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MEASUREMENT OF ENERGY IRRADIANCE FROM SINGLE PULSE SOURCES

A. R. Schaefer and E. F. Zalewski

A method of measuring the energy irradianoe from a single
pulsed source, such as a xenon flashtube, is presented. Details

of the approach used in this particular measurement are given, along
with a discussion of the data analysis. In particular, we con-
sider some of the inherent problems encountered in curve fitting
which are also common to other radiometric and photometric measure-
ments .

Key Words: Curve fitting; energy irradianoe; flashtube, pulsed
source; radiometry

.

**********

1. Introduction

In this paper we describe a method for measuring the amount of energy per unit area,

or energy irradianoe [l] 1
, propagating from a pulsed source such as a xenon flashtube at a

given distance from the source. The basic measurement procedure is applicable when the
energy is either to be measured spectrally (per unit wavelength) or to be integrated over a

spectral bandwidth, such as in the case of photopic (luminous) energy. The latter measure-
ment was performed as a special calibration by NBS. While preparing for this calibration,
it was realized that little previous documentation existed concerning this type of measure-
ment. Since there is an apparent need for such measurements, this paper is being written
to document the procedure we have used at NBS.

We will present a specific method of calibrating the energy per unit area of a pulsed
source using a continuous (non-pulsed) standard of either irradiance or illuminance (luminous
intensity) . The theoretical approach will be outlined, followed by a detailed discussion of

the factors contributing to the uncertainty of the measurement. As a specific example, we
will describe the particular measurement performed at NBS. Finally, we will conclude with
a discussion of the treatment of the data, the curve fitting and its inherent problems.

2. Theory of the Measurement

In measuring the energy irradiance output of a pulsed source, the first problem to
arise comes from the fact that the only basic reference standards currently available are
constant power sources, such as irradiance or illuminance standards, the latter being derived
to measure the radiant power incident on a given area within a known time interval. The
integral of power over this time interval is the total energy. That is,

E(t) dt (1)

where E(t) is the power irradiance as a function of time and W is the energy per unit area.
A continuous source can be chopped by a rotating blade to provide a single pulse within a
measurable time interval and the integration can be accomplished electrically. For our
measurements, a silicon photodiode and operational amplifier were used. The emitted current,
i(t), was proportional to the irradiance incident upon the detector:

i(t) = k
x
E(t) (2a)

Figures in brackets indicate the literature references at the end of this paper.
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If we write Eq. (2a) in terms of the charge Q, then

|f
= k'i E(t) , (2b)

We used an electrometer in its charge measuring mode, in which it behaves essentially like

a capacitor. It produces a voltage, V, proportional to the charge, so that,

V=§ . (3a)

Since Q and V change in time we can differentiate and obtain

dV _ 1 d£ ,,, .

dT-cdt ' (3b)

Substituting into Eq. (3b) yields

cf-ki E(t) (4a)

or

f =kE(t) . (4b)

Therefore, over a time interval t^ to t2

:

/.

t2

V = k | E(t) dt . (5)

tl

Equation (5) is the working relation of the measurement system: a power irradiance pulse
is received by the detector, and subsequently a voltage, proportional to the total energy
in the pulse, is read on the electrometer capacitor. The calibration is made absolute by
the use of a reference standard in the determination of k.

Determination of the system calibration constant, k, can be accomplished by measuring
the voltage Vg that results after applying a pulse of known power irradiance. The energy
irradiance integral can be evaluated in the following manner. First, a known constant power
irradiance, Eq, is produced at the detector by a suitable standard incandescent lamp. A
shutter is placed between the standard lamp and the detector. If one assumes that the

shutter instantaneously opens at time t\ and closes at t2> then a pulse of known power
irradiance is incident on the detector in the specified time interval. From Eq. (5) we
can obtain the value of k:

k= -=- : (6)

/.:

2
E dt

E 0<t 2 " M>



3. Detailed Experimental Considerations

We have outlined the essentials of the method whereby energy irradiance calibrations

can be made. We shall now go into several more detailed, practical aspects of the measure-

ment which, if not given due attention, could have an adverse effect upon the results.

