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Graphs of calculated and experimental atomic photo-
effect cross sections as a function of photon energy 0.1
keV to 1.5 MeV are presented for all elements Z - 1 to
94. The calculated results presented are (a) the non-
relativistic Hartree-Fock self-consistent-field (SCF)
results of Veigele, Henry, et al., over the range 0.1
keV to between 1.0 and 8.0 keV for all elements Z - 1 to
94 and (b) the relativistic Hartree-Slater SCF results
of Scofield over the range 1.0 keV to 1.5 MeV for all
elements Z = 1 to 101. The "experimental" data-points
are derived by subtracting theoretical scattering cross
sections from total attenuation coefficient measurements
in the literature. Differences between theoretical and
experimental photoeffect data are typically a factor of
two from 0.1 to 1.0 keV, 5-10% from 1.0 to 5.0 keV and 1-5%

from 5.0 keV up to energies, ranging from 20 keV for
carbon up to 500 keV for lead, above which the photo-
effect cross section becomes fractionally too small to

be accurately determined from the total attenuation
coefficient.

Key words: Attenuation coefficients, cross sections,
gamma rays, photoelectric effect, photons, x-rays.

1. Introduction

The atomic photoeffect, in which an atom absorbs a photon and ejects an
electron, is the predominate process by which photon radiation is attenuated
by matter in the vacuum ultraviolet (VUV) (10 eV to 100 eV) and soft x-ray
(100 eV to 10 keV) portions of the electromagnetic spectrum. At higher
energies the attenuation is dominated by two other processes, first
incoherent scattering commencing in importance at around 10 keV for the
lowest-Z elements and at a few hundred keV for the highest-Z elements,
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was also received from the Defense Nuclear Agency.

Work done at Kaman Sciences Corp., Colorado Springs, Colorado 80907.

Work supported by the Defense Nuclear Agency.
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then pair production which proceeds from a threshold of 1.022 MeV
(2 m c

2
) to dominate over all other processes in the high energy limit.

As an example, figure 1 shows the total measured attenuation cross
section (small circles) for photons from 10 eV to 100 GeV in copper,
decomposed into the theoretical contributions from the above three
processes: photoeffect (x) , incoherent (bound-electron Compton) scattering
(d ) and pair production (k) , indicating the region where each
predominates . For lower-Z elements the incoherent scattering cross section
dominates over a broader range (for hydrogen, incoherent scattering dominates
the total cross section from a few keV to 100 MeV) and for higher-Z elements
the range of a

-rNC0H dominance narrows to the point where for plutonium
(Z - 94) its contribution to the total reaches a maximum of 70% at 1.5 - 2.0
MeV and its relative importance rapidly decreases toward lower and higher
energies. Also shown in figure 1 are two additional processes: coherent
scattering (GpnH ) an<* tne photonuclear giant resonance (cpH J) of some
significance But which contribute less than 10% to the total cross section
at any given energy.

Pratt, Ron and Tseng [1] have recently extensively reviewed the
existing calculations and measurements of the atomic photoeffect over the
range 10 keV to 100 MeV (including material extending down to 1 keV)

,

complementing an earlier review by Fano and Cooper [2] of theoretical and
measured photoeffect data over the range 10 eV to 10 keV.

In the latter (soft x-ray) region, where the atomic photoeffect can
be taken directly from measured total attenuation coefficients with only
small or negligible corrections for the scattering contribution, additional
recent reviews and surveys of experimental photoeffect cross section data
include those by Henke and Tester [3], Hudson and Kieffer [4], [5] and
Zimkina and Fomichev [6]. Higher-energy photoeffect measurements, both
by direct methods (e.g., photoelectron and fluorescence x-ray coincidences)
and by indirect methods (subtraction of scattering and pair-production
contributions from total attenuation measurements) have also been recently
reviewed by Parthasaradhi [7].

In the above and other recent photoeffect reviews, the graphical and/

or numerical comparisons of theoretical and photoeffect data have in each

case been for a limited number of specific elements of interest, over
limited ranges of photon energy. Thus we consider it a useful adjunct to

the above reviews, for an over-all perspective, to systematically compare
available experimental total and photoeffect cross sections in the exten-
sive data-collections of Veigele [8] and Hubbell [9] with present state-of-

the-art theoretical photoeffect cross sections for all elements Z = 1 to 94

over the photon energy range 0.1 keV to 1.5 MeV.

