
C<U

\
NBS TECHNICAL NOTE 842

^fAU Of

U.S. DEPARTMENT OF COMMERCE/ National Bureau of Standards

Concepts in

Quality Software Design

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards 1 was established by an act of Congress March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in trade,

and (4) technical services to promote public safety. The Bureau consists of the Institute for

Basic Standards, the Institute for Materials Research, the Institute for Applied Technology,

the Institute for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United

States of a complete and consistent system of physical measurement; coordinates that system

with measurement systems of other nations; and furnishes essential services leading to accurate

and uniform physical measurements throughout the Nation's scientific community, industry,

and commerce. The Institute consists of a Center for Radiation Research, an Office of Meas-

urement Services and the following divisions:

Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Nuclear

Sciences
= — Applied Radiation " — Quantum Electronics

s — Electromagnetics * — Time
and Frequency " — Laboratory Astrophysics " — Cryogenics 3

.

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to

improved methods of measurement, standards, and data on the properties of well-characterized

materials needed by industry, commerce, educational institutions, and Government; provides

advisory and research services to other Government agencies; and develops, produces, and

distributes standard reference materials. The Institute consists of the Office of Standard

Reference Materials and the following divisions:

Analytical Chemistry — Polymers — Metallurgy — Inorganic Materials — Reactor

Radiation — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote

the use of available technology and to facilitate technological innovation in industry and

Government; cooperates with public and private organizations leading to the development of

technological standards (including mandatory safety standards), codes and methods of test;

and provides technical advice and services to Government agencies upon request. The Institute

consists of a Center for Building Technology and the following divisions and offices:

Engineering and Product Standards — Weights and Measures — Invention and Innova-

tion — Product Evaluation Technology — Electronic Technology — Technical Analysis

— Measurement Engineering — Structures, Materials, and Life Safety ' — Building

Environment * — Technical Evaluation and Application ' — Fire Technology.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research

and provides technical services designed to aid Government agencies in improving cost effec-

tiveness in the conduct of their programs through the selection, acquisition, and effective

utilization of automatic data processing equipment; and serves as the principal focus within

the executive branch for the development of Federal standards for automatic data processing

equipment, techniques, and computer languages. The Institute consists of the following

divisions:

Computer Services — Systems and Software — Computer Systems Engineering — Informa-

tion Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and

accessibility of scientific information generated within NBS and other agencies of the Federal

Government; promotes the development of the National Standard Reference Data System and

a system of information analysis centers dealing with the broader aspects of the National

Measurement System; provides appropriate services to ensure that the NBS staff has optimum
accessibility to the scientific information of the world. The Office consists of the following

organizational units:

Office of Standard Reference Data — Office of Information Activities — Office of Technical

Publications — Library — Office of International Relations.

1 Headquarters and Laboratories at Gaithersburg. Maryland, unless otherwise noted; mailing address
Washington, D.C. 20234.

u Part of the Center for Radiation Research.
3 Located at Boulder, Colorado 80302.
* Part of the Center for Building Technology.

»afc

5 1 5 1974 ~ ,

,od Concepts in Quality Software Design

m
S. L. Stewart, Editor

Systems and Software Division

Institute for Computer Sciences and Technology

U,t>. National Bureau of Standards

Washington, D.C. 20234

From Seminars at the

National Bureau of Standards in 1972

'jcchmcoJ no4c y\o, ?*/-&

Conducted by

S. Rao Kosaraju

Johns Hopkins University

Baltimore, Md. 21218

and

Henry F. Ledgard

University of Massachusetts

Amherst, Mass. 01810

* ^-^^ ..#
J

*'*aiu of
*&

U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary

NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

Issued August 1974

Library of Congress Catalog Card Number: 74-600130

National Bureau of Standards Technical Note 842

Nat. Bur. Stand. (U.S.), Tech. Note 842, 89 pages (Aug. 1974)

CODEN: NBTNAE

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1974

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402

(Order by SD Catalog No. C13.46:842). Price $1.25

FOREWORD

In the summer of 1972, three activities came together in a fortuitous
combination. The Institute for Computer Sciences and Technology at the

National Bureau of Standards, which was already active in the broad field
of computer utilization, organized a specific project on the subject of
software quality. Several staff members had long-standing interests in
this topic which they had been pursuing as part of the exploratory devel-
opment program or in support of other projects. Summertime also made
available two fine computer scientists from the academic world: Prof.

Rao Kosaraju, from Johns Hopkins, and Prof. Henry Ledgard, now at the
University of Massachusetts.

To start the new project in software quality, a series of seminars
was organized with a designated speaker and topic for each meeting, but
the structure was quite informal with free discussion. Five of the
seminars are presented here, consisting of those given by Prof. Kosaraju
and Prof. Ledgard. These are not transcripts, but rather they are re-
worked versions based on recordings and notes. The authors and editors
have attempted to preserve some of the informality of the oral presenta-
tion without its redundancy. I hope these written versions will serve
the reader as a source of ideas as the original seminars served the
participants

.

These seminars discussed three broad questions: (1) how to design
the solution of a programming problem? (2) how to program that design?
and (3) how to organize programmers to do the above when the problem is

too big for one designer/programmer? Definitive answers to all these
questions are still in the future of quality software research but
several good answers have been proposed in recent years.

Chapter 1 gives background and overview material and puts the prob-

lem of software quality in perspective. Chapter 2 looks at the top-down
approach to problem solving in the specific context of developing algo-
rithms. The idea is the familiar one of breaking down a large problem
into a combination of smaller and simpler problems. This process is
repeated until the problems are solvable by known methods. It sounds
easy, but effective criteria for decomposing the larger problems are not
easily stated, and the technique remains more of a craft than a part of
software engineering.

Top-down design can lead naturally to structured programs, and this
relationship has led many people to use the terms interchangeably. Chap -

ter 3 covers structured programs in detail. Together with Chapter 2

both subjects are discussed in detail, but an informal definition at this
point may help. Structured programming is programming with certain re-
strictions on the flow of control from one portion of the code to another.
Exact definition of the restrictions varies from one programmer to another,
but in general, execution of each block of code must be started at the
beginning and terminated at the end, i.e. there should be no branching
out of (or into) the middle of a block of code except to execute a block
of closed code (subroutine). The common programming constructs of decision

iii

making and looping can be handled by special blocks designed for these
cases. The general constraint on branching out of (or into) the
middle of blocks leads to the nickname "GOTO-less" programming.

With top-down design, it is natural for each subproblem to result
in a block of code in the structured programming sense. This is possible,
if the branching and looping block types are sufficiently sophisticated
to relate the solution of subproblems to the decomposition of the origi-
nal problem. The experiences of Dijkstra [1972], Wulf [1972], and Mills
[1972] show that structured programming is practical. Now the questions
are: what are the limitations in application, and how can structured
programming be employed in the software production cycle? Except for
BLISS [Wulf, 1971] most work in structured programming has been done by
having the programmer voluntarily restrict himself to looping and branch-
ing control blocks when they are available (ALGOL60, COBOL, PL/1, etc.)

or carefully using "good" GOTO's. It is important to note that programs
may be well structured without top-down design. Regardless of design
methodology , if the programmer adheres to structure rules , the result
will be a structured program.

In the interval since Dijkstra' s famous letter [1968b] started the
GOTO discussion, there has also been more thought on other sources of
program interaction besides control structures . In particular, study is

now turning toward the relation between scope of variables and block
structure and the data structures at the interface between program
modules. Development of formal notation has gone hand in hand with in-
creased understanding of the programming process , from syntax and control
structures to data structures and modularity. Chapter 4 ranges over
some of the Ideas in the latter areas that will be influential.

Chapter 5 deals with an important practical distinction between

the analytic problem of proving programs correct, in a mathematical sense,

and the synthetic problem of constructing a correct program. In the lat-

ter may be found a method for significantly improving the quality of pro-

duction software.

All references are to a combined bibliography at the end. In the

text, citation is by first author and year.

The two speakers not only made the seminar series a success but also

labored long and hard as authors preparing this material for publication.

I would also like to thank Dennis Fife, Elizabeth Fong, Richard Freemire,

Tony Horowitz, Belkis Leong-Hong, Gordon Lyon, Kirk Rankin, Susan Reed,

Rona Stillman, and Justin Walker for their work as speakers, editors,

and reviewers. My special thanks go to the division secretarial staff

for their continuing support.

S. L. Stewart

IV

ABSTRACT

A seminar series on quality software , sponsored by the Systems and
Software Division, was held at the National Bureau of Standards during the
summer of 1972. This Note includes five of these seminars in edited form.
(I) A brief background provides motivation for studies in software quality.
The authors mention some factors which influence software manufacture, and
propose measures which might quantify concepts of "software quality".
Several approaches to establishing program correctness receive attention.
(II) Elements of top-down programming are sketched out and then examined
in detail. An extended critique of another top-down experiment provides
example material. (Ill) Powers of various structured control constructs
are compared within a framework of weak and strong program equivalence.
Results include a demonstration that Dijkstra's D-programs are strongly
equivalent to programs built from functions and one-input/two-output
predicates. (IV) After a review of Quine's notion of referential
transparency, the author examines elements of good and bad programming
practice. In addition, a table of programming proverbs provides guidance
to a programmer, and should be especially useful to a novice. (V) Dis-
cussions on problem and program specification provide an introduction to a
review of proof-of-correctness techniques. Then, noting some practical
limitations on proving correctness , the author goes on to examine selected
facets of program synthesis.

KEYWORDS: Control structures; GOTO-less programming; program validation;
programming; proofs of correctness; referential transparency;
software quality; structured programming; top-down programming.

CONTENTS

Page

Foreword iii
S. L. Stewart

Chapter 1. Perspectives on Quality Software 1

S. Rao Kbsaraju and Henry F. Ledgard

Chapter 2. The Case for Top-Down Prograniming 18

Henry F. Ledgard

Chapter 3. Structured Programs 33
S. Rao Kbsaraju

Chapter 4. Towards a Formalization for Quality Software 46

Henry F. Ledgard

Chapter 5. Correctness of Programs - Writing Correct Programs . 66
S. Rao Kosaraju

Bibliography 80

VI

PERSPECTIVES ON QUALITY SOFTWARE

S. Rao Kosaraju and Henry F. Ledgard

A brief background provides motivation for studies in

software quality. The authors mention some factors which
influence software manufacture, and propose measures which
might quantify concepts of "software quality" . Several ap-
proaches to establishing program correctness receive attention.
Discussion ends with some observations on software production
management

.

1. INTRODUCTION

In the past five years there has emerged a growing concern over the
quality of computer programs (software). While difficulties associated
with software have accompanied digital computers since their advent,
only recently have software design and manufacture begun to be studied
intensively

.

There have been very few documented cases of software development
costs. One interesting historical note goes back to Charles Babbage.
Over 100 years ago the Royal Society underestimated costs in building
the difference engine by a factor of 50. While the difference engine
was never completed, it seems that ever since computing began, we have
been plagued by embarrassments of development costs of computing systems.

Some have claimed that manufacturers might pay a million dollars
or more to prove that some programs are correct. This statement is
easily accepted if we consider something like a large operating system.
A certain, well known operating system has been estimated to have cost
$40 M and to have consumed about 5,000 man-years. Average cost per man
seems low, but it must include secretaries and the help of people who
are not included in the total. In any case, its testing consumed $20 M
of the $40 M.

Critical operating system features such as ease of maintenance,
extendability , human engineering, structure, and documentation have not

been so well funded. In spite of the documented need for awareness and
action in software engineering, see for example the NATO report [Buxton,

1970], major projects are still undertaken with little attention to these

factors.

Other indications of project investments are available. Paul Peach
[1965] at System Development Corp. conducted a study of sample program-

ming projects. After a survey of computer installations, he concluded

that the average commitment to a production programming project was 77

man-months. This underscores the fact that production projects are

major activities requiring a good deal of manpower.

1 .

1

Problems

As noted by Smith [1972], there are several severe problems that
arise in the production and use of many software systems.

(1) There are too many bugs.
(2) Many systems are difficult to use. Furthermore, many system

features are rejected or ignored by users as unwieldy.
(3) Many systems are too complex to design and maintain. Lack of

visible logical structure has caused systems to wither away.
(4) There are too many system crashes. Catastrophic failures

arise almost daily in some systems.
(5) There is a failure to meet costs and schedules.

In short, these are some of the rather distressing issues that lead us
to be concerned with the area of quality software. Hopefully, the next
ten years will see drastic improvements in the area.

What are the reasons for the above mentioned problems? For one,
there is a tendency by many programmers to produce elegant, sophisticated,
or clever code. Few would dare modify the hand crafted code of most pro-
gramming systems. Second, there is a lack of quality control. Imagine
the reception accorded to a quality control analyst among a group of
programmers. Could he, as in an electronics plant where modules are
periodically inspected, sample programs, read them, and submit a quality
review? Programmers would be unlikely to welcome such an audit. Yet
any neutral observer would conclude that some form of quality control is
sorely needed. Third, we tend to staff projects too rapidly, emphasizing
quantity of code rather than quality of the result. Fourth, formal
guidelines or standards are unfortunately scarce. We could give many
nore reasons for our dilemma.

1.2 Factors in Quality Software

Figure 1 outlines roughly what we consider constitutes quality
software. There seem to be two issues here — measurement of what
is quality and control over software production to insure that quality
is maintained. Under measurement we would include:

(1) Definition . How do we define a program? This includes speci-
fication of the problem and documentation of the finished
product

.

(2) Clarity . There should be some measure of how clear a program
is, i.e. , how easy it is to read , understand and use

.

(3) Reliability . Under reliability we include correctness, testing
for errors, and error tolerance — the kind of errors one can
tolerate in a large system.

(M-) Flexibility . Here we include:
(a) the changeability of systems, for example, ease of cor-

recting bugs and an ability to replace an algorithm with
a more efficient one.

(b) maintenance of systems to meet alternations in specifica-

2

0)

CD

£hH
CD

U

-P

o

p
•H
H
rd

cy

cu

xi

0)

bO

tions, and
(c) portability of systems required to move a program from

one installation to another installation.

Under control we have:

(1) Standards . Standards have had a difficult time in the com-
puting field. Even efforts to make common the standard de-
finition of FORTRAN have not been very successful. Most
installations have neither a proper subset nor superset of
standard FORTRAN.

(2) Human Factors . How do we educate programmers so that they
produce good software? What kind of languages do we give
them so that it is easier to produce quality programs? What
is the influence of the day-to-day things like coke machines
or elevators on programmers? Weinberg is a leading advocate
of this area.

(3) Programming Techniques . What kind of programming techniques
lead to quality programs? There has been some good work
recently. We are thinking specifically of stepwise refinement
programming by Wirth and excellent ideas proposed by Dijkstra.

(4) Management . How do we estimate the difficulty, cost, and time
of programming? How do we organize management for effective
quality programming?

Broadly speaking, the above discussion indicates what we mean by ''Quality

Software" . We will elaborate what has been done in each of the areas
represented by nodes of the tree. For some of the nodes, our explana-
tions will overlap; rather sadly, some nodes of the tree will be entirely
neglected.

2. MEASUREMENT OF QUALITY

2 . 1 Definition

Parnas [1972] has been doing substantive work on how we define
programming problems. Three areas of his work are relevant to our ob-
jectives today. First of all, he considers when we make certain design
decisions. The biggest problem here is that we often make decisions
without realizing that we have made them. This is a pervasive issue in
day-to-day programming.

For example, consider designing a program to play checkers. A
"board" often sneaks into our design without our realizing that there
are alternative methods of programming checkers that have no direct
analog to a board. For example, rather than a 64-element array denoting
the board, one could consider two 12-element lists containing the loca-
tions of pieces owned by each player. Implicit decisions on the need
for certain data structures often rule out good alternative algorithms.

Parnas is also a strong advocate of functional program specifica-
tions. That is, one should specify a program by listing its input-output
characteristics and net effect, rather than by algorithmically describing
its operation. It is not only confusing to describe programs algorithm-
ically: it also obscures their functional properties.

2 .

2

Reliability

Recently there has been a great deal of interest in assessing the
reliability of programs. Suppose we are given a function f and a program
P. The reliability of P is a measure of how far it is from a program
that realizes f , i.e. , by how much we would have to change P to make it
a program that exactly computes f . Reliability is thus closely related
to the concept of "distance" between programs, , i.e.

d(P
1
,P

2
) = "closeness" of P

1
and P

2

Normalizing the distance function we should have <d(P, P_) <_ 1.

Intuitively, d should at least satisfy the following conditions:

(1) d(P , P) = iff P = P„ or both P and P are syntactically

correct and compute the same function.

