Basic Radio Propagation Predictions

FOR NOVEMBER 1954

Three Months in Advance

Issued August 1954

CRPL Series D Number 120
The Central Radio Propagation Laboratory

The propagation of radio waves over long distances depends on their reflection from the ionosphere, the electrically conducting layers in the earth's upper atmosphere. The characteristics of these layers are continually changing. For regular and reliable communication, it is therefore necessary to collect and analyze ionospheric data from stations all over the world in order that predictions of usable frequencies between any two places at any hour can be made. During the war, the United States Joint Communications Board set up the Interservice Radio Propagation Laboratory at the National Bureau of Standards to centralize ionospheric work and predictions for the Armed Forces of the United States.

On May 1, 1946, this activity returned to peacetime status as the Central Radio Propagation Laboratory of the National Bureau of Standards. Designed to act as a permanent centralizing agency for propagation predictions and studies, analogous in the field of radio to the reports of the Weather Bureau in the field of meteorology, the Central Radio Propagation Laboratory was established in cooperation with the many Government agencies vitally concerned with communication and radio propagation problems. These agencies are represented on an Executive Council which guides the work of the Laboratory; included are the Department of the Army, Department of the Navy, Department of the Air Force, Civil Aeronautics Administration, Federal Communications Commission, Department of State, Coast Guard, Coast and Geodetic Survey, and the Weather Bureau. In addition, industry is represented by a member of the Institute of Radio Engineers and a member of the Radio Manufacturers Association, while the Carnegie Institution of Washington serves in an advisory capacity and the Research and Development Board has designated an observer.

The Central Radio Propagation Laboratory receives and analyzes data from approximately 75 stations located throughout the world, including 11 domestic and 7 overseas stations which are operated either directly or under contract by the National Bureau of Standards. Ionospheric data and predictions are disseminated to the Armed Forces, commercial users, scientists, and laboratories. The basic ionospheric research of the Laboratory includes theoretical and experimental studies of maximum usable frequencies, ionospheric absorption, long-time variations of radio propagation characteristics, the effects of the sun on radio propagation, and the relation between radio disturbance and geomagnetic variation. In the microwave field, the Laboratory is investigating the relation between radio propagation and weather phenomena, as well as methods by which predictions can be made and radio communications improved in this portion of the radio-frequency spectrum. Another phase of the Laboratory's work is the development and maintenance of standards and methods of measurement of many basic electrical quantities throughout the entire frequency spectrum.

Basic Radio Propagation Predictions

The CRPL Series D, Basic Radio Propagation Predictions, is issued monthly as an aid in the determination of the best sky-wave frequencies over any path at any time of day for average conditions for the month of prediction, 3 months in advance. Charts of extraordinary-wave critical frequency for the F_2 layer, of maximum usable frequency for a transmission distance of 4,000 km, and of percentage of time occurrence for transmission by sporadic E in excess of 15 Mc, for a distance of 2,000 km, are included.
Introduction

The CRPL-D series, "Basic Radio Propagation Predictions," issued by the National Bureau of Standards, contains contour charts of F_2-zero-MUF and F_2-4000-MUF for each of the three zones, W, I, and E, into which the world is divided for the purpose of taking into consideration the variation of the characteristics of the F_2 layer with longitude (figs. 1 to 6); the world-wide contour chart of E-2000-MUF (fig. 7); the contour chart of median f_{Es} (fig. 8); and the chart showing percentage of time occurrence for Es-2000-MUF in excess of 15 Mc (fig. 9).

Methods for using these charts are given in Circular 465 of the National Bureau of Standards, entitled "Instructions for the Use of Basic Radio Propagation Predictions," and available from the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C., price 30 cents (foreign, 40 cents). Requests for this manual and for the basic predictions from members of the Army, Navy, or Air Force should be sent to the proper service address as follows. For the Army: Office of the Chief Signal Officer, Department of the Army, Washington 25, D. C., Attention: SIGOL-2. For the Navy: The nearest Registered Publication Issuing Office. For the Air Force: Director of Communications, Department of the Air Force, Washington 25, D. C., Attention: AFOAP.

Following figure 9 of each issue, sets of auxiliary figures (nos. 1, 2, 11, 12 of NBS Circular 465) or forms CRPL-AF and AH are given in rotation, two in each issue of CRPL Series D. They are necessary or useful for the preparation of tables and graphs of MUF and FOT (OWF), as explained in NBS Circular 465.