3.1 The Shutter Mechanism and the Evaluation of the Time Integral

The shutter that provides the time calibration information must have the following
characteristics. It must, of course, provide a stable, repeatable, and well-determined
open time. In addition, it should expose the entire detector surface to the source in a

well defined manner. In this regard, one must be wary of accidentally using the shutter
in such a way that the detector will not be illuminated in the same manner by both the

shutter and standard lamp combination and the pulsed source to be calibrated. This would
be the case, for instance, if one used a shutter opening that was not larger than the
detector aperture.

The shutter used for this calibration was a single opening sector disc of 63°, rotating
once every half second. The circular detector, area about 1 cm2 , was placed on a radius
about 15 cm from the axis of the sector disc. Under these conditions the shutter opening
or closing can be approximated by a knife edge shadow moving across the detector in a

period about one sixteenth that of the total open time. Let us assume for the purpose of

discussion that we have a detector that has the same shape as the opening in the sector disc
plus uniform and linear responsivity. The time dependent output of the detector will then
be a trapezoid, as outlined in Fig. la. Segments t^ to t 3

and t^ to tg will be straight
lines, since the area irradiated is changing linearly with time. In order to apply Eq. (6)

one must know the area of this pulse from t\ to tg assuming height Eg. The area of the
trapezoid is given by A = 1/2^^ - t 3 + tg - t^) Eg. Since

t 3
" t 2

= t 2 - t
l

= t 6 - t 5
= t 5

- t k (8)

then

t«f
" t 3

= t 5 - t 2 - 2(t 3
- t 2 ) (9)

and

t 6
- t l

= t 5
- t 2 + 2(t 2

- t : ) . (10)

Therefore, the area of the trapezoid is simply

A = (t 5
- t 2 ) E . (11)

That is, the area of a trapezoidal pulse is equal to the area of a rectangular pulse drawn
through half-power points t 2 and t$ and of height Eg. This is a useful operational simpli-
fication.

In reality, the detector used is generally not rectangular in shape, but circular.
Hence the segments t^ to t 3 and t^ to tg are not straight lines, since the detector area
irradiated will not be a linear function of time. They will have a shape similar to that
shown in Fig. lb.

One can calculate from the area of a circular segment, what the area of this pulse
shape will be. Let
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Fig. 1: Shuttered time response of detector illustrating integration of total
pulse. A) Detector has same shape as sector disk. B) Circular detector.



1
= 2~ - x V(E /tt) " x2 + (E„/ir) sin

_1
(x V*/E ) , (12a)

2 =
J-+ U V(E /ir) ~ t 2 + (E /ir) sin

_1
(t V^/E^) ,

(12b)

|x V(E /tt) " x2 + (E /tt) sin
_1

(x V*/E ) , (12c)

= 2~ - ft V(E /tt) - t 2 + (E /ir) sin
_1

(t \N/E
)| ,

(12d)

E

l3= r +

I

where

then the area is

A =

E /tt - t ; (12e)

ft2 A 3 An A 5 /*t 6

I Iidt + I I 2dt + / E dt +
f

I 3dt + / Iitdt . (13)

'tl J to J to J t h
J t*

Working through Eq. (13), and using the fact that, from symmetry, Eqs. 8, 9, and 10 are

again true, one gets the result

A = E (t 5 - t2 ) (14)

This is the same result obtained for the simpler case treated earlier.

From the foregoing discussion we see that in practice one utilizes Eq. 6 with the
following modification: instead of (t 2 - t^), one uses the time interval between half
power points, (ts - t 2 )

•

We should emphasize the importance of maintaining a constant measurable shutter motion.

Due to mechanical imperfections in the system, one should not assume that an ordinary
synchronous motor will drive a rotary shutter wheel at the precisely expected rate. The

importance of the accuracy of the time measurement to the overall calibration is obvious.