(2) d(Pr P
2

) >

(3) d(Pr P
2

) - d(P
2

, P
±

)

Given any program P and any function f , we will denote the reliabil-
ity of P in realizing f as:

Rel(P,f) = 1 - min
Q
d(P,Q)

where Q exactly realizes f . We could obviously define an ordering re-
lation based on the reliability of programs as follows:

P >
f Q (P is more reliable than Q)

iff Rel (P,f) > Rel(Q,f).

Hence P correctly realizes f if and only if P exactly computes the
function f . We note that this is so iff Rel (P,f) = 1.

2.3 Correctness of Programs

Most definitive results in quality software are in methods for
establishing program correctness, depicted in Figure 2. There are three
sometimes broadly disagreeing schools of thought.

(1) Analysis Methods . Given the program P and a problem f

,

prove that P computes f

.

bO
B w
•H H
rP rH
t/]

. . £_,

/ cu <D
' E- PU

W
H
HH
s

TD «.

0) n)

B .c B
B -H
-H rd W
O • • • ,Y
3 B •l—

i

B ft •H
P ft aw <

O CO

p
B B
O IT)

•H ,£

B
O> B

B
IT)

e

(U

0) b P O B s
> o IT) 1 •H
•H •H P S P
P P CD O B W
O u B rH • • • X) Hi O 0) T3
•3 0) ftp-i >, B B MT) B H
T3 w B o B B B B IT) o
B M 0) H IT! IT) •H O O CD
1—

1

< p
BH

fj-i S a ^ PI ffi

J"

B a
o >,
•H •H &
0] P P
/k O • • • B
'3 B IT!

O T3 CJ
0) B O
Pi H s

ID

B
O
•H B
P O
IT) •a
P p
B o • •

ft B B
e X) B
o B O
o M CD

Q)

B
P
O
0)

B
B
O
O

IT)

B
bD
O
B
PM

bO
E

,c

•H

rd

P
w
pq

B
O
<P

w

O
,G
p
(Us

0)

B
B
bOH
Pm

>> H
,B H
P ft)

B p
ffl m
c) B
U B
S m

(2) Synthesis Methods . Given only the problem f, construct a
program P to compute f

.

(3) Testing Methods. Given P and f, find a suitable number of
inputs to test that P computes f

.

Basically, analysis advocates settle for nothing less than formally
proving the correctness of a given program. Testing advocates feel that
a judicious selection of test cases gives the necessary amount of con-
fidence in a program. We believe that the most promising approach lies
in synthesis methods. This school says that we should revise our method
of programming in order to guarantee, by the structure of a program, that
the program is correct. Presumably, we could amplify this with some
analysis or testing.

2.4 Analysis Methods

In analysis ^methods , we assume that the problem is defined formally .

This is generally done in either of two ways:

1. If f is given as a program P.. , then the correctness proof of a

program P„ reduces to the equivalence problem for programs.

That is, P„ is a correct representation of P, iff P_ is equiva-

lent to P .

2

.

If f is defined by its input/output response , then P can be con-

sidered correct if it defines the same mathematical function

from the set of inputs to the set of outputs.

It is not our intention to present all the technical details of analysis
methods. Instead we will give a general idea of the essential features
of each.

2.4.1 Structural Induction

This type of proof of correctness is a generalization of the normal

inductive proofs encountered in number theory. For example, let P, and
x x

P
9
be any two programs mapping x into £ i where i, x e N. In general

1 i=0
the input domain may not be as structured as the set of natural numbers,

but if the structure of the input domain is specified inductively, then

we can establish equivalence of P, and P~ by proving their equivalence for:

(1) all the basic elements and

(2) all the inductive constructs.

As an exercise consider the following programs:

X £ N
> z * x(x+l) / 2 ->z

X
: I i

i=0

Here we must prove that:

P1 (0)
= P (0)

P
1
(k) = P (k) * P

1
(k+1) = P

2
(k+1)

The equality of P, and P on the input domain N then follows.

2.4.2 Computational Induction

Computational induction differs from structural induction in that
the induction is made over time (number of steps) rather than input
structure. The theorem exploited by this technique is the following:
If a property initially holds and if this property is left invariant by
each step of the computation, then the property holds at every step of
the computation. Thus if the program terminates, then the property
holds at the end of the program.

Let us consider the same P„ as in the previous example

. V y *- x
z *

2' 7

We claim that the property q given by

(where
x

z = I i

i=y+l

x
Ei = 0)

i=x+l

is left invariant at each of the points 1, 2, and 3. At the program
x

exit, y = 0, so z = Ei. This idea was first applied to programs by

Gorn [1968].
1=1

2.4.3 Recursion Induction

In this method we are interested in showing that programs P, and P„

compute identical functions. We look for a super problem F that has a
set of solutions (Q, , Q ,...), where any two solutions have the property

that if both of them terminate for a given input then they have the same

output value. I.e., if Q.(x) and Q.(x) terminate then Q.(x) = Q.(x),

and if P, and P
?
are both solutions of F, then P, and P„ are equivalent

on domain X.

The skill is in choosing a suitable F. Usually the fixed points of
F are taken as the solutions of F; in this method you generalize the
problem and attack the general problem.

2.4.4 Inductive Assertions

In this method we assert several conditions that should hold at
various points in the program. We must show that if any such point is
reached during the computation, then the corresponding condition holds.
In particular if the input and the output points are two such points,
then we claim that for any input satisfying the input assertion, the
output assertion holds if the program terminates.

Using our previous example, we can apply the method to prove the
correctness of the following. Here we have three assertions tagged to
points (1), (2), and (3) of the flow chart.

(2) x
}
y

}
z e N and

(1) x e N

x
z-Z i

y * x i=y+i _
z -*-

i t

z *

y *

z+y
- y-i

This method was introduced by Floyd and Naur independently, and
almost at the same time. Manna formalized their ideas and further ob-
tained a condition (which can be justified on intuitive grounds, inde-
pendent of his formalism) for program termination.

There are various disadvantages to analysis methods:

1. Formally, we are trying to solve an undecidable problem. So

the techniques cannot be completely mechanized.
2. The methods are too involved for large programs.
3. These methods are almost impossible to extend to parallel

processing schemes: e.g., using inductive assertions the
number of assertions to be verified can grow exponentially
compared to sequential schemes.

But there is one important psychological advantage. Being aware of
the above techniques may help us in writing correct programs, even though
we might not want to bother with formal proofs.

2.5 Synthesis Methods

The next important class is the synthesis methods. In these methods,
we do not write just any program. Instead, we try to develop a correct
program using only well understood and simple structures at each stage.
Thus the cardinal principle in these methods is to structure the program
as simply as possible, going to a complex structure only if it is abso-
lutely necessary.

This is not an entirely new idea, but the first one to stress and to
make use of this concept was Dijkstra [1968]. He claims that he used
this philosophy in the design of THE system. Three major projects have
had designs motivated by synthesis methods.

1. Harlan Mills - N. Y. Times Information retrieval system.
2. Niklaus Wirth - PASCAL
3. William Wulf - BLISS

In the N.Y. Times problem the designer was restricted to simple control
structures. PASCAL and BLISS are based on another school of thought, a
restriction within the language itself such that the programmer is
constrained to pick simple structures.

The following views, expressed at the NATO conference [Buxton, 1970],
are illuminating:

Wirth: "In fact, the idea of program verification has influenced the
design of PASCAL considerably. Several commonly used features
of other languages have been deliberately omitted from PASCAL,,

because they appear to be too sophisticated for presently
known methods of proof."

10

Lang: "You describe some intellectual tools which you say have in-

creased your own programming efficiency about five times.

i..?. . s Have you been able to transmit these to your colleagues with
Dijkstra;

a siMlar effect?"
Dijkstra: "Yes. In my experience, the intellectually degrading in-

fluence of some educational processes is a serious bar to

clear thinking. It is a requirement for my applicants that

they have no knowledge of FOKIEAN."

Bauer: ". . .one can't help mentioning PL/1 here."

From the above comments, it is obvious that Wirth and Dijkstra strongly

believe in the synthesis approach.

2.6 Testing Methods

Some people feel that the analysis methods are too involved and

instead we should resort to testing. The following remark by Perlis

[Buxton, 1970] illustrates this philosophy:

"The problem is to isolate the right test cases, not to prove the

algorithm, for that follows after the choice of the proper test

cases .

"

Q. Does Perlis support his assumption that for any program he can

indeed isolate the proper test cases or does he just assert this?

A. At least in the conference records he does not give any examples.
But one of the examples we give later on in a different context
might illustrate how test cases could be selected.

Q. In the theory of computing, doesn't the principle of structural
induction go back to the middle 30 's?

A. It might be even earlier than that. But within the context of
programs, it originated with McCarthy. The general idea is as
old as mathematics.

Q. Do Mills, Dijkstra, and Wirth actually prove that by eliminating
complex structures the proof of program correctness becomes
easier?

A. They are more interested in convincing arguments for the correct-
ness of a program rather than a formal proof. The control structure;
do not automatically generate a correct program. After all, it is
well known that any program can be converted into an equivalent
program which uses only the simple constructs. But when program
development is geared to the synthetic approach, it appears
easier to write correct programs (or at least more reliable ones).

2.7 Program Testing and Error Tolerance

There are three broad classes of program errors, Syntactic , Semantic
and Simple Semantic (border-line) bugs.

Syntactic bugs are the bugs detected when the program is considered
a syntactic string of the language. Some examples are:

11

1. Syntax errors within single statements, for example typing
errors, and

2. Syntax errors across several statements, for example missing
labels or END brackets for blocks.

Mathematically , correction of syntactic bugs consists of finding the
"nearest" syntactically good program. It amounts to: Given any program
P, find a P.. such that P, is syntactically correct and

d(P,P,) = min d(P,Q), where Q is syntactically correct LLyon, 19723.

Q
Semantic bugs are errors in the execution phase. They are the

hardest to correct. Mathematically, semantic bugs arise in two ways.
Assume that a program P is intended to compute a function f

.

1. P does not halt on a valid input x
2. P halts on x and P(x) t f(x), i.e., P gives incorrect output.

Suppose we want to test a program which is claimed to compute v'x
-

, x e N.

We do not have any idea about the program; that is, we are not allowed to
look at the source code. What types of errors could occur? If there are
errors, how could we find them? Since we cannot look at the program, we
have to consider it as a system where only inputs and outputs are acces-
sible.

(a) Initial value checks: Say check for 0, 1, 2, 3

2
(b) Select a few large x's of the form n

(c) Ceiling operation error - Select a few large x's of the form
2 2

n - 1, or n +1
n

(d) Others: Select a large n and a few x's in between n and

(n + l)
2

By making a ll these tests we will have a high degree of confidence about

the program. But by no means are the tests a conclusive proof of correct-
ness. After all, for any selected set of tests, we could write a program
which is incorrect, but correct on the selected set.

In the case where we know the program structure we can select the test

cases dependent on the program. In some instances it is effective for
tracing nontermination. For example, in

->

12

we can select a few x's satisfying p and a few x' s not satisfying p.

In the more general case, we make use of both problem and program
in selecting test samples. While there is no known theory to handle
bugs, inductive assertions methods described previously might prove to
be helpful in selecting critical test samples.

Simple semantic bugs are errors occurring during execution that
could be classed as domain problems. For example, an array A may have
been defined from 1 to n, and during computation we might access A(I)
where I has the value or n+1. Examples in this class might include
the following:

1. Usage of un-initialized variables
2

.

Illegal branches into DO groups
3. Array bounds
4. Misuse of pointer references

(a) to I/O buffers no longer available
(b) to data with attributes that differ from those of the name

specified.
5. Misuse of storage allocations

(a) attempts to retrieve a value from storage that has
previously been freed

(b) attempts to free storage that has already been freed.

2 . 8 Flexibility

The next concept that seems relevant to quality software is flex-
ibility, under which we include modularity, maintenance, and portability.
We could conceivably measure the modularity M(P) of a program P by the
number of subprograms in it. We could measure modularity of a program-
ming language L by a function M. which can be defined. For example,

consider two possible definitions;

(1) M, (n) = Min [M(P)
|
P is any n-instruction program in L]

(2) M. (n) = Expectation of M(P), where P is any n-instruction

program in L

To find the value of the modularity of a language at n, find the modu-
larities of all n instruction programs in the language and take either
the minimum or some weighted average. If we accept the second defini-
tion, then Dijkstra's class of structured programs turns out to be more
modular than the general class of programs.

Maintenance is a very large issue in today's systems, since we
must frequently alter a working system to fit the needs of its users.
Different users often require changes in the specifications to adapt the
system to their needs. Almost no work exists in this area.

13

Portability measures the ease of transferring a program from one
environment to another. Perlis [Buxton, 1970] defines portability as

the property of a system which permits it to be mapped from one environ-
ment to a different environment.

A cardinal principle in preserving portability is "never use imple-

mentation dependent features." Suppose something is undefined in a
programming language. In any implementation it has to be defined in

some way. But there is no guarantee that it will be defined consistently
in all implementations.

There are some interesting comments in the NATO conference [Buxton,

1970] on this topic:

Feldman: "If you are using a system very hard and pushing it to its

limits, you cannot expect that system to be portable."
Buxton: "The business of a manufacturer is to get his clients and then

to keep them. . .Portable software would be a disaster because
they might be able to take useful application programs else-
where."

3. CONTROL OVER QUALITY SOFTWARE PRODUCTION

We now discuss the other side of quality software, the control
over software projects to insure quality. Currently, programming is

very much an individual activity. The personality of a programmer may
become injected into his code. This personalization is highly undesir-
able when the code is part of a publicly used product. Moreover,
programming has become somewhat of a "cult" in the sense of an esoteric
occupation rampant with local conventions and an over-concern with detail.

Sometimes it is difficult to see the broader picture. To correct this
problem Mills contends that programming should become a higher intellect-
ual activity than at present, and for example, we should segregate
"coding" from "programming". In any case, control over the quality of
software will be difficult.

3.1 Human Factors

One of the most ignored aspects in programming is the importance of

human factors, an issue amplified in Weinberg's book, The Psychology of

Computer Programming [1971]. This major thrust is to study computer pro-

gramming as a human activity. Basically, Weinberg's book is an expose of

entirely under-estimated human factors in programming. There is a very
well-documented set of examples. Some of the features he talks about are:

(a) The value of reading programs

(b) Ironic situations that develop in day-to-day working environ-

ments at particular installations
(c) The questionable value of efficiency in programs, namely that

it is over-played in developing programs.

14

(d) The appeal for practical experiments to study human factors in
programming

.

(e) "Egoless programming," i.e., the value of divorcing one's
personality from programs.

Even factors like the size of a chair, the Hawthorne effect, or distance
to the nearest coke machine are factors in day-to-day programming.
Weinberg's book contains numerous examples of the influence of these
factors over the success or failure of programming prospects . We cannot
help but mention that this book is a superb motivation for the need for
formal measures of quality software.

3.2 Language Developments

The book by Sammet [1969] contains almost no mention of quality
software as being an important design factor in any language. The two
recent major language developments that are notable for their concern
over quality software are BLISS [Wulf , 1971] and PASCAL [Wirth, 1971b].
BLISS is a language designed for systems programming. It is designed
around a machine, which is catastrophic from our point of view. It is
highly expression oriented. Expressions seem to be things that program-
mers can handle well, whereas command features of a language give prob-
lems. BLISS has a restricted control structure. The most notable
feature of BLISS is the facility for data structures. We will not go
into it here, except to note that BLISS has few built-in structures
and it is easy to change the representation of a structure without alter-
ing operations over the structure.

PASCAL is an attempt to combine:

(1) top-down programming - hence it allows certain extension
mechanisms allowing a user to define new structures and new
forms of expressions that he is designing top-down.

(2) restricted control structures - almost like Dijkstra's constructs

IF-THEN-ELSE and DO-WHILE.

There has been no report on the success of this language.

3 . 3 Methods of Programming

We tried to look at methods of programming and programming techniques.
While there have been many casual attempts to define programming in
simple terms , for example ,

1

.

Analysis
2. Flow charting
3. Coding

15

4

.

Debugging
5

.

Production
6

.

Documentation

truly viable methodologies for programming are just beginning to emerge.

Wirth [1971a] considers programming "a methodology of constructive
reasoning applicable to any problem capable of algorithmic solution."
Wirth has introduced the notion of "stepwise refinement." He has elab-
orated by examples and documentation (critical in this case) a notion
of programming as a construction of a branching tree, going from an
informal description in successive levels of refinement until the desired
code is produced. He emphasizes use of "natural" notation in designing
programs and advocates clear isolation of when certain decisions about
programming are made.

