$$
\begin{aligned}
& 175107 \text {-Ref OCT } 141975 \\
& \text { QC100 } \\
& .45753
\end{aligned}
$$

A Rigorous Correction Procedure for Quantitative Electron Probe Microanalysis (COR 2)

$$
\begin{aligned}
& Q C \\
& 100 \\
& 5753 \\
& .769 \\
& 973
\end{aligned}
$$

U.S. RTMENT OF

National
Bureau

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards ${ }^{1}$ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Measurement Services and the following divisions:

Applied Mathematics - Electricity - Mechanics - Heat - Optical Physics - Nuclear Sciences ${ }^{2}$ - Applied Radiation ${ }^{2}$ - Quantum Electronics ${ }^{3}$ - Electromagnetics ${ }^{3}$ - Time and Frequency ${ }^{3}$ - Laboratory Astrophysics ${ }^{3}$ - Cryogenics ${ }^{3}$.

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials and the following divisions:

Analytical Chemistry - Polymers - Metallurgy - Inorganic Materials - Reactor Radiation - Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations leading to the development of technological standards (including mandatory safety standards), codes and methods of test; and provides technical advice and services to Government agencies upon request. The Institute consists of a Center for Building Technology and the following divisions and offices:

Engineering and Product Standards - Weights and Measures - Invention and Innovation - Product Evaluation Technology - Electronic Technology - Technical Analysis - Measurement Engineering - Structures, Materials, and Life Safety * Building Environment ${ }^{4}$ - Technical Evaluation and Application ${ }^{4}$ - Fire Technology.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards - Computer Information - Computer Services Systems Development - Information Processing Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

Office of Standard Reference Data - Office of Technical Information and Publications Library - Office of International Relations.

[^0]
A Rigorous Correction Procedure for Quantitative Electron Probe Microanalysis (COR 2)

Jean Hénoc
Centre National d'Études de Télécommunication 196 Rue de Paris
92-Bagneux, France
and
Kurt F. J. Heinrich and Robert L. Myklebust
Analytical Chemistry Division
Institute for Materials Research
U, S, National Bureau of Standards
Washington, D.C. 20234

t. Technical note no. 769

[^1]
National Bureau of Standards Technical Note 769

Nat. Bur. Stand. (U.S.), Tech. Note 769, 132 pages (Aug. 1973)
CODEN: NBTNAE

TABLE OF CONTENTS

PAGE
Abstract 1

1. Foreword 2
2. Specifications and Theoretical Foundations for COR 2 4
3. Structure of the Program 6
4. Explanation of the Program 11
4.1 MAIN Program 11
4.2 SUBROUTINE CØCA (JØ,JM,JJA) 17
4.3 FUNCTION C (J \varnothing,JM,JJA, FC, FQC) 22
4.4 FUNCTIONS F (X,Jø,JM,JJA) and FT(X) 23
4.5 FUNCTION AC(CL, J) 23
4.6 FUNCTION PRA(J $\emptyset, J M, L X, K X, J X, W A A)$ 23
4.7 FUNCTION RB (UØ, Z) 23
4.8 FUNCTION FQI (J $\varnothing, J M, L X, K X, J X, W A A)$ 23
4.9 FUNCTION FCA (JØ,JM, II,JJA,FCA1, FCAØ) 23
4.10 SUBROUTINE CALI (JØ,JM,JJA,AIT,SWITCH, FQCF, FQCA) 24
4.11 FUNCTION EI (X) 24
4.12 SUBROUTINE AINP (C,IJ,IIMAX,SD) 24
5. Statements of the Program 25
6. Table of Formats for the Data Input Cards 53
7. Outputs 65
8. References 70
APPENDIX 1: NBS Technical Note 521 71
APPENDIX 2: Index of Terms and Symbols 88
APPENDIX 3: Permanent Data File 112
LIST OF FIGURES
Figure No. 1: Structure of COR 2 7
Figure No. 2: Flowsheet of Subroutine C \emptyset CA 19

A Rigorous Correction Procedure for Quantitative Electron Probe Microanalysis (COR 2)

Jean Hénoc
Centre National des Etudes de Telecommunication Issy-les-Moulineaux, France

and

Kurt F. J. Heinrich and Robert L. Myklebust Institute for Materials Research National Bureau of Standards Washington, D. C. 20234

This publication describes a rigorous data reduction procedure for quantitative electron probe microanalysis, which avoids simplifications present in conventional schemes. In addition, the program contains a correction for fluorescence due to the continuum, and separate computation of the fluorescent effects of each exciting primary x-ray line. Constants characteristic of elements are stored in a permanent data file, and the constants and parameters needed for the calculation of mass absorption coefficients are contained in a sub-program. These provisions and decision-making sections in the development of the fluorescence corrections reduce the required input considerably.

Key words: Continuum fluorescence; data reduction; electron probe microanalysis; fluorescence correction; quantitative analysis.

Quantitative electron probe analysis requires elaborate computer procedures for data reduction, unless standards of composition close to that of the specimen are available. For several years in the electron probe laboratory at NBS, a program called MULTI was used. The most recent version of this program - MULTI8 - was described in a recent Technical Note [1]

The program MULTI8 contains "corrections" for the primary generation ("atomic number correction") and absorption, and for fluorescence caused by characteristic lines (according to Reed [2]). There are, however, no provisions in MULTI8 for the treatment of the effects of fluorescence due to continuous radiation. These effects are usually not very severe; tests on known materials have shown that MULTI8 performs to our entire satisfaction in analytical practice. Nevertheless, there is need for a more rigorous and complete program which permits an estimation of the errors due to the neglect of the fluorescence caused by the continuum, and to other approximations used in MULTI8 and other simplified programs which are used in routine work.

The project to obtain such a rigorous procedure, incorporating all known refinements of the theory, was initiated when J. Hénoc, of the C.N.E.T., Issy-les-Moulineaux, France, spent one year in the electron probe laboratory of NBS as a guest worker in 1969. Dr. Hénoc has previously developed a method for the calculation of the fluorescence due to the continuum [3]. He agreed to develop, in consultation with us, a program which would satisfy our needs.

The scheme of formal integration previously used in reference [3] was replaced with a numerical integration with respect to the wavelength of the exciting radiation. This change was necessary for the use of the expressions for x-ray mass absorption coefficients previously developed by one of us [4]. It also became evident that it would be easier to write an entirely new program for data reduction than to
incorporate the continuum-fluorescence calculation into existing procedures. The need for locating all x-ray absorption edges in the specimen for the treatment of fluorescence from the continum suggested that the program could also determine which fluorescence excitations due to characteristic lines should apply. The procedure of Reed [2] was abandoned in favor of a separate computation of the effects of each exciting characteristic line; the intensity of every exciting line was computed by a full generation calculation. The resulting program was called COR.

Although we did not originally conceive of COR as a tool for routine analysis, we find that it can be used advantageously for this purpose wherever batch processing with a reasonably large computer is acceptable. The fact that the program calculates all necessary mass absorption coefficients and makes appropriate decisions concerning the applicability of fluorescence calculations is a distinct advantage over MULTI8 and similar programs, since the data input is considerably simplified. The difference in the results obtained by COR and by MULTI8 is frequently insignificant, except where fluorescence by the continuum is unusually large.

After a period of testing and use, we have introduced some minor changes into the program, which are mainly additions that enable us to use the M-lines for analysis, and an alternative in the input and readout procedures. In order to distinguish the amended program from the original, we call the new version COR 2.

The new version was cast into its present form on the occasion of a second visit by Dr. Hénoc in November 1972. We will describe this program in detail. It is useful to recall, however, that the main purpose of this publication is not only the description of a computer program, but also the presentation of a data evaluation procedure which is not used elsewhere, to our knowledge, in any form except that of COR and COR 2 .

COR 2 is written for batch processing in FORTRAN IV, and occupies about 50 K words. At NBS, it is run on the UNIVAC 1108 computer*, and elsewhere, with minor adaptation, on computers such as the IBM 360 and GE 635.

The program permits the loading, in a single operation, of repeated measurements at one point on the sample, of measurements on several points (up to 100), and of several types of analyses or specimens (cases).

In its present form, COR 2 permits the presence of up to 15 chemical elements per point. The limits indicated here can be changed simply by altering the corresponding dimension statements.

The program can calculate either theoretical relative intensities for specimens of known composition - without need for iteration - or the composition of analyzed specimens. For the analysis of specimens of unknown composition, either relative x-ray intensities or uncorrected x-ray intensity measurements are acceptable.

The composition of analyzed specimens is expressed both in weight fractions and in atomic fractions (in the conventional output). Each element can be measured at a different operating voltage. The iteration proceeds until two successive sets of mass fractions differ, for all elements, by less than $10^{-5}(0.001 \%)$, or, if convergence is not reached, until completion of 20 iterations. In such case, a warning message would be printed. In practice, convergence is usually obtained in three to six iterations; lack of convergence has never been observed.

[^2]The following options of COR 2 can be used by means of switches provided in the program.

1. One element can be determined by difference.
2. One element can be determined by stoichiometric relations (and another by difference, if desired). In such cases, the results are also printed in terms of binaries (e.g., as oxides), and the stoichiometric formula is printed. (See the section concerning output, p. 65)
3. The concentration of one or more elements can be assumed known, and be maintained constant throughout the analysis. (e.g., for the analysis of impurities in a stoichiometric compound or in an element.)
4. In any of these variants, the correction for fluorescence due to the continuum can be suppressed.
5. The standards for measured elements may either be elements or multi-element materials of known composition.
6. A special output particularly useful for diagnostic purposes is available. This output is the one used in the original version of COR (output 2 or extended output).

As in other schemes of data reduction for electron probe microanalysis, the basic process imbedded in COR 2 is the calculation of a theoretical relative x-ray intensity emitted from a target of known or postulated composition. We will call this part of the procedure the "theoretical calculation", although we recognize the presence of empirical adjustment in almost all steps. The designation as "theoretical" merely distinguishes a procedure which contains separate corrections for primary generation, absorption, and fluorescence, from other approaches which require, at the time of the analysis, several compound standards to generate an empirical calibration model. For the analysis of specimens of unknown composition, the "theoretical calculation" is coupled with an iteration procedure which, starting with a rough estimate of specimen composition, proceeds to establish the best estimate by a method of successive approximations.

The theoretical or semi-empirical foundations of the method which we have followed were described in the NBS Technical Note 521, reproduced at the end of the present publication (see Appendix 1). The comments referring to COR in TN 521 are equally valid for the present version, COR 2. By modifying the corresponding statements in the correction functions, variants in the correction models can be introduced. The pertinent literature references are found in the Appendix.
3. Structure of the Program

COR 2 consists of a main program (MAIN), and a series of subprograms linked to the main program as shown in Figure 1. The input consists of a series of option specifications, a permanent data file, and the experimental x-ray intensities or known concentrations. The purpose of the specifications is to select among the options available for the execution of the program, such as use of stoichiometric relations, calculation of an element by difference, use of known concentration of some components (e.g., in the analysis of impurities of an element or of a stoichiometric compound), corrections for background and dead-time, and calculation of theoretical x-ray intensities for a target of known composition

There are two versions of the output which can be selected by another code in the input. The conventional output (output 1) has been developed for COR 2. The extended output (output 2), which was used in the original version of COR, is particularly useful for the diagnosis of programming errors or similar problems. References to output, unless specified otherwise, refer to output 1.

The data file which forms part of the input contains constants specific for particular elements present in the specimens. We have added elements to this data file, as required, and keep it stored on a magnetic drum. Other

Figure 1. Structure of COR 2.
systems may require different procedures. On page 114 the reader will find instructions for adding the constants for elements not present in our file to the data file.

The input data can either be mass fractions of a known target, or relative x-ray intensities, corrected for background and dead-time ("k-values"), or uncorrected x-ray intensities (counts), for line, background and standard. In the latter case, an input specification directs the main program to transfer the x-ray intensities to the subprogram AINP, which performs the corrections for deadtime and background. If repeated measurements were performed at the same specimen location, AINP also provides statistics of the uncorrected intensities. The corrected relative intensities are returned to the main program.

The principal functions of MAIN are to perform the theoretical calculations of the x-ray intensities corresponding to an estimated target composition, and to refine the estimated mass fractions by means of the previously mentioned iteration procedure. The theoretical calculations are based on the equation:

$$
\begin{equation*}
k=\frac{I^{\prime}{ }_{p}{ }^{*} f_{p}{ }^{*}+\Sigma I^{\prime}{ }_{f}{ }^{*} f_{f}{ }^{*}+I^{\prime}{ }_{c}{ }^{*} f_{c}{ }^{*}}{I^{\prime}{ }^{s} f_{p}^{s}+\Sigma I^{\prime}{ }_{f}{ }^{s} f_{f}^{s}+I^{\prime}{ }_{c}{ }^{s} f_{c}{ }^{s}} \tag{1}
\end{equation*}
$$

in which k is the background- and deadtime-corrected relative x-ray intensity, I^{\prime} signifies $x-r a y ~ i n t e n s i t i e s ~$ generated within the specimen, f denotes the absorption factors, the subscripts p, f, and c indicate, respectively, primary emission, fluorescent emission excited by characteristic lines, and fluorescent emission excited by the continuum. The superscripts * and s denote, respectively, the specimen and the standard. The summation sign in the characteristic fluorescence terms indicates the possibility of excitation of a line by more than one exciting
line. If there is more than one exciting line, the fluorescence due to each line is calculated separately. The use of equation (1) replaces that of multiplicative correction factors according to the ZAF procedure, which is impractical when the fluorescence due to the continuum is considered (see p. 80, Appendix 1).

In the computation of k, MAIN is assisted by several subprograms. COCA starts by selecting the constants relevant to the elements and lines from the data provided by the data file. With the aid of these constants, MAIN directs CALI to establish a sequence of procedures for calculating the parameters necessary for equation (1). In this process, CALI utilizes the following subprograms:

PRA, to determine the intensities of primary emission I' p , (which are also used in the characteristic fluorescence correction),

FQI, to determine the primary absorption factors, f_{p},
FCA, to determine the characteristic fluorescence
contributions, $I^{\prime}{ }_{\mathrm{f}} \mathrm{f}_{\mathrm{f}}$, and
CO, to determine the fluorescent intensity due to the continuum, $I^{\prime}{ }_{c} f_{c}$.

These subprograms in turn use the following subprograms for the calculation of needed parameters and integrals:

RB, to determine the backscatter correction function,
EI, to calculate exponential integrals,
AC, to calculate x-ray mass attenuation coefficients,
F, to perform the numerical integrations for the continuum fluorescence correction, and

FT, to perform the same integrations, with omission of the x-ray absorption (this is required only to determine the absorption term f_{c}, and could be omitted if this term is of no interest).

CALI, assisted by these subprograms, assembles the numerator and the denominator of the fraction on the right
side of equation (1). These are sent to MAIN, which calculates the relative intensity k for all elements which have been measured, and initiates a step of iteration by the method outlined in the Appendix. If the purpose of the calculation was to establish theoretical intensities for a known composition, or if the results of the theoretical calculations for all elements match the results of the previous iteration (with a tolerance of 10^{-5}), then the calculation is terminated, and the results are printed in the OUTPUT procedure.

Besides making the pertinent decisions concerning the application of fluorescence correction, the program incorporates warning messages which are transmitted to the output if needed parameters (e.g., mass absorption coefficients) are not available or cannot be reliably calculated, or if the operating conditions were chosen improperly. These two features of the COR program render it less susceptible to mistakes by the operator.
4. Explanation of the Program ${ }^{1}$

4.1 MAIN Program

4.11 Input of the Contents of the Permanent Data File At this point, the complete permanent data file is loaded.
$\operatorname{READ}(5,30)$ NELM Read first card which contains the number of elements of which the constants are tabulated

10op 350 :
$\operatorname{READ}(5,40)$ Read a card which contains the constants that depend on the atomic number only:
$J \quad$ atomic number of element
KM(J) number of x-ray absorption edges
A(J) atomic weight
FCK12(J) Coster Kronig coefficients, f12, f23,
FCK23(J) f13
FCK13(J)
CI (J)
multiplicative constant for the mass absorption coefficients [4]:
C_{K} if $\mathrm{J} \leq 50, \mathrm{C}_{\mathrm{KL}}$ if $\mathrm{J}>50$
ANK (J) exponent n_{K}, for the mass absorption coefficients
ANKL(J) exponent $n_{K L}$, for the mass absorption coefficients (μ) according to $\mu=C \lambda^{n}$
1oop 350
READ $(5,50)$ Read a card containing the constants which depend on the atomic level:

WAV (K,J) wavelength of absorption jump
R(K,J) jump ratio
ØME (K,J) fluorescence yield
LM(K,J) number of tabulated lines for this level
implied loop
READ (5, 70) Read cards containing line wavelengths and relative intensities

CL(L,K,J) wavelength of line
ZL(L,K,J) relative intensity of line
All the variables used in this program are defined in Appendix 2.
 inserted. Do not insert a blank card at the end of the table of constants for an element; otherwise, difficulties will appear in calculating the absorption coefficients.

4.1.2 Input Specific to the Particular Analysis, to the Specimen and to the Standards

READ $(5,30)$ NECM Read a card containing the number of cases. Two cases are considered different if the elements contained in them differ, or if the conditions of analysis (voltage, line, etc.) differ.
loop 1010, concerning the handling of one case.
The tally of the numbers of iterations, NIT, is set to zero, since intermediate parameters which are independent of concentration are only printed after the first iteration.

The switch KSTøP* is set equal to 1 , to assure the start of the calculation. If an absorption coefficient cannot be calculated in subprogram AC(CL,J), this switch goes to 0 .
$\operatorname{READ}(5,60)$ Read first card with information on the case:

JM	number of elements contained in the specimen
JJ AM	number of elements analyzed
ND	switch indicating the mode of ratio input:
	if it is 0 or if the field is empty direct input of relative x-ray intensities (k-values)
	if it is $1, k$-values are obtained by the subroutine AINP
NPM	number of points in the case.
LOUT	switch for choosing the version of output
I COF	switch for suppression of continuum fluorescence correction.

FIRST is a logical variable to detect the first card of a case: punch a T. If the execution of the program is stopped because of any difficulty, the program proceeds to the next case,
*Switch, in the context of this paper, is a variable which determines the option to be followed from a group of options.
ignoring the rest of the cards which belong to the discarded case.

WRITE $(6,160)$ NEC Print case number (NEC).
Loop 430, for an analyzed element, calculates the intensity of the standard.

READ $(5,80)$ Read a card identifying the element:

NZ (JJA)	atomic number
Eø	operating voltage
KA (JJA)	index for excited level
LA (JJA)	index for analyzed line
COSEC (JJA)	cosecant of the x-ray emergence angle
NV (JJA)	valence, punch only if stoichiometry is to be calculated
NEST	if a composite standard is used, NEST is the number of elements present, besides that which is measured
CON(JJA)	switch for entering known concentrations

The value of each concentration is now put to 1 , for all real or hypothetical standards. Then, the intensities emerging from the standards are calculated as follows.

A call is made to CøCA (JJA,JJA,JJA) to obtain the input necessary to calculate fluorescence due to the continuum, and to introduce it into the C $\varnothing \mathrm{MM} \varnothing \mathrm{N}$ memory.

If execution of CØCA (JJA,JJA,JJA) has not caused an error message to be printed, the execution continues. Otherwise, control is transferred to the next case.

Note that the switch NCØ (JJA) is tested immediately after each execution of the program C $\varnothing C A$.

A ca11 is made to CALI (JJA,JJA,JJA,AIT...) to calculate the total emerging intensity of the standard AI. Then the switch KSTØP is tested. If it has turned to 0 (i.e. we have a meaningless mass absorption coefficient), a message is printed and control is transferred to the point of reading data for the next case.
$\operatorname{READ}(5,100)$ When the standard for an element is composite (NEST $\neq 0$) then a card gives the mass fraction of this element in the standard. As many cards as there are additional elements in the standard, give for each element:

READ $(5,90)$

NZ (JJA)	its atomic number
C(JJ)	its mass fraction

The subprograms CøCA (JJA,JST,JJA) and CALI (JJA,JST, JJA,AIT...) produce the ratio AIR (JJA) $=I_{A} / I(A)$; this value is 1 for a simple standard.

The specimen is now characterized as follows:
A series of IF statements switches NSW into one of five possible positions:

$$
\begin{aligned}
& \text { if all elements are analyzed, NSW } \rightarrow 1 \\
& \text { if there are two unanalyzed elements, } \\
& \text { NSW } \rightarrow 4 \text { (one element by stoichiometry, } \\
& \text { another by difference) } \\
& \text { if there is one unanalyzed element, } \\
& \text { and valences were listed, NSW } \rightarrow 2 \\
& \text { (one element by stoichiometry) } \\
& \text { if a concentration is listed for the } \\
& \text { unanalyzed element, NSW } \rightarrow 5 \text { (calcu- } \\
& \text { late k-value for known composition) } \\
& \text { if none of the preceding is true, } \\
& \text { NSW } \rightarrow 3 \text { (calculate one element by } \\
& \text { difference) }
\end{aligned}
$$

If NSW was not switched to 1 , the following READ statement is used to set NSW to the proper value:

READ (5,110)
NZ(JJ) atomic number of unanalyzed element NV(JJ) its valence (empty unless stoichiometry is calculated)
CD (1,JJ) its concentration (empty unless k-values are calculated)

The decision to calculate $k-v a l u e s ~ f r o m ~ k n o w n ~ c o n c e n t r a-~$ tions is signaled through the input of a "known" concentration value for one element (JJA1) in CD(1,JJ). This tells the program that the C(JJA) values entered for the elements other than JJAl are concentrations rather than $k-v a l u e s, ~ a n d ~ t h e ~ k-v a l u e s ~ o f ~ t h e s e ~ e l e m e n t s ~ a r e ~ c a l-~$ culated. But, JJAl is an "unanalyzed" element, and its k-value is not calculated. In order to obtain the
k-values for all elements of a specimen of known composition, one must run it in two cases, changing the order of input of the element between two cases since the last element being entered is always the "unanalyzed" element JJA1.

The subprogram C \varnothing CA ($1, J J M, J J M$) is called to determine the constants for fluorescence, in iteration no. 0 only for the measured lines of elements to be analyzed. (1oop 500).

The value of ND (p.12) indicates if the experimental k -values are entered by cards or through subprogram AINP (CD,NPM, JJAM, SD).

READ $(5,100)$ If the input is by cards, this card, and the following, give the mass fractions or k-values of all measured elements for all points to be calculated. If relative intensities are input for more than one point of the same specimen, the k-values are read on the next card or cards for all points after the first point.
AINP (CD,NPM,JJAM, SD) is called if ND = 1 (output from the electron probe; output on punched cards or magnetic tape)

4.1.3 Ca1culation of Concentrations for Each Point

loop 1000; the subscript denotes the point on the specimen.
loop 550
As a first approximation, $C=k$. The $k-v a l u e$ for each measured element is stored in a permanent memory location. The sum of concentrations is calculated.

The position of switch NSW now leads to the following instructions:

NSW=1:	All elements present must be analyzed. The number of each point and the concentration of the elements are printed: instruction
630	

Input of concentration of elements which are not calculated. loop 650: Normalization of concentrations for calculation of k-values.
after 650: Switch NSW2, which will cause the advance to next iteration, is positioned to 2.
660: If NSW2 is equal to 1 , print results, and pass on to the next point.

670: If NSW2 = 2, initiate another iteration (max. no. of iterations: 20), and, in the extended output, print the number of the iteration.

1oop 730
Calculate k-values for each analyzed element.
Print the main steps of calculation and k-values, in
iteration 0 only, if extended output (output 2) is used. Obtain next approximation by the hyperbolic equation. Sum concentrations.
According to the position of switch NSW, command is now transferred to one of the following instructions:

790: NSW2 switches to 1 . Test for convergence follows.
750: Calculate one element by stoichiometry.
740: Calculate one element by difference.
770: Calculate one element by difference, another by stoichiometry.
loop 810: normalization of concentrations, test for difference of concentrations found in two successive iterations (convergence test).

Normalization of concentrations for elements which were not measured.

Printing of results.
End of loop 1000
End of loop 1010
END

Arguments:
Jø: 1 abel of first element considered in the case
JM \vdots label of last element considered in the case
JJA: label of analyzed element in the case
4.2.1 This Subroutine Prepares the Fluorescence Calculations and Determines the Value of the Constants Needed

Limitations and warnings:
a) If operating voltage is high enough to excite higher levels corresponding to a different series, a warning is given.
b) If the operating voltage is above 30 kV , a message is given.
c) If the wavelength chosen passes beyond the N3 edge, or if the operating voltage is too low to excite the selected line, a message will be printed and the case will be aborted.

1) Fluorescence_excited by the continuum

If the characteristic line of the measured element is produced by the excitation level corresponding to the edge of wavelength λ_{g}, it can be excited by continuous radiation of ${ }^{\prime}$ wavelength between the Douane-Hunt limit, λ_{0}, and λ_{g}. As one crosses an edge of any element present, the constants for calculating mass absorption coefficients change. One must consider all edges of all elements between λ_{0} and λ_{q}. Any of the edges between these limits constifutes a sublimit for the integration to be performed; the corresponding element is registered, and all parameters referring to wavelengths above this edge are entered in memory.

If the element under consideration is the one we analyze, we also enter in memory a new efficiency factor, $\left(r_{i}-1\right) / r_{j}$ and a new effective fluorescence yield, $\omega_{\text {eff }}$.
2) Fluorescence_excited_by characteristic_lines

For each element, except the analyzed element, the characteristic lines at each level are compared with λ_{0}; if the shell emitting the analyzed line can be excited with a sufficient yield, the exciting line is
counted and the label of the corresponding element and the index of the series are stored.

All wavelengths previously stored in memory, with the associated parameters, are rearranged in increasing order, for the calculation of the fluorescence produced by the continuous spectrum, and to determine $\left(r_{i}-1\right) / r_{j}$ and $\omega_{\text {eff }}$ of the analyzed element for fluorescence by characteristic lines.

The output of the program consists of: number of sublimits and associated parameters, number of lines which excite fluorescence, and associated parameters; error messages, in case the user has caused the switch NC $\varnothing(J J A)$ to be changed.

4.2.2 Commentary on C $\emptyset \mathrm{CA}$ (JØ, JM, JJA) (see Figure 2)

The following preliminary steps are performed in the first block of instructions:
The switch NCØ(JJA) is set to 1 . This switch will go to 0 if the calculation becomes impossible.
The tally of starting points for integrations is set to 1 . The first point will be λ_{0}.
The tally $I 3$ which counts the number of lines exciting fluorescent radiation, is set to zero.

The following constants related to the analyzed element, JJA, are stored:

NZA its atomic number
WAA the wavelength associated with the operating voltage (λ_{0})
KAA the subscript of the shell emitting the characteristic lines (λ_{Ω})
${ }_{\mathrm{F}}^{\mathrm{F}} 12$ the Coster-Kronig coefficients

Loop 450:
The subscript of the loop (JJ) is the tally in the sequence of the elements contained in the specimen.

Beginning at the starting point of interval (WAA, WAV (KAA, NZA)), (λ_{0}, λ_{q}) the program searches for cases of characteristic $f 1$ lorescent excitation.

The collection of information for fluorescence from the continuum concerning the integration interval ends before the signal instruction 260.

COCA (JO, JM, JJA)

Figure 2. Flowsheet of Subroutine C \emptyset CA.

Tally I2: The tally for the number of discontinuities within the interval (WAA, WAV(KAA,NZA)) is set to zero.

The atomic number of element $N Z(J J)$ is renamed J, for the purpose of entering the permanent data file.

The number of absorption edges $K M(J)$ stored in the permanent data file is renamed as a non-subscripted integer, KMJ .

The following instructions, until and including instruction 60, have the purpose to define the coefficients C_{i} and n_{i} for computing the absorption coefficient of the element JJ at the wavelength WAA (λ_{0}). These coefficients are called CC(JJ,JJA) and EXPO (JJ,JJA) for the element JJ of a specimen in which the element JJA is being determined.

Loop 440:
The subscript (K) is that of the absorption edge.
The positions of switches KR1, KR2, K1, are set, as a function of K.

The wavelength WAV (K, J) of the edge having the subscript K of the element of atomic number J, is compared with diverse wavelengths:

1. If the permanent data files have indicated that WAV $(K, J) \leq 10^{-6} \AA$, the program is instructed that the corresponding level does not exist and proceeds to the next edge, $K+1$.
2. If WAV $(K, J) \leq$ WAA (i.e. the edge is at a wavelength shorter than λ_{0}), transfer is made, depending on the position of switch KR1, to one of the sets of instructions subscripted 80 to 570 , to readjust CC(JJ,JJA) and EXPO (JJ,JJA).

A message is printed if one passes the edge MIV. Switch NCØ (JJA) is thrown if R(KMJ) is missing in the input or if $K=12$ (i.e., the analyzed line falls beyond the N III edge of any element).
 counts the absorption edges of element J, is advanced one unit. The tally of the starting points for integration, I, is also advanced one unit. The edge, and the corresponding element, are stored in WAVE(I,JJA) and JJJ(I,JJA); the remaining memory locations are reset to 0 .

