1. ORGANIZATION OF THE BUREAU.

The Bureau of Standards was established by act of Congress approved March 3, 1901, and its functions are defined by law as follows: The custody of the standards; the comparison of the standards used in scientific investigations, engineering, manufacturing, commerce, and educational institutions with the standards adopted or recognized by the Government; the construction, when necessary, of standards, their multiples and subdivisions; the testing and calibration of standard measuring apparatus; the solution of problems which arise in connection with standards; the determination of physical constants and the properties of materials.

The Bureau will also furnish such information concerning standards, methods of measurement, physical constants, and the properties of materials as may be at its disposal, and it is authorized to exercise its functions for the Government of the United States, for state or municipal governments within the United States; for scientific societies, educational institutions, firms, corporations, or individuals engaged in manufacturing or other pursuits requiring the use of standards or standard measuring instruments. For all comparisons, calibrations, tests, or investigations, except those performed for the Government of the United States or state governments, reasonable fees will be charged.

2. SCOPE OF THE MAGNETIC TESTING.

Permeability and hysteresis tests are made by the ballistic method on magnetic materials in the form of round or rectangular bars, and sheets. For these tests two specimens of each sample, at least 25 cm long, should be furnished. The permissible cross section is determined by the dimensions of the holes of the coils and yokes used. The apparatus on hand at present will receive round rods of the following diameters:

0.952 cm (⅜ inch).
1.000 cm.
1.270 cm (⅜ inch).
Rectangular bars may be of any section which will pass through a hole 1.37 cm in diameter. Sheet metal 5 cm wide, or under, may be used.

For these measurements two rods or strips of the material to be tested have their ends joined by two soft iron yokes so as to form the four sides of a rectangle. Each bar is surrounded by a magnetizing and a test coil. The change in the magnetic flux embraced by the test coil when the magnetizing current is altered is measured ballistically. Further details are given below.

Tests of nonmagnetic materials, such as are used for chronometers and other instruments, and feebly magnetic materials will be made. Investigations on magnetic properties at high and low temperatures can also be made. Bismuth spirals, for measurement of magnetic fields, will be calibrated.

The Bureau is prepared to calibrate permeameters and other apparatus used in magnetic measurements and to make investigations on the magnetic properties of materials.

A limited number of bars of carefully aged iron and steel have been prepared and will be supplied to testing laboratories and manufacturers as standards, at little more than the amount of the fee for testing.

Wattmeter tests for energy losses due to alternating magnetization are carried out upon sheet iron and steel, such as is used in the cores of transformers. A special apparatus has been designed for this purpose, which is described below. This serves to determine the losses due to hysteresis and eddy currents. A curve showing the relation between the flux density in the test specimen and the wattless component of magnetizing current can also be furnished when desired. Tests to determine the aging quality of this material are also carried on. Not less than 5 pounds (2.5 kg) should be submitted. The losses are measured at 60 cycles and 10,000 gausses, unless otherwise specified, and the results are accurate to 1 per cent.

Transformers are tested for core loss under normal working conditions; and by the measurement of resistances and impedance in addition the efficiencies and regulation can be computed. For tests of instrument transformers, including measurements of ratio, phase angles, regulation, etc., see Bureau Circular No. 20.

3. DESCRIPTION OF WORK.

(a) GENERAL.

The induction which a bar of iron or steel will assume under a given magnetizing force depends upon the previous magnetic condition of the specimen, and upon the rate of change from one magnetic state to another. It is modified by the presence of mechanical vibration and depends to some extent on temperature. It is therefore desirable to state the conditions under which the test is made.

Tests are made at a room temperature of approximately 20° C. Variations in permeability and hysteresis, due to changes in room temperature, are negligible except at those points where the induction varies most rapidly with changes in the magnetizing force. Here the temperature corrections may amount to a few tenths of 1 per cent per degree, but throughout the greater portion of the magnetization curve, and especially those parts that are usually most important, the temperature coefficient is ordinarily not determined.

It is important that there be no mechanical vibration of the specimen during the test. Such vibrations tend to give an induction greater than normal for increasing magnetizing forces, and too small values for decreasing forces. Hence, the test specimen is always protected from mechanical vibrations in ballistic measurements.