Many consider Dijkstra as the father of the field of quality soft-
ware. His efforts are devoted mainly to programming techniques, as are
Wirth' s. Among other things, he made a strong case for designing large
programs in some systematic manner. Dijkstra brought the idea of top-
down programming into prominence. He is a proponent of correctness via
structure rather than exhaustive testing, and is noted for the quote:
"Program testing can be used to show the presence of bugs, but never to
show their absence .

"

Dijkstra was the first to exhibit a simultaneous demonstration of
top-down programming, structure, and correctness. Along with suggestions
for some higher-order theory for program correctness, he has elaborate
discussions with examples and insights on everything he writes about.
His work is highly technical and profound in comparison with the work
of many others.

3.4 Management Techniques

One of the documented successful software management efforts is the
chief programmer team experiment by Baker and Mills at IBM [Baker, 1972].

The experiment was to construct a large (83,000 lines) information re-
trieval system for the N. Y. Times. The notable management personnel are:

(1) Chief Programmer - a senior person (sometimes mentioned as a
super-programmer) who is the nucleus of the programming project.
He specifies and integrates everything about the system.

(2) Back-up Programmer and Other Team Members - the chief programmer
will have reports from a back-up person, a program production
librarian (who keeps track of everything written and everything
that exists in the library) and consultants

.

In a chief programmer team, there is a clear separation between clerical
work and programming. The novel organization factors are:

16

(a) it is functional in nature
(b) it has an extensive library and a librarian
(c) it uses exclusively top-down programming , including Dijkstra's

notion of structured programming.

As reported by Baker [1972], the result of this experiment was a well-
documented, nearly error-free product, receiving wide acceptance by its
users. An independent analysis of this project has not been recorded,
but we believe it to be significant.

4. CONCLUSION

The notion of "programming" as evolved in the last five years is a
new, emerging methodology. A large number of 'important computer scien-
tists have devoted their energies to the area we call "quality software".
We believe that the next ten years will bring significant changes to an
area that has long been considered of secondary importance.

17

THE CASE FOR TOP-DOWN PROGRAMMING

Henry F. Ledgard

Elements of top-down programming are sketched out
and then examined in detail. An extended critique of
another top-down experiment provides example material.
Summary remarks and a discussion transcript end the paper.

1. INTRODUCTION

I would like to discuss in detail a technique now known as top-
down programming. Let me first state what I believe is the pure notion
of the top-down approach. From the start, one writes code in the source
language at hand. The first written piece of code is the top-most level,
e.g. the calling procedure. The sub-procedures are then written, these
are later split up, and so on until the entire program is coded. One
may assume dummy procedures for those sections that are left unspecified;
later these will be spelled out.

This definition of top-down is the mirror image of the "bottom-up"
method, where you usually write the lower procedures first and later
write the upper levels. The two definitions then, are symmetrical. Now,
when I use the word top-down, I am going to mean something different
from that, something that is more like successive refinement.

What is called successive refinement is a method of programming
where again one starts at the top level, but one is not constrained to
work in a particular programming language. One generally starts with an
improvised language, which in some sense is mechanical to the user. One
might use statements like "compute the n-th prime number", "find the
roots of the equation" or "process the payroll". This is the method
advocated mainly by Dijkstra and Wirth. With successive refinement we
don't arrive at our target language until we are near the bottom level,
and the program is almost in front of our eyes.

As an aside, here is a statement from a paper that appeared in 1968.

The statement is originally from :

' Computer-Aided Design: "A Statement
of Objectives", by Douglas T. Ross, et. al, 1960 [quoted from Tou, 1970].

"The manner of stating problems is also of primary importance.
You must be able to state problems outside in , not inside out .

Under the new philosophy, successive stages of problem state-
ments are greater and greater refinements of the original
statement of the problem."

I am not sure whether the author fully understood the impact of this
statement for programming. He meant it about design processes. However,
I do not think the jump from design processes to programming is quite
natural.

18

2. TOP-DOWN PROGRAMMING

For the purposes here, I shall give my own definition of the top-
down approach. I use the words "top-down" only because the words
"stepwise refinement", though wisely chosen, are too long. Long words
just never sail. "Top-down programming" is a process for writing
computer programs that has at least the following properties:

1. The programmer initially defines the overall structure of his
program in the English language. From statements in English
that are machine and language independent , the programmer
moves towards a final machine implementation in the target
programming language.

2. The programmer initially uses expressions that are relevant
to the problem , even though the expressions cannot be directly
transliterated into the target language.

3. The programmer works in levels . He concentrates on critical,
broad issues at the initial levels, and postpones details
(e.g., input/output, choice of identifiers, or data representa-
tion) until lower levels.

M-. At each level, the programmer considers alternative ways to
refine some parts of the previous level. He may look a level
or two ahead to determine the best way to proceed. After
making his decision, he writes down the next level in the
general form of a "program".

5. After completing step 4, the programmer must rewrite the program

as a correct formal statement . This step is critically important.

He must insure that all arguments to unwritten procedures or
sections of code are explicit and correct, so that further
sections of the program can be written independently without
later changing the specifications or the interfaces between
modules

.

6. Steps 4 and 5 are repeated as often as necessary to move from
the general statement of the problem in the English language
to the completed program in the target language.

19

Initial statement of the problem

/I

1 set of possible
first refinements

P P P
.2 2 "2 P / P .P

2 T 2
P_i set of possible

second refinements

v set of possible

\ final programs

Figure 1 : Branching; structure of the top-down programming process.

20

In top-down programming we usually start off by writing what I am
going to call Pp., an outermost des ription of the program, see Figure 1.

P~ will be something like:

Play checkers
Compute the first N prime numbers
Compute the Chebychev approximation of a function

As we proceed down the tree from P
Q , we have many design choices. The

P, level will be the set of possible refinements of Pp. and it is im-

portant that we elect a wise choice based on the broad characteristics
of the problem. The P~ level gives us another set of choices, and so

forth for each successive level. At the bottom level we have a set
of programs which all perform the same task. From among this set we
will have selected some particular program by our route down the tree.
That will be the final program.

We must make one important point here. Suppose we have written
some level of our program, P , and we are about to choose a suitable

P , . One of my major points here is that we usually cannot go direct-

ly from P to P , . This is a bit like expecting a burst of divine

intervention.,-' Trying to examine my own approach to this process, I

usually select some tentative P ,-, that at the time is very vague, too

vague to be called a refinement. I then find myself experimenting at
lower levels, trying to get a feel for the consequences. Furthermore,
I find myself reaching down the tree much further than I really want
to go, just to see how the tentative choice will come out. Finally,
when I have satisfied myself that it all makes sense, I return to P ,

and select a specific refinement P ,, . This lookahead helps insure a

wiser choice among the particular alternatives at P
+

, . So I claim,

there is much more looking ahead in the top-down approach than is appa-
rent in the literature. With the exception of Dijkstra, few authors
recognize this point.

One final point. After you have selected a level, you should
stop and explicitly formalize the interfaces. This is very different
from strict stepwise refinement, where the formalization does not
really occur until you hit the target language. My claim is that you
should explicitly define each sub-section of code up to input-output,
and debug the "program" at this level. More on this will be said
later.

21

3. AN EXTENDED EXAMPLE

I wish next to discuss a paper that appeared in B. I. T. [Henderson,
1972]. While I think it is a good paper, I take serious issue with its
basic point. The paper is called " An Experiment in Structured Program-
ming" and was written by Henderson and Snowdon. Briefly, a program was
written to process a stream of telegrams. The number of words in each
telegram was counted and telegrams were printed with appropriate spacing
on an output medium. An experiment was then conducted in which the
program was debugged and a detailed analysis of its structure was made.
Henderson was. the programmer and Snowdon conducted the experiment.

If I read the paper correctly, the program was used in many lectures
before it was tested. Lo and behold, a bug was later found. No one
had caught the bug before. The claims made by the authors are the
following: (1) there is an over simplification with the stepwise re-
finement method, (2) the method leads to a false sense of security, and
(3) data structure decisions sneak in that are not really consciously
made by the programmer. While I think these criticisms are good, I don't
think they had anything to do with -the error. I think the error was
just a careless mistake. Had the programmer been careful, especially
if he had formalized and debugged each of the levels, the mistake would
not have arisen.

When I first read the paper, I was quite surprised that there was
a mistake, but I didn't read the program carefully enough. When one
looks at the proposed modules on first reading, one agrees that they
are correct. Later on, the authors state that there is an error. This
is really unfair, because in programming the problem, I don't think most
of us would make the error. However, an error was made. And the pro-
grammer was using the method of stepwise refinement. That much is true.
Therefore, we can't just ignore the error. We have to either explain
it away or criticize the method. My claim is that while the error did
occur it should have been avoided.

Let us look at the problem in some detail. We have an input stream
that consists of telegrams each of which is followed by the sequence
"ZZZZ" . The stream is terminated by a blank telegram followed by "ZZZZ"

.

There exists a buffer, into which we read portions of the telegram
stream, and from which we can pick off characters. If this buffer be-
comes empty during execution, we must refill it. The telegrams are
reprinted on the output medium in lines of 100 or more characters. Pre-
sumably, the lines can hold at most 120 characters, and we only expect
words with fewer than 20 characters. Finally, extra blanks in the
telegram stream are to be deleted on output, and the word count and
overcharge message (if necessary) are printed after each telegram. An
overcharge occurs in a telegram containing one or more words of length
greater than 12 characters.

22

p
o

process the telegrams

P
l

PROCESS (stream)

P
2

set initial conditions of program

A: if not at end of telegram then process current word;
update conditions;
repeat (A)

;

if end of telegram but not at end of stream;
then process end of telegram;

reset initial conditions;
repeat (A)

;

if end of telegram and end of stream
then exit;

Figure 2. Initial refinements of the telegram problem.

23

The assumed primitives for the program are not clearly stated in the
paper, although I think they should be. We shall state them here:

refill (BUFFER)

next-char (BUFFER)

P^int (LINE)

length (STRING)

Now we shall write the program. It is an easy program, but not one
that can be written in 20 minutes. First, let's consider the error
made by Henderson. In his program there was a procedure called ADJUST
that removes blanks from the buffer until a non-blank is encountered
or the buffer becomes empty. After ADJUST is invoked, the words are
counted. The mistake here is that ADJUST is not re-invoked if the buffer
becomes empty. As a result, if the buffer is refilled with a string
containing initial blanks, the first blank is (erroneously) counted as
a word. I am not suggesting that the error in Henderson's program was
so easy to find. It was not. But the real question is whether an
error like the one made is an intrinsic folly of the stepwise refinement
programming process. I claim that it is not, and that formalizing and
debugging each level is the key issue.

I am going to try to write a program to do the same computation.
For my part of the experiment, I wrote the program after only a cursory
reading of the paper. I spent about seven hours on the program, which
is probably a lot for a small program like this, but I was keeping ex-
plicit track of my approach.

The first level Pp. (see Figure 2) is just "process the telegrams".

Here we immediately stop and formalize. It is significant to write
that the refinement P should be PROCESS (stream) . PROCESS is a proce-

dure that takes the input stream as an argument and whose value is the
side effect of producing the annotated and respaced stream on the output
medium.

At the next level, P~, I was most careful. Initially I was thinking

of P_ something like:

P„ (rejected)

(1) initialize the program
(2) get the next character
(3) if the character is a blank then repeat (2)

(4) if the character is Z, then count it,

etc.

In my thinking, I went down to P, (see Figure 3). The character orien-

tation produced somewhat of a tangle, and I decided to (See page 30)
24

P
3

refill (BUFFER);
CURRW- + A;

INITIALIZE (OVERCHARGE, WCOUNT, LINE, PREVW, CURRW);

A. if CURRW ± ZZZ then PRINT1 (LINE, CURRW);
UPDATE (OVERCHARGE, WCOUNT, PRFVW, CUESW)

;

goto A;

if CURRW = ZZZ and PREVW j
4 ZZZ

then PRINT 2 (LINE, OVERCHARGE, WCOUNT);
INITIALIZE (OVERCHARGE, WCOUNT, LINE, PRFtfW,
OJKKW); goto A;

if CURRW = ZZZ and PREVW = ZZZ

then exit

P
4

refill (EUFFER);

CURRW «- A;

B. INITIALIZE (OVERCHARGE, WCOUNT, LINE, PREVW, CURRW);

if CURRW ± ZZZ then PRINT1 (LINE, CURRW)
;

UPDATE (OVERCHARGE, WCOUNT, PREVW, CURRW)
;

goto A;

if PREVW f ZZZ then FRINT2 (LINE, OVERCHARGE, WCOUNT)
;

goto 5 ;

else exit ;

Figure 3 - Intermediate refinements of telegram problem.

25

Procedures for ?
5

(1) INITIALIZE (OVERCHARGE, WCOUNT, LIKE, PREVW, CURRW)

OVERCHARGE * false ;

(2)

WCOUNT * o ;

LINE "- A

;

PREW * CURRW ;

CURRW «- GET NEXT WORD ()

PRINT1 (LINE, CURRW)

LINE + LINE
|

]

'
'

j
] CURRW 5

if lisngth(LINE) > 100 then print
LINE h

(3) UPDATE (OVERCHARGE, WCOUNT, PR2WW, CURRW)

if length (CURRW) > 12 then OVERCHARGE = true

WCOUNT * WCOUNT + 1
;

PREVW * CURRW :

CURRW *• GET NEXT WORD ()
•

(A) PRINT2 (LINE, OVERCHARGE, WCOUNT)

if LINE i A then print (LINE) ;

if OVERCHARGE then print (' OVERCHARGE ') ;

print ('NO WORDS IS 1

, WCOUNT) ;

Figure 4: Refinements of unspecified procedures of P^.

26

P
6

Procedure GET_NEXT_WORD ()

;

WORD •* A ;

Find first non-blank character;
read in characters up to next blank;
return (WORD)

;

n

procedure GET_NEXT_WORD ()

;

WORD * A

;

A: CHAR *- next-char (BUFFER);

if CHAR = A then refill (BUFFER)

;

goto A;

if CHAR = ' ' .then go_to A;

repeat WORD •* WORD
j J

CHAR ;

CHAR * next-char (BUFFER)

;

until CHAR = A or CHAR = * '

return (WORD)
;

end GET NEXT WORD

Figure 5 : Refinements of the GET NEXT WORD Procedure.

27

final

begin /* Declaration of GET_NEXT_WORD */

procedure GST NEXT WORD (); local WORD, CHAR; global BUFFER,

WORD = A;

A: CHAR * next-char (BUFFER)
;

if CHAR = A then refill (BUFFER) ;
goto A;

if CHAR = ' ' then goto A;

repeat WORD «- WORD
[

j
CHAR

;

CHAR -e- next-char (BUFFER);

until CHAR = A or CHAR = ' '

;

re turn (WORD)

;

end GET_NEXT_WORD

;

/* Main Program */

local OVERCHARGE, WCOUNT, LINE, PREVW, CURRW; global BUFFER;

refill (BUFFER)

;

CURRW f- A;

B : OVERCHARGE * false ;

WCOUNT * 0;

LINE «- A;

PREVW -<- CURRW;
CURRW f- GET_NEXT_WORD () ;

A: if_ CURRW ^ ZZZ then LINE - LINE
j

|

' '
|.| CURRW;

if length (LINE) >100
then print (LINE); LINE <- A;

if length (CURRW) > 12
then OVERCHARGE ^ true

;

WCOUNT «- WCOUNT + 1;
PREVW + CURRW;
CURRW -«- GET NEXT WORD () ;

goto A; ""

if PREVW ± ZZZ then if LINE ± A then print (LINE)

;

if OVERCHARGE then print (
' OVERCHARGE ')

;

print ('NO.WORDS IS ', WCOUNT);
goto B;

else exit

end
Figure 6: The Final Program

28

procedure GET_NEXT_WORD (BUFFER) ; local WORD , CHAR

;

WORD -#- A ;

repeat CHAR * next-char (BUFFER)

;

if_ CHAR - A then refill (BUFFER)

;

untH CHAR <£ A and CHAR ± 'uj »;

repeat WORD «+ WORD II CHAR;
~ CHAR * next-char (BUFFER) ;

until CHAR- A or CHAR="ui';

return (WORD);

end GET_NEXT_WORD;

local OVERCHARGE,WCOUNT,LINE,CURRW; external BUFFER;
refill (BUFFER)

;

CURRW -* GET_NEXT_WORD (BUFFER);

repeat OVERCHARGE t false ;

WCOUNT t 0;

LINE t A;

repeat LINE * LINE II * >-i » II CURRW;
" if length (LINE) > 100 then print (LINE); LINE"". A

;

if length (CURRW) > 12 then OVERCHARGE *- true ;

WCOUNT -*- WCOUNT + 1;
CURRW *-•• GET_NEXT_WORD (BUFFER) ;

until CURRW = 'ZZZZ*

;

CURRW = GET_NEXT_WORD (BUFFER);
if CURRW j 'ZZZZ' then if LINE ^ . A then print (LINE)

;

if OVERCHARGE then print (' OVERCHARGE
'
}

;

print (WCOUNT);
until CURRW = 'ZZZZ'

Figure 7. Final Program without GOTO's

29

reject the approach. This is important.