If the edge $W A V(K, J)$ is the first of the respective element to fall within the interval, control goes to one of the sets of instructions 190 to 570 , depending on switch KR2. If not so, switch K1 leads to 150-570. In either case, the absorption edge jump and the exponent n, valid at the right of the edge, are calculated. The values are stored as RR(I,JJ) and EX(I,JJA).

Switch NCØ goes to 0 if one passes the edge N N If. If the $M_{I V}$ edge is crossed, a warning message is if printed.
Following instruction 260 , if the element is the one which is being measured, the switches KAS and KK determine a set of instructions for computing the efficiency ratio $\left(r_{i}-1\right) / r_{j}$, and the effective fluorescence yield $\omega_{\text {eff }}$. These are stored in RRR(I,JJA) and \varnothing MEG (I, JJA).
If the element being considered differs from that of the analyzed element, its strongest lines are compared to the edge WAV (KAA,NZA).

If excitation can occur, the tallies I and $I 3$ increase by one; the wavelength and the subscripts for the element, she11, and line are stored in WAVE(I,JJA), JJJ(I,JJA), KB (I,JJA), LB(I,JJA).
4. If $W A V(K, J)$ > WAV (KAA,NZA), the program passes to the end of loop 450 and goes on to next element.

When all elements have been scanned, WAA is stored in WAVE ($1, J J A$), and $J J J(1, J J A)=0$.

At this point, for each value of $I \leq I M$, one has assembled the following table:
$\left.\begin{array}{|ccc} & \begin{array}{c}\text { number: I 3M } \\ \text { number: IM-I3M } \\ \text { starting points } \\ \text { (continuum fluorescence) }\end{array} & \end{array} \begin{array}{c}\text { nine exciting } \\ \text { the fluorescence } \\ \text { of JJA }\end{array}\right]$
X Storage in memory.
(X) Storage not needed or empty.

The nested loops 470 and 480 arrange the set of wavelengths, together with the associated quantities, in increasing order. Then, a permutation of the indices I ensues.

The memory locations in the preceding table, for \varnothing MEG(I,JJA) and RRR(I,JJA) associated with characteristic lines are empty. In loop 500 one transmits stepwise these quantities so as to define the efficiency ratio and effective fluorescence yield for every characteristic line.

Output

After the preceding process, the computer performs a rearrangement such that the first wavelengths, in number IMA(JJA), are the sublimits for integration (for the continuum) and that those following, in number MF(JJA), are those of the characteristic lines capable of exciting the fluorescence of the analyzed element JJA.

The subprogram returns the following quantities:

```
WAVE(I ,JJA)
JJJ (I,JJA)
RR(I,JJA) if 1\leqI\leqIMA(JJA)
EX(I,JJA) (for continuum fluorescence)
RRR(I,JJA)
\emptysetMEG (I , JJA)
```

WAVE(I,JJA)
JJJ (I, JJA)
$\operatorname{RRR}(I, J J A)$ if IMA(JJA) $+1 \leq I \leq M F(J J A)+\operatorname{IMA}(J J A)+1$ ØMEG(I,JJA) (for characteristic fluorescence)
$K B(I, J J A)$
LB (I , JJA)

4.3 FUNCTION C $\emptyset(J \emptyset, J M, J J A, F C, F Q C)$

This program calculates the intensity of fluorescence due to the continuum, by means of a numerical integration. $C \varnothing$ is separate from C $С \mathrm{CA}(J \emptyset, J M, J J A)$ because it requires concentrations; therefore it is used in each iteration, while C \varnothing CA(J $\emptyset, J M, J J A)$ is used only once.

Function F calculates the expression for continuum fluorescence to be numerically integrated in C $\emptyset(J \emptyset, J M, J J A)$.

Function $\mathrm{FT}(\mathrm{X})$ does the same calculation, with omission of the absorption terms for continuum fluorescence. The purpose of this calculation is the computation of the absorption correction factor for fluorescence from the continuum ($f_{C}, F Q C$). If this information is not of interest, the calculation of $F T(X)$ can be omitted.
4.5 FUNCTION AC(CL,J)

Calculates the x-ray absorption coefficient of atomic number J and wavelength CL; and acts upon the switch KSTØP if an error is detected (i.e., if the coefficient cannot be calculated). The parameters given by Heinrich [7] are used.

4.6 FUNCTION PRA(JØ,JM,LX,KX,JX,WAA)

Calculates the intensity of primary emission of the line LX, shell KX, of the element of atomic number JX, for a case containing the elements subscripted $J \emptyset$ to $J M_{2}$ where the Duane-Hunt limit associated with the energy of the electrons, λ_{o}, is WAA.
4.7 FUNCTION RB $(\mathrm{U} \emptyset, Z)$

Ca1culates the backscatter correction R of the element of atomic number Z for the overvoltage $U \emptyset$.
4.8 FUNCTION FQI (JØ, JM, LX, KX, JX, WAA)

Calculates the absorption correction f commonly called $f(x)$, corresponding to the primary int ${ }^{2}$ nsity PRA; the arguments have the same meaning as in PRA.

4.9 SUBROUTINE FCA (JØ, JM, II, JJA, FCAI, FCA \varnothing)

Calculates the fluorescent intensity FCAl for a case containing the elements $J \emptyset$ to $J M$, where the radiation is excited by the line II, and emitted as characteristic radiation of the element JJA.

Calculates the total emergent intensity, AIT, of the line of the element JJA, for a case containing the elements J \emptyset to JM. CALI establishes the sequence of procedures involving the correction function (see Figure 1).

4.11 FUNCTION EI (X)

Calculates $E I(x)=\int_{-\infty}^{x} \frac{e^{t}}{t} d t, \begin{aligned} & \text { used for the integration } \\ & \text { of stopping power. }\end{aligned}$

4.12 SUBROUTINE AINP (C,IJ,IIMAX,SD)

This subroutine is needed for the input of intensity data in any form except of $k-v a l u e s . ~ I f ~ i n t e n s i t y ~ d a t a ~$ are on cards, this subroutine will be applicable as is. Other subroutines, such as PTLOAD subroutine which enters data from a magnetic tape into the UNIVAC 1108, can be used to prepare data for AINP. The subroutine PTLOAD is reproduced in the statements of the program, but not discussed elsewhere, since it is specifically designed for use with the UNIVAC 1108 computer.

Function DEADT, which performs the dead-time corrections for counts, is attached to subroutine AINP.

Use of the Program

In the present form, the program should be acceptable to all computers having a FORTRAN IV compiler. The executive command cards are, of course, specific for a system and must be adapted to it.
5. Statements of the Program

LOGICAL FIRST

INTEGER SWITCH
DIMENSION NCO (15), MF (15), A (100) , WAV (12,100), CL (3,12,100), ZL (3,12,1 100) , NZ (15) , AK (15) , LA (15) , COSEC (15) , C (15)

DIMENSION KM (100), LM (12,100), EXPO (15,15), CC (15, 15), CI (100), ANK (100 1), $\operatorname{ANKL}(100), R(12,100)$

DIMENSION FCK12 (100), FCK23 (100), FCK13(100), OME (12,100), IMA (15), WAV $1 \mathrm{E}(120,15), \operatorname{RR}(120,15), \operatorname{EX}(120,15), \operatorname{MESS}(15,15)$
DIMENSION KB (120,15), LB(120,15), WA(15), KA (15), JJJ (120, 15) , RRR (120, 115) , OMEG (120,15)

DIMENSION FQF (15), $\operatorname{FCF}(15), \operatorname{FCASF}(15), \operatorname{RPF}(15), \operatorname{NV}(15), \operatorname{AI}(15), \operatorname{AKEX}(15)$
$1, \mathrm{CT}(15), \operatorname{AIR}(15), \mathrm{CD}(100,15), \operatorname{SD}(100,15), \operatorname{ELNA}(100), \operatorname{LI}(9,3), \operatorname{CON}(15), \mathrm{FQ}$ 2C(15), FQCA(15)
COMMON KSTOP, NCO,NIT, MF, A,WAV, CL, ZL, NZ, AK, LA, COSEC, C/B12/KM, LM/Bl2 13/EXPO, CC/B125/CI, ANK, ANKL , R/Bl26/FCK12, FCK23, FCK13, OME/Bl239/IMA, 2WAVE , RR , EX , MESS/Bl289/KB , LB/B5P/WA , KA , JJJ , RRR , OMEG/BICF/ICOF
COMMON /BINPT/ III,NTAPE/BLT/LOUT,FQF,FCF, FCASF, RPF
DATA (ELNA (KK) , KK=3, 92)/2HLI , $2 \mathrm{HBE}, 1 \mathrm{HB}, 1 \mathrm{HC}, 1 \mathrm{HN}, 1 \mathrm{HO}, 1 \mathrm{HF}, 2 \mathrm{HNE}, 2 \mathrm{HNA}, 2 \mathrm{H}$ $1 \mathrm{MG}, 2 \mathrm{HAL}, 2 \mathrm{HSI}, 1 \mathrm{HP}, 1 \mathrm{HS}, 2 \mathrm{HCL}, 1 \mathrm{HA}, 1 \mathrm{HK}, 2 \mathrm{HCA}, 2 \mathrm{HSC}, 2 \mathrm{HTI}, 1 \mathrm{HV}, 2 \mathrm{HCR}, 2 \mathrm{HMN}, 2 \mathrm{HF}$ $2 \mathrm{E}, 2 \mathrm{HCO}, 2 \mathrm{HNI}, 2 \mathrm{HCU}, 2 \mathrm{HZN}, 2 \mathrm{HGA}, 2 \mathrm{HGE}, 2 \mathrm{HAS}, 2 \mathrm{HSE}, 2 \mathrm{HBR}, 2 \mathrm{HKR}, 2 \mathrm{HRB}, 2 \mathrm{HSR}, 1 \mathrm{HY}$, $32 H Z R, 2 H N B, 2 H M O, 2 H T C, 2 H R U, 2 H R H, 2 H P D, 2 H A G, 2 H C D, 2 H I N, 2 H S N, 2 H S B, 2 H T E, 1$ 4HI, 2HXE , 2HCS , 2HBA , 2HLA , 2HCE , 2HPR , 2HND , 2HPM, 2HSM, 2HEU , 2HGD , 2HTB , 2HD $5 \mathrm{Y}, 2 \mathrm{HHO}, 2 \mathrm{HER}, 2 \mathrm{HTM}, 2 \mathrm{HYB}, 2 \mathrm{HLU}, 2 \mathrm{HHF}, 2 \mathrm{HTA}, 1 \mathrm{HW}, 2 \mathrm{HRE}, 2 \mathrm{HOS}, 2 \mathrm{HIR}, 2 \mathrm{HPT}, 2 \mathrm{HAU}$, $62 \mathrm{HHG}, 2 \mathrm{HTL}, 2 \mathrm{HPB}, 2 \mathrm{HBI}, 2 \mathrm{HPO}, 2 \mathrm{HAT}, 2 \mathrm{HRN}, 2 \mathrm{HFR}, 2 \mathrm{HRA}, 2 \mathrm{HAC}, 2 \mathrm{HTH}, 2 \mathrm{HPA}, 1 \mathrm{HU} /$
DATA LI (1, 1)/3HKBl/LI (1,2)/3HKAl/LI (1,3)/3HKA2/LI (2,1)/3HLB3/LI (2, $12) / 3 \mathrm{HLB} 4 / \mathrm{LI}(3,1) / 3 \mathrm{HLGl} / \mathrm{LI}(3,2) / 3 \mathrm{HLB1} / \mathrm{LI}(4,1) / 3 \mathrm{HLB} 2 / \mathrm{LI}(4,2) / 3 \mathrm{HLAl} / \mathrm{L}$ $2 \mathrm{I}(4,3) / 3 \mathrm{HLA} 2 / \mathrm{LI}(9,1) / 3 \mathrm{HMAl} / \mathrm{LI}(7,1) / 3 \mathrm{HMBl} /$
FORMAT $(1 \mathrm{H}, 5 \mathrm{X}, 2 \mathrm{HK}(, \mathrm{Il}, 2 \mathrm{H})=, \mathrm{F} 5.4$)
FORMAT (1H , 19X,A2,I1,A1,I1,5X,F6.4)
FORMAT (I3)
FORMAT (2I2, F6.3,3F6.4,F6.2,2F4.2)
FORMAT (F7.5,2F6.4, Il)
FORMAT (2I2,I1,3I2,68X,L1)
FORMAT (F7.5,F6.4)
FORMAT (I2,10X,F7.3,2I1,F6.4,2I1,F6.4)
FORMAT (I2,F5.4)
FORMAT (15F5.4)
FORMAT (I2,10X,I1,F5.4)
FORMAT (/7HELEMENT, I2, 4X,9HATOMIC NO,I2,/30X,9HABS COEFF,/30X,5HC($1 \mathrm{~K})=, \mathrm{F} 8.2,3 \mathrm{X}, 5 \mathrm{HN}(\mathrm{K})=, \mathrm{F} 4.2)$
FORMAT (18H COMPOUND STANDARD/5H JJA=, I2, 4X,4HNZA=,I2/(9X,3HNZ(, Il $1,2 \mathrm{H})=, \mathrm{I} 2,3 \mathrm{X}, 2 \mathrm{HC}=, \mathrm{F} 5.3,3 \mathrm{X}, 3 \mathrm{HCC}=, \mathrm{F} 8.2,3 \mathrm{X}, 5 \mathrm{HEXPO}=, \mathrm{F} 4.2$))
FORMAT (11X,4HAIR (, Il, 2H) =, F6.4)
140
FORMAT $(/ 12 \mathrm{X}, 3 \mathrm{HAI}(, \mathrm{Il}, 2 \mathrm{H})=$, El0.5)
FORMAT (1HO,1OH SAMPLE NO,I3,/5X,9HSTANDARDS)
FORMAT (//5X,8HPOINT NO, I2)
FORMAT (/7X,13HITERATION NO , I2)

```
    FORMAT (/5H JJA=,I2,4X,4HNZA=,I2/(9X,3HNZ(,Il,2H)=,I2,3X,2HC=,F5.3
    1,3X,3HCC=,F8.2,3X,5HEXPO=,F4.2)) A 60
    FORMAT (12X,3HCT(,Il,2H)=,F5.3) A 6l
    FORMAT (/10(1X,3HCT(,Il,2H)=,F6.4)) A 62
    FORMAT (1H ,5X,A2,2X,I2,3(5X,F6.4)) A A 63
    FORMAT (1H+,46X,F6.4,4X,ElO.5,6X,ElO.5,4X,F6.4)
A 64
    FORMAT (1H ,10X,29HCOMPOUND STANDARD FOR ELEMENT,I2/)
A 65
    FORMAT (1HO,4X,7HELEMENT,4X,7HAT CONC,4X,7HWT CONC,4X,7HSTD DEV,4X A 66
    1,4HF(X),4X,13HI(P)/(F (X)*C),4X,9HI(C)/I (P),4X,7HF(X)CON,4X,10HCHAR A }6
    2 FLUOR, 4X,7HF(X)CHA)
    FORMAT (1HO,24X,12HITERATION NO,I3) A 69
    FORMAT (lH+,46X,F6.4,4X,El0.5,6X,ElO.5,4X,F6.4,4X,ElO.5,5X,F6.4) A 70
    FORMAT (1H ,10X,A2,A3)
    FORMAT (80H
    l
    FORMAT (1Hl)
    FORMAT (1HO,19X,7HTOTAL =, 2X, F6.4)
    FORMAT (1HO,9X,13HSTOICHIOMETRY//20X,5HOXIDE,5X,5HCONC./)
    FORMAT (1HO,4X,7HELEMENT, 15X,7HK-VALUE,14X4HF(X),4X,13HI(P)/(F(X)*
    1C),4X,9HI (C)/I(P),4X,7HF(X)CON,4X,10HCHAR FLUOR,4X,7HF(X)CHA)
    FORMAT (1H ,5X,A2,2X,I2,16X,F6.4)
    CALL DEFTAB
        READ DATA INTO THE ELEMENT TABLE
    READ (5,30) NELM
    DO 350 NOE=1,NELM
    READ (5,40) J,KM(J),A(J),FCKl2(J),FCK23(J),FCKl3(J),CI(J),ANK(J),A
    1NKL(J)
    KMJ=KM (J)
    DO 350 K=l,KMJ
    READ (5,50) WAV (K,J),R(K,J),OME(K,J),LM(K,J)
    LMKJ=LM(K,J)
    IF (LMKJ.EQ.O) GO TO 350
    READ (5,70) (CL(L,K,J),ZL(L,K,J),L=l,LMKJ)
    CONTINUE
        READ IN INITIAL DATA FOR EACH SAMPLE
    READ (5,30) NECM
    DO 1010 NEC=1,NECM
    NIT=0
    KSTOP=1
    READ (5,60) JJM,JJAM,ND,NPM,LOUT,ICOF,FIRST
    NP1=NPM-1
    IF (.NOT.FIRST) GO TO 360
    READ (5,290)
    SWITCH=0
    WRITE (6,300)
    WRITE (6,290)
    WRITE (6,160) NEC
    DO 430 JJA=1, JJAM
    CON(JJA)=0.
        READ ELEMENT CARDS FOR EACH SAMPLE
    READ (5,80) NZ(JJA),EO,KA(JJA),LA(JJA),COSEC(JJA),NV(JJA),NEST,CON
    l(JJA)
    NCO(JJA)=1
    WA(JJA)=12.398/E0
    C}(JJA)=1
```

CALL COCA (JJA,JJA,JJA)
IF (LOUT.EQ.O) GO TO 370
WRITE (6,120) JJA,NZ(JJA), CC(JJA,JJA), EXPO(JJA, JJA)
CONTINUE
IF (NCO(JJA).EQ.O) GO TO 1010
NZA=NZ (JJA)
$K A A=K A(J J A)$
LAA=LA (JJA)
IF (NZA.LT.10) LAA=2
IF (NZA.LT. 40.AND.KAA.EQ.4) LAA=2
WRITE $(6,280)$ ELNA (NZA), LI (KAA, LAA)
CALCULATION OF ABSORPTION, ATOMIC NUMBER, AND CONTINUUM FLUORESCENCE CORRECTIONS FOR THE STANDARDS.

AI $=$ THE TOTAL CORRECTION FACTOR
CALL CALI (JJA,JJA,JJA,AIT,SWITCH,FQC,FQCA)
IF (KSTOP.EQ.O) GO TO 1010
AI (JJA) =AIT
AIR $(J J A)=1$
IF (LOUT.EQ.O) GO TO 380
WRITE $(6,150)$ JJA,AI(JJA)
CONTINUE
IF (NEST.EQ.O) GO TO 410

READ DATA INPUT FOR COMPOUND STANDARDS AND CALCULATE

 FLUORESCENCE CONSTANTS FOR THE COMPOUND STANDARDS.READ $(5,100)$ C(JJA)
JST=JJA+NEST
JJAS=JJA+1
READ (5, 90) (NZ(JJ), C(JJ), JJ=JJAS, JST)
CALL COCA (JJA,JST,JJA)
IF (LOUT.EQ.O) GO TO 390
WRITE (6,130) JJA,NZ(JJA), (JJ,NZ(JJ),C(JJ),CC(JJ,JJA), EXPO(JJ, JJA)
1 , JJ=JJA, JST)
GO TO 400
WRITE $(6,240) \mathrm{JJA}$
CONTINUE
IF (NCO(JJA).EQ.O) GO TO 1010
CALCULATE CORRECTIONS FOR COMPOUND STANDARDS.
AIR = TOTAL CORRECTION
CALL CALI (JJA, JST, JJA, AIT, SWITCH, FQC, FQCA)
IF (KSTOP.EQ.O) GO TO 1010
AIR (JJA) =AIT/AI (JJA)
IF (LOUT.EQ.O) GO TO 420
WRITE (6,140) JJA,AIR(JJA)
CONTINUE
CONTINUE
SORTING ROUTINE FOR ANALYSIS METHOD - NSW DETERMINES METHOD
1 - ALL ELEMENTS ANALYZED
2 - ONE ELEMENT BY STOICHIOMETRY
3 - ONE ELEMENT BY DIFFERENCE
4 - TWO OR MORE ELEMENTS NOT ANALYZED
5 - CALCULATE K-VALUES FROM KNOWN CONCENTRATIONS

A 121
A 122
A 123
A 124
A 125
A 126
A 127
A 128
A 129
A 130
A 131
A 132
A 133
A 134
A 135
A 136
A 137
A 138
A 139
A 140
A 141
A 142
A 143
A 144
A 145
A 146
A 147
A 148
A 149
A 150
A 151
A 152
A 153
A 154
A 155
A 156
A 157
A 158
A 159
A 160
A 161
A 162
A 163
A 164
A 165
A 166
A 167
A 168
A 169
A 170
A 171
A 172
A 173
A 174
A 175
A 176
A 177
A 178
A 179
A 180

こ		A 181
	$\mathrm{JJAl}=\mathrm{JJAM}+1$	A 182
	IF (JJM-JJAl) 480,450,440	A 183
140	NSW=4	A 184
150	READ (5,110) (NZ (JJ), NV (JJ), CD (1, JJ), JJ=JJAl, JJM)	A 185
	IF (CD (1,JJAl).GT.1.E-7) GO TO 460	A 186
	IF (NV (JJAl).EQ.O) GO TO 470	A 187
	IF ((JJM-JJAl).NE.0) GO TO 490	A 188
	NSW=2	A 189
	GO TO 490	A 190
160	NSW=5	A 191
	GO T0 490	A 192
470	NSW=3	A 193
	GO T0 490	A 194
480	NSW=1	A 195
190	DO $500 \mathrm{JJA}=1$, JJAM	A 196
3		A 197
?	CALCULATE FLUORESCENCE CONSTANTS FOR UNKNOWNS	A 198
3		A 199
	CALL COCA (1,JJM, JJA)	A 200
	IF (NCO(JJA).EQ.O) GO TO 1010	A 201
500	CONTINUE	A 202
	SWITCH=1	A 203
	IF (ND.EQ.1) GO TO 530	A 204
1		A 205
3	READ IN K-VALUES FROM CARDS	A 206
2		A 207
	DO 510 NP=1, NPM	A 208
510	READ (5,100) (CD (NP, JJA) , JJA $=1, \mathrm{JJAM}$)	A 209
	IF (NSW.NE.5) GO TO 540	A 210
	IF (NPM.EQ.l) GO TO 540	A 211
	DO 520 NP=2, NPM	A 212
520	READ (5, 100) (CD (NP, JJ), JJ=JJAl, JJM)	A 213
	GO TO 540	A 214
13		A 215
3	DATA ARE READ BY THE INPUT SUBROUTINE (AINP)	A 216
\%		A 217
530	CALL AINP (CD, NPM, JJAM, SD)	A 218
	$\mathrm{NPl}=\mathrm{NPM}-1$	A 219
\bigcirc		A 220
C	BEGIN CALCULATION OF CONCENTRATIONS FOR EACH UNKNOWN	A 221
P		A 222
540	DO 1000 NP=1,NPM	A 223
	NIT=0	A 224
	$\mathrm{SC}=0.0$	A 225
	DO 550 JJA=1, JJAM	A 226
	$C(J J A)=C D(N P, J J A) * A I R(J J A) ~$	A 227
	IF (CON (JJA) .GT.1. OE-7) C(JJA) =CD (NP, JJA)	A 228
	AKEX (JJA) = C (JJA)	A 229
	SC=SC+C (JJA)	A 230
050	CONTINUE	A 231
	IF (NSW.EQ.5) SC=SC+CD (1, JJAl)	A 232
	G0 TO $(630,560,580,590,610)$, NSW	A 233
\%		A 234
c	STOICHIOMETRY CALCULATION	A 235
3		A 236
6560	$\mathrm{C}(\mathrm{JJAl})=0.0$	A 237
	NZO=NZ (JJAl)	A 238
	DO 570 JJA=1, JJAM	A 239
	NZA = NZ (JJA)	A 240
	$\mathrm{CO}=\mathrm{C}(\mathrm{JJA}) / \mathrm{A}(\mathrm{NZA}) * \mathrm{~A}(\mathrm{NZO}) * \mathrm{NV}(\mathrm{JJA}) / \mathrm{NV}(\mathrm{JJAl})$	A 241

	$\mathrm{C}(\mathrm{JJAl})=\mathrm{C}(\mathrm{JJAl})+\mathrm{CO}$	A 242
570	CONTINUE	A 243
	SC=SC+C (JJAl)	A 244
	GO TO 630	A 245
C		A 246
C	CALCULATE ONE ELEMENT BY DIFFERENCE	A 247
C		A 248
580	$\mathrm{C}(\mathrm{JJAl})=1 .-$ SC	A 249
	SC=1.	A 250
	GO TO 630	A 251
C		A 252
C	TWO OR MORE ELEMENTS NOT ANALYZED	A 253
C		A 254
590	$C(J J M)=0.0$	A 255
	$\mathrm{NZO}=\mathrm{NZ}$ (JJM)	A 256
	NZEX=NZ (JJAl)	A 257
	DO $600 \mathrm{JJA}=1$, JJAM	A 258
	NZA=NZ (JJA)	A 259
	$\mathrm{CO}=\mathrm{C}(\mathrm{JJA}) / \mathrm{A}(\mathrm{NZA}) * \mathrm{~A}(\mathrm{NZO}) * N V(J J A) / N V(J J M)$	A 260
	$C(J J M)=C(J J M)+C O$	A 261
600	CONTINUE	A 262
	$\mathrm{SC}=\mathrm{SC}+\mathrm{C}$ (JJM)	A 263
	$\mathrm{C}(\mathrm{JJAl})=(1 .-S C) * A(N Z E X) * N V(J J M) /(A(N Z E X) * N V(J J M)+A(N Z O) * N V(J J A l))$	A 264
	$C(J J M)=C(J J M)+(1 .-S C) * A(N Z O) * N V(J J A l) /(A(N Z E X) * N V(J J M)+A(N Z O) * N V(J$	A 265
	lJAl))	A 266
	SC=1.	A 267
	GO TO 630	A 268
C		A 269
C	CALCULATE K-VALUES FROM KNOWN CONCENTRATIONS	A 270
C		A 271
610	DO 620 JJ=JJAl, JJM	A 272
	$C(J J)=C D(N P, J J)$	A 273
620	CONTINUE	A 274
630	WRITE $(6,170)$ NP	A 275
	DO $640 \mathrm{JJ}=1$, JJAM	A 276
	WRITE $(6,10)$ JJ, C (JJ)	A 277
640	CONTINUE	A 278
	DO 650 JJ=1, JJM	A 279
	$\mathrm{C}(\mathrm{JJ})=\mathrm{C}(\mathrm{JJ}) / \mathrm{SC}$	A 280
650	CONTINUE	A 281
	NSW2=2	A 282
C		A 283
C	START OF ITERATION LOOP	A 284
C		A 285
660	G0 T0 (840,670) , NSW2	A 286
670	IF (NIT.GT.20) GO T0 840	A 287
	IF (LOUT.EQ.O) GO TO 680	A 288
	WRITE (6,180) NIT	A 289
680	CONTINUE	A 290
	IF (NSW.NE. 5) SC=0.0	A 291
	D0 730 JJA=1, JJAM	A 292
	IF (CD (NP, JJA).LT.1.OE-7) GO TO 720	A 293
	IF (LOUT.EQ.O) GO TO 700	A 294
	IF (NIT.EQ.O) GO TO 690	A 295
	G0 T0 700	A 296
690	WRITE $(6,190)$ JJA, NZ(JJA), (JJ, NZ(JJ) , C(JJ) , CC(JJ, JJA) , EXPO (JJ , JJA)	A 297
	$1, J J=1, J J M)$	A 298
C		A 299
C	CALCULATE CORRECTIONS FOR UNKNOWNS	A 300
C		A 301
700	CALL CALI (1,JJM, JJA, AIT, SWITCH, FQC,FQCA)	A 302

```
            IF (KSTOP.EQ.O) GO TO 1010
                        CT(JJA)=AIT/AI(JJA) A 304
    IF (CON(JJA).GT.1.OE-7) CT (JJA)=CD (NP,JJA)
            IF (LOUT.EQ.O) GO TO 710
            IF (NIT.EQ.0) WRITE (6,200) JJA,CT(JJA)
    CONTINUE A 308
    IF (NSW.EQ.5) GO TO 730 A 309
                    A 303
    A 305
    A 306
    A 307
                HYPERBOLIC APPROXIMATION FOR CONCENTRATIONS
        CT(JJA)=AKEX(JJA)*C(JJA)*(1.-CT(JJA))/(AKEX(JJA)*(C(JJA)-CT(JJA))+
    lCT(JJA)*(1.-C(JJA)))
    IF (CON(JJA).GT.1.OE-7) CT(JJA)=CD(NP,JJA)
    SC=SC+CT (JJA)
    G0 T0 730
    720 CT (JJA )=0.
    730 CONTINUE
    GO TO (790,750,740,770,820), NSW
    CT(JJAl)=1. -SC
    SC=1.
    G0 TO 790
    CT(JJAl ) =0.0
    DO 760 JJA=l, JJAM
    NZA=NZ(JJA)
    CO=CT(JJA)/A (NZA) *A(NZO) *NV (JJA)/NV(JJAl)
    CT(JJAl) =CT (JJAl) +C0
    CONTINUE
    SC=SC+CT (JJAl )
    GO TO 790
    CT (JJM)=0.0
    DO }780\mathrm{ JJA=l, JJAM
    NZA=NZ (JJA )
    CO=CT (JJA)/A (NZA)*A (NZO) *NV (JJA)/NV (JJM)
    CT (JJM)=CT (JJM) +C0
    CONTINUE
    SC=SC+CT (JJM) A 338
A 337
    CT(JJAl)=(1.-SC)*A(NZEX)*NV (JJM)/(A (NZEX)*NV (JJM)+A(NZO)*NV(JJAl)) A 339
    CT(JJM)=CT(JJM)+(1.-SC)*A(NZO)*NV (JJAl)/(A(NZEX)*NV (JJM) +A (NZO)*NV A 340
    l(JJAl))
    SC=1.
    NSW2=1
    IF (LOUT.EQ.O) GO TO 800
    WRITE (6,210) (JJ,CT(JJ),JJ=1,JJM)
    CONTINUE
    DO 810 JJA=1,JJAM
    CT(JJA)=CT (JJA)/SC
    IF (CON(JJA).GT.1.OE-7) CT(JJA)=CD(NP,JJA)
    IF (ABS(CT(JJA)-C(JJA)).GT.1.E-5) NSW2=2
    C(JJA) =CT (JJA)
810 CONTINUE
    C(JJAl)=CT(JJAI)/SC
    JJAZ=JJAl+1
    C(JJA2)=CT(JJAZ)/SC
    NIT=NIT+1
    END OF ITERATION LOOP - IF CONVERGENT , BEGIN WRITING OUTPUT
    GO TO 660
    WRITE (6,330)
    DO 830 JJA=1,JJAM
A 341
A 342
```



```
780

920 IF (JJ.EQ.JJM) GO TO 940
IF (CT (JJ).GT.1.OE-7) GO TO 950
RPFX=0.
\(\mathrm{FCFX}=0\).
GO TO 970
RPFX=RPF (JJ) /(FQF (JJ) *CT (JJ))
FCFX=FCF (JJ)/RPF (JJ)
IF (FCASF (JJ).GT.1.OE-12) GO TO 960
WRITE \((6,230)\) FQF (JJ), RPFX,FCFX,FQC(JJ)
GO TO 970
FCASFX=FCASF (JJ)/RPF (JJ)
WRITE (6, 270) FQF(JJ), RPFX, FCFX, FQC(JJ), FCASFX,FQCA (JJ)
CONTINUE
WRITE \((6,310)\) SC
WRITE \((6,260)\) NIT
IF (NSW.NE.2) GO TO 1000

\section*{WRITE STOICHIOMETRY OUTPUT IF THIS OPTION WAS USED}
```

