
if V \
1«

*
to NBS TECHNICAL NOTE 874

U.S. DEPARTMENT OF COMMERCE/ National Bureau of Standards

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards 1 was established by an act of Congress March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in trade,

and (4) technical services to promote public safety. The Bureau consists of the Institute for

Basic Standards, the Institute for Materials Research, the Institute for Applied Technology,

the Institute for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United

States of a complete and consistent system of physical measurement; coordinates that system

with measurement systems of other nations; and furnishes essential services leading to accurate

and uniform physical measurements throughout the Nation's scientific community, industry,

and commerce. The Institute consists of a Center for Radiation Research, an Office of Meas-

urement Services and the following divisions:

Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Nuclear

Sciences - — Applied Radiation - — Quantum Electronics
a — Electromagnetics 3 — Time

and Frequency " — Laboratory Astrophysics * — Cryogenics 3
.

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to

improved methods of measurement, standards, and data on the properties of well-characterized

materials needed by industry, commerce, educational institutions, and Government; provides

advisory and research services to other Government agencies; and develops, produces, and

distributes standard reference materials. The Institute consists of the Office of Standard

Reference Materials and the following divisions:

Analytical Chemistry — Polymers — Metallurgy — Inorganic Materials — Reactor

Radiation — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote

the use of available technology and to facilitate technological innovation in industry and

Government; cooperates with public and private organizations leading to the development of

technological standards (including mandatory safety standards), codes and methods of test;

and provides technical advice and services to Government agencies upon request. The Institute

consists of a Center for Building Technology and the following divisions and offices:

Engineering and Product Standards — Weights and Measures — Invention and Innova-

tion — Product Evaluation Technology — Electronic Technology — Technical Analysis

— Measurement Engineering — Structures, Materials, and Life Safety
4 — Building

Environment * — Technical Evaluation and Application * — Fire Technology.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research

and provides technical services designed to aid Government agencies in improving cost effec-'

tiveness in the conduct of their programs through the selection, acquisition, and effective

utilization of automatic data processing equipment; and serves as the principal focus within

the executive branch for the development of Federal standards for automatic data processing

equipment, techniques, and computer languages. The Institute consists of the following

divisions:

Computer Services — Systems and Software — Computer Systems Engineering — Informa-

tion Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and

accessibility of scientific information generated within NBS and other agencies of the Federal

Government; promotes the development of the National Standard Reference Data System and

a system of information analysis centers dealing with the broader aspects of the National

Measurement System; provides appropriate services to ensure that the NBS staff has optimum
accessibility to the scientific information of the world. The Office consists of the following

organizational units:

Office of Standard Reference Data — Office of Information Activities — Office of Technical

Publications — Library — Office of International Relations.

1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address
Washington, D.C. 20234.

2 Part of the Center for Radiation Research.
:1 Located at Boulder, Colorado 80302.
* Part of the Center for Building Technology.

2 7 1975

Jss Software Testing for Network Services

«n
_

\$

Rona B. Stillman and Belkis Leong-Hong

Institute for Computer Sciences and Technology

\).J< National Bureau of Standards

» „ , Washington, D.C. 20234

^'TecJk^u^sJ tf>t^ **• &7^

Sponsored by

The National Science Foundation

1800 G Street, N.W.
Washington, D.C. 20550

-«** °P ^
O*

\
^u of

*

\

U.S. DEPARTMENT OF COMMERCE, Rogers C. B. Morton, Secretory

NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

Issued July 1 975

WWU»mwwi «jiiULUiiHmwwraai BWI

Library of Congress Catalog Card Number: 75-600046

National Bureau of Standards Technical Note 874

Nat. Bur. Stand. (U.S.), Tech. Note 874, 40 pages (July 1975)

CODEN: NBTNAE

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1975

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402

(Order by SD Catalog No. C13.46:874). Price $1.00 (Add 25 percent additional for other than U.S. mailing).

TABLE OF CONTENTS

Page

Abstract 1

1. Purpose 1

1.1 Software As A Deterrent to Networking 1

1.2 Limitations of Software Production Techniques
and Need for Tools 1

1.3 Specific Objectives 2

2. Methodology for Reliable Software . 3

2.1 Categorization of Available Testing Tools . . 3

2.2 General Criteria for Evaluating Tools and
Their Benefits 5

2.3 Systematic Testing and Testing Objectives . . 7

3. Compiler Validation 8

3.1 Importance of Validation to Network Usage . . 8

3.2 Summary Description of the NBS FORTRAN Test
Routines 9

3.3 Experimental Application of Validation on
the ARPANET 11

3.4 Conclusions and Recommendations for Network
Validation . 14

4. Dynamic Analyzers 15

4.1 Description of Various Analyzer Designs . . . 15

4.2 The NBS Analyzer 17

4.3 Results From Analysis: An Example 20

4.4 The Experiment 2 6

4.4.1 The Programs Analyzed 2 6

4.4.2 The Results 27

4.4.3 Conclusions on Benefits 31

5. Application Guidelines in a Networking Environment . 32

6. Future Considerations for Networking 33

6.1 Recommended Research in Program Analysis ... 33

6.2 Exploratory Research Possibilities: A
Network Software Production Facility ... 35

References 3 6

in

SOFTWARE TESTING FOR NETWORK SERVICES

by

Rona B. Stillman, Ph.D.
Belkis Leong-Hong

This report is a first step toward identifying effective
software test and measurement tools, and developing a guide
for their usage network-wide. The utility of two tools, the
NBS FORTRAN Test Routines and the NBS Analyzer, is studied
experimentally, and indications of their role in systematic
testing in a networking environment are given.

Keywords: Dynamic analysis; NBS Analyzer; NBS FORTRAN Test
Routines; networking; systematic testing; testing tools.

1. PURPOSE

1.1 Software As A Deterrent to Networking

Although resource-sharing computer networks offer new opportunities
for extending computing capabilities, their continued development is
impeded by low service quality and dependability, system incompatibilities,
and inadequate support to remote users. In single-system
installations, the high incidence of software errors and user misunder-
standings of unexpected and unforgiving application limitations have
necessitated a close working relationship between software developers
and users. In networking, the geographical separation, institutional
barriers, and information interchange costs become additional aggravations
in the software quality problem, and are compelling reasons to develop
a network-wide approach to software testing and related documentation.

1.2 Limitations of Software Production Techniques and Need for Tools

"... as a slow witted human being, I have a very small head
and had better learn to live with it and to respect my
limitations and give them full credit, rather than try to
ignore them, for the latter vain effort will be punished
by failure."

Edsger W. Dijkstra

The quality of today's software systems is uneven at best. The high
error content of software released for operational use is traceable to the
inability of the programmer to deal effectively with the logical complexity
of the program. Whereas software products have become increasingly larger
and more sophisticated, there has been no corresponding improvement in the
tools and techniques for software production and development. Current
practice is to design and implement a system, and then to test it for
some arbitrary subset of possible input values and environmental conditions.

(In general, it is impossible to test a program under all conceivable running
conditions, since even simple software packages may have an infinite input
domain and an extraordinarily large number of execution paths .) The program
is accepted when it executes these test cases correctly. However, despite
the fact that testing often accounts for over half the total cost of
software development, there are usually a significant number of residual
errors. The user uncovers these errors in the course of operation, when
the software fails to run for certain inputs, when the computer results
are clearly incorrect, or when the software reacts with its environment
in unexpected and undesirable ways. The cost to users is substantial.

To improve software quality, a set of tools is required which
augments the programmer's ability to define, construct, and evaluate the
effectiveness of his test cases.

1 . 3 Specific Obj ectives

This report is a first step toward identifying effective software
test and measurement tools, and developing a guide for their usage
network-wide. The guide should assist network host centers toward a

uniform approach to testing which increases the dependability of their
services. It should be valuable to users, as well, in testing their
own programs.

The approach adopted was to identify available testing tools and

techniques, categorize them functionally, and then select individual

tools for further consideration and experimentation. Three criteria

were used in choosing test tools for study and in structuring the

experiments

:

1. the tool should be general purpose and of interest to the

mainstream of network hosts and users

2. the tool must be available at NBS

3. the experiment should shed some light on the utility of the tool

(what help can it provide, how badly is it needed), its transport-

ability, and the desirability/undesirability of particular
features of the tool.

Important issues include potential benefit for network users and
hosts, acceptability of disseminating test results and adopting testing
standards among cooperating centers, and future development essential
to establishing a comprehensive test methodology spanning a major segment
of network services from initial design to continuing operation.

METHODOLOGY FOR RELIABLE SOFTWARE

2.1 Categorization of Available Testing Tools

A testing tool is any program, data base, or hardware/software probe
which facilitates effective and systematic testing of computer service.
Typically, testing tools are software products that assist in generating,
accumulating, and evaluating software testing information. Testing tools
available today can be categorized as follows:

A. Audit Routines are collections of test data and expected results
which serve to define some (minimum) standard of acceptability
for a generic class of programs. Audit routines describe the

correlation between requirements (what the software is supposed
to do as defined by the expected results) and software capabilities

(what the software does, as defined by the actual results). For

example, the NBS FORTRAN Test Programs are a set of FORTRAN programs

(and expected results) which test the ANSI FORTRAN features of a

FORTRAN compiler ([3], and Section 4.2). Similar routines exist for

COBOL and JOVIAL compilers.

B. Test Data Generators are programs which generate test data files
according to user specifications, e.g., number of (fixed or
variable length) records desired, with "random", controlled
increment/decrement, or user-specified values, for tape, disc,
or on cards, etc. They reduce the time and effort required to
create comprehensive data files, and facilitate test data
documentation. Typical test data generators are Synergetics'
PRO/TEST, Hoskyns Systems Research's TESTMASTER, and Management
and Computer Services' DATAMACS*.