For this purpose we have selected the low-energy photoeffect calcula-

tions by Veigele, Henry and Bates [8], [10] for Z = 1 to 94 and photon

energies 0.1 keV to from 1.0 to 8.0 keV, and the higher-energy calculations

Figures in brackets indicate the literature references at the end of this

paper

.
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by Scofield [11] for Z 1 to 101, 1.0 keV to 1.5 MeV. These and some
additional photoeffect calculations are listed and described in the
following section.

2. Photoeffect Calculations

Prior to 1960, as discussed in more detail in the review article by
Pratt et al. [1], theoretical numerical tabulations of the atomic photo-
effect cross section, including those in the attenuation coefficient
tables of Davisson and Evans [12] and of Grodstein [13], were based
primarily on work (reviewed by Hall [14]) dating from the period 1930 to

1935:

(1) The Stobbe [15] exact nonrelativistic K- and L-shell results
in the point-Coulomb potential,

(2) The Sauter [16], [17] relativistic K-shell Born result in the
point-Coulomb potential,

(3) The Hall [18] and Hall and Rarita [19] high-energy limit
results for the K- and L-shells in the point-Coulomb potential,

(4) Exact relativistic point-Coulomb K-shell numerical results
for six cases (Z - 26, 50 and 84 at 0.35 and 1.13 MeV) by Hulme,
McDougall, Buckingham and Fowler [20], and

(5) A semi-empirical prescription by Slater [21] to take into
account inner-electron screening effects.

Renewed interest in theoretical understanding of the photoeffect
process began in the late 1950' s and continues to the present, resulting
from (a) increasingly exacting photon-interaction needs by the medical,
scientific and engineering communities, (b) availability of high-speed
computers and (c) new higher-accuracy photoeffect and total attenuation
coefficient measurements. New analytical work in this period includes
corrections by Erber [22], Pratt [23,24] and by Gorshkov and Mikhailov
[25] to the theoretical high-energy limit, extension of the relativistic
Born approximation by Gavrila [26,27] and Nagel [28], dipole-approxima-
tion calculations in the ultra-soft x-ray region by Cooper [29],

estimates of the quadrupole contribution by Guttmann and Wagenfeld [30],

and additional work more exhaustively reviewed by Pratt et al. [1] and
Fano and Cooper [2].

Based on the above work and further refinements, recent pilot and
systematic numerical calculations of the photoeffect cross section
include the following, listed approximately in chronological order:

(1) Hultberg et al. [31], [32]: relativistic, point-Coulomb,

K shell, 21 elements Z = 1 to 100, 1 keV to 10 MeV,

(2) Pratt et al. [33]: relativistic, point-Coulomb, K shell,

6 elements Z = 13 to 92, 200 keV to 2 MeV,



(3) Ailing and Johnson [34]: relativistic, point-Coulomb, K-
L-shells, Pb and U, 81 keV to 1.33 MeV,

(4) Matese and Johnson [35]: relativistic, exponential
screening, K-, L-shells, Ag, Hg, Pb and U, 81 keV to 1.33 MeV,

(5) Hall and Sullivan [36]: relativistic, Thomas-Fermi screening, K-
shell, Fe, Sn, Po and U, 300 keV to 1.23 MeV,

(6) Rakavy and Ron [37], [38]: relativistic, Fermi-Amaldi screening
for Al, Fe, Sn and W, Thomas-Fermi screening for U, 1 keV to 2 MeV,

(7) Schmickley and Pratt [39]: relativistic, Hartree-Fock-Slater
screening, 14 elements Z « 13 to 92, 10 keV to 5 MeV,

(8) Bell and Kingston [40], [41]: non-relativistic, dipole-length and
-velocity formulations, Hartree-Fock screening, He, 25 to 310 keV,

(9) Combet-Farnoux and Heno [42], [43]: non-relativistic, Hartree-
Fock-Slater screening, Ta, Pt, Au and Bi, 50 to 500 eV,

(10) Manson and Cooper [44] : non-relativistic, Hartree-Fock-Slater
screening, 9 elements Z - 18 to 100, 10 eV to 2 keV,

(11) Brysk and Zerby [45]: relativistic, Dirac-Slater screening, Al
and U, 1 to 150 keV,

(12) McGuire [46]: non-relativistic, dipole-length formulation, Hartree-
Fock-Slater screening, Z 2 to 54, 6 eV to 62 keV,

