BASIC RADIO PROPAGATION PREDICTIONS
FOR MAY 1945
THREE MONTHS IN ADVANCE

ISSUED
FEBRUARY 1945

PREPARED BY INTERSERVICE RADIO PROPAGATION LABORATORY
National Bureau of Standards
Washington 25, D. C.
“This document contains information affecting the national defense of the United States within the meaning of the Espionage Act, 50 U. S. C., 31 and 32. Its transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law.”
BASIC RADIO PROPAGATION PREDICTIONS
FOR MAY 1945
THREE MONTHS IN ADVANCE

The monthly reports of the IRPL-D series are now distributed to the Army as the TB 11-499 series, by the Adjutant General; to the Navy as the DNC-13-1 series, by the Registered Publications Section, Division of Naval Communications; and to others by the IRPL.

This IRPL-D series is a monthly supplement to the IRPL Radio Propagation Handbook Part 1, issued by the Army as TM 11-499 and by the Navy as DNC-13-1, and is required in order to make practical application of the basic Handbook.

CONTENTS

I. Terminology .. Page 2

II. World-wide prediction charts and their uses. Page 2

World map showing zones covered by predicted charts, and auroral zones... Fig. 1
F2-zero-muf, in Mc, W zone, predicted for May 1945... Fig. 5
F2-4000-muf, in Mc, W zone, predicted for May 1945... Fig. 6
F2-zero-muf, in Mc, I zone, predicted for May 1945... Fig. 7
F2-4000-muf, in Mc, I zone, predicted for May 1945... Fig. 8
F2-zero-muf, in Mc, E zone, predicted for May 1945... Fig. 9
F2-4000-muf, in Mc, E zone, predicted for May 1945... Fig. 10
E layer 2000-muf, in Mc, predicted for May 1945... Fig. 11
Median iEs, in Mc, predicted for May 1945... Fig. 12
Percentage of time occurrence for Ei in excess of 15 Mc, predicted for May 1945... Fig. 13

III. Determination, etc.—Continued.

Nomogram for obtaining great-circle distances, bearings, latitude and longitude of transmission control points, solar zenith angles. Conversion scale for various distance units... Fig. 4

IV. Calculation of maximum usable frequencies and optimum working frequencies... Page 3

Nomograms for transforming F2-zero muf and F2-4000-muf to equivalent maximum usable frequencies at intermediate transmission distances; conversion scale for obtaining optimum working frequencies... Fig. 13

Nomogram for transforming E layer 2000-muf to equivalent maximum usable frequencies and optimum working frequencies due to combined effect of E layer and F1 layer at other transmission distances... Fig. 14

V. Absorption, distance range, and lowest useful high frequency... Page 4

Absorption index chart (excluding auroral absorption) for May... Fig. 16

VI. Sample muf and owf calculations... Page 5

For short path (under 4000 km) page 5, table 1, page 6, and Fig. 17
For long path (over 4000 km) page 5, table 2, page 6 and Fig. 18
I. TERMINOLOGY

The following symbols are used, as recommended by the International Radio Propagation Conference held in Washington, D. C., 17 April to 5 May 1944.

\[f^{F2} = \text{ordinary-wave critical frequency for the } F_2 \text{ layer.} \]

\[f^{E2} = \text{extraordinary-wave critical frequency for the } F_2 \text{ layer.} \]

\[F_s = \text{sporadic, or abnormal } E. \]

Two \(F_2 \) charts are provided for each zone, one of which, the “zero-muf chart,” shows the vertical-incidence muf, or the critical frequency for the extraordinary wave, and the other, the “4000-muf chart,” shows the muf for a transmission distance of 4000 km. Do not confuse the zero-muf charts with the \(f^{F2} \) charts appearing in the previous IRPL reports “Radio Propagation Conditions.” (Values of \(F_2 \) zero-muf exceed those of \(f^{F2} \) for the same location and local time by an amount approximately equal to half the gyrofrequency for the location. See IRPL Radio Propagation Handbook, Part 1 (War Dept. TM 11–499 and Navy Dept. DDC–13–1), pp. 18, 19, 28, and fig. 9.)

