

National Bureau of Standards Library, E-01 Admin. Bldg.

OCT 6 1981

191132

QC 100 .u5753 NBS TECHNICAL NOTE 952

U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards

Designs for the Calibration of Standards of Mass

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards¹ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the Office of Experimental Technology Incentives Program.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, and the following center and divisions:

Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Center for Radiation Research — Laboratory Astrophysics² — Cryogenics² — Electromagnetics² — Time and Frequency².

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials, the Office of Air and Water Measurement, and the following divisions:

Analytical Chemistry — Polymers — Metallurgy — Inorganic Materials — Reactor Radiation — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services developing and promoting the use of available technology; cooperates with public and private organizations in developing technological standards, codes, and test methods; and provides technical advice services, and information to Government agencies and the public. The Institute consists of the following divisions and centers:

Standards Application and Analysis — Electronic Technology — Center for Consumer Product Technology: Product Systems Analysis; Product Engineering — Center for Building Technology: Structures, Materials, and Safety; Building Environment; Technical Evaluation and Application — Center for Fire Research: Fire Science; Fire Safety Engineering.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Institute consist of the following divisions:

Computer Services — Systems and Software — Computer Systems Engineering — Information Technology.

THE OFFICE OF EXPERIMENTAL TECHNOLOGY INCENTIVES PROGRAM seeks to affect public policy and process to facilitate technological change in the private sector by examining and experimenting with Government policies and practices in order to identify and remove Government-related barriers and to correct inherent market imperfections that impede the innovation process.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

Office of Standard Reference Data — Office of Information Activities — Office of Technical Publications — Library — Office of International Standards — Office of International Relations.

¹ Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.

² Located at Boulder, Colorado 80302.

Designs for the Calibration of Standards of Mass

OF STANDARDS LIPPIRY AUG 23 1978 not 1930 ac 100 UJ 753 00952 1978 7.2

STATIONAL BUREAU

+ Technical note

J. M. Cameron, M. C. Croarkin, and R. C. Raybold

Institute for Basic Standards National Bureau of Standards Washington, D.C. 20234

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary Dr. Sidney Harman, Under Secretary U.S. NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

National Bureau of Standards Technical Note 952

Nat. Bur. Stand. (U.S.), Tech. Note 952, 64 pages (June 1977)

CODEN: NBTNAE

U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1977

by

J. M. Cameron, M. C. Croarkin, R. C. Raybold
Office of Measurement Services
Institute for Basic Standards
National Bureau of Standards

This report presents a collection of designs for the intercomparison of sets of weights for use in precision calibration of standards of mass. These include a number of previously unpublished designs which have an additional weight in each set to serve as the check standard for monitoring the performance of the weighing process. Also included are the classical designs of Benoit and Hayford. The complete least squares analysis is presented in integer form (i.e., with a common division) for the most widely used designs; and for the others, the standard deviations are given for various weight combinations when used as an ascending or as a descending series. Designs for sets of nominally equal objects, the 2 2 . . . 1 1 . . . series, the binary sequences, the 5 2 2 1 1 series, and the 5 3 2 1 1 and some miscellaneous series are given.

Key Words: Design of experiments, least squares, mass calibration, statistical design, weighing design

INTRODUCTION

Calibration of a set of weights consists of assigning values for the unknown weights in terms of the known mass of one or more standards. For high precision work, this involves the use of the balance as a comparator which measures the difference between two objects (or two groups of objects) which must have nominally the same mass because of the small "on-scale" range of the comparator. In deriving units which are subdivisions of the basic unit or multiples thereof, a variety of different weighing sets have been used because of convenience or other practical considerations. A typical set is the 5 3 2 1 series which bridges the range from 10 to 1. In this paper, designs are presented

for sets of weights of the same nominal size, for the most common subdivisions currently in use, and for a miscellaneous group included for completeness. In most cases, the designs provide for a check standard, treated as an additional unknown weight, to be used for monitoring the performance of the measuring process.

Precision weighing is usually done by some form of transposition weighing on a two-pan balance and by substitution methods on a one-pan balance. Matters relating to weighing procedures are discussed in [8, 9]. For the purposes of this report, it will be assumed that a well behaved comparator is available and that measurements of differences in the mass of two objects or groups of objects are corrected for air buoyancy effects and other environmental or procedural factors. It is further assumed that the measurements are uncorrelated in the statistical sense and all are of equal precision. (These latter two assumptions are non-trivial and special care has to be taken to insure their validity so that the random error component of the uncertainty is properly evaluated.)

NEED FOR A CHECK STANDARD

In a calibration laboratory, it is necessary to have checks on the measurement process to provide assurance that the process measures what it was intended to measure and that it does so with a nearly constant precision [10]. A direct check on the limiting mean of the measurement process is provided if a known weight is calibrated regularly as if it were an unknown test weight. If the value obtained for the weight differs from its accepted value by an amount larger than can be accounted for by the imprecision of measurement, then the process

would be regarded as being out of control. One is saying that if he cannot calibrate his own weight correctly, he can have little confidence in the values for the calibration of unknown weights derived from the same data.

There is another equally important reason for routine calibration of the same weight—the results on it provide the true measure of the variability of the process. In the course of a year the weighings would have been done under diverse weighing conditions and, hence, the sequence of values would reflect the actual variability of the process—variability which may not be reflected in the internal agreement of one series of measurements.

If an unknown test weight was repeatedly measured, one would expect variability similar to that shown by the check standard. If one has a single measurement on an unknown, it would be like a random selection from the sequence. From the sequence of values on the check standard, one can establish limits to the variability of the process and, because of the equivalence in the method of measurements for both the standard and the unknown, one can legitimately transfer the properties of this sequence to the unknowns.

To establish that the measurement process is in control requires also that the measurements be internally consistent within the limits of random error. If more weighings are made than there are unknowns, then there will be a "closure" error because the values for the observations calculated from "best" values for the weights will differ from that actually observed. The standard deviation computed from these deviations can be tested against the long-run value of this process parameter.

In summary then, the schedule of measurements for calibration should include provision for a check standard and also for within-run redundancy. The decision as to which one of a number of possible schedules or designs to use for intercomparison of a set of weights depends on items such as the variance associated with individual weights or combinations thereof. The least squares analysis from which the values for the weights and their variances are calculated is presented in the next section.

LEAST SQUARES ANALYSIS

We begin then with a set of n observations, y_1, y_2, \dots, y_n involving k objects whose values, $\beta_1, \beta_2, \dots, \beta_k$ are to be determined. The set of observations can be represented by the equations for their expected values, $E(y_i)$,

$$E(y_1) = x_{11}\beta_1 + x_{12}\beta_2 \cdot \cdot \cdot x_{1k}\beta_k$$

$$E(y_2) = x_{21}\beta_1 + x_{22}\beta_2 \cdot \cdot \cdot x_{2k}\beta_k$$
(1)

•

•

$$E(y_n) = x_{n1}\beta_1 + x_{n2}\beta_2 \cdot \cdot \cdot x_{nk}\beta_k$$

or in matrix form $E(y) = X\beta$ where the element, x_{ij} , of the X matrix is 0 if the weight is absent, and 1 or -1 depending on the direction of the comparison. In this note we shall adopt the convention of using just the signs so that, for example, all possible comparisons (ignoring direction) of 4 nominally equal objects will have the representation

In the least squares analysis one forms the normal equations

$$x'x\beta = x'y$$

where the entries in X'X are merely the sums of squares and sums of cross products of the columns of X. In the above case, one gets

$$\begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ -1 & -1 & -1 & 3 \end{bmatrix} \hat{\beta} = \begin{bmatrix} y_1 + y_2 + y_3 \\ -y_1 + y_4 + y_5 \\ -y_2 - y_4 + y_6 \\ -y_3 - y_5 - y_6 \end{bmatrix}$$

where $\hat{\beta}$ is the column vector with elements $\hat{\beta}_1$, $\hat{\beta}_2$, $\hat{\beta}_3$, $\hat{\beta}_4$, the caret being used to denote the fact that the values are functions of the observations, and not the sought-after values, $\hat{\beta}$.

It can easily be verified in this case that the system of equations is not of full rank (e.g., the column totals are zero) and this is a property of all designs where only differences are measured. In mass calibration, one has one or more standards whose value can be taken as known and these provide the restraint on the system needed to give a unique set of answers. Usually these involve a starting kilogram or a unique summation such as 5 + 3 + 2 which has been determined in a previous series or is the initial unit value for an ascending series such as the 1, 2, 3, 5 series. One can write the restraint* in the form

$$r_1^{\beta_1} + r_2^{\beta_2} + \dots + r_k^{\beta_k} = m$$
 (2)

and use the method of Lagrangian multipliers (with multipliers 2λ) to minimize the function

^{*}In all cases treated here a single restraint is sufficient. See Zelen [12] and Goldman and Zelen [6] for a discussion of the general case.

$$\Phi = \Sigma (\text{deviations})^2 + 2\lambda (r_1 \beta_1 + \dots + r_k \beta_k - m)$$
 (3)

The normal equations now contain an additional "unknown," namely λ and written out in full are as follows:

$$\Sigma x_1^2 \hat{\beta}_1 + \Sigma x_1 x_2 \hat{\beta}_2 \cdot \cdot \cdot \Sigma x_1 x_k \hat{\beta}_k + r_1 \lambda = \Sigma x_1 y$$

$$\Sigma x_2 x_1 \hat{\beta}_1 + \Sigma x_2^2 \hat{\beta}_2 \cdot \cdot \cdot \Sigma x_2 x_k \hat{\beta}_k + r_2 \lambda = \Sigma x_2 y$$

$$(4)$$

•

•

.

$$\sum_{k} x_{1} \hat{\beta}_{1} + \sum_{k} x_{2} \hat{\beta}_{2} \dots \sum_{k} x_{k} \hat{\beta}_{k} + r_{k} \lambda = \sum_{k} x_{k} y$$

$$r_{1} \hat{\beta}_{1} + r_{2} \hat{\beta}_{2} \dots r_{k} \hat{\beta}_{k} = m$$

where

$$\sum_{i} x_{i} = \sum_{k=1}^{n} x_{ik} x_{jk}$$

$$\sum x_{i}y = \sum_{k=1}^{n} x_{ik}y_{k}$$

or in matrix notation

$$\begin{bmatrix} X^{\dagger}X & r \\ r^{\dagger} & o \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \lambda \end{bmatrix} = \begin{bmatrix} X^{\dagger}Y \\ m \end{bmatrix}$$
 (5)

The solution may be written out formally as follows:

$$\begin{bmatrix} \hat{\beta} \\ \lambda \end{bmatrix} = \begin{bmatrix} C & h \\ h' & o \end{bmatrix} \begin{bmatrix} X'y \\ m \end{bmatrix} = \begin{bmatrix} CX' & h \\ h'X' & o \end{bmatrix} \begin{bmatrix} y \\ m \end{bmatrix}$$
 (6)

where $r' = (r_1 r_2 ... r_k)$.

To facilitate computation it is convenient to have the values, $\hat{\beta}$, written out as linear functions of the y's and m, i.e., $\hat{\beta} = [CX', h][Y]$. This leads to a set of multipliers of the observations of the form

$$\hat{\beta}_{1} = g_{11}y_{1} + g_{12}y_{2} \cdot \cdot \cdot g_{1n}y_{n} + h_{1}m$$
(7)

$$\hat{\beta}_{k} = g_{k1}^{y_1} + g_{k2}^{y_2} \dots g_{kn}^{y_n} + h_{k}^{m}$$

These multipliers, g_{ij} and h_{i} , are given in Appendix B in transposed form for some of the designs. The matrix C is important because the variances and covariances of the estimates are given by

Variance
$$(\hat{\beta}_{i}) = C_{ij}\sigma^{2}$$
, Covariance $(\hat{\beta}_{i}, \hat{\beta}_{j}) = C_{ij}\sigma^{2}$ (8)

The quantity, σ^2 , is the variance (square of the long run value of the standard deviation) associated with the process. In a set of n observations on k items and r=1 restraints one has n-k+r=n-k+1 degrees of freedom for a standard deviation, s, formed by

$$s^{2} = \frac{1}{n - k + 1} \sum_{i=1}^{n} \left(\text{deviations} \right)_{i}^{2}$$

$$(\text{deviation})_{i} = y_{i} - (x_{i1}\hat{\beta}_{1} + x_{i2}\hat{\beta}_{2} \cdot ... \cdot x_{ik}\hat{\beta}_{k})$$

$$(9)$$

One can write these deviations as a function of the observations by noting that the predicted values are just $x\hat{\beta}$ and the deviations are thus

$$dev = y - x\hat{\beta} = y - x[CX',h] \begin{bmatrix} y \\ m \end{bmatrix} = y - [XCX',0] \begin{bmatrix} y \\ m \end{bmatrix}$$

$$= [I-XCX']y$$
(10)

which can be written as

$$dev_{1} = d_{11}y_{1} + d_{12}y_{2} \cdot \cdot \cdot d_{1n}y_{n}$$

$$dev_{n} = d_{n1}y_{1} + d_{n2}y_{2} \cdot \cdot \cdot d_{nn}y_{n}$$

$$(11)$$

The array of coefficients, d i, is given in Appendix B for some of the designs.

Weights are often used in combination and one needs to know the standard deviation for the various sums. For a sum of two items, $\hat{\beta}_i$ and $\hat{\beta}_i$, one has

$$\operatorname{Var}(\hat{\beta}_{i} + \hat{\beta}_{j}) = \operatorname{Var}(\hat{\beta}_{i}) + \operatorname{Var}(\hat{\beta}_{j}) + 2\operatorname{Cov}(\hat{\beta}_{i}, \hat{\beta}_{j})$$

and for a linear combination

$$L = \ell_1 \hat{\beta}_1 + \ell_2 \hat{\beta}_2 \dots \ell_k \hat{\beta}_k$$

$$Variance (L) = \ell' C \ell \sigma^2$$
(12)

where $\ell' = (\ell_1, \ell_2, \ldots, \ell_k)$, C comes from the inverse of the matrix of normal equations [see equation (6)]. In Appendix A each design has a list of the factors D_i for computing the standard deviations for all usual weight combinations, L_i where $Variance(L_i) = D_i^2 \sigma^2$.

DESIGNS FOR WEIGHING

The criteria for good weighing designs depend to some extent on the use intended for the resulting values. For example, if the weights are to be used independently of each other, then one would want the standard deviation $[\sigma\sqrt{C_{ii}}]$ from formula (8)] for the value for each unknown weight to be the minimum possible. If the weights are to be used in combination, then one wants the variance of all appropriate linear functions to be as small as possible.

Further, the desirability of a design depends somewhat on the restraint being used. In some cases, one's judgment of a design changes depending on whether one starts with a summation as known (e.g., 5 + 3 + 2) and works down, or with a unit as known and works up (e.g., by use of a 1, 2, 3, 5 series). For a given number of measurements

only a finite set of possible designs exist for a series and only occasionally is one of these designs uniformly and undeniably "best".

The designs are grouped into categories in Appendix A: A. Designs for Nominally Equal Groups, B. Designs for the 2 2 . . . 1 1 . . . Series, C. The 5, 3, 2, 1 and 5, 2, 2, 1 Series, D. Binary and Miscellaneous Series, and E. Designs for Direct Reading. The two most widely known collections of weighing designs are those of Hayford [7] and Benoit [1] which, although they do not make provision for a check standard, are listed in this appendix. In Appendix B the complete analysis is given for five of the most commonly used designs. For the others, the complete analysis is on file with the authors, and the factors for computing the standard deviations for different weight combinations are given in Appendix A.

A. DESIGNS FOR NOMINALLY EQUAL GROUPS

A.1 All distinct intercomparisons. If k weights are to be intercompared by measuring the difference between weights of the k(k - 1)/2 distinct pairings, then a general analysis can be written out as a function of the number of weights that are regarded as known and used as the restraint. The inverse of the normal equations with the sum of the first m of the k weights taken as known is as follows:

$$\begin{bmatrix} kI-J & -J & \frac{1}{2} \\ -J & kI-J & 0 \\ \frac{1}{2} & 0 & 0 \end{bmatrix} = \frac{1}{mk} \begin{bmatrix} mI-J & 0 & k\frac{1}{2} \\ 0 & mI+J & k\frac{1}{2} \\ k\frac{1}{2} & k\frac{1}{2} & 0 \end{bmatrix}$$
(13)

where $\frac{1}{2}$ = (1, 1, . . . 1) and J is a matrix of all ones and the matrices on the diagonal are of dimension mxm, $(k-m) \times (k-m)$, and 1×1 .

Thus the standard deviation of the value for weights within the restraint is $\sigma\sqrt{\frac{m-1}{mk}}$ and for the unknowns, $\sigma\sqrt{\frac{m+1}{mk}}$. The standard deviation of a sum of h unknowns is $\sigma\sqrt{\frac{h(h+m)}{mk}}$.

The $\hat{\beta}_i$ are given by

$$\hat{\beta}_{i} = \frac{T_{i}}{k} - \frac{\sum_{k=1}^{m} T_{i}}{mk} + \frac{K}{m}$$
 for weights within restraint
$$\hat{\beta}_{i} = \frac{T_{i}}{k} + \frac{\sum_{k=1}^{m} T_{i}}{mk} + \frac{K}{m}$$
 for unknown weights

where T_i is the sum of the y values involving β_i in the positive sense minus the sum of y values involving β_i in the negative sense (e.g., if $E(y) = \beta_i - \beta_j$, then y would be added to T_i but subtracted from T_j), and K is the value of the restraint $(\sum_{i=1}^{m} \beta_i - K)$.

The standard deviation s is given by

$$s^{2} = \frac{2}{(k-1)(k-2)} \{\Sigma dev^{2}\}$$

$$= \frac{2}{(k-1)(k-2)} \{\Sigma y_{i}^{2} - \frac{\Sigma T_{i}^{2}}{k}\}$$
(15)

Designs for which a linear drift with time is balanced out are also included (see [4] for details of the analysis).

A.2 Subsets of all distinct intercomparisons. For large k (say $k \ge 6$) the number of possible pairings becomes large enough that the time involved in completing the measurements leads to a degradation of the precision as environmental changes, operator, fatigue, etc., become important. For that reason, subsets of the k(k-1)/2 pairings are used to form the design.

In some of the designs the sum of all weights is taken as the restraint. This is appropriate when the design is used to monitor within group behavior. In others, there is an implied grouping into two classes the sum for one of which is taken as the restraint.

A.3 <u>Designs involving grouping of weights</u>. When differences between groups of two or more weights are measured, a reduction in the variance of the values can be achieved in comparison with an equal number of differences between single weights. However, for large k the problems of identifying and handling the groupings may outweigh the possible gain in efficiency. Bose and Cameron [2, 3] have tabulated all designs up to k=13 and give methods of construction for $k \leq 50$, for the special case of designs balanced so that all weights appear equally often with each other on the same pan and a similar property holds for their occurrence in opposite pans. Partially balanced designs have been developed by Suryanarayana and Chakravarti [5, 11].

B. DESIGNS FOR THE 2 2 . . . 1 1 1 . . . SERIES

When weights of nominal size 1 and 2 are involved, the construction and analysis of the designs does not possess the simplicity and symmetry of the case of all equal weights. The designs given under Section B in Appendix A are a listing of those in common use. It is not known how close they are to an "optimum" design.

C. THE 5,3,2,1 AND 5,2,2,1 SERIES

The most commonly used sequences for weight sets are the 5,3,2,1 and the 5,2,2,1. These series permit one to achieve nominal values from one to ten and are the basic series for calibrating weight sets from 1 kilogram down to one milligram. The designs with the check standard [C2, C10] are the ones used for all the calibrations of such series at the National Bureau of Standards, and the complete analysis for each of these two designs is given in Appendix B. A complete example from mass calibration at NBS is given for the 5,3,2,1,1,1 series on page 14.

D. BINARY AND MISCELLANEOUS SERIES

Binary series used for pound sets and some other miscellaneous series used at NBS are included for completeness.

E. DESIGNS FOR DIRECT READING WITH CONSTANT LOAD

When a single pan balance is used as a direct reading device, the time required to complete a set of measurements can be greatly reduced, often with a significant reduction in the variance associated with the measurements. To eliminate the effects of a linear drift in the measurements, the set of weighings are repeated in reverse order, e.g., A,B,C,D,D,C,B,A for the four nominally equal weights A, B, C, and D. The designs are, of course, applicable for groups of weights which are nominally equal as shown in the tables for the 5,2,2,1 series.

An example is given of the use of these direct reading designs in mass calibration on page 17.

TREND ELIMINATION

When responses are time dependent due to temperature and atmospheric changes, proper ordering can make the values for the weights independent of any drift effect. The designs A.1.3, A.2.5, A.2.2, A.2.4, E.1, and E.2 have this property. If one wishes to use the trend eliminating property of the design (they are valid as given, of course), then one can account for a drift effect of the form . . -3Δ , -2Δ , $-\Delta$, 0, Δ , 2Δ , 3Δ . . . if n is odd or by . . -5Δ , -3Δ , $-\Delta$, Δ , 3Δ , 5Δ . . . if n is even. This will not change the computations for the weights or their variances. However, the degrees of freedom are reduced by one and the deviations will be different. An example of this usage is Design E.1 given in Tables 9 and 10. See [4] for details of the analysis.

EXAMPLE OF CALIBRATION DESIGN IN MASS CALIBRATION

As an example of the calibration process employed in the mass laboratory at NBS, consider six weights (50, 30, 20, 10, 10 and 10 grams) which are to be calibrated using Design C.2. The complete analysis for this design is given in Table 5 in Appendix B.

The sum of the 50, 30 and 20 gram weights, estimated from a previous series, forms the restraint, and one of the 10 gram weights is an NBS standard.

If the calibration is done as a double substitution weighing on a one pan balance, the given observations after converting the balance readings to milligrams are:

$$y_1 = .370$$

$$y_2 = -.499$$

$$y_3 = -.074$$

$$y_A = -.079$$

$$y_5 = .395$$

$$y_6 = .395$$

$$y_7 = -.454$$

$$y_8 = .405$$

$$Y_{q} = .495$$

$$y_{10} = .095$$

$$y_{11} = .490$$

The restraint given is m = 0.862

Denote the value of the correction to nominal size of the weights 50, 30, 20, 10, 10 and 10 grams by β_1 , . . . β_6 respectively. Using

the multipliers given under "Parameter Values,"

the least squares estimates of the $\beta_{\mbox{\scriptsize i}}$'s as functions of the observations are:

$$\hat{\beta}_{1} = \frac{1}{920} \left\{ 100 \left(y_{1} + y_{2} + y_{3} + y_{4} \right) + 60 y_{5} - 20 \left(y_{6} + y_{7} + y_{8} + y_{9} + y_{10} + y_{11} \right) + 460 m \right\} = .395$$

$$\hat{\beta}_{2} = \frac{1}{920} \left\{ -68 \left(y_{1} + y_{2} + y_{3} + y_{4} \right) - 4 y_{5} + 124 \left(y_{6} + y_{7} + y_{8} \right) - 60 \left(y_{9} + y_{10} + y_{11} \right) + 276 m \right\} = .254$$

$$\hat{\beta}_{3} = \frac{1}{920} \left\{ -32 \left(y_{1} + y_{2} + y_{3} + y_{4} \right) - 56 y_{5} - 104 \left(y_{6} + y_{7} + y_{8} \right) + 80 \left(y_{9} + y_{10} + y_{11} \right) + 184 m \right\} = .213$$

$$\hat{\beta}_{4} = \frac{1}{920} \left\{ 119 y_{1} + 4 y_{2} - 111 y_{3} + 4 y_{4} - 108 y_{5} + 128 y_{6} - 102 \left(y_{7} + y_{8} \right) - 125 \left(y_{9} + y_{10} \right) - 10 y_{11} + 92 m \right\} = .069$$

$$\hat{\beta}_{5} = \frac{1}{920} \left\{ -111 y_{1} + 119 y_{2} + 4 \left(y_{3} + y_{4} \right) - 108 y_{5} - 102 y_{6} + 128 y_{7} - 102 y_{8} - 125 y_{9} - 10 y_{10} - 125 y_{11} + 92 m \right\} = .357$$

$$\hat{\beta}_{6} = \frac{1}{920} \left\{ 4 y_{1} - 111 y_{2} + 119 y_{3} + 4 y_{4} - 108 y_{5} - 102 \left(y_{6} + y_{7} \right) + 128 y_{8} - 10 y_{9} - 125 \left(y_{10} + y_{11} \right) + 92 m \right\} = .070$$

Note that $\hat{\beta}_1$, $\hat{\beta}_2$ and $\hat{\beta}_3$ necessarily sum to m.