3.2 Errors Inherent in a PhotoPic Measurement

There are specific problems that arise from doing this calibration photometrically. In

this case, the quantity of interest is the photopic[2] energy irradiance obtained from the

time integral of the photopic power irradiance (illuminance) rather than the spectral power
irradiance. The measurement is carried out exactly as described above, except that a

photopic detector must be used. It must be calibrated with a photometric standard, such as

luminous intensity. The uncertainty arises in answer to the question: How well does the

detector response actually correspond to the CIE defined V(X) curve?

The photometric standard that was used to calibrate the detector was an incandescent
source having a spectral output resembling that of a thermal radiator at 2856 K. This
calibrated detector was then used to measure the output of xenon flashtubes which have a

very different spectrum. They have a much higher relative energy in the blue than the

incandescent standards. These spectral differences coupled with the detector response
deviations from the V(X) curve can lead to a sizeable measurement error.



In order to approximate the probable magnitude of this error, hypothetical spectral

response curves of several photopic detectors* were used in calculating a theoretical

calibration between a blackbody incandescent source at 2856 K and the spectral output of

a typical xenon flashlamp. We used the relation:

! 4 = K
Iij mj,

760 nm
D.(X) E.(X) dX (15)

380 nm
x J

lere E-h represents the illuminance measured by a detector i from a source j, Ej (X) is the

>ectral irradiance from the j
1-*1 source, D^(X) is the spectral responsivity of the i"1

wh«

spe

detector, and K^ is the maximum luminous efficacy. The value of Km need not be specified
since it cancels out in the comparison. For the perfect detector, D^(X) is the CIE V(X)

curve. The integrals were evaluated numerically using Simpson's Rule [3] with 10 nm wave-

length intervals.

The hypothetical detector responses usually deviated from the defined V(X) curve by
one or two percent, and sometimes more in the extreme red and blue regions. The results of

these calculated calibrations differed from those obtained using the perfect photopic
detector by as much as 5%. This was in agreement with the results of actual experimental
calibrations. The same flashlamp and standard lamp were compared under identical conditions
with two different types of photopic detectors (silicon photodiodes from different manu-
facturers) . This experiment yielded results which disagreed by about 4%. The experimental
precision of the measurement in each case was about ±0.15%. It is obvious that accurate
photometric measurements of this type require precise characterization of the spectral
response of the detector being used.

3.3 Electronic Considerations

The following experimental considerations hold true for many types of measurements in
addition to the one under discussion. It is important not to overlook them so they will
be briefly mentioned at this time.

First, the detector and amplifier should have a response time much faster than the
rise times of the pulses being measured. This is to insure that the calibration pulse
from the shuttered lamp and the flash pulse are both integrated properly in spite of their
different waveforms. This can easily be checked with a variable high speed sector disc and
an oscilloscope to monitor the detector-amplifier output as a function of pulse frequency.
For this calibration, an FET operational amplifier with low capacitance in the feedback
circuit was used. This device proved to have an adequately short rise time. It is the
second version of the dc amplifier described in Technical Note 594-2. [4]

Another problem is detector linearity. Although one can attempt to set the energy
irradiance from the shuttered source approximately equal to that of the pulse, this is
difficult to do exactly. In addition, energy irradiance measurements may have to be made
at a number of different distances, and it is impractical to recalibrate the detector for
each distance from the flashlamp. Finally, the detector-amplifier obviously must respond
to a large variation in signal level during each pulse. It is, therefore, very important
to ascertain that the detector and amplifier respond linearly. For the detectors used in
these measurements the linearity was checked using the inverse square approximation with a
luminous intensity standard lamp. They appeared to be acceptably linear; however, as we
will show in Section 5.2, this was not an entirely satisfactory test.