WRITE $(6,320)$

```

NZAl=NZ (JJM)
DO \(990 \mathrm{JJ}=1\), JJAM
\(N Z A=N Z(J J)\)
STOIC \(=\left(\mathrm{A}(\mathrm{NZA}){ }^{*} \mathrm{NV}(\mathrm{JJM})+\mathrm{A}(\mathrm{NZAI}){ }^{*} \mathrm{NV}(\mathrm{JJ})\right) /(\mathrm{A}(\mathrm{NZA}) * N V(\mathrm{JJM})){ }^{*} \mathrm{CT}(\mathrm{JJ})\)
NY=NV (JJM)
NX=NV (JJ)
IF (NX.LT.NY) GO TO 980
IF (MOD (NX,NY).EQ.I) GO TO 980
\(N X=N X / N Y\)
\(N Y=1\)

A 364
A 365
A 366
A 367
A 368
A 369
A 370
A 371
A 372
A 373
A 374
A 375
A 376
A 377
A 378
A 379
A 380
A 381
A 382
A 383
A 384
A 385
A 386
A 387
A 388
A 389
A 390
A 391
A 392
A 393
A 394
A 395
A 396
A 397
A 398
A 399
A 400
A 401
A 402
A 403
A 404
A 405
A 406
A 407
A 408
A 409
A 410
A 411
A 412
A 413
A 414
A 415
A 416
A 417
A 418
A 419
A 420
A 421
A 422
A 423
A 424

DETERMINE ALL THE CONSTANTS NECESSARY FOR A CALCULATION
DIMENSION NCO (15), MF (15) , D3(100), WAV (12,100) , CL (3, 12, 100) , D4 (3, 12, 1100), NZ(15), D5(15), N6(15), D7(15), D8(15)

DIMENSION KM (100), LM (12,100), EXPO (15,15), CC (15,15), CI(100),ANK (100 1), \(\operatorname{ANKL}(100), R(12,100)\)

DIMENSION FCK12(100), FCK23(100), FCK13(100), OME(12,100),IMA(15), WAV \(\operatorname{lE}(120,15), \operatorname{RR}(120,15), \operatorname{EX}(120,15), \operatorname{MESS}(15,15)\)
DIMENSION KB \((120,15), \mathrm{LB}(120,15)\), WA (15) , KA (15) , JJJ \((120,15), \operatorname{RRR}(120\), 115), OMEG(120,15)

COMMON N1,NC0,N2,MF,D3,WAV,CL,D4,NZ,D5,N6,D7,D8/Bl2/KM,LM/B1239/IM lA , WAVE , RR, EX, MESS/Bl23/EXPO , CC/B5P/WA , KA , JJJ , RRR , OMEG/Bl289/KB , LB/ 2B126/FCK12, FCK23, FCK13, OME/B125/CI, ANK, ANKL , R
FORMAT (//34H NUMBER OF EDGES GE 12 ARGUMENTS(,I2,1H,,I2,1H,,I2,1 11H) ELEMENT.,I2,16H DISCONTINUITY., I2)
```