The longitude variation is operationally negligible in the case of the normal \(E \) layer and therefore only one \(E \)-layer chart is provided.

The variation of \(f^{Es} \) with geomagnetic latitude seems to be well-marked and important, but there are, as yet, insufficient correlated data to permit an estimate of this variation; the \(f^{Es} \) charts furnished here are therefore of a far lower degree of precision than the other charts.

II. WORLD-WIDE PREDICTION CHARTS AND THEIR USES

The charts, figures 5 to 11, present world-wide predictions of monthly average maximum usable frequencies for May 1945. Conditions may be markedly different on disturbed days, especially in or near the auroral zones, shown on the map of figure 1. The method of prediction is discussed in the IRPL Radio Propagation Handbook, Part 1, War Dept. TM 11–499, Navy Dept. DDC–13–1, p. 52, 53.

Ionosphere characteristics are roughly similar for locations of equal latitude, but there is also a considerable variation with longitude, especially in the case of the \(F_2 \) layer. This “longitude effect” seems to be related to geomagnetic latitude. Attention was first called to this effect in the report “Radio Propagation Conditions” issued 10 Sept. 1943; it was brought into general operational use in the next issue (14 Oct. 1943).

The longitude effect in the \(F_2 \) layer is taken care of by providing world charts for three zones, in each of which the ionosphere characteristics are independent of longitude, for practical purposes. These zones are indicated on the world map, figure 1.

III. DETERMINATION OF GREAT-CIRCLE DISTANCES, BEARINGS, LOCATION OF TRANSMISSION CONTROL POINTS, SOLAR ZENITH ANGLES

1. The first step in any radio propagation calculation is the determination of the transmission path, which is the great-circle distance between transmitting and receiving stations. Use the world map, figure 1, and the great-circle chart, figure 2, for this purpose, as follows:

 a. Place a piece of transparent paper over the map, figure 1, and draw upon it a convenient reference latitude line, the locations of the transmitting and receiving stations, and the meridian whose local times are to be used as the times for calculation.

b. Place this transparency over the chart, figure 2, and, keeping the reference line at the proper latitude, slide the transparency horizontally until the terminal points marked on it either fall on the same great-circle curve, or fall the same proportional distance between adjacent great-circle curves. Draw in the path.

c. Locate the midpoint of the path, for paths under 4000 km, or the “control points,” 2000 km from either end of the path, for paths greater than 4000 km, and use for this purpose the small circles of figure 2.
d. Place the transparency over the predicted chart at the proper latitude and local time, and read the values of muf off the chart, as directed in section IV.

2. Great-circle distances, bearings, location of midpoints, or other "control points" 2000 km in from the ends of the transmission path, as well as solar zenith angles, may be readily obtained from the nomogram, figure 4.

Referring to the auxiliary diagram, figure 3, let Z and S be the locations of transmitting and receiving stations; then, use the nomogram, figure 4, as follows:

a. To obtain the great-circle distance ZS:

(1) Draw slant line from (lat. of Z, lat. of S), measured up from bottom of left scale, to (lat. of Z + lat. of S), measured down from top of right scale.

(2) From (long. of S — long. of Z) on bottom scale, measured from left to right, draw vertical line to the slant line obtained in (1).

(3) From the intersection, draw a horizontal line to the left scale. This gives ZS in degrees.

(4) Convert the distance ZS to kilometers, statute miles, or nautical miles, by using the scale at the bottom of figure 4.

b. To obtain the bearing angle PZS:

(1) Subtract the distance ZS (in degrees) from 90° to get h.

(2) Draw slant line from (lat. Z — h), measured up from bottom on left scale, to (lat. Z + h), measured down from top on right scale.

(3) From (90° — lat. S) on left, measured down on right scale.

(4) Draw slant line from (lat. Z — lat. S), measured down from top on right scale, to (lat. Z + lat. S), measured down from top on right scale.

(5) From bearing angle PZS, measured to right on bottom scale, draw vertical line to the above slant line.