Similarly,
$$\text{dev}_2 = -.001$$

 $\text{dev}_3 = -.003$
 $\text{dev}_4 = -.007$
 $\text{dev}_5 = -.005$
 $\text{dev}_6 = -.002$
 $\text{dev}_7 = .001$
 $\text{dev}_8 = .007$
 $\text{dev}_9 = -.006$
 $\text{dev}_{10} = .021$
 $\text{dev}_{11} = -.010$

The standard deviation for this calibration is

$$s = \{\frac{1}{6} \sum_{i=1}^{L} dev_i^2\}^{\frac{1}{2}} = .013$$

and would be used as an estimate of the process standard deviation if that were not already established.

From the "Inverse" of normal equations we can compute the variance for each estimate or linear combination in terms of the process standard deviation σ_{\bullet} For example,

$$\begin{split} v\,(\hat{\beta}_1) &= \frac{50}{920} \,\sigma^2 \\ v\,(\hat{\beta}_2) &= \frac{82}{920} \,\sigma^2 \\ v\,(\hat{\beta}_3) &= \frac{64}{920} \,\sigma^2 \\ v\,(\hat{\beta}_1 + \hat{\beta}_2) &= \frac{1}{920} \,\{50 \,+\, 82 \,-\, 34 \,-\, 34\}\sigma^2 \,=\, \frac{64}{920}\sigma^2 \end{split}$$

The usual correction for buoyancy has not been applied to these data for the purpose of this example since all the weights have the same density with the exception of the check standard.

EXAMPLE OF DIRECT READING DESIGN

In order to eliminate time dependency in a mass series, a schedule was developed as in Table 10 in Appendix B which balances out the drift effect. In this example, the corrections to four kilogram weights are to be computed using n = 8 observations. Since n is even, the drift can be represented by -7Δ , -5Δ , -3Δ , $-\Delta$, Δ , 3Δ , 5Δ , 7Δ . In addition to four parameter values, β_1 , β_2 , β_3 and β_4 , for the weights and Δ for drift, a value for the tare weight T is computed. T always appears negatively in the design because a direct reading is actually the difference between the unknown weight and the tare weight in the balance.

The correction to the third weight is taken as known, namely m = 11.906, and assuming for the purpose of this example, that any effects due to temperature or air density are negligible, the observations are:

 $y_1 = 39.112$

 $y_2 = 44.697$

 $y_3 = 38.655$

 $y_A = 44.150$

 $y_5 = 44.150$

 $y_6 = 38.685$

 $y_7 = 44.778$

 $y_{R} = 39.207$

Using the multipliers given under "Parameter Values" in Table 10, the least squares estimates of the parameters are given by:

$$\hat{\beta}_{1} = \frac{1}{2}(y_{1} - y_{3} - y_{6} + y_{8}) + m = 12.3955$$

$$\hat{\beta}_{2} = \frac{1}{2}(y_{2} - y_{3} - y_{6} + y_{7}) + m = 17.9735$$

$$\hat{\beta}_{3} = m = 11.9060$$

$$\hat{\beta}_{4} = \frac{1}{2}(-y_{3} + y_{4} + y_{5} - y_{6}) + m = 17.3860$$

$$\hat{T} = \frac{1}{2}(-y_{3} - y_{6}) + m = -26.7640$$

$$\hat{\Delta} = \frac{1}{168}(-7y_{1} - 5y_{2} - 3y_{3} - y_{4} + y_{5} + 3y_{6} + 5y_{7} + 7y_{8}) = .0069$$

Associated variances in terms of the process standard deviation $\boldsymbol{\sigma}$ are as follows:

$$V(\hat{\beta}_1) = \sigma^2$$

$$V(\hat{\beta}_2) = \sigma^2$$

$$V(\hat{\beta}_3) = 0$$

$$V(\hat{\beta}_4) = \sigma^2$$

$$V(\hat{\Upsilon}) = \frac{1}{2} \sigma^2$$

$$V(\hat{\Delta}) = \frac{1}{168} \sigma^2$$

The deviations or differences between the observed and calculated values can be computed using the multipliers under "Deviations" in Table 10. For example,

$$dev_5 = -.007$$
 $dev_6 = -.006$
 $dev_7 = .006$
 $dev_8 = -.001$

The standard deviation s for this experiment is

$$s = \{\frac{1}{3} \sum_{i=1}^{8} dev_i^2\}^{1/2} = .009$$

and would be used in an F-test to verify that this run had a standard deviation consistent with the process standard deviation σ .

APPENDIX A

LIST OF DESIGNS

A. Designs for Nominally Equal Groups

A.1 All Distinct Intercomparisons

A.1.1.
$$k = 3$$
 $n = 3$

*A.1.2.
$$k = 4$$
 $n = 6$

A.1.3.
$$k = 4$$
 $n = 8$ (Cameron-Hailes)
Trend Elimination

A.1.4.
$$k = 5$$
 $n = 10$

A.1.5.
$$k = 5$$
 $n = 10$ (Cameron-Hailes)
Trend Elimination

A.1.6.
$$k = 6$$
 $n = 15$

A.2 Subsets of All Distinct Intercomparisons

A.2.1
$$k = 6$$
 $n = 8$

A.2.2
$$k = 6$$
 $n = 12$ Trend Elimination

A.2.3
$$k = 7$$
 $n = 10$

A.2.4
$$k = 7$$
 $n = 14$ Trend Elimination

A.2.5
$$k = 8$$
 $n = 8$

A.2.6
$$k = 8$$
 $n = 12$

A.2.7
$$k = 8$$
 $n = 15$

A.2.8
$$k = 8$$
 $n = 16$ Trend Elimination

A.2.9
$$k = 9$$
 $n = 12$

A.2.10
$$k = 10$$
 $n = 10$

A.2.11
$$k = 10$$
 $n = 12$

A. 2.12
$$k = 10$$
 $n = 15$

^{*}Complete analysis for 1,1,1,1 design given in Tables 1 and 2 in Appendix B.

A.3 Designs Involving Grouping of Weights. v = no. of weights in each group.

A.3.1
$$k = 6$$
 $n = 10$ $v = 3$ (Bose-Cameron)

A.3.2
$$k = 6$$
 $n = 15$ $v = 2$ (Bose-Cameron)

A.3.3
$$k = 7$$
 $n = 7$ $v = 3$ (Bose-Cameron)

A.3.4
$$k = 8$$
 $n = 7$ $v = 4$ (Bose-Cameron)

A.3.5
$$k = 8$$
 $n = 14$ $v = 2$ (Bose-Cameron)

A.3.6
$$k = 9$$
 $n = 9$ $v = 4$ (Bose-Cameron)

A.3.7
$$k = 9$$
 $n = 12$ $v = 3$ (Bose-Cameron)

B. 2,2, . . . , 1,1, . . . Designs

B.1 2,1,1,1
$$k = 4$$
 $n = 6$

B.2
$$2,1,1,1,1$$
 $k = 5$ $n = 13$

*B.3 2,2,1,1
$$k = 4$$
 $n = 6$

B.4
$$2,2,1,1,1$$
 $k = 5$ $n = 10$

B.5
$$2,2,1,1,1,1$$
 $k = 6$ $n = 15$

B.6
$$2,2,1,1,1,1,1$$
 $k = 7$ $n = 10$

B.7
$$2,2,1,1,1,1,1,1$$
 $k = 8$ $n = 16$

B.8
$$2,2,2,1,1,1$$
 $k = 6$ $n = 12$

B.9
$$(2,2,2,1,1,1)$$
 $k = 6$ $n = 15$

B.10 2,2,2,1,1,1,1
$$k = 7$$
 $n = 12$

B.11 2,2,2,2,1,1
$$k = 6$$
 $n = 11$

^{*}Complete analysis for 2,2,1,1 design is given in Tables 3 and 4 in Appendix B.

C. 5,3,2,1 and 5,2,2,1 Series

C.1
$$5,3,2,1,1$$
 $k = 5$ $n = 8$ (Hayford)

*C.2 5,3,2,1,1,1
$$k = 6$$
 $n = 11$

C.3
$$5,3,2,2,1,1$$
 $k = 6$ $n = 11$

C.4
$$5,3,2,2,1,1$$
 $k = 6$ $n = 12$

C.5
$$5,5,3,2,1,1$$
 $k = 6$ $n = 12$

C.6
$$5,5,3,2,1,1,1$$
 $k = 7$ $n = 15$

C.7
$$5,2,1,1,1$$
 $k = 5$ $n = 7$ (Hayford)

C.8
$$5,2,2,1,1$$
 $k = 5$ $n = 7$ (Hayford)

C.9
$$5,2,2,1,1$$
 $k = 5$ $n = 8$ (Benoit)

**C.10 5,2,2,1,1,1
$$k = 6$$
 $n = 8$

D. Binary and Miscellaneous Series

D.1
$$4,2,2,1,1$$
 $k = 5$ $n = 6$

D.2
$$4,2,2,1,1$$
 $k = 5$ $n = 10$

D.3
$$4,2,2,1,1$$
 $k = 5$ $n = 11$ (Benoit)

D.4
$$4,2,2,1,1,1$$
 $k = 6$ $n = 10$

D.5
$$4,4,2,1,1$$
 $k = 5$ $n = 9$ (Benoit)

D.6
$$4,4,2,2,1,1$$
 $k = 6$ $n = 9$

D.7
$$4,4,2,2,1,1,1$$
 $k = 7$ $n = 14$

^{*}Complete analysis for 5,3,2,1,1,1 design in Tables 5 and 6 in Appendix B.

^{**}Complete analysis for 5,2,2,1,1,1 design in Tables 7 and 8 in Appendix B.

D.8	4,3,2,1,1	k = 5	n = 8	(Hayford)
D.9	4,3,2,1,1	k = 5	n = 9	(Benoit)
D.10	10,4,3,2,1,1	k = 6	n = 10	(Hayford)
D.11	10,5,2,1,1,1	k = 6	n = 8	(Hayford)
D.12	10,5,2,2,1,1	k = 6	n = 8	(Hayford)
D.13	10,5,3,2,1,1	k = 6	n = 10	(Hayford)
D.14	5,4,3,2,1	k = 5	n = 7	(Hayford)
D.15	10,5,4,3,2,1	k = 6	n = 10	(Hayford)
D.16	6,5,4,3,2,1	k = 6	n = 9	(Hayford)
D.17	10.6.5.4.3.2.1	k = 7	n = 12	(Havford)

E. Direct Readings

* E.1	4 nominally equal weights	Trend elimination
E.2	2,2,1,1	Trend elimination

^{*}Complete analysis for direct reading design 1,1,1,1 is given in Tables 9 and 10 in Appendix B.

Description of Designs

Each design lists k, the number of weights; n, the number of measurements; and d.f., the degrees of freedom associated with the standard deviation.

The identification or nominal size of each weight β_1 is given next to the heading "Observations." Y(1), Y(2), . . . denotes the measurements where + indicates the weight is present positively, and - indicates the weight is present negatively.

For example, Design A.1.1 involves three equal weights. If used as a starting design for a 1 kg to 1 mg set, the three weights would be kilograms, and the first observation Y(1) would be the difference between the first and second kilograms.

Two restraints are listed although others are possible. Usually "Restraint A" is appropriate for descending series involving, for example, 5 + 3 + 2 which would be calibrated as a "Ten" weight in the higher series involving 50, 30, 20, 10. For ascending series, "Restraint B" is usually a single unit weight.

In the case of three equal weights, Restraint A takes the sum of two kilograms as known; Restraint B takes the single third weight as the reference standard.

"Factors for Computing Standard Deviations" give the multipliers needed to calculate the standard deviations of linear combinations of the weights.

"Wt" identifies the total weight combination or load L, where

$$L_{i} = \sum_{j=1}^{k} \ell_{i} \beta_{i}, \ell_{j} = 0 \text{ or } 1$$

The next two columns under Restraints A and B list the factors $D_{\underline{i}}$ where $D_{\underline{i}}$ is calculated so that

$$Variance(L_{i}) = D_{i}^{2}\sigma^{2}$$

The remaining columns, under the nominal sizes of the weights, show the actual weights involved in the combinations, i.e. a + indicates $\ell_i = 1$ and a blank indicates $\ell_i = 0$.

Selection of the Appropriate Design

The selection of the appropriate design is usually dictated by the set of weights to be calibrated and the reference standards one has available. There is occasionally some flexibility as, for example, if one were working up from 1 kg to 100 kg from a single reference kilogram. If either the 1,1,1,1,2 Series (Design B.2) or the 1,1,1,2,2 Series (Design B.4) were usable one would make the decision on the basis of the standard deviation of Σ 5, the 5 kg summation. In design B.2 the factor for computing the standard deviation is 1.6733, whereas in B.4 it is 2.1909. [Even if one compares the two standard deviations on an equal number of observation basis (n = 13 vs. n = 10) one would have 1.6733 vs. 1.9215 (= 2.1909 $\sqrt{10/13}$)]. The advantage clearly is with design B.2 because in the next series, Σ 5, 5, 5, 10, the uncertainty associated with the starting standard Σ 5 is smaller.

When the standard deviation for the weight combinations of interest (computed using the standard deviation associated with the measurement process) exceeds the tolerance given by the requirements, then one has to consider the feasibility of repeating a design to reduce the standard deviation factors by $\frac{1}{\sqrt{2}}$ (or $\frac{1}{\sqrt{n}}$ if n repetitions are made).

```
RESTRAINT B
                   Α
                                В
               .7071
                            .0000
               .4082
                            ·816S
                                                                                               FACTORS FOR COMPUTING ST DEVS
               .4082
                            .8165
         1
                                                                                                         RESTRAINTS
         2
               .0000
                          1.4142
                                           +
               .7071 1.4142
                                           +
                                                                                                        .5204
                                                                                                                     .0000
                                                                                                 1
                                                                                                        .5204
                                                                                                                     •645S
                                                                                                 1
                                                                                                        .3227
                                                                                                                     ·S774
                                                                                                 1
                                                                                                                     -6455
                                                                                                        .3227
                                                                                                 2
                                                                                                        .0000
                                                                                                                    1.0408
                                                                                                                                    +
                                                                                                 3
                                                                                                        ·S204
                                                                                                                    1.5275
                                                                                                                                    +
                                                                                                        .8165
                                                                                                                   1.5275
                                                                                                *See page 13.
                                                                                      DESIGN A.1.4 FIVE EQUAL WEIGHTS K= S
N=10
D.F.= 6

OBSERVATIONS 1 1 1 1 1 1
Y(1) + -
Y(2) + -
Y(3) + -
Y(4) + -
Y(5) + -
Y(6) + -
Y(7) + -
Y(8) + -
Y(10) + -
Y(10) + -

RESTRAINT A + +

RESTRAINT B +

FACTORS FCR COMPUTING ST DEVS
WT RESTRAINTS
A B 1 1 1 1 1 1
1 .S477 .0000 +
1 .5477 .632S +
1 .3162 .6325 +
1 .3162 .6325 +
1 .3162 .6325 +
2 .0000 1.0954 +
3 .S477 1.S492 + +
4 .8944 2.0000 + + + +
5 1.2247 2.0000 + + + +
*********************************
                                    FOUR EQUAL WEIGHTS
                                                                            K= 4
       DESIGN A.1.2
                                                                            N= 6
                                                                       D.F.= 3
       OBSERVAT 10NS
                                      1
                                             1
             Y(1)
             Y(2)
              Y(3)
              Y(4)
              Y(5)
              Y(6)
       RESTRAINT A
       RESTRAINT B
       FACTORS FCR COMPUTING ST DEVS
                 RESTRAINTS
       WT
                   Α
                                В
                                           1
                                                  1
                                                         1
                                                               1
               .6124
                            .0000
               .6124
                            .7071
               ·3S36
                            .7071
               .3536
                            .7071
               .0000
                           1.2247
               .6124
                          1.7321
             1.0000 1.7321
```

K= 3

N= 3

D.F.= 1

THREE EQUAL WEIGHTS

DESIGN A.1.1

CESERVATIONS

Y(1) Y(2)

Y (3)

DESTRAINT A

RESTRAINT B

WT

FACTORS FOR COMPUTING ST DEVS

RESTRAINTS

DES1 GN A . 1 . 3

DESERVATIONS

Y(1)

Y(2) Y(3)

Y(4) Y(5)

Y(6)

Y(7) Y(8) 1

FOUR EQUAL WEIGHTS

TREND ELIMINATION *

(CAMERON-HAILES)

1

K= 4

N= 8

D . F .= S

DES	IGN A . 1 . 5		FIVE TREN (CAM	D E	L1M	INAT	ION		OE	5 I GN	A • 2 • I		51×	EQU	AL V	vE ! G⊦	TS	0.	K= N= .F.=	8
CES	EFVATIONS	5 1	I	1	1	1			08	SERVA	T10N5	1	1	1	I	1	1			
	Y(I)	+	-							Y(1)	+		-						
	Y(2)		+	-						Y(2)	+			-					
	Y(3)			+	-					Y (3)	+				-				
	Y(4)				+	-				Y (4)	+					-			
	Y(5)	-				+				Y(5)		+	-						
	Y(6)	-			+					Y(6)		+		-					
	Y(7)		+		-					¥(7)		+			-				
	Y(8)		-			+				Y (8)		+				-			
	Y(9)			+		-														
	Y(10)	+		-					RE	5TRA1	NT A	+	+							
RES'	TRAINT A	+	+						RE	STRAI	NT B	+	+	+	+	+	+			
	TRAINT 8		•			. *			FA WT		RESTR		ING							
WT	TORS FCR		ING	51	DEVS	•			<i>i</i> .		Α	В		1	1	1	1	1	1	
w t	A	RA1NTS B							I		071	.6236							+	
1	•5477	.0000		1	1	1	1	1	1		071 071	.6236 .6236						+		
I		.6325						*	1		071	.6236					+			
1		.6325				_	-				536	.4249			+	_				
1		•6325			+	•			1		536	.4249		+	•					
1	_	.6325		+	•				a a		000	.4714		+	+					
2		1.0954		+	+						071	.7071		+	+	+				
3		1.5492		+	+	+			4		000	.7454		+	+	+	+			
4		2.0000		+	+	+	+		5		247	•6236		+	+	+	+	+		
5	I •2247	2.0000		+	+	+	+	+	6		142	.0000		+	+	+	+	+	+	
*See	page 13.																			
			-		222	-	222				-		122	222	227		227	222	227	100

DESI	GN A . 1 . 6	5	S	IX	EQU	AL W	EIGH	TS		K=	6
										N=	15
									0	.F .=	10
OBSE	EVATION:	c	1	1	1	1	1	I			
	Y(I)		+	_		•	1	1			
	Y(2)		+	_	_						
	Y(3)				_	_					
	Y(4)		· +				_				
	Y(5)						_	_			
	Y(6)				_						
	Y(7)			+		_					
	Y(8)			+			-				
	Y(9)			+				_			
	Y(10)				+	_					
	Y(11)				+		_				
	Y(12)				+			_			
	Y(13)					+	_				
	Y (14)					+		_			
	Y(15)						+	-			
	,										
REST	RAINT A		+	+							
REST	RAINT 8							+			
FACT	ORS FCR	СОМ	UTI	NG	ST	DEV5					
WT	REST	RAIN	15								
	A		В		I	1	ı	1	I	1	
1	.5000	.00	000							+	
1	.5000	• 5	774						+		
1	•5000	• 5	774					+			
1	.5000	• 5	774				+				
1	.2887	•5	774			+					
1	.2887	• 57	774		+						
2	-0000	1.00	000		+	+					
3	.5000	1.4			+	+	+				
4	.8165	1.8			+	+	+	+			
	1.1180		_		+	+	+	+	+		
€	1.4142	2.23	361		+	+	+	+	+	+	

0 - 0	1GN A . 2 .				UAL EL1M				N= K≖
			1111			I IVA I	10.4		.F.=
0ES	ERVAT10N	5 1	I	1	1	1	1		
	Y(1)	+		-					
	Y(2)	-			+				
	Y(3)			+		-			
	Y(4)		+				-		
	Y(5)		-			+			
	Y(6)				-		+		
	Y(7)		-	+					
	¥(8)		+		-				
	Y(S)			-			+		
	A(10)	-				+			
	Y(11)	+					-		
	Y(12)				+	-			
RES	TRAINT A	+	+						
RES	TRAINT 3						+		
FAC	TCRS FCR	COMPUT	ING	ST	CE VS	5			
NT.		RAINTS							
	A	В		1	1	1	1	1	1
1	.5401	.0000)			_			+
1	.5401	.7071						+	
I	.5401	.6455					+		
1	.5401	.6455				+			
1	•353€	.6455			+				
1	•3536	.6455		+					
2	.000c	1.0801		+	+				
3	.540I	1.5546		+	+	+			
3	. 8165	2.0000		+	+	+	+		
4							4	4	
_	1.1365	2 • 5495		+	+	-		-	