The results found for rolled sheets usually depend upon whether the material is magnetized parallel to the direction of rolling or at right angles to this direction. When
not otherwise specified and the dimensions of sheets submitted permit it, the test pieces will be so cut that the flux traverses half of them parallel to the direction of rolling, and half normal thereto.

The measurement of flux density requires a knowledge of the cross-sectional area of the specimen. For rods and bars the cross section is determined from the dimensions. In sheet metal, however, it is not determined by direct measurement, but from values of mass, length, and density. The density of each specimen is experimentally determined, as experience shows that the assumption of any specified value introduces an uncertainty in the result which is greater than the inaccuracy of the magnetic measurements.

(b) BALLISTIC MEASUREMENTS.

i). Normal Induction.—If a bar of thoroughly demagnetized iron is subjected to a magnetizing force, it experiences a certain induction. This induction will be greater if the magnetizing force is applied suddenly than for a slower growth of magnetizing current. If the magnetizing force is repeatedly applied and removed, the values of the induction obtained differ somewhat. If the magnetizing force is reversed, a change of induction approximately twice the preceding values is obtained. For the first few reversals the change of induction is not constant, but becomes so after a large number of reversals. One-half this constant value of the change in induction on reversal of the magnetizing force is the normal induction, and the locus of such points is the curve of normal induction.

The magnetic properties of a piece of iron or steel may be considered as defined by the curves of normal induction and hysteresis. Before determining the normal induction data, it is necessary that the specimen be freed from its previous magnetization. This is accomplished by subjecting it to a cyclic magnetizing force of one period per second, which is gradually reduced from an initial value, which carries the induction well beyond the point of maximum permeability, to a final value somewhat lower than the lowest induction to be studied.

After thorough demagnetization, the lowest magnetizing force to be used is applied and reversed many times, until the iron is brought to a cyclic magnetic state. The induction is then measured and the next higher value of the magnetizing force applied in the same manner. This process is repeated until the required number of points is determined. This is a somewhat laborious operation, but has been found necessary in order to obtain reliable results.

ii). Hysteresis Loop.—Before determining the hysteresis loop, the iron is demagnetized as above, and the magnetizing force is applied and increased until the iron is brought up to the maximum induction for which the loop is required. This magnetizing force is repeatedly reversed until the iron is in a normal condition. The magnetizing force is now reduced from its maximum value to a lower one, and the change in magnetic induction corresponding to the change in force is noted. After determining this pair of values, the maximum magnetizing force is again applied and the iron once more brought back to a normal magnetic condition. Another point is then determined in the same manner as the first. Points corresponding to negative values of the magnetizing force are obtained by simultaneously reversing and reducing the magnetizing force. Before each determination of a point on the loop the iron is brought back to its normal condition.

This method of measuring the magnetic constants differs somewhat from the old “step by step” method which is still employed in many of the modern commercial permeameters. It has the advantage of making the measurement under more nearly the same conditions that occur in commercial practice, and is practically free from the effects of magnetic viscosity. Further, it is possible to get more consistent results by this method than by the
older one, as the effects of imperfect initial demagnetization are not so serious. The numerical data obtained by these two methods are not identical, and in publishing results of work of the highest precision it is desirable to specify the method of measurement.

iii). Selection of Test Points.—In defining the magnetic properties of a bar of iron or steel, it is neither necessary nor practicable to give complete normal and hysteresis data for all values of the magnetizing force. Certain data may be chosen as characteristic and the magnetic properties inferred from these.

The upper limit of the magnetizing force to be applied is determined by the heating of the magnetizing coil. The magnetic constants for high values of the magnetizing force change slowly and quite regularly, and for a considerable range may be obtained by extrapolation from the data of lower magnetizations. However, magnetizing forces up to 300 gausses can be employed. This upper limit of 300 has reference to the magnetizing force employed in the determination of normal induction data. It is not desirable to carry the cyclic induction measurements through such a wide range. A single hysteresis loop having a maximum induction of 10,000 gausses would give a close index to the hysteric properties at all inductions. In some cases it might be desirable to supplement these data by the residual induction and coercive force at other values of the maximum induction.

