
\ UNITED STATES

IEPARTMENT OF

COMMERCE
'UBLICATION

J* '**.

NBS TECHNICAL NOTE 797

Static Language Analysis

IOO

U5753
to. 797
1973

U.S.

PARTMENT
OF

OMMERCE

National

Bureau

of

Standards

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards 1 was established by an act of Congress March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in trade,

and (4) technical services to promote public safety. The Bureau consists of the Institute for

Basic Standards, the Institute for Materials Research, the Institute for Applied Technology,

the Institute for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United

States of a complete and consistent system of physical measurement; coordinates that system

with measurement systems of other nations; and furnishes essential services leading to accurate

and uniform physical measurements throughout the Nation's scientific community, industry,

and commerce. The Institute consists of a Center for Radiation Research, an Office of Meas-

urement Services and the following divisions:

Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Nuclear

Sciences
2 — Applied Radiation

2 — Quantum Electronics * — Electromagnetics 3 — Time

and Frequency 3 — Laboratory Astrophysics 3 — Cryogenics s
.

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to

improved methods of measurement, standards, and data on the properties of well-characterized

materials needed by industry, commerce, educational institutions, and Government; provides

advisory and research services to other Government agencies; and develops, produces, and

distributes standard reference materials. The Institute consists of the Office of Standard

Reference Materials and the following divisions:

Analytical Chemistry — Polymers — Metallurgy — Inorganic Materials — Reactor

Radiation — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote

the use of available technology and to facilitate technological innovation in industry and

Government; cooperates with public and private organizations leading to the development of

technological standards (including mandatory safety standards), codes and methods of test;

and provides technical advice and services to Government agencies upon request. The Institute

consists of a Center for Building Technology and the following divisions and offices:

Engineering and Product Standards — Weights and Measures — Invention and Innova-

tion — Product Evaluation Technology — Electronic Technology — Technical Analysis

— Measurement Engineering — Structures, Materials, and Life Safety* — Building

Environment * — Technical Evaluation and Application * — Fire Technology.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research

and provides technical services designed to aid Government agencies in improving cost effec-

tiveness in the conduct of their programs through the selection, acquisition, and effective

utilization of automatic data processing equipment; and serves as the principal focus within

the executive branch for the development of Federal standards for automatic data processing

equipment, techniques, and computer languages. The Center consists of the following offices

and divisions:

Information Processing Standards — Computer Information — Computer Services —
Systems Development — Information Processing Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and

accessibility of scientific information generated within NBS and other agencies of the Federal

Government; promotes the development of the National Standard Reference Data System and
a system of information analysis centers dealing with the broader aspects of the National

Measurement System; provides appropriate services to ensure that the NBS staff has optimum
accessibility to the scientific information of the world. The Office consists of the following

organizational units:

Office of Standard Reference Data — Office of Technical Information and Publications—
Library — Office of International Relations.

1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address
Washington, D.C. 20234.

2 Part of the Center for Radiation Research.
a Located at Boulder, Colorado 80302.
« Part of the Center for Building Technology.

Bureau of Standards

1974

-1?ef.

("53

7<n

Static Language Analysis

Gordon Lyon

Systems and Software Division

Institute for Computer Sciences and Technology

\l
, 5 / National Bureau of Standards

m »
" Washington, D.C. 20234

i 'JedkjAM}..oJ kiA+£ no. "7^7

.eJ»T OF e

\

%fAU Of
*•

U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary

NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

Issued October 1973

National Bureau of Standards Technical Note 797

Nat. Bur. Stand. (U.S.), Tech. Note 797, 23 pages (Oct. 1973)

CODEN: NBTNAE

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402

(Order by SD Catalog No. 03.46:797). Price 50 cents.

CONTENTS

Page

1. Introduction 1
1.1 Definition of Terms . . . 1

2. Static Analysis 2

2.1 Possibilities 2

2.1.1 Compiler Monitor 2

Table I 3

2.1.2 Final Product Auditor 4

2.1.3 Programming Aids Which Record 4
2.2 Proposed Static Analysis Approach 4

2.2.1 Visible Features 4

2.2.2 Transparent Features 5

Table II 6

2.3 Frogranming Aids and Services 7

Figure 1 8

2.4 Internal Features of TSA 9

2.4.1 Specific TSA Features 9

2.4.2 Further Details for FORTRAN 13
2.4.3 An Approach to COBOL 14

3. Conclusions 15

3.1 Future Plans 16

3.2 A Suggestion for Compiler Producers 16

4. References . 17

m

Static Language Analysis

Gordon Lyon

Although many variants of programming languages exist,
little information is available on how language features are
actually used by programmers. Several data collection
schemes are discussed here; each would provide empirical data

on language use. Some internal details are given for
analyzers for FORTRAN and COBOL. In addition, a suggestion
is made for a special systems option which would allow a
compiler to continuously record source statement character-
istics of programs given to it.