EXPO(JJ,JJA)=ANK(J)
GO TO 60
EXPO(JJ,JJA)=ANKL(J)
CC(JJ,JJA)=CI(J)
DO 440 K=1,KMJ
KRl=l+K/2+K/8-(K/3)*(K/5)+((K-8)*(K/8))*2+K/l0-(K/ll)*2
KR2=l+K/2+K/5-(K/5)*(K/6)+K/9+(K/l2)*2
Kl=KRl-l-(K/l0)*4+(K/l2)*3
IF (WAV (K,J).LE.l.E-6) GO TO 440
IF (WAV(K,J).LE.WAA) GO TO 70
IF (WAV(K,J).GT.WAV(KAA,NZA)) GO TO 450
GO TO 140

```
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{70} & NNR=R ( \(\mathrm{K}, \mathrm{J}\) ) & B 56 \\
\hline & IF (KR1.NE.7.AND.NNR.EQ.O) GO TO 560 & B 57 \\
\hline & G0 TO (80,90,100,110,120,130,570), KR1 & B 58 \\
\hline \multirow[t]{4}{*}{80} & IF (J.GT.50) GO T0 440 & B 59 \\
\hline & \(C C(J J, J J A)=C I(J) / R(K, J) * W A V(K, J) * * \operatorname{ANK}(J) / W A V(K, J) * * \operatorname{ANKL}(J)\) & B 50 \\
\hline & EXPO ( JJ, JJA ) = ANKL (J) & B 61 \\
\hline & GO TO 440 & B 62 \\
\hline \multirow[t]{2}{*}{90} & \(\mathrm{CC}(\mathrm{JJ}, \mathrm{JJA})=\mathrm{CC}(\mathrm{JJ}, \mathrm{JJA}) / \mathrm{R}(\mathrm{K}, \mathrm{J})\) & B 63 \\
\hline & G0 TO 440 & B 64 \\
\hline \multirow[t]{3}{*}{100} & \(C C(J J, J J A)=C C(J J, J J A) / R(K, J) * W A V(K, J) * * \operatorname{EXPO}(J J, J J A) / W A V(K, J) * * 2.6\) & B 65 \\
\hline & EXPO (JJ, JJA ) = 2.6 & B 66 \\
\hline & GO TO 440 & B 67 \\
\hline \multirow[t]{3}{*}{110} & CC (JJ, JJA ) = CC (JJ, JJA)/R(K, J) & B 68 \\
\hline & MESS ( JJ, JJA ) =MESS ( JJ, JJA ) +1 & B 69 \\
\hline & GO TO 440 & B 70 \\
\hline \multirow[t]{4}{*}{120} & \(C C(J J, J J A)=C C(J J, J J A) / R(K, J) * W A V(K, J) * * 2.6 / W A V(K, J) * * 2.22\) & B 71 \\
\hline & EXPO \((J J, J J A)=2.22\) & B 72 \\
\hline & MESS \((J J, J J A)=0\) & B 73 \\
\hline & GO TO 440 & B 74 \\
\hline \multirow[t]{2}{*}{130} & \(\mathrm{CC}(\mathrm{JJ}, \mathrm{JJA})=\mathrm{CC}(\mathrm{JJ}, \mathrm{JJA}) / \mathrm{R}(\mathrm{K}, \mathrm{J})\) & B 75 \\
\hline & GO TO 440 & B 76 \\
\hline C & & B 77 \\
\hline C & DETERMINE JUMP RATIOS (R) AND EXPONENTS (N) NEEDED BY THE & B 78 \\
\hline C & CONTINUUM FLUORESCENCE CORRECTION & B 79 \\
\hline C & & B 80 \\
\hline \multirow[t]{10}{*}{140} & I2 \(=12+1\) & B 81 \\
\hline & \(\mathrm{I}=\mathrm{I}+1\) & B 82 \\
\hline & WAVE (I, JJA ) =WAV (K, J ) & B 83 \\
\hline & \(J J J(I, J J A)=J J\) & B 84 \\
\hline & \(R R R(I, J J A)=0.0\) & B 85 \\
\hline & OMEG(I, JJA \()=0.0\) & B 86 \\
\hline & \(K B(I, J J A)=0\) & B 87 \\
\hline & \(\mathrm{LB}(\mathrm{I}, \mathrm{JJA})=0\) & B 88 \\
\hline & IF (I2.EQ.1) GO T0 (190,200,210,220,230,240, 250,570), KR2 & B 89 \\
\hline & GO TO (150,160,170,180,570), Kl & B 90 \\
\hline \multirow[t]{3}{*}{150} & \(R \mathrm{R}(\mathrm{I}, J J A)=R(\mathrm{~K}, \mathrm{~J})\) & B 91 \\
\hline & EX (I, JJA ) =EX (I-1, JJA ) & B 92 \\
\hline & GO TO 260 & B 93 \\
\hline \multirow[t]{3}{*}{160} & \(\mathrm{RR}(\mathrm{I}, \mathrm{JJA})=\mathrm{R}(\mathrm{K}, \mathrm{J}) * \operatorname{WAV}(\mathrm{~K}, \mathrm{~J}) * * 2.6 / W A V(K, J) * * E X(I-1, J J A)\) & B 94 \\
\hline & \(E X(I, J J A)=2.6\) & B 95 \\
\hline & GO TO 260 & B 96 \\
\hline \multirow[t]{4}{*}{170} & \(R \mathrm{R}(\mathrm{I}, \mathrm{JJA})=\mathrm{R}(\mathrm{K}, \mathrm{J})\) & B 97 \\
\hline & \(E X(I, J J A)=E X(I-1, J J A)\) & B 98 \\
\hline & MESS ( J J , JJA ) = MESS ( J J , J J A ) +1 & B 99 \\
\hline & GO TO 260 & B 100 \\
\hline \multirow[t]{4}{*}{180} & \(R R(I, J J A)=R(K, J) * W A V(K, J) * * 2.22 / W A V(K, J) * * E X(I-1, J J A)\) & B 101 \\
\hline & \(E X(I, J J A)=2.22\) & B 102 \\
\hline & \(\operatorname{MESS}(J J, J J A)=0\) & B 103 \\
\hline & GO TO 260 & B 104 \\
\hline \multirow[t]{4}{*}{190} & IF (J.GT.50) GO TO 600 & B 105 \\
\hline & \(\operatorname{RR}(I, J J A)=R(K, J) * W A V(K, J) * * \operatorname{ANKL}(J) / W A V(K, J) * * \operatorname{ANK}(J)\) & B 106 \\
\hline & \(E X(I, J J A)=A N K L(J)\) & B 107 \\
\hline & G0 T0 260 & B 108 \\
\hline \multirow[t]{3}{*}{200} & \(R R(I, J J A)=R(K, J)\) & B 109 \\
\hline & \(E X(I, J J A)=E X P O(J J, J J A)\) & B 110 \\
\hline & GO TO 260 & B 111 \\
\hline \multirow[t]{3}{*}{210} &  & B 112 \\
\hline & \[
E X(I, J J A)=2.6
\] & B 113 \\
\hline & GO TO 260 & B 114 \\
\hline \multirow[t]{2}{*}{220} & \(R R(I, J J A)=R(K, J)\) & B 115 \\
\hline & \(E X(I, J J A)=2.6\) & B 116 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & G0 T0 260 & B 117 \\
\hline \multirow[t]{4}{*}{230} & \(R \mathrm{R}(\mathrm{I}, \mathrm{JJA})=\mathrm{R}(\mathrm{K}, \mathrm{J})\) & B 118 \\
\hline & EX \((\mathrm{I}, \mathrm{JJA})=2.6\) & B 119 \\
\hline & MESS ( JJ , JJA ) = MESS ( JJ , JJA ) +1 & B 120 \\
\hline & GO T0 260 ( & B 121 \\
\hline \multirow[t]{4}{*}{240} & \(R \mathrm{RR}(\mathrm{I}, \mathrm{JJA})=\mathrm{R}(\mathrm{K}, \mathrm{J}) *\) WAV \((\mathrm{K}, \mathrm{J}) * * 2.22 /\) WAV \((\mathrm{K}, \mathrm{J}) * * 2.6\) & B 122 \\
\hline & EX (I, JJA \()=2.22\) & B 123 \\
\hline & \(\operatorname{MESS}(\mathrm{JJ}, \mathrm{JJA})=0\) & B 124 \\
\hline & G0 TO 260 & B 125 \\
\hline \multirow[t]{3}{*}{250} & \(R R(I, J J A)=R(K, J)\) & B 126 \\
\hline & EX(I, JJA ) = EXPO ( \(\mathrm{JJ}, \mathrm{JJA}\) ) & B 127 \\
\hline & GO TO 260 & B 128 \\
\hline \multirow[t]{3}{*}{260} & IF (JJ.NE.JJA) GO TO 420 & B 129 \\
\hline & KAS=KAA-KAA/6-KAA/7-KAA/9 & B 130 \\
\hline & G0 T0 (270, \(280,290,300,580,380)\), KAS & B 131 \\
\hline C & & B 132 \\
\hline C & EFFICIENCY RATIOS -- & B 133 \\
\hline C & (R-1)/R FOR THE CONTINUUM FLUORESCENCE FOR K-LINES & B 134 \\
\hline C & & B 135 \\
\hline \multirow[t]{3}{*}{270} & \(R R R(1, J J A)=(R(K, J)-1.) / R(K, J)\) & B 136 \\
\hline & OMEG ( \(1, \mathrm{JJA}\) ) \(=\) OME \((\mathrm{K}, \mathrm{J})\) & B 137 \\
\hline & GO TO 440 & B 138 \\
\hline \multirow[t]{2}{*}{280} & KK=K & B 139 \\
\hline & GO T0 \((310,320,330,340,350,360,370)\), KK & B 140 \\
\hline \multirow[t]{2}{*}{290} & KK=K+K/2 & B 141 \\
\hline & G0 T0 ( \(310,320,330,340,350,360,370)\), KK & B 142 \\
\hline 300 & \(\mathrm{KK}=(\mathrm{K}+4) / 6 * 3+\mathrm{K}\) & B 143 \\
\hline & GO TO ( \(310,320,330,340,350,360,370\) ), KK & B 144 \\
\hline \multirow[t]{4}{*}{310} & WRITE \((6,30)\) J0, JM, JJA & B 145 \\
\hline & NSW3=2 & B 146 \\
\hline & RKR=1./R(K, J) & B 147 \\
\hline & GO TO 440 & B 148 \\
\hline C & & B 149 \\
\hline C & (R-1)/R FACTORS FOR THE CONTINUUM FLUORESCENCE CORRECTION FOR & B 150 \\
\hline C & L- AND M-LINES & B 151 \\
\hline C & & B 152 \\
\hline C & Ll-EDGE & B 153 \\
\hline C & & B 154 \\
\hline \multirow[t]{3}{*}{320} & \(R R R(1, J J A)=(R(K, J)-1.) / R(K, J)\) & B 155 \\
\hline & OMEG(1,JJA ) = OME ( \(\mathrm{K}, \mathrm{J}\) ) & B 156 \\
\hline & G0 T0 \((440,410)\), NSW3 & B 157 \\
\hline C & & B 158 \\
\hline C & L2-EDGE & B 159 \\
\hline C & & B 160 \\
\hline \multirow[t]{3}{*}{330} & \(R R R(1, J J A)=(R(K+1, J)-1.) / R(K, J) / R(K+1, J)\) & B 161 \\
\hline & \(\operatorname{OMEG}(1, J J A)=\operatorname{ME}(\mathrm{K}+1, \mathrm{~J}) *\left(1 .+\mathrm{Fl2}{ }^{*}(\mathrm{R}(\mathrm{K}, \mathrm{J})-1) * R.(\mathrm{~K}+1, \mathrm{~J}) /(\mathrm{R}(\mathrm{K}+1, \mathrm{~J})-1).\right)\) & B 162 \\
\hline & G0 T0 \((440,410)\), NSW3 & B 163 \\
\hline \multirow[t]{3}{*}{340} & \(R R R(I-1, J J A)=(R(K, J)-1.) / R(K, J)\) & B 164 \\
\hline & OMEG ( I-1, JJA ) \(=0 \mathrm{ME}(\mathrm{K}, \mathrm{J})\) & B 165 \\
\hline & GO TO 440 & B 166 \\
\hline C & & B 167 \\
\hline C & L3-EDGE & B 168 \\
\hline C & & B 169 \\
\hline \multirow[t]{5}{*}{350} & \(R R R(1, J J A)=(R(K+2, J)-1.) / R(K, J) / R(K+1, J) / R(K+2, J)\) & B 170 \\
\hline &  & B 171 \\
\hline & 12, J \()-1).+\mathrm{F} 23 *(R(\mathrm{~K}+2, \mathrm{~J}) *(\mathrm{R}(\mathrm{K}+1, \mathrm{~J})-1) /.(\mathrm{R}(\mathrm{K}+2, \mathrm{~J})-1)+.\mathrm{F} 12 * R(\mathrm{~K}+1, \mathrm{~J}) * \mathrm{R}(\) & B 172 \\
\hline & \(2 \mathrm{~K}+2, \mathrm{~J}) *(R(\mathrm{~K}, \mathrm{~J})-1) /.(R(\mathrm{~K}+2, \mathrm{~J})-1))\). & B 173 \\
\hline & G0 T0 \((440,410)\), NSW3 & B 174 \\
\hline \multirow[t]{3}{*}{360} & \(R R R(I-1, J J A)=(R(K+1, J)-1.) / R(K, J) / R(K+1, J)\) & B 175 \\
\hline & \(\operatorname{OMEG}(\mathrm{I}-1, \mathrm{JJA})=0 \mathrm{ME}(\mathrm{K}+1, \mathrm{~J}) *(1 .+\mathrm{F} 23 *(R(\mathrm{~K}, \mathrm{~J})-1) * R.(\mathrm{~K}+1, \mathrm{~J}) /(\mathrm{R}(\mathrm{K}+1, \mathrm{~J})-1\). & B 176 \\
\hline & 1)) & B 177 \\
\hline
\end{tabular}

GO TO 260
B 117
\(R R(I, J J A)=R(K, J)\)
B 118
EX \((I, J J A)=2.6\)
B 120
GO TO 260
B 121
B 123
\(\operatorname{MESS}(\mathrm{JJ}, \mathrm{JJA})=0\)
B 124
GO TO 260
B 125
\(R R(I, J J A)=R(K, J)\)
B 126
\(E X(I, J J A)=E X P O(J J, J J A)\)
GO TO 260
B 128
IF (JJ.NE.JJA) GO TO 420
B 129
KAS \(=\mathrm{KAA}-\mathrm{KAA} / 6-\mathrm{KAA} / 7-\mathrm{KAA} / 9\)
B 130
GO TO \((270,280,290,300,580,380)\), KAS
EFFICIENCY RATIOS --
(R-1)/R FOR THE CONTINUUM FLUORESCENCE FOR K-LINES
\(R R R(1, J J A)=(R(K, J)-1.) / R(K, J)\)
\(\operatorname{OMEG}(1, J J A)=\operatorname{OME}(\mathrm{K}, \mathrm{J})\)
GO TO 440
B 139
GO TO \((310,320,330,340,350,360,370)\), KK
GO TO \((310,320,330,340,350,360,370)\), KK
B 141

GO TO \((310,320,330,340,350,360,370)\), KK

NSW3=2
RKR=l./R(K, J)
(R-1)/R FACTORS FOR THE CONTINUUM FLUORESCENCE CORRECTION FOR

LI-EDGE
\(R R R(1, J J A)=(R(K, J)-1.) / R(K, J)\)
OMEG (1, JJA ) = OME (K , J )

L2-EDGE
B
B 160
\(\operatorname{OMEG}(1, \mathrm{JJA})=\operatorname{OME}(\mathrm{K}+1, \mathrm{~J}) *\left(1 .+\mathrm{Fl} 2^{*}(\mathrm{R}(\mathrm{K}, \mathrm{J})-1.){ }^{*} \mathrm{R}(\mathrm{K}+1, \mathrm{~J}) /(\mathrm{R}(\mathrm{K}+1, \mathrm{~J})-1).\right)\) GO TO (440,410), NSW3

B 162
B 163
RRR(I-l, JJA) \(=(R(K, J)-1.) / R(K, J)\)
OMEG (I-1, JJA ) \(=0 \mathrm{ME}(\mathrm{K}, \mathrm{J})\)

L3-EDGE
B 168
B 169
OMEG (1, JJA ) \(=\operatorname{OME}(K+2, J) *\left(1 .+F l 3^{*} R(K+1, J) * R(K+2, J) *(R(K, J)-l) /.(R(K+\right.\) \(12, \mathrm{~J})-1).+\mathrm{F} 23^{*}\left(\mathrm{R}(\mathrm{K}+2, \mathrm{~J}) *(\mathrm{R}(\mathrm{K}+1, \mathrm{~J})-1) /.(\mathrm{R}(\mathrm{K}+2, \mathrm{~J})-1)+.\mathrm{F} 12^{*} \mathrm{R}(\mathrm{K}+1, \mathrm{~J}){ }^{*} \mathrm{R}(\right.\) \(2 \mathrm{~K}+2, \mathrm{~J}) *(\mathrm{R}(\mathrm{K}, \mathrm{J})-1) /.(\mathrm{R}(\mathrm{K}+2, \mathrm{~J})-1))\).
G0 TO \((440,410)\), NSW3
OMEG (I-l,JJA) \(=0 \mathrm{ME}(\mathrm{K}+\mathrm{l}, \mathrm{J}) *(\mathrm{l} .+\mathrm{F} 23 *(\mathrm{R}(\mathrm{K}, \mathrm{J})-1) * R.(\mathrm{~K}+1, \mathrm{~J}) /(\mathrm{R}(\mathrm{K}+1, \mathrm{~J})-1\).
\begin{tabular}{|c|c|c|}
\hline & GO TO 440 & B 178 \\
\hline \multirow[t]{3}{*}{370} & \(\operatorname{RRR}(\mathrm{I}-1, J J A)=(R(K, J)-1.) / R(K, J)\) & B 179 \\
\hline & OMEG(I-1, JJA \()=0 \mathrm{ME}(\mathrm{K}, \mathrm{J})\) & B 180 \\
\hline & GO TO 440 & B 181 \\
\hline C & & B 182 \\
\hline C & M4 - M5 EDGES & B 183 \\
\hline C & & B 184 \\
\hline \multirow[t]{4}{*}{380} & IF (K.EQ.1) WRITE (6,30) JO,JM,JJA & B 185 \\
\hline & RRRR=R (KAA, J\()-1\). & B 186 \\
\hline & DO 390 LLL=K, KAA & B 187 \\
\hline & RRRR=RRRR/R (LLL, J ) & B 188 \\
\hline \multirow[t]{5}{*}{390} & CONTINUE & B 189 \\
\hline & IF (I2.EQ.1) GO TO 400 & B 190 \\
\hline & \(R R R(I-1, J J A)=R R R R\) & B 191 \\
\hline & OMEG ( I-l , JJA ) = OMEG ( 1 , JJA ) & B 192 \\
\hline & GO TO 440 ( & B 193 \\
\hline \multirow[t]{3}{*}{400} & OMEG( \(1, J J A)=\) ME \((\mathrm{KAA}, \mathrm{J})\) & B 194 \\
\hline & \(\operatorname{RRR}(1, J J A)=R R R R\) & B 195 \\
\hline & GO TO 440 & B 196 \\
\hline \multirow[t]{5}{*}{410} & \(R R R(I-1, J J A)=R R R(1, J J A)\) & B 197 \\
\hline & OMEG(I-l, JJA ) =OMEG ( 1 , JJA \()\) & B 198 \\
\hline & \(R R R(1, J J A)=R R R(1, J J A) * R K R\) & B 199 \\
\hline & NSW3=1 & B 200 \\
\hline & GO TO 440 & B 201 \\
\hline \multirow[t]{3}{*}{420} & LMKJ \(=\mathrm{LM}(\mathrm{K}, \mathrm{J})\) & B 202 \\
\hline & IF (LMKJ.EQ.O) GO TO 440 & B 203 \\
\hline & DO \(430 \mathrm{~L}=1\), LMKJ & B 204 \\
\hline C & & B 205 \\
\hline C & TEST FOR ANY CHARACTERISTIC FLUORESCENCE & B 206 \\
\hline C & & B 207 \\
\hline C & IF THERE IS A CHARACTERISTIC FLUORESCENCE CORRECTION, THEN & B 208 \\
\hline C & DETERMINE THE (R-l)/R, FLUORESCENT YIELD, LINE NUMBER, EDGE & B 209 \\
\hline C & NUMBER, ELEMENT NUMBER, AND WAVELENGTH FOR THE PARTICULAR & B 210 \\
\hline C & CORRECTION. & B 211 \\
\hline \multirow[t]{12}{*}{C} & & B 212 \\
\hline & IF (CL (L, K, J).GT.WAV(KAA,NZA).OR.CL(L,K,J)/WAV(KAA,NZA).LT.0.5) GO & B 213 \\
\hline & 1 TO 430 ( \({ }^{\text {l }}\) & B 214 \\
\hline & \(\mathrm{I}=\mathrm{I}+1\) & B 215 \\
\hline & I \(3=13+1\) & B 216 \\
\hline & \(R R R(I, J J A)=0.0\) & B 217 \\
\hline & OMEG ( I , JJA \()=0.0\) & B 218 \\
\hline & WAVE (I, JJA ) = CL (L, K, J ) & B 219 \\
\hline & JJJ (I, JJA ) = J J & B 220 \\
\hline & EX (I, JJA ) = EX (I-1, JJA ) & B 221 \\
\hline & KB ( \(\mathrm{I}, \mathrm{JJA})=\mathrm{K}\) & B 222 \\
\hline & LB (I, JJA \()=\) L & B 223 \\
\hline 430 & CONTINUE & B 224 \\
\hline 440 & CONTINUE & B 225 \\
\hline \multirow[t]{13}{*}{450} & CONTINUE & B 226 \\
\hline & WAVE ( \(1, J J A)=\) WAA & B 227 \\
\hline & JJJ (1, JJA ) = & B 228 \\
\hline & \(R R(1, J J A)=0\). & B 229 \\
\hline & EX \((1, J J A)=0\). & B 230 \\
\hline & LB (l, JJA \()=0\) & B 231 \\
\hline & \(K B(1, J J A)=0\) & B 232 \\
\hline & IM \(=1\) & B 233 \\
\hline & I \(3 \mathrm{M}=\mathrm{I} 3\) & B 234 \\
\hline & IMl \(=1 M-1\) & B 235 \\
\hline & IF (IMI.LT.2) GO TO 550 & B 236 \\
\hline & D0 \(480 \mathrm{I}=2\), IM1 & B 237 \\
\hline & \(\mathrm{IL}=\mathrm{IM}-\mathrm{I}+1\) & B 238 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline & GO TO 540 & B 300 \\
\hline 530 & \(\mathrm{I}=\mathrm{I}+1\) & B 301 \\
\hline 540 & IF (I.LE.M4) G0 TO 510 & B 302 \\
\hline 550 & IMA \((\mathrm{JJA})=I M-I 3 M\) & B 303 \\
\hline C & & B 304 \\
\hline C & SET THE SWITCH FOR THE CHARACTERISTIC FLUORESCENCE CORRECTION & B 305 \\
\hline C & & B 306 \\
\hline & MF ( JJA \()=I 3 \mathrm{M}\) & B 307 \\
\hline & GO TO 620 & B 308 \\
\hline 560 & WRITE \((6,40) \mathrm{K}, \mathrm{J}, \mathrm{J} 0, \mathrm{JM}, \mathrm{JJA}\) & B 309 \\
\hline & GO TO 610 & B 310 \\
\hline 570 & WRITE \((6,10) \mathrm{JO}, \mathrm{JM}, \mathrm{JJA}, \mathrm{J}, \mathrm{K}\) & B 311 \\
\hline & GO TO 610 & B 312 \\
\hline 580 & WRITE \((6,590)\) & B 313 \\
\hline 590 & FORMAT (1H , 'NO PROVISION IS MADE FOR LINES ORIGINATING'/' FRO & B 314 \\
\hline & 1M THE M1, M2, OR M3 EDGES. '/) & B 315 \\
\hline & GO TO 560 & B 316 \\
\hline 600 & WRITE \((6,20)\) JO, JM, JJA & B 317 \\
\hline 610 & NCO(JJA) = & B 318 \\
\hline & IMA ( JJA ) = I & B 319 \\
\hline & \(M F(J J A)=0\) & B 320 \\
\hline 620 & RETURN & B 321 \\
\hline & END & B 322- \\
\hline & SUBROUTINE CO (JO, JM, JJA, FC, FQC) & C 1 \\
\hline C & & C 2 \\
\hline C & CALCULATION OF CONTINUUM FLUORESCENCE CORRECTION & C 3 \\
\hline C & & C 4 \\
\hline & DIMENSION N2 (15), N4 (15), D5 (100) , D6 (12,100), CL (3, 12, 100), ZL (3,12,10 & C 5 \\
\hline & 10), NZ (15), AK (15), LA (15), COSEC (15) , C (15) & C 6 \\
\hline & DIMENSION EXPO \((15,15), \mathrm{CC}(15,15)\) & C 7 \\
\hline & DIMENSION IMA (15), WAVE (120,15), RR (120,15), EX (120,15), MESS (15,15) & C 8 \\
\hline & DIMENSION WA (15), KA (15), JJJ (120, 15) , RRR (120, 15 ) , OMEG ( 120,15 ) & C 9 \\
\hline & DIMENSION EXO (15), CCO (15) & C 10 \\
\hline & COMMON N1, N2, N3, N4, D5 , D6, CL , ZL, NZ, AK, LA , COSEC , C/B1239/IMA, WAVE, RR, & C 11 \\
\hline & lEX, MESS/B123/EXPO , CC/B5P/WA , KA , JJJ , RRR, OMEG/B34/EXO , CCO , WAA , ACS & C 12 \\
\hline & \(I M 1=I M A(J J A)-1\) & C 13 \\
\hline & \(F C O=0.0\) & C 14 \\
\hline & FC=0.0 & C 15 \\
\hline & NZA = NZ ( JJA ) & C 16 \\
\hline & \(K A A=K A(J J A)\) & C 17 \\
\hline & \(L A A=L A(J J A)\) & C 18 \\
\hline & WAA=WAVE ( \(1, \mathrm{JJA}\) ) & C 19 \\
\hline & \(\mathrm{ZMK}=0.0\) & C 20 \\
\hline & \(\mathrm{ACS}=0.0\) & C 21 \\
\hline & \(R R R I=R R R(1, J J A)\) & C 22 \\
\hline & OMEGI=OMEG ( \(1, \mathrm{JJA}\) ) & C 23 \\
\hline & DO \(10 \mathrm{~J}=\mathrm{JO}, \mathrm{JM}\) & C 24 \\
\hline & EXO (J) = EXPO (J , JJA ) & C 25 \\
\hline & CCO (J) = CC ( J , JJA ) & C 26 \\
\hline & \(\mathrm{I}=\mathrm{NZ}\) (J) & C 27 \\
\hline C & & C 28 \\
\hline C & CALCULATE CONSTANTS FOR CONTINUUM FLUORESCENCE & C 29 \\
\hline C & & C 30 \\
\hline & ACS \(=\) ACS \(+\mathrm{C}(\mathrm{J}\) ) *AC ( CL (LAA , KAA , NZA ) , I ) * COSEC (JJA ) & C 31 \\
\hline & ANZ \(=\) NZ \((J)\) & C 32 \\
\hline & AK \((J)=3.0 E-5\) & C 33 \\
\hline & ZMK=ZMK+C (J) *ANZ * AK (J) & C 34 \\
\hline 10 & CONTINUE & C 35 \\
\hline & D0 \(70 \mathrm{I}=1, \mathrm{IM} 1\) & C 36 \\
\hline & DO \(40 \mathrm{~J}=\mathrm{J} 0, \mathrm{JM}\) & C 37 \\
\hline & J.F (J.EQ.JJJ (I,JJA)) GO TO 20 & C 38 \\
\hline
\end{tabular}

EXO (J) =EX (I, JJA

\section*{GO TO 40}

OMEGI=OMEG (I JJJA )
RRRI=RRR(I,JJA)

\section*{CONTINUE}

NIN2=(WAVE (I+1,JJA)-WAVE(I,JJA))/0.02

\section*{SET UP INTERVALS FOR NUMERICAL INTEGRATION}

NIN=2*NIN2
\(\mathrm{H}=0.01\)
IF (NIN.GE.10) GO TO 50
\(\mathrm{H}=(\) WAVE (I+1, JJA \()-\) WAVE (I, JJA ) )/l0.
NIN=10
ANIN=NIN
RL=(WAVE (I+l, JJA )-WAVE(I,JJA))-ANIN*H
BO =WAVE (I JJA) +RL
BN=WAVE (I+1, JJA)
\(\mathrm{BN}=\mathrm{BN}-\mathrm{H}\)
LKM \(=\) NIN -3
NUMERICAL INTEGRATION BETWEEN ABSORPTION EDGES TRAPEZOIDAL RULE

SO=0.5*(FT(WAVE (I, JJA)) \(+\mathrm{FT}(\mathrm{BO}))\) *RL
SIMPSONS RULE
\(S=S+H^{*}(F(B 0, J 0, J M, J J A)+F(B N, J 0, J M, J J A)+4 . * F(B N 1, J O, J M, J J A)) / 3\).
\(\mathrm{SO}=\mathrm{SO} 0+\mathrm{H}^{*}(\mathrm{FT}(\mathrm{BO})+\mathrm{FT}(\mathrm{BN})+4 . * \mathrm{FT}(\mathrm{BNl})) / 3\).
DO \(60 \mathrm{LK}=1\), LKM, 2
ALK=LK
BKl \(=\mathrm{BO} 0+\mathrm{ALK} * \mathrm{H}\)
BK2=BKl+H
\(\mathrm{S}=\mathrm{S}+2 .{ }^{*}\left(2 .{ }^{*} \mathrm{~F}(\mathrm{BK} 1, \mathrm{JO}, \mathrm{JM}, \mathrm{JJA})+\mathrm{F}(\mathrm{BK} 2, \mathrm{JO}, \mathrm{JM}, \mathrm{JJA})\right){ }^{*} \mathrm{H} / 3\).
\(\mathrm{SO}=\mathrm{SO} 0+2 . *(2 . * \mathrm{FT}(\mathrm{BKI})+\mathrm{FT}(\mathrm{BK} 2)) * \mathrm{H} / 3\).
CONTINUE
EABI \(=0.5 * Z L(L A A, K A A, N Z A) * Z M K * C(J J A) * O M E G I * R R R I\)
FI=EABI*S
FIO \(=E A B I * S 0\)
FINAL VALUES OF EMITTED AND GENERATED CONTINUUM FLUORESCENCE
\[
\mathrm{FC}=\mathrm{FC}+\mathrm{FI}
\]

FCO \(=\) FCO F FIO
CONTINUE
\(\mathrm{F}(\mathrm{X})\) OF THE CONTINUUM
\(F Q C=F C / F C 0\)
RETURN
C 52

END
FUNCTION F (X,JO,JM,JJA)
CALCULATION OF THE INTEGRAL OF THE CONTINUUM CORRECTION FOR
THE EMITTED X-RAYS
DIMENSION N2(15),N4(15),D5(100),D6(12,100),D7(3,12,100),D8(3,12,10
10), N9(15), D10(15), N11 (15), D12(15), C(15)
DIMENSION EXO(15), CCO(15)
COMMON N1,N2,N3,N4,D5,D6,D7,D8,N9,D10,N11,D12,C/B34/EXO,CCO,WAA,AC 1S/B410/ACAX,ACX
\(\mathrm{ACAX}=\mathrm{CCO}(\mathrm{JJA}) * \mathrm{X}^{* * E X O}(\mathrm{JJA})\)
ACX=0.0
DO \(10 \mathrm{~J}=\mathrm{JO}, \mathrm{JM}\)
\(\operatorname{ACX}=\operatorname{ACX}+\mathrm{C}(\mathrm{J}) * \operatorname{CCO}(\mathrm{~J}) * X * * \operatorname{EXO}(\mathrm{~J})\)
\(C C=C C / R(K, J)\)
GO TO 30
ALL CONSTANTS ABOVE L3-EDGE
\(\mathrm{CC}=\mathrm{CC} / \mathrm{R}(\mathrm{K}, \mathrm{J})\)
CC=CC*WAV \((K, J) * *(\operatorname{ANKL}(J)-2.6)\)
\(\mathrm{AN}=2.6\)
GO TO 30
ALL CONSTANTS ABOVE M5-EDGE
    \(\mathrm{CC}=\mathrm{CI}(\mathrm{J})\)
    AN=ANK (J)
    IF (CL.LT.WAV(K,J)) GO TO 100
    CONSTANTS FROM K-EDGE TO Ll-EDGE FOR ELEMENTS ATOMIC NUMBER 50
    AND BELOW
    IF (J.LE.50) CC=CC/R(K,J)*WAV (K,J)**(ANK (J)-ANKL(J))
    AN=ANKL (J)
    \(\mathrm{K}=\mathrm{K}+1\)
    IF (WAV(K,J).LE.l.E-7) GO TO 30
    IF (CL.LT.WAV(K,J)) GO TO 100
    \(\mathrm{L}=1+\mathrm{K} / 4-(\mathrm{K} / 4) *((\mathrm{~K}-1) / 4)+(\mathrm{K} / 9) * 4-(\mathrm{K} / 10) * 2+(\mathrm{K} / 12) * 4\)
    NNR=R (K, J)
    IF (L.NE.3.AND.NNR.EQ.O) GO TO 80
    G0 T0 \((40,50,60,70)\), L
        ALL CONSTANTS ABOVE Ll-EDGE
C
C
C
    CONTINUE
    \(\mathrm{F}=\mathrm{ACAX} / \mathrm{ACS}^{*}(\mathrm{X}-\mathrm{WAA}) / \mathrm{WAA} / \mathrm{X} / \mathrm{X} *\) ALOG ( \(\left.1 .+\mathrm{ACS} / \mathrm{ACX}\right)\)
    RETURN
    END
    FUNCTION AC (CL,J)
        CALCULATION OF THE MASS ABSORPTION COEFFICIENTS
    DIMENSION N1 (15), N3(15), D4(100), WAV (12,100), D5(3,12,100), D6(3,12,1
    100) , N7(15), D8(15), N9(15), D10(15), Dll(15)
    DIMENSION CI(100), ANK (100), ANKL(100), R(12,100)
    COMMON KSTOP,N1,N2,N3,D4,WAV,D5,D6,N7,D8,N9,D10,D11/Bl25/CI,ANK,AN
    1KL, R
    FORMAT (//4H MU (, F7.5,1H,,I2,42H) UNKNOWN .MORE THAN 12 EDGES ARE
    1 CROSSED)
    FORMAT (//4H MU (,F7.5,1H, I2,14H) UNDEFINED,R(,I2,1H,,I2,17H) MISS
    IING IN DATA)
    \(\mathrm{K}=1\)
CONSTANTS FROM OPERATING POTENTIAL TO K-EDGE
\(C C=C I(J)\)
IF (CL.LT.WAV(K,J)) GO TO 100
CONSTANTS FROM K-EDGE TO Ll-EDGE FOR ELEMENTS ATOMIC NUMBER 50 AND BELOW
IF (J.LE. 50) CC=CC/R(K,J)*WAV (K, J) ** (ANK (J) \(-\operatorname{ANKL}(J))\)
AN=ANKL (J)
IF (WAV(K,J).LE.l.E-7) GO TO 30
\(\mathrm{L}=1+\mathrm{K} / 4-(\mathrm{K} / 4) *((\mathrm{~K}-1) / 4)+(\mathrm{K} / 9) * 4-(\mathrm{K} / 10) * 2+(\mathrm{K} / 12) * 4\)
IF (L.NE.3.AND.NNR.EQ.O) GO TO 80
GO TO (40,50,60,70), L
ALL CONSTANTS ABOVE Ll-EDGE
\begin{tabular}{|c|c|c|c|}
\hline 60 & \(\mathrm{CC}=\mathrm{CC} / \mathrm{R}(\mathrm{K}, \mathrm{J})\) & E & 9 \\
\hline & CC=CC*WAV \((\mathrm{K}, \mathrm{J}){ }^{* *}(2.6-2.22)\) & E & 0 \\
\hline & \(\mathrm{AN}=2.22\) & E & 1 \\
\hline & G0 T0 30 & E & \\
\hline 70 & WRITE \((6,10) \mathrm{CL}, \mathrm{J}\) & E & \\
\hline & G0 TO 90 & E & \\
\hline 80 & WRITE (6,20) CL, J, K, J & E & \\
\hline 90 & \(\mathrm{AC}=1 . \mathrm{E}-3\) & E & 56 \\
\hline & KSTOP=0 & E & 7 \\
\hline & RETURN & E & \\
\hline 100 & AC=CC*CL**AN & E & \\
\hline & RETURN & E & \\
\hline & END & E & \\
\hline & FUNCTION PRA (JO,JM, LX, KX, JX, WAA) & F & \\
\hline C & & F & \\
\hline C & CALCULATION OF PRIMARY INTENSITIES & F & \\
\hline C & & F & \\
\hline & DIMENSION N2(15), N4 (15), A (100), \(\operatorname{WaV}(12,100), \mathrm{D} 5(3,12,100), \mathrm{ZL}(3,12,10\) & F & \\
\hline & 10), NZ (15), D6(15), N7 (15), D8(15), C(15) & F & \\
\hline & DIMENSION FCKl2(100), FCK23(100), FCKl3(100), OME (12,100) & F & 7 \\
\hline & COMMON N1,N2,N3,N4,A,WAV,D5, ZL, NZ, D6,N7, D8, C/B126/FCK12,FCK23,FCK1 & F & 8 \\
\hline & 13, OME & F & \\
\hline & \(\mathrm{PRA}=0.0\) & F & 0 \\
\hline & U0=WAV (KX, JX) /WAA & F & 1 \\
\hline & EM=12.398/WAV (KX, JX) & F & 2 \\
\hline & AM=0.0 & F & 3 \\
\hline & AMLW=0.0 & F & 1 \\
\hline & DO \(10 \mathrm{~J}=\mathrm{J} 0, \mathrm{JM}\) & F & 5 \\
\hline & \(\mathrm{I}=\mathrm{NZ}\) ( J ) & F & 6 \\
\hline & IF (I.EQ.JX) CX=C (J) & F & 7 \\
\hline & \(\mathrm{RZ}=\mathrm{NZ}(\mathrm{J})\) & F & \\
\hline & \(\mathrm{AM}=\mathrm{AM}+\mathrm{C}(\mathrm{J}) * \mathrm{RZ} / \mathrm{A}\) ( I ) & F & 9 \\
\hline C & & F & 0 \\
\hline C & CALCULATE MEAN IONIZATION POTENTIAL - J & F & 1 \\
\hline C & & F & 2 \\
\hline & ZJ=9.76*RZ+58.5* \(\mathrm{RZ}^{* *}\) (-.19) ) & F & 23 \\
\hline & AMLW \(=\) AMLW+C ( J ) *RZ/A ( I ) *ALOG(1166. *EM/ZJ ) & F & \\
\hline 10 & CONTINUE & F & 5 \\
\hline C & & F & 26 \\
\hline C & \(\mathrm{ALW}=\mathrm{LN}(\mathrm{V}) \quad \mathrm{AW}=\mathrm{V} \quad \mathrm{CLUOW}=\mathrm{LN}(\mathrm{UOV})=\mathrm{LN}(\mathrm{UO})+\mathrm{LN}(\mathrm{V})\) & F & 7 \\
\hline C & & F & 28 \\
\hline & \[
\mathrm{ALW}=\mathrm{AMLW} / \mathrm{AM}
\] & F & 29 \\
\hline & AW=EXP (ALW) & F & 30 \\
\hline & ALUOW=ALOG(U0) +ALW & F & 31 \\
\hline & Tl=(EI (ALUOW)-EI (ALW) ) *ALW/AW & F & 32 \\
\hline C & & F & 33 \\
\hline C & T2 = THE INTEGRATED VOLTAGE DEPENDENT TERM & F & 34 \\
\hline C & & F & 35 \\
\hline & T2 \(=(\) U0-1 -Tl\() * 0.76 * 0.5 / \mathrm{AM}\) & F & 36 \\
\hline & IF (KX.GT.4) G0 TO 90 & F & 37 \\
\hline & GO TO \((20,30,40,60), \mathrm{KX}\) & F & 38 \\
\hline C & & F & 39 \\
\hline C & SELECT THE NUMBER OF ELECTRONS (ZNL) AND THE FLUORESCENT YIELD & F & 0 \\
\hline C & (OMED) FOR THE ABSORPTION EDGE PRODUCING THE MEASURED LINE & F & 1 \\
\hline C & & F & 2 \\
\hline C & K-EDGE & F & 3 \\
\hline C & & F & 4 \\
\hline 20 & ZNL=2. & F & 5 \\
\hline & OMED=OME ( KX , JX) & F & 46 \\
\hline & G0 T0 130 & F & 7 \\
\hline C & & F & 48 \\
\hline
\end{tabular}


\section*{CALCULATION OF BACKSCATTER -R- FROM DUNCUMBS FIT}
\(\mathrm{W}=1 . / \mathrm{UO}\)
\(\mathrm{W} 2=\mathrm{W} * * 2\)
\(\mathrm{W} 3=\mathrm{W} * * 3\)
W4 \(=W * * 4\)
W5 \(=W\) **5
Zl=1.0E-02*Z
\(\mathrm{Z} 2=1.0 \mathrm{E}-04 * \mathrm{Z} * * 2\)
Z3=1. \(0 \mathrm{E}-06^{*} \mathrm{Z}^{* *} 3\)
\(\mathrm{Z} 4=1.0 \mathrm{E}-08^{*} \mathrm{Z}^{* *} 4\)
Z5=1. OE-10*Z**5
Rl \(=-.581+2.162 * W-5.137 * W 2+9.213 * W 3-8.619 * W 4+2.962 * W 5\)
R2 \(=-1.609-8.298 * W+28.791 * W 2-47.744 * W 3+46.540 * W 4-17.676 * W 5\)
R3 \(=5.4+19.184 * W-75.733 * W 2+120.05 * W 3-110.7 * W 4+41.792 * W 5\)
R4 \(=-5.725-21.645 * W+88.128 * W 2-136.06 * W 3+117.75 * W 4-42.445 * W 5\)
R5 = 2 . 095 + 8.947*W-36.51*W2+55.694*W3-46.079*W4+15.851*W5
\(R B=1 .+R 1 * Z 1+R 2 * Z 2+R 3 * Z 3+R 4 * Z 4+R 5 * Z 5\)
RETURN
END
FUNCTION FQI (JO,JM,LX,KX,JX,WAA)
CALCULATION OF \(F(X)\)
DIMENSION N2 (15), N4(15),A(100), WAV (12,100),CL(3,12,100), D5(3, 12, 10 10) , NZ (15) , D6(15) , N7 (15) , \(\operatorname{CoSEC}(15), \mathrm{C}(15)\)

COMMON N1,N2,N3,N4,A,WAV,CL,D5,NZ,D6,N7, COSEC,C
\(\mathrm{H}=0.0\)
ACS \(=0.0\)
DO \(10 \mathrm{JJ}=\mathrm{J} 0, \mathrm{JM}\)
\(J=N Z(J J)\)
IF (J.EQ.JX) JJA=JJ
\(R Z=N Z(J J)\)
CALCULATE THE H OF PHILIBERT AND THE VALUE OF CHI
\(H=H+1.2 * A(J) * C(J J) / R Z * * 2\)
\(A C S=A C S+C(J J) * A C(C L(L X, K X, J X), J) * \operatorname{COSEC}(J J A)\)
CONTINUE
CALCULATE SIGMA AND \(F Q I=F(X)\)
SIG \(=4.5 E 05 /((12.398 /\) WAA \() * * 1.65-(12.398 /\) WAV \((K X, J X)) * * 1.65)\)
FQI \(=(1 .+\mathrm{H}) /(1 .+\mathrm{ACS} / \mathrm{SIG}) /\left(1 .+\mathrm{H}^{*}(1 .+\mathrm{ACS} / \mathrm{SIG})\right)\)
RETURN
END
SUBROUTINE FCA (JO,JM,II,JJA,FCAI, FCAO)
CALCULATION OF CHARACTERISTIC FLUORESCENCE CORRECTION
DIMENSION N2 (15), N3(15), A(100), WAV (12,100), CL(3, 12, 100) , ZL (3, 12, 10 10), \(\mathrm{NZ}(15), \mathrm{D} 4(15), \mathrm{LA}(15), \operatorname{COSEC}(15), \mathrm{C}(15), \mathrm{CA}(2), \mathrm{CB}(2)\)

DIMENSION KB \((120,15)\), LB \((120,15)\), WA \((15), \mathrm{KA}(15), \mathrm{JJJ}(120,15), \operatorname{RRR}(120\), 115), \(\operatorname{OMEG}(120,15)\)

DIMENSION FQF (15) , FCF (15) , FCASF (15) , RPF (15)
COMMON N1, N2,NIT,N3, A, WAV, CL, ZL, NZ, D4, LA , COSEC, C/B5P/WA,KA, JJJ, RRR 1, OMEG/Bl289/KB , LB/BLT/LOUT , FQF , FCF , FCASF , RPF
FORMAT \((/ 13 \mathrm{X}, 5 \mathrm{HWAVE}=, \mathrm{F} 7.5,4 \mathrm{X}, 5 \mathrm{HACBA}=, \mathrm{F} 6.1,4 \mathrm{X}, 4 \mathrm{HACA}=, \mathrm{F} 6.1,4 \mathrm{X}, 4 \mathrm{HACB}=\) \(1, \mathrm{~F} 6.1 /(30 \mathrm{X}, 4 \mathrm{HCAI}=, \mathrm{ElO} .5,14 \mathrm{X}, 4 \mathrm{HCBI}=, \mathrm{E} 10.5))\)
\(N Z A=N Z(J J A)\)
```

KAA=KA(JJA)
LAA=LA(JJA)
JJB=JJJ(II,JJA)
NZB=NZ(JJB)
KBB=KB (II ,JJA)
LBB=L.B(II,JJA)

```

\section*{ABSORPTION COEFFICIENT OF EXCITING RADIATION (B) IN THE EXCITED ELEMENT (A)}
\(\mathrm{ACBA}=\mathrm{AC}(\mathrm{CL}(\mathrm{LBB}, \mathrm{KBB}, \mathrm{NZB}), \mathrm{NZA})\)
\(\mathrm{H}=0.0\)
\(\mathrm{ACA}=0.0\)
\(\mathrm{ACB}=0.0\)
DO 20 I=JO,JM
\(\mathrm{J}=\mathrm{NZ}\) (I)
RJ=J
ABSORPTION COEFFICIENT OF RADIATION A IN THE SAMPLE X COSEC THETA
\(A C A=A C A+A C(C L(L A A, K A A, N Z A), J) * C O S E C(J J A) * C(I)\)
ABSORPTION COEFFICIENT OF RADIATION B IN THE SAMPLE
\(\mathrm{ACB}=\mathrm{ACB}+\mathrm{AC}(\mathrm{CL}(\mathrm{LBB}, \mathrm{KBB}, \mathrm{NZB}), \mathrm{J}) * \mathrm{C}(\mathrm{I})\)
\(\mathrm{H}=\mathrm{H}+\mathrm{l} .2 \mathrm{Z}^{*} \mathrm{~A}(\mathrm{~J}) * \mathrm{C}(\mathrm{I}) / \mathrm{RJ}{ }^{*}{ }^{*} 2\)
CONTINUE
SIG=4.5E05/((12.398/WA(JJA))**1.65-(12.398/WAV (KBB,NZB))**1.65)
FQIB \(=(1 .+\mathrm{H}) /(1 .+\mathrm{ACA} / \mathrm{SIG}) /\left(1 .+\mathrm{H}^{*}(1 .+\mathrm{ACA} / \mathrm{SIG})\right)\)
\(\mathrm{CA}(1)=(1 .+\mathrm{H}) *\) SIG
\(\mathrm{CA}(2)=-\mathrm{CA}(1)\)
\(C B(1)=S I G\)
\(\mathrm{CB}(2)=\operatorname{SIG}^{*}(1 .+1 . / \mathrm{H})\)
CALCULATE CONSTANTS IN EQUATIOII AND THE PRIMARY INTENSITY
FCAl \(=0 M E G(I I, J J A) * R R R(I I, J J A) * Z L(L A A, K A A, N Z A) * A C B A * C(J J A) * 0.5 * P R A(\)
lJO, JM, LBB , KBB, NZB, WA (JJA) )
FCAO \(=F C A 1 / A C B\)
Sl AND SO ARE THE INTEGRATIONS OF THE EMITTED AND GENERATED FACTORS RESPECTIVELY IN THE CRISS EQUATION

S2=FQIB*ALOG (1.+ACA/ACB)/ACA
IF (LOUT.EQ.O) GO TO 30
IF (NIT.EQ.0) WRITE \((6,10) \mathrm{CL}(\mathrm{LBB}, \mathrm{KBB}, \mathrm{NZB}), \mathrm{ACBA}, \mathrm{ACA}, \mathrm{ACB}, \mathrm{CA}(1), \mathrm{CB}(1\)
1), \(\mathrm{CA}(2), \mathrm{CB}(2)\)

CONTINUE
Sl=0
SO=0
D0 \(40 \mathrm{I}=1,2\)
Sl=Sl+CA (I) /(CB (I) +ACA) *ALOG(I.+CB(I)/ACB)/CB(I)
\(\mathrm{SO}=\mathrm{SO} 0+\mathrm{CA}(\mathrm{I}) / \mathrm{CB}(\mathrm{I}) * \operatorname{ALOG}(1 .+\mathrm{CB}(\mathrm{I}) / \mathrm{ACB}) / \mathrm{CB}(\mathrm{I}) * \mathrm{ACB}\)
CONTINUE
FCAI IS THE CHARACTERISTIC FLUORESCENCE FACTOR EMITTED
FCAl=FCAl* \((S 1+S 2)\)
\(F C A 0=F C A O *(S 0+F Q I B)\)
RETURN
        END
SUBROUTINE CALI (JO, JM, JJA, AIT, SWITCH, FQCF, FQCA)

\section*{DETERMINE SUBROUTINES TO BE CALLED TO CALCULATE THE TOTAL EMITTED RADIATION FOR EITHER STANDARDS OR SAMPLES}

\section*{INTEGER SWITCH}
DIMENSION N2(15), MF (15), D3(100), D4(12,100), D5(3,12,100), D6(3,12,10 10), NZ (15) , D7 (15), LA (15), D8(15), C(15), FQCF (15), FQCA (15)
DIMENSION KB (120,15), LB (120,15), WA (15) , KA (15) , JJJ (120, 15) , RRR (120, 115), OMEG(120,15)
DIMENSION IMA (15), WAVE ( 120,15 ) , RR(120,15), \(\operatorname{EX}(120,15), \operatorname{MESS}(15,15)\)
DIMENSION FQF (15), FCF (15), FCASF (15), RPF (15)
COMMON N1,N2,NIT,MF,D3,D4,D5,D6,NZ,D7,LA,D8, C/B1239/IMA, WAVE,RR,EX 1, MESS/B5P/WA, KA , JJJ , RRR , OMEG/Bl289/KB, LB/BLT/LOUT , FQF , FCF , FCASF , RP 2F

\section*{COMMON /BICF/ ICOF}
FORMAT ( \(6 \mathrm{X}, 2 \mathrm{HI}=, \mathrm{I} 2,3 \mathrm{X}, 5 \mathrm{HWAVE}=, \mathrm{F7} .5,3 \mathrm{X}, 3 \mathrm{HRR}=, \mathrm{F} 5.3,3 \mathrm{X}, 4 \mathrm{HJJJ}=, \mathrm{I} 2,3 \mathrm{X}, 4\)
lHRRR=, \(\mathrm{F} 5.3,3 \mathrm{X}, 5 \mathrm{HOMEG}=, \mathrm{F} 5.3,3 \mathrm{X}, 3 \mathrm{HEX}=, \mathrm{F} 5.3,3 \mathrm{X}, 3 \mathrm{HLB}=, \mathrm{Il}, 3 \mathrm{X}, 3 \mathrm{HKB}=, \mathrm{Il}\) )
FORMAT \((/ 5 \mathrm{H} \mathrm{JJA}=, \mathrm{Il}, 8 \mathrm{X}, 3 \mathrm{HRP}=, \mathrm{ElO} .5,3 \mathrm{X}, 3 \mathrm{HFQ}=, \mathrm{F} 6.4,3 \mathrm{X}, 3 \mathrm{HFC}=, \mathrm{ElO} .5,3 \mathrm{X}\) \(1,4 \mathrm{HFQC}=, \mathrm{F} 6.4 /\) )
FORMAT ( \(71 \mathrm{X}, 5 \mathrm{HFCAl}=, \mathrm{El} 0.5,2 \mathrm{X}, 6 \mathrm{HFQCAl}=, \mathrm{F} 6.4\) )
FORMAT (//6X,5HMESS (, I2,1H, \(12,2 \mathrm{H})=, \mathrm{I} 2,67 \mathrm{H} . \mathrm{M} 4\) EDGE IS CROSSED,ABS IORPTION COEFFICIENTS MAY NOT BE MEANINGFUL )
FORMAT \((1 \mathrm{H}+, 19 \mathrm{X}, 5 \mathrm{HAT}\) NO, I3, \(4 \mathrm{X}, 5 \mathrm{HF}(\mathrm{X})=, \mathrm{F} 6.4,4 \mathrm{X}, 14 \mathrm{HI}(\mathrm{P}) /(\mathrm{F}(\mathrm{X}) * \mathrm{C})=\), El \(10.5,4 \mathrm{X}, 10 \mathrm{HI}(\mathrm{C}) / \mathrm{I}(\mathrm{P})=, \mathrm{ElO} .5,4 \mathrm{X}, 10 \mathrm{HF}(\mathrm{X}), \mathrm{CONT}=, \mathrm{F} 6.4)\) IMAM=IMA (JJA) + MF (JJA \()\)
IF (LOUT.EQ.O) GO TO 60
IF (NIT.EQ.O) WRITE (6,10) (I,WAVE(I,JJA),RR(I,JJA),JJJ(I,JJA),RRR \(1(I, J J A), \operatorname{OMEG}(I, J J A), E X(I, J J A), L B(I, J J A), K B(I, J J A), I=1, I M A M)\) GO TO 60
    IO=IMA (JJA) +1
        DO 120 I=IO,IMAM
    CALL FCA (JO,JM,I,JJA,FCAI,FCAO)
    IF (FCAO.LT.1.OE-12) GO TO 110
    FQCAl=FCAl/FCAO
    IF (LOUT.EQ.0) GO TO 110
    WRITE (6,30) FCAl,FQCAl
        CONTINUE
        FCAS = TOTAL EMITTED RADIATION DUE TO CHARACTERISTIC
        FLUORESCENCE
    FCAS=FCAS+FCAl
    FCASO=FCASO+FCAO
    CONTINUE
    IF (FCASO.LT.1.OE-12) GO TO 130
    FQCA (JJA)=FCAS/FCASO
    AIT = TOTAL EMITTED RADIATION
    AIT=RP+FC+FCAS
    FCASF(JJA)=FCAS
    RETURN
    END
    FUNCTION EI (X)
        EXPONENTIAL INTEGRAL
        EI=ALOG(X)+X
        TN=X
        N=1
AN=N
IF (AN.GT.2.*X.AND.TN.LT.1.E-06) GO TO 20
TN=TN*X*AN/(AN+1.)**2
EI=EI+TN
N=N+1
GO T0 10
20 RETURN
END
            FUNCTION FT (X)
CALCULATION OF THE INTEGRAL OF THE CONTINUUM FLUORESCENCE
CORRECTION FOR GENERATED X-RAYS
DIMENSION D1(15),D2(15)
COMMON /B34/ D1,D2,WAA,DACS/B410/ACAX,ACX
FT=ACAX/ACX* (X-WAA)/WAA/X/X
RETURN
END
```

```
    IF (SWITCH.EQ.0) WRITE (6,50) NZ(JJA),FQ,RPFX,FCFX,FQC
```