It is, of course, desirable that the number of observations be as small as possible and yet yield the required continuity of data. For most purposes the magnetizing forces required to produce inductions of 5,000, 10,000, 15,000, and 20,000 would indicate clearly enough the shape of the normal induction curve. If one is interested in some particular range, measurements in this region could be taken closer together—for instance, every 1,000 gausses—or the measurements may be confined to one particular region. A single pair of data may be sufficient for some purposes.

In the hysteresis data, likewise, the labor of measurement is reduced to a minimum by drawing the curve from the three principal points, namely, the tip of the magnetic cycle, the residual induction remaining when the magnetizing force is removed, and the coercive force or the magnetizing force required to reduce the induction to zero.

Such a determination of four points on the normal induction curve and three points on the hysteresis curve gives a fair idea of the magnetic properties of a sample of iron. If several specimens are thus examined at corresponding points, it is possible to make comparisons of the different specimens and classify them into different grades without drawing complete induction curves as would be necessary if the different specimens are tested at irregular points.

iv). Standard Specimens.—If a bar is to be used as a standard of comparison, or for the purpose of calibrating a permeameter, it is necessary to determine a considerable number of points of the curve in the region where the apparatus is to be used. Such measurements should be taken with greater care than those on a specimen typical of a large lot which individually may differ considerably from the mean.

In measurements of the highest precision, the magnetic circuit consists of two rods joined at their ends by two soft iron yokes. The magnetomotive force is applied by means of two solenoids and a set of compensating coils. The magnetizing current in each solenoid is capable of independent adjustment until the fluxes in the two rods are equal. The compensating coils are distributed over the four joints of the magnetic circuit and the current is adjusted so that there is no magnetic leakage between the middle and ends of the test specimens. When the magnetic flux has thus been rendered uniform throughout the circuit the true magnetic force and induction may be determined by the ballistic method.*

*A fuller account of the arrangement of the magnetic and electric circuits, of the manner of securing uniformity of flux, and of other details of the ballistic method employed is found in Technical Paper No. 117, reprinted from the Bulletin of the Bureau of Standards, Vol. 6, No. 1.
v). FORM OF SPECIMEN.—The labor of a test is reduced and the precision increased by having a certain degree of uniformity in the test specimens. The minimum length of test piece in the ballistic tests is 25 cm (10 inches). Round rods may be 1 cm or 1.27 cm (⅛ inch) or 0.95 cm (⅜ inch) in diameter. Specimens of any uniform section which have one pair of parallel sides and will pass through a hole 1.27 cm (⅛ inch) in diameter may be submitted. Sheet metal is tested in strips 5 cm (2 inches) or under in width. If desired, sheet metal may be supplied in one piece, to be cut into strips at the Bureau. Two rods or four strips of the same material should be submitted for each test. For single rods or strips and for specimens of other dimensions than those indicated, a special fee is charged.

(c) TESTING WITH ALTERNATING CURRENT.

The tests of sheet steel and iron by the wattmeter method are made with the use of a sine wave of magnetic flux, and the results are expressed in terms of the total power expended per unit mass of material. This represents the combined eddy current and hysteresis losses.

The material may be submitted in the form of rings or of uncut sheets. Rings are less desirable for accurate work, unless of large diameter, and, moreover, entail extra expense on account of the necessity of winding a magnetizing coil upon each specimen separately. The inaccuracies in small rings are due to the fact that the magnetic flux is not evenly distributed throughout the specimen, and the effect of this upon the measured loss is not easily corrected for. This is discussed more fully in Technical Paper No. 108.

When the material to be tested is submitted in such form that it can be sheared into straight strips, a closed magnetic circuit is built up of the material. The cutting to size is done at this Bureau, and has but slight effect upon the value of the losses. Sufficient material should be sent so that when cut into strips 5 by 25.4 cm (2 by 10 inches) it will net 2 kilograms (4.5 pounds) in weight. These strips are made up in four bundles, which form the four sides of a square magnetic circuit. The arrangement is similar to that proposed by Epstein, but differs from it in having good magnetic joints at the corners of the square. It is thus possible to secure an accuracy of 1 per cent with a smaller quantity of material, and yet without appreciable distortion of the wave-form. A full description of this apparatus is given in Technical Paper No. 109 (from Bulletin of the Bureau, vol. 5), which will be mailed upon request. It is there shown that the sheet material in common use varies very widely in quality, and the quality is not closely related to the cost. Some of the results are given in the following table:

<table>
<thead>
<tr>
<th>Ordinary steel.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>J</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>P</td>
</tr>
</tbody>
</table>

* In order to make a fair comparison of quality, the eddy current loss has been computed in each case for a thickness of 0.0357 cm (U. S. standard gage No. 29) on the assumption that the eddy current loss is proportional to the square of the thickness.
Silicon steel.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Thickness cm</th>
<th>10000 gauss</th>
<th>Erys per gram per cycle</th>
<th>5000 gauss</th>
<th>Watts per pound at 60 cycles and 10000 gauss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>60°</td>
<td>30°</td>
<td>Hysteresis</td>
<td>Eddy currents</td>
</tr>
<tr>
<td>Q</td>
<td>0.0361</td>
<td>357</td>
<td>330</td>
<td>303</td>
<td>54</td>
</tr>
<tr>
<td>R</td>
<td>0.0315</td>
<td>350</td>
<td>309</td>
<td>288</td>
<td>72</td>
</tr>
<tr>
<td>S</td>
<td>0.0452</td>
<td>350</td>
<td>314</td>
<td>278</td>
<td>72</td>
</tr>
<tr>
<td>T</td>
<td>0.0338</td>
<td>310</td>
<td>280</td>
<td>250</td>
<td>60</td>
</tr>
<tr>
<td>U</td>
<td>0.0346</td>
<td>312</td>
<td>291</td>
<td>270</td>
<td>42</td>
</tr>
<tr>
<td>V</td>
<td>0.0310</td>
<td>298</td>
<td>275</td>
<td>251</td>
<td>47</td>
</tr>
<tr>
<td>W</td>
<td>0.0305</td>
<td>240</td>
<td>218</td>
<td>197</td>
<td>43</td>
</tr>
<tr>
<td>X</td>
<td>0.0430</td>
<td>265</td>
<td>232</td>
<td>200</td>
<td>65</td>
</tr>
</tbody>
</table>

* In order to make a fair comparison of quality, the eddy current loss has been computed in each case for a thickness of 0.0357 cm (U. S. standard gage No. 29) on the assumption that the eddy current loss is proportional to the square of the thickness.

It is seen that ordinary steel varies from 1.24 to 2.36 watts per pound for United States standard gage No. 29 (thickness 0.0357 cm) at a frequency of 60 cycles per second and a magnetic induction of 10,000 gauss. Silicon steel varies from 0.66 to 1 watt per pound under the same conditions. These figures correspond to 460 and 865 ergs per cycle per gram for ordinary steel and 246 to 368 ergs per cycle per gram for silicon steel. In addition to this variation in the original quality of the material there is a great difference in its constancy with time. Some material shows very decided aging, which in one case amounted to as much as 67 per cent in 500 hours. Other specimens, including most silicon steels, show little or no alteration with use.

The great saving in cost of power due to improvement in core material is generally recognized, but the following example gives a practical illustration.

The benefits derived from the use of high grade material are usually divided between copper and iron losses by judicious designing, but to simplify matters let us assume that the design is fixed for a 5-kilowatt transformer, and using the material \(R \) in table above the loss is 45 watts. If the material \(X \) be substituted, the core loss is reduced to 32.2 watts. In operation for 8,760 hours, or one year, the saving of 12.8 watts amounts to 112 kilowatt-hours. At a cost of 1 cent per kilowatt-hour this amounts to $1.12, which at 10 per cent (allowing for depreciation as well as interest) represents a capital of $11.20. In other words the buyer could, with advantage, pay any amount up to $11 more for the sake of getting the better material in his core, and the manufacturer could pay 28 cents per pound more for the 40 pounds of core material used.

If the better silicon steel were to cost 2.8 cents per pound more than the other (which is improbable), the difference in cost of the steel would be $1.12, and the user would each year save 100 per cent of the extra cost.

The comparison between the poorer silicon steel and the ordinary steel is even more marked. The core loss for material \(N \) would be 73 watts, a difference of 28 watts from \(R \). In a year this would amount to 245 kilowatt-hours, costing $2.45, thus practically reducing the value of the transformer by $24.50. Yet the difference in cost of material is only $1.70, if we take the price of silicon steel delivered at the factory to be $7\frac{1}{2} cents per pound and that of ordinary steel to be 3\frac{1}{2} cents per pound, and assume 40 pounds to be necessary.