(6) From this intersection, draw horizontal line to left scale.

(7) Subtract the reading given from 90° to give latitude of Q in degrees.

(8) To obtain longitude difference, t', between Z and Q:

(1) Draw straight line (lat. Z — lat. Q), measured up from bottom on left-hand scale, to (lat. Z + lat. Q), measured down from top on right-hand scale.

(2) From the left side, at Q, in degrees, draw a horizontal line to the above slant line.

(3) From the intersection, drop a vertical line to bottom scale to get t' in degrees.

f. To obtain solar zenith angle, \(\psi \), at a given place:

(1) Let the declination of the sun be \(d \), and let Z be the place under consideration.

(2) Draw straight line from (lat. Z — d), measured up from bottom on left scale, to (lat. Z + d), measured down on right scale.

(3) From \((12 — \text{local time of } Z, \text{ in hours}) \times 15\) degrees, on bottom scale, measured from left to right, draw a vertical line to the slant line above.

(4) From this intersection, draw a horizontal line to the left scale. This gives \(\psi \), in degrees.

IV. CALCULATION OF MAXIMUM USABLE FREQUENCIES AND OPTIMUM WORKING FREQUENCIES

1. PROCEDURE FOR DETERMINATION OF MUF OR OWF FOR TRANSMISSION DISTANCES UNDER 4000 KM

Radio propagation over distances up to 4000 km is usually determined by ionospheric conditions at the midpoint of the great-circle path between transmitting and receiving station.

For a path 4000 km in length, read the predicted monthly average F2 muf directly off the 4000-muf charts furnished, at the latitude and local time of the midpoint of the path. For a path 2000 km in length read the predicted monthly average E-layer muf directly off the E-layer 2000-muf chart. Use the following procedure for other distances:

a. Locate the midpoint of the transmission path. (Methods for doing this are given in the preceding section of this report.)

b. Read the values of F2-zero-muf, F2-4000-muf, and E-layer 2000-muf for the midpoint of the path.
at the local time for this midpoint. Be sure to choose the F2 charts for the geographical zone in which the midpoint lies.

c. Place a straightedge between the values of F2-zero-muf and F2-4000-muf at the left- and right-hand sides, respectively, of the grid nomogram, figure 13, and read the value of the muf for the actual path length at the intersection point of the straightedge with the appropriate vertical distance line.

d. The optimum working frequency (owf) is 85 percent of the muf, to allow a margin of safety for day-to-day variations; to determine the owf, use the auxiliary scale at the right of the grid nomogram of figure 13.

e. Place a straightedge between the value of the E-layer 2000-muf located on the left-hand scale of the nomogram, figure 14, and the value of the path length on the right-hand scale, and read the combined E- and F1-layer muf or owf for that path length, off the central scale. (The characteristics of the E layer and of the F1 layer are sufficiently related that, for most practical purposes, they may be combined in this manner.)

f. Compare the values of muf or owf obtained by operations c to e. The higher of the two values thus determined is the muf or owf for the path.

2. PROCEDURE FOR DETERMINATION OF MUF OR OWF FOR TRANSMISSION DISTANCES GREATER THAN 4000 KM

The complexities of long-distance radio propagation are such that the simple multihop E or F2 layer calculations do not give accurate results. The following procedure will give results which are operationally satisfactory; the theory involved is outside the scope of this report.

a. Locate the two “control points” 2000 km from the ends of the great-circle distance between transmitting and receiving stations. For very long paths both the “short route” (minor arc of the great-circle path) and the “long route” (major arc) need to be considered.

b. Read the value of the F2-4000-muf, at the

c. Compare these two muf values. The lower of the two is the muf for the transmission path under consideration. Calculate the owf (85% of the muf) for the path, by means of the auxiliary muf-owf scale of figure 13.

d. When one of the control points lies in a region where the E-2000-muf is greater than the F2-4000-muf, read the E-2000 muf at an E-layer control point 1000 km from the end of the path, instead of the F2-4000-muf, as in step b. Use the E-2000-muf in step c, instead of the F2-4000-muf.

