to integral</td>
<td></td>
</tr>
<tr>
<td></td>
<td>equations of potential theory. Chester Snow, National Bureau of Standards.</td>
<td></td>
</tr>
<tr>
<td>MT16</td>
<td>Table of arc tan x.</td>
<td>$2.00</td>
</tr>
<tr>
<td>MT17</td>
<td>Miscellaneous physical tables: Planck's radiation functions, and electronic</td>
<td>$1.50</td>
</tr>
<tr>
<td></td>
<td>function.</td>
<td></td>
</tr>
<tr>
<td>MT18</td>
<td>Table of the zeros of the Legendre polynomials of order 1 — 16 and the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>weight coefficients for Gauss' mechanical quadrature formula. A. N. Lowan,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N. Davids, and A. Levenson.</td>
<td></td>
</tr>
<tr>
<td>MT19</td>
<td>On the function $H(m,a,x) = \exp (-ix) F (m + 1 - ia, 2m + 2; ix)$. With</td>
<td></td>
</tr>
<tr>
<td></td>
<td>table of the confluent hypergeometric function and its first derivative. A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N. Lowan and W. Horenstein.</td>
<td></td>
</tr>
<tr>
<td>MT20</td>
<td>Table of integrals $\int_0^x J_0(t)dt$ and $\int_0^x Y_0(t)dt$.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arnold N. Lowan and Milton Abramowitz.</td>
<td></td>
</tr>
<tr>
<td>MT21</td>
<td>Table of $J_\theta(x) = \int_x^\infty J_\theta(t)dt$ and related functions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arnold N. Lowan, G. Blanch, and M. Abramowitz.</td>
<td></td>
</tr>
<tr>
<td>MT22</td>
<td>Table of coefficients in numerical integration formulae. A. N. Lowan and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Herbert Salzer.</td>
<td></td>
</tr>
<tr>
<td>MT23</td>
<td>Table of Fourier coefficients....Arnold N. Lowan and Jack Laderman</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reprinted from Journal of Mathematics and Physics, September 1943. 11 p.</td>
<td></td>
</tr>
<tr>
<td>MT24</td>
<td>Coefficients for numerical differentiation with central differences.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Herbert E. Salzer</td>
<td></td>
</tr>
<tr>
<td>MT25</td>
<td>Seven-point Lagrangian integration formulas....G. Blanch and I. Rhodes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reprinted from Journal of Mathematics and Physics, December 1943. 4 p.</td>
<td></td>
</tr>
<tr>
<td>MT26</td>
<td>A short table of the first five zeros of the transcendental equation $J_0(x)Y_0(kx) - J_0(kx)Y_0(x) = 0$.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. N. Lowan and A. Hillman</td>
<td></td>
</tr>
</tbody>
</table>
MT27. Table of coefficients for inverse interpolation with central differences. Herbert E. Salzer
Reprinted from Journal of Mathematics and Physics, December 1943. 15 p. 25c.

MT28. Table of $f_n(x) = \frac{n!}{(x/2)^n}J_n(x)$... The Mathematical Tables Project
Reprinted from Journal of Mathematics and Physics, February 1944. 16 p. 25c.

MT29. Table of coefficients for inverse interpolation with advancing differences. Herbert E. Salzer
Reprinted from Journal of Mathematics and Physics, May 1944. 28 p. 25c.

MT30. A new formula for inverse interpolation ... H. E. Salzer
Reprinted from Bulletin of the American Mathematical Society, August 1944. 4 p. 25c.

MT31. Coefficients for interpolation within a square grid in the complex plane. A. N. Lowan and H. E. Salzer
Reprinted from Journal of Mathematics and Physics, November 1944. 11 p. 25c.

MT32. Table of coefficients for differences in terms of the derivatives. H. E. Salzer
Reprinted from Journal of Mathematics and Physics, November 1944. 4 p. 25c.

MT33. Table of coefficients for numerical integration without differences. A. N. Lowan and H. E. Salzer
Reprinted from Journal of Mathematics and Physics, February 1945. 21 p. 25c.

MT34. Inverse interpolation for eight-, nine-, ten-, and eleven-point direct interpolation. H. E. Salzer
Reprinted from Journal of Mathematics and Physics, May 1945. 4 p. 25c.

MT35. Table of coefficients for double quadrature without differences, for integrating second order differential equations. H. E. Salzer
Reprinted from Journal of Mathematics and Physics, November 1945. 6 p. 25c.

MT36. Formulas for direct and inverse interpolation of a complex function tabulated along equidistant circular arcs. H. E. Salzer
Reprinted from Journal of Mathematics and Physics, November 1945. 3 p. 25c.

Coordinate conversion tables.
Published as Technical Manual TM 4-238 of the War Department. March 25, 1943. 338 p., 5½ by 8½ in. 40c.

Hydraulic tables (2d ed.).
Published by the Corps of Engineers, War Department. (1944) 565 p. Blue imitation leather flexible cover, 4½ by 6¾ in. $1.50.

(2) TABLES OBTAINABLE FROM THE COLUMBIA UNIVERSITY PRESS

The following four tables can be obtained from the Columbia University Press, Morningside Heights, New York 27, N. Y.

Table of reciprocals of the integers from 100,000 through 200,009. (1943) 201 p. Buckram cover. $4.00.
Table of Bessel functions $J_n(z)$ and $J_i(z)$ for complex arguments. (1943) 403 p. Buckram cover. $5.00.
Table of circular and hyperbolic tangents and cotangents for radian arguments. (1943) 410 p. Buckram cover. $5.00.
Tables of Lagrangian interpolation coefficients. (1944) 392 p. Buckram cover. $5.00.
Table of arc sin x. (1945) 121 p. Buckram cover. $3.50.
Tables of associated Legendre functions. (1945) 302 p. Buckram cover. $5.00.

(3) TABLES AVAILABLE ELSEWHERE

The eight tables listed below can be consulted in libraries maintaining a file of mathematical and technical journals. No reprints of them are obtainable from the Bureau.

On the computation of second differences of the $Si(x)$, $Ei(x)$, and $Ci(x)$ functions. Arnold N. Lowan

On the distribution of errors in the nth tabular differences. Arnold N. Lowan and Jack Laderman
Note on the computation of the differences of the $Si(x)$, $Ci(x)$, $Ei(x)$ and $-Ei(-x)$ functions. Milton Abramowitz

Errors in Hayashi's table of Bessel functions for complex arguments. Arnold N. Lowan and Gertrude Blanch

On the inversion of the q-series associated with Jacobian elliptic functions. A. N. Lowan, G. Blanch, and W. Horenstein

A table of coefficients for numerical differentiation. Arnold N. Lowan, Herbert E. Salzer, and Abraham Hillman

Roots of $\sin z = z$. A. P. Hillman and H. E. Salzer
Gives the first 10 nonzero roots of $\sin z = z$ in the first quadrant to six decimal places.
Roots of $\sin z = z$, where $z = x + iy$. Philosophical Magazine, Series 7, vol. XXXIV, p. 575 (August 1943).
cereal straws by a modified sulfur process. M 124 (1936).
A device for measuring the torque of electrical machines. T 7, 581 (1916-17) T54.
A study of the current transformer with particular reference to iron loss. B 7, 423 (1911) S164.
The regulation of potential transformers, and the constants of instrument transformers. B 7, 45 (1911) S145.
Cosmic-ray observations in the stratosphere with high-speed counters. J 23, 585 (1939) RP1254.
Austin, L. W.: Detector for small alternating currents and electric waves. B 1, 435 (1903-05) S22.
The positive charges carried by the canal rays. B 1, 439 (1903-05) S233.
The production of high frequency oscillations from the arc. B 3, 325 (1907) S80.
Some contact rectifiers of electric currents. B 5, 133 (1908-09) S94.
The comparative sensitivity of some common detectors of electrical oscillations. B 6, 297 (1909-10) S140.
The measurement of electric oscillations in the region of high frequency. B 7, 293 (1911) S157.
Some experiments with coupled high-frequency circuits. B 7, 301 (1911) S158.
Antenna resistance. B 9, 65 (1913) S189.
Energy losses in some condensers used in high-frequency circuits. B 9, 73 (1913) S190.
A study of the relation between crookedness and the wave structure of water. T 19, 621 (1924) RP441.
Properties of gray cast iron as affected by casting conditions. J 3, 573 (1934) RP726.
Barbrow, L. E., Dryden, H. L., Characteristic equa-
Barrow, L. E., Wensel, H. T., Roeser, W. F., A photometric procedure using barrow-
Ballif, P. S., Dryden, H. L.:
Effect of yaw on vane-
Ballif, P. S., Ramberg, W., West, M. J., A method for measuring and recording propeller blade vortic wave of propeller at a frequency.
Barrow, L. E., Meyer, J. F., Characteristic equa-
Barrow, L. E., Wensel, H. T., Roeser, W. F., Coldwell, F. R.
Deviation of photometric standards for tungsten-
Barrows, W. P., Blum, W., Brenner, A. The properties of plated or finished metals.
J 7, 697 (1931) RP368.
Barry, J. M., Sanford, R. L., Cheney, W. L.:
White-metal bearing alloys: Mechanical properties at different temperatures and service tests. J 10, 1 (1935) RP512.
Bosqui, O. H., Tangent modulus and the strength of steel columns in tests. T 18, 381 (1924-25) T263.
Bates, F.:
Spectrum lines as light sources in polariscope measuring.
B 17, 239 (1916) S349.
A quartz compensating polariscope with adjustable sensitivity. B 4, 461 (1907-08) S86.
A new cadmium vapor arc lamp. S 16, 45 (1920) T577.
Bates, R. G., Acree, S. F.:
ph values of certain phosphate-chloride mixtures and the second dissociation constant of phosphoric acid from 0° to 60° C. J 30, 129 (1943) RP1534.
Effect of sodium chloride on the ph of phosphorus-sulfate buffers from 0° to 60° C. J 33, 131 (1944) RP1539.
A fundamental basis for measurements of length. S 21, 359 (1926-27) S552.
Bates, F., Blake, J. C.
The influence of basic lead acetate on the optical rotation of sucrose in water solution. B 3, 105 (1907) S52.
Bates, F., Isbell, H. S., Frush, H. L.
Manufacture of calcium gluconate by the electrolytic oxidation of dextrose. J 5, 571 (1932) RP436.
Bates, F.
Influence of atmospheric conditions in the testing of sugars.
B 10, 537 (1914) S221.
A suggested new base point on the thermometric scale and the second inversion of quarts.
S 22, 915 (1927-28) S557.
Bates, G. C.
Bates, R. G., Edelman, M., Acree, S. F., Reproducibility of the lead electrode and the electromotive force of lead sulfate-lead amalgam cell at 0° to 60° C.
J 36, 159 (1946) RP1697.
Bates, R. G., Homer, W. J., Manon, G. G., Acree, S. F.
Provisional ph values for certain standard buffer solutions.
J 50, 499 (1942) RP1557.
Reprinted for p-phenolsulfonic acid and pH values of phenolsulfonate-
chloride buffers from 0° to 60° C. J 31, 205 (1943) RP1559.
Bates, P. H.:
Cementing qualities of the calcium aluminates.
T 15, 1921 T197.
T 8, 1916-17 T78.
T 10, 1919-20 T78.
Bates, P. H., Wig, R. J., Tests of the absorptive and permeable properties of Portland cement mortars and concretes, together with tests of dampproofing and waterproofing compounds and materials.
T 1, 1910-12 T3.
Bates, P. H., Young, R. N., Rapp, P., Tests of caustic magnesia made from magnesite from several sources.
T 17, 529 (1922-24) T239.
Bates, S. J., Vinal, G. W., Comparison of the silver and iodine voltmeters and the determination of the value of the Faraday.
B 10, 425 (1914) S218.
Beal, A. F., Jewelers' and silversmiths' weights and measures.
C 43 (2d ed.), (1921).
Bene, H. S.:
Gas measuring instruments. C 309 (1926).
Bean, H. S., Bene, M. E., Buckingham, E., Experiments on metering of large volumes of air.
J 7, 93 (1931) RP335.
Bean, H. S., Bene, M. E., Whitting, F. C.
Bean, H. S., Buckingham, E., Murphy, P. S., Discharge coefficients of square-edged orifices for measuring the flow of air.
J 3, 561 (1929) RP498.
Berce, H. W.:
A fundamental basis for measurements of length.
S 21, 359 (1926-27) S552.
The density of the thermal expansion of linseed oil and turpentine. T 1, 1910-12 T9.
Graphic comparison of screw thread pitches.
B 17, 188 (1949) RP498.
Berce, H. W., Osborne, N. S., McKelvey, E. C., Density and thermal expansion of ethyl alcohol and its mixtures with water.
B 9, 327 (1921) S197.
T 8, 1916-17 T77.
T 9, 1916-17 T95.
Bebb, E. C., Rig, R. J., Williams, G. M., McCrory, S. H., Ferguson, L. K., Investigation of the durability of cement drain tile in alkali soils.
T 5, 1914-15 T44.
Becker, G., Spectral reflectance of the Philippine
A comparative study of paper fillers. T 19, 738
Resistant to alkali. T 75, 715 (1929) RP89.
Bickering, G. W., Shaw, M. B., O'Leary, M. J.:
Investigation of commercial paper-making materials. T 21,
323 (1929) RP119.
Further experimental production of currency paper in the
Bureau of Standards experimental paper mill. T 21, 80
(1926-27) T229.
Caro fiber as a paper-making material. T 21, 323
(1929) RP119.
Reynolds, J. R. L., Rogers, J. S.,
Bingham, E. C., Jackson, R. F.,
Standard substances for the calibration of viscometers. B
6, 899 (1929) RP121.
Bickering, G. W., Shaw, M. B., Snyder, L. W.,
Peffer, E. L., Hidnert, P.,
Blair, M. G., Hidnert, P.,
Thermal expansivity and density of indium. J
20, 427 (1943) RP1541.
Blake, J. C., Bates, F. J.,
The influence of basic lead acetate on the optical rotation of sucrose in
water. J 26, 105 (1907) S35.
Bleich, L. E., Pickering, S. F.,
A review of the literature relating to the normal densities of gases. S
21, 141 (1926-27) S329.
Bleich, L. E., Pickering, S. F.,
Effect of preliminary heat treatment upon the drying of clays. T
1, 91 (1910-12) T1.
Bleich, L. E., Pickering, S. F.,
The effect of preliminary heat treatment upon the drying of clays. T
75, 715 (1929) RP89.
Bleich, L. E., Pickering, S. F.,
Viscosity of porcelain bodies high in feldspar. T
5, 1914-15 T50.
Bleich, L. E., Pickering, S. F.,
The properties of American bond clays and their use in graphite crucibles and glass pots. T
13, 1919-20 T114.
Bleich, L. E., Pickering, S. F.,
The testing of clay refractories, with special reference to their load carrying ability at furnace temperatures. T
1, 1910-12 T77.
Bleich, L. E., Pickering, S. F.,
The veritas firing rings. T 4, 1913-14 T40.
Bleich, L. E., Pickering, S. F.,
Viscosity of porcelain bodies. T 3, 1911-16 T30.
Bleich, L. E., Pickering, S. F.,
The hydrolysis of sodium oxalate and its influence upon the test for neutrality. B
8, 519 (1930) RP178.
Bleich, L. E., Pickering, S. F.,
Determination of manganese as sulphate and by the sodium bismuthate method. B
8, 715 (1930) RP178.
Bleich, L. E., Pickering, S. F.,
Bleich, L. E., Pickering, S. F.,
The testing of clay refractories, with special reference to their load carrying ability at furnace temperatures. T
1, 1910-12 T77.
Bleich, L. E., Pickering, S. F.,
The testing of clay refractories, with special reference to their load carrying ability at furnace temperatures. T
1, 1910-12 T77.
Bleich, L. E., Pickering, S. F.,
The testing of clay refractories, with special reference to their load carrying ability at furnace temperatures. T
1, 1910-12 T77.
Bleich, L. E., Pickering, S. F.,
The testing of clay refractories, with special reference to their load carrying ability at furnace temperatures. T
1, 1910-12 T77.
Bleich, L. E., Pickering, S. F.,
The testing of clay refractories, with special reference to their load carrying ability at furnace temperatures. T
1, 1910-12 T77.
Bleich, L. E., Pickering, S. F.,
The testing of clay refractories, with special reference to their load carrying ability at furnace temperatures. T
1, 1910-12 T77.
Bleich, L. E., Pickering, S. F.,
The testing of clay refractories, with special reference to their load carrying ability at furnace temperatures. T
1, 1910-12 T77.
Bleich, L. E., Pickering, S. F.,
The testing of clay refractories, with special reference to their load carrying ability at furnace temperatures. T
1, 1910-12 T77.
Bleich, L. E., Pickering, S. F.,
The testing of clay refractories, with special reference to their load carrying ability at furnace temperatures. T
1, 1910-12 T77.
Photo-ionization of caesium by line absorption. J 5, 31 (1930) RP186.
Photoinization of caesium by absorption between the series lines. J 5, 831 (1930) RP294.
Scattering of electrons by ions and the mobility of electrons in a caesium discharge. J 10, 357 (1933) RP353.
Bogaty, H., Jessup, D. A., Weiseberg, S. G.,
Boughton, E. W.:
Use of sulphite cellulose extract as a tanning medium. J 30, 309 (1926) RP139.
The influence of pH on the deterioration of vegetable-tanned leather by sulphuric acid. J 4, 365 (1939) RP547.
Boughton, E. W., Wallach, L. L., Kanagy, J. R.,
Influence of magnesium sulphate on the deterioration of vegetable-tanned leather by sulphuric acid. J 12, 565 (1939) RP545.
Bower, J. C., Geib, M. N. V.,
Bower, J. C., Greene, K. T.,
Bower, J. C., Tucker, Jr., J.,
Brower, J. R., Shepherd, M.:
Critical study of the determination of carbon monoxide by combustion over platinum in the presence of excess oxygen. J 13, 777 (1934) RP661.
Brower, J. R., Spierling, E. O.,
Brower, J. C., Hart, R. W.,
An apparatus for measuring the relative wear of sole leathers and the results obtained with leather from the different parts of a hide. J 11, 191 (1919-20) T147.
Brower, J. R., Wallace, E. L.:
Use of sulphite cellulose extract as a tanning medium. J 30, 309 (1926) RP139.
Boone, C. E., Spence, D.,
Determination of volatile thinner in oil varnish. J 7, 7, 7 (1917) T353.
Bowker, R. C., Emley, W. E., Comparative wear of chrome-tanned, vegetable-tanned, and retained sole leather. J 15, 368 (1933) RP334.

Phase equilibria in the system Cr203-SiO2. J 5, 325 (1930) RP203.

Phase equilibria in the system Cr2O3-Al2O3. J 7, 375 (1933) RP157.

Phase equilibria in the system ZnO-Al2O3. J 9, 270 (1932) RP413.

Length changes of whiteware clays and bodies during initial heating, with supplementary data. J 19, 45 (1940) RP1211.

Some "soft" glasses of low thermal expansion. J 20, 57 (1938) RP1064.

Burges, G. K.: Radiation from platinum at high temperatures. J 6, 185, 214 (1930) RP654.

Melting points of the iron-group elements by a new radiation method. B 8, 545 (1907) S62.

The estimation of the temperature of copper by means of optical pyrometers. B 6, 111 (1909-10) S121.

A micropyrometer. B 9, 475 (1913) S198.

Temperature measurements in Bessemer and open-hearth practice. T 9, (1916-17) T91.

Steel rails from sink-head and ordinary rail ingots. T 14, (1920-21) T178.

The international temperature scale. J 1, 685 (1929) RP22.

Burges, G. K., Fosse, P. D.: The emissivity of metals and oxides. I. Nickel oxide (NiO) in the range 600 to 1600°C. B 11, 41 (1918) RP64.

The determination of vanadium and its separation from vanadium, in steels. T 1, (1910-12) T6.

Influence of sulphur, oxygen, copper, and manganese on the shortness of iron. T 7, 327 (1911) T327.

Cain, J. R., Hostetter, J. C., A rapid method for the determination of vanadium in steels, ores, etc., based on its quantitative inclusion by the phosphomolybdate precipitate. T 1, (1910-12) T8.

On sulphonic acid. B 3, 157 (1907) S84.

Carson, F. T., Snyder, L. W., Calibration and adjustment of the Schopper folding tester. T 22, 125 (1927-28) T357.

Further tests of stellar radiometers and some measurements of planetary radiation. S 18, S85 (1922–23) S466.

Temperature estimates of the planet Mars. J 28, 297 (1942) RF1458.

Instruments and methods used in radiometry. B 7, 243 (1911) S156.
Instruments and methods used in radiometry. II. B 9, 7 (1913) S168.
The constants of spectral radiation of a uniformly heated enclosure or so-called black body. Part 1. B 10, 1 (1914) S254.
A comparison of stellar radiometers and radiometric measurements on 110 stars. B 11, 613 (1915) S244.
The distribution of the constant of total radiation from a black body. B 12, 553 (1915–16) S282.
Constants of spectral radiation of a uniformly heated enclosure or so-called black body. II. B 12, 559 (1915) S284.
Photoelectric sensitivity of bismuthinite and various other substances. B 14, 391 (1918–19) S322.
Reflecting power of monel metal, stellite, and zinc. B 16, 249 (1920) S379.
Positive and negative photoelectric properties of molybdenite and several other substances. B 16, 588 (1920) S398.
Infrared transmission and refraction data on standard lens and prism material. B 16, 701 (1920) S401.
Pressure status of the constants and verification of the laws of thermal radiation of a uniformly heated enclosure. B 17, 7 (1922) S406.
A portable vacuum thermomil. B 17, 187 (1922) S413.
Spectrocolorimetric investigation of the transmission of various substances. II. B 17, 267 (1922) S418.
Tests of stellar radiometers and measurements of the energy distribution in the spectra of 16 stars. B 17, 725 (1922) S438.

Further tests of stellar radiometers and some measurements of planetary radiation. S 18, S85 (1922–23) S466.

Ultra-violet reflecting power of aluminum and several other metals. J 4, 193 (1939) RP414.

The present status of the standards of the thermal radiation maintained by the Bureau of Standards. J 11, 79 (1933) RP578.

Infrared absorption spectra of some plant pigments. J 11, 703 (1936) RP617.

Data on the spectral erythemic reaction of the untannde human skin to ultraviolet radiation. J 12, 13 (1934) RP681.

A portable ultra-violet intensity meter, consisting of a balanced amplified, photoelectric cell, and a microamperemeter. J 12, 231 (1934) RP647.

Ultraviolet transmission changes in glass as a function of the wavelength of the radiation stimulus. J 13, 773 (1934) RP744.

Distribution of the energy in the extreme ultra-violet of the solar spectrum. J 17, 1 (1936) RP111.

Spectro-transmissive properties and use of metals for protective glasses. C421 (1938).

The spectral erythemic reaction of the untannde human skin to ultraviolet radiation. J 8, 541 (1939) RP432.

Tests of a balanced thermocouple and filter radiometer as a standard ultra-violet dosage intensity meter. J 7, 759 (1932) RP450.

The influence of frequency on the resistance and inductance of solenoidal coils. B 4, 161 (1909-10) S76.

The self-inductance of a solenoid of any number of layers. B 4, 383 (1907-08) S84.

Note on the approximate value of Bessel's function for large arguments. B 5, 227 (1908-09) S100.

The theory of coupled circuits. B 5, 511 (1908-09) S112.

The development of reflection of electric waves at a transition point. B 5, 549 (1908-09) S114.

Coupled circuits in which the secondary has distributed inductance and capacity. B 6, 247 (1909-10) S126.

On the self-inductance of circles. B 4, 149 (1907-08) S75.

Formulæ and tables for the calculation of mutual inductances. J 5, 1 (1908-09) S93.

Coleman, E. F., Head, R. H., Air infiltration through windows. BMS45 (1940).

Cook, J. W., The production of liquid air on a laboratory scale. S 17, 277 (1922) S419.

Cooper, A. C., Sicher, B. F., Sensitive aneroid diaphragm capsule with no deflection above a selected pressure. J 24, 31 (1940) RP1404.

Corruccini, R. J., Ginnings, E. C., Enthalpy, specific heat, and entropy of aluminum oxide from 0° to 900° C. J 38, 593 (1947) RP1787.

Driscoll, E., Harris, F. K., Electrical methods for dia-
Craigie, C. S.: Solubility of pv isotherms of H2O, Na, H2 N2, and O2 at 0°C. J 26, 495 (1941) RP1393.

Thermal properties of petroleum products. M 9 (1929).

Craigie, C. S., Hill, E. E., Thermal expansions of glasses from 0° to 30°C. J 7, 1153 (1931) RP393.

Electrolytic rectifiers for direct-current applications. J 10, 73 (1930) RP566.

Electrolytic rectifiers for direct-current applications. J 10, 73 (1930) RP566.

Thermodynamic properties of sulphuric-acid solutions and their relation to the electrochemical forces and heat of reaction of the lead storage battery. J 21, 475 (1940) RP1294.

Curtis, R. W., Sparks, C. M., Hartshorn, L., Astbury, N. F., Capacitance and power factor of a mica capacitor as measured at the Bureau of Standards and the National Physical Laboratory. J 8, 507 (1932) RP431.

Probability of fluctuations in the rate of emission of α-particles. J 4, 595 (1930) RP166.

Fluctuations of the rate of emission of α-particles for weak sources and large solid angles. J 8, 339 (1932) RP419.

Detection of γ-radiations by a magnetic field. J 9, 815 (1932) RP509.

A gamma-ray ionization chamber for use with a direct current amplifier. J 12, 167 (1934) RP663.

Portable detector for radium. J 12, 379 (1934) RP663.

Protection of radium during air raids. H 38 (1942).

An arrangement with small solid angle for measurement of beta rays. J 37, 91 (1946) RP1731.

A counting method for the determination of small amounts of radium and of radon. J 31, 181 (1943) RP1557.

D

A counting method for the determination of small amounts of radium and of radon. J 31, 181 (1943) RP1557.

A study of the relation between intermittent and nonintermittent sector wheel photographic exposures. S 21, 95 (1926-27) S258.

Filters for producing the color of the equal-energy stimulus. J 7, 12, 263 (1934) RP652.

Filters for the reproduction of sunlight and daylight and the determination of color temperature. M 114 (1931).

Variation of photographic sensitivity with different exposures. J 7, 843 (1931) RP378.

Combustion calorimetry and the heats of combustion of cane sugar, benzole acid, and benzoic acid. J 34, 253 (1946) S205.

Specific heat and heat of fusion of ice. B 12, 49 (1915-16) S248.

Dickinson, H. C., Waldner, C. W., On the standard scale of temperature in the interval 0° to 100°. B 3, 663 (1907) S69.

Thermal expansion of high-silicon cast iron. J 82, 145 (1944) RP1531.

Effect of lathe cutting conditions on the hardness of carbon and alloy steels. J 10, 77 (1933) RP156.

Effect on the critical cooling rate of high-purity iron-carbon alloys and plain carbon steels. J 20, 571 (1938) RP1092.

Transformation of austenite on quenching high-purity iron-carbon alloys. J 29, 151 (1939) RP1225.

Influence of austenite grain size on the critical cooling rate of high-purity iron-carbon alloys. J 34, 723 (1940) RP1308.

Microstructural characteristics of high-purity alloys of iron and carbon. J 37, 65 (1941) RP1403.