C. Static Analyzers examine source code and perform one or more of

the following functions:

"Reference to specific products in this report does not convey an

endorsement or recommendation by NBS, and is intended only for

amplification and clarification of technical discussion.

• check for compliance with programming standards, identify
violations and correct when possible (e.g., the Bell
Laboratories ' Verifier)

.

• display the program structure and logic flow, describe the
use of global data, produce cross-reference tables, etc.

(e.g., NASA's COMGEN, Westinghouse ' s COBOL Programmer's Tool).

• report the frequency of occurrence of each syntactic statement
type in the program (e.g., NBS's STATIC Analyzer).

Static analyzers are useful in identifying portions of code which
are blocked, disconnected, or not readily transportable.

D. Dynamic Analyzers collect data on a program while it is in execution.
This data can include:

*

®

the frequency of execution of each statement, code segment,
or subprogram

the range of values of specified variables

a trace of the path of execution (e.g., the last fifty
instructions executed)

• the time spent in each subprogram.

Some typical dynamic analyzers are Life Service Company's UTLPATH,
Republic Software Products' COBOL-DEBUGGER, Capex's FORTUNE and COTUNE,
Digital Solutions' FUS and NBS's Static/Dynamic Analyzer. Frequency of
execution information permits a programmer to assess how thoroughly a
program has been tested, and identifies those portions of the program
that must be exercised by subsequent tests.

E. Test Control Packages allow user interaction while testing. Capabilities,
provided may include:

9

•

•

breakpointing (i.e., suspension of execution at specified points
in the code, examination and alteration of variable values, and
resumption of execution, e.g., Binary System's BREAKPOINT, World-
wide Computer Services' AUTODEBUGGER, SofTech's FORTRAN DEBUGGING
SYSTEM)

simulation of program modules to permit the testing of incomplete
programs

error recovery (i.e., intercept certain aborts, substitute new
values for offending ones, and produce selective or complete
diagnostics)

.

The availability of commercial testing tools is depicted in TABLE 1,
with tools characterized by major function, language processed, and machine
environment. Because this is a fluid field, some of the packages included
in TABLE 1 may no longer be offered, and others which are available may
have been overlooked. Moreover, the numbers which appear do not always
tally: some packages are implemented on more than one machine, some have
versions for several languages, and some information could not be obtained
for some of the packages. TABLE 1, therefore, should be taken in the
spirit in which it is offered, that is, solely an indicator of broad
characteristics of the testing tool market.

2.2 General Criteria for Evaluating Tools and Their Benefits

The following questions illuminate the utility of a testing tool in a
networking environment:

•

•

•

•

e

what are the costs to build and maintain the tool, to set up
a run, to use the tool?

is the tool portable across different languages, different
operating systems, different machines?

is it general-purpose, e.g., useful for large programs as well
as small, systems software as well as applications programs,
for programs with real time constraints, in batch as well as
interactive mode, with compilers as well as interpreters?

are the output files transportable, are they conveniently
formatted, to what degree can the mser control the quantity
and data output?

can the tool be used to design better testing procedures and,
ultimately, better programs? Will it facilitate regression
testing after program modification, as well as initial testing?

are the results reproducible (as contrasted with statistical)?
Can they be used in a legally binding contract of requirements
or specifications?

MAJOR FUNCTION

onw

£

r

£2

LANGUAGE- MACHINE

o

ooo

I

TEST DATA GENERATION

r
STATIC
ANALYSIS

DYNAMIC
ANALYSIS

TEST
CONTROL

LANGUAGE STANDARDS AUDIT

FREQUENCY/TIME MONITOR

TRACE

BREAKPOINT

ERROR RECOVERY

SUBROUTINE SIMULATORS

14

16

7

10

2

13

14

5

TABLE 1. A Survey of Commercially Available Tools.

2.3 Systematic Testing and Testing Objectives

In systematic testing, it is essential to formulate well-defined
goals, and to measure progress toward those goals (in particular, to
know when they have been reached). Responsible test objectives include
testing both program function and program structure.

Functional testing regards the program as a black box, and focuses
on requirements. It demonstrates that some designated level of performance
has been achieved. For example, the NBS FORTRAN Test Routines indicate
that a FORTRAN compiler processes legal ANSI FORTRAN in accordance with
the Standard. Adequate functional testing requires:

• complete and unambiguous definition of each function,
including expected input and output characteristics;

• a test case (cases) for each function, constructed to
reflect requirements. Where functional dependencies exist,

the test cases should be structured as a hierarchy, with
basic (lower) functions tested first, and only tested
functions usable in other (higher) functional tests.

• extrema testing, where appropriate. For example, if operation x
is required to accept from four to sixteen operands, then test

cases should include (at least) the two extreme possibilities.

• testing of singular values, where appropriate.

• testing of out-of-range and illegal values, to detemine if the

modes of failure are rational and non-destructive.

Structural tests, by contrast, are constructed in response to
the internal structure of the program. Experience shows that the
error rate of newly installed programs is high, and falls off as the
program is used. Structural testing is based upon the premise that many
of the early errors occur in (or were instigated by) portions of the
program which were not exercised during testing. Some of these errors,
then, could be eliminated by exercising a program thoroughly before

releasing it. In effect, structural testing is an attempt to systematize
and compress the "break-in" period, and to incorporate it into the
program's testing phase. The goal of structural testing, then is to
thoroughly exercise the program. Depending upon available resources
(time, money, personnel) this means exercising each (specified)

• subprogram

• subprogram entry, exit, and halt

• critical path

• statement

• branch

The process of systematic testing is central to this effort.
Therefore , the tools which were selected for further study were those
used in performing and/or constructing systematic tests: the NBS FORTRAN
Test Routines are a carefully built set of functional tests for FORTRAN
compilers; the NBS Analyzer, a FORTRAN execution monitor, facilitates
structured testing.

3. COMPILER VALIDATION

3.1 Importance of Validation to Network Usage

Computer networks provide opportunities and facilities for sharing
information and other resources which were hitherto unavailable. Networks
have made it easier for the users to access and manipulate desired resources
at a relatively small cost. However, in order for sharing to be effective,
it is essential that there be at least a nujiimum degree of software
compatibility among the nodes in the network, whether the computer hardware
at the different nodes be homogeneous (e.g. the WWMCCS system*) or
heterogeneous (e.g. the ARPANET""). The necessity for compatibility is

evident when an attempt is made to use a program on a system different from
the one for which it was originally created. The new system may process
the program differently than intended, yielding results other than the

"WWMCCS is the World-Wide Military Command and Control Systems Network,

serving the military community.

""Advanced Research Projects Agency

expected, or no results at all.

Unfortunately, this is not an uncommon problem. Where software
compatibility does not exist, the sharing of data, programs and other
computer resources is an arduous task, due to the substantial amount
of "incompatibility debugging" that must be performed on the "working"
program before it becomes useful to another user at another installation.
Successful usage of a network, therefore, requires a certain measure of
compatibility among the nodes.

In addition to serving as a basic set of functional tests, then,
compiler validation test routines are a means of ensuring some measure
of compatibility among compilers on a network.

This study investigated the feasibility of using validation tests
in a networking environment, by experimenting with the NBS FORTRAN compiler
validation test routines. This set of test routines was designed to
validate that an individual compiler conforms with the ANSI FORTRAN
document, X3. 9-1966 [9]. (There are several ongoing validation efforts:
the U. S. Navy's ADPESO, under an agreement with the National Bureau of
Standards, is providing a COBOL Compiler Validation Service to the Federal
Government; NBS, in conjunction with the ANSI X3J2 BASIC standardization,
is developing a set of minimal BASIC validation routines; ALCOA, in
cooperation with Purdue University, is working on tests for standard
FORTRAN 2).

3.2 Summary Description of the NBS FORTRAN Test Routines

Each of the NBS FORTRAN Test Routines [3] tests a particular feature
or capability as described in the ANSI FORTRAN standard document. These
tests were not designed to debug a FORTRAN compiler, but rather to test
the compiler's adherence and acceptance of form and interpretation of the
standard document, X3. 9-1966. These tests cannot test every possible
interaction of every FORTRAN statement, but those that they do test are
representative of the complex set of specifications as set forth in the
standard reference document.

The complete set of test routines consists of 116 main program
segments and 63 subprograms. The test units are generally small, self-
contained main programs, with straight line logic. Test units can be
run separately or linked end-to-end. When the FORTRAN processor fails

to accept a particular segment of the test routines, this failure may
be manifested in one of the following ways:

A. At Compile Time.

• Compilation is not completed, with no indication of the cause.

• Compilation is completed and diagnostic messages are produced
(Note: diagnostics are outside of the FORTRAN standard
specification)

.

B. At Link Edit and Load Time.

The executable program fails to link or to load. The cause
may or may not be indicated.

C. At Execution Time.

• The test program is aborted before completion, producing no
results

.

Unexpected results are produced. This can occur if:

—Some well defined element of the Standard FORTRAN language
was implemented in the compiler in a variant way.
—Some ill defined part of the language was interpreted by the
compiler writer different from the test program writers.

—The test program writer interpreted the standard improperly.
—There is a bug in the test programs.
—There is a bug in the compiler.

To test the feasibility of using the FORTRAN routines to validate
compilers across a network, a small subset of the FORTRAN compiler
validation test routines was arbitrarily chosen. This subset is briefly
discussed below:

AFRMT : Tests for the correct interpretation and usage of FORMAT statements.
FORMAT statements contain specifications which define the structure

of a record and the form of the data fields comprising the record.
It also tests for input/output statements especially as related to
the formatted transfer of alphanumeric data , i.e., the A-conversion.

BLKDT and BLOKD : These two segments should be run together. BLKDT tests
the correct usage of BLOCK DATA subprograms which are used to
initialize data to be stored in a common area. BLOKD is a BLOCK
DATA subprogram which uses all the permissible statements in a
BLOCK DATA subprogram.