(13) Amusia et al. [47], [48]: non-relativistic, Hartree-Fock screening,
Ar, Kr and Xe, 15 eV to 1 keV,

(14) Storm and Israel [49]: Brysk-Zerby program [45], Z = 1 to 100, 1 to

200 keV; extended table to 100 MeV by interpolation and extrapolation of
Schmickley and Pratt [39] and Rakavy and Ron [38] theoretical results,
above

,

(15) Cromer and Liberman [50]: relativistic, Dirac-Slater, Kohn-Sham
screening, Z 3 to 98, 5.4 to 22.2 keV,

(16) Veigele et al. [8], [10]: non-relativistic, Hartree-Fock-Slater
screening, Z - 1 to 94, 100 eV to 8 keV,

(17) Kennedy and Manson [51] : non-relativistic, Hartree-Fock and Hartree-
Slater, dipole-length and -velocity formulations, Ne, Ar, Kr and Xe,

10 eV to 1.5 keV,

(18) Scofield [11]: relativistic, Hartree-Slater screening, Z - 1 to

101, 1 keV to 1.5 MeV, and

(19) Hildebrandt et al. [52], [53]: non-relativistic, revised Slater

screening constants, dipole and quadrupole components given, Z 6 to 54,

5 to 25 keV.
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In the most recent NBS x-ray cross section tabulation (NSRDS-NBS 29,
covering the energy range 10 keV to 100 GeV) [54], photoeffect cross sections
in the range 10 to 100 keV were obtained from total attenuation coefficient
measurements [9] by subtracting theoretical scattering contributions [49]
except for uranium which was taken directly from the above Rakavy-Ron [37],
[38] theoretical results. Above 100 keV, for all 23 elements in the NSRDS-
NBS 29 tabulation [54], the Rakavy-Ron results were combined with the high-
energy numerical calculations and analytical formulas of Gavrila [26], Pratt
et al. [23], [33] and Hultberg [32] to extend the tabulations up to 100 MeV.

In the McMaster et al. [55], [56] LLL (Lawrence Livermore Lab.) - NBS
x-ray cross section tabulation, source of the 1 keV-1 MeV photoeffect values
in the present ENDF (Evaluated Nuclear Data File, ERDA) tape library [57], the
theoretical values of Schmickley and Pratt [39] were weighted into the itera-
tive cubic log-log least-squares fit of photoeffect cross sections which were
otherwise obtained by subtraction of theoretical scattering contributions from
total attenuation coefficient measurements.

3. Explicit Photoeffect Measurements

In the photon energy range ^ 100 keV to 2.6 MeV, where the above "sub-
traction method" (total attenuation coefficient measurement minus theoret-
ical scattering contribution) ceases to be useful, there exist a few explicit
measurements of total and subshell photoeffect cross sections, as summarized
by Pratt et al. [1] and by Parthasaradhi [7], with uncertainties of the order
of 4% to 15% or greater. Additional new measurements beyond those listed in
these summaries include:

(1) Sahota [58]: L-shell, fluorescence x-ray detection, U, 145, 192,
662 and 1250 keV,

(2) Allawadhi and Sood [59], [60]: K-shell, fluorescence x-ray
detection, 15 elements Z = 33 to 74, 37 and 74 keV,

(3) Gowda and Sanjeevaiah [61] - [65]: total and K-shell, photoelectron
detection, 8 elements Z = Al to Pb, 145, 279, 412 and 662 keV, and

(4) Goswami and Chaudhuri [66]: total photoeffect, cylindrical-shell
adaptation of the spherical-shell transmission method of Ghose [67], Pb,

662 and 1250 keV.

Because of the substantial inherent difficulties and uncertainties in
the above and earlier explicit measurements, this source of photoeffect data
has as yet been given little weight, as compared with theory, in constructing
photon cross section tabulations, and is not included in the graphical com-
parisons in figures 2 to 95.

4. Graphical Comparison of Experimental Points with Veigele et al.

and Scofield Theoretical Results

As can be seen^in figure 1, the photoeffect cross section, T, decreases
approximately as E~" from the K absorption edge up to 1 MeV, with a similar
MS dependence at lower energies in the segments between absorption edges



down to 1 keV. Above 1 MeV the photoeffect behavior is seen changing to the
high-energy-limit E~ dependence [17], [22] * [23]. Below 1 keV the slope of
the cross section again decreases, and the cross section, particularly for
medium- and high-Z elements, becomes characterized by outer-subshell maxima
and minima with little interpolable regularity as a function of E and Z.