Key words: Data archives; language use; programming aids;

programming languages; source-statement analysis; syntax
analysis

.

1. INTRODUCTION

Despite a proliferation of computer languages in the last decade,
little has been gathered on actual, everyday use of programming languages
and their compilers. Knuth 1 ' 1

* provides rudiments of what such studies
might comprise. Professional language and compiler designers may scoff
at an empirical approach to what has been essentially a realm of logic
and axiomatics. Yet Knuth himself indicates that his personal experience
included an overemphasis on clever design optimizations which would be
invoked quite infrequently According to his study)

.

The purpose of this report is to lay ground work for a reasonable
language utilization analysis package. Such a utility would provide
performance records to managers and language development groups. Statis-
tics would be available on a Government-wide basis to measure processes
of creation and maintenance of computer software. Analysis of programs
could provide programmers with checkout and documentation aids, managers
with maintenance and production statistics, and systems designers with
utilization data.

1.1 Definition of Terms

Static analysis denotes a source-statement examination applicable
to some class of programs. All FORTRAN programs — correct or with
errors — typify such a class. Static analysis does not include features
which interactive systems might provide. Specifically, no prompting is
given. Objectives are thus for batch-run, program analyses.

Dynamic analysis denotes a statistical examination of a program'

during execution. This report does not discuss" any aspect of dynamic

analysis.

2. STATIC ANALYSIS

It is not difficult to give arguments on why managers, a standards
committee, or NBS might want archives data on program language use: to
determine representative statement mixes for compiler benchmarks; to
design compact languages; to determine programmer performances; to reduce
language-induced errors; to monitor the status of shop programs.

2 . 1 Possibilities

Discussion begins with an examination of three possible forms of
static analysis data collection. The methods are: taps on streams
of system compilers (a sleuth); programming aids which also record lan-
guage-use data (a Trojan horse); final product auditor (the enforcer).
A chart (cf . Table I) summarizes estimates of performance, costs, and
audience for these three. Questions which might be asked of each
method are:

1. Integrity of measurements. Do data from static analyses
represent a good sampling of the population of programs?
(A, C, below)

2. Archive adequacy. Do data contain answers to a wide collection
of questions? (C, G)

3. Audience. What costs and effort do those using the end product
justify? (B, D, E, F, G)

With items 1-3 above in mind, one can begin examining technical
features of each method of static analysis.

2 . 1. 1 Compiler Monitor . Best among analyzers in regard to collecting
representative data, a compiler monitor is basically just a tap
on some compiler input or output stream. In one instance, all
daily input might be saved additionally on tape. If a thousand
programs of 1000 cards each are compiled per day, the data may
occupy over 15 reels of magnetic tape. Given the vital role
that a compiler plays in an operational system, mechanisms to
collect test data should interfere as little as possible with
compiler executions. This factor may demand highly tailored
assembly language interfaces, with their concommitant high program-
ming cost. Furthermore, little time should be spent transforming
data from the compiler before recording it, so as to limit
overhead. The net result of the preceding arguments: the
monitor may record huge volumes of data, tying up a complete
tape drive and many reels of tape. Each day all these reels •

must then be reduced and merged to a master file. Although a
monitor provides an excellent data base, great care must be
exercised so that the data collection does not swamp operations.

>> 0)

fa
t a,3 bO

0) <u

g|
P |

a
a>

<1)

p

X ffl

•H
S CO CO

CO

OJ U)

3>4.8 1

•H h

3 o>

*x1 tj

• bC

rH
rH-rl

P
a) coM C
o

6* Q)
to

a r, :?

liib TO M-(4J

"p-S

to E <u

•o 3

CD

P>J -r)

d * e
G 0) -H
O <H rH CO

£> S ^"§
TO I X)-n
B to a>

to Pi O
• 6 CD P p
bO fi X -H
• O P TO

0) -P bO
>^ " "3 c^ H t/3 TD •

H

§ft CD TJ
ft U bO CDH 3 C C 0)^ ID HJ'ri C

-•4
cu tt)

I
co

'* -Sa) co jd

CO

3 d "J
o ro oH C-H^ (3 p

CO
co co

•3 8

bp a.
ID
> bO

si

4i s
•H 0) O

•68 SIS
•H O & C

+j T3 '§
^ to n) 3
£»• H., X
CO -H 4n CD
bOM-i -rH

•S d) CO

> Q -
TO TO
CO rH
** ftP CO

•H
P

(0

H & 0)

Q

CO CT;

CO CO 0)
- - P
•P. G E

&b
to O
a) £v ft g

6°

& I

CO <D
rH X)
•H
ft O
% mQ 1

0)

1
g

if
9

"