The charts in this issue were constructed from data through May 1954, together with the predicted smoothed 12-month running-average Zürich sunspot number 10 centered on November 1954.

Attention is invited to the blank form at the end of this publication, for use in reporting the accuracy of the predictions of MUF and FOT (OWF) as given in this report. Communications should be addressed to Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.

Information concerning the theory of radio-wave propagation, measurement technics, structure of the ionosphere, ionospheric variations, prediction methods, absorption, field intensity, radio noise, lowest required radiated power and lowest useful high frequency is given in Circular 462 of the National Bureau of Standards, "Ionospheric Radio Propagation." This circular is available from the Superintendent of Documents, price $1.00 (foreign, $1.25).
FIG. 2. F2-4000-MUF, IN Mc, W ZONE, PREDICTED FOR NOVEMBER 1954
FIG 4 F2-4000-MUF, IN Mc, I ZONE, PREDICTED FOR NOVEMBER 1954
FIG 5 F2-ZERO-MUF, IN Mc, E ZONE, PREDICTED FOR NOVEMBER 1954
FIG 6 F2-4000-MUF, IN Mc, E ZONE, PREDICTED FOR NOVEMBER 1954
FIG. 7. E-2000-MUF, IN Mc, PREDICTED FOR NOVEMBER 1954
FIG 8 MEDIAN fEs, IN Mc, PREDICTED FOR NOVEMBER 1954
FIG 9. PERCENTAGE OF TIME OCCURRENCE FOR Es-2000-MUF IN EXCESS OF 15 Mc, PREDICTED FOR NOVEMBER 1954
NOMOGRAM FOR TRANSFORMING F_2-ZERO-MUF AND F_2-4000-MUF TO EQUIVALENT MAXIMUM USABLE FREQUENCIES AT INTERMEDIATE TRANSMISSION DISTANCES, CONVERSION SCALE FOR OBTAINING OPTIMUM TRAFFIC FREQUENCY (FOT).

FOR VALUES OF MUF GREATER THAN 35 MUF, MULTIPLY ALL MUF AND FOT SCALES BY 2.
Example shown by dashed lines:
Distance = 500 Kilometers
2000 km E muf = 20 Mc
Combined E and F\(_2\) Layer muf = 6.4 Mc

NOMOGRAM FOR TRANSFORMING E-LAYER 2000-MUF TO EQUIVALENT MAXIMUM USABLE FREQUENCIES AND OPTIMUM TRAFFIC FREQUENCIES DUE TO COMBINED EFFECT OF E LAYER AND F\(_2\) LAYER AT OTHER TRANSMISSION DISTANCES.
Form for Report to CRPL on Accuracy of Predictions

Name __________________________ Date __________________________

Address __________________________
No. __________________ Street __________________ City __________________ P.O. Zone __________________ State __________________ Country __________________

From (between) __________________________ to (and) __________________________ Date __________________________

<table>
<thead>
<tr>
<th>Time (specify zone)</th>
<th>Frequency Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Series Predicted FOT (OWF)</td>
<td>Regular Layers</td>
</tr>
<tr>
<td>D-Series Predicted FOT (OWF) Including Es</td>
<td></td>
</tr>
</tbody>
</table>

Further comment (including notes on quality of communication):
CRPL Reports

[A detailed list of CRPL publications is available from the Central Radio Propagation Laboratory upon request]

Daily:
Radio disturbance forecasts, every half hour from broadcast stations WWV and WWVH of the National Bureau of Standards.
Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Semiweekly:
CRPL—J. North Atlantic Radio Propagation Forecast (of days most likely to be disturbed during following month).
CRPL—Jp. North Pacific Radio Propagation Forecast (of days most likely to be disturbed during following month).

Seminomonthly:
CRPL—Ja. Semimonthly Frequency Revision Factors For CRPL Basic Radio Propagation Prediction Reports.

Monthly:

CRPL—F. Ionospheric Data. Limited distribution. This publication is in general disseminated only to those individuals or scientific organizations which collaborate in the exchange of ionospheric, solar, geomagnetic or other radio propagation data or in exchange for copies of publications on radio, physics and geophysics for the CRPL library.

Circulars of the National Bureau of Standards pertaining to Radio Sky Wave Transmission:

The publications listed above may be obtained without charge from the Central Radio Propagation Laboratory, unless otherwise indicated.