
NBS TECHNICAL NOTE 763

A Set of Debugging

and Monitoring Facilities

to Improve the

Diagnostic Capabilities

of a Compiler

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards1 was established by an act of Congress March 3,

1901. The Bureau's overall goal is to strengthen and advance the Nation's science and
technology and facilitate their effective application for public benefit. To this end, the
Bureau conducts research and provides: (1) a basis for the Nation's physical measure-
ment system, (2) scientific and technological services for industry and government, (3)

a technical basis for equity in trade, and (4) technical services to promote public safety.

The Bureau consists of the Institute for Basic Standards, the Institute for Materials

Research, the Institute for Applied Technology, the Center for Computer Sciences and
Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the
United States of a complete and consistent system of physical measurement; coordinates

that system with measurement systems of other nations; and furnishes essential services

leading to accurate and uniform physical measurements throughout the Nation's scien-

tific community, industry, and commerce. The Institute consists of a Center for Radia-
tion Research, an Office of Measurement Services and the following divisions:

Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics —
Linac Radiation - — Nuclear Radiation - — Applied Radiation - — Quantum
Electronics :l — Electromagnetics ; — Time and Frequency :l — Laboratory
Astrophysics ; — Cryogenics 3

.

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research lead-

ing to improved methods of measurement, standards, and data on the properties of

well-characterized materials needed by industry, commerce, educational institutions, and
Government; provides advisory and research services to other Government agencies;

and develops, produces, and distributes standard reference materials. The Institute con-

sists of the Office of Standard Reference Materials and the following divisions:

Analytical Chemistry—Polymers—Metallurgy—Inorganic Materials—Reactor

Radiation—Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to pro

mote the use of available technology and to facilitate technological innovation in indus-

try and Government; cooperates with public and private organizations leading to the

development of technological standards (including mandatory safety standards), codes

and methods of test; and provides technical advice and services to Government agencies

upon request. The Institute also monitors NBS engineering standards activities and

provides liaison between NBS and national and international engineering standards

bodies. The Institute consists of a Center for Building Technology and the following

divisions and offices:

Engineering and Product Standards—Weights and Measures—Invention and
Innovation—Product Evaluation Technology—Electronic Technology—Techni-
cal Analysis—Measurement Engineering—Building Standards and Code Serv-

ices4—Housing Technology 1—Federal Building Technology 4—Structures, Mate-
rials and Life Safety 4—Building Environment4—Technical Evaluation and
Application 4—Fire Technology.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts re-

search and provides technical services designed to aid Government agencies in improv-
ing cost effectiveness in the conduct of their programs through the selection, acquisition,

and effective utilization of automatic data processing equipment; and serves as the prin-

cipal focus within the executive branch for the development of Federal standards for

automatic data processing equipment, techniques, and computer languages. The Center
consists of the following offices and divisions:

Information Processing Standards—Computer Information—Computer Services

—Systems Development—Information Processing Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination

and accessibility of scientific information generated within NBS and other agencies of

the Federal Government; promotes the development of the National Standard Reference

Data System and a system of information analysis centers dealing with the broader

aspects of the National Measurement System; provides appropriate services to ensure

that the NBS staff has optimum accessibility to the scientific information of the world,

and directs the public information activities of the Bureau. The Office consists of the

following organizational units:

Office of Standard Reference Data—Office of Technical Information and

Publications—Library—Office of International Relations.

1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address

Washington, D.C. 20234.
2 Part of the Center for Radiation Research.
2 Located at Boulder, Colorado S0302.
4 Part of the Center for Building Technology.

A Set of Debugging and Monitoring Facilities to

Improve the Diagnostic Capabilities of a Compiler

Elizabeth Fons

Systems Development Division

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D.C. 20234

NBS Technical Notes are designed to supplement the

Bureau's regular publications program. They provide a

means for making available scientific data that are of

transient for limited interest. Technical Notes may be

listed or referred to in the open literature.

U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary

NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

Issued March 1973

National Bureau of Standards Technical Note 763

Nat. Bur. Stand. (U.S.), Tech. Note 763, 25 pages (Mar. 1973)

CODEN: NBTNAE

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

Price $0.50 domestic postpaid or $0.35 G.P.O. Bookstore.

CONTENTS

Page
1. Introduction 1

2. Scope and Sources 2

3. Descriptions of Debugging and Monitoring Facilities 3

3.1 Compile Time Checks 3

3.1.1 Syntax Checking 3

3.1.2 Static Concordance of Variables and Labels ... 4

3.1.3 Language Flagging Features 4

3.1.4 Logical Segmentation of Programs 5

3.1.5 Static Control Structure Concordance 5

3.2 Link/Load Time Checks 5

3.2.1 Formal and Actual Argument Checks 6

3.2.2 Static Subroutine Structure Analysis 6

3 .

