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TENSILE BEHAVIOR OF BORON/EPOXY-REINFORCED 7075-T6

•ALUMINUM ALLOY AT ELEVATED TEMPERATURES

Daniel J. Chwirut and George F. Sushinsky

Static tensile tests were performed on

specimens of 7075-T6 aluminum alloy, 0° unidirectional
boron/epoxy, and 7075-T6 aluminum alloy reinforced
on the surface with 0° unidirectional boron/epoxy
laminate, at four temperatures up to 300 °F (149 °C)

.

Analytical load-strain curves are formulated for the

reinforced-metal specimens using the rule of

mixtures , assuming that the longitudinal strains
in the composite and the metal remain equal, and

taking account of the residual stresses caused by
the fabrication process. Two analytical curves are
plotted for each reinforced-metal specimen, one
based on the measured ply thickness of the composite,
and one based on a nominal 0.005-in (0.13-mm) ply
thickness. In general, the experimental load-
strain curves fall between the two analytical curves
for each specimen.

Key words: Aluminum alloy; boron/epoxy; co-cure;
composite materials; fabrication process;
load-deformation characteristics; residual stress;
rule of mixtures; sandwich specimen; stress-strain
curves; tensile properties.

1. INTRODUCTION

One philosophy of structural design with advanced composite
materials involves the selective reinforcement of metallic components
with fiber-reinforced composite materials. The advantages of this
philosophy include large weight savings, minimal composite usage, and

retention of current joining and fastening technology. Several
experimental investigations of the benefits to be expected from using
composite materials in this way have been made [1-4]*.

Figures in brackets indicate literature reference on page 10.



Because of the difference in coefficients of thermal expansion for

the metal and composite, residual stresses are Introduced in the

components if the structure is used at a temperature other than the

temperature at which the structure is fabricated. Two commonly used

techniques for fabricating composite-reinforced metal structures are the

co-curing technique, by which the composite is cured and resin-bonded to

ttie metal in the same process, and the secondary bond process, by which
the composite laminate is first cured and then bonded to the metal using

another adhesive. For room temperature applications, significant
residual stresses can be introduced in the components fabricated by the

co-curing technique, whereas structures can be fabricated with
essentially no residual stresses if the secondary bond process is used
with a room temperature curing adhesive. For higher temperature
applications, the co-curing process may be preferable since the residual
stresses are relieved as the temperature approaches the curing
temperature for the composite. Several studies of the effects of these
residual stresses on the static and creep strengths of boron/epoxy-
reinforced metals have been made [5-7].

The investigation reported herein was undertaken to experimentally
determine the elevated temperature load-strain behavior of boron/epoxy-
reinforced 7075-T6 aluminum alloy fabricated by the co-curing process,
and to determine if this behavior can be predicted by a rule-of-mixtures
approach. Residual stresses resulting from fabrication are included in

the analysis, and various composite-to-metal volume ratios are
considered. This investigation was performed in the Engineering
Mechanics Section of the National Bureau of Standards. Part of this
work was carried out under the sponsorship and with the financial
assistance of the National Aeronautics and Space Administration, Langley
Research Center.

2. ANALYSIS

The basic assumption of this analysis is that the total external
load applied to a composite-reinforced metal is distributed between the
component materials such that the strains in the direction of the
applied load are the same in both components. Using this assumption,
predictions of load-strain behavior and tensile moduli for composite-
reinforced metal specimens can be made if the stress-strain behaviors of

the component materials are known. Residual stresses resulting from
fabrication are accounted for by displacing the initial points on the
component material stress-strain curves an amount corresponding to the
component residual stresses.



The residual strains in the components were calculated using thermal

expansion coefficients of 2.8 x 10~^/°F** and 13.6 x 10-6/°F (5.0 x IQ-^

/ °C and 24.5 x 10~^/°C) for the boron/epoxy and aluminum alloy,

respectively. Assuming that the residual strains are elastic, it can be

shown that the residual strain in the aluminum alloy at any temperature
T is given by

e =
(a^ - a.) (To - T)

a D

a 1 ^ E A
1 + a a

E,\

where the a's are thermal expansion coefficients, the E's are the

tensile moduli in the direction of the residual strains, the A's are

cross-sectional areas, and subscripts a and b denote aluminum alloy and

boron/epoxy, respectively. To is the stress-free temperature, which was
taken to be 350 °F (177 °C) , the maximum tepiperature in the cure cycle.
In order to develop the load-strain curve for a reinforced-metal
specimen, the increases in stresses for an incremental increase in

strain were determined for each component from the stress-strain curve
for that component. The starting point on the aluminum-alloy curve was

taken to be the point corresponding to the calculated value of the

residual strain for that specimen. For the boron/epoxy, this correction
was unnecessary since the stress-strain curves for this material are

essentially linear (see figures 6-9) . The component stresses for

successive strain increments were multiplied by the respective cross-
sectional areas, added, and are plotted as a load-strain diagram.
Strain increments of 500 x 10~^ were used.