3. PROCEDURE FOR DETERMINATION OF Es TRANSMISSION

Sporadic-E (Es) propagation plays an important part in transmission over paths in some parts of the world and at certain times; it may often produce regular transmission at times when regular F2-layer propagation would not. Es data are not yet sufficient to permit accurate calculations of such propagation, but the charts of figures 12 and 15 are given as a guide to Es occurrence. Until such time as more definite information is available, the following procedure should be used to find the prevalence of Es propagation over long paths.

a. For paths over 4000 km long:

(1) Place the great-circle path transparency, prepared in section III, 1, over the median jEs chart, figure 12.

(2) Scale jEs at each E-layer control point (1000 km from each end of the path), multiply by 5 and subtract 4 Mc. The result is Es-owf.

(3) Plot as the owf for each control point the higher of the two values, the F2-4000-owf and the Es-owf.

b. For use over paths of lengths up to 4000 km, scale the Es at the midpoint of the path, multiply by 5 and subtract 4 Mc, and use the resultant frequency instead of the E-2000-muf in the nomogram of figure 14.

V. ABSORPTION, DISTANCE RANGE, AND LOWEST USEFUL HIGH FREQUENCY

The determination of absorption, distance range, and lowest useful high frequency is discussed at length in IRPL Radio Propagation Handbook, Part 1, p. 69-97 (War Dept. TM 11-499, Navy Dept. DNC-13-1), and formulas, graphs, and nomograms for calculation are given there. For convenience in estimating absorption (exclusive of auroral absorption) over a path, the absorption index (or K) chart, figure 16, is presented. By superposing the transparency with the great-circle path, prepared as in section III, 1, the relation of the path to the sun's zenith angle is readily seen (the sunrise-sunset line corresponds to an absorption index=0.14).

The absorption is erratic and considerably greater in and near the auroral zones, shown on the map of figure 1; paths passing through or near these zones are subject at times to severe disturbances.
VI. SAMPLE MUF AND OWF CALCULATIONS

1. FOR SHORT PATHS

Required: The muf and owf for transmission between Washington, D. C. (39.0° N, 77.5° W) and Miami, Fla. (25.7° N, 80.5° W) for average conditions during the month of May 1945.

Solution:
Let the local time used for this problem be GCT (Z time or that of 0° longitude).

The midpoint of the path is at approximately 32.5° N, 79.0° W, and the transmission path length is approximately 1500 km.

The values of E- and F_2-layer muf and owf and also E_s-owf for alternate hours, GCT, as determined by using the procedure given in section IV, are given in table 1. The final values are presented graphically in figure 17. In obtaining the combined muf, all layers, the E_s-owf is used because of the great variability of the muf.

Figure 17 shows that skip will occur, on the average, during the night hours if a frequency as high as 6.0 Me is used. A frequency as high as 5.0 Me will not skip, on the average, at any time of day, but its use is not advisable because of (a) the day-to-day variability, causing some probability of skip during the night hours, and (b) ionospheric absorption during the daytime, which is more pronounced at low frequencies.

A satisfactory frequency plan to insure continuous transmission at all times, on a circuit like this, involves the use of two frequencies, one for night and one for day. Figure 17 shows that a night frequency of 4.3 Mc used between the hours of 0710 and 1120 GCT, and a day frequency of 9.6 Mc to be used from 1120 to 0710, would be satisfactory. The periods of usefulness of these frequencies are shown by the heavy dashed line on figure 17.

Periods of time during which transmission is controlled by either the E layer or F_2 layer may be easily recognized by noting the relative proximity of the muf and owf curves of figure 17. Coincidence of the curves indicates control by sporadic-E reflections.

2. FOR LONG PATHS

Required: The muf and owf for transmission between Manila, P. I. (14.6° N, 121.0° E) and San Francisco, Calif. (37.8° N, 122.4° W), for average conditions during the month of May 1945.

Solution:
Let the local time used for this problem be GCT, or that of 0° longitude.