§ CO 0)
+J •§ +J
ra C jd

to ft O

r^
rl C
ft O
O P
°*
$"%
TO
CD CO T3

TO (0

Be*
v-» P O

o to 6
-p

3 "8 .50)
u i

TJ X) X)
J 3S

a & 8

v o
-9

p -a
Q C

ft

co X>

co hO >iTD O CD
TO O co C CO H
0) rH TO TO H -H^ to a) B <C ft

t)
<u

- p
a) q o
rH a) a)

ft CmH
O 0) rH
cu xi o
ft o

B P to
CD C-r)p aj
to B p
>> S3 TO
co box:^ TO S

P

«
•H

cu Bh 3H H

<

p

COp
CO

38

•H
r-\

•H

-TO

'J

CQ o

g

rH

"TOP CD
co co

C TOH W

W

I

U-> CO

TABLE I

Conparison of -Three Methods of Static Analysis

2.1.2 Final Product Auditor . Simplest among the suggested methods,
the product auditor assays completed programs. It depends
heavily upon management diligence in requiring its use. Data
acquired are representative, but contain no information on
program errors, or other evolutionary aspects of program
development.

2.1.3 Programming Aids Which Record . Representative of a middle
ground, programming aids are proposed here as mutually bene-
ficial Trojan horses. Programmers find them useful, but the
intended aids also record systems data on language use. Be-
cause the simply conceived version is quite sunilar to a

more elaborate programming aid, only the latter is developed
here. Furthermore internal mechanisms (i.e. features other
than programming aids) are common to all three methods of
static analysis. Because these internals are shared by all
methods, they are detailed in some degree.

2.2 Proposed Static Analysis Approach

Envision the static analyzer (TSA) as an extended compiler without
code generation facilities. TSA is characterized by an external appear-
ance as a programmer's aid. Internal functions of TSA gather systems
information about programs and language.

Programming aids provide external features which entice programmers
to use TSA. Wide usage is quite important to guarantee that archives
are built upon representative, day-to-day programs, and not just polish-
ed end products. Without representative input, data on errors is use-
less. TSA should provide a cheap useful checkout of a program prior to
compilation. This provides a natural, representative population for TSA
to sample.

Besides providing aid to programmers, TSA records language use
characteristics, frequencies, and programmer performance. These latter
functions are transparent to programmers who use TSA. Such data as the
analyzer collects will support archives on language use, programming
behavior, host machine compatibilities, and representative mixes of
language statements.

2.2.1 Visible Features . The visible features of TSA are aimed at an
audience of actual language users. If these be FORTRAN pro-
grammers, then the following services have proven saleable

with varying degrees of success: automatic statement label
renumbering; neatening of decks; syntax checking; flowcharting;
cross referencing; standards testing. Cross reference tables
are most popular, probably because they are useful in debugging
and documentation.

Flowcharts are useful for documentation, although opinions
vary on their value. Statement label renumbering is useful in

FORTRAN, although not in COBOL. As a source statement check-
out, TSA should lighten CPU loads and give faster turnaround.
Student compilers operate on a similar philosophy. TSA in-
cludes many easily-specified options; each is, in effect, a
carrot to lure programmers to TSA.

TSA could also aid documentation and standardization
by flagging non-standard idioms, by indicating equivalents, and
by indicating independent segments of code. Such services,
designed to enhance program transferability, would be yet
another option.

Equivalence maps are useful in FORTRAN programming, as
are other indications of structural linkages with side effects.
The IBM Fortran-H compiler carries this quite far, providing
semantic assessments, detecting unused assignments, and moving
constants out of loops.

COBOL services should differ from those for FORTRAN

.

There is more emphasis on standards - either American National
Standard, FIPS, or ad hoc - and test data generation seems
popular. Successful analyzers (cf . TABLE II) provide syntax
checking, flow charting and cross-referencing.

One might wonder whether a source-scanner such as TSA
would have any natural audience. Experience with FORTRAN
-G and -H compilers indicates that programmers often run with
the H-compiler not to optimize code, but to get symbol cross-
reference tables! Furthermore, it is very convenient to have
an additional error checkout of a program, since all compilers
have their own weaknesses in syntax checking.

2.2.2 Transparent Features . TSA does not exist merely to expedite
programming. Its utilitarian functions are chosen to en-
courage natural and widespread use.

Data collected by TSA should be useful for group studies
of programmer performance. Program evolution could be studied,
and one could extract data on language features vis-a-vis source
errors. One problem is that observations are conditioned by
abstract algorithms being programmed. These abstract algor-
ithms could pose quite a problem, since observed program
features vary drastically among algorithms.

TSA statistics provide a basis for language design. A
principal difficulty here is that negligibly-used features are
easily spotted, but missing "macros" will require some feature
extraction by the analyzer. TSA might extract definable
"macro" features, including those that are desirable based on
error syndromes and frequencies. This information should aid
language and compiler designers.