3

Execution Time Checks 6

3.3.1 Dynamic Trace of Subroutine Calls 7

3.3.2 Backward Trace of Subroutine Calls Upon Error
Termination 7

3.3.3 Variable Trace 7

3.3.4 Snapshot 7

3.3.5 Flow Trace 7

3.3.6 Array Bounds Checking 7

3.3.7 Effective Address Check 8

3.3.8 Value of the Control Variable Upon Exit 8

3.3.9 GOTO Checks 8

3.3.10 Truncation Error Warning 8

4. Conclusions 9

5. References 20

in

A SET OF DEBUGGING AND MONITORING FACILITIES TO IMPROVE THE

DIAGNOSTIC CAPABILITIES OF A COMPILER

Elizabeth Fong

Increasing concern with the quality of computer soft-

ware today makes it important to evaluate critically the

debugging facilities available in high-level languages.

This paper presents a collection of program debugging and
monitoring facilities to improve the diagnostic capabilities

of a compiler. A distinction is made between debugging and

monitoring facilities performed at compile time, at link/

load time and at execution time. These facilities are

described in terms of this breakdown with a conscious at-

tempt to move the detection of errors from execution time

to compile or link/load time, and to collect information

when the information is available during the compilation

process

.

Key words: Compiler; debugging; error diagnostic; high-

level programming languages; monitoring; procedural-oriented

languages

.

1. INTRODUCTION

Software production requires large amounts of both human and machine
resources. The recent trend has been towards a more systematic devel-
opment of software and in particular towards producing "quality" soft-
ware that is effective and maintainable. During the program development
stage, most of the programmer's effort is spent in debugging. Program
debugging is still a very uncertain process. Professionals do not agree
on how to get the bugs out of a program systematically, or how to con-
struct the most reliable program. Tools, both automated and manual,
exist but surprisingly, much of the work in this field has been des-
cribed only in unpublished reports or passed on through oral tradition.
Interest in debugging techniques has .-been aroused recently, and a col-
lection of papers devoted to the topics of debugging -jand maintenance of
large software systems can be found in Reference [1].

The programming activity is rooted in the traditional environment,
that is, writing the program in a high-level programming language, such
as FORTRAN, ALGOL, COBOL, or PL/1 with the usual compile-link/load-go
situation. To aid the programmers in the stage of program development,
it is advantageous to build debugging aids and monitoring features into
a high-level programming language system.

This paper presents a collection of program debugging and monitoring
facilities to improve the diagnostic capabilities of a compiler. A dis-
tinction is made between debugging and monitoring facilities performed

1
Figures in brackets indicate the literature reference at the end of

this paper.

at compile time, at link/load time and at execution time. These facil-

ities are described in terms of this breakdown with a conscious attempt:

to move, as much as possible, the detection of errors from execu-
tion time to compile or link/load time in order to avoid overhead
in an executing program, and
to collect information when the information is available during
the compilation process. At the user's option, this information
could be output at a later time.

2. SCOPE AND SOURCES

Many programmers think of debugging aids as "dumps" (the display of
the contents of storage cells) and "traces" (the display of the control
flow during execution). However, these basic tools have become consider-
ably more sophisticated over the years. In particular, very powerful
debugging faciliti.es have been built for the on-line interactive envi-
ronment [2,3] giving the user a high-level language with which to control
the setting of breakpoints and to allow interrogation of individual
storage cells.

The universities in teaching programming to students, have found
that they need an extensive set of debugging facilities. "Forgiving"
compilers have emerged. These include not only error detection but
error correction features as well. Examples include Cornell Computing
Language (CORC) [4], Waterloo FORTRAN (WATFOR and WATFIV) [5], and
Purdue Fast FORTRAN Translator (PUFFT) [6].

Program monitors are another programming aid. These can be viewed

as a logical extension of the debugging aids described above. A pro-

gram monitor is a program built to measure the behavior of another pro-

gram. In general, the program monitors that are available commercially

operate in two phases: data gathering and data presentation.

The idea of combining debugging and monitoring facilities as an
augmentation to high-level languages has been attempted in the EXDAMS

Project [7]. Both static and dynamic displays may be exhibited at the

request of the programmer.

Dijxstra's notion of structured programming [8], and Wirth's concept

of program development as the process of successive refinement [9] are
attempts to move programming from a private art to a new level of pre-

cision. The essential ingredient in achieving a correct final program
quickly seems to lie in the area called "good" programming practices.
Examples of "good" programming practice include the exhibition of

structured readable source statement as output, planting special checks
and messages for the use of undeclared variables, and elimination of
wild GOTO transfers, etc. Some of these ingredients could be implemented
on a compiler.

3. DESCRIPTIONS OF DEBUGGING AND MONITORING FACILITIES

In a compiler environment, the program text is coded,- keypunched and
fed into a compiler which produces object code. The object code and a
system library are link-edited and loaded by a link/loader which produces
absolute code ready to be executed. (see Figure 1). Three distinct
times can be identified at which debugging and monitoring can occur:
compile time, link/load time, and execution. Each individual type of
check is described in terms of this breakdown.

Language
System
Library

Program
in Source
Language

COMPILER
Program
in Object
Code

I
Data

LINK/LOADER
Program
in Abso-
lute Code

EXECUTION

Output

Figure 1

Debugging and monitoring features described below are categorized
according to these stages. Some features may occur either at compile
time or link-load time depending on the implementation. This three-part
breakdown hypothesizes that the earlier an error is caught, the easier
it is to deal with. Therefore, any tool or technique that moves detec-
tion of certain errors from execution time to compile time is valuable.
This breakdown does not apply to the interpretive environment.