Understand, I had not yet written P_. I was looking ahead, trying

to see how a decision would look at lower levels. I was concerned with
such things as initializing the word count and the output lines, count-
ing words, and updating variables. After an hour I came up with a
different P„ as shown in Figure 2. Here I committed myself. We shall

see later that this too probably wasn't the best overall choice.

Having decided on P„, I again formalized each of the statements

.

Figure 3 shows the result. PRINT1 takes care of adding a new word to the
print line, and outputting it if its length is over 100. PRINT 2 outputs
the last line of a telegram, the word count, and the overcharge if per-
tinent.

Now there are several refinements that we can make right away. We
have two calls to the procedure INITIALIZE, so we can keep just one call
and use a simple goto for the other. Furthermore, we can later copy
in the code for INITIALIZE, because it will be called only once. This
is for efficiency. The order of the boolean conditions can be checked
to see that the average number of tests is likely to be minimal. It
makes sense to test for the end of the telegram before you test for the
end of the stream. On the other hand, there are several redundant tests
that can be eliminated. So now we can move forward to P

u
with just a

simple refinement.

Figure 4 shows the detailed refinements of the procedures of Pj.

Note that rather than output the telegrams word by word or save the whole
telegram in one string, we output our strings when they exceed 100

characters

.

Figure 5 shows the development of GET-NEXT-WORD. In the Henderson
and Snowdon paper, the error essentially arose here, although my program
has a different structure. The procedure refills the buffer if appro-
priate and obtains the next word. I really don't know how the original
error cropped up. There doesn't seem to be any problem.

Figure 6 shows the final program. I believe that it is correct.

4. CONCLUSION

Although fairly efficient, the program of Figure 6 has a couple of
small deficiencies. The previous word PREVW is saved everytime a new
word is requested, even though the value is only needed at the end of a
telegram. This seems to me an unnecessary bit of computation. Second,
once there is an overcharge, there seems to be no need to continue test-
ing for words that cause an overcharge. Commitments affecting these

30

points were at a very high level. One pays a high price for initial
decisions. This I consider the most serious danger of the top-down
methods. That is, I think that the danger of not being aware of the
full consequences of a decision is really more significant than that
of making errors.

For those who prefer the elimination of GOTO's Figure 7 shows the
final program rewritten so that the only control structures are repeat-
until and do-while . In addition, the use of variable PREVW is eliminated.
The resulting program is somewhat shorter and clearer, and may more
easily be compared with the program of Henderson and Snowdon.

One point often made about top-down methods is that the structure of
all higher levels is represented in the final program. This is very
nice. The documentation of the program can then also be a series of
levels. We don't need flow charts to document, although they may be
useful. We can simply keep a copy of each level. One can use P, or P„
for broad descriptions, P

u
or P- for detailed descriptions.

Finally, some errors will always arise even in the best of program-
ming methods. The important issue is to write programs that are so
well-structured and modularized that errors, even when they arise, will
be easy to detect.

5 . DISCUSSION

Q. What if you make a bad design choice in programming top-down?

A. You have a good point. Say you find that P is bad while working

down at P
+„. You may have to scrap everything below P . The

method is not perfect. It is a suggested way of programming, and
generally does seem to work well.

Q. I wonder if that danger might be preferred to the danger of starting
bottom up and having to scrap something at a middle level.

A. I think it is much more likely to scrap everything using the bottom
up approach. In the top-down approach I think it is very
important that we insist on formalizing interfaces at each level.

We should stop and decide exactly what the choice of P is, decide

on the interfaces, and formalize them as much as possible before

you go any deeper. This should sharply reduce the scrapping
process

.

Q. Can we really specify the interfaces with programs at this level?

I fear that people start making premature decisions on their

data structures based on their knowledge of the programming
language that they know they are going to use. You want to
specify the interfaces at every level, but perhaps you don't want

to commit yourself to the data structures that are implied by the

31

programming language until you also get your program refined to
that level.

A. You can formalize input and output without resorting to language
dependent data structures. For example, given a collection of
numbers, you may want to find the 10 highest numbers or the
average. You don't have to say you have a one dimensional array .

You can describe the abstract properties of objects, operations

,

and data structures. That leaves you as much room as you can
possibly have.

Q. I think you are saying that you should formalize interfaces from
the top-down the same way as the program itself.

A. Yes. It is less likely that formalized interfaces will later
influence each other and cause you to scrap them. The sons may
have to be scrapped due to a bad design choice in their father,
but if you formalize the interfaces, the sons will not kill each
other off.

Q. You are talking about keeping the brothers from feuding?

A. Yes, right.

Q. Isn't it true that if you design the interface between the upper
level and the lower levels then you may be able to salvage the
lower levels even if you scrap the upper level?

A. I just don't think that is necessarily true. But I haven't played
this game strict enough or long enough to know.

32

STRUCTURED PROGRAMS

S. Rao Kosaraju

Powers of various structured control constructs are
compared within a framework of weak and strong program
equivalence . Results include a demonstration that
Dijkstra's D-programs are strongly equivalent to programs
built from functions and one-input/two-input predicates.

1. INTRODUCTION

In this lecture we will discuss a systematic programming technique
for improving the quality of computer programs. Most of what we are
going to say seems to be non-controversial and not completely out of
phase with current practice. Some of you might even ask - "Don't we al-
ready program that way?" Perhaps so, but we are not concerned only
with inventing new principles; once in awhile it pays to isolate and
stress the good principles we already practice.

Systematic programming has recently been the subject of much criti-
cal introspection. The central idea is to avoid unnecessary complexity
by decomposing a problem into an interconnection of more tractible sub-
problems. By iterating this process for each of the subproblems, we
develop the control structure of the final program gradually. This
approach seems to be the key to breaking down the complexity of large
problems , but it should be understood that we do not consider this a
complete solution to the problem of program development.

Let us investigate this method in detail.

2. BASIS FOR STRUCTURED PROGRAMS

Program development can be classed as either top-down or bottom-up.
These techniques are discussed in detail in another lecture in this col-
lection (Chapter 2) . A brief review follows

.

2.1 Top-down Programming

In top-down programming, the original problem is decomposed into a
number of interconnected subproblems. We iterate the process on each
one of these subproblems, until we come to the basic instruction level
of the programming language. The below figure illustrates one step of
decomposition

.

33

Problem:

SP,

SP„

sp
1
,sp

3

(1.1) sub-problem

(1.2) sub-problem

(2,2) sub-problems

2.2 Bottom-up Programming

In bottom-up programming we do just the reverse: we take some
basic instructions and assemble them into a module which is used as a
sub-module for a bigger module. We continue this process until the
problem is realized.

2.3 A Thesis

For "Reliability in Programming"
of a program:

at each step in the development

I. A module should be decomposed into as few non-trivial, non-
overlapping sub-modules as possible, in the top-down case; or
composed from only a few sub-modules in the bottom-up case.
This is particularly important for the multi-exit sub-modules.

II. The number of entries (Inputs) and exits (Outputs) of each
sub-module, should be as small as possible.

The comment that any program can be trivially considered as the
result of top-down (or bottom-up) programming by viewing each instruc-
tion as a sub-module, illustrates the importance of I. Part of our

34

motivation for II stems from the fact that if a sub-program has 20 entry
and exit points, then it may be difficult to understand the final program.

Q. What definition of entry and exit are you using?

A. We are not counting the number of input or output variables ; but
the number of input or output points , such as PL/1 multiple entry
points.

There is no formal proof of these theses, but they seem to be intuitively
reasonable. Accepting these theses, we may investigate the minimum
number of entries and exits needed for a sub-module.

The first possibility is that each sub-module has only one entry
and one exit. Then the only construct allowed is:

SP, SP, SP.

This construct alone is obviously not powerful enough to constitute the
entire control structure for any real programming language; i.e. the one
entry,one exit constraint is too restrictive.

Q. Why is one entry and one exit not sufficient?

A. The constraint does not allow conditional statements, and thus in
any program, we are constrained to use only functional instructions.
It can be shown that we cannot realize each and every problem using
just a finite sequence of these instructions. We are not consider-
ing "super-languages" which contain an infinite number of basic
instructions

.

Q. I do not understand whether you are submitting this argument as a
thesis or as a proof. As a proof it seems to be false. You can
have an instruction-set in the old 3 address machine, in which each
instruction has one entry and one exit.

A. The third address serves as a jump location and thus each instruc-
tion is a function followed by a multi-way branch.

It can further be shewn that n entry and one exit sub-modules are
not sufficient . We may ask if a general problem can be realized using
one entry and two exit modules?

We will show later on that one sub-module with one entry and two
exits, combined with a finite number of one entry and one exit sub-

35

modules is sufficient for any decomposition. This assumes that the lan-
guage has certain minimal power [Bohm and Jacopini, 1966]. Let us denote
the class of programs we obtain by restricting the decomposition of a
module to allow only a single one entry two exit sub-module and a finite
number of one entry and one exit sub-modules by TD, -programs . We shall

investigate the close relationship between TD, -programs and the so-called
class of GOTO-less programs.

Q. I do not see how you relate (1,2) programs and GOTO-less programs,
since a GOTO instruction is nothing but Add N to the P Register
which has one entry and one exit.

A. But there is an implied 'Go to the location given by the contents
of P' which is a multi-way branch.

3 . TERMINOLOGY

Let us first discuss, more precisely, how we define programs. Any
programming language has some basic instructions: predicates (conditional
statements) and functions. A function is a one input/one output store
to store transformation and its execution changes control from input
point to output point. A predicate is a one input/two output, labeled
T and F, (1,2) conditional test on the store, which does not modify
the store. If the condition is satisfied, then the control changes
from input to the output labeled T , otherwise to the output labeled F.

We could consider more general constructs like one input/n-output (l,n)

predicates, CASE statements or SELECT statements. The above types
of instructions form a normalized class; many questions about other
forms can be answered by considering only the above normalized class.
Thus, we will restrict our discussion to the two basic elements:
functions and (1,2) predicates. The notations are:

Functions:—* a —*

Predicates :-

F'

A program is any one input (called IN) /one output (called OUT)
deterministic interconnection of these basic elements. Deterministic
refers to the usual constraint that the out of a basic element can
become the in of only one

-

basic element. For simplicity, we also
assume that for any basic element, there exists a path from IN to OUT
passing through that element. Mills calls such programs proper programs

(Mills, 1972)

A program, P, operating on any input, x, starts with control at
IN, and if the control passes to OUT with value z, then we say that
P outputs z on input x. We write this z = P(x).

35

Now we define how to compare two programs,
two types of equivalence, strong and weak .

There are basically

Two programs, P and Q , are strongly equivalent (P = Q) if
and only if every valid input passes through the same basic element at
every step within P and Q, i.e. have the same computational history.

Two programs, P and Q, are weakly equivalent (P = Q) if and only
if they have identical input to output transformation for all valid
inputs

.

Thus, weak equivalence is only concerned with the store to store
transformation performed by the programs and not their internal struc-
tures.

3

.

1 Remark

If P => 0, then P = Q.
s w

3 . 2 Examples

-s. a

T

-> P.'

T

-> p'

a <-

-*b

4 . TIL-PROGRAMS

Let us come back to the general class of TD -programs, Since we
also need (1,2)-programs to use as sub-modules, we will define TD -programs
and (1,2) -programs together as follows. n

1. Any basic function is a TD -program.

2. Any basic predicate is a (1,2) -program.

3. Any deterministic interconnection of at most n (1,2) -programs,

and any number of TD -programs is a (1,2) -program if it is a

(l,2)-program, and is a TD -program if it is a (1,1)-program.

37

What types of reductions can be performed on TD^ constructs? Observe
that if F-j_ and F2 are TD^programs , then * F]_ ->• F2 + is a TD^program.
Let us denote it as BLOCK rule. Applying the block rule, we can easily
see that the general construct for (1,2 ^-programs can be replaced by:

If F , F. and F. are TD^programs, and G
1

is a

(l,2).-program, then

'V

1 N
3

is a (1,2) ^program.

Applying this rule again to G-[_ and continuing this process, we could
easily see that any (l,2)i-program, G, is of the form:

Hj_ > P

H
2
-+

H
3

where Hi , H
2
and H3 are TDi-programs and p is a basic predicate.

The general construct for TD]_-programs is covered by the following 3

constructs

:

I. -»F
1
_>F

2
_^

II.

F
l

F
2

and

38

III. ^c->F >G[

-*->*

where F, and F2 are TD^-programs and G is a (1,2)-, -program.

Substituting the previous derived form for G, construct II reduces to:

Hj yp

H
2

> F
x

H3 >T
2

By construct I (BLOCK rule^ it can be further reduced to;

II»:

-*K

where F~ and F, are TD
1
-programs

,

By similar reasoning, we can reduce construct III to

III': ->r^F- >p

" F4«-

where either labeling (of T and F) is allowed for p,

Thus, the class of TD, -programs can be equivalently defined as follows:

39

1. Any basic function is a TD
1
-program.

2. —>F
i
—* F2~>> is a TD -program.

3.

T/-F
l

_>. is a TT^-program

and 4. -* -* F
f* *]_ > P, is a TD -program

F2^

where F
x

and F
2

are any TD^-programs , and p is any

basic predicate.

If we are interested in only strong equivalence, then

T/F,

^ F
l **

F2-

T/F

* P

Fl— F
2

T/F

1 _ T/F

F2~^ F!—> P^

Thus, preserving strong-equivalence, we could replace construct 4 by
4(a) or 4(b) given below:

40

4(a) is a TIL-program

4(b) is a TD
1
-program

Construct 3 is known as IFTHENELSE construct, since we can write it in
the linear form:

IF p THEN Fi ELSE F2

Construct 4(a) is known as DOWHILE construct, since it can be written es:

WHILE q DO F
?

where q = p or ~p

Construct 4(b) is known as DOUNTIL construct, since it can be written as:

DO F
1

UNTIL q where q = p or

The class of programs defined by constructs 1,2,3 and 4(a) (or 4(b)) is
known as the class of D-programs (D for Dijkstra). The same class is

known as the class of GOTO-less programs, since we do not need the un-
conditional GOTO as a control structure.

Thus, by the above analysis, the class of TDj-programs is strongly
equivalent to the class of D-programs. It would be interesting to
analyze the general class of TDn-programs

.

In these classes of programs we are imposing restrictions on the
structure of the programs. Hence each class is known as a class of
structured programs . Formally, if we denote the class of all programs by

$,then any class S c p is a class of structured programs and any G e S

is a structured program with the structure implied by S. The very act of
defining a sub-setting rule makes the subset S a structured class.

Thus, the class of D-programs is only one of the many structured classes
possible.

41

5. COMPUTATIONAL POWER OF D-PROGRAMS

It is not very hard to verify that all partial recursive functions
are computable by D-programs. BShm and Jacopini [1966] have proved that
for every program there exists a weakly equivalent Deprogram. Their
technique is rather easy and we illustrate it with an examples

5 . 1 Example

.

Convert F-i into a Deprogram:

T/ t/
»_*- p >. a >- q—

b <-

V

*1 ^ F
2 g^-veri by:

->ti* P

* c •* 1

-*3

* c +
n

-^> c = 0?

\ T

CANCEL c

CANCEL c <

If F3 can be converted into a Deprogram, then F2 can in turn be converted

into a D-program by the DO and BLOCK constructs.

-*EJE3

F = F 1

3 w 4

which is a D-program by IFTHENELSE and BLOCK constructs.

42

5.2 General Bohm and Jacopini Reduction

1. If the program has the form —> a

—

> F —> or

X1

5

X, or
>r* F

x
P
v

then we need to

reduce F (and F) only.

2. Transform ^»> a

&
-=» into -?-a -->

3. Transform —»pcC]J F r~> into -^-
p^

•a-<f- &
* F

and delete, from each copy of F, basic elements not on any path

from the corresponding IN to OUT.

4. Transform —>r^ p y
F > into

~>" P

p
^" CANCEL c j-»

t—>U * oH

>c = 0?