Ioo

1—

1

« 55H
%^

o
w 00

CD

o ffi H Pn 00 <H
P-.
1—

|

PS o « w Q H
W < w « <
PQ 55 X ffi « 00 < «z S W < O 00 o OH D Eh Eh rs 00 pfij 'P' HQM S < 55 o o o <q 00
H W >H J « <^ Eh w« 55 00 P-. o s 00 Eh COMMENTS

Fl source = FORTRAN

FORTRAN + assembly

multiple X-refs

FORTRAN deck, feeble

F2

F3 ?

F4

F5

F6

F7

CI

many users

limited

source = COBOL

report generator

post-compiler, well liked

DATA DIVISION layouts
issues monthly reports

also run-time analysis

simple but useful

also run-time analysis

C2 CF8)

C3

CU .

C5

C6

C7

C8

C9

CIO

Cll ->

C12 7

C13

cm
C15

C16

Eh
P^
O
P-,

O
PQ
O
O

Table II a Sampling of Static Analyzers (Commercial)

Frequencies in TSA archives could be used to determine
statement and program "mixes" for a particular higher-level
language. Truly representative benchmarks for specific
language/machine combinations should then be possible, to aid
evaluation of execution performance of various compilers.

American National Standards deviation could be evaluated
from data on many compilers. A study of deviations may provide
clues to current standard weaknesses.

2 . 3 Programming Aids and Services

Among aids available from commercial packages (cf . Figure 1 and
TABLE II), cross reference tables are most popular. Syntax checking is
another favorite, and standards a third.

The above dovetail nicely with transparent functions one might ex-
pect in systems sections of TSA. (Systems features are discussed
shortly).

Figure 1 presents a hierarchy of TSA aids to programmers , along
with indications of effort needed to realize a feature. Starting from
the top node, features (in boxes) are realized by incorporating into TSA
capabilities labeled on arcs. For example, cross references
imply a language grammar and a symbol table. Longer paths have
concommitantly more work associated with them. Solid lines ()

indicate what seem to be reasonable visible features for FORTRAN. A
dashed line is for COBOL. The reader may want to draw his own version
of the areas after examining TABLE II. Relations in Figure 1 are only
approximate.

More difficult programmer aids, such as flowcharting, have been
excluded since they entail a good amount of effort (and overhead) on
TSAs part. Use of such powerful services is probably limited to final
versions of programs. This is not the population of programs TSA is
designed to examine, since very little can be learned about everyday
programming language use, difficulties, or programmer performance from
a single, error-free deck. E. A. Youngs has argued this 1

.

The following features seem useful as programming aids

:

FORTRAN COBOL

error analysis neater deck
standards shorthand expansion
cross references error analysis
storage (interaction) map standards

cross references
storage map

source "\ / test data
^optimization/ ^generation^

FIGURE 1 A possible hierarchy in features

2.M- Internal Features of TSA

True rationales for TSA are transparent to programmers , as bees are
oblivious to pollen. The following seem worthy of study using TSA:

1. Programmer versus language: Program evolution, types of
errors. This would be an attempt to automate a little of
Youngs' work: "...We may find, for instance, that the iter-
ation mechanism of PL/1 is more likely to contain programming
errors than its FORTRAN counterpart. A possible source of
this difference might be the FORTRAN requirement that a UO
statement carry with it the label of its terminating line . .

.

Quantified descriptions of such findings may be helpful in
further developing the successors to FORTRAN and PL/1 for
less error prone programming" 2

.

2. Language use. Khuth has documented the frequencies of state-
ment types in FORTRAN programs. Unfortunately, no published
data exist for COBOL. Occurrence frequencies for both lan-
guages allow more efficient compiler design, as well as in-

dicating (with judicious interpretation) utilities of statement
types.

2.4.1 Specific TSA Features At a bare minimum TSA must perform a
lexical analysis. And as an aid to programmers, TSA is en-
hanced if it can do syntactic analysis. A symbol table is

necessary to account for language specification not covered
by strict syntax alone.

If questions on program flow structure are asked, analysis
must have a sufficient depth to answer them. Flow analyses
are fairly time consuming. This precludes them from everyday
use, except possibly for simple cases.

Internal features and external (programmer's aid) func-
tions should dovetail. If an external facet requires syntax
analysis, internal mechanism may as well assume the feature
too, since the package must support it. Hence common algori-
thms support both internal and external features.

One very real question that arises is the difficulty in
appropriately averaging the results of detailed syntactic
analysis. With many distinct instances, a mean statistic may
convey very little. Lexical elements of an arithmetic expres-
sion B*C+D are identical to those of B+C*D, although the
respective parses are distinct. A simple comparison in types
and numbers of operators requires no parsing information, and
may be all that remains from an attempt to average results of
parses. Khuth in one case chose a simple weighted counting
"measure". The thrust of averaging is against a detailed

syntactic analysis , which in turn conflicts with requirements
of a programmer's aid.