 IF (SWITCH.EQ.0) WRITE (6,50) NZ(JJA),FQ,RPFX,FCFX,FQC
 FQCF (JJA)=FQC
 FQCF (JJA)=FQC
 FQF(JJA)=FQ
 FQF(JJA)=FQ
 FCF(JJA)=FC
 FCF(JJA)=FC
 RPF(JJA)=RP
 RPF(JJA)=RP
 IF (MF(JJA).EQ.O) GO TO 130
 IF (MF(JJA).EQ.O) GO TO 130
 CHARACTERISTIC FLUORESCENCE CORRECTION - THE VALUE OF MF IS SET
 CHARACTERISTIC FLUORESCENCE CORRECTION - THE VALUE OF MF IS SET
 IN SUBROUTINE COCA
    ```
        IN SUBROUTINE COCA
```

```
L 8
L 9
10
```

| | SUBROUTINE AINP (C, IJ, IIMAX, SD) | M | 1 |
| :---: | :---: | :---: | :---: |
| | DOUBLE PRECISION SUM, SSUM, SUMS, FSD | M | 2 |
| | DIMENSION NUMBER (1000), NTABL (100, 8) , MCO (8) , $\operatorname{NCODE}(100,7), \mathrm{T}(100), \mathrm{ICO}$ | M | 3 |
| | $1 \mathrm{~N}(7,2), \operatorname{NSTD}(12,2,7,2), \operatorname{SNSTD}(7,2), \operatorname{CSTD}(7,2), \operatorname{SPH}(5,7), \operatorname{SPHC}(5,7), \operatorname{PHC}($ | M | 4 |
| | 2100, 7) , C (100,6) , PEAK (7) , $\operatorname{KK}(5), \operatorname{TIM}(5), \operatorname{SD}(100,7), \operatorname{SUM}(6,7), \operatorname{SSUM}(6,7)$, | M | 5 |
| | $3 \operatorname{SUMS}(6,7), \operatorname{FSD}(6,7)$ | M | 6 |
| | COMMON /BINPT/ III, NTAPE | M | 7 |
| 10 | FORMAT (4I2,I5,I2) | M | 8 |
| 20 | FORMAT (10I8) | M | 9 |
| 30 | FORMAT (1HO, 8HELEMENT , II, 34H - STANDARD DEVIATION OF PEAK FOR , I2 | M | 10 |
| | $1,11 \mathrm{H}$ POINTS IS ,F6.4) | M | 11 |
| 40 | FORMAT (1HO, 8 HELEMENT , Il, 40 H - STANDARD DEVIATION OF BACKGROUND F | M | 12 |
| | 10R , I2,11H POINTS IS ,F6.4) | M | 13 |
| | III=510 | M | 14 |
| | NIND=0 | M | 15 |
| C | | M | 16 |
| C | READ DATA FROM MAG TAPE AND SET UP TABLE | M | 17 |
| C | | M | 18 |
| | READ (5, 10) NC, NM, NTC, NAV, ND, NTRA | M | 19 |
| | $\mathrm{NCl}=\mathrm{NC}-1$ | M | 20 |
| | NS=6 | M | 21 |
| | $\mathrm{M}=\mathrm{NC} * \mathrm{ND}$ | M | 22 |
| | IF (NTC.EQ.l) GO TO 60 | M | 23 |
| | INDEX=0 | M | 24 |
| | CALL PTLOAD (NUMBER, M, NS , NC) | M | 25 |
| | DO 50 NROW=1,ND | M | 26 |
| | DO 50 NCOL=1,NC | M | 27 |
| | INDEX=INDEX+1 | M | 28 |
| | NTABL (NROW , NCOL) = NUMBER (INDEX) | M | 29 |
| 50 | CONTINUE | M | 30 |
| | GO TO 80 | M | 31 |
| ${ }^{\text {C }}$ | | M | 32 |
| C | READ DATA FROM CARDS AND SET UP TABLE | M | 33 |
| C | | M | 34 |
| 60 | DO 70 NROW=1, ND | M | 35 |
| | READ (5,20) (NTABL (NROW, NCOL) , NCOL=1, NC) | M | 36 |
| 70 | CONTINUE | M | 37 |
| ; 80 | CONTINUE | M | 38 |
| C | | M | 39 |
| C | SEPARATE MANUAL DATA ENTRY INTO 6 VARIABLES | M | 40 |
| C | | M | 41 |
| | DO 110 NROW=1,ND | M | 42 |
| | MCO (1) = NTABL (NROW , NM) | M | 43 |
| | DO $100 \mathrm{I}=1,6$ | M | 44 |
| | IK=6-I | M | 45 |
| | IF (MCO(I).EQ.O) GO TO 90 | M | 46 |
| | ITEN=10**IK | M | 47 |
| | IF (MCO (I).LT.ITEN) GO TO 90 | M | 48 |
| | NCODE (NROW , I) = MCO (I)/ITEN | M | 49 |
| | IF (IK.EQ.O) GO TO 100 | M | 50 |
| | $\mathrm{MCO}(\mathrm{I}+\mathrm{l})=\mathrm{MCO}(\mathrm{I})-\mathrm{NCODE}($ NROW , I $) *$ ITEN | M | 51 |
| | GO TO 100 | M | 52 |
| 90 | NCODE (NROW, I $)=0$ | M | 53 |
| | $\mathrm{MCO}(\mathrm{I}+1)=\mathrm{MCO}$ (I) | M | 54 |
| 100 | CONTINUE | M | 55 |
| 110 | CONTINUE | M | 56 |
| C | | M | 57 |
| C | SET UP TABLES OF STANDARDS AND BACKGROUNDS FOR ALL ELEMENTS | M | 58 |
| C | | M | 59 |
| | DO $130 \mathrm{I}=1, \mathrm{NCl}$ | M | 60 |
| | DO $120 \mathrm{~J}=1,2$ | M | 61 |

| | $\operatorname{SUM}(\mathrm{I}, \mathrm{J})=0$ | M 62 |
| :---: | :---: | :---: |
| | SSUM $(T, J)=0$ | M 63 |
| | $\operatorname{ICON}(\mathrm{I}, \mathrm{J})=0$ | M 64 |
| | $\operatorname{SNSTD}(I, J)=0$ | M 65 |
| 120 | CONTINUE | M 66 |
| 130 | CONTINUE | M 67 |
| | DO 160 NROW=1, ND | M 68 |
| | DO $150 \mathrm{I}=1, \mathrm{NCl}$ | M 69 |
| | PHC (NROW, I) = | M 70 |
| | IF (NCODE (NROW, I).EQ.0) GO TO 150 | M 71 |
| | $\mathrm{T}($ NROW $)=1000$ | M 72 |
| | IF (NCODE(NROW, I) .NE.6) GO TO 140 | M 73 |
| | $\operatorname{ICON}(\mathrm{I}, 1)=\operatorname{ICON}(\mathrm{I}, 1)+1$ | M 74 |
| | $\operatorname{IIC=ICON}(I, I)$ | M 75 |
| | NSTD (IIC, $1, I, 1)=$ NROW | M 76 |
| | NSTD (IIC, 2, I, 1) = NTABL (NROW, I) | M 77 |
| | GO TO 150 | M 78 |
| 140 | CONTINUE | M 79 |
| | IF (NCODE (NROW, I) . NE.7) GO TO 150 | M 80 |
| | $\operatorname{ICON}(I, 2)=\operatorname{ICON}(\mathrm{I}, 2)+1$ | M 81 |
| | $\operatorname{IIC}=\operatorname{ICON}(1,2)$ | M 82 |
| | NSTD (IIC, 1, I, 2) =NROW | M 83 |
| | NSTD (IIC , 2, I, 2) = NTABL (NROW , I) | M 84 |
| 150 | CONTINUE | M 85 |
| 160 | CONTINUE | M 86 |
| C | | M 87 |
| C | AVERAGE STANDARDS AND BACKGROUNDS AND CORRECT FOR DEAD TIME | M 88 |
| C | | M 89 |
| | DO $200 \mathrm{I}=1, \mathrm{NCl}$ | M 90 |
| | DO $190 \mathrm{~J}=1,2$ | M 91 |
| | IF (ICON (I, J).EQ.O) GO TO 190 | M 92 |
| | $\mathrm{IC}=\mathrm{ICON}(\mathrm{I}, \mathrm{J})$ | M 93 |
| | DO 170 IIC=1,IC | M 94 |
| | NR=NSTD (IIC, I, I, J) | M 95 |
| | $\operatorname{SNSTD}(I, J)=\operatorname{SNSTD}(I, J)+\operatorname{NSTD}(I I C, 2, I, J) /(I C O N(I, J) * T(N R))$ | M 96 |
| | $\operatorname{SUM}(I, J)=\operatorname{SUM}(I, J)+N S T D(I I C, 2, I, J)$ | M 97 |
| | $\operatorname{SSUM}(\mathrm{I}, \mathrm{J})=\operatorname{SSUM}(\mathrm{I}, \mathrm{J})+\operatorname{NSTD}(\mathrm{IIC}, 2, I, J) * * 2$ | M 98 |
| | $\operatorname{CSTD}(I, J)=\operatorname{DEADT}(\operatorname{SNSTD}(I, J), I, N T N D)$ | M 99 |
| | IF (NTRA.EQ.I) GO TO 170 | M 100 |
| | $\operatorname{CSTD}(\mathrm{I}, \mathrm{J})=\operatorname{CSTD}(\mathrm{I}, \mathrm{J}) * \mathrm{~T}(\mathrm{NR})$ | M 101 |
| 170 | CONTINUE | M 102 |
| | $\operatorname{SUMS}(I, J)=\operatorname{SUM}(I, J) * * 2 / I C O N(I, J)$ | M 103 |
| | $\operatorname{ASUM}=\operatorname{SUM}(\mathrm{I}, \mathrm{J}) / \mathrm{ICON}(I, J)$ | M 104 |
| | $\operatorname{STSD}=\operatorname{DSQRT}((\operatorname{SSUM}(\mathrm{I}, \mathrm{J})-\operatorname{SUMS}(\mathrm{I}, \mathrm{J})) /(\operatorname{ICON}(\mathrm{I}, \mathrm{J})-1)) /$ ASUM | M 105 |
| | SSTSD=SNGL (STSD) | M 106 |
| | IF (J.EQ.2) G0 T0 180 | M 107 |
| | WRITE (6,30) I, ICON (I, J) , SSTSD | M 108 |
| | GO TO 190 | M 109 |
| 180 | WRITE (6,40) I, ICON(I, J), SSTSD | M 110 |
| 190 | CONTINUE | M 111 |
| 200 | CONTINUE | M 112 |
| | IF (NAV.EQ.I) GO TO 260 | M 113 |
| C | | M 114 |
| C | AVERAGE DATA ON INDIVIDUAL PHASES AND CORRECT FOR DEAD TIME | M 115 |
| C | | M 116 |
| | DO $250 \mathrm{I}=1, \mathrm{NCl}$ | M 117 |
| | D0 $210 \mathrm{~J}=1,5$ | M 118 |
| | $K K(J)=0$ | M 119 |
| | $\operatorname{SUM}(\mathrm{J}, \mathrm{I})=0$ | M 120 |
| | $\operatorname{SSUM}(\mathrm{J}, \mathrm{I})=0$ | M 121 |
| | $\operatorname{TIM}(J)=0$ | M 122 |

 \(\operatorname{SPH}(\mathrm{J}, \mathrm{I})=0 \quad\) M 123
 M 124
CONTINUE

PEAK MINUS BACKGROUND ON STANDARDS
DO $300 \mathrm{I}=1, \mathrm{NCl}$
IF (ICON(I,1).EQ.O) GO TO 300
$\operatorname{PEAK}(\mathrm{I})=\operatorname{CSTD}(\mathrm{I}, 1)-\operatorname{CSTD}(\mathrm{I}, 2)$
CONTINUE
IF (NAV.EQ.1) GO TO 340
DETERMINE K-VALUES ON AVERAGED PHASES
$I J=0$
D0 $330 \mathrm{~J}=1,5$
II=0
DO $320 \mathrm{I}=1$, NCl
IF (SPHC(J,I)) 320,320,310
II $=1 \mathrm{I}+1$
IF (II.EQ.I) IJ=IJ+l
C(IJ,II) $=(\operatorname{SPHC}(J, I)-\operatorname{CSTD}(I, 2)) / \operatorname{PEAK}(I)$
$\operatorname{SD}(I J, I I)=\operatorname{SNGL}(F S D(J, I))$
IIMAX=II
330 CONTINUE
RETURN
DO 220 NROW=1,ND
IF (NCODE(NROW,I).EQ.O.OR.NCODE(NROW,I).GE.6) GO TO 220
J=NCODE (NROW,I)
$K K(J)=K K(J)+1$
$\operatorname{SPH}(\mathrm{J}, \mathrm{I})=\mathrm{SPH}(\mathrm{J}, \mathrm{I})+\mathrm{NTABL}(\mathrm{NROW}, \mathrm{I}) / \mathrm{T}($ NROW $)$
$\operatorname{TIM}(\mathrm{J})=T I M(J)+T(N R O W)$
$\operatorname{SUM}(J, I)=\operatorname{SUM}(J, I)+\operatorname{NTABL}(\operatorname{NROW}, I)$
$\operatorname{SSUM}(J, I)=\operatorname{SSUM}(J, I)+N T A B L(N R O W, I) * * 2$
CONTINUE
DO $240 \mathrm{~J}=1,5$
$\operatorname{SPHC}(\mathrm{J}, \mathrm{I})=\operatorname{DEADT}(\operatorname{SPH}(\mathrm{J}, \mathrm{I}) / \mathrm{KK}(\mathrm{J}), \mathrm{I}, \mathrm{NIND})$
IF (NTRA.EQ.l) GO TO 230
$\operatorname{SPHC}(\mathrm{J}, \mathrm{I})=\operatorname{SPHC}(\mathrm{J}, \mathrm{I}) * T I M(\mathrm{~J}) / \mathrm{KK}(\mathrm{J})$
CONTINUE
$\operatorname{SUMS}(J, I)=\operatorname{SUM}(J, I) * * 2 / K K(J)$
ASUM=SUM (J,I)/KK (J)
$\operatorname{FSD}(\mathrm{J}, \mathrm{I})=\operatorname{DSQRT}((\operatorname{SSUM}(\mathrm{J}, \mathrm{I})-\operatorname{SUMS}(\mathrm{J}, \mathrm{I})) /(\operatorname{KK}(\mathrm{J})-1)) / \operatorname{ASUM}$
CONTINUE
CONTINUE
GO TO 290
CORRECT FOR DEAD TIME ON INDIVIDUAL DETERMINATIONS
DC 280 NROW=1,ND
DO $270 \mathrm{I}=1, \mathrm{NCl}$
IF (NCODE(NROW,I).EQ.O.OR.NCODE(NROW,I). GE.6) GO TO 270
PHC (NROW, I)=DEADT (NTABL (NROW, I) /T (NROW), I , NIND)
IF (NTRA.EQ.l) GO TO 270
PHC (NROW, I $)=$ PHC (NROW, I $) * T($ NROW $)$
CONTINUE

CONTINUE

DETERMINE K-VALUES ON INDIVIDUAL POINTS
$\mathrm{SPH}(\mathrm{J}, \mathrm{I})=0$
M 123
M 125
M 126
M 127
M 128
M 129

M 130
M 131
M 132
M 133
M 134
M 135
M 136
M 137
M 138
M 139
M 140
M 141
M 142
M 143
M 144
M 145
M 146
M 147
M 148
M 149
M 150
M 151
M 152
M 153
M 154
M 155
M 156
M 157
M 158
M 159
M 160
M 161
M 162
M 163
M 164
M 165
M 166
M 167
M 168
M 169
M 170
M 171
M 172
M 173
M 174
M 175
M 176
M 177
M 178
M 179
M 180
M 181
M 182
M 183

| 340 | $I J=0$ | M 184 |
| :---: | :---: | :---: |
| | DO 370 NROW=1,ND | M 185 |
| | II=0 | M 186 |
| | DO 360 I=l, NCl | M 187 |
| | IF (PHC (NROW, I) 360,360,350 | M 188 |
| 350 | II=II+1 | M 189 |
| | IF (II.EQ.I) IJ=IJ +1 | M 190 |
| | $\mathrm{C}(\mathrm{IJ}, \mathrm{II})=(\operatorname{PHC}(\operatorname{NROW}, \mathrm{I})-\operatorname{CSTD}(\mathrm{I}, 2)) / \operatorname{PEAK}(\mathrm{I})$ | M 191 |
| | $\mathrm{SD}(\mathrm{IJ}, \mathrm{II})=1 . / \mathrm{SQRT}(\mathrm{NTABL}(\mathrm{NROW}, \mathrm{I}))$ | M 192 |
| | IIMAX=II | M 193 |
| 360 | CONTINUE | M 194 |
| 370 | CONTINUE | M 195 |
| | RETURN | M 196 |
| | END | M 197- |
| | FUNCTION DEADT (COUNT, IND, NIND) | N 1 |
| C | | N 2 |
| C | CORRECTION OF RAW INTENSITIES FOR DEAD TIME | N 3 |
| C | THIS MAY BE EXPANDED TO INCLUDE MORE THAN THE TWO DETECTORS | N 4 |
| C | USED HERE | N 5 |
| C | | N 6 |
| C | | N 7 |
| | IF (NIND.EQ.0) GO TO 10 | N 8 |
| | IF (IND.GT.NIND) GO TO 20 | N 9 |
| C | | N 10 |
| C | DEAD TIME OF FIRST DETECTOR | N 11 |
| C | | N 12 |
| 10 | DEADT $=$ COUNT $/(1-C O U N T * 3.2 \mathrm{E}-6)$ | N 13 |
| | NIND=IND | N 14 |
| | G0 T0 30 | N 15 |
| C | | N 16 |
| C | DEAD TIME OF SECOND DETECTOR | N 17 |
| C | | N 18 |
| 20 | DEADT=COUNT/(1-COUNT*2.8E-6) | N 19 |
| 30 | CONTINUE | N 20 |
| | RETURN | N 21 |
| | END | N 22- |
| | SUBROUTINE PTLOAD (NUMBER, M, NS, NC) | 01 |
| C | | 02 |
| C | READ DATA FROM MAGNETIC TAPE - USE ONLY ON UNIVAC 1108 FORTRAN5 | 03 |
| C | | 04 |
| | COMMON /BINPT/ III, NTAPE | 05 |
| | DIMENSION NUMBER (M),NEOF (1)/056/,ICHK (2)/040,015/, IOCT (10)/060,061 | 06 |
| | $1,062,063,064,065,066,067,070,071 /$ | 07 |
| | DIMENSION FMT(2) | 08 |
| | DATA (FMT(I), I=1,2)/'(1H, ', '9Il0) '/ | 09 |
| 10 | FORMAT (1HI) | 010 |
| 20 | FORMAT (1HO) | 011 |
| 30 | FORMAT (1HO, 20X, 'DIRECT LISTING OF DATA INPUT VIA PTLOAD') | 012 |
| | IF (NC.GT.5) GO TO 40 | 013 |
| | $\operatorname{FLD}(0,6, \operatorname{FMT}(2))=\operatorname{FLD}\left(6 * N C, 6, ' 012345{ }^{\prime}\right)$ | 014 |
| | GO T0 50 | 015 |
| 40 | $\operatorname{FLD}(0,6, \mathrm{FMT}(2))=\mathrm{FLD}\left(6^{*}(\mathrm{NC}-6), 6,1878900^{\prime}\right)$ | 016 |
| 50 | CONTINUE | 017 |
| | D0 $60 \mathrm{I}=1, \mathrm{M}$ | 018 |
| 60 | NUMBER (I) $=0$ | 019 |
| | NTAPE=7 | 020 |
| | WRITE $(6,10)$ | 021 |
| | DO $130 \mathrm{I}=1, \mathrm{M}$ | 022 |
| 70 | ICOUNT=1 | 023 |
| | DO $120 \mathrm{~J}=1, \mathrm{NS}$ | 024 |
| | NCHK=0 | 025 |

IF (N.EQ.NEOF(l)) GO TO 140 27
IF (.NOT.(N.EQ.ICHK(1).OR.N.EQ.ICHK(2))) GO TO 90 28
IF (ICOUNT.EQ.1) GO TO 80 29
IF (ICOUNT.EQ.2) GO TO 70 30
$\operatorname{NUMBER}(I)=0$ 31
GO TO 130 32
DO $100 \mathrm{~K}=1,11$ 33
IF (K.EQ.ll) NCHK=NCHK+1 34
IF (NCHK.EQ.5000) GO TO 160 35
IF (K.EQ.Il) GO TO 80 36
IF (N.EQ.IOCT(K)) GO TO llO 37
100 CONTINUE 38
110 $\operatorname{NUMBER}(I)=\operatorname{NUMBER}(I) * 10+\operatorname{IABS}(K-1)$ 39
ICOUNT=ICOUNT+1 40
120 CONTINUE 41
130 CONTINUE 42
WRITE $(6,30)$ 43
WRITE $(6,20)$ 44
140 WRITE (6, FMT) (NUMBER(I), $I=1, M$) 45
GO TO 170 46
150 FORMAT (lH ,'INPUT ERROR TERMINATION') 47
160 WRITE $(6,150)$ 48
STOP49
170 RETURN $0 \quad 50$
C 52
SUBROUTINE CHAR (N) 53
COMMON /BINPT/ III,NTAPE 54
DIMENSION INCOME(510),INPUT(170) 55
IF (III.NE.510) GO TO 200 56
CALL NTRAN (NTAPE,2,170,INPUT,L) 57
IF (L+l), 180 58
IF (L) 210 59
$\mathrm{I}=1$ 60
DO $190 \mathrm{~J}=1,510,3$ 61
$\operatorname{INCOME}(\mathrm{J})=(\operatorname{AND}(\operatorname{FLD}(6,6, \operatorname{INPUT}(\mathrm{I})), 7) * 16)+(\operatorname{AND}(\operatorname{FLD}(0,6, \operatorname{INPUT}(\mathrm{I})), 15)$ 62

1) 63
$\operatorname{INCOME}(\mathrm{J}+1)=(\operatorname{AND}(\operatorname{FLD}(18,6, \operatorname{INPUT}(\mathrm{I})), 7) * 16)+(\operatorname{AND}(\operatorname{FLD}(12,6, \operatorname{INPUT}(\mathrm{I}))$ 64
1,15)) 65
$\operatorname{INCOME}(\mathrm{J}+2)=(\operatorname{AND}(\operatorname{FLD}(30,6, \operatorname{INPUT}(\mathrm{I})), 7) * 16)+(\operatorname{AND}(\operatorname{FLD}(24,6, \operatorname{INPUT}(\mathrm{I}))$ 66
1,15)) 67
190 $\mathrm{I}=\mathrm{I}+1$ 68
III=0 69

III=III+1

III=III+1

III=III+1

III=III+1

III=III+1

III=III+1

III=III+1 70 70 70 70 70 70 70

$\mathrm{N}=\mathrm{INCOME}$ (III)

$\mathrm{N}=\mathrm{INCOME}$ (III)

$\mathrm{N}=\mathrm{INCOME}$ (III)

$\mathrm{N}=\mathrm{INCOME}$ (III)

$\mathrm{N}=\mathrm{INCOME}$ (III)

$\mathrm{N}=\mathrm{INCOME}$ (III)

$\mathrm{N}=\mathrm{INCOME}$ (III) 71 71 71 71 71 71 71

RETURN

RETURN

RETURN

RETURN

RETURN

RETURN

RETURN 72 72 72 72 72 72 72

210

210

210

210

210

210

210 $\mathrm{N}=-1$ $\mathrm{N}=-1$ $\mathrm{N}=-1$ $\mathrm{N}=-1$ $\mathrm{N}=-1$ $\mathrm{N}=-1$ $\mathrm{N}=-1$ 73 73 73 73 73 73 73

RETURN

RETURN

RETURN

RETURN

RETURN

RETURN

RETURN 74 74 74 74 74 74 74
END
END
END
END
END
END
END 75- 75- 75- 75- 75- 75- 75-
SUBROUTINE DEFTAB
SUBROUTINE DEFTAB
SUBROUTINE DEFTAB
SUBROUTINE DEFTAB
SUBROUTINE DEFTAB
SUBROUTINE DEFTAB
SUBROUTINE DEFTAB 1 1 1 1 1 1 1 200 200 200 200 200 200 200
10 FORMAT (1HI,9X,'DEFINITIONS OF HEADINGS USED IN OUTPUT'//)FORMAT (1H , 4X,'F(X)',16X,'ABSORPTION CORRECTION FACTORS FOR EITHEIR STANDARDS OR SAMPLES.' $)$FORMAT (1H , 4X,'I(P)/(F(X)*C)',7X,'PRIMARY X-RAY GENERATION FROM EIITHER STANDARD OR SAMPLE IN PHOTONS PER ELECTRON.')FORMAT (lH , 4X,'I(C)/I(P)',llX,'RATIO OF EMITTED X-RAYS EXCITED BY1 THE CONTINUUM TO THE EMITTED PRIMARY X-RAYS. ')FORMAT (lH , 4X,'F(X), CONT', 11 X, 'ABSORPTION CORRECTION FACTOR FOR T
lHE CONTINUUM IN THE STANDARD.')FORMAT ($1 \mathrm{H}, 4 \mathrm{X}, \mathrm{F}(\mathrm{X}) \mathrm{CON}$ ', 13X,'SAME AS $\mathrm{F}(\mathrm{X})$, CONT BUT FOR THE SAMPLE

| | 1. ') | P 12 |
| :---: | :---: | :---: |
| 70 | FORMAT (1H , 4X, 'CHAR FLUOR', 10X, 'CHARACTERISTIC FLUORESCENCE CORRE | P 13 |
| | ICTION FACTOR.') | P 14 |
| 80 | FORMAT (1H, 4X, 'F (X)CHA', I3X, 'ABSORPTION CORRECTION FACTOR FOR THE | P 15 |
| | 1 CHARACTERISTIC FLUORESCENCE CORRECTION.') | P 16 |
| 90 | FORMAT (1H 4X, 'AT CONC', 13X, 'ATOM FRACTION. '/5X, 'WT CONC', 13X, MAS | P 17 |
| | IS FRACTION.') | P 18 |
| 100 | FORMAT (1H , 4X, 'STD DEV', 13X, 'STANDARD DEVIATION OF THE DATA - NOT | P 19 |
| | 1 USED WHEN INPUT IS INTENSITY RATIOS.') | P 20 |
| 110 | FORMAT (1H , 4X, 'K (1)...K(N)', 9X, 'INTENSITY RATIOS.') | P 21 |
| 120 | FORMAT (1H , 4X,'TOTAL', 15X,'TOTAL OF MASS FRACTIONS OBTAINED.') | P 22 |
| 130 | FORMAT (1H , 4X, 'ITERATION NO', 8 X , 'THE NUMBER OF ITERATIONS REQUIRE | P 23 |
| | ID FOR CONVERGENCE. ') | P 24 |
| 140 | FORMAT (1HO, 9X, 'WHEN THE STOICHIOMETRY OPTION IS USED, '/9X, 'A TABL | P 25 |
| | IEOF THE FORMULAS OF THE POSTULATED'/9X, 'COMPOUNDS, AND THEIR MASS | P 26 |
| | 2FRACTIONS AS'/9X, 'FOUND IN THE ANALYSIS IS PRINTED OUT. $/ / / / / / / / / /$ | P 27 |
| | 3) | P 28 |
| | $\operatorname{WRITE}(6,10)$ | P 29 |
| | $\operatorname{WRITE}(6,20)$ | P 30 |
| | $\operatorname{WRITE}(6,30)$ | P 31 |
| | $\operatorname{WRITE}(6,40)$ | P 32 |
| | WRITE $(6,50)$ | P 33 |
| | WRITE $(6,60)$ | P 34 |
| | WRITE $(6,70)$ | P 35 |
| | WRITE $(6,80)$ | P 36 |
| | WRITE (6,90) | P 37 |
| | WRITE $(6,100)$ | P 38 |
| | WRITE $(6,110)$ | P 39 |
| | WRITE $(6,120)$ | P 40 |
| | $\operatorname{WRITE}(6,130)$ | P 41 |
| | WRITE $(6,140)$ | P 42 |
| | RETURN | P 43 |
| | END | P 44 |

6. Table of Formats for the Data Input Cards

Card
no.

1

2
always
always 1-80
a1ways

1-2*
3-4*
5

6-7* 9

11

80

1-2*
13-19 (F7.3)

20

21
Cols.
1-3*

Description
Number of sets of data

Number of elements in case
Number of elements analyzed
Blank-input is either k-values or known concentrations.
1 - input is raw data via subroutine AINP.
Number of data points Blank-normal output. 1 - extended output. B1ank-normal calculation
1 - omits continuum correction
Must contain a "T"
Title - anything may be input

Atomic number of first element Operating kilovoltage
Edge no. of measured line
1 - K-edge
2 - L_{I}-edge
3 - L LI -edge
4 - $\mathrm{L}_{\mathrm{III}}$-edge
5 - M I I edge

9 - M_{V}-edge
Line no. associated with the edge.
(Depends on element table)

* - Right justified in field

Card
no. When used

Cols. Format
If K -edge:
$1-K_{\beta_{1,3}}$
$2-K_{\alpha_{1}}$

If $L_{\text {III }}$-edge:
$1-L_{\beta_{2}}$
$2-L_{\alpha_{1}}$
etc.
22-27 (F6.4)
28

29

30-35 (F6.4)

5a(1) Element was from a compound standard
(F5.4) If present, must
follow card 4. Weight fraction of analyzed element in compound standard.

Card
no.
When used

| Cols. | Format | Description |
| :---: | :---: | :---: |
| 3-4* | (I2) | Position of manual data entry for coding the line. (Must be in the last position.) |
| 5-6* | (I2) | Blank - read data from magnetic tape via PTLOAD (or tape reading routine supplied by user). 1 - read data from cards. |
| 7-8* | (I2) | Blank - average data on each phase for each element. 1 - do each point individually. |
| 9-13* | (I2) | Total number of lines of input including all samples and standards |
| 14-15* | (I2) | Blank - calculate k-values from total counts.
 1 - calculate k-value from counts/sec. |

If the data are read from magnetic tape, no further cards are required.

| 6b(2) | Raw data
 read from | fields | (1018) |
| :--- | :--- | :--- | :--- |
| | cards. One | of $8 *$ | |

Raw data for each element, time in seconds, and the data code. (Data code must be in last column used.)

> 5c Element 6 (Done by difference or stoichiometry)

4 Element 5
5b2 "not analyzed" element in compound standard