3.1 Compile Time Checks

The types of checks performed by the compiler are usually referred to
as static checks because the problems they address are invariant with
execution time and independent of the values of the input data. The fol-
lowing are descriptions of some program debugging and monitoring facil-
ities that could be performed at compile time.

3.1.1 Syntax Checking . One of the first tasks done by a compiler is
to scan the source program statements. Every high-level lan-
guage has its own established set of syntax rules. Error
situations occur when the compiler cannot translate a source
statement, or the process of syntax-directed parsing is blocked.

Examples of syntax errors include misspelling of reserve words,
punctuation errors such as unmatched parentheses, missing
operators , illegal sequences of operators in expressions , or
missing statement labels. In a class of university-developed
compilers (e.g., CORC, PUFFT, WATFOR) with "forgiving"
features built in, extensive syntax checking is done. These
compilers also do some error-correction during source language
scanning. For example, CORC attempts to define various cate-
gories of misspelling and always tries to repair the error and
continue to compile executable code. All compilers have syntax
checking facilities, however the extent of checking varies.

3.1.2 Static Concordance of Variables and Labels . At compile time

,

all the variables and labels are entered into a symbol table
or an intermediate file. This information could be made
available during compile time to produce one of the most bene-
ficial aids to debugging. This facility is sometimes called a
cross reference listing. The usual format consists of the
symbolic name followed by the concordance of the line numbers
where the variable is being defined and the line numbers where
this variable is being referenced. Some compilers also print
out data type and relocation information. An example appeared
in Figure 2. In this case, the statement label concordance
appeared as a separate listing. The advantages of such a fac-
ility would be to detect a variable or a label being defined
but never referenced or vise versa. For a block-oriented
language such as ALGOL 60 or PL/1, the variables and labels
may be declared as local within a block. Exhibiting a static
concordance of variables and labels plus their scope of
definition would aid debugging. Most of the compilers provide
this facility. There are also programming support packages
available which can generate such a concordance.

3>1 - 3 language Flagging Features . Due to historical development,
most programming languages (e.g., FORTRAN) have undergone
modifications and upgrading (e.g., FORTRAN II, Basic FORTRAN,
FORTRAN IV, and extended FORTRAN). Moreover, each implemen-
tation of the language may contain differences. Flagging can
be done during the source language scanning phase to detect
language syntactic features which deviate from some "standard"
definition such as ASA FORTRAN [10], or additional features
from the previous versions. A message could be printed out
by the compiler as a warning to the user that the particular
feature is unique to this version of the compiler. Very few
compilers have this flagging facility. An idea closely re-
lated to this can be found in a COBOL compiler which prints
the message: "REDEF Name feature not the same as previously
defined version". (See Figure 3). It is possible to deter-
mine the language feature differences by compiling ±he prev-
iously compiled program with the new compiler, however, the

point here is to detect deviations specifically against a
"standard" language definition, or to be able to identify
a subset of the language that existed earlier. To make a
full semantic check of a program is not possible.

3.1.4 Logical Segmentation of Programs . A large program may be
considered as consisting of small logical segments. This
permits a modular organization. Modularity aids debugging
because it breaks up the program into manageable sized pieces.
In ALGOL, there are BEGIN-END statements which create a logi-
cal segment. In COBOL, a paragraph or a section also is con-
sidered to be a logical segment. A formatting facility could
be built into the compiler which would cause more readable
source program statements to be printed out. Examples are.:

alignment of BEGINs with corresponding ENDs with nested inner
blocks properly indented; hierarchical data declaration in
COBOL or PL/1 are properly indented to reflect structures
even when the input is not punched in the proper column; or
reordering of source statements in order to group declaration
statements, executable statements, and format statements.
Figure 4 shows an example of an ALGOL program printout with
block number and level number generated by the compiler to
reflect logical segments. This facility, although not a de-
bugging feature in the sense that it helps to uncover errors,
could greatly add to the readability of a program. Producing
readable documentation also helps another person in maintain-
ing the program.

3.1.5 Static Control Structure Concordance . The normal flow of con-
trol xn a program is sequential. However, control may be
transferred elsewhere in the program by a transfer of control
command, e.g., GOTO, RETURN. A topological structure diagram
showine everv transfer of control at the request of the user
would aid debugging. Figure 5 contains such a static control

structure printout, showing that a transfer of control is

occurring at line number n to line number m. Some compilers
do not provide a total topological control structure trace
but merely print out messages such as "Control can never
reach the next statement" or "There is no path to this state-

ment" (See Figure 6 and 7).

3.2 Link/Load Time Checks

In most batch-oriented installations, compilation produces a binary
program file, usually stored on direct access storage. Subprograms and
the main program are compiled separately and bound together by the link/
loader which associates external references and adjusts addresses. If
an external reference is to a system library routine, it link/loads this
routine. The information available at this point enables the system to
perform the following type of debugging or monitoring checks:

3.2.1 Formal and Actual Argument Checks . A subroutine or function
declaration consists of the name of the subroutine or func-
tion followed by a list of actual parameters.