Internal structures of TSA should be extensible. This
is a consequent of the range of questions which users might
want to ask, the aggregate being too large for any one version
of TSA. Extensibility need not be syntax-directed, but rather,
consist of hooks and traps which programmers can fiddle with
easily. Specific demands on implementation are:

1. Flexible and extensible tables.
As experimenters add and change attributes of items,

tables must expand and implementation should allow this. One
simple solution follows. Each symbol table entry for a par-
ticular application of TSA would be of fixed size. Entry
size could be changed as each TSA application (or installation)
required. Table entries would be accessed through a hash
mechanism into a scatter index table. Once established, the
index should not require modification, since allowed names
in a language usually do not change in definition across

individual programs written in it.

Index Symbol Table

HASH

name

Fixed
Access

Variable-Length
Entries

A garbage collection would not be necessary, since no items
are freed in the symbol table.

2. Visible Access Methods
Tables should be accessed via one standard routine.

Such a convention facilitates tabulating accesses for various

10

attributes. Changes to tabulation mechanisms are more con-
sistent if done only in one place. A similar argument holds
for syntactic portions of analysis. For instance, only one
routine should be called to recognize variables. Any data on
variables is available by monitoring this routine and its
accesses to the symbol table.

In some cases TSA implementation will vary because of
actual language syntax. This is especially true for a lan-
guage such as COBOL. For instance, the construction

COPY lib REPLACING word-1 BY
word-

2

identifier-

1

literal-1

word-

3

BY
word-4
identifier-

2

literal-2

appears in at least 11 places (!) in the. COBOL definition.
If COBOL' s metalanguage allowed names to constructs, only one
occurrence would be necessary, below:

<copy-lib > : : = COPY lib REPLACING word-1 etc.

In any case, only one routine (or table) is required to
analyze

COPY lib. . . constructs.

3. Syntax Analysis Should Proceed Without Backup.

This is important for efficiency and error handling.
FORTRAN is easier to handle than COBOL. Conway's paper 5

provides an informal discussion of how one proceeds on COBOL.

Tixier e and Lomet 15 have formalized Conway's results. Basi-
cally, one does analysis with transition diagrams with vari-

11

able returns, as below:

integer literal

name

The diagrams for COBOL are, of course, recursive. Some care
must be exercised to prevent backup conditions during COBOL
analysis

.

Programs submitted to TSA will have errors in them, and
some decent error recovery mechanism must be incorporated
into the syntactic analysis. Error diagnostics should be
accurate and precise . A number of recent papers 7 3 8

'
9 ' x *

'

1 2

discuss aspects of automatic error recovery and correction,
but none of these techniques seem directly applicable to
FORTRAN or COBOL analysis. Ad hoc methods along lines of
Evans 10 may prove useful. A general strategy with transition
diagrams is to jump to the next higher diagram upon error, and
then scan input until context is suitable for resumption of
the higher diagrams.

Many ad hoc techniques are available to break error re-
covery into smaller, more amenable pieces. Statement and
sentence delimiters can be used as fiducial markers which
partition a program. An important requirement in error recov-
ery or correction is that errors should not appreciably slow
the analysis.

4. Modular (structured; functional) Implementation.
A temporal, flow chart organization for TSA would not be

convenient. Functional aspects should be isolated into dis-
tinct procedures. Since questions addressed to TSA are likely
to be along functional lines, TSA structure will reflect this
and be easier to modify. The example in 2,(above) illustrates
virtues of modularity.

5. Some Semantics
It is convenient if TSA indicates storage allocations

clearly. This requires analysis of symbol equivalences along
lines of Arden* (FORTRAN) or Conway 5 (COBOL). The data can be
displayed in a cross reference table, or in some more elabor-
ate interaction display.

12

Example . For the following FORTRAN variables

,

REAL BOO), INTEGERS A

DIMENSION K(13)

EQUIVALENCE (B(5), A), (A,K(D)

display of this form could be provided:

B(1)...B(5) B(6)...B(13)...B(30)

A
K(l) K(2)...K(13)

2.4.2 Further Details for FORTRAN . As an example of mechanisms
necessary for static analysis, consider the following
instances for FORTRAN.

DOMAIN QUESTIONS
Names, variables % types ;%LHS, RHS*
COMMON % of vars in it,

avg. size of blocks,
use of labels

SOURCE OF ANSWER .

symbol table,
lexical scan and
common-processing
routines. NOTE: will
interact with EQUIVALENCE

EQUIVALENCE % vars, size classes
of refs in pgm.

lexical scan, equivalence
analysis routine, symbol
table.

IF types, consequents syntax analysis

GOTO

DO

direct?assigned?fwd? symbol table processing,
bkwd?avg. length, avg. must sort some entries
crossovers

length, and
nesting depth

scan symbol table
using stack

arithmetic structures, operator syntax analysis
expressions mixes, etc.