Dipper, T. G., Jordan, L., Hardening characteristics and other properties of commercial one-percent-carbon steels. J 37, 174 (1943) RP567.

Influence of initial stress and rate of heating on the austenitic grain size of 0.5-percent-carbon steel and iron-carbon alloy. J 39, 33 (1942) RP1481.

Metallographic study of the formation of austenite from aggregates of ferrite and cementite in a 0.5 percent carbon alloy. J 11, 93 (1942) RP1489.

Dill, R. S., Achenbach, P. R.: Effect of sooting on the testing of an oil-fired heating boiler. BMS 154 (1940).

Temperature distribution in a test bungalow with various heating devices. BMS 108 (1947).

Dill, R. S., Caicco, V.: Solar heating of various surfaces. BMS 184 (1941).

Laboratory observations of condensation in wall spaces. BMS 106 (1946).

Dill, R. S., Peck, M. F., Phelan, V. B., Petersen, P. H., Structural, heat-transfer, and water-permeability properties of five earth-wall constructions sponsored by the General Shale Products Corporation. BMS 88 (1942).

Dill, R. S., Robinson, W. C., Robinson, H. E., Measurement of heat losses from slab doors. BMS 103 (1945).

Dill, R. S., Lown, L. D., Stang, A. H., Hubbell, E., Structural, heat-transfer, and water-permeability properties of five earth-wall constructions. BMS 78 (1941).

A comparison of the various methods of determining the potential of the electromagnetical to the electrostatic unit of electricity. B 3, 605 (1907) S66.

Dowell, R. L., Staples, E. M., Geissinger, A. E.,
Bearing bronze with additions of zinc, phosphorus, nickel, and antimony. J. 5, 349 (1930)

Drake, N. L., Kline, G. M.,
Polymelization of olefins formed by the action of sulphuric acid on methylisopropylcarbinol. J. 13, 705 (1934)

Dreby, E. C.:
The Planex, a simple device for evaluating the pliability of fabries. J. 27, 489 (1941) RP1434.
A friction meter for determining the coefficient of kinetic friction of fabrics. J. 31, 237 (1943) RP1562.

Driscolli, R. L., Curtis, R. W., Critchfield, C. L.,
Dowdell. R. L., Staples, E. M., Eggenschwiler, C. E.,
Further measurements of propeller fan characteristics. J. 5, 387 (1931) RP283.

Dryden, H. L., Hill, G. C.:
Dryden, H. L., Tuckerman, L. B., Brooks, H. B.,
Utilization of non-petroleum. J. 20, 697 (1924) RP1066.

Dryden, H. L., Ballif, P. S.:
Dunmore, F. W., Engel, F. H.:
Dunmore, F. W., Kolster, F. A.,
A radiobeacon and receiving system for blind landing of aircraft. J. 27, 251 (1946) RP1746.

Dunmore, F. W., Dwyer, J. R., Hitchcock, F. A.,

Dunmore, F. W., Tuckerman, L. B., Keulegan, G. H.,
A friction meter for use on aircraft. T. 21, 103 (1926-27) T94.

Easton, A. H., Peck, M. F., Luzaford, R. F.,
Structural properties of "Precision-Built, Jr." prefabricated wood-frame wall construction sponsored by the Homasote Co. BMS72 (1941).

Easton, A. H., Hunter, R. B., Golden, G. E.,

Eckhardt, E. A., Coble, N. W.:

Eckhardt, E. A., Christler, V. L.,

Eckhardt, E. A., Christler, V. L., Quayle, P. P.,
Eckhardt, E. A., Quayle, P. P.,
Eckhardt, E. A., Buckingham, E.,
Transmission of sound through voice tubes. T. 21, 103 (1926-27) T333.

Eckman, J. R., Determination of sulphur trioxide in gas from sulphur dioxide, together with some analyses of commercial liquid sulphur dioxide. S. 22, 277 (1927-28) S554.

Eckman, J. R., Jordan, L.:

Eckert, E. A., Christler, V. L.,
Gases in metals: III. The determination of nitrogen in metals by fusion in vacuum. S. 22, 467 (1927-28) S563.

Edelstein, M., Bates, R. G., Acree, S. F.,
Reproducibility of the lead electrode and the electromotive force of the lead stick-lead amalgam cell at 0° to 60° C. J. 9, 529 (1929) RP111.

Eden, M., Acree, S. F., Bates, R. G., Diamond, P. T.,
Salt effects of potassium nitrate, sodium sulfate, and trisodium citrate on the activity coefficients of p-phenolsulfonate buffers J. 8, 251 (1946) RP1746.

Eddies, J. D.:
Densification of ammonia in illuminating gas. T. 4, 17 (1916-17) T89.
A specific gravity balance for gases. T. 9, (1916-17) T89.
Effusion method of determining gas density. T. 9, (1916-17) T89.

Evans, W. D., Critchfield, C. L., The effect of atmospheric moisture on the physical properties of vegetable tannin, tannin-furfural, and tanned calf leathers. J 11, 147 (1933) RP583.

F

Organizations cooperating with the National Bureau of Standards. M 96 (1927).

Farber, H. L., Blum, W., Throwing power in tile making. J 17, 37 (1930) RP31.

Ferguson, W. J., Rands, Jr., R. D., Prather, J. L., Specific heat and increases of entropy and thermal expansion of some soda-lime-silica glasses as a function of temperature from 0° to 380° K. J 33, 63, (1944) RP1595.

Ferguson, W. J., Scott, R. B., Brickwede, F. G., Thermodynamic properties of n₂- butyone from 15° to 500° K. J 31, 1, (1944) RP1592.

An application of the "partition method" for the determination of boron. J 27, 33 (1941) RP1401.

Finn, A. N., Schmidt, B. C., Young, J. C., Thermal expansions of some soda-lime-silica glasses as functions of the composition. J 15, 421 (1934) RP853.

Finn, A. N., Young, J. C., Effect of composition and of certain heterogeneities in the specific refraction and dispersion of glasses. J 25, 759 (1940) RP1592.

Fisch, E. F., Ginnings, D. C., Holton, W. B., Calorimetric determination of thermal properties of saturated water and steam from 0° to 270° C. J 6, 881 (1931) RP312.

Flint, E. P., Swenson, J. A., Extraction of natural uranium from ores. J 18, 63 (1903-05) SI.

Fischer, M. F.: Apparatus for the determination of the magnetic properties of short bars. S 15, 519 (1922-23) S405.

Fishburn, C. C., Parsons, D. E., Tests of cement-water paints and other waterproofings for unit-masonry walls. BMS95 (1945).

Fishburn, C. C., Parsons, D. E., Petersen, P. H., Effect of indoor exposure on the permeability of masonry walls. BMS87 (1941).

Fishburn, C. C., Petersen, P. H., Effect of heating and cooling on the permeability of masonry walls. BMS41 (1938).

Fishburn, C. C., Parsons, D. E., Petersen, P. H., Preparation and physical characteristics of the Marvin Clay Products Institute. BMS24 (1939).

Fishburn, C. C., Petersen, P. H., Effect of heating and cooling on the permeability of masonry walls. BMS41 (1938).

Fishburn, C. C., Parsons, D. E., Tests of cement-water paints and other waterproofings for unit-masonry walls. BMS95 (1945).

Gibson, K. S., McAdams, Jr., D. J.: Rate of oxidation of steels as determined from interference colors of oxide films. J 23, 63 (1939) RP1230.

Length changes of whiteware clays and bodies during calcining, with supplementary data on mica. J 25, 15 (1940) RP1311.

Some factors affecting the properties of ceramic whitewares. J 26, 215 (1941) RP1871.

George, W. D., Production of accurate one-second time intervals. J 21, 367 (1938) RP515.

Filters for producing the color of the equal-energy stimulus. J 12, 269 (1934) RP652.

Filters for the reproduction of sunlight and daylight and the determination of color temperature. M 14 (1931).

Standardization of the luminous-transmission scale used in the specification of railroad signal glasses. J 32, 627 (1939) RP1209.

A method for the separation and gravimetric determination of osmium. J 6, 421 (1931) RP286.

A new determination of the atomic weight of osmium. J 9, 279 (1932) RP471.

A method for the separation of rhodium from iridium and the gravimetric determination of these metals. J 9, 547 (1932) RP489.

A method for the separation of ruthenium from platinum, palladium, rhodium, and iridium. J 12, 283 (1934) RP654.

Methods for the separation of platinum, palladium, and iridium from one another and for their gravimetric determination. J 12, 291 (1934) RP655.

Analytical separations by means of controlled hydrolytic precipitation. J 30, 89 (1943) RP442.

Gillet, H. W., High silicon structural steel. T 21, 121 (1926-27) T381.

Gordon, C. L., Schlecht, W. G., Wickers, E.:

Greenspan, M.:

Greenspan, M.:

Greenspan, M.:
Perforated cover plates for steel columns: Compressive properties of plates having circular perforations and a width-to-thickness ratio of 40. J 30, 177 (1943) RP1527.

Greenspan, M.:
Perforated cover plates for steel columns: Compressive properties of plates having circular perforations and a width-to-thickness ratio of 50. J 30, 411 (1943) RP1540.

Greenspan, M., Stang, A. H., Newman, S. B.:

Greenspan, M., Stang, A. H., Ogwood, W. R.:
Strength of riveted steel rigid frame having straight flanges. J 21, 269 (1938) RP1130.

Greenspan, M., Sweetman, L. R.:

Greenspan, M., Sweetman, L. R.:
A transfer strain gauge for large strains. J 34, 595 (1945) RP1658.

Grenell, L. H., Jordan, L., Herschman, H. K.:

Gries, J. M., Curran, T. M., Present home financing. BH 12, 928.

Gries, J. M., Taylor, J. S.:
How to own your own home: A handbook for prospective home owners. BH4 (1923).

Groesbeck, E. C.:
Present home financing. BH 12, 928.

Groesbeck, E. C.:

Groesbeck, E. C.:
How to own your home: A handbook for prospective home owners. BH4 (1923).

Groesbeck, E. C., Rawdon, H. S., Jordan, L.:

Groesbeck, E. C., Rawdon, H. S., Jordan, L.:
Acid-etched steels. J 32, 105 (1943) RP1568.

Groesbeck, E. C., Bogart, R. H.:
Phase equilibrium relations in a portion of the system NaO-CaO-Al2O3-SiO2. J 35, 185 (1946) RP1699.

Greene, T. W.:

Greene, T. W.:
Tests of columns and beams. T 15, 179 (1921-22) T208.

Greene, T. W.:
Tests of columns and beams. T 15, 179 (1921-22) T208.

Groesbeck, E. C.:

Groesbeck, E. C.:
How to own your home: A handbook for prospective home owners. BH4 (1923).

Groesbeck, E. C.:
Methods. BH12 (1923).

Grogans, M.:
Approximation to a function of one variable from a set of its mean values. J 23, 309 (1939) RP1221.

Grove, F. W.:
The simultaneous measurement of the capacity and power factor of condensers. B 3, 371 (1907) S64.
The mutual inducances of two parallel coaxial circles in terms of hypergeometric series. B 6, 469 (1909-10) S138.

The capacity and phase difference of paraffined paper condensers as functions of temperature and frequency. B 7, 495 (1911) S166.

Analysis of alternating-current waves by the method of Fourier with special reference to methods of facilitating the computations. B 9, 567 (1913) S203.

Calculation of the maximum force between two coaxial circular currents. B 12, 317 (1915-16) S255.

Tables for the calculation of the inductance of circular coils of rectangular cross sections. B 15, 592 (1922-23) S455.

Formulas and tables for the calculation of the inductance of coils of polygonal form. S 18, 737 (1922-23) S482.

Tables for the calculation of the mutual inducance of circuits with circular symmetry about a common axis. S 20, I (1924-26) S498.

Methods, formulas, and tables for the calculation of antenna capacity. S 25, 569 (1927-28) S665.

Methods for the derivation and expansion of formulas for the mutual inducance of coaxial circles and for the inductance of single-layer solenoids. J 1, 457 (1928) RP16.

Resistance coils for alternating current work. B 9, 495 (1912) S177.

The absolute measurement of capacity. B 1, 153 (1903-05) S10.

Method and apparatus used in testing phase oscillators for broadcasting stations. J 4, 115 (1930) RP135.

Hall, F. P., Methods of measuring the plasticity of clays. T 17, 345 (1922-24) T234.

Hall, W. L., Slater, C. S., Acree, S. F., Preliminary investigations upon two cellulose wastes as sources for xylene. J 4, 329 (1930) RP152.

Determination of boron in steel and cast iron. S 26, 405 (1941) RP1386.

Hamill, T. E., Aqueous solutions of ethylene glycol, glycerin, and sodium silicate as quenching media for steels. T 23, 635 (1925-26) T323.

Hamill, G. K., Gottschalk, V. H., Bicking, G. W.: A method for the determination of the pH of 0.05-molar solutions of acid potassium phthalate with or without potassium chloride. J 32, 215 (1944) RP1588.

First dissociation constant of o-phthalic acid and related pH values of phthalate buffers from 0° to 60° C. J 35, 381 (1945) RP1678.

Hamill, T. E., Aqueous solutions of ethylene glycol, glycerin, and sodium silicate as quenching media for steels. T 23, 635 (1925-26) T323.

Hamill, T. E., Aqueous solutions of ethylene glycol, glycerin, and sodium silicate as quenching media for steels. T 23, 635 (1925-26) T323.
Harris, M., Smith, A. L.:
Nature of the acid-dyeing process. J 19, 81 (1938) RP1012.

Harris, M., Sookne, A. M.:
Surface characteristics of cotton fibers, as indicated by electrophoretic studies of nylon. J 26, 289 (1941) RP1348.

Harrison, T. R., Foote, P. D., Fairchild, C. O., Harrison, W. N.:

Hart, R. W., Bowker, R. C.:
Apparatus for measuring the relative wear of sole leathers and the results obtained with leather from the different parts of a hide. T 13, 1919-20 T176.

Haupt, G. W., Gibson, K. S.:
Standardization of Lovibond red glasses in comparison with Lovibond 35 yellow. J 13, 433 (1934) RP718.
Standardization of the luminous-transmission scale used in the specification of railroad signal glasses. J 22, 657 (1939) RP1209.

Heald, R. H.:
Comparison of the ground-plane and image methods of representing the aerodynamic characteristics of vehicles. J 19, 863 (1934) RP748.
Air forces and yawing moments for three automobile models. J 13, 871 (1934) RP749.

Heath, V. E.:
Heg, G. E.:
Structural properties of conventional wood frame constructions for walls, partitions, floors, and roofs. BMS25 (1939).

Heindl, R. A.: The thermal expansion of refractories to 1,500° C. J 10, 715 (1933) RP562.

Irregular "Tin-free" leaded bearing bronze. J 10, 591 (1933) RP551.

The life of the sagger as affected by varying certain properties. J 7, 1017 (1931) RP367.

Young's modulus of elasticity, strength, and extensibility of refractories in tension. J 17, 463 (1936) RP923.

Length changes and endothermic and exothermic effects during heating of flint and alumina clays. J 23, 427 (1939) RP1243.

Fire clays. Some fundamental properties at several temperatures. J 21, 210 (1930) RP194.

Young's modulus of elasticity at several temperatures for some refractories of varying silica content. J 13, 551 (1934) RP747.

Deformation and Young's modulus of fire-clay brick in flexure at 1200° C. J 19, 353 (1937) RP219.

Some properties of the dry air-setting type of refractory bonding mortar. J 28, 401 (1942) RP4161.

Panel tests for thermal spalling of fire-clay bricks used at high temperatures. J 34, 73 (1944) RP1931.

The life of the sagger as affected by varying certain properties. J 7, 1017 (1931) RP367.

Young's modulus of elasticity, strength, and extensibility of refractories in tension. J 17, 463 (1936) RP923.

Length changes and endothermic and exothermic effects during heating of flint and alumina clays. J 23, 427 (1939) RP1243.

Fire clays. Some fundamental properties at several temperatures. J 21, 210 (1930) RP194.

Young's modulus of elasticity at several temperatures for some refractories of varying silica content. J 13, 551 (1934) RP747.

Deformation and Young's modulus of fire-clay brick in flexure at 1200° C. J 19, 353 (1937) RP219.

Some properties of the dry air-setting type of refractory bonding mortar. J 28, 401 (1942) RP4161.

Panel tests for thermal spalling of fire-clay bricks used at high temperatures. J 34, 73 (1944) RP1931.

The life of the sagger as affected by varying certain properties. J 7, 1017 (1931) RP367.

Young's modulus of elasticity, strength, and extensibility of refractories in tension. J 17, 463 (1936) RP923.

Length changes and endothermic and exothermic effects during heating of flint and alumina clays. J 23, 427 (1939) RP1243.

Fire clays. Some fundamental properties at several temperatures. J 21, 210 (1930) RP194.
Hoffman, J. D., Hoffman, J. I., Brickwedde, F. G.:

Holt, W. L., Tener, R. F., Kingsbury, S. S., Tensile properties of soft rubber compounds at temperatures ranging from 70° to 147° C. T 23, 267 (1929).

Dynamometer tests of automobile tires. T 17, 607 (1922-23) T374.

Endurance tests of tires. T 20, 545 (1925-26) T318.

Selection and care of garden hose. C327 (1927).

Hopkins, B. S., Weiss, C. C., Krenes, H. C., Wave lengths longer than 5500 A in the arc spectra of yttrium, lanthanum, and cerium and the preparation of rare earth rare elements S 17, 317 (1922) S421.

Hoestetler, J. C., Cain, J. R., A rapid method for the determination of vanadium in steels, ores, etc., based on its quantitative inclusion by the phosphomolybdate precipitate. T 1, (1910-12) T8.

Hubbard, C. C., Reclamation of carbon black used in dry cleaning. T 19, 141 (1924-25) T280.

Hygroscopicity and electrode function (pH response) of a measure of serviceability. J 36, 511 (1946) RP1719.

Electrode function (pH response) of potash-silica glasses. J 37, 229 (1946) RP1743.

Hubbard, D., 1939) RP447.

The photographic emulsion: Variables in sensitization by dyes. J 9, 529 (1932) RP488.

The photographic emulsion: Sensitization by sodium sulphite. J 11, 743 (1933) RP822.

Units used to express the wave lengths of electromagnetic waves. M117 (1930).

Hubbell, E., Whittemore, H. L., Siang, A. H., Ditl, R. S., Structural, heat-transfer, and water-permeability studies of five earth-wall constructions. BM578 (1941).

Hughes, C. W., Coblentz, W. W.: The course of the oxidation of the aldose sugars by bromine water. J 8, 327 (1932) RP418.
Spectral energy distribution of the light emitted by plants and animals. S 21, 521 (1926–27) S585.
Emisive tests of paints for decreasing or increasing heat radiation from surfaces. T 18, 171 (1924–25) T254.
Generalities on radio currents of adjustable frequency with piezo-electric stabilization. S 22, 621 (1927–28) S569.
An explanation of the short life of frosted lamps. B 3, 81 (1907) S51.
An explanation of the short life of frosted lamps. B 3, 81 (1907) S51.
Hyde, E. P., Cady, F. E.: On the determination of the mean horizontal intensity of incandescent lamps by the rotating disk method. B 3, 157 (1907) RP475.
Hyde, E. P., Cady, F. E.: On the determination of the mean horizontal intensity of incandescent lamps by the rotating disk method. B 3, 157 (1907) RP475.
Hyde, E. P., Cady, F. E.: On the determination of the mean horizontal intensity of incandescent lamps by the rotating disk method. B 3, 157 (1907) RP475.
Hyde, E. P., Cady, F. E.: On the determination of the mean horizontal intensity of incandescent lamps by the rotating disk method. B 3, 157 (1907) RP475.

Structural characteristics of some constituents of Portland cement clinker. J 17, 353 (1936) RP786.

Inseay, H., Glaze, F. W., Some optical and crystallographic properties of the alkali zinc uranyl silicate. J 471 (1934) RP672.

Inseay, H., Klein, A. A., The constitution and microstructure of silica brick and changes involved through repeated burnings at high temperatures. T 13, (1939) T124.

The preparation of crystalline methyl-d-gluco-sido-sodium and sodium coordination compounds with calcium chloride. J 8, 1 (1932) RP396.

A study of the delta lactones by the oxidation of sugars with bromine water. J 8, 615 (1929) RP441.

Preparation of calcium lactobionate and lactobionic d-lactone. J 11, 713 (1933) RP618.

Preparation and properties of calcium lactobionic and lactobionic and of calcium-4-guloheptose. J 19, 639 (1937) RP1052.

Bromine oxidation and mutarotation measurement of aldose-3-alpha-mannohexose and 3-alpha-guloheptose. J 20, 97 (1938) RP1069.

Preparation of d-mannose. J 26, 47 (1941) RP1513.

Use of chlorites for treating raw sugars. J 27, 491 (1941) RP1436.

Interpretation of some reactions in the carbohydrate field in terms of consecutive electron displacement. J 29, 45 (1944) RP1573.

Preparation and properties of aldonic acids and their lactones and basic calcium salts. J 11, 649 (1933) RP613.

Alpha and beta methyl lysixides, mannixides, guloxides, and xyloxides of like configuration. J 24, 125 (1940) RP1274.

Sugar acetals, acetylglycosyl halides, and orthoacetates in relation to the Walden inversion. J 27, 410 (1941) RP1242.

Ring structures and mutarotation of the modifications of d-galactaric acid. J 31, 33 (1945) RP612.

Salts of galacturonic acid and their application to the preparation of galacturonic acid from pectic substances. J 32, 77 (1944) RP1576.

The course of the oxidation of the aldose sugars by potassium permanganate. J 8, 327 (1932) RP418.

Pyranose-furanose interconversions with reference to the mutarotations of galactose, levulose, lactulose, and turanose. J 20, 773 (1938) RP1040.

Optical rotatory relationships exhibited by aromatic and aliphatic glycosides. J 27, 9 (1941) RP1399.

The saccharimetric normal weight and specific rotation of sucrose. B 13, 633 (1916–17) SI293.

Supplementary list of publications of the Bureau of Standards — July 1, 1925 to December 31, 1931. Supplement to C24 (7th ed.), (1932).

Stability of sheathing papers as determined by accelerated aging. BM585 (1939).

Stability of fiber building boards as determined by accelerated aging. BM580 (1940).

Stability of fiber sheathing boards as determined by accelerated aging. BM589 (1941).

Jessup, R. S.: Compressibility and thermal expansion of petroleum oils in the range 0° to 300° C. J 5, 965 (1930) RP244.

The chemical reaction of the crude products of high-vacuum gasification. J 11, 619 (1936) RP861.

Yield and purity of levulose derived from the calcium levulote process. B 619 (1936) RP861.

Note on the density of combustion of benzoic acid. J 9, 115 (1937) RP966.

Note on the constant occurrence of nonreducing disaccharides in hydrolized inulin. S 5, 1151 (1930) RP251.

Two new crystalline difructose anhydrides from hydrolyzed inulin. J 6, 709 (1931) RP299.

Structural formula of difructose anhydride III (difructofuranose 1,2', 2,3'-anhydride). J 24, 181 (1940) RP1277.

Note on the constant occurrence of nonreducing disaccharides in hydrolized inulin. S 5, 1151 (1930) RP251.

Judd, D. B., Priest, I. G., Gibson, K. S., Comparison of data on the ionization of sixty-five 35-angstrom Lovibond glasses. J 7, 793 (1929) RP58.

Judson, E. B., Comparison of data on the ionosphere, sunspots, and terrestrial magnetism. J 19, 1026 (1939) RP93.

Judson, L. V., Page, B. L., Calibrations of the line standards of length of the National Bureau of Standards. J 13, 737 (1934) RP748.

K

Creek at elevated temperatures in chromium-vanadium steels containing molybdenum. J 9, 441 (1932) RP481.

Photoelectric sensitivity of silver sulphide and several other substances. S 15, 231 (1919-20) S344.

A new spectrophotometer and measurements of the component radiations from the sun and from a quartz mercury vapor lamp. S 16, 233 (1920) S378.

Influence of copper and iron salts on the behavior of leather in the oxygen bomb. J 20, 849 (1938) RP1109.

Accelerated aging of leather in the oxygen bomb at 290°F for 21, 241 (1938) RP1128.

Evaporation of carbon dioxide and water from vegetable-tanned leathers at elevated temperatures. J 27, 257 (1941) RP1418.

Accelerating effect of water vapor by sustained hide and various leathers at 100°F. J 38, 119 (1947) RP1763.

Kanegis, J., and others, Mechanical properties of metals and alloys. C447 (1943).

The melting points of fire brick. T 1, (1910-12) T10.

A method for the measurement of sound intensity. S 18, 257-261 (1922-24) S446, S539.

Karr, C. P., Rasden, H. S., Standard test specimens of the bronze (Cu 88, Sn 10, Zn 2)—Parts I and II. T 6, (1915-16) T59.

Kiss, C. C., The structure of the arc spectrum of zirconium. J 6, 821 (1931) RP296.

Kiss, C. C., Lang, R. J., The structure of the arc spectra of doubly and trebly ionized zirconium. J 16, 1464 (1938) S123.

Wave lengths longer than 5500 A in the arc spectra of seven elements. S 16, 51 (1930) S479.

Interferometer measurements of the longer waves in the iron arc spectrum. S 19, 278 (1923-24) S479.

Tables of theoretical Zeeman effects. J 1, 641 (1923) RP283.

Infra-red arc spectra photographed with xenon arcs. J 1, 641 (1923) RP283.

Kiss, C. C., Meggers, W. F., Burns, K., Redetermination of secondary standards of wave length from the new international iron arc. S 19, 263 (1923) S343-S478.

Kiss, C. C., Stowell, E. Z., First spectrum of tantalum. J 12, 459 (1934) RP671.

The structure of the arc spectrum of zirconium. J 6, 821 (1931) RP296.

Preliminary list of terms for the arc spectrum of tantalum. J 11, 277 (1933) RP589.

Kilpatrick, J. E., Pitzer, K. S.: Heat content, free-energy function, entropy, and heat capacity of ethylene, propylene, and the four butenes, to 1,506° K. J 37, 163 (1946) RP1738.

Kilpatrick, J. E., Wayman, D. D., Pitzer, K. S., Rossini, F. D., Heats, equilibrium constants, and free energies of formation of the acetylene hydrocarbons through the pentynes, to 1,506° K. J 35, 467 (1945) RP1682.

A study of the residual effect of sulphur dioxide from library air. M 142 (1933).

A survey of storage conditions in libraries relative to the preservation of records. M 128 (1931).

Kimberly, A. E., Meggers, W. F., Ar and spark spectra of some of the triolefins. J 6, 855 (1936) RP881.

Kingsbury, S. S., Tener, R. F., Holt, W. L., Tensile properties of soft rubber compounds at temperatures ranging from -70° to $+147^\circ$ C. T 22, 367 (1927-28) T364.

Applications of graphs of maximum usable frequencies to communication problems. J 22, 81 (1939) RP1167.

Klein, A. A., Insley, H., The constitution and microstructure of silica brick and changes involved through repeated burnings at high temperatures. T 12, 1915 T 1244.

Lauber, M. K., Foskett, L. W., Daytime photoelectric measurement of cloud heights. J 26, 331 (1941) R1728.

Launher, H. F., Wilson, W. K.:

- Determination of pentoxans in pulps and papers. J 22, 471 (1939) RP1199.