DESIGN A . 2 . 3	,	SEVE	EN E	QU AL	WE1	GHTS		κ=	7	DESIGN A . 2	• 5	E 1 GHT	E QUAL	. WEI	GHTS		K=	8	
							_	N=1								0.1	N= F.=		
							υ.	F.=	4							0.		•	
DESERVATIONS	1	1	1	1	1	1	1			CESERVAT IC	NS I	1 :	1 1	1	1	1	1		
Y(I)	+		-							Y(1)	+			-					
Y(2)	+			-						Y(2)	+				-				
Y(3)	+				-					Y(3)		+				_	_		
Y(4)	†					_	_			Y(4)		Τ.					_		
Y(5)	•		_				_			Y(5)				_					
Y(6) Y(7)		+		_						Y(6) Y(7)			+		-				
Y(8)		+			_					Y(8)			+			-			
Y(9)		+				-				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
Y(10)		+					-			RESTRAINT	A +	+ +	+ +						
RESTRAINT A	+	+								RESTRAINT	в +	+	+ +	+	+	+	+		
RESTRAINT B	+	+	+	+	+	+	+				D 604041		T 05 W	_					
										FACTORS FO	TRAINTS	ING S	I DE V	5					
FACTORS FOR	COMPUT	1NG	ST	DEVS						Α	В	1	1	1	1	1	1	1	1
WT RESTR	RAINTS									1 .8660	.8101	l							+
Α	В		1	1	1	I	1	1	1	1 .8660		1						+	
1 •7071	•6389								+	1 .8660							+		
1 .7071	.6389							+		1 .8660						+			
1 .7071	.6389						+			1 .7906					+				
1 •7071	•6389					+				1 •7906 1 •7906				•					
1 •7071	.6389 .3886			+	+					1 .7906									
1 •3162 1 •3162	• 3886		+	•						2 .7071			+						
2 .0000	.4518		+	+						3 •7906			+	+					
3 •7071	.7284		+	+	+					4 .0000			+	+	+				
4 1.0000	.8207		+	+	+	+				5 •8660	•9520	+ (+	+	+	+			
5 1.2247	.7954		+	+	+	+	+			6 1.2247	1.060	7 +	+	+	+	+	+		-
6 1.4142	•6389	,	+	+	+	+	+	+		7 1.3229			+	+	+	+	+	+	
7 1.5811	.0000)	+	+	+	+	+	+	+	8 1.4142	•0000	+	+	+	+	+	+	+	+
		222			755	777	111	9.9.9				72/2/2		1222	222		222	222	

DESIGN A . 2 . 4						GHTS		K=	7	DESIGN A.2		EIGHT					K=	8	
DESIGN A.2.4				QUAL L IM I			0	N= 1	7								K= N=1	8	
DESIGN A.2.4							D.		7								K=	8	
		TRE	ND E	LIMI	NATI	ON *		N= 1	7	DESIGN A • 2	•6	EIGHT		L WEI			K= N=1	8	
OESERVAT I CNS							D •	N= 1	7	DESIGN A.2	•6	EIGHT	E QU A	L WEI	GHTS	D •	K= N=1 F•=	8	
OESERVATIONS		TRE	ND E	LIMI	NATI	ON *		N= 1	7	DESIGN A.2 OBSERVATION	6 INS 1	EIGHT	E QU A	L WEI	GHTS	D •	K= N=1 F•=	8	
OESERVATIONS Y(I) Y(2)		TRE	ND E	LIMI	NATI	ON *		N= 1	7	DESIGN A.2	6 INS 1	EIGHT	E QU A	L WEI	GHTS	D •	K= N=1 F•=	8	
OESERVATIONS		TRE	ND E	LIMI	NATI	ON *		N= 1	7	DESIGN A.2 OBSERVATIO Y(1) Y(2)	0.6	EIGHT	E QU A	L WEI	GHTS	D •	K= N=1 F•=	8	
OESERVATIONS Y(I) Y(2) Y(3)		TRE	ND E	LIMI	NATI	ON *		N= 1	7	DESIGN A.2 OBSERVATION (1) (2) (2) (3)	6 INS 1	EIGHT	E QU A	L WEI	GHTS	D •	K= N=1 F•=	8	
OESERVATIONS Y(1) Y(2) Y(3) Y(4)		TRE	ND E	LIMI	NATI	ON *		N= 1	7	DESIGN A.2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6)	0.6	EIGHT	E QU A	L WEI	GHTS	D •	K= N=1 F•=	8	
OESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5)		TRE	ND E	LIMI	NATI	ON *		N= 1	7	DESIGN A.2 OBSERVATIO (1) (1) (2) (3) (4) (5) (6) (7)	0.6	EIGHT	E QU A	L WEI	GHTS	D •	K= N=1 F•=	8	
OESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8)		TRE	ND E	LIMI	NATI	ON *		N= 1	7	DESIGN A.2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8)	0.6	EIGHT	E QU A	L WEI	GHTS	D •	K= N=1 F•=	8	
OESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9)		TRE	ND E	LIMI	NATI	ON *		N= 1	7	DESIGN A.2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9)	0.6	EIGHT	E QU A	L WEI	GHTS	D •	K= N=1 F•=	8	
OESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10)		TRE	ND E	LIMI	NATI	ON *		N= 1	7	DESIGN A+2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10)	0.6	EIGHT	E QU A	L WEI	GHTS	D •	K= N=1 F•=	8	
OESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11)		TRE	ND E	LIMI	NATI	ON *		N= 1	7	DESIGN A.2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11)	0.6	EIGHT	E QU A	L WEI	GHTS	D •	K= N=1 F•=	8	
OESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12)		TRE	ND E	LIMI	NATI	ON *		N= 1	7	DESIGN A+2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10)	0.6	EIGHT	E QU A	L WEI	GHTS	D •	K= N=1 F•=	8	
OESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) Y(13)		TRE	ND E	LIMI	NATI	ON *		N= 1	7	DESIGN A.2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11)	0.6	EIGHT	E QU A	L WEI	GHTS	D •	K= N=1 F•=	8	
OESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) Y(13) Y(14)		TRE	ND E	LIMI	NATI	ON *		N= 1	7	DESIGN A.2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12)	NS 1 + + + + + + + + + + + + + + + + + +	EIGHT	E QU A	L WEI	GHTS	D •	K= N=1 F•=	8	
QESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) Y(13) Y(14) RESTRAINT A	+ +	1 - + + - +	1 - + -	1 - + -	NATI	ON *		N= 1	7	DESIGN A.2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) RESTRAINT	NS 1 + + + + + + + + + + + + + + + + + +	EIGHT	E QU A	L WEI	GHTS	D •	K= N=1 F•=	8	
OESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) Y(13) Y(14)		TRE	ND E	LIMI	NATI	ON *		N= 1	7	DESIGN A.2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) RESTRAINT	A + B +	+ + + + + +	E QU AI	1 -	GHTS	D •	K= N=1 F•=	8	
QESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) Y(13) Y(14) RESTRAINT A	+ +	1 - + + - +	1 - + -	1 - + -	NATI	ON *		N= 1	7	DESIGN A.2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) RESTRAINT RESTRAINT	A + B +	+ + + + + +	E QU AI	1 - + + S	1 -	D. 1	K= N=1 F.= 1	8 2 5 5	
OESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) Y(13) Y(14) RESTRAINT A	+ + +	1 - + + - + +	1 -++-	1 - + + - + +	1 - + + +	ON *		N= 1	7	DESIGN A.2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) RESTRAINT RESTRAINT	A + B +	+ + + + + + + + + + + + + + + + + + +	1 1 1	1 -	GHTS	D •	K= N=1 F•=	8	1
OESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) Y(13) Y(14) RESTRAINT A RESTRAINT B	+ + +	1 - + + - + +	1 -++-	1 - + + - + +	1 - + + +	ON *		N= 1	7	DESIGN A.2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(10) Y(11) Y(12) RESTRAINT RESTRAINT FACTORS F.	A + B + CR CDMPU STRAINTS B 8	+ + + + + + + + + + + + + + + + + + +	E QUAI	1 - + + S	1 -	D. 1	K= N=1 F.= 1	8 2 5 5	1 +
OESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) Y(13) Y(14) RESTRAINT A RESTRAINT B	5 1 + + + + + + CDMPUT	1 - + + - + +	1 -++-	1 - + + - + +	1 - + + +	ON *		N= 1	7 44 8	DESIGN A-2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(10) Y(11) Y(12) RESTRAINT RESTRAINT FACTORS F: WT RE: A I .707 1 .707	A + B + CR CDMPU STRAINTS B 1 .6449	+ + + + + + + + + + + + + + + + + + +	E QUAI	1 - + + S	1 -	D. 1	K= N=1 F.= 1	8 2 5 5	1 +
OESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) Y(13) Y(14) RESTRAINT A RESTRAINT B FACTORS FCR WT REST	5 1 + + + + + CDMPUT	1 - + + - + + + + + + + + + + + + + + +	1 -++	1 -++	1 -++	1 - + + - + +	+ + +	N=1	7 4 4 8	DESIGN A.2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(10) Y(11) Y(12) RESTRAINT RESTRAINT FACTORS FI A I .707 1 .707 1 .707	A + ER CDMPU STRAINTS 1 6499 1 6649	+ + + + + + + + 5 5 5 5 5	E QUAI	1 - + + S	1 -	D. 1	K= N=1 F.= 1	8 2 5 5	1 +
OESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) Y(13) Y(14) RESTRAINT A RESTRAINT B FACTORS FCR WT REST A 1 •5694 1 •6157	5 1 + + + + + CDMPUT RAINTS B .44447	1 - + + - + + 77 ING	1 -++	1 -++	1 -++	1 - + + - + +	+ + +	N=1	7 44 8	DESIGN A.2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) RESTRAINT RESTRAINT FACTORS FI WT RESTRAINT 1 .707 1 .707 1 .707	A + + + + + + + + + + + + + + + + + + +	# + + + + + + + + + + + + + + + + + + +	E QUAI	1 - + + S	1 -	D. 1	K= N=1 F.= 1	8 2 5 5	1 +
OESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(10) Y(11) Y(12) Y(13) Y(14) RESTRAINT A RESTRAINT B FACTORS FOR WT REST	5 1 + + + + + COMPUT B .4447 .4444 .4444	1 - + + - + + 77 ING	1 -++	1 -++	1 -++	1 - + + - + +	+ + +	N=1	7 44 8	DESIGN A-2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(10) Y(11) Y(12) RESTRAINT RESTRAINT FACTORS FI WT A I .707 1 .707 1 .707 1 .707	A + B + CR CDMPU STRAINTS B 6499 1 649	# + + + + + + + + + + + + + + + + + + +	E QUAI	1 - + + S	1 -	D. 1	K= N=1 F.= 1	8 2 5 5	1 +
DESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) Y(13) Y(14) RESTRAINT A RESTRAINT B FACTORS FCR WT RESTRAINT B 1 .5694 1 .6157	CDMPUT RAINTS B .4447 .4447	1 - + + - + + 7 ING	1 -++	1 -++	1 -++	1 - + + - + +	+ + +	N=1	7 44 8	DESIGN A-2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(10) Y(11) Y(12) RESTRAINT RESTRAINT RESTRAINT FACTORS F. WT RESTRAINT 1 .707 1 .707 1 .707 1 .707 1 .707	A + B +	+ + + + + + + + + + 5 5 5 5 5 5 5 5 5 5	1 1 1 1	1 - + + S	1 -	D. 1	K= N=1 F.= 1	8 2 5 5	1 +
DESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) Y(13) Y(14) RESTRAINT A RESTRAINT B FACTORS FOR WT REST A 1 .5694 1 .6157 1 .6504 1 .6157 1 .6594	CDMPUT RAINTS 8 4444 4444 4444 4444	1 - + + - + + 777777777	1 -++	1 - + + OEVS	1 -++	1 - + + - + +	+ + +	N=1	7 44 8	DESIGN A-2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) RESTRAINT FACTORS FI WT RE: A I .707 1 .707 1 .707 1 .707 1 .707 1 .707 1 .707 1 .707	A + B + CR CDMPU STRAINTS B 649 1 649 1 649 1 649 7 360	+ + + + + + + + + + + + + + + + + + +	E QUAI	1 - + + S	1 -	D. 1	K= N=1 F.= 1	8 2 5 5	1 +
DESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) Y(13) Y(14) RESTRAINT A RESTRAINT B FACTORS FCR WT REST A 1 .5694 1 .6157 1 .6504 1 .6157 1 .5694 1 .6157	CDMPUT RAINTS B .4447 .4444 .4444	+ + + + + + + + + + + + + + + + + + +	1 -++	1 -++	1 -++	1 - + + - + +	+ + +	N=1	7 44 8	DESIGN A-2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) RESTRAINT RESTRAINT FACTORS F. WT RE: A I .707 1 .707	A + + + + + + + + + + + + + + + + + + +	# + + + + + + + + + + + + + + + + + + +	1 1 1 1 DEV	1 - + + S	1 -	D. 1	K= N=1 F.= 1	8 2 5 5	1 +
DESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(10) Y(11) Y(12) Y(13) Y(14) RESTRAINT A RESTRAINT B FACTORS FCR WT RESTRAINT B 1 .5694 1 .6157 1 .6504 1 .6157 1 .5694 1 .3231	CDMPUT RAINTS B .4447 .444 .444 .444	+ + + + + + + + + + + + + + + + + + +	1 -++	1 -++++++++++++++++++	1 -++	1 - + + - + +	+ + +	N=1	7 44 8	DESIGN A-2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(10) Y(11) Y(12) RESTRAINT RESTRAINT FACTORS F WT RESTRAINT 1 .707 1 .707 1 .707 1 .707 1 .707 1 .707 1 .707 1 .707 1 .288 1 .288 2 .000	A + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	1 1 1 1	1 - + + S	1 -	D. 1	K= N=1 F.= 1	8 2 5 5	1 +
DESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) Y(13) Y(14) RESTRAINT A RESTRAINT A RESTRAINT B FACTORS FCR WT REST. A 1 .5694 1 .6157 1 .6554 1 .6157 1 .6554 1 .3231 1 .3231 2 .0000	CDMPUT RAINTS 8 .4447 .4443 .4444 .4444 .4444	TREI 1 - + + - + + 7 ING	1 - + + - 1 + + + + + + + + + + + + + +	1 -++ DEVS 1 ++	1 -++	1 - + + - + +	+ + +	N=1	7 44 8	DESIGN A-2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) RESTRAINT RESTRAINT FACTORS FI A I .707 1 .707 1 .707 1 .707 1 .707 1 .707 1 .707 1 .288 1 .268 2 .000 3 .707	A + + + + + + + + + + + + + + + + + + +	EIGHT 1 + + + + + + + + + + + + + + + + + +	E QUAI	1 - + + S	1 -	D. 1	K= N=1 F.= 1	8 2 5 5	1 +
DESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) Y(13) Y(14) RESTRAINT A RESTRAINT B FACTORS FCR WT REST A 1 .5694 1 .6157 1 .6504 1 .6157 1 .5694 1 .3231 1 .3231 2 .0000 3 .5694	CDMPUT RAINTS B 4444 4444 4444 4444 6112	+ + + + + TING	1 -++	1 -++	1 -++	1 - + + - + +	+ + +	N=1	7 44 8	DESIGN A-2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) RESTRAINT RESTRAINT FACTORS FI WT RE: A I .707 1 .707 1 .707 1 .707 1 .707 1 .707 1 .707 1 .707 1 .288 1 .268 2 .000 3 .707 4 1.000	A + + + + + + + + + + + + + + + + + + +	EIGHT 1 + + + + + + + + + + + + + + + + + +	E QUAI	1 - + + S	1 -	D. 1	K= N=1 F.= 1	8 2 5 5	1 +
DESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(10) Y(11) Y(12) Y(13) Y(14) RESTRAINT A RESTRAINT B FACTORS FCR WT REST A 1 .5694 1 .6157 1 .6504 1 .6157 1 .5694 1 .6157 1 .5694 1 .3231 2 .0000 3 .5694 4 .9945	CDMPUT RAINTS B 4444 4444 4444 4444 -7111	1 - + + + + 7 ING 7 7 7 7 7 7 7 7 7 7 7 7 0 0 0 0	1 - + + - 1 + + + + + + + + + + + + + +	1 -++++++	1 -++	1 - + + - + +	+ + +	N=1	7 44 8	DESIGN A-2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(10) Y(11) Y(12) RESTRAINT RESTRAINT FACTORS F: WT RE: I .707 1 .707 1 .707 1 .707 1 .707 1 .288 1 .268 2 .000 3 .707 4 1.000 5 1.224	A + + + + + + + + + + + + + + + + + + +	EIGHT 1 + + + + + + + + + + + + + + + + + +	E QUAI	1 - + + S	1 -	D. 1	K= N=1 F.= 1	8 2 5 5	1 +
DESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(10) Y(11) Y(12) Y(13) Y(14) RESTRAINT A RESTRAINT B FACTORS FCR WT RESTRAINT B 1 .5694 1 .6157 1 .66504 1 .6157 1 .5694 1 .3231 2 .0000 3 .5694 4 .9945 5 1.4507	CDMPUTRAINTS B 4447 4444 4444 4444 66112 7111 66112	TREI 1 - + + + - + + TING 77777777777777777777777777777777777	1 -++	1 -+++++++++++++++++++++++++	1 -++	1 - + + - + +	+ + +	N=1	7 44 8	DESIGN A-2 OBSERVATION Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(10) Y(11) Y(12) RESTRAINT RESTRAINT RESTRAINT FACTORS FI WT A I .707 1 .707 1 .707 1 .707 1 .707 1 .707 1 .707 1 .707 1 .288 1 .288 1 .288 2 .200 3 .707 4 1.000 5 1.224 6 1.414	A + + + + + + + + + + + + + + + + + + +	EIGHT 1 + + + + + + + + + + + + + + + + + +	E QUAI	+ + + + + + + + + + + + + + + + + + +	1 -	D. 1	K= N=1 F.= 1	8 2 5 5	1 +
DESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) Y(13) Y(14) RESTRAINT A RESTRAINT B FACTORS FOR WT REST A 1 .5694 1 .6157 1 .6504 1 .6157 1 .6504 1 .3231 1 .3231 1 .3231 1 .3231 2 .0000 3 .5694 4 .9945 5 1.4507 6 1.8337	CDMPUT RAINTS B .4444 .444 .444 .444 .444 .6111 .7111 .6111 .444	TREI 1 - + + - + + 7 ING 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 -++	1 -++++++	1 -++	1 - + + - + +	+ + +	N=1	7 44 8	DESIGN A-2 OBSERVATION (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) RESTRAINT RESTRAINT RESTRAINT FACTORS FI WT A I .707 1 .707 1 .707 1 .707 1 .707 1 .707 1 .707 1 .707 1 .288 1 .288 1 .288 2 .000 3 .707 4 1.000 5 I.224 6 1.414	A + + + + + + + + + + + + + + + + + + +	EIGHT 1 + + + + + + + + + + + + + + + + + +	E QUAI	1 + S 1	1 -	D. 1	K= N=1 F.= 1	8 2 5 5	1 +
DESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(10) Y(11) Y(12) Y(13) Y(14) RESTRAINT A RESTRAINT B FACTORS FCR WT RESTRAINT B 1 .5694 1 .6157 1 .66504 1 .6157 1 .5694 1 .3231 2 .0000 3 .5694 4 .9945 5 1.4507	CDMPUT RAINTS B .4447 .4444 .4446 .6111 .7116 .6111 .444*	TREI 1 - + + - + + 7 ING 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 -++	1 -+++++++++++++++++++++++++	1 -++	1 - + + - + +	+ + +	N=1	7 44 8	DESIGN A-2 OBSERVATIO Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) RESTRAINT RESTRAINT FACTORS FI WT RE: A I .707 1 .707 1 .707 1 .707 1 .707 1 .707 1 .707 1 .288 1 .288 2 .000 3 .707 4 1.000 5 I.224 6 1.414 7 1.581	A + + + + + + + + + + + + + + + + + + +	EIGHT 1 + + + + + + + + + + + + + + + + + +	E QUAI	+ + + + + + + + + + + + + + + + + + +	1 -	D. 1	K= N=1 F.= 1	8 2 5 5	1 +

8 9 6		- + ++
Х Х . П П Н	→ 1+ +1	+ - + +++
•	→ (+)	+ + + + +
WE1GHTS ATION	- 1+ +1	+ + + + + +
WE I	± 1 + 1	+ + + + + + + + + + + + + + + + + + + +
EQUAL WEIGH	- 1 + + 1	DB
	→ 1 + + 1	+ + + + + + + + + + + + + + + + + + + +
E1GHT TREND	- 1+ +1 +1	+ 2
		COMPUTING AINTS A 4507 - 4507 - 4507 - 4507 - 4507 - 4507 - 4507 - 6731 - 6731 - 6731 - 6731 - 6731
DE51GN A.2.6	CBSERVATIONS Y(1) Y(2) Y(2) Y(3) Y(4) Y(4) Y(5) Y(6) Y(7) Y(1) Y(10) Y(12) Y(12) Y(12) Y(12) Y(12) Y(12) Y(12) Y(12) Y(12) Y(13) Y(14) Y(15) Y(16)	FACTORS FCR COMP WT S5590 . 455 1 . 5590 . 559 2 . 5590 . 559 3 . 5590 . 559 4 . 10526 . 559 5 . 10526 . 559 6 . 105748 . 559 6 . 105748 . 559 7 . 10526 . 559 8 . 105748 . 559 8 . 1

																					-	+														+
a ru	60																				-		+												+	+
* Z	II .	-				1					ı					1		+			-			+										+	+	+
	٥	-			1					1					1			+			-				+								+	+	+	+
WEIGHTS		-		,					1					ı				+			_					+						+	+	+	+	+
WEI		-		1				ı					ı					+			_						+				+	+	+	+	+	+
EQUAL		-	ı				ı					ı						+	DEVS		_							+		+	+	+	+	+	+	+
		-										+	+	+	+	+	+	+	5T C		_								+	+	+	+	+	+	+	+
E I GHT		-					+	+	+	+	+						+	+	ING																	
		-	+ -	+ +	+	+											+	+	COMPUT	INTS	œ	.5254	. 5254	.5254	.5254	.5254	.3992	.3992	3995	.4873	.4841	.6455	0969.	.6614	.5254	0000
2.7		CN5															⋖	ω	FOR C	O.		ı,	ď	4	4		_	_	_	_	0	4			7	
e N O		VATI	3	(2)		Y(5)	(9)	X(7)	Y(8)	(6)	Y(10)	Y(11)	Y(12)	5	Y(14)	(S1)A	AINT	AINT	ß	RE	۷	.5774	.577	.577	.577	.577	.365	.365	•365	.3651	.000	.577	.8165	.000	.154	_
DE516		CBSER	-	- >	- >	- >-	`	_	_	_	~		_				RESTRAINT	RESTR	FACTOR	F 3			-	-	-	-	-	-	_	2	(ייו			_	7 1	_

DESIGN A.2.10 TEN EQUAL WEIGHTS K=10 N=10 D.F.= 1	CBSERVATIONS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B R CO TRA1	
DESIGN A.2.9 NINE EQUAL WEIGHTS K= 9 N=12 D.F.= 4	CBSERVATIONS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	STRAINT A + STRAINT B + CTORS FCR COMP	#T RESTRAINTS A B B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

			→ +	+
	- 1 1 1	+	→ +	+ +
0 00 0	- I I I	+	- +	+ + +
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 1 1	+	- +	* * * *
D. O.	- ()	+	- +	
0	-1 ()	+	·	* * * * *
	- + + +		- +	* * * * * *
1	-		→ +	+ + + + + + +
,	* * *	+ +	DEV5	++++++
	+++	+ +	r + +	
	+++	+ +	Z	
	m + + +	+ +	COMPUTING A1NTS 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 0 0 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	ω Z	∢ 00	~	
	ATÍO 23) 33) 34) 55) 66) 60) 110) 111) 123)		# # # # # # # # # # # # # # # # # # #	6606 6606 5721 0000 6276 8385 0180
	OBSERVATIONS Y(2) Y(2) Y(3) Y(4) Y(6) Y(6) Y(7) Y(10) Y(10) Y(11) Y(113) Y(13) Y(13)	RESTRAINT	FACTORS 1 . 622 1 . 622	.657 .000 .62 .83
	O E S	RE51	F ACT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111141041414