*RHS =(on)right hand side, LHS = left hand side

Information for keywords is stored in a fixed keyword
symbol table. Questions related to keywords are answered via
manipulations of entries to the table. Consider "crossovers"
for GOTO. From the GOTO entry are chained pairs of start and
target addresses SA/TA for each GOTO. Assigned and computed

13

GOTOs represent multiple entries (see below), one for each
target address.

GOTO SA(1)/TA(D—SA(2)/TA(2)—SA(3)/TA(3)TA'(3)TA"(3)

Crossover is computed by determining an interval SA(i)/TA(i),
checking for other GOTOs such that SA(j) is outside of
SA(i):TA(i) and TA(j) is in, or TA(j) is out and SA(j) in the
interval.

Many other actions must be performed. -For instance,
DO entries with nesting:

DO SA(1)/TA(D—SA(2)/TA(2)—SA(3)/TA(3)-.

.

can be counted by pushing TA(j)s onto a stack. DO entries
(above) are sorted with ascending start address SA. If SA(j+l)
<TA(j), then a nesting exists and TA(j+l) should be pushed
onto the stack. A counter of stack depth is also incremented.
Otherwise, all top-of-stack elements TA(.) <SA(j+l) are un-
stacked. The stack counter is decremented for each stack
element removed. For any DO the stack counter gives a nesting
depth.

Again, arithmetic statements present a problem. A
measure of structure is necessary if statistics are to be
gathered on them. If Khuth's approach is adequate, then sta-
tistics available from TSA will differ from his mostly in any
information on errors.

FORTRAN analysis will begin with an ad hoc scan. State-
ments will be translated into a standard format, and their
type indicated. Lexical and syntactic analysis will follow.

It remains to be seen whether a single analyzer can effi-
ciently check (simultaneouslv) for various standards, such
as American National Standards. Individual tailoring mav be
necessary for an installation. Written in American National
Standards FORTRAN, the package should be easy to experiment
with.

2.4.3 An Approach to COBOL . COBOL usage is somewhat more difficult
to monitor than FORTRAN. Because COBOL has so many independ-
ent options, data collection must be constructed carefully
to avoid combinatorial problems. However, keeping in mind
that only those characteristics . of language which are invariant
across many programs are of any value, satisfactory progress
can be made with COBOL constructs. It is sensible, for ex-
ample, to record numbers of statements, numbers of variables

14

per program, and average lengths of names. Recording specific
names in a particular program is futile. Similarly, for a phrase
with iteration options, such as

<x> = [,<identifier>]..

.

which has realizations of "MULL" "A,B", "A,B,C,D,E,F", etc.,
a good set of statistics is i) number of times that phrase
<x> occurred and ii) average number of identifiers in each
occurrence. Thus only two counters NPX (number of phrase <x>)
and SPX (average size of phrase <x>) need be kept. For the re-
cursive COBOL construct IF <3>; <statement> ; ELSE <statement>,
several counters might be kept for "IF", each corresponding
to a level of nesting at which an "IF" is found.

A table of about 550 entries is adequate to record data
on the composite language skeleton of COBOL (USA STANDARD
COBOL, X3.23, pp. 1-102-1-117). Each entry can be updated via
a recurrence relation, so it is necessary to keep only a
small table of constantly updated archives data. Such a col-
lection mechanism would be very useful if built into a compil-
er.

3. CONCLUSIONS

Among possible approaches to static analysis, the concept of the
analyzer as a programmer's aid appears to benefit the largest audience.
This version of TSA should have such technical features as: extensible
internals; efficient syntax analysis; symbol table semantic checks. If
developed very carefully, TSA might provide programmers with a very
useful checkout tool.

Table II displays attributes of FORTRAN and COBOL static analyzers
which are available on the open market. Entries in Table II are repre-
sentative of products sold as programming aids, flow chart packages
and documentation programs 16

'
.

Although a catalog search is never conclusive, there seems to be a
preponderance of COBOL programs in comparison to FORTRAN. And of all
packages, only one (C-, ~ in Table II) issues monthly systems reports on
standards adherence, system application routine statuses, and the like.
Other packages have features similar to TSA; this is hardly an accident.

None of the packages appear to satisfy TSA requirements directly.
Few of the available systems are written in a source language compatible
with the NBS Univac 1108 system, or even in any high level language.
It is difficult to estimate whether a flowchart package is suited for
modification to a TSA, since ''error checking" is apparently rather rudimen-
tary sometimes. Such a package would require both" syntax analysis and
symbol table additions. Not only would these constitute a major in-
vestment, but efficiency might suffer as a consequence.

15

3.1 Future Plans

Because FORTRAN is easier to handle, a prototype TSA will be writ-
ten for it. A series of modules, one for each statement type, will
decompose statements which have been processed previously by a prelimin-
ary scanner. Khuth 13 indicates that his scanner was a rather simple
thing. Some error recovery will be included within the NBS development.
Use of a TSA on FORTRAN will help determine whether such an approach is
feasible and warranted for COBOL.