In the region 1 keV to 1 MeV where t decreases rapidly as a function of
E, relative differences between photoeffect data are difficult to see on an
ordinary log-log plot of t vs. E as in figure 1. Thus, in figures 2 to 95 we
have plotted T • ~E , instead of x, which reduces the number of logarithmic
cycles required to display the data and has the effect -of magnifying the
relative differences. The quantity T • E3 is less suitable for graphing
purposes because of the absorption edges which, for all but the lightest
elements, superimpose an effective positive power of E on the energy-range
1 keV to 1 MeV as a whole for a net over-all dependence x a M! including
absorption edges.

In figures 35-95 (Z >^ 34) the number of logarithmic cycles used was
determined for each figure by the x • E2 maximum and minimum values from the
Scofield data in the range 1.0 keV to 1.5 MeV. As a result, some experimental
points and portions of the Veigele et al. calculated results near 0.1 keV are
off-scale and not shown in these figures.

For elements H(Z = 1) to K(Z = 19), in figures 2 to 20, the Veigele
et al. calculated results extend only over the range 0.1 to 1.0 keV and hence
have only the 1.0-keV point in common with the 1.0 keV to 1.5 MeV range of

the Scofield results. For the remaining elements Ca(Z = 20) to Pu(Z = 94) the
Veigele et al results overlap the Scofield results by amounts ranging from
1.0 - 1.6 keV for Kr(Z = 36), Rb(Z - 37) and Sr(Z - 38) up to 1.0 - 8.0 keV
for Pu (Z = 94).

Since the Veigele et al. and Scofield values in this overlap region are
not identifiable as to which is which, numerical values in kilobarns/atom
(without the factor [E(keV) 2

]) at 1.0 and 2.0 keV are listed in table I.

Also in table I are percent differences obtained at 100% x (V-S)/S, where
V and S are the Veigele et al. and Scofield values, respectively, for a

given element and energy.

Comparing the Veigele et al. results with those of Scofield at 1 keV,

the agreement is seen to be better than 10% for all elements except for -16%

for Cs(Z = 55) and +31% for Nd(Z - 60), the latter two differences attributable

to displacements in absorption-edge energies. For elements Z = 1 to 59

(excluding Z = 55) at 1 keV, where the photoeffect cross section is primarily
due to the K-, L- and M-shell atomic electrons, the results of Veigele et al.

are systematically lower than those of Scofield by an average of 2%. For the

higher-Z elements Z = 61 to 94, where the photoeffect cross section in the

overlap region is primarily due to N-shell electrons, the trend reverses, with

the Veigele et al. results systematically higher than Scofield by an average

of 6% at 1 keV for Z = 61 to 89, and higher by an average of 9% at 2 keV for

Z = 90 to 94.



The experimental points (x's) in figures 2 to 95 are taken from the
automated 8000-data-point file of Veigele et al. obtained from 153 sources for
the period 1920 - 1970 cited and cross-referenced as to element in reference
[8], updated to Jan. 1974. Excluded from this file are data deduced for
elements from measurements made on compounds, and a number of discrepant data-
points. An additional relevant measurement-set reported by Del Grande and
Oliver [68] for uranium at 1 to 10 keV is shown as the circles in figure 93.

A characteristic feature of figures 2 to 95 is the diverging scatter of
experimental points toward higher energies. This divergence, commencing at a
few hundred keV for the heaviest elements, occurs when the photoeffect,
obtained by subtracting theoretical scattering cross sections from total
attenuation coefficients, becomes small and similar in magnitude to the
uncertainties in the latter two quantities. Thus figures 2 to 95 indicate,
as a function of Z, approximate upper energy limits for obtaining meaningful
values of the photoeffect cross section from total attenuation coefficient
measurements

.

5. Conclusions

In the graphs in figures 2 to 95, the theoretical results of Veigele
et al. in the region 0.1 to 1.0 keV are seen to represent the experimental
data to within typically 10% to a factor of two, the best agreement being
found for elements available as gases. Differences of this order are
attributable at least in part to chemical binding effects on the outer shell
electrons which determine the photoionization cross section in this energy
region

.