X=10 X=10
A
T T T T T T T T T T T T T T T T T T T

<u> </u>
<u>~</u> + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + +
→
F O C A C A C A C A C A C A C A C A C A C
1 + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + +
- 2 4 ω α +
FRVATION Y(1) Y(2) Y(3) Y(4) Y(4) Y(7) Y(10)
CESEKVATI ((4) ((4) ((4) ((4) ((4) ((4) ((4) ((4

DES	IGN A . 3 . 1		SIX	EQU	AL WE	1 GH	TS		K=	6
									N=1	0
			(80	SE-C	AMERO	N)		D.	F.=	5
cese	ERVAT 10NS	1	1	1	1	1	1			
	Y(1)	+	-	-	+	-	+			
	Y(2)	-	+	-	-	+	+			
	Y(3)	+	-	+	-	-	+			
	Y(4)	-	+	-	+	-	+			
	Y(5)	-	-	+	-	+	+			
	Y(6)	+	-	-	+	+	-			
	Y(7)	+	+	-	-	+	-			
	Y(8)	+	+	+	-	-	-			
	Y(9)	-	+	+	+	-	-			
	Y(10)	-	-	+	+	+	-			
RES	TRAINT A	+	+							
RES	TRAINT 8						+			
EAC	TCRS FCR	COMPUT	1 NG	ST	DEVS					
WT		RAINTS	•							
	Δ.	8		1	1	1	1	1	1	
1	•3536	. 0000)						+	
1	•3536	.4082						+		
i	•3536	.4082					+			
1	.3536	.4082	2			+				
1	.2041	.4082			+					
1	.2041	.4082		+						
2	.00C0	.707	ı	+	+					
3	.3536	1.0000)	+	+	+				
4	.5774	1.291)	+	+	+	+			
5	.7906	1.581	ı	+	+	+	+	+		
6	1.0000	1.581	ı	+	+	+	+	+	+	

DES	IGN A	3.3		SEV	EN 6	EQUAL	WEI	GHTS		K=	7
										N=	7
				(80	SE-	CAMER	0N)		D.	F.=	1
C8S	ERVAT	LONS	1	1	1	1	1	1	1		
	Y(1)		+	+	-	+	-	-			
	Y(2)			+	+	-	+	-	-		
	Y(3)		-		+	+	-	+	-		
	Y(4)		-	-		+	+	-	+		
	Y(5)		+	-	-		+	+	-		
	Y(6)		-	+	-	-		+	+		
	Y(7)		+	-	+	-	-		+		
RES	TRAINT	ГА	+	+							
RES'	TRAINT	8							+		
EAC.	TORS F	CD.	COMOUT	T S N/C	c T	DEVIC					
WT			AINTS	ING	31	DE VS					
			8		1 .	1	1	1	1	1	1
1	•462		.0000	,	•	•	•	•	•	•	
1	.462		• 5345								•
1	. 462		•5345						+		
1	• 462	29	• 5345	,				+			
1	.462	9	•5345				+				
1	.267	' 3	• 5345	;		+					
1	.267	'3	.5345	,	+						
2	.000	0	•9258	3	+	+					
3	• 462	9	1.3093	1	+	+	+				
4	•755	9	1.6903	3	+	+	+	+			
5	1.035	_	2.0792	2	+	+	+	+	+		
6	1.309		2 • 4 4 9 5		+	+	+	+	+	+	
7	1.581	1 :	2.4495	,	+	+	+	+	+	+	+

DES	1GN A•3•2				JAL W	VE1GH	TS	Đ.	K= 6 N=15 •F•=10
oes	ERVATIONS	5 1	1	1	1	1	1		
	Y(1)	+	_		+		-		
	Y(2)		+	-		+	-		
	Y(3)	+		+	-		-		
	Y(4)		+		+	-	-		
	Y(5)	-		+		+	-		
	Y(6)	+	-	-			+		
	Y(7)		+	-	-		+		
	Y(8)			+	-	-	+		
	Y(9)	-			+	-	+		
	Y(10)		-			+	+		
	Y(11)	-	+	+	-				
	Y(12)		-	+	+	-			
	Y(13)	-		-	+	+			
	Y(14)	+	-		-	+			
	Y(15)	+	+	-		-			
RES	TRAINT A	+	+						
RES	TRAINT 8						+		
FAC	TORS FOR RESTA	COMPUT	1NG	sT	DE V S	S			
	A	8		1	1	1	1	1	1
1	•3536	.0000							+
1	•3536	.4082						+	
1	.3536	.4082					+		
1	•3536	.4082				+			
1	.2041	.4082			+				
1	.2041	•4082		+					
2	•0000	.7071		+	+				
3	•3536	1.0000		+	+	+			
4	.5774	1.2910		+	+	+	+		
5	•7906	1.5811		+	+	+	+	+	
6	1.0000	1 • 5811		+	+	+	+	+	+

DES	1GN A.3.	4	E1GH	T EQ	UAL	WE1	GHTS		K=	8	
									N=	7	
			(ease	E-CA	MER	(NC		D.	F.=	0	
ces	EFVAT1ON	S 1	1	1	1	1	1	1	1		
	Y(1)	+	+	+	+	-	-	-	-		
	Y(2)	+	+	-	-	+	+	-	-		
	Y(3)	+	-	+	-	+	-	+	-		
	Y(4)	+	+	-	-	-	-	+	+		
	Y(5)	+	-	+	-	-	+	-	+		
	Y(6)	+	-	-	+	*	-	-	+		
	Y(7)	+	-	-	+	-	+	+	-		
RES	TRAINT A	+	+								
RES	TRAINT 8								+		
FAC	TORS FOR	COMPUT	ING S	T DE	EVS						
WT	REST	RAINTS									
	A	В	1	. :	ı	1	1	1	1	1	1
1	•4330	~ 0000									+
1	.4330	.5000								+	
1	.4330	.5000	1						+		
1	•4330	•5000						+			
1	.4330	.5000					+				
1	•4330	•5000				+					
1	·2500	.5000		4	-						
1	·25 CO	•5000	+								
2	.0000	.8660	+	. 4							
3	.433C	1.2247		. 4		+					
4	.7071	1.5811				+	+				
5	.9682	1.9365				+	+	+			
6	1.2247	2.2913		- 4		+	+	+	+		
7	1.4790	2.6458				+	+	+	+	+	
в	1.7321	2.6458				+	+	+	+	+	+

DESI	GN A . 3 . !	5 1	ΕIG	HT E	QU AL	WEI	GHTS		K=	8	
									N=1	۱4	
			(80	SE-C	AMER	ON)		D.	F.=	7	
OBSE	ERVAT ION	5 1	1	1	1	1	1	1	1		
	Y(1)	+	-		-			+			
	Y(2)	+	+	-		-					
	Y(3)		+	+	-		-				
	Y(4)			+	+	-		-			
	Y(5)	-			+	+	-				
	Y(6)		-			+	+	-			
	Y(7)	-		-			+	+			
	Y(8)	+	-		+				-		
	Y(9)		+	-		+			-		
	Y(10)			+	-		+		-		
	Y(11)				+	-		+	-		
	Y(12)	+				+	-		-		
	Y(13)		+				+	-	-		
	Y(14)	-		+				+	-		
RES1	RAINT A	+	+								
RES1	TRAINT B								+		
E A C 1	ORS FOR	COMPUT	1 NG	c T	ne v e						
WT		RAINTS	1140	3.	UL V 3						
	A	В		1	1	1	1	1	1	1	1
1	•4330	•0000		•	•	•	•	•	•	•	
i	.4330	.5000								+	
1	.4330	.5000							+		
1	.4330	•5000						+			
1	•4330	.5000					+				
1	.4330	.5000				+					
1	•2500	•5000			+						
1	. 2500	.5000		+							
2	.00CC	. 8660		+	+						
3	.4330	1.2247		+	+	+					
4	.7071	1.5811		+	+	+	+				
5	.9682	1.9365		+	+	+	+	+			
€	1.2247	2.2913		+	+	+	+	+	+		
7	1.4790	2.6458		+	+	+	+	+	+	+	
ε	1.7321	2.6458		+	+	+	+	+	+	+	+

DESIGN A.3.7 NINE EQUAL WE	(BOSE-CAMERON			+ + + + (1)	+		+ 1 + (5)	+ + (6)+	+ +	+ + (8)	+	v(10) + -	Y(11) + -	Y(12) + - +	RESTRAINT A + +		RESTRAINT B		+ FACTORS FOR COMBUTING ST SENS	NEW TATACTOR OF THE STATE OF TH	0	1 .4082 .0000										2804.	+ + + 1064-1 10490	1.1547
		_		+	1	+	,	+	1	+				+				-		+													+	+
2 Y Z		-	ı	ı	+	1	,	+	+	+								-			•	+									+	+	+	+
S	٥	1 1	+	,	+	+	+	+	1	1	+							-					+							+	+	+	+	+
NINE EQUAL WEIGHTS	ç	-	+	+	1	1	1		+	ı	+							-						+					+	+	+	+	+	+
AL WE	(BOSE -CAMERON)	1	1	+	+	+		,	+	,	ı					S		1 1						4				+	+	+	+	+	+	+
EGU	E-CA	-	+	ı	ı		+	1	+	+	1					ST DEVS									•		+	•	+	•	·	•	+	Ť
Z	(808	-	1	+		•	+	ı	,	+	+	+				5NI.											·	•	•	ĺ	·	•	•	•
v		S 1	+		+	,	+	+	•	ı	ı	+				FACTORS FCR COMPUTING	RESTRAINTS	Φ	0000	.4714	•4714	.4714	4/14	4714	.4714	.4714	.8165	1.1547	1.4907	1.8257	2.1602	2.4944	2.8284	2.8284
DESIGN A.3.6		OBSERVAT IONS	Y(1)	Y(2)	Y(3)	Y(4)	Y(5)	¥(6)	Y(7)	Y(8)	, (6)	RESTRAINT A		RESTRAINT 8		S FCR	RESTA	4	.4082	4082	•4085	•4082	7007	.4082	.2357	-2357	00000	.4082	19999	•5158	1.1547	• 3944	1.6330	1.8708
29 1		ERV	×	×	×	7	×	>	>	>	>	TR/		±		Ď			Ĭ	•	•	•	•	•	•	•	•	•	•	•	-	-	1:	-

.8165 1.1547 1.4907 1.8257 2.1602 2.4944 2.8284

1.1547 1.3944 1.6330 1.8708

0 10 0

K= 9 N=12 O•F•= 4

NINE EQUAL WEIGHTS (80SE-CAMERON)

```
CESIGN B.1
               2.1.1.1
                                      K= 4
                                      N= 6
                                    D.F.= 3
                (HAYFORD)
CESERVATIONS 2
   Y(1)
              +
   Y(2)
   Y(3)
   Y(4)
   Y(S)
   Y(6)
RESTRAINT A
RESTRAINT B
FACTORS FOR COMPUTING ST DEVS
WT RESTRAINTS
             8
       A
    .4243 .0000
    .4243 .707.
.4243 .7071
            .7071
    •4243 •7071
•3464 1•0000
•4690 1•5811
•4243 2•1213
•0000 2•1213
 3
```

DESIGN B.	2		2.1	. 1 . 1	• 1			K= 9	DES	IGN B.4		2,2	.1.1	1.1			κ:
								N=1:									N=
								D.F.= 9									D.F.=
CESERVATIO	INS	2	1	1	1	1			o es	ERVAT ION	S 2	2	1	1	1		
Y(1)		+	+	-	-	-				Y(1)	+	-	-	+			
Y(2)		+	-	+	-	-				Y(2)	+	-		-	+		
Y(3)		+	-	-	+	-				Y(3)	+	-	+		-		
Y(4)		+	-	-	-	+				Y(4)	+	-					
Y(S)		+	-	-						Y(5)	+		-	-			
Y(6)		+	-		-					Y(6)	+		-		-		
Y(7)		+	-			-				Y(7)	+			-	-		
Y(8)		+		-	-					Y(8)		+	-	-			
Y(9)		+		-		-				Y(9)		+	-		-		
Y(10)		+			-	-				Y(10)		+		-	-		
Y(11)			+	+	-	-											
Y(12)			+	-	+	-			RES	TRAINT A	+	+	+				
Y(13)			+	-	-	+											
									RES	TRAINT B					+		
RESTRAINT	A	+	+	+	+												
RESTRAINT	8					+			FAC	TORS FOR	COMPUT	ING	ST	DE VS	;		
									WT		RAINTS		٠.				
										A	В		2	2	1	1	1
FACTORS F	CR CC	MPUT	ING	ST	DEVS	5			1	•4382	•00C)	_	_	-	-	+
WT RE	STRAI	INTS							1	•4382	•6325					+	
Α		8		2	1	1	1	1	i	.3347					+		
1 •334	7.	0000)					+	2	•2710				+			
1 .268	3 .	4472	2				+		2	•2710	.8634		+				
1 .268	3 .	4472				+			3	.271C	1.3548		+		+		
1 .268	3 .	4472	2		+				4	.3347	1.6733		+	+			
2 .219	1 .	6325	;	+					· •	.0000			+	+	+		
3 .296	5 1	.0000)	+	+				6	•4382			+	+	+	+	
4 .268	3 1.	3416	5	+	+	+			7		2.6833		+	+	+	+	+
5 .000	1 1	6733	3	+	+	+	+		2		3.000						
6 .334	7 1.																

											1	
	DESIGN B.5	2	2,2	,1,	1,1,1				K= 6		DESI	IGN B
									N=15	4		
								D	.F.=10		i	
				_								
	OBSERVATIONS		2	1	1	1	1				Desi	ERVAT
	Y(1)	+	+	-	-	-	-			í	!	Y(1)
	Y(2)	+	-	+	+	-	-					Y(2)
	Y(3)	+	-	+	-	+	-					Y(3)
	Y(4)	Ť	-	+	-		+			7		Y(4)
	Y(5)	÷	_	_	+	+	-					Y(5)
	Y(6) Y(7)	Ţ.	-	_		+	+					Y(6)
	Y(8)	+	_	+	_		Ĭ				i	Y(7)
	Y(9)	+		_	+	_	_					Y(8)
	Y(10)	•	+	_		+	_					Y (9)
	Y(11)		+	_	_	Ï	+				i	Y(10
	Y(12)	+	•	_	_	+					i	Y(12
	Y(13)	+		_	_	_	+					Y(1
	Y(14)		+	+	_	_	_					Y(1
	Y(15)		+	_	+	_	-					Y(1
	,,,,,,									7		Y(1
	RESTRAINT A	+	+	+								
											PES.	TEAIN
	RESTRAINT B						+					
										- 2	REST	TRAIN
	FACTORS FOR	COMPUT			25,46							
		RAINTS	ING	51	DEVS						EAC.	TORS
	WI RESTR	B		2	2	1				- 2	W.T	. nvs
	1 •2614	.0000		2	~		1	1	1			
	1 .2614	.3536						+	•		1	•25
	1 .2614	•3536					_	•			i	•25
	1 •2082	•3536				_	•			7	li	.25
	2 .2051	• 54 96				•					i	• 25
	2 .2051	•5496		+	•						ī	.25
	3 .2051	.8229		+		+					1	•20
	4 .2082	1.0408		+	+	•					2	•18
	5 .0000	1.3070		+	+	+					2	- 18
	6 . 2614	1.5679		+	+	+	+			- 2	3	.18
	7 .3851	1.8257		+	+	+	+	+			4	. 20
	8 •4899	1.8257		+	+	+	+	+	+		5	. oc
											6	• 25
											7	• 36
_											е	• 45
-			-	-							9	•53

OE S	IGN B.6		2,2	,1,1	1,1,1	, 1		Đ	K= N= •F•=	10
OBSE	ERVATIONS	_	2	1	1	1	1	1		
	Y(1)	+	-	+	-	-	+			
	Y(2)	+	-		+	-	-	+		
	Y(3)	+	-	+		+		-		
	Y(4)		_	-	+		+	-		
	Y(5) Y(6)	Ţ.	+	_	_	+		+		
	Y(7)	+	+		-	_	-			
	Y(8)	Ť	+		_	_	_	_		
	Y(9)	+	+	_	_	_	_	_		
	Y(10)	÷	+	_	_	_	_	_		
	11107	•	•		_	_	_	Ī		
₽FS1	TRAINT A	+	+	+						
	FDAINT B									
RESI	TRAINT B		ING	ST	DEVS			+		
REST	TCRS FCR	RAINTS	ING		-	,	1	+	,	,
FACT	TCRS FCR RESTR	RAINTS	ING	S T	DEVS 2	1	1	1	1	1 +
FACT	CRS FCR RESTF A •4000	RAINTS B	1 NG		-	1	1	1	1	1 +
FACT	ICRS FCR RESTF A •4000 •4000	RAINTS B .0000 .5774	ING		-	1	1	1 +	1 +	1 +
FACT	CRS FCR RESTF A •4000	RAINTS B	I NG		-	1	1 +	1 +	1 +	1 +
FACT WT	CRS FCR RESTF A •4000 •4000	RAINTS B .0000 .5774 .5774	ING		-	1	1 +	1 +	1 +	1 +
FACT WT	CRS FCR RESTF A .4000 .4000 .4000	RAINTS B .0000 .5774 .5774	ING		-	1	1 +	1 +	1 +	1 +
FACT WT	FCRS FCR RESTF A •4000 •4000 •4000 •3055	RAINTS B .0000 .5774 .5774 .5774	ING		-	1 +	1 +	1 +	1 +	1 +
FACT WT	FCRS FCR RESTR A .4000 .4000 .4000 .3055 .2708	RAINTS B .0000 .5774 .5774 .5774 .7958	ING		-	1 + +	1 +	1 +	1 +	1 +
FACT WT 1 1 1 1 2 2 2	CRS FCR RESTA .4000 .4000 .4000 .4000 .3055 .2708	RAINTS B .0000 .5774 .5774 .5774 .5774 .7958 .7958	ING		-	1 + +	1 +	1 +	1 +	1 +
FAC1 WT 1 1 1 1 2 2 3	FCRS FCR RESTR A -4000 -4000 -4000 -3055 -2708 -2708	RAINTS B .0000 .5774 .5774 .5774 .5774 .7958 .7958	DN I	2 + +	-	1 + + + +	1 +	1 +	1 +	1 +
FAC1 WT 1 1 1 1 1 2 2 3	TCRS FCR RESTR A .4000 .4000 .4000 .3055 .2708 .2708 .3055	RAINTS B .0000 .5774 .5774 .5774 .5774 .7958 .7958 1.2780 1.5275	ING	+ + +	-	·	1 +	1 +	1 +	1 +
FAC1 WT 1 1 1 1 2 2 3 4 5	RESTF A .4000 .4000 .4000 .4000 .4000 .3055 .2708 .2708 .2708 .3055 .0000	RAINTS B .0000 .5774 .5774 .5774 .5774 .7958 1.2780 1.5275 2.0000	ING	+ + + +	-	·	1 + + + + + + + + + + + + + + + + + + +	+ 1 +	1 +	1 +
FACT 1 1 1 1 2 2 3 4 5 6	**CRS FCR RESTF A	RAINTS B .0000 .5774 .5774 .5774 .5774 .7958 1.2780 1.5275 2.0000 2.4495	ING	+ + + + + + + + + + + + + + + + + + + +	+ + + +	·	+ + + + + +	+ + +	1 +	1 +

DESIGN 8.7		2.2	. 1 . 1	.1.1	.1.1		D • F	K= 8 N=16 -= 9
CESERVATIONS	2	2	1	1	1	1	1	1
Y(1)	+	+	+	-	-	-	-	_
Y(2)	+	+	-	+	-	-	-	-
Y(3)	+	+	-	-	+	-	-	_
Y(4)	+	+	-	-	-	+	-	-
Y(5)	+	+	-	-		-	+	-
Y(6)	· +	+	-	-	-	-	-	+
Y(7)	+	-	+	-	-	+	-	+
Y(8)	+	-	-	+	-	-	+	+
Y(9)	+	-	+	-	+	-	-	+
Y(10)	+	-	-	+	-	+	-	+
Y(11)	+	-	-	-	+	-	+	+
Y(12)	+	-	+	-	-	+	+	-
Y(13)	+	-	+	+	-	-	+	-
Y(14)	+	-	+	+	+	-	-	-
Y(15)	+	-	-	+	+	+	-	-
Y(16)	+	-	-	-	+	+	+	-
PESTRAINT A	+	+	+					
RESTRAINT B								+

FACTORS	FCR	COMPUTING	ST	DEVS	
w.T	REST	RAINTS			

	A	8	2	2	1	1	1	1	1	
1	.2550	. 0000								
1	.2550	.3536							+	
1	·2550	• 3536						+		
1	.2550	•3536					+			
1	.2550	.3536				+				
1	.5000	.3536			+					
2	-1871	.5244		+						
2	-1871	. 5244	+							
3	.1871	.8062	+		+					
4	. 2000	1.0000	+	+						
5	.0CCC	1.2748	+	+	+					
6	.2550	1.5411	+	+	+	+				
7	.3674	1.8028	+	+	+	+	+			
8	.4583	2.0616	+	+	+	+	+	+		
9	•5385	2.3184	+	+	+	+	+	+	+	
1 C	.6124	2.3194	+	+	+	+	+	+	+	