```
5bl Element 4 in com-
pound standard
```

4 Element 4, Compound standard with 1 other element
5b3 Second "not analyzed" element in compound standard

5b2 First "not analyzed" element in compound standard

5bl Element 3 in compound

 standard4 Element 3, compound standard with 2 other elements

4 Element 2
4 Element 1
3 Title
2 No. of elements, etc.
1 No. of cases

Example of the order of the data input cards.

The program is set up to handle six entries besides the data code. The data code is a 6 -digit number and must be the last entry on any line. Each digit in the code identifies the contents of its respective field. (If the data code is in the seventh field, the first digit refers to the first field, the second to the second field, etc.) The codes have the following meanings:

Code

0

1-5

6
7
8
9

Contents of field contains:

Field empty or deleted in this calculation.
Data from specimen. (May code up to 5 separate points. See below.)
Standard for an element. Background for an element. Not used at present.
Time in tenths of seconds.

Data may be sent from AINP to the main program in two dif-
 at each data point in the usual manner. Or, if each phase analyzed was coded with a different number (phases 1-5 above), the program will calculate an average k-value for each element in each point and send only these values to the main program.

The data need not be in any specific order. All measurements on any particular standard will be averaged (peak value or background). Specimens and standards may be mixed in any way provided the data code is correct.
number of cases
 11 220

Case 1.
Example of a typical analysis.
Title Card
Pure Element Standards

0000000000000000000000000 O 000

Tit1e Card

Compound Standards
atomic number

$$
\begin{gathered}
\text { operating kV } \\
\text { absorptior }
\end{gathered}
$$

edge of line

pure element standard for third element

| |
| :---: |
| | |
| | |
| | |
| | |
| | |

intensity ratios for elements 1,2 \& 3
A0

The output originally developed, now called output 2, or extended output, contains many intermediate results and parameters that are very useful for troubleshooting. For routine analysis, a more compact output called output 1 was developed. This output is also printed when output 2 is requested.

Notes on output 1:

1. It is preceded by a title, which can contain whatever identification is desired.
2. "Sample No" X gives the number of the "case".
3. Then follows information on the standards:
$F(X)$ is the attenuation factor for primary emission. I(P)/(FX(X)*C) gives the emitted primary intensity (photons/electron) divided by the mass fraction of the emitting element. The ratio of this term for the standard over the term for the specimen gives the "atomic number correction factor".
I(C)/I(P) gives the ratio of the emitted fluorescence excited by the continuum, over the emitted primary intensity.
$\mathrm{F}(\mathrm{X}), \mathrm{CONT}$ is the absorption correction factor for fluorescence by the continuum (f_{c}).
After indicating the number of the point, the program prints the k-values for the elements measured. Nothing is printed here for elements determined by difference or stoichiometry.
4. Next, the results are printed, one line per element. The headings have the same meaning as for the standards with the following additions:

AT CONC: Atomic fraction of element in the specimen WT CONC: Weight fraction
STD DEV: If there are several measurements made per point, the true calculated standard deviation is given. If the number of counts for a single measurement is input, the standard deviation is estimated, assuming a Poissonian distribution. If k-values are input, the program prints .0000.

CHAR FLUOR: Emitted fluorescent intensity due to characteristic excitation, divided by emitted primary intensity.

F(X) CHA: Absorption correction factor for fluores-

 cence due to characteristic lines.If there is no characteristic fluorescence of an element, nothing is printed under CHAR FLUOR or $F(X)$ CHA.
5. After the list by elements, the total of calculated mass fractions is printed, as well as the number of iterations. In the case of stoichiometry, a table of mass fractions of oxides is appended.

Notes on output 2:

1. Output 2 is requested by punching 1 in column 9 of card 2 as described under Table of Options for Sample Input.
2. The variable names printed out by output 2 are the same as those in the Index of Terms and Symbols.
table, following which is produced through subroutine DEFTAB.

WHEN THE STOICHIOMETRY OPTION IS IUSED, COMPOUNDS AND THEIR MASS ERACTIONS AS
FOUND IN THE ANALYSIS IS POINTED OUT.
$2 n k V$
$C U K$-ALPHA - All L-ALDHA

ON NOI 1 OX31I
SPRING:ATER OLIVINF 2חKV
$F(x) \cdot$ CONT $=.5579$
$F(x) \cdot$ CONT $=.8775$
$F(x) \cdot$ CONT $=.5948$
$F(x) \cdot$ CONT $=.4051$
$F(x) \cdot$ CONT $=.7754$
$F(x) C O N$
.3729
.3149
.5302
$I(r) / T(P)$
$.13 \cap \cap n-0 ?$
$.3 n 501-0 ?$
$.43195-01$
$I(D) /(F(X) * C)$

- वnR17-0?
$.1749 n-03$

5
ITFRATION NO
CnNC
.3615
.1210
.1343
.4168
!
TOTAL = .9935
AT CONC
$\mathrm{k}(3)=.1217$
POINT M 10
K(1) $=.151)$
$k(?)=.1154$
云
MS
$5 I$
FE
0

8. References

1. Heinrich, K. F. J., Myklebust, R. L., Yakowitz, H., and Rasberry, S. D., "A Simple Correction Procedure for Quantitative Electron Probe Microanalysis," U.S. National Bureau of Standards Technical Note 719, U.S. Government Printing Office, Washington, D. C. (May 1972).
2. Reed, S. J. B., Brit. J. App1. Phys. 16, 913 (1965).
3. Hénoc, J. in "Quantitative Electron Probe Microanalysis," U.S. National Bureau of Standards Special Publication 298, Heinrich, K. F. J., Editor, p. 197, U.S. Government Printing Office, Washington, D. C. (October 1968).
4. Heinrich, K. F. J. in "The Electron Microprobe," McKinley, T. D., Heinrich, K. F. J., and Wittry, D. B., Editors, p. 296, John Wiley \& Sons, Inc., New York (1966).
5. Criss, J. in "Quantitative Electron Probe Microanalysis," U.S. National Bureau of Standards Special Publication 298, Heinrich, K. F. J., Editor, p. 61, U.S. Government Printing Office, Washington, D. C. (October 1968).

APPENDIX 1
 NBS Technical Note 521

PRESENT STATE OF THE CLASSICAL THEORY OF QUANTITATIVE ELECTRON PROBE MICROANALYSIS*

Kurt F. J. Heinrich

> Analytical Chemistry Division Institute for Materials Research National Bureau of StandardsWashington, D。C. 20234

Although the foundations for a procedure of data reductior in quantitative electron probe analysis have not been changed for several years, there has been progress in the choice of expressions, parameters, and constants. A brief account of recommended expressions and procedures is given. Reference is made to the Standard Reference Materials of $\mathrm{Au}-\mathrm{Ag}$ and $\mathrm{Au}-\mathrm{Cu}$ alloys issued for electron probe microanalysis. These are especially useful for investigating the application of correction procedures.

Key words: corrections; electron probe microanalysis; quantitative analysis; x-ray spectroscopy.

INI'RODUCTION

In his doctoral thesis, published in 1951 [l], Castaing laid the groundwork for a theory of quantitative electron probe microanalysis. He pointed out that the intensity of characteristic primary radiation generated in multi-element specimens is approximately proportional to the mass fraction of the emitting element. He therefore proposed that the corrections which need to be applied to measured x-ray intensity ratios to obtain mass fractions ("concentrations") were as follows:

[^3]1. An absorption correction, which takes into account the absorption of x-rays emerging from the specimen, and
2. A fluorescence correction which cancels the effects of indirect $x-r a y$ generation.

Castaing also suggested that for accurate analysis the proportionality between concentration and intensity of emission may have to be considered an insufficient approximation. Hence, he proposed a form of atomic number correction to correlate more accurately the mass fraction with the measured intensity of $x-r a y$ emission.

This "classical" scheme of data reduction has essentially remained the commonly used approach to quantitative analysis. It has been described in many publications, including the National Bureau of Standards Special Publication 298 (1968) [2], which contains several references used in this paper. In the recent past there has been considerable discussion of the choice of parameters and constants to be employed within the framework of this procedure. The problem remains if, instead of the classical procedure, a Monte-Carlo method or a transport equation procedure is used to calculate the mass-fractions of the elements being measured.

It is the purpose of the present publication to give an account of the specific choices of parameters and constants which are available at present for the computation of corrections for quantitative electron probe microanalysis. For a general description of the correction procedures, as well as for a detailed discussion of the origin of these expressions, the reader is referred to the cited literature.

Thanks to the work of many investigators [e.g. 2-6] the processes resulting in primary x-ray emission are now quite well understood. The number of ionizations produced by a single electron coming to rest within the target can be written as follows*;

$$
\begin{equation*}
n_{A}=N_{A v} \cdot \rho \cdot \frac{C_{A}}{A} \int_{E_{0}}^{0} \frac{Q}{-d E / d x} d E \tag{1}
\end{equation*}
$$

For the ionization cross-section, Q, and the stopping power, $-d E / d(\rho x)$, we can substitute in the above equation the expressions proposed by Bethe et al. [7,8]:

$$
\begin{align*}
& \mathrm{Q}=\mathrm{b} \cdot \pi \mathrm{e}^{4} \cdot \mathrm{z} \mathrm{\ell} \cdot \frac{\ln \mathrm{U}}{\mathrm{U}} \cdot \mathrm{E}^{-2} \tag{2}\\
& \mathrm{~S} \equiv-\frac{1}{\rho} \cdot \frac{\mathrm{dE}}{\mathrm{dx}}=2 \pi \mathrm{e}^{4} \cdot \mathrm{~N}_{\mathrm{Av}} \cdot \frac{\mathrm{Z}}{\mathrm{~A}} \cdot \frac{1}{\mathrm{E}} \ln \left(\frac{\alpha \mathrm{E}}{J}\right) \tag{3}
\end{align*}
$$

The values of some parameters of these equations are, however, poorly known. Hénoc has concluded from the study of experimental results on the ionization cross section that the value $\mathrm{b}=0.76$ can be considered valid for all levels of ionization [9]. The value of the coefficient α in equation (3) was frequently considered to be equal to two. However, according to Nelms [10], for electrons the value $\alpha=1.166$ should be used.

There is some controversy concerning the best expression for the mean ionization potential, J. The value (J = ll.5Z). used frequently in the past, is certainly inaccurate. We use at present an expression obtained by Berger and Seltzer [ll], who averaged a large number of experimental observations by several authors:

$$
\begin{equation*}
\mathrm{J}=9.76 \mathrm{Z}+58.5 \mathrm{Z}^{-0.19} \tag{4}
\end{equation*}
$$

* A list of symbols used is appended.

Another expression for J has been proposed by Duncumb et $a l$. [12]:

$$
\begin{equation*}
\mathrm{J} / \mathrm{Z}=14.0[1-\exp (-0.1 \mathrm{Z})]+75.5 / \mathrm{Z}^{\mathrm{Z} / 7.5}-\mathrm{Z} /(100+\mathrm{Z}) \tag{5}
\end{equation*}
$$

This equation has been derived empirically to optimize the results of a large number of electron probe analyses of specimens of known composition. We withold judgment on the best choice of expression for J, pending further investigations.

In order to obtain an algebraic expression for ionization within a multi-element target, we introduce the variables M and V, defined by the following equations:

$$
\begin{equation*}
M=\sum_{i} C_{i} \frac{Z_{i}}{A_{i}} ; \quad V=\exp \left[\frac{1}{M} \sum_{i} C_{i} \frac{Z_{i}}{A_{i}} \ln \left(\frac{\alpha E}{J_{i}}\right)\right] \tag{6}
\end{equation*}
$$

As shown by Springer [13], if one introduces equations (2), (3), and (6), the integration of equation (1) yields the expression

$$
\begin{equation*}
\mathrm{n}_{\mathrm{A}}=\frac{1}{2} \frac{\mathrm{C}_{\mathrm{A}}}{\mathrm{~A}} \mathrm{z}_{\ell} b \frac{1}{\mathrm{M}}\left\{\mathrm{U}_{\mathrm{o}}-1-\frac{\ell_{\mathrm{n}} \mathrm{~V}}{\mathrm{~V}}\left[E I\left(\ell_{\mathrm{n}}\left(\mathrm{U}_{\mathrm{o}} \mathrm{~V}\right)\right)-E I\left(\ell_{n} \mathrm{~V}\right)\right]\right\} \tag{7}
\end{equation*}
$$

in which EI is the exponential integral:

$$
\begin{equation*}
\mathrm{EI}(\mathrm{x})=\text { const. }+\ln \mathrm{X}+\sum_{\mathrm{s}=1}^{\mathrm{s}=\infty} \frac{\mathrm{x}^{\mathrm{s}}}{\mathrm{~s} \cdot \mathrm{~s}!} \tag{8}
\end{equation*}
$$

Expression (7) is used in an extensive program for data processing in quantitative electron probe microanalysis, called COR, recently developed by Hénoc and Heinrich at the National Bureau of Standards [14].

A further correction is necessary to take account of the effects of electron backscattering. A fraction of the impinging electrons is reemitted with energies sufficient to excite x-rays. This reduces the generated x-ray intensity by a fac-
tor R (backscatter effect), which decreases rapidly with increasing atomic number. The average number of ionizations per impinging electron is thus $n_{A} R$. We believe that the most reliable expression for the factor R is that proposed by Duncumb [15]:

$$
\begin{align*}
R & =1.0000+ \\
& +\left(-.581+2.162 \mathrm{~W}-5.137 \mathrm{~W}^{2}+9.213 \mathrm{~W}^{3}-8.619 \mathrm{~W}^{4}+2.962 \mathrm{~W}^{5}\right) \times 10^{-2} \mathrm{Z}+ \\
& +\left(-1.609-8.298 \mathrm{~W}+28.791 \mathrm{~W}^{2}-47.744 \mathrm{~W}^{3}+46.540 \mathrm{~W}^{4}-17.676 \mathrm{~W}^{5}\right) \times 10^{-4} \mathrm{Z}^{2}+ \\
& +\left(5.400+19.184 \mathrm{~W}-75.733 \mathrm{~W}^{2}+120.050 \mathrm{~W}^{3}-110.700 \mathrm{~W}^{4}+41.792 \mathrm{~W}^{5}\right) \times 10^{-6} \mathrm{Z}^{3}+ \tag{9}\\
& +\left(-5.725-21.645 \mathrm{~W}+88.128 \mathrm{~W}^{2}-136.060 \mathrm{~W}^{3}+117.750 \mathrm{~W}^{4}-42.445 \mathrm{~W}^{5}\right) \times 10^{-8} \mathrm{Z}^{4}+ \\
& +\left(2.095+8.947 \mathrm{~W}-36.510 \mathrm{~W}^{2}+55.694 \mathrm{~W}^{3}-46.079 \mathrm{~W}^{4}+15.851 W^{5}\right) \times 10^{-10} \mathrm{Z}^{5}
\end{align*}
$$

where $W=I / U_{O}=E_{o} / E_{k}$. This expression agrees well with the experimental measurements of the factor R by Dérian [16]. The number of photons of the $x-r a y$ line n, generated by ionization of the electron shell m, is obtained by multiplying the number of ionizations, $n_{A} R$, with the fluorescence yield, ω_{m}, and with the ratio of the intensity of the line of interest to the intensity of all lines originating from this shell (weight of the line, $p_{m n}$):

$$
\begin{equation*}
\mathrm{I}_{\mathrm{Ap}}^{\prime}=\mathrm{n}_{\mathrm{A}} \cdot \mathrm{R} \cdot \omega_{\mathrm{m}} \cdot \mathrm{p}_{\mathrm{mn}} \tag{10}
\end{equation*}
$$

THE ATTENUATION OF PRIMARY RADIATION

The attenuation of primary radiation on emergence from the specimen can be calculated using an equation proposed by Philibert [17]

$$
\begin{equation*}
1 / \mathrm{f}(\chi)=\left(1+\frac{\chi}{\sigma}\right)\left(1+\frac{\mathrm{h}}{1+\mathrm{h}} \cdot \frac{\chi}{\sigma}\right) ; \mathrm{h}=1.2 \frac{\mathrm{~A}}{\mathrm{Z}^{2}} \tag{11}
\end{equation*}
$$

The factor $f(x)$ is the ratio between attenuated and unattenuated primary radiation: $F(\chi)=I_{p} / I_{p}^{\prime}$. Expressions for the coefficient σ, which depends on the electron energy, were pro-
posed by Duncumb and Shields [18] and by Heinrich [19]. We presently use the following equation:

$$
\begin{equation*}
\sigma=\frac{4.5 \times 10^{5}}{\mathrm{E}_{\mathrm{o}}^{1.65}-\mathrm{E}_{\mathrm{k}}^{1.65}} \tag{12}
\end{equation*}
$$

We have not evaluated an alternative equation for the absorption correction, by Wittry and Andersen [20].

The attenuation of primary radiation is large when x-rays of low photon energy are measured. It is important to note, however, that the magnitude of this effect, and hence, the uncertainty of its computation, depends upon experimental conditions under our control. Primary absorption can be minimized by working at low electron energies and using high x-ray emergence angles; and these conditions are desirable when soft $x-r a y s$ are measured. It should be added that further experiments on the depth distribution of primary x-rays should be encouraged. The uncertainties in the absorption correction have been analyzed by Yakowitz and Heinrich [21] who suggested that the experimental conditions should be adjusted, wherever possible, to maintain the value of $f(x)$ above 0.8 .

SECONDARY RADIATION EXCITED BY CHARACTERISTIC LINES

The effects of secondary radiation excited by characteristic lines are usually treated according to the equation proposed by Castaing [l]:

$$
\begin{equation*}
r_{f} \equiv \frac{I_{\mathrm{fA}}}{\mathrm{I}_{\mathrm{pA}}}=\mathrm{C}_{\mathrm{B}} \cdot \frac{\mathrm{I}_{\mathrm{pA}}^{\prime}}{\mathrm{I}_{\mathrm{pA}}^{\prime}} \cdot \frac{\mathrm{r}_{\mathrm{A}}-1}{\mathrm{r}_{\mathrm{A}}} \cdot \frac{\omega_{\mathrm{B}}}{2} \frac{\mu(\mathrm{~A}, \mathrm{BK} \alpha)}{\mu(\mathrm{AB}, \mathrm{BK} \alpha)} \cdot \frac{\mathrm{A}}{\mathrm{~B}}\left[\frac{\ln (1+\mathrm{u})}{u}+\frac{\ln (1+\mathrm{v})}{\mathrm{v}}\right] \tag{13}
\end{equation*}
$$

In this equation, r_{f} is the ratio of the attenuated fluorescent radiation to the attenuated primary radiation of the element which is being determined. $I_{p B}^{\prime} / I_{p A}^{\prime}$ is the ratio of the gener-
ated (not attenuated) primary emissions of the exciting and the excited lines as obtained from pure elements。 Castaing proposed to approximate this ratio by the ratio of the absorption edge wavelengths of these elements, while Reed [22] replaced it by the expression $\left[\left(U_{B}-1\right) /\left(U_{A}-1\right)\right]^{1.67}$ in which U_{A} and U_{B} are the corresponding overvoltage ratios.

This procedure is amenable to several improvements which were incorporated in the program COR. In this program, the ratio I_{B} / I_{A} is fully calculated, using equation (10) for primary intensities, just as in the atomic number correction. This simplifies the calculation of fluorescence of K lines by L lines and vice versa, as well as the calculation of fluoresence of $K \alpha$ lines by $K \beta$ lines, which is performed separately. As pointed out by Criss [23], the exponential approximation to primary distribution in depth of $x-r a y ~ e m i s s i o n, ~ u s e d ~ b y ~$ Castaing to calculate the term v in equation (l3), can be replaced by a more accurate model. We use in COR the model contained in Philibert's calculation for the function $f(x)$ [17]. With the computer facilities presently available to most analysts, this more rigorous approach is possible without an excessive increase in the cost of computation.

SECONDARY RADIATION EXCITED BY THE CONTINUUM

Hénoc has described a method for calculating the effects of secondary radiation excited by the continuum [24]. In order to perform the formal integration of the expressions contained in his procedure, he had to make the simplifying assumption that between absorption edges the mass attenuation coefficients vary with the cube of wavelength. However, the wavelength dependence of mass attenuation coefficients is always less than cubic [25]. This has been taken into account in the modification of Hénoc's original method incorporated
in the program COR. The formal integration is replaced by a numerical integration, using the parameters for attenuation coefficients published in reference [25].

The main practical difficulty in performing the correction for fluorescence excited by the continuum is that the position of the absorption edges of all elements contained in specimen and standard must be taken into account. Each wavelength range between adjacent absorption edges must be calculated separately. Therefore, the procedure is lengthy, and in machine computation it requires extensive data input. Errors in the input occur frequently and may escape detection, since it is difficult to acquire an intuitive feeling for the magnitude of this correction.

In the program COR the relations between lines and absorption edges are inspected by the computer which selects the wavelength ranges for the integration. These decisions are made and the computer completes the calculation without active intervention of the operator. In the same process, the computer also determines which operations must be performed for calculating secondary excitation by characteristic lines. This enormously simplifies the execution of the fluorescence corrections, and renders unnecessary further attempts to simplify them, as advocated by Springer [26].

THE ITERATIVE PROCESS

We will now discuss how the individual corrections are combined in calculating the composition of the specimen.

The usual form employs multiplicative correction factors:

$$
\begin{equation*}
C^{*}=k \cdot k_{\mathrm{Z}}^{*} \cdot k_{\mathrm{A}}^{*} \cdot k_{\mathrm{F}}^{*} \tag{14}
\end{equation*}
$$

This procedure is based on the concept that ideally the method should yield a linear correction curve. The multiplicative factors correct for deviations from the ideal model. However, the values of the correction factors depend on the composition of the specimen, which is unknown. The problem is traditionally resolved by using an estimate of composition to calculate the correction factors, and using the resulting mass fractions as a new estimate of composition and iterating until convergence of results is obtained。

As stated by Criss [23], the formulation of the correction by multiplicative factors unnecessarily complicates the structure of the correction equations, and obscures the underlying physical events. Moreover, the iteration frequently fails to converge, as observed by Reed [27]. For these reasons the program COR uses a different iterative concept, first proposed by Criss and Birks [28], and somewhat modified by Hénoc and Heinrich.

Each iteration contains two steps. In the first step, we establish an estimate of the specimen composition and calculate the intensity ratios to be expected for each element, according the theory. The intensity ratios are obtained by the simple relation

$$
\begin{equation*}
K=\frac{I^{*}}{I}=\frac{I_{p}^{*}+I_{c}^{*}+\Sigma I_{f}^{*}}{I_{p}+I_{c}+\Sigma I_{f}} \tag{15}
\end{equation*}
$$

The correction procedures previously discussed are used to calculate the absolute intensities (in photons per electron) due to direct and indirect excitation. As a first estimate of the specimen composition we assume that the weight fractions of the elements are proportional to the experimentally obtained x-ray intensity ratios. This estimate, as well as the subsequent estimates is normalized so as to render the sum of mass fractions equal to unity. Thus, in each iteration, we calculate
the signal intensities to be expected from a theoretically possible composition.

Since equation (15) does not yield an explicit term for mass fractions, we must use another relation to obtain, in the second step of each iteration, a new estimate of composition. We use for this purpose a hyperbolic approximation to the analytical calibration curve for each element:

$$
\begin{equation*}
\frac{1-k}{k}=a \frac{1-C}{C} \tag{16}
\end{equation*}
$$

Ziebold and Ogilvie observed that the analytical curves in electron probe microanalysis are indeed approximately hyperbolic [29]. On the plot of intensity ratio versus mass fraction for each element, the hyperbola can be defined by three points $(0,0),(l, l)$, and (C, k), where C and k are the estimate of mass fraction used in the iteration, and of the intensity ratio calculated for it. Our next estimate for the mass fraction, C_{m}, corresponding to the observed intensity ratio, k_{m}, can thus be calculated by the equation

$$
\begin{equation*}
C_{m}=\frac{k_{m} \cdot C(1-k)}{k_{m}(C-k)+k(1-C)} \tag{17}
\end{equation*}
$$

Contrary to the procedure suggested by Criss, we do not normalize the observed intensity ratios k in equation (16), or the final results after convergence. Thus, if the presence of an element has been overlooked, or if there are experimental errors or failures of the correction procedures, this will become apparent since the calculated mass fractions fail to sum to unity。

This iteration procedure has been extensively tested. We have never observed failure to converge. In fact, the convergence is always rapid, as is to be expected in view of the good fit of the hyperbolic model observed by Ziebold and Ogilvie.

The program COR can also compute results of analysis with use of multi-element standards; furthermore it can determine one element by difference or several unmeasured elements on the basis of stoichiometric relations.

STANDARD REFERENCE MATERIALS

In spite of the progress made in recent years, there are still uncertainties in several aspects of the correction procedures. I believe that the availability of reliable standard reference materials will be instrumental in pointing out the areas in which further investigation is most needed. For this reason, the National Bureau of Standards has devoted considerable effort to preparing and characterizing materials specially selected for electron probe microanalysis [30]. Recently, NBS certified and issued an alloy of nominal composition 0.8 W , 0.2 Mo , a series of binary alloys in the $\mathrm{Au}-\mathrm{Ag}$ system, in nominal steps of 0.2 (20 weight percent), and a similar series of alloys in the system Au-Cu. All these alloys were carefully analyzed chemically by several laboratories, and painstakingly investigated for homogeneity. They should be particularly useful in testing the atomic number correction. Extension of the studies of oxydic systems is presently in progress.

REFERENCES

[1] Castaing, R., Doctoral Thesis, Univ. Paris (1951).
[2] Green, M., Doctoral Thesis, Univ. Cambridge, England (1962).
[3] Philibert, J. and Tixier, R., Nat. Bur. Stand. (U.S.), Spec. Publ. 298, 13-33 (1968).
[4] Brown, D. B., Nat. Bur. Stand. (U.S.), Spec. Publ. 298, 63-79 (1968).
[5] Poole, D. M., Nat. Bur. Stand. (U.S.), Spec. Publ. 298, 93-131 (1968).
[6] Duncumb, P. and Reed, S. J. B., Nat. Bur. Stand. (U.S.), Spec. Publ. 298, 133-154 (1968).
[7] Bethe, H. A., Ann. Phys. Lpz. 5, 325-400 (1930).
[8] Bethe, H. A., Rose M. E. and Smith, L. P., Proc. Am. Phil. Soc. 78, 573-585 (1938).
[9] Hénoc, J., private communication.
[10] Nelms, A. T., Nat. Bur. Stand. (U.S.), Circ 577 (1956).
[11] Berger, M. J. and Seltzer, S. M.,. Nat. Acad. Sci., Nat. Res. Council Publ. 1133, 205, Washington, D. C., (1964).
[12] Duncumb, P., Shields-Mason, P. K. and da Casa, C., Proc. Fifth International Congress on X-ray Optics and Microanalysis, Springer-Verlag, Berlin, 146-150 (1969).
[13] Springer, G., N. Jb. Miner. Abh. 106, 304-317 (1967).
[14] Hénoc, J. and Heinrich, K. F. J., to be published.
[15] Duncumb, P., private communication.
[16] Dérian and Castaing, R., Optique des rayons X et microanalyse, Castaing, Deschamps, Philibert, editors, 193-199; Paris, Herman (1966).
[17] Philibert, Proc. Third International Congress on X-ray Optics and X-ray Microanalysis, Academic Press, New York, 379-392 (1963).
[18] Duncumb, P. and Shields, P. K., The Electron Microprobe, McKinley, Heinrich, Wittry, editors, Plennum Press, New York, 40-55 (1968).
[19] Heinrich, K. F. J., Adv. in X-ray Anal. ll, pp. 40-55 (1968).
[20] Andersen, C. A. and Wittry, D. B., Brit. J. Appl. Phys., Ser. 2, 1, 529-540 (1968).
[21] Yakowitz, H. and Heinrich, K. F. J., Mikrochim. Acta 1968, 182-200.
[22] Reed, S. J. B. Brit. J. Appl. Phys. 16, 913-926 (1965).
[23] Criss, J. W., Nat. Bur. Stand. (U.S.), Spec. Publ. 298, 52-62 (1968).
[24] Hénoc, J., Nat. Bur. Stand. (U.S.), Spec. Publ. 298, 197-214 (1968).
[25] Heinrich, K. F. J., The Electron Microprobe, McKinley, Heinrich, Wittry, editors, John Wiley, New York, 296-377 (1966).
[26] Springer, G., N. Jb. Miner. Abh. 106, 241-256 (1967).
[27] Reed, S. J. B. and Mason, P. K., Paper presented at the Second National Conference on Electron Microprobe Analysis, June 14-16, 1967, Boston, Massachusetts.
[28] Criss, J. W. and Birks, L. S., The Electron Microprobe, McKinley, Heinrich, Wittry, editors, John Wiley, New York, 217-236 (1966).
[29] Ziebold, T. O. and Ogilvie, R. E., The Electron Microprobe, McKinley, Heinrich, Wittry, editors, John Wiley, New York, 378-389 (1966).
[30] NBS Certificates of Analysis, Standard Reference Materials 480 (1968), 481, 482 (1969).

| A, B | atomic weights of elements A, B |
| :---: | :---: |
| C | mass fraction ("concentration") |
| E | kinetic energy of the electron |
| E_{0} | initial kinetic energy of the electron, operating voltage |
| E_{k} | excitation potential of line k |
| I | attenuated (emergent) intensity of radiation |
| I^{\prime} | intensity of generated radiation, before attenuation |
| J | mean ionization potential |
| M | variable used for stopping power calculation (eq. 6-7) |
| $\mathrm{N}_{\text {Av }}$ | Avogadro's number |
| Q | ionization cross-section |
| R | correction factor for electron backscattering |
| S | stopping power |
| U | $=E / E_{k}$ |
| U_{0} | $=E_{o} / E_{k}$ |
| V | variable used for stopping power calculation (eq. 6-7) |
| W | $=1 / \mathrm{U}_{0}$ |
| Z | atomic number |