BSFTS : Tests for the correct usage of Statement Functions (i.e., internal

subprograms defined in a single statement) previously defined

within the program. Intrinsic Functions (e.g., ABS, FLOAT, MOD,

etc.) and External Functions (e.g., EXP, SORT, SIN, etc.) are

assumed to be working.

10

DATA 2 : Tests initialization of variables with all allowable types of
constants, and tests the contents of variables set by DATA
statements

.

DOTRM: DO-LOOPS are tested with all allowable types of terminal
statements, e.g., CONTINUE, ASSIGN, logical IF, etc.

IFBMS: Tests that the Intrinsic Functions, supplied by the FORTRAN
compiler, behave as prescribed in the standard reference
document

.

SBRTN, AAQ, ABQ, ACQ : These four segments consist of one main (calling)
program SBRTN, and three subroutine subprograms AAQ, ABQ, ACQ.
Together, these segments test for proper behavior of the main
program and of the subroutines which may or may not return to
the main program.

3.3 Experimental Application of Validation on the ARPANET

Because of its generality and availability, the ARPA Network was
chosen as the site for the experiment. The (subset of) test routines
were installed and executed at various nodes. Installation-dependent
changes that were required were documented to aid in gauging the
portability of the test routines.

"Installation" involves physically copying the test routines from
a batch source (for example, magnetic tapes , punched cards, etc.) to an
on-line directory (for example, disc, etc.) such that these routines are
easily accessible for on-line manipulation. Installation was performed
only once (at an arbitrarily chosen ARPANET host). Thereafter, the
routines were transferred to other nodes by using the File Transfer
Protocol (FTP) facilities which are available at each ARPANET node.

Once installed, the routines were made operational by making such
changes as logical unit assignments, altering file nomenclature conventions,
etc. This was all that was required to render the programs compilable and
executable. Resulting output was compared with predetermined results. If

the two sets of results were in agreement, it was concluded that the
compiler adhered to and accepted the form and interpretation of the FORTRAN
standard document X3. 9-1966. If not, attempts were made to determine the

cause of the failure

.

The major problem during installation arises from character

incompatibilities between batch source (magnetic tape recording-mode)
and the on-line directory media. For example, if the files to be installed

are recorded in Honeywell's H-200 recording-mode (which is incompatible
with any of the copying facilities at BBN) , then the files cannot be

installed at BBN without copying them onto other batch sources such as

punched card, or paper tape.

11

During the transfer stage, there were relatively few problems,
because the user is safeguarded against destruction of his original
set of files. Noise on the communication lines may damage the integrity
of the files (that is why the files should be checked after the transfer
is completed). Other than that, the major problem during the transfer
stage could be attributed to the human factor, and not to the network.

When the programs were ascertained to be executing properly, they
were moved to other nodes on the ARPANET using the File Transfer Protocol
(FTP). The FTP used is described as:

A protocol for file transfer between HOSTs (including
terminal IMPs), on the ARPA Computer Network (ARPANET).
The primary function of FTP is to transfer files
efficiently and reliably among HOSTs and to allow the
convenient use of remote file storage capabilities.

The objectives of FTP are 1) to promote sharing of files
(computer programs and/or data), 2) to encourage indirect
or implicit (via programs) use of remote computers, 3) to
shield a user from variations in file storage systems
among HOSTs, and 4) to transfer data reliably and
efficiently. FTP, though usable directly by a user at
a terminal , is designed mainly for use by programs.

Transfer by FTP followed the procedure described below:

1. Learn the FTP procedures for each host, and then perform the FTP
of the files. Although the FTP was designed with the concept of
uniformity throughout the ARPANET, each "user" host has its own
FTP implementation idiosyncracies , as is amply illustrated by the
FTP sign-on procedures , and the allowable commands

.

2. Check the directory at the receiving hosts (hereafter, known as the
"user" host)

.

3. Identify and correct, if possible, any problems caused by the transfer.
If the problem cannot be corrected, delete the new file and do the
transfer again.

4. Identify installation-dependent modifications and make changes
which conform to the installation requirements.

5. Compile and execute programs to verify the correctness of the transfer
and to maintain the integrity of the files transferred. Check outputs
against expected results.

6. Create, whenever possible, a control file to allow for multiple
execution, and a multiple output file.

12

The Experiment

A small subset of the test routines—rather than the full set—was
chosen for our feasibility study. At this time, our considerations
were storage space, time, cost and manageability of the experimental
subset. The nature of these validation routines is such that an isolated
routine can test the compliance or non-compliance of a given compiler with
respect to the acceptance of interpretation and form of a particular
FORTRAN statement. Thus, the results derived from this study are meaningful
as a first step in future validation efforts in a networking environment.

In performing our experiment, the subset of compiler test routines
was copied onto a 7-track magnetic tape in BCD and sent to the ARPANET
host BBN, where the tape was installed, i.e. copied onto our disc
directory. After necessary changes were made to the test programs using
the on-line editor, TECO, the programs were compiled and executed without
difficulty. All the tests, except one, yielded expected results.
The test which failed was the BSFTS (segment 110) which
checks for statement functions previously defined within the same program.
Further debugging and consultation with the BBN system analyst led us to
the conclusion that the problem was due to:

a) a "compatibility package" problem resulting from using the
TENEX system

or b) a compiler implementation problem

or c) a DEC-10 compiler code generation problem.

After further investigation, it was concluded that the failure was
due to a DEC-10 compiler code generation bug, since the problem was
eliminated by patching the assembly code. To reaffirm this, the program
was transferred, via FTP, to a regular DEC-10 compiler (the one at Harvard)

in an attempt to compile and execute BSFTS. The same problem was found

as with the BBN TENEX (DEC-10) compiler, even though the code generated

was somewhat different. A similar patch to the assembly code was made

and again the program executed. correctly. BSFTS was then transferred to

a third (completely different) system, Multics. The segment in question

compiled and executed without any problem.

In the next phase of the experiment, the subset of routines were

transferred to three different ARPANET hosts. The receiving hosts were:

• USC-ISI, having an identical system, TENEX.
• Harvard, with a regular DEC-10 system.
• MIT-Multics, with a completely different system (H6160).

13

The transfer of the files from BBN to each of the other three
hosts was accomplished with relatively little difficulty. Changes
made to the routines at the user hosts, ISI and Harvard, were minimal,
concerned mostly with file naming conventions. The subset of test
routines tested was executed without incident (with the exception of
the segment 110, BSFTS, which behaved the same way as when executed at
BBN).

At Multics, we found that there were some departures from the
usual FORTRAN language conventions, such as having all executable state-
ments begin in column 11 as opposed to column 7, and requiring that all
executable FORTRAN statements be in lower case type. To make its FORTRAN
compatible, the Multics compiler has an option to convert all upper case
executable statements to lower case and to make the necessary indentations
so that these statements would be recognizable to the Multics compiler.
(This option can be invoked at the time a FORTRAN program is compiled.)
After these and other minor changes were made, the subset of programs
were executed without problems, yielding expected results—including
segment 110.

In summary, the processes of installing the files on an ARPANET
host, and transferring them to different nodes, were relatively simple,
once the "poring-through-the-documentation" stage was concluded. The
greatest impediment to this experiment was the documentation provided
for each system. The documentation was poorly organized, inadequate,
and inaccurate. Critical information was scattered throughout, and the
method of multi-pointers employed often led to cryptic information.
Several features described in detail in the documentation were not
fully implemented, and when implemented, did not always correspond to
the description. For example, the DEC-10 system command ASSIGN(lu)
cannot be used because it was not implemented properly, and the system
command, RUNFIL on the TENEX system does not behave as described.

3.4 Conclusions and Recommendations for Network Validation

The purpose of the experiment was to determine the feasibility of
validating the compilers in a network environment using a subset of the
FORTRAN Compiler Validation routines. The results of the experiments
proved to be encouraging: transferring the validation routines over
the ARPA network was not difficult (despite the idiosyncracies at each
node) , and the relative ease of compilation and execution at the few
selected nodes proved that the routines were highly portable. This was
due in large measure to the fact that the routines are written in standard
FORTRAN.

14

The DEC-10 compiler bug that was identified emphasizes the importance
of validating compilers across the network. In particular, it points up
the utility of test routines such as the NBS FORTRAN Compiler Validation
Test Routines.

To the casual user, however, the validation routines may seem
cumbersome. Thorough familiarity with [3] is required to invoke the
routines (each routine is stored under a name given in [3]), to understand
what feature was being tested, and to interpret the results. Actual and
expected results must be compared manually. Moreover, running all of the
validation routines could be tedious, since the user* is required to call
each routine by name. Desirable changes to the validation routines which
should be incorporated as a part of future efforts in network compiler
validation are:

•

•

clearer, more user-oriented names, or methods of calling,
specific routines

identification of the feature tested as part of the output

automatic comparison of actual vs expected output values,
indicating whether or not they matched

effective diagnostics imbedded in the test routines, to assist
in discovering the cause of a test failure.

4. DYNAMIC ANALYZERS

4.1 Description of Various Analyzer Designs

A recent revival of interest in measuring program execution behavior
has led to a number of distinct approaches. To some extent, of course,
form follows function, that is, certain elements of the analyzer's design
are determined by the characteristics of the data it gathers. A package
which measures elapsed time must necessarily make use of a clock; one which
monitors source statement activity can be expected to insert "probes" into
the source text. Table 2 identifies four typical design philosophies (the
columns) and, for each, assesses factors of cost and convenience (the rows).
For a good discussion of problems in elapsed-time measurements, see [1]'.