DESIGN 8.8 2,2,2,1,1,1	K= 6 DESIGN 8.10 2.2.2.1.1.1.1 K= 7 N=12
	D.F.= 7
CBSERVATIONS 2 2 2 1 1 1 1 Y(1) + -	OESERVATIONS 2 2 2 1 1 1 1 1 Y(1) +
+	Y(3) +
Y(4) +	Y(4) + Y(5) + -
Y(S) + -	Y(6) +
Y(7) +	Y(7) Y(8) +
Y(8) +	Y(9) +
Y(10) +	Y(10) Y(11) + - + -
Y(11) +	Y(12) + +
RESTRAINT A + +	RESTRAINT A + +
RESTRAINT 8 +	RESTRAINT 8 +
FACTORS FCR COMPUTING ST DEVS	FACTORS FCR CDMPUTING ST DEVS WI RESTRAINTS
WT RESTRAINTS A 8 2 2 2 1 1	
1 .5069 .0000	A 8 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 .5069 .8165 + 1 .5069 .8165 +	. 1 .4183 .5774 1 .4183 .5774
2 •\$000 1•0541 +	1 .4183 .5774 +
2	2 .5477 .8944 + 2 .3162 .8944 +
3 .7683 1.7638 + +	2 •3162 •8944 +
4 .5774 2.0276 + + 5 .8207 2.7285 + + +	3 .7583 1.3416
£ .5000 3.0000 + + +	5 .8216 2.1134 + + + 6 .5477 2.4495 + + +
7 .7683 3.6968 + + + + + + + + + + + + + + + + + + +	6 .5477 2.4495 + + + 7 .7583 2.8868 + + + +
9 .9014 4.3589 + + + + +	ε •9309 3•3166 + + + + +
	5 1.0840 3.7417 + + + + + + + + + + + + + + + + + + +
DES1GN 8.9 2.2.2.1.1.1	K= 6 N=15 D•F•=10 N=11 D•F•=6
DESIGN 8.9 2.2,2,1,1,1 CESERVATIONS 2 2 2 1 1 1	K= 6 N=15 D.F.=10 DESIGN E.11 2,2,2,2,1,1 K= 6 N=11 D.F.= 6
DESIGN 8.9 2.2.2.1.1.1 CESERVATIONS 2 2 2 1 1 1 1	K= 6 N=15 D•F•=10 N=11 D•F•=6
DESIGN 8.9 2.2.2.1.1.1 CESERVATIONS 2 2 2 1 1 1 1 Y(1) + - Y(2) + - Y(3) + Y(3)	K= 6 N=15 D.F.=10 DESIGN E.11 2.2.2.2.1.1 K= 6 N=11 D.F.= 6 CESERVATIONS 2 2 2 2 1 1 Y(1) + - Y(2) + - Y(3) + -
DESIGN 8.9 2.2.2.1.1.1 CESERVATIONS 2 2 2 1 1 1 1	K= 6 N=15 D.F.=10 DESIGN E.11 2.2,2,2.1.1 K= 6 N=11 D.F.= 6 CESERVATIONS 2 2 2 2 1 1 Y(1) + - Y(2) + -
DESIGN 8.9 2.2.2.1.1.1 CESERVATIONS 2 2 2 1 1 1 1	K= 6 N=15 D•F•=10 DESIGN E•11 2.2.2.2.1.1 K= 6 N=11 D•F•= 6 CESEFVATIONS 2 2 2 2 1 1 Y(1) + - Y(2) + - Y(3) + - Y(4) + - Y(5) + - Y(6) + -
DESIGN 8.9 2.2,2,1,1,1 CESERVATIONS 2 2 2 1 1 1 1 Y(1) + - Y(2) + - Y(3) + Y(4) + Y(5) + Y(6) + - Y(7) + Y(8) +	K= 6 N=15 D.F.=10 DESIGN E.11 2,2,2,2,1,1 K= 6 N=11 D.F.= 6 CESERVATIONS 2 2 2 2 1 1 Y(1) + - Y(2) + - Y(3) + - Y(4) + - Y(4) + - Y(5) + -
DESIGN 8.9 2.2.2.1.1.1 CESERVATIONS 2 2 2 1 1 1 1	K= 6 N=15 D.F.=10 DESIGN E.11 2.2.2.2.1.1 K= 6 N=11 D.F.= 6 CESERVATIONS 2 2 2 2 1 1 Y(1) + - Y(2) + - Y(3) + - Y(4) + - Y(5) + - Y(6) + - Y(7) + - Y(7) + - Y(8) + - Y(9) + -
DESIGN 8.9 2.2,2,1,1,1 CESERVATIONS 2 2 2 1 1 1 1 Y(1) + - Y(2) + - Y(3) + Y(4) + Y(5) + Y(6) + - Y(7) + Y(8) + Y(9) + Y(10) + Y(11) +	K= 6 N=15 D.F.=10 DESIGN E.11 2,2,2,2,1,1 N=11 D.F.= 6 CESERVATIONS 2 2 2 2 1 1 Y(1) + - Y(2) + - Y(3) + - Y(4) + - Y(5) + - Y(6) + - Y(7) + - Y(8) + -
DESIGN 8.9 2.2.2.1.1.1 CESERVATIONS 2 2 2 1 1 1 1	K= 6 N=15 D.F.=10 CESERVATIONS 2 2 2 2 1 1 Y(1) + - Y(2) + - Y(3) + - Y(4) + - Y(5) + - Y(6) + - Y(7) + - Y(7) + - Y(8) + - Y(10) + - Y(10) + - Y(10) + - Y(10) + - Y(11)
DESIGN 8.9 2.2,2,1,1,1 CESERVATIONS 2 2 2 1 1 1 1 Y(1) + - Y(2) + - Y(3) + Y(4) + Y(5) + Y(6) + - Y(7) + Y(8) + Y(9) + Y(10) + Y(11) +	K= 6 N=15 D•F•=10 CESERVATIONS 2 2 2 2 1 1 Y(1) + - Y(2) + - Y(3) + - Y(4) + - Y(5) + - Y(6) + - Y(7) + - Y(8) + - Y(8) + - Y(9) + - Y(10)
DESIGN 8.9 2.2.2.1.1.1 CESERVATIONS 2 2 2 1 1 1 1	K= 6 N=15 D.F.=10 CESERVATIONS 2 2 2 2 1 1 Y(1) + - Y(2) + - Y(3) + - Y(4) + - Y(5) + - Y(6) + - Y(7) + - Y(8) + - Y(10) + - Y(10) + - Y(10) + - RESTRAINT A + + RESTRAINT A + + FACTORS FDR COMPUTING ST DEVS
DESIGN 8.9 2.2.2.1.1.1 CESERVATIONS 2 2 2 1 1 1 Y(1) + - Y(2) + - Y(3) + Y(4) + Y(5) + Y(6) + - Y(7) + Y(8) + Y(9) + Y(10) + Y(11) + Y(12) + Y(13) + Y(14) + Y(15) + Y(16) + Y(17) + Y(18) + Y(19) + Y(10) + Y(11) + Y(11) + Y(12) + Y(13) + Y(14) + Y(15) + -	K= 6 N=15 D.F.=10 CESERVATIONS 2 2 2 2 1 1 Y(1) + - Y(2) + - Y(3) + - Y(4) + - Y(5) + - Y(6) + - Y(7) + - Y(8) + - Y(10) + - X(10) X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X
DESIGN 8.9 CESERVATIONS 2 2 2 1 1 1 1 Y(1) +	K= 6 N=15 D.F.=10 CESERVATIONS 2 2 2 2 1 1 Y(1) + - Y(2) + - Y(3) + - Y(4) + - Y(5) + - Y(6) + - Y(7) + - Y(8) + - Y(10) + - X(10) X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X
DESIGN 8.9 CESERVATIONS 2 2 2 1 1 1 1 Y(1) + - Y(2) + - Y(3) + Y(4) + Y(5) + Y(6) + - Y(7) + Y(8) + Y(9) + Y(10) + Y(11) + Y(12) + Y(13) + Y(14) + Y(15) + Y(10) + Y(11) + Y(12) + Y(13) + Y(14) + RESTRAINT A + + RESTRAINT B + + FACTORS FCR COMPUTING ST DEVS WT RESTRAINTS	K= 6 N=15 D.F.=10 CESERVATIONS 2 2 2 2 1 1 Y(1) + - Y(2) + - Y(3) + - Y(4) + - Y(5) + - Y(6) + - Y(7) + - Y(8) + - Y(10) + - X(10) X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X
DESIGN 8.9 2.2.2.1.1.1 CESERVATIONS 2 2 2 1 1 1 1	K= 6 N=15 D.F.=10 CESERVATIONS 2 2 2 2 1 1 Y(1) + - Y(2) + - Y(3) + - Y(4) + - Y(5) + - Y(6) + - Y(7) + - Y(8) + - Y(10) + - X(10) X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X
DESIGN 8.9 CESERVATIONS 2 2 2 1 1 1 1 Y(1) + - Y(2) + Y(3) + Y(4) + Y(5) + Y(6) + Y(6) + Y(7) + Y(8) + Y(10) + Y(10) + Y(11) + Y(12) + Y(13) + Y(14) + Y(14) + Y(15) + Y(16) + Y(17) + Y(18) +	K= 6 N=15 D.F.=10 CESERVATIONS 2 2 2 2 1 1 Y(1) + - Y(2) + - Y(3) + - Y(4) + - Y(5) + - Y(6) + - Y(7) + - Y(8) + - Y(10) + - X(10) X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X
DESIGN 8.9 2.2.2.1.1.1 CESERVATIONS 2 2 2 1 1 1 1	K= 6 N=15 D.F.=10 CESERVATIONS 2 2 2 2 1 1 Y(1) + - Y(2) + - Y(3) + - Y(4) + - Y(5) + - Y(6) + - Y(7) + - Y(8) + - Y(10) + - X(10) X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X
DESIGN 8.9 CESERVATIONS 2 2 2 1 1 1 1 Y(1) + - Y(2) + - Y(3) + Y(4) + Y(5) + Y(6) + Y(7) + Y(6) Y(7) + Y(8) Y(9) + Y(10) Y(11) + Y(12) Y(13) Y(14) + Y(15) Y(14) Y(15) + Y(15) Y(16) Y(17) Y(18) Y(K= 6 N=15 D.F.=10 CESERVATIONS 2 2 2 2 1 1 Y(1) + - Y(2) + - Y(3) + - Y(4) + - Y(5) + - Y(6) + - Y(7) + - Y(8) + - Y(10) + - X(10) X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X
DESIGN 8.9 CESERVATIONS 2 2 2 1 1 1 1 Y(1) + - Y(2) + - Y(3) + Y(4) + Y(5) + Y(6) + Y(6) + Y(7) + Y(8) + Y(10) + Y(11) + Y(12) + Y(12) + Y(13) + Y(14) + Y(15) + Y(15) + Y(16) + Y(17) + Y(18) +	K= 6 N=15 D.F.=10 CESERVATIONS 2 2 2 2 1 1 Y(1) + - Y(2) + - Y(3) + - Y(4) + - Y(5) + - Y(6) + - Y(7) + - Y(8) + - Y(10) + - X(10) X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X
DESIGN 8.9 2.2.2.1.1.1 CESERVATIONS 2 2 2 1 1 1 1 Y(1)	K= 6 N=15 D.F.=10 CESERVATIONS 2 2 2 2 1 1 Y(1) + - Y(2) + - Y(3) + - Y(4) + - Y(5) + - Y(6) + - Y(7) + - Y(8) + - Y(10) + - X(10) X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X
DESIGN 8.9 2.2.2.1.1.1 CESERVATIONS 2 2 2 1 1 1 1	K= 6 N=15 D.F.=10 CESERVATIONS 2 2 2 2 1 1 Y(1) + - Y(2) + - Y(3) + - Y(4) + - Y(5) + - Y(6) + - Y(7) + - Y(8) + - Y(10) + - X(10) X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X
DESIGN 8.9 2.2.2.1.1.1 CESERVATIONS 2 2 2 1 1 1 1	K= 6 N=15 D.F.=10 CESERVATIONS 2 2 2 2 1 1 Y(1) + - Y(2) + - Y(3) + - Y(4) + - Y(5) + - Y(6) + - Y(7) + Y(10) + - Y(10) + - Y(11) + - RESTRAINT A + + RESTRAINT B + + FACTORS FDR COMPUTING ST DEVS WT RESTRAINT B + + FACTORS FDR COMPUTING
DESIGN 8.9 CESERVATIONS 2 2 2 1 1 1 1 Y(1) + - Y(2) + - Y(3) + Y(4) + Y(5) + Y(6) + Y(6) + Y(6) + Y(7) + Y(8) + Y(10) + Y(11) + Y(12) + Y(12) + Y(13) + Y(14) + Y(15) + Y(16) + Y(17) + Y(18) +	K= 6 N=15 D.F.=10 CESERVATIONS 2 2 2 2 1 1 Y(1) + - Y(2) + - Y(3) + - Y(4) + - Y(5) + - Y(6) + - Y(7) + - Y(8) + - Y(10) + - X(10) X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X

Y(1)																						
CESERVATIONS 5 3 2 1	K			.1.1	2,2	3 .	5 • 3		. 3	GN C . 3	DE 51	K= 5				• 1	.2.1	5 • 3	5		GN C • 1	0E51
OESERVATIONS 5 3 2 1 1 Y(1) + + + + + + + +	N											N= 8										
Y(1)	D • F •											F.= 4	D.			D)	YF OR	(HA)	(
Y(2) + + Y(2) + + - + Y(3) + + - + Y(4) + + Y(4) + + Y(5) + + Y(5) + + Y(5) + + Y(5) + + Y(6) + + Y(6) + + Y(7) + + Y(7) + + Y(8) + Y(7) + Y(7) + Y(8) + Y(8) + Y(9) + Y(10) + Y(11) + Y(11) +		1	1	2	2	3	3	5 5	10N5	ERVAT 10	CESE				1	1	2	3	5	5 5	EVAT IONS	0E5E
Y(3) + Y(4) + + Y(5) + + Y(5) + + Y(6) + + Y(6) + + Y(6) + + Y(7) + + Y(8) + - Y(10) + - Y(11) + Y(11) + - Y		-	-	-	+		-	+		Y(1)					-	+	-	-	+	+	Y(1)	
Y(4) + Y(5) + + Y(6) + + Y(6) + + Y(6) + Y(7) + Y(7) + Y(7) + Y(7) + Y(8) + Y(9) + Y(10) + Y(11) +	•	-	-	+	-	-	-	+		¥(2)					+	-	-	_	+	+	Y(2)	
Y(4) + Y(5) + Y(6) + + Y(7) + + Y(7) + + Y(8) + - Y(8) + Y(8)	ł –	+	+	-	-	•	-	+		Y(3)							-	-	+	+	Y(3)	
Y(6)		-	+		-	-	-	+		Y(4)					-	-		-	+	+		
Y(7)	•	-	+	-		-	-	+		Y(5)						-	-	+			Y(5)	
Y(A)	•	+	-			-	-	+		Y(6)					-		-	+			Y(6)	
TRESTRAINT A + + + + + + + + + + + + + + + + + +		+	-	-		-	-	+		Y(7)					-	-	+				Y(7)	
RESTRAINT A + + + + + + + + + + + + + + + + + +	•	4-	-			-	_	+		Y(8)					-	+					YEAL	
## PACTORS FOR COMPUTING 5T DEVS WT RESTRAINTS A B 5 3 2 1 1 1 .4175 .0000			-	-	-			+		Y(9)												
RESTRAINT 8 + RESTRAINT A + + + + + + + + + + + + + + + + + +	•	-		-	-			+)	Y(10)							+	+	+	+	RAINT A	REST
FACTORS FOR COMPUTING 5T DEVS WT RESTRAINTS A B 5 3 2 1 1 1 .4175 .0000 + FACTORS FOR COMPUTING 5T DEV5 1 .4175 .5345 + WT RESTRAINT5 2 .3546 .9258 + A B 5 3 2 2 3 .3338 1.3093 + + A B 5 3 2 2 3 .3338 1.3093 + + A B 5 3 2 2 4 .5237 1.6903 + + A B 5 3 2 2 5 .2673 2.0702 + A B 5 3 2 2 6 .5237 2.4495 + A B 5 3 2 2 7 .3338 2.9277 + + A B 5 3 2 2 8 .3546 3.3381 + + A B 5 3 2 2 9 .5632 3.7033 + + A B 5 3 2 2 1 .3592 .0000 4 .5237 2.4495 + A B 5 3 2 2 8 .3546 3.3381 + A B 5 3 2 2 9 .5632 3.7033 + A B 5 3 2 2 1 .3592 .0000 4 .5237 2.4495 + A B 5 3 2 2 8 .5663 2.0702 + A B 5 3 2 2 9 .5637 2.4495 + A B 5 3 3 2 2 9 .5637 2.4495 + A B 5 3 2 9 .5637 2.4495 + A B 5 3 2 9 .5637 2.4495 + A B 5 3 2 9 .5637 2.4495 + A B 5 3 2 9 .5637 2.4495 + A B 5 3 2 9 .5637 2.4495				-	+)	Y(11)												
FACTORS FOR COMPUTING 5T DEVS WT RESTRAINTS A B 5 3 2 1 1 1 .4175 .0000					+	+	+	+	т д	TRAINT	DE 51				+						RAINT 8	REST
WT RESTRAINTS A B 5 3 2 1 1 1 .4175 .0000																						
A B 5 3 2 1 1 1	•	+							т 8	TRAINT	RE51					DE VS	5 T	1NG				
1																			-			WT
1				DEVE	6 T		TT AL	COMOU		T C D C C C			1	1	2	3	5					
2				DL V S	٠.	10							+									_
3	1	2	2	-	_						wı			+								
4 .5237 1.6903 + + + 1 .3552 .4714 5 .2673 2.0702 + 2 .4259 .7553 + 4 6 .5237 2.4495 + + 2 .3625 .7553 + 4 7 .3338 2.9277 + + 3 .3835 1.2536 + 3 8 .3546 3.3381 + + 3 .6116 1.1123 + 4 9 .5632 3.7033 + + + 4 .6130 1.4254 + + 4 10 .0000 4.1748 + + + 5 .2266 1.7412 +	• .	-	-	J	9										+							
5											_					+						-
6		+									_			+		+						•
7 .3338 2.9277 + + 3 .3835 1.2536 + 3.546 3.3381 + + 5 .6116 1.1123 + 5 .5632 3.7033 + + + 4 .6130 1.4254 + + 10 .0000 4.1748 + + + 5 .2266 1.7412 +			+																			_
8 *3546 3.3381 + +				+										+								_
9 .5632 3.7033 + + + + 4 .6130 1.4254 + + 10 .0000 4.1748 + + + 5 .2266 1.7412 +	+	+							-						+							
10 .0000 4.1748 + + + + 5 .2266 1.7412 +		+	+								_											
10 *0000 4*1/40 , , ,					+			_						+		*						
	+				+					.4790	6				+	+	+		748	4.17	•0000	10
7 .3835 2.4199 + +			+								_											
8 - 3625 2 • 9493 + +				+																		
9 .4711 3.2708 + +	+										_											
10 .0000 3.5922 + + +																						

											2										
CESIGN C	•2		5,3	•2•1	1 • 1 • 1	•		c	١	(= 6 N=11 N= 6		DE5	1GN C•4		5,3	•2•	2•1•1			D	K= N=
CBSERVAT	1005	5	3	2	1	1	1					CB5	ERVAT1CN	5 5	3	2	2	1	1		
Y(1)		+	_	_	÷	_	-						Y(1)	•	_	_	-	•	•		
Y(2)		+	-	_		+	-						Y(2)		_		_				
Y(3)		+	_	_	-		+						Y(3)	+	_			_	_		
Y(4)		+	-	_							4		Y(4)	+		_	_	_			
Y(5)		+		_	-	-	-						Y(5)	+		_	_		-		
Y(6)			+	-	+	-	-						Y(6)		+	_		_			
Y(7)			+	_	-	+	_				4		Y(7)		+	_			_		
Y(8)			+	_	-	-	+						Y(8)		+		-	_			
Y(9)				+	_	-							Y(9)		+		-		-		
Y(10)			+	-		-						Y(10)			+	-				
Y(11)			+		-	_				- 3		Y(11)			+		-	-		
													Y(12)				+	-	-		
RESTRAIN	TA	+	+	+																	
												RE5	TRAINT A	+	+	+					
RESTRAIN	r 8						+														
												RES	TRAINT 8						+		
FACTORS I	OR C	сомрит	1 NG	5 T	DE V.S	;															
		AINTS									4	FAC	TORS FCR	COMPUT	ING	5 T	DEVS				
	A	8		5	3	2	1	1	1			WT		RAINT5							
1 •359	5 1	.0000							4				A	8		5	3	2	2	1	1
1 .355	51	.5000						+			1	1	•4796	.0000)						+
1 •35	51	•5000					+					1	.4796	.8165	5					+	
2 .26	38	.7802				+						2	•4055	1.0541	l				+		
3 - 298	35 1	1.0885			+							2	•3127	1.0541	l			+			
4 ,47	78 1	1.4781			+		+				4	3	.2848	1.4530)		+				
5 •23	31 1	1.7846		+								3	.6173	1.7638	3				+	+	
6 .429	99 2	2.1644		+			+					4	.4372	2.0276	5			+	+		
7 .298	35 2	2.5216		+		+						5	.2887			+					
8 .26	38 2	2.8284		+	+						4	6	.5888	3 - 1091	ļ.	+				+	
9 .46	16 3	3.2016		+	+		+					7	-5608	3.3830)	+			+		
10 .00	00 3	3.5509		+	+	+						8	.3127	3.8006	,	+	+				
											4	9	.6119	4.5216	•	+	+			+	
											4	10	.0000	4.7958		+	+	+			

DESIGN C.5	•	5 • 5	.3.2	.1.1			D	K= 6 N=12 •F•= 7
OBSERVATIONS	5	5	3	2	1	1		
Y(1)	+	_	_	+	_	_		
Y(2)	+	_		_	+	+		
Y(3)	+	_			+	_		
Y(4)	+	-			_	+		
Y(5)	+		-	_				
Y(6)	+		-		-	-		
Y(7)		+	-	-				
Y(8)		+	-		-	-		
Y(9)			+	-	-			
Y(10)			+	-		-		
Y(11)				+	-	-		
Y(12)					+	-		
RESTRAINT A		+	+	+		+		
FACTORS FOR C	OMPUT	NG	ST	DEVS				
WT RESTRA	INTS							
A	В		5	5	3	2	1	1
1 .3536	.0000							+
1 •3536	. 5345						+	
2 •33 84	.7319					+		
3 .3281 1	.1802				+			
4 .4236 1	.5924				+		+	
5 .4366 1	.7743		+					
5 .3010 1	.7743			+				
	. 2051			+			+	
	.4213			+		+		
	.9041			+	+			
	.3174			+	+		+	
10 .0000 3	. 5363			+	+	+		

DESIG	N C.€		5	> 5•	3 + 2	2 • 1 • 1	• 1			K= N=
									D.	.F.=
OBSER	VATION	IS 5		5	3	2	1	1	1	
Y	(1)	+		-						
Y	(2)	+			-	-				
Y	(3)			+	-	-				
Y	(4)	+			-		-	-		
١	(5)	+			-		-		-	
	(6)	+			-			-	-	
	(7)			+	-		-	-		
	(8)			+	-		-		-	
	(9)			+	-			-	-	
	(10)	+				-	-	-	-	
	(11)			*		-	-	_	-	
	r(12) r(13)				_	_	_	_	-	
	((14)					I	_	_	_	
	(15)							_	_	
						•				
RESTR	AINT A			+	+	+				
RESTR	AINT B								+	
FACTO	RS FCR	CDMF	UTI	NG	ST	DEVS				
WT	REST	TAINT	s							
	A		В		5	5	3	2	1	1
1	•4967	.00								
1	•4967	.81								+
1	•4967	-81							+	
2	.3464	1.04						+		
3	.3251	1.55					+			
4 5	.5640 .2673	2.25					+		+	
5	.4629	2.46				+				
6	.7198	3.17			Ţ					
7	•5529	3.45			¥			_	•	
8	.5904	3.99			+		+	*		
9	.7862	4.68			+		+		+	
10	.3000	4.96							•	

```
DESIGN C .7
                 5,2,1,1,1
                                             K= 5
                                                             DESIGN C.S
                                                                              5,2,2.1.1
                                                                                                          K= 5
                                             N= 7
                                                                                                          N= 8
                                          D.F.= 3
                   (HAYFORD)
                                                                                (BENGIT)
                                                                                                       D.F.= 4
                                                             CESERVAT 1CNS
OESERVAT 10NS
                5
                    2
                                  1
                                                                                      2
                                                                                               1
                                                                Y(1)
    Y(1)
                                                                 Y(2)
    Y(2)
                                                                 Y(3)
    Y(3)
    Y(4)
                                                                 Y(4)
                                                                                               +
                                                                 Y(5)
    Y(5)
    Y(6)
                                                                 Y(6)
    Y(7)
                                                                 Y(7)
                                                                 Y(8)
RESTRAINT A
                                                            RESTRAINT A
RESTRAINT B
                                                            RESTRAINT B
FACTORS FOR COMPUTING ST DEVS
      RESTRAINTS
                                                            FACTORS FOR COMPUTING ST DEVS
W T
                                                             WT RESTRAINTS
                в
                        5
                            2
                                     1
        Δ
                                1
     .4690
              .0000
 1
                                                                    Α
                                                                           . .
                                                                                    5
                                                                                            2
             •7071
•7071
                                                                 .4140
     .4690
 1
                                                             1
                                                                           .0000
     .4690
                                                                         .5345
 1
                                                             1
                                                                  .3780
     .5252 1.0000
.0000 2.3452
                                                             2
                                                                 .3381 .9258
 5
                                                             2
                                                                  .3381
                                                                          .9258
                                                                 .4140 1.3093
.4140 1.7728
.3780 2.0702
 3
     .7616 1.5811
                                                             3
     •9055
             2.1213
     .4690
             2.9155
 6
     •5292
                                                                        2.4495
             3.2404
                                                             6
                                                                  .4140
8 .7616 3.8079
9 .9055 4.3589
10 1.0000 4.3589
                                                                  .4140
                                                                        2.9277
                                                             8
                                                                  .3381 3.2950
.3780 3.7796
                                                             G
                                                            10
                                                                 .0000 4.1404
```