Using the scheme described above, two load-strain curves were
calculated for each specimen.- One was based on the actual measured
cross-sectional areas of the composite and the metal, and one was based
on a nominal 0.005-in (0.13-mm) ply thickness for the composite
laminate. This was done in order to eliminate variations in the elastic
modulus caused by slight variations in the fiber volume fraction of the

composite. In 0° unidirectional boron/epoxy, the load-carrying
capability (force) and the stiffness (force per unit deformation or
strain) are essentially unaffected by slight variations in volume
fraction caused by bleeding out different amounts of resin during

**Units for physical quantities in this paper are given in both the U. S,

Customary Units and the International System Units (SI) . Conversion factors
pertinent to the present investigation are presented in the Appendix.



the curing process, since the resin carries only a small percentage of

the total load. However, because of the area terms, the ultimate

strength (stress) and the elastic modulus (stress per unit strain) are

affected. For small variations in volume fraction, the load-carrying

capability of a metal reinforced with 0° unidirectional boron/epoxy is

determined principally by the cross-sectional area of the metal and the

number of fibers. Therefore, it was felt that more consistent results

would be obtained if a normalized cross-sectional area based on a

nominal ply thickness were used.

3. TEST SPECIMENS

The geometric configurations of the specimens tested in this

investigation are shown in figure 1,

3.1 Boron/Epoxy Specimens

The composite specimens were unidirectional boron/epoxy with the

filaments alined along the axis of loading. The material was purchased
as continuous prepreg tape and cured by the platen-press technique using
pressures and temperatures recommended by the manufacturer. The
material contained approximately 212 0.004-in (0.10-mm) diameter
filaments per inch (83 filaments per cm) of tape width. The material
was supplied with a glass scrim backing, 0.001 in (0.03 mm) thick. The
filament volume fractions of these specimens, as measured by the point-
counting technique, were between 54 and 58 percent.

3.2 Aluminum Alloy Specimens

Aluminum alloy specimens were cut from a single sheet of 0. 032-in
(0.8-mm) thick 7075-T6 aluminum alloy. All specimens were cut so that
the longitudinal axis of the specimen was in the direction of rolling of

the sheet. The specimen geometry was the standard flat tensile specimen
(fig. 6 of ASTM Designation E8-69 , Tension Testing of Metallic
Materials) , with a reduced section approximately 7 in (18 cm) long. All
specimens were preconditioned by a thermal treatment of one hour at 325

°F (163 °C) and five hours at 350 °F (177 °C) prior to testing. This
simulated the thermal treatment experienced by the aluminum alloy during
the co-cure processing of the sandwich specimens which is discussed
below.

3.3 Sandwich Specimens

Sandwich specimens consisting of 2, 4, 8, 10 or 12 plies of boron/
epoxy between two sheets of 0. 032-in (0.8-mm) thick 7075-T6 aluminum
alloy were tested. The specimens were fabricated by curing the
composite and resin-bonding it to the aluminum alloy in the same



operation without a supplementary adhesive. Good adhesion between
composite and aluminum alloy was achieved for test temperatures up

to 300 °F (149 °C) . Volume fractions for these specimens were not

measured, but based on specimen thicknesses the composite was judged
to be approximately 40 percent filaments and 60 percent epoxy.

4. TEST EQUIPMENT

4.1 Testing Machine

The test program was conducted in a screw-powered universal testing

machine. The calibration of this machine was verified in accordance
with ASTM Designation E4-64, Standard Methods of Verification of Testing
Machines. Errors in applied loads were less than one percent. Specimen

alinement was enhanced by the use of spherical seats in the load train.