15

> CD COp >! cu P P1

1 C CU fi XI CD G >1
CO Td a> P rd CO H CU cu p

*> CO C 6 rd g fi •P ft,C i fi
o

CO 0) CD rd cu rd g P bb 3 g
CD c P. bO c CO S o cu o CU o CD

co o £ fl 10 rd o CU o P O cp CO g
rd xs c P Td CD C ft XI X! ft cu o >^
O bO P •H ID E rd P O P x; rd CO p rH P ip t3

•H «* C IS CD g u nd hO •- c ft O O CD

CD ft -p cu CD X! CO ft fi bo co g bO C g <D ft O P
g CO H CO fi O >i T=) rd C P CD fi -P ro H P • ft CO O
o 0) Q) rH a> -h co ^ c CD -HO H -P p p H CO ft ft p
w P XI cu •h ,g o cu p «* -P -H xi p cu M CD o >, O -P

•P o P O bO g ft CD P P1 T3 O P> > O O c o P O C
c fi P X rd rd a cu CU X! <D CU CD p CU o p X rd H CD H O
1—

1

O1 < CJ > g -p g n 5 CO CO pi ft MO a W o o > CQ g

1

CU 1 1 a; 1 1

cu P g CO P rj rd co

rH rd rd -H O O p CO

Xl rd P P > Mh H P> -P
rd P bO P o g p>

CO -P Xi O O CD CO CD c
• CU -H • •p O P ft CD C g CU cu

-H cu P P ft •H rd ft P g •POX) p>

C CU bfl •H CO O 5 CO -H CO CO

<D

o .

rd

P
P oCTOH P1

P CO P •

U C TJ P
CO o
fi CD P>

•p
CO P1

Bb o CU bO 0) +> O C x: P fi cu cu O CO i fi c
cu p C P 0) p P m -p co •P P CO o o cu

co rd rd CO g H P rd P P rd H H o • rH

o U rH » CO cu H M CD CU P rd O rd CO ft <-\

4-> P CD Tl (1) P CU O p P CO Xi •P CO nd o CD

co T3 CU O O co O O rd I O p >^ p O CD O O
=) o O C o o >, X H >, P P rd rd rd CD id o CD H X
s CO 2 O O rd CO w O H CO O CD > g > cu r-i s o ft

CU cu

ft >i p> +J T3 H ft |

O
CO

Xl CU

bO
rd

g
C fi T3
CD rd 0) C

CO -P
p 1

p
rd

P> — bO 0) rd •H g P rd o c ^^T >
CO g C a P X CD o rd x: P CD •

O rd • -P •P bO o p> \ bO > Td CO H T3 H ft
o p £ >> P> C p rd -H CO H -P rd 0) rd p •

bO H P rd ex P1 fi -p XI bO CO O p P1 XI id
01 o H H O H ft CO fl o g p P <D p O ft CO CD

x: u rd u rd CD -H P rd CU CD fi cu H P -P CO

4-> ft P XI
p

0)

C &
X! P CO H
o p> P P

C P >
a rd rd

CO CD COH bO C
bO O CO

IS -P
p

c rd • co p CO o o rd rd CD O p H H t) X p
o P P O a CU g > -P CO p rd CO C H CD o
a bO X CU Mh rd o • x P C Mh • G O -P rd H c
p C CD P p p p O O ip P O CO •P CD P

•H P C 0) o C p> O ft o tH C -P -P >i»l S CO S id CO c
CO P> 3 -p P1 T3 CU CO Mh t3 CD P XI <u o P P •p CD

id G 0) rd a) H p C H IB£ C H CD CO -P H
G CD O O P CO +-> H e CO • CU C rH O -P >,T| [/) p CD -P ft •-\

CD E P CU H •H CD P> CD TJ CD cd -P rd H 4-> fi rH P o CD

ft bb 3 p T3 H g O cu CO ft 13) P OTJ ft H P O p X> P o O
CD cu o O O rd •H X C O >rP Uh X C rd O o rd rd H X
Q CO CO ft S O J w o o p .c o W -P rd r- P P O •H h o u

>1 P>
. p o

x p •p G
o C P >

CO o co rd — CO •H "

g H CD P> O c c (D p CO

H p CU O •p p •P CO CD •p o C •

rd > O Pi P o CD P p • rd O CO

3 g tj ft CO •P •H ft P O ft •P rH •H P1

id cu rd >, CO p g o Td O P rd CO P GH +J 0) • U co rd rd -H o rd O p rd CU

> CO ft IS o Mh H ft ft O rH .p o O g
•H >, P o o cu P >, O O P P p O CD

Td to cu H ft > rd bO P g O -P bO-P •p ^-i P
c > •H CD CD o rH CD p C ro

•H o >i P CO P> x: P > p O P> P O o >i p
• H c cu cu p> P ft ft P s P CO

O g w H 0) g u •H •H P ft P •P P1

P rd 0) rd H •H ft s O CO •P P O g cu

p s p H p> p Ai C CD • P ft C CD o
0) bfl p CU CU CU 0) id O •p Td td a> o p g P
c O CO c o g p o O CU P o O P O CD o P
o P CO cu X o n o H P rd O o c H P o ft o
s ft rd o H CO -H CD O rd > bO CD -P O rd pj O CO

oo a
13 H
sg S P^

§ ^s Pio 2
Q Pi >

00 00 i—i S o
1—

1

1

P CU 00 Pi 00 00 opR Eh <C >H

< 5 g
ft ft gp1 o s w

Pi P CD
gOEH

£
o p
Eh ft

C/D o
ft ffi

& W Pi Pi ft OP< ft 00 Q H 2 LJJ o CD

£3 ^ <cod
>n CD

2 § 3 tag y S ftO 00
ft H

Eh o ^ w i S H ft > n y Ph , H HH s s £° < Eh 00 ft 3 tH W 00 o CD H
00 O <2 1—1 p—1 ,__) < 5

i—

i

CO y s 2 2 QH Pi HW2 J 2 >h O 00 cqco2 S o P H OO *r* eh cd JrjH 1—1 W S OH2 CD ^ 5 o ft o H Pi OH S W Pi pq 300 S w > P^ § ft
rJ ^5 H o <2M Pi

o
^ ^ 2W gft

Eh CD ft ft < CD>H HPH S H CD ft ft ft CD U-j p o M W
00 O P 2 00 Pi C CD O Q W 00 &- 9 >j ft Q

ft ft
S 2 >O Pi o o 00 < O M a ft Pi BE ft Pi< ft

h-| O gao K O Eh 3 P< PL. Q < < O ft Eh Q O o

16

4.2 The NBS Analyzer

There are many packages available which monitor program executions
[2, 4, 8]. Some are quite elaborate and expensive. The design criteria
for the NBS analyzer were:

1. It must monitor (American National Standards) FORTRAN programs on
the branch and statement level.

2. It must be suitable for use in a networking environment. Therefore,
it should itself be, and should produce files which are portable
across different systems.

3. It should be as simple as possible.

4. It should be convenient to use.

5. It should be a suitable basis for developing a more sophisticated
and powerful tool.

The NBS analyzer is of the type described as "counters placed inside
a segmented program" (Column 2) in Table 2. Use of hardware or systems
clocks was avoided. Like others of this type, the NBS analyzer consists
essentially of two phases. The original source code is first accepted
as input to the analyzer, and an "instrumented" or augmented version of
the program is produced as output. Instrumentation consists of inserting
calls to a tallying function into the original source code. A second
phase occurs when the augmented version is actually run, the tallying
function causing the program to compute and report execution frequency
statistics in addition to performing its normal function. The entire
process is represented in Figure 1.

Execution activity of a FORTRAN program is treated as a series of
invocations of code segments. Each code segment is defined as a non-empty
sequence (S, , S, , , ..., S,) of statements where S, is a unique entry

statement in the sequence, and S, the sole exit. Control flows from

S... to S, for OZ_j z.n, i.e., it is strictly sequential. A segment

continues until a rule of ending or starting a new segment can apply.

Certain statements always begin a new segment, e.g., labelled statements.

Other statements always end a segment, e.g., unconditional GOTO statements,

RETURNS and STOPs. Some statements are themselves one or more segments.

Among these are IF statements, computed GOTOs, and DO-loop terminators.

The analyzer assigns segment numbers sequentially throughout the program

text.

17

PHASE ONE, ORIGINAL SOURCE
PROGRAM TEXT

ANNOTATED
PROGRAM
LISTING

FORTRAN
ANALYZER

INSTRUMENTED
SOURCE
PROGRAM

7

/
/

/
/

PHASE TWO. INSTRUMENTED
SOURCE
PROGRAM

1_

COMPILER

PROGRAM
EXECUTION i

USER'S
INPUT

NORMAL
OUTPUT

EXECUTION
FREQUENCY
STATISTICS

FIGURE 1. Dynamic Analysis

18

The analysis provides for both computation and control activity
monitoring. In computation activity analysis, execution frequencies
of each code segment are monitored independent of other program segments.
Control activity analysis records flow from segment to segment as well.

FORTRAN'S lack of any compound-statement facility (such as BEGIN-END
brackets in ALGOL) often has forced FORTRAN analyzers to be inelegant and
unwieldy. Many analyzers introduce new variables and labels, and require
a symbol table and (sometimes) multiple passes to avoid naming collisions.
The NBS analyzer aims at simplicity, with some sacrifice in performance
and analysis power (these weaknesses are detailed later). Instrumentation
is a single pass operation. No new labels or variables are introduced
into the source code; only one function name and a few additional statements
are added.

The analyzer does transform many statements into a "statistics
collection" form which calls an integer function with the reserved
name IY2L9T (IY2L9T was chosen to avoid collision with usual FORTRAN
names). The function IY2L9T, which is included as part of the instrumented
program, maintains and prints execution frequency statistics. To avoid
complicated interactions through COMMON and BLOCK DATA, statistics are
kept in an array (SEGFRQ) which is local to IY2L9T. The dunension of
SEGFRQ is fixed after a program has been analyzed, and is, of course,
equal to the number of segments in the program. This approach implicitly
assumes that local variables are invariant across calls to a subprogram,
i.e., they have properties of ALGOL own variables or PL/1 static variables [6].