Lerch, W.:

- Comparative tests of stitches and seams. T 9, (1916-17) T96.
- Difference in weight between raw and clean woods. T 6, (1915-16) T57.
- Determination of the pH values of borate solutions. J 11, 599 (1933) RP610.
- Effect of wave form upon the iron losses in a transformer. J 17, 338 (1937) RP1127.
- Effect of glass content upon the heat of hydration of Portland cement. J 21, 238 (1938) RP1127.
M

J. 22, 261 (1934) RP4589.

Mair, B. J., Willingham, C. B., Relationship between physical properties and the chemical constitution of lubricating oil fractions. J. 17, 928 (1936) RP594.

Malmberg, C. G., Nicholas, W. W., Registration of cathode rays by thin films of metals and metal compounds. J. 8, 61 (1932) RP4006.

Manos, G. G., De Lollis, N. J., Acree, S. F., Ionization constant of boron acid and the pH of certain boraxchloride buffer solutions from 0° to 60° C. J. 33, 287 (1944) RP1609.

Meggers, W. F., Burns, K., Refractive index of rubber and gutta-percha. T 19, 669 (1924-25) T299.

Miller, G. D., Jessewitz, R. S., A study of commercial
millimeter waveguide. J 7, 294 (1934) RP331.

Mogerman, W. D., A method for determining of tin in non-
ferrous metals by distillation as bromide and trapping with cupferron. J 33, 307 (1944)
RP1260.

Mohler, F. L.: Critical potentials associated with excitation of

Mohler, F. L., Boeckner, C.: Recombination spectra of ions and electrons in
cesium and helium. J 2, 489 (1929) RP496.

Mohler, F. L.: Ionization and resonance potentials of some non-
metallic elements. S 16, 669 (1920) S400.

Neville, W. B., A piezometer for the determination of density of molasses. T 16, 389 (1931) RP369.

Nuebaum, C. W., Cheney, W. L., Effect of the rate of cooling on the magnetic and other properties of an artificial eutectoid carbon steel. S 17, 65 (1922) S408.

On secondary spectra and the conditions under which they may be produced. B 1, 83 (1903-05) S55.

Some lines rectifying effects in conducting gases. B 1, 95 (1903-05) S6.

The relative intensities of metal and gas spectra from electrically conducting gases. B 1, 399 (1906-07) S55.

Complete form of Fechner's law. B 3, 59 (1907) S5.

The luminous properties of electrically conducting helium gas. B 4, 511 (1907-08) S89.

The luminous equivalent of radiation. B 5, 261 (1908-09) S55.

A method for constructing the natural scale of pure color. B 6, 89 (1909-10) S118.

The resolving power of objectives B 6, 121 (1909-10) S118.

Luminosity and temperature. B 6, 337 (1909-10) S133.
A photometric attachment for spectrometers. B 7, 239 (1911) S155.
The luminescent properties of electrically conducting hollow glass. II. Re producibility. B 8, 487 (1912) S176.
Nutting, P. G., Tynag, O., The intensities of some hydrogen, argon, and helium lines in relation to current and pressure. B 7, 49 (1911) S146.

O'Leary, M. J., Shaw, M. B., Bicking, G. W.

Results of a survey for the pressure of saturated water in the range 100° to 374° C. J 6, 555 (1932) RP455.

Contributions to the design of compression members in aircraft. J 12, 157 (1934) RP698.

Oakes, C. E., Shaw, M. B., Bicking, G. W.

The intensities of some hydrogen, argon, and helium lines in relation to current and pressure. B 7, 49 (1911) S146.

Oakes, C. E., Shaw, M. B., Bicking, G. W.

Oakes, C. E., Shaw, M. B., Bicking, G. W.

The intensities of some hydrogen, argon, and helium lines in relation to current and pressure. B 7, 49 (1911) S146.

Oakes, C. E., Shaw, M. B., Bicking, G. W.

The intensities of some hydrogen, argon, and helium lines in relation to current and pressure. B 7, 49 (1911) S146.

Oakes, C. E., Shaw, M. B., Bicking, G. W.

The intensities of some hydrogen, argon, and helium lines in relation to current and pressure. B 7, 49 (1911) S146.

Oakes, C. E., Shaw, M. B., Bicking, G. W.

The intensities of some hydrogen, argon, and helium lines in relation to current and pressure. B 7, 49 (1911) S146.
Park, J. H.;
Effect of service temperature conditions on the effective tensile of unsaturated porous }

Accuracy of high-range current transformers. }
J 10, 99 (1933) RP515.

Effect of wave form upon the performance of current transformers. J 19, 517 (1937)
RP269.

Parry, W.:
The International metric system of weights and}
masses. BMS22 (1939).

Parsons, D. A., Clay in concrete. J 10, 257 (1933)
RP229.

Peffer, E. L., Blair, M. G.;

Shear tests of reinforced brick masonry beams. J 9, 749 (1932) RP704.

Parsons, D. E., Whittemore, H. L., Stang, A. H.:
Structural properties of six masonry wall constructions. BMS1 (1935).

Structural properties of "Twachtman" constructions for walls and floors sponsored by the Connecticut Pre-Cast Buildings Corporation. BMS20 (1939).

Structural properties of a concrete-block cavity-wall construction sponsored by the National Concrete Masonry Association. BMS21 (1939).

Structural properties of four "Dun-Ti-Stone" wall construction sponsored by the W. E. Dunn Manufacturing Co. BMS19 (1939).

Structural properties of a brick cavity-wall construction sponsored by the Brick Manufacturers Association of New York, Inc. BMS23 (1939).

Structural properties of two brick-concrete-block wall constructions and a concrete-block wall construction sponsored by the American Petroleum Institute and the Pre-Cast Association. BMS32 (1939).

Structural properties of two "Dunstone" wall constructions sponsored by the W. E. Dunn Manufacturing Co. BMS36 (1940).

Structural properties of a wall construction of "Wesco" brick construction sponsored by the Wisconsin Unit Company. BMS39 (1940).

Structural properties of "Tilecrete Type A" floor construction sponsored by the Tilecrete Co. BMS51 (1940).

Structural properties of two nonreinforced monolithic concrete wall constructions. BMS61 (1940).

Patterson, G. W., Keulegan, G. H.:
Effect of turbulence and channel slope on translation waves. J 30, 461 (1943) RP1544.

Pearson, J. C., Wig, R. J.:
Variation in results of sieving with standard cement sieves. T 3, (1911-16) T29.

Peck, M. F., Padovan, V. B., Dill, R. S., Peterson, P. H., Structural, heat-transfer, and water-permeability properties of "Speedbrik" wall construction sponsored by the General Shale Products Corporation. BMS86 (1942).

Peffer, E. L.:
Device for testing haemacytometers and other pipettes of small capacity. J 9, 177 (1937) RP1019.

Gallonage tables for horizontal cylindrical tanks with flat ends. C416 (1937).

Peffer, E. L., Blair, M. G.:
Thermal density coefficients and hydrometer constants for vegetable tanning extracts. J 33, 341 (1944) RP1612.

Hydrometer correction tables and thermal density coefficients for vegetable tanning extracts. C449 (1945).

A flow manostat for various purposes, including the candy test. J 29, 143 (1942) RP1492.

Rasch, R. H., Scribner, B. W., Tensile properties of rail steels at elevated temperatures. J 8, 173 (1932) RP408.

Ramsey, R. C., Hock, C. W., Harris, M., Microscopic structure of the cotton fiber. J 26, 93 (1941) RP1362.

Rands, Jr., R. D., Ferguson, W. J., Prather, J. L., Specimen preparation for determining stresses in cast irons and the increment per CH₂ group for several homologous series of hydrocarbons. J 37, 51 (1946) RP1714.

Rasch, R. H., Scribner, B. W., Tensile properties of rail steels at elevated temperatures. J 8, 173 (1932) RP408.

Rasch, R. H., Scribner, B. W., Tensile properties of rail steels at elevated temperatures. J 8, 173 (1932) RP408.

Rasch, R. H., Burton, J. O., The determination of the alpha cellulose content and copper number of newsprint. J 19, 331 (1937) RP1042.

Spectrophotometric determination of prassodymium, neodymium, and samarium. J 26, 557 (1941) RP1395.

Spectrophotometric determination of dysprosium, holmium, erbium, thulium, and ytterbium. J 28, 265 (1942) RP1456.

Adjustment of parabolic and linear curves to observations taken at equal intervals of the independent variable. S 16, 363 (1929) S985.

The passage of gas through the walls of pyrometer protection tubes at high temperatures. J 7, 485 (1931) RP545.

Reference tables for platinum to platinum-rhodium thermocouples. J 10, 275 (1933) RP590.

Freezing point of rhodium. J 12, 519 (1934) RP765.

Freezing temperatures of high-purity iron and some steels. J 29, 273 (1941) RP1375.

Revision of the formulae of Weinstein and Stefan for the mutual inductance of coaxial coils. B 1, 109 (1905) S41.

On the geometrical mean distance of rectangular areas and the calculation of self-inductance. B 3, 7 (1907) S47.

The mutual inductance of a circle and a coaxial single-layer coil. The Lorenz apparatus and the Ayrton-Jones absolute electrodynamometer. B 3, 299 (1907) S56.

The self and mutual inductance of linear conductors. B 4, 301 (1907-08) S80.

The mutual inductance of a coil of any length and any number of layers of wire. B 4, 369 (1907-08) S83.

A new method for the absolute measurement of resistance. B 5, 499 (1908-09) S111.

Photometric units and nomenclature. B 6, 543 (1909-10) S141.

The mutual inductance of coaxial solenoids. B 3, 305 (1907) S59.

Formulae and tables for the calculation of mutual and self-inductance. B 5, 1 (1908-09) S93.

Rosa, E. B., Dorsey, N. E.: A new determination of the ratio of the electromagnetic to the electrostatic unit of electricity. B 3, 605 (1907) S66.

A comparison of the various methods of determining the ratio of the electromagnetic to the electrostatic unit of electricity. B 3, 606 (1907) S66.

The absolute measurement of capacity. B 1, 153 (1903-05) S10.

Influence of initial structure and rate of heating on the austenitic grain size of 0.5-percent-carbon and iron-carbon alloy. J 29, 33 (1942) RP1483.

Metallographic study of the formation of austenite from aggregates of ferrite and cementite in high-carbon steel. J 29, 133 (1942) RP1489.

Rossini, F. D., Jessup, R. S., Heat and free energy of formation of carbon dioxide, and of the transition between graphite and diamond. J. C. 21, 491 (1935) RP1141.

Rossini, F. D., Wagman, D. D., Kilpatrick, J. E., Pitzer, K. S., Heats, equilibrium constants, and free energies of formation of the paraffin hydrocarbons through the pentanes, to 1,500° K. J. C. 35, 467 (1945) RP1682.

Roth, F. L., Holt, W. L.:
Tensile properties of rubber compounds at high rates of stretch. J 23, 603 (1939) RP1256.

Saeger, Jr., C. M., Ash, E. J.:
A method for determining the volume changes occurring in metals during casting. J 8, 37 (1932) RP399.

Volume changes of cast iron during casting. J 8, 601 (1932) RP440.

Properties of gray iron as affected by casting conditions. J 13, 573 (1934) RP726.

Saeger, Jr., C. M., Krzywiatke, A. J.:

Saguy, M. H.:

Sale, P. D.:
Specifications for constructing and operating heat transmission apparatus for testing insulation and related properties of blankets. T 25, 415 (1940) RP1290.

Sanford, R. L.:
Temperature coefficient of magnetic permeability with the working range. B 12, 1 (1915–16) S245.

Notes on the testing of magnetic compasses. S 16, 273 (1920) S382.

Nonmagnetic testing of wire hoisting rope by magnetic analysis. T 20, 497 (1925–26) T315.

Santford, R. L.:
Temperature coefficient of magnetic permeability with the working range. B 12, 1 (1915–16) S245.

Notes on the testing of magnetic compasses. S 16, 273 (1920) S382.

Nonmagnetic testing of wire hoisting rope by magnetic analysis. T 20, 497 (1925–26) T315.

A determination of the magnetic saturation induced in steel on heating at room temperature. J 26, 1 (1941) RP1354.

Sander, R. L., Lundell, G. E. F., Prolonged tempering at 100°C and aging at room temperature of 0.8 percent carbon steel. J 13, 259 (1934) RP707.

Schadt, L. W., Location of flaws in rifles-barrel steel by magnetic analysis. S 15, 219 (1919-20) S343.

Sando, R. L., Marshall, L. H., The magnetic susceptibility and iron content of cast red brass. T 17, 1 (1922-24) T221.

Interferometer measurements on the expansion of iron. J 33, 75 (1944) RP1597.

An apparatus for photographing interference effects on iron. J 11, 323 (1938) RP587.

Expansion of certain silicates of iron, cobalt, and chromium. S 21, 773 (1938) RP1153.

Sawders, J. B., Schicketanz, S. T., Mair, B. J.: Extraction, with acetone, of substantially consist of lubricating oil and separating a lubricating-oil fraction with acetic acid. J 13, 432 (1934) RP1841.

Sawders, A. F.: Optical and dimensional changes which accompany the freezing and melting of Hevea rubber. J 21, 257 (1938) RP1129.

Schad, L. W., Merica, P. D., Thermal expansion of alpha and of beta brass between 0°C and 600°C in relation to the mechanical properties of heterogeneous brasses of the Munz Metal type. B 14, 571 (1918-19) S321.

Methods of testing hosiery. C 422 (1938).

A fractionating column with fritted glass plates. J 12, 259 (1934) RP651.

An apparatus for measuring the boiling points of lubricating oils and other compounds of high molecular weight at reduced pressures. J 11, 685 (1935) RP796.

Separation of constant-boiling mixtures of naphthenic paraffins by distillation with acetic acid. J 12, 159 (1937) RP967.

A laboratory extraction apparatus and its use in separating a lubricating-oil fraction with acetic acid. J 11, 503 (1931) RP919.

Schicketanz, S. T., Mair, B. J.: The isolation of mesitylene, pseudocumene, and benzylbenzene from an Oklahoma petroleum. J 12, 565 (1939) RP1611.

Extraction, with acetone, of substantially constant-boiling fractions of a “water-white” lubricating oil. J 17, 909 (1936) RP953.

Schieber, H. F.: The fuel meter, an instrument for evaluating the flexural properties of cloth and similar materials. J 10, 647 (1933) RP555.

The compressometer, an instrument for evaluating the tensile strength, compressibility, and compressional resilience of textiles and similar materials. J 10, 705 (1933) RP561.

Carpet wea ter testing machine. J 6, 927 (1931) RP802.

Preparation of refractories, silicates, and ceramic materials for analysis by heating with acids in sealed tubes at elevated temperatures. J 33, 491 (1944) RP1491.

Use of sealed tubes for the preparation of acid solutions of samples for analysis, or for small scale refining: Pressures of acids heated above 100° C. J 33, 457 (1944) RP1622.

Liquid-measuring pumps. T 8, 1916-17 T81.

Area measurement of leather. T 18, 1919-20 T153.

Liquid-measuring pumps. Appendix 2 of M14 (1917).

Schmidt, B. C., Finn, A. N., Young, J. C., Thermal expansions of some soda-lime-silica glasses as functions of the composition. J 14, 421 (1943) RP1047.

Comparative wearing qualities of pima and ordinary cotton used in mail bags. T 19, 73 (1924-25) T277.

Schumann, S., Branham, J. R., Shepherd, M., On the determination of carbon monoxide by combustion over platinum in the presence of excess oxygen. J 26, 571 (1941) RP1396.

Schumann, S., Branham, J. R., Shepherd, M., On the determination of carbon monoxide by combustion over platinum in the presence of excess oxygen. J 26, 571 (1941) RP1396.

Seltzer, C., Paints for exterior masonry walls. BMS110 (1947).

Shelton, S. M., Van Dusen, M. S., Apparatus for measuring thermal conductivity of metals up to 450° C. J 14, 429 (1934) RP698.

The second dissociation constant of p-phenolsulfonic acid. B 17, 697 (1915-16) S259.

Shepherd, M., Sperling, E. O.: Critical study of the determination of ethane by combustion over platinum in the presence of excess oxygen. J 12, 125 (1934) RP643.

Shepherd, M., Branham, J. R.: Critical study of the determination of ethane by combustion over platinum in the presence of excess oxygen. J 11, 783 (1933) RP625.

Critical study of the determination of ethane by explosion with oxygen or air. J 19, 377 (1944) RP715.

The second dissociation constant of p-phenolsulfonic acid and p-phenolsulfonate-chloride. B 12, 205 (1949) RP1559.

Sigler, P. A., Relative slipperiness of floor and deck surfaces. BMS100 (1943).

Sigler, P. A., Koerner, E. A., Dimsonal changes of floor coverings with changes in relative humidity and temperature. BMS65 (1942).

Critical study of the determination of ethane by combustion over platinum in the presence of excess oxygen. J 2, 1145 (1929) RP776.

Shepherd, M., Branham, J. R.: Critical study of the determination of ethane by combustion over platinum in the presence of excess oxygen. J 11, 783 (1933) RP625.

Critical study of the determination of ethane by explosion with oxygen or air. J 19, 377 (1944) RP715.

Shepherd, M., Branham, J. R., Schuhmann, S.: Critical study of the determination of carbon monoxide by combustion over platinum in the presence of excess oxygen. J 26, 571 (1941) RP1396.

Boiling points of benzene, 2,2,3-trimethylbutane, 3-ethylpentane, and 2,2,4,4-tetramethylpentane within the range 100 to 1,500 millimeters of mercury. J 17, 625 (1939) RP992.

Smith, E. R., Matheson, H. S., Difference in atomic weight of oxygen from air and from water. J 17, 625 (1939) RP992.

Application of the boiling point of water from various natural sources for variations in isotopic composition. J 12, 305 (1934) RP656.

Predictions of normal radio critical frequencies relating to the moon's eclipse in 1940. J 24, 225 (1940) RP1279.

Weights and measures administration. H11 (1927).

Weights and measures administration. H26 (1941).

Weights and measures references. Including an index to the reports of the National conference on weights and measures from the first to the twenty-first, inclusive. M103 (1930).

Testing equipment for large-capacity scales for the inspection of weights and measures officials. M104 (1940).

Smith, R. W., McCormac, W. T., Index to the reports of the National Conference on Weights and Measures. J 17, 787 (1929) RP57.

Smith, T. T., Bennett, A. H., Merritt, G. E., Characteristic strie in optical glass. S 14, 75 (1920) S237.

X-ray diffraction patterns of Hevea, Manihot, and from water. J 20, 699 (1932) RP446.

Smith, W. H., Henna, N. P., Comparison between the observed density of crystalline rubber and the density as calculated from X-ray data. J 27, 229 (1941) RP1416.

Smith, W. H., Holt, W. L., Vulcanization and stress-strain behavior of sol, gel, and total rubber when stretched and when crystallized by freezing from solutions. J 19, 479 (1937) RP1069.

Smith, W. H., Henna, N. P., Comparison between the observed density of crystalline rubber and the density as calculated from X-ray data. J 27, 229 (1941) RP1416.

Optical and dimensional changes which accompany the freezing and melting of Hevea rubber. J 31, 237 (1938) RP1129.

Washing, cleaning, and polishing materials. C121 (1939).

Smithers, F. W., Mcgowan, F. R., Schoffell, C. W., Performance tests of a liquid laundry soap used with tests of a 1924-25 T273.

Snow, H. R., Asphapal and prepared roof rollings and shingles. BMS70 (1941).

Roofing in the United States — Results of a questionnaire. BMS57 (1940).

Survey of roofing materials in the North Central States. MS85 (1941).

Survey of roofing materials in the South Central States. BMS84 (1942).

Formulas for the inductance of a helix with any section of wire. S 21, 431 (1926-27) S357.

Electric field of a charged wire and a slotted cylindrical conductor. S 21, 631 (1926-27) S542.

Effect of eddy currents in a core consisting of circular wires. S 21, 701 (1926-27) S744.

Effect of clearance and displacement of attracted plates and also of a certain arrangement of conducting loops, upon the constant of an electrometer. J 1, 518 (1928) RP17.

Mutual inductance of any two circles. J 1, 531 (1928) RP18.

Mutual inductance and torque between two concentric solenoids. J 1, 685 (1928) RP34.

The effect of small variations in pitch upon the inductance of a solenoid. J 6, 777 (1931) RP394.

A simplified analytical formula for the inductance of a helix with corrections for the lead-in wires. J 9, 419 (1932) RP479.

The attraction between coils in the Rayleigh curve of solenoids. J 11, 681 (1933) RP615.

Drop of potential in the metallic electrodes of certain electrolytic cells. J 17, 101 (1936) RP905.

Mutual inductance and force between two coaxial helical wires. J 22, 239 (1939) RP1178.

An addition to the derivation of the force formula to include some terms of the sixth degree in the coil dimensions. Appendix I, J 22, 512 (1939) RP1200.

Corrected force caused by an axial displacement of some of the turns in the coils made from aluminum ribbon. Appendix II, J 22, 607 (1939) RP1200.

Torque between concentric single-layer coils. J 22, 607 (1939) RP1208.

Mutual inductance of two helices whose axes are parallel. J 25, 619 (1940) RP1346.

Weights per United States Gallon and weights per cubic foot of sugar solutions. C375 (1929).

Weighed per 100 cubic feet of United States Gallon and weights per cubic foot of sugar solutions. C457 (1948).

Snyder, C. L., Vinal, G. W., Oscillograph measurements of the instantaneous values of current and voltage. T 15, 1186 (1921) T186.

Snyder, C. L., Vinal, G. W., Craig, D. N.: Composition of grids for positive plates of storage batteries as a factor influencing the sublimate of negative plates. J 10, 795 (1938) RP567.

Note on the effects of cobalt and nickel in storage batteries. T 22, 417 (1940) RP1385.

Snyder, L. W., Chen, F. T., Calibration and adjustment of the Schopper folding tester. T 25, 272-278 T357.

Snow, W. F. An automatic reverberation meter for the measurement of sound absorption. J 9, 47 (1932) RP22.

Recent sound-transmission measurements at the National Bureau of Standards. J 11, 745 (1935) RP800.

Stang, A. H.:
Materials and methods used in the manufacture of enameled cast-iron wares. T 15, (1919) T142.
Cements for spark-plug electrodes. T 13, (1919-20) T155.
Stang, A. H.:
Stang, A. H., Edwards, J. H., Whittimore, H. L.:
Transverse tests of H-section column splices.
J 5, 695 (1930) RP157.
Stang, A. H., Fulweiler, W. H., Sweetman, L. R.:
Inspection and tensile tests of some worn wire ropes. J 17, 401 (1936) RP920.
Stang, A. H., Greene, T. W.:
Stresses in a few welded and riveted tanks tested under hydrostatic pressure. J 17, 645 (1936-37) T243.
Stang, A. H., Greenspan, M.:
Stang, A. H., S., Parson, D. E.:
Compressive properties of plates having ovaloid perforations and a width-to-thickness ratio of 40.
J 29, 687 (1942) RP1474.
Perforated cover plates for steel columns: Compressive properties of plates having ovaloid perforations and a width-to-thickness ratio of 75.
J 30, 15 (1943) RP1514.
Perforated cover plates for steel columns: Compressive properties of plates having circular perforations and a width-to-thickness ratio of 53.
J 30, 177 (1943) RP1527.
Perforated cover plates for steel columns: Compressive properties of plates having a net-to-cross-sectional-area ratio of 0.33. J 30, 411 (1943) RP1540.
Stang, A. H., Greenspan, M., Newham, S. B.:
Poisson’s ratio of some structural alloys for dynamic tensile tests of parachute webbing.
J 36, 211 (1946) RP1711.
Stang, A. H., Greenspan, M., Osgood, W. R.:
Strength of a riveted steel rigid frame having flat straights. J 21, 269 (1938) RP1130.
Strength of a riveted steel rigid frame having a curved inner flange. J 21, 853 (1938) RP1161.
Stang, A. H., Harris, A. L., McBurney, J. W.:
Compressive strength of steel columns increased in brick walls. J 10, 123 (1933) RP520.
Stang, A. H., Lyon, W. C., Whittimore, H. L., Sweetman, L. R.:
Strain measurement in the reinforcement for the dome of the Natural History Building. J 6, 183 (1931) RP268.
Stang, A. H., Parsons, D. E.:
Stang, A. H., Parsons, D. E., Foster, H. D.:
Compressive and transverse strength of hollow tile walls.
Stang, A. H., Parsons, D. E., McBurney, J. W.:
Shear tests of reinforced brick masonry beams. J 9, 749 (1932) RP564.
Stang, A. H., Anderson, F. W.:
Stang, A. H., Streckenback, L. R.:
Results of some tests of manila rope. T 15, (1921) T198.
Results of some compression tests of structural steel angles. T 16, 651 (1922-23) T218.
Stang, A. H., Sweetman, L. R.:
Stang, A. H., Sweetman, L. R., Gough, C.:
The areas and tensile properties of deformed concrete reinforcement bars. J 9, 509 (1932) RP486.
Stang, A. H., Tuckerman, L. B.:
Stang, A. H., Tuckerman, L. B., Osgood, W. R.:
Test of a flat steel-plate floor under loads. J 15, 363 (1934) RP662.
Stang, A. H., Whittimore, H. L.:
Methods of determining the structural properties of low-cost house constructions. BMS10 (1938).
Stang, A. H., Whittimore, H. L., Cotter, J. B., Phelan, V. B.:
Stang, A. H., Whittimore, H. L., Fishburn, C. C.:
Structural properties of one of the “Keyscore beams” or “Knap Concrete Wall Units” constructions sponsored by the H. H. Robertson Company. BMS10 (1938).
Structural properties of a “Tilecrete” floor construction sponsored by Tiletteer Floors, Inc. BMS16 (1939).
Structural properties of a reinforced-brick wall construction and a brick-tile cavity-wall construction sponsored by the Structural Clay Products Institute. BMS24 (1939).
Structural properties of “Nelson Concrete Foundation” wall constructions sponsored by the Nelson Cement Stone Company, Inc. BMS26 (1939).
Structural properties of a wall construction of “Knap Concrete Wall Units” sponsored by Knap America, Inc. BMS40 (1940).
Stang, A. H., Whittimore, H. L., Heck, G. E.:
Structural properties of six masonry wall constructions. BMS5 (1935).
Structural properties of a “Twachtman” construction for walls and floors sponsored by the National Pre-Cast Buildings Corporation. BMS20 (1939).
Structural properties of a concrete-block cavity-wall construction sponsored by the National Concrete Masonry Association. BMS21 (1939).
Structural properties of “Dun-Ti-Stone” wall construction sponsored by the W. E. Dunn Manufacturing Company. BMS22 (1939).
Structural properties of a brick cavity-wall construction sponsored by the Brick Manufacturers Association of New York, Inc. BMS23 (1939).
Structural properties of two brick-concrete-block wall constructions and a concrete-block wall construction sponsored by the National Concrete Masonry Association. BMS38 (1940).
Structural properties of two “Dunstone” wall constructions sponsored by the W. E. Dunn Manufacturing Co. BMS48 (1940).
Structural properties of a wall construction of “Pfeifer Units” sponsored by the Wisconsin Engineering Co. BMS53 (1940).
Structural properties of “Tilecrete Type A” floor construction sponsored by the Tiletteer Co. BMS51 (1940).
Structural properties of a masonry wall construction of “Munlock Dry Wall Brick” sponsored by the Munlock Engineering Co. BMS53 (1940).
Structural properties of two non-reinforced monolithic concrete wall constructions. BMS61 (1940).