Additional details which must be considered are the accurate measurement of the
detector to source distance, the repeatability of the positioning of the lamp and detector,
standard lamp accuracy, flashlamp repeatability, noise pickup, and detector-amplifier
stability.

information obtained from the specification sheets of several manufacturers.
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4. Measurement Procedure

The calibration of a flashlamp (with power supply included) was a two part operation:

calibration of the detector-amplifier system for photopic energy using a luminous intensity
standard lamp with a timing shutter, and subsequent calibration of the flashlamp using the

calibrated detector. It was found experimentally that the system drift during the course
of a flashlamp measurement was negligible, hence the calibrations of the detector-amplifier
were actually done last, after a given flashlamp measurement. The flashlamp was placed in

front of the standard lamp as shown in Fig. 2. In this way, the flashlamp could be removed
after measurement without disturbing the detector and standard lamp arrangement.

After aligning the optical bench, detector, and standard lamp with a He-Ne laser to

define the optic axis, the flashlamp was installed in the position shown. The flashlamp
assembly consisted of a thin vertical discharge tube behind a rectangular aperture and an

absorbing glass filter. Using the laser, the flashlamp assembly was centered on the optic
axis and aligned by autocollimating the laser reflection from the filter glass. An end

gauge was used to measure the separation distances from the detector to the flashlamp
aperture. The detector was then placed at the smallest source-detector separation distance
to be measured in the experiment. Several flash readings were observed on the oscilloscope
to select the proper amplifier and electrometer gains, allowing maximum readings without
overload distortion. These settings were unchanged for the remainder of the calibration of

that flashlamp and for the subsequent detector calibration using the Incandescent lamp.

Several flashes were first fired on a "cold" tube to allow its output to stabilize before
recording readings. Prior to making a reading, the flashtube power supply was allowed ample
time to recharge after a previous flash. A gate switch was then opened to the electrometer,
and bucking current from the amplifier was set to null the electrometer output reading at

zero. Then the lamp was flashed via a remote trigger switch, and the electrometer gate
closed, "locking in" a voltage reading on the electrometer capacitor. Several measurements
were made at each distance position.

When these measurements were completed, the detector was left at the maximum distance
point and the flashlamp assembly removed as noted earlier. The shutter was installed in

front of the detector and the standard lamp turned on and warmed up. The shutter was then
started and its time interval determined with an oscilloscope. The oscilloscope time base
was calibrated with standard frequency signals. After the lamp warmed up, the detector
was momentarily shuttered in order to zero the background current on the detector amplifier.
Then a series of readings were made as follows. The pulses were spaced at least 1/2 second
apart so they would be easy to isolate with the electrometer gate switch. When the pulses
were exactly the proper time width, the gate was momentarily closed, then opened, isolating
one pulse. The reading was recorded and the electrometer cleared for the next sample.
These readings were then averaged to yield a value for k using Eq. (6). As mentioned
earlier, the calibration lamp was a standard of luminous intensity. One must therefore
assume that the inverse square approximation is valid. Hence the form of Eq. (6) actually
used was

V (D + 6)2

k . (16)

Mt5 " t 2 )

Here I is the luminous intensity of the standard lamp, D is the measured distance, 6 is the

correction to the "light center" distance and (t 5
- t 2 ) is the time interval at the pulse

half-height. The value of 6 was determined separately by fitting* the measured distances

D-l (from about 1.5 to 3 meters) and amplifier readings R± (assumed proportional to the

illuminance) to the following equation

R.<5 2 + 2R.D J 6 + R.D. 2 - I = (17)

*Some of the difficulties encountered in curve fitting will be taken up in the next Section,

7
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Fig. 2: Experimental setup for measurement. I. Measurement of flashlamp.
A) Position of shutter (not used in this part of measurement)

.

B) Detector. C) Flashlamp assembly. D) Lamp standard (in position
but not in use in this part of measurement). E) Detector. F) Shutter.
G) Position of flashlamp (now removed for this part of measurement).
H) Standard lamp.
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Finally the flashlamp photopic energy irradiance values, W, were calculated from the

measured voltages using the relation.