CANCEL c|<-

You can easily verify that by applying these rules any program can be

reduced to an equivalent D-program. Observe that the control variable c

associated with a loop is not needed when control passes out of that

loop. When control is within a loop, control variables associated with
loops enclosing that loop will not be tested. Hence we can introduce m
control variables cj> C2 5 --- ?Cm such that if c^_ is assigned to the

outer-most loop and C2 to the immediate inner loops and so on, then the

control variables could be implemented as a stack.

43

5.3 Example (Control Variable Structure)

Assigning or 1 to a variable is equivalent to pushing the
corresponding number on the stack. Testing a variable is equivalent to
testing the top of the stack. Cancelling a variable is equivalent to
popping off the stack.

Cooper [1967] showed that only one DO loop is sufficient,
and Manna [1971] gave some other reduction techniques.

Ashcroft

We should not expect to gain much by writing any program and then
converting into an equivalent D-program. One should write "natural"
programs directly as a D-program. So part of the advantage seems to be
psychological

.

Note that we have to introduce extra control variables and tests on
those variables
light on it

They tend to obscure the program, rather than shed new
Let us consider decomposition techniques which do not

allow the introduction of extra variable s, i.e. the reduced program must
consist of only the basic elements of the original program. Then not
all programs are reducible to equivalent D-programs. For examples

rr^
**-> p > q—. is not' reducible to D form. Elsewhere

LKosaraju, 1972 J we treat this problem in more detail.

6 . PRACTICE

Structured programming discipline can be enforced by voluntarily
restricting the control structures one uses in an existing programming
language or by restricting the language itself.

An example of a system based on the latter approach is BLISS

44

[Wulf , 1972] which has basically six control structures. Four of them
(Function, Condition, Loop and Case/Select) are BLOCK, IFTHENELSE and
DO constructs or their generalizations. The fifth construct (ESCAPE or
EXIT) allows jumping out of n levels of the above constructs. This
construct seems to be a very powerful one. Elsewhere [Kosaraju, 1972]
we investigate the power and limitation of this construct. The last
one (co-routine) essentially consists of two programs which "call" each
other. When a program is "called" control returns to the place it left
off earlier. This construct can become extremely complicated and should
be used with care.

Q. Do you advocate restricting programmers to flow-chartable programs
only; and avoiding concepts like recursive procedures and all the
power we have in present day languages?

A. We should systematically study the various recursive procedures. If

it so happens that some of the features are "hard" we might not
want to use them. More and more powerful languages with "interesting
features" have been developed, the only limitation being personal
fancy and imagination. Maybe it is time to sort out the useful from
the interesting ones. It is also true that many processes can be
expressed most simply, concisely and clearly as recursive procedures.

7 . CONCLUSIONS

The principle of using only simple constructs in the decomposition
of a problem into subproblems seems to be a very significant one in
writing quality software. We should spend more time in understanding the
"complexity" of various control structures, either theoretically or by
experimentation, rather than debating whether or not avoiding GOTO's is

the ultimate solution for all the evils in programming.

45

TOWARDS A FORMALIZATION FOR QUALITY SOFTWARE

Henry F. Ledgard

After a review of Quine's notion of referential trans-
parency, the author examines elements of good and bad pro-
gramming practice. A series of examples demonstrate various
points. In addition, a table of programming proverbs pro-
vides guidance to a programmer, and should be especially
useful to a novice.

1. INTRODUCTION

The nature of "quality" software is a vague one; if two of us write
a program to do a specific job we each might claim that ours is the
"better" program, but in general we cannot prove or validate our claims.
One of the things I want to get to here is some idea for doing just
that. There seem to be two major problems:

(1) The formalization of the intuitive notion of "quality" in
software.

(2) The development of mechanical procedures to insure "quality"
software.

As to the first objective, the term formalize is well understood;
it means to develop a basic set of concepts from which we can derive
properties of and theorems about the objects in question, here - programs.
What we need are well defined metrics that can be applied to a program
to obtain a measure of its quality. Once we have achieved this set of
metrics, then we can say something definite about the quality of a pro-
gram. As to the second objective, we need to devise means for assuring
that the software we produce is indeed quality software. Now I don't
just mean attending a good programming course; I mean some specific
mechanical constraints which a programmer or programming team can apply
to insure the quality of the output. For example, we might restrict the
amount of computer time available, place a programmer in a closed room,
provide a programmer with languages or compilers that restrict the
mechanisms available to him (e.g. no GOTO's), or completely restructure
the programming process.

Our major interest today will be on objective (1). My interest in
this objective started quite casually. Working with several students, I

have been writing a small text to help student programmers improve the
quality of their programs. The text is based on a collection of 26

"Programming Proverbs", which are listed in Table 2,p 63.. Two of these
proverbs, "Avoid Side-Effects" and "Avoid Tricks", were the original
motivation for today's work. More generally, we shall focus on two im-
portant issues:

(1) An attempt to formalize the notion of program modularity.
(2) An outline of a model for writing natural, readable programs.

46

2. REFERENTIAL TRANSPARENCY

My first major topic was one upon which I spent considerable time.
My objectives were the following:

1. To somehow get a hold on context dependent features of pro-
grams. It is well known that languages can be classified as
context-free or context sensitive. While most programming
languages are in fact context sensitive, context free languages
are simpler to understand, implement, and define. It appeared
to me that perhaps we could get at a similar result for pro-
grams.

2. To define a precise measure that could be applied to a program
to give some indication of its "modularity".

3. To use as little apparatus from the semantics of programming
languages as possible.

The concept that I thought would do the trick was Quine's notion
[Quine, 1960] of "referential transparency". My investigation into
referential transparency has to a large degree failed. Nevertheless, I

would like to review Quine's notion, give some programs that I thought
would be embraced by this concept, and at least point out the properties
that I think are worthy of future study.

2.1. Definition 1 (Quine)

Let e be an expression with value v ; and let

E = {e
1
,...,e

n
}

be a set of expressions each of which has the same value v. Now let

iKe) be a sentence containing an occurrence c of the expression e.

Then the occurrence c of e in iKe) is purely referential if and
only if c can be replaced by any e.eE

For example, let

e = sg^ (2)

v = value(e) = 4

E = {4, 40*10~1
, sq (1+1)}

iKe) = X + Y*s£(2)

The occurrence of e in ty is purely referential.

47

2.2 Definition 2 (Quine)

Let $ be a mode of containment, i.e. any fixed method of con-
structing a composite expression from a given number of component ex-
pressions ij>, , lj^s. . . ,t|) . $ is referehtially transparent if, whenever

an occurrence of a sub—expression e is purely referential in some com-

ponent expression ^.(e), the occurrence is also purely referential in

ft. '

1

Consider the following example:

e Cicero

e
l

e
2

E
^Marcus Tulius, Tully

}

H>~ Most people

tyy ... was an orator

c and Tp
?
(e) Cicero was an orator

<£ ... believe that . .

.

$(ijj, ,i|)«(e)) Most people believe that
Cicero was an orator

ftGjL ,ij)_(e,)3 Most people believe that
Marcus Tulius was an orator

Now in the above example, ^2
(e) is a true statement and the cor-

responding state $(ik ,^„(e)) is Cprobably) true. However, while 4>o

remains true if we substitute e„ (Marcus Tulius, one of Cicero's other
names) for c, $(ik ,!(<„(e„)) (probably) does not remain true.

'The importance of this concept lies in the' fact that we often want
to replace a piece of program text by an "equivalent" one. It is this
concept which allows us to "draw a circle" around a piece of text and
refer to "its value" independent of the larger context in which it
occurs.

I attempted to generalize this notion to programming languages.

48

This included distinguishing between free and bound variables, the
effect of assignment, and the difference between formal parameters of
pure sub-routines and formal parameters of pure functions. I further
tried to define "referential transparency with respect to a procedure"
and the notion of "purely referential procedure calls". For example, it
would be nice to say in some definitive sense that a program P is ref-
erentially transparent with respect to, say, a scheduling algorithm or
its data structure. By this we would mean that the scheduling algorithm
or data structure could be independently changed and still leave the rest
of the program correct. Rather than go into these gory details, I will
present some simple examples and discuss some relevant issues.

I will ask the reader's indulgence in the sequel and use the terms "trans-

parent" and "opaque". But in no case should these terms be considered
as well-defined or correctly used.

Example 1 . (OPAQUE)

del F(X) ; X ^ X + 1; return 00

One generally undesirable feature of programs exhibited in Example 1,
is the assignment of new values to the arguments of pure functions. The
problem with this feature is that, for example, F(A) + F(A) does not
equal 2*F(A).

Example 2 (OPAQUE)

del F(X) ; return (X+Z)

The problem with Example 2 is the reference to the free variable, Z,

This again should be avoided. Consider the following:

A <- F(l)
Z «- Z+l
B «- F(l)

Here we see two calls to F each of whose returned values are different,
even though the arguments of F are the same. A similar case holds for
assignment to free variable in pure sub-routines:

Example 3 (TRANSPARENT) Example U (OPAQUE)

dclSUB(X); X * X+l DCL SUB(X); Z <- X+l

In some sense, assignment to the arguments of sub-routines is fine
(Example 3), but assignment to free variables is not (Example 4). I
pause again to state that I wished to develop a formal notation that
could be applied on a "yes" or "no" basis to determine whether a pro-
gram did or did not have these undesirable effects. I wanted Examples 1,

49

2, and 4 to be opaque; Example 3 to be transparent.

Part of the reason for not wishing to couch the discussion in terms
of functions, sub-routines, store-to-store transformations, and the like,
is the following. Namely, many languages allow these same violations
without explicit recourse to the notion of functions and sub-routines.
Consider the following SNOBOL-like example.

Example 5 (OPAQUE)

PI = *H ',' BREAK (V). H
del DEAL (); <N,S,E 3W< PI;

H = 'S<;

DEAL ()

The call to DEAL, a function of no explicit argument, results in up-
dating the value of H.

Next consider Examples 6 and 7.

Example 6 (TRANSPARENT) ' Example 7 (TRANSPARENT)

I «- 1 del F(X) = X + 1

Z «- 1
Loop: I «-.I + 1 A «- F(Z)

Z + 2

GO TO LOOP B * F(Z)

Whatever criteria we use for determining the transparency or opacity of
a linguistic construct, each of these examples should be transparent. In
line 2 of Example 6, it should not be possible to replace "I + 1" by "2".

In Example 7, we should not insist that the two calls to F(Z) return the
same value.

Some thought was given to the notions of Input/Output and random numbers.
For example consider the following statements:

Example 8 (OPAQUE)

X <- read (N) + read (N)

Y * random () + random ()

The claim is that the uses of read and random as "functions" are opaque. .

They both cause side effects. Furthermore the two statements above
could not be replaced by

X<-2* read (N)

Y-<-2*random()

50

When read and random are used as sub-routines the case is different.

Example 9 (TRANSPARENT)

read(N) random(A)
Nl •«- N AL + A
read(N) randomCA)
N2 <- N A2 •*• A
X * Nl + N2 X <- Al + A2

Here we fully expect different calls to give different values. Claim:

Input/output and random number calls should only be used as sub-routines.

As we stretch our imagination, we came to more diverse examples.
Consider the following:

Example 10 (OPAQUE)

declare X BASED (P),

Y BASED CQ);
ALLOC X;
ALLOC Y;

X «- 2;

Y«- 3;

Zl <- X + Y;

P «- Q
Z2 * X + Y;

Here we have two occurrences of the same expression "X + Y". While
neither X nor Y is changed between the two occurrences, the values of the
two occurrences are different.

The point of all this discussion was the attempt to develop a prop-
erty of programs. I had hoped that a program with this property would
have the following characteristics.

1. Given any piece of text within the program, only those variables
that are explicitly stated within that piece of text may have
their values changed.

2. The effect of any sub-program can be defined solely by its input/
output characteristics, and hence its meaning is independent of
the variable names used, declarations, sequencing, etc.

3. Replacing any sub-program with another (referentially trans-
parent) sub-program with the same input/output characteristics
will not cause an error in any other part of the program.

I didn't quite make it.

51

3. TRICKY PROGRAMMING

The final issue that I want to consider was motivated by a question
attributed to Christopher Strachey. Namely, "What is the difference be-
tween a number and a date?" For example, you can perform all the usual
operations on numbers, but while you can subtract two "dates" to get an
"age", it doesn't make sense to "add" two dates or take the "square root"
of a date.

Programmers often work with various kinds of abstract objects, for
example, dollars, social security numbers, measurements, people's names,
etc. These objects have abstract properties that differ significantly
from objects like numbers and strings. Yet, numbers and strings are the
primitive objects of today's programming languages. Part of the pro-
grammer's job is to map the abstract objects he is working with into the
objects of a particular programming language. In PL/1 for example, these
objects would include numbers, strings, arrays, structures, pointers,
offsets, labels, files, etc. This allows the programmer to make an
exact choice of a particular representation for an abstract object but
not necessarily to describe the abstract object itself or to reflect its
own peculiar properties. More importantly, it does not guarantee that
an operation that can be performed in a programming language corresponds
to any meaningful operation with respect to the original abstract objects.

Consider the following piece of code.

Cla) X «- (Y<Z)*4 + (Y>Z)*6

where the value of the expression "(Y<Z)" is 1 if the value of Y is less
than the value of Z, and otherwise Is 0. Consider also an equivalent
piece of code:

(lb) if (Y < Z) then X * 4 otherwise X * 6

Claim : Example (la) is an "unnatural" method of performing the desired
computations while example (lb) is "natural". The motivation here is

that in example (la) it makes no sense to multiply 4 times the result of
comparing Y with Z, i.e. it makes no sense to multiply numbers by truth
values.

More generally, consider Figure 1. Here we have two spaces: the
space A that corresponds to a space of "abstract" objects and operations
in some external world, and the space C of objects and operations of a
given "concrete" programming language L. In order to perform some com-
putation over an abstract space, a programmer must map the operations in
his abstract space to those in the given programming language. This
mapping is indicated by the morphism M. The programmer must then write
a program P that is a composition of operations given in his program-
ming language. The result computed by the program presumably corre-
sponds to some result in the abstract space.

52

Our claim here is that a program P has a "natural" interpretation
if and only if the following condition holds:

Property X

Given A, C, M, P, and L,

V g, b. e C where g is applied to b, , b~ . .
. , b in P

3 f, a. e A where f is applied to a, , a . .
. , a in A

such that

M<f> = g

M<a.> = b.
1 i

M<f>(M<a_, a
2

, , a >) = M<f(a , a .

n 1 Z

g(b
l5

b
2

,

a)>
n

, b)
n

Abstract space A

F = f °f ° .. .°f12 n

a function F in A

G = giV •••%

a function G in C

Property X
M<f> = g
M<a.>= b.

X 1
M<f>(M<a ,a . .,a >) = M<f (a,,a

2
,. ..,a)> = g (blSb2

... .,b
n

>

Figure 1: The ProgramiTiing Problei;.

53

This equation means that:

(1) any operation g performed in a programming language must

correspond to some abstract operation M<f> in the abstract

space;

(2) any object b^ manipulated in the programming language must

also correspond to some object M<a.> in the abstract space;

(3) the application of the programming language operation g to

objects bl3 b
2 , ... , and bn must correspond to some

manipulation M<f> (M<a-L , a2, ... , an>) in the abstract space;

(M-) the result g(b-|_, b2, ... , b^) computed in the programming
language must correspond to the desired result McfCa^, a

2 ,

... , an)> in the abstract space.

Given some abstract problem, there is some question as to what the
morphism M should be. At some risk, I will rely on the reader's
intuition to conjure up some conventional definition of M for a
given problem.

Now consider the example (la) and the morphism M such that

M<true> = 1

M<false> =

M<number> = n where n is a number in L
M<times> = *

Here the comparison of X with Y yields a truth value true or false .

Hence

M<times

>

(M<true ,number

>

) = *(l,n) i M<times (true ,number)>

since times applied to a truth value and a number is undefined.

Consider next examples (2a) and (2b). In this case the input into
the program is an array called DECK that contains 51 elements, corre-
sponding to 51 cards from a conventional deck of 52 cards. The object
of the program is to determine the missing card needed to complete a
normal deck of 52 cards. The function CONVERT maps an "Ace" into the
number 1, a "deuce" into a number 2, ... , and a "King" into number 13.

DECONVERT is the inverse of CONVERT and maps these corresponding
numbers into their corresponding card rank. The reader is invited to
read these corresponding pieces of code and to try to determine why
each of the programs computes the missing card.