For a programming language such as ASA Standard FORTRAN,

the definition of the language specifies that the actual
arguments must agree in order, number and type with the
corresponding formal arguments. A check on all three items
would insure that the program is adhering to a "standard".
In order to perform checks at link/load time, it is necessary
to carry more information than the usual external symbol
definition, for example, the list of formal argument names
and their data types, the corresponding actual argument
names and their data types. The advantages of performing the
checks at link/load time rather than execution time is that
the check would be done only once, rather than each time
the subprogram is executed. The tests that could be performed
include the following:

a) If the subroutine or function does contain a non-standard
return, test that the return label is indeed a label.

b) In the case of FORTRAN, if one of the arguments of the
subroutine or function is a subroutine name or a function
name, the compiler could check to determine if the name
is being declared as an external procedure.

c) Some implementations of FORTRAN compilers allow the num-
ber of formal arguments to differ from the number of
actual arguments. If the standard language definition,
e.g. , ASA FORTRAN standard, calls for a match in the num-
ber, the check might insure that the program is adhering
to the appropriate standard.

3.2.2 Static Subroutine Structure Analysis . The static information
about subroutine structure consists of caller and call<2e re-
lationship derived from the program text. In most languages,
this caller-callee relationship is invariant at execution

time. This information is available at link/load time and
usually contained in the external symbol definition table.
The link/loader could optionally produce a concordance of
the source language subprogram caller/callee names. An ex-
ample of the "CALL" concordance (Figure 8) and "CALLED-BY"
concordance (Figure 9) was developed at NBS on the UNIVAC
1108 computer.

3 . 3 Execution Time Checks

_ Dynamic information about the actual running of the program is ob-
tainable at this time. To embed tests, the compiler usually inserts

code at appropriate points to be executed in conjunction with the
worker program. Every test introduce 1 will decrease the running effi^
ciency of the worker program and it is necessary to exercise care when
deciding what to measure and where to embed tests. Attention also has
to be given to where the tests are to be inserted to assure uniform
checks

.

3.3.1 Dynamic Trace of Subroutine Calls . Actual subroutine paths
could be traced at execution time. This information not only
aids in debugging but is very useful for program activity
analysis. LEAP (Lambda Efficiency Analysis Program) [11],
a software monitor, contains a special section to perform
subroutine structure analysis. A tree-like diagram of the
paths through the hierarchy of subprogram calls from the main
program allows the user to identify the most significant
call chains. Figure 10 shows a portion of a dynamic sub-
routine trace developed at NBS for the UNIVAC 1108. It con-
sists of ten subroutines with its call chain properly reflect-
ed by the indented printout.

3.3.2 Backward Trace of Subroutine Calls Upon Error Termination .

Upon error termination, an identification of where the error
occurred plus a backward trace of the subroutine calls aids
debugging. Figure 11 shows an example of backward trace of
subroutine calls when the program terminated with an error.

This example is generated on the UNIVAC 1108 FORTRAN compiler.
This compiler uses an extra word in the calling sequence to
store the "walk-back" or the backward reference to permit
this kind of backward trace.

3.3.3 Variable Trace . This is a dynamic display of the specified
variable and its content at each instant in time. The display
usually occurs as an instruction by instruction accounting of
information or at every instance of a value change. It is

not only useful for debugging, but also useful in spotting
the value changes of certain variables for program analysis.

3.3.4 Snapshot . This is similar to the variable trace except that
the variables and their values are recorded periodically on
entering or exiting certain regions of the program.

3.3.5 Flow Trace . This is the dynamic display of every branchpoint
of a running program. The trace records the decision points

and exhibits the branches taken.

3.3.6 Array Bounds Checking . This checking is sometimes built into

a computer as a precaution against altering of values incor-

rectly. The value of the subscript is tested to determine if

it is within the specified dimension of the array element,

and if it is also an integer constant. The check is useful in

monitoring array elements and spotting the activity level of

various parts of the table.

7

3.3.7 Effective Address Check . This is a feature provided for mem-
ory protection. Bounds registers are set to certain permitted
address ranges and every effective address value is checked
against these bound registers. In some cases, it is imple-
mented as a hardware feature to avoid system overhead. This
feature is especially important in a multiprogramming environ-
ment.

3.3.8 Value of the Control Variable Upon Exit . In an iteration loop
such as FORTRAN-DO or ALGOL-FOR, the value of the control
variable upon exit is undefined if the exit is due to exhaus-
tion of the loop, otherwise it is the same as it was immed-
iately preceding the execution of the exit condition. The
undefined situation is handled by implementors in different
ways. Some compilers even try to "guess" what the user in-
tended. The trouble starts when programmers make use of these
undefined situations on a particular implementation of the
compiler, and later discover that the same program does not
work correctly on a different implementation. Debugging this
type of error is very difficult because it involves an under-
standing of the semantics of different compiler implementation
of undefined situations. One of the debugging facilities for
this particular undefined situation could be to report all
later use of the control variable or intentionally set the
value of the control variable to "undefined" (minus zero or
some such number) when the exit of the loop is due to exhaus-
tion of the loop.

3.3.9 GOTO Checks . Recently, there has been considerable interest
ui eliminating the GOTO statement [12, 13]. Dijkstra claims
the use of GOTO statements is undesirable, and avoiding it
would increase the readability and proveability of the program.
When GOTO cannot be avoided, and when label variables are
allowed e.g. FL/1, the following kinds of checks could be per-
formed by the compiler:

(a) Flag error if the transfer is made to itself or to a non-
executable statement.