4.2 Heating System

The test furnace is composed of two semi-cylindrical sections hinged
along one side. The walls of the furnace were fabricated from 0.5-in
(1-cm) thick asbestos cement pipe, while the upper and lower cover
plates are of 1-in (2-cm) thick asbestos cement sheet.

Heat is supplied by three semi-cylindrical radiant heating units in

each half of the furnace. The annular space between the heating units
and the outer shell is packed with glass fiber insulation. The heaters
are wired in pairs, and the power to each pair is regulated separately.
Temperature was measured with two thermocouples taped to opposite sides
of the specimen equally spaced above and below the mid-height of the
specimen. Temperature was controlled and recorded by a time-
proportioning, recording controller.

4.3 Strain Measurement

Each specimen was instrumented with two electrical resistance strain
gages mounted back-to-back, and alined along the longitudinal axis. The
gages were connected in series to record the average strain.

5. TEST PROCEDURE

The same procedures were followed for tests on all three types of
specimens. The specimen was cleaned with acetone to remove dirt and
oil. Strain gages were bonded to the specimen using an epoxy adhesive,
and thermocouples were taped to the specimen, which was then mounted in
the testing machine.



The specimen was heated to the test temperature in approximately 20

minutes. Adjustments were made to the temperature controller and power

regulators to reduce the temperature variations to an acceptable level.

A difference of 3° F (2 °C) or less between thermocouples and a time

variation of 2 °F (1 °C) over the duration of the test were considered

acceptable. The specimen was maintained at this condition for 30

minutes prior to the application of the load.

Strain readings were taken at discrete load levels up to specimen
failure, while temperature was continuously recorded for the duration of

the test.

6. EXPERIMENTAL RESULTS

6.1 Single Component Specimens

Tensile tests at four temperatures were performed on boron/epoxy
specimens and on aluminum alloy specimens to obtain stress-strain
curves. Initial tangent tensile moduli were determined in accordance

with the procedure outlined in ASTM Designation E231-69, Static
Determination of Young's Modulus of Metals at Low and Elevated
Temperatures, except that resistance strain gages were used instead of

extensometers. The moduli determined from these tests are given in

table 1. Stress-strain curves for the aluminum alloy were faired
through the data from two tests at each temperature. These curves are
given in figures 2 through 5. Stress-strain curves for the boron/epoxy
specimens, based on actual measured area and based on a nominal 0.005-in
(0.13-mm) ply thickness, are given in figures 6 through 9.

6.2 Sandwich Specimens

Tensile tests on sandwich specimens with four plies of boron/epoxy
between two sheets of 7075-T6 aluminum alloy were performed at four
temperatures. The test conditions and results are given in table 2.

Tensile tests on sandwich specimens with 2, 4, 8, 10, and 12 plies
of boron/epoxy were performed at 150 °F (66 °G) to determine the effect
of composite-to-metal volume ratio. Tests conditions and results of
these tests are given in table 3.

Load-strain curves for the 4 - ply specimens are shown in figures 10

through 17 while the family of curves for the 2, 4, 8, 10, and 12 ply
specimens is shown in figure 18.

The experimental and the calculated initial tangent tensile moduli
for each specimen were determined graphically from the experimental and
calculated load-strain curves for that specimen. These moduli are given



in tables 2 and 3. The experimental elastic moduli for specimens with

different amounts of boron/epoxy reinforcement are shown as a function
of specimen volume fraction in figure 19.

Most tests resulted in failure of the boron/epoxy in the grips,

followed by aluminum failure or gross debonding. Therefore, no

meaningful ultimate strength data were obtained.

7. DISCUSSION

7.1 Load-Strain Behavior of Composite-Reinforced Metal

The load-strain curves for the boron/epoxy-reinforced 7075-T6

aluminum alloy specimens tested in this investigation are generally
nonlinear from zero load, with the amount of nonlinearity decreasing
with increasing temperature. This nonlinearity is expected since these
curves are combinations of the essentially linear, boron/epoxy stress-
strain curves (figs. 6-9) and the nonlinear aluminum alloy stress-
strain curves (figs. 2-5). Herakovich [5, 6] has reported the load-
strain curves for boron/epoxy-reinforced aluminum and titanium to be

basically bilinear at room temperature. His stress-strain curves appear
to be strictly linear for boron/epoxy and bilinear for aluminum and
titanium (see [6], fig. 6). The differences between the stress-strain
behaviors of the aluminum alloy specimens reported by Herakovich and
those tested in this investigation may by due to differences in the

thermal preconditioning prior to testing.