In the region 1.0 to 5.0 keV the Veigele et al. and Scofield values
represent the experimental data to within typically 5% to 10%. For the
high-Z elements where the theoretical sets systematically differ from each
other by 5% to 10% in this energy region, the available measurements for Au,

Fb, Bi and U suggest that the theoretical sets would be best joined by taking
the Veigele et al. set below and the Scofield set above the M_ absorption
edge.

Above 5 keV, up to energies ranging from 20 keV for carbon up to 500
keV for lead, the Scofield data, with a few exceptions, can be seen to

represent the available experimental data to within the 1% to 5% "envelope of

uncertainty" obtainable from measurements of the total attenuation coefficient.
Among the exceptions is tellurium (figure 53) for which the Scofield values
are systematically 10% to 30% lower than the extensive measurements of Biermann

(1936) [69], Schulz (1936) [70] and Wrede (1939) [71] over the range 1.3 to

97 keV, but for which the Scofield values agree within 1% with the L-edge
cross section measurements by Nordfors and Noreland (1961) [72] in the region
4.3 to 5.0 keV.

The above (Te) and other examples in figures 2 to 95 point out elements
and energy-regions where further attenuation coefficient measurements, taken

with modern detectors and sample-purities, would afford a more critical test
of present theory and would reduce the uncertainties in present photon cross

section tabulations.
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Table I. Comparison of veigele et al. [8], [10] and Scofield [11] theoretical
photoeffect cross section values (in kilobarns/atom) at 1.0 and 2.0 keV.

The Veigele et al. values in parenthesis for 2 keV photons in Z = 70, 71 and 72

are interpolated from adjacent energies.

2.0 keV
Veigele et al. Scofield % diff.

T (kb) t (kb)

(Veigele et al. max. energy 1.0 keV)

1.0 keV
z Veigele et al. Scofield % diff.

t (kb) t (kb)

1 0.0109 0.011414 -4.5%
2 .404 .40177 + .8

3 2.63 2.6909 -2.3
4 8.86 9.0314 -1.9

5 21.4 22.046 -2.9
6 42.9 44.073 -2.7

7 76.0 76.990 -1.3

8 119. 121.92 -2.4

9 177. 178.17 - .7

10 257. 248.20 +3.5

11 24.5 24.900 -1.6
12 36.5 37.146 -1.7

13 51.7 52.999 -2.5
14 71.0 73.101 -2.9
15 96.5 98.248 -1.8
16 127. 129.19 -1.7

17 163. 166.55 -2.1
18 210. 211.01 - .5

19 259. 263.22 -1.6
20 315. 323.67 -2.7

21 382. 390.72 -2.2
22 452. 466.34 -3.1
23 530. 549.09 -3.5
24 629. 638.99 -1.6
25 715. 737.89 -3.1
26 821. 842.08 -2.5
27 931. 958.20 -2.8
28 924. 959.94 -3.7
29 1110. 1114.8 - .4

30 166. 168.07 -1.2

31 190. 195.91 -3.0
32 222. 227.55 -2.4
33 258. 263.23 -2.0
34 299. 303.12 -1.4
35 342. 347.37 -1.6
36 398. 396.30 + .4

37 444. 449.60 -1.3
38 499. 507.44 -1.7
39 562. 569.52 -1.3
40 627. 636.72 -1.5

52.1 53.034 -1.8%

63.8
76.7
91.3

108.

126.

147.

170.

195.

226.

256.

289.

325.

365.

409.

455.

(Veigele et al. max. energy 1.6 keV)

107. 108.75 -1.6

120. 122.06 -1.7

64.767 -1.5

78.151 -1.9

93.275 -2.1

109.77 -1.6

129.30 -2.6

150.45 -2.3

173.71 -2.1

199.25 -2.1

226.79 - .4

257.33 - .5

290.62 - .6

326.35 - .4

364.8 + .3

405.59 + .8

451.41 + .8
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1.0 keV
z Veigele et al. Scofield % diff.

t (kb) T (kb)

41 707. 708.56 - .2%

42 778. 786.27 -1.1
43 847. 869.65 -2.6
44 948. 958.39 -1.1
45 1040. 1052.9 -1.2
46 1160. 115.4 + .5