W = V/k . (18)

5. Data Analysis

Once the illuminance versus distance data have been obtained, it is often desirable to

fit a smooth curve through these points in order to allow interpolation or possibly extrapo-

lation to other desired points. One may be tempted to use some form of the inverse square
approximation again, such as

I = ED2 . (19)

However, this is not always the best function to describe the variation of illuminance with
distance. In fact, by simply assuming there is always a characteristic constant of the
source, i.e. the intensity, one can easily be mislead in attempting to interpret the data.

Let us first derive the functional form of the relationship that describes the variation
of illuminance from the flashlamp as a function of distance.

5.1 A Mathematical Model of the Illuminance from an Apertured
Cylindrical Lamp

The xenon flashtubes we measured consisted of a long thin cylinder masked by a

rectangular limiting aperture, a fairly common configuration for such sources. In order
to make the model of this lamp analytically tractable, we shall assume the following.
Consider the narrow cylindrical tube to be a one dimensional, infinitely long vertical
linear source of uniform luminance L per unit length. Let us take this to be the x
direction. Also consider the source as apertured by an infinitely long horizontal slit
of width 2w, in a plane parallel to that of the source and a distance d from it. The axis
of the slit is then in the y direction. Finally, consider a rectangular detector, of

dimensions 2a in the y' direction and 2b in the x' direction, also in a plane parallel to

that of the source and aperture. The detector is at a distance D from the aperture. Figure
3 illustrates this model.

We know that the radiant flux, d<f>a , reaching an element a(x',y') of area dx' dy' of the
detector surface from an element of source dx is related to the radiance in the following
manner

,

,, L dx cos0 dx' dy' cosy ,««\d*
a

= —
z

. (20)

Here 6 and y are the angles between the distance r and the normals to the source axis and
detector plane, respectively. At this point we shall make another approximation. Let us

assume that 6=y> which is equivalent to saying that the detector is slightly curved with a
radius of curvature equal to D + d, the center of curvature being coincident with the
source axis. We can now calculate the illuminance at the point a on the detector which
comes from the entire source:

dd> /*X
;a I max cos'

:' dy'
= L

J tf

dd>
„ a T I max cqs±l
E =

, ,
= L I —— dx

a dx dy ]

min

I ma?

min

dx
=L(D+d)2

| ^ [(D + d)2 + x' 2 + (x-y')2]2 (21)



± a(x .V )

— --I

D

(a)
max.

(a)
mm.

Fl8 - 3: ^^t^All™1^ SJSS!- -— -

10



The limits of this integral are a function of the slit width and can be determined from the

geometry of Fig. 3. They are

= -w(D + d)

min D

and

x
_ w(D + d)

max D

The result of integrating Eq. 21, is then:

d<|> (D+d) 3 L (y'-w) D

dx 1 dy' 2[(D+d) 2 + x' 2
] |

[(D+d) 2 + x' 2
] D2 + (y'-w) 2 (D+d) 2

(y'+w) D 1

[(D+d) 2 + x' 2
] D 2 + (y'+w) 2 (D+d) 2 2[(D+d) 2 + x' 2

]
3 / 2

tan
-(y'-w) (D+d)

D[(D+d) 2 + x' 2
]
1 /^

- tan
-(y'+w) (D+d)

D[(D+d) 2 + x' 2
]

1 / 2
;

(22)

To obtain the average illuminance over the entire detector, we must integrate this expres-
sion over x' and y' and divide by the detector area. If Eq. (22) is integrated first over
y' , many terms cancel, leaving

dcj> L(D+d) 2

dx' [(D+d) 2

- (a+w) tan

+d) 2
(

/ -(a-w) (D+d) \
—

{
(a-w) tan *

(
—

J

+ x' 2
]
3 / 2

( \D[(D+d) 2 + x' 2
]

1 / 2 /

/ -(a+w) (D+d) \^

\D[(D+d) 2 + x' 2
]

1 / 2 /)
(23)

At this point we shall make another approximation to aid in carrying out the analysis.
Since D is usually large compared with the detector dimensions,

(a ± w) (D + d) « D[(D + d) 2 + x' 2
]