The path length is approximately 11 200 km and the two F_2-layer control points, A and B, respectively, are at approximately 27° N, 136° E and 45° N, 144° W. These are respectively in the E zone and the I zone, as shown on the map, figure 1. The two E-layer and E_s-control points, A' and B', respectively, are located at 21° N, 132° E and 41° N, 132° W. The bearing of San Francisco from Manila, determined by means of the nomogram of figure 4, is approximately 46°.

The values of muf and owf over this transmission path, as determined by using the procedure for alternate hours, GCT, are given in table 2. The final values are shown graphically in figure 18.

Figure 18 shows that skip will occur, on the average, during the night hours if a frequency as high as 11 Mc is used, although much higher frequencies may be used during a limited portion of the day.

A good practical arrangement to insure continuous transmission at all times is to select three frequencies, in a manner similar to that suggested for the preceding problem. A frequency of 8.1 Mc may be used from 1740 to 2100 GCT; a frequency of 15.0 Mc may be used from 2100 to 0700, whereas a transition frequency of 10.0 Mc may be used from 0700 to 1740.

Relative proximity of the muf and owf curves of figure 18 indicates that the regular E layer does not control transmission at any time. Coincidence of the curves indicates control by sporadic-E reflections.

By inspection of the absorption chart, figure 16, and the noise map (fig. 119 of the IRPL Radio Propagation Handbook, Part 1, War Dept. TM 11–489, Navy Dept. DNC–13–1), it may be seen that considerations of the lowest useful high frequency over this path may be of considerable importance in selecting frequencies for use, and that in cases of transmission failure on the frequencies here recommended, particularly in the case of the transition frequency, raising the frequency to a value slightly under the muf for the path may be advisable.
Table 1.—Solution of short-path transmission problem

[Washington, D. C. to Miami, Fla., May 1945]

<table>
<thead>
<tr>
<th>Time, GCT</th>
<th>E-layer 2000-muf</th>
<th>Combined E- and F-layer 1500-muf</th>
<th>Combined E- and F-layer 1500-muf</th>
<th>Median E_F</th>
<th>E_F-2000-muf</th>
<th>E_F-1500-muf</th>
<th>f_2-layer zero-muf</th>
<th>f_2-layer 1900-muf</th>
<th>f_2-layer 1900-muf</th>
<th>Combined muf, all layers</th>
<th>Combined owl, all layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>5.7</td>
<td>5.2</td>
<td>5.1</td>
<td>2.8</td>
<td>10.0</td>
<td>9.3</td>
<td>6.8</td>
<td>21.7</td>
<td>12.7</td>
<td>10.8</td>
<td>12.7</td>
</tr>
<tr>
<td>02</td>
<td>2.9</td>
<td>10.5</td>
<td>9.6</td>
<td>5.1</td>
<td>15.6</td>
<td>9.3</td>
<td>7.9</td>
<td>9.6</td>
<td>9.6</td>
<td>9.6</td>
<td>9.6</td>
</tr>
<tr>
<td>04</td>
<td>4.0</td>
<td>16.0</td>
<td>14.7</td>
<td>3.9</td>
<td>10.4</td>
<td>6.4</td>
<td>5.4</td>
<td>14.7</td>
<td>14.7</td>
<td>14.7</td>
<td>14.7</td>
</tr>
<tr>
<td>06</td>
<td>3.5</td>
<td>13.5</td>
<td>12.4</td>
<td>3.7</td>
<td>9.7</td>
<td>6.1</td>
<td>5.2</td>
<td>12.4</td>
<td>12.4</td>
<td>12.4</td>
<td>12.4</td>
</tr>
<tr>
<td>08</td>
<td>2.2</td>
<td>7.0</td>
<td>6.4</td>
<td>3.5</td>
<td>8.1</td>
<td>5.3</td>
<td>4.5</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
</tr>
<tr>
<td>10</td>
<td>12.1</td>
<td>11.1</td>
<td>10.9</td>
<td>6.2</td>
<td>17.7</td>
<td>10.7</td>
<td>9.1</td>
<td>15.0</td>
<td>14.6</td>
<td>14.6</td>
<td>14.6</td>
</tr>
<tr>
<td>12</td>
<td>15.2</td>
<td>14.0</td>
<td>13.6</td>
<td>6.4</td>
<td>17.9</td>
<td>11.0</td>
<td>9.4</td>
<td>15.0</td>
<td>14.6</td>
<td>14.6</td>
<td>14.6</td>
</tr>
<tr>
<td>14</td>
<td>16.3</td>
<td>15.0</td>
<td>14.6</td>
<td>6.6</td>
<td>18.3</td>
<td>11.3</td>
<td>9.6</td>
<td>14.2</td>
<td>13.9</td>
<td>13.9</td>
<td>13.9</td>
</tr>
<tr>
<td>16</td>
<td>15.4</td>
<td>14.2</td>
<td>13.9</td>
<td>6.6</td>
<td>18.5</td>
<td>11.3</td>
<td>9.6</td>
<td>14.2</td>
<td>13.9</td>
<td>13.9</td>
<td>13.9</td>
</tr>
<tr>
<td>18</td>
<td>15.1</td>
<td>14.6</td>
<td>14.6</td>
<td>6.4</td>
<td>18.3</td>
<td>11.3</td>
<td>9.6</td>
<td>14.2</td>
<td>13.9</td>
<td>13.9</td>
<td>13.9</td>
</tr>
<tr>
<td>20</td>
<td>15.9</td>
<td>15.4</td>
<td>15.4</td>
<td>6.4</td>
<td>18.3</td>
<td>11.3</td>
<td>9.6</td>
<td>14.2</td>
<td>13.9</td>
<td>13.9</td>
<td>13.9</td>
</tr>
<tr>
<td>22</td>
<td>15.9</td>
<td>15.4</td>
<td>15.4</td>
<td>6.4</td>
<td>18.3</td>
<td>11.3</td>
<td>9.6</td>
<td>14.2</td>
<td>13.9</td>
<td>13.9</td>
<td>13.9</td>
</tr>
</tbody>
</table>