47 1250. 1259.4 - .8

48 1370. 1370.6
49 1480. 1487.4 - .5

50 1600. 1606.4 - .4

51 1720. 1733.5 - .8

52 1740. 1861.6 -6.5
53 1880. 1915.0 -1.8
54 2040. 2050.4 - .5

55 1740. 2065.0 -15.7
56 1860. 1946.1 -4.4
57 1960. 2094.1 -6.4
58 2200. 2257.3 -2.5

59 2370. 2474.0 -4.2

60 2080. 1585.1 +31.2

61 501. 492.46 +1.7
62 537. 523.56 +2.6
63 570. 556.64 +2.4
64 600. 595.74 + .7

65 655. 629.70 +4.0
66 702. 670.17 +4.8
67 750. 713.61 +5.1
68 808. 760.23 +6.3
69 871. 810.25 +7.5
70 931. 863.88 +7.7

71 977. 922.72 +5.9
72 1050. 985.30 +6.6
73 1120. 1051.3 +6.5
74 1190. 1120.9 +6.2
75 1260. 1193.6 +5.6
76 1330. 1269.6 +4.8
77 1430. 1350.5 +5.9
78 1530. 1432.3 +6.8
79 1630. 1517.6 +7.4
80 1750. 1604.9 +9.0

2.0 keV
Veigele et al. Scofield

x (kb) t (kb)

135.

150.

165.

185.

205.
227.

249.

273.

299.

326.

355.

387.

420.

459.

496.
533.

567.

620.

663.

704.

750.

801.

850.

892.

963.

952.

1010.

1070.

1130.

(932.)

% diff.,

136.28 - .9%

151.86 -1.2

168.71 -2.2

186.81 -1.0

206.31 - .6

227.10
249.61 - .2

273.72 - .3

299.50 - .2

326.83 - .3

355.83 - .2

386.71
419.20 + .2

453.49 +1.2
489.50 +1.3
527.02 +1.1
566.65
604.84 +2.5
645.73 +2.7
687.44 +2.4

731.37 +2.6
776.95 +3.1
825.04 +3.0
875.04 +1.9
923.16 +4.3
932.95 +2.0
980.77 +3.0

1037.0 +3.2
1031.3 +9.6
1088.1 -14.4

(978.) 999.98 -2.2

(1040.) 1063.4 -2.2

(Veigele et al. max. energy 1.7 keV]

(Veigele et al. max. energy 1.9 keV]

390.

415.

368.12
390.53

+5.9
+6.3
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1.0 keV 2.0 keV
Veigele et al. Scofield % diff. Veigele et al. Scofield % diff.

T (kb) x (kb) t (kb) t (kb)

1820. 1695.5 +7.3% 439. 413.96 +6.0%
1920. 1788.4 +7.4 466. 438.35 +6.3
2010. 1883.7 +6.7 492. 463.61 +6.1
2120. 1981.9 +7.0 524. 489.76 +7.0
2130. 2041.9 +4.3 555. 516.93 +7.4
2250. 2143.0 +5.0 588. 545.01 +7.9
2360. 2248.1 +5.0 621. 573.97 +8.2
2470. 2322.7 +6.3 654. 603.79 +8.3
2520. 2433.8 +3.5 681. 634.72 +7.3
2300. 2543.5 -9.6 717. 666.43 +7.6

2440. 2660.6 -8.3 761. 698.71 +8.9
2530. 2613.8 -3.2 798. 732.29 +9.0
2650. 2730.7 -3.0 839. 767.22 +9.4
2830. 2850.5 - .7 889. 803.28 +10.7
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Figure Captions

Figure 1.

Total measured cross sections (cf

T0T , circles), and theoretical photo-
effect (t) , coherent scattering to

C0H ) , incoherent scattering (aINC0H )

»

and pair production (k) cross sections for copper for photon energies
10 eV to 100 GeV. The total photonuclear cross section (a )

measured by Wyckoff et al. [73] is also shown.

Figures 2-95.
Comparisons of theoretical photoeffect data (curves) of Veigele et al.,

[8], [10] extending below 1 keV and Scofield [11] 1 keV to 1.5 MeV
with experimental data (points) for elements H (Z = 1) to Pu (Z = 94)

.

The data«(in units of barns/atom) in each case have been multiplied by
[E(keV)] . The number of vertical-scale graph cycles was in each case
determined by the Scofield data. For elements Z ^ 34 this results in
an apparent low-energy cut-off in the Veigele et al. data which in
reference [8] and [19] extends down to 0.1 keV for all elements Z=l to 94,
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