Any frequency from 25 cycles to 90 cycles per second can be used for the test. When it is desired to determine the eddy current and hysteresis losses separately, tests at two frequencies (such as 30 and 60 cycles) are made, from the results of which the two components of the loss can be approximately calculated.
Any flux densities between 1,000 and 14,000 gausses may be specified. The flux density stated for any measurement is the average value for all the material. The deviations from this value in different parts of the steel are small. The maximum flux ϕ is computed from the effective voltage E induced in a secondary winding from the relation $\phi = \frac{10^8 E}{4.44 N n}$ where

$$n = \text{frequency},$$
$$N = \text{number of turns in secondary winding}.$$

When so desired, an ammeter is included in the magnetizing circuit, its reading giving the effective value of the current in the magnetizing coil. With the aid of the wattmeter and voltmeter readings the wattless component of the equivalent sine wave can be computed. A curve giving the relation between this quantity and the magnetic induction is for most purposes more valuable than a curve showing the permeability, since this curve indicates the effective value of the current necessary to magnetize, while the permeability indicates the maximum current necessary to magnetize, to a given value of magnetic induction.

Aging tests are carried on by heating the material in an oven, the usual period being two weeks and the temperature between 90° and 100° C. Other periods and temperatures can be used when desired. Measurements of energy loss are made at the beginning and end of this heating, and are made at two frequencies, in order to determine whether the change is merely in the hysteresis or also in the electrical conductivity of the material. The flux density used should have the value which will be applied to the material in practice, since the hysteresis changes differently for different values of flux density, the change usually being greater in the region of maximum permeability than for the higher flux densities now common in power transformers.

By utilizing straight specimens in a single straight solenoid a more rapid and consequently cheaper test can be made, and a smaller quantity of material is sufficient. Owing to the nonuniform distribution of flux and to wave distortion the results are not very accurate, and can not be depended upon closer than 5 per cent. For rough comparisons, however, and checks upon uniformity of material, this test will often be sufficient. Ten ounces (or 300 grams) of material are required, and the measurement is made at 60 cycles and 5,000 gausses.

4. TECHNICAL PAPERS ON MAGNETIC WORK.

The following papers upon magnetic subjects have been published by the Bureau. They are issued in pamphlet form and will be sent upon request. They may be designated by the numbers which precede the titles in the list. A complete list of the technical publications of the Bureau, with brief abstracts of contents, will also be sent upon application.

No. 88. Effect of Wave Form upon the Iron Losses in Transformers. M. G. Lloyd.
No. 106. Dependence of Hysteresis upon Wave Form. M. G. Lloyd.
5. REGULATIONS.

(a) Application for Test.—The request for test of any instrument or specimen should state explicitly the points at which test is to be made and the temperature or any other conditions which it is desired should be observed. Whenever possible, the request should be accompanied by the fee as shown in the appended schedules.

(b) Identification Marks.—Instruments or specimens and the packages in which they are shipped should both be plainly marked to facilitate identification, preferably with the name of the shipper, and a special reference number given to the article and mentioned in the letter requesting the test.

(c) Shipping Directions.—Instruments should be securely packed in cases or packages which may be used in returning them to the owner. Tops of cases should be screwed down whenever possible. Transportation charges are payable by the party desiring the test, and should be prepaid. Instruments and standard bars will be returned by express “collect,” but specimens of material will not be returned unless requested.

(d) Address.—Articles should be addressed simply, “Bureau of Standards, Washington, D.C.” Delays incident to other forms of address will thus be avoided. Articles delivered in person or by messenger should be left at the office of the Bureau and should be accompanied by a written statement of the test desired.

(e) Remittances.—Fees may be sent by money order or check drawn to the order of the “Bureau of Standards.” Delays in forwarding fees will involve corresponding delays in the completion of tests, as certificates are not issued, nor articles returned, until all fees due thereon have been received.

6. SCHEDULES OF FEES.

Schedules 90 and 91 are for tests made on specimens of the form indicated in paragraph 3 (b) v.

Schedule 90.—Short ballistic test.