								1									
	***		.227	-			****	-				100	-		-		154
DES 1	GN C .8	5 • 2	2.2.1	. 1			K= 5	DESIG	N C.10) !	5,2,2	.1,1	• 1			K= 4	£,
							N= 7									N= 8	8
		CHA	YFOR	RD)			D.F.= 3								n	•F•= :	3
OESE	RVAT 10NS	5 5 2	2	1	1			OESER	VATION	15 5	2	2	1	i 1			
	Y(1)	+ -	-	-				Y	(1)	+	-	-	-	- +			
	Y(2)	+	-	+	-			Y	(2)	+	-	-	-	+ -			
	Y(3)	+	-	-	+			Y	(3)	+	-	-	+				
	Y(4)	+	-					Y	(4)	+	-		-				
	Y(5)	+		-	-			Y	(5)	+		-	-				
	Y(6)		+	-	-			Y	(6)		+	-	+	-			
	Y(7)			+	-			Y	(7)		+	-	-	+			
								Y	(8)		+	-		+ -			
EST	RAINT A	+ +	+	+				4									
								RESTR	AINT A	+	+	+	+				
EST	TRAINT B				+			3									
								RESTR	AINT E	3				+			
ACT	TORS FCR	COMPUTI N	ST	DEVS	5			4									
T	REST	RAINTS						FACTO	RS FCF	R COMPUT	ING S	T DE	v s				
	A	8	5	2	2	1	1	WT	REST	RA1NTS							
1	•45 83	.0000					+	4	A	6	5	2	2	1	1	1	
1	•3786	•5774				+		1	.4645	. 0000						+	
2	.3805	.9512			+			1	.4645	•5345					+		
2	•3805	.9512		+				1	.4326	• 5345				+			
3	.4413	1.3801			+	+		2	.3854	1.1339			+				
4	.5416	1.8257		+	+			2	.3854	1.1339		+					
5	•5000	2.4495	+					3	.37cl	1.4639			+	+			
6	.5416	2.8868	+			+		4	.5555	2.2039		+	+				
	. 4413	3.3022	+		+			5	•3273	2.1712	+						
					+	+		ϵ	.5555	2.5355	+			+			
7	.3805	3.7289	+					4 -									
7 8	.3805	3.7289 4.1633	+	+	+			7	.3761	3.2514	+		+				
7 8 9	•3805 •3786			+	+	+		Z4	.3761 .3854		+		+	+			
7	•3805 •3786	4.1633	+	+	+	+		8	.3854			+	+	+			

DESIGN D.1 4.2.2.1.1 K= 5 N= 6 D.F.= 2	DES1GN D.3 4.2.2.1.1 K= 5 N=11
CBSERVATIONS 4 2 2 1 1 Y(1) + + - Y(2) + + Y(3) + Y(4) + Y(5) + - + - Y(6) + + RESTRAINT A + RESTRAINT B + FACTORS FCR COMPUTING ST DEVS WT RESTRAINTS A B 4 2 2 1 1 1 .4677 .0000 + 1 .4677 .5000 + 2 .4743 1.1619 + 3 .5646 1.4491 + 4 .0000 1.8708 + 5 .4677 2.1794 + 6 .4743 2.9749 + 7 .5646 3.2558 + 8 .7071 4.0620 + 9 .6847 4.3301 + + + 10 .7906 4.3301 + + +	(BENOIT) CESERVATIONS 4 2 2 1 1 Y(1) + + - Y(2) + + Y(3) + Y(4) + Y(5) + Y(6) + - + - Y(7) + + Y(8) + - Y(9) + Y(10) + Y(11) + - RESTRAINT A + RESTRAINT B + FACTORS FOR COMPUTING ST DEVS WT RESTRAINTS A B 4 2 2 1 1 1 *3354 *0400 + + 1 *3354 *0000 + + 1 *3354 *0000 + + 2 *3536 *7583 + 2 *3536 *7583 + 3 *4873 1.0840 + + 4 *0000 1.3416 + 5 *3354 1.6733 + + 7 *4873 2.3611 + + + 8 *5000 2.7295 + + + 9 *6021 3.0414 + + + + 10 *7071 3.0414 + + + +
DESIGN D.2 4.2.2.1.1 K= 5 N=10	DES1GN D.4 4,2,2,1,1,1 K=6 N=10
DESIGN D.2 4.2.2.1.1 K= 5	DES1GN D.4 4,2,2,1,1,1 K=6
DESIGN D.2 4.2.2.1.1 K= 5 N=10 D.F.= 6 OBSERVATIONS 4 2 2 1 1 Y(1) + + Y(2) + + - Y(3) + Y(4) + Y(5) + Y(6) + + Y(7) + - + Y(8) + - Y(9) +	DESIGN D.4 4,2,2,1,1,1 K=6 N=10 D.F.= 5 CBSERVATIONS 4

	IGN D.5		4,4	,2,1	• 1				K= 5 N= 9	DESI	GN D.7		4 . 4	. 2 . 2	2 - 1 - 1	• 1			K= N=1	
			(BE)	NO I T)			D •	N= 9 F.= 5									D.	F.=	
oese	ERVAT IONS	5 4	4	2	1	1				OBSE	RVATION	S 4	4	2	2	1	1	1		
	Y(1)	+	-	+	-	-					((1)	+		-	-					
	Y(2)	+	-	-	+	+					1(2)	+		-		-	-			
	Y(3)	+	-		+	-					(3)	+		-		-		-		
	Y(4)	+	-		-	+					Y (4)	+		-			-	-		
	Y(5)	+	-								(5)	+			-	-	-			
	Y(6)	+		-	-	-					1(6)	+			-	-		-		
	Y(7)		+	-	-	-					(7)	+			-		-	-		
	Y(8)			+	-	-					r(e)		+	-	-					
	Y(9)				+	-					(9)		+	-		-	-			
											Y(10)		+	-		-		-		
RES1	TRAINT A	*	+	+							(11)		+	-			-	-		
											Y(12)		+		-	-	-			
RES'	TRAINT B					+					(13)		+		-	-		-		
											Y(14)		+		-		-	-		
FACT WT	TORS FOR RESTE A •3651	COMPUT RAINTS B		ST 4	DEVS	s 2	1	1 +			RAINT A	+	+	+				+		
WT 1 1 2	RESTS A •3651 •3651 •3651	RAINTS B .0000 .5774	0 4 5	-		_	1 +	1 +		REST FACT	RAINT B			+ sT	DEVS			+		
WT 1 1 2 3	RESTS A •3651 •3651 •3651 •5164	RAINTS B .0000 .5774 .8165	0 4 5	-		_		1 +		REST	RAINT B ORS FOR REST	RAINTS		+ sT	DEVS			+		
WT 1 1 2	RESTF A • 3651 • 3651 • 3651 • 5164 • 2807	RAINTS B .0000 .5774 .8165 1.2910	0 4 5 0	-		_		1 +		REST FACT WT	RAINT B ORS FOR REST! A	RA1NTS		+ ST 4	DEVS	2	2	+	1	1
WT 1 1 2 3 4	RESTF A • 3651 • 3651 • 3651 • 5164 • 2807 • 2807	RAINTS	0 4 5 0 3	+	4	_	+	1 +		REST FACT WT	RAINT B ORS FOR RESTI A .4830	RA1NTS B .000	0				2		1	1 +
WT 1 1 2 3 4 4 5	RESTF A .3651 .3651 .3651 .5164 .2807 .2807 .4606	RAINTS .0000 .5774 .816! 1.2910 1.487; 1.487;	0 4 5 0 3 3	++	4	_		1 +		REST FACT WT 1 1	RAINT B ORS FOR RESTI A .4830	RA1NTS B .000 .707	0				2		1 +	1 +
WT 1 1 2 3 4 4 5	RESTE A .3651 .3651 .3651 .5164 .2807 .2807 .4606 .2807	RAINTS .0000 .5774 .816! 1.2910 1.487; 1.9699	0 4 5 0 3 3 5 8	+ + +	4	_	+	1 +		FACT WT 1 1	RAINT B ORS FOR RESTI A -4830 -4830 -4830	RAINTS -000 -707 -707	0 1 1				2		1 +	1 +
WT 1 1 2 3 4 5 6 7	RESTE A .3651 .3651 .3651 .5164 .2807 .4606	RAINTS 8 .0000 .5774 .816! 1.2910 1.4873 1.969! 2.208! 2.685!	0 4 5 0 3 3 5 8	+ + + + +	4	_	+	1 +		FACT WT 1 1 1 2	RAINT B ORS FOR RESTI A -4830 -4830 -4830 -4472	RAINTS .000 .707 .707 1.154	0 1 1 7				2 +		1 +	1 +
WT 1 1 2 3 4 5 6 7 ε	RESTE A .3651 .3651 .5164 .2807 .2807 .4606 .2807	RAINTS 8 .0000 .5774 .816! 1.291(1.487) 1.487; 1.969! 2.208! 2.685! 2.9439	0 4 5 0 3 3 5 8 6 5	+ + + + + +	4	_	+ + +	1 +		FACT WT 1 1 1 2 2	RAINT B ORS FOR RESTI A -4830 -4830 -4830 -4472 -3651	RAINTS .000 .707 .707 1.154 1.154	0 1 1 7				2 +		1 +	1 +
WT 1 1 2 3 4 4 5 6 7 8 9	REST6 A .3651 .3651 .5164 .2807 .4606 .2807 .4606 .3651 .5164	RAINTS .0000 .5774 .8169 1.2910 1.4873 1.9699 2.2080 2.6859 2.9433 3.415	0 4 5 0 3 3 3 5 8 8 5 9	+ + + + + +	4	_	+	1 +		FACT WT 1 1 1 2 2 3	RAINT B ORS FOR RESTI A -4830 -4830 -44830 -4472 -3651	RAINTS .000 .707 .707 1.154 1.154 1.683	0 1 1 7 7		4		2 + +		1 +	1 +
WT 1 1 2 3 4 5 6 7 ε	RESTE A .3651 .3651 .5164 .2807 .2807 .4606 .2807	RAINTS 8 .0000 .5774 .816! 1.291(1.487) 1.487; 1.969! 2.208! 2.685! 2.9439	0 4 5 0 3 3 3 5 8 8 5 9	+ + + + + +	4	_	+ + +	1 +		FACT WT 1 1 2 2 3	RAINT 8 ORS FOR RESTI A .4830 .4830 .4472 .3651 .5774 .3237	RAINTS .000 .707 .707 1.154 1.683 1.889	0 1 1 7 7 3	4			2 + +		1 +	1 +
WT 1 1 2 3 4 4 5 6 7 8 9	REST6 A .3651 .3651 .5164 .2807 .4606 .2807 .4606 .3651 .5164	RAINTS .0000 .5774 .8169 1.2910 1.4873 1.9699 2.2080 2.6859 2.9433 3.415	0 4 5 0 3 3 3 5 8 8 5 9	+ + + + + +	4	_	+ + +	1 +		FACT WT 1 1 2 2 3 4 4	RAINT B ORS FOR RESTI A -4830 -4830 -4472 -3651 -5774 -3237	RAINTS .000 .707 .707 1.154 1.683 1.889 1.889	0 1 1 7 7 3 8	+	4		2 + +		1 +	1 +
WT 1 1 2 3 4 4 5 6 7 8 9	REST6 A .3651 .3651 .5164 .2807 .4606 .2807 .4606 .3651 .5164	RAINTS .0000 .5774 .8169 1.2910 1.4873 1.9699 2.2080 2.6859 2.9433 3.415	0 4 5 0 3 3 3 5 8 8 5 9	+ + + + + +	4	_	+ + +	1 +		REST WT 1 1 1 2 2 3 4 4 5 5	RAINT B ORS FOR RESTIA -4830 -4830 -4830 -4872 -3651 -5774 -3237 -3237 -6362	RAINTS .000 .707 .707 1.154 1.683 1.689 1.889 2.454	0 1 1 7 7 3 8 8	+ +	4		2 + +		1 +	1 +
WT 1 1 2 3 4 4 5 6 7 8 9	REST6 A .3651 .3651 .5164 .2807 .4606 .2807 .4606 .3651 .5164	RAINTS .0000 .5774 .8169 1.2910 1.4873 1.9699 2.2080 2.6859 2.9433 3.415	0 4 5 0 3 3 3 5 8 8 5 9	+ + + + + +	4	_	+ + +	1 +		FACT WT 1 1 1 2 2 3 4 4 4 5 6	RAINT 8 ORS FOR RESTIA 4830 4830 4830 4830 3651 5774 3237 6362 55521	RAINTS .000 .707 .707 1.154 1.154 1.683 1.689 1.889 2.454 2.984	0 1 1 7 7 3 8 8 8	+ + +	4		2 + +		1 +	1 +
WT 1 1 2 3 4 4 5 6 7 8 9	REST6 A .3651 .3651 .5164 .2807 .4606 .2807 .4606 .3651 .5164	RAINTS .0000 .5774 .8169 1.2910 1.4873 1.9699 2.2080 2.6859 2.9433 3.415	0 4 5 0 3 3 3 5 8 8 5 9	+ + + + + +	4	_	+ + +	1 +		FACT WT 1 1 1 2 2 3 4 4 5 6 7 7	RAINT 8 ORS FOR RESTINA 4830 4830 4830 4830 4830 4851 57105	RAINTS .000 .707 .707 1.154 1.683 1.683 1.889 2.454 2.984 3.522	0 1 1 7 7 3 8 8 0 1	+ + + +	4		2 + + + + + + + + + + + + + + + + + + +		1 +	1 +
WT 1 1 2 3 4 4 5 6 7 8 9	REST6 A .3651 .3651 .5164 .2807 .4606 .2807 .4606 .3651 .5164	RAINTS .0000 .5774 .8169 1.2910 1.4873 1.9699 2.2080 2.6859 2.9433 3.415	0 4 5 0 3 3 3 5 8 8 5 9	+ + + + + +	4	_	+ + +	1 +		FACT WT 1 1 2 2 3 4 4 5 6 7 6	RAINT 8 ORS FOR RESTIA 4830 4830 4830 48472 33651 5774 3237 6362 55521 7105	RA1NTS .000 .707 .707 1.154 1.154 1.689 1.889 2.454 2.984 3.522 3.741	0 1 1 7 7 3 8 8 0 1	+ + + + + + + + + + + + + + + + + + + +	4		2 + + + + + + + + + + + + + + + + + + +		1 +	1 +
WT 1 1 2 3 4 4 5 6 7 8 9	REST6 A .3651 .3651 .5164 .2807 .4606 .2807 .4606 .3651 .5164	RAINTS .0000 .5774 .8169 1.2910 1.4873 1.9699 2.2080 2.6859 2.9433 3.415	0 4 5 0 3 3 3 5 8 8 5 9	+ + + + + +	4	_	+ + +	1 +		FACT WT 1 1 1 2 2 3 4 4 5 6 7 7	RAINT 8 ORS FOR RESTINA 4830 4830 4830 4830 4830 4851 57105	RAINTS .000 .707 .707 1.154 1.683 1.683 1.889 2.454 2.984 3.522	0 1 1 7 7 3 8 8 0 1 0 7	+ + + +	4		2 + + + + + + + + + + + + + + + + + + +		1 +	1 +

K= 5 N= 8 D•F•= 4

	IGN D.6		4,4	•2•2	2.1.1				K= 6 N= 9		DES	IGN D.8		4,3	, 2 , 1	l • 1		
								D •	F.= 4					(HA	YFDF	20)		
0856	ERVATIONS	S 4	4	2	2	1	1				085	ERVATION	NS 4	3	2	1	1	
	Y(1)	+	-	+	-	+	-					Y(1)	+	-	-		+	
	Y(2)	+	-	+	-	-	+					Y(2)	+		-	_	-	
	Y(3)	+	-	-	+							Y(3)	+	-		_		
	Y(4)	+	-	+		-	-					Y(4)	+	-			-	
	Y(5)	+	-		-	+	+					Y(5)		+	-	-		
	Y(6)	+		-		-	-					Y(6)		+	-		-	
	Y(7)	+		-	-	-	+					Y(7)			+	-	-	
	Y(8)		+		-	-	-					Y(8)				+	-	
	Y(9)		+	-	-	•	_				RES	TRAINT A	+	+	+	+		
REST	TRAINT A	+	+								556	TO 4 7 1 T						
REST	TRAINT B					+	+				KES	TRAINT E	5				+	
											EAC	rces end	COMPUT	tuc	c T	DEVIC		
EACI											1 4	IUNS FUR	CUMPUI	TING	31	DEVS		
	TORS FOR	COMPUT	ING	ST	DEVS	,					WT	REST	RAINTS					
WT		COMPUT RAINTS	ING	ST	DEVS						wT	RES T	RAINTS B		4	3	2	1
			ING	ST 4	DEVS	2	2	1	1		WT 1				4	3	2	1
	REST	RAINTS			DEVS		2	1	1 +			A	В		4	3	2	1 +
WT	REST	RAINTS B			DEVS		2	1 +	1 +		1	A •42 7 5	.cooo		4	3	2	1 +
WT 1	REST(A •3578	RAINTS B •2560	ı		DEVS		2	1 +	1 +	******	1	A •42 7 5 •4390	6 • 0000 • 6892		4	3	2	1 +
WT 1 1 1	REST(A •3578 •3578	RAINTS B .2560 .2560	1		DEVS		2	1 +	1 +	*******	1 1 2	A •4275 •4390 •3950	6 • C O O O • 6 8 9 2 • 9 3 5 4		4	3	2	1 +
WT 1 1 2	REST(A .3578 .3576 .3907	RAINTS B •2560 •2560 •6345			DEVS		2 + +	1 +	1 +	**********	1 1 2 3	A •4275 •4390 •3950 •3532	B .0000 .6892 .9354		++	3	2	1 +
WT 1 1 2 2 2	RESTE A •3578 •3576 •3907 •3907	RAINTS B •2560 •2560 •6345 •6345			DEVS		2 + +	1 +	1 +	***********	1 1 2 3	A •4275 •4390 •3950 •3532 •3146	B • C000 • 6892 • 9354 1• 2649 1• 6956		•	+ +	2 +	1 +
WT 1 1 2 2 3	RESTO A •3578 •3576 •3907 •3907 •5211	RAINTS B .2560 .2560 .6345 .6345			4		2 + +	1 +	1 +		1 1 2 3 4 5	A •4275 •4390 •3950 •3532 •3146 •4677	6 • 0000 • 6892 • 9354 1 • 2649 1 • 6956 2 • 2583		•	+	+ + +	1 +
WT 1 1 2 2 3 3	REST(A .3578 .3578 .3907 .3907 .5211	RAINTS B •2560 •2560 •6345 •6345 •6776			4		2 + +	1 + +	1 +	************	1 1 2 3 4 5	A •4275 •4390 •3950 •3532 •3146 •4677	6 .C000 .6892 .9354 1.2649 1.6956 2.2583 2.1154		÷ +	+ + +	+ + +	1 +
WT 1 1 2 2 3 4	REST(A .3578 .3578 .3907 .3907 .5211 .5211	RAINTS B .2560 .2560 .6345 .6345 .6776 .6776		4	4 + +		2 + +	1 + +	1 + + +		1 1 2 3 4 5 6	A .4275 .4390 .3950 .3532 .3146 .4677 .4677	6 • C000 • 6892 • 9354 1 • 2649 1 • 6956 2 • 2583 2 • 1154 2 • 5495		+ + +	+ + + +	+ + +	1 + +
1 1 2 2 3 4 4 5 5	REST6 A -3578 -3576 -3907 -5211 -5211 -2195 -2195	RAINTS B		4	4 + +		2 + +	1 + + +	+ +		1 1 2 3 4 5 6 7	A .4275 .4390 .3950 .3532 .3146 .4677 .4677 .4231 .4180	8 .0000 .6892 .9354 1.2649 1.6956 2.2583 2.1154 2.5495 2.9112		+ + +	+ +	+ + + +	+
WT 1 1 2 2 3 3 4 4 5	REST(A .3578 .3576 .3907 .3907 .5211 .5211 .2195 .2195 .4476	RAINTS B -2560 -2560 -6345 -6345 -6776 -6776 1.0238 1.0238		+	DEVS 4 + +		2 + +	1 + + +	+ +		1 1 2 3 4 5 6 7 8	A •4275 •4390 •3950 •3532 •3146 •4677 •4677 •4231 •4180 •3950	8 .0000 .6892 .9354 1.2649 1.6956 2.2583 2.1154 2.5495 2.9112 3.4496		+ + +	+ + + + +	2 + + + + + + + + + + + + + + + + + + +	+
1 1 2 2 3 4 4 5 5	RESTI A .3578 .3578 .3907 .5211 .5211 .2195 .2195 .4476	RAINTS B		+	DEVS 4 + +		2 + + +	1 + + +	+ +		1 1 2 3 4 5 6 7 8 9	A •4275 •4390 •3950 •3532 •3146 •4677 •4677 •4231 •4180 •3950 •4390	8 .C000 .6892 .9354 1.2649 1.6956 2.2583 2.1154 2.5495 2.9112 3.4496 3.7550		+ + + + + + + +	+ + + + +	+ + + + + + + + + + + + + + + + + + + +	+
1 1 2 2 3 4 4 5 6	RESTI A .3578 .3576 .3907 .3907 .5211 .5211 .2195 .2195 .4476 .4476	RAINTS B		+ +	DEVS 4 + + +		2 + + + + + + + + + + + + + + + + + + +	+ +	+ +		1 1 2 3 4 5 6 7 8 9	A •4275 •4390 •3950 •3532 •3146 •4677 •4677 •4231 •4180 •3950 •4390	8 .C000 .6892 .9354 1.2649 1.6956 2.2583 2.1154 2.5495 2.9112 3.4496 3.7550		+ + + + + + + +	+ + + + +	+ + + + +	+
WT 1 1 2 2 3 4 4 5 5 6 6	RESTI A -3578 -3576 -3907 -5211 -5211 -2195 -2195 -4476 -44058 +4058	RAINTS B		+ +	+ + +		2 + + + + + + + + + + + + + + + + + + +	+ + +	+ +		1 1 2 3 4 5 6 7 8 9	A •4275 •4390 •3950 •3532 •3146 •4677 •4677 •4231 •4180 •3950 •4390	8 .C000 .6892 .9354 1.2649 1.6956 2.2583 2.1154 2.5495 2.9112 3.4496 3.7550		+ + + + + + + +	+ + + + +	+ + + + + + + + + + + + + + + + + + + +	+