1 / 2

Hence we can replace the arctan terms with the first two terms in the series expansion:

, "I - x 3

tan A x = x - —

We can now carry out the final integration over x' to give the total flux <j> intercepted by
the detector. After some rather tedious algebra and using the arctan approximation just
mentioned, we can write the average illuminance, the flux divided by 4ab , in the following
form:

11



2Lw
E =

D(D+d)
£ (D+d) 2 b 2 a 2 + w 2

2[(D+d) 2 +b 2
] 6(D+d) 2 4D2

(a2+w2 ) (D+d) 2 (a2+w2 ) (D+d) 4 (a2+w2 ) b 2

- +
4D2 [(D+d) 2 + b 2

] 6D2 [(D+d) 2 + b 2
]
2 12D2 (D+d) 2

We can further simplify Eq. (24) by rewriting it as

(24)

2Lw
E =

D(D+d)
*

a2+w2

2 t
1+

(5+dF] 6(I»d):

!
2+W2

a2+w2

4D^

(a2+w2
) b 2

**"+<£>* °** + 7&* 2 12D2<D+d>2
(24a)

Then, by dropping terms of order greater than

(D + d) 2 « 1

the average illuminance is approximately given by

E = 2Lw

D(D+d)
1 - 2b 2 _ 2(a2+w2

)

3 (D+d) 2 3D 2
(25)

This equation, rather than the inverse square approximation, is a much better model of the
relationship between distance and illuminance of the flashlamp sources we studied.

5.2 Treatment of the Data

In Tables 1 and 2 we have listed, and in Figs
ments made on the same flashlamp using two different
photopically corrected silicon photodiodes operated
bias plus a low input impedance amplifier) . The det
and, therefore, would be expected to have different
just the illuminance vs. distance for these two sets
product of illuminance and distance squared versus d

refers to the measured distance from the aperture of
aperture.

4 and 5 we have plotted, some measure-
detectors. Both detectors were

in the photovoltaic mode (zero reverse
ectors were from two different suppliers
characteristics. Instead of plotting
of measurements, we have plotted the

istance. The distance in these data
the lamp housing to the detector

One would expect from the inverse square approximation that at large distances the
quantity ED2 would approach a constant value. On this basis we would be inclined to reject
the data from detector 2 (Fig. 5). However, let us see how well each of these data sets
will fit the equation we have derived in the previous section. For the flashlamp we
measured, d was about 4 cm and w was about 0.5 cm. Both detectors were of the same size
with a = b % 0.5 cm. The only unknown in Eq. (25) is the luminance, L, which can be
obtained by using the value of the illuminance measured at one distance. If we arbitrarily
choose the points at 1.52 m, the average value of the illuminance measured by detector 1 is

0.281 lux and from detector 2 it is 0.286 lux. The luminance can now be computed and in
turn we can compute a theoretical ED2 based on these single measurements of illuminance.
These calculated curves are drawn in Figs. 6 and 7 along with the experimental points. It

is obvious that the theoretical curve fits the data from detector 2 (Fig. 7) very well while
the curve obtained from the data of detector 1 (Fig. 6) does not. Here is a case where

12
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intuition based on the inverse square approximation may lead to an incorrect interpretation

of the experimental results.

One might ask how well the inverse square approximation with a term to correct the

distance as in Eq. (17) would fit these two sets of data. The answer is given in Figs. 8

and 9. Here we have plotted the curves obtained by fitting all the data to a function of the

form given in Eq. (17). The fit appears to be reasonably good for detector 1 and fair for

detector 2. On the other hand, the distance correction term 6 computed from the data of

detector 1 is 0.23 cm and from detector 2 it is 2.18 cm—a difference of a factor of ten

for two sets of data obtained using the same lamp. The inverse square approximation itself
gives no indication of which detector is more linear. In fact, even after fitting all the

data to an equation with a correction for distance one may still be misled into believing
that detector 1 is better than detector 2. One must know in some detail how the illuminance
from a source varies with distance before beginning the data analysis.