Structural properties of “Steelox” constructions for walls, partitions, floors, and roofs sponsored by the Tennessee Coal, Iron & Railroad Co. BMS15 (1939).

Further investigations of the affinities of strong acids for wool proteins. J 29, 201 (1942) RP1453.

Combination of wool protein with acids in mixtures, and relation to the acid dying of wool. J 29, 417 (1942) RP1510.

Combination of wool protein with weak acids. J 30, 123 (1943) RP1523.

Steinhardt, J., Harris, M., Combination of wool proteins with acid and base. Hydrochloric acid and potassium hydroxide. J 21, 335 (1940) RP1286.

Stimson, H. F., Osborne, N. S., Flock, E. F., A calorimetric determination of the thermophysical properties of saturated water and steam from 0° to 270° C. J 10, 411 (1930) RP209.

Stimson, H. F., Osborne, N. S., Flock, E. F., Ginnings, D. C.: A calorimetric determination of the thermophysical properties of saturated water in the range 100° to 374° C. J 10, 155 (1933) RP523.

Stimson, H. F., Osborne, N. S., Ginnings, D. C.: A calorimetric determination of the thermophysical properties of saturated water in both the liquid and gaseous states from 100° to 374° C. J 18, 389 (1937) RP983.

Stimson, H. F.: Measurement of heat capacity and heat of vaporization of water in the range 0° to 100° C. J 29, 197 (1939) RP1228.

Stimson, H. F.: Measurement of heat capacity and heat of vaporization of water in the range 0° to 100° C. J 29, 197 (1939) RP1228.

Thermal properties of saturated water and steam. J 16, 261 (1939) RP1229.

Taylor, R. H., Logan, K. H., Taylor, W. C.:

"rings for use in home canning; their testing and protective coatings."

Taylor, L. S., Singer, G., Charlton, A. L.:

"rings for use in home canning; their testing and protective coatings."

Taylor, L. S., Mohler, F. L.:

"rings for use in home canning; their testing and protective coatings."

Taylor, L. S., Singer, G.:

"rings for use in home canning; their testing and protective coatings."

A note on the measurement of high constant or rippled voltages. J 5, 609 (1930) RP217.

Accurate measurement of small electric charges by a null method. J 6, 807 (1931) RP806.

Ionization of air by Lenard rays. J 17, 483 (1931) RP924.

Time factors in the ionization of carbon disulfide by X-rays. J 17, 557 (1936) RP927.

Taylor, L. S., Singer, G.:

"The calibration of the "fingerhut" ionization chamber."

J 4, 631 (1930) RP169.

"An improved form of standard ionization chamber."

J 5, 507 (1930) RP211.

Further studies of the X-ray standard ionization chamber diaphragm system. J 6, 219 (1931) RP111.

Air density corrections for X-ray ionization chambers. J 8, 385 (1932) RP424.

Note on the guarded-field X-ray ionization chamber. J 15, 165 (1936) RP865.

Measurement, in roentgens, of the gamma radiation from radium by the free-air ionization chamber. J 24, 247 (1940) RP1288.

Taylor, L. S., Singer, G., Charlton, A. L.:

"Measurement of supervoltage X-rays with the free-air ionization chamber."

J 21, 19 (1938) RP1111.

Concrete as a protective material against high-voltage X-rays. J 21, 783 (1938) RP1155.

Taylor, L. S., Singer, G., Stoneburner, C. F.:

Effective applied voltage as an indicator of the radiation emitted by an X-ray tube. J 9, 661 (1932) RP491.

Comparison of high voltage X-ray tubes. J 11, 341 (1933) RP585.

Taylor, L. S., Stoneburner, C. F.:

The measurement of low voltage X-ray intensities. J 7, 769 (1932) RP250.

Taylor, L. S., Tucker, K. L.:

Taylor, R. H., Holt, W. L.:

Small inertia-type machine for testing brake lining. J 24, 351 (1940) RP212.

Taylor, R. H., Wheeler, H. G., Denison, R., Jarrie, F.:

Rate of corrosion in bromine and cyanine solutions and the determination of concentration. J 13, 775 (1942) RP1421.

Further phase-equilibrium studies involving the potash compounds of portland cement. J 29, 487 (1942) RP1512.

Taylor, W. J., Pipano, J. M., Rossini, F. D., Mehl, B. J.:

"Comparing the properties of some metallic and non-metallic carbons and its application to the refractive indices, densities, and boiling points of the paraffin hydrocarbons."

J 34, 418 (1945) RP1651.

Taylor, W. J., Pitts, K. S.:

"Vibrational frequences of semirigid molecules: A general method and wavefunction."

Taylor, W. J., Rossini, F. D.:

"Theoretical analysis of certain time-temperature freezing and melting parabolas of organic hydrocarbons."

J 32, 197 (1944) RP1853.

"Tables of selected values of hydrocarbons."

C461 (1947).

Taylor, W. J., Wagman, D. D., Kilpatrick, J. E., Pitts, K. S., Rossini, F. D.:

"Heats, equilibrium constants, and free energies of formation of the alkylbenzenes."

J 37, 95 (1946) RP1732.

Taylor, W. J., Pietrocco, J. M., Rossini, F. D.:

"Vapor pressures and boiling points of some paraflin, alkylcycloparaffin, alkylcyclohexyl hydrocarbons."

Teale, R. P.:

"A photographic photometer."

J 27, 217 (1941) RP1415.

Teale, R. P., Schukman, S.:

"A potentiometer for measuring voltages of 10 microvolts to an accuracy of 0.01 microvolt."

J 22, 481 (1939) RP1195.

Teale, J. R., P., Skogland, J. F.:

"Recent developments in the testing equipment and methods."

T 20, 681, (1925-26) T323.

Teeter, F., Bleininger, A. V.:

"Viscosity of porcelain bodies."

T 3, (1911-16) T360.

Temple, R. L., Larson, L. J.:

"Load strain-gage test of 150-ton floating crane for the Bureau of Yards and Docks, U. S. Navy Department."

T 13, (1919-20) T151.

Tener, R. F., Holm, H. W. L.:

"Effect of antioxidants on the natural and the accelerated aging of rubber."

"Character of the dyeing on vegetable tanned strap leather."

J 36, 441 (1946) RP1713.

Tener, R. F., Kingbury, S. S., Holt, W. L.:

Properties of soft rubber compounds at temperatures ranging from —70° to +147° C."

T 22, 397 (1927-28) T364.

Tener, R. F., Smith, W. H., Holt, W. L.:

"Aging of soft rubber goods."

T 21, 353 (1926-27) T342.

Termni, D. J., Willingham, C. B., Rossini, F. D.; Mair, B. J.:

"Purification and sealing "in vacuum" of National Bureau of Standards Standard Samples of hydrocarbons."

J 37, 229 (1946) RP1713.

Thayer, A. U.:

"Effect of temperature on the stress-deformation of concrete."

J 18, 195 (1937) RP970.

Thibodeau, W. E., Wood, L. A.:

"Photoelastic determination of stresses around a circular inclusion in an elastic solid."

J 30, 389 (1939) RP1038.

Thomas, J. L.:

Some experiments with pure-metal resistance standards. J 12, 813 (1934) RP657.

Thompson, J. G., Vacher, H. C., Bright, H. A., Thompson, J. G., Mallett, M. W., Preparation of

Thompson, J. G., Vanick, J. S., de Sveshnikoff, W. Axial aberrations of

Tillyer, E. D., Shultz, H. I., Principles of

Tilton, L. W., Taylor, J. K., Refractive index and dispersion of normal and heavy water. J 13, 207 (1934) RP703.

Accurate determination of the refraction and density of distilled water as a function of temperature. J 18, 205 (1937) RP971.

Reflection and refraction of distilled water for visible radiation, at temperatures 0° to 60° C. J 29, 419 (1938) RP1085.

Expansion effects on the infrared absorption of silicate crystals in certain devitrified glasses. J 21, 775 (1938) RP1153.

Tool, A. Q., Valazek, J., Concerning the annealing and characteristics of glass. S 12, 537 (1919-20) S358.

Tensile and other properties of concretes made with various types of cements. J 21, 107 (1943) RP1532.

Wagman, D. D., Cran, D. N., Snyder, C. L.:
Composition of grids for positive plates of storage batteries and the sulphation of negative plates. J 10, 795 (1933) RP567.
Note on the effects of cobalt and nickel in storage batteries. J 4, 419 (1940) RP1355.
Wagman, G. W., Ritchie, L. M.:
Automatic apparatus for intermittent testing, T 17, 117 (1922-24) T225.
A new method for determining the rate of sulphation of storage-battery plates. T 17, 117 (1922-24) T225.
Wagman, G. W., Rosser, B.:
The silver voltameter — Part I. First series of quantitative experiments. B 9, 151 (1913) S201.
Summary of experiments on the silver voltameter and a comparison of the standards and proposed specifications. B 13, 479 (1916-17) S285.
Wagman, G. W., Rossen, E. B., McDaniel, A. S.:
The silver voltameter — Part II. The chemistry of the silver-sulphur dioxide — silver — oxygen voltaic cell and a comparison of the standards and proposed specifications. B 9, 209 (1913) S195.
The silver voltameter — Part III. Second series of quantitative experiments and the preparation and testing of silver nitrate. B 9, 493 (1913) S201.
Wagman, G. W., Snyder, C. L.:
Oscillograph measurements of the instantaneous values of current and voltage in the battery circuit of automobiles. T 15, (1921) T165.
Voigt, G. Q., Fire hazard of domestic heating instal¬
Voigt, G. Q., Hahn, C., Finn, A. N., Gases in some optical and other glasses. J 19, 95 (1937) RP1014.
Wacker, P. F., Cheney, R. K., Scott, R. B., Heat capacities of gaseous oxygen, isobutane, and 1-

t-butenone from —30° to +90° C. J 95 (1946) RP1732.
carbons through the pentynes, to 1,500° K. J 143 (1945) RP1682.
Waller, P. H., Hickson, E. F.:
Walker, P. H., Steele, L. L.:
Walker, W. H.:
The ring and ball method of test for softening point of bituminous materials, resins, and similar substances. J 4, 195 (1930) RP142.
Some technical methods of testing miscellaneous supplies, including paints and paint materials, inks, lubricating oils, soaps, etc. M15 (1916).
Wallace, E. L.:
The hydrolysis of chestnut and quebracho tanned leathers by sulphuric acid. J 7, 621 (1921) RP362.
Wallace, E. L., Besdorff, J., Crichtfield, C. L.:
Wallace, E. L., Bowker, R. C.:
Use of a soluble phenolic extract as a tanning material. T 17, 309 (1926-27) T339.
The influence of pH on the deterioration of vegetable-tanned leather by sulphuric acid. J 10, 559 (1933) RP547.

Wallace, E. L., Malleability and Preparation and wave length measurements in Maile. S 15, 105 (1919-20) S337.

Walters, Jr., F. M., Absorption spectra of iron, cobalt, and nickel. J 11, 347 (1943) RP117.

Washburn, F. M., Constant-temperature still head for light-oil fractionation. T 12, (1919) T140.

Wek, F. E., Resolving power and distortion of typical airplane-camera lenses. J 29, 729 (1939) RP1216.

Wek, F. E., Location of the principal point of precision airplane mapping cameras. J 27, 405 (1941) RP1428.

Wek, F. E., The behavior of high-boiling mineral oils on heating in the air. B 7, 365 (1911) S160.

Wek, F. E., The effect of added fatty and other oils upon the carbonization of mineral lubricating oils. T 1, (1910-12) T4.

Wek, F. E., Determination of the oxidation of automobile cylinder oils. T 7, (1916-17) T73.

Wek, F. E., Comparative tests of porcelain laboratory ware. T 10, (1917-18) T105.

Wek, F. E., Inks for recording instruments. J 17, 651 (1938) RP1087.

Wek, F. E., Quick-drying stamp-pad ink. J 20, 543 (1938) RP1087.

Wek, F. E., Typewriter ribbons and carbon paper. C431 (1941).

Wek, F. E., Some qualitative tests for gum arabic and its constituents of petroleum. J 2, 467 (1929) RP45.

Wek, F. E., The behavior of high-boiling mineral oils on heating in the air. B 7, 365 (1911) S160.

Wek, F. E., The effect of added fatty and other oils upon the carbonization of mineral lubricating oils. T 1, (1910-12) T4.

Wek, F. E., Determination of the oxidation of automobile cylinder oils. T 7, (1916-17) T73.

Wek, F. E., Comparative tests of porcelain laboratory ware. T 10, (1917-18) T105.

Wek, F. E., Inks for recording instruments. J 17, 651 (1938) RP1087.

Wek, F. E., Quick-drying stamp-pad ink. J 20, 543 (1938) RP1087.

Wek, F. E., Preliminary specifications for Clark and Weston standard cells. B 4, 1 (1907-08) S70.

Isolation of an isononane from petroleum — Its fractionation from naphthenes. J 17, 943 (1936) RP555.
Separation of isopropylbenzene from a mid-continent petroleum by adsorption with silica gel and distillation with acetic acid. J 21, 151 (1938) RP1122.
Separation, by distillation with acetic acid, of the aromatic hydrocarbons from the fraction of a mid-continent petroleum boiling between 154° and 162° C. J 21, 167 (1938) RP1123.
Whittemore, E. R., Lyon, W. C., Stang, A. H., Sweetman, L. R., Strain measurement in the reinforcement of the deck of the Natural History Building. E 6, 183 (1931) RP268.
Structural properties of six masonry wall constructions. BMS16 (1936).
Structural properties of one of the "Keystone beam steel floor" constructions sponsored by the H. H. Robertson Company. BMS10 (1938).
Structural properties of a "Tilecrete" floor construction sponsored by Tilecrete Floors, Inc. BMS16 (1939).
Structural properties of a reinforced-brick wall construction sponsored by the Cut-Pre-Cast Construction Company for walls, partitions and floors sponsored by the Portland Cement Association of New York, Inc. BMS11 (1938).
Structural properties of a "Hickory" joist concrete floor construction sponsored by the Gillett Engineering Co. BMS12 (1939).
Structural properties of "Wheeling Long-Span Steel Floor" construction sponsored by the Wheeling Corrugating Company. BMS15 (1939).
Structural properties of "Pro-Fab" constructions for walls, partitions, and floors sponsored by the Harmshefger Corporation. BMS18 (1939).
Structural properties of "Bender Steel Home" wall construction sponsored by The Bender Body Company. BMS27 (1939).

Structural properties of "Scout-Bilt" prefabricated steel sheet constructions for walls, floors, and roofs sponsored by the Globe-Wernicke Co. BMS29 (1940).

Structural properties of "Mu-Steel" prefabricated steel-sheet constructions for walls, partitions, floors, and roofs, sponsored by Herman A. Miller. BMS64 (1941).

Whittemore, H. L., Stang, A. H., Sweetman, L. R.; Tests of the absorptive and permeable properties of Portland cement mortars and concretes, together with tests of damp-proofing and impervious compounds and materials. T 1, (1910-12) T3.

Whig, R. J., Bates, P. H., Tests of the absorptive and permeable properties of Portland cement mortars and concretes, together with tests of damp-proofing and impervious compounds and materials. T 5, (1914-15) T3.

Standardization of No. 200 cement sieves. T 4, (1913-14) T42.

Wig, R. J., Finkbeiner, J. L., A standardized method for the determination of solidification points, especially of naphthalene and paraffin. S 15, 185 (1919-20) SP46.

Williams, W. J., "Insulite" prefabricated wood-frame construction sponsored by The Celotex Corporation. BMS42 (1940).

Williams, G. M. and others: Moisture relations of textile fibers at elevated temperatures. T 655 (1916-17) T95.

Wig, R. J., Williams, G. M., Furlong, I., Effects of drying conditions on properties of concrete. T 37, 183 (1946) RP1741.

Wilson, R. E., Ingerby, S. H., Griffin, H. K., Robinson, W. C., Fire tests of building columns. T 15, 1921 (1925)

Structural properties of "Insulite" wall and "Insulite" partition constructions sponsored by The Insulite Company. BMS31 (1939).

Structural properties of prefabricated wood-frame constructions for walls, partitions, and floors sponsored by American Houses, Inc. BMS40 (1940).

Wilson, W. K., Scribner, B. W., Methods for the evaluation of analytical filter papers. J 34, 459 (1940) RP1290.

Effects of hydrochloric acid and salts on the absorption of light by baphochromesulfonate in aqueous solution. J 23, 261 (1941-1942) RP1760.

Wojciechowski, M., Biekowski, W., Some physical properties of isoprene. J 17, 88 (1936) RP951.
Wolthuis, E., Smith, E. R.:

Wolensky, E.:
Analysis of synthetic tanning materials. T 20, 519 (1925–26) T316.

Wolff, F. A.:
The so-called international electrical units. B 1, 39 (1903–05) S3.
The principles involved in the selection and definition of the fundamental electrical units to be used for international adoption. B 5, 243 (1909–09) S102.
Wolff, J. A., Waters, C. E.:
Clark and Weston standard cells. B 4, 1 (1908) S70.
The electrode equilibrium of the standard cell. B 4, 81 (1908–09) S71.

Woldtuis, E., Clark, G. L., Smith, W. H., X-ray diffraction patterns of sol, gel, and total rubber when stretched and when crystallized by freezing and from solutions. J 19, 479 (1937) RP1039.

Wood, R. W.:
synthetic rubbers: A review of their compositions, properties, and uses. C247 (1940).
Rubber research and technology at the National Bureau of Standards. M155 (1947).

Wood, L. A.:
Crystallization of vulcanized rubber at different temperatures. J 36, 489 (1946) RP1718.

Woodrow, R. W., Burgess, G. K.:
Manufacture and properties of steel plates containing zirconium and other elements. T 16, 123 (1921–22) T297.
Thermal stresses in chilled iron car wheels. T 16, 198 (1921–22) T299.

Woodward, R. W., Merliss, P. D.:

Wormley, P. L., Holt, W. L.:

Dynamometer tests of automobile tires. T 17, 559 (1922–24) T240.

Yavorsky, P. J., Getter, R. F.:

Yavorsky, P. J., Geller, R. F.:

Young, J. C., Finn, A. N., Effect of composition and other factors on the specific refraction and dispersion of glasses. J 25, 759 (1940) RP1197.

Young, J. C., Schmid, B. C., Finn, A. N., Thermal expansions of some soda-lime-silica glasses as functions of the composition. J 12, 421 (1934) RP507.

Young, R. N., Bates, P. H., Rapp, P., Tests of caustic magnesia made from magnesite from several sources. T 17, 529 (1922-24) T299.

Yurow, L., Tuttle, J. B., Direct determination of India rubber by the nitrosite method. T 13, (1919-20) T145.