DESIGN D.9	4	ъз.	2,1	• 1			K= 5 N= 9
	(881	1 OV	(1			0.F.= 5
DESERVATIONS	4	3	2	1	1		
Y(1)	+	-	-	+			
Y(2)	+	-	-		+		
Y(3)	+	-		-			
Y(4)	+	-			-		
Y(5)	+		-	-	-		
Y(6)		+	-	-			
Y(7)		+	-		-		
Y(8)			+	-	-		
Y(9)				+	-		
RESTRAINT A	+	+	+	+			
RESTRAINT 8					+		
FACTORS FOR C	OMPUTI	NG	sT	DEVS			
WT RESTRA	AINTS						
A	8		4	3	2	1	1
1 •3751	.6325					+	
2 .3502	.9309				+		
3 .3256	1.2649			+			
4 .3011	.6733		+				
5 .3416 2	2.1909		+			+	
6 .4131 2	2.5430		+		+		
7 .4155 2	2.8983		+	+			
8 .3502	3.4059		+	+		+	
9 •3751 3	3.7506		+	+	+		
10 .0000	2505		+	+	+	+	

OES	IGN 0.11	1	0.5.2	2 • 1 • 1 •	1			K= N=	
		•	HAYFO	(0ac			D	•F•=	
C85	ERVATIONS	5 10	5 2	1	1	1			
	Y(1)	+		-	-	-			
	Y(2)		+ -	-	-	-			
	Y(3)		4	-	-				
	Y(4)		4		-	-			
	Y(5)		4			-			
	Y(6)			+	-				
	Y(7)			+		-			
	Y(8)				+	-			
	TRAINT A	+				+			
FAC	TORS FOR	COMPUTI	NG 51	OEVS					
WT	RESTR	RAINTS							
	A	8	10	5	2	1	1	1	
1	.4472	.0000						+	
1	• 4472	.7071					+		
1	• 44 72	.7071				+			
2	.4472	1.0000			+				
3	.6325	1.5811			+	+			
4	.7071	2.1213			+	+	+		
5	.7071	2.3452		+					
6	.8367	2.9155		+		+			
7	.8367			+	+				
8	•9487	3.8079		+	+	+			
9	1.0000	4.3589		+	+	+	+		
10	.0000	4.4721	+						

			////	///	///	///			
DESIGN 0.10		0 4 7					4 – .		05516
DESIGN U.IU	1	0,4,3		. 1			K= (OESIG
	(1	HAYFOR	(0)			0.	F.=	5	
DESERVATIONS	10	4 3	2	1	1				DESER
Y(1)	+		-	-					Y
Y(2)	+		-		-				Y
Y(3)		+ -	-		+				Y
Y(4)		+ + -	-	-	-				Y
Y(5)		+ -		-					Y
Y(6) Y(7)		T .	_	_	-				Y
Y(8)		¥	_	_	_				Y
Y(9)		·	+	_	_				Υ.
Y(10)			•	+	-				RESTRA
RESTRAINT A	+								RESTR
RESTRAINT B					+				
									FACTO
									w T
FACTORS FCR (NG ST	DEVS	•					
WT RESTRA	B	10	4	3			_		1
1 .3848	•0000	10	4	3	2	1	1		1
1 .4411	•6195					_	*		2
2 •4025	.9045								3
	. 2060			+	•				4
	.601E		+	•					5
	• 0889		+			+			6
5 .5270 2	. 0226			+	+				7
6 •5610 2	2.4225		+		+				8
7 .6092 2	2.7561		+	+					9
	8.2193		+	+		+			10
	3.5661		+	+	+				
1C •7720 4	0113		+	+	+	+			
								•	

DESIGN	0.12	1	0,5,2	. 2. 1.	1			K=	-
		,	HAYFO	003			0	=. F.=	
		,	HATFU	KU)				• • • -	3
CESERV	ATIONS	10	5 2	2	1	1			
Υ(1)	+		-	-				
Υ (2)		+ -	-	-				
Y (3)		+	-	+	-			
Υ (4)		+	-	-	+			
Υ (5)		+	-					
Y (6)		+		-	-			
Y (7)			+	-	-			
Y (8)				+	-			
RESTRA	INT A	+							
RESTRA	INT 8					+			
FACTOR		COMPUTI	NG ST	DEVS	5				
w T	RESTR	AINTS							
	Α	8	10	5	2	2	1	1	
1 .	465C	. 0000						+	
	3916	• 5774					+		
	4298	.9512				+			
	4298	• 9512			+				
	5336	1.3801			+		+		
	6733	1.8257			+	+			
	7071	2.4495		+					
	8083	2.8868		+			+		
		3.3022		+	+				
		3.7289		+	+		+		
		4.1633		+	+	+			
10 .	0000	4.6904	+						

DESI	GN D .13		1 C . :	5,3,	2.1.	1			K=	_
									N=1	
			(HA	YF OF	(D)			D	.F.=	5
DESE	RVATIONS	10	5	3	2	1	1			
	Y(1)	+		-	-					
	Y(2)	+	-	-		-	-			
	Y(3)		+	-	-	-	+			
	Y(4)		+	-	-	+	-			
	Y(5)		+	-	-					
	Y(6)		+	-		-	-			
	Y(7)			+	-	-				
	Y(8)			+	-		-			
	Y(9)				+	-	-			
	Y(10)					+	-			
REST	RAINT A	+								
REST	RAINT B						+			
FACT	DRS FCR	COMPUT	ING	ST	DEVS					
WT		RAINTS		-						
	A	В		10	5	3	2	1	1	
1	•3819	•0000							+	
1		. 5345						+		
2	.4055	.8545					+			
3		1.2599				+				
4	_	1.6523				+		+		
5		1.9740			+					
6		2.3688			+			+		
7		2.7588			+		+			
á	•6481	3.1910			+	+				
9	.7159				+	+		+		
10	.7817	3.9551			·	+	+			
. •										

DESIGN	D.15	1	0.5	. 4	3,2,1	L			K= 6 N=10
		•	HAY	FDR	0)			D.	F = 5
DBSERV	ATIDN:	S 10	5	4	3	2	1		
Y (1)	+	-	-			-		
Y (2)	+	-		-	-			
Υ(3)	+		-	-	-	-		
Y (4)		+	-	-	+			
Y (5)		+	-		-	+		
Y (6)		+	-			-		
Υ (7)		+		-	-			
Υ (8)			+	-	-	+		
Υ(9)			+	-		-		
ν(10)				+	-	-		
RESTRA	INT A	+							
RESTRA	INT B						+		
FACTOR	S FCR	COMPUT	ING	ST	DEVS				
WT		RAINTS							
	A	В	1	10	5	4	3	2	1
1 .	4096	.0000							+
	3949	.9045						+	
	4006	1.3104					+		
	4259	1.8340				+			
5 .	4523	2.2134			+				
	5218	2.2134			+				+
6 .						+	+		
	6038	3.0928							
7 .	6038				+		+		
7 .	6547				+	+	+		

DESIGN D • 14		5 • 4	3 • 2	. 1			K= 5 N= 7
		∢HA	YF DF	(D)			D.F.= 3
OBSERVATIONS	5	4	3	2	1		
Y(1)	+	-	-	+			
Y(2)	+	-		-	+		
Y(3)	+	-			-		
Y(4)	+		-	-			
Y(5)		-	-	-	+		
Y(6)		-	-		-		
Y(7)			+	-	-		
RESTRAINT A	+						
RESTRAINT B					+		
FACTORS FOR O	OMOUT	TNG	ST	DEVS			
WT RESTRA		1110	٥.	00.00			
WI RESIRA	В		5	4	3	2	1
1 .4775	.0000	1	•	-	_	_	+
2 .4775	.4663					+	
3 •5912	. 56 83				+		
4 •5912	.6829	5		+			
5 .0000	.6825	5	+				
6 •4775	.6825	5	+				+
	.8776	5	+			+	
8 .5912	•9292	2	+		+		
9 +5912	1.195	2	+	+			
10 •6752	1 • 1 9 5 2	2	+	+			+

DES	IGN D •16		6,5	. 4 . 3	3.2.1				K= N=	_
			(HA	YF DF	(D			D	-۱۱- = ۴۰	
CBS	ERVATIONS	6	5	4	3	2	1			
	Y(1)	+	-	-	+					
	Y(2)	+		-	-	+	-			
	Y(3)	+	-			-	+			
	Y(4)	+	-				-			
	Y(5)	+		-		-				
	Y(6)		+	-			-			
	Y(7)		+		-	-				
	Y(8)			+	-		-			
	Y(9)				+	-	-			
RE S	TRAINT A	+								
RES	TRAINT B						+			
- · ·		C045117			DEVS					
WT	TDRS FCR	AINTS	ING	31	DEVS					
wı	AESIN	B		6	5	4	3	2	1	
1	•4342	• 0000		0	5	*	3	2	4	
2	•4342 •4646	•9181						_	•	
3	•5175							•		
4	•4697					_	_			
5	.4956				_	•				
6	•0000			_	•					
7	•4342			+					+	
8	•4646			÷				+		
9		4.0089		+			+			
10	•4697			+		+				

```
10,6,5,4,3,2,1
                                           K= 7
DESIGN D-17
                                           N=12
                  (HAYFORD)
                                       D.F.= 6
OBSERVATIONS 10
                   6
                       5
                               3
                                   2
                                        1
   Y(1)
   Y(2)
   Y(3)
   Y(4)
    Y(5)
   Y(6)
    Y(7)
   Y(8)
    Y(9)
   Y(10)
    Y(11)
    Y(12)
RESTRAINT A
RESTRAINT 8
FACTORS FOR COMPUTING ST DEVS
      RESTRAINTS
WT
                          6
                                       3
                                           2
               8
                     10
                               5
       Α
             .0000
     .4110
            .8560
 2
     .4229
           1.3841
     .4290
     .4203
            1.8076
     .4352
           2.0860
     .4889
            2.4656
 6
     .6696
            2.4656
     . 5818
            2.8467
     .66 C7
            3.1442
            3.2365
 8
     •6877
     .6597
            3.4224
     .6819
            3.7975
 9
           3.8493
 Q
     .6090
     .7210 4.2403
10
```

DES	IGN E .1		FOU	R E	DUAL	WEIG	HTS	* K=	5
								N=	8
			Trer	d E	limina	ation		D.F.=	4
085	ERVATIONS	_	1	1	1				
	Y(1)	+				-			
	Y(2)		+			-			
	Y(3)			+		-			
	Y(4)				+	-			
	Y(5)				+	-			
	Y(6)			+		-			
	Y(7)	+	+			-			
	Y(8)	+				-			
RES	TRAINT A	+	+						
RES	TRAINT 8				+				
EAC	TCRS FCR	COMOU	T111C	c T	0546				
WT		AINTS	1 114 0	31	06 4 3	•			
	A	8		ī	1	1	1		
I	•8660		0	•	•	•	÷		
I	.8660	1.000	0			+	•		
I	•5000	1.000	0		+				
I	-5000	1.000	0	+					
2	.0000	I.732	1	+	+				
3	•8660	2.449	5	+	+	+			
4	1.4142	2.449	5	+	+	+	+		

*See page 13.

OESIGN E .2	ž	2.2	.1.1	L			* K= 6
		т	rend	Elimi	nati	.on	N=10 D.F.= 5
OSSERVATION	s 2	2	1	1			
Y(1)	. +	_	•	•	_		
Y(2)	•	+			_		
Y(3)		•	+	+	_		
Y(4)				•		_	
Y(5)			•			_	
Y(6)				- 1		_	
Y(7)			+	•		_	
Y(8)				+	_		
Y(9)		+		,	_		
Y(10)	+	•			_		
11107	•						
RESTRAINT A	+	+					
RESTRAINT 8	+	+	+				
FACTORS FOR		ING	sT	DEVS			
	RAINTS						
A	8		2	2	1	1	
	.6928					+	
1 .6614					+		
2 •5000	•5657			+			
2 .5000	.5657		+				
	•9592		+			+	
	•5292		+	+			
5 .6614	1.0000		+	+		+	
*See page 1	3.						

APPENDIX B

LIST OF TABLES

Table	Weights	Design	Restraint
1	1,1,1,1	A.1.2	Sum Two of two weights
2	1,1,1,1	A.1.2	One weight
3	2,2,1,1	B.3	Sum Four of first two weights
4	2,2,1,1	B.3	One weight
5	5,3,2,1,1,1	C.2	Sum Ten of first three weights
6	5,3,2,1,1,1	C.2	One weight
7	5,2,2,1,1,1	C.10	Sum Ten of first four weights
8	5,2,2,1,1,1	C.10	One weight
9	1,1,1,1 Direct reading	E.1	Sum Two of two weights
10	1,1,1,1 Direct reading	E.1	One weight

PARAMETER VALUES PARAMETER VALUES CESERVATIONS TY(4) TY(2) TY(4) TY(4) TY(5) TY(5) TY(7) TY(7) TY(8) TY(8) TY(8) TY(9) TY(1) TY(1) TY(1) TY(2) TY(2) TY(3) TY(4) TY(5) TY(5) TY(6) TY(7) TY(8) TY(8) TY(9) TY(1) TY(1) TY(1) TY(2) TY(1) TY(2) TY(2) TY(3) TY(4) TY(4) TY(5) TY(6) TY(6) TY(7) TY(8) TY(8) TY(1) TY(1) TY(1) TY(1) TY(1) TY(1) TY(2) TY(1) TY(2) TY(2) TY(3) TY(4) TY(4) TY(5) TY(5) TY(6) TY(6) TY(7) TY(7) TY(8) T								MATRIX OF NORMAL EQUATIONS	-11	3 -1		0		6 INVERSE DIVISOR = 8) m	0 0 1 3	4 4	
+++ + +														4	-	0	7	- 1	٦ -	
- +++ +					TER VAL	-	0 7	-3	11	-2	4		DEVIATI	4	-	-1	0	2 -	-	
1 +++ +					PARAMET	-	0 M	7	- 3	2	4		٠	۸ <u>۱</u> ۵	-	-1	2	0 -	7	
- +++ + - 00					_	-	-2	-1		0	4			8	-1	2	- 1	- c	. =	
CESERVATIONS Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(1) Y(2) Y(3) Y(4) Y(2) Y(2) Y(3) Y(3) Y(4) Y(2) Y(3) Y(4) Y(6) Y(1) Y(2) Y(1) Y(2) Y(2) Y(3) Y(3) Y(6) Y(1) Y(2) Y(2) Y(2) Y(3) Y(2) Y(3) Y(2) Y(3) Y(3) Y(3) Y(4) Y(6)			+				2 -	1	7 7	0	4			-	5	-1	7		• 0	
	OBSERVATIONS	Y(1) Y(2) Y(3) Y(4)	Y(6)	RESTRAINT		CESERVATICNS	Y(1) Y(2)	Y(3)	Y(4) Y(5)	۲(۶)	M(1)				Y(1)	Y(2)	Y (3)	Y(4) V(5)	(6) Y(6)	

TABLE 2: MULTIPLIERS OF THE OBSERVATIONS FOR DETERMINING PARAMETER VALUES AND DEVIATIONS FOR DESIGN A.1.2						MATRIX CF NORMAL EQUATIONS	-1 -1	3 -1 -1			INVERSE DIVISOR = 4	4 0 1 1 2	0 00	1 0	4 0	
											ø	o -	- 7	-	-1	
⊼ Z • 4 0 ₪				۵ 4							_د	- c	7	7	1 2	
O • • A • II II				R VALUES	-	000	0 0	0	4	DEVIATIONS	4	7 -	• 0	α•	7 -	
FOUR EQUAL WEIGHTS				PARAMETER DIVISOR	-	0 7	7 -	~	4	DEV	3	1 -	. 2	۰.	7 7	
EQUAL	-	1 1 +	+	σ.	-	101	2 2	-	4		2	-1	17	7 9	o	
FOUR		+++				00	o =		4		~	2 -	· 7	۰.	• 0	
DESIGN A.1.2	OBSERVATIONS	Y(2) Y(3) Y(4) Y(5)	RESTRAINT		CESERVATIONS	Y(2) Y(3)	Y(5)	¥(6)				Y(1) Y(2)	Y(3)	Y(4)	1(e) Y(e)	

S AND							000	0 V	84	8 4	42	45	5
DETERMINING PARAMETER VALUES AND DEVIATIONS FOR DESIGN B,3					SNO	7 7	- s o		11	0	7	35	45
PARAMETE OR DESIG					EQUAT 10	- 1	s - 0	1	DIVISUR	, 0	35	7	4 2
TINING TIONS FI					NORMAL	ų 4	111			12	0	0	84
DETERN DEVIAT					MATRIX OF NORMAL EQUATIONS	∢ m			INVERSE	- 12	, ,	ပ	848
									5 1 2				
A & E			AL UES	88	***		_	2.1	4 20 L			6 6	
			TER V	90 1	14 0 0	-21 -21 -14	21	DEVIATIONS DIVISOR =	4 2) [1 I		61	
			P A R A M E	01VISOR = 1	14 - 14	-21 -21 14	21	010	m g v	0 1 -	. 1	E)	0
1:1	1	+ 1 1 1 +		N	-12	90	4		2 - 0	10 vC) m I	Ю	7
2 . 2 . 1 . 1	8	111 +	+	N	12	0 9 0	\$		- ຍ •	- 9) E	m	1
DESIGN 8.3	GESERVATIONS 2	Y(1) Y(2) Y(3) Y(4) Y(5)	RESTRAINT	CESERVAT IONS	Y(1) Y(2) Y(3)	Y(4) Y(5) Y(6)	M(1)		¥(1)	Y(2)	Y (4)	Y(5)	٧(6)

TABLE 4: MULTIPLIERS OF THE OBSERVATIONS FOR DETERMINING PARAMETER VALUES AND DEVIATIONS FOR DESIGN B.3

MULTIPLIERS OF THE OBSERV DETERMINING PARAMETER VAL DEVIATIONS FOR DESIGN B.3											MATOTY OF NORMAL EQUATIONS		1-	4	-1 -1 -1 -1 5 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0			RSE DIVISUR =	16 7	16 19 7 0	7	0	42 21
TABLE 4:											OF A M							INVERSE					
																		9 1	. ^	. 0	0	0	14
X Z .*								ES 21								S	21	ب ري	ויו כ	m	6-	6	0
O								R VALUE	-	0	0 0	0 0	0	0	21	DEVIATIONS	30R =) II	, E	6	6-	0
								PARAMETER VALUES DIVISOR =	-	7	۲ ،	0	0	7	21	DE	DIVISOR	m 4	9	15	۳,	m	0
	1	+			1 +	+		Q.	~	4	-10	ი თ I	12	7	42			c -	• 60	φ	F -	m	^
2,2,1,1	~		1 1		+				•				-		01			- α		0		~	
· · ·	7	+	+ 4	+ +					01	10	4 4	, 21	, 0	_	4			- u) -	9	-13	r.	ſ
DESIGN 8.3	CESERVAT IONS	Y(1)	Y(2) V(3)	Y(4)	Y(5) Y(6)	RESTRAINT			OESERVATIONS	Y(1)	Y(2)	Y(4)	Y(5)	Y(6)	H(1)			(1)	Y(2)	Y(3)	Y (4)	۲(5)	(9)
								F.O.															