(b) Flag error if the transfer label value is negative or
undefined.

(c) Flag error if the transfer label value is outside of the
user's assigned program space.

(d) Flag warning if the transfer label goes within an itera-
tion loop.

3.3.10 Truncation Error Warning . On an arithmetic or MOVE-data
operation, some bits may be dropped due to computer word-
length. Overflow to the left or to the right of the computer

word is called truncation error. If such overflow is sus-

pected or detected, a warning would be printed by the compiler.

4. CONCLUSIONS

Increasing concern with the quality of computer software today makes
it important to evaluate critically the debugging facilities available
in high-level languages. The debugging and monitoring aids described
above are particularly useful during early implementation and initial
system integration stages. They could be automated by embedding these
checks at appropriate points in the compilation-execution process when
all the needed information is available.

The list of features is not geared to any particular high-level pro-
gramming language; however, some of the features described are applicable
only to particular language constructs. Techniques of implementation
and the question of how to invoke and suppress these debugging and moni-
toring facilities have not been addressed here.

Commercially available compilers usually provide some debugging facil-
ities; however, certain trade-off decisions are made which usually sacri-
fice the extent of providing debugging aids in favor of efficiency of
the compiler. Such a list might prove to be useful as an evaluation
criteria in determining the capabilities of a compiler.

These debugging and monitoring facilities described above could be
automated to aid programmers during program development stage. Certain
bugs are very much problem and situation dependent. Such bugs are dif-
ficult even to anticipate. For instance, it would be in general im-
possible for the compiler to isolate a sequence of code and determine
that it is a non-terminating loop. There also exists a whole class of
"Timing Bugs" which, when certain combination of situation occurs, the
program behaves abnormally.

The problems in the area of debugging and monitoring are many: The
question of how much to output, what should be outputted, how to recover
from error conditions, what should be the default situation, etc. All
of these questions are still open and the decisions are usually left
with the implementor.

There are other automated testing techniques for validating purposes,
but they are beyond the scope of this paper. Such techniques include
benchmark tests, exhaustive exercising of the program with different in-

put data, and proof of correctness using formal logic, etc. Testing
methods for validation purposes are very different from those mentioned
here, which are limited to debugging and monitoring aids for program
development purposes.

The author would like to thank Mrs. Frances E. Holberton for giving
her very valuable suggestions. The author also wishes to acknowledge Dr.

Rona Stillman for reading the paper. Dr. Selden Stewart and Mr. Justin
Walker provided some of the computer examples.

=0 CO '.O N. ^ w a
(T1 O CM «-4 (A tf> C
fO if* iTi ^D \D %D N- •HtMroroj-uDr-r-.cOCT'

iD CJ> J" f-
c? tr to s
ro -* txi h-

ire wh joi
(T cr fu w in s i

to .$ IT* *0 \D i£> I

VD^^nOMcyJ, Mf"w
C^J-rotTeo-^pnt^inf-

C\J{\J rOCT, OCT, CT1 C\leOC3lf\THLA»i>'C

oroir>roN.c7, (\.N--Hco(\j«;vD
CT«3fMvO<Ts «3<r,HJ-J'f^Lr>(T
MJvflSOMJlPlTvClvDStO

looin^ffiMiUco
iCTKCTCT'vDcairiir*
iMJlTiDNffl^O

ra r~i r^ n O o
iii J- .* iO t.0 <D vl 1 m j- a- m CT1 <M in
z z 11 2 z <; z in J- t-

£ r^ X
E

-* S IA
J-

CO

N. ioo^iirci>l>ori-}

a o o a a

in
a l_

3\ftjtT, ^inrJ VDeONUJUIO, NWNCPJiDI
, r-"u'Mre*rinJ, »DJffZa:^<C(Cinj«l^(

u. o
Ll. v.

a i-i

! JlTiOSMro

*iniriif'iriinir'iriiriirjo(js jiDifiD«pw«)woMjcor\jMDj(?iD^aoo\DH
* Snj\DSNWJinL1*Dii)NKN T->l\<K>J'ini£iN-N-C7> C2

U_U_U.L^U_Lj.U.I^Li.lJ-ZLLa^^«2oa(\iC\JiI5f,Ocoij.2in'£, r^oa, t\J-JsOCT1 C\j

lUUJUJUJLJliJULULiJliJ^ljJ^ir^^i^JiniA^\D^^LUVH^C\jrOJ, J-»X)f^N.eOOaaacrcraaaaaiLQ; u. a: u. »h

JOOOOOOOOOl LJ UJ

LU UJ

BfflOOCCDOCTCM
U-OXi-hT^_i3: 20I/IOOOOOCJOOOO o >

UJ 3

10

ccoccccccccccccccc

c cr c

L b b
U L

K - If vf r

L b L. L> U

> > > i > > : > > c

wwwwCCCCCOCCCCCCCcccccccccocccccro

.- c

V c

r, ~- —

>

c u

c 3

LbbbbbbbUUb
D t CO C

i O C t

C C i

t- K V k

D C C t, C G £

& U C Cr

o r c 1 1

u a. u.i cr a L U or. u L. L L
a c tr ui d er & UJ & & 5>" &
r _ i mr r i CO

"
t- h i y t- i £ h k <: hULC _- (_' (_) «3 _. c< CJ 1 DHHlilZH •- U-
C C Cr C c a £ f. H C