Table 2.—Solution of long-path transmission problem

[Manila, P. L., to San Francisco, Calif., May 1945]

<table>
<thead>
<tr>
<th>Time, GCT</th>
<th>E-layer 2000-muf, control point A'</th>
<th>E-layer 2000-muf, control point A'</th>
<th>Median E_F, control point A'</th>
<th>E_F-2000-muf, E zone, control point A'</th>
<th>E_F-2000-muf, E zone, control point A'</th>
<th>Combined muf, control points A' and B'</th>
<th>Combined owl, control points A' and B'</th>
<th>E-layer 2000-muf, control point B'</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>15.1</td>
<td>14.6</td>
<td>5.0</td>
<td>21.0</td>
<td>19.9</td>
<td>16.9</td>
<td>21.0</td>
<td>14.6</td>
</tr>
<tr>
<td>02</td>
<td>16.7</td>
<td>16.2</td>
<td>5.0</td>
<td>21.0</td>
<td>22.8</td>
<td>19.4</td>
<td>22.8</td>
<td>14.7</td>
</tr>
<tr>
<td>04</td>
<td>17.0</td>
<td>16.5</td>
<td>4.5</td>
<td>18.5</td>
<td>28.1</td>
<td>23.9</td>
<td>28.1</td>
<td>20.4</td>
</tr>
<tr>
<td>06</td>
<td>15.9</td>
<td>15.4</td>
<td>4.5</td>
<td>18.5</td>
<td>30.1</td>
<td>25.6</td>
<td>30.1</td>
<td>20.4</td>
</tr>
<tr>
<td>08</td>
<td>12.5</td>
<td>12.1</td>
<td>4.5</td>
<td>18.5</td>
<td>26.4</td>
<td>22.4</td>
<td>26.4</td>
<td>20.4</td>
</tr>
<tr>
<td>10</td>
<td>5.1</td>
<td>5.0</td>
<td>3.6</td>
<td>14.0</td>
<td>21.0</td>
<td>20.4</td>
<td>24.0</td>
<td>20.4</td>
</tr>
<tr>
<td>12</td>
<td>4.0</td>
<td>16.0</td>
<td>4.0</td>
<td>16.0</td>
<td>18.0</td>
<td>15.3</td>
<td>18.0</td>
<td>16.0</td>
</tr>
<tr>
<td>14</td>
<td>3.6</td>
<td>14.0</td>
<td>3.6</td>
<td>14.0</td>
<td>13.8</td>
<td>11.7</td>
<td>14.0</td>
<td>14.0</td>
</tr>
<tr>
<td>16</td>
<td>3.1</td>
<td>11.5</td>
<td>3.1</td>
<td>11.5</td>
<td>12.0</td>
<td>10.2</td>
<td>12.0</td>
<td>11.5</td>
</tr>
<tr>
<td>18</td>
<td>2.3</td>
<td>7.5</td>
<td>2.3</td>
<td>7.5</td>
<td>10.8</td>
<td>9.2</td>
<td>10.8</td>
<td>9.2</td>
</tr>
<tr>
<td>20</td>
<td>2.0</td>
<td>6.0</td>
<td>2.0</td>
<td>6.0</td>
<td>12.0</td>
<td>10.2</td>
<td>12.0</td>
<td>10.2</td>
</tr>
<tr>
<td>22</td>
<td>11.2</td>
<td>10.9</td>
<td>3.7</td>
<td>14.5</td>
<td>20.9</td>
<td>17.8</td>
<td>20.9</td>
<td>17.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time, GCT</th>
<th>Median E_F, control point B'</th>
<th>E_F-2000-muf, I zone, control point B'</th>
<th>E_F-2000-muf, I zone, control point B'</th>
<th>Combined muf, control points B' and B'</th>
<th>Combined owl, control points B' and B'</th>
<th>Muf, for transmission path</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>4.3</td>
<td>17.5</td>
<td>14.6</td>
<td>17.5</td>
<td>17.5</td>
<td>17.5</td>
</tr>
<tr>
<td>02</td>