Aliphatic hydrocarbons, preparation and proper¬
Alkalis and alkaline earths, long-wave arc spectra,
Alkaline soils, concrete durability in, T307
Alkalies, effect on silk, RP395
Alkali-treated wool, nature of reaction, RP1516
Alkali cyanides, purification and analysis, RP373
Alginic acid, preparation, RP1750
Alkylbenzenes, heats of combustion and isomeriza¬
Alkylates, analysis, RP1795
Alkylbenzenes, heats of combustion and isomeriza¬
Aldoses, bromine oxidation and mutarotation meas¬
Aldonic acid, calcium salts of, RP328
Alcohols, heats of combustion and of formation of
Alcohol, ethyl, density and thermal expansion, SI97
Alcohol, as substitute motor fuel, RP1660, RP1673,
Alcohol, ethyl, density and thermal expansion, SI97
Aldonates of lead and calcium, optical rotations
Aldonic acid, calcium salts of, RP1503
Aldoses, bromine oxidation and mutarotation meas¬
Airship ballast, T293
Airships, mooring spindle, T270
Airways, radio facilities (see Radio)
Albumin, egg, catalyzed hydrolysis, RP1503
Alcohols, heats of combustion and of formation of
Aldoses, bromine oxidation and mutarotation meas¬
Algin, mannnuronic lactone from, RP1727, RP1750
Alginic acid, preparation, RP1750
Aliphatic hydrocarbons, preparation and proper¬
Alkaloid cyanides, purification and analysis, RP373
Alkali-treated wool, nature of reaction, RP1516
Alkalies, effect on silk, RP395
Alkylenzenes, heats of combustion and isomeriza¬
Alkylenzenes, heats of combustion and isomeriza¬
Cellulose acetate, chain length, RP1518
fractionation, heterogeneity, osmotic molecular weight, RP1654
mechanical properties, RP1513
molecular weight and mechanical properties, RP1655
polymerization degree, RP1490, RP1513
sheeting, protection of documents, M158
viscosity, RP1490
Cellulosic materials, determination of uronic acids, RP1558
Cellulose acetate, chain length, RP1513
(see also Concrete)
Cement-lime mortars, T308, RP952
clinker, structural characteristics of constituents, RP1917
cement, action by salts in sea and alkali water, T12
bags of paper, T157
calcium magnesium, C135
clinker, effect of heat treatment on microscopic structure, RP1358
clinker, glass content, RP997, RP1066
clinker, minor constituents, RP1074
clinker, relation of compositions and heats of solution, RP1136
clinker, structural characteristics of constituents, RP1917
cement, tensile and compressive strength, RP1932
drain tile and concrete in alkali soils, T44, T95, T214
effect of mineral oxides on inversion of dicalcium silicate in, RP1396
efflorescence on, RP1388
fineness determined by air analyzer, T48
formation of hydration product, C135
T513
garnet and hydrogarnet series in relation to formation of hydrated calcium silicoaluminate, RP1355
high-alumina, reaction with water, RP84
high early strength, ten-year compressive strength, RP1508
hydration at elevated temperatures and pressures, RP1147
magnesia, specification, C323
masonry, specification, C321
masonry, ten-year compressive strength and linear change, RP1548
mixtures, portland, influence of magnesia, ferric oxide, and soda upon the temperature of liquid formation, RP1312
mortar and concrete, effect of steam curing, T54
mortars, air-setting refractory-bonding of the type, RP1219
particle size, RP777
paste, relative humidity over, RP1384
pastes, portland, heat of hydration, RP684
sacks, relative humidity over, RP1384
sieves, performance, T29
sieves, standardization, T24
spark-plug electrodes, T155
stucco, C311
tile, durability in alkaline soils, T307
Cement-lime mortars, T308, RP952
Cementing qualities of calcium aluminates, T197
Cement, portland (see also Concrete)
calcium silicate and calcium aluminate in, T38
clinker pastes, composition and physical properties, RP1360, RP1558
composition, RP910, RP1131
determination of magnesia, RP265, RP689
determination of sulphate, RP983
determination of sulphide sulphur, RP968
effect of calcium chloride, RP782
effect of glass content upon heat of hydration, RP1127
hardened with CaI, T174
heat measurements, RP782
high early strength, RP689
high magnesia, RP513
hydration, RP684
magnesia, RP854
mortar and concrete, absorptive properties, T3
nature of glass in, RP1324
phase equilibrium studies involving potash, RP1421, RP1512
phase relations, RP987
phase studies, RP1699
reaction with water, RP667
relationship of the garnet-hydrogarnet series to sulfate resistance, RP1411
specification, C39
spectrographic analysis, RP1786
spectrographic determination of alkalies in, RP1563
steam test, T5, T47
structure of tricalcium aluminate, RP1437
X-ray method applied to study of constituents, RP923
Cements, commercial masonry, RP746
high early strength, behavior at various temperatures and humidities, RP799
low heat properties and preparation, RP887
masonry, RP768
Cement-water paints and other waterproofings for units-masonry walls, tests, BM195
ratio, influence on properties of vibrated concrete, RP1048
Centrifugally cast steel, T192
Ceramic bodies, effect of water on expansions of, RP98
bodies, oxides in, RP1073
coatings for high temperature protection of steel, RP1778
glaze, RP1532
kilns, temperature measurement, T40
materials, analysis, RP150
materials, decomposition, RP1331
materials, thermal expansion, S485
products, use of saggers in, RP827
talcose whiteware, properties, RP1371
ware, moisture expansion, RP472
whiting, RP746
Ceramics, use of talc in, RP848
Cement, also Caesium
discharge, RP893, RP948, RP1036, RP1150, RP1162
positive column, recombinant radiation, RP565
spectral intensity distribution, RP901, RP948
CPR engine, effect of altitude on knock rating, RP1475
Chain, welded, R100
Chairs, folding and portable wooden, R80
chalks, crayons, and modeling clays for school use (types, sizes, and packing) R192
Channel flow equation, RP1488
slope and turbulence, effect on translation waves, RP1544
Chambers, turbulent flow in, RP1151
Charcoal adsorbents, properties, RP1479, RP1496
automobile fuel, RP1698
coconut-shell, gas adsorption on, RP1674
Charges, electric, measurement, RP306
Charring records, drying, S454
Charts, psychrometric, M143, M146
Charred records, deciphering, S454
Chasing for self-opening and adjustable die heads, R31
Check list, inspector's, for building construction, BMS81
Checks, bank, R50
restaurant guest, R113
Cheesecloth, specifications, C255, C257, C258, C365
Chemical elements, atomic weights, numbers, symbols, and melting points, M126, M133
glassware, properties, RP1394
glassware, tests, T107, C434
structure of wool, elasticity as related to, RP1486
thermodynamics of hydrocarbons, RP1728
Cherries, maraschino, glass containers, R197
Chilling effect of moist fabrics, RP1587
Chinaware, cafeteria and restaurant, R33
dining-car, R39
hospitals, R40
hotel, R5
meat, R5
hotels, R5
meat, R5
methods for testing, C202
specifications, C202
Chip board for bookbinding, C349
Chitin, infrared spectral transmission, S168
Chlorides, potential differences across boundaries between solutions, RP74
Colloidal matter in clays, T23, RP706
Colun tubes, rubber, specification, C221
Color standards, calibration, RP1700
code for marking steel bars, R165
comparator for incandescent lamps, RP232
constancy as affected by surroundings, P1285
designations, basis for ISCC-NBS method, RP-
1549
designations for lights, RP1565
equal-amount stimulus, filters for producing, RP6-
grading, Lovibond glasses, RP633, RP718
manila rope fiber, RP627
marking for anesthetic-gas cylinders, R176
materials for art education in schools, CS130
mica, effect of heat treatment on, RP1675
perception versus brightness perception, S903
pure, natural scale, SI18
school furniture, R111
screens, pyrometer, S260
sensitivity, photographic emulsions, S439
sensitivity of normal retina, asymmetry of, RP-
specifications, computation, RP163
determinations for oil mica, RP1671
standardization of railroad signal glasses, RP1209
stimuli, reduction of data on mixture, RP163
system, Munsell, T167
temperature, changes with operation of lamps, RP-
temperature, estimation of nearest, RP944
temperature of illuminants, S443, RP385, M114,
RP937
theory, dichromatic, RP1618
triangle, uniform-chromaticity scale, RP756
vegetable oils, RP815
vision, S417
white papers, T244
Colorblindness, red-green, RP1618
Color-Council system of color designations, RP1239
Color-sensitive photographic plates, S422
Color-temperature measurements, RP232, RP74,
RP677
standards, RP677
Colorado River bed, scour, RP907
Colorimeter, precision, SI17
Colorimetric analysis, stable sugar solutions for,
RP356
computation, O.S.A. excitation data, RP354
determination of acetylene, S267
determination of arsenic in alloys, RP1267
determination of iron, S53
determination of the colors of the TCCA stand-
ard color cards, RP1700
method for determining silver, RP356
method for phosphorus in steels, RP1386
method of pH measurement of cyanide plating
baths, RP1291
purity, RP377
Colorimetry, filters, M114
signal lights, RP956
sugar, RP787
tolerances, RP1099
Colors, bathroom accessories, CS63
interface of oxide films, and rate of oxidation of
steels, RP1221
kitchen accessories, CS92
oxide films on metals, RP1465, RP1470
paints, varnishes, and related products, R144
railroad signal glasses, specification, RP1688
sanitary ware, CS90
Columbium properties, RP590
separation from aluminum, RP86
spectra, RP793, RP881, RP1656
Column curves and stress-strain diagrams, RP492
failure, Considering-Engesser theory, RP492
applies, transverse tests, RP157
Columns, building, fire tests, T184
concrete, fire resistance, T272
distilling, of high efficiency, RP1724
gypsum fire protection, RP568
rectifying, efficiency, RP1049
reinforced concrete, stress tests, T122
shelf angles welded to, RP230
springs, strength tests, T152
steel, compressive properties of perforated cover
plates for, RP1473, RP1474, RP1501,
RP1514, RP1527, RP1540
steel incased in brick walls, compressive strength
steel incased in concrete, strength tests, RP737
steel, strength tests, T101, T218, T258, T268,
T327, T928, RP777, RP956, RP957
strength of bridge, RP891
tests of bases, RP218
Coma, measurement, RP52
Combustible gas in air, instruments showing, S334
Combustion, analysis, RP45
apparatus for macroanalysis, carbon and hydro-
gen, RP1577
calorimetry, S230
carbon monoxide, RP1396
tests of (see Heat of combustion)
hydrocarbons, heats of, RP1728
influence by burnouts, RP988
method for determining rubber, T35
monoelefn, alkylbenzene, cyclopentane, and
hydrocarbons, heats of, RP1702, RP1714
m normal paraffin hydrocarbons, RP1607
tubes, glass, bursting pressures, RP1521
use in determining formula of a hydrocarbon,
RP236
Commercial forms (invoice, purchase order, and
inquiry), RP37
testing laboratories, directory, M125, M171,
M187
Commercial Standards (see list, page 198. Indexed
also under specific subjects) service and its value to business, CS0
Commodity specifications, National directory,
SI65, M130, M178
Comparators, extensometers, RP822
Comparators, for length standards, S1, RP743
Compass, radio, S428, S525, S536
Compasses, aircraft, T237
Compensator, alternating voltage, RP1312
Composite-cold electrolytic instruments, RP411
Composition blackboard, R75
books, R84
Compliance, BMS105
Compressibility, gases at their critical temperature,
RP170, RP493
Compressors, air, for automotive service stations
and garages, R202
tank-mounted, CS126
Concentration of isotopes of potassium by counter-
electromigration, RP1785, RP1766
Concetric lines, use in radio-frequency amplifiers,
RP856
Concrete aggregate material, thermal expansion,
RP1738
alkali soils, T95, T214, T307
beams, containing reinforcing bars, strength
RP1669
beams, loss of stress reversal, T182
beams, reinforced, strength, T2, T233
beams, shear tests, T314
bond resistance, T178
building units, R32, C304
columns, fire tests, T184, T272
columns, reinforced with cast iron, T122
contacting data, RP529
effect of calcium chloride, RP782
effect of cement grain size on properties, RP1703
effect of temperature on stress-deformation rela-
tions, RP748
effect of prehydration of cement and curing
temperatures, RP887
effect of temperature on stress-deformation rela-
tions, RP970
electrolysis in, T18
floors, structural properties, BMS51, BMS82
floors, wear resistance, RP1259
(Continued on next page)
Equilibrium constants of butadiene reactions, RP1747
formation of alkylbenzene hydrocarbons, RP1158
formation of monoolesin hydrocarbons, RP1722
of some reactions involving O2, H2O, C, CO, CO2, CH4, RP1684
Equilibrium temperatures of glass, RP1637
Equivalents, metric weights and measures, M135
weights and measures, tables, C47, M121
Erblum, spectrophotometric determination, RP1436
Erometer, Young’s, RP300
Ethylene, heat of combustion, RP1024
Ethylcyclohexane, heat of combustion, RP1783
Ethylbenzene, isolation from petroleum, RP554
Etching, deep, of steel, T156
methods for alloy steels and ferro-alloys, S158
reagents for copper and nickel, S99, S485
Ethane, determination by explosion methods, RP1410
Etching, by ultraviolet, RP433, RP631
Ethyl alcohol, density and thermal expansion, S197
thermodynamic properties, RP1747
with water, solvent tolerances, RP1059
Ethylene, isolation from petroleum, RP554
heat of combustion, RP1629
specific heat of vapor, RP1640
thermodynamic properties, RP1684
vibrational frequencies, RP1758
Ethylecyclobutane, physical constants, RP875
Ethylecyclohexane, heat of combustion, RP1783
Ethylecyclopentane in petroleum, RP1800
Ethylene, heat of combustion, RP1024
heat of hydrogenation, RP993
vibrational frequencies, RP1768
chloride, boiling point and vapor pressure, RP1907
glycol as quenching medium for steels, RP357
oxide, analysis, RP1175
3-Ethylene, boiling point and vapor pressure, RP1365
Euler’s formula, for buckling of columns, T258
Eutectic temperatures by a conductance method, RP57
Eutectoid carbon steel, S404, S408
Evaporation in testing sugars, S221
of metals, method of producing mirrors, C89
test for mineral oils, T224
Excavators, dragline and clamshell, RP1147
Excavating burs, dental, R195
Experiments, disappearances, R195
Evaporation in testing sugars, S221
Eutectic temperatures by a conductance method, RP57
Exhaustion by reciprocating air pump, rate of, RP1097
Exposure machine, photographic (sensitometer), S439
Exposure, intermittency effects, RP1023
Exposures, photographic, intermittency effects, S28
Extrusion machine, efficiencies, RP36
Extrusion machine augers, efficiencies, RP36
Extrusion machine, cooling apparatus, RP36
Expansion apparatus, S428
Expansion, elastic, woven, CS59
Expansion effect on inversion of silica crystals, RP1158
factor for gases, orifice meter, RP459
iron, RP1597
moisture, of ceramic whiteware, RP472
moisture, of paper, RP1054
phenomena, in steel during quenching, S153
steam-turbines, S157
tanks, R3
Expansion, thermal (see also specific materials)
alcohol, S197
aluminum and its alloys, S497
aluminum-beryllium alloys, S655
antimony, RP274
apparatus, S428
autographic apparatus, RP792
barium-stontium titanate, RP1776
bearing bronze, RP665
beryllium, S662
boric oxide, RP1425
boric-oxygen glass, RP1425
brass, S397
bronze, RP1518, RP1550
carbon, T383, RP692
cast and swaged chromium, RP1407
cast iron, S433
chromium, electrolytic, RP1361
chromium-vanadium steels, RP1259
clay building bricks, RP1414
clay, RP194, RP887, RP1248, RP1311
columbium, RP590
copper, S412
copper alloys, RP1518, RP1550
copper-beryllium alloys, RP890
diamond, RP693
duralumin, S497
electrical insulating materials, S352, T216
enamel frits, RP1172
gasolines, RP398
gasoline-toluene mixtures, M97
glass, S398, RP626, RP676, RP1425, RP1734
glassware, chemical, RP1394
graphite, T383, RP693
heat-resisting alloys, S570, RP388, RP1106
high-silicon cast iron, RP1581
indium, RP1541
iron, S433, S570
lead, RP500
lead-anhydrous alloys, RP988
magnesium and its alloys, RP29
marble, S352
measurements by interference, RP515, RP1227
mica, RP1676
molybdenum, S332, S488
monel metal, S426
motor fuels, RP993
nickel, S424
nickel-chromium alloys, RP388
petroleum oils, T77, RP244
petroleum products, S579
porcelain, S552
pyrex glass, RP626
quartz, fused, S524
refractories, RP1147, RP562, RP747
rubber, RP717, RP1238
silica, fused, S524
silicates, RP458
stainless iron, S370
stainless steel, S426
steel, S433
stellite, S428
tantalum, RP62
terra cotta, S485
titanium, RP1320
tungstena, S15
tungsten carbide, cemented, RP960
Vycor and silica glass, RP1445
whiteware bodies, T310
zirconia with oxide additions, RP1662
Expansivity, liquid normal hydrogen and para-hydrogen, RP1408
Explosion pressure indicators, RP1368
Explosion pressure indicators, RP1368
Exposure machine, photographic (sensitometer), S511
meter for radium, RP1246
radius to photographic density, S439
tests of plastic calking compounds, BM583
Exposures, photographic, intermittency effects, S28
Extensometer calibration, RP822
Extrusion apparatus for low-boliling solvents, RP459
for petroleum, RP311
Extruders, commercial laundry, R139
Extrusion machine augers, efficiencies, RP36
Extraction apparatus for low-boiling solvents, RP1365
Extraction apparatus for low-boiling solvents, RP1365
Fabric, automobile-tire, testing, T68
fire-resistant aircraft, RP788
heat-transmission apparatus, T269
measuring devices, M135
tension meter for use on aircraft, T320
Fabrics, air permeability, RP261
air permeability instrument, RP1471
aircraft, absorption of water, RP758
balloon, permeability, T119, T369, C421
sensibility, S49, S308, S366, S475
Eyes of industrial workers, safety code for protection of, H2, H24

F

Fabric, automobile-tire, testing, T68
fire-resistant airplane, RP788
heat-transmission apparatus, T269
measuring devices, M135
tension meter for use on aircraft, T320
Fabric, air permeability, RP261
air permeability instrument, RP1471
aircraft, absorption of water, RP758
balloon, permeability, T119, T369, C421
sensibility, S49, S308, S366, S475
Eyes of industrial workers, safety code for protection of, H2, H24

F

Fabric, automobile-tire, testing, T68
fire-resistant airplane, RP788
heat-transmission apparatus, T269
measuring devices, M135
tension meter for use on aircraft, T320
Fabric, air permeability, RP261
air permeability instrument, RP1471
aircraft, absorption of water, RP758
balloon, permeability, T119, T369, C421
sensibility, S49, S308, S366, S475
Eyes of industrial workers, safety code for protection of, H2, H24
Frequencies from 5 to 200 cycles per second, measurement of, RP154
Freezing range as a criterion of purity, RP1351
Freezing point, see also thermal analysis, RP1235
Free energy function for monoolefins, RP1738
Frequency modulation demodulator, synchronized
Friction of ball and roller bearings, T201
Fresnel reflection, diffusely incident light, RP1504
Frames and trim, for hollow metal doors, R82
foraluminum doors, R83
concrete, effect of brackets, RP9
Free energy of etching and equilibration of the
butanes, pentanes, hexanes, and heptanes, RP1440
of formation of alkylbenzene hydrocarbons, RP1732
of formation of monoolefin hydrocarbons, RP1722
of formation of paraffin hydrocarbons, RP1650
of isomerization of the 18 octanes, RP1641
of some reactions involving O, H
748325°—8—23
of temperature of silver, RP557
of rhodium, RP676
of gallium, RP735
of iridium, RP568
of water, RP1105
Freezing point, see also Melting point
determination of purity of hydrocarbons by measurement of, RP1676
deuterium, RP841
gallium, RP735
of hydrocarbons, RP1734, RP1752, RP1760
of iridium, RP568
of iron, RP1375
method for determining individual hydrocarbons in mixtures of hydrocarbons, RP1584
nickel, RP258
purification, purity and freezing points of 8 nonanes, 11 alkylocyclopetanones, 6 alkylcyclohexanes, and 4 butylbenzenes of the American Petroleum Institute-Standard 249 for petroleum fractions of rubber, RP1463
Fruits, canned, corrugated and solid fiber boxes for, R146
Fucose, preparation, S459
Fuel-air mixtures, dew points, S500
consumption of automobiles, effect of tire re
sistance, T283
distribution, effect on engine performance, RP1712
oil and Diesel engines, CS102E
oils, domestic and industrial, CS12
oils, heat of combustion, M97
rating, effect of altitude, RP1475
Fuels, liquidified or "bottled" gas, C420
hydrocarbon liquid, thermodynamics of react
ions for producing, RP1634
motor, substitute, RP1660, RP1673, RP1681, RP1698
motor, volatility, RP694
Fumigation of paper, RP828
Function, approximation from a set of mean values, RP1235
Fungicides, package sizes, R41
Fur cleaning, T360
Furfural, formation from pentoses, RP1233
Furans, used as solvent in the manufacture of, RP1233
 consulate, S194
for X-ray diffraction at elevated temperatures, RP1782
high temperature, with special oxide resistors, RP1449
modified Rosenhain, S348
Furnaces, domestic, fire hazard, RP596
forced-air, solid-fuel-burning, CS109
gas floor, CS99
oil-burning, floor, CS113
solid-fuel-burning, forced-air, CS109
waste, equipped with vaporizing pot-type oil burners, CS(E)104
Furnace, electric, temperature uniformity in, S219
Fusional Steel" constructions, structural prop
erties, BMS8
Gages, apparatus for comparison of length, RP195
Gadolinium, spectrum, S466
Gage, all glass or quartz, for measuring pressures
developed by corrosive materials, RP1622
blanks, CS8
blanks, plain and threaded plug and ring, M100
blocks, testing and standardizing, S436
lines, determination of stresses from strain measurements on, RP851
optical coincidence, RP272
piston, RP1242
standard, for sheet and plate iron and steel, C18
strain, for large strains, RP1658
Gages, apparatus for comparison of length, RP528
screw, M61, M141
screw micrometer, for rubber specimens, RP549
thread, H32 (1944)
sheet metal, C391
standard designs, M59, M100
strain, compensation for vibration and impact, RP1005
wear resistance of, RP276
wire, table of sizes, C67
Galactose, occurrence in collagen, RP1432
preparation, S416
thermal mutarotation, RP892
Galacturonic acid, oxidation with oxygen in alkal
line solution, RP1680
preparation from beet pulp and pectic sub
stances, RP1594
preparation, mutarotation and structure, RP1547
preparation from sodium strontium galacturonate, RP1617
salts of, RP1576
d-Galacturonic acid, preparation, RP1325

G
Gadolinium, spectrum, S466
Gage, all glass or quartz, for measuring pressures
developed by corrosive materials, RP1622
blanks, CS8
blanks, plain and threaded plug and ring, M100
blocks, testing and standardizing, S436
lines, determination of stresses from strain measurements on, RP851
optical coincidence, RP272
piston, RP1242
standard, for sheet and plate iron and steel, C18
strain, for large strains, RP1658
Gages, apparatus for comparison of length, RP528
screw, M61, M141
screw micrometer, for rubber specimens, RP549
thread, H32 (1944)
sheet metal, C391
standard designs, M59, M100
strain, compensation for vibration and impact, RP1005
wear resistance of, RP276
wire, table of sizes, C67
Galactose, occurrence in collagen, RP1432
preparation, S416
thermal mutarotation, RP892
Galacturonic acid, oxidation with oxygen in alkal
line solution, RP1680
preparation from beet pulp and pectic sub
stances, RP1594
preparation, mutarotation and structure, RP1547
preparation from sodium strontium galacturonate, RP1617
salts of, RP1576
d-Galacturonic acid, preparation, RP1325

G
Heat-transfer properties, BMS103

Heat-resisting alloys, thermal expansion, RP387

Heat-content function for monoolefins, RP1738

Heating and cooling, effect on permeability of masonry walls, BMS41

curves of glass, variations caused in, by heat treatment, RP1929

devices, temperature distribution in a test furnace, BMS1108

effect of rate, on grain size of steel, RP1322

installations, fire hazard, RP596

rate and initial structure of carbon steels and iron-carbon alloy, influence on austenite grain size, RP1451

rates, effects on ceramic whiteware, RP1371

solar of various surfaces, BMS4

value of gas, relation to usefulness, T290

value of petroleum oils, M97

Heating-boiler, effect of soot upon performance, RP1733

Heats of hydration and transition of calcium sulfate, RP1107

of isomerization of the five hexanes, RP1420

of isomerization of the nine heptanes, RP1439

Heaviside layer, influence on radio transmission, S476

Heavy water in standard cells, RP1435

solubility of CdS04 in, RP1707

Heavy-water isotopes, RP820

Hectograph pads, manufacture, C431

ribbons, specification, C187

Heffner lamp, S227

Hecules, mutual inductance, RP1178

Helium infrared filter, mass spectrometer, RP1664

analysis by thermal conductivity method, T249

bibliography, C81

calcium recombination spectra, RP46

gas, luminous properties of electrically conducting, S89, S176

infra-red spectrum, RP751

spectrum, S146, S191, S302, RP462

spectrum, interference measurements, RP710

Helix angles, chart for, M109

Hemimelitene, from petroleum, RP614

Hemp, microscopic structure, RP1482

Hexacalcium alumina te hydrate, analogy to Hevea rubber, optical and dimensional changes during freezing and melting, RP1129

Hexaethylene, or isomerization of the five hexanes, RP1420

Hexacalcium aluminate hydrate, analogy to hydrated calcium silicoaluminates and hydrated calcium sulfoaluminates, RP-1626

Hexanes, free energies and equilibria of isomerization, RP1440

Hexane, normal, boiling points and vapor pressures, RP1097, RP1280

Hexanes, free energies and equilibria of isomerization, RP1440

Heave rubber, optical and dimensional changes during freezing and melting, RP1129

Hevea rubber, nomenclature of, RP1052

Hexene, optical rotations of carbon atoms, RP1283

Hickory golf shafts, CS18

Hickory handles, R77

Hide, adsorption of water vapor, RP1763

Hiding power of paint, T306

Hiding power of paint, T306

Helium, analysis by mass spectrometer, RP1664

Hefner lamp, S227

Hectograph pads, manufacture, C431

ribbons, specification, C187

Heffner lamp, S227

Hecules, mutual inductance, RP1178

Helium infrared filter, mass spectrometer, RP1664

analysis by thermal conductivity method, T249

bibliography, C81

calcium recombination spectra, RP46

gas, luminous properties of electrically conducting, S89, S176

infra-red spectrum, RP751

spectrum, S146, S191, S302, RP462

spectrum, interference measurements, RP710

Helix angles, chart for, M109

Hemimelitene, from petroleum, RP614

Hemp, microscopic structure, RP1482

Hexacalcium alumina te hydrate, analogy to Hevea rubber, optical and dimensional changes during freezing and melting, RP1129

Hexaethylene, or isomerization of the five hexanes, RP1420

Hexacalcium aluminate hydrate, analogy to hydrated calcium silicoaluminates and hydrated calcium sulfoaluminates, RP-1626

Hexanes, free energies and equilibria of isomerization, RP1440

from petroleum, RP239, RP311, RP375, RP-383

heats of isomerization, RP1420

Hexoses, optical rotations of carbon atoms, RP1283

Hickory golf shafts, CS18

Hickory handles, R77

Hide, adsorption of water vapor, RP1763

Hiding power of paint, T306

High spark frequency in radio telegraphy, S96

spectral, heat treatment, RP1129

speed steel, lathe tests, T228

High-frequency ammeters, S206

circuits, coupled, S158, C74

circuits, energy losses, S190, C74

electrical oscillations, S69, S95

resistance and inductance, S509, T298

High-purity iron, properties, RP1472

High-temperature X-ray diffraction apparatus, RP1782

High-silicon cast iron, thermal expansion, RP1581

Hinges, specifications, C275

Hole sizes for bobbins for filling cop winders, R152

tapered tubes for filling cop winders, R153

Hole sizes for bobbins for filling cop winders, R152

tapered tubes for filling cop winders, R153

Hollow building tile, T238

tile and concrete floor slab, test, T220, T236

Hollow-tile walls, strength of, T238

Hollow building tile, T120

Hevea rubber, optical and dimensional changes during freezing and melting, RP1129

Hexaethylene, or isomerization of the five hexanes, RP1420

Hexacalcium aluminate hydrate, analogy to hydrated calcium silicoaluminates and hydrated calcium sulfoaluminates, RP-1626

Hexanes, free energies and equilibria of isomerization, RP1440

from petroleum, RP239, RP311, RP375, RP-383

heats of isomerization, RP1420

Hexoses, optical rotations of carbon atoms, RP1283

Hickory golf shafts, CS18

Hickory handles, R77

Hide, adsorption of water vapor, RP1763

Hiding power of paint, T306

High spark frequency in radio telegraphy, S96

spectral, heat treatment, RP1129

speed steel, lathe tests, T228

High-frequency ammeters, S206

circuits, coupled, S158, C74

circuits, energy losses, S190, C74

electrical oscillations, S69, S95

resistance and inductance, S509, T298

High-purity iron, properties, RP1472

High-temperature X-ray diffraction apparatus, RP1782

High-silicon cast iron, thermal expansion, RP1581

Hinges, specifications, C275

Hole sizes for bobbins for filling cop winders, R152

tapered tubes for filling cop winders, R153

Hollow building tile, T238

tile and concrete floor slab, test, T220, T236

Hollow-tile walls, strength of, T238

Holmium, spectrophotometric determination, RP-1456

335
purification by crystallization from liquid methane, RP552
purification by silica gel adsorption, RP1642
separation and determination, RP1652
separation by azoetric distillation, RP1402
separation by distillation, RP1123
separation of aldehydes, RP540
structure by near infrared absorption spectra, RP1017
theoretical analysis of time-temperature, freeze- and melting curves for, RP1595
thermodynamic properties, RP1747
vapor pressures and boiling points, RP1670
Hydrocellulose from cotton, determination of
ionization and resonance potentials, S400
isotopic fractionation, RP1634, RP1747
sulphide in gas, T249
sulphide from vulcanized rubber, RP162
process for production of alumina from clay, RP1756
Hydrocyclones, analysis, RP1795
Hydrodynamics of gravity waves, RP1272
Hydrogen, analysis, by combustion, RP1577
analysis by thermal conductivity method, T249
atomic weight, S77
chloride, thermodynamic data, RP499
decarburization of ferrochromium by, S448
determination by vacuum fusion, S514
electrodes, use, RP1495, RP1524, RP1557, RP1559, RP1567, RP1580, RP1586, RP1598
heat of combustion, RP259
in steel, RP1373
ionization and resonance potentials, S400
isotopic fractionation, RP729
molecular volumes and expansivities, RP1023
permeability of synthetic films, RP750
separation of isolopes, RP601
spectrum, S146
sulphide from vulcanized rubber, RP162, RP464
sulphide in gas, T41
thermodynamic properties, RP1634, RP1747
Hydrogen-ion activity of acid potassium phthalate, RP1856
activity of boric-chloride buffer solutions, RP1609
activity, potentiometric method for measuring, RP1581
concentration, S175, S236, S364
concentration of borax buffers, RP1721
concentration of calcium aluminate solutions, RP34
concentration of sols, RP1639
concentration, weakly buffered solutions, RP384
standards, RP1495, RP1524, RP1559, RP1567, RP1580, RP1586
Hydrogen-reduction method for determination of oxygen in simple and alloy steels, RP1114, RP1115
Hydrogenation of ethylene, heat of, RP933
of lubricating petroleum oils, RP1144, RP1145
of monooled hydrogenations, heats of, RP1702
Hydrolysis, catalyzed, of proteins, RP1503
of calcium silicates, RP657
of disaccharides by enzymes, RP1398
of rutherlen chloride solutions, RP125
of sodium oxalate, S175
turanose, RP1356
Hydrolytic precipitaiton, analytical separations by, RP1519
Hydrometer correction tables and thermal-density coefficients for vegetable tanning extracts, C449
Hydrometer corrections for tanning extracts, RP1412
Hydrometers, master scales, C19
scales, standard Baumé, C59
temperature corrections, for Baumé scale, C295
testing, C16
Hydroxides, precipitation, RP1519
Hydroxyl ion, activity coefficients in solutions of calcium hydroxide, RP584
8-Hydroxyquinoline in separations of aluminum, RP86, RP583
in determination of Al, Be, and Mg, RP813
Hygrometer, electric, applied to humidity measurements inside concrete, RP1334
electric type in improved radio sonde, RP1329
electric type in radio meteorography, RP1102
measuring humidity at high altitudes, RP1265
Hygrosopicity of glasses, RP1706, RP1719
Hypersensitization, mechanism of, RP252
Hypersensitizing without the use of ammonia, S422
Hypothesis, resistance to acid attacks, RP864
Hypochlorite disinfectant, deodorant, and germicide, liquid, CS68
Hypodermic needles, dental, R108
medical and surgical (for hospital use), R224
Hysteresis, elastic, RP445
in caloromel half-cells, RP1018
in measuring instruments, S328
magnetic, determination, RP845
magnetic values from high magnetizing forces, S338
statical, in flexure of bars, T332, T365
thermometric, S185
Ice
Ice bags, rubber, specifications, C227, C228
cake sizes, R96
compartments, refrigerator, R109
density at 0°C, RP1496
heat of fusion, S209, S248, RP1260
point, reproducibility, RP658
point, thermodynamic temperature, S57
specific heat and heat of fusion, RP1257
Icebergs, ocean temperatures near, S210
Ice-cream brick molds and cartons, R120
cans, tinned-steel, R164
cups and cup caps, R132
Ideal gas, definition, S136
Identification lamps for vehicles, CS83
Ignition shielding in aircraft, RP158
Ignition systems, automotive, electrical character of spark discharge, RP1032
Illuminants, artificial, daylight efficiency, S125
color grading, S448
Illuminating gas, determination of ammonia, T34
specifications, T41
sulphur in, T20
Illumination from a radiating disk, S263
Image brightness with optical instruments, C27
Immersion method for measuring indices of refraction, RP1575
Impact and vibration, compensation of strain gages for, RP1005
strength of cast-iron pipe, T336
tests of bolts, RP763
tests of metals, T289
tube, theory, RP49
Impedance, input, of three-electrode vacuum tube, S351
Impulse generator problems, RP929
Inclinometers, aircraft, T237
Indentation, Brinell, RP903
tests, Brinell and Rockwell, T334, RP185
tool, diamond, RP1220
Index of refraction (see also refractive index)
air, S322
fused quartz, RP112
fluorocrown glasses, RP1659
glass, S251, RP1375
measurement, RP64, RP262, RP1535, RP1357, RP1775
of optical glass, effect of heat treatment, S572
of optical glass, increased uniformity in, S572
of rock salt, S418
of sodalime-silica glasses, RP116
of soda-lime-silica glasses, RP116
Index to reports of National Conferences on Weights and Measures, M172
Indicators, dial, CS(E)11
pH, polar structure, RP1263
metacresolsulfonphthalein, RP1569
Indium, spectrographic determination in tin, RP1451
thermal expansion, RP1541
Light-scattering materials, optical specification, RP1026

Lightning arresters, M95 (also called H13)
 - protection of electrical equipment, M95 (also called H13)
 - protection of persons and buildings, T56, M92 (also called H14), H17, H21, H40