```
constant in the hyperbolic approximation
constant in the calculation of the ionization
    cross-section
```

constant in the calculation of σ
charge of electronionization of the shell m, with respect togeneration of all lines originating from shell m
absorption edge jump of the absorption coefficient
relative intensity of emergent radiation
correction factors for atomic number, absorption, and fluorescence effects
constant in Bethe's equation for energy loss of electrons
$\theta \quad$ emergence angle of measured x-rays
μ
$\mu(A B, A K \alpha)$ mass attenuation coefficient of specimen containing elements A and B, for $K \alpha$ radiation of element A
density of specimen
coefficient for electron energy effect in Philibert's equation
$x \quad=\mu \operatorname{cosec} \theta$
$\omega \quad=$ fluorescence yield

Subscripts and superscripts:
A, B
elements A, B
i
tally in integration
1
electron shell 1
*
composition dependent

APPENDIX 2

Index of Terms and Symbols

This index is a list of variable names in the main program and in the subprograms, with an explanation of the use and meaning of the variable, and, where pertinent, with the equivalent symbol most commonly used in literature. Reference is made several times to the PTLOAD routine, which serves to enter data from a magnetic tape. This routine is specifically designed for the type of computer we use, and might have to be redesigned to enter data from magnetic tape in other installations.

In the manuscript, underlining has been used to distinguish the number $\underline{1}$ from the letter 1 . The following definitions, used in the explanatory notes, should be given here.

A run is a complete load of input cards. It usually consists of several cases. A case is a set of measurements of the same lines and elements, under identical conditions of excitation (operating voltage); in some of the measurements, one or more of the elements included in the case may be absent. Each case consists of a set of points. A point is a set of data corresponding to a single measurement, or to repeated measurements at the same location or at equivalent locations. For instance, in a run we may have one case consisting of measurements on stainless steel, and containing many points which may represent different specimens or points on specimens, and another case of brass analyses, again containing many points.

The summation signs in the explanations denote summation of the corresponding terms over all elements present in the specimen. Dummy variables have no effective functions, except to occupy spaces in memory arrays, so that other variables fall into the right places.

| Program Variable \qquad | Common Symbols | Remarks |
| :---: | :---: | :---: |
| A (J) | A, B, etc. | Atomic weight of element, the atomic number of which is J |
| AI (JJA) | I (A) | Total emerging $x-r a y$ intensity from pure element A (See definition for JJA) |
| AIR (JJA) | $I_{A}^{S} / I(A)$ | Ratio of emerging $x-r a y$ intensities from a compound standard, s, and from pure A |
| AIT | $\mathrm{I}_{\mathrm{A}}{ }^{\pi}$ | Total emerging x-ray intensity from the specimen for element A |
| AK (JJA) | $\mathrm{K}_{\text {A }}$ | Continuum efficiency constant (Kramer's constant) |
| AKEX (JJA) | $\mathrm{k}_{\mathrm{A}}=\mathrm{I}_{\mathrm{A}}^{*} / \mathrm{I}(\mathrm{A})$ | Ratio of experimental x-ray intensities emerging from specimen and pure A |
| ANK (J) | n_{K} | Exponent for calculating absorption coefficients for element J; in the equation: $\mu(J, \lambda)=C \lambda^{n}$ |
| | | for $\lambda<\lambda_{K}$ edge |
| ANKL (J) | n_{KL} | same, for $\lambda_{K}<\lambda<\lambda_{L}$ |
| ATCO | | Atomic fraction of each analyzed element |
| $\mathrm{C}(\mathrm{JJA})$, | $k_{A}, k_{B} \cdots$ | 1. At start of the first iteration, and in the calculation of k-values: x-ray intensity ratio for each element. |
| | $\begin{aligned} C_{A}, C_{B} \cdots & \\ & \\ & 90\end{aligned}$ | 2. In all other instances: successive estimates of weight fraction of each element. |

| CC (JJ , JJA) | C_{i} | ```Absorption coefficient con- stant in \mu(JJ, \JJA) (defi- nitions for JJ and JJA be1ow).``` |
| :---: | :---: | :---: |
| CD (NP, JJA) | k_{j} | 1. Experimental x-ray intensity ratio for point NP, and line of JJA. |
| | C_{j} | 2. (In the calculation of k-values) given concentration of element JJ. |
| CI (J) | $C_{j}\left(\right.$ from $\left.\mu=C_{j} \lambda^{n}\right)$ | Absorption coefficient constant for element of atomic number J |
| CL (L, K, J) | λ | Wavelength of line:
 L = line number
 $\mathrm{K}=$ series number (edge)
 $\mathrm{J}=$ atomic number |
| CO | | Weight fraction of an element determined by stoichiometry |
| CON(JJA) | | If the value of this variable is greater than zero for any element, the weight fraction of that element will be fixed at whatever is input on data cards. |
| $\operatorname{COSEC}(J J A)$ | $\csc \psi$ | Cosecant of the x-ray emergence angle |
| CT (JJA) | $\mathrm{C}_{\text {A }}$ | Approximation obtained as the result of each iteration (approximation number $\mathrm{I}+\underline{1}$ at the end of the Ith iteration) |
| ELNA (NZA) | alphabetic variable | Chemical symbol for an element of atomic number NZA (alphabetic) |
| EO | E_{o} | Operating potential, in kV |

| EX (II, JJA) | n_{i} | Value of exponent for the absorption coefficient in $\mu=C \lambda n$, selected and stored by CØCA. II = subinterval number, $J J A=$ element label |
| :---: | :---: | :---: |
| EXPO (JJ, JJA) | $\mathrm{n}_{\text {i }}$ | Value of the exponent for the absorption coefficient at the wavelength λ_{0}, corresponding to $\mathrm{E}_{\mathrm{o}}[\mathrm{kV}]$: |
| | | $\left(\lambda_{o}=\frac{12.398}{E_{o}}\right)$ |
| FCASF (JJ) | ΣI_{f} | Sum of emitted fluorescence intensities excited by characteristic lines, for element JJ |
| FCASFX | $\Sigma I_{f} / I_{p}$ | Sum of emitted characteristic fluorescence intensities, divided by the emitted primary intensity. |
| FCF (JJ) | I_{c} | Emitted fluorescence intensity excited by the continuum, for element JJ |
| FCFX | I_{c} / I_{p} | Emitted continuum-fluorescence
 intensity divided by the emitted primary intensity |
| FCK12 (J) | f_{12} | Coster-Kronig coefficients |
| FCK13 3 (J) | f13 | stored in the permanent |
| FCK23 (J) | $\mathrm{f}_{\frac{1}{2}}$ | data file for each element |
| FIRST | | Logical variable used to label the first input card of a sample |
| FQC (JJ) | $\mathrm{f}_{\mathrm{c}}, \mathrm{f}_{\mathrm{c}}(x)$ | Absorption factor, $f(X)$, for fluorescence excited by the continuum |
| FQCA (JJ) | $\mathrm{f}_{\mathrm{f}}, \mathrm{f}_{\mathrm{f}}(\mathrm{x})$ | Absorption factor, $f(x)$, for the fluorescence x-ray intensity excited by characteristic lines |

| FQF (JJ) | $f_{p}, f_{p}(x), f(x)$ | Absorption factor for primary radiation, el.ement JJ |
| :---: | :---: | :---: |
| I COF | | Switch to eliminate correction for continuum fluorescence |
| I I I | | Constant needed for reading magnetic tape input via PTLOAD (not operative unjess PTLOAD is used) |
| IMA (JJA) | | Number of sublimits need in the calculation of fluorescence excited by the continuum |
| J | Z | Subscript for atomic number |
| JJ | | Subscript for order in which the element appears in the input data (arbitrary) \equiv "element label" |
| JJA | | Label JJ of the element being measured |
| JJA1, JJA2 | | Element labels of unanalyzed elements |
| J JAM | | Number of analyzed elements |
| JJAS | | $\mathrm{JJA}+\underline{1}$ |
| JJJ (I , JJA) | | Label of the element which emits the line of wavelength WAVE (I, JJA) |
| JJM | | Number of elements in a case |
| JJMX | | Either JJAM or JJM, depending on the variant of the program |
| JS T | | Number of elements contained in a compound standard |
| K | | Subscript: level number (edge) |

| KA (JJA $)$ | $\mathrm{K}, \mathrm{L}_{\mathrm{I}}, \mathrm{L}_{\mathrm{II}}, \cdots$ |
| :--- | :--- |
| KAA | $\mathrm{K}, \mathrm{L}_{\mathrm{I}}, \mathrm{L}_{\mathrm{II}}, \cdots$ |
| KB $(\mathrm{I}, \mathrm{JJA})$ | |
| | |

KK
KM (J)
KMJ

KSTOP

L

LA (JJA)

LB (I , JJA)

LI (KAA, LAA)

LM (K , J)
LMKJ

LOUT

MESS (JJ , J JA)

MF (JJA)

NCO (JJA)

Number of the level of the analyzed element which emits the measured line

Number of the level emitting the line WAVE(I,JJAj

Diverse switches
Number of absorption edges listed in the permanent data file, for element J

Switch for termination of program

Subscript for CL(L, K, J). Position in the sequence in which the lines are filed in the permanent data file. This sequence restarts after each edge.

Subscript: Position of measured line in permanent data file.

Subscript: Position of exciting line in permanent data file.

Name of analyzed line (KA1, MB1, ..., etc.)

Number of lines listed in the series K, of the element of atomic number J ($K=1$ evel number of the edge).

Switch for output 2 .
Switch for writing error message

Number of characteristic lines which excite fluorescent emission

Switch for error termination due to insufficient data

ND
NEC
NECM
NELM
NEST $=$ JST $-\underline{1}$

NIT
NOE

NP

NP $\underline{1} \equiv \mathrm{NPM}-\underline{1}$

NPM
NSW

NSW2

NTAPE

NV (JJ)
NX
NY
NZ (JJ)

Switch for input method
Case number
Number of cases in a run
Number of elements listed in table

Number of additional elements in a compound standard (not including the analyzed element)

Number of iteration
Running number of element for reading permanent data file.

Index: data point number in any case

Total number of data points minus 1

Total number of data points
Switch determining the variant of the program to be used

Switch set for terminating iterations

Magnetic tape assignment (for PTLOAD only)

Valence of element number JJ
Subscripts for stoichiometry printout

Atomic number of element JJ

NZA
NZA1
NZEX
NZO
$\omega_{q}(J)$
${ }^{\omega}$ eff
r_{q}
I_{p}
I_{p}^{1}
r_{i}
$\operatorname{RRR}(I, J J A) \quad\left(r_{i}-\underline{1}\right) / r_{j}$
SA1

SACO $\Sigma\left(C_{i} / A_{i}\right)$

SC

SD (NP, JJ)

Atomic number for a particular element

Fluorescence yield for level number K of element of atomic number J

Effective yield for ionization produced by photons (corrected for CosterKronig effects)

Jump ratio at edge number K of element of atomic number J

Emitted primary intensity of element number JJ

Generated primary intensity of an element

Absorption jump ratio associated with line of wave1ength WAVE (I,JJA)

Jump-efficiency ratio for element JJA

Auxiliary variable in calculation of atomic concentration

Sum of the weight fractions divided by their respective atomic weights

Summation of the weight fractions

Relative standard deviation of the $k-v a l u e$ of element JJ for point number NP (used only when raw data are input)

| STOIC | | Weight fraction of oxide in stoichiometric compound |
| :---: | :---: | :---: |
| SWITCH | | Switch used in composing the output |
| WA (JJA) | $\lambda_{0}=\frac{12.398}{E_{0}}$ | Minimum wavelength of continuum emission, related to the incident electron energy E_{o} for element JJA |
| WAV (K, J) | λ_{q} | Edge wavelength of the absorption edge of level number K, of the element of atomic number J |
| WAVE (I , JJA) | $\lambda_{\mathrm{q}, \mathrm{m}}$ | Wavelength of a characteristic line of element JJA |
| ZL (L , K , J) | p_{qm} | Weight of line with respect to the sum of line intensities in its series: $\mathrm{L}=$ line number, $K=$ series or level number, $J=$ atomic number |

All variables named:
D1, D2, ... or N1, N2, ... are dummy variables used only to keep variables in COMMON in order.

ASUM
C(IJ,II) k_{j}

COUNT
$\operatorname{CSTD}(I, J)$

DEADT (---)
$\operatorname{FSD}(J, I)$

I
IC
$\operatorname{ICON}(I, J)$

II, IIC
I IMAX

I J

IK

IND

INDEX

ITEN
ITEN

Average value of a set of peak- or background-intensity measurements
$C(I J, I I)=C D(N P, J J A)$
Count-rate, in cts/sec, for dead-time correction

Intensity of standard, corrected for dead-time

Function used to make deadtime correction

Double-precision standard relative deviation of counts collected for each element in each point

Index
$I C=\operatorname{ICON}(I, J)$
Number of times standards or backgrounds are read

Index

IIMAX = JJAM (number of elements analyzed)
$I J=N P M$ (total number of data points)
$I K=6-I$ (tally for separating of codes for scalers)

Variable for dead-time determination

An index for setting up a table of all the input data

ITEN $=\underline{10}^{I K}$ auxiliary variable for scaler code separation

KK (J)

M
MCO (I)

NAV

NC

NC1
NCODE (NROW, I)
NCOL
ND

N IND

NM

NR
NROW
NS

NSTD (. . .)

NTABL(NROW, I)

Counter for number of determinations in each point

M + NC*ND
Variable used in separating data code

Output code: if 0, print: average of measurement for each point

$$
\text { if } 1 \text {,: handle }
$$

all data individually as separate points

Number of scalers used in a measurement

NC1 $=$ NC- $\underline{1}$
NCODE(NROW,I) = MCO(I)/ITEN
Index (number of columns)
Total number of lines or cards in input (including standards and background measurement)

Indicator which selects the proper dead-time for each spectrometer

Position of data coder ($\mathrm{NM}=\mathrm{NC}--($ coding must be in the last position))
$N R=\operatorname{NSTD}(I I C, \underline{1}, I, J)$
Index (number of lines)
Number of digits per scaler ($\mathrm{NS}=6$)

Various sub-tables of NTABL (NROW,I)

Complete table of all input data

NTC

NTRA

NUMBER (INDEX)

PEAK (I)

PHC (NROW, I)
SNSTD (I, J)

SPH (J, I)
$\operatorname{SPHC}(J, I)$

SSTSD
$\operatorname{SSUM}(I, J)$

STSD

SUM (I , J)

SUMS (I , J)
$T(N R)$
TIM (J)

If NTC=0, data are on magnetic tape
If NTC= 1 , data are on cards
If NTRA=0, calculate using total counts
If NTRA=1, calculate using counts/sēc

List of numbers returned by magnetic-tape reading subroutine PTLOAD

Peak minus background for standards

Peak intensity of specimen Sum of the standard intensities (peak or background)

Sum of peak intensities on each point of the specimen

Average peak intensity on each point of the specimen

Conversion of STSD from double precision to single

Sum of the squares of all peak and background measure ments for each standard (double precision)

Relative double precision standard deviation for signals from each standard and background

Sum of all peak and background measurements for each standard (double precision)
$\operatorname{SUMS}(I, J)=[\operatorname{SUM}(I, J)]^{2} /$ ICON(I,J) (double precision

Time in seconds
Summation of times in each point

| F 12 | f 12 |
| :--- | :--- |
| $\mathrm{~F} \frac{1}{1} 3$ | $\mathrm{f} \frac{1}{1} 3$ |
| F 23 | $\mathrm{f} \frac{1}{2} 3$ |

I

I 2

I 3

I 3M

I I

IL

IM
IM1
JM

JO

Coster-Kronig coefficients

Subscript: index of sublimits of the wavelength ranges

Number of absorption edges of one element between λ_{o} and λ_{m}

Number of the exciting line (char. fluor.)

Total number of exciting lines (char. fluor.)

Subscript: index of sublimits
$\mathrm{IM}-\mathrm{I}+\underline{1}$
Variable value for I in loop
IM $\underline{1}=\mathrm{IM}-\underline{1}$
For pure element standard:
JM = JJA
For compound standard:
$\mathrm{JM}=\mathrm{JST}$
For specimen: JM = JJM
For all standards: $J O=J J A$
For all specimens: JO $=\underline{1}$

M4
NNR
T1 to T8
WAA

Auxiliary variables related to shells and subshells:

| K | KR 1 | | KR2 |
| :--- | :---: | :---: | :---: |
| 1 | $\frac{1}{1}$ | | K1 |
| 2 | 2 | 2 | 0 |
| 3 | 2 | 2 | 1 |
| 4 | 3 | 3 | 1 |
| 5 | 2 | 4 | 2 |
| 6 | 2 | 4 | 1 |
| 7 | 2 | 4 | 1 |
| 8 | 4 | 5 | 3 |
| 9 | 5 | 6 | 4 |
| 10 | 6 | 7 | 1 |
| 11 | 6 | 7 | 1 |
| 12 | 7 | 8 | 5 |

Variable M4 = IM1
Jump ratio: $\quad N N R=R(K, J)$
Temporary storage
λ_{o} wavelength: $W A A=W A(J J A)$

FCAS

FCASO

FQ

FQCA1
FQCF (JJA)
IMAM
10
RP

RPO
ΣI_{f}^{*}

「I' $\underset{f}{\text { f }}$
$f_{p}, f(x)$
$\mathrm{f}_{\mathrm{f}}, \mathrm{f}(\mathrm{X}) \mathrm{char}$ $f_{c} f(x) c$
${ }^{I} p$
I_{p}^{\prime}

Total fluorescence intensity excited by characteristic lines (emitted)

Total fluorescence intensity excited by characteristic lines (generated)

Absorption factor for primary emission

FQCAI $=$ FQCA (JJ)
FQCF (JJA) $\equiv \operatorname{FQC}(J J)$
IMAM = IMA(JJA)
$I 0=\operatorname{IMA}(J J A)+\underline{1}$
Emerging primary intensity $=$ RPF (JJ)

Generated primary intensity

| ACA | χ_{A}^{*} | $X_{A}^{*}=A_{A}^{\Sigma}, B \ldots C_{B} \mu(B, A q m) X$ |
| :---: | :---: | :---: |
| | | $X \operatorname{cosec} \psi$ |
| ACB | χ_{B}^{*} | $X_{B}^{*}=A^{\Sigma}, \mathrm{B} \ldots{ }^{\text {C }}$ A $\mu(A, B \quad q m) X^{\prime}$ |
| | | $X \operatorname{cosec} \psi$ |
| ACBA | $\mu_{B}^{\text {A }}$ | $\mu_{B}^{A}=C_{i}^{A}\left(\lambda_{B}\right)^{n_{i}^{A}}$ |
| $\mathrm{CA}(\mathrm{I}), \mathrm{CB}(\mathrm{I})$ | $\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{i}$ | Coefficients of expansion of the depth-distribution function $\phi(\rho z)$ (according to Criss [5]): |
| | | $\phi(\rho z)=\underset{i}{\sum} a_{i} \exp \left[-b_{i} \rho z\right]$ |
| FCA1 | I_{f} | ```Fluorescence intensity excited by a characteristic line (emitted)``` |
| FCAO | $I_{f}{ }^{\prime}$ | ```Fluorescence intensity excited by a characteristic line (generated)``` |
| FQIB | f_{f} | Absorption factor in fluorescence intensity excited by a characteristic line |
| H | h | h from Philibert's absorption correction equation |
| JJB | | Number of the exciting element |
| KBB | | $K B B=K B(I, J J A)$ |
| LBB | | $\mathrm{LBB}=\mathrm{LB}(\mathrm{I}, \mathrm{JJA})$ |
| NZB | | Atomic number of exciting element |
| RJ | | Conversion of J from integer to real mode |

Step in calculation of fluorescence intensity excited by characteristic lines (emitted)

Step in calculation of fluorescence intensity excited by characteristic lines (emitted)

Step in calculation of fluorescence intensity excited by characteristic lines (generated)

| AC (CL, J) | ${ }_{\lambda}{ }_{\lambda}$ | Mass absorption coefficient of element J, for the wavelength: $\lambda=C L$ (function) |
| :---: | :---: | :---: |
| ACS | χ_{A}^{*} | $\begin{aligned} & X_{A}^{*}=A^{\Sigma}, B \ldots C_{B} \mu(B, A q m) X \\ & X \operatorname{cosec} \psi \end{aligned}$ |
| ALK | | Conversion of LK from integer to real mode |
| ANIN | | Conversion of NIN from integer to real mode |
| ANZ | $\mathrm{Z}_{\text {A }}$ | Conversion of $N Z$ from integer to real mode |
| $\begin{aligned} & \mathrm{BK} 1 \\ & \mathrm{BK} \frac{1}{\mathrm{BN}} \\ & \text { BN1 } \\ & \text { BO } \end{aligned}$ | | Sublimits used in the computation of the definite integral over wavelength |
| CCO (J) | C_{i} | Value of C_{i} (constant for calculation of μ) for element J, as a function of wavelength |
| EABI | | Auxiliary variable in the calculation of fluorescence excited by the continuum |
| EXO (J) | n_{i} | Value of exponent n_{i} for element J |
| F (X, JO, JM, JJA) | | Auxiliary function for numerical integration (emitted) |
| FC | I_{f} | Fluorescence intensity excited by the continuum (emitted) |
| FCO | I_{f}^{\prime} | Fluorescence intensity excited by the continuum (generated) |
| FI | | Step in calculation of FC |

$\mathrm{H} \quad \Delta \lambda$

IM1
LK
LKM
NIN

NIN2
OMEGI

RL

RRRI
so

ZMK
K_{A}, \bar{K}

Step in calculation of FCO
Auxiliary function for
numerical integration, case without absorption

Wavelength increment for integration

IM1 $=$ IMA(JJA)
Index
Limit of LK
Number of intervals used in the integration

NIN $=2 * N I N 2$
Effective yield in a given interval of wavelength

Remainder after wavelength interval is divided

RRRI $=\operatorname{RRR}(I, J J A)$
Step in calculation of fluorescence excited by the continuum (emitted)

Step in calculation of fluorescence excited by the continuum (generated)

Efficiency constant for continuum production

| R 1 to R5 | | Auxiliary variables in calculation of backscatter |
| :---: | :---: | :---: |
| W | $1 / U_{0}$ | Reciprocal of overvoltage |
| W2 to W5 | $\left(\frac{1}{U_{0}}\right)^{2}$ to $\left(\frac{1}{U_{0}}\right)^{5}$ | Powers of W |
| Z1 to Z5 | | $\begin{aligned} & \mathrm{Z} \underline{1}=\underline{1} \times 10^{-2} Z ; \ldots \mathrm{Z}= \\ & \underline{1} \times 10^{-1} \underline{1}^{0} Z^{5} \end{aligned}$ |

Additional Variables in FQI

H

SIG
h
o
h from Philibert's equation $o=4.5 \times \underline{1} 0^{5} /\left(\mathrm{E}_{\mathrm{o}} \underline{1} \cdot 65-\mathrm{E}_{\mathrm{q}} \underline{1} \cdot 65\right)$

Additional Variables in EI

AN

N
TN

X

Conversion of N from integer to real mode

Index
Step in calculation of exponential integral

Function to be integrated (ALUOW or ALW)

Conversion of N from integer to real mode

Additional Variables in PRA

ALUOW

$$
\ln \left(U_{0} V\right)
$$

$$
\ln \left(U_{0} V\right)=\ln \left(U_{0}\right)+\ln (V)
$$

$$
\ln (V)
$$

AM
M
$\ln (V)=A_{,}^{\Sigma}, \ldots_{i} \frac{Z_{i}}{A_{A}} \ln X$
$X\left(\frac{1 \cdot 166 E}{J_{i}}\right) / A, B \ldots C_{i} \frac{Z_{i}}{A_{i}}$
$M=A^{\Sigma}, B \ldots C_{i} \frac{Z_{i}}{A_{A}}$

AMLW
$M 1 n(V)$
$M \ln (V)=A^{\Sigma}, B \ldots C_{i} \frac{Z_{i}}{A_{A}} \ln X$
$X\left(\frac{1 \cdot 166 E}{J_{i}}\right)$
AW
CX

EI

V

$V=\exp$ [ALW]
C_{A}
ei(x)

Concentration of analyzed element
Function: ei $(x)=\int_{-\infty}^{X} \frac{e^{V}}{V} d V$

| EM | E_{1} | 1 energy level |
| :---: | :---: | :---: |
| JX | $\mathrm{Z}_{\text {A }}$ | Atomic number |
| KX | | Subscript: level number (edge) $=K$ |
| KXX | | KX must be greater than 4: |
| LX | | Subscript: line number = L |
| OMED | ${ }^{\omega} \mathrm{eff}$ | Effective fluorescence yiel for ionization produced by electrons |
| RB | R | Backscatter factor |
| RBA | | RBA $={ }_{A}{ }^{\Sigma}, \mathrm{B} \ldots \mathrm{C}^{\prime} \cdot \mathrm{R}_{\mathrm{A}}$ |
| RZ | $\mathrm{Z}_{\text {A }}$ | Conversion of $N Z$ from integer to real |
| U0 | $\frac{E_{0}}{E_{1}}=U_{o}$ | Overvoltage |
| Z | $\mathrm{Z}_{\text {A }}$ | Atomic number |
| ZJ | $\mathrm{J}_{\text {A }}$ | Mean excitation potential |
| ZNL | $\mathrm{Z}_{\mathrm{n} 1}$ | Number of electrons in a shell |

Additional Variables in F

ACAX
μ_{A}^{A}
$\mu \lambda$
ACX

Whichever sublimit is used in the calling routine (BK1, BK2, BN, BN1, or BO)

APPENDIX 3
Permanent Data File

Permanent Data File

Types of cards for data input to the permanent data table

Card
No.
1

2
3
$4 \quad \begin{array}{ll}\text { card for } & 1-7 \\ \text { each line } \\ 8-1\end{array}$

$$
\begin{array}{ll}
\begin{array}{l}
\text { card for } \\
\text { each edge }
\end{array} & 1-7 \\
& 8-13 \\
& 14-19 \\
& 20
\end{array}
$$

2 fields of 4 (35-42)
(2F4.2) absorption exponents $\mathrm{n}_{\mathrm{K}}, \mathrm{n}_{\mathrm{KL}}$
(F7.5) wavelength at absorption edge (F6.4) jump for the edge (F6.5) fluorescent yield ω (I1) number of lines listed for the edge each line 8-13
(F7.5) wavelength of line (F6.4) weight of the line with respect to the sum of line intensities in its series
*Number must be right justified in the field.

67

111007
200.

316939
120.

419012
111.
$\begin{array}{lll}5 & 1 & 1081\end{array}$
676
$\begin{array}{rrr}62 & 12011 & \\ 4368 & 2622 & 00091\end{array}$
4471
99
$\begin{array}{ccc}72 & 14007 & \\ 3099 & 2576 & 00151\end{array}$
$316 \quad 1$
99

| 82 | | | 38 | 282273 |
| :---: | :---: | :---: | :---: | :---: |
| 2332 | 24 | 00221 | | |
| 2362 | 1 | | | |
| 99 | | | | |
| 92 | | | 49 | 281273 |
| 17913 | 1933 | 1 | | |
| 1832 | 1 | | | |
| 99 | | | | |
| 112 | 299 | | 905 | 279273 |

1122299
$11569 \quad 184 \quad 025 \quad 2$
$11575 \quad 12$
11510188
99