<td>4.1</td>
<td>16.5</td>
<td>17.3</td>
<td>14.7</td>
<td>16.5</td>
<td>16.5</td>
</tr>
<tr>
<td>04</td>
<td>4.1</td>
<td>16.5</td>
<td>18.1</td>
<td>15.4</td>
<td>18.1</td>
<td>18.1</td>
</tr>
<tr>
<td>06</td>
<td>4.0</td>
<td>18.0</td>
<td>18.3</td>
<td>15.6</td>
<td>18.3</td>
<td>18.3</td>
</tr>
<tr>
<td>08</td>
<td>3.3</td>
<td>12.5</td>
<td>14.0</td>
<td>11.9</td>
<td>14.0</td>
<td>14.0</td>
</tr>
<tr>
<td>10</td>
<td>3.1</td>
<td>11.5</td>
<td>9.7</td>
<td>8.2</td>
<td>11.5</td>
<td>11.5</td>
</tr>
<tr>
<td>12</td>
<td>3.1</td>
<td>11.5</td>
<td>7.8</td>
<td>6.6</td>
<td>11.5</td>
<td>11.5</td>
</tr>
<tr>
<td>14</td>
<td>3.1</td>
<td>11.5</td>
<td>9.1</td>
<td>7.7</td>
<td>11.5</td>
<td>11.5</td>
</tr>
<tr>
<td>16</td>
<td>4.0</td>
<td>16.0</td>
<td>14.1</td>
<td>12.0</td>
<td>16.0</td>
<td>16.0</td>
</tr>
<tr>
<td>18</td>
<td>4.2</td>
<td>17.0</td>
<td>16.9</td>
<td>14.4</td>
<td>17.0</td>
<td>17.0</td>
</tr>
<tr>
<td>20</td>
<td>4.7</td>
<td>19.5</td>
<td>17.6</td>
<td>15.0</td>
<td>19.5</td>
<td>19.5</td>
</tr>
<tr>
<td>22</td>
<td>4.7</td>
<td>19.5</td>
<td>17.2</td>
<td>14.6</td>
<td>19.5</td>
<td>19.5</td>
</tr>
</tbody>
</table>
FIG. 2. GREAT CIRCLE CHART, CENTERED ON EQUATOR, WITH SMALL CIRCLES INDICATING DISTANCES IN KILOMETERS.
Fig. 3. DIAGRAM OF TRANSMISSION PATH AUXILIARY TO EXPLANATION OF USE OF DISTANCE-BEARING NOMOGRAM, FIG. 4.
Fig. 4. NOMOGRAM (AFTER D'OCAIGNE) FOR OBTAINING GREAT-CIRCLE DISTANCES, BEARINGS, LATITUDE AND LONGITUDE OF TRANSMISSION CONTROL POINTS, SOLAR ZENITH ANGLES.
CONVERSION SCALE FOR VARIOUS DISTANCE UNITS.
Fig. 5. F_2 ZERO-MUF, IN Mc, W ZONE, PREDICTED FOR MAY, 1945.
Fig 6. \(F_2 \) 4000-MUF, IN Mc, W ZONE, PREDICTED FOR MAY, 1945.
Fig. 7. \(F_2 \) ZERO-MUF, IN Mc, I ZONE, PREDICTED FOR MAY, 1945.
Fig. 8. F_2 4000-MUF, IN Mc, I ZONE, PREDICTED FOR MAY, 1945.
Fig. 9. F_2 ZERO-MUF, IN Mc, E ZONE, PREDICTED FOR MAY, 1945.
Fig. II. E-LAYER 2000—MUF, IN Mc, PREDICTED FOR MAY, 1945.
Fig. 12. MEDIAN f_{E5}, IN Mc, PREDICTED FOR MAY, 1945.
FIG. 13. NOMOGRAM FOR TRANSFORMING F_2—ZERO—MUF AND F_2—4000—MUF TO EQUIVALENT MAXIMUM USABLE FREQUENCIES AT INTERMEDIATE TRANSMISSION DISTANCES; CONVERSION SCALE FOR OBTAINING OPTIMUM WORKING FREQUENCIES.
FIG. 14. NOMOGRAM FOR TRANSFORMING E-LAYER 2000-MUF TO EQUIVALENT MAXIMUM USABLE FREQUENCIES AND OPTIMUM WORKING FREQUENCIES DUE TO COMBINED EFFECT OF E LAYER AND F, LAYER AT OTHER TRANSMISSION DISTANCES.
Fig. 15. PERCENTAGE OF TIME OCCURRENCE FOR E_s IN EXCESS OF 15 Mc, PREDICTED FOR MAY, 1945.
Fig. 16. ABSORPTION INDEX CHART (EXCLUDING AURORAL ABSORPTION) FOR MAY.
IRPL REPORTS