U U 7 *-

CT b *- U
C C U U
«i u u c
DT D- 0:" C UCUD
I c >
L c _J
_J _J IT

t c c &
3 « »- C

t' ^c r c c ^ — w~

U C Lit <- I L

r- i~- r- r*- t*-
•-

li
1 c b- c u 1 u

0"

>
Cr c

>
U L
? r >
«.' b 1

c. c <s K Cr IT * * C* «"

I b -
1 c\ LJ Z> 1 vn 1 K

r- i 1 c C 1 jc n i

f. li _i i- b J _J •- u > i- i r
r" 1- > (T < i

5 J. li li ? c c
D D " r r-

n C D 7 c
h- h- t* r*. r*- ir a*
c C LT o c i/; c _i cr C

L" ~ CI _J 1

C H

1 H
b Cr

cl a

' C C O C C C, C ohccc
c\ ~" c\ o r

r " c r if

c c u e cc c c c c c
c c c c c c c c c c c c

f- -K - r -
.

li c c c

d- ^ ir it ir ir

P c o c C P

ccc cr o c c^oc-ooc-ooccoo:occ oocrocroocrcrooc'GOOc
c c: c ccc crocccc-cr. caccroc

o o c cr C' occ c o o
r- r- o c o — o o o c c^
c c - o c e o c c c c~ rr?

occ OOODCOCOCCOC-CCCOOOOCCooo ooooccocoocccoocsccoo
ce-c. ccccoctc- cccoc-coc-oc-coc-c

c*-«-— •--•-•"•-•-•" car rv. <\r o.> r ocvcf k. r*
p" r-' k.- r r KCcjjri*1

. ddsaa^riririrL'iriririru ir vr rf. *r *f.

c cr c

c. c rt w t d- i-i vD sir ^ o h fj .-o j- ji vC s i c> c h m ^, j j-. vcm p o^(\i <^^-iTiinr^c-a, o-HC\'r<-, jLi^MrtrcHMo
c w h .- h t- h « ^ w pj m pi c\ oj tv^ 1 p. 1 f ^ r. 2 c f» k: k i^ n k• it ,t f p- * ^ s c ^ r* ^ r s ^f j u* .Tj ir lt j" ^ j" it j~ j" .c j"- \f ^

ir
rr

cr

11

•H

12

j- u> in n- i

t-H » <I

~z r> o
O 3 o
t-t <a

CD
O t-< ta o
tz u. >
=3 M 3 <I
U-
Z cr

Of o _J > f\i

d. s z z
o t- O <T or 11 o a-
LU O d 3
l- 2 O i— t- O
7 13 c U_ li_ Ll o
t-> U- _J l-t l-t 0/ M o :=*r or iu

o o o o o o

IT iC N «- O' OHMI

13

O*© — O -o r» x O
«<o — O ffi oj u —
Z <» »c 3 (O O 1£ Z.

' (A
<x o-

• is i a * tfi in * fi !* •tflo.a.tAififltftfitf)
• oj> —• •<Da.££a.a.a.a.a.i a:a_£E3-Q_a-a-CLQ_
5t-a +s»EuJbJExr:z:E^ •euiujexzixex

O *ifl W ac — - Z --ZZZ2Z2T-JQ; » Z - - 3: Z Z Z Z Z
O — 3 *[LO— » <N 3" - * - - - - Z Z Q£ — *(M T - - - - - -
o — onaim — < — — —• r>* ar ui -o r-» — — m— -o — — —• t\i a- i/i-o r-ox — cczD»<<<:«xxxa:Q:xa: • • z.»<«t<<:.xxa:iEQ:a:

-j <c x <n <x ->

_i c o o o s:

in o o o a _i

3-— <"> O O O C 3" —
o c DOOCOCj-OO C O O C? O O _iOO O O O O O C liJ

OlO 3 — i/> — — O -1om oca— QCcc coatrcoi-
C C O O O C. C O ZCO CCCDOOuJ
C C

— oooaooooodooc-jCO!
1 C C I

! C O !

oooacooe.ooooooDai

o G
c o
o o
c o

COCOOOLJ -J

c c c
coo
o o c .

I c c
c: o

i o o
o c c o c o c c, o

C- O O C C '

C O 3 O a 3 3 O O Oo,ocao3oco3oooaooooocccooocoooc:

GOCCGCCCOCCOCOOOCOO COCactrocwcouctj
COCOCOOOC OOCCOCO— — CiCCCCiCCJDC&O

3 o i o o o i

i D O D O !