Lights, color designations, RP1565
 - sidewalk, floor, and roof, R49

Lime, absorption of carbon dioxide, C189
 - aluminum hydrates of, and hydrate of, in system CaO-Al2O3-H2O, RP1539

bagg of paper, T187
 - board law, M1, C64
 - binary system with boric oxide, RP510
 - definitions and specifications, C106
 - free, effect on decomposition of tricalcium silicate, RP381
 - heat of solution and hydration, RP1121
 - hydrated, for structural purposes, specification, C204
 - in mortars, T308
 - manufacture, T16, C337
 - mortars, properties, RP952
 - particle size and distribution, RP1232
 - powder and limestone for manufacture of sugar, properties and uses, C30
 - purification of water, specification, C231
 - quick-, specifications, C150, C153, C201, C372, C397
 - system CaO-Na2O-Al2O3, RP414
 - system lime-boric oxide-silica, RP941
 - lime and limestone for glass manufacture, specification, C113
 - lime and magnesium, free, in portland cement clinker, RP1358
 - lime-ferrie oxide-silica system, RP1340
 - lime-silica-water system at 30° C, RP687
 - limes, hydration of magnesium in, RP1022
 - limestone, determination of magnesium in, RP265
 - manufacture of sulphite pulp, specification, C144
 - permeability, T307, T349
 - physical properties, T349
 - line absorption, photo-ionization of caesium by, RP186

Linear measures, C2, C61
 - linear, ultraviolet transmission, RP68
 - linen-content papers, substitutes, RP1701
 - lining, brake, automobile, R66
 - linoleum, battlement, specification, C191
 - plain, inlaid and printed, specifications, C190
 - lined oil, affected by pigments, T71
 - linoleum, battleship, specification, C191
 - lining, brake, automobile, R66
 - linen-content papers, substitutes, RP1701
 - linen, ultraviolet transmission, RP46
 - machine-finished surfaces, measurement of roughness, RP1546
 - liquefaction of air, SI23
 - temperatures by a conductive method, RP57
 - liquid air, production on a laboratory scale, S419
 - capacity measures, C61
 - films, thickness, RP1392
 - measuring pumps, T81
 - liquid-junction potentials, RP1608, RP1632
 - liquids, optical rotation, M118
 - lithium, spectrum, S312
 - lithographic ink pigments, light fastness, RP100 papers, RP480, RP730
 - papers, effects of humidity and temperature, RP563
 - lithopane paint, specification, C111, C147
 - load on walls and partitions, BMS27, BMS31
 - load-elongation apparatus for fibers, autographic, RP1548
 - loaded paper shot shells, R31
 - loading charts for electrical transmission lines, M176
 - coil for home-made radio set, C137
 - loads, building code requirements for, M179
 - critical, RP1163
 - dead and live, for building, M179
 - dwelling construction, BMS107
 - minimum design for building, M179
 - plumbing systems, methods of estimating, BMS65
 - lock nuts, torque on, RP386

Lockers, steel, R35
 - locks, specification, C275

Locomotive-cylinder parts, T172
 - Longing, Troy, C20
 - Lorentz polarization term in ionosphere, RP1043

Lorenz apparatus, S56
 - Lovibond color system, grading of oils, RP515

Low-cost housing. (see list of Building Materials and Structures Reports, p 207. Indexed also under specific subjects.)
 - low-cost housing research, (general plan), BMS1
 - lubricating films, thickness, RP264
 - oil, chemical constitution and physical properties, RP84, RP953, RP954
 - oil, extraction with acetic acid, RP1067
 - oil fractions, properties, RP1142, RP1143, RP1144, RP1145
 - lubricating oils, (see also Oils), action of sunlight and air, SI53
 - carbonization, C99, T4
 - mineral, evaporation test, T13
 - reclamation, T223
 - testing, M15, T223
 - lubrication of journal bearings, RP1087

Luggage, R125

Lumber, specification, hardwood, CS80
 - softwood (includes shingles and mouldings), R16
 - stock, rotary-cut, for wire-bound boxes, R59
 - lumber, hard, cedar, cypress, and redwood, CS92
 - Luminescence, photometer for measuring, RP1646
 - Luminescence of plants and animals, S358
 - luminosity factors, M86
 - radiation, (see Visibility), screen, S303
 - luminosity and temperature, SI33
 - black body, S270, RP285, RPN99
 - luminous compound, radioactive, safe handling, R27
 - dials, measurement of brightness, RP804
 - efficiency of radiant energy, SI08, S305, S475, RP699, RP1189
 - efficiency of the firefly, SI32
 - intensity units of four countries, S50
 - material, determination of brightness, RP702
 - Lutecium monoxide, spectrum, RP1071
 - spectra, RP187, RP1908

Lye, caustic soda, specification, C315

M

Machinability, steel forgings, RP319
 - tungsten carbide lathe tools, RP206

Machine bolts, packaging, R60
 - steel, (stock production sizes), R169

Machine tool life, T191
 - Machine-finished surfaces, measurement of roughness, RP1708

Machinery, cotton, T277, T282

Machines, testing, calibration, RP1099

Magnesia, unsize, T239

Magnet stamps, plastic, specification, C323

Magazine, action of sunlight and air, SI53
 - crucibles, in preparation of pure iron, SI43
 - determination in Portland cement, RP569
 - effect on constitution of SiO2-bearing clinker, RP1512

Magnetization, RP1022

Magnetic, steel, R35
 - low-cost housing. (see list of Building Materials and Structures Reports, p 207. Indexed also under specific subjects.)
 - magnetic, steel forgings, RP319
 - materials, design for building, M179
 - magnet steels, choice and utilization, S567
Mineral aggregate production screens, wire diam¬
eter, 5/16 to 1/4.

lubricating and transformer oils, evaporation test,
T13.
oils, carbonization, T4.
oils, high-boiling, S160.
oils, thermal properties, M97.

spirits for thinning paints, specification, C99.

Model tests, wind pressure, RP545.

Minerals and their products, non-metallic, stand¬
dards and specifications, M110.

Minimum-deviation refractometry, RP1572.

Moisture absorption by gas-cell fabrics, RP818.

Moist fabrics, chilling effect, RP1587.

Mohair pile fabrics, CS52.

Monoazo dyes, spectral absorption, RP47.

Monochromatic light sources, S49.

Monolithic concrete walls, nonreinforced, structural
properties, BMS61.

Monoolefin hydrocarbons, determination of and
separation from paraffins, naphthenes, and
aromatics by absorption methods, RP1692.
Organic acids, volatile, determination in sulfuric acid, RP267
compounds, heats of combustion, RP41
substances, optical rotation, M118
Oxides, water, T185, C309
Oxides, experiments on, RP49, RP385
gas, contraction coefficients of jats, RP303
Orthophosphates, solution of, RP1429
Oscillations, damping in a gas of mercury, S289
electrical, damped, S95, S140, S158, C74
electrical, in antennas, S157, S282
electrical, in ignition apparatus, S543
electrical, in inductance coils, S326
high frequency from electric arc, S60
laminar boundary layers, RP1772
pico-ohm, RP156
undamped, from electron tube generator, S355, C74
Oscillators, piezo, 200-kilocycle, for radio frequency control, RP576
Oscillators, synchronization, RP1780
Oscillators, piezo, design of portable temperature-controlled, RP158
use in obtaining accurate time intervals, RP1136
use in frequency measurements, RP630, RP759, RP925
Oscilloscope, cathode-ray, RP460, RP363
cathode-ray, for frequency standardization, measurements in automobile battery circuits, T186
use in measurement of electrode potentials, S504
Osmium, atomic weight, RP471
radiation constant, S105
separation and determination, RP286
spectrum, S499
Overall elastic webbing, CS58
Overfiring, effect upon clays, T22
Over-reduced steel, RP250
"Overshoot" phenomenon in tantalum and tin, RP977
Oxalate, sodium, as standard in volumetric analysis, C381
Oxidation, aldoses by bromine water, RP82
effect of thermal length changes, RP1026
heats of combustion and formation, RP1028
heats of oxidation, aldoses by bromine water, RP82
Oxalate, sodium, as standard in volumetric analysis, C381
"Overshoot" phenomenon in tantalum and tin, RP977
Oxide additions, effect of thermal length changes, RP1026
heats of combustion and formation, RP1028
heats of formation, hydrogenation, and combustion, RP1702
Oxides, coloration, RP470
vibrational frequencies, RP1768
Olive containers, glass, R196
Olive drab paint, specification, C165
Olive-green paint, specification, C165
Oxidation, aldoses by bromine water, RP82
"Overshoot" phenomenon in tantalum and tin, RP977
Oxidation of sugars by bromine water, RP534
electrolytic, RP328
sugars, RP969, RP990, RP1497, RP1547, RP1575
sugars, galacturonic acid and of 5-keto-gluconic acid in alkaline solution, RP1680
petroleum oils, S153, S160, T4, C99
soaps, determination from interference colors, RP1221
sugars, RP990, RP1497, RP1547, RP1575
sugars, electrolytic, RP328
sugars with bromine water, RP354
sodium sulfite in brick kilns, T370
sulfur dioxide in brick kilns, T370
sulfur dioxide in brick kilns, T370
Sodium, determination in steels, determination by chromous chloride and by chromous sulfate, RP346
determination by vacuum fusion, S514, RP346
determination in iron and steel by Ledebur method, RP188
determination, in iron and steel by Ledebur method, T118, S350
Oxidimetry, indicators, S178
sodium oxalate standard, S182, C40, C381
Oxyacetylene welding and cutting blowpipes, T200
Oxygen, analytical absorption, RP177
atomic weight in air and in water, RP932
bomb, aging of leather, RP1128
content of acid Bessemer steels, S346
determination by chromous chloride and by chromous sulfate, RP1112, RP1113
determination by vacuum fusion, S514, RP346
determination in cast iron, by hydrogen-anti-magnetic method, RP25
determination, in iron and steel by Ledebur method, T118, S350
determination, in simple and alloy steels, RP347
rotation, controlled, RP153
controlled, RP153
rotation, SP1115
determination in steels, S350, RP976
effect on leather, RP1004, RP1319
effect on red shortsness of iron, T261
heat capacities, RP1804
high purity, preparation, RP1182
isotope fractionation, RP1229, RP820
point apparatus, RP1339
solubility in benzoic acid, RP1647
steel, RP606
thermodynamic properties, RP1684, RP1747
variation of intrinsic energy with pressure, RP503
Ozaphane film, stability, RP1134
Ozone, distribution in stratosphere, RP1207, RP1967

P

Package sizes, insecticides and fungicides, R41
Packages, salt, R70
shortening, salad oil, and cooking oil, R193
standardization, M165
Packaging, agricultural insecticides and fungicides, R41
air brake (electric railway) parts, R162
automotive (bus) engine parts, R161
cloths, specifications, R188
crayons, chalks, and modeling clays for school use, R192
dental plaster, investment, and artificial stone, R117
electric railway motor and controller parts, R145
extracted honey, R156
first-aid unit dressings and treatments, R178
flash-light batteries, R104
glass containers for olives, R196
household insecticides, R203
hydrogen-rich cherries, R197
overhead electric railway material, R65
peanut butter, R209
razor blades, R69
salt, R70
toiletries and cosmetics, R200
woven-wire fencing, R9
Packing, asbestos, specifications, C238, C241, C244, C248, C249
carriage, machine, and lag bolts, R60
flux, specification, C239, C236
hard fiber sheet, specification, C335
low-pressure spiral gland, specification, C237
materials, water-vapor permeability, M127
rubber, specifications, C234, C235, C236, C240
tanks, specifications, C233
Packings and gaskets, rubber, specification, C295
Pads, surgical operating, specification, C245
Paint and painting, general information, T274, C69, BMS105
Paint and varnish brushes, R43
Paint, black, specification, C94
composite thinner for, specification, C102
dryer, liquid, specification, C105
fading rate, RP1478
flat interior lithopone, specification, C111
gloss interior lithopone, specification, C147
green, specification, C97
hiding power, T306
iron oxide, and iron-hydroxide, specification, C98
manual with particular reference to Federal Specifications, BMS105
olive drab, specification, C165
priming plaster surfaces, M137
protective value against corrosion of steel, BMS88
specifications, applicability of, T274, BMS105
tests, accelerated, RP1
neutralization, R192
stationary-gas plants, R192
storage and transit tanks, R192
storehouse, R192
truck, R192
pulp, from wood, R192
pulp, from cornstalks, M147, M148
pulp, from wood fibers, RP107, RP372
grocers’ bags, R42
insects, control, RP828
measurement of sizing, T326
micrometers for measuring thickness, T226
moisture content and dimensions, RP633
moisture expansion, RP1054
newspaper, deterioration, M145
offset printing, RP780
offset, treatment and properties, RP859
opacity, RP660
permanence of, RP107, RP349, RP372
photographic, R98
preservation, M128
protection with cellulose acetate sheeting, M168
pulp, production from cereal straws, M124
pulp, T88, T189
resin content, RP973
sheet sizes, R225
shipping tags, R83
shot shells, loaded, R31
stock recovered from waste paraffin paper, T87
suitability, strength and stability, RP754
sweet-potato starch for sizing, M190
testing, T194, C45, C107, RP295
-microburette, RP959
tissue, R46
tissue: waxed, R125
towels, C294, C407
treasure, C51
tubing, for packaging milk-bottle caps, R218
wall, C816
war map, experimental manufacture, RP1751
water-vapor permeability, M127
weaving test, RP1990
Papers and pulps, determination of cellulose, RP979
determination of pentosans in, RP1199
volumetric determination of alpha-, beta- and gamma-cellulose, RP1068
Papers, book, effect of filling and sizing materials on stability, RP1149
book, printing tests, RP1180
building and sheathing, RP85
for blind readers, RP690
filter, evaluation, RP1638
offset, water pressure in manufacture, RP1455, RP1532
pH values, RP1205
photochemical stability, RP1517
(Continued on next page)
rag-fiber, stability, RP794
shaeaking, stability, BMS33
waterproofed case-lining, T312
Papermaking material, carbon fiber, T340
properties of phormium tenax (New Zealand flax), RP285
properties of rayon, RP143
properties of wood fibers, RP107, RP372
Paper-sizing materials, resin, light sensitivity, RP367
Parachute droop, dynamic tests, RP1710
Parachutes, air permeability of fabrics, RP261
Paraffin, heat content, M97
Partition method for determination of boron, RP-
Particle size and plasticity of lime, RP1232
Paraffined paper condensers, S166
Parachutes, air permeability of fabrics, RP261
Parachute webbing, dynamic tests, RP1710
Paper-sizing materials, rosin, light sensitivity, RP367
Perforated cover plates, axial rigidity, RP1737
cover plates for steel columns, RP1478, RP-
RP1474, RP1501, RP1514, RP1527, RP1540
temperature counters, axial rigidity, RP1368
Periodic acid, oxidation of cellulose with, RP1491
acid oxidation of difluoroanhydrides, RP-
variable, function of, read by instrument, S90
Permanence of paper, RP107
of records, M128
Permanganate solutions, standardization, RP843
Permeability, air, of fabrics, RP261, RP1471, RP1589
balloon fabrics, T113
magnetic, RP714
magnetic, temperature coefficient, S245
of bricks to water and air, RP1349
of concrete, RP394
of elastic polymers to hydrogen, RP1327
of masonry walls, BMS7, BMS41, BMS55,
BMS76, BMS86
of membranes to water vapor, M127
of moisture barriers, apparatus for determin-
cining, C453
of Neoprene to gases, RP1166
of organic polysulphide resins to hydrogen, RP1020
of paper to air, RP681, RP682
of Portland cement mortars and concretes, T3
of plastic fabrics on floor coverings, BMS59
of resin finishes to moisture, RP974
of "Speedbrik" wall construction, BMS86
of stone, T301
of starch-faced, guite faced, and "Knap-
Concrete-Unit" walls, BMS94
of synthetic films to hydrogen, RP750
of walls to water vapor, BMS58
Permeameter, Fahy, S306
Permeameter, magnetic standards for testing, RP140
standardization at high magnetizing forces, RP279
Personnel, positions at National Bureau of Stand-
ards, M94, M152, M163
Persulfate-arsenate method for manganese, RP109
Petroleum, chemical composition, RP45, RP280,
RP360, RP432, 438, 458, 501, 542, 554,
614, 745, 808, 817, 824, 849, 943, 953, 955,
1083, 1122, 1142, 1145, 1173, 1174, 1184, 1289, 1423
determination of benzene, RP311
determination of methyleneptans, RP311, RP161

determination of molecular weights of some compo-
dunds, RP215
determination of 2,3-dimethylbutane, RP311
1,1-diphenylepoxide and 2-methylhexane in,
RP342
dimethylpentane in, RP458
distillate between 115° and 124° C, hydro-
carbons, RP943

distillation, RP379
effect of heat on cracking, RP45
ethylenepoxiane in, RP317
extraction apparatus, RP311
extraction of xylenes, RP501
fractionation of, RP43, RP93, RP945, RP-
RP946, RP1122, RP1123, RP1143, RP1144,
RP1145, RP1173, RP1174, RP1184, RP1185,
RP1289, RP1296
fractionation by azoetric distillation, RP-
1402
distillation of 1,2,3,4-tetramethylbenzene, RP446
1,2,3,4-tetrahydrodronaphthalene, 1-methyl-
5,6,7,8-tetrahydrodronaphthalene, and 2-
methyl -5,6,7,8-tetrahydrodronaphthalene,
RP1428
fractions, nonvolatile, molecular weights,
RP772
hydrocarbons, crystal behavior, RP1000
hydrocarbons in the gasoline fraction of,
RP1571
hydrocarbons, isolation, RP824
(Continued on next page)
hydrocarbons, separation, with silica gel, RP869
isolation of ethylbenzene, RP554
isolation of hexanes, RP239, RP311, RP360
isolation of naphthenes, RP1296
isolation of normal decane, RP438
isolation of normal nonane, RP383
methylcyclopentane in, RP375
near infrared absorption of hydrocarbons, RP1017, RP1072
nonaliphatic in, RP745
oils, chemical constitution, RP849
oils, compressibility and thermal expansion, RP244
oils, density and thermal expansion, T77
oils, lardine nonane, T73
oils, oxidation, S133, S160, T4, T73, C99
oils, standard tables, C57, C59, C154, C410
oils, sulphur content, T177
products, thermal properties of, M97
separation of dimethylcyclohexanes, RP908
separation of methylcyclohexanes, RP908
separation of normal octane, RP282
toluene in, RP290
"Pfeifer Unit" wall construction, structural properties, BMS39
pH of acid potassium phthalate, RP1690
acid potassium phthalate, with or without potassium chloride, RP1586
borate-chloride buffers, RP1609
buffer solutions, RP1632
appropriation of, RP1109
curves of acid mixtures, RP889
effect of, on absorption spectra, RP1686
effect on strength of resin-bonded plywood, RP1748
measurement in alkaline cyanide copper plating baths, RP1291,
*p-phenolsulfonate buffers, RP1559, RP1567, RP1580
phosphate buffers, RP1648
range of potassium p-phenolsulfonate, RP1558, RP1559
response of glasses, RP1719
response of potash-silica glasses, RP1748
standards composed of phosphate salts, values of, RP1524
standards, use of, RP1558, RP1559, RP1567
titrations, curves of formic and acetic acids, RP1397
titrations curves of malonic acid, RP895
unknowns, determination, RP1580, RP1586
values of acid-salt mixtures of p-phenolsulphonic acid and of 4-chlorophenol-2-sulfonic acid, RP1567
values of metacresolsulfonphthalein, RP1569
values of mixtures of o-phenolic acid and potassium hydrogen, RP1678, RP1687
values of papers, RP1905

PHC Housing Corporation, structural properties of "PHC" prefabricated wood-frame constructions for walls, floors, and roofs sponsored by, BMS90

Pharmaceuticals and drugs, color names, RP1299
Phase angle of transformers, S116, S130, S164, S211, S217, S233
difference, condensers, S64, S166, S36
difference of electrical insulating materials, S471, T216, T234
difference of harmonics, effect upon acoustic quality, S127

Phase equilibrium, system CaO-Al2O3-Fe2O3, RP987
CaO-Al2O3-H2O, RP1539
CaO-B2O3, RP510
CaO-BoSiO2, RP941
CaO-Fe2O3SiO2, RP1940
CaO-Na2O-Al2O3, RP414
Cr2O3-Al2O3, RP1517
Cr2O3-SiO2, RP283
K2O-PbO-SiO2, RP911, RP1392
Na2O-TiO2, RP648
PbO-B2O3, RP995, RP1392
PbO-BoSiO2, RP1291
PbO-SiO2, RP705
Portland cement, RP1570
Sio2-2Al2O3, RP1395
Sio2-4Al2O3, RP413

Phase equilibrium of CaO, MgO, Al2O3, SiO2, RP884
studies of cement, RP1421
studies on portland cement, RP1699
studies of potash compounds of portland cement, RP1512
system; lead acetate, lead oxide, water at 25°, S232
Phenol, addition agents in copper electrolytes, RP1109
salts, glycides, enzymatic hydrolysis, RP1369
Phenolic disinfectant, emulsifying type, CST7
disinfectant, soluble type, CST1
insulating materials, S662, T216, T234
p-Phenolsulfonate buffers, pH, RP1559, RP1567, RP1580
Phenol, salts, effects on, RP1746
Phormnium tenax (New Zealand flax), papermaking properties, RP285
Phosphate buffers, pH of, RP1648
Phosphate rock, analysis, RP1105
determination of magnesia, RP484
determination of phosphorus, RP1010
Phosphonobuydate precipitate in determination of vanadium, T8
Phosphorescence of plants and animals, S383
Phosphorescent materials, photometer for measuring, RP1146
Phosphoric acid, second dissociation constant, RP1824
Phosphorus, colorimetric determination in steel and cast iron, RP1386
determination in phosphate rock, superphosphate, and metathosphate, "true" RP1010 in low-carbon, open-hearth steel, T203
in steels containing vanadium, T24
in wrought iron, T97
ionization and resonance potentials, S400
pentoxide, heat capacity, and heat sublimation, RP514
spectrum, RP425
Photocells, barrier-layer, photometry, RP1348
Photochemical decomposition of cystine in wool, RP1255
silk, effect of pH, RP395
decomposition, textiles, RP697
Photochemical reactions in silk, RP1404
reactions in wool, RP1091
Photochemical stability of papers, RP1517
study of sheet materials, apparatus for, RP1300
Photoelastic determination of stresses around a circular inclusion in rubber, RP1083
Radiographic determination, ultraviolet intensity meter, RP641
cell as radiometer, S319
cell thermoregulator, RP284
cells, barium, S462
dosage-intensity meter, RP858
measurement of cloud heights, RP1379
reflectometer, RP1345
spectrophotometry by null method, S349
"Photo finish" at the race track, RP986
Photogrammetric mapping, camera errors, RP1177
Photographic developers and sensitivity, RP598
determination of magnesia, RP1109
determination of phosphorus, RP1010
emulsions, enzymatic hydrolysis, RP1369
evaporization, effect upon absorption, reflection, and visibility losses, RP1015
emulsion, effect of weak prism, RP1423
emulsions, emulsification, RP525
emulsions, sensitivity of, S439
emulsions, interfacial tension effects, S228
film for miniature copies of records, R165
film for permanent records, M144, M154, M168, M172
filter factors, S409, S439
lenses, compensation of the aperture ratio markings for absorption, reflection, and visibility losses, RP1015
lenses, effect of weak prism, RP1423
lenses, aberrations, S311, S494
lenses, charts for testing resolution, M166
lenses, resolution tests, C429
method of detecting changes in group of objects, S392
objective, testing, RP1445
paper, R98
(Continued on next page)
Quantity, electric, absolute measurement, S139
Quartz, absorption, reflection, and dispersion constants, S237
Crystal-Units, electrical Measurements, RP1774
fibers, elastic Properties, S7
Fused, optical heterogeneity, RP112
Fused, thermal expansion, S224
glass, compressibility, RP1008
glass, infrared spectral reflection, S168
inversion, S55
metal halide lamps, S330, S378
plate mountings and temperature control for Piezo oscillators, RP366
plates, vibrations, RP356
polarity constants, S94, S268, C44, C429
reflection, S45, S237
spectrodiometers, S401
temperature expansion and transformation, RP-1668
transmissive properties of fused and crystalline, T369
-Wedge Saccharimeter, constants, S268
Quebracho tanned leathers, hydrolysis by sulfuric acid, RP362
Quenching cracks in tool steels, S513
effect of mass and initial temperature, T295, T313
media for steels, RP108, RP267
rate of 24S aluminum alloy sheet, RP1378
third principal series line of cesium, RP184
Quicklime, causticizing, specification, C143
manufacture of sugar, specification, C207
manufacture of calcium arsenate, specification C203
manufacture of silica brick, specification, C153
manufacture of sulphite pulp, specification, C144
purification of water, specification, C231
soap-making, specification, C201
Quinhydrone and hydrogen electrodes in solutions containing tannin, RP176
Quinone phenolate, resonance theory, RP1424
R
Race track, “camera finish”, RP986
Radiant energy, measured in absolute value, S261
spectral distribution by Planck’s equation, S141,
visibility, S103, S154, S305, S475, RP259
Radiating disk, illumination from, S263
surfaces, geometrical theory, S51
Radiation constants, S204, S262, S284, S357, S406, RP1189
constants, metals, S105
Equation, Planck’s, S259, S304, S360
from metals and oxides, S224, S242, S243, S249
from metals bombarded by low-speed electrons, RP297, RP371, RP478, RP493
from points, T264
luminous equivalent, S103, S154, S270, S305, S305, RP699, RP1189
method for determining melting points, S62
Nernst glower, S91
penetrating, protection against, RP1735
pyrometers, S11, S198, S250, T170, C7
selective, S91, S97, S131, S156, S191
selective, incandescent lamp, S460
solar, effect upon balloons, T128
Standards, S227, RP578
stellar and planetary, S244, S438, S460
ultraviolet, meter, RP647
ultraviolet, solar, RP816, RP877, RP899, RP1469, RP1542
ultraviolet solar and sky, RP1593
ultraviolet, solar in stratosphere, RP1367
ultraviolet, spectral erythemic reaction, RP631
Wien’s displacement law, S150
Radiations injurious to eyes, protection from, T99, T369, H2, H24
Radiators, aircraft engines, T211
East iron, R174
Radio, aircraft landing systems, RP238, RP602, RP1006
antenna, undergound, for airplane landing beam, RP1006
antennas, capacity, S568
beacon (see also Radio range), RP297
beacon, aircraft, unidirectional, RP85
beacon, course and quadrant identification, RP293
beacon, course-shift indicator, RP77
beacon, directive, S480
beacon system for airways, RP159
beacon and receiving system for blind landing area, RP298
compass, S428
critical-frequency predictions, 1940, RP1279
direction finder, aircraft, RP811
direction finders, S428, S525, S536
faults, RP1016
fading, S476, S561, RP70
field-intensity and transmission measurements at broadcast frequencies, RP752, RP1156
field-intensity recorder, RP597
field-intensity records on broadcast antenna, RP374
field-intensity variations, RP913
frequencies, maximum usable, RP1096, RP1100, RP1167, RP1363
information, sources, C122
installations, safety rules, H9, H35
instruments and measurements, C74
ionosphere measurements during solar eclipse, RP629, RP868
ionosphere measurements, equipment (see also Ionosphere), RP608, RP1384
ionosphere multifrequency records, RP769
RP780, RP1001
meteorograph, RP1082, RP1102, RP1169, RP1328
multifrequency recorder of ionosphere heights, RP608
proximity fuse design, RP1723
range and telephonic for airways, RP341
range-beacon, elimination of night effects, RP513
range-beacons, phase synchronization in directive antenna arrays, RP581
range, 12-course, for aircraft, RP154
range, course indicators, RP28, RP160, RP336, RP390
range on airways, RP148, RP155
range reception, antennas, RP313
Radio receivers, aircraft, RP19
receivers, aircraft, volume control, RP330
receiving set for ultra high frequencies, RP238
receiving sets, methods of testing, T256
receiving sets, simple, construction, C120, C38, C137, C141
reception in aircraft, ignition shielding, RP158
recording of cosmic rays in the stratosphere, RP1254
sight, spectroradiometric analysis, S477
skip distance and ionosphere measurements, RP1013
sonde, RP1082, RP1102, RP1169, RP1329
standard-frequency transmitters, RP630
subjects, classification, C138, C385
telegraphy, high spark frequency, S96
telegraphy, long-distance, S159, S226
transmission and reception with antenna and coil aerials, S354
transmission, correlation with ionosphere observations, RP652, RP901, RP1015, RP1096, RP1100, RP1167, RP1363
transmission, daylight effect, S159, S226
transmission formula, S226
transmission on Byrd Antarctic expedition, RP412
transmission, short wave (10 meters), S469
transmitting sets, electron tube, S381
waves, variation in direction, S553
weather station for isolated locations, RP1318
weather stations, S83
definitions, S84, S260
-amplication, S449, S450, RP856
phase difference of insulating materials, T284
resistance and inductance, T298, T328
standardization by cathode-ray oscillograph, S268
standards, RP759, RP766, RP925
Radio-wave propagation, relation to terrestrial phenomena, RP547
transmission, retardation in the ionosphere, RP1096, RP1100