A FORTRAN analysis can be summarized in many different ways.
Present plans are for TSA itself to compute summary statistics, such as
GOTO crossovers. A more flexible alternative records selected sym-
bol table entries from each analysis. This philosophy would entail
a high capacity secondary store, such as magnetic tape. It should be an
easy matter to convert from one collection strategy to the other if
summary routines are given clean interfaces in TSA.

Design of an efficient COBOL syntax checker requires further study.

In particular, a consistent set of transition diagrams must be developed,
along with an interpreter for them. An attempt at obtaining consistent
transition diagrams from outside sources has been rather disappointing.

A parallel effort has investigated a design for a simple keyword-
compounds analyzer for COBOL. Only correct COBOL programs are analyzed.
Counts of constructs such as DIVIDE, DIVIDE ROUNDED, etc. are built up.

Such syntax analyses may provide a useful first view of COBOL use.

Yet another method that will be assessed is to use a command
file in Infonet. Users would transfer control to a- command file rather
than invoke the COBOL compiler directly. Output would go to a file.
Error messages could than be tallied and recorded in yet another file.
Finally, appropriate file entries would be sent back to the terminal
user. In this manner information could be gleaned about COBOL errors.

3.2 A Suggestion for Compiler Producers

The best method of recording language statistics is for compilers
to tally them. Data on length of programs, frequencies of keywords,
error messages and severities — all these are handily available during
compilation. It would be quite easy to design a compiler which kept a
log of language feature utilizations. The extra cost to extend compilers

to log data should be slight, yet the resultant data immensely useful.

16

4. REFERENCES

Youngs, E.A. , Error-proness in programming. PH.D. thesis. Univer-
sity of North Carolina(1969).

Idem, p. 11.

Morris, R. Scatter storage techniques. C.ACM 11, l(January,1968),
38-44.

. Arden, B.W. , Galler, B.A. , and Graham, R.M. , An algorithm for
equivalence declarations. C.ACM 4, 6 (July, 1961), 310-314.

Conway, M.E. , Design of a separable transition-diagram compiler.
C.ACM 6, 7 (July, 1963), 396-408.

Tixier, V., Recursive functions of regular expressions in language
analysis. Ph.D. thesis. Stanford University (1967).

Levy, J. P., Automatic correction of syntax errors in programming
languages. Ph.D. thesis. Cornell University (1971).

LaFrance, J.E., Syntax-directed recovery for compilers. Ph.D.
thesis. University of Illinois at Urbana-Champaign (1971).

Leinius, R.P. , Error detection and recovery for syntax-directed
compiler systems. Ph.D. thesis. University of Wisconsin (1970).

Evans, A. Jr., An ALGOL 60 compiler. Annual Review in Automatic
Programming. New York: Pergamon Press 1964.

Lyon, G.E., Least-errors recognition of mutated context-free sen-
tences in time n 3log n. Proc. , Sixth Princeton Conf . on Informa-
tion Systems and Sciences (March 1972). Also: A syntax-directed
least-errors recognizer for context-free languages. Ph.D. thesis.
University of Michigan (1972).

Peterson, T.G., Syntax error detection, correction and recovery in
parsers. Ph.D. thesis. Stevens Institute of Technology (1972).

Khuth, D. , Note to the author. April, 1973.

Knuth, D. , An empirical study of FORTRAN programs. Software-Prac-
tice and Experience 1. (1971), 105-133.

Lomet, D. B. , A formalization of transition diagram systems. C.ACM
20, 2 (April, 1973), 235-257.

Computer Technology Reports, pp 978-1435.020 to 980.6331-02
(Auerbach Publishers, Inc., Philadelphia, 1972).

Programmer aids. ICP Quarterly, (Oct. 1972, Jan. 1973).

17
i> U. S. GOVERNMENT PRINTING OFFICE : 1973—542-650/54

FORM NBS-114A (1-71)

U.S. DEPT. OF COMM.
BIBLIOGRAPHIC DATA

SHEET

1. PUBLICATION OR REPORT NO.

NBS TN-797
2. Gov't Accession

No.
3. Recipient's Accession No.

4. TITLE AND SUBTITLE

Static Language Analysis

5. Publication Date

October 1973
6. Performing Organization Code

7. AUTHOR(S)
Dr. Gordon Lyon

8. Performing Organization

10. Project/Task/ Work Unit No.9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

11. Contract/Grant No.

12. Sponsoring Organization Name and Address

Same as No. 9

13. Type of Report & Period
Covered

Final

14. Sponsoring Agency Code

IS. SUPPLEMENTARY NOTES

16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here.)