— O ZJ O 3 C •D t~
:ro.oc:o<\.zz
r- O c C o f* — us

O O i

i o cON'

O C O o o o c o
i r c r c c c ifi r 3- — CS.rs,CMODCCCC

d o» — — — oooocro
3- <[— — — •* -O J 3" T T
r»-cif^i^p*Cii3cocc

a- to * r- c — (sj «"» t/i r
T 3" T J if !/l ill -P i' e;
M \ - N MM N N % 'J l- Li
3 D > O O C? C C C Z IT- IP
C OXTC. 3GC3<rLJccuc-rcocc;;**— it

m :/) I- • o o a o c a
— -JOOOCCj O 3 O C> 3loccconocococcocc "

-OOOOOOOO
: a o o c? o i) o o o o o o c

^ o o o occoocoooooODOCJOODOO C'

^. I/) I/) lT<

O C- C^ O O O C- I

r? c o c- e ra o > c- 11 c t- E_-

14

CP
CM
a
i

CD
•

CO
>
z
\-
u.

cr>

O ^
lO O
iD _J

UJ
O »- CE

O z
O UJ UJ

2: uj
UJ oo

t—
<t «
1- 00
00 a.

UJ
oo cd

x r>
l~ z
o t—
t- z

UJ
x 5:
1- UJ
<t H-
a <z

t—
O 00

o z
t—

i

o
t- 00 UJ

u 00 t-l z
o o k-H

d Z UJ U.

or o C* UJ
i— <l UJ D

1—

'

X z
D t- =3

oo

Or:

<I
a

O
a.

CD
«r
—I

V o
1— UJ
n z
ct: 1—

1 UJ >—

1

UJ U- U-

> UJ

u D
00 Z -rH

3 CM
C\J

• C3 CT
o f) to
z ID O
o
CL
<I

o

15

£UO U II U) X 'ClLJU-OX-j*: Q u> U. O X ~3 1* U 1l(3 I ") ^ It 151 T^ \3 X ~> * X ~>
:

O Q Q

I "> E

o o o

•H

16

) kj «s x <*j n i O'JL «X

17

"3 i£ -J -y x. ^

"3 * ~>

-i •* ij? "3 * X

O f)

O

PM

18

or

cc
3

c

<
s:

Cf- (."

ID CC'

I/, -^

UJ Z
Z <

3 3
a. X

3
o

0.
X U" UJ
UJ *_/ u
z z z

U' l^i

z 3 3
•— c? car

L. u.;

2 LI t/>

O
~~

1- t- t-

< <. <*

z
•—

t

z: O Q
or bj UJ

u. _j _l

f— _) -J
t/1 «I" 4
(- or l_J U
_J o
r> Or w-
en or — fV

UJ UJ CL oc

cc X <0
Ij.' 3
Z U>

1

19

5. REFERENCES

[1] Rustin R. (ed.) "Debugging Techniques in Large Systems" Courant
Computer Science Symposium 1, 1971.

[2] Evans, T. G. and D. L. Darley, "On-line Debugging Techniques -

A Survey" In AFIPS, FJCC Vol. 29, 1966, 37-50.

[3] Evans, T. G. and D. L. Darley, "DEBUG - An Extension to Current On-
line Debugging Techniques", Coram. ACM 8,5 (May 1965) 321-326.

[4] Freeman, D. N. , "Error Correction in CORC - The Cornell Computing
Language", AFIPS Vol. 26, SJCC, 1965, 15-31.

[5] Cowan, D. D. and J. W. Graham, "Design Characteristics of the
WATFOR Compiler", SIGPLAN Notices Vol. 5, No. 7, July 1970, 25-36.

[6] Rosen, S. , R. A. Spurgean and J. K. Donnelly, "PUFFT- The Purdue
University Fast FORTRAN Translator", Coram, ACM, 8, 11 (Nov. 1965).

[7] Balzer, R. N. "EXDAMS - Extendable Debugging and Monitoring System",
AFTPS Vol. 34, SJCC 1969, 567-580.

[8] Dijkstra, E. W. "Structured Programming" , In NATO Conference on Soft-
ware Engineering Technique, Buxton, J. N. and Randell, B. (Eds.)

April 1970.

[9] Wirth, N. "Program Development by Stepwise Refinement", Coram. ACM
14,4 (April 1971), 221-227.

ClO] American Standard FORTRAN, Published by American Standards Assn. Inc.

UDC 681.3, 1966.

[11] Lambda Corporation, "A Guide to Program Improvement with LEAP",

Available from Lambda Corp., 1501 Wilson Blvd, Arlington, Virginia

22209, Jan. 1970.

[12] Knuth, D. E. and R. W. Floyd, "Notes on Avoiding GOTO Statement",
Report No. CS-148, Computer Science Department, Stanford Univ, 1970.

[13] Dijkstra, E. W. "GOTO Statement Considered Harmful", Comm. ACM 11,
3 (March 1968), 147.

20

FORM NBS-114A (1-71)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET

1. PUBLICATION OR REPORT NO.

NBS TN-763

2. Gov't Accession
No.

3. Recipient's Accession No.

4. TITLE AND SUBTITLE

A Set of Debugging and Monitoring Facilities to Improve
Diagnostic Capabilities of a Compiler.

5. Publication Date

March 1973

6. Performing Organization Code

7. AUTHOR(S) 8. Performing Organization

Elizabeth N. Fong
9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

10. Project/Task/Work Unit No.

11. Contract/Grant No.

12. Sponsoring Organization Name and Address

Same as No. 9

13. Type of Report & Period
Covered

Final

14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here.)