```
1222431
95122150282
9520712
\(989 \quad 88\)
99
```

1175279273

1322698
1487278273
79481140382
7960512
8339388
99
1422809
185277273
$225 \quad 277 \quad 273$

```
    5796 12
    61568 88
    0 0
```

94
16232064
$27 \quad 276 \quad 273$
$50191167 \quad 0832$
5031612
5372288
757
17235453
$439711112 \quad 1 \quad 2$
4403412
4727888
609
19339102
$425 \quad 275 \quad 273$
$34365101 \quad 1552$
3453912
3741488
00
421
2034008
3070396
1652
3089712
3358488
00
3513
2134496
2762929
2779612
3030988
00
3014
223479
621273273
249738872132
2513912
2748588
00
2729
$\begin{array}{lll}23 & 3 & 5094 \\ 22694 & 8703 & 242 \quad 2\end{array}$
2284412
25035688
00
238882
$\begin{array}{llll}24252 \\ 20702 & 8497 & 272\end{array}$
20848712
2289788
167
2525494
$18964824 \quad 2912$

```
    19102
    126
    21018 874
1624
2635585 
27 3 5894
    160815 7962 35 2
    162079 10
    178897 88
    00
15618
28 3 5869
    148807 7769
    150014 107
    165791 893
    0
14242 1
14271 857
296354 12680 271 273
    138059 7659 415 2
    139222 12
    154056 88
112709 117
13014 139
13288 573 00561
13336 1
110.6
3046538
    12834 7505 45 2
    129525 12
    143516 88
1106 117
11862 139
12131
3156972
1498 270 273
    11958 7376 469 2
    120789 12
    134008 88
    9517 117 1
10365 1
10828 139 1
11023 1
111 4246 006 1
1 1 2 9 2 ~ 1
99
32 5 7259
    111658}7299 51 2,
    112894 12
```

```
    125405 88
    8773 117
    9581 59
    9640 41
    9924 139 1
10175 1
10187 4605 006 1
104361 1
99
33 5 7492
    1045 722 548 2
    10573 12
    117588 88
    8107 117 1
    8929 1
    9125 139 1
    94141 1
    9367 4661 006 1
    96709 1
99
34 5 7896
        97974718 585 2
        99218 12
    110477 88
    7503 117 1
    8321 1
    8407 139 1
    87358 1
    8646 4583 006 1
    899
99
35 5 799C9
205 269 273
        9204 7142 628 2
        93279 12
    103974 88
    6959 117 1
    7767 1
    7753 139 1
    81251 1
    7984 4524 006 1
    83746 1
99
37 5 8547 
        82868 12
        92555 88
    5998 117 008 2
    67876 59
    68207 41
    6644 139 024 1
    7 0 7 5 9 ~ 1
    6865 439 024 1
    73183 1
38265
38}55876
                                    2355 268 273
```

1754269273

```
                                    1894 269 273
```

```
                                    1894 269 273
```

```
                                    1894 269 273
```

```
            39 0241
                        1
```

 76973 6976 7 2
 78292 16
 87526 84
 5592 117 008 2
 63672 59
 64026 41
 6173 139 0241
 6 6 2 3 9 ~ 1 ~
 6387 4314 0241
 68628 1
 345
39 8891 57 2681 267 273
72766 695 719 2
74072 16
82884 84
5217 117 008 2
59832 59
60186 41
5756 139 024 1
6212 1
5962 424 024 1
64488 1
3147
40 5 9122 57 2851 267 273
68883 696 737 2
70173 16
78593 84
4879 117 008 2
5633 59
56681 41
5378 139 024 2
53843 10
5836 90
5579 4166 024 2
55863 7
60705 93
288
41 5 9291 56 3039 267 273
652987035 754 2
66576 16
7462 84
4575 117 008 2
53102 59
53455 41
5031 139 024 2
50361 10
54923 90
523 4123 024 2
52379 7
57243 93
2627
42 59595 [lllllllll
63229 16
7093 84
4304 117 001 2

```
```

 50133 59
 50488 41
 4719 139 003 2
 4 7 2 5 8 1 0
 517708 90
 4913 3979 03 2
 4 9 2 3 2 7
 540655 93
 245
44 51011 23 15 54 3671 266 272
56051 6049 799 2
E7248 15
64308 85
3835 117 01 2
44866 58
4 5 2 3 ~ 3 6
418 139 03 2
4 1 8 2 2 ~ 1 6
4 6 2 0 5 8 ~ 8 3 ~
4369 3897 03 2
43718 16
484575 84
211932
45 5102905 23 15
53395658 812 2
54561 15
61328 85
3629 117 01 2
4 2 5 2 2 5 8
4 2 8 8 8 ~ 3 6 ~
39425 139 03 2
39437 16
437414 83
41299 3839 03 2
4131 16
4 5 9 7 4 3 8 4
198368
46 51064 3 17 17 5 4 4142 265 272
5092 695 822 2
5 2 0 5 2 ~ 1 5 ~
58545 85
34369 117 01 2
40346 58
40711 36
37228 139 03 2
37246 16
44622 83
39074 38C 03 2
390887 16
436767 84
18532
47 510788

```
```

383313 58
387023 36
3514 139 025 2
35226 16
393473 83
3698 371 021 2
370335 16
415443 84
1724

| 48511240 | 42 | | 25 |
| :--- | ---: | :--- | :--- | :--- |
| 46407 | 6855 | 819 | |
| 30489 | 117 | 05 | 2 |
| 364495 | 58 | | |
| 3682 | 36 | | |
| 33257 | 139 | 06 | 2 |
| 333564 | 16 | | |
| 373823 | 83 | | |
| 35047 | 372 | 02 | 2 |
| 351408 | 16 | | |
| 395635 | 84 | | |
| 1608 | | | |

```

```

 316213 16
 355531 83
 33237 361 02 2
 333838 16
 377192 84
 1505

| 5051186 | | 5 | | 26 | 26 | 5188 | 264271 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4246 | 592 | | 84 | | | | |
| 27769 | 117 | | 03 | 2 | | | |
| 33058 | 58 | | | | | | |
| 33433 | 36 | | | | | | |
| 29831 | 139 | | 06 | 2 | | | |
| 30012 | 16 | | | | | | |
| 33849 | 83 | | | | | | |
| 31557 | 3539 | | 05 | 2 | | | |
| 31751 | 16 | | | | | | |
| 35999 | 84 | | | | | | |
| 14028 | | | | | | | |
| 5151217 | | 586 | | 12 | | 842 | 270 |
| 40668 | 58 | | 862 | | | | |
| 26388 | 117 | | | 2 | | | |
| 315258 | 58 | | | | | | |
| 319014 | 36 | | | | | | |
| 28294 | 139 | | 069 | 2 | | | |
| 285159 | 16 | | | | | | |
| 322567 | 83 | | | | | | |
| 30003 | 346 | | 049 | 2 | | | |
| 302335 | 16 | | | | | | |
| 343941 | 84 | | | | | | |

```

1313
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 5251276 & & 31 & & 13 & 885 & 27 \\
\hline 3897 & 58 & & 87 & & & \\
\hline 25101 & 117 & & 04 & 2 & & \\
\hline 30089 & 58 & & & & & \\
\hline 30466 & 36 & & & & & \\
\hline 26882 & 139 & & 07 & 2 & & \\
\hline 27124 & 16 & & & & & \\
\hline 30768 & 83 & & & & & \\
\hline 28558 & 3403 & & 06 & 2 & & \\
\hline 28822 & 16 & & & & & \\
\hline 32892 & 84 & & & & & \\
\hline \multicolumn{7}{|l|}{1234} \\
\hline 5351269 & & 63 & & 23 & 94 & 270 \\
\hline 37381 & 57 & & 895 & & & \\
\hline 2388 & 117 & & 05 & 2 & & \\
\hline 291207 & 58 & & & & & \\
\hline 287429 & 36 & & & & & \\
\hline 25542 & 139 & & 09 & 2 & & \\
\hline 258244 & 16 & & & & & \\
\hline 293744 & 83 & & & & & \\
\hline 27196 & 339 & & 07 & 2 & & \\
\hline 375053 & 16 & & & & & \\
\hline 31486 & 84 & & & & & \\
\hline \multicolumn{7}{|l|}{11544} \\
\hline 55513290 & 05 & \multicolumn{2}{|l|}{628} & \multirow[t]{2}{*}{175} & \multirow[t]{2}{*}{1034} & \multirow[t]{2}{*}{269} \\
\hline 34451 & 55 & & 89 & & & \\
\hline 21673 & 117 & & & \multirow[t]{2}{*}{2} & & \\
\hline 26285 & 58 & & & & & \\
\hline 26666 & 36 & & & & & \\
\hline 23139 & 139 & & & \multirow[t]{2}{*}{2} & & \\
\hline 2348 & 16 & & & & & \\
\hline 26837 & 83 & & & & & \\
\hline 2474 & 3251 & & 05 & 2 & & \\
\hline 25118 & 16 & & & & & \\
\hline 28924 & 84 & & & & & \\
\hline \multicolumn{7}{|l|}{101957} \\
\hline \multicolumn{2}{|l|}{\(56 \quad 513734\)} & \multirow[t]{2}{*}{66} & & 26 & \multirow[t]{2}{*}{109} & \multirow[t]{2}{*}{269} \\
\hline 33104 & 55 & & 87 & & & \\
\hline 20678 & 117 & & & \multirow[t]{2}{*}{2} & & \\
\hline 25164 & 58 & & & & & \\
\hline 25553 & 36 & & & & & \\
\hline 22048 & 139 & & & 2 & & \\
\hline 22415 & 16 & & & & & \\
\hline 256821 & 83 & & & & & \\
\hline 23629 & 323 & & 05 & 2 & & \\
\hline 240435 & 16 & & & & & \\
\hline 277595 & 84 & & & & & \\
\hline \multicolumn{7}{|l|}{155} \\
\hline \multicolumn{2}{|l|}{57913891} & \multirow[t]{2}{*}{66} & & 26 & \multirow[t]{2}{*}{1144} & \multirow[t]{2}{*}{268} \\
\hline 31844 & 55 & & 9 & & & \\
\hline 1978 & 117 & & & \multirow[t]{2}{*}{2} & & \\
\hline 24105 & 59 & & & & & \\
\hline 24493 & 39 & & & & & \\
\hline 21053 & 139 & & & 2 & & \\
\hline
\end{tabular}
```

 21418 16
 24589 84
 2261 3168 05 2
 2303 16
 26657 84
 90629 116
 10272 1207
110106 1158
14535 1895
14795 1895
60 914424 6
28453 53
1739 117
21268 59
21669 39
1844 139 2
18779 16
21669 84
19967 3044 07 2
2036 16
23704 84
78668 116
88242 1207
9559 1158
123856 1895
126769 1895
l01017304 % 518

| 72101785 | | 55 | | |
| :---: | ---: | :--- | :--- | :--- |
| 18982 | 47 | | | |
| 10997 | 117 | 28 | 2 | |
| 13530 | 61 | | | |
| 13920 | 39 | | | |
| 11548 | 139 | 25 | 2 | |
| 11790 | 15 | | | |
| 13741 | 85 | | | |
| 12972 | 264 | 25 | 2 | |
| 13264 | 16 | | | |
| 15696 | 84 | | | |
| 4774 | 116 | 005 | | |
| 5249 | 1207 | 0084 | | |
| 58926 | 1158 | 00451 | | |

```
```

 6768 1
 72376 1892 017 1
 7 6 0 1 ~ 1
 74777 1892 019 1
 7840 1
 2317
731018095 55
18394 47 946
10613 117 28 2
130678 61
134581 39
11137 139 25 2
113794 15
132698 85
12553 2615 25 2
128454 16
152197 84
4585 116 005
502 1207 0084
565 1158 00451
6 3 1 2 ~ 1
687 1892 017 1
7 0 2 3 ~ 1
7128 1892 0191
7252 1
2105
741018392 0386 258 231 261
1783747 0945
102467117 0305 2
126269 61
130162 39
10745 139 0311 2
109855 15
128181 85
12155 260 22 2
124460 1593
147639 8407
4407 116 005
4815 1207 0084
5435 1158 c0451
6092 1
659 1895 017 1
6757 1
683 1895 019 1
6983 1
2105
75101862 325
1730247 951
9894 117 11 2
122031 61
125917 39
10371 139 33 2
106099 15
123858 85
11773 2574 20 2
12066 16
14329 84

```
```

4236 116 005
462 1207 0084
5234 1158 00451
5\&85 1
633 1895 017 1
6504 1
656 1895 0191
6729 1
1 9 9

```
\begin{tabular}{lllll}
76101902 & & & & \\
16787 & 46 & & \\
9558 & 117 & 1 & 2 \\
117955 & 61 & & \\
121844 & 39 & & \\
10014 & 139 & 35 & 2 \\
102503 & 15 & & \\
119727 & 85 & & \\
11408 & 2544 & 21 & 2 \\
116979 & 16 & & \\
13912 & 84 & & \\
4071 & 116 & 005 & \\
4433 & 1207 & 0084 \\
5043 & 1158 & 00451 \\
5682 & 1 & & \\
6073 & 1904 & 017 & 1 \\
6267 & 1 & & & \\
630 & 1904 & 019 & 1 \\
6490 & 1 & & &
\end{tabular}
1890
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 77101922 & & 19 & & & 46 & 256 & 26 \\
\hline 16292 & 46 & & & & & & \\
\hline 9236 & 117 & & 10 & 2 & & & \\
\hline 114085 & 61 & & & & & & \\
\hline 117958 & 39 & & & & & & \\
\hline 9671 & 139 & & 37 & 2 & & & \\
\hline 99085 & 18 & & & & & & \\
\hline 115781 & 82 & & & & & & \\
\hline 11058 & 252 & & 23 & 2 & & & \\
\hline 113532 & 17 & & & & & & \\
\hline 135128 & 82 & & & & & & \\
\hline 3915 & 116 & & 005 & & & & \\
\hline 4260 & 1207 & & 0084 & & & & \\
\hline 4861 & 1158 & & 0045 & & & & \\
\hline 55 & 1 & & & & & & \\
\hline 583 & 1895 & & 017 & 1 & & & \\
\hline 6038 & 1 & & & & & & \\
\hline 605 & 1895 & & 019 & 1 & & & \\
\hline 6262 & 1 & & & & & & \\
\hline 179 & & & & & & & \\
\hline 78101952 & & 17 & & & 50 & 263 & 259 \\
\hline 15818 & 46 & & & & & & \\
\hline 8931 & 117 & & 35 & 2 & & & \\
\hline 110394 & 61 & & & & & & \\
\hline 114223 & 39 & & & & & & \\
\hline 93414 & 140 & & 31 & 2 & & & \\
\hline 95797 & 18 & & & & & & \\
\hline 111990 & 82 & & & & & & \\
\hline
\end{tabular}
```

 10723 248 275 2
 110200 17
 131304 82
 3774 116 005
 4414 1207 0084
 471 1158 00451
 5319 1
 5665 1895 0171
 5828 1
 581 1895 019 1
 6047 1
 172

```
```

791019697 25 22

```
791019697 25 22
    01535946
    01535946
    086376 117 08 2
    086376 117 08 2
    106785 61
    106785 61
    110651 39
    110651 39
    050259 139 343 2
    050259 139 343 2
        92650 18
        92650 18
    108353 82
    108353 82
    10400 247 31 2
    10400 247 31 2
    107022 18
    107022 18
    127640 82
    127640 82
    3616 116 005
    3616 116 005
    3936 1207 0084
    3936 1207 0084
    4518 1158 00451
    4518 1158 00451
    5145 1
    5145 1
    5374 1895 017 1
    5374 1895 017 1
    5624 1
    5624 1
    5584 1895 0191
    5584 1895 0191
    54 1
    54 1
1627
1627
801020059 158 08 647 281 258
    1491846 96
    8353 117 2
    103358 61
    107222 39
        8722 139 39 2
        89646 18
    104868 82
    10091 2438 40 2
    103975 18
    12412 82
    3478 116 005
    3783 1207 0084
    4355 1158 00451
    4578 1
    5157 1895 017 1
    5431 1
    536 1895 0191
    5645 1
154012
811020437 1% 17 
```

```
    8435 139 43 2
    26752 18
    101513 82
    9795 2404 27 2
    101031 18
    120739 82
    33471 116 005
    36297 1207 0084
    41933 1158 00451
    4 8 2 3 ~ 1
    49889 1888 017 1
    5249 1
    5189 1888 019 1
    546 1
14664
\begin{tabular}{ccccc}
821020719 & 16 & & \\
14088 & 56 & & 37 & 2 \\
78168 & 117 & 31 & & \\
96911 & 61 & & \\
10075 & 39 & & 2 \\
81566 & 139 & 24 & 2 \\
83973 & 18 & & \\
98291 & 82 & & \\
95112 & 2394 & 35 & 2 \\
98221 & 18 & & \\
117501 & 82 & & \\
321967 & 116 & 005 & \\
348827 & 1207 & 0084 \\
404318 & 1158 & 00451 \\
4674 & 1 & & & \\
479502 & 1895 & 017 & 1 \\
5076 & 1 & & & \\
499114 & 1895 & 019 & 1 \\
5286 & 1 & & &
\end{tabular}
13874
8310209 19 59 307 256
    1369445 963
    7571 117 12 2
    93855 61
    97690 39
    7887 139 32 2
    81311 18
    95198 82
    S234 236 35 2
    95518 183
    114386 &17
    3094 116 005
    3359 1207 0084
    3904 1158 00451
    4532 1
    4572 1895 017 1
    4509 1
    4764 1895 019 1
    5118 1
132
901223204 21
    1103742 963
```

```
        6059 117
                2
            7 5 4 7 9 6 1
            79257 39
            6299 139 56 2
            65313 21
            76521 79
            7607 194 39 2
            79354 19
            556 81
    2393 116 005
    2572 1207 0084
    3068 1158 00451
    3679 1
    3557 1895 017 1
    3941 1
    3729 1895 019 1
    4 1 3 8 1 ~ 1 ~
    9371
10688
12928
921223803
    1072342 963
    5695 117 25 2
    7102961
    7 4 7 9 9 3 9
    5919 139 59 2
    61477 21
    71998 79
    7223 2069 44 2
    75468 19
    91064 81
    2235 116 005
    2394 1207 0084
    2884 1158 00451
    3479 1
    3333 1888 017 1
    3716 1
    3497 1888 0191
    391 1
    8614
    9747
11898
```

| U.S. DEPT. OF COMM. EIBLIOGRAPHIC DATA SHEET | 1. PUBLICATION OR REPORT NO. NBS TN -769 | 2. Gov't Accession No. | 3. Recipi | s Accession No. |
| :---: | :---: | :---: | :---: | :---: |
| 4. TITLE AND SUBTITLE
 A Rigorous Correction Procedure for Quantitative Electron Probe Microanalysis (COR 2) | | | $\begin{array}{\|r} \hline \text { 5. Public } \\ \text { Augu } \\ \hline \text { 6. Perform } \\ \hline \end{array}$ | Date 1973 Organization Cod |
| 7. AUTHOR(S)Jean Hénoc, Kurt F. J. Heinrich, and
 Robert L. Myklebust | | | 8. Perfor | Organization |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS
 NATIONAL BUREAU OF STANDARDS
 DEPARTMENT OF COMMERCE
 WASHINGTON, D.C. 20234 | | | 10. Proje | Grant No. Work Unit No. |
| 12. Sponsoring Organization Name and Address$\text { Same as No. } 9$ | | | $\begin{array}{\|r} \hline \text { 13. Type } \\ \text { Cover } \\ \text { F } \\ \hline \text { 14. Spons } \\ \hline \end{array}$ | Report \& Period $\frac{\text { a1 }}{\text { ag Agency Code }}$ |
| 15. SUPPLEMENTARY NOTES | | | | |
| 16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature surve y, mention it here.)
 This publication describes a rigorous data reduction procedure for quantitative electron probe microanalysis, which avoids simplifications present in conventional schemes. In addition, the program contains a correction for fluorescence due to the continuu, and separate computation of the fluorescent effects of each exciting primary x-ray line. Constants characteristic of elements are stored in a permanent data file, and the constants and parameters needed for the calculation of mass absorption coefficients are contained in a sub-program. These provisions and decision-making sections in the development of the fluorescence corrections reduce the required input considerably. | | | | |
| 17. KEY WORDS (Alphabetical order, separated by semicolons) Continuum fluorescence; data reduction; electron probe microanalysis; fluorescence correction; quantitative analysis. | | | | |
| 18. aVAILABILITY STATEMENTUNL imited.FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NTIS. | | 19. SECURIT
 (THIS RE
 UNCL AS
 20.SECURIT
 (THIS PA
 UNCLAS | CLASS ORT) FIED CLLASS FIED | $\begin{array}{\|c} \text { 21. NO. OF PAG } \\ 132 \end{array}$ |

PERIODICALS
JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, and chemistry. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts. Includes listings of other NBS papers as issued.

Published in two sections, available separately:

- Physics and Chemistry (Section A)

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, $\$ 17.00$; Foreign, $\$ 21.25$.

- Mathematical Sciences (Section B)

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, $\$ 9.00$; Foreign, \$11.25.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's measurement, research, developmental, cooperative, and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology-for engineers, chemists, physicists, research managers, product-development managers, and company executives. Includes listing of all NBS papers as issued. Annual subscription: Domestic, $\$ 6.50$; Foreign, $\$ 8.25$.

NONPERIODICALS
Applied Mathematics Series. Mathematical tables, manuals, and studies.
Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.
Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.
Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.
Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.
National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.
Product Standards. Provide requirements for sizes, types, quality, and methods for testing various industrial products. ,These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.
Technical Notes. This series consists of communications and reports (covering both other-agency and NBS-sponsored work) of limited or transitory interest.
Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89-306, and Bureau of the Budget Circular A-86 entitled, Standardization of Data Elements and Codes in Data Systems.
Consumer Information Series. Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibliographies are issued periodically by the Bureau:
Cryogenic Data Center Current Awareness Service (Publications and Reports of Interest in Cryogenics). A literature survey issued weekly. Annual subscription: Domestic, $\$ 20.00$; foreign, $\$ 25.00$.

Liquefied Natural Gas. A literature survey issued quarterly. Annual subscription: \$20.00.

> Superconducting Devices and Materials. A literature survey issued quarterly. Annual subscription: $\$ 20.00$. Send subscription orders and remittances for the preceding bibliographic services to the U.S. Department of Commerce, National Technical Information Service, Springfield, Va. 22151 .
> Electromagnetic Metrology Current Awareness Service (Abstracts of Selected Articles on Measurement Techniques and Standards of Electromagnetic Quantities from D-C to Millimeter-Wave Frequencies). Issued monthly. Annual subscription: $\$ 100.00$ (Special rates for multi-subscriptions). Send subscription order and remittance to the Electromagnetic Metrology Information Center, Electromagnetics Division, National Bureau of Standards, Boulder, Colo. 80302 .

Order NBS publications (except Bibliographic Subscription Services) from: Superintendent of Documents, Government Printing Office, Washington, D.C. 20402.
U.S. DEPARTMENT OF COMMERCE

National Bureau of Standards
Washington. D.C. 20234

[^0]: ${ }^{2}$ Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.
 ${ }^{2}$ Part of the Center for Radiation Research.
 ${ }^{3}$ Located at Boulder, Colorado 80302.

 - Part of the Center for Building Technology.

[^1]: U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary

 NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

[^2]: *The computers are identified in order to adequately specify the use of the program. In no case does such identification imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the equipment identified is necessarily the best available for the purpose.

[^3]: This paper is to appear in Mikrochim. Acta, in German, as part of the proceedings of a meeting on electron probe microanalysis and metallography, held in Vienna, (Technische Hochschule, Wien), October 22-25, 1969.