Radioactive contamination detector, RP1223
luminous compound, brightness meter, RP702
luminous compounds, safe handling, H27
Radioactivity, measurement, RP541
Radiobalance, Callendar, S188
Radiometers, gold leaf, platinum, and selenium, S222
selective, S319
Radiometric investigation of spectra, S45
investigation of water of crystallization, S168
measurement of ultraviolet by filter method, RP318, RP370
measurements of ultraviolet solar radiation intensities in the stratosphere, RP1075
measurements, on stars and planets, S244, S438, S460, S512, S553
measurements on carbon arc, S389, S396
Radiometer instruments and methods, S85, S188, S226, S239
photoelectric, applications of tungsten-in-quartz lamp in, RP1548
Radiometer, S85, S156
vacuum, S46, S188
Radiotelegraphic antennas, S257, S269, S326, C74
Radiomicrometer, S85, S156
Radioactivity, measurement, RP641
Radioactive contamination detector, RP1223
radioactivity, measurement, RP641
Reagents, air-core and iron-core, design, RP342
Reclaimed rubber, comparison with new rubber, RP123
Reclining porous castings, RP1740
Recoil of a particles, RP166
Recombination into the cesium 1S level, RP274
of electrons in the atmosphere, RP1249
spectra of caesium and helium, RP48
Recorder, automatic, for ionosphere heights, RP373, RP608
field intensity of radio waves, RP597
Recording apparatus, radio method for synchronizing, RP269
device for precision photometers, S144
instrument links, RP935
instruments, aircraft, T237
Records, miniature copies, photographic film for, RP945
motion-picture film for, M158
newspaper, preservation, M145
preservation, M128, M140, M142, M144, M154, M168, RP779
preservation of film, RP942, RP950, M162
Recrystallization, bronze as affected by cold work, C294, continuous, apparatus, RP1351
Rectifier, electrical (see Detector)
Rectifiers, contact, S94
electric, theory and performance, T265
X-ray, RP527
Rectifying column, chain-packed, RP579
columns of glass, RP579
columns of high efficiency, RP1724
columns, reflux regulator and head, RP1249
effects in conducting gases, S6
Red brass, physical properties, RP1553
cedar closet lining, duralumin, C226
cedar shingles, C31
enamel, hardness, high-speed steel, S395
enamel, water resisting, specification, C146
lead, shortness of iron, T261
lead, specification, C90
Reducing powers of various sugars, RP1282
sugar, analysis, RP1739
sugar determination, RP1638
sugar, determination by Munson and Walker method, RP1417
sugar, method of formation, RP1301
Reducing acid, mechanism of formation from pentoses and galacturonic acid, RP1594
Redwood viscometer, T210
Reed indicators, theory of design and calibration, RP193
tuned, for visual reception of aircraft radio-beacon signals, RP28, RP238, RP336
Refining of sugar, use of chlorites, RP1436
Reflectance measurements, effect of a cover glass, RP623
methods of determining gloss, RP958
paper, paint, vitreous enamel, and dental silica cement, RP1026
spectral, of abaca fiber, RP623
Reflecting power, aluminum, duralumin, rhodium, tin, RP141
beryllium, chromium, and other metals, RP93
molybdenum, S192
rhodium, RP1168
variations with angle of incidence, S196
various substrates, S196
Reflecting surfaces produced by the deposition of metals on glass, C389
Reflection coefficient of electrical waves, S114
diffusely incident light, RP1504
factors, measured by Ulbricht sphere, S415
losses of a photographic lens, compensation by aperture ratio marking, RP1803
measurements, spectral, RP90
spectral, infrared, S45
Reflection-transmission relationships in sheet materials, RP1430
Reflectometer, absolute, S391, S405
photo-electric, RP1434
porcelain enamels, RP847
Reflectometry of diffusing materials, RP3, RP904
Refractor, glass disk for 70-inch telescope, RP97
Refractometry, immersion, RP1575
Refractometer, gas, S316
Refractivity, glass, changes caused by annealing, S521
Refractive indices, rock salt, S418
Refractories, analysis, RP180
Refractive index, air, S327, RP695
Refraction data on standard optical materials, S401
Refrigeration, condensing units, electric, CS(E)107
Regulations, specifications, and tolerances for com-

Register of offset prints, RP859
Regeneration in amplifiers, S487
Refrigerator ice compartments, R109
Refractory bodies, strength, T104
Reflux control for electromigration cells, RP1765
Relief valves, iron, steel, and bronze, R204
Relief, iron and steel; for petroleum, chemical, and

and general industrial services, R205
Reluctivity relationship, magnetic, S404, S456
Remote control system for electric testing labora-

Repairing porous castings, RP1740
Replica method for evaluating finish, RP1625
Reports, annual, of the Director of the National

Bureau of Standards for fiscal years end-
ing June 30:
1902, M22
1903, M23
1904, M24
1905, M25
1906, M26
1907, M27
1908, M28
1909, M29
1910, M30
1911, M31
1912, M32
1913, M33
1914, M34
1915, M35
1916, M36
1917, M37
1918, M38
1919, M39
1920, M40
1921, M41
1922, M50
1923, M53
1924, M56
1925, M69
1926, M75
1927, M81
1928, M87
1929, M102
1930, M115
1931, M131
1932, M138
1933, M146
(R Later reports included in Annual Reports of the
Secretary of Commerce).
Research associates at the Bureau of Standards,
C296
laboratories, college, directory, M125, M171,
M187
Resin compounds, thermal-expansion stresses in,
RP1745
Resin finishes for aircraft, permeability to moisture,
RP1974, in drier, T66
in paper, RP973
in varnish, T65
melamine, in currency papers, RP1701
vinyl, durability of films, RP146
Resin-bonded plywood, effect of catalysts and pH
on strength, RP1748
Resins, ring and ball test for softening point, RP142
polymerization of organic polysulfide, RP1020
sealing castings, RP1740
Resistance, absolute measurement, SI11, RP857,
RP1137
airplane antenna, S341
alloys, copper, manganese and aluminum, RP863
alloys, gold-chromium, RP737, RP1206
alloys, gold-cobalt, RP789
alternating-current, of conductors, S874
alternating-current, of solenoids, S76, S472
batteries, S204
coils for alternating currents, S177
coils, inductance, S175
coils, noninductive, S177, S246, S281
copper, temperature coefficient, S147
coupling of amplifiers, S489, C74
carbons, related to electrolysis of underground
structures, T26
effective, iron wires, S296, S293
effective, skin effect, S169, S282, S374, S430,
S504
electrical insulating materials, radio-frequency,
measurement, S471
high-frequency, inductance coils, S430
iron and bimetallic wires, S292
leakage, of street-railway roadbeds, T127
low, measurement, S225, S481
oil to emulsification, T66
precise comparisons, C21, RP1233
radio-frequency, T298, T330
radiotelegraphic antennas, S189, S257, S269,
C74
(Continued on next page)
standards, S107, RP201, RP639, RP657
standards, four terminal, for alternating cur-
rent, S281, RP133
standards, low-valued, adjustment of tempera-
ture coefficient and resistance, RP639
standards, mercurial, S102, S256, M16
standards, methods of comparison, RP1323
standards, pure-metal, RP657
thermostats, S68, S200, S294, S407
thermometers, calibration between 14° and 16°
thermometers, coliled-filament, RP508
thermometers, electrical conduction in glass
insulation, RP466
thermometer, S124, S241, S288
variation with humidity, S73
windage, of steam-turbine wheels, S208
Resistivity, chromic acid, RP198
sulfuric acid, RP738
Resistor furnace, using special oxide resistors,
RP1449
Resistors, adjustable, RP842
electrolytic, for temperature measurement,
RP1125
manganin, stability, RP1692
shielded, S136
Resolving power and depth of focus in airplane
camera lenses, RP1638
and distortion of airplane-camera lenses, RP1216
of objectives, S122
Resonances, benzein indicators, RP1791
indicator, improved type, for wave meter,
S302
potentials, metals of second group, S403
radio circuits, S158, S235, C74
Resonance and quenching of the third principal
series of cesium, RP184
Respiratory organs, safety code, H24
Respiratory indicators, RP179
Resin, cotton, RP61
Resin, reactive, RP61
Resin, rubber, RP67
Reversal-temperature measurements of cesium dis-
charge, RP889
Revolver, gas leakage, S508
Rhenium, colorimetric determination, separation
from molybdenum, RP1248
properties, RP999
spectrum, RP322, RP364
Rhodium, analytical separation, RP655
determination, RP489
effect on determination of iridium, S483
freezing point, RP678
physical properties, RP127
purification, RP675
separation of osmium from, RP286
spectral reflectivity, RP1168
spectrum, S499
ultraviolet reflection, RP141
Rhodium-plating alloys, RP650
Ribbons, computing and recording machine, speci-
fication, C188
hectograph, specification, C187
typewriter, C431
typewriter, specification, C186
Ridge rolls, eaves trough, conductor pipe, and fit-
tings, T229
Rifle-barrel steel, flaws, S343
Rigidity, axial, perforated tension members, RP1568
Rigidity, modulus, temperature coefficient, RP331
Ring, proving, RP147
specimens for magnetic tests, S108
test of cast-iron pipe, T396
Ring and ball test, RP142
Rings, proving, calibrating testing machines, C454
proving, temperature coefficients, RP1726
veritas spring, T40
Ripendine, photographic, RP840
River beds, scour, RP907
Rivet steels, air-hardening, T338
Rivets, steel, R221
Robertson's Coloray's "Keystone Beam Steel
Poor" constructions, structural proper-
ties, BMS10
Rock salt, refractive indices, S418
spectrometers, S407
Rockwell and Brinell numbers, correlation, RP185,
T334
Rods, steel spiral, R33
Rolled-gold-plate articles, marking, CS47
Roller bearings, friction and carrying capacity,
T201
taper, R67
Rolls, corrugated-board, single faced, (for depart-
ment and specialty store use), R177
drying, temperature, RP231
Roof gutters, flow in, RP644
lights, R49
Roofing, asphalt, accelerated weathering test,
RP356, RP1002
built-up, specifications for materials, C156,
C157, C155, C159, C160, C161, C162,
C168, C180, C181
(See references to specific materials)
Roofing, built-up, specifications for various types,
C170, C171, C172, C173, C174, C175,
C176, C177, C178, C179
copper, seams, RP216
copper-valley flashings, corrosion, RP123
felt, experimental production, RP67
felt, weathering, RP888
in the United States, results of questionnaire,
BMS57
iron and steel, R78
materials survey in North Central States,
BMS75
materials survey in Northeastern States,
BMS90
materials survey in South Central States,
BMS84
materials survey in Southwestern States,
BMS80
metallic, for low-cost housing, BMS49
roll, asphalt; and asphalt- and tar-saturated-
felt products, E213
slate, R14
slate, properties and weathering, RP477
sulfur-surfaced asphalt, specification, C285
ternes, R30
Roofs, structural and heat-transfer properties of
"Multiple Box-Girder Plywood Panels"
for, BMS99
structural properties, BMS9, BMS12, BMS46
structural properties of "PHC" prefabricated
wood-frame construction for, BMS90
wood-frame, structural properties, BMS25,
BMS26
Roots of equations, method of finding, RP790
Rope, cotton, specification, C326
elevator, maintenance, C441
manila, color of fiber, RP257
manila, specification, C924
manila, tests, T198
sisal and nylon, impact strength, RP1679
tests of fibers for, RP111
wire hoisting, testing by magnetic analysis,
T315
wire, sizes, R198
wire, specification, C208
wire, strength and other properties, T211
worn wire, strength and inspection, RP920
worn wire, tensile strength, RP920
Rosenhain furnace, modified, S348
Rosin paper-sizing materials, light sensitivity,
RP307
Rotary dispersion method for measurement of
structural properties, RP843
distillation column, efficiency, RP1201
gas meters, testing, RP1741
Rotary-cut lumber stock for wire-bound boxes, R59
Rotation, optical (see Optical rotation)
Rotatory dispersion for glucosides, RP1601
Shingles, asphalt, accelerated weathering, RP1002 | asphalt-prepared, BMS70
slate-surfaced asphalt, specification, C285
wood, C391
Ship plate, corrosion, RP42
Shipping cases, bausery, C169
tags, paper, R93
Shirt, boys, C141
sizes, men's (exclusive of work shirts), CS135
sizes, men's sport — woven fabrics, (other than those marked with regular neckband sizes), C128
Shoe goring, elastic, R112
laces, braided, R168
Shoes, construction, C419
Shortening, salad oil, and cooking oil, packaging, R193
Shorts, woven fabrics, men's and boys', size measurements for, CS137
Shot shells, loaded paper, R31
Shovels, crawler mounted, revolving power, (export classificatons), C580E
spades, and scoops, R48
Showers, metal partitions for, R101
Shrinkage by laundering, T273
fire clays, T144
iron in casting, RP440
metals in casting, RP399
photographic film and paper, RP1051
refractory bodies, T104
Shunts, alternating currents, RP133
brush, R65
Sidewalk lights, R49
SlANTITY, specifications, T321
cement, standard, T29, T42, C39
Signal colors and glasses for railroads, specification, T165
R glasses, railroad, standardization and specification, RP1209
light colors, designation, RP1565
lights, selection of colors, RP956
systems, direction, electric, for vehicles, C880
Silica brick, constitution and microstructure, T124
content in cement, rapid method for determination, RP891
crystals in devitrified glass, RP1152, RP1153
determination, RP1311
determination in presence of flurine, RP110

determination in steel, RP496
fused, thermal expansion, S524
gel, adsorption and desorption of nitrogen by, RP1764

gel, purification of hydrocarbons by adsorption, RP1643
gel, separation of hydrocarbons by adsorption, RP809, RP1185

glass, compressibility, RP1003
inversion effects in white-ware bodies, T310
phase studies with relation to portland cement, RP1699
refractories, T116
systems, (See Phase Equilibria)
Silica-alumina-lead oxide system, RP1564
Silicate, calcium, hydrated, X-ray patterns, RP1560
Silicates, decomposition for analysis, RP180, RP1331
of low thermal expansion, RP456
Silicon, deoxidizer of rail steel, T241
detector of electric currents, S94, C74
reflecting power, RP1565
spectrographic determination in tin, RP1451
Bromide electrode, effect of certain ions on, RP1739
chloride electrode, effect of certain ions on, RP1183
halide electrodes, reproducibility, RP1183
Similarity, dynamical, aerodynamics, S394
Simplified Practice, primer, R XIII
Simplified Practice Recommendations (see list, p. 193. Indexed also under specific subjects.)
what it is and what it offers, RXI
Sine bars, blocks, plates, and fixtures, CS141
Single crystals of copper, RP1385
Singletrees, doubletrees, and neckyokes, R134
Sisal and nylon rope, impact strength, RP1679
Size grading of diamond powder, RP1716
measurements for men's and boys' shorts; woven fabrics, CS137
Sizes of manufactured articles (See list of Simplified Practice Recommendations, page 193)
boys' pajama (woven fabrics), CS106
men's pajama — woven fabrics, C155
men's shirt — exclusive of shirt, C135
men's sport shirt — woven fabrics (other than those marked with regular neckband sizes), CS128
women's slip (woven fabrics), CS121
Sizing materials, effect on stability of book papers, RP1149
measurement of paper, T236
paper, suitability of sweetpotato starch, M150
sweetpotato starch, consistency, RP623
yards, effect on properties, RP993
Skid platforms, R95
Skin effects, RP1, S169, S252, S374, S430, S569, C74,
R113
Skip distance of radio waves, RP1096, RP1100
Sky radiation, ultraviolet, RP1593
Slab floors, heat losses from, BMS103
Slabs, concrete, tests, T291
Slag aggregates, coarse, R163
roofing, specification, C158
waste for cartridge bag cloth, T268
weighted, analysis, RP498
yarns, effect of humidity on strength and elongation, RP1583
Silver chloride in chemical analysis, effect of light, RP134
combination with gold, marking of articles, CS57
foreground, S16 (See also Voltameter)
determination and adsorption, RP836
emission and absorption of radiation, RP421
film and glass, method for measuring thickness, C285
freezing temperature, RP557
ion concentrations in photographic emulsions, RP376
lacquered, reflecting power, S342
nitate, photoelectric properties, S462
nitate, preparation and testing, S201
nonion determination in photographic emulsions, RP447
novelties of, marking, CS118
photo-electrical properties of halide salts, S456
properties and uses, C412
reflecting power, S186
spectrographic determination in tin, RP1451
silicon, reflectivity of, S441
sterling, flatware, R54
sulfide, electrical properties, S310
sulfide, spectral photo-electric sensitivity, S344, S398, S446
tarnish resistance of alloys, T348
titanium with cobalt in the presence of mercury, RP1391
voltameter, S2, T277, T102, T171, T194, S195,
S201, S218, S220, S240, S271, S283, S285,
S287
voltameter, proposed specifications, S285
Silver-chloride electrodes, use, RP1495, RP1524,
RP1537, RP1559, RP1567, RP1680, RP1684
Silvering and evacuating Pyrex Dewar flasks, RP385
Silver-plating solutions, analysis, RP384
boron electrode, RP376
chloride electrode, effect of certain ions on, RP1739
chloride electrode, reproducibility, RP1108,
RP1183
halide electrodes, reproducibility, RP1183
Similarity, dynamical, aerodynamics, S394
Simplified Practice, primer, R XIII
Simplified Practice Recommendations (see list, p. 193.
what it is and what it offers, RXI
Sine bars, blocks, plates, and fixtures, CS141
Single crystals of copper, RP1385
Singletrees, doubletrees, and neckyokes, R134
Sisal and nylon rope, impact strength, RP1679
Size grading of diamond powder, RP1716
measurements for men's and boys' shorts; woven fabrics, CS137
Sizes of manufactured articles (See list of Simplified Practice Recommendations, page 193)
boys' pajama (woven fabrics), CS106
men's pajama — woven fabrics, C155
men's shirt — exclusive of shirt, C135
men's sport shirt — woven fabrics (other than those marked with regular neckband sizes), CS128
women's slip (woven fabrics), CS121
Sizing materials, effect on stability of book papers, RP1149
measurement of paper, T236
paper, suitability of sweetpotato starch, M150
sweetpotato starch, consistency, RP623
yards, effect on properties, RP993
Skid platforms, R95
Skin effects, RP1, S169, S252, S374, S430, S569, C74,
R113
Skip distance of radio waves, RP1096, RP1100
Sky radiation, ultraviolet, RP1593
Slab floors, heat losses from, BMS103
Slabs, concrete, tests, T291
Slag aggregates, coarse, R163
roofing, specification, C158
360
Slate, blackboard, R15
built-up roofing, specification, C158
permeability, T905
physical properties and weathering characteristics, RP477
roofing, R14
structural, R13
Slate-surfaced roofing and shingles, specification, C285
Sieve joints, rubber-base, strength of, in copper tubing, BMS88
Slip-casting process for preparation of crucibles, RP1236
Slipperiness of fabrics, RP196
Soil characteristics, correlation with pipeline corrosion, RP1388
tests, pipe coatings, bituminous, RP1058
tests, pipe-coatings, non-bituminous, RP982
tests; soils, materials, and early observations, T965
Soils, acid, corrosion of iron and steel, RP966
alkali, effect upon cement draintile, T44, T95,
corrosion, RP450, RP1639
determination of acidity, RP539
Solar eclipse, radio observations, RP629, RP868
heat in vacuum, transmission of various surfaces, BMS84
spectral-energy distribution, RP899
wave lengths standard, RP11
Solar radiation, effect upon balloons, T128
evaluation of short-wave ultraviolet, RP877
filter method, for measurement of extreme ultraviolet, RP318
ultraviolet, polarization of, RP1145, RP1452, RP1593
ultraviolet, factors affecting intensities, RP1816
ultraviolet, in stratosphere, RP1075
ultraviolet, in various localities, RP517
Solar-radiation correlations, RP1159
Solarization of window materials by ultraviolet, RP113, RP744
Solder, determination of tin in, RP1610
Soldered joints of lead-base, strength of, BMS58
joints in copper tubing, structural changes, RP1465
seams, copper roofing, RP216
Soldering of aluminum, magnesium, and their alloys, C346
Solders for aluminum, C78
lead-base, strength of soldered joints in copper tubing made with, BMS85
Soldi, for thin copper tubing, C346
Sole leather, durability, T195, T147, T215, T286
specification, C198
wearing quality, RP1626
Solensoids, resistance and inductance, S76, S169,
coaxial, mutual inductance, S58, S59, S169,
RP1178, C74
formulation for the inductance of single-layer, RP16
mutual inductance and torque between two concentric, RP24
self-inductance, S84, S169, S455, S468, S590,
RP1476, C74
Solid-fuel-burning forced-air furnaces, CS109
Solubilities of sucrose and dextrose in sugar mixtures, T259
Solubility, cadmium sulfates, RP1389, RP1707
colored glazes in organic acids, RP1196
dextrose in water, S437
filter method, for measurement of extreme ultraviolet, RP877
glass, measurement by interferometry, RP1187
Solvent, Stoddard (dry cleaning), CS3
Solvents, organic, spectrophotometric detection of
Soot, effect on boiler rating, capacity and efficiency, BMS94
Sorbine, mutarotation, RP1035
Sound (architectural acoustics), T337, C300, C380,
insulation of walls and floors, BMS17
transmission measurements, S478
transmission loss, field methods of determining, RP1388
transmission through building materials, S506,
S552, RP402
transmission through voice tubes, T333
velocity in liquids by ultrasonic interferometer, RP1709
Sound-absorbent cylinders, absorption and scattering by, RP1709
Sound absorbent material, acoustic effect of, RP1298
air, RP463
building materials, S526, C384
oblique angles of incidence, RP149
measurement, RP242, RP709
measurement by automatic reverberation meter, RP457
Soundproofing, airplane cabins, RP63
apartment houses, T337
Space heaters, oil-burning, CS101
Spades, R48
Spalling of brick, panel test for, RP1630
Spar varnish, durability tests, RP146
specification, C103

361
noble gases, RP781
osmium, S499
pyridium, S499
phosphorus, RP425
platinum, S499
potassium, S112
rare earths, S241, S466
rhenium, RP322, RP594
rhodium, S499
rubidium, S312
ruthenium, S499
samarium, S442
scandium, S549, S558
scandium oxide, RP273
silicon, RP624, RP1124
silver, S411
sodium, S112, RP4
strontium, S112
tantalum, RP589, RP671
tin, S411, RP1275
titanium, S372, RP4, RP1062
tubes, preparation, S441
tungsten, S372, RP1125
uranium, S372, RP1729
vanadium, S372, RP4, RP906, RP1317
vanadium oxide, RP423
xanthophyll, RP537
ytterbium, RP1053
yttrium, S421, RP1125, RP55
yttrium oxide, RP273
zinc, S411
zirconium, S548, RP209, RP255, RP296
Specula, method for silvering, C383
Speed, photographic, RP385
“Speedbrik” wall construction, structural, heat
Stainless steel, tensile and compressive properties, RP1467
steel, thermal expansion, S426
Stair risers, hardwood, C389
tread, hardwood, C389
Stamp-pad ink, quick-drying, RP1087
specification, C155
Standard cell, Clark, S27, S87, S70, S390
galvanometer, RP584
Weston, S27, S87, S70, S71, S104, S220, RP158, RP585, M16
Weston, temperature formula, S104
Standard cells containing deuterium oxide, RP1094, RP1435
effect of glass containers on emf, RP588
effect of service temperature conditions, RP158
metastable forms, RP1389
temperature control, RP739
Standard Color Card of America, calibration, RP1429
electrode potential of sodium, RP1450
gate, sheet iron and steel, C18
radio-frequency transmissions, RP630 (See also Radio-frequency)
resistors, stability, RP1692
sample benzoic acid, heat of combustion, RP1499

Sample carbureter water-gas, analysis, RP1704
sample steels, nitrogen content, RP494
samples, C149, C25, C26, C40, C45, C66, C398
samples, issued or in preparation, C288 Supplement
samples, hydrocarbons, RP1744
sapphire, thermometric fixed points, C66
stock ponderosa pine doors, CS120
time conversion chart, M64
time throughout the world, C230, C399, C406
time zones of the United States and adjacent
parts of Canada and Mexico, M111, M155
Standardization activities of national technical and
trade organizations, M49
bibliography, M119, M136, M139
packages, M165

Standards agencies, See Standards Yearbook, M77, M91, M106, M119, M139, M139, M169
Standards (see also particular subject or property)
Standards for casing materials, M152
color, RP1549
electric, report to International committee,
ethical, international comparison of, RP448
gas service, C32, C405
international secondary, in the first spectrum
pH buffer, liquid-junction potentials, RP1632
Yearbook: 1927, M77; 1928, M83; 1929, M91;
1930, M106; 1931, M119; 1932, M133;
1933, M138
Standards and specifications, directory, M65, M130, M178
metals and metal products, M120
nonmetallic minerals and their products, M110
wood-using industries, M79
Standing waves on wires, S491
Staples and nails, wire, RP226
Starch hydrolysis by enzymes, RP1599
laundry, specification, C383
potato, consisting, RP623
sweat suitable, suitability for sizing of paper
M150
Stars, radiometric measurements, S244, S438, S460
Steam, method for surveying thermal behavior, RP168
saturated, enthalpy, RP209, RP210
saturate pressure, RP523
tables, RP691
test of cement, T5, T43, T47
thermal properties, RP209, RP210, RP983, RP1292, RP1293, RP1294
Steam-turbine expansion, S167
wheels, windage resistance, S208
Steady fibers, elastic properties, S7
Steel, acetylene, color code for marking, RP168
analysis, T6, T8, T24, T33, T69, T118, T126, T214, T207, C14
annealed eutectoid carbon, magnetic properties,
S408
arc-fused, properties, T179
as affected by manganese, S484
Austenitic, magnetic balance for inspection, RP382
barrels and drums, R20
bars and bar-sized shapes, carbon, hot-rolled, treads, hardwood, C389
bars, color code for marking, R166
bond resistance, T173
Buildings Inc., “Steelox”, structural properties,
M77
carbon, changes in structure upon annealing, S397
carbon, effect of hot-rolling, T267
case-hardening normal and abnormal, RP141
castings, effect of deoxidation and mold conditions on tensile properties, RP199
castings, overreduced, RP250
flooring tests, RP483
centrifugally cast, T192
colorimetric determination of phosphorus, RP1386
columns, compressive properties of perforated cover plates for, RP1473, RP1474, RP1501, RP1514, RP1527, RP1540
compressive tests at elevated temperatures, RP741
corrosion protection, BM58