Including normal data of one of the two specimens supplied, for the following inductions: 5,000, 10,000, 15,000, 20,000, or any four values produced by forces under 300 gausses; and hysteresis data for a maximum induction of 10,000 gausses, giving the residual induction under no magnetizing force, and the coercive force, or force necessary to reduce the induction to zero.

Precision Test.

(a) Normal induction and permeability $3.00
(b) Hysteresis data .. 3.00
(c) Normal and hysteresis data ... 5.00
(d) Curve (extra) .. .50

Commercial Test.

(b) Normal induction and permeability $1.50
(i) Hysteresis data .. 1.50
(j) Normal and hysteresis data ... 2.50
(l) Curve (extra) .. .50

If both specimens are to be tested the fee for the second is one-half the above schedule.

Schedule 91.—Complete ballistic test.

Including normal data of one of the two specimens supplied, for every 2,000 gausses up to 30,000, produced by forces under 300 gausses; and hysteresis data for a maximum
induction of 10,000 gauss, including the following ten points of the loop: 0, ±2,000,
±4,000, ±6,000, ±8,000, and 10,000.

PRECISION TEST.

(a) Normal induction and permeability ... $6.00
(b) Hysteresis data ... 6.00
(c) Normal and hysteresis data .. 10.00
(d) Curve (extra)75

COMMERICAL TEST.

(b) Normal induction and permeability ... $3.00
(i) Hysteresis data ... 3.00
(j) Normal and hysteresis data .. 5.00
(k) Curve (extra)75
(l) Special tests not enumerated above will be charged at reasonable rates.

If both specimens are to be tested, the fee for the second is one-half the above schedule.

SCHEDULE 92.—Standard bars.

These bars, of lengths 25, 30, and 35 cm long, are carefully aged and supplied with a certificate containing the data of the precision test of schedule 91.

<table>
<thead>
<tr>
<th>Material</th>
<th>Diameter of Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annealed wrought iron (round)</td>
<td>0.952 cm (⅛ inch)</td>
</tr>
<tr>
<td>Annealed wrought iron (round)</td>
<td>1.000 cm</td>
</tr>
<tr>
<td>Annealed wrought iron (round)</td>
<td>1.270 cm (½ inch)</td>
</tr>
<tr>
<td>Low carbon steel (round)</td>
<td>0.952 cm (⅛ inch)</td>
</tr>
<tr>
<td>Low carbon steel (round)</td>
<td>1.000 cm</td>
</tr>
<tr>
<td>Low carbon steel (round)</td>
<td>1.270 cm (½ inch)</td>
</tr>
</tbody>
</table>

ONE BAR.

(a) Normal data ... $5.00
(b) Hysteresis data ... 5.00
(c) Normal and hysteresis data ... 8.00
(d) Standard bars without certificate75

TWO BARS.

(b) Normal data ... $7.50
(i) Hysteresis data ... 7.50
(j) Normal and hysteresis data ... 12.00

SCHEDULE 93.—Wattmeter measurements.

(a) For test of energy loss at room temperature, one frequency and one flux density $3.00
(b) For each additional flux density .. .25
(c) For each additional frequency50
(d) For values of wattless component of magnetizing current (extra) .. 1.00
(e) When not otherwise specified, test will be made at 30 cycles and 60 cycles for a flux density of 10,000
gausses, fee ... 3.50
(f) Rough test in straight solenoid at 5,000 gausses, 60 cycles ... 1.00
(g) For each additional specimen, tested like (f) .. .25
(h) Aging test, two weeks at 90-100° C., with repetition of test (a) ... 8.00
(i) Special tests not mentioned above will be charged at reasonable rates.

SCHEDULE 94.—Miscellaneous.

(a) For tests not enumerated above reasonable fees will be charged.

The Bureau will cooperate with manufacturers, scientists, and others interested in the subjects of methods of measurement, measuring instruments, and physical constants, and
will place at the disposal of those interested such information relative to these subjects as may be in its possession.

The Bureau will also aid in the solution of problems arising in technical or scientific work, within its scope, and to this end correspondence is invited. Persons interested in magnetic problems and magnetic measuring instruments and methods are welcome to visit the laboratories of the Bureau, where many of the leading types of apparatus may be seen. Communications should be addressed simply “Bureau of Standards, Washington, D. C.”

S. W. STRATTON,
Director.

Approved:

CHARLES NAGEL,
Secretary.

11-2057