7.2 Correlation Between Experiment and Analysis

For tests run at the three lowest temperatures, the experimental
load-strain curves generally fall between the two analytical curves
(figs. 10-15). For both tests at 300 °F (149 °C) the experimental
curves fell below both analytical curves (figs. 16-17). This trend also
occurs in the moduli data (table 2) . The differences between the

calculated moduli and the experimentally determined moduli range from
to 20 percent of the experimental moduli.

Two factors contributing to these discrepancies are differences in

the volume fractions of the boron/epoxy between component specimens and
sandwich specimens, and uncertainty in the values of residual stress in

the specimen. The influence of the first factor may be removed by using
the normalized ply thickness. Although this did not remove the
discrepancies completely, the normalized- thickness curves are somewhat
closer to the experimental curves than the curves based on the actual
measured areas. It appears then that uncertainty in the residual stress
is the prominent factor. An earlier investigation at this laboratory
[7] indicated a large scatter in the values of residual stress measured



in specimens fabricated using the co-cure method. If the exact value of

residual stress were determined for each specimen, analytical results

more consistent with the experimental results might have been obtained.

7.3 Effects of Specimen Volume Fraction

With no residual stresses, the tensile modulus of the reinforced-
metal specimens would be expected to increase linearly with increased
reinforcement (see dashed line, fig. 19), based on a simple rule-of-
mixtures combination of the tensile moduli of the two component
materials. When residual stresses are considered, the effective tensile

modulus of the metal is reduced, and the modulus of the reinforced metal

is somewhat below the linear relationship. The overall effect of the

reduction in metal modulus is lessened as the volume fraction of metal
in a reinforced-metal specimen is reduced. The limiting value is the

modulus of the composite at 100 percent composite volume fraction. This
trend is followed closely by the experimental data as shown in figure
19.

8. CONCLUSIONS

Based on the experiments and analysis covered by this report, the
following conclusions are drawn:

1. Load-strain curves for 7075-T6 aluminum alloy
reinforced with 0° unidirectional boron/epoxy
at temperatures up to 300 °F (149 °C) can be
formulated with reasonable accuracy from stress-
strain data on the component materials. The
analysis, which is based on an empirical rule-
of-mixtures approach, includes a prediction of
the effect of the fabrication residual stresses
in the component materials.

2. If a normalized area, based on a nominal 0.005-in
(0.13-mm) ply thickness, is used for the com-
posite, the resulting analytical load-strain
curves are generally closer to the experimental
curves than the curves based on actual measured
cross-sectional areas. This normalization
removes the effect of small changes in the
amount of epoxy matrix in the system which add
negligible strength or stiffness to a composite-
reinforced metal.

3. The discrepancies between the analytical and the
experimental load-strain curves probably result
from inaccuracies in the values of residual stress



used in the calculations.

4. The elastic modulus of boron/epoxy-reinforced
7075-T6 aluminum alloy fabricated by co-curing
increases nonlinearly with increased amounts of

reinforcement. This nonlinearity results from
the fabrication residual stresses, which reduce
the effective modulus of the metal component.
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FIGURE 13. EXPERIMENTAL AND CALCULATED LOAD-STRAIN RELATIONS FOR

SPECIMEN BA-11 (T - 150°F, 66°C)
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APPENDIX

Conversion of U. S. Customary Units to SI Units

For simplicity, only U. S. customary units have been used in the

figures of this report. It should be noted that the U.S.A. is a

signatory to the General Conference of Weights and Measures which gave
official status to the metric SI system of units in 1960. Conversion
factors for units used in this paper are given in the following table:

Physical U. S. customary
quantity unit SI unit Conversion factor

Force pound-force (Ibf) newton (N) 1 Ibf = 4. 448 N

Length inch (in) metre (m) 1 in = 0.0254 m

Area in^ m^ 1 in^ = 6.4516 x 10"^ m^

Stress Ibf/in^ N/m^ 1 Ibf/in^ = 6895 N/m^

Temperature °F °C °C - 0.556 (°F - 32)

Other conversion factors can be found in ASTM Standard Metric Practice
Guide, ASTM Designation E380-72 (available from American Society for
Testing and Materials, 1916 Race Street, Philadelphia, Pennsylvania
19103).
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