(Continued on next page)
correlation of magnetic and mechanical properties, S272
damaging effect of fatigue stressing, RP1733
detching, T34
determination of boron, RP1120
determination of carbon in, T33, T69, RP240
determination of carbon monoxide and carbon dioxide in, T218
determination of chromium in, T6
determination of cobalt and manganese in, RP350
determination of cobalt in, RP445
determination of gases in, RP445
determination of gases in, S346, S350, S457, T118, T126, RP976
determination of gases in, by vacuum fusion, S114, S563, RP346, RP1373
determination of hydrogen in, RP1373
determination of manganese in, RP109
determination of monoloydium in, RP453
determination of nitrogen in, S457
determination of oxygen in, RP1114, RP1115
determination of tin in, RP415
determination of vanadium in, T6, T8, S161
determination of zinc in, RP664
effect of carbon content on wear resistance, RP348
effect of rate of heating on austenitic grain size, RP1322
effect of service on endurance properties of rail, RP92
effect of zinc coatings on endurance properties, RP454
etch by ammonium persulphate, S402
eutetool carbon, structure and magnetic properties, S404
floor constructions, BMS9, BMS10, BMS12, BMS15, BMS18, BMS46, BMS87
forgings, machinability, RP319
high speed, characteristics and heat treatment S395
high-sulphur, determining carbon in, RP240
iron, cold bronze relief valves; bronze pop safety valves, R204
jolts, open-web, R94
lockers, R35
low-carbon, tensile tests at high temperatures, T219
mild, microstructure at high temperatures, S356
nickel, properties, C58, C100
nickel, plating, RP1725
nitrizing, RP126
nitrizing, determination of aluminum in, RP533
one per cent carbon, mechanical properties, T2606
open-hearth, cold-rolling tests, T288
painting, BMS102
partition constructions, BMS9, BMS11, BMS15, BMS18, BMS46, BMS74
pedestals, welded, stress distribution, RP232
pipe nipples, C55
plate floor, strength, RP662
plates containing niobium, T207
plates, effect of cold-rolling on hardness of surface layer, RP1484
production and properties, C409
properties of carbon tool, RP837
protection in low-cost housing, BMS44
protective plating, RP454, RP712, RP867
quenching, T39, RP473
quenching with aqueous solutions, RP103
rail, deoxidation by titanium and silicon, T241
rails from sink-head and ordinary ingots, T178
rail, manufacture, T38
rails, service tests, RP1042
reinforcing bars, R28
reinforcing-spirals, R37
residue method of analysis, RP496
rifled-barrel, analyzed magnetically, S483
rivets, R221
roof construction, BMS9, BMS12, BMS46, BMS67, BMS74
roofing, R78
rustproofing, C80
safety valves, R201
scrap, classification, R57
screwed unions, C87
shapes; structural, carbon, hot-rolled, R216
sheet, R28
sheet and plate, standard gage, C18
silicon, structural, T331
stainless steel and compressive properties, RP1467
strain markings, RP15
stress, air-hardened and tempered, S452
surface hardness, RP1374
tanks, stresses, T243
tempering, S396
temperature aging, RP707
tensile strength in relation to Brinell and Rockwell numbers, RP185
thermometer, choice and utilization, S567
transformer, testing, S109
tubing, properties, T258, RP161
wall constructions, BMS9, BMS11, BMS12, BMS18, BMS27, BMS46, BMS87, BMS74
welds, tests, RP1444
windows, solid-section, R72
wire, effect of stress on magnetic properties, S496
Steeel-joist floors, structural properties, BMS16, BMS51
Steel "Steelox" building units, structural properties, BMS12
Steel, acid Bessemer, oxygen content, S346
Steel, containing rare elements, T207
steel, alloy, creep at elevated temperatures, T362, RP192, RP481
steel, alloy, properties at high temperatures, T205, RP270, RP474
steelmade bars, carbon size, S397
steel, carbon, and iron-carbon alloy, influence of initial structure and rate of heating on austenite grain size, RP1481
steel, density, S562
steel, containing vanadium, determining phosphorus in, T242
deterioration, in the synthesis of ammonia, T361
effect of the cutting conditions on the hardness of carbon and alloy, RP516
freezing temperatures, RP1375
hardened carbon, changes upon heating, S396
low-carbon, influence of phosphorus, T209
magnet, choice and utilization, S567
medium carbon, forging, effect of grain size and heat treatment on toughness, RP1410
nickel, critical ranges, S376
nitrogen in standard-sample, RP494
open-hearth, low-carbon, cold rolling tests, T384
open-hearth, low-carbon, influence of phosphorus, T209
quenching media, RP357
rail, T365, RP92, RP164, RP182
rail, secondary brittleness, RP408, RP409
resistance to abrasion, RP214
rivets, air-hardening, T358
spark test, RP605
Stefan-Boltzmann constant, σ, S262, S406, RP1189
Stefan's formula for mutual induction, S41
Stellar radiometry, S244, S438, S460
spectra, photographing, S18
spectrometers, S485, S490
Stellite, reflecting power, S308, S377, S406
thermal expansion, S426
Stem correction of thermometers, S170, T49
Stentiford test, R142
Stibnite, spectrophot-o-electrical properties, S322, S398, S446, S482
ultraviolet reflecting power, S493
Still, chain-packed, RP78
continuous high-vacuum, for lubricating oil, RP1142
molecular, RP1739
molecular, behavior of rubber in, RP1205
with fritted glass plates, RP651
Still, for fractionation, ball packings, RP1049
molecular and high vacuum, RP449
vacuum, for low-temperature distillation, RP45
with rectifying columns of glass, RP379
Stitch, sawing-machine, tests, T96
Stitching, specification, C253
Stockings, testing, RP753
Stoddard solvent (dry cleaning), CS3
Stomach tubes, specification, C220

Stones, artificial dental, packaging, R117
building, T905, T949, T950
building, wear resistance, RP612
cast, colors and finishes, CS53
permeability, T935
preservatives, T248, RP771
stain removal and maintenance, T950

Stones in glass, prevention, RP71

Stopcock, control, for gas-analysis apparatus, RP32
lubricant for distillation of petroleum fractions, RP37
lubricants, solubility of gases in, RP661
Stopcocks, glass, C430
ground-glass, CS21
Stop-lamps, electric, for vehicles, CS86
Stop-watches, testing, C392, C432
Stoppers, ground-glass, CS21

Storage batteries, effect of cobalt and nickel, RP1385
electromotive force and heat of reaction RP1294
internal resistance, S504
sulphation of plates, T225
vehicle type, operation and care, C92
Storage battery acid, nitrates and nitrites in, T149
electrolytes, RP565
gird materials, RP567
reactions, RP773
separators, T271
Storage tanks, hot-water, R25
Stove pipe and accessories, R190

Strain, (see also Stress)
data on perforated cover plates for steel columns, reduction of, RP1473
determination of stresses from, RP559, RP851, RP1004
elastic flat plate, RP1235
gage for large strains, RP1658
gage, electrical, T247
gage, Whittemore, RP268
gages, compensation for vibration and impact, RP1005
tables developed by compressive tests on structural members, M72
markings in steel, RP15
measurements in reinforcement of dome, RP268
measurements on girder hooks, T260
measurements on rigid frames, RP1130, RP1161, RP1224
measurements on steel tanks, T243
test of 150-ton floating crane, T151
Strain-stress curves of stainless-steel sheet, RP1467
Strains between ceramic glazes and bodies, RP189
Stress-strain balance, autographic, RP970
Stress-corrosion of bridge-cable wire, RP1083
bolts, RP896
columns, RP831
cemented frame, effect of brackets, RP189
determination from measurements of strain,
measurements on steel columns, RP1473, RP1474, RP1501, RP1514, RP1527, RP1540
glass, relaxation, RP1667
hardened tool steels, S215
plates between steel H-sections, RP277
rectangular plate, RP1450
repeated stress effect on magnetic properties of steel, RP26
rotating propellers vibrating flexurally, RP41
stiffener plates for subway columns, RP218
working, building code requirements, BH9
Striae, electrodeposited silver, S195
Strontium, critical potentials, S403
spectrum, S312
Structural Clay Products Institute, wall construction, S365
fiber insulating board, CS42
Structural insulating board, R179
members, axial rigidity, RP1737
properties of low-cost house construction methods of determining, BMS2
properties of prefabricated plywood light-weighting by cementing with ordinary, floors and roofs sponsored by the Douglas Fir Plywood Association, BMS104
properties of “Speedbrik” wall construction sponsored by the General Shale Products Corporation, BMS86
shapes, steel, carbon, hot-rolled, R216
slate, R15
steel angles, T218
steel columns, fire tests, T184
steel, high in silicon, T331
steel gage, Whittemore, RP268
Strata, spruce, compressive strength, T152
Stucco, C311
construction, durability, T70
Stucco-faced walls, permeability, BMS41, BMS55
water permeability and weathering resistance, BMS94
Studies of binary and ternary combinations of magnesia, calcia, baryta, beryllia, alumina, thoria, and zirconia in relation to their use as porcelains, RP1703
Studs, milled, R169
Stylene, heat of combustion, RP1628
heat of formation and combustion, RP1629
specific heat of vapor, RP1640
Subway columns, bases for, RP218
Sucrose analysis, RP1757
double-polarization method for estimating, S375
hydrolysis by enzymes, RP1526
invert, copper reduction, RP1638
invert, Other method for determining, RP1757
optical rotation, S52, S268, RP916
reactions with chlorites, RP1408
solubility in sugar mixtures, T239
Sucrose and quartz, dispersion ratio, S268
Sugar derivatives, optical rotation and hydrolysis, RP1274
evaluation of Clerget divisor, S37
extraction, diffusion battery, RP840
industry, color in, T338
levulose production, RP931
mixtures, levulose yield, RP382
Monson-Walker values, RP1301
products, securing fire in spectrophotometric analysis, RP38
scale, comparison of French and International, BMS24
solutions, composition, RP534
solutions for colorimetric analysis, preparation, RP586
solutions, light absorbancy, RP787
solutions, specific gravity by Baumé scale, T115
solutions, spectrophotometric analysis, T338
(Continued on next page)
Tires, automobile, power losses, T213, T240, T283
automobile, use and care, C341
effect on fuel consumption, T283
endurance tests, T318
industrial truck, R103
puncture sealing, C320
railway, foreign specifications, T61
rubber, specifications, C115
track and automobile, treading, CS108
wear of tread, RP2
wearing qualities as influenced by reclaimed Tires, R46
waxed, R125
Titanium as a dioxide of rail, T241
dioxide, phase equilibria, RP648
dioxide, properties, RP619
pigment, specification, C163
spectrum, S372, RP4, RP1062
thermal expansion, RP1520
zinc paint, specifications, C215
Titanium chloride, separation of rhodium from
iridium, RP489
Titration curves of formic and acetic acids, RP1537
curves of wool and of egg albumen with various
curves of wool, effect of temperature, RP1348
silk fibroin, RP1360
Toggle clamp for testing rubber specimens, RP1204
textrusion and cosmetic, paper boxes for, R290
Toilets, metal partitions, R101
Tolerances, commercial weighing and measuring
devices, M85 (also called H14), H122, H229
sheet metal, C391
Toluene, determination, RP280
heat of combustion, RP1629
Toluol recovery, T117
Tool steels, carbon, hardening, RP428
Tool steels, hardening, RP387
Tools, forged, R17
tungsten carbide, cutting tests, RP206
tungsten carbide, cutting tests, RP206
Topographic mapping, calibration of airplane
cameras, R4128
Torque between concentric solenoids, RP1208
tension of a rubber cylinder, RP1802
Towels, huck, specification, C313
Trebler, action, RP432
Trends, tire, wear, RP1574
Trichloroethylene, crystal structure, RP1437
aluminate in portland cement clinker, RP910,
RP917, RP1358
salicate, by decomposition, RP381
Trihydroxyglutaric acid, determination, RP469
Trimmer, for testing rubber specimens, RP1204
Trim, doors and frames; for hollow metal single
acting, RP1377
doors and frames; for kalamein single acting
swinging doors, R32
doors and frames; for sliding single acting
swinging doors, R33
interior, hardwood, CS76
1,2,3-Trimethylbutane, boiling point and vapor
pressure, RP1365
1,2,4-Trimethylcyclohexane in petroleum, RP1173
1,1,3-Trimethylcyclopentane in petroleum, RP1800
1,2,3-Trimethylpentane, boiling point and vapor
pressure, RP1097, RP1250
2,2,3-Trimethylpentane, physical properties,
RP1259
Trimix, dipole moment, RP1596
Triplet point and boiling point of nitrous oxide
RP1643
Triple point of water, RP658
Trisodium phosphate, reclamation of gasoline,
T280
specification, C369
Triton P as cellulose solvent, RP1414
Tropical atmosphere, cabinet for maintaining, C453
Trough, eaves, and conductor pipe, and fittings,
R29
Truck tires, industrial, R103
treading, CS108
Trunks, R215
Tubs, water, copper; and pipe, brass and copper
R217
Tubes, colon, rubber, specification, C221
electron or vacuum, (see Electron tube)
lavage or stomach, specification, C220
paper, for packaging milk-bottle caps, R218
paper, for textile winding, R143
paper, for filling cop winders; hole sizes, R153
voice, T333
Tubing, brass, internal stress, T257, T285
copper, bonding layer of soldered joints, RP1465
copper, strength of lead-base sleeve joints in,
BM583
copper, strength of soldered joints, BM558
gas, flexible, R193
rubber, specification, C305
steel, electrically welded, RP161
steel, strength, T258
Tubing and cotton jersey cloth for work gloves,
R194
Tubs, butter, wooden, R135
Tuck's packing, specification, C233
Tumblers, commercial laundry, R141
flint-line glass, specification, C119
Transmission formulas, radio, S159, S226, S353,
S534
infrared, of standard optical materials, S401
infrared, of various substances, S225, S418,
Line Loading Charts, NESC, M176
measurements on Beckman spectrophotometer,
measurements, spectral, RP30
radiotelegraphic, S226
sound through partitions, S506, S552
spectral, of the atmosphere, S389
visible and ultra-violet, of colored glasses, T148
Transmission-reflection relationships in sheet mate¬
rials, RP1430
Transmittancy, spectral, of dyes, S440
Transmitter, electron tube, of modulated waves,
spectrum, S440
Transmission formulas, radio, S159, S226,
Transmission-reflection relationships in sheet mate
rials, RP1430
Transmission formulas, radio, S159, S226,
Tungsten carbide-cobalt mixtures, thermal expansion, RP166
Tungsten-filament lamps, characteristic equations, S98
Tungsten carbide-cobalt mixtures, thermal expansion, S120
Tungsten-in-quartz lamp, application in photoelectrons, S515
Turbulence, boundary layer, production of, RP1772
Turbidity standard of water analysis, S367
Turbidimeter, in sulfate determination, RP893
Turanose, hydrolysis in alkaline solution, RP1356
Tuning fork, calibration, RP144
"Twachtman" walls and floors, structural properties, C86
Turpentine, density and thermal expansion, T9
Turnbuckles, R71
Turn indicators, T237
Turkish towels, R119
Turbulent flow in channels, RP1151
Turning with shallow cuts at high speeds, RP120
Twine, cotton, polished, R124
Twist, cotton yarn, RP27, RP361
Type metals, RP248
Two-phase system, vapor-corrections in, RP1693
Tyrosine in silk fibroin, combination with KOH, RP1338
U
U bars, vibration, RP298, RP443
Ubbelohde viscosimeter, T125
Ultraviolet absorption spectrum of potassium p-hensulonate, RP1558
Intensity meter, color discrimination, RP517, RP877
Intensity meter, portable, RP647
Intensity meter, thermometer and filter as, RP318, RP370, RP450, RP577
Radiation from quarts mercury vapor lamps, S330, S378
Radiation standard, RP858
Reflecting power, aluminum, duralumin, rhodium, tin, RP141
Reflecting power, beryllium, chromium, cobalt, nickel, silver, speculum metal, tellurium, stainless steel, RP39
Reflecting power, pyrites, stibnite, molybdenite, graphite, galena, duralumin, S493
Solar intensities in stratosphere, RP1075, RP1181, RP1207
Solar and sky radiation, RP1593
Solar spectral energy distribution, RP877, RP999, RP1207
Spectra and dissociation constants, RP1686
Spectral erythemic reaction of skin, RP435, RP-831
Spectrophotometry, RP33
Transmission changes in window materials, RP113, RP345, RP744
transmitting glasses, restoration of solarized, RP166
Underground corrosion (see also Corrosion and Soil corrosion), RP1639, C450
Underwear fabrics, properties, RP711
Unions, screwed, malleable iron or steel, C77
United States Army Color Card, calibration, RP-P1543
Units, electrical, International, S3, S102, S292, C29, C90, M16
Electromagnetic and electrostatic, S65, S66
Length of electromagnetic waves, M117
Light, International, C15
Units of weight and measure, C47, M121, M135
Upholstery leather, specification, RP443
Uranium spectrum, S572, RP1729
Uranium compounds, X-ray spectrographic analysis, RP1753
Uranyle acetates, properties, RP672
Uronic acid in cotton fibers of various ages, RP1236
Acids in cellulose materials, RP1268
"U.S.S. Panelbilt" sheet-steel constructions for general industrial services, R205
Vacuum-fusion method, gases in metals, RP346
Hydrogen in steel, RP1793
Aluminum in simple and alloy steels, RP1114, RP1115
Vacuum tube (see Electron tube) acceleration pickup, RP1754
Three-electrode, input impedance, RP816
Valence electrons of uranium, RP1729
Valves, brass or bronze (gate, globe, angle, and check), RP183
Iron (angle, check, gate, and globe), RP184
Pop safety, bronze, RP204
Pop safety, iron and steel, RP201
Regulating, automatic, RP219
Relief, iron and steel; for petroleum, chemical, and general industrial services, RP205
Rubber, specification, RP244
Wrought-iron and wrought-steel, RP367
Vapor barriers, effect on the transmission of condensation in wall specimens, BMS106
Corrective quantum meter, RP1693
Pressure and condensation in wall specimens, BMS106
Pressure of 1,3-butadiene, RP1661
Pressure of carbon dioxide, RP538
Pressure of ethylbenzene, RP1684
Pressure of nitrous oxide, RP1644
Pressure and boiling points of hydrocarbons, RP1670
Vaporizers, saturated, formula for density, RP616
Variance of measuring instruments, S328
Varnish, (see Inductor, variable)
Varnish, accelerated tests, RP1
Asphalt, specification, C104
Brushes, RP4
Determining oil and resin in, T65
Durability, RP146, RP338
Interior, specification, C117
Materials, C65, BMS105
Shellac, T232
Shellac, calculation of "cut", RP-1333
Shellac, specification, C303
Varnished paints, and related products, shades and containers, R144
Vegetable cans, R155
Transmission change, (see also thermal density coefficients and hydrometer correction tables, RP1612
interlocking-rib tile, strength, T366
masonry, effect of outdoor exposure on water
permeability, BMS76
masonry, structural properties, BMS5
reinforced-concrete, structural properties, BMS-26
sand-lime brick, compressive strength, T276
sound insulation, BMS17
steel, structural properties, BMS9, BMS11, BMS12, BMS27, BMS46, BMS-67, BMS74
structural and heat-transfer properties of “Multiple Box-Girder Plywood Panels” for,
BMS99
structural properties of “PHC” prefabricated wood-frame construction for, BMS90
stucco-faced, gunite-faced, and “Knaps-Concrete-Unit”, water permeability and weathering
resistance, BMS94
unit-masonry, waterproofings for, BMS95
water permeability, BMS7
white, in a photometric laboratory, S20
wood-frame, structural properties, BMS25, BMS30, BMS31, BMS35, BMS42, BMS-47, BMS48
wood-plank, structural properties, BMS37
Walnut veneers, C364
War housing, recommended building code require-
ments, BMS88
maps, experimental manufacture of paper for,
work of the Bureau of Standards (1917–18),M46
Warehouse forms, R34
Warm-air furnaces equipped with vaporizing pot-
type oil burners, C3104
Warning lanterns, red electric, for vehicles, C387
Washing materials, C383, C424
Washing materials, C383, C242
soda, specifications, C316
Waste, colored cotton, specification, C263
farm products, utilization, M123, M124, M147,
M148, M150
silks, use, T268
white cotton, specification, C262
wool, colored, specification, C269
Watches, elinvar hairsprings, RP670
testing, C51, C392, C425
Water analysis, turbidity standard, S367
current meters, performance, RP951
density and refractive index, RP971
determination, S267
determination of, in acetic acid, benzoic acid,
and potassium dichromate, RP1600
dissociation constant at 30° C, RP584
enthalpy and latent heat of vaporization, RP209,
RP210
flow in open channels, equation of motion for,
steady mean flow, RP1458
flow through porous solids, RP88
heat of formation, RP259, RP343
heat of fusion, RP805
heat of ionization, RP309
heat of vaporization, RP416
heavy, heat and free energy of formation, RP1287
heavy, isotopic fractionation, RP729
hydrogen-ion concentration, RP634
laundering, C388, C424
of crystallization, radiometric investigation, S168
of masonry walls, BMS7, BMS41, BMS55
permeability and weathering resistance of stucco-
aced, gunite-faced, and “Knaps-Concrete-Unit”
walls, BMS94
permeability of “Speedbrik” wall construction
S366
permeability of walls built of masonry units, BMS22
preparation of heavy and light, RP601
properties of isotopic forms, RP703
reaction on calcium aluminates, RP34
recovery in aircraft, T293
refractive index and dispersion, RP934, RP1085
repellency of fabrics, RP1762
specific gravity, C19
specific heat, S247
standard for ebulliometry, RP188
supercooling and freezing, RP1105
supplies, over-rim, prevention of backflow,
BMS28
thermodynamic properties, RP209, RP210, RP-
983, RP1228, RP1229, RP1684, RP1747
vapor adsorption on leather, RP763
vapor detector, T242
vapor pressure, RP533, RP691
vapor, psychrometric charts, M143, M146
Water-cooler bowls for, CS29
Water-dioxane system, boiling-point, composition
diagram, RP985
Water-diasting systems for buildings, BMS79
Water-filtration coefficient of filter paper, RP1613
Water-gas, carburetted, analysis of standard sam-
pie, RP1704
reaction, heat and free energy, RP1192
Water-vapor permeability of materials, apparatus
for determining, C458
permeability of membranes, M128
Waterproof paper, P312
papers, stability, BMS35
Waterproofing, floor coverings, BMS59
masonry walls, BMS7, BMS57
material for mortar and concrete, specification,
C322, C360
materials, colorless, for stone, T248
materials for concrete, tests, T6, RP934
materials for masonry, RP771
walls and roofs, specifications for various mate-
rials, C155, C156, C160, C161, C162,
C198, C203
Waters, natural, isotopic composition, RP656
Watthour-meter, C20
direction, C207
method of testing transformers, S233
Wattmeters, S48, S184, C20
integrating, effect of frequency and wave form, S11
standard electrolytic, RP1344
Watts-per-candle meter, S113
Wave form analysis, S208
effect on performance of current transformers,
RP1041
effect on X-rays, RP592
influence on rate of wattmeters, S21
magnetic flux, S87
Wave form and losses in magnetic hysteresis, S106
transformers, S88
Wave front, radio, variation in direction, S353
Wave length, (see also Fringe)
dominant computation, RP394
effective, of pyrometer color screens, S260
electromagnetic waves, measurement, S235
light as standard of length, S345, RP939
units of, M117
Wavelengths, spectra, (see spectrum or the sub-
stance) standard, RP11
Wavemeter, radio, standardization, S409
with improved type of resonance indicator, S02
Waves, alternating-current, analysis, S118, S203
electrical, at transition point, S114
electromagnetic, direction of propagation, S353
irrotational translation, and solitary, in canals,
mathematical theory, RP1725
standing electrical, on wires, S491
translation, effect of turbulence and channel
slope on, RP1544
Waxed tire cord, R125
Wear, effect on magnetic properties and tensile
strength of steel wire, S510
of bearings (bronze), RP265
of brake lining, machine for testing, RP1297
of brake linings, tests, T1427
of carpets, RP315, RP640, RP1505
of chromium plated gages, RP276
of leaded brasses, RP51
of sole leather, T138, T147, T166, T215, RP884
of steels, RP214, RP348
of steels with oxidized film, RP708
of stone cutting, RP612
of tire treads as influenced by reclaimed rubber,
T294
tire treads, measurement, RP1574
test of concrete, RP1252
test of paper, RP1390
Wearing quality, experimental currency-type paper,
sole leather, RP1626
of pima and ordinary cotton, T277
tests of traffic paints, RP1007
Yarns, cotton, effect of twist, RP27

cotton, physical testing, T19

effect of number and twist on properties of cloth, RP861, RP862

effect of sizing on properties, RP993

cottonized cotton, regain, CS11

multiple strand test, RP61

rayon, effect of twist on properties, RP361

rope, bending test, T300

silk, effect of humidity on strength and elongation, RP1353

textile, effects of drying conditions, RP1337

Yaw, effect on vane anemometers, RP1056

Yearbook, Standards:

1927, M77
1928, M83
1929, M91
1930, M106
1931, M119
1932, M133
1933, M139

Yeast, action on starch hydrolysis products, RP1599

Yellow tints, factors which determine saturation, T92

Young’s modulus, elasticity, RP1742

temperature coefficient, RP581

Ytterbium, spectra, RP1053

spectrophotometric determination, RP1456

Yttrium monoxide, band spectrum, RP273

spectra, S421, RP12, RP55

Zeeman effect, columbium, RP1656

hafnium (Hf II), RP782

lanthanum, RP486, RP497

theoretical, RP23

tungsten, RP1125

uranium, RP1729

vanadium, RP906

xenon, RP1264

yttrium, RP12

Zinc, and alloys, physical and mechanical properties of bronze, standards and specimens, T59

corrosion, corrosion-protection value, RP867

stain, RP454

coatings, iron and steel, C80

coatings, measurement of thickness, RP1240

coatings, Frenzel test, RP688

coatings, specifications and tests, C275

corrosion in soils, RP1602

critical potentials, S403

cyanide plating solutions, T195

determination in dental gold alloys, S532

determination in steels and irons, RP664

pure, physical properties, S522

reflecting power, S379

spectrographic determination in tin, RP1451

spectrum, S411

sulphide, phosphorescent, spectral energy distribution, S538

uranyl acetates, properties, RP672

Zinc-coated steel and iron, corrosion tests, RP10

Zinc oxide, determinations of cobalt and manganese, RP380

lead, specification, C88

melting point, RP136

specification, C87

system ZnO-SiO2, RP136

Zirconia, effect of some oxide additions on thermal changes of, RP1662

systems and porcelains, RP1703

Zirconium, spectra, S548, RP202, RP255, RP296

steel plates, T207

Zones, standard time, M111, M155

Zoning enabling act, standard State, M54, BH5

ordinances, preparation, BH16

primer, BH3

☆ U.S. GOVERNMENT PRINTING OFFICE, 1948—748325

375