6. Curve-Fitting

If one were to interpolate or possibly to extrapolate to large distances in order to

determine the so-called "constant of the source", that is the intensity, one must fit the

experimental data to a smooth curve. Using Eq. (25) we may fit our data to several different
approximations of the same function. We may take as the best approximation an equation of

the form:

A
l

A2 A 3

1= + + (26)
ED(D+d) ED(D+d) 3 ED 3 (D+d)

or we may assume that A2 and A
3 will be very small and just fit to an equation of the form

1 = (27)

ED(D+d)

In both Eqs. (26) and (27) we would have to use the approximate values of d. Since the
lamp is placed behind a filter of unknown index of refraction and since it was difficult
to measure the exact separation between the lamp and the aperture, it may be well to

include d in the unknown coefficients to be determined from the fitting. Equation (27) can
be rewritten as

ED2 + dED = B
l

(28a)

or

1 = C^ED 2 + C 2ED

Taking the data obtained from detector 2 we used a least square method to fit them to

each of the above three equations. These curves are plotted in Fig. 10 along with the
original data. All three equations provide a reasonable fit to the data with Eqs. (26) and

(28) having a better fit. The difference between interpolated values of E at 0.6 m are:
from Eq. (26), 1.774 lux; from Eq. (27), 1.764 lux; and Eq. (28), 1.774 lux. The extrapo-
lated values at 0.4 m are: from Eq. (26), 3.920 lux; from Eq. (27), 3.849 lux; and from
Eq. (28), 3.900 lux. The "intensity" computed from each of these equations, that is, the
value of ED 2 at 10 m is: from Eq. (26), 0.671 cd; from Eq. (27), 0.675 cd; and from Eq. (28),
0.668 cd. The difference between the interpolations obtained using Eqs. (26) and (28) are
negligible, however, the differences between both extrapolations are about 0.5%.

The last extrapolation to very large distances shows that the exact form of the equation
to which one chooses to fit the data affects the determination of the "intensity". We have
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not attempted to weigh any of our data. Had we done so, to account for the increase in

noise at large distances for example, this would have affected our determination of the

"intensity" even more.

This exercise in data analysis and curve fitting alludes to a serious problem in

photometry: having intensity as the base unit and fundamental quantity. This is unfor-

tunate because, as demonstrated in this work, the accurate determination of the intensity

of a source is subject to unquantifiable errors which are of necessity introduced by curve-

fitting.

7. Summary

We have presented a method which is useful in determining the energy irradiance or

illuminance output of single flashes from a pulsed source. We have described a general
approach, discussed a specific technique employed, and presented in detail a general model
which can be used to describe the illuminance (and irradiance) as a function of distance
from an aperture-lamp configuration typical of flash sources. We have examined a number
of experimental details and the effects they have upon the results of these measurements.
Finally, we have indicated some of the difficulties encountered in curve fitting, and how
they could yield erroneous results. Although several of the techniques employed in this

measurement could obviously be refined and improved if desired, the basic approach should
be satisfactory to many needs.

***********

The authors gratefully acknowledge the contributions and stimulating discussions with
J. Geist
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TABLE 1

Illuminance of a Given Flash I amp as a Function of Distance as

Measured by Detector 1.

Distance
(m)

II ummance
(lux) ED*

.4141

,5141

,6141

,7141

,8141

.9141

1.0141

1.1141

1.2141

1.4141

1.5141

1.6141

1.7141

1.8141

1.9141

3.6841
3.6828
3.6815

2.4277
2.4316
2.4251

1.6843
1.6856
1.6856

1.2519
1.2489
1.2508

.96126

.96218

.96336

.76875

.76757

.76678

.62282

.62296

.62125

.52048

.51891

.52101

.43672

.43685

.43738

.32103

.32129

.31985

.28125

.28229

.28007

.24526

.24617

.24591

.22065

.21830

.21725

.19552

.19382

.19395

.17537

.17458

.17485

22

,63174

.63152

.63130

.64164

.64167

.64095

.63518

.63567

.63567

.63839

.63686

.63783

.63708

.63769

.63847

.64235

.64136

.64070

.64051

.64065

.63889

.64603

.64408

.64669

.64374

.64393

.64471

.64196

.64248

.63960

.64476

.64715

.64206

.63898

.64135

,64067

.64830

.64139

.63831

.64345

,63785

,63828

,64252

,63962

,64061



Table 1 (continued)