The claim here is that the program of Example (2a) is not natural.
In particular, consider the statement

COUNT * CARD + COUNT

54

/*Find the rank of the missing card in DECK */

COUNT <-

varying I from 1 by 1 until I = 51 do

CARD + CONVERT(DECKEl])
COUNT * CARD + COUNT
if COUNT > 13 then COUNT * COUNT - 13

end do

RANK «- DE C0NVERT(13-C0UNT)
print (RANK)

Example (2a) "Unnatural" Card Count

/*Find the rank of the missing card in DECK */

del C0UNT[1:13] array initial value (0);

varying I from 1 by 1 until I = 51 do

CARD * CONVERT (DECKE I])
COUNTECARD] «- COUNT ECARD] + 1

end do

varying J from 1 by 1 until 13 do

if COUNTEJ] i 4 then RANK «- DECONVERT (J)

end do

print (RANK)

Example (2b) "Natural" card count

55

Here CARD corresponds to some card in the deck and COUNT corresponds to
some total which is kept during the course of the program. The program
is unnatural in the sense that, in the abstract space of cards, for
example a king, and a COUNT, for example 10, cannot in any meaningful
sense be "added", i.e.

M<+(card ,number)

>

is undefined. To "add" a number to a King makes no sense that in the
corresponding space of cards, ranks, and suits. Hence, the equation for
Property X is violated. In Example 2, no violation occurs. The number
of cards of a given rank are simply counted, and the results are stored
in an array called COUNT. The rank of the missing card is then deter-
mined by simply scanning through the array COUNT to find that element
for which there is a count of 3. The rank of the missing card is then
computed by applying the function DECONVERT to the index of the array
denoting the missing card.

Consider now the bridge hand deal of the SN0B0L4 program* [11] of
example (3) . The program generates bridge hands for four players
NORTH, SOUTH, EAST, and WEST. From a quality software point of view,
this is a programming disaster.

First let's look at the operation of the program. It starts off
(line 1) with some OUTPUT routine definitions that will print headings
when invoked. More routines are then defined via the DEFINE function,
and control is passed (line 8) to the statement labeled CONSTANT
(line 49). After this point, several variables are initialized. Note,
for example, that the variable NXTHAND (line 67) is initialized to a
value which is a pattern, not a string.

Starting at line 77 an array NEWDECK is loaded with "cards" to
give a "flat deck." Empty arrays for each player (NORTH, SOUTH, EAST,
and WEST) are created using the (primitive) function COPY. Finally,
the two user defined functions DEAL and DISPLAY are called.

It is with DEAL that we will be most concerned, so let's briefly
go through its operation. First, a pattern match occurs which picks
the next dealer. DECK is then initialized to be a "flat deck."
Another pattern match (line 12) is used to obtain the next recipient of
a card. The card to be dealt is chosen by picking a random number CARD,

<_ CARD <_ N, where N is the number of cards remaining in DECK. Once

the randomly selected card has been dealt (using ITEM, a primitive
function which accesses a specified element in the array given as the
first argument) , the last card in the deck replaces the one just dealt
(unless they are the same) and the length N of the DECK is decremented.
This process continues until the DECK is empty, at which point control
returns to the calling point. The function DISPLAY prints the results
of DEAL, as shown at the end of example 3.

- Griswold, Poage, and Polonsky, THE SNOBOL 4 PROGRAMMING LANGUAGE, 2nd
ed. , (c) 1971. Reprinted by permission of Prentice Hall, Inc.,
Englewood,Cliffs, New Jersey.

56

*

* THIS PROGRAM USES ARRAYS, PROGRAMMER-DEFINED
* FUNCTIONS, AND A VARIETY OF OUTPUT FORMATS TO
* PRODUCE SETS OF BRIDGE HANDS. THE FUNCTION OF
* DEALO USES A PSEUDO-RANDOM NUMBER GENERATOR
* [13] TO DEAL CARDS INTO FOUR ARRAYS NORTH, EAST
* SOUTH, AND WEST. THE FUNCTION DISPLAY () PRINTS
* THE HANDS, ONE TO A PAGE.
*

*

OUTPUK 'TITLE', 6, '(14H1THIS IS HAND ,110A1)')
OUTPUT('DEALER' ,6, '(1 1H DEALER IS ,110A1)')
OUTPUK 'SKIP', 6, '(A1)

')

* FUNCTIONS

DEFINEC 'DEAL()
')

DEFINE('DISPLAY()
')

DEFINE ('LINE(STR1 ,COL1 ,STR2 , C0L2) BL 1 ,BL2')
DEFINE ('RANDOM (N) ')

DEFINE ('SUITL(HAND,SUIT)N') : (CONSTANT)
*

DEAL DEALSEQ DEALHAND
DECK = COPY(NEWDECK)
N = 51

NLOOP DEALSEQ NXTHAND
CARD = RANDOM (M + 1

)

DECK<CARD> SUITRANK = NE(CARD,N) DECK<N>
ITEM($HAND, SUIT, RANK) =$RANK
N = GT(N,0) N - 1 :S(NLOOP)F(RETURN)

*

DISPLAY TITLE = NTHDEAL
DEALER = DEALR
SKIP =

'

OUTPUT = LINE('NORTH', 40)
OUTPUT =

OUTPUT = LINE(SUITL(NORTH,
OUTPUT = LINE(SUITL(NORTH,
OUTPUT = LINS(SUITL(NORTH,
OUTPUT = LINE(SUITL(NORTH,
SKIP =

'

OUTPUT = LINS('WEST' ,20, 'EAST' ,60)
OUTPUT =

OUTPUT = LINE(SUITL(WEST, 'S') ,20,
+ SUITLCEAST, 'S') ,60)

OUTPUT = LINE(SUITL(WEST, 'H') ,20,
+ SUITLCEAST, 'H'

)
,60)

OUTPUT = LINE(SUITL(WEST, 'D') ,20,
+ SUITLCEAST, 'D') ,60)

OUTPUT = LINE(SUITL(WEST, 'C') ,20,
+ SUITLCEAST, 'C') ,60)

s') ,40)
H') ,40)
D') ,40)
C) ,40

SKIP =

57

OUTPUT = LINE('SOUTH', 40)
OUTPUT =

OUTPUT = LINE(SUITL(SOUTH, 'S') ,40)
OUTPUT = LINE(SUITL(SOUTH, 'H') ,40)
OUTPUT = LINE(SUITL(SOUTH, 'D') ,40)
OUTPUT = LINE(SUITL(SOUTH, 'C') ,40)

+ : (RETURN)

*

LINE BL LEN(C0L1 - 1) . BL1
BL2 = DIFFER(STR2) DUPL(' ',C0L2 - (C0L1 +

+ SIZE(STRO))
LINE1 LINE = DUPL(' ',COL1 - 1) STR1 BL2 STR2
+ :(RETURN)
*

*

RANDOM RAN.VAR = RAN.VAR * 1061 + 3251
RAN.VAR RTAB(5) =

RANDOM = (RAN.VAR * N) / 100000 : (RETURN)
*

*

SUITL SUITL = SUIT '
'

SUITL1 SUITL = SUITL HAND<$SUIT , N> : K(RETURN)
N = N + 1 : (SUITL1

)

*

* CONSTANTS
*

CONSTANT S = 1

H = 2

D = 3

C = 4

$0 = 'A'
$1 = 'K'
$2 = '0'

$3 = 'J'

$4 = '10'

$5 = '9'

$6 = '8'

$7 = '7'

$8 = '6'

$9 = '5'

$10 = '4'

$11 = '3'

$12 = '2'

DEALSEQ = 'NORTH, EAST, SOUTH, WEST, NORTH,
'

NXTHAND = *HAND ',' BREAKC,') . HAND
DEALHAND = *DEALR ',' BREAKC,') . HAND . DEALR
SUITRANK = LEN(1) . SUIT REM . RANK
EMPTYHAND = ARRAY ('4 , : 1 2 '

)

NEWDECK = ARRAY('0:51 ')

RAN.VAR = 157

58

BLDDEK

BLDDK1

DEALMAX =

NTHDEAL =

DEALR =

N =

1 = 1 +

R =

NEWDECK<N>
N = LT(N
R = LT(R

WEST

51)
12)

I R

N •

R

:F(NEWDEAL)
:S(BLDDK1)F(BLDDEK)

NEWDEAL NTHDEAL
+

NORTH =

EAST
SOUTH =

WEST
x

DEAL()

*

DISPLAY()

END

LTCNTHDEAL, DEALMAX) NTHDEAL

COPY(EMPTYHAND)
COPY(EMPTYHAND)
COPY(EMPTYHAND)
COPY(EMPTYHAND)

1

'(END)

Example (3) SNOBOL 4 - Bridge hand deal

59

Consider now a detailed analysis of the bridge hand deal. Here the
morphism M maps an Ace into £, a King into 1, etc. First observe the
statement

NEWDECK<N> = I R

Here R is used as a string whose numerical value corresponds to one of
the ranks (Ace , King , etc) . This use of 0, 1, ... , 12_ to represent
ranks is perfectly natural, i.e. , a suit I and a rank R are concatenated
to form a card. Second, observe Table 1, which explains the use of the
indirect addressing operation $. Here for example we see that if e is
an expression whose value is 0, then $ applied to will yield the
string "ACE". Here M<Ace> = 0, and M<convert-to-print-name> = $.

Now consider the statement

ITEM($HAND,SUTT, RANK) = $RANK

Consider first the right hand side of the assignment. If say, the
value of RANK is 0, we have

M<convert-to-point-name (Ace) > = $(£) = "ACE"

i.e. convert-to-print-name (Ace) = "ACE"

Now consider the left side of the assignment, using the string "WEST" as
the value of HAND, the array name WEST as the value of $HAND, 1 as the
value of SUIT, and as the value of RANK.

In SNOBOL, the left-hand expression is then equivalent to the array
reference

.

WEST(SUIT,RANK)

Then we have

M_1<WEST(1,£)> = WEST(SUIT,RANK)
= WEST'S 'Array (1,0)
i WEST

(

Spades , AceT
= Undefined

Here there is an attempt to use the suit spades and the rank ace as
subscripts of an array, which fails Property X in the space of cards.
The use of £ to represent an Ace , and the subsequent use of £ as a sub-
script with its attendent numeric or string properties simply results in
tricky programming.

Another violation of naturality also occurs in the same statement.
Here the direct value of HAND is one of the strings "NORTH," "SOUTH,"
"EAST," and "WEST." These strings are used as the names of the dealer
and names associated with a dealt hand. As names, these values can of
course be printed. On the other hand, the indirect value of HAND is the
internal (to the program) name of a 52 element array, 13 of whose elements

60

Table 1; Meaning of the $ Operator in SNOBOL

Let v be the value of e.

(1) $ operator on the left-hand side of an assignment statement

if v e NAME then convert-to-name o look-up-string-value (v)

$TH„(e)
= if v e STR then convert-to-name (v)

if v e NUM then convert-to-new-name (v)

(2) $ operator on the right-hand side of an assignment statement

^RHS^
= lookup-string-value o $ „„(e)

(3) Meaning of $ in bridge deal program

if v = 0_ then Ace

$(e) = if v = 1 then King

if v = 12 then Deuce

61

contain the cards dealt to a player. This is a violation of Property X.

First, M<WEST> equals the string "WEST" which is used in the program to
name a particular hand (with its attendant print value, the name of a
player) , and which is subsequently used as the internal name or location
of an array containing the cards within that hand.

There are several other violations of Property X in the SNOBOL
program. For example, the indirect value, v, of HAND is a 52 element
array, not a 13 element array. This is a violation of Property X in
the sense that in the abstract space there is no object corresponding to
a bridge hand that contains 52 elements, some of which are blank.
Rather, a complete bridge hand should contain 13 elements, none of
which is blank.

You may ask then, when is indirect addressing "natural"? The
answer is simple, when the $ operator is applied to an abstract object
that is, in fact, an address, or the location of a place which contains
a "value".

What about interpreting the strings "NORTH," "SOUTH," "EAST"
and "WEST" as addresses whose contained values are hands of cards?
This is fine, except for one serious violation. If these strings
represent internal names, addresses, or locations, then they should
not be used as external players' names, nor should they be printed or
used in patterns. So the violation of Property X under this inter-
pretation occurs in the output routines or in the pattern matching
statements

.

Other violations of Property X can be found in various ways. For
example, consider the following two pieces of text.

(4a) P •*- 1 + P*SIGN(4-P)

(4b) if P < 4 then P + l-P

else if P = 4 then P «- 1

else if P > 4 then P *• 1 + P

Example (4a) is confusing due to the trick of multiplying the value of
the sign function times the value of P. The value of the sign function
should be the string "+" or "-". Conceptually, multiplication by a
"sign" has no natural analog in the traditional space of abstract
arithmetic operations.

A slightly different violation of Property X arises when operations
performed in a program correspond in fact to operations in the abstract
space, but not those operations expected in practice. In the SNOBOL
program for example, a call to DEAL results in an unusual algorithm for
"dealing". This algorithm performs a shuffle and deal by randomly
picking a card from the deck, dealing it to the next player, taking the

62

Table 2 : The Programming Proverbs

APPROACH TO THE PROGRAM

1. Clearly define your problem.
2. Think first, program later.

3. Use the top-down approach.
4. Beware the "imitation" approach.

CODING THE PROGRAM

5. Construct your program in logical units.
6. Use functions and subroutines.
7. Avoid unnecessary GOTO's.
8

.

Avoid side effects

.

9. Get the syntax right now, not later.
10. Use Mnemonic identifiers.
11. Use intermediate variables properly.
12. Leave loop variables alone.
13. Do not recompute constants within a loop.

14. Avoid implementation dependent features.
15

.

Avoid tricks

.

16. Build in debugging techniques.
17. Never assume the computer assumes anything.

18. Use comments.
19

.

Prettyprint

.

20. Provide documentation.

RUNNING THE PROGRAM

21. Check your program before running it.

22. Get your program correct before trying to produce
good output.

23. When your program is correct, produce good output.

GENERAL

24. Reread your manual.
25. Consider another language.
26. Don't be afraid to start over!

63

top card from the deck and inserting it in the space vacated by the
dealt card. While this is not a strict violation of naturality, the
"deal" does not really correspond to the way cards are dealt at a
bridge table. However, on most machines this "deal" is efficient in
speed.

This leads us to a fundamental point about Property X. There are
cases where "unnatural" methods are in fact justified, for example for
efficiency of execution or economy of storage. However, before we
resort to unnatural programming, we should have a clear reason for doing
so. Otherwise the programmer should stick to operations and objects
that have a natural analog in the abstract space.

DISCUSSION

Q - I've noticed that a lot of programmers wait until the end to add
comments. Does that make any difference to you?

A - I don't know. Most experts claim for example, that it's better to
read a book several times before annotating it.

Comment - When time and money are running out, the comments may not get
in.

Q - There's another problem—if you comment first and then change the
program without changing the comments you're in worse shape than
with no comments at all.

A - When you're writing a program, comments could be of the kind
"N = 18 at the end of the loop," whereas you would use an entirely
different set while documenting. We'll notice that many of our
principles are conflicting and this is one of the problems we will
have to consider.

Comment - Parnas in the latest CACM, pushes the view that you should
hide the semantic roles of identifiers to force better under-
standing .

Q - To say "avoid side effects" sounds like instructing the enlisted man
not to drop a hammer on his toe.

A - Yes, but the programmer did just this and wasn't even aware of side
effects

.

Comment - Even so, if he had thought about it he should have declared
"I" local.

Q - Where should the control be? Should the language be such that you
can't hang yourself up that way, or should it be up to the pro-
grammer, or should it be up to the supervisor?

64

A - Yes.

Q - Perhaps the compiler, instead of making implicit assumptions, should
force the programmer to declare everything. In this way the pro-
grammer would have made the right choice automatically.

Comment - There's a compromise—the compiler could tell you what you've
done and what it has done for you.

A - Those are awfully verbose solutions.

Comment - It could be an option which could be turned off.

A - My own masters thesis is the ultimate side effect. In two boxes of
cards I have over 50 variables in COMMON.

Q - Some side effects are good. For example, most random number genera-
tors are pure side effect.

A - That's true. My point is that side effects should be present
because of a conscious decision to use them.

5. ACKNOWLEDGEMENT

I am grateful to Lee Hoeval, Rao Kosaraju, Amos Gileadi, and
Eliot Solloway, for many insightful discussions on the issues contained
herein.

65

CORRECTNESS OF PROGRAMS - WRITING CORRECT PROGRAMS

S. Rao Kosaraju

Discussions on problem and program specification provide
an introduction to a review of proot-of-correctness techniques.
Then, noting some practical limitations on proof-of-correctness

,

the author goes on to examine selected facets of program
synthesis.