Daily:
Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data from various places.
Radio disturbance warnings.

Semimonthly:
IRPL-J. Radio Propagation Forecast.

Monthly:
IRPL-D. Basic Radio Propagation Predictions—Three months in advance.
IRPL-E. Discontinued.
IRPL-F. Ionospheric Data.

Bimonthly:
IRPL-G. Correlation of D. F. Errors With Ionospheric Conditions.

Quarterly:
IRPL-A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific.
IRPL-B. Recommended Frequency Bands for Submarines in the Pacific.
IRPL-K. Best Radio Frequencies for Aircraft and Ground Stations in the Atlantic.

Semiannual:

Special Reports, etc.:
IRPL-C1 through C61. Reports and papers of the International Radio Propagation Conference, 17 April to 5 May 1944.
IRPL-R. Unscheduled reports:
R1. Maximum Usable Frequency Graph Paper.
R2 and R3. Obsolete.
R5. Criteria for Ionospheric Storminess.
R6. Experimental studies of ionospheric propagation as applied to a navigation system.
R7. Further studies of ionospheric propagation as applied to a navigation system.
R8. The Prediction of Usable Frequencies Over a Path of Short or Medium Length, Including the Effects of Es.
IRPL-T. Reports on Tropospheric Propagation.
T1. Radar Operation and Weather. (Superseded by JANP 101.)
T2. Radio coverage and weather. (Superseded by JANP 102.)