000-0

K= 6 N=11 D•F•= 6

5.3.2.1.1.1

DESIGN C.2

							-00	000	>			460	276	184	95	92
						77	000	> co «	>			8	90	8-	-	92
						ī ī	000	000	>		920	8	9 0	ε) -	116	92
					SNS	-	000	00	>		It	2	9 0	116	-	92
					EQUAT10	-5	100		•		D(V1SOR	-16	-48	0 I	- G	184
					NORMAL	4 1	-77	· 7 ·	•		6	-34	82	1 9 0	9	276
					MATRIX OF NORMAL EQUATIONS	n) 4	ກ 	7.	•		INVERSE	50	46-1	- 10	2	460
									111	6 1	3. 8	-32	-cv 26	56	- 43 5 43	118
									010	-15	ဆေတ	-32	-20	56	-43	-43
									Φ 0	31	8 8	-32	26	-20	118	1 4 1 5 1 6
									6 0 0	S 4 0	8 60 80	-32	120	72	-20	56
									۲ ۷	# 60 F	ဆေးလ	-32	72	-20	26	56
			-	1111 - 1111 - 1102 - 102	-10 -125	-125 92			9 6	0 0	5. 8.	-32	-20	-20	26	-20
		ES 920	-	1119 1119 1119 1108 1128	-125	-125		NS 184	S éc	-24	-24	96	-32	-32	-32	-32
1	1+ 111+ 11	PARAMETER VALUE DIVISOR =	-	119 -1111 -108 -102	-125 -125	92		DEVIATION		0 4	144	-24	D 60	6 0	6 0 0	pα
-	1 + 1 1 + 1 1 1	PARAMETE! DIV150R	8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80	184		DEV1A	m	-17	9 6 6	-24	t 60	-38	- 15	318
2 1	11111111+++		m	0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	09-	-60			01	86	-17	-24	-38 -38	4	31	-12 8
e S	++++	+	ທ	1000	150	460			- 6	-17	-40	-24	ا د د د	, eo	æ :	31 -15
CESERVATIONS	Y(1) Y(2) Y(3) Y(3) Y(6) Y(7) Y(7) Y(9) Y(10)	RESTRAINT	CESERVATIONS	(5) (6) (6) (6) (6) (6) (6) (6)	Y(9) Y(10)	Y(11)			,	Y(2)	Y(3)	γ(5)	Y(2)	Y(8)	(6) \	Y(10)

DETERMINING PARAMETER VALUES AND DEVIATIONS FOR DESIGN C,2																										0						4						» o		
METER ES 1 GN																								7 7	1	0	Œ	0	0			184		115	59	4 6	2 4	0	184	
PARAI For De																						N 50		7	• •	ω	0	0	0			14		115	69	9 4	4 0	30	184	
MINING																						EQUAT IONS	ı	ر ا	· =	. °	0	ပ	0			SIVISOR		236	132	112	0 4	, 0	368	
DEVIA DEVIA																						NORMAL E		4 6			7	7	0			2		45	18	32	י פ פ	; 0	52	
																						MATRIX OF	•	ທ ເ	ו ו ו	7	7	7	•			INVERSE		586	334	236	115		920	
																																_								
																														11	-15	Φ.	E G	- 30	-20	56	56	E 4-	11.8	
																														01	31	-15	c	D C.	26	-20	56	E 4 -	118	?
																														6	60	31	-13	0 0	56	56	-20	118	- 43 - 43	?
																														60	80	54	6 G	0 6	-20	-20	72	-20	56 26	}
																														^	54	-38	oc o	0 %	-20	7.2	-20	26	-20	
														-	c	· c	. 0	0	0	0	0 0	0		0	184					9	-38	6 0	54	0 %	72	-20	-20	26	500	i
9 1 1 9													184	-	E 6 -	4	-23	0	0	0	46	-23	23	0	184				184	ß	-24	-24	-24	96	-32	-32	-32	-32	- 32	
K = 6 N = 1 1 D • F • = 6												1 A 1	= 1	-	m) m	9	0	0	و	0 4	o m	0	n	4			ATIONS		4	o	0	0	. 4	. 60	60	60	6 0 (10 C	
	~		+		ı	ı	ı	+	,	ı	+				"		1			4	1	-23	,	•••	18			DEVIA	DIV150R		Ĭ	4	7 .	- 1	'					
	-	1 4	٠		١	ı	+	1	ı	1		DADAMETER	DIVI50R	0	9	60	-54	-8	32	20	50	202	99	99	368				0 [\	ю	-12	-17	8 6	124	5.4	60	-38	-15	D =	
5,3,2,1,1,1	-	+	١		•	+	ı	•	۱ ۱			à		m	9	, 100	, w	9	4	9	, م	v v	· 10	m	Q.					2	~	0	~ <	.	. 60	8	4	- (ດແ	
.2.1	~	1 1	1	1	•	١	ı	1 4	٠ ٠	+					ī	· ic	80	7	Ý	œ.	ač ų	9-	9	9	5						7	σ.	7 1	1 7	1	E,	ń	η.	61-	
₽ \$	m	1 1	1	٠		+	+	+						ß	16	131	66-	16	20	85	85	9	121	121	950					-	85	-17	. .	4	38	54	80	œ ;	15-	
	v	+ +	+	•	+											-	' '		_		Ī	1	_	_	ŭ.							'	' '	•	'					
DESIGN C.2	OBSERVATIONS	(1) X	(3) (3)	Y(4)	Y(5)	¥(6)	Y(7)	۲(8) ۲(۵)	(8))	X(11)	RESTRAINT			OBSERVATIONS	7(1)	X(2)	Y (3)	Y(4)	Y(5)	Y(6)	(4) (6)	(6) k	¥(10)	Y(11)	¥						x (1)	Y(2)	(3) (2)	(2)	Y(€)	Y(7)	Y(B)	(5))	(10) (11)	

00000-0

AND AND												-	- 0	00			350	140	70	70	0 0	
MUCLIFICIERS OF THE UBSERVATIONS FOR DETERMINING PARAMETER VALUES AND DEVIATIONS FOR DESIGN C.10											۳ ×	8	00	۰ ٥			55	-48	. 4 d	51	151	
MULIIPLIEKS UF IHE UBSEKVA DETERMINING PARAMETER VALUI DEVIATIONS FOR DESIGN C.10											E C	2	o 1~	00		200						
OF THE											1					~	S	4	1 4	15	70	
NING ONS F										S Z	E 0	21	• 0	0 =		н	S	-68	131	41	70	
OLITPL ETERMI EVIATI										NORMAL EQUATIONS	40	7	N N	c -		D1 V1 50R	140	4	104 -66	94-	140	
										RMAL	4-	. 0	NN	2 -		010	40	104	4 9 69	94	148	
IABLE /:																						
										MATRIX OF	υ q	i	ו ו	ĭ ···		INVERSE	2	1	4	Ü	350	
										Σ						-						
																00	~ 0	V 0	-	7 7	7 '	'n
																7	2.5	o ~	_		· m ·	- 1
								_					٥.									
								-	21	7 -	7 7	7 =	-10			Ĭ		Î		Τ ''	-1	ī
986							25 70	-	1 21	7	1 1	-	10	•		۰ 5	0 (> 0	F)	m =	7	ī
0 7 Z F							VALUES	-		61	4 1 1	0 6	0 1	•	- 5		0 (> 0	ю	۳ -		-
	-	+ 1 1	1 1	+ 1			PARAMETER Divisor	8							DEV	D1V1SOR 3		- 0		0 0		0
_	-	1 + 1	1 1 1	*			PARAMETE DIVISOR	.,	7 7	7	-	7	-10	•		0 6	7	1		ï	101	
5.2.2.1.1.1	-		1 1 +	1	+		-	~	a) 60	2 0	7 7	1 B	01			~	- 1	7 -	0	0 0	0	2
N N	2	1 1 1	1 1	1 1	*				, ,	ī							'	ľ				
ů,	0	1 1 1		+ +	+			ស	15	ហ	0	ດທ	0 5	}		-	٧.	7 7	0	00	150	N
	v	* * *	+ +		*																	
0 -	ICNS				p -			IONS														
CESIGN C-10	CESERVATICNS	Y(2)	Y(6) Y(6)	Y(7) Y(8)	RESTRAINT			CESERVATIONS	Y(1)	€	(5)	9 2	Y (8)				(1)	Y(2)	Y(4)	Y(5)	Y (7.)	(8)
CESI	CPSE				REST			CESE	> >	> >	> >	> >	> 2				> :	- >	>	> >	· > :	-

TABLE 8: MULTIPLIERS OF THE OBSERVATIONS FOR DETERMINING PARAMETER VALUES AND DEVIATIONS FOR DESIGN C.10

DEVIATIONS FOR DESIGN C.10						MATRIX OF NORMAL EOUATIONS	1	-13 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13 16 16 5 5 0 16 16 16 16 16 16 16 16 16 16 16 16 16
									00000
					~	0000	000	40	0000
N				ES 7	-	0000	077	8 1	N N N N N N N N N N N N N N N N N N N
٥				R VALU	-	0000	0 = 0	- ~	DEVIATIONS 1.50R = 0.00
_	-	+++++++++++++++++++++++++++++++++++++++	•	PARAMETER VALUES DIVISOR =	8	5 1 1 4	. n - 1 - 1	1 4	DEVIA DIVISOR 3 3 3 2 2 0 0 0
5.2,2,1,1,1	2	11+11+1		a .	8	φ π	4 - 1	14	0 1 0 1 0 1 0 1 0 1 0 0 0 0 1
5,2,2	N	1111 +++			w	0	~ 0 IO	חו חו	
	ς,	* * * * *				6-1-1	, o i	" m	1 1 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
DESIGN C.10	OBSERVATIONS	Y (1) Y (2) Y (3) Y (5) Y (6) Y (7)	RESTRAINT		CESERVATIONS	Y(1) Y(2) Y(3) Y(4)	Y(5) Y(6) Y(7)	W (E)	7 (2) 7 (3) 7 (4) 7 (5) 7 (6) 7 (6)

00000 = 0

14 14 14 0

O										
HTS	Trend**	1	-5	m ŧ	ī	-	m	S	7	
FOUR EQUAL WEIGHTS	Tare*	ī	ī	-	ī	-1	ī	ī	ī	
UAL	-	0	0	0	-	-	0	0	0	
ПО		0	0	-	0	0	-	0	ပ	
FOUR	-	0	-	0	0	0	0	-	0	
	-	-	0	0	0	0	0	0	-	
DE516N E.1	OESERVATIONS	¥(1.)	Y(2)	Y (3)	7(4)	7(5)	۲(6)	۲(۲)	۲(8)	

*The observation is on the difference between the listed weight and the built-in or tare weight of the balance.

**For explanation of trend, see page 13.

														œ	- 35	35	21	~	-7	-21	-35	35
														7	35	-59	15	ហ	1.5	-15	69	-35
	4	Trend*	-	-5	E.I	ĩ	-	n	ß	^	0			9	21	15	-75	33	E-	75	-15	-21
in the	168	Tare*	-42	0	0	-42	-42	0	0	-42	6.4	SZ	168	S	7	S	m	-83	83	E-	5-	-7
R VALUE	11		-42	0	0	42	42	0	0	-42	8.4	DEVIATIONS	0R ∺	4	-7	- 5	-3	83	-83	3	S	7
PARAMETER VALUES	01V1SGR		-42	0	8.4	-42	-42	84	0	-42	6	0E	D1V150R	m	-21	-15	75	۳-	m	-75	15	21
_		**	-42	84	0	-42	-42	0	84	-42	8.4			2	-35	59	-15	S	S	1.5	-55	35
		1	42	0	0	-42	-42	0	0	42	8.4			-	35	-35	-21	7-	^	21	35	-35
		CESERVATIONS	Y(1)	Y(2)	۲(ع)	7(4)	Y(5)	7(6)	۲(۲)	Y(8)	F(1)				7(1)	Y(2)	Y(3)	Y(4)	Y(E)	7(6)	Y(7)	Y(8)

4 4 4 4 4 0 0

00000-0

0 4 4 0 4 0 8

DIVISOR

INVERSE

-00-000

0 0 0 0 0 0

0 0 0 0 0 0

MATRIX OF NORMAL EQUATIONS

RESTRAINT

7 X X		
HT 5	Trend**	11337
FOUR EQUAL WEIGHTS	Tare*	77777777
UAL	-	000000
E C	-	00-00-00
FOUR	-	0-0000-0
	-	-00000-
CESIGN E.1	CESERVATIONS	Y(1) Y(2) Y(3) Y(4) Y(6) Y(7)

RESTRAINT

*The observation is on the difference between the listed weight and the built-in or tare weight of the balance.

**For explanation of trend, see page 13.

			PARAMETER	R VALUES	E 5			
			DIVISOR	 	168			
CESERVAT I CNS	-	-	-	-	*91sT	Trend**		
Y(1)	84	0	0	0	0	-7		
Y(2)	0	84	0	0	0	-5		
Y(3)	0	0	84	0	0	£.		
Y(4)	184	-84	-84	0	-84	-		
۲(5)	-84	-84	-84	0	-84	-		
Y(6)	0	0	84	0	0	m		
۲(۲)	0	84	0	0	0	S		
Y(8)	84	0	0	0	0	7		
F(1)	168	168	168	168	168	0		
			90	DEVIATIONS	S			
			DI V1 50R	= HO	168			
	-	~	6	4	2	9	~	
(I)	35	-35	-21	-7	7	21	35	1
Y(2)	135	26	-15	-5	S	15	-59	
۲(3)	-21	-15	75	E,	ю	-75	15	
۲(4)	-7	ا ئ	E-	83	-83	m	ß	
۲(5)	7	ີດ	m	-83	83	E.	9	
Y(€)	21	15	-75	n	E)	75	-15	ı
Y(7)	35	-59	15	S	5-	-15	29	۱
Y(8)	-35	35	21	7	-7	-21	75	

00000-0

8 35 35 7 7 -7 7 21 25 35 35 35 35 35 35 35 35 35

DIVISOR

1 NVERSE

000-00

MATRIX OF NORMAL EQUATIONS

REFERENCES

- [1] Benoit, M. J. R., L'Etalonnage des Series de Poids, Travaux et Memoires du Bureau International des Poids et Mesures, No. 13, 1-47 (1907)
- [2] Bose, R. C. and Cameron, J. M., The Bridge Tournament Problem and Calibration Designs for Comparing Pairs of Objects, National Bureau of Standards Journal of Research 69B, 323-332 (1965)
- [3] Bose, R. C. and Cameron, J. M., Calibration Designs Based on Solutions to the Tournament Problem, National Bureau of Standards Journal of Research 71B, 149-160 (1967)
- [4] Cameron, J. M. and Hailes, G. E., Designs for the Calibration of Small Groups of Standards in the Presence of Drift, NBS Technical Note 844 (August 1974)
- [5] Chakravarti, I. M. and Suryanarayana, K. V., Partial Difference Sets and Partially Balanced Weighing Designs for Calibration and Tournaments, Journal of Combinatorial Theory 13(3), 426-431 (1972)
- [6] Goldman, A. J. and Zelen, M., Weak Generalized Inverses and Minimum Variance Linear Unbiased Estimation, NBS Journal of Research 68B, No. 4, 151-172 (1964)
- [7] Hayford, John A., On the Least Squares Adjustment of Weighings, U.S. Coast & Geodetic Survey Report for 1892, Appendix 10, USCGS (1893)
- [8] National Bureau of Standards Circular 3, Design and Test of Standards of Mass, 1918. This circular is out of print but

its contents have been incorporated in NBS Handbook 77, Precision Measurement and Calibration, Volume III, Optics, Metrology and Radiation, pp. 588-706. This handbook is available for reference or circulation in most Government Depository Libraries throughout the United States.

- [9] Pontius, P. E., Mass and Mass Values, NBS Monograph 133, 39 pages (1974)
- [10] Pontius, P. E., Measurement Philosophy of the Pilot Program for Mass Calibration, NBS Technical Note 288, 39 pages (1966)
- [11] Suryanarayana, K. V., Contributions to Partially Balanced Weighing

 Designs, Ph.D. dissertation submitted to the Department of Statistics,

 University of North Carolina at Chapel Hill, Institute of Statistics

 Mimeo Series No. 621 (1969)
- [12] Zelen, M., Linear Estimation and Related Topics, Survey of Numerical Analysis, Chapter 17, edited by J. Todd, McGraw Hill, New York City, 558-584 (1962)

ND3-114A (REV. /-/3)				
U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA	1. PUBLICATION OR REPORT NO.	2. Gov't Accession No.	3. Recipient'	's Accession No.
SHEET	NBS TN 952	NO.		
4. TITLE AND SUBTITLE			5. Publication	n Date
		M	.J.	une 1977
Designs for the (Calibration of Standards of	Mass	L	Organization Code
				, organization code
3 AUTHOR(C)			0.12 (.	0 0
J. M. Cameron, M.	. C. Croarkin, R. C. Raybol	d	8. Pertorming	g Organ. Report No.
9. PERFORMING ORGANIZAT			10. Project/T	ask/Work Unit No.
NATIONAL B	BUREAU OF STANDARDS			
	T OF COMMERCE		11. Contract/	Grant No.
WASHINGTON	N, D.C. 20234			
12. Sponsoring Organization Nau	me and Complete Address (Street, City, S	State ZIP)	13. Type of R	Report & Period
12. Sponsoring Organization War	me and complete riddress (offeet, offy, c	nate, 211)	Covered	eport & remod
]	Final
			14. Sponsorin	g Agency Code
15. SUPPLEMENTARY NOTES				
16. ABSTRACT (A 200-word or bibliography or literature su	less factual summary of most significant	information. If documen	t includes a si	ignificant
	ents a collection of design	for the interes	mnanicon	of sots of
	in precision calibration of			
	usly unpublished designs wh			
	the check standard for moni			
	ncluded are the classical d			
	quares analysis is presente			
division) for the	e most widely used designs;	and for the other	rs the s	tandard
	iven for various weight com			
as a descending s	series. Designs for sets o	f nominally equal	objects.	the
2211.	series, the binary sequ	ences, the 5 2 2	1 1 serie	s. and
	d some miscellaneous series			·, ·
		3 · · · · · ·		
17. KEY WORDS (six to twelve	entries; alphabetical order; capitalize or	ly the first letter of the	irst key word	unless a proper
name; separated by semicolo				
Design of experin	ments; least squares; mass	calibration; stat	istical d	esign;
weighing design				
10 AVAILABILITE		19. SECURIT	V CLASS	21. NO. OF PAGES
18. AVAILABILITY	X Unlimited	(THIS RE		21. NO. OF FAGES
For Official Distribution	n. Do Not Release to NTIS			64
. or official Distribution	DO NOT Release to W113	UNCL ASS	IFIED	
Order From Sup. of Doc.	., U.S. Government Printing Office	20. SECURIT	Y CLASS	22. Price
Washington, D.C. 20402	2, SD Cat. No. C13 16:952	(THIS PA		
Order From National Te Springfield, Virginia 22	echnical Information Service (NTIS)	UNCLASS	IEIED	
opringiteid, viiginia 22	171	UNCLASS		4

There's . . . the monthly magazine of the National Bureau of Standards. Still featured are special aranew ticles of general interest on current topics such as consumer product safety and building look technology. In addition, new sections are designed to . . . PROVIDE SCIENTISTS with illustrated discussions of recent technical developments and work in progress . . . INFORM INDUSTRIAL MANAGERS of technology transfer activities in Federal and private labs. . . DESCRIBE TO MAN-UFACTURERS advances in the field of voluntary and mandatory standards. The new DIMENSIONS/NBS also carries complete listings of upcoming conferences to be held at NBS and reports on all the latest NBS publications, with information on how to order. Finally, each issue carries a page of News Briefs, aimed at keeping scientist and consumer alike up to date on major developments at the Nation's physical sciences and measurement laboratory.

(please detach here)

SUBSCRIPTION ORDER FORM

Enter my Subscription To DIMENSIONS/NBS at \$12.50. Add \$3.15 for foreign mailing. No additional postage is required for mailing within the United States or its possessions. Domestic remittances should be made either by postal money order, express money order, or check. Foreign remittances should be made either by international money order, draft on an American bank, or by UNESCO coupons.

NAME-FIRST, LAST

COMPANY NAME OR ADDITIONAL ADDRESS LINE

STREET ADDRESS

CITY

STATE

ZIP CODE

Remittance Enclosed
(Make checks payable
to Superintendent of
Documents)

Charge to my Deposit Account No.

MAIL ORDER FORM TO: Superintendent of Documents Government Printing Office Washington, D.C. 20402

PLEASE PRINT

SINGLE CRYSTAL DATA REVISED! UPDATED!

In 1954, the first edition of CRYS-TAL DATA (Determinative Tables and Systematic Tables) was published as Memoir 60 of the Geological Society of America. In 1960, the second edition of the Determinative Tables was issued as Monograph 5 of the American Crystallographic Association, and in 1967, the Systematic Tables were issued as Monograph 6. These editions proved extremely valuable to crystallographers throughout the world. Recognizing the need for updated crystallographic information, the National Bureau of Standards Office of Standard Reference Data has sponsored the issuance of a new edition.

This, the THIRD EDITION, should be of particular interest not only to crystallographers but also to chemists, minerallogists, physicists and individuals in related fields of study. The current edition, which comprises two volumes, Organic and Inorganic, is a thoroughly revised and updated work, containing over 25,000 entries.

The entries are listed, within each crystal system, according to increasing values of a determinative number: a/b ratio in trimetric systems, c/a ratio in dimetric systems, and cubic cell edge a, in the isometric system. In addition, the following information is given:

INORGANIC VOLUME \$50.00
ORGANIC VOLUME \$30.00

axial ratio(s) and interaxial angles not fixed by symmetry, cell dimensions, space group or diffraction aspect, number of formula units per unit cell, crystal structure, (whether determined), measured density and x-ray calculated density. Also listed is the name of the compound and synonym(s). chemical formula, literature reference and transformation matrix. When available, the crystal structure type, crystal habit, cleavages, twinning, color, optical properties, indices of refraction, optical orientation, melting point and transition point are also listed.

THIS EDITION culminates years of effort by J. D. H. Donnay, Johns Hopkins University, Helen M. Ondik, National Bureau of Standards, Sten Samson, California Institute of Technology, Quintin Johnson, Lawrence Radiation Laboratory, Melvin H. Mueller, Argonne National Laboratory, Gerard M. Wolten, Aerospace Corporation, Mary E. Mrose, U.S. Geological Survey, Olga Kennard and David G. Watson, Cambridge University, England and Murray Vernon King, Massachusetts General Hospital.

Plus shipping and handling

Shipments are made via insured parcel post. Additional charges for shipments by air or commercial carrier. TERMS: Domestic—30 days Foreign—prepayment required. Address all orders to:

JOINT COMMITTEE ON POWDER DIFFRACTION STANDARDS 1601 Park Lane, Swarthmore, Pennsylvania 19081

RDS
III SISTER
Ds

make color work for you

Color in our Daily Lives, a new consumer booklet from the National Bureau of Standards, takes the reader step by step through the fundamental principles of color and light, families of color, influence of colors upon other colors, and color harmony. This full-color, 32-page illustrated booklet highlights practical applications of color, including:

- Your personal color plan.
- Your color environment.
- Color plans for the home.
- Using color to dramatize or to hide.
- Color and illumination.
- Experimenting with color.

This new basic guide can serve as your handbook in helping you make decisions about how to use color in your life and make it work for you. Order Color in Our Daily Lives prepaid for \$1.70 from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. Use SD Catalog No. C13.53:6.

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, and chemistry. It is published in two sections, available separately:

Physics and Chemistry (Section A)
Papers of interest primarily to scient orking in these fields. This section covers a brical and chemical research, with remphasis on standards of physical measure of fundamental constants, and properties of mr. Annual subscription: Dr. Studies and compression of section B)
Studies and compression of experiment design, numerical statistical physics and chemistry, logical design of physical physics and chemistry, logical design of computers and computer systems. In computer section of the physics and chemistry, logical design of computers and computer systems. In computer section of the physics and chemistry, logical design of computers and computer systems. In computer section of the physics and chemistry, logical design of computers and computer systems. In computer section of the physics and chemistry, logical design of physics and chemistry, logical design of physics. In the physics and chemistry, logical design of physics and chemistry, logical design of physics. In the physics and chemistry, logical design of physics and chemistry, logical design of physics. In the physics and chemistry, logical design of physics and chemistry, logical design of physics. In the physics and chemistry, logical design of physics and chemistry, logical design of physics. In the physics are physics and physics. Topics in mathematical statistics are physics and physics and

DIMENSIONS/NBS (formerly Technical News Bulletin)-This monthly magazine is published to inform scientists, engineers, businessmen, industry, teachers, students, and consumers of the latest advances in science and technology, with primary emphasis on the work at NBS. The magazine highlights and reviews such issues as energy research, fire protection, building technology, metric conversion, pollution abatement, health and safety, and consumer product performance. In addition, it reports the results of Bureau programs in measurement standards and techniques, properties of matter and materials, engineering standards and services, instrumentation, and automatic data processing.

Annual subscription: Domestic, \$12.50; Foreign, \$15.65.

NONPERIODICALS

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

Handbooks-Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series-Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series-Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a world-wide program coordinated by NBS. Program under authority of National Standard Data Act (Public Law 90-396).

NOTE: At present the principal publication outlet for these data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St. N.W., Wash. D. C. 20056.

Building Science Series-Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The purpose of the standards is to establish nationally recognized requirements for products, and to provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series-Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

Order above NBS publications from: Superintendent of Documents, Government Printing Office, Washington, D.C. 20402.

Order following NBS publications—NBSIR's and FIPS from the National Technical Information Services, Springfield, Va. 22161.

Federal Information Processing Standards Publications (FIPS PUBS)-Publications in this series collectively constitute the Federal Information Processing Standards Register. Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended. Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Services (Springfield, Va. 22161) in paper copy or microfiche form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibliographies are issued periodically by the Bureau: Cryogenic Data Center Current Awareness Service. A literature survey issued biweekly. Annual subscrip-

tion: Domestic, \$25.00; Foreign, \$30.00.

Liquified Natural Gas. A literature survey issued quarterly. Annual subscription: \$20.00.

Superconducting Devices and Materials. A literature survey issued quarterly. Annual subscription: \$30.00. Send subscription orders and remittances for the preceding bibliographic services to National Bureau of Standards, Cryogenic Data Center (275.02) Boulder, Colorado 80302.

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington, D.C. 20234

OFFICIAL BUSINESS

Penalty for Private Use, \$300

POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE COM-215

SPECIAL FOURTH-CLASS RATE BOOK