Increasing concern with the quality of computer software today makes
it important to evaluate critically the debugging facilities available in
high-level languages. This paper presents a collection of program debugging
and _ monitoring _ facilities to improve the diagnostic capabilities of a compiler.
A distinction is made between debugging and monitoring facilities performed at
compile time, at link/load time and at execution time. These facilities are
described in terms of this breakdown with a conscious attempt to move the
detection of errors from execution time to compile or link/load time, and
to collect information when the information is available during the compilation
process

.

17. KEY W.ORDS (Alphabetical order, separated by semicolons)
Compiler; debugging; error diagnostic; high-level programming languages;
monitoring; procedural-oriented languages.

18. AVAILABILITY STATEMENT

[xl UNLIMITED.

I I
FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE
TO NTIS.

19. SECURITY CLASS
(THIS REPORT)

UNCLASSIFIED

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

21. NO. OF PAGES

25

22. Price

$.50 Domestic Postpaid

$.35 GPO Bookstore

USCOMM-DC 66244-P71

U. S. GOVERNMENT PRINTING OFFICE : 1973 O - 511-324 (203)

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National

Bureau of Standards research and development in

physics, mathematics, and- chemistry. Comprehensive

scientific papers give complete details of the work,

including laboratory data, experimental procedures,

and theoretical and mathematical analyses. Illustrated

with photographs, drawings, and charts. Includes

listings of other NBS papers as issued.

Published in two sections, available separately:

• Physics and Chemistry (Section A)

Papers of interest primarily to scientists working in

these fields. This section covers a broad range of

physical and chemical research, with major emphasis

on standards of physical measurement, fundamental
constants, and properties of matter. Issued six times

a year. Annual subscription: Domestic, $17.00; For-

eign, $21.25.

• Mathematical Sciences (Section B)

Studies and compilations designed mainly for the

mathematician and theoretical physicist. Topics in

mathematical statistics, theory of experiment design,

numerical analysis, theoretical physics and chemistry,

logical design and programming of computers and
computer systems. Short numerical tables. Issued quar-

terly. Annual subscription: Domestic, $9.00; Foreign,

$11.25.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the

Bureau's measurement, research, developmental, co-

operative, and publication activities, this monthly
publication is designed for the industry-oriented

individual whose daily work involves intimate contact

with science and technology

—

for engineers, chemists,

physicists, research managers, product-development
managers, and company executives. Includes listing of

all NBS papers as issued. Annual subscription: Do-
mestic, $6.50; Foreign, $8.25.

NONPERIODICALS

Applied Mathematics Series. Mathematical tables,

manuals, and studies.

Building Science Series. Research results, test

methods, and performance criteria of building ma-
terials, components, systems, and structures.

Handbooks. Recommended codes of engineering

and industrial practice (including safety codes) de-

veloped in cooperation with interested industries,

professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS confer-

ences, bibliographies, annual reports, wall charts,

pamphlets, etc.

Monographs. Major contributions to the technical

literature on various subjects related to the Bureau's

scientific and technical activities.

National Standard Reference Data Series.

NSRDS provides quantitative data on the physical

and chemical properties of materials, compiled from

the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes,

types, quality, and methods for testing various indus-

trial products. ,These standards are developed co-

operatively with interested Government and industry

groups and provide the basis for common understand-

ing of product characteristics for both buyers and
sellers. Their use is voluntary.

Technical Notes. This series consists of communi-
cations and reports (covering both other-agency and
NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards
Publications. This series is the official publication

within the FedeTal Government for information on
standards adopted and promulgated under the Public

Law 89—306, and Bureau of the Budget Circular A—86
entitled. Standardization of Data Elements and Codes
in Data Systems.

Consumer Information Series. Practical informa-
tion, based on NBS research and experience, cover-

ing areas of interest to the consumer. Easily under-
standable language and illustrations provide useful

background knowledge for shopping in today's tech-

nological marketplace.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES
The following current-awareness and literature-survey bibliographies are issued periodically by the

Bureau

:

Cryogenic Data Center Current Awareness Service (Publications and Reports of Interest in Cryogenics).

A literature survey issued weekly. Annual subscription: Domestic, $20.00; foreign, $25.00.

Liquefied Natural Gas. A literature survey issued quarterly. Annual subscription: $20.00.

Superconducting Devices and Materials. A literature survey issued quarterly. Annual subscription : $20.00.

Send subscription orders and remittances for the preceding bibliographic services to the U.S. Department

of Commerce, National Technical Information Service, Springfield, Va. 22151.

Electromagnetic Metrology Current Awareness Service (Abstracts of Selected Articles on Measurement

Techniques and Standards of Electromagnetic Quantities from D-C to Millimeter-Wave Frequencies). Issued

monthly. Annual subscription: $100.00 (Special rates for multi-subscriptions). Send subscription order and

remittance to the Electromagnetic Metrology Information Center, Electromagnetics Division, National Bureau

of Standards, Boulder, Colo. 80302.

Order NBS publications (except Bibliographic Subscription Services)

from: Superintendent of Documents, Government Printing Office, Wash-
ington, D.C. 20402.

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington, DC. 20234

OFFICIAL BUSINESS

Penalty for Private Use. S300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

215