Although many variants of programming languages exist, little information
is available on how language features are actually used by programmers. Several
data collection schemes are discussed here; each would provide empirical data
on language use. Some internal details are given for analyzers for FORTRAN
and COBOL. In addition, a suggestion is made for a special systems option which
would allow a compiler to continuously record source statement characteristics
of programs given to it.

I'. KEY WORDS (Alphabetical order, separated by semicolons)
Data archives; language use; programming aids; programming languages:
source-statement analysis; syntax analysis.

'8. AVAILABILITY STATEMENT

fXl UNLIMITED.

I I
FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE
TO NTIS.

19. SECURITY CLASS
(THIS REPORT)

UNCLASSIFIED

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

21. NO. OF PAGES

23

22. Price

$.50

USCOMM-DC 66244-07-«.

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National

Bureau of Standards research and development in

physics, mathematics, and chemistry. Comprehensive

scientific papers give complete details of the work,

including laboratory data, experimental procedures,

and theoretical and mathematical analyses. Illustrated

with photographs, drawings, and charts. Includes

listings of other NBS papers as issued.

Published in two sections, available separately:

• Physics and Chemistry (Section A)

Papers of interest primarily to scientists working in

these fields. This section covers a broad range of

physical and chemical research, with major emphasis

on standards of physical measurement, fundamental
constants, and properties of matter. Issued six times

a year. Annual subscription: Domestic, $17.00; For-

eign, $21.25.

• Mathematical Sciences (Section B)

Studies and compilations designed mainly for the

mathematician and theoretical physicist. Topics in

mathematical statistics, theory of experiment design,

numerical analysis, theoretical physics and chemistry,

logical design and programming of computers and
computer systems. Short numerical tables. Issued quar-

terly. Annual subscription: Domestic, $9.00; Foreign,

$11.25.

DIMENSIONS, NBS
The best single source of information concerning the

Bureau's measurement, research, developmental, co-

operative, and publication activities, this monthly
publication is designed for the layman and also for

the industry-oriented individual whose daily work
involves intimate contact with science and technology—for engineers, chemists, physicists, research man-
agers, product-development managers, and company
executives. Annual subscription: Domestic, $6.50; For-
eign, $8.25.

N0NPERI0DICALS

Applied Mathematics Series. Mathematical tables,

manuals, and studies.

Building Science Series. Research results, test

methods, and performance criteria of building ma-
terials, components, systems, and structures.

Handbooks. Recommended codes of engineering

and industrial practice (including safety codes) de-

veloped in cooperation with interested industries,

professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS confer-

ences, bibliographies, annual reports, wall charts,

pamphlets, etc.

Monographs. Major contributions to the technical

literature on various subjects related to the Bureau's

scientific and technical activities.

National Standard Reference Data Series.

NSRDS provides quantitative data on the physical

and chemical properties of materials, compiled from

the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes,

types, quality, and methods for testing various indus-

trial products. , These standards are developed co-

operatively with interested Government and industry

groups and provide the basis for common understand-

ing of product characteristics for both buyers and

sellers. Their use is voluntary.

Technical Notes. This series consists of communi-
cations and reports (covering both other-agency and

NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards
Publications. This series is the official publication

within the Federal Government for information on
standards adopted and promulgated under the Public

Law 89-306, and Bureau of the Budget Circular A-86
entitled, Standardization of Data Elements and Codes
in Data Systems.

Consumer Information Series. Practical informa-

tion, based on NBS research and experience, cover-

ing areas of interest to the consumer. Easily under-

standable language and illustrations provide useful

background knowledge for shopping in today's tech-

nological marketplace.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES
The following current-awareness and literature-survey bibliographies are issued periodically by the

Bureau:

Cryogenic Data Center Current Awareness Service (Publications and Reports of Interest in Cryogenics).

A literature survey issued weekly. Annual subscription : Domestic, $20.00; foreign, $25.00.

Liquefied Natural Gas. A literature survey issued quarterly. Annual subscription: $20.00.

Superconducting Devices and Materials. A literature survey issued quarterly. Annual subscription : $20.00.

Send subscription orders and remittances for the preceding bibliographic services to the U.S. Department

of Commerce, National Technical Information Service, Springfield, Va. 22151.

Electromagnetic Metrology Current Awareness Service (Abstracts of Selected Articles on Measurement

Techniques and Standards of Electromagnetic Quantities from D-C to Millimeter-Wave Frequencies). Issued

monthly. Annual subscription: $100.00 (Special rates for multi-subscriptions). Send subscription order and

remittance to the Electromagnetic Metrology Information Center, Electromagnetics Division, National Bureau

of Standards, Boulder, Colo. 80302.

Order NBS publications (except Bibliographic Subscription Services')

from: Superintendent of Documents, Government Printing Office, Wash-

ington, D.C. 20402.

'I

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington, D.C. 20234

OFFICIAL BUSINESS

Penalty for Private Use. $300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM—215

f

r