1. PROBLEM AREAS

In the general area of theory of computer programming we can
isolate some problems of practical importance:

1. Is a given program syntactically good? (Recognition Problem).
A significant amount of work was done in this area. There are well-
known efficient algorithms for recognition of programming languages.

2. If we know a program to be syntactically good, what does it

compute? That is, can we give a suitable functional description of
what it computes? (Semantic Recognition and Elaboration Problem).

3. Is a given program the "best program" for the function it
computes; if not, can we write a "significantly better" program? That
is, can it be optimized in terms of some measure like time or storage?
This is known as Optimization or Speed-up.

4- . Given any program P and any function f (suitably described)

,

does P compute f? That is, does a program solve the problem it is
claimed to solve? This is one of the major problems we will be
addressing in this lecture and is known as establishing "Correctness
of Programs."

5. Does a given program halt for every one of the all owable
inputs? We might call it "Terminiation Problem" or "Uniform Halting
Problem."

6. Given any two programs, do they compute the same function?

This we call establishing "Equivalence of Programs .

"

There are many other problems of utmost significance in the theory
of computer programming. From a purely theoretical point of view most of
the above problems are undecidable in the general sense. But that
should not deter us from considering such problems. Because of their
practical importance, any partial results which could isolate some
significant decidable sub-sets are worth the effort. In this lecture
we shall concentrate on problems 4, 5, and 6 and the following
problem:

66

7. Given a suitable functional description of a problem, can we
write a program which solves that problem? This we call "Writing
Correct Programs .

" This is entirely different from problem 4 . In
correctness of programs we are given the function f and also the
program P, whereas in this problem we are given the function f only,
and we have the freedom to synthesize a suitable P. We might not be
able to decide whether any given program computes f ; but we might be
able to establish that a suitably selected program computes f

.

2. PROBLEM SPECIFICATION

2.1 Static Versus Dynamic

All along we have assumed that we are given a "suitable" functional
description of the problem. What are the actual implications of such an
assumption? Consider the following functions:

1. f is defined for all natural numbers and

f(x) = 2x

2. g is defined for all pairs of natural numbers and

g(x, y) = (2y if x considered as a program string
halts on input x

otherwise (i.e. x is not a syntactically
good program or does not halt on x)

I am sure nobody will object to the description of the problem f

.

What about g? For any constant x, g defines either the function f or
the constant function 0; but we cannot see, except by simulation for
instance, whether or not the program x halts on data x. We denote this
difference by saying that f is defined statically , while g is defined
dynamically

.

2.2 Informal Versus Formal

We may be concerned with the degree of formality with which a
problem is described.

In a gross sense, most problems are first described informally , and
in a natural language rather than a precise formal language. In

particular, programmers are usually asked to solve problems with in-

formal, static definitions. Thus before beginning to write a program,
programmers normally have a general picture of the overall problem. In

discussing such problems, however, we will want to be able to test
whether a particular description is acceptable or not. For this,

we will have to describe the problem in a precise formal language.

67

There are various formal languages, e.g. Turing Machines, Markov
Algorithms, Predicate Calculus, Lambda Calculus, Post Normal Forms,

Programming Languages. Computationally all these languages describe
exactly the same class of problems.

Conceptually, we can make use of the following diagram, which
shows the general form of a "problem description."

x e D
IN

$(x)
3 P

Input specification

Y(x,z) Z £ D,OUT

Output specification

input vector = x

output vector = z

input domain = Dj^- (non-empty)

output domain = Dqtjj. (non-empty)

$ is a total predicate over Djjj, i.e. for every x e D ,

<j)(x) has the value T(True) or F(False)

f is a total predicate over DjN x Dn

Intuitively, for any input x from DIN and satisfying <Ki.e. $ (x) = T).

the output z satisfies Y(i.e. (Y(x,z) = T). Any input x from DIN , and
satisfying $, is a valid input .

The problems we are interested in transform any valid input to a
unique output; that is, we assume that if f(x,z1) = T and f(x,z 2) = T,

then z = z
2

. Thus we could also describe ¥ by a function f:

f(x) =

z if >Hx,z) = T

undefined if there exists no z such that T(x,z) = T

2 . 3 Example

D-p„, Dqup = N (the set of natural numbers)

* (x) = (i e N)(x = 2i + 1)

¥ (x,z) E (z = X2
)

In this problem, the valid inputs will be the set of odd natural
numbers , and is a representation for a function which squares its
argument

.

68

PROGRAM SPECIFICATION

Let us say that a program is composed of a set of instructions in
some programming language. We can assume that each of these instructions
is either a functional assignment statement (basic function) or a
conditional statement (basic predicate). Without loss of generality
we can assume that each conditional is a binary predicate. We want to
consider flow chart representations for such programs in which each
conditional in the textual form corresponds to a unique predicate node
(many in, 2 out), and assignment statements are collapsed, by composition,
into functions associated with the lines in the flow chart. There will be
a finite number of nodes, one for the IN (0 in, 1 out) of the program,
and one for the OUT (many in , out) , and one for each of the n predicates

i = 1, It is easily seen that there are 2n + 1 branches m
a flow chart with n predicate nodes. For simplicity, we will assume that
internal variables are part of the output vector of the program; the
modification of this treatment to agree with the more complicated
conventions in the literature should be /obvious [Manna, 1969]. Thus,
any program can be represented as follows:

IN OUT

where z •*- t-^ (x,z) is the assignment associated with the "true"
branch of the i-th predicate; z * f^ (x,z) is the assignment
associated with the "false" branch of the i-th predicate; x and z

are the input and the output vectors respectively, z * g(x) is an
initialization step, which we will assume transfers control to
node Py

Note that the input vector x never gets changed. A computation starts
with control at IN, and when control passes to the node OUT, we say that
the computation is terminated.

4. PROOF OF CORRECTNESS VERSUS WRITING CORRECT PROGRAMS

4.1 Proof of Correctness (POC)

(VP, a program) (yf , a problem) (Does P satisfy the input-output
specifications of f?)

69

4.2 Writing Correct Programs (WCP)

(Vf, a problem) (Find a program P, which satisfies the input-output
specifications of f

)

There is a central theoretical distinction between POC and WCP:

If the problem f is defined in a formal system, then

a) POC is undecidable and

b) WCP is possible

I hasten to add that it is a trivial theoretical result and has no
practical significance. The trouble is in the assumption that the
problem is described formally; the main problem in WCP is formalizing
an informal specification of the problem.

Q: How could you be sure you could write a correct program, if in fact
you could not prove a program to be correct?

A. For any problem f , if I randomly select a program P, I might not
be able to show that P computes f. For some P's I will be able to
verify correctness, however, so I write only such a program. More
specifically, I will give a mechanism for converting descriptions
in any given formal system into equivalent descriptions in the given
programming language (another formal system); further, I will show
that the mechanism works correctly. Thus, we can convert any
problem in the formal system into a correct program.

Q. POC problem seems to be too general. We would not go to this broad
class of programs. POC problem amounts to determining whether any
given screwball program is correct. But we are usually interested
only in programs that look to be almost correct.

A. I completely share your view. I do not know any investigations along
the lines you suggest. In POC we consider a program without assuming
to know the intuition behind its design. In WCP the person writing
the program takes on himself the responsibility that every "step" he
takes is "safe."

PROOF OF CORRECTNESS

z e D
QUT

If x is the input to program P, then P(x) represents the output of
the program.

70

Def : Correctness : P is correct for the given input-output specifications
iff for any valid input x, P(x) is defined and ?(x,P(x)) = T.

Def : Partial Correctness : P is partially correct for the given input-
output specifications iff for any valid input x, if P(x) is defined, then
¥(x,P(x)) = T.

Thus in partial correctness we verify the correctness of the output
only if the program halts. Note that if the program never halts for any
valid input, then it is partially correct, by default.

Def : Termination : Program P terminates iff for every valid input x,
P(x) is defined. Thus if P is partially correct and terminates, then P

is correct.

There are various methods to establish the correctness of programs.
In another lecture we give an outline of the main techniques, but today
we restrict ourselves to one of them - Proof by Inductive Assertions.

Proving correctness can be traced to Goldstine and von Neumann [1961].

But the first treatment in any great detail is by Gorn [1968], who gives
two principles; one for proving partial correctness, and the other for
establishing termination.

5.1 Principle of Command Recursion (Partial Correctness)

"Any function or property of the contents of a storage area which is

left invariant by every sub-processor of a processor is left invariant by
the whole processor.

"

5.2 Principle of Monotony (Termination)

"If a processor with a single exit has a sub-processor (in fact, a
discriminator) which must be invoked again after each use not leading to
the exit, and if there is a function of the storage whose range is the
set of natural numbers and such that its value at each application of
the discrimination is less than at the preceding, then the processor
must "conclude."

Let us apply these principles to the following program (Gorn)

:

71

IN
x.,x e N

yi; x
i

y
2,

X
2

REM<- x^
• -x

x

*(x lt
x
2
)-T

f(x
1
;x

2
»y

1
>y2

,BEH v c
1
):

B ,

(Zl = gcd(Xl ,x
2
)

REM «- y^y^
y
2

REM

yl" y
2

-> OUT

y
1
,y2

'

(BEM,s
1

e N

Figure 1

Input variables: x^, X2

Output variables: y-]_, y2 , REM, z-,

(REM -<-
y]_ * y2 results in assigning remainder of y-, * y2 to REM)

We want to prove that the program is correct for the above specifications.

Partial Correctness :

It is easy to verify that the condition "gcd(y, , y2
) = gcdCx-. , x2

)"

is left invariant by both Sj and S2 . Hence, by Command Recursion, the

same condition is invariant for the program from A to B. If we substitute
the initial assignment, the condition y2 = at B, and the final assignment

,

we get "Z]_ = gcd(x-j_, x
2
)" at the output. This establishes partial

correctness

.

Termination :

For the program from A to B, "y
2

= 0?" is the test condition

(discriminator) and the sub-program S2 always results in decrementing y2
(but always results in a natural number). Hence the program from A to B

terminates (y^ and y2 are natural numbers initially).

Notice that if we replace S
2 by the single assignment statement

y2
-«- y2

+ y-j, the above partial correctness proof remains valid
gcd(y-|_,y

2
) = gcd(y1 ,y1 + y 2

)); but the proof of termination breaks down

(y2 non-decreasing).

This method uses a global property which has to be left invariant by
72

all applicable local transformations. In practice, it is often very
tricky to find this global "invariant" property.

5 . 3 Inductive Assertions Method

This method, advanced by Floyd [1967] and Naur independently, is

another major technique in this area. There is a tendency to credit it
to Goldstine and von Neumann [1961].

The principle is quite simple and you should easily be able to
convince yourself of its validity. We select suitable check points,
including IN and OUT, in the program. At each check point assert a
"suitable" relationship between the variables. Verify that at any
instant, if the assertion at the point of control is satisfied, then
when the next check point is reached the corresponding assertion will be
satisfied. If the assertions at the IN and the OUT nodes are <Kx) and
¥(x,z) respectively, then this verification procedure will establish
partial correctness; so in order to take advantage of the simplifications
possible using this approach, we need local assertions instead of the
global assertion of Gorn.

Some obvious ways of selecting the check points are:

1) Select all the nodes (predicate) of the program.

2) Select nodes such that no closed path exists without a check
point.

Q. Theoretically you do not need so many check points.

A. In fact, we need only two check points—the IN and the OUT nodes; in
which case we gain nothing by this method!

Let us apply this technique to the program given in Figure 1. In
addition to IN and OUT, select A as a check point. Let the assertion at
A, $A , be:

<DA(x1 ,x2 ,y1
,y2,KEM,z1): "gcd(x1 ,x

2
) = gcd(y1 ,y2

)".

If control is at IN then we need to verify that

T D $A(x1 ,x
2
,x
1
,x

2
,x1 ,x1)

i.e. we have to verify that gcd(x-j_,x2) = gcd(x]_,x
2).

This is obviously true.

If control is at A, then we need to verify that

73

Path S
1
S
2

: $
A(x

1
,x

2 ,y1 ,y2 ,REM,z-L
) D (y2 i D $A(x1 ,x

2 ,y2 ,y1
•* y2 ,y1 + y2 ,z1)

Path S^g: $A(x1 ,x
2 ,y1 ,y2

,RIM,z1) D (y2
= D¥(x1 ,x2 ,y-

L ,y2
,REM sy1))

Both are easy to verify. Thus the program is partially correct.

In the following we give a complete discussion of partial correctness
and termination. We use the program model developed earlier. The program
has n + 2 nodes; IN, OUT and nodes 1, 2, . . . n.

x E D z e D

^(x.z)
OUT

Select the n + 2 nodes as check points and associate assertion q-j_ with
node i, i = 1, . . . , n

If the ith node is of the form

then the verification condition, W-, for node i is:

W-: (vz)(q-(x,z) D(p-(x,z) 3q- (x,t.(x,z)) S (~p..(x,z) Dq. (x,f . (x,z))))

(If i, or i.p is the OUT node, then replace the corresponding q- or q.

by Y.) t lf

Thus we obtain the verifications conditions W-, , W„, . . . , W .

-1- z n

For the node IN the verification condition W is <I>(x) Dq (x,g(x)).
o 1

&

Let [P,T](x) be W A W, A. . .A W .' o 1 n
74

Theorem : P is partially correct for $ and ¥ iff

(Vx e Djjj) ([P,y] (x)) is satisfiable.

Proof : <= :

If the condition is satisfiable (i.e. we are able to select suitable
assertions - q.'s) by trivial induction along the path, P is partially
correct

.

If P is partially correct, we give an interpretation for each q.

,

such that the above condition is satisfied. For any valid input x,
control might be at node i at any instant . At such instants let z

have values z , z . . .

Let q^(x,z-,) = q-(x,z„) = ... = T, and for any other z

q-(x,z) = F, be the interpretation for q-.

Verify trivially that this interpretation satisfies the above condition.

Theorem : P is correct for $ and ¥ iff

(3x e DJN) (<J>(x) A[p,~¥](x)) is not satisfiable. [Manna, 1969].

Proof: ^=> :

We want to show that if P is correct, then the condition cannot be
satisfied. Assume that the condition is satisfiable. The x satisfying
the condition is a valid input, since x e Djj^ and <Kx) = T. Hence P(x)

is defined. Hence, from the condition we have ~¥(x,P(x)) = T, which
gives ¥(x,P(x)) = F. Thus P cannot be correct, a contradiction.

We want to show that if the condition is not satisfiable, then P is

correct. Let P be incorrect. It could be because 1) there exists a valid
input for which P(x) is not defined or 2) for some x, P(x) is defined and
¥(x,P(x)) = F i.e. ~¥(x,P,(x)) = T.

In either case it is easily seen that the interpretations given in

the previous theorem satisfy the above condition, a contradiction. QED.

Observe that if P does not terminate, then (3x e Dj^)($(x) A [P,a] (x))

is satisfiable for any output assertion a.

This technique could become very involved if you have even a
moderately large program. There is no guarantee that we will not make a
mistake in a correctness proof. At the end of the whole experience you
might be more at ease with the program than the proof.

75

WRITING CORRECT PROGRAMS

Proof of correctness seems to be very complex even for moderate
size programs. Is there any other way of handling the "complexity of
large problems?"

Dijkstra [1970] advocates top-down programming and a highly
structured discipline of program synthesis. In one step of a program
synthesis we decompose the given problem into a small number of sub-
problems, with suitable input-output specifications for each sub-problem.
We establish correctness of the given problem, assuming the correctness
of the sub-problems, and repeat the procedure for each of the sub-
problems until the basic instruction level is reached. The structure of
the final programs is highly characterized; hence the name structured
programming

.

Some people advocate specifically, restricting the decompositions
to the following:

1. Decompose * P + into * P-i -» Po (BLOCK)

2. Decompose *- P -* into

(IFTHENELSE)

3. Decompose •* P -> into

T/F

*a

—

> P (DOWHILE)

The programs synthesized through the above decompositions are known
as D-programs (D for Dijkstra). At this time there is no convincing
evidence that shows this severely restricted decomposition to be of much
pragmatic value. It seems that we need more powerful decompositions for

"facility" in programming, although theoretically, the above decompositions
have sufficient computing power. There is, however, a great deal of merit
in the general philosophy of the structured approach to programming.

We could derive partial correctness and termination conditions for
any decomposition by using the assertions method. For simple structures
like the above, however, we can write correctness criteria by observation
as follows [Mills, 1972]:

76

Assume that the problem is specified by a function P and input
specifications $, with input domain = output domain = D

* (XU px e D

We also assume that there is only one vector x, which gets transformed by
the problem. (A notable difference from the previous approach.) Thus
for any valid input x, the output is defined, and is P(x).