D
Distance

(m)

1 1 I uminance
(lux) ED'

2.0141

2.1141

2.2141

2.3141

2.3641

.15796

.15914

.15940

.13912

.14082

.14003

.13218

.13179

.13362

.12197

.11988

.11883

. 11504

.11517

,11438

.64078

.64557

.64662

.62178

,62938

.62585

.64798

.64607

.65504

.65316

,64196

,63634

.64295

,64368

,63927

23



TABLE 2

Illuminance of a Given Flash I amp as a Function of Distance as

Measured by Detector 2.

D
Distance

(m)

1 1 I uminance
(lux) ED'

,5152

,7652

1.0152

1.2152

1.5152

1.7652

2.3896
2.3861
2.3922
2.3913
2.3887

1.1017
1.1035
1.1026
1.1009
1.1026

.63157

.63243

.63243

.63139

.63209

.44104

.44174

.44070

.44209

.44287

.28609

.28626

.28635

.28617

.21235

.21313

.21217

.21226

.21200

.63427

,63334

,63496

,63472

,63403

,64508

.64613

.64561

.64461

.64561

.65091

.65180
,65180

,65073

,65145

,65129

,65232

,65079

,65284

,65400

,65681

.65720

,65741

,65700

,66167

,66410

,66111

,66139

,66058
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Voluntary Product Standards—Developed under proce-

dures published by the Department of Commerce in Part
10, Title 15, of the Code of Federal Regulations. The
purpose of the standards is to establish nationally rec-

ognized requirements for products, and to provide all

concerned interests with a basis for common under-
standing of the characteristics of the products. NBS
administers this program as a supplement to the activi-

ties of the private sector standardizing organizations.

Consumer Information Series—Practical information,

based on NBS research and experience, covering areas

of interest to the consumer. Easily understandable lang-

uage and illustrations provide useful background knowl-

edge for shopping in today's technological marketplace.

Order above NBS publications from: Superintendent

of Documents, Government Printing Office, Washington,
D.C. 20402.

Order following NBS publications—NBSIR's and FIPS
from the National Technical Information Services,

Springfield, Va. 22161.

Federal Information Processing Standards Publications

(FIPS PUBS)—Publications in this series collectively

constitute the Federal Information Processing Stand-
ards Register. Register serves as the official source of

information in the Federal Government regarding stand-

ards issued by NBS pursuant to the Federal Property

and Administrative Services Act of 1949 as amended,
Public Law 89-306 (79 Stat. 1127), and as implemented
by Executive Order 11717 (38 FR 12315, dated May 11,

1973) and Part 6 of Title 15 CFR (Code of Federal
Regulations).

NBS Interagency Reports (NBSIR)—A special series of

interim or final reports on work performed by NBS for

outside sponsors (both government and non-govern-

ment). In general, initial distribution is handled by the

sponsor; public distribution is by the National Techni-

cal Information Services (Springfield, Va. 22161) in

paper copy or microfiche form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES
The following current-awareness and literature-survey

bibliographies are issued periodically by the Bureau:
Cryogenic Data Center Current Awareness Service. A

literature survey issued biweekly. Annual subscrip-
tion: Domestic, $20.00; Foreign, $25.00.

Liquified Natural Gas. A literature survey issued quar-
terly. Annual subscription: $20.00.

Superconducting Devices and Materials. A literature

survey issued quarterly. Annual subscription: $20.00.

Send subscription orders and remittances for the pre-

ceding bibliographic services to National Bureau of

Standards, Cryogenic Data Center (275.02) Boulder,

Colorado 80302.
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