A detailed description of the NBS analyzer is given in [7]. The analyzer
has certain shortcomings, however, generally owing to its simplicity.
Control activity analysis for assigned GOTOs is somewhat incomplete. Flow
out of the GOTO is not recorded. In our opinion assigned GOTOs contribute
little to the quality of a FORTRAN program and like ALTER in COBOL, are
best avoided.

The transforms assume an American National Standard FORTRAN with
mixed mode arithmetic [9]. Non-standard FORTRAN constructs which seemed
inconvenient or difficult to handle were ignored. For example, the
analyzer assumes that all calls to subprograms have standard returns;
READ(. .

.
,END= . . .) and READ(. .

.
,ERR= . . .) are treated as simple READs

;

IF statements are not expected to contain Hollerith fields.

Because no symbol table is maintained, the analyzer cannot distinguish
an arithmetic statement function definition

X(I, J, K) = I + J + K (i)

19

from an array element assignment. Since statement function definitions
(in American National Standards FORTRAN) should precede the first
executable statement of a FORTRAN program unit, a special comment card

C+ *BEGIN EXECUTABLES*

could be used to trigger instrumentation of executable code. Some
FORTRAN variants allow a more explicit statement function definition:

DEFINE X(I, J, K) = I + J + K (ii)

Definitions of form (ii) are handled easily.

To keep from complicating the analysis, no attempt has been made to
minijTiize segmentation [£]. END statements are always monitored, even when
preceded by a STOP or RETURN; decision portions of IFs and computed GOTOs
are monitored as segments even when the statements are unlabelled; a DO
loop terminator is always instrumented as a separate segment, even when
there are no explicit transfers to it inside the loop. Whether reachable
or not, STOPs are modified to call for a printout. Until more experience
is gained with the analyzer, the significance of these points is uncertain.
It should not be difficult to modify or extend the analyzer whenever
appropriate

.

4 . 3 Results From Analysis : An Example

Figure 2-a is a listing of a FORTRAN program to be analyzed. The
annotated source, identifying code segments, is presented in 2-b. Notice
that the arithmetic IF in the middle of the figure 2-b is monitored as
four segments, segment 7 for the expression evaluation, and 8 through 10

labelling the branches. Similarly, each logical IF is treated as two
segments, a predicate and a consequent segment.

A listing of the instrumented program, including function IY2L9T,
is displayed in figure 3. Execution of this program produced the matrix
of segment execution frequencies shown in figure 4. Each matrix row
appears under heading "X" and specifies ten segments. The execution
statistics of each segment within a decade appear in columns 0-9. (Code

constituting each segment is defined via annotated listing, as in
figure 2-b.) Figure 4 shows that segment 11 —the DO-loop entry— was
used once. Note also that segment 12, a decision portion of a logical IF,

has frequency counts which equal the sum of those for segments 13 and 14,

the potential branches from the IF.

20

INTEGER LENGTH, TABLE (100) , ITEM, INDEX, TEMP
READ { 5 , 10) LENGTH, (TABLE(I) ,1 = 1 .LENGTH) ,ITEM

10 F0RMAT(1215)
TEMP = LENGTH
CALL F IN D7(ITEM, INDEX, LENGTH, TABLE)
IF(TEMP .ME. LENGTH) GOTO 100
WRITE(6,1!) (ITEM, INDEX)

11 F0RMAT(1H ,15, 8H IS THE ,I5,17HTH ENTRY IN TABLE)
GOTO 200

10 W P I T E (6 , 1 1) I T E M

101 F R M A T (1 H . I 5 , I 9 H NOT FOUND IN TABLE)

150 CONTINUE
200 LENGTH = LENGTH + 1

I F (L E N G T H .GT. 10 0) GOTO MOO
TABLE (LENGTH) = ITEM
INDEX = LENGTH
RETURN

3 V R I T E (6 , 3 1)

301 FORMATflH , 3 2 H NEGATIVE VALUE OF LENGTH ILLEGAL)
RETURN

400 NR I TE (6,40 1)

40 1 F R M A T (! H ,24HALLDCATED SPACE EXCFEDED)
RETURN
END

FIGURE 2-a. Sample Problem

21

INTEGER LENGTH, TABLEMOO), ITEM, INDEX, TEMP
£*************************** SEGMENT 1 ***»*******»*****»*•**

R E A D (5 , 1 1 LENGTH, (TABLE(I), 1 = 1, LENGTH), ITEM
I FORMAT (12 15)

TEMP = LENGTH
CALL FIND7(ITEM, INDEX, LENGTH, TABLE)

q* ******************** * SEGMENTS 2 THRU 3 .******************* »*
IF(TF M P .NE. LENGTH) GOTO 1 Q

£*»**»**«»*******-*****##** SEGMENT M ********************************
"1/ R I T F (6 , 1 1) (I T E M , I N D E X)

II F R M A T (1 H , I 5 , 8 H IS THE , I 5 , 1 7 H T H ENTRY IN TABLE)
GOTO 200

C**********#****»*********** SEGMENT 5 *****************************
13 iNRITE(6,101)ITEM
10 1 F R M A T f 1 H , I 5 , I 9 H NOT FOUND IN TABLE)

q*************************** SEGMENT 6 *****************************
2 STOP

END

ENH PASS1, V A L U F = 1 3

SUBROUTINE F I M D 7 (ITEM, INDEX, LENGTH, TABLE)
C FINO7 ATTEMPTS TO LOCATF ITEM U> TABLE, RETURNING ITS INDEX IN INDEX
C IF SUCCESSFUL. OTHERWISE, IT PLACES ITEM AT THE END OF TABLE,
C INCREMENTS LENGTH, AND RETURNS THIS NEW VALUE ALSO AS INDEX.

IMPLICIT INTEGER (A-Z)
INTEGER T A 6 L F (1)

C ********************** SFGMENTS 7 THRU 10 **********************
I F (LENGTH) 3Q r

'

t 2 0.
r

< , 1 GO
C************* ************** SEGMENT II *****************************

100 150 1 = 1 .LENGTH
£********************** SEGMENTS 12 THRU 13 ****»•***************

I F (T A B L E (I) .NE. ITEM) GOTO 153
(_*********#***************** SEGMENT 14 *****************************

INDEX = I

RETURN
C*************************** SEGMENT 15 *****************************

150 CONTINUE
q************ *************** SEGMENT 16 *****************************

2 00 LENGTH = LENGTH + 1

C ********************* * SEGMENTS 17 THRU 18 **********************
I F (L E M G T H . G T . 100) GOTO 4 Q C

q ****** ********************* SEGMENT 19 ***********•#**#»***»*******»
TABLE. (LENGTH) = ITEM
INDEX = LENGTH
RETURN

C***** ********************** SEGMENT 20 *******»**»*#*******»******•
3 00 * R I T E (6 , 3 1)

30 1 F R M A T (1 H , 32

H

NEGATIVE VALUE OF LENGTH ILLEGAL)
RETURN

C***************************
:
SEGMENT 21 **************»*»**»****»**

^00 IN R I T E (6 , 4 1)

4 01 F R M A T (1 H .24HALL0CATED S°ACF EXCEEDED)
R F T U P N

E N D

FIGURE 2-b. Annotated Listing

22

1* INTEGER LENGTH .TABLE (100) , ITEM , INDEX , TEMP

2 * INTEGER, IY2L9T
3* I F (I Y 2 L 9 T (!,.TRUE.,0.D0, 6).EQ»0)READ(b,10)LENGTH,(TABLE(I)»I
4# »1 .LENGTH) , ITEM
5* 10 FORMAT (1215)
6* TEMP = LENGTH
7 » CALL F l N D 7 (I T E M , INDEX, LENGTH, TAPLE)
8* IF(IY2L9T{ 2 , TEMP . NE . LENGTH , . DO , 1) . t Q .) GOTO 1 00
9* IF(IY2L9T{ 1 , . TRUE • . . 00 , 6) . E Q .) WR I TE < 6 , 1 1 > (I T EM , .1 NDEX)

IP* II FORMATMH ,15, AH IS THE .I5.17HTH ENTRY IN TAMI n
GOTO 200

100 IF(IY2L9T(5 , . T RUE . , . D , 6) . EQ .) WR I T E (6 , 1 1) I TE M

!01 FORMATtlH , I 5 , 1 9 H NOT FOUND IN TABLE)
200 IF(IY2L9T(6 , . T RUE . , . DO , 8).EQ.0)ST0P

IF(IY2L9T(6, .TRUE. ,0. DO, 9) . EQ .) STOP
END

SUBROUTINE FIND7(ITEM, INDEX, LENGTH, TABLE)
INTEGER IY2L9T
IMPLICIT INTEGER (A-Z)
INTEGER TABLE (1

)

IF(IY2L9T(7,.TRUE.,0.D0+(LENGTH) ,2))300,200,100
100 DO 15 1 = 1, LENGTH

IF(IY2L9T(1),I.EQ.1,0.DG,10).EQ.0)C0NTINUE
IF(IY2L9T(12, TABLE (I) .NE. ITEM, 0. DO, 1) . E Q .) GOT 1 50
IF(IY2L9T(It, .TRUE. ,0. DO, 6) . EQ .) I ND EX =

I

RETURN
150 IF(IY2L9T(I 5 , . TRUE . , . DO , 6) . EQ .) CON T I N UE
200 IF(IY2L9T(1 6 , . T RUE . , . DO , 6) . EQ .) LENGTH=LENGT H +

1

IF(IY2L9T(1 7 , LENGTH. 6T. 100,0.00, 1) . EQ .) GO TO 400
IF(IY2L9T(19, .TRUE. ,C. DO, 6). EQ . > TABLE (LENGTH) = 1 TEM
INDEX = LENGTH
RETURN

300 IF(IY2L9T(20 , . T RUE . , . DO , 6) . E Q .) WR I TE (6 , 30 1)

301 FORMATM u . -<2HNEG A T I V E VALUE OF LENGTH ILLEGAL)
RETURN

400 IF(IY2L9T(2 1 , . TRUE .
', . DO , 6) . EQ .) WR I TE (6 , 40 1)

401 FORM AT (1H ,?4HALL0CATED SPACE EXCEEDED)

RETURN
IF(IY2L9T(- 21 , .TRUE. ,0. DO, 9).EQ.0)ST0P
END

FIGURE 3. Instrumented Program Including IY2L9T.

23

5640* Y .ELT
1

2

3

4

5

A

7

8

9

ID
I 1

12

1 3

14

15

16

17

18

19

20
21

22
23
24
25
26
27
28
29
30
31

32
33
34

35
36
37
38
39
40

1 1

12
43
11
15
16
17
48
49
50
51

52
53
5H
55
56
57

58
59

60
61

62
63
64
65
66
67
68
69
70
71

72
7 3

74
75
76
77

78
79

END PRT

I Y2L9T (0)

IMTEGER FUNCTION I

INTEGER SEGNO, ENT,
DOUBLE PRECISION A

LOGICAL BE
DATA SEGFRO/ 2 I

«

I N tE G E R N L I N E S , N P A

DATA LPEPPG/50/
SEGFRO(SEGN01=SEGF
GOTO (10,20,30,40,5

10 IFIRE) GOTO 1

1

I Y2L9T= I

RETURN
11 SEGFR9ISEGN0+I

I Y2L9T=0
RETURN

20 IF t AEI21 ,22,23
21 SEGFRQ(SFGNO+l)=SE

I Y2L9T=-|
RETURN

22 SEGFRO I SEGN0+2) =SF
I Y2L9T=0
RETURN

23 SFGFRQ(SEGN0+3)=SF
I Y2L9T=1
RFT'JRN

30 IAE=AE+DSIGN(.2D3,
SEGFRQ(SEGNO+IAE>=
I Y2L9T =

RETURN
40 I F | RF) GOTO 4 I

I Y2L9T= I

R E T U R N

4 1 I Y2L9T = D

RETURN
50 IF I BE

)

GOTO 5

1

I Y2L9T= 1

RETURN
51 SFGFR0(SEGN0+1)=SF

IAE=AE+DSIGN(.2D0,
SFGFRQ (SEGNO+ I + I AF
1 Y2L9T=0
RETURN

60 IY2L9T=0
RETURN

70 I F (RF) GOTO 7

1

I Y2L9T= I

RETURN
71 SEGFR0(SEGN0+1)
80 !Y2L9T=0

NL I NFS= ?I /I D+l
PTPAGE=NLINES-(NLI
IF (BTPAPF. .NE.T1PTP
MPAGES= (NL

I

NES/LPT
M U L T =

D n 8 8 IPAGE=1,NPAG
WRITE! 6 , 8 I)

FORMAT (I H I
, 4 JX , 29H

A 1 R I T E (6 , 8 ?.) (I , I = 1

FORMAT (1 H , 4X , I HX ,

DO 87 ILINE=I,LPER
I F (M U L T . G T • , 2 I) K

ENDL IM=MULT+9
IFfENDLIN.GT. 2 1

I F (MULT.NE.O) GOTO
WRITE! 6 , 8 3) (M 1 1 L T ,

FORMAT (111 , I 5 , 5X , 7

GOTO 86
WRITE! 6 , 8 5)

(
M U L T ,

FORMAT (1 H , I 5 , 3X , l

MULT=MULT+IQ
CONTINUE
CONTINUE
R F T 1 1 R M

SFGFRQ(SEGNO)=SEGF
GOTO 80
I F (.NOT • RF

)

SEGFRQ (

I Y2L9T =

RETURN
END

Y2L9TI SEGNO, RE, AE, ENT)
I AE , SEGFRQ (2 1)

E

0/
GES.PTPAGE.LPERPG, MULT, ENDL IN

RQISEGN01+1
0,60,70,80,90, 100) ,FNT

SFGFPQ(SEGNO+l 1+1

GFRO (SEGN0+ 1) * 1

GFRQISEGN + 21 + 1

GFPQ

(

SEGNO+3) +

1

AE)
SEGFRQ(SEGN0+IAE)+1

&FR0(SEGM0+1)+l

AF)

)=SFGFRO(SFGNO+!+lAF)+l

8 1

82

83

P4

85

86
07
88
89
90

1 00

S F G F R Q (S E G M + 1) + 1

NE5/LPERPG) *LPEPPG
AGE = 1

RPG) +PTP AGE

ES

SEGMENT EXECUTION FREQUENCIES,/,/)
, 9 I

5X.7H 0,9 (2X , I 7) ,/

)

PG
OTn 89

) E N D L I N = 2 1

84
(SEGFRQ(I),I=1,ENDLIN))
H ,9 (2X , I 7 1)

(S E G F R (I

)

,I=MULT,FNOLIN))

(2 X , I 7))

RO

(

SEGNO) - 1

SEGN0)=SEGFRQ(SFGN0)-1

FIGURE 3. (Continued).

24

o O —

(^ — _

u
UJ
r>

c LD — O

Z>

UJ
X
UJ

3" CO

UJ
in

(V — c
U-,

X o o o
— CM

25

4.4 The Experiment

Five "real" programs and test data sets were analyzed, and empirical
evidence was collected concerning the utility of execution monitors. The
programs studied were selected primarily because they, and their developers
were readily available. Because the sample was small and important factors
were ignored (e.g., programmer expertise), no attempts were made to draw
sweeping conclusions. Instead, we sought insight into the following
questions

:

• Can convincing empirical evidence of benefit be offered to
motivate use of software monitoring techniques on a network-
wide basis?

• Are these techniques sufficiently simple and inexpensive to
be used by applications programmers?

• What additional capabilities or enhancements are desirable
in software monitors?

4.4.1 The Programs Analyzed

Five programs were analyzed:

• NBS Static/Dynamic Analyzer, written by D. Orser, G. Lyon and
R. Stillman of NBS. The test cases consisted of the analyzer
itself, and the four programs described below. Excepting those
portions of code devoted to diagnostic and error reporting
(subroutine XERROR) , to processing unusual statements (e.g.,

ENCODE, DECODE) and to future functions (subroutine ENCOD)

,

the test cases were thought to exercise the analyzer "fairly
thoroughly"

.

• CLAY, a structural engineering package written by Robert Ewald
of the university of Colorado, and currently in use there. The
test cases were constructed using the University's own dynamic
analyzer. It is somewhat coarser than the NBS analyzer,
monitoring execution at the statement but not the branch level.

Based upon his results, Dr. Ewald thought the test cases exercised

all of his programs.

• INTEGRATION, written by I. Stegun of NBS to compute certain
integrals (e.g., hyperbolic trigonometric functions) according
to various parameters. Dr. Stegun carefully tested this small

program before releasing it for use at NBS, and believed it

had been thoroughly exercised.

26

• STAPLE, written by S. Stewart of NBS. STAPLE is a preprocessor
which translates from a FORTRAN-based structured programming
language (STAPLE) into standard FORTRAN. It is used as a
vehicle to investigate the concept involved in and benefits
to be derived from structured programming and was itself written
in STAPLE (and then hand translated). Except for the error-
handling portions, Dr. Stewart thought the test cases exercised
the program "fairly thoroughly".

• STEM and LEAF, written by D. Hogben and S. Peavy of NBS, to
compute frequency distributions from tabular data, and to
present them pictorially (e.g., draw histograms). The program
has been widely used at NBS. Dr. Hogben intuitively felt that
his test cases exercised the program "fairly thoroughly".

To the best of our knowledge, CLAY, INTEGRATION, and STAPLE are
single-author programs. STEM and LEAF was written by a closely coordinated
team of two . The basic analyzer routines were written by Don Orser modified
and rearranged to produce static reports by Gordon Lyon, and then expanded
into a dynamic analyzer by Rona Stillman. Each stage of expansion was
separate and independent from the preceding one.

4.4.2 The Results

The results of both static and dynamic analysis are summarized in

table 3. The number of branches was computed as follows: (for each)

CALL - 1 branch

RETURN - 1 branch

arithmetic IF - 3 branches

logical IF - 2 branches

unconditional GOTO - 1 branch

computed GOTO - n branches

27

STEM

ANALYZER CLAY INTEGRATE STAPLE LEAF

SUBPROGRAMS 16 19 2 3 14

NOT EXERCISED 2

STATEMENTS 3188 2304 417 683 2461

COMMENTS 1178 1660 8 4 743

% OF STATEMENTS 37.0 72.0 1.9 .6 30.2

EXECUTABLES 1754 515 387 601 1627

% OF STATEMENTS 55.0 22.3 92.8 88.0 66.1

NOT EXERCISED 839 52 13 121 181

% NOT EXERCISED 47.8 10.1 3.5 20.1 11.2

BRANCHES 1455 238 206 360 1076

BRANCHES/EXECUTABLES .8 .5 .5 .6 .7

NOT EXERCISED 692 54 4 76 189

% NOT EXERCISED 47.6 22.7 1.9 21.1 17.6

DO LOOPS 52 15 2 68

SEGMENTS 1504 385 210 402 1232

EXECUTABLES/ SEGMENT 1.2 1.3 1.8 1.5 1.2

BEHAVIOR: % OF ACTIVITY 81.7 61.8 52.6 73.2 60.9

IN IN IN IN IN IN

% OF SEGMENTS 8.1 5.7 9.1 11.7 5.8

TABLE 3. Analysis Results

28

The smallest program, INTEGRATE, was the most thoroughly exercised,
missing only 3.5% of its executable statements and 1.9% of its branches.
The largest program, the ANALYZER, was the least thoroughly tested. It
is also ^ the program whose development was most spontaneous and uncontrolled
(i.e., its purpose was modified and personnel changed three times). Size
did not always correlate with degree of testedness. STEM and LEAF, with
1627 executable statements, was more thoroughly tested than CLAY and STAPLE,
both substantially shorter.