6.1 Structure 1

xeD xeD xeD
^ P > is decomposed into > P.. > P„

x. j: X rTS-i Z

Then the only conditions to be satisfied are

$(x) D $
1

(P
1
(x))

and (x) D P(x) = P^P^x)).

there is a lot of flexibility in selecting P^ and P
2

- Each of them
should have "less complexity" than f

.

Q. Is there any strategy in the selection of P-, and P2?

A. Not in an absolute sense.

Q. What do you mean by "less complexity?"

A. I do not have a precise definition. Qualitatively the less complex
problem is easier to realize. If we select P-^ = id function and

P2 = P then the correctness conditions are satisfied. But P2 has

the same complexity as P.

6.2 Structure 2

D

if
D /

> P

$ \ D
\ -^"2

$„
2

77

The correctness conditions are

<Kx) A p(x) D * (x)

<J>(x) A ~ p(x) 2) $
2 (x)

<D(x) A p(x) DP(x) = P
1
(x)

»(x) A ~ p(x) D P(x) = P
2
(x)

Thus for a valid input x, if p(x) = T, then P]_(x) = P(x) and if pCx) = F,

then P2 (x) = PCx).

P-, and P
2
may be defined for other values in order to simplify P->

and Po as much as possible.

6 . 3 Structure 3

The partial correctness conditions are:

<Kx) A ~ p(x) D ^(x)

<Kx) A - p(x) D PCx) = P(P (x))

<Kx) A p(x) D PCx) = x

The termination condition is:

(Vx) ($(x)) D (3i 10) (p(PJ(x)) = T))

where P-, Cx) = x.

The termination condition derived here is similar to the principle of
monotony of Gorn.

We should be extra careful with this structure, since it requires a
non-trivial termination condition to be satisfied. If we measure the
complexity of a control structure by the "complexity" (in a quality sense)
of the termination condition, then the following structure seems to have
almost "the same complexity" as the previous structure:

78

D,

T

V
D, ft,

-*-P,

7
\

-» P,

D, ft.

Termination condition:

(Vx)($(x) D (3i > 0)(p((P
2
P
1

)
i
(x)) V q(P

1
(P

2
P
1

)
i
(x))),

6.4 Conclusions

It might prove to be fruitful to systematically study the problem
of complexity of structures. This approach might prove to be useful in
the design of control structures in a programming language.

Co-routine construction seems to be much more complex than the
structures we have considered above. The Repeat-Exit constructs of
Khuth and Floyd [1970], deserve further study because they are useful
in a pragmatic sense, and yet do not seem to complicate the techniques
developed for analyzing D-programs.

79

BIBLIOGRAPHY

1. Ashcroft, E. and Manna, Z. , The Translation of "Go To" Programs,
Booklet TA-2, Preprints of the IFIPS Congress 1971, Ljubljana,
Yugoslavia, August 1971 (North Holland Publishing Co.

,

Amsterdam, 1971).

2. Baker, F. T. , Chief Programmer Team Management of Production
Programming, IBM Syst. J. 11, No. 1, pp. 56-73 (1972).

3. Bohm, C. and Jacopini, G. , Flow Diagrams, Turing Machines and
Languages with Only Two Formation Rules, CACM 9, No. 5,

pp. 366-371 (May 1966).

4. Buxton, J. N. and Randell, B. (Editors), Software Engineering
Techniques, Report on a conference sponsored by the NATO
Science Committee, Rome, Italy, Oct. 27-31, 1969 (available
from Scientific Affairs Division, NATO, Brussels 39, Belguim)
(1970).

5. Computer Science Research Review, 1970-71 (Department of Computer
Science, Carnegie-Mellon University , Pittsburgh, 1971).

6. Cooper, D. C. , Bohm and Jacopini 's Reduction of Flow Charts, CACM
10, No. 8, pp. 463, 473 (Aug. 1967).

7. Dijkstra, E. W. , A Constructive Approach to the Problem of Program
Correctness, BIT 8, pp. 174-186 (1968).

8. Dijkstra, E. W. , Go To Statement Considered Harmful, CACM 11,

No. 3, pp. 147-148 (Mar. 1968).

9. Dijkstra, E. W. , Notes on Structured Programming, T. H. Report
70-WSK-03 (Technological University, Eindhoven, Netherlands,
1970).

10. Floyd, R. W. , Assigning Meanings to Programs, Proceedings of the
Symposium on Applied Mathematics 19, pp. 19-32 (American Math.
Society, Providence, R. I., 1967).

11. Goldstine, H. H. and Von Neumann, J. , Planning and Coding Problems
for an Electronic Computing Instrument, Collected works of John
Von Neumann, Vol. 5, pp. 80-104 (Pergamon Press, New York, 1961).

12. Gorn, S. , The Identification of the Computer and Information Sciences:

Their Fundamental Semiotic Concepts and Relationships, Founda-
tions of Language 4, pp. 339-372 (1968).

13. Griswold, R. E. , Poage, J. F. , and Polansky, I. P., The SNOBOL 4

Language (Prentice-Hall, Inc., Englewood Cliffs, N. J., 1968).

80

14. Henderson, P. and Snowdon, R. , An Experiment in Structured
Programming, BIT 12, pp. 38-53 (1972).

15. Khuth, D. E. and Floyd, R. W. , Notes on Avoiding "Go To" Statements,
Report No. SC-148 (Computer Science Department, Stanford
University, 1970).

16. Kbsaraju, S. R. , Analysis of Structured Programs, Technical Report
(The John Hopkins University, Nov., 1972).

17. Lyon, G. E. , Least Errors Recognition of Mutated Context Free
Sentences in Time n-Cubed Log n. Proceedings, Sixth Princeton
Conference on Information Systems and Sciences, pp. 115-118

(Mar. 1972).

18. Manna, Z. , The Correctness of Programs, JCSS 3, No. 2, pp. 119-127
(May 1969).

19. Mills, H. D. , Mathematical Foundations for Structured Programming,
FSC 72-6012 (Federal Systems Division, IBM Corp. , Gaithersuburg

,

Md. , 1972).

20. Parnas, D. L. , A Technique for Software Module Specification with
Examples, CACM 15, No. 5,ppp. 330-336 (May 1972).

21. Peach, P., Quality Control for Computer Programming, A Final Report
on an Initial Study (SDC Tech. Memo for the Defense Documentation
Center, 1965); AD642303.

22. Quine, W. , Word and Object (Technology Press of the Massachusetts
Institute of Technology, Cambridge, 1960).

23. Sammet, J. E. , Programming Languages: History and Fundamentals
(Prentice-Hall, Inc., Englewcod Cliffs, N. J., 1969).

24. Smith, Don, Jr. , An Organization for Successful Project Management,
AFIPS Conference Proceedings, Vol. 40, Spring Joint Computer
Conference, Atlantic City, N. J., May 16-18, 1972, pp. 129-140
(AFIPS Press, Montvale, N. J., 1972).

25. Tou, J. T. (Editor), Software Engineering, COINS III, Vol. I,

Proceedings of the Third Symposium on Computer and Information

Sciences, Miami Beach, Florida, Dec. 1969 (Academic Press,
New York, 1970).

26. Weinberg, G. M. , The Psychology of Computer Programming (Van Nos-
trand Reinhold Company, New York, 1971).

27. Wirth, N. , Program Development by Stepwise Refinement, CACM 14,

No. 4, pp. 221-227 (Apr. 1971).

81

28. Wirth, N. , The Programming Language PASCAL, Acta Informatica 1,
pp. 35-63 (1971).

29. Wulf , W. A. , A Case Against the GOTO, Proceedings of the ACM
Annual Conference, Boston, Aug. 1972, pp. 791-797 (Association
for Computing Machinery, New York, 1972).

30. Wulf, W. A. , ELISS Reference Manual (Computer Science Department,
Carnegie-Mellon University , Pittsburgh, rev. Oct., 1971).

82

NBS-114A (REV. 7-73)

U.S. DEPT. OF COMM.
BIBLIOGRAPHIC DATA

SHEET

1. PUBLICATION OR REPORT NO.

NBS TN-842

2. Gov't Accession
No.

3. Recipient's Accession No.

4. TITLE AND SUBTITLE

CONCEPTS IN QUALITY SOFTWARE DESIGN

5. Publication Date

August 1974
6. Performing Organization Code

7. AUTHOR(S)
S. L. Stewart (editor)

8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

10. Project/Task/Work Unit No.

6401121
11. Contract/Grant No.

12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)

Same as 9

13. Type of Report & Period
Covered

Interim 1972
14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 74-600130

16. ABSTRACT (A 200-word or less tactual summary of most significant information. If document includes a significant

bibliography or literature survey, mention it here.)

A seminar series on quality software, sponsored by the Systems and Software Division,
was held at the National Bureau of Standards during the summer of 1972. This Note
includes five of these seminars in edited form. (I) A brief background provides
motivation for studies in software quality. The authors mention some factors which
influence software manufacture, and propose measures which might quantify concepts
of "software quality". Several approaches to establishing program correctness receive
attention. (II) Elements of top-down programming are sketched out and then examined
in detail. An extended critique of another top-down experiment provides example
material . (III) Powers of various structured control constructs are' compared within
a framework'' of weak and strong program equivalence. Results include a demonstration
that Dijkstra's D-programs are strongly equivalent to programs built from functions
and one-input/two-output predicates. (TV) After a review of Quine's notion of
referential transparency, the author examines elements of good and bad programming
practice. In addition, a table of programming proverbs provides guidance to a program-
mer, and should be especially useful to a novice. (V) Discussions on problem and pro-
gram specification provide an introduction to a review of proof-of-correctness tech-
niques. Then, noting some practical limitations on proving correctness, the author
goes on to examine selected facets of program synthesis.

17. KEY WORDS (six to twelve entries: alphabetical order; capitalize only the first letter of the first key word unless a proper

name; separated by semicolons) Control structures ; GOTO-less programming; program validation;
programming; proofs of correctness; referential transparency; software quality;
structured programming; top-down programming.

18. AVAILABILITY [X? Unlimited

jj For Official Distribution. Do Not Release to NTIS

IX - Order From Sup. of Doc, U.S. Government Printing Office
Washington, D.C. 20402, SD Cat. No. C13. 46:843

!

Order From National Technical Information Service (NTIS)
Springfield, Virginia 22151

19. SECURITY CLASS
(THIS REPORT)

UNCLASSIFIED

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

21. NO. OF PAGES

22. Pr

$1.25

USCOMM-DC 290427 P74

U.S. GOVERNMENT PRINTING OFFICE: 1974— 583—010:2

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau
of Standards research and development in physics,

mathematics, and chemistry. Comprehensive scientific

papers give complete details of the work, including

laboratory data, experimental procedures, and theoreti-

cal and mathematical analyses. Illustrated with photo-

graphs, drawings, and charts. Includes listings of other

NBS papers as issued.

Published in two sections, available separately:

• Physics and Chemistry (Section A)

Papers of interest primarily to scientists working in

these fields. This section covers a broad range of physi-

cal and chemical research, with major emphasis on

standards of physical measurement, fundamental con-

stants, and properties of matter. Issued six times a

year. Annual subscription: Domestic, $17.00; Foreign,

$21.25.

• Mathematical Sciences (Section B)

Studies and compilations designed mainly for the math-
ematician and theoretical physicist. Topics in mathe-
matical statistics, theory of experiment design, numeri-

cal analysis, theoretical physics and chemistry, logical

design and programming of computers and computer
systems. Short numerical tables. Issued quarterly. An-
nual subscription: Domestic, $9.00; Foreign, $11.25.

DIMENSIONS/NBS (formerly Technical News Bul-

letin)—This monthly magazine is published to inform
scientists, engineers, businessmen, industry, teachers,

students, and consumers of the latest advances in

science and technology, with primary emphasis on the

work at NBS.
DIMENSIONS/NBS highlights and reviews such

issues as energy research, fire protection, building-

technology, metric conversion, pollution abatement,
health and safety, and consumer product performance.
In addition, DIMENSIONS/NBS reports the results of

Bureau programs in measurement standards and tech-

niques, properties of matter and materials, engineering
standards and services, instrumentation, and automatic
data processing.

Annual subscription: Domestic, $6.50; Foreign, $8.25.

NONPERIODICALS

Monographs—Major contributions to the technical liter-

ature on various subjects related to the Bureau's scien-

tific and technical activities.

Handbooks—Recommended codes of engineering and
industrial practice (including safety codes) developed
in cooperation with interested industries, professional

organizations, and regulatory bodies.

Special Publications—Include proceedings of high-level

national and international conferences sponsored by
NBS, precision measurement and calibration volumes,
NBS annual reports, and other special publications

appropriate to this grouping such as wall charts and
bibliographies.

Applied Mathematics Series—Mathematical tables,

manuals, and studies of special interest to physicists,

engineers, chemists, biologists, mathematicians, com-
puter programmers, and others engaged in scientific

and technical work.

National Standard Reference Data Series—Provides
quantitative data on the physical and chemical proper-
ties of materials, compiled from the world's literature

and critically evaluated. Developed under a world-wide
program coordinated by NBS. Program under authority
of National Standard Data Act (Public Law 90-396).

See also Section 1.2.3.

Building Science Series—Disseminates technical infor-

mation developed at the Bureau on building materials,

components, systems, and whole structures. The series

presents research results, test methods, and perform-
ance criteria related to the structural and environmen-
tal functions and the durability and safety character-
istics of building elements and systems.

Technical Notes—Studies or reports which are complete
in themselves but restrictive in their treatment of a
subject. Analogous to monographs but not so compre-
hensive in scope or definitive in treatment of the sub-
ject area. Often serve as a vehicle for final reports of

work performed at NBS under the sponsorship of other
governm/ent agencies.

Voluntary Product Standards—Developed under pro-

cedures published by the Department of Commerce in

Part 10, Title 15, of the Code of Federal Regulations.
The purpose of the standards is to establish nationally

recognized requirements for products, and to provide

all concerned interests with a basis for common under-
standing of the characteristics of the products. The
National Bureau of Standards administers the Volun-
tary Product Standards program as a supplement to

the activities of the private sector standardizing
organizations.

Federal Information Processing Standards Publications
(FIPS PUBS)—Publications in this series collectively

constitute the Federal Information Processing Stand-
ards Register. The purpose of the Register is to serve

as the official source of information in the Federal Gov-
ernment regarding standards issued by NBS pursuant
to the Federal Property and Administrative Services
Act of 1949 as amended, Public Law 89-306 (79 Stat.

1127), and as implemented by Executive Order 11717
(38 FR 12315, dated May 11, 1973) and Part 6 of Title

15 CFR (Code of Federal Regulations). FIPS PUBS
will include approved Federal information processing
standards information of general interest, and a com-
plete index of relevant standards publications.

Consumer Information Series—Practical information,
based on NBS research and experience, covering areas
of interest to the consumer. Easily understandable
language and illustrations provide useful background
knowledge for shopping in today's technological

marketplace.

NBS Interagency Reports—A special series of interim

or final reports on work performed by NBS for outside

sponsors (both government and non-government). In

general, initial distribution is handled by the sponsor;
public distribution is by the National Technical Infor-

mation Service (Springfield, Va. 22151) in paper copy
or microfiche form.

Order NBS publications (except Bibliographic Sub-
scription Services) from: Superintendent of Documents,
Government Printing Office, Washington, D.C. 20402.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES
The following current-awareness and literature-survey

bibliographies are issued periodically by the Bureau:

Cryogenic Data Center Current Awareness Service
(Publications and Reports of Interest in Cryogenics).
A literature survey issued weekly. Annual subscrip-

tion: Domestic, $20.00; foreign, $25.00.

Liquefied Natural Gas. A literature survey issued quar-
terly. Annua] subscription: $20.00.

Superconducting Devices and Materials. A literature
survey issued quarterly. Annual subscription: $20.00.

Send subscription orders and remittances for the pre-

ceding bibliographic services to the U.S. Department
of Commerce, National Technical Information Serv-

ice, Springfield, Va. 22151.

Electromagnetic Metrology Current Awareness Service
(Abstracts of Selected Articles on Measurement
Techniques and Standards of Electromagnetic Quan-
tities from D-C to Millimeter-Wave Frequencies).
Issued monthly. Annual subscription: $100.00 (Spe-

cial rates for multi-subscriptions). Send subscription

order and remittance to the Electromagnetic Metrol-

ogy Information Center, Electromagnetics Division,

National Bureau of Standards, Boulder, Colo. 80302.

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington. DC. 20234

OFFICIAL BUSINESS

Penalty for Private Use. $300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM—215

'^6-19l6