Some of the unexercised code was known to be either unreachable
(subprograms to be integrated into future versions of the program, but
currently dead), or unexercised by the test cases. For example, one of
the unexecuted analyzer subprograms is a symbol table encoding routine (the
analyzer does not now use a symbol table) ; the other handles unrecognized
(syntactically incorrect) FORTRAN statements (the test cases were known to
be legal FORTRAN programs).

Arithmetic IF's and computed GOTO's accounted for most of the missed
branches. Some of the missed branches were unexpected. Using a statement
level analyzer, Dr. Ewald thought CLAY was "nearly 100%" exercised when,
in fact, 22.7% of the branches had not been executed. Some of the missed
branches were logically impossible, and might suggest reprogramming . Some,
however, were the result of programming for clarity and flexibility, and
are instances of good programming style. For example, in the course of
recognizing various FORTRAN statements, the ANALYZER uses computed GOTO's
with 26 branches, one for each letter in the alphabet. The test cases
used did not — and were not expected to — exercise all of these

.

The pattern of execution behavior was calculated on the basis of
execution counts. If fi is the number of times that segment i was executed,

then segment i accounts for

100 x fi

£ fi
all segments

percent of the program's activity. Table M- summarizes the considerable

increase in storage incurred by instrumenting the code.

29

STEM

ANALYZER CLAY INTEGRATE STAPLE
6

LEAF

ORIGINAL WORDS CODE 11328 6913 4517 7427 10066

ORIGINAL WORDS DATA 8937 6163 3492 5524 7460

INCREASE IN CODE WORDS 8518 2731 1672 3131 8893

% INCREASE 75.2 39.5 37.0 42.2 88.3

INCREASE IN DATA WORDS 2574 848 419 783 2261

% INCREASE 28.8 13.8 12.0 14.2 30.3

TOTAL STORAGE INCREASE 11092 3579 2091 3914 11154

% INCREASE 54.7 27.4 26.1 30.2 63.6

TABLE 4. Storage Costs for Instrumentation

30

4.4.3 Conclusions on Benefits

Programmer reaction to the analyzer was .favorable: it was felt
to be a much needed tool. Intuition did not prove to be a reliable
predictor of testing thoroughness. CLAY's test cases, which were
thought to exercise 100% of the program, actually missed 10.1% of the
statements and 22.7% of the branches. In testing STEM and LEAF, 11.2%
of the statements and 17.6% of the branches were missed. The analyzer's
tests missed 47.8% of the statements and 47.6% of the branches. While
it had been recognized that the test cases did not exercise the analyzer
completely, the very poor coverage did come as a surprise. Small programs
like INTEGRATE, written by a single programmer and very carefully tested
over a period of time, fared best. Nonetheless, the author was grateful
for data supporting her "feeling" that the program had been thoroughly
tested.

A great deal of interest was expressed in using the analyzer to
identify portions of the program that could be profitably optimized,
i.e., those portions exercised most often.

Since every one of the programs analyzed exhibited a non-uniform
pattern of segment activity wherein the bulk of the activity was
concentrated in a small fraction of the segments, using the analyzer
to direct optimization efforts seems promising.

Several suggestions were made to increase the analyzer ' s utility

:

•

•

streamline the process of calling the analyzer and setting

up a run

improve the output format by separating or otherwise highlighting

those segments which either were not executed at all or were most

frequently executed

provide a capability to instrument partial programs. This serves

two functions: it avoids wasting resources and provides more

pertinent output when only specific portions of the program are

of interest j it permits programs whose instrumented versions are

too large or too slow to be monitored piecewise.

31

5 . APPLICATION GUIDELINES IN A NETWORKING ENVIRONMENT

Functional test sets, like the NBS FORTRAN Test Routines, and
analytical tools, like the NBS analyzer, can be used to advantage
by service providers and users throughout program development.

• Procurement and Acceptance Testing

When "standard" test sets are available, their successful
execution should be included in the specifications and incorporated
into the acceptance tests. Furthermore, some level of testing
thoroughness, e.g., exercising 90% of the program's branches, should
be specified and (using a dynamic analyzer) demonstrated.

• Program Development

Effective testing can be achieved by beginning with a
functional test set, and continuing to test until the program has
been thoroughly exercised. If functional test sets and dynamic
analyzers are -made available over a network, subscribers as well
as service providers could use them to improve their programs.

* Program Management

In managing a program production project, some of the chief
difficulties are to ascertain how much of the program is done, how
much more remains to be done, and what is the quality of the work.
"Standard" functional tests and dynamic analyzer output assist
management in determining the status of a developing program
quantitatively, i.e., in determining how many functions have been
successfully implemented, how many are left to be done, how much
testing has been done, etc. Analyzers can be built to instrument
partially complete programs (programs with stubs) to complement
top-down program design and testing.

Program Optimization

The effort to tune a program should not be invested until
the program's execution pattern has been determined, i.e., until
dynamic analysis has been performed.

Underlying all of this is the basic position that the tests performed
are a legitimate and important part of program documentation. Tests are,

in fact, "machine-readable" documentation which can be effectively
disseminated and used in a networking environment.

32

6. FUTURE CONSIDERATIONS FOR NETWORKING

6.1 Recommended Research in Program Analysis

The NBS FORTRAN dynamic analyzer represents a somewhat fresh approach
to monitoring FORTRAN programs. Using a set of transforms [7] the analyzer
modified FORTRAN source code to collect run-timie data. The design is
distinctive in its simplicity. No symbol table is necessary. Instrumenting
is a single pass operation. No new labels or variables are introduced into
the source code; only one function name and a few statements are added.
Under this NSF Grant (AG-350), the feasibility and utility of this dynamic
analyzer were demonstrated . Using it as a test bed , several important
aspects of program instrumentation and execution behavior analysis can now
be investigated.

The quantity and character of the output is of central importance in
any program analysis tool. A tool which inundates the programmer with
volumes of unwanted data will be avoided. To maximize an analyzer's
utility, then, we must be concerned with what is reported, how it is

presented, and means by which the user can tailor these to fit his needs.

Currently, the NBS analyzer reports the number of times each of 118

FORTRAN statement types appears in the program text (i.e., static analysis),

provides an annotated source listing which blocks the code into segments,

and, when the instrumented code is executed, reports the frequency with
which each segment is executed. The entire program is always monitored.

If the user is concerned only with specific subsets of his code, full

execution frequency reports can be excessive. Moreover, since instrumentation

substantially increases time and space demands, it is also wasteful. For

very large programs, in fact, it might be impossible to fit the instrumented

code into available memory. The problem of selecting, specifying, and

instrumenting only particular portions of code, then, is of considerable

practical importance, as well as being of technical interest, and should be

thoroughly investigated.

Arbitrary subsets of programs can be monitored using the current

version of the analyzer. The subset to be monitored is input to the

analyzer, and instrumented subprograms replace the original subset at

compilation. The code is compiled, linked, loaded, and run. Only the

subset is monitored during execution and, when the program terminates,

the results are printed. It is important to note that since the instrumen-

tation causes the results to be printed, the program must halt in a

monitored subprogram. It is the user's responsibility to ensure that this

is the case.

33

For greater flexibility, special comments could be used to switch
analysis off and on throughout a program:

text (instrumented)

C+ -END INSTRUMENTING"

more text (not instrumented)

C+ -BEGIN INSTRUMENTING*

Some care would have to be exercised. For example, beginning
instrumenting inside a BLOCK DATA should not cause the BLOCK'S END to
call the tallying program. Similarly, initiating segmenting inside a
DO loop should not cause the analyzer to miss the loop terminator.
Both programmer and analyzer would have to be more alert, and again,
the program would have to halt in a monitored segment.

Rather than making the user responsible for assuring that all
possible halt points are monitored, the analyzer could do so. In
other words, the analyzer would modify user-specified portions of
code plus all (unspecified) termination points.

Additional user convenience could be attained by programming
certain useful monitoring choices into the analyzer as options. For
example , by requestiong "MONITOR AT SUBPROGRAM LEVEL" , only subroutine
entries (and, of course, halt statements) would be monitored.

The next generation of program analyzers will provide a capability
to express and process optionally compilable assertions. These are
special statements describing conditions which hold at particular points
or throughout a subprogram. At the user's option, the analyzer would
translate the assertions into run time tests or treat them as documentation,
i.e., ignore them. Because assertions can formalize assumptions made
across subroutine boundaries, they are especially valuable in managing
the development and checkout of large, multi-authored programs. The
problems of defining an assertion capability, designing an assertion
language, and incorporating assertion processing into an analyzer should
be addressed.

Finally, by suitably modifying the static analysis portion of the
analyzer, it could serve as a standards enforcer as well.

34

6.2 Exploratory Research Possibilities: A Network Software Production
Facility

A Network Software Production Facility is a sharable environment
conducive to the production of reliable software systems. It is an
integrated collection of tools and techniques for creating, debugging,
testing, documenting, maintaining and transporting reliable software.
It would satisfy needs which arise in the generation of both network
and user programs, and would serve to improve the quality of both.

The technology already exists to construct a Software Production
Facility. Its components, e.g., advanced programming languages, structured
programming precompilers, dynamic analyzers, intelligent text editors and
sophisticated file management systems, are within the state of the art.

What has not been done is to identify and develop an effective set of tools,
integrate them into a single system, and make that system available to a
broad spectrum of users.

As a first step, overall system structure should be described,
focusing on:

• types of tools to be included

#

•

where they fit in the life cycle of the software, and how they
contribute to its reliability

how to ensure consistency, identifying potential areas of

difficulty and concentrating on user/tool and tool/tool interfaces

features to make the tools convenient and effective in remote

interactive operation.

To provide practical experience with the concepts and to lend

concreteness to the study, a prototype "Reliable FORTRAN Production Facility"

could be assembled. Potential components available at NBS include a

structured programming language-to-FORTRAN precompiler, the FORTRAN

analyzer, and the full set of FORTRAN Compiler Test Routines. These

could be installed for experimental usage on the ARPANET and on the NBS

PDP-10. Other tools could be considered as well, should they become

available

.

35

REFERENCES

[1] Gentleman, W. M. , and Wichmann, B. A., "Timing on Computers,"
SIGARCH 2 , 20-23, October 1973.

[2] Hoffmann, R. H. , Automated Verification System User ' s Guide
,

TRW Note #72-FMT-8 Project Appollo, Task MSC/TRW A-527, 1972.

[3] Holberton, F. E. , and Parker, E. G. , "NBS FORTRAN Test Programs,"
NBS Special Publication #399 , Vols. 1-3, October 1974.

[4] Ingalls, D. , "The Execution Time Profile as a Programming Tool,"
In R. Rustin (ed.) , Compiler Optimization , 2nd Courant Computer
Science Symposium (1970), 107-128, Prentice-Hall, 1972

[5] Khuth, D. E. , and Stevenson, F. R. , "Optimal Measurement Points
for Program Frequency Counts," B.I.T. 13, 313-322, 1973.

[6] Larmouth, J., "Serious FORTRAN", Software-Practice and Experience 3,

87-108, 1973.

[7] Lyon, G. E. , and Stillman, R. B. , "Simple Transforms for Instrumenting

FORTRAN Decks," to appear in Software-Practice and Experience .

[8] Stucki, L. G., "A Prototype Automatic Program Testing Tool,"

Proc. , Fall Joint Computer Conference, Anaheim, California
,

Dec 5-7 (1972X

[9] American National Standards Institute, FORTRAN X3. 9-1966 .

(Available in the U. K from the British Standards Institute.)

* U. S. GOVERNMENT PRINTING OFFICE : 1975—582-655/165

36

NBS-U4A (REV. 7-73)

U.S. DEPT. OF COMM.
BIBLIOGRAPHIC DATA

SHEET

1. PUBLICATION OR REPORT NO.

NBS TN-874

2. Gov't Accession
No.

3. Recipient's Accession No.

4. TITLE AND SUBTITLE

Software Testing for Network Services

5. Publication Date

July 1975
6. Performing Organization Code

7. AUTHOR(S)
Rona B. Stillman, Ph.D. and Belkis Leong-Hong

8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

10. Project/Task/Work Unit No.

640.2415
11. Contract/Grant No.

NSF AG-350

12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)

National Science Foundation
1800 G Street, NW Room 648
Washington, DC 20550

13. Type of Report & Period
Covered

FINAL

14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 75-600046
16. ABSTRACT (A 200-word or less (actual summary of most significant information. If document includes a significant

bibliography or literature survey, mention it here.)

This report is a first step toward identifying effective software test and
measurement tools, and developing a guide for their usage network-wide. The
utility of two tools, the NBS FORTRAN Test Routines and the NBS Analyzer, is

studied experimentally , and indications of their role in systematic testing
in a networking environment are given.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper

name; separated by semicolons)

Dynamic analysis; NBS Analyzer; NBS FORTRAN Test Routines; networking ; systematic
testing; testing tools.

18. AVAILABILITY [Y\ Unlimited

! 2 For Official Distribution. Do Not Release to NTIS

|X
|
Order From Sup. of Doc, U.S. Government Printine Office

Washington, D.C. 20402, SD Cat. No. C13. 46:874

! 12 Order From National Technical Information Service (NTIS)
Springfield, Virginia 22151

19. SECURITY CLASS
(THIS REPORT)

UNCLASSIFIED

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

21. NO. OF PAGES

40

22. Price

$1.00

USCOMM-DC 29042-P74

#' *<* 6^ &
^

,o
,0

^ ^ ^ <f jf ^
!CV

V̂ ^ *P* ^ A®'^ vrf»
N

...<? A<? ^ n^ ,*•

#° /*

K0 \C*
' ^^:x»"

^ -o
0<?

,#

y

6u <y- x^° a

Wo/,'8

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau
of Standards research and development in physics,

mathematics, and chemistry. It is published in two sec-

tions, available separately:

• Physics and Chemistry (Section A)

Papers of interest primarily to scientists working in

these fields. This section covers a broad range of physi-

cal and chemical research, with major emphasis on
standards of physical measurement, fundamental con-

stants, and properties of matter. Issued six times a

year. Annual subscription: Domestic, $17.00; Foreign,

$21.25.

• Mathematical Sciences (Section B)

Studies and compilations designed mainly for the math-
ematician and theoretical physicist. Topics in mathe-
matical statistics, theory of experiment design, numeri-
cal analysis, theoretical physics and chemistry, logical

design and programming of computers and computer
systems. Short numerical tables. Issued quarterly. An-
nual subscription: Domestic, $9.00; Foreign, $11.25.

DIMENSIONS/NBS (formerly Technical News Bul-

letin)—This monthly magazine is published to inform
scientists, engineers, businessmen, industry, teachers,

students, and consumers of the latest advances in

science and technology, with primary emphasis on the

work at NBS. The magazine highlights and reviews such
issues as energy research, fire protection, building tech-

nology, metric conversion, pollution abatement, health

and safety, and consumer product performance. In addi-

tion, it reports the results of Bureau programs in

measurement standards and techniques, properties of

matter and materials, engineering standards and serv-

ices, instrumentation, and automatic data processing.

Annual subscription: Domestic, $9.45; Foreign, $11.85.

NONPERIODICALS

i.KMiographs—Major contributions to the technical liter-

ature on various subjects related to the Bureau's scien-

tific and technical activities.

Handbooks—Recommended codes of engineering and
industrial practice (including safety codes) developed
in cooperation with interested industries, professional
organizations, and regulatory bodies.

Special Publications—Include proceedings of confer-
ences sponsored by NBS, NBS annual reports, and other
special publications appropriate to this grouping such
as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables,

manuals, and studies of special interest to physicists,
engineers, chemists, biologists, mathematicians, com-
puter programmers, and others engaged in scientific

and technical work.

National Standard Reference Data Series—Provides
quantitative data on the physical and chemical proper-
ties of materials, compiled from the world's literature

and critically evaluated. Developed under a world-wide

program coordinated by NBS. Program under authority
of National Standard Data Act (Public Law 90-396).

NOTE: At present the principal publication outlet for
these data is the Journal of Physical and Chemical
Reference Data (JPCRD) published quarterly for NBS
by the American Chemical Society (ACS) and the Amer-
ican Institute of Physics (AIP). Subscriptions, reprints,

and supplements available from ACS, 1155 Sixteenth
St. N. W., Wash. D. C. 20056.

Building Science Series—Disseminates technical infor-

mation developed at the Bureau on building materials,
components, systems, and whole structures. The series

presents research results, test methods, and perform-
ance criteria related to the structural and environmen-
tal functions and the durability and safety character-
istics of building elements and systems.

Technical Notes—Studies or reports which are complete
in themselves but restrictive in their treatment of a
subject. Analogous to monographs but not so compre-
hensive in scope or definitive in treatment of the sub-
ject area. Often serve as a vehicle for final reports of

work performed at NBS under the sponsorship of other
government agencies.

Voluntary Product Standards—Developed under pro-
cedures published by the Department of Commerce in

Part 10, Title 15, of the Code of Federal Regulations.
The purpose of the standards is to establish nationally
recognized requirements for products, and to provide
all concerned interests with a basis for common under-
standing of the characteristics of the products. NBS
administers this program as a supplement to the activi-

ties of the private sector standardizing organizations.

Federal Information Processing Standards Publications
(FIPS PUBS)—-Publications in this series collectively

constitute the Federal Information Processing Stand-
ards Register. Register serves as the official source of

information in the Federal Government regarding stand-
ards issued by NBS pursuant to the Federal Property
and Administrative Services Act of 1949 as amended,
Public Law 89-306 (79 Stat. 1127), and as implemented
by Executive Order 11717 (38 FR 12315, dated May 11,

1973) and Part 6 of Title 15 CFR (Code of Federal
Regulations).

Consumer Information Series—Practical information,

based on NBS research and experience, covering areas
of interest to the consumer. Easily understandable
language and illustrations provide useful background
knowledge for shopping in today's technological

marketplace.

NBS Interagency Reports (NBSIR)—A special series of

interim or final reports on work performed by NBS for

outside sponsors (both government and non-govern-
ment). In general, initial distribution is handled by the

sponsor; public distribution is by the National Technical

Information Service (Springfield, Va. 22161) in paper
copy or microfiche form.

Order NBS publications (except NBSIR's and Biblio-

graphic Subscription Services) from: Superintendent of

Documents, Government Printing Office, Washington,
D.C. 20402.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES
The following current-awareness and literature-survey
bibliographies are issued periodically by the Bureau:
Cryogenic Data Center Current Awareness Service

A literature survey issued biweekly. Annual sub-

scription: Domestic, $20.00; foreign, $25.00.

Liquefied Natural Gas. A literature survey issued quar-
terly. Annual subscription: $20.00.

Superconducting Devices and Materials. A literature

survey issued quarterly. Annual subscription: $20.00.

Send subscription orders and remittances for the pre-

ceding bibliographic services to National Technical

Information Service, Springfield, Va. 22161.

Electromagnetic Metrology Current Awareness Service

Issued monthly. Annual subscription: $100.00 (Spe-

cial rates for multi-subscriptions). Send subscription

order and remittance to Electromagnetics Division,

National Bureau of Standards, Boulder, Colo. 80302.

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington. D.C. 20234

OFFICIAL BUSINESS

Penalty for Private Use. S300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM-2I5

SPECIAL FOURTH-CLASS RATE
BOOK

U.S.MAIL